
Inductive Relation Prediction by

Subgraph Reasoning

Komal K. Teru

Computer Science
McGill University, Montreal

August 20, 2020

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. c©Komal K. Teru; August 20, 2020.

i

Acknowledgements

I am deeply grateful to my supervisor William Hamilton for his invaluable

supervision on my research and constant mentorship throughout my master’s

program. It would have been impossible to finish the thesis without Will’s

guidance and encouragement. I also extend my thanks to Mark Coates for

reviewing and providing detailed feedback on the initial drafts of this thesis.

I thank Etienne Denis for his help in getting the experiment pipeline of

GraIL off the ground. I extend my gratitude to lab members Jin Dong, Koustuv

Sinha, and Devendra Singh for their support and discussions on my project when

it was in a rough patch.

Finally, I am grateful to my parents, back in India, for giving me the op-

portunity to pursue my master’s and to my partner and most trusted friend,

Alekhya, for providing me with unconditional support when I needed it the

most.

ii

Abstract

The dominant paradigm for relation prediction in knowledge graphs in-

volves learning and operating on latent representations (i.e., embeddings) of

entities and relations. These methods exploit the local connectivity patterns

and homophily in the knowledge graph to make predictions. However, these

embedding-based methods do not explicitly capture the compositional logical

rules underlying the knowledge graph, and they are limited to the transductive

setting, where the full set of entities must be known during training. Here, we

propose a graph neural network based relation prediction framework, GraIL,

that reasons over local subgraph structures and has a strong inductive bias to

learn entity-independent relational semantics. Unlike embedding-based models,

GraIL is naturally inductive and can generalize to unseen entities and graphs

after training. We provide theoretical proof and strong empirical evidence that

GraIL can represent a useful subset of first-order logic and show that GraIL

outperforms existing rule-induction baselines in the inductive setting. We also

demonstrate significant gains obtained by ensembling GraIL with various knowl-

edge graph embedding methods in the transductive setting, highlighting the

complementary inductive bias of our method.

iii

Résumé

Le paradigme dominant pour la prédiction des relations dans les graphes

de connaissances implique d’apprendre et d’opérer sur des représentations la-

tentes (c’est-à-dire des plongements) d’entités et de relations. Ces méthodes

exploitent les modèles de connectivité locale et l’homophilie dans le graphe des

connaissances pour faire des prédictions. Cependant, ces méthodes basées sur

l’incorporation ne capturent pas explicitement les règles logiques de composition

sous-jacentes au graphe de connaissances, et elles sont limitées au paramètre

transducteur, où l’ensemble complet des entités doit être connu pendant la

formation. Ici, nous proposons un cadre de prédiction de relations basé sur

un réseau de neurones, GraIL, qui raisonne sur les structures locales de sous-

graphes et a un fort biais inductif pour apprendre la sémantique relationnelle

indépendante de l’entité. Contrairement aux modèles basés sur des plonge-

ments, GraIL est naturellement inductif et peut se généraliser à des entités

et des graphiques invisibles après la formation. Nous fournissons des preuves

théoriques et des preuves empiriques solides que GraIL peut représenter un sous-

ensemble utile de logique de premier ordre et montrons que GraIL surpasse les

lignes de base d’induction de règles existantes dans le cadre inductif. Nous

démontrons également des gains importants obtenus en assemblant GraIL avec

diverses méthodes d’intégration de graphe de connaissances dans le cadre trans-

ductif, mettant en évidence le biais inductif complémentaire de notre méthode.

Contents

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Problem statement . 4

1.1.1 Learning entity-independent relational semantics 4

1.1.2 Improving embedding-based methods 6

1.2 Thesis statement . 7

1.3 Statement of contribution . 8

1.4 Outline of the thesis . 9

2 Knowledge Graphs 11

2.1 Embedding methods . 14

2.1.1 Decoder functions . 15

2.1.2 Training regime . 19

2.1.3 Evaluation regime . 22

2.2 Rule-based methods . 23

2.3 Beyond Static knowledge graphs . 24

iv

CONTENTS v

3 Graph Neural Networks 26

3.1 Message passing formalism . 27

3.1.1 Generalized AGGREGATE function 29

3.1.2 Generalized UPDATE function 31

3.2 GNNs for multi-relational graphs . 34

3.3 GNNs for downstream tasks . 36

4 GraIL 37

4.1 Model Description . 39

4.1.1 Step 1: Subgraph Extraction 39

4.1.2 Step 2: Node labeling . 40

4.1.3 Step 3: GNN scoring . 41

4.1.4 Training Regime . 44

4.2 Theoretical Analysis . 45

4.2.1 Proof of Theorem 1 . 46

4.3 Computational Complexity and Scalability 49

5 Experimental results 51

5.1 Inductive Relation Prediction . 54

5.1.1 Inductive Benchmark Datasets 54

5.1.2 Baselines . 56

5.1.3 Hyperparameter settings . 57

5.1.4 Experimental Results . 58

5.2 Transductive Relation Prediction . 61

5.2.1 Datasets . 62

5.2.2 Models . 62

5.2.3 Experimental Results . 63

5.3 Additional analysis . 66

5.3.1 Ablation Study . 66

CONTENTS vi

5.3.2 Hyperparameter sensitivity analysis 68

6 Conclusion 70

6.1 Limitations . 71

6.1.1 Computational complexity . 71

6.1.2 Interpretability . 71

6.2 Future directions . 72

6.2.1 Frontiers of GNNs and logical reasoning 72

6.2.2 Inductive relation prediction 73

Bibliography 74

List of Figures

1.1 Illustration of transductive and inductive settings for relation prediction

in knowledge graphs. 3

4.1 Visual illustration of GraIL for inductive relation prediction. 38

5.1 Figures 5.1a, 5.1b, 5.1c show the average Hits@k across all versions of the

respective datasets. Figure 5.1d shows the number of parameters of all

differentiable methods on version v4 of all datasets. 61

5.2 Sensitivity to (a) neighborhood size of enclosing subgraphs, and (b) latent

dimension of GraIL . 68

vii

List of Tables

5.1 Illustration of the inductive dataset splits 54

5.2 Statistics of inductive benchmark datasets 56

5.3 Inductive results on datasets derived fromWN18RR. N denotes Neural-LP,

D denotes DRUM, R denotes RuleN, G denotes GraIL 58

5.4 Inductive results on datasets derived from FB15k-237. N denotes Neural-

LP, D denotes DRUM, R denotes RuleN, G denotes GraIL 59

5.5 Inductive results on datasets derived from NELL-995. N denotes Neural-

LP, D denotes DRUM, R denotes RuleN, G denotes GraIL 60

5.6 Late fusion ensemble results on WN18RR (AUC-PR) 63

5.7 Late fusion ensemble results on NELL-995 (AUC-PR) 63

5.8 Late fusion ensemble results on FB15k-237 (AUC-PR) 64

5.9 Late fusion ensemble results on WN18RR (Hits@10) 64

5.10 Late fusion ensemble results on NELL-995 (Hits@10) 64

5.11 Late fusion ensemble results on FB15k-237 (Hits@10) 65

5.12 Relative gain of pairwise ensembling AUC-PR 65

5.13 Early fusion ensemble with TransE results 66

5.14 Ablation study of the proposed framework (AUC-PR) 68

viii

1
Introduction

Recent machine learning models have proved to be exceptional in recognizing pat-

terns within high-dimensional features representing an individual data-point (object)

[1, 2, 3]. In addition to tasks based on traditional labelled i.i.d. data (e.g., object

classification, machine translation, and speech recognition), there are numerous im-

portant relational tasks where different objects interact with each other (e.g, scene

understanding [4, 5], question answering [6, 7], and dialogue understanding). Such

relational tasks require complex reasoning abilities beyond recognizing patterns in in-

dividual object features. The primary focus of this work is to study machine learning

models that are specifically designed for such relational reasoning tasks.

In this work, we focus on knowledge graphs, which are a collection of facts about

entities and relations among them. They are used in a number of applications, such as

semantic parsing [8, 9], named entity disambiguation [10, 11], information extraction

[12, 13], and question answering [6, 7]. While relational reasoning is implicitly vital for

many tasks like scene understanding and natural language question answering, those

tasks intertwine linguistic/visual (perceptual) aspects of learning with the relational

reasoning abilities of the model. Knowledge graphs, being explicitly structural, let

us isolate the relational reasoning from perceptual learning. This disentanglement

of tasks helps us better study the innate reasoning abilities of our models and thus

enable us to improve explicitly the reasoning capabilities of these models.

1

CHAPTER 1. INTRODUCTION 2

Predicting missing facts in knowledge graphs—usually framed as relation predic-

tion between two entities—is a widely studied problem in statistical relational learning

[14]. It requires reasoning over existing relational facts among the entities to infer new

relations (Figure 1.1). The most dominant and successful paradigm, in recent times,

has been to learn and operate on latent representations (i.e., embeddings) of enti-

ties and relations. These methods condense each entity’s neighborhood connectivity

pattern into an entity-specific low-dimensional embedding, which can then be used

to predict missing relationships [15, 16, 17, 18]. Embedding-based methods have en-

joyed great success by exploiting such local connectivity patterns. However, all these

approaches inherently assume a fixed set of entities in the graph – an assumption that

is generally referred to as the transductive setting (Figure 1.1b) [19].

In this thesis, we instead study the inductive setting, where we must predict re-

lationships between new entities after training. This is an important problem be-

cause many real-world knowledge graphs are ever-evolving with new nodes or enti-

ties being added over time–e.g., new users and products on e-commerce platforms

or new molecules in biomedical knowledge graphs. The ability to make predictions

on such new entities without expensive re-training or entity resolution is essential for

production-ready machine learning models. Moreover, as we discuss below, this induc-

tive relation prediction task requires learning the logical rules underlying a knowledge

graph, making it a natural testbed for investigations into relational reasoning.

In order to approach this task, we build upon the success of graph neural networks

(GNNs) [20, 21, 22, 23, 24, 25, 26, 27]. GNNs are a popular and powerful approach,

but we are the first to test them on this task and study their logical reasoning abilities

in a multi-relational setting.

CHAPTER 1. INTRODUCTION 3

Fi
gu

re
1.
1:

Ill
us
tr
at
io
n
of

tr
an

sd
uc
tiv

e
an

d
in
du

ct
iv
e
se
tt
in
gs

fo
r
re
la
tio

n
pr
ed
ic
tio

n
in

kn
ow

le
dg

e
gr
ap

hs
.

CHAPTER 1. INTRODUCTION 4

1.1 Problem statement

In this work, we seek to answer two questions: 1) how to learn the entity-independent

relational semantics underlying the knowledge graphs, in order to enable predictions

on new entities; 2) how do such relational semantics compliment the entity-specific

information encoded by the embedding-based methods.

1.1.1 Learning entity-independent relational semantics

One can extract probabilistic logical rules (Horn clauses) from a Knowledge Graph.

For example, from the knowledge graph shown in Figure 1.1a one can derive the

simple rule,

∃Y.(X, spouse_of, Y) ∧ (Y, lives_in, Z)→ (X, lives_in, Z), (1.1)

which says, ’A person lives in the same place as their spouse.’ We can imagine knowl-

edge graphs to be composed of several such underlying logical rules [28, 29]. In other

words, we hypothesize that most of the facts in the knowledge graph can be distilled

into logical rules that capture the essence of knowledge present in them. We refer to

such underlying rules as relational semantics since they are patterns of interactions

only between the relations independent of any entities. These relational semantics

can be used to infer missing links in the knowledge graph. For example, this rule can

predict the relation (A.Davis, lives_in, L.A) in Figure 1.1b.

The relation prediction task can hence be interpreted as a two-step process: 1)

efficiently inducing and expressing the underlying logical rules, 2) using these rules

to infer the missing link(s). Note that these two steps involve two distinct problems

of 1) rule induction, and 2) inference, making it all the more challenging. Moreover,

such relational semantics go beyond just knowledge graphs. Explicitly identifying and

learning such rules can aid in many different domains like better scene understanding

CHAPTER 1. INTRODUCTION 5

beyond raw pixels [30], navigating multi-doc textual information [31, 32], generalizing

across different RL environments, etc.

With embedding-based methods encoding the local neighborhood information into

the entity-specific embeddings, we can imagine the relational semantics being im-

plicitly captured along with many other latent features that the model learns. For

example, in Figure 1.1a, the embeddings of LeBron and A.Davis will contain the

information that they are both part of the Lakers organization, which could later

be retrieved to predict that they are teammates. Similarly, the pattern that anyone

closely associated with the Lakers would likely live in L.A could be encoded in the

embedding space. Although relational semantics by the virtue of their inherent nature

are entity independent, embedding-based methods fundamentally depend on entity-

specific embeddings as a medium to capture them. These methods ground themselves

to the entities present in the training set and therefore can not generalize to any new

nodes that show up during inference time [33, 34]. For example, an embedding-based

model trained on the knowledge graph in Fig 1.1a can not make predictions on the

knowledge graph in Fig 1.1c since it does not have an embedding for the new entities

S.Curry and California.

In contrast, one of the key advantages of learning entity-independent relational

semantics is the inductive ability to generalise to unseen entities [33, 34]. They can

be used to make predictions on any set of entities irrespective of their presence during

training. For example, the rule in Equation (1.1) can naturally generalize to the

unseen knowledge graph in Fig 1.1c and predict the relation (S.Curry, lives_in,

California). This inductive ability is important since many real world situations

require relation prediction on dynamic or previously unseen knowledge graphs (e.g.,

for question answering, dialogue, or e-commerce applications) [35, 21]. Using such

an inductive model, one could also transfer knowledge from one domain to another

as long as the relational semantics remain the same. For example, a model trained

on knowledge graph derived from one e-commerce platform could be used to make

CHAPTER 1. INTRODUCTION 6

meaningful predictions on another e-commerce platform (with entirely different users

and products) without having to re-train the model.

Existing state-of-the-art naturally inductive methods are statistical rule-mining

methods [29, 28]. All these methods learn probabilistic rules; i.e. each rule is as-

sociated with a probability indicating the model’s confidence in that rule. Such

probabilistic rules better model statistically complex and noisy data. However, it

is challenging to learn rule such probabilistic rules since it involves: 1) search of a

potentially vast discrete space of rules and 2) learning associated confidence scores

in the continuous space. In this work we introduce a graph neural network [36, 37]

based completely differentiable approach, GraIL (Graph Inductive Learning), to not

only implicitly encode the probabilistic rules but also effectively compose multiple

such rules to do better inference. In our approach, instead of learning entity-specific

embeddings we learn to predict relations solely from the subgraph structure around

a candidate relation.

1.1.2 Improving embedding-based methods

Despite the importance and significance of learning entity-independent relational se-

mantics, embedding-based methods have their own strengths in the transductive set-

ting. In particular, encoding entity-specific information into dedicated latent variables

(i.e. embeddings) can capture any global patterns in the data that are otherwise dif-

ficult to capture by just structural information. Meilicke et al.[29] studies several

benchmark knowledge graphs to highlight that embedding-based methods outshine

rule-based methods in structurally noisy data (i.e., if the underlying rules are not

very consistent). Toutanova et al.[38] and Nickel et al.[39] have given theoretical and

empirical insights into the complimentary strengths of the two approaches. In par-

ticular, Nickel et al.[39] show that embedding methods can be inefficient when the

relational data consists of many strongly connected components, and for such rela-

CHAPTER 1. INTRODUCTION 7

tions modelling simple local and quasi-local graphs patterns is often useful. Given our

approach also works entirely on structural cues, we believe that it embodies an induc-

tive bias that is complementary to all the embedding-based approaches and can hence

help improve the existing state-of-the-art embedding-based models. This motivates

us to investigate if our approach can improve the current state-of-the-art transductive

models for link prediction in knowledge graphs.

Moreover, one of the key advantages of graph neural networks is their natural abil-

ity to use any available node features/attributes [37]. If there is textual or categorical

features associated with the nodes of a graph (for example e-commerce knowledge

graphs with product descriptions and user preferences, or user meta data in social

networks, or molecular properties in biomedical knowledge graphs), the approach pro-

posed in this thesis (GraIL) could potentially leverage that information for making

better predictions. To that end, we explore GraIL’s ability to leverage the information

from pre-trained entity embeddings.

1.2 Thesis statement

We propose a relational learning approach that is extremely parameter efficient (and

hence scalable), expressive, and naturally inductive. In particular, we present a Graph

Neural Network (GNN) [40, 41] framework (GraIL: Graph Inductive Learning) that

has a strong inductive bias to learn entity-independent relational semantics. It natu-

rally generalizes to unseen nodes, as the model learns to reason over subgraph struc-

tures independent of any particular node identities. We provide theoretical analysis

of representational capacity of GraIL and prove that it can represent logical rules of

the kind presented above (e.g., Equation (1.1)) and effectively compose multiple such

rules.

In order to test models with inductive capabilities we introduce a series of bench-

mark tasks for the inductive relation prediction problem. Existing benchmark datasets

CHAPTER 1. INTRODUCTION 8

for link prediction in knowledge graphs are set up for transductive reasoning, i.e., they

ensure that all entities in the test set are present in the training data. Thus, we con-

struct several new inductive benchmark datasets by carefully sampling subgraphs

from diverse knowledge graph datasets. Extensive empirical comparisons on these

novel benchmarks demonstrate that GraIL is able to substantially outperform state-

of-the-art inductive baselines. Further, we demonstrate the complimentary structural

inductive bias of GraIL by exploring several ensembling strategies with existing state-

of-the-art transductive methods.

1.3 Statement of contribution

The main contributions of the thesis are as follows:

• Present an alternate paradigm of entity-independent relational semantics for

knowledge graph completion and introduce the inductive problem.

• Provide a comprehensive survey of existing methods capable of performing in-

ductive relation prediction on knowledge graph completion.

• Introduce novel benchmark datasets for inductive knowledge graph completion.

• Develop a novel algorithm based on GNNs, GraIL, that learns entity-independent

relational semantics of a knowledge graph and is naturally inductive.

• Provide theoretical analysis of expressive power of this new algorithm and its’

connections with first order predicate logic.

• Detailed experimental comparison with previous inductive models showing

– The superior performance of GraIL in the inductive setting.

– The parameter efficiency of GraIL with respect to existing differentiable

inductive methods.

CHAPTER 1. INTRODUCTION 9

• Ensembling strategies showcasing the complementary inductive bias of GraIL

with respect to existing knowledge graph embedding methods.

• Highlighting the natural ability of GraIL to incorporate pre-trained node fea-

tures, when available.

This thesis is based on a paper with the same title— ’Inductive Relation Prediction

by Subgraph Reasoning’—that is to appear in the proceedings of Thirty-seventh In-

ternational Conference on Machine Learning, 2020. The author of this thesis (Komal

Teru) is also the lead author of this publication. We are thankful to the co-author,

Etienne Denis, who assisted in the experimental design and setup. The key author

contributions of the individual chapters of this thesis—and how they relate to this

publication—are clarified in the next section.

1.4 Outline of the thesis

The remaining thesis is organized as follows:

In Chapter 2, we provide the necessary background on knowledge graphs introduc-

ing the main task of focus, relation prediction. We describe the modelling framework,

training mechanism and evaluation protocols of different approaches to this task with

main focus on embedding-based models. This set of models constitute the baselines in

some of our experimental studies. The contents of this chapter form the foundations

of the task setup studied in this work.

In Chapter 3, we present the unified message passing framework of graph neu-

ral networks describing various strategies developed in recent literature. We further

introduce GNN-based models for relation prediction in multi-relational graphs. The

contents of this chapter form the foundations for our proposed model.

In Chapter 4, we present the core contributions of this work: a novel GNN-based

relation prediction model. We provide a theoretical analysis of the proposed model,

CHAPTER 1. INTRODUCTION 10

GraIL, and establish it’s connections to first order predicate logic. We also discuss

the computational complexity and scalability of the proposed model. The model and

the theorems proposed in this chapter were developed with assistance and guidance

of the supervisor while the author of this thesis is solely responsible for formulating

the proofs of the said theorems.

In Chapter 5, we present extensive experimental results to showcase the modelling

capacity of the proposed framework. In particular, we present experiments in the

inductive setting, transductive setting and several additional analysis to substantiate

our theoretical findings in Chapter 4. The collaborator, Etienne Denis, assisted in

the efficient pre-processing of the data used in the experiments. All the analysis,

experiments and ablation studies reported in this chapter were conducted exclusively

by the author of this thesis.

In Chapter 6, we conclude our findings with a brief discussion of the limitations

of our method. We also point out to interesting new directions of research that this

work opens up in the context of current frontiers of logical reasoning and graph neural

networks.

2
Knowledge Graphs

In this chapter we introduce knowledge graphs (KGs), the main object of study in this

thesis. We describe the relation prediction task along with many other tasks that can

be performed on knowledge graphs. We explain the modelling framework, training

mechanism and evaluation protocols of different approaches to this task with a main

focus on embedding-based models. Towards the end, we briefly discuss extensions

beyond the standard static knowledge graphs and how this these extensions connect

to our current method.

Knowledge graphs model complex relational information between different entities.

They represent facts as binary triplets of the form (subject, predicate, object) where

subject and object are the entities and the predicate is the relation between them.

A large collection of these triplets capture complex relational information about the

world. For example, the information

LeBron, along with his teammate A. Davis, play basketball for L.A.Lakers

team located in Los Angeles.

can be represented as the following set of triplets

11

CHAPTER 2. KNOWLEDGE GRAPHS 12

subject predicate object

(LeBron teammate_of A. Davis)

(LeBron part_of Lakers)

(A. Davis part_of Lakers)

(Lakers located_in Los Angeles)

All the triplets (facts) together can be represented as a multi-relational graph. For

example, the above set of facts, along with many more, are curated in the illustrative

knowledge graph in Figure 1.1a.

Completeness and accuracy are important aspects of knowledge graphs, which

determine their usefulness in downstream applications. These aspects are heavily

influenced by the construction methodology of knowledge graphs. This can be mainly

categorized into three different methodologies:

1. Curated approach: The facts are curated by a closed group of domain experts.

The WordNet dataset [42] used in this thesis is an example of curated knowledge

graph. This way of knowledge graph construction results in highly accurate and

reliable facts. However, it requires significant human intervention and is not

scalable to build large-scale knowledge graphs.

2. Collaborative and automated semi-structured approach: The facts are collected

by an open group of volunteers who follow a common schema. This mitigates

the scalability issue of curated approach but may result in slightly inaccurate

and incomplete knowledge graphs. To further enrich the knowledge graph with

more information, facts could be automatically extracted from structured text

on the web (e.g., infoboxes on Wikipedia) using pre-defined rules. The FreeBase

dataset [15] used in this thesis was constructed using both these strategies.

3. Automated unstructured approach: In this approach, the facts are extracted

from unstructured text using machine learning and natural language processing

CHAPTER 2. KNOWLEDGE GRAPHS 13

techniques. This enables construction of very large-scale knowledge graphs by

leveraging all the free-flowing text available on the web. However, the quality

of the resulting facts is limited by the abilities of the underlying text processing

algorithms. For example, there can be many duplicate entities due to the lack

of accurate entity resolution abilities in the text extractor. Many facts collected

can be erroneous or contradictory because of the inconsistent nature of the

unfiltered information on the web. The NELL [43] dataset used in this thesis

is a continually growing knowledge graph constructed by regularly crawling the

web and adding new information.

Tasks on knowledge graphs

There are a number of tasks that can be typically performed on knowledge graphs.

Relation prediction Sometimes referred to as link prediction or entity prediction,

it refers to predicting the existence (or the probability of correctness) of a relation

between two entities. This task manifests itself is various forms. For example, it could

be formulated as predicting the tail entity in a triplet, (h, r, ?). A common practice

to evaluate this is to score all entities as a potential prediction and record the rank of

the true entity. The prediction tasks (h, ?, t) or (?, r, t) can be carried out in a similar

manner. Relation prediction can also be formulated as triplet classification where

given a triplet (h, r, t) the task is to predict the correctness of that fact. While the

actual formulation of relation prediction depends on the application at hand, all these

different formulations share a common learning problem. They all require the model

to reason over the facts present in the knowledge graphto find evidence for missing

facts. This task is important for various applications like question answering [6, 7],

recommendation systems [44], knowledge graph completion [15, 18], etc.

CHAPTER 2. KNOWLEDGE GRAPHS 14

Entity and relation resolution This refers to identifying which objects in the

knowledge graph refer to the same underlying entity or relations. This task is of im-

portance especially in knowledge graphs constructed automatically from unstructured

text. For e.g., a text processor might add two different triplets—(“King James”, “born

in”, “Akron”) and (“LeBron James”, “place of birth”, “Akron”)—without recognizing

that the first triple refers to the same person as the second triple, nor knowing that

“born in” means the same thing as “place of birth”. Resolving such duplicacies would

avoid unnecessary increases in the size of knowledge graph and facilitate meaningful

additions [45].

Entity classification This refers to predicting properties of entities in the knowl-

edge graph based on their relational information. For e.g., the task could be to classify

entities into different semantic categories such as person, place, occupation, etc. In

many cases, such tasks are seeded by a small set of labelled entities which help us

learn to predict the the properties of all other nodes in the graph [20]. In absence of

such a labelled seed set, unsupervised clustering techniques help the model discover

underlying properties of different nodes.

The focus of this thesis is the relation prediction task. There are largely two lines

of work that address this task – embedding-based methods and rule-based methods.

2.1 Embedding methods

Let G(T ; E ,R) be a knowledge graph where E and R denote the set of entities and

relations, respectively; T denotes the set of triplets (facts) (u, r, v) with u, v ∈ E

and r ∈ R. Although relation prediction takes many forms (as described earlier),

the fundamental problem across all the variations is to score a given triplet, (u, r, v).

This score corresponds to model’s belief of the correctness of this fact. The scoring

mechanism of all embedding-based methods can be described by an encoder-decoder

CHAPTER 2. KNOWLEDGE GRAPHS 15

framework [37]. This framework is built around two mapping functions: an encoder,

which maps the entities (E) and the relations (R) of G to a low-dimensional vector

(embeddings), and a decoder, which scores a given triplet using the respective entity

and relation embeddings. In particular, the encoder can be sub-categorized into entity

encoder and relation encoder functions,

ENT_ENC : E → Rd

REL_ENC : R → Rd

which map entities and relations of G to a d-dimensional vector, respectively 1. The

decoder is a function that maps the entity and relation embeddings of a given triplet

and to a real number,

DEC : Rd × Rd × Rd → R.

This real number corresponds to the score indicating the probability of the given

triplet. The goal is to optimize the encoder and decoder parameters to score the

triplets that are known to be true G higher than the ones that are assumed to be false.

The diversity of methods in the literature stem from the use of different encoders and

decoders. Here, we describe a representative set of decoder functions and methods that

employ these with a simple embedding look-up encoders i.e., ENT_ENC and REL_ENC

simply return an embedding from a fixed dictionary of entity and relation embeddings.

2.1.1 Decoder functions

A vast variety of methods are characterized by the decoder function they use. In fact,

the decoder functions embody the inherent inductive biases of the model.
1Note that it is very possible for these encoders to embed entities and relations to different vector

spaces. Following most widely used methods, we simplify them to map to the same vector space.
Also, as we will see some methods map them to complex space rather than the real space.

CHAPTER 2. KNOWLEDGE GRAPHS 16

Distance-based decoders

A wide class of methods exploit distance-based scoring functions. They compute

the likelihood score of a fact as the distance between the head and the tail entity

embedding, usually after a geometric transformation is carried out by the relation

embedding.

TransE and extensions A wide range of decoders represent relations as transla-

tions in the embedding space. Bordes et al.’s TransE [15] model initiated such an

approach by defining the decoder as

DEC(u, τ, v) = −||ENT_ENC(u) + REL_ENC(r)− ENT_ENC(v)|| (2.1)

= −||zu + rτ − zv||, (2.2)

where zu, zv ∈ Rd correspond to the embeddings of the entities u and v, and rτ ∈ Rd

corresponds to the embedding of relation τ . The interpretation of this decoder is that

the head entity and the tail entity are connected by a certain relation if translating

the head embedding by the relation vector brings it closer to the tail embedding. This

intuition was based on similar findings in the context of word embeddings [46]. This

model is relatively simple but proved to be a strong baseline in many applications.

Many extensions to TransE, generally referred to as TransX models [47, 48, 49, 50],

have been proposed. All such decoders can be generalized as

DEC(u, τ, v) = −||g1,τ (zu) + rτ − g1,τ (zv)||, (2.3)

which adds the added flexibility to learn relation-specific transformations, gi,τ , to the

entity embeddings. For example, one such extension—TransH [47]—projects the head

and tail embeddings to relation-specific hyperplanes before translating and computing

the score. While many such translational methods have been proposed, they have

fundamental limitations in their expressive power. For example, they cannot represent

symmetric relations by a non-zero translating vector representation.

CHAPTER 2. KNOWLEDGE GRAPHS 17

RotatE Building on the same idea of measuring a triplet plausibility as the distance

between head and tail embeddings after a certain geometric operation, Sun et al.

propose RotatE model [18] which rotates the head embedding instead of translating.

In particular, the decoder function is given by

DEC(u, τ, v) = −||zu ◦ rτ − zv||, (2.4)

where zu, zu, rτ ∈ Cd all are complex-valued embeddings, and ◦ denotes the Hadamard

product. Each dimension of relation embeddings in the complex plane, rτ , are con-

strained to have unit norm, i.e., |rτ [i]| = 1. This constraint enforces the Hadamard

product of head and relation embeddings to represent rotation of each dimension of

head embedding by the respective dimension of the relation embedding. The rotation

operation allows RotatE to model a wide range of relation types including symmetric

relations, making it one of the strongest methods for relation prediction in knowledge

graphs.

Similarity-based decoders

Many methods, instead of using distance-based measures, exploit similarity-based

scoring functions. They measure the plausibility of a triplet by matching the latent

semantics of the constituent entities and relation.

RESCAL and DistMult RESCAL [51] is one of the older methods which uses

similarity-based scoring functions. It captures the latent semantics of the entities in

a d-dimensional vector space, and relations are represented with matrices that model

pairwise interactions between the latent factors of head and tail entities. The scoring

function is given by

DEC(u, τ, v) = zTuMτzv =
d−1∑
i=0

d−1∑
j=0

zu[i]×Mτ [i, j]× zv[j], (2.5)

where zu, zv ∈ Rd denote the latent representations of the entities u and v, and

Mτ ∈ Rd×d denotes the matrix associated with relation τ . DistMult [52] simplifies

CHAPTER 2. KNOWLEDGE GRAPHS 18

RESCAL by restricting the relation representation to be a diagonal matrix. In other

words, a relation τ is represented by a vector rτ such that the matrix Mτ = diag(rτ).

The resulting scoring function is simplified to

DEC(u, τ, v) = zTudiag(rτ)zv =
d−1∑
i=0

zu[i]× rτ [i]× zv[i]. (2.6)

This simplification allows for scaling to larger knowledge graphs since now the number

of parameters linearly scale with number of relations. However, the expressive power

is now limited in that DistMult can capture pairwise interactions between latent

factors of head and tail entities only across the same dimension. Moreover, with this

simplification the model loses the sense of head and tail, i.e.,

DEC(u, τ, v) = DEC(u, τ, u) (2.7)

This deprives the model of the ability to distinguish asymmetric relations.

ComplEx To better model asymmetric relations, Trouillon et al. proposed Com-

plEx [16] which extends DistMult to represent the entities and relations in the complex

space instead of real space. The scoring function is given by

DEC(u, τ, v) = Re(zTudiag(rτ)zv = Re(
d−1∑
i=0

zu[i]× rτ [i]× zv[i]), (2.8)

where zu, zv, rτ ∈ Cd are complex valued embeddings and Re(.) denotes the real

component of a complex vector. Since we take the complex conjugate, zv, of the

tail entity embedding, this scoring function is asymmetric and can accommodate

asymmetric relations.

Many other methods and approaches have been proposed for scoring triplets in

knowledge graphs [53, 54, 55, 56]. While all these methods employ a straightforward

embedding look-up encoders, one can imagine pairing the described decoder functions

with more sophisticated encoders. For instance, the entity encoder can be a function

of the neighboring entities and relations [57]. Similarly, the relation encoder can

be a function of the all the entities they connect to in the knowledge graph[58].

CHAPTER 2. KNOWLEDGE GRAPHS 19

As we will see in the next chapter, Graph Neural Networks are a natural choice to

encode neighborhood information and many approaches have recently been proposed

to leverage their representational capacity [59, 60, 61] for the knowledge graph relation

prediction task.

2.1.2 Training regime

The goal of training these models is to optimize the encoder and decoder parameters

to score the triplets that are known to be true in G higher than the ones that are

assumed to be false. One of the straightforward ways to do this, as done in the case of

simple graphs, is to train our model parameters with a reconstruction loss as follows

L =
∑
u∈E

∑
τ∈R

∑
v∈E
||DEC(ENC(u), ENC(τ), ENC(v))−A[u, τ, v]||2, (2.9)

where A ∈ R|E|×|R|×|E| denotes the adjacency tensor of the knowledge graph. In the

simplest case, this is a binary tensor with A[u, τ, v] = 1 if and only if (u, τ, v) ∈ E .

This loss is usually optimized using stochastic gradient descent [62].

However, there are two key disadvantages of training our models this way.

1. The loss in Equation (2.9) is very expensive to compute. It requires O(|E|2|R|)

operations, which is prohibitive in many graphs. Moreover, since many knowl-

edge graphs are very sparse, i.e., |E| << |E|2|R|, we would ideally want a loss

function that only takes O(|E|).

2. In a binary adjacency tensor, A, by definition a value of 1 indicates the corre-

sponding edge being true and a 0 indicates the edge being false. When trying

to reconstruct A, we are inherently assuming that all the edges that are not

present in the knowledge graph are false. This is commonly referred to as the

closed world assumption (CWA) [14]. However, in relation prediction the goal it

to predict edges that are missing from the current knowledge graph. Thus, while

CWA may be useful in certain tasks (e.g. entity clustering) it goes against the

CHAPTER 2. KNOWLEDGE GRAPHS 20

fundamental premise of relation prediction. Open world assumption (OWA) [14]

that missing triplets are neither false nor true is more apt to relation prediction.

Cross entropy loss with negative sampling

One of the strategies to overcome these challenges, inspired by the way word embed-

dings are trained [63], is to treat our task as binary classification task and using cross

entropy loss with negative sampling as follows

L =
∑

(u,τ,v)∈E
−log(σ(DEC(u, τ, v)))− γ

∑
vn∈Pn(E;u)

[log(σ(−DEC(u, τ, vn))], (2.10)

where σ denotes the logistic function, Pn(E ;u) denotes a ‘negative sampling’ distribu-

tion over the set of entities E (which might depend on u), and γ is a hyperparamter

[20, 21]. As in the standard binary cross-entropy loss, the first term is log-likelihood of

the true triplets present in the knowledge graph and the second term corresponds to

the expected log-likelihood of ‘false’ triplets that are randomly sampled from the KG.

Random sampling of negative triplets is a reasonable strategy in the context of KGs

because of their inherent sparse nature, a point described in detail in later sections.

Thus, the models are in effect trained to score the triplets present in the KG higher

than the ones not present.

Max-margin loss with negative sampling

An alternate loss function is what is commonly referred to as the max-margin loss

[15, 18]:

L =
∑

(u,τ,v)∈E

∑
vn∈Pn(E;u)

max(0,−DEC(u, τ, v) + DEC(u, τ, vn) + ∆). (2.11)

Unlike the cross-entropy loss whose objective is to learn to predict directly a label,

the objective of max-margin loss is to predict relative distances between inputs. In

particular, optimizing to minimize the loss in Equation (2.11) tries to score the positive

triplet (u, τ, v) higher by a margin of ∆ (a hyperparameter) than the sampled negative

CHAPTER 2. KNOWLEDGE GRAPHS 21

triplet (u, τ, vn). This is further closer to the open-world assumption of knowledge

graphs in that we don’t necessarily classify the negative triplets as ’false’.

Negative sampling

Cross-entropy and max-margin loss functions both need negative triplets to score

against positive triplets. In most cases when negative triplets are not explicitly known

they are obtained by some sampling scheme. The way in which the negative triplets

are sampled can have a large impact on the learned model [64]. The most common

strategy to sample negative triplets is to replace the tail entity of a true triplet with

a uniformly sampled random entity [15]. The false negatives that are sometimes

obtained in this procedure, i.e. when (u, τ, vn) ∈ E , are removed [16]. Given the

inherent sparse nature of knowledge graphs the probability of obtaining such false

negatives is very low and hence this sampling mechanism is both feasible and practical.

Such naive sampling scheme might result in many ’easy’ negative triplets that

are not very informative of the underlying semantics. For example, although the

triplet (Ottawa, capitol_of, J. Trudaeu) is false and useful to learn the type

compatibility of relations and entities, it doesn’t hold as much semantic value as the

type compatible negative triplet (Ottawa, capitol_of, India). The latter is in

some sense a more ’difficult’ negative triplet and more revealing. If the ontology of

a knowledge graph is known, type consistent negative triplets could be sampled for

learning better models. Sun et al.[18] further propose an approach to select challenging

negative samples using an adversarial network.

It is worth noting that without loss of generality we have thus far replaced only

the tail entity to generate negative samples. In practice, we consider negative samples

generated by replacing either the head or the tail entity, i.e., (u, τ, vn) or (un, τ, v).

This is important since knowledge graphs are directional and replacing only the tail

can lead to undesired biases.

CHAPTER 2. KNOWLEDGE GRAPHS 22

2.1.3 Evaluation regime

There are two widely followed evaluation protocols for relation prediction: 1) classi-

fication metric [65] and 2) ranking metric [15, 18]. The classification metric mainly

reflects a models’ performance on the triplet classification task and the ranking metric

reflects performance on the entity prediction task.

Classification metric The triplet classification task is to simply score the plausi-

bility of a given triplet (u, r, v). This is useful in settings where the goal is to verify the

validity of candidate facts, rather than proposing new facts. For example, a biologist

may want to test the plausibility of a hypothesis using a biomedical knowledge graph.

To evaluate the ability of a model to do this task, we sample random negative triplets

(in a similar way as we did during training—by replacing the head or the tail of a

positive triplet) and evaluate the area under the curve (AUC) for the model. With

unequal number of positive and negative triplets, area under the precision-recall curve

(AUC-PR) is more informative.

Ranking metric An alternate formulation of the relation prediction task is to

predict a missing entity from a triple, i.e., predicting a missing head (?, r, v) or a

missing tail (u, r, ?). This is useful in settings where the goal is to propose new facts,

e.g., in an e-commerce knowledge graph, we may want to infer missing attributes

of customers. This is evaluated by scoring and ranking all potential entities that

could complete the triple. The set of potential entities is typically referred to as the

candidate set. We want the model to rank the true head or tail higher than other

potential answers. A common set of metrics reported to reflect this ability are Hits@k

and Mean Reciprocal Rank (MRR). Hits@k denotes the fraction of test triplets for

which the true entity was ranked in the top k predictions. MRR, as the name suggests,

is the mean of the reciprocal of rank of the true entity across all test triplets. While

Hits@k reflects the fraction of the test triplets that the model gets right, MRR gives

CHAPTER 2. KNOWLEDGE GRAPHS 23

a more holistic sense of the models’ performance on all the test triplets.

Note that both these metrics require negative sampling and the evaluation is

very sensitive to the negative triplets sampled [64]. For classification metrics, all the

strategies from the training regime can be directly applied. In particular, strategies

to sample ’harder’ negatives can be employed for more stringent evaluation of the

models’ ability to predict the likelihood of triplets. For ranking metrics, the choice

of the candidate set directly effects the model evaluation. In the simplest case, all

the entities in the knowledge graph make the candidate set. But very often, much

smaller and more relevant relation-specific candidate sets can be derived using type

constraints and meta-data available [66]. For example, tail of the relation mother_of

can only be of the type person. Hence, ranking the true son of the head entity

among a candidate set consisting entities of only type person is more meaningful

than ranking the true son among, say, entities of type place.

2.2 Rule-based methods

While the embedding methods try to capture latent features of the knowledge graphs,

rule-based methods capture observed rules from the graph. Many statistical rule-

mining approaches induce probabilistic logical rules by enumerating statistical regu-

larities and patterns present in the knowledge graph [67, 68, 28, 29]. These induced

rules are then used to predict missing relations. These methods are naturally inter-

pretable but face scalability challenges due to the large search space of discrete rules.

Recently, many methods have tried to combine embedding based methods with logi-

cal rules. Q. Wang et al.[69] utilizes logical rules to refine the predictions made using

embeddings. Wei et al.[70] propose a similar idea that combines rules and embedding

models via Markov Logic Networks [71]. Many works [72, 73, 74, 75, 76, 77] have

also shown effective approaches to jointly optimize the embeddings and logical rules.

They all learn entity and relation embeddings subjecting them to some constraints

CHAPTER 2. KNOWLEDGE GRAPHS 24

derived from first-order logical rules (Horn clause). This incorporates the general first-

order logical rules in entity and relation representations, which enhance the predictive

abilities of the embeddings.

Recent works have proposed approaches to leverage the inference capabilities of

Markov Logic Networks and efficiency of embedding methods by jointly optimizing

them using variational expectation-maximization algorithm [78, 79]. While these

methods have their own merits, all of them require already extracted rules from the

knowledge graph which are sometimes quite expensive to extract. On this front, the

approach presented in this thesis, GraIL, elegantly blends the rule extraction and

inference steps bypassing the need to explicitly extract rules.

2.3 Beyond Static knowledge graphs

The methods we have seen so far are all designed for static knowledge graphs, i.e.,

graphs with fixed set of entities and relations. However, real-world knowledge graphs

are always evolving. There are many dimensions to the evolution of knowledge graphs–

1) new entities can be added (for e.g., in an e-commerce knowledge graph new users

and items being regularly added), 2) new relation types can be added (for e.g., new

biological processes being added to protein-protein interaction graphs) 3) the inter-

actions between the entities may change with time. We will refer to these evolving

KGs as Dynamic knowledge graphs. Depending on the domain the dynamics can be

a complex combination of all the above 3 factors or just one of them.

New entities Many methods have been proposed to handle new entities in knowl-

edge graphs. The new entities are sometimes referred to as out-of-vocabulary entities.

Several works consider attributed knowledge graphs and induce the embeddings for

new entities from their text/image descriptions [80, 81, 82]. For unattributed KGs

P. Wang et al.[83] and Hamaguchi et al.[84] learn to generate embeddings for new

CHAPTER 2. KNOWLEDGE GRAPHS 25

entities by aggregating information from embeddings of their neighboring entities.

This requires the new nodes to be surrounded by known nodes. While these methods

design explicit strategies to accommodate new entities, the approach proposed in this

thesis to learn entity-independent relational semantics makes our method, GraIL, un-

affected by such out-of-vocabulary entities. In fact, GraIL can make predictions on

entirely new graphs with new entities as long as the underlying relational semantics

(logical rules) remain the same.

New relations It is also possible to have new relations being added to the knowl-

edge graph. Even more prevalent is the notion of long tail in relation frequency

distribution [66]. To be precise, it is common to have many relations which only have

a few triplets in the knowledge graph. Many methods have been proposed to tackle

this issue [66, 85, 86]. All of these approaches frame the problem as a few-shot link

prediction and adapt a meta-learning framework [87]. This meta-learning approach

gives the models the ability to generalize to new relations.

Temporal knowledge graphs Another aspect of dynamic knowledge graphs is

the temporal nature of the facts. For example, (Obama, president_of, U.S.A) is only

valid for a certain period of time and the fact changes after that period. Not only that

many applications require the models to make time-dependent predictions [88, 89, 90],

the ability to exploit and account for such temporal dynamics of a knowledge graph

can lead to improved performance of traditional relation prediction. Many methods

have recently been proposed to address this challenge [91, 92, 93].

3
Graph Neural Networks

In the previous chapter, we have seen an overview of knowledge graphs and vari-

ous methods used for the relation prediction task. In this chapter, we introduce a

new class of methods—Graph Neural Networks (GNNs)—which operate on any graph

structured data in general and have proved to be a promising approach for various

tasks on knowledge graphs. We first introduce the general formalism of GNNs for sim-

ple graphs before giving an overview of current GNN-based approaches for knowledge

graphs. We further give a brief overview of recent successes of GNNs in reasoning

tasks [22, 23, 26, 27].

All the methods we have seen so far for knowledge graphs fall into the generalized

encoder-decoder framework described in the previous chapter. As pointed out earlier,

the encoder in those approaches is a shallow embedding look-up, i.e., it trains a

separate embedding for all the entities (and relations for multi-relational graphs).

GNNs provide a general formalism to design more rich and expressive encoders that

leverage the graph structure more explicitly. The GNN-formalism also addresses the

following key limitations of shallow encoders [37]:

• Since each entity has its own embedding in the shallow encoder approach, the

number of parameters of the model scale with the number of entities in the

graph. This quickly becomes prohibitive for training shallow encoders on real-

world large graphs. GNNs provide an elegant way to efficiently share parameters

26

CHAPTER 3. GRAPH NEURAL NETWORKS 27

which also helps the regularize the models.

• The shallow encoders do not have a natural way to leverage any node fea-

tures/attributes available. Such node features/attributes can be very informa-

tive with respect to the position and role of the node in a graph. GNNs can

naturally leverage any such node attributes available [35, 21].

• As described before, shallow encoders are inherently transductive, i.e., they can

only learn embeddings for nodes that are present during training. This approach

fails to generalize to constantly evolving graphs. GNN’s ability to leverage node

attributes has motivated several inductive approaches on simple graphs which

successfully transfer their learning to new nodes and graphs [21]. This thesis

follows similar motivation but extends these works to deal with multi-relational

graphs without any entity attributes.

3.1 Message passing formalism

The key idea of encoding nodes of a graph is to iteratively aggregate information from

the node’s neighborhood. This is commonly referred to as neural message passing

[36]. Formally, given a graph, G(E , T), induced by set of nodes E and consisting of

the set of edges T , along with a set of node features X ∈ R|E|×d, we want to use

this information to generate node embeddings zu ∀u ∈ E . The node embeddings are

obtained after multiple rounds of ‘message passing’ from the neighboring nodes. At

any given iteration, l, the new node representation hlu is obtained by updating the

current representation of node u, hl−1
u , with information obtained by aggregating the

representation of the neighboring nodes, hl−1
v , ∀v ∈ N (u). This ‘message passing’

CHAPTER 3. GRAPH NEURAL NETWORKS 28

among nodes is formally represented by

ml
N (u) = AGGREGATEl

({
hl−1
v : v ∈ N (u)

})
, (3.1)

hlu = UPDATEl
(
hl−1
u ,ml

N (u)

)
, (3.2)

where UPDATE and AGGREGATE are arbitrary differentiable functions (i.e., neural

networks) and ml
N (u) is the “message” that is aggregated from u’s graph neighborhood

N (u) : {v|(u, v) ∈ T } [94]. Superscripts are used to distinguish the embeddings and

functions at different iterations of message passing. This lth round of message passing

is also referred to as the lth layer of the GNN.

At each iteration of message passing the AGGREGATE function takes as input

the set of representations of nodes in node u’s graph neighborhood N (u) and aggre-

gates the information to compute a ‘message’ ml
N (u). The UPDATE function then

combines the message ml
N (u) with the previous embedding hl−1

u of node u to gener-

ate the updated embedding hlu. The initial node representations at l = 0 are set to

the input features for all the nodes, i.e., h0
u = Xu,∀u ∈ E . If node features are not

available they could be initialized to some graph-dependent structural features (e.g.,

node degree and/or node centrality). Another common strategy involves assigning a

random unique label to every node [20, 57]. After L rounds of message passing the

final node representations give the node embeddings of all the nodes in the graph, i.e.,

zu = hLu ,∀u ∈ E .

The intuition of this iterative message passing scheme is that at each iteration,

every node aggregates information from its local neighborhood, and as these itera-

tions progress each node embedding contains more and more information from further

reaches of the graph. To be precise, after the first iteration each node would have ag-

gregated information for its 1-hop neighborhood, i.e., its immediate neighbors in the

graph. In the second iteration information is again aggregated from 1-hop neighbor-

hood, however the 1-hop neighbor node representations have information aggregated

CHAPTER 3. GRAPH NEURAL NETWORKS 29

from their respective 1-hop neighborhoods. Hence, after the second iteration each

node will have effectively aggregated information from their respective 2-hop neigh-

borhoods. In summary, after L rounds of message passing, each node embedding

would have the information of its L-hop neighborhood.

Given the basic intuition and the overview of the message passing formalism,

the expressive capacity of a GNN now depends on the choice of AGGREGATE and

UPDATE functions. These can be any arbitrary differentiable functions and many

variants have been proposed and validated in the recent literature. One of the most

basic versions of these functions which results in the simplest GNN is given by

ml
N (u) =

∑
v∈nN (u)

hl−1
v (3.3)

hlu = σ
(
Wl

selfhl−1
u + Wl

neighmN (u)l
)
, (3.4)

where σ(.) denotes element-wise non-linearity (e.g., a tanh or ReLU), and Wl
self ,Wl

neigh

denote the trainable layer-specific linear transformation matrices. Here, the neighbor-

hood message is computed by a simple addition of all the neighboring node represen-

tations. The simple UPDATE function described in Equation (3.4) gives the ability

to selectively chose information from the current node representation, hl−1
u , and the

neighborhood message, ml
N (u). The AGGREGATE and UPDATE functions can be

generalized beyond these simple realizations to result in more powerful and expressive

GNNs.

3.1.1 Generalized AGGREGATE function

Here, for the sake of completeness we give a brief overview of different generalizations

of the AGGREGATE function.

Neighborhood Normalization

In the simple AGGREGATE function illustrated in Equation (3.3), we take the sum

of the neighborhood node representations. This could result in disproportionate mag-

CHAPTER 3. GRAPH NEURAL NETWORKS 30

nitudes of the message vector when there exists a wide range of node degrees in the

graph leading to instabilities in optimization. We could instead normalize the sum

of neighborhood node representations to offset such instabilities. In fact the popu-

lar and very successful baseline GNN proposed by [20] uses the following normalized

aggregate function:

ml
N (u) =

∑
v∈N (u)

hl−1
v√

|N (u)||N (v)|
.

While this normalization is motivated by spectral graph theory, a simpler version of

just taking a mean of the neighborhood node representations also proved successful

[21].

Although normalization in the AGGREGATE function is sometimes needed to

stabilize optimization and obtain good results, it can also lead to a loss of informa-

tion. For example, after normalization, it can be hard (or even impossible) to use

the learned embeddings to distinguish between nodes of different degrees, and various

other structural graph features can be obscured by normalization. In fact, a basic

GNN using the mean aggregate function [21] operator is provably less powerful than

the basic sum aggregate function in Equation (3.3) [95]. Usually, normalization is

most helpful in tasks where node feature information is far more useful than struc-

tural information, or where there is a very wide range of node degrees that can lead

to instabilities during optimization. As we will see, in the model proposed in this

thesis the messages are passed around relatively low-degree nodes and the model is

dominantly reliant on structural properties of the graph, thus motivating a sum-style

aggregate function.

Neighborhood Attention

A more sophisticated way of aggregating messages from the neighborhood is to only

accumulate information from the nodes that are important to the downstream task.

Attention mechanisms [2] over the neighborhood nodes can facilitate this type of ag-

CHAPTER 3. GRAPH NEURAL NETWORKS 31

gregation. Inspired by this idea Graph Attention Network (GAT) [96], uses attention

weights to define a weighted sum of the neighbors:

ml
N (u) =

∑
v∈N (u)

αu,vhv, (3.5)

where the attention weights between a pair of nodes is given by

αu,v = exp(aT [Whu ⊕Whv])∑
v′∈N (u) exp(aT [Whu ⊕Whv′]) , (3.6)

where a is a trainable attention vector, W is a trainable matrix, and ⊕ denotes the

concatenation operation.

Attention is particularly useful for increasing the representational capacity of a

GNN model when we have prior knowledge to indicate that some neighboring nodes

can be more useful than others. For example, consider the case of knowledge graph

reasoning task shown in Figure 1.1c where one has to predict the relation between

S.Curry and California. We can imagine that this prediction depends more on

S.Curry’s spouse Ayesha than Under Armour, a brand he endorses. Ideally, the

attention mechanism should allow a GNN model to differentiate between such relevant

and irrelevant nodes. In fact, as we will show it is the attention mechanism that

enables the approach proposed in this thesis, GraIL, to learn path-based rules. While

the GAT-style attention computation (Equation (3.6)) is known to work well with

graph data, in principle, any standard attention mechanism from the deep learning

literature can be used. GraIL uses a variation of attention using MLPs as we will see

in Section 4.1.3.

3.1.2 Generalized UPDATE function

In the simple realization of the UPDATE function in Equation (3.4), the node repre-

sentation is updated with a linear combination of neighborhood message ml
u and the

node’s previous representation hl−1
u . While simple and effective in many settings, this

realization has its limitations. These limitations are akin to the problems encountered

CHAPTER 3. GRAPH NEURAL NETWORKS 32

by deeper CNNs or RNNs. For one, as in any feed-forward neural network it gets dif-

ficult to learn with large number of layers due to the nested non-linear structure that

prevents the ease of passing information and gradient along the computational path.

For another, the repeated application of matrix multiplication often leads to numer-

ical instabilities (e.g., exploding gradients) in deeper GNNs. This issue is analagous

to the numerical instabilities observed for basic RNN models. Lastly, the linear com-

bination of neighboring message with nodes’ representation at every layer leads to an

issue known as over-smoothing [94]. In simpler terms, over-smoothing refers to an

issue where after a large number of iterations of message passing, the representations

for all the nodes in the graph become very similar to one another. Below, we will de-

scribe some generalizations to the UPDATE function which alleviate these issues and

also provide additional expressive power. We explore all these variations in GraIL.

Skip connections

In order to alleviate the difficulty in learning through non-linearities and large numbers

of layers, various forms of skip connections can be employed. This is largely inspired by

the ideas of highway connections [97] and residual connections [98] used to effectively

train deep CNNs. These skip-connections can be used in conjunction with most

other GNN update functions. One form of such skip-connections used in GNNs was

proposed by Pham et al.[99]:

UPDATEinterpolate(hl−1
u ,mN (u)) = α1 �UPDATEbase(hl−1

u ,mN (u)) + α2 � hl−1
u , (3.7)

where UPDATEbase(hl−1
u ,mN (u)) denotes the simple UPDATE function defined in

Equation (3.4) and α1, α2 ∈ [0, 1]d are gating vectors. This eases the learning of deep

GNNs by partially opening the non-linearity gate that lets previous states to propagate

through layers. W. L. Hamilton et al.[21] propose a concatenation strategy which is

inspired by similar motivations. These concatenation and residual connections are

CHAPTER 3. GRAPH NEURAL NETWORKS 33

simple strategies that can help to alleviate the over-smoothing issue in GNNs, while

also improving the numerical stability of optimization.

Gated updates

While the AGGREGATE and UPDATE functions of a GNN are generally interpreted

as convolution filters applied to all the nodes in the graph, the different layers of

GNN can also be interpreted as being analogous to the time steps of a RNN [37]. In

particular, the update function of every layer of a GNN can be interpreted as taking

in an ‘observation’ (the neighborhood message) and updating the ‘hidden state’ (the

node representation) of the nodes. This interpretation allows for natural use of various

gating mechanisms of designed for RNN architectures. For example, Li et al.[100] show

the effectiveness of using a Gated Recurrent Unit (GRU) [101] cell as the UPDATE

function:

hlu = GRU(hl−1
u ,ml

N (u)). (3.8)

In a similar fashion, Selsam et al. [22] use LSTM [102] cell as the UPDATE function.

In general, any update function defined for RNN can be used in the context context of

GNNs. The hidden state argument of the RNN update function (usually denoted ht)

is replaced with the node’s hidden state, and the observation vector (usually denoted

xt) with the message aggregated from the local neighborhood. Generally, when using

these gating mechanisms, the UPDATE function is not only shared across different

nodes but also shared across message passing layers of the GNN. Just as these update

mechanisms help capture long range dependencies in sequences, they help capture

long-distance relations in the graphs by allowing for large number of message passing

layers in GNNs (e.g., more than 10 layers).

CHAPTER 3. GRAPH NEURAL NETWORKS 34

Jumping knowledge connections

So far, we have used the final layer node representations as the node embeddings for

any downstream task, i.e.,

zu = hLu ,∀u ∈ E .

The limitations of this approach motivated the skip connections and gated updates.

An alternate way to alleviate much of the same limitations is to use the node represen-

tations from intermediate layers of the message passing iterations. A straight-forward

way to do that is to simply concatenate the node representations for all the layers:

zu = fJK(h0
u ⊕ h1

u ⊕ · · · ⊕ hLu), (3.9)

where fJK(.) is an arbitrary differentiable function. This strategy is known as adding

jumping knowledge (JK) connections [94]. This not only alleviates the over-smoothing

problem by giving access to all the intermediate representations including the initial

features, if any, but has the potential to adaptively select individual neighborhood

sizes for different nodes. In other words, if the function fJK(.) is made to be node-

specific the model has the flexibility to select different neighborhood sizes from 1-

hop to L-hop for each node. This can be particularly useful because the influential

neighborhood for each node is dependent on the node’s global position in the graph

[94]. For example, a spoke node (i.e., a node of low degree and low-degree neighbors)

probably needs information from higher hop neighborhood to get access to important

parts of the graph than a hub node needs to. In general, JK-connections have proved

to give consistent improvements across a wide variety of tasks and models, including

the ones proposed in this thesis.

3.2 GNNs for multi-relational graphs

All the variations of GNNs we have seen so far are designed for simple graphs, i.e.,

graphs where all the edges are of a single type. All of these methods could naturally

CHAPTER 3. GRAPH NEURAL NETWORKS 35

be extended to multi-relational graphs where edges can be directed and of different

types. A straight-forward way is to have separate transformation matrices for different

edge types (relations) [57]. In particular, the aggregation function in Equation (3.3)

can be generalized as

ml
N (u) =

∑
τ∈R

∑
v∈Nτ (u)

Wτhl−1
v , (3.10)

whereNτ (u) denotes the neighbors of node u connected by edge of types τ . Schlichtkrull

et al.[57] refer to this as the R-GCN approach, and we build upon the R-GCN ap-

proach in this thesis. A more subtle distinction of this message passing scheme from

the case of simple graphs is the directed nature of edges in multi-relational graphs. In

particular, the Nτ (u) in Equation (3.10) can denote incoming-neighbors (resulting in

head-to-tail message passing) or outgoing-neighbors (resulting in tail-to-head message

passing) of node u. Messages can also be passed in both directions by augmenting the

graph with inverse relations as is done in the originally proposed R-GCN [57]. This

aspect of modelling choice is poorly studied in the literature and in most approaches,

including the one proposed in this thesis, the design choice is empirically driven.

One of the key challenges of applying this message passing scheme to highly multi-

relational graphs is the rapid growth in number of parameters with number of relations

in the graph. In practice, this can lead to overfitting on rare relations and to very

large models. Schlichtkrull et al.[57] propose two different regularization strategies to

mitigate this issue – 1) basis sharing and, 2) block diagonal decomposition. The basis

sharing strategy, which proved more effective for relation prediction task, represents

each transformation matrix as:

Wτ =
b∑
i=1

αi,τBi. (3.11)

Here, the relation transformation matrices are defined as the linear combination of

b basis matrices B1, . . . ,Bb and the only relation specific parameters are the b coef-

ficients α1,τ , . . . , αb,τ . The basis matrices are hence shared across all relations thus

reducing the number of parameters and regularizing the model.

CHAPTER 3. GRAPH NEURAL NETWORKS 36

3.3 GNNs for downstream tasks

The architectures described so far embed each node of the graphs to a low-dimensional

embedding. Node-specific tasks like node classification can act on these node embed-

dings to make predictions [20, 21]. Other graph-level tasks like graph classification

require graph embeddings that can be obtained by pooling the embeddings of all the

nodes in the graph [21, 95, 103]. A straight-forward pooling mechanism can be a sim-

ple addition of all the embeddings but a number of sophisticated and more expressive

pooling mechanisms have been proposed [104, 105].

Other than the node and graph classification, the task of interest in this thesis is of

relation prediction. As we have seen in the previous chapter, approaches to the relation

prediction task can be formalized in a generalized encoder-decoder framework. In that

context, all the GNN variants we have seen so far are just more expressive encoders.

These GNN-encoders are trained by coupling them with the decoder functions we

have seen in Section 2.1.1. R-GCN [57] obtains its best performance when coupled

with DistMult decoder [52]. While R-GCN represents the current dominant multi-

relational GNN approach, a recent extension [58] addresses some of its shortcomings.

In particular, while R-GCN employs a more expressive node encoder the relation

encoder is still a shallow embedding look-up. CompGCN [58] addresses that by using

GCNs to obtain both node and relation embeddings.

Relation prediction simplifies to link prediction in case of simple graphs. Srinivasan

et al.[106] have theoretically shown that tasks like link prediction require pairwise

representations rather than individual node representations. This implies that the

GNNs of the above kind which aim to embed each node’s local neighborhood into an

individual embedding are fundamentally limited in their capacity to perform pairwise

link/relation prediction. M. Zhang et al.[107] and our method, GraIL, reinforce this

finding by proposing and demonstrating the superiority of a method that performs

link/relation prediction by learning pairwise structural representations.

4
GraIL

In this chapter, we will describe the proposed model, GraIL(Graph Inductive Learning),

in detail. We build up on the the many variations of message passing paradigm of

graph neural networks introduced in Chapter 3 and the reference task is of relation

prediction in knowledge graph as described in Chapter 2. We also provide theoretical

motivations for the choices made in our model design and prove that the proposed

model can represent a useful subset of logical rules. Towards the end, we also address

the computational limitations of our framework and discuss some ways we can address

them.

The relation prediction task boils down to scoring a triplet (u, rt, v), i.e., predicting

the likelihood of a possible relation rt between a head node u and tail node v in a

knowledge graph, where we refer to nodes u and v as target nodes and to rt as the target

relation. The key idea behind our approach is to predict the relation between the two

target nodes from the subgraph structure around those two target nodes. We do not

use any node attributes (e.g., textual features) in order to test GraIL’s ability to learn

and generalize solely from structure. Since it only ever receives structural information

(i.e., the subgraph structure and structural node features) as input, the only way

GraIL can complete the relation prediction task is to learn the entity-independent

relational semantics that underlie the knowledge graph.

37

CHAPTER 4. GRAIL 38

Fi
gu

re
4.
1:

V
isu

al
ill
us
tr
at
io
n
of

G
ra
IL

fo
r
in
du

ct
iv
e
re
la
tio

n
pr
ed
ic
tio

n.

CHAPTER 4. GRAIL 39

4.1 Model Description

Our approach to scoring triplets can be roughly divided into three sub-tasks: (i)

extracting the enclosing subgraph around the target nodes, (ii) labeling the nodes in

the extracted subgraph, and (iii) scoring the labeled subgraph using a GNN (Figure

4.1).

4.1.1 Step 1: Subgraph Extraction

We assume that local graph neighborhood of a particular triplet in the knowledge

graph will contain the logical evidence needed to deduce the relation between the

target nodes. In particular, we assume that the paths connecting the two target nodes

contain the information that could imply the target relation. For example, in Figure

4.1 the evidence for target relation lives_in can be found in the paths spouse_of ∧

lives_in or part_of ∧ located_in in the local neighborhood that connect the two

target nodes. Hence, as a first step, we extract the enclosing subgraph around the

target nodes. We define the enclosing subgraph between nodes u and v as the graph

induced by all the nodes that occur on a path of a specific length between u and v.

We make the following simple observation about nodes on a path between two nodes

which motivates our approach to extract enclosing subgraphs.

Observation 1. In any given graph, let the nodes on a path of length λ between two

different nodes u and v constitute the set Puv(λ). The maximum distance of any node

on such a path, v ∈ Puv(λ), from either u or v is λ− 1.

Based on this observation, our intuition to extract the enclosing subgraphs is to get

the intersection of neighbors of the two target nodes followed by a pruning procedure.

More precisely, let Nk(u) and Nk(v) be set of nodes in the k-hop (undirected) neigh-

borhood of the two target nodes in the knowledge graph. We compute the enclosing

subgraph by taking the intersection, Nk(u)∩Nk(v), of these k-hop neighborhood sets

and then prune nodes that are isolated or at a distance greater than k from either of

CHAPTER 4. GRAIL 40

the target nodes. Following the Observation 1, this would give us all the nodes that

occur on a path of length at most k+1 between nodes u and v. A detailed description

of this approach is given in Algorithm 1.

Algorithm 1: Enclosing subgraph extraction algorithm
Input : Multi-relational Graph induced by nodes E and relation types R:

G(E ;R); target nodes: (u, v); neighborhood size: k
Output: Set of nodes in the enclosing subgraph induced by k-hop

neighborhood around the given target nodes:
G(u,v) : {n|n ∈ Puv(k + 1)}

1 Nk(u) = get_und_neighborhood(u, k;G(E ;R))
2 Nk(v) = get_und_neighborhood(v, k;G(E ;R))
3 cn = Nk(u) ∩Nk(v)
4 G(u,v) = {n ∈ cn|d(n, u;G(E \ {v},R)) ≤ k and d(n, v;G(E \ {u}),R) ≤ k}

Here, the get_und_neighborhood(u, k;G(E ;R)) function returns the set of nodes

in k-hop undirected neighborhood of node u in the graph G(E ;R), d(x, y;G(E ,R))

gives the shortest distance between nodes x and y in graph. Note that while extracting

the enclosing subgraph we completely ignore the direction of the edges. However, the

direction is preserved while passing messages with a graph neural network, a point re-

visited later. Also, note that the target tuple/edge (u, rt, v) is added to the extracted

subgraph to enable message passing between the two target nodes.

4.1.2 Step 2: Node labeling

After extracting the enclosing subgraph around the target nodes, the goal is to score

the subgraph using a graph neural network. As noted in Chapter 3, GNNs require

a node feature matrix, X ∈ R|V|×d, to initialize the node representations before the

first layer of message passing. This is one of the key advantages the message passing

formalism of GNN provides—the natural ability to leverage information from node

features. However, in our approach we defer from using any node features to study

the predictive abilities of our model to reason solely structural information.

CHAPTER 4. GRAIL 41

Instead of using external node features or attributes, we extend the double-radius

node labelling scheme [107] that reinforces the topological structure of the subgraph.

In particular, for each node in the enclosing subgraph around target nodes u and v

we assign the following features to each node

Xi = [one-hot(d(i, u,Gs(E \{v})))⊕one-hot(d(i, v,Gs(E \{u})))] ∀i ∈ G(u,v) (4.1)

where d(.) is the same shortest distance function described in Algorithm 1, one-hot(.)

converts a scalar into the corresponding one-hot vector representation, and ⊕ denotes

concatenation of two vectors. In other words, each node, i, in the subgraph around

target nodes u and v is labeled with the tuple (d(i, u), d(i, v)), where d(i, u) denotes

the shortest distance between nodes i and u without counting any path through v

(likewise for d(i, v)).

This node labelling scheme captures the topological position of each node with

respect to the target nodes and reflects its structural role in the subgraph. Moreover,

it is important for the model to identify the target nodes in the sub-graph to be able

to predict a relation between them. This labelling scheme sets the two target nodes

as the anchor points of the subgraph and helps the model clearly identify them. In

particular, the target nodes, u and v, are uniquely labeled (0, 1) and (1, 0). Note

that as a consequence of Observation 1, the dimension of node features constructed

this way is bounded by the number of hops considered while extracting the enclosing

subgraph. In particular, when considering k-hop enclosing subgraph, the maximum

dimension of the node features, by definition (Equation 4.1), is 2k. This makes our

model extremely parameter efficient, as we will detail in Section 5.

4.1.3 Step 3: GNN scoring

The final step in our framework is to use a GNN to score the likelihood of tuple

(u, rt, v) given G(u,v)—the extracted and labeled subgraph around the target nodes.

We adopt the general message-passing scheme described in Section 3.1 where a node

CHAPTER 4. GRAIL 42

representation is iteratively updated by combining it with aggregation of it’s neigh-

bors’ representation. In particular, the kth layer of our GNN is given by,

mk
N (t) = AGGREGATEk

({
hk−1
s : s ∈ N (t)

})
, (4.2)

hkt = UPDATEk
(
hk−1
t ,mk

N (t)

)
, (4.3)

where akt is the aggregated message from the neighbors, hkt denotes the latent repre-

sentation of node t in the k-th layer, and N (t) denotes the set of immediate neighbors

of node t. The initial latent node representation of any node i, h0
i , is initialized to

the node features, Xi, built according to the labeling scheme given by Equation 4.1.

This framework gives the flexibility to plug in different AGGREGATE and UPDATE

functions resulting in various GNN architectures (Sections 3.1.1 and 3.1.2).

Inspired by the multi-relational R-GCN [57] and edge attention [96], we define our

AGGREGATE function as

mk
N (t) =

R∑
r=1

∑
s∈Nr(t)

αkrrtstW
k
rhk−1

s ,

where R is the total number of relations present in the knowledge graph; Nr(t) denotes

the immediate outgoing neighbors of node t under relation r; Wk
r is the trainable

transformation matrix used to propagate messages in the k-th layer over relation

r; αkrrtst is the edge attention weight at the k-th layer corresponding to the edge

connecting nodes s and t via relation r. This attention weight, a function of the

source node t, neighbor node s, edge type r and the target relation to be predicted

rt, is given by

s = ReLU
(
Ak

1[hk−1
s ⊕ hk−1

t ⊕ ear ⊕ eart] + bk1
)

αkrrtst = σ
(
Ak

2s + bk2
)
.

Here, hks and hkt denote the latent node representation of respective nodes at k-

th layer of the GNN, ear and eart denote learned attention embeddings of respective

relations, and Ai and bi are trainable matrices. Note that the attention weights are

CHAPTER 4. GRAIL 43

not normalized and instead come out of a sigmoid gate that regulates the information

aggregated from each neighbor. As a regularization measure, we adopt the basis

sharing mechanism, introduced by Schlichtkrull et al.[57] and described in Section

3.2, among the transformation matrices of each layer, Wk
r . We also implement a form

of edge dropout, where edges are randomly dropped from the graph while aggregating

information from the neighborhood. This proved to be an effective regularization

strategy.

Our UPDATE function is defined as the weighted linear combination of the neigh-

boring message and the current node representation:

hkt = ReLU
(
Wk

selfhk−1
t + mk

N (t)

)
. (4.4)

With the AGGRERGATE and UPDATE functions defined, we obtain the node

representations after L layers of message passing. The final node embeddings are

given by the concatenation of node representations at all layers,

zi = [h1
i ⊕ · · · ⊕ hLi] ∀i ∈ G(u,v).

This is inspired by the JK-connection mechanism [94] described in Section 3.1.2, which

allows for flexible neighborhood ranges for each node. Empirically, the addition of

these JK-connections made our model’s performance robust to the number of layers

of the GNN.

A subgraph representation of G(u,v) is then obtained by average-pooling of all the

latent node representations:

hLG(u,v)
= 1
|G(u,v)|

∑
i∈G(u,v)

hLi , (4.5)

where G(u,v) denotes the set of vertices in graph G(u,v).

Finally, to obtain the score for the likelihood of a triplet (u, rt, v), we create a

latent representation of the triplet by concatenating the following vectors

• target nodes’ latent representations, hLu and hLv : these encode the target nodes

neighborhood information.

CHAPTER 4. GRAIL 44

• subgraph representation, hLG(u,v)
: summarized information from the subgraph.

• a learned embedding of the target relation, ert : the subgraph structure around

the target nodes, G(u,v), is independent of the target relation, rt; this is the

target relation specific input that the model needs to score the triplet (u, rt, v).

We then pass these concatenated representations through a linear layer, with trainable

linear transformation weight matrix W,

score(u, rt, v) = WT [hLu ⊕ hLv ⊕ hLG(u,v)
⊕ ert]. (4.6)

For simplicity, we consider the same dimension for all our latent dimensions (e.g.,

for all hidden layers of GNN, and relation embeddings, ert) The AGGREGATE and

UPDATE functions can be further generalized as described in Sections 3.1.1 and 3.1.2.

4.1.4 Training Regime

Following the standard and successful practice, we train the model to score positive

triplets higher than the negative triplets using a noise-contrastive hinge loss [15]. This

follows the max-margin loss function introduced in Equation (2.11). To re-iterate, we

use the following loss function to train our model via stochastic gradient descent:

L =
|T |∑
i=1

max(0,−score(pi) + score(ni) + γ), (4.7)

where T is the set of all edges/triplets in the training graph; pi and ni denote the

positive and negative triplets respectively; γ is the margin hyperparameter. In our

approach the negative triplet, ni, is obtained by following the common strategy de-

scribed in Section 2.1.2 of replacing the head (or tail) of the triplet with a uniformly

sampled random entity while filtering out the occasional false negatives.

CHAPTER 4. GRAIL 45

4.2 Theoretical Analysis

We can show that the GraIL architecture is capable of encoding the same class of

path-based logical rules that are used in popular rule induction models, such as RuleN

[29] and NeuralLP [33] and studied in recent work on logical reasoning using neural

networks [108]. For the sake of exposition, we equate edges (u, r, v) in the knowledge

graph with binary logical predicates r(u, v) where an edge (u, r, v) exists in the graph

iff r(u, v) = true.

Theorem 1. Let R be any logical rule (i.e., clause) on binary predicates of the form:

rt(X, Y)← r1(X,Z1) ∧ r2(Z1, Z2) ∧ ... ∧ rk(Zk−1, Y),

where rt, r1, . . . , rk are (not necessarily unique) relations in the knowledge graph,

X,Z1, . . . , Zk−1, Y are free variables that can be bound by arbitrary unique entities.

For any such R there exists a parameter setting Θ for a GraIL model with k GNN

layers and where the dimension of all latent embeddings are d = 1 such that

score(u, rt, v) 6= 0

if and only if ∃Z1, ..., Zk−1 where the body of R is satisfied with X = u and Y = v.

Theorem 1 states that any logical rule corresponding to a path in the knowledge

graph can be encoded by the model. GraIL will output a non-zero value if and only

if the body of this logical rule evaluates to true when grounded on a particular set of

query entities X = u and Y = v. The full proof of Theorem 1 is detailed in Section

4.2.1, but the key idea is as follows: Using the edge attention weights it is possible

to set the model parameters so that the hidden embedding for a node is non-zero

after one round of message passing (i.e., his 6= 0) if and only if the node s has at

least one neighbor by a relation ri. In other words, the edge attention mechanism

allows the model to indicate whether a particular relation is incident to a particular

entity, and—since we have uniquely labeled the targets nodes u and v—we can use

CHAPTER 4. GRAIL 46

this relation indicating property to detect the existence of a particular path between

nodes u and v.

We can extend Theorem 1 in a straightforward manner to also show the following:

Corollary 1. Let R1...,Rm be a set of logical rules with the same structure as in

Theorem 1 where each rule has the same head rt(X, Y). Let

β = |{Ri : ∃Z1, ..., Zk−1 where Ri = true

with X = u and Y = v}|.

Then there exists a parameter setting for GraIL with the same assumptions as Theorem

1 such that

score(u, rt, v) ∝ β.

This corollary shows that given a set of logical rules that implicate the same target

relation, GraIL can count how many of these rules are satisfied for a particular set

of query entities u and v. In other words, similar to rule-induction models such as

RuleN, GraIL can combine evidence from multiple rules to make a prediction.

Interestingly, Theorem 1 and Corollary 1 indicate that GraIL can learn logical

rules using only one-dimensional embeddings of entities and relations, which dovetails

with our experience that GraIL’s performance is reasonably stable for dimensions in

the range d = 1, ..., 64. However, the above analysis only corresponds to a fixed class of

logical rules, and we expect that GraIL can benefit from a larger latent dimensionality

to learn different kinds of logical rules and more complex compositions of these rules.

4.2.1 Proof of Theorem 1

We prove this Theorem by first proving the following two lemmas.

Lemma 1. Given a logical rule R as in 1, we have rt in the head and ri is any

relation in the body at a distance i from the head. Then the attention weight between

CHAPTER 4. GRAIL 47

any nodes, s and t, connected via relation r, αlrrtst, at layer l can be learnt such that

αlrrtst > 0

if and only if r = rl.

Proof. For simplicity, let us assume a simpler version of αlrrtst as follows

αlrrtst = MLP(r, rt).

When r and rt are 1-dimensional scalars (as we assume in Theorem 1), to prove

the stated lemma we need the MLP to learn a decision boundary between the true

pair S l : {(rl, rt)} and the induced set of false pairs S̄l : {(ri, rj) ∀(ri, rj) /∈ S l}.

We also have the flexibility of learning appropriate embeddings of the relations in

1-dimensional space.

This is possible to an arbitrary degree of precision given that MLP with non-linear

activation, as is our case, is a universal function approximator [109].

Lemma 2. For a given rule R as in 1 which holds true for a pair of nodes, X = u

and Y = v, it is possible to learn a set of parameters for a GraIL model such that

hlt > 0

if and only if node t is connected to node u by a path,

r1(u, Z1) ∧ r2(Z1, Z2) ∧ ... ∧ rk(Zl−1, t),

of length l.

Proof. The overall message passing scheme of best performing GraIL model is given

by

hlt = ReLU
Wl

selfhl−1
t +

R∑
r=1

∑
s∈Nr(t)

αlrrtstW
l
rhl−1

s

 (4.8)

CHAPTER 4. GRAIL 48

Without loss of generality 1, we assume all the nodes are labeled with 0, except

the node, u, which is labeled 1. Under this node label assignment, for any node t, at

a distance d from the node u, hlt = 0 ∀l < d.

With no loss of generality, also assume W k
r = 1,W k

self = 1 ∀k, r. With these

assumptions, Equation (4.8) simplifies to

hlt = ReLU
 R∑
r=1

∑
s∈Nr(t)

αlrrtsth
l−1
s

 . (4.9)

We will now prove our Lemma using induction.

Base case. We will first prove the base case for l = 1, i.e., h1
t > 0 if and only if t is

connected to u via path r1(u, t)

From Equation 4.9, we have that

h1
t = ReLU

 R∑
r=1

∑
s∈Nr(t)

α1
rrth

0
s

 .
According to our simplified node labeling scheme h0

s 6= 0 only if s = u. And by

Lemma 1, α1
rrtst > 0 only if r = r1. Hence, t must be connected to u via relation r1

for h1
t to be non-zero.

Induction step. Assume the induction hypothesis is true for some λ, i.e., hλt > 0 if

and only if t is connected to source u by a path r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, t).

From Equation 4.9 we have that hλ+1
t > 0 when the following two conditions are

simultaneously satisfied.

1. hλs > 0 for some s

2. αλ+1
rrtst > 0 for some r

As a consequence of our induction hypothesis, Condition 1 directly implies that node

s should be connected to source node u by a path r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, s).

By Lemma 1, Condition 2 implies that r = rλ+1. This means that node t is

connected to node s via relation rλ+1.
1There is no loss of generality because this is a strict simplification of our original labelling

scheme without any additional properties.

CHAPTER 4. GRAIL 49

The above two arguments directly imply that hλ+1
t > 0 if and only if node t is

connected to source node by a path r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, s) ∧ rλ+1(s, t).

Hence, assuming the lemma holds true for λ, we proved that holds it true for λ+1.

Thus, Lemma 1 is proved by induction.

Proof of Theorem 1. This is a direct consequence of Lemma 2. In particular,

without any loss of generality we simplify the final scoring of GraIL to directly be the

embedding of the target node v at the last layer k, i.e,

score(u, rt, v) = hkv

According to Lemma 2, hkv is non-zero only when v is connected to u by the body of

rule R, hence proving the above stated theorem.

4.3 Computational Complexity and

Scalability

Unlike traditional embedding-based approaches, scoring a triplet in the GraIL model

requires extracting and processing a subgraph around the candidate edge (u, rt, v) and

running multiple rounds of message passing on this extracted subgraph. Given that

our processing includes a node-labelling procedure that requires evaluating shortest

paths from the target nodes to all other nodes in the extracted subgraph, the time

complexity of GraIL to score a candidate edge (u, rt, v) is given by

O(log(|E|)|T |+ |R|dk),

where |E|, |R|, and |T | are the number of nodes, relation types and triplets, respec-

tively, in the enclosing subgraph induced by u and v, G(u,v). d is the dimension of the

node/relation embeddings and k is the number of GNN layers. Thus, the computa-

tional cost of scoring a triplet with GraIL depends largely on the size of the extracted

CHAPTER 4. GRAIL 50

subgraphs, and the runtime in practice is usually dominated by running Dijkstra’s

algorithm on these subgraphs.

During training this scoring needs to be done for all the positive and randomly

sampled negative edges of the training graph. This quickly gets prohibitively expen-

sive for large graphs. However, note that the procedure of extracting and labelling

subgraphs is independent for each training edge. This allows for massive paralleliza-

tion of the subgraph processing. In particular, we can easily distribute the subgraph

extraction and node-labelling procedures across multiple processes. Further, by pass-

ing messages solely on the subgraph enclosing a pair of nodes, GraIL avoids the chal-

lenges of memory and parallelizability associated with using GNNs on large graphs.

In particular, since the extracted subgraphs can be batched, GraIL is naturally suited

to multi-GPU training. This computational expense becomes furthermore prohibitive

while adopting certain evaluation metrics. We address this issue in the next chapter

and discuss some ways to mitigate this in Chapter 6.

5
Experimental results

In this chapter we present a thorough empirical analysis of the proposed model, GraIL.

We verify many of the hypotheses we proposed while designing the approach. In

particular, we perform experiments to study the following aspects:

1. Inductive relation prediction. One of the key motivations for our approach

is to learn entity-independent relational semantics. In Theorem 1, we also prove

that GraIL can encode inductive logical rules. In this set of experiments we in-

troduce the inductive relation prediction task, propose new benchmark datasets,

and evaluate GraIL in comparison to existing statistical and differentiable meth-

ods, which explicitly do rule induction.

2. Transductive relation prediction. The inductive models have a strong struc-

tural inductive bias that, we hypothesize, is complementary to existing state-

of-the-art transductive knowledge graph embedding methods. In this set of

experiments we explore several ensembling strategies and demonstrate that this

complementary inductive bias gives significant improvements over the existing

state-of-the-art KGE methods in the traditional transductive setting.

3. Ablation study. We perform systematic ablation and sensitivity studies to

highlight the importance of various components of our proposed framework.

For example, we test the practical importance of attention and the node-labeling

51

CHAPTER 5. EXPERIMENTAL RESULTS 52

scheme that Theorem 1 relies on. Further, we test the sensitivity of our models’

performance with respect to the embedding dimension and the neighborhood

size of the extracted subgraphs and reinforce some of our assumptions about

the models’ behaviour.

Datasets

We perform all our experiments on three benchmark knowledge completion datasets

(and other variants derived from them).

WN18RR. This is a subset derived from the WordNet (WN) dataset originally in-

troduced by Bordes et al.[42]. WordNet is carefully curated knowledge repository of

english words and their meanings. Its entities correspond to word senses, and rela-

tionships define lexical relations between them. WN18RR [17] corresponds to a subset

which contains only triplets with the 18 most frequent relations. In addition to that,

it also filters out easy inverse relations to avoid any leakage into the test set.

FB15k-237. This is derived from the FreeBase dataset originally proposed by Bor-

des et al.[15]. FreeBase is a collection of general facts like (Ottawa, capitol_of,

Canada). FB15k-237 [110] is again a subset of the original dataset consisting of only

the most frequent 237 relations and the inverse relations removed. As opposed to

WN18RR, which was constructed in a more or less controlled environment, FB15k-

237 is collected by crowd-sourcing and is in general more prone to noisy data.

NELL-995. As presented by Xiong et al.[111], this is a subset of 995th iteration of

the knowledge graph collected by Never-Ending Language Learning (NELL) system

[43]. NELL is an automated natural language processing system that continuously

collects fact by crawling the web. We remove certain relations from NELL-995 (e.g.,

latitude and longitude information of places), which do not contribute to the logical

deduction of missing relations. NELL-995 is mid-way between controlled and accurate

knowledge graph (WN18RR), and crowd-sourced noisy knowledge graph (FB15k-237).

CHAPTER 5. EXPERIMENTAL RESULTS 53

Evaluation regime

Across all our experiments the fundamental task we test the models on is the relation

prediction task. As described in Section 2.1.3, there are two widely followed evaluation

protocols for relation prediction:

• Classification metric. This formulation asks the model to score the correct-

ness of a given triplet (u, r, v). We use the area under the precision-recall curve

(AUC-PR) to reflect the classification abilities of the models. In particular, we

sample an equal number of negative triplets as the positive triplets following

the simple and standard practice of replacing the head (or tail) with a random

entity. We then score both the positive and the negative triplets to compute

the AUC-PR score of the respective models.

• Ranking metric. In this formulation, for a given triplet (u, r, ?) or (?, r, v) we

ask the model to rank a set of candidate entities. The rank of the correct entity

(u or v) among all of the candidate set entities reflects the reasoning abilities

of the model. We report Hits@k (for k = 1, 5, and 10) and Mean Reciprocal

Rank (MRR) as the summary ranking metrics. Note that these ranking metrics

are very sensitive to not only the nature of the entities in the candidate set but

also the size of the candidate set. While the general strategy is to consider the

entire set of entities in the knowledge graph as the candidate set, due to the

computational cost of our method we adopt an approximation where we sample

a random set of 50 candidate entities to make the candidate set. We argue that

this is a reasonable approximation since in practice smaller and more relevant

relation-specific candidate sets can be derived using type constraints and meta-

data available [66].

CHAPTER 5. EXPERIMENTAL RESULTS 54

Train graph (Gtr)
Train edges (LeBron, lives_in, Ohio), (Savannah, lives_in, Ohio),

(LeBron, spouse_of, Savannah), (Britney, lives_in, LA),
(A. Davis, spouse_of, Britney)

Test edges (A. Davis, lines_in, ?)

Inductive test graph (Gind)
Train edges (S. Curry, spouse_of, Ayesha), (Ayesha, lives_in, CA)
Test edges (S. Curry, lives_in, ?)

Table 5.1: Illustration of the inductive dataset splits

5.1 Inductive Relation Prediction

As illustrated in Figure 1.1c and here in Table 5.1, an inductive setting evaluates

a models’ ability to generalize to unseen entities. In a fully inductive setting the

sets of entities seen during training and testing are disjoint. More generally, the

number of unseen entities during testing can be varied from only a few new entities

being introduced to a fully-inductive setting (Figure 1.1c). The proposed framework,

GraIL, is invariant to the node identities so long as the underlying semantics of the

relations (i.e., the schema of the knowledge graph) remains the same. We demonstrate

our inductive results in the extreme case of having an entirely new test graph with a

new set of entities.

5.1.1 Inductive Benchmark Datasets

The WN18RR, FB15k-237, and NELL-995 benchmark datasets were originally devel-

oped for the transductive setting, i.e., the entities of the standard test splits are a

subset of the entities in the training splits (Figure1.1b). In order to facilitate induc-

tive testing, we create new fully-inductive benchmark datasets by sampling disjoint

subgraphs from the knowledge graphs in these datasets.

In particular, each of our datasets consist of a pair of graphs: train graph (Gtr) and

inductive test graph (Gind). These two graphs (i) have disjoint set of entities and (ii)

CHAPTER 5. EXPERIMENTAL RESULTS 55

Gtr contains all the relations present in Gind. The overall algorithm used to generate

fully-inductive benchmark datasets is presented in Algorithm 2. To generate the train

graph, Gtr, we sampled several entities uniformly to serve as roots and then take the

union of the k-hop neighborhoods surrounding the roots (Step 1 and 2). We get the

subset of relation types, rt, that exist among the nodes of Gtr (Step 3). We remove the

sampled training graph from the whole graph and sample the inductive test graph,

Gind, using the same procedure except we only consider edges of type r ∈ rt (Step 4

and 5). For robust evaluation, the parameters of Algorithm 2 are adjusted to obtain

four different pairs of Gtr and Gind with increasing number of nodes and edges for

each benchmark knowledge graph. The statistics of these inductive benchmarks is

provided in Table 5.2.

Algorithm 2: Inductive knowledge graph generation algorithm
Input : Multi-relational Graph induced by nodes E and relation types R:

G(E ;R); number of seed nodes for training graph: nt; number of
seed nodes for inductive test graph: ni; neighborhood size: k

Output: Train graph: Gtr, Inductive test graph: Gind

1 St = uniform_sample(E , nt)
2 D = ⋃

uj∈St get_und_neighborhood(uj, k;G(E ;R))
3 Gtr = G(D;R)
4 rt = get_rels(Gtr)
5 Si = uniform_sample(E \ St, ni)
6 I = ⋃

uj∈Si get_und_neighborhood(uj, k;G(E \ St; rt))
7 Gind = G(I; rt)

In the inductive setting, a model is trained on Gtr and tested on Gind. We randomly

select 10% of the edges/tuples in the inductive test graph as test edges. Consider the

expository example presented in Table 5.1. An inductive model is trained on the train

edges of Gtr to ideally learn the rule,

∃Y.(X, spouse_of, Y) ∧ (Y, lives_in, Z)→ (X, lives_in, Z),

and then evaluated on Gind, which has its own train and test edges with an entirely

new set of entities. Having learnt the underlying relational semantics, the model is

CHAPTER 5. EXPERIMENTAL RESULTS 56

Table 5.2: Statistics of inductive benchmark datasets

WN18RR FB15k-237 NELL-995
rel nodes links rel nodes links rel nodes links

v1 train 9 2746 6678 183 2000 5226 14 10915 5540
ind-test 9 922 1991 146 1500 2404 14 225 1034

v2 train 10 6954 18968 203 3000 12085 88 2564 10109
ind-test 10 2923 4863 176 2000 5092 79 4937 5521

v3 train 11 12078 32150 218 4000 22394 142 4647 20117
ind-test 11 5084 7470 187 3000 9137 122 4921 9668

v4 train 9 3861 9842 222 5000 33916 77 2092 9289
ind-test 9 7208 15157 204 3500 14554 61 3294 8520

expected to make the right prediction on the test edges based on the train edges of

Gind. Contrasting this, in the transductive setting, models are trained on the train

edges of Gtr and evaluated on the test edges from the same graph Gtr.

5.1.2 Baselines

We compare GraIL with two other end-to-end differentiable methods, Neural-LP [33]

and DRUM [34]. To the best of our knowledge, these are the only differentiable

methods capable of inductive relation prediction. We also compare against a state-of-

the-art statistical rule mining method, RuleN [29], which performs competitively with

embedding-based methods in the transductive setting. RuleN represents the current

state-of-the-art in inductive relation prediction on knowledge graphs.

Neural LP and DRUM. These are the first differentiable methods proposed to

learn logical rules for knowledge graph reasoning. Neural-LP [33] represents the graph

structure by constructing TensorLog [112] operators per relation using a portion of

the knowledge graph. These TensorLog operators are further chained to compute a

score for each triplet, and rules are learned by maximizing this score. Sadeghian et

al.[34] recently proposed a very similar approach but alleviated some of the theoret-

ical limitations of the previous approaches. In particular, they show that Neural-LP

CHAPTER 5. EXPERIMENTAL RESULTS 57

[33] learns at least two highly confident inaccurate rules for every correct rule. This

limitation is overcome by generalizing the previous approach with a low-rank ten-

sor approximation. To the best of our knowledge, these two methods are the only

differentiable methods capable of inductive relation prediction.

RuleN. We also compare against a state-of-the-art statistical rule mining method,

RuleN [29], which performs competitively with embedding-based methods in the trans-

ductive setting. RuleN represents the current state-of-the-art in inductive relation

prediction on knowledge graphs. It explicitly extracts path-based rules of the kind as

shown in Equation (1.1).

5.1.3 Hyperparameter settings

For both Neural-LP and DRUM, we use the implementations publicly provided by

the authors with their best configurations1,2. Using the original terminology of RuleN

[29], we train it to learn rules from paths of length up to 43. By Observation 1 nodes in

paths of length 4 appear in the 3-hop neighborhood around the target nodes. In order

to maintain a fair comparison, we sample 3-hop enclosing subgraphs around the target

links for our GNN approach. We employ a 3-layer GNN with the dimension of all

latent embeddings equal to 32. The basis dimension for basis decomposition (denoted

by b in equation (3.11)) is set to 4 and the edge dropout rate to 0.5.4 Experiments

were run for 50 epochs on a GTX 1080 Ti with 12 GB RAM. The Adam optimizer

was used with a learning rate of 0.01, L2 penalty of 5e-4, and default values for other

parameters. The margin in the loss was set to 10. Gradient were clipped at a norm of

1000.5 The model was evaluated on the validation edges of training graph (Gtr) and

saved every three epochs with the best performing checkpoint used for testing on test
1https://github.com/fanyangxyz/Neural-LP
2https://github.com/alisadeghian/DRUM
3http://web.informatik.uni-mannheim.de/RuleN/
4These parameters were selected after sweeping over a range of other values and picking the value

that gives the best performance on the validation set.
5These values were chosen as the default for these parameters.

CHAPTER 5. EXPERIMENTAL RESULTS 58

Table 5.3: Inductive results on datasets derived from WN18RR. N denotes Neural-LP,
D denotes DRUM, R denotes RuleN, G denotes GraIL

(a) AUC-PR

v1 v2 v3 v4
N 86.02 83.78 62.90 82.06
D 86.02 84.05 63.20 82.06
R 90.26 89.01 76.46 85.75
G 94.32 94.18 85.80 92.72

(b) Hits@10

v1 v2 v3 v4
N 74.37 68.93 46.18 67.13
D 74.37 68.93 46.18 67.13
R 81.91 78.23 53.39 71.59
G 82.45 78.68 58.43 73.41

(c) Hits@5

v1 v2 v3 v4
N 74.37 68.93 45.92 67.13
D 74.37 68.93 46.05 67.13
R 81.91 78.23 53.22 71.59
G 82.45 78.68 57.19 73.41

(d) Hits@1

v1 v2 v3 v4
N 68.34 66.89 41.16 65.84
D 69.60 67.46 42.17 66.11
R 76.06 76.53 48.60 70.57
G 78.19 76.30 50.33 72.39

(e) MRR

v1 v2 v3 v4
N 71.74 68.54 44.23 67.14
D 72.46 68.82 44.96 67.27
R 79.15 77.82 51.53 71.65
G 80.45 78.13 54.11 73.84

edges of induction test graph (Gind). The code for reproducing the results reported is

made publicly available6.

5.1.4 Experimental Results

Tables 5.3, 5.4e, and 5.5 report the mean classification metrics (AUC-PR) and a range

of ranking metrics (MRR, Hits@10, Hits@5, Hits@1) averaged over 5 runs of randomly

sample negative samples 7. These results are reported over all the inductive datasets

mentioned in Table 5.2 for the four models described above.

As we can see, GraIL significantly outperforms the inductive baselines across all
6https://github.com/kkteru/grail
7The variance was very low in all the settings, so the standard errors are omitted in these tables.

CHAPTER 5. EXPERIMENTAL RESULTS 59

Table 5.4: Inductive results on datasets derived from FB15k-237. N denotes Neural-
LP, D denotes DRUM, R denotes RuleN, G denotes GraIL

(a) AUC-PR

v1 v2 v3 v4
N 69.64 76.55 73.95 75.74
D 69.71 76.44 74.03 76.20
R 75.24 88.70 91.24 91.79
G 84.69 90.57 91.68 94.46

(b) Hits@10

v1 v2 v3 v4
N 52.92 58.94 52.90 55.88
D 52.92 58.73 52.90 55.88
R 49.76 77.82 87.69 85.60
G 64.15 81.80 88.95 89.29

(c) Hits@5

v1 v2 v3 v4
N 52.08 58.06 52.46 54.81
D 51.46 57.93 52.63 54.88
R 49.51 76.78 83.12 82.27
G 58.54 75.21 82.36 82.62

(d) Hits@1

v1 v2 v3 v4
N 40.21 45.68 44.09 44.12
D 42.71 47.49 45.84 45.53
R 41.46 62.13 65.95 67.21
G 40.00 52.20 60.25 60.99

(e) MRR

v1 v2 v3 v4
N 46.13 51.85 48.70 49.54
D 47.55 52.78 49.64 50.43
R 45.97 69.08 73.68 74.19
G 48.56 62.54 70.35 70.60

datasets (except some of the FB15k-237 datasets) in all metrics. At a closer inspection,

the previous differentiable methods (Neural-LP and DRUM) perform significantly

worse than GraIL. Moreover, as can be seen in Figure 5.1d, the strong structural

inductive bias of GraIL enables it to be extremely parameter efficient with orders of

magnitude less number of parameters. In comparison to the state-of-the-art statistical

rule mining method, RuleN [29], GraIL does significantly better in all metrics on

WN18RR and NELL-995 datasets. On FB15k-237 datasets, while it does better in

AUC and Hits@10, RuleN takes over on the harder ranking metrics like Hits@1. An

alternate view of this trend can be clearly noted in Figures 5.1b. This reinforces

the fact that statistical rule-based methods are inherently very strong in Hits@1 and

leaves room for improvements in our current approach.

CHAPTER 5. EXPERIMENTAL RESULTS 60

Table 5.5: Inductive results on datasets derived from NELL-995. N denotes Neural-
LP, D denotes DRUM, R denotes RuleN, G denotes GraIL

(a) AUC-PR

v1 v2 v3 v4
N 64.66 83.61 87.58 85.69
D 59.86 83.99 87.71 85.94
R 84.99 88.40 87.20 80.52
G 86.05 92.62 93.34 87.50

(b) Hits@10

WN18RR
v1 v2 v3 v4

N 52.92 58.94 52.90 55.88
D 52.92 58.73 52.90 55.88
R 49.76 77.82 87.69 85.60
G 64.15 81.80 88.95 89.29

(c) Hits@5

v1 v2 v3 v4
N 52.08 58.06 52.46 54.81
D 51.46 57.93 52.63 54.88
R 49.51 76.78 83.12 82.27
G 58.54 75.21 82.36 82.62

(d) Hits@1

v1 v2 v3 v4
N 40.21 45.68 44.09 44.12
D 42.71 47.49 45.84 45.53
R 41.46 62.13 65.95 67.21
G 40.00 52.20 60.25 60.99

(e) MRR

v1 v2 v3 v4
N 46.13 51.85 48.70 49.54
D 47.55 52.78 49.64 50.43
R 45.97 69.08 73.68 74.19
G 48.56 62.54 70.35 70.60

In aggregate, these results showcase the modelling superiority of the proposed

model, GraIL, in comparison to existing differentiable methods and statistical rule-

induction methods. This also indicates that GraIL is not only able to learn path-based

logical rules, which are also learned by RuleN, but that GraIL is able to also exploit

more complex structural patterns from the complete subgraph structure instead of

just paths between the target nodes.

CHAPTER 5. EXPERIMENTAL RESULTS 61

1051
k

60.0

62.5

65.0

67.5

70.0

72.5

Av
er

ag
e

Hi
ts

@
k

Neural-LP
DRUM
RuleN
GraIL

(a) WN18RR

1051
k

50

60

70

80

Av
er

ag
e

Hi
ts

@
k

Neural-LP
DRUM
RuleN
GraIL

(b) FB15k-237

1051
k

50

60

70

Av
er

ag
e

Hi
ts

@
k

Neural-LP
DRUM
RuleN
GraIL

(c) NELL-995

WN_v4 FB_v4 Nell_v40.0

0.2

0.4

0.6

0.8

1.0

of

 p
ar

am
et

er
s

1e6
Neural-LP
DRUM
GraIL

(d)

Figure 5.1: Figures 5.1a, 5.1b, 5.1c show the average Hits@k across all versions of the
respective datasets. Figure 5.1d shows the number of parameters of all differentiable
methods on version v4 of all datasets.

5.2 Transductive Relation Prediction

Transductive setting refers to the traditional setting of static graphs where there ex-

ists a fixed set of entities all of which are observed in training triplets. The models

make predictions of new relations among these fixed set of entities (Figure 1.1b). Cur-

rent state-of-the-art transductive models (Section 2.1) ground themselves to entity-

specific embeddings, which gives them high degree of freedom to encode relational

information. These models are trained so that entities ‘closer’ to each other in the

knowledge graph have similar embeddings enabling them to exploit the positional in-

formation and homophily present in these graphs. In contrast, GraIL relies entirely

on entity-independent structural information reflecting the multi-relational semantics.

CHAPTER 5. EXPERIMENTAL RESULTS 62

As demonstrated, this results in a strong inductive bias to encode the logical rules

and complex structural patterns underlying the knowledge graph. This, we believe,

is complementary to the current state-of-the-art transductive embedding-based ap-

proaches. Based on this observation, in this set of experiments we explore (i) how

GraIL performs in the transductive setting and (ii) the utility of ensembling GraIL

with existing embedding-based approaches.

5.2.1 Datasets

The standard knowledge graph, as available in the literature, are setup in the trans-

ductive setting which we use as is. For NELL-995, we split the entire set of triplets into

train/valid/test set by the ratio 70/15/15, making sure all the entities and relations

in the valid and test splits occur at least once in the train set.

5.2.2 Models

As a representative set for embeddings-based methods, we use the models we de-

scribed in Section 2.1 – TransE [15], DistMult [52], ComplEx [16], and finally the

current state-of-the-art model RotatE [18]. For all the methods we use the implemen-

tation and hyperparameters provided by Sun et al.[18] 8 which gives state-of-the-art

results on all methods. For a fair comparison of all the methods, we disable the

self-adversarial negative sampling proposed by Sun et al.[18]. For GraIL, we use 2-

hop neighborhood subgraphs for WN18RR and NELL-995, and 1-hop neighborhood

subgraphs for FB15k-237. All the other hyperparameters remain the same as in the

inductive setting.
8https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

CHAPTER 5. EXPERIMENTAL RESULTS 63

Table 5.6: Late fusion ensemble results on WN18RR (AUC-PR)

TransE DistMult ComplEx RotatE GraIL
TransE 93.73 93.12 92.45 93.70 94.30
DistMult 93.08 93.12 93.16 95.04
ComplEx 92.45 92.46 94.78
RuleN 93.55 94.28
GraIL 90.91

Table 5.7: Late fusion ensemble results on NELL-995 (AUC-PR)

TransE DistMult ComplEx RotatE GraIL
TransE 98.73 98.77 98.83 98.71 98.87
DistMult 97.73 97.86 98.60 98.79
ComplEx 97.66 98.66 98.85
RuleN 98.54 98.75
GraIL 97.79

5.2.3 Experimental Results

We mainly explore two different ensembling strategies – 1) late fusion, and 2) early

fusion.

Late fusion. Our primary ensembling strategy is late fusion, i.e., ensembling the

output scores of the constituent methods. We score each triplet with the methods

that are to be ensembled. The scores output by each method form the feature vector

for each data point. This feature vector is used to classify true triplets from false ones

using a linear classifier. Intuitively, this linear classifier blends the predictions from all

constitutes by learning a weighted aggregation of all the predictions. This ‘blending’

linear classifier is trained using the validation set of the respective datasets. At test

time, the test set is scored by the constituent methods generating the feature vector

which is then input to the linear classifier for the final score.

Tables 5.6, 5.7, and 5.8 show the AUC-PR performance of pairwise ensembling

of different knowledge graph embedding (KGE) methods among themselves and with

GraIL. A specific entry in these tables corresponds to the ensemble of pair of meth-

ods denoted by the row and column labels, with the individual performance of each

CHAPTER 5. EXPERIMENTAL RESULTS 64

Table 5.8: Late fusion ensemble results on FB15k-237 (AUC-PR)

TransE DistMult ComplEx RotatE GraIL
TransE 98.54 98.41 98.45 98.55 97.95
DistMult 97.63 97.87 98.40 97.45
ComplEx 97.99 98.43 97.72
RuleN 98.53 98.04
GraIL 92.06

Table 5.9: Late fusion ensemble results on WN18RR (Hits@10)

TransE DistMult ComplEx RotatE GraIL
TransE 88.74 85.31 83.84 88.61 89.71
DistMult 85.35 86.07 85.64 87.70
ComplEx 83.98 84.30 86.73
RuleN 88.85 89.84
GraIL 73.12

Table 5.10: Late fusion ensemble results on NELL-995 (Hits@10)

TransE DistMult ComplEx RotatE GraIL
TransE 98.50 98.32 98.43 98.54 98.45
DistMult 95.68 95.92 97.77 97.79
ComplEx 95.43 97.88 97.86
RuleN 98.09 98.24
GraIL 94.54

method on the diagonal. As can be seen from the last column of these tables, en-

sembling with GraIL resulted in consistent performance gains across all transductive

methods in two out of the three datasets. Moreover, ensembling with GraIL resulted

in more gains than ensembling any other two methods. Precisely, we define the gain

obtained by ensembling two methods, G(M1,M2), as follows

G(M1,M2) = P (M1,M2)−max(P (M1), P (M2))
max(P (M1), P (M2) .

In other words, it is the percentage improvement achieved relative to the best of

the two methods. Thus, the average gain obtained by ensembling with GraIL is given

CHAPTER 5. EXPERIMENTAL RESULTS 65

Table 5.11: Late fusion ensemble results on FB15k-237 (Hits@10)

TransE DistMult ComplEx RotatE GraIL
TransE 98.87 98.96 99.05 98.87 98.71
DistMult 98.67 98.84 98.86 98.41
ComplEx 98.88 98.94 98.64
RuleN 98.81 98.66
GraIL 75.87

Table 5.12: Relative gain of pairwise ensembling AUC-PR

WN18RR FB15k-237 NELL-995
AUC-PR Hits@10 AUC-PR Hits@10 AUC-PR Hits@10

GGraIL
avg 1.5% 2.06% 0% 0% 0.62% 1.23%

GKGE
avg 0.007% 0.14% 0.002% 0.06% 0.08% 0.05%

by

GGraIL
avg = 1

4
∑

|M1|∈KGE
G(M1,GraIL),

and the average gain obtained by pairwise ensembling among the KGE embedding

methods is given by

GKGE
avg = 1

12
∑

(|M1|,|M2|)∈KGE
G(M1,M2).

The relative gains on all datasets are summarized in Table 5.12. The average

gains in AUC-PR obtained by GraIL (GGraIL
avg) on WN18RR and NELL-995 are 1.5%

and 0.62%, respectively. This is orders of magnitude better than the average gains

obtained by KGE ensembling (GKGE
avg): 0.007% and 0.08%. Surprisingly, none of the

ensemblings resulted in significant gains on FB15k-237. Thus, while GraIL on its

own is optimized for the inductive setting and not state-of-the-art for transductive

prediction, it does give a meaningful improvement over state-of-the-art transductive

methods via ensembling. Tables 5.9, 5.10, and 5.11 show similar trends in improve-

ments obtained in terms of Hits@10.
8The Hits@10 numbers in these tables are higher than usually reported in the literature due to

the approximation we adopt.

CHAPTER 5. EXPERIMENTAL RESULTS 66

Early fusion. Early fusion refers to using the embeddings learnt by transductive

methods as additional input into GraIL. In particular, the node labels, as computed

by our original node-labeling scheme, are concatenated with node-embeddings learnt

by a transductive method (TransE, in this case). The addition of these pre-trained

embeddings results in as much as 21.1% performance boost in Hits@10 performance

(Table 5.13).

Table 5.13: Early fusion ensemble with TransE results

WN18RR FB15k-237 NELL-995
AUC-PR Hits@10 AUC-PR Hits@10 AUC-PR Hits@10

GraIL 90.91 73.12 92.06 75.87 97.79 94.54
GraIL++ 96.20 88.59 93.91 89.68 98.11 97.93

Thus, while late fusion demonstrates the complementary inductive bias that GraIL

embodies, this kind of early fusion demonstrates the natural ability of GraIL to lever-

age any node embeddings/features available.

5.3 Additional analysis

In this section we present ablation studies and hyperparameter sensitivity of GraIL.

These experiments provide empirical evidence for some of the theoretical motivations

that inspired the design parameters of our method.

5.3.1 Ablation Study

We conduct ablation experiments to emphasize the importance of the three key com-

ponents of GraIL: i) enclosing subgraph extraction ii) double radius node labeling

scheme, and iii) attention in the GNN. The results are summarized in Table 5.14.

Enclosing subgraph extraction. As mentioned in Section 4.1.1, we assume that

the logical evidence for a particular link can be found in the subgraph surrounding

the two target nodes of the link. Thus we proposed to extract the subgraph induced

CHAPTER 5. EXPERIMENTAL RESULTS 67

by all the nodes occurring on a path between the two target nodes. Here, we want

to emphasize the importance of extracting only the paths as opposed to a more naive

choice of extracting the subgraph induced by all the k-hop neighbors of the target

nodes. The performance drastically drops in such a configuration (second row of Table

5.14). While we expected our model to leverage the entire subgraph to learn about

the target entities and the relation, we observe that across all the datasets the model

catastrophically overfits to the training data when presented with full subgraph.

Double radius node labeling. In Section 4.1.2, we introduced a node-labelling

scheme that captures the topological position of each node with respect to the target

nodes and reflects its structural role in the subgraph. In fact, the proof of Theorem 1

assumes having uniquely labeled target nodes, u and v, which was a property of the

proposed node-labelling scheme. We highlight the importance of this by evaluating

GraIL with constant node labels of (1, 1) instead of the originally proposed scheme.

As can be noted from third row of Table 5.14, the drop in performance emphasizes

the importance of our node-labeling scheme in helping GraIL find the logical paths.

Attention in the GNN. Inspired by recently introduced attention mechanisms in

aggregating information from neighboring nodes, we designed an attention mechanism

as a function of the target entities, target relation and the subgraph around the target

entities. As noted in the proof of Theorem 1, this attention mechanism is a vital

component of our model in encoding the path rules. In particular, it allows the model

to indicate whether a particular relation is incident to a particular entity and enabling

the model to detect thee existence of a particular path between the target nodes. We

evaluate GraIL without this attention mechanism and note significant performance

drop (fourth row in Table 5.14), which echos with our theoretical findings.

CHAPTER 5. EXPERIMENTAL RESULTS 68

Table 5.14: Ablation study of the proposed framework (AUC-PR)

FB (v3) NELL (v3)
GraIL 91.68 93.34
GraIL w/o enclosing subgraph 84.25 85.89
GraIL w/o node labeling scheme 82.07 84.46
GraIL w/o attention in GNN 90.27 87.30

5.3.2 Hyperparameter sensitivity analysis

In this section we highlight the sensitivity of GraIL with respect to different hyper-

parameters and substantiate some of our intuitions developed in our the theoretical

findings and the experiments so far.

Size of enclosing subgraph. Observation 1 states that given the enclosing subgraph

from the k-hop neighborhood GraIL learns path-rules of length k + 1. Naturally, one

would expect the performance to improve as we allow the model to learn longer rules

and hence capture more complexity. Figure 5.2a shows how the performance of GraIL

increases as we increase the neighborhood size. Note that the size of the subgraph

can increase exponentially as we increase the number of hops. As described in Section

4.3, this heavily impacts the run-time of our model and inhibits us from increasing

the number of hops at free will.

1 2 3
of hops

80

85

90

AU
C-

PR

WN18RR_v3
FB15k-237_v3
NELL_v3

(a)

12 4 8 16 32
latent dimension

40

50

60

70

80

90

100

AU
C-

PR

WN18RR_v3
FB15k-237_v3
NELL_v3

(b)

Figure 5.2: Sensitivity to (a) neighborhood size of enclosing subgraphs, and (b) latent
dimension of GraIL

Latent dimension of GraIL. One peculiar property of GraIL, as noted in Theorem

CHAPTER 5. EXPERIMENTAL RESULTS 69

1, is its provable representational capacity with just 1-dimensional latent features.9

Figure 5.2b shows how the performance depends on the latent dimension. We note

that performance is relatively stable with marginal improvement or deterioration with

respect to the latent dimension. This conforms with our theoretical analysis that a

dimension of 1 is sufficient to encode path-based logical rules that models like RuleN

induce.

9Note that, for simplicity, we tie all the latent dimensions of GraIL to be the same value.

6
Conclusion

Graph neural networks (GNN) present a new class of methods, which have recently

proved effective in many relational learning tasks. In this work, we theoretically

prove that GNNs have the representational capacity to encode a useful subset of

first order logic formulae (chain-like Horn clauses). Based on this, we proposed a

GNN-based framework, GraIL, for knowledge graph reasoning where the underlying

relational semantics can be effectively captured as Horn clauses. Unlike embedding-

based approaches, GraIL captures entity-independent relational semantics and hence

can naturally generalize to entirely new graphs with nodes that were unseen during

training. Moreover, we showed that GraIL brings an inductive bias complementary

to the current state-of-the-art knowledge graph completion methods. In particular,

we demonstrated, with a thorough set of experiments, performance boosts to various

knowledge graph embedding methods when ensembled with GraIL.

Although the relational learning abilities are showcased in the context of knowledge

graphs, the theoretical findings in this work have implications that reach beyond just

knowledge graphs. This work brings forth a new fundamental expressive power of

GNNs, i.e., the ability to learn logical rules, that can be applied to relational reasoning

in domains like scene understanding, question answering, commonsense reasoning, etc.

70

CHAPTER 6. CONCLUSION 71

6.1 Limitations

Our approach, GraIL, as presented in this work has two key limitations in comparison

to existing methods: 1) computational complexity, and 2) intrepretability.

6.1.1 Computational complexity

As pointed out in Section 4.3, the runtime of GraIL, in practice, in dominated by

the node-labelling scheme that computes the shortest distance of every node in the

enclosing subgraph from the target nodes (via Dijkstra’s algorithm). This limitation

inhibits us from adopting the standard evaluation setup of ranking all entities and

forces us to approximate these metrics via sampling schemes. Although, in practice,

smaller and more relevant relation-specific candidate sets can be derived using type

constraints and meta-data available [66], these subsampled metrics cannot be easily

compared with the full ranking metrics in the literature. In this regard, we note that

GraIL can be adapted to efficiently perform full ranking, e.g., by using an ensemble

strategy where-in GraIL re-scores a faster but weaker models’ (for e.g., TransE) top-

100 predictions. As a proof-of-concept: on WN18RR, we were able to improve the

overall MRR (with full ranking) from 20.26% (TransE baseline) to 33.52% using this

approach.

6.1.2 Interpretability

Although GraIL outperforms existing inductive approaches, one of the key disadvan-

tages of our methods over other approaches is its lack of interpretability. In particular,

all the inductive baselines—Neural-LP, DRUM, and RuleN—derive readable logical

rules that makes them makes them more transparent and reliable. This lack of inter-

pretability also limits our understanding of the kind of rules and structures GraIL is

able to learn over methods like RuleN (which in theory is just as powerful). In that

CHAPTER 6. CONCLUSION 72

regard, an interesting direction to investigate is leveraging recent works on explaining

predictions made by GNNs [113] to get a better understanding of GraIL.

6.2 Future directions

With a comprehensive study of existing methods for inductive relation prediction

and a set of new benchmark datasets we open up a new direction for exploration on

inductive reasoning in the context of knowledge graphs. Moreover, our findings of

connection between logical reasoning and graph neural network complement and/or

augment many recent works and point to interesting avenues of research.

6.2.1 Frontiers of GNNs and logical reasoning

Many recent works have concurrently explored the connections of logical reasoning

and graph neural networks. Barceló et al.[27] presented a strong connection between

the expressive powers of GNNs and a subset of first order predicate logic—FOC2—

leveraging their connections to WL isomorphism test [114]. However, their results are

centered around simple graphs and unary logical formulas. Our results augment their

findings by demonstrating similar connections in the context of multi-relational graphs

and binary logical formulas. One way to interpret our results in their formulation is

to use the labels of the nodes as unary predicates and relations as binary predicates

to represent the Horn clauses within FOC2 formulation. This interpretation, like our

proof of Theorem 1, relies on our unique labelling scheme. It would be interesting to

generalize this ability by simplifying the node-labelling scheme. Such a simplification

would also alleviate the computational complexity of GraIL and make it more scalable.

Another line of concurrent work combines graph neural networks with powerful

probabilistic deduction engines–Markov Logic Networks [78, 79]. These approaches

focus on the performing deduction and inference on knowledge graphs using a given

set of pre-defined rules. In fact, Y. Zhang et al.[79] uses Neural-LP (one of our

CHAPTER 6. CONCLUSION 73

inductive baselines) in their pre-processing step to derive logical rules. Our approach

is complimentary to theirs in that we implicitly perform rule induction along with

deduction and inference. However, these works offer an advantage of having the ability

to incorporate domain-expert rules in their inference engine. A natural direction for

future work is to consider ways to combine these two approaches and design end-to-

end rule learning induction and inference engines. This also highlights the need to

extract rules from GraIL one if its current limitations as described earlier.

6.2.2 Inductive relation prediction

We propose the first comprehensive benchmark datasets for inductive relation predic-

tion in knowledge graphs. One of the interesting properties of these datasets is that

there can be a shift in distribution of relations when going from training graph to the

test graph. With such a shift, it can be challenging to transfer knowledge on relations

that have a very low frequency in the training graph. This is the same challenge

that motivates many few-shot link prediction works [66, 85, 111]. One can leverage

meta-learning strategies [111] to help mitigate this challenge in the inductive setting

and perhaps combine the structural inductive bias GraIL to help improve learning in

the few-shot relational learning setting [66, 85].

Bibliography

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual

learning for image recognition”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine

translation by jointly learning to align and translate”. In: Proceedings of In-

ternational Conference on Learning Representations. 2014.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. “Deep neural networks for acoustic modeling in speech recogni-

tion: The shared views of four research groups”. In: Proceedings of the IEEE

Signal Processing Magazine (2012).

[4] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C

Lawrence Zitnick, and Ross Girshick. “Clevr: A diagnostic dataset for com-

positional language and elementary visual reasoning”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2017.

[5] Drew A Hudson and Christopher D Manning. “Gqa: A new dataset for real-

world visual reasoning and compositional question answering”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

74

BIBLIOGRAPHY 75

[6] Antoine Bordes, Jason Weston, and Nicolas Usunier. “Open question answering

with weakly supervised embedding models”. In: Proceedings of the Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases.

2014.

[7] Antoine Bordes, Sumit Chopra, and Jason Weston. “Question Answering with

Subgraph Embeddings”. In: Proceedings of the Conference on Empirical Meth-

ods in Natural Language Processing. 2014.

[8] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. “Semantic

parsing on freebase from question-answer pairs”. In: Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing. 2013.

[9] Larry Heck, Dilek Hakkani-Tür, and Gokhan Tur. “Leveraging Knowledge

Graphs for Web-Scale Unsupervised Semantic Parsing”. In: Proceedings of In-

terspeech. 2013.

[10] Danica Damljanovic and Kalina Bontcheva. “Named entity disambiguation

using linked data”. In: Proceedings of the Extended Semantic Web Conference.

2012.

[11] Zhicheng Zheng, Xiance Si, Fangtao Li, Edward Y Chang, and Xiaoyan Zhu.

“Entity disambiguation with freebase”. In: Proceedings of the IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent Technol-

ogy. 2012.

[12] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S

Weld. “Knowledge-based weak supervision for information extraction of over-

lapping relations”. In: Proceedings of the Association for Computational Lin-

guistics: Human Language Technologies. 2011.

[13] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N Mendes. “Improving

efficiency and accuracy in multilingual entity extraction”. In: Proceedings of the

International Conference on Semantic Systems. 2013.

BIBLIOGRAPHY 76

[14] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. “A Review of Relational

Machine Learning for Knowledge Graphs”. In: Proceedings of the IEEE (2016).

[15] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and

Oksana Yakhnenko. “Translating Embeddings for Modeling Multi-relational

Data”. In: Proceedings of the Advances in Neural Information Processing Sys-

tems. 2013.

[16] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Se-

bastian Riedel, and Guillaume Bouchard. “Knowledge Graph Completion via

Complex Tensor Factorization”. In: Proceedings of the Journal of Machine

Learning Research (2017).

[17] Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel.

“Convolutional 2D Knowledge Graph Embeddings”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. 2018.

[18] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowl-

edge Graph Embedding by Relational Rotation in Complex Space”. In: Pro-

ceedings of the International Conference on Learning Representations. 2019.

[19] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. “Revisiting Semi-

Supervised Learning with Graph Embed dings”. In: Proceedings of the Inter-

national Conference on Machine Learning. 2016.

[20] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: Proceedings of International Conference on Learn-

ing Representations. 2017.

[21] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representa-

tion Learning on Large Graphs”. In: Proceedings of the Advances in Neural

Information Processing Systems. 2017.

BIBLIOGRAPHY 77

[22] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de

Moura, and David L. Dill. “Learning a SAT Solver from Single-Bit Supervi-

sion”. In: Proceedings of the International Conference on Learning Represen-

tations. 2019.

[23] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,

Adam Santoro, Ryan Faulkner, et al. “Relational inductive biases, deep learn-

ing, and graph networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[24] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard

Zemel. “Neural Relational Inference for Interacting Systems”. In: Proceedings

of International Conference on Machine Learning. 2018.

[25] Ferran Alet, Adarsh K. Jeewajee, Maria Bauza, Alberto Rodríguez, Tomas

Lozano-Perez, and Leslie Pack Kaelbling. “Graph Element Networks: adap-

tive, structured computation and memory”. In: Proceedings of International

Conference on Machine Learning. 2019.

[26] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blun-

dell. “Neural Execution of Graph Algorithms”. In: Proceedings of the Interna-

tional Conference on Learning Representations. 2020.

[27] Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter,

and Juan Pablo Silva. “The Logical Expressiveness of Graph Neural Networks”.

In: Proceedings of the International Conference on Learning Representations.

2020.

[28] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.

“AMIE: Association Rule Mining Under Incomplete Evidence in Ontological

Knowledge Bases”. In: Proceedings of the International World Wide Web Con-

ference. 2013.

BIBLIOGRAPHY 78

[29] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,

and Heiner Stuckenschmidt. “Fine-Grained Evaluation of Rule- and Embedding-

Based Systems for Knowledge Graph Completion”. In: Proceedings of the In-

ternational Semantic Web Conference. 2018.

[30] Yuan Yang and Le Song. “Learn to Explain Efficiently via Neural Logic Induc-

tive Learning”. In: Proceedings of the International Conference on Learning

Representations. 2020.

[31] Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig,

Ruslan Salakhutdinov, and William W. Cohen. “Differentiable Reasoning over

a Virtual Knowledge Base”. In: Proceedings of the International Conference on

Learning Representations. 2020.

[32] Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gardner. “Neural

Module Networks for Reasoning over Text”. In: Proceedings of the International

Conference on Learning Representations. 2020.

[33] Fan Yang, Zhilin Yang, and William W Cohen. “Differentiable learning of

logical rules for knowledge base reasoning”. In: Proceedings of the Advances in

Neural Information Processing Systems. 2017.

[34] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe

Wang. “DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs”.

In: Proceedings of the Advances in Neural Information Processing Systems.

2019.

[35] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. “Revisiting Semi-Supervised

Learning with Graph Embeddings”. In: Proceedings of the International Con-

ference on Machine Learning. 2016.

[36] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George

E Dahl. “Neural message passing for quantum chemistry”. In: Proceedings of

the International Conference on Machine Learning. 2017.

BIBLIOGRAPHY 79

[37] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning

on Graphs: Methods and Applications”. In: Proceedings of the IEEE Data

Engineering Bulletin (2017).

[38] Kristina Toutanova and Danqi Chen. “Observed versus latent features for

knowledge base and text inference”. In: Workshop on Continuous Vector Space

Models and their Compositionality. 2015.

[39] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. “Reducing the Rank in

Relational Factorization Models by Including Observable Patterns”. In: Pro-

ceedings of the Advances in Neural Information Processing Systems 27. 2014.

[40] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. “The graph neural network model”. In: IEEE Trans-

actions on Neural Networks (2008).

[41] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. “Geometric deep learning: going beyond euclidean data”. In:

IEEE Signal Processing Magazine (2017).

[42] Antoine Bordes, Xavier Glorot, JasonWeston, and Yoshua Bengio. “A semantic

matching energy function for learning with multi-relational data”. In: Machine

Learning (2014).

[43] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka, Partha P. Taluk-

dar, Bo Yang, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra,

Matt Gardner, Bryan Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis,

Thahir Mohamed, Ndapandula Nakashole, Emmanouil Antonios Platanios,

Alan Ritter, Mehdi Samadi, Burr Settles, Richard C. Wang, Derry Wijaya,

Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm Greaves, and Joel

Welling. “Never-Ending Learning”. In: Communications of the ACM (2015).

BIBLIOGRAPHY 80

[44] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-

ton, and Jure Leskovec. “Graph convolutional neural networks for web-scale

recommender systems”. In: Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 2018.

[45] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig

A Knoblock. “Unsupervised entity resolution on multi-type graphs”. In: Pro-

ceedings of the International Semantic Web Conference. 2016.

[46] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in

Continuous Space Word Representations”. In: Proceedings of the Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. 2013.

[47] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph

Embedding by Translating on Hyperplanes. 2014.

[48] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. “Learn-

ing Entity and Relation Embeddings for Knowledge Graph Completion”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. 2015.

[49] Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark Johnson. “STransE: a

novel embedding model of entities and relationships in knowledge bases”. In:

Proceedings of the Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies. 2016.

[50] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. “Knowledge

Graph Embedding via Dynamic Mapping Matrix”. In: Proceedings of the As-

sociation for Computational Linguistics and the International Joint Conference

on Natural Language Processing. 2015.

[51] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A three-way model

for collective learning on multi-relational data.” In: Proceedings of the Inter-

national Conference on Machine Learning. 2011.

BIBLIOGRAPHY 81

[52] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.

“Embedding Entities and Relations for Learning and Inference in Knowledge

Bases”. In: Proceedings of the International Conference on Learning Represen-

tations. 2015.

[53] Seyed Mehran Kazemi and David Poole. “Simple embedding for link prediction

in knowledge graphs”. In: Proceedings of the Advances in Neural Information

Processing Systems. 2018.

[54] Ivana Balazevic, Carl Allen, and Timothy Hospedales. “TuckER: Tensor Fac-

torization for Knowledge Graph Completion”. In: Proceedings of the Conference

on Empirical Methods in Natural Language Processing and the International

Joint Conference on Natural Language Processing. 2019.

[55] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. “Rea-

soning with neural tensor networks for knowledge base completion”. In: Pro-

ceedings of the Advances in Neural Information Processing Systems. 2013.

[56] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. “Holographic em-

beddings of knowledge graphs”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. 2016.

[57] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,

Ivan Titov, and Max Welling. “Modeling Relational Data with Graph Convo-

lutional Networks”. In: Proceedings of the Extended Semantic Web Conference.

2017.

[58] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. “Composition-

based Multi-Relational Graph Convolutional Networks”. In: Proceedings of the

International Conference on Learning Representations. 2020.

[59] Diego Marcheggiani and Ivan Titov. “Encoding Sentences with Graph Convolu-

tional Networks for Semantic Role Labeling”. In: Proceedings of the Conference

on Empirical Methods in Natural Language Processing. 2017.

BIBLIOGRAPHY 82

[60] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.

“End-to-End Structure-Aware Convolutional Networks for Knowledge Base

Completion”. In: Proceedings of the AAAI Conference on Artificial Intelligence

(2019).

[61] Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. “A Vector-

ized Relational Graph Convolutional Network for Multi-Relational Network

Alignment”. In: Proceedings of the International Joint Conference on Artifi-

cial Intelligence. 2019.

[62] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization methods for

large-scale machine learning”. In: Society for Industrial and Applied Mathe-

matics Review (2018).

[63] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

“Distributed representations of words and phrases and their compositionality”.

In: Proceedings of the Advances in Neural Information Processing Systems.

2013.

[64] Bhushan Kotnis and Vivi Nastase. “Analysis of the impact of negative sampling

on link prediction in knowledge graphs”. In: arXiv preprint arXiv:1708.06816

(2017).

[65] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.

“Embedding logical queries on knowledge graphs”. In: Proceedings of the Ad-

vances in Neural Information Processing Systems. 2018.

[66] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.

“One-Shot Relational Learning for Knowledge Graphs”. In: Proceedings of the

Conference on Empirical Methods in Natural Language Processing. 2018.

[67] Luc Dehaspe and Hannu Toivonen. “Discovery of frequent datalog patterns”.

In: Data Mining and Knowledge Discovery (1999).

BIBLIOGRAPHY 83

[68] Stephen Muggleton. “Inverse entailment and Progol”. In: New Generation

Computing (1995).

[69] Quan Wang, Bin Wang, and Li Guo. “Knowledge base completion using em-

beddings and rules”. In: Proceedings of the International Joint Conference on

Artificial Intelligence. 2015.

[70] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua

Tian. “Large-scale knowledge base completion: Inferring via grounding net-

work sampling over selected instances”. In: Proceedings of the Conference on

Information and Knowledge Management. 2015.

[71] Matthew Richardson and Pedro Domingos. “Markov logic networks”. In: Ma-

chine Learning (2006).

[72] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. “Jointly embed-

ding knowledge graphs and logical rules”. In: Proceedings of the Conference on

Empirical Methods in Natural Language Processing. 2016.

[73] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. “Knowledge

graph embedding with iterative guidance from soft rules”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. 2018.

[74] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. “Lifted Rule Injec-

tion for Relation Embeddings”. In: Proceedings of the Conference on Empirical

Methods in Natural Language Processing. 2016.

[75] Pasquale Minervini, Luca Costabello, Emir Muñoz, Vıt Nováček, and Pierre-

Yves Vandenbussche. “Regularizing knowledge graph embeddings via equiva-

lence and inversion axioms”. In: Proceedings of the Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. 2017.

BIBLIOGRAPHY 84

[76] Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel.

“Adversarial Sets for Regularising Neural Link Predictors”. In: Proceedings of

the Conference on Uncertainty in Artificial Intelligence (2017).

[77] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. “Injecting logical back-

ground knowledge into embeddings for relation extraction”. In: Proceedings of

the Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies. 2015.

[78] Meng Qu and Jian Tang. “Probabilistic logic neural networks for reasoning”.

In: Proceedings of the Advances in Neural Information Processing Systems.

2019.

[79] Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi,

and Le Song. “Efficient Probabilistic Logic Reasoning with Graph Neural Net-

works”. In: Proceedings of International Conference on Learning Representa-

tions. 2020.

[80] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. “Repre-

sentation learning of knowledge graphs with entity descriptions”. In: Proceed-

ings of the AAAI Conference on Artificial Intelligence. 2016.

[81] Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo. “Zero-Shot Embedding

for Unseen Entities in Knowledge Graph”. In: The Institute of Electronics,

Information and Communication Engineers Transactions on Information and

Systems (2017).

[82] Baoxu Shi and Tim Weninger. “Open-world knowledge graph completion”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. 2018.

[83] Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. “Logic Attention

Based Neighborhood Aggregation for Inductive Knowledge Graph Embed-

ding”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019.

BIBLIOGRAPHY 85

[84] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto.

“Knowledge Transfer for Out-of-knowledge-base Entities: A Graph Neural Net-

work Approach”. In: Proceedings of the International Joint Conference on Ar-

tificial Intelligence. 2017.

[85] Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen.

“Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs”.

In: Proceedings of the Conference on Empirical Methods in Natural Language

Processing and the International Joint Conference on Natural Language Pro-

cessing. 2019.

[86] Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. “Adapting

Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot

Relations”. In: Proceedings of the Conference on Empirical Methods in Nat-

ural Language Processing and the International Joint Conference on Natural

Language Processing. 2019.

[87] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning

for fast adaptation of deep networks”. In: Proceedings of the International Con-

ference on Machine Learning. 2017.

[88] Julien Leblay and Melisachew Wudage Chekol. “Deriving validity time in

knowledge graph”. In: Companion Proceedings of the The Web Conference

2018. 2018.

[89] Sam De Winter, Tim Decuypere, Sandra Mitrović, Bart Baesens, and Jochen

De Weerdt. “Combining temporal aspects of dynamic networks with Node2Vec

for a more efficient dynamic link prediction”. In: Proceedings of the IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM). 2018.

[90] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and

Gerhard Weikum. “TEQUILA: Temporal question answering over knowledge

BIBLIOGRAPHY 86

bases”. In: Proceedings of the ACM International Conference on Information

and Knowledge Management. 2018.

[91] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. “Know-evolve: Deep

temporal reasoning for dynamic knowledge graphs”. In: Proceedings of the In-

ternational Conference on Machine Learning. 2017.

[92] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart.

“Diachronic Embedding for Temporal Knowledge Graph Completion”. In: Pro-

ceedings of the AAAI Conference on Artificial Intelligence. 2020.

[93] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,

Mingyuan Zhou, and Xiaoning Qian. “Variational graph recurrent neural net-

works”. In: Proceedings of the Advances in Neural Information Processing Sys-

tems. 2019.

[94] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,

and Stefanie Jegelka. “Representation Learning on Graphs with Jumping Knowl-

edge Networks”. In: Proceedings of the International Conference on Machine

Learning. 2018.

[95] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How Powerful

are Graph Neural Networks?” In: Proceedings of the International Conference

on Learning Representations. 2019.

[96] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. “Graph Attention Networks”. In: Proceedings of the

International Conference on Learning Representations (2018).

[97] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway

networks”. In: arXiv preprint arXiv :1505.00387. 2015.

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. CoRR abs/1512.03385 (2015). 2015.

BIBLIOGRAPHY 87

[99] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. “Column net-

works for collective classification”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. 2017.

[100] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. “Gated graph

sequence neural networks”. In: Proceedings of the International Conference on

Learning Representations. 2016.

[101] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning Phrase Repre-

sentations using RNN Encoder–Decoder for Statistical Machine Translation”.

In: Proceedings of the Conference on Empirical Methods in Natural Language

Processing. 2014.

[102] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural computation (1997).

[103] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. “An end-to-

end deep learning architecture for graph classification”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. 2018.

[104] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and

Jure Leskovec. “Hierarchical graph representation learning with differentiable

pooling”. In: Proceedings of the Advances in Neural Information Processing

Systems. 2018.

[105] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro

Liò. “Towards sparse hierarchical graph classifiers”. In: arXiv preprint arXiv

:1811.01287 (2018).

[106] Balasubramaniam Srinivasan and Bruno Ribeiro. “On the Equivalence between

Positional Node Embeddings and Structural Graph Representations”. In: Pro-

ceedings of the International Conference on Learning Representations. 2020.

BIBLIOGRAPHY 88

[107] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural net-

works”. In: Proceedings of the Advances in Neural Information Processing Sys-

tems. 2018.

[108] Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L

Hamilton. “CLUTRR: A diagnostic benchmark for inductive reasoning from

text”. In: Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing. 2019.

[109] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”.

In: Neural networks (1991).

[110] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-

hury, and Michael Gamon. “Representing text for joint embedding of text and

knowledge bases”. In: Proceedings of the Conference on Empirical Methods in

Natural Language Processing. 2015.

[111] Wenhan Xiong, Thien Hoang, and William Yang Wang. “DeepPath: A Rein-

forcement Learning Method for Knowledge Graph Reasoning”. In: Proceedings

of the Conference on Empirical Methods in Natural Language Processing. 2017.

[112] William W. Cohen. “TensorLog: A Differentiable Deductive Database”. In:

arXiv preprint arXiv :1605.06523 (2016).

[113] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

“Gnnexplainer: Generating explanations for graph neural networks”. In: Pro-

ceedings of the Advances in Neural Information Processing Systems. 2019.

[114] Jin-Yi Cai, Martin Fürer, and Neil Immerman. “An optimal lower bound on

the number of variables for graph identification”. In: Combinatorica (1992).

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.1.1 Learning entity-independent relational semantics
	1.1.2 Improving embedding-based methods

	1.2 Thesis statement
	1.3 Statement of contribution
	1.4 Outline of the thesis

	2 Knowledge Graphs
	2.1 Embedding methods
	2.1.1 Decoder functions
	2.1.2 Training regime
	2.1.3 Evaluation regime

	2.2 Rule-based methods
	2.3 Beyond Static knowledge graphs

	3 Graph Neural Networks
	3.1 Message passing formalism
	3.1.1 Generalized AGGREGATE function
	3.1.2 Generalized UPDATE function

	3.2 GNNs for multi-relational graphs
	3.3 GNNs for downstream tasks

	4 GraIL
	4.1 Model Description
	4.1.1 Step 1: Subgraph Extraction
	4.1.2 Step 2: Node labeling
	4.1.3 Step 3: GNN scoring
	4.1.4 Training Regime

	4.2 Theoretical Analysis
	4.2.1 Proof of Theorem 1

	4.3 Computational Complexity and Scalability

	5 Experimental results
	5.1 Inductive Relation Prediction
	5.1.1 Inductive Benchmark Datasets
	5.1.2 Baselines
	5.1.3 Hyperparameter settings
	5.1.4 Experimental Results

	5.2 Transductive Relation Prediction
	5.2.1 Datasets
	5.2.2 Models
	5.2.3 Experimental Results

	5.3 Additional analysis
	5.3.1 Ablation Study
	5.3.2 Hyperparameter sensitivity analysis

	6 Conclusion
	6.1 Limitations
	6.1.1 Computational complexity
	6.1.2 Interpretability

	6.2 Future directions
	6.2.1 Frontiers of GNNs and logical reasoning
	6.2.2 Inductive relation prediction

	Bibliography

