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Abstract 

Genetic factors and early adverse environmental events interact to contribute to the 

pathogenesis of schizophrenia. Here, we investigated if immune-activation during 

development interacts with a susceptibility gene to produce schizophrenia-related 

phenotypes. We injected mice with a loss of function mutation in dysbindin-1, a 

schizophrenia-risk gene and controls with either Polyinosinic:polycytidylic acid (Poly 

I:C), a viral mimic or saline, at postnatal days (PD)5,6 and 7. At PD60, possible gene-

environment (GxE) interaction was studied using tests of behaviours relevant to 

schizophrenia as well as examination of postnatal neurogenesis. Our data showed a 

significant effect of genotype on spontaneous locomotion as dysbindin-1 homozygous 

mice displayed increased locomotor activity. Further, we observed a significant effect of 

genotype as a decrease in the number of newborn cells in the glomerular layer of the 

olfactory bulb (OB). Analyses of the data did not reveal an interactive effect between 

dysbindin-1 and Poly I:C exposure as far as spontaneous locomotion, pre-pulse inhibition 

of the acoustic startle, novel object recognition memory, elevated plus maze, fear 

memory, the number of newborn cells in the dentate gyrus and granular cell layer of the 

olfactory bulb are concerned. These preliminary results demonstrate lack of an interactive 

effect between this schizophrenia candidate gene and this viral mimic at neonatal periods 

on selected behavioural and neurobiological measures. Further investigation using 

different doses of the immune activator and/or different timing of treatment are needed to 

fully test GxE hypothesis. 
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RÉSUMÉ 

L'interaction entre les gènes et les incidents d'adversités environnementales tôt dans la vie 

contribuent à la pathogenèse de la schizophrénie.  Ici, nous avons étudié si l'activation de 

système immunitaire au cours du développement interagit avec un gène susceptibe à 

produire des phénotypes liés à la schizophrénie. Nous avons injecté des souris avec une 

mutation de perte de fonction dans dysbindin-1, un gène de risque pour la schizophrénie 

et les contrôles soit avec Poly I: C, une infection virale imiter ou une solution saline, aux 

jours postnataux (PD) 5,6 et 7.  Au PD60, les interactions gène-environnement (GXE) 

possibles a été étudiée en utilisant des tests de comportements pertinents à la 

schizophrénie ainsi que l'examen de la neurogenèse postnatale. Nos données ont montré 

un effet significatif du génotype sur la locomotion spontanée que dysbindin-1 souris 

homozygotes activité locomotrice affiché augmenté. En outre, nous avons observé un 

effet significatif du génotype comme une diminution du nombre de cellules nouveau-nés 

dans la couche glomérulaire de l'OB. Les analyses des données n'a pas révélé un effet 

interactif entre dysbindin-1 et Poly I: C l'exposition dans la mesure où la locomotion 

spontanée, pré-impulsion d'inhibition de l'sursaut acoustique, le roman de la mémoire de 

reconnaissance d'objets, surélevé labyrinthe, la mémoire de peur, le nombre de cellules 

nouveau-nés dans le gyrus denté et la couche de cellules granulaires du bulbe olfactif sont 

concernés. Ces résultats préliminaires démontrent l'absence d'un effet interactif entre ce 

gène candidat schizophrénie et ce virale imiter à la période néonatale sur certains mesures 

comportementales et neurobiologiques. Une enquête plus approfondie en utilisant des 
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doses différentes du système immunitaire activateur et / ou différents temps de traitement 

sont nécessaires pour tester complètement l'hypothèse GxE. 

1. INTRODUCTION 

1.1 Schizophrenia, an overall view 

From turn of the 20th century, when the German psychiatrist, Emil Kraepelin observed a 

group of his patients develop a deteriorating course of mental illness from early in life, 

many years have passed.  Kraepelin named this condition ‘dementia praecox’. The 

disorder renamed by Eugen Bleuler, schizophrenia, has been widely studied during the 

years; however, it has still remained one of the great challenges in the field of 

neuropsychiatry.  

Every year, around 20-40 persons per 100,000 are diagnosed with schizophrenia 

(McGrath, 2006). The life time prevalence of schizophrenia is 1% worldwide (Saha et al., 

2005). 

Schizophrenia imposes a considerable socioeconomic burden on the patients, their 

families and caregivers and societies worldwide. Based on the Canada public health 

agency report (2002), the total direct cost of schizophrenia such as health care, 

administrative expenditure and loss of productivity is an estimated amount of $2.35 

billion and the indirect cost  is an additional $2 billion per year (Goeree et al., 1999a, 

Goeree et al., 1999b, Lopez et al., 2006). 

The peak age of onset is late adolescence and early adulthood; however, in females the 

onset is 5 years later (Abel et al., 2010). The male:female incidence rate is 1.4:1; although 
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after the age of 40, the incidence in females is higher (Abel et al., 2010). Generally, 

women respond better to antipsychotic medication and have better prognosis (Abel et al., 

2010). Further, women tend to recover better from episodes of psychosis and have lesser 

frequency and shorter periods of readmission to the hospital and higher frequency of 

recovery periods (Grossman et al., 2006).There is also evidence that indicate more 

negative symptoms in male subjects than in females (Ring et al., 1991, Schultz et al., 

1997). 

The clinical diagnosis of schizophrenia in North America is generally based on the 

Diagnostic and Statistical Manual, version IV (DSMIV) of the American Psychiatric 

Association. Presenting symptoms in schizophrenia consist of: 1- positive symptoms (e.g. 

hallucination, delusion, disorganized speech and behaviour), 2- negative symptoms (e.g. 

emotional flattening, social dysfunctions).  Though not part of the DSMIV diagnostic 

criteria, significant cognitive impairments in schizophrenia subjects are consistently 

reported, and are often considered being a "core" problem in the disorder.  These 

cognitive symptoms include, among others, attention deficits, abnormal working memory 

and executive functions. 

The mental disturbance in schizophrenia captures all aspects of brain mental activity from 

perception and thought to language and behavioural controlling. The presentation is 

variable across individuals diagnosed with schizophrenia indicating the heterogeneous 

nature of the disorder. The diverse nature of the clinical presentation of schizophrenia 

also indicates heterogeneity in the underlying etiological and pathophysiological 

mechanisms (McGrath, 2008). Many characteristics of schizophrenia overlap with other 

psychiatric disorders such as bipolar disorder and autism (Berrettini, 2000, Konstantareas 
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and Hewitt, 2001).  Substance abuse, anxiety and depression are the main psychiatric 

comorbidities observed in schizophrenia(Buckley et al., 2009). The criterion-based 

approach to schizophrenia does not take into account this heterogeneity and is also 

atheoritical with regards to the etiology and biology of the disorder. Taking into account 

the existing pitfalls in the current classifications, it now is debated on whether 

schizophrenia should be considered a single class of disorder or rather be categorized into 

groups of distinct disorders namedschizophrenias(Peralta and Cuesta, 2011).  

 

1.2 Neurobiology of schizophrenia 

 1.2.1 Neurotransmitters  

Growing body of evidence supports the involvement of multiple neurotransmitter systems 

in schizophrenia. Abnormalities in dopamine (DA), Glutamate (Glu), gamma-

aminobutyric acid (GABA) and serotonin (5HT) system are all supported by an extensive 

number of studies. Despite all these reports, the exact neurochemical mechanisms 

involved in schizophrenia is still unknown. Nevertheless, it is assumed that these multiple 

neurotransmitter systems interact resulting in the pathophysiology of schizhophrenia 

(Lang et al., 2007, Stone et al., 2007, Lisman et al., 2008, Dean et al., 2009, Del Arco and 

Mora, 2009). 
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Dopamine (DA) 

As of yet, the most extensively studied hypothesis in the pathophysiology of 

schizophrenia is based on abnormal DA transmission. The majority of neurons 

responsible for DA transmission initiate from the ventral tegmental area (VTA). From 

VTA, the axons project either to the limbic regions, through the striatum, hippocampus, 

amygdala and the medial prefrontal cortex (mPFC) and form the mesolimbic pathway or 

they reach the frontal cortex and shape the mesocortical pathway (Prasad and 

Pasterkamp, 2009). 

The dopamine hypothesis of schizophrenia suggests that an excess of dopaminergic 

transmission in the limbic system induces psychotic symptoms whereas reduction in 

dopaminergic transmission in the PFC is the basis for the cognitive deficits and negative 

symptoms observed in schizophrenia (Davis et al., 1991, Guillin et al., 2007, Schmitt et 

al., 2009).  

The abnormalities in the dopaminergic neural circuitry have been an important focus 

since it was observed that DA D2 receptor (D2R) blockers alleviate positive symptoms 

and have antipsychotic effects (Deniker, 1978, Kapur and Mamo, 2003). Furthermore, D2 

receptor agonists such as cocaine and amphetamine can aggravate psychosis in 

schizophrenia patients and even trigger psychotic symptoms in healthy individuals 

(Garver et al., 1975, Lieberman et al., 1987, Laruelle et al., 1999). Schizophrenia patients 

have shown amphetamine-induced increase in dopamine release in striatum especially 

during the peak of the illness (Laruelle et al., 1999). Moreover, neuroimaging studies on 

schizophrenia patients using positron emission tomography (PET) and Single-photon 
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emission computed tomography (SPECT) have demonstrated increased D2R occupancy 

in striatum, indicating an increased D2R occupancy and enhanced dopamine transmission 

(Zipursky et al., 2005, Remington et al., 2006, Kegeles et al., 2008, Uchida et al., 2008). 

Schizophrenia patients have impairments in working memory, a task involving prefrontal 

cortical dopminergic brain circuitry (Tanaka, 2006, Forbes et al., 2009). Although, the 

evidence strongly indicates involvement of dopamine transmission in schizophrenia, 

more investigation is needed to explicate the exact mechanisms involved and the possible 

interaction with the other neurotransmitters.  

 

Glutamate (Glu) 

A number of studies have looked at the dysregulation of excitatory glutamatergic 

circuitry in the pathophysiology of schizophrenia. These studies indicate hypofunction of 

N-methyl-D-aspartate (NMDA) subtype of Glu receptors  based on the observation that 

subanesthetic dosages of NMDA antagonists, namely ketamine and phencyclidine (PCP), 

would induce “schizophrenia like” symptoms in healthy individuals and exacerbate the 

symptoms in schizophrenia patients (Javitt and Zukin, 1991, Krystal et al., 1994, Olney 

and Farber, 1995). 

Furthermore, decrease in the level of NMDA receptor and  

N-Acetylaspartylglutamic acid (NAA), a Glu neuronal marker in different regions of the 

brain of schizophrenia patients has been reported (Healy and Meador-Woodruff, 2000, 

Woo et al., 2004, Eastwood and Harrison, 2005). Interestingly, substances that facilitate 
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the activity of the NMDA receptors such as glycine or D-cycloserine ameliorate cognitive 

and negative symptoms in schizophrenia patients (Leiderman et al., 1996, Goff et al., 

1999). 

The glutamate hypothesis of schizophrenia proposes that NMDA receptor hypofunction 

is the underlying mechanism in schizophrenia.  

It is suggested that the abnormal dopamine transmission is due to a hypofunctional Glu 

system. Projections from the cortical glutamatergic neurons reach the striatum, and 

control dopaminergic transmission (Laruelle et al., 2003, Stone et al., 2007). Further, an 

interaction exists between NMDA receptors and dopamine receptors in the PFC and 

hippocampus (Tseng and O'Donnell, 2004, Sarantis et al., 2009). 

  

Gamma-aminobutyric acid (GABA) 

Reports indicate that schizophrenia patients have alterations in GABA neurotransmission. 

A highly replicated finding is a decrease in Glutamate-decarboxylase-67 (GAD67), the 

enzyme responsible for GABA synthesis, and GABA membrane transporter-1 in post-

mortem brains of schizophrenia patients (Woo et al., 1998, Lewis et al., 1999, Guidotti et 

al., 2000, Volk et al., 2002, Zhang et al., 2002, Hashimoto et al., 2008, Cruz et al., 2009).  

Interestingly, the decrease in GABA markers is mainly observed in the chandelier class 

of parvalbumin-containing interneurons of the PFC in schizophrenia patients and not all 

interneurons (Lewis et al., 1999, Volk et al., 2002, Hashimoto et al., 2003). It is 

suggested that the NMDA hypofunction in this subset of interneurons results in reduction 
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of GABAergic inhibitory function. This is supported by the evidence that NMDA 

receptor antagonists induce reduction in GAD67 and parvalbumin levels (Coyle, 2004).  

The neural network in the brain possesses a synchronized  oscillatory activity that is 

essential for cognitive functions (Uhlhaas et al., 2008). Electrophysiological 

investigations in schizophrenia patients show abnormalities in neural synchrony and 

oscillations (Uhlhaas et al., 2008, Doege et al., 2009).  GABAergic circuitry in the 

cognitive substrates (e.g. PFC and Hippocampus) has an important regulatory role in the 

synchronized oscillations (Lewis and Gonzalez-Burgos, 2008) . This evidence indicates 

an additional link between the GABAergic circuitry and schizophrenia pathophysiology. 

 

Serotonin (5HT) 

The atypical antipsychotic drugs e.g. clozapine, olanzapine and risperidone, have drawn 

the attention to the involvement of serotonin circuitry in the pathophysiology of 

schizophrenia. This new generation of antipsychotics shows lesser side effects (Meltzer et 

al., 2003).  They have both antiserotonergic (5HT2 blockade) and antidopaminergic (D2R 

antagonism) components and increase DA release in the PFC but not so much in the 

mesolimbic system (Di Pietro and Seamans, 2007, Kuroki et al., 2008). This mechanism 

may contribute to the prominent ameliorating effect of this group of antipsychotics on 

negative symptoms (Lublin et al., 2005, Burton, 2006) . 
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1.2.2 Neuropathology in schizophrenia 

Current technologies in neuroimaging have helped in identifying a number of 

macroscopic abnormalities in brains of schizophrenia patients. Enlarged lateral and third 

ventricles at the first episode of psychosis in unmedicated patients is a finding reported in 

a number of studies (Kelsoe et al., 1988, Shenton et al., 2001). This observation at the 

first stages of the disorder, along with some reports of their non-progressive nature, is in 

support of the neurodevelopmental theory suggesting alterations in the 

neurodevelopmental processes as the etiological pathology in schizophrenia (Fannon et 

al., 2000, Lieberman et al., 2001, Sapara et al., 2007) .  

PFC and hippocampus are two main regions associated with schizophrenia abnormalities 

(Kuperberg et al., 2003, Narayan et al., 2007, Sapara et al., 2007, Nesvag et al., 2008). 

Structural Magnetic Resonance Imaging(MRI) studies have shown reduction of the 

cortical thickness in the PFC (Nakamura et al., 2008, Herold et al., 2009) and decreased 

hippocampal volume in schizophrenia patients (Nelson et al., 1998, Heckers, 2001b). 

Both the cortical thinning and increased ventricular volume is also observed in the 

unaffected siblings of the schizophrenic patients. This suggests a possible link between 

the morphometric changes in the brain and genetic susceptibility to schizophrenia 

(McDonald et al., 2006, Goghari et al., 2007, Goldman et al., 2009). Diffusion tensor 

imaging has indicated a decrease in the density of the white matter regions of the brain 

such as the corpus callosum (Woodruff et al., 1995, Arnone et al., 2008) .   

In terms of microscopic findings, several cytoarchitectural alterations have been observed 

in the post-mortem brains of schizophrenia patients. A number of studies report the 
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presence of pyramidal neuron atrophy and decreased neural density in subregions of the 

brain (Benes and Bird, 1987, Pennington et al., 2008). However, there are also conflicting 

reports that indicate no change in the number of neurons (Andersen et al., 2004) and even 

increased neural density (Selemon et al., 2003). Furthermore, a replicated finding in 

schizophrenia is decreased neuropil size, reduced dendritic arborisation and lower spine 

density in the prefrontal cortical pyramidal neurons (Glantz and Lewis, 2000, Sweet et 

al., 2004, Kolluri et al., 2005). 

In addition, investigations on post-mortem brains have reported abnormalities in the 

laminar organization and orientation of the entorhinal and the cingulate cortices (Arnold 

et al., 1997, Fornito et al., 2009). Abnormalities in migration of a specific subgroup of 

cells (i.e. NADPH-diaphorase-positive cells) in the frontal and temporal lobe have been 

observed that further indicates possible alterations in the process of neurodevelopment 

(Akbarian et al., 1993a, Akbarian et al., 1993b). 

 

1.2 Cognitive deficits in schizophrenia  

Cognitive deficits are present long before the onset of full blown schizophrenia, 

throughout the disorder and even during the controlled phases of the disorder (Niendam 

et al., 2003, Bowie and Harvey, 2005). The cognitive impairments have great impact on 

the prognosis of the patients and are considered the core pathology in schizophrenia 

(Green et al., 2004). Cognitive impairments observed in schizophrenia are also seen in 

other psychiatric disorders; however these symptoms are more severe in schizophrenia. 

Schizophrenia patients suffer from impairments in general intelligence, attention, 
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processing speed, executive functioning, episodic memory, working memory and social 

interaction (Kalkstein et al., 2010). The current antipsychotic medication is not effective 

in controlling the cognitive symptoms, leaving the patients with a poor quality of life 

(Kalkstein et al., 2010, Irani et al., 2011).  

Different aspects of neurocognitive deficits in schizophrenia have been studied during the 

recent years. The PFC and the medial temporal lobe area specially the hippocampus are 

brain substrates associated with cognitive deficits in schizophrenia (Knable and 

Weinberger, 1997, Heckers, 2001a, Reichenberg and Harvey, 2007, Minzenberg et al., 

2009). 

Structural and functional neuroimaging studies indicate abnormalities in the PFC, a 

pivotal region in cognitive processing (Weinberger et al., 1994, Riehemann et al., 2001, 

Winterer et al., 2006, Lewis and Gonzalez-Burgos, 2008, McGuire et al., 2008, Voets et 

al., 2008).  

The temporal lobe particularly the hippocampus is also implicated in schizophrenia. 

Structural imaging studies indicate reduction in the volume of hippocampus, a substrate 

for declarative memory (Heckers, 2001a). Furthermore, functional imaging studies 

indicate abnormal activity in the hippocampus during encoding and retrieval of memory 

(Heckers, 2001a, Hofer et al., 2003, Zhou et al., 2008). 
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1.4    Neurodevelopmental hypothesis 

It is now widely accepted that schizophrenia is a neurodevelopmental disorder. Meaning 

that it is not a condition that suddenly appears in adulthood; rather, certain alterations 

occur in the process of neurodevelopment resulting in the abnormalities observed in 

schizophrenia (Weinberger and Lipska, 1995, Lewis and Levitt, 2002, McGrath et al., 

2003, Rapoport et al., 2005). 

There are several lines of evidence that support the neurodevelopmental hypothesis of 

schizophrenia. Cognitive impairments and developmental delays are present at premorbid 

and prodromal phases of the clinical course of schizophrenia (Fatemi and Folsom, 2009). 

Congenital anomalies such as agenesis of corpus callosum and stenosis of the sylvian 

aqueduct have been observed in schizophrenia patients (Lloyd et al., 2008, Fatemi and 

Folsom, 2009). 

Presences of neurologic soft signs in children who are later diagnosed with schizophrenia 

have also been reported (Barkus et al., 2006). Further, deficits in attention and 

psychomotor performance, social impairment, mood abnormalities and intense anxiety 

have been seen to occur more commonly in children considered high-risk due to having a 

schizophrenic parent (Fish, 1957, O'Neal and Robins, 1958, Fish et al., 1992, Fatemi and 

Folsom, 2009). Furthermore, physical aberrations such as low-set ears, facial 

asymmetries, epicanthal eye folds, abnormal skull measurements and wide spaces 

between the first and second toes in children who later develop schizophrenia are also 

suggestive of developmental anomalies that occur during prenatal period (Gualtieri et al., 

1982, Ismail et al., 1998, Waddington et al., 1999). 
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 These impairments are indicative of a neurodevelopmental basis for the disorder. A 

number of these evidence signify deficits due to alterations in the normal development of 

the temporo-limbic neural circuits in the brain during pre- and postnatal development 

(Weinberger and Lipska, 1995, McGrath et al., 2003, Rapoport et al., 2005, Fatemi and 

Folsom, 2009). Several post-mortem studies on schizophrenia subjects have shown 

cytoarchitectural changes in the brain suggestive of a disruption in the course of 

neurodevelopment (Arnold et al., 1991, Akbarian et al., 1993b, Kirkpatrick et al., 1999). 

Among these pathological findings are disturbances in neurogenesis processes (e.g. 

neuronal migration) and cortical lamination in the temporal lobe structures (Kovelman 

and Scheibel, 1984, Jakob and Beckmann, 1989, Arnold et al., 1991, Akbarian et al., 

1993a). Further, presence of non-progressive enlargement of lateral and third ventricles, 

decrease in grey matter thickness and lack of neurodegenerative processes such as 

astrogliosis (Roberts and Crow, 1987, Arnold, 1999, Falkai et al., 1999) support brain 

maldevelopment as the underlying pathogenic mechanism in schizophrenia (Pfefferbaum 

and Zipursky, 1991, Lewis and Levitt, 2002, Vita et al., 2006, Pagsberg et al., 2007, 

Fatemi and Folsom, 2009). Post-mortem studies have been further followed by animal 

studies. By means of using different methods such as X-ray irradiation and  an antimitotic 

drug, methylazoxymethanol acetate (MAM), disruption in neurodevelopmental processes 

such as neurogenesis (e.g. neural maturation) and synaptogenesis have been induced 

resulting in morphological and behavioural changes associated with schizophrenia 

(Gelowitz et al., 2002, Moore et al., 2006).   

Another promising schizophrenia model based on the neurodevelopmental hypothesis of 

schizophrenia is the neonatal ventral hippocampal lesion (NVHL) model. The ventral 
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hippocampus sends glutamatergic projections to the PFC (Carr and Sesack, 1996). The 

period of postnatal days 7 to 9( PD7-9) is critical for the development of the hippocampal 

formation in rats (Minkwitz, 1976). This point coincides with the peak in the dendritic 

and axonal growth and thus the hippocampus is susceptible to adversities (Minkwitz, 

1976, Chen and Strickland, 1997, Sapolsky, 2002). Lipska et al. demonstrated that 

bilateral excitotoxic lesions in rat hippocampus at PD7 results in occurrence of 

schizophrenia-like behaviours in adulthood (Lipska et al., 1993). These rats show 

hyperlocomotion in response to stress, psychostimulants and DA agonists (Lipska et al., 

1993, Flores et al., 1996, Wan and Corbett, 1997, Conroy et al., 2007, Berg and 

Chambers, 2008). They also display deficits in sensorimotor gating (Lipska et al., 1995, 

Grecksch et al., 1999), social interactions (Becker et al., 1999, Vazquez-Roque et al., 

2012), working memory (Gruber et al., 2010) and conditioned emotional response (Angst 

et al., 2007). Further, a number of typical and atypical neuroleptics have shown to control 

some of the behavioural abnormalities in this model (Lipska and Weinberger, 1994, Le 

Pen and Moreau, 2002). 

 

1.5 Etiology 

The etiology of schizophrenia is heterogeneous; genetic factors and early adverse 

environmental insults contribute to the pathogenesis of schizophrenia. Until recently, 

researchers tended to study schizophrenia either from genetic or environmental 

perspective alone (Oliver, 2011). Now, however, scientists are considering that genetic 

and environmental factors may interact leading to the occurrence of schizophrenia.  
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1.5.1 Genetic factors 

Schizophrenia is a complex disorder with  high heritability (Robertson et al., 2006). 

Genetic factors contribute significantly to the etiology of schizophrenia (Kendler et al., 

2011, Riley and Kendler, 2011, Mulle, 2012) . This is supported by family, twin and 

adoption studies that indicate high schizophrenia prevalence in the relatives of 

schizophrenia individuals (i.e. more than 50% chance in monozygotic twins, 16% in 

dizygotic twins and less than 10% in first degree relatives)(Lewis and Levitt, 2002, Chen 

et al., 2009, Li et al., 2009). In studies on schizophrenic subjects who were adoptees, it 

was observed that the incidence of schizophrenia and impairments in executive 

functioning was significantly higher in biological parents than in the adoptive parents 

(Kety et al., 1994, Wahlberg et al., 1997). Although strong evidence supports the major 

role of genetic factors in the pathogenesis of schizophrenia, the mode of transmission is 

yet unclear and evidently does not follow Mendelian inheritance (Tsuang et al., 1991, 

Owen et al., 2005). Genetic association and linkage studies have identified a number of 

chromosomal loci that increase risk to schizophrenia. These studies provide new evidence 

on the association of variations in several genes e.g. dysbindin-1, Neuregulin-1, DISC-1, 

COMT and GAD-1 with schizophrenia (Blackwood et al., 2001, Shifman et al., 2002, 

Straub et al., 2002, Fallin et al., 2003, Stefansson et al., 2003, Maziade et al., 2005, 

Suarez et al., 2006, Escamilla et al., 2007, Allen et al., 2008) . The function of these 

genes has individually been studied through genetic animal models (Chen et al., 2006, 

Arguello et al., 2010).  Interestingly, these schizophrenia susceptibility genes are 
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involved in different stages of the neurodevelopmental processes and functions (i.e. cell 

proliferation, migration, axonal outgrowth, synaptogenesis, synaptic neurotransmitter 

levels) and further support the neurodevelopmental hypothesis of schizophrenia (Chen et 

al., 2006).  

Disrupted-in-schizophrenia-1 (DISC-1) was identified in a Scottish family with multiple 

cases of schizophrenia, bipolar disorder and major depression clustered in the pedigree 

(Millar et al., 2001). DISC-1 is highly expressed during the development of the neural 

system and neural trajectories and it plays an important role in neurogenesis, neural 

migration, neuronal outgrowth and synaptogenesis (Hattori et al., 2007, Niwa et al., 

2010). 

Cathechol-O-Methyl transferase (COMT) catalyzes degradation of catecholamines and 

has been linked to cognitive deficits in schizophrenia (Egan et al., 2001, Eisenberg et al., 

2010) . Val containing allele of COMT has an accelerating role in catabolism of 

catecholamines (e.g. DA catabolism in PFC) and this has been associated with 

impairments of frontal lobe dependent cognitive functions (Tunbridge et al., 2006, 

Babovic et al., 2007). 

Neuregulin-1 is another schizophrenia candidate gene under the investigation (Williams 

et al., 2003). Basically, neuregulins bind to Erb B receptor tyrosin kinase (Williams et al., 

2003, Tosato et al., 2005). This gene has a pivotal role in the regulation of glial cells, 

neural migration and expression of neurotransmitter receptors such as GABA-R and 

NMDA-R (Tosato et al., 2005, Sei et al., 2007, Pitcher et al., 2011). 
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It should be noted that the risk genes have small effect sizes themselves and do not 

explain all clinical phenotypes. This could partly be due to the possibility of gene-gene 

interaction, where each genetic mutation captures certain aspects of schizophrenia called 

‘endophenotype’ rather than the full spectrum of the disorder. 

 Furthermore, it is believed that genetic variations, by altering common aspects of 

neurodevelopment or plasticity, render the brain more susceptible to environmental risk 

factors leading to "full-blown" disorder and divergent clinical phenotypes (Lewis and 

Levitt, 2002).  

 

Dysbindin-1 

 Among the candidate genes associated with schizophrenia, DTNBP-1, located on the 

locus 6p22.3 is one of the most promising genes and studied in Dr. Srivastava’s lab for 

several years (Straub et al., 2002, McGuffin et al., 2003, Bhardwaj et al., 2009). Several 

studies show an association between a single nucleotide polymorphism (SNP) or a 

number of SNPs (haplotypes) in this gene with schizophrenia (Straub et al., 2002, 

Schwab et al., 2003, Bray et al., 2005). Post-mortem studies on schizophrenia individuals 

show dysbindin-1 reduction in the two main regions affected in schizophrenia, the 

prefrontal cortex (PFC) and hippocampus (Talbot et al., 2004, Tang et al., 2009). The 

reduction in the level of dysbindin-1 in schizophrenia brain makes an animal model with 

lack of function mutation in this gene, a worthy resource for studying the role of 

dysbindin-1(Talbot, 2009). Most of the understanding on this gene is from mice with a 

natural mutation in dysbindin-1 gene, named Sandy that demonstrate many behavioural 
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and pathophysiological deficits associated with schizophrenia (Talbot, 2009).  A 

spontaneous 38.129 Kb deletion in DTNBP-1 gene emerged in DBA/2J background that 

resulted in a 58 amino acid loss in coiled-coil domain of dysbindin-1 and a non-

functional protein (Talbot, 2009). The term sandy is used for the homozygote dysbindin-1 

muted mice and refers to the sandy coat color which is due to the lack of melanosome 

formation (Bhardwaj et al., 2009, Talbot, 2009). The name dysbindin or Dystrobrevin 

binding protein is due to its discovery as a binding partner to Dystrobrevin protein 

involved in muscular cell skeletal assemblies (Benson et al., 2001).  Further, dysbindin-1 

is a part of biogenesis of lysosome-related organelles complex (BLOC-1)(Iizuka et al., 

2007).This complex is involved in protein trafficking to lysosome-related organelles 

(LRO) (e.g. melanosomes, platelet  granules and synaptic vesicles) which is both crucial 

in LRO maturation and also function of the proteins delivered (e.g. D2 receptors and its 

lysosomal degradation ) (Iizuka et al., 2007, Talbot, 2009). Dysbindin-1 protein is 

expressed both pre- and postsynaptically throughout the brain and it’s isoforms A, B 

(does not exist in mice) and C are associated with post-synaptic density (PSD) and 

synaptic vesicles (Talbot et al., 2011). 

Shao et al. have studied the consequence of reduction in dysbindin-1 expression in 

drosophila. They found that reduced levels of presynaptic dysbindin-1 lead to a reduction 

in glutamate transmission. On the other hand, decreased expression of dysbindin-1 in 

glial cells causes hyperdopaminergic activities. (Shao et al., 2011).  

 As previously mentioned, sandy mice demonstrate several schizophrenia-related 

cognitive and pathophysiological deficits (Bhardwaj et al., 2009, Cox et al., 2009). These 

mutant mice demonstrate attenuated locomotor activity in response to DA agonists in 
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single amphetamine administration but increased locomotor activity in multiple injections 

(Bhardwaj et al., 2009). The data from this lab (unpublished) and other studies show that 

pre-pulse inhibition (PPI) of the acoustic startle is not different from the wild type. 

However, Papaleo at.al have reported that dysbindin-1 mutants on C57BL/6 background 

have increased acoustic startle and prepulse inhibition(Papaleo et al., 2012). Further, 

sandy mice have not shown anxiety-related behaviours (Cox et al., 2009). They have 

shown impairments in social behaviour and learning and memory as evidenced by object 

recognition test (on DBA/2J background), fear memory (on DBA/2J background) and 

spatial learning and memory (on C57BL/6 background) (Bhardwaj et al., 2009, Cox et 

al., 2009). Studies have demonstrated discrepant results on locomotion in open field but 

decreased locomotion is observed in one study in C57BL/6 background (Talbot, 2009). 

Further, sandy mice have shown increased dopamine release in the limbic system, cell 

surface D2 receptor over-expression in PFC, decreased Glu release in PFC and 

hippocampus, decreased mEPSC and eEPSC in PFC pyramidal neurons, decreased 

excitability of parvalbumin positive interneurons due to potential NMDA-receptor 

hypofunction (Talbot, 2009, Papaleo et al., 2010, Papaleo and Weinberger, 2011).  

In a study, Tognin et al. investigated the effects of high-risk allele (AA) of dysbindin-1 

gene compared with the low-risk allele (TT) on the white and gray matter thickness in 

regions of the brain implicate in schizophrenia. Their results demonstrated that 

individuals with the high risk allele had reduced gray matter volume in the left anterior 

cingulate gyrus and decreased white matter volume in the left medial frontal area. The 

study was performed on children between 10-12 years of age and the results  support a 
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role of dysbindin-1 neurodevelopmental processes implicated in schizophrenia (Tognin et 

al., 2011). 

 

1.5.2 Environmental Risk factors 

The estimated 60-80% heritability of the disorder clearly points out that although the 

etiology of schizophrenia is strongly determined by genetic factors, it also points out the 

non-genetic component of its pathogenesis (McGuffin et al., 1984, Onstad et al., 1991, 

Brown, 2011). This is further supported by the retrospective epidemiologic studies that 

have shown the association of environmental factors and increased schizophrenia risk 

(Bayer et al., 1999, Howes et al., 2004). These factors may both predispose the 

susceptible patients and also later play a role as the triggering factor (e.g. stress) just 

before the full-blown onset of the disorder. Notable environmental risk factors for 

schizophrenia include maternal/postnatal infections, obstetric complications, maternal 

stress, neonatal seizure, paternal age, urbanicity, migration and adolescence drug abuse 

(McDonald and Murray, 2000, Bresnahan et al., 2005, Opler and Susser, 2005, Brown, 

2011).   

Multiple population-based studies have demonstrated that people who reside in urban 

areas are at greater risk of schizophrenia (Marcelis et al., 1999, Mortensen et al., 1999, 

March et al., 2008). This increase might be due to specific environmental factors and 

characteristics of urban regions such as microbial pathogens, toxins, diets and 

sociocultural factors (Brown, 2011). 
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A quite replicated finding is the association of schizophrenia occurrence with births in 

late winter and early spring. The estimated increase in risk is 5-15% (Bradbury and 

Miller, 1985, Torrey et al., 1997, Davies et al., 2003) and  it is possible that  this is due to 

higher incidence of infections during these seasons (Brown, 2011). 

A number of epidemiological studies show that early immune-activation by bacterial and 

viral agents are a risk factor for the occurrence of schizophrenia. The first study of its 

kind was the study of Mednick et al. on the Finish population who were foetuses during 

the 1957 influenza epidemic. The study showed higher risk of admission to hospital with 

diagnosis of schizophrenia in these individuals (Mednick et al., 1988). Studies on the role 

of early infection were replicated many times e.g. in Japan (Kunugi et al., 1995) and 

Britain (Kendell and Kemp, 1989, O'Callaghan et al., 1991). Brown et al. (Brown et al., 

2004) studied a cohort of individuals born during 8 years from 1959 to 1967 in 

California. The individuals were under a health plan that required mother’s sera to be 

drawn during pregnancy and stored. In the study, they assessed the sera for influenza 

antibody and they also did a follow up of the individuals born to these mothers for later 

diagnosis of schizophrenia spectrum disorders (SSD). The results indicate a 7-fold higher 

rate of SSD occurrence in individuals whose mothers were affected by influenza during 

their pregnancy. These results and similar studies indicate a role of early (perinatal and 

even adolescence) exposure to environmental factors in schizophrenia occurrence 

(Degenhardt and Hall, 2006, Brown, 2011). 

In a study by Koponen et al., the association between history of childhood CNS infection 

and schizophrenia and other psychosis was assessed. This study on a birth cohort in 

northern Finland found a positive association between postnatal viral CNS infections and 
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schizophrenia. The estimated odds ratio for schizophrenia after a viral CNS infection was 

4.8 (Koponen et al., 2004). 

A number of animal models have been used to test the maternal infection and immune 

activation hypothesis (Boksa, 2010, Meyer and Feldon, 2010).Studies have used immune-

activators such as the influenza virus, Lipopolysaccharide (LPS) or 

Polyinosinic:polycytidylic acid (Poly I:C) to model early infections (Meyer et al., 2005, 

Boksa, 2010, Meyer and Feldon, 2010).  

These studies, administering the above-mentioned immune activators to pregnant rodents, 

demonstrate cognitive and behavioral changes in the adult offsprings, e.g., decreased 

prepulse inhibition (PPI) of acoustic startle, increased sensitivity to DA agonists,  

impaired spatial and object recognition memory and social interaction deficits (Boksa, 

2010).  

LPS is a bacterial mimic and an endotoxin obtained from the cell wall of gram negative 

bacteria (Miller et al., 2005a). LPS binds to Toll-like receptors 2 and 4 (TLR-2 and TLR-

4) and triggers the downstream signaling cascade that leads to the production of 

proinflamatory cytokines such as tumor necrosis factor-α (TNF- α) and interleukin-6(IL-

6)(Miller et al., 2005b). Prenatal and early postnatal (Walker et al., 2004, Boksa, 2010, 

Walker et al., 2012) administration(subcutaneously or intraperitoneally) of LPS to 

rodents has led to abnormal behaviors in adult animals (Fortier et al., 2004, Meyer et al., 

2005, Romero et al., 2007, Boksa, 2010). In close relation to the time and dosage of LPS 

administration, rodents have demonstrated changes such as increased locomotor activity, 

deficits in pre-pulse inhibition (PPI) of acoustic startle and impaired novel object 
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recognition memory (Boksa, 2004, 2010). Walker et al. have shown that neonatal 

administration of LPS results in anxiety-like behaviours in adult rats (Walker et al., 

2004). 

Inducing influenza infection in pregnant rodents has been shown to result in  behavioral 

and neuropathological abnormalities associated with schizophrenia and autism in adult 

offspring (Fatemi et al., 1998, Fatemi et al., 2002, Shi et al., 2003, Fatemi, 2009).                                

Furthermore, based on the notion that cytokines mediate the adverse effects of bacterial 

and viral infections, rodent models of proinflamatory cytokines have been studied (Meyer 

et al., 2005). In this regard, prenatal administration of IL-6 has been investigated and has 

shown behavioral, structural and pathophysiological changes relevant to schizophrenia 

(Samuelsson et al., 2006, Smith et al., 2007).   

 

Models for testing Infection hypothesis: Poly I:C  

Poly I:C (Polyinosinic:polycytidylic acid) is a synthetic double-stranded RNA and a viral 

mimic. It stimulates the release of  pro- and anti- inflammatory cytokine ( TNF-α, IL-1β 

and IL-10) through binding to Toll-like receptor3 (TLR-3) present on the endosomal 

surface (Gilmore et al., 2005, Meyer et al., 2006, Matsumoto and Seya, 2008). Poly I:C 

administered gestationally, induces behavioural and pathophysiological alterations 

associated with schizophrenia, namely deficits in prepulse inhibition (PPI) of the acoustic 

startle, decreased exploration in open field, deficits in social interaction, deficits in 

working memory and alterations in spatial learning and memory in Morris water maze 

(MWM)(Meyer et al., 2005, Boksa, 2010).  Apart from maternal immune-activation 
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models, Ibi et al. have shown that neonatal injection of Poly I:C results in impaired novel 

object memory, PPI deficits, impairment in social interaction and increased anxiety-like 

behaviours in open field (Ibi et al., 2009).  

It is shown that glutamatergic and dopaminergic systems are affected in offspring of 

mothers injected with Poly I:C. This is demonstrated in the study showing decrease in 

NMDA receptors in the hippocampus of offspring of gestationally challenged rodents 

(Meyer et al., 2008). Also, administration of MK-801, an NMDA receptor antagonist has 

shown to have an enhanced effect on locomotion (Zuckerman et al., 2003, Zuckerman 

and Weiner, 2005).  Among the evidence supporting the dopaminergic involvement in 

maternal Poly I:C models are amphetamine-induced locomotion, impairment in latent 

inhibition and deficits in working memory (Ozawa et al., 2006). Following amphetamine 

administration, an increase in the dopamine release in striatum was observed in the 

offspring (Zuckerman and Weiner, 2005). Further, an increase in tyrosine hydroxylase in 

striatum and a decrease in D1 and D2 receptor in the prefrontal cortex is reported in 

prenatal Poly I:C model (Meyer et al., 2008, Meyer and Feldon, 2009). Moreover, a 

decrease in reelin and parvalbumin positive cells in the prefrontal cortex is observed in 

the same model (Meyer et al., 2008).  

 Miranda et al. have reported that gestational administration of Poly I:C prevents the 

replication of embryonic neuronal stem cell and inhibits formation of superficial layers of 

the neocortex (De Miranda et al., 2010). Another group has also investigated the effects 

of maternal challenge with Poly I:C on cortical development. They have too reported  

disruption in the superficial layers of the neocortex and alterations in synaptogenesis 

(Soumiya et al., 2011).  



29 
 

 

1.5.3 Gene-environment interaction 

Taking into account the evidence supporting the role of genes and  environmental insults 

in occurrence of schizophrenia-related abnormalities, a hypothesis is built around an 

interplay of both as the key feature in the etiology of  schizophrenia(Oliver, 2011) . 

The importance of gene-environment interaction in schizophrenia is underscored by the 

fact that although monozygotic twins share 100% of the genes, the concordance for 

schizophrenia is only 50% (Chen et al., 2009, Li et al., 2009).  Indeed, many genetic 

epidemiological studies now support the role of an interaction between genetic 

susceptibility and pre- and perinatal environmental insults in occurrence of schizophrenia. 

Human epidemiologic studies using positive family history as a proxy for genetic 

susceptibility and different environmental factors such as early infection have studied this 

interplay (Oliver, 2011). 

Among the studies of gene-environment interaction in schizophrenia is the Dunedin study 

that looked at the interactive effect of catechol-O-methyltransferase (COMT) val/val 

genotype and early high dose cannabis abuse in increasing the risk of schizophrenia 

(Caspi et al., 2005). COMT val/val genotype is associated with impairments in the 

prefrontal cortical functions (Henquet et al., 2005). Individuals with this polymorphism 

have shown higher sensitivity to effects of the active component of cannabis in producing 

psychosis and cognitive impairments (Henquet et al., 2006). 



30 
 

A study by Nicodemus et al. looked at the effects of serious obstetric complications in 

individuals carrying single nucleotide polymorphisms (SNPs) in genes regulated by 

hypoxia/ischemia or those involved in vascular function such as AKT-1, BDNF and 

DTNBP-1. This investigation showed higher risk of schizophrenia as a result of the 

interaction (Nicodemus et al., 2008). 

Clarke et al. (Clarke et al., 2009) studied around 9000 individuals born in Finland from 

1947 to 1990 whose mothers had been hospitalised for pyelonephritis (upper urinary tract 

infection). The control group in this study were their siblings who were not exposed to 

the infection as foetuses. The results showed the risk percentage in no infection/no family 

history group to be 0.23%, infection only group 0.32%, family history positive only 

group 0.58% and family history positive/infection group 1.09%. The analysis also 

showed that 38-46% of individuals with schizophrenia developed the disorder as a result 

of gene-environment synergism. 

Accordingly, schizophrenia is viewed as a polygenic/multifactorial disease with multiple 

genetic polymorphisms interacting with multiple environmental factors throughout 

development (Lewis and Levitt, 2002, Oliver, 2011). Bearing in mind the limitations in 

interpretation of results from animal studies, certain behavioural correlates of 

schizophrenia are used in animal studies (Wilson and Terry, 2010). Among them are 

histopathological (e.g. decrease in neurogenesis processes, neuropils, neuronal density), 

neuroanatomical (e.g. ventricular enlargement, decreased frontal and temporal grey 

matter volume) and behavioural (e.g. deficits in attention, learning and memory and 

sensorimotor gating) characteristics of schizophrenia (Wilson and Terry, 2010).  
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An animal study on the influence of environmental risk factors in the context of genetic 

susceptibility to schizophrenia is conducted by Oliver et al..This group looked at the 

effects of prenatal stress in mice carrying mutations in synaptosomal-associated protein 

of 25 kDa (SNAP-25) and observed impairments in social interaction and an 

enhancement in sensorimotor gating deficits as a result of the interaction; furthermore, 

the latter was reversed with antipsychotics (Oliver and Davies, 2009).  

Abazyan and colleagues have looked at the interaction between mutant human disrupted-

in-schizophrenia 1 (mhDISC1) and maternal immune challenge with Poly I:C in mice. 

They showed that the interaction results in increased anxiety and decrease in density of 

spines on dendrites of granule cells of the hippocampus (Abazyan et al., 2010).  

The interaction between DISC-1 and neonatal Poly I:C administration was also assessed. 

It was reported that the interaction results in deficits in object recognition memory and 

fear memory, while PolyI:C treatment by itself had lesser effect on wild-type mice. 

Furthermore, PolyI:C-treated DISC1 mutant mice demonstrated alterations in social 

interaction. Interestingly, additive effects of PolyI:C and DISC1 mutants lead to a 

reduction in the number of parvalbumin-positive interneurons in the medial prefrontal 

cortex(Ibi et al., 2010). 

A more recent study looked at the interaction between prenatal immune activation by 

Poly I:C and mutation in Nurr-1, a transcriptional factor essential for development of the 

dopaminergic system.  They demonstrated that the interactive effect between the named 

gene and environmental factor results both in additive and de novo phenotypes. The 

additive effects were observed in hyperlocomotion and sensorimotor gating deficit and 
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the de novo phenotype was alterations attentional shifting and sustained attention. 

Furthermore, they showed that this interaction produces developmental abnormalities in 

the ventral striatal and prefrontal cortical dopaminergic system (Vuillermot et al., 2012). 

 

 

2. HYPOTHESIS AND RESEARCH PLAN 

The epidemiological studies deduce interaction using imprecise measures of environment 

and genetic variables on broad clinical phenotype (Oliver, 2011). Considering the 

limitations in human studies, animal models are a great mean for more precise study and 

featuring of schizophrenia related abnormalities(van Os et al., 2008, Oliver, 2011).  Thus, 

we need hypothesis-driven animal studies where genetic and environmental variations are 

controlled to better identify the nature of interaction as well as plausible biological 

pathways through which synergism between gene and environment is realized.   

The working hypothesis, I developed for my thesis project is that a negative 

environmental event, viz. neonatal immune activation and a schizophrenia risk gene, viz., 

dysbindin-1 will interact to result in altered neurodevelopment and schizophrenia-related 

behaviour in mice.A pivotal study relevant to our hypothesis is a genetic investigation in 

human subjects indicating that dysbindin-1 gene interacts with IL3 gene to increase the 

risk of schizophrenia (Edwards et al., 2008).  IL3 is a cytokine secreted by the immune 

cells. Furthermore, schizophrenia patients have shown imbalance in the immune system 
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(Avgustin et al., 2005). Therefore, assessment of the interactive effect of dysbindin-1 and 

immune challenge would be plausible. 

Strong yet partial capturing of schizophrenia-related phenotypes by dysbindin-1 mutant 

and Poly I:C immune activation models leads to the specific hypothesis that:  

1) Early neonatal immune activation with Poly I:C in dysbindin-1 mutant mice will 

synergistically enhance behavioural deficits  or result in emergence of schizophrenia 

relevant behavioural phenotype not seen in dysbindin-1 mutation or immune-activation 

alone .  

2) As a direct result of the interaction, early postnatal neurogenesis will be reduced in the 

hippocampus and olfactory bulb of dysbindin-1 mutant mice brain. In this study, we have 

exposed mice to neonatal immune-activation. It must be noted, the basis for choosing 

neonatal period for injection of Poly I:C in this study is the notion that this period in 

rodents corresponds to the second trimester of human gestation, based on statistical 

comparison between species such as mice with humans in terms of neurodevelopmental 

events (http://translatingtime.net/). In addition, the process of neurodevelopment 

continues after birth and is a period where the neural system is still very susceptible to 

environmental insults. Also, studies of neonatal exposure to environmental insults have 

shown abnormalities associated with schizophrenia in adulthood (Rothschild et al., 1999, 

Koponen et al., 2004, Jenkins et al., 2009). Further, in maternal infection the effect of the 

infective agent on neurodevelopment is only indirect and through cytokines whereas in 

neonatal injection the direct effects could also be studied.  
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3. MATERIALS AND METHODS 

3.1 Animals 

The mice on C57BL/6 background, all from heterozygote-heterozygote mating were 

housed and bred in our animal facility. The temperature was maintained at 21±1 ºC on a 

12/12 h light/day schedule (lights on 08:00–20:00). All animals had free access to 

standard mouse chow and tap water. Due to limited number of animals, we did not assess 

maternal behaviours toward the pups; thus, we cannot rule out the possibility that 

maternal care differences exist with respect to genotype and treatment.  

Age-matched mice from the three genotypes were group housed. Maximum 5 mouse per 

cage. All animals used in the experiments were healthy and active, and all experiments 

were conducted in accordance with the guidelines of the Canadian Council for Animal 

Care, and approved by the McGill University Animal Care Committee. 

 

3.2 Genotyping  

All mice were genotyped using a duplex polymerase chain reaction (PCR). The primers 

for the wild-type gene, producing a PCR product of 472 base pairs, were SE3R (5’-

AGCTCCACCTGCTGAACATT-3’) and SE3F (5’-

TGAGCCATTAGGAGATAAGAGCA-3’). The primers for the dysbindin-1 mutant 

gene, producing a product of 274 base pairs, were sandy forward (SF) (5’-

TCCTTGCTTCGTTCTCTGCT-3’) and sandy reverse (SR) (5’-

CTTGCCAGCCTTCGTATTGT-3’). The 472-base-pair product is detected only in wild 

type and Sdy/+ mice, while the 274-base-pair product is detected only in the Sdy/+ and 

Sdy/Sdy mice. 
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For a master mix of 25 µL, 2.5 µL of Buffer 10X (200 mM Tris-HCl (pH 8.4), 500 mM 

KCl) (provided with the Taq DNA polymerase enzyme; Invitrogen) was used. The 

volume and concentration of primers (custom made, Invitrogen) was 0.25 µL and 100 

µM, respectively. The volume and concentration for DNTP stock (Invitrogen) was 10 µ 

M and 0.5 µL and for  MgCl2 (provided with the Taq DNA polymerase; Invitrogen) 50 

mM and 1 µL. The concentration of Taq DNA polymerase (Invitrogen) was 5 U/μL and 

the volume used was 0.2 µL. 

The setting of the thermocycler (Veriti™ Dx; Applied biosystem), for 35 cycles of PCR 

amplification were as follows: 

Denature 95°C for 20 seconds 

Anneal 55°C for 20 seconds 

Extend 72°C for 30 seconds 

The reaction was maintained at 4°C after cycling. The samples were loaded on 2% 

agarose gel prepared in TBE. 2 µL of ethidium bromide was added to the agarose 

solution during preparation. The 274 and 472 base pair sequences were separated after 20 

minutes at the voltage of 140 mV. 

 

DNA extraction: DNA was extracted from 1-2 mm of tail snips using Hot Shot genomic 

DNA preparation. The Alkaline lysis reagent used consisted of sodium hydroxide, 25mM 

and EDTA, 0.2 mM. 75 µL of this reagent was added to the tails in 0.2 ml tubes and 

heated at 95 °C for 30 minutes, cooled to 4°C and mixed with 75 µL of Tris-HCL, 40 

mM as the neutralization buffer. 
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3.3 Animals and Treatment   

Two cohorts of animals, one for the behavioural tests (n=7-10/group) and the other for 

the neurogenesis (n=3-4/group) were used in this study. 

Sandy homozygote(Sdy/Sdy), heterozygote (Sdy/+) and wild-type (WT) mice, bred on 

C57BL/6 background, all from heterozygote-heterozygote breeding were marked and 

taken sample of for genotyping by cutting the paw fingers at P4. Neonates of each 

genotype (Sdy/Sdy, Sdy/+, and WT) in each litter were divided into two groups with one 

receiving Poly I:C and the other saline.  The neonates were injected with either Poly I:C 

(4 mg/kg ,1mg/ml, high molecular weight Poly I:C reconstituted in sterile normal saline 

based on manufacturer’s instructions; Invivogen) or an equal volume of normal saline at 

postnatal day (PD) 5,6 and 7. The injections were done intraperitoneally using 10 µL 

Hamilton syringes (26” gauge needle), between 11 am to 1 pm.  Using this paradigm, we 

generated six groups of animals: WT saline, WT Poly IC, (Sdy/+)- saline, (Sdy/+)-Poly 

I:C, (Sdy/Sdy) -saline and (Sdy/Sdy)- Poly I:C. 

 

3.4 Behavioural Assessments  

Behavioural tests started when mice reached the age of 2 months. The sequence of tests 

conducted starting from the least to the most stressful as follows: Spontaneous 

locomotion test followed next day by the assessment of novel object recognition memory. 

After a 4-day interval, Pre-pulse inhibition of the acoustic startle was conducted. Two 
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weeks later, the anxiety was tested using elevated plus maze. Three weeks after elevated 

plus maze, fear memory was tested. 

 

 3.4.1 Spontaneous Locomotor activity and stereotypy 

Locomotor activity is a component of exploration in rodents and the mesolimbic 

dopamine level effects locomotion. Many pharmacological and genetic factors in rodents 

effect locomotion. At the same time, behaviours are affected by locomotor activity 

including learning and memory and anxiety state. In schizophrenia, sensitivity exists 

towards dopamine agonists, inducing hyper-locomotion (Bhardwaj et al., 2009). In this 

project, although the animals are not pharmacologically challenged with a dopamine 

agonist, the baseline spontaneous locomotion would be an essential indicative of the 

dopamine level. 

Method: Locomotor activity measurements were conducted in 12 activity chambers 

(L×W×H=17.5 cm ×10 cm ×26cm) housed in a dimly lit room between 9:00 am to 4:00 

pm. Each chamber was equipped with two photoelectric switches; light beam 

interruptions from each chamber were monitored and analyzed by software (ACTANAL, 

Concordia University, Montreal, QC). The animals were placed in individual testing 

chambers and their spontaneous locomotor activity was recorded. Measurement of 

locomotion (horizontal movement), exploration (sniffing and rearing) and stereotypy 

(movements without displacement) was done while mice were located in the activity box 

for 90 minutes. Total distance traveled was measured for each animal and analysed using 

two-way ANOVA.  
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3.4.2 Novel object recognition memory 

Novel object recognition memory test is based on the premise that rodents explore novel 

objects more than familiar objects if they remember the familiar one (Papaleo et al., 

2011). This test uses the natural tendency of animals to explore the environment  without 

being reinforced by positive rewards (Chen et al., 2006). Novel object recognition is 

linked to the functions of hippocampus and parahippocampal area such as the perirhinal 

cortex; areas that are implicated in schizophrenia pathology (Chen et al., 2006). Among 

the cognitive domains impaired in schizophrenia are working, declarative and visual 

learning and memory (Redrobe et al., 2010). Novel object recognition test is 

recommended by the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia (MATRICS) to test visual learning and declarative memory (Redrobe et 

al., 2010). 

Method: A chamber (L×W×H: 45×45×45 cm) made of dark Plexiglas was placed in a 

quiet room. Mice acclimation to environment (testing bin) for 3 days and duration of 20 

minutes, was followed by 5 minutes exploration of two identical new objects (toys with 

various shapes, Dollar Store) at day 4 (familiarization). After 5 minutes of delay 

(retention) animals were exposed to one identical and one novel object for 3 minutes. The 

activity was monitored by videotape and analysed by observers blind to the experimental 

condition. Exploratory activity was measured when the head of the animal was oriented 

2-3 cm from the object and towards it or at least one forepaw was on the object or the 

mouse was sniffing or licking the object. The ratio of novel object exploration time over 

total exploration time for both objects was assessed at 0.5 chance level using one-sample 
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t-test. The ratio for each group were also compared using two-way ANOVA (P<0.05 

considered significant). 

 

3.4.3 Pre-pulse inhibition of acoustic startle (PPI)  

A test for sensorimotor gating in rodents as well as humans is based on the decrease in 

startle response to a loud acoustic stimulus when it is preceded by a weaker acoustic 

stimulus. PPI is observed among many species including humans and rodents and studies 

show that dopamine which has an important role in schizophrenia, regulates sensorimotor 

gating  Alteration in PPI is a consistent finding in schizophrenia patients and their 

unaffected relatives (Swerdlow et al., 1994, Kumari et al., 2005a, Kumari et al., 2005b). 

In line with the dopamine hypothesis of schizophrenia and presence of PPI deficits in 

schizophrenia patients, we chose to assess sensorimotor gating deficits in our study. 

PPI-response to psychostimulants and amelioration with antipsychotics would have been 

interesting to assess; however, we aimed to primarily look at different behaviours on the 

animals and any treatment in the course of the experiments would have unabled us to 

further assess other behaviours. Therefore, this remains an important aspect to assess in 

our future plan.  

Method: SR-LAB system (San Diego Instruments, San Diego, CA, USA) comprising two 

sound-attenuating chambers, each equipped with a cylindrical Plexiglas animal enclosure 

(length 16 cm, inner diameter 8.2 cm) were used. A speaker was positioned 24 cm 

directly above the enclosure provided the broadband tone pulses. A piezoelectric 

accelerometer affixed to the animal enclosure frame was used to detect and transduce 
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motion resulting from the animals’ startle response. Tone pulse parameters were 

controlled by a microcomputer using the software package (SR-LAB) and interface 

assembly that also digitized, rectified, and recorded stabilimeter readings. 

In this experiment, a background noise of 70 dB, prepulse intensities of 76 dB, 79 dB, 82 

dB, 85 dB for 30 ms and a burst stimulus of 120 dB were used. The startle response is 

measured in 32 trials. Mean of acoustic startle response amplitude was measured. The 

mean startle response was analysed using two-way ANOVA, and if indicated, by post-

hoc test considering P<0.05 as significant. 

 

3.4.4 Elevated plus maze 

Elevated plus maze is a widely used test for assessment of anxiety. This rather simple 

task consists of an elevated maze with four arms (two open and two enclosed) that form a 

plus. The elevated plus maze is based on the notion that rodents’ have tendency toward 

dark, enclosed spaces (approach) and have an unconditioned fear of heights/open spaces 

(avoidance) (Rodgers and Dalvi, 1997, Walf and Frye, 2007). The assessment of anxiety 

behaviour of rodents is calculated by using the ratio of time spent on the open arms to the 

time spent on the closed arms. 

Method: Behaviour was recorded over 5 min in an elevated plus maze 70 cm above the 

ground, consisting of two closed and two open arms, each 50 cm×5 cm in size. The test 

instrument was built from grey wood, the height of the closed arm walls was 15 cm. 

Animals were placed in the centre, facing an open arm. The test was recorded with a 

video camera positioned on a stand at distance of 1 m to the apparatus. Analysis of time 
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spent on the open arm and closed arm was conducted manually with a timer. Entry into 

the open arm was recorded only when all four legs of the mouse left the neutral central 

area. Percentage (%) of the time in the open arm was analysed using two-way ANOVA 

considering P<0.05 as significant. 

 

3.4.5 Fear Memory 

Fear memory test is based on the Pavlovian classical conditioning and is a test of learning 

and memory of emotionally aversive events. In this test, an unconditioned stimulus 

(usually a foot shock) is accompanied by a conditioned stimulus (usually a tone). The 

animal learns to associate the aversive memory of US when exposed to the CS alone and 

thereby, predicts the aversive event responding with fear (resulting in freezing response).  

A neural circuit comprising, amygdala, hippocampus and PFC regions that are all 

implicated in schizophrenia are involved in different aspects of this behaviour (Ledoux 

and Muller, 1997, LeDoux, 2000, Phelps and LeDoux, 2005).  Schizophrenia patients 

have impaired emotional memory, preventing them from decision making and executive 

functioning and also leading to negative symptoms such as anhedonia(Gard et al., 2007, 

D'Argembeau et al., 2008, Morris et al., 2009). 

Method: Two operant chambers (Kinder Scientific Instruments, Poway, CA) were 

equipped with a metal grid floor through which a shock of 0.5mA (unconditioned 

stimulus; US) was delivered and a son-alert to deliver an 85 dB tone (conditioned 

stimulus; CS). An aversive stimulus (shock of 0.5 mA) as unconditioned stimulus (US) is 

paired with a conditioned stimulus (CS) (85dB tone) and was given 4 minutes after the 
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start of the test for two times. CS was given for the duration of 30 seconds and US was 

given in the last 2 seconds. The conditioning takes a total of 9 minutes. The freezing time 

for each 30 second bin was calculated based on the automatic rest-time recording using 

“Motor Monitor” version 5.04 software supplied by the manufacturer. 

For assessment of auditory (cued) fear conditioning, mice were tested in a novel chamber 

of similar size without the shock grid exposed to CS for 3 minutes and freezing was 

calculated by the same software.  The percentage of time freezing was analysed by two-

way ANOVA and P<0.05 considered significant. 

 

3.5 Neurogenesis 

It is now well established that neurogenesis occurs postnatally in certain brain regions, 

namely the sub- ventricular zone (SVZ) of lateral ventricles and the subgranular zone 

(SGZ) of the hippocampus (Ming and Song, 2011). Postnatal neurogenesis in 

hippocampus is involved in cognitive processes such as the learning and memory (Eisch 

et al., 2008). Further, cytoarchitectural and neurogenesis impairments have been 

associated with schizophrenia as evidenced by post-mortem studies (Arnold et al., 1991, 

Akbarian et al., 1993b, Reif et al., 2006). Moreover, studies have shown that genes 

associated with schizophrenia e.g. DISC-1, neurreguilin-1 and dysbindin-1 are involved 

in neurogenesis (Le Strat et al., 2009, Mao et al., 2009, Inta et al., 2010, Lee et al., 2011, 

Nihonmatsu-Kikuchi et al., 2011). On the other hand, postnatal neurogenesis is affected 

by environmental factors such as infections, cognitive activities, physical activities and 

stress (van Praag et al., 1999, Eisch et al., 2008, Okun et al., 2010). Specifically, Poly I:C 
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injected at gestational period has shown impairments in neurogenesis and it has been 

suggested that TLR-3 stimulation  is associated with deficits in neurogenesis (De 

Miranda et al., 2010). 

A new cohort of neonate mice (sandy and C57BL/6 controls (n=4)), were injected with 

either Poly I:C or saline at PD5,6 and 7. At P7, 2 and 4 hours after the third injection of 

Poly I:C, all mice were injected with an analogue of thymidine, Bromodeoxyuridine 

(BrdU; Sigma; 50 mg/kg, i.p.) dissolved in sterile 0.9% saline with 0.7 M NaOH). The 

solution was vortexed until dissolved. To evaluate fate of the new born cells, four weeks 

later (considering the time required for maturation of newly born neurons and NeuN 

expression) mice were assessed. 

 

3.5.1 Tissue processing 

Animals were deeply anesthetized with a cocktail of ketamine, xylazine and 

acepromazine (0.1 ml/100 g), and perfused through the heart with ice-cold phosphate-

buffered saline (PBS) followed by 4% formaldehyde in 0.1 M phosphate buffer. Brains 

were then rapidly removed. Brains were cut using a vibratom(Leica VT1200) into serial 

40 µm-thick coronal sections, which were placed in a cryoprotectant solution 

(glycerol:ethylene glycol:PBS, 3:3:4) and stored at −20°C. 
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3.5.2 Immunohistochemistry (IHC) 

Unless otherwise specified, all IHC incubations were at room temperature. The section-

sampling fraction was 1/7.3 sections per brain region per mouse were chosen for 

assessment. Omitting primary antibodies resulted in an absence of specific staining for 

the IHC protocol. Rinses with PBS preceded all steps except the addition of primary 

antibodies. Slices were assessed for immunofluorescent labelling of BrdU and assessment 

of co-labelling with NeuN in the granular cell layer of the dentate gyrus (dorsal 

hippocampus) and the granular layer and glomerular layer of the olfactory bulb. IHC 

were performed using Rat anti-BrdU Ab (Ab Serotec, diluted 1:1000 in 2% NGS in 

PBS+0.2 % Triton X-100) and affinity purified mouse anti-NeuN Ab (Chemicon, diluted 

1:200 in 2% NGS in PBS+0.2 % Triton X-100) and incubated overnight at 4ᵒC. The 

sections were incubated in the secondary antibodies, goat anti-rat secondary 594(BrdU; 

red) (Jackson, diluted 1:1500 in 2% NGS in PBS+0.2 % Triton X-100) and goat anti-

mouse secondary anti-body 488 (NeuN; green) (Jackson, diluted 1:500 in 2% NGS in 

PBS+0.2 % Triton X-100) for 90 minutes at room temperature. Sections were mounted 

on glass slides and cover slipped with Vectashield (Invitrogen). 

The immunofluorescent-labellings were assessed using confocal microscopy (Zeiss LSM 

510 META). Images were quantified manually using Zeiss LSM image browser software. 

For the granular cell layer of the dentate gyrus, a grid of 10.5cmx10.5cm was positioned 

at the most lateral region of the dorsal dentate gyrus. Consistancy in the region evaluated 

was taken into account throughout the experiment.  All the BrdU-labelled and BrdU-

NeuN-colabelled cells in the upper crest of the dentate gyrus and the upper half of the 
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hilus that were placed within that grid were quantified. For the glomerular cell layer of 

the olfactory bulb, a glomerulus at the position of 5 o’clock was chosen and a grid was 

positioned around it. The entire immune-labelled cells within that grid were counted. For 

the granule cell layer of the hippocampus, a 10.5cmx10.5cm grid was positioned in the 

granule cell region immediately beneath the chosen glomerulus and all of the immune-

labelled cells within that grid were quantified.  

The mouse behaviours and IHC data were analyzed and treatment and genetic variation 

were considered as independent variables to study the significance of gene-environment 

interplay.  

 

3.5.3 Confocal microscopy 

Multiple-labeling analyses were conducted at 60X ( 60x Oil DIC objective) on a Zeiss 

LSM510 Meta confocal microscope equipped with an Axiovert 200 M stand and 

motorized stage (Carl Zeiss Canada), using 543 nm, and 633 nm wavelength lasers. 

Images were obtained using the Zeiss Aim software package (Carl Zeiss Canada), at a 

pixel size of 0.11 µm for x and y, a scan average of ≥4 frames, a pixel dwell time of 

≥3.20 µs, and  sampled at an interval of 2 µm. Images were not modified with exception 

of overall brightness and contrast. For quantitative analyses, images were manually 

counted using Zeiss LSM image browser software as described above.  
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4. RESULTS 

4.1 Behaviour 

4.1.1 Spontaneous locomotion and stereotypy 

The results from spontaneous locomotor activity (Fig. 1a and 1b) has demonstrated a 

significant main effect of Sdy (-/-) genotype on locomotion (F (2,4 7)= 4.115, p < 0.05*). 

Sdy (-/-) mice showed higher locomotor activity in comparison to Sdy(+/-) and the WT 

animals. However, no interaction effect was observed between genotype and neonatal 

Poly IC treatment (F(2,47)= 0.02001, p > 0.05). Further, separating the male and females, 

the main effect of the Sdy (-/-) was observed only in the male group (F (1, 21)= 14.19, p 

< 0.05) and not in the female group of mice (F (1,12)= 0.009, p > 0.05) (Fig. 1c and 1d). 

In terms of stereotypy, no significant main effect of genotype (F (2,53)=0.2711, p > 0.05 

), treatment (F (1,53)= 1.328, p > 0.05 )or interaction(F (2,53)= 0.575, p > 0.05 ) was 

observed(Fig.1e).  

 

4.1.2 Novel object recognition memory 

 ANOVA of the results demonstrate that no significant main effect of genotype(F 

(2,44)=1.095, p > 0.05 ), treatment (F (1,44)=0.219, p > 0.05 ), or their interaction (F 

(2,44)=0.694, p > 0.05 ), exists on percentage of time spent on exploring the novel object. 

This suggests that neither Sdy (-/-) mutation nor neonatal Poly I:C treatment significantly 

affected adult memory(Fig. 2a). Analysing male and female mice separately, no 

significant main effect of genotype (male: F (1,14)=0.436, p > 0.05 ) (female: F (1,14)= 
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0.046, p > 0.05 ), treatment (male: F (1,14)=0.138, p > 0.05 ) (female: F (1,14)= 0.250, p 

> 0.05 ) or their interaction (male: F (1,14)=0.005, p > 0.05 ) (female: F (1,14)= 2.243, p 

> 0.05 ) was observed in terms of novel object exploration. (Fig. 2b and 2c) 

 

4.1.3 Prepulse inhibition of acoustic startle (PPI) 

There was no overall significant difference in prepulse inhibition or the startle response 

between the groups. The results demonstrate that no significant main effect of genotype(F 

(1,14)=0.753, p > 0.05 ), treatment (male: F (1,14)=1.000, p > 0.05 ) or their 

interaction(F(2,53)= 1.770, p > 0.05), exists on % PPI (Fig. 3a and 3b). Analysing male 

and female mice separately, no significant main effect of genotype(male: F (1,13)=0.005, 

p > 0.05 ) (female: F (1,13)= 0.208, p > 0.05 ), treatment(male: F (1,13)=1.388, p > 0.05 

) (female: F (1,13)= 2.012, p > 0.05 )  or their interaction(male: F (1,13)=0.193, p > 0.05 

) (female: F (1,13)= 0.450, p > 0.05 )  was observed neither in the males nor females in 

terms of %PPI.(Fig.3c and 3d) 

 

4.1.4 Elevated plus maze 

Overall, the animals in all groups spent more time in the closed arm than the open arm 

and such avoidance was expected in the context of an anxiety inducing condition. The x 

axis in the graphs (Fig.4a) represents the percentage of the time in the open arm.and the 

results demonstrate that no significant main effect of genotype (F (2,42)= 1.168, p > 0.05 

)  , treatment (F (1,42)= 0.045, p > 0.05 )   or their interaction ( F (2,42)= 1.156, p > 0.05 
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)   exists on the percentage of time spent on the open arm. Analysing male and female 

mice separately, no significant main effect of genotype (male: F (1,12)=1.262, p > 0.05 ) 

(female: F (1,14)= 0.618, p > 0.05 )  , treatment (male: F (1,12)=0.631, p > 0.05 ) 

(female: F (1,14)= 1.373, p > 0.05 )  or their interaction (male: F (1,12)=0.449, p > 0.05 ) 

(female: F (1,14)= 1.117, p > 0.05 )  was observed neither in the males nor females in 

terms of percentage of time spent on the open arm(Fig.4b and 4c). 

 

4.1.5 Fear Memory 

Animals in all groups showed higher freezing in the second trial of shock during the 

training phase (day1) indicating that all the mice learned CS-US association equally well 

(Fig. 5a). The data on conditioned cued (tone) memory demonstrates that no significant 

main effect of genotype( F (2,30)= 1.345, p > 0.05 ), treatment( F (1,30)= 0.162, p > 

0.05) or their interaction(F(2,30)= 1.106, p > 0.05) exists on the percentage of freezing. 

(Fig.5b) 

 

4.2 Neurogenesis 

4.2.1 Hippocampus 

To assess the effect of the interaction on the fate of the new born cells in the dentate 

gyrus during the time of immune challenge, we looked at the immunostaining of BrdU-

labelled cells in this region. Many BrdU-labelled cells were observed in the SGZ, the the 

granular cell layer(mostly in vicinity of the SGZ) and sparcely in the hilus. (Fig.6). The 
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relative abundance of the newborn neurons compared to what is seen in adult dentate 

gyrus neurogenesis is expected considering that  the immunolabelled cells were born in 

the first postnatal week. 

The upper crest of the most lateral region of the dentate gyrus and the upper half of the 

hilus was placed within a grid (10.5cmx10.5cm) and the BrdU-positive and BrdU-NeuN-

colabelled cells were quantified.The results demonstrate that no significant main effect of 

genotype( F (1,11)=0.412, p > 0.05), treatment ( F (1,11)= 0.902, p > 0.05)or their 

interaction( F (1,11)= 0.383, p > 0.05) exists on the number of BrdU-positive cells in the 

granular cell layer (region described above) of the dentate gyrus four weeks after the 

treatment with Poly I:C(Fig.7a).Further, no significant main effect of genotype( F (1,11)= 

0.001, p > 0.05), treatment ( F (1,11)= 0.163, p > 0.05)or their interaction( F (1,11)= 

0.064, p > 0.05) exists on the percentage of BrdU-positive cells in the granular cell layer 

of the dentate gyrus that expressed NeuN four weeks after the treatment with Poly I:C 

(Fig. 7b). 

 

4.2.2 Olfactory bulb 

We also looked at the effect of the interaction on the fate of the new born cells that reach 

the olfactory bulb. Immunostaining of BrdU-labelled cells and BrdU-NeuN colabelling 

was assessed. BrdU-labelled cells were observed in the glomerular cell layer (quantifying 

the glomerulus at position of 5 o’clock) and granule cell layer ( positioned within a grid 

of 10.5cmx10.5cm right beneath the selected glomerulus) of the olfactory bulb (Fig. 8a 
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and 8b). There was also relatively abundant number of BrdU-positive cells dispersed in 

other layers of the olfactory bulb which is expected considering the age of the animals.  

The results demonstrate that a significant main effect of Sdy/Sdy genotype exists on the 

number of BrdU-positive cells comparing the representative glomerulus in the glomerular 

layer of the olfactory bulb four weeks after the treatment with Poly I:C ( F (1,11)= 5.388, 

p < 0.05*)(Fig. 9a). However, no significant main effect of early immune-activation ( F 

(1,11)= 0.183, p > 0.05) or interaction ( F (1,11)= 0.713, p > 0.05) exists on the number 

of BrdU-NeuN positive cells in the same glomerulus.(Fig.9b) 

The granular cell layer located right beneath the selected glomerulus in each slide was 

assessed. The BrdU- labelled and BrdU-NeuN colabelled cells were quantified. The 

results on granular cell layer similarly demonstrate that no significant main effect of 

genotype( F (1,11)= 0.909, p > 0.05), treatment ( F (1,11)= 1.187, p > 0.05) or their 

interaction ( F (1,11)= 1.358, p > 0.05) exists on the number of BrdU-positive cells in the 

granular cell layer of the olfactory bulb four weeks after the treatment with Poly I:C. 

(Fig.10a) 

However, the percentage of BrdU-NeuN positive cells were unaffected by  genotype( F 

(1,11)= 0.077, p > 0.05), treatment( F (2,30)= 0.302, p > 0.05)  or their interaction ( F 

(1,11)= 0.001, p > 0.05) (Fig.10b).  
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5.  DISCUSSION 

This study aimed to examine an important issue in the pathogenesis of schizophrenia, 

namely the interaction between genetic susceptibility and environmental insults. 

Evidence on the pathogenesis of schizophrenia indicates a role for both genetic and 

environmental factors. We examined the possible interactive effects of early (neonatal) 

immune challenge by Poly I:C and mutation in dysbindin-1 gene on schizophrenia-related 

behaviours. Also, we looked at the immediate effects of this interaction on the fate of the 

cells migrating to three regions of the brain the granular cell layer of the dentate gyrus in 

the hippocampus and the granule layer and the glomerular layer of the olfactory bulb.  

As referred to in the introduction, Edwards et al have repoted an interaction between 

dysbindin-1 gene and IL3 gene that increases the risk of schizophrenia (Edwards et al., 

2008).  IL3 is a cytokine secreted by the immune cells. Therefore, we found it plausible 

to look at the interaction between this gene and early immune challenge.  

Our study reveals that immune-activation using our chosen dosage/time of Poly I:C in 

mice carrying dysbindin-1 mutation does not result in pronounced or new schizophrenia-

related phenotypes in the selected number of behavioural and neurobiological end points.  

Gene-environment interaction exists not only in the pathogenesis of schizophrenia but 

also in other psychiatric disorders such as depression and bipolar disorder (Thapar et al., 

2007, Heim and Binder, 2012). Therefore, models of measured gene-environment 

interaction serves the purpose of studying the overlapping behavioural and 

pathophysiological aspects in mental disorders. 
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The lack of a positive main effect of the mutation on behaviours other than spontaneous 

locomotion was unexpected. To our surprise, the main effect of dysbindin-1 mutation was 

not observed in the other behaviours assessed. This could be explained by the fact that the 

background of the dysbindin-1 mutant mice in this study was C57Bl/6 and most studies 

done on dysbindin-1 mutant mice were on DBA2/J background which demonstrate 

deficits in fear memory, spontaneous locomotion and novel object recognition memory. It 

is possible that mice on DBA/2J background contain other mutations that result in the 

occurrence of the named behavioural deficits.  In the novel object recognition test, 

parameters such as the characteristics of the objects, intensity of the light in the room 

may explain the difference in the results.  

 In another study on dysbindin-1 mutants bred on C57BL/6 background, PPI deficit has 

been reported. This study was conducted in different prepulse intensities (i.e. 74, 78, 82, 

86 and 90 dB) than ours. The significant main effect of the homozygous mutation in 

dysbindin-1 (-/-) was observed in the prepulse intensities of 74 , 86 and 90(Papaleo et al., 

2012). However, in our experiment, prepulse intensities of 76 dB, 79 dB, 82 dB, 85 dB 

were applied and no significant difference was observed between the groups. 

On the other hand, Poly I:C- induced immune-activation in neonates did not result in 

behavioural deficits in adult mice, as far as the behaviours we assessed were concerned. 

This was in contrast to the findings by ibi et al. (Ibi et al., 2009) who had observed 

anxiety-like behavior , sensorimotor gating deficits  and impairments in  object 

recognition memory and social behavior in the neonate mice treated with Poly I:C 

compared to the saline-treated control group.   We think that lack of a behavioural deficit 

in our Poly I:C treated mice stems from the lower dosage of Poly I:C(4mg/kg versus 5 
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mg/Kg ), shorter period of treatment (3 days versus 5 days ) and later start of treatment 

(P5 versus P3 ). 

Therefore, quantification of the immune-response to the administered dosage of Poly I:C 

could determine the adequacy of the dosage in stimulating immune-activation. Apart 

from that, since deficits in spatial learning and memory have been observed in dysbindin-

1 mutant mice (Cox et al., 2009), we are curious to see if the interaction would result in 

more robust deficits in the spatial learning and memory. Our findings in regards to lack of 

an interactive effect between our chosen genetic mutation and environmental insult  is not 

surprising in the context of a complex psychiatric disorder such as schizophrenia where 

multiple genetic factors interact with multiple environmental factors to induce certain 

phenoypes. Therefore, the results help us in knowing that the chosen factors do not 

interact in terms of our selected endpoints.  However, this does not falsify the gene-

environment hypothesis in pathogenesis of schizophrenia and other complex psychiatric 

illnesses.  

 This study shows that Sdy/Sdy mice have lower number of new born cells in the 

glomerular layer of the olfactory bulb. The glomerular layer is the outer layer of the 

olfactory bulb. Each Glomerulus is a spherical to oval-shaped structure surrounded by 

Juxtaglomerular cells, comprised of neurons and glial cells. This layer is located at the 

region where olfactory nerve makes synapses with the mitral, periglomerular and tufted 

cells (Valverde et al., 1992, Kosaka et al., 1998, Wachowiak and Shipley, 2006). 

Valverde et al investigated the development of the olfactory nerve and reported that the 

olfactory glomeruli is the only structure that continues undergoing development during 

the first postnatal weeks to the end of the first postnatal month(Valverde et al., 1992). 
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This report notes the susceptibility of the glomerular layer during the first postnatal week. 

The new born neurons that migrate to the glumerular layer differentiate into GABAergic 

interneurons and dopaminergic neurons(Betarbet et al., 1996). Each group of glomeruli 

are basically specific to a type of odor and odor receptors in the olfactory epithelium. 

This provides a mapping for odors in the glomerual layer(Uchida et al., 2000, Xu et al., 

2000, Meister and Bonhoeffer, 2001). Deficits  in olfactory-associated functions such as 

olfactory identification and discrimination have been previously reported in 

schizophrenia subjects (Hurwitz et al., 1988, Malaspina et al., 1994, Brewer et al., 1996, 

Moberg et al., 1997, Arnold et al., 2001, Rioux et al., 2005). On the other hand, Sandy 

mice have not demonstrated deficits in olfaction or the olfactory 

habituation/dishabituation tasks (Talbot, 2009, Papaleo et al., 2012). Also, the direct and 

indirect  connections between the olfactory bulb and the hippocampus could suggest 

common roles for example in the spatial learning and memory deficits observed in sandy 

mice (van Groen and Wyss, 1990, de la Rosa-Prieto et al., 2009). It is also possible that 

the lower number of new-born cells reaching the glomerular layer is due to a decrease in 

radial migration of the new-born cells from RMS to the glomerular layer, once they reach 

the olfactory bulb.   
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6. CONCLUSION 

In conclusion, this project was primarily designed to show that Poly I:C injection in 

neonate Sandy mice would induce either greater (interactive) effect on cognition and 

neurogenesis or result in a new phenotype not present in each model individually.  

A number of selected schizophrenia-relevant behavioral assessments were tested to 

capture the possible interaction between dysbindin-1 mutation and Poly I:C. 

Neurogenesis in the SGZ of the hippocampus is of interest in schizophrenia due to the 

important role of hippocampus in cognition and also the presence of pathologies in 

hippocampus in schizophrenia subjects. SVZ neurogenesis, although is not well clear to 

be linked to schizophrenia, was be studied since it could shed light to the effect of 

dysbindin1-Poly I:C interaction on common pathways involved in neurogenesis. In my 

study due to limitations in the number of genetically mutant mice, all the groups assessed 

contained both male and female mice which further resulted in large error bars in a 

number of behavioural tests. When separating males and females, we still did not observe 

the significant main effect of the genotype, treatment or interaction. Furthermore, the 

limitation on the number of mutant mice prevented us from examining the effects of other 

immune activators such as LPS and CpGDNA and also other behavioural (e.g. spatial 

learning and memory and social interaction) and pathophysiological (e,g. Density of 

different subgroups of DA, NMDA receptors and parvalbumine neurons, dendritic 

arborisation and spine density) endpoints.  We further find it interesting to look at the 

possible triggering effect of the immune activators in young adult animals, as the 

neonatal immune activation might render the individual susceptible to later immune-
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challenge. Exploration with higher doses of the immune activator and/or different 

timeline of treatment is needed to fully test GxE hypothesis linking immune activation 

and dysbindin-1 gene . Therefore, the hypothesis that genetic and environmental factors 

could interact to produce a phenotype not affected by dysbindin-1 genotype or neonatal 

infection is still possible . In the path to explore the potential interactive effect of 

dysbindin-1 and early immune-activation, this study helps to narrow the future 

experiments to different possibilities of experiment variables and measure. 
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 8. FIGURES AND TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Spontaneous locomotor activity. (a ,inset)) A significant main effect of Sdy/Sdy 
genotype on locomotion is observed (p < 0.05*). No main effect of the interaction was 
observed between genotype and treatment. Fig.1a demonstrates the total time travelled 
and Fig.1a(inset) shows Locomotor activity in novel environment measured at 10 min 
intervals.  (c,d) Separating male and females, the main effect of the Sdy/Sdy genotype 
was observed only in the male group (p < 0.05#) and not in the female mice. (e) 
Stereotypy remained unaffected by genotype, treatment or interaction.  
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Fig. 2. Novel object recognition memory. (Fig. 2a) ANOVA of the results demonstrate no 
significant main effect of genotype, treatment, or their interaction on percentage of time 
spent on exploring the novel object. Neither Sdy (-/-) mutation nor neonatal Poly I:C 
treatment significantly affected adult memory. (Fig.2b and 2c) Analysing male and 
female mice separately, no significant main effect of genotype, treatment or their 
interaction was observed in terms of novel object exploration. 
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Fig. 3. Prepulse inhibition of acoustic startle (PPI). (Fig. 3a and 3b)There was no overall 
significant difference in prepulse inhibition or the startle response between the groups. 
The results demonstrate no significant main effect of genotype, treatment or their 
interaction exists on % PPI. (Fig. 3c and 3d) Analysing male and female mice separately, 
no significant main effect of genotype, treatment or their interaction was observed neither 
in the males nor females in terms of %PPI. 

 

 

(c) 

(a) 

(b) 

(d)



81 
 

 

 

 

 

 

 

Fig. 4. Elevated plus maze. Animals in all groups spent more time in the closed arm than 
the open arm. The x axis in the graphs represents the percentage of time in the open arm. 
(Fig. 4a)The results demonstrate that no significant main effect of genotype, treatment or 
their interaction exists on the percentage of time spent on the open arm. (Fig. 4b and4c) 
Analysing male and female mice separately, no significant main effect of genotype 
treatment or their interaction was observed neither in the males nor females in terms of 
percentage of time spent on the open arm. 
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Fig. 5. Fear memory. (Fig.5a)Animals in all groups showed higher freezing in the second 
trial of shock during the training phase (day1) indicating that all the mice learned CS-US 
association equally well. (Fig. 5b)The data on conditioned cued (tone) memory shows no 
significant main effect of genotype, treatment or their interaction exists on the percentage 
of freezing. 
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Fig. 6. BrdU and BrdU-NeuN colocalization. Confocal micrographs (60X, oil immersion) 
of the dentate gyrus. BrdU-positive cells (red) and NeuN (green). In the dorsal 
hippocampus, the upper crest of the most lateral region of the dentate gyrus and the upper 
half of the hilus was placed within a grid (10.5cmx10.5cm) and the BrdU-positive and 
BrdU-NeuN-colabelled cells were quantified.(Scale bar, 20µm) 
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Fig. 7. Cell fate in the Dentate gyrus.(Fig. 7a)The results demonstrate that no significant 
main effect of genotype, treatment or their interaction exists on the number of BrdU-
positive cells in the granular cell layer (region described in Fig 6) of the dentate gyrus 
four weeks after the treatment with Poly I:C. (Fig. 7b) No significant main effect of 
genotype, treatment or their interaction exists on the percentage of BrdU positive cells in 
the granular cell layer of the dentate gyrus that expressed NeuN four weeks after the 
treatment with Poly I:C.  
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Fig. 8. BrdU and BrdU-NeuN colocalization in the Olfactory bulb. Confocal micrographs 
(60 X, oil immersion) of a glomerulus (Fig. 8a) and the granule cell layer (Fig. 8b) in the 
olfactory bulb.  BrdU-positive cells (red) and NeuN (green). BrdU-labelled cells were 
observed in the glomerular cell layer (quantifying the glomerulus at position of 5 o’clock) 
and granule cell layer (positioned within a grid of 10.5cmx10.5cm right beneath the 
selected glomerulus) of the olfactory bulb. (Scale bar, 20µm) 
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Fig. 9. BrdU and BrdU-NeuN colocalization in the glomerular cell layer of the Olfactory 
bulb. (Fig. 9a)The results demonstrate that a significant main effect of Sdy/Sdy genotype 
exists on the number of BrdU positive cells comparing the representative glomerulus in 
the glomerular layer of the olfactory bulb four weeks after the treatment with Poly 
I:C/BrdU( p < 0.05*). (Fig. 9b) No significant main effect of early immune-activation or 
interaction exists on the number of BrdU-NeuN positive cells in the same glomerulus. 
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Fig.10. BrdU and BrdU-NeuN colocalization in the glomerular cell layer of the Olfactory 
bulb.  The granular cell layer located right beneath the selected glomerulus in each slide 
was assessed. (Fig.10a)The results on granular cell layer similarly demonstrate that no 
significant main effect of genotype, treatment or their interaction exists on the number of 
BrdU- positive cells in the granular cell layer of the olfactory bulb four weeks after the 
treatment with Poly I:C.  (Fig.10b)The percentage of BrdU-NeuN positive cells were 
unaffected by genotype, treatment or their interaction. 
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