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ABSTRACT

Transmission Ratio Distortion (TRD) is a genetic phenomenon where one of the two alleles from
either parent is transmitted to the offspring with a probability different than the expected 0.5. This
leads to a departure from the Mendelian inheritance ratio. There have been many animal studies
reporting TRD on gene regions of known functions. These findings have triggered interest in
identifying TRD loci in humans. However, human studies are relatively few, and TRD remains

largely unexplored in the field of statistical genetics.

We argue that TRD is in fact an important phenomenon which lies at the intersection of three
different genetic fields: developmental, population and statistical genetics. In developmental
genetics, where embryonic growth is being studied, understanding TRD mechanisms can
contribute to the identification of the biological processes leading to differential survival. From a
population genetics perspective, TRD could give rise to rare variants which, due to the many
counter-balancing evolutionary forces are maintained at a low frequency. This leads to a change

in genetic diversity in the population where TRD occurs.

Since TRD involves allele transmission from parents to offspring, it can only be studied using
family-based designs, and in this work, we concentrate on family trios (parents and affected
offspring). Results from such studies are commonly analyzed using a log-linear model. Here, we
extend this model by using the transmission probability of minor allele from parents to child as an
offset. We adjust for two types of TRD: non-sex-of-parent-specific TRD (NST), and sex-of-parent-
specific TRD (ST).

By conducting simulations of case-parent-trio populations, we show that either NST or ST can
confound the relative risk estimates for child genotype. For ST, it further confounds the imprinting
effect estimates. This leads to the inflation of Type 1 error, loss in power, and poor performance
in sensitivity and specificity. We also show that spurious results due to TRD can be eliminated and
correct inference restored. One limitation with this approach is the availability of the transmission
probability of the minor allele which may exist or not in publically available dataset or needs to be

estimated in appropriately selected control trios.
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Studying TRD is worthwhile because of the close evolutionary history it might share with that of
rare variants, and the confounding effect it has on imprinting effect. Both of these phenomena may
help uncovering of the “missing heritability” components from past GWAS. In a more applied and

immediate perspective, correct adjustment of TRD could increase consistency in findings from

association studies.



ABREGE

Le “Transmission Ratio Distortion” (TRD) est un phénomene génétique au cours duquel I'un des
deux alleles d’un parent est transmis a sa descendance avec une probabilité différente de celle
attendue, c’est a dire 0.5. Cela conduit donc a une déviation du rapport de I'hérédité¢ mendélienne.
La présence de TRD au niveau de geénes ou de régions génétiques fonctionnelles a été rapportée
dans de nombreuses études animales. Ces résultats ont suscité un intérét pour l'identification de
loci affectés par le TRD chez les humains. Cependant, les études humaines sont relativement peu

nombreuses, et le TRD reste largement inexploré dans le domaine de la statistique génétique.

Nous pensons que le TRD est un phénoméne important qui se trouve a l'intersection de trois
domaines génétiques différents: le développement, la génétique de population et la statistique
génétique. En ce qui concerne la génétique du développement, qui étudie la croissance
embryonnaire, la compréhension des mécanismes du TRD peut contribuer a 1'identification des
processus biologiques conduisant a une différence de survie. Du point de vue de la génétique des
populations, le TRD pourrait donner lieu a 1’apparition de variants rares qui, en raison des
nombreuses forces évolutives de ré-équilibrage, sont maintenus a basse fréquence. Cela conduit a

un changement dans la diversité génétique de la population affectée par le TRD.

Puisque le TRD implique une transmission des all¢les des parents a leurs enfants, il ne peut étre
¢tudi¢ qu’a l’aide de concepts basés sur les études familiales. Dans ce travail, nous nous
concentrons sur des familles-trios (parents et descendant atteint). Les données de telles études sont
généralement analysées a I’aide d’un modele log-linéaire. Ici, nous généralisons ce modéle en
utilisant la probabilité de transmission de 1'allele mineur des parents a l'enfant en tant qu’ " offset’’.
Nous ajustons le modele pour deux types de TRD: le TRD non sexe-spécifique (NST), et TRD le
sexe-spécifique (ST).

En effectuant des simulations de populations cas-parent-trio, nous montrons que le NST ou le ST
peuvent agir comme facteur confondant au niveau des estimations du risque relatif par rapport au
génotype de l'enfant. Le ST peut de plus agir comme facteur confondant pour les effets
d'impression (imprinting). Cela engendre une inflation des erreurs de type 1, une perte de puissance,

et de mauvaises performances en terme de sensibilité et de spécificité. Nous montrons également
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que des résultats erronés obtenus a cause du TRD peuvent €tre éliminés et les parametres du
modele corrigés. Une limitation de cette approche est la connaissance de la probabilité de
transmission de l'alléele mineur, information qui peut étre disponible dans des ensembles de
données publiques, ou qui doit étre estimée a I’aide de trios-contrdles sélectionnés de maniere

appropriée.

Etudier le TRD est important en raison de 1'histoire évolutive que le locus du TRD pourrait
partager avec ceux de variants rares, et de I'effet confondant que ce phénomeéne peut avoir sur
l'effet d'impression. Ceci peut nous amener a découvrir une partie de 1’héritabilité manquante,
phénoméne identifié dans les GWAs. Dans une perspective plus appliquée et a court terme, une
prise en compte du TRD dans les analyses pourrait accroitre la cohérence des résultats des études

d’association.
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PREFACE: STATEMENT OF ORIGINALITY

This thesis is comprised of two introductory chapters (Chapters 1 and 2), three manuscripts
(Chapters 3-5), and a discussion (Chapter 6). Each of the manuscripts includes a preamble for the

overall content.

Chapter 1: This chapter is the introduction of the thesis, laying out the context for Transmission
Ratio Distortion (TRD), its role among recent development in genetics, the motivation for and

limitations of our proposed methods.

Chapter 2: This chapter is the background of the thesis. It includes 1) a short summary of TRD,
2) a literature review on family-based studies and statistical tests, 3) a literature review on
likelihood-based models for family-based studies, comparing competing models, and 4) a literature

review on methods for testing imprinting effect.

Chapter 3: This chapter is a literature review on the role of TRD in the fields of developmental,
population, and statistical genetics. It is an original review, the first of its kind in the current
literature, comparing the study designs, methods and results across all included studies. It also

includes original material from a simulation study.

Chapter 4: This chapter investigates the impact of TRD on family-based association studies, with
the development of a new method which extends a loglinear model, adjusting for the effect of TRD.
The performance of the extended model is assessed using a set of simulation studies and the

method is applied to a real dataset.

Chapter 5: This chapter presents an original investigation on the impact of a specific type of TRD
on family-based association studies. We developed a method extending a loglinear model that
adjusts for the effect of this type of TRD. Performance of the extended model is assessed by

simulation studies.

Chapter 6: This chapter is the summary and discussion section of the thesis. It summarizes the
importance of TRD in human genetics studies, and discusses the limitations, benefits, initiatives

and challenges for future development.
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Chapter 1

Introduction and objectives

1.1 The Human Genome Project

The Human Genome Project (HGP) was initiated in the 1990s resulting in advancement in
mapping and sequencing the human genome. This was made possible by combining the disciplines
of molecular cell biology and classical genetics, with the contribution of computational sciences.
There were five main domains in the HGP which were using genomics to understand the structure
of genome, understanding the biology of genome and its relationship to human diseases, and using
all the former to advance the science of medicine and to improve the effectiveness of health care.
Audacious strategies were planned to advance the technology and analytical methodology with the

goal of correctly interpreting sequencing and other results.
1.2 Genome-wide Association Studies and missing heritability

With the rise of the popularity of the Genome-Wide Association Studies (GWAS), much progress
has been made in the field of genomics in the last decade, to identify relationship of genome to
human diseases. These studies have resulted in the identification of genes for several hundred traits
and diseases. However, amid the apparent success of GWAS, many loci discovered could not be
replicated consistently. Furthermore, they only account for a small percentage of the heritability
for most complex diseases. This led geneticists to re-examine the supposed hypothesis of
“common disease - common variant”. Rare variants were then suggested to be the link to the
“missing heritability” in high penetrance diseases, which usually cluster in families. Furthermore,
scientists found another layer of genetic information to explain the “missing heritability”: the
epigenomic coding on the DNA sequence, which regulates gene expression of the human genome

and is likely influential in determining the severity of disease.
1.3 Transmission Ratio Distortion in the fields of genetics

Transmission Ratio Distortion (TRD), which we investigated in this thesis, is a biological
phenomenon where one of the alleles on a locus from either parents is over-transmitted to the next

generation, violating the Mendelian transmission ratio. Different TRD mechanisms can interrupt
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either the gametic or embryonic development processes, and these are explained in Chapter 3.
TRD interestingly lies at the intersection of three different but related genetic fields: developmental,
population and statistical genetics. This provides great incentives to investigate the role of TRD in

human genetics.
1.4 Overview of manuscript 1 (Chapter 3)

TRD has been well-studied in plants and animals. However, human studies on TRD have been
relatively few. We consolidated 26 such studies in the last two decades; TRD loci are involved in
a whole range of disease conditions, such as various forms of cancer, neurological conditions, and
others. TRD loci are also implicated in imprinting. However, the link between disease etiology
and TRD mechanisms has not been established, except for embryo viability. In our review, we
also included some mouse studies documented in the last decade to underscore the different
methods used to study TRD as well as to compare with human study results. The studies listed in
Chapter 3 include different types of designs, statistical models and tests that can be used to identify
TRD loci under the influence of various forms of TRD. Representative study designs and tests are
reported and used to develop working examples and figures. Note that TRD can only be studied in
family-based study design instead of case-control study design because it affects the transmission

of alleles from one generation to the next.

Since TRD in the parental transmission of disease allele leads to a deviation from the Mendelian
ratio in the offspring generation. If TRD persists over many generations, it is possible for the over-
transmitted allele to reach fixation in the population where TRD occurs, and hence lead to a slow
disappearance of the disadvantaged allele. However, there are many evolutionary forces in place
to regulate and maintain the disadvantaged allele at a low frequency in the gene pool and hence,
resulting in rare variants. Examples of such mechanisms are mutations, recombination, genetic
drift, and the presence of an immunogenetic advantage for survival in later adulthood. These
mechanisms are further explained in Chapter 3. Understanding the role of TRD in the evolutionary
context can provide a more comprehensive perspective of population genetics. We speculate that
many of the rare variants observed in the current gene pool of various populations might indeed

have a TRD origin. It is likely that identifying TRD loci could assist the discovery of rare variants



and their role in many complex diseases in regards to the “missing heritability” from classical

GWAS.
1.5 Overview on manuscript 2 (Chapter 4)

TRD occurs in the diseased and the non-diseased. The presence of TRD will then lead to the over-
transmission and hence, over-representation of disease allele in the offspring generation, in both
diseased (case) and non-diseased (control) populations. Conventional family-based association
studies recruit cases to assess over-representation of disease allele in the case populations. If this
over-representation significantly deviates from the null (Mendelian inheritance ratio), an
association between disease susceptible locus (DSL) and disease is then established. Since TRD
and the true association between DSL and disease outcome both lead to deviation from Mendelian
ratio, the measured association may be confounded when TRD occurs. In order to correctly
interpret the results, we have to adjust for the effect of TRD in the measured association signal.

The model and its extension we used for this purpose are developed in Chapter 4.
1.6 Overview on manuscript 3 (Chapter 5)

The second layer of genetic information in our DNA sequence is the epigenomic coding, which
regulates the transcription activities of mRNA from our genome blueprint. A well-known example
of epigenomic coding is imprinting, where paternally- and maternally-inherited alleles can lead to
different levels of gene expression at a neighbouring disease gene in the offspring. Cases recruited
from a population that exhibits an imprinting effect influencing a particular gene will have a higher
proportion of disease allele in offspring inherited from the parent who induces a higher expression
level. It is believed that more than 1% of all mammalian genes exhibit imprinting effect. Imprinting

could potentially account for some of the “missing heritability” in genetic studies.

In Chapter 5, we investigated a special form of TRD, called sex-of-parent-specific TRD (ST). ST
occurs when one parent consistently over-transmits an allele, while the other transmits under the
Mendelian inheritance ratio. With ST resulting from over-transmission of disease allele from one
parent, the case population recruited, if representative, will have an over-representation of the
disease allele from this parent. ST effect then confounds with an imprinting effect because they

show the same results in the case population. It is then crucial to address ST when studying



imprinting genes in order to reduce spurious findings. The model and its extension used for

adjusting ST are developed in Chapter 5.
1.7 Overview on background information and conclusion (Chapters 2 and 6)

To provide some background information, we included in Chapter 2 a brief description of TRD,
the fundamentals of family-based association analyses, some likelihood-based approaches, and
recently developed methods for detecting imprinting effect in family studies. All this background
knowledge laid out the context where TRD is examined and studied for the purpose of our
investigation in this thesis. Chapter 6 concluded our goals for the study on TRD and proposed

future initiatives following this line of research.
1.8 Motivation

We intended to investigate each of these aspects of TRD in family-based association studies in
order to 1) highlight and document the study of TRD in terms of study design, methodology, and
the link to known disease loci in current literature, 2) to quantify the consequences of TRD on
statistical measures which leads to the possibility of spurious association results, and 3) to develop
a methodology to correct for potential confounding due to TRD in association studies estimating
offspring genotype relative risk and imprinting effects. The extent of TRD in human is still largely
unknown. The published articles on human studies we documented in Chapter 3 are few. One of
the reasons is because we cannot easily manipulate the parental mating genotype in human as we
do in mouse strains. There is also no established evidence in current literature of a link between
disease etiology and mechanisms of TRD, except for fetal survival. The role of TRD in human

genome and its impact on complex diseases are indeed under-studied.
1.9 Limitations

In our methods described in Chapters 4 and 5, we used an offset in a log-linear model to adjust for
TRD. This offset is computed as the transmission ratio of disease allele from parent to child in
control-parent-trios. We tested this method in a real dataset of case- and control-trios with the
measured phenotype as intrauterine growth restriction (IUGR). We were able to find loci
exhibiting TRD and adjust for it. To generalize this method, we assume that 1) this transmission

ratio is available from independent samples of control-trios from major consortia, such as the
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HapMap project, and 2) the control-trios are recruited from the same population as the case-trios.
However, control-trios are not conventionally collected in most studies of genetic diseases, due to
the lack of incentives. Therefore, initiatives to recruit samples with such information and
requirement are rare, especially for sex-of-parent-specific allele transmission ratio. Nevertheless
we envision the research results from this thesis could generate interest and lead to an increasing

awareness of TRD and its significance in human studies.



Chapter 2

Background

2.1 Overview of Transmission Ratio Distortion

TRD is the genetic phenomenon where either or both of the parents over-transmit one of their
alleles to the child, leading to a departure from the Mendelian inheritance ratio. TRD can manifest
itself in a non-sex-of-parent-specific (Figure 2.1) or sex-of-parent-specific (Figure 2.2) manner.
There are different types of TRD which result from disruption in the gametic or embryonic
development stages. Examples of TRD include germline selection, meiotic drive, gametic
competition, imprint resetting error, and embryo lethality. The biological mechanisms behind these

TRD processes are further explained in Figure 3.1 of Chapter 3 in more detail.

TRD lies at the intersection of three different genetic fields: developmental genetics which studies
the role of genes in controlling the development of an organism, population genetics which deals
with the genetic diversity in human populations due to evolutionary forces, and statistical genetics
which studies the relationship between genes and human health. Studying TRD in developmental
genetics can identify biological processes responsible for differential survival of zygote or embryo.
In population genetics, it provides additional information on evolutionary forces that affect the
diversity of the current gene pool. It can also contribute to the discovery of rare variants responsible
for high penetrance diseases clustered in high risk families. Finally, in statistical genetics it leads
to the correct interpretation of, on the one hand, the association or linkage signals between disease

and genes and, on the other hand, of the interplay between epigenetic and DSL genetic effects.

Even though TRD has been relatively well-studied in animals and plants, its prevalence in humans
remains largely unknown. We searched for human studies on TRD in the last two decades. Some
of the TRD loci overlap with known loci responsible for a whole range of diseases, such as cancers,
Type 1 and Type 2 diabetes, developmental abnormalities, etc. Study designs and statistical
methods used in these studies vary, depending on the nature of the TRD process being investigated.
For example, non-sex-of-parent-specific TRD (NST) such as germline selection can be detected

using trios with offspring unselected for phenotype or control-trios, by applying the Transmission



Disequilibrium Test (TDT). Embryo lethality due to epimutation can be assessed using two-
generation families, comparing expected versus observed offspring genotype ratio by the
Pearson’s Chi-square test. Grandparental origin of TRD such as due to imprint resetting error can
be detected using 3-generation families with multivariate logistic regression predicting the
grandparental source of inherited allele using variables such as sex of offspring, cross (in mouse)

and their interaction.

When linkage/association is being assessed between a DSL and disease status, the presence of
TRD can be a confounding factor. When a parent over-transmits the disease allele due to TRD,
TRD is in the same direction as the linkage/association signal, and hence, it inflates the true signal.
When a parent under-transmits the disease allele due to TRD, TRD is in the opposite direction of
the linkage/association signal, and hence, it attenuates the true signal. Therefore, if TRD is present
but not accounted for, it can lead to false positives or false negatives and consequently, spurious
conclusions. This highlights the importance of developing a statistical method which adjusts for

TRD and provides correct interpretation of the linkage/association signal.

The impact of TRD at the organismal level can lead to consequences in terms of genetic diversity.
When selective pressure on the disadvantaged allele occurs consistently over generations, it can
cause the allele to become extinct. On the other hand, the over-transmitted allele can then reach
fixation, and reduce the allelic diversity in the gene pool. This has perhaps led to the slow
disappearance of TRD loci on the genome. However, different evolutionary forces can sometimes
maintain the disadvantaged allele at a low frequency, such as mutations, recombinations, genetic
drift and the presence of an immunogenetic advantage for survival in later adulthood. Some of
these TRD loci result in rare variants. Rare variants are currently under intense research
investigation, and identifying TRD loci could help in the discovery of these variants. TRD is
human populations is largely under-explored, yet it holds potential to shed light on many areas of
genetics ultimately contributing to our knowledge of the relationship between genes and human

health.



Figure 2.1 Non-sex-of-parent-specific TRD (NST)

Parental M=1 F=1
transmission D:d=3:1 D:d=3:1

ratio O
Offspring genotypes <> O O
' C=2 C= C=0

Expected proportion
under Mendelian 1/4 1/2 1/4
inheritance (D:d = 1:1)

Observed proportion
under NST

inheritance (D:d =3::1)

9/16 6/16 1/16

* Genotype notation of mother (M), father (F) and child (C) uses the additive model, which
counts the number of minor allele that the individual carries.

Figure 2.2 Sex-of-parent-specific TRD (ST): Maternal ST (MST)

Parental M=1 F=1
transmission D:d=3:1 D:d=1:1
ratio O
Offspring genotypes <> O <>
C=2 C= C=0

Expected proportion

inheritance (D:d =:3:1)

under Mendelian 1/4 1/2 1/4
inheritance (D:d = 1:1)

Observed proportion

under MST 3/8 4/8 1/8




2.2 Family-based association studies
2.2.1 The evolving role of family-based studies

Family-based study design were prevalent in the latter half of the twentieth century for identifying
genes associated with rare Mendelian diseases, in closely linked regions on the genome, usually
with some preliminary biological evidence. Examples of such are cystic fibrosis [2] and
Huntington’s disease [3]. Study designs can range from sib-pairs (discordant or concordant), case-
parent trios, relatives, and more complex pedigrees. For complex and more frequent diseases, amid
some challenges, these studies also allowed the identification of some important genes involved
in the etiology. For example, BRCA1 and BRCA2, known to predispose individual carriers to

breast cancer, were discovered by linkage study [4].

As case-control GWAS became available due to the advancement in genotyping technology, they
quickly replaced family-based studies, allowing coverage at low cost of millions of single
nucleotide polymorphisms (SNP) on the genome in large samples. The feasibility of these studies
provided information to identify multiple genes associated with complex diseases, such as
coronary heart disease [5, 6], Crohn’s disease [7-9], numerous forms of cancer [10-12], Type 1

[13, 14] and Type 2 diabetes [15-17], schizophrenia [18-21], and bipolar disorder [18, 22, 23].

Regardless of these successes, common variants identified in GWAS have usually revealed only
small risk increment for common diseases. This led to the suggestion that rare variants which have
high penetrance in affected families are accountable for the “missing heritability” [24-27]. This
leads to a renewal of interest in conducting family-based studies to identify these rare variants,
especially with the availability of whole genome sequencing (WGS) technology [28-30] where

billion base-pairs on the genome can in principle be sequenced.

2.2.2 Population-based association study

Population-based association studies usually utilizes affected subjects and compare them with
unrelated controls from the same genetic population; this case-control design serves as the basis
of GWAS. Both cases and controls are genotyped for a large number of SNPs across the genome.

Association with disease is then estimated at each locus and the disease status (affected or
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unaffected) of the individuals, usually with a Cochran-Armitage trend test or logistic regression.
A departure from independence between disease and marker is taken as evidence to the presence
of association [31]. However, the control sample which is presumed from the same population as
the cases may be different in ways that are difficult to measure and account for. This leads to
population stratification and has possibly contributed to the poor success rate in replication of the
findings [32, 33]. Population stratification seen in case-controls studies can be corrected using a
number of different methods among which principle component analysis (PCA) [34] or Bayesian
outlier method [35] are used. These methods may be complex and of limited use in studies of

candidate genes where only a limited number of SNPs have been genotyped.

2.2.3 Family-based association study

Family-based association study design uses related subjects. The controls in these study designs
are inherently matched to the cases in terms of population structure which guards against
population stratification. Ideally, every member of the study unit is genotyped at each potential
DSL. However, some statistical methods have the flexibility to accommodate for missing data.
Linkage and/or association with case-parent trios is commonly assessed by the TDT. Other tests
can be applied depending on the design or the genetic models, which are illustrated in the next
section. When disease is associated with DSL, the disease allele is transmitted more (or less) often

than expected under the null, indicating a departure from the Mendelian inheritance ratio.

2.2.4 TDT and family-based association tests

TDT is the simplest version of family-based association test, as well as the most commonly used
[36]. Itis a type of McNemar Test which uses only heterozygous parents. The original design using
the TDT is a case-parent trio study where transmitted and non-transmitted disease alleles from
heterozygous parents to the child are counted. The non-transmitted alleles from the parents are
used to form the ethnically matched control to the case child. Therefore, it is robust against

population stratification.

The McNemar Test table for TDT is shown in Table 2.1. Both parents with heterozygous genotype

are non-discriminately used in computing the counts. Considering a bi-allelic locus, the number of
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heterozygous parents who transmitted disease allele D to child is counted as bi, and the number

N2
who transmitted the non-diseased allele d to the child is counted as c¢i. The yZ,,, statistic is %,
1 1

and has 1 degree of freedom (df). The corresponding TDT Chi-square statistic for control-trios is
xZ,. In a simulation study included in Chapter 3, we showed that y2,, by itself can be used to

test for the presence of TRD.

Table 2.1: TDT on case- and control-trios

Case trios Control trios
Non-transmitted allele Non-transmitted allele
Transmitted D d D d
allele
D ai bi a b2
d C1 di C2 d2
TDT statistics o = (b — ¢1)? = (b, — ¢;)?
(b1 +¢1) (b2 +¢c2)

In addressing the phenomenon of segregation distortion (a type of TRD), which confounds with
linkage and association signals, Spielman et al. [36] suggested the use of both case- and control-
trios. He proposed a Chi-square test statistic, which we called yZ., also with 1df. It uses the
heterozygous counts of both case- and control-trios to detect an excess or deficit in transmission
counts of the minor allele compared to the major allele, between case- and control-trios. The test
statistic is shown in Table 2.2. This Chi-Square statistic measures the significance of true

association and linkage signal given the possible presence of TRD.
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Table 2.2: Pearson's Chi-square test on case- and control-trios

Transmitted allele in
heterozygous parents
D d Row total
Case trios bi c1 n
Control trios b2 C2 n
Column total np Ne n
Pearson's Chi- , _ n(bic; — ¢by)?
square test statistic Aee = (nnznpne)

The dual-null hypothesis of TDT in GWAS or candidate gene studies with no previous linkage
signal is no linkage nor association. Therefore, it has power only when both linkage and association
are present. Rejecting the null hypothesis implies linkage disequilibrium (LD) between disease
and DSL, which means that association is due to lack of recombination, not population
stratification. The null distribution of the TDT statistic is a central Chi-square statistic with 1 df,
and TDT is non-parametric. It makes no assumption on underlying genetic model or distribution
of disease in the population, and hence is robust against misspecification of disease model or trait

distribution.

Later developed methods generalized the TDT and accommodated nuclear families with multiple
affected and unaffected offspring, such as the Family-based association test (FBAT) [37, 38]. A
natural basis for association statistics is the covariance between trait and genotype. The definition
of the FBAT statistics includes factor X (counts of copies of minor allele in child), Y (trait), T
(coding of trait derived from Y), and P (genotype of parents). We define T as Y-u, where Y is the
phenotypic variable and p is a fixed, pre-specified value that depends on the nature of the sample

and phenotype. The covariance statistic used in the FBAT statistic is:

U=YT (X - E[X|P]) (2.2.1)
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The FBAT test statistic under the null hypothesis is a central Chi-square statistic with 1 df, which
is:
UZ

S = (2.2.2)

var(U)

Changing the way T is defined, one can include unaffected offspring, fit alternative traits or
multiple traits, whereas changing the way X is defined, one can test alternative genetic models
(recessive, dominant), and multiple alleles at a locus. Therefore, FBAT is widely applicable to
many test situations. FBAT can be generalized to address arbitrary pedigree, missing
parents/founders or haplotypes, or extended to handle complex phenotypes, arbitrary genetic
models, and multiallelic markers. FBAT and TDT are the same under the condition that both

parents are genotyped, T = 1 when affected, 0 otherwise, and X is the number of disease alleles.

Another alternative association test is the Pedigree Disequilibrium Test (PDT), which is
specifically designed for analysis of LD in general pedigrees [39]. This method builds on
informative pedigrees which have at least 1 informative trio or 1 informative discordant sib-pair
(DSP). An informative trio has at least 1 affected child and 1 heterozygous parent, whereas an
informative DSP has at least 1 affected and 1 unaffected sibling and may or may not have parental
genotype data. In an informative trio, define Xt = count (D is transmitted) — count (D is not
transmitted), where D is the minor allele, and in an informative DSP, define Xs = count (D in
affected sib) — count (D is in unaffected sib). A summary statistic for a pedigree with nt informative

trios and ns informative DSP is then:

1

D; = [zj.‘“ Xryj + X5 X, ,-] (2.2.3)

nritng;

where 1 is the ith pedigree, and j is the jth trio or sib-pair within an independent pedigree. The PDT

statistic is:

X! D

T = (2.2.4)



where N is the total number of unrelated pedigrees. This T statistic is asymptotically normal with
mean 1 and variance 0 under the null hypothesis of no LD. If we use the same data (trios only),

both TDT and PDT will be asymptotically equivalent under the null hypothesis.

2.2.5 Advantages of family-based studies

In family-based studies, a significant finding usually implies both linkage and association, not
population stratification. It is true that recruiting cases and unrelated controls is usually much
easier than family members, especially for late-onset diseases. Regardless of the difficulties in
ascertaining and genotyping multiple family members, it was shown that in rare diseases, trios-
design achieves greater power than case-control design with the same number of study unit: 3
individuals for a trio, and 2 individuals for a case-control-pair [38]. Furthermore, a family-based
study has additional advantages because with the proper analysis it can provide more genetic
information than the case-control study; for example, an imprinting effect can be tested. Case-
control studies have fallen short of accounting for high penetrance rare diseases because they
usually have low power to detect rare variants (less than 1%). Rare variants are usually clustered
in families, and so far have been best addressed in family-based studies. Both rare variants [24, 26,
27] and imprinting as an epigenetic effect [40-43] have been considered with greater interest
because of their potential role in the “missing heritability” from the classical GWAS. This has
raised interest in family-based studies in recent years. With respect to our own interest,
Transmission Ratio Distortion (TRD) can only be studied using a family-based study design,

where information on parental transmission of allele to the offspring is available.

2.3 Likelihood-based approaches in family-based association studies: loglinear, logistic and

conditional logistic models
2.3.1 Likelihood methods for family-based studies using case-parent trios

There are a few likelihood approaches which involve testing for association using the likelihood
ratio test (LRT) or the score test. For our investigation on TRD, we have considered the loglinear
[44], the logistic [45] and the conditional logistic regression models [46, 47]. These family-based

study approaches use the conventional case-parent-trios design and therefore are robust against
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population stratification. They have features in handling complex test scenarios either in the

original framework or through later extensions, which will be explained in detail in section 2.3.5.

2.3.2 Weinberg et al. (1998) loglinear model

Weinberg et al.’s [44] loglinear model is based on the multinomial likelihood of a 15-category
genotype combinations, indexed by the mother (M), father (F) and child genotype (C) counting
the number of copies of minor alleles in these individuals. The general form of the count

probability for genotype category MFC in this model can be written as:

P[D|MFC]P[C|MF]P[MF]
P[D]

P[MFC|D] =

where P/D|MFC] is the penetrance function of disease given the trio genotype MFC, P/C|MF] is
the inheritance probability of child genotype given parental genotype, P/MF] is the mating type

frequency, and P/D] = d is the disease prevalence.

This loglinear model estimates two relative risk (RR) parameters for child genotype (1 or 2 copies
of minor allele), and two for maternal genotype. The genotype type is coded 0 as homozygous

wild-type, 1 as heterozygous, and 2 as homozygous mutant. The loglinear model is presented as:
log{E [nyrc|D1} = v + log(2)mpc=111] + Bilic=1] + B2lic=2] + a1ljm=1] + Q2l[m=2] (2.3.1)

where j indicates the j-th mating type stratum MF, ranging from 1 to 6, based on 6 unique
exchangeable parental mating types as a result of the assumption on mating symmetry. RR for
child genotype 1 and 2 are R, = exp(B,) and R, = exp(B,), respectively. RR for maternal
genotype 1 and 2 are S; = exp(a,) and S, = exp(a,), respectively. This model also provides a
likelihood ratio Chi-square statistic to test for significance of association between marker and
disease. The LRT with child-only effect under a log-additive relative risk model is asymptotically
equivalent to the TDT.

Weinberg et al. [44] have shown a possible extension of this loglinear model to further
accommodate parent-of-origin effects by adding two imprinting variables for maternally (Im) and

paternally (Ir) inherited disease allele for a heterozygous child. The category MFC = 111 can then
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be further divided into MFC = 111M (child disease allele inherited from mother) and MFC =111F
(child disease allele inherited from father). The augmented model based on the 16 MFC categories

shown in Table 2.3 can be written as:

log{E [nyrc|D1} = v + log(2)mpc=111] + Bilic=1] T B2lic=2] + a1lim=1] + Q2l[m=2] +

eplp + eyly (2.3.2)

Table 2.3: Components of original loglinear model with child, maternal and imprinting effect:

equation (2.3.2)

Mating MEFC Mating Type | Probability | Genotype | Penetrance Conditional
Type Genotype frequency of frequency | probability Genotype
(MT) P[MF] transmission | P[MFC| | P[D|MFC] frequency
P[C|MF] P[MFC|D]
1 222 p* 1 Uy foRx SolmIr | foRo SalmIr pi/d
2 212 2p3(1—p) 1/2 Uy foRa SoImIr | foR2 SoImIr po/d
211 2p3(1—p) 1/2 Us fo Ri S2 Im fo Ri Sz I po/d
122 2p3(1—p) 1/2 Us foR2 Silmlr | foR2 Sy ImIF po/d
121 2p3(1—p) 1/2 Uy foRi Si Ir fo Ri Si Ir po/d
3 201 p?(1 —p)? 1 Us fo Ri Sz Im fo Ri Sz In ps/d
021 p?(1 —p)? 1 Us fo Ry Ir fo Ry I pa/d
4 112 4p%(1 — p)? 1/4 Uy foRoSiImIr | foR2 Sy ImIF pa/d
111M 4p%(1 — p)? 1/4 Uy fo R1 Si Im fo Ri Si Im pa/d
111F 4p%(1 — p)? 1/4 Uy foRi Si Ir fo Ri Si1 I pa/d
110 4p%(1 — p)? 1/4 Uy fo S fo S1 pa/d
5 101 2p(1 —p)3 1/2 Us fo Ri S Im fo Ri Si Im ps/d
100 2p(1 —p)3 1/2 Us fo S fo S1 pns/d
011 2p(1-p)3 1/2 Us fo Ry Ir fo Ry Ir ps/d
010 2p(1 —p)3 1/2 Us fo fo ps/d
6 000 1-p)* 1 Ug fo fo pe/d
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This model is slightly different from Weinberg et al. [44] which uses a 15 MFC category model.

Both of these two models encounter a multicollinearity problem because:
C S I[C=1] + 21[C=2] = IF + IM

and 1n its full form is not statistically identifiable. The Expectation Maximization (EM) algorithm
can be used with this model to address missing parental origin information for the triply
heterozygous genotype category (MFC = 111). Simulation results showed that convergence can

be achieved.

2.3.3 Weinberg (1999) logistic model

Weinberg later proposed a logistic regression model, termed parent-of-origin likelihood ratio test
(PO-LRT) [45]. It proposed to tackle the problem of missing parental origin information, by using
trios with parents carrying unequal copies of variant allele, so that the parental origin of disease
allele in the child is known. This logistic model is written as:

P[M>F|MT,C]] _
log [W] =« 1[c=1] + B I[M+F>1] +vy (1{M+F=1] - I[M+F>2]) (2.3.3)

where the numerator of the logit is the probability of mother carrying more copies of minor allele
than father, given mating type (MF) and child genotype (C), and the denominator is the probability
of father carrying more copies of minor allele than mother, given the same conditions. A different
parameterization method was used in comparison with Weinberg et al. [44] as shown in Table 2.4,
where R2, Rjand Iv are equal to Rolvlr, Rilr and Im/Ir in Weinberg et al. [44], respectively.
Equation (2.3.3) uses only mating type strata 2, 3 and 5 from Table 2.4.

To calculate the conditional probability of PIM>FMT, C, D] in equation (2.3.3) using values in
Table 2.4, for example with mating type (MT) 2, child genotype 2 and M>F, we have:

P[M =2,F = 1,C = 2|D]
P[M=2,F=1,C=2|D|+P[M=1,F =2,C = 2|D]

P[M > F|MT,C,D] =

foR2S,u,/d S,

P|M > F|MT,C,D| = =
[ | | foR2Sa12/d + foRyS1pp/d Sy, + 54
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where D indicates disease status. Similarly, for the MT 2, child genotype 2 and M<F, we have:

P[M < F|MT,C,D] =

foR2S112/d

S1

foR2Sata/d + foRySipta/d Sy + S,

Table 2.4: Components of logistic model with maternal and imprinting effect: equation (2.3.3)

Mating MFC Mating Type | Probability of | Genotype | Penetrance | Conditional
Type Genotype frequency transmission frequency | probability | Genotype
(MT) P[MF] P[C|MF] P[MFC] | P[D|MFC] | frequency

P[MFC|D]
1 222 p* 1 Uy foR> S, fo Ro Sop/d
2 212 2p3(1—p) |12 Uy foR2 S2 fo R2 Sz po/d
211 2p3(1—p) |12 Uy foRi Solv | foRi Sz In po/d
122 2p3(1—p) |12 Us foR2 Sy fo R2 Si po/d
121 2p3(1—p) |12 Us foR1 S fo R1 Si po/d
3 201 p2(1 —p)? 1 Us foRi SoIv | foRi Sz In pa/d
021 p’(1—-p)? |1 Us fo Ry fo Ry pa/d
4 112 4p?(1—p)? | 1/4 Uy foR2 Sy fo Ro S1 pa/d
111M 4p%(1—p)? | 1/4 Uy foRi SiIv | foRi Sy Im pa/d
111F 4p%(1—p)? | 1/4 Uy foRi S fo Ri Si pa/d
110 4p?(1—p)? | 1/4 Ug fo S fo S1 pa/d
5 101 2p(1—p)% |12 Us foRiSiIm | foRi St Im ps/d
100 2p(1—p)% |12 Us fo S fo Si pns/d
011 2p(1—p)% |12 Us fo Ry fo Ry ps/d
010 2p(1—p)% |12 Us fo fo ps/d
6 000 1-p)* 1 Ug fo fo pe/d

In another example for MT 2, child genotype 1 and M>F, we have:

PIM > FIMT,C,D] = -

P[M =2,F =1,C = 1|D]
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P[M > F|MT, C,D] = foR1S2Iyuz/d _ Syly
o foR1S2Iyz/d + foR1S1uz/d - Saly + Sy

Similarly, for MT 2, child genotype 1 and M<F, we have:

_ foR1S1uz/d _ A
foR1S20yuz/d + foR S1u,/d Soly + 51

P[M < F|MT, C,D]

With the same approach, we obtained equation (2.3.3) for all MFC categories in strata 2, 3, and 5,

as shown in Table 2.5.

Table 2.5: Parents carrying unequal variant allele counts

Stratum MFC genotype | PIM>FMT, C, D] | PIM<FMT, C, D] | P[M>FMT, C, D}/
P[M<FMT, C, D]
2 212and 122 | S/(Si+Sy) S/(SitS)) Sy/ S
2 211and 121 | S2Iu/(S2 I+ S1) | Si/( Salu+ S1) S:In/ S
3 201 and 021 | SaIu/(S2Iu+1) | 1/( S2 Iy +1) S5 I
5 101 and 011 | SiIu/(SiIu+1) | 1/(SiIy +1) S In
5 100and 010 | Si/( Si+1) 1/(Si+1) Si

The predictors in this model (equation (2.3.3)) are more difficult to interpret. The imprinting
variable Im is uniquely present in numerator of rows 2 to 4 in Table 2.5, where the common
condition is C = 1. Therefore, I, = exp(a), where a is the regression parameter for indicator
variable Ijc=1;. The maternal variable S; is only present in numerator of rows 1 to 3, where M+F =
2 or 3. The common condition of these 3 rows are therefore M+F>1. Therefore, S, = exp(f)
where f is the regression parameter of the indicator variable Ipm+r>17. Then, the maternal variable
Si is only in the denominator of rows1 and 2, and in the numerator of rows 4 and 5, and is not
present in row 3. Therefore, a positive indicator variable for rows 4 and 5 is M+F = 1, and a
negative indicator variable for row 1 and 2 is M+F = 3, or M+F > 2, because negative in the log
scale corresponds to division in the original scale. Therefore, S; = exp(y) is in the numerator
when M+F = 1, and in the denominator when M+F > 2, and y is the regression parameter of the

difference between indicator variables Ipv+r=1] and Ipv+r>2;. The model is fitted without an intercept,
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to ensure the predictors estimate exactly the maternal genotype 1 and 2 effects, and parent-of-
origin (imprinting) effect without a reference level. This model does not give an estimate for child

genotype effect.
2.3.4 Cordell et al. (2002, 2004) conditional logistic model

Cordell et al. also proposed a case-parent trio approach, but used the untransmitted allele from the
parents to generate pseudo-controls and fitted them in a conditional logistic regression model [46,
47]. For example, each case-parent trio contains 4 parental haplotypes. Taking 1 haplotype out of
each parent, 4 possible phased child genotype can be created, one of which is the actual case child
and the remaining 3 are pseudo-controls. This is the conditional on parental genotype (CPG)
approach. If we assume parental genotypes are exchangeable, we will have 4 more pseudo-controls,
and this becomes the conditional on exchangeable parental genotype (CEPG) model. However,
not all pseudo-controls formed from either CPG or CEPG approaches are useful in the sense that
only the ones with deducible parental-origin and/or phase information can be retained for fitting
the model. This is due to the restriction on the model being fitted, whether it depends on parental-
origin and/or phase. In such cases, pseudo-controls for which parental-origin and/or phase cannot
be determined are discarded. For the model that does not depend on either parental-origin or phase,
there could be only 1 pseudo-control, using the left-over alleles once the case alleles are removed

from the parental genotype pair.

Notation of trio genotypes for Cordell’s approach [46, 47] is g., gm, gf, for child, mother and
father, respectively, is a notation equivalent to that used in Weinberg et al. [44, 45] as C, M and F.
We retained the notation by Cordell et al. here for easier reference to the original papers [46, 47].
The general form of conditional probability of g, for each trio contributing to the CPG conditional

likelihood can be written as:

P[D|gc.9m.9f] (2 3 4)

P[gc |gm: gr D, f] = Zg’geGg P[D|gc.9m gyl

where g, gm, gy are as defined previously, D is the disease status of the child, ¢ is the event where

parental-origin and/or phase can be deduced depending on the model being fitted, and gc€Gg are
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all the g, that met the condition defined by . For CEPG conditional likelihood, each trio’s

contribution to the conditional likelihood can be written as:

P[Dlgc;gm,gf]
."]z:."];n'.g} €Gg P[D|gc'gm,gf]

Plgclgm 97.D.§] =3 (2.3.5)

where g¢, gm, g5 €Gg are all the (g¢, gm, g5) combinations that met the condition defined by §

under exchangeable parental genotypes. The proofs for equations (2.3.4) and (2.3.5) are shown in

the appendix of Cordell et al. [46].

As shown in Self et al. [48] and Schaid [49], the conditional probability in equation (2.3.4) is
equivalent to that used in the conditional logistic regression with a case of (phased) genotype g,
matched to a number of pseudocontrols of (phased) genotype g¢ where g;€Gg. The likelihood for
the whole dataset is the product of the conditional probability across all N case-parent trios. Note

that the conditional likelihoods in equations (2.3.4) and (2.3.5) are without the nuisance parameters,

Plgcl9m. 95 €] and P[gm, g5, €] [46].

This conditional logistic regression approach provides a natural and flexible framework to
incorporate epistasis (gene-gene interaction), gene-environment interaction, and parent-of-origin
effect, and can handle multi-allelic loci, multiple linked loci, and multiple linked loci in a multiple
unlinked region, without the need to adjust for nuisance parameters [46]. The more restricted
model assuming parental allelic exchangeability generates 4 additional pseudo-controls and
increases power when studying parent-of-origin effect. However, simulation using this method
shows that there is limited power to distinguish parent-of-origin effect from mother-fetal genotype

interaction.
2.3.5 Comparison of Weinberg and Cordell approaches

Cordell and Weinberg’s approaches make no assumption about Hardy-Weinberg Equilibrium
(HWE) or random mating. We consider Cordell’s conditional logistic regression model [46, 47] a
robust and competitive alternative to Weinberg's loglinear [44] and logistic [45] models. Cordell

incorporated many features in her proposed method [46, 47], which cover a myriad of study
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designs, inclusion of genetic and non-genetic factors, several types of genotype parameterization,
and the use of phenotypic data. Multiple extensions of Weinberg et al. [50-54] have also made the
approach more appealing in facing the challenges of complex test scenarios, such as quantitative

trait, missing data, multiple offspring, and multi-allelic locus.

The conditional logistic approach [46, 47] does not require the fitting of the nuisance parameters,
Pl(gclgms 9r, €] and P[gm, gf, €], which is an advantage. However, this approach does not make
full use of missing data. When there is a missing parent, only one pseudo-control can be generated.
When inference is not possible, trios are discarded, which leads to reduced power because some
data is lost. On the other hand, Kistner et al. [51, 55] extended Weinberg’s approach [44, 45] by
using an EM algorithm to retrieve the missing information, and hence make use of the incomplete

trios.

An extension of Weinberg’s approach by Gjessing et al. [50] is the ability to handle multi-allelic
loci as well as multiple linked and unlinked loci with unknown phase, but it requires specialized
software HAPLIN. Cordell’s approach [46, 47] also requires the specialized program PSEUDOCC
to generate pseudo-controls. The features of Weinberg et al. [44] and Cordell et al. [46, 47]

approaches are enlisted in Table 2.6.
2.3.6 Application to study on TRD

In order to extend existing method for handling TRD, we made use of the multinomial probability
of Weinberg et al. loglinear model [44], and separate out the component of transmission
probability of child genotype given parental mating type, P/C|MF]. The details of this extension
are shown in our Chapters 4 and 5. As for Cordell’s conditional logistic regression [46, 47], an
extension is possible but less convenient because the nuisance parameters of the term
P[gc| Im 9> 5] is canceled in the calculation of the conditional likelihood P[gc| Im 95, D, 5]
under Mendelian inheritance [46]. When there is TRD, the resulting conditional likelihood does

not simply depend on the penetrance function P[D| Jer gm,gf] alone, but also a function

of P [gc | Im 95§ ] which complicates the maximization procedure of the regression parameters in

a standard conditional logistic regression framework. Weinberg’s PO-LRT [45] although provides
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estimate for parent-of-origin effect, cannot be used for the extension for TRD because there is no

natural component in the model readily available for such purpose.

Table 2.6. Comparing Weinberg and Cordell approaches

Does not discard trios with

ambiguous parent-origin and

Author Weinberg (extensions) Cordell (extensions)
Model Log-linear model [44] Conditional logistic model [46, 47]
Study design Case-trios Case-trios/matched pseudo-controls
Assumption on HWE No No
Assumption on random mating | No No
Estimation of nuisance Yes No
parameters
Handle maternal-fetal Yes (Sinsheimer et al. [54]) Yes
genotype interaction
Handle Maternal effect Yes Yes
Handle Parent-of-origin Yes Yes
Handle Multiple offspring Yes (Kistner et al. [56]) Yes
Handle Multi-allelic locus Yes (Gjessing et al. [50]) Yes
Handle Multiple Yes Yes
linked/unlinked loci with (Gjessing et al. [50],
unknown phase Shi et al. [53])
Handle missing data Yes No
(Kistner et al. [51, 55, 56]) Discard trios with ambiguous

parent-origin and unknown phase

(Kistneretal. [51, 52, 55, 56])

unknown phase
Handle Gene-environment Yes (Kistner et al. [52]) Yes
interaction
Handle Gene-gene interaction | No Yes
Handle Quantitative trait Yes Yes (Wheeler et al.[57])

Specialized software

HAPLIN for multi-allelic or

multiple  haplotype  with
unknown phase

(Gjessing et al. [50])

PSEUDOCC (in stata) to generate
pseudo-controls (Clayton [58])
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2.4 Current methods on testing for parent-of-origin (imprinting) effect

2.4.1 Overview of the current literature

Imprinting is the phenomenon when the disease allele inherited by the offspring from the father
induces a different level of gene expression at a neighbouring disease gene, compared to disease
allele inherited from the mother, which determines the amount of transcription activities at the
DSL. The differential level of expression changes the penetrance of disease in child depending on
the parental-origin of the inherited disease allele, and hence the RR of the child genotype. It is
believed that more than 1% of the mammalian genes are subject to imprinting. Few lines of
methodology in current literature that have been developed to study parent-of-origin effect in
association studies. These include extensions of the TDT, the Parental Asymmetry Test (PAT), the
loglinear, logistic, and conditional logistic models. We now examine the basic principle of these

approaches for binary traits.

2.4.2 Extensions of Transmission Disequilibrium Test (TDT)

Zhou et al. have developed the parent-of-origin effects test (POET), based on a McNemar test, to
detect the presence of imprinting effect for case-parent trios [59]. Assuming an additive genotype
model counting the number of copies of the disease allele (noted D), there are a total of 15 mother-
father-child (MFC) genotype categories with exchangeable parental mating types. These 15
categories can be divided into 3 groups: 1) mother and father carry an equal number of disease
allele, 2) mother carries more disease allele than father, and 3) father carries more disease allele
than mother. The corresponding counts are: Nm-r = N222+Ni12+Ni11+N110+Nooo, Nms>F =
N212+N211+N201+N101+N100, NE>m = N122+N121+No21+No11+No1o, respectively, where Nurc is the

number of trios with maternal (M), paternal (F) and child (C) genotype combination.

When there is imprinting, it is more likely for the affected child in the sample to have inherited the
disease allele from the parent who induces a higher expression level at a neighbouring disease
gene. Under the null hypothesis of no imprinting, counts in groups 2 and 3 should be equal.

Therefore, the POET can be defined as a McNemar test in the form of:
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Np>M—NM>F
POET = ——— 24.1
NT=rr: @4.1)
which follows a standard normal distribution under the null hypothesis of no imprinting. A
significant p-value indicates the presence of an imprinting effect. This test can be performed even
when the marker is not necessarily the DSL. Weinberg [45] has previously noted that when both
parents are heterozygous, the transmissions of disease allele from mother and father are not

statistically independent. In POET, the MF = 11 category is excluded in computing the test statistic.

A TDT-imprinting (TDTI) was proposed in [60], to test for linkage/association in the presence of
maternal or paternal imprinting. This test is a combination of the POET and the regular TDT
statistics. Hu et al. [60] re-define the TDT statistic as the square-root of the original TDT statistic
by Spielman et al. [36]. This TDT test statistic, when both parents are included, distributed as

standard normal under the null hypothesis and can be written as:

uTN—vTN

DT, = VuTN+vTN

(2.4.2)

where u = (u j)}il is a vector of indicator variables representing the categories of the event that

the disease allele is transmitted, v = (v;) >, represents the event that disease allele is not

1
j
transmitted, from either or both heterozygous parents, and N = (Nj)}il is the vector of the
number of trios which belongs to category j (or MFC). Similar indicator vectors uy = (uy j)}il
and vy = (v j)}il are defined for heterozygous fathers who transmit and do not transmit the

disease allele to child, respectively, and u,, and v, for heterozygous mothers. TDT statistics

separately for heterozygous mothers and fathers are defined as:

T nj_q,T
TDT,, = —niml (2.4.3)
’u,l;lN+v,7,;N
and
u]TcN—v}ZN
TDT, = 2 (2.4.4)

f T T
qu+va
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both of which are distributed as standard normal. The combined TDTI statistic is then a
combination of the original TDT, and TDTs for mother and father, with the significance of POET
statistic as an indicator, which determines inclusion of any of these three statistics. This TDTI

statistic can be written as:

TDTI = TDT,,1 + TDT;I +TDT, I (2.4.5)

[POET<-2%] [POET>Z2] [IPOET|<Z%]

where z,1s the two-sided significance level for the POET test for imprinting. Under the null
hypothesis of no imprinting, POET and the TDT,,, TDT; and TDT} are asymptotically independent,
therefore, TDTI is asymptotically standard normal. This TDTI statistic is shown to be more
powerful than TDT when parent-of-origin effect is significant, while less powerful when it is not

significant [60].

When there is only one parent available (either mother or father), the corresponding 1-POET test

for imprinting can be written as [61]:

1POET = W(Ny<c—Ny>c)—(1-w)(Np<c—NFr>c) (2.4.6)

\/WZ (Np2c)+(A-W)2(Npec) = (un+np) " (Ny<c—Nm>c) (Nr<c—NF>c)

where w = , and n¢ is the number of case-father pairs, and n,, is the number of case-mother

nr+nm

pairs. The corresponding 1-TDTT test for linkage/association in the presence of imprinting is [61]:

1TDTI = W(Ny<c—Ny>c)+(1-w)(Np<c—NFr>c) 2.4.7)

\/WZ (NM=0)+(1=-W)2(Npzc)+(Mm+np) " (Ny<c—Nm>c)(Nr<c—NF>c)

which is also distributed as a standard normal under the null hypothesis of no imprinting. Xia [62]
extended the TDTI to test for imprinting effect in complete and incomplete families with one or
multiple children (C-TDTI). Xia [63] later extended the test to address quantitative traits (Q-C-
TDTI).
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2.4.3 Extensions of Parental Asymmetry Test (PAT)

The PAT also uses case-parent-trios to detect parent-of-origin effect. Only the categories that have
heterozygous child, and different maternal and paternal genotypes are used. If we set Nr>m to be
the counts of trios with father carrying more disease allele than mother, and Nu>r to be the counts

of mother carrying more disease allele than father, the PAT statistic can be written as:

PAT = Np>m,c=1—NM>F,c=1 (2.4.8)

JNF>Mc=1tNM>Fc=1

which is distributed as a standard normal under the null hypothesis of no imprinting. Note that the
PAT proposed by Weinberg [45] is the square of this statistic and follows a Chi-square (1)

distribution.

When only one parent is available along with an arbitrary number of children, the 1-PAT was
proposed by Zhou et al. [64] to address the study design and test for imprinting in the presence of

linkage/association. This statistic can be written as:

1PAT = w(Np<cc=1—Nm>c,c=1)+1-W)(Np<c,c=1—NF>c,c=1) (2.4.9)

JWZ (Npmz)+(A-W)2(Np2c)+(m+np) " (Nm<cc=1—~Nm>cc=1) (Nr<c,c=1—NF>c,c=1)

which is also distributed as a standard normal. Similar to 1-TDT, w = and ny is the number

np+ny’
of case-father pairs, and n,, is the number of case-mother pairs. It can also be extended to include
multiple affected offsprings in one family. In the same paper, Zhou et al. [64] proposed C-PAT,
which combines PAT and 1-PAT including complete and incomplete nuclear families, respectively,

in a single test for imprinting effect (full mathematical details can be referred to in Zhou et al.

[64]).

Becker [65] proposed an extension to PAT for nuclear families using haplotype, which is termed
HAP-PAT. The corresponding statistic for HAP-PAT is a McNemar test as the TDT, which can

be written as:

— o —t.)2
HAP — PAT ="leiM (2.4.10)

tizttiz
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where n is the total number of nuclear families in the sample, ti; is the count of i-th haplotype a
child inherited from the father, and ti> is the count of ith-haplotype inherited from the mother,
where i-th haplotype h; € H, for i ranges from 1 to n, representing n possible haplotypes. This
HAP-PAT test for imprinting in the presence of association. With the same study design, Zhou
[66] developed the HAP-1-PAT, by using multiple tightly linked markers for families with only

one parent available. The test statistic can be written as:

_n-1lqn  Witmin—tmi) +(A-w)(trin—triz)]?
HAP1PAT = n Zi=1 w2 (tpinHtmiz) +(1-W)2 (tpig +triz) (24.11)
where the weight w = - s , with n¢ and n,,, as previously defined. The count tmii is number of
f+nm

heterozygous child inheriting haplotype h; from the father, and tmi2 is the number of heterozygous
child inheriting haplotype h; from the mother, both in case-mother families. The counts tri1 and tri2
are the corresponding counts for the case-father families. Zhou [66] further extended it to include

families with either both parents or one parent by the HAP-C-PAT test.

Zhou et al. [67] extended the PAT to include general pedigrees in a method named PPAT, which

uses all informative family trios from pedigrees. The PPAT statistic can be written as:

N nj
Xj=12i2, Sij

PPAT = :
SN [Er, Sij]Z

(2.4.12)

where S;j is the PAT statistic for ith trio in jth pedigree.

Zhou et al. [68] also proposed to make use of control children in families when testing for
imprinting to increase statistical power in detecting imprinting effect in the presence of association.
The PATu and 1-PATu are developed to include families with both parents and one parent
respectively. The C-PATu was then developed to combine the complete and incomplete families
in one analysis, with weighted contribution from case and control families based on disease
prevalence [68]. The extended PATs with inclusion of control-families are shown to have greater
power than using case-families alone, and are robust to population stratification. Furthermore, it
was shown that misspecification of population prevalence of disease can reduce the power of C-
PATu, but will not invalidate it.
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2.4.4 Transmission Asymmetry Test (TAT)

Weinberg [45] constructed the TAT in the spirit of TDT, but for detecting parent-of-origin effect.
TAT is essentially the same as TDT except that case-trios where both parents are heterozygous are
excluded in the analysis. Taking only heterozygous father married to homozygous mother and
heterozygous mother married to homozygous father, the TAT tests for equal transmission of the
disease and non-disease alleles. The resulting test is a 1-df Chi-square McNemar test, as the TDT.

Weinberg [45] used simulated data to show that the power of TAT is poor.

2.4.5 Loglinear model by Weinberg et al. (1998)

Weinberg et al. [44] proposed a loglinear model, with details described in Chapters 2.3.2, as a
competing model with TAT, to detect parent-of-origin effect. Covariates entered into the model
are child and maternal genotypes, and paternal and maternal imprinting variables. Then, a
likelihood ratio test is performed against the background null model with no covariates, which is
termed loglinear likelihood ratio test (LL-LRT). This LL-LRT is shown to have better performance
in terms of power than TAT [45]. The loglinear model in Weinberg et al. [44] results in a LRT

which tests for both association and parent-of-origin effect.

2.4.6 Logistic model by Weinberg (1999)

In later study, Weinberg [45] proposed a logistic model framework that only uses mating types
with unequal copies of disease allele in the father and mother. The resulting model, PO-LRT gives
an estimate for imprinting effect, and maternal effect with one or two copies of disease allele in
the mother, as shown in Chapter 2.3.3. Weinberg [45] noted that when the investigator is certain
that there is no maternal effect, then samples used in PO-LRT are further reduced to trios
containing only heterozygous children. The result is the PAT, which is shown to have better power

than PO-LRT.

2.4.7 Conditional logistic model by Cordell et al. (2002, 2004)

A separate line of research uses conditional logistic regression to test for imprinting effect, where

three pseudo-controls are generated by the untransmitted alleles from parents to an affected child
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[46, 47] (see Chapter 2.3.4). This approach incorporates a wide-range of solutions to address the
relevant statistical issues, including parent-of-origin effect, and many others mentioned previously.
This conditional logistic model conditions on parental genotypes and child being diseased, and
does not include nuisance parameter such as the mating type frequencies. The study shows that
when the condition is relaxed to exchangeable parental genotype, power to detect parent-of-origin
effect is increased. However, this method discards trios with ambiguous parent-of-origin or
unknown phase information, which leads to a 3-9% loss of trios [46]. A simulation study also
reveals that this method has an inflation of Type 1 error. Based on simulation, Cordell et al. [46]
stated that their method shows limited power in differentiating parent-of-origin effect and mother-

child interaction effect.

2.4.8 Application to scenarios with sex-of-parent-specific TRD (ST)

Our goal to study imprinting effect is the situation when ST confounds with this signal. The
approaches described above to extend TDT and PAT [59-69] have exhausted all the possible
development to the existing TDT and PAT methods, with increasing mathematical complexity and
decreasing practicality as different study designs, availability of genotype or haplotype data, and
missing data problem are added to the scenarios. These methods do not have a readily available
component for adjusting Non-Mendelian transmission. Furthermore, the existing framework of
these tests cannot easily incorporate covariates such as child, maternal, and maternal-fetal
genotype interaction effects, which are in close relation with the imprinting effect and are
sometimes being studied together. Therefore, this line of developed methods does not fit our

current and future research goals.

As it is described more fully in Chapter 5, a sex-of-parent-specific offset, which is a slight
modification to the non-sex-of-parent-specific offset proposed in Chapter 4, can be used to address
ST in the loglinear model. It is intuitive and simple to implement with essentially no change to the
original test framework (model and study design). Logistic model by Weinberg does not offer such
property [45]. Similar extension of the conditional logistic model [46, 47] might be possible, but

involves a more complicated likelihood for maximization as explained in Chapter 2.3.6.
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Chapter 3
Transmission ratio distortion:

Review of concept and implications for genetic association studies

3.1 Preamble

This chapter constitutes the basis of TRD in the context of three separate but related genetic fields:
developmental, statistical and population genetics. We defined TRD in statistical term, and
underscored the importance of TRD in these three fields. From a developmental genetics
perspective, knowledge of TRD can provide additional information on the relationship between
genes and growth of organism, and eventually increase the understanding of zygotic and
embryonic development of humans. TRD is also important from a population genetics perspective
because it contributes as part of the evolutionary forces in determining the genetic diversity of the
human genome in different populations. Alleles under TRD are sometimes maintained at a low
frequency due to various evolutionary forces such as recombination, mutation, drift and the
presence of an immunogenetic advantages in later adulthood. The result of which is the rise of rare
variants. There has not been many human studies in identifying TRD loci in the last two decades.
With the number of TRD studies available, many different study designs have been proposed, each
with various statistical tests or models. We described several TRD mechanisms, which require

corresponding study design and statistical model to detect and quantify the TRD signal.

In the 26 TRD studies we investigated, four gene regions (SUPT3H-MIRN586-RUNX2, IGF2/INS,
DMPK, and H19) were replicated across multiple studies in exhibiting TRD. Given the limited
number of studies that were included, we considered this as ample evidence for the existence of
TRD. Most cited studies used family-based study design with population unselected for
phenotypes from major consortia such as Framingham Heart Studies, HapMap project and Centre
d'Etude du Polymorphisme Humain (CEPH). However, these loci found that exhibit TRD are
mapped to known gene regions for various types of diseases even though study populations are
not ascertained for their phenotypes. Other studies used families of affected and unaffected
individuals, or carriers of discase allele to assess the excess in transmission of disease allele with

respect to the non-disease allele.
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The most interesting aspect from our point of view is the role of TRD in the midst of exciting
discoveries of new loci responsible for various disease condition and traits. Even though the extent
of TRD is relatively unknown in human, we noted that the implication of TRD on genetic linkage

and association studies cannot be simply ignored.

The presence of TRD can lead to spurious conclusion on newly discovered disease loci, if not
accounted for. TRD is an often overlooked phenomenon in human genetic studies. This chapter
has brought into light the importance of TRD in three different genetic fields. It also highlighted
the current progress on study designs and methods developed for detecting TRD in the field of
statistical genetics, which serves as a precursor to further development of models to adjust for TRD

in the presence of true linkage/association signals.
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3.2 Abstract

Transmission ratio distortion (TRD) occurs when one of the two alleles from either parent is
preferentially transmitted to the offspring. This leads to a statistical departure from the Mendelian
law of inheritance, which states that each of the two parental alleles is transmitted to offspring with
a probability of 0.5. A number of mechanisms are thought to induce TRD such as meiotic drive,
gametic competition, and embryo lethality. TRD has been extensively studied in animals, but the
prevalence of TRD in humans remains largely unknown. Nevertheless, understanding the TRD
phenomenon and taking it into consideration in many aspects of human genetics has potential
benefits that have not been sufficiently emphasized in current literature. In this review, we discuss
the importance of TRD in three distinct but related fields of genetics: developmental genetics
which studies the genetic abnormalities in zygotic and embryonic development, statistical
genetics/genetic epidemiology which utilizes population study designs and statistical models to
interpret the role of genes in human health, and population genetics which is concerned with
genetic diversity in populations in an evolutionary context. From the perspective of developmental
genetics, studying TRD leads to the identification of the processes and mechanisms for differential
survival observed in embryos. As a result, it is a genetic force which affects allele frequency at the
population, as well as, at the organismal level. Therefore, it has implications on genetic diversity
of the population over time. From the perspective of genetic epidemiology, the TRD influence on
a marker locus is a confounding factor which has to be adequately dealt with to correctly interpret
linkage or association study results. These aspects are developed in this review. In addition to these
theoretical notions, a brief summary of the empirical evidence of the TRD phenomenon in human
and mouse studies is provided. The objective of our paper is to show the potentially important role

of TRD in many areas of genetics, and to create an incentive for future research.
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3.3 Introduction

Transmission ratio distortion (TRD) is observed when one of the two alleles from either parent is
preferentially transmitted to the offspring, leading to a statistical departure from the Mendelian
inheritance ratio of 0.5 [70]. When observed in affected offspring, as conventionally measured by
the transmission disequilibrium test (TDT) [36], this departure is interpreted as suggesting the
presence of linkage and association between the allele and the offspring condition. Allelic
transmission from parents to affected offspring has been used in genetic association studies as one
way to provide validation for case-control results because, contrary to case-controls results,
transmission results are not affected by population structure bias. However, the TRD phenomenon
has also been empirically observed in apparently unaffected offspring [71-77], although the extent
of TRD in the human genome is not well known. The presence of this departure from the expected
Mendelian transmission has an impact on the interpretation of results from linkage and association

studies in affected individuals because it occurs in the general population [72, 73, 75, 78].

TRD could potentially inflate or attenuate the linkage or association signal in identical-by-descent
(IBD) or TDT-like test results, respectively. Two or more alleles are said to be IBD if they are
identical copies of the same ancestral allele. An over-sharing of alleles IBD between related
affected individuals at a specific marker indicates linkage between this marker and the disease
susceptibility locus. A TDT assesses over-transmission of a minor allele with respect to the major
allele of certain marker locus in case (affected) trios. If the result of TDT is significant, it suggests
an association and linkage between the marker locus and the disease locus. Therefore, TRD on a
marker locus that causes excess or deficit in allele sharing and transmission, which acts
independently from the disease status, can lead to false positives or negatives in IBD sharing and
TDT results. In fact, this TRD phenomenon is observed in the general population which includes
both affected and unaffected individuals. Therefore, a linkage or association signal observed in
affected individuals does not necessarily guarantee true linkage and association between marker
and disease loci. Moreover, the presence of TRD leads to significant power loss in such studies.
All these aspects have not been sufficiently emphasized in current literature and will be addressed
in this review. A listing of TRD studies and their results has been included in Table 3.1 and 3.2,

which will be discussed more extensively later in the paper.
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Many biological mechanisms governing the passage from gametic formation to embryonic
development can contribute to TRD [70, 71, 75, 78-82]. These mechanisms lead to differential
survival in gametes, zygotes, and embryos and have implications on developmental genetics.
Moreover, when TRD repeatedly occurs over many generations, the frequency of the allele that is
favored and the alleles at close loci begin to shift upwards in the population [83]; as a consequence,
the disadvantaged allele at the TRD locus gradually becomes rare in the population. We set up a
simulation study to trace the marker allele frequency over time for a locus under TRD influence
[84]. We found that even under a strong departure from Mendelian law of inheritance, it can take
more than 10 generations for the advantaged allele to reach complete fixation, i.e. the allele
frequency becomes 1 (results available from authors). This simulation set up will be discussed in
more detail under the section on population genetics perspective. This observation has implications
for population genetics because it reduces the diversity of the population gene pool over

generations as disadvantaged alleles are eliminated through time [83, 85, 86].

A review of TRD will therefore lead us to address aspects related to both developmental and
population genetics, in addition to statistical interpretation of genetic association studies in its
presence. We begin this review by discussing the possible TRD mechanisms; thereafter, specific
methods to detect TRD in different study designs are presented as they are related to the underlying
biological/developmental processes. We then report results from studies evaluating TRD in the
literature of human (Table 3.1) and mouse (Table 3.2) studies. The importance of TRD as a
confounding factor in linkage and association studies is discussed next. Finally, we briefly address
TRD from the perspective of population genetics linking it with current strategies to uncover rare

variants.
3.4 TRD mechanisms

TRD has been identified and modeled in humans [71-73, 75, 77, 87-90], mouse [91-102],
drosophila [103-105], and lesser kestrel [106]. It is a result of disruptive mechanisms during the
gametic or embryonic development stages (Figure 3.1). These TRD mechanisms include germline
selection during mitosis of germ cells [79], meiotic drive during female and male meiosis [70],
gametic competition of sperm to achieve fertilization [75], embryo lethality due to deleterious

genotype or mother-fetal incompatibility [75], as well as imprint resetting error in parental germ
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cells when the parents are still embryos in the body of the grandparents, or faulty imprint

maintenance at fertilization or in early embryonic development stage of the offspring [80, 89, 90].

Except for the two imprint regulation processes mentioned above, TRD at a marker locus can be
observed from a sample of unaffected offspring and their parents’ genotypes. In this situation, a
deviation from the Mendelian 1:1 ratio of allelic transmission is observed. On the other hand,
imprint resetting error and faulty imprint maintenance both lead to a more complex form of TRD,
in which the deviation of Mendelian ratios is attributed to parent-of-origin distortion. Genomic
imprinting occurs when certain genes are expressed in a parent-of-origin specific manner, through
an inheritance process independent of Mendelian inheritance. For example, the imprinted allele
from the mother is silenced such that only the non-imprinted allele inherited from the father is
activated, and likewise for the imprinted allele from the father and the corresponding non-

imprinted allele from the mother.

Before meiosis happens in parents, imprint resetting occurs in parental germ cells when they are
still embryos in the body of the grandparents, and parental imprints are erased and re-established
according to the sex of the parents [107]. The father's two imprints from the paternal grandparents
are both reset to paternal imprints, while the mother's imprints from the maternal grandparents are
reset to maternal imprints, such that the four sister chromatids resulting from meiosis in either
parent could all have the same imprint. This reprogramming ensures that every sperm cell contains
a paternal imprint and that egg cell contains a maternal imprint. When a sperm unites with an egg
to form a functional zygote, there is one paternal and one maternal imprint, which is essential for
survival. If the erasure process fails, for example in the female, a proportion of eggs would contain
a paternal imprint. An egg having a faulty paternal imprint unites with a sperm carrying a paternal
imprint will form a zygote with two paternal imprints, which is incompatible with survival [80].
Unsuccessful imprint resetting in males leads to the same consequence. Under such circumstances,
several authors have suggested that if the normal function of the imprinted gene is necessary for
successful fertilization or embryo survival, imprinting resetting errors may point to grandparental-

origin-TRD [80, 90, 108]. This will be discussed in detail in the next section.

37



Figure 3.1: Underlying biological mechanisms behind TRD
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@9)] Germline selection - Germ cell life cycle begins when a mature embryo is formed. The germ cells first
start division through mitosis. During mitosis, mechanisms such as mutation, recombination and gene
conversion, collectively called germline selection mechanisms cause cells with certain genotypes to be
produced at a higher proportion than others. Hence, germ cells entering the next stage, meiosis, have an
imbalanced genotype ratio.

(2)  Meiotic drive - Female meiosis is called oogenesis, and male spermatogenesis. Since oogenesis is
asymmetric by nature, only one of the four chromatids becomes a functional gamete, and the others become
polar bodies and are eliminated. The chromatid of the haplotype with structural advantage in facilitating the
orientation and replication during meiosis tends to be transmitted more. This mechanism is called meiotic
drive. Although rare, meiotic drive can occur in male eukaryotes as well. There is another type of meiotic
drive called sex chromosome drive that occurs during spermatogenesis, which leads to unequal production of
X- or Y-bearing gametes.

3) Gametic competition - In some male organisms, sperms survived through meiotic drive tend to compete
with each other to achieve fertilization. This is called gametic selection. Well-studied models of gametic
selection include t-haplotype system in mouse and segregation distorter in drosophila.

(4)  Imprinting errors - Imprint resetting occurs during the postimplantation stage, where parental imprints
are erased and re-established. When an error occurs during imprint resetting, the resulting embryo may be
incompatible for survival. Faulty imprint maintenance during embryonic development can also lead to the
death of embryos.

(5) Embryo lethality - After the embryo is formed, there are other mechanisms of selection termed embryo
lethality. One example of embryo lethality is the Rh+ system where mother and fetal blood types are
incompatible. During delivery when the placenta ruptures, upon the blending of maternal blood with fetal

blood stream, the fetus dies.
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3.5 TRD inference: study designs and methods
3.5.1 Overview

Since TRD involves a deviation from the Mendelian 1:1 ratio of allelic transmission from parents
to offspring, it can only be observed in family-based studies. However, the ascertainment of these
families differs depending on the goal of the study. If the intention of the study is to search for
association or linkage between a marker and a specific disease, families will have been ascertained
based on the disease of interest. Therefore, the presence of TRD becomes a confounding signal
and can be falsely interpreted as a linkage or association signal. On the other hand, if the search
for TRD loci is unrelated to a specific disease but rather the primary research goal, families with
offspring unselected for phenotype or disease should be genotyped. Under these study conditions,
an observed deviation from Mendelian inheritance may be attributed to one of the underlying
biological mechanisms of TRD described in the previous section, or to some others that remain

unknown.

Depending on these biological mechanisms, TRD can be observed in different family structures
unselected for phenotype. Choice of family structure includes 1) two-generation families (parents
and offspring) for the general case of TRD, to assess transmission from parents to offspring or
from parent to female (male) offspring for sex-of-offspring specific TRD, ii) larger families, to
study over-sharing of alleles identical by descent (IBD) between “affected” sib pairs which are
defined to be the "survived" offspring, and iii) three-generation families (grandparents, parents and
child) for grandparental-origin-dependent TRD. The variety of these designs targeting specific
underlying biological processes suggests that different statistical analyses are appropriate in each
of their corresponding contexts. These different scenarios are reviewed in detail in the following

sections.
3.5.2 Detecting TRD in trios with offspring unselected for phenotype

The over-transmission of an allele from heterozygous parents to offspring is conventionally
measured by the TDT in a sample of trios (parents and their offspring) [36]. Figure 3.2 illustrates
this most general form of TRD, where allelic transmission disequilibrium occurs in a non-sex-

specific manner. In this example, observed offspring genotypes do not follow the Mendelian ratio,
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leading to a departure from the expected genotype distribution. This type of TRD can be identified
in trios unselected for phenotype using TDT, which is a McNemar test assessing the null
hypothesis that the transmission of one allele is the same as the transmission of the alternative

allele at a marker locus in heterozygous parents [36].

Figure 3.2: General case of TRD observed in trios, using a TDT approach. Consider a TRD
locus with 2 alleles D and d, where the allelic transmission ratio from parent to unaffected offspring
is D:d=3:1. This figure illustrates all possible offspring genotypes regardless of their sex, arised

from a pair of heterozygote parents.

Parental Dd Dd
transmission D:d=3:1 D:d=3:1
ratio

Offspring genotypes <> <> <>

(not sex-related) DD Dd dd

Expected proportion
under Mendelian 1/4 1/2 1/4
inheritance (D:d = 1:1)

Observed proportion in
a sample of families with
heterozygote parents

9/16 6/16 1/16

TDT in a sample of n=90 families with heterozygote parents

D non transmitted d non transmitted | Total
D transmitted a=0 b=120 120
d transmitted c=60 d=0 60
Total 60 120 2n=180

The TDT tests for the null hypothesis of Mendelian allelic transmission D:d=1:1

Null hypothesis H, :bic = bc?: 05 4°= % =20 P-valueis7.7x10°®
Over-transmission of a marker allele from parents to offspring can also occur in a sex-of-parent-
specific manner. An over-transmission from mother to offspring not observed in father can be
explained by female meiotic drive, whereas an over-transmission from father to offspring not
observed in mother can be explained by male meiotic drive, which is rare, or by gametic
competition (see Figure 3.1). Examples of these TRD mechanisms were seen in two human studies

included in Table 3.1 [81, 82]. In principle, these TRD mechanisms can be uncovered using the
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TDT with trios, stratifying the transmission counts according to maternal or paternal origin, where
the over-transmission from heterozygote mothers or fathers is tested using a TDT, as shown

previously in Figure 3.2.

However, when both parents are heterozygous, TDT on mothers vs. TDT on fathers is no longer a
valid test due to lack of statistical independence between paternal and maternal transmissions [45].
Other tests have been proposed in determining parent-of-origin effect, such as Transmission
Asymmetry Test (TAT), Likelihood Ratio Test (LRT), and Parental Asymmetry Test (PAT).
However, these tests require the absence of prenatal maternally-mediated effect defined as the
effect of maternal genotype on phenotype of child. TAT omits counts when both parents are
heterozygous and therefore ensures independence of parental transmission. However, prenatal
maternally-mediated effect can cause differential weighting of the paternal and maternal
transmission in TAT, and may give spurious parent-of-origin effect. The LRT from a log-linear
model can take into account of both prenatal maternally-mediated and parent-of-origin effect.
However, this test might not be valid if the allele tested is a marker in proximity of a neighboring
disease susceptibility locus instead of a candidate gene itself, due to possibility of recombination

during the formation of gametes where parent-of-origin might be interchanged.

Another approach was proposed with the Parent-Of-Origin Likelihood Ratio Test (PO-LRT); its
aim is to determine parent-of-origin effect by stratifying population according to parental mating
type and child genotype. This stratification removes the dependence on the parental inheritance,
the inherited copies of allele in child, and possible gametic recombination, so that within strata
counts depend only on prenatal maternally-mediated effect and parent-of-origin effect. When there
is assumed to be no prenatal maternally-mediated effect, PO-LRT is reduced to PAT, which uses
only heterozygous cases (child who inherited 1 copy of disease allele) where parents transmit
different alleles to the child, while the other trios are no longer informative because both parents
transmit the same allele. Therefore, for the scenario where diseases are subject to prenatal
maternally-mediated effects and the investigated locus is possibly a marker in proximity of a

disease locus, PO-LRT remains the only valid testing procedure [45].
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3.5.3 Detecting TRD in extended families with offspring unselected for phenotype

A deviation from Mendelian inheritance cannot always be attributed to a biological process
occurring in parents. After the embryo is formed, there are other mechanisms of selection which
are collectively termed embryo lethality (Figure 3.1). In this case, embryos with a specific
genotype are eliminated, leading to an imbalance in the offspring genotypic ratios as illustrated in
Figure 3.3A. Another form of embryo lethality involves an epimutation instead of a DNA mutation,
where methylation on imprinted genes which control gene expression is disturbed. This could
result in spontaneous abortion [109]. Note that, embryo lethality is different from the previous
example of germline selection, meiotic drive, and gametic competition, where the advantaged
alleles are transmitted at a higher proportion while the disadvantaged genotype is still observable

in the offspring generation. A TDT approach using both parents as described above can be used.

An alternative analytical strategy with larger families is to use non-parametric linkage analysis,
which looks at over-sharing of alleles identical by descent (IBD) between “affected” related pairs.
In this specific case, all offspring in the extended families are labeled “affected”, which essentially
means “having survived”, and the objective is to determine regions in the genome linked to the
phenotype defined as “being alive in the last generation” [73]. The over-sharing of alleles IBD
between sib pairs at an embryo-lethality TRD locus is illustrated in Figure 3.3B. Note that over-
sharing of alleles IBD in related pairs can be observed only in families with heterozygote parents
at the TRD locus. In the example of Figure 3.3, homozygote dd individuals could not have survived
and homozygote DD parents could not produce dd embryos implying that a deviation from
Mendelian ratio cannot be detected unless both parents are heterozygote. This constraint has some
consequences in the statistical analysis, as IBD sharing between sib pairs cannot be detected with
doubly heterozygote parents. In this case, multipoint linkage analysis, where IBD status is
estimated from neighboring markers, should be performed. This analytical strategy was used by
Paterson et al. [73] in the Framingham Heart Study cohort, but no loci met the genome-wide
criteria for linkage. Note that embryo lethality can also be sex-specific, which induces a sex-of-
offspring specific TRD. The analytical strategy is the same as above, except that linkage analysis
is performed only in female (respectively male) offspring, i.e., between sisters (brothers) in the
example of Figure 3.3B. However, since one looks at over-transmission (Figure 3.3A) or over-

sharing (Figure 3.3B) of a marker allele while embryos with the faulty genotype could not have
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survived, it is impossible to determine whether the observed TRD occurred in the parents or at the

embryonic stage.

Figure 3.3: TRD caused by embryo lethality. We assume here that the mutant allele is d and that
lethality is autosomal recessive. As a result, dd genotype is eliminated before birth. (A) Deviation
from genotypic Mendelian ratios in offspring, observed in families with heterozygote parents. (B)
[llustration of the IBD sharing between sib pairs in families with heterozygote parents when there
is TRD. Note that in practice, the parental origin of the genotype in these samples needs to be

inferred using neighboring markers.
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3.5.4 Grandparental origin TRD: imprinting errors

In the two types of TRD described above, the deviation in allelic transmission from Mendelian
ratio is inferred based on what is observed in the offspring genotypes (see Figure 3.2 and Figure
3.3A). Another form of TRD can occur which is induced by an imbalance in the grandparental
origin of the offspring’s genotypes. Under Mendelian inheritance in humans, each individual
contains the genetic information transmitted by his/her four grandparents, with an expected
transmission ratio of 1:1:1:1. However, a deviation from this ratio, which is also a form of TRD,
can be explained by a possible imprint resetting errors in the parent’s germline, or erroneous
maintenance of parental imprints in early embryonic development stage. Figure 3.4.1 illustrates an
example of a three-generation family with correct imprint resetting and maintenance. In this
example, we assume that the genetic locus is maternally imprinted, which means that only paternal
alleles are activated in offspring. As we see in Figure 3.4.1, imprint marks have been correctly
reset in grandparents A, B, C and D, so that each egg cell contains a maternal imprint and each
sperm cell contains a paternal imprint. As a result, both individuals in the second generation inherit
a correctly imprinted allele from their mother and a correctly non-imprinted allele from their father.
The same resetting process successfully occurs in the germline of the second generation
individuals (father and mother) before meiosis. Then, when the egg from the mother is fertilized
by the sperm of the father, each of them transmits a correctly imprinted allele to the offspring. As
seen in Figure 3.4.1, there is no deviation from the Mendelian ratio in either the offspring genotypic

ratios, nor in the allelic origin of parents and grandparents.

Figure 3.4.2 illustrates the scenario where an imprint resetting error occurred on allele 2 of the
mother, which is incompatible with embryonic survival. This leads to the deviation from
Mendelian inheritance ratio in the allelic origin of the grandparents. Interestingly, this also leads
to a deviation from the Mendelian ratio in the offspring, which seems to suggest that this
phenomenon could be captured by using the TDT approach in trios described above. For
comparison, Figure 3.4.3 illustrates a similar scenario, but the imprint resetting error occurred on
allele 1 of the father. Similarly, the allele which failed to reset correctly is under-transmitted. A
deviation from Mendelian ratio of the alleles from grandparents can be observed in the offspring.
This observation is the basis of the statistical analyses aiming to uncover TRD induced by

imprinting errors.
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Figure 3.4.1: Example of a three-generation family including 4 grandparents, 2 parents and
offspring. We consider a marker with 2 alleles, denoted as1 and 2. Grandparents are denoted as
A, B, C and D and superscripts at each genotype indicate the grandparent origin. In this example,
correct imprint resetting occurs in the germline before the production of eggs and sperm cells. We

assume here that the marker is maternally imprinted and imprinted marks are represented by a red

triangle.
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Figure 3.4.2: Example of a three-generation family with imprint resetting error at allele 2 in

mother. Same scenario as in Figure 3.4.1, an imprint resetting error occurred in the mother, which

is incompatible for embryonic survival.
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Figure 3.4.3: Example of a three-generation family with imprint resetting error at allele 1 in

father. Same example as in Figure 3.4.1, an imprint resetting error occurred in the father, which

is incompatible for embryonic survival.
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Two analytical strategies have been proposed in the literature to determine the grandparental origin
of TRD. First, a simple binomial test can be used by determining if the proportions of
grandpaternal alleles and grandmaternal alleles are equal in the offspring’s genotypes for a given
marker. In practice, TRD is estimated by the proportion of grandmaternal alleles transmitted to the
offspring [71, 80, 90]. The method of maximum likelihood [110] can be used to estimate TRD in
the presence of missing genotypes, by using neighboring flanking markers as well as map distances
[108]. In cases where embryo lethality due to imprinting error occurs in a sex-of-offspring specific
manner, TRD can also be estimated by using a logistic regression model predicting grandparental
source (dichotomous outcome), where variables such as sex of offspring and mating type of parents
are included in the model [80]. In Yang et al.’s paper [80], grandparental-origin TRD locus was
inferred on the basis of genotypes of the closest microsatellite markers. For non-informative

markers, it was inferred on the basis of the grandparental origin of the flanking markers.
3.6 TRD empirical findings in previous literature

Several studies using some of the designs and methods reviewed above successfully uncovered
numerous TRD loci in human (Table 3.1) and mouse models (Table 3.2). Mouse studies have
been an incentive for much of the research on TRD in humans. The preferential transmission of
the t-haplotype on the segregation distorter gene of the t-complex region on Chromosome 17 is a
well-studied TRD example, and it has puzzled scientists for decades [86]. TRD influence on sperm
motility due to t-complex transmission distortion has been reported [91, 92, 100]. Two studies
have also shown TRD locus on Chromosome 7 that affects imprinting [99, 102], the latter being
associated with a Robertsonian translocation. Another study has investigated the phenomenon of
embryo lethality due to TRD [101] on the Ovum mutant (Om) gene. Developmental disabilities
have been associated with TRD loci on Chromosomes 2 [97] and 7 [102]. A few studies have
found a TRD influence on loci associated with diseases such as Cystic Fibrosis [94] and limb-
girdle muscular dystrophy Type 2A [98]. TRD have also been detected on the SPAM1 gene, which
is believed to influence reduced transcript sharing of spermatids during male meiosis [96]. Casellas
et al. [93] used Bayesian binomial model in search of TRD loci in the mouse and has found
multiple loci on Chromsomes 1, 2, 3, 5, 12, 13, and 14, although none was mapped to specific

gene regions.
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Many of the reported TRD loci in human studies play a role in tumour suppression and have been
found in genes associated with colon cancer, leukemia, bladder cancer, intestinal adenoma, node-
positive breast cancer and other cancers [73, 90, 111, 112]. A number of TRD loci are within gene
regions responsible for imprinting [80, 90, 109, 111], such as DNMT1 on chromosome 12 and H19
on 11pl15.5, leading to loss of imprint and embryonic lethality. Abnormal methylation during
imprint resetting on (i) imprinting centre (IC) genes which regulate the expression of imprinted
gene, such as ICs H/9 and KNCQI1OT1, and on (ii) imprinted gene CDKNIC, has been linked to
embryo lethality mechanisms which result in spontaneous abortion [109]. The result on imprint
region H19 was also a replication of a previous study [90]. A more recent study also found a region
on Chromosome 1 that is responsible for infertility and recurrent pregnancy loss, but is not mapped

to any specific SNP [113].

Many loci with observed TRD in humans are also linked to autoimmunity functions, located on
the Major Histocompatibility complex (MHC) region on chromosome 6 [88, 90], the absence of
which can progress to autoimmune diseases such as Type 1 diabetes, rheumatoid arthritis, or other
diseases. It is also worth noting that the TRD finding on INS/IGF2 gene region has been replicated
in three studies [90, 111, 112]. Two studies have also uncovered TRD on the short arm of human
chromosome 6 in the region of the transcription factor-encoding genes SUPT3H and RUNX2, as
well as the microRNA locus MIRN586, with one SNP (rs12199720) included in both studies
showing statistically significant results [74, 77]. This is interesting as RUNX2 in particular is
involved neoplastic development in hematopoietic lineages [114]. There are also many TRD loci
that are linked to abnormal development in neurogenesis, neuronal differentiation, and other

cognitive function in central and peripheral nervous system [71, 73, 82,90, 111, 115-117].

In assessing the quality of the TRD findings in their study, Paterson et al. [73] speculate about the
SNPs found to have excessive transmission of major alleles; previous studies have shown that
when these alleles have a low Minor Allele Frequency (MAF), it may indicate genotyping error.
However, no such observations apply to SNPs with excessive transmission of minor alleles. The
8 SNPs in this study (included in Table 3.1) that were found to have excessive transmission of

minor alleles were shown to have good genotyping quality as well as significant TDT p-value.
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Meyer et al. [77] also discussed the possibility of genotyping error. Among the three datasets they
analyzed, results from Framingham Heart Study and Hutterite of European ancestry remain
inconclusive. However, for the Austism Genetic Resource Exchange (AGRE) dataset, many
signals extended across multiple SNPs, which is unlikely a result of genotyping error. In Naumova
et al. [90], in order to eliminate the possibility of genotyping error, datasets from different labs
were used to validate the results. Paterson and Petronis [115], Hanchard et al. [88] have raised the

possibility of genotyping error, but did not specifically address the issue.

Mitchell et al. [118] investigated some studies that used TDT-derived association statistics, and
found that genotyping error can lead to false inflation of such statistics if, for example, a number
of homozygous parents are miscalled as heterozygous. However, genotyping error is more of a
concern with genome-wide scan because a large number of SNPs are genotyped at the same time.
Quality control normally needs to be in place to filter out SNPs inconsistent with Hardy-Weinberg
Equilibrium or having low MAF, which should be applied with caution because these features are
expected for loci exhibiting TRD. The majority of the studies we included, with the exception of
Meyer et al. [77], Paterson et al. [72, 119], Paterson and Petronis [115], were candidate gene
analyses, and therefore less prone to genotyping error. Furthermore, we have seen replications of

a number of gene regions exhibiting TRD across multiple studies.

Paterson and Petronis [115], found evidence showing the association between some loci on
chromosome 10 and schizophrenia, as well as bipolar disorder. There are several loci on
chromosome 19q13 showing evidence of TRD which are associated with the severity of cystic
fibrosis phenotype and endophenotype [120]. Three papers have shown multiple gene regions
under TRD influence that are associated with Type 1 and Type 2 long-QT syndrome [121] and
human muscular dystrophy [81, 122], with the gene DMPK replicated in the last two studies. One
paper exclusively studied the SMNI gene, which is associated with human spinal muscular atrophy,
and found significant evidence of TRD [123].There are a few other TRD loci that are linked to
blood coagulation and insulin regulation [76, 111, 112]. Three studies found TRD influence in
regions on Chromosome 2 [124] and 10 [125, 126], that are linked to Inflammatory Bowel
Diseases; the latter two studies each identified the gene DLGS5. There is one study that found a

TRD region on Chromosome 17 that is linked to bone deficiency which express itself as Split-
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hand/foot malformation (SHFM), and SHFM with long bone deficiency (SHFLD) which is a

congenital disorder characterized by severe malformation of the distal limbs [127].

In Table 3.1 and 3.2, effect sizes are shown as reported in the studies. They were estimated using
a variety of measures, such as TRD ratio, odds ratio, relative risk, NPL score, and grandmaternal
allele transmission ratio. In this paper, we define TRD ratio to be the proportion of the preferred
allele transmission counts among all transmission counts from parents to offspring at a specific
locus. For example, if it is three times more likely to transmit advantaged over disadvantaged allele,
the TRD ratio is 3/(3+1) =0.75. The TRD ratios of the advantaged allele over all alleles found in
most studies are within the range of 0.3 to 0.6. There are a few exceptions [82, 109], which show
a more extreme skew. Grandmaternal allele transmission ratios for the two grandparental-origin-
dependent TRD studies are between 0.4 and 0.65 [80, 90], which also represent mild distortions.
Two analyses of TRD from HapMap data are not included in the table, as the list of genes and
SNP reported is quite extensive. The first report [87] shows more extreme skewness in the ratio
than the ones in Table 3.1, up to greater than 0.9 in both YRI and CEU population with p-values
less than 10™. A later analysis searching for TRD from approximately 630,000 HapMap SNPs
[128] reports 1,205 transmission outliers (based on Fisher’s exact test) in 224 candidate genes,
although results have not been adjusted with the Bonferroni correction. However, results from the
permutation tests reached significance level. In this study, as well as the previous ones, genes with
TRD signals were found on a substantial number of biological pathways, including in particular

the protein phosphorylation pathway.

Table 3.1: Transmission Ratio Distortion findings in current literature of human studies

First Author Study Gene Gene Effect size p-value Function  of
population Location genes
(analytical
method)
Klopocki Pedigrees with | BHLHAY 17p13.3 | r*=0.3(12/40)" | - Split-
(2012) affected r*=0.7(30/42)" hand/foot
members malformation
(simple ratio) (SHFM),
SHFM and
long bone
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deficiency

(SHFLD)

Meyer (2012) | Trios from: (partial results- Human
three generation | see Table 2 in growth,
Framingham article for full osteoblastic
Heart Study; | results) 6p21.1 *=0.593 f 1.77e-05™ | differentiation,
Hutterite SNP: skeletal
families  from | rs12199720 morphogenesis,
South Dakota; | (MAF=0.45) height, cleft
families  from | SUPT3H- palate,

Autism Genetic | MIRN586- neoplastic
Resource RUNX2 development
Exchange in
project (TDT) hematopoietic
lineages
SNP: rs748001 | Chr 10 | r*=0.585 4.55e-08™ | -
(MAF=0.36)

Honeywell One five- | - Region | r*=0.15(13/88) | - Infertility,

(2012) generation between | r'=0.71(15/21) recurrent
family of 1p36.21 pregnancy
carriers and & loss,  higher
non-carriers of 1q42.13 risk for
pericentric congenital
chromosome abnormalities
inversion (ratio in offspring
of miscarriages)

Shoubridge 39 multi- | ARX Xp213 | r* 0.002 Non-

(2012) generation =0.6(149/247)™ syndromic
families  with intellectual
affected and disability,
unaffected infantile
individuals spasms or
(Pearson’s  y2 serious  brain
test) malformations

Liu (2012) HapMap phase | ATGI6L1 2q37.1 r*=15/38™ 0.19 Inflammatory
3 trios | (SNP:rs379210 r*=21/32f 0.077 Bowel

6, MAF=0.48) 2 =13/40™° 0.027 Diseases
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(Pearson’s %2 2 =23/40% 0.34
test) LRP2 Chr2 r’= 0.029me:mt* |\ Donnai-
(rs6733122) 0.65(228/353) Barrow
syndrome
(DBS) and
facio-
oculoacoustico
-renal
syndrome
(FOAR)
ZNF133 Chr20 r'= 0.018mom* | osteoblastoma
(rs926716) 0.37(176/473)
Henckaerts DZ twin pairs | DLGS 10g23 alive: reccttt= - Inflammatory
(2010) with 1 died in 0.78:0.2:0.02 Bowel
uterus (ratio of (32:8:1) Diseases
genotype) dead: reeetti=
0.8:0.16:0.04
(56:11:3)
Santos (2009) | Hap Map YRI | SUPT3H- 6p21.1 ri= 3.0e-04™m* | Human
and CEPH trios | MIRN586- 0.94(16/17)% | 0.0233™™ | orowth,
on Chr 6 (TDT) | RUNX2 r’= osteoblastic
rs6899845 0.64(7/11ym differentiation,
(MAF=0.457) skeletal
morphogenesis,
rs2677101 6p21.1 r’= 2.0e-04™* | height, cleft
(MAF=0.45) 0.94(17/18) palate,
neoplastic
development
in
hematopoietic
lineages
Paterson Multi- Intergenic 1q21.1 OR=0.58 7.7e-06™ | Cognitive
(2009) generation NBPFS8, HFE2 development
families and  tumour
unselected  for suppressor,
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phenotype  in
Framingham
Heart Study

(NPL, TDT)

iron

metabolism

TMEM37 intron
I

2q14.2

OR=0.47

1.0e-06 ™

Resistance to

pathogens

SAG intron 6

2q37.1

OR=0.49

7.4e-10 ™"

Night
blindness in
Oguchi

disease

MEGF10 Intron
6

5433

OR=0.35

8.2e-07 ™"

Brain

functions

SPOCK]I intron
2

5q31

OR=0.36

1.4e-06 ™

Unknown

C9orf3 intron 5,

9q22.32

OR=0.45

2.4-07m™

Lipid,

apolipoprotein

DBCI,
CDK5RAP2,
MEGF9

9q32-
q33,
9q33.2,
9q32-
q33.2

OR=1.36

3.7e-06 ™"

Bladder
cancer,
neuronal
differentiation,
central and
peripheral
nervous

system

CTDP] intron 4

18923

OR=0.75

1.8e-06™

Congenital
cataract, facial
dysmorphism,
peripheral

neuropathy

Bettencourt

(2008)

102 Sib-pairs
with parents of
normal families
(Pearson’s 2

test)

ATXN3

14q32.1

1 =0.569
r*=0.581"%
@ =0.557m°

0.013
0.04
>0.05

Machado-
Joseph disease
(MJD), also
known as
Spinocerebellar
ataxia type 3
(SCA3)

Sazenova

(2008)

Tissues from 84

spontaneous

HI9

11p15.5

Imprinting

centre control
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abortions from synthesis  of
women IGF2
CDKNIC 11pl5.5 | r*=0 - Tumour
suppressor
KNCQI10T1I 11p15.5 | r#=0.095 - Imprinting
centre control
activation  of
imprinted
genes
including
CDKNIC
Yang (2008) Three- DNMTI Chr12 2 =0.17 cehortl | (. 068 Imprinted
generation (D12Nds2 ™) 0.016™ region
mouse families
and CEPH
families
(Binomial exact
test, logistic
regression)
Becker (2007) | 37 Nuclear | rs1982073 19q13 2 = (.33 cohor2 | 0.000145™ | Control
family with | (TGFpI, severity
affected twins or | MAF=0.445) phenotype and
siblings, and | rs1800469 19q13 - endophenotype
discordant sibs | (TGFpI, of cystic
(HAP-PAT test) | MAF=0.359) fibrosis (CF)
DI19S112 19q13 - 0.0304™*
(DMPK)
De Rango | Concordant and | TNFb and | 6p21.3 - 0.007¢ -™ | Tumour
(2007) discordant TNFa 0.06° ™ necrosis
cousin-pairs (death)
with centenarian | HSP70.1 6p21.3 - Graft-vs-host-
parents disease
(likelihood ratio | SIRT3 11pl5.5 | - 0.0154mt-, Node-positive
test) 0.0396“™ | preast cancer
HRASI 11p15.5 | - Oncogene
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IGF2 11pl5.5 | - Intestinal
adenoma
(tumour)

INS 11pl15.5 | - Hyperinsulinism
(above normal
insulin level)

TH I1pl5.5 | - Neuropathology

- 14932 r*=0.469; - Imprinted

0.539f; 0.401™ region in
human

Friedrichs Case-trios and | DLGS5 10 OR°®=1.75 0.025 Inflammatory

(2006) control-trios (rs1248696) OR=1.52 0.021 ™ bowel disease
(multivariate MAF=0.042 OR =2.49™ <0.001 ™ (IBD)
logistic OR = 1.01f 0.979 ™
regression)

Imboden Nuclear family | KCNQI 11pl15.5 | r*=0.57 <0.001 ™ Long-QT

(2006) with carrier =0.59f <0.001™" | gyndrome
parents of Type r*=0.54™ >0.05™ Type 1
1 and Type 2 | KCNH2 7q36.1 r* =0.57 0.001 ™ Long-QT
long-QT =060 <0.001 ™+ syndrome
syndrome r=0.53™ >0.05 ™" Type 2
(Pearson’s 2 r fvsm=( 57 0.02m
test)

Dean (2006) 335 DMPK 19q13.3 | r*=0.59 0.0004™ Human
preimplantation r* =0.6"° 0.0055™" muscular
embryo selected r* =0.59% 0.03m dystrophy
on r* =0.55™ 0.2m
heterozygosity r* =0.65° 0.0001™
of parents
(Binomial exact
test)

Hanchard Trios unselected | CLIC-2230 (in | 6p21.3 r*=0.6(70/116) | 0.025™" Autoimmunity,

(2006) for phenotype | central MHC) regulation of
(Pearson’s 2 cellular
test) processes

Botta (2005) Trios of fetus | SMNI 5q13.2 r’= 0.016 Spinal
with 0.45(284/628) muscular
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heterozygous atrophy
carrier (SMA)
parents(Pearson
’s 2 test)
Infante-Rivard | Case-trios and | MTHFR 1p36.3 RR=0.73 <0.005 ™ occlusive
(2005) control-trios of vascular
unaffected disease, neural
newborns tube defects,
(TDT) colon cancer
and acute
leukemia
Factor V Leiden | 1923 RR=0.38 <0.002 ™" blood
coagulation
cascade,
hemorrhagic
diathesis,
thrombophilia
Factor 1] 11pll RR=0.24 <0.001 ™" blood
(prothrombin) coagulation
cascade,
maintain
vascular
integrity
during
development
and postnatal
life,
thrombosis
and  dyspro-
thrombinemia
Paterson Two-generation | - Chr2 NPL=1.9™ 0.0011 ™ -
(2003) Framingham cM200
Heart Study | - Chr4 NPL=1.86™ 0.0013 ™ -
families cM168
(multipoint NPL | - Chr10 NPL=2.05 7.5e-04 ™
LOD score) cM14
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- Chrl7 NPL=1.82f, 0.0017 ™, | -
cM65 | 0.59™ 0.037™"
- Chrl7 NPL=0.61", 0.0420 ™ | -
cM86 | 1.77™ 0.0016™
- Chr20 NPL=1.10 0.0087™ | -
cM96
- Chr22 NPL=1.75 0.0016™ | -
cM41
Naumova Three- IGF2 11p15.5 | Tgm®=0.62™ - Intestinal
(2001) generation Tgm®=0.50f adenoma
CEPH families (tumour)
(Exact binomial | H19 11pl5.5 Loss of
test) imprinting of
IGF2
MASH?2 11pl5.5 Neuronal
(ASCL2) precursor  for
central and
peripheral
nervous
system
IGFR2 6q25- Tgm®=0.6™ - Autoimmune
(FCGR2B) q27 Tgm®=0.59f disease
Paterson Two and three- | - 10p11- | NPL=1.84 0.04 ™ Chromosome
(1999) generation pl5 10 was known
CEPH families to be
(Multipoint associated
NPL) with
schizophrenia,
bipolar
affective
disorder,
obesity, Type
1 diabetes and
alcoholism
Eaves (1999) Nuclear family | IGF2 11p15.5 | 1*=0.54 0.002 Intestinal
with  children adenoma
(tumour)
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unselected for | INS 11pl5.5 Hyperinsulinism
disease (TDT) (above normal
insulin level)
Magee (1998) | Pedigree of | DMPK 19q13.3 | r*=0.63 0.007 Myotonic
affected  and r*=0.583% - dystrophy
unaffected sib- r*=0.687™ 0.009 (DM)
pairs with
parents
Naumova Three- DXS1068 Xpll.4 | Tgm®=0.62 0.0032m** Duchenne
(1998) generation Tgm®=0.52 0.628 m* muscular
CEPH families dystrophy,
(Exact Binomial Cognitive
Test) functions,
Typel
Diabetes
Riess (1997) Nuclear family | SCA! 6p23 r* =0.85 <0.05 spinocerebellar
of affected and ataxia Type 1
unaffected SCA3 14924.3 | r*=0.62 <0.05 spinocerebellar
offspring —q31 r* =0.73m° <0.01 ataxia Type 3
(Pearson’s 2
test)

Table 3.2: Transmission Ratio Distortion findings in current literature of mouse studies

First Author | Study Gene Gene Effect size p-value Function  of
population Location gene
(analytical
method)
Bauer Wild  type | NME3 Chr 17 NME™:0.352 0.0095 Sperm motility
(2012) and mutant | (distorter vs control:0.27
strains of | locus), t- NMEY:0.59 0.0006
mouse testis | complex vs control:0.443
(Pearson’s SMOK1
¥2 test) (responder
locus)
Casellas Mouse 1$3663003% | 1 PM=0.358 4 3P0, me+ -
(2012) crosses MAF*
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(Bayesian 153694780 4 | 3 PM=0.330 3.9 PO, mtt
Binomial MAF*
Model) 1s3698001 | 12 PM=0.312 4.1 PO, me+
MAF*
153678616 4 | 13 PM=0.331 4,50, met
MAF*
D14Mit44 4 | 14 PM=0.562 29976,7 PO- me+
MAF*
rs13476816% | 2 PM=-0.318 1.3 PO, me+
MAF*
16289734 | 3 PM=-0.193 21.7 PO, me+
MAF*
rs13482595 5 PM=-0.163 1.8 PO mt+
ad, MAF*
Eversley Two- rs8260829 Chr 7 r*=0.591 0.005 ™ imprinted
(2010) generation MAF* genes
mouse influencing
families fetal and
(Pearson’s placental
¥2 test) growth,
neurological
disorder
rs4228380 Chr 10 r*=0.317 3.0e-08 ™" -
MAF*
rs3707772 Chr 11 r*=0.353 8.0e-06 ™" -
MAF*
Veron Mouse Ted 1-4 | Chr 17 Tcd™:0.766 1.27e-14 Sperm motility
(2009) sperm cells | (distorter Tcd™:0.555 0.789
(Pearson’s locus) t-
%2 test) complex
SMOK1
(responder
locus)
Haston Cystic D5Mit239 Chr5 pwtwymuimu/mu_ 5.7e-15 Cystic fibrosis
(2007) fibrosis 0.21:0.41:0.385nef
Mouse D5Mit239 Chr 5 I.wt/wt:wt/mu:mu/mu: 0.035
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0.12:0.6:0.27™ <t

Ccrosses
(Pearson’s DXMitl6 Chr X pwtwymuimu/mu_ 3.0e-35
¥2 test) 0.31:0.27:0.42 Hnef

Bauer Wild  type | FGD2 Chr 17 Fgd2™:0.35 - Sperm motility

(2007) and mutant | (distorter Fgd2%0.47 0.01
strains of | locus) t-
mouse testis | complex Tcr
(Pearson’s (responder
%2 test) locus)

Schulz Normal  vs | (2.8) Chr 2 r*=0.44 0.0013 Developmental

(2006) Robertsonian | Robertsonian °=0.44™ 0.0093 disabilities and
translocation | translocation r*=0.45" 0.0515 mental
crosses  of retardation
mouse
(Pearson’s
%2 test)

Martin- Transgene vs | SPAM1 Chr 6 *=0.67 (2/3) <0.001 Transcript

DeLeon wild-type sharing of

(2005) crosses  of spermatids
mouse
(Pearson’s
¥2 test)

Wu (2005) Two- Ovum mutant | Chr 11 r*=0.561(198/353) | <0.05 Embryo
generation (Om) lethality
mouse
families
(Pearson’s
¥2 test)

Underkoffler | Normal vs | (7.18) Chr 7 | r*=0.54% 0.02 Imprinting

(2005) Robertsonian | Robertsonian | and Chr | r*=0.46™° 0.02
translocation | translocation | 18
crosses  of
mouse
(McNemar
Test)

Taveau Wild  type | CAPN3 Chr 2 pYwhwymumu/mu— <0.01 Limb-girdle

(2004) and mutant 0.17:0.50:0.33 muscular
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crosses  of dystrophy
mouse Type 2A
(Pearson’s

%2 test)

a, TRD ratio of transmission of minor allele vs all alleles
ad, additive model

b, Transmission ratio in grandmaternal alleles

¢, concordant cousin pairs (De Rango 2008)

cc, CC genotype of the SNP

cf, Cystic Fibrosis lethal genotype

ct, CT genotype of the SNP

d, discordant cousin pairs (De Rango 2008)

do, dominant model

e, maternal vs. paternal transmission of risk allele, deviation from Mendelian ratio indicates parent-of-origin
effect

f, female offspring

fa, father

g, ratio of miscarriage (due to embryo lethality)
m, male offspring

MAF, Minor allele frequency

MAF*, MAF for the SNP is not available
mo, mother

ms, microsatellite

mt+, adjusted for multiple testing

mt-, not adjusted for multiple testing

mu, mutant breed

ncf, non-Cystic Fibrosis lethal genotype
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wt, wild-type breed

NPL, non-parametric linkage score

OR, odds ratio of transmitting the major allele
PM, posterior mean

PO, posterior odds: >100, decisive evidence, 10<P0<31.62, strong evidence, 3.16<PO<10, substantial
evidence

RR, relative risk for the newborn genotype using the gene-dosage model
tt, TT genotype of the SNP

-, not available

3.7 TRD as a confounding signal in association or linkage analysis

The presence of TRD at a marker locus in the general population can influence the results of a
linkage or association analysis in the affected population, by over- or under- estimating the true
signal [72, 73,75, 78]. As a result, it would be necessary to detect TRD as a confounding parameter
in studies searching for disease. If TRD occurs at a distal locus from the disease susceptibility
locus (DSL) and is not in LD with the DSL, a linkage or association signal would be detected,
leading to a false positive signal. On the other hand, if TRD occurs on a locus in the vicinity of the
DSL and is in LD with it, it would inflate or attenuate the linkage or association signal, potentially

leading to a false positive or false negative signal.

Greenwood et al. [78] simulated linkage between a marker and disease loci, in a population of
affected brother pairs. In this study, the marker locus is designed to be under influence of both
TRD and linkage. The authors used a TRD ratio, defined as the ratio of a grandparental allele
transmitted from the mother to a male child vs. all grandparental allele transmission, which is
different from our definition of TRD used in this paper. The impact of these conditions was
examined on three parameters: the TRD ratio on the X-linked marker locus, the relative risk of
disease recurrence in an individual given an affected brother compared to the population
prevalence, and the expected IBD sharing of alleles at the X-linked marker locus. Since the marker

locus is X-linked, the maximum IBD sharing between affected brother pairs is 1. It was shown that
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as TRD increases while relative risk remains the same, the expected allele sharing biased away
from 0.5, giving a false positive signal. The results indicate that IBD sharing patterns for affected
sib pairs are strongly affected by TRD and that the estimated statistical significance of a sib-pair
linkage study may be extremely biased.

The same study also showed that the presence of TRD leads to significant power loss. Assuming
a baseline of expected sharing due to TRD, the null and alternative hypotheses together are testing
for additional expected sharing due to linkage. Therefore, expected sharing under the alternative
hypothesis is always greater than or equal to that of the null hypothesis because of the additional
sharing. When the baseline TRD ratio increases, expected allele sharing under both hypotheses
increases as well. However, the difference between the expected sharing of null and alternative
hypotheses decreases as they converge to a maximum sharing of 1. This then makes it more
difficult to differentiate a true signal from a false one at higher values of TRD ratio. As such, Type

2 error increases and power decreases accordingly.

On the other hand, Spielman et al. [36] proposed to use a mixture of case trios (affected offspring
with parents) and control trios (unaffected offspring with parents) to differentiate true linkage or
association signals from false positives due to TRD by applying a TDT to both types of trios. The
study concluded that 1) a statistically significant TDT in case trios suggests evidence of either
linkage and association or TRD or both, 2) a statistically significant TDT in control trios suggests
evidence of TRD or both TRD and linkage/association, 3) a statistically significant TDT in case
trios but not in control trios suggests evidence of true linkage and association, and 4) when a
statistically significant TDT is observed in both case trios and control trios, a significant Pearson
Chi-square statistic of case trios vs. control trios transmission counts suggests evidence of true

linkage and association.

To verify Spielman et al.'s [36] findings, we set up a simulation study for the 4 scenarios described
in Table 3.3. The disease allele frequency (p) in the population was set between 0.01 and 0.05
indicating a rare to moderately rare disease frequency. The marker allele frequency (q) was set at
0.1 as a minor allele. The underlying TRD influence on the marker locus had a ratio between 0.6
and 0.9 for the minor allele, exploring mild to extreme skew of transmission. The recombination

fraction between disease and marker loci (8) was specified as 0.1 in the scenarios 3 and 4 when
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there was linkage and association between disease and marker loci, or otherwise is set to 0.5
(scenario 1 and 2). A pre-specified linkage disequilibrium (LD) parameter () was adjusted for
each disease allele frequency being tested, to ensure positive haplotype frequencies, which depend
on disease and marker allele frequencies. Therefore, LD was set to be slightly less than the
minimum of p (1-q) and q (1-p) when there was linkage and association (scenario 3 and 4), and set
to 0 otherwise (scenario 1 and 2). We simulated random mating in a population of 600,000 trios
(parents and child) with the above specified parameters. Assuming a recessive mode of inheritance
at the disease loci, we sampled 500 case trios and 500 control trios from the simulated population.
We then applied the TDT at the marker, for both the case and control trios. As suggested by
Spielman et al. [36], we further applied the Pearson’s %2 test to assess the excess transmission of
minor allele over major allele in case trios vs control trios. This procedure was repeated 500 times,
and the results of the test statistics were averaged over these 500 simulations. The p-values are
computed accordingly using each of the averaged test statistics over 500 simulations. Our results
support the proposal of study design, statistical method, and conclusions suggested by Spielman
et al. [36], as shown in Table 3.3. This simulation study was repeated for a dominant mode of

inheritance, and the same results were obtained.

Greenwood and Morgan [78] suggested that if TRD is suspected during the planning stage of a
study, the planned sample size of the study needs to be increased by only a small amount to
maintain the desired power to detect linkage. For example, it was shown in simulations that with
an original sample size of 30 sib-pairs, when the TRD ratio increases from 0.5 to 0.62, then adding
11% sib-pairs will approximately guarantee the original power. When the TRD ratio is at 0.7, the
sample size needs to be increased by one third to achieve the same desired power. Similarly, Evans
et al. [129] carried out simulations to estimate the sample size required for various power level and
Type 1 error level to detect transmission distortion in genome-wide studies using trios unselected
for phenotype. They found that when distortion is small (TRD=0.51), one needs hundreds of
thousand trios to achieve 80% power. However, for moderate value of TRD (0.7), only hundreds
of trios are needed. They also showed that the number of trios decreases when the parental

heterozygote frequency increases.
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Table 3.3: Simulation results for 4 scenarios each averaged over 500 simulations based on

TDT & Pearson’s Chi-square test*

Presence of Presence | Significance of Significance of Significance of Pearson’s
linkage and of TRD | TDT in case-trios | TDT in control- Chi-square test of case-
association trios trios vs. control-trios

transmission counts

No No No No No
No Yes Yes Yes No
Yes No Yes No Yes
Yes Yes Yes Yes Yes

*Methods referenced in Spielman et al.(1993)
3.8 TRD from a population genetics perspective

The impact of TRD at the organismal level could become manifest at the population level as the
human genome evolves over time. Therefore, TRD is also a main study objective in a population
genetics context because this genetic force leads to changes in the diversity of the population gene
pool over generations. By using the formulae in Chevin and Hospital [83], we set up a simulation
study designed to trace the marker allele frequency and LD between marker and disease loci over
generations. First we defined marker allele frequency to be the MAF at the marker locus. Disease
allele frequency was set to be rare. Recombination fraction and LD were specified accordingly to
indicate linkage and association. In equation 1 of Chevin and Hospital [83], the change in marker
allele frequency in i-th generation is a function of TRD ratio and marker allele frequency for the
(i-1)-th generation, and as such, the marker allele frequency increases over each generation. LD
in the i-th generation is a function of TRD ratio, recombination fraction, LD of the (i-1)-th
generation, and marker allele frequency at the (i-1)-th generation as seen in equation 8 of Chevin
and Hospital [83]. We simulated this change in LD and marker allele frequency for many
generations and over time, LD decays and marker allele frequency eventually reached fixation
with a frequency of 1 in the population. For a TRD ratio of 0.9, fixation can be reached in about
10 generations. As for a TRD ratio of 0.6, it can take up to 80 generations to reach fixation,

depending on the strength of linkage and association between marker and disease loci. These
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changes in genetic diversity over time culminate to an equilibrium state of involved parameters in
the population, namely the MAF and haplotype frequency at TRD and neighboring loci, and LD

between marker and disease loci [84].

As we have seen, TRD can be detected within two or three generations by observing transmission
patterns from parents and grandparents to offspring. If TRD is persistent through many
generations, a gradual shift in the allele frequency at the TRD locus would be observed. Over time,
the advantaged allele(s) could become fixed in the population, while the alternatives are
completely eliminated. This may provide an explanation as to why studies have been able to
discover only a small number of TRD loci, because alleles at some of these TRD loci have already
become monomorphic. Therefore, no genetic variation could be detected in the population on these
“disappeared” TRD loci. However, through observation on some other identified TRD loci,
disadvantaged alleles still appear to exist at a low frequency and remain polymorphic as rare
variants. This raises questions as to why TRD did not sweep the advantaged allele into fixation.
Several authors have tried to answer this question by suggesting theories on sources of counter-
balancing forces which keep the allele in polymorphic state, such as recombination which breaks
up linkage between distortion driver and responder genes [130], mutation and genetic drift acting
in the opposite direction of the TRD [131], and an immunogenetic advantage for survival in later

adulthood regardless of low fertility of the disadvantaged genotypes [132].

The existence of these rare variants provides us with great insight into the understanding of TRD
and the importance of corresponding gene functions at these loci. Rare disease variants are
currently the focus of genome-wide association studies in search of missing heritability in complex
disorders [133]. It has been hypothesized that rare disease variants could be more functional than
common variants and have high penetrance [134-136]. This suggests a potentially similar role for
disadvantaged TRD rare variants when their gene functions determine survival. Since there is
usually low power to detect rare variants using a standard genome-wide genotyping platform with
feasible sample size, there are intense ongoing research efforts to address this issue [137, 138].
These efforts should lead to a better understanding of TRD and its contribution to the rare variant

phenomenon itself.
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3.9 Conclusion

In conclusion, TRD is a complex and understudied area with challenges such as access to very
large and error-free genotype databases with unselected phenotypes. Recent sequencing studies
have included unaffected subjects as well as affected subjects. Moreover, with the change of focus
back to family-based studies, these data may be conveniently used to the study of TRD. As
discussed, TRD is a phenomenon with potential impact on practical aspects of human genetics
such as correct interpretation of association study results, as well as more theoretical ones, such as
frequency of variants and related population genetics issues. This review aimed at underscoring

the importance and interest of TRD in human genetics.

Ethical standards: The study complies with the current laws of Canada.

Conflict of interest: The authors declare that they have no conflict of interests.
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Chapter 4
Adjusting for Transmission Ratio Distortion in the analysis of

case-parent trios using a loglinear model

4.1 Preamble

Transmission Ratio Distortion (TRD) has been captured statistically in various family-based study
designs using control-trios, or child unselected for phenotypes as enlisted in Tables 3.1 and 3.2 of
Chapter 3, for human and mouse studies, respectively. The detection of deviation from Mendelian
inheritance in apparently unaffected individuals indicates the potential presence of TRD. Methods
to detect TRD include the TDT, the Binomial Exact Test, the Pearson’s Chi-square test, the
multipoint non-parametric linkage test, the Mann-Whitney U test and the multivariate logistic
model. However, all of these methods only provide a p-value for the significance of the TRD signal,
without any mean to adjust for it. We utilized the loglinear model framework developed by
Weinberg et al. [44] and extend it to adjust for non-sex-of-parent-specific TRD (NST). This
loglinear model not only provides a LRT p-value which measures association signal, but also offers
RR estimates for child genotype 1 or 2. Assumptions of this model include Mendelian transmission

and mating symmetry, but not HWE or random mating.

We proposed to take an existing component, P/C|MF], in the multinomial conditional probability
of the loglinear model, and replace it with a category-specific offset based on the transmission
probability of minor allele (t) . This probability is computed from control-trios. Our simulation
showed that without adjusting for the presence of TRD, there is an inflation of RR and Type 1
error, and significant power loss. We also applied the extended model to a real dataset on [UGR
dataset and identified 2 loci that were influenced by TRD, and recovered the correct significance
level. Note that our method depends on the fact that control-trios are available for the computation
of t. However, this might not always be feasible. Sensitivity analysis was conducted to test the
effect of misspecification of t to the estimation of model parameters. The results showed that the
validity of our conclusion is very sensitive to the misspecification. However, for a sample size of
500 control-trios, the 95%CI for the estimated t lies within = 0.07 of true value of t, which does

not lead to significant inflation in the parameter estimates.
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4.2 Abstract

Transmission of the two parental alleles to offspring not following the Mendelian ratio has been
termed Transmission Ratio Distortion (TRD). It is the result of mechanisms occurring during
gametic and embryonic developmental stages. TRD has been well-studied in animal and plant
models, but remains largely unknown in human studies. The Transmission Disequilibrium Test
(TDT) was first proposed to test for association and linkage by estimating departure from the
expected allele transmission proportions in families composed of an affected offspring and the two
parents (case-trios); adjusting for possible TRD using control trios was recommended. However,
the TDT does not provide parameter estimates for different genetic models. A loglinear model for
association studies was later proposed providing relative risk (RR) estimates of disease for the
child and maternal effects. This model assumes Mendelian transmission. Results from our
simulation study showed that case-trios RR estimates using the loglinear model are biased in the
presence of TRD. Power and Type 1 error are also compromised. In this paper, we propose an
extended loglinear model including a separate component for TRD. Under this extended model,
RR estimates, power and Type 1 error are correctly restored. We then applied this model to a real
dataset on intrauterine growth restriction, and showed consistent results with a previously used
approach that adjusted for TRD using control-trios. Our findings suggested the need to adjust for
TRD to avoid spurious results in association studies. Documenting TRD in the population is

therefore essential for the correct interpretation of genetic association studies.
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4.3 Introduction

Transmission Ratio Distortion (TRD) occurs when the transmission of the two alleles from a
heterozygous parent to the offspring violates the Mendelian law. TRD results from disruptive
mechanisms occurring during the gametic or embryonic developmental stages [1], including
germline selection [79], meiotic drive [70], gametic competition [75], embryo lethality [75], and
imprint resetting error [80, 90]. The presence of TRD can lead to spurious conclusions in

association studies.

Studies in animal models have contributed to our understanding of TRD using backcrosses [139]
or F2 crosses [93]. A recent study uses a Bayesian framework to model TRD in boars and piglets
and was shown to achieve appealing statistical performance [140]. In humans, individuals
unselected for phenotype have been studied to detect TRD in the general population, such as in
the Framingham Heart study [73, 77], the Centre d'Etude du Polymorphisme Humain [80, 90], and
the HapMap project [87].

In some studies both case and control populations were analyzed separately to detect a difference
in transmission [117, 125]. For example, Spielman et al. [36] analyzed both case- and control-trios
using the TDT. True association was assessed using a Pearson's Chi-square test. Deng and Chen
[141] proposed a TDT statistic that is the sum of TDT statistics for case- and control-trios.
Previously, we suggested a modified TDT statistics where the two diagonal counts in McNemar
test are multiplied by t and (1-t), respectively, where t is the transmission ratio of the minor allele

in control-trios [142].

Other statistical measures have also been proposed to study affected offspring, such as the
Binomial exact test [80, 81], the Pearson's Chi-square test [116, 121], the multipoint non-
parametric linkage (NPL) test [72, 115], the Mann-Whitney U test [111], and the multivariate
logistic model [80]. These methods and TDT-type analyses only give statistical significance of
linkage and association, but do not estimate the disease relative risk. Newer methods were

proposed to address these limitations.
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The family-based association test (FBAT) [143, 144] and likelihood methods that use case-trios to
construct conditional logistic [46], unconditional logistic [45], and loglinear models [44, 50-52,
54] have also been used in family-based studies. In particular, Weinberg et al. proposed a loglinear
model to detect an association between a marker and disease [44]. This model estimates a relative
risk of disease for the offspring, and assumes Mendelian transmission. It has a probability
component that can be easily extended to adjust for TRD. Our proposed method uses the
transmission ratio of a minor allele in control trios, ideally obtained from an external dataset such
as HapMap, to account for TRD through an offset parameter in the model. This transmission ratio
likely varies across different populations because of the unique evolutionary history each
population carries. However, the HapMap project offers control data on populations with different

ethnicities and hence, can address this issue.

This extended loglinear model was validated through extensive simulation studies. It was also
applied to an intrauterine growth restriction (IUGR) case-control study augmented with a case-
and control-trio study [76, 145], investigating the role of thrombophilic genes in IUGR. The
current literature in support of the association between thrombophilia and IUGR 1is inconsistent.

We explored the possible role of TRD in these inconsistencies.

4.4 Material and Methods

We investigated the association between a bi-allelic disease susceptibility locus (DSL) and a
disease. Assuming an additive model, we defined genotype by the number of copies of the minor
allele. Therefore, homozygous wild-type individuals were coded as genotype 0, heterozygous as

genotype 1, and homozygous mutant as genotype 2.

4.4.1 Loglinear model by Weinberg et al. (1998)

The loglinear model proposed by Weinberg et al. [44] assumes Mendelian transmission and mating
symmetry, but makes no assumption about the Hardy-Weinberg Equilibrium (HWE). For the
purpose of this paper, we considered the simpler form of this model where only parameters

associated with the child genotypes are included.
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In this model, the response variable is the number of trios (counts) for each of the 15 mother-
father-child (MFC) genotype categories, as described in Table 4.1. These 15 categories can be
subdivided into 6 mating types defined by the paired parental genotypes. Covariates entering the
model include two indicator variables for child inheriting one or two disease alleles and five
additional ones corresponding to the first five mating types. The model which includes an intercept

and an offset parameter, is described as:

log{E [nyrc|D]} = ps + Z?=1 pilis=j1 + log(2)Iiypc=111] + Pilic=1] + P2lic=2] 4.1)

where M, F, and C represent the mother, father and child genotypes, respectively; nyrc is the
number of trios with genotypes MFC, and D is the disease status of the child. The p; + pg terms
(1=1 to 5) are the regression coefficients for the first 5 parental mating types in Table 4.1; pg is
the intercept corresponding to the 6™ mating type MF=00; B; and S, are the regression
coefficients for child genotype 1 and 2, respectively such that §; = log (R;) and 3, = log (Rz). Ri
and R» are the corresponding relative risks with respect to genotype 0. This model, which we call
model 1, operates under the assumption of Mendelian transmission. The complete derivation of

this model is shown in Chapter 4.7.1.
4.4.2 Loglinear model with adjustment for TRD

Without the assumption of Mendelian transmission at the DSL, model 1 can be generalized into:

log{E [nmpc|D]} = &6+ Z?=1 $jlis=j1 + log turc + Bilic=1) + B2lic=2] 4.2)

where Typc is the transmission offset P[CIMF], §; + &g terms (i = 1 to 5) are the regression
coefficients for the first 5 parental mating types in Table 4.1, and &g is the intercept corresponding
to the 6" mating type. The coefficients 8; and [, are as defined in model 1. This model, which

accounts for TRD, is denoted as model 2 in the remaining of the paper, with derivation shown in

Chapter 4.7.1.

The offset ),z depends on the TRD ratio t, defined as the transmission probability of a minor
allele from a heterozygous parent to the child. This leads to a different offset in each MFC genotype

category, which corrects for TRD in that specific trio combination. The TRD parameter t can take
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on values either greater than or less than 0.5. The value ¢ = 0.5 corresponds to Mendelian

transmission, in which case models 1 and 2 are equivalent (see Chapter 4.7.1).

We fitted both loglinear models (1) and (2) to obtain estimates of RR for child genotype 1 and 2,
and their corresponding p-values using Z-tests. To assess significance of the association between
the disease phenotype and the DSL, a Likelihood Ratio Test (LRT) was used. We refer to Chapter
4.7.2 for more details about the distribution of the LRT under the null and alternative hypotheses.

Table 4.1: Relative Risk, stratum frequency, and probability of transmission (TRD or Mendelian)

for case-parent trios

Stratum | MFC Genotype Stratum Probability of transmission Relative Risk
frequency (Tmrc)
under HWE TRD Mendelian
1 222 p* 1 1 R>
2 212 2p*(1-p) t 1/2 R
211 2p*(1-p) 1-t 1/2 R
122 2p’(1-p) t 1/2 R>
121 2p*(1-p) 1-t 1/2 R
3 201 p*(1-p) 1 1 Ry
21 p*(1-p)? 1 1 Ri
4 112 4p*(1-p)> t2 1/4 R
111 4p?(1-p)? 2t(1-t) 1/2 Ry
110 4p*(1-p)? (1-t)? 1/4 1
5 101 2p(1-p)* t 1/2 Ry
100 2p(1-p)* 1-t 1/2 1
11 2p(1-p)* t 1/2 Ry
10 2p(1-p)* 1-t 1/2 1
6 0 (1-p)* 1 1 1

75




4.4.3 Simulation study

In order to assess the performance of model 2 with respect to model 1, a simulation study was set
up to generate different TRD scenarios. RR parameters, RR p-values, LRT p-values, Type 1 error,
and power were compared between the 2 models, where the true t value was used in model 2. A
sensitivity analysis was also carried out to test the impact on RR estimates and power when an

incorrect parameter t is used in model 2.

4.4.3.1 Simulation setup

We considered a causal locus under study with no recombination. A random population of 100,000
trios was generated, from which 500 case trios were sampled. Parental genotypes at the DSL were
generated under HWE assuming a minor allele frequency (MAF) = 0.1. A TRD parameter t was
specified which varied between 0.1 and 0.9. Offspring were assigned to diseased or non-diseased
phenotypes with penetrance factors fj, f; and f> for homozygous wild type, heterozygous and
homozygous mutant genotypes, respectively, and only the case-trios were sampled. Such
penetrance values varied depending on the scenario studied. The simulation was repeated 100
times and averaged RR estimates, p-values of the averaged Z statistics for RR and p-values of the

averaged LRT statistics are reported.

4.4.3.2 Measuring impact of TRD on association statistics

We compared the RR (95%CI) values and LRT p-values of both models under two main scenarios:
(1) a common disease associated with a low penetrance disease allele at fp=0.1, f1=0.11, f>=0.15,
and (2) a rare disease with penetrance factors at fp=0.1, f;=0.5, f>=0.5. In scenario (2), a dominant
genotype model was assumed, and the estimated RR (noted as Ri.) is for individuals carrying at
least one disease allele, compared to individuals having genotype 0. To measure the inflation in
RR and LRT p-values in model 1 when there is TRD but it is not modeled, we computed the log
(base 10) ratio of RR and LRT p-values in model 1 with respect to model 2. We also varied f>
fixing f;=0.11 and varied f; fixing f>=0.15 to describe the inflation of LRT p-values with respect
to penetrance factors. To assess the inflation of Type 1 error, we set the penetrance factors to fy =
f1 =f>= 0.1 assuming no association while varying t from 0.1 to 0.9. Using sample sizes of 100,

300 and 500, we computed the Type 1 error of detecting a false association signal. Finally, we
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evaluated the power of both models to detect a true association signal in the presence of TRD. In
this case, we set fo = 0.1, f1 = 0.2, f> = 0.3, varying t from 0.1 to 0.9 in the simulation, with sample

sizes of 100, 300 and 500. Critical value for declaring significance was a = 0.05.

4.4.3.3 Sensitivity analysis

The assumption in the simulation study was that the true value of t in Table 4.1 is known. In reality
one might have an approximate idea of where t lies, or one can compute t in control-trios if they
are available as part of the study or from major consortia such as the HapMap project. We
performed a sensitivity analysis to examine the consequences of a misspecification of the TRD
parameter t on the RR estimates and the power to detect true association. Therefore, we simulated
three scenarios with true association signal, fo= 0.1, f; = 0.2, f> = 0.3, and true transmission ratio
of the minor allele as t=0.3, t=0.5 and t=0.7. For each scenario, model 2 was fitted with the offset
Turc calculated using a selected t varying between 0.1 and 0.9. We then evaluated the log (base
10) ratio of RR obtained from model 2 using true t values vs selected t values that adjust for TRD.

Power was also evaluated.

4.4.4 Application of models 1 and 2 to a real dataset

We applied our model to an intrauterine growth restriction (IUGR) case-control study augmented
with a case- and control- trio study [146, 147], of which data were collected from a Canadian
hospital between 1998 and 2000. The original study was intended to study the relationship between
thrombophilia and [UGR. IUGR in this dataset is defined as birth weight less than the 10th
percentile according to gestational age and sex, based on the national standards. The sample we

used includes 493 case-trios and 472 control-trios with approximately 25% being black.

We examined six thrombophilic genes: Coagulation Factor XIII, Al polypeptide (F1341 [MIM
134570]), Serpin peptidase inhibitor clade E member 1/Plasminogen activator inhibitor type 1
(SERPINEI/PAI-1 [MIM 173360]), Methylenetetrahydrofolate reductase variant A1298C
(MTHFR A1298C [MIM 607093]), Methylenetetrahydrofolate reductase variant C677T (MTHFR
C677T [MIM 607093]), Coagulation Factor V (F5 [MIM 612309]), and Coagulation Factor II (F2
[MIM 176930]). The number of complete case-trios for F13A41, PAI-1, MTHFR A1298C, MTHFR
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C677T, F5, and F2 were 208, 176, 243, 246, 240, and 258, respectively. The number of complete
control-trios for the same genes were 222, 153, 231, 217, 239, and 243, respectively.

We computed the MAF using all complete trios and t using control-trios. We compared our
extended loglinear model 2 with another method proposed by Infante-Rivard and Weinberg [76]
to assess and quantify the extent of TRD in the same IUGR population with the use of control-
trios, specifically for F'5. The difference between our model 2 and the model used in Infante-Rivard
and Weinberg [76] is that the former inserts t as an offset in the loglinear model fitted with case-
trios only, while the latter uses both case- and control-trios (12 strata) adding an interaction term
between child genotype and case status to estimate RR in cases. Our approach has the advantage
of not requiring the collection of control-trios sample. However, the model proposed by Infante-
Rivard and Weinberg [76] remained a reliable validation for our results because it does not depend

on the selected value of't.

4.5 Results
4.5.1 Simulation Study

4.5.1.1 Inflation of RR estimates

When the transmission ratio was Mendelian, i.e. #=0.5, models 1 and 2 yielded the exact same RR
estimates and 95%CI as expected (Table 4.2), and were close to the ratios of the underlying
penetrance factors f7/fo and f>/fo. When testing t=0.3 where the disease allele is under-transmitted,
the RR for model 1 was attenuated excluding 1 in the 95% CI, whereas RR estimates, p-value and
LRT p-value were restored in model 2. Similarly, for =0.7, the RR for model 1 were inflated
whereas this false inflation in RR estimates, p-values and LRT p-values was removed under model
2. As seen in Figure 4.1A, the RR inflation ratio increased and decreased exponentially with
respect to t, implying that even small deviation from ¢ = (.5 can lead to a substantial RR inflation.
The slope of RR ratio for R» was double that of R1, showing that inflation due to TRD affected R»

much more severely than R;.
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Figure 4.1: Inflation on RR and LRT p-values from models 1 and 2

(A) Log ratio (base 10) of relative risk R; and R for model 1 to model 2

(B) Log ratio (base 10) of LRT p-values for model 1 to model 2 when f> = 0.15
(C) Log ratio (base 10) of LRT p-values for model 1 to model 2 when f; = 0.11
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4.5.1.2 Inflation of p-values

We see in Table 4.2 that when TRD is not adjusted for, the significance of the LRT p-value was
inflated in either direction of deviation from ¢ = (.5. In Figure 4.1B, we observed that for /< 0.5,
smaller f; leads to greater inflation, whereas it was the opposite for #> 0.5. This is because when ¢
< (.5, the false association signal is in the opposite direction of the disease effect, whereas when
t > 0.5, they are in the same direction. However, in Figure 4.1C, this effect seemed to be less
pronounced for varying f>, as some of the lines were crossing each other as t changed. This is
because R> had a relatively larger confidence interval than Ri. LRT p-value was less sensitive to

changes in Ro.

Table 4.2: Relative Risk with 95% CI and p-values, and Likelihood Ratio Test p-values of models
1 and 2 when ¢ = 0.3, 0.5 and 0.7 with population parameters:
(D) p=0.1,fo=0.1, f1 =0.11, f> = 0.15 for low penetrance common disease, and

2) p=0.01, fo=0.1, f1 = 0.5, > = 0.5 for high penetrance rare disease.

Low penetrance common disease

t Model R1(95%CI) p-value R (95%CI) p-value ERT
p-value
1 0.47 (0.33,0.65) 6.00E-06 | 0.25(0.06,1.08) 0.07 2.85E-06

03 2 1.09 (0.78,1.51) 0.59 1.34 (0.30,5.84) 0.51 0.28

1 1.10 (0.81,1.51) 0.53 1.40 (0.51,3.89) 0.43 0.26

0 2 1.10 (0.81,1.51) 0.53 1.40 (0.51,3.89) 0.43 0.26
1 2.52(1.78,3.57) 2.00E-07 | 8.01(3.18,20.17) | 8.27E-06 | 6.57E-10

07 2 1.08 (0.76,1.53) 0.7 1.47 (0.58,3.70) 0.42 0.25

High penetrance rare disease

t Model Ri12(95%CI) p-value ERT
p-value

1 2.44 (1.20,4.94) 0.014 0.025
03 2 5.71 (2.82,11.57) 1.29E-06 8.62E-07
1 5.58 (2.55,12.21) 1.55E-05 6.55E-07
0 2 5.58 (2.55,12.21) 1.55E-05 6.55E-07
1 13.73 (4.99,37.79) 1.57E-07 2.62E-13
07 2 5.87 (2.13,16.16) 0.000504 2.23E-05
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Note: Models for high penetrance rare disease were fitted assuming a dominant genotype model

and R represents the RR of cases carrying 1 or 2 copies of disease allele.
4.5.1.3 Inflation of Type 1 error

Figure 4.2A shows the theoretical Type 1 error by computing LRT using a Non-Central Chi-square
distribution, with a non-centrality parameter (NCP) calculated based on equation 4.8 and 4.9
derived in Chapter 4.7.2. Figure 4.2B shows the empirical Type 1 error we observed by fitting the
loglinear model. The empirical results shown in Figure 4.2B are similar to our theoretical results
in Figure 4.2A. Type 1 error of the TRD-adjusted model 2 remained the same across all t values
(i.e. close to 0.05), and were exactly the same for all sample sizes. Therefore, NCP for model 2
does not depend on sample size or t, which means that this model is robust to the effect of TRD
when the null hypothesis is true. In Figure 4.2A and 4.2B, we see that Type 1 error for the
unadjusted model 1 increased as t deviated from 0.5 which led to a false inflation of the association

signals.
4.5.1.4 Power loss

Relatively consistent results were obtained between theoretical power (Figure 4.3A) and empirical
power (Figure 4.3B). Power for sample size n = 100 was poor in both Figures 4.3A and 3B, which
was true even TRD was absent. We also noticed that model 2 gave relatively stable power for the
most part in the range of t, while model 1 power suffered from the effect of TRD. However, when
t was lower than 0.2 or greater than 0.5, model 1 power was greater than that of model 2. This is
because a strong TRD actually inflates the power of detecting an association signal in either
direction. Power for model 2 decreased slightly when ¢ > (.7, which suggested that the TRD offset
overcompensates the inflation in power. However, a TRD ratio as large as 0.9 is rare, but even

when ¢ = 0.8, the power was still maintained around 0.8 for sample sizes of 300 and 500.

Documented results for TRD studies of human and mouse shown in Chapter 3 (Tables 3.1 and 3.2)
mostly show minor allele transmission ratio between 0.3 and 0.8. The power for our model to
detect association was still adequate for a t between 0.2 and 0.8, with a sample size greater than
300 case-trios, from a randomly generated population with MAF around 0.1. For rare variants,

which is conventionally defined as frequency < 1% in the population, sample size has to be in the
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thousands in order to achieve a similar level of power. A dominant model can also be used when

mother-father-child genotype category counts with child genotype 2 are small.

Figure 4.2: Type 1 error plot of models 1 and 2 for sample size 100, 300, and 500 when there is

no association between disease and DSL where fo = f; =f> = 0.1.

(A) Theoretical results from equations 4.8 and 4.9 in Chapter 4.7.2

(B) Empirical results from simulation
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Figure 4.3: Power plot of models 1 and 2 for sample size 100, 300, and 500 when there is true
association between disease and DSL where fop = 0.1, f1 = 0.2, f> = 0.3.
(A) Theoretical results from equations 4.8 and 4.9 in Chapter 4.7.2

(B) Empirical results from simulation
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4.5.1.5 Sensitivity analysis: Inflation in RR estimates

We observed that using an under-estimated t value less than the true t in model 2 led to some
inflation in the RR (log ratio greater than 0), while an over-estimated t (greater than the true t value)
led to attenuation (log ratio less than 0) in the RR, as seen in both Figures 4.4A and 4.4B for R,
and R», respectively. We also noted that the inflation curve of the log RR ratio was linear, which
means that the inflation and attenuation are exponential in nature for both R; and R,. When the
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difference between the true and selected t was + 0.1, the inflation ratio lied between 10 %% =1.78
and 10 %% = 0.56 for R;. When the difference was greater than + 0.1, the inflation ratio became
more pronounced. The slope of the log RR ratio curve for R> in Figure 4.4B was twice that of R;
in Figure 4.4A. Therefore, the inflation or attenuation in R> was more severe than in R;. Results

from our model 2 were highly sensitive, on an exponential scale, to a correct input of t value.
4.5.1.6 Sensitivity analysis: Attenuation and inflation in power

In Figure 4.4 (C), (D) and (E), for # = 0.3 and 0.5, the power to detect true association was
completely restored when the selected t was equal to the true t. However, setting the selected and
true at ¢ = 0.7, the power for detecting true association was not completely restored. This was
consistent with what we observed in the previous section of power analysis. We also observed that
there was a decrease in power when (1) true ¢ = 0.3 but the selected t was between 0.3 and 0.6, (2)
when true ¢ = (.5 and the selected t was between 0.5 and 0.8, and (3) when true ¢ = (.7, while the
selected t was between 0.7 and 0.9. This is due to the partial cancellation of the true signal by the
selected t. From these observations, we see that power was also highly sensitive to correct t, even

when selected t was slightly greater than the true t.
4.5.1.7 Accuracy of estimated t from control-trios populations

We estimated the mean and standard deviation of the empirical t over 100 iterations in a simulated
control-trios population with sample size 500. The 95% CI of the estimated t approximately lies
within = 0.07 of true t value. Increasing the sample size beyond this point did not significantly
change the 95%CI. This uncertainty in the estimation of t cannot be built into the likelihood under
the current model framework because it is included in the model as an offset, not a variable.

Approaches that could account for this uncertainty would likely suffer a price in statistical power.
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4.5.2 Application to a case-control, case- and control-parent trio study of IUGR newborn

carried out in a Canadian hospital

The MAF calculated from all complete trios in our sample was 23.8% for F1341, 46.4% for
SERPINE1/PAI-1,27.1% for MTHFR A1298C, 28.9% for MTHFR C677T, 2.92% for F'5, and 1.68%
for F2 (Table 4.3). Except for MTHFR A1298C, all MAF were close to the expected range from
the literature [ 146-151]. Discrepancies were likely due to the fact that the samples were genetically

heterogeneous with approximately 25% being black.

4.5.2.1 Application to 6 IUGR genes

Applying models 1 and 2 to the IUGR dataset [145], we see in Table 4.3 that FI3A41,
SERPINE1/PAI-1 and MTHFR C677T all had transmission ratios around 0.5. MTHFR A1298C
had slightly lower transmission of the disease allele with # = 0.45. However, F'5 and F2 had
transmission deviate significantly from the Mendelian ratio with # = 0.36 and 0.11. Genotype
relative risks from the loglinear model showed no significant association for FI341,
SERPINE1/PAI-1, MTHFR A1298C and MTHFR C677T variants (Table 4.3), similar to previous
reports [145, 152]. Due to the small number of cases with 2 copies of F5 and F2, these two genes
were analyzed under a dominant model. We see that for 75, RR, RR p-value and LRT p-value
changed from insignificant (model 1) to significant (model 2), suggesting a deleterious effect of
the minor allele. For /2, we observed the opposite trend (Table 4.3).The change in significance of
the F5 statistics means that the minor allele is under-transmitted, and operates in the opposite
direction of the effect on disease. The change in significance of the F2 statistics shows that TRD
acts in the same direction as the effect of the minor allele on disease. The change in risk after
adjustment for TRD was coherent with the expected effects from these variants given that they are

known to affect placental circulation and thus potentially fetal growth.
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Figure 4.4: Log ratio of Relative Risk, and power with selected t (ranging from 0.1 to 0.9) vs true
t in model 2

(A) Log ratio of Relative Risk R;

(B) Log ratio of Relative Risk R»

(C) Power of model 2 when true ¢ = 0.3

(D) Power of model 2 when true ¢ = 0.5

(E) Power of model 2 when true ¢ = 0.7
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Table 4.3: RR estimates, LRT p-value of adjusted model 2 and unadjusted model 1 for 6

thrombopilic genes, with MAF, transmission ratio (t) and number of genotype 2 cases (G2).

GRR Model
Ry R> LRT
Gene Model | MAF t G2 R (95%CI) R> (95%CTI)
p-value p-value | p-value
0.97 1.41
1 024 | 0.54 16 0.89 0.354 0.57
(0.66,1.43) (0.68,2.94)
F1341
0.82 1.01
2 0.32 0.98 0.55
(0.56,1.21) (0.48,2.1)
0.80 0.97
1 0.46 | 0.49 42 0.37 0.93 0.53
SERPINE1/ (0.49,1.30) (0.52,1.82)
PAI-1 0.83 1.06
2 0.46 0.86 0.53
(0.51,1.35) (0.57,1.98)
0.84 0.78
1 0.27 | 045 18 0.34 0.46 0.58
MTHFR (0.60,1.19) (0.40,1.52)
A1298C 1.04 1.18
2 0.82 0.63 0.89
(0.74,1.47) (0.60,2.31)
0.95 0.75
1 0.29 | 0.50 19 0.8 0.38 0.67
MTHFR (0.67,1.35) (0.39,1.43)
C677T 0.94 0.73
2 0.75 0.34 0.65
(0.67,1.34) (0.38,1.40)
Dominant Model
LRT
Gene Model | MAF t G2 R 12(95%CI) | p-value
p-value
1.29
1 0.03 | 0.36 2 0.54 0.53
(0.57,2.93)
F5
2.35
2 0.04 0.039
(1.039,5.33)
0.31
1 0.017 | 0.11 0 0.023 0.014
(0.11,0.85)
F2
2.5
2 0.074 0.1
(0.91,6.82)

Note: F5 and F2 genes have been analyzed under a dominant model.
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4.5.2.2 Comparison with TRD analysis in Infante-Rivard (2005) on Coagulation factor V

gene

Infante-Rivard and Weinberg [76] found in their study that both F5 and F2 exhibited evidence of
TRD, as well as MTHFR A1298C but to a lesser extent, which is consistent with our estimation
from control-trios (Table 4.3). Pursuing the analysis of results for F'5, the authors used 6 more
strata from control-trios together with an interaction term between child genotype and case status.
A gene-dosage model (R,=R;%) was used implicitly to adjust for TRD; the RR for cases was
estimated to be 3.59. We also fitted the augmented loglinear model 2 using a gene-dosage model,
and obtained a RR estimate of 2.88 with 95% CI (1.3072, 6.3476). This result is in the range of
the estimate from Infante-Rivard and Weinberg [76]. Of note, the number of trios included in these
two analyses was different as Infante-Rivard and Weinberg [76] used the LEM software with a
built-in EM algorithm for missing data whereas here we only used complete trios. This shows that
results from our extended loglinear model 2, which adjusts for TRD were comparable to those

from the augmented model proposed in Infante-Rivard and Weinberg [76].

4.6 Discussion

Studies using animal models can potentially provide new insights in handling the phenomenon of
TRD. Unlike human studies, the genetic make-up of the animals can be fine-tuned to achieve the
desirable study design. In their study, Casella et al. [140] reported many SNPs with TRD that are

associated with biological processes involved in embryo viability, confirming previous findings

[1].

TRD is much less studied in humans than in animals or plants. In fact, in most genetic association
studies in the current literature TRD remains largely unaccounted for. We previously reviewed a
number of human studies on TRD [70, 73, 75, 87, 88, 90] and discussed the various methods and
study designs in detecting TRD [1].

Here we extend a model used for family-based association studies by accounting for TRD. Our
simulation study showed that when TRD is unaccounted for as in model 1, the RR is inflated or
attenuated exponentially. Power and Type 1 error also suffered greatly. These results support the

need to adjust for TRD. Using a real dataset where the F'5 gene was studied as a determinant of
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IUGR, we validated our model in comparison with an approach using control trios [76]. However,
we noted that the accuracy of our results depended on the correct TRD offset used in model 2. If
we conduct a study with less well-known DSL and diseases, it is unlikely that we will have
information on the TRD factor. However, by leveraging on studies such as the HapMap project

[87], it may be possible to obtain such information for many DSL.

The extended loglinear model we proposed uses the transmission ratio of minor alleles estimated
from control-trios without using actual control-trio data directly in fitting the model. There are
other approaches in the current literature which utilize control-trios data directly in model fitting
[153, 154]. Since genetic materials from fathers is less likely to be available in practice, authors
also have suggested the use of case-mother and control-mother duos [155-157] or supplementing
case-trios with control-mother duos [158], via logistic regression [157] multinomial likelihood
model [155] or retrospective likelihood approach [156]. These methods have the advantage of

testing for violation in Mendelian assumption, but require more genotyping and complex modeling.

The software developed by van Den Oord and Vermunt [159] that was used by Weinberg et al.
[160] to fit a loglinear model is LEM, based on the programming language PASCAL. It does not
readily have a component for including a TRD offset. However, we implemented the TRD offset
method used in this paper in an R package (named TRD) available on the Comprehensive R

Archive Network (CRAN).

Currently, there is no comprehensive knowledge on the extent of TRD in the human genome. As
TRD can potentially inflate or attenuate an association signal, with such large sets of SNPs being
tested, results can be severely biased leading to spurious conclusions. Since TRD over generations
leads to reduced mutational diversity in the genome, many of these TRD loci contain rare variants
which are currently intensively researched. When transmission counts are small, even a slight
distortion could lead to major impact on the outcome of the studies. Given what we observed in
our simulation study, there is a need to sequence a control population to identify and quantify the
extent of TRD in the human genome. Incorporating this information in the analysis of genetic
association studies could provide more accurate and valid estimates. Therefore, we suggest that
knowledge of TRD in genomic databases is essential to determine the relevance of genes in various

diseases.

89



4.7 Appendix

4.7.1 Derivation of model 1 (without TRD offset) and 2 (with TRD offset)

4.7.1.1 Derivation of the general model

Let M, F, and C represent the mother, father and child genotypes respectively. The 15 MFC
genotype categories are described in Table 4.1. We also let nyrcrepresent the number of trios with
genotypes MFC, and let D represent the disease status of the child. The probability of each MFC

cell in Table 4.1 can be written as:

D|MFC]P[C|MF]P[MF]
P[D]

P[MFC|D] = E [""jfc |D] =2 (4.3)

where
P[D|MFC] = Probability that the child is affected given a trio genotype MFC
P[C|MF] = Probability that the child genotype is C given parental genotypes MF
P[MF] = Probability of mating type MF for the parents
P[D] = Disease prevalence

Since we assume that there is no maternal or imprinting effect on the disease status of the child,
we can write P/D|MFC] = P[D|C], which means that the disease status of the child depends solely

on the child's genotype. Furthermore, we re-write:

PIDIC]  _

P[D|C] = P[D|C = O]W— foRc

(4.4)

where fo is the penetrance factor for child genotype 0 and R is the RR of child genotype C, and C

can be 1 or 2.
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Therefore, equation 4.3 can be written as:
log {E |™<|D|} = log PIDIC] + log P[CIMF] + log P[MF] — log P[D]

Using the notations P[C|MF] = typc, P[MF] = uyr, and P[D] = d (see Table 4.1), and using
equation 4.4 for P/D|C], we obtain:

log{E [nypc|D]} = log(foRc) + log tyrc + log pur + logn —log d
=log (%) + log Typc + log pr + B (4.5)
where log(R,;) = S,.

Model 1 described in this paper corresponds to the scenario where t = 0.5 is substituted into 7yp.
(Mendelian transmission). Model 2 corresponds to the scenario where t is not restricted to 0.5,

and can take on values between 0 and 1, excluding 0 and 1.
4.7.1.2 Statistical equation for model 1

In order to fit the model described in equation 4.5, we use different grouping schemes for model 1
and model 2. For Weinberg's model (model 1), the terms log(tyrc) and log (uyr) are grouped
together, which we temporarily term @y plus an offset term, log(2)I[mpc=111], Which only

appears for MFC category 111 (seen in last column of Table 4.4). This is because it is the same
within each stratum, except for stratum 4, where the sum log (tyrc) + log(uyr) in Table 4.4 (last

column) for MFC=111 is 2 times of MFC=112 and 110.

Therefore, to derive the statistical equation for model 1, equation 4.5 can be re-written as

f
log{E [nyrc|D]} = log (Ojn) + Ymr=mf Pmr lmr=ms] + 109 (2) Ijypc=111] + Biljc=1]

B2lic=2]

We can then absorb the constant term f‘an into the summation of ¢, terms and have
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fi
log{E [nyrc|D]} = ZMF:mf log [(Ojn) exp(‘PMF)] Iimp=ms) + log(z)I[MFC=111] +,31I[c=1] +

B2lic=2]

Table 4.4: Stratum frequency, probability of transmission (Mendelian) for case-parent trios

Stratum MF C Stratum Probability of | log(uyr) + log(Tyrc)
genotype | genotype | frequency (uyr) | transmission = @urc + log(2)[ypc=111]
(Tmrc)

1 22 2 p’ 1 log[p']+0

2 2lor12 | lor2 2p°(1-p) 1/2 log[p’(1-p)] +0

3 20 or 02 1 P (1p) 1 log[p’(1-p)’] +0

4 11 2 4p°(1-p)° 1/4 log[p*(1-p)’]+0
11 1 4p’(1-p)’ 1/2 log[p’(1-p)’] +log2
11 0 4p’(1-p)’ 1/4 log[p’(1-p)’] +0

5 10 or 01 Oorl 2p(1-p)’° 1/2 log[p(1-p)’]+0

6 00 0 (1-p)’ I log[ (1-p)"]+0

By noting yyr as the first term of the above equation, model 1 can be written as:

log{E [nyrc|D1} = Xmr=ms Yurlmr=ms) + 109 (2)mpc=111] + P1lic=1] + B2ljc=2]

Since there are 6 strata (S) of MF mating types, by fitting the model with an intercept, we finally

obtain;

log{E [nyrc|D]} = ps + Z}r"=1 pilis=j1 + log(2)Iiypc=111] t Bilic=1] + B2lic=2]

where y¢ = pe and y; = pg + p; forj=1to 3.
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4.7.1.3 Statistical equation for model 2

For model 2, we do not group the terms log (tyrc) and log (uyr) together, but assign log (Tyrc)
as an offset given a specific value of t (Table 4.1), and estimate log (uyr). Therefore, equation

4.5 can be re-written as:

f
log{E [nypc|D]} = log (OTn) + Xmr=ms L0g bur lmp=ms] + 10g Turc + Bilic=1] *+ B2lic=2]

f
= Ymr=ms lOg (0771) tur lmr=ms1 + 109 Turc + Bilic=1] + B2lic=2

By noting log (f(?Tn) Umr as Ay, model 2 can be written as:

log{E [nypc|D1} = Xmp=ms @mr [mr=ms] T 10g Turc + Bilic=1] t B2lic=2]

By fitting the model with an intercept, we finally obtain:

log{E [nypc|D]} = &6 + Z?=1 $jlis=j1 + log Tmrc + Bilic=1) + B2l[c=2] 4.7)
where ag = &g and a; = &g+ &; forj=1to 5and §= stratum.

Therefore, final statistical formula for model 1 is written in equation (4.6) and for model 2 in

equation (4.7).

4.7.2: Non-Central Chi-square Likelihood for model 1 (without TRD offset) and model 2
(with TRD offset)

To perform the Likelihood Ratio Test (LRT) in assessing significance of association between the
disease phenotype and DSL, we set up a null model for both model 1 and 2 with null hypothesis
Ho : f1 = B2 = 0. The corresponding LRT test statistic, which is the difference in deviance
between null and full model, has an asymptotic Chi-Square distribution with 2 degrees of freedom

accounting for the two extra terms R and Ro. Agresti [161] showed that when the null hypothesis
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is not true for a loglinear model, the resulting LRT is a chi-square statistic with a non-centrality

parameter (NCP):

Mg
A =2n Y yrc Tyrc(Mg)log (HML())

tmrc(Mo)

where 1y pc(M,) is the true probability of each cell with MFC combination, and - (M) is
the value under the null hypothesis. We also denoted the degree of freedom as v, which is 2 in
our LRT because there are 2 extra variables Ri and R» in the alternative model than the

corresponding null model.

To calculate Type 1 error and power comparable to our theoretical values, we need to have the
exact likelihood. Our likelihood for the alternative hypothesis is shown in equation 4.3 and re-

written as:

) = JoRcTMFCHMF
g) = < HMELTHE

Tyrc (M d

where fyR., Tyrc, Uyr and d are defined as in equation 4.4 and 4.5.

In the presence of TRD, we know that even when the null hypothesis is true, the LRT still has a
non-Central Chi-square distribution. The null model is different for models 1 and 2 because TRD
is being adjusted in the offset of model 2 but not in model 1. Under the null hypothesis, P/D|MFC]
= P/D], and hence, foR./d = 1. The likelihoods for models 1 and 2 under null hypothesis are then,

respectively:

Tyrc(Mo1) = Umr Turc [0.5]

and
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Tprc (Mo2) = Umr Turclt]

Under the alternative hypothesis, NCP for model 1 is:

A = 20 Y urc fORcTMl:‘iCHMF[t] log (lz-(;f;ZI[V(I)FSC][Z]) (4.8)
and the NCP for model 2 is:
foRc t foRc
A, =2n ZMFC%CHMF[] log (OT) (4.9)

Note that when t is not equal to 0.5, even though there is no association signal, the LRT is still a

NCP chi-square statistic. The NCP for model 1 is 0 when t = 0.5 (Mendelian transmission) and

foRc

" =1 (no association). Therefore, null hypothesis for model 1 requires both Mendelian

transmission and no association between disease and DSL. However, since TRD has already been

foRc

adjusted for in model 2, the NCP is 0 when T=1 (no association).

Web resources

R package 'TRD', http://cran.r-project.org/web/packages/TRD/index.html

Online Mendelian Inheritance in Man (OMIM), http://www.omim.org

HUGO Gene Nomenclature Committee (HGNC), http://www.genenames.org
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Chapter 5
Modeling sex-of-parent-specific Transmission Ratio Distortion and

imprinting effect in loglinear model using case-trios

5.1 Preamble

We have examined non-sex-of-parent-specific TRD (NST) in Chapter 4, and the implication of its
presence in invalidating association study results if not accounted for. We proposed an offset of
transmission probability of minor alleles, which arises from a natural component in the loglinear
model framework developed by Weinberg et al. [44]. This offset is shown to be successful in
restoring the correct RR, Type 1 error, and power. However, TRD might also occur in sex-of-
parent-specific manner, which we call sex-of-parent-specific TRD (ST). This ST can be sub-
categorized into maternal ST (MST) and paternal ST (PST), which refer to non-Mendelian

transmission in only mother and only father, respectively.

ST is problematic because it mimics another mechanism, the imprinting effect, which is believed
to influence more than 1% of all mammalian genes. Imprinting occurs when disease allele inherited
from the father induces a different expression level at a neighbouring disease gene than that
inherited from the mother. It leads to an over-representation of disease allele in the child from the
parent who induces a higher expression level. On the other hand, ST can also lead to an over-
representation of disease allele in the child from one parent, when that parent has a higher
transmission ratio of the minor allele. Therefore, ST not only affects the RR estimates for child
effect, but also confounds the imprinting effect. In this chapter, we will show the results of ST on
RR of child and imprinting effects, type 1 error, sensitivity and specificity, and illustrate the
effectiveness of applying the sex-of-parent-specific transmission offset to the loglinear model in

restoring the correct measures.
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5.2 Abstract

Transmission Ratio Distortion (TRD) is a phenomenon where parental transmission of disease
allele to the child does not follow the Mendelian inheritance ratio. TRD can occur in a sex-of-
parent-specific or non-sex-of-parent-specific manner. In our previous paper, the loglinear model
proposed by Weinberg et al. based on case-trios study design was extended to address non-sex-of-
parent-specific TRD (NST). An offset computed from the transmission probability of the minor
allele in control-trios is used to adjust for TRD. It was shown that adjusting the model with the
offset can remove the inflation in RR and Type 1 error introduced by NST. The loglinear model
in Weinberg et al. was then further extended to estimate an imprinting parameter. It is believed
that more than 1% of all mammalian genes are imprinted. In the presence of imprinting, child
inheriting disease allele from the parent who induces a higher expression level at a neighbouring
disease gene is over-represented in the sample. As we know that TRD mechanisms such as meiotic
drive and gametic competition also occur in sex-of-parent-specific manner. Therefore, sex-of-
parent-specific TRD (ST) can lead to over-representation of maternal or paternal alleles in the
affected child in a similar fashion. As a result, ST confounds with the imprinting effect when
present in the sample. We proposed to specify a sex-of-parent-specific transmission offset in
adjusting the loglinear model to account for ST. We found that the extended model restores the
correct RR estimates for child and imprinting effects, adjusts for inflation in Type 1 error, and
improves performance on sensitivity and specificity compared to the original model without TRD
offset. We conclude that in order to correctly interpret association signal and imprinting effect,

adjustment for ST is necessary to ensure valid conclusions.
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5.3 Background

Transmission Ratio Distortion (TRD) is the genetic phenomenon where one of the two alleles from
a parent is favorably transmitted to the child, hence violating the 1:1 Mendelian inheritance law
[70]. There are many forms of TRD that arise from a range of biological mechanisms during the
gametic and embryonic developmental stages [1, 71, 79, 81]. In a previous paper, we have
examined and modeled the simplest form of TRD, where transmission probability of minor allele
in both parents are the same. Here we will call this non-sex-of-parent-specific TRD (NST)
(Chapter 4). However, TRD can occur in sex-of-parent-specific manner [89, 95, 101, 104, 124,
162]. Biological mechanisms involved in this type of TRD disrupts cell processes such as gametic
formation during meiosis [101], and zygote production during fertilization [163]. We call this type

of TRD sex-of-parent-specific TRD (ST).

5.3.1 Meiotic Drive

During female meiosis, a germ cell is divided into 4 cells each containing a sister chromatid. Only
one of these cells becomes a gamete (egg) while the other 3 become polar bodies and are eventually
eliminated [70]. Since this process is asymmetric, when one sister chromatid has a structural
advantage over the others, it tends to have a survival advantage. This process, which happens
predominantly in female, is called meiotic drive [70]. In male meiosis, all 4 cells result in
functional gametes and therefore, the process is not affected by this survival advantage [70].

However, male meiotic drive also exists in species such as sciara, but is rare [70].

5.3.2 Gametic competition

Gametic competition occurs at the fertilization stage, where some sperms outperform others in
reaching successful fertilization [75] and leads to over-transmission of corresponding alleles in the
winners. Classical gametic selection systems include the mouse t-haplotype and segregation
distorter in drosophila [70]. Gametic competition occurs only in males, and therefore, are paternal-

specific.

99



5.3.3 Impact of TRD on association studies

One of the common study design to study association between disease and genetic markers is the
case-trio family-based study design. These family-based association studies are robust to
population stratification because the transmitted allele from parents to child is perfectly matched
with age, sex, and ethnicity of the non-transmitted allele from the same child [36]. Control-trios
which are composed of both parents and their unaffected offspring, have been previously used in
controlling for TRD [36]. TRD can lead to over- or under-transmission of the disease allele in the
cases, but also in the general population represented by controls [71-77]. Our recent work has
shown that when the effect of NST is ignored in case-trio studies, the association signal measured
can be inflated or attenuated, leading to spurious results (Chapter 4). Therefore, we concluded that

NST can confound the true association signal.

5.3.4 Loglinear model and child effect

Weinberg et al. [44] proposed a loglinear model to measure the magnitude of association (relative
risk) between a disease susceptibility locus (DSL) and the expression of disease in the child. The
simplest loglinear model consists of two variables, one for child of genotype 1 and one for child
of genotype 2, where the former is defined as the heterozygous genotype and the latter as the
homozygous mutant genotype. The homozygous wild-type genotype 0 serves as the baseline. The
parameter estimates of these 2 variables measure the relative risk (RR) of child inheriting 1 or 2
copies of disease allele from the parents. Furthermore, the deviance of the full loglinear model
against the null can be used in a likelihood ratio test to measure the significance of the association
signal. Since this loglinear model can estimate genotype relative risk (GRR), as well as test for
significance of association, it is advantageous over a test such as the transmission disequilibrium
test (TDT) which only offers a p-value for the significance of the association signal [36]. Therefore,

we chose to use the loglinear model to illustrate the impact of TRD in our results.

5.3.5 Loglinear model and child effect with NST offset

Recently, we proposed an extension to the Weinberg et al log-linear model (Chapter 4) by taking

into account the TRD probability; this involves including in the model an offset parameter
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computed using the minor allele transmission probability estimated from control-trios. This TRD
offset which is different at each of the 15 mother-father-child (MFC) genotype categories, adjusts
for the effect of NST. We showed that this offset can restore the true RR, significance of
association, and compensate for the inflated Type 1 error and power loss for the likelihood ratio

test.

5.3.6 Imprinting (parent-of-origin) effect

Imprinting effect, which also known as parent-of-origin effect, expresses itself when a disease
allele is activated when inherited from one of the parents, but not from the other [76, 90, 164, 165].
According to Mendelian inheritance, when a disease is paternally (maternally) imprinted, the
corresponding disease allele is silenced, while one inherited from the mother (father) is activated.
However, in complex diseases, the silencing and activation of the imprinted disease allele is not
absolute [41]. For example, the disease allele inherited from the mother to the child may not be
fully penetrant, and the one inherited from the father may not be fully silenced. Nevertheless, an
imprinting effect can be statistically measured as the ratio of probability of the maternal vs paternal

expression at a neighbouring disease gene [45].

5.3.7 Joint modeling of child genotype and imprinting effect

The imprinting and child effects can be modeled as multiplicative factors which form the combined
penetrance function [44, 45], and is additive in log scale. In this paper, we will consider both child
and imprinting effects in a model similar to the loglinear model previously proposed by Weinberg

et al. [44]. Details are explained in Chapter 5.4.

5.3.8 Relationships between sex-of-parent-specific TRD and imprinting

We denote #, and #rto be the transmission probabilities of the minor allele from mother and father,
respectively, to child in control-trio populations. Let the genotype of a heterozygous child
inheriting the minor allele from the mother be Dd, and from the father be dD. As seen in the
example illustrated by Figure 5.1, the proportions of heterozygous children inheriting minor allele

(D) from the mother and the father in the population are equal under NST. However, when there
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is a maternal sex-of-parent-specific TRD (MST), where mothers over-transmit the minor allele at

a 2:1 ratio for example, the ratio of Dd to dD cases is also 2:1 in the population.

Another example is shown in Figure 5.2, where maternal expression is higher than paternal
expression at a ratio of 2:1. The proportion of diseased children with Dd genotype is therefore,
twice as high as with the dD genotype, under NST. If there is MST instead, in the presence of
imprinting, the ratio of Dd to dD cases could rise to 4:1 in the population. Therefore, we see that
when ST and imprinting effects both exist, and act in the same direction, the imprinting effect is
inflated (Figure 5.2). On the other hand, if the two effects act in opposite directions, the imprinting
effect is attenuated. As a result, a ST signal can confound the significance of an imprinting effect.
This confounding effect is the main focus of this paper. We intend to adjust for this ST factor in a
loglinear model, and evaluate the inflation in RR estimates for child and imprinting effects, Type

1 error, and performance on sensitivity and specificity.

5.4 Material and Methods

In this paper, we define the genotype using the additive model, counting the number of copies of
the minor allele. We investigated the association between a bi-allelic disease susceptibility locus
(DSL) and a disease, using the loglinear model with child and imprinting effect variables as
proposed by Weinberg et al. [44], but using the parameterization as in the later work by Weinberg
[45]. To adjust for ST, we added to the model a parental-specific offset parameter that depends on
both the maternal and paternal minor allele transmission probabilities, noted as #, and ¢,
respectively. We assumed that these two sex-of-parent-specific variables can be computed from
available control-trios datasets. In this model, the response variable is the number of trio (counts)
for each of the 16 mother-father-child (MFC) genotype categories, as described in Table 5.1. Note
that the mother-father-child (MFC) category 111 (triply heterozygous trios) was divided into 2
categories: one for the heterozygous child inheriting the disease allele from the mother (111[M]),
and the other for inheritance from the father (111[F]). Assuming mating symmetry these 16

categories can be subdivided into 6 parental mating types as shown in Table 5.1.
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Figure 5.1: Scenario with TRD, f>= fi» (maternal penetrance) = f;r (paternal penetrance) = I, fo =

0 (dominant disease)

D:d =tm: (1-tm) D:d =tz (1-t)
|
aNONONIC
4/9 2/9 2/9 1/9
1/2 1/4 1/4 > #Dd/#dD=1
1/3 1/3 1/6 1/6
2/5 2/5 1/5 —  #Dd/#dD =2
Case-trios

With NST, the proportion of Dd and dD individuals in the whole population are the same (2/9).
When only case-trios are sampled (blue box), the proportion of Dd and dD are still the same,
but they represent a greater proportion in the case-trios sample at 1/4. However, when there is
MST and tn: (I-tm) = 2:1, the ratio of Dd to dD individuals becomes 2:1 in both the whole
population (1/3 to 1/6) and the case-trios sample (2/5 to 1/5), because maternal disease allele D
is twice likely to be over-transmitted than paternal ones.
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Figure 5.2 Scenario with TRD, /> = 1, fix (maternal penetrance) = 0.4, fir (paternal penetrance) =
0.2, T (imprinting factor) = fim/fir = 2, f0 =0

D:d = tm: (1-tm) D:d =ty (1-t)
@ @ &
NST 4/9 4/45 6/45 | 2/45 8/45 1/9

10/13 2/13 1/13—> #Dd/#dD =2
1/3 4/30 6/30 | 1/30 4/30 1/6

10/15 4/15 1/15—> 4#Dd/ #dD= 4
Case-trios Case-trios

Assuming NST with imprinting, the proportion of diseased Dd and dD individuals in the whole
population are no longer 2/9, but are 4/45 and 2/45, respectively, because of the different
penetrance values for Dd (f1» = 0.4) and dD (f;r= 0.2) genotypes. The proportion of Dd and dD
individuals that are not diseased are 6/45 and 8/45, respectively. As a result, the proportion of
Dd and dD individuals in the case-trios sample (blue box) are 2/13 and 1/13, respectively.
Therefore, the ratio of Dd to dD individuals is at 2:1, because imprinting factor of maternal vs
paternal expression is 2. When there is both MST (#r= 1/2 and ¢,= 2/3) and imprinting (f71/f1r
= 2), the diseased Dd and dD individuals in the whole population are now 4/30 and 1/30,
respectively. The proportion of Dd and dD individuals that are not diseased are 6/30 and 4/30,
respectively. In the case-trios sample (blue box), proportion of Dd and dD individuals are 4/15
and 1/15, respectively. The ratio of Dd to dD individuals is now 4:1. This is the combined result
of imprinting and MST because maternal disease allele is twice likely to be over-transmitted
and induces twice the gene expression level compared to paternal ones.
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5.4.1 Parameterization schemes

We now briefly address the two parameterization schemes suggested by Weinberg et al. [44] and
Weinberg [45]. The original parameterization scheme uses 4 parameters in the model: two for
child effect with genotype 1 (Ri) and 2 (R2), and two for imprinting effect of mother (Im) and
father (Ir) [44]. The second parameterization scheme [45] uses only 3 parameters: relative risk
(RR) of genotype 1 child with inherited disease allele from father (R1), RR of genotype 2 child
with both the maternal and paternal imprinting effect (R>), and risk ratio of maternal vs paternal
imprinting effect (T). The latter was suggested to replace the first approach, and it is important to

note that the interpretation of the Ri and R> parameters differ between the two approaches.

Using the first approach [44], the parameters described above can be incorporated into the

penetrance equations as:

fz = fORZIMIF

f1M = foR11M

fir = foR1Ir

where /> is the penetrance for child of genotype 2, fiu is the penetrance for child of genotype 1
with disease allele inherited from the mother, fir is the penetrance for child of genotype 1 with
disease allele inherited from the father, and fj is the penetrance of genotype 0 child. Since fy does
not depend on any of the 4 parameters, we have only 3 equations but 4 parameters to estimate.

Therefore, one of the 4 parameters is unidentifiable.

By using the second parameterization approach [45], the parameters described above can be

incorporated into the penetrance equations as:

f2 = foR: (5.1)

fim = foRiT (5.2)
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fir = foR1 (5.3)

We then have 3 equations and 3 parameters, which makes each parameter identifiable. Ainsworth
et al. [155] stated that parameterization of the imprinting parameter in the second approach [45] is
biologically unintuitive because the imprinting factor is only present in and can only be estimated
by child genotype 1 category (C = 1); therefore is not seen in child genotype 2 category, whereas
in fact, biologically, imprinting effect is present in child genotype 2 as well. While this is true, we
are more interested to know how much more (or less) likely it is for the child to have the disease
when the minor allele is inherited from the mother compared to the father. Therefore, for the
purpose of our study, the second parameterization is intuitive in the interpretation of the measures
of our interest, and is also more parsimonious with each parameter identifiable. In the following,

models and results are presented under the second parameterization approach.
5.4.2 Loglinear model from Weinberg et al. (1998) with only child and imprinting variables

The 16 MFC categories loglinear model with child and imprinting effects using the second

parameterization scheme can be written as:

lOg E[nMFch] =Ye T Z?:l VjI[Szj] + ,811[6 = 1] + ﬂzI[C = 2] + {MI[Czl,maternal] (5‘4)

where M, F, and C represent the mother, father and child genotypes, respectively; nurc is the
number of trios with genotypes MFC, and D is the disease status of the child. The y¢ + y; terms
are the regression coefficients for the first 5 parental mating types in Table 5.1; y; is the intercept
corresponding to the 6™ mating type MF=00. The indicator variable lic=1,maternar) 1 1 for a

heterozygous child inheriting disease allele from the mother.

The fB; and (3, parameters are the regression coefficients for child genotypes 1 and 2. We denote
R; = Ry = exp(f;), which corresponds to the RR of child with 1 copy of disease allele inherited
from the father, and zero copy from the mother; Ry, = exp(B;+{y) which corresponds to the RR
of child with 1 copy of disease allele inherited from the mother and zero copy from the father;
R, = exp(f,) as the RR of child inheriting 1 copy of disease allele from both parents. Rir, Rim

and R; are the relative risks with respect to baseline genotype 0.

106



T = exp({y) is the relative risk of maternal vs paternal expression at a neighbouring disease gene
for genotype 1 child. When T = exp({);) = 1, there is no parent-of-origin effect, whilst when
exp({y) > 1, a child with 1 maternally inherited disease allele has higher risk than a child with 1
paternally inherited disease allele. On the other hand, when exp({y) < 1, a child with 1
maternally inherited disease allele has lower risk than child with 1 paternally inherited disease
allele. This model denoted as model 1, is valid only when there is Mendelian inheritance. The

complete derivation of this model is shown in Chapter 5.7.1.

Table 5.1: Relative Risk and imprinting parameterization

Stratum MFC Stratum Probability of Weinberg et al. (1998) Weinberg (1999)
Genotype frequency transmission (Typc) parameterization parameterization
(bmr) TRD Mendelian | RR Imprinting RR Imprinting
under
HWE
1 222 p? 1 1 R, Imlr R> 1
2 212 2p%(1-p) tr 172 R, Imlr R> 1
211 2p%(1-p) 1-t 172 Ry Im Ry T
122 2p%(1-p) tm 172 R» Imle R» 1
121 2p%(1-p) I-tm 172 Ry Ir Ry 1
3 201 p(1-p)’ 1 1 Ry Im Ry T
021 p(I-p)’ 1 1 Ry I Ry 1
4 112 4p’(1-p)? Ity 1/4 R» Imle R, 1
111[M] 4p°(1-p)? tm(1-t) 1/4 Ry Im Ry T
111[F] 4p°(1-p)? t(1-tn) 1/4 Ry Ir Ry 1
110 4p°(1-p)? (1-tm)(1-ty) 1/4 1 1 1 1
5 101 2p(1-p)} tm 172 Ry Im Ry T
100 2p(1-p)} I-tm 172 1 1 1 1
011 2p(1-p)} tr 172 Ry I R, 1
010 2p(1-p)} 1-t 172 1 1 1 1
6 000 (1-p)* 1 1 1 1 1 1
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5.4.3 Loglinear model with child and imprinting variables and ST offset

Extending Model 1 to account for ST, we obtain the following model:

log{E [nypc|D]} = ag+ Z?=1 aj lis=j1 + log Turc + Bilic=1] + B2lic=21 + {ml[c=1,maternal]
(5.5)

where the notation and regression parameters are defined in the same way as model 1, except for

a; which includes the mating type frequency but not the transmission probability P/C|MF]. The

ST offset tyrc = P[C|MF] captures the sex-of-parent-specific transmission probability and is
defined as in Table 5.1. The derivation of this loglinear model is also shown in Chapter 5.7.1, and

1s denoted as model 2.
5.4.4 Simulation set up

In our previous investigation on association studies with case-trios, we observed the inflation in
Type 1 error, RR estimates and RR p-values when NST was not accounted for (Chapter 4).
Inflation of RR was shown to be exponential in scale. There was also power loss when NST is in
the opposite direction of the association signal (Chapter 4). Here we wanted to assess the extent
of the RR and Type 1 error inflation with different combinations of maternal and paternal

transmission probabilities of the minor allele.

We assumed that the genetic marker is the DSL under investigation with minor allele frequency
(MAF) 0.1 and no recombination. We simulated a population of 100,000 trios with symmetric
parental mating. We then sampled 500 case-trios from the simulated population to measure the
association signal with the genetic marker. The maternal (#,) and paternal (#) transmission
probabilities of minor allele are known a priori in model 2, assuming that they could be obtained
for example, from control-trios samples in existing databases. Penetrance for genotype 1
individuals inheriting disease allele from the father is f; (equivalent to f;r noted previously), /> for
genotype 2 individuals, and fj for genotype 0 individuals. Finally, the simulation parameter which
indicates the ratio of maternal vs paternal expression at a neighbouring disease gene for genotype

1 individuals is denoted as g.
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5.4.4.1 Scenarios of association and ST

We investigated three association setups: 1) the genetic marker is not associated with the disease
and there is no imprinting (fo = f; = /> = 0.1 and g = 1), 2) the genetic marker is associated with
the disease in the opposite direction of the TRD and there is no imprinting, 3) the genetic marker

is associated with the disease in the opposite direction of the TRD and there is imprinting.

For each of the three setups, we tested a variety of TRD scenarios described in Table 5.2. Using
these 7 scenarios, we then applied models 1 and 2 to the dataset, and observed the changes between
models 1 and 2 with respect to the estimation of R; (RR for genotype 1 individuals inheriting
disease allele from the father), R> (RR for genotype 2 individuals) and T (RR for maternal vs

paternal inheritance of disease allele in genotype 1 individuals).

Table 5.2: Different scenarios of TRD for each of the three association setups

Transmission probability
scenario Type of TRD tm ty
1 NST 0.3 0.3
2 NST 0.5 0.5
3 NST 0.7 0.7
4 PST 0.5 0.3
5 PST 0.5 0.7
6 MST 0.3 0.5
7 MST 0.7 0.5
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5.4.4.2 Assessing inflation or attenuation of regression parameters, inflation of Type 1 error,

sensitivity and specificity of models 1 and 2

We intend to measure the impact of #, and #ron the regression parameters Ri, R> and T when there
is NST, or MST or PST on a continuum of #, and # values. Using the 1 setup where there is no
association or imprinting, we measured the inflation ratio for the 3 regression parameters
contrasting model 1 with model 2 with #, = #sranging from 0.1 to 0.9 (NST). Then, we fixed #  at
0.5 and tested #, from 0.1 to 0.9 (MST). Similarly, we fixed #, at 0.5 and set #; ranging from 0.1
to 0.9 (PST). We also assess the Type 1 error, using the 1% setup for the 3 types of TRD at sample
size 100, 300 and 500. Finally, to measure the sensitivity and specificity of models 1 and 2, we

used the 2™ and 3™ setups, and plotted the receiver operating characteristic (ROC) curves.
5.5 Results
5.5.1 Impact of ST adjustment on R: and R2

We observed the results for the 7 scenarios shown in Table 5.3 for the 1% simulation setup, and
results for the 2™ and 3™ simulation setups are the same. The results showed that whenever there
is an over-transmission, correctly adjusting for TRD reduces the estimates of R; and R», and this
is reversed when there is under-transmission. In Figure 5.3A, NST led to the greatest inflation
among all 3 types of TRD because both parents are over- or under-transmitting. Also, MST led to
smaller inflation in Ry than PST because R; primarily measures the RR genotype 1 with child
inheriting disease allele from the father. The change in R with respect to ¢, was due to the change
in the baseline risk of genotype 0 individuals. MST and PST nearly coincided with each other as
seen in Figure 5.3B, since ¢, and # were interchangeable when both parents transmitted a disease

allele (see Table 5.1).
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Table 5.3: Change in Ri, R> and T after correction with ST offset for the 7 different TRD
scenarios using model 2, when there was no true association between marker and disease, nor
there was imprinting effect on the marker (1% setup).

Transmission probability After correction for ST
scenario tm ty Ri Ro T
1 0.3 0.3 / / -
2 0.5 0.5 - - -
3 0.7 0.7 \ \ -
4 0.5 0.3 / / \
5 0.5 0.7 \ \ /
6 0.3 0.5 / / /
7 0.7 0.5 \ \ \
Notation:

/ = increased;

\ = decreased;

- =unchanged.

5.5.2 Impact of ST adjustment on imprinting parameter T

In scenarios 1 to 3 described in Table 5.2 we observed that the imprinting parameter T remained
unchanged when #, = # (NST) after adjustment because maternal effect and paternal effect
cancelled out each other in the ratio. In Figure 5.3C, we see that NST has no impact on T. When #
< (.5 (scenario 4), the paternally inherited disease allele appeared to be associated with lower risk,
this led to an apparent smaller paternal expression. Since paternal effect is in the denominator of
regression parameter T, T decreased when model is correctly adjusted by #: On the other hand,
when #/> (.5 (scenario 5), T increased when model is correctly adjusted by #. Similar relationship
is also shown in Figure 3C where smaller #r leads to a larger T, and larger #r a smaller T. Maternal
expression is measured in the numerator of T, hence the trend is reversed in scenarios 6 and 7, and

in Figure 5.3C for MST.
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Figure 5.3: Inflation and attenuation of R, R, and T
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NST: tn = tyfrom 0.1 to 0.9;
MST: t,=0.1t0 0.9, = 0.5;
PST: #=0.11t00.9, t,,=0.5.

5.5.3 Inflation of Type 1 error

We plotted the theoretical and empirical Type 1 error separately for each of the 3 types of TRD
(NST, MST and PST). The theoretical (Figure 5.4) and empirical Type 1 error (Figure 5.5)
matched with each other well. We see that Type 1 error was inflated more and more severely as
and #; became more skewed in model 1. MST (Figure 5.5B) and PST (Figure 5.5C) plots for model
1 are similar and had a more gradual climb in Type 1 error compared to NST (Figure 5.5A) because
the combined effect is greater than either maternal or paternal TRD alone. For model 2, this

inflation in Type 1 error is removed.
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Figure 5.4: Theoretical Type 1 error (fo =f1 =f>r=g=1)
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5.5.4 Sensitivity and Specificity of models 1 and 2

The ROC curves illustrating the sensitivity and specificity of models 1 and 2, under the scenario

of a weak association between disease and DSL, is shown in Figure 5.6.

In the example shown in Figure 5.6A, two dataset were simulated: (1) no association with NST (¢,
=ty = 0.4) and (2) weak association (fp = 0.11, f; = 0.13, f> = 0.15) with NST (¢, = tr = 0.4) but
no imprinting (g=17). We see that for model 1, true positives in dataset 2 are attenuated by the NST,
leading to poor sensitivity. At the same time, false positives in dataset 1 are inflated because of
NST, leading to a poor specificity and an AUC of 0.31. On the other hand, adjusting NST for
model 2 led to an AUC of 0.65.

For the example in Figure 5.6B, two other datasets are simulated: (1) no association with PST (z,
= 0.5, tr= 0.3) and (2) weak association (fp = 0.11, f; = 0.13, f> = 0.15) and imprinting (g = 0.6)
with PST (¢, = 0.5, tr = 0.3). We see that true positives in dataset 2 are attenuated by PST, and
false positives in dataset 1 are inflated, leading to poor sensitivity and specificity, and an AUC of

0.33. However, model 2 yielded an AUC of 0.69 since the bias due to PST is adjusted.

We simulated similar scenarios with a stronger association signal (fo = 0.1, fi = 0.2, /> = 0.3). The
AUC for model 2 are close to 1, when there is either NST or PST. However, the AUC for model
1 remained around 0.3 for both NST and PST (results not shown here).

5.6 Discussion

The inflation and attenuation of Ry and R2 as a result of change in #, and # due to the presence of
MST or PST are similar to what we observed for NST in previous work. Restoration of the true
parameter estimates can be achieved using the sex-of-parent-specific transmission offset in a
similar fashion. When MST and PST occur in the presence of imprinting effect, the measured
parameter T could be masked. For example, if mother over-transmits or father under-transmits
when there is paternal over-expression, the imprinting effect will not be observed as significant in
model 1. Similarly, if mother under-transmits or father over-transmits when there is maternal over-
expression, the measured imprinting parameter will be less significant either when MST/PST is

not adjusted for.
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Figure 5.6: ROC curve for weak association
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The reduction of the imprinting effect due to MST or PST is considerably more problematic than
inflation because imprinting does not conventionally lie within the scope of genetic association
studies. If preliminary results on imprinting are negative, it might be unlikely to pursue the
investigation, while in fact, imprinting could be masked due to a ST. Therefore, when one wants
to investigate the presence of imprinting effect, loglinear model 2 with ST offset adjustment should

be considered as the first option for detecting true signals in association studies.

There are other study designs proposed to measure parent-of-origin (imprinting) effect. A popular
design is to use case-mother duos, which are easier to recruit, instead of case-trios. For example,
Ainsworth et al. [155] collapsed Weinberg et al. 15 [44] and 16 [45] mother-father-child (MFC)
categories into 7 categories which are identified only by maternal and child genotype (MC). Even

though it is easier to recruit mother-fetal pairs than case-parent trios, there is a difference of 8
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parameters that can be estimated in the case-trios study design compared to mother-child duos,
which allows more genetic or non-genetic factors to be considered in the model. Ainsworth et al.
[155] also relies on the prior knowledge of minor allele frequency and mating type frequencies,
which requires extra recruitments of unrelated controls to estimate MAF, and parents of controls
and/or control-mother pairs to estimate mating type frequencies, to successfully fit a non-saturated
model. Robustness against population stratification can also be affected. Most importantly, the
paternal transmission of allele cannot be traced. Therefore, such models are not appropriate for the

purpose of our study.

Genomic imprinting is an important epigenetic effect. More than 1% of all mammalian genes are

believed to be imprinted. A database is available for imprinted genes [43] (http://igc.otago.ac.nz/)

which provides a more comprehensive understanding of how genes behave under the influence of
imprinting effect. Therefore, it is crucial to address the aspect of ST in order to correctly

characterize the functions of genes, and their mechanisms of inheritance.

A limitation of our study is that the ST probabilities #, and # used to adjust for MST and PST need
to be computed separately from a control-trios population. We rely on the availability of such
control-trios population recruited in consortia such as the HapMap project. The complete coverage
of the human genome has now been made possible by the whole genome sequencing (WGS)
technology. With this knowledge, we believe that majority of the TRD loci could be identified and

assessed, once such control-trios data becomes available.

5.7 Appendix
5.7.1: Derivation of models 1 (without ST offset) and 2 (with ST offset)

5.7.1.1 Derivation of the general loglinear model

Let M, F, and C represent the mother, father and child genotypes respectively. The 16 MFC
genotype categories are described in Table 5.1. Let nyrc represents the number of trios with
genotypes MFC, n the sample size, and D the disease status of the child, the probability of each
MEFC cell in Table 5.1 can be written as:
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P[D|MFC]P[C|MF]P[MF]
P[D]

PIMFC|D] = E | |p| = (5.6)

where
P/D|MFC] = Probability that the child is affected given a trio genotype MFC
P/[C|MF] = Probability that the child genotype is C given parental genotypes MF
P/MF] = Probability of mating type MF for the parents
P/D] = disease prevalence

Since we assume that there is imprinting effect on the disease status of the child, P/D|MFC] can
no longer be simplified to P/D|C], as it depends on both parental genotypes. For C =0, P/D|MFC]

= fo . Equation 5.6 can be re-written as:
log {E [@ |D]} = log P[D|MFC] + log P[C|MF] + log P[MF] — log P[D] (5.7)
where P[D|MFC] = fyR.T and Rc and T are listed as the last 2 columns of Table 5.1.
Using the notations P[C|MF]| = Typc, P[MF] = uyr (see Table 5.1), and P[D] = d, we obtain:
log{E [nmrc|D1} = log(foR:T) + log Turc + log pimr +logn —log d

= log (ﬁ;—n) + log Typc + log umr + log(R.) + log(T)

= log (ﬁ;—n) + log tyrc + log uyr + Be +1 (5.8)

where . = log(R.) and n = log(T), of which the latter depends on the genotype combination
of the trio. Model 1 described in the paper corresponds to the scenario where t,, = ¢ = 0.5

(Mendelian transmission), which are substituted into tyzc. Model 2 corresponds to the scenario
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where #, and # can be different and are not restricted to 0.5 taking on values between 0 and 1,

excluding 0 and 1.
5.7.1.2 Statistical equation for model 1

In order to fit the model described in equation 5.8, we use different grouping schemes for models
1 and 2. For model 1, the terms log(tyrc) and log (uyr) are grouped together as @ gc. Since ¢y
and #r are assume to be 0.5 in this model, @yr¢ is the same within each mating type stratum (Table
5.1). We use S to be the indicator for each mating type stratum, then @y rc = @s, Where S ranges
from 1 to 6. Since imprinting parameter exists only for genotype child 1 categories (C = 1) when

the disease allele is inherited from the mother, we can write:
N = Culic=1,maternal]
To derive the statistical equation for model 1, equation 5.8 can be re-written as
log{E [nmrc|D]} = log (%) + 2 @jlis=j) + Bilic=1) + Balic=2) + {mlic=1,maternan)

We can then absorb the constant term f‘an into the summation of ¢; terms and have

1
log{E [nyrc|D]} = X;log [(OTn) exp(<p]-)] Iis=j1 + Bilic=1] + B2lic=2] + Sml[c=1,maternal]
By noting y; as the first term of the above equation, model 1 can be written as:

log{E [nyrc|D1} = X;Vilis=j1 + Bilic=1] + B2lic=2] + {mlic=1maternai]

Since there are 6 strata of MF mating types, we fit the model with an intercept for stratum 6 mating

type and obtained:

log{E [nypc|D]} = ve + Z}r"=1 Yilis=j1 + Bilic=11 + B2lic=2] + mlic=1,maternal] (5.9
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5.7.1.3 Statistical equation for model 2

For model 2, we separate the terms log (Tyrc) and log (uyr), and replace log (tyrc) by an offset
given specific values of #,, and #r (Table 5.1), and again estimate log (uyr) = log(u;). Therefore,

equation 5.8 can be re-written as:

log{E [nypc|D]} = log (ﬁ;_n) + Yjlog ujlis=j; + log typc + Bilic=1) *+ B2lic=2) +

{M 1[C= 1,maternal]

fi
=2Yjlog (OTn) Ujlis=j1 + log turc + Bilic=1] + B2lic=21 + {ml[c=1,maternal]
— -
eplacing log ) 1 as aj, model 2 can be written as:
log{E [nupc|D]} = Xj @j Iis=j; + log Tupc + Bilic=1] + B2lic=21 + Smlic=1,maternal]

We then fit the model with an intercept, and obtain:

log{E [nypc|D]} = ag+ Z?=1 a; Iis=j1 + log Tmrc + Bilic=11 + B2lic=21 + {mlic=1,maternal]
(5.10)

The final statistical formula for model 1 is written in equation (5.9) and for model 2 in equation

(5.10).

5.7.2: Non-Central Chi-square Likelihood for model 1 (without ST offset) and model 2 (with
ST offset)

To perform the Likelihood Ratio Test (LRT) in assessing significance of association between the
disease phenotype and DSL, we set up a null model for both models 1 and 2 with null hypothesis
Ho: By = B> = {u = 0. The corresponding LRT test statistic, which is the difference in deviance

between null and full model, has an asymptotic Chi-Square distribution with 3 degrees of freedom
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accounting for the extra terms Ri, R» and T. Agresti [161] showed that when the alternative

hypothesis is true, the resulting LRT is a chi-square statistic with a non-centrality parameter (NCP):

Mg
A =2n Y yrc tyrc(Mg)log (WL())

Tymrc(Mo)
where 1y rc(M,) is the true probability of each cell with MFC combination, and - (M) is
the probability under the null hypothesis. We also denoted the degree of freedom as v, which is 3

in our LRT because for the 3 variables Ri, R> and T present in the alternative model but not in

the corresponding null model.

To calculate Type 1 error and power comparable to our theoretical values, we require the exact

likelihood. Our likelihood for the alternative hypothesis shown in equation 5.6 can be written as:

_ JfoRcTTMFCcUMF
Ttyrc(Mg) = —a

In the presence of TRD, even when the null hypothesis is true, the LRT still has a non-Central Chi-
square distribution. The null model is different for models 1 and 2 because TRD is being adjusted
in the offset of model 2 but not in model 1. Under the null hypothesis, P/D|MFC] = P[D], and
hence, foR:.T/d = 1. The likelihoods for models 1 and 2 under null hypothesis are:

Ttyrc(Mo1) = Umr Turc [0.5]

and

Tyre (Mo2) = Umr Turc(t]

Under the alternative hypothesis, NCP for model 1 is:

_ foRcTTmrcumFIt] foRcTTymFclt]
A = 2n Y urc : log ( e ) (5.11)

and the NCP for model 2 is:
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/12 — 2n ZMFC fORCTTMgCﬂMF[t] lOg (fOZCT) (512)

When t is not equal to 0.5, even though there is no association signal, the LRT is still a NCP chi-
square statistic. The NCP for model 1 is 0 when both t = 0.5 (Mendelian transmission) and fof%ﬂ

(no association). Therefore, null hypothesis for model 1 requires both Mendelian transmission and

no association between disease and DSL. However, since TRD has already been adjusted for in

model 2, the NCP is 0 when %1 (no association).
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Chapter 6

Summary and discussion

The role of TRD in the formation and maintenance of the human gene pool is considerably obscure.
Human studies on TRD have mainly be prompted by successful findings in plant and animal
studies. Multiple diseases associated with TRD loci have been found, but links between the
mechanisms of TRD and the disease etiology have not been established, except perhaps for
conditions related to embryo viability. The prevalence of TRD has not yet been determined by
genetic studies and hence, the impact of TRD on either common or rare diseases is largely
unknown. However, with the availability of next generation sequencing technology and large-scale
recruiting effort such as the HapMap project on case- and control-trios, the possibility of mapping

all TRD loci will be possible.

There are various forms of TRD, as described in Chapter 3, each dictated by specific biological
mechanisms. We selected two simplest types of TRD, the NST and ST in order to demonstrate its
effect on the results of family-based genetic association studies. Most of the existing statistical
methodologies have a common assumption on Mendelian inheritance, and the models are not valid
if this assumption is violated. The loglinear model is a convenient statistical tool for us to assess
the effect of TRD on association results in case-parent study design. The readily available
component in the likelihood function provides a natural way of extending the model to
accommodate the effect of TRD, and to correct for it. Fitting the loglinear model with an offset
does not require more computing time, and hence, can be applied to a large scale association study
with the whole genome sequenced data and a large sample size. It offers a simple solution to the
identification of an additional source of bias which could potentially confirm or refute study results

from current literature.

Modeling ST in the loglinear model, however, poses a challenge. The imprinting effect could also
co-exist with other epigenetic effect such as maternal effect, or maternal-fetal genotype interaction.
Incorporating these factors into the loglinear model has not been investigated in this thesis, but is
likely to be pursued in the continuing development of the method in the future. Currently, we have

exclusively modeled imprinting and child effects. Although adding maternal and maternal-fetal
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interaction effects into the loglinear model does not likely require more complex theoretical basis,
the saturation of model parameters can constraint the generalization of the method. This might
require changing the study design to acquire more information and degrees of freedom. Also, since
these factors interplay with each other, identifying and dissecting the exact effect size in a single
model could be complicated. Interpretation on the resulting parameter estimates might also require

further biological evidence.

Future work in generalizing this method to a wider context and scale will be made possible with
the availability of appropriate datasets and advancement in the knowledge of human genetics in
general. The research carried out in this thesis provides evidence of the impact of TRD on genetic
studies and a proof of concept that such effect can be adjusted to restore correct inference.

Implication on existing findings in current literature will unfold as research progresses.

TRD is an under-explored phenomenon with features that can impact studies in three different
genetic fields. The prospect of increasing awareness and understanding of TRD can produce major
breakthroughs in these areas, such as re-assessing current research findings on DSL, identifying
rare variants, and developing the link between TRD mechanisms and various disease etiologies.
These could lead to more accurate and comprehensive knowledge about the relationships between

our genome and a vast array of human diseases.
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