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ABSTRACT 

Transmission Ratio Distortion (TRD) is a genetic phenomenon where one of the two alleles from 

either parent is transmitted to the offspring with a probability different than the expected 0.5. This 

leads to a departure from the Mendelian inheritance ratio. There have been many animal studies 

reporting TRD on gene regions of known functions. These findings have triggered interest in 

identifying TRD loci in humans. However, human studies are relatively few, and TRD remains 

largely unexplored in the field of statistical genetics.  

We argue that TRD is in fact an important phenomenon which lies at the intersection of three 

different genetic fields: developmental, population and statistical genetics. In developmental 

genetics, where embryonic growth is being studied, understanding TRD mechanisms can 

contribute to the identification of the biological processes leading to differential survival. From a 

population genetics perspective, TRD could give rise to rare variants which, due to the many 

counter-balancing evolutionary forces are maintained at a low frequency. This leads to a change 

in genetic diversity in the population where TRD occurs. 

Since TRD involves allele transmission from parents to offspring, it can only be studied using 

family-based designs, and in this work, we concentrate on family trios (parents and affected 

offspring). Results from such studies are commonly analyzed using a log-linear model. Here, we 

extend this model by using the transmission probability of minor allele from parents to child as an 

offset. We adjust for two types of TRD: non-sex-of-parent-specific TRD (NST), and sex-of-parent-

specific TRD (ST). 

By conducting simulations of case-parent-trio populations, we show that either NST or ST can 

confound the relative risk estimates for child genotype. For ST, it further confounds the imprinting 

effect estimates. This leads to the inflation of Type 1 error, loss in power, and poor performance 

in sensitivity and specificity. We also show that spurious results due to TRD can be eliminated and 

correct inference restored. One limitation with this approach is the availability of the transmission 

probability of the minor allele which may exist or not in publically available dataset or needs to be 

estimated in appropriately selected control trios. 
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Studying TRD is worthwhile because of the close evolutionary history it might share with that of 

rare variants, and the confounding effect it has on imprinting effect. Both of these phenomena may 

help uncovering of the “missing heritability” components from past GWAS. In a more applied and 

immediate perspective, correct adjustment of TRD could increase consistency in findings from 

association studies.  
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ABRÉGÉ 

Le “Transmission Ratio Distortion” (TRD) est un phénomène génétique au cours duquel l'un des 

deux allèles d’un parent est transmis à sa descendance avec une probabilité différente de celle 

attendue, c’est à dire 0.5. Cela conduit donc à une déviation du rapport de l'hérédité mendélienne. 

La présence de TRD au niveau de gènes ou de régions génétiques fonctionnelles a été rapportée 

dans de nombreuses études animales. Ces résultats ont suscité un intérêt pour l'identification de 

loci affectés par le TRD chez les humains. Cependant, les études humaines sont relativement peu 

nombreuses, et le TRD reste largement inexploré dans le domaine de la statistique génétique. 

Nous pensons que le TRD est un phénomène important qui se trouve à l'intersection de trois 

domaines génétiques différents: le développement, la génétique de population et la statistique 

génétique. En ce qui concerne la génétique du développement, qui étudie la croissance 

embryonnaire, la compréhension des mécanismes du TRD peut contribuer à l'identification des 

processus biologiques conduisant à une différence de survie. Du point de vue de la génétique des 

populations, le TRD pourrait donner lieu à l’apparition de variants rares qui, en raison des 

nombreuses forces évolutives de ré-équilibrage, sont maintenus à basse fréquence. Cela conduit à 

un changement dans la diversité génétique de la population affectée par le TRD. 

Puisque le TRD implique une transmission des allèles des parents à leurs enfants, il ne peut être 

étudié qu’à l’aide de concepts basés sur les études familiales. Dans ce travail, nous nous 

concentrons sur des familles-trios (parents et descendant atteint). Les données de telles études sont 

généralement analysées à l’aide d’un modèle log-linéaire. Ici, nous généralisons ce modèle en 

utilisant la probabilité de transmission de l'allèle mineur des parents à l'enfant en tant qu’``offset’’. 

Nous ajustons le modèle pour deux types de TRD: le TRD non sexe-spécifique  (NST), et TRD le 

sexe-spécifique (ST). 

En effectuant des simulations de populations cas-parent-trio, nous montrons que le NST ou le ST 

peuvent agir comme facteur confondant au niveau des estimations du risque relatif par rapport au 

génotype de l'enfant. Le ST peut de plus agir comme facteur confondant pour les effets 

d'impression (imprinting). Cela engendre une inflation des erreurs de type 1, une perte de puissance, 

et de mauvaises performances en terme de sensibilité et de spécificité. Nous montrons également 
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que des résultats erronés obtenus à cause du TRD peuvent être éliminés et les paramètres du 

modèle corrigés. Une limitation de cette approche est la connaissance de la probabilité de 

transmission de l'allèle mineur, information qui peut être disponible dans des ensembles de 

données publiques, ou qui doit être estimée à l’aide de trios-contrôles sélectionnés de manière 

appropriée. 

Etudier le TRD est important en raison de l'histoire évolutive que le locus du TRD pourrait 

partager avec ceux de variants rares, et de l'effet confondant que ce phénomène peut avoir sur 

l'effet d'impression. Ceci peut nous amener à découvrir une partie de l’héritabilité manquante, 

phénomène identifié dans les GWAs. Dans une perspective plus appliquée et à court terme, une 

prise en compte du TRD dans les analyses pourrait accroître la cohérence des résultats des études 

d’association. 
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adjusts for the effect of this type of TRD. Performance of the extended model is assessed by 

simulation studies.  

Chapter 6: This chapter is the summary and discussion section of the thesis. It summarizes the 

importance of TRD in human genetics studies, and discusses the limitations, benefits, initiatives 

and challenges for future development.  



xix 
 

PREFACE: FINANCIAL SUPPORT 

 

The research work of this thesis is supported by: 

1. McGill Provost Graduate Scholarship 

2. Canadian Institute of Health Research Doctoral Scholarship in Population genetics, 

Genetic epidemiology and Complex diseases 

3. Canadian Institutes of Health Research Operating Grant: PI - Dr. Aurélie Labbe (MOP-

93723) 

4. Fonds de recherche du Québec Subvention d'établissement: Dr. Aurélie Labbe (20057) 

5. Medical Special Allocation: Dr. Aurélie Labbe (217123) 

 

 
 

  



xx 
 

PREFACE: ETHICS APPROVAL 

 

The manuscript 2 (Chapter 4) in this thesis includes analyses of previously collected data from 

human subjects. Ethics approval for the collection of the data was obtained by the original 

studies, available upon request. 

  



1 
 

Chapter 1 

Introduction and objectives 

1.1 The Human Genome Project 

The Human Genome Project (HGP) was initiated in the 1990s resulting in advancement in 

mapping and sequencing the human genome. This was made possible by combining the disciplines 

of molecular cell biology and classical genetics, with the contribution of computational sciences. 

There were five main domains in the HGP which were using genomics to understand the structure 

of genome, understanding the biology of genome and its relationship to human diseases, and using 

all the former to advance the science of medicine and to improve the effectiveness of health care. 

Audacious strategies were planned to advance the technology and analytical methodology with the 

goal of correctly interpreting sequencing and other results.     

1.2 Genome-wide Association Studies and missing heritability 

With the rise of the popularity of the Genome-Wide Association Studies (GWAS), much progress 

has been made in the field of genomics in the last decade, to identify relationship of genome to 

human diseases. These studies have resulted in the identification of genes for several hundred traits 

and diseases. However, amid the apparent success of GWAS, many loci discovered could not be 

replicated consistently. Furthermore, they only account for a small percentage of the heritability 

for most complex diseases. This led geneticists to re-examine the supposed hypothesis of 

“common disease - common variant”. Rare variants were then suggested to be the link to the 

“missing heritability” in high penetrance diseases, which usually cluster in families. Furthermore, 

scientists found another layer of genetic information to explain the “missing heritability”: the 

epigenomic coding on the DNA sequence, which regulates gene expression of the human genome 

and is likely influential in determining the severity of disease.   

1.3 Transmission Ratio Distortion in the fields of genetics 

Transmission Ratio Distortion (TRD), which we investigated in this thesis, is a biological 

phenomenon where one of the alleles on a locus from either parents is over-transmitted to the next 

generation, violating the Mendelian transmission ratio. Different TRD mechanisms can interrupt 
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either the gametic or embryonic development processes, and these are explained in Chapter 3. 

TRD interestingly lies at the intersection of three different but related genetic fields: developmental, 

population and statistical genetics. This provides great incentives to investigate the role of TRD in 

human genetics.     

1.4 Overview of manuscript 1 (Chapter 3) 

TRD has been well-studied in plants and animals. However, human studies on TRD have been 

relatively few. We consolidated 26 such studies in the last two decades; TRD loci are involved in 

a whole range of disease conditions, such as various forms of cancer, neurological conditions, and 

others. TRD loci are also implicated in imprinting. However, the link between disease etiology 

and TRD mechanisms has not been established, except for embryo viability. In our review, we 

also included some mouse studies documented in the last decade to underscore the different 

methods used to study TRD as well as to compare with human study results. The studies listed in 

Chapter 3 include different types of designs, statistical models and tests that can be used to identify 

TRD loci under the influence of various forms of TRD. Representative study designs and tests are 

reported and used to develop working examples and figures. Note that TRD can only be studied in 

family-based study design instead of case-control study design because it affects the transmission 

of alleles from one generation to the next.  

Since TRD in the parental transmission of disease allele leads to a deviation from the Mendelian 

ratio in the offspring generation. If TRD persists over many generations, it is possible for the over-

transmitted allele to reach fixation in the population where TRD occurs, and hence lead to a slow 

disappearance of the disadvantaged allele. However, there are many evolutionary forces in place 

to regulate and maintain the disadvantaged allele at a low frequency in the gene pool and hence, 

resulting in rare variants. Examples of such mechanisms are mutations, recombination, genetic 

drift, and the presence of an immunogenetic advantage for survival in later adulthood. These 

mechanisms are further explained in Chapter 3. Understanding the role of TRD in the evolutionary 

context can provide a more comprehensive perspective of population genetics.  We speculate that 

many of the rare variants observed in the current gene pool of various populations might indeed 

have a TRD origin. It is likely that identifying TRD loci could assist the discovery of rare variants 
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and their role in many complex diseases in regards to the “missing heritability” from classical 

GWAS.  

1.5 Overview on manuscript 2 (Chapter 4) 

TRD occurs in the diseased and the non-diseased. The presence of TRD will then lead to the over-

transmission and hence, over-representation of disease allele in the offspring generation, in both 

diseased (case) and non-diseased (control) populations. Conventional family-based association 

studies recruit cases to assess over-representation of disease allele in the case populations. If this 

over-representation significantly deviates from the null (Mendelian inheritance ratio), an 

association between disease susceptible locus (DSL) and disease is then established. Since TRD 

and the true association between DSL and disease outcome both lead to deviation from Mendelian 

ratio, the measured association may be confounded when TRD occurs. In order to correctly 

interpret the results, we have to adjust for the effect of TRD in the measured association signal. 

The model and its extension we used for this purpose are developed in Chapter 4.     

1.6 Overview on manuscript 3 (Chapter 5) 

The second layer of genetic information in our DNA sequence is the epigenomic coding, which 

regulates the transcription activities of mRNA from our genome blueprint. A well-known example 

of epigenomic coding is imprinting, where paternally- and maternally-inherited alleles can lead to 

different levels of gene expression at a neighbouring disease gene in the offspring. Cases recruited 

from a population that exhibits an imprinting effect influencing a particular gene will have a higher 

proportion of disease allele in offspring inherited from the parent who induces a higher expression 

level. It is believed that more than 1% of all mammalian genes exhibit imprinting effect. Imprinting 

could potentially account for some of the “missing heritability” in genetic studies. 

In Chapter 5, we investigated a special form of TRD, called sex-of-parent-specific TRD (ST). ST 

occurs when one parent consistently over-transmits an allele, while the other transmits under the 

Mendelian inheritance ratio. With ST resulting from over-transmission of disease allele from one 

parent, the case population recruited, if representative, will have an over-representation of the 

disease allele from this parent. ST effect then confounds with an imprinting effect because they 

show the same results in the case population. It is then crucial to address ST when studying 
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imprinting genes in order to reduce spurious findings. The model and its extension used for 

adjusting ST are developed in Chapter 5. 

1.7 Overview on background information and conclusion (Chapters 2 and 6) 

To provide some background information, we included in Chapter 2 a brief description of TRD, 

the fundamentals of family-based association analyses, some likelihood-based approaches, and 

recently developed methods for detecting imprinting effect in family studies. All this background 

knowledge laid out the context where TRD is examined and studied for the purpose of our 

investigation in this thesis. Chapter 6 concluded our goals for the study on TRD and proposed 

future initiatives following this line of research.  

1.8 Motivation 

We intended to investigate each of these aspects of TRD in family-based association studies in 

order to 1) highlight and document the study of TRD in terms of study design, methodology, and 

the link to known disease loci in current literature, 2) to quantify the consequences of TRD on 

statistical measures which leads to the possibility of spurious association results, and 3) to develop 

a methodology to correct for potential confounding due to TRD in association studies estimating 

offspring genotype relative risk and imprinting effects. The extent of TRD in human is still largely 

unknown. The published articles on human studies we documented in Chapter 3 are few. One of 

the reasons is because we cannot easily manipulate the parental mating genotype in human as we 

do in mouse strains. There is also no established evidence in current literature of a link between 

disease etiology and mechanisms of TRD, except for fetal survival.  The role of TRD in human 

genome and its impact on complex diseases are indeed under-studied.  

1.9 Limitations 

In our methods described in Chapters 4 and 5, we used an offset in a log-linear model to adjust for 

TRD. This offset is computed as the transmission ratio of disease allele from parent to child in 

control-parent-trios. We tested this method in a real dataset of case- and control-trios with the 

measured phenotype as intrauterine growth restriction (IUGR). We were able to find loci 

exhibiting TRD and adjust for it. To generalize this method, we assume that 1) this transmission 

ratio is available from independent samples of control-trios from major consortia, such as the 
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HapMap project, and 2) the control-trios are recruited from the same population as the case-trios. 

However, control-trios are not conventionally collected in most studies of genetic diseases, due to 

the lack of incentives. Therefore, initiatives to recruit samples with such information and 

requirement are rare, especially for sex-of-parent-specific allele transmission ratio. Nevertheless 

we envision the research results from this thesis could generate interest and lead to an increasing 

awareness of TRD and its significance in human studies.   
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Chapter 2 

Background 

2.1 Overview of Transmission Ratio Distortion 

TRD is the genetic phenomenon where either or both of the parents over-transmit one of their 

alleles to the child, leading to a departure from the Mendelian inheritance ratio. TRD can manifest 

itself in a non-sex-of-parent-specific (Figure 2.1) or sex-of-parent-specific (Figure 2.2) manner. 

There are different types of TRD which result from disruption in the gametic or embryonic 

development stages. Examples of TRD include germline selection, meiotic drive, gametic 

competition, imprint resetting error, and embryo lethality. The biological mechanisms behind these 

TRD processes are further explained in Figure 3.1 of Chapter 3 in more detail.   

TRD lies at the intersection of three different genetic fields: developmental genetics which studies 

the role of genes in controlling the development of an organism, population genetics which deals 

with the genetic diversity in human populations due to evolutionary forces, and statistical genetics 

which studies the relationship between genes and human health. Studying TRD in developmental 

genetics can identify biological processes responsible for differential survival of zygote or embryo. 

In population genetics, it provides additional information on evolutionary forces that affect the 

diversity of the current gene pool. It can also contribute to the discovery of rare variants responsible 

for high penetrance diseases clustered in high risk families. Finally, in statistical genetics it leads 

to the correct interpretation of, on the one hand, the association or linkage signals between disease 

and genes and, on the other hand, of the interplay between epigenetic and DSL genetic effects. 

Even though TRD has been relatively well-studied in animals and plants, its prevalence in humans 

remains largely unknown. We searched for human studies on TRD in the last two decades. Some 

of the TRD loci overlap with known loci responsible for a whole range of diseases, such as cancers, 

Type 1 and Type 2 diabetes, developmental abnormalities, etc. Study designs and statistical 

methods used in these studies vary, depending on the nature of the TRD process being investigated. 

For example, non-sex-of-parent-specific TRD (NST) such as germline selection can be detected 

using trios with offspring unselected for phenotype or control-trios, by applying the Transmission 
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Disequilibrium Test (TDT). Embryo lethality due to epimutation can be assessed using two-

generation families, comparing expected versus observed offspring genotype ratio by the 

Pearson’s Chi-square test. Grandparental origin of TRD such as due to imprint resetting error can 

be detected using 3-generation families with multivariate logistic regression predicting the 

grandparental source of inherited allele using variables such as sex of offspring, cross (in mouse) 

and their interaction.   

When linkage/association is being assessed between a DSL and disease status, the presence of 

TRD can be a confounding factor. When a parent over-transmits the disease allele due to TRD, 

TRD is in the same direction as the linkage/association signal, and hence, it inflates the true signal. 

When a parent under-transmits the disease allele due to TRD, TRD is in the opposite direction of 

the linkage/association signal, and hence, it attenuates the true signal. Therefore, if TRD is present 

but not accounted for, it can lead to false positives or false negatives and consequently, spurious 

conclusions. This highlights the importance of developing a statistical method which adjusts for 

TRD and provides correct interpretation of the linkage/association signal. 

The impact of TRD at the organismal level can lead to consequences in terms of genetic diversity. 

When selective pressure on the disadvantaged allele occurs consistently over generations, it can 

cause the allele to become extinct. On the other hand, the over-transmitted allele can then reach 

fixation, and reduce the allelic diversity in the gene pool. This has perhaps led to the slow 

disappearance of TRD loci on the genome. However, different evolutionary forces can sometimes 

maintain the disadvantaged allele at a low frequency, such as mutations, recombinations, genetic 

drift and the presence of an immunogenetic advantage for survival in later adulthood. Some of 

these TRD loci result in rare variants. Rare variants are currently under intense research 

investigation, and identifying TRD loci could help in the discovery of these variants.  TRD is 

human populations is largely under-explored, yet it holds potential to shed light on many areas of 

genetics ultimately contributing to our knowledge of the relationship between genes and human 

health.  
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Figure 2.1 Non-sex-of-parent-specific TRD (NST) 

  

* Genotype notation of mother (M), father (F) and child (C) uses the additive model, which 
counts the number of minor allele that the individual carries. 

 

Figure 2.2 Sex-of-parent-specific TRD (ST): Maternal ST (MST) 
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2.2 Family-based association studies 

2.2.1 The evolving role of family-based studies 

Family-based study design were prevalent in the latter half of the twentieth century for identifying 

genes associated with rare Mendelian diseases, in closely linked regions on the genome, usually 

with some preliminary biological evidence. Examples of such are cystic fibrosis [2] and 

Huntington’s disease [3]. Study designs can range from sib-pairs (discordant or concordant), case-

parent trios, relatives, and more complex pedigrees. For complex and more frequent diseases, amid 

some challenges, these studies also allowed the identification of some important genes involved 

in the etiology. For example, BRCA1 and BRCA2, known to predispose individual carriers to 

breast cancer, were discovered by linkage study [4].  

As case-control GWAS became available due to the advancement in genotyping technology, they 

quickly replaced family-based studies, allowing coverage at low cost of millions of single 

nucleotide polymorphisms (SNP) on the genome in large samples. The feasibility of these studies 

provided information to identify multiple genes associated with complex diseases, such as 

coronary heart disease [5, 6], Crohn’s disease [7-9], numerous forms of cancer [10-12], Type 1 

[13, 14] and Type 2 diabetes [15-17], schizophrenia [18-21], and bipolar disorder [18, 22, 23].  

Regardless of these successes, common variants identified in GWAS have usually revealed only 

small risk increment for common diseases. This led to the suggestion that rare variants which have 

high penetrance in affected families are accountable for the “missing heritability” [24-27]. This 

leads to a renewal of interest in conducting family-based studies to identify these rare variants, 

especially with the availability of whole genome sequencing (WGS) technology [28-30] where 

billion base-pairs on the genome can in principle be sequenced.  

2.2.2 Population-based association study 

Population-based association studies usually utilizes affected subjects and compare them with 

unrelated controls from the same genetic population; this case-control design serves as the basis 

of GWAS. Both cases and controls are genotyped for a large number of SNPs across the genome. 

Association with disease is then estimated at each locus and the disease status (affected or 
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unaffected) of the individuals, usually with a Cochran-Armitage trend test or logistic regression. 

A departure from independence between disease and marker is taken as evidence to the presence 

of association [31]. However, the control sample which is presumed from the same population as 

the cases may be different in ways that are difficult to measure and account for. This leads to 

population stratification and has possibly contributed to the poor success rate in replication of the 

findings [32, 33]. Population stratification seen in case-controls studies can be corrected using a 

number of different methods among which principle component analysis (PCA) [34] or Bayesian 

outlier method [35] are used. These methods may be complex and of limited use in studies of 

candidate genes where only a limited number of SNPs have been genotyped.    

2.2.3 Family-based association study 

Family-based association study design uses related subjects. The controls in these study designs 

are inherently matched to the cases in terms of population structure which guards against 

population stratification. Ideally, every member of the study unit is genotyped at each potential 

DSL. However, some statistical methods have the flexibility to accommodate for missing data. 

Linkage and/or association with case-parent trios is commonly assessed by the TDT. Other tests 

can be applied depending on the design or the genetic models, which are illustrated in the next 

section.  When disease is associated with DSL, the disease allele is transmitted more (or less) often 

than expected under the null, indicating a departure from the Mendelian inheritance ratio.   

2.2.4 TDT and family-based association tests 

TDT is the simplest version of family-based association test, as well as the most commonly used 

[36]. It is a type of McNemar Test which uses only heterozygous parents. The original design using 

the TDT is a case-parent trio study where transmitted and non-transmitted disease alleles from 

heterozygous parents to the child are counted. The non-transmitted alleles from the parents are 

used to form the ethnically matched control to the case child. Therefore, it is robust against 

population stratification.  

The McNemar Test table for TDT is shown in Table 2.1. Both parents with heterozygous genotype 

are non-discriminately used in computing the counts. Considering a bi-allelic locus, the number of 
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heterozygous parents who transmitted disease allele D to child is counted as b1, and the number 

who transmitted the non-diseased allele d to the child is counted as c1. The 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  statistic is (𝑏𝑏1−𝑐𝑐1)2

(𝑏𝑏1+𝑐𝑐1)
, 

and has 1 degree of freedom (df). The corresponding TDT Chi-square statistic for control-trios is 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 . In a simulation study included in Chapter 3, we showed that 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  by itself can be used to 

test for the presence of TRD.  

Table 2.1: TDT on case- and control-trios 

 Case trios Control trios 

Non-transmitted allele Non-transmitted allele 

Transmitted 

allele 

D d D d 

D a1 b1 a2 b2 

d c1 d1 c2 d2 

TDT statistics 
𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =

(𝑏𝑏1 − 𝑐𝑐1)2

(𝑏𝑏1 + 𝑐𝑐1)
 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =

(𝑏𝑏2 − 𝑐𝑐2)2

(𝑏𝑏2 + 𝑐𝑐2)
 

 

In addressing the phenomenon of segregation distortion (a type of TRD), which confounds with 

linkage and association signals, Spielman et al. [36] suggested the use of both case- and control-

trios. He proposed a Chi-square test statistic, which we called 𝜒𝜒𝐶𝐶𝐶𝐶2 , also with 1df. It uses the 

heterozygous counts of both case- and control-trios to detect an excess or deficit in transmission 

counts of the minor allele compared to the major allele, between case- and control-trios. The test 

statistic is shown in Table 2.2. This Chi-Square statistic measures the significance of true 

association and linkage signal given the possible presence of TRD.  
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Table 2.2: Pearson's Chi-square test on case- and control-trios 

 Transmitted allele in 

heterozygous parents 

 

D d Row total 

Case trios b1 c1 n1 

Control trios b2 c2 n2 

Column total nb nc n 

Pearson's Chi-

square test statistic 
𝜒𝜒𝐶𝐶𝐶𝐶2 =

 𝑛𝑛(𝑏𝑏1𝑐𝑐2 − 𝑐𝑐1𝑏𝑏2)2

(𝑛𝑛1𝑛𝑛2𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐)
 

 

The dual-null hypothesis of TDT in GWAS or candidate gene studies with no previous linkage 

signal is no linkage nor association. Therefore, it has power only when both linkage and association 

are present. Rejecting the null hypothesis implies linkage disequilibrium (LD) between disease 

and DSL, which means that association is due to lack of recombination, not population 

stratification. The null distribution of the TDT statistic is a central Chi-square statistic with 1 df, 

and TDT is non-parametric. It makes no assumption on underlying genetic model or distribution 

of disease in the population, and hence is robust against misspecification of disease model or trait 

distribution.  

Later developed methods generalized the TDT and accommodated nuclear families with multiple 

affected and unaffected offspring, such as the Family-based association test (FBAT) [37, 38].  A 

natural basis for association statistics is the covariance between trait and genotype. The definition 

of the FBAT statistics includes factor X (counts of copies of minor allele in child), Y (trait), T 

(coding of trait derived from Y), and P (genotype of parents). We define T as Y-µ, where Y is the 

phenotypic variable and µ is a fixed, pre-specified value that depends on the nature of the sample 

and phenotype.  The covariance statistic used in the FBAT statistic is: 

𝑈𝑈 = ∑𝑇𝑇 (𝑋𝑋 − 𝐸𝐸[𝑋𝑋|𝑃𝑃])    (2.2.1) 
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The FBAT test statistic under the null hypothesis is a central Chi-square statistic with 1 df, which 

is:  

𝑆𝑆 =  𝑈𝑈2

𝑣𝑣𝑐𝑐𝑐𝑐(𝑈𝑈)
      (2.2.2) 

Changing the way T is defined, one can include unaffected offspring, fit alternative traits or 

multiple traits, whereas changing the way X is defined, one can test alternative genetic models 

(recessive, dominant), and multiple alleles at a locus. Therefore, FBAT is widely applicable to 

many test situations. FBAT can be generalized to address arbitrary pedigree, missing 

parents/founders or haplotypes, or extended to handle complex phenotypes, arbitrary genetic 

models, and multiallelic markers. FBAT and TDT are the same under the condition that both 

parents are genotyped, T = 1 when affected, 0 otherwise, and X is the number of disease alleles.  

Another alternative association test is the Pedigree Disequilibrium Test (PDT), which is 

specifically designed for analysis of LD in general pedigrees [39]. This method builds on 

informative pedigrees which have at least 1 informative trio or 1 informative discordant sib-pair 

(DSP). An informative trio has at least 1 affected child and 1 heterozygous parent, whereas an 

informative DSP has at least 1 affected and 1 unaffected sibling and may or may not have parental 

genotype data. In an informative trio, define XT = count (D is transmitted) – count (D is not 

transmitted), where D is the minor allele, and in an informative DSP, define XS  = count (D in 

affected sib) – count (D is in unaffected sib). A summary statistic for a pedigree with nT informative 

trios and nS informative DSP is then: 

𝐷𝐷𝑖𝑖 = 1
𝑛𝑛𝑇𝑇𝑇𝑇+𝑛𝑛𝑆𝑆𝑇𝑇

�∑ 𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇 + ∑ 𝑋𝑋𝑆𝑆𝑖𝑖𝑇𝑇
𝑛𝑛𝑆𝑆𝑇𝑇
𝑇𝑇

𝑛𝑛𝑇𝑇𝑇𝑇
𝑇𝑇 �    (2.2.3) 

where i is the ith pedigree, and j is the jth trio or sib-pair within an independent pedigree. The PDT 

statistic is: 

𝑇𝑇 = ∑ 𝐷𝐷𝑇𝑇𝑁𝑁
𝑇𝑇

�∑ 𝐷𝐷𝑇𝑇
2𝑁𝑁

𝑇𝑇

      (2.2.4) 
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where N is the total number of unrelated pedigrees.  This T statistic is asymptotically normal with 

mean 1 and variance 0 under the null hypothesis of no LD. If we use the same data (trios only), 

both TDT and PDT will be asymptotically equivalent under the null hypothesis.   

2.2.5 Advantages of family-based studies 

In family-based studies, a significant finding usually implies both linkage and association, not 

population stratification. It is true that recruiting cases and unrelated controls is usually much 

easier than family members, especially for late-onset diseases. Regardless of the difficulties in 

ascertaining and genotyping multiple family members, it was shown that in rare diseases, trios-

design achieves greater power than case-control design with the same number of study unit: 3 

individuals for a trio, and 2 individuals for a case-control-pair [38]. Furthermore, a family-based 

study has additional advantages because with the proper analysis it can provide more genetic 

information than the case-control study; for example, an imprinting effect can be tested. Case-

control studies have fallen short of accounting for high penetrance rare diseases because they 

usually have low power to detect rare variants (less than 1%).  Rare variants are usually clustered 

in families, and so far have been best addressed in family-based studies. Both rare variants [24, 26, 

27] and imprinting as an epigenetic effect [40-43] have been considered with greater interest 

because of their potential role in the “missing heritability” from the classical GWAS. This has 

raised interest in family-based studies in recent years. With respect to our own interest, 

Transmission Ratio Distortion (TRD) can only be studied using a family-based study design, 

where information on parental transmission of allele to the offspring is available. 

2.3 Likelihood-based approaches in family-based association studies: loglinear, logistic and 

conditional logistic models 

2.3.1 Likelihood methods for family-based studies using case-parent trios 

There are a few likelihood approaches which involve testing for association using the likelihood 

ratio test (LRT) or the score test. For our investigation on TRD, we have considered the loglinear 

[44], the logistic [45] and the conditional logistic regression models [46, 47].  These family-based 

study approaches use the conventional case-parent-trios design and therefore are robust against 
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population stratification. They have features in handling complex test scenarios either in the 

original framework or through later extensions, which will be explained in detail in section 2.3.5.  

2.3.2 Weinberg et al. (1998) loglinear model 

Weinberg et al.’s [44] loglinear model is based on the multinomial likelihood of a 15-category 

genotype combinations, indexed by the mother (M), father (F) and child genotype (C) counting 

the number of copies of minor alleles in these individuals. The general form of the count 

probability for genotype category MFC in this model can be written as: 

𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀|𝐷𝐷] =
𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝑀𝑀]𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀]𝑃𝑃[𝑀𝑀𝑀𝑀]

𝑃𝑃[𝐷𝐷]
 

where P[D|MFC] is the penetrance function of disease given the trio genotype MFC, P[C|MF] is 

the inheritance probability of child genotype given parental genotype, P[MF] is the mating type 

frequency, and P[D] = d is the disease prevalence. 

This loglinear model estimates two relative risk (RR) parameters for child genotype (1 or 2 copies 

of minor allele), and two for maternal genotype. The genotype type is coded 0 as homozygous 

wild-type, 1 as heterozygous, and 2 as homozygous mutant. The loglinear model is presented as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝛾𝛾𝑇𝑇 + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝛼𝛼1𝐼𝐼[𝑀𝑀=1] + 𝛼𝛼2𝐼𝐼[𝑀𝑀=2]  (2.3.1) 

where j indicates the j-th mating type stratum MF, ranging from 1 to 6, based on 6 unique 

exchangeable parental mating types as a result of the assumption on mating symmetry. RR for 

child genotype 1 and 2 are 𝑅𝑅1 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1)  and 𝑅𝑅2 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽2) , respectively. RR for maternal 

genotype 1 and 2 are 𝑆𝑆1 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼1) and 𝑆𝑆2 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼2), respectively. This model also provides a 

likelihood ratio Chi-square statistic to test for significance of association between marker and 

disease. The LRT with child-only effect under a log-additive relative risk model is asymptotically 

equivalent to the TDT.   

Weinberg et al. [44] have shown a possible extension of this loglinear model to further 

accommodate parent-of-origin effects by adding two imprinting variables for maternally (IM) and 

paternally (IF) inherited disease allele for a heterozygous child. The category MFC = 111 can then 
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be further divided into MFC = 111M (child disease allele inherited from mother) and MFC = 111F 

(child disease allele inherited from father). The augmented model based on the 16 MFC categories 

shown in Table 2.3 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝛾𝛾𝑇𝑇 + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝛼𝛼1𝐼𝐼[𝑀𝑀=1] + 𝛼𝛼2𝐼𝐼[𝑀𝑀=2] +

𝜀𝜀𝑀𝑀𝐼𝐼𝑀𝑀 + 𝜀𝜀𝑀𝑀𝐼𝐼𝑀𝑀            (2.3.2) 

Table 2.3: Components of original loglinear model with child, maternal and imprinting effect: 

equation (2.3.2) 

Mating 

Type 

(MT) 

MFC 

Genotype 

Mating Type 

frequency  

𝑃𝑃[𝑀𝑀𝑀𝑀] 

Probability 

of 

transmission 

 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] 

Genotype 

frequency

𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀] 

Penetrance 

probability 

𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝑀𝑀] 

Conditional 

Genotype 

frequency

 𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀|𝐷𝐷] 

1 222 𝑒𝑒4 1 𝜇𝜇1 f0 R2 S2 IM IF f0 R2 S2 IM IF µ1/d 

2 212 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R2 S2 IM IF f0 R2 S2 IM IF µ2/d 

 211 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R1 S2 IM f0 R1 S2 IM µ2/d 

 122 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R2 S1 IM IF f0 R2 S1 IM IF µ2/d 

 121 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R1 S1 IF f0 R1 S1 IF µ2/d 

3 201 𝑒𝑒2(1 − 𝑒𝑒)2 1 𝜇𝜇3 f0 R1 S2 IM f0 R1 S2 IM µ3/d 

 021 𝑒𝑒2(1 − 𝑒𝑒)2 1 𝜇𝜇3 f0 R1 IF f0 R1 IF µ3/d 

4 112 4𝑒𝑒2(1− 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R2 S1 IM IF f0 R2 S1 IM IF µ4/d 

 111M 4𝑒𝑒2(1− 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R1 S1 IM f0 R1 S1 IM µ4/d 

 111F 4𝑒𝑒2(1− 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R1 S1 IF f0 R1 S1 IF µ4/d 

 110 4𝑒𝑒2(1− 𝑒𝑒)2 1/4 𝜇𝜇4 f0 S1 f0 S1 µ4/d 

5 101 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 R1 S IM f0 R1 S1 IM µ5/d 

 100 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 S1 f0 S1 µ5/d 

 011 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 R1 IF f0 R1 IF µ5/d 

 010 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0  f0 µ5/d 

6 000 (1 − 𝑒𝑒)4 1 𝜇𝜇6 f0 f0 µ6/d 
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This model is slightly different from Weinberg et al. [44] which uses a 15 MFC category model. 

Both of these two models encounter a multicollinearity problem because: 

𝑀𝑀 = 𝐼𝐼[𝐶𝐶=1] + 2𝐼𝐼[𝐶𝐶=2] = 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑀𝑀 

and in its full form is not statistically identifiable. The Expectation Maximization (EM) algorithm 

can be used with this model to address missing parental origin information for the triply 

heterozygous genotype category (MFC = 111). Simulation results showed that convergence can 

be achieved.   

2.3.3 Weinberg (1999) logistic model 

Weinberg later proposed a logistic regression model, termed parent-of-origin likelihood ratio test 

(PO-LRT) [45]. It proposed to tackle the problem of missing parental origin information, by using 

trios with parents carrying unequal copies of variant allele, so that the parental origin of disease 

allele in the child is known. This logistic model is written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃[𝑀𝑀>𝑀𝑀|𝑀𝑀𝑇𝑇,𝐶𝐶]
𝑃𝑃[𝑀𝑀<𝑀𝑀|𝑀𝑀𝑇𝑇,𝐶𝐶]

� = 𝛼𝛼 𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽 𝐼𝐼[𝑀𝑀+𝑀𝑀>1] + 𝛾𝛾 �𝐼𝐼{𝑀𝑀+𝑀𝑀=1] − 𝐼𝐼[𝑀𝑀+𝑀𝑀>2]�    (2.3.3) 

where the numerator of the logit is the probability of mother carrying more copies of minor allele 

than father, given mating type (MF) and child genotype (C), and the denominator is the probability 

of father carrying more copies of minor allele than mother, given the same conditions. A different 

parameterization method was used in comparison with Weinberg et al. [44] as shown in Table 2.4, 

where R2,  R1 and IM are equal to R2IMIF, R1IF and IM/IF in Weinberg et al. [44], respectively. 

Equation (2.3.3) uses only mating type strata 2, 3 and 5 from Table 2.4.  

To calculate the conditional probability of P[M>F|MT, C, D] in equation (2.3.3) using values in 

Table 2.4, for example with mating type (MT) 2, child genotype 2 and M>F, we have: 

𝑃𝑃[𝑀𝑀 > 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑃𝑃[𝑀𝑀 = 2,𝑀𝑀 = 1,𝑀𝑀 = 2|𝐷𝐷]

𝑃𝑃[𝑀𝑀 = 2,𝑀𝑀 = 1,𝑀𝑀 = 2|𝐷𝐷] + 𝑃𝑃[𝑀𝑀 = 1,𝑀𝑀 = 2,𝑀𝑀 = 2|𝐷𝐷]
 

𝑃𝑃[𝑀𝑀 > 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑓𝑓0𝑅𝑅2𝑆𝑆2𝜇𝜇2/𝑑𝑑

𝑓𝑓0𝑅𝑅2𝑆𝑆2𝜇𝜇2/𝑑𝑑 + 𝑓𝑓0𝑅𝑅2𝑆𝑆1𝜇𝜇2/𝑑𝑑
=  

𝑆𝑆2
𝑆𝑆2 + 𝑆𝑆1
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where D indicates disease status. Similarly, for the MT 2, child genotype 2 and M<F, we have: 

𝑃𝑃[𝑀𝑀 < 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑓𝑓0𝑅𝑅2𝑆𝑆1𝜇𝜇2/𝑑𝑑

𝑓𝑓0𝑅𝑅2𝑆𝑆2𝜇𝜇2/𝑑𝑑 + 𝑓𝑓0𝑅𝑅2𝑆𝑆1𝜇𝜇2/𝑑𝑑
=  

𝑆𝑆1
𝑆𝑆2 + 𝑆𝑆1

 

Table 2.4: Components of logistic model with maternal and imprinting effect: equation (2.3.3) 

Mating 

Type 

(MT) 

MFC 

Genotype 

Mating Type 

frequency  

𝑃𝑃[𝑀𝑀𝑀𝑀] 

Probability of 

transmission 

 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] 

Genotype 

frequency

𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀] 

Penetrance 

probability 

𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝑀𝑀] 

Conditional 

Genotype 

frequency

 𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀|𝐷𝐷] 

1 222 𝑒𝑒4 1 𝜇𝜇1 f0 R2 S2  f0 R2 S2 µ1/d 

2 212 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R2 S2  f0 R2 S2 µ2/d 

 211 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R1 S2 IM f0 R1 S2 IM µ2/d 

 122 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R2 S1  f0 R2 S1 µ2/d 

 121 2𝑒𝑒3(1 − 𝑒𝑒) 1/2 𝜇𝜇2 f0 R1 S1  f0 R1 S1 µ2/d 

3 201 𝑒𝑒2(1− 𝑒𝑒)2 1 𝜇𝜇3 f0 R1 S2 IM f0 R1 S2 IM µ3/d 

 021 𝑒𝑒2(1− 𝑒𝑒)2 1 𝜇𝜇3 f0 R1  f0 R1 µ3/d 

4 112 4𝑒𝑒2(1 − 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R2 S1  f0 R2 S1 µ4/d 

 111M 4𝑒𝑒2(1 − 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R1 S1 IM f0 R1 S1 IM µ4/d 

 111F 4𝑒𝑒2(1 − 𝑒𝑒)2 1/4 𝜇𝜇4 f0 R1 S1 f0 R1 S1 µ4/d 

 110 4𝑒𝑒2(1 − 𝑒𝑒)2 1/4 𝜇𝜇4 f0 S1 f0 S1 µ4/d 

5 101 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 R1 S1 IM f0 R1 S1 IM µ5/d 

 100 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 S1 f0 S1 µ5/d 

 011 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0 R1 f0 R1 µ5/d 

 010 2𝑒𝑒(1 − 𝑒𝑒)3 1/2 𝜇𝜇5 f0  f0 µ5/d 

6 000 (1 − 𝑒𝑒)4 1 𝜇𝜇6 f0 f0 µ6/d 

  

In another example for MT 2, child genotype 1 and M>F, we have: 

𝑃𝑃[𝑀𝑀 > 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑃𝑃[𝑀𝑀 = 2,𝑀𝑀 = 1,𝑀𝑀 = 1|𝐷𝐷]

𝑃𝑃[𝑀𝑀 = 2,𝑀𝑀 = 1,𝑀𝑀 = 1|𝐷𝐷] + 𝑃𝑃[𝑀𝑀 = 1,𝑀𝑀 = 2,𝑀𝑀 = 1|𝐷𝐷]
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𝑃𝑃[𝑀𝑀 > 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑓𝑓0𝑅𝑅1𝑆𝑆2𝐼𝐼𝑀𝑀𝜇𝜇2/𝑑𝑑

𝑓𝑓0𝑅𝑅1𝑆𝑆2𝐼𝐼𝑀𝑀𝜇𝜇2/𝑑𝑑 + 𝑓𝑓0𝑅𝑅1𝑆𝑆1𝜇𝜇2/𝑑𝑑
=  

𝑆𝑆2𝐼𝐼𝑀𝑀
𝑆𝑆2𝐼𝐼𝑀𝑀 + 𝑆𝑆1

 

Similarly, for MT 2, child genotype 1 and M<F, we have: 

𝑃𝑃[𝑀𝑀 < 𝑀𝑀|𝑀𝑀𝑇𝑇,𝑀𝑀,𝐷𝐷] =
𝑓𝑓0𝑅𝑅1𝑆𝑆1𝜇𝜇2/𝑑𝑑

𝑓𝑓0𝑅𝑅1𝑆𝑆2𝐼𝐼𝑀𝑀𝜇𝜇2/𝑑𝑑 + 𝑓𝑓0𝑅𝑅1𝑆𝑆1𝜇𝜇2/𝑑𝑑
=  

𝑆𝑆1
𝑆𝑆2𝐼𝐼𝑀𝑀 + 𝑆𝑆1

 

With the same approach, we obtained equation (2.3.3) for all MFC categories in strata 2, 3, and 5, 

as shown in Table 2.5. 

Table 2.5: Parents carrying unequal variant allele counts  

Stratum MFC genotype P[M>F|MT, C, D] P[M<F|MT, C, D] P[M>F|MT, C, D]/ 

P[M<F|MT, C, D] 

2 212 and 122 S2/(S1+S2) S1/( S1+ S2) S2/ S1 

2 211 and 121 S2 IM /( S2 IM + S1) S1/( S2IM+ S1) S2 IM / S1 

3 201 and 021 S2 IM /( S2 IM +1) 1/( S2 IM +1) S2 IM 

5 101 and 011 S1 IM /( S1 IM +1) 1/( S1 IM +1) S1 IM 

5 100 and 010 S1/( S1+1) 1/( S1+1) S1 

 

The predictors in this model (equation (2.3.3)) are more difficult to interpret. The imprinting 

variable IM is uniquely present in numerator of rows 2 to 4 in Table 2.5, where the common 

condition is C = 1. Therefore, 𝐼𝐼𝑀𝑀 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼), where 𝛼𝛼 is the regression parameter for indicator 

variable I[C=1]. The maternal variable S2 is only present in numerator of rows 1 to 3, where M+F = 

2 or 3. The common condition of these 3 rows are therefore M+F>1. Therefore, 𝑆𝑆2 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽) 

where 𝛽𝛽 is the regression parameter of the indicator variable I[M+F>1]. Then, the maternal variable 

S1 is only in the denominator of rows1 and 2, and in the numerator of rows 4 and 5, and is not 

present in row 3. Therefore, a positive indicator variable for rows 4 and 5 is M+F = 1, and a 

negative indicator variable for row 1 and 2 is M+F = 3, or M+F > 2, because negative in the log 

scale corresponds to division in the original scale. Therefore, 𝑆𝑆1 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛾𝛾) is in the numerator 

when M+F = 1, and in the denominator when M+F > 2, and 𝛾𝛾 is the regression parameter of the 

difference between indicator variables I[M+F=1]  and I[M+F>2]. The model is fitted without an intercept, 



20 
 

to ensure the predictors estimate exactly the maternal genotype 1 and 2 effects, and parent-of-

origin (imprinting) effect without a reference level. This model does not give an estimate for child 

genotype effect.  

 2.3.4 Cordell et al. (2002, 2004) conditional logistic model 

Cordell et al. also proposed a case-parent trio approach, but used the untransmitted allele from the 

parents to generate pseudo-controls and fitted them in a conditional logistic regression model [46, 

47]. For example, each case-parent trio contains 4 parental haplotypes. Taking 1 haplotype out of 

each parent, 4 possible phased child genotype can be created, one of which is the actual case child 

and the remaining 3 are pseudo-controls. This is the conditional on parental genotype (CPG) 

approach. If we assume parental genotypes are exchangeable, we will have 4 more pseudo-controls, 

and this becomes the conditional on exchangeable parental genotype (CEPG) model. However, 

not all pseudo-controls formed from either CPG or CEPG approaches are useful in the sense that 

only the ones with deducible parental-origin and/or phase information can be retained for fitting 

the model. This is due to the restriction on the model being fitted, whether it depends on parental-

origin and/or phase. In such cases, pseudo-controls for which parental-origin and/or phase cannot 

be determined are discarded. For the model that does not depend on either parental-origin or phase, 

there could be only 1 pseudo-control, using the left-over alleles once the case alleles are removed 

from the parental genotype pair.  

Notation of trio genotypes for Cordell’s approach [46, 47] is 𝑙𝑙𝑐𝑐,𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓, for child, mother and 

father, respectively, is a notation equivalent to that used in Weinberg et al. [44, 45] as C, M and F. 

We retained the notation by Cordell et al. here for easier reference to the original papers [46, 47]. 

The general form of conditional probability of 𝑙𝑙𝑐𝑐 for each trio contributing to the CPG conditional 

likelihood can be written as: 

𝑃𝑃�𝑙𝑙𝑐𝑐�𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 ,𝐷𝐷, 𝜉𝜉� = 𝑃𝑃[𝐷𝐷|𝑔𝑔𝑐𝑐,𝑔𝑔𝑚𝑚,𝑔𝑔𝑓𝑓]
∑ 𝑃𝑃[𝐷𝐷|𝑔𝑔𝑐𝑐∗,𝑔𝑔𝑚𝑚,𝑔𝑔𝑓𝑓]𝑔𝑔𝑐𝑐

∗𝜖𝜖𝐺𝐺𝜉𝜉
     (2.3.4) 

where 𝑙𝑙𝑐𝑐,𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 are as defined previously, D is the disease status of the child, 𝜉𝜉 is the event where 

parental-origin and/or phase can be deduced depending on the model being fitted, and 𝑙𝑙𝑐𝑐∗𝜖𝜖𝐺𝐺𝜉𝜉  are 
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all the 𝑙𝑙𝑐𝑐  that met the condition defined by 𝜉𝜉 . For CEPG conditional likelihood, each trio’s 

contribution to the conditional likelihood can be written as: 

𝑃𝑃�𝑙𝑙𝑐𝑐�𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 ,𝐷𝐷, 𝜉𝜉� = 𝑃𝑃[𝐷𝐷|𝑔𝑔𝑐𝑐,𝑔𝑔𝑚𝑚,𝑔𝑔𝑓𝑓]
∑ 𝑃𝑃[𝐷𝐷|𝑔𝑔𝑐𝑐∗,𝑔𝑔𝑚𝑚∗ ,𝑔𝑔𝑓𝑓

∗ ]𝑔𝑔𝑐𝑐
∗ ,𝑔𝑔𝑚𝑚

∗ ,𝑔𝑔𝑓𝑓
∗  𝜖𝜖𝐺𝐺𝜉𝜉

    (2.3.5) 

where 𝑙𝑙𝑐𝑐∗,𝑙𝑙𝑚𝑚∗ ,𝑙𝑙𝑓𝑓∗   𝜖𝜖𝐺𝐺𝜉𝜉  are all the (𝑙𝑙𝑐𝑐,𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓) combinations that met the condition defined by 𝜉𝜉 

under exchangeable parental genotypes. The proofs for equations (2.3.4) and (2.3.5) are shown in 

the appendix of Cordell et al. [46]. 

As shown in Self et al. [48] and Schaid [49], the conditional probability in equation (2.3.4) is 

equivalent to that used in the conditional logistic regression with a case of (phased) genotype 𝑙𝑙𝑐𝑐 

matched to a number of pseudocontrols of (phased) genotype 𝑙𝑙𝑐𝑐∗ where 𝑙𝑙𝑐𝑐∗𝜖𝜖𝐺𝐺𝜉𝜉 . The likelihood for 

the whole dataset is the product of the conditional probability across all N case-parent trios. Note 

that the conditional likelihoods in equations (2.3.4) and (2.3.5) are without the nuisance parameters, 

 𝑃𝑃[𝑙𝑙𝑐𝑐|𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉] and 𝑃𝑃[𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉] [46].  

This conditional logistic regression approach provides a natural and flexible framework to 

incorporate epistasis (gene-gene interaction), gene-environment interaction, and parent-of-origin 

effect, and can handle multi-allelic loci, multiple linked loci, and multiple linked loci in a multiple 

unlinked region, without the need to adjust for nuisance parameters [46]. The more restricted 

model assuming parental allelic exchangeability generates 4 additional pseudo-controls and 

increases power when studying parent-of-origin effect. However, simulation using this method 

shows that there is limited power to distinguish parent-of-origin effect from mother-fetal genotype 

interaction. 

2.3.5 Comparison of Weinberg and Cordell approaches 

Cordell and Weinberg’s approaches make no assumption about Hardy-Weinberg Equilibrium 

(HWE) or random mating. We consider Cordell’s conditional logistic regression model [46, 47] a 

robust and competitive alternative to Weinberg's loglinear [44] and logistic [45] models.  Cordell 

incorporated many features in her proposed method [46, 47], which cover a myriad of study 
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designs, inclusion of genetic and non-genetic factors, several types of genotype parameterization, 

and the use of phenotypic data. Multiple extensions of Weinberg et al. [50-54] have also made the 

approach more appealing in facing the challenges of complex test scenarios, such as quantitative 

trait, missing data, multiple offspring, and multi-allelic locus.   

The conditional logistic approach [46, 47] does not require the fitting of the nuisance parameters, 

 𝑃𝑃[𝑙𝑙𝑐𝑐|𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉] and 𝑃𝑃[𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉], which is an advantage. However, this approach does not make 

full use of missing data. When there is a missing parent, only one pseudo-control can be generated. 

When inference is not possible, trios are discarded, which leads to reduced power because some 

data is lost. On the other hand, Kistner et al. [51, 55] extended Weinberg’s approach [44, 45] by 

using an EM algorithm to retrieve the missing information, and hence make use of the incomplete 

trios.  

An extension of Weinberg’s approach by Gjessing et al. [50] is the ability to handle multi-allelic 

loci as well as multiple linked and unlinked loci with unknown phase, but it requires specialized 

software HAPLIN. Cordell’s approach [46, 47] also requires the specialized program PSEUDOCC 

to generate pseudo-controls. The features of Weinberg et al. [44] and Cordell et al. [46, 47] 

approaches are enlisted in Table 2.6. 

2.3.6 Application to study on TRD 

In order to extend existing method for handling TRD, we made use of the multinomial probability 

of Weinberg et al. loglinear model [44], and separate out the component of transmission 

probability of child genotype given parental mating type, P[C|MF]. The details of this extension 

are shown in our Chapters 4 and 5. As for Cordell’s conditional logistic regression [46, 47], an 

extension is possible but less convenient because the nuisance parameters of the term 

𝑃𝑃�𝑙𝑙𝑐𝑐�𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉� is canceled in the calculation of the conditional likelihood 𝑃𝑃�𝑙𝑙𝑐𝑐�𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 ,𝐷𝐷, 𝜉𝜉� 

under Mendelian inheritance [46]. When there is TRD, the resulting conditional likelihood does 

not simply depend on the penetrance function 𝑃𝑃�𝐷𝐷�𝑙𝑙𝑐𝑐,𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓�  alone, but also a function 

of 𝑃𝑃�𝑙𝑙𝑐𝑐�𝑙𝑙𝑚𝑚,𝑙𝑙𝑓𝑓 , 𝜉𝜉� which complicates the maximization procedure of the regression parameters in 

a standard conditional logistic regression framework. Weinberg’s PO-LRT [45] although provides 
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estimate for parent-of-origin effect, cannot be used for the extension for TRD because there is no 

natural component in the model readily available for such purpose.  

Table 2.6. Comparing Weinberg and Cordell approaches 

Author Weinberg (extensions) Cordell (extensions) 

Model Log-linear model [44] Conditional logistic model [46, 47] 

Study design Case-trios Case-trios/matched pseudo-controls 

Assumption on HWE No  No  

Assumption on random mating No  No 

Estimation of nuisance 

parameters 

Yes No 

Handle maternal-fetal 

genotype interaction 

Yes (Sinsheimer et al. [54]) Yes 

Handle Maternal effect Yes Yes 

Handle Parent-of-origin Yes Yes 

Handle Multiple offspring Yes (Kistner et al. [56]) Yes 

Handle Multi-allelic locus Yes  (Gjessing et al. [50]) Yes 

Handle Multiple 

linked/unlinked loci with 

unknown phase 

Yes  

(Gjessing et al. [50],  

Shi et al. [53]) 

Yes 

Handle missing data Yes  

(Kistner et al. [51, 55, 56]) 

Does not discard trios with 

ambiguous parent-origin and 

unknown phase 

No 

Discard trios with ambiguous 

parent-origin and unknown phase 

Handle Gene-environment 

interaction 

Yes (Kistner et al. [52]) Yes 

Handle Gene-gene interaction No Yes 

Handle Quantitative trait Yes  

(Kistner et al. [51, 52, 55, 56]) 

Yes (Wheeler et al.[57]) 

Specialized software 

 
 
 

HAPLIN for multi-allelic or 

multiple haplotype with 

unknown phase  

(Gjessing et al. [50]) 

PSEUDOCC (in stata) to generate 

pseudo-controls (Clayton [58]) 
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2.4 Current methods on testing for parent-of-origin (imprinting) effect 

2.4.1 Overview of the current literature 

Imprinting is the phenomenon when the disease allele inherited by the offspring from the father  

induces a different level of gene expression at a neighbouring disease gene, compared to disease 

allele inherited from the mother, which determines the amount of transcription activities at the 

DSL. The differential level of expression changes the penetrance of disease in child depending on 

the parental-origin of the inherited disease allele, and hence the RR of the child genotype. It is 

believed that more than 1% of the mammalian genes are subject to imprinting. Few lines of 

methodology in current literature that have been developed to study parent-of-origin effect in 

association studies. These include extensions of the TDT, the Parental Asymmetry Test (PAT), the 

loglinear, logistic, and conditional logistic models.  We now examine the basic principle of these 

approaches for binary traits. 

2.4.2 Extensions of Transmission Disequilibrium Test (TDT) 

Zhou et al. have developed the parent-of-origin effects test (POET), based on a McNemar test, to 

detect the presence of imprinting effect for case-parent trios [59]. Assuming an additive genotype 

model counting the number of copies of the disease allele (noted D), there are a total of 15 mother-

father-child (MFC) genotype categories with exchangeable parental mating types. These 15 

categories can be divided into 3 groups: 1) mother and father carry an equal number of disease 

allele, 2) mother carries more disease allele than father, and 3) father carries more disease allele 

than mother. The corresponding counts are: NM=F = N222+N112+N111+N110+N000, NM>F = 

N212+N211+N201+N101+N100, NF>M = N122+N121+N021+N011+N010, respectively, where NMFC is the 

number of trios with maternal (M), paternal (F) and child (C) genotype combination. 

When there is imprinting, it is more likely for the affected child in the sample to have inherited the 

disease allele from the parent  who induces a higher expression level at a neighbouring disease 

gene. Under the null hypothesis of no imprinting, counts in groups 2 and 3 should be equal. 

Therefore, the POET can be defined as a McNemar test in the form of: 
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𝑃𝑃𝑃𝑃𝐸𝐸𝑇𝑇 = 𝑁𝑁𝐹𝐹>𝑀𝑀−𝑁𝑁𝑀𝑀>𝐹𝐹

�𝑁𝑁𝐹𝐹>𝑀𝑀+𝑁𝑁𝑀𝑀>𝐹𝐹
      (2.4.1) 

which follows a standard normal distribution under the null hypothesis of no imprinting. A 

significant p-value indicates the presence of an imprinting effect. This test can be performed even 

when the marker is not necessarily the DSL. Weinberg [45] has previously noted that when both 

parents are heterozygous, the transmissions of disease allele from mother and father are not 

statistically independent. In POET, the MF = 11 category is excluded in computing the test statistic. 

A TDT-imprinting (TDTI) was proposed in [60], to test for linkage/association in the presence of 

maternal or paternal imprinting. This test is a combination of the POET and the regular TDT 

statistics. Hu et al. [60] re-define the TDT statistic as the square-root of the original TDT statistic 

by Spielman et al. [36]. This TDT test statistic, when both parents are included, distributed as 

standard normal under the null hypothesis and can be written as: 

𝑇𝑇𝐷𝐷𝑇𝑇𝑏𝑏 =  𝑢𝑢𝑇𝑇𝑁𝑁−𝑣𝑣𝑇𝑇𝑁𝑁
�𝑢𝑢𝑇𝑇𝑁𝑁+𝑣𝑣𝑇𝑇𝑁𝑁

       (2.4.2) 

where 𝑢𝑢 = (𝑢𝑢𝑇𝑇)𝑇𝑇=115  is a vector of indicator variables representing the categories of the event that 

the disease allele is transmitted,  𝑣𝑣 = (𝑣𝑣𝑇𝑇)𝑇𝑇=115  represents the event that disease allele is not 

transmitted, from either or both heterozygous parents, and 𝑁𝑁 = (𝑁𝑁𝑇𝑇)𝑇𝑇=115  is the vector of the 

number of trios which belongs to category j (or MFC). Similar indicator vectors 𝑢𝑢𝑓𝑓 = (𝑢𝑢𝑓𝑓𝑇𝑇)𝑇𝑇=115  

and 𝑣𝑣𝑓𝑓 = (𝑣𝑣𝑓𝑓𝑇𝑇)𝑇𝑇=115  are defined for heterozygous fathers who transmit and do not transmit the 

disease allele to child, respectively, and 𝑢𝑢𝑚𝑚  and 𝑣𝑣𝑚𝑚  for heterozygous mothers. TDT statistics 

separately for heterozygous mothers and fathers are defined as: 

𝑇𝑇𝐷𝐷𝑇𝑇𝑚𝑚 =  𝑢𝑢𝑚𝑚𝑇𝑇 𝑁𝑁−𝑣𝑣𝑚𝑚𝑇𝑇 𝑁𝑁

�𝑢𝑢𝑚𝑚𝑇𝑇 𝑁𝑁+𝑣𝑣𝑚𝑚𝑇𝑇 𝑁𝑁
       (2.4.3) 

and 

𝑇𝑇𝐷𝐷𝑇𝑇𝑓𝑓 =  
𝑢𝑢𝑓𝑓
𝑇𝑇𝑁𝑁−𝑣𝑣𝑓𝑓

𝑇𝑇𝑁𝑁

�𝑢𝑢𝑓𝑓
𝑇𝑇𝑁𝑁+𝑣𝑣𝑓𝑓

𝑇𝑇𝑁𝑁
       (2.4.4) 
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both of which are distributed as standard normal. The combined TDTI statistic is then a 

combination of the original TDT, and TDTs for mother and father, with the significance of POET 

statistic as an indicator, which determines inclusion of any of these three statistics. This TDTI 

statistic can be written as: 

𝑇𝑇𝐷𝐷𝑇𝑇𝐼𝐼 = 𝑇𝑇𝐷𝐷𝑇𝑇𝑚𝑚𝐼𝐼[𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇<−𝑧𝑧𝛼𝛼2 ] + 𝑇𝑇𝐷𝐷𝑇𝑇𝑓𝑓𝐼𝐼[𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇>𝑧𝑧𝛼𝛼2 ] + 𝑇𝑇𝐷𝐷𝑇𝑇𝑏𝑏 𝐼𝐼[|𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|≤𝑧𝑧𝛼𝛼2 ]   (2.4.5) 

where 𝑧𝑧𝛼𝛼 is the two-sided significance level for the POET test for imprinting. Under the null 

hypothesis of no imprinting, POET and the 𝑇𝑇𝐷𝐷𝑇𝑇𝑚𝑚, 𝑇𝑇𝐷𝐷𝑇𝑇𝑓𝑓 and TDTb are asymptotically independent, 

therefore, TDTI is asymptotically standard normal. This TDTI statistic is shown to be more 

powerful than TDT when parent-of-origin effect is significant, while less powerful when it is not 

significant [60].   

When there is only one parent available (either mother or father), the corresponding 1-POET test 

for imprinting can be written as [61]: 

1𝑃𝑃𝑃𝑃𝐸𝐸𝑇𝑇 = 𝑤𝑤(𝑁𝑁𝑀𝑀<𝐶𝐶−𝑁𝑁𝑀𝑀>𝐶𝐶)−(1−𝑤𝑤)(𝑁𝑁𝐹𝐹<𝐶𝐶−𝑁𝑁𝐹𝐹>𝐶𝐶)

�𝑤𝑤2(𝑁𝑁𝑀𝑀≠𝐶𝐶)+(1−𝑤𝑤)2(𝑁𝑁𝐹𝐹≠𝐶𝐶)−(𝑛𝑛𝑚𝑚+𝑛𝑛𝑓𝑓)−1(𝑁𝑁𝑀𝑀<𝐶𝐶−𝑁𝑁𝑀𝑀>𝐶𝐶)(𝑁𝑁𝐹𝐹<𝐶𝐶−𝑁𝑁𝐹𝐹>𝐶𝐶)
  (2.4.6) 

where 𝑤𝑤 = 𝑛𝑛𝑓𝑓
𝑛𝑛𝑓𝑓+𝑛𝑛𝑚𝑚

, and 𝑛𝑛𝑓𝑓 is the number of case-father pairs, and 𝑛𝑛𝑚𝑚 is the number of case-mother 

pairs. The corresponding 1-TDTI test for linkage/association in the presence of imprinting is [61]: 

1𝑇𝑇𝐷𝐷𝑇𝑇𝐼𝐼 = 𝑤𝑤(𝑁𝑁𝑀𝑀<𝐶𝐶−𝑁𝑁𝑀𝑀>𝐶𝐶)+(1−𝑤𝑤)(𝑁𝑁𝐹𝐹<𝐶𝐶−𝑁𝑁𝐹𝐹>𝐶𝐶)

�𝑤𝑤2(𝑁𝑁𝑀𝑀≠𝐶𝐶)+(1−𝑤𝑤)2(𝑁𝑁𝐹𝐹≠𝐶𝐶)+(𝑛𝑛𝑚𝑚+𝑛𝑛𝑓𝑓)−1(𝑁𝑁𝑀𝑀<𝐶𝐶−𝑁𝑁𝑀𝑀>𝐶𝐶)(𝑁𝑁𝐹𝐹<𝐶𝐶−𝑁𝑁𝐹𝐹>𝐶𝐶)
  (2.4.7) 

which is also distributed as a standard normal under the null hypothesis of no imprinting. Xia [62] 

extended the TDTI to test for imprinting effect in complete and incomplete families with one or 

multiple children (C-TDTI). Xia [63] later extended the test to address quantitative traits (Q-C-

TDTI). 
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2.4.3 Extensions of Parental Asymmetry Test (PAT) 

The PAT also uses case-parent-trios to detect parent-of-origin effect. Only the categories that have 

heterozygous child, and different maternal and paternal genotypes are used. If we set NF>M to be 

the counts of trios with father carrying more disease allele than mother, and NM>F to be the counts 

of mother carrying more disease allele than father, the PAT statistic can be written as: 

𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑁𝑁𝐹𝐹>𝑀𝑀,𝐶𝐶=1−𝑁𝑁𝑀𝑀>𝐹𝐹,𝐶𝐶=1

�𝑁𝑁𝐹𝐹>𝑀𝑀,𝐶𝐶=1+𝑁𝑁𝑀𝑀>𝐹𝐹,𝐶𝐶=1
      (2.4.8) 

which is distributed as a standard normal under the null hypothesis of no imprinting. Note that the 

PAT proposed by Weinberg [45] is the square of this statistic and follows a Chi-square (1) 

distribution.  

When only one parent is available along with an arbitrary number of children, the 1-PAT was 

proposed by Zhou et al. [64] to address the study design and test for imprinting in the presence of 

linkage/association.  This statistic can be written as: 

1𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑤𝑤�𝑁𝑁𝑀𝑀<𝐶𝐶,𝐶𝐶=1−𝑁𝑁𝑀𝑀>𝐶𝐶,𝐶𝐶=1�+(1−𝑤𝑤)�𝑁𝑁𝐹𝐹<𝐶𝐶,𝐶𝐶=1−𝑁𝑁𝐹𝐹>𝐶𝐶,𝐶𝐶=1�

�𝑤𝑤2(𝑁𝑁𝑀𝑀≠𝐶𝐶)+(1−𝑤𝑤)2(𝑁𝑁𝐹𝐹≠𝐶𝐶)+(𝑛𝑛𝑚𝑚+𝑛𝑛𝑓𝑓)−1�𝑁𝑁𝑀𝑀<𝐶𝐶,𝐶𝐶=1−𝑁𝑁𝑀𝑀>𝐶𝐶,𝐶𝐶=1��𝑁𝑁𝐹𝐹<𝐶𝐶,𝐶𝐶=1−𝑁𝑁𝐹𝐹>𝐶𝐶,𝐶𝐶=1�
   (2.4.9) 

which is also distributed as a standard normal. Similar to 1-TDT, 𝑤𝑤 = 𝑛𝑛𝑓𝑓
𝑛𝑛𝑓𝑓+𝑛𝑛𝑚𝑚

, and 𝑛𝑛𝑓𝑓 is the number 

of case-father pairs, and 𝑛𝑛𝑚𝑚 is the number of case-mother pairs. It can also be extended to include 

multiple affected offsprings in one family. In the same paper, Zhou et al. [64] proposed C-PAT, 

which combines PAT and 1-PAT including complete and incomplete nuclear families, respectively, 

in a single test for imprinting effect (full mathematical details can be referred to in Zhou et al. 

[64]).  

Becker [65] proposed an extension to PAT for nuclear families using haplotype, which is termed 

HAP-PAT.  The corresponding statistic for HAP-PAT is a McNemar test as the TDT, which can 

be written as: 

𝐻𝐻𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑛𝑛−1
𝑛𝑛
∑ (𝑐𝑐𝑇𝑇1−𝑐𝑐𝑇𝑇2)2

𝑐𝑐𝑇𝑇1+𝑐𝑐𝑇𝑇2𝑖𝑖      (2.4.10) 
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where n is the total number of nuclear families in the sample, ti1 is the count of i-th haplotype a 

child inherited from the father, and ti2 is the count of  ith-haplotype inherited from the mother, 

where i-th haplotype ℎ𝑖𝑖 ∈ 𝐻𝐻, for i ranges from 1 to n, representing n possible haplotypes. This 

HAP-PAT test for imprinting in the presence of association.  With the same study design, Zhou 

[66] developed the HAP-1-PAT, by using multiple tightly linked markers for families with only 

one parent available. The test statistic can be written as: 

𝐻𝐻𝑃𝑃𝑃𝑃 1𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑛𝑛−1
𝑛𝑛
∑ [𝑤𝑤(𝑐𝑐𝑀𝑀𝑇𝑇1−𝑐𝑐𝑀𝑀𝑇𝑇2)+(1−𝑤𝑤)(𝑐𝑐𝐹𝐹𝑇𝑇1−𝑐𝑐𝐹𝐹𝑇𝑇2)]2

𝑤𝑤2(𝑐𝑐𝑀𝑀𝑇𝑇1+𝑐𝑐𝑀𝑀𝑇𝑇2)+(1−𝑤𝑤)2(𝑐𝑐𝐹𝐹𝑇𝑇1+𝑐𝑐𝐹𝐹𝑇𝑇2)
𝑛𝑛
𝑖𝑖=1    (2.4.11) 

where the weight 𝑤𝑤 = 𝑛𝑛𝑓𝑓
𝑛𝑛𝑓𝑓+𝑛𝑛𝑚𝑚

, with 𝑛𝑛𝑓𝑓 and 𝑛𝑛𝑚𝑚  as previously defined. The count tMi1 is number of 

heterozygous child inheriting haplotype hi from the father, and tMi2 is the number of heterozygous 

child inheriting haplotype hi from the mother, both in case-mother families. The counts tFi1 and tFi2 

are the corresponding counts for the case-father families. Zhou [66] further extended it to include 

families with either both parents or one parent by the HAP-C-PAT test.  

Zhou et al. [67] extended the PAT to include general pedigrees in a method named PPAT, which 

uses all informative family trios from pedigrees. The PPAT statistic can be written as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 =
∑ ∑ 𝑆𝑆𝑇𝑇𝑖𝑖

𝑛𝑛𝑇𝑇
𝑇𝑇=1

𝑁𝑁
𝑖𝑖=1

∑ �∑ 𝑆𝑆𝑇𝑇𝑖𝑖
𝑛𝑛𝑇𝑇
𝑇𝑇=1 �

2𝑁𝑁
𝑖𝑖=1

      (2.4.12) 

where Sij is the PAT statistic for ith trio in jth pedigree.   

Zhou et al. [68] also proposed to make use of control children in families when testing for 

imprinting to increase statistical power in detecting imprinting effect in the presence of association. 

The PATu and 1-PATu are developed to include families with both parents and one parent 

respectively. The C-PATu was then developed to combine the complete and incomplete families 

in one analysis, with weighted contribution from case and control families based on disease 

prevalence [68]. The extended PATs with inclusion of control-families are shown to have greater 

power than using case-families alone, and are robust to population stratification. Furthermore, it 

was shown that misspecification of population prevalence of disease can reduce the power of C-

PATu, but will not invalidate it.  
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2.4.4 Transmission Asymmetry Test (TAT) 

Weinberg [45] constructed the TAT in the spirit of TDT, but for detecting parent-of-origin effect. 

TAT is essentially the same as TDT except that case-trios where both parents are heterozygous are 

excluded in the analysis.  Taking only heterozygous father married to homozygous mother and 

heterozygous mother married to homozygous father, the TAT tests for equal transmission of the 

disease and non-disease alleles. The resulting test is a 1-df Chi-square McNemar test, as the TDT. 

Weinberg [45] used simulated data to show that the power of TAT is poor.  

2.4.5 Loglinear model by Weinberg et al. (1998)  

Weinberg et al. [44] proposed a loglinear model, with details described in Chapters 2.3.2, as a 

competing model with TAT, to detect parent-of-origin effect. Covariates entered into the model 

are child and maternal genotypes, and paternal and maternal imprinting variables. Then, a 

likelihood ratio test is performed against the background null model with no covariates, which is 

termed loglinear likelihood ratio test (LL-LRT). This LL-LRT is shown to have better performance 

in terms of power than TAT [45]. The loglinear model in Weinberg et al. [44] results in a LRT 

which tests for both association and parent-of-origin effect.  

2.4.6 Logistic model by Weinberg (1999) 

In later study, Weinberg [45] proposed a logistic model framework that only uses mating types 

with unequal copies of disease allele in the father and mother. The resulting model, PO-LRT gives 

an estimate for imprinting effect, and maternal effect with one or two copies of disease allele in 

the mother, as shown in Chapter 2.3.3.  Weinberg [45] noted that when the investigator is certain 

that there is no maternal effect, then samples used in PO-LRT are further reduced to trios 

containing only heterozygous children. The result is the PAT, which is shown to have better power 

than PO-LRT.  

2.4.7 Conditional logistic model by Cordell et al. (2002, 2004) 

A separate line of research uses conditional logistic regression to test for imprinting effect, where 

three pseudo-controls are generated by the untransmitted alleles from parents to an affected child 
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[46, 47] (see Chapter 2.3.4). This approach incorporates a wide-range of solutions to address the 

relevant statistical issues, including parent-of-origin effect, and many others mentioned previously. 

This conditional logistic model conditions on parental genotypes and child being diseased, and 

does not include nuisance parameter such as the mating type frequencies.  The study shows that 

when the condition is relaxed to exchangeable parental genotype, power to detect parent-of-origin 

effect is increased. However, this method discards trios with ambiguous parent-of-origin or 

unknown phase information, which leads to a 3-9% loss of trios [46]. A simulation study also 

reveals that this method has an inflation of Type 1 error. Based on simulation, Cordell et al. [46] 

stated that their method shows limited power in differentiating parent-of-origin effect and mother-

child interaction effect.  

2.4.8 Application to scenarios with sex-of-parent-specific TRD (ST) 

Our goal to study imprinting effect is the situation when ST confounds with this signal. The 

approaches described above to extend TDT and PAT [59-69] have exhausted all the possible 

development to the existing TDT and PAT methods, with increasing mathematical complexity and 

decreasing practicality as different study designs, availability of genotype or haplotype data, and 

missing data problem are added to the scenarios. These methods do not have a readily available 

component for adjusting Non-Mendelian transmission. Furthermore, the existing framework of 

these tests cannot easily incorporate covariates such as child, maternal, and maternal-fetal 

genotype interaction effects, which are in close relation with the imprinting effect and are 

sometimes being studied together. Therefore, this line of developed methods does not fit our 

current and future research goals.  

As it is described more fully in Chapter 5, a sex-of-parent-specific offset, which is a slight 

modification to the non-sex-of-parent-specific offset proposed in Chapter 4, can be used to address 

ST in the loglinear model. It is intuitive and simple to implement with essentially no change to the 

original test framework (model and study design). Logistic model by Weinberg does not offer such 

property [45]. Similar extension of the conditional logistic model [46, 47] might be possible, but 

involves a more complicated likelihood for maximization as explained in Chapter 2.3.6.  
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Chapter 3 

Transmission ratio distortion: 

Review of concept and implications for genetic association studies 

3.1 Preamble 

This chapter constitutes the basis of TRD in the context of three separate but related genetic fields: 

developmental, statistical and population genetics. We defined TRD in statistical term, and 

underscored the importance of TRD in these three fields. From a developmental genetics 

perspective, knowledge of TRD can provide additional information on the relationship between 

genes and growth of organism, and eventually increase the understanding of zygotic and 

embryonic development of humans. TRD is also important from a population genetics perspective 

because it contributes as part of the evolutionary forces in determining the genetic diversity of the 

human genome in different populations. Alleles under TRD are sometimes maintained at a low 

frequency due to various evolutionary forces such as recombination, mutation, drift and the 

presence of an immunogenetic advantages in later adulthood. The result of which is the rise of rare 

variants. There has not been many human studies in identifying TRD loci in the last two decades.  

With the number of TRD studies available, many different study designs have been proposed, each 

with various statistical tests or models. We described several TRD mechanisms, which require 

corresponding study design and statistical model to detect and quantify the TRD signal.  

In the 26 TRD studies we investigated, four gene regions (SUPT3H-MIRN586-RUNX2, IGF2/INS, 

DMPK, and H19) were replicated across multiple studies in exhibiting TRD. Given the limited 

number of studies that were included, we considered this as ample evidence for the existence of 

TRD. Most cited studies used family-based study design with population unselected for 

phenotypes from major consortia such as Framingham Heart Studies, HapMap project and Centre 

d'Etude du Polymorphisme Humain (CEPH). However, these loci found that exhibit TRD are 

mapped to known gene regions for various types of diseases even though study populations are 

not ascertained for their phenotypes. Other studies used families of affected and unaffected 

individuals, or carriers of disease allele to assess the excess in transmission of disease allele with 

respect to the non-disease allele.   
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The most interesting aspect from our point of view is the role of TRD in the midst of exciting 

discoveries of new loci responsible for various disease condition and traits. Even though the extent 

of TRD is relatively unknown in human, we noted that the implication of TRD on genetic linkage 

and association studies cannot be simply ignored. 

The presence of TRD can lead to spurious conclusion on newly discovered disease loci, if not 

accounted for. TRD is an often overlooked phenomenon in human genetic studies. This chapter 

has brought into light the importance of TRD in three different genetic fields. It also highlighted 

the current progress on study designs and methods developed for detecting TRD in the field of 

statistical genetics, which serves as a precursor to further development of models to adjust for TRD 

in the presence of true linkage/association signals.   
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3.2 Abstract 

Transmission ratio distortion (TRD) occurs when one of the two alleles from either parent is 

preferentially transmitted to the offspring. This leads to a statistical departure from the Mendelian 

law of inheritance, which states that each of the two parental alleles is transmitted to offspring with 

a probability of 0.5. A number of mechanisms are thought to induce TRD such as meiotic drive, 

gametic competition, and embryo lethality. TRD has been extensively studied in animals, but the 

prevalence of TRD in humans remains largely unknown. Nevertheless, understanding the TRD 

phenomenon and taking it into consideration in many aspects of human genetics has potential 

benefits that have not been sufficiently emphasized in current literature. In this review, we discuss 

the importance of TRD in three distinct but related fields of genetics: developmental genetics 

which studies the genetic abnormalities in zygotic and embryonic development, statistical 

genetics/genetic epidemiology which utilizes population study designs and statistical models to 

interpret the role of genes in human health, and population genetics which is concerned with 

genetic diversity in populations in an evolutionary context. From the perspective of developmental 

genetics, studying TRD leads to the identification of the processes and mechanisms for differential 

survival observed in embryos. As a result, it is a genetic force which affects allele frequency at the 

population, as well as, at the organismal level. Therefore, it has implications on genetic diversity 

of the population over time. From the perspective of genetic epidemiology, the TRD influence on 

a marker locus is a confounding factor which has to be adequately dealt with to correctly interpret 

linkage or association study results. These aspects are developed in this review. In addition to these 

theoretical notions, a brief summary of the empirical evidence of the TRD phenomenon in human 

and mouse studies is provided. The objective of our paper is to show the potentially important role 

of TRD in many areas of genetics, and to create an incentive for future research.   
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3.3 Introduction  

Transmission ratio distortion (TRD) is observed when one of the two alleles from either parent is 

preferentially transmitted to the offspring, leading to a statistical departure from the Mendelian 

inheritance ratio of 0.5 [70]. When observed in affected offspring, as conventionally measured by 

the transmission disequilibrium test (TDT) [36], this departure is interpreted as suggesting the 

presence of linkage and association between the allele and the offspring condition. Allelic 

transmission from parents to affected offspring has been used in genetic association studies as one 

way to provide validation for case-control results because, contrary to case-controls results, 

transmission results are not affected by population structure bias. However, the TRD phenomenon 

has also been empirically observed in apparently unaffected offspring [71-77], although the extent 

of TRD in the human genome is not well known. The presence of this departure from the expected 

Mendelian transmission has an impact on the interpretation of results from linkage and association 

studies in affected individuals because it occurs in the general population [72, 73, 75, 78].  

TRD could potentially inflate or attenuate the linkage or association signal in identical-by-descent 

(IBD) or TDT-like test results, respectively. Two or more alleles are said to be IBD if they are 

identical copies of the same ancestral allele. An over-sharing of alleles IBD between related 

affected individuals at a specific marker indicates linkage between this marker and the disease 

susceptibility locus.  A TDT assesses over-transmission of a minor allele with respect to the major 

allele of certain marker locus in case (affected) trios. If the result of TDT is significant, it suggests 

an association and linkage between the marker locus and the disease locus. Therefore, TRD on a 

marker locus that causes excess or deficit in allele sharing and transmission, which acts 

independently from the disease status, can lead to false positives or negatives in IBD sharing and 

TDT results. In fact, this TRD phenomenon is observed in the general population which includes 

both affected and unaffected individuals. Therefore, a linkage or association signal observed in 

affected individuals does not necessarily guarantee true linkage and association between marker 

and disease loci. Moreover, the presence of TRD leads to significant power loss in such studies. 

All these aspects have not been sufficiently emphasized in current literature and will be addressed 

in this review.  A listing of TRD studies and their results has been included in Table 3.1 and 3.2, 

which will be discussed more extensively later in the paper.       
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Many biological mechanisms governing the passage from gametic formation to embryonic 

development can contribute to TRD [70, 71, 75, 78-82]. These mechanisms lead to differential 

survival in gametes, zygotes, and embryos and have implications on developmental genetics.  

Moreover, when TRD repeatedly occurs over many generations, the frequency of the allele that is 

favored and the alleles at close loci begin to shift upwards in the population [83]; as a consequence, 

the disadvantaged allele at the TRD locus gradually becomes rare in the population. We set up a 

simulation study to trace the marker allele frequency over time for a locus under TRD influence 

[84]. We found that even under a strong departure from Mendelian law of inheritance, it can take 

more than 10 generations for the advantaged allele to reach complete fixation, i.e. the allele 

frequency becomes 1 (results available from authors).  This simulation set up will be discussed in 

more detail under the section on population genetics perspective. This observation has implications 

for population genetics because it reduces the diversity of the population gene pool over 

generations as disadvantaged alleles are eliminated through time [83, 85, 86]. 

A review of TRD will therefore lead us to address aspects related to both developmental and 

population genetics, in addition to statistical interpretation of genetic association studies in its 

presence.  We begin this review by discussing the possible TRD mechanisms; thereafter, specific 

methods to detect TRD in different study designs are presented as they are related to the underlying 

biological/developmental processes. We then report results from studies evaluating TRD in the 

literature of human (Table 3.1) and mouse (Table 3.2) studies. The importance of TRD as a 

confounding factor in linkage and association studies is discussed next. Finally, we briefly address 

TRD from the perspective of population genetics linking it with current strategies to uncover rare 

variants.     

3.4 TRD mechanisms 

TRD has been identified and modeled in humans [71-73, 75, 77, 87-90], mouse [91-102], 

drosophila [103-105], and lesser kestrel [106]. It is a result of disruptive mechanisms during the 

gametic or embryonic development stages (Figure 3.1). These TRD mechanisms include germline 

selection during mitosis of germ cells [79], meiotic drive during female and male meiosis [70], 

gametic competition of sperm to achieve fertilization [75], embryo lethality due to deleterious 

genotype or mother-fetal incompatibility [75], as well as imprint resetting error in parental germ 
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cells when the parents are still embryos in the body of the grandparents, or faulty imprint 

maintenance at fertilization or in early embryonic development stage of the offspring [80, 89, 90].  

Except for the two imprint regulation processes mentioned above, TRD at a marker locus can be 

observed from a sample of unaffected offspring and their parents’ genotypes. In this situation, a 

deviation from the Mendelian 1:1 ratio of allelic transmission is observed. On the other hand, 

imprint resetting error and faulty imprint maintenance both lead to a more complex form of TRD, 

in which the deviation of Mendelian ratios is attributed to parent-of-origin distortion. Genomic 

imprinting occurs when certain genes are expressed in a parent-of-origin specific manner, through 

an inheritance process independent of Mendelian inheritance. For example, the imprinted allele 

from the mother is silenced such that only the non-imprinted allele inherited from the father is 

activated, and likewise for the imprinted allele from the father and the corresponding non-

imprinted allele from the mother.  

Before meiosis happens in parents, imprint resetting occurs in parental germ cells when they are 

still embryos in the body of the grandparents, and parental imprints are erased and re-established 

according to the sex of the parents [107]. The father's two imprints from the paternal grandparents 

are both reset to paternal imprints, while the mother's imprints from the maternal grandparents are 

reset to maternal imprints, such that the four sister chromatids resulting from meiosis in either 

parent could all have the same imprint. This reprogramming ensures that every sperm cell contains 

a paternal imprint and that egg cell contains a maternal imprint. When a sperm unites with an egg 

to form a functional zygote, there is one paternal and one maternal imprint, which is essential for 

survival. If the erasure process fails, for example in the female, a proportion of eggs would contain 

a paternal imprint. An egg having a faulty paternal imprint unites with a sperm carrying a paternal 

imprint will form a zygote with two paternal imprints, which is incompatible with survival [80]. 

Unsuccessful imprint resetting in males leads to the same consequence. Under such circumstances, 

several authors have suggested that if the normal function of the imprinted gene is necessary for 

successful fertilization or embryo survival, imprinting resetting errors may point to grandparental-

origin-TRD [80, 90, 108]. This will be discussed in detail in the next section. 
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Figure 3.1: Underlying biological mechanisms behind TRD  

 

(1) Germline selection - Germ cell life cycle begins when a mature embryo is formed. The germ cells first 

start division through mitosis. During mitosis, mechanisms such as mutation, recombination and gene 

conversion, collectively called germline selection mechanisms cause cells with certain genotypes to be 

produced at a higher proportion than others. Hence, germ cells entering the next stage, meiosis, have an 

imbalanced genotype ratio.  

(2) Meiotic drive - Female meiosis is called oogenesis, and male spermatogenesis. Since oogenesis is 

asymmetric by nature, only one of the four chromatids becomes a functional gamete, and the others become 

polar bodies and are eliminated. The chromatid of the haplotype with structural advantage in facilitating the 

orientation and replication during meiosis tends to be transmitted more. This mechanism is called meiotic 

drive. Although rare, meiotic drive can occur in male eukaryotes as well. There is another type of meiotic 

drive called sex chromosome drive that occurs during spermatogenesis, which leads to unequal production of 

X- or Y-bearing gametes. 

(3) Gametic competition - In some male organisms, sperms survived through meiotic drive tend to compete 

with each other to achieve fertilization. This is called gametic selection. Well-studied models of gametic 

selection include t-haplotype system in mouse and segregation distorter in drosophila. 

(4) Imprinting errors - Imprint resetting occurs during the postimplantation stage, where parental imprints 

are erased and re-established. When an error occurs during imprint resetting, the resulting embryo may be 

incompatible for survival. Faulty imprint maintenance during embryonic development can also lead to the 

death of embryos.  

(5) Embryo lethality - After the embryo is formed, there are other mechanisms of selection termed embryo 

lethality. One example of embryo lethality is the Rh+ system where mother and fetal blood types are 

incompatible. During delivery when the placenta ruptures, upon the blending of maternal blood with fetal 

blood stream, the fetus dies.   
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3.5 TRD inference: study designs and methods 

3.5.1 Overview 

Since TRD involves a deviation from the Mendelian 1:1 ratio of allelic transmission from parents 

to offspring, it can only be observed in family-based studies. However, the ascertainment of these 

families differs depending on the goal of the study. If the intention of the study is to search for 

association or linkage between a marker and a specific disease, families will have been ascertained 

based on the disease of interest. Therefore, the presence of TRD becomes a confounding signal 

and can be falsely interpreted as a linkage or association signal. On the other hand, if the search 

for TRD loci is unrelated to a specific disease but rather the primary research goal, families with 

offspring unselected for phenotype or disease should be genotyped. Under these study conditions, 

an observed deviation from Mendelian inheritance may be attributed to one of the underlying 

biological mechanisms of TRD described in the previous section, or to some others that remain 

unknown.  

Depending on these biological mechanisms, TRD can be observed in different family structures 

unselected for phenotype. Choice of family structure includes i) two-generation families (parents 

and offspring) for the general case of TRD, to assess transmission from parents to offspring or 

from parent to female (male) offspring for sex-of-offspring specific TRD, ii) larger families, to 

study over-sharing of alleles identical by descent (IBD) between “affected” sib pairs which are 

defined to be the "survived" offspring, and iii) three-generation families (grandparents, parents and 

child) for grandparental-origin-dependent TRD. The variety of these designs targeting specific 

underlying biological processes suggests that different statistical analyses are appropriate in each 

of their corresponding contexts. These different scenarios are reviewed in detail in the following 

sections. 

3.5.2 Detecting TRD in trios with offspring unselected for phenotype 

The over-transmission of an allele from heterozygous parents to offspring is conventionally 

measured by the TDT in a sample of trios (parents and their offspring) [36]. Figure 3.2 illustrates 

this most general form of TRD, where allelic transmission disequilibrium occurs in a non-sex-

specific manner. In this example, observed offspring genotypes do not follow the Mendelian ratio, 
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leading to a departure from the expected genotype distribution. This type of TRD can be identified 

in trios unselected for phenotype using TDT, which is a McNemar test assessing the null 

hypothesis that the transmission of one allele is the same as the transmission of the alternative 

allele at a marker locus in heterozygous parents [36].   

Figure 3.2: General case of TRD observed in trios, using a TDT approach. Consider a TRD 

locus with 2 alleles D and d, where the allelic transmission ratio from parent to unaffected offspring 

is D:d=3:1. This figure illustrates all possible offspring genotypes regardless of their sex, arised 

from a pair of heterozygote parents.  

        

                

Over-transmission of a marker allele from parents to offspring can also occur in a sex-of-parent-

specific manner. An over-transmission from mother to offspring not observed in father can be 

explained by female meiotic drive, whereas an over-transmission from father to offspring not 

observed in mother can be explained by male meiotic drive, which is rare, or by gametic 

competition (see Figure 3.1). Examples of these TRD mechanisms were seen in two human studies 

included in Table 3.1 [81, 82]. In principle, these TRD mechanisms can be uncovered using the 
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TDT with trios, stratifying the transmission counts according to maternal or paternal origin, where 

the over-transmission from heterozygote mothers or fathers is tested using a TDT, as shown 

previously in Figure 3.2.  

However, when both parents are heterozygous, TDT on mothers vs. TDT on fathers is no longer a 

valid test due to lack of statistical independence between paternal and maternal transmissions [45]. 

Other tests have been proposed in determining parent-of-origin effect, such as Transmission 

Asymmetry Test (TAT), Likelihood Ratio Test (LRT), and Parental Asymmetry Test (PAT). 

However, these tests require the absence of prenatal maternally-mediated effect defined as the 

effect of maternal genotype on phenotype of child. TAT omits counts when both parents are 

heterozygous and therefore ensures independence of parental transmission. However, prenatal 

maternally-mediated effect can cause differential weighting of the paternal and maternal 

transmission in TAT, and may give spurious parent-of-origin effect. The LRT from a log-linear 

model can take into account of both prenatal maternally-mediated and parent-of-origin effect. 

However, this test might not be valid if the allele tested is a marker in proximity of a neighboring 

disease susceptibility locus instead of a candidate gene itself, due to possibility of recombination 

during the formation of gametes where parent-of-origin might be interchanged.  

Another approach was proposed with the Parent-Of-Origin Likelihood Ratio Test (PO-LRT); its 

aim is to determine parent-of-origin effect by stratifying population according to parental mating 

type and child genotype. This stratification removes the dependence on the parental inheritance, 

the inherited copies of allele in child, and possible gametic recombination, so that within strata 

counts depend only on prenatal maternally-mediated effect and parent-of-origin effect. When there 

is assumed to be no prenatal maternally-mediated effect, PO-LRT is reduced to PAT, which uses 

only heterozygous cases (child who inherited 1 copy of disease allele) where parents transmit 

different alleles to the child, while the other trios are no longer informative because both parents 

transmit the same allele.  Therefore, for the scenario where diseases are subject to prenatal 

maternally-mediated effects and the investigated locus is possibly a marker in proximity of a 

disease locus, PO-LRT remains the only valid testing procedure [45]. 
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3.5.3 Detecting TRD in extended families with offspring unselected for phenotype 

A deviation from Mendelian inheritance cannot always be attributed to a biological process 

occurring in parents. After the embryo is formed, there are other mechanisms of selection which 

are collectively termed embryo lethality (Figure 3.1). In this case, embryos with a specific 

genotype are eliminated, leading to an imbalance in the offspring genotypic ratios as illustrated in 

Figure 3.3A. Another form of embryo lethality involves an epimutation instead of a DNA mutation, 

where methylation on imprinted genes which control gene expression is disturbed. This could 

result in spontaneous abortion [109]. Note that, embryo lethality is different from the previous 

example of germline selection, meiotic drive, and gametic competition, where the advantaged 

alleles are transmitted at a higher proportion while the disadvantaged genotype is still observable 

in the offspring generation. A TDT approach using both parents as described above can be used.  

An alternative analytical strategy with larger families is to use non-parametric linkage analysis, 

which looks at over-sharing of alleles identical by descent (IBD) between “affected” related pairs. 

In this specific case, all offspring in the extended families are labeled “affected”, which essentially 

means “having survived”, and the objective is to determine regions in the genome linked to the 

phenotype defined as “being alive in the last generation” [73]. The over-sharing of alleles IBD 

between sib pairs at an embryo-lethality TRD locus is illustrated in Figure 3.3B. Note that over-

sharing of alleles IBD in related pairs can be observed only in families with heterozygote parents 

at the TRD locus. In the example of Figure 3.3, homozygote dd individuals could not have survived 

and homozygote DD parents could not produce dd embryos implying that a deviation from 

Mendelian ratio cannot be detected unless both parents are heterozygote. This constraint has some 

consequences in the statistical analysis, as IBD sharing between sib pairs cannot be detected with 

doubly heterozygote parents. In this case, multipoint linkage analysis, where IBD status is 

estimated from neighboring markers, should be performed. This analytical strategy was used by 

Paterson et al. [73] in the Framingham Heart Study cohort, but no loci met the genome-wide 

criteria for linkage. Note that embryo lethality can also be sex-specific, which induces a sex-of-

offspring specific TRD. The analytical strategy is the same as above, except that linkage analysis 

is performed only in female (respectively male) offspring, i.e., between sisters (brothers) in the 

example of Figure 3.3B. However, since one looks at over-transmission (Figure 3.3A) or over-

sharing (Figure 3.3B) of a marker allele while embryos with the faulty genotype could not have 
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survived, it is impossible to determine whether the observed TRD occurred in the parents or at the 

embryonic stage.  

Figure 3.3: TRD caused by embryo lethality. We assume here that the mutant allele is d and that 

lethality is autosomal recessive. As a result, dd genotype is eliminated before birth. (A) Deviation 

from genotypic Mendelian ratios in offspring, observed in families with heterozygote parents. (B) 

Illustration of the IBD sharing between sib pairs in families with heterozygote parents when there 

is TRD. Note that in practice, the parental origin of the genotype in these samples needs to be 

inferred using neighboring markers. 

(A)  

 

(B)  
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3.5.4 Grandparental origin TRD: imprinting errors 

In the two types of TRD described above, the deviation in allelic transmission from Mendelian 

ratio is inferred based on what is observed in the offspring genotypes (see Figure 3.2 and Figure 

3.3A). Another form of TRD can occur which is induced by an imbalance in the grandparental 

origin of the offspring’s genotypes. Under Mendelian inheritance in humans, each individual 

contains the genetic information transmitted by his/her four grandparents, with an expected 

transmission ratio of 1:1:1:1. However, a deviation from this ratio, which is also a form of TRD, 

can be explained by a possible imprint resetting errors in the parent’s germline, or erroneous 

maintenance of parental imprints in early embryonic development stage. Figure 3.4.1 illustrates an 

example of a three-generation family with correct imprint resetting and maintenance. In this 

example, we assume that the genetic locus is maternally imprinted, which means that only paternal 

alleles are activated in offspring. As we see in Figure 3.4.1, imprint marks have been correctly 

reset in grandparents A, B, C and D, so that each egg cell contains a maternal imprint and each 

sperm cell contains a paternal imprint. As a result, both individuals in the second generation inherit 

a correctly imprinted allele from their mother and a correctly non-imprinted allele from their father. 

The same resetting process successfully occurs in the germline of the second generation 

individuals (father and mother) before meiosis. Then, when the egg from the mother is fertilized 

by the sperm of the father, each of them transmits a correctly imprinted allele to the offspring. As 

seen in Figure 3.4.1, there is no deviation from the Mendelian ratio in either the offspring genotypic 

ratios, nor in the allelic origin of parents and grandparents. 

Figure 3.4.2 illustrates the scenario where an imprint resetting error occurred on allele 2 of the 

mother, which is incompatible with embryonic survival. This leads to the deviation from 

Mendelian inheritance ratio in the allelic origin of the grandparents. Interestingly, this also leads 

to a deviation from the Mendelian ratio in the offspring, which seems to suggest that this 

phenomenon could be captured by using the TDT approach in trios described above.  For 

comparison, Figure 3.4.3 illustrates a similar scenario, but the imprint resetting error occurred on 

allele 1 of the father. Similarly, the allele which failed to reset correctly is under-transmitted. A 

deviation from Mendelian ratio of the alleles from grandparents can be observed in the offspring. 

This observation is the basis of the statistical analyses aiming to uncover TRD induced by 

imprinting errors.  
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Figure 3.4.1: Example of a three-generation family including 4 grandparents, 2 parents and 

offspring. We consider a marker with 2 alleles, denoted as1 and 2. Grandparents are denoted as 

A, B, C and D and superscripts at each genotype indicate the grandparent origin. In this example, 

correct imprint resetting occurs in the germline before the production of eggs and sperm cells. We 

assume here that the marker is maternally imprinted and imprinted marks are represented by a red 

triangle. 

 

 

 

 



46 
 

Figure 3.4.2: Example of a three-generation family with imprint resetting error at allele 2 in 

mother. Same scenario as in Figure 3.4.1, an imprint resetting error occurred in the mother, which 

is incompatible for embryonic survival. 
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Figure 3.4.3: Example of a three-generation family with imprint resetting error at allele 1 in 

father. Same example as in Figure 3.4.1, an imprint resetting error occurred in the father, which 

is incompatible for embryonic survival. 
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Two analytical strategies have been proposed in the literature to determine the grandparental origin 

of TRD. First, a simple binomial test can be used by determining if the proportions of 

grandpaternal alleles and grandmaternal alleles are equal in the offspring’s genotypes for a given 

marker. In practice, TRD is estimated by the proportion of grandmaternal alleles transmitted to the 

offspring [71, 80, 90]. The method of maximum likelihood [110] can be used to estimate TRD in 

the presence of missing genotypes, by using neighboring flanking markers as well as map distances 

[108]. In cases where embryo lethality due to imprinting error occurs in a sex-of-offspring specific 

manner, TRD can also be estimated by using a logistic regression model predicting grandparental 

source (dichotomous outcome), where variables such as sex of offspring and mating type of parents 

are included in the model [80]. In Yang et al.’s paper [80], grandparental-origin TRD locus was 

inferred on the basis of genotypes of the closest microsatellite markers. For non-informative 

markers, it was inferred on the basis of the grandparental origin of the flanking markers. 

3.6 TRD empirical findings in previous literature 

Several studies using some of the designs and methods reviewed above successfully uncovered 

numerous TRD loci in human (Table 3.1) and mouse models (Table 3.2).  Mouse studies have 

been an incentive for much of the research on TRD in humans. The preferential transmission of 

the t-haplotype on the segregation distorter gene of the t-complex region on Chromosome 17 is a 

well-studied TRD example, and it has puzzled scientists for decades [86]. TRD influence on sperm 

motility due to t-complex transmission distortion has been reported [91, 92, 100]. Two studies 

have also shown TRD locus on Chromosome 7 that affects imprinting [99, 102], the latter being 

associated with a Robertsonian translocation. Another study has investigated the phenomenon of 

embryo lethality due to TRD [101] on the Ovum mutant (Om) gene. Developmental disabilities 

have been associated with TRD loci on Chromosomes 2 [97] and 7 [102]. A few studies have 

found a TRD influence on loci associated with diseases such as Cystic Fibrosis [94] and limb-

girdle muscular dystrophy Type 2A [98]. TRD have also been detected on the SPAM1 gene, which 

is believed to influence reduced transcript sharing of spermatids during male meiosis [96]. Casellas 

et al. [93] used Bayesian binomial model in search of TRD loci in the mouse and has found 

multiple loci on Chromsomes 1, 2, 3, 5, 12, 13, and 14, although none was mapped to specific 

gene regions.   
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Many of the reported TRD loci in human studies play a role in tumour suppression and have been 

found in genes associated with colon cancer, leukemia, bladder cancer, intestinal adenoma, node-

positive breast cancer and other cancers [73, 90, 111, 112]. A number of TRD loci are within gene 

regions responsible for imprinting [80, 90, 109, 111], such as DNMT1 on chromosome 12 and H19 

on 11p15.5, leading to loss of imprint and embryonic lethality. Abnormal methylation during 

imprint resetting on (i) imprinting centre (IC) genes which regulate the expression of  imprinted 

gene, such as ICs H19 and KNCQ1OT1, and on (ii) imprinted gene CDKN1C, has been linked to 

embryo lethality mechanisms which result in spontaneous abortion [109]. The result on imprint 

region H19 was also a replication of a previous study [90]. A more recent study also found a region 

on Chromosome 1 that is responsible for infertility and recurrent pregnancy loss, but is not mapped 

to any specific SNP [113]. 

Many loci with observed TRD in humans are also linked to autoimmunity functions, located on 

the Major Histocompatibility complex (MHC) region on chromosome 6 [88, 90], the absence of 

which can progress to autoimmune diseases such as Type 1 diabetes, rheumatoid arthritis, or other 

diseases. It is also worth noting that the TRD finding on INS/IGF2 gene region has been replicated 

in three studies [90, 111, 112]. Two studies have also uncovered TRD on the short arm of human 

chromosome 6 in the region of the transcription factor-encoding genes SUPT3H and RUNX2, as 

well as the microRNA locus MIRN586, with one SNP (rs12199720) included in both studies 

showing statistically significant results [74, 77]. This is interesting as RUNX2 in particular is 

involved neoplastic development in hematopoietic lineages [114]. There are also many TRD loci 

that are linked to abnormal development in neurogenesis, neuronal differentiation, and other 

cognitive function in central and peripheral nervous system [71, 73, 82, 90, 111, 115-117].  

In assessing the quality of the TRD findings in their study, Paterson et al. [73] speculate about the 

SNPs found to have excessive transmission of major alleles; previous studies have shown that 

when these alleles have a low Minor Allele Frequency (MAF), it may indicate genotyping error. 

However, no such observations apply to SNPs with excessive transmission of minor alleles. The 

8 SNPs in this study (included in Table 3.1) that were found to have excessive transmission of 

minor alleles were shown to have good genotyping quality as well as significant TDT p-value.  
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Meyer et al. [77] also discussed the possibility of genotyping error. Among the three datasets they 

analyzed, results from Framingham Heart Study and Hutterite of European ancestry remain 

inconclusive. However, for the Austism Genetic Resource Exchange (AGRE) dataset, many 

signals extended across multiple SNPs, which is unlikely a result of genotyping error. In Naumova 

et al. [90], in order to eliminate the possibility of genotyping error, datasets from different labs 

were used to validate the results. Paterson and Petronis [115], Hanchard et al. [88] have raised the 

possibility of genotyping error, but did not specifically address the issue.  

Mitchell et al. [118] investigated some studies that used TDT-derived association statistics, and 

found that genotyping error can lead to false inflation of such statistics if, for example, a number 

of homozygous parents are miscalled as heterozygous. However, genotyping error is more of a 

concern with genome-wide scan because a large number of SNPs are genotyped at the same time. 

Quality control normally needs to be in place to filter out SNPs inconsistent with Hardy-Weinberg 

Equilibrium or having low MAF, which should be applied with caution because these features are 

expected for loci exhibiting TRD. The majority of the studies we included, with the exception of 

Meyer et al. [77], Paterson et al. [72, 119], Paterson and Petronis [115], were candidate gene 

analyses, and therefore less prone to genotyping error. Furthermore, we have seen replications of 

a number of gene regions exhibiting TRD across multiple studies.   

Paterson and Petronis [115], found evidence showing the association between some loci on 

chromosome 10 and schizophrenia, as well as bipolar disorder. There are several loci on 

chromosome 19q13 showing evidence of TRD which are associated with the severity of cystic 

fibrosis phenotype and endophenotype [120]. Three papers have shown multiple gene regions 

under TRD influence that are associated with Type 1 and Type 2 long-QT syndrome [121] and 

human muscular dystrophy [81, 122], with the gene DMPK replicated in the last two studies. One 

paper exclusively studied the SMN1 gene, which is associated with human spinal muscular atrophy, 

and found significant evidence of TRD [123].There are a few other TRD loci that are linked to 

blood coagulation and insulin regulation [76, 111, 112]. Three studies found TRD influence in 

regions on Chromosome 2 [124] and 10 [125, 126], that are linked to Inflammatory Bowel 

Diseases; the latter two studies each identified the gene DLG5. There is one study that found a 

TRD region on Chromosome 17 that is linked to bone deficiency which express itself as Split-
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hand/foot malformation (SHFM), and SHFM with long bone deficiency (SHFLD) which is a 

congenital disorder characterized by severe malformation of the distal limbs [127]. 

In Table 3.1 and 3.2, effect sizes are shown as reported in the studies. They were estimated using 

a variety of measures, such as TRD ratio, odds ratio, relative risk, NPL score, and grandmaternal 

allele transmission ratio. In this paper, we define TRD ratio to be the proportion of the preferred 

allele transmission counts among all transmission counts from parents to offspring at a specific 

locus. For example, if it is three times more likely to transmit advantaged over disadvantaged allele, 

the TRD ratio is 3/(3+1) = 0.75.   The TRD ratios of the advantaged allele over all alleles found in 

most studies are within the range of 0.3 to 0.6. There are a few exceptions [82, 109], which show 

a more extreme skew.  Grandmaternal allele transmission ratios for the two grandparental-origin-

dependent TRD studies are between 0.4 and 0.65 [80, 90], which also represent mild distortions. 

Two analyses of TRD from HapMap data are not included in the table, as the list of genes and 

SNP reported is quite extensive. The first report [87] shows more extreme skewness in the ratio 

than the ones in Table 3.1, up to greater than 0.9 in both YRI and CEU population with p-values 

less than 10-4.  A later analysis searching for TRD from approximately 630,000 HapMap SNPs 

[128] reports 1,205 transmission outliers (based on Fisher’s exact test) in 224 candidate genes, 

although results have not been adjusted with the Bonferroni correction. However, results from the 

permutation tests reached significance level. In this study, as well as the previous ones, genes with 

TRD signals were found on a substantial number of biological pathways, including in particular 

the protein phosphorylation pathway.  

Table 3.1: Transmission Ratio Distortion findings in current literature of human studies 

First Author Study 

population 

(analytical 

method) 

Gene Gene 
Location 

Effect size p-value Function of 

genes 

Klopocki 

(2012) 

Pedigrees with 

affected 

members 

(simple ratio) 

BHLHA9 17p13.3 ra=0.3(12/40)f  

ra=0.7(30/42)m 

- Split-

hand/foot 

malformation 

(SHFM), 

SHFM and 

long bone 
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deficiency 

(SHFLD) 

Meyer (2012) 

 

Trios from: 

three generation 

Framingham 

Heart Study; 

Hutterite 

families from 

South Dakota; 

families from 

Autism Genetic 

Resource 

Exchange 

project (TDT) 

(partial results-

see Table 2 in 

article for full 

results) 

SNP: 

rs12199720 

(MAF=0.45) 

SUPT3H-

MIRN586-

RUNX2 

 

 

 

6p21.1 

 

 

 

ra =0.593 f  

 

 

 

 
1.77e-05mt- 

Human 

growth, 

osteoblastic 

differentiation, 

skeletal 

morphogenesis, 

height, cleft 

palate, 

neoplastic 

development 

in 

hematopoietic 

lineages 

SNP: rs748001 

(MAF=0.36) 

Chr 10 ra =0.585 4.55e-08 mt- - 

Honeywell 

(2012) 

One five-

generation 

family of 

carriers and 

non-carriers of 

pericentric 

chromosome 

inversion (ratio 

of miscarriages) 

- Region 

between 

1p36.21 

& 

1q42.13 

rg=0.15(13/88) 

ra=0.71(15/21) 

- Infertility, 

recurrent 

pregnancy 

loss, higher 

risk for 

congenital 

abnormalities 

in offspring 

Shoubridge 

(2012) 

39 multi-

generation 

families with 

affected and 

unaffected 

individuals 

(Pearson’s χ2 

test) 

ARX Xp21.3 ra 

=0.6(149/247)m 

0.002 Non-

syndromic 

intellectual 

disability, 

infantile 

spasms or 

serious brain 

malformations 

Liu (2012) HapMap phase 

3 trios 

ATG16L1 

(SNP:rs379210

6, MAF=0.48) 

2q37.1 ra =15/38m 0.19 Inflammatory 

Bowel 

Diseases 

ra =21/32f 0.077 

ra =13/40mo 0.027 
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(Pearson’s χ2 

test) 

ra =23/40fa 0.34 

LRP2 

(rs6733122) 

Chr2 ra= 

0.65(228/353) 

0.029mo;mt+ Donnai-

Barrow 

syndrome 

(DBS) and 

facio-

oculoacoustico

-renal 

syndrome 

(FOAR) 

ZNF133 

(rs926716) 

Chr20 ra= 

0.37(176/473) 

0.018 mo;mt+ osteoblastoma 

Henckaerts 

(2010) 

 DZ twin pairs 

with 1 died in 

uterus (ratio of 

genotype) 

DLG5 10q23 alive: rcc:ct:tt= 

0.78:0.2:0.02 

(32:8:1) 

dead: rcc:ct:tt= 

0.8:0.16:0.04 

(56:11:3) 

- Inflammatory 

Bowel 

Diseases 

Santos (2009) Hap Map YRI 

and CEPH trios 

on Chr 6 (TDT) 

SUPT3H-

MIRN586-

RUNX2 

rs6899845 

(MAF=0.457) 

 

6p21.1 

 

ra= 

0.94(16/17)fa  

ra= 

0.64(7/11)ma  

 

3.0e-04fa,mt+ 

0.0233ma,mt+ 

 

Human 

growth, 

osteoblastic 

differentiation, 

skeletal 

morphogenesis, 

height, cleft 

palate, 

neoplastic 

development 

in 

hematopoietic 

lineages 

 

rs2677101 

(MAF=0.45) 

 

6p21.1 

 

ra= 

0.94(17/18)fa  

 

2.0e-04 mt+ 
 

Paterson 

(2009)  

Multi-

generation 

families 

unselected for 

Intergenic 

NBPF8, HFE2 

1q21.1 OR=0.58 7.7e-06 mt- Cognitive 

development 

and tumour 

suppressor, 
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phenotype in 

Framingham 

Heart Study 

(NPL, TDT) 

iron 

metabolism 

TMEM37 intron 

I  

2q14.2 OR=0.47 1.0e-06 mt- Resistance to 

pathogens 

SAG intron 6 2q37.1 OR=0.49 7.4e-10 mt- Night 

blindness in 

Oguchi 

disease 

MEGF10 Intron 

6  

5q33 OR=0.35 8.2e-07 mt- Brain 

functions 

SPOCK1 intron 

2 

5q31 OR=0.36 1.4e-06 mt- Unknown 

C9orf3 intron 5,  9q22.32 OR=0.45 2.4-07 mt- Lipid, 

apolipoprotein 

DBC1, 

CDK5RAP2, 

MEGF9 

9q32-

q33, 

9q33.2, 

9q32-

q33.2 

OR=1.36 3.7e-06 mt- Bladder 

cancer, 

neuronal 

differentiation, 

central and 

peripheral 

nervous 

system 

CTDP1 intron 4 18q23 OR=0.75 1.8e-06 mt- Congenital 

cataract, facial 

dysmorphism, 

peripheral 

neuropathy 

Bettencourt 

(2008) 

102 Sib-pairs 

with parents of 

normal families 

(Pearson’s χ2 

test) 

ATXN3 14q32.1 ra =0.569 

ra =0.581fa 

ra =0.557mo 

0.013 

0.04 

>0.05 

Machado-

Joseph disease 

(MJD), also 

known as 

Spinocerebellar 

ataxia type 3 

(SCA3) 

Sazenova 

(2008) 

Tissues from 84 

spontaneous 

H19 11p15.5 ra =0 - Imprinting 

centre control 
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abortions from 

women 

synthesis of 

IGF2 

CDKN1C 11p15.5 ra =0 - Tumour 

suppressor 

KNCQ1OT1 11p15.5 

 

rg =0.095 - Imprinting 

centre control 

activation of 

imprinted 

genes 

including 

CDKN1C 

Yang (2008)  Three-

generation 

mouse families 

and CEPH 

families 

(Binomial exact 

test, logistic 

regression) 

DNMT1 

(D12Nds2 ms) 

Chr12 ra = 0.17 cohort1 0.068mt- 

0.016 mt- 

Imprinted 

region  

Becker (2007) 37 Nuclear 

family with 

affected twins or 

siblings, and 

discordant sibs 

(HAP-PAT test) 

rs1982073 

(TGFβ1, 

MAF=0.445) 

19q13 ra = 0.33 cohort2 0.000145mt+ Control 

severity 

phenotype and 

endophenotype 

of cystic 

fibrosis (CF)  

rs1800469 

(TGFβ1, 

MAF=0.359) 

19q13 - - 

D19S112 

(DMPK) 

19q13 - 0.0304mt+ 

De Rango 

(2007)  

Concordant and 

discordant 

cousin-pairs 

with centenarian 

parents 

(likelihood ratio 

test) 

TNFb and 

TNFa  

6p21.3  - 0.007d ,mt-, 

0.06c ,mt- 

Tumour 

necrosis 

(death)  

HSP70.1 6p21.3 - Graft-vs-host-

disease 

SIRT3  11p15.5 - 0.015d,mt-, 

0.0396c,mt- 
Node-positive 

breast cancer 

HRAS1 11p15.5 - Oncogene  
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IGF2 11p15.5 - Intestinal 

adenoma 

(tumour) 

INS 11p15.5 - Hyperinsulinism 
(above normal 

insulin level) 

TH 11p15.5 - Neuropathology 

- 14q32 ra=0.469; 

0.539f; 0.401m 

- Imprinted 

region in 

human 

Friedrichs 

(2006) 

Case-trios and 

control-trios 

(multivariate 

logistic 

regression) 

DLG5 

(rs1248696) 

MAF=0.042 

10 ORe=1.75  

OR = 1.52 

OR = 2.49m 

OR = 1.01f 

0.025 

0.021 mt- 

<0.001 mt- 

0.979 mt- 

Inflammatory 

bowel disease 

(IBD) 

Imboden 

(2006)  

Nuclear family 

with carrier 

parents of Type 

1 and Type 2 

long-QT 

syndrome 

(Pearson’s χ2 

test) 

KCNQ1  

 

11p15.5 ra =0.57 

ra =0.59 f 

ra =0.54 m 

<0.001 mt+ 

<0.001 mt+ 

>0.05 mt+ 

Long-QT 

syndrome 

Type 1 

KCNH2 7q36.1 ra =0.57 

ra =0.60 f 

ra =0.53 m 

r f vs m=0.57 

0.001 mt+ 
<0.001 mt+ 

>0.05 mt+ 

0.02 mt+ 

Long-QT 

syndrome 

Type 2 

Dean (2006) 335 

preimplantation 

embryo selected 

on  

heterozygosity 

of parents 

(Binomial exact 

test) 

DMPK 19q13.3 ra=0.59 0.0004mt- Human 

muscular 

dystrophy 

ra =0.6mo 0.0055mt- 

ra =0.59fa 0.03mt- 

ra =0.55m 0.2mt- 

ra =0.65f 0.0001mt- 

Hanchard 

(2006)  

Trios unselected 

for phenotype 

(Pearson’s χ2 

test) 

CLIC-2230 (in 

central MHC) 

6p21.3 ra=0.6(70/116) 0.025 mt- Autoimmunity, 

regulation of 

cellular 

processes 

Botta (2005) Trios of fetus 

with 

SMN1 5q13.2 ra= 

0.45(284/628) 

0.016 Spinal 

muscular 
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heterozygous 

carrier 

parents(Pearson

’s χ2 test) 

atrophy 

(SMA) 

Infante-Rivard 

(2005)  

Case-trios and 

control-trios of 

unaffected 

newborns 

(TDT) 

MTHFR 1p36.3 

 

RR=0.73 <0.005 mt- occlusive 

vascular 

disease, neural 

tube defects, 

colon cancer 

and acute 

leukemia 

Factor V Leiden 

 

1q23 RR=0.38 <0.002 mt- blood 

coagulation 

cascade, 

hemorrhagic 

diathesis, 

thrombophilia 

Factor II 

(prothrombin) 

11p11 RR=0.24 <0.001 mt- blood 

coagulation 

cascade, 

maintain 

vascular 

integrity 

during 

development 

and postnatal 

life, 

thrombosis 

and dyspro-

thrombinemia 

Paterson 

(2003)  

Two-generation 

Framingham 

Heart Study 

families 

(multipoint NPL 

LOD score) 

- Chr2 

cM200 

NPL=1.9 m 0.0011 mt- - 

- Chr4 

cM168 

NPL=1.86 m 0.0013 mt- - 

- Chr10 

cM14 

NPL=2.05 7.5e-04 mt-  
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- Chr17 

cM65 

NPL=1.82f, 

0.59 m 

0.0017 mt-, 
0.037 mt- 

- 

- Chr17 

cM86 

NPL=0.61f, 

1.77 m 

0.0420 mt-, 
0.0016 mt- 

- 

- Chr20 

cM96 

NPL=1.10 0.0087 mt- - 

- Chr22 

cM41 

NPL=1.75 0.0016 mt- - 

Naumova 

(2001)  

Three-

generation 

CEPH families 

(Exact binomial 

test) 

IGF2 11p15.5 Tgmb=0.62m 

Tgmb=0.50f 

 

- Intestinal 

adenoma 

(tumour) 

H19 11p15.5 Loss of 

imprinting of 

IGF2 

MASH2 

(ASCL2) 

11p15.5 Neuronal 

precursor for 

central and 

peripheral 

nervous 

system 

IGFR2 

(FCGR2B) 

6q25-

q27 

Tgmb=0.6m 

Tgmb=0.59f 

- Autoimmune 

disease 

Paterson 

(1999)  

Two and three-

generation 

CEPH families 

(Multipoint 

NPL) 

- 10p11-

p15 

NPL=1.84 0.04 mt- Chromosome 

10 was known 

to be 

associated 

with 

schizophrenia, 

bipolar 

affective 

disorder, 

obesity, Type 

1 diabetes and 

alcoholism 

Eaves (1999)  Nuclear family 

with children 

IGF2 11p15.5 ra=0.54 0.002 Intestinal 

adenoma 

(tumour) 
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unselected for 

disease (TDT) 

INS 11p15.5 Hyperinsulinism 
(above normal 

insulin level) 

Magee (1998) Pedigree of 

affected and 

unaffected sib-

pairs with 

parents 

DMPK 19q13.3 ra=0.63 

ra=0.583fa 

ra=0.687mo 

0.007 

- 

0.009 

Myotonic 

dystrophy 

(DM) 

Naumova 

(1998) 

Three-

generation 

CEPH families 

(Exact Binomial 

Test) 

DXS1068 Xp11.4 Tgmb =0.62 

Tgmb =0.52 

 

0.0032mt+ 

0.628 mt+ 

Duchenne 

muscular 

dystrophy, 

Cognitive 

functions, 

Type1 

Diabetes 

Riess (1997) Nuclear family 

of affected and 

unaffected 

offspring 

(Pearson’s χ2 

test) 

SCA1 6p23 ra =0.85 <0.05 spinocerebellar 

ataxia Type 1 

SCA3 14q24.3

–q31 

ra =0.62 

ra =0.73mo 

<0.05 

<0.01 

spinocerebellar 

ataxia Type 3 

 

Table 3.2: Transmission Ratio Distortion findings in current literature of mouse studies 

First Author Study 

population 

(analytical 

method) 

Gene Gene 

Location 

Effect size p-value Function of 

gene 

Bauer 

(2012) 

Wild type 

and mutant 

strains of 

mouse testis 

(Pearson’s 

χ2 test) 

NME3 

(distorter 

locus), t-

complex 

SMOK1 

(responder 

locus) 

Chr 17 NMEmu:0.352 

vs control:0.27 

0.0095 Sperm motility 

NMEwt:0.59 

vs control:0.443 

0.0006 

Casellas 

(2012) 

Mouse 

crosses 

rs3663003do, 
MAF* 

1 PM=0.358 4.3PO, mt+ - 
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(Bayesian 

Binomial 

Model) 

rs3694780 do, 

MAF* 

3 PM=0.330 3.9 PO, mt+ 

rs3698001 do, 

MAF* 

12 PM=0.312 4.1 PO, mt+ 

rs3678616 do, 

MAF* 

13 PM=0.331 4.5 PO, mt+ 

D14Mit44 do, 

MAF* 

14 PM=0.562 29976,7 PO, mt+ 

rs13476816ad, 

MAF* 

2 PM= -0.318 1.3 PO, mt+ 

rs6289734 ad, 

MAF* 

3 PM= -0.193 21.7 PO, mt+ 

rs13482595 

ad, MAF* 

5 PM= -0.163 1.8 PO, mt+ 

Eversley 

(2010)  

Two-

generation 

mouse 

families 

(Pearson’s 

χ2 test) 

rs8260829 
MAF* 

Chr 7 ra=0.591 0.005 mt- imprinted 

genes 

influencing 

fetal and 

placental 

growth, 

neurological 

disorder 

rs4228380 
MAF* 

Chr 10 ra=0.317 3.0e-08 mt- - 

rs3707772 
MAF* 

Chr 11 ra=0.353 8.0e-06 mt- - 

Veron 

(2009) 

Mouse 

sperm cells 

(Pearson’s 

χ2 test) 

Tcd 1-4 

(distorter 

locus) t-

complex 

SMOK1 

(responder 

locus) 

Chr 17 Tcdmu:0.766 1.27e-14 Sperm motility 

Tcdwt:0.555 0.789 

Haston 

(2007) 

Cystic 

fibrosis 

Mouse 

D5Mit239 Chr 5 rwt/wt:wt/mu:mu/mu= 

0.21:0.41:0.38f, ncf 

5.7e-15 Cystic fibrosis 

D5Mit239 Chr 5 rwt/wt:wt/mu:mu/mu= 0.035 
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crosses  

(Pearson’s 

χ2 test) 

0.12:0.6:0.27m, cf 

DXMit16 Chr X rwt/wt:wt/mu:mu/mu= 

0.31:0.27:0.42 f, ncf 

3.0e-35 

Bauer 

(2007) 

Wild type 

and mutant 

strains of 

mouse testis 

(Pearson’s 

χ2 test) 

FGD2 

(distorter 

locus) t-

complex Tcr 

(responder 

locus) 

Chr 17 Fgd2mu:0.35 

Fgd2wt:0.47 

- 

0.01 

Sperm motility 

Schulz 

(2006) 

Normal vs 

Robertsonian 

translocation 

crosses of 

mouse 

(Pearson’s 

χ2 test) 

(2.8) 

Robertsonian 

translocation 

Chr 2 ra=0.44 

ra=0.44m 

ra=0.45f 

0.0013 

0.0093 

0.0515 

Developmental 
disabilities and 

mental 

retardation 

Martin-

DeLeon 

(2005) 

Transgene vs 

wild-type 

crosses of 

mouse 

(Pearson’s 

χ2 test) 

SPAM1 Chr 6 ra=0.67 (2/3) 

 

<0.001 Transcript 

sharing of 

spermatids 

Wu (2005) Two-

generation 

mouse 

families 

(Pearson’s 

χ2 test) 

Ovum mutant 

(Om) 

Chr 11 ra=0.561(198/353) <0.05 Embryo 

lethality 

Underkoffler 

(2005) 

Normal vs 

Robertsonian 

translocation 

crosses of 

mouse 

(McNemar 

Test) 

(7.18) 

Robertsonian 

translocation 

Chr 7 

and Chr 

18 

ra=0.54fa 

ra=0.46mo 

 

0.02 

0.02 

Imprinting 

Taveau 

(2004) 

Wild type 

and mutant 

CAPN3 Chr 2 rwt/wt:wt/mu:mu/mu= 

0.17:0.50:0.33 

<0.01 Limb-girdle 

muscular 
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crosses of 

mouse 

(Pearson’s 

χ2 test) 

dystrophy 

Type 2A 

 

a, TRD ratio of transmission of minor allele vs all alleles 

ad, additive model 

b, Transmission ratio in grandmaternal alleles 

c,  concordant cousin pairs (De Rango 2008) 

cc, CC genotype of the SNP 

cf, Cystic Fibrosis lethal genotype 

ct, CT genotype of the SNP 

d, discordant cousin pairs (De Rango 2008) 

do, dominant model 

e, maternal vs. paternal transmission of risk allele, deviation from Mendelian ratio indicates parent-of-origin 
effect 

f, female offspring 

fa, father 

g, ratio of miscarriage (due to embryo lethality) 

m, male offspring 

MAF, Minor allele frequency  

MAF*, MAF for the SNP is not available 

mo, mother 

ms, microsatellite 

mt+, adjusted for multiple testing 

mt-, not adjusted for multiple testing 

mu, mutant breed 

ncf, non-Cystic Fibrosis lethal genotype 
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wt, wild-type breed 

NPL, non-parametric linkage score 

OR, odds ratio of transmitting the major allele 

PM, posterior mean 

PO, posterior odds: >100, decisive evidence, 10<PO<31.62, strong evidence, 3.16<PO<10, substantial 
evidence 

RR, relative risk for the newborn genotype using the gene-dosage model 

tt , TT genotype of the SNP 

-, not available 

 

3.7 TRD as a confounding signal in association or linkage analysis 

The presence of TRD at a marker locus in the general population can influence the results of a 

linkage or association analysis in the affected population, by over- or under- estimating the true 

signal [72, 73, 75, 78]. As a result, it would be necessary to detect TRD as a confounding parameter 

in studies searching for disease. If TRD occurs at a distal locus from the disease susceptibility 

locus (DSL) and is not in LD with the DSL, a linkage or association signal would be detected, 

leading to a false positive signal. On the other hand, if TRD occurs on a locus in the vicinity of the 

DSL and is in LD with it, it would inflate or attenuate the linkage or association signal, potentially 

leading to a false positive or false negative signal.  

Greenwood et al. [78] simulated linkage between a marker and disease loci, in a population of 

affected brother pairs. In this study, the marker locus is designed to be under influence of both 

TRD and linkage. The authors used a TRD ratio, defined as the ratio of a grandparental allele 

transmitted from the mother to a male child vs. all grandparental allele transmission, which is 

different from our definition of TRD used in this paper. The impact of these conditions was 

examined on three parameters: the TRD ratio on the X-linked marker locus, the relative risk of 

disease recurrence in an individual given an affected brother compared to the population 

prevalence, and the expected IBD sharing of alleles at the X-linked marker locus. Since the marker 

locus is X-linked, the maximum IBD sharing between affected brother pairs is 1. It was shown that 
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as TRD increases while relative risk remains the same, the expected allele sharing biased away 

from 0.5, giving a false positive signal. The results indicate that IBD sharing patterns for affected 

sib pairs are strongly affected by TRD and that the estimated statistical significance of a sib-pair 

linkage study may be extremely biased. 

The same study also showed that the presence of TRD leads to significant power loss. Assuming 

a baseline of expected sharing due to TRD, the null and alternative hypotheses together are testing 

for additional expected sharing due to linkage. Therefore, expected sharing under the alternative 

hypothesis is always greater than or equal to that of the null hypothesis because of the additional 

sharing. When the baseline TRD ratio increases, expected allele sharing under both hypotheses 

increases as well. However, the difference between the expected sharing of null and alternative 

hypotheses decreases as they converge to a maximum sharing of 1. This then makes it more 

difficult to differentiate a true signal from a false one at higher values of TRD ratio. As such, Type 

2 error increases and power decreases accordingly. 

On the other hand, Spielman et al. [36] proposed to use a mixture of case trios (affected offspring 

with parents) and control trios (unaffected offspring with parents) to differentiate true linkage or 

association signals from false positives due to TRD by applying a TDT to both types of trios. The 

study concluded that 1) a statistically significant TDT in case trios suggests evidence of either 

linkage and association or TRD or both, 2) a statistically significant TDT in control trios suggests 

evidence of TRD or both TRD and linkage/association, 3) a statistically significant TDT in case 

trios but not in control trios suggests evidence of true linkage and association, and 4) when a 

statistically significant TDT is observed in both case trios and control trios, a significant Pearson 

Chi-square statistic of case trios vs. control trios transmission counts suggests evidence of true 

linkage and association.  

To verify Spielman et al.'s [36] findings, we set up a simulation study for the 4 scenarios described 

in Table 3.3. The disease allele frequency (p) in the population was set between 0.01 and 0.05 

indicating a rare to moderately rare disease frequency. The marker allele frequency (q) was set at 

0.1 as a minor allele.  The underlying TRD influence on the marker locus had a ratio between 0.6 

and 0.9 for the minor allele, exploring mild to extreme skew of transmission. The recombination 

fraction between disease and marker loci (𝜃𝜃) was specified as 0.1 in the scenarios 3 and 4 when 
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there was linkage and association between disease and marker loci, or otherwise is set to 0.5 

(scenario 1 and 2). A pre-specified linkage disequilibrium (LD) parameter (𝛿𝛿) was adjusted for 

each disease allele frequency being tested, to ensure positive haplotype frequencies, which depend 

on disease and marker allele frequencies. Therefore, LD was set to be slightly less than the 

minimum of p (1-q) and q (1-p) when there was linkage and association (scenario 3 and 4), and set 

to 0 otherwise (scenario 1 and 2).  We simulated random mating in a population of 600,000 trios 

(parents and child) with the above specified parameters. Assuming a recessive mode of inheritance 

at the disease loci, we sampled 500 case trios and 500 control trios from the simulated population. 

We then applied the TDT at the marker, for both the case and control trios. As suggested by 

Spielman et al. [36], we further applied the Pearson’s χ2 test to assess the excess transmission of 

minor allele over major allele in case trios vs control trios.  This procedure was repeated 500 times, 

and the results of the test statistics were averaged over these 500 simulations. The p-values are 

computed accordingly using each of the averaged test statistics over 500 simulations. Our results 

support the proposal of study design, statistical method, and conclusions suggested by Spielman 

et al. [36], as shown in Table 3.3. This simulation study was repeated for a dominant mode of 

inheritance, and the same results were obtained. 

Greenwood and Morgan [78] suggested that if TRD is suspected during the planning stage of a 

study, the planned sample size of the study needs to be increased by only a small amount to 

maintain the desired power to detect linkage. For example, it was shown in simulations that with 

an original sample size of 30 sib-pairs, when the TRD ratio increases from 0.5 to 0.62, then adding 

11% sib-pairs will approximately guarantee the original power. When the TRD ratio is at 0.7, the 

sample size needs to be increased by one third to achieve the same desired power. Similarly, Evans 

et al. [129] carried out simulations to estimate the sample size required for various power level and 

Type 1 error level to detect transmission distortion in genome-wide studies using trios unselected 

for phenotype. They found that when distortion is small (TRD=0.51), one needs hundreds of 

thousand trios to achieve 80% power. However, for moderate value of TRD (0.7), only hundreds 

of trios are needed. They also showed that the number of trios decreases when the parental 

heterozygote frequency increases. 
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Table 3.3: Simulation results for 4 scenarios each averaged over 500 simulations based on 

TDT & Pearson’s Chi-square test*  

Presence of 

linkage and 

association 

Presence 

of TRD 

Significance of 

TDT in case-trios 

Significance of 

TDT in control-

trios 

Significance of Pearson’s 

Chi-square test of case-

trios vs. control-trios 

transmission counts 

No No No No No 

No Yes Yes Yes No 

Yes No Yes No Yes 

Yes Yes Yes Yes Yes 

 

*Methods referenced in Spielman et al.(1993) 

3.8 TRD from a population genetics perspective 

The impact of TRD at the organismal level could become manifest at the population level as the 

human genome evolves over time. Therefore, TRD is also a main study objective in a population 

genetics context because this genetic force leads to changes in the diversity of the population gene 

pool over generations. By using the formulae in Chevin and Hospital [83], we set up a simulation 

study designed to trace the marker allele frequency and LD between marker and disease loci over 

generations. First we defined marker allele frequency to be the MAF at the marker locus. Disease 

allele frequency was set to be rare. Recombination fraction and LD were specified accordingly to 

indicate linkage and association. In equation 1 of Chevin and Hospital [83], the change in marker 

allele frequency in i-th generation is a function of TRD ratio and marker allele frequency for the 

(i-1)-th generation, and as such, the marker allele frequency increases over each generation.  LD 

in the i-th generation is a function of TRD ratio, recombination fraction, LD of the (i-1)-th 

generation, and marker allele frequency at the (i-1)-th generation as seen in equation 8 of Chevin 

and Hospital [83]. We simulated this change in LD and marker allele frequency for many 

generations and over time, LD decays and marker allele frequency eventually reached fixation 

with a frequency of 1 in the population. For a TRD ratio of 0.9, fixation can be reached in about 

10 generations. As for a TRD ratio of 0.6, it can take up to 80 generations to reach fixation, 

depending on the strength of linkage and association between marker and disease loci. These 
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changes in genetic diversity over time culminate to an equilibrium state of involved parameters in 

the population, namely the MAF and haplotype frequency at TRD and neighboring loci, and LD 

between marker and disease loci [84].  

As we have seen, TRD can be detected within two or three generations by observing transmission 

patterns from parents and grandparents to offspring.  If TRD is persistent through many 

generations, a gradual shift in the allele frequency at the TRD locus would be observed. Over time, 

the advantaged allele(s) could become fixed in the population, while the alternatives are 

completely eliminated.  This may provide an explanation as to why studies have been able to 

discover only a small number of TRD loci, because alleles at some of these TRD loci have already 

become monomorphic. Therefore, no genetic variation could be detected in the population on these 

“disappeared” TRD loci. However, through observation on some other identified TRD loci, 

disadvantaged alleles still appear to exist at a low frequency and remain polymorphic as rare 

variants. This raises questions as to why TRD did not sweep the advantaged allele into fixation. 

Several authors have tried to answer this question by suggesting theories on sources of counter-

balancing forces which keep the allele in polymorphic state, such as recombination which breaks 

up linkage between distortion driver and responder genes [130], mutation and genetic drift acting 

in the opposite direction of the TRD [131], and an immunogenetic advantage for survival in later 

adulthood regardless of low fertility of the disadvantaged genotypes [132].   

The existence of these rare variants provides us with great insight into the understanding of TRD 

and the importance of corresponding gene functions at these loci.  Rare disease variants are 

currently the focus of genome-wide association studies in search of missing heritability in complex 

disorders [133]. It has been hypothesized that rare disease variants could be more functional than 

common variants and have high penetrance [134-136]. This suggests a potentially similar role for 

disadvantaged TRD rare variants when their gene functions determine survival.  Since there is 

usually low power to detect rare variants using a standard genome-wide genotyping platform with 

feasible sample size, there are intense ongoing research efforts to address this issue [137, 138]. 

These efforts should lead to a better understanding of TRD and its contribution to the rare variant 

phenomenon itself.  
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3.9 Conclusion 

In conclusion, TRD is a complex and understudied area with challenges such as access to very 

large and error-free genotype databases with unselected phenotypes. Recent sequencing studies 

have included unaffected subjects as well as affected subjects. Moreover, with the change of focus 

back to family-based studies, these data may be conveniently used to the study of TRD. As 

discussed, TRD is a phenomenon with potential impact on practical aspects of human genetics 

such as correct interpretation of association study results, as well as more theoretical ones, such as 

frequency of variants and related population genetics issues. This review aimed at underscoring 

the importance and interest of TRD in human genetics.   
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Chapter 4 

Adjusting for Transmission Ratio Distortion in the analysis of 

case-parent trios using a loglinear model 

4.1 Preamble 

Transmission Ratio Distortion (TRD) has been captured statistically in various family-based study 

designs using control-trios, or child unselected for phenotypes as enlisted in Tables 3.1 and 3.2 of 

Chapter 3, for human and mouse studies, respectively. The detection of deviation from Mendelian 

inheritance in apparently unaffected individuals indicates the potential presence of TRD. Methods 

to detect TRD include the TDT, the Binomial Exact Test, the Pearson’s Chi-square test, the 

multipoint non-parametric linkage test, the Mann-Whitney U test and the multivariate logistic 

model. However, all of these methods only provide a p-value for the significance of the TRD signal, 

without any mean to adjust for it. We utilized the loglinear model framework developed by 

Weinberg et al. [44] and extend it to adjust for non-sex-of-parent-specific TRD (NST). This 

loglinear model not only provides a LRT p-value which measures association signal, but also offers 

RR estimates for child genotype 1 or 2. Assumptions of this model include Mendelian transmission 

and mating symmetry, but not HWE or random mating.  

We proposed to take an existing component, P[C|MF], in the multinomial conditional probability 

of the loglinear model, and replace it with a category-specific offset based on the transmission 

probability of minor allele (t) . This probability is computed from control-trios. Our simulation 

showed that without adjusting for the presence of TRD, there is an inflation of RR and Type 1 

error, and significant power loss. We also applied the extended model to a real dataset on IUGR 

dataset and identified 2 loci that were influenced by TRD, and recovered the correct significance 

level. Note that our method depends on the fact that control-trios are available for the computation 

of t. However, this might not always be feasible. Sensitivity analysis was conducted to test the 

effect of misspecification of t to the estimation of model parameters. The results showed that the 

validity of our conclusion is very sensitive to the misspecification. However, for a sample size of 

500 control-trios, the 95%CI for the estimated t lies within ± 0.07 of true value of t, which does 

not lead to significant inflation in the parameter estimates.  
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4.2 Abstract 

Transmission of the two parental alleles to offspring not following the Mendelian ratio has been 

termed Transmission Ratio Distortion (TRD). It is the result of mechanisms occurring during 

gametic and embryonic developmental stages. TRD has been well-studied in animal and plant 

models, but remains largely unknown in human studies. The Transmission Disequilibrium Test 

(TDT) was first proposed to test for association and linkage by estimating departure from the 

expected allele transmission proportions in families composed of an affected offspring and the two 

parents (case-trios); adjusting for possible TRD using control trios was recommended. However, 

the TDT does not provide parameter estimates for different genetic models. A loglinear model for 

association studies was later proposed providing relative risk (RR) estimates of disease for the 

child and maternal effects. This model assumes Mendelian transmission. Results from our 

simulation study showed that case-trios RR estimates using the loglinear model are biased in the 

presence of TRD. Power and Type 1 error are also compromised. In this paper, we propose an 

extended loglinear model including a separate component for TRD. Under this extended model, 

RR estimates, power and Type 1 error are correctly restored. We then applied this model to a real 

dataset on intrauterine growth restriction, and showed consistent results with a previously used 

approach that adjusted for TRD using control-trios. Our findings suggested the need to adjust for 

TRD to avoid spurious results in association studies. Documenting TRD in the population is 

therefore essential for the correct interpretation of genetic association studies.
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4.3 Introduction 

Transmission Ratio Distortion (TRD) occurs when the transmission of the two alleles from a 

heterozygous parent to the offspring violates the Mendelian law. TRD results from disruptive 

mechanisms occurring during the gametic or embryonic developmental stages [1], including 

germline selection [79], meiotic drive [70], gametic competition [75], embryo lethality [75], and 

imprint resetting error [80, 90]. The presence of TRD can lead to spurious conclusions in 

association studies.  

Studies in animal models have contributed to our understanding of TRD using backcrosses [139] 

or F2 crosses [93]. A recent study uses a Bayesian framework to model TRD in boars and piglets 

and was shown to achieve appealing statistical performance [140]. In humans, individuals 

unselected for phenotype have been studied to detect TRD in the general population, such as in 

the Framingham Heart study [73, 77], the Centre d'Etude du Polymorphisme Humain [80, 90], and 

the HapMap project [87].  

In some studies both case and control populations were analyzed separately to detect a difference 

in transmission [117, 125]. For example, Spielman et al. [36] analyzed both case- and control-trios 

using the TDT. True association was assessed using a Pearson's Chi-square test. Deng and Chen 

[141] proposed a TDT statistic that is the sum of TDT statistics for case- and control-trios. 

Previously, we suggested a modified TDT statistics where the two diagonal counts in McNemar 

test are multiplied by t and (1-t), respectively, where t is the transmission ratio of the minor allele 

in control-trios [142].  

Other statistical measures have also been proposed to study affected offspring, such as the 

Binomial exact test [80, 81], the Pearson's Chi-square test [116, 121], the multipoint non-

parametric linkage (NPL) test [72, 115], the Mann-Whitney U test [111], and the multivariate 

logistic model [80].  These methods and TDT-type analyses only give statistical significance of 

linkage and association, but do not estimate the disease relative risk. Newer methods were 

proposed to address these limitations. 
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The family-based association test (FBAT) [143, 144] and likelihood methods that use case-trios to 

construct conditional logistic [46], unconditional logistic [45], and loglinear models [44, 50-52, 

54] have also been used in family-based studies. In particular, Weinberg et al. proposed a loglinear 

model to detect an association between a marker and disease [44]. This model estimates a relative 

risk of disease for the offspring, and assumes Mendelian transmission. It has a probability 

component that can be easily extended to adjust for TRD. Our proposed method uses the 

transmission ratio of a minor allele in control trios, ideally obtained from an external dataset such 

as HapMap, to account for TRD through an offset parameter in the model. This transmission ratio 

likely varies across different populations because of the unique evolutionary history each 

population carries. However, the HapMap project offers control data on populations with different 

ethnicities and hence, can address this issue. 

This extended loglinear model was validated through extensive simulation studies. It was also 

applied to an intrauterine growth restriction (IUGR) case-control study augmented with a case- 

and control-trio study [76, 145], investigating the role of thrombophilic genes in IUGR. The 

current literature in support of the association between thrombophilia and IUGR is inconsistent. 

We explored the possible role of TRD in these inconsistencies. 

4.4 Material and Methods 

We investigated the association between a bi-allelic disease susceptibility locus (DSL) and a 

disease. Assuming an additive model, we defined genotype by the number of copies of the minor 

allele. Therefore, homozygous wild-type individuals were coded as genotype 0, heterozygous as 

genotype 1, and homozygous mutant as genotype 2.  

4.4.1 Loglinear model by Weinberg et al. (1998) 

The loglinear model proposed by Weinberg et al. [44] assumes Mendelian transmission and mating 

symmetry, but makes no assumption about the Hardy-Weinberg Equilibrium (HWE). For the 

purpose of this paper, we considered the simpler form of this model where only parameters 

associated with the child genotypes are included. 
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In this model, the response variable is the number of trios (counts) for each of the 15 mother-

father-child (MFC) genotype categories, as described in Table 4.1. These 15 categories can be 

subdivided into 6 mating types defined by the paired parental genotypes. Covariates entering the 

model include two indicator variables for child inheriting one or two disease alleles and five 

additional ones corresponding to the first five mating types. The model which includes an intercept 

and an offset parameter, is described as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝜌𝜌6 + ∑ 𝜌𝜌𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇]
5
𝑇𝑇=1 + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]   (4.1) 

where M, F, and C represent the mother, father and child genotypes, respectively; nMFC  is the 

number of trios with genotypes MFC, and D is the disease status of the child. The  𝜌𝜌𝑇𝑇 + 𝜌𝜌6 terms 

(i = 1 to 5) are the regression coefficients for the first 5 parental mating types in Table 4.1; 𝜌𝜌6 is 

the intercept corresponding to the 6th mating type MF=00; 𝛽𝛽1  and 𝛽𝛽2  are the regression 

coefficients for child genotype 1 and 2, respectively such that 𝛽𝛽1 = log (R1) and 𝛽𝛽2 = log (R2). R1 

and R2 are the corresponding relative risks with respect to genotype 0. This model, which we call 

model 1, operates under the assumption of Mendelian transmission. The complete derivation of 

this model is shown in Chapter 4.7.1. 

4.4.2 Loglinear model with adjustment for TRD 

Without the assumption of Mendelian transmission at the DSL, model 1 can be generalized into:  

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝜉𝜉6+∑ 𝜉𝜉𝑇𝑇5
𝑇𝑇=1 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]         (4.2) 

where 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶  is the transmission offset P[C|MF],  𝜉𝜉𝑇𝑇 + 𝜉𝜉6  terms (i = 1 to 5) are the regression 

coefficients for the first 5 parental mating types in Table 4.1, and 𝜉𝜉6 is the intercept corresponding 

to the 6th mating type. The coefficients 𝛽𝛽1  and 𝛽𝛽2 are as defined in model 1. This model, which 

accounts for TRD, is denoted as model 2 in the remaining of the paper, with derivation shown in 

Chapter 4.7.1.  

The offset 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶   depends on the TRD ratio t, defined as the transmission probability of a minor 

allele from a heterozygous parent to the child. This leads to a different offset in each MFC genotype 

category, which corrects for TRD in that specific trio combination. The TRD parameter t can take 



75 
 

on values either greater than or less than 0.5. The value t = 0.5 corresponds to Mendelian 

transmission, in which case models 1 and 2 are equivalent (see Chapter 4.7.1).  

We fitted both loglinear models (1) and (2) to obtain estimates of RR for child genotype 1 and 2, 

and their corresponding p-values using Z-tests. To assess significance of the association between 

the disease phenotype and the DSL, a Likelihood Ratio Test (LRT) was used. We refer to Chapter 

4.7.2 for more details about the distribution of the LRT under the null and alternative hypotheses. 

Table 4.1: Relative Risk, stratum frequency, and probability of transmission (TRD or Mendelian) 

for case-parent trios 

Stratum MFC Genotype Stratum 

frequency 

under HWE 

Probability of transmission 

(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) 

Relative Risk 

TRD Mendelian 

1 222 p4 1 1 R2 

2 212 2p3(1-p) t 1/2 R2 

 211 2p3(1-p) 1-t 1/2 R1 

 122 2p3(1-p) t 1/2 R2 

 121 2p3(1-p) 1-t 1/2 R1 

3 201 p2(1-p)2 1 1 R1 

 21 p2(1-p)2 1 1 R1 

4 112 4p2(1-p)2 t2 1/4 R2 

 111 4p2(1-p)2 2t(1-t) 1/2 R1 

 110 4p2(1-p)2 (1-t)2 1/4 1 

5 101 2p(1-p)3 t 1/2 R1 

 100 2p(1-p)3 1-t 1/2 1 

 11 2p(1-p)3 t 1/2 R1 

 10 2p(1-p)3 1-t 1/2 1 

6 0 (1-p)4 1 1 1 

 



76 
 

4.4.3 Simulation study 

In order to assess the performance of model 2 with respect to model 1, a simulation study was set 

up to generate different TRD scenarios. RR parameters, RR p-values, LRT p-values, Type 1 error, 

and power were compared between the 2 models, where the true t value was used in model 2. A 

sensitivity analysis was also carried out to test the impact on RR estimates and power when an 

incorrect parameter t is used in model 2.  

4.4.3.1 Simulation setup 

We considered a causal locus under study with no recombination. A random population of 100,000 

trios was generated, from which 500 case trios were sampled. Parental genotypes at the DSL were 

generated under HWE assuming a minor allele frequency (MAF) = 0.1. A TRD parameter t was 

specified which varied between 0.1 and 0.9. Offspring were assigned to diseased or non-diseased 

phenotypes with penetrance factors f0, f1 and f2 for homozygous wild type, heterozygous and 

homozygous mutant genotypes, respectively, and only the case-trios were sampled. Such 

penetrance values varied depending on the scenario studied. The simulation was repeated 100 

times and averaged RR estimates, p-values of the averaged Z statistics for RR and p-values of the 

averaged LRT statistics are reported.  

4.4.3.2 Measuring impact of TRD on association statistics 

We compared the RR (95%CI) values and LRT p-values of both models under two main scenarios: 

(1) a common disease associated with a low penetrance disease allele at f0=0.1, f1=0.11, f2=0.15, 

and (2) a rare disease with penetrance factors at f0=0.1, f1=0.5, f2=0.5.  In scenario (2), a dominant 

genotype model was assumed, and the estimated RR (noted as R1/2) is for individuals carrying at 

least one disease allele, compared to individuals having genotype 0. To measure the inflation in 

RR and LRT p-values in model 1 when there is TRD but it is not modeled, we computed the log 

(base 10) ratio of RR and LRT p-values in model 1 with respect to model 2. We also varied f2 

fixing f1=0.11 and varied f1 fixing f2=0.15 to describe the inflation of LRT p-values with respect 

to penetrance factors. To assess the inflation of Type 1 error, we set the penetrance factors to f0 = 

f1 = f2 = 0.1 assuming no association while varying t from 0.1 to 0.9. Using sample sizes of 100, 

300 and 500, we computed the Type 1 error of detecting a false association signal. Finally, we 
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evaluated the power of both models to detect a true association signal in the presence of TRD. In 

this case, we set f0 = 0.1, f1 = 0.2, f2 = 0.3, varying t from 0.1 to 0.9 in the simulation, with sample 

sizes of 100, 300 and 500. Critical value for declaring significance was  𝛼𝛼 = 0.05. 

4.4.3.3 Sensitivity analysis 

The assumption in the simulation study was that the true value of t in Table 4.1 is known. In reality 

one might have an approximate idea of where t lies, or one can compute t in control-trios if they 

are available as part of the study or from major consortia such as the HapMap project. We 

performed a sensitivity analysis to examine the consequences of a misspecification of the TRD 

parameter t on the RR estimates and the power to detect true association.  Therefore, we simulated 

three scenarios with true association signal, f0 = 0.1, f1 = 0.2, f2 = 0.3, and true transmission ratio 

of the minor allele as t=0.3, t=0.5 and t=0.7. For each scenario, model 2 was fitted with the offset 

𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶  calculated using a selected t varying between 0.1 and 0.9.  We then evaluated the log (base 

10) ratio of RR obtained from model 2 using true t values vs selected t values that adjust for TRD. 

Power was also evaluated.  

4.4.4 Application of models 1 and 2 to a real dataset  

We applied our model to an intrauterine growth restriction (IUGR) case-control study augmented 

with a case- and control- trio study [146, 147], of which data were collected from a Canadian 

hospital between 1998 and 2000. The original study was intended to study the relationship between 

thrombophilia and IUGR. IUGR in this dataset is defined as birth weight less than the 10th 

percentile according to gestational age and sex, based on the national standards. The sample we 

used includes 493 case-trios and 472 control-trios with approximately 25% being black. 

We examined six thrombophilic genes: Coagulation Factor XIII, A1 polypeptide (F13A1 [MIM 

134570]), Serpin peptidase inhibitor clade E member 1/Plasminogen activator inhibitor type 1 

(SERPINE1/PAI-1 [MIM 173360]), Methylenetetrahydrofolate reductase variant A1298C 

(MTHFR A1298C [MIM 607093]), Methylenetetrahydrofolate reductase variant C677T (MTHFR 

C677T [MIM 607093]), Coagulation Factor V (F5 [MIM 612309]), and Coagulation Factor II (F2 

[MIM 176930]). The number of complete case-trios for F13A1, PAI-1, MTHFR A1298C, MTHFR 
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C677T, F5, and F2 were 208, 176, 243, 246, 240, and 258, respectively. The number of complete 

control-trios for the same genes were 222, 153, 231, 217, 239, and 243, respectively. 

We computed the MAF using all complete trios and t using control-trios. We compared our 

extended loglinear model 2 with another method proposed by Infante-Rivard and Weinberg [76] 

to assess and quantify the extent of TRD in the same IUGR population with the use of control-

trios, specifically for F5. The difference between our model 2 and the model used in Infante-Rivard 

and Weinberg [76] is that the former inserts t as an offset in the loglinear model fitted with case-

trios only, while the latter uses both case- and control-trios (12 strata) adding an interaction term 

between child genotype and case status to estimate RR in cases. Our approach has the advantage 

of not requiring the collection of control-trios sample. However, the model proposed by Infante-

Rivard and Weinberg [76] remained a reliable validation for our results because it does not depend 

on the selected value of t.  

4.5 Results 

4.5.1 Simulation Study 

4.5.1.1 Inflation of RR estimates  

When the transmission ratio was Mendelian, i.e. t=0.5, models 1 and 2 yielded the exact same RR 

estimates and 95%CI as expected (Table 4.2), and were close to the ratios of the underlying 

penetrance factors f1/f0 and f2/f0.  When testing t=0.3 where the disease allele is under-transmitted, 

the RR for model 1 was attenuated excluding 1 in the 95% CI, whereas RR estimates, p-value and 

LRT p-value were restored in model 2. Similarly, for t=0.7, the RR for model 1 were inflated 

whereas this false inflation in RR estimates, p-values and LRT p-values was removed under model 

2. As seen in Figure 4.1A, the RR inflation ratio increased and decreased exponentially with 

respect to t, implying that even small deviation from t = 0.5 can lead to a substantial RR inflation. 

The slope of RR ratio for R2 was double that of R1, showing that inflation due to TRD affected R2 

much more severely than R1.     
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Figure 4.1: Inflation on RR and LRT p-values from models 1 and 2  

(A) Log ratio (base 10) of relative risk R1 and R2 for model 1 to model 2  

(B) Log ratio (base 10) of LRT p-values for model 1 to model 2 when f2 = 0.15    

(C) Log ratio (base 10) of LRT p-values for model 1 to model 2 when f1 = 0.11 
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4.5.1.2 Inflation of p-values 
We see in Table 4.2 that when TRD is not adjusted for, the significance of the LRT p-value was 

inflated in either direction of deviation from t = 0.5. In Figure 4.1B, we observed that for t< 0.5, 

smaller f1 leads to greater inflation, whereas it was the opposite for t> 0.5. This is because when t 

< 0.5, the false association signal is in the opposite direction of the disease effect, whereas when 

t > 0.5, they are in the same direction. However, in Figure 4.1C, this effect seemed to be less 

pronounced for varying f2, as some of the lines were crossing each other as t changed. This is 

because R2 had a relatively larger confidence interval than R1. LRT p-value was less sensitive to 

changes in R2. 

Table 4.2: Relative Risk with 95% CI and p-values, and Likelihood Ratio Test p-values of models 

1 and 2 when t = 0.3, 0.5 and 0.7 with population parameters: 

(1) p= 0.1, f0 = 0.1, f1 = 0.11, f2 = 0.15 for low penetrance common disease, and 

(2) p = 0.01, f0 = 0.1, f1 = 0.5, f2 = 0.5 for high penetrance rare disease. 

Low penetrance common disease 

t Model R1 (95%CI) p-value R2 (95%CI) p-value 
LRT 

p-value 

0.3 
1 0.47 (0.33,0.65) 6.00E-06 0.25 (0.06,1.08) 0.07 2.85E-06 

2 1.09 (0.78,1.51) 0.59 1.34 (0.30,5.84) 0.51 0.28 

0.5 
1 1.10 (0.81,1.51) 0.53 1.40 (0.51,3.89) 0.43 0.26 

2 1.10 (0.81,1.51) 0.53 1.40 (0.51,3.89) 0.43 0.26 

0.7 
1 2.52 (1.78,3.57) 2.00E-07 8.01 (3.18,20.17) 8.27E-06 6.57E-10 

2 1.08 (0.76,1.53) 0.7 1.47 (0.58,3.70) 0.42 0.25 

High penetrance rare disease 

t Model R1/2 (95%CI) p-value 

 

LRT 

p-value 

0.3 
1 2.44 (1.20,4.94) 0.014 0.025 

2 5.71 (2.82,11.57) 1.29E-06 8.62E-07 

0.5 
1 5.58 (2.55,12.21) 1.55E-05 6.55E-07 

2 5.58 (2.55,12.21) 1.55E-05 6.55E-07 

0.7 
1 13.73 (4.99,37.79) 1.57E-07 2.62E-13 

2 5.87 (2.13,16.16) 0.000504 2.23E-05 
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Note: Models for high penetrance rare disease were fitted assuming a dominant genotype model 

and R1/2 represents the RR of cases carrying 1 or 2 copies of disease allele. 

4.5.1.3 Inflation of Type 1 error  

Figure 4.2A shows the theoretical Type 1 error by computing LRT using a Non-Central Chi-square 

distribution, with a non-centrality parameter (NCP) calculated based on equation 4.8 and 4.9 

derived in Chapter 4.7.2.  Figure 4.2B shows the empirical Type 1 error we observed by fitting the 

loglinear model. The empirical results shown in Figure 4.2B are similar to our theoretical results 

in Figure 4.2A. Type 1 error of the TRD-adjusted model 2 remained the same across all t values 

(i.e. close to 0.05), and were exactly the same for all sample sizes. Therefore, NCP for model 2 

does not depend on sample size or t, which means that this model is robust to the effect of TRD 

when the null hypothesis is true. In Figure 4.2A and 4.2B, we see that Type 1 error for the 

unadjusted model 1 increased as t deviated from 0.5 which led to a false inflation of the association 

signals.  

4.5.1.4 Power loss 

Relatively consistent results were obtained between theoretical power (Figure 4.3A) and empirical 

power (Figure 4.3B). Power for sample size n = 100 was poor in both Figures 4.3A and 3B, which 

was true even TRD was absent. We also noticed that model 2 gave relatively stable power for the 

most part in the range of t, while model 1 power suffered from the effect of TRD. However, when 

t was lower than 0.2 or greater than 0.5, model 1 power was greater than that of model 2. This is 

because a strong TRD actually inflates the power of detecting an association signal in either 

direction. Power for model 2 decreased slightly when t > 0.7, which suggested that the TRD offset 

overcompensates the inflation in power. However, a TRD ratio as large as 0.9 is rare, but even 

when t = 0.8, the power was still maintained around 0.8 for sample sizes of 300 and 500.  

Documented results for TRD studies of human and mouse shown in Chapter 3 (Tables 3.1 and 3.2) 

mostly show minor allele transmission ratio between 0.3 and 0.8. The power for our model to 

detect association was still adequate for a t between 0.2 and 0.8, with a sample size greater than 

300 case-trios, from a randomly generated population with MAF around 0.1. For rare variants, 

which is conventionally defined as frequency < 1% in the population, sample size has to be in the 



82 
 

thousands in order to achieve a similar level of power. A dominant model can also be used when 

mother-father-child genotype category counts with child genotype 2 are small.  

Figure 4.2: Type 1 error plot of models 1 and 2 for sample size 100, 300, and 500 when there is 

no association between disease and DSL where f0 = f1 = f2 = 0.1. 

(A) Theoretical results from equations 4.8 and 4.9 in Chapter 4.7.2 

(B) Empirical results from simulation   
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Figure 4.3: Power plot of models 1 and 2 for sample size 100, 300, and 500 when there is true 

association between disease and DSL where f0 = 0.1, f1 = 0.2, f2 = 0.3. 

(A) Theoretical results from equations 4.8 and 4.9 in Chapter 4.7.2 

(B) Empirical results from simulation   

 

4.5.1.5 Sensitivity analysis: Inflation in RR estimates 

We observed that using an under-estimated t value less than the true t in model 2 led to some 

inflation in the RR (log ratio greater than 0), while an over-estimated t (greater than the true t value) 

led to attenuation (log ratio less than 0) in the RR, as seen in both Figures 4.4A and 4.4B for R1 

and R2, respectively. We also noted that the inflation curve of the log RR ratio was linear, which 

means that the inflation and attenuation are exponential in nature for both R1 and R2.  When the 
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difference between the true and selected t was ± 0.1, the inflation ratio lied between 10 0.25 = 1.78 

and 10 -0.25 = 0.56 for R1. When the difference was greater than ± 0.1, the inflation ratio became 

more pronounced. The slope of the log RR ratio curve for R2 in Figure 4.4B was twice that of R1 

in Figure 4.4A.  Therefore, the inflation or attenuation in R2 was more severe than in R1. Results 

from our model 2 were highly sensitive, on an exponential scale, to a correct input of t value.  

4.5.1.6 Sensitivity analysis: Attenuation and inflation in power 

In Figure 4.4 (C), (D) and (E), for t = 0.3 and 0.5, the power to detect true association was 

completely restored when the selected t was equal to the true t. However, setting the selected and 

true at t = 0.7, the power for detecting true association was not completely restored.  This was 

consistent with what we observed in the previous section of power analysis. We also observed that 

there was a decrease in power when (1) true t = 0.3 but the selected t was between 0.3 and 0.6, (2) 

when true t = 0.5 and the selected t was between 0.5 and 0.8, and (3) when true t = 0.7, while the 

selected t was between 0.7 and 0.9. This is due to the partial cancellation of the true signal by the 

selected t. From these observations, we see that power was also highly sensitive to correct t, even 

when selected t was slightly greater than the true t.  

4.5.1.7 Accuracy of estimated t from control-trios populations 

We estimated the mean and standard deviation of the empirical t over 100 iterations in a simulated 

control-trios population with sample size 500. The 95% CI of the estimated t approximately lies 

within ± 0.07 of true t value. Increasing the sample size beyond this point did not significantly 

change the 95%CI. This uncertainty in the estimation of t cannot be built into the likelihood under 

the current model framework because it is included in the model as an offset, not a variable. 

Approaches that could account for this uncertainty would likely suffer a price in statistical power. 

  



85 
 

4.5.2 Application to a case-control, case- and control-parent trio study of IUGR newborn 

carried out in a Canadian hospital 

The MAF calculated from all complete trios in our sample was 23.8% for F13A1, 46.4% for 

SERPINE1/PAI-1, 27.1% for MTHFR A1298C, 28.9% for MTHFR C677T, 2.92% for F5, and 1.68% 

for F2 (Table 4.3). Except for MTHFR A1298C, all MAF were close to the expected range from 

the literature [146-151]. Discrepancies were likely due to the fact that the samples were genetically 

heterogeneous with approximately 25% being black. 

 

4.5.2.1 Application to 6 IUGR genes 

Applying models 1 and 2 to the IUGR dataset [145], we see in Table 4.3 that F13A1, 

SERPINE1/PAI-1 and MTHFR C677T all had transmission ratios around 0.5. MTHFR A1298C 

had slightly lower transmission of the disease allele with t = 0.45. However, F5 and F2 had 

transmission deviate significantly from the Mendelian ratio with t = 0.36 and 0.11.  Genotype 

relative risks from the loglinear model showed no significant association for F13A1, 

SERPINE1/PAI-1, MTHFR A1298C and MTHFR C677T variants (Table 4.3), similar to previous 

reports [145, 152]. Due to the small number of cases with 2 copies of F5 and F2, these two genes 

were analyzed under a dominant model. We see that for F5, RR, RR p-value and LRT p-value 

changed from insignificant (model 1) to significant (model 2), suggesting a deleterious effect of 

the minor allele. For F2, we observed the opposite trend (Table 4.3).The change in significance of 

the F5 statistics means that the minor allele is under-transmitted, and operates in the opposite 

direction of the effect on disease. The change in significance of the F2 statistics shows that TRD 

acts in the same direction as the effect of the minor allele on disease. The change in risk after 

adjustment for TRD was coherent with the expected effects from these variants given that they are 

known to affect placental circulation and thus potentially fetal growth. 
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Figure 4.4: Log ratio of Relative Risk, and power with selected t (ranging from 0.1 to 0.9) vs true 

t in model 2 

(A) Log ratio of Relative Risk R1  

(B) Log ratio of Relative Risk R2  

(C) Power of model 2 when true t = 0.3    

(D) Power of model 2 when true t = 0.5    

(E) Power of model 2 when true t = 0.7 
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Table 4.3: RR estimates, LRT p-value of adjusted model 2 and unadjusted model 1 for 6 

thrombopilic genes, with MAF, transmission ratio (t) and number of genotype 2 cases (G2).  

GRR Model 

Gene Model MAF t G2 R1 (95%CI) 
R1 

p-value 
R2 (95%CI) 

R2 

p-value 

LRT 

p-value 

F13A1 

1 0.24 0.54 16 
0.97 

(0.66,1.43) 
0.89 

1.41 

(0.68,2.94) 
0.354 0.57 

2 
   

0.82 

(0.56,1.21) 
0.32 

1.01 

(0.48,2.1) 
0.98 0.55 

SERPINE1/

PAI-1 

1 0.46 0.49 42 
0.80 

(0.49,1.30) 
0.37 

0.97 

(0.52,1.82) 
0.93 0.53 

2 
   

0.83 

(0.51,1.35) 
0.46 

1.06 

(0.57,1.98) 
0.86 0.53 

MTHFR 

A1298C 

1 0.27 0.45 18 
0.84 

(0.60,1.19) 
0.34 

0.78 

(0.40,1.52) 
0.46 0.58 

2 
   

1.04 

(0.74,1.47) 
0.82 

1.18 

(0.60,2.31) 
0.63 0.89 

MTHFR 

C677T 

1 0.29 0.50 19 
0.95 

(0.67,1.35) 
0.8 

0.75 

(0.39,1.43) 
0.38 0.67 

2 
   

0.94 

(0.67,1.34) 
0.75 

0.73 

(0.38,1.40) 
0.34 0.65 

Dominant Model 

Gene Model MAF t G2 R 1/2 (95%CI) p-value 

 

LRT 

p-value 

F5 

1 0.03 0.36 2 
1.29 

(0.57,2.93) 
0.54 0.53 

2 
   

2.35 

(1.039,5.33) 
0.04 0.039 

F2 

1 0.017 0.11 0 
0.31 

(0.11,0.85) 
0.023 0.014 

2 
   

2.5 

(0.91,6.82) 
0.074 0.1 

 

Note: F5 and F2 genes have been analyzed under a dominant model. 
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4.5.2.2 Comparison with TRD analysis in Infante-Rivard (2005) on Coagulation factor V 

gene 

Infante-Rivard and Weinberg [76] found in their study that both F5 and F2 exhibited evidence of 

TRD, as well as MTHFR A1298C but to a lesser extent, which is consistent with our estimation 

from control-trios (Table 4.3).  Pursuing the analysis of results for F5, the authors used 6 more 

strata from control-trios together with an interaction term between child genotype and case status. 

A gene-dosage model (R2=R1
2) was used implicitly to adjust for TRD; the RR for cases was 

estimated to be 3.59. We also fitted the augmented loglinear model 2 using a gene-dosage model, 

and obtained a RR estimate of 2.88 with 95% CI (1.3072, 6.3476). This result is in the range of 

the estimate from Infante-Rivard and Weinberg [76]. Of note, the number of trios included in these 

two analyses was different as Infante-Rivard and Weinberg [76] used the LEM software with a 

built-in EM algorithm for missing data whereas here we only used complete trios. This shows that 

results from our extended loglinear model 2, which adjusts for TRD were comparable to those 

from the augmented model proposed in Infante-Rivard and Weinberg [76]. 

4.6 Discussion 

Studies using animal models can potentially provide new insights in handling the phenomenon of 

TRD. Unlike human studies, the genetic make-up of the animals can be fine-tuned to achieve the 

desirable study design. In their study, Casella et al. [140] reported many SNPs with TRD that are 

associated with biological processes involved in embryo viability, confirming previous findings 

[1].   

TRD is much less studied in humans than in animals or plants. In fact, in most genetic association 

studies in the current literature TRD remains largely unaccounted for. We previously reviewed a 

number of human studies on TRD [70, 73, 75, 87, 88, 90] and discussed the various methods and 

study designs in detecting TRD [1].  

Here we extend a model used for family-based association studies by accounting for TRD.  Our 

simulation study showed that when TRD is unaccounted for as in model 1, the RR is inflated or 

attenuated exponentially. Power and Type 1 error also suffered greatly. These results support the 

need to adjust for TRD. Using a real dataset where the F5 gene was studied as a determinant of 
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IUGR, we validated our model in comparison with an approach using control trios [76]. However, 

we noted that the accuracy of our results depended on the correct TRD offset used in model 2. If 

we conduct a study with less well-known DSL and diseases, it is unlikely that we will have 

information on the TRD factor. However, by leveraging on studies such as the HapMap project 

[87], it may be possible to obtain such information for many DSL. 

The extended loglinear model we proposed uses the transmission ratio of minor alleles estimated 

from control-trios without using actual control-trio data directly in fitting the model. There are 

other approaches in the current literature which utilize control-trios data directly in model fitting 

[153, 154]. Since genetic materials from fathers is less likely to be available in practice, authors 

also have suggested the use of case-mother and control-mother duos [155-157] or supplementing 

case-trios with control-mother duos [158], via logistic regression [157] multinomial likelihood 

model [155] or retrospective likelihood approach [156]. These methods have the advantage of 

testing for violation in Mendelian assumption, but require more genotyping and complex modeling.    

The software developed by van Den Oord and Vermunt [159] that was used by Weinberg et al. 

[160] to fit a loglinear model is LEM, based on the programming language PASCAL. It does not 

readily have a component for including a TRD offset. However, we implemented the TRD offset 

method used in this paper in an R package (named TRD) available on the Comprehensive R 

Archive Network (CRAN). 

Currently, there is no comprehensive knowledge on the extent of TRD in the human genome. As 

TRD can potentially inflate or attenuate an association signal, with such large sets of SNPs being 

tested, results can be severely biased leading to spurious conclusions. Since TRD over generations 

leads to reduced mutational diversity in the genome, many of these TRD loci contain rare variants 

which are currently intensively researched. When transmission counts are small, even a slight 

distortion could lead to major impact on the outcome of the studies. Given what we observed in 

our simulation study, there is a need to sequence a control population to identify and quantify the 

extent of TRD in the human genome. Incorporating this information in the analysis of genetic 

association studies could provide more accurate and valid estimates. Therefore, we suggest that 

knowledge of TRD in genomic databases is essential to determine the relevance of genes in various 

diseases. 
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4.7 Appendix 

4.7.1 Derivation of model 1 (without TRD offset) and 2 (with TRD offset) 

4.7.1.1 Derivation of the general model  

Let M, F, and C represent the mother, father and child genotypes respectively. The 15 MFC 

genotype categories are described in Table 4.1. We also let nMFC represent the number of trios with 

genotypes MFC, and let D represent the disease status of the child. The probability of each MFC 

cell in Table 4.1 can be written as: 

𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀|𝐷𝐷] =  𝐸𝐸 �𝑛𝑛𝑀𝑀𝐹𝐹𝐶𝐶
𝑛𝑛

|𝐷𝐷� = 𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝐶𝐶]𝑃𝑃[𝐶𝐶|𝑀𝑀𝑀𝑀]𝑃𝑃[𝑀𝑀𝑀𝑀]
𝑃𝑃[𝐷𝐷]

                  (4.3) 

where 

P[D|MFC] = Probability that the child is affected given a trio genotype MFC  

P[C|MF] = Probability that the child genotype is C given parental genotypes MF  

P[MF] = Probability of mating type MF for the parents 

P[D] = Disease prevalence 

Since we assume that there is no maternal or imprinting effect on the disease status of the child, 

we can write P[D|MFC] = P[D|C], which means that the disease status of the child depends solely 

on the child's genotype. Furthermore, we re-write: 

𝑃𝑃[𝐷𝐷|𝑀𝑀] = 𝑃𝑃[𝐷𝐷|𝑀𝑀 = 0] 𝑃𝑃�𝐷𝐷�𝑀𝑀�
𝑃𝑃�𝐷𝐷�𝑀𝑀 = 0� = 𝑓𝑓0𝑅𝑅𝑐𝑐       (4.4) 

where f0 is the penetrance factor for child genotype 0 and Rc is the RR of child genotype C, and C 

can be 1 or 2. 
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Therefore, equation 4.3 can be written as:  

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝐸𝐸 �𝑛𝑛𝑀𝑀𝐹𝐹𝐶𝐶
𝑛𝑛

|𝐷𝐷�� = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝐷𝐷|𝑀𝑀] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝑀𝑀𝑀𝑀] − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝐷𝐷]   

Using the notations 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] = 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 ,  𝑃𝑃[𝑀𝑀𝑀𝑀] = 𝜇𝜇𝑀𝑀𝑀𝑀, and 𝑃𝑃[𝐷𝐷] = 𝑑𝑑 (see Table 4.1), and using 

equation 4.4 for P[D|C], we obtain: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓0𝑅𝑅𝑐𝑐) + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑  

     = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝛽𝛽𝑐𝑐                      (4.5) 

where 𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑐𝑐) = 𝛽𝛽𝑐𝑐. 

Model 1 described in this paper corresponds to the scenario where t = 0.5 is substituted into 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶  

(Mendelian transmission).  Model 2 corresponds to the scenario where t is not restricted to 0.5, 

and can take on values between 0 and 1, excluding 0 and 1. 

4.7.1.2 Statistical equation for model 1 

In order to fit the model described in equation 4.5, we use different grouping schemes for model 1 

and model 2. For Weinberg's model (model 1), the terms 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) and 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀) are grouped 

together, which we temporarily term 𝜑𝜑𝑀𝑀𝑀𝑀  plus an offset term, 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] , which only 

appears for MFC category 111 (seen in last column of  Table 4.4). This is because it is the same 

within each stratum, except for stratum 4, where the sum 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑀𝑀𝑀𝑀) in Table 4.4 (last 

column) for MFC=111 is 2 times of MFC=112 and 110.  

Therefore, to derive the statistical equation for model 1, equation 4.5 can be re-written as  

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� + ∑ 𝜑𝜑𝑀𝑀𝑀𝑀 𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] +𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] +

𝛽𝛽2𝐼𝐼[𝐶𝐶=2]   

We can then absorb the constant term 𝑓𝑓0𝑛𝑛
𝑑𝑑

 into the summation of 𝜑𝜑𝑀𝑀𝑀𝑀 terms and have  
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𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 ��𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑒𝑒(𝜑𝜑𝑀𝑀𝑀𝑀)� 𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] +𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] +

𝛽𝛽2𝐼𝐼[𝐶𝐶=2]   

Table 4.4: Stratum frequency, probability of transmission (Mendelian) for case-parent trios 

Stratum MF 

genotype 

C 

genotype 

Stratum 

frequency (𝜇𝜇𝑀𝑀𝑀𝑀) 

Probability of 

transmission  

(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑀𝑀𝑀𝑀) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶)

= 𝜑𝜑𝑀𝑀𝑀𝑀𝐶𝐶 + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] 

1 22 2 p4 1 log[p4]+0 

2 21 or 12 1 or 2 2p3(1-p) 1/2 log[p3(1-p)]+0 

3 20 or 02 1 p2(1-p)2 1 log[p2(1-p)2]+0 

4 11 2 4p2(1-p)2 1/4 log[p2(1-p)2]+0 

 11 1 4p2(1-p)2 1/2 log[p2(1-p)2]+log2 

 11 0 4p2(1-p)2 1/4 log[p2(1-p)2]+0 

5 10 or 01 0 or 1 2p(1-p)3 1/2 log[p(1-p)3]+0 

6 00 0 (1-p)4 1 log[(1-p)4]+0 

 

By noting 𝛾𝛾𝑀𝑀𝑀𝑀 as the first term of the above equation, model 1 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝛾𝛾𝑀𝑀𝑀𝑀𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] +𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]      

Since there are 6 strata (S) of MF mating types, by fitting the model with an intercept, we finally 

obtain: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝜌𝜌6 + ∑ 𝜌𝜌𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇]
5
𝑇𝑇=1 + 𝑙𝑙𝑙𝑙𝑙𝑙(2)𝐼𝐼[𝑀𝑀𝑀𝑀𝐶𝐶=111] + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]   (4.6) 

where  𝛾𝛾6 = 𝜌𝜌6  and  𝛾𝛾𝑇𝑇 = 𝜌𝜌6 + 𝜌𝜌𝑇𝑇   for j = 1 to 5. 
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4.7.1.3 Statistical equation for model 2 

For model 2, we do not group the terms 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) and 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀) together, but assign 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) 

as an offset given a specific value of t (Table 4.1), and estimate 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀). Therefore, equation 

4.5 can be re-written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� +  ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]        

     = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]         

  

By noting 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝜇𝜇𝑀𝑀𝑀𝑀 as 𝛼𝛼𝑀𝑀𝑀𝑀, model 2 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓 𝐼𝐼[𝑀𝑀𝑀𝑀=𝑚𝑚𝑓𝑓] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]           

By fitting the model with an intercept, we finally obtain: 

 𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝜉𝜉6 +∑ 𝜉𝜉𝑇𝑇5
𝑇𝑇=1 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2]         (4.7) 

where  𝛼𝛼6 = 𝜉𝜉6  and  𝛼𝛼𝑇𝑇 = 𝜉𝜉6 + 𝜉𝜉𝑇𝑇  for j = 1 to 5 and S = stratum. 

Therefore, final statistical formula for model 1 is written in equation (4.6) and for model 2 in 

equation (4.7). 

4.7.2: Non-Central Chi-square Likelihood for model 1 (without TRD offset) and model 2 

(with TRD offset) 

To perform the Likelihood Ratio Test (LRT) in assessing significance of association between the 

disease phenotype and DSL, we set up a null model for both model 1 and 2 with null hypothesis 

H0 : 𝛽𝛽1 = 𝛽𝛽2 = 0 . The corresponding LRT test statistic, which is the difference in deviance 

between null and full model, has an asymptotic Chi-Square distribution with 2 degrees of freedom 

accounting for the two extra terms R1 and R2.  Agresti [161] showed that when the null hypothesis 
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is not true for a loglinear model, the resulting LRT is a chi-square statistic with a non-centrality 

parameter (NCP):  

 

 𝜆𝜆 = 2𝑛𝑛∑ 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐)𝑙𝑙𝑙𝑙𝑙𝑙 �𝜋𝜋𝑀𝑀𝐹𝐹𝐶𝐶(𝑀𝑀𝑎𝑎)
𝜋𝜋𝑀𝑀𝐹𝐹𝐶𝐶(𝑀𝑀0)

�𝑀𝑀𝑀𝑀𝐶𝐶       

 

where 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐) is the true probability of each cell with MFC combination, and 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀0) is 

the value under the null hypothesis. We also denoted the degree of freedom as 𝜐𝜐, which is 2 in 

our LRT because there are 2 extra variables R1 and R2 in the alternative model than the 

corresponding null model.  

 

To calculate Type 1 error and power comparable to our theoretical values, we need to have the 

exact likelihood. Our likelihood for the alternative hypothesis is shown in equation 4.3 and re-

written as:  

𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐) = 𝑓𝑓0𝑅𝑅𝑐𝑐𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹 
𝑑𝑑

       

where 𝑓𝑓0𝑅𝑅𝑐𝑐, 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 , 𝜇𝜇𝑀𝑀𝑀𝑀 and 𝑑𝑑 are defined as in equation 4.4 and 4.5.  

In the presence of TRD, we know that even when the null hypothesis is true, the LRT still has a 

non-Central Chi-square distribution. The null model is different for models 1 and 2 because TRD 

is being adjusted in the offset of model 2 but not in model 1. Under the null hypothesis, P[D|MFC] 

= P[D], and hence, f0Rc/d = 1. The likelihoods for models 1 and 2 under null hypothesis are then, 

respectively:  

𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀01) = 𝜇𝜇𝑀𝑀𝑀𝑀 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶  [0.5]     

and   
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 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀02) = 𝜇𝜇𝑀𝑀𝑀𝑀 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶[𝑡𝑡] 

Under the alternative hypothesis, NCP for model 1 is: 

𝜆𝜆1 = 2𝑛𝑛∑ 𝑓𝑓0𝑅𝑅𝑐𝑐𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹[𝑐𝑐]
𝑑𝑑

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑅𝑅𝑐𝑐𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶[𝑐𝑐]
𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶[0.5] 𝑑𝑑

�𝑀𝑀𝑀𝑀𝐶𝐶    (4.8) 

and the NCP for model 2 is: 

𝜆𝜆2 = 2𝑛𝑛∑ 𝑓𝑓0𝑅𝑅𝑐𝑐𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹[𝑐𝑐]
𝑑𝑑

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑅𝑅𝑐𝑐
𝑑𝑑
�𝑀𝑀𝑀𝑀𝐶𝐶      (4.9) 

Note that when t is not equal to 0.5, even though there is no association signal, the LRT is still a 

NCP chi-square statistic. The NCP for model 1 is 0 when t = 0.5 (Mendelian transmission) and 
𝑓𝑓0𝑅𝑅𝑐𝑐
𝑑𝑑

=1 (no association). Therefore, null hypothesis for model 1 requires both Mendelian 

transmission and no association between disease and DSL. However, since TRD has already been 

adjusted for in model 2, the NCP is 0 when  𝑓𝑓0𝑅𝑅𝑐𝑐
𝑑𝑑

=1 (no association).  

 

 

 

 

 

Web resources 

R package 'TRD', http://cran.r-project.org/web/packages/TRD/index.html  

Online Mendelian Inheritance in Man (OMIM), http://www.omim.org 

HUGO Gene Nomenclature Committee (HGNC), http://www.genenames.org 

http://cran.r-project.org/web/packages/TRD/index.html
http://www.omim.org/
http://www.genenames.org/
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Chapter 5 

Modeling sex-of-parent-specific Transmission Ratio Distortion and 

imprinting effect in loglinear model using case-trios 

5.1 Preamble 

We have examined non-sex-of-parent-specific TRD (NST) in Chapter 4, and the implication of its 

presence in invalidating association study results if not accounted for. We proposed an offset of 

transmission probability of minor alleles, which arises from a natural component in the loglinear 

model framework developed by Weinberg et al. [44]. This offset is shown to be successful in 

restoring the correct RR, Type 1 error, and power. However, TRD might also occur in sex-of-

parent-specific manner, which we call sex-of-parent-specific TRD (ST). This ST can be sub-

categorized into maternal ST (MST) and paternal ST (PST), which refer to non-Mendelian 

transmission in only mother and only father, respectively.   

ST is problematic because it mimics another mechanism, the imprinting effect, which is believed 

to influence more than 1% of all mammalian genes. Imprinting occurs when disease allele inherited 

from the father induces a different expression level at a neighbouring disease gene than that 

inherited from the mother. It leads to an over-representation of disease allele in the child from the 

parent who induces a higher expression level. On the other hand, ST can also lead to an over-

representation of disease allele in the child from one parent, when that parent has a higher 

transmission ratio of the minor allele. Therefore, ST not only affects the RR estimates for child 

effect, but also confounds the imprinting effect. In this chapter, we will show the results of ST on 

RR of child and imprinting effects, type 1 error, sensitivity and specificity, and illustrate the 

effectiveness of applying the sex-of-parent-specific transmission offset to the loglinear model in 

restoring the correct measures.  
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5.2 Abstract 

Transmission Ratio Distortion (TRD) is a phenomenon where parental transmission of disease 

allele to the child does not follow the Mendelian inheritance ratio. TRD can occur in a sex-of-

parent-specific or non-sex-of-parent-specific manner. In our previous paper, the loglinear model 

proposed by Weinberg et al. based on case-trios study design was extended to address non-sex-of-

parent-specific TRD (NST). An offset computed from the transmission probability of the minor 

allele in control-trios is used to adjust for TRD. It was shown that adjusting the model with the 

offset can remove the inflation in RR and Type 1 error introduced by NST. The loglinear model 

in Weinberg et al. was then further extended to estimate an imprinting parameter. It is believed 

that more than 1% of all mammalian genes are imprinted. In the presence of imprinting, child 

inheriting disease allele from the parent who induces a higher expression level at a neighbouring 

disease gene is over-represented in the sample. As we know that TRD mechanisms such as meiotic 

drive and gametic competition also occur in sex-of-parent-specific manner. Therefore, sex-of-

parent-specific TRD (ST) can lead to over-representation of maternal or paternal alleles in the 

affected child in a similar fashion. As a result, ST confounds with the imprinting effect when 

present in the sample. We proposed to specify a sex-of-parent-specific transmission offset in 

adjusting the loglinear model to account for ST. We found that the extended model restores the 

correct RR estimates for child and imprinting effects, adjusts for inflation in Type 1 error, and 

improves performance on sensitivity and specificity compared to the original model without TRD 

offset. We conclude that in order to correctly interpret association signal and imprinting effect, 

adjustment for ST is necessary to ensure valid conclusions.   
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5.3 Background 

Transmission Ratio Distortion (TRD) is the genetic phenomenon where one of the two alleles from 

a parent is favorably transmitted to the child, hence violating the 1:1 Mendelian inheritance law 

[70]. There are many forms of TRD that arise from a range of biological mechanisms during the 

gametic and embryonic developmental stages [1, 71, 79, 81]. In a previous paper, we have 

examined and modeled the simplest form of TRD, where transmission probability of minor allele 

in both parents are the same. Here we will call this non-sex-of-parent-specific TRD (NST) 

(Chapter 4). However, TRD can occur in sex-of-parent-specific manner [89, 95, 101, 104, 124, 

162]. Biological mechanisms involved in this type of TRD disrupts cell processes such as gametic 

formation during meiosis [101], and zygote production during fertilization [163]. We call this type 

of TRD sex-of-parent-specific TRD (ST).  

5.3.1 Meiotic Drive 

During female meiosis, a germ cell is divided into 4 cells each containing a sister chromatid. Only 

one of these cells becomes a gamete (egg) while the other 3 become polar bodies and are eventually 

eliminated [70]. Since this process is asymmetric, when one sister chromatid has a structural 

advantage over the others, it tends to have a survival advantage. This process, which happens 

predominantly in female, is called meiotic drive [70]. In male meiosis, all 4 cells result in 

functional gametes and therefore, the process is not affected by this survival advantage [70]. 

However, male meiotic drive also exists in species such as sciara, but is rare [70].  

5.3.2 Gametic competition 

Gametic competition occurs at the fertilization stage, where some sperms outperform others in 

reaching successful fertilization [75] and leads to over-transmission of corresponding alleles in the 

winners. Classical gametic selection systems include the mouse t-haplotype and segregation 

distorter in drosophila [70]. Gametic competition occurs only in males, and therefore, are paternal-

specific.  
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5.3.3 Impact of TRD on association studies 

One of the common study design to study association between disease and genetic markers is the 

case-trio family-based study design. These family-based association studies are robust to 

population stratification because the transmitted allele from parents to child is perfectly matched 

with age, sex, and ethnicity of the non-transmitted allele from the same child [36]. Control-trios 

which are composed of both parents and their unaffected offspring, have been previously used in 

controlling for TRD [36]. TRD can lead to over- or under-transmission of the disease allele in the 

cases, but also in the general population represented by controls [71-77]. Our recent work has 

shown that when the effect of NST is ignored in case-trio studies, the association signal measured 

can be inflated or attenuated, leading to spurious results (Chapter 4). Therefore, we concluded that 

NST can confound the true association signal. 

5.3.4 Loglinear model and child effect 

Weinberg et al. [44] proposed a loglinear  model to measure the magnitude of association (relative 

risk) between a disease susceptibility locus (DSL) and the expression of disease in the child. The 

simplest loglinear model consists of two variables, one for child of genotype 1 and one for child 

of genotype 2, where the former is defined as the heterozygous genotype and the latter as the 

homozygous mutant genotype. The homozygous wild-type genotype 0 serves as the baseline. The 

parameter estimates of these 2 variables measure the relative risk (RR) of child inheriting 1 or 2 

copies of disease allele from the parents. Furthermore, the deviance of the full loglinear model 

against the null can be used in a likelihood ratio test to measure the significance of the association 

signal. Since this loglinear model can estimate genotype relative risk (GRR), as well as test for 

significance of association, it is advantageous over a test such as the transmission disequilibrium 

test (TDT) which only offers a p-value for the significance of the association signal [36].  Therefore, 

we chose to use the loglinear model to illustrate the impact of TRD in our results

5.3.5 Loglinear model and child effect with NST offset 

Recently, we proposed an extension to the Weinberg et al log-linear model (Chapter 4) by taking 

into account the TRD probability; this involves including in the model an offset parameter 
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computed using the minor allele transmission probability estimated from control-trios. This TRD 

offset which is different at each of the 15 mother-father-child (MFC) genotype categories, adjusts 

for the effect of NST. We showed that this offset can restore the true RR, significance of 

association, and compensate for the inflated Type 1 error and power loss for the likelihood ratio 

test.  

5.3.6 Imprinting (parent-of-origin) effect 

Imprinting effect, which also known as parent-of-origin effect, expresses itself when a disease 

allele is activated when inherited from one of the parents, but not from the other [76, 90, 164, 165]. 

According to Mendelian inheritance, when a disease is paternally (maternally) imprinted, the 

corresponding disease allele is silenced, while one inherited from the mother (father) is activated. 

However, in complex diseases, the silencing and activation of the imprinted disease allele is not 

absolute [41]. For example, the disease allele inherited from the mother to the child may not be 

fully penetrant, and the one inherited from the father may not be fully silenced. Nevertheless, an 

imprinting effect can be statistically measured as the ratio of probability of the maternal vs paternal 

expression at a neighbouring disease gene [45].  

5.3.7 Joint modeling of child genotype and imprinting effect 

The imprinting and child effects can be modeled as multiplicative factors which form the combined 

penetrance function [44, 45], and is additive in log scale. In this paper, we will consider both child 

and imprinting effects in a model similar to the loglinear model previously proposed by Weinberg 

et al. [44]. Details are explained in Chapter 5.4.  

5.3.8 Relationships between sex-of-parent-specific TRD and imprinting 

We denote tm and tf to be the transmission probabilities of the minor allele from mother and father, 

respectively, to child in control-trio populations. Let the genotype of a heterozygous child 

inheriting the minor allele from the mother be Dd, and from the father be dD. As seen in the 

example illustrated by Figure 5.1, the proportions of heterozygous children inheriting minor allele 

(D) from the mother and the father in the population are equal under NST. However, when there 
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is a maternal sex-of-parent-specific TRD (MST), where mothers over-transmit the minor allele at 

a 2:1 ratio for example, the ratio of Dd to dD cases is also 2:1 in the population.  

Another example is shown in Figure 5.2, where maternal expression is higher than paternal 

expression at a ratio of 2:1. The proportion of diseased children with Dd genotype is therefore, 

twice as high as with the dD genotype, under NST. If there is MST instead, in the presence of 

imprinting, the ratio of Dd to dD cases could rise to 4:1 in the population. Therefore, we see that 

when ST and imprinting effects both exist, and act in the same direction, the imprinting effect is 

inflated (Figure 5.2). On the other hand, if the two effects act in opposite directions, the imprinting 

effect is attenuated. As a result, a ST signal can confound the significance of an imprinting effect. 

This confounding effect is the main focus of this paper. We intend to adjust for this ST factor in a 

loglinear model, and evaluate the inflation in RR estimates for child and imprinting effects, Type 

1 error, and performance on sensitivity and specificity. 

5.4 Material and Methods 

In this paper, we define the genotype using the additive model, counting the number of copies of 

the minor allele. We investigated the association between a bi-allelic disease susceptibility locus 

(DSL) and a disease, using the loglinear model with child and imprinting effect variables as 

proposed by Weinberg et al. [44], but using the parameterization as in the later work by Weinberg 

[45]. To adjust for ST, we added to the model a parental-specific offset parameter that depends on 

both the maternal and paternal minor allele transmission probabilities, noted as tm and tf , 

respectively. We assumed that these two sex-of-parent-specific variables can be computed from 

available control-trios datasets. In this model, the response variable is the number of trio (counts) 

for each of the 16 mother-father-child (MFC) genotype categories, as described in Table 5.1. Note 

that the mother-father-child (MFC) category 111 (triply heterozygous trios) was divided into 2 

categories: one for the heterozygous child inheriting the disease allele from the mother (111[M]), 

and the other for inheritance from the father (111[F]). Assuming mating symmetry these 16 

categories can be subdivided into 6 parental mating types as shown in Table 5.1.  
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Figure 5.1: Scenario with TRD, f2= f1M (maternal penetrance) = f1F (paternal penetrance) = 1, f0 = 

0 (dominant disease)  

  

NST 

tm = tf = 2/3 

MST        

tf = 1/2      
tm= 2/3   

Dd 

D:d = tm: (1-tm) 

DD dd Dd dD 

D:d = tf: (1-tf) 

Dd 

1/3 1/6 1/3 1/6 

Case-trios 

4/9 2/9 2/9 1/9 

1/2 1/4 1/4 

2/5 2/5 1/5 

#Dd/ #dD = 1 

#Dd/ #dD = 2 

With NST, the proportion of Dd and dD individuals in the whole population are the same (2/9). 
When only case-trios are sampled (blue box), the proportion of Dd and dD are still the same, 
but they represent a greater proportion in the case-trios sample at 1/4. However, when there is 
MST and tm: (1-tm) = 2:1, the ratio of Dd to dD individuals becomes 2:1 in both the whole 
population (1/3 to 1/6) and the case-trios sample (2/5 to 1/5), because maternal disease allele D 
is twice likely to be over-transmitted than paternal ones.   
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Figure 5.2 Scenario with TRD, f2 = 1, f1M (maternal penetrance) = 0.4, f1F (paternal penetrance) = 

0.2, T (imprinting factor) = f1M/f1F = 2, f0 = 0 

 

NST 

tm = tf = 2/3 

MST        

tf = 1/2      
tm= 2/3   

Dd 

D:d = tm: (1-tm) 

DD dd Dd dD 

D:d = tf: (1-tf) 

Dd 

1/3 1/6 4/30 1/30 

Case-trios 

4/9 4/45 2/45 1/9 

10/13 2/13 1/13 

10/15 4/15 1/15 

Case-trios 

6/45 8/45 

6/30 4/30 

#Dd/ #dD = 2 

#Dd/ #dD= 4 

Assuming NST with imprinting, the proportion of diseased Dd and dD individuals in the whole 
population are no longer 2/9, but are 4/45 and 2/45, respectively, because of the different 
penetrance values for Dd (f1M = 0.4) and dD (f1F = 0.2) genotypes. The proportion of Dd and dD 
individuals that are not diseased are 6/45 and 8/45, respectively. As a result, the proportion of 
Dd and dD individuals in the case-trios sample (blue box) are 2/13 and 1/13, respectively. 
Therefore, the ratio of Dd to dD individuals is at 2:1, because imprinting factor of maternal vs 
paternal expression is 2. When there is both MST (tf = 1/2 and tm= 2/3) and imprinting (f1M/f1F 
= 2), the diseased Dd and dD individuals in the whole population are now 4/30 and 1/30, 
respectively. The proportion of Dd and dD individuals that are not diseased are 6/30 and 4/30, 
respectively. In the case-trios sample (blue box), proportion of Dd and dD individuals are 4/15 
and 1/15, respectively. The ratio of Dd to dD individuals is now 4:1. This is the combined result 
of imprinting and MST because maternal disease allele is twice likely to be over-transmitted 
and induces twice the gene expression level compared to paternal ones.  
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5.4.1 Parameterization schemes 

We now briefly address the two parameterization schemes suggested by Weinberg et al. [44] and 

Weinberg [45]. The original parameterization scheme uses 4 parameters in the model: two for 

child effect with genotype 1 (R1) and 2 (R2), and two for imprinting effect of mother (IM) and 

father (IF) [44]. The second parameterization scheme [45] uses only 3 parameters: relative risk 

(RR) of genotype 1 child with inherited disease allele from father (R1), RR of genotype 2 child 

with both the maternal and paternal imprinting effect (R2), and risk ratio of maternal vs paternal 

imprinting effect (T). The latter was suggested to replace the first approach, and it is important to 

note that the interpretation of the R1 and R2 parameters differ between the two approaches.  

Using the first approach [44], the parameters described above can be incorporated into the 

penetrance equations as: 

𝑓𝑓2 = 𝑓𝑓0𝑅𝑅2𝐼𝐼𝑀𝑀𝐼𝐼𝑀𝑀 

𝑓𝑓1𝑀𝑀 = 𝑓𝑓0𝑅𝑅1𝐼𝐼𝑀𝑀 

𝑓𝑓1𝑀𝑀 = 𝑓𝑓0𝑅𝑅1𝐼𝐼𝑀𝑀 

where f2 is the penetrance for child of genotype 2, f1M is the penetrance for  child of genotype 1 

with disease allele inherited from the mother, f1F is the penetrance for child of genotype 1 with 

disease allele inherited from the father, and f0 is the penetrance of genotype 0 child. Since f0 does 

not depend on any of the 4 parameters, we have only 3 equations but 4 parameters to estimate. 

Therefore, one of the 4 parameters is unidentifiable.  

By using the second parameterization approach [45], the parameters described above can be 

incorporated into the penetrance equations as: 

𝑓𝑓2 = 𝑓𝑓0𝑅𝑅2     (5.1) 

𝑓𝑓1𝑀𝑀 = 𝑓𝑓0𝑅𝑅1𝑇𝑇     (5.2) 
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𝑓𝑓1𝑀𝑀 = 𝑓𝑓0𝑅𝑅1     (5.3) 

We then have 3 equations and 3 parameters, which makes each parameter identifiable. Ainsworth 

et al. [155] stated that parameterization of the imprinting parameter in the second approach [45] is 

biologically unintuitive because the imprinting factor is only present in and can only be estimated 

by child genotype 1 category (C = 1); therefore is not seen in child genotype 2 category, whereas 

in fact, biologically, imprinting effect is present in child genotype 2 as well.  While this is true, we 

are more interested to know how much more (or less) likely it is for the child to have the disease 

when the minor allele is inherited from the mother compared to the father. Therefore, for the 

purpose of our study, the second parameterization is intuitive in the interpretation of the measures 

of our interest, and is also more parsimonious with each parameter identifiable. In the following, 

models and results are presented under the second parameterization approach.  

5.4.2 Loglinear model from Weinberg et al. (1998) with only child and imprinting variables 

The 16 MFC categories loglinear model with child and imprinting effects using the second 

parameterization scheme can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝐸𝐸[𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷] = 𝛾𝛾6 + ∑ 𝛾𝛾𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇]
5
𝑇𝑇=1 + 𝛽𝛽1𝐼𝐼[𝑀𝑀 = 1] + 𝛽𝛽2𝐼𝐼[𝑀𝑀 = 2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]  (5.4) 

where M, F, and C represent the mother, father and child genotypes, respectively; nMFC  is the 

number of trios with genotypes MFC, and D is the disease status of the child. The  𝛾𝛾6 + 𝛾𝛾𝑇𝑇 terms 

are the regression coefficients for the first 5 parental mating types in Table 5.1; 𝛾𝛾6 is the intercept 

corresponding to the 6th mating type MF=00. The indicator variable 𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]  is 1 for a 

heterozygous child inheriting disease allele from the mother.  

The 𝛽𝛽1 and 𝛽𝛽2 parameters are the regression coefficients for child genotypes 1 and 2. We denote 

𝑅𝑅1 = 𝑅𝑅1𝑀𝑀 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1), which corresponds to the RR of child with 1 copy of disease allele inherited 

from the father, and zero copy from the mother; 𝑅𝑅1𝑀𝑀 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1+𝜁𝜁𝑀𝑀) which corresponds to the RR 

of child with 1 copy of disease allele inherited from the mother and zero copy from the father; 

𝑅𝑅2 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽2) as the RR of child inheriting 1 copy of disease allele from both parents. R1F, R1M 

and R2 are the relative risks with respect to baseline genotype 0.  
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𝑇𝑇 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜁𝜁𝑀𝑀) is the relative risk of maternal vs paternal expression at a neighbouring disease gene 

for genotype 1 child. When 𝑇𝑇 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜁𝜁𝑀𝑀) = 1, there is no parent-of-origin effect, whilst when 

𝑒𝑒𝑒𝑒𝑒𝑒(𝜁𝜁𝑀𝑀) > 1, a child with 1 maternally inherited disease allele has higher risk than a child with 1 

paternally inherited disease allele. On the other hand, when 𝑒𝑒𝑒𝑒𝑒𝑒(𝜁𝜁𝑀𝑀) < 1 , a child with 1 

maternally inherited disease allele has lower risk than child with 1 paternally inherited disease 

allele. This model denoted as model 1, is valid only when there is Mendelian inheritance. The 

complete derivation of this model is shown in Chapter 5.7.1.  

 

Table 5.1: Relative Risk and imprinting parameterization 
Stratum MFC 

Genotype 

Stratum 

frequency

(𝜇𝜇𝑀𝑀𝑀𝑀) 

under 

HWE 

Probability of 

transmission (𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) 

Weinberg et al. (1998) 

parameterization 

Weinberg (1999)  

parameterization 

TRD Mendelian RR Imprinting RR Imprinting 

1 222 p4 1 1 R2 IMIF R2 1 

2 212 2p3(1-p) tf 1/2 R2 IMIF R2 1 

 211 2p3(1-p) 1-tf 1/2 R1 IM R1 T 

 122 2p3(1-p) tm 1/2 R2 IMIF R2 1 

 121 2p3(1-p) 1-tm 1/2 R1 IF R1 1 

3 201 p2(1-p)2 1 1 R1 IM R1 T 

 021 p2(1-p)2 1 1 R1 IF R1 1 

4 112 4p2(1-p)2 tmtf 1/4 R2 IMIF R2 1 

 111[M] 4p2(1-p)2 tm(1-tf) 1/4 R1 IM R1 T 

 111[F] 4p2(1-p)2 tf(1-tm) 1/4 R1 IF R1 1 

 110 4p2(1-p)2 (1-tm)(1-tf) 1/4 1 1 1 1 

5 101 2p(1-p)3 tm 1/2 R1 IM R1 T 

 100 2p(1-p)3 1-tm 1/2 1 1 1 1 

 011 2p(1-p)3 tf 1/2 R1 IF R1 1 

 010 2p(1-p)3 1-tf 1/2 1 1 1 1 

6 000 (1-p)4 1 1 1 1 1 1 
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5.4.3 Loglinear model with child and imprinting variables and ST offset 

Extending Model 1 to account for ST, we obtain the following model: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝛼𝛼6+∑ 𝛼𝛼𝑇𝑇5
𝑇𝑇=1 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]  

            (5.5) 

where the notation and regression parameters are defined in the same way as model 1, except for 

𝛼𝛼𝑇𝑇 which includes the mating type frequency but not the transmission probability P[C|MF]. The 

ST offset 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 = 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] captures the sex-of-parent-specific transmission probability and is 

defined as in Table 5.1. The derivation of this loglinear model is also shown in Chapter 5.7.1, and 

is denoted as model 2.  

5.4.4 Simulation set up 

In our previous investigation on association studies with case-trios, we observed the inflation in 

Type 1 error, RR estimates and RR p-values when NST was not accounted for (Chapter 4). 

Inflation of RR was shown to be exponential in scale. There was also power loss when NST is in 

the opposite direction of the association signal (Chapter 4).  Here we wanted to assess the extent 

of the RR and Type 1 error inflation with different combinations of maternal and paternal 

transmission probabilities of the minor allele. 

We assumed that the genetic marker is the DSL under investigation with minor allele frequency 

(MAF) 0.1 and no recombination. We simulated a population of 100,000 trios with symmetric 

parental mating. We then sampled 500 case-trios from the simulated population to measure the 

association signal with the genetic marker. The maternal (tm) and paternal (tf) transmission 

probabilities of minor allele are known a priori in model 2, assuming that they could be obtained 

for example, from control-trios samples in existing databases. Penetrance for genotype 1 

individuals inheriting disease allele from the father is f1 (equivalent to f1F noted previously), f2 for 

genotype 2 individuals, and f0 for genotype 0 individuals. Finally, the simulation parameter which 

indicates the ratio of maternal vs paternal expression at a neighbouring disease gene for genotype 

1 individuals is denoted as g.  
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5.4.4.1 Scenarios of association and ST 

We investigated three association setups: 1) the genetic marker is not associated with the disease 

and there is no imprinting (f0 = f1 = f2 = 0.1 and g = 1), 2) the genetic marker is associated with 

the disease in the opposite direction of the TRD and there is no imprinting, 3) the genetic marker 

is associated with the disease in the opposite direction of the TRD and there is imprinting.  

For each of the three setups, we tested a variety of TRD scenarios described in Table 5.2. Using 

these 7 scenarios, we then applied models 1 and 2 to the dataset, and observed the changes between 

models 1 and 2 with respect to the estimation of R1 (RR for genotype 1 individuals inheriting 

disease allele from the father), R2 (RR for genotype 2 individuals) and T (RR for maternal vs 

paternal inheritance of disease allele in genotype 1 individuals).    

Table 5.2: Different scenarios of TRD for each of the three association setups 

  Transmission probability 

scenario Type of TRD tm tf 

1 NST 0.3 0.3 

2 NST 0.5 0.5 

3 NST 0.7 0.7 

4 PST 0.5 0.3 

5 PST 0.5 0.7 

6 MST 0.3 0.5 

7 MST 0.7 0.5 
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5.4.4.2 Assessing inflation or attenuation of regression parameters, inflation of Type 1 error, 

sensitivity and specificity of models 1 and 2 

We intend to measure the impact of tm and tf on the regression parameters R1, R2 and T when there 

is NST, or MST or PST on a continuum of tm and tf values. Using the 1st setup where there is no 

association or imprinting, we measured the inflation ratio for the 3 regression parameters 

contrasting model 1 with model 2 with tm = tf ranging from 0.1 to 0.9 (NST). Then, we fixed tf at 

0.5 and tested tm from 0.1 to 0.9 (MST). Similarly, we fixed tm at 0.5 and set tf  ranging from 0.1 

to 0.9 (PST). We also assess the Type 1 error, using the 1st setup for the 3 types of TRD at sample 

size 100, 300 and 500. Finally, to measure the sensitivity and specificity of models 1 and 2, we 

used the 2nd and 3rd setups, and plotted the receiver operating characteristic (ROC) curves.  

5.5 Results 

5.5.1 Impact of ST adjustment on R1 and R2 

We observed the results for the 7 scenarios shown in Table 5.3 for the 1st simulation setup, and 

results for the 2nd and 3rd simulation setups are the same. The results showed that whenever there 

is an over-transmission, correctly adjusting for TRD reduces the estimates of R1 and R2, and this 

is reversed when there is under-transmission. In Figure 5.3A, NST led to the greatest inflation 

among all 3 types of TRD because both parents are over- or under-transmitting. Also, MST led to 

smaller inflation in R1 than PST because R1 primarily measures the RR genotype 1 with child 

inheriting disease allele from the father. The change in R1 with respect to tm was due to the change 

in the baseline risk of genotype 0 individuals. MST and PST nearly coincided with each other as 

seen in Figure 5.3B, since tm and tf were interchangeable when both parents transmitted a disease 

allele (see Table 5.1).   
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Table 5.3: Change in R1, R2 and T after correction with ST offset for the 7 different TRD 
scenarios using model 2, when there was no true association between marker and disease, nor 
there was imprinting effect on the marker (1st setup). 

 Transmission probability After correction for ST 

scenario tm tf R1 R2 T 

1 0.3 0.3 / / - 

2 0.5 0.5 - - - 

3 0.7 0.7 \ \ - 

4 0.5 0.3 / / \ 

5 0.5 0.7 \ \ / 

6 0.3 0.5 / / / 

7 0.7 0.5 \ \ \ 

 

Notation: 

/ = increased; 

\ = decreased; 

- = unchanged. 

5.5.2 Impact of ST adjustment on imprinting parameter T 

In scenarios 1 to 3 described in Table 5.2 we observed that the imprinting parameter T remained 

unchanged when tm = tf (NST) after adjustment because maternal effect and paternal effect 

cancelled out each other in the ratio. In Figure 5.3C, we see that NST has no impact on T. When tf 

< 0.5 (scenario 4), the paternally inherited disease allele appeared to be associated with lower risk, 

this led to an apparent smaller paternal expression. Since paternal effect is in the denominator of 

regression parameter T, T decreased when model is correctly adjusted by tf. On the other hand, 

when tf > 0.5 (scenario 5), T increased when model is correctly adjusted by tf. Similar relationship 

is also shown in Figure 3C where smaller tf   leads to a larger T, and larger tf  a smaller T. Maternal 

expression is measured in the numerator of T, hence the trend is reversed in scenarios 6 and 7, and 

in Figure 5.3C for MST.   
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Figure 5.3: Inflation and attenuation of R1, R2 and T 

A R1    B  R2    C  T 

 

Note:  

NST: tm = tf from 0.1 to 0.9; 

MST: tm = 0.1 to 0.9, tf = 0.5; 

PST: tf = 0.1 to 0.9, tm = 0.5. 

 

 

5.5.3 Inflation of Type 1 error 

We plotted the theoretical and empirical Type 1 error separately for each of the 3 types of TRD 

(NST, MST and PST). The theoretical (Figure 5.4) and empirical Type 1 error (Figure 5.5) 

matched with each other well. We see that Type 1 error was inflated more and more severely as tm 

and tf  became more skewed in model 1. MST (Figure 5.5B) and PST (Figure 5.5C) plots for model 

1 are similar and had a more gradual climb in Type 1 error compared to NST (Figure 5.5A) because 

the combined effect is greater than either maternal or paternal TRD alone. For model 2, this 

inflation in Type 1 error is removed. 
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Figure 5.4: Theoretical Type 1 error (f0 = f1 = f2 = g = 1) 

A NST    B MST    C PST 

 

 

Figure 5.5: Empirical Type 1 error (f0 = f1 = f2 = g = 1) 

A NST    B MST    C PST 
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5.5.4 Sensitivity and Specificity of models 1 and 2  

The ROC curves illustrating the sensitivity and specificity of models 1 and 2, under the scenario 

of a weak association between disease and DSL, is shown in Figure 5.6.  

In the example shown in Figure 5.6A, two dataset were simulated: (1) no association with NST (tm 

= tf = 0.4) and (2) weak association (f0 = 0.11, f1 = 0.13, f2 = 0.15) with NST (tm = tf = 0.4) but 

no imprinting (g=1). We see that for model 1, true positives in dataset 2 are attenuated by the NST, 

leading to poor sensitivity. At the same time, false positives in dataset 1 are inflated because of 

NST, leading to a poor specificity and an AUC of 0.31. On the other hand, adjusting NST for 

model 2 led to an AUC of 0.65. 

For the example in Figure 5.6B, two other datasets are simulated: (1) no association with PST (tm 

= 0.5, tf = 0.3) and (2) weak association (f0 = 0.11, f1 = 0.13, f2 = 0.15) and imprinting (g = 0.6) 

with PST (tm = 0.5, tf = 0.3). We see that true positives in dataset 2 are attenuated by PST, and 

false positives in dataset 1 are inflated, leading to poor sensitivity and specificity, and an AUC of 

0.33.  However, model 2 yielded an AUC of 0.69 since the bias due to PST is adjusted. 

We simulated similar scenarios with a stronger association signal (f0 = 0.1, f1 = 0.2, f2 = 0.3). The 

AUC for model 2 are close to 1, when there is either NST or PST. However, the AUC for model 

1 remained around 0.3 for both NST and PST (results not shown here). 

5.6 Discussion 

The inflation and attenuation of R1 and R2 as a result of change in tm and tf due to the presence of 

MST or PST are similar to what we observed for NST in previous work. Restoration of the true 

parameter estimates can be achieved using the sex-of-parent-specific transmission offset in a 

similar fashion. When MST and PST occur in the presence of imprinting effect, the measured 

parameter T could be masked. For example, if mother over-transmits or father under-transmits 

when there is paternal over-expression, the imprinting effect will not be observed as significant in 

model 1. Similarly, if mother under-transmits or father over-transmits when there is maternal over-

expression, the measured imprinting parameter will be less significant either when MST/PST is 

not adjusted for.   
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Figure 5.6: ROC curve for weak association 

A    NST, with association and no imprinting          B PST, with association and maternal imprinting 

 

(A) tm  = tf = 0.4, f0 = 0.11, f1 = 0.13, f2 = 0.15, g = 1 

(B) tm = 0.5, tf = 0.3, f0 = 0.11, f1 = 0.13, f2 = 0.15, g = 0.6 

 

The reduction of the imprinting effect due to MST or PST is considerably more problematic than 

inflation because imprinting does not conventionally lie within the scope of genetic association 

studies. If preliminary results on imprinting are negative, it might be unlikely to pursue the 

investigation, while in fact, imprinting could be masked due to a ST.  Therefore, when one wants 

to investigate the presence of imprinting effect, loglinear model 2 with ST offset adjustment should 

be considered as the first option for detecting true signals in association studies. 

There are other study designs proposed to measure parent-of-origin (imprinting) effect. A popular 

design is to use case-mother duos, which are easier to recruit, instead of case-trios. For example, 

Ainsworth et al. [155] collapsed Weinberg et al. 15 [44] and 16 [45] mother-father-child (MFC) 

categories into 7 categories which are identified only by maternal and child genotype (MC). Even 

though it is easier to recruit mother-fetal pairs than case-parent trios, there is a difference of 8 
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parameters that can be estimated in the case-trios study design compared to mother-child duos, 

which allows more genetic or non-genetic factors to be considered in the model. Ainsworth et al. 

[155] also relies on the prior knowledge of minor allele frequency and mating type frequencies, 

which requires extra recruitments of unrelated controls to estimate MAF, and parents of controls 

and/or control-mother pairs to estimate mating type frequencies, to successfully fit a non-saturated 

model. Robustness against population stratification can also be affected. Most importantly, the 

paternal transmission of allele cannot be traced. Therefore, such models are not appropriate for the 

purpose of our study. 

Genomic imprinting is an important epigenetic effect. More than 1% of all mammalian genes are 

believed to be imprinted. A database is available for imprinted genes [43] (http://igc.otago.ac.nz/) 

which provides a more comprehensive understanding of how genes behave under the influence of 

imprinting effect. Therefore, it is crucial to address the aspect of ST in order to correctly 

characterize the functions of genes, and their mechanisms of inheritance.  

A limitation of our study is that the ST probabilities tm and tf  used to adjust for MST and PST need 

to be computed separately from a control-trios population. We rely on the availability of such 

control-trios population recruited in consortia such as the HapMap project. The complete coverage 

of the human genome has now been made possible by the whole genome sequencing (WGS) 

technology. With this knowledge, we believe that majority of the TRD loci could be identified and 

assessed, once such control-trios data becomes available.  

5.7 Appendix 

5.7.1: Derivation of models 1 (without ST offset) and 2 (with ST offset) 

5.7.1.1 Derivation of the general loglinear model  

Let M, F, and C represent the mother, father and child genotypes respectively. The 16 MFC 

genotype categories are described in Table 5.1. Let nMFC  represents the number of trios with 

genotypes MFC, n the sample size, and D the disease status of the child, the probability of each 

MFC cell in Table 5.1 can be written as: 

http://igc.otago.ac.nz/
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𝑃𝑃[𝑀𝑀𝑀𝑀𝑀𝑀|𝐷𝐷] =  𝐸𝐸 �𝑛𝑛𝑀𝑀𝐹𝐹𝐶𝐶
𝑛𝑛

|𝐷𝐷� = 𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝐶𝐶]𝑃𝑃[𝐶𝐶|𝑀𝑀𝑀𝑀]𝑃𝑃[𝑀𝑀𝑀𝑀]
𝑃𝑃[𝐷𝐷]

                  (5.6) 

where 

P[D|MFC] = Probability that the child is affected given a trio genotype MFC  

P[C|MF] = Probability that the child genotype is C given parental genotypes MF  

P[MF] = Probability of mating type MF for the parents 

P[D] = disease prevalence 

Since we assume that there is imprinting effect on the disease status of the child, P[D|MFC]  can  

no longer be simplified to P[D|C], as it depends on both parental genotypes. For C = 0, P[D|MFC] 

= f0 . Equation 5.6 can be re-written as:  

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝐸𝐸 �𝑛𝑛𝑀𝑀𝐹𝐹𝐶𝐶
𝑛𝑛

|𝐷𝐷�� = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝑀𝑀] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝑀𝑀𝑀𝑀] − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝐷𝐷]   (5.7) 

where 𝑃𝑃[𝐷𝐷|𝑀𝑀𝑀𝑀𝑀𝑀] = 𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇 and Rc and T are listed as the last 2 columns of Table 5.1. 

Using the notations 𝑃𝑃[𝑀𝑀|𝑀𝑀𝑀𝑀] = 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 ,  𝑃𝑃[𝑀𝑀𝑀𝑀] = 𝜇𝜇𝑀𝑀𝑀𝑀 (see Table 5.1), and 𝑃𝑃[𝐷𝐷] = 𝑑𝑑, we obtain: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇) + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑  

     = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑐𝑐) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇)                     

  

     = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝛽𝛽𝑐𝑐 + 𝜂𝜂                     (5.8) 

where 𝛽𝛽𝑐𝑐 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑐𝑐) and 𝜂𝜂 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇), of which the latter depends on the genotype combination  

of the trio. Model 1 described in the paper corresponds to the scenario where tm = tf = 0.5 

(Mendelian transmission), which are substituted into 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 .  Model 2 corresponds to the scenario 
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where tm and tf can be different and are not restricted to 0.5 taking on values between 0 and 1, 

excluding 0 and 1. 

5.7.1.2 Statistical equation for model 1 

In order to fit the model described in equation 5.8, we use different grouping schemes for models 

1 and 2. For model 1, the terms 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) and 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀) are grouped together as 𝜑𝜑𝑀𝑀𝑀𝑀𝐶𝐶 . Since tm 

and tf   are assume to be 0.5 in this model, 𝜑𝜑𝑀𝑀𝑀𝑀𝐶𝐶  is the same within each mating type stratum (Table 

5.1). We use S to be the indicator for each mating type stratum, then 𝜑𝜑𝑀𝑀𝑀𝑀𝐶𝐶 =  𝜑𝜑𝑆𝑆, where S ranges 

from 1 to 6. Since imprinting parameter exists only for genotype child 1 categories (C = 1) when 

the disease allele is inherited from the mother, we can write:  

𝜂𝜂 = 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐] 

To derive the statistical equation for model 1, equation 5.8 can be re-written as  

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� + ∑ 𝜑𝜑𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇] +𝑇𝑇 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]   

We can then absorb the constant term 𝑓𝑓0𝑛𝑛
𝑑𝑑

 into the summation of 𝜑𝜑𝑇𝑇 terms and have  

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 ��𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑒𝑒(𝜑𝜑𝑇𝑇)� 𝐼𝐼[𝑆𝑆=𝑇𝑇] +𝑇𝑇 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]   

By noting 𝛾𝛾𝑇𝑇 as the first term of the above equation, model 1 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝛾𝛾𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇] +𝑇𝑇 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]    

Since there are 6 strata of MF mating types, we fit the model with an intercept for stratum 6 mating 

type and obtained: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝛾𝛾6 + ∑ 𝛾𝛾𝑇𝑇𝐼𝐼[𝑆𝑆=𝑇𝑇]
5
𝑇𝑇=1 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]  (5.9) 
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5.7.1.3 Statistical equation for model 2 

For model 2, we separate the terms 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) and 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀), and replace 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶) by an offset 

given specific values of tm and tf  (Table 5.1), and again estimate 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜇𝜇𝑀𝑀𝑀𝑀) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑇𝑇). Therefore, 

equation 5.8 can be re-written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� +  ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝜇𝜇𝑇𝑇𝑇𝑇 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] +

𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]        

     = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝜇𝜇𝑇𝑇𝑇𝑇 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]

   

Replacing 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑛𝑛
𝑑𝑑
� 𝜇𝜇𝑇𝑇 as 𝛼𝛼𝑇𝑇, model 2 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = ∑ 𝛼𝛼𝑇𝑇𝑇𝑇 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]    

We then fit the model with an intercept, and obtain: 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐸𝐸 [𝑛𝑛𝑀𝑀𝑀𝑀𝐶𝐶|𝐷𝐷]} = 𝛼𝛼6+∑ 𝛼𝛼𝑇𝑇5
𝑇𝑇=1 𝐼𝐼[𝑆𝑆=𝑇𝑇] + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶 + 𝛽𝛽1𝐼𝐼[𝐶𝐶=1] + 𝛽𝛽2𝐼𝐼[𝐶𝐶=2] + 𝜁𝜁𝑀𝑀𝐼𝐼[𝐶𝐶=1,𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐]  

            (5.10) 

The final statistical formula for model 1 is written in equation (5.9) and for model 2 in equation 

(5.10). 

5.7.2: Non-Central Chi-square Likelihood for model 1 (without ST offset) and model 2 (with 

ST offset) 

To perform the Likelihood Ratio Test (LRT) in assessing significance of association between the 

disease phenotype and DSL, we set up a null model for both models 1 and 2 with null hypothesis 

H0 : 𝛽𝛽1 = 𝛽𝛽2 = 𝜁𝜁𝑀𝑀 = 0. The corresponding LRT test statistic, which is the difference in deviance 

between null and full model, has an asymptotic Chi-Square distribution with 3 degrees of freedom 
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accounting for the extra terms R1, R2 and T.  Agresti [161] showed that when the alternative 

hypothesis is true, the resulting LRT is a chi-square statistic with a non-centrality parameter (NCP):  

 

 𝜆𝜆 = 2𝑛𝑛∑ 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐)𝑙𝑙𝑙𝑙𝑙𝑙 �𝜋𝜋𝑀𝑀𝐹𝐹𝐶𝐶(𝑀𝑀𝑎𝑎)
𝜋𝜋𝑀𝑀𝐹𝐹𝐶𝐶(𝑀𝑀0)

�𝑀𝑀𝑀𝑀𝐶𝐶      

  

where 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐) is the true probability of each cell with MFC combination, and 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀0) is 

the probability under the null hypothesis. We also denoted the degree of freedom as 𝜐𝜐, which is 3 

in our LRT because for the 3 variables R1, R2 and T present in the alternative model but not in 

the corresponding null model.  

 

To calculate Type 1 error and power comparable to our theoretical values, we require the exact 

likelihood. Our likelihood for the alternative hypothesis shown in equation 5.6 can be written as:  

𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀𝑐𝑐) = 𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹 
𝑑𝑑

       

 

In the presence of TRD, even when the null hypothesis is true, the LRT still has a non-Central Chi-

square distribution. The null model is different for models 1 and 2 because TRD is being adjusted 

in the offset of model 2 but not in model 1. Under the null hypothesis, P[D|MFC] = P[D], and 

hence, f0RcT/d = 1. The likelihoods for models 1 and 2 under null hypothesis are:  

 

𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀01) = 𝜇𝜇𝑀𝑀𝑀𝑀 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶  [0.5]     

and   

 𝜋𝜋𝑀𝑀𝑀𝑀𝐶𝐶(𝑀𝑀02) = 𝜇𝜇𝑀𝑀𝑀𝑀 𝜏𝜏𝑀𝑀𝑀𝑀𝐶𝐶[𝑡𝑡] 

Under the alternative hypothesis, NCP for model 1 is: 

 

𝜆𝜆1 = 2𝑛𝑛∑ 𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹[𝑐𝑐]
𝑑𝑑

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶[𝑐𝑐]
𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶[0.5] 𝑑𝑑

�𝑀𝑀𝑀𝑀𝐶𝐶    (5.11) 

 

and the NCP for model 2 is: 
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𝜆𝜆2 = 2𝑛𝑛∑ 𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇𝜏𝜏𝑀𝑀𝐹𝐹𝐶𝐶𝜇𝜇𝑀𝑀𝐹𝐹[𝑐𝑐]
𝑑𝑑

 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇
𝑑𝑑
�𝑀𝑀𝑀𝑀𝐶𝐶      (5.12) 

 

When t is not equal to 0.5, even though there is no association signal, the LRT is still a NCP chi-

square statistic. The NCP for model 1 is 0 when both t = 0.5 (Mendelian transmission) and 𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇
𝑑𝑑

=1 

(no association). Therefore, null hypothesis for model 1 requires both Mendelian transmission and 

no association between disease and DSL. However, since TRD has already been adjusted for in 

model 2, the NCP is 0 when  𝑓𝑓0𝑅𝑅𝑐𝑐𝑇𝑇
𝑑𝑑

=1 (no association).  
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Chapter 6 

Summary and discussion 

The role of TRD in the formation and maintenance of the human gene pool is considerably obscure. 

Human studies on TRD have mainly be prompted by successful findings in plant and animal 

studies. Multiple diseases associated with TRD loci have been found, but links between the 

mechanisms of TRD and the disease etiology have not been established, except perhaps for 

conditions related to embryo viability. The prevalence of TRD has not yet been determined by 

genetic studies and hence, the impact of TRD on either common or rare diseases is largely 

unknown. However, with the availability of next generation sequencing technology and large-scale 

recruiting effort such as the HapMap project on case- and control-trios, the possibility of mapping 

all TRD loci will be possible.  

There are various forms of TRD, as described in Chapter 3, each dictated by specific biological 

mechanisms. We selected two simplest types of TRD, the NST and ST in order to demonstrate its 

effect on the results of family-based genetic association studies. Most of the existing statistical 

methodologies have a common assumption on Mendelian inheritance, and the models are not valid 

if this assumption is violated. The loglinear model is a convenient statistical tool for us to assess 

the effect of TRD on association results in case-parent study design. The readily available 

component in the likelihood function provides a natural way of extending the model to 

accommodate the effect of TRD, and to correct for it. Fitting the loglinear model with an offset 

does not require more computing time, and hence, can be applied to a large scale association study 

with the whole genome sequenced data and a large sample size. It offers a simple solution to the 

identification of an additional source of bias which could potentially confirm or refute study results 

from current literature.  

Modeling ST in the loglinear model, however, poses a challenge. The imprinting effect could also 

co-exist with other epigenetic effect such as maternal effect, or maternal-fetal genotype interaction. 

Incorporating these factors into the loglinear model has not been investigated in this thesis, but is 

likely to be pursued in the continuing development of the method in the future.  Currently, we have 

exclusively modeled imprinting and child effects. Although adding maternal and maternal-fetal 
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interaction effects into the loglinear model does not likely require more complex theoretical basis, 

the saturation of model parameters can constraint the generalization of the method. This might 

require changing the study design to acquire more information and degrees of freedom. Also, since 

these factors interplay with each other, identifying and dissecting the exact effect size in a single 

model could be complicated. Interpretation on the resulting parameter estimates might also require 

further biological evidence.  

Future work in generalizing this method to a wider context and scale will be made possible with 

the availability of appropriate datasets and advancement in the knowledge of human genetics in 

general. The research carried out in this thesis provides evidence of the impact of TRD on genetic 

studies and a proof of concept that such effect can be adjusted to restore correct inference. 

Implication on existing findings in current literature will unfold as research progresses.  

TRD is an under-explored phenomenon with features that can impact studies in three different 

genetic fields. The prospect of increasing awareness and understanding of TRD can produce major 

breakthroughs in these areas, such as re-assessing current research findings on DSL, identifying 

rare variants, and developing the link between TRD mechanisms and various disease etiologies. 

These could lead to more accurate and comprehensive knowledge about the relationships between 

our genome and a vast array of human diseases.  
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