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Abstract

In [Iha86b], Ihara constructs a universal cocycle

Gal (Q/Q) — Z,[[te. t1.to]]/ ((to + 1)(8) + 1){tec + 1) — 1)

arising from the action of Gal (Q/Q) on certain quotients of the Jacobians

of the Fermat curves
 + =1

for each n > 1. This thesis gives a different construction of part of Thara’s
cocycle by considering the universal deformation of certain two-dimensional
representations of [Ig, where [lg is the algebraic fundamental group of
P! (Q)\ {0, 1,00}. More precisely, we determine, with and without certain de-
formation conditions, the universal deformation ring arising from a residual

representation
p : lIg — GLo(F,).

Belyi's Rigidity Theorem is used to extend each determinant one universal
deformation to a representation of [1x, where K is a finite cyclotomic exten-
sion of up=). For a particular p, we give a geometric construction of one
such extended universal deformation p, and show that part of Ihara’s cocycle

can be recovered by specializing p at infinity.



Résumé

Dans {Iha86b|, [hara construit un cocycle universel

Gal (Q/Q) — Z,[[to, t1. tao]l/ ((to + 1)(t1 + 1)t + 1) — 1)

provenant de l'action de Gal (@/Q) sur certains quotients des jacobiennes

des courbes de Fermat
P+ =1

pour chaque n > 1. Cette thése présente une construction différente d’un
cas particulier du cocycle d’'lhara en considérant la déformation universelle
de certaines représentations de dimension deux de IIg, ou Ilg est le groupe
fondamental de P!(Q) \ {0. 1,00}. Plus précisement, nous décrivons, avec et
sans certaines conditions de déformation, I’anneau de déformation universelle

provenant d’une représentation residuelle
p: Mg — GL2(F}).

Le théoréeme de rigidité de Belyi est utilisé pour étendre chaque déformation
universelle de déterminant un 3 une représentation du groupe Ilx, ou K est
une extension cyclotomique de degré fini de Q(up,~). Pour un p particulier,
une construction géométrique d'une de ces déformations universelles étendues
p est fournie. Ceci permet de récupérer un cas particulier du cocycle d’Ihara

par spécialisation de p a l'infini.
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1 Introduction

One approach to studying the absolute Galois group Gg = Gal (Q/Q) has
been via its canonical representation in the outer automorphism group of
the algebraic fundamental group Il of P!(Q) \ {0,1.00}. Let M denote the
maximal algebraic extension of Q(¢) unramified outside t = 0, 1, 0c. Conju-
gating in Gal (M/Q(t)) by a lift of v € Gg gives rise to an automorphism of
[l whose class modulo the group of inner automorphisms depends only on
7. Thus Gg acts on [Ig = Gal (M /@(t)) as a group of outer automorphisms,

and we obtain a representation
o: GQ — Out (H@) .

By a theorem of Belyi. ¢ is injective; as a result, studying the full represen-
tation ¢ seems to be too difficult. However, as a first step in this direction,

Ihara considered, for each prime p, the representation
v:Gg — Out (F/F"),

where F denotes the maximal pro-p quotient of [Ig, and " = [[F, F], [F, F]]
denotes the double commutator subgroup of F. We define a Z,-algebra A
by

A=Z,[to, t1. tc]]/ (o + 1){t: + 1)(tec + 1) — 1).

-~



Letting x, : Gg — Z; denote the p-cyclotomic character, Gg acts as

Z,-algebra automorphisms on A by
Y- (1 + t‘) = (1 + ti)Xv('Y)

for each v € Gg, and each i = 0,1,0c. In [[ha86b], Ihara shows that ¥ is

encoded by a cocycle
F:Gg — A™.

For each n, F describes in a precise way the action of Gg,,.) on the p-adic
Tate module of the primitive quotients of the Jacobian of the Fermat curve
F, : 7" + y?" =1 (see Theorem 5.4).

Let r : A — Z,[[T]] be the Z,-algebra homomorphism which maps ¢,
and t, to T. In this paper. we describe a new construction of r o F for each
odd p. obtained via deformation theory of two-dimensional representations
of Il and the rigidity method of Belyi, Matzat, and Thompson.

We begin in Chapter 2 by considering deformations of arbitrary absolutely

irreducible residual representations
p: g — GLo(Fy).

First we consider general deformations, then deformations subject to certain
conditions; namely, the condition of having determinant equal to one, as
well as certain “ordinariness” conditions combined with this determinant

condition (see §2.6 for precise definitions). In each case, we determine the



universal deformation ring, which is a power series ring with coefficients
in Z,, where the number of parameters depends only on the deformation
conditions (see Theorems 2.27 to 2.31). In particular, let 0y,0,,0, € [[@
be topological generators of inertia groups above t = 0,1, 00 respectively,
satisfying 09010 = 1; then if 5 has determinant one and is {0y, 0, }-ordinary,
the {ag, o) }-ordinary determinant one universal deformation ring of p is the
power series ring Z,[[T}]].

The arithmetic content of the various determinant one universal deforma-
tions (R“™Y, p""¥) of Chapter 2 arises in Chapter 3 by means of rigidity. In
order to use Belyi’s Rigidity Theorem (Theorem 3.5) to extend these universal
deformations, we study rigidity in GL,(R), where R is a local unique fac-
torization domain, proving in particular that (p"""(aq), p*""(a,), """ (0ao))
is rigid in GLy(R""") (see Theorem 3.10). This result allows us to extend
each representative of p""" to a representation of Ik := Gal (M/K(t)),
where R is a cyclotomic extension of Q(up=) of degree at most p? — 1 which
depends on p (see Theorem 3.12).

In Chapter 4, we fix the residual representation j to be the representation
describing the action of Il on the p-torsion points of the Legendre family

E; of elliptic curves given by
EL:y =z(x-1)(z-t).

In this case, g is {09, 0, }-ordinary, and the extension theorem of Chapter 3

shows that any representative of the {0y, o, }-ordinary universal deformation



of p can be extended to a representation
p : Mou=) — GL2(Z,[[T])) -

Let pup» be the group of p"th roots of unity in Q, and let Zy[uyn] be the

corresponding group ring. We construct p as the inverse limit of the repre-

sentations

Pn : nq“pm) - GL2(zp[ﬂpn])
associated to the curves C,,/Q(t) given by

Co:y’=1x (1:2”" + (4t = 2)z*" + 1),

Nt

where the action of y,» on C, is given by ¢, - (z,y) = (C,..r.C,ny) for any
primitive p"th root of unity (,. In order to obtain a detailed understanding
of each p,. we make use of Mumford’s uniformization (Theorem 4.11) of
Jacobians of curves C/L having a specific reduction type, where L is a field
which is complete with respect to a non-archimedean valuation. We also use a
general theorem of Katz (Theorem 4.31) which gives a geometric construction

of any representation

& : Ilg — GL2 (@ (¢n))

for which (k(0g), k(01), k(o)) is rigid.
Finally, we show in Chapter 5 how to specialize p at oc so as to obtain the

representation r o F' (see Theorem 5.7). To prove that these representations

10



are equal, we use the geometric construction of Chapter 4 to show that
the given specialization p. of p describes the action of Gg,,-) on certain
quotients of the Jacobian J, of the Fermat curve F,,. This property together
with the corresponding property of ro F’ implies that roF is a direct summand
of puc.

This thesis is comprised of a combination of known and original results.
Whenever possible, I have listed a source for known results. The main re-
sults of Chapter 2, namely Theorem 2.27 and the results contained in §2.6,
may be known to some people, but. to my knowledge, have not previously
been written down. The theorems of §§3.3 and 3.4 are original, as are all
results appearing after Proposition 4.25 except those that are clearly marked

otherwise.

11



2 Deformation Theory of Ilg

2.1 Profinite Groups and Infinite Galois Theory

Throughout the sequel. we will be working extensively with Galois groups of
infinite Galois extensions. In this section, we present the basic theory of such
extensions, and show how profinite groups arise naturally as Galois groups
in this context.

Let (I,<) be a directed set, that is, < is a partial order on / such that

for each 1.7 € I. there is some k € I such that i < k and j < k.

Definition 2.1 A directed system of groups (G, (®;i))} is a collection of
groups {G.}ies indezed by I. together with homomorphisms ¢;; : G; — G

for each i < j such that 0;; = Idg, and ok = @50 ¢; for i < j < k.

Given a directed system of groups (G., (0;:)), a group G together with
homomorphisms g; : G — G, for each i € I will be called a commuting

system above (G,. (0,;)) if the diagrams

YN

R

G, G,

commute for all i < j.

Proposition 2.2 Given a directed system of groups (Gi, (®;i)), there is a
commuting system (G, (gi)) above (G;, (¢,i)) satisfying the following universal
property: given any commuting system (H, (f;)) above (G;, (¢}:)), there ezists

12



a unique homomorphism f : H — G such that the diagram

H

|
b G L
2N

commutes for all i < j.

Proof: Take G to be the set of all sequences of elements of {G;}.c; compat-

ible under the maps ¢;;; that is

G = {(ai)iel € HGi 10y € Gy, 05i(0;) =0 for all i < j} .

i€l

Then G is a subgroup of []G; and satisfies the given universal property (see
[Mor96}, App. C. Propos{teitan 4.2 for details). a
Remark: By the usual argument for universal objects. (G, (g;)) is unique
up to unique isomorphism (see. e.g.. (Lan93], p.57). We write G = limG;,
and call (G, (g:)) the inverse limit of (G, (6,:)). e

By the same construction, inverse limits exist in the categories of rings,

modules, and topological groups, among others.

Definition 2.3 A profinite group is a group which can be expressed as the
tnverse limit of a directed system of finite groups. A profinite group is said
to be procyclic if it can be expressed as the inverse limit of a directed system

of finite cyclic groups.

Given a profinite group G = imG; (where each G; is finite), we may view

13



G as a subgroup of the direct product _HG.- as in the proof of Proposition 2.2
above. Giving each G; the discrete t(;f)i)logy, we may define a topology on
G by taking the topology induced from the product topology on ,HG" This
definition gives G the structure of a topological group, and plays z;rezlessential
role in the theory of infinite Galois extensions. For more on profinite groups,
see [Sha72].

Consider an infinite Galois extension L/K. Let G = Gal(L/K). Given
any finite Galois extension M /K contained in L, the group Gy := Gal (L/M)
is a normal subgroup of G of finite index [M : K], and G/G, is isomorphic
to Gal (M/K), as in the case of finite extensions. Let M denote the set of all
such intermediate fields M. Then M forms a directed set by inclusion, and
{G/Grs}rsem together with the canonical maps @pyar : G/Gay — G/Gu
whenever Gy C Gy (i.e. whenever M’ O M) forms a directed system of
finite groups. The canonical maps G — G /G define a commuting system

above (G/G . (@arrar)), so by the universal property of the inverse limit, we

obtain a homomorphism ¢ : G — l‘.gl G/Gys. In fact, ¢ is an isomorphism
MeM
(see [Lan93], Ch. VI, Theorem 14.1). Thus G is naturally a profinite group.

The topology on G is called the Krull topology. The Krull topology may also
be defined without realizing G as a profinite group by taking as a base for
open sets {oGy : 0 € G, M € M}.

As with finite Galois extensions, one defines the Galois correspondence
between the set of intermediate fields M between K and L, and the set of
subgroups H of G = Gal (L/K’). This correspondence takes the intermediate
field M to the subgroup Gal (L/M), and the subgroup H to the intermediate

field L¥ consisting of those elements of L fixed pointwise by H. In the case

14



of infinite Galois extensions. not every subgroup of G arises as Gal (L/M) for
some intermediate field M. However. the Krull topology on G allows us to
identifvy which subgroups correspond to intermediate fields, in a way which

is made precise by the Fundamental Theorem of Infinite Galois Theory:

Theorem 2.4 The Galois correspondence defines an inclusion-reversing bi-
Jjection between the set of closed subgroups of G and the set of intermedi-
ate fields between K and L. Moreover. a closed subgroup H C G is normal
if and only if the corresponding extension L” /K is Galois, in which case
Gal (L /K) = G/H. the isomorphism being one of topological groups if we
give G/H the quotient topology.

Outline of Proof: The main observation is that given any subgroup H C G,
Gal (L/L%) = H. where H denotes the closure of H in G with respect to
the Krull topology. This observation together with the usual fundamental
theorem of Galois theory reduces the proof to verifying certain details, which
may be found in [Mor96], Ch.IV. §17. a

Given any group G. let N denote the set of all normal subgroups of G
of finite index. Then A is naturally a directed set with respect to inclusion,
and {G/N}nen together with the canonical homomorphisms forms a directed

system of finite groups.

Definition 2.5 For any group G, the profinite group

G = limG/N

NeN
ts called the profinite completion of G.

15



The profinite completion of a group is indeed a topological completion in
the usual sense; it is possible to define Cauchy sequences in G with respect
to a directed set of normal subgroups. in which case G is the completion of
G with respect to these sequences. See [Lan93], Ch.I, §10 for details.

It is often useful to consider the subset N, of A consisting of all normal
subgroups of G of p-power index, where p is a fixed prime. In this case,

im G/N is called the pro-p completion of G. A collection of elements {7i}ier
NeAp
of a profinite group G is said to topologically generate G if the subgroup of

G generated by {%;}.cs is dense in G. Thus. for example, if G is the profinite
completion of a group G, and {~;}.c; generates G. then viewing each 7; as an
element of G via the natural map G — G , the system {+, };c; topologically

generates G.

2.2 The Algebraic Fundamental Group

In this section. we give an explicit description of the group structure of
Gal (K/Q(t)). where R is the maximal algebraic extension of the function
field Q(¢) ramified only at a fixed finite set of places.

Given fields A" and F. and a place 0 : K — F U {oc}, the set ¢~ !(F)
of finite elements under o is a local subring R of K with maximal ideal
p = ¢°1(0). We call R the valuation ring corresponding to ¢, and p its
valuation ideal. If V'//K is a variety with function field K'(V'), one may define
a place ¢p : K(V') — K U {oc} for each point P € V by ¢p(f) = f(P),
where we let f(P) = oc if f is not defined at P. In this case, the valuation
ideal of ¢p is also called the valuation ideal corresponding to P.

Let L/KR be a (possibly infinite) Galois extension. Let p be a valuation

16



ideal of A", and suppose that p is a valuation ideal of L lying above p, with

corresponding valuation ring A C L.

Definition 2.6 The group
D (p/p) := {0 € Gal(L/K) : o(p) = p}

is called the decomposition group of p/p. The inertia group I (p/p) of p/p
is the subgroup of D ('ﬁ/ p) given by

I(p/p) :={oc€Gal(L/K):0(a)=a modp forall a € 4}.

We say that p is unramified over p if I (p/p) = 1.

If every valuation ideal of L lying above p is unramified over p, then we say
that p is unramified in L. We will also say that a place ¢ of A is unramified
in L if the valuation ideal corresponding to ¢ is unramified in L.

Let k£ be an algebraically closed subfield of C. Let P,,..., P, be distinct
points in P!(k), and p,.... .p, their corresponding valuation ideals in k(t).
Let k(t)s denote the maximal algebraic extension of k(¢) unramified outside
S ={p1.... .pr} Give P}(C) the topology of the Riemann sphere, and choose
apoint P € P'(C)\{P......P,}. Let Il be the topological fundamental group
nPON\{P.... . PLP)=(noc s 1w = 1),

Theorem 2.7 The ertension k(t)s/k(t) is Galois and Gal (k(t)s/k(t)) is
tsomorphic to the profinite completion fi of I1. Moreover, there are gener-

ators vi,....% of Il such that for each t = 1,...,r, the image of v; in

17



Gal (k(t)s/k(t)) topologically generates the (procyclic) inertia group I (pi/p:)

of some valuation ideal p; above p;.

Outline of Proof: First assume k& = C. Then there exists a universal cover-
ingu:U — P'(C)\ {P,,...,P}. Using the Riemann Existence Theorem,
one may show that finite Galois extensions N/k(t) unramified outside S are
in bijective correspondence with finite coverings p : ¥ — P!(C) of com-
pact Riemann surfaces unramified outside {P,,..., P,} in such a way that
the surface Y corresponds to its function field N/k(t) (see [Vol96], Theorem
5.14). Moreover, Gal (N/k(t)) is isomorphic to the group Deck(p) of deck
transformations of the covering p. Now p := p|y\,-1((p,,... p}) iS a covering of
PY(C)\ {P\,..., P}, and Deck(p) = Deck(p). Using the universal covering
u above, one sees that such coverings p are in bijective correspondence with
normal subgroups H of I1 of finite index in such a way that Deck(p) = I1/H.
Thus, letting Nis = {N C k(t)s : N/k(t) is finite, Galois}, we have

Gal (k(t)s/k(t)) = lim Gal (N/k(t))

NeNes
= lim M/H=1iL

HQll
finite index

This proves the first statement when & = C.

To prove the second statement when £ = C, let Y and N be as above,
fix a point P € u~!(P), and let P € Y be the image of P.ltis possible to
choose lifts P, € Y of each P,, and d; € Deck(p) so that d;(P,) = P; and
dyo:--od, = Id. Let p; be the valuation ideal in N corresponding to B.
Let 0; € Gal (N/k(t)) be the automorphism satisfying o; ( f (P)) = d;(P) for

18



f € N.Then o, generates I (p,/p;), and the various o; obtained in this way are
compatible as NV varies over finite extensions of k(t). Viewing Gal (k(t)s/k(t))

as the inverse limit lim Gal (.V/k(t)) and taking v = (0:i)nen, s Bives
NeNy s
generators of Gal (k(t)s/k(t)) satisfving the assertions of the theorem with

pi = U pi- This proves the theorem when k& = C.
NEN,.s

For any algebraically closed subfield k of C, let S’ denote the set of valu-
ation ideals in C(t) corresponding to the points P,,... , P, € P! (k) c P'(C).
One may show that the assignment N — N ®, C defines a bijection

Ni.s — Ncs . This bijection gives rise to an isomorphism

Gal (k(t)s/k(t) = Lim Gal (N/k(t))

NeNs

lim  Gal (N @ C/C(t))

N, Ce .Vc_sl

= Gal (C(t)s/C(t)) ,

o

as desired. See [MM99], Ch. I, Theorems 1.3, 1.4, and 2.2 for full details. O
Remark: The above theorem is true for any algebraically closed field & of
characteristic 0. We will only need the result when k = Q.

Theorem 2.7 is part of a much more general connection between Galois
groups over function fields and topological fundamental groups. Let k& be as
above, and X/k a smooth projective curve of genus g. Given distinct points
P,,....P. € X(k). the maximal algebraic extension k(.X)s of the function
field £(.X') of .\ unramified outside the set S of valuation ideals of Py, ... , P
is Galois. The group Gal (k(X)s/k(X)) is called the algebraic fundamental
group of X \ {P,,...,P.}, and is denoted by 78 (X \ {P,,..., P,}). There

19



is, up to homeomorphism, a unique compact connected oriented surface X,
of genus g (see, e.g. [Arm97], §7.4, 7.53). Theorem 2.7 may be generalized to
this context as follows: let Q,,...,Q, € X, be distinct points, and choose
any point Q € X, \ {Q1,... ,Q.}; then n}'8 (X \ {P,,..., P,}) is isomorphic
to the profinite completion of m; (X \ {Q1,... ,Q:}. Q). See [Ser92). §6.3 for

more details.

2.3 The m-adic Topology

This section collects some results concerning rings with which we will be

working below. All rings will be assumed to be commutative.

Definition 2.8 A topological ring R is a ring together with a topology on
its underlying set such that R forms a topological group under its addition,

and the multiplication law R x R — R is continuous.

Let (R,m) be a local noetherian ring. There is a natural topology on R,
called the m-adic topology, obtained by taking {m"},cn to be a fundamental
system of neighbourhoods of 0 (and thus defining a fundamental system of
neighbourhoods of each point by translation). This topology gives (R, m)
the structure of a topological ring. Since R is noetherian, {| m" = {0} (see
[Lan93], Ch. X, Corollary 5.7); thus the m-adic topology i's'e!l?lausdorff. This

topology is precisely that obtained from the metric d on (R, m) given by

d(r.s) 0 ifr=s (2.9)
r,s) = )
e~ v(r=3)  otherwise

20



where v : R\ {0} — N, called the m-adic valuation on R, is given by
v(r) = max{n € N : r € m"}. Thus we may consider Cauchy sequences
and convergence in R. We say that (R, m) is complete if R is complete with

respect to the metric d.

Proposition 2.10 Given (R, m) as above, there erists a complete local ring
(R, ) together with a continuous injective homomorphism ¢ : R — R sat-
tsfying the following universal property: given any complete local ring (A, n)
together with a continuous homomorphism ¢ : R — A, there is a unique

continuous homomorphism ¢ : R — A such that

R—2=p
RNE
A
commutes.
Proof: See [GST1], §2. a

The completion R of R may be identified with HmR/m", where the inverse

neN
limit is taken with respect to the canonical maps. In this case, ¢ is the natural

injection R —» R. Moreover, m is the ideal generated by o(m) and R is itself

complete if and only if ¢ is an isomorphism. For details, see (GS71}, §2.

Example 2.11 Let R be the localization of Z at a prime ideal (p), so that
(R.pR) is a local ring. The completion of (R, pR), denoted Z,, is called the
ring of p-adic integers. By the above remark, Z, is isomorphic to kir_nZ/p"Z.

neN
The quotient field Q, of Z, is called the field of p-adic numbers.

Example 2.12 Let k£ = F,» denote the finite field of order p™. The ring
W (k) of Witt vectors over k is the integral closure of Z, in the splitting field

21



of zF" — z over Q,. The ring W (k) is a complete local ring with residue field
k. In particular, W (IF,) is equal to Z,, and if p is odd, W(F:) is equal to
Z,[\/a], where a € Z) is not a square in Z,. See [Ser68], Ch.II, §6 for details.

Example 2.13 Let (1. m4) be a complete noetherian local ring, and let R
be the localization of A[t,. .. ,t,] at the maximal ideal m := (m4, ¢y, ... ,t,).
The completion of (R, mR) is isomorphic to the ring A[[t,, ... ,t,]] of formal

power series in n variables with coefficients in A.

Proposition 2.14 Let R be a noetherian ring. Then the ring R[[t,, ... ,t,]]

is ulso noetherian.
Proof: See [Lan93|, Ch.IV. Theorem 9.5 and its Corollary. O

Theorem 2.15 (Hensel’s Lemma) Let (R, m) be a complete local noethe-
rian ring with residue field k, and let f(z) € R[z] be a monic polynomial.
Suppose that a € k is a nonrepeated root of the reduction of f(z) mod m.

Then f(r) has a unique root a € R such that a reduces to a mod m.

Proof: See [Lan93], Ch. XII, Corollary 7.4. 0

2.4 Deformation Theory

Fix a prime p. Let [I be a group having the property that its pro-p completion
is topologically finitely generated. Let k£ be a finite field of characteristic p,
and fix an absolutely irreducible continuous representation g : [I — GL,(k),
which will be called the residual representation. Let (R, m) be a complete local
noetherian 1¥"(k)-algebra with residue field k, where W (k) is the ring of Witt
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vectors of k. A lift of p to R is a continuous homomorphism p : [1 — GL,(R)

such that the diagram

M —2+GL.(R)

SN
p
GLn(k)
commutes, where r is the map which takes a matrix to its entrywise reduction

mod m. We define an equivalence relation ~, called strict equivalence, on the
set of lifts of 5 to R by p; ~ p, if there exists an M € GL,(R) := ker(r)
satisfving py = Mp,M~! (that is, pi(v) = Mp(¥)M~! for all vy € IT). A
deformation of p to R is a strict equivalence class [p] of lifts of 5 to R. Note
that [p] = {p} and whenever M € GL;(R), conjugating a lift p of p by M
gives another lift of p. We will often write p in place of [p] when there is no
risk of confusion.

Define a category DEF(p) whose objects are pairs (R, [p]), where R is
a complete local noetherian 1W'(k)-algebra with residue field &, and [p] is a
deformation of g to R. A morphism from (R;, [o]) to (Rz.[p2]) in DEF(p)
is a continuous homomorphism ¢ : Ry — R, reducing to the identity on k,

such that for some g € [p;]. the diagram
1 —=>GLa(R))

A l“’
GLn(R2)
commutes, where ¢ denotes the map obtained by applying ¢ entrywise to

a given matrix. Using a result of Schlessinger which guarantees the repre-
sentability of functors satisfving certain criteria, Mazur proved the following

theorem:
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Theorem 2.16 (Mazur, 1989) There ezists a universal element in the cat-
egory DEF(p); that is, there ezists a pair (R"™", p*™V) € DEF(p) such that
for each (R,p) € DEF(p), there is a unique ¢ : R*™ —> R such that
o € Mor (DEF(p)).

Proof: See [Maz89], §1.2. a

As usual, (R"V, p*") is well-defined up to unique isomorphism in the
category DEF(p). We call p"™" the universal deformation of p. In [dL97],
Lenstra and de Smit give an explicit construction of R*"" in terms of gener-
ators and relations; however, their construction requires many more genera-
tors than are usually necessary, and is not very practical when considering
specific examples. In what follows, we will consider only the cases k = F, or

Fy2 and n = 2.

Proposition 2.17 Let j be a residual representation, and (R“™", p""V) its
universal deformation. Then the entries of the elements of Imp"™" topologi-

cally generate R"™".

Proof: Let S denote the complete subring of R*"" (topologically) generated
by the entries of the elements of Imp""¥. Then p*"¥ maps to S, so the uni-
versal property of RV gives a morphism ¢ : R*¥ — S in DEF(p). By the
definition of S, ¢ is surjective. Given (A, p) € DEF(p), the universal property
of R“"" gives a morphism 1 : R*"V — A in DEF(p), which restricts a mor-
phism on S. On the other hand, if r,, 7 : S — A are two such morphisms,
then 7, 0¢, 7500 : R*™Y — A are two such morphisms, and hence are equal.
Since . is surjective, it follows that | is equal to 72, and therefore (S, p*"")

is universal in DEF(p), and ¢ is an isomorphism. a
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Let (R,mpg) be a local noetherian W (k)-algebra.

Definition 2.18 The (Zariski) cotangent space of R is the k-vector space
ty := mg/(p,m%). The (Zariski) tangent space tg of R is the dual space
Homg (t%, k) of the cotangent space of R.

Note that since R is noetherian. t; and tg are finite-dimensional vector

spaces, and hence are abstractly isomorphic.

Proposition 2.19 Let R and S be local noetherian W (k)-algebras, and let
f: R — S be a W(k)-algebra homomorphism reducing to the identity on k.
Then f induces a k-linear map f, : ty — t5 which is surjective if and only

if f ts surjective.

Proof: For each m € mg, f(m) € mg, so f restricts to an additive homo-
morphism f : mg — mgs/(p.m2). Checking that f(p,m%) = 0, we obtain a
k-linear map f, : ty — t5.

Suppose now that f is surjective. Then f : R — S/(p, m2) is surjective,
and hence f(mg) = ms/(p, m%). Thus f. is surjective.

Conversely, suppose that f, is surjective. The reduction of f mod p
makes mg/pms into an R/pR-module; thus f gives rise to an R/pR-module
homomorphism f* : mg/pmg — mg/pmg, which reduces to a homomor-
phism f* : mg/(p.m%) — ms/(p, mgms). Given a € m%, write a = m;m;
with m,m; € mg,m; & mZ. Since f, is surjective, there is some m}| € mg
such that m;, = m} + m, where . € (p,m%), and hence a = (m| + m)m..

Thus we have shown that

m%/pm% C (mg/pmg)ms/pms + m3/pmy.
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By induction,

m%/pm§ C (mg/pmp)ms/pms + mG/pmy

for all n, which implies that m%/pm% = (mgz/pmg)ms/pms since S is noethe-
rian. Thus f* is surjective, and by a corollary of Nakayama’s lemma, f* is
itself surjective (see [Lan93], Ch. X, Proposition 4.5). Viewing mg and mg
as W (k)-modules and applying Nakayama's lemmma shows that f(mg) = mgs.
Every element of S can be expressed as A + m with A € W (k) and m € mg,

so this proves that f is surjective since f(W(k)) = W (k). a

2.5 The Universal Deformation

Let K be an algebraic extension of Q. Throughout the sequel, let

[ := Gal (K(t)/K (1)),
where K (t) denotes the maximal algebraic extension of K (¢t) unramified out-
side 0,1, and oc. Fix a prime p, and let & be a finite field of characteristic p.
It follows from Theorem 2.7 that the pro-p completion of II is topologically

finitely generated. Let 5: IT — GL2(k) be a residual representation.

Proposition 2.20 The universal deformation ring R*™ of p is isomorphic

to a power series ring with coefficients in W (k).

Proof: By Proposition 2.14 and Examples 2.12 and 2.13 of §2.3, any power
series ring W (k)[[t,, ... ,t4]] is a complete noetherian local ring. Writing R

for RU¥, let d denote the k-dimension of t}, and let Z;,... ,T4 € t} be a
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collection of elements which forms a basis for t5. Choose lifts z,,... ,z4 € mpg
of I,....,I4 respectively. Defining &(t;) = r; for each i = 1,... ,d gives rise
to a continuous W (k)-algebra homomorphism ¢ : W (k)[[t1,... ,tq]] — R
which reduces to the identity on k. Since the reductions t,,... ,tgof t;,... , t4

mod (p, Miy(k)(s,.....,))) form a basis for t},. .\, . . and @.(t;) = Z; for each

i. ¢, is a k-vector space isomorphism. In particular, ¢, is surjective, and
therefore, by Lemma 2.19. ¢ is itself surjective.

Fix elements gy,0; of I1 which generate [1 topologically, and choose for
each i = 0,1 a lift M; € 67" (0" (0y)) of p™¥(a,), where ¢ denotes the map
induced from o. We obtain a deformation p : [1 — GL(W (k}[[t1. ... ,t]])
such that p(o;) = M, for i = 0.1, and ¢op = p*"¥. By the universal property
of R. there is a map v : R — W (k)[[t\.... .t4)] such that p = ¥ 0 p*"¥, We
claim that v splits ¢, that is. @ o ¥ = Idg. Given M € Imp"™", let o € II be

a preimage of AM: then
00 U(M) = 00 v(p*™(0)) = 6(p(0)) = p"" (o).

so if r € R is an entry of some M € Imp*™", then ¢ o ¥(r) = r. Applying
Proposition 2.17 proves the claim. Now gow = Idg implies that ¢,0vy, = Ide; ,
so yw. is an isomorphism. In particular. v is surjective. Therefore, ¢ is an
isomorphism. as desired. O

If IT were to be replaced with some other profinite group in Proposi-
tion 2.20. it would not necessarily be possible to lift p“*v to W (k)[[ty, - - . , t4])-
However, the proof that we have given works with only minor changes pro-

vided that the cohomology group H?(Il, ad(p)) is trivial, where ad(p) denotes
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the matrix ring M,(k) together with the action of Il given by
o-M = p(e)Mp(a)™!

for each o € I1. M € M;(k). Mazur showed moreover that the Krull dimen-
sion of R /pR"™" is at least d; — dj, where d; = dim H'(I1,ad(p)), with
equality when d, = 0 (see [Maz89], §1.6 and [Gou], p.50 for details). As we
shall see. H'(Il.ad(p)) is naturally isomorphic to tguiv (as a k-vector space),
so Mazur's result agrees with the choice of d in the proof of Proposition 2.20.

Fix a residual representation
p: I — GL,(F,).

In order to determine RY"¥(j) explicitly, it may be convenient to extend
scalars to F,z. and thus replace g with g/, where g’ is obtained by composing
p with the inclusion F, < Fp2. Let R’ be the universal deformation ring
corresponding to g'; by Proposition 2.20, R’ = W (F,2)[[ti.... ,ts]] for some
d’. We will show that R'¥ = Z,[[t,.... .ts]], so that R may be recov-
ered from R'. By Proposition 2.20, R*™¥ = Z[[t;,... .t4]] for some d, so it
suffices to show that d = d’. If we show that for any residual representation

0 : G — GLy(k), there is a k-vector space isomorphism

tRunw(P) = HI(Gs a'd(é))1
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then we have

d' = dimg , H'(I1. ad(7))
= dimg , H'(I1.ad(5) ®r, F;2)
= dimg , HY(I1.ad(p)) R+, F,-
= dimg, H'(I1, ad(5)) = d.

as desired.

Let (R, g""V) be the universal deformation of a residual representation
8 : G — GLy(k). The isomorphism tgunv = H'(G,ad(9)) arises naturally
through deformations of g to the ring of dual numbers k[e], where €2 =
First. there is a k-vector space isomorphism tgune = Homw k) ( R*"Y, k[e]),
where Homyy 4 (RY™". k[€]) consists of continuous ¥ (k)-algebra homomor-
phisms reducing to the identity on k. Given ¢ € Homy (x)( R*™", k[e]), and
r € R*, let ¥ € k denote the reduction of r mod mgunv; since ¢ reduces
to the identity on k. there is some ¢'(r) € k for which ¢(r) =7 + ¢'(r)e. Re-
stricting ¢’ to mgunv gives an additive homomorphism whose kernel contains
(p. m%un ). and thus ¢'|m .., factors through a map ¢" : th.., — k which
is k-linear since o is W (k)-linear. Furthermore, since ¢ is a W (k)-algebra
homomorphism, it is completely determined by ¢'|m_,,.. so the correspon-
dence 0 «— ¢’ defines a bijection Homy:(&)(R*™", k[€]) ¢— tgunv which is
k-linear.

On the other hand, there is a natural k-vector space isomorphism

Homu () (R*"™, k[e]) = H'(G, ad(2)). (2.21)
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First, there is a bijective correspondence between Homuw (+)( R*"", k[e]) and
the set of deformations of 5 to k[e], given by ¢ «— ¢ o p"™. For any lift
0: G —> GLy(kl[e]) of 3, let ¢ : G — Ma(k) denote the set-theoretic map

satisfving

o(g) = a(g)(1 + 2'(g)e)

for all ¢ € G. Then ¢ is a l-cocycle with values in ad(g), and a lift g, of
o is strictly equivalent to g if and only if ¢| differs from ¢’ by a cobound-
ary. Thus deformations of 5 to k[e] correspond to elements of H!(G,ad(3));
in fact. this correspondence defines the desired k-vector space isomorphism
Homyy (k) ( R*™Y, k[e]) = H'(G, ad(8)), and therefore gives rise to the isomor-
phism tguev = H'(G, ad(p)). In particular, when G = [1 and p = 5, we may
conclude that if R’ = W(Fp2)([t,.... ,tq]], then R = Z[[t,,... ,t4]].

To determine the value of d. we will single out a distinguished represen-

tative for each deformation {p] of 5. We will need the following lemma:

Lemma 2.22 Suppose that p > 3. Then there ezist elements o¢,00 € [l
such that g9, 0, topologically generate I1, and p(oq), 5(0,) each have distinct

eigenvalues in Fp:.

Proof: Let 5.7, € II be any two elements which (topologically) gener-
ate [I. Extending scalars to Fy2. the matrices p(7o), p(7:) have eigenvectors
vo, V) respectively. Since g is absolutely irreducible, vy, v, form a basis for
F?.. and writing 5(7), A(1) with respect to this basis gives 5(vo) = (§ )
and p(v1) = ($9). for some a,b,c.d. f.g € Fpz. Since p is absolutely irre-

ducible, b and f are both nonzero. Rescaling vy, v; (equivalently, conjugating
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by an appropriate diagonal matrix), we may assume that b = 1. Suppose first
that only one of 5() or g(v:) has distinct eigenvalues. Then without loss of

generality, we have d # g. Now 5(vo7:) has characteristic polynomial
f(X) = X?=-(ad + f + ag) X + a%dg,

which has a repeated root if and only if (9"'—*”?51)2 = adg (since p # 2).
Similarly, (707, ') has a repeated eigenvalue if and only if (i‘i*'—‘;-"":'[)2 = a’dyg.
In particular, if both 5(707v:) and 5(77') have repeated eigenvalues, then
(ad + ag — f)? = (ad + f + ag)?; expanding gives d = —g since a # 0
and f # 0. Also, the equalities ( &{i‘l)z = a’dg and d = —g imply that
f2 = —1a®d®. If p(vo71) and p(Yov; ') both have repeated eigenvalues, then
a similar calculation shows that 5(¥3v,) has a repeated eigenvalue if and
only if f2 = —a®d?, which is impossible when p # 3 since f? = —d4ad?,
a # 0 and d # 0. Similarly, p(737,) has a repeated eigenvalue if and only if
9f% = —4a%d?, which is impossible when p # 2 since f2 = —4a%d?. Therefore,
at least one of the pairs (Yov1, 71), (Y0¥ ", 1) of (7371, ¥371) gives the desired
(00, 01).

Suppose now that 5(-), p(71) both have repeated eigenvalues. Without
loss of generality. we may assume that g(v) = (31) and p(m) = (29), for
some a.b,c € ;2. A simple calculation shows that g(ve7,) has a repeated
eigenvalue if and only if 4ab + ¢ = 0. Similarly, g(7,77:) has a repeated
eigenvalue if and only if 2ab + ¢ = 0, which cannot be the case when p # 2 if
A(~101) has a repeated eigenvalue. Therefore at least one of the pairs (7o, 1)
or (717071, 71) generates II and has the property that the image of its first

component has distinct eigenvalues. This reduces the problem to the case
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considered above. thus proving the lemma. 0

Let F be a free module over a ring R, and M an endomorphism of F'.

Definition 2.23 An element v € F is said to be an eigenvector of M (with
eigenvalue A) if there ezists some A € R satisfying Mv = Av, and v may be

completed to a basis of F.

Remark: If R is a local ring, and F is finitely generated over R, then by
Nakayama's lemma, v € F may be completed to a basis of F if and only if

the reduction of v mod mpg is nontrivial.

Proposition 2.24 Let (R.m) be a local ring with residue field k. Suppose
that M € GL3(R) does not reduce to a scalar matriz mod m. Then M has
an eigenvector in R? with eigenvalue A € R if and only if A is a root of the

characteristic polynomzial ch(M) of M.

Proof: Let Af denote the reduction of M mod m. Since M is not a scalar
matrix. there is a basis {b,,b;} of k? with respect to which Af has at least
three nonzero entries. Let b;. b, € R? be elements reducing to b;, b, mod m.
By Nakayama's lemma, {b,,b;} forms a basis for R2. Let M = (2%) with
respect to {b;.b,}. Assume that a,b.d & R* (if not, one may apply a similar
argument using the three entries of M which are units). Suppose that A € R
is a root of ch(M). Then we claim that v = b; + ( ’\—;—")bg is an eigenvector
of M having eigenvalue A. Clearly v reduces to a nontrivial vector mod m.
Expanding gives Mv = Ab; + (c+d(3-;—“)) b,. Since A is a root of ch(M),
we have (a — A)(d — ) —bc = 0, and hence A(232) = c+d(252). Substituting

into the above expression for Mv proves the claim.
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Conversely, suppose that v € R? is an eigenvector of M with eigenvalue
A € R. By Nakayama's lemma, there is a vector v/ € R? such that {v,v’'}
forms a basis for R2. With respect to this basis, M = (} }) for some b,d € R.
Thus ch(M) = (X — A)(.X —d), so A is indeed a root of ch(M). a

Conjugating p only affects p""" by conjugation. for if M € GLy(F,), then
choosing any lift A/ € GLo(R®™") of M, the deformation (RU™Y, M ptniv Af 1)
is the universal deformation of M5Af~!. Thus in order to determine R"*",

we are free to alter p by changing to any basis of Ff,. Let 09,0, be as in

tion p is completely determined by p(oo), p(0,). Extending scalars to Fp:,
we may assume (as in the proof of Lemma 2.22) that p(0) = (% 4 ) and
play) = (&' 4 ) for some ag,dg.ay.c;.d, € F,, satisfving a9 # do and a, # d:.
Fix lifts ag, 8. a1, 71, 01 of ag, dp. a;, c1, d; respectively to W (F,2). The follow-

ing lemma will suggest a candidate for p**i":

Lemma 2.25 Let (A, [p]) be a deformation of p@F,2. Then there is a unique

representative p, € [p] for which there ecist mg, my, ng, ny, n2 € my such that

ap(1l + mg) 1
pg(00) = ( )
0 50(1 +m,)

a1 (1 + ng) 0
and pg(o1) = ) .
(771(1 +n) a(l+ nz))

Proof: Let f(z) be the characteristic polynomial of p(cp). Since the roots
ag, dy of the reduction f(zr) of f(z) mod m, are distinct, f(z) satisfies the

hypotheses of Hensel’s lemma, and therefore has a root A\g € A reducing to
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ap mod m,4. By Proposition 2.24, p(cy) has an eigenvector xo € 4% with
eigenvalue Ao. Similarly, p(o,) has an eigenvector x;, € 4? with eigenvalue
A1 € A such that A\, reduces to d; mod m 4. Since g is absolutely irreducible,
the reductions Xy.X, of Xo,X; mod m, are linearly independent; hence by
Nakayama's lemma. {xo,x,} forms a basis for M. Let p; : [T — GL2(A)
denote the homomorphism obtained by writing p with respect to this basis,
so that p,(oo) is upper-triangular and p,(o,) is lower-triangular. Rescaling
{x0.x,} if necessary, we may assume that p,(go) = (3! ). Since Ag reduces
to ap and A; reduces to d;. and since p, is conjugate to p, the reduction
of p, mod m, is equal to p. Let B € GL2(A) be such that p, = BpB~'.
Since 5 is absolutely irreducible, Schur’s lemma together with the fact that
pg = p imply that B must reduce to a scalar matrix mod m. Multiplying B
by an appropriate scalar thus gives B € GL3(A). so p, € [p]. This proves the
existence of p,.

To prove uniqueness. suppose g’ € [p,] is also of the given form. Let
bo,b;.b2. b3 € m be such that B = (l;"" b ) satisfies o/ = Bp,B~'. In

14-b3

particular, we have

p'(c0) = Bpy(oe)B™! (2.26)
_ 1 . (L+bo){(1+bo)—ag(1+mq)by +b160(14m;))
= detB \ tz({ao—do)(1+b3)—b2) . )

By assumption, the lower-left entry of p'(gp) is zero, that is,

bo((ag — 8g)(1 + b3) — b)) = 0.
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Since ap — & is a unit, so is (ag — d)(1 + b3) — b, and therefore b, = 0.
Applying the same argument to the upper-right entry of p'(o,) gives b, = 0.
Putting b, = b, = 0 in (2.26) gives ¢'(90) = 3755y (2 (+2)* ), and hence

0 .
a—iﬁ-’%ﬁ = 1, which implies that by = b3, and therefore p, = p'. a

Theorem 2.27 Suppose that p > 3 and let p, 0o, 0, ag, 8, a1, M, and §,
be as in Lemma 2.25. Then R*™V(p ® F,2) = W (F,:)([to, t1, uo, uy, uz]], and
the corresponding universal deformation p"™ of 5 ® Fy2 is conjugate to the

deformation p given by

ap(l +to) 1 01(1 +UO) 0
p(do) = ) y ploy) = :
0 do(1 + ¢1) m(l+u) &(1+uy)

Moreover, R™Y(p) = Z,[[t1,. .- ,ts]]-

Proof: Given any deformation [p] of g ® F,: to A, choose p, € [p] as in

Lemma 2.25. Define a W (F2)-algebra homomorphism
o: ll‘/-(sz )[t()v Ly, ug, Uy, u2] — A

by o(t;) = m; and ¢(u;) = n; for each i, extended by W (F,:)-linearity. By

Proposition 2.10, we may extend ¢ to a continuous homomorphism
¢ M “"(Fp! )[[to, tl , Ug, Uy, UQ]] —> 4

In fact, ¢ is a morphism in DEF(p®@ F,2). To show that ¢ is unique, suppose
that ¢’ : W(F,2)([[to, t1, uo, u1, uz]] — A is another such morphism. Letting

¢’ also denote the induced map on the general linear groups, ¢'(p""¥(0¢}) and
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@'(p*"¥(0y)) are of the form given in Lemma 2.25; hence by the uniqueness
statement of Lemma 2.25, we have ¢'(p"*¥(0;)) = py(0:) for i = 0,1. This
implies that o(t;) = ¢'(t;) and ¢(u;) = ¢'(u;) for each 7, and therefore ¢ = ¢',
as desired. The final statement now follows from the discussion preceding

Lemma 2.22. O

2.6 Conditions on Deformations

If the determinant of a given residual representation g is 1 (that is, if the im-
age of p is contained in SL;(k)), then it is natural to insist that deformations
of 5 also have determinant 1. Accordingly, let DEF'(5) denote the subcat-
egory of DEF(p) consisting of only those objects (A, [p]) such that p has
determinant one. Mazur’s proof of the existence of the universal deformation
carries over to show that there is a universal object (R™", pi"V) in DEF!(p)
(see [Gou], p.68). In fact. imposing a fixed determinant on deformations of
p is perhaps the simplest example of a “deformation condition”, that is, a
property of deformations which defines a subcategory of DEF(5) in which a
universal object is guaranteed to exist. See {Gou|, Lecture 6 for a detailed

discussion of such conditions.

Theorem 2.28 Let notation be as in Theorem 2.27, and suppose that p has
determinant one. Then R{™" (5 @ Fpz) = W (F,2){[to, uo, u1]], and the corre-

sponding universal deformation p™" of pRF 2 is conjugate to the deformation
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P given by

ag(l + to) 1
p(o0) =
( 0 (ao(1 + to))—l)

01(1 +’U0) 0
and  pi(0y) = :
(m(l+u1) (e (1 +uo))“)

Moreover, Ri™Y(p) = Z,[[t1. t2. t3]].

Proof: If (4,[p]) € DEF'(p ® F,2), then the representative p, € [p] of
Lemma 2.25 has determinant one, and hence (1 + m,) = (ao(1 + mg))~",
and &,(1 + nz) = (a1(1 + no))~". Thus defining ¢ : Z,[ty, ug, u1]] — A by
#(to) = mo, &(ug) = ng, and ¢(u;) = n; gives a morphism in DEF(p).
Uniqueness again follows from the uniqueness of p,.

To obtain R{™¥(5) from R{™¥(j ® F,2). one applies the same argument
that was used above for the usual universal deformation, with two minor
changes. First, one must choose the lift of p""" to W (k){[t,,... ,t4]] in the
proof of Proposition 2.20 to have determinant one. Such a choice is possible
since the homomorphism ¢ : W (k)[{t,,. .. .t4]] — R"™" reduces to the iden-
tity on k. Also, one must check that deformations of determinant one corre-
spond to cocycles of trace zero under the isomorphism (2.21). In other words,
tpunw = H L(M, ad(5)), where ad®(p) is the subgroup of ad(5) consisting of
the trace zero matrices. Thus replacing H!(I1, ad(5)) with H'(II, ad°(5)), one
may apply the above argument to Ry, which gives the desired result. O

Given a residual representation 5 : [ — GL,(k), suppose that for some

closed subgroup I C II, the subspace of k? consisting of all fixed points
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of p(I) has dimension one. A deformation p of p to a ring R is said to be
I-ordinary if the submodule of R? of fixed points of p(I) is a direct summand
of R? of rank one. Note that the condition of being /-ordinary is preserved by
strict equivalence, and is therefore a well-defined property of deformations.
If I = (&) for some 4 € II, we will say that p is d-ordinary. By essentially the
same argument that he used to prove the existence of the universal deforma-
tion, Mazur showed in his original paper [Maz89| that there is a universal
I-ordinary deformation whenever g is itself I-ordinary. If 5 has determinant
one, then there is a universal /-ordinary deformation of determinant one.
Throughout the following, all deformations will be assumed to have determi-

nant one.

Theorem 2.29 Let 0g,0, be topological generators of Il. For p # 2, let
p : I — SLy(F,) be a residual representation which is o;-ordinary for
i =0 ori=1. Let R denote the (determinant one) o;-ordinary uni-

versal deformation ring. Then R = Z,[[t,,t,]].

Proof: By conjugating p and interchanging oy and o, if necessary, we may
assume that i = 0, and that p(go) = (} ). Moreover, every go-ordinary de-
formation p of 5 has a representative satisfying p(op) = (§ 1). Once again, we
may apply the same argument as for R*™ above to show that R is a power
series ring with coefficients in W (k), except that we must lift p“*V(g;) to a
matrix of the form (} {) and p""¥(0,) to a matrix of determinant one in the
proof of Proposition 2.20. Moreover, if R2%Y (5 ® Fp2) = W (Fp2)([t1, . .. , td]]s

then RUMY = Z,[[t,.... ,tq]]. This again follows from the above argument,

except that H'(II,ad(p)) must be replaced by H'(I1,ad3°(5)), where adg°(p)
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denotes the subgroup of adg(p) consisting of those matrices whose kernel
contains the subspace of k2 fixed by p(gp).

The last paragraph of the proof of Lemma 2.22 shows that we may assume
that o, has distinct eigenvalues (in F,2) by replacing o, with 0,04 or g¢0,09
if necessary. Thus without loss of generality, any og-ordinary deformation p
of p® Fp2 to a ring R has a unique representative of the form p(go) = (} 1)
and p(o,) = (giz‘ (M,:l)_;) for some m,, m, € mg, where o, 3 € W(F,2)
are fixed. An argument similar to that in the proof of Theorem 2.27 shows
that RV (p® Fy2) = W (Fp2)([t. t2]], where the corresponding universal de-
formation pl% is given by pit¥(aq) = (| |) and piti¥ (o) = (g::; (atti)-! )
Therefore. by the above remarks, RUMY = Z,[[t,, t2]]. a

If p(oi) ~ (' Z1). then by abuse of language we will also say that a

deformation p of j is o;-ordinary if p(o;) ~ (' *) ).

Corollary 2.30 Let oy and o, be as in Theorem 2.29. Suppose that fori =0

or 1, p(o;) ~ (' °). Then there is a universal o;-ordinary deformation

(Rord”» pora’ ), and QI = Zy[[t1, t]].

Proof: Without loss of generality, we may assume that { = 0. Given any de-
formation p of any residual representation p, let p_ denote the deformation
given by p_(a¢) = —p(0o) and p_(01) = p(0;). Since p(oo) ~ (7' 5y), we
have 5_(0q¢) ~ ({ })- Since g is absolutely irreducible, so is g_; hence by The-
orem 2.29, there is a universal op-ordinary deformation p"", corresponding
to g, with R, = Z,[[t), t2]]- The universal op-ordinary deformation of p
is given by (pUniv)_. |

Let S C Il be a finite set. We say that a deformation pof g : [ — GL,(k)
is S-ordinary if p is o-ordinary for every ¢ € S. Assuming that p is itself
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S-ordinary, we once again obtain a universal deformation (R ., piniv ).

Theorem 2.31 Let Il be as above, 0y,0, topological generators of I1. Let
S = {00,0:}, and suppose that p: [1 — SLy(F,) is an S-ordinary residual
representation. Then R . = Z,[[t]], and p¥™¥ , is conjugate to the defor-

mation p given by

1 0

11
ploo) = £ and p(o,) ==
01 a+t 1

for some a € Z,, where the sign of each p(o;) corresponds to the sign of the
p

eigenvalue 1 of p(o;).

Proof: Conjugating p if necessary and applying a similar argument to that
in the proof of Corollary 2.30, we may assume that 5(g) = (§1) and
plo) = (1Y) Fixalift a € Z, of a. Any S-ordinary deformation p of g to R
has a unique representative of the form p(ae) = (§}) and p(a1) = (oim ?)
for some m € mg. The same argument as for the universal deformations

above now gives the result. O
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3 Lowering the Field of Definition

3.1 The Cyclotomic Character

—

Let Q(t) denote the maximal algebraic extension of Q(t) unramified out-
side three places. each of which is fixed by Gal (@(t) /Q(t)), and let po, py, P2
denote the valuation ideals corresponding to these places. By Theorem 2.7,
there exist topological generators +o, 1.2 of inertia groups above pq, p1, P2
respectively, which topologically generate [I := Gal (6(7) / @(t)) , and satisfy
YoY172 = 1. By the fundamental theorem of infinite Galois theory, I1 is a nor-
mal subgroup of I'g := Gal (6(7) /Q(t)); thus I'g acts on II by conjugation.

The action of o0 € I'g on I1 is determined up to conjugation in [1 by the
restriction & of o to Q(t). Viewing & as an element of Gg via the natural
isomorphism Gal (@(t)/Q(t)) = (g, the action of o on each +; is deter-
mined up to conjugation in I1 by the action of & on the roots of unity in Q.
To make this explicit, we define the cyclotomic character x as follows: let
Z .= im Z/nZ, and fix a compatible system ((n)nen of primitive nth roots

neN
of unity (,. Given & € Gg, for each n € N we have

7(Cn) = Cv)x("(a)

for some x,(8) € (Z/nZ)™ which is independent of the choice of {,. Moreover,
this action is compatible in the sense that whenever m|n, the natural map
Z/nZ —> Z/mZ takes xn(5) t0 Xm(3). Thus (Xxn(3))nen € Z%, and we
define the cyclotomic character x : Gg — A by x(&) = (xn(F))nen. For

o € I'g, we will often write x(o) to mean x(&).
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Given any profinite group G = Lﬂ‘ G;, where each G; is finite, there
i€l

is a natural way to define exponentiation in G by elements of Z. Given

(g)ics € G. @ = (an)nen € Z, define (g;)® := (g;"*’) where n(i) = |G;|. The

compatibility conditions on (g;) and on (a,) ensure that (g; ") is indeed an

element of G.

Theorem 3.1 For each o0 € I'g and each i =0, 1,2,

¥y ~ X

where ~ denotes conjugacy in I1, and Y is the cyclotomic character.

Proof: The proof given here follows that of [MM99], Ch.I, Theorem 2.3. For
each i = 0,1,2, let p; be the valuation ideal of 6(7) such that v; generates
the inertia group /; := I (p;/p:)- Since o(p;) = p; for each i = 0, 1,2, we have
I? = I (oc(p:)/p:), and in particular v7 € I (o(p;)/p:)- Since IT acts transi-
tively on the primes above p;. there is some ¢ € II such that é (o(p;)) = pi,
and thus (¥¢)9 € I;. The group I; is generated by v, as a procyclic group, so
there is some a € Z such that (¥2)% = +¢: in particular, we have 7 ~ 2.
It remains to show that a = x(o). For each i = 0,1,2, let f; € Q(¢) be
an element which generates p; in its corresponding valuation ring. For each
i=0,1,2 Q) fi“ ")nen is an abelian extension of Q(t) contained in 6(?),
where we choose each fi” " so that they are compatible in the sense that

(f1¥y% = 1" for all k,n € N. We now fix some i =0, 1, or 2. Since

Q) (£ )nen [ QL) = Q(2),
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there is some & € ['g whose restriction to Q(¢) is &, and which fixes f, /™ for

T
———

all n. Now ~;(f;) = fi. so ’y‘-(fil/") is an nth root of f; in Q(t), and is therefore

of the form ¢, f, '/" for some nth root of unity {,. Moreover,
1

(™) = Gal QU™ /Q)

is generated by the restriction of v, to Q(t)( f,-l/ ™), so (, is a primitive nth
root of unity, and the various (,, obtained in this way are compatible under
the canonical maps. Since & restricts to &, there is some § € II such that

& = do. and hence ¥¢ ~ ¥7 ~ ¥2. Therefore, the restrictions of ¢ and 42 to

——— ab —

the maximal abelian extension Q(t) of Q(t) in Q(t) are equal; in particular,

A2 (fH™) = 43 (f™) for all . Thus we have

CrM =2 = () = dme T (M

= 5"}’i(f.‘l/n) = &(Cnfgl/n) = a(Cn)fil/nﬂ

and therefore 5(¢,) = (5 for all n, which proves that a = x(&). d

3.2 The Rigidity Theorem

In this section, we introduce the notion of rigidity, which will be used to

extend the universal deformation of a given residual representation
p: I1 — SLy(F;)

to a representation of [1x,) := Gal ( K(t)/K (.t) ), where K is an algebraic
(s8)

extension of Q and g is a collection of roots of unity in K which depends
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on p.
Let G be a group, and let Cy,...,C, be conjugacy classes in G (not
necessarily distinct). We denote by £(Cy, ... ,C,) the set of all n + 1-tuples

(go,-.- .gn) € Cop x --- x C,, which satisfy gg---9, = 1. An n + 1-tuple

(ho. ... ,hs) € G™*! is said to be locally conjugate to an element (go, ... ,gn)
of £(Co, ... ,Cp) if (ho, ..., hy) belongs to £(C, ... ,C,) and the subgroups
(go,--- -9n) and (hg,...,h,) of G are isomorphic. Note that G acts on
i(Co, ... ,Cpn) by componentwise conjugation; thus for g € G, we will write

L ... .g9.9""). Two elements of £(Cy,...,Chn)

(901 e sgn)g to mean (ggﬂg_
are said to be globally conjugate if they lie in the same G-orbit under this

action.

Definition 3.2 The n + 1-tuple (go, ... .gn) € X(Co, ... .Cyp) is said to be
rigid if every element of G™*! which is locally conjugate to (go,... ,gn) 15
globally conjugate to (go, ... ,gn)-

For any algebraic extension K of Q, let Gx := Gal(K/K), and let
[Ig := Gal (f(?)/ K(t)). where f(?) denotes the maximal algebraic exten-
sion of K'(t) unramified outside 0, 1,0c. Let v, 71, Yoo € [Ix be topological
generators of inertia groups Iy, I}, I above 0,1, oc respectively such that

Yo Y = 1.

Lemma 3.3 (BelyY) For eachi = 0,1, oc, the natural surjection [1x — Gg

has a splitting o, : Gk — [k whose image is contained in Ny, (I;).

Outline of Proof: Without loss of generality, suppose that i = 0. Let

[i={yellx: 77" = % ymy™! = X7},
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where =~ denotes conjugacy by an element of the commutator subgroup
Mg, M) of Mg, and x denotes the cyclotomic character. One may show
that restricting the natural map [Iy — Gy to [ defines an isomorphism

[ = Gg. Letting ¢; be the inverse of this isomorphism gives the result. See
[Bel80], §1 for details. O

Corollary 3.4 The group [l is tsomorphic to [l % Gk

The following theorem, which we will use to extend the universal defor-
mations of §2.6. is a variant of the rigidity theorem of Belyi, Fried, Matzat,
Shih. and Thompson. For other variants, see [Ser92], [Vol96]. and [MM99].

Let G be a profinite group, and r the natural map G — G/Z(G). Given
any homomorphism p#°™ : [Ii — G. let p denote the set of all nth roots
of unity in A for which p#°™(+;) has exact order n in some finite quotient of

G forsome i =0.1.2c.

Theorem 3.5 Suppose that (p**°™(¥o), /5™ (1), ™ (Vo)) forms a rigid
triple in G. Suppose moreover that Zg(Im(p#™)) = Z(G).

(1) The composed map p*°™ := r o p&°™ : [Ii — G/Z(G) extends uniquely
to a homomorphism p : N,y — G/Z(G).

(2) Let o; be as in Lemma 3.3, and suppose that for some i the inclusion
Z(G) = r7' (po 0i(Grw))) splits. Then pE™ ertends to a homomorphism
p : HUxuy — G which is unique up to multiplication by a homomorphism
v:Gp — Z(G).

Proof: Let v € Ilg(,). By Theorem 3.1, yyy~! ~ ¥ in Iz for each
i = 0. 1.oc. and hence p&°™ (v~ 1) ~ pE™(~)X") in G. Let H be any finite

quotient of G, and let n be the order of the image of p&*™(~;) in H. Since
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v fixes A'(u) pointwise and K (u) contains all of the nth roots of unity in
K, we have x(7) =1 mod n. Therefore p8°™(v;)X(") = pE=°™(~.) and hence
PEEO™ (4} ~ pBM(~~.~~1) in G. For each i = 0, 1, 00, let §; = pB*°™(~,), and
6] = P (v%y~!). Since (8o, d1.0x) = (dg.07,0%) = ImpE™, (87,67.62,)
is locally conjugate to (dp.6;.04) in G; thus by the rigidity of (g, d;,8x),
there is some g, € G such that g.,o}g.;‘ = §] for each i = 0,1, 00. Define a

set-theoretic map p : llg(,) — G/Z(G) by
p(v) =r(9,) € G/Z(G)

for all v € I1x(,). We claim that p is a homomorphism extending p8*°™. Note
that r(g,) is uniquely determined since Zg(Imp#*°™) = Z(G); thus to show
that p is a homomorphism, it suffices to show that given v.v" € IIx(,), we

have

9+9v0:95' 95" = =T (v vy " )

for each ¢ = 0.1.oc. In fact. since v, 7,7~ generate Ilz, we have
PO (voy~!) = g,pE°™(0)g;! for all o € Mg, so p is indeed a homomor-
phism. The uniqueness of p follows from the uniqueness of r{g,) and the
fact that for any homomorphism p : MIx) — G/Z(G) extending p&*°™,
A(yviv™") = (7)E*™ (7:)p(v) ! for each i =0, 1, 00.

To prove (2). choose i so that the inclusion Z(G) < r~! (50 0i(Gk(y)))
splits. Let N = r~! (po ¢:(Gk(u)) C G. Since the inclusion Z(G) — N

splits. the surjection r|y : N — N/Z(G) is split by some homomorphism
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v : N/Z(G) — N. Thus we obtain a homomorphism
vopoo;:Gru —G.

By Corollary 3.4. Mg (y) = 5 2 G gy, so writing v € Mg, as v = a8 where
a € [l and 3 € ¢:(G x(y)). we may define a homomorphism p : [y — G
extending p8%°™ by p(v) = p#°™(a)vop(3). The uniqueness statement follows

immediately from that of (1). c

3.3 Rigidity in GLy(R"™)

The universal deformation rings of Theorems 2.28. 2.29. and 2.31 are power
series rings over Z,; in particular. they are local unique factorization domains
(UFDs). Thus in order to extend the corresponding universal deformations
using Theorem 3.5. it is necessary to study rigidity in GL2(R), where (R, m)
is a local UFD with residue field k. We will show that if p is a determinant
one deformation of a residual representation p : [ — GL,(k) to such a ring

R. then (p(70). p(1), p(¥ac)) 1s rigid in GL(R).

Definition 3.6 For any domain R, a subgroup G of GL,(R) ts said to be
irreducible if there is no eigenvector common to all elements of G in any
domain containing R. The subgroup G is said to be acentral in GL,(R) if
the centralizer Zy1,(r)(G) of G in the matriz ring M,,(R) consists only of the

scalar matrices.

If R = k is a field. then G is irreducible if and only if the identity map of
G is an absolutely irreducible representation; moreover, by Schur’s lemma,

every irreducible subgroup is acentral (see [Isa94], p.145).
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Proposition 3.7 Let (R, m) be a local domain with residue field k, and sup-
pose that Mg, M; € GLy(R) have the property that the reductions My, M, of
My, M, mod m generate an irreducible subgroup of GL;(k). Then for any
domain R' O R, the subgroup of GL2(R') generated by My and M, is both

irreducible and acentral.

Proof: Let )\g, A\, be eigenvalues of My, M, respectively in some domain
containing R. Since Ag and A, are integral over R, there is a maximal ideal p
of R[Ao, A] lying above m (see {Lan93], Ch. VII, Propositions 1.10, 1.11). Let
Vo, Vi € R[Ag, A2 be eigenvectors corresponding to Ag, A, respectively. The
reductions of vo and v; mod p must be distinct, for otherwise R[Ag, A{]p/p is
an extension of k in which Ay, M, have a common eigenvector; in particular,
vo and v, are distinct. Therefore M, and M, generate an irreducible subgroup
G of GL,(R), and hence also of GL,(R’) where R’ is any domain containing R.
Furthermore. G is an irreducible and thus acentral subgroup of GL; (Qu(R')).

Since

ZaLyr)(G) = ZgLy(Qur)(G) n GLy(R)),

G is also an acentral subgroup of GL,(R'). a

In proving the rigidity of certain triples (Mg, M, M;) of matrices in
GL2(R), the easiest case occurs when M, and M, both have eigenvalues
in R. The following lemmas will allow us to extend R to a domain in which

My and M, have eigenvalues, then descend to obtain conjugacy in GL,(R).

Lemma 3.8 Let L be a quadratic extension of a field K. Suppose that the
pair My, M, € GL2(K) generates an irreducible subgroup of GLy(K), and
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that (M}, M|) € GLy(K)? is conjugate to (My, M) by an element of GL,(L).
Then (Mg, M) is conjugate to (Mo, M,) by an element of GL2(K).

Proof: Let o denote the nontrivial element of Gal(L/K’), and G the sub-
group of GL,(R’) generated by Afy and M,. Let M € GL;(L) be such that
MAGM=! = M] for i = 0. 1. Since M,. M! € GL,(R), applying o gives

a(M)Mio(M)™ = M' = MMM,

and therefore M~'o(M) € Zy,)(G). By Proposition 3.7, since G is an ir-
reducible subgroup of GL,(A), it is an acentral subgroup of GL,(L). Thus
M-to(M) = ¢Id for some { € L. Applyving o to the equation o(M) = (M
gives M = o({)o(M) = o(¢)(M. and therefore ({)( = 1. By Hilbert’s
Theorem 90. there exists some a € L* such that { = 507~ Hence we
have o(a)a(M) = aM. so aM is invariant under Gal(L/K'), and therefore
aM € GL,(R). Conjugating each M; by aM gives (aM)M;(aM)™! = M!,
as desired. O

Lemma 3.9 Let (R,m) be a local UFD with residue field k and quotient
field K. Suppose that the reductions mod m of My, M, € GL2(R) together
generate an irreductble subgroup of GLy(k). and that (M}, M]) € GL2(R)? is
conjugate to (Mg, M,) by an element of GL(K). Then (My, M}) is conjugate
to (Mg, M) by an element of GL2(R).

Proof: Let Ml € GL,(K) be such that MAM;M~! = M/ for ¢ = 0, 1. Muiti-
plying M by a suitable scalar, we may assume that M € My(R), det(M) # 0,

and det(M) has minimal m-adic valuation among all such multiples of M.
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Let M* = det(M)M~! € My(R). If det(M) € R then we are done. Other-
wise, there is an irreducible element a € R which divides det(M). We will
show that a divides each entry of M, and therefore iM € M,(R) is such
that det(%.’l! ) has lesser m-adic valuation than det(M), contradicting the
assumption on Af.

Since R is a UFD and «a is irreducible, p = (a) is a prime ideal. Let G be
the subgroup of GL;(R) generated by My and M, let k= Ry/p, and let G
denote the subgroup of GLy(k) obtained by taking the mod p reduction of
G viewed as a subgroup of GL;(R;). The diagram

R——~R,

L

mﬁaa'

l

k

commutes. where the injection R/p — k is obtained by viewing k as the
quotient field of R/p. Since & is the residue field of R/p and the reduction G
of G mod m is an irreducible subgroup of GL;(k), by Proposition 3.7, the
reduction of G mod p is an irreducible subgroup of GL2(R/p); hence G is an
irreducible subgroup of GLg(l.c). Therefore, G generates the E-algebra Mg(in‘)
(see [Isa94]. p.145).

For any A € My(R), let A € M,(k) denote the element obtained by
viewing A as an element of M;(R,) and reducing mod p. Each Ae Mg(l})

may be expressed as a k-linear combination of elements of G, say

A=éagdg+ -+ a4,
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For each i = 0,....r, choose 4; € G reducing to 4; mod p, and a; € Ry
reducing to a; mod p. Since A; € G = (M, M,) foreach i =0,...,r, the
lift A = agdo + -+ + a,4, € My(R,) of A satisfies MAM~' € My(R,).
Hence Af AM" € det(M)M,(R,). and reducing mod p gives M AM* = 0. Let
M = (2%). Taking 4 = (}) gives 0 = MAN" = (:gg ;Z) and hence
a = ¢ = 0. Taking A = ({9) similarly gives b = d = 0 and therefore M = 0;
that is, Af € My(p), so a divides each entry of M, which gives the desired

contradiction. O

We now prove the main result of this section:

Theorem 3.10 Let R be a local UFD with residue field k. and suppose that
(Mo, M, AM;) is a triple of matrices in SLo(R) satisfying MgM M, = 1,
whose reductions mod m together generate an irreducible subgroup of GL,(k).

Then (Mo. My, M) is rigid in GLo(R).

Proof: Let A’ = Qu(R). and L = A'(Ag, A), where Ag, A, are eigenvalues of
M. M respectively. Choosing a basis for L?, we view M, and M, as linear
transformations of L? with respect to this basis. By Proposition 3.7, M,
and M, generate an irreducible subgroup of GL.(R), and also of GLo(L);
hence choosing eigenvectors vy, v, € L2 corresponding to the eigenvalues
Ao, A1 gives a basis {vo.v,} for L?. Writing (My, M;, M;) with respect to
this basis gives a triple (Mp, M,. M;) globally conjugate to (Mg, My, M) in
GLo(L) such that My = (g art) and M, = (i 591) for some a, 3,8,v € L*.
Rescaling {v, v, } if necessary, we may assume that v = 1.

Let (Mg, M|, M;) be any triple of matrices which is locally conjugate to
(Mo, My, M;) in GL2(R), and which satisfies MgM{M; = 1. Since My ~ Mj
and M; ~ M[, Ao, Ay € L are eigenvalues of Mg, M| respectively. Thus by

-
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the same reasoning as for (M, M;, M) above. there is a triple (M}, M}, M3)
globally conjugate to (M{, M}, M) in GLg(L) such that M) = (2 _L,)
and M! = ( . B,, ) for some o', 3',8' € L*. Now My ~ M} implies that
Tr(Mp) = Tr(M}); that is, a+a~! = o/ +a’~!. Hence (a — &')(aa’ = 1) =0,
and therefore a = o’ or a = &' If a = o'7! # o, then conjugat-
ing (Mo, M\, M) by M = (,_L-19) gives MMM~ = (7' 1) and
MMM = (*T B,o_l). Thus replacing (M}, M}, M3) with (M}, M}, M3)™
if necessary, and renaming a’,4’ accordingly, we have a = a'. Similarly,
Tr(x\?l) = Tr(ffl') gives 3 = 3 or 8 =73"'1If 3 = 3" # 3, then tak-
ing M = (6’ gt =g’ ) gives MM M~ = M} and MMM~ = (B;,‘ g,) so
replacing (M}, M{, M) with (M}, M}, M3)M if necessary gives 3 = 3, and
does not affect Af}. Multiplying gives

- L 13-t —3-!
."[2 = (.‘"!o.‘\![)_l = * B ’
—a ' aB+46

and similarly for Mj; thus the equation Tr(M;) = Tr(M}) becomes
a '8 '+aB+5=a" ' +a'B + ¢,

and therefore & = §'. Thus we have shown that (Mo, My, M) = (M}, M}, M3);
in particular, (Mg, M), M,) is globally conjugate to (My, M|, M;) in GL2(L).

In order to obtain global conjugacy in GLy(R), first note that either
L = K(Xo) or L is a quadratic extension of K()\g). In the latter case, by
Proposition 3.7, My, M, generate an irreducible subgroup of GL2(K(X\)):
hence by Lemma 3.8, (M, M,, M,) is globally conjugate to (Mg, M;, M3) in
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GL2(A (Ag)). Applying Lemma 3.8 again if necessary (that is, if K(\g) # K),
we find that (M, M), M) is globally conjugate to (Mg, M|, M;) in GLy(K).
Since R is a UFD, by Lemma 3.9, (M, M;, M,) is globally conjugate to
(Mo M}, ML) in GLo(R). Therefore. (Mo, M, M,) is rigid. O

A similar argument to that in the proof of Theorem 3.10 can be used
to prove the result for any local domain R, provided that My and M, both
have eigenvalues in R. In this case, it is not necessary to pass to the field L;
the arguments used above can be applied in R itself. In fact, this argument
can be extended to prove the result for any local domain R provided that
at least one of My and M, has an eigenvalue in R, although the details are
significantly more complicated. New difficulties arise when neither M, nor
M, has an eigenvalue in R, and it is not clear whether the assumption of

unique factorization is necessary in this case.

3.4 Extending the Universal Deformation

We will now use the rigidity theorem of §3.2 to extend the universal defor-
mations of §2.6 to representations of a larger Galois group. Let K be any

algebraic extension of Q, and let 14, vo, 1. ¥ be as in §3.2. Let
P : g — SLy(R)

be any representative of one of the following universal deformations:
(1) the {~o,:}-ordinary universal deformation of Theorem 2.31, in which
case R = Z,[[t]};

(2) the v;-ordinary universal deformation of either Theorem 2.29 or Corol-
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lary 2.30, in which case R = Z,[[t,, t,]]; or
(3) the (determinant one) universal deformation of Theorem 2.28, in which

case R = ZP[[tl,tg, tg]].

Theorem 3.11 The projectivization
A" g — PGL2(R) = GLy(R)/R*

of p can be extended uniquely to a representation p : Ilg(, — PGL2(R),

where p is as in Theorem 3.5

Proof: Since (7). 5(71), /(7<) generate an irreducible subgroup of GL3(F;)
and R is a local UFD, by Theorem 3.10, (£8°™ (%), 2™ (M), P2°™(Y0)) is
rigid in GL,(R). By Proposition 3.7, p8°™(~+y) and p#°™(y,) generate an
acentral subgroup of GL2(R), so ZgL,(g)(ImpE*™) = R* = Z(GL,(R)). The
result now follows from Theorem 3.5(1). g
Remark. Given a residual representation g : [Iz — SL;(F,), let m denote
the prime-to-p part of iJS,Tw(o(ﬁ(A/‘)))’ where o(5(7;)) denotes the order of
A(7i) (in particular, m | p?> — 1). Let u,, denote the set of mth roots of unity
and ppo the set of all p"th roots of unity in K. Note that the kernel of
the reduction map GL;(R) — GL,(F}) is equal to 1 + M;(m) = M;y(m),
and Mz(m) = lim M;(m/m") is an inverse limit of p-groups, so the image of
PE°™(+;) in any finite quotient of GL,(R) has order dividing p"m for some
n. Therefore, K(u) is contained in K (pim, fp=).

Let p denote the residual representation of p&8*°™. If 5(;) has an eigenvalue

in F, for some i = 0.1, oc, then the above result can be strengthened.
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Theorem 3.12 If p8*°™ is the universal deformation of case (3), suppose
that p(v;) has distinct eigenvalues in F, for some i = 0,1,00. Then in all
three cases, pP*°™ extends to a representation p : Ilx(,) — GL2(R) which is

unique up to multiplication by a representation ¥ : Gk, — R*.

Proof: Let p be as in Theorem 3.11. With the notation of §3.2, if we show

that for some i the inclusion
Z(GLy(R)) = r~'(p o 0i(Gk(w))

splits, then the result will follow from Theorem 3.5(2). In all three cases,
P5%°™(+;) has a rank one eigenspace V' C R? for some i = 0,1,00 (in case
(3). this follows from the argument of Lemma 2.25). Fix such an ¢, and
let ¥V = r"!(po ¢i(Gk)))- We claim that N fixes V'. From the proof of
Lemma 3.3, for each v € ¢;(Gk(y)). we have vy,y~! = v¥). applying pgeom
gives pE°™ (vyi77!) = pPo™(%,)X"). Since K () D K'(pm, ptp=), and p5™(v;)
has order dividing p®m (for some n) in every finite quotient of GL,(R), we
have p8%9m (4,}X(7) = pBM(y,) S0 8% (y7,y~1) = pEom(~,). From the defini-
tion of p in the proof of Theorem 3.5 and the fact that ker(r) = Z(GL(R)),
it follows that p8*™(yvy;y~!) = g,p8°™(v:)g;"' for any g, € r~'(p(7)). Every
M € N can be obtained as g, for some v, so M (y;) M ™! = ps*™(~;) for
all M € V.

Let A be the eigenvalue of p8°™(7;) corresponding to V = Rv. Since
MpE=om (v )M ~'v = Av, we have

P (M ™v) = AM ™y,

(41}
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so M~'v is an eigenvector of p8°™(v;) with eigenvalue A. Since V is the
full eigenspace of p#%°™(~;) with eigenvalue A, we must have M~'v € V.
Therefore, N fixes 17, as claimed. Thus each M € N induces a linear map on

R?/V", which is a free R-module of rank one. Fixing an isomorphism
GL(R?/V) = R* = Z(GL2(R))

gives the desired splitting. a
If the residual representation p is <¥;-ordinary, the universal property of

the determinant one universal deformation p""" gives a map R'"" — RUMY

which takes any extension of p""" to an extension of p!"'. Similarly, if p

is S-ordinary, where S = {v,v}. we obtain maps R — R . and

RUMY, o — R 4 for each i = 0, 1, which take extensions of p"™* and pi", 4

respectively to extensions of pi"Y .. Furthermore, the map R"™¥ — RYY

factors through both maps RY™Y , — RY™MY , via the map R“™Y — REPY

discussed above.



4 Geometric Construction of Universal De-

formations

4.1 Jacobians of Curves

Fix an odd prime p. Let p : [Ig — GL,(F,) be the representation describing
the action of [lg on the p-torsion points of the Legendre family E; of elliptic

curves over QQ(t), given by the equation
EL:y?=x(x - 1)z -t).

Let g™ : [1 — GL;(F,) denote the restriction of 5 to Il = Ilg, and let
09,01,0 € Il be generators of inertia groups at 0,1, o0 respectively such
that ogo10 = 1. Then p&*°™ is an absolutely irreducible representation
characterized up to conjugation by the property that #*°™(g,) and g™ (0,})
both have order p and 7#*°™(0,) has order 2p (see [Dar00], p.419). Let
S = {o09.0,}. In this chapter. we give an explicit geometric construction
of the S-ordinary universal deformation p&" , of p*°™. In fact, the repre-
sentation that we construct will be a representation of the larger Galois group

Mg, ). and thus will be the extension of p§™? ; given in Theorem 3.12(1).
Let A be a field.

Definition 4.1 An abelian variety A over K is a complete variety over K
together with a group law p : A x A — A which is a morphism defined over

K. and for which the inverse map a — a~! is also a morphism defined over
K.

(4]}
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A morphism of abelian varieties is a morphism of varieties which is also
a homomorphism of the underlying groups. The group law on an abelian
variety is commutative (see [Lan83], Ch.1I, §1, Theorem 1). Note that an
abelian variety of dimension one is simply an elliptic curve. When K = C,
the classical uniformization of elliptic curves E/C may be generalized to
abelian varieties A/C of arbitrary dimension g. A lattice A of 7 is a free

Z-module of rank 2g which has a basis which is also an R-basis for C7.

Theorem 4.2 Let A/C be an abelian variety of dimension g. There ezists a

lattice \ of C9 and a complez analytic group isomorphism

Proof: See (Mum?70], Ch.I, §1(2). a

We now describe how to associate an abelian variety Jac(C)/K to any
complete nonsingular curve C/K of genus g > 0. A divisor D on C is a formal
finite sum of K-rational points on C, that is D = Y npP, where each

PeC(K)
np € Z and np = 0 for almost all P € C(K). We write Div(C) for the abelian
group of divisors on C, where the sum of two divisors D; = )  npP and
PeC(K)
D, = Y mpP is given by
PeC(R)

D\ +Dy= Y (np+mp)P.
PeC(K)

Given a rational function f € K(C)*, we define the divisor (f) of f to be

(f)y = Y ordp(f)P, where ordp(f) is the order of vanishing of f at P. A
PeC(K)
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divisor on C is said to be principal if it is the divisor of some f € K(C)*,
and the subgroup of Div(C) consisting of all principal divisors is denoted by
Pr(C). Two divisors Dy, D, € Div(C) are said to be linearly equivalent if
D, — D, € Pr(C). The group of linear equivalence classes of divisors on C is

called the Picard group of C, and is denoted Pic(C); thus
Pic(C) = Div(C)/Pr(C).

Given any divisor D = Z_ neP on C, the degree deg(D) of D is defined
to be deg(D) = Z_ rplic.‘(fi‘)he group Pr(C) is contained in the subgroup
Div®(C) of Di\'(é?cé:;sisting of the divisors of degree zero (see [Har97],
Ch.II. Corollary 6.10), and thus we may define the degree zero part of the
Picard group to be Pic’(C) = Div?(C)/Pr(C).

The absolute Galois group G of R acts naturally on Div(C) by
o ( > npp) = Y npa(P)
PeC(K) PeC(K)

for o € Gg. Furthermore, for any 0 € Gg. two divisors D, and D, are
linearly equivalent if and only if (D)) and o(D;) are. Thus the action of
Gx on Div(C) induces actions on Pic(C) and Pic’(C).

For any P € C(K), let

fP . C(R) — Pic*(C)

be the map which takes Q € C(K) to the linear equivalence class [Q — P] of



Q-P.

Theorem 4.3 The group Pic’(C) can be given the structure of the K-ra-
tional points of an abelian variety Jac(C)/K of dimension equal to the genus
of C in such a way that for each P € C(K), fF is an embedding, and Jac(C)
satisfies the following universal property: if @ : C — A is a morphism
from C to an abelian variety A such that ¢(P) = 0, then there is a unique

morphism of abelian varieties ¥ : Jac(C) — A such that the diagram

fP
C —Jac(C)

N

4

commutes.

Proof: See [Mil86b], Proposition 2.3, Proposition 6.1, and Theorem 1.1. O

The abelian variety Jac(C) is called the Jacobtan of C. The universal
property of the Jacobian shows that assigning to a curve its Jacobian defines
both a covariant and a contravariant functor from the category of complete
nonsingular curves with nonconstant morphisms to that of abelian varieties.
Given complete nonsingular curves C, and C;, and a nonconstant morphism
0 : C; — Cy, the map f®P) o : C; — Jac(C,) satisfies foP) o gp(Py) =0
for each Py € C;. The universal property of Jac(C;) gives a morphism of
abelian varieties ¢, : Jac(C;) — Jac(C3;). In terms of divisors, ¢, is given

by

0. [SneP| — [T neo(P)].

In particular, ¢, is independent of the choice of P, above. On the other hand,
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for each @ € (5, let e,(Q) denote the ramification index of ¢ at Q. Fixing a

point Qo € C, there is a morphism f; : C;, — Jac(C,) given by

fo:@— | Y e@P - Y es(Q)P
Peo=}(Q) Peo=1(Qo)
which satisfies f,(Qo) = 0. The universal property of Jac(C;) gives a mor-
phism of abelian varieties ¢* : Jac(C,) — Jac(C,), which is given in terms

of divisors by

QEC: QEC2  Peo~H(Q)

o : [Z nQQ] — [Z nQ Z e,,(Q)P] .
Once again. ¢° is seen to be independent of the choice of 5 above.

4.2 Tate Modules and /-adic Representations

Let A/K be an abelian variety of dimension g, and fix a prime £ not equal to
the characteristic of K. For each integer m € Z, there is an endomorphism
[m] : A(R) — A(K) of A defined over K given by multiplication by m. We
write A[m] := ker[m], and call the elements of A[m| the m-torsion points of
A. For each positive integer m not divisible by the characteristic of K, we have
deg[m] = m%¥ (see [Mil86a], Theorem 8.2). Applying this equality to every
positive integer d dividing m shows that A[m] is isomorphic to (Z/mZ)%.
As m ranges through powers of ¢, the £*-torsion points together with the

multiplication-by-¢ maps (€] : A[f"*!] — A[f*] form a directed system of
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groups. The inverse limit

Ty(A) := lim A["]
neN
is called the (¢-adic) Tate module of A. The Tate module T,(A) is naturally
a free Z,module of rank 2g, where the action of a € Z, on A[€"] is given by
multiplication by the reduction of @ mod ¢". This action preserves compat-
ibility under the multiplication-by-¢ maps, and thus defines an action of Z,
on T,(A4).

Since the addition law on A is defined over K, the action of Gx on A
commutes with [m]. Thus restricting to .4[m] gives an action of Gx on A[m)].
Moreover. since this action commutes with the multiplication-by-¢ map. we
obtain a Zlinear action of Gy on T;(A). Choosing a Z,basis for T;(A) gives

a homomorphism
pe: G — Gng(Zt),

called the ¢-adic representation associated to A.
We define the ertended Tate module V¢(A) := Ty(A) @z, Q. which is a
Q,-vector space of dimension 2g, together with a Q,-linear action of G . This

action gives a representation

pe : Gk — GL2(Qy),

which may be obtained from the ¢-adic representation by extending scalars

to Q.
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Let v : A — B be a morphism of abelian varieties. Since ¥ is a group
homomorphism. it maps ¢*-torsion points of .4 to £"-torsion points of B, and
commutes with the multiplication-by-¢ maps on each side. Thus v induces a

Z,module homomorphism
U : Te(A) — To(B)

by applyving v componentwise, that is, ¥¢ : (@n)nen — (w,(a,,))neN, where
an € A[€"] and [€la, = a,-, for each positive integer n. We will also write v,

for the map Vy(.A) — V;(B) obtained by tensoring with Q.

Proposition 4.4 Let ¢ : C, — C, be a nonconstant morphism of complete
nonsingular curves defined over K. and let ¢; : T; (Jac(C,)) — T, (Jac(C)))

denote the map tnduced from 0" : Jac(C,} — Jac(C,). Then ¢, is injective.

Proof: Let 0° : Div(C;) — Div(C};) denote the map given by

oY ngQ— Y ng Y elQ)P.

QeC: QEC:  Peo~1(Q)

Suppose that D € Div’(C,) is such that ¢°(D) = (f) for some f € K(C)).
The map o induces an injection of function fields K(C;) — K (C,), and we

have

- K(Ch) - -
!\ormmcn)(f) =dego - D.

In particular, the image of D in Pic®(C,) = Jac(C,) is a degg-torsion point.

If t € Ty(Jac(C2)) is such that ¢;(t) = 0, then everv component of ¢ is a
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dego-torsion point. and thus ¢ is itself a degg-torsion point of T, (Jac(C,)).
Since T, (Jac(C,)) is a free Z,-module, we must have ¢ = 0. a
Remark: Since Q, is flat over Z, (see [Lan93], Ch. XVI, Proposition 3.2),

the map @] : V¢ (Jac(C,)) — V; (Jac(C,)) is also injective.

4.3 Reduction of Curves

Let KA be a field of characteristic zero, C/K a complete nonsingular curve of
genus g > 0, and p a valuation ideal of K with corresponding valuation ring
R. For any valuation ideal p of K above p, the action of the inertia group
I (p/p) on the Jacobian of C is closely related to the reduction type of C

at p.

Definition 4.5 A R-model M of a variety V/KR is a set of equations with
coefficients in K. taken up to multiplication of each equation by elements of

-

K. such that M defines an element of the K -isomorphism class given by \

A particular set of equations in the equivalence class M will be called a
defining set of equations for M. We will say that a defining set of equations
for M is p-reducible if all of its coefficients lie in R, and each equation has at
least one coefficient not in p. The reduction M of M at p is the variety defined
over the residue field £ = R/p obtained by reducing mod p the coefficients
of a p-reducible set of equations for M. Fixing a valuation ideal p of K above
p with valuation ring R, we obtain a reduction map r : M(K) — M(k) by
choosing for each K-rational point of M an expression which has projective

coordinates in R but not all in p, and reducing the coordinates mod p.

64



Definition 4.6 The curve C/K of genus g is said to have good reduction at
p if it has a R -model whose reduction at p is a nonsingular curve of genus g.
An abelian variety A/K of dimension g is said to have good reduction at p if

it has a K -model whose reduction at p is an abelian variety of dimension g.

If C (respectively A) has good reduction at p, we will often identify C
(resp. K) with a A-model whose reduction is as in Definition 4.6. In this
case, the reduced curve (respectively reduced abelian variety) is independent
of the choice of such a A'-model. If C or A does not have good reduction at
p. then we sav that it has bad reduction at p.

Jacobians are well-behaved with respect to good reduction in the sense
that if C has good reduction at p then so does Jac(C), and in this case,
the Jaccbian of the reduction of C is the reduction of Jac(C). The converse,
however. is not true: there exist curves with bad reduction at a valuation
ideal p whose Jacobians have good reduction at p (see [Maz86], p.238 for an

example).

Definition 4.7 A representation p of G is said to be unramified at p if
p(I (p/p)) = 1 for each valuation ideal p of K above p. Equivalently, p is
unramified at p if p is unramified in the ertension of K corresponding to the

quotient G /ker(p).

Proposition 4.8 Let ¢ be a rational prime not below p. If the abelian variety
A/K has good reduction at p, then the €-adic representation p, attached to

A is unramified at p.

Proof: It suffices to show that the representation pgem : Gx — Aut(A[C"])

describing the action of Gk on the #*-torsion points of A is unramified for
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each n. Let A denote the reduction of A at p, and let p be any valuation ideal

of K above p. The reduction map restricts to an isomorphism
Ao =, 3

(see [ST68], §1, Lemma 2). Since A[¢"] and A[¢"] are both free Z/¢"Z-modules
of rank 2dimA = 2dimA, counting gives A[¢"]/®/?) = A[]. O
Remark: The converse to Proposition 4.8 is also true, and is known as the
criterion of Néron-Ogg-Shafarevich. To be precise, if p, is unramified at p for

some € not below p. then A has good reduction at p (see [ST68], §1).

4.4 Mumford Curves

When a curve C/A has a special type of bad reduction at p, strong informa-
tion can be obtained about the action of the inertia groups above p on the
Tate module of the Jacobian of C. To make this precise. it will be useful to
have an alternative description of the inertia group. Let K and F be fields,
and let @ : K — F U {oc} be a nontrivial place of K with valuation ring
R and valuation ideal p. as in §2.2. Let A, denote the completion cf K at p,
which is the quotient field of the completion of R with respect to the p-adic
topology. Let L be a Galois extension of K, p a valuation ideal of L above p,

and L; the completion of L at p. The extension L;/ K, is Galois.

Proposition 4.9 The map r, : Gal(L;/K;) — Gal(L/K) given by re-
striction to L defines an isomorphism of Gal (L;/K,) onto the decomposition

group D (p/p).
Proof: See [Ser68]. Ch.II, §3, Corollaire 4. a
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Now let K = k(t), where k is an algebraically closed subfield of C. For
each P € P'(k), let ¢p : K — kU {o0} be the place given by ¢p(f) = f(P)
for f € R (see §2.2). Identifying P'(k) with k£ U {oc}, the completion Kp of

K with respect to @p is given by

k((t— P)) if Pek,
Rp =
k(L) if P = oo,

Let p be the valuation ideal of A at P, and p a valuation ideal of K above p.
Then I (p/p) = D (p/p) may be identified with Gal (Kp/Kp) as in Proposi-

tion 4.9. Moreover. we have

Uk((t-P)/) ifPek

Kp =N

Uk(((hm)  ifP=sc.

neN

Understanding the action of the inertia group 7 (p/p) on the K-rational
points of an abelian variety A/R is equivalent to understanding the Galois

action on the A p-rational points of A (as a variety over Ap).

Definition 4.10 4 complete nonsingular curve C/Kp is called a Mumford
curve if it has a Kp-model whose reduction (at P) is a union of projective

lines whose only singularities are ordinary double points.

Mumford proved the existence of the following uniformization, generaliz-

ing a theorem of Tate in the case of elliptic curves.
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Theorem 4.11 Let C/Rp be a Mumford curve of genus g, and J its Jaco-

bian. Then there is a surjective group homomorphism
v: (Kp) — J(Kp)

commuting with the action of Gk, on each side, whose kernel is a discrete

subgroup of (K 5)° freely generated by elements q,. ... g5 € (K3)°.

Proof: See [Gv80]. Ch. VI, §§1.3.1.4. That a Mumford curve in our sense
is indeed a Mumford curve in the sense of (Gv80] may be found in [Gv80).
Ch.IV. Theorem 3.10. O
Remark: Theorem 4.11 remains true if A'p is replaced with any field which
is complete with respect to a non-archimedean valuation.

Let p and p be as above. Let ¢ be a rational prime, and let p, be the

{-adic representation associated to the Jacobian of a curve C/K of genus g.

Corollary 4.12 Suppose that C becomes a Mumford curve over Kp. Then
for each o € I (p/p), we have

Id; =
pe(a) ~ .
0 Id,

where Id, denotes the g x g identity matnriz.

Proof: Since the isomorphism v of Theorem 4.11 commutes with the action of
G i ». it suffices to consider the action of Gk, on the £"th roots of the identity
in (ﬁ;)g / (g1.... .q4). Choosing a primitive *th root of unity ¢, € Kp, the
subgroup of £*th roots of the identity in (F;)g /{a.... .qy) is generated by
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the cosets of (s, 1,...,1),(1,¢n 1,---,1),-..,(1,...,1,(,), together with

"th roots of q;,...,qe. Fix €'th roots q}m,... ,q;/lﬂ of q1,...,q. Each
o € Gk, fixes each of ((,,1,...,1),...,(1,...,1,(a), and since each g; is

an element of (K'%)’, o takes ¢)/*

;' to another ¢"th root of ¢;. Hence

[ Aid i ; [id
0g!!" = (..., C)gY

for some ji,...,j; € Z/€Z. Therefore, with respect to the Z/€"Z-basis
{(Cnr 1, ... 1), (1, ..y 1Ga)y g1y - - -, gg} for the £7th roots of the identity
in (Kp)?/{qi.--- ,q,), 0 acts as ("3’ d, ) The result now follows from the

discussion preceding Theorem 4.11. a

4.5 Hypergeometric Families of Curves

Fix an odd prime p, and consider the so-called hypergeometric family of

curves over QQ(t) given by
Co: ¥ =z (2% + (4t -2)z” +1)

for each n > 0. Let (, be a generator of the group uy« of p"th roots of unity

in Q. The group u,» acts as a group of automorphisms on C, by
L)
Cn : (.'lf, y) = (Cn-t’ Cﬂ : y)'

We will denote by 7, the automorphism of C,, given by the action of ¢, in
order to distinguish the group ring Z,[vn] = Z,[upn] from the subring Z,[(n]
of the field Q,(¢,). We will also identify pp- with the automorphism group
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generated by v,.
In addition to the hyperelliptic involution (z,y) — (z,~-y) and the

action of ypn, there is also an involution 1, of C, given by

Iy
Tn - (.r,y) — (;' Ip"+l) :

Note that 7,04, = v, ! o7,. so the automorphism group (7, v,) is isomorphic
to the dihedral group of order 2p". Tautz, Top, and Verberkmoes studied C,
and its quotient C; = C,/(r,) in [TTV91] (see in particular Theorem 1
and Proposition 3). For any odd prime r, the Galois representation on the
r-torsion points of the Jacobian of C| was subsequently studied by Darmon in
connection with the equation " +y" = z” (see [Dar00}, Theorem 1.10), as well
as by Darmon and Mestre to construct a regular extension of Q(¢, + ¢ ')(¢)

with Galois group PSL,(F,) for certain finite fields F, (see [DM00], §§2,3).

Proposition 4.13 The quotient curve C, is birationally equivalent over

Q(t) to the curve given by

Yy =1g.(z? - 2) + 4t - 2,

#
where go(z) = [] ( + ¢ +¢7).
i=1

Idea of Proof: The subfield of the function field of C,, consisting of those

elements fixed by 7, is generated by r + z~! and —#;. Using the formal

relation

X7+ X7 = (X + X7 V)ga(X? + X7 (4.14)
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gives the desired equation. See [TTV91], Proposition 3 for details. O

For each m < n, there is a morphism @, ;m : Cn — Cy,, given by
, n—-m pt—m -1
Onm : (T.y) — (I” , I 2 y) .

If the generators (, for each p,- are chosen to be compatible in the sense
that {? = (,_; for all n, then @, m © Yn = Vm © @nm- Also, each ¢, ,,, satisfies
Tm © @nm = Onm © Tn, SO On m induces a morphism ¢, : C; — C,, given

explicitly by composing the maps

- 1 — D —2k(.2 k
(pn.n-l : (.1.', y) — ('27_-12(2’:)1." (.’L’ - 4) » Y-

k=0

Note that the action of the Galois group Gg commutes with the maps
®On.m- O - Letting J,, and J; denote the Jacobians of C,, and C,; respectively,
the induced maps (¢nm)s : Vp(Jn) — V,(J,n) make the extended Tate
modules into a compatible system of Gg)-modules (similarly for V,(J;)
with the maps (o .).)-

Since v, does not commute with 7,, it does not give rise to an automor-
phism of C,;. However. the endomorphism v, +7,7! of .J,, does commute with
Tn, and gives rise to endomorphisms of J;. Let =, : C, — C,; be the nat-
ural map. From the proof of Proposition 4.4, the kernel of 7, : J7 — J, is

contained in J, [degm,] = J,7[2].

Proposition 4.15 For each ¥ € pyn, there is an endomorphism (v +~71)”
of J; such that w0 (v +v™ ) = (v + 7" imns -

Proof: See [TTV91], §3.1. a
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When it is clear from the context that we are referring to endomorphisms
of J7, we will write ¥ ++v~! in place of (y +vy7')".

The action of the full Galois group Gg) does not commute with the
action of pu,n; however, if we restrict to the subgroup G, 1), then these
actions do commute, so the action of Gy, ) On V5(Jn) is Qp[ppn]-linear. In
order to obtain 2-dimensional representations of HQ(“F@) on V,(J,), we must
show that V,(J,) is a free Q,[uy-]-module of rank two. First we will show

that if V,(J,) is indeed a free Q,{un]-module, then it must have rank two.

Proposition 4.16 The dimension of J, is p"*, and the dimension of J,; is
p"—1
-

Proof: Since the dimension of the Jacobian of a curve is equal to the genus
of the curve, we must calculate the genera of C, and C,. Both may be

computed using the Riemann-Hurwitz formula. For example, let
h:C, (Q(t)) — P (Q(t))

be the degree two map taking (z,y) to z. Then h is ramified only at oo and
the roots of r (%" + (4t — 2)z*" + 1), which are distinct. Thus h has 2p" +2
ramification points, each having index two, so the Riemann-Hurwitz formula

gives
2genus(C,) — 2 = 2 (2genus(P') — 2) + 2p" + 2,

and therefore, genus(C,) = p". O
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To show that V,(J,) is free over Qy[upn], we will need the following lem-

mas:

Lemma 4.17 Let K be a field whose characteristic is not equal to p, and let
C/K be a curve with Jacobian J. Suppose that £ is a nontrivial automorphism
of C having a fized point P € C. Then the automorphism of Tp(J) induced

from & is also nontrivial.

Proof: Let fP : C — J be the embedding of Theorem 4.3. For any point
Q € C not fixed by &, we have

Ef7(Q) = £.1Q — P = [£.Q] — [Pe] = f7(£Q),

and fFe(€Q) # fP<(Q) since f: is injective. Therefore £, is a nontrivial
automorphism of J. The result now follows from the fact that for any abelian
varieties .4 and B over a field A" of characteristic not equal to p, the natural

map
Hom(A. B) — Homgz,_mod (Tp(A), Tp(B))

is injective (see [Mil86a], Lemma 12.2). O

Lemma 4.18 Let G be a finite group acting as automorphisms on a curve
C/C(t) with Jacobian J. Then for some Q,[G]-module M, V,(J) is isomor-
phic to M? as a Q,[G]-module.

Proof: Let a € C be a point at which C has good reduction, and let J,

denote the reduction of J at t = a. Since char(C) = 0, for each m € N the
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reduction map r, : J — J, restricts to an isomorphism from the m-torsion
points of J fixed by any given inertia group above t = a to the m-torsion
points of J, (see [ST68], Lemma 2). Since J has good reduction at t = a, each
inertia group above t = a acts trivially on T,(J), and therefore r, induces
an isomorphism T,(J)} = T,(J,). Thus it suffices to prove the result when J
is replaced with J,, where the action of G on J, is induced from J via r,.

Let g be the dimension of J,, and let A be a lattice of C? such that
C?/\ = J, as in Theorem 4.2. The action of G on J, lifts to a linear action
on €’ fixing A. Let {A;...., Ay} be a Z-basis for \. Reordering the \;'s if
necessary, we may assume that {A,... A} and {Ag41,. .., Ayg} are C-bases
for C9. Since {A\ ®1,... . Ay, ® 1} is a C-basis for A ® C, the representation
of G on A ® C is isomorphic to two copies of that on C9.

On the other hand, identifying .J,[p"] with ,—,‘;A/A, there is a canonical
Z,-module isomorphism T,(J,) = A\ ® Z, commuting with the action of G,

given by

29 Y 29
(;aml;) — ;Aj ® (2jn)pen -
J neN J

where each a;, € Z/p"Z. Let x\- be the character corresponding to the rep-
resentation of G on V' := 1,,(J,) = Qf,-", and xw the character corresponding
to the representation of G on W := C%. From above, there is a C(G]-module
isomorphism A ® C = W2, so the character corresponding to the representa-
tion of G on A ® C is 2xw- Since G acts on the free Z-module A, xyy must
take values in @, and thus 2xy- is the character obtained from the represen-

tation of G on A ® Q, and hence also from that on A @ Q, = V. Therefore,
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v is equal to 2xw . a

Proposition 4.19 The extended Tate module V,(J,) is a free module of rank

two over Qp[ppn].

Proof: Let x be an irreducible character of py~ over Q. Over L = Q,(¢a), X
decomposes as a sum of 1-dimensional characters x;,... , x,. The characters
Xi:--- . Xr form a Galois conjugacy class over ,, and each appears with
multiplicity one (see [Isa94|, Theorem 9.21). On the other hand, given any
irreducible character x of upn over L, there is a unique irreducible character
x of ppn over @, which has Y as a constituent when lifted to L (see [Isa94],
Corollary 9.7). Therefore, the irreducible characters x of p,» over @, are

precisely those of the form

= Y X,
o€Gal(Cyp (G )/ Cp)

where Y is a 1-dimensional character of up. over Q,(¢x) which is not defined
over Qp(Cx-1)- Fixing a generator v, of upn, such a character x is determined
by X{7a). which is a primitive p*th root of 1. Moreover, if ¥’ is any other
character of up« defined over Q,((x) but not over Q,((k-1), then X'(wn) is
also a primitive p*th root of 1, and hence there is some o € Gal (Q, (¢)/Q,)
for which X' = x?. Therefore, the irreducible characters of u,» over Q, are
in one-to-one correspondence with the factor groups of u,-, and are given by
Xo: - - - + Xns Where xq is the trivial character, and x; has dimension p? — p/~!
foreach j=1,... .n.

When n = 0, V,(Jp) has rank two over @, by Proposition 4.16. Suppose
for induction that V,(Ja_) = Qy[upn-1]? as Q,[pps-1]-modules. By Proposi-
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tion 4.4, the map ¢, -, : C, — C,_, induces an injection

(Snn-1), : Vi(dnm1) = Vi(Jn).

Since v, acts on the image of 1,(Jn_) as a generator v,—; of pps-1, (zj),‘m_,)p
gives an inclusion @, [pn-1]2 < V,(Jn) of Q,[ppn]-modules. Since 2"~ acts
nontrivially on C,,, by Lemma 4.17, the automorphism induced from ‘yﬁ"—' on
V5 (Jn) also acts nontrivially, and therefore u,» acts faithfully on V;(J,). From
above, there is only one irreducible representation of y,-» over Q, which does
not factor through pu,--1. namely that having the character x,; therefore,
the Q,{up]-module M corresponding to x, must appear as a summand of
Vp(Jn) (as a Qp[upn]-module). By Lemma 4.18, two copies of M must appear,
so there is an isomorphic copy of @, [upn-1}2 & M? contained in V,(J,). Now
Qp [tpn-1] ® M is a direct sum of all irreducible Q[xp»]-modules, and hence
is isomorphic to Q,[xpn]. By Proposition 4.16, V;,(J,) has Q,-dimension 2p",
so the inclusion of Q[up]? in Vy(J,) is an isomorphism. a

Remark: For each choice of n-tuple

¢ =(1.Ci.-. . Gn) € {1} x pap X -+ X pupn

in which each (; is a primitive p/th root of unity in @p, there is a ring

isomorphism

Gl =G e e & G(da)

given by mapping v, to {. This isomorphism arises through the isomorphism
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Qo {upn] = @[T/ (TP" — 1) which takes +, to T. Factoring T?" —1 and apply-
ing the Chinese remainder theorem gives the isomorphism above. Choosing

a Qp (ppn]-basis for V,(.J,), we obtain an isomorphism

L) =QoQG) e - oQ(d)’

of Qp[pupn]-modules.
By Proposition 4.4, we may view V,,(J;) and V,(Ji) as lying inside V,(J,)

whenever k£ < n.
Lemma 4.20 The intersection of V,(J;) with V,(Jo) in V,(J,) s trivial.

Proof: Since 0,¢(P) = 0,,0(Q) if and only if P = v.Q for some j, V,(Jo)
is contained in the submodule V;(J;)*" of elements of V,(J,) fixed by ppn.
Similarly, V,(J) is contained in V,(J,){™). Now @0 0 7, = 79 © @p, S0 the
action of 7, on V,(J,,) restricts to the action of 7o on V,(Jo). Note that 75 acts
nontrivially on every point (z, y) € Cy for which £ # %1, and fixes the points
where £ = +1. By Lemma 4.17, (7y) and hence also {7,) act faithfully on
Vo(Jo). Let Dy = (75, ), so that Vp(J,) P = Vo(Ju)#" NV,(J,)™). Suppose
that 1,(J,) 2" is nontrivial; then by Lemma 4.18, it has Q,-dimension at least
two. On the other hand, by Proposition 4.19, V;,(J,)#*" has ,-dimension two,
so we must have V,(J,)P* = V,(J,)*", contradicting that (7,,) acts faithfully
on V,(Jg) C Vp(Jn)#e". O

Proposition 4.21 The Q,-vector space V5, := V,,(J;7 )@ Vp(Jo) C Vy(Jn) is a
free Qp{vn + v, !]-module of rank two. Moreover, two elements by, by € V,(J,)
form a Q,[vn + 7;']-basis for V,, if and only if they are elements of V,, and
they form a Q,[u,n]-basis for Vp(J,).
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Proof: Suppose that {bg, b} C V, is a Q,[ppn]-basis for V,(J,). Then the
set B = {(v] + v.7)bu} j=0....2%=1,1=01 C Vn is linearly independent over Q,,
and thus generates a Q,-vector space of dimension p" + 1 contained in V.
By Proposition 4.16, 1, has Q,-dimension 2 (52) +2 =p" + 1,50 Bis a
Q,-basis for V;,; in particular, by.b, generate V;, over Q,[v. + v, ']. Further-
more, since b, b, are linearly independent over Q[pupn]. they must also be
linearly independent over Qp{yn + 7, ']. Therefore, {bg,b,} forms a basis for
V. over Q,[vn + 7,7']. Thus to prove the first statement it suffices to show
that there exists a Q,(upn|-basis {bo, b} for V;(J,) which is contained in V.

Note that D,, = (vg, ) is isomorphic to the dihedral group of order 2p”.
The irreducible characters of D, over Q consist of the trivial character, the
nontrivial irreducible character of D, /({7,). and El,;—l- characters of dimension
two each taking the value 0 at 7, (see [JL93], §18.3). Since 7, has order 2,
it must have eigenvalues 1 and —1 under each of the two-dimensional ir-
reducible representations. From Lemma 4.20, the representation of D, on
Vo(Jo) = Vp(Jn)#*" consists of two copies of the nontrivial one-dimensional
representation. Each irreducible summand of the representation of D, on
Vo(Jn)/V,(Jo) decomposes over @p as a sum of the two-dimensional renre-
sentations of D,, and the subspace of 7,-fixed points of each of these has
dimension one. Thus the subspace (V(J,)/Vp(Jo))™ of Vp(Jn)/V;(Jo) has
dimension 3%’—2 = p" — 1, and contains V,(J;). Since V,(J,) itself has di-

mension p" — 1, we have V,(J;) = V,(Jn)™. Now

Vo(Jn-1) NV (J7) = Vo(Jn-t)™ = Vo(Jnt)™t = Vi (Jy),
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so 15(J;7) NV, = V1. Fix a @ [upn]-module isomorphism

L) 2@ eQ @) e & Q)

and identifv each subspace with its image in Qf, @ - & Q(¢n)°. Since
Vy(Jact) = @ @ - @ Q(Guor)?, we have 1y = Vi @ (@ (G)2N V) as

a Q,-vector space, and hence
dimg, (@ (¢a)?N15) =dimg, Vn — dimg Vo) =p" — p" 1.

We now proceed by induction. When n = 0, Vj = V,(Jy), and therefore
contains a QQy-basis for V,(Jy). Suppose for induction that V;,_; contains
a Qplppn-1]-basis {bop-1.01n-1} for Vp(Juo1). If (@ (Ca)? N V5) contains a
Q. (Cn)-basis {bon. b1a} for Qy((a)%. then {bon + bon-1,b1n + b1n_1} is a

Q, [pn]-basis for V,(J,) contained in V7, as desired. If not, then since

dimg, (Q(Ga)*NV5) = p" — p"7! = dimg, @ (Ga),

there must be some b € Q,((n)? N1} for which Q,(¢.)* NV, = Q(¢n) b. But
then @,(¢,)2 N V5 is an irreducible faithful Q,{up-]-module on which 7, acts
trivially, which contradicts the fact that the only irreducible representation
of D, having 7, in its kernel is the trivial one.

All that remains is to prove that if B’ = {bf,b|} is a @[y, + 7, !]-basis
for 1,(J;) then it is a Q,[u,n]-basis for V,(J,). Let B = {by, b1} C Vp(J7)
be a @, [u,n]-basis for V,(J,). From above, B is also a @ [yn + 7, !]-basis for

‘;’(Jn—)’ and therefore writing b:) = aq,obo + al.Obhb,l = ao'lbg + al.lbl with
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ai; € Q[ +7;']. the matrix M = (ai;)y, <, is invertible. Extending
scalars to @ [upn], M remains invertible, so B’ is indeed a @, [u,]-basis for
V(). 0

Since the action of Ggu,=.) on V,(Jn) and Vy(J;) commutes with the
actions of @, [upn] and @, [vs + 77! respectively, choosing a Qp[u,n]-basis B
for V;(J,) contained in V,(J;), the action of G, = 1) on Vp(Jn) and Vi(J7)

respectively gives representations

Pn : Goruye 1) —>GLa2 (Qp[pn])
and P : Gy ty —GL2 (Qp[1m + 72 ']) -

Since the basis is the same for both representations, p, is simply the rep-
resentation obtained from p; by extending scalars to Qp[upn]. Since the ac-
tion of Geyy, 0 1) cOmmutes with ¢, ,,, the representations p, are compatible
with respect to the maps Q,[ppn] — Qy(upm] taking v, to 74, for each
m < n. We will show that. with respect to an appropriate basis, the im-
age of p, is contained in GL3 (Z,{u,n]). and thus we obtain a representation

£ : Goguye 1y — GLa (lim Zy[tn]) = GLo (Z,[[T])).

4.6 The Reduction Type of C,,C, and the Associated

Galois Representation

In order to understand the local behaviour of the Galois representation

Pn GQ{upm o — GL2 (@ [upn])
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we will consider the reduction type of C,, and C, at various places. By the
above discussion, p, may be viewed as the representation associated to C,; by
composing with the natural inclusion GL; (@ [vn + 77']) < GL2 (Qp[ppn]),
so we will no longer distinguish between the two representations. Thus we

may obtain information about p, by considering either C, or C;;.

Proposition 4.22 As a curve over Q(t), C, has good reduction outside

t=0.1.00.

Proof: For t € @, the curve C,(t)/Q given by
Ca(t) 1 4% = f(2) = x (2% + (4t - 2)z*" + 1)

is singular if and only if f(z) has a repeated root. The roots of f(z) are given
by

j=0,...,p" - 1.

_ 5 —(4t—-2)% /(4 —2)? - 4
r=0,¢ 5

Thus f(z) has a repeated root if and only if

~(t-2)+ V-2 —1=¢ (-4t -2) - VE - 27 - 4)

for some j. Solving gives t = 0 or 1.
Whenever t # 0, 1. oo, one may apply the argument of the proof of Propo-

sition 4.16 to show that the genus of C,(t) is the same as that of C,,. a

Corollary 4.23 The representation py, factors through g « -
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Proof: By Proposition 4.8. g™ = p,,|n6 is unramified outside ¢t = 0,1, oo,
and hence factors through the Galois group of the maximal algebraic exten-
sion 62?) of Q(t) unramified outside ¢ = 0, 1, oc. The result now follows from
Corollary 3.4 with A" = Q(pp ). a

The residual representation p of each p, is the representation of I, «)
describing the action on the p-torsion points of the elliptic curve C,. Let

E;/Q(t) denote the Legendre family of elliptic curves
Er:y?=z(z-1)(z—t).

There is a 2-isogeny ¢ : Co — E; given by

y2
(. Yy)—> | —— + ¢,
?:(1.y) ( =T

]

iy(1 —12))

8x2

in particular, g™ = ,r3|n6 is also the representation of Ilz attached to the
p-torsion points of E;. In order to determine 8™ explicitly, we first need a

lemma:

Lemma 4.24 Let E| : y* = 1* + az? + bz + ¢ be an elliptic curve defined
over a field K. and let p, : Gx —> GLy(F,) be the Galois representation
associated to E|. For anyd € K>, the twist

Ey:dy* =1 +ar?+br+c
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of E\ has the associated Galois representation p» = py @ X k(vd) K+ Where

1 if o fizes Vd,
Xk(vayk(9) =
—1 otherwise.

Proof: Fix an Fp-basis {(zq, o), (1, 41)} for the p-torsion points of E,. The
map ¢ : E; — E; defined by ¢ ;(z,y) = (x, &-‘) is an isomorphism of
elliptic curves, so {(ro, ﬁ;) . (xl, %)} is an F,-basis for the p-torsion points

of E,: moreover, if o - (z;, y;) = ao(To, Yo) + a1(Z1, Y1), then for o € G,

o () =0 (0 5) o (1)
If o(vd) = Vd. then o - (ri, 53) = ag (ro,%) +a (x,,y;) fori =0,1.

Otherwise, a(\/a) = —V/d, and thus
o- (Ii. %i) = ag (1‘0, —%) + a, (.’L‘;, —&“-‘)
= —q9 (101 %) - a (1‘1, %) )

as desired. O

Proposition 4.25 The representation pB*°™ satisfies

Fom(y) ~ (1 1) and pﬂw"‘(al)~(l O).
01 -4 1

Proof: At t = 0, Cy reduces to the curve

Co(0) : y* = z(z — 1)?,
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whose only singularity is a node at the point (1,0). Let Ny be the genus 0
curve defined by Ny : y? = z. There is a birational map ¢g : Cp(0) — N

given by

oo : (z.y) *(I,Iil),

so Cy{0) is birationally equivalent to a projective line. Therefore, Cy is a
Mumford curve at t = 0, and Corollary 4.12 gives pE°™(gq) ~ (41). A
similar argument shows that ##*°™(o,) ~ (} ) as well.

For the reduction at ¢t = oc, consider the twist C] of Cy given by
Co:ty’ =2+ (4t - )’ + 1.

Letting u = % and replacing r with £ and y with 2¥ gives the model

V=0 + 3 -2u)r? +u’r

for Cy. At u = 0 (that is. at t = oc). this model reduces to
y? = 2% (z +4),

which is a projective line with a nodal singularity at the point (0, 0); therefore,
C} is a Mumford curve at t = oc. Since o (V%) = —Vt, Lemma 4.24 gives
#om (o) ~ (5 21).

Fixing an F,-basis for the p-torsion points of Cy with respect to which
M (04) = (§ 1), we cannot have 7#*°™(a,) = (} 1) since 72*°™ (04 ) has order

2p. Thus changing basis if necessary, we may assume that 8" (q;) = (} 9
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for some a € F; . Multiplying gives

1 -1
PO (0a) = (PO (00)PF™ (1)) = ( ) :

—a l+a

in particular, tr 8™ (0) = 2 + a. On the other hand, tr ™ (o) = -2
since M (0x) ~ (' 21 ). and thus a = —4. O
To examine the reduction type of C; at t = 0,1, we will use some iden-

tities which appear in [Dar00|. p.420.

Lemma 4.26 Let g,(z) be as in Proposition 4.13. Then
1gn(2® = 2) = ga(—1)*(z — 2) + 2 = ga(z)*(z + 2) - 2.

Proof: First we will show that zg,(z2-2) -2 = g,(—1)?(z—2). From (4.14),

we have
" + 177 = (24 27 Y)ga(2? + £77). (4.27)
Thus putting z = ¢ + {7 into zg(z? — 2) — 2 gives

n

(G+CNgT +¢T) —2= (Y + ()™ -2=0,

so (1 + (77 is a root of Ign(z®? —2) — 2 for each j = 0,... ’&"2"_1_ Since
-1

gn(z) = [] (x + ¢ +¢57), each ¢ + (7 is also a root of go(~z)2(z — 2).
j=l
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Taking £ = —(2 — (7 gives
(G + G + ) - 2= -
and replacing j with j + p" if necessary so that j is even,

(G + (=G — ¢ - 2) = gn (/A2 + (/D)) (-2 - (7 - 2)
(G2 + (GV%) "
= ( QR 4 I
4
T a4

2
) (-G -¢G7-2)

( CJ— - 2)=—49

s0 rgn(T? —2) — 2 and g,(—1)%(z — 2) also agree at the P—— points —( — (7
forj=0..... PT Thus zg, (2 —2) -2 and g,(—z)?(z — 2) are polynomials
of degree p” which agree at p™ + 1 points, and hence are equal.

Since zg,(z? — 2) is odd,

Ign(rz -2)= _(_-7:)971((—1:)2 —-2)
== (g (=(=2)* (-2 = 2) +2)
= ga(2)*(z +2) - 2,

as desired. a
Proposition 4.28 The curve C,; is a Mumford curve att =0 and t = 1.
Proof: Using the identity zg,(z? — 2) = ga(—1)%(z — 2) + 2, we have

Co :y® = go(—1)%(z - 2) + 4t.

86



At t = 0, this reduces to the curve C;(0) : y* = gn(—z)*(z — 2), whose
singularities consist of ordinary double points at ({J + (;7,0) for each
j=1,...,22 The map from C;(0) to N : y* = z — 2 which takes (z,y)
to (J:. #T)) defines a birational equivalence between C, (0) and a curve of
genus zero, that is. a projective line.

The argument for t = 1 is similar, except that one uses instead the identity
Ign(r® = 2) = ga(z)*(z +2) - 2. O

To calculate the image of the inertia group at ¢t = oo, we view C as

being defined over the field Q ((})).

Proposition 4.29 The curve C;; acquires good reduction at t = oo over the

aa ("))

Proof: Let u = (%)1/2”". Consider the curve C; /Q((u)) given by

C;:y2=zH(1+(cn+cn 2)u'r?) + (4 — 2u?")P HL

There is an isomorphism ¢ : C’; — C defined over Q((u)) given by

. 1 y
x.y) — , - .
o:(z.y) (u% upnxz;l)

Reducing C‘; at u = 0 (that is, at t = oc) gives the nonsingular curve

Co(oc):y? = 42" + 1,

which has genus &{l O



Corollary 4.30 The inertia group I C llg at t = 0o is mapped by p, to a
subgroup of GL, (Qy[upn]) of order dividing 2p™.

Proof: By Proposition 4.8, the restriction of p, to I factors through the
Galois group Gal (@ (((%)1/2;:")) /Q ((%))), which has order 2p". O

We were not able to give an elementary proof that p,(/.) has order
exactly 2p”, because of the difficulty in understanding in general when a
curve with bad reduction at a particular place may have a Jacobian with
good reduction at that place. This result will follow, however, from a general

construction of Katz.

4.7 A Theorem of Katz

Let ay, as. 3,. 32 € Q be such that a; — 3; is not an integer for any i,j = 1,2.

Suppose that

K : lg — GL2 (@ (¢n))

is such that x(og) has eigenvalues e?*'®t e>*92 (o)) has repeated eigen-
value 1, and k(o) has eigenvalues e2"%1, ¢27%52 According to a theorem of
Belyi, such a representation is unique up to conjugation by an element of
GL, (@, (¢n)). To be precise, Belyi's theorem asserts that for any field k, if
My, M, € GL,(k) generate an irreducible subgroup of GL,(k), and one of
My, M, or (MyM,)~! differs from a scalar matrix by a matrix of rank one,
then (Mg, My, (Mo M;)™!) is rigid in GL,(k) (see [Bel80], Theorem 2).

Note that if 4/Q(t) is an abelian variety of dimension p" — p®~! which

contains Z[(,] in its endomorphism ring, then V,(A) is a vector space of
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dimension 2 over Q,((s); if, moreover, A has good reduction outside
t = 0,1,00, then the action of Il on V,(A) gives rise to a 2-dimensional
representation of [z over Q,(¢n). Katz' theorem realizes x as the represen-
tation associated to such an abelian variety A defined over Q¢).

Let N be a common denominator for a,, az, 31, 32, and let A(j)} = Na;,

B(j) = N3, € Z for each j = 1,2. The nonsingular curve D/Q(t) defined by

4
.“ —
$11v =y, (1)(] 1!1)3“) A1)

o

) A2 -
2l = 33 (1 = yy) PO

Yiya =t
\
possesses a natural action of uy x uxy C Q x Q by
(Cx-C) - (z1.y1. T2, 42) = (CRxr, y1. G T2, y2)

for each j,{ € Z/p"Z, (z., . Z2,y2) € D(Q(t)), where (y is a primitive Nth

root of unity. Defining a character

XiuNxﬂN—*@x

(Car Ch) — &

ker(x) is the subgroup of uy x ux consisting of elements of the form (Cf\',, C;,j ).

Let D be the quotient of D by the group of automorphisms ker(x).

Theorem 4.31 The Jacobian of D has a quotient A of dimension p™ —p"~!

whose endomorphism ring contains Z[(,], and whose associated representa-
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tion of Il s k.

Proof: See [Kat90]. Theorem 5.4.4. O
Remark: Theorem 5.4.4 of [Kat90] more generally gives geometric construc-

tions of n-dimensional representations

K : Mg — GLA (B (G))

for any choice of eigenvalues e?™@i ...  e?"@n of x(0y), and €231, 2700
of K(ox). where ay, ... .an, 31.... . 8, € Q satisfy the condition that a; — 3;
is not an integer for any i, j; again x(o,) has repeated eigenvalue 1.
In order to show that p,(o.) has order 2p", we use Theorem 4.31 with
1

a =a;=0,3, = .2#. and 3, = — 5 thus we will construct a representation

Kn : n@ — GL2 (QP(CH))

such that x,(0g), xn(01) each have repeated eigenvalue 1, and x,(04) has
eigenvalues —(,, —¢;!. where (, is a primitive p"th root of unity. Taking
N = 2p", we obtain A(1) = A(2) = 0, B(1) = 1, and B(2) = —1. Let
D,/Q(t) be the curve defined by

(
X =1-1,

:sb'

P4 X = (1-Yy)! (4.32)

WY, =t
\

With x as above, let D, denote the quotient curve D, /ker(x). The subfield

of the function field of D, consisting of those elements invariant under ker(x)
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is generated over Q(t) by
y=Y =t/Y, and r= XX,

From (4.32), we see that a model for D, is given by

-1
Dn:rz""=(1—y)(l'§) '

For each n, let D; be the curve defined by

-1
Dz:r""=(1—y)(l—-t—) .
y

Let A, and A denote the Jacobians of D, and Dj respectively. Let
n . Dn — D,_, be the morphism mapping (z,y) to (z?,y), and let
7o : D, — D? be the morphism mapping (z.y) to (z2,y).

There is a natural action of y,» on D, and on Dj, by v, (z.y) = ((aT,¥y),

which satisfies the relations
Th© T = Yn—107, and 7, o0%, =730y,

provided that the generators 7, of each pup~ are chosen so that (% = (n_;.
Thus V,(R%), V,(K3). and Vi (K, ) are @, [upn]-modules, and the morphisms

Tn, mo induce @, {upn]-module inclusions

7V (Kaoy) o Vio(Ka) and  (79)°: V,(K3) < V(K.
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On the other hand, D, is related to C,, by the morphism

vy Dp — Cy,

(z.y) —> (1‘2. Pt (

Ay +ty~t—1)+z%" + 7%
zpn +I_pn -

We define abelian varieties

An = Ka/ (1 (Kao1) + (77)"(K3))
J::ew = n/Q;,n—l(Jn-l)'

Let p, : K, — A, be the natural projection.

Proposition 4.33 The abelian variety A, is the quotient of K, of Theo-
rem 1.31. and the map p, o vy, : Jo — A, induces a Qy((,)-vector space
isomorphism Vi (J3°%) = Vp(An) which commutes with the action of Ilg. In
particular, the eigenvalues of 0 as a Q,((n)-linear map on Vy(Ji¥) are
G =Gt

Proof: A computation using the Riemann-Hurwitz formula shows that the

genus of D, is 2p™ — 1, and that of D is p" — 1. If we show that
(m2)" (VB (22 (Vp(da)) = {0},
then counting Q,-dimensions, we must have
Vo(Rn) = Vo(K7) & Vp(Jn)- (4.34)

Let o be the involution of D, which maps (z,y) to (—z,y), so that
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D; = D,/{c). Then o, : K, — K, fixes each point in (7;)*(K;). On the
other hand, letting i denote the hyperelliptic involution 4 : (z, y) — (z, —y)
on C,. we have the relation ¥, oo = how,. Since h, acts as —1 on J,, o, acts
as —1 on w;(J,); in particular. o, acts nontrivially on every element of ¥, (J,)
which does not have order 2. Therefore, (7;)*(R;) N ¥, (Jn) is contained in
K,[2], and in particular (73)* (Vo(A7)) Nup, (Vp(Jn)) = {0}, as desired.

A similar analysis to that in the proof of Proposition 4.19 shows that

there is a Q,[u,n]-module isomorphism

(R = Q) 8- Q(G1)*.

Thus by (4.34), we have

(Rn) = Q) e -0 Q) @ QG

for each n > 1. Since 7}, and (=])* are Q,[ypn]-module inclusions,

Ta (Vo(Rno1)) + (m2)" (Va(K7))
Q) QGn-1)' 8- 0 Q(0) @ @,

and therefore 1,( = Qy(¢a)? Let KM := K,/n(Kn-1), and let
(K = K:/(vr,,,,._n (K3_,), where 72,,_, : D3 —» Di_, is given by
79 ao1(2.9) = (2%.y); thus V,(K2%) = Q,(Ga)* and Vj ((K3)™™) = Qy(Ga)?

Note that D7 is the curve constructed by Theorem 4.31 when a; = a; = 0,
3 = pl—,,, and 3, = ;—,.l. The abelian variety (A2)"" is the only quotient of K

of dimension p" — p"~! which contains Z[(,] in its endomorphism ring, so by
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Theorem 4.31. 0 has eigenvalues (,,(; ' as a Q,(¢s)-linear automorphism
of Vp ((K3)™").

Let A C K} be such that K;*¥/K is the quotient of Theorem 4.31.
Then V,(A) C V,(A**) must contain the eigenvectors of o, correspond-
ing to the eigenvalues (,,(;!, for otherwise o, would have at least three
distinct eigenvalues as a Q;(¢,)-linear automorphism of the 2-dimensional
vector space V;,( K3"). Therefore, V,(K) = (75)" (Vo(K3)), so A, is the quo-
tient of Theorem 1.31. Moreover, the inclusion ¥, composed with the natural

map Vp(Rn) — Vp(A,) induces a Q, (¢, )-vector space isomorphism
()" V(IR — Vo(AR).

Since the isomorphism of (4.34) commutes with the action of [Iz. so does

(vr)e. =

Proposition 4.35 The Q[ + 7, ']-module V,, = V,(J;) & V,(Jo) has a
basis {bg, b} with respect to which

p,.(ao>=(1 1) and pa(oy) = (1 0)
01 a, 1

for some a, € Qv + v7']>.

Proof: By Proposition 4.23, the representation pf™™ = pg|n1. is given by
0 Q

11 1 0
pPo(oo) = ( ) y poloy) = ( )
01 Qo 1
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for some ap € Z,; reducing to —4 mod p. Thus by Proposition 4.28 and

Corollary 4.12, the p-adic representation g, : I[Ig — GLpn11(Q,) satisfies

(10 0]+ £{0 0)
01 0|+ = *(0 0
00 1= =* =0 0
) 00 0|1 0 0lo o
pn(ai)"‘
00 0|0 1 0/0 0
00 0|0 0 1{0 0
00 00 0 0l1 1
\ 0 0 0[0 0 0{0 1)

for each i = 0, 1.

(4.36)

We now proceed by induction on n. When n = 0, the result follows from

above. Assume that there is such a basis for V;,_;. Choosing a p"th root of

unity ¢, € Q, gives rise to an isomorphism

Qi + 70 = Q6 + 67 & Qoln-1 + 12t

and thus also a @, [y, + 7, ']-module isomorphism

Vi 2 QulCn +¢71)2 D Vo

By assumption. there is a basis {bgn-1,b1n—1} for V,_, which satisfies



Oi ~bin_1 = bjn_y for i = 0,1. From (4.36), oo fixes a Q,-subspace of V;
of dimension ""2—“ and since there is a nontrivial subspace of V;(Jp) not
fixed by oy, o¢ fixes a subspace of V;,_, of dimension at most p"~!. Since
p>2>2-— p,,‘_ , we have Lnf—l > p"~!, so there some nonzero element
by € Qu(¢n +¢71)? fixed by . Let by = bo + bg 1. Since by ,_, generates a
free module over @, [vn-1 + 7;2,] and Q,(¢n + (') is a field, by generates a
free module over Q,[yn + 7, ']. By the same argument, there is an element
b, € 1, fixed by o, which generates a free module over Q, [y, + 7,;'].

We claim that {bg,b,} is a Q, [ + 7 ']-basis for V. Let b, = b, — by n_1,
s0 by € @ (Cn + )2 It suffices to show that oo and o, have no common

nontrivial fixed point in Q, (¢, + ¢;!)2. for then in particular we have

Qo (Gn + G ) bo [ Qo (Gn +¢71) by = {0}

Let

pn : g — GL2 (@ (Ca + 1))

be the representation obtained by composing p, with the natural projection
Qv + 771 — Qu(Gr +¢t). Let W be a subspace of @, (¢n + ¢;0)? sat-
isfying Q, (G + (71)? = Qu(Cn + C,,“)Bo @& W. Given any nonzero w € W,
{bo, w} is a basis for Q,((n + ¢1)2, and from (4.36), 0o - w = w + wp, where
wg € Q(Cn+¢;")? is fixed by op. If pn(c0) is nontrivial, then @, (¢a+¢1) bo is
the subspace of all o¢-fixed points. so wg = Bobg for some 3, € QG+,
and therefore p,(0o) = (%) with respect to the basis {b, w}. Similarly,

palor) ~ (5 3) for some 3; € QG + (1) If 09,01 have a common fixed
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point in Q, (¢, + {7 !)% then with respect to some basis we have

1 £
pn(00) = (1 '30) v Pnlon) = ( jl)
0 1 0 1

for some 35, 31 € @, (Ca + ¢7')?. Then pn(0) = (5 ~1%1)), contradicting
that p,(0«) has exact order 2p". Therefore, oy and g, have no common
nontrivial fixed point in Q,(¢, + ¢;')2. and {bo, b} is indeed a basis for V;,.

By induction. we have

1 4 1 0
pn(0o) = ( ) . palor) = ( )
0 1 6 1

for some 8p,d, € Q[va + 77 ']. All that remains is to show that &, and
4, are units. Suppose that & & Q,[vn + v7']*. Writing 8¢ = don + So.n-1
where 8, € Q, (¢ + (7") and don-1 € Qp[¥n—1 + ¥;2,). it follows from the
inductive hypothesis that dyu-1 € Q) [¥n-1 + 7:2,]*. 50 do,, must not be a
unit of Q,((n + ¢ '). Hence &, = 0. contradicting that oo acts nontrivially
on @, (¢n + ¢1)2. Therefore, 8y € Qu[vn + 7, !]*. The same argument shows
that §; € @[y + 77']* as well. O

4.8 The Universal Deformation

We now consider the representation obtained by taking the inverse limit of

the various representations p,.

Proposition 4.37 There is a Q[upn]-basis for Vy(J,) with respect to which
Imp, C GL2 (Z,[upn])-
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Proof: By Proposition 4.35, there is a Q [, ]-basis B for V,(J,) with respect

to which
11
pnl{00) = . paloy) =
01
Multiplying gives

Pn(0x) =

Since —7, is an eigenvalue of p,(0x) and p, has determinant one, we have
: -1
U pn(0x) =2+ Qn =~ — Yn

SO p = — (T + 7' +2) € Zp[ppn)- a
To obtain a representation p : I, ) — GL2 (Z,[[T]]). we need the

following result from Iwasawa theory:

Proposition 4.38 For each compatible system (vn)nen 0of generators v, of

Hpn, the map sending (Yn)nen to 1 + T defines an isomorphism

lim Zy[ppn] = Z,[[T]].

Proof: See [Was82], Theorem 7.1. a
For each n. let 4, be a generator of u,« such that —, is an eigenvalue of

Pn(0x). The compatible system (vn)nen of generators of uyn corresponds to
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an isomorphism §im Z[y1pn] = Z,[[T]]. Let
P : NMguuyee) — GL2 (Z,[[T1))

be the representation obtained with respect to this isomorphism by the com-
patibility of the various representations py,,. Since Imp, C GL; (Z,[vn + 7,;']),

the image of p lies in GLy (Z,([(1 + T) + (1 + T)!]}). In fact, we have

11 1 0
p(oo) = ( ) , ploy) = ( ) (4.39)
01 a 1l

for some a € Z,[[T]]*: moreover. from the proof of Proposition 4.37, a sat-

isfies 2+ a=-(1+T)— (1+T)"!. and hence

a=-3-T~(1+T)"
=3-T-(1-T+T%----) (4.40)
=—4-T2+T3—....

We claim that there is a Z,-algebra automorphism v of Z,[[T]] which takes
Z(TH) 1o Z{[1+T)+ 1 +T)7Y] = Z,(T>-T3+T* - ---]]. Let
f(T) =aiT + axT? + --- € Z,[[T]] be a square root of T2 = T3 +T% —...;

for example, let a; = 1, and define each a, recursively by

1 n
@ =3 |(-1) T Y g

2<i,j<n—1
i+j=n+1
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Let v be the Z,-algebra endomorphism taking T to f(T). Then v is injec-
tive, and induces a surjective map on cotangent spaces. Therefore, ¥ is an
isomorphism, as claimed.

Composing p with the automorphism of GL, (Z,([T]]) induced from !

gives a representation
P+ Mgy ) — GL2 (Z,[[T?])

which satisfies

'(0) 11 ‘o) 1 0
= N g = .
proe 01 it -4-T% 1

Let 5 be the representation obtained from p' by reducing mod (p, T?), so
that j is the representation associated to the p-torsion points of the Legendre

family of elliptic curves, and let S = {0y.0,}-

Theorem 4.41 As a representation over Zy([T?)] = Z,([T}], ¢'|ng is a rep-

resentative of the S-ordinary universal deformation [p% .| of B.

Proof: The universal property of [p" ,] gives a Z,-algebra homomorphism
¢ : Z,{[T]] — Z,[[T?]

which takes [pd%% ;] to [¢|ng]. From the proof of Theorem 2.31, ¢(T) = T?,
so @ is an isomorphism. O
Remark: The representation p' arises naturally as a representation of the

larger Galois group g, ). Since the image of p(o;) has order dividing 2p
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for each i = 0,1.00, by Theorem 3.12, pi"¥ . can be extended to a rep-
resentation of Ilgy, . ): therefore, up to multiplication by a representation
X : Gouu,=) — Z,[[T?]]*. ¢ is the composition of this extension of pi™Y ,

with the map induced from o.

101



5 Relation to Ihara’s Cocycle

5.1 Thara’s Construction

We define a Z,-algebra A by
A :=Z[to. t1 to]]/ (2o + 1)(t1 + D) (tec + 1) — 1)
In [Iha86b], Ihara constructs a cocycle
F:Gg — A*

which describes, for each n, the action of G, .) on the primitive quotients

of the Jacobian of the Fermat curve
Fo:2”" +¢y7" =1.

We briefly describe [hara’s original construction.

Fix a prime p, and let F be the pro-p completion of the free group on two
generators go, g;. Let g = (g9og:1)~!. and let M be the maximal algebraic
pro-p extension of QYt) unramified outside {0.1,oc}. Fix an isomorphism
¢ : F — Gal (M/Q(t)) such that for each i = 0.1,00, g; is mapped to
a topological generator of an inertia group above i. The choice of such an
isomorphism ¢ gives rise to a representation of Gg in the group of outer
automorphisms of F. More precisely, let A be the subgroup of Aut(F) con-
sisting of those automorphisms o for which there is some a € Z; satisfying

o(gi) ~ g for each 1 = 0, 1, oc. An automorphism of a group G is said to be
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an inner automorphism if it arises as conjugation by some element of G. We
denote by Int(G) the group of inner automorphisms of G, and by Out(G)
the group Aut(G)/Int(G) of outer automorphisms of G.

Definition 5.1 The pro-p braid group (of degree 2) is the group
¢ := A/Int(F).

Given v € Gg = Gal(M/Q(t)) /Gal (M/Q(t)), choose a lift 5 of v to
Gal (M/Q(t)). Conjugation by 4 defines an automorphism of Gal (M /Q(t))
whose reduction modulo Int (Gal (M/Q(t))) depends only on ~. By the iso-
morphism ¢, we obtain an outer automorphism o, of F. Moreover, by The-
orem 3.1, o, is an element of ®; thus the assignment v — o, defines a

representation
o GQ — ¢.

Let F" = [[F, F], [F, F]] denote the double commutator subgroup of F. Let
¥ denote the image of ® in Out (F/F") under the canonical homomorphism

r : Out(F) — Out (F/F"). In [Iha86b], Ihara studies the representation
Y GQ — ¥

obtained by composing ¢ with r.
The quotient F/F' is isomorphic to the pro-p completion of the abelian-
ization of the free group on two generators; that is, 7 /F' is isomorphic to the

pro-p completion Z, x Z, of the free abelian group Z x Z on two generators.
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Since F'/F" is abelian, the automorphism of F'/F" given by conjugation by
any element g € F depends only on the reduction of ¢ mod F'; thus F/F’
acts by conjugation on F'/F". The group F'/F" is an abelian pro-p group,
and hence is endowed with a canonical action of Z,. Therefore, F'/F" is a

module over
Zo([F/F) = L2 x Z,)) = Z[[u,v]) = A

Fixing the isomorphism Zy[[F/F’}]] — A which maps g; to t; + 1 for each
i =0.1.0c. F'/F" obtains the structure of an .A-module in such a way that

multiplication by ¢t; + 1 is given by conjugation by g; for each i =0, 1, cc.

Theorem 5.2 This action of A makes F'/F" into a free A-module of rank
one generated by (go, g1].

Proof: See [[ha86b], §II. Theorem 2. a
Let \, : Gg — Z; denote the p-cyclotomic character, which describes
the action of Gg on py= C Q. The group Gg acts as Z,-algebra automor-

phisms on A by
7o (L +8) = (1 + )™

for each v € Gg, and each i = 0.1, 00. For v € Gg, let F,(to,t,tx) € A™ be

the unique element satisfving

©(7) ([90, 31]) = Fy(to, t1. ) - [90, 91]-

Proposition 5.3 The assignment v — F., defines a continuous I1-cocycle
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F:Gg— A*.

Proof: See [Iha86b]. §II, Theorem 3B(ii). O
Since Ggu,«) acts trivially on A, the restriction of F to Gg,) is a
homomorphism, which we also denote by F.
Let a.b € Z/p"Z \ {0} be such that at least one of a,b is a unit in
Z/p"Z, and let ¢ = —(a + b). Let a, (respectively b,.c,) denote the integer
(abic)

in {0,1.....p" — 1} reducing to a (resp. b,¢) mod p". The Jacobian Jn

of the complete nonsingular model of the curve

Ciabe) - gP" =y (y — 1)b

has a quotient AY*? which contains Z[(,] in its endomorphism ring, where
the action of ¢, on A% arises from the action of Hpn OD (36€) given by

Cn - (2. y) = (Cuz.y) for a generator ¢, of uyn (see [Iha86b], p.76). In fact,
the Tate module T, ( L“‘b‘c)) is a free module of rank one over Z,[¢,], and
the action of Ggy, vy on Tp (AS,“’b'c) ) commutes with the action of Zy[(n].
Therefore. the action of ~ € Gq“p,,, is given by multiplication by some

element F{%>° ¢ Z,(Ca]™-

Theorem 5.4 (Ihara, 1986) For each v € Gy, Fin'® is equal to
F‘7 (Cr‘: - I-Cg - 1-Cr‘: - 1)'

Proof: See [Iha86b], §II, Theorem 4 and its corollary. a
For each n, let J, denote the Jacobian of the Fermat curve F,. Then

{a.b,c)
n

Jn is isogenous to the sum of J,_; together with each A , where exactly

one triple (a, b, c) is chosen from each set {(ka, kb, kc)},¢(z/pnzy< (see [Tha86b)].
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p-78). On the other hand, under the isomorphism ¢, the commutator subgroup
F' corresponds to the subfield M’ = |JK,, where K, is the function field
of F,, and the subgroup F" correspon:is to M" = |JKI"P where Kurrab
denotes the maximal unramified abelian pro-p extensi(;n of K. Thus we have
the following tower of extensions:

M
P

M" = U A’unrab
n
neN

f' /;N

M = K,
neN

FIF

Q(¢)

An isogeny of abelian varieties is a surjective homomorphism of abelian vari-

eties whose kernel is finite. Subgroups H of the Tate module T,(J,) of finite
index are in one-to-one correspondence with isogenies fy : J — J, in such
a way that fy(T,(Jn)) = H. By geometric class field theory, such isogenies
are in one-to-one correspondence with finite unramified abelian coverings

Cy — F, in such a way that

Gal (Q(Cw)/Q(Fn)) = Ty(Ja)/H,

where Q(Cy), Q(F,,) are the function fields over Q of Cy and F), respectively
(see [Ser88]. Ch. VI, §2, Proposition 10 and the corollary to Proposition 11).

Therefore, letting S, denote the set of finite unramified abelian extensions
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KR ,, we have

Gal (K2 /K,) = lim Gal (L/Ky)
LeSn
= lm Gal(Q(Cx)/Kn)

"CTp (Jn)
finite index

bm (T,(Jn)/H) = T,(Jn).

HCTp(Jn)
finite index

(4

so Tp(Jy) is isomorphic to Gal (K¥"2"/K,). Thus one might expect the ho-
momorphism F with the property of Theorem 5.4 to arise from the repre-

sentation .

5.2 The Inertia Group at Infinity

Let p : Mgu,») — GL2(Zy[[T]]) be as in §4.8. and for any uniformizer 7
at oc. let Qx(up=) = Q(up=)((7)). Restricting p to the inertia subgroup
I« at oc gives a representation po of [ = Gal (Mux/Qr(pp=)). where
My := UQ(ip=) ((7'/")). The tower

" My

GQupe)

URkp) (7))

Qx (ﬂp"" )

gives an inclusion ty : Ggu,=) <> I which depends on the choice of uni-
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formizer 7. Restricting po to the image of ¢, thus gives a representation
Poo.x * Gouye) — GL2 (Zp[T]]) -

Let p, : GL2 (Z,[[T]]) — GL;(Zp[up~]) be the map induced from the ring
homomorphism Z,[[T]] — Z,[u,] taking T to v, ~ 1; since p was obtained
by the isomorphism §m Z;[upn] = Z,[[T]] taking (72 — 1)nen to T, we have
Prn ® Zy[ppr] = pu o p.

Fixing the uniformizer 7 = 1/16t, and letting u = (1/16t)"/*"", C: is

isomorphic over Q((u)) to the curve

nel o
— 2" P!

Cr:vt=z[[ O+ @+ —u's?) + =
J=1

by the map C; — C taking (z.y) to (;};, up—n:m,_!;_-_—,-) The curve C has

good reduction at u = 0, and gives the reduced curve

_ l.p"+l
Cr:y*= ra

On the other hand. the curve CY"'*" =% considered by [hara whena=b=1

is given by

CRt? = y(y — 1) = 27,

and there is an isomorphism v : C; — (11p"=2) given by

1 y 1
L/JZ(I,y)'—)(;,ITjﬂ"Fi).
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The endomorphism v, + ¥,;! of J gives rise to a corresponding endomor-

phism of the Jacobian J; of C7, and the reduction map
J7 (Qelp=)) — J; (Qap))

induces a Q,[v, + 7, '|-module isomorphism 1,(J;) = V,(J;). Counting
Q,-dimensions shows that under the isomorphism of Jacobians induced from
¥, the quotient AY """ 72 of JIP"=8 must correspond to a quotient A, of
J7 such that the extended Tate module V,(A,) corresponds to the unique
Qu[¥n + 7,7 !]-module quotient of V,(J;) isomorphic to @, (¢ + ¢71)2

The endomorphism v, +7,;! of the Jacobian of C-',,“ arises from the action

of ptpn on Cy, via the map

Cn — C;

1 y
I, — ) ry n )
(:5) ((-l"+‘l"l)“2 ux%‘(xdf-x-l)'ﬂ—“)

where u?" = . If P, = (z.y) € C, is a preimage of Q = (w, z) € C’;, then
sois P, = (%, ;—P#:) applying v, to P, P, and mapping to C_'; gives the

points

Q = CnZ y
@D (gt + )T

Q, = CnZ y _
(G +2)u? y(¢, + ¢ 122) 55

Projectivizing these points and specializing at u = 0 gives the point at infinity
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(0 :1:0) on C; if v,(z) < 2, where v, denotes the u-adic valuation. If
vu(z) > 2, then v,(y) > 1. Letting ' = z/u?, y’ = y/u, specializing gives

_ T4l _ _
the points Q, = (Cnf’,(,%y’) and Q; = (C,j‘i"._(n

where I'. §' denote the reductions of ., y mod u. Therefore, the action of

pi+1t .
2 7' ) respectively,

1

Ya + 75" on J7 obtained from that on J is precisely that considered by

Thara arising from the action of yy» on C; by y,(z,y) = (C,.x, C:’_Hy). In
particular, T,(A,) is a free Z,[¢,]-module of rank one, and thus also a free

Zy[Gn + ¢ ']-module of rank two. Moreover, writing
poc(0) = Ms(T) € GLp (Zo[[(1+T) + (1 + T)7']))
for each 0 € Gy, ). the representation
Pocn : Gy ) — GL2 (Z[Cn + ')

given by pxn(0) = M,((, — 1) is the Galois representation associated to
T,(A,) as a Zy[Gn + ¢ ' |-module.
Let F : Gyyu,=) — A be Ihara’s representation. There is a Z,-algebra

isomorphism 6 : A — Z,[[u, v]] which takes t; to u and ¢; to v. Let
r: Zyl{u, v]] — Z,[[T]]

be the Z,-algebra homomorphism such that r(u) = r(v) = T, and let
F=rofoF.Sincerof(ts) = (T +1)"2 -1, we have

Folba— 1,6 — 1,672 = 1) = Fo(Ga - 1)

110



for each 0 € G ); hence letting p, : Zy[[T}] — Zy[(a] denote the ho-
momorphism taking T to (, — 1. p, o F is the representation of Goupm)
associated to AP,

In order to obtain the representation F from p. r, we first need some

lemmas:

Lemma 5.5 Let V7 be a free Zy[(n]-module of rank one, and let o be the
automorphism of V' given by multiplication by a € Z,[,|*. Let & be the
nontrivial element of Gal (Qy(Cn)/Qp(Cn + ¢')). Then the eigenvalues of

0 ®z,ic.+c5') LolCa] are a and o’

Proof: Let {v} be a Z,[¢,]-basis for V. Fix the Z,[¢, + ¢, ']-basis {v, (av}

for V", and let ag, a1 € Z,[(, + ('] be such that @ = ag + {,a;. Since

o(v) = av = agt + a1 v
and 0(Gnv) = alav = (a1 + aolay

= —a1v + (ag + (G + G D) Gav,

. . a -
o is given by ( 0 o

a1 ag+(Cn+Cs an ) relative to the basis {v, (,v}. In particular,

the characteristic polynomial f, of o is given by

fo(X) = X% = (2a0 + (6 + ¢ 1) X + (af + (Gn + ¢ aoan + af)
= (X — (a0 + ¢aa1)) (X = (a0 + (')
(X —a)(X - a’),

as desired. d
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Lemma 5.6 The representation por is conjugate to an upper-triangular

representation.

Proof: Let x denote the cyclotomic character. For v € [,, we have
0yt = o7 and thus p(7)p(0x)o(¥)~" = p(0c)¥M. Since p(0) has
order dividing 2p* for some k in every finite quotient of GL, (Z,[[T]]), we
have p(0 )X = p(0x)¥*"), where x, : Gg — Z denotes the p-cyclotomic
character which describes the action of Gg on pp= C Q. The group I is
contained in Ilg o). S0 ¥ fixes u,= pointwise; thus xp(v) = 1, and hence
p(Y)p(ox)p(7) ! = 0x. In particular, the image of px » is contained in the
centralizer Zgy,z,()) (P(0x)) of p(0x) in GL; (Z,[[T]}). If we show that the
non-scalar matrix p(o«) is upper-triangular, then its centralizer must also

be upper-triangular, thus proving the lemma.

From 4.39 and 4.40. we have

1 -1
P(Uac)=( )
24 (1+T)+(1+T)7" —1-(1+T)~(1+T)!

For any g(T) € Z,[[T]]*. applying Hensel's lemma to X2 ~ g(T') shows that
g(T) is a square in Z,[[T]] if and only if its reduction mod (p, T) is a square in
F,. Thus g,(T) := 2+(1+7T)+(1+T) 'and go(T) := ¢:(T) -4 = T*(1+7)"!
are both squares in Zy[[T]] since g,(T) reduces to 4 € F, and g,(T)/T?
reduces to 1 € F,. Let g(T) € Z,[[T]] be a square root of g,(T)g:(T), and let

h(T) = 3 (a:(T)? + 9(T)) .
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Conjugating p(c.) by the matrix M = (h(!r) ?) gives

Mp(o) M~ = (hm +1 -l ) :

0 1-h(T) - a(T)

as desired. O
Identify ps.r with any one of its upper-triangular conjugates, and let

fis fo 1 Gouu,ee) — Zp[[T]]* be such that for each o € G, ).

(fl)a(T) *
Pxx(0) = .
0 (f2)o(T)

Theorem 5.7 One of f, or f, is equal to F: the other is uniquely determined
by the property that the image of each 0 € Gy, ) gives F(¢n — 1)¢ when

evaluated at {, — 1.

Proof: Given 0 € Ggu,«). by Lemmas 5.5 and 5.6, the action of o on
T,(A4.) as a Z,[(,]-module is given by multiplication by (fjn))o({s — 1) for
some j(n) = 1 or 2. On the other hand, since A,, is isomorphic to Alpte?-=2)
over Q(up=). o acts on T,(A,) by multiplication by F,(¢, — 1). Therefore,
for some j = 1 or 2. (F; — (f;)6)(¢n — 1) = 0 for infinitely many n. It follows
from the Weierstrass Preparation Theorem that a nonzero power series can
have only a finite number of zeroes z € @p satisfying |z| < 1, where | - | is
the p-adic norm (see [Was82], Corollary 7.2). Therefore, F, = (f;),. Since
F. fi. f, are homomorphisms, we have F = f; for some k = 1 or 2. The

final statement follows from Lemma 3.5 together with the corollary of the

Weierstrass Preparation Theorem used above. a
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Remark: Which f; is equal to F depends on the choice of conjugate of p _x.
Since py » describes the action of Ggu ) 0n Tp(An) as a Zp[(a+¢; ' ]-module,

our construction does not distinguish which f; is equal to F.
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6 Conclusion

In the preceding chapters, we have described a new construction of a special-
ization of Thara's cocvcle. This construction arises from the {0y, o, }-ordinary
universal deformation of the residual representation p which describes the ac-
tion of [l on the Legendre family of elliptic curves. This universal deforma-
tion was extended by the rigidity theorem to a representation p of Ilgy, «)-
Using a geometric construction of p. we showed that a specialization of lhara's
cocycle appears when p is specialized at infinity (given a particular choice of
uniformizer).

This work suggests a number of directions for further research. First of
all. the og-ordinary universal deformation ring of the residual representation

p is Zy[[u, v]] = A: thus we are led to the following question:

Question 1 Does the extended ogp-ordinary universal deformation of j of

Theorem 3.12 give rise to Thara’s full cocvcle when specialized at infinity?

Let k£ be any field. and let My, M. A, € GL, (k) be matrices satisfving
MM AM; = Id, which generate an irreducible subgroup of GL,(k). By a
theorem of Belyi. if one of AMy. M. or A, differs from a scalar matrix by
a matrix of rank one. then the triple (Mg, M, M,) is rigid in GL,; (k). Thus
one would expect that subject to an appropriate “ordinariness” condition,

the universal deformation (R"™", p""¥) of a residual representation
p: llg — GL,(F})

would be rigid: that is. the triple (p“™¥(0y). p"™"(01).p"""(0s)) would be

rigid in GL, (R*™"). Therefore, one expects to be able to extend this p*" to a
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representation p of [Ix (), where K is a given cyclotomic extension of QY yp ).
Furthermore, since Katz’ construction applies to rigid representations of ar-
bitrary dimension. it should be possible to construct p geometrically, in a

similar manner to the construction of Chapter 4.

Question 2 What effect would increasing the dimension of the residual rep-
resentation have on our construction? In particular, would Thara’s cocycle still

appear, or some (possibly nonabelian) variant?

If the group Il is replaced with another algebraic fundamental group Il in
our construction, the universal deformation seems much less likely to be rigid.
Since the number of topological generators of I is in general greater than 2,
it may be necessary to increase the dimension of the residual representation
in order to obtain a rigid situation. Also, a further study of rigid m-tuples in

GL,(R"") would be required if this generalization is to succeed.

Question 3 Under what conditions could our construction be carried out if
[Iz is replaced with some other algebraic fundamental group? Under those

conditions. what cocycles appear?

Another direction arises from lhara’s generalization of his own construc-
tion of his cocycle. In [Iha86a], he considers different towers of étale coverings
of P(Q) \ {0, 1.0c} having certain properties, and for each such tower con-

structs a “universal” cocycle
o: GQ — A,

where A is a completed group ring Z,[[g]]. the group g depending on the

tower of coverings.
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Question 4 s it possible to generalize our construction to give other cocy-

cles of lhara?

In general, the algebra A is not a power series ring; thus it would be necessary
to begin with an obstructed deformation problem, which could not arise
from a residual representation of an algebraic fundamental group. Therefore,

significant difficulties already appear in the first step of such a generalization.
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