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Abstract

The Lamé polynomials naturally arise when separating variables in Laplace’s equation in
elliptic-spherical coordinates. The products of these polynomials form a class of spherical harmon-
ics, which are the joint eigenfunctions of a quantum completely integrable system of commuting,
second-order differential operators Py = Agw, P, ..., Py_; acting on C°(SV). These operators
depend on parameters and thus constitute an ensembie.

In the main result presented in this thesis, we compute the limiting mean level spacings distri-
bution for the zeroes of Lamé polynomials in various thermodynamic, asymptotic regimes. We give
results both in the mean and pointwise, for an asymptotically full set of values of the parameters.

As an application, we compute the limiting level spacings distribution of the zeroes of Van Vleck
polynomials.



Résumé

Les polynomes de Lamé interviennent de facon naturelle lors de la séparation des variables,
en coordonnées elliptiques-sphériques, de 1’équation de Laplace. Les différents produits de ces
polynémes forment ainsi une sous-classe d’harmoniques sphériques. De plus, ces produits peu-
vent étre aussi utilisés pour décrire les fonctions propres d'un systéme quantique, complétement
intégrable, d'opérateurs différentiels du second ordre Py = Agw, Pz, ..., Py—1 définis sur C=°(SV).
Ces opérateurs dépendent intrinséquement d’une certaine famille de parameétres, et constituent
donc un ensemble, que 'on appelle ensemble de Lamé.

Les résultats principaux présentés dans cette thése consistent a calculer le niveau moyen
d’espacement de la distribution des zéros des polynémes de Lamé pour différents régimes thermo-
dynamiques. Nous donnons les résultats sous forme de limite ponctuelle et de limite en moyenne,
pour un sous-ensemble des parametres de mesure asymptotiquement 1. Enfin, nous appliquons des
techniques similaires afin de calculer le niveau moyen d’espacement limite pour la distribution des

zéros des polynémes de Van Vleck.
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INTRODUCTION 2

acting on C*°(S¥). Here, S,';j denotes the k-th elementary symmetric polynomial in the « param-
eters with a; and a; deleted. It is easy to check that

() Po=Asw~,
(#) [P, PJ] =0 forall 45=0,..,.N—1.

Consequently, the P;'s form a QCI depending on the parameters ag, ..., @y and thus constitute an
ensemble.

Since the P;'s are jointly elliptic, they possess a Hilbert basis of joint eigenfunctions. Moreover,
since Py is just the constant curvature spherical Laplacian, these eigenfunctions form a class of
spherical harmonics, the so-called generalized Lamé harmonics. In our main result (Theorem 3.1
in Chapter 3), we derive asymptotic formulae for the level spacings distribution of the zeroes of
these spherical harmonics.

To describe our results in more detail, we begin by noting that in terms of appropriate (see
Chapter 1) parameterizing coordinates (xy, ..., uy) € (ag, ) X ... X (ay—-1,an) on SV, and up to

constant mulitiples, the joint eigenfunctions of Py, ..., Py_; can be written in the form:

N N
YUy, .., un) = H H(uj -Cl!u)’a"/2 - §(uj)-

j=1 v=0

Here, ¢ is a polynomial, and 8 = (fo,.-. ,8n) is a multi-index with 8, € {0,1}, » = 0....,N.

Furthermore, the function %(z) := [[o(z — ,)?*/2 - ¢(z) is a solution of the generalized Lamé

equation

N N
H(z—a,,)%-&-%z H(z—a,\)j—ﬁ--i-C(r)tf):O, (0.3)
v=0

v=0 A#v

where, C(z) is a polynomial of order N —1 depending linearly on the joint eigenvalues Ag, ..., AN_1
of the operators Py,...,Pv—_;. When 8 = 0, the solutions ¥(z) are called Lamé polynomials and
the corresponding C(z) are called Van Vleck polynomials.

Consider
E(k) = {ezs‘{", e BS }

the set of Lamé polynomials of degree k. By the standard theory of spherical harmonics [WW]
and the fact that the corresponding Lamé harmonics form a Hilbert basis, we know that j(k) =
o(N,k) == fg—(‘%‘:—:% Let Ofkl) <---< 95'2 denote the (real) zeroes of the polynomial, ¢£k), where
t=1,...0(NV,k).



INTRODUCTION 4

theorems, namely the Heine-Stieltjes Theorem [Sz] concerning the distribution of the zeroes of
Lamé polynomials, and an analogous result due to G. Shah [Sh3| about the distribution of the
zeroes of Van Vleck polynomials.

In Chapter 4, we apply similar techniques to those in Chapter 3 to compute the limiting

level spacings distribution of the zeroes of a Van Vleck polynomial. The results are presented in
Theorem 4.1.



CHAPTER 1

Quantum integrable systems

In this first chapter, we introduce the classical C. Neumann problem on the N-sphere SV.
We then show how this system can be integrated at the quantum level by exhibiting a family of
commuting differential operators acting on C*(S"). We then apply similar arguments to integrate

the motion of a free particle on SV both at the classical and the quantum level.

1. Integrable Hamiltonian systems

In classical mechanics, one can describe the motion of a particle in the Euclidean space RV in

terms of the Hamiltonian equations:

. OH . d0H
Ty = — -_—

3& 7 £i = _az‘_ y
where = = (21, ...,zx) € RN, €= (&, -..,En) € RY. The smooth function H = H(z, £) defined on
some open domain in R2Y is called the Hamiltonian function.

More generally, let (M"W .w) be a symplectic manifold. That is, M is a smooth manifold of

dimension 2N and, w, a non-degenerate, closed 2-form on M. Under the identification
J:T"M — TM,

defined by requiring that for all v € TM, w(J(8),v) = —6(v), one associates to a function H €
C=(M) the vector field Xg = J(dH). In analogy with the local case above, we call H the
Hamiltonian function and, X, the Hamiltonian vector field.

The Poisson bracket {F, G} of two functions F,G € C*(M) is defined to be:
{F,G} = w(J(dF), J(dG)).

Since the commutator [XFr, X¢] := XpX¢ — X¢XrF is again a differential operator of the first
order generated by the Hamiltonian {F,G}, ie. [XF, X¢| = X(F,c}. the Hamiltonian vector fields
form a Lie algebra. It is this Lie algebra which is the main object of study in classical mechanics.

In terms of local Darboux coordinates (see [Ar]), z = (z1, ....zN), § = ({1, ---. ), the sym-
plectic form is just w = ‘.v;l d€; A dz;, whereas the Poisson bracket and the Hamiltonian vector

5



1. INTEGRABLE HAMILTONIAN SYSTEMS 6

field are given by

N
8F G OF 8G
F.0 =3 (558~ 38.0)

and,

N
OH 9 OH &
i =3 (5632~ 5eroe)

i=]

Consequently, the flow of X is governed by the Hamiltonian equations

. OH . oH

I = a_f‘" &= —g, fori= 1, ey N.

A non-constant function F € C®(M) is said to be an integral if Xy (F) = {F,H} = 0. This
is equivalent to saying that F(z(t),£(t)) is independent of ¢, i.e. F(z(t),&(t)) is constant along the
integral curves of Xy. In general, the existence of one or more integrals can be used to reduce the

order of the system, and hence bring it to simpler one. Consequently, the knowledge of integrals
is of interest.

Definition: A Hamiltonian system (M,w, H) is said to be completely integrable if it possesses N
integrals F, = H, F3, ..., Fy satisfying the two conditions

(%) {F,F;}=0fori,j=1,..,N,
(it) dF,...,dFy are linearly independent on an open dense subset in M.
Functions satisfying (Z) and (iZ) are said to be in involution.

For an integrable Hamiltonian system (M, w, H), the vector field X is clearly tangent to the
submanifolds

A’[,_—= {(I,f) eM :F1 =C[,..,,FN =CN},

where ¢ = (cy, .-.,cy) is a regular value of the function F := (F},..., Fx). In other words, these
submanifolds are invariant under the flow generated by X . Thus, the fibers of F' are foliated into
N-dimensional invariant submanifolds. According to a theorem of V. I. Arnold [Ar}, such a leaf
is necessary a torus TV provided it is compact and connected. Moreover, in a neighborhood of
such a compact leaf the structure of an integrable system is particulary simple. Indeed, one can
introduce symplectic action-angle variables 84, ...,8y, I1, ..., Iy, in terms of which the Hamiltonian

equations become

- OH ; .
P = a—l,i~([1,..., IN), I; =0, fori= 1,.., N.

One can then solve this system of equations by simple quadrature.
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Here, S denotes the generating function of the canonical transformation (u, £) — (v, 7) that satisfies

the differential equations

as as
B Y oy
In fact, Neumann computed explicitly the expression of S (see [Mo}). He obtained

S(u,m) = Z/ V- 3%2

where Q(z) = zV + 2npzVN ! +--- + 27y and A(z) = ['[f:’:o(z —-ay).

Under the canonical transformation induced by S, the Hamiltonian function takes the ele-

&= i=1,..N.

mentary form H = n,, whereas the equations of motions are now governed by the Hamiltonian

system
'ﬁi =5"1, f]; =0 fori= ].,...,N.
Consequently, the functions 7, ...,nn yield N integrals, which are clearly in involution. Al-

though Neumann proved the complete integrability of the system, he did not arrive at the algebraic

expressions in terms of = and £ of the integrals 7, ..., 7v. In order to do this, we will now consider

the following approach of Moser {Mo].

To show that the C. Neumann is completely integrable, Moser considered the following ex-
tended Hamiltonian system on T*(RV+!):

{H(x.a ¥ 22+ 4 [2PIER — (z, )]

(1.5)
= HE;I Ei = "’Hz.

This system has the integral |z|? since it is invariant under the symplectic transformation (z,£) —
(z, € + 2zs) generated by |z|2. Therefore, one can reduce (1.5) by this integral. We denote by G
the isotropy group induced by the action (z,§) — (z,§ + 2zs). To form the quotient manifold

={@o v =1}/,

we single out the point x on the line = + t£ for which (z,£) = 0. As a result, we obtain that Mis
diffeomorphic to the manifold M with

M= {(:!:,5) eR2V¥2 ; |z2 =1, (z,£) =0}.

Note that, M can naturally be identified with the cotangent bundle of the N-sphere, i.e. M =
T*(S™). In order to derive the Hamiltonian system obtained by reducing (1.5) to M, we put

Hpy =H - X(|z]2 - 1),
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Here, S’-‘(u) denotes the j-th elementary symmetric polynomial with u; omitted. The potential
functions V; € C=(SY) are given by the local formulae

V(@) = (~1Y Sra (w1, ), for j =L, N.

3. The quantum C. Neumann system

We follow here the presentations of D. Gurarie [G] and J. A. Toth [T1], [T2] to integrate the
C. Neumann system at the quantum level. That is, we construct N pairwise commuting, partial
differential operators on L2(S¥), which in turn commute with the respective quantum Hamiltonian.

The quantum Hamiltonian associated to H is given by
H = —Ag + Vo(z), (k=1),

acting on the dense subset C=(SV) of L2(SN). Here, Vo(z) := (Az,z), and Ao denotes the
Laplacian associated to the metric gg as defined in previous section. Note that, Ag is simply the
constant curvature Laplacian on S¥.

First, we present the approach of D. Gurarie [G]. His procedure is rather straightforward;

it consists of associating to the classical observables fy, ..., f; constructed by Moser, the partial

differential operators
Fu(z,i8) =a2 + Y e " Zutvl (I”a @@=z, o N (1.10)
puEY — O

As for the classical case, the a- weighted sum of the operators yields the quantum Hamiltonian,

ie.
N .
H=Y aF. (1.11)
v=0
and also, Z =|z[2 =1, for = € S¥. To see that this gives a complete integrable system, it

then suffices to restrict the operators F,, originally defined on the extended Hilbert space L2(RV+1)

to L2(SY). The proper commutation relations
[Fi. Fjl =0, fori,j=0,..,N.

are verified by direct computation.

Another approach, though less transparent, was given by J. A. Toth [T1], [T2]. To show that

the quantum C. Neumann on S¥ is completely integrable, he first considers the functions

= (det(g4) "/ (det(gh)) ™/, (L12)
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where, the g; denotes the underlying metric defined in (1.9). As a consequence of (1.7}, the p;

extend to smooth, strictly positive functions on S¥. He then constructs the partial differential

operators

i = —(8; +Vjlog(p;)) +Vj(z), ji=0,.,N-L (1.13)

for which he verifies the required commutation relations {P;, P;| = 0. Note that, in the special case
where j =0, pg =1 and hence, Po = H. Therefore, the given system is quantum integrable.

One of the most important features of this quantum system resides in its spectral aspects.
Indeed, by seeking joint eigenfunctions of the form ['[;‘;L ¥(u;), where uy, ..., uy denote the elliptic-
spherical coordinates on SV, Toth obtained, after separating variables, the following remarkable

property. Namely, such eigenfunctions may be found by solving the single ordinary differential

equation

Al Py 1 dip (" = )
(r—ay,)—5+= (z—au)— + AN—v1Z¥V | ¥ =0. (1.14)
.,1;[0 dz2 " 2 gog # ; !

The separation constants Ag, ..., Ax 1 are exactly the joint eigenvalues of the operators Po, ..., Px—1.

As we will see in the next chapter, the last equation is a natural generalization of Lamé differential

equation.

4. The free particle on SV

Let us now consider the motion of a particle on the sphere SV subject to no force. This can be

viewed as the motion of a “free” particle moving on S¥. The corresponding Hamiltonian system

is then given by

i, =He, €=-H. forv=0,..N,

1.15
H(z,8) = %IEI%, reSY, geRNH, (1.15)

where, as before, | | denotes the standard metric on T*(S"). Using similar methods as those
developed by Moser to integrate the C. Neumann system (see section 2), one can show that this

system is completely integrable. Indeed, the following Hamiltonian system

z, =Hg,, E= —-H,, forv=0,...N

1.16
H(z,&) = ; (1z2l¢13 — (2, €)*), zeRV+!, geRN*! (1.16)

on T*(RN+1!) is, when restricted to T (S¥), equivalent to the system (1.15) defined above. One

can then construct, for given parameters aq, ...,ay with0 < ag < --- < ay, N +1 integrals given
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by

filz,€) = z M, i=0,..,N. (1.17)

et @7~ a;
J#i t 7

As in the case of the C. Neumann system, for = € S¥, only N of the integrals in (1.17) are
independent since they satisfy the equation z:)r:o fi = 0. Moreover, the Hamiltonian function H
is given by

1 N
H=-2— E a.,f,,.
v=0

It is easy to check that fy, ..., f& are in involution, and so the system (1.15) is completely integrable.

Next, we integrate this system at the quantum level by considering the second-order partial

differential operators given by
PL’ = Z sligj(a()r ey aN) (z'laj - xjai)29 k= 0, -*-vN - 17 (1'18)
i<j
acting on C=(SV). Here, S}’ denotes the k-th elementary symmetric polynomial in the a param-

eters with o; and a; deleted. Direct computation shows that

(i) H=A4sv =h,
(#8) [P, P;]=0, foralli,5=0,..,N —1.
In other words, the operators Py, ..., Py form a QCI system.

Since the P;’s are jointly elliptic, they possess a Hilbert basis of joint eigenfunctions. Also,
since Py is just the constant spherical curvature Laplacian on SV, these eigenfunctions form a class
of spherical harmonics, the so-called generalized Lamé harmonics. To describe these harmonics in
more detail, we proceed in a similar fashion as in the case of the C. Neumann system. Let uq,...,uy
be elliptic-spherical coordinates and eigenfunctions of the form ©(uy,...,uyx) = [[;Y___l Y(u;). The
eigenvalue equation for the Laplace operator becomes

N

> ostr=a V0@ (VU@ 52 ) | = —see. (1.19)

where U(z) = [I:,‘;o(:r —ay).
Substituting the ansatz for ¢ into (1.19), we get that the function ¥{z) must satisfy the
ordinary differential equation

N-—-1L
H(:r: a,,) dxz 22 [[=- a“) dI (Z ,\N_,-la;) v =0, {(1.20)

v=0 pfv =0
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where the separation constants Ag,...,Ay—; are the joint eigenvalues of the partial differential
operators Py, ..., Py . defined above. Equation (1.20) is the well-known generalized Lamé equation.

It will be the subject of the second chapter of this thesis, where we give a complete and detailed
study of it.



CHAPTER 2
The Lamé differential equation

We now turn our attention to the study of the differential equation (1.20) satisfied by the
joint eigenfunctions of the QCI system introduced in the first chapter. We follow the presentation
of Whittaker and Watson [WW] where this equation is introduced via the theory of ellipsoidal
harmonics. We then describe two important results about the zeroes distribution of two classes
of polynomials associated to differential equation of Lamé’s types, namely the Stieltjes and Van

Vleck polynomials.

1. Introduction

In his classical treatise on heat conduction in an ellipsoidal body, G. Lamé [L] was led to
consider the class of homogeneous, harmonic polynomials on R¥*! that vanish on a family of con-
focal quadrics, the so-called ellipsoidal harmonics. There is an analogous construction of spherical
harmonics that we will now describe.

Pick a set {aq, ... ,ayx} of positive real constants, all distinct, and ordered in increasing order.
Define, for some real parameter @, the diagonal matrix 4g = diag ((6 —ao)~,... . (0 —an)™!).
The problem then reduces to finding, for any positive integer & and any multi-index 8 = (fq, ... . 8n)

€ {0,1}¥+! [ real numbers 6, ..., 8 for which the Niven’s functions

k
fa(X) = X? [[(46;X. X), X eRM*!, (2.1)

i=l

are solutions of Laplace’s equation A(fg) = 0. The restriction of the fg's to SV yield an important
class of spherical harmonics: the generalized Lamé harmonics. As we shall see later, they form a
complete basis of L2(SY). In addition, these functions are, up to a constant, the joint eigenfunctions
of the operators P, ..., Pnv—; considered in Chapter 1.

Clearly, the fg(X) vanish on a family of confocal cones. Moreover, after the substitution of
the ansatz into Laplace’s equation, a straightforward computation shows that the relevant 8; are

14



2. SEPARATION OF VARIABLES AND EIGENVALUES 15

obtained as solutions of the equations
N

~
1 28, 4 .
+ + =0 for j=1,..k. (2.2)
ugoej—a., UZ___‘:G,'—*OV ;0]’-0{

In the literature, these equations are commonly referred as the Niven's equations (see [KM],
(WW]).
Consequently, if we denote the solutions of (2.2) by 6y,...,6k, it is not hard to see that the

functions

N k

¥(x) = [[-a)?2[[(z-8;), B.€{0,1}, (2.3)
v=0 i=1
are solution of the second order differential equation
N N
2y 1 di

H(a:—a.,)@--i-iz H(z—a,,)E-G-C(:r)w:O, (2.4)

v=0 v=0 u#v

where C(z) is a polynomial of degree N — 1 that we compute explicitly in the next section. This
equation is known as the generalized Lamé differential equation.

In the special case where the multi-index 8 = 0, it follows that the k-th degree polynomial
o(z) = [[;;1 (z — 8;) is a solution of Lamé equation. These are known as Lamé polynomials. In
our main result (Theorem 3.1 in Chapter 3), we compute the limiting level spacings distribution

of the zeroes of these polynomials in various thermodynamic, asymptotic regimes.

2. Separation of variables and eigenvalues

We now restrict our attention to the N-sphere S¥. As we mentioned in Chapter 1, the
Cartesian coordinates zo, ..., zx of R¥+! are given in terms of the elliptic-spherical coordinates

u = (uy,...,un) € (ag, 1) x --- %X (ay—1,ay), by the relations

N
2 _ H}:I(u}i —Ck,,)
Hp#v(ai‘ - al’) ’

v

v=0,1,..,N. (2.5)

One can use these expressions to rewrite the Niven’s function (2.1) in the form,

N N

fow) =c [ [T Cui = )P /26(u;), (26)

v=0j=1
where c is some real constant depending only on ag, ..., ax and ¢(z) is the k-th degree polynomial

[[;;L(:z: — 6;) defined above. By construction, the functions fg are solutions of the eigenvalue
problem for the Laplace operator on S¥. Recall from Chapter 1 that the advantage of writing
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Niven's function in terms of elliptic-spherical coordinates is that one can easily separate variables.

Indeed, the separated equations have the form

N-1
H(x a,,) dz2 22 [[=- a,,) (Z ,\N_,-_lzf) v =0, (2.7
Jj=0

v=0 u#v

where the separation constants Ag, ..., AN—; are the joint eigenvalues of the partial differential op-
erators Py, ..., Py-) defined in Chapter 1. Equation (2.7) is exactly the generalized Lamé equation
considered in the introduction of this chapter. Consequently, the solutions are given by

N

¥(z) = [[(= — ) ?e(x).

v=0
The reader should note that we have given an explicit expression for the N — 1 degree polynomial
C(z) of (2.4).

As the next proposition shows, there exists simple relation expressing the eigenvalues Mg, ..., An -

as functions of the parameters ayg, ..., ay and the zeroes 8y, ..., 8, of the Lamé polynomial ¢(zx).

Proposition 2.1. Fori=0,...,N — 1, we have that:

iy = (z > H) (f:i ._0[)

j=0 tesS(,j) m=1 j=0i=1

where S(i, ) = {z =(ltyorlnei) :0<h € SINci SN, Im#j for m=1,... N—i}.
Proof: The proof is a simple application of the residue calculus and the theory of Vandermonde
matrices. For 8 =0 and = # 6, ...,0;, divide each single term of the generalized Lamé equation

(2.4) by :La (z — ap) &(z) to get:

12?:6[ '\N—j—lxj _ 1 d2¢ 1 N 1 dé
Ti [[Po@—oy) 0@ |dz* 2 g e = |- 2.8)

0
Clearly, the LHS has simple poles at £ = «,, for v =0, 1, ..., N. Therefore, if we compute the
contour integral of both sides of (2.8) on a circle ', centered at a,, with ', small enough so that
it contains no other singularity than «,, we get on the one hand:
Yoo Av—j1z Yo Av—j—12 N ]

N T 174
r"v Hy:-.O(:r - a") Hno(x - a,,)
N-—

L .
o A S !
= 2t |;(II.' - O!y) ]_‘? N=j—t ]
=0,

= 27t Res l:

HL:Q(T —ay)

- H;x#u(a" aP) ) )
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On the other hand,

Tico AW—jz 1 (& L1 \ds
e - e (8 (5) £) <]
. 1L (& 1 ) do
= m [(r—av) @) (,;,I—au) Z:] .

= m [(,:_a.,) (gz—lau) (z}::l ’ig')]muv

o
= mz%_ o (2.10)

=1

By equating (2.9) and (2.10), we conclude that

k
3 Awejora = s -a (Z _— 91) (2.11)

j=0 p#EY t

The coefficients matrix for the eigenvalues Ag, ..., Axy_1 is a Vandermonde matrix in the vari-
ables ag, ...,ay. Thus, we can write equation {2.11) in matrix form VX =1 with

ao ao'-' e crg’ AN—1

1
t k 1
1 2 N . inp;tﬂ(ao —“")tht nu—ag
arap roo : - .
V= R R . R A= , b = :
: : : Ao
LML ylen —a )Zk S .
2 N ThL e N\EN T ) 2 1= SN0
L ay af - ay 0

Using the results of [Kl], we invert the matrix V and get:
Voli= (@) = =yt Ztes(w) nm—l X
nf#;, (al - aJ)

with S(z, j) as defined in the statement of the proposition. Consequently, the eigenvalues have the

expressions

_1\N+i+l N—i N k
'\N—i—l-( ) i (Z Z HC"‘m) (ZZQ —01) (2.12)

7=0 les(i,j) m=1 3=0 I=

as desired. O

3. The distribution of zeroes of Stieltjes polynomials

In order to present the results contained in the remainder of the chapter, it is convenient to

consider the generalization version of the Lamé equation given by

]:[(a: a,,) — +2Z p [[=- a,‘)— +V(x)S =0, (2.13)

v=0 re 274
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where V(z) is a polynomial of degree N — 1. Here, the parameters p, are arbitrary, positive, real
numbers. Of course, in the particular case where p, = 1/4 for all » = 0, ..., N, we recover the

generalized Lamé equation of the introduction.

Definition: S(z) is called a Stieltjes polynomial, if it is a polynomial solution of the differential
equation (2.13). The corresponding polynomial V(z) is called a Van Vleck polynomial.

Note that in the case of the generalized Lamé differential equation, the Stieltjes polynomials
are exactly the Lamé polynomials defined previously.

The next two sections will be devoted to the study of the distribution of zeroes for the Stieltjes
and Van Vleck polynomials. The two main results are presented in Theorems 2.1 and 2.4; they
will play an important role in the proof of the new results presented in this thesis (see Chapters 3
and 4).

One of the most elegant results concerning the Lamé equation is certainly the Heine-Stieltjes
Theorem. In his two volumes “Handbuch der Kugelfunctionen”, Heine {H] considered the general

equation
d?¢ do
A(Zt)zz—z' + ?.B(I)a-; +C(z)p =0, (2.14)

with A(z) and B(z) two arbitrary polynomials of degree N + 1 and N respectively. Heine proved
that there are at most

(N+Ek-1)

(N -1}
polynomials C(z) of degree N — 1 for which the differential equation (2.14) has a polynomial
solution ¢(x) of preassigned degree k.

o(N, k) =

Shortly afterwards, Stieltjes [St] considered the particular case where the two polynomials
A(z) and B(z) are of the form:

A(z) = f:;o(:z: —a,),

B@) = Liopllplz—a), p>0.
This particular situation corresponds to the one described above, since in that case, equation (2.14)
reduces to equation (2.13). He obtained the following remarkable result.
Theorem 2.1. (Heine-Stieltjes) There are ezactly o(N,k) polynomials V(z) of degree N —1
for which the differential equation (2.13) has a polynomial solution of degree k. In addition, for
each of the o(IN, k) solutions, S(z), the zeroes are simple and uniquely distributed in the intervals

(007‘11)7 e ] (aN—l: QN)'



3. THE DISTRIBUTION OF ZEROES OF STIELTJES POLYNOMIALS 20

Therefore, the (N + k£ — 1)-th degree polynomial

N N
[ -e)s"@ +23 e [[(=-a)s'(@ (218)

v=0 v=0  pFv
vanishes at the points = = 0;, j = 1, ..., k, and so, it must be divisible by S(z). If we denote by
—V(z) the quotient resulting from the division of equation (2.18) by S(z) , it follows that V(z) is
a polynomial of degree N — 1 such that S(z) satisfies the differential equations (2.13), i.e.

H(z o:.,) s +2Zpu II(:J: a,‘)—-!—V(:L’)S 0.

v=0 uFv
Furthermore, for any given Van Vleck polynomial V (z), the point (,,...,8:) is unique. Otherwise,

for £ # a,, ¥ =0,..., N, we would have two linearly independent solutions S;(z) and S2(z) that
satisfy the relation

N
[[(z - o) (5,52 — 5.3 +2Zp., [I@ - @) (SiSz2 - S185) =o.
v=0 v=0 pEV

This would imply, for some constant of integration, ¢,

(S152-5183) (z) = w‘p[ / X:(ﬂ: av) ]

N
c H Eo
v=0

However, last equation yields a contradiction, for if £ — ap or £ — a3, the product on the RHS

goes to co.

In the argument above, we have assumed that all the zeroes lies in the interval (ap,ay). The
same argument can be applied to any possible configurations of the zeroes of S(z). Consequently,
this completes the proof and shows that each polynomial solution of (2.13) is uniquely character-

ized by the distribution of its zeroes in the intervals (ag, 1), ..., (an -1, aN)-

Remark: As we mentioned in section 1 of the present chapter, the Niven functions fz form a

complete basis of L2(SY). We are now in position to prove this important fact. As before, we

denote by

k
) = x? [[(46, X, X), X =(z0,-.. ,zn) €RVH,

Jj=1
the Niven functions of degree n, with n = [8] + 2k. According to the Heine-Stieltjes Theorem,
there exists o(V, k) independent Lamé polynomials H;;l (Aq; X, X)) of degree 2k corresponding to
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the multi-index # = 0. Similarly, there exists o (N, k — 1) independent Lamé polynomials of degree
2k — 2 corresponding to |3| = 2, and more generally, for [3] = 25 with j < k correspond o(N, k — j)
independent Lamé polynomials of degree 2k — 2j. The number of multi-index 8 € {0, 1}¥+! for

which |8| = 27 is obviously given by (Nz';'l) . Consequently, the total number of independent Niven's
functions of degree n is given by

S(N,n) = (N + l)a(N k - 7). (2.19)

j=0
A direct, but long and tedious computation shows that

(N +n-2)t

S(N,n) = (2n + N)*—rm

This is exactly the number of independent spherical harmonics of degree n ([Fo]). Therefore, the

Niven functions form a complete basis of L2(SV).

We conclude this section with an application of the Niven’s equations (2.16). In order to make
the measure du s of Theorem 3.1 well defined, the zeroes 8, («, p), . .. ,8i(cx, p) must be integrable

functions of the parameters . As the next proposition shows, a stronger conclusion actually holds.

Proposition 2.2. The zeroes 8y(a), ... ,0i{a) of any given Stieltjes polynomial are differentiable

functions of the parameters (ag, ...,ax) € AV.

Proof: In his paper, Shah [Sh1] gives an argument which appears to be incorrect. So, we present
a slightly modified argument. Differentiating the Niven’s equations with respect to the # variables,

we form the Jacobian matrix B = (b;;) given by

N " n e

bj = { v=0 [T=a)® — D omgi [T I3 ifi=j,
1 - - -

@-8.7 if i # j.

By a standard result in matrix theory (Gersgorin’s Theorem), it follows that all the eigenvalues

of B are strictly negative, since if A is an eigenvalue of B, then for some 7 € {1, ..., k}:
A < by +§[b,,[ = Z (g I

Hence, the determinant of B is also nonzero. The conclusion of the proposition follows from an

easy application of the Implicit Function Theorem. O
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4. The distribution of zeroes of Van Vleck polynomials

We now describe the configuration of the zeroes of the Van Vleck polynomials. Recall, V{(z)
is a polynomial of degree N — 1 for which the differential equation

H(:r: a,,) +2ZpyH(x a,‘)—+V(:1:)S 0,

v=0 v

has a polynomial solution S(z) of preassigned degree k. As in previous section, we would like
to know how the zeroes of any V' (z) distribute with respect to the parameters aq, ...,ay.

The first result in that direction was given by E. B. Van Vleck [V] himself. As in the case of
the Stieltjes polynomials, he showed that all the zeroes of V(z) lie inside the interval (ag, ax). The
proof he gives is rather complicated and hard to read, so we prefer to present the simple algebraic
argument due to M. Bécher [B].

Let S(z) denotes a Stieltjes polynomial and vy (a), ... , ux—1() the zeroes of the corresponding

Van Vleck polynomial V(z). By (2.13), we have that

d:z:2 (v,) +2

] —wj)=0, j=1,..N-1

On one hand, if §'(v;) = 0, the zero v; would then coincide with an a,,. Otherwise, S”(v;) =0
and so S(™)(v;) = 0 for all m; this implies that S(z) = constant, a contradiction. On the other
hand , if S'(v;) # 0, we then have

N E—t
§ : Pv 5" (v;) _ 1 .
2.,=ava'-au— S'(vj) '2ZUj-o;' j=L..N-1,

=1

where 61, ...,0;_, are the zeroes of S’'(z). Consequently, the zeroes of V(z) are either one of the
points a,, or satisfy

N k—L

pv 1
I_a”+§r_9§ =0. (2.20)

v=0

Now, assume that V(z) has zeroes with positive imaginary part, and consider the one whose
imaginary part is the greatest. Then equation (2.20) yields a contradiction, since the imaginary
part of each term is less or equal to zero, and not all of them vanish since the a’s are all positive.
In a similar fashion, one can show that V(z) cannot have a complex root with negative imaginary
part. Finally, suppose that one of the zeroes of V' (z) is real and greater than a,y. Then, equation
{2.20) yields once again a contradiction since no term is negative or zero. In the same way, one can
show that V() has no root less than ag. This proves that the zeroes of V(x) lie in the interval

(007 aN)’



CHAPTER 3

Asymptotic statistics for the Lamé ensemble

We compute the limiting level spacings distributions for the Lamé polynomials in various
thermodynamic, asymptotic regimes. We give both results in the mean and pointwise, for an

asymptotically full set of values of the parameters aq,...,ay-

1. Introduction

In Chapter 1, we constructed a quantum completely integrable system of commuting, second

order differential operators acting on C*=(S¥) given by

P. =) S/(a0, .. an) (z:0; - 7;8;)%, k=0,...N—1.

i<j
These operators naturally depend on the parameters ay, ...,ay with 0 < ag < --- < ay, and thus
constitute an ensemble.

As we have seen in Chapter 2, the joint eigenfunctions of Py, ..., Py~ form a class of spher-
ical harmonics known as the generalized Lamé harmonics. Recall, in terms of elliptic-spherical

coordinates uy, ...,unx on SV, these are of the form

N N
folur, un) = [T 1] @5 — a0)?/26(u;),

j=1v=0

where, 8 = (81, ..., 8x) € {0,1}¥+! and ¢ is a Lamé polynomial.

Furthermore, the function ¥(z) = [[\_o(z — a.)?*/24(z) is a solution of the generalized Lamé

differential equation

N N
ey 1 dy
L= + a2 Lo o =0, @

where, C(z) is a polynomial of order N —1 depending linearly on the joint eigenvalues (Ag, ...,An—~1) €
Spec (P, .--, Px—1). Although for simplicity, we only consider here the case where the multi-index
B =0, our main result (Theorem 3.1) can be proved for the other cases corresponding to 3 # 0 in

a similar fashion.

24
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In order to state our main theorem, we first consider

— (%) (k)
£k) = { 40,0 b,

the set of Lamé polynomials of degree k. By the standard theory of spherical harmonics [WW] and

the fact that the corresponding generalized Lamé harmonics form a Hilbert basis, we know that

oy _(N+k—1)
Let 0&"?(&) < e (k) « (&) denote the (real) zeroes of the polynomial, cb( ) wherei = 1,...,0(N, k).

In our main result, we compute the asymptotic weak limit for the level spacings distribution

averaged over the set, £(k), of k-th order Lamé polynomials. More precisely, consider

a(N k)

AV, .. .— g% (k)
dop¥ (z; N, k, o) = (N B Z — Za(x -k ( 1 (a) - (cx))) (3.2)
where a € AV and
AN = { (a9, -any) €0,V ag <ay < --- <any_; <ay } 3.3)

We henceforth put normalized Lebesgue measure da := (N+1)!da on AV, so that meas (AY) = 1.

In order to state our first result, we will also need to introduce the integrated, averaged level

spacings distribution:
durs(z; N, k) .-[ dpp¥ (z; N, k,a) da. (3.4)
Theorem 3.1. [BT] (i} Fiz0 < e <1 and assume that k ~ N'~¢ as N — co. Then,
w— Jim durs(z;N,k) = e~ dx.

(i) Suppose that k(N) satisfies the hypotheses of part (i). Then, for any 0 < § < € there exist a
measurable subset JN C AN with meas (JN) > 1 — N9, such that for anya € JV,

w— llm dpf¥(z; N, k,a) = e = dz.

In both (i) and (ii), the weak-limit is taken in the dual space to C3{[a,b]), where 0 < a < b < cc.

We should point out that one can also easily determine the weak-limit of the level spacings
measures dp¥ and dp;s before “unfolding” the zeroes, i.e. rescaling to unit mean level spacings.

Indeed, by carrying out exactly the same analysis as for the proof of Theorem 3.1, one can deduce

the following consequence.
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Corollary 3.1. [BT] For any p € [0,1), consider the following level spacings measure

v N = (k) (k)
~AV _ _ — kP (%% — gk
dpts S5 ; F—1 ng 5(“’ k (01.J+1(a) 0y ; (a))) .

Then, under the same hypothesis as Theorem 3.1 above, we have that:

(?) w—l‘;gnw Jan dpLs(z; N k, ) da = §o(z);

(i) w—Nlim dprs(z; N, k,a) = do(z) for all a € JV.
—00

2. Preliminary results

By the Heine-Stieltjes Theorem, we know that zeroes of any Lamé polynomial ¢(z) are simple
and lie inside the interval (ap,cy). Moreover, each of the ¢(V, k) Lamé polynomial of degree &
is uniquely characterized by its zeroes distribution among the intervals (ao, a1}, ..., (an—1, ayx)-
According to this theorem, we denote the zeroes of ¢(x) by 6,(a;l) < --- < Ox(a;l), where
a = (ag,... ,ay) whereas | = (Iy,... ,lk), 1 € lj £ --- £ lx € N, denotes the configuration of
the zeroes. By this we mean that 8, (a;!{) is the smallest zero lying in the interval (o, 1, aq, ), the
next zero 82(a;!) is contained in the interval (a1, a:,) and so on.

Consequently, we can now rewrite dpﬂg(:z; N,k,a) and dpps(z; N, k) in the more convenient

forms:
1 1
dpp¥(z; N, k, @) = —r—r — Y §(z — k Bi+1(asl) —0;(a; 1)), (3.5)
a(N. k) tsttsgusw k-1 :S::T ’ ’

and so,

durs(@; N, k) = f dp¥ (z: N, k, a) dax
AN
1 1 k—1
—1 > /ANJ (z — k (Bj41(a;1) — (1)) ) da. (3.6)
=1

o(NE) o, Sten

The first result we need is a simple calculus lemma.

Lemma 3.1. Forany 0 <i < j < N and multi-indices 8 = (B,, 82) € N2\ {(0,0)}, we have

WProfs o — i (E+D) [T (B +7 +1)
av [TV +1+10)

where, we define products of the form H?=1 to be equal to 1 and |B| == By + Ba-
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Proof: A direct computation of the following iterated integrals gives

/ ofiefs o = ofra o
AN

-/;<ao <--<Lan<l

1 aN ay
= (N+1)!/ / f o2t dag---day
0 JO (]

1 b pan CIE S .
S T Ty S
i! o Jo 0 7

= (N +1) N T st g
= el [, ) o daydan
(N +1)
TG +it ). (Br+3) Bt lti+ D). B+ B+ N+1)
iG] [ (B +i+0)
MW +1+1)

O

As a consequence of Lemma 3.1, we see that the integrals of consecutive monomials over the
truncated positive Weyl chamber AY are asymptotically equal as N — co. Combined with the

Heine-Stieltjes result, this fact leads to the following simple corollary.

Corollary 3.2. For any configuration [ = (ly,... ,li) and integer j satisfying 1 < j < k, we have
that

f |05(e0) — o, | da = O(N-Y) 3.7)
AN

uniformly in k.

Proof: As a consequence of the Heine-Stieltjes Theorem, we know that given a configuration {, the
J-th zero necessarily lies in the interval (a1, ay,); that is,

ay 1 < 0i(ol) <o,

On the other hand, by Lemma 3.1, [~ a; ¢a = £%. Thus,

/ ‘oj(a;l)“al,-l da < / (e, — gy} dax
AN AN

lj'{'-]. [j

N+2 N+2

= O(N"hH. O
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Step 2: The next step involves computing the first term on the RHS of (3.8) explicitly. We claim
that:

1

k—1
Ze) =M/
¢(k(a¢< —al,)) da
o(N. k) Lt et k-1 ng AN s ?

k N+1 & ! X .
= ¥ =1 Y0 v g)a(N-m—l,k—l)_/; (kz) binom(N, m; z) dz, (3.9)

where, binom(N,m;z) == —AF—wz™ (1 -2)¥"" forz € [0, 1].

m! —m)!l
In order to prove the identity in (3.9), we start with a simple lemma which involves a successive

application of the Fubini Theorem.

Lemma 3.2. For any integers i,j with 0 <i < 7 < N, we have that

/ ¢k (aj —a;)) da=(N+1) /1 @¢(kz) binom(N,j — i — 1;x) dz. (3.10)
AN 0

Proof: Given the definition of A¥, it is clear that

1 pay ay
/ANQS(k(aj—a,-))Ja:(N-l-l)!/;/o /0 & (k (a; — ) dag---der

By repeated application of Fubini’'s Theorem, we can ensure that the iterated integrals with
respect to «; and a; are carried out last. More precisely, we apply Fubini’s Theorem to the double
integral with respect to a; and ;41 to reverse the order of integration. We then repeat the same

procedure for the double integral with respect to a; and a;;2 and so on, until the last integral

involves the a; variable. This gives

1 Qjp2  paj -
da = [ f f / / --- dao ...daj_1daj+l...daN_1daNda,-,
Ay 0 Jaj; (] 0

We proceed in similar manner for a; to finally obtain

L pa; - 37T 3 iz ay axy — —
f / / / / / f .- dag ...da; .. .daj ...daNdagdaj,
0 Jo a; a; 0 0

where da;, da; means that these variables are omitted in the product measure dag - --day. We
then carry out the iterated integration over the first N -2 variablesap < oy < ... < i) < a1 <

e < @jy < Ajgy < ... < ay to get

o "-0!; F—i—1 AN —j
[, o] [ 0o
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Finally, we make the change of variables © = a; — oy, ¥ = a; and integrate by parts 7 times

with respect to y. It follows that

==l (1 = z)N-G=i-1)

TN -G -i-D)
(N + 1)/o ¢(kx) binom(N,j —i — 1;z) dz.

/I\~¢(k (aj — ) da (N-I-l)'/ ¢(k:z:)(J

This completes the proof of Lemma 3.3. O

To complete Step 2, we need to compute the asymptotic averages of the integrals
Jaw ¢(k(ey,,, — ;) da. First, we start with a simple combinatorial lemma. In order to state the
lemma, it is useful to introduce some notation at this point: We denote by S;j(m) the set of all
configurations ! = ({4, ..., [x) for which l;;; —1; = m. As the following result shows, the cardinality
of S;(m) is independent of j.

Lemma 3.3. For each m =0,....,N -1 and each j = 1,... ,k, the number of k-tuples (I, ..., lx)

with 1 <} £--- < lx £ N and satisfying ;1 — |; = m is given by

(N—-m+k-2)!

o(N-m,k-1) = (k_l)[.(N—m— 1)!-

Proof: By identifying the j-th and the j 4 1-st zeroes, we are reduced to the problem of distributing
k — 1 zeroes amongst the remaining NV — m slots. This is clearly equal to (N — m,k—1). O

As a consequence of Lemma 3.4 ,

1 k-1

a(N,k) —]_Z_[ ¢(k(al,+1 ar, )) da

1S S-Sl SN

N—-1lk=1

1

~®-D a(N K) Z 2 2 f ? (ko —e)) do G
m=0 j=1lgS;(m)

In order to apply Lemma 3.3, we need to treat the two cases where m = 0 and m > 0 separately.

Since by Lemma 3.4, we know that S;(0) = o(V,k — 1), it is clear that

k—1
1 1 /
_ — 5_ ¢ (k(ay,, —ay)) da
o(N, k) I << k-1 = Jax Al ?

N.E—1 N-Tk-1
~ T O+ A T L o L @ (e —ay)) da (312)

m=1 j=11eS;(m)
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After some further simplification involving Taylor expansions, we get that

WY - e [ B 1+o<%,>>+o(%";>]
o

s o () o ()]

k -mk mk? km?
N+k—lexp( N)(l +0 N2)+O N2))’

Finally, using the fact that zPe= = Op(1); for all = > 0, we get
o(N-m—-1k—1) k -mk K2 1
(I, k) "N+/c—1e"p( N )+O<F) +0<N)‘ (3.17)

Case 2: (m >> (N/k)'*#). In this case, we can choose 0 < 8 < !=¢ so that with appropriate

constants C1,C2 > 0,

o(N-m—-1k—-1) k ﬁ(l_m+1
o(N,k) - N+k-1 o3 N +j
kT N?
< N+k-1g(1”c‘kl+ﬂ)
= o(e-cz(N/k)"). (3.18)

If we substitute the estimates obtained in (3.17) and (3.18) into (3.15) and use the facts that
Z,I:,;o binom(N, m;z) =1 and j;)l o(kz)dr = O(k~!), we finally obtain

KN +1) =2
N+k:—1m=°

ro(3) o)

BN +1) _?./‘ ’
—_— 3 kx)b N,m;z)dx
N+k_1m=0e A é(kx) binom(N, m; x)

+O (%) +0 (%) : (3.19)

since the terms for m = N — 1 and m = N are bounded by 1/N.

1
durs(z; N, K) (o) e~ f ¢(kx) binom(N, m;z) dz
0

Now, recall that for a function f(z) defined on [0, 1], the N-th degree Bernstein polynomial of
f(z) is defined to be {D]:

N
Bu(fin) =3 f (%) binom(N, m; z).
m=0
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It is easy to see that in the special case where exp_,(z) := e~*=, there is a concise closed-form

expression for By (exp_,;); indeed,

Bu(ep_giz) = (ze~¥ +(1-2)) . (3.20)

From last identity, we easily derive:

Lemma 3.4. For z > 0, we have that
ke k
By(exp_,;x)=e " + 0O v, (3.21)

Proof: Expand e~¥ in a second-order Taylor series and use the identity (3.20) directly to get

By(exp_p;z) = [1 +z (e"ff - 1) ] v
kx k N
- -7 (e (7)) -
From the inequality
oser-(1-5) <%

and the fact that zPe~* = O,(1) for all z > 0, it follows that

By(e™*z) = e (1 +0O (kZTx) ) +O(NTY)

= e 40 (-1—5-) .

This completes the proof of the lemma. [0

Substituting (3.21) into (3.19), we finally obtain

2l fo ' 6(kz) By (exp_yiz) dz+O (1-’;-) +0 (%)

- 1 s so(5) ()
- /0 ' 6(z) e do+O (%) +0 G) : (322)

By noting that C}([0, 1]) is dense in C3([0, 1]), this completes the proof of Theorem 3.1 (i). O

dprs(z; N, K)(¢)
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Lemma 3.5. (i) For any z,y € [0,1],

N-2 N—2-m’ . ot s k
> Y cFeF mlV - L i min) =0 (5). @29)
m’'=0 m=0

(ii) Also, for0<z <y < L,

N-2 m ’
z Z e~ e F multi(N — L,m',N —m;z, 1 —y) =e ="k + O (-NIE') . (3.26)
m=0m’'=0

Proof: (i} As in the proof of the first part of the theorem, modulo O(N~!) errors, we can replace
N —2 by N —1 in the upper limit of both summations.

Define exp_.(z) := exp(—kz). Then, as a consequence of Lemma 3.5, we have that

N-2 N-2-m' ot ,
Z 2 e~ Ne ¥ multilN —1,m ,m;z,y)
m’'=0 m=0
N=1 N=l-m’ , . .
= z Z multi(N — 1,m ,m;ze” ¥ ,ye”"¥) + O(N})

m'=0 m=0

L\ N1
=(l—(z+y)+(z+y)e"1v) +O(N"Y)

= By(exp_iiz+y) +O (-:7)

=exp(—kz —ky) + O (%) .

(it) Once again, we can replace N — 2 by N — 1 in the upper limit of the first sum. We make

successive applications of the Binomial Theorem to get:

N-2 m ,
Z z e~ FeH multiiNV —-1,m N -m;z,1—vy)

m=0 '—0

N1 »\m=L
Y — — -~ -
-%(1: y+ye ) (I—I)N m

(V-1 e (m—1)! N —m)!

m=0

+O(N)

. . N—1

—e ¥ (l—(t-i—ye-?) +(z:+ye"£’)e'§)L +O(NY
=e"¥ By_1(exp_; T+ Fy) + O(N)

=ek==ky 4 O (2%:) . g

We now use the combinatorial identities in Lemma 3.6 to estimate the variance of the averaged

level spacings measure dpf¥ .



4. PROOF OF PART (II) OF THEOREM 3.1 37

0<ap <...<ay <1, we consider the following two subsets of k elements given by
a; <..<a and oy <...< Q- (3.28)

For each of the subsets above, there are k — 1 pairs of the form (e;,,,,) and (a,f.al(i.‘). From

(3.28) it follows that for any fixed pair (ay;,a,,,), there is at most one pair (a,:,al:i“) for which

Case 2 is possible.

Case 3: a;; < oy < oy < ay,,, (or equivalently, oy <oy <ayy, < a,rm).

This case can be dealt with in a similar fashion to Case 1. That is, we apply the Fubini
Theorem repeatedly to ensure that the last four iterated integrals involve oy, ay;, au,,, and ay -
Then, we integrate by parts with respect to the remaining a’s. Finally, we make the change of
variables z = ay  —oy and y = ai,,, — o; and integrate by parts again with respect to ay

and oy, to get

/\N br(or, ., —ay,) drlay | —ap) da
|3 1
=(N+1)N / / G(z)ok(y) multi(N = 1,4y — L — LN =l — I + 137, 1 —y) dydz
1] z

1 p1
=(N+ I)N/ / Or(z)or(y) multi(vV — 1,1, — l; -1LN -l =1l +1;7,1-y) dydz
o Jo
+O(k™1).

As in the proof of part (i) of Theorem 3.1, we make the substitution m = {;;, —{; — 1 and

m’ ={;,, - I; = 1 in order to apply Lemma 3.6. From the estimate in (3.23) and the analysis of

Cases 1-3 above, we deduce that

[, ot N k@) o

k2 N—*—l N N-2 N=-2—-m' ok .‘mr" 1 3 1 i ,
- (N(+k—)1)?» [Z Y e Tfo /o‘ 6x(z) bk (y) multi(N — 1, m ,m; z,y) dzdy

m'=g m=0
r
N-2 m ,

N L L r
+2 2 e-Te-‘““/o [} #x(e)uls) multi( — 1,m" N — i, 1 —y) dyds

m’ =0 m=0

+o(§) +o(%) X



4. PROOF OF PART (11} OF THEOREM 3.1 38

By Lemma 3.6, we finally conclude that

[ wtssinonot o = B[ aiocw) co(5) vo(})

(f sorese) w0 (5) vo 5)-

Theorem 3.1 (ii) is then an immediate consequence of the Chebyshev inequality and the fol-

lowing corollary of Proposition 3.1:

Corollary 3.3. For any ¢ € C§([0,1]), we have

/ (dp Y (z: N, k, a)(6) — [ e o) dz) ta=0 (%) +0 (-,1;) . (329

Proof: The corollary follows directly from Proposition 3.1 and the estimate for the convergence of

2

the integrated, averaged level spacings measure in (3.23).



CHAPTER 4

Level spacings distribution of Van Vleck polynomials

Here, we give another application of the methods of Chapter 3 and compute the asymptotic

mean level spacings distribution of the zeroes for any Van Vleck polynomial.

1. Introduction

In Chapter 2, we defined the notion of a Van Vleck polynomial V(z) as the polynomial of
degree N — 1 for which the generalized Lamé equation

N N
H(:c —-a,,)-jxiz- +Zp,, H(:z: - “ﬂ)% +V(z)S =0,

v=0 v=0 pFw
has a polynomial solution S{z) of preassigned degree k. As a consequence of Heine-Stieltjes
Theorem, we know that there exists exactly o(V, k) distinct polynomials V(z).

Let vi(a) < --- < uny_1(a) denote the N — 1 ordered zeroes of a given Van Vleck polynomial.
Recall, these zeroes are all simple and lie inside the interval (ag,an). In analogy with the case

of Lamé (Stieltjes) polynomials treated in Chapter 3, we compute the asymptotic level spacings
distribution for the zeroes of V' (z).

Define for p € [0, 1), the probability measures

N=2
dA¥ (@i N,0) == gy 3 6(z = NP(v52a(e) — vya))), (1)

j=1
where a € AV, and AY is the positive truncated Weyl chamber defined in the introduction of
Chapter 3. As before, we let da := (N + 1)!da denotes the normalized Lebesgue measure on

AY . To state our main result, we also need to introduce the integrated, averaged level spacings
distribution of d¢fY, i.e.

dves(ziN) = [ dep¥(ziN,0) do. (42)
AN
The following theorem is the analogue of Theorem 3.1 and its corollary:

Theorem 4.1. [Bo] (i) The weak-limit of the measures dvps(z; N) is given by

w— lim dvps(z; N) = do(z).
N—co

39
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(ii) For any 0 < § < (1 — p)/2, there exists a measurable subset JN C AN with meas(JV) >
1 — N~-YP+2 guch that for any z € JV,

w— lim d¢f¥ (z; N, a) = do(z).
N—oco

In both (i) and (i), the weak-limit is taken in the dual space to C3([a,b]), where 0 < a < boo.

2. Preliminary results

A look at Step 1 of the proof of Theorem 3.1 shows that the argument relies on the fact that
one has, thanks to the Heine-Stieltjes Theorem, a precise description of the location of the zeroes
of any Lamé polynomial in terms of the parameters aq,...,aN.

Unfortunately, no result like this is known for the zeroes of Van Vleck polynomials. However,
one can prove the following simple corollary of Theorem 2.2. It turns out that the next proposition

will play exactly the same role as the one played by the Heine-Stieitjes Theorem in the results of
Chapter 3.

Proposition 4.1. Let V(z) be any Van Vieck polynomial of degree N-1, and denote its ordered
zeroes by vi(a) < - < uny-1(a). Then, the following conclusions hold: vi(a) € (ag,az],
un-1(a) € [an-2,an), and vji{a) € [aj_1,aj41] for j=2,...,N - 2.

Proof: By Theorem 2.2, we know that (ao, ;1] contains at least the first j zeroes of V(z), so

we must have vj{a) < aj41. On the other hand, since (o, aj—] contains at most the first j — 1

zeroes of V(z), hence v;(a) 2 a;_,. O

We are now in position to prove the following useful lemma. As the reader will notice, the

conclusion of this lemma is analogous to Lemma 3.2 about zeroes of Lamé polynomials.

Lemma 4.1. For any integer j with 1 < j < N — 1, we have that

f lvi(a) — a;j| da=0(N"1) (4.3)
AN
uniformly in j.

Proof: As a consequence of Proposition 4.1, we know that
aj-1 S vj(a) < ajq1.

A simple application of Lemma 3.2 where the multi-index |8l =1 gives
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Therefore, we finally obtain

/ |vj(a) -O‘J’l da < f (Qj+1 —aj_l) da
AN AN

= J+t2 i+l
T N+2 N+2
= O(N"l). O

3. Proof of part (i) of Theorem 4.1

For notational simplicity, we assume once more that [a,b] = [0,1] and ¢ € C{([0,1]). The
argument for more general non-negative intervals [a,b] follows in the same way. In addition, we

henceforth define ¢ x»(z) ;= $(NPz) for any function ¢ € C4([0, 1]). Our first task is to show that,

N=2
1 -
dvrs(z;N)(¢) = N3 ; -/AN’ o (@je1 — ;) da+O (N™HHP). (4.4)
First, we make a first-order Taylor expansion of ¢x» around (aj4+1 — @;) in (4.4). This gives:
1 N=2
dves(@i N)@) = g 3 [, o (@it —ay) dat Ey(N,9), (4.5)
N -2 = Jaw

where the error term E; (N, @) is given by
N N-1
E\(N,¢) = ) ; /;N ¢’ (NP€;(a)) [(Uj+1(a) = ajt1) — (vi(a) -O‘j)] da,

with some £;(a) € (0,1). All we need to show is that E|(N,¢) = O(N~'*P). This is a simple

consequence of Lemma 4.1, since

Ne N2
Bl S o5, ¥ (g5 [use1(@) — ozl + 1oy — oyl
NP N-1
< 2ggiele X [ s —asl 2

NP N-1
— o " -1
= 25 —léle: Zﬂ; o)
= O(N~HP),
Having completed the first step of the proof, our next task is to show that

N
dvrs(z; N)(9) = /0 BN"+z) (1~ %)N dz + O (N~1+p) . (4.6)
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This is an immediate consequence of Lemma 3.3 of the previous chapter. Indeed, this lemma

asserts that for any integer ¢,j, with 0 <i<j <N,

1
/ ¢(aj—a;) da=(N+ 1)/ ¢(z) binom(N,j —i — 1;z) dz.
AN 0

Thus,
1 N-2
> == e— . —_ N —~Ll4p
dvrs(z; N) () =3 }; /\ , onr (@1 —ay) dat+O (N~1+P)
N=2 .1
- Nyl / e (@) (1 — )V dz + O (N-1+7)
N -2 i=1 Y

- &y /0 ¥ o(N-1+2a) (1-2)" az+o W)
N N
= -+ -Z) dz N-1P) |
/0 SH(N—1+Px) (1 N) +0O( )

Finally, from the basic inequality

z2e—*
N r

OSe‘”-(I—%)NS for z >0,

and the fact that zPe~* = O,(1), we conclude that

dvrs(z; N)(¢)

U

N
/ (N~ HPz)e~=dr + O (N~1*+P) .
0
#(0) + O(N~1+P).

Since the compactly supported C! functions in [0, 1] are dense in C3([0, 1], this completes the proof
of part (i) of Theorem 4.1. O

4. Proof of part (ii) of Theorem 4.1

The first relation we need to prove is the following:

|, 1act¥ @ . 0)@)* 2

1 = -
w=22 ,Z /:w éne(ajrt —aj) dne(ajrsr —ajr) da+O (NHP) . (4.7)

J=1

To establish (4.7), we repeat the same sort of argument as in equation (4.4) in part (i). That is,

we expand each of the functions ¢ e (Ujst(a) — vi(a)) and dnre(vjri1(a) — vjr(a)) in a first-order
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Taylor series around (aj4+1 — a;) and (aj-41 — ;) respectively. As a result, we obtain
2
[ ¥ @ N a@)* 2
; ,

N~=2
Z /M_ dnr(aje1 — ;) dne(@jrsy — ajr) da+ Ea(N, ¢),

JJ'=t

1
(N -2)2

where Ea>(N, ¢) involves only terms with derivatives of ¢. Since Ei (N, ¢) = O (N—1*P), it is easy
to see that Eq(N, ¢) is bounded by

2 N-2
BN, 8)| < 2ol 3 [ uste) — o opl) —ayl da+O(NH). (48)

Jn'=l

Moreover, a similar computation as in Proposition 4.1 shows that

r
|vi(a) — aj| |vfi (@) —aj| da < (@r1 — ajoy) (@jr41 — ajr) dax
AN AN

(G+3)0" +2) -G +3)(" +1)
(N +2)(N +3)
_G+DE"+2) -+ 1) +1)
(N +2)(N +3)
4
(N+2)(N+3)

(4.9)

Consequently, if we combine (4.9) with (4.8), we immediately obtain the estimate (4.7). We

are in now in position to prove the following key proposition.

Proposition 4.2. For any ¢ € C}([0,1]), we have that
/ [d62¥ @ N, a)(9)[* da=%(0) + O (NTI+P).
A

Proof: As a consequence of the estimate (4.7}, we simply need to show

N=2
'('N—i—2)2 2 ./:\N dne(@jer — a;) dxe (i — ayr) da = ¢*(0) + O (N714P). (4-10)

J.Jr=1
In order to do this, it suffices to consider the case where j' < j (or, equivalently, 7 < j); for,
when compared with all the possible pairs (a;,@;41), the number of pairs (aj-, aj-4.1) for which
j=7 is like O (N71).
So, let’s assume that j* < j. We apply Fubini’s Theorem to ensure that the last four iterated

integrals only involve ajy,a;,aj41,a;. We then perform the first NV —4 integrals to get

1 @41 aj; @iy (l — s l)N—j—[ (a_ — s 1)j—l (Ck _')]-l
da = (N+1 N/ / / / R e Lo dajda, jdajdayr-
_/‘;N ( ) o o ) o (N-J ‘1)[ (J —1)! .1'! 7 3L 7 It
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where we have omitted the integrand ¢y»(aj41 — ;) dne(ajr 41 — aj¢) to simplify the writing. In

order to reduce the last quadruple integral to a double integral, we make the change of variables
Tr=aj —Q; Y= Qe —aj,
and integrate by parts with respect to ;| and «;.4 ;. The end result is that

/; . onv (@i — aj) dne(ajre — ajr) da
1 l-y
= (N+DN / / Gne (@) b (¥) (L — = — y)¥ ~'dady
0 0

N pN(1-y) ’ N=1
= -1+ -1+ _z_J
= /; /0 BN~14Pz) (V1) (1 - N) dzdy

N pN(1-y)

= [ [ s ttra) o4y e vdady + O (N714)
0 0

= ¢*0)+O(N-1*P),

The second equality follows from the fact that ¢ye(y) is supported in [0,1], so we must have
0 < y € 1/NP. This proves (4.10) and concludes the proof . O

The statement of part (ii) of Theorem 4.1 is now an immediate consequence of the previous

proposition and Chebychev’s inequality. Indeed,
meas ({a € AY : |d¢AY (z: N, a)(¢) — #(0)| > N~%})
< N% f |d¢AY (23 N, @) (2) — 6(0)|* dax
AN
= | [ af @@ da-s0) +0 ()]
AN
=0 (N—1+p+26) N

The conclusion follows by complementarity.
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Heine-Stieltjes Theorem has been extended by M. Marden [Mal], [Ma2], {Ma3] to the complex
case. However, the results he obtained do not yield precise location, as in the real case, of the ’
zeroes of Lamé polynomials in terms of the parameters a. The natural question to ask is then:
Can we apply similar methods as those developed in this thesis to get interesting results in that

situation ?

(iii) It would be of considerable interest to determine how the actual zeroes of the Lamé harmonics
are distributed in the sense of Riemann measure on SV itself. A natural starting point would be
to look at the density of states measures (see [ShZ]). In light of our results in this thesis, the
zeroes should, at least on average, behave like random variables in the asymptotic regime where

k(N) ~ N'=<. Consequently, we believe that the density of states should on average tend to

uniform measure on SV.
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