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Abstract

Growth of instability in a thin elastic solid accelerated by a gasdynamic shock tube is stud-

ied experimentally. Elastomers of different thicknesses, initial perturbation wavelengths, and

initial perturbation amplitudes are examined—the initial perturbations are sinusoidal. Elas-

tomer materials are used because of their hyperelasticity and very low elastic shear moduli,

properties which facilitate examining the phenomenon of interest in a laboratory-scale, low-

pressure shock tube. The samples are lightly supported in the shock tube test section to

avoid the influence of boundary effects. The gas shock reflects off the sample, causing it to

accelerate due to the reflected shock pressure. The dynamics of the sample is recorded using

high-speed videography and photonic Doppler velocimetry (PDV) with the PDV configura-

tion tracking the velocity of individual perturbation peaks and troughs of the sample free

surface. The experimental results are compared against analytical Rayleigh-Taylor stability

boundaries and amplitude growth rates found in the literature. Agreement between experi-

ments and theory is found in that the samples that are predicted by theory to be unstable

do experimentally display large perturbation amplitude growth while the samples predicted

by theory to be stable experimentally display no significant perturbation amplitude growth.
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Sommaire

La croissance de l’instabilité d’un solide élastique mince accéléré par une onde de choc gazeux

fut étudiée de façon expérimentale. Des élastomères de modules de rigidité, d’épaisseurs

et de perturbations initiales différentes ont été étudiés. Les perturbations initiales furent

sinusöıdales et les échantillons élastomériques furent créés à l’aide d’un procédé de coulage

faisant usage de moules imprimés en 3D. Les échantillons ont été légèrement soutenus à la fin

de l’enceinte avale d’un tube à choc afin de minimiser les effets de bords durant le dénouement

des expérimentations. Immédiatement suivant l’impact entre l’échantillon étudié et l’onde de

choc gazeux produite par le tube à choc, la production d’une différence de pression à travers

l’élastomère permet l’accélération quasi constante de ce dernier pour une durée de temps

d’un peu moins d’une milliseconde. L’évolution des perturbations inscrites dans chaque

échantillon fut enregistrée à l’aide d’une caméra haute vitesse et la vélocité des crêtes et

des creux centraux de chaque échantillon fut mesurée en utilisant la vélocimétrie Doppler

photonique. Les résultats expérimentaux ont été comparés avec la théorie de l’instabilité

de Rayleigh-Taylor. Les échantillons que la théorie de Rayleigh-Taylor prédisait comme

étant instables ont tous démontré des taux de croissance des perturbations significatifs. Les

échantillons que la théorie de Rayleigh-Taylor prédisait comme étant stables, c’est-à-dire

comme n’ayant pas de taux de croissance des perturbations, ont tous été démontrés stables

de façon expérimentale.
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Chapter 1

Introduction

Rayleigh-Taylor instability (RTI) is a theory of continuum mechanics that is concerned with

the stability at the interface between two or more media of different densities. The classical

scenario of a heavier fluid resting on top of a lighter fluid in a gravitational field was first

theoretically studied by Lord Rayleigh in 1883 [1] with Benjamin Franklin having apparently

made remarks in a letter dated 1762 about the period of oscillation of surface waves at oil-

water and water-air interfaces [2]. Nearly a century later, in 1950, Sir Geoffrey Taylor was the

first to realize that the classic scenario of a heavy fluid on top of a light fluid was equivalent to

that of a light fluid accelerating the heavier fluid [3]. Taylor’s seminal paper was followed by

the first experimental investigation of the phenomenon produced by both Lewis and Taylor

where the experimentally measured instability growth rate agreed remarkably well with the

growth rates predicted by theory [4].

The experimental work of Lewis and Taylor demonstrated the evolution of an unstable

water-air interface that is now characterized by four stages. Stage 1 occurs when the in-

terface between the two fluids is slightly perturbed from a perfectly flat geometry. This

stage is theoretically analyzed using linear perturbation theory where a sinusoidal interfacial

perturbation is studied. The evolution of the perturbation amplitude at this stage follows

an exponential trend until it equals about 0.1 to 0.4λ, where λ is the initial perturbation

wavelength. Stage 2 is characterized by the nonlinear growth of the perturbation, a growth

that is now heavily influenced by the density ratio of the two fluids often written out as

the nondimensional Atwood number, At. This stage typically lasts until the amplitude of

the perturbation has grown to be on the order of λ. Stage 3, where nonlinear interactions
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between perturbations of different frequencies occurs, sees the debut of bubble and spikes

formations at the interface between the two fluids. Stage 4, the final stage, produces the

turbulent mixing of the two original layers through the breakup of the bubbles and spikes

structures formed during Stage 3. Figure 1.1 displays the evolution of an RTI unstable

interface between two fluids of different densities.

λ

ρ2
Interfacial Perturbation

(a)

ρ2>ρ1

ρ1

(b)

Amplitude Growth

(c)

Bubble

Onset of Spike
Formation

(d)

Onset of 
Turbulent 
Mixing

Figure 1.1: Schematic of the evolution of an RTI unstable, sinusoidally perturbed interface
between a heavy fluid laying atop a lighter fluid: (a)–(b) linear growth of the interface
amplitude; (b)–(c) nonlinear interface amplitude growth featuring the onset of bubble and
spike formation; (c)–(d) onset of turbulent mixing between the two fluid layers.

Although the first theoretical studies where undertaken for the inviscid, incompressible

scenario with constant acceleration, subsequent theoretical studies of the first, linear stage

were done that further generalized the original models by including, for instance, the effect

of surface tension and viscosity [5–8], compressibility [9, 10], non-uniform acceleration [11],

finite (i.e., non-infinitesimal) perturbation amplitudes [12], magnetic fields [13], and density

gradients [14]. The linear model was also extended to interfaces of spherical geometry [15–

17]. In a series of studies, Mikaelian also theoretically investigated RTI in stratified media

ranging from 3 to an arbitrary number of layers [18–22]. The first reviews of RTI theory were
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produced by Chandrasekhar [23] and by Birkhoff [24] with the former primarily focusing on

the linear theory while the later also discussing nonlinear solutions.

The modeling of the nonlinear stages of RTI has also been undertaken, with Chang

providing the first higher-order (third order, in his case) perturbation expansion [12]. This

first attempt at nonlinear theory was subsequently iterated upon by Kiang [25] and Rajappa

[26] using singular perturbation methods, and by Nayfeh using the method of multiple time

scales [27]. Ott provided the first exact, closed-form nonlinear solution that was valid up

to a certain time t∗ describing initial sinusoidal perturbations that eventually evolved into a

cycloid [28]. All of these nonlinear studies concluded that the evolution of the interface of

interest is dependent not only on its initial perturbation wavelength, but also on its initial

perturbation amplitude, a dependency not typically found in linear RTI theory. Part of

RTI nonlinear theory is also concerned with the analysis of spike and bubble formation.

A notable first attempt at modeling RTI bubble dynamics was made by Fermi in which

he modeled the initial perturbation as a square wave in the limit where the interfacing

fluids are incompressible and have an infinite density ratio [29]. The resulting nonlinear

ordinary differential equations (ODEs) yielded predictions for the speed of the evolution of

the spikes that were approximately in agreement with experiment, but the predicted motion

of the bubble was not in agreement with experiment. Crowley [30] and later Baker and

Freeman [31] further iterated upon Fermi’s model devising uncoupled ODEs that provide

predictions for the motion of the tip of the spike and bubble that better agree with past

experimental investigations. Further theoretical investigations into bubble rising dynamics

were performed by Davies and Taylor [32] and Layzer [33] who considered the steady state

motion of cylindrically symmetric bubbles. Birkhoff and Carter [34] and Garabedian [35]

have also formulated rigorous conformal mapping theories of plane bubbles rising between

parallel walls.

A complete review of the theoretical, numerical, and experimental aspects of Rayleigh-

Taylor instability in solely fluid media is beyond the scope of this thesis. The reader is

invited to peruse the first published reviews of RTI in fluids by Sharp (1984) [36] and Kull

(1991) [37]. For a more up-to-date review of the subject, see the recent (2017) two-part

publication by Zhou [38, 39].

Rayliegh-Taylor instability is not confined to the study of interfaces between solely fluids,

however. Miles was the first to study RTI in an elastic-plastic solid being accelerated by
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a lighter gas using an energy method [40]. White [41] and Ducker [42, 43] subsequently

produced theoretical RTI models for elastic-plastic (EP) solids using one-degree-of-freedom

energy approaches. A more general, Lagrangian-based, n-degree-of-freedom energy approach

was employed to study RTI in a continuous medium of an arbitrary constitutive law by Dienes

[44]. Robinson and Swegel generated several RTI theoretical models for elastic-plastic solids

using an approximate modal technique (also a one-degree-of-freedom energy model) which

they compared to their own numerical simulations of RTI in elastic-plastic solids [45, 46].

Ruden and Bell further iterated upon the models of White and Robinson and Swegel by

assuming global energy conservation based on the Prandtl-Reuss equations of elastic-plastic

flow [47]. For a succinct summary of the first theoretical inquiries into the problem of RTI in

elastic-plastic solids, see the 2005 review paper by Terrones [48]. Unfortunately, likely in part

due to modeling oversimplification, none of these energy-based theoretical analyses of the RTI

problem in EP solids provided significant agreement with experimental investigations in the

area (see immediately below for RTI experiments in solids). In an attempt to generate better

agreement between theory and experiment, a series of progressively more complex theoretical

studies were done by Piriz et al. for the case of RTI in EP solids by using a conservation

of mass and momentum approach instead [49–58] with some of the latter inquiries also

studying the effects of viscosity [52, 53], magnetic fields [54, 56], and the formation of spikes

and bubbles [58]. Sun et al. also theoretically considered Rayleigh-Taylor instability in solids

of spherical [59] and cylindrical [60] geometries. More recently, the theoretical analysis of

RTI in viscoelastic solids has also been undertaken [61, 62].

Despite the abundance of theoretical studies, experimental investigations of RTI in solids

have historically been comparatively scarce, although there has been a resurgence of interest

in this area of research. Rayleigh-Taylor instability in solids has proven to be of relevance

in the study of several natural phenomena such as in the geodynamics of the intra-plate de-

formation of the continental lithosphere [63–66] and in the production of gamma-ray bursts

following the accretion of neutron stars [67–69]. The first experimental studies of RTI in

solids were performed by Barnes et al. who conducted a series of experiments investigat-

ing RTI in sinusoidally perturbed aluminum flat plates accelerated by expanding detonation

products [70, 71]. Rayleigh-Taylor instability has also been studied in gelatin of various

geometries (planar layer, ring, wedge, etc.) accelerated by pulsed gas pressures [72]. Di-

monte et al. investigated RTI in yogurt accelerated by pressurized nitrogen, considering
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both two-dimensional (2D) and three-dimensional (3D) perturbations [73]. Polavarapu et al.

performed similar experiments in mayonnaise, and, like Dimonte et al., found that 3D per-

turbations were more stable than 2D perturbations [74]. Rayleigh-Taylor instability has been

used of late to experimentally study the mechanical properties of solids subjected to high

strain rates in the context of high energy density physics. From the observed RTI growth

rates, material properties under conditions of high strain have been inferred in aluminum

[75, 76], in copper single crystals [77], in phase transitioning iron [77, 78], in polycrystalline

vanadium [76, 79–81], and in tantalum [82, 83] amongst other metals, with some of these

studies being performed in part in order to mitigate interfacial instabilities found in inertial

confinement fusion capsule implosions [77, 83]. A series of theoretical [84–88] and exper-

imental [84, 86, 87, 89] investigations into the Rayleigh-Taylor instability growth rates of

confined soft gels deforming under their own weight have also been undertaken of recent.

For instance, hypergravitational Rayleigh-Taylor instability has been studied in hydrogels

using a centrifuge setup, with the RTI unstable samples gradually evolving from their initial

flat state into a buckled state displaying structured cuvette patterns [89].

ρ1 < ρ2

ρ2, G

ρ3 = 0

h+Δh Δh=ξb-ξa

ξb

ρ2gξa - Syy

ρ1gξa

ξa

x

X

y

g

(a)

0

-h ρ1 < ρ2ρ2, Gρ3 = 0

h+Δh

x

y

g

(b)

0 -h

Figure 1.2: Schematic of the RTI problem in an elastic solid of finite thickness with a free
surface: (a) the problem as studied in the literature [90–92] with the elastic solid laying
atop a lighter fluid in a gravitational field; (b) the equivalent problem of a lighter fluid
accelerating a solid of finite thickness—this is the problem most directly experimentally
investigated throughout this thesis. Image (a) was adapted from [92] with permission.
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While most of these studies have been concerned with the evolution of interfacial instabil-

ities in elastic-plastic materials, theoretical treatments of RTI can be found in the literature

that are concerned with instability growth rates in unconfined solids that undergo purely

elastic deformation [90–92]. The objective of the present study is the experimental inves-

tigation of RTI in just such a scenario where a thin solid with a free surface is accelerated

by a lighter medium and only deforms elastically following its initial loading (see Fig. 1.2).

To this end, elastomer samples were accelerated using a gasdynamic shock tube. Sinusoidal

perturbations were imposed onto the elastomer samples to simulate the presence of inter-

facial perturbations between the accelerating gas and the accelerated solid, and the data

acquisition was performed using high-speed videography and photonic Doppler velocimetry.

The evolution of the initial perturbations imposed onto the samples is then compared to the

RTI formalism.
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Chapter 2

Theoretical Considerations

This chapter discusses the theoretical background supporting the experiments described in

this thesis. The first part of this chapter is concerned with the Rayleigh-Taylor instability

theory for elastic solids that is experimentally being investigated, while the second part

of this chapter describes the gasdynamics theory behind the workings of the shock tube

device used to accelerate the elastic solids studied in this thesis. As the experiments in

this thesis chiefly pertain to RTI in elastic solids and not to RTI in fluid/fluid interfaces,

no extensive discussion of the classic RTI scenario in fluids is provided in this thesis. The

reader is redirected to a relatively beginner-friendly presentation of RTI in fluids by Piriz

et al. published in the American Journal of Physics [93] which also discusses the effects of

surface tension and viscosity upon the stability of a fluid/fluid perturbed interface.

2.1 Rayleigh-Taylor Instability for Elastic Solids

The Raleigh-Taylor instability formalism predicts that, when a light gas medium accelerates

a nearly flat solid, any perturbations away from a perfectly flat interface between the light gas

and the solid may rapidly grow in size. In particular, assuming the interfacial perturbations

to be sinusoidal in nature with a known initial amplitude, ξ0, and a known initial wavelength,

λ = 2π/k where k is the angular wavenumber (refer to Fig. 1.2 found at the end of the

introductory chapter), the initial stage of the evolution of the perturbation amplitude can
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be described by an exponential trend:

ξ(t) ∝ ξ0e
γt sin kx, (2.1)

where γ, the growth rate of the perturbation amplitude may be either real or complex. In

the case of a light gas accelerating an elastic solid of finite thickness, h, the perturbation

growth rate can be computed by solving the following dispersion relation [90–92]:

(
G

ρg

)8
{(

8π2

λ2
+
ργ2

G

)4

+
1024π6

λ6

(
4π2

λ2
+
ργ2

G

)

−
(
4π

λ

)3
√

4π2

λ2
+
ργ2

G

(
8π2

λ2
+
ργ2

G

)2
[
coth

(
2πh

λ

)
coth

(√
4π2

λ2
+
ργ2

G
h

)

− csch

(
2πh

λ

)
csch

(√
4π2

λ2
+
ργ2

G
h

)]}
−
(
2πG2γ2

λρ2g3

)2

= 0.

(2.2)

In the above equation, ρ and G stand for the density and the shear modulus of the elastic

solid, respectively, and g stands for the acceleration imparted to the elastic solid by the light

gas medium. The dispersion relation is here shown for the case where the Atwood number,

At ≡ (ρ2−ρ1)/(ρ2+ρ1) = 1 with ρ2 and ρ1 being the densities of the heavy and light media,

respectively. This is because, throughout this thesis, it is always assumed that ρ2 ≫ ρ1.

For this reason, in this thesis ρ2 = ρ. It can be shown that a unique positive root for γ is

obtained from Eq. (2.2) for any input parameter values where the surface perturbations of

the elastic solid are unstable [90–92]. Appendix A.1 contains a derivation of the dispersion

relation Eq. (2.2) from the conservation of mass and momentum equations.

From the dispersion relation Eq. (2.2) an analytical stability boundary for the elastic

solid can be derived by letting γ = 0 in Eq. (2.2):

ρgh

G
=

2πh

λc

1−( 2πh

λc sinh
2πh
λc

)2
1/2

, (2.3)

where the λc stands for the RTI cutoff wavelength, the wavelength above which the configu-

ration studied in Fig. (1.2) becomes unstable.
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The acceleration, g, in this thesis is generated through the use of a shock tube where ∆p

is the pressure difference across the elastic solid following reflected shock loading which are

related via Newton’s Second Law:

g =
∆p

ρh
. (2.4)

Combining Eqs.(2.3) and (2.4) allows a form of the RTI stability boundary to be obtained

that is not depended upon the density of the elastic solid:

∆p

G
=

2πh

λc

1−( 2πh

λc sinh
2πh
λc

)2
1/2

. (2.5)

Although Eq. (2.5) is transcendental in the cutoff wavelength, λc, it can still be plotted

in the λc–h space numerically using, for instance, Mathematica’s ContourPlot function

which plots only the (λc, h) pairs that satisfy the equality of Eq. (2.5) in a given parame-

ter space. Figure 2.1 plots Eq. (2.5) in the space delimited by 0mm ≤ h ≤ 12mm and by

0mm ≤ λ ≤ 60mm. These bounds are set by the dimensions of the shock tube apparatus

and by the sample manufacturing process (see Chapter 3) which restrain the solid sample

dimensions to a 140mm× 140mm square. For such a 140mm× 140mm square sample, a si-

nusoidal perturbation with a λc = 60mm would correspond to the presence of approximately

two ripples at the interface between the elastic solid and the accelerating gas.

Figure 2.1a plots three stability boundaries for a solid sample with an elastic shear mod-

ulus value of 27 kPa. Each stability boundary represents a different value for the applied ∆p.

As indicated by Fig. 2.1a, increasing ∆p while holding everything else constant increases

the size of the instability regime of the configuration—the unstable regime lies above the

stability boundary. Similarly, Fig. 2.1b plots the stability for three different elastic shear

moduli, G = 620 kPa, G = 120 kPa, and G = 27 kPa1 with ∆p = 5 bar. Increasing the value

of G has the opposite effect to that of increasing the value of ∆p, that is, increasing the

value of G reduces the size of the instability region.

1These are the elastic shear modulus values reported in the literature for the silicone elastomers Sylgard
184, Solaris, and Ecoflex 00-30, respectively [94].
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Figure 2.1: Plots of the RTI stability boundary in the λ–h space for different input pa-
rameters: (a) varying the driving pressure difference across the elastic solid; (b) varying the
elastic shear modulus of the solid.
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Figure 2.2: Plots of the RTI stability boundary in the ∆p–h space for different input
parameters: (a) varying the initial perturbation wavelength, λ, of the elastic/fluid interface;
(b) varying the elastic shear modulus of the solid.

Figure 2.2 plots the stability boundary in the ∆p–h space where 0 bar ≤ ∆p ≤ 8 bar—

these plots can be obtained by isolating ∆p in the LHS of Eq. (2.5). The upper limit of

8 bar was determined to be a pressure difference that can safely be applied onto the solid

in a laboratory setting. Figure 2.2a plots the stability of a solid with G = 620 kPa for

three different initial perturbation wavelength, λ, of the elastic/fluid interface. Figure 2.2a

shows that increasing the size of the initial perturbation wavelengths increases the size of
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the instability region. Figure 2.2b plots the stability boundary for the same three different

elastic shear moduli, G = 620 kPa, G = 120 kPa, and G = 27 kPa with λ = 60mm held

constant. As seen in Fig. 2.2b, increasing the value of G reduces the size of the instability

region. It is further noted that the stability boundary Eq. (2.5) appears to linearly relate the

elastic solid thickness, h, to the initial perturbation wavelength, λ of the solid/fluid interface

while the stability boundary appears to behave like a higher-order polynomial in the ∆p–h

space.

Alongside the plot of the RTI stability boundary, the dispersion relation Eq. (2.2) can be

numerically solved to obtain predictive values for the exponential growth rate, γ. Figure. 2.3

is an example of such a stability map generated for the parameters λ = 25mm andG = 27 kPa.

Figure 2.3 indicates that increasing the value of ∆p as well as decreasing the value of h both

increase the rate of amplitude growth, γ.
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Figure 2.3: Plot of the RTI stability boundary in the ∆p–h space alongside contour plots
of the exponential growth rate, γ in the unstable region. This stability map is produced for
λ = 25mm and G = 27 kPa.

The information held in Figs. 2.2 to 2.3 is crucial in order to determine the input param-

eter values that will most easily allow for the recording of RTI in an accelerated elastic solid

with a free surface. This is because shock experiments typically last on the order of no more
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than a few milliseconds allowing for only a small time lapse during which RTI may be ob-

served. Choosing a material with the right modulus and the right driving pressure as guided

by Eqs.(2.2) and (2.5) will help ensure that RTI interfacial behavior can be experimentally

recorded.

2.2 Shock Tube Gasdynamics

To quantify the acceleration of the elastic solid the pressures exerted on both sides of the

solid following the initial shock reflection must be established. This section is written in two

parts. The first part establishes the shock tube relations necessary to theoretically predict

the driving pressures immediately after the elastic solid was shock loaded. The second part

derives a method for predicting the velocity history of the elastic solid as the driving gas is

expanding following the shock loading of the solid.

2.2.1 Shock Tube Theory

As previously mentioned, the acceleration of the elastic solid, g = ∆p/ρh, is provided by a

shock tube facility. The following discussion uses Fig 2.4 as a reference for all the gas regions

being considered during the operation of a shock tube. In the experimental scenario presented

in this thesis, a shock tube of uniform cross-section contains a diaphragm separating a high-

pressure gas (Region 4 ) from a low-pressure gas (Region 1 ).2 After the rupturing of the

diaphragm, the contact surface between the high-pressure and the low-pressure gases pushes

a shock wave into the low-pressure section of the tube. (Region 3 ) and (Region 2 ) are the gas

regions immediately before and after the contact surface, respectively. As the high-pressure

gas is expanded into the low-pressure section of the shock tube, expansion waves (also known

as rarefaction waves) form to carry the information of the expansion to the yet undisturbed

parts of the high-pressure gas. Once the shock wave hits a solid surface (in this case the

surface of one of the elastic solids studied in this thesis), the shock reflects off the surface,

leaving behind a pressurized gas at rest with respect to the surface (Region 5 ). Figure 2.4

plots the static pressure in the various regions of interest as a function of axial position, x,

along the shock tube at a given time t = t1.

2Throughout this thesis, the shock tube is taken as open ended and thus the pressure in region 1 equals
the ambient pressure, that is, p1 = pamb.



2 Theoretical Considerations 13

After the shock wave reflects off the elastic solid, the pressure difference across the solid

sample is instantaneously increased causing its acceleration. To first order, the pressure

difference across the solid sample can be expressed as the difference between the gas pressure

following the shock reflection, p5, and the ambient pressure, p1, that is, ∆p = p5− p1. Using
1D gasdynamics theory, p5 can be related to p1 as follows [95]

p5 =

[
2κ1M

2
s − (κ1 − 1)

κ1 + 1

] [
−2 (κ1 − 1) +M2

s (3κ1 − 1)

2 +M2
s (κ1 − 1)

]
p1, (2.6)

where Ms is the Mach number of the shock wave and κ1 is the specific heat ratio of the

gas initially found in the shock tube driven section (the low-pressure gas throughout this

thesis is always ambient air, so κ1 = 1.4). Using a single pressure sensor placed somewhere

along the driven section of the shock tube, the pressure of the gas immediately behind the

propagating shock wave, p2, can be measured. The measured p2 value can then be used to

compute the Mach number of the shock wave through the following relation [95]:

p2
p1

= 1 +
2κ1
κ1 + 1

(
M2

s − 1
)
. (2.7)

Using two pressure sensors located a known distance apart, the Mach number of the shock

can be experimentally measured: the temporal distance between the two p2 pressure readings

of each sensor can be used to find the speed with which the shock wave traveled the distance

between the two pressure sensors.

Knowing the shock wave Mach number, Ms, p1, and κ1 , p5 can be solved for using

Eq. (2.6). The shock Mack number can also be solved for numerically using an equation

relating the driving gas pressure, p4, to p1 [95]:

p4
p1

=

[
1 +

2κ1
κ1 + 1

(
M2

s − 1
)] 1

1− κ4−1
κ1+1

c1
c4

(
Ms − 1

Ms

)


2κ4
κ4−1

, (2.8)

where κ4 is the specific heat ratio of the driving gas, and c1 and c4 are the speeds of sound

in the driven and driving shock tube sections, respectively. Because p4 is set right before

diaphragm rupture, Ms can numerically be solved for in the above equation, allowing for yet

another means of computing the value of p5.
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Appendix A.2 derives the shock tube relations (2.6)–(2.8) from first principles starting

with the 1D conservation equations of gasdynamics.
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Figure 2.4: The various gas states 1–5 in an open-ended shock tube.
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2.2.2 Shock-Induced Acceleration of the Elastic Solid

While the pressure difference across the elastic solid can be considered to first order as equal

to p5 − p1 (recall that the shock tube is open-ended so p1 = pamb), a better approximation

can be obtained by modeling the elastic solid/shock wave interaction as a 1D piston driving

a projectile. What follows is a paraphrasing and adaption of the treatment of Higgins for

the expansion of propellant gas in a conventional gun following projectile release [96].

simple wave region

reflected rarefaction

rarefaction
elastic solid

shock tube
operating length

initial driving gas,
p5 >  pp (t > t0)

pp (t)

u – a characteristic

u + a characteristic

t

x

elastic solid
path

t2

t0

t0

t < t1

t > t1

t1

Figure 2.5: One-dimensional expansion of the gas driving the elastic solid immediately
after shock reflection. Image adapted from [96] with permission.

Immediately following shock reflection, the elastic solid moving forward generates ex-

pansion waves that propagate back into the shock tube, expanding the gas in region 5
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and lowering the pressure that is accelerating the solid. The first characteristic expan-

sion wave propagating backwards at time t0 following shock reflection travels with a speed

u(x, t) − c(x, t) = −c5 where u(x, t) and c(x, t) are the velocity and the speed of sound of

the gases found within the shock tube. The first expansion wave eventually reflects off the

shock tube end wall at a time t1 after which it will propagate back towards the accelerated

elastic solid, potentially reflecting off the solid surface at some time t2. All forward moving,

u(x, t) + c(x, t) characteristics reaching the accelerating elastic solid in the t2− t0 time span

will cause an expansion of the gas in region 5. The region bounded by the first reflected

characteristic reaching the solid at time t2 is called the simple wave region (see Fig. 2.5) by

Higgins as this region is unaffected by reflected waves.

Recall that the Riemann invariant along a u(x, t)+ c(x, t) characteristic is u+2c/(κ− 1)

and so a relationship between the state in region 5 immediately following shock reflection

and the state in the same gas at later times can be obtained:

u(t) +
2c(t)

κ− 1
=

2c5
κ− 1

(2.9)

The spatial dependency of u(t) and c(t) have been dropped in the above equation as region 5

is taken to be occupied by the same gas undergoing 1D flow. Since the gas velocity at the

base of the elastic solid must match the velocity of the solid itself, that is, since u(t) = vs(t),

then rearranging the above equation further yields that

c(t)

c5
= 1− (κ− 1)

2

vs(t)

c5
(2.10)

Assuming the expansion process to be isentropic, the original pressure in region 5, p5, and

the pressure at later times during the expansion process, pp(t), can be related using the

isentropic equation

pp(t)

p5
=

(
c(t)

c5

) 2κ
κ−1

. (2.11)

Substituting Eq. (2.11) into Eq. (2.10), the pressure driving the elastic solid can be expressed

as a function of the original speed of sound in region 5, c5, and of the velocity of the elastic

solid, vs(t):

pp(t) =

[
1− (κ5 − 1)

2

vs(t)

c5

] 2κ5
κ5−1

p5 (2.12)
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Now writing the pressure difference accelerating the elastic solid as ∆p(t) = pp(t) − p1,

substituting the expression for pp(t) from the above Eq. (2.4) into Newton’s Second Law for

the elastic solid yields the following nonlinear differential equation

g = v̇s(t) =

[
1− (κ5−1)

2
vs(t)
c5

] 2κ5
κ5−1

p5 − p1
ρ h

. (2.13)

The above equation can be numerically integrated to obtain a theoretical velocity history of

the elastic solid sample, vs(t), provided that the values for p1 and p5 are known.
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Chapter 3

Experimental Methods

To perform the RTI experiments, elastomeric solid samples were manufactured by means of

a casting method using 3D printed molds. A casting process was used as it allowed for the

sample surface to be sinusoidally perturbed. The solid samples were lightly attached in a

style similar to a shower curtain to the end of a shock tube made out of square aluminum

sections using four to five standard sewing needles. The samples were lightly attached in

order to minimize the influence of boundary effects such as the tensioning of the samples

which is known to help stabilize Rayleigh-Taylor instabilities. Two pressure transducers were

positioned at the end of the shock tube to measure the strength of the shock wave produced

and to trigger data acquisition. When the shock wave impacts and subsequently reflects off

the elastic solid surface, a pressure difference is created across the sample which generates

the acceleration required to study RTI.

A high-speed video camera (typically the Shimadzu HPV-X2 but sometimes also the

Photron SA5) recording at a frame rate between 50 000 fps and 200 000 fps was used to

obtain video recordings of the samples following the initial shock reflection. The high-speed

video camera was always fitted with a Nikon 80–200mm f/2.8 AF-D ED Macro lens whose

f-stop was typically set to 5.6, the sharpest f-stop of the lens. The velocity histories of two

central peak/trough pairs were recorded using photonic doppler velocimetry with each PDV

channel being configured in a standard homodyne setup. Figure 3.1 shows an infographic of

the experimental setup.

What follows is a more detailed description of three important aspects of the experimen-

tal methodology: the first section of this chapter describes the manufacturing of the solid
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samples; the second section describes the shock tube apparatus in greater detail; and the

third section of this chapter describes the PDV apparatus and the PDV data acquisition

process.

Low Pressure Driven Section

To PDV 

High Pressure 
Driving Section

Diaphragm Section

Shock Wave

Reflection of the shock off the sample creates a pressure difference across
the elastic solid which generates the acceleration required to study RTI

Burst of the diaphragm
creates a shock wave that 

propagates down the driven section

Velocity histories of two central crest/through pairs
 are recorded using photonic Doppler velocimetry (PDV)

Pressure transducers used to measure 
shock strength and trigger data acquisition

Shimadzu HPV-X2

Elastic Solid Sample
(Sinusoidally Perturbed)

1

2

3

4

pdriver = p4pdriven = p1

C1

C2

C4

C3

Figure 3.1: Top-view schematic of the experimental setup. The high-speed camera recorded
a top view of the experiment through the use of a mirror positioned above the elastic solid
sample.
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3.1 Manufacturing the Solid Samples

The vast majority of the elastic solid samples tested were manufactured using a relatively

novel silicone elastomer named Ecoflex 00-30 made by Smooth-On Inc. [97]. This material

is typically used to make face masks and prosthetics owing to its skin-safe and skin-like

properties which make the material highly flexible and highly tear resistant with storage

shear modulus values reported in the literature of about 27 kPa [94]. Although the Ecoflex

material is nominally transparent, the product can be colored using silicone-based coloring

pigments such as Smooth-On’s Silc Pig which can further help with the experimental data

acquisition—coloring the samples white, for instance, provides higher quality imagery dur-

ing monochromatic video recordings. Using molds 3D printed, this relatively inexpensive

material was cast into 140mm×140mm sinusoidally perturbed samples of known thickness,

h, initial perturbation amplitude, a0, and initial perturbation wavelength, λ. The Ecoflex

00-30 material has a 4-hour curing time, and, thanks to the recent advancements in additive

manufacturing, modern benchtop 3D printers like the Bambu Lab X1 Carbon can readily

print the molds used in the casting process in less than 15 hours, allowing for the rapid

production of test samples. Figure 3.2 displays a few of the used 3D printed molds alongside

some Ecoflex 00-30 samples.

Figure 3.2: Ecoflex 00-30 samples alongside 3D printed molds.
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The 3D printed molds consisted of 4 parts: two blocks with the sinusoidal perturbations of

a chosen amplitude and wavelength designed onto their mating surfaces and two rectangular

keys that, when positioned in their pairing slots located at the edges of the mating blocks,

allowed for the alignment of the casting blocks and dictated the thickness of the solid sample

to be casted. This key-slot design was chosen to help eliminate the need for the 3D printing of

molds for samples of different thicknesses. Instead of having to 3D print new sinusoidal blocks

when the manufacturing of a sample of different thickness was required, the alignment keys

were swapped instead for keys of different thicknesses. This design choice reduced 3D printing

material cost and decreased sample manufacturing down time. The molds were typically 3D

printed using polylactic acid (PLA) as this material is one of the least expensive 3D printing

materials and is also relatively easy to print with, not requiring special nozzles, printer

enclosures, etc., although other materials such as acrylonitrile butadiene styrene (ABS) was

also infrequently used to manufacture the molds. In the case of PLA, after multiple trial-

and-error attempts, the 3D printing settings that offered the most robust, long-lasting molds

while keeping the 3D printing time to a minimum are itemized below. Note that the 0.12mm

Fine Bambu Lab X1 Carbon printing profile was used as a basis for the 3D printing settings,

so the printing parameters indicated here are only the settings that were changed from the

default Fine profile:

— The infill density was set to 10 % to minimize 3D printing material use and build time.

— To compensate for the sparse infill density, 3 wall loops were used alongside 8 and 6

top and bottom shell layers, respectively. The 8 top layers help avoid the warping of

the top layer surfaces that typically occurs when sparse infill density is used.

— The 3D printing seam for each large block was set along one of the back edges. Oth-

erwise, the sinusoidal surfaces of the mold blocks would typically contain indents as a

result of the random distribution of the layer seams.

— The order of the wall construction was changed to outer/inner/infill as testing indicated

that this order resulted in a smoother surface finish for the sinusoidal surfaces of the

mold.

Appendix B.1 describes a detailed procedure for the casting process of the solid samples.

The casting procedure can also be used to produce solid samples out of materials other than



3 Experimental Methods 22

Ecoflex 00-30 albeit sometimes with different mixing ratios between the base polymer and

curing agents. Other materials silicone elastomer materials such as Smooth-On’s Solaris

and Dow Corning’s Sylgard 184 have also been manufactured using this casting procedure.

Urethane samples have also been produced using this method.

3.2 The Shock Tube Apparatus

The low-cost shock tube was constructed using three 4-feet-long extruded aluminum channels

with 5-inch×5 -inch internal cross-section dimensions. Figure 3.3 shows a labeled 3D render

of the shock tube apparatus. Two of the three aluminum channels made up the low-pressure

driven section. The third aluminum channel made up the high-pressure driving section.

The assembly of the three sections featured a modular design employing Destaco 323-type

clamps. Eight Destaco clamps were used per section joint with the clamps being screwed

onto the section end flanges through the use of 8-mm-long M4× 0.7mm black-oxide screws.

For additional sealing at the section jointures, oil-resistant Buna-N o-rings with a 7-inch

outer diameter and a 1/8-inch width were placed in-between the mating aluminum channel

end flanges. The diaphragm section connecting the low-pressure and high-pressure sections

was further reinforced via the addition of twelve 2 1/4-in-long 1/4–20 alloy steel socket head

cap bolts.

Diaphragm Section

Low Pressure Driven Section

Sample Holder
(3D Printed)

High Pressure 
Driving Section

Figure 3.3: Labeled 3D render of the shock tube used throughout this thesis.
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The diaphragms used were laser cut out of Mylar polyester film made by DuPont Teijin

Films. The cut Mylar diaphragms nominally were of either 0.5, 1.0, or 2.0 thou in thickness

(1 thou = 0.001 in and a thou is also sometimes called a mil), but the diaphragms were

often stacked together to produce effective diaphragms of different thicknesses. The shock

tube low-pressure section was always left open-ended. The low-pressure section open-end

was also equipped with a 3D printed flange meant to lightly hold the elastic samples prior to

their shock loading. The elastic solids were attached to the 3D printed end flange via either

four or five standard stainless steel sewing needles that were epoxied to the sample holder.
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Figure 3.4: Theoretical shock tube Ms vs p4 (a) and p5 vs p4 (b) plots for helium (dashed)
and shop air (solid) as the driving gases.

The shock tube diaphragm section is equipped with an inlet through which pressurized gas

can be deposited in the driver section. The inlet is equipped with 1/4-inch 316 stainless steel

Swagelok tubbing components alongside an SSI Technologies, LLC digital pressure gauge

(Model MGA-300-A-9V-R) in a manner allowing for both the pressurizing and vacuuming of

the driver section. Although unnecessary when pressurized shop air is used as the driver gas,

vacuuming was used to empty the driver section prior to the insertion of pressurized helium

gas into the driver section. Helium was also used as a driver gas as it can produce stronger

shock waves owing to its lighter mass relative to shop air. From in-laboratory testing, it was

found that the shock tube driver section can safely sustain up to 60 psig of pressure which is

the imperial equivalent of 6 bar of absolute pressure. Using 5.17 bar of absolute pressure as

the maximum value for the driver pressure, p4, Fig. 3.4 plots the shock Mach number, Ms,

and the pressure behind the shock immediately after reflecting off the solid sample, p5, as a
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function of the driver pressure for both helium and shop air acting as the driver gas. The

graphs in Fig. 3.4 were obtained by numerically solving Eqs. (2.6) and (2.8) in tandem as

outline in Section 2.2. The specific heat ratio, γ4 and speed of sound c4 in the driver section

were taken as κ4 = 1.4 and c4 = 343m/s for shop air, and κ4 = 1.667 and c4 = 1008m/s for

helium.

Figure 3.5: Image capture of pressure data recorded by the Siglent SDS1104X-E oscilloscope
following a p4 = 42 psig shot with helium in the driver. The yellow and purple traces
represent the data acquired by the first and second pressure transducers, respectively—the
first pressure transducer is the first sensor to encounter the shock wave.

The pressure immediately behind the generated shock wave, p2, following shock reflection

off the elastic solid, p5, and the shock Mach number,Ms were also experimentally determined

using two piezoelectric pressure transducers (Model 113B28, PCB Piezotronics Inc.) located

at the open-end of the shock tube. The pressure transducer data was recorded using a Siglent

SDS1104X-E digital oscilloscope. Figure 3.5 shows an image capture of the pressure data

recorded by the Siglent oscilloscope for an experiment where the driver section was pressur-

ized to 42 psig using helium gas. The data acquisition was triggered off the first pressure

trace (the yellow trace in Fig. 3.5). The first pressure trace was produced by the transducer

that first encountered the shock wave. Because the distance between the two transducers was

always equal to 26.2 cm, the shock wave would typically take about a millisecond to travel

from one transducer to the next so the time base was always set to 500 µs per division. The
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vertical voltage scale varied between 200mV per division for low driver pressure shots (shots

which used less than p4 ≤ 32 psig with shop air), 500mV per division for medium driver

pressure shots (shots which used 32 psig ≤ p4 ≤ 42 psig with shop air), and 1V per divi-

sion for high driver pressure shots (shots using helium as the driver gas with p4 ≥ 42 psig).

The voltages were translated into pressure readings through knowledge of the fact that each

pressure transducer had a sensitivity of 100mV per psi while also noting that the sensors

measure changes in pressure and not absolute pressure. The first peak of each pressure trace

represents p2, and the second peak represents p5. The speed of the shock wave can be com-

puted by dividing the set distance between transducers of 26.2 cm by the temporal distance

between the first pressure peaks in each trace, and soMs can also be experimentally inferred.

Additional oscilloscope setup parameters such as trigger type, trigger level, sampling rate,

etc. can be read off the oscilloscope image capture displayed in Fig. 3.5.

3.3 Photonic Doppler Velocimetry

Photonic Doppler velocimetry records velocity histories through the beat frequency obtained

by the so-called heterodyning of two laser signals: a reference signal of a known frequency,

the retroreflector path in Fig. 3.6, and a twice Doppler shifted target signal, the probe path

in Fig. 3.6. The target velocity, vt(t) can be related to the known laser frequency f0 and to

the measured beat frequency fb through the relation shown below

fb =
2vt(t)

c∗
f0, (3.1)

where c∗ is the speed of light in vacuum. For an input laser frequency f0 = 193THz (which

is the equivalent of an input laser wavelength of 1550 nm), Eq. (3.1) becomes

vt(t) = 0.775fb

(
m/s

MHz

)
. (3.2)

Appendix B.2 provides a derivation of Eq. (3.1) from first principles while also containing

a more extensive discussion on the relationship between the system bandwidth of the PDV

and the maximum target velocity that can be reliably measured.

Since its first formal establishment in the mid 2000s as a tool for recording velocity

histories in shock physics experiments [98], the PDV apparatus scheme has seen different
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iterations emerge, each with its own advantages and disadvantages. For the sake of brevity,

this thesis will focus on the PDV geometry shown in Fig. 3.6, the original homodyne PDV

geometry proposed by Strand et al. [98], which was the PDV configuration used in all four

channels of the McGill PDV system during the recording of the experiments described in

this thesis. The PDV apparatus consists of three main components: a high-power laser, a

three-port circulator, and a digitizer.
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Figure 3.6: Schematic of the PDV homodyne setup contained within the McGill PDV
box. The left image is a picture of the McGill PDV apparatus including the LeCroy high-
bandwidth oscilloscope and the NP Photonics input laser.

The PDV system makes use of a high-power (power output on the order of watts) CW

fiber laser. The specific fiber laser used at the McGill shock tube facility is a NP Photonics

The Rock high-power laser with a maximum power output of 5W when operating at 1550 nm.

Fiber lasers make use of rare-earth element doped optical fibers as their active medium [99].

The optical resonator in fiber lasers are typically two fiber Bragg gratings (FBG) spliced

at the ends of the active medium fiber. Continuous wave lasers are preferred in transient

single shot experiments as such lasers do not require a trigger mechanism to ensure that

experiment data is adequately recorded: the CW laser is instead simply turned on a few

minutes before the experiment to allow the laser output to stabilize. Fiber lasers also have

narrow linewidths—the NP Photonics fiber laser has a 3 kHz linewidth—which is necessary

for the proper working of the heterodyne recording technique [98, 100–102]. That such

high-power lasers are used for velocity data acquisition in shock experiments stems in part



3 Experimental Methods 27

from the fact that the reflective quality of the surface whose velocity is being measured can

drastically change throughout the shock experiment and so what was originally a specular

reflector may become a diffuse reflector which can drastically reduce return signal power.

The use of high-power lasers also allows for the splitting of the signal in multiple channels.

At the core of the PDV apparatus stands a (typically 3-port) fiber circulator. Through

the use of fiber isolators, light entering port 1 may exit at port 2, light entering port 2 may

exit at port 3, and light entering port 3 may exit at port 1, while the propagation of light

in any other direction (say, from port 2 to port 1, for example) is highly inefficient. To

allow for the mixing of the reference and Doppler-shifted signals, a 90:10 fused fiber coupler

is installed between the 2nd circulator port and the PDV probe. The 1×2 fiber coupler

splits the reference signal into two sending 10% of its input power to a retroreflector and the

remaining 90% to the PDV probe. The retroreflector (a passive component) reflects 99%

of the light incident upon itself. The reflected light is then mixed with the Doppler-shifted

light returning from the probe by the 1×2 splitter. The mixed light is then sent back into

the circulator port 2 and exits the circulator port 3 to find its way to the photodetector.

The system is entirely fiber coupled (except for the receiver-digitizer connection), with the

use of 9/1251 single mode fibers and Thorlabs FC/APC fiber connectors.

A 4-channel LeCroy WaveMaster 813Zi-A real-time oscilloscope is used as a digitizer.

This oscilloscope has a 13GHz bandwidth and has a sampling rate of 40GS/s. Given the

sampling rate of the oscilloscope, the Nyquist theorem indicates that a beat signal of a

maximum frequency of 20GHz may be recorded. A 20GHz beating frequency corresponds to

a specimen velocity of about 15 500m/s.2 Given the large sampling rate of this oscilloscope,

standard Bayonet Neill-Concelman (BNC) connections cannot be used as their bandwidth of

4GHz is too low, constituting a severe bottleneck. SubMiniature version K (SMK) connectors

are used instead with a 46GHz bandwidth and a 50Ω characteristic impedance, thereby

removing the coaxial connection as the bandwidth bottleneck.

Because of the 4-channel design of the LeCroy oscilloscope, the PDV system is also setup

with a 4-channel geometry. Given the circulator power rating of 300mW, the fiber laser is

set to output 800mW such that when its signal is split in four channels the laser power per

1The 9/125 specification of an optical fiber indicates the core diameter in microns (here 9 µm) and the
cladding outer diameter (here 125 µm). In the C-band operation bandwidth range of 1530–1570 nm, 9/125
fibers act as single mode fibers while higher core diameter fibers like 50/125 fibers act as multimode fibers.

2With a reference signal wavelength of 1550 nm
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channel becomes 200mW. The Doppler shifted signal power returning from the probe is

typically in the 0.01mW to 1mW range. Probe performance is characterized by the return

loss (RL) of the sent power, Ps, to the received power, Pr [101, 102]:

RL ≡ 10 log10

(
Ps

Pr

)
(3.3)

Typical return losses range from 10 dB to 40 dB for focusing probes and 20 dB to 60 dB for

collimating probes (focusing probes are used for specular targets and collimating probes for

diffuse targets) [101, 102]. The return losses range of the shock tube facility PDV collimating

probes is 23–43 dB. The MITEQ PIN optical detectors (PN:DR-125G-A-FA) used have a

maximum power rating of 10mW and so the reference signal reflected back by the retroreflec-

tor is further reduced to 2mW when reentering the 1×2 splitter in order to ensure that the

photodetector maximum rating is not exceeded. This is especially important during shock

physics experiments as the nature of the transient acceleration phase may change the speci-

men reflectivity which sometimes causes the power of the reflected signal to briefly drastically

increase. The MITEQ PIN photodetector has a responsivity of 0.9000A/W and is integrated

with a low noise amplifier (LNA). The photodetector has a bandwidth of 12.5GHz, which

constitutes the bottleneck bandwidth of the system.

Figure 3.6 also contains a picture of the full PDV system setup inside a roll-around

box. The 1×4 splitter, the circulator, the attenuators, power meters, and detectors are

all contained within the bottom chassis, on the top of which are the NP Photonics fiber

laser, and the LeCroy oscilloscope. A second, tunable laser is found between the main

fiber laser and the oscilloscope and is used for frequency-shifted PDV configurations, a

configuration not used during the recording of the experiments found in this thesis—see

Ref. [101] for a comprehensive description of the various PDV configuration available to

record velocity histories during shock experiments. A schematic attempting to provide as

accurate a placement of the various components as is possible in order to ease the modification

of the PDV configuration of a given channel if ever deemed necessary can be found in

Appendix B.3.

The voltage signal recorded by the real-time oscilloscope can be converted into a velocity

time history (vt vs t) plot in either of two ways. The first method uses the individual fringes

(the crests and troughs) of the voltage signal to directly infer the displacement of the target
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surface at a given time. This first, brute force method is very computationally demanding and

typically inaccurate at high target velocities where the voltage signal becomes too noisy for

the individual fringes to be analyzed [98]. Instead, for most experiments, PDV data analysis

is performed using a sliding window Fast Fourier Transform (FFT) [98, 100–102]. When

using the FFT method of analysis, the recorded voltage signal is first divided into short,

overlapping temporal segments. Each of the temporal segments is analyzed using a FFT

algorithm to determine the frequency spectrum of the segment. The dominant frequency is

determined to be the beat frequency of the segment from which the target velocity during the

temporal segment can be obtained. Figure 3.7 provides a visual overview of the FFT method

of data analysis. When the FFT method is employed correctly, the PDV can provide velocity

time histories of the target surface with velocity uncertainty lower than ∼1% [98, 100–102].

Figure 3.7: The sliding window FFT procedure for PDV data analysis. Image taken
from [100] with permission.
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Chapter 4

Results and Discussion

This chapter is divided into two parts. The first part, spanning the first four sections of this

chapter, presents a sample of the experimental results obtained. The second part, contained

in the last section of this chapter, discusses the results obtained while providing suggestions

for future improvements of the experimental methods employed.

4.1 Shock Loading of Sinusoidally Perturbed Ecoflex 00-30

Samples

What follows is the description of four representative experiments. Each sample described

in this section was loaded using a 1.47 Mach shock in ambient air which, using standard

1D shock tube relations [95], generates a theoretical driving pressure difference of 4.08 bar,

which was experimentally verified using piezoelectric pressure sensors. The distance between

the starting position of each sample and the PDV probes, that is, the total distance traveled

by a sample was always of 34mm. This distance was chosen as it was the largest distance

that reliably allows for the PDV collimators to be aimed at their respective crests and/or

troughs for the entire distance traveled by the sample. Each sinusoidally perturbed sample

discussed in this section had an initial perturbation wavelength equal to 25mm.

Figure 4.1 shows the result from the shock loading of a 1.2-mm-thick sample with an initial

perturbation amplitude equal to 2% of the initial perturbation wavelength (i.e., ξ0 = 0.02λ).

Figures 4.1b–e provide snapshots of the experiment at the indicated times, and Fig. 4.1f plots

the experimental amplitude growth of the two crest/trough pairs monitored using PDV. The
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experimental amplitude growth plot was obtained first by integrating the velocity spectro-

grams recorded by the PDV probes to obtain the displacement of the monitored crests and

troughs, following which the amplitude growth was computed by taking the halved difference

between the paired crest and trough, that is, Amplitude Growth(t) = (xcrest(t)− xtrough(t))/2.
More on PDV data processing and how velocity histories (and subsequently displacements)

are extracted from spectrogram readings can be found in Section 3.3 of this thesis as well as in

Refs. [98, 100, 101]. Figure 4.1f displays appreciably exponential trends for both crest/trough

pairs with the total duration of the experiment being of 530 µs. Of note is the appearance

of additional protrusions on the surface of the sample seen in Figs. 4.1d–e.
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Figure 4.1: Shock loading of a 1.2-mm-thick Ecoflex 00-30 sample with λ = 25mm and
a0 = 0.02λ: (a) provides an enlarged and labeled view of the first snapshot, (b)–(e) show
snapshots of the experiment at labeled times, and (f) shows the amplitude growth of the
sample obtained using PDV.

Figure 4.2 shows the result of the shock loading of a 1.2-mm-thick sample with a relatively

larger initial perturbation amplitude equal to 10% of the initial perturbation wavelength

(i.e., ξ0 = 0.1λ). The total duration of this experiment was of 550 µs, and Fig. 4.2e displays

an amplitude growth trend that differs from that of an exponential with the amplitude
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growth seemingly reaching a plateau towards the end of the experiment. This sample with

a relatively larger perturbation amplitude also appears to experience a cusping or pinching

of its troughs which is most readily seen in Figs. 4.2c–d. It is suspected that as the initial

perturbation amplitude of a sample is increased, the troughs of the sample start acting as

imploding semi-cylinders following shock loading, generating additional buckling modes of

failure. This sample also saw the appearance of protrusions on its surface (Figs. 4.2c–d).

(a) t = 0 µs (b) t = 175 µs

(c) t = 325 µs (d) t = 520 µs

(e) Sample Amplitude Growth Plot
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Figure 4.2: Shock loading of a 1.2-mm-thick Ecoflex 00-30 sample with λ = 25mm and
ξ0 = 0.10λ: (a)–(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.

The shock loading of a 3.1-mm-thick sample whose initial perturbation amplitude was

ξ0 = 0.02λ is shown in Fig. 4.3. While the amplitude growth trends described in Fig. 4.3e ap-

pear exponential, the total duration of this experiment was of 934 µs with the total amplitude

growth being significantly smaller than that of the 1.2-mm-thick sample with ξ0 = 0.02λ.

This indicates that the thicker 3.1mm sample experienced a slower perturbation growth rate.

This thicker sample displayed no emergence of protrusions on its surface.

A 6.1-mm-thick Ecoflex 00-30 sample with an initial perturbation amplitude ξ0 = 0.10λ

is shown in Fig. 4.4. The duration of this experiment was of 1045 µs, although the final

amplitude growth of this 6.1-mm-thick sample displayed by Fig. 4.4e was significantly larger

than that of the 3.1-mm-thick sample previously discussed. Of note is the prominent presence

of the cusping of the sample troughs as seen in Figs. 4.4c–d. This thicker sample also

displayed no emergence of protrusions on its surface.
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(a) t = 0 µs (b) t = 315 µs

(c) t = 585 µs (d) t = 920 µs

(e) Sample Amplitude Growth Plot
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Figure 4.3: Shock loading of a 3.1-mm-thick Ecoflex 00-30 sample with λ = 25mm and
ξ0 = 0.02λ: (a)–(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.

(a) t = 0 µs (b) t = 265 µs

(c) t = 625 µs (d) t = 1045 µs

(e) Sample Amplitude Growth Plot
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Figure 4.4: Shock loading of a 6.1-mm-thick Ecoflex 00-30 sample with λ = 25mm and
ξ0 = 0.10λ: (a)–(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.
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4.2 Theoretical and Experimental Growth Rates

A curve fitting of the amplitude growth trend experienced by the 1.2-mm-thick sample with

ξ0 = 0.02λ lamb is shown in Fig. 4.5. The exponential curve fitting yields an experimental

growth rate equal to 9421 s−1. Numerically solving Eq. (2.2) for the growth rate, γ, using

h = 1.2mm and the Ecoflex 00-30 material properties G = 27 kPa and ρ = 1070 kg/m3

[94, 97], the theoretical growth predicted by RTI for this sample is found to equal 8713 s−1.

While similar agreement between theory and experiment was found for the 3.1-mm-thick

sample, no such agreement was obtained for the 1.2-mm-thick and 6.1-mm-thick samples

with ξ0 = 0.1λ because their amplitude growth trend significantly differed from exponential

behavior.
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Figure 4.5: Comparison between the curve-fitted experimental growth rate of the
1.2-mm-thick Ecoflex 00-30 sample with λ = 25mm and ξ0 = 0.02λ and the theoretical
growth of the same sample predicted by RTI.
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4.3 Shock Loading Flat Ecoflex 00-30 Samples

To further investigate the appearance of protrusions on the surface of the thinner sinusoidally

perturbed samples, flat samples of different thicknesses were also shock loaded. As the

samples were flat, only one PDV probe was used to record the bulk velocity history of

each sample. The initial distance between the PDV probe and the samples studied was set

to 120mm as this was found to be the largest distance over which the PDV laser light can

reliably provide velocity history readings. Although the flat sample experiments consequently

end up lasting longer than the previously discussed experiments, the snap shots of each flat

sample below are shown for similar times to the ones displayed for the sinusoidally perturbed

samples. This is to allow for a more appropriate visual comparison between the flat samples

and the sinusoidally perturbed samples.

Figures 4.6b–e display snapshots of the shock loading of a representative 1.7-mm-thick

flat sample loaded by a 1.47 Mach shock wave. Protrusions can be seen on the surface of

the sample in Fig. 4.6e. Using a fiducial ruler positioned in the field of view right before the

shot was performed (Fig. 4.6a), digital image data-postprocessing indicates that the distance

between two adjacent protrusions (which visually form crests and troughs) ranges between

2.5mm to 5.0mm, a range similar in value to the RTI characteristic wavelength (i.e., max-

imum growth rate wavelength) predicted by theory of λcharacteristic = 2.10mm. Figure 4.6g

shows a theoretical plot of the growth rate as a function of the perturbation wavelength

obtained using Eq. (2.2) with G = 27 kPa and ρ = 1070 kg/m3. It is thus suspected that

the protrusions seen on the surface of the 1.7-mm-thick samples are a consequence of the

emergence of the Rayleigh-Taylor characteristic wavelength of these samples. Figure 4.6f

also compares the velocity history experimental data of this sample to the velocity history

predicted by the numerical integration of Eq. (2.13)—the same parameters used to compute

the Rayleigh-Taylor characteristic wavelength of this sample were used to compute this the-

oretical velocity curve. Although the theoretical and experimental velocity histories appear

to agree at the onset of the experiment, following the t = 200 µs mark significant discrepancy

between the two curves is observed. As the experimental velocity curve indicates a slower

sample than the one predicted by theory, the discrepancy between theory and experiment is

here suspected to be caused by the fact that the edges of the solid samples were not confined

during their acceleration, causing the accelerating gases to vent around the edges of the

samples into the environment thereby reducing the final acceleration of the samples.
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(b) t = 0 µs (c) t = 170 µs

(d) t = 320 µs (e) t = 520 µs

(f) Flat Sample Velocity History
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Figure 4.6: Shock loading of a flat (i.e., no imposed perturbations) 1.7-mm-thick Ecoflex
00-30 sample: (a) shows the fiducial ruler used to allow for the calibration of the image
pixels; (b)–(e) show snapshots of the experiment at labeled times; (f) plots the theoretical
1D velocity history of this sample alongside the experimental velocity history of the sample
obtained via PDV; and (g) shows the theoretical growth rate of the sample as a function of
perturbation wavelength—the wavelength for which theory predicts a maximum growth rate
is equal to 2.10mm.
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Figures 4.7 shows the results of shock loading a representative 3.8-mm-thick flat sample

using a 1.47 Mach shock wave. While Figs. 4.7c–d show some ripples forming at the top edge

of the 3.8-mm-thick flat sample, no surface protrusions where observed. Figure 4.7e shows a

comparison between the experimental and theoretical velocity history of this sample. Once

more the experimental velocity history displays a sample that does not accelerate as fast

as was predicted by theory with a velocity plateau starting to form towards the end of the

experiment duration.

(a) t = 0 µs (b) t = 310 µs

(c) t = 580 µs (d) t = 920 µs

(e) Flat Sample Velocity History
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Figure 4.7: Shock loading of a flat (i.e., no imposed perturbations) 3.8-mm-thick Ecoflex
00-30 sample: (a)–(d) show snapshots of the experiment at labeled times and (e) plots the
theoretical 1D velocity history of this sample alongside the experimental velocity history of
the sample obtained via PDV

A representative 6.8-mm-thick flat sample loaded using a 1.44 Mach shock wave is shown

in Fig. 4.8. As with the 3.8-mm-thick Ecoflex 00-30 sample, no surface protrusions were ob-

served although some ripples did form on the top edge of this thicker sample (see Fig. 4.8c–d).

Fig. 4.8e shows significant agreement between the theoretical and experimental velocity his-

tories of this 6.8-mm-thick flat sample until the t = 500 µs mark. After t = 500 µs, the
experimental velocity curve once more falls below the velocity curve predicted by 1D theory.
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(a) t = 0 µs (b) t = 260 µs

(c) t = 620 µs (d) t = 1040 µs

(e) Flat Sample Velocity History
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Figure 4.8: Shock loading of a flat (i.e., no imposed perturbations) 6.8-mm-thick Ecoflex
00-30 sample: (a)–(d) show snapshots of the experiment at labeled times and (e) plots the
theoretical 1D velocity history of this sample alongside the experimental velocity history of
the sample obtained via PDV

4.4 Shock Loading Sinusoidally Perturbed Stiff Samples

The sinusoidally perturbed samples discussed so far all displayed significant perturbation

amplitude growth. This indicates that the Ecoflex 00-30 sinusoidally perturbed samples

described above display interfacial instability. In an attempt to record sinusoidally per-

turbed samples that display interfacial stability, several 6.0-mm-thick samples were cast

using materials significantly stiffer than Ecoflex 00-30. This section describes experiments

performed using three such materials, each cast into a sinusoidally perturbed solid sample

with λ = 12mm and ξ0 = 0.10λ. Of note is that the RTI dispersion relation (2.2) predicts

purely imaginary γ values for RTI stable configurations. That γ is purely imaginary in the

stable regime indicates that the RTI stable elastic solids should see their initial perturbation

amplitude oscillate such that what originally were interfacial crests would eventually turn

into interfacial troughs. To more readily observe such RTI stable oscillations, the stiffer

samples were perturbed with an initial wavelength λ = 12mm as it was found through the

repeated numerical solving of Eq. (2.2) that RTI predicts stable samples with a smaller ini-

tial perturbation wavelength to display larger amplitude frequencies of oscillation. An initial

perturbation amplitude ξ0 = 0.10λ was used to more readily allow for the visual observation

of the evolution of the sample perturbation amplitude as, owing to the potential of crosstalk

between PDV probes when aligned to the smaller λ = 12mm [101], no PDV data acquisition
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was performed for the following stiff samples. All of the experiments described below were

video recorded using a 50 000 fps frame rate.

Figures 4.9a–d show snapshots of a 6.2-mm-thick Solaris sample loaded using a 1.47 Mach

shock wave. Solaris is another silicone elastomer manufactured by Smooth-On Inc. This

silicone elastomer, however, is reported to be nearly four times as stiff as Ecoflex 00-30 with

the elastic shear modulus reported in the literature for this material being equal to 120 kPa

[94]. While this sample visually appears to display no significant perturbation amplitude

growth, no oscillation of the perturbation amplitude was observed. Interestingly, the sample

appears to billow midway through the experiment (Figs. 4.9c–d)

(a) t = 0 µs (b) t = 740 µs

(c) t = 1540 µs (d) t = 2300 µs

Figure 4.9: Shock loading of a 6.2-mm-thick Solaris sample with λ = 12mm and ξ0 = 0.10λ:
(a)–(d) show snapshots of the experiment at labeled times.

The loading of a 6.3-mm-thick Sylgard 184 sample with a 1.57 Mach shock wave is shown

in Figures 4.10a–d. The Sylgard 184 material, manufactured by Dow Corning, is even stiffer

than the Solaris material with a reported elastic shear modulus equal to 620 kPa hence the use

of a stronger loading shock wave. As for the 6.2-mm-thick Solaris sample, this 6.3-mm-thick

Sylgard 184 sample visually displayed no significant perturbation amplitude growth and no

apparent oscillation of the perturbation amplitude was observed. The Sylgard 184 sample

also billowed during the later part of the experiment as shown in Figs. 4.10c–d.

Finally, the shock loading of a 6.4-mm-thick sample produced using the material Vytaflex

60 is shown in Figures 4.11a–d. This sample was loaded using a 1.59 Mach shock wave.

Vytaflex 60 is a urethane material manufactured by Smooth-On Inc. Although no direct
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(a) t = 0 µs (b) t = 720 µs

(c) t = 1700 µs (d) t = 2400 µs

Figure 4.10: Shock loading of a 6.3-mm-thick Sylgard 184 sample with λ = 12mm and
ξ0 = 0.10λ: (a)–(d) show snapshots of the experiment at labeled times.

measurements of the elastic shear modulus of Vytaflex 60 was found in the literature, Li et

al. have reported the Young’s modulus of Vytaflex 60 to be equal to 2.068MPa. Because the

shear modulus and the Young’s modulus in a Hookean material are related via G = E/3, the

shear modulus of Vytaflex 60 can be taken as G = 2.068MPa/3 = 689 kPa when the material

is in its linear elastic regime. This Vytaflex 60 sample also visually showed no significant

perturbation amplitude growth following its shock loading while displaying no oscillations of

its perturbation amplitude. Figures 4.11c–d show that this 6.4-mm-thick Vytaflex 60 sample

also started billowing during the later parts of the experiment.

(a) t = 0 µs (b) t = 620 µs

(c) t = 1640 µs (d) t = 2140 µs

Figure 4.11: Shock loading of a 6.4-mm-thick Vytaflex60 sample with λ = 12mm and
ξ0 = 0.10λ: (a)–(d) show snapshots of the experiment at labeled times.
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4.5 Discussion

The experiments examining the shock loading of sinusoidally perturbed solid samples de-

scribed in this thesis are positioned on their respective RTI theoretical stability map in

Fig. 4.12. All of the sinusoidally perturbed Ecoflex 00-30 samples displayed both qualita-

tive (from video recordings) and quantitative (from PDV recorded amplitude growth data)

unstable interfacial behavior as was shown in Figs. 4.1–4.4, as predicted by RTI theory.

In the absence of PDV recordings, the sinusoidally perturbed samples manufactured from

the stiffer Solaris, Sylgard 184, and Vytaflex 60 materials all displayed at least quantita-

tive interfacial stability as no significant visual perturbation amplitude growth was observed

(Figs. 4.9–4.11). Figs. 4.12b–d show that the samples manufactured using stiffer materials

all lie in the stable region of their respective RTI map. This indicates that the experimental

setup employed throughout this thesis is at least capable of qualitatively reproducing RTI

behavior in elastic solids.
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(a) Ecoflex 00-30 (λ = 25 mm) (b) Solaris (λ = 12 mm)

(c) Sylgard 184 (λ = 12 mm) (d) Vytaflex 60 (λ = 12 mm)

Unstable Region

Unstable 
Region

Unstable 
Region

Unstable Region

Stable Region

Stable 
Region

Stable 
Region

Stable Region

Figure 4.12: Plot of the experimental data points described in this thesis on their corre-
sponding RTI stability map in the ∆p–h space: (a) plot of the Ecoflex 00-30 data points;
(b) plot of the Solaris data point; (c) plot of the Sylgard 184 data point; and (d) plot of the
Vytaflex 60 data point.
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Of important note, however, is the cusping of the Ecoflex 00-30 samples with the larger

initial perturbation amplitude of ξ0 = 0.10λ (Figs. 4.2 and 4.4). The linear RTI for elastic

solids does not provide much information on the influence of the amplitude size upon the

behavior of the perturbed solid/fluid interface. As previously discussed, it is here believed

that as the initial perturbation amplitude grows in size, the troughs of the elastic solids

start acting as imploding cylinders following the shock loading of the solid, thereby gener-

ating additional modes of buckling failure. In a previous work by the author, an analytical

stability boundary for a sinusoidally perturbed thin solid subjected to radiation pressure

loads was derived via buckling theory [103]. Adapting the analytical treatment performed

in the Theoretical Considerations Section of Ref. [103] to the scenario of a linear elastic,

sinusoidally perturbed thin solid accelerated by a pressure difference of an arbitrary source

generates the following buckling stability boundary:

∆p =
2π2h3

λ3
G

η
(4.1)

where η = ξ0/λ represents the ratio of the initial perturbation amplitude to the initial

perturbation wavelength.
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Figure 4.13: Buckling stability boundaries (adapted from [103]) plotted using different
η = ξ0/λ values alongside the RTI stability boundary for Ecoflex 00-30 with λ = 12mm.
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Equation (4.1) is plotted in Fig. 4.13 using different values of η for Ecoflex 00-30 (G =

27 kPa) with λ = 12mm alongside the RTI stability boundary of the same elastic solid in the

∆p–h space—stability lies to the left of each plotted boundary and vice versa. Figure 4.13

displays regions where, for a given value of η, an overlap between the unstable (stable)

buckling region and stable (unstable) RTI region exists, predicting the possibility of scenarios

where an accelerated elastic solid with a sinusoidally perturbed surface may be RTI stable

and buckling unstable or vice versa. Figure 4.13 may act as a guideline for the development of

experiments that may help further investigate the interplay between RTI theory and buckling

theory. The author further notes that the emergence of buckling phenomena has also been

noted within the literature studying the RTI behavior of confined soft gels subjected to their

own gravity [86, 89, 104].

While, in general, the thicker sinusoidally perturbed Ecoflex 00-30 samples displayed

slower growth rates than the relatively thinner perturbed samples, what is of note is the

rapid ramp up in amplitude growth of the 6.1-mm-thick Ecoflex 00-30 sample with an initial

perturbation amplitude ξ0 = 0.10λ towards the end of its acceleration phase (Fig. 4.4e).

Given the prominent cusping of the troughs of this 6.1-mm-thick sample, it is unclear exactly

what surface velocity the PDV probes are measuring. Following the onset of trough cusping,

are the PDV probes initially aligned with the sample troughs measuring the velocity of

the trough center, or are the PDV probes measuring the velocity of the sample material

being dragged by the cusping troughs? To allow for a quantitative comparison between the

video recordings and the PDV data, the author recommends that future experiments employ

digital image correlation (DIC) to extract strain and strain rate data from the digital images

produced by the video recordings. DIC would allow to verify the PDV experimental velocity

histories against the high-speed videography data.

It was also noted in Section 4.4 that PDV data acquisition was not performed during

the shock loading of the λ = 12mm samples owing to the potential of crosstalk between

the PDV probes when aligned to this relatively smaller λ. However, discussions with Dolan

[105] indicates that there is theoretically no reason for the positioning of multiple, frequency

shifted PDV probes next to each other in a fashion akin to line VISAR1 not to provide

an accurate means of velocity data acquisition. Ensuring that the input laser wavelength

differs by more than a 0.5 nm between closely adjacent probes should avoid the occurrence of

1VISAR, the precursor to PDV, stands for velocity interferometer system for any reflector [98].
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crosstalk [101]. Upgrading the PDV apparatus described in Section 3.3 by adding frequency

multiplexing photonic components in each of the four PDV channels should allow for the

construction of a robust line PDV setup. To the best of the author’s knowledge, this would

provide the shock community with a first pilot study on the effectiveness of line PDV for

acquiring velocity data along a single line of a shock accelerated free surface.

The velocity data acquired via PDV during the shock loading of the flat samples described

in Section 4.3 indicates that the acceleration rates of the solids investigated throughout this

thesis were slower than the ones predicted by the 1D theory described in Section 2.2.2 of this

thesis. It is suspected that the acceleration rate of the shock loaded solids can be increased

by modifying the sample holder flange positioned at the open end of the shock tube to allow

for the confinement of the edges of the elastic solid during the acceleration phase. This edge

confinement should stop the accelerating gases from seeping away from the sample surface,

thereby increasing the acceleration rates of the solid samples.

On a final note, the elastic shear moduli values used throughout this thesis for the silicone

elastomers were obtained in the literature via low-frequency rheometer techniques. To help

further increase the accuracy of quantitative data reported in this thesis, the author also

recommends the construction of a method for the direct measurement of the elastic shear

modulus during high material strain rates. This is because soft materials such as Sylgard

184 are known to stiffen when undergoing high-strain rate deformations [106].
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Chapter 5

Conclusions

5.1 Summary

A novel method for the experimental investigation of Rayleigh-Taylor instability in an elas-

tic solid using a benchtop shock tube has been developed. Current findings indicate the

formation of buckling modes of failure at the troughs of unstable samples with relatively

large initial perturbation amplitude (ξ0 = 0.1λ). The experimental growth rate of thinner

samples also appears significantly greater than the experimental growth rate of thicker sam-

ples. Data post-processing and curve fitting indicates agreement between the experimentally

observed growth rates of samples with a small initial perturbation amplitude (ξ0 = 0.02λ)

and the growth rates predicted by Rayleigh-Taylor theory. The relatively thinner, 1.7-mm-

thick samples that did not have an initial perturbation also appear to exhibit the emergence

of their characteristic RTI wavelength on their surface in the form of protrusions following

their shock loading. Sinusoidally perturbed solid samples cast using the relatively stiffer

materials were also shock loaded and the video recordings of these samples indicated no

significant perturbation amplitude growth as predicted by RTI theory. The stiffer, stable

samples, however, did not display the oscillations of their perturbation amplitude that RTI

theory also predicts.
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5.2 Future Work

To help improve the quantitative RTI analysis provided by the experimental methods de-

scribed in this thesis, the following future implementations, discussed in greater detail in

Section 4.5, are recommended:

— Digital image correlation should be performed to obtain strain and strain rate data from

the high-speed videography data. This will allow for a more quantitative comparison

between the video recordings and the PDV velocity data.

— The PDV apparatus should be upgraded with frequency multiplexing photonic compo-

nent to create a line PDV setup. This will help employ PDV data acquisition during

the shock loading of samples with smaller initial perturbation wavelengths without the

occurrence of crosstalk between adjacent PDV probes.

— The solid sample holder attached to the open-end of the shock tube should be mod-

ified to allow for the confinement of the solid sample edges thereby increasing the

acceleration rates of the shock loaded elastic solids.

— A method for the direct measurement of the elastic shear modulus of the materials

used throughout this thesis during high strain rates should be developed.

Implementation of the above suggestions will permit a more robust quantitative experimental

investigation of RTI theory in elastic solids.
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Appendix A

Derivation of Key Theoretical

Expressions

This appendix contains derivations of important theoretical results. The first section provides

a brief derivation of the dispersion relation of RTI in an elastic solid with a free surface. The

second section derives the shock tube relations used throughout this thesis.

A.1 Derivation of the Dispersion Relation for RTI in an Elastic

Solid

What follows is a brief derivation of the dispersion relation relating the linear perturbation

growth rate to the properties of an isothermal, isotropic, elastic, that is, Hookean solid. The

derivation here presented is a shortening and paraphrasing of the derivation presented by

Piriz and Piriz in the second section of Ref. [92]. A similar derivation is also presented in

the appendix section of an earlier paper by the same authors [91]. Plohr and Sharp also

performed a similar derivation for the particular case of a unitary Atwood number using a

slightly different Laplace Transform method [90].

Consider an elastic solid of finite thickness h, shear modulus G, and material density

ρ2 surrounded by a fluid of relatively lighter density ρ1 < ρ2 on one side and by vacuum,

ρ3 = 0, on its other side. Referring once more to Fig. 1.2, the elastic solid initially occupies

the region −h ≤ y ≤ 0 prior to its perturbation. The acceleration ultimately driving the

RT instability, g, can be viewed as either gravity acting downwards on a system where the
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solid rests atop the fluid (Fig. 1.2a) or it can be viewed as arising from the lighter fluid

accelerating the elastic solid (Fig. 1.2b). Both views are equivalent with the latter being the

one most explicitly experimentally studied in this thesis. The momentum and continuity

equations for either systems are, respectively,

ρ
dv

dt
= −∇p+ ρg +∇ · ←→σ ′, and (A.1)

dρ

dt
+ ρ∇ · v = 0, (A.2)

with v, ρ, and p being the continuum velocity, density, and pressure. The acceleration is

directed along the y-axis, g = gêy. Further, ←→σ ′ stands for the deviatoric part of the stress

tensor σik = −pδik+σ′
ik where δik is the Kronecker delta and index notation is used to express

the tensors in a Cartesian setting such that the indices i = 1, 2, 3 label, respectively, the

spatial coordinates x, y, z. Vector and tensor notation will be used interchangeably through-

out this chapter based on which notation is deemed most appropriate for presentation. The

deviatoric part of the stress tensor for a Hookean solid is

∂σ′
ik

∂t
= G

(
∂vi
∂xk

+
∂vk
∂xi

)
. (A.3)

Examining only the linear RTI problem, the above governing equations are linearized using a

first-order perturbation approach where the all of the variables of interest N(v, ρ, p,←→σ ′) are

displaced from their equilibrium position N0 by a small amount δN such that N = N0+ δN .

Assuming incompressibility (δρ = 0), from this perturbation expansion, Eqs. (A.1)–(A.3)

become

ρ2
∂ (δv2)

∂t
= −∇ (p2 + ρ2δφ2) +∇ ·

←→
S (A.4)

∇ · (δv2) = 0 (A.5)

where the subindex 2 denotes the physical quantities of the elastic solid and
←→
S denotes the

deviatoric perturbation ( Sik ≡ δσ′
ik).

To circumvent the vectorial nature of the problem, the perturbed velocity field is ex-

pressed in terms of scalar functions using Helmholtz decomposition, writing the velocity as
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a sum of an irrotational and rotational part:

δv2 = ∇ϕ2 +∇× (ψ2êz) (A.6)

Substituting the above Eq. (A.6) into Eq. (A.5) yields the Laplace equation

∇2ϕ2 = 0. (A.7)

Substitution of Eq. (A.6) into the linearized momentum equation (Eq. (A.4)) while assuming

that the velocity potential functions take the form

ϕ2 ∝ e(γt+qy) sin kx, ψ2 ∝ e(γt+q′y) cos kx (A.8)

further yields

∇
(
γϕ2 +

δp2
ρ2

+ δφ2

)
+∇×

[(
γψ2 −

G

γρ2
∇2ψ2

)
êz

]
= 0. (A.9)

Using the so-called Bernoulli gauge, it can be shown that, for the LHS of the above equation

to equal zero, the terms in parentheses must each equal zero implying that

γϕ2 +
δp2
ρ2

+ δφ2 = 0 (A.10)

γ2ψ2 =
G

ρ2
∇2ψ2. (A.11)

Substituting the assumed form of the velocity potentials displayed by Eq. (A.8) into Eqs. (A.7)

and (A.11) one obtains the following equations describing the potentials in terms of the con-

stants of integration a2, b2, c2, and d2:

ϕ2 =
a2 cosh ky + b2 cosh k(h+ y)

sinh kh
eγt sin kx, (A.12)

ψ2 =
c2 sinhλy + d2 sinhλ(h+ y)

sinhλh
eγt cos kx, (A.13)
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A similar procedure can be employed to obtain an expression for the perturbed velocity in

the lighter fluid medium (y ≥ 0):

ϕ1 = a1e
−kyeγt sin kx, δv1y =

∂ϕ1

∂y
, δv1x =

∂ϕ1

∂x
(A.14)

where the subscript 1 indicates physical quantities of the fluid.

The dispersion relation can be obtained by solving for the constants a1, a2, b2, c2, and d2

using the boundary conditions on the surfaces y = 0 and y = −h.
Imposing continuity of the normal velocity at the y = 0 interface yields

a1 = − (b2 + d2) . (A.15)

Imposing continuity of the tangential stress Sxy at the y = 0 and y = −h interfaces further

yields

d2 = −
2k2

λ2 + k2
b2, c2 = −

2k2

λ2 + k2
a2. (A.16)

From the continuity of the normal stress, −δp+Syy = −δp+(G/γ)∂ (δvy) /∂y, the following

equation is obtained at y = 0

γ
(
b2 coth kh+

a2
sinh kh

)
+

2kG

γρ2

[
k
(
b2 coth kh+

a2
sinh kh

)
+λ
(
d2 cothλh+

c2
sinhλh

)]
− kg

γ
(b2 + d2)

=
ρ1
ρ2

(
γ +

kg

γ

)
a1.

(A.17)

and at y = −h

γ

(
a2 coth kh+

b2
sinh kh

)
+

2kG

γρ2

[
k

(
a2 coth kh+

b2
sinh kh

)
+λ

(
c2 cothλh+

d2
sinhλh

)]
+
kg

γ
(a2 + c2) = 0.

(A.18)

Equations (A.15) to (A.18) can be rewritten as the following system of equations:

a2(C +B) + b2A = 0, (A.19)
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a2A+ b2

[
C − B +

ρ1
ρ2

(
B +

γ2ρ2
G

)]
= 0, (A.20)

where the constants A, B, andC are

A =
(λ2 + k2)

2
csch kh− 4k3λ cschλh

λ2 − k2
, (A.21)

B = ρ2kg/G, (A.22)

C =
(λ2 + k2)

2
coth kh− 4k3λ cothλh

λ2 − k2
. (A.23)

Using the fact the determinant of this system must equal zero, the dispersion relation may

finally be obtained:

C2 − A2 = B2 − ρ1
ρ2

(C +B)

(
B +

γ2ρ2
G

)
. (A.24)

Substituting in the expressions for A, B, andC in the above Eq. (A.24) while taking the

Atwood number equal to unity (i.e., while letting At = 1 which also lets ρ2 = ρ), the

dispersion relation becomes Eq. (2.2):

(
G

ρg

)8
{(

8π2

λ2
+
ργ2

G

)4

+
1024π6

λ6

(
4π2

λ2
+
ργ2

G

)

−
(
4π

λ

)3
√

4π2

λ2
+
ργ2

G

(
8π2

λ2
+
ργ2

G

)2
[
coth

(
2πh

λ

)
coth

(√
4π2

λ2
+
ργ2

G
h

)

− csch

(
2πh

λ

)
csch

(√
4π2

λ2
+
ργ2

G
h

)]}
−
(
2πG2γ2

λρ2g3

)2

= 0.
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A.2 Derivation of the Relevant Shock Tube Relations

The following section offers a more thorough introduction to the working principles of a

shock tube of uniform cross-section. Below is a summary of the more detailed derivations

found in Chapter 4.1 of the Handbook of Shock Waves by Nishida [95] with a focus on the

relationship between the static pressures observed in the regions created by the propagation

of a shock wave in a shock tube.

A.2.1 The Shock Jump Relations

As its name implies, a shock tube is a device used to generate a shock wave in a laboratory

setting. To appreciate the gasdynamics of such a device, the dynamics of a shock wave

must thus first be understood. Consider a gas flowing supersonically at speed u1 with initial

pressure p1, initial density ρ1, and initial temperature T1 encountering a normal shock wave

(Fig. A.1). Upon encountering the shock wave, the properties of the gas flow undergo a

sudden jump or discontinuity to the new values of u2, p2, ρ2, and T2.

1 2

p1
T1ρ1
u1

p2
T2ρ2
u2

Shock wave

Figure A.1: Schematic of a normal shock wave.

To relate the new state of the gas to its initial state prior to encountering the discontinuity,

the fundamental conservation equations of 1D steady-state, inviscid flow are employed. In

such a scenario, the conservation of mass and momentum equations, respectively, read

ρ1u1 = ρ2u2, (A.25)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2. (A.26)
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Assuming throughout the remainder of this thesis that the gases of interest are calorically

perfect (i.e., ideal gases whose specific heats do not depend on temperature), the conservation

of energy equation reads as

cpT1 +
u21
2

= cpT1 +
u21
2
. (A.27)

with cp being the specific heat at constant pressure of the gas. Combining the mass (A.25)

and the energy (A.27) conservation equations, the ratio of pressures across the shock wave

can be written purely in terms of the specific heat ratio of the gas, κ = cp/cv, and of the

density ratio across the shock wave:

p2
p1

=

κ+1
κ−1

ρ2
ρ1
− 1

κ+1
κ−1
− ρ2

ρ1

. (A.28)

The density ratio can also be isolated in the above equation:

ρ2
ρ1

=
u1
u2

=
1 + κ+1

κ−1
p2
p1

κ+1
κ−1

+ p2
p1

. (A.29)

The above two equations can also be expressed in terms of the Mach number of to flow into

the shock wave, as viewed from the reference frame of the shock, M1 ≡ u1/c1, where c1 is

the speed of sound in the pre-shocked gas:

ρ2
ρ1

=
u1
u2

=
(κ+ 1)M2

1

2 + (κ− 1)M2
1

, (A.30)

p2
p1

= 1 +
2κ

κ+ 1

(
M2

1 − 1
)
. (A.31)

The temperature ratio across the shock wave can also be found directly from the energy

equation:
T2
T1

= 1 +
2(κ− 1)

(κ+ 1)2
κM2

1 + 1

M2
1

(
M2

1 − 1
)
, (A.32)

and the difference between the post-shock and pre-shock flow velocities, u2 − u1, can be

obtained from the momentum equation

u2 − u1
c1

=
−2
κ+ 1

(
M1 −

1

M1

)
. (A.33)
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Finally, the above two equations (A.32) and (A.33) can also be expressed only in terms of

the specific heat ratio and pressure density ratio as

T2
T1

=
p2
p1

ζ + p2
p1

1 + ζ p2
p1

, (A.34)

and

u2 − u1
c1

= −
(ζ − 1)

(
p2
p1
− 1
)

√
(1 + ζ)

(
1 + ζ p2

p1

) , (A.35)

where ζ = (κ + 1)/(κ − 1). Equations (A.28), (A.29), (A.34), and (A.35) are often called

the Rankine-Hugoniot relations as they relate the post-shock and pre-shock gas states only

in terms of thermodynamic variables.

A.2.2 The Shock Tube Relations

With the shock jump relations derived, the gasdynamics of a shock tube can now be an-

alyzed. What follows is a derivation of the shock tube Eqs (2.6)–(2.8) by considering the

physical relationships between the various gas regions depicted in Fig. 2.4.

Relations between Regions 1 and 2 The shock jump relations were derived in a

reference frame with respect to which the shock was not moving. Considering a shock

wave propagating at speed Us1 following diaphragm rupture, the shock jump relations can

be used in a reference frame moving at the constant speed Us1. From here onward, the

relations (A.28)–(A.35) are employed by replacing the pre-shock Mach number, M1, by the

shock wave Mach number, Ms1 ≡ Us1/c1. Also, from this coordinate transformation, the new

pre- and post-shock flow velocities, u′1 and u′2, respectively, are related to the laboratory

reference frame by u′1 = −Us1 and u′2 = u2 − Us1 = u2 − u′1 (see Fig. A.2). Consequently,

equation (A.30) becomes

ρ2
ρ1

=
u′1
u′2

=
Us1

Us1 − u2
=

(κ1 + 1)M2
s1

2 + (κ1 − 1)M2
s1

. (A.36)
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The post-shock velocity in the laboratory-fixed reference frame, u2, can be isolated in the

above Eq. (A.36) such that

u2 =
2c1

κ1 + 1

(
Ms1 −

1

Ms1

)
(A.37)

Also, the pressure ratio between the gases in Region 1 and Region 2 is, using Eq. (A.31),

p2
p1

= 1 +
2κ1
κ1 + 1

(
M2

s1 − 1
)
. (A.38)

2 21 1

u2

US1

u1 = 0 u1' = -US1u2' = -US1 + u2

(a) moving shock frame (b) shock-fixed frame

Figure A.2: A normal shock wave in a laboratory-fixed reference frame (a) and in a shock-
fixed frame (b).

Relations between Regions 2 and 3 Because Regions 2 and 3 are the regions immedi-

ately after and before the contact surface, the velocities and pressures of the gases in these

regions must be equal such that

u3 = u2, (A.39)

and

p3 = p2, (A.40)

albeit the densities and temperatures across the contact surface may be different. As a re-

minder, note that the lack of primes on the velocities u3 and u2 indicates that the velocities

are measured in a laboratory-fixed frame.

Relations between Regions 3 and 4 Since the expansion of the high-pressure gas from

region 4 into region 3 is an isentropic process, the pressures between region 4 and 3 can be
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related via an isentropic equation:

p4
p3

=

(
c4
c3

) 2κ4
κ4−1

. (A.41)

Note that because regions 3 and 4 are occupied by the same substance, it can be assumed

that κ3 = κ4. The expansion wavefront initiated by the diaphragm rupture first propagates

upstream (towards the left in Fig. 2.4) until its component expansion waves are reflected by

the shock tube end wall, causing them to propagate downstream. The Riemann invariant

along the forward propagating expansion remains constant from region 3 through 4, and so,

recalling the expression for the Riemann invariant along a forward moving wavefront while

also noting that the gas in region 4 is at rest (i.e., u4 = 0) yields the following equality:

2

κ4 − 1
c4 = u3 +

2

κ3 − 1
c3. (A.42)

Substituting Eq. (A.42) into Eq. (A.41) to express the ratio p4/p3 in terms of κ4 and u3

while combining the result with Eqs. (A.37), (A.38), (A.39), and (A.40), one obtains

p4
p1

=

[
1 +

2κ1
κ1 + 1

(
M2

s1 − 1
)] 1

1− κ4−1
κ1+1

c1
c4

(
Ms1− 1

Ms1

)


2κ4
κ4−1

, (A.43)

the pressure ratio between the gases in region 1 and region 4 expressed only in terms of Ms1,

κ1, κ4, and c1/c4.

Relations between Regions 1 and 5 Immediately following the shock reflection off the

elastic solid surface, the shock wave reverts direction, traveling into the gas in region 2 with

a new velocity Us2, while leaving behind a gas at rest in the laboratory-fixed frame such

that u5 = 0. Denoting the velocity of the flow in region 2 and region 5 with respect to the

reflected shock as u′′2 and u′′5, respectively, note that u′′5 − u′′2 = −u2 as shown in Fig. A.3.
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2 25 5

u2

US2

u5 = 0 u5'' = -US2u2'' = -US2 + u2

(a) moving shock frame (b) shock-fixed frame

Figure A.3: A reflected shock wave in a laboratory-fixed reference frame (a) and in a shock-
fixed frame (b).

Since, recalling the first coordinate transformation from the laboratory frame to a frame

moving with the initial shock velocity, Us1, u
′
2 − u′1 = u2, then from Eq. (A.35) one obtains

that

u2 =
(ζ1 − 1)

(
p5
p2
− 1
)

√
(1 + ζ1)

(
1 + ζ1

p5
p2

)c2 = (ζ1 − 1)
(

p2
p1
− 1
)

√
(1 + ζ1)

(
1 + ζ1

p2
p1

)c1, (A.44)

where ζ1 = (κ1 + 1)/(κ1 − 1). Further, since the regions 1 and 2 are occupied by the same

substance, which is treated as an ideal gas, c2/c1 = (T2/T1)
1/2 and so Eq. (A.34) yields

c2
c1

=

√
p2
p1

ζ1 +
p2
p1

1 + ζ1
p2
p1

. (A.45)

Combining Eq. (A.44) together with Eq. (A.45), an expression for the pressure ratio across

regions 2 and 5 can be obtained

p5
p2

=

p2
p1
(ζ1 + 2)− 1

ζ1 +
p2
p1

. (A.46)

Substituting in the above the expression for p2/p1 from Eq. (A.38) and rearranging terms,

the pressure ratio p5/p2 may be written in terms of Ms1 and κ1 instead as

p5
p2

=
−2 (κ1 − 1) +M2

s1 (3κ1 − 1)

2 +M2
s1 (κ1 − 1)

. (A.47)
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Finally, combining Eqs. (A.38) and (A.47), the pressure ratio between regions 1 and 5 can

be expressed as a function of Ms1 and κ1:

p5
p1

=

[
2κ1M

2
s1 − (κ1 − 1)

κ1 + 1

] [
−2 (κ1 − 1) +M2

s1 (3κ1 − 1)

2 +M2
s1 (κ1 − 1)

]
. (A.48)

Although more relations between the various regions of interest can be derived using the

shock jump relations applied in appropriate reference frames, this concludes the catalogue

of shock tube theoretical relations that will be used in the main text of this thesis.
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Appendix B

Additional Detailing of the

Experimental Methods

This appendix contains additional details pertaining to the experimental methods and de-

vices used throughout this thesis.

B.1 Procedure for the Casting of Elastic Solid Samples

After repeated consultation with the Smooth-On technical staff and with the technicians

of Sial Canada, and after a considerable number of in-laboratory systematic trial-and-error

attempts, a robust, standardized procedure for the casting of the elastic solid samples was

obtained. The author is indebted to his laboratory assistant, Léa Bernard, for developing

the casting procedure which is described below:

1. Prepare the mold by inserting the keys into the male part, ensuring the textured sides

faces the exterior. The male part is the block with a base platform on top of which

the female part is to sit.

2. Carefully join the male and female parts of the mold, making sure the keys are tightly

pressed between them to achieve a uniform thickness.

3. Clamp the assembled mold securely at the four corners, focusing on the keys rather

than the middle to maintain uniformity (clamping the middle will leave the central

area of the cast solid thinner than its edges).
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4. To prevent leakage, seal the crack between the male and female parts of the mold

securely by using hot glue. Smooth the glue out with a popsicle stick to make sure

there is no leakage. (Note: When working with newly 3D printed molds, it is important

to be cautious with using hot glue as it can adhere firmly to the mold and become

difficult to remove later. To mitigate this issue, the usage of duct tape to securely

fasten the mold during its initial use is recommended. While duct taping might be

slightly less efficient compared to hot glue, it offers the advantage of easy removal and

saves significant time when trying to detach the mold after the molding process.)

5. Set the mold aside for further processing.

6. Place a 100mL weighing dish on a balance and press tare to zero the balance.

7. Use a paint stirring stick to stir Part A of the Ecoflex-30 for 20 seconds.

8. Remove excess Part A Ecoflex-30 from the stirring stick in the weighing dish using a

popsicle stick.

9. Pour the required amount of Part A into the weighing dish (e.g., 50mL for cast of

3mm thickness).

10. If a colored specimen is desired, add about a teaspoon of silicone coloring to Part A

and stir the mixture for 2 minutes or until the color is completely incorporated.

11. Repeat steps 8 to 10 with a new set of paint stirring stick and popsicle stick for Part

B, ensuring the same amount of Part A and Part B is used (the recommended mixing

ratio for the curing of Ecoflex 00-30 is 1:1 of Parts A and B).

12. Stir the contents of the weighing dish thoroughly with a popsicle stick for 3 minutes.

13. Degas the mixture in a vacuum chamber for 4–5 minutes or until the bubbles have

significantly reduced and dispersed and are slower.

14. Slowly pour the mixture into the mold to minimize bubble production during the

pouring process. For thinner specimens, consider slightly opening the mold to allow

faster pouring. Pour in the middle in a continuous stream, then reclamp the mold to

push excess mixture out for better results. For thicker samples (e.g., 6mm), pouring

speed becomes less critical.
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15. Ensure the clamps are tight and the keys are positioned flush within their corresponding

slot cavities to maintain a consistent thickness throughout the specimen.

16. Allow the mold to sit undisturbed for 4 hours before proceeding with the unmolding.

17. When it is time to unmold, begin by carefully removing the clamps and any excess

silicone on the exterior of the mold.

18. Next, if hot glue was used, gently peel it off in a single strip, provided it was applied

uniformly. If duct tape was used, slowly and carefully peel off the tape from the mold

in order to avoid the tape damaging the plastic material from which the mold is made.

19. To separate the mold, use two flat-headed screwdrivers to pry open the top section by

gently pushing against the mold walls adjacent to the keys. Be cautious during this

step to avoid damaging the mold or the keys.

20. To cut the specimen, carefully use a scalpel. For the sides with the keys, make a

straight cut against the keys and then gently remove the keys. For the two remaining

sides, use one of the keys as a ruler to guide the scalpel and make precise straight cuts.

Although not necessary, the use of protective equipment including vinyl gloves and a

lab coat is recommended as the casting process can be messy and the stains are not always

easy to remove from garments. The use of latex or nitrile gloves should be avoided as these

materials may inhibit the curing process if they come in contact with the silicone elastomer.

In a similar vein, using aluminum foils to cover workbench surfaces and the walls of the

vacuum chamber helps make accidental spills easier to clean.

B.2 The PDV Heterodyne Principle

A photonic doppler velocimeter uses the interference of two optical signals of different fre-

quency to measure the velocity of a target surface. This is achieved in practice by transport-

ing light from a laser to a probe using optical fibers. The probe then focuses the laser light

onto the surface of the moving target of interest. Because the target is moving with respect

to the probe, the reflected light that the probe captures has a Doppler shifted frequency, fd,

that is different from the original, reference laser light frequency, f0. The two signals are
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then mixed together (the so-called heterodyning of the signals) and their superposition is

finally sent to a photodetector. Figure B.1 shows a high-level depiction of the process.

Figure B.1: The basic PDV heterodyne principle. Image taken from [98] with permission.

The Doppler shifting of the original laser signal by the target occurs in a two-step process.

First, the probe acts as a source of light having the reference frequency f0 while the target

surface acts as a receiver. Because the target surface is moving with respect to the probe,

the moving target encounters a Doppler-shifted light with frequency ft in accordance to the

Doppler formula1:

ft =
c∗ + vt
c∗

f0 (B.1)

where vt is the velocity of the moving target (positive if the target is moving towards the

probe and negative if the target is moving away from the probe). The moving target then

partially reflects the ft frequency light, acting as the second source of light and thereby

initiating a second Doppler shifting process. The probe now acts as a receiver and the

final frequency that it captures, fd, is the Doppler-shifted frequency of the target emitted

(reflected, really) light, ft:

fd =
c∗

c∗ − vt
ft. (B.2)

The reference and Doppler-shifted frequencies are on the order of 1014Hz for reference sig-

nals in the C-band, and photodetectors and digitizers typically cannot measure such high

frequencies. The so-called beat frequency, fb, arising from the mixing (heterodyning) of the

reference and Doppler-shifted signals, is on the order of a few GHz which can be measured.

1Note that, given how small the
v2
t

c∗2 term is in shock physics experiments, the relativistic time dilation

contribution to the Doppler effect,
√

1

1− v2
t

c∗2

, is ignored throughout this thesis.
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The beat frequency is the absolute difference between reference frequency and the (twice)

Doppler-shifted signal frequency, that is, fb ≡ |fd−f0|. Expanding this absolute value using

Eqs. (B.1) and (B.2) allows for the beat frequency to be explicitly related to the moving

target velocity:

fb ≡ |fd − f0| = |
c∗ + vt
c∗ − vt

− 1|f0

∴ fb = 2| vt
c∗ − vt

|f0 ≈
2

c∗
|vt|f0, (B.3)

where the denominator of Eq. (B.3) was simplified by noting that Vt ≪ c∗ in shock physics

experiments. The presence of the absolute value operator in Eq. (B.3) means that the beat

frequency measurement is insensitive to direction and cannot tell whether the target is mov-

ing towards or away from the probe—although certain unconventional PDV configurations

can be made sensitive to the moving target direction.

The beat frequency is responsible for the modulation of the light intensity signal captured

by the photodetector. To see how this modulation arises, first recall that the intensity

of an electromagnetic wave is proportional to the amplitude of the electric field squared,

that is, I ∝ |E|2. As is often done in the literature, the remainder of this thesis will

assume that the amplitudes of its electric fields being studied are normalized such that

I = |E|2. The photodetector captures a light signal made up of the superposition of two

signals, the reference signal and the Doppler-shifted signal. Assuming the two signals to be

linearly polarized and propagating in the x-direction, that is, assuming E0 = (0, 0, E0) and

Ed = (0, 0, Ed), then the two signals may be expressed as

E0 = E00(t) e
i(ω0t−k0x+δ0) = E00(t) e

iϕ0 , Ed = E0d(t) e
i(ωdt−kdx+δd) = E0d(t) e

iϕd , (B.4)

where ωi, ki, and δi are the angular frequency, angular wavenumber, and phase constant of

their corresponding light signal, respectively. The total intensity of the superposition of the

two signals then is2

Itot = |Ed + E0|2 =
(
E0d(t) e

iϕd + E00(t) e
iϕ0
)
(E0d(t) eiϕd + E00(t) eiϕ0)

2The (•) symbol denotes the complex conjugate operator.
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=⇒ Itot = E2
00 + E2

0d + 2E00E0d cos (ϕd − ϕ0)

∴ Itot = I0(t) + Id(t) + 2
√
I0Id cos

(
fb
2π
t+ ϕ

)
. (B.5)

The interference term 2
√
I0Id cos

(
fb
2π
t+ ϕ

)
is the predominant reason for the variation of the

signal intensity. The additional phase of the beat waveform, ϕ = (k0 − kd) x+(δd − δ0), does
not vary much during a shock experiment by comparison to the beat frequency term, and

so the time variation of the intensity signal is driven by the variation of the beat frequency

with target velocity as described in Eq. (B.3).

Table B.1 computes the beat frequency for various target velocities using two different

reference laser wavelengths with the first wavelength set to λred = 750 nm (visible red laser)

and the second wavelength set to λIR = 1550 nm (standard C-band wavelength). Beyond

the low attenuation of silica fibers at the 1550 nm wavelength, setting the laser wavelength

in the C-band offers an additional advantage in the case of photon Doppler velocimetry: the

larger reference wavelength translates into a lower beat frequency for a given target velocity

thereby increasing the maximum possible target velocity for a given PDV system bandwidth.

Table B.1: Target velocities and beat frequencies for different reference laser wavelengths.

Target Velocity [m/s] Visible Red Laser [750 nm] IR Laser [1550 nm]

1 fb = 2.7MHz fb = 1.3MHz
100 fb = 270MHz fb = 130MHz
1000 fb = 2.7GHz fb = 1.3GHz
5000 fb = 13GHz fb = 6.5GHz
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B.3 The Detailed Schematic of the PDV Box

Figure B.2 below displays a detailed labeling of components contained in the PDV box.
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Figure B.2: A detailed schematic (b) of the layout of the photonic components found within
the McGill PDV box (a).
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