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Abstract

Growth of instability in a thin elastic solid accelerated by a gasdynamic shock tube is stud-
ied experimentally. Elastomers of different thicknesses, initial perturbation wavelengths, and
initial perturbation amplitudes are examined—the initial perturbations are sinusoidal. Elas-
tomer materials are used because of their hyperelasticity and very low elastic shear moduli,
properties which facilitate examining the phenomenon of interest in a laboratory-scale, low-
pressure shock tube. The samples are lightly supported in the shock tube test section to
avoid the influence of boundary effects. The gas shock reflects off the sample, causing it to
accelerate due to the reflected shock pressure. The dynamics of the sample is recorded using
high-speed videography and photonic Doppler velocimetry (PDV) with the PDV configura-
tion tracking the velocity of individual perturbation peaks and troughs of the sample free
surface. The experimental results are compared against analytical Rayleigh-Taylor stability
boundaries and amplitude growth rates found in the literature. Agreement between experi-
ments and theory is found in that the samples that are predicted by theory to be unstable
do experimentally display large perturbation amplitude growth while the samples predicted
by theory to be stable experimentally display no significant perturbation amplitude growth.
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Sommaire

La croissance de I'instabilité d’un solide élastique mince accéléré par une onde de choc gazeux
fut étudiée de fagon expérimentale. Des élastomeres de modules de rigidité, d’épaisseurs
et de perturbations initiales différentes ont été étudiés. Les perturbations initiales furent
sinusoidales et les échantillons élastomériques furent créés a 'aide d’un procédé de coulage
faisant usage de moules imprimés en 3D. Les échantillons ont été 1égerement soutenus a la fin
de I'enceinte avale d’un tube a choc afin de minimiser les effets de bords durant le dénouement
des expérimentations. Immédiatement suivant I'impact entre I’échantillon étudié et 'onde de
choc gazeux produite par le tube a choc, la production d’une différence de pression a travers
I’élastomere permet 'accélération quasi constante de ce dernier pour une durée de temps
d’un peu moins d’une milliseconde. L’évolution des perturbations inscrites dans chaque
échantillon fut enregistrée a ’aide d'une caméra haute vitesse et la vélocité des crétes et
des creux centraux de chaque échantillon fut mesurée en utilisant la vélocimétrie Doppler
photonique. Les résultats expérimentaux ont été comparés avec la théorie de l'instabilité
de Rayleigh-Taylor. Les échantillons que la théorie de Rayleigh-Taylor prédisait comme
étant instables ont tous démontré des taux de croissance des perturbations significatifs. Les
échantillons que la théorie de Rayleigh-Taylor prédisait comme étant stables, c’est-a-dire
comme n’ayant pas de taux de croissance des perturbations, ont tous été démontrés stables

de fagon expérimentale.
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Chapter 1
Introduction

Rayleigh-Taylor instability (RTI) is a theory of continuum mechanics that is concerned with
the stability at the interface between two or more media of different densities. The classical
scenario of a heavier fluid resting on top of a lighter fluid in a gravitational field was first
theoretically studied by Lord Rayleigh in 1883 [1] with Benjamin Franklin having apparently
made remarks in a letter dated 1762 about the period of oscillation of surface waves at oil-
water and water-air interfaces [2]. Nearly a century later, in 1950, Sir Geoffrey Taylor was the
first to realize that the classic scenario of a heavy fluid on top of a light fluid was equivalent to
that of a light fluid accelerating the heavier fluid [3]. Taylor’s seminal paper was followed by
the first experimental investigation of the phenomenon produced by both Lewis and Taylor
where the experimentally measured instability growth rate agreed remarkably well with the
growth rates predicted by theory [4].

The experimental work of Lewis and Taylor demonstrated the evolution of an unstable
water-air interface that is now characterized by four stages. Stage 1 occurs when the in-
terface between the two fluids is slightly perturbed from a perfectly flat geometry. This
stage is theoretically analyzed using linear perturbation theory where a sinusoidal interfacial
perturbation is studied. The evolution of the perturbation amplitude at this stage follows
an exponential trend until it equals about 0.1 to 0.4\, where A is the initial perturbation
wavelength. Stage 2 is characterized by the nonlinear growth of the perturbation, a growth
that is now heavily influenced by the density ratio of the two fluids often written out as
the nondimensional Atwood number, At. This stage typically lasts until the amplitude of

the perturbation has grown to be on the order of \. Stage 3, where nonlinear interactions
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between perturbations of different frequencies occurs, sees the debut of bubble and spikes
formations at the interface between the two fluids. Stage 4, the final stage, produces the
turbulent mixing of the two original layers through the breakup of the bubbles and spikes
structures formed during Stage 3. Figure 1.1 displays the evolution of an RTI unstable

interface between two fluids of different densities.

p2 P2>P; Amplitude Growth
Int‘ﬁfacial Perturbation /\<‘ >/\

] NN

(2) (b)

N
oAl A

() (d)

Figure 1.1: Schematic of the evolution of an RTT unstable, sinusoidally perturbed interface
between a heavy fluid laying atop a lighter fluid: (a)—(b) linear growth of the interface
amplitude; (b)—(c) nonlinear interface amplitude growth featuring the onset of bubble and
spike formation; (¢)—(d) onset of turbulent mixing between the two fluid layers.

Although the first theoretical studies where undertaken for the inviscid, incompressible
scenario with constant acceleration, subsequent theoretical studies of the first, linear stage
were done that further generalized the original models by including, for instance, the effect
of surface tension and viscosity [5-8], compressibility [9, 10], non-uniform acceleration [11],
finite (i.e., non-infinitesimal) perturbation amplitudes [12], magnetic fields [13], and density
gradients [14]. The linear model was also extended to interfaces of spherical geometry [15-
17]. In a series of studies, Mikaelian also theoretically investigated RTT in stratified media

ranging from 3 to an arbitrary number of layers [18-22]. The first reviews of RTI theory were



1 Introduction 3

produced by Chandrasekhar [23] and by Birkhoff [24] with the former primarily focusing on
the linear theory while the later also discussing nonlinear solutions.

The modeling of the nonlinear stages of RTI has also been undertaken, with Chang
providing the first higher-order (third order, in his case) perturbation expansion [12]. This
first attempt at nonlinear theory was subsequently iterated upon by Kiang [25] and Rajappa
[26] using singular perturbation methods, and by Nayfeh using the method of multiple time
scales [27]. Ott provided the first exact, closed-form nonlinear solution that was valid up
to a certain time t* describing initial sinusoidal perturbations that eventually evolved into a
cycloid [28]. All of these nonlinear studies concluded that the evolution of the interface of
interest is dependent not only on its initial perturbation wavelength, but also on its initial
perturbation amplitude, a dependency not typically found in linear RTT theory. Part of
RTT nonlinear theory is also concerned with the analysis of spike and bubble formation.
A notable first attempt at modeling RTI bubble dynamics was made by Fermi in which
he modeled the initial perturbation as a square wave in the limit where the interfacing
fluids are incompressible and have an infinite density ratio [29]. The resulting nonlinear
ordinary differential equations (ODEs) yielded predictions for the speed of the evolution of
the spikes that were approximately in agreement with experiment, but the predicted motion
of the bubble was not in agreement with experiment. Crowley [30] and later Baker and
Freeman [31] further iterated upon Fermi’s model devising uncoupled ODEs that provide
predictions for the motion of the tip of the spike and bubble that better agree with past
experimental investigations. Further theoretical investigations into bubble rising dynamics
were performed by Davies and Taylor [32] and Layzer [33] who considered the steady state
motion of cylindrically symmetric bubbles. Birkhoff and Carter [34] and Garabedian [35]
have also formulated rigorous conformal mapping theories of plane bubbles rising between
parallel walls.

A complete review of the theoretical, numerical, and experimental aspects of Rayleigh-
Taylor instability in solely fluid media is beyond the scope of this thesis. The reader is
invited to peruse the first published reviews of RTI in fluids by Sharp (1984) [36] and Kull
(1991) [37]. For a more up-to-date review of the subject, see the recent (2017) two-part
publication by Zhou [38, 39].

Rayliegh-Taylor instability is not confined to the study of interfaces between solely fluids,

however. Miles was the first to study RTI in an elastic-plastic solid being accelerated by
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a lighter gas using an energy method [40]. White [41] and Ducker [42, 43] subsequently
produced theoretical RTI models for elastic-plastic (EP) solids using one-degree-of-freedom
energy approaches. A more general, Lagrangian-based, n-degree-of-freedom energy approach
was employed to study RTT in a continuous medium of an arbitrary constitutive law by Dienes
[44]. Robinson and Swegel generated several RTI theoretical models for elastic-plastic solids
using an approximate modal technique (also a one-degree-of-freedom energy model) which
they compared to their own numerical simulations of RTT in elastic-plastic solids [45, 46].
Ruden and Bell further iterated upon the models of White and Robinson and Swegel by
assuming global energy conservation based on the Prandtl-Reuss equations of elastic-plastic
flow [47]. For a succinct summary of the first theoretical inquiries into the problem of RTT in
elastic-plastic solids, see the 2005 review paper by Terrones [48]. Unfortunately, likely in part
due to modeling oversimplification, none of these energy-based theoretical analyses of the RTI
problem in EP solids provided significant agreement with experimental investigations in the
area (see immediately below for RTT experiments in solids). In an attempt to generate better
agreement between theory and experiment, a series of progressively more complex theoretical
studies were done by Piriz et al. for the case of RTI in EP solids by using a conservation
of mass and momentum approach instead [49-58] with some of the latter inquiries also
studying the effects of viscosity [52, 53], magnetic fields [54, 56], and the formation of spikes
and bubbles [58]. Sun et al. also theoretically considered Rayleigh-Taylor instability in solids
of spherical [59] and cylindrical [60] geometries. More recently, the theoretical analysis of
RTT in viscoelastic solids has also been undertaken [61, 62].

Despite the abundance of theoretical studies, experimental investigations of RTT in solids
have historically been comparatively scarce, although there has been a resurgence of interest
in this area of research. Rayleigh-Taylor instability in solids has proven to be of relevance
in the study of several natural phenomena such as in the geodynamics of the intra-plate de-
formation of the continental lithosphere [63-66] and in the production of gamma-ray bursts
following the accretion of neutron stars [67-69]. The first experimental studies of RTI in
solids were performed by Barnes et al. who conducted a series of experiments investigat-
ing RTT in sinusoidally perturbed aluminum flat plates accelerated by expanding detonation
products [70, 71]. Rayleigh-Taylor instability has also been studied in gelatin of various
geometries (planar layer, ring, wedge, etc.) accelerated by pulsed gas pressures [72]. Di-

monte et al. investigated RTI in yogurt accelerated by pressurized nitrogen, considering
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both two-dimensional (2D) and three-dimensional (3D) perturbations [73]. Polavarapu et al.
performed similar experiments in mayonnaise, and, like Dimonte et al., found that 3D per-
turbations were more stable than 2D perturbations [74]. Rayleigh-Taylor instability has been
used of late to experimentally study the mechanical properties of solids subjected to high
strain rates in the context of high energy density physics. From the observed RTI growth
rates, material properties under conditions of high strain have been inferred in aluminum
[75, 76], in copper single crystals [77], in phase transitioning iron [77, 78|, in polycrystalline
vanadium [76, 79-81], and in tantalum [82, 83] amongst other metals, with some of these
studies being performed in part in order to mitigate interfacial instabilities found in inertial
confinement fusion capsule implosions [77, 83]. A series of theoretical [84-88] and exper-
imental [84, 86, 87, 89| investigations into the Rayleigh-Taylor instability growth rates of
confined soft gels deforming under their own weight have also been undertaken of recent.
For instance, hypergravitational Rayleigh-Taylor instability has been studied in hydrogels
using a centrifuge setup, with the RTI unstable samples gradually evolving from their initial

flat state into a buckled state displaying structured cuvette patterns [89].

‘/ b h P;=0 P, G p<p
* - 3 2, 1 2
htdh Ah=EE|  P»G .0 h
0 X Y
. h+Ah-
g,/ ngéa-syy>’*/
pi<p
: ? Vy plgéa X

(a) (b)

Figure 1.2: Schematic of the RTT problem in an elastic solid of finite thickness with a free
surface: (a) the problem as studied in the literature [90-92] with the elastic solid laying
atop a lighter fluid in a gravitational field; (b) the equivalent problem of a lighter fluid
accelerating a solid of finite thickness—this is the problem most directly experimentally
investigated throughout this thesis. Image (a) was adapted from [92] with permission.
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While most of these studies have been concerned with the evolution of interfacial instabil-
ities in elastic-plastic materials, theoretical treatments of RTT can be found in the literature
that are concerned with instability growth rates in unconfined solids that undergo purely
elastic deformation [90-92]. The objective of the present study is the experimental inves-
tigation of RTT in just such a scenario where a thin solid with a free surface is accelerated
by a lighter medium and only deforms elastically following its initial loading (see Fig. 1.2).
To this end, elastomer samples were accelerated using a gasdynamic shock tube. Sinusoidal
perturbations were imposed onto the elastomer samples to simulate the presence of inter-
facial perturbations between the accelerating gas and the accelerated solid, and the data
acquisition was performed using high-speed videography and photonic Doppler velocimetry.
The evolution of the initial perturbations imposed onto the samples is then compared to the

RTT formalism.



Chapter 2
Theoretical Considerations

This chapter discusses the theoretical background supporting the experiments described in
this thesis. The first part of this chapter is concerned with the Rayleigh-Taylor instability
theory for elastic solids that is experimentally being investigated, while the second part
of this chapter describes the gasdynamics theory behind the workings of the shock tube
device used to accelerate the elastic solids studied in this thesis. As the experiments in
this thesis chiefly pertain to RTI in elastic solids and not to RTT in fluid/fluid interfaces,
no extensive discussion of the classic RTI scenario in fluids is provided in this thesis. The
reader is redirected to a relatively beginner-friendly presentation of RTT in fluids by Piriz
et al. published in the American Journal of Physics [93] which also discusses the effects of

surface tension and viscosity upon the stability of a fluid/fluid perturbed interface.

2.1 Rayleigh-Taylor Instability for Elastic Solids

The Raleigh-Taylor instability formalism predicts that, when a light gas medium accelerates
a nearly flat solid, any perturbations away from a perfectly flat interface between the light gas
and the solid may rapidly grow in size. In particular, assuming the interfacial perturbations
to be sinusoidal in nature with a known initial amplitude, &, and a known initial wavelength,
A = 27 /k where k is the angular wavenumber (refer to Fig. 1.2 found at the end of the

introductory chapter), the initial stage of the evolution of the perturbation amplitude can
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be described by an exponential trend:
£(t) ox &esin ka, (2.1)

where v, the growth rate of the perturbation amplitude may be either real or complex. In
the case of a light gas accelerating an elastic solid of finite thickness, h, the perturbation

growth rate can be computed by solving the following dispersion relation [90-92]:
G\°® [ /82 N 2\ N 102478 [ 47 . 07>
g A2 G A6 A2 G
4n\® [am2 py2 (872 2\ 27h 42 pry2
— (T) BVl + Nel (v + vel coth DY coth — +—nh (2.2)

27h A2 pry2 2122\
—CSCh (T) CSCh ( ﬁ + ?h) } — < )\p293 = 0

In the above equation, p and G stand for the density and the shear modulus of the elastic

solid, respectively, and g stands for the acceleration imparted to the elastic solid by the light
gas medium. The dispersion relation is here shown for the case where the Atwood number,
At = (pa—p1)/(p2+ p1) = 1 with ps and p; being the densities of the heavy and light media,
respectively. This is because, throughout this thesis, it is always assumed that py > p;.
For this reason, in this thesis po = p. It can be shown that a unique positive root for - is
obtained from Eq. (2.2) for any input parameter values where the surface perturbations of
the elastic solid are unstable [90-92]. Appendix A.1 contains a derivation of the dispersion
relation Eq. (2.2) from the conservation of mass and momentum equations.

From the dispersion relation Eq. (2.2) an analytical stability boundary for the elastic
solid can be derived by letting v = 0 in Eq. (2.2):

07 1/2
pgh  27mh 2mh
— = 1— | ——— 2.3
G Ae ()\C sinh % ’ (23)

where the ). stands for the RTI cutoff wavelength, the wavelength above which the configu-

ration studied in Fig. (1.2) becomes unstable.
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The acceleration, g, in this thesis is generated through the use of a shock tube where Ap
is the pressure difference across the elastic solid following reflected shock loading which are

related via Newton’s Second Law: A
_2p

=
Combining Eqs.(2.3) and (2.4) allows a form of the RTI stability boundary to be obtained
that is not depended upon the density of the elastic solid:

g (2.4)

07 1/2

Ap  2mh 2mh
— = 1— | ————+ . 2.5
G Ae <)\C sinh % ) (25)

Although Eq. (2.5) is transcendental in the cutoff wavelength, A., it can still be plotted
in the A\.—h space numerically using, for instance, Mathematica’s ContourPlot function
which plots only the (A, h) pairs that satisfy the equality of Eq. (2.5) in a given parame-
ter space. Figure 2.1 plots Eq. (2.5) in the space delimited by 0mm < h < 12mm and by
Omm < A < 60mm. These bounds are set by the dimensions of the shock tube apparatus
and by the sample manufacturing process (see Chapter 3) which restrain the solid sample
dimensions to a 140 mm x 140 mm square. For such a 140 mm x 140 mm square sample, a si-
nusoidal perturbation with a A\, = 60 mm would correspond to the presence of approximately
two ripples at the interface between the elastic solid and the accelerating gas.

Figure 2.1a plots three stability boundaries for a solid sample with an elastic shear mod-
ulus value of 27 kPa. Each stability boundary represents a different value for the applied Ap.
As indicated by Fig. 2.1a, increasing Ap while holding everything else constant increases
the size of the instability regime of the configuration—the unstable regime lies above the
stability boundary. Similarly, Fig. 2.1b plots the stability for three different elastic shear
moduli, G = 620kPa, G = 120kPa, and G = 27kPa'! with Ap = 5 bar. Increasing the value
of GG has the opposite effect to that of increasing the value of Ap, that is, increasing the

value of G reduces the size of the instability region.

!These are the elastic shear modulus values reported in the literature for the silicone elastomers Sylgard
184, Solaris, and Ecoflex 00-30, respectively [94].
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Figure 2.1: Plots of the RTT stability boundary in the A-h space for different input pa-
rameters: (a) varying the driving pressure difference across the elastic solid; (b) varying the
elastic shear modulus of the solid.
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Figure 2.2: Plots of the RTI stability boundary in the Ap—h space for different input
parameters: (a) varying the initial perturbation wavelength, A, of the elastic/fluid interface;
(b) varying the elastic shear modulus of the solid.

Figure 2.2 plots the stability boundary in the Ap—h space where 0 bar < Ap < 8 bar—
these plots can be obtained by isolating Ap in the LHS of Eq. (2.5). The upper limit of
8 bar was determined to be a pressure difference that can safely be applied onto the solid
in a laboratory setting. Figure 2.2a plots the stability of a solid with G = 620 kPa for
three different initial perturbation wavelength, A, of the elastic/fluid interface. Figure 2.2a

shows that increasing the size of the initial perturbation wavelengths increases the size of
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the instability region. Figure 2.2b plots the stability boundary for the same three different
elastic shear moduli, G = 620kPa, G = 120kPa, and G = 27kPa with A\ = 60 mm held
constant. As seen in Fig. 2.2b, increasing the value of G reduces the size of the instability
region. It is further noted that the stability boundary Eq. (2.5) appears to linearly relate the
elastic solid thickness, h, to the initial perturbation wavelength, X of the solid/fluid interface
while the stability boundary appears to behave like a higher-order polynomial in the Ap-h
space.

Alongside the plot of the RTT stability boundary, the dispersion relation Eq. (2.2) can be
numerically solved to obtain predictive values for the exponential growth rate, 7. Figure. 2.3
is an example of such a stability map generated for the parameters A = 25 mm and G = 27 kPa.
Figure 2.3 indicates that increasing the value of Ap as well as decreasing the value of h both

increase the rate of amplitude growth, .

8

5

S,

)

=

= s
2 13000
3 11180
P 9360
§ 7540
o 5720
2

s 3900
P2 2080
(@)

o = S 5 260

=

2

g

o

== RTI Stability Boundary
2 4 6 8 10 12

Elastic Solid Thickness, # [mm]

Figure 2.3: Plot of the RTI stability boundary in the Ap—h space alongside contour plots
of the exponential growth rate, v in the unstable region. This stability map is produced for
A =25mm and G = 27 kPa.

The information held in Figs. 2.2 to 2.3 is crucial in order to determine the input param-
eter values that will most easily allow for the recording of RTT in an accelerated elastic solid

with a free surface. This is because shock experiments typically last on the order of no more
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than a few milliseconds allowing for only a small time lapse during which RTT may be ob-
served. Choosing a material with the right modulus and the right driving pressure as guided
by Eqs.(2.2) and (2.5) will help ensure that RTI interfacial behavior can be experimentally

recorded.

2.2 Shock Tube Gasdynamics

To quantify the acceleration of the elastic solid the pressures exerted on both sides of the
solid following the initial shock reflection must be established. This section is written in two
parts. The first part establishes the shock tube relations necessary to theoretically predict
the driving pressures immediately after the elastic solid was shock loaded. The second part
derives a method for predicting the velocity history of the elastic solid as the driving gas is

expanding following the shock loading of the solid.

2.2.1 Shock Tube Theory

As previously mentioned, the acceleration of the elastic solid, g = Ap/ph, is provided by a
shock tube facility. The following discussion uses Fig 2.4 as a reference for all the gas regions
being considered during the operation of a shock tube. In the experimental scenario presented
in this thesis, a shock tube of uniform cross-section contains a diaphragm separating a high-

2 After the rupturing of the

pressure gas (Region 4) from a low-pressure gas (Region 1).
diaphragm, the contact surface between the high-pressure and the low-pressure gases pushes
a shock wave into the low-pressure section of the tube. (Region 3) and (Region 2) are the gas
regions immediately before and after the contact surface, respectively. As the high-pressure
gas is expanded into the low-pressure section of the shock tube, expansion waves (also known
as rarefaction waves) form to carry the information of the expansion to the yet undisturbed
parts of the high-pressure gas. Once the shock wave hits a solid surface (in this case the
surface of one of the elastic solids studied in this thesis), the shock reflects off the surface,
leaving behind a pressurized gas at rest with respect to the surface (Region 5). Figure 2.4
plots the static pressure in the various regions of interest as a function of axial position, x,

along the shock tube at a given time t = ;.

2Throughout this thesis, the shock tube is taken as open ended and thus the pressure in region 1 equals
the ambient pressure, that is, p1 = Pamb-
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After the shock wave reflects off the elastic solid, the pressure difference across the solid
sample is instantaneously increased causing its acceleration. To first order, the pressure
difference across the solid sample can be expressed as the difference between the gas pressure
following the shock reflection, ps, and the ambient pressure, p;, that is, Ap = p; — p;. Using
1D gasdynamics theory, ps can be related to p; as follows [95]

(2.6)

Ps =

26 M2 — (k1 — 1)] [=2 (k1 — 1) + M2 (351 — 1)
Kyt 1 2+ M2 (k, — 1) br

where M is the Mach number of the shock wave and k; is the specific heat ratio of the
gas initially found in the shock tube driven section (the low-pressure gas throughout this
thesis is always ambient air, so k1 = 1.4). Using a single pressure sensor placed somewhere
along the driven section of the shock tube, the pressure of the gas immediately behind the
propagating shock wave, p,, can be measured. The measured py value can then be used to

compute the Mach number of the shock wave through the following relation [95]:

12:1—}— 2%1 (

M?—-1). 2.
D1 K1+ 1 ) (27)

s
Using two pressure sensors located a known distance apart, the Mach number of the shock
can be experimentally measured: the temporal distance between the two py pressure readings
of each sensor can be used to find the speed with which the shock wave traveled the distance
between the two pressure sensors.

Knowing the shock wave Mach number, M, p;, and k; , ps can be solved for using
Eq. (2.6). The shock Mack number can also be solved for numerically using an equation

relating the driving gas pressure, py, to p; [95]:

2Ky

Kq—1

L | (2.8)

1—“4—’10—1<MS—L>

k1+1 cq Ms

2 2K 2
— =11+ M2 —1

D1 k1 +1 (W )]
where k4 is the specific heat ratio of the driving gas, and ¢; and ¢4 are the speeds of sound
in the driven and driving shock tube sections, respectively. Because p, is set right before
diaphragm rupture, My can numerically be solved for in the above equation, allowing for yet

another means of computing the value of ps.
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Appendix A.2 derives the shock tube relations (2.6)—(2.8) from first principles starting

with the 1D conservation equations of gasdynamics.
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Figure 2.4: The various gas states 1-5 in an open-ended shock tube.
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2.2.2 Shock-Induced Acceleration of the Elastic Solid

While the pressure difference across the elastic solid can be considered to first order as equal
to ps — p1 (recall that the shock tube is open-ended so p; = pamy), a better approximation
can be obtained by modeling the elastic solid/shock wave interaction as a 1D piston driving
a projectile. What follows is a paraphrasing and adaption of the treatment of Higgins for

the expansion of propellant gas in a conventional gun following projectile release [96].

u + a characteristic
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Figure 2.5: One-dimensional expansion of the gas driving the elastic solid immediately
after shock reflection. Image adapted from [96] with permission.

Immediately following shock reflection, the elastic solid moving forward generates ex-

pansion waves that propagate back into the shock tube, expanding the gas in region 5
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and lowering the pressure that is accelerating the solid. The first characteristic expan-
sion wave propagating backwards at time ¢y following shock reflection travels with a speed
u(z,t) — c(x,t) = —c5 where u(x,t) and c(x,t) are the velocity and the speed of sound of
the gases found within the shock tube. The first expansion wave eventually reflects off the
shock tube end wall at a time ¢; after which it will propagate back towards the accelerated
elastic solid, potentially reflecting off the solid surface at some time t5. All forward moving,
u(x,t) + c(x, t) characteristics reaching the accelerating elastic solid in the ty — o time span
will cause an expansion of the gas in region 5. The region bounded by the first reflected
characteristic reaching the solid at time ¢, is called the simple wave region (see Fig. 2.5) by
Higgins as this region is unaffected by reflected waves.

Recall that the Riemann invariant along a u(x,t) + c(z,t) characteristic is u+2¢/(k — 1)
and so a relationship between the state in region 5 immediately following shock reflection

and the state in the same gas at later times can be obtained:

2c(t)  2cs
k—1 k-1

ult) + (2.9)

The spatial dependency of u(t) and ¢(t) have been dropped in the above equation as region 5
is taken to be occupied by the same gas undergoing 1D flow. Since the gas velocity at the
base of the elastic solid must match the velocity of the solid itself, that is, since u(t) = v4(t),

then rearranging the above equation further yields that

(2.10)

Assuming the expansion process to be isentropic, the original pressure in region 5, ps, and

the pressure at later times during the expansion process, p,(t), can be related using the

i) (@) (211)

Ds Cs

isentropic equation

Substituting Eq. (2.11) into Eq. (2.10), the pressure driving the elastic solid can be expressed
as a function of the original speed of sound in region 5, ¢5, and of the velocity of the elastic
solid, v4(t):

2K
(5 — 1) vg(t)] 7
9 Cs DPs

plt) = |1~ (212)
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Now writing the pressure difference accelerating the elastic solid as Ap(t) = pp(t) — p1,
substituting the expression for p,(t) from the above Eq. (2.4) into Newton’s Second Law for

the elastic solid yields the following nonlinear differential equation

2K5

[1 — leecl) ﬂ] s —m

2 cs5

g=10(t) = o : (2.13)

The above equation can be numerically integrated to obtain a theoretical velocity history of

the elastic solid sample, vs(t), provided that the values for p; and ps are known.
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Chapter 3
Experimental Methods

To perform the RTI experiments, elastomeric solid samples were manufactured by means of
a casting method using 3D printed molds. A casting process was used as it allowed for the
sample surface to be sinusoidally perturbed. The solid samples were lightly attached in a
style similar to a shower curtain to the end of a shock tube made out of square aluminum
sections using four to five standard sewing needles. The samples were lightly attached in
order to minimize the influence of boundary effects such as the tensioning of the samples
which is known to help stabilize Rayleigh-Taylor instabilities. Two pressure transducers were
positioned at the end of the shock tube to measure the strength of the shock wave produced
and to trigger data acquisition. When the shock wave impacts and subsequently reflects off
the elastic solid surface, a pressure difference is created across the sample which generates
the acceleration required to study RTI.

A high-speed video camera (typically the Shimadzu HPV-X2 but sometimes also the
Photron SA5) recording at a frame rate between 50000 fps and 200000 fps was used to
obtain video recordings of the samples following the initial shock reflection. The high-speed
video camera was always fitted with a Nikon 80-200mm f/2.8 AF-D ED Macro lens whose
f-stop was typically set to 5.6, the sharpest f-stop of the lens. The velocity histories of two
central peak/trough pairs were recorded using photonic doppler velocimetry with each PDV
channel being configured in a standard homodyne setup. Figure 3.1 shows an infographic of
the experimental setup.

What follows is a more detailed description of three important aspects of the experimen-

tal methodology: the first section of this chapter describes the manufacturing of the solid
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samples; the second section describes the shock tube apparatus in greater detail; and the
third section of this chapter describes the PDV apparatus and the PDV data acquisition

process.

Elastic Solid Sample

(Sinusoidally Perturbed) Diaphragm Section High Pressure

Driving Section

- \ =
} EI Parver =Ps <1>

g 88 Pariven =P 88
Burst of the diaphragm
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shock strength and trigger data acquisition
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|
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Velocity histories of two central crest/through pairs
are recorded using photonic Doppler velocimetry (PDV)

Reflection of the shock off the sample creates a pressure difference across
the elastic solid which generates the acceleration required to study RTI

Shimadzu HPV-X2

Figure 3.1: Top-view schematic of the experimental setup. The high-speed camera recorded
a top view of the experiment through the use of a mirror positioned above the elastic solid
sample.
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3.1 Manufacturing the Solid Samples

The vast majority of the elastic solid samples tested were manufactured using a relatively
novel silicone elastomer named Ecoflex 00-30 made by Smooth-On Inc. [97]. This material
is typically used to make face masks and prosthetics owing to its skin-safe and skin-like
properties which make the material highly flexible and highly tear resistant with storage
shear modulus values reported in the literature of about 27kPa [94]. Although the Ecoflex
material is nominally transparent, the product can be colored using silicone-based coloring
pigments such as Smooth-On’s Silc Pig which can further help with the experimental data
acquisition—coloring the samples white, for instance, provides higher quality imagery dur-
ing monochromatic video recordings. Using molds 3D printed, this relatively inexpensive
material was cast into 140 mm x 140 mm sinusoidally perturbed samples of known thickness,
h, initial perturbation amplitude, ag, and initial perturbation wavelength, A. The Ecoflex
00-30 material has a 4-hour curing time, and, thanks to the recent advancements in additive
manufacturing, modern benchtop 3D printers like the Bambu Lab X1 Carbon can readily
print the molds used in the casting process in less than 15 hours, allowing for the rapid
production of test samples. Figure 3.2 displays a few of the used 3D printed molds alongside

some Ecoflex 00-30 samples.

Figure 3.2: Ecoflex 00-30 samples alongside 3D printed molds.
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The 3D printed molds consisted of 4 parts: two blocks with the sinusoidal perturbations of
a chosen amplitude and wavelength designed onto their mating surfaces and two rectangular
keys that, when positioned in their pairing slots located at the edges of the mating blocks,
allowed for the alignment of the casting blocks and dictated the thickness of the solid sample
to be casted. This key-slot design was chosen to help eliminate the need for the 3D printing of
molds for samples of different thicknesses. Instead of having to 3D print new sinusoidal blocks
when the manufacturing of a sample of different thickness was required, the alignment keys
were swapped instead for keys of different thicknesses. This design choice reduced 3D printing
material cost and decreased sample manufacturing down time. The molds were typically 3D
printed using polylactic acid (PLA) as this material is one of the least expensive 3D printing
materials and is also relatively easy to print with, not requiring special nozzles, printer
enclosures, etc., although other materials such as acrylonitrile butadiene styrene (ABS) was
also infrequently used to manufacture the molds. In the case of PLA, after multiple trial-
and-error attempts, the 3D printing settings that offered the most robust, long-lasting molds
while keeping the 3D printing time to a minimum are itemized below. Note that the 0.12 mm
Fine Bambu Lab X1 Carbon printing profile was used as a basis for the 3D printing settings,
so the printing parameters indicated here are only the settings that were changed from the

default Fine profile:

— The infill density was set to 10 % to minimize 3D printing material use and build time.

— To compensate for the sparse infill density, 3 wall loops were used alongside 8 and 6
top and bottom shell layers, respectively. The 8 top layers help avoid the warping of

the top layer surfaces that typically occurs when sparse infill density is used.

— The 3D printing seam for each large block was set along one of the back edges. Oth-
erwise, the sinusoidal surfaces of the mold blocks would typically contain indents as a

result of the random distribution of the layer seams.

— The order of the wall construction was changed to outer/inner/infill as testing indicated
that this order resulted in a smoother surface finish for the sinusoidal surfaces of the

mold.

Appendix B.1 describes a detailed procedure for the casting process of the solid samples.

The casting procedure can also be used to produce solid samples out of materials other than
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Ecoflex 00-30 albeit sometimes with different mixing ratios between the base polymer and
curing agents. Other materials silicone elastomer materials such as Smooth-On’s Solaris
and Dow Corning’s Sylgard 184 have also been manufactured using this casting procedure.

Urethane samples have also been produced using this method.

3.2 The Shock Tube Apparatus

The low-cost shock tube was constructed using three 4-feet-long extruded aluminum channels
with 5-inch x 5-inch internal cross-section dimensions. Figure 3.3 shows a labeled 3D render
of the shock tube apparatus. Two of the three aluminum channels made up the low-pressure
driven section. The third aluminum channel made up the high-pressure driving section.
The assembly of the three sections featured a modular design employing Destaco 323-type
clamps. Eight Destaco clamps were used per section joint with the clamps being screwed
onto the section end flanges through the use of 8-mm-long M4 x 0.7 mm black-oxide screws.
For additional sealing at the section jointures, oil-resistant Buna-N o-rings with a 7-inch
outer diameter and a 1/8-inch width were placed in-between the mating aluminum channel
end flanges. The diaphragm section connecting the low-pressure and high-pressure sections
was further reinforced via the addition of twelve 2 1/4-in-long 1/4-20 alloy steel socket head
cap bolts.

High Pressure
Driving Section

Low Pressure Driven Section

\Diaphragm Section

Sample Holder
(3D Printed)

Figure 3.3: Labeled 3D render of the shock tube used throughout this thesis.



3 Experimental Methods 23

The diaphragms used were laser cut out of Mylar polyester film made by DuPont Teijin
Films. The cut Mylar diaphragms nominally were of either 0.5, 1.0, or 2.0 thou in thickness
(1 thou = 0.001 in and a thou is also sometimes called a mil), but the diaphragms were
often stacked together to produce effective diaphragms of different thicknesses. The shock
tube low-pressure section was always left open-ended. The low-pressure section open-end
was also equipped with a 3D printed flange meant to lightly hold the elastic samples prior to
their shock loading. The elastic solids were attached to the 3D printed end flange via either

four or five standard stainless steel sewing needles that were epoxied to the sample holder.
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Figure 3.4: Theoretical shock tube M; vs py (a) and ps vs py (b) plots for helium (dashed)
and shop air (solid) as the driving gases.

The shock tube diaphragm section is equipped with an inlet through which pressurized gas
can be deposited in the driver section. The inlet is equipped with 1/4-inch 316 stainless steel
Swagelok tubbing components alongside an SSI Technologies, LLC digital pressure gauge
(Model MGA-300-A-9V-R) in a manner allowing for both the pressurizing and vacuuming of
the driver section. Although unnecessary when pressurized shop air is used as the driver gas,
vacuuming was used to empty the driver section prior to the insertion of pressurized helium
gas into the driver section. Helium was also used as a driver gas as it can produce stronger
shock waves owing to its lighter mass relative to shop air. From in-laboratory testing, it was
found that the shock tube driver section can safely sustain up to 60 psig of pressure which is
the imperial equivalent of 6 bar of absolute pressure. Using 5.17 bar of absolute pressure as
the maximum value for the driver pressure, py, Fig. 3.4 plots the shock Mach number, M,

and the pressure behind the shock immediately after reflecting off the solid sample, ps, as a
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function of the driver pressure for both helium and shop air acting as the driver gas. The
graphs in Fig. 3.4 were obtained by numerically solving Egs. (2.6) and (2.8) in tandem as
outline in Section 2.2. The specific heat ratio, 74 and speed of sound ¢, in the driver section
were taken as k4 = 1.4 and ¢4 = 343 m/s for shop air, and x4 = 1.667 and ¢4 = 1008 m/s for

helium.

SIGLENT hli‘ 500us/ Delay.-2.00ms

180mY
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Figure 3.5: Image capture of pressure data recorded by the Siglent SDS1104X-E oscilloscope
following a p, = 42 psig shot with helium in the driver. The yellow and purple traces
represent the data acquired by the first and second pressure transducers, respectively—the
first pressure transducer is the first sensor to encounter the shock wave.

The pressure immediately behind the generated shock wave, ps, following shock reflection
off the elastic solid, ps, and the shock Mach number, M were also experimentally determined
using two piezoelectric pressure transducers (Model 113B28; PCB Piezotronics Inc.) located
at the open-end of the shock tube. The pressure transducer data was recorded using a Siglent
SDS1104X-E digital oscilloscope. Figure 3.5 shows an image capture of the pressure data
recorded by the Siglent oscilloscope for an experiment where the driver section was pressur-
ized to 42 psig using helium gas. The data acquisition was triggered off the first pressure
trace (the yellow trace in Fig. 3.5). The first pressure trace was produced by the transducer
that first encountered the shock wave. Because the distance between the two transducers was
always equal to 26.2 cm, the shock wave would typically take about a millisecond to travel

from one transducer to the next so the time base was always set to 500 ps per division. The
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vertical voltage scale varied between 200 mV per division for low driver pressure shots (shots
which used less than py < 32 psig with shop air), 500mV per division for medium driver
pressure shots (shots which used 32 psig < py < 42 psig with shop air), and 1V per divi-
sion for high driver pressure shots (shots using helium as the driver gas with py, > 42 psig).
The voltages were translated into pressure readings through knowledge of the fact that each
pressure transducer had a sensitivity of 100 mV per psi while also noting that the sensors
measure changes in pressure and not absolute pressure. The first peak of each pressure trace
represents ps, and the second peak represents ps. The speed of the shock wave can be com-
puted by dividing the set distance between transducers of 26.2 cm by the temporal distance
between the first pressure peaks in each trace, and so M, can also be experimentally inferred.
Additional oscilloscope setup parameters such as trigger type, trigger level, sampling rate,

etc. can be read off the oscilloscope image capture displayed in Fig. 3.5.

3.3 Photonic Doppler Velocimetry

Photonic Doppler velocimetry records velocity histories through the beat frequency obtained
by the so-called heterodyning of two laser signals: a reference signal of a known frequency,
the retroreflector path in Fig. 3.6, and a twice Doppler shifted target signal, the probe path
in Fig. 3.6. The target velocity, v (t) can be related to the known laser frequency fy and to

the measured beat frequency fi, through the relation shown below

. 2Ut (t)
= o

fo Jo, (3.1)

where ¢* is the speed of light in vacuum. For an input laser frequency fy = 193 THz (which

is the equivalent of an input laser wavelength of 1550 nm), Eq. (3.1) becomes

m/s
t) =0.775 . 3.2
() = 07754, (4177 (3:2)
Appendix B.2 provides a derivation of Eq. (3.1) from first principles while also containing
a more extensive discussion on the relationship between the system bandwidth of the PDV
and the maximum target velocity that can be reliably measured.

Since its first formal establishment in the mid 2000s as a tool for recording velocity

histories in shock physics experiments [98], the PDV apparatus scheme has seen different
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iterations emerge, each with its own advantages and disadvantages. For the sake of brevity,
this thesis will focus on the PDV geometry shown in Fig. 3.6, the original homodyne PDV
geometry proposed by Strand et al. [98], which was the PDV configuration used in all four
channels of the McGill PDV system during the recording of the experiments described in
this thesis. The PDV apparatus consists of three main components: a high-power laser, a

three-port circulator, and a digitizer.
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Figure 3.6: Schematic of the PDV homodyne setup contained within the McGill PDV
box. The left image is a picture of the McGill PDV apparatus including the LeCroy high-
bandwidth oscilloscope and the NP Photonics input laser.

The PDV system makes use of a high-power (power output on the order of watts) CW
fiber laser. The specific fiber laser used at the McGill shock tube facility is a NP Photonics
The Rock high-power laser with a maximum power output of 5 W when operating at 1550 nm.
Fiber lasers make use of rare-earth element doped optical fibers as their active medium [99].
The optical resonator in fiber lasers are typically two fiber Bragg gratings (FBG) spliced
at the ends of the active medium fiber. Continuous wave lasers are preferred in transient
single shot experiments as such lasers do not require a trigger mechanism to ensure that
experiment data is adequately recorded: the CW laser is instead simply turned on a few
minutes before the experiment to allow the laser output to stabilize. Fiber lasers also have
narrow linewidths—the NP Photonics fiber laser has a 3kHz linewidth—which is necessary
for the proper working of the heterodyne recording technique [98, 100-102]. That such

high-power lasers are used for velocity data acquisition in shock experiments stems in part
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from the fact that the reflective quality of the surface whose velocity is being measured can
drastically change throughout the shock experiment and so what was originally a specular
reflector may become a diffuse reflector which can drastically reduce return signal power.
The use of high-power lasers also allows for the splitting of the signal in multiple channels.

At the core of the PDV apparatus stands a (typically 3-port) fiber circulator. Through
the use of fiber isolators, light entering port 1 may exit at port 2, light entering port 2 may
exit at port 3, and light entering port 3 may exit at port 1, while the propagation of light
in any other direction (say, from port 2 to port 1, for example) is highly inefficient. To
allow for the mixing of the reference and Doppler-shifted signals, a 90:10 fused fiber coupler
is installed between the 2nd circulator port and the PDV probe. The 1x2 fiber coupler
splits the reference signal into two sending 10% of its input power to a retroreflector and the
remaining 90% to the PDV probe. The retroreflector (a passive component) reflects 99%
of the light incident upon itself. The reflected light is then mixed with the Doppler-shifted
light returning from the probe by the 1x2 splitter. The mixed light is then sent back into
the circulator port 2 and exits the circulator port 3 to find its way to the photodetector.
The system is entirely fiber coupled (except for the receiver-digitizer connection), with the
use of 9/125! single mode fibers and Thorlabs FC/APC fiber connectors.

A 4-channel LeCroy WaveMaster 813Zi-A real-time oscilloscope is used as a digitizer.
This oscilloscope has a 13 GHz bandwidth and has a sampling rate of 40 GS/s. Given the
sampling rate of the oscilloscope, the Nyquist theorem indicates that a beat signal of a
maximum frequency of 20 GHz may be recorded. A 20 GHz beating frequency corresponds to
a specimen velocity of about 15500m/s.? Given the large sampling rate of this oscilloscope,
standard Bayonet Neill-Concelman (BNC) connections cannot be used as their bandwidth of
4 GHz is too low, constituting a severe bottleneck. SubMiniature version K (SMK) connectors
are used instead with a 46 GHz bandwidth and a 502 characteristic impedance, thereby
removing the coaxial connection as the bandwidth bottleneck.

Because of the 4-channel design of the LeCroy oscilloscope, the PDV system is also setup
with a 4-channel geometry. Given the circulator power rating of 300 mW, the fiber laser is

set to output 800 mW such that when its signal is split in four channels the laser power per

!The 9/125 specification of an optical fiber indicates the core diameter in microns (here 9 pm) and the
cladding outer diameter (here 125 pm). In the C-band operation bandwidth range of 1530-1570nm, 9/125
fibers act as single mode fibers while higher core diameter fibers like 50/125 fibers act as multimode fibers.

2With a reference signal wavelength of 1550 nm
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channel becomes 200 mW. The Doppler shifted signal power returning from the probe is
typically in the 0.01 mW to 1 mW range. Probe performance is characterized by the return
loss (RL) of the sent power, P, to the received power, P, [101, 102]:

RL = 101log, (E) (3.3)
B

Typical return losses range from 10dB to 40dB for focusing probes and 20dB to 60dB for
collimating probes (focusing probes are used for specular targets and collimating probes for
diffuse targets) [101, 102]. The return losses range of the shock tube facility PDV collimating
probes is 23-43dB. The MITEQ PIN optical detectors (PN:DR-125G-A-FA) used have a
maximum power rating of 10 mW and so the reference signal reflected back by the retroreflec-
tor is further reduced to 2mW when reentering the 1x2 splitter in order to ensure that the
photodetector maximum rating is not exceeded. This is especially important during shock
physics experiments as the nature of the transient acceleration phase may change the speci-
men reflectivity which sometimes causes the power of the reflected signal to briefly drastically
increase. The MITEQ PIN photodetector has a responsivity of 0.9000 A/W and is integrated
with a low noise amplifier (LNA). The photodetector has a bandwidth of 12.5 GHz, which
constitutes the bottleneck bandwidth of the system.

Figure 3.6 also contains a picture of the full PDV system setup inside a roll-around
box. The 1x4 splitter, the circulator, the attenuators, power meters, and detectors are
all contained within the bottom chassis, on the top of which are the NP Photonics fiber
laser, and the LeCroy oscilloscope. A second, tunable laser is found between the main
fiber laser and the oscilloscope and is used for frequency-shifted PDV configurations, a
configuration not used during the recording of the experiments found in this thesis—see
Ref. [101] for a comprehensive description of the various PDV configuration available to
record velocity histories during shock experiments. A schematic attempting to provide as
accurate a placement of the various components as is possible in order to ease the modification
of the PDV configuration of a given channel if ever deemed necessary can be found in
Appendix B.3.

The voltage signal recorded by the real-time oscilloscope can be converted into a velocity
time history (v vs t) plot in either of two ways. The first method uses the individual fringes

(the crests and troughs) of the voltage signal to directly infer the displacement of the target
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surface at a given time. This first, brute force method is very computationally demanding and
typically inaccurate at high target velocities where the voltage signal becomes too noisy for
the individual fringes to be analyzed [98]. Instead, for most experiments, PDV data analysis
is performed using a sliding window Fast Fourier Transform (FFT) [98, 100-102]. When
using the FFT method of analysis, the recorded voltage signal is first divided into short,
overlapping temporal segments. Each of the temporal segments is analyzed using a FFT
algorithm to determine the frequency spectrum of the segment. The dominant frequency is
determined to be the beat frequency of the segment from which the target velocity during the
temporal segment can be obtained. Figure 3.7 provides a visual overview of the FF'T method
of data analysis. When the FF'T method is employed correctly, the PDV can provide velocity
time histories of the target surface with velocity uncertainty lower than ~1% [98, 100-102].
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Figure 3.7: The sliding window FFT procedure for PDV data analysis. Image taken
from [100] with permission.
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Chapter 4
Results and Discussion

This chapter is divided into two parts. The first part, spanning the first four sections of this
chapter, presents a sample of the experimental results obtained. The second part, contained
in the last section of this chapter, discusses the results obtained while providing suggestions

for future improvements of the experimental methods employed.

4.1 Shock Loading of Sinusoidally Perturbed Ecoflex 00-30

Samples

What follows is the description of four representative experiments. Each sample described
in this section was loaded using a 1.47 Mach shock in ambient air which, using standard
1D shock tube relations [95], generates a theoretical driving pressure difference of 4.08 bar,
which was experimentally verified using piezoelectric pressure sensors. The distance between
the starting position of each sample and the PDV probes, that is, the total distance traveled
by a sample was always of 34 mm. This distance was chosen as it was the largest distance
that reliably allows for the PDV collimators to be aimed at their respective crests and/or
troughs for the entire distance traveled by the sample. Each sinusoidally perturbed sample
discussed in this section had an initial perturbation wavelength equal to 25 mm.

Figure 4.1 shows the result from the shock loading of a 1.2-mm-thick sample with an initial
perturbation amplitude equal to 2% of the initial perturbation wavelength (i.e., &, = 0.02\).
Figures 4.1b—e provide snapshots of the experiment at the indicated times, and Fig. 4.1f plots
the experimental amplitude growth of the two crest/trough pairs monitored using PDV. The
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experimental amplitude growth plot was obtained first by integrating the velocity spectro-
grams recorded by the PDV probes to obtain the displacement of the monitored crests and
troughs, following which the amplitude growth was computed by taking the halved difference
between the paired crest and trough, that is, Amplitude Growth(t) = (Zerest (t) — Ttrough(t))/2.
More on PDV data processing and how velocity histories (and subsequently displacements)
are extracted from spectrogram readings can be found in Section 3.3 of this thesis as well as in
Refs. [98, 100, 101]. Figure 4.1f displays appreciably exponential trends for both crest/trough
pairs with the total duration of the experiment being of 530 ps. Of note is the appearance

of additional protrusions on the surface of the sample seen in Figs. 4.1d-e.

PDV collimators sample direction of initial
shock propagation
— e

— C1/C2 Pair
2.5- — C3/C4 Pair

Sample Amplitude Growth [mm]

(C) =520 s 0 100 200 300 400 500
Time, ¢ [us]

(f) Sample Amplitude Growth Plot

(d) =325 ps

Figure 4.1: Shock loading of a 1.2-mm-thick Ecoflex 00-30 sample with A = 25 mm and
ap = 0.02X: (a) provides an enlarged and labeled view of the first snapshot, (b)—(e) show
snapshots of the experiment at labeled times, and (f) shows the amplitude growth of the
sample obtained using PDV.

Figure 4.2 shows the result of the shock loading of a 1.2-mm-thick sample with a relatively
larger initial perturbation amplitude equal to 10% of the initial perturbation wavelength
(i.e., & = 0.1)X). The total duration of this experiment was of 550 ps, and Fig. 4.2e displays

an amplitude growth trend that differs from that of an exponential with the amplitude
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growth seemingly reaching a plateau towards the end of the experiment. This sample with
a relatively larger perturbation amplitude also appears to experience a cusping or pinching
of its troughs which is most readily seen in Figs. 4.2c—d. It is suspected that as the initial
perturbation amplitude of a sample is increased, the troughs of the sample start acting as
imploding semi-cylinders following shock loading, generating additional buckling modes of

failure. This sample also saw the appearance of protrusions on its surface (Figs. 4.2¢—d).

3.0

— CI/C2 Pair
2.5 — C3/C4 Pair

2.0

Sample Amplitude Growth [mm]

3 : -0.5 . . . . ]
(C) t=1325 us (d) =520 us 0 100 200 - 300 400 500
Time, ¢ [us]

(e) Sample Amplitude Growth Plot

Figure 4.2: Shock loading of a 1.2-mm-thick Ecoflex 00-30 sample with A = 25 mm and
& = 0.10X: (a)—(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.

The shock loading of a 3.1-mm-thick sample whose initial perturbation amplitude was
&o = 0.02) is shown in Fig. 4.3. While the amplitude growth trends described in Fig. 4.3e ap-
pear exponential, the total duration of this experiment was of 934 ps with the total amplitude
growth being significantly smaller than that of the 1.2-mm-thick sample with & = 0.02\.
This indicates that the thicker 3.1 mm sample experienced a slower perturbation growth rate.
This thicker sample displayed no emergence of protrusions on its surface.

A 6.1-mm-thick Ecoflex 00-30 sample with an initial perturbation amplitude &, = 0.10A
is shown in Fig. 4.4. The duration of this experiment was of 1045 ps, although the final
amplitude growth of this 6.1-mm-thick sample displayed by Fig. 4.4e was significantly larger
than that of the 3.1-mm-thick sample previously discussed. Of note is the prominent presence
of the cusping of the sample troughs as seen in Figs. 4.4c-d. This thicker sample also

displayed no emergence of protrusions on its surface.
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Figure 4.3: Shock loading of a 3.1-mm-thick Ecoflex 00-30 sample with A = 25mm and
& = 0.02X\: (a)—(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.

T C1UC2 Pair

—C3/C4 Pair

Sample Amplitude Growth [mm]

(c) =625 ps (d) 7= 1045 ps

Time, # [us]
(e) Sample Amplitude Growth Plot
Figure 4.4: Shock loading of a 6.1-mm-thick Ecoflex 00-30 sample with A = 25 mm and

& = 0.10X: (a)—(d) show snapshots of the experiment at labeled times and (e) shows the
amplitude growth of the sample obtained using PDV.
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4.2 Theoretical and Experimental Growth Rates

A curve fitting of the amplitude growth trend experienced by the 1.2-mm-thick sample with
& = 0.02) lamb is shown in Fig. 4.5. The exponential curve fitting yields an experimental
growth rate equal to 9421s~!. Numerically solving Eq. (2.2) for the growth rate, v, using
h = 1.2mm and the Ecoflex 00-30 material properties G = 27kPa and p = 1070kg/m?
(94, 97], the theoretical growth predicted by RTI for this sample is found to equal 8713s71.
While similar agreement between theory and experiment was found for the 3.1-mm-thick
sample, no such agreement was obtained for the 1.2-mm-thick and 6.1-mm-thick samples

with £y = 0.1\ because their amplitude growth trend significantly differed from exponential

behavior.
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Figure 4.5: Comparison between the curve-fitted experimental growth rate of the
1.2-mm-thick Ecoflex 00-30 sample with A = 25mm and & = 0.02)\ and the theoretical
growth of the same sample predicted by RTI.
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4.3 Shock Loading Flat Ecoflex 00-30 Samples

To further investigate the appearance of protrusions on the surface of the thinner sinusoidally
perturbed samples, flat samples of different thicknesses were also shock loaded. As the
samples were flat, only one PDV probe was used to record the bulk velocity history of
each sample. The initial distance between the PDV probe and the samples studied was set
to 120mm as this was found to be the largest distance over which the PDV laser light can
reliably provide velocity history readings. Although the flat sample experiments consequently
end up lasting longer than the previously discussed experiments, the snap shots of each flat
sample below are shown for similar times to the ones displayed for the sinusoidally perturbed
samples. This is to allow for a more appropriate visual comparison between the flat samples
and the sinusoidally perturbed samples.

Figures 4.6b—e display snapshots of the shock loading of a representative 1.7-mm-thick
flat sample loaded by a 1.47 Mach shock wave. Protrusions can be seen on the surface of
the sample in Fig. 4.6e. Using a fiducial ruler positioned in the field of view right before the
shot was performed (Fig. 4.6a), digital image data-postprocessing indicates that the distance
between two adjacent protrusions (which visually form crests and troughs) ranges between
2.5mm to 5.0 mm, a range similar in value to the RTI characteristic wavelength (i.e., max-
imum growth rate wavelength) predicted by theory of Acharacteristic = 2-10 mm. Figure 4.6g
shows a theoretical plot of the growth rate as a function of the perturbation wavelength
obtained using Eq. (2.2) with G = 27kPa and p = 1070kg/m3. It is thus suspected that
the protrusions seen on the surface of the 1.7-mm-thick samples are a consequence of the
emergence of the Rayleigh-Taylor characteristic wavelength of these samples. Figure 4.6f
also compares the velocity history experimental data of this sample to the velocity history
predicted by the numerical integration of Eq. (2.13)—the same parameters used to compute
the Rayleigh-Taylor characteristic wavelength of this sample were used to compute this the-
oretical velocity curve. Although the theoretical and experimental velocity histories appear
to agree at the onset of the experiment, following the ¢ = 200 ps mark significant discrepancy
between the two curves is observed. As the experimental velocity curve indicates a slower
sample than the one predicted by theory, the discrepancy between theory and experiment is
here suspected to be caused by the fact that the edges of the solid samples were not confined
during their acceleration, causing the accelerating gases to vent around the edges of the

samples into the environment thereby reducing the final acceleration of the samples.
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Figure 4.6: Shock loading of a flat (i.e., no imposed perturbations) 1.7-mm-thick Ecoflex
00-30 sample: (a) shows the fiducial ruler used to allow for the calibration of the image
pixels; (b)-(e) show snapshots of the experiment at labeled times; (f) plots the theoretical
1D velocity history of this sample alongside the experimental velocity history of the sample
obtained via PDV; and (g) shows the theoretical growth rate of the sample as a function of
perturbation wavelength—the wavelength for which theory predicts a maximum growth rate
is equal to 2.10 mm.
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Figures 4.7 shows the results of shock loading a representative 3.8-mm-thick flat sample
using a 1.47 Mach shock wave. While Figs. 4.7c—d show some ripples forming at the top edge
of the 3.8-mm-thick flat sample, no surface protrusions where observed. Figure 4.7e shows a
comparison between the experimental and theoretical velocity history of this sample. Once
more the experimental velocity history displays a sample that does not accelerate as fast
as was predicted by theory with a velocity plateau starting to form towards the end of the

experiment duration.
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Figure 4.7: Shock loading of a flat (i.e., no imposed perturbations) 3.8-mm-thick Ecoflex
00-30 sample: (a)—(d) show snapshots of the experiment at labeled times and (e) plots the
theoretical 1D velocity history of this sample alongside the experimental velocity history of
the sample obtained via PDV

A representative 6.8-mm-thick flat sample loaded using a 1.44 Mach shock wave is shown
in Fig. 4.8. As with the 3.8-mm-thick Ecoflex 00-30 sample, no surface protrusions were ob-
served although some ripples did form on the top edge of this thicker sample (see Fig. 4.8¢c-d).
Fig. 4.8e shows significant agreement between the theoretical and experimental velocity his-
tories of this 6.8-mm-thick flat sample until the ¢t = 500 ps mark. After ¢ = 500 ps, the

experimental velocity curve once more falls below the velocity curve predicted by 1D theory.
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Figure 4.8: Shock loading of a flat (i.e., no imposed perturbations) 6.8-mm-thick Ecoflex
00-30 sample: (a)—(d) show snapshots of the experiment at labeled times and (e) plots the
theoretical 1D velocity history of this sample alongside the experimental velocity history of
the sample obtained via PDV

4.4 Shock Loading Sinusoidally Perturbed Stiff Samples

The sinusoidally perturbed samples discussed so far all displayed significant perturbation
amplitude growth. This indicates that the Ecoflex 00-30 sinusoidally perturbed samples
described above display interfacial instability. In an attempt to record sinusoidally per-
turbed samples that display interfacial stability, several 6.0-mm-thick samples were cast
using materials significantly stiffer than Ecoflex 00-30. This section describes experiments
performed using three such materials, each cast into a sinusoidally perturbed solid sample
with A = 12mm and & = 0.10\. Of note is that the RTI dispersion relation (2.2) predicts
purely imaginary v values for RTT stable configurations. That ~ is purely imaginary in the
stable regime indicates that the RTI stable elastic solids should see their initial perturbation
amplitude oscillate such that what originally were interfacial crests would eventually turn
into interfacial troughs. To more readily observe such RTI stable oscillations, the stiffer
samples were perturbed with an initial wavelength A\ = 12mm as it was found through the
repeated numerical solving of Eq. (2.2) that RTT predicts stable samples with a smaller ini-
tial perturbation wavelength to display larger amplitude frequencies of oscillation. An initial
perturbation amplitude & = 0.10\ was used to more readily allow for the visual observation
of the evolution of the sample perturbation amplitude as, owing to the potential of crosstalk

between PDV probes when aligned to the smaller A = 12mm [101], no PDV data acquisition
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was performed for the following stiff samples. All of the experiments described below were
video recorded using a 50 000 fps frame rate.

Figures 4.9a—d show snapshots of a 6.2-mm-thick Solaris sample loaded using a 1.47 Mach
shock wave. Solaris is another silicone elastomer manufactured by Smooth-On Inc. This
silicone elastomer, however, is reported to be nearly four times as stiff as Ecoflex 00-30 with
the elastic shear modulus reported in the literature for this material being equal to 120 kPa
[94]. While this sample visually appears to display no significant perturbation amplitude
growth, no oscillation of the perturbation amplitude was observed. Interestingly, the sample

appears to billow midway through the experiment (Figs. 4.9¢—d)

(b) =740 ps

(c) t=1540 ps (d) t=2300 ps

Figure 4.9: Shock loading of a 6.2-mm-thick Solaris sample with A = 12mm and & = 0.10A:
(a)—(d) show snapshots of the experiment at labeled times.

The loading of a 6.3-mm-thick Sylgard 184 sample with a 1.57 Mach shock wave is shown
in Figures 4.10a—d. The Sylgard 184 material, manufactured by Dow Corning, is even stiffer
than the Solaris material with a reported elastic shear modulus equal to 620 kPa hence the use
of a stronger loading shock wave. As for the 6.2-mm-thick Solaris sample, this 6.3-mm-thick
Sylgard 184 sample visually displayed no significant perturbation amplitude growth and no
apparent oscillation of the perturbation amplitude was observed. The Sylgard 184 sample
also billowed during the later part of the experiment as shown in Figs. 4.10c-d.

Finally, the shock loading of a 6.4-mm-thick sample produced using the material Vytaflex
60 is shown in Figures 4.11a—d. This sample was loaded using a 1.59 Mach shock wave.

Vytaflex 60 is a urethane material manufactured by Smooth-On Inc. Although no direct
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(a)1=0 ps ' (b) =720 ps

(c) t=1700 ps (d) £ = 2400 ps

Figure 4.10: Shock loading of a 6.3-mm-thick Sylgard 184 sample with A = 12mm and
& = 0.10A: (a)—(d) show snapshots of the experiment at labeled times.

measurements of the elastic shear modulus of Vytaflex 60 was found in the literature, Li et
al. have reported the Young’s modulus of Vytaflex 60 to be equal to 2.068 MPa. Because the
shear modulus and the Young’s modulus in a Hookean material are related via G = E/3, the
shear modulus of Vytaflex 60 can be taken as G = 2.068 MPa/3 = 689 kPa when the material
is in its linear elastic regime. This Vytaflex 60 sample also visually showed no significant
perturbation amplitude growth following its shock loading while displaying no oscillations of
its perturbation amplitude. Figures 4.11c—d show that this 6.4-mm-thick Vytaflex 60 sample

also started billowing during the later parts of the experiment.

(@t=0ups (b) £ =620 pus

(c) 1= 1640 ps (d) £ =2140 ps

Figure 4.11: Shock loading of a 6.4-mm-thick Vytaflex60 sample with A = 12mm and
& = 0.10A: (a)—(d) show snapshots of the experiment at labeled times.
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4.5 Discussion

The experiments examining the shock loading of sinusoidally perturbed solid samples de-
scribed in this thesis are positioned on their respective RTI theoretical stability map in
Fig. 4.12. All of the sinusoidally perturbed Ecoflex 00-30 samples displayed both qualita-
tive (from video recordings) and quantitative (from PDV recorded amplitude growth data)
unstable interfacial behavior as was shown in Figs. 4.1-4.4, as predicted by RTI theory.
In the absence of PDV recordings, the sinusoidally perturbed samples manufactured from
the stiffer Solaris, Sylgard 184, and Vytaflex 60 materials all displayed at least quantita-
tive interfacial stability as no significant visual perturbation amplitude growth was observed
(Figs. 4.9-4.11). Figs. 4.12b—d show that the samples manufactured using stiffer materials
all lie in the stable region of their respective RTT map. This indicates that the experimental
setup employed throughout this thesis is at least capable of qualitatively reproducing RTI

behavior in elastic solids.
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Figure 4.12: Plot of the experimental data points described in this thesis on their corre-
sponding RTT stability map in the Ap—h space: (a) plot of the Ecoflex 00-30 data points;
(b) plot of the Solaris data point; (c) plot of the Sylgard 184 data point; and (d) plot of the
Vytaflex 60 data point.
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Of important note, however, is the cusping of the Ecoflex 00-30 samples with the larger
initial perturbation amplitude of § = 0.10A (Figs. 4.2 and 4.4). The linear RTI for elastic
solids does not provide much information on the influence of the amplitude size upon the
behavior of the perturbed solid /fluid interface. As previously discussed, it is here believed
that as the initial perturbation amplitude grows in size, the troughs of the elastic solids
start acting as imploding cylinders following the shock loading of the solid, thereby gener-
ating additional modes of buckling failure. In a previous work by the author, an analytical
stability boundary for a sinusoidally perturbed thin solid subjected to radiation pressure
loads was derived via buckling theory [103]. Adapting the analytical treatment performed
in the Theoretical Considerations Section of Ref. [103] to the scenario of a linear elastic,
sinusoidally perturbed thin solid accelerated by a pressure difference of an arbitrary source
generates the following buckling stability boundary:

B 212h3 G

Ap = hl 4.1
P="w (4.1)

where n = &5/ represents the ratio of the initial perturbation amplitude to the initial

perturbation wavelength.
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Figure 4.13: Buckling stability boundaries (adapted from [103]) plotted using different
n = &/ values alongside the RTT stability boundary for Ecoflex 00-30 with A = 12 mm.
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Equation (4.1) is plotted in Fig. 4.13 using different values of 1 for Ecoflex 00-30 (G =
27kPa) with A = 12mm alongside the RTT stability boundary of the same elastic solid in the
Ap—h space—stability lies to the left of each plotted boundary and vice versa. Figure 4.13
displays regions where, for a given value of 7, an overlap between the unstable (stable)
buckling region and stable (unstable) RTT region exists, predicting the possibility of scenarios
where an accelerated elastic solid with a sinusoidally perturbed surface may be RTI stable
and buckling unstable or vice versa. Figure 4.13 may act as a guideline for the development of
experiments that may help further investigate the interplay between RTI theory and buckling
theory. The author further notes that the emergence of buckling phenomena has also been
noted within the literature studying the RTT behavior of confined soft gels subjected to their
own gravity [86, 89, 104].

While, in general, the thicker sinusoidally perturbed Ecoflex 00-30 samples displayed
slower growth rates than the relatively thinner perturbed samples, what is of note is the
rapid ramp up in amplitude growth of the 6.1-mm-thick Ecoflex 00-30 sample with an initial
perturbation amplitude & = 0.10\ towards the end of its acceleration phase (Fig. 4.4e).
Given the prominent cusping of the troughs of this 6.1-mm-thick sample, it is unclear exactly
what surface velocity the PDV probes are measuring. Following the onset of trough cusping,
are the PDV probes initially aligned with the sample troughs measuring the velocity of
the trough center, or are the PDV probes measuring the velocity of the sample material
being dragged by the cusping troughs? To allow for a quantitative comparison between the
video recordings and the PDV data, the author recommends that future experiments employ
digital image correlation (DIC) to extract strain and strain rate data from the digital images
produced by the video recordings. DIC would allow to verify the PDV experimental velocity
histories against the high-speed videography data.

It was also noted in Section 4.4 that PDV data acquisition was not performed during
the shock loading of the A = 12mm samples owing to the potential of crosstalk between
the PDV probes when aligned to this relatively smaller \. However, discussions with Dolan
[105] indicates that there is theoretically no reason for the positioning of multiple, frequency
shifted PDV probes next to each other in a fashion akin to line VISAR! not to provide
an accurate means of velocity data acquisition. Ensuring that the input laser wavelength

differs by more than a 0.5 nm between closely adjacent probes should avoid the occurrence of

VISAR, the precursor to PDV, stands for velocity interferometer system for any reflector [98].
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crosstalk [101]. Upgrading the PDV apparatus described in Section 3.3 by adding frequency
multiplexing photonic components in each of the four PDV channels should allow for the
construction of a robust line PDV setup. To the best of the author’s knowledge, this would
provide the shock community with a first pilot study on the effectiveness of line PDV for
acquiring velocity data along a single line of a shock accelerated free surface.

The velocity data acquired via PDV during the shock loading of the flat samples described
in Section 4.3 indicates that the acceleration rates of the solids investigated throughout this
thesis were slower than the ones predicted by the 1D theory described in Section 2.2.2 of this
thesis. It is suspected that the acceleration rate of the shock loaded solids can be increased
by modifying the sample holder flange positioned at the open end of the shock tube to allow
for the confinement of the edges of the elastic solid during the acceleration phase. This edge
confinement should stop the accelerating gases from seeping away from the sample surface,
thereby increasing the acceleration rates of the solid samples.

On a final note, the elastic shear moduli values used throughout this thesis for the silicone
elastomers were obtained in the literature via low-frequency rheometer techniques. To help
further increase the accuracy of quantitative data reported in this thesis, the author also
recommends the construction of a method for the direct measurement of the elastic shear
modulus during high material strain rates. This is because soft materials such as Sylgard

184 are known to stiffen when undergoing high-strain rate deformations [106].
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Chapter 5

Conclusions

5.1 Summary

A novel method for the experimental investigation of Rayleigh-Taylor instability in an elas-
tic solid using a benchtop shock tube has been developed. Current findings indicate the
formation of buckling modes of failure at the troughs of unstable samples with relatively
large initial perturbation amplitude (§, = 0.1X). The experimental growth rate of thinner
samples also appears significantly greater than the experimental growth rate of thicker sam-
ples. Data post-processing and curve fitting indicates agreement between the experimentally
observed growth rates of samples with a small initial perturbation amplitude (§, = 0.02))
and the growth rates predicted by Rayleigh-Taylor theory. The relatively thinner, 1.7-mm-
thick samples that did not have an initial perturbation also appear to exhibit the emergence
of their characteristic RTT wavelength on their surface in the form of protrusions following
their shock loading. Sinusoidally perturbed solid samples cast using the relatively stiffer
materials were also shock loaded and the video recordings of these samples indicated no
significant perturbation amplitude growth as predicted by RTI theory. The stiffer, stable
samples, however, did not display the oscillations of their perturbation amplitude that RTI

theory also predicts.
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5.2 Future Work

To help improve the quantitative RTT analysis provided by the experimental methods de-
scribed in this thesis, the following future implementations, discussed in greater detail in

Section 4.5, are recommended:

— Digital image correlation should be performed to obtain strain and strain rate data from
the high-speed videography data. This will allow for a more quantitative comparison

between the video recordings and the PDV velocity data.

— The PDV apparatus should be upgraded with frequency multiplexing photonic compo-
nent to create a line PDV setup. This will help employ PDV data acquisition during
the shock loading of samples with smaller initial perturbation wavelengths without the

occurrence of crosstalk between adjacent PDV probes.

— The solid sample holder attached to the open-end of the shock tube should be mod-
ified to allow for the confinement of the solid sample edges thereby increasing the

acceleration rates of the shock loaded elastic solids.

— A method for the direct measurement of the elastic shear modulus of the materials

used throughout this thesis during high strain rates should be developed.

Implementation of the above suggestions will permit a more robust quantitative experimental

investigation of RTT theory in elastic solids.
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Appendix A

Derivation of Key Theoretical

Expressions

This appendix contains derivations of important theoretical results. The first section provides
a brief derivation of the dispersion relation of RTT in an elastic solid with a free surface. The

second section derives the shock tube relations used throughout this thesis.

A.1 Derivation of the Dispersion Relation for RTI in an Elastic
Solid

What follows is a brief derivation of the dispersion relation relating the linear perturbation
growth rate to the properties of an isothermal, isotropic, elastic, that is, Hookean solid. The
derivation here presented is a shortening and paraphrasing of the derivation presented by
Piriz and Piriz in the second section of Ref. [92]. A similar derivation is also presented in
the appendix section of an earlier paper by the same authors [91]. Plohr and Sharp also
performed a similar derivation for the particular case of a unitary Atwood number using a
slightly different Laplace Transform method [90].

Consider an elastic solid of finite thickness h, shear modulus G, and material density
po surrounded by a fluid of relatively lighter density p; < ps on one side and by vacuum,
ps = 0, on its other side. Referring once more to Fig. 1.2, the elastic solid initially occupies
the region —h < y < 0 prior to its perturbation. The acceleration ultimately driving the

RT instability, g, can be viewed as either gravity acting downwards on a system where the
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solid rests atop the fluid (Fig. 1.2a) or it can be viewed as arising from the lighter fluid
accelerating the elastic solid (Fig. 1.2b). Both views are equivalent with the latter being the
one most explicitly experimentally studied in this thesis. The momentum and continuity

equations for either systems are, respectively,

d
pd_‘t, — —Vp+pg+ V-7 and (A.1)
d
d—f+pv.v:o, (A.2)

with v, p, and p being the continuum velocity, density, and pressure. The acceleration is
directed along the y-axis, g = ge,. Further, ‘0"’ stands for the deviatoric part of the stress
tensor o, = —pd;+0,, where d;;, is the Kronecker delta and index notation is used to express
the tensors in a Cartesian setting such that the indices ¢ = 1, 2, 3 label, respectively, the
spatial coordinates x, y, z. Vector and tensor notation will be used interchangeably through-
out this chapter based on which notation is deemed most appropriate for presentation. The

deviatoric part of the stress tensor for a Hookean solid is

doyy, ov;  Oug
5 G (c%k + axi) . (A.3)

Examining only the linear RTT problem, the above governing equations are linearized using a
first-order perturbation approach where the all of the variables of interest N (v, p, p, o’ ) are
displaced from their equilibrium position Ny by a small amount 6V such that N = Ny+d/V.
Assuming incompressibility (6p = 0), from this perturbation expansion, Eqgs. (A.1)-(A.3)

become

0 ((SVQ)
P25t

— V(g2 t pebps) + VS (A.4)

R
where the subindex 2 denotes the physical quantities of the elastic solid and S denotes the
deviatoric perturbation ( Sy, = dol).
To circumvent the vectorial nature of the problem, the perturbed velocity field is ex-

pressed in terms of scalar functions using Helmholtz decomposition, writing the velocity as
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a sum of an irrotational and rotational part:
dve = Vo + V x (1)986,) (A.6)
Substituting the above Eq. (A.6) into Eq. (A.5) yields the Laplace equation
Vi, = 0. (A7)

Substitution of Eq. (A.6) into the linearized momentum equation (Eq. (A.4)) while assuming

that the velocity potential functions take the form
By o W gin k. )y ox eIV cos ka (A.8)

further yields
o G
v <’7¢2 + P2 5902) +V x {(’Wﬁz - —V2¢2) éz:| = 0. (A.9)
P2 VP2

Using the so-called Bernoulli gauge, it can be shown that, for the LHS of the above equation

to equal zero, the terms in parentheses must each equal zero implying that

o
Y2 + % +dp2 =0 (A.10)
2

G
Vihy = p—V%. (A.11)
2

Substituting the assumed form of the velocity potentials displayed by Eq. (A.8) into Egs. (A.7)
and (A.11) one obtains the following equations describing the potentials in terms of the con-

stants of integration as, bs, co, and ds:

as cosh ky + by cosh k(h + y)

Yt o3
b kA e sin kx, (A.12)

2 =

_ cysinh Ay + dy sinh A(h + y)

vt
Y e coskzx, (A.13)

(e
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A similar procedure can be employed to obtain an expression for the perturbed velocity in
the lighter fluid medium (y > 0):

96

ay ) 5U1$ = a3 <A14)

¢ = are e sin kx, Oy =
where the subscript 1 indicates physical quantities of the fluid.
The dispersion relation can be obtained by solving for the constants ay, as, bs, ¢, and ds
using the boundary conditions on the surfaces y = 0 and y = —h.

Imposing continuity of the normal velocity at the y = 0 interface yields
a] = — (b2 -+ dg) . <A15)

Imposing continuity of the tangential stress S,, at the y = 0 and y = —h interfaces further

yields

2k> 2k?
2 = TN k2 k2b2’ C2 = TN k2 k2a2~
From the continuity of the normal stress, —dp+.S,, = —op+ (G /v)0 (dv,) /y, the following

(A.16)

equation is obtained at y = 0

a9 2]€G (05}
h h
7 <b2 cothih + sinh kh> * Yp2 [k (bQ cothih + sinh kh)
Ca kg
A <d2 coth A + — Ahﬂ 2+ o) (A.17)

k
P2 g
and at y = —h

by %G by
thkh k (s coth kh
i (“2 COTARR Tt ik k;h) o { (‘“ COtARR T Ciah kh)

Al
A thah+ —2 V| 50, =0 A
20 sinh Ah y e =5

Equations (A.15) to (A.18) can be rewritten as the following system of equations:

43(C + B) + byA = 0, (A.19)
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A 7 pa .
2

where the constants A, B, and C are

(A2 4 k2)? esch kh — 4k3 X esch Ah

A= e | (A21)
B = pykyg/G, (A.22)

A2 + k)" coth kh — 4k3 )\ coth Ah
C = ( )y Y (A.23)

Using the fact the determinant of this system must equal zero, the dispersion relation may
finally be obtained:

02 A2=pB2 - p1(0+B)<B+W2) (A.24)
P2 G

Substituting in the expressions for A, B, and C' in the above Eq. (A.24) while taking the
Atwood number equal to unity (i.e., while letting At = 1 which also lets ps = p), the

dispersion relation becomes Eq. (2.2):
G\® [ (87® py?\' 102478 [dn®  py?
OV (0, ) ot i
g A2 G A6 a2
4n\? [arz py2 472 py?
— | = —t+—= =+ th —+—h
( /\> 2 + a ( —|— [ co ( 2 + a

2 2.2
— csch @ csch 47T 27TG = 0.
A Ap g°
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A.2 Derivation of the Relevant Shock Tube Relations

The following section offers a more thorough introduction to the working principles of a
shock tube of uniform cross-section. Below is a summary of the more detailed derivations
found in Chapter 4.1 of the Handbook of Shock Waves by Nishida [95] with a focus on the
relationship between the static pressures observed in the regions created by the propagation

of a shock wave in a shock tube.

A.2.1 The Shock Jump Relations

As its name implies, a shock tube is a device used to generate a shock wave in a laboratory
setting. To appreciate the gasdynamics of such a device, the dynamics of a shock wave
must thus first be understood. Consider a gas flowing supersonically at speed u; with initial
pressure pp, initial density p;, and initial temperature 7} encountering a normal shock wave
(Fig. A.1). Upon encountering the shock wave, the properties of the gas flow undergo a

sudden jump or discontinuity to the new values of us, ps, po, and Ts.

gl 1]73

1 2
p, == => p,
U, u,

| |
@ Shock wave @

Figure A.1: Schematic of a normal shock wave.

To relate the new state of the gas to its initial state prior to encountering the discontinuity,
the fundamental conservation equations of 1D steady-state, inviscid flow are employed. In

such a scenario, the conservation of mass and momentum equations, respectively, read
P1Ul = P2uU2, (A25)

pLUs + p1 = paus + Po. (A.26)
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Assuming throughout the remainder of this thesis that the gases of interest are calorically
perfect (i.e., ideal gases whose specific heats do not depend on temperature), the conservation

of energy equation reads as
2 2

u U
CpTl + ?1 = CpTl + 31

with ¢, being the specific heat at constant pressure of the gas. Combining the mass (A.25)

(A.27)

and the energy (A.27) conservation equations, the ratio of pressures across the shock wave
can be written purely in terms of the specific heat ratio of the gas, x = ¢,/c,, and of the

density ratio across the shock wave:

D2 _ Kk—1lp
p — (A.28)
R— P1

The density ratio can also be isolated in the above equation:

rk+1 p
pr_w Ity (A.29)
o =S ’
P1 U2 P "
The above two equations can also be expressed in terms of the Mach number of to flow into
the shock wave, as viewed from the reference frame of the shock, M; = uy/c;, where ¢; is

the speed of sound in the pre-shocked gas:

P2 w1 (k + 1) M}

== = , A.30
p1 uz 2+ (k—1)M? ( )
P2y 25 ogp ). (A.31)
D1 k+1
The temperature ratio across the shock wave can also be found directly from the energy
equation:
T, 26— ) kME+1,
— = M7 —1 A.32
T (k+1)2 M (Mi=1), (A.32)

and the difference between the post-shock and pre-shock flow velocities, us — uq, can be

obtained from the momentum equation

up—wy =2 (Ml_i). (A.33)

Cq H}"—l M1
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Finally, the above two equations (A.32) and (A.33) can also be expressed only in terms of

the specific heat ratio and pressure density ratio as

T_p St
T, P11+<z—f7

(A.34)

and

2o 0z : (A.35)

B \/<1+<> (1+c2)

where ( = (k + 1)/(k — 1). Equations (A.28), (A.29), (A.34), and (A.35) are often called
the Rankine-Hugoniot relations as they relate the post-shock and pre-shock gas states only

in terms of thermodynamic variables.

A.2.2 The Shock Tube Relations

With the shock jump relations derived, the gasdynamics of a shock tube can now be an-
alyzed. What follows is a derivation of the shock tube Eqgs (2.6)—(2.8) by considering the

physical relationships between the various gas regions depicted in Fig. 2.4.

Relations between Regions 1 and 2 The shock jump relations were derived in a
reference frame with respect to which the shock was not moving. Considering a shock
wave propagating at speed Uy following diaphragm rupture, the shock jump relations can
be used in a reference frame moving at the constant speed Ug;. From here onward, the
relations (A.28)—(A.35) are employed by replacing the pre-shock Mach number, M, by the
shock wave Mach number, My = Uy /c¢q. Also, from this coordinate transformation, the new
pre- and post-shock flow velocities, u] and wuj, respectively, are related to the laboratory
reference frame by v} = —Uy and u) = uy — Uy = up — u) (see Fig. A.2). Consequently,

equation (A.30) becomes

pr_wy _ Ug (s 1) MG
pr uy Ug—uy 24 (kg —1) M3

(A.36)
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The post-shock velocity in the laboratory-fixed reference frame, us, can be isolated in the

above Eq. (A.36) such that
201 1
_ M., — A.37
2 K1 + 1 ( ! Msl) ( )

Also, the pressure ratio between the gases in Region 1 and Region 2 is, using Eq. (A.31),

D2 2K 2
— =1+ M5 —1). A.38
D K1 i 1 ( sl ) ( )

U.
= —_— (= —
: u =0 u,'=-Ug, T u, u,"=-U,
(a) movingwsﬁﬂock frame (b) shock—ﬁxed frame

Figure A.2: A normal shock wave in a laboratory-fixed reference frame (a) and in a shock-
fixed frame (b).

Relations between Regions 2 and 3 Because Regions 2 and 3 are the regions immedi-
ately after and before the contact surface, the velocities and pressures of the gases in these

regions must be equal such that

Uz = Usg, <A39)

and
Ps = P2, (A.40)

albeit the densities and temperatures across the contact surface may be different. As a re-
minder, note that the lack of primes on the velocities uz and uy indicates that the velocities

are measured in a laboratory-fixed frame.

Relations between Regions 3 and 4  Since the expansion of the high-pressure gas from

region 4 into region 3 is an isentropic process, the pressures between region 4 and 3 can be
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related via an isentropic equation:

2Ky

Dy _ <_) e (A.41)

b3 C3

Note that because regions 3 and 4 are occupied by the same substance, it can be assumed
that k3 = k4. The expansion wavefront initiated by the diaphragm rupture first propagates
upstream (towards the left in Fig. 2.4) until its component expansion waves are reflected by
the shock tube end wall, causing them to propagate downstream. The Riemann invariant
along the forward propagating expansion remains constant from region 3 through 4, and so,
recalling the expression for the Riemann invariant along a forward moving wavefront while
also noting that the gas in region 4 is at rest (i.e., uy = 0) yields the following equality:
2 2

Cqy = U
H4—14 3+I{3—1

C3. (A42)

Substituting Eq. (A.42) into Eq. (A.41) to express the ratio ps/ps in terms of k4 and us
while combining the result with Eqgs. (A.37), (A.38), (A.39), and (A.40), one obtains

2Ky

rg—1

1
1- st (M- k) ’

k1+1 ca Mg

Pr_ 1+i(M31—1)}

A 43
D1 k1 +1 ( )

the pressure ratio between the gases in region 1 and region 4 expressed only in terms of M,

K1, kg, and ¢;/cy.

Relations between Regions 1 and 5 Immediately following the shock reflection off the
elastic solid surface, the shock wave reverts direction, traveling into the gas in region 2 with
a new velocity Ugy, while leaving behind a gas at rest in the laboratory-fixed frame such
that us = 0. Denoting the velocity of the flow in region 2 and region 5 with respect to the

reflected shock as uj and uZ, respectively, note that uy — u, = —uy as shown in Fig. A.3.
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USZ
’ us =0 u,"=-Ug, +u, us" =-Us,
(a) movingﬁsﬁﬂock frame (b) shock—ﬁxed frame

Figure A.3: A reflected shock wave in a laboratory-fixed reference frame (a) and in a shock-
fixed frame (b).

Since, recalling the first coordinate transformation from the laboratory frame to a frame
moving with the initial shock velocity, Usy, uh — u} = ug, then from Eq. (A.35) one obtains
that

(<1_1)<f,_2_1> (G1—1) (%—1>

\/(1 +G1) (1 + Qz_z) Ccy = \/(1 + ) (1 n Cl%f)

where ¢; = (k1 + 1)/(k1 — 1). Further, since the regions 1 and 2 are occupied by the same
substance, which is treated as an ideal gas, ca/c; = (T5/T1)"/? and so Eq. (A.34) yields

e _ [m Gty (A.45)
1 D1 1+C1Z—f

Combining Eq. (A.44) together with Eq. (A.45), an expression for the pressure ratio across

C1, <A44>

U =

regions 2 and 5 can be obtained

@_%(QﬂL?)—l
- P2
D2 G+ 5

(A.46)

Substituting in the above the expression for py/p; from Eq. (A.38) and rearranging terms,

the pressure ratio ps/p> may be written in terms of M and k; instead as

Ps . —2 (K,l - 1) + MSQI (3/{1 - 1)

P 24+ M2 (ky — 1) (A.47)
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Finally, combining Eqs. (A.38) and (A.47), the pressure ratio between regions 1 and 5 can

be expressed as a function of Mg and kq:

(A.48)

Ps 261 M3 — (k1 — 1)1 [=2(k1 — 1) + M3 (3k; — 1)
D1 K1+ 1

- 2+ M2 (11— 1)

Although more relations between the various regions of interest can be derived using the
shock jump relations applied in appropriate reference frames, this concludes the catalogue

of shock tube theoretical relations that will be used in the main text of this thesis.
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Appendix B

Additional Detailing of the
Experimental Methods

This appendix contains additional details pertaining to the experimental methods and de-

vices used throughout this thesis.

B.1 Procedure for the Casting of Elastic Solid Samples

After repeated consultation with the Smooth-On technical staff and with the technicians
of Sial Canada, and after a considerable number of in-laboratory systematic trial-and-error
attempts, a robust, standardized procedure for the casting of the elastic solid samples was
obtained. The author is indebted to his laboratory assistant, Léa Bernard, for developing

the casting procedure which is described below:

1. Prepare the mold by inserting the keys into the male part, ensuring the textured sides
faces the exterior. The male part is the block with a base platform on top of which

the female part is to sit.

2. Carefully join the male and female parts of the mold, making sure the keys are tightly

pressed between them to achieve a uniform thickness.

3. Clamp the assembled mold securely at the four corners, focusing on the keys rather
than the middle to maintain uniformity (clamping the middle will leave the central

area of the cast solid thinner than its edges).
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4.

10.

11.

12.

13.

14.

To prevent leakage, seal the crack between the male and female parts of the mold
securely by using hot glue. Smooth the glue out with a popsicle stick to make sure
there is no leakage. (Note: When working with newly 3D printed molds, it is important
to be cautious with using hot glue as it can adhere firmly to the mold and become
difficult to remove later. To mitigate this issue, the usage of duct tape to securely
fasten the mold during its initial use is recommended. While duct taping might be
slightly less efficient compared to hot glue, it offers the advantage of easy removal and

saves significant time when trying to detach the mold after the molding process.)
Set the mold aside for further processing.

Place a 100 mL weighing dish on a balance and press tare to zero the balance.
Use a paint stirring stick to stir Part A of the Ecoflex-30 for 20 seconds.

Remove excess Part A Ecoflex-30 from the stirring stick in the weighing dish using a

popsicle stick.

. Pour the required amount of Part A into the weighing dish (e.g., 50mL for cast of

3mm thickness).

If a colored specimen is desired, add about a teaspoon of silicone coloring to Part A

and stir the mixture for 2 minutes or until the color is completely incorporated.

Repeat steps 8 to 10 with a new set of paint stirring stick and popsicle stick for Part
B, ensuring the same amount of Part A and Part B is used (the recommended mixing
ratio for the curing of Ecoflex 00-30 is 1:1 of Parts A and B).

Stir the contents of the weighing dish thoroughly with a popsicle stick for 3 minutes.

Degas the mixture in a vacuum chamber for 4-5 minutes or until the bubbles have

significantly reduced and dispersed and are slower.

Slowly pour the mixture into the mold to minimize bubble production during the
pouring process. For thinner specimens, consider slightly opening the mold to allow
faster pouring. Pour in the middle in a continuous stream, then reclamp the mold to
push excess mixture out for better results. For thicker samples (e.g., 6 mm), pouring

speed becomes less critical.
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15. Ensure the clamps are tight and the keys are positioned flush within their corresponding

slot cavities to maintain a consistent thickness throughout the specimen.
16. Allow the mold to sit undisturbed for 4 hours before proceeding with the unmolding.

17. When it is time to unmold, begin by carefully removing the clamps and any excess

silicone on the exterior of the mold.

18. Next, if hot glue was used, gently peel it off in a single strip, provided it was applied
uniformly. If duct tape was used, slowly and carefully peel off the tape from the mold

in order to avoid the tape damaging the plastic material from which the mold is made.

19. To separate the mold, use two flat-headed screwdrivers to pry open the top section by
gently pushing against the mold walls adjacent to the keys. Be cautious during this

step to avoid damaging the mold or the keys.

20. To cut the specimen, carefully use a scalpel. For the sides with the keys, make a
straight cut against the keys and then gently remove the keys. For the two remaining

sides, use one of the keys as a ruler to guide the scalpel and make precise straight cuts.

Although not necessary, the use of protective equipment including vinyl gloves and a
lab coat is recommended as the casting process can be messy and the stains are not always
easy to remove from garments. The use of latex or nitrile gloves should be avoided as these
materials may inhibit the curing process if they come in contact with the silicone elastomer.
In a similar vein, using aluminum foils to cover workbench surfaces and the walls of the

vacuum chamber helps make accidental spills easier to clean.

B.2 The PDV Heterodyne Principle

A photonic doppler velocimeter uses the interference of two optical signals of different fre-
quency to measure the velocity of a target surface. This is achieved in practice by transport-
ing light from a laser to a probe using optical fibers. The probe then focuses the laser light
onto the surface of the moving target of interest. Because the target is moving with respect
to the probe, the reflected light that the probe captures has a Doppler shifted frequency, fq,

that is different from the original, reference laser light frequency, f,. The two signals are
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then mixed together (the so-called heterodyning of the signals) and their superposition is

finally sent to a photodetector. Figure B.1 shows a high-level depiction of the process.

detector

Figure B.1: The basic PDV heterodyne principle. Image taken from [98] with permission.

The Doppler shifting of the original laser signal by the target occurs in a two-step process.
First, the probe acts as a source of light having the reference frequency f, while the target
surface acts as a receiver. Because the target surface is moving with respect to the probe,
the moving target encounters a Doppler-shifted light with frequency f; in accordance to the
Doppler formula':

"+ v

fo= Jo (B.1)

C*

where vy is the velocity of the moving target (positive if the target is moving towards the
probe and negative if the target is moving away from the probe). The moving target then
partially reflects the f; frequency light, acting as the second source of light and thereby
initiating a second Doppler shifting process. The probe now acts as a receiver and the
final frequency that it captures, fq, is the Doppler-shifted frequency of the target emitted
(reflected, really) light, f;:

*

c

fa= fe- (B.2)

c* — g
The reference and Doppler-shifted frequencies are on the order of 10 Hz for reference sig-
nals in the C-band, and photodetectors and digitizers typically cannot measure such high
frequencies. The so-called beat frequency, fy, arising from the mixing (heterodyning) of the

reference and Doppler-shifted signals, is on the order of a few GHz which can be measured.

2
'Note that, given how small the ::2 term is in shock physics experiments, the relativistic time dilation

contribution to the Doppler effect, %, is ignored throughout this thesis.
V-2
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The beat frequency is the absolute difference between reference frequency and the (twice)
Doppler-shifted signal frequency, that is, fi, = |fq — fo|. Expanding this absolute value using
Egs. (B.1) and (B.2) allows for the beat frequency to be explicitly related to the moving

target velocity:
c* + v

cf—

fo = |fa— fol = | 1| fo

v

2
o =2 ——|fo = — || fo, (B.3)
— Ut C

o
where the denominator of Eq. (B.3) was simplified by noting that V; < ¢* in shock physics
experiments. The presence of the absolute value operator in Eq. (B.3) means that the beat
frequency measurement is insensitive to direction and cannot tell whether the target is mov-
ing towards or away from the probe—although certain unconventional PDV configurations
can be made sensitive to the moving target direction.

The beat frequency is responsible for the modulation of the light intensity signal captured
by the photodetector. To see how this modulation arises, first recall that the intensity
of an electromagnetic wave is proportional to the amplitude of the electric field squared,
that is, I o< |E|>. As is often done in the literature, the remainder of this thesis will
assume that the amplitudes of its electric fields being studied are normalized such that
I = |E|?>. The photodetector captures a light signal made up of the superposition of two
signals, the reference signal and the Doppler-shifted signal. Assuming the two signals to be
linearly polarized and propagating in the z-direction, that is, assuming Eq = (0,0, Ey) and

Eq = (0,0, Eq), then the two signals may be expressed as
EO = Eoo(t) ei(wgt—kgz-ﬁ-dg) = E()()(t) ei¢°, Ed = E()d(t) ei(wdt_kdz+5d) = E()d(t) ei‘bd, (B4)
where w;, k;, and d; are the angular frequency, angular wavenumber, and phase constant of

their corresponding light signal, respectively. The total intensity of the superposition of the

two signals then is?

[tot = |Ed + E0‘2 = (E()d(t) ei¢d -+ EOO (t) ei¢0) (E()d(t) eibd | EOO (t) ei¢0)

2The (o) symbol denotes the complex conjugate operator.
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= liot = ESO + E§d + 2E40 Eoq cos (¢a — ¢o)
S dvor = To(t) + La(t) + 24/ 1o1q cos (g—;t + ¢). (B.5)

The interference term 2+/Iy14 cos (Qf—frt + (b) is the predominant reason for the variation of the
signal intensity. The additional phase of the beat waveform, ¢ = (kg — kq) x+ (04 — dp), does
not vary much during a shock experiment by comparison to the beat frequency term, and
so the time variation of the intensity signal is driven by the variation of the beat frequency
with target velocity as described in Eq. (B.3).

Table B.1 computes the beat frequency for various target velocities using two different
reference laser wavelengths with the first wavelength set to Aeq = 750 nm (visible red laser)
and the second wavelength set to Aig = 1550 nm (standard C-band wavelength). Beyond
the low attenuation of silica fibers at the 1550 nm wavelength, setting the laser wavelength
in the C-band offers an additional advantage in the case of photon Doppler velocimetry: the
larger reference wavelength translates into a lower beat frequency for a given target velocity

thereby increasing the maximum possible target velocity for a given PDV system bandwidth.

Table B.1: Target velocities and beat frequencies for different reference laser wavelengths.

Target Velocity [m/s|] Visible Red Laser [750nm| IR Laser [1550 nm]|

1 fb = 2.7MHz fb = 1.3MHz
100 fp = 270 MHz f» = 130 MHz
1000 fi, = 2.7GHz f, = 1.3GHz

5000 fo =13GHz fv» =6.5GHz
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B.3 The Detailed Schematic of the PDV Box

Figure B.2 below displays a detailed labeling of components contained in the PDV box.

(a)

(b)

AC Power Outlet

4<CE]l
3E]
2§l
1E]

To
90/10 Splitters

Tre

1<CE]
2<CE]
3E]
4CE]

From
90/10 Splitters

TEEY

1x4 Splitter
(Main Laser In)

»

To
1x4 Splitter

| 1
|
| |
} @ @ } Power Module
|
- l ‘
% ! ‘
&) l 1
Z | |
=] | |
HOR
3 | | ACto DC
[ Tt Power Module
I 90/10 |
| Splitters }
|
|
l | -
5 ! } | Receivers |
. | } !
3 ! | !
£ @ ; EE IER
|51 | |
& | | |
,,,,,,,,,, | |
I !
L L AL AL L
U Cironlatare o— ! —

From } Circulators } Eﬂ @4: g3
Circulators (Leg 3) | | =)
fisa e

! | 2 <81 |gw1| =
|
RN 1N & i
1 2 3 4] --=--—--—--="- !
To From From
Receivers 90/10 Splitters Receivers
(Channels 1-4) (Channels 1-4)

L] [

1x4 Splitter

v

From
Main Laser

] v

To To
Probes Oscilloscope

Figure B.2: A detailed schematic (b) of the layout of the photonic components found within

the McGill PDV box (a).
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