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Abstract 

Mining companies must be in continuous improvement of their process and control of 

their costs in order to improve their profitability. Given that dilution is a significant problem that 

reduces the profit of underground operations, its monitoring, prediction, and reduction enhance 

the operation economy. Several methods to predict dilution have been addressed over the last 

few decades. However, the recent progress in machine learning has opened new avenues to 

predict unplanned dilution. 

The contribution of this thesis is divided into two folds. The first is the development of a 

prediction tool for uncontrollable dilution based on regression techniques, Artificial Neural 

Networks (ANN), Random Forest (RF), and Recurrent Neural Networks (RNN). Using these 

techniques, different predictive models were developed based on a data set of 99 stopes from 

an underground mine in North America. The primary mining method applied in this mine is 

longitudinal retreat long-hole with variations in specific stopes. An accurate predictive dilution 

model will help improve the economic assessment of each stope. The second contribution of this 

thesis is identifying the most significant variables in the predictive process of the models. The 

variables involved in developing the models are related to the geometry of the stope, the 

location, the drilling and blasting process, and the rock support. The research outcomes showed 

that unplanned dilution is highly impacted by the powder factor and the rock support in each 

stope, in this study case. Also, unplanned dilution can successfully be predicted through machine 

learning models, and they can reach a higher accuracy than traditional methods. 
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Résumé 

Les entreprises minières doivent être en amélioration continue de leurs processus et en contrôle 

de leurs coûts afin d'améliorer leur rentabilité. Étant donné que la dilution est un problème 

important qui réduit le profit des opérations souterraines, sa surveillance, sa prévision et sa 

réduction améliorent l'économie d'exploitation. Plusieurs méthodes pour prédire la dilution ont 

été abordées au cours des dernières décennies. Cependant, les progrès récents de 

l'apprentissage automatique ont ouvert de nouvelles voies pour prédire la dilution non planifiée. 

La contribution de cette thèse se divise en deux volets. Le premier est le développement d'un 

outil de prédiction de la dilution incontrôlable basé sur des techniques de régression, les réseaux 

de neurones artificiels (ANN), les forêts aléatoires (RF) et les réseaux de neurones récurrents 

(RNN). À l'aide de ces techniques, différents modèles prédictifs ont été développés à partir d'un 

ensemble de données de 99 chantiers d'une mine souterraine en Amérique du Nord. La principale 

méthode d'extraction appliquée dans cette mine est le retrait longitudinal par longs trous avec 

des variations dans des chantiers spécifiques. Un modèle de dilution prédictif précis aidera à 

améliorer l'évaluation économique de chaque chantier. La deuxième contribution de cette thèse 

est d'identifier les variables les plus significatives dans le processus prédictif des modèles. Les 

variables impliquées dans le développement des modèles sont liées à la géométrie du chantier, 

à l'emplacement, au processus de forage et de dynamitage et au support rocheux. Les résultats 

de la recherche ont montré que la dilution non planifiée est fortement impactée par le facteur 

poudre et le support rocheux dans chaque chantier, dans ce cas d'étude. De plus, la dilution non 
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planifiée peut être prédite avec succès grâce à des modèles d'apprentissage automatique, et ils 

peuvent atteindre une précision plus élevée que les méthodes traditionnelles.  
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1 Introduction 

1.1 Problem Statement 

Within the mining industry, extracted material is categorized into either ore or waste. The 

classification of rock into these two groups is solely based on economic factors. Ore is rock that 

contains a specific concentration of minerals that can be mined and sold at a profitable margin 

given the existing economic conditions (Hustrulid & Bullock, 2001). As such, accurate 

identification of rock classification requires a deep understanding of the geological features of 

the orebody and the economic environment of the mine. It is worth noting that only a tiny 

proportion of the "run-of-mine" ore contains valuable metals, necessitating further processing 

to concentrate or extract the metal content. 

Due to the intricate shapes of orebodies and operational constraints, the surrounding 

rock waste is often mined and added to the ore stream. This practice leads to the contamination 

of the ore with additional rock, commonly known as dilution. Achieving perfect selectivity of ore 

is challenging, which makes dilution an inherent problem in mining operations. Initially defined 

by Wright (1983) as the contamination of ore by waste material during the mining process, 

dilution was later classified into planned and unplanned dilution during stope design by Scoble 

and Moss (1994). Planned dilution refers to the waste rock located within the stope boundaries 

that cannot be avoided due to the mining method's selectivity. On the other hand, unplanned 

dilution is the additional waste rock from outside the stope boundaries caused by blasting or 

weak rock stability of the walls. The inclusion of rock waste in the ore stream has a negative 

impact on a company's revenue by decreasing the grade of the run-of-mine ore and the amount 
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of material extracted to obtain the same equivalent metal content (Lyndon Michael, 1998). 

Dilution amount is a financial parameter required for the economic assessment of a mine, but its 

prediction remains highly complex and not entirely controlled. Unplanned dilution significantly 

adds to a mine operator's costs, leading to unnecessary haulage and mineral processing 

expenses. If left unaddressed, this problem can jeopardize the operation's economy. Although 

considerable efforts have been made in the past, the problem remains unsolved. However, 

emerging machine learning techniques offer new opportunities for addressing the issue more 

effectively. 

In the last five decades, various methods have been developed to predict unplanned 

dilution in underground mining. The stability graph method is a standard method in the open 

stope design and the prediction of dilution (Madenova & Suorineni, 2020). The stability graph's 

validity remains because it has been modified several times with database expansions, 

redefinition of the zone boundaries, and modification of the adjustment factors during the last 

few decades (Madenova & Suorineni, 2020).  

Clark and Palkanis (1997) introduced ELOS (Equivalent Linear Overbreak/Slough) as a 

variant of the stability graph method, transforming it from a qualitative to a quantitative method. 

It has become one of the most prevalent predictive dilution models since then. ELOS uses rock 

quality, stope dimensions, and rock-joint features to predict unplanned dilution; however, it 

ignores essential factors such as blasting parameters, wall exposure time, and stope mining 

sequence (Jang, Topal, & Kawamura, 2015). After that, other approaches to address dilution 

prediction were proposed, such as "dilution density" (Henning and Mitri, 2007) and the simple 

linear regression method (Germain and Hadjigeorgiou, 1997).  
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Henning and Mitri (2007) used 3D elastic-plastic numerical models to quantify unplanned 

dilution through mining depth, rock properties, stope geometry, extraction sequence, and rock 

stresses. They introduced the term "dilution density" to define the contour of the relaxation zone 

(𝜎3 = 𝜎𝑡) created by the void after the blasting process, and the volume within this contour is 

the potential overbreak in the stope.  

Germain and Hadjigeorgiou (1997) used regression techniques to define the relationship 

between different variables and the stope dilution. Their research aimed to prove that more 

variables are involved in the dilution occurrence phenomenon than just the stope dimension and 

the quality of the rock.  Germain et al. (1997) concluded that the unplanned dilution is highly 

correlated with the stope geometry (r=0.746), and the powder factor has no or little impact on 

the stope performance (r=-0.083 or r=0.282) according to the performance at Louvicourt Mine. 

This research aims to propose new prediction approaches to reduce unplanned dilution 

in underground mining operations. The problem sentence of this thesis is how can a statistical or 

machine learning model can improve the dilution prediction with higher accuracy than the 

traditional methods.  

 

1.2 Research Objectives 

• Develop predictive models for unplanned dilution based on statistics and machine 

learning methods that can achieve an accuracy that is the same or higher than the 

traditional methods.  
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• Explore the impact of each variable and rank them according to their importance in the 

predictive process of dilution.  

• Deliver a tool to evaluate the different parameters of a stope during the planning process 

and help minimize unplanned dilution in the mine design phase. 

• Provide comparative performance measurement analysis of the proposed approaches. 

 

1.3 Economic and Environmental Benefits 

Economic Benefits 

• Improve the accuracy of the economic assessments of mines or stopes as a result of a 

better prediction of the unplanned dilution. 

• Capacity to improve the design of the stopes to reduce unplanned dilution and its impact 

on profitability.  

Environmental Benefits 

• Reduce haulage cost and gas emissions emitted by haulage equipment 

• Use less energy and generate fewer tailing quantities in mineral processing through 

dilution reduction.  

1.4 Originality and Success 

The originality of this work rests on developing statistical and machine learning models to 

predict unplanned dilution. This study focuses on three main objectives: first, using multiple 

methods to determine the most suitable according to the features of the data in this case study; 



5 
 

second, comparing the accuracy of every method against the traditional techniques to predict 

dilution; and finally, ranking the variables involved in the process according to their importance 

in the prediction of dilution.  

1.5 Thesis organization 

This thesis is organized into the following sections: Chapter 1 describes the problem 

statement, the research objectives, and the originality of the work. Chapter 2 explores the 

literature related to the case study's mining method, the previous predictive dilution models, and 

the statistical and machine learning techniques that will be applied in the developed models. 

Chapter 3 describes the methodology used to create, train, and test the predictive models. 

Chapter 4 introduces the case study and describes the variables involved in the prediction 

process. Chapter 5 introduces the results of the models applied to a test data set and discusses 

each model's different restrictions and features. It also compares the accuracy of the developed 

models to the traditional techniques. Chapter 6 concludes the thesis with a discussion of the 

methodology, results, and additional steps that can be considered in the future to improve the 

work done in this thesis.  
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2 Literature Review 

2.1 Underground Mining Methods and Unplanned Dilution 

The selection of mining method is essential to conducting feasibility studies and economic 

assessments of the mining project. Once enough information is collected from the orebody, it is 

possible to outline and quantify the ore that can be extracted. The combination of the layout and 

the manner of ore extraction is known as the mining method.  

The choice of the mining method serves as the basis for a project’s design and its 

feasibility study (Hustrulid & Bullock, 2001). The selection of the most suitable mining method 

relies on the shape of the orebody, dimensions, inclination, equipment selection, rock quality, 

and a set of economic, geological, or operational constraints. Furthermore, the project's 

complexity could lead to selecting more than one mining method in different areas.  

This section aims to briefly show the features of the major mining methods and describe 

the potential dilution impact in each case. 

2.1.1 Room and Pillar  

The room-and-pillar method was designed to be used in low-dip-angle or flat-bedded 

deposits. The extraction is done through open stopes created along the deposit, leaving behind 

pillars supporting the roof (Figure 2-1). Minimizing the area and number of pillars will increase 

the ore recovery, but this is limited according to the rock support required, which is dependent 

on the rock quality and the dimensions of the stopes  (Hustrulid & Bullock, 2001). 
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Figure 2-1. Classic Room and Pillar Scheme (Hustrulid & Bullock, 2001) 

There are two significant advantages of this method: First, simple development work is 

required to open the stope, and the roadway excavations are combined with the production of 

ore within the stopes. Second, multiple phases of production can occur in the stope at the same 

time, so several production areas can be established inside the same stope, avoiding dependency 

on the production activities (drilling, blasting, mucking).  

As in all the underground mining methods, the unplanned dilution level depends greatly 

on the amount of slough rock that falls into the stope or the haulage area. Thus, the level of 

unplanned dilution potentially depends on the area of the unconfined wall in the boundary 

between the host rock and the orebody. Usually, the boundaries of the orebody in the room-and-

pillar method are located in the floor and the roof of the stope. Therefore, the level of dilution is 

highly correlated with the area of roof unsupported in each cut, which is relatively small. 

However, the big challenge in the room-and-pillar method is the mining recovery that depends 

on the transversal area of the pillar left in the stope.  
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2.1.2 Shrinkage stoping 

Shrinkage stoping was designed to be used in steep deposits where the rock can dump 

directly into the rail car from the chutes in the crosscut located at the bottom of the stope. The 

extraction of the ore is conducted through horizontal slices from the bottom up. Part of the 

broken ore is mined from the chutes in the draw point located in the loading crosscuts (Figure 2-

2), and part of it is left to be used as the floor for the subsequent drilling and blasting process. 

The total ore is recovered when all the stope has been blasted. The development structure 

required in this mining method is the set of crosscuts that are used as draw points of the ore, a 

transport drift, and a raise from the bottom of the stope that provides access and ventilation to 

each horizontal slide that will be mined (Hustrulid & Bullock, 2001). 

 

Figure 2-2. Shrinkage stoping  (Hustrulid & Bullock, 2001) 
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Shrinkage stoping is a non-mechanized method that was very popular when jumbo drillers 

were not widespread in underground mining. The ore pile in the stope is used as a floor for drilling 

and blasting, and its lack of firmness prevents mechanized equipment from being used. Due to 

its labor intensity, limited capacity, and ore retention for an extended period, this method has 

been abandoned for other massive mining methods.  

The non-mechanized feature of this method allows a high selectivity in mining. The 

horizontal slices blasted are usually between 1.5-4.0 meters high, which creates a small-scale 

unconfined wall. The ore pile used as the floor plays the role of rock support preventing extra 

unplanned dilution within the stope.   

2.1.3 Cut and Fill stoping 

The cut-and-fill method is preferred in mines where the orebody has an irregular shape 

because of the method’s adaptability in the mining layout. The ore is extracted in horizontal slides 

from the bottom undercut up or from the uppercut down (preferred when the rock quality is 

poor, and the paste backfill can be used as roof). The height of the mining slices depends on the 

selectivity wanted and is restricted by the maximum height the driller can reach. After the 

material has been mined, the void is backfilled with tailing sand or hard rock in combination with 

cement in the last pour to add support and create a hard fill to form a firm platform for machinery 

in the next slice (the content of cement depends on the rock quality or the direction of the cut-

and-fill method).   
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Figure 2-3. Cut and fill method  (Hustrulid & Bullock, 2001) 

The main development infrastructure is the haulage drift along the orebody at each level. 

A ramp with access drives the orebody with raising connections that allow the ore extraction and 

fill the stopes. Additional development is required as water drainage in the stope undercuts, and 

ore passes to connect the stopes with the draw points.  

The versatility of the mining method allows for following the variations in ore boundaries, 

creating sections of low-grade and high-grade material to be mucked out separately. The drill 

pattern can be modified several times in the same horizontal slice of ore (Figure 2-4), improving 

the rock's fragmentation and increasing the efficiency of LHD cycles (Hustrulid & Bullock, 2001). 

The dilution level in the cut-and-fill method is relatively low compared to massive 

methods. The unconfined wall in the boundaries between the orebody and the host rock has a 

small area that is related to the size of the cut (usually no more than 5 meters). 
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Figure 2-4. Face drilling in the cut-and-fill method  (Abzalov, 2016) 

2.1.4 Sub-level open stoping 

This method divides the ore body into several open stopes, which are mined using 

sublevels. In each sublevel, ore sections are set aside as pillars to support the hanging wall, which 

can be recovered at the end when all the stopes in that sublevel are already mined. Also, 

horizontal sections of ore are left as crown pillars between sublevels. After all the ore is mined in 

one stope, it is backfilled to allow mining in the following stope (Abzalov, 2016).  

The enlargement of the stopes increases the efficiency of the mining process. However, 

the rock quality is the most limiting constraint, and the stope must be stable enough to auto-

support itself until all the material is extracted (Hustrulid & Bullock, 2001). Additionally, higher 

dilution values are usually related to larger dimensions in stopes; consequently, the economic 

parameters become an additional constraint to the enlargement of the stopes.  
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Drifts are excavated in each sublevel as accesses for machinery to drill the stope. The 

drilling pattern covers the entire stope and requires high precision in the angle and depth of the 

drill holes to avoid blasting rock outside the boundaries and producing unplanned dilution. After 

blasting occurs, the ore is extracted from the draw points located in the stope bottom (Figure 2-

5). Different layouts can be done in the developing drifts and crosscuts underneath the stope. 

The most popular is where the loading level is combined with the undercut as only one drift, 

which makes the development investment cheaper for each stope.  

 

Figure 2-5. Sub-level stoping method  (Hustrulid & Bullock, 2001) 

In contrast with the cut-and-fill method, sub-level stoping requires well-defined 

boundaries and regular shapes in the orebody. The selectivity is diminished at the expense of 

production; as a result, if some waste material is inside the stope, it will be included in the ore 
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analysis, and the grade will be diluted during the design process (planned dilution). Additionally, 

extra material from the walls can slough into the ore stream that was not considered in the stope 

design, which also increases the dilution in the process (unplanned dilution). The unconfined 

walls around the stopes have a larger area than in the previous methods.   

2.1.5 Vertical crater retreat (VCR) 

The vertical-crater-retreat method (VCR) was initially used in Canadian mines and then 

spread worldwide as an established and proven mining method. This method shares many 

similarities with sub-level stoping in the development structure, which also requires an overcut 

drift for drilling machinery and an undercut as a haulage drift (Hustrulid & Bullock, 2001).  

The drilling pattern consists of large diameter blast holes drilled downward from the 

overcut to the undercut. VCR is based on "crater blasting," in which a powerful charge of 

explosive is located and fired at the same distance from the bottom of the blast hole (Abzalov, 

2016) (Figure 2-6). As a result, a slice of the ore is fragmented, drops into the undercut, and can 

be extracted from there. When part of the ore is mucked, and there is enough space to allocate 

more broken ore, then a subsequent slice of ore can be blasted following the same procedure. 

This repetitive process ends when all the stope has been fired and mucked. Finally, the stope can 

be backfilled and the next can be mined. 



14 
 

 

Figure 2-6. Vertical-crater-retreat method  (Hustrulid & Bullock, 2001) 

 

2.1.6 Sub-level caving 

Sub-level caving is used in steep and large orebodies. The ore is extracted through parallel 

drifts (transversal to the strike of the orebody) developed at the bottom of each level, which will 

also allow the drilling and blasting process (Figure 2-7).  The main goal of the blasting process is 

to fracture the rock, and the unsupported void created results in a caving process around it. 

Caving requires that the rock mass has a rock quality that allows it to fracture and collapse in 
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controlled conditions. This continuous caving in the rock mass avoids the creation of cavities that 

would lead to a sudden collapse or rock falls into the installations (Hustrulid & Bullock, 2001).    

 

Figure 2-7. Sub-level caving method  (Hustrulid & Bullock, 2001) 

 

Compared with other mining methods, the development infrastructure required is 

extensive and costly. However, caving methods are highly productive, leading to the lowest unit 

prices. The low mining cost required allows for mining ore bodies with low grades. Due to its 

massive capacity, this method is applied to large orebodies where selectivity is not the primary 

purpose.  

2.1.7 Block caving 

The ore extraction in block caving is similar to sub-level caving, which is based on the 

controlled collapse of the rock mass. However, in this method, the stope is much larger, called a 
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"block," and it can reach thousands of square meters. In tonnage production, block caving is the 

leader among all mining methods. The development infrastructure consists of a group of drifts 

exacted underneath the block, drawbells beneath the undercut that collect the fragmented ore, 

and a lowermost level where the ore is hauled (Figure 2-8).  

 

Figure 2-8. Block caving method  (Hustrulid & Bullock, 2001) 

Openings under the block are under high internal stresses, which leads to the use of heavy 

rock support to secure the integrity of the machinery, infrastructure, and process. The extraction 

process relies totally on gravity, in which the ore sloughs into the chutes and then is hauled to 

the surface (Hustrulid & Bullock, 2001). Supposedly, no blasting is required to fracture the rock, 

but in practice, long-hole drilling and blasting are needed to assist in the fragmentation of 

boulders that interrupt the continuous flow of the method (Abzalov, 2016). 

Both caving methods are the least selective methods from the list presented in this 

section. Due to the low selectivity intrinsic to this kind of mining method, dilution tends to be 
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higher than in the previous methods. However, these massive mining methods can manage the 

dilution because of their low operational costs.  

2.2 Dilution in underground mining 

Underground mine design relies on key factors such as cost criteria, production, safety, 

and dilution (Villaescusa, 1998). Therefore, the correct definition of these factors would allow 

the development of an accurate design and select the most suitable mining method for the 

project. As with all the other factors, dilution results from many parameters around the stopes, 

making it complicated to predict. Over the last few decades, many methods to predict dilution 

have been developed. Some are summarized in this chapter. 

2.3 The stability graph method 

Mathews (1981) developed the stability graph method as a guide to design stopes in 

underground mining. The graph method qualitatively assesses the stability of the stope through 

a plot of the "Stability Number" (N) against the hydraulic radius. This empirical method was 

initially constructed from 26 historical cases from 3 mines and then expanded to 175 cases from 

34 mines by Potvin (1988).  
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Figure 2-9. The standard stability graph, Mathews (1981) 

The hydraulic radius is defined by the ratio between the hanging wall (or foot wall) area 

and its perimeter. Equation 2-1 

 
𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑅𝑎𝑑𝑖𝑢𝑠 =  

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝐻𝑎𝑛𝑔𝑖𝑛𝑔 𝑊𝑎𝑙𝑙

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐻𝑎𝑔𝑖𝑛𝑔 𝑊𝑎𝑙𝑙
             

(2-1) 

 

 

The "Stability Number" (N) is a product of four different factors: The first is the Q' developed by 

Barton (1974), which defines the rock-mass quality through its different features. The second is 

the stress factor A, which accounts for the ratio between stress and rock strength. Next is the B 

factor, which accounts for the difference in strike and dip between the stope and the joints. 

Finally, the gravity factor C accounts for the mode of failure of the wedges formed by the joints 

and the angle of the stope (gravity fall, sliding, or slabbing). 

 𝑁′ = (𝑄′)(𝐴)(𝐵)(𝐶) (2-2) 
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𝑄′ = (

𝑅𝑄𝐷

𝐽𝑛
) (

𝐽𝑟

𝐽𝑎
) 

(2-3) 

 

 

Figure 2-10. Chart for the definition of the stability graph factors, Mathews (1981) 

The conventional graph method can only designate a stope as stable or unstable. 

However, this method cannot quantify the dilution in the stopes. Scoble and Moss were the first 

to propose dilution lines for a Stability Graph, and later Clark and Palkanis (1997) introduced the 
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concept of Equivalent Linear Overbreak/Slough (ELOS). ELOS within the Stability Graph allows for 

predicting the unplanned dilution.  

2.4 Equivalent Linear Overbreak/Slough (ELOS) 

Clark and Palkanis (1997) introduced the concept of ELOS to quantify the dilution in open 

stopes. ELOS (in meters) is the ratio between the volume of overbreak and the hanging wall or 

foot wall area.  

 
𝐸𝐿𝑂𝑆 =  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑣𝑒𝑟𝑏𝑟𝑒𝑎𝑘

𝑆𝑡𝑜𝑝𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑎𝑙𝑙 𝑠𝑡𝑟𝑖𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

(2-4) 

 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 (%) =

𝐸𝐿𝑂𝑆

𝑂𝑟𝑒𝑏𝑜𝑑𝑦 𝑊𝑖𝑑𝑡ℎ
 

(2-5) 

 

Using Canadian mine databases, Palkanis et al. (1995) and Gauthier (2001) recognized 

that the classic formulae to determine unplanned dilution are highly sensitive to wall sloughing 

in narrow deposits. Therefore, ELOS became famous for introduce a standard dilution metric for 

different-size stopes, which was complicated with the standard dilution metric (in percentage). 

However, the lack of consideration of the underbreak in the ELOS method is a significant 

limitation for correctly assessing dilution in stopes. 

2.5 O'Hara's quick guide 

O'Hara (1980) collected data from different mines in 1978 regarding ore body 

characteristics, mine size, capital costs, and operating costs. Through this information, he created 

a rule of thumb for each factor involved in the economic evaluation of a deposit at the pre-
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feasibility stage. O'Hara's (1980) guide is quite comprehensive, considering capital and operating 

costs for each part of the mining and plant process. Dilution was pointed out as an adverse factor 

on revenue, and predicting it became necessary to accomplish the economic evaluation. Thus, 

he developed what could perhaps be the first deterministic dilution model. 

 

 
%𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =  

100

𝑊0.5
𝑆𝑖𝑛(𝐴°) 

(2-6) 

 

Where: 

W: Stope width (ft) 

A°: Orebody dip angle 

Also, two more parameters were identified in the causality of the dilution: the mining 

method and the quality of the rock walls. O'Hara developed an empirical graph method to predict 

the dilution percentage in each mining method. The resulting dilution from the graph must be 

adjusted according to the rock mass quality of the walls. When the rock quality of the stope walls 

is competent, the dilution must be reduced by 0.7 times from the calculated with the graph in 

Figure 3. Ergo if it is of poor quality, the dilution should be increased up to 1.5 times that shown 

in the graph. This final assessment is purely subjective as O'Hara did not give any hint of how to 

evaluate the rock mass as competent or weak. 
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Figure 2-11. O'Hara's plot of stope width against dilution as a function of the mining method and dip angle. 

2.6 Parameters influencing dilution  

Villaescusa (1998) identified the most common parameter influencing underground 

mining dilution. These parameters were grouped into five stages during the mining process. 

2.6.1 Orebody Delimitation 

Orebody delimitation depends on the accuracy of the geological information available. 

This process is not limited to defining the boundaries of the orebody but also establishes 

geological parameters such as the grade, shape, and rock mass quality. Without detailed 

geological information, dilution control would be weak and ineffective.  
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The reliability of geological information depends on the number of samples taken from 

the orebody and the sampling process quality. Diamond drilling and geophysical logging are the 

most common methods to obtain geological information. According to assumptions based on 

geostatistical tools, the rock mass properties are extrapolated from hole to hole (Villaescusa, 

1998).  

These parameters can impact the orebody delimitation and mislead dilution control: 

• Under-sampling of orebody boundaries.  

• Errors in decisions regarding cut-off grades. 

• Downhole survey errors. 

• Lack of geotechnical characterization.  

2.6.2 Design and Sequencing 

At this stage, engineering, geological, and operating inputs are combined to form a mine 

plan containing the most suitable mining method, stope geometry, and sequencing. The most 

economical mining method selected depends on the orebody's geotechnical properties and 

geometric configuration. Massive mining methods usually have lower operational costs and 

higher dilution than those with more selectivity; finding the balance to maximize the revenue is 

the mine planner's duty. The stope size selection must ensure optimizing the revenue by counting 

the dilution and ore losses.  

Economic evaluation and stability analysis are performed to evaluate the sequencing of 

the stopes, the backfill material, and the ore recovery. However, Villaescusa (1998) identified 
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some parameters that can negatively influence the process and mislead the optimization of 

unplanned dilution: 

• Poorly designed infrastructure. 

• Poor stope design (dimensions). 

• Lack of proper stope sequencing. 

• Lack of economic assessment. 

2.6.3 Stope Development 

Villaescusa (1998) stated that infrastructure location is a factor that can impact dilution 

in stopes if these openings are nearby. Along with Villaescusa, Henning et al. (2007) recognized 

undercutting as a factor contributing to stope instability and dilution. Crosscuts can work as an 

undercut for the stope, and incorrect positioning can increase dilution. Joint sets parallel to the 

stope over the undercut cause instability in the stope walls, so geology mapping is critical to avoid 

this issue. Studies conducted by Yao et al. (Yao, Allen, & Willett, 1999) and Dunne et al. (Dunne, 

Palkanis, Mah, & Vongpaisa, 1996) proved undercutting in stopes could increase unplanned 

dilution up to 5%. 

Villaescusa stated some parameters that negatively influence the mining process at this 

stage: 

• Non-alignment of sill horizons. 

• Poor geological control during mining. 

• Mining not following geological markups. 

• Inappropriate reinforcement schemes. 
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2.6.4 Drilling and Blasting 

The blasting in mining aims to break the rock to a required fragmentation, avoiding 

damage to the stope walls. "The blasting process involves the interaction of the rock mass, the 

explosives, the initiation sequences and the drill hole pattern" (Villaescusa, 1998). However, 

some factors can lead to an increase in overbreak and underbreak: 

• Poor initial markup of holes. 

• Set-up, collaring, and deviation of blast holes. 

• Incorrect choice of blasting patterns, sequences, and explosive types. 

2.6.5 Production Stage 

During the mucking process, ore contamination can occur due to digging the floor by the 

LHDs. Similarly, if the mucking equipment ramps up and leaves broken ore on the floor, the 

production suffers losses. If the mucking time extends, the probability of slough rock in the stope 

increases, resulting in more unplanned dilution. Villaescusa defined the key factors during this 

stage as the following: 

• Mucking of backfill floors. 

• Mucking of fall-offs and stope wall failures. 

• Contamination of broken ore by backfill. 

• Leaving broken ore inside the stopes. 

• Poor management of waste rock (tipped into the ore stream). 
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2.6.6 Mine Management 

Ashcroft (1991) and Villaescusa (1998) determined that management issues can be as 

critical for dilution as technical issues. Usually, the dilution is not assessed correctly and is 

inferred from the mucking tonnage. Also, the blasting pattern is based only on the experience of 

the blasting designer, who only focuses on the production tonnage. Moreover, the lack of 

quantifiable data avoids dilution prediction and control. 

2.7 Mine Planning for Ore Dilution through Numerical Modeling 

Any underground opening produces the re-distribution of the rock mass stresses near the 

excavation. Stresses normal to the stope faces dissipate due to the absence of rock mass in this 

direction. Consequently, a zone of stress relaxation occurs around the opening, causing loss of 

the clamping effect that holds the rock pieces together. The stress relaxation process in the stope 

walls and a fractured rock mass increase the rock slough and dilution (Henning & Mitri, 2007). 

Henning and Mitri (2007) evaluated the potential overbreak volume caused by stress 

relaxation using 3D numerical modelling software. In their research, they replicated the Canadian 

Shield Environment at different depths. The conditions of the rock mass stresses are shown 

inTable 2-1. Hoek-Brown criterion was used to model the rock mass, and the parameters are 

shown in Table 2. This numerical modelling allowed Henning et al. to describe the stress around 

stopes and examine its variation due to parameter changes such as depth, stope geometry, and 

type of stope.    

Table 2-1. Stress parameter used in the 3D numeric modelling. Henning et al. (2007) 

Depth 
Category 

Depth below 
Surface K σH σh σv 
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Shallow 750m 1.9 37.3 MPa 25.2 MPa 19.5 MPa 

Moderate 1500m 1.6 64.2 MPa 47.1 MPa 39.0 MPa 

Deep 2250m 1.5 89.3 MPa 68.4 MPa 58.5 MPa 

 

Table 2-2.Hoek-Bown criterion parameters used in the 3D numeric modelling. Henning et al. (2007) 

 

Through stress relaxation, Henning (2007) introduced dilution density as a new way to 

quantify and predict unplanned dilution. Dilution density is the ratio between the volume limited 

by the iso-line where σ3=0 (or σ3=tensile strength) and the hanging wall area. Two terminologies 

come up in this concept, No-tension Overbreak (σ3=0) and Confinement Overbreak (σ3=tensile 

strength). In the first, the iso-line envelops the overbreak volume that may happen. In contrast, 

Confinement Overbreak is the ratio where the overbreak volume will slough. Figure 4 shows the 

overbreak regimes on hanging walls at different depths. 

GSI 65 Rockmass elastic Modulus (Erm) 23,713 MPa

Hoek-Brown m,s 7.16 / 0.021

Uniaxial tensile Strenght (σt) 0.50 MPa

Uniaxial compressive Strenght 

(σc)
175 MPa

Material Values - Host and orezone Rock Rockmass Values calculated with GSI values
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Figure 2-12. Schematic illustration of the influence of mining depth on hanging wall overbreak regimes: (a) shallow depth, (b) 

moderate depth, and (c) deep. Henning et al. (2007) 

Henning et al. (2007) defined a "typical" stope to evaluate the effects of depth in dilution 

density based on the standard geometry of Canadian long-hole stopes. The dimensions selected 

were 30 m high, 10 m thick, a strike length range of 10 m to 40 m, and the chosen dip angle was 

80 degrees. 

Depth was the first parameter assessed in the 3D numerical model, and the results were 

shown in Figure 5. The dilution density increases when the stope deepens, but the increasing 

ratio varies in each stope size. 15m-strike-length stopes or smaller are less sensitive to depth 

than stopes with larger strike lengths. Hence, the interaction of more than one parameter (size 

and depth) is the leading cause of the unplanned dilution increase. 
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Figure 2-13. Dilution density model according to depth and strike length. Henning et al. (2007) 

In agreement with Mathews (1981) and Potvin (1988), Henning (2007) pointed out that 

the area of the hanging wall is a crucial parameter causing unplanned dilution. The ratio between 

the strike length and the stope's height was tested at a constant depth according to the dilution 

density. Figure 2-14 shows that dilution density improves in small stopes and increases when 

both dimensions enlarge together. Although dilution is not desirable in stopes, small sizes 

increase cost and time during the mining process. Consequently, it is essential to determine the 

acceptable overbreak to keep an economic mining ratio. 
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Figure 2-14. Dilution density as a function of hanging wall dimensions. Henning (2008) 

Stope type in local mine sequencing is a parameter affecting unplanned dilution. 

Depending on the mining sequence, the stope can be bounded by intact rock on both walls (a 

primary stope) or surrounded by backfill stopes (secondary stopes). Henning knew that a stope 

next to a backfilled one would respond differently to rock slough. To test the effect of the stope 

type on dilution density, Henning divided the primary stopes into three sub-groups (P1, P2, P3) 

and the secondary ones in two (S1, S2) (Figure 7). P1 is a primary stope surrounded only by intact 

rock, P2 is over a backfilled P1 stope, and P3 is over more than one backfilled primary stope. S1 

shares a wall with a backfilled stope, and S2 has both walls shared with a backfilled one. 



31 
 

 

Figure 2-15. Stope type in mining sequence. Hemming (2008) 

The dilution density was tested by the type of stope in different strike lengths. Figure 8 

shows that secondary stopes are associated with greater values of dilution density, and the 

increase in S2 from S1 is more significant than any increase in the primary stopes. Indeed, backfill 

walls tend to be much more sensitive to rock slough into the stope. 

 

Figure 2-16. Influence of stope type on dilution density. Henning (2008) 
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2.8 Dilution Metrics 

Defining the metrics of dilution can be complicated due to the wide range of approaches 

to calculating it. Even with multiple mining disclosure codes worldwide, the way to determine 

unplanned dilution is still unstandardized. Palkanis (1986) designed a survey to assess the state 

of knowledge of stope design among 38 underground mines (22 mines replied) throughout 

Canada. The questionnaire investigated several areas, one of which was the assessment of 

dilution into the stopes. The following formulae are the most common ways to calculate dilution  

identified by the survey.    

 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑇𝑜𝑛𝑠 𝑤𝑎𝑠𝑡𝑒 𝑚𝑖𝑛𝑒𝑑

(𝑇𝑜𝑛𝑠 𝑜𝑟𝑒 𝑚𝑖𝑛𝑒𝑑)
 

(2-7) 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

(𝑇𝑜𝑛𝑠 𝑤𝑎𝑠𝑡𝑒 𝑚𝑖𝑛𝑒𝑑)

(𝑇𝑜𝑛𝑠 𝑜𝑟𝑒 𝑚𝑖𝑛𝑒𝑑 + 𝑡𝑜𝑛𝑠 𝑤𝑎𝑠𝑡𝑒 𝑚𝑖𝑛𝑒𝑑)
 

(2-8) 

 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑡𝑢 𝑔𝑟𝑎𝑑𝑒 𝑎𝑠 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑑𝑟𝑖𝑙𝑙 ℎ𝑜𝑙𝑒𝑠

(𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑠𝑠𝑎𝑦 𝑔𝑟𝑎𝑑𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑟𝑎𝑤𝑝𝑜𝑖𝑛𝑡)
 

(2-9) 

 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑡𝑢 𝑔𝑟𝑎𝑑𝑒 𝑎𝑠 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑑𝑟𝑖𝑙𝑙 ℎ𝑜𝑙𝑒𝑠

(𝑀𝑖𝑙𝑙 ℎ𝑒𝑎𝑑 𝑔𝑟𝑎𝑑𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑒 𝑡𝑜𝑛𝑛𝑎𝑔𝑒)
 

(2-10) 
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𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

(𝑇𝑜𝑛𝑛𝑎𝑔𝑒 𝑚𝑢𝑐𝑘𝑒𝑑 −  𝑡𝑜𝑛𝑛𝑎𝑔𝑒 𝑏𝑙𝑎𝑠𝑡𝑒𝑑)

(𝑡𝑜𝑛𝑛𝑎𝑔𝑒 𝑏𝑙𝑎𝑠𝑡𝑒𝑑)
 

(2-11) 

 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛

=  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙 𝑡𝑜𝑛𝑛𝑎𝑔𝑒 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒𝑜𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑓𝑖𝑙𝑙 𝑣𝑜𝑖𝑑 

(2-12) 

 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑛𝑑 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑 (2-13) 

 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =
(x 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑓𝑜𝑜𝑡𝑤𝑎𝑙𝑙 𝑠𝑙𝑜𝑢𝑔ℎ + 𝑦 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑤𝑎𝑙𝑙 𝑠𝑙𝑜𝑢𝑔ℎ)

(𝑂𝑟𝑒 𝑤𝑖𝑑𝑡ℎ)
 (2-14) 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑇𝑜𝑛𝑠 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝𝑒𝑠

(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑜𝑛𝑛𝑎𝑔𝑒)
 

(2-15) 

 

Besides the material that sloughs into the stope, dilution can consider the ore losses in its 

calculation. Ore losses refer to any amount of material left in place or not adequately blasted 

that was not sent to the processing plant due to different operation limitations (Ibarra-Gutierrez 

& LaFlamme, 2021).  In this study case, dilution is defined as the overbreak and slough of material 

from outside the boundaries of the stope compared to the planned ore minus the ore losses 

(2-16). 

 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 (%) =  
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑓𝑟𝑜𝑚 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑂𝑟𝑒 𝐿𝑜𝑠𝑠𝑒𝑠
 

(2-16) 
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3 Methodology 

Statistical methods have been used to predict unplanned dilution before, such as the 

cases of Germain and Hadjigeourgiou (1997) using simple linear regression or Jang et al. (2015) 

using a neural network. This study will go through linear and non-linear regression analysis and 

neural network techniques, including ANN, RNN, and RF. In the following sections, the term 

dilution will denotate only the unplanned dilution resulted after the blasting and hauling 

processes 

3.1 Multiple Linear Regression Analysis (MLRA) 

Regression analysis is a statistical tool that determines relationships between a collection 

of independent variables to a single dependent variable (Uyanik & Guler, 2013). Linear regression 

has three objectives: The first is to determine a linear function that represents the linear 

relationship between the independent variables and the dependent variable better than any 

other function. The second is to investigate the magnitude of the relationship between 

dependent and independent variables by determining the coefficient of variation. Finally, the 

third is to examine whether the relationship between the dependent and the independent 

variables can be generalized to the population (significance) (Tacq, 1997). 

The general formula of the MLRA is assumed to be: 

 𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 … 𝑏𝑛𝑥𝑛 (3-1) 
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Without regression, the best prediction of the dependent variable would be its mean value (𝑦̅), 

and the error of this prediction can be represented by the sum of squares in the dependent 

variable: 

 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑚𝑒𝑎𝑛) =  ∑(𝑦 − 𝑦̅)2 
(3-2) 

 

 

If a regression model exists, the error in the prediction values (𝑦̂) is represented by: 

 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠 (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) =  ∑(𝑦 − 𝑦̂)2 
(3-3) 

 

If the error in regression is smaller than the error with the mean, then the regression model 

improves the prediction. Then the difference ∑(𝑦 − 𝑦̅)2 − ∑(𝑦 − 𝑦̂)2 is the reduction of error, 

dividing this subtraction by the original probability results in proportional reduction, also known 

as 𝑅2. 

 
𝑅2 =  

∑(𝑦 − 𝑦̅)2 − ∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̅)2
 

(3-4) 

Some assumptions must be met to ensure the existence of a linear relationship between 

the independent and dependent variables: 

• Variables are significant and can be generalized: The significance of a variable determines  

if its impact on the predictive model is due to chance or if there is enough statistical 
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evidence to establish so. Stating a "null hypothesis" is the starting point to evaluate 

significance. The significance level is measured through the possibilities that the null 

hypothesis is true. This possibility is expressed usually as the "p-value," and if it is below 

the confidence level desired, the hypothesis is rejected, concluding that the variable is 

significant.  

• The residual values are independent: MLR analysis assumes that each observation in the 

database is independent; thus, the residual according to the regression fit should be 

independent too. One of the most widely used ways of proving independence in the 

observation is the Durbin-Watson Test (3-5)  (Tillman, 1975): 

 
𝑑 =

∑ (𝑒𝑡 − 𝑒𝑡−1)2𝑇
𝑡=2

∑ 𝑒𝑡
2𝑇

𝑡=1

 
(3-5) 

 Where: 

o T: The total number of observations 

o 𝑒𝑡: The 𝑡𝑡ℎ  residual from the regression model 

o d: The Durbin-Watson variable 

The lack of independence between observations is considered as an autocorrelation 

problem. Autocorrelation denotes that there is a relationship between the observations 

and the dependent variable not only depends on the independent variables but also on 

more variables that are not considered. If d=2 indicates there is no autocorrelation, and 

if it is greater than 2.5 or less than 1.5, then there is a potential autocorrelation problem. 
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• The variance of the residual is constant: MLR assumes that the variance of the residual 

along the linear model has constant variance. If this is not the case, the linear model is 

facing a heteroscedasticity problem. The presence of heteroscedasticity makes the model 

unreliable. The lack of constant variance in the residual denotes that the regression model 

declares a variable as significant when actually it is not. 

The simplest way to determine if this assumption is met is with a fitted value vs residuals 

plot (Figure 5-1). It can be graphically determined if the variance is increasing or 

decreasing along the linear model. Heteroscedasticity can be determined using student 

tests (Koenker, 1981) or estimator formulae (Muller & Stadtmuller, 1987); however, it can 

turn out to be highly complex. 

• The values of the residuals are normally distributed: Multiple linear regression assumes 

the existence of a linear relationship between the independent variables and the 

dependent variable. If this assumption is met, then the residuals are normally distributed 

along the linear model. The easiest way to determine the linearity between the variables 

is to create a Normal Probability Plot from the residuals, which is a graphical technique to 

assess whether the residual is normally distributed. 

• Multicollinearity: The predictor variables should be independent of each other, which 

means that there is no correlation between the independent variables. The existence of 

multicollinearity in the regression analysis makes the determined coefficients imprecise 

due to the dependency between two or more predictor variables. Also, the accuracy of 

the significance test is reduced, which makes it difficult to determine the actual 

statistically significant variables. The two most common ways to detect multicollinearity 
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are the creation of a matrix table of correlation coefficients between all the variables and 

the use of VIF (variance inflation factor). The correlation matrix helps us to understand 

the relationship between the variables much better and to determine how to manage 

them. Dealing with multicollinearity can be problematic, since it is important to 

determine how to resolve it: remove variables, combine them, or perform the analysis 

with the correlated variables because both are needed for further analysis.   

Additionally, the dependent variables to be used in the model should be statistically 

significant so they can be generalized to the population. In order to determine which variables 

are significant, a step-by-step iterative process must be performed to select the independent 

variable to be used in the linear model. This iterative process is called Stepwise Regression. 

The goal of the Stepwise Regression is to select the set of significant variables to be used 

in the regression analysis; this is done by adding or removing potential explanatory variables and 

testing their significance (p-value) in each iteration. There are three approaches for Stepwise 

Regression: 

• Forward Selection: Starts with no variables in the analysis. The significance of each 

variable is analyzed as it is added, and the most significant ones are kept (user should 

select a confidence level).  

• Backward Selection: Starts with all the independent variables, and the ones with lowest 

significance (highest p-value) are deleted one at a time. The iteration stops when all the 

variables are into the confidence level.  
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• Bidirectional elimination: Combines both previous methods. This method adds and 

eliminates variables looking for the best set of significant variables.  

3.2 Multiple Non-Linear Regression (MNLR) 

Non-linear regression is a regression model that uses a non-linear function between the 

dependent variables. MNLR determines the coefficient and parameter of the model minimizing 

the residual sum of squares (the distance of the datapoints to the curve). However, unlike 

multiple linear regression, MNLR cannot be solved in one step in a deterministic way; instead, 

the model has to be created iteratively. During the process, the iteration keeps adjusting the 

model parameters to improve the fit of the curve (Motulsky & Ransnas, 1987). 

One of the most common algorithms used to determine a MNLR model is the Gauss-

Newton method which uses steepest descent moves along the direction of the steepest descent 

curve with small steps (Motulsky & Ransnas, 1987). The initial iterations approach the goal 

quickly, while later iterations usually take much more time to minimize the residual sum of 

squares.  

Fitting a curve demands a large amount of computational resources due to the number 

of iterations; this demand drastically increases when the number of variables also increases. To 

simplify the process and reduce the time to determine the non-linear model, a transformation of 

the data must be done. This method will transform the curved relationship into a linear one to 

perform a linear regression. One of the most common linear transformations is applying  

logarithm in each variable: 

The general shape of a Multiple Non-Linear Regression function is assumed to be: 
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 𝑌 =  𝑏0(𝑥1)𝑏1(𝑥2)𝑏2 … (𝑥𝑛)𝑏𝑛 (3-6) 

The estimation of the parameters 𝑏1-𝑏𝑛 in a non-linear relationship can be performed by an 

alteration to a linear domain using a log transformation. The new shape of the MNLR is changed 

to: 

 log(𝑌) = log(𝑏0) + 𝑏1 log(𝑥1) + 𝑏2 log(𝑥2) … 𝑏𝑛log (𝑥𝑛) (3-7) 

After the log transformation, the parameter 𝑏𝑖 can be determined by the traditional linear 

regression method. In this case, the regression is applied to log (𝑌) on log(𝑥1) +

log(𝑥2) … log (𝑥𝑛).  

After the transformation, the data is analyzed with a Multiple Linear Regression, and the 

assumptions required have to be met. Transforming the data to perform linear regression has 

several advantages, and the most important one is the simplicity of the process. However, the 

linear regression model enhances errors when it is used to predict y values that are out of the 

range used to create the model; in other words, this MNLR model has to be used carefully when 

predicting data out of the training data set.   

3.3 Artificial Neural Network 

Wang (2003) defined an Artificial Neural Network as a group of neurons arranged in layers 

that mimic the sophisticated interconnection of the human brain neurons in order to learn 

(Figure 3-1). The main structure of an ANN is the array of "neurons" in input, hidden, and output 

layers (Figure 3-1). The "neurons" represent each input variable in the first layer (input layer), but 

the neurons are independent from the initial variables in the following layers. Each neuron is fully 
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interconnected to the others in the next layer, and these neuron connections represent weights 

(coefficients). The optimum weights lead to the model's best accuracy through a backward 

process with a learning algorithm during the training stage (Jang, Topal, & Kawamura, 2015). The 

optimum weights can be determined using the Adam (Adaptative Moment Estimation) Algorithm 

(Kingma & Lei Ba, 2015), which is a stochastic gradient-based optimization proposed by Kingma 

and Lei Ba (2015).  

The Adam Algorithm has replaced the classic stochastic gradient descent procedures in 

determining the network weights. The previous methods used to take hours to perform several 

iterations to find the optimum (or close) results. In contrast, the Adam Algorithm computes 

adaptive learning rates (steps) to move forward in the gradient descent estimation. The algorithm 

keeps updating the gradient of the function assessed in steps determining minimums and 

maximums along the loss function by analyzing its gradient. The weights that lead to the 

minimum loss function will be the optimum ones for the predictive model (the neural network). 
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Figure 3-1. Neural Network Layout 

The value (ℎ𝑖) of a neuron 𝑖 in any hidden or output layer is defined by the following formula: 

 

ℎ𝑖 =  𝜎 (∑ 𝑉𝑖𝑗𝑥𝑗 + 𝐵𝑖

𝑁

𝑗=1

) 

(3-8) 

 

Where 𝜎 is the activation function, 𝑁 is the number of neurons in the previous layer, 𝑉𝑖𝑗 is the 

weight, 𝑥𝑗 is the value of the neuron in the previous layer, and 𝐵𝑖 is the bias (a constant 

determined for each neuron).  

The primary purpose of the activation function is to introduce nonlinearity into the neural 

network (Wang, 2003). Many activation functions can be applied to neural networks, and 

choosing the most suitable can be challenging. The Rectified Linear Unit function is the most 
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widely used in predictive models due to its simplicity. The following function is applied to every 

neuron in a neural network model:  

 

𝜎(ℎ𝑖) = {

𝜎(ℎ𝑖) = 0                            ℎ𝑖 < 0

𝜎(ℎ𝑖) = ∑ 𝑉𝑖𝑗𝑥𝑗 + 𝐵𝑖

𝑁

𝑗=1

    ℎ𝑖 ≥ 0 
 

(3-9) 

 

When the architecture of a neural network is set, the training process occurs. The neural 

network model is trained by an input data set called the training data set. The weights and biases 

are adjusted to minimize the error function in the training process, which usually compares the 

model and actual output. The most used metrics in error functions are mean square error and 

mean absolute error (Wang, 2003).  

The training data set must be large enough for the model to identify the trends embedded 

in the data set. During training, the fitting process can lead to overfitting the data; hence, a 

validation data set is applied to avoid it. Also, the validation set is independent of the training set 

and allows for testing the model's accuracy and picking the best according to its performance.  

3.4 Random Forest 

Breiman (2001) introduced the Random Forest algorithm as a combination of predictor 

trees in which each tree depends on a group of predictor variables sorted in a p-dimensional 

vector   𝑋 = (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝)𝑇 and a result or response variable 𝑌 = (𝑦1, 𝑦2, 𝑦3 … 𝑦𝑇). The main 

objective of this algorithm is to determine a prediction function 𝑓(𝑋) to forecast Y, and the 

prediction of this function is given by the minimization of a loss function 𝐿(𝑌, 𝑓(𝑋)). Generally, 
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the metrics used of L are square error loss  𝐿(𝑌, 𝑓(𝑋)) =  (𝑌 − 𝑓(𝑋))2 or absolute error loss 

𝐿(𝑌, 𝑓(𝑋)) =  |𝑌 − 𝑓(𝑋)|. In this case study, absolute error will be used to standardize the 

metrics with the machine learning techniques.  

The prediction function 𝑓(𝑋) is made up of an ensemble of classifiers or "base learners," 

ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥) … ℎ𝑗(𝑥). The jth classifier is typically detonated as ℎ𝑗(𝑋,⊝𝑗), where ⊝𝑗 is an 

independent random variable which describes the randomness in the node splitting in the 

predictor trees. A splitting node is defined by a binary partition which is the base unit for each 

tree. Each node splits the data set into two descendant nodes, called "terminal nodes." In a 

continuous variable, the split is determined by a specific value, and all the entries smaller than 

the split value go to one terminal node, and the rest go to the second terminal node. Testing 

every predictor's possible splits leads to finding the best possible split according to the "goodness 

of fit" criteria.  

A typical criterion used in a split node is the mean squared residual at each terminal node: 

 
𝑄 =  

1

𝑛
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 
(3-10) 

Where n is the sample size of the terminal node and 𝑦𝑖  𝜖 (𝑦1, 𝑦2 … 𝑦𝑛) is a subgroup of Y that was 

split by the splitting node. Therefore, the splitting criteria for the two possible descendants (left 

and right) determine 𝑄𝐿 𝑎𝑛𝑑 𝑄𝑅 and their sample size as 𝑛𝐿 𝑎𝑛𝑑 𝑛𝑅. The best possible split will 

be determined by the "goodness of fit" criteria which require minimizing 𝑄𝑠𝑝𝑙𝑖𝑡 =  𝑄𝐿𝑛𝐿 + 𝑄𝑅𝑛𝑅. 

When the best split has been chosen, the data partitioned into two goes through the same 

process as the original node and the data keeps being split. This process continues until the 
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sample size of the descendants meets a stopping criterion previously defined by the user. When 

the process of splitting ends, the last descendants take the name of "terminal nodes." All the split 

and terminal nodes define an individual tree, which is ready to predict a new data set 𝑃(𝑋, 𝑌).  

In a group of predictor trees, which is the main structure of the Random Forest algorithm, 

the prediction is the unweighted average of the predictions made by each individual tree. If there 

are J predictor trees, the prediction of the forest is defined as: 

 

𝑦̂ = 𝑓(𝑋) =
1

𝐽
∑ ℎ(𝑋)

𝐽

𝑗=1

 

(3-11) 

The combination of the randomness in the selection of the split values and a large number of 

predictor trees prevent overfitting in the algorithm.  

3.5 Recurrent Neural Network (RNN) 

The recurrent neural network contains one hidden layer or layers that are recurrent. The 

term recurrent denotes neurons in this layer determined by both the input variables and the past 

states of the same neurons (previous state). The standard recurrent layer is the vectorial sum of 

the layer's inputs and the recurrent information (the prior state of the neurons). Because the 

vector sum is a repetitive procedure in training and predicting processes, the sigmoid or 

hyperbolic tangent transformation functions are required to avoid the values in neurons 

diverging out of their ranges (Figure 3-1).  
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Figure 3-2. Recurrent layer 

The recurrent neural networks are successful when the output depends on the input 

variables and the previous results or states. However, the standard recurrent neural layer is 

incapable of handling long-term dependencies. Hochreiter & Schmidhuber (1997) introduced the 

long short-term memory layer. They increase the capacity to remember beyond the previous 

state by adding  "gates" to the layer. The "input gate" uses the input variables and the recurrent 

information to select which variables will be stored in the cell state while the "output gate" 

decides the output of the layer state with the information provided by the input gate (Figure 3-

2). The gates are vectors populated with 0 and 1. Hence, the vector multiplication of the gates 

will allow which information will pass (when multiplied by 1) and which will be filtered (when 

multiplied by 0). The hyperbolic tangent function in both gates allows the creation of the gate 

vector (combination of vectors populated with 0 and 1s). 
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Figure 3-3. LSTM recurrent layer 

Several variations of the LSTM layer have been developed in the last few years. The most 

famous one is the LSTM layer with Forget Gate, which adds an initial layer, previous to the input 

gate, that allows forgetting information with a vectorial multiplication. In this case study, the 

standard LSTM layer will be used.  

  Similar to neural networks, in RNN, the hidden and recurrent layers are based on weights 

and biases, which are optimized using the Adam Algorithm (Kingma & Lei Ba, 2015). Optimization 

in RNN is extended to determine the optimum combination of 0 and 1 in the gates inside the 

recurrent layer.  

Sorting the data is the most crucial part of RNN. The model's prediction accuracy depends 

on the recurrent information stored on the layers, which will be used in the subsequent 

prediction. If the data has no order or is sorted incorrectly, RNN is not applicable.  
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3.6 Workflow  

The workflow of this research is summarized in Figure 3-4. 

 

Figure 3-4. Summary of research workflow  

 



49 
 

4 Case Study 

The predictive capability of any statistical model depends on the data quality gathered. In 

this analysis, the data set consists of 99 entries with 68 parameters from an underground mine 

in North America. The primary mining method applied is longitudinal retreat long-hole. The 

stopes are partially backfilled (one-third to half of the volume) with cemented rockfill, and the 

rest is filled with regular rockfill. 

The independent variables were grouped into the six categories listed below. 

4.1.1 Location 

• Zone: The mine was divided into two significant zones (1 & 2). Each zone was defined 

according to the two orebodies that have been mined (Figure 4-1). 

 

Figure 4-1. 3D Plot of the zones in the mine. 
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• X, Y, and Z coordinates: The three coordinates of the stopes are used as independent 

variables in the analysis.  

• Level and depth: These two variables are related to the Z coordinate of the stopes. Both 

were introduced in the analysis but discarded during the backward process of the 

regression analysis.  

• Location panel: This variable represents the location of the stope in the longitudinal axis 

according to the orebody (Figure 4-2). 

 

Figure 4-2. 3D plot of the Panels in the mine 

4.1.2 Stope Geometry 

• Angle: This is the angle generated between the hanging wall and the horizontal reference.  

• Stope height, width, and length: The three dimensions of the stopes during the planning 

process.  
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• Number of hanging walls: The hanging wall can change its angle along itself. The number 

of hanging walls is the number of angle changes plus one (Figure 4-3). 

 

Figure 4-3. Number of Hanging Walls 

• Infrastructure intersection (lower part of the stope): This is a binary variable to define if 

there is any other infrastructure (tunnel) in the intersection of the stope in the lower level.  

• Infrastructure intersection (upper part of the stope): This is a binary variable to define if 

there is any other infrastructure (tunnel) in the intersection of the stope in the upper 

level.  

• Height with angle: This height with angle is calculated using the angle of the stope. 

𝐻𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 =  
𝐻𝑒𝑖𝑔ℎ𝑡

𝑆𝑖𝑛(𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑠𝑡𝑜𝑝𝑒)
 

• Hydraulic radius (roof): The hydraulic radius is defined as the area of the surface (in this 

case, the roof of the stope) divided by the perimeter. 

• Hydraulic radius (hanging wall and foot wall): The hydraulic radius is defined as the area 

of the surface (in this case, the hanging wall of the stope) divided by the perimeter. 

• Planned tonnage: This is the volume of the stope calculated using its dimensions (height, 

width, length, and angle) times the rock density.  
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4.1.3 Drilling and Blasting 

• Burden and spacing: Spacing is the distance between two blast holes in the same row, 

and the burden is the distance between rows in the drilling design.  

• Mining method: This is a nominal variable. The methods used in this mine are Longitudinal 

(the most used method), Longitudinal-sill, Avoca, primary, and secondary. 

• Powder factor: The relationship between the amount of rock blasted and how much 

explosive is used in the blasting process. This variable is calculated with the "planned 

tonnage" and the "quantity of explosive" variables.  

• Number of shots: Number of shots that the blasting process takes to break all the stope.  

• Explosive (type): This variable was not used. The blasting process of all the stopes used 

the same type of explosive: emulsion subtek. 

• Drilling direction: This is a binary variable that defines the drilling process's direction. This 

stope could be drilled from the lower level to the upper level (up) or vice versa (down).  

• Blasting cap (type): This variable was not used. The blasting process of all the stopes used 

the same type of blasting cap: electronic. 

• Driller model: This nominal variable refers to the five different models of drillers that are 

used in the mine.  

• Explosive quantity: The amount of explosive used in the blasting process.  

• Drill type (mode): This nominal variable refers to the type of drill.  

• Drilling meters planned: The total meters drilled in the drilling process.  
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• Drilling diameter: The size of the drill (diameter) used in the driller.  

4.1.4 Rock Mass Stability 

• N' Number (hanging wall and back wall): These two variables were not used in the analysis 

due to their invariance along all the stopes in the database. 

• Lithology (foot wall and hanging wall): Two binary variables that define the lithology of 

the foot wall or hanging wall (Tuff or Diorite). 

• Shear zone (foot wall and hanging wall): Two nominal variables that describe the presence 

and size of shear zones in the foot wall and hanging wall. 

• Overbreak in development: This set of variables defines the length of the overbreak in the 

stopes due to the upper and lower development infrastructures. The overbreak is 

produced when the levels used to drill the stope are wider than the stope, producing an 

overbreak in the top and the bottom of the stope.  

4.1.5 Rock Support 

• Wall and roof support density: Two variables that define the support density of the walls 

or roof in the stope. This is a specific metric used in the mining company.  

• Cable 10 m or 6 m: The number of cables used in support of the rock in different parts of 

the stope (lower and upper part). 

• Cable length: The total length of cable used in each part of the stope (lower and upper 

part). 

• Height and length not supported: These two variables refer to the distance in each 

direction of the stope that was not supported in the mining process.  
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4.1.6 Mining Sequence 

• Span time before mucking (ore in place), during mucking, and backfilling: Three variables 

measure the time in days that it takes to start mucking after the blasting, mucking the 

ore, and backfilling the stope. 

• Type of backfill: There are three types of backfill used in this mine (rockfill, cemented 

3.5%, and cemented 6%). 

• Neighbour backfilled: This set of variables describes whether the neighbour stopes were 

backfilled before the blasting or are intact rock. 
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Table 4-1. List of Variables 

Location 

• Zone 

• Level 

• X coordinate 

• Y coordinate 

• Z coordinate 

• Depth 

• Location panel 

Stope Geometry 

• Angle 

• Stope height 

• Stope width 

• Stope length 

• Number of hanging walls 

• Infrastructure intersection (lower part of the 
stope) 

• Infrastructure intersection (upper part of the 
stope) 

• Height with angle 

• Hydraulic radius (roof) 

• Hydraulic radius (hanging wall and foot wall) 

• Planned tonnage 

Drilling and Blasting 

• Burden 

• Spacing 

• Mining method 

• Powder factor 

• Number of shots 

• Explosive (type) 

• Drilling direction 

• Blasting cap (type) 

• Driller model 

• Explosive quantity 

• Drill type (mode) 

• Drilling meters planned 

• Drilling diameter (inches) 

 

Rock mass stability 

• N` (Stability number - hanging wall) 

• N` (Stability number - back wall) 

• Lithology foot wall 

• Lithology hanging wall 

• Shear zone (foot wall) 

• Shear zone (hanging wall) 

• Overbreak in development - FW down 

• Overbreak in development - HW down 

• Overbreak in development - FW up 

• Overbreak in development - HW up 

 

Rock Support 

• Wall support density 

• Roof support density 

• Cable 10 m stope lower part 

• Cable 6 m stope lower part 

• Cable 10 m stope upper part 

• Cable 6 m stope upper part 

• Cable length lower part 

• Cable length upper part 

• Height not supported 

• Length not supported 

 

Mining Sequence 

• Span time of mucking 

• Time for drilling 

• Type of backfill 

• Down neighbour is backfilled 

• East neighbour is backfilled 

• Up neighbour is backfilled 

• West neighbour is backfilled 

• Span time ore in place 

• Span time backfilling 
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5 Results 

5.1 Analysis of Multiple Linear Regression (MLR) Results 

MLR assumptions were scrutinized to determine the existence of a linear relationship 

between the independent and the dependent variables. A lack of significance in several variables 

was detected in the first attempt using the MLR model. Therefore, stepwise regression methods 

removed the variables without the required statistical significance level (95% confidence 

interval), and the output was an MLR model with 31 variables (Table 5-1). However, the analysis 

of the standardized errors shows heteroscedasticity, which means that the error variance 

increases when the forecasted dilution value increases (Figure 5-1).  

 

 
Figure 5-1. Scatterplot Standardized Residuals - MLR 
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Heteroscedasticity rejects the existence of a linear relationship between variables and 

dilution. Reducing the number of variables can help to find a linear relationship between dilution 

and the significant variables; however, this will reduce the yield,  𝑅2 = 0.790. 

Table 5-1. Significant Variables in the MLR model 

Variables Non-standardized 
coefficients 

Standardized 
coefficients 

Sig. 

B Error Beta 

(Constant) 109.920 171.119   0.523 

Zone -2.259 0.418 -4.628 0.000 

Angle -0.018 0.003 -0.862 0.000 

X coordinate -0.005 0.002 -4.320 0.007 

Y coordinate 0.014 0.002 8.399 0.000 

Z coordinate -0.006 0.001 -2.681 0.000 

Burden -2.915 0.665 -5.650 0.000 

Stope height 0.049 0.015 1.261 0.002 

Location panel 0.216 0.047 8.542 0.000 

Stope width 0.033 0.008 1.064 0.000 

Spacing 3.081 0.658 5.994 0.000 

Wall support density 0.904 0.167 0.626 0.000 

Roof support density  0.230 0.064 0.322 0.001 

Cable 10 m stope upper part -0.015 0.004 -0.305 0.000 

Cable 6 m stope upper part -0.002 0.001 -0.215 0.043 

Time for drilling (days) 0.011 0.002 0.403 0.000 

Cable length lower part 0.000 0.000 0.252 0.020 

Height not supported -0.011 0.002 -0.429 0.000 
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Table 5 1. Significant Variables in the MLR model 

 

Hydraulic radius (roof) -0.178 0.030 -0.691 0.000 

Hydraulic radius (hanging wall 
and foot wall) 

-0.414 0.087 -2.268 0.000 

Overbreak in development - HW 
down 

-0.087 0.016 -0.468 0.000 

Overbreak in development - HW 
up 

0.098 0.027 0.386 0.001 

Method-Avoca 0.219 0.073 0.389 0.004 

Lithology FW - Diorite -0.106 0.036 -0.286 0.005 

Lithology HW - Diorite 0.229 0.051 0.383 0.000 

Type of backfill – cement 6% -0.244 0.039 -0.743 0.000 

Direction of drilling - up -0.273 0.072 -0.351 0.000 

Infrastructure intersection 
(lower part of the stope) 

-0.212 0.036 -0.593 0.000 

Down neighbour is backfilled – 
intact rock 

0.357 0.065 1.142 0.000 

Down neighbour is backfilled – 
cement 6% 

0.135 0.062 0.331 0.035 

Down neighbour is backfilled – 
cement 3.5% 

0.249 0.062 0.598 0.000 

East neighbour is backfilled – 
intact rock 

0.374 0.099 1.061 0.000 

East neighbour is backfilled – 
cement 3.5% 

0.334 0.103 0.780 0.002 

East neighbour is backfilled – 
cement 6% 

0.230 0.101 0.358 0.026 

East neighbour is backfilled – 
rockfill 

0.473 0.124 0.434 0.000 

Up neighbour is backfilled – 
cement 6%  

-0.199 0.056 -0.284 0.001 
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Table 5 1. Significant Variables in the MLR model 

 

Shear zone HW - enclosed -0.167 0.062 -0.342 0.009 

Driller model - CUBEX01 0.229 0.039 0.703 0.000 

Driller model - FLXLH707 0.158 0.067 0.177 0.022 

West neighbour is backfilled – 
cement 6%  

0.123 0.040 0.270 0.003 

 

5.2 Analysis of Multiple Non-Linear Regression (MNLR) Results 

Because the required assumptions were not fulfilled to fit a linear regression model to 

the data set, an MNLR analysis was performed to obtain a suitable predictive model. In this case, 

a non-linear relationship between the variable was assumed, which led to the model in (5-1): 

Working with a power model is much more complex than with an MLR; therefore, 

modifying it through a log transformation is a feasible solution. This modification allows 

calculating the power coefficients using an MLR analysis. 

 ln(𝑌̂) = ln(𝑏0) + 𝑏1 ln(𝑥1) +𝑏2 ln(𝑥2) + ⋯ 𝑏𝑛ln (𝑥𝑛) (5-1) 

 The power model established by MNLR proved suitable for the data set because all the required 

assumptions were met. The significant variables were selected through backward stepwise 

regression analysis, shown in Table 5-2. The variables with the highest impact (standardized 

coefficients) on dilution belong to the Stope Geometry and Drilling and Blasting categories.  
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Table 5-2. Significant Variables in the MNLR model 

Variables Non-standardized 
coefficients 

Standardized 
coefficients 

Sig. 

B Error Beta 

(Constant) -1613.657 545.737   0.004 

Zone -1.019 0.313 -2.087 0.002 

Method - Primary -0.108 0.044 -0.202 0.018 

Lithology HW - Tuff -0.164 0.052 -0.274 0.003 

Drilling direction - Up -0.216 0.082 -0.277 0.011 

Infrastructure intersection (lower part 
of the stope)  

-0.116 0.034 -0.324 0.001 

Down neighbour is backfilled – intact 
rock 

0.122 0.032 0.390 0.000 

Down neighbour is backfilled – rock 
fill 

-0.132 0.063 -0.205 0.040 

East neighbour is backfilled – intact 
rock 

0.087 0.028 0.245 0.003 

Up neighbour is backfilled – intact 
rock 

0.195 0.055 0.279 0.001 

Driller model - CUBEX01 0.172 0.038 0.528 0.000 

Angle -1.041 0.266 -0.804 0.000 

Level 0.501 0.183 1.040 0.008 

Y coordinate 156.953 53.029 3.421 0.004 

Burden -4.613 1.676 -2.946 0.008 

Stope height  3.200 0.857 4.516 0.000 

Stope width 1.874 0.910 3.343 0.043 

Location panel 1.080 0.417 1.418 0.012 

Stope length 2.729 0.787 3.403 0.001 
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Table 5 2. Significant Variables in the MNLR model 

Spacing 5.140 1.660 3.295 0.003 

Wall support density 0.739 0.175 0.454 0.000 

Roof support density 0.197 0.091 0.198 0.033 

Cable 10 m stope upper part -0.034 0.015 -0.184 0.022 

Powder factor  3.590 1.497 2.380 0.019 

Time for drilling 0.073 0.024 0.269 0.003 

Explosive quantity -1.841 0.776 -4.916 0.020 

Length not supported -0.046 0.013 -0.324 0.001 

Hydraulic radius - HW -2.727 0.878 -2.393 0.003 

Overbreak in development - HW down -0.121 0.039 -0.249 0.003 

Overbreak in development - HW up 0.130 0.042 0.306 0.003 

 

ANOVA table (Table 5-3) of the MNLR model exhibits a 𝑅2 = 0.727. The 29 significant variables 

in Table 5-2 can explain only 72.7% of the variation in dilution.  

Table 5-3. ANOVA Table of MNLR model 

 

Sum of 
Squares 

Degrees of 
freedom 

Mean 
Squares 

F Sig. 

Regression 1.693 31 0.055 5.75 <.001 

Residual 0.637 67 0.010 

  

Total 2.330 98 
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5.3 Analysis of Artificial Neural Network Results 

Defining the neural network's optimum structure can be challenging because there is no 

theory on the number of hidden layers or neurons a model should have. The optimum numbers 

depend on experimentation with iterations to determine the best architecture. The data set was 

tested for 1 to 5 hidden layers with 2 to 200 neurons each. According to the accuracy of the 

forecasting of the validation set, the optimum architecture was the following: 

• Number of hidden layers: 4 

• Number of neurons: 87, 110, 79, 111 

Special attention was paid to choosing this model's activation function and the optimizer 

algorithm. Many activation functions were proved during the process; however, ReLU (Rectified 

Linear Units) had the best performance according to our data set; in many cases, the other 

functions led the model to a "dead" neural network (where only one neuron is activated in all of 

the process, getting the same results beside the inputs). Also, the Adam Algorithm (Kingma & Lei 

Ba, 2015) was selected due to its fast and straightforward convergence analysis that estimates 

the optimum weights of the neurons. Important parameters required in the Adam Algorithm are 

the learning rate (steps) and the batch size of data (random subsamples). If the batches are too 

small, the algorithm will not converge on the optimum weights, and if the batches are too big, 

there will be overfitting issues. Something similar occurs with the size of the learning rate. Large 

steps cannot detect the optimum weights in the iterations, and tiny steps can trap the algorithm 

in a local optimum.  
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The model was assessed through iteration to determine the optimum learning rate and 

the batch size: 

• Learning rate: 0.001 

• Batch Size: 45 

The training process used two sub-datasets: the training data set with 76 stopes and a validation 

data set to avoid overfitting with 13. Part of the initial data set was taken aside (10 stopes) from 

the learning process. The test data set's correlation coefficient (r) was 0.842 (𝑅2 = 0.710), and 

the MEA was 3.9% in dilution forecasting.  

 

Figure 5-2. Scatterplot - Forecast values and actual values (ANN) 
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5.4 Anlaysis of Random Forest Results 

Random Forest models do not require a validation data set; their classification algorithm 

based on creating decision trees prevents this model from falling into overfitting issues. As with 

ANN models, defining optimum hyperparameters is required, specifically the number of 

estimators and the minimum number of samples to splits. In this case, both were determined by 

random search through iterations. The number of estimators or trees was 349, and the minimum 

number of samples split was 7 in this model.  

The same test data set used with the ANN model was assessed with the RF model to 

compare both accuracies.  

 

Figure 5-3. Scatterplot - Forecast values and actual values (RF) 

The test data set's correlation coefficient (r) was 0.925 (𝑅2 = 0.855), and the MEA was 5.00% in 

dilution forecasting. The Random Forest model not only obtained better results than the ANN 
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model, but RF also allowed the calculation of the importance of each variable. The complexity of 

the interaction of the weights in a neural network makes it impossible to follow the significance 

of each variable. The ten variables with the highest impact on dilution according to the RF model 

are shown in Table 5-4. 

Table 5-4. Variable ranking according to the RF model 

Rank Variable Impact 

1 Length not supported 9.47% 

2 Powder factor 8.75% 

3 Height not supported 8.00% 

4 Span time ore in place 4.20% 

5 Hydraulic radius (roof) 3.92% 

6 Cable length upper part 3.18% 

7 Stope width 3.14% 

8 Overbreak in 
development - HW up 

3.00% 

9 Y coordinate 2.81% 

10 Planned tonnage 2.74% 

 

5.5 Analysis of Recurrent Neural Network Results 

The most critical step for the recurrent neural network method is to define how to sort 

the data. The recurrent information required in the algorithm is based on the entry's order; 

sorting the data requires a variable to follow. Multiple ways of sorting were tried during the 

process, and the first ones were by the coordinates. Sorting the stopes following coordinates (X, 
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Y, or Z) created dependencies between nearby stopes. However, these dependencies were 

useless when trying to predict new data sets where the mined stopes were not close to each 

other and usually belonged to different zones. Finally, the data were sorted according to the 

blasting date of each stope. The dependency on time was suitable for predicting the new data 

set where the model would work because it was sorted according to the planned blasting date.  

After sorting the data sets, defining the optimal model structure was required before 

training the model. Random search methodology was used to optimize the model's architecture: 

to determine the number of neurons in the hidden layers, the model was tested with from 2 to 

150 neurons in each layer. The learning ratio of the Adam Algorithm was optimized using a range 

from 0.1 to 0.01. The hyperparameters selected are the following: 

• Learning ratio: 0.01 

• Number of neurons in the recurrent layer: 125 

• Number of neurons in the additional hidden layer: 76 

The training process used two sub-datasets, the training data set with 76 stopes and a validation 

data set to avoid overfitting with 13 stopes, and part of the initial data set was taken aside (10 

stopes) from the learning process. The test data set's correlation coefficient (r) was 0.637 (𝑅2 =

0.406), and the MEA was 11.7% in dilution prediction.  
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Figure 5-4. Scatterplot - Forecast values and actual values (RNN) 

5.6 Comparison with a traditional method 

The primary objective of this research is to enhance the accuracy of unplanned dilution prediction 

by utilizing both conventional methods and emerging machine learning techniques. To assess the 

effectiveness of the newly developed predictive models, the accuracy of each model was 

evaluated using a test dataset and compared with the ELOS method. A summary of the results is 

presented in Table 5-5. Notably, five models developed in this study have demonstrated a similar 

or higher level of accuracy compared to the traditional ELOS method, as depicted in Figure 5-5. 
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It is worth highlighting that ELOS is a static method, and its performance will not improve over 

time, whereas the accuracy of machine learning models will consistently enhance. 

 

Figure 5-5. Accuracy comparison of each model
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Table 5-5. Results table - Comparison with ELOS 

Actual 
Values 

ELOS Non-Linear Regression Neural Network Random Forest Rec. Neural Network 

Predicted Error Predicted Error Predicted Error Predicted Error Predicted Error 

0.095 0.094 0.001 0.190 -0.095 0.111 -0.016 0.157 -0.062 0.133 -0.038 

0.347 0.405 -0.058 0.378 -0.031 0.247 0.100 0.330 0.017 0.400 -0.053 

0.190 0.186 0.005 0.221 -0.031 0.207 -0.016 0.249 -0.059 0.426 -0.236 

0.155 0.141 0.014 0.084 0.071 0.135 0.020 0.224 -0.069 0.227 -0.072 

0.096 0.105 -0.010 0.032 0.064 0.131 -0.035 0.157 -0.062 0.152 -0.057 

0.254 0.139 0.115 0.238 0.016 0.199 0.056 0.233 0.022 0.301 -0.047 

0.096 0.130 -0.034 0.032 0.064 0.131 -0.035 0.157 -0.062 0.152 -0.057 

0.139 0.095 0.044 0.075 0.064 0.145 -0.006 0.200 -0.061 0.255 -0.117 

0.169 0.097 0.072 0.227 -0.058 0.118 0.051 0.179 -0.009 0.471 -0.302 

0.133 0.107 0.025 0.186 -0.054 0.185 -0.053 0.206 -0.074 0.326 -0.193 

  Correlation MAE Correlation MAE Correlation MAE Correlation MAE Correlation MAE 

  0.845 0.038 0.832 0.055 0.842 0.039 0.925 0.050 0.637 0.117 
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5.7 Variable Significance and Ranking 

In addition to prediction of dilution, ranking the variables affecting unplanned dilution is 

required to develop a dilution management strategy. Machine learning techniques can be highly 

complex, and tracing the weights of each variable can turn out to not be possible. However, the 

Random Forest and Regression models are able to show the importance of each variable. Figure 

5-6 shows the significant variables according to Multiple Non-Linear Regression Analysis, where 

variables related to blasting (explosive quantity, powder factor, burden, and spacing), stope 

geometry (length, width, height, and hydraulic radius), and location (Y coordinate and zone) are 

the variables with higher importance to the prediction of dilution.  Nonetheless, the most critical 

significant variables according to Random Forest are related to rock support (length and height 

not supported and cable length), blasting (powder factor), stope geometry (hydraulic radius, 

stope width, and planned tonnage), the span of time the ore is placed in the stope, and the 

infrastructure around the stope (Figure 5-7).   

Most of the most significant variables in both methods are similar, such as blasting and 

stope geometry, which denotes the importance of the design of each stope and the blasting 

process.  However, the Random Forest models give extra attention to the rock support within the 

stope and the time the ore stays in the stope.  

The "Y coordinate" in both cases shows high importance in the prediction of dilution. The 

presence of this variable can indirectly show that there is a hidden variable that is not considered 

in the analysis and changes along the Y-axis.  According to Figure 4-1, the gap that separates the 

two orebodies is along the Y-axis. The importance of the Y-axis variable in both models reveals 

the importance of the difference between these two orebodies and the different features that 
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they have, such as rock quality, the width of the vein, orebody dip, and several variables that 

were not measured in this analysis.   

Besides the similarities between the two lists of variables of each model, many 

discrepancies were also detected. On the one hand, rock support is a main feature of Random 

Forest, which is not the case in MNLR analysis. On the other hand, stope dimension is highly 

important in MNLR analysis, but its importance decays considerably in Random Forest.  

Consequently, due to the difference between them, it is difficult to select the most accurate list. 

Both lists have enough statistical evidence to support them; thus, it is a fact that they are reliable. 

However, their reliability depends directly on the accuracy of their models. While the MNLR 

model reached a correlation of 0.832, the Random Forest model overperformed it with a 

correlation of 0.925. According to these results, the list provided by the RF model is 

recommended. 
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Figure 5-6. Variable Importance - MNLR 
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Figure 5-7. Variable Importance - Random Forest 

6 Conclusions and Future Work 

As technology, equipment, and mining methods have evolved over time, the problem of 

dilution has remained a persistent challenge in the industry. With the increasing complexity of 

deposits, it has become imperative to adopt better practices for mine design in order to address 

dilution effectively. Traditional methods for predicting dilution are limited in their scope and fail 

to consider a comprehensive range of variables. However, advancements in computer science 

techniques and the increasing computing power have now enabled the mining industry to 

employ a range of tools to determine trends and relationships between a greater number of 

variables and dilution. By harnessing the power of these techniques, mining companies can gain 

a deeper understanding of the causes of dilution, increase the accuracy of their predictions, and 

reduce dilution wherever possible. This enhanced understanding of dilution is key to achieving a 

more consistent and reliable economic assessment of mining projects. 

This thesis presents a comprehensive overview of the development, improvement, and 

practical use of dilution-predictive models based on advanced statistics and machine learning 
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techniques. This research has identified that regression analysis, neural networks, and random 

forest techniques are particularly well-suited for creating accurate and reliable dilution-

prediction models, given their capacity to effectively manage multiple variables. Some other 

machine learning methods applied to the dilution problem were evaluated, but some exhibited 

poor accuracy, while others were not suitable for the type of data we were working with. As a 

result, the methodology presented in this thesis focuses specifically on the most effective 

techniques, ensuring that our predictive models are robust, efficient, and highly accurate. 

The predictive models developed in this study have demonstrated a similar or even higher 

level of accuracy than traditional methods. However, the key feature of these models is their 

ability to learn and improve over time as more data is inputted into the model. In particular, the 

Random Forest model achieved a remarkable correlation coefficient of r=0.925 on the test data 

set, with an average error of only 5% on the dilution value. This model outperformed other 

models, including the traditional model, due to its unique variable-classifying feature, which 

allows it to excel in small databases when compared to neural networks. Instead of applying 

weights or coefficients to each variable, the Random Forest model creates classifiers or "base 

learners" that split the data set into different subsets. Tuning the split ranges requires less data 

than tuning coefficients, making the model more efficient and accurate. Overall, the results of 

this study demonstrate the potential of machine learning techniques, particularly Random Forest 

models, to greatly enhance the accuracy and effectiveness of dilution-prediction models in the 

mining industry. 

The analysis conducted in this study incorporated a wide range of variables in order to 

identify the most essential factors for predicting dilution. However, it is important to note that 



75 
 

the goal of this analysis is not to generalize the importance of specific variables, but rather to 

demonstrate that the most critical variables can vary significantly in each case, due to the 

inherent complexity of each mine. By considering a broad range of variables, we can identify the 

specific factors that are most relevant for each mining operation and optimize our predictive 

models accordingly. Ultimately, this approach enables us to better understand the unique factors 

that contribute to dilution in different mining scenarios and develop tailored solutions that are 

optimized for each specific context. By leveraging these insights, we can work to mitigate dilution 

more effectively, reducing costs and improving the overall economic viability of mining 

operations.  

Although the models developed in this study do not track the importance of variables in 

the same way as neural network techniques, the Random Forest and Multiple Non-Linear 

Regression models are capable of providing a list of the most significant variables and their 

respective rankings in the predictive process. Interestingly, the lists of significant variables differ 

between the models, raising questions about which factors truly define dilution. Upon further 

analysis of the important variables highlighted by each method, it was found that blasting 

variables, such as powder factor, were consistently present in the group of variables with the 

highest impact on dilution, suggesting that blasting is the most critical process for unplanned 

dilution in both models. In the case of the Random Forest model, rock support emerged as a 

crucial factor, while its importance decayed in the Multiple Non-Linear Regression model. 

Similarly, stope dimensions were deemed essential in the Multiple Non-Linear Regression model, 

but their importance diminished in the Random Forest model. Nevertheless, it is worth noting 

that in both models, these variables are among the most significant factors, albeit with different 
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magnitudes. By understanding the specific variables that contribute most to dilution in each 

model, mining companies can develop more effective strategies to mitigate dilution and optimize 

their operations, ultimately leading to improved efficiency, profitability, and sustainability. 

The "Y coordinate" variable is an essential factor that deserves particular attention, as it 

is considered significant in both the Random Forest and Multiple Non-Linear Regression models. 

The presence of the Y coordinate may indirectly suggest the existence of another variable that is 

not currently being considered but has an impact on dilution and changes along the north axis. 

One possible explanation for this variable is the discrimination of the two orebodies identified in 

the analysis, which are separated along the Y-axis. However, additional research is required to 

confirm this hypothesis. Understanding the importance of the Y coordinate variable could 

potentially provide valuable insights into the underlying causes of dilution and aid in the 

development of more accurate predictive models. 

Future work on this topic could involve introducing more information to the data set to 

follow the improvement in the accuracy of the models. Regarding the contrast in the significant 

variables according to different methods, future studies should be considered to understand 

each variable's impact thoroughly. According to many authors, the quality of the rock mass 

should be a variable of vital importance for dilution. In this case study, no rock mass variables 

were included due to the lack of measurement of these parameters. Incorporating this kind of 

information could also result in a considerable improvement in the prediction of dilution.  The "Y 

coordinate" variable in the significant variables can indirectly suggest a change in the rock mass 

quality in different zones.   
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