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Abstract 

English: 

While epigenetic processes are important drivers of tumor progression, the contribution of 

deregulated chromatin architecture, including topologically associated domains (TADs), to 

cancer progression remains ambiguous. CTCF is a central regulator of higher-order chromatin 

structure that undergoes copy number loss in over half of all breast cancers. Also, mutations of 

CTCF ZF1 are exclusive to breast cancer and are associated with metastasis and therapeutic 

resistance. The impact of these CTCF defects on epigenetic programming, chromatin 

architecture and cancer progression remain unclear. We find that under physiological conditions, 

CTCF organizes subTADs to limit the expression of oncogenic pathways, including PI3K and 

cell adhesion networks. Loss of a single CTCF allele potentiates cell invasion through 

compromised chromatin insulation, a reorganization of chromatin architecture and histone 

programming that facilitates de novo promoter-enhancer contacts within TADs. However, this 

change in the higher-order chromatin landscape leads to a vulnerability to inhibitors of mTOR. 

Next, we developed and employed a novel motif analysis software, MoMotif, to define the 

previously uncharacterized recognition motif of CTCF zinc-finger 1 (ZF1), and to characterize 

the impact of CTCF ZF1 mutation on its association with chromatin. Using MoMotif, we 

identified an extension of the CTCF core binding motif that is recognized by a functional CTCF 

ZF1. Using a combination of ChIP-Seq and RNA-Seq, we discover that the inability to bind this 

extended motif drives an altered transcriptional program, here again enriched within TADs, that 

mimics the harmful oncogenic phenotypes observed clinically. These data support a model 

whereby subTAD reorganization drives both the modification of histones at de novo enhancer 

promoter-contacts and transcriptional upregulation of oncogenic transcriptional networks. 
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Français: 

L’impact de la dérégulation de l'organisation architecturale de la chromatine, y compris les 

domaines d'association topologique (TAD) sur la progression du cancer reste ambiguë. CTCF est 

un régulateur essentiel de la structure de la chromatine qui voit son expression réduite dans plus 

de la moitié de tous les cancers du sein. De plus, les mutations du doigt de zinc 1 (ZF1) de CTCF 

sont exclusives au cancer du sein et sont associées au statut métastatique et à la résistance 

thérapeutique. Cependant, l'impact de ces altérations de CTCF sur la programmation 

épigénétique, l'architecture de la chromatine et la progression du cancer reste incertain. Nous 

constatons que dans des conditions physiologiques, CTCF organise les subTADs pour limiter 

l'expression de réseaux oncogènes, y compris les réseaux de PI3K et d'adhésion cellulaire. La 

perte d'un seul allèle CTCF permet l'invasion cellulaire en compromettant l’isolation de la 

chromatine, menant à une réorganisation de l'architecture de la chromatine et une 

reprogrammation des marques des histones, qui facilite de nouveaux contacts promoteur- 

amplificateur à l’intérieur des TADs. Ces changements épigénétiques créent une vulnérabilité 

aux inhibiteurs de mTOR. Aussi, nous avons développé et utilisé un nouveau logiciel d'analyse 

de motifs, MoMotif, pour définir le motif de reconnaissance non caractérisé de CTCF ZF1 et 

pour étudier l'impact de la mutation de CTCF ZF1 sur son association avec la chromatine. À 

l'aide de MoMotif, nous avons identifié une nouvelle extension du motif caractéristique de 

CTCF, qui nécessite un ZF1 fonctionnel pour s’y lier de manière appropriée. En utilisant une 

combinaison de ChIP-Seq et d'ARN-Seq, nous découvrons que l'incapacité à lier cette extension 

de motif altère les programmes transcriptionnels, ici encore, principalement à l’intérieur des 

TADs et d’une façon qui imite les phénotypes oncogènes nocifs observés cliniquement. En 

conclusion, ces données soutiennent un modèle dans lequel la réorganisation à l’intérieur des 
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TADs entraîne à la fois la modification des histones au niveau de nouveaux contacts promoteur- 

amplificateur, facilitant la transcription des réseaux transcriptionnels oncogènes. 
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Contribution to Original Knowledge 

- Define the epigenetic and biological impact of CTCF Loss of Heterozygosity (LOH) in human 

mammary epithelial models. In short, the partial loss of CTCF leads to compromised subTAD 

insulation which permits the overexpression and over-activation of key effectors of the PI3K 

pathway, including the potent oncogene SNAI1. These aberrant epigenetic events drive the 

invasiveness of CTCF +/- epithelial cells, contributing to cancer progression. 

- Demonstrate the biological and epigenetic difference between two levels of topological 

organization of the chromatin, namely TAD and subTADs. More specifically, that subTAD 

organization is more prone to changes following reduced CTCF levels and more profoundly 

impacts the transcription of oncogenic pathways, such as the PI3K signaling pathway. 

- Propose a potential therapeutic avenue targeting cancer progression by which the epigenetic 

and biological consequences of CTCF LOH predict a vulnerability to mTOR or histone 

acetyltransferase inhibitors. 

- As a collaboration, we developed a new tool, MoMotif, to investigate and quantify DNA 

binding motifs that discriminates between 2 conditions and outperforms currently available 

bioinformatic software. 

- Identify an extension of the CTCF consensus motif recognized by its zinc finger 1, expanding 

our understanding of the role of this zinc-finger in CTCF-DNA recognition and the impact of its 

mutation in cancer. 

- Associated the inability to bind the downstream extension of the CTCF consensus motif to 

transcriptional changes consistent with clinical phenotypes displayed by breast cancer carrying 

CTCF zinc-finger 1 mutations. 
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Introduction 

Hierarchical nuclear organization of chromatin plays essential roles during development and cell 

specification (1,2). As such, mapping and understanding the functionality of three-dimensional 

(3D) chromatin structure is now at the forefront of epigenetics research. Based on the advent of 

Hi-C sequencing technology (3), we know that the entire genome is partitioned into an assembly 

of Topologically Associated Domains (TADs). TADs comprise 100kb to 1Mb regions of 

chromatin defined as a contiguous region enriched for DNA-DNA contacts between loci within 

the TAD, with few interactions outside of the TAD (4). TADs are commonly anchored by CTCF 

together with the cohesin complex, establishing a stable chromatin domain (5-9). Within TADs, 

smaller regions of self-interaction, called subTADs, add an additional layer of complexity to 3D 

chromatin architecture (10). 

TADs and subTADs regulate gene transcription in mechanistically similar ways. By confining 

chromatin interactions in cis, to regions within a defined genomic neighborhood, they promote 

local interactions between cis-regulatory elements, such as enhancer-promoter interactions, while 

insulating from outside cis-regulatory elements. This allows for the specific pairings of 

promoters and enhancers required for proper temporal regulation of gene expression (11). 

Organization of chromatin into subTADs facilitates a more precise and dynamic local regulation 

of transcription than TADs alone would allow. Indeed, dynamic changes in subTAD 

organization drive transcriptional events of differentiation and cell identity, while TAD 

boundaries are mostly stable during these processes (1). 

Proper TAD/subTAD organization is essential for temporal control of gene expression during 

development (12,13). While aberrant activation of developmental programs appears to play an 

important role in tumor progression, it is unclear that widespread reorganization of 
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chromatindomains is involved in this process. Despite evidence that altered TAD or subTAD 

organization locally at specific oncogenic loci may promote tumor initiation via aberrant changes 

to gene transcription (14), genome-wide analysis of chromatin contacts using relevant models of 

tumor initiation and progression are clearly needed to provide further insights into a potential 

role of TAD reorganization in these processes. 

Considering the central role of CCCTC-binding factor (CTCF) in maintenance of genomic TADs 

(15), it is not surprising that CTCF knockout leads to lethality at very early stages of embryonic 

development (16,17). Although not lethal, the loss of heterozygosity at the CTCF locus is also 

detrimental to cellular homeostasis (18) and CTCF appears to act as an haploinsufficent tumor 

suppressor gene (19,20), with its loss impacting hematopoietic tumor initiation in CTCF 

hemizygous mice (19). In humans, Down Syndrome related Acute MegaKaryoblastic Leukemia 

(DS-AMKL) carries CTCF deletions or mutations in 20% of all cases (21). Here, the loss of 

CTCF is thought to be important for clonal evolution to more aggressive phenotypes following 

GATA1 mutations (21). Despite such clear evidence for a tumor suppressive role for CTCF in 

hematopoietic tissue, the importance of physiological levels and functionality of CTCF for the 

prevention of solid tumors remains ambiguous. Consistent with a putative tumor suppressor role, 

data from the Cancer Genome Atlas reveals that sixty-three percent of all breast tumors harbor 

CTCF copy number loss (CNL) (22). While it has been hypothesized that fluctuations in CTCF 

levels may impact chromatin looping, this has not been formally examined (23). Thus, it remains 

unclear whether transcriptional networks and topological features may be deregulated in breast 

epithelium undergoing CTCF CNL. 

In the first chapter, I explain how CTCF CNL in mammary epithelial cells potentiates subTAD 

reorganization and cell invasion. I also described that restructuring of chromatin architecture, 
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especially at the subTAD level, drives activation of the phosphatidylinositol 3-kinase (PI3K) 

pathway and overexpression of the classical oncogene SNAI1. These changes are associated with 

epigenetic reprogramming of H3K27ac and H3K4me3 at regulatory regions. These altered 

transcriptional events may predict sensitivity to mTor inhibitors (24), potently repressing the 

invasive capacity of cells carrying a single functional CTCF allele. 

Furthermore, aberrant Transcription Factor (TF) activities or non-coding mutations located at 

promoters, enhancers or chromatin domain boundaries drive diverse pathologies, including a 

range of cancers (25-28). Biological investigation into the pathology of such events necessitates 

high-throughput sequencing based epigenomic approaches such as ChIP-Seq (29), and Hi-C (3). 

These epigenomic endeavors are expensive and require substantial quantities of biological 

samples (30). However, the development and fine-tuning of complementary bioinformatic 

analyses allow us to infer biological impact and subsequently predict sensitivity to personalized 

therapies. In particular, identifying context-dependent modifications of DNA-binding motifs 

specific to TFs is important for our understanding of cancer biology as motifs are frequently 

mutated, and mutated TFs may recognize altered motifs. 

For instance, the biological impact of the mutation of the first zinc finger (ZF1) of the epigenetic 

regulatory protein CTCF, such as the H284N mutation, exclusive to breast cancer and prevalent 

in hormone resistant breast tumors (31), has remained elusive. In contrast to oncogenic mutations 

located within CTCF ZF3-7 (32), involved in CTCF’s ability to bind its core motif (33,34) 

present in ~90% of CTCF binding sites (CBS) (35-37), CTCF ZF1 remains uncharacterized 

because its crystal structure has not been obtained (38). Although the truncation of CTCF ZF1 

was shown to alter RNA dependent binding of CTCF to specific sites, the H284N mutation did 

not display such function (39). Also, CTCF ZF1 displays the weakest affinity for DNA of all 
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CTCF zinc fingers and is not required for the binding of CTCF to its core binding motif (33,38). 

It is known that bases outside the core binding motif modulate CTCF binding (33,40), but it 

remains unknown whether CTCF ZF1 mutations (ZF1M) regulate binding to an extended motif, 

or alternatively influence CTCF binding affinity through impeding its interaction with non-

coding RNAs (39). However, computational tools designed to directly compare motifs between 

discriminative conditions are lacking. Therefore, we would expect current bioinformatic 

approaches to fall short in identifying possible motifs variations associated to differential binding 

of ZF1 mutated CTCF, because subtle changes would be “drowned” by the highly conserved 

elements of CTCF core binding motif. As such, new tools are required to predict the pathogenic 

mechanism of mutated DNA binding proteins, such as CTCF ZF1 mutations in breast cancer. 

In the second chapter, I will describe a new R pipeline, developed in collaboration with Celia 

Greenwood’s group, in which we designed a new tool, MoMotif (Modification of Motif analysis 

at single base-pair resolution). Our R pipeline incorporates, and builds upon, the three central 

analysis steps to mine ChIP-Seq data for DNA-binding motifs that discriminate between 

biological conditions. I profiled the potential of MoMotif by identifying the protein-DNA 

affinity changes conferred by the CTCF H284 mutation and different genomic locations. Further, 

I explained that the loss of binding, driven by mutant CTCF ZF1 causes changes in gene 

expression characteristic of the clinical phenotypes of CTCF mutated breast tumors. 
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Literature Review 

Breast Cancer 

Breast cancer is one of the 3 most common cancers and the most common malignancy in women 

(41). According to the Canadian Cancer Society, in 2017, a quarter of all new cancer cases in 

women are breast cancers, while 13% of all cancer related deaths in women were caused by breast 

cancer. Worldwide, around half a million people died from breast cancer in 2012 (41). The vast 

majority (~90%) die from metastatic disease. As a major burden on people’s health worldwide, 

breast cancer rapidly became one of the most studied diseases on the planet. The hard work of 

these countless researchers provided major improvements to our understanding of the disease, 

leading to more efficient and less toxic treatments (42-44), which will be expanded upon later in 

this section. However, breast cancer is a heterogeneous and plastic disease. Therefore, 

researching mechanisms of its evolution and progression is important to offer improved 

treatments, both in terms of survival and toxicity, to millions of women. 

Surgery 
The earliest known mention of cancer dates back to about 3000 BC. Although not termed “cancer” 

back then, cases of breast cancer were described as untreatable, in an ancient Egyptian papyrus on 

trauma surgery, and needed to be removed with cautery, knives and salt (45). Despite the 

approximately five thousand years gap with modern medicine, surgery remains at the center of 

cancer care. Indeed, if a tumor is removed at an early, non-invasive stage, further consequence can 

frequently be avoided. However, due to the harm of over-diagnosis, the global health benefit of 

screening and removal of early tumors, such as during schedule mammography, are debatable (46). 

Additionally, not all tumors are easily detectable at early stages. For instance, early primary growth 

of pancreatic and ovarian cancer is often mostly symptomless and barely palpable through the skin, 
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greatly reducing the effectiveness of surgery and highly increasing their lethality (47,48). Further, 

tumors growing on essential organs or socially valued body parts, such as many head and neck 

cancers, may be unresectable or increase the morbidity of surgery (49). At later stages, tumors 

will invade the surrounding tissue, in a way that reminded Hippocrates of a crab, the Latin word 

for which being “cancer”. These crustacean protrusions not only increase the area that needs to 

be surgically removed, leading to more morbidity, but also reduce the chances that the totality of 

the tumor mass will be removed by surgery. Therefore, as the millennia of oncology have taught 

us, surgery alone cannot treat cancer and therapeutic agents are required to prolong the life of the 

victims of this unrelenting disease. 

Chemotherapy 
“Oncology” comes from the Greek word “oncos”, meaning swelling or growth. This ancient view 

of cancer, as an uncontrolled growth, remains the basis of most therapeutic approaches used today. 

Indeed, most chemotherapy harms, indiscriminately, fast dividing cells. Whether they result in 

massive amounts of DNA damage, such as cisplatin (50), or affect crucial elements of mitosis, 

such as paclitaxel (51), chemotherapies wreak havoc in rapidly dividing healthy or cancerous cells 

alike. This leads to numerous short-term toxicities, such as nausea, increased risk of infections, 

hair loss and neurotoxicity, which could result in permanent damage (51). In the long-term, 

chemotherapy is associated with an increased risk of developing another cancer, such as therapy 

related MDS or AML (52). Although effective against most tumor cells at first, breast cancer’s 

ability to adapt and develop resistance to chemotherapies, coupled with an intratumor 

heterogenicity that can include slow dividing cells, result in about 40% of stage I to III tumors 

relapsing following standard therapy (53). The feared perspective of cancer and these toxic, yet 

flawed, treatments led many women, with family history of breast cancer, to undergo bilateral risk- 

reducing mastectomy (54). Hopefully, the advent of personalized target-based therapy is slowly 
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shifting this somber perception and benefiting the outcome of and patient experience during breast 

cancer treatments. 

Luminal Breast Cancer 
Around seventy percent of breast tumors overexpressed the estrogen receptor (ER) and/or 

Progesterone Receptor (PR). They are termed ER+/PR+ or Luminal A (41). This classification 

arises from the mechanistic importance of hormone receptors in cancer progression and, most 

importantly, their clinical relevance as predictive biomarkers. 

When bound by estrogen, ER will dimerize and bind estrogen response elements on the genome 

to promote the expression of its target genes, such as GREB1 (55,56). As breast tissue is responsive 

to hormones, tumors can stem from an oncogenic highjack of this process to develop a 

dependence to estrogen-related pathways for their proliferation and survival (57). Therefore, ER 

positive tumors, contrarily to the majority of healthy cells of the human body, are highly sensitive 

to repression of estrogen signaling. 

By using estrogen receptor 

antagonist, blocking estrogen 

metabolism, and targeting 

estrogen receptor for degradation, 

modern targeted therapies evolved 

around this specific weakness of 

luminal breast cancer (Figure 

LR1) (58). Termed hormonal 

therapy, this pioneering approach 

to cancer care reduced recurrence 

Figure LR1: Distinct therapeutic avenues to target ER. 
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and increased survival (58). The marked benefits of targeted therapies drove the discovery of 

new therapeutic targets. 

HER2+ Breast Cancer 
One such important target is the receptor tyrosine kinase, Her2, which is overexpressed in 

approximately twenty percent of breast tumors (59). Her2 overexpression promotes its 

dimerization with other receptor tyrosine kinase (RTK) of its family, such as HER3 or EGFR, 

resulting in their autophosphorylation and activation of downstream signaling cascades (59). 

Although signaling cascades branch out in various interconnected pathways of effectors, the 

activation of the PI3K signaling pathway is a common consequence of the overexpression of Her2 

and is known to promote oncogenesis (60). The classical chain of reaction in this signaling pathway 

starts with the RTK’s activity promoting PI3K phosphorylation of phosphatidylinositol-4,5- 

bisphosphate (PIP2) into phosphatidylinositol-3,4,5-triphosphate (PIP3) on the plasma membrane. 

Next, PIP3 will bind and permit the phosphorylation and activation of AKT by PDK1 and 

mTORC2. Then, AKT will phosphorylate the TSC1/TSC2 complex, blocking its inhibition of the 

mTORC1 kinase complex. mTORC1 will then phosphorylate 4EBP1 and S6K1, promoting 

translation and transcription of genes involved in cell survival and proliferation (Figure LR2) (60). 
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Figure LR2: Classical chain of reaction in the PI3K signaling pathway. 

 
Similarly to ER+ breast cancer, Her2+ tumors will hijack and depend on Her2-related signaling 

pathways, such as the PI3K-pathway, for their oncogenesis. Therefore, targeting Her2 

therapeutically will be more damaging for Her2+ tumors cells, than for most healthy cells. Now 

standard-of-care, monoclonal antibody targeting Her2+, such as trastuzumab, are used to inhibit 

dimerization with other RTKs, trigger antibody-dependent cellular cytotoxicity or to specifically 

deliver cytotoxic agent to Her2 expressing cells (59). Here again, a mechanism driving a tumor’s 

growth and progression was turned into an exploitable weakness. However, actionable targets for 

cancer therapy are not always directly driving oncogenesis. 

PARP Inhibitors and Synthetic Lethality 
Synthetic lethality arises between two genes when the perturbation of either one is viable, but a 

simultaneous dysfunction of both leads to reduced viability (61). Such a relationship is observed 

between BRCA1/2 and the PARP1. BRCA1, named after the strong association between its 

heritable mutations and family history of breast cancer (62), is an essential player in Homologous 

Recombination (HR) double stranded-DNA repair pathways (63). BRCA1 promotes end resection 

and subsequent recruitment of BRCA2, which also depends on PARylated CTCF at the site of 

damage (64), for the proper deposition of RAD51, necessary for the following steps of HR (65). 

Similarly, PARP1 is involved in single-stranded DNA damage repair pathways, such as Base 
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Excision Repair (BER)(66). PARP1 activity leads to the recruitment of repair protein at the sites 

of damage. In the absence of functional PARP1, single stranded breaks are left unrepaired and 

become double-stranded breaks at the replication fork, which then requires HR for proper repair 

(67). In HR competent cells, this issue is usually resolved appropriately. But, in BRCA1/2 mutated 

or HR incompetent cells, the absence of PARP1 activity leads to a cytotoxic accumulation of DNA 

damage. Due to this synthetic lethality, PARP inhibitors lead to better progression-free survival 

and fewer toxicities than standard therapy for Her2- metastatic breast cancer with germline BRCA 

mutations (68). PARP inhibitors are the first approved cancer therapies based on synthetic 

lethality, but CRISPR-screen technologies are widely used today to find similarly actionable 

targets (61). Indeed, despite the existence of multiple targeted therapies for specific subtypes of 

breast cancer, a significant proportion of highly aggressive breast tumors are still lacking an 

actionable biomarker. This is especially true for Triple Negative Breast Cancer (TNBC). 

Triple-Negative Breast Cancer 
About fifteen to twenty percent of breast tumors are defined as TNBC due to their lack of ER, 

PR or Her2 expression. TNBC mostly occurs in younger woman and is more aggressive and 

prone to relapse, predicting a poorer prognosis than non-TNBC breast cancers. Without clear 

oncogenic dependence or synthetic lethality, the standard-of-care for TNBC remains highly toxic 

chemotherapies (69). Therefore, new actionable biomarkers are needed to provide better treatment 

to TNBC patients. Beside TNBC, relapsing primary or metastatic tumors that developed resistance 

to their initial therapy would also benefits from a wider variety of potential targets arising from a 

deeper understanding of cancer progression, both in term of biological process, but also genetic 

and epigenetic regulation and evolution. 
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Historical Perspective on Epigenetics and Chromatin Conformation 

The field of epigenetics has been fast evolving in the last century. From the discovery of DNA 

methylation and its impact on gene expression, to the ever-increasing usage of RNA-Seq to study 

global gene expression and ChIP-Seq to map chromatin states and potential effectors of 

transcription, new transcriptional modulators are discovered continuously. In the last decade, the 

advent of chromatin conformation captures techniques revealed one such discovery: spatial 

organization of the DNA. 

Deoxyribonucleic Acid and the Central Dogma of Molecular Biology 
In 1871, Swiss physician and biochemist Friedrich Miescher isolated a novel organic substance in 

leukocyte nuclei purified from the pus of surgical bandage of the local hospital, which he termed 

nuclein (70). In 1944, this molecule, later named deoxyribonucleic acid (DNA), would be 

identified as the carrier of heritability within chromosomes (71). In 1953, Watson and Crick 

described the now iconic double-helix (72) to explain how DNA responds to the four 

requirements of any genetic material: replication, specificity, information content and ability to 

change (70). In agreement with Chargaff’s rule (73), adenine (A) base-pairs with thymine (T) 

and cytosine (C) with guanine (G) to form the DNA double-helix constituting each chromosome. 

In brief, DNA allows for the genetic information to be carried as highly specifically ordered 

longitudinal sequences of bases. Following these discoveries, Francis Crick would enunciate and 

then specify the central dogma of molecular biology (74). In short, DNA is transcribed as 

messenger RNAs (mRNAs) which are then translated to proteins that will carry out their 

biological function in the cells. 

In early studies of transcription, DNA was reduced to its coding sequence, a two-dimensional 

sequence of ATCG meant to be read by the transcription machinery in a, now widely criticized, 

3-steps process. First, during initiation, an RNA Polymerase II (Pol II) is recruited to a promoter 
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sequence slightly upstream of the coding region (75). Second, during elongation, Pol II travels 

along the DNA while writing a complementary strand of RNA from which non-coding introns 

within the gene are spliced out, directly ligating the protein coding exons. Third, Pol II will 

detach from the DNA and free the newly transcribed RNA, capped and polyA-tailed, to later be 

translated (76). 

As the process of transcription became increasingly studied, the biochemical role of DNA and its 

modifications, such as the classical epigenetic modification, methylation of cytosine, were shown 

to be essential for the regulation of transcription, not simply as a coding element. Indeed, islands 

of dinucleotide CpG are present on approximately 70% of annotated promoters (77). The 

methylation of cytosine in these islands is associated with the silencing of gene expression (78). 

Further, the essential nature of proper DNA methylation programming was shown by the 

embryonic lethality caused by the knock-out or overexpression of DNMT1, necessary for the 

maintenance of DNA methylation (79,80). Interestingly, DNA methylation is also present on parts 

of the genome that cannot be transcribed as a mRNA, defined as non-coding DNA. Of all the base- 

pairs of the human genome, about ~99% are non-coding (81). This vast majority of our genome 

was previously termed “junk DNA”, as it was thought to be intrinsically functionless (82,83). 

This belief has since been proven exquisitely incorrect. 

Non-coding DNA and Chromatin States 
Non-coding regions of the genome are associated with a diverse interrelated network of 

biological functions, essential for evolution, development, and homeostasis. A wide array of non-

coding genetic mutations is associated with cancer (84) and other diseases (82). Non-coding 

changes between species, such as humans and chimps, are at the heart of characteristic 

phenotypic differences (85) (Figure LR3). Similarly, highly conserved non-coding elements 

between vertebrates are also critical for development (86). Additionally, proper expression of 
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non-coding RNA transcripts also plays a critical role in development (87,88) and to prevent 

cancer or other diseases (89,90). As this multitude of built-upon studies made clear the 

essentiality of “junk DNA”, parallel investigations of the distinct chromatin state found across 

the genome helped to distinguish and understand the function of the different types of non-

coding elements. 

 

Figure LR3: (A) Divergence between species of enhancer-associated histone mark H3K27ac. (B) 

Divergence of enhancer landscape between human and chimp. 

One such type of non-coding element is the enhancer. Enhancers are regions of the genome that, 

when active, promote the activity of surrounding genes. Active enhancers are identifiable by the 

specific characteristics of the chromatin at their loci. A nucleosome is defined as a complex of 8 

core histone proteins encircled by ~150bp of DNA (91). Nucleosome density is one indicator of 

enhancer activity. Low nucleosome density, identifiable genome-wide by an increased chromatin 

accessibility using ATAC-Seq (92) or DNAse-Seq (93), is associated to active or actively 

transcribed regions, while compact nucleosome placement is associated with inactivation and 

silencing of gene expression or enhancer activity (94). These “open” enhancers are thought to 

facilitate transcription factor recruitment. 
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Besides the placement and density of nucleosomes, the post-translational modification of their 

histone tails is another indicator of activity and function. Indeed, acetylation of the histone tails, 

such as acetylation of histone 3 lysine 27 (H3K27ac) or H3K9ac, is associated with active 

enhancers and promoters. Alternatively, specific methylation status can distinguish enhancer 

from promoters. H3K4me1 is usually a mark of poised enhancers, while H3K4me3 is found on 

active promoters (95). The range of histone posttranscriptional modifications is varied and 

specific combination of which are unique to distinct non-coding or coding region of the genome, 

depending on their activity (95) (Figure LR4). Interestingly, following the identification of 

enhancers, came the discovery of insulator elements, capable of blocking the effect of an active 

enhancer on adjacent promoters. 

Figure LR4: Association of different combinations of chromatin marks and states to distinct 

characteristic or functions of the loci. 
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The classical insulator example is the Imprinting Control Region (ICR) around the H19 and 

IGF2 loci. Biallelic expression or repression of any of these genes results in severe 

developmental diseases, such as the Beckwith-Wiedemann syndrome (96). Imprinting refers to 

the maintenance of DNA methylation at distinct regions in the paternal and the maternal allele. 

The ICR on the paternal allele is methylated, inactivating its insulating potential, and enabling the 

downstream enhancer to interact and activate the upstream IGF2 genes. However, on the 

maternal allele, the ICR is unmethylated, allowing it to block the enhancer from interacting with 

the upstream IGF2 and limiting its activity to the downstream H19 genes (97). Interestingly, the 

mechanism of how DNA methylation blocks the insulating potential of the ICR is through the 

blockage of CCCTC-binding factor (CTCF) binding (98), a protein first discovered as a negative 

regulator of chicken c-myc expression (99). The mechanism by which non-coding loci, such as 

enhancers, and CTCF binding could influence the expression of gene thousands or millions of 

nucleotides away would later be explained through chromatin conformation. 

In 2002, Dekker et al. published a study in which they developed 3C or Chromatin Conformation 

Capture (100). In this assay, chromatin is crosslinked and sparsely digested by a restriction enzyme 

to create a multitude of floating ends that are then stochastically ligated together. These 

manipulations produce fragments of DNA with a 3’ end mapping anywhere on the genome and a 

5’ end mapping on a locus that was in physically proximal to it (100). The following years would 

see the rise of numerous variants of 3C, the most popular of which being Hi-C, introduced by 

Liebermann-Aiden et al. in 2009 (3) (Figure LR5), used to map DNA-DNA contact across the 

genome. Expanding on this newfound ability to precisely study genome-wide three-dimensional 

DNA organization led to numerous studies that, together, discovered that our genome is not just a 

two-dimensional sequence containing a parsimony of coding sequences hidden within an ocean of 
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random inconsequential assortments of bases, but a complex, hierarchically organized framework, 

programmed for precise control of transcription, development, and homeostasis. 

 

Figure LR5: Example of Hi-C experiment workflow. 
 
Distinct Hierarchical Levels of Three-Dimensional Genomic Organization 

The Passive Formation of Compartments 
Within the nucleus, DNA is hierarchically organized on multiple levels. At the base of the 

hierarchy are the chromosome territories, in which each chromosome will occupy a specific 

section of the nucleus (101). Within these territories, active euchromatin will segregate from silent 

heterochromatin to form A and B compartments, respectively (3). 

More precisely, compartments are the preferential clustering of continuous and non-continuous 

segment of chromatin of similar states. In the classical definition of compartment, these 

interactions range in the millions of base pairs (3). Compartments are thought to be formed 

passively by the opposing biophysical properties of active and inactive chromatin (102), such as 

phase separation (103). In addition to compartments, chromatin is also organized in Topologically 

Associated Domains (TADs). Contrarily to compartments, TADs are continuous, actively 

maintained, regions of increased short-range interactions, on average, ranging from one million 

base pairs to one hundred thousand base pairs (4) (Figure LR6). 
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Figure LR6: Representation of the hierarchical organization of the chromatin in the nucleus. 
 
The Active Extrusion of Topologically Associated Domains (TADs) 
TADs are formed by loop extrusion, an active multistep process (104). First, the cohesin complex 

is loaded on DNA and handcuffs it in an ATP-dependent manner (105). Then, the strands of DNA 

are extruded out of the ring-like complex. This step is mediated by ATP-dependent cohesin 

activity. However, the precise mechanism for this proteomic “reel” is still ambiguous (5,106,107) 

and could also be promoted by transcription-induced supercoiling (107,108). Finally, extrusion is 

stopped once a second cohesin complex is encountered (109) or, more commonly, when both sides 

of newly formed loop reach convergent sites bound by the insulator protein CTCF (104,110) 

(Figure LR7). As such, loop extrusion allows for the formation of a continuous region of DNA 

for which internal interactions are promoted, while outside interactions are insulated. 
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Figure LR7: Representation of the cohesin complex and loop extrusion 

Loop extrusion also forms smaller domains within TADs, termed subTADs, that are also insulated 

from adjacent genomic loci. Although subTADs may be formed through the same process and play 

the same structural function as TADs, their smaller size allows for a more direct and precise 

regulation of coding and non-coding sequences within them. For example, most TAD boundaries 

are often bound by multiple redundant CTCF binding sites and colocalize with tRNA or 

housekeeping genes that are constitutively active (111,112). Unlike TADS, which are generally 

consistent across tissue types, subTADs reorganize themselves to allow for dynamic and precise 

transcriptional control of genomic loci (113). Consistent with this concept, long range chromatin 

interactions re-organized during serum starvation are dependent upon interactions between CTCF 

and binding partners (114) and a gain of CTCF-mediated interactions at the subTAD level have 

been correlated with gene expression (115). Additionally, the essentiality of CTCF and cohesin in 

embryonic development (17,116,117) further supports TADs and subTADs organization as 

essential for proper gene expression. 

Smaller loops may also be observed within TADs and subTADs that are less “structural” in nature 

as they do not form insulated domains. These chromatin loops often represent enhancer-promoter 
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contacts, which can be formed by multiple mechanisms, some independent of cohesin loop 

extrusion (7). 

Interplay between Topological Domains and Enhancers 
By promoting internal chromatin contacts and insulating from external interactions, TAD and 

subTADs fine tune the precision and potency of regulatory non-coding elements, such as 

enhancers. These enhancers can be distributed sparsely around their target genes or clustered 

together in super enhancers (SE) (118). The clustering of enhancers and their additivity on a single 

promoter will usually result in a stronger upregulation of gene transcription (118,119). Indeed, 

active enhancers are bound by transcription factors, co-activators, such as BRD4 and Mediator 

(118,120) and epigenetic regulators, such as histone acetyltransferases (121), with critical roles in 

all aspects of transcription. By bringing these essential transcriptional actors in close proximity to 

a promoter, enhancers create an environment prone to transcriptional activity at that particular 

locus (119). 

However, how enhancers find and interact with their promoters is still debated. ENCODE database 

counts around 668,000 candidate enhancer-like sequences (122). Therefore, a single gene is often 

regulated by a panel of enhancers, with distinct enhancers being specifically involved in distinct 

cell types or diseases (118,121,123). For instance, when deleting enhancers specific to microglia, 

which are enriched for risk variants for Alzheimer Disease, the expression of their target genes, 

such as BIN1, was uniquely reduced in microglia. However, in neurons and astrocytes, the gene 

expression of BIN1 was unchanged, as its expression is reliant on distinct enhancers in these cells 

(123). As such, understanding the epigenetic mechanisms driving and regulating enhancer-

promoter interactions (E-P) is critical to gain pertinent insight on the development and disease 

progression. 

To better understand enhancer-promoter interactions, multiple models have been studied and are 
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likely to be involved in this process, be it in parallel or in complement of each other. Enhancers 

can find and start interacting with their targets during the loop extrusion process, in a model termed 

enhancer scanning and critical for V(D)J recombination (124,125). Additionally, E-Ps could be 

analog to micro-compartments: being driven by the physical properties of their chromatin and 

surrounding effectors, independently of loop extrusion. Indeed, E-Ps can still be formed when 

essential members of the cohesin complex are knocked out (7). However, independently of 

which recent model of enhancer-promoter interaction is used, subTADs and TADs do play an 

essential role in regulating and confining their interactions. 

By definition, TADs and subTADs promote interactions within them, while insulating interactions 

from outside. Although enhancer-promoter interactions can happen independently of topological 

domains, TADs and subTADs guide the stochastic nature of E-P interactions by strongly 

promoting intradomain interactions (7,126). Alternatively, in the enhancer scanning model, TFs 

also guide the recruitment of the cohesin to start the loop extrusion process at a specific enhancer. 

As the chromatin is reeled through the cohesin ring, the loaded enhancer scans through it and 

retains contact with intradomain promoters and enhancers to cluster them together until extrusion 

is stopped by a convergent CTCF sites (124). In both models, the formation of TAD and 

subTADs and the proper definition of their boundaries, usually defined by CTCF binding, are 

necessary to limit what is included and excluded from each domain, therefore guiding the 

specificity of E-P interactions. 

Current Model of Transcription and Epigenetic Regulation 

Although there is still much to learn about transcription, the precision and complexity of our 

understanding of this mechanism evolved markedly since the early days of the central dogma. 

Indeed, most transcriptional activities are now modeled as a 6-steps process, each with multiple 
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layers of epigenetic regulation built, in part, upon the concepts described above. 

Preinitiation, Initiation and Pausing 
First, the RNA polymerase II will be recruited to the promoter in the Preinitiation Complex (PIC) 

(127). Preinitiation starts with the recruitment of TFIID, a General Transcription Factor (GTF) 

multiprotein complex (128). TFIID recruitment is strongly influenced by epigenetic events. 

H3K4me3 will guide TFIID on promoters (129), while enhancer-promoter interactions will 

promote its recruitment through the Mediator complex (130,131) and histone acetylation (132). 

Once recruited, TFIID will help the recruitment of other GTF and Pol II itself, readying the 

machinery to move on to initiation (127) (Figure LR8). Interestingly, other transcription factors 

are also able to mediate the recruitment of GTF, such as CTCF promoting the recruitment of 

TFII-I at transcriptional start sites (133). 

Figure LR8: Simplified representation of the Preinitiation Complex. 
 
Second and third are the initiation and pausing steps. To kickstart initiation, CDK7, a subunit of 

TFIIH, will phosphorylate serine 5 and 7 in the 52 YSPTSPS repeat of the C-terminal of Pol II 

(134,135). Serine 5 phosphorylation (Ser5-P) will destabilize the interaction between Poll II and 

the Mediator complex, facilitating its escape from the promoter (136). Ser5-P Pol II will advance 

on the gene and start synthesizing the mRNA, that will be capped co-transcriptionally while the, 

approximately, first thirty nucleotides are assembled (137,138). About twenty to sixty base pairs 

downstream of the initiation site, the transcriptional complex will be paused by DSIF, NELF and 
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PAF1 complex (139,140). Pausing is essential for transcription to continue on properly and its 

disruption will, among other things, influence the positioning of nucleosome and the presence of 

histone marks associated to elongation, such as H3K36me3 (140). As a majority of genes outside 

of heterochromatin are bound by paused Pol II downstream of their promoters (141), 

transcriptional pausing is also an additional opportunity for regulating and fine-tuning the 

expression of a gene. Indeed, further interactions with active enhancers will promote the 

transition from pausing to elongation, as BRD4 plays an important part in the recruitment of P-

TEFB and the Super Elongation Complex (142). 

Elongation, Reinitation and Termination 
To push Pol II toward the fourth step, elongation, P-TEFB, a protein complex containing the 

kinase CDK9, will phosphorylate NELF and DSIF, displacing them from the transcriptional 

machinery (143,144). P-TEFB will also phosphorylate Ser2 on Pol II CTD, which is required for 

proper elongation (145). Similar to the previous steps of transcription, epigenetic regulation of 

Pol II speed of transcription is also critical, from the start of elongation to polyadenylation and 

termination (146). For example, mRNAs are spliced simultaneously with elongation and the 

presence of an epigenetic events along the transcript, such as CTCF and chromatin loops, can 

slow down the RNA polymerase and influence which exons will be integrated in the mRNA 

(147,148). Since the positioning and binding of CTCF is influenced, in part, by DNA 

methylation and nucleosome placement (149), the epigenetic landscape and chromatin structure 

along a gene, as it was on its promoter, is essential to the regulation of its expression, be it the 

first wave of transcription or the multiple potential subsequent ones. 

Before the end of the sixth and final step of transcription, the termination, the transcription 

machinery will, most of the time, be recycled on the same gene for multiple rounds of 

transcription in a process termed reinitiation (150). Here again, chromatin conformation can 
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promote this process by bringing in close proximity to the transcriptional start and end sites (9). 

Although this short section only skimmed the surface of how transcription is regulated at each 

step, it is clear that chromatin conformation and epigenetic landscape play distinct, 

complementary, and essential roles in proper gene expression. Therefore, it is not surprising that 

a protein, such as CTCF, directly guiding some of these epigenetic events can be so deeply 

intertwined in the regulation of transcription and thus, cellular health and homeostasis. 

Understanding CTCF in health and diseases 

Throughout this literature review, the multifunctional epigenetic regulator CTCF has already been 

mentioned multiple times: as an actor in double-stranded beak DNA damage repair (64); as an 

insulator of enhancer-promoter contact (98); as the factor that blocks cohesin loop extrusion to 

define the boundaries of topologically associated domains (124); as a transcription factor helping 

the recruitment of TFII-I (133); as a barrier for transcriptional elongation mediating alternative 

splicing (147,148). Yet, it was not aforementioned that the loss of a single allele of CTCF or its 

mutation may promote tumor onset and progression, which will be discussed later. Due to the 

polyvalence of CTCF, the biological and epigenetic mechanisms behind the potential oncogenic 

impact of its deficiency are still unresolved. 

CTCF Binding to DNA 
The multiple roles of CTCF within the nucleus are primarily dependent on its binding to DNA, for 

which the affinity, and specificity, is regulated on multiple levels. First, a major aspect of CTCF 

binding to DNA is its direct protein-DNA interaction. CTCF interacts directly with DNA with its 

complex 11 zinc-finger domain, located between its mostly unstructured N and C terminals. 

Further, not every individual zinc finger (ZF) of CTCF is binding to DNA simultaneously. Indeed, 

studies of the crystal structure of CTCF revealed that ZF3 to ZF7 are required for proper binding 

to the CTCF core binding motif of the consensus DNA recognition element (33,34,38). The core 
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binding motif of CTCF is present in approximately ninety percent of CTCF binding sites (35-37) 

and is represented in Figure LR9. Therefore, when deleted, ZF3 to ZF7 have the biggest influence 

on CTCF binding to DNA, compared to other ZFs (33,38). Although not binding to the core 

binding motif, ZF10 and ZF11 are thought to bind an upstream extension of CTCF motif 

stabilizing it on the DNA (40). Despite not being shown to directly bind DNA, ZF8 and ZF9 act 

as a spacer to ensure the proper positioning of the neighboring zinc fingers (38). Interestingly, 

the crystal structure of ZF1 with DNA could not be obtained (38). The specific deletion of ZF1 

was shown to be less impactful on DNA binding than other CTCF zinc fingers. It is currently 

unknown whether ZF1 directly interacts with DNA by binding to conserved nucleotides beyond 

the core motif, such as the one identified by Rhee and Pugh (40), or whether its influence is 

mediated by its affinity for RNA. 

 

 

Figure LR9: Classical CTCF binding motif 
 
Similarly to how they bind DNA, zinc-fingers are also capable of binding RNA. CTCF’s zinc- 

fingers are no exception. Indeed, RNA binding activity has been detected for ZF1 and ZF10, 

although no RNA sequence specificity was investigated (39). Further, RNA-CTCF interactions 

have been shown to mediate CTCF spatial recruitment to the DNA (151) or binding to specific 
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sites on the genome (39). Interactions with HOTTIP or MYCNOS guided or strengthened CTCF 

interaction at distinct sites for each ncRNA (152,153). Oppositely, the interaction of ncRNA JPX 

with CTCF removed it from key sites relevant to X chromosome inactivation (154). But, as 

mentioned before, non-coding RNAs are not the only epigenetic events that can mediate CTCF 

binding to the DNA. 

As shown at the IGF2/H19 locus, DNA methylation can block the binding of CTCF to the DNA 

(98). Specifically, methylation at the second cytosine of CTCF core binding motif was shown to 

display the most significant ability to block CTCF binding (38). Beside DNA methylation, the 

positioning and state of the nucleosomes also impacts CTCF binding to DNA. When nucleosomes 

are densely packed, they will block the binding of CTCF, as is the case for most transcription 

factors. Alternatively, CTCF influences nucleosome positioning and composition, as neighboring 

nucleosomes are spaced consistently around CTCF binding sites and are enriched for H2A.Z sub- 

unit (155). Further, CTCF residence time on the chromatin seems to be increased when it is at the 

boundary of a cohesin mediated loop (156). 

Overall, there are a wealth of factors involved in orchestrating the binding of CTCF to DNA, and 

this coordination is essential for homeostasis and development. 

CTCF and Chromatin Conformation in Normal Homeostasis and Development 
Due to the essentiality of proper organization of chromatin during development (126), complete 

loss of CTCF is embryonic lethal (16,17). Indeed, as pluripotent stem cells advance toward 

differentiation, they gain a stricter, or less dynamic, topological organization of their chromatin 

to regulate their cell-type specific identity and expression. However, the absence of CTCF 

hinders this process (12) (Figure LR10). CTCF related development defects also arise when 

CTCF binding sites are mutated or when CTCF carries certain point mutation. For example, 

acheiropodia, a genetic limb disorder, can be caused by a heritable deletion of CTCF binding 
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sites mediating enhancer-promoter interaction at the SHH locus (157). Additionally, genetic 

defects of CTCF, from partial deletions to missense mutations, were associated to a wide 

spectrum of neurodevelopmental disorders in human patients (158). In mice, the effects of CTCF 

dysfunctions on neurological development were associated to its impact on differentiation ratio 

and increased apoptosis due to overexpression of the p53 target gene PUMA (159). As multiple 

recent studies showed the importance of CTCF in memory formation (160,161), the notion that 

proper CTCF function is critical for diverse neurological processes is strengthening. As is the 

importance of CTCF dysfunction in cancer progression. 

 

Figure LR10: CTCF knockdown disrupts the establishment of TADs and subTADs in early 

embryo. 

The Present, yet Unexplained, Role of CTCF in Cancer Initiation and Progression 
In mice hemizygous for CTCF, the mutated animals displayed increased risk of hematological 

tumors (19). This observation has been found relevant to humans. In Down Syndrome related 

Acute MegaKaryoblastic Leukemia (DS-AMKL), CTCF deletions or mutations are found in 
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20% of all cases (21). Here, the loss of CTCF is thought to be important for clonal evolution to 

more aggressive phenotypes following GATA1 mutations (21). Investigations of the effect of 

reduced CTCF levels, through auxin-induced degradation, in the B-Cell Acute Lymphoblastic 

Leukemia (B-ALL) SEM cell line, revealed that chromatin accessibility was increased, while 

intra-TAD interactions were disrupted (162,163). However, the resulting changes in RNA 

expression were described in a fairly superficial manner and explained by the increased activity 

of other transcription factors, such as MYC (162,163). This model has the disadvantage that key 

chromatin rearrangements necessary for tumor development have already taken place in the B- 

ALL line. The causal relationship by which the repressed function of CTCF affects 

differentiation and therefore promotes hematopoietic cancer, is a potential model to explain the 

results of the B-ALL studies and supported by the study in DS-AMKL (21). If it is the case, then 

the mildness of CTCF degradation in B-ALL would be expected, as the impact of low CTCF on 

hematopoietic cancer would be the earliest steps of its initiation and not in its progression. 

However, this hypothesis has yet to be validated, as are most models of the impact of CTCF LOH 

or point mutations in epithelial tumors. 

According to TCGA 2018 dataset, CTCF LOH is present in about sixty-three percent of all 

breast tumors and about thirty percent of endometrial cancer, compared to less than ten percent 

for leukemia or lymphoma (22). Although a significant fraction of CTCF deletion or mutations 

are identified in breast cancer, there is still no clear epigenetic or biological information 

regarding how this defect impacts cancer initiation or progression. Further, while it has been 

shown in other models that fluctuations in CTCF levels may impact chromatin looping (162), 

this has not been formally examined in human breast models (23). Thus, it remains unclear 

whether transcriptional networks and topological features may be deregulated in breast 
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epithelium undergoing CTCF LOH. 

Similar questions are also still unanswered about the mechanistic link between CTCF point 

mutations and cancer (Figure LR11). For instance, the biological impact of the mutation of the 

first zinc finger (ZF1) of the epigenetic regulatory protein CTCF, such as the H284N mutation, 

exclusive to breast cancer and prevalent in hormone resistant breast tumors (31), has remained 

elusive. 

Figure LR11: cBioPortal Lollipop Plot of the most common CTCF point mutations in cancer.  

Interestingly, CTCF mutations are among the most enriched in metastatic breast tumors 

compared to primary tumors, behind only ESR1 mutations (164). In contrast to oncogenic 

mutations located within CTCF ZF3-7, which have been partially studied in cellular model of 

endometrial cancer (32), CTCF ZF1 remains uncharacterized, and its biological or epigenetic 

impact remains unknown. As is the influence of CTCF ZF1 mutation (ZF1M) on CTCF ability to 

bind DNA. 

Although the truncation of CTCF ZF1 was shown to alter RNA dependent binding of CTCF to 

specific sites, the H284N mutation did not display such function (39). It is known that bases 

outside the core binding motif modulate CTCF binding (33,40), but it remains unknown whether 

CTCF ZF1 mutations regulate binding to an extended motif, or alternatively influence CTCF 

binding affinity through impeding its interaction with non-coding RNAs (39). However, 

computational tools required to answer this question are lacking, as current tools do not allow for 
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the surveying of long, complex motifs, or direct quantification of motifs that discriminate subtle 

differences between motifs (discriminative motif comparison). 

Motif Analysis 

Beside a better understanding of the biological and epigenetic mechanisms underlying cancer 

progression, advancements in bioinformatics also promote innovation in the field of oncology. 

Biological investigation into pathologies driven by aberrant Transcription Factor (TF) activities or 

non-coding mutations located at promoters, enhancers, or chromatin domain boundaries (25- 

28,165) might benefit substantially from computationally driven motif analysis. 

For the task of identifying DNA motifs, motif discovery tools, such as GADEM (166) or MEME 

(167), coupled with DNA motif databases for TFs, such as JASPAR (168), CisBP (169) and 

UniPROBE (170), are widely used. By comparing the immediate DNA sequence surrounding an 

oncogenic, non-coding, somatic mutation to an online TF motif database, one can predict which 

TF or family of TFs is likely to experience hindered DNA binding at this locus. From this 

prediction, mechanisms of oncogenic progression may be surmised. For example, multiple 

oncogenic non-coding variants were identified to colocalize with the core recognition motif of 

CTCF (171-173). When coupled with available Hi-C datasets, motif driven hypotheses provide 

mechanistic insights into the role of these non-coding variants through altered chromatin looping 

at key, actionable, oncogenes (174). Although current tools are well-suited to detect the presence 

of a known binding motif in the examples above, their intrinsic limitations hinder their predictive 

abilities when subtle modifications or extensions of known binding motifs are involved. 

Motif discovery is studied in diverse biochemical environments, each with their pros and cons. In 

Silico DNA motif discovery tools can identify binding motifs by computing a position weight 

matrix (PWM), derived from normalized relative frequencies of each nucleic acid base, within the 
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aligned TF binding sites identified by experiments such as ChIP-seq (175). Compared to in vitro 

techniques, such as protein binding microarrays (PBM), which test for motifs directly involved in 

TF-DNA interaction (176), motifs discovered by in-silico analysis of ChIP-Seq datasets are 

influenced by cellular conditions. For instance, both methods will identify a similar motif for a TF 

whose binding is primarily driven by direct DNA-protein interactions. Alternatively, if a TF’s 

motif is acutely influenced by chromatin state (177), cofactor interaction (178) or recruitment by 

another TF (179), the identified motif will be markedly different if discovered from a ChIP-Seq or 

a PBM experiment. As such, these two complementary approaches of motif discovery are 

competent to predict the primary recognition motif of a given TF, be it a direct or indirect DNA 

interaction. However, both fail to identify underrepresented motif variability. Subtle changes or 

extensions of the core motif are statistically overlooked by the strict thresholding required for motif 

discovery from ChIP-Seq. Further, condition-dependent motif alterations cannot be detected 

in-vitro, as current tools are programmed to identify motifs within a given group of sequences, 

compared to background or a complementary set of sequences, but not to compare the motifs, and 

surrounding nucleotides, themselves. 

Due to these limitations, defining the impact on DNA recognition of mutated TFs, such as the 

aforementioned CTCF H284N mutation, or mutated co-factors, remains a challenge. 
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Body 

Chapter 1: Mechanistic Investigation of CTCF Loss of Heterozygosity in Cancer (180) 

Low CTCF expression promotes invasiveness in diverse breast cancer models 
CTCF single allele deletions are prevalent in a majority of breast tumors (22). To better 

understand the consequences of this genetic aberration, I first surveyed conditionally 

reprogrammed cell lines from Patient Derived Xenografts from triple-negative breast cancer 

patients, termed PDX, harboring loss of one allele of CTCF (Supplementary Figure 1.1A) and 

with CTCF expression equivalent, or lower, than in our previously established MCF10A 

CTCF+/- mammary epithelial cell line, harboring a knockout of one CTCF allele (64) (Figure 

1.1A). The low levels of CTCF in my cell lines tightly mimic those observed in vivo from a 

panel of tumor xenografts derived from a distinct set of triple-negative breast cancer patient’s 

tumors (Supplementary Figure 1.1B). Thus, these data support these in vitro models as relevant 

systems to study the effects of low CTCF on oncogenic phenotypes. 

Multiple clinical reports link 16q22.1 deletion, where CTCF resides, with metastasis (181-183). 

Therefore, I investigated the impact of altered CTCF levels on the invasive capacity of cells, a 

critical step in cancer progression. For this, I employed matrigel transwell invasion assays and 

CTCF addback to the PDX cell lines carrying low levels of CTCF. Following lentiviral addback 

of HA-CTCF (Figure 1.1B), the increased CTCF expression led to reduced invasiveness of all 

three PDX cell lines tested (p = 0.0031, 0.0084 and 0.0015 for HA-CTCF #1-3 against their 

respective Control) (Figure 1.1C), despite the varied mutational background of each cell line. 

Next, I validated the impact of CTCF levels on invasiveness by comparing the effects of shRNAs 

against CTCF (shCTCFs) or scrambled shRNA (shCTL) in MCF7 cells, a widely used, CTCF 

WT, breast cancer cell line. Consistent with the inhibition of invasiveness brought about by 
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CTCF addbacks, the reduction in CTCF levels resultant from the shCTCFs (Supplementary 

Figure 1.1C) led to a significant increase in MCF7 invasiveness compared to shCTL (p = 0.021 

and 0.0051 for shCTCF #1 and #2) (Supplementary Figure 1.1C). Altogether, these studies 

confirm a relationship between low CTCF expression and increased invasiveness in distinct 

breast cancer models. 

CTCF Single Allele Knockout induces oncogenic phenotypes in mammary epithelial cells 
Next, to study the effect of altered CTCF expression in mammary tissue independently of the 

heavy mutational burden of breast cancer models, I investigated the effect of low CTCF 

expression in the non-transformed breast epithelial cell line MCF10A carrying a single allele 

knockout of CTCF (MCF10A-CTCF+/-), previously edited via CRISPR-Cas9 (64) (Figure 

1.1D). 

Using this model, I screened for several classical oncogenic phenotypes including cell invasion, 

altered morphology, increased proliferation, and deregulated mammosphere growth. Similar to 

what I observed in breast cancer models, the loss of one copy of CTCF increased the capacity of 

MCF10A to invade through a matrigel matrix. CTCF+/- cells readily invaded through matrigel at 

a rate significantly higher than CTCF+/+ control (CTL) MCF10A cells (p = 0.0066 and p< 

0.0001 for CTCF+/- #1 and #2) (Figure 1.1D). To support a direct link between the loss of CTCF 

and the acquired invasiveness, I carried out lentiviral-mediated addback of HA-CTCF within our 

MCF10A models. As in the PDX cell lines, the restoration of CTCF levels was able to 

significantly reduce the invasiveness of CTCF+/- cells (Figure 1.1E, Supplementary Figure 

1.1D). Phenotypically, the morphology of the CTCF +/- cells in two-dimensional culture was 

markedly similar (Supplementary Figure 1.1E), while their proliferation rate was slightly 

reduced compared to CTL cells (Supplementary Figure 1.1F). MCF10As spontaneously form 

organized hollow ductal acinar-like structures in three-dimensional (3D) culture (184), 
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presenting the opportunity to study the impact of lowered CTCF levels on the regulation of 

unanchored growth. Strikingly, MCF10A CTCF+/- acini form significantly larger, less hollow, 

(p < 0.0001) and structurally deformed (Supplementary Figure 1.1G/F) mammospheres 

compared to CTL counterparts. 

Together, these results point towards a potentially important role for the loss of heterozygosity of 

CTCF in cancer progression, as it promotes disorganized 3D growth and invasiveness, two 

strongly linked oncogenic abilities critical for tumors to progress from benign, to advanced 

stages of cancer. 
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Figure 1.1. CTCF loss of heterozygosity promotes invasiveness and unorganized growth in 
distinct breast epithelial models. (A) Western Blot showing low levels of CTCF, similar to the 
CTCF+/- MCF10A, in the PDX cells. Loading control : Actin. (B) Western Blot of ectopic HA- 
CTCF expression in PDX cell lines. Loading control : Actin and Tubulin. (C) Decrease in 
relative invasiveness of HA-CTCF PDXs to respective GFP controls (mean ± SEM). p = 0.0031, 
0.0084 and 0.0015 for PDX #1, 2 and 3. (D) Western Blot of low CTCF levels in the CTCF+/- 
compared to CTL MCF10A. Quantification of relative CTCF band intensity in CTCF +/- to 
CTL. Loading control: Actin. Bar Chart of the increased relative invasiveness of CTCF+/- to 
CTL (mean ± SEM). p = 0.0066 and p< 0.0001 for CTCF+/- #1 and #2. (E) Decreased relative 
invasiveness of CTCF+/- MCF10A with HA-CTCF addback relative to their respective GFP 
control (mean ± SEM). p-value = 0.0013 for both CTCF+/- #1 and #2. 
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Reprogramming of transcriptional networks leads to activation of oncogenic signaling in CTCF+/-  
cells 
To gain insight into the mechanism whereby CTCF+/- cells acquire the oncogenic phenotypes 

described above, we carried out an RNA-Seq to compare global gene expression profiles of 

MCF10A CTL and MCF10A CTCF+/- cells. Using DESEQ2 (185), I detected 2976 and 2893 

genes that were significantly transcriptionally altered in the CTCF+/- #1 and #2, respectively, 

compared to CTL (Basemean > 100, abs (log2FC) >1, adjusted p-value < 0.05). The 

transcriptional changes were highly reproducible as the respective changes in gene expression in 

each CTCF +/- clone compared to CTL correlated very strongly (r = 0.9937, p < 0.0001) 

(Supplementary Figure 1.2A). Of the 2765 genes commonly altered in both CTCF+/- clones, a 

slight majority of 1503 genes were upregulated (54%), compared 1261 genes that were 

downregulated (46%) (Figure 1.2A). These results demonstrate that a specific subset of genes is 

consistently sensitive to CTCF depletion in breast epithelial cells. 

GSEA analysis of the RNA-Seq data revealed that multiple gene sets related to the 

phosphoinositide 3-kinase (PI3K) and epithelial to mesenchyme transition (EMT) pathways were 

strongly upregulated in the CTCF+/- cells (Figure 1.2B). Indeed, Gene Ontology “Positive 

Regulation of Phosphatidylinositol-3-Kinase Signaling” and “ Epithelial-to-Mesenchymal 

Transition” were in the top 5% and 7% by Normalized Enrichment Score in our GSEA Analysis, 

respectively, out of 839 significantly upregulated pathways. Similarly, gene sets related to these 

pathways were consistently among the top 10 enriched pathways using KEGG, Reactome or 

PANTHER pathway analysis tools and distinct ranking methods (Supplementary Figure 1.2B). 

The PI3K pathway is a classical oncogenic pathway aberrantly activated in diverse cancers that 

drives both invasiveness and altered mammosphere morphology (184). Among the top 

upregulated genes in our CTCF+/- clones were ERBB3 and FGFR1, well-characterized receptor 
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tyrosine kinases and oncogenes that activate the phosphorylation cascade of the PI3K pathway 

(186,187). The PI3K signaling feeds into the EMT pathway, partially through translational 

upregulation of classical oncogenes, such as SNAI1, which itself promotes invasion (188). 

Interestingly, CTCF sites surrounding SNAI1 are enriched for non-coding mutations in cancer 

(189) and SNAI1 was among the top hits within the EMT pathway based on our RNA-seq data 

(Figure 1.2B). Consistent with an upregulation of EMT related genes, such as SNAI1 (190), and 

our invasive phenotype, downregulated genes were enriched for those involved in the promotion 

of cell-to-cell contact, such as cellular adhesion pathways (Supplementary Figure 1.2C). I 

validated the marked upregulation and downregulation of top hits using qPCR (Supplementary 

Figure 1.2D). Considering that CTCF+/- cells do not undergo obvious changes in morphology, it 

is likely that these cells undergo a partial EMT that is reversible upon re-expression of CTCF 

(Figure 1.1E). 

Next, I investigated RNA-Seq data from the TCGA database of breast cancer patients. To detect 

groups of genes whose expression may be altered by varying CTCF levels, I computed the 

statistical correlation between each gene and CTCF expression in each patient. We then carried 

out gene ranking based on Spearman Test p-values coupled with GSEA PreRank pathways 

analysis. Similar to what I observed in MCF10A cells, pathways involved in PI3K signaling 

were overrepresented in the Top10 altered pathways by Normalized Enrichment Score 

(Supplementary Figure 1.2E) and p-values (Figure 1.2C). Interestingly, the association between 

high SNAI1 expression and low CTCF is also observed clinically, as I found a significant 

correlation between low CTCF and high SNAI1 expression in patients’ breast tumors (Figure 

1.2D). Overall, these results imply a role for CTCF in the regulation of genes involved in the 

PI3K signaling pathway gene and important regulator of EMT, such as SNAI1. 
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Figure 1.2. RNA-Seq reveals oncogenic expression underlying the invasive phenotypes. (A) 
Volcano plot of transcriptomic changes between CTCF+/- #1 and CTL MCF10A. Genes of the 
PI3K and EMT pathways, marked as black stars, are among the top upregulated genes. (B) GSEA 
of Gene Ontology PI3K Pathways and EMT Pathways upregulated in CTCF+/- MCF10A 
compared to CTL. Heatmaps of the top twenty most up or downregulated genes, ranked by 
abs(Log2FC), in PI3K and EMT Regulation pathway presented above. (C) Most enriched pathway 
by p-value (PI3K Signaling) and NES (AKT signaling) following GSEA Pre-rank analysis of 
genes significantly correlating with CTCF expression in TCGA breast cancer patient RNA-Seq 
data. Genes were ranked by -log(Spearman test p-value). (D) Box plot (10-90 percentile) of higher 
SNAI1 expression levels in CTCF low breast tumors (p< 0.0001, one-tailed Student’s T Test) 
detected by RNA-Seq in TCGA Breast Cancer Patients for tumor in the top 20% low CTCF 
expression compared to top 20% high CTCF expression. p-value for the Spearman correlation test 
is also noted below. 
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Activation of the PI3K pathway following CTCF Copy Number Loss 
Now guided by the RNA-seq data, I examined whether the PI3K pathway was hyper-activated in 

the MCF10A CTCF+/- cells, to determine whether this signaling contributes to the invasive 

phenotype. First, I screened for increased activation of key downstream effectors of PI3K 

signaling, including phosphorylation of 4EBP1 (serine 65) and S6K1 (threonine 389), direct 

targets of the mTORC1 complex (191). Under conditions of serum starvation, where 

phosphorylation of S6K1 and 4EBP1 were weakly detected in the CTL cells, a strong 

phosphorylation signal was detected in the CTCF+/- cells (Figure 1.3A). As the upregulation of 

the PI3K pathway can alter the morphology of mammospheres (184), my colleagues tested 

whether the elevated activation of PI3K might be observed under 3D culture conditions. 

Similarly, they detected a pronounced phosphorylation of S6, the direct target of S6K1, in both 

CTCF+/- mammosphere populations, while it was absent in the CTL acini (Figure 1.3B). Since 

the outer region of mammospheres is expected to be the primary proliferative zone, due to the 

accessibility of nutrients and oxygen, they developed a custom script to visually isolate and 

quantify the fluorescence of this region for individual mammospheres. They detected that 

phosphorylation of S6 was 3.1 and 2.7 times higher in CTCF+/- #1 and #2 than in the CTL acini 

(p < 0.0001). Thus, under conditions of both 2D and 3D culture, reduced pools of CTCF leads to 

transcriptional reprogramming that activates the PI3K pathway. 

Based on the aberrant activation of PI3K signaling in CTCF+/- cells, we surmised that their 

invasivity may be vulnerable to inhibitors of this pathway. I targeted mTORC1/2 because these 

kinase complexes assimilate the signals from diverse branches of the PI3K signaling cascade 

(191). I carried out matrigel transwell invasion assays following a 48h mTORC1/2 inhibition, 

using the second generation mTor inhibitor Torin1 (192). Since the CTL MCF10A are mostly 

non-invasive, I compared the changes in invasiveness of our CTCF+/- MCF10A cells and PDX 
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cell lines to the well-characterized breast cancer cell lines: MDA-MB-231, MCF7 and SKBR3. 

Following Torin1 treatment at 25nM, both MCF10A CTCF +/- and CTCF-low PDX lines, were 

markedly sensitive to these low concentrations, being significantly more repressed in their ability 

to invade than the trio of breast cancer cell lines carrying higher CTCF levels (Figure 1.3C). 

These data indicate that the PI3K pathway plays a central role in driving the invasion of normal 

epithelial cells with reduced CTCF levels, while late stage TNBC lines, such as MDA-MB-231 

may utilize multiple, or alternative, pathways to achieve this phenotype. 

I also validated that low concentrations of Torin1 treatment efficiently inhibited mTORC1. 

Concentrations as low as 5nM strongly abrogate the phosphorylation of 4EBP1 in the CTCF+/- 

cells under starved condition (Figure 1.3D). As the PI3K pathway has also been shown to control 

the protein expression of SNAI1 through translational upregulation (188), I investigated the 

impact of Torin1 treatment on SNAI1 expression. I detected a marked, dose-dependent drop in 

SNAI1 protein levels following 24h of Torin1 exposure (Figure 1.3D). Since SNAI1 

overexpression promotes invasiveness in multiple models (193,194) and it is strongly 

overexpressed at the mRNA and protein level in our CTCF+/- MCF10A (Figure 1.3E), we 

decided to investigate whether it is an important downstream target of PI3K and playing a role in 

the invasiveness of the CTCF+/- cells. To do so, my colleague used lentiviral-mediated shRNA 

knockdown of SNAI1 and surveyed the changes to cell invasion. The downregulation of SNAI1 

led to both a significant reduction of SNAI1 protein levels and of CTCF+/- invasiveness (Figure 

1.3F). Overall, these results highlight the importance of the upregulation of the PI3K pathway, 

and its downstream effector, SNAI1, for the oncogenicity of the CTCF+/- cells. These indicate 

that the invasion of tumors harboring CTCF copy number loss, coupled with elevated SNAI1, 

may be susceptible to therapeutic intervention with inhibitors of mTORC1/2. 
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Figure 1.3. The PI3K pathway and SNAI1 are central for the oncogenic properties of 
CTCF+/- cells (A) Western Blot showing maintained phosphorylation of mTORC1 targets under 
serum-free conditions in CTCF+/- cells. Quantification represents the band intensity normalized 
on background. Loading control: Actin. (B) Mammosphere immunofluorescence and 
quantification of increased S6 fluorescence of the outer layer of the mammosphere in CTCF+/- 
compared to CTL MCF10A. Represented as a Min to Max Box Plot. p < 0.0001 for CTCF+/- #1 
and #2 compared to CTL. (C) Relative invasiveness following 48h 25nM Torin1 treatment, 
normalized relative to the untreated invasiveness of each cell line (mean ± SEM). p-values 
comparing each cell line to the relative invasiveness of MDA-MB-231: MCF7 = 0.031508, 
SKBR3 = 0.019340, CTCF+/- #1 = 0.018925 and #2 = 0.003089, PDX #1 = 0.000002, #2 = 
0.000076, #3 = 0.000262. (D) Western Blot, using serum-free conditions, for SNAI1 levels and 
4EBP1 phosphorylation following 24h Torin1 treatment. Quantification of relative SNAI1 band 
intensity relative to untreated levels is shown below each blot. Loading control: PARP1 and 
Actin. (E) Western Blot of SNAI1 levels in CTCF+/- MCF10A cells. Quantification of relative 
SNAI1 band intensity to CTL is shown below the top-most blot. Loading control: Actin and 
GapDH. Bar chart (mean ± SEM) of qPCR validation of SNAI1 overexpression at the mRNA 
levels. (F) Western Blot of SNAI1 levels following sh-SNAI1 treatment. Below blot, 
quantification of relative SNAI1 band intensity to shCTL. Loading control: Actin. Bar chart of 
decreased relative invasiveness of the shSNAI1 treated CTCF+/- MCF10A compared to shCTL 
treated (mean ± SEM). p-values = 0.00103 and 0.000141 for #1 and #2. All p-values were 
calculated using Student’s T Test. 
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Low CTCF expression alters its binding to DNA surrounding oncogenes 
It is reasonable to expect that the reduced nuclear pool of CTCF would compromise the number 

of occupied CTCF sites on the chromatin. To gain mechanistic insight into the altered oncogenic 

transcriptional networks of MCF10A CTCF +/- cells, we carried out a ChIP-Seq to map CTCF 

binding across the genome (Figure 1.4A). I identified that a majority of CTCF binding sites, 38 

775 out of the 44 802 peaks called by MACS2 (195), were left unchanged between the MCF10A 

CTL and MCF10A CTCF+/- cells. Considering that CTCF levels were reduced by ~50-60% in 

these cells, it is clear that the nuclear pool of CTCF is in excess of that required for genomic 

regulation, consistent with previous reports showing a significant fraction of CTCF is unbound 

within interphase cell populations (156). This excess is likely a safeguard against genomic 

instability and protection of the transcriptome that might stem from fluctuating CTCF levels. 

However, as expected, a subset of 5313 sites displayed reduced or lost CTCF binding in the 

CTCF+/- MCF10As compared to the CTL (FDR < 0.01, LogFC < -1 ). Surprisingly, a small 

cluster of 714 sites displayed a gain of CTCF binding (FDR < 0.01, LogFC > 1 ) (Supplementary 

Figure 1.3A). 

Next, I investigated the differences in binding strength and distribution between the sites lost and 

constant in CTCF+/- cells. The average read density was lower for sites within the lost cluster 

compared to the constant cluster in the CTL MCF10As (Figure 1.4B). The genomic distributions 

of lost and gained sites were also unique compared to constant sites. 29% of CTCF lost sites 

compared to 19% of constant sites, were found on promoters, such as the promoter of SNAI1 

(Supplementary Figure 1.3B/C). While 37% of lost sites, including a ERBB3 downstream site 

(Supplementary Figure 1.3D) and 41% of constant sites were located in distal intergenic regions, 

compared to 53% of gained sites (Supplementary Figure 1.3B). 

Consistent with our RNA-Seq, KEGG pathway analysis of the CTCF binding sites within the 
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lost clusters were strongly enriched surrounding genes involved in the PI3K-Akt signaling 

pathway (ranked 2nd by relative gene count). Multiple pathways related to cell mobility, such as 

ECM-receptor activation (ranked 4th), were also observed, which display significant enrichment 

when compared to an equinumerous set of constant CTCF sites (Figure 1.4C). These results 

suggest that a subset of weakly binding CTCF sites, showing enrichment around promoters and 

genes involved in the PI3K pathway and cell invasion, such as SNAI1, are more sensitive to 

CTCF depletion in mammary epithelial cells. 

CTCF Lost Sites are frequently proximal to deregulated genes 
CTCF may impact gene transcription through binding proximal or distal to transcription start 

sites (TSS) through multiple mechanisms. To gain further insights into the mechanisms whereby 

altered CTCF binding might impact transcriptional events in MCF10A cells carrying a single 

functional CTCF allele, I mapped lost sites to determine their proximity to TSS. About half of all 

CTCF lost sites (2408 out of the 5313) were found with proximity (+/- 3kb) to significantly 

altered genes (Basemean > 100, adjusted p-value < 0.05). Interestingly, a significant fraction of 

lost sites was found around both strongly upregulated (Log2FC > 1, 530 sites) and strongly 

downregulated (Log2FC < -1, 716 sites) genes, in pathways consistent with the RNA-Seq 

(Figure 1.4C/D). This highlights the complexity of gene regulation mediated by CTCF, but 

underscores that loss of CTCF binding frequently impacts the transcription of proximal loci. The 

intensity of the loss of CTCF significantly, but weakly, correlated with both upregulation (r = - 

0.1, p = 0.0056) and downregulation (r = 0.2, p < 0.0001) of gene expression. Similarly, both 

upregulated and downregulated genes displayed a slightly lower average CTCF ChIP-Seq read 

density on their TSS (Figure 1.4E). 

Regarding gained CTCF sites, of 714 such sites, 334 are proximal to 267 unique altered genes 

(adjusted p-value < 0.05). Of these genes, 192 (72%) are significantly upregulated, but only 107 
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genes reach a Log2FC >= 1. Pathway analysis of the 107 upregulated genes or 267 significantly 

altered genes revealed no clear enrichment, as no pathways were significant by FDR. These 

results are expected when the number of genes is low and the distribution is primarily stochastic. 

While proximal loss of CTCF is associated with both upregulation and downregulation of gene 

expression, it only mildly correlated with the intensity of altered gene expression. This hints that 

in many cases, the changes in transcription observed in CTCF heterozygous cells are likely 

driven through indirect, or downstream, mechanisms including changes in chromatin 

conformation or epigenetic reprogramming that are potentiated by CTCF loss, but likely not due 

to a loss of CTCF interaction with the core transcription machinery (196,197). 
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Figure 1.4. CTCF depletion alters CTCF DNA binding pattern (A) CTCF ChIP-Seq 
Heatmap of constant, lost and gained sites (from top to bottom). (B) Reduced average CTCF 
ChIP-Seq read density of lost sites compared to constant sites in the MCF10A CTL and CTCF+/-. 
(C) Differential enrichment of the top 4 KEGG Pathways, dominated by PI3K and ECM related 
pathways (ranked by geneRatio), at lost sites of CTCF compared to 100 equinumerous subsets of 
constant sites (mean ± SEM). (D) Dot plot of gene expression (Log2FC) and CTCF binding 
(LogFC) changes between CTCF+/- and CTL MCF10A for binding sites colocalizing (+/- 3kb) 
with expressed genes. Lost sites (purple) are found in proximity to both up and downregulated 
genes. Gained sites (orange) are differentially found in proximity to upregulated genes. (E) 
Decreased average CTCF ChIP-Seq read density in CTCF+/- MCF10A at the TSS of all 
upregulated genes (adjusted p-value < 0.05, Log2FC > 1) and downregulated genes (in purple, 
adjusted p-value < 0.05, Log2FC < -1) compared to unaltered genes (adjusted p-value > 0.05, 
abs(Log2FC) < 0.5). 
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CTCF loss potentiates epigenetic reprogramming at transcriptionally altered genes 
Destabilization of CTCF binding has been linked to numerous epigenetic changes (198-200). 

Thus, I investigated whether the changes to gene expression and CTCF binding were associated 

with changes to chromatin marks. First, we screened for multiple activating and silencing histone 

marks on representative altered genes using ChIP-qPCR. Although I detected significant changes 

in H3K4me3 and H2K27ac associated with altered transcription (Supplementary Figure 1.4A/B), 

I did not detect strong changes with the repressive marks H3K27me3 and H3K9me3 

(Supplementary Figure 1.4C/D). This is consistent with a previous study where changes to CTCF 

binding across multiple genomes were not strongly linked to differences in H3K27me3 (199). 

Therefore, we proceeded to map H3K4me3 and H3K27ac genome-wide using ChIP-seq to 

compare CTL MCF10A with CTCF+/- cells (Figure 1.5A). A majority of H3K4me3 (~82%) and 

H3K27ac (~87%) peaks were conserved between CTCF+/- and the CTL MCF10A. However, 

both H3K4me3 and H3K27ac showed significant alterations upon loss of CTCF. H3K4me3 and 

H3K27ac gained enrichment at 2929 and 5188 loci respectively. Further, H3K4me3 was reduced 

at 1932 and H3K27ac at 2060 sites (abs(LogFC) >= 1, FDR <= 0.05) (Figure 1.5B). Overall, 

CTCF loss potentiated a gain of marks associated with gene activation. Then, I assessed whether 

these changes to histone marks correlated with altered gene expression. We observed a 

pronounced, and statistically significant gain of H3K27ac at upregulated genes (r = 0.64, p < 

0.0001) (Figure 1.5C) including oncogenes such as ERBB3 and SNAI1 (Figure 1.5D), compared 

to a more modest correlation of H3K4me3 with upregulated genes (r = 0.45, p < 0.0001) (Figure 

1.5C/D). 

CTCF loss has been indirectly linked to deregulated DNA methylation (201,202) and it is 

possible that altered DNA methylation contributes to transcriptomic changes observed in 

CTCF+/- cells. I carried out bisulfite conversion and investigated the association between 
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genome wide changes in DNA methylation and transcriptomic changes, using Illumina EPIC 

methyl array with our RNA-Seq data. Contrary to the strong correlation detected between 

changes in activating marks and gene expression, the changes in DNA methylation pattern 

observed in the CTCF+/- did not correlate with changes in gene expression (r = -0.04, p<0.0001) 

(Figure 1.5E). These results indicate that under conditions of sub-physiological CTCF levels, 

changes in gene expression most specifically linked to a global reprogramming of H3K27ac. 

To test for a role of gained H3K27ac in the promotion of cell invasion, I treated CTCF+/- cells 

with the Histone Acetyl-Transferase (HAT) inhibitor A485, that targets CBP (203). First, we 

validated the ability of A485 to inhibit the deposition of H3K27ac using western blotting 

(Supplementary Figure 1.4E). Linking acetylation to the transcriptomic profiles defined on our 

MCF10A CTCF +/- cells, under serum starved conditions, A485 treatment efficiently resolves 

the hyperactivation of the PI3K/mTor pathway, as indicated by a dose-dependent reduction of 

4EBP1 phosphorylation (Figure 1.5F). Similarly, CBP inhibition blocked SNAI1 expression, 

linking the gain of H3K27ac to its upregulation (Figure 1.5F). As inhibition of both the PI3K 

pathway and SNAI1 expression reduced the invasiveness of the CTCF+/- cells, I tested their 

invasivity after exposure to A485 treatment and further, compared the effects with those 

observed in MDA-MB-231 cells. Similar to mTor inhibition and SNAI1 knockdown, A485 

treatment significantly reduced the invasiveness of the CTCF+/- cells (Figure 1.5G) further 

supporting the hypothesis that the increased deposition of H3K27ac plays a key role in the 

oncogenic phenotypes caused by the loss of CTCF. Interestingly, MDA-MB-231 cells were 

noticeably sensitive to this treatment (Figure 1.5G) as well. These results highlight a general 

dependency on increased histone acetylation during the invasion process of aggressive epithelial 

cancer cells, regardless of CTCF status, and supports an essential role of epigenetic 
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reprogramming during cancer progression. 
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Figure 1.5. Epigenetic reprogramming of activating histone marks drives changes in gene 
expression (A) H3K4me3 and H3K27ac ChIP-Seq heatmaps for constant, gained and lost sites 
(from top to bottom). (B) Partitioning of constant, gain and lost clusters from Figure5A. (C) Dot 
plot of highly correlating gene expression (Log2FC) and H3K4me3 or H3K27ac (LogFC) 
changes between CTCF+/- and CTL MCF10A for binding sites colocalizing (+/- 3kb) with 
expressed genes. (D) ChIP-Seq track of the normalized read density for H3K27ac or H3K4me3 
surrounding ERBB3 and SNAI1. (E) Dot plot of gene expression (Log2FC) and Methyl EPIC 
Array (LogFC) changes between CTCF+/- and CTL MCF10A for binding sites colocalizing (+/- 
3kb) with expressed genes. (F) Western Blot, under starved conditions, for 4EBP1 
phosphorylation and SNAI1 levels following 48h treatment with HATi A485 treatment (μM). 
(G) Relative invasiveness of A485 treated CTCF+/- MCF10A and CTL MDA-MB-231 (mean ± 
SEM) . P-values of treated compared to untreated cells; 2μM: MDA < 0.0001, #1 = 0.0444 and 
#2 = 0.0232; 5μM: MDA < 0.0001, #1 = 0.0284 and #2 = 0.0252. See also Supplementary Figure 
4. 
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Reduced CTCF Levels lead to loss of insulation of subTAD structures 
Following our ChIP-Seq experiments, we posited that the loss of CTCF binding and the relative 

increase in open chromatin at activated genes may stem from a loss of insulation. Therefore, I 

investigated changes in 3D chromatin architecture using Hi-C. I generated 600 million reads per 

condition with biological replicates of the CTL, and replicates of CTCF+/- #1 and #2 were 

merged for high resolution analysis. This sequencing depth allowed us to reach a complete 

genomic coverage at 5kb resolution, consistent with previous high-resolution Hi-C data (204- 

206). Statistical analysis of the correlation between the contact matrices of each cell line revealed 

a marked difference between the CTL and both CTCF +/- clones at 5kb resolution (Figure 1.6A), 

while all three groups were more homogenous when the resolution was moved to 500kb or 1Mb 

(Supplementary Figure 1.5A). Consistent with this analysis, at the megabase scale, I also did not 

detect notable genome-wide changes in chromosome organization between CTCF+/- and CTL 

cells (Supplementary Figure 1.5B), which were strikingly consistent with previously published 

data (207). 

Next, I queried whether more local changes in chromatin architecture may underlie the RNA 

profiles resulting from CTCF CNL. First, I used a hierarchical TAD caller, hiTAD (208), to call 

TAD boundaries and domain boundaries within TADs (termed subTADs) at a 10kb resolution. I 

then compared the colocalization of called boundaries (+/- 10kb) between the CTL and two 

CTCF+/- clones. Of the 11,580 TAD boundaries called, 10% were lost in both CTCF+/- lines 

compared to the CTL. These changes were more pronounced when looking at subTAD 

boundaries, where 17% of the total number was lost (Figure 1.6B). The loss of these boundaries 

might potentiate de novo contacts between DNA elements due to loss of insulation. Indeed, 

CTCF+/- cells gained 810 new TAD boundaries (7% gain) and 606 subTAD boundaries (11% 

gain), which are enriched next to lost boundaries (Supplementary Figure 1.5C), indicating a re-
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organization of sub-genomic regions. Altered boundaries frequently colocalized with altered 

sites of CTCF binding (+/- 10kb), with lost boundaries showing a marked enrichment for lost 

CTCF elements, while gained boundaries are generally CTCF-null (Figure 1.6C). These de novo 

TAD/subTAD interactions, demarcated by gained boundaries, are likely generated from a loss of 

insulator activity that limit long range DNA contacts, so it is logical that these regions would be 

devoid of CTCF. This novel mechanism is supported by a recent study demonstrating that 

CTCF-independent enhancer looping is potentiated by the loss of proximal CTCF binding (209). 

To validate that the loss of CTCF binding leads to local loss of DNA insulation, I imaged the 

average local interaction centered around lost sites of CTCF (+/-200kb, Figure 1.6D). In 

agreement with our hypothesis, I detected a marked reduction of boundary strength, represented 

by a decreased interaction intensity at CTCF sites delimiting two domains. DNA insulation was 

also clearly compromised as represented by an increased interaction intensity between the 

domains spanning the lost sites of CTCF (Figure 1.6D). 

Subsequently, I asked whether loss of insulation was equally compromised at TAD and subTAD 

boundaries. To answer this question, I subdivided the lost CTCF sites into lost sites colocalizing 

with TAD boundaries or located within TADs. For each subset of the lost sites, I plotted local 

interactions centered around the lost sites of CTCF (+/-200kb) and measured the average 

insulation score of these regions using FAN-C (210). I detected a slight loss of boundary strength 

and insulation at lost sites of CTCF colocalizing with TAD boundaries. These results were 

expected since TAD boundaries are often bound by redundant CTCF sites and recent evidence 

indicates that many TADs insulate themselves from their neighbors independently of CTCF 

(109,211). However, lost sites of CTCF within TADs resulted in a nearly complete loss of 

boundary strength and insulation, allowing inter-domain DNA interactions (Figure 1.6E). These 
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observations validate, in a quantifiable manner, the prominent loss of insulation at subTADs 

under conditions of low CTCF expression. Since subTADs are localized within TADs, in a 

chromatin environment that promotes interactions, the resulting loss in insulation is more 

permissive to the formation of new, potentially oncogenic, contacts. 

Changes in subTAD organization drives epigenetic reprogramming and changes in gene 
expression 
I continued the Hi-C analysis to investigate whether the changes in subTAD interactions are 

connected to the changes in gene expression. First, I measured the average gene expression 

changes at altered subTAD and TAD boundaries. Genes colocalizing with the gained subTAD 

boundaries were the most significantly upregulated (p < 0.0001, Figure 1.6F) compared to all 

genes. As expected, altered TAD boundaries were not significantly associated to transcriptional 

changes (Figure 1.6F). 

I found that altered subTAD interactions and changes to activating marks are both associated 

with changes in gene expression, so I investigated whether colocalization of H3K27ac or 

H3K4me3 was observed at domain boundaries. I detected a strong enrichment of gained sites of 

H3K27ac and H3K4me3 with gained subTAD boundaries and vice-versa with lost subTADs 

boundaries (Figure 1.6G, Supplementary Figure 1.5D). Altered TAD boundaries were not 

enriched for changes in either mark (Figure 1.6G, Supplementary Figure 1.5D), consistent with 

the lack of transcriptional changes in these regions. These results are validated by comparing the 

average changes in insulation at gained sites of H3K27ac colocalizing with TAD boundaries or 

within TADs (Figure 1.6H). Gain of H3K27ac at TAD boundaries was not predictive of altered 

insulation, while gain of H3K27ac within TADs led to a marked gain of insulation (Figure 1.6H), 

confirming the formation of de novo subTAD boundaries at these sites. Importantly, the genes 

found at gained H3K27ac within TADs were enriched for genes involved in mTor signaling 
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(Supplementary Figure 1.5E), as this pathway was among the ten most differentially enriched 

pathways in gained H3K27ac compared constant H3K27ac within TADs. Then, using pileup 

plots, I looked at the average density of interactions between regions of gained H3K27ac and all 

sites of either H3K27ac or H3K4me3 (Figure 1.6I). Considering all combinations, I detected a 

marked gain of interaction at loci where H3K27ac was gained in the CTCF+/- cells (Figure 1.6I). 

These results indicate that the reconfiguration of subTADs, specifically, allows for de novo 

interactions at regulatory regions enriched for gains of H3K27ac that drive the expression of 

oncogenic programs. 
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Figure 1.6. Loss of subTAD insulation drives gene expression changes. (A) Pearson 
Correlation Coefficient heatmaps showing diverging contact frequencies between CTCF +/- #1 
and #2 and CTL. (B) Partitioning of constant, gained and lost TAD and subTAD boundaries (+/- 
10kb). (C) Enrichment of CTCF sites at boundaries (O/E Ratio), showing an association between 
loss of CTCF and lost boundaries, and absence of CTCF and altered boundaries. These are both 
more pronounced for subTAD boundaries. (D) Pile-up plots showing local interaction, relative to 
randomize average genome-wide interaction, around constant and lost sites of CTCF (range: 
200kb). CTCF lost sites show less insulation in CTL MCF10A, which is further reduced upon 
loss of CTCF. (E) Pile-up plots of local interactions at CTCF sites localizing at TAD boundaries 
or within TADs. Profile plot of average insulation score in each region quantifies the specific 
loss of insulation observed at lost sites of CTCF within TADs. (F) Average RNA-Seq log2FC 
between CTCF+/- and CTL of genes colocalizing with TAD and subTAD boundaries (+/- 10kb) 
(mean ± SEM) showing that gained subTAD boundaries are strongly associated with 
upregulation of gene expression. (G) Enrichment of altered H3K27ac sites at altered subTAD , 
but not TAD, boundaries (O/E Ratio). (H) Increased average insulation score at sites of gained 
H3K27ac within TAD, but not at TAD boundaries (colocalization : +/- 10kb, range: 200kb). (I) 
Pile-up plots of increased interaction between gained H3K27ac and all sites of H3K27ac and 
H3K4me3 (range: 50kb). 
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An excellent example of this mechanism may be observed at the SNAI1 locus. At the megabase 

scale, conformational changes are not obvious (Supplementary Figure 1.6A). Using HIFI (212) 

to facilitate Hi-C resolution at a sub-5kb scale, I detected a discrete, novel interaction between 

the SNAI1 gene and a downstream potential enhancer in CTCF+/- cells (Figure 1.7A). This 

interaction is positioned adjacent to the lost CTCF binding site within the SNAI1 promoter, and 

is embedded with a region of gained H3K27ac (Figure 1.7B). The downstream enhancer, 

connecting with the promoter, is likewise enriched for H3K27ac in the CTCF+/- cells (Figure 

1.7B). 

To validate that the loss of CTCF at SNAI1 may drive its overexpression, I directed a dCAS9 

construct to the CTCF site at SNAI1 promoter (sgSNAI1), in MCF10A CTL cells, where CTCF 

binding is compromised in CTCF+/- cells. Using ChIP-qPCR, I validated the specific 

displacement of CTCF at the promoter proximal CBS (Supplementary Figure 1.6B). Disruption 

of CTCF at this site with exogenous dCAS9 would be expected to facilitate an increase of 

SNAI1 expression if our model is correct. As a control I used a sgRNA targeting a CTCF- 

unbound region at the SNAI1 locus (sgCTL). Compared to CTL cells infected with sgCTL, cells 

infected with sgSNAI1 displayed a significant upregulation of SNAI1 mRNA levels (2.1 fold 

increase, p = 0.006) (Figure 1.7C). As a further control, directing dCAS9 to this CTCF binding 

site in CTCF+/- cells, where CTCF binding is already compromised, did not result in an 

upregulation of SNAI1 (Figure 1.7C). These data validate that disruption of CTCF may play a 

key role in driving the upregulation of oncogenes, including SNAI1. 

In summary, the loss boundaries at the subTAD level compromises insulation from de novo 

contacts. These de novo contacts, and the associated enrichment for H3K27ac at these regions, in 

turn, play a major role in driving the oncogenic networks observed in cells with CTCF CNL. 
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Figure 1.7. Loss of CTCF at SNAI1 drives reorganization of subTAD interactions. (A) 
Increasing zoom of 10kb and 5kb resolution HiC heatmap to HIFI high-resolution heatmap 
around SNAI1 loci (chr20, coordinates in Mb). Gain of enhancer-promoter interaction on SNAI1 
body, specific to CTCF +/- cells, shown in the white boxes in the HIFI heatmap. (B) ChIP-Seq 
track of normalized read density of increased H3K27ac on SNAI1 gene body and the 
downstream enhancer which displayed a gain of interaction in Figure 7A. (C) Mean ± SEM and 
individual replicates mRNA expression, relative to sgCTL, of infected CTL and CTCF+/- 
MCF10A. SNAI1 mRNA levels (p = 0.0057) in CTL-sgSNAI1 compared to CTL-sgCTL. All 
other comparisons are non-significant. Schematic of the experimental conditions (made with 
Biorender) is depicted above. 
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Chapter 2: Identifying Altered DNA Recognition Motif Associated to Mutant CTCF (213) 

CTCF ZF1M is associated with CTCF LOH in Breast Cancer 
To gain insight into the biological importance of CTCF ZF1 mutation, I first sought to interrogate 

the clinical correlation between ZF1 mutation and CTCF Loss of Heterozygosity (LOH). CTCF 

LOH is observed in a majority of breast tumors and I investigated a potential association or 

exclusivity of CTCF ZF1M and CTCF LOH to identify the most common clinical genotypes of 

CTCF ZF1M in breast tumors. Using copy number variation data from cancer patients within the 

TCGA 2018 dataset, I detect a significant downregulation of copy number in patients with CTCF 

ZF1M, of which CTCF H284N was the most common, compared with patients with other CTCF 

mutations or with WT CTCF. (Figure 2.1A). Among CTCF mutations across tumor types, the 

association between ZF1 mutation and CTCF LOH is the most pronounced, especially in breast 

tumors (Figure 2.1A). Indeed, ~83% of breast tumors with CTCF ZF1M co-occur with CTCF LOH 

(Figure 2.1B). Comparatively, CTCF LOH is detected in ~52% of breast tumors and ~16% of other 

types of tumors when WT CTCF is expressed from the second allele. Therefore, we conclude that 

a significant co-occurrence of CTCF ZF1M and CTCF LOH is found within breast tumors. 

In light of these observations, I decided to explore the biological impact of CTCF ZF1M in breast 

epithelium using two relevant models. First, the ZF1M/- model, in which the CTCF H284N 

mutation is inserted into one allele while the second allele of CTCF is knocked-out, similar to the 

most commonly observed genotype in the clinic. Second, the ZF1M/ZF1M model, in which a 

biallelic insertion of the CTCF H284N mutation results in the sole expression of the mutated form 

of CTCF at the same expression level as the control cell line, to account for any biological effects 

of the lower CTCF protein levels in the ZF1M/- cell line. Using CRISPR-Cas9, my colleague 

generated clonal lines for each of these genotypes, by combinations of knocking-in the CTCF 

H284N mutation and knocking-out CTCF in MCF10A cells (Supplementary Figure 2.1A/B). 
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MCF10A were chosen as they are immortalized, but not transformed, mammary epithelial 

cells, suitable to study the impact of the CTCF ZF1M in early events of breast cancer 

formation, without confounding effects of complex oncogenic mutations carried in breast 

cancer cell models. 

CTCF H284N Mutation Leads to Altered DNA Binding 
Next, to clarify the debated importance of ZF1 for coordinating CTCF-DNA interaction, I tested 

the hypothesis that the H284N mutation might alter CTCF binding to the DNA. Towards this goal, 

we carried out ChIP-Seq for CTCF using MCF10A CTL, ZF1M/ZF1M and ZF1M/-. 48 340 CTCF 

binding sites (CBS) were identified in CTCF CTL cells, consistent with other studies (202). 

Following csaw differential binding analysis, I identified 27997 constant CBS between all 3 

conditions, 3812 gained CBS in both ZF1M/- and ZF1M/ZF1M and 6556 commonly lost CBS 

(FDR <= 0.05) (Figure 2.1C/D). Interestingly, the genomic distribution of the altered CBS was not 

prominently different from the constant CBS, beside a slight enrichment of altered CBS on distal 

intergenic elements (Supplementary Figure 2.1C). Overall, the changes in CTCF were consistent 

between the two mutant cell lines. CBS gained in the ZF1M/- cell line were also gained in 

ZF1M/ZF1M cells, however, without reaching a threshold for significance (Figure 2.1E). On the 

other hand, sites gained in the ZF1M/ZF1M cell line appeared as low signal CBS in CTL 

displaying a slightly increased read density in both mutants, but only reaching the significance 

threshold in ZF1M/ZF1M, likely due to the higher availability of CTCF in this cell line, compared 

to the ZF1M/- cells (Figure 1E). Similarly to gained CBS, lost CBS within the ZF1M/ZF1M cell 

line were likewise frequently lost in the ZF1M/- cells (Figure 2.1F), indicating a high degree of 

similarity between ZF1M/ZF1M and ZF1M/- cells. The only subset of altered CBS that did not 

display a strong similarity between the 2 mutant cell lines were the 1013 CBS uniquely lost in 

ZF1M/-, which are likely caused by the lower levels of CTCF (Figure 2.1F). 
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Independent ChIP analysis from previously published reports helps validate our findings. I 

compared the CTCF binding profile of our mutant cell lines with a CTCF WT ChIP-Seq dataset 

from an independent study (214). Here, the altered CBS called by csaw were markedly consistent 

(Supplementary Figure 2.1D), with our own MCF10A dataset, suggesting that changes in CTCF 

binding are intrinsic to the mutant clones. Further, the changes in CTCF binding in our mutant 

MCF10As were also consistent when the datasets were analyzed with a different pipeline, using 

MACS2 (195) for peak calling and DiffBind (215) for differential binding analysis 

(Supplementary Figure 2.1E). Therefore, these results indicate that the CTCF H284N, ZF1 

mutation, likely induces a shift in the ability of CTCF to recognize or bind DNA. Also, due to the 

strong similarity between our models, the influence of the CTCF mutation on DNA binding seems 

to be largely independent of varying CTCF expression levels, hinting at a molecular mechanism 

underpinning the altered binding that does not include a stochastic loss in the general ability of 

CTCF to bind DNA. 
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Figure 2.1. H284N mutation of CTCF ZF1 alters a subset of DNA binding sites. (A) 
Enrichment of copy number loss of CTCF in ZF1M in tumors of all origin (N = 13, p = 0.0018) 
and ZF1M in breast tumors (N = 6, p < 0.0001) compared to Non-WT Non-ZF1M CTCF tumors 
(N = 258). (B) Bar chart representation of the increased frequency of CTCF LOH in CTCF ZF1M 
in BRCA (N = 5) compared to CTCF WT BRCA (N =1045) and CTCF WT tumors of all cancer 
(N = 10607) (C) CTCF ChIP-Seq heatmaps of commonly constant, gained and lost CBS (csaw, 
FDR < 0.05). (D, E, F) Pie Charts of the number of CBS commonly altered or uniquely altered 
CBS in each clone, coupled with profile plot representation of read density at these specific sites. 
Beside the 1013 uniquely lost in ZF1M/-, all groups of altered CBS display nearly identical 
changes in read density in both mutant cell lines. 
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Classical Motif Enrichment Analysis 
Following the identification of differentially bound sites, our next goal (and subsequent step of our 

motif discovery pipeline, represented in Figure 2.2) was the identification of enriched motifs. To 

do so, in collaboration with Kaiqiong Zhao from Dr. Celia Greenwood’s laboratory, we first 

constructed representative subsets of each cluster by selecting the 1000 most significantly altered 

sites in the Gained and Lost clusters, based on the FDR-adjusted q-values. In contrast, to 

characterize the “Constant subset”, of unchanged CBS, we selected the 1000 least significantly 

changed binding regions. Analyzing these subsets, as opposed to the entire cluster, focuses the 

analysis on the most relevant sites, thereby filtering out less significant differentially bound sites 

that might arise stochastically. 

Once subsets were defined, we performed motif discovery analysis on these three clusters using 

rGADEM. We additionally compared the identified motif patterns to the JASPAR database and 

reported the significant matching motifs. Not surprisingly, rGADEM identified the CTCF motif 

as the most represented motif in all three clusters (Figure 2.3A). Indeed, the core CBS is found in 

78% to 93% of all CTCF binding sites, depending on the cell line being probed (Figure 2.3B). 

However, as expected, the tools used for standard motif discovery analysis were unable to identify 

changes in motifs associated with altered binding affinity. This is expected since subtle changes 

would be drowned by the high representation of the CTCF core binding motif. Therefore, we 

continued our motif analysis using a new R-based software, developed in collaboration: MoMotif. 
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Figure 2.2 Flowchart representation of an R pipeline utilizing newly developed software 
MoMotif to identify complex DNA binding motifs based on ChIP-seq profiling. 
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Novel MoMotif Analysis 
To detect single nucleotide changes in the binding sequences of Lost or Gained CTCF sites, we 

aligned and extended the CTCF-like motifs to a 61bp sequence centered at the mid-point of the 

canonical CTCF motif (represented by the purple dotted line in Figure 2.3C). The extension of the 

sequence allows us to focus on single nucleotide changes, within and outside of the classical ~15bp 

CTCF motif, that potentially influence CTCF binding affinity. Then, using MoMotif, we 

calculated frequency differences and p-values at each nucleotide within the extension, comparing 

the Lost and Gained subsets to the Constant subset, within the common altered sites (Figure 2.3C) 

and in each mutant cell line individually (Supplementary Figure 2.3A/B). We defined a section of 

the extended sequences containing every position reaching the required statistical threshold (p < 

1*10-10) and a frequency difference greater than 0.1, in the lost or gained sites. Specifically, from 

position 25 to 48, as indicated by the black dashed line in Figure 2.3C, which encompasses a 

downstream extended CTCF core binding motif. We therefore defined this subsection of the 

original 61bp sequence as our newly identified nucleotide region capable of influencing CTCF 

binding affinity in the context of the H284N mutation. Akin to the alteration of CTCF binding 

between our two mutants cell lines, the changes in nucleotides frequency were also markedly 

consistent (Supplementary Figure 2.3A/B). 

By depicting these new motifs with the height of each nucleotide representing the Shannon 

Entropy of its occurrence frequency at each position (Figure 2.3D), we visually highlight the 

unique extended motif enriched at each position. This reveals an extended motif specific to the 

lost sites defined by an A at position 40, a G at position 43 and a C at position 46. Interestingly, 

the G at position 43 also displays the lowest p-value and highest frequency difference when 

comparing lost sites to constant sites in all conditions (Figure 2.3C, Supplementary Figure 

2.3A/B). Furthermore, the extended motif identified with MoMotif is homologous to the 
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previously defined module 4 of CBS, carrying a very weak consensus, identified by ChIP-exo (40) 

(34). Although a mechanism explaining how CTCF recognizes this motif was not revealed in prior 

publications, module 4 of the CTCF binding motif has been associated with a stronger DNA- 

binding affinity of WT CTCF. This conclusion is supported by my observations (Supplementary 

Figure 2.4A) and these results, from independent studies, validate the predictive value of MoMotif. 

The extended motif influencing the association of CTCF to DNA through ZF1 appears to be 

mediated by three nucleotides at position 40, 43, 46. The enrichment of the extended motif in the 

sites lost in cells carrying the H284N mutant becomes even more prominent when investigating 

the proportion of the 1000 sites that display a combination of 2 or 3 of these specific nucleotides. 

Indeed, 24% of common sites lost across both our mutant cell lines, co-localizing with a CTCF- 

like motif, displayed the 3 defining nucleotides of the extended sequence. In contrast, only 6% and 

2% of Stable and Gained sites, respectively, carried this motif. Furthermore, the combination of at 

least 2 of these nucleotides was found in 66% of Lost sites, compared to 33% and 8% of Stable 

and Gained Sites, respectively. The exclusion of this extended sequence in the Gained Sites is also 

represented in the proportion of CTCF-like sites that do not include any of the three nucleotides, 

being 54% in the Gained Sites, compared to only 6% in the Lost Sites (Figure 2.3E). 

As a comparison, I analyzed the lost sites using the classical motif enrichment tool SEA, from the 

MEME Suite. SEA identified the CTCF core binding motif as the most enriched motif in the lost 

sites (Supplementary Figure 2.4B), similar to earlier steps in our pipeline. When using the 

MEME suite software to carry out motif enrichment analysis comparing the lost CTCF sites with 

constant sites, SEA identified differentially enriched motifs in a small subset of lost sites, with low 

frequency of True Positives (TP) below 10% for each motif. These marginally differentially 

enriched motifs are also located in regions surrounding the center of the sequences, where a 
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consensus CTCF motif is located (Supplementary Figure 2.4C), inconsistent with a ZF1-specific 

effect. However, software from the MEME suite, such as SEA, does not identify unique motifs, 

differentially enriched between conditions, or motifs only partially present in both, a necessity to 

output a single nucleotide analysis of the modification of a specific motif between the conditions. 

Therefore, classical motif enrichment analysis is competent to identify TFs showing differential 

binding between conditions, but cannot precisely identify changes to a specific motif under 

variable conditions, as summarized in Supplementary Figure 2.4D. 

In sum, MoMotif can be used to facilitate the discovery of subtle motif changes after the 

introduction of experimental variables. As will be detailed below, MoMotif may also be used to 

compare DNA motifs within subsets of single datasets, including ChIP-seq and Hi-C. Regarding 

CTCF, we used MoMotif to define a unique DNA motif that requires CTCF ZF1 for recognition. 

This motif is strongly associated with the sites lost upon ZF1 mutation and was ignored by classical 

motif analysis tools. These data suggest a model where the CTCF ZF1 mutation induces a loss of 

function rendering the mutant CTCF unable to bind, or recognize, the extended sequence, leading 

to its stochastic redistribution on CBS without this sequence, specifically those that do not require 

ZF1 to bind appropriately. 
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Figure 2.3.MoMotif identifies a unique motif enriched for CBS compromised upon mutation 
of ZF1. (A) Classical CTCF motif output by rGADEM. (B) Frequency of overlap with CTCF- 
Like motif in each 1000 sites subset. (C) MoMotif analysis of base frequency difference and p- 
value of bases distribution difference around CTCF-Like motif in common lost and gain CBS 
subsets compared to common constant subset. The purple line represents the middle of the CTCF 
Motif. The dotted line represented the selected region shown in D (D) MoMotif results depiction 
as the height of each nucleotide representing the Shannon Entropy of its occurrence frequency at 
each position in each subset. Highlighting the extended motif (40A, 43G, 46C) in the lost subset. 
(E) Bar chart representing the relative presence of each individual and combined element of the 
extended motif in each subset. Showing an enrichment of the partial or complete extended motif 
in the lost subset, while the complete or partial extended motif is absent from the gain sites. 
Highlighting a role for CTCF ZF1 in the recognition of this sequence. 
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Structural analysis of CTCF zinc finger-DNA contacts suggests conformation changes imparted by  
zinc finger 1 mutation 
CTCF is known to use variable combinations of zinc fingers to flexibly bind diverse sites on the 

DNA (216). Therefore, I investigated whether the modified CTCF motif identified by MoMotif 

was recognized by a specific combination of CTCF zinc fingers requiring ZF1. I used per-domain 

predictions of CTCF ZFs DNA-binding specificity using the software and databases from Persikov 

et al. 2014 and 2015 (217,218), to identify 3bp sequences that are recognized by individual CTCF 

zinc finger (Figure 2.4A). CTCF ZF3 to ZF7 are known to mediate strong binding to the CTCF 

core binding motif (33,34). When aligning the ZF3-7 consensus motif with the motifs identified 

in the constant and gained clusters, a majority of the bases identified at each position match 

between motifs (92.8% and 85.7% against the constant and gain motifs respectively) (Figure 2.4B). 

These associations indicate that CTCF recognizes the motif identified within the constant and 

gained sites independently of CTCF ZF1 and is therefore not directly hindered by the mutation of 

ZF1. In contrast, the extended motif enriched in the lost cluster aligns with a different combination 

of ZFs. Indeed, although ZF7 to ZF4 match similarly to the first half of the extended motif (Figure 

2.4C), the primary DNA base matches with ZF3 at the constant sites is replaced by secondary 

matches at lost sites. Further, a strong de novo primary match motif is observed at both ZF2 and 

ZF1 within the sites lost in ZF1M cells (Figure 2.4C). These results hint at an enrichment, at lost 

sites, of sequences that require the combination of ZF4-7 and ZF1-2, with a possible variation in 

ZF3 binding, to be appropriately recognized and bound by CTCF. As CTCF H284 is necessary for 

the coupling of the zinc ion, crucial to the ZF structure, it is expected that ZF1M structure would 

be aberrant and therefore, unable to carry out its function. In turn, blocking the ability of the ZF1- 

2 tandem to properly recognize the A and G of the extended motif, resulting in a dissociation 

specifically at these sites. However, the zinc finger structure alone cannot explain the presence 
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ofan extended motif from position 46 to 48, primarily defined by a C at position 46, hinting that 

a secondary binding mechanism of ZF1, beyond its binding of 3 core bp is at play, or 

alternatively, a protein, or RNA co-factor may influence the DNA recognition by CTCF ZF1. 

Overall, this analysis strongly supports our model that ZF1-mutation of CTCF is unable to bind 

an extended motif at a subset of CBS, and this pool of CTCF is then redistributed to gained sites 

stochastically, where ZF1 binding is not required. 



80  

 

 

Figure 2.4. Extended Motif of CTCF is associated to an altered binding conformation (A) 
Predicted 3bp sequences recognized by each ZF of CTCF by Persikov et al. 2014 and 2015 (58,59). 
(B) Alignment of the predicted motif to the motif identified by MoMotif for Constant and Gain 
CTCF binding sites. (C) Alignment of the predicted motif to the extended motif identified by 
MoMotif for Lost CTCF binding sites. For B and C, colored vertical bars represent a match 
between the primary called base at each position and grey vertical bars represent a match between 
a secondary called base and a primary base. 



81  

MoMotif reveals increased stability of the core CTCF binding motif at domain boundaries 
MoMotif is a versatile computational tool that may not only be used to compare DNA-binding 

motifs across ChIP-seq samples, but can also be used to compare complex DNA motifs present 

within subsets of a single ChIP-seq dataset. 

CTCF plays an essential role in the organization of chromatin conformation, in part by defining 

the boundaries of Topologically Associated Domains (TADs). Therefore, we asked whether ZF1 

mutation impacted differentially the binding of CTCF at sites maintaining 3D chromatin 

organization. Towards this goal, we used the genomic coordinates of TADs and subTADs (defined 

as self-associating domains within TADs), binned at 10kb, using our Hi-C datasets from CTL 

MCF10A to provide topological context to our CTCF ChIP-Seq. Here again, TAD and subTADs 

were called using the hierarchical TAD caller hiTAD (208), ranked best TAD caller in term of 

average concordance over normalizations and resolutions in Zufferey et al. 2018 (219). Further, as 

different TAD callers may output variable boundaries from the same sample, we also used 

SpectralTAD (220) to call and compare boundaries at 10kb resolution. Overall, ~97% of 

boundaries called by hiTAD in our CTL MCF10A were called in the same region (+/- ½ bin/5kb) 

by SpectralTAD (Supplementary Figure 2.5A), confirming the reproducibility of the topological 

context we provided. 

Next, I categorized all CBS of the CTL MCF10A cells based on their co-localization with a TAD 

boundary, a subTAD boundary, or not on a domain boundary, independently of whether they are 

constant or lost in the ZF1M lines. Overall, 10276 and 4915 CBSs colocalized with a TAD or a 

subTAD boundary, respectively, compared to 36029 CBS that did not colocalized with any 

boundaries. These ratios are consistent with multiple previous investigations of CTCF and TAD 

colocalization (4,221). 

Next, I used MoMotif to identify any discriminative modifications of the CTCF motif comparing 
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sites at subTAD boundaries, TAD boundaries, or not at boundaries (Supplementary Figure 

2.5B/C). I found that the CTCF core binding motif is exquisitely consistent on subTAD and TAD 

boundaries (Supplementary Figure 2.5B/C). However, when comparing the CBS motif found at 

TAD boundaries to CBS outside TAD and subTAD boundaries, MoMotif detected an increased 

variability around ZF3 and ZF2 and to, a lesser extent, between ZF6 and ZF7. However, no 

specific enrichment for a particular base was observed at these positions. Instead, the bases 

recognized by these ZFs displayed a reduced Shannon Entropy, hinting at an increased motif 

disparity for CBS found within domains compared to CBS found at their boundaries, perhaps 

highlighting their diverse roles. Interestingly, the extended motif associated with lost CBS in 

CTCF ZF1M mutated cell lines is equally present on CBS colocalizing or not with a boundary. 

Supporting this conclusion, when comparing the genomic localization of constant and lost CBS 

between CTL and ZF1M MCF10A lines, the sites are distributed equally among domain 

boundaries or within domains (Supplementary Figure 2.5D). These results demonstrate, in a 

unique context, the sensitivity of MoMotif to identify precise regions of variability around a given 

motif, while showing that CTCF extended motif and its associated lost binding sites of CTCF 

ZF1M are not enriched in specific topological contexts. 

Gene Expression Changes induced by CTCF ZF1M concur with observed clinical phenotypes 
Next, I investigated whether the changes in CTCF binding might be associated with transcriptional 

changes that might underpin the clinical phenotypes observed in CTCF mutated breast tumors 

(31,164). First, I used RNA-Seq to define the differences in steady state RNA levels between 

MCF10A CTL, CTCF ZF1M/ZF1M and CTCF ZF1M/-. Overall, the changes in gene expression 

observed were highly conserved in both mutant cell lines, highlighting the impact of the H284N 

mutation on regulating gene expression. Indeed, when correlating the respective log2FC of both 

mutant lines with MCF10A CTL, the lines carrying the H284N mutation displayed a strong 
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correlation (r = 0.7811 and p-value < 0.0001) (Figure 2.5A). Approximately 95% of significantly 

altered genes (FDR <= 0.05) in ZF1M/ZF1M cells were altered in the same direction in ZF1M/-, 

while 69% and 76% of strongly up and downregulated genes (abs(log2FC) >= 1) in ZF1M/- were 

strongly altered in both cell lines. Similar to the ChIP-Seq distributions and MoMotif nucleotide 

frequency, the effect of the mutation appears to be dominant over any effects of the LOH. 

Next, I used GSEA to run pathway analysis of altered genes in both mutant cell lines. Interestingly, 

pathways associated with drug metabolism were consistently among the top upregulated pathways 

(Figure 2.5B/C). My RNA-seq analysis also revealed that pathways involved in extracellular 

matrix (ECM) organization were among the top downregulated pathways (Figure 2.5B/C). 

Multiple genes involved in these pathways, such as ADAMST1 and SLC20A1, are proximal to 

lost sites of CTCF in ZF1M/ZF1M or ZF1M/- cell lines (Figure 2.5D). These genes are also within 

the majority of genes that were significantly altered in the same direction in our model and in 

patient’s CTCF ZF1M breast tumors compared to CTCF WT breast tumors from TCGA datasets 

(Figure 2.5E). Consistent with our data, CTCF H284N mutations are frequently enriched in 

hormone resistant breast tumors (31). We propose that the upregulation of metabolic pathways that 

target xenobiotics may explain this phenomenon. We also propose that changes to the ECM may 

underlie the increased metastatic abilities of CTCF mutated breast tumors (164), also consistent 

with previous reports (222-225). 
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Figure 2.5. CTCF ZF1M drives oncogenic transcription profiles. (A) Dot plot representation 
of the RNA-Seq Log2FC of the individual mutant to control MCF10A on each axis. Showing a 
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strong correlation and reproducibility between the samples (with Pearson correlation and test p-
value displayed). (B) GSEA enrichment representation of significantly upregulated and 
downregulated pathways. Heatmap of the Log2FC with control MCF10A of significantly altered 
genes in these pathways. Showing an upregulation of genes related to drug metabolism and 
downregulation of genes related to ECM. (C) Top 10 up and downregulated pathways (sorted by 
GSEA FDR) in Gene Ontology and Reactome Databases. Filled orange bars are linked to drug 
metabolism and filled purple bars are linked to ECM organization. Showing an over-representation 
of these pathways among the top altered pathways in diverse databases. (D) CTCF ChIP-Seq track 
around altered genes from the RNA-Seq in MCF10A CTCF ZF1M vs CTL and in TCGA Breast 
Tumor CTCF ZF1M vs CTCF WT related to Xenobiotic metabolism and extracellular matrix 
organization. Showing a significant loss of CTCF binding in proximity to ADAMTS1 promoter 
(p=8.91*10-5 and 0.003054 for ZF1M/ZF1M and ZF1M/- respectively) and within SLC20A1 
(p=7.28*10-5 and 0.001778 for ZF1M/ZF1M and ZF1M/- respectively) (E) Pie chart showing a 
majority of genes significantly altered in the MCF10A models are also significantly altered in the 
same direction in breast tumors data from TCGA database when comparing changes in gene 
expression associated to CTCF ZF1M. Significance of the correlation between the alteration of 
gene expression of the two datasets is also shown. 
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Loss of CTCF binding within TADs is associated with the changes in gene expression 
We next sought to determine the mechanisms underlying the transcriptional changes apparent in 

H284N-carrying cells. Because CTCF modulation of transcription may be highly dependent on the 

topological organization of the chromatin (226), an altered CBS could influence the expression of 

a gene thousands of kilobases away. Thus, I used the genomic coordinates of TAD and subTAD 

from our Hi-C datasets from CTL MCF10A to provide topological context to our RNA-Seq and 

ChIP-Seq results. 

TAD boundaries are known to be highly conserved between cell types, often colocalizing with 

ubiquitously expressed genes, while CTCF-mediated interactions within TADs are prone to 

changes and less conserved between cell types (227). Therefore, we expect that genes most 

strongly deregulated by ZF1 mutated CTCF would likely be located within TADs and not at their 

boundaries, similarly to what I observed in the CTCF +/- model from Chapter 1. To study this 

hypothesis, I divided the TADs into 2 groups; TADs in which the TSS of all altered genes 

(FDR<= 0.05) are localized exclusively on their boundaries (+\- 1 resolution bin/10kb) (termed 

TAD- B) and TADs in which the TSS of all altered genes are found exclusively within the 

domains, and not at boundaries (TAD-I). Then, I computed and compared the distribution of 

strongly altered genes (abs(Log2FC) >= 1) in each condition. As predicted, the TAD-I group is 

significantly associated with strong alteration of gene expression, while the TAD-B group was 

not enriched for significant changes in gene expression (Figure 2.6A/B). 

I then layered the CBS altered in ZF1-mutant cells onto my analysis to identify the cluster of CBS 

which was the most influential for altered gene expression. Within the TAD-I group, both the loss 

and the gain of CTCF within TADs was associated with RNA-Seq alterations. However, the 

association between lost CBS and changes to gene expression was markedly more significant than 

for the gained CBS (p-value = 0.0027 for CTCF Lost Sites, p-value = 0.028 for CTCF Gained 
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Sites) (Figure 2.6A/B). Supporting the validity of these findings, TAD-I in which no CBS 

displayed significantly less changes in transcription. Although the TAD-B group was not 

associated with significant changes in gene expression, loss of CTCF binding at the boundaries of 

these TADs still led to increased transcriptional variability (Figure 2.6A/B). In contrast, gain of 

CTCF at TAD boundaries, likely brought about through a stochastic redistribution of the mutant 

CTCF to strongly conserved CBS, was significantly associated to a conservation, instead of an 

alteration, of gene expression (Figure 2.6A). 

The distribution of CTCF and gene expression changes at subTADs also supported a model where 

lost CTCF sites are driving gene expression changes. When investigating subTADs with TSS of 

altered genes colocalizing exclusively at their boundaries (subTAD-B), the only changes in CTCF 

binding promoting upregulation or downregulation of gene expression were lost CBS located at 

the boundaries of these subTADs (Supplementary Figure 2.6A). Overall, these results suggest that 

changes to CTCF binding within TADs predicts the altered gene expression through reorganization 

of intra-TAD interactions. 

Supporting this theory, pathway analysis of altered genes proximal to a lost site of CTCF within a 

TAD (TAD-I) reproduces the top pathways I identified in the global RNA-Seq, being dominated 

by drug metabolism and ECM related pathways (Figure2.6C). Therefore, my contextual analysis 

of ChIP-Seq and RNA-Seq revealed that the loss of CTCF binding sites within TADs, including 

those sites at the boundaries of subTADs, are the main drivers of the changes in gene expression 

resultant from CTCF ZF1 mutation. This supports a model where the inability of CTCF to bind 

the extended recognition motif drives aberrant phenotypical changes. 
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Figure 2.6. Loss of CTCF binding within TADs drives oncogenic transcription (A, B) Impact 
on the distribution of altered genes TSS (DESEQ2, FDR < 0.05) and altered CBS (csaw, 
FDR<0.05) in the context of TAD on the enrichment of strongly altered genes (ZF1M/ZF1M to 
CTL abs(Log2FC) >= 1 ). Showing the most significant impact of the loss of CTCF at TADs 
encompassing genes within them (TAD-I), compared to gain of CTCF or at TAD encompassing 
genes at their boundaries only (TAD-B) (p-value were generated from Chi-Square test on 
distribution of altered genes, -log(p-values) depicting significantly less strongly altered genes were 
turned negative in A to ease comprehensiveness of the graph). (C) Top 3 pathway, sorted by p- 
value, of Reactome Pathway Enrichment Analysis of strongly upregulated and downregulated 
genes from the distribution highlighted in red in B. Showing that loss of CTCF within TAD is 
driving the major changes in gene expression observed in global GSEA analysis of the RNA-Seq. 
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MoMotif identifies promoter proximal variability of TF recognition motif 
Next, we wanted to validate the capacity of MoMotif to be used as a computational tool to compare 

DNA binding motifs across ChIP-Seq datasets incorporating independent experimental variables. 

To this end, I used previously published ChIP-Seq datasets from diverse transcription factors and 

compared their recognition motif among promoters (+/-3kb), non-coding intronic and distal 

intergenic regions. 

First, I investigated ligand-dependent sites of Estrogen Receptor (ER) binding from Swinstead et 

al. (228). Of the 8173 ligand-dependent sites identified by csaw, 988 colocalized with promoter, 

while 6737 were found on non-coding regions. The ER recognition motif (shown from JASPAR 

database in Supplementary Figure 2.7A) was present in 48% of promoter proximal and 60% of 

non-coding binding sites (Supplementary Figure 2.7B). Interestingly, bases within the core 

recognition motif were slightly differently enriched following rGADEM motif discovery 

(Supplementary Figure 2.7C). These changes were validated and quantified by MoMotif, which 

also reveal that differential motif recognition at promoter and non-coding regions are limited 

within the core recognition motif of ER, as no extensions were detected, and the only noticeable 

change involves a background enrichment of C within the spacing region of the motif 

(Supplementary Figure 2.7D/E). This data supports MoMotif as being amenable to motif 

discovery using diverse datasets, and also indicate that changes in DNA-binding motifs are not 

invariably identified, highlighting the robustness of both the tool and our CTCF ZF1 mutation 

data. 

Secondly, I probed ZNF263 ChIP-seq data (229) using MoMotif, and again divided the called 

peaks by their proximity to promoters or non-coding regions. Of the 2202 ZNF263 binding regions 

common among the two published peaksets, 314 were promoter proximal, while 1729 were found 

in non-coding regions. ZNF263 recognizes a GA rich repetitive motif without a clear consensus 
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(229,230). Using Perkisov et al. software and databases (217,218), I validated the specificity of 

ZNF263 zinc-fingers for G and A enriched motifs, as each of its zinc fingers recognizes primarily 

these 2 bases (Supplementary Figure 2.7F). This hints that the repetitive motif is likely directly 

recognized by ZNF263 and not artificial. Following rGADEM analysis, both groups display a G 

and A rich motif, with a slightly longer motif being found in promoter proximal ZNF263 binding 

sites (Supplementary Figure 2.7G). Due to the repetitive nature of the motif, direct comparison of 

both motifs at this step is arduous, as it is unknown how the 2 motifs align together and whether 

the bases present in the longer, promoter proximal, motif are also present outside of the identified 

non-coding regions motif. However, using MoMotif sequence alignment, extension, 

quantification, and analysis, revealed the exclusivity of the motif extension at both end of the 

promoter proximal motif and the strong enrichment of A at two positions within the non-coding 

sites motif, while offering detailed quantification and statistical analysis of the changes in bases 

frequencies (Supplementary Figure 2.7H/I). These observations promote the concept that ZNF263 

binding on promoters is dependent on a longer combination of its zinc fingers, or cofactors beyond 

its zinc-fingers, while binding at non-coding region might be facilitated by a fewer, but more 

specific, combination of zinc-fingers. 

Overall, these analysis provide examples of the power of MoMotif to expand classical motif 

analysis with discovery, validation and quantification of motif variability between experimental 

conditions or functional regions. 
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Methods: 

Cell Culture Details: 
MCF10A cell lines were maintained in DMEM/F12 50/50 (Wisent, #319-085-CL) supplemented 

with EGF (100μg/ml, Wisent, #511-110-UM), Insulin (10mg/ml, Wisent, #H511-016-U6), 

Hydrocortisone (1mg/ml, Sigma, #H0888-1G), Horse Serum (2%, Wisent, #065150) and 

Choleratoxin (1mg/ml, Sigma, #C8052-2MG) in an incubator at 37C and 5% CO2. 

MDA-MB-231, MCF7, SKBR3 and HEK293T cell lines were maintained in DMEM (Wisent, 

#319-005-CL) supplemented with 10% FBS (Gibco, #12483-020) in an incubator at 37C and 5% 

CO2. 

Conditionally Reprogrammed Cells of Patients Derived Xenograft of Triple Negative Breast 

Cancer tumors, termed PDXs, were established following as in Liu et al. 2017 (231) and Sirois et 

al. 2019 (232) and given to us by Dr. Park’s and Dr. Basik’s Laboratories from McGill University. 

Low CTCF protein expression in these cell lines was confirmed by Western Blot. Loss of 

Heterozygosity was confirmed using the Chromosome Analysis Suite from ThermoFisher. They 

were maintained in DMEM (Wisent, #319-005-CL), with 25% Ham’s F12 (Wisent, #312-250- 

CL), 8% FBS (Gibco, #12483-020), L-Glutamine (1.5mM, Wisent, #609-065-EL), EGF (50μg/ml, 

Wisent, #511-110-UM), Insulin (5mg/ml, Wisent, #H511-016-U6), Hydrocortisone (0.8mg/ml, 

Sigma, #H0888-1G), Choleratoxin (84μg/ml, Sigma, #C8052-2MG), RhoK Inhibitor (0.01mM, 

Y-27623, StemCell Technologies, #72304) in an incubator at 37C and 5% CO2. 

CRISPR/Cas9 Editing 
CTCF H284N knock-in was performed similarly to those we previously described in Hilmi et al. 

2017 (64). sgRNA guides targeting the genomic region around the nucleotide triplet coding for 

CTCF H284 were inserted into the vector backbone pSpCas9(BB)-2A-GFP (PX458) (Addgene, 

#48138) (Supplementary Table 1). A 250 base pair DNA donor, homologous to the region, but 
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replacing the CAC, coding for H284, by AAC, coding for H284N, were also designed and ordered 

with IDT (Supplementary Table 1). Introduction of plasmids and donor to 1x106 MCF10A cells 

was carried out in a 6-centimeter dish using Lipofectamine 3000 (Invitrogen, # L3000001), 6µg of 

pCas9+guide and 12µl of 10mM DNA Donor. Two days later, GFP-positive cells were selected 

by fluorescence-activated cell sorting of individual cells into 96-well plates. To screen for CTCF 

H284N mutant cell clones, we isolated genomic DNA of each clone and amplified proximal 

sequences surrounding the Cas9 targets by polymerase chain reaction. Positive clones were first 

identified using the SURVEYOR Assay Kit (IDT, #706020). Then, individual alleles of positive 

clones were validated by Sanger Sequencing (GenomeQuebec) following PCR amplification and 

Zero Blunt TOPO PCR insertion and Cloning (Invitrogen, #45-0245) . Genomic DNA sequences 

were also compared to CTCF coding sequence using BlastX (blast.ncbi.nlm.nih.gov), to validate 

the presence of a mutation at the H284 position (Supplementary Figure 2.1A). 

Western Blot Protocol: 
Western blots were carried out as previously described (64). For Western Blot conducted on 

PDX tumors, tissue was harvested as in Savage et al. 2020 (233). For all other Western Blots, 

cells were harvested by scrapping. Then, cells are lysed in whole-cell lysis buffer [20 mM tris 

(pH 7.5), 420 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.5% Triton 

X-100, supplemented with fresh 1 mM dithiothreitol, phenylmethylsulfonyl fluoride, protease 

inhibitor cocktail (Roche) and phosphatase inhibitors, bis-glycerol phosphate, and NaF] for 

15min, then spined at 13000rpm at 4°C for 15min to pellet cellular debris. Then, the protein 

concentration of the supernatant is assessed using a Bradford assay (Fisher, #1856209). 40µg of 

proteins are loaded on an 8 to 12% acrylamide gel and electrophoresed at 120V for 1h. Then, 

proteins on the gel are transferred on nitrocellulose membrane (Pall, #66485) at 4°C, 34V 

overnight for 8% gel and 100V for 1 hour for 12% gel. The membrane is then blocked with 5% 
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milk in TBST [20 mM Tris base, 137 mM NaCl, and 0.1% Tween 20] for 3h at 4°C. The 

membrane is then incubated with primary antibodies (see Supplementary Table 2) overnight at 

4°C. Membranes are rinsed and washed for 10 minutes twice with TBST prior to secondary 

antibody incubation with goat anti-rabbit (SeraCare, #5220-0458) or anti-mouse (SeraCare, 

#5450-0011) dilute 1/10000 or 1/20000 in 5% milk in TBST. Membranes are washed again 3 

times for 10 minutes in TBST, then revealed using ECL (Bio-Rad, #170-5061). Band intensity 

quantification and normalization on background is performed using ImageJ software. 

Growth Curve Details: 
15000 cells were plated in one well of a 12 wells petri dish (Fisher Scientific, #3513). Cells were 

fixed at day 1, day 3, and day 5 with 4% formaldehyde and stored at 4°C. Once all the conditions 

are fixed, the cells are stained with 1ml of a crystal violet solution [1% crystal violet, 10% EtOH] 

and dried. The stained cells are then diluted in 10% acetic acid. The growth ration of cells is 

calculated by reading and the comparing the DO at 595nm, the intensity of the violet dye, using 

PerkinElmer Multimode Plate Reader. 

Lentiviral Infection for CTCF Addback and SNAI1 Knockdown Details: 
CTCF addback (Genecopoeia, #EX-Z8806-Lv120), SNAI1 shRNA knockdown (Sigma, 

#NM_005985, target sequence: GCAAATACTGCAACAAGGAAT) and GFP control vector 

(Genecopoeia, #EX-EGFP-Lv120) were done using lentiviral vectors packages in HEK293T cells, 

as described previously (64). HEK293T cells were transfected with 7μg of the required lentiviral 

vector combined with 5μg of packaging vector MD2G and 2μg of envelope vector Pax2 using 

polyethylenimine (1 mg/ml). 24h after transfection, media was changed for the culture media used 

for maintenance. Viruses were collected at 48h and 72h after transfection and passed through a 

0.45-μm filter. For the infection, MCF10A and PDXs cells were infected in six-well dishes and 

incubated with 1ml of viral supernatant along with 1ml of their respective culture media and 
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8μg/ml of hexadimethrine bromide (Polybrene) for MCF10A and 60μg/ml for PDXs. 24h after 

infection, culture media is changed and puromycin selection starts. 

MCF10A cells were selected with 1 μg/ml of puromycin for the first two days following infection, 

followed by 0.25μg/ml of puromycin for 2 to 3 more days. Culture media is changed for puromycin 

free media 24h before the starvation period preceding the invasion assay. For the PDX cells, 

1μg/ml of puromycin is used on the first day of selection, 0.5μg/ml of puromycin is used for the 

second day, culture media is changed for puromycin-free media on the third day and the 

preliminary starvation starts on the fourth day. 

Transfection for shRNA CTCF Knockdown: 
Transfection is done following the Lipofectamine™ 3000 Transfection Reagent protocol 

(Invitrogen, # L3000001), using 5ug of shCTL or shCTCF plasmid from Origene (Origene, # 

TL313675, Locus ID 10664). 30min before transfection, culture medium of 50% confluent cells 

is changed to Opti-MEM (Gibco, #11058-021). 6h after transfection, culture medium is changed 

for normal culture medium, with 1ug/ml puromycin. 24h before starvation, culture medium is 

changed for puromycin-free medium. 

Transwell Invasion Assay and Quantification Details: 
Conditions for invasion were optimized for each cell lines as follows. 70% confluent cells were 

starved for 24h in non-supplemented DMEM/F12, for the MCF10A cells, or DMEM for MDA- 

MB-231, MCF7, SKBR3 and PDXs. 50 000 MCF10A cells or 100 000 MDA-MB-231 or 

SKBR3 cells or 200 000 PDX or MCF7 cells are seeded into an insert (Falcon, #353182) coated 

with 25μg/ml matrigel (Corning, #354230) for the MCF10A, MCF7 and MDA-MB-231 or 

20μg/ml matrigel for the PDXs or SKBR3, diluted in in a 0.01M Tris and 0.7M NaCl solution. 

The cells are maintained in non-supplemented media in the insert. The inserts are then placed in 

companion plate chambers (Falcon, #353503) containing supplemented media used for cell 
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culture overnight for the MCF10A and MDA-MB-231 or for 24h for the PDX, MCF7 and 

SKBR3. 

For Torin1 (Tocris, #4247) or A485 (Tocris, #6387) treated conditions, cells were treated with the 

indicated concentration of Torin1 (0nM and 25nM) or A485 (0μM, 2μM and 5μM), diluted in 

DMSO, for 24h before starvation, during starvation and during invasion, in both the insert media 

and the companion plate media. 

Then, the inserts are washed in PBS, fixed in 5% glutaraldehyde for 10 minutes, stained with a 

crystal violet solution [1% crystal violet, 10% EtOH] for 30 minutes, rinsed in water and dried. 

For each biological replicates, 2 to 3 inserts are plated; for each insert, 5 pictures are taken, at 10X 

resolution. The total number of invading cells on each picture are then counted using ImageJ 

software and the average number of invasive cells per 5 pictures per inserts are averaged within 

each sample and compared between samples. Statistical test between samples is performed using 

Student t-test. 

Lentiviral Infection for dCAS9 Details: 
20k MCF10A cells are plated in each well of a 6 well-plate. To increase the rate of infection, 

cells are infected sequentially over a period of 4 days: 24h and 72h after seeding, cells are 

infected with dCAS9+blasticidin resistance lentiviral construct (Addgene, #85417), with a ratio 

of media to dCAS9 viral media of 1:1 and 30ug/ul of polybrene; 48h and 96h after seeding, cells 

are infected with guideRNAbackbone+puromycin resistance lentiviral construct (Addgene, 

#52963, in which gRNA sequence (CACCGGAGGACAGAGAGACAAGTGT) generated with 

CHOPCHOP(234) were cloned into by Norclone), with a ratio of media to gRNA viral media of 

1:1 and 30ug/ul of polybrene. Culture media is changed every 24h during infection period and 

afterward, until cells are harvested. 2ug/ul blasticidin selection starts after 48h and is reduced to 

1ug/ul after 72h, until cells are harvested. 1ug/ul puromycin selection starts after 72h and is 
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reduced to 0.5ug/ul after 96h, until cells are harvested. Cells are harvested for RNA extraction 3 

days after the last infection (7 days after seeding). 

Mammosphere assay and Quantification Details: 
5000 cells were seeded on a 50μl matrigel cushion (10-12mg/ml, Corning, #354230) and 

maintained in supplemented DMEM/F12 containing 4% matrigel for 8 days. The media is 

carefully replaced every 3 days. Average mammosphere size was measured from brightfield 

microscopy images on ImageJ software. Statistical test between the average mammosphere size 

of each sample was performed using Student t-test. 

Mammosphere Immunofluorescence and Quantification: 
p-S6 immunofluorescence was performed using p-S6 S240/244 antibody from Cell Signaling 

(Rabbit, #2215S) and Goat Anti-Rabbit IgG with Alexa 488 fluorophore (Invitrogen, #A32731). 

DAPI was used for DNA fluorescence of the whole mammosphere used for normalization of p- 

S6 fluorescence quantification and mammosphere filling quantification. 

Mammosphere filling was quantified from Z-stacks of DAPI stained mammosphere images using 

ImageJ software. The ratio between the area of the hollow cavity and the total area of the 

mammosphere was measured on each Z-stacks of each mammosphere of each sample and the Z- 

stack with the highest ratio was selected and quantified for each mammosphere of each sample. 

Statistical test between the filling ratio of samples was performed using Student t-test. 

The quantification of p-S6 fluorescence was performed using a custom script in ImageJ developed 

by Dr. Luke McCaffrey’s group. In brief, mammospheres were detected by thresholding the image 

(Mean method) to create a whole-organoid mask. This mask was duplicated and then iteratively 

eroded (13 times) to create an inner mask that excluded the outer layer of cells. A mask for the 

outer layer of cells was generated using an XOR gate applied to the whole organoid and inner 

mask. The mean pixel intensity (8-bit) was measured under the mask, for each whole organoid, 
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outer, and inner regions. The mean pixel intensity of each region was then compared between the 

samples. Statistical test between the p-S6 outer fluorescence of each sample was performed using 

Student t-test. 

RNA-Seq Data Processing and Analysis Details: 
The overall quality of reads and sequencing was assessed before and after trimming using the 

FastQC package (Babraham Bioinformatics). Prior to mapping, reads were trimmed with 

Trimmomatics (235) using the following condition: ILLUMINACLIP:$Adapters:2:30:10:8:true, 

HEADCROP:4, SLIDINGWINDOW:4:30, LEADING:3, TRAILING:3, MINLEN:30. Alignment 

on hg19 human genome was performed with STAR 2.5.4b (236) default parameters, and converted 

into bam format using Samtools 1.9 (237). Differential expression analysis was generated using 

FeatureCounts count matrix (238) followed by DESEQ2 analysis (185), using default parameters 

and prefiltering, for comparison across samples. 

Downstream RNA-Seq Analysis in Chapter 1: 
RNA-Seq Correlation and Volcano Plot: Correlation and Volcano plot representation of the 

RNA-Seq results was generated using the DESEQ2 calculated Log2FC and -log(adjusted p- 

value) of the respective MCF10A CTCF+/- compared to MCF10A CTL for every gene with a 

basemean > 100. Genes with p-value < 0.05 were represented in grey. Genes with Log2FC > 0 

were represented in orange. Genes with Log2FC < 0 were represented in purple. 

RNA-Seq GSEA Pathway Analysis: Pathway analysis was performed using GSEA tools default 

setting on the read count matrix of all significantly altered genes (basemean > 100, 

p.value<0.05)(239). All gene sets shown were significant for both p-value (< 0.001) and FDR 

(<0.25). Pathway names were shortened as follows, with the full name of each pathway being: 

PI3K Signaling : GO_PHOSPHATIDYLINOSITOL_3_KINASE_SIGNALING, 

EMT : GO_EPITHELIAL_TO_MESENCHYMAL_TRANSITION, 
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EMT Regulation : GO_POSITIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION 

PI3K Regulation: GO_POSITIVE_REGULATION_OF_PHOSPHATIDYLINOSITOL_3_KINASE_SIGNALING 

Cell-Cell Adhesion: 

GOBP_HETEROPHILIC_CELL_CELL_ADHESION_VIA_PLASMA_MEMBRANE_CELL_ADHESION_MOLE

CULES 

PI3K Signaling in Cancer : REACTOME_PI3K_AKT_SIGNALING_IN_CANCER 

Constitutive AKT Signaling: REACTOME_CONSTITUTIVE_SIGNALING_BY_AKT1_E17K_IN_CANCER 

RNA-Seq KEGG and REACTOME Pathway Analysis: Pathway analysis for KEGG and 

PANTHER-Reactome was done using PANTHER webtool (http://www.pantherdb.org/) (240). 

Reactome pathway analysis was done using Reactome webtool (https://reactome.org/) (241). 

RNA-Seq Heatmaps: Heatmaps were generated using the Log2FC to the average normalized read 

counts in MCF10A CTL of the 20 genes with the highest absolute Log2FC in the PI3K 

Regulation and EMT Regulation genesets. 

Downstream RNA-Seq Analysis in Chapter 2: 
RNA-Seq Dot Plot: Dot plot representation of the RNA-Seq results was generated using the 

DESEQ2 calculated Log2FC and -log(adjusted p-value) of the respective mutant MCF10A 

compared to CTL MCF10A for every gene with a basemean > 100. Genes with p-value < 0.05 

were represented in grey. Genes with Log2FC > 1 were represented in orange. Genes with 

Log2FC< -1 were represented in purple. 

RNA-Seq GSEA Pathway Analysis: Pathway analysis was performed using GSEA tools (239) 

default setting on the read count matrix of all genes (basemean > 10). All gene sets shown were 

significant for both p-value (< 0.001) and FDR (<0.25). Pathway names were shortened for esthetic 

purposes in the Figure 5B, with the full name of each pathway being written in Figure 5C. 

RNA-Seq Heatmaps: Heatmaps were generated using the Log2FC with CTL MCF10A of genes 

with the highest absolute Log2FC from the following significantly altered pathways: 

http://www.pantherdb.org/)
https://reactome.org/
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“GOBP_RESPONSE_TO_XENOBIOTIC_STIMULUS”; 

“REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION” 

TCGA RNA-Seq Analysis: Average gene expression of each gene in breast cancer patient with 

CTCF ZF1M was compared to average gene expression in CTCF WT breast tumors. Log2FC of 

significantly altered genes in patients were then compared to Log2FC of significantly altered genes 

in MCF10A CTCF ZF1M/ZF1M and CTL. 

RT-qPCR Protocol: 
Total RNA was extracted according to Sigma RNA Extraction Kit (Sigma, #RTN350-1KT) 

protocol. RNA quantity and quality was measured using Nanodrop. 500ng of RNA are used as 

template for Reverse-Transcriptase PCR, following the manufacturer protocol (All-In-One RT 

MasterMix, ABM, #G490). The cDNA is diluted 1:10 and 2μl is used for qPCR amplification, 

following the manufacturer protocol (GoTaq qPCR MasterMix 2X, Promega, #A600A). Relative 

levels of cDNA are compared between the samples using the 2-ΔΔCT formula normalized on the 

average level of 3 housekeeping genes (GapDH, RPL4 and RPLPO). Statistical tests between 

normalized gene expression of each gene for each sample is performed using Student t-test. The 

sets of primers used for RT-qPCR are listed in Supplementary Table 3. 

TCGA Data Analysis: For pathway analysis, Spearman correlation test was calculated between 

CTCF expression in patients and the individual expression of each gene surveyed in TCGA and 

with a baseMean > 100 in our RNA-Seq. Genes were then ranked by -log(p-value), in which p- 

values equal to zero were brought to the smallest non-zero p-value measured. The ranked list was 

then analyzed using GSEA PreRank analysis (239) and ranked by Normalized Enrichment Score 

(NES) or p-value. For the SNAI1 box plot, the dataset was separated into the high CTCF group, 

being the top 20% of patients in term of highest CTCF expression, and the low CTCF group, being 

the top 20% of patients in term of low CTCF expression. The two groups were compared for 
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SNAI1 RNA expression using a Student’s T Test and a Spearman correlation test. 

ChIP-Seq Sample Preparation Details: 
70-80% confluent cells were fixed for 10 minutes in 4% formaldehyde and stored at -80C. The 

pellets were subsequently resuspended in 1ml of ChIP-buffer [0.25% NP-40, 0.25% Triton X- 

100, 0.25% Sodium Deoxycholate, 0.005% SDS, 50nM Tris (pH8), 100mM NaCl, 5mM EDTA, 

1X PMSF, 2mM NaF, 1X P8340 Cocktail Inhibitor (Roche)] and sonicated with a probe 

sonicator (Fisher Scientific Sonic Dismembrator Model 500) using the following cycles: 5 cycles 

at 20% power, 5 cycles at 25% power, and 5 cycles at 30% power. Each cycle lasts 10 seconds, 

and the samples are kept on ice between each cycle to avoid overheating. Next, the samples are 

spun at high speed in a microcentrifuge for 30 minutes. Then, lysates are collected and protein 

concentration measured using the Bradford assay, as described above. Based on protein 

concentrations, samples are diluted to 2mg/ml proteins in ChIP-buffer and 50ul/ml of Protein G 

Plus-Agarose Suspension Beads (Calbiochem, IP04-1.5ML) are added for 3h to preclear. 2% of 

the sample is collected as input and kept at -20 °C until DNA purification. Immunoprecipitation 

is carried out at 4°C overnight with 1ml of sample, 60ul of beads and primary antibody (see 

Supplementary Table 2). The beads are then washed once with Wash1, Wash2, Wash3 [0.10% 

SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris (pH 8), 150/200/500mM NaCl for Wash 1,2,3 

respectively], Wash LiCl [0.25M LiCl, 1% NP-40, 1% Sodium Deoxycholate, 1mM EDTA, 

10mM Tris (pH8)] and twice with TE buffer [10mM Tris (pH8), 1mM EDTA]. Then, beads are 

resuspended in elution buffer [1% SDS, 0.1M NaHCO3]. The samples are decrosslinked 

overnight at 65 °C. 20µg of Proteinase K (Sigma, # 39450-01-6) is added for 1h at 42 °C. Then, 

DNA is purified using BioBasic DNA collection column (BioBasic, #SD5005). DNA 

concentration was assessed via Picogreen assay (Invitrogen, #P7589). 

ChIP-Seq Data Processing: 
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Quality control of reads and sequencing was assessed before and after trimming by FastQC 

(Babraham Bioinformatics). Reads were trimmed with Trimmomatics (235) using the following 

parameters:    ILLUMINACLIP:$Adapters:2:30:10,    LEADING:30,    TRAILING:30, 

SLIDINGWINDOW:4:30, MINLEN:30. Alignment on hg19 human genome was performed using 

BWA (237) default conditions. Sam files generated by BWA were converted to bam format using 

Samtools (237). Peak calling was performed with MACS2 (195) default condition and 

normalization on the respective Input dataset of each cell lines. Bigwig files used for visualization 

were generated from the fragment pileup bedGraph using the BedGraphToBigwig function. 

Downstream ChIP-Seq Analysis in Chapter 1: 
ChIP-Seq Differential Binding Analysis: Differentially binding region were quantified using 

DiffBind 3.0 (215). Bam and narrowPeak files for each samples and bam files of the 

corresponding input were used. Default normalization and analysis was performed for H3K4me3 

and H3K27ac. CTCF normalization and analysis was performed with the following parameters: 

normalize = DBA_NORM_DEFAULT, library = DBA_LIBSIZE_PEAKREADS, background = 

F, bREtrieve = F. Threshold of significance were set at FDR <= 0.01 and abs(LogFC) >= 1 in all 

conditions. Consensus differential peaksets between replicates and conditions were used for 

further downstream analysis and converted to Grange format using GenomicRanges R packages 

(242). The number of sites in each peak set was used for quantification and the generation of pie 

chart. 

ChIP-Seq Genomic Distribution and Sites Annotation: Genomic distribution and annotation were 

performed using clusterProfiler package (243) and ChIPSeeker package (244) on the differential 

binding sites identified by DiffBind 3.0, using the TxDb.Hsapiens.UCSC.hg19.knownGene as 

reference for gene location. TSS regions were defined with a +/- 3000bp overlap during peak 

annotation. The regions are annotated as : 5’UTR, Promoter (<=1kb), Promoter (1-2kb), 
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Promoter (2-3kb) are referred to as “Promoter (+/- 3kb)”; 1st Exon and Other Exon are referred to 

as “Exons”; 1st Intron and Other Intron are referred to as “Introns”; 3’UTR and Downstream are 

referred to as “Downstream” and Distal Intergenic is referred to as is. 

ChIP-Seq Differential KEGG Pathway Analysis: Pathway analysis was performed using the 

annotation files from above and using the compareCluster function from the previously 

mentioned clusterProfiler package and the following parameters: geneCluster = genes, fun = 

"enrichKEGG", pvalueCutoff = 0.05, pAdjustMethod = "BH". -log(p.value) of enrichment 

significance was used for bar chart representation, where pathways were ranked according to 

geneRatio. The differential analysis was then performed by repeating these steps on 100 

randomized subsets of constant CTCF sites equinumerous to the number of lost sites and on 100 

randomized subsets of constant H3K27ac within TADs equinumerous to the number of gained 

H3K27ac within TADs. Then, the average p-value of the surveyed pathway within the 100 

subsets was calculated and compared to the p-value in the lost CTCF sites or gained H3K27ac 

sites. P-values in subsets in which the surveyed pathways were not detected were overestimated 

at 0.25, as the most significant value for which pathways are not called by the program. 

ChIP-Seq and RNA-Seq Dot Plots and Correlation: Dot plots were made by combining the 

RNA-Seq Log2FC between CTL and CTCF+/- #1 and #2 and the logFC from DiffBind of any 

called peak annotated on that gene (+/- 3kb) by clusterProfiler. Spearman correlation on the dot 

plot were performed using the ChIP-Seq logFC and RNA-Seq log2FC of every peak 

colocalization with a gene. Genes associated with a peak with a DiffBind or DESEQ2 adjusted 

p-value > 0.05 or DiffBind LogFC or DESEQ2 Log2FC < 1 are represented in grey, while those 

with a LogFC/ Log2FC >= 1 or <= -1 are represented in orange and purple, respectively. 

ChIP-Seq Heatmaps, Profile Plot, Tracks: Heatmaps, profile plot and tracks were generate using 
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deepTools and samtools (237,245). Heatmaps and Profile plot were generated using 3kb regions 

centered around the differential peakset identified by DiffBind and bigwig from MACS2. Both 

the computeMatrix and plotHeatmaps were runned with default parameter; yMax, zMax and 

colors were adjusted in each condition to better represent the results. Tracks were generated as 

profile plot of the single genomic regions of interest with a gene annotation track from IGV(246) 

under each figure to represent the relative location of the gene of interest. 

ChIP-Seq Colocalization Analysis: Analysis of colocalization, +/- 3kb, was performed using a 

genomic overlap algorithm between the position of differentially binding peak sets identified by 

DiffBind. Observed/Expected ratios shown for colocalization of ChIP-Seq peaks were calculated 

using the Chi-Square formula in Microsoft Excel. 

MoMotif Analysis pipeline 
The analysis sequence for the discovery of modification of motif is comprised of three principal 

steps: Step1: identification of sites of differential DNA binding; Step 2: discovery of motifs 

enriched within DNA binding sites that are either gained, lost or stable binding under experimental 

conditions; and Step 3: learning the discriminative motifs. These steps are conducted using three 

R packages: csaw, rGADEM and MoMotif, as illustrated in Figure 2. The first two packages have 

been widely utilized by the scientific community, but MoMotif, written in R, was developed 

specifically for this project. 

Step 1: Differentially binding analysis: csaw: The first step involves quantifying binding 

intensity/counts from the aligned ChIP-Seq reads and de novo detection of differentially bound 

regions while controlling the genome-wide false discovery rates (FDR). For these processes, we 

rely on an existing R package, csaw (247). csaw uses a sliding window-based approach to 

summarize read counts across the genome. It examines the differential binding at the window level 

using quasi-likelihood F-tests with empirical Bayes-based dispersion estimations, which naturally 
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handle low, over dispersed counts with a limited number of replicates (248). csaw then aggregates 

adjacent windows into regions for output. The p-values for the aggregated regions are calculated 

using Simes’ method (249), which correctly controls FDR at the region level. Our detailed steps 

for this differential binding analysis are summarized in Supplementary Figure 2A. We used a 

window of size of 10bp with spacing of 50bp to count the aligned reads. The differentially bound 

regions were detected using an FDR cut-off of 0.05. The outputs from this csaw pipeline are three 

sets of genomic regions (of varying lengths); experimentally induced 1) gain of binding 2) lost 

binding and 3) binding regions with no statistically significant differences between control and 

experimental conditions. Hereafter we refer to these three sets of genomic sequences as gained, 

lost and constant clusters. 

Step 2: de novo motif discovery, rGADEM: Once lists of binding regions are returned by csaw, the 

next step of our new pipeline involves discovering enriched motif models. For this step, we rely 

on another existing R package rGADEM (250) (Droit A, et al. R package version 2.42.0), built 

upon the GADEM algorithm (166). GADEM is an efficient de novo motif discovery method that 

combines the two commonly used techniques for pattern matching; word enumeration and 

probabilistic local search. Enumerative methods identify motifs by counting all m-letter patterns, 

such as the method Drim (251). Probabilistic approaches model starting positions of motif patterns 

as latent variables and infer the final motif models using the Expectation-Maximization (EM) 

algorithm; such methods include MEME (252,253) and fdrMotif (254). Specifically, GADEM 

constructs spaced dyads by enumerating candidate words (4 to 6 nucleotides), and then uses them 

as starting positions to guide an EM algorithm for unbiased motif discovery. 

We applied rGADEM to the three clusters of sequences obtained from the differential binding 

analysis step. To ease the computational burden and to focus on the most robust differentially 
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bound motifs, we performed the motif discovery analysis exclusively on the top 1000 regions in 

the gained and lost clusters, and the bottom 1000 regions (with the largest adjusted p-values) in 

the stable cluster, separately. The main outputs include the enriched motif models for each cluster, 

represented by either position weight matrices or consensus logos. Along with a specific motif, 

rGADEM also reports other helpful information, including all sequences in the input data 

incorporating this motif and the location of the identified motif patterns in the original sequence 

data. This information is subsequently employed as the input for the following discriminative motif 

analysis step. 

Step 3: Discriminative motif analysis and result visualization, MoMotif: To detect small or subtle 

variations built upon a primary known motif, we have developed a new discriminative motif 

analysis tool, MoMotif, that represents the concluding step in our pipeline. This approach starts 

with the short core motif reported by rGADEM, which incorporates the core pattern of our primary 

known motif. We then retrieve and align all sequences carrying this core motif, referred to as core 

sequences, for each cluster. For a comprehensive characterization of subtle variability occurring 

within and around the core motif, we extend both ends of the core sequences by several base pairs 

(a user-chosen parameter permitting versatility). This strategy results in a set of adequately aligned 

long sequences of the same lengths, which allows us to compare the nucleotide distribution at each 

single base-pair to see which base pairs seem to distinguish clusters. 

Next, we are able to compare the extended sequences in the lost or gained cluster to the stable 

cluster by assessing the statistical significance of differences in nucleotide frequency at each 

position. We used the Pearson’s chi-square test to assess the statistical significance of the 

difference in nucleotide distribution at one position between two sets of aligned sequences (lost 

vs. stable or gained vs. stable). For a given position, let 𝑛𝑛𝑖𝑖
𝑗𝑗 be the number of sequences in Group 
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𝑖𝑖 that have nucleotide 𝑗𝑗 at this position, where 𝑖𝑖 = 1, 2 and 𝑗𝑗 = 𝐴𝐴,𝑇𝑇,𝐺𝐺 and 𝐶𝐶. Let 𝑛𝑛𝑖𝑖 be the total 

number of sequences in Group 𝑖𝑖, 𝑛𝑛𝑗𝑗 be the number of sequences with nucleotide 𝑗𝑗 at this position 

in both groups, and 𝑛𝑛 be the total number of considered sequences, i.e. 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 = 𝑛𝑛𝐴𝐴 +

𝑛𝑛𝑇𝑇 + 𝑛𝑛𝐺𝐺 + 𝑛𝑛𝐶𝐶. These notations are summarized in the following contingency table.  

 
A T G C TOTAL 

Group 1  𝑛𝑛1𝐴𝐴  𝑛𝑛1𝑇𝑇 𝑛𝑛1𝐺𝐺   𝑛𝑛1𝐺𝐺 𝑛𝑛1 

Group 2  𝑛𝑛2𝐴𝐴  𝑛𝑛2𝑇𝑇  𝑛𝑛2𝐶𝐶  𝑛𝑛2𝐺𝐺 𝑛𝑛2 

TOTAL  𝑛𝑛𝐴𝐴 𝑛𝑛𝑇𝑇 𝑛𝑛𝐺𝐺 𝑛𝑛𝐶𝐶 𝑛𝑛 

 

Specifically, the chi-square test compares the observed frequencies in each subcategory with the 

frequencies one would expect if the two groups had the same nucleotide distribution. The 

expected frequencies, denoted as 𝐸𝐸𝑖𝑖
𝑗𝑗, are of the form: 

𝐸𝐸𝑖𝑖
𝑗𝑗 =

𝑛𝑛𝑖𝑖 × 𝑛𝑛𝑗𝑗

𝑛𝑛
  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 𝑗𝑗 = 𝐴𝐴,𝑇𝑇,𝐺𝐺,𝐶𝐶. 

Then the observed chi-squared test statistics can be calculated as  

 

The p-value for the chi-squared test is thus defined as the right-tailed probability in a 𝜒𝜒2 

distribution with degrees of freedom 3, i.e.  

𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑃𝑃(𝜒𝜒32 > 𝑓𝑓𝑜𝑜𝑜𝑜_𝜒𝜒2). 

We repeated the test for all positions in the extended sequences and reported the p-values for 

each position. To control the family-wise error rate at a 5%, we suggest a stringent p-value 

threshold of 1*10-10 for declaring significance of a single position, which was derived from the 

approximate total number of 50M nucleotides in a small human chromosome. We also provided 

visualization to compare the significance level at each position relative to the overall significance 

𝑓𝑓𝑜𝑜𝑜𝑜_𝜒𝜒2 = � �
�𝑛𝑛𝑖𝑖

𝑗𝑗 − 𝐸𝐸𝑖𝑖
𝑗𝑗 �

2

𝐸𝐸𝑖𝑖
𝑗𝑗

𝑗𝑗 ∈{𝐴𝐴,𝑇𝑇,𝐺𝐺,𝐶𝐶}𝑖𝑖∈{1,2}

. 
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level in the extended region. Therefore, discriminative motif models are then identified as the 

smallest sub-region containing all sites reaching our stringent threshold of significance.  

In addition, the MoMotif package contains functions for various output visualizations, including 

bar-plots showing the frequency for each nucleotide in a given set of sequences, sequence logo for 

the identified discriminative motif models and their position to the core motif of our interest. In 

our data analysis, we treated the 10th nucleotide in the canonical CTCF motif, shown in Figure 

3A, as the center and extended by 30 bp in both directions. 

MEME Suite - SEA (Simple Enrichment Analysis) : The same subset of the top 1000 constant and 

lost sites from CTCF ZF1M/ZF1M used for MoMotif analysis were used for SEA analysis. SEA 

was run on the MEME suite web tool (https://meme-suite.org/meme/tools/sea), using the option 

“Shuffled Input Sequences” for the motif enrichment in mutant cell line alone and “User-provided 

Sequences” for the comparative enrichment analysis of lost sites against constant sites. 

ChIP-qPCR Protocol: 
The Chromatin Immunoprecipitation was done following the ChIP-Seq protocol, however using 

only 1mg/ml of chromatin and 30ul of beads with the antibodies listed in Supplementary Table 2. 

Final ChIP-product is diluted in 60ul of DNAse-free water. qPCR was performed with the ChIP 

product following the manufacturer protocol (GoTaq qPCR MasterMix 2X, Promega, #A600A). 

2-ΔΔCT formula was used for quantification, normalized on a 2% chromatin input of each sample 

and compared between sites and conditions. Primers used for ChIP DNA amplification are 

documented in Supplementary Table 4. 

Methyl Array Protocol and Data Analysis: 
Bisulfite conversion was performed using EZ DNA Methylation Kit (Zymo Research, #D5001). 

500ng per sample of Bisulfite-converted DNA was sent at Princess Margaret Genomics Centre 

for quality control and detection of methylated bases using Illumina Human Methylation EPIC 

https://meme-suite.org/meme/tools/sea
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Array. The “.idat” files outputted from the Illumina EPIC Array experiment were analyzed using 

Minfi package (83) for the comparison of individual red/green CpG probe intensity and genomic 

annotation, using Illumina Methylation EPIC reference: ilm10b4.hg19. Quality control of 

methylation pattern was performed using the Shinymethyl R package (84). 

Methyl Array and RNA-Seq Dot Plot: Dot plot of methylation profile and RNA-Seq was 

generated using the Methylation LogFC between MCF10A CTCF+/- #2 and MCF10A CTL for 

all CpG colocalizing with a gene (+/- 2kb) with a DESEQ2 called basemean > 100. Spearman 

correlation was calculated using all points under these criteria. 

Hi-C Data Processing and Analysis: 
Quality control of reads and sequencing was assessed by FastQC (Babraham Bioinformatics). Raw 

sequencing read were mapped, filtered, and binned using the runHiC pipeline (208). Contact 

matrix were binned at 5kb and 10kb resolution and stored in “.cool” format. 

Downstream Hi-C Analysis in Chapter 1: 
Hi-C Data Processing for Pearson Correlation Analysis: Raw sequencing read were analyzed 

using cLoops2 pipeline (255) pre-processing program tracPre2.py, “cLoops2 pre” and “cLoops2 

combine” functions, using default parameters. Pearson Correlation Coefficient was calculated 

using the pulled biological replicates of the pre-processing results using “cLoops2 estSim” 

function, using default parameters and bin size set to 5000, 10000, 500000 and 1000000. 

Hierarchical TAD Calling: Hierarchical TAD calling was performed using the hiTAD function 

of the TADLib package (208), using the 10kb resolution contact matrix and default settings. 

Domain Boundaries Colocalization Analysis: Colocalization of TAD boundaries and ChIP-Seq 

peak was determine as described earlier, using a simple genomic overlap algorithm between the 

called TAD boundaries and the differentially bound peak list generated with DiffBind, with an 

accepted overlap of +/- 10kb (+/- 1 contact matrix bin). Observed/Expected calculations were 
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performed as described earlier. The same algorithm and overlap were used across samples to 

determine altered boundaries. TAD and subTAD boundaries present only in the CTL, but in none 

of both the CTCF+/- clones were defined and quantified as lost boundaries. TAD and subTAD 

boundaries present in both CTCF+/- clones, but absent in the CTL were defined and quantified 

as gained boundaries. Boundaries found in the CTL and any of the CTCF+/- clones were defined 

as constant boundaries. 

Constant or gained boundaries were defined as adjacent to lost boundaries is the next or second to 

next boundaries, in any direction, is lost. Significant enrichment of the gained boundaries next to 

lost boundaries, compared to constant boundaries, was performed using the Chi-Square formula 

in Microsoft Excel. 

RNA-Seq Changes at Domain Boundaries: Constant and altered boundaries’ genomic location 

(10kb each) were annotated as previously described in the ChIP-Seq Analysis section. The 

average RNA-Seq log2FC of the CTCF+/- #2 against the CTL of genes colocalizing with each 

type of boundaries was calculated and represented by a bar chart. Statistical test of the difference 

between the average RNA Log2FC at each boundary was performed using a Student’s T Test. 

Pathway analysis of altered boundaries was performed as in the ChIP-Seq section. 

Hi-C 2D Heatmaps: Genome wide and Chromosome 20 heatmaps were generated using Juicer 

(256) representation of observed interacting reads value. 5kb resolution heatmaps were generated 

from h5 converted cool files using the HiCExplorer packages (257) default settings, using the 

hicPlotMatrix function for interaction matrix and hicCompareMatrices for comparative 

interaction matrix and hicConvertFormat for the cool to h5 conversion. High resolution sub5kb 

HiC imaging was performed with the HIFI pipeline (212), using the Markovian Recombination 

Method on defined subsection of the genome (around SNAI1, chr20:48,550,000-48,750,000) and 
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default setting for this method. 

Hi-C Pile-Up Plots: Pile-Up plots were generated using the cooltools package (Open 

Chromosome Collective), centered at the differential peak list from DiffBind (for CTCF and 

histone marks) or from the TADlib TAD caller (for TAD/subTAD boundaries), normalized on 

random background interaction and using default settings. Local interactions were map at +/- 

200kb around the defined regions. Average interactions were mapped at +/-50kb around the 

defined region. 

Insulation Score and Profile Plots: Insulation Score was calculated at 30kb resolution and output 

as a bigwig file using the FAN-C insulation command default settings (210) and the respective 

10kb .cool matrix from MCF10A CTL and MCF10A CTCF+/- #2. The bigwig file was used to 

generate the profile plot using deepTools, previously explained in the ChIP-Seq section, at +/- 

200kb around lost sites of CTCF or gained sites of H3K27ac colocalizing with TAD boundaries 

(+/- 10kb) or within TADs. 

Downstream Hi-C Analysis in Chapter 2: 
Hierarchical TAD Calling: Hierarchical TAD calling was performed using the hiTAD function of 

the TADLib package(208) and SpectralTAD package (220), using the 10kb resolution contact 

matrix and default settings. 

Colocalization Analysis: TSS of altered genes (FDR < 0.05) and altered CTCF sites were mapped 

to TAD/subTAD boundaries (+/- 1 resolution bin/10kb) or within each TAD/subTAD. The 

distribution of strongly gained and lost gene (abs(LogFC) > 1) compared to all mapped genes was 

measured and compared using a ChiSQ test in each distribution of: TAD/subTAD, TSS location 

and CTCF status. 

Individual Zinc Finger Motif Prediction 
Human CTCF amino acid sequence from Ensembl (https://useast.ensembl.org) was inputted in 

https://useast.ensembl.org/
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Perkov et al. 2014 and 2015 (217,218) webtool (http://zf.princeton.edu/b1h/index.html). 3bp 

predicted sequence from the F2 model were used for our analysis. 

Quantification and Statistical Analysis: 
Unless stated otherwise, all graphical representations display the mean and SEM of the sample’s 

distribution. Unless stated otherwise, graphics and statistical tests were generated and performed 

using GraphPad Prism 9.1, GraphPad Software, San Diego, California USA, 

www.graphpad.com. Unless stated otherwise, all Student T-test are using the one-tailed method. 

Graphical models were created using Biorender. For each graph: 

* : p <= 0.05 

** : p <= 0.01 

*** : p <= 0.001 

**** : p < 0.0001 

http://zf.princeton.edu/b1h/index.html
http://www.graphpad.com/
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Discussion 

The effect of CTCF on gene expression is highly dependent on topological context  

The study of CTCF LOH and zinc finger 1 mutation in the context of breast cancer provides 

multiple insights into the importance of epigenetic events on oncogenic progression and the 

physiological role of CTCF in the regulation of transcriptional process. In CTCF +/- MCF10A 

cells, the loss of CTCF likely did not reprogram H3K27ac or H3K4me3 directly through 

recruitment of enzymes to CTCF lost sites. Similarly, CTCF lost sites did not frequently impact 

the transcription of the most proximal genes. However, we did link the loss of CTCF to altered 

subTAD organization. Such reorganizations strongly correlated with the accumulation of 

activating marks and gene expression changes when genes were found within at the boundary of 

or within an altered subTAD. Thus, CTCF appears to control gene expression changes, to a large 

extent, indirectly through controlling chromatin contacts at the subTAD level. 

In MCF10A cells carrying CTCF H284N, the most significantly altered genes were associated 

with lost CBS within TADs, or at the boundaries of subTADs. This indicates that CTCF 

mutation to zinc finger 1 is responsible for the precise control of gene expression at these levels 

of organization. Moving forward, it would be interesting to investigate the impact of zinc finger 

3,4 and 5 missense mutations, that are observed in endometrial cancer and DS-AMKL. These 

mutations would be expected to prevent CTCF binding to its core binding motif, which would 

result in a different epigenetic phenotypes by a potential direct impact on TAD boundaries. 

Both models utilized by the work described herein, and analysis methods, demonstrate the 

mutual dependence of chromatin conformation on CTCF binding and transcriptional regulation 

on chromatin conformation. Also, my analysis of our diverse Hi-C, ChIP-Seq and RNA-Seq 

datasets highlighted another key aspect that is often left out of most modern analysis; the 
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importance of hierarchical organization. 

The rational between the intrinsic dichotomy of TADs and subTADs 

One the main takeaway from my investigation of CTCF in breast cancer is that TADs within TADs 

(subTADs) are directly linking altered CTCF binding to aberrant regulation of histone marks and 

gene expression. Oppositely, TADs themselves displayed significantly less reorganization and less 

association with changes in gene expression following the mono-allelic KO of CTCF. The 

functional divergence between these two structurally similar types of chromatin domains can be 

explained by simple, rational, mechanisms. 

First, multiple independent studies highlighted mechanisms allowing TAD boundaries to remain 

stable across cell types or species (4,10,221) or following removal of crucial regulators of 

chromatin conformation at their boundaries, such as CTCF (211). For example, TAD boundaries 

are often bound by multiple CBS (221), meaning that the loss of a single CBS might be 

compensated for by the additional binding sites, leaving the boundary unaltered. Similarly, as 

TADs are mostly continuous along the genome and the loop extrusion process cannot overlap 

(109), the boundary of a TAD will not shift further than the next adjacent boundary. Additionally, 

in our CTCF +/- MCF10A, loss CBS displayed less Hi-C insulation and lower ChIP-Seq read 

density. By definition, TAD boundaries are better insulated than subTAD boundaries. Also, CTCF 

binding at TAD boundaries is more conserved (221) and in an environment with higher average 

interactions caused by actively transcribed housekeeping genes and tRNAs (111,112). Therefore, 

not only can the loss of a CBS be compensated at TAD boundaries, but loss of CTCF binding is 

also less likely at the boundary of a TAD, than within a TAD. These observations explain why 

subTAD interactions are more sensitive to altered CTCF binding. However, these conclusions do 

not clearly explain why changes in subTAD, and not TAD, are directly associated to aberrant 
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epigenetic regulation of gene expression. 

Second, even when TAD organization shifts, it is inherently less closely associated to possible 

transcriptional changes than subTAD organization, simply due to subTADs being located within 

TADs. Few possible topological contexts would be permissive to altered regulatory interactions 

by displaced or fused TAD boundaries. For example, if a previously insulated cis-regulatory 

element, or promoter, is located within the region of shifting insulation and a compatible, and not 

further insulated, interactor is present within the shifted TAD, then a new regulatory interaction is 

made possible, while previous interactions could be lost (Figure D1). 

 

Figure D1: Example of a shift in TAD interaction permissive to transcriptional changes. 

However, if the shifting TAD boundary does not encompass a regulatory element (Figure D2) or 

if the compatible interactors are insulated by subTADs (Figure D3/4), then changes in chromatin 

conformation at the TAD level are not permissive to transcriptional changes. 

 

Figure D2: Example of a shift in TAD interaction not permissive to transcriptional changes since no regulatory 

element is encompassed within the shift. 
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Figure D3 : Example of a shift in TAD interaction not permissive to transcriptional changes since the potential 

interactors are insulated within subTAD 

 

Figure D4 Example of a fusion of two TADs not permissive to transcriptional changes since the potential interactors 

are insulated within subTAD. 

Shifts in subTAD boundaries follow the same rules. However, as CTCF binding at subTAD 

boundaries is less redundant and subTAD are not necessarily adjacent to another subTAD, shifts 

or loss of subTAD boundaries can encompass larger regulatory regions within the TAD, 

potentially permitting every regulatory elements within a single TAD to interact with each other. 

Therefore, the scenario presented in Figure D2 is less likely at the subTAD level. Further, the 

insulation of boundaries decreases from TAD to subTAD, and then subsequently from subTADs 

to interaction domains or loops within them. Therefore, regulatory elements encompassed by a 

shift in subTADs are more likely to be in an environment promoting their interaction with 

everything within the altered subTAD, making the scenario presented in Figure D3/4, here again, 

less likely. 

In sum, these simple rational models demonstrate why, by definition, changes in subTAD 

organization are more likely to affect transcription than conformational shift at the TAD level. 

Additionally, the three-dimensional organization of the genome evolved together with the intrinsic 

biases of TAD and subTAD, enhancing the duality of stability at TAD boundaries versus 

adaptability at subTAD boundaries. 

A hierarchy of stability and adaptability in chromatin conformation 

The inherent differences created by the hierarchical organization of TAD and subTADs might have 
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been co-opted by the evolution of genome organization to promote homeostasis, while creating 

vulnerabilities that can be exploited by oncogenic events affecting chromatin conformation, such 

as CTCF loss or mutation. 

As mentioned previously, TAD boundaries often colocalize with housekeeping or tRNA genes 

(111,112), many of which are essential transcripts for the survival of a cell. The stability of TADs, 

due to CTCF redundancy and conservation at TAD boundaries (221) and the exclusivity of 

chromatin extrusion by cohesin (109), is beneficial to the stable expression of these essential genes. 

Additionally, essential genes tend to cluster together (258). Therefore, an essential gene 

encompassed by a shifting TAD boundary could go from the transcriptionally active environment 

of a TAD boundary to the transcriptionally active environment of the neighboring one. This 

would result in a similar expression level, despite the shift in TAD organization. Coupled with the 

small range of possible shifts caused by the continuous presence of TADs along the genome, the 

enrichment of similarly express genes at TAD boundaries adds another layer to the stability they 

provide. 

Genes and functions associated with subTADs benefit from the adaptability conferred by a 

hierarchically lower level of topological organization. subTADs are more dynamic than TAD, 

making them well suited to encompass and regulated groups of genes with condition dependent 

transcription. Already, multiple independent investigations highlighted the specific role of 

subTAD organization in the regulation of gene expression in response to nutrient availability or 

developmental signals, including PI3K signaling (259), circadian rhythm (260) and senescence 

and EMT pathways (261). To be competent in their ability to dynamically alter transcriptional 

states, subTADs need to be situated at a genomic locus where a small shift will insulate or 

incorporate cis-regulatory elements and promoters prone to altered transcriptional states. Without 
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that, dynamic subTADs organization could not, by itself, be conducive to swift changes in gene 

expression in response to diverse signals. However, this ability to adapt comes at the price of a 

reduced topological stability and higher risk of malignant transcriptional reprogramming caused 

by aberrant conformation in the presence of dysfunctional regulators, such as CTCF. 

In sum, the specific sensitivity of disrupting subTADs, and acquiring new subTADs upon loss of 

CTCF can be explained by following a logical discourse. First, subTADs have, by definition, 

weaker insulation than TADs. Meaning that the binding of chromatin conformation regulators, 

such as CTCF, are more likely to be stochastically lost at their boundaries following reduced levels 

or loss of function. Second, subTAD boundaries evolved to be mobile. Therefore, the loss of an 

insulator is more likely to cause a shift in their boundaries, as we demonstrated in the CTCF LOH 

investigation. Third, subTADs are in an environment where small topological shifts are conducive 

to transcriptional changes. Thus, genes requiring condition-dependent regulations, such as genes 

of the PI3K pathway or EMT, in epithelial cells, are intrinsically more likely to be aberrantly 

transcribed following the mutation or loss of an insulator of chromatin conformation, such as 

CTCF. In other words, the altered DNA-DNA contact activating the genes of the PI3K and EMT 

pathway following the loss of CTCF are likely not unique to CTCF LOH cells, but could instead 

be interactions that are programmed to happen in specific cell states or conditions, such as changes 

to nutrient availability and growth factor signaling. However, the loss of insulation caused by 

lower CTCF levels permits these interactions, despite the cells not being in the required 

environment to inherently promote these contacts. In turn, this promotes oncogenic progression 

due to an aberrant transcriptional timing of key regulators of cellular functions or homeostasis. To 

validate this hypothesis, it would be interesting to carry out high-resolution Hi-C and RNA-Seq 

experiments under various physiological stress and growth conditions, such as starvation or 
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hypoxia. Then, the result could outline an enrichment of transcriptionally relevant subTAD 

changes compared to fewer relevant TAD changes. Additionally, analyzing which subTADs are 

altered in each conditions and how it affects gene expression would reveal if indeed, these sets of 

genes and subTADs are more sensitive to the loss of CTCF. This experiment would also expose 

whether the loss of CTCF epigenetically mimics any particular stresses, which could hint at 

potential therapeutic avenues. 

Cell Type Specificity of Occurrence and Vulnerabilities 

My investigations revealed that the transcription of genes of the PI3K and EMT pathways are 

especially sensitive to subTAD reorganization caused by CTCF LOH in mammary epithelial cells. 

The specificity of affected pathways and the mechanism of their altered transcription open 

potential targeted therapeutic avenues by inhibitors of the mTOR or histone acetylation. However, 

due to varied subTAD organizations between cell types and during differentiation, these 

sensitivities are likely to be cell type specific, as are the enrichments of CTCF deletions and 

mutations. 

In terms of prevalence of CTCF genetic defects in diverse types of cancer, tumors of epithelial 

origin are dominant. Using cBioPortal analysis of TCGA Pan-Cancer datasets of 2018 (10,953 

patients), the five types of cancer in which CTCF alterations are the most prevalent are all of 

epithelial origin (Endometrial, Bladder, Esophagogastric, Breast and Head and Neck). In these 

types of cancer, the sensitivities we highlighted in breast epithelial cells are likely to be 

reproducible. Indeed, most epithelial cells are competent to undergo EMT under specific 

conditions, such as wound healing (262). Further, epithelial cells of diverse origins can have 

adaptable survival or growth rate mediated, in part, by the PI3K pathway depending on nutrient 

availability (263) or tissue regeneration (264). Therefore, genes related to these pathways cannot 
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be stably silenced or constantly expressed in epithelial cells, as their expression needs to be 

adaptable. If their adaptability is reliant on proper subTAD organization or insulation (259-261), 

then the transcriptional phenotypes caused by lower levels of CTCF we discovered in breast 

epithelial cells are likely transposable to other CTCF low epithelial tumors. A similar combination 

of CRISPR-Cas9 editing, RNA-Seq, ChIP-Seq and Hi-C, as used in Chapter 1, to study the effect 

of CTCF LOH in diverse epithelial tissue and non-epithelial tissue could validate this hypothesis. 

For example, according to the results of my project, I would expect such experiments to outline an 

enrichment of altered genes related to PI3K and EMT pathways specifically in epithelial cells. 

However, as the epigenetic mechanism driven by the loss of CTCF is likely to be consistent across 

cell lines, the association with loss of insulation of subTADs, H3K27ac and changes in gene 

expression should be observed in most cell lines, independent of their origin. If proven correct, 

such investigation could be followed up with HAT inhibitor treatments, potentially detecting and 

expanding the sensitivity detected in CTCF+/- MCF10A to distinct independent models.  

From a different perspective, other mechanisms may explain the high alteration rate of CTCF in 

specific subcategories of non-epithelial cancer types. For example, in humans, Down Syndrome 

related Acute MegaKaryoblastic Leukemia (DS-AMKL) carries CTCF deletions or mutations in 

20% of all cases (21). Here, the loss of CTCF is thought to be important for clonal evolution to 

more aggressive phenotypes following GATA1 mutations (21), a crucial transcription factor 

regulating differentiation in erythropoiesis (265). DS-AMKL, as with most liquid cancers, are 

often caused by defects in differentiation (266). Interestingly, topological domains of the 

chromatin become gradually more insulated and defined to solidify cellular fate and identity 

throughout differentiation, in a CTCF dependent manner (12). Therefore, dysfunctions of CTCF 

could hinder differentiation by impeding the formation of properly insulated subTADs necessary 
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to define cell identity. Although this hypothesis has not been directly validated, it is supported by 

the synergy between CTCF and GATA1 dysfunction in DS-AMKL (21) and the early onset of 

hematological tumors in CTCF hemizygous mice (19). Investigating chromatin conformation 

throughout the timeline of erythropoietic differentiation in diverse models with altered CTCF 

expression could answer this hypothesis directly. 

In sum, despite the major differences in cellular functions affected by altered CTCF, the epigenetic 

mechanism we highlighted in MCF10A cells is likely to be consistent across models. Indeed, in 

the diverse types of cancer mentioned above, loss of insulation of subTADs can explain the 

oncogenicity of CTCF dysfunctions, through transcriptional defect of adaptably expressed genes 

or by hindering the solidification of topological domains when establishing cellular identity. 

Additionally, strong oncogenic hits, such as GATA1 mutations (21), benefit from the decreased 

insulation caused by aberrant CTCF functions, which promotes tumor progression and not 

initiation, like in our MCF10A models. However, similarly to how altered subTAD insulation will 

promote cancer progression distinctly in specific cell types, each mutations or change in levels of 

CTCF will utilize this mechanism to lead to a unique phenotype.  

Since my project focused on a deep and thorough investigation of a few inter-connected models, 

a pitfall of my research is that the loss of CTCF in different models was not directly investigated. 

Its implication could only be theorized and deduced through the logic of the mechanism we 

outlined. If direct answers were generated for the ideas and potential experiments mentioned in 

this section, such wider scope would have validated a universal sensitivity of subTAD 

organization to changing CTCF levels and its implication in cancer progression, outside of breast 

epithelial models. 
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Explaining the difference between CTCF mutation and loss of heterozygosity 

Despite being both drivers of transcriptional changes within TADs, CTCF LOH and CTCF ZF1M 

lead to significantly different pathways being altered compared to CTL cells. Similar to how the 

different subTAD organization of diverse cell types utilized aberrant CTCF functions in unique 

ways to activate oncogenic pathways, different dysfunctions of CTCF may also affect subTAD 

topology in distinct manners. 

First, the altered CBS are distinct in the CTCF +/- and CTCF ZF1M MCF10A. These differences 

stem from the biochemical mechanism explaining the changes in CTCF binding following these 

distinct modifications. Our MoMotif and ChIP-Seq analysis revealed that in CTCF +/- cells, CTCF 

is lost at CBS with lower read density and with a slightly more variable core motif. However, the 

downstream extended motif is not directly involved in the alteration of CTCF binding in CTCF 

+/- cells, despite being a key factor in CTCF ZF1M cells. Additionally, lost sites in CTCF ZF1M 

cells display a higher read density, which was also previously associated with the extended motif 

(40). Therefore, in CTCF +/- cells, CTCF is likely stochastically lost from less conserved CBS. 

While in CTCF ZF1M cells, changes in CTCF binding are driven by its inability to bind the 

extended motif, often enriched on more conserved CBS. 

Second, if changes in CTCF binding are the initial driver of altered gene expression, then we 

should expect distinct transcriptional changes for unique CTCF binding changes. This was 

observed when comparing RNA-Seq data of CTCF +/- and CTCF ZF1M compared to CTL 

MCF10A. Besides strengthening our models, this observation also hints at the diversity of CBS 

across the genome. Indeed, an enrichment of lowly conserved CBS at the boundaries of subTADs 

regulating genes of the PI3K pathway in mammary epithelial cell would explain the results 

obtained in CTCF +/- MCF10A. Similarly, an enrichment of the extended CTCF motif at 



122  

boundaries of subTAD regulating genes involved in xenobiotic metabolism would explain the 

changes detected in CTCF ZF1M MCF10A. However, a global enrichment of genes involved in 

EMT and extracellular matrix organization in subTADs, compared to genes of other pathways, 

could be behind their enrichment in both models, as they would be more likely to be contained 

within a subTAD with a less conserved or motif extended CBS. 

Third, the extent to which CTCF ZF1M mutation directly hinders CTCF binding to DNA was not 

fully uncovered with the computational model used, as extra bases outside of the predicted region 

of binding were enriched in the extended motif. This hints that a potential co-factor could also play 

a role in the alteration of CTCF H284N binding. CTCF ZF1 is known to contribute to RNA binding 

(39). As such, its mutation could hinder the interaction with RNA-dependent co-factors (267) 

necessary for recognition of or recruitment at this extended motif. Future “enhanced CrossLink 

and ImmunoPrecipitation and Sequencing” (eCLIP-Seq) (268,269) investigations of the altered 

RNA-binding properties of mutant CTCF could provide further insight into this relationship. 

Additionally, if such potential co-factors are regulated by specific pathways or signals, the 

alteration of CBS in CTCF ZF1M cells would be dependent on them, further dividing the 

phenotypes observed in ZF1 mutated CTCF versus lower expression of CTCF. Performing CTCF 

ChIP-Seq and RNA-Seq in different environments or stress conditions in CTCF ZF1M, CTCF +/- 

and CTCF WT cells could expose such dependence and narrow the range of potential effectors 

within known CTCF or CTCF ZF1M interactors. 

In opposition to ZF1 mutations, other common mutations of CTCF might result in a similar 

phenotype to what we observed in CTCF +/- cells, although with some important nuances. Other 

common mutations of CTCF are located around ZF4-5, which are known to bind to the core 

binding motif of CTCF (33,34). Therefore, less conserved CBS harboring its consensus binding 
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motif, which represents the majority of loss sites in CTCF +/-, are expected to be the most sensitive 

to these mutations. However, the minority of loss sites in CTCF +/- that do not colocalize with 

CTCF core binding motif would not be expected to be sensitive to mutations of CTCF around ZF4- 

5, assuming these mutations do not affect the overall protein level of CTCF or its ability to DNA 

outside of CTCF consensus motif. To validate this hypothesis, it would be interesting to carry out 

a MoMotif analysis of altered CBS following CTCF ZF4-5M. A relative enrichment of the section 

of the core CTCF binding motif recognized by these zinc finger or the totality of the consensus 

motif would confirm a direct impact of these mutations on CTCF-DNA binding through motif 

recognition. Oppositely, in the unlikely event that no such enrichment is detected, it would hint at 

a mechanism of CTCF-DNA binding in which other zinc-fingers of CTCF can compensate for 

these mutations, leading to a relative enrichment of different sections of the CTCF motif in the 

constant sites. Similarly, if the mutations affect the interaction of CTCF with a co-factor, then 

MoMotif would detect an enrichment of any surrounding motif recognized by the co-factor or the 

altered CBS would be found in specific chromatin states influencing the co-factors interactions 

with CTCF and DNA, independently of DNA motifs. These studies would solidify our 

understanding of CTCF-DNA binding, while exploring the mostly unexplored biochemical and 

epigenetic impact of CTCF mutations. Additionally, as I demonstrated at the end of Chapter 2, 

MoMotif potential applications are wider than studying mutations of CTCF or other transcription 

factors. 

The potential of MoMotif 

Similar to our analysis of mutated CTCF or motif variations at promoter proximal regions, 

MoMotif analysis of available genomics data on DNA binding proteins and their co-factors in 

varied conditions has the potential to identify diverse modified motifs. These include motifs 
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specific to a context-dependent binding of transcription factors (TF), between mutated versions of 

proteins, in the presence of various co-factors and under various environmental conditions. In 

addition, differences in TF recognition motifs when adjacent to TAD boundaries, transcription 

start sites, enhancer elements or across tissue types may be explored. Further, MoMotif can 

investigate whether mutated TFs, similarly to CTCF, may harbor unknown context specific 

binding motifs. Other factors impacting both wild-type or mutated TF binding motifs may include 

proximity to regulatory elements, proximity of co-factor binding sites, chromatin states at binding 

sites or post-translational modifications. Mining available genomic databases using the MoMotif 

pipeline will allow the identification and association of subtle motif disparities between various 

contexts, greatly extending our compendium of knowledge regarding biological influencers of 

DNA binding. In turn, this knowledge may be helpful in identifying therapeutic vulnerabilities 

from diverse clinical datasets, including non-coding mutations identified by whole genome 

sequencing or altered chromatin states detected by ATAC-Seq. 

Association between H3K27ac and topological changes 

The histone modification H3K27ac is commonly used to demarcate contact between 

transcriptionally active regions of the genome (270,271). However, it remains unclear how 

chromatin contacts and histone modifications influence each other. Our data provides insight into 

the relationship between altered subTAD distribution and epigenetic changes. Since sites of 

compromised CTCF binding are generally not proximal to sites of gained H3K27ac or 

H3K4me3, it is unlikely that the loss of CTCF drives the gain of activating marks through direct 

recruitment of histone writers to specific loci. For example, it is unlikely that compromised 

CTCF binding would lead to the loss of recruitment of antagonistic epigenetic writers, such as 

EZH2 (272) at sites many kilobases away where H3K27ac is subsequently accumulated. 
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Therefore, we can infer that the reshuffling of subTADs is driving the redistribution of H3K27ac 

and H3K4me3 more so than altered CTCF itself. Our model predicts that de novo chromatin 

contacts between genomic regions may promote the recruitment of activating chromatin writers 

(273,274), leading to reprogrammed epigenetic landscape and transcriptional changes. 

Modeling Epigenetic Plasticity and Evolution in the context of oncogenesis 

During my investigations of CTCF LOH, cell models were cultured in constant culture 

conditions and kept at low passages. Despite being optimal for reproducible and reliable in 

cellulo data, this modus operandi cannot model the ever-present environment and evolution of in 

vivo oncogenesis. Indeed, animal models are needed to accurately study the impact of CTCF 

LOH in the context of cancer evolution. 

It is well characterized that as most tumors progress, they will accumulate genetic mutations. 

Multiple rounds of mutations and selections will then lead to highly heterogeneous and aggressive 

tumors. The partial loss of CTCF could enhance this evolutive capacity of tumors, in ways that are 

predicted, but not directly tested, in our previous investigations. My predecessors and colleagues, 

in Hilmi et al. 2017, showed that CTCF was important for homologous recombination double- 

stranded beak DNA damage repair by mediating the recruitment of BRCA2 (64). Interestingly, 

other members of this DNA damage repair pathway, such as BRCA1 and BRCA2, are common 

tumor suppressor genes associated with breast cancer (275). Indeed, defective DNA damage 

repair can be beneficial for cancer progression. Often associated to a “mutator phenotype” or 

increased genomic instability (275), it increases the rate at which the tumors accumulate genetic 

mutations, and therefore driver mutations, speeding up cancer evolution and progression. This 

could be one way by which CTCF LOH promotes cancer evolution. However, in light of my 

research, the altered epigenetic regulation resulting from the partial loss of CTCF might, 
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synergistically, promote it even further. 

Although genetic mutations have been at the forefront oncology for many decades, the epigenetic 

aspect of cancer progression is rising up and was recently added to the hallmarks of cancer (276). 

Cancer goes through multiple stages, from initiation and growth to invasion and metastasis. As 

such, a mutation beneficial in the initiation phase might be detrimental to the tumor’s metastatic 

abilities. For example, multiple investigations termed the TGFB pathways, or other genes and 

pathways central to EMT, as tumor suppressor since it hinders growth (277), while multiple others 

termed it an oncogenic pathway as it promotes invasion and metastasis (278,279) . Contrarily to 

genetic mutations, which are technically irreversible, epigenetic regulation is dynamic. Therefore, 

the expression of key genes can be promoted or inhibited epigenetically at phases of cancer 

progression benefiting from such transcriptional changes. For example, primary breast tumors 

accumulate multiple genetic mutations, promoting their growth and heterogeneity, but very few 

mutations are accumulated during the metastatic process (280). As reviewed in Nam et al. 2012 

(Figure D5) (281), dysfunctions of epigenetic regulatory processes are competent to facilitate 

transitions between two different cell states. Therefore, transcriptional plasticity renders more 

efficient the switch between two phenotypically very different stages of cancer. 
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Figure D5: Depiction of how epigenetic plasticity facilitates the switch between 2 cell states. 

According to my results, CTCF LOH has strong potential to promote epigenetic plasticity. By 

hindering global subTAD insulation, it facilitates potential oncogenic DNA-DNA contacts within 

TADs, such as at between SNAI1 promoter and downstream enhancer in our MCF10A model, to 

happen dynamically in tumor cell and promote its progression. Such aberrant epigenetic events 

could happen transiently in tumor cells requiring invasivity to progress or be carried over by 

descending sub-population. Specific examples of loss of CTCF mediated novel oncogenic contact 

were already described (282) and support the hypothesis arising from my research. 

Additionally, it is possible that the genetic and epigenetic plasticity promoted by CTCF might 

synergize. Indeed, accumulation of genetic mutation seems to be an important driver of tumor 

initiation and primary growth, while Chapter 1 showed that epigenetic plasticity could be a crucial 

factor of the following invasion and metastasis. Therefore, each stage of cancer progression might 

benefit from these evolutionary advantages. However, since my project did not include a model 

compatible with the study of the temporal and evolutive aspect of tumor progression, this hypothesis was 

not tested directly.  Therefore, to test such hypothesis, we developed a mouse model of CTCF loss in 

breast cancer, by crossbreeding cell type specific deletion of CTCF with Her2+ background of 
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NIC mice, a slow initiating model of breast cancer in an immune competent background (283). 

This model will allow us to detect changes in penetrance, tumor initiation and tumor progression 

by measuring classical metrics of tumor growth and progression. Further, single- cell RNA-Seq 

and ATAC-Seq analysis of primary tumors, circulating tumor cell and metastatic tumor will 

allow for the detection of tumor transcriptional heterogeneity compared to CTCF WT NIC mice, 

as well as identifying which transcriptional subpopulations are more permissive to the transition 

between each stages of cancer. Overall, this model and experiments will not only directly reveal 

the possible evolutionary advantages conferred by CTCF LOH, but also identify essential drivers 

of breast tumor progression, independent of or synergistic with CTCF dysfunctions. 

Final Conclusion and Summary 

In conclusion, my investigations revealed the epigenetic impact of CTCF LOH in mammary 

epithelial, through loss of insulation of subTADs. This mechanisms explains why genes of the 

PI3K pathway and EMT are prone to be altered by lower levels of CTCF and are therefore potential 

therapeutic targets. Due to the intrinsic properties of subTAD interactions, we predicted sensitivity 

of our model to inhibitors of mTor or histone acetylation. Further, I employed, and played a central 

role in the development of, a new computational tool we named MoMotif. Using MoMotif in the 

context of CTCF H284N mutation, I was able to identify an extension of the core CTCF motif 

requiring its ZF1 to bind appropriately. I then associated the H284N mutation dependent loss of 

CTCF binding at sites harboring this extended motif within TAD or at the boundaries of subTAD 

to changes in gene expression reminiscent of the clinical phenotypes observed in CTCF mutated 

breast cancer. Overall, I showed the importance of epigenetic and chromatin conformation 

regulation in cancer progression and strengthened the role of CTCF as a crucial tumor suppressor 

gene. 
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Supplementary Information 

 

Supplementary Figure 1.1. (A) Copy number analysis of PDX #3 cell line using the 
Chromosome Analysis Suite from ThermoFisher showing CTCF Loss of Heterozygosity 
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(demarcated by a purple box) at the CTCF loci (demarcated by the dotted vertical line). (B) 
Western Blot of tumors from triple negative breast cancer patient derived xenograft showing that 
physiological CTCF levels found in tumors 1, 9 and 10 are similar to the CTCF level of our cell 
line models. (C) Western Blot of CTCF levels following shCTCF expression in MCF7 with 
quantification of relative CTCF band intensity to shCTL. Loading control: Actin. Bar chart of 
relative invasiveness of MCF7 shCTCF #1 and #2 to shCTL (mean ± SEM). p = 0.021 and 
0.0051 for shCTCF #1 and #2 compared to shCTL, showing an increased invasiveness following 
shCTCF treatment. (D) Western Blot showing ectopic expression of HA-CTCF in CTCF+/- 
cells. Actin and GapDH are used as loading control. (E) Brightfield microscopy picture of CTL 
and CTCF+/- MCF10A at similar confluence, showing no major morphological changes between 
the cell lines. (F) Line chart (mean ± SEM) of the growth of CTL, CTCF+/- #1 and CTCF+/- #2 
MCF10A during a 5-day growth curve assay. CTCF+/- #2 proliferates at a modestly slower rate 
than CTL (p = 0.02 using a two-tailed Student’s T Test). All other comparisons are non- 
significant. (G) Average and individual mammosphere size of CTCF+/- MCF10A relative to 
CTL (mean ± SEM) showing an increase in mammosphere size in CTCF +/- cells, p-values < 
0.0001 for both CTCF+/- #1 and #2. All p-values were calculated using Student’s T Test. (H) 
Mammosphere DAPI immunofluorescence of CTL and CTCF+/- MCF10A showing an 
increased filing of the CTCF+/- mammospheres. Tukey Box plot below images represents the 
distribution of mammosphere filling in each cell lines, showing a significant increase in cells 
filling the core of CTCF+/- MCF10A mammospheres compared to CTL. p < 0.0001 for 
CTCF+/- #1 and #2 using a two-tailed Student’s T Test. (I) Western blot of CDH1 levels. 
GapDH was used as a loading control. Bar chart (mean ± SEM) below represents the relative 
invasiveness in a matrigel invasion assay of each cell line, normalized to CTL, showing no 
increase in invasiveness following CDH1 KO. p = 0.0459 and 0.129 for CDH1 KO #1 and #2 
compared to CTL using a one-tailed Student’s T Test. Pictures on the right show the inserts 
following invasion. The few invading cells are indicated with black arrows. 
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Supplementary Figure 1.2. (A) Correlation of changes in gene expression of the respective 
CTCF+/- clones to CTL (Pearson r and p-value), showing a strong reproducibility of gene 
expression changes in both cell lines. (B) Top 10 KEGG and Reactome pathway analysis by p-
value and entities ratio, respectively, for upregulated genes (Log2FC >= 2, adjusted p-value <= 
0.05). Top 10 Reactome pathways, analyzed with PANTHER and ranked by fold enrichment, of 
significantly up or downregulated genes (abs(Log2FC) >= 1, adjusted p-value <= 0.05). Gene 
sets related to PI3K signaling pathway or EMT are written in bold and are distinctly present in 
the top 10 of each analysis method. (C) GSEA Analysis highlighting the downregulation of cell- 
cell adhesion pathway from the Gene Ontology data set. (D) Bar chart (mean ± SEM) of the 
qPCR validation of the top hits in the RNA-Seq, showing the relative expression normalized on 3 
housekeeping genes compared to CTL. p-values are listed below and were calculated using a 
two-tailed Student’s T Test comparing CTCF+/- #1 and #2 to CTL: SNAI1 #1 = 0.0075 and #2 = 
0.0175 ; ERBB3 #1 < 0.001 and #2 = 0.0004 ; SOX9 #1 and #2 < 0.0001 ; FGFR1 #1 < 0.0001 
and #2 = 0.0379; JAM3 #1 and #2 = 0.0001 ; LAMA1 #1 = 0.0016 and #2 = 0.0081. (E) Top 10 
Reactome Pathways ranked by NES of the GSEA Prerank analysis on TCGA dataset as 
described in Figure 2C. Pathways related to PI3K signaling are highlighted in orange and 
dominate the top 10. 
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Supplementary Figure 1.3. (A) Partitioning of constant lost and gain sites from Figure 4A. (B) 
Genomic distribution of the different clusters shows a small enrichment of lost sites on promoters and 
gain sites on distal intergenic sites, compared to constant CTCF binding sites. (C/D) ChIP-Seq track of 
normalized read density showing the specific loss of CTCF binding at SNAI1 promoter and downstream 
of ERRB3 (p <= 0.05 calculated using DiffBind 3.0), as ChIP- Seq track of surrounding regions show no 
significant change in CTCF binding. The normalized read density of each track ranges from 0 to the 
number noted in the top left corner. 
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Supplementary Figure 1.4. ChIP-qPCR Screening of histone modifications around genes with altered 
expression in CTCF+/- MCF10A. All bar charts represent mean % of input ± SEM. The coordinates of 
each site is represented as distance to TSS. (A) ChIP-qPCR results showing the significant gain of 
H3K4me3 in CTCF+/- MCF10As relative to CTL at 500bp downstream of SNAI1. p= 0.00729 and 
0.000068 in CTCF+/- #1 and #2, respectively. (B) ChIP-qPCR results showing the significant gain of 
H3K27ac in CTCF+/- MCF10As relative to CTL SNAI1 TSS. p 
= 0.00169 and 0.0247 in CTCF+/- #1 and #2 respectively. (C) ChIP-qPCR results showing no 
significant changes in H3K9me3 binding between CTCF+/- and CTL MCF10As around JAM3 and 
LAMA1 TSS. (D) ChIP-qPCR results showing no consistent significant changes in H3K27me3 binding 
between CTCF+/- and CTL MCF10As around JAM3 and LAMA1 TSS. P- values at JAM3 TSS +0.5kb 
= 0.806 and 0.000170; p-values at LAMA1 TSS +1kb =0.0143 and 0.0708 in CTCF+/- #1 and #2, 
respectively. (E) Western Blot showing the decrease in H3K27ac levels following A485 treatments (in 
μM) in MCF10A CTCF+/- cell. 
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Supplementary Figure 1.5. (A) Pearson Correlation Coefficient heat maps comparing the contact 
frequencies between CTCF +/- #1 and #2 and CTL, showing a distinction between CTL and CTCF +/- 
at high resolution, where shorter interactions can be surveyed, while this distinction fades at lower 
resolution. (B) Juicebox heatmap of balanced interaction read count for the whole genome and 
chromosome 20, where SNAI1 loci is located. Interactions in CTL MCF10A are represented in the 
top/right half, while interaction in CTCF+/- are represented in the bottom/left half of each heat map. (C) 
Bar Chart (Observed/Expected Ratio) representing the enrichment of constant or gained boundaries 
adjacent to a lost boundaries (+/- 1 boundaries) showing that gained boundaries are significantly 
enriched around lost boundaries (Chi Square Test, p < 0.0001 
). (D) Bar chart (O/E Ratio) showing the enrichment of gained H3K4me3 on gained subTAD and vice-
versa for lost H3K4me3 and lost subTAD. (E) Differential Enrichment of mTor Signaling KEGG 
Pathway at gained H3K27ac sites within TADs compared to 100 equinumerous subsets of constant 
H3K27ac sites within TADs. 
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Supplementary Figure 1.6. (A) Symmetrical comparative heat map of the differential interaction (in 
logFC) of CTCF+/- compared to CTL MCF10A at the same genomic region as the second heatmap in 
Figure 7A. The black boxes highlight a zone of modestly increased interdomain interactions in the 
CTCF+/- compared to CTL MCF10A. (B) Bar chart (IgG Ratio 
+/- SEM, n =4) of CTCF ChIP-qPCR results in CTL MCF10A following dCAS9 and sgCTL or 
sgSNAI1 expression showing a significant reduction of CTCF binding at the target site upstream of 
SNAI1 by sgSNAI1. As control, CBS at chr19:49,345kb is not target by sgSNAI1 and is therefore not 
hindered. 
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Supplementary Figure 2.1. (A) BlastX Results from single allele Sanger sequencing showing the 
presence of the H284N mutation and frameshift deletion in the respective alleles of ZF1M/ZF1M and 
ZF1M/- clones, respectively. Chromatograph results from one allele of the CTL clones and each 
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mutated CTCF alleles of ZF1M/- and ZF1M/ZF1M detailing the inserted mutation. (B) Western Blot of 
CTCF levels in the distinct CTCF ZF1M MCF10A clones. Actin used as loading controls. (C) Relative 
distribution of common CBS. Showing slight enrichment of altered CBS on distal intergenic elements 
and a slight enrichment of constant CBS on promoters. (D) Comparison between csaw called DB 
regions between ZF1M/ZF1M or ZF1M/- and our CTL MCF10A or CTCF WT MCF10A ChIP-Seq 
from Fritz et al. 2018, showing that DB regions are intrinsic to the mutant clones. (E) Comparison 
between csaw and MACS2/DiffBind to identify differentially binding regions between ZF1M/ZF1M or 
ZF1M/- and CTL MCF10A, showing that a majority of DB regions are called by both analysis methods. 

 

Supplementary Figure 2.2. (A) csaw flowcharts and specific settings used during this study. 
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Supplementary Figure 2.3. (A) MoMotif analysis of base frequency difference and p-value of bases 
distribution difference around CTCF-Like motif in lost and gain CBS subsets compared to constant 
subset in CTCF ZF1M/ZF1M clones. (B) MoMotif analysis of base frequency difference and p-value of 
bases distribution difference around CTCF-Like motif in lost and gain CBS subsets compared to 
constant subset in CTCF ZF1M/- clones. The purple line represents the middle of the CTCF Motif. The 
dotted line represented the selected region. 
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Supplementary Figure 2.4. (A) Profile plot of CTCF ChIP-Seq read density in CTL MCF10A at 
commonly constant, lost and lost with the full extended motif. Showing that sites harboring the full 
extended motif have higher affinity for WT CTCF. (B) MEME-Suite SEA analysis and output of CTCF 
ZF1M/ZF1M lost sites compared to background showing CTCF motif as the top hit for p-value and True 
Positive (TP) and centrally located on the sequences. (C) MEME-Suite SEA analysis and output of 
CTCF ZF1M/ZF1M lost sites compared to constant sites. Top enriched motifs by p-value and TP shows 
a less than 10% TP and are located adjacent to the middle of the sequences. (D) Summary of the 
functional differences between SEA and MoMotif. 
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Supplementary Figure 2.5. (A) Pie chart comparing the reproducibility of called TAD and subTAD 
boundaries from HiTAD (used for this study) and SpectralTAD, an alternative hierarchical TAD caller. 
(B) MoMotif analysis of base frequency difference and p-value of bases distribution difference around 
CTCF-Like motif in CBS at subTAD boundaries compared to an equal size subset of CBS at TAD 
boundaries and the subset of CBS at TAD boundaries compared to an equal size subset of CBS located 
within domains, therefore not on boundaries (+/- ½ bin/5kb) (n = 4915). The purple line represents the 
middle of the CTCF Motif. The dotted line represented the selected region, which was kept the same as 
in Figure 3 to ease comparison between figures and because no significant changes were observed 
outside of this region. (C) MoMotif results depiction as the height of each nucleotide representing the 
Shannon Entropy of its occurrence frequency at each position in each group. Asterisk marks individual 
position with significantly altered base frequencies compared to TAD, highlighting the decreased 
enrichment of the called bases at these position in CBS not colocalizing with boundaries. (D) Pie charts 
of the frequency of CBS found on TAD/subTAD boundaries or not on boundaries in all CBS constant or 
lost between CTL and CTCF ZF1M mutated MCF10A. Showing no enrichment of lost CBS in these 
specific topological contexts. 
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Supplementary Figure 2.6. (A) Enrichment of strongly up and downregulated genes for different 
distribution of subTAD, TSS and CBS. Showing that lost of CTCF near a gene at the boundaries of 
subTAD is significantly predictive of its up or downregulation. (p-values were generated from Chi-
Square test on distribution of altered genes) 
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Supplementary Figure 2.7. (A) Classical ER DNA binding (MA0112.2) motif from JASPAR. (B) Pie 
chart of the occurrence of the ER-like motif at promoter proximal or non-coding ligand- dependent ER 
binding sites. (C) ER-like motif identified by rGADEM and used as input for MoMotif analysis. (D) 
Single-nucleotide resolution base frequency difference and significance around the ER-like motif in 
promoter proximal versus non-coding sites. (E) MoMotif results depiction as the height of each 
nucleotide representing the Shannon Entropy of its occurrence frequency at each position for the regions 
analysed in D. Asterisks are placed above bases with significant difference between promoter proximal 
and non-coding ER binding sites. (F) Predicted 3bp sequences recognized by each ZF of ZNF263 by 
Persikov et al. 2014 and 2015. (G) ZNF263 motif identified by rGADEM and used as input for MoMotif 
analysis. (H) Single-nucleotide resolution base frequency difference and significance around the aligned 
ZNF263 GA rich motif in promoter proximal versus non-coding sites. (I) MoMotif results depiction as 
the height of each nucleotide representing the Shannon Entropy of its occurrence frequency at each 
position for the regions analysed in H. Dark Asterisks are placed above the five most significantly 
altered bases between promoter proximal and non-coding ER binding sites, showing an extension of the 
motif in promoter proximal binding sites and an enrichment intra-motif A in non-coding sites. Grey 
asterisks are placed above all significantly altered bases. 
 
Supplementary Table 1: DNA donor to insert the H284N mutation coupled with the small guide RNAs 
targeting CTCF for the CRISPR-Cas9 experiment. 
 

 

Supplementary Table 2: Antibodies 
 

Antibodies Source Catalog Number 
Rabbit Monoclonal anti- 4E-
BP1 

Cell Signaling #9644 

Rabbit Monoclonal anti- 
CDH1 

Cell Signaling #3195 

Mouse Monoclonal anti- 
CTCF 

BD #612149 

Mouse Monoclonal anti- 
GapDH 

Origene #TA802519 

Rabbit Monoclonal anti- HA-
Tag 

Cell Signaling #3724 

Name Sequence

CTCF-H284N-Donor 
ACATAGGTGTAAAGAAGACATTCCAGTGTGAGCTTTGCAGTTACACGTGTCCAC
GGCGTTCAAATTTGGATCGTAACATGAAAAGCCACACTGATGAGAGACCACACA
AGTGCCATCTCTGTGGCAGGGCATTCAGAACAGTCACCCTCC

CTCF-H284N-sgRNA F CACCGCCACGGCGTTCAAATTTGGATCG
CTCF-H284N-sgRNA R CGGTGCCGCAAGTTTAAACCTAGCCAAA
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Rabbit Polyclonal anti- 
phospho-4E-BP1 (Ser65) 

Cell Signaling #9451 

Rabbit Polyclonal anti- 
PARP1 

Cell Signaling #9542 

Mouse Monoclonal anti- 
phospho-p70S6K1 (Thr389) 

Cell Signaling #9206 

Rabbit Monoclonal anti- 
p70S6K 

Cell Signaling #2708 

Mouse Monoclonal anti- Snail Cell Signaling #3895 

Mouse Monoclonal anti-α- 
Tubulin 

Cell Signaling #3873 

Mouse Monoclonal anti-β- 
Actin 

SigmaAldrich #A5316 

Rabbit Polyclonal anti- CTCF EMD Millipore #07-729 

Rabbit Polyclonal anti- 
acetyl-Histone H3 (Lys27) 

EMD Millipore #07-360 

Rabbit Polyclonal anti- 
trimethyl-Histone H3 (Lys4) 

EMD Millipore #07-473 

Rabbit Polyclonal anti- 
trimethyl-Histone H3 (Lys27) 

EMD Millipore #07-449 

Rabbit Polyclonal anti- 
trimethyl Histone H3 (Lys9) 

Diagenode #C15410056 

Goat Polyclonal anti- Rabbit-
IgG 

SeraCare #5220-0458 

Goat Polyclonal anti- Mouse-
IgG 

SeraCare #5450-0011 

Rabbit Polyclonal anti- 
phospho-S6 Ribosomal 
Protein (Ser240/244) 

Cell Signaling #2215 

Goat Polyclonal anti- Rabbit-
IgG with Alexa 488 
fluorophore 

Invitrogen #A32731 
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Supplementary Table 3: RT-qPCR Primers 
 

Name Sequence 
GapDH F CAGCCTCAAGATCATCAGCA 
GapDH R TGTGGTCATGAGTCCTTCCA 
RPL4 F GCTCTGGCCAGGGTGCTTTTG 
RPL4 R ATGGCGTATCGTTTTTGGGTTGT 
RPLPO F TTAAACCCTGCGTGGCAATCC 
RPLPO R CCACATTCCCCCGGATATGA 
SOX9 F AGCAAGACGCTGGGCAAG 
SOX9 R GTAATCCGGGTGGTCCTTCT 
JAM3 F CCAGGATCGAGTGGAAGAAA 
JAM3 R CAGGGATGTCTTCCCCAGT 
ERBB3 F AAAGGACCAGAGCTTCAAGA 
ERBB3 R CCAGCATCATGAAAATCACT 
FGFR1 F CCTCTTCAGAGGAGAAAGAAACA 
FGFR1 R TCTTTTCTGGGGATGTCCAA 
LAMA1 F GCAAAGGCAGAACAAAGGTC 
LAMA1 R GGCCGTCGACAGTTATGAAG 
SNAI1 F ACCTGTTTCCCGGGCAATTT 
SNAI1 R CTGGGAGACACATCGGTCAG 
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Supplementary Table 4: ChIP-qPCR Primer 
 

Name Sequence 
JAM +0.5kb F CAGTGCTGTGCTCTCCAGAA 
JAM +0.5kb R AGGGCTGTGACCAAGCAG 
JAM -0.5kb F GAAGGCGATAATGCTTCCAA 
JAM -0.5kb R CAGGTCGGAGAAGGAACACT 
LAMA1 +0.25kb F AAAGCCTAAGCCTGCAAAGA 
LAMA1 +0.25kb R ATCCTGATCCACCTCGGAGT 
LAMA1 +0.5kb F CTTTAACCTCCTCGGGCTTT 
LAMA1 +0.5kb R CAGCACTGCTCGCGTAGAT 
LAMA1 +1kb F TTTGTGACTGCCTAGCCAAC 
LAMA1 +1kb R TTTTGGGGGACAACCCTAGT 
SNAI1 -0.5kb F CGTAGACTGTCTGGGCCAAT 
SNAI1 -0.5kb R AGGCTTCCATCCTCCAACTT 
SNAI1 TSS F CCCTCCATTCTCATCAGCTC 
SNAI1 TSS R CCGATAAACTCCCTTGGACA 
SNAI1 +0.5kb F GCACACCTGACATGCTGACT 
SNAI1 +0.5kb R CCCTGACCATCACAGGCTAT 
SNAI1 -652 F CGGGAGAGGCTCTGAGTGTT 
SNAI1 -652 R CTAGCCAAGAGCACCCGTTC 
SNAI1 +1kb F GATGAGGACAGTGGGAAAGG 
SNAI1 +1kb R GCCTCCAAGGAAGAGACTGA 
chr19:49,345kb F AGTGGTCCTCACCCTCACAC 
chr19:49,345kb R GATGGCAGTAGCACACAGGA 
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Abbreviations: 

• 3D: Three Dimensional 
• Abs: Absolute 
• AML: 
• ATAC: 
• B-ALL: B-Cell Acute Lymphoblastic Leukemia 
• BER: Base-Excision Repair 
• CBS: CTCF Binding Sites 
• ChIP: Chromatin Immunoprecipitation 
• CTCF: CCCTC-Binding Factor 
• DS-AMKL: Down Syndrome related Acute MegaKaryoblastic Leukemia 
• ECM: Extracellular Matrix 
• EMT: Epithelial to Mesenchyme Transition 
• E-P: Enhancer-Promoter Interactions 
• ER: Estrogen Receptor 
• FC: Fold Change 
• FDR: False Discovery Rate 
• GSEA: Gene Set Enrichment Analysis 
• GTF: General Transcription Factor 
• H3K27ac: Histone 3 Lysine 27 Acetylation 
• H3K4me3: Histone 3 Lysine 4 Trimethylation 
• HAT: Histone Acetyl-Transferase 
• Hi-C: High-throughput Genome-Wide Chromosome Conformation Capture 
• HR: Homologous Recombination 
• ICR: Imprinting Control Region 
• LOH: Loss of Heterozygosity 
• MDS: 
• mRNA: messenger RNA 
• ncRNA: non-coding RNA 
• NES: Normalized Enrichment Score 
• PBM: Protein Binding Microarrays 
• PDX: Patient Derived Xenograft 
• PI3K: Phosphoinositide 3-Kinase 
• PIC: Preinitiation Complex 
• PIP2: phosphatidylinositol-4,5-bisphosphate 
• PIP3: phosphatidylinositol-3,4,5-triphosphate 
• Pol II: RNA Polymerase II 
• PR: Progesterone Receptor 
• PWN: Position Weight Matrix 
• qPCR: quantitative Polymerase Chain Reaction 
• RTK: Receptor Tyrosine Kinase 
• RT-qPCR: Reverse-Transcriptase quantitative Polymerase Chain Reaction 
• SEM: Standard Error of the Mean 
• Seq: Sequencing 
• Ser5-P: Serine 5 phosphorylation 
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• sgRNA: small guide RNA 
• shRNA: short hairpin RNA 
• TAD : Topologically Associated Domains 
• TCGA: The Cancer Genome Atlas 
• TF: Transcription Factor 
• TNBC: Triple Negative Breast Cancer 
• TP : True Positive 
• WT : Wild Type 
• ZF: Zinc Finger 
• ZF1M: Zinc Finger 1 Mutation 
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