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Abstract

The very low solubility of Ni in saline brines and the correspondingly high concentration of Ni in
some crude oils raises the possibility that liquid hydrocarbons may be the ore fluids for black-
shale-hosted Ni deposits. To test the feasibility of this hypothesis, Ni wires were reacted with
three crude oils of differing composition at 150, 200 and 250°C for up to 30 days, and the
concentration of Ni in the oil determined. At 150°C, Ni concentrations in the three oils remained
relatively low. Above 200°C, however, Ni concentrations were elevated and correlated positively
with the thiol content of the oil. Our most thiol-rich oil dissolved 217 + 40.4 ppm Ni after 30
days at 250°C. X-ray photoelectron spectroscopic (XPS) analyses performed on the residual oil
coating the Ni wires after reaction independently corroborate the conclusion that Ni has a strong
chemical affinity for thiols in crude oil. Furthermore, in crude oils with no thiols, the Ni reacted
with other sulfur compounds (potentially sulfonic acids) in oil to form thiols. Significantly, our
XPS analyses show that iron (Fe) from the oil was embedded in the Ni wire synchronously with
the attachment of thiols. This suggests that Fe has an affinity for Ni and that the thiolation of Ni

by crude oil may depend on the availability of Fe in the oil. In addition to thiols, porphyrins also
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likely play an important role in the dissolution of Ni, as shown by the fact that the oil in which
Ni was most soluble has a high nitrogen content, whereas in the other oil, which is characterized
by a high thiol content, the Ni solubility was relatively low and the nitrogen content of this oil
was below the detection limit. Immature biodegraded oils that are sourced from carbonate rocks
generally tend to be enriched in asphaltenes, Ni and sulfur. Nevertheless, some mature oils
acquire anomalously large thiol contents through Thermochemical Sulfate Reduction (TSR), a
high temperature (100 to 140°C) reaction occurring commonly in carbonate reservoirs, which
involves the abiotic reduction of sulfate minerals at the expense of oil or bitumen. Thus, given
the affinity of Ni for thiols, large volumes of Ni-poor oil can potentially be altered by TSR to

produce smaller volumes of residual oil enriched in thiols and Ni.

1. Introduction

Nickel (Ni) commonly forms organometallic complexes with nitrogen-bearing ligands such as
tetrapyrroles and sulfur-bearing ligands, e.g., thiols in living organisms, organic sediments, oil
and bitumen (Parnell, 1988). For example, the Ni-F430 co-enzymes present in methanogens are
Ni-tetrapyrrole complexes (Diekert et al., 1981) and the most common form of hydrogenase
enzyme present in anaerobic microorganisms consists of organometallic iron-nickel (Fe—Ni)
complexes bound together by cysteinyl thiolate ligands (Ohki and Tatsumi, 2011). Nickel and
sulfur are also enriched in the asphaltene phase in bitumen and petroleum (Parnell, 1988; Yu et
al., 2015), which is composed of large (500-1000 Da) heterocyclic molecules such as

tetrapyrroles (Groenzin and Mullins, 1999).
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Occurrences of Ni-rich bitumen veins in Peru, Argentina and Venezuela and high levels of Ni
and Vanadium (V) in Venezuelan oils and coals, according to Kapo (1978), may be genetically
related to Ni and V ore deposits in the watershed. Moreover, several ore grade Ni deposits
elsewhere, notably the Zunyi Deposit in Southern China, the Nick and related prospects in the
Yukon, Canada and the Talvivaara deposit in Finland, are hosted in sediments, which may have
been infiltrated by petroleum. The relationship between petroleum and anomalous Ni enrichment

in organic-rich sedimentary rocks is intriguing.

The Zunyi deposit in Southern China and the prospects of Yukon, Canada, are metalliferous
black shales that share many similarities, most notably that the ore horizon in both localities
consists of a thin (between 10 and 30 cm thick), stratiform layer of sulfide minerals with weight
percent enrichments of Ni (Jowitt and Keays, 2011). Both deposits also display signs of having
interacted with liquid hydrocarbons. For example, evidence of migrabitumen in the Zunyi
deposit may indicate that the latter was brecciated during late diagenesis, allowing it to act as an
“oil collector” (Kiibek et al., 2007). Similarly, large, bituminous veins in the Nick Prospect in
Yukon Canada, have been interpreted as evidence for the passage of hydrocarbon-rich fluids
through the mineralized horizon (Hulbert et al., 1992, Henderson et. al., 2019). Unlike the
aforementioned metalliferous shales, the Talvivaara deposit, located in the central part of the
Fennoscandian Shield, has a considerably thicker ore horizon (up to 330m thick) and contains
300 million metric tons (Mt) of ore averaging 0.26 wt,% Ni, 0.14 wt.% Cu, and 0.53 wt.% Zn
with minor concentrations (10-30 ppm) of uranium (U) (Loukola-Ruskeeniemi and Heino, 1996;
Lecomte et al, 2014). The presence of bitumen rims on uraninite crystals from the Talvivaara

deposit suggests a close association with liquid hydrocarbons (Lecomte et al, 2014).
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As discussed above, liquid hydrocarbons may have interacted with the black shales hosting
several Ni-rich deposits. Here, we examine the physical and compositional parameters that
control Ni solubility in oil to determine the potential of crude oil to act as a Ni ore fluid. We do
s0, using the results of experiments designed to determine the solubility of Ni wire in crude oil at
temperatures of 150, 200 and 250 °C, a range consistent with conclusions from pyrolysis
experiments (Price and Wenger, 1992) and studies of liquid hydrocarbons entrapped in black
smokers (Peter and Scott, 1988) that liquid hydrocarbons remain stable to temperatures above
300°C for protracted periods of time. Finally, we use the results of this study to examine the

hypothesis that Ni-enriched deposits in sedimentary basins may be the products of Ni-rich oils.

2. Materials and Methods

2.1 Crude Oil Characterization

The crude oils selected for this investigation and compositional data for them were provided by
Statoil Canada. These oils have markedly different compositions and physical properties (Table
1). This is important for isolating the compositional parameters, which affect the dissolution of
Ni in crude oil. The selected oils vary in specific gravity from 0.90 to 0.94 and have varying
asphaltene contents. The asphaltene phase of petroleum is composed of large heterocyclic
molecules and is particularly important to the context of this investigation given that Ni is
commonly concentrated in the asphaltene fraction of petroleum (Parnell, 1988; Groenzin and
Mullins, 1999). In our oils, the asphaltene content ranges from below 0.3 wt.% up to 1.6 wt. %.

The selected oils also differ in their Total Acid Number (TAN), a measure of their carboxylic
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acid content (Seifert, 1975) and contain sulfur compounds (e.g., thiols, thiophenes,
benzothiophenes, dibenzothiophenes and benzonaphtothiophenes) in varying abundances.
Certain sulfur species, such as thiols, are recognized for their ability to form organometallic
complexes (Lewan, 1984; Giordano, 1994; Speight, 2001). Finally, the nitrogen content of our
oils varies between 0.2 and 0.44 wt. %. Nitrogen is an important compositional parameter as
certain nitrogen bearing species in petroleum, such as porphyrins, are known for their ability to
bind stably to Ni (Barwise, 1990). Compounds, such as pyrroles, pyridines and saturated amines,

also contribute to the nitrogen budget of crude oil (Mitra-Kirtley et. al., 1993).

Table 1. The composition and properties of the three crude oils, A, B and C, employed in our
experiments.

Parameters Oil A Oil B Oil C
API Gravity 26.6 25 19
Specific Gravity 0.895 0.904 0.94
Sulfur (wt.%) 0.84 0.52 0.82
Thiols/sulfides (ppm) 44 0 52
Thiophenes/Disulfudes (ppm) 1400 37 1050
Benzothiophenes (ppm) 3890 1880 3160
Dibenzothiophenes (ppm) 2580 2740 2020
Benzonaphtothiophenes (ppm) 490 549 109
Nitrogen (wt.%) - 0.2 0.44
TAN (mgKOH/g) 0.2 2.9 23
Paraffins (wt.%) - 37 19
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Naphthenes (wt.%) --- 49 65
Aromatics (wt.%) - 13 15
Asphaltenes (wt.%) 1.6 0.3 1.4
Background Ni (ppm) 5.59 4.05 6.22
Background Fe (ppm) 0.343 8.71 16.5

2.2 Solubility and speciation of Nickel in liquid hydrocarbons

In order to determine the solubility of elemental Ni in crude oil, Ni (0) wires (=99.9%) from
Sigma-Aldrich® were reacted in crude oils A, B and C for varying lengths of time following the
procedure established in Sanz-Robinson and Williams-Jones, (2019). This involved reacting a Ni
wire in oil inside a sealed quartz tube. Prior to being used, the quartz tubes were cleaned with
trace-metal grade nitric acid (~75% HNOs3) for 24 hours, neutralized with Milli-Q™ water and
dried at 100 °C for 2 hours. A Ni wire was placed in the reaction tube and an aliquot of crude oil
(~0.5mL) was pipetted into the tube. The loaded reactors were then placed in a Thermo
Scientific™ Thermolyne™ tabletop muffle furnace oven that had been preheated to the desired
temperature. This procedure was repeated for varying periods of time (5, 10, 15 and 30 days) at

150°C, 200°C and 250°C.

After each experiment, the reaction vessel was removed from the furnace and quenched
immediately in a beaker of tap-water at room temperature. The tubes were then opened using a
file and the Ni wire was removed. The reacted oil was combusted in a muffle furnace at 550°C
for 24 h and the resulting char was digested in a solution of 0.25 ml of 75% Optima™ grade
HNO;, 0.5 ml of Optima™™ grade H,0, and 0.25 ml of Optima™ grade HCI for a further 24h in
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order to oxidize the remaining char and dissolve the metal. The leaching solution was diluted

with a solution of 2% Optima'™ grade HNOs and analysed with the Thermo Scientific™ iCAP™

Q inductively coupled plasma mass spectrometer (ICPMS) in the ICP Laboratory of the
Department of Earth and Planetary Sciences at McGill University. Yttrium was used as an

internal standard for the ICPMS analyses.

The reacted Ni wires were rinsed in toluene (=99.5%) purchased from Fischer Scientific,
vacuum-dried for 24 h and analyzed by X-ray photoelectron spectroscopy (XPS) to determine
the composition of the residual oil bound to the wire. For the purpose of comparison, the
procedure was repeated for Ni wires that had been immersed in the three oils at ambient
temperature. The analyses were conducted with a Thermo Scientific Ka™ spectrometer at the
McGill Institute for Advanced Materials (MIAM). Analyses were performed using Al Ko™
radiation (1486 eV) and an X-ray spot size of 100 um, and scans were made with a pass energy
of 50 eV and a resolution of 0.1 eV. The C18S, C-C peak at 284.8eV was used as a charge-
reference peak to ensure adequate peak alignment. The Thermo Scientific Ko™ spectrometer
etching function was used to progressively etch the Ni wire, thereby removing weakly bound

surficial ligands and exposing deeply embedded ligands with a strong chemical affinity for Ni.
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Figure 1. The concentration of Ni (3 S.D.) in crude oils A, B and C at 150, 200 and 250 ‘C as a
function of the duration of the experiments. The vertical lines are error bars indicating the
experimental uncertainty.
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3. Results

3.1 Nickel solubility

Nickel wires were reacted with crude oils A, B and C for 5, 10, 15 and 30 days at 150, 200 and
250°C in order to establish the steady state Ni concentrations. Three experiments were performed
for each oil at each temperature and for each duration, and the average temperature and standard
deviation for each set of experiments determined. As the Ni concentrations increased with time
and were highest after 30 days (Fig. 1), we consider the average concentrations obtained for this

duration to represent the minimum solubility of Ni in the corresponding oils (Table 2).

Nickel concentrations in the crude oil were relatively low at 150°C, with all oils dissolving
approximately 10 ppm Ni. Progressive heating, however, resulted in a significantly higher
solubility of Ni in Oil C (Figure 1) relative to the other oils; Oil C dissolved 194 ppm Ni at
200°C and 217 ppm Ni at 250°C, whereas Oil A dissolved 25.7 and 13.8 ppm at these
temperatures and Oil B dissolved 15.6 and 12.3 ppm, respectively (Table 2). Oil C has the
highest thiol and iron content of the three oils considered, followed by Oil A, which dissolved
the second largest amount of Ni, albeit a considerably lower amount than Oil C. The asphaltene
and sulfur content of Oils A and C are similar, but Oil A has a considerably smaller TAN and Fe
content. Oil B dissolved the least Ni of the three crude oils. It has the largest TAN number but a
much smaller asphaltene fraction than Oils A and B, has a moderate Fe content and contains no

detectable thiols.
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Table 2. Results of experiments designed to determine the solubility of Ni in crude oils A, B and
C at 150, 200 and 250 °C. The Ni concentration at 25°C is the background concentration in the
unreacted oil.

Oil A Oil B 0il C
Error Error Error
Temp. n* Ni (ppm) (ppm) n* Ni (ppm) (ppm) n* Ni (ppm) (ppm)
25°C 3 5.59 0.32 3 4.05 0.03 3 6.22 0.220
150 °C 3 9.62 2.15 3 10.40 2.39 2 10.30 4.14
200 °C 3 25.7 4.08 3 15.60 2.54 2 194.00 17.20
250 °C 3 13.80 6.36 3 12.30 1.63 3 217.00 40.40

n* is the number of experiments conducted

3.2 Results of X-ray Photoelectron Spectroscopy Analyses

An XPS scan (Figure 2) performed on the residue of oil on a Ni wire after reaction with Oil C
(Ni solubility is highest in this oil) at 200°C, showed that the wire is coated mainly with carbon
(C), sulfur (S) and oxygen (O). The wire was etched with an argon ion beam to remove weakly
bound surficial ligands. After etching, the amounts of C and O decreased, whereas the relative
proportions of Ni and S increased. This shows that Ni has a strong chemical affinity for S in
crude oil. An enlargement of the S peak (Figure 3a) shows that it is centered at a binding energy
of ~163 eV, which corresponds to the thiol functional group (Castner et. al., 1996). This
indicates that S, and more specifically thiols in Oil C, have a strong chemical affinity for Ni. The
XPS scan of the wire that had been immersed in Oil C at ambient temperature also yielded a
spectrum with a thiol peak (~ 163 eV) but, in addition, the spectrum contained a peak at ~168 eV

corresponding to an oxidized sulfur species, possibly a sulfonic acid (Figure 3b). Similar results
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were obtained for Oil A after reaction at 200 °C and for ambient temperature, respectively

(Appendix, Figure Ala and b).

3.00E+05T
‘ . = Before etching
i I:l = After etching
2.00E+057
= |
o I
S I‘
2 2
O i i |!
1.00E+057
0.00E+00

Binding Energy {eV)

Figure 2. A XPS spectrum identifying the major elements bound to the Ni wire after reaction
with Oil C at 200°C. The relative abundances of these elements changed as the wire was
progressively etched. Peak binding energies for the different elements are as follows: S 2p
=163eV, C 1S=285eV, O 1S =532eV and Ni 2p = 853eV. The peaks between 650eV and
750eV that appear after etching are Ni Auger Lines, resulting from the relaxation of core Ni
electrons (Wagner, 1972, Potocnik et. al., 2016)
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Figure 3. An XPS spectrum illustrating the sulfur speciation of residual oil on a nickel wire after
reaction with Oil C at a) 200°C and b) ambient temperature. The sulfur 2p peak centered at a
binding energy of 163eV corresponds to the thiol functional group whereas the sulfur 2p peak
centered at 168eV corresponds to oxidized sulfur compounds.

Predictably, and in contrast to the spectra for Oils A and C at ambient temperature, the Ni wire
spectrum for Oil B (which does not contain detectable thiols) at this temperature did not contain
a thiol peak ( ~ 163 eV), although, like the other oils it did contain a peak for an oxidized sulfur
species ( ~ 168eV) (Figure 4a). Somewhat unexpectedly, however, the spectrum obtained for Ni
wire after reaction with Oil B at 200 °C contained a thiol peak (~ 163 eV) (Figure 4b). We
interpret this finding to indicate that the Ni wire catalytically reduced oxidized forms of sulfur in

the oil like sulfonic acids to thiols (Kelemen et. al., 1990).
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Figure 4. An XPS spectrum illustrating the sulfur speciation of residual oil on a nickel wire after
reaction with Oil B at a) 200°C and b) ambient temperature.

The thiolation of the Ni wires and the dissolution of Ni in Oil B and C also coincided with the
incorporation of iron (Fe) from the oil into the Ni wires, albeit in trace amounts (< I atom % of
the Ni wire surface). This is evident in Figure 5 by the presence of an Fe doublet with peaks at
706 and 714 eV, which appeared after etching the Ni wire. Thus, Fe also displays a strong
chemical affinity for Ni and may participate in the redox reactions that occur between the Ni

wire and sulfur compounds in the oil.
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Figure 5. An XPS spectrum of the nickel wire after reaction with Oil C at 200°C. Progressive
etching revealed the presence of trace amounts of iron.

4. Discussion
4.1 Nickel solubility and speciation in liquid hydrocarbons as a function of petroleum

composition.

In addition to testing the hypothesis that crude oils can dissolve significant amounts of Ni, the
experiments described above were conducted to identify the compositional factors controlling
the dissolution of Ni in liquid hydrocarbons. At 200°C and higher temperature, Oil C has a much
greater capacity to dissolve Ni than the other crude oils (Table 2), which in part reflects the fact
that it has the highest thiol content of the three oils. This high thiol content, however, does not
explain the observation that the solubility of Ni in Oil C is nearly eight times higher than that of
Oil A, whereas the thiol content of the latter oil is roughly 80% of that of Oil C (Table 1 and 2).

The high Ni content of Oil C relative to Oil A also cannot be attributed to differences in the
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asphaltene content (Ni, like other metals has been shown to concentrate in the asphaltene fraction
of crude oils; Marcano et. al., 2011), because the asphaltene contents of the two oils are very
similar and, indeed, the asphaltene content of Oil A is slightly higher than that of Oil C (1.6
versus 1.4 wt.%). The two oils do, however, differ in their nitrogen contents and TAN values. Oil
C has the highest nitrogen content of the three oils (0.44 wt.%), whereas nitrogen was not
detected in Oil A (Table 2). This may indicate that a significant proportion of the Ni in Oil C
dissolved as porphyrin species, an observation that has been made for other crude oils (Ali et. al.,
1993). As the TAN value of Oil C is very much higher than that of Oil A (2.3 versus 0.2) and
this value is an indicator of the carboxylic acid content, it is also possible that the binding of Ni
by thiols in Oil C was greatly enhanced by the much higher acidity of this oil (Wenger et. al.,
2002. Clegg and Henderson, 2002). Significantly, Oil B has the highest TAN value (2.9 wt.%),
which may help explain the fact that it dissolved some Ni (15.6 ppm at 200 °C), despite being
thiol-free initially (thiols formed during the experiments due to Ni catalysed reduction of
oxidized sulfur species; see above). Given that Oil A contains some nitrogen (0.2 wt.%), it is

likewise possible that Ni in this oil was dissolved in large part as porphyrin species.

The thiolation of Ni may also involve Fe, which is the only other chemical component in the oil,
aside from thiols that showed an affinity for the Ni wire. The intimate association of Ni, Fe and
thiols on the wire surface indicates that Fe may be involved in the redox processes that helped
dissolve Ni into the oil. Oil C has the highest Fe content of all the oils and displays a strong Fe
peak upon etching, whereas Oil A has the lowest Fe content and shows little evidence of
complexing with Fe. This also may help explain why these two oils dissolve very different

amounts of Ni. In principle, Fe could have enhanced the dissolution of Ni by forming Ni-Fe-
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sulfur clusters, i.e., stable complexes of Fe and Ni bound together by thiolate ligands that are

ubiquitous in nature (Ragsdale, 2009).

4.2 Geochemical factors affecting oil composition and ore deposit formation

The polar compounds in crude oil (also referred to as NSO compounds) contain one or more
heteroatoms of nitrogen(N), sulfur(S) or oxygen(O) and, although they typically compose less
than 10 wt% of petroleum, they are considered important ligands for metals in crude oil
(Hughley et. al., 2004). With the increasing maturity of oils, their NSO content generally
decreases, whereas their gasoline content increases (Meyer, 1989). Thus, Ni transport is favored
by immature oils, particularly those that have experienced strong biodegradation, as these oils
generally have higher NSO contents than less biodegraded oils of similar maturity (Meyer, 1989;
Wenger et. al., 2002; Head et. al., 2003). Biodegraded immature oils are also characterized by
high asphaltene contents. Nickel concentrations are highest in immature oils derived from
carbonate source rocks with a low clay content and a high reduced sulfur content (this is likely
due to Ni complexation by thiols). By comparison, marine and lacustrine shales generate oils
with moderate amounts of Ni, and land-plant derived oils contain very little Ni (Meyer, 1989;
Barwise, 1990). For example, crude oils generated in carbonate source rocks from the Gulf of
Suez and Abu Dhabi have been documented to contain Ni in concentrations, which range from 4
ppm to 148 ppm Ni, whereas oils generated from non-carbonate source-rocks in the North Sea,
mainland China, Indonesia and the Gippsland Basin in Australia have Ni concentrations in the

0.13 ppm Ni to 22 ppm Ni range (Barwise, 1990).
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As noted above, nickel has an affinity for the asphaltene fraction of crude oil (Sugihara and
Bean, 1962; Parnell, 1988; Yu et al., 2015). Indeed, the Boscan Crude oil from Venezuela, which
has an asphaltene fraction corresponding to 20 wt% of the oil (Sugihara and Bean, 1962; Fish et
al., 1984), contains up to 115 ppm Ni (Sugihara and Bean, 1962). Moreover, 78% of the Ni in
this oil is contained within the asphaltene fraction (Fish et al., 1978). The asphaltene phase in
petroleum is composed of large heterocyclic compounds, such as porphyrins (a form of
tetrapyrrole), which are generated from the break-down of kerogen in the source rocks during
catagenesis (Orr., 1986). Major precursors for porphyrins in oil are the chlorophylls present in
photosynthetic organisms (Hodgson, 1973). In the Boscan Crude oil, 36 wt% of the metals in the
asphaltene fraction are bound to porphyrins (Sugihara and Bean, 1962). Little is known,
however, about the other kinds of organometallic complexes that form with Ni in petroleum,
which are potentially more abundant than the Ni-porphyrins and may account for up to 50-80%

of the metal being complexed in oil (Caumette et. al., 2009).

In addition to its association with porphyrins, Ni possesses a strong chemical affinity for thiols,
as has been shown in this study. Despite the decreasing trend in the proportion of NSO
compounds with oil maturity, some very mature oils can contain anomalously high
concentrations of thiols. These oils are typically sourced from deep, high temperature carbonate
reservoirs with high partial pressures of hydrogen sulfide gas. The hydrogen sulfide in these
reservoirs is thought to be produced by thermochemical sulfate reduction (TSR) (Ho et al.,
1974), a redox reaction between sulfate minerals and organic matter, which involves the high
temperature, abiotic reduction of sulfate (see Equation 1 below). The hydrogen sulfide produced

by TSR can react with organic compounds in liquid hydrocarbons, leading to the formation of
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thiol-enriched oils (Ho et al., 1974; Cai et al., 2003; Wei et al., 2011; Nguyen et al., 2013). Oil C,
our most thiol-enriched oil (52 ppm thiol) has a relatively low thiol content compared to crude
oils described in the literature, which have undergone TSR. For example, the “Rodney Crude”
and the “Light Mixed B.C.” oils described by Ho el al. (1974) have thiol contents of 3179 ppm
and1310 ppm, respectively, as calculated from their mercaptan numbers (refer to Appendix A for
a calculation of the thiol content of the Rodney Crude Oil). Anomalously thiol-rich oils, which
have undergone TSR, therefore, may be expected to transport considerably greater

concentrations of Ni than Oil C.

Thermochemical sulfate reduction:

Hydrocarbons + SO42' - Altered hydrocarbons + bitumen + H,S + HCO;™ + H,O (1)

(Machel, 2001)

Thermochemical sulfate reduction is a common source for the reduced sulfur responsible for the
formation of Mississippi Valley Type (MVT) deposits (Machel, 2001) and is interpreted to be
the source of reduced sulfur for the sulfide ores in other sediment-hosted deposits, such as the
Kuperschiefer deposit in Poland (Bechtel and Piittmann, 1991; Jowett et al., 1991; Sun, 1998;
Oszczepalski et al., 2012) and the Ni-rich sulfide ores in the Talvivaara deposit in Finland, which
displays mass-anomalous A>*S fractionation similar to that of TSR laboratory experiments
(Young et. al., 2013). Thus, the genesis of some sediment-hosted sulfide deposits may be related

through TSR to the production of a metalliferous, thiol-rich oil.
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4.3 Evidence for the involvement of liquid hydrocarbons in the genesis of shale-hosted

nickel deposits.

The two currently favored models for the formation of sedimentary Ni-rich deposits are: 1)
synsedimentary mineralisation, with the metals being scavenged from seawater by organic matter
close to the seawater-sediment interface (Lehman et al., 2007; and 2) exhalative hydrothermal
mineralisation, with the metals being deposited from basinal brines as they are discharged into a
euxinic, stratified water mass (Jowitt and Keays, 2011). Given that petroleum can dissolve
considerable amounts of Ni, a petroleum exhalative (Petrex) model has also been proposed to
describe the genesis of certain Ni-rich sedimentary deposits, e.g., the Zunyi deposits in China. In
this model, petroleum is discharged into the basin and forms a sea-surface slick. Metals are then

deposited as the oil is volatilized, water-washed, oxidized and biodegraded (Emsbo et. al., 2005).

Here, we discuss the evidence for the involvement of liquid hydrocarbons in the genesis of shale-
hosted nickel deposits. The principal examples of these deposits are the hyper-enriched black
shale (HEBS) deposits in southern China and the Nick Prospect and related prospects in the
Yukon, Canada. These deposits comprise thin highly enriched metal-sulfide layers, usually no
more than no more that 30 cm thick in southern China and 10 cm thick in the Yukon, with Ni
grades of up to 7 wt% and 5.7 wt%, respectively (Jowitt and Keays, 2011; Henderson et al.,
2019). They outcrop discontinuously for 2000 km in southern China and > 800 km in the Yukon.
Organic particles commonly fill voids and fissures in the mineralized black shale of southern

China and most probably represent partly remobilized and solidified products of oil migration
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(migrabitumens) (Ktibek et al., 2007). The restriction of migrabitumen to the ores and their
absence in the barren shales likely reflect a higher primary porosity of the ore horizon (breccia)
compared to the barren shale. Thus, the ore horizon probably played the role of an “oil collector”
during late diagenesis and catagenesis (Kfibek et al., 2007). At the Nick prospect, pyrobitumen
occurs as centimetre-scale veinlets within the mineralized layer and meter-wide subvertical veins
in the shales stratigraphically below this layer. Moreover, pyrobitumen within the mineralized
layer contains 1300 ppm Ni on average and elevated concentrations of other metals. and one of

the thicker veins below the layer contains 2000 ppm Ni (Henderson et. al, 2019).

It is noteworthy that there are numerous oil and gas fields of Sinian to Cambrian age (Sichuan
Basin) in relatively close proximity to some of the HEBS deposits in southern China (EIA 2011;
Lan et. al., 2017; Pages et. al., 2018). The gas in these fields is interpreted to have formed
through the thermal cracking of petroleum (Hao et. al., 2008; Caineng et. al., 2014; Zou et. al.,
2014; Zhu et. al., 2015) and in many cases, there is evidence that there was gas souring from
TSR (Cai C. et. al., 2003; Hao et. al., 2008; Zhu et. al., 2015). As crude oil starts to undergo
TSR, it becomes oxidized at the expense of aqueous sulfate in the reservoir, which is reduced to
hydrogen sulfide gas (Machel, 2001). The residual oil that has undergone TSR is anomalously
enriched in thiols (Ho et al., 1974; Cai et al., 2003; Wei et al., 2011; Nguyen et al., 2013), which
display a strong affinity for metals like Ni and Pd (Sanz-Robinson et. al., 2019). These residual
oils are therefore potentially effective ore fluids for the transport of Ni and Pd and perhaps other
noble metals like Pt, Os and Au, all of which share similar electronegativity and therefore,
according to hard-soft-acid-base principles are expected to bind to ‘soft’ ligands like thiols

(Pearson, 1963). Furthermore, the oxidation of petroleum by TSR can produce naphthenic acids
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(Machel, 2001), which are effective ligands for the complexation and transport of Zn in

petroleum (Sanz-Robinson and Williams-Jones, 2019).

We propose that residual reduced sulfur-enriched hydrocarbons in the Sichuan basin supplied the
Ni (and Pd, Pt, Os, Au, Zn and Mo), which formed the hyper-enriched black shale Ni deposits in
southern China. The presence of highly enriched bituminous veins below the Nick prospect
suggests that the HEBS in Yukon Canada had a similar history. According to the above
hypothesis, the formation of HEBS is genetically related to a large petroleum system that
undergoes pulses of thermal cracking and TSR (Cai et. al., 2004; Hu et. al., 2010) yielding
natural gas, sour gas and residual petroleum enriched in thiols. With consumption of the
petroleum by TSR, the volume of residual oil shrinks but becomes increasingly enriched in thiols
and it is this oil that supplies the Ni (and other metals), which distinguishes hyper-enriched black

shale deposits from other sediment-hosted metalliferous deposits.

Further evidence for the involvement of liquid hydrocarbons in the formation of HEBS, is
provided by the (circa 2.0 — 1.9 Ga) Talvivaara deposit in Finland, which hosts significant Ni
reserves, and contains uraninite crystals rimmed by bitumen. The latter indicates that
hydrocarbons, possibly from source rocks deeper in the stratigraphy deposited during the Shunga
event (c. 2.0 Ga), migrated through the deposit (Lecomte et al, 2014). This event was marked by
the global deposition of organic carbon-rich rocks and the development of vast petroleum
resources such as those in Zaonezhskaya Formation of the Onega Basin in Russian Fennoscandia
(Melezhik et al, 2009, Asael et al., 2013; Strauss et al., 2013; Lecomte et al, 2014). Thus, not

only is the mineralization in the Talvivaara deposit associated with bitumen, but there was also a
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large reservoir of liquid hydrocarbons, which could have transported the metals to the site of ore

formation.

As mentioned above, one of the currently favored hypotheses for the HEBS of southern China
and the Yukon, Canada is that they are synsedimentary and formed as a result of the precipitation
of the ore metals from seawater (seawater contains 2 ppb Ni on average; Kato et. al., 1990) at the
seawater-sediment interface through bacterially-mediated processes. It has been suggested that
textures of the iron sulfides (i.e. framboidal pyrite) at the HEBS of Yukon, Canada reflect
deposition during early-diagenesis (Gadd et. al., 2018, and 2019). However, pyritic framboids
could have also formed abiotically (Scott et. al., 2009) and the millerite (NiS) mineralization at
the Peel River HEBS in Yukon, show it mantling and replacing pyrite (Henderson et al., 2019),
indicating that the nickel mineralization is epigenetic. Finally, the required concentration factor
(~ 10 million; from 2 ppb to several wt%) seems unreasonably high. The other hypothesis for the
formation of HEBS, namely that they are epigenetic but deposited from saline hydrothermal-vent
brines (Lott et. al., 1999, Steiner et. al., 2001), is also problematic. This is because Ni is highly
insoluble in hydrothermal fluids, even those with high chloride activity, making it unlikely that
saline brines could have constituted an ore fluid for the mineralization in these rocks. For
example, at 250 °C and fO,-pH conditions buffered by the assemblage magnetite-pyrite-
pyrrhotite, the solubility of millerite, the main Ni mineral in HEBS deposits, is 0.2 ppm; this
solubility decreases with decreasing temperature (Liu et. al., 2012). In view of the serious
weaknesses of the synsedimentary seawater and epigenetic brine models, the role of petroleum as

an ore fluid for Ni and other metals in sediment-hosted deposits merits serious consideration.
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5 Conclusions

The potential of liquid hydrocarbons to act as ore fluids was evaluated by reacting Ni wires in
crude oil at elevated temperature (150-250°C). Below 150°C, Ni concentrations in the three
crude oils considered in this study remained relatively low. Above, 200 °C, one of the oils, (Oil
C) dissolved considerably more Ni than the other two oils (reaching a concentration of 217 ppm
at 250°C). X-ray photoelectron spectroscopic analyses of the residual oil coating the Ni wires
after reaction indicates that Ni has a strong chemical affinity for thiols. This is supported by the
observation that Oil C, the most Ni-philic of the oils has the highest thiol content (52 ppm). Oil
A, which has the second highest thiol concentration (44 ppm), dissolved the second largest
amount of Ni (up to 26 ppm Ni at 200°C). The much lower capacity of Oil A to dissolve Ni
compared to Oil C and its only slightly lower thiol content, however, indicate that a second
species played an important role in Ni solubility. As Oil C has the highest nitrogen content (0.44
wt.%) of the three oils and Oil A contains no nitrogen, this second species is likely to be a Ni-
porphyrin, which previous studies have linked to the high concentration of Ni in some crude oils.
Oil C also has a high carboxylic acid content (indicated by its high TAN value), whereas that of
Oil A is very low (very low TAN value). This much higher acidity of Oil C compared to Oil A
may have promoted the stronger binding of Ni to thiol ligands and the formation of Ni-thiolate
complexes, thereby further explaining the much higher capacity of Oil C to dissolve Ni; Ni-
thiolation may also be promoted by the presence of Fe as shown by the synchronous
incorporation of Fe in the Ni wires and the binding of thiols to them. The evidence that liquid
hydrocarbons can dissolve high concentrations of Ni, that Ni is extremely insoluble in

hydrothermal fluids and that Ni forms ore deposits (several wt.% Ni) in black shales, which have
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been infiltrated by petroleum, makes a compelling case that liquid hydrocarbons could be

important ore fluids for nickel.
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Appendix

A. Calculation of the thiol content of the Rodney Crude oil

API = %25 — 131.5, where API is a measure of the weight of petroleum liquids and SG is the

specific gravity of the oil.

Therefore, SG = S
API+131.5
The API value for the Rodney Crude is 32. (Ho et al., 1974)

141.5
SGRodney crude = =~ 0.865

32+131.5

SG = ;L” where p denominates density.
H20

Assuming py,o = 1.0 g/mL

PRodney Crude = SGRodney crude = 0.865 g/mL

mg of thiol S
100mL

Mercaptan Number= (Oswald, 1961)

The Mercaptan number for the Rodney Crude is 275 (Ho et al., 1974)

1000ug

; 275 mg thiol S x ——=
275mg of thiol S 275000 u
Mercaptan Number= g = == o.sgs,g = 3179 ppm
100mL 100mL x PRodney Crude 100mL x L

Thus, the Rodney Crude contains 3179 ppm of thiol S.
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839  Figure Al. X-ray photoelectron spectra of the residual oil left on the Ni wire after reaction with
840  Oil A at a) 200° and b) ambient temperature.
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843  Figure A2. Sulfur (S2p) XPS of the residual oil left on the Ni wire after reaction with Oil A at
844  150°C before and after etching.
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Figure A3. Sulfur (S2p) XPS of the residual oil left on the Ni wire after reaction with Oil A at

200°C before and after etching.

1400
1300
1200
1100
“ 1000

AN 900
| 800
700
600
500
400

—Before etching
After etching

175 170 165 160 155
Binding Energy (eV)

Counts/s

43

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/




O Joy bk W

850

851

852
853

854

855

Sanz-Robinson, J., Williams-Jones, A.E., 2020.
The solubility of Nickel (Ni) in crude oil at 150, 200 and 250 °C
and its application to ore genesis. Chemical Geology, 533: 119443.

Figure A4. Sulfur (S2p) XPS of the residual oil left on the N1 wire after reaction with Oil B at

150°C before and after etching.
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Figure AS. Sulfur (S2p) XPS of the residual oil left on the N1 wire after reaction with Oil B at

200°C before and after etching.
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Figure A6. Sulfur (S2p) XPS of the residual oil left on the Ni wire after reaction with Oil C at

150°C before and after etching.
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Figure A7. Sulfur (S2p) XPS of the residual oil left on the Ni wire after reaction with Oil C at

200°C before and after etching.
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Figure A8. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil A at

150°C before and after etching.
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Figure A9. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil A at

200°C before and after etching.
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Figure A10. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil B at

150°C before and after etching.
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Figure A11. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil B at

200°C before and after etching.
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Figure A12. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil C at

150°C before and after etching.
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Figure A13. Iron (Fe2p) XPS of the residual oil left on the Ni wire after reaction with Oil C at
200°C before and after etching.
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Figure A14. Carbon (C1s) XPS of the residual oil left on the Ni wire after reaction with Oil A at

150°C before and after etching.
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Figure A15. Carbon (Cls) XPS of the residual oil left on the Ni wire after reaction with Oil A at

200°C before and after etching.
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Figure A16. Carbon (Cls) XPS of the residual oil left on the Ni wire after reaction with Oil B at

150°C before and after etching.
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Figure A17. Carbon (Cls) XPS of the residual oil left on the Ni wire after reaction with Oil B at

200°C before and after etching.
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Figure A18. Carbon (Cls) XPS of the residual oil left on the Ni wire after reaction with Oil C at

150°C before and after etching.
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Figure A19. Carbon (Cl1s) XPS of the residual oil left on the Ni wire after reaction with Oil C at
200°C before and after etching.
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Figure A20. Oxygen (Ols) XPS of the residual oil left on the Ni wire after reaction with Oil A at

150°C before and after etching.

52

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/




O Joy bk W

901

902

903

904

905

906

Sanz-Robinson, J., Williams-Jones, A.E., 2020.
The solubility of Nickel (Ni) in crude oil at 150, 200 and 250 °C
and its application to ore genesis. Chemical Geology, 533: 119443.

—Before etching
After etching
\ \VAVANM\/\NW,N\JA
/J\\/\WN\WW\ W\/ il &\\/A\/VAN}V\ i V'M’\Avf V
539 537 535 533 531 529 527 525

Binding Energy (eV)

1000
900
800
700
600
500
400
300
200
100

Counts/s

Figure A21. Oxygen (Ols) XPS of the residual oil left on the Ni wire after reaction with Oil A at

200°C before and after etching.
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Figure A22. Oxygen (O1s) XPS of the residual oil left on the Ni wire after reaction with Oil B at

150°C before and after etching.
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Figure A23. Oxygen (Ols) XPS of the residual oil left on the Ni wire after reaction with Oil B at

200°C before and after etching.
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Figure A24. Oxygen (O1s) XPS of the residual oil left on the Ni wire after reaction with Oil C at

150°C before and after etching.
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Figure A25. Oxygen (Ols) XPS of the residual oil left on the Ni wire after reaction with Oil C at

200°C before and after etching.
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