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ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is the most common adult motor
neuron disease. Currently there is only one modestly beneficial pharmacological
treatment, Riluzole, approved by the FDA. It has been documented that
polyunsaturated fatty acid (PUFA) concentrations can affect the progression of
neurodegenerative conditions however most interventions rely on nutritional
supplementation and have limited long-term effectiveness. This thesis describes
experiments using fenretinide, a synthetic retinoid capable of altering membrane
PUFA concentrations, in a mouse model of ALS (SODI1(G93A)mice). Our
treatment resulted in delayed onset, improved motor coordination, and increased
life expectancy. Fenretinide also increased plasma levels of the ®-3 PUFA
docosahexaenoic acid (DHA) while decreasing w-6 PUFA arachidonic acid (AA)
and products of lipid peroxidation malonyldialdehyde (MDA) and nitrotyrosine
(NT). Spinal cord immunohistochemistry revealed a significant reduction in
inflammation as assessed by the quantity of activated microglia and astrocytes.
These results indicate that fenretinide represents a promising treatment strategy

for ALS.



RESUME

La Sclérose latérale amyotrophique (SLA) est la maladie affectant les
neurones moteurs adultes la plus commune. Il n’existe qu’un seul traitement
pharmacologique approuvé par la FDA ayant certains effets bénéfiques, soit le
Riluzole. Il est par ailleurs documenté que des concentrations d’acides gras
polyinsaturés (PUFA) peuvent affecter la progression d’un état neurodégénératif.
Cependant, la plupart des interventions s’appuient sur des suppléments nutritifs et
ont une efficacité a long terme plutot limitée. Cette theése décrit une série de
traitements utilisant le fenretinide, un rétinoide synthétique capable d’altérer la
concentration de PUFA dans les membranes, dans un modéle de souris de SLA
(souris SODI1(G93A)). Les traitements ont entrainé un retardement du
déclenchement de la maladie avec une meilleure coordination motrice ainsi
qu’une espérance de vie améliorée. Le fenretinide a €galement accrue les niveaux
plasmatiques de 1’acide docosahexaenoique tout en diminuant les niveaux
d’arachidonate ainsi que les produits de peroxydation lipidiques tel que
malonyldialdehye et nitrotyrosine. L’analyse immunohistochimique de la moelle
épiniere a révélé une réduction significative de I’inflammation déterminé par la
quantité d’astrocytes et de microglies activés présentes. Ces résultats indiquent

que le fenretinide représente un traitement prometteur contre la SLA.
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1.1 Introduction:
1.1.1 Neurodegenerative Disorders

Neurodegenerative disorders have long provided researchers and clinicians
with treatment challenges. Due to the delicate nature of the central nervous system
(CNS) many promising pharmaceuticals possess risks that outweigh their
therapeutic potential. In addition, mechanisms of homeostatic and inflammatory
control in the CNS are relatively poorly understood and appear to have conflicting
functions that prove challenging for pharmacological regulation. While
neurological disorders such as Amyotrophic lateral sclerosis (ALS, or Lou
Gehrig’s disease), spinal cord injury (SCI), and multiple sclerosis (MS) have quite
different causes and phenotypic expression, they also share many pathological
features. In order to proceed with the development of novel treatment options,
CNS processes need to be better understood. As results generated from research
on the CNS accumulate it is becoming increasingly apparent that many
neurodegenerative diseases share certain metabolic aberrations. Although it is
frequently difficult to establish causal relationships between the metabolic change
observed and the pathological outcome, the inflammatory process seems to
represent one of the common denominators. With this in mind it is conceivable
that when effective therapies for one disease are found, they may be applied to
related pathologies.

Several studies including some recent reports have documented an
important role for membrane lipids in a number of pathological conditions [1-4].

Sphingolipids such as ceramides and polyunsaturated fatty acids (PUFAs) are
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found in high concentrations in the membranes of neural cells and especially in
myelin sheath; which surrounds nerve cell axons. Membrane lipids were once
thought to play only a structural role but have now been found to provide other
important roles such as signaling. Ceramides, for example, have second
messenger signaling capabilities when hydrolyzed from sphingomyelin by
sphingomyelinase (SM) and a number of these pathways will be discussed in a
later section [5]. Therapies targeted to membrane lipids may lead to development
of novel and effective strategies allowing successful treatment of certain
neuropathies.

The following introduction will provide a review of the current literature
on a number of related neurodegenerative diseases. It also includes a discussion of
membrane lipids, their biological activity and their role in neurodegenerative
processes. In addition, a summary of some promising new pharmaceutical
approaches for neurological disorders will be discussed.

1.1.2 Spinal Cord Injury

SCI is a traumatic neurological injury that leads to permanent functional
deficits as a result of axonal loss in the spinal cord. SCI occurs with an incidence
of approximately 40 new cases per million people each year and there are
currently more than 250,000 people living with SCI in North America (The
University of Alabama National Spinal Cord Injury Statistical Center - March
2002). SCI can lead to partial or complete loss of sensation and motor function
often rendering victims dependent on the care of others. The damage in SCI is

mediated by two factors: the primary injury resulting from the initial physical
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trauma and the secondary injury caused by a multitude of factors occurring later
on and results in the loss of neurons. Wallerian degeneration (WD) represents one
of the processes responsible for secondary damage whereby the axon distal to the
site of injury degenerates, removing the necessary trophic support for
oligodendrocytes [6]. This eventually leads to apoptosis of oligodendrocytes and
subsequent demyelination of neurons and it is through this pathway that axons
which have survived the initial impact may suffer impaired conduction after a
period of time [6]. The loss of myelin during WD seen in animal models follows a
much shorter time course then it does in humans; which can continue for several
years, however it has many parallels to the human condition so it represents an
excellent surrogate for research purposes [7]. Historically it was believed that
CNS neurons could not regenerate following damage however it has been shown
that descending axons continue to show sprouting for a prolonged period of time
after injury [8]. Nevertheless, myelin associated molecules such as NOGO-A and
myelin-associated glycoproteins (MAGs) have been shown to persist in the site of
injury and contribute to the environment that is unreceptive to neuron
regeneration [7]. Another important mechanism of secondary injury is the
inflammatory response, however its role in secondary damage is a source of some
conflict because it both promotes the regeneration of neurons but at the same time
it is associated with production of factors which impair axon regeneration and
survival [9]. The leading theories suggest, however, that inflammation likely
perpetuates damage more than it assists in healing especially in traumatic SCI

where often, during the course of inflammation, mediators are produced at
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excessive levels [9, 10]. As a result, dissecting the inflammatory response in SCI
represents an important area of investigation and efforts to control this
inflammation may reveal new and effective therapies.
1.1.3 Inflammation and Oxidative Stress in SCI

Astrocytes and microglia infiltrate the site of injury following trauma and
cause damage by releasing cytokines, free radicals and reactive oxygen species
(ROS) [11]. Another mechanism induced by inflammation is the nitric oxide
synthase (NOS) pathway which converts L-arginine into nitric oxide (NO), an
important mediator of secondary injury after SCI [12, 13]. NO reacts with
superoxide to form peroxynitrite which has a role in cell destruction, causing lipid
peroxidation to membranes and oxidative damage to proteins and nucleic acids
[13]. The persistence of ROS after injury may also provide possible targets for
effective treatment using antioxidant drugs however there is insufficient scientific
evidence yet to conclude that such therapies are sufficiently effective. Following
the secondary phase of response to SCI mentioned above, the third phase of SCI
takes over, which often takes place months to years post initial SCI and is referred
to as the chronic phase. This period extends for years after the trauma and
includes the formation of a cavity and the accumulation of scar tissue [14]. At this
stage very little can be done to improve the neuronal damage or the paralytic
condition so treatment efforts must be targeted to minimize secondary injury

processes.
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1.1.4 Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis (ALS) is the most prevalent motor neuron

disease occurring in adults. It is a neurodegenerative disorder characterized by the
loss of motor neurons, primarily in the spinal cord but also to a lesser extent in the
brainstem and cerebral cortex [15]. The progressive loss of neurons leads to
muscle weakness, atrophy, paralysis and eventually death caused by respiratory
failure usually 3-5 years after diagnosis [16, 17]. Approximately 10% of all cases
are caused by an inherited dominant mutation and these forms are collectively
known as familial ALS (fALS) [18]. In 1993, Rosen et al. determined that
roughly 20-25% of fALS cases (2% of all ALS types) are caused by mutations in
the Cu/Zn superoxide dismutase gene 1 (SOD1) [18]. In most cases, fALS is
clinically similar to sporadic ALS (SALS) and transgenic mice expressing the
mutant human Cu/Zn-SODI1 are phenotypically representative of human ALS
patients [19, 20]. As a result, transgenic mouse models (Cu/Zn-SOD1 mutant
mice) are often used to investigate the causes, pathology and treatments of ALS
and the results can be applied to both fALS and sALS in humans [20, 21].
1.1.5 Superoxide Dismutase in ALS

The discovery of SOD1 mutations in fALS and the knowledge of SOD’s
antioxidant activity lead many researchers to postulate that fALS, and possibly
SALS are caused by oxidative damage from ROS and free radicals [18, 20].
Superoxide dismutases are a family of enzymes that catalyze reactions converting
superoxide anions (O, ’) to molecular oxygen (O,) and hydrogen peroxide (H,O,)
which is thought to protect from radical induced cellular damage [13]. Initially, it

was thought that the mutations in SOD1 would decrease or increase its activity
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but recent work has shown that there may be a novel gain of function rather than a
change in activity that is responsible for the associated neuronal death [18, 22].
Although some uncertainty of the pathway persists, high levels of oxidative
damage have been documented by several research groups as the causative agent
of the motor neuron damage in ALS [22]. The novel cytotoxic property has yet to
be determined but Liu and colleagues found elevated levels of hydrogen peroxide
and hydroxyl radical and diminished levels of superoxide anion in ALS mice
suggesting impairment of H,O, detoxification and potentially affected interactions
between SOD1 and H,O, detoxification enzymes [23]. This is relevant because
mice over expressing normal human SOD1 did not have elevated levels of H,O,
but those expressing mutant SODI1 did, supporting the theory that the SODI1
mutations affect more than just the activity of the enzyme [19]. Recently several
other hypotheses have been postulated to account for the damage seen in ALS
neurons including transport and mitochondrial dysfunctions, glutamate
excitotoxicity, insufficient growth factors, protein aggregation and inflammation
[24, 25].
1.1.6 Oxidative Stress and Inflammation in ALS

It has been well documented in numerous neurodegenerative conditions
that oxidative stress-induced damage targets membranes, proteins, genetic
material and mitochondria [26]. This process can cause irreversible damage and
eventual cell death [26]. Inflammation is also an important contributing factor in
ALS as both microglial and astrocytic activation have been demonstrated to

precede disease onset [27]. In 2003, Clement and colleagues generated chimeric
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mice that possessed both normal SOD1 and mutant SOD1-expressing cells in a
breakthrough experiment which demonstrated that non-neuronal cells from a
wild-type background could prolong survival of motor neurons expressing mutant
SODI1 [27]. Other groups have since confirmed these results and explained that
the disease progresses in a “non-cell autonomous” mechanism meaning that non-
neuronal cells (such as microglia and astrocytes) play an important role in motor
neuron death [25, 28, 29]. Oxidative damage and inflammation are certainly not
mutually exclusive processes because upon activation, microglia upregulate
NADPH oxidase which generates oxygen radicals and other ROS [30]. Astrocytes
also have a role in motor neuron death in ALS which is, in part, caused by
impaired glutamate uptake at synapses due to loss of glutamate transporters in
patients with ALS; this leads to glutamate excitotoxicity [31]. It is for these
reasons that controlling both inflammation and oxidative stress in
neurodegenerative processes has become a topic of intense investigation and this
introduction will focus on many of the proposed outcomes of these mechanisms.
1.1.7 Related Pathologies

In addition to SCI and ALS a number of other neurodegenerative disorders
possess similar pathological features. MS, Guillain-Barré syndrome (GBS),
Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s chorea are
examples of diseases that share several phenotypes. Most notably inflammation,
imbalances in redox homeostasis and excessive ROS have been documented in all
of these disorders and contribute to the environment which is hostile to neurons

[32]. Oxidative stress-induced damage is indeed one of the hallmarks of many
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neuroinflammatory or neurodegenerative diseases and can disrupt the lipid profile
of important cell species in the CNS including glial cells and neurons themselves
[26, 33]. It is well known that membrane sphingolipids such as ceramides are
released in response to oxidative and environmental stress and can trigger a
number of downstream reactions [34-37]. Altered lipid metabolism is involved in
many abnormal conditions but may be of considerable importance in neurological
disorders because the lipid content in the CNS is one of the highest among the
physiological systems in the body. In fact, the CNS contains the second highest
level of lipids after adipose tissue [33]. Also, neurons are particularly vulnerable
to oxidative damage due to their poor antioxidant defense, high demand for
oxygen and elevated proportion of membrane PUFAs, which are disposed to lipid
peroxidation [33]. For these reasons a new trend of targeting therapies to
antioxidant control and maintaining lipid homeostasis is increasing in popularity
for neurodegenerative diseases and may provide a vital link for targeting therapies

to multiple disorders.

1.2 Membrane Lipids

Historically, membrane lipids were thought to have few biological
functions aside from structural support. Today, bioactive lipid molecules are
becoming increasingly recognized for their numerous signaling functions. These
endogenous molecules are cleaved from cell membranes and evidence is
accumulating regarding their mitogenic activity, cell activation potential, and their

ability to induce apoptosis by mediating cell signaling [5]. Through various
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intermediate steps and enzymatic reactions, lipid molecules within plasma
membranes can be cleaved to release a variety of lipid second messenger species.
The activity of sphingomyelinases release sphingolipids such as ceramides
whereas phospholipases act on phosphatidyl choline to generate free PUFAs
including docosahexaenoic acid (DHA) and arachidonic acid (AA) [5, 38-40].
These molecules are recognized as having additional significance in the CNS due
to their high proportion in glia and neurons and their interaction with
neurotransmitters [40]. Lipid signaling is extremely important in inflammatory
pathways and is thus implicated in many neurodegenerative disorders. The
biolipid signaling molecules implicated in these disorders and their associated
pathways and effects are explained in further detail below.
1.2.1 Sphingolipids and Ceramides

Sphingomyelin and glycosphingolipids are complex sphingolipids which
form an integral part of cellular membranes in eukaryotic cells. These molecules
provide structural support, organize membrane composition and mediate cell
signaling. The metabolites of complex sphingolipids; simple sphingolipids, have
other crucial roles in cell signaling which involve both extra- and intracellular
targets [41]. Simple sphingolipids include ceramides, sphingosine and
sphingosine 1-phosphate, which are important modulators of the cell cycle.
Ceramides, second messengers which play a central role in regulating the cell
cycle, are composed of sphingosine and fatty acids and can be degraded into these
components by ceramidases [41]. Subsequently sphingosine can be

phosphorylated to sphingosine 1-phosphate (S1P) by sphingosine kinase-1 (SK1).
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The degradation of sphingomyelins to ceramides requires the enzymatic action of
sphingomyelinases; however ceramides can also be synthesized de novo with the
help of palmitoyltransferase and ceramide synthase enzymes. The metabolic
pathways of ceramides are illustrated in Fig 1.1.
1.2.2 Ceramides and the Cell Cycle

The cell cycle processes that are mediated by ceramides (and other
sphingolipids) include growth, differentiation, stress response, and apoptosis [42].
Ceramides have been shown to induce apoptosis whereas SIP is anti-apoptotic
[43]. As a result, when SK1 levels are increased there is a shift from ceramides to
increased S1P leading to cell proliferation, conversely if SK1 levels are reduced,
as they are during the stress response, this induces a rise in ceramide levels
resulting in apoptotic cell death [43]. Ceramides may also act as second
messengers in response to several signals including oxidative stress, ultraviolet
(UV) radiation, X-rays and tumor-necrosis factor (TNF)-a [44]. Because of their
apoptosis inducing properties, ceramides have become the target of many
therapeutic drugs including cancer chemotherapy regimens. Evidence has begun
to accumulate on the involvement of ceramides in apoptosis of neurodegenerative
disorders [45]. Although apoptotic cell death is a vital component of CNS
development it has also been implicated in the neuronal death seen in ALS, SCI
and other neurodegenerative diseases [45]. Based on the known involvement of

ceramides in the apoptotic pathway it is a putative target for therapies in these
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Fig 1.1 Metabolic pathways of ceramides. This figure provides a summary of
both anabolic and catabolic pathways of ceramides. The upper row of the figure
depicts de novo synthesis of ceramides while the lower portion indicates pathways
of ceramide catabolism. Necessary enzymes are depicted in boxes between the
products of the reactions they catalyze.
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disorders as well. Ceramides on the other hand are also implicated in disrupting
stress or immunological responses through the inhibition of nuclear factor-kappa
B (NF-«B) and therefore may play a dual role in neurological diseases by also
protecting from excessive inflammation [46].

There is currently a debate on the role of ceramides and this is perhaps
attributable to their pleiotropic effects. It is important to remember however that
this molecule is involved in many vital functions and an imbalance of either
excess or insufficiency is likely to have pathological consequences. Our own
studies have in fact shown that increasing ceramides correlates with neuron
sparing and improved recovery after spinal cord injury perhaps through
ceramides’ ability to mitigate inflammation (manuscript in preparation). Clearly
these molecules have several roles and must be studied further to adequately
understand the complexity of their actions.

1.2.3 Polyunsaturated Fatty Acids

PUFAs are an essential component in cellular membranes and most
commonly occur as either omega-3 or omega-6 fatty acids. The nomenclature
indicates the position at which they share a common inter carbon double bond: at
n-3 or n-6 respectively. PUFAs are also known as essential fatty acids (EFA)
because humans must ingest them in their diet due to an inability to generate them
de novo. Diets rich in omega-3 fatty acids are recognized for a wide variety of
health benefits ranging from reducing the risk of cardiovascular disease to
promoting brain development and memory [47-49]. Omega-6 fatty acids on the

other hand, while also considered essential, can contribute to a number of
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pathologies when ingested in excessive amounts affecting the relative proportion
of omega-6 to omega-3 fatty acids systemically [50]. Current Western diets
consist of a dietary omega-6 to omega-3 ratio of over 15:1 while it has been
proposed that humans evolved on a diet of equal proportions [51]. Elevated levels
of omega-6 EFA have been implicated in the pathogenesis of diseases ranging
from cardiovascular disease to inflammatory conditions and recent research has
demonstrated that a dietary ratio of 4:1 or lower may reduce the risk of many
diseases [51]. Alpha-linolenic acid is the short-chain omega-3 fatty acid precursor
to all long-chain n-3 EFAs while linoleic acid is the omega-6 short-chain
equivalent. These molecules give rise to a number of long-chain products
including DHA and AA respectively, both of which play important roles in
neurological pathologies and can affect gene expression [52].
1.2.4 Docosahexaenoic Acid

DHA is a long-chain omega-3 EFA that is abundant in the CNS and is an
extremely important regulator of neural function. It is important not only in cell
signaling but has a role in neurotransmission processes as well, which is
supported by the high concentration of this PUFA found at neurological synapses
[52, 53]. DHA has essential anti-inflammatory and anti-oxidant properties and
provides many neuroprotective effects [54-56]. Such effects have been
documented in many well-known neurological conditions and a number of
pathways have been proposed. For example, regulation of NOS expression and
the production of NO is the subject of intensive study and it has been

demonstrated that NO production is inhibited by DHA in vitro [57-59]. NO is a
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lipid soluble ROS that has important regulatory functions in the CNS affecting
signaling and neurotransmission and it is generated from neurons and glia alike
[58, 60]. It is also well known for its role in inflammation and oxidative damage
and reactions involving this molecule promote the genesis of more ROS. When
endogenous production of NO in the CNS leads to elevated levels, the molecule
can be neurotoxic [60]. The CNS’s intrinsic ability to generate ROS and free
radicals matched with the high proportion of membrane PUFAs, which are
susceptible to lipid peroxidation, and relative lack of antioxidant systems render it
prone to oxidative insult [61]. It has been demonstrated however that dietary
DHA provides anti-oxidative defense in the brain by enhancing the activity of
important anti-oxidant enzymes including catalase (CAT), glutathione peroxidase
(GPx), SOD and reduced glutathione (GSH) [61, 62].

The primary outcome of ROS damage in the CNS is lipid peroxidation.
The products of lipid peroxidation, notably 4-hydroxy-2-nonenal (4-HNE), have
been implicated in neurodegenerative processes by blocking glutamate transport
and causing a buildup of extracellular glutamate [63]. This is accomplished by 4-
HNE-induced covalent modification of glutamate transporters that render them
less active [63]. Glutamate is the most abundant excitatory neurotransmitter in the
mammalian nervous system however when present at high levels this amino acid
can damage neurons in a process termed excitotoxicity [64, 65]. This mechanism
can have devastating consequences and might significantly contribute to both the
etiology and progression of a number of neurodegenerative disorders [64, 65].

The pathway responsible for excitotoxicity has been well documented and studies

28



indicate that aberrant regulation of calcium levels may significantly contribute to
the neuronal destruction [64, 66]. Extracellular glutamate causes a massive influx
of Ca®", the results of which are pluripotent. Elevated intracellular Ca®" inhibits
mitochondrial functions dependant on ion gradients which is detrimental to the
cells energy metabolism [64]. Ca’" also activates the previously mentioned NOS
which generates excessive levels of neurotoxic NO [56]. In addition to these
enzymes, Ca”" dependent proteases become activated leading to physical
destruction of the neural cytoskeleton while activated phospholipases break down
cell membranes to release AA yielding further ROS which contribute to lipid
peroxidation [64]. This process is self-perpetuating through a positive feedback
loop whereby Ca®" influx triggers the release of more glutamate [64]. Not only
can DHA reduce the lipid peroxidation that precedes these events, but it has also
been demonstrated to reduce neurodegenerative glutamate cytotoxicity by
inhibiting NO production and Ca®" influx while increasing the activity of
antioxidant enzymes such as GPx and glutathione reductase [56].

While maintaining sufficient or elevated levels of DHA have been
reported to treat many of the above-mentioned conditions other research groups
have demonstrated the consequences of the opposite: DHA deficiency. Recently,
Chalon used a rat model with chronic a-linolenic acid-deficiency to demonstrate
that both dopamine and serotonin neurotransmission were impaired in the absence
of dietary n-3 PUFA and that these effects were reversible with an n-3 balanced
diet [52, 53]. These effects can be explained by the effect on membrane fluidity of

disrupted PUFA concentrations which would impair vesicle formation [52].
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Interestingly, low DHA is also linked to cognitive decline and memory deficits in
Alzheimer’s disease and some psychiatric disorders [67]. While this may also be
explained by impaired neurotransmission others have postulated that deficiencies
in DHA may in fact be apoptotic to neurons in a process that involves
downregulating the expression of cellular phosphatidylserine [68]. What might be
most remarkable is the finding by Calderon and colleagues that demonstrates
DHA has pro-regenerative properties [69]. In fact, this group was able to
demonstrate that DHA supplementation in primary hippocampal cell cultures was
sufficient to increase the length and branching of neurites [69]. These findings
have generated speculations as to whether DHA or other n-3 PUFAs have
therapeutic potential in neurological disorders. Recently King and colleagues
were able to show that administration of DHA contributes to recovery after
traumatic SCI. These findings offer promise for future development of novel
lipid-based treatments [70].
1.2.5 Arachidonic Acid

AA is a long-chain omega-6 free fatty acid found in the plasma membrane
of cells including neurons and immune cells. It is cleaved from the phospholipid
bilayer of cell membranes by the enzyme phospholipase A, (PLA,). PLA; occurs
in a number of different isoforms and can be found in the extracellular (secreted
PLA, or sPLA;) or intracellular space (cytosolic or cPLA;). This enzyme is
largely calcium dependant and provides substrate (AA) for cyclooxygenase
(COX), lypoxygenase (LOX), and epoxygenase (EPOX) enzymes, which in turn

generate eicosanoids that are harmful to cells [71, 72]. Interestingly, these same

30



enzymes also metabolize DHA, generating a class of molecules collectively
referred to as docosanoids. This group includes resolvins and neuroprotectins,
which as their name indicates, protect the nervous system from eicosanoids by
both anti-inflammatory and immune regulatory actions [72, 73]. Eicosanoids
derived from AA include pro-inflammatory prostaglandins such as prostaglandin
E2 (PGE,), thromboxanes and leukotrienes all of which play important roles in
inflammation and oxidative damage [72]. The action of these molecules has also
been linked to many neuroinflammatory conditions and elevated levels of PGE,
have been found in brain tissue, cerebrospinal fluid and serum of ALS patients
[74, 75]. The actions of AA affect many biological processes in a contrasting
manner to DHA, as the release of AA perpetuates the inflammatory response with
detrimental consequences in the CNS. The conversion of AA to prostaglandins
requires the oxidation of AA by COX-2 enzymes; which subsequently are the
target of non-steroidal anti-inflammatory drugs (NSAIDs) [76]. It has been
demonstrated by several groups that inhibiting COX-2 in animal models of ALS
is able to ameliorate symptoms and retard disease progression [77-79]. In
addition, Kiaei and colleagues have shown that cPLA, plays a pivotal role in ALS
by providing AA to be metabolized in the pro-inflammatory COX-2 pathway
[71]. AA is an intermediate in numerous important pathways and imbalances in
this fatty acid have been implicated in several neurodegenerative disorders by
causing abnormalities in inflammation and neurotransmission [80]. Chang and
colleagues demonstrated the treatment with lithium (an effective treatment for

some neurological disorders) could decrease both the level of AA and the activity
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of PLA; in the CNS indicating that aberrant AA levels could be responsible for
neurological conditions [81, 82]. Furthermore, studies by Song and colleagues
demonstrated that AA enriched diets increased anxiety in rats similar to that seen
with interleuking-1B (IL-1p) treatment supporting the pro-inflammatory pathway
of this lipid [83]. While the metabolic pathway of AA may be well known, many
of the outreaching effects are still poorly understood. What is clear however is
that AA levels must be carefully regulated and that finding efficient means of
pharmacological intervention in the cases of excessive AA accumulation may
bring therapeutically relevant benefit to patients suffering from various
neuropathies. A summary of -3 and ®-6 PUFA pathways and their effects on

neuroinflammatory conditions is depicted in Fig 1.2.

1.3 Oxidative stress

1.3.1 Reactive oxygen species
The presence of ROS and some of its effects have been mentioned

throughout this introduction. The following section will provide a brief summary
of the key pathways involved in ROS generation and its downstream effects in the
CNS. Particular emphasis will be placed on the role of oxidative stress in ALS as
this pertains to the topics of this thesis.

The majority of intracellular ROS are generated by the mitochondria
during oxygen metabolism. Other sources in the CNS include NOS, xanthine
oxidase and cytochrome P45y oxidase; enzymes responsible for generating reactive

nitrogen species (RNS), superoxide and oxygen radicals respectively [84]. Motor
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Fig 1.2 Metabolic pathways of PUFAs and their effects on
neuroinflammatory status. The pathways of ®-6 and w-3 PUFA generation and
degradation are depicted on the left and right portions respectively. The effect
each PUFA species has on neuroinflammation is represented by either a ‘+’ or -’
sign to denote proinflammatory or anti-inflammatory actions respectively.
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neurons, which receive a high level of excitatory inputs, can also suffer oxidative
damage from the generation of ROS, which accumulates as a result of the
glutamate excitotoxicity pathways discussed previously [84, 85].

Lastly, phagocytic cells, notably microglia, are capable of generating high
levels of both ROS and RNS in order to destroy foreign targets and timely down
regulation of activated microglia can protect from CNS damage [84, 86]. The
resulting outcome of such oxygen and nitrogen species involves damage to
protein, nucleic acid and of particular importance to the CNS, lipids (PUFA).
Lipid peroxidation is a self-perpetuating phenomenon that generates many
products including malonyldialdehyde (MDA), 4-HNE and nitrotyrosine (NT)
[63]. MDA is the predominant aldehyde product produced from lipid peroxidation
and its intra- and extracellular reactivity and long half-life make it an excellent
marker of oxidative damage [87, 88]. 4-HNE is another aldehyde responsible for
many adverse effects. It is formed by the peroxidation of n-6 PUFA and has been
found in elevated levels in the cerebrospinal fluid (CSF) of ALS patients [87, 89].
It has also been demonstrated that treatment with 4-HNE leads to a decrease in the
number of motor neurons in the spinal cord and a potentially pathological
reduction of intracellular calcium in surviving neurons [89]. NT is also used as a
marker of oxidative stress caused by peroxynitrite, which has recently been shown
to contribute to neurotoxicity and secondary damage processes after acute
traumatic spinal cord injury and other neurological insults [90, 91]. By simply
measuring the levels of these oxidation by-products one can ascertain a reasonable

estimate of the presence of ROS and oxidative damage.
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1.3.2 Glutamate
Glutamate is the major excitatory neurotransmitter in the CNS. The role of

glutamate in neuropathy has been briefly described above however it is interesting
to note that it is also linked to both oxidative stress and antioxidant pathways. In
fact, Rao and colleagues showed that spinal motor neurons cultured in the
presence of glutamate had significantly higher levels of ROS and that when these
ROS were transferred to an animal model of ALS they were able to affect the
ability of astrocytes to take up glutamate and caused oxidation of proteins [92]. It
was also demonstrated recently that mouse models of ALS are associated with
elevated levels of this neurotransmitter [93]. In addition to contributing to
excitotoxicity and oxidative stress pathways, glutamate is also a building block of
one of the primary antioxidant molecules: glutathione. Reduced glutathione,
known as GSH, along with SOD plays a crucial role in protecting the CNS from
both ROS and RNS as well as against glutamate excitotoxicity [94, 95]. It is, in
fact, the first line of non-enzymatic defense against the hydroxyl radical, which no
enzymes can quench [95, 96]. It has also been established that glutathione is
necessary for astrocytes to provide neuroprotective effects and that its presence
can enhance neuron survival in pathological conditions such as ALS [97, 98].
Others have found that depletion of GSH can induce motor neuron death through
impaired mitochondrial function and low levels of GSH have been well
documented in neurodegenerative disorders such as ALS and SCI [94, 95]. These
results support the conclusion that enhancing antioxidant defense systems in the
CNS is an appropriate target for improved therapies in neurodegenerative

conditions.
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1.4 Therapeutic strategies for neurological disorders
Unfortunately there are currently very few approved pharmacological

agents that can effectively treat neurodegenerative disorders such as ALS and
SCI. However hope is certainly on the horizon as many promising therapies have
reached or are approaching clinical trials. This section will serve to briefly
highlight those therapies currently in use and will discuss some promising new
agents and the potential future direction for therapeutics.
1.4.1 Therapeutic strategies for SCI

At the present time there is only one approved pharmacological option for
victims of acute SCI in Canada but it has not gained approval by the FDA or
many other international governing bodies [99, 100]. Methylprednisolone, a
steroid drug, was discovered in the early 1990°s to help minimize secondary
damage when given promptly (within 8 hours) after the traumatic event [101]. It
is generally recognized that Methylprednisolone, like other steroids exerts its
effects by inhibiting the inflammatory response and reducing oxidative damage
[100]. This treatment however has come under scrutiny as a number of controlled
trials have failed to show significant improvements after treatment with
methylprednisolone [102, 103]. Further investigation and approaches aimed at
reducing inflammation, decreasing oxidative stress-induced lipid peroxidation and
enhancing neuroprotection are likely to provide the best therapeutic outcomes.
1.4.2 Therapeutic strategies for ALS

ALS presents many of the same pharmaceutical hurdles as SCI and much
like with SCI there exist few treatments with proven efficacy. Currently only one

drug, Riluzole, is approved by the FDA for the treatment of ALS yet it provides
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only a modest survival improvement [104-106]. This agent exerts its effect by
inhibiting glutamate and Na channel activation [104, 105]. While the prevention
of glutamate excitotoxicity is an important pathway to target it is reasonable to
assume that therapies directed at controlling oxidative stress, inflammation and
enhancing neuroprotection could provide additional therapeutic benefit to ALS
patients. There are currently a number of promising pharmaceuticals undergoing
trials, which target these neuropathic precursor pathways. At the moment the most
promising agents are those which provide antioxidant, anti-inflammatory, immune

regulatory or anti-apoptotic functions:

Thalidomide

Thalidomide has shown efficacy in delaying functional motor deficits and
extending survival in a mouse model of ALS [107]. It can be safe for human use
under controlled conditions and can effectively cross the blood brain barrier
(BBB) [104, 108]. Thalidomide, well known for its antiangiogenic effects also
provides immune regulatory effects by inhibiting TNF-a expression, which likely

explains its success in ALS studies [107, 108].

AEOL 10150

AEOQOL 10150 is an antioxidant of the metalloporphyrin class. This agent is
of interest for the treatment of ALS because it is a powerful antioxidant able to
scavenge a variety of ROS identified in ALS and inhibit lipid peroxidation [109].

This manganese porphyrin has also been tested in a SOD1%** transgenic mouse
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model of ALS and when administered by IP injection at the onset of symptoms,
treated mice showed significant improvements in survival [110]. As expected
from the antioxidant properties of this drug, mice treated with AEOL 10150
showed lower levels of lipid peroxidation including MDA and NT [110]. In
addition, treated mice had less activation of glia and increased motor neuron

sparing within the ventral horn of the lumbar spinal cord [110].

Minocycline

Minocycline is a second-generation tetracycline that possesses pleiotropic
effects in addition to its antimicrobial action. Yrjinheikki and colleagues have
demonstrated in a brain ischemia model that minocycline is anti-inflammatory,
can inhibit microglial activation and is neuroprotective [111, 112]. These results
suggest that minocycline therapy could be beneficial in ALS and this has been
confirmed in a mouse model of the disease [113]. Dietary supplementation of the

tetracycline derivative at the late pre-symptomatic stage in SOD1%7}

transgenic
mice improved muscle strength, delayed disease onset and significantly enhanced
survival [113].

These drugs represent only a sample of those which show promise for use
in ALS. Further research is certainly necessary and controlled clinical trials
should be pursued where possible as such studies have often revealed weaknesses

in hopeful therapies such as with Vitamin E, which demonstrated excellent results

in animal models but failed to show effects in humans [114]. Management of the
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oxidative phenotype and reducing inflammation are likely to provide the greatest

therapeutic benefit in the treatment of this aggressive disease.

1.5 Animal models of neurological disorders
Animal models have had an important impact on medical research and

represent a great surrogate for studying complex human diseases. Often disease
phenotypes can be accurately replicated in animals and allow researchers to
pinpoint mechanistic pathways or genetic involvements that can be extrapolated
and applied to the related human condition. Animal models also provide an added
level of complexity over in vitro methods, which cannot account for interactions
between cells in organs or organ systems. It is important to note however that
animal models also have limitations and results from studies using these models
should be “taken with a grain of salt”. When studying neurological disorders with
a genetic component transgenic animal models are popular. Such models allow
specific genetic targeting but also have certain drawbacks including the abnormal
expression of exogenous genes, which may lead to gene interactions that do not
occur in nature. It is also important to recognize that most animal models are
derived from inbred strains which by definition cannot mimic the genetic diversity
of the human population. For the same reasons, studies involving inbred mice
allow one to study the influence of recessive genes, which otherwise would be
masked by the genetic heterogeneity observed in humans or outbred mice. While
certain models offer fewer limitations than others, it is important to continue
utilizing a variety of models to generate a more complete and useful picture of

physiological processes.
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1.5.1 SCI Models
There exists a long history of modeling acute spinal cord injury in animals.

Early models utilized large animals such as dogs and cats because inducing injury
in these animals was technically more feasible [115]. Currently rat and mouse
models are favored likely due to both availability and economy, however primate
models offer essential information when analyzing the outcomes of SCI on hand
and digit function [116]. Essentially each model is designed to replicate a
different type of primary injury with acute, mechanical injuries (such as shearing,
compression, contusion or transection) being the most common [115]. While
complete transection can provide a paradigm for axon regeneration most human
SCI do not completely transect the spinal cord. Therefore models of acute
compression are favorable and have evolved from the original weight-dropping
and inflated balloon compression techniques [115, 117]. Clip compression is used
to provide a simple and reproducible compression force on the spinal cord but
requires complete laminectomy and is not measurable [118, 119]. The advantage
of this system is that compression can be applied for a longer duration than that
provided by impactor devices [117, 119]. Impactor devices are very popular and
are of two primary types: the New York University (NYU) impactor or the Ohio
State University (OSU) impactor [117]. The NYU impactor drops a weighted rod
from a predetermined height onto the exposed spinal cord [117]. The OSU
impactor is a more sophisticated version that electronically controls the impact
force and tissue displacement and has been shown to generate a highly
reproducible injury [120, 121]. The variety of models available for SCI provides

researchers with the opportunity to select those appropriate to their needs. Using
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these models in conjunction with different transgenic mouse strains provides
diverse opportunities to study SCI under different conditions.
1.5.2 ALS Models

Unlike other diseases that are often modeled in large animals such as dogs,
sheep and primates, ALS models have been limited almost exclusively to rodents.
Although rat models exist, murine models have become the most popular and are
available commercially [122]. However, the first Drosophila model of ALS was
very recently developed and could provide new insight into the disease as this
model gains popularity and use within the scientific community [123]. Perhaps
the overwhelming use of rodents is due to the relative complexity of these models;
most of which are transgenic and would be difficult to generate in other species.
As mentioned in a previous section, a proportion of genetically inherited cases of
ALS have been linked to a mutation in the gene encoding the antioxidant enzyme
SODI [18]. As a result, mutant forms of this gene are the most commonly used
transgene in the generation of ALS mice [20]. While several mutant forms of this
gene have been used in mice the two most popular murine models of ALS are
SOD19** and SOD1’®. SOD19** transgenic mice possess a mutant form of
human SOD1 with a glycine to alanine substitution at position 93 [20]. SOD1%*"™®
is also a mutant form of human SOD1 that has a glycine to arginine substitution at
position 37 [124]. Mice expressing these transgenes are very similar in their
phenotypic expression however the time course of disease progression is quite

different.
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1.5.3 SOD174
The SOD1%%** strain is known for its extremely fast disease progression.

Although many of the pathological features mirror human ALS, these animals
display the initial onset of impaired motor function at approximately 90 days of
age [20]. The initial symptoms present as impaired hind limb function and rapidly
progress to complete hind limb paralysis and eventual death typically by 4 months
of age [124-126]. While this model allows for a reasonable duration of studies, the
extremely aggressive phenotype may result in limited effectiveness of some
treatments which could otherwise be therapeutically useful.

1.5.4 SOD1%7}

The SOD1%"® strain presents with many of the same disease hallmarks as
the G93A strain, however initial onset is not detectable until 9 months of age and
the clinical endpoint is usually reached around 11 months to one year after birth
[113]. While working with this strain does lead to extremely long experimental
protocols, it is perhaps a more representative model of human ALS, which also

progresses slowly.

1.6 Fenretinide
Retinoids, molecular species derived from vitamin A, are a family of

molecules that contain the retinyl group. These compounds are considered
essential human nutrients and have a role in numerous cellular functions including
growth, differentiation, gene transcription and antioxidant activity [127-130].
Fenretinide [N-(4-hydroxyphenyl) retinamide, 4-HPR] is a semi-synthetic retinoid

that has demonstrated promise for the use as an anti-tumor and chemotherapeutic
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treatment in many cancers including breast cancer, Kaposi sarcoma, glioma and
neuroblastoma for which is it currently undergoing clinical trials [131-137].
Fenretinide is particularly appealing because of its minimal toxicity when
compared to other retinoids [138]. Interest for its application to neurodegenerative
diseases have arisen because when used in neuroblastoma and gliomas it seems to
have apoptotic effects on malignant cells while protecting surrounding neurons
[133, 139].

Previous findings demonstrated that treatment with fenretinide induces
ceramides in vitro [140, 141]. Fenretinide was also previously shown to have anti-
inflammatory actions, possibly by inducing ceramides; which as mentioned
previously inhibits pro-inflammatory transcription factor NF-xB [46, 142]. In
addition to treating particular symptoms associated with Cystic Fibrosis (CF) such
as increasing bone density, the drug was found to correct ceramide deficiency in a
mouse model of CF [143, 144]. In addition, fenretinide treatment was able to
correct imbalances in AA and DHA and decrease markers of oxidative stress
[143]. Based on these findings demonstrating the powerful effect of fenretinide
against chronic inflammation associated with CF, our group recently proposed a
novel use of this drug to control neuroinflammation associated with SCI and other
neural diseases. Our initial studies targeted spinal cord injury and were followed
by application of fenretinide therapy to the SOD19%** transgenic mouse model of
ALS. These experiments will be discussed in the following section of this thesis.
For an overview of disease mechanisms of ALS and the proposed targets of

fenretinide therapy refer to Fig 1.3.
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Fig 1.3 Mechanisms of ALS progression. This schematic represents a simplified
view of the various factors that contribute to ALS. The circular symbol with a
diagonal line through the center (0) is used to highlight particular portions of the
pathway which we believe are targeted or inhibited by fenretinide treatment.
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1.7 Conclusion
Many advancements in understanding and treating CNS disorders have

been developed through the meticulous research of several laboratories. This
introduction provides a review of many of these accomplishments which offers
much greater hope for those affected today than in the past. While many
neurological diseases seem quite different they often share some commonalities
and it is interesting to note the important role that membrane lipids play. While
treatments for neurodegenerative disorders are currently scarce, it is conceivable
that pharmacological targeting of lipid imbalances may provide a novel
therapeutic option that could be applied to diverse neurological disorders. The
study in this thesis will demonstrate that fenretinide; a drug, which effectively

corrects phospholipid imbalances, can treat many of the phenotypes of ALS.

45



Preface to Chapter Two

Rationale: The introduction provided an up-to-date description of the
pathophysiology of ALS and a number of related neurodegenerative disorders.
As well, the molecular mechanisms and role of membrane lipids involved in
disease progression, and pharmaceuticals with therapeutic promise were
discussed. Nevertheless, ALS remains a difficult disease to untangle and our
understanding is limited. While a cure may never be discovered and treatment
options only improve slowly, further developments are urgently needed.

Our group has shown previously that fenretinide is capable of correcting
membrane lipid imbalances in an animal model of CF as well as down-regulating
particular pro-inflammatory cytokines [143, 144]. We also demonstrated that
treatment with fenretinide had a similar effect on lipid concentrations in an animal
model of spinal cord injury and was sufficient to improve motor function and
neurological impairment in these animals (manuscript in preparation). Analysis of
plasma and spinal cords from these animals also showed a decrease in markers of
oxidative stress and improved neuron sparing respectively (manuscript in
preparation). In vitro experiments, which we conducted on macrophages,
demonstrated a significant ablation of TNF-a release when stimulated with
various toll ligands (Lachance ef al., 2008 submitted). Before embarking on the
present experiments we tested two animal models of ALS (SOD1%”** and
SOD1%’®) and were able to show that, when compared to their wild-type

counterparts, transgenic mice had an imbalance in two lipids which fenretinide
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has been shown to correct, AA and DHA. Transgenic mice also displayed
significantly higher levels of oxidative stress, almost two-fold the level seen in
wild-type littermates for some markers. Taken together these results provided
compelling evidence that fenretinide could have therapeutic effects in transgenic
mouse models of ALS by correcting the lipid imbalance observed in these animals

as well as decreasing their oxidative burden and improving neuron sparing.
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Chapter Two
Based on manuscript in preparation:

Fenretinide improves functional recovery and extends survival in a
transgenic mouse model of Amyotrophic Lateral Sclerosis

Thomas A.A. Skinner, Juan B. De Sanctis, Ruben Lopez-Vales, Marie-Christine
Guiot, Jennifer Henri, Samuel David, Danuta Radzioch

Abstract :

Amyotrophic Lateral Sclerosis is a late-onset neurodegenerative condition
affecting the motor neurons of the spinal cord, brainstem and primary motor
cortex. The disease usually presents with mild paralysis around age 40 and rapidly
progresses to complete paralysis and respiratory failure in 3-5 years. At the
present time Riluzole is the only drug approved by the FDA and treatment effects
are not substantial. In this study we demonstrate that fenretinide, a drug with
proven efficacy in regulating phospholipid imbalances, mitigating inflammation
and reducing oxidative stress may be a suitable candidate for treating ALS. Using
a SOD19** transgenic mouse model of ALS we demonstrate for the first time
that low-dose fenretinide therapy is sufficient to delay onset, improve motor
function and extend survival in affected animals. Our results also reveal that
fenretinide treatment improves ®-3:w-6 poly unsaturated fatty acid (PUFA) ratios
without a change in diet, reduces lipid peroxidation and mitigates reactive gliosis
in the spinal cord. These findings warrant further investigation as they suggest

excellent potential for fenretinide as a therapeutic treatment for ALS.
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2.1 Introduction
Amyotrophic lateral sclerosis is a multicausal neurodegenerative disease

of the motor neurons characterized by progressive muscle weakness, paralysis and
eventual death usually occurring 3-5 years after diagnosis [17, 145, 146]. It is a
relentlessly devastating disease that targets both upper motor neurons of the
cerebral cortex and lower motor neurons of the spinal cord and brainstem
culminating in respiratory failure [147]. It is the most common adult-onset
neurodegenerative disorder and while the great majority of ALS cases are of a
sporadic nature with no known cause, approximately 5-10% of cases are inherited
with various genetic targets identified [145-147]. While sporadic and familial
forms are often discussed separately it is important to note that their clinical
presentation is nearly identical. The most prominent gene identified in familial
ALS (fALS) cases is the gene encoding Cu,Zn-superoxide dismutase (SODI)
which is thought to be responsible for approximately 25% of fALS cases [18,
147-150]. The disease is inherited in an autosomal dominant manner and a variety
of missense mutations responsible for the disease have been identified in the
SODI1 gene [18, 19, 148, 149, 151]. Many theories on the etiology of sporadic
ALS (sALS) have been proposed ranging from auto antibodies to impaired amino
acid transport, however discovery of SOD1’s involvement in fALS has provided
important information for both fALS and sALS [152-154].

Transgenic mouse models expressing mutant forms of human SOD1 have
become widely used as a surrogate to study human ALS. Over expression of
mutant SOD1 variants in these animals produces a progressive motor neuron

disease with similar pathological features to both the familial and sporadic forms
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of human ALS although the disease progresses with a much faster time course
[155, 156]. The discovery of SOD1 involvement lead to the natural assumption
that oxidative stress could play a role in disease progression and elevated levels of
reactive oxygen species (ROS) and impaired redox mechanisms have been
confirmed in a number of studies [157-161]. In addition to the ROS generated by
impaired SOD1 function, ALS is also associated with inflammation and activated
glia, which are known to release both ROS and reactive nitrogen species (RNS)
[162-164]. Uncontrolled ROS and RNS can cause cellular damage in a variety of
ways but of particular interest is the effect on the integrity of lipid membranes.

It is well known that membrane lipids can be altered by oxidative damage
and this can impair proper cell function, especially in the CNS, which possesses
the highest lipid concentration after adipose tissue [33]. Membrane integrity is
essential for many functions including transport, physical support and signal
transduction, which is especially important for neurons, and it has been
documented that polyunsaturated fatty acids (PUFAs), in particular, are
extensively damaged when exposed to oxidative stress [165]. Of central
importance in inflammatory conditions is maintaining a balance between ®-3 and
-6 PUFAs as each can have immune regulatory functions. Elevated levels of the
®-6 PUFA arachidonic acid (AA) is associated with an increase in inflammation
by promoting the genesis of pro-inflammatory prostaglandins, thromboxanes and
leukotrienes, collectively termed eicosanoids [166]. When these mediators are
produced in high quantities it can result in neuron damage [166]. Conversely, the

-3 PUFA docosahexaenoic acid (DHA), which is found in high concentrations in
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neural and synaptic membranes, has been shown to help alleviate inflammation
and even protect against neurodegeneration [167]. In fact the metabolites of DHA,
dubbed neuroprotectins and resolvins, inhibit the production of all three
eicosanoids mentioned above [167]. These lipids play an important part in
neurological defenses but are commonly overlooked. It is our belief that targeting
these PUFAs with pharmacological agents could provide new potential for
therapy in disorders of the nervous system.

Fenretinide [N-(4-hydroxyphenyl) retinamide, 4-HRP] is a semi-synthetic
retinoid currently in clinical trials for the treatment of several cancers [132-138,
168]. It is a particularly promising drug for neurological cancers and has the
advantage of possessing very low toxicity [133, 136-138]. Our lab and others
have demonstrated that treatment with fenretinide increases ceramides [140, 143,
144]. This pathway has been linked to activation of 12-lipoxygenase (LOX-12),
which catalyzes AA oxidation thereby decreasing its concentration [169, 170].
We reported recently that treatment with fenretinide decreases AA and increases
DHA both in vitro and in vivo [143], (Lachance et al., 2008 submitted). We have
also found that fenretinide treatment reduces production of pro-inflammatory
cytokines by inhibiting levels of phospho-ERK-1/2 in a macrophage cell line
(Lachance et al., 2008 submitted). In addition, we recently discovered that
fenretinide treatment reduced oxidative stress, improved neuron sparing and
enhanced motor function in a mouse model of spinal cord injury (manuscript in

preparation).
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Currently there is only one drug approved for human use in ALS,
Riluzole, and it provides only a modest survival improvement of 2-3 months
[171]. Evidently new therapies are desperately needed. While many of the effects
of oxidative imbalance have been explored in mouse models of ALS,
investigation into lipid involvement has been largely untouched. Here we use a
SOD1%%** transgenic mouse model of ALS to examine the efficacy of fenretinide
therapy in this neurodegenerative condition. We show for the first time that
fenretinide, an agent capable of altering PUFA concentrations, is able to extend

15%%A mice. We also demonstrate that

survival and improve motor function in SOD
inflammation in the spinal cord is ameliorated and propose a pathway for

fenretinide’s actions in a transgenic mouse model of ALS.
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2.2 Materials and Methods

2.2.1 Transgenic mice
SOD19** [B6SJL-TgN(SOD1-G93A)1Gur/J; 002726] transgenic mice

were generously donated by Dr. Jean-Pierre Julien from Laval University
(Quebec, PQ, Canada). These animals were derived from a colony maintained on
a C57BL/6 background. All animals were housed and bred at the McGill
University Health Centre Research Institute Animal Facility. Mice were
maintained in cages with sterile wood-chip bedding and kept in ventilated racks.
All animal housing, breeding and experimentation were performed under specific
pathogen-free conditions in a barrier facility. All mice were derived from matings
of wild-type C57BL/6 females with SOD1%** transgenic male mice. Pups were
genotyped between 21 and 28 days of age using real-time quantitative polymerase
chain reaction (QPCR) in accordance with The Jackson Laboratory protocols (see
below). SOD1 transgenic animals selected for experimentation were separated (1
animal/cage) for the duration of all studies. All mice used for experiments were
female and were derived from the offspring of original breeding pairs donated by
Dr. Julien. Mice were supplied with NIH-31-modified irradiated mouse diet
(Harlan Teklad, Indianapolis, IN) ad /libitum at all times. Beginning at day 30,
mice used for experimentation were also given 12.5 mL of liquid diet (Peptamen
liquid diet; Nestle Canada, Brampton, ON, Canada) 5 days per week containing
either Smg/kg of fenretinide or an equivalent volume of vehicle (95% ethanol).
After randomly assigning mice to either the fenretinide or control (vehicle) group,
each mouse was then assigned randomly to one of three experimental groups to

analyze behavior, plasma lipid concentration or histology. All procedures
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performed followed Canadian Council of Animal Care guidelines and were

approved by the McGill University Animal Care Committee.

2.2.2 Fenretinide preparation and treatment
Fenretinide was generously donated by Dr. Robert Smith of the National

Institutes of Health (NIH) (Bethesda, MD, USA). Fenretinide powder was
resuspended under sterile conditions to make a 2 pg/uL stock solution in 95%
ethanol. This preparation was incorporated into Peptamen liquid diet at a dose of
Smg/kg body weight (approximately 45 plL) per mouse as previously explained
[144]. 12.5 mL of Peptamen was selected for the daily liquid diet to ensure that all
Fenretinide was consumed as this represents approximately 4/5 of daily mouse
food consumption and the mice ate Peptamen preferentially. Mice were treated 5
days per week beginning at 30 days of age until they reached the clinical
endpoint. Diet preparation for sham-treated animals was identical except that the
equivalent volume of 95% ethanol was used instead of ethanol containing
fenretinide. After preparation, the diets were kept protected from light at all times
and at 4°C until their administration. Prepared fenretinide in 95% ethanol was

kept protected from light at -20°C for a maximum of 1 month.

2.2.3 Histological evaluation
Mice were deeply anaesthetized with a cocktail of ketamine (7.5mg/ml)

and xylazine (0.5mg/ml) administered via intraperitoneal injection at a dose of

20ml/kg of body weight. Animals were then sacrificed by transcardial perfusion
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with 4% paraformaldehyde in 0.1M phosphate buffered saline (PBS). The fourth
lumbar spinal cord segment, identified by its contribution to the sciatic nerve was
carefully removed, post-fixed for 1 hour in 4% paraformaldehyde solution and
cryoprotected overnight in 30% sucrose in 0.1 M PBS. 10um serial sections were
cut on a Leica cryostat (Leica Microsystems GmbH, Wetzlar, Germany) and
immunostained with rat polyclonal antibodies against GFAP (1:400; Zymed Labs)
or rat polyclonal antibodies against Mac-2 (1:4; kindly provided by Dr. Samuel
David) to detect the presence and activation of glia. Digital images of both ventral
horns were captured every 300 um. Images were imported into SigmaScan Pro
Image Measurement Software Version 5.0.0 (SPSS Inc., Chicago, IL) and
activated astrocytes and microglia were quantified by exceeding an intensity
threshold. Values were then normalized for the total area examined. Serial
sections from a separate set were stained for Nissl body detection using cresyl
violet staining and the number of motor neurons surviving in the ventral horn
were quantified. Outliers were identified as data falling outside + 2 standard

deviations from the group mean when the point in question was removed.

2.2.4 Tissue collection for fatty acid analysis
Mice were euthanized by inhaling CO, followed by cardiac puncture

exsanguination. Blood collected was processed as described in the next section.
The lumbar spinal cord segments, identified using the ribs and vertebrae as a
guide, were transected and all spinal cord tissue was removed and homogenized

before storing in 1mM butylated hydroxy anisole (BHA) in chloroform/methanol
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(2:1 vol) at -80°C until analysis was performed to maintain sample integrity.
Cerebral cortex and brainstem samples were collected, homogenized and stored
separately in the same BHA solution. Blood samples collected were treated under

the same protocol as the samples extracted at different time points.

2.2.5 Blood collection
Blood samples were collected at day 60, 90 and 120 in addition to the time

at the clinical endpoint mentioned above. Mice were placed under a heating lamp
for 5 minutes before sampling. Mice were then placed in a holding device and one
hind limb was immobilized and shaved. The saphenous vein was pierced with a
25G needle and 100 pL of blood was collected and mixed with 10 pL of 0.5M
EDTA to prevent coagulation. Samples were then centrifuged at 350xg for 7
minutes at 4°C and 40 pL of plasma was removed and stored in 400 pL of the
BHA solution described above. All samples were stored at -80°C until analysis

was performed.

2.2.6 Lipid analysis
Plasma, spinal cord, cerbral cortex and brainstem samples were all

analyzed to determine the lipid concentration of each. Ceramide, phospholipid-
bound docosahexaenoic acid (DHA), phospholipid-bound arachidonic acid (AA),
malonyldialdehyde (MDA) and nitrotyrosine levels were assessed in all samples.
To determine the lipid concentration of tissue and plasma samples, analysis was

performed using an enzyme-linked immunosorbent assay (ELISA) method.
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The extracted lipid fractions were dried under nitrogen and resuspended in
heptane. Separation of phospholipids was performed by thin-layer
chromatography (TLC), detected by iodine. The separated lipid samples were then
subjected to ELISA to ascertain the concentrations of each lipid species. The
phospholipids from the dry silica, once resuspended in ethanol, were used to coat
Nunc plates specific for lipid binding. The plates were then washed and incubated
with blocking buffer for 1 hr at 37° C (PBS, 0.1% Tween 20, and 1% bovine
serum albumin). Following the blocking step, the plates were incubated with
murine IgM (Sigma-Aldrich) antibody (Ab) specific for the particular lipid
species desired for 1 hr at 37°C. Following another wash, the plates were
incubated with anti-mouse IgM Ab conjugated with peroxidase for 1 hr at 37°C.
The final step involved incubating the plates with the peroxidase substrate (TMB;
Roche, Laval, QC). The intensity of the colorimetric reaction was determined by
spectrophotometry at 405 nm and the level of each lipid species was calculated
using a standard curve as a reference. Outliers were identified as data falling
outside + 2 standard deviations from the group mean when the point in question

was removed.

2.2.7 Motor function analysis (Rota-rod)
Motor function was assessed by Rota-rod (Med Associates Inc., St.

Albans, VT) two times per week beginning at 70 days of age. An acclimatization
period of 3 days was implemented before beginning measurements to allow

animals to become familiar with the apparatus. Animals were placed on the rod
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with a constant rotation of 16 rpm and the time latency to fall was used as a
measurement of motor function. Animals remaining on the apparatus after 300
seconds were given a perfect score and the trial was ended. Three consecutive
trials were performed with a one minute rest period between each trial and the
best result of the three trials was recorded. Mice used for plasma analysis were
also included in the Rota-rod experiments as it was determined after evaluating
their performance that it was not impaired. In the rare event that an animal’s
performance improved, the lower “pre-improvement” time point was dropped as it
was not considered representative of their true ability given the progressive nature

1G93A

of paralysis in SOD mice.

2.2.8 Survival
SOD1%** mice typically develop the first signs of motor impairment

around 90 days of age. The initial stages present with a resting tremor and slight
gait impairment which progress to complete hind limb paralysis at the end stage.
The clinical end point was determined to occur when a mouse was unable to right
itself in less than 30 seconds after being turned on its side or when greater than
20% weight loss had occurred. While both methods were used to assess each
animal, in the vast majority of cases animals reached the weight loss endpoint

prior to losing the ability to right themselves within the allotted time.
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2.2.9 Analysis of genotype by real-time RT-QPCR
Amplification of DNA obtained from tail tissue was performed on the

Stratagene MX-4000 sequence detector (Stratagene, La Jolla, CA). PCR was
performed using the SYBR Green Quantitative RT-PCR kit (Sigma, St. Louis,
MO). The amplification program for SOD19** DNA consisted of an enzyme
activation step for 3 min at 95°C, followed by 40 cycles of a denaturing step for
30 s at 95°C, an annealing step for 30 s at 60°C and an extension step for 45 s at
72°C. A melting-curve analysis was performed after amplification to determine
specificity of the PCR products (which were also confirmed with gel
electrophoresis). Two sets of primers were used, in separate reaction flasks, to
amplify both the WT and transgenic SOD1 genes. Both primer sets (Tg forward:
5'-CAT CAG CCC TAA TCC ATC TGA-3', Tg reverse: 5'-CGC GAC TAA
CAA TCA AAG TGA-3', WT forward: 5-CTA GGC CAC AGA ATT GAA
AGA TCT-3', and WT reverse: 5'-GTA GGT GGA AAT TCT AGC ATC ATC
C-3") were diluted to a final concentration of 250nM and tested to optimize

conditions.

2.2.10 Statistical analyses:
Data was analyzed and statistics were calculated with GraphPad Prism

Version 4.03 software (GraphPad Software, San Diego, CA). Analysis of Rota-
rod performance was performed by two-way analysis of variance (ANOVA) with
Bonferroni post-tests at each time point. Survival was analyzed by log rank test of
Kaplan-Meier cumulative survival plots and an un-paired, non-parametric t-test of

mean survival time. Comparisons of lipid concentrations across the duration of
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the study were also analyzed by two-way ANOVA with Bonferroni postests while
comparisons at day 120 were made with unpaired, non-parametric t-tests. Motor
neuron, microglia and astrocyte comparisons were also made with non-parametric
t-test analysis. Significance for all analyses was set at a two-tailed P value of <

0.05. Data are displayed as mean + SEM.
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2.3 RESULTS

2.3.1 Fenretinide improves motor function in SOD1°*** mouse model of ALS
Impairment of motor function was measured by twice-weekly Rota-rod

testing. SODI1%** transgenic mice treated with fenretinide performed
significantly better on the Rota-rod then sham treated control animals suggesting
that the disease phenotype can be modulated by fenretinide treatment. Sham-
treated animals showed a decline in motor function 2 weeks before any
impairment was detected in the fenretinide-treated group indicating that treatment
with Fenretinide was sufficient to delay disease onset in this model. At all time
points after day 91, the fenretinide-treated group performed better than control
animals and this difference was significant (p<0.05) independently at day 112,
116, and 119, as shown in Fig 2.1. Performance at day 112 was increased from
162 + 23 sec (n=26) for vehicle-treated animals to 216 + 25 sec (n=19) in Smg/kg
fenretinide treated animals. Performance at day 116 was improved from 98 + 18
sec (n=26) for vehicle treated animals to 154 £ 27 sec (n=20) observed in
fenretinide treated animals. On day 119, fenretinide treatment enhanced
performance from 46 + 13 (n=25) in vehicle treated animals to 109 + 27 (n=18) in
fenretinide treated animals as shown in Fig 2.1. In addition to these specific time
points at which performance was significantly improved by fenretinide, overall
Rota-rod performance across the entire duration of the study was found to be
significantly enhanced in fenretinide treated animals compared to control animals

(»<0.0001), depicted in Fig 2.1. The treatment was only able to delay the
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symptoms of ALS but was not able to cure the animals since the performance

score eventually also declined in the fenretinide treated animals.

2.3.2 Fenretinide improves survival

To establish whether fenretinide could enhance survival of SOD1%%3

mice, the day at which animals reached the objective clinical endpoint was
recorded as their duration of survival. Kaplan-Meier curves were used to calculate
survival differences as well as a comparison of mean survival between drug

19%%A mice treated with

treated and control groups. The mean survival of SOD
fenretinide was significantly improved from 143 + 1.4 d (n=17) for control
animals to 148 + 1.4 d (n=12) for drug treated animals (p<0.05), as shown in Fig
2.2A. This difference constitutes an increase in survival of almost 10% from the
onset of disease. The median survival of treated animals was also significantly
(p<0.05) higher than untreated as evident from the Kaplan-Meier cumulative
survival plot shown in Fig 2.2B. Early mortality was also more common in
control animals. More than 22% of sham-treated mice died before a single mouse
treated with fenretinide reached the clinical endpoint and 17% of drug treated

animals remained alive after all control mice had reached the endpoint, depicted

in Fig 2.2B.

2.3.3 Plasma EFA profiles are altered with fenretinide treatment
In order to determine the effect of treatment on systemic lipid profiles,

plasma samples were collected at day 60, 90, 120 and at the clinical endpoint for
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both fenretinide treated and control groups. Each sample was analyzed for the
contribution of DHA, AA, MDA, NT and ceramides. As expected from previous
work, phospholipid bound DHA was found to be significantly elevated in the
plasma of fenretinide treated animals compared to control mice. Significantly
elevated DHA concentrations were detected for the duration of the experiment
(p<0.0001), shown in Fig 2.3. In addition, significant increases in DHA were
found independently at day 60 and 120 in fenretinide treated mice. Treatment with
fenretinide increased phospholipid bound DHA at day 60 from 2.22 + 0.15 (n=9)
from control animals to 2.88 + 0.18 (n=8) an increase of 30% (p<0.05). A similar
increase was seen on day 120 from 2.63 + 0.07 (n=8) for sham treated mice to
3.26 = 0.17 (n=8) (p<0.01) for the drug treated group equating to an increase of
approximately 25% (Fig 2.3 & 2.4A). Interestingly phospholipid bound AA,
while slightly lower at 60 days of age in fenretinide treated mice, only reached a
statistically significant decline in samples taken on day 120, falling 12% from
39.50 = 0.94 (n=8) for control mice to 34.87 = 0.91 (n=7) (p<0.01) for the
fenretinide treated group, as shown in Fig 2.4B. Interestingly, differences in
ceramide concentrations failed to reach a statistically significant threshold at any
of the time points, which is in contrast to our previous studies. Additionally none
of the lipids tested displayed significant differences between vehicle treated and
fenretinide treated groups when measured at the clinical endpoint (data not
shown). Taken together these results are quite consistent with our previous

findings from both CF and SCI models suggesting that fenretinide treatment
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contributes to maintaining an environment of decreased w-6 fatty acids while
increasing ®-3 fatty acids.
2.3.4 Plasma lipid peroxidation

The samples tested for EFAs were also analyzed for the presence of two
markers of oxidative stress: NT and MDA. At 60 days of age fenretinide treated
mice had ameliorated levels of NT, however the difference became statistically
significant at day 120 at which point control animals possessed 45% higher levels
of NT than mice treated with fenretinide (p<0.001), as shown in Fig 2.5A. MDA
showed a similar profile becoming significantly (p=0.001) reduced at 120 days of
age in drug treated mice, as shown in Fig 2.5B. The difference in MDA between
groups was 38%. These results provide compelling evidence that treatment with
fenretinide is associated with large decreases in lipid peroxidation and may
provide protection from reactive oxygen and nitrogen species and oxidative stress,

1G93A

which are present in high quantities in SOD mice.

2.3.5 Organ essential fatty acid profiles and lipid peroxidation

To establish whether the difference in plasma lipid profiles could be seen
in the organs directly affected by ALS, samples of lumbar spinal cord, brain stem
and cerebral cortex were analyzed for the presence of the same lipid species and
markers of lipid peroxidation. Samples were harvested when each animal reached
the clinical endpoint and similar to what was seen in plasma samples taken at the
same time, few results were statistically significant. Neither AA nor DHA reached
a significant difference between vehicle or fenretinide treated groups in the brain

stem samples (data not shown). AA in spinal cord samples and DHA in cortex
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samples were also not significantly affected by fenretinide treatment, as shown in
Fig 2.6C and D respectively, however DHA did show an increasing trend in the
fenretinide treated group. There was however a statistically significant 28%
increase in phospholipid-bound DHA found in the lumbar spinal cord of
fenretinide treated mice (p<0.05), as shown in Fig 2.6A. In addition,
phospholipid-bound arachidonic acid was roughly 10% lower in the cerebral

cortex of treated animals (p<0.05), as depicted in Fig 2.6B.

2.3.6 Nissl-stained neuronal cell count
All histological preparations were derived from L4 spinal cord segments

taken at 130 days of age. In order to quantify the number of surviving motor
neurons, histological sections were stained with cresyl violet and the motor
neurons of each ventral horn were counted by an individual blinded to the animal
number and treatment conditions.

Representative images depicting motor neuron staining are shown in Fig
2.7A. Counts were performed from both ventral horns on sections every 300pum
and an average of 4 sections (8 ventral horns) was taken for each animal. A total
of 4 animals (n=4) was used for each group. Mice treated with fenretinide
displayed approximately 20% more motor neurons than control mice (Fig 2.7B)
however with only the small sample size available results failed to reach a

statistically significant threshold.
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2.3.7 Glial activation
Immunohistochemistry was also performed on different serial sections

from the same animals. Antibodies against both glial fibrillary acidic protein
(GFAP), shown in Fig 2.8A, and the Mac-2 antigen (Mac-2), shown in Fig 2.8B,
were used to identify activated astrocytes and microglia respectively. Images of
both ventral horns were captured every 300pum and imported into SigmaScan Pro
image quantification software. The area occupied by darkly stained cells was
quantified and normalized for the total area. As illustrated in Fig 2.8A, analysis of
GFAP stained sections revealed that sham treated mice had more than 50%
greater staining of the ventral horn then mice treated with fenretinide and this
difference was found to be statistically significant (p<0.05). Mac-2 positive
stained area was also significantly (p<0.05) higher in control animals with 60%
more area stained, as shown in Fig 2.8B. It can be seen from the representative
images in Fig 2.8C and D that vehicle treated mice not only possessed a greater
number of glial cells but these cells displayed greater hypertrophy. These findings
suggest that treatment with fenretinide diminishes activation of glia, the

inflammatory cells of the CNS.
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2.4 Discussion
There is currently very little information on the role of lipids in ALS and

despite extensive research there remains only one approved drug for treating this
devastating disease. It has however, been well documented that oxidative stress-
induced lipid peroxidation is present in both humans and animals models and it is
proposed to be one of the most important factors precipitating the
neurodegenerative phenotype [172-178]. Lipid peroxidation has far reaching
consequences by generating diffusible reactive products, which can spread further
damage and by irreversibly altering the composition of plasma membranes. The
loss of PUFA due to lipid peroxidation from neural membranes may be of
particular relevance in ALS because these lipid species contribute to the essential
membrane fluidity in neurons [179]. In addition, the concentrations of ®-3 and -
6 PUFAs have important relevance on cellular function and can affect an
organism’s inflammatory status. No studies have ever tested the ability of
fenretinide to alter lipid profiles and correct the disease phenotype in human ALS
or animal models of the disease. In previous work, we demonstrated that
treatment with fenretinide improved survival in a mouse model of SCI by
correcting the PUFA imbalance, reducing inflammation and improving neuron
survival (manuscript in preparation). In the present study we applied a similar

treatment strategy to SOD1 94

transgenic mice to investigate the therapeutic
potential of fenretinide in ALS.

Here we show for the first time that fenretinide therapy is able to improve

the disease phenotype in a transgenic mouse model of ALS. One of the most
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prominent features of ALS is paralysis and our results demonstrate that motor
function and coordinated movements were improved in animals treated with 5
weekly doses of 5 mg/kg fenretinide compared to vehicle treated control animals.
Motor performance was significantly improved for the duration of the study but
also showed independently significant improvements at three consecutive time
points at the midpoint of disease progression. The greatest improvement occurred
at 119 days of age when the treated group outperformed sham treated animals by
nearly 2.5 fold. Our results also demonstrate a clear survival advantage for treated
mice with mean survival from disease onset almost 10% higher in treated mice.
The elevation of these two parameters provides considerable promise for
fenretinide’s potential in treating ALS. Another promising aspect of fenretinide
therapy is that it has been extensively tested in humans and is associated with only
minor and reversible side effects. Studies performed with long-term low, medium,
and high-dose fenretinide in humans have reported few or no side effects. The
only consistently reported side effect is Nyctalopia, (impaired low-light vision)
which is reversible when treatment is discontinued and does not appear to be
cumulative [180-186]. Given that the present expected survival for humans after
disease onset is 36-60 months, if fenretinide could provide an equivalent
advantage in human disease as it appears to have in mice, it may have the
potential to extend survival by several months [17]. One can also presume that
with enhanced motor function the quality of life experienced would be improved.

In order to determine the mechanism of fenretinide’s action we then

analyzed the level of certain lipid species affected by fenretinide in our previous
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studies, which also have important functions in neurological systems; principally
AA, DHA and ceramides. Measuring the level of phospholipid bound PUFAs is a
reliable method of determining their contribution to plasma membranes and
provides an accurate quantification of their relative abundance. This method is
more accurate than measuring the free forms because when cleaved from the
plasma membrane they are quickly converted into downstream products or
oxidized and thus cannot be accurately measured in their free form [187, 188]. By
measuring at multiple time points we were able to establish kinetics of the therapy
and observe changes over time. The use of plasma samples provided insight into
the systemic effects of the treatment whereas analysis of specific organs was also
used to pinpoint local effects in the lumbar spinal cord, motor cortex and
brainstem; the regions most affected by ALS [189]. While most of the data
obtained from organs was not significantly different between groups we did find
elevated levels of DHA in lumbar spinal cord segments of mice treated with
fenretinide. In addition, samples taken from the motor cortex of drug treated mice
displayed lower levels of phospholipid bound AA. These results are in agreement
with fenretinide’s known effects on PUFA concentrations and support the
hypothesis that it has both systemic and local effects. The failure to find
statistically significant differences in the other analytes, both organs and plasma,
collected at the experimental endpoint is not entirely surprising. In order to
measure survival, it was necessary to keep animals until they reached an objective
clinical endpoint. As a result, all organ and plasma samples collected at this time

were harvested at different time points and when the mice had reached an

70



equivalent and severe phenotypic expression of the disease. Given the data
obtained from both behavioral and plasma analysis at day 120 it is conceivable
that a greater difference between groups would have been observed in organ
samples taken at an earlier stages of disease.

Our plasma lipid analysis offers considerable insight into the mechanism
of fenretinide’s action. The most striking results were the consistently elevated
levels of phospholipid bound DHA for the duration of the study (excluding the
samples extracted at the end point). DHA has been linked to improved oxidative
status and anti-inflammatory effects in diseases ranging from diabetes to
cardiovascular disease [54, 190]. It is generally recognized that increasing dietary
consumption of ®-3 PUFAs contributes to better health and reduced
inflammation, however our results demonstrate that fenretinide is capable of
elevating membrane ®-3 levels without a change in diet. This is likely a result of
reduced oxidation from lipid membranes by ROS. DHA’s high level of
unsaturation provides a greater number of sites for radical species to target than
other PUFAs such as AA rendering it more susceptible to lipid peroxidation
[188]. The peroxidation of DHA in lipid membranes creates a feed-forward loop
whereby increased ROS lowers DHA removing an important regulator of
inflammation and oxidative damage. Interestingly our results also show that
phospholipid bound AA is lower in the plasma of treated mice measured at day
120. AA and other w-6 fatty acids are closely linked to inflammation by acting as
precursors for pro-inflammatory molecules such as prostaglandins. Fenretinide

has been proposed to act directly on membranes by increasing AA cleavage by
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Phospholipase-A; and its subsequent degradation by activating 12-Lox and our
results support this theory [191, 192]. The results of our plasma and organ lipid
analysis confirm that both inflammatory and antioxidant mechanisms are

compromised in SOD19%*4

mice and suggest that fenretinide therapy may be
acting on these pathways.

In order to assess the oxidative status we measured two markers of lipid
peroxidation; MDA and NT. Both markers were significantly reduced in mice
treated with fenretinide by day 120. These markers have been assessed by other
research groups to be elevated in inflammatory conditions including SCI and ALS
and it was recently demonstrated by Tokuda and colleagues that decreased lipid
peroxidation correlated with improved disease outcome in the same mouse model
of ALS that we used [193]. Most commonly ROS and RNS are released by
immune cells and we have already discussed the effect of high w-6: ®-3 ratios on
induction of inflammation so we next looked at the number of glia infiltrating the
most affected area of the spinal cord to see if these cell types could be leading to
the oxidative stress observed.

Astrocytes and microglia represent the primary immune cells of the CNS.
They are recruited and activated in high numbers in many neurodegenerative
conditions and contribute to the loss of motor neurons in ALS [194-197].
Interestingly it has been demonstrated that astrocytes both release NO and are
activated by peroxynitrite creating a dangerous cycle that accelerates disease

progression [194]. Recently Yamanaka and colleagues demonstrated the

importance of regulating reactive gliosis to moderate ALS severity showing that
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disease progression is directly related to the inflammatory response of microglia
and astrocytes [198]. Our findings indicate that fenretinide therapy reduces the
inflammatory response in the lumbar spinal cord of SOD19%*#* mice. Both GFAP-
positive astrocytes and Mac-2-positive microglia were significantly diminished in
fenretinide treated spinal cords. In addition, qualitative observation also revealed
a greater level of hypertrophy in control mice reflecting the greater overall
immune response in these animals. The lower glial burden in mice treated with
fenretinide is likely at least partially responsible for the decrease in oxidative
stress as both cells possess inducible NOS and produce inflammatory cytokines
and ROS [198, 199]. Based on these findings, the mechanistic pathway of
fenretinide’s actions began to emerge and we proposed that these differences
might account for a difference in neuron survival.

Perhaps our most surprising result was the lack of a significant difference
in motor neuron number between groups. There was however certainly a trend
and we suggest a number of theories that may explain why this trend was not
statistically significant. Given the length of such a project we were not able to
obtain extensive preliminary results and consequently ran many experiments
simultaneously. From our behavior and plasma analysis it is evident that
fenretinide’s effects were most prominent between 15-16 weeks and fell sharply
after that. Presumably histological samples obtained at 120 days, when behavior
showed the greatest disparity, would provide better insight into fenretinide’s
effects on motor neuron populations. We chose to collect the samples for

histological evaluation at 130 days of age to ensure sufficient neurodegeneration
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however the disease phenotype of both groups had just begun to converge at this
time point. We also noted that remaining neurons appeared more robust in
fenretinide treated animals which could explain their performance and survival
advantage despite the small difference in neuron number. With the number of
samples available the power to detect a true difference was less than 0.25 so it is
likely that a greater number of samples would also have provided more
statistically relevant results.

In conclusion, this study shows for the first time that fenretinide therapy
possesses exceptional promise for treating ALS. Our survival results indicated a
10% increase in survival, which is almost equivalent to the results seen for
Riluzole in the same strain of mice [200]. It is of course premature to extend our
conclusions to predict benefits for human applications based on these studies
alone, however fenretinide has the benefit of being proven safe as an oral drug
which is an important component for the consideration for clinical trials [104,
201]. It is our belief that fenretinide is an excellent candidate for further

exploration for the therapeutic treatment of ALS.
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Fig 2.1 Effects of fenretinide on Rota-rod performance. The effect of
fenretinide treatment on motor performance in SOD19** transgenic mice from 88
to 137 d of age. Mice treated with 5 mg/kg fenretinide (Fen) exhibited
significantly improved motor performance compared to vehicle treated controls
(Veh) by two-way ANOVA (p < 0.0001). This test was followed by Bonferroni
posttests which additionally revealed significant improvements in the fenretinide-
treated group at day 112, 116 and 119 (p<0.05). Values are mean + SEM. V¥,
fenretinide; M, vehicle treated SOD1°%**. * signifies p<0.05. n=20 for each group.
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Mean survival of SOD1%93A transgenic mice
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Fig 2.2 The effect of fenretinide treatment on survival in SOD1¢%%*

transgenic mice. A. Figure A depicts the mean survival of fenretinide (Fen) and
vehicle treated control (Veh) mice. The mean survival of mice treated with 5
mg/kg fenretinide was significantly improved from 142.9 + 1.3d to 147.9 + 1.4d
compared to controls (p < 0.02) by non parametric t-test. Values are mean = SEM.
* signifies p<0.05. B. Figure B depicts the cumulative (Cum.) probability of
survival for mice beginning treatment at 30 d of age with vehicle (Veh) or 5
mg/kg fenretinide (Fen). There is a significant increase in survival in treated
SOD1%** mice (p < 0.05). Median survival values are 148.5d for Fenretinide and
143.5d for vehicle-treated mice. V¥, fenretinide; M, vehicle treated SOD19%4,
n=18 for Veh, n=12 for Fen.
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Plasma kinetics for phospholipid-bound DHA
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Fig 2.3 Plasma Kkinetics for phospholipid-bound DHA. This graph displays the
phospholipid-bound DHA concentration in mice treated with fenretinide (Fen) or
vehicle (Veh). Two-way ANOVA revealed a very significant elevation in DHA in
animals treated with fenretinide compared to vehicle treated controls for the
duration of the study (p<0.0001). Bonferroni posttests also revealed significantly
higher DHA at both 60 and 120 days in fenretinide treated mice. * signifies
p<0.05. n=10 for each group.
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Phospholipid bound DHA on day 120
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Fig 2.4 Plasma PUFA concentrations. PUFA levels as measured from plasma
samples obtained 120 days after birth. Mice treated with 5 weekly doses of
fenretinide (Fen) displayed significantly elevated levels of phospholipid bound -
3 PUFA DHA (Fig 2.4A) compared to vehicle treated (Veh) controls. The same
mice exhibited significantly reduced levels of phospholipid bound w-6 PUFA AA
(Fig 2.4B) compared to control animals. n=7 or 8 for all groups. ** signifies
p=<0.01.
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Fig 2.5 The effect of fenretinide therapy on plasma lipid peroxidation. Two
markers of lipid peroxidation, NT (Fig 2.5A) and MDA (Fig 2.5B) were
significantly decreased on day 120 in fenretinide treated mice (Fen) compared to
vehicle treated (Veh) control animals in plasma samples measured at 120 days of
age. *** signifies p<0.001. n=7 or 8 for all groups.
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Fig 2.6 PUFA concentrations in organs affected by ALS at 120 days of age.
Phospholipid-bound DHA was significantly increased in the lumbar spinal cord of
mice treated with fenretinide (Fen) when compared to vehicle treated (Veh)
controls (Fig 2.6A). A difference in AA from the same spinal cord samples was
not detected (Fig 2.6C). Motor cortex samples revealed significantly lower levels
of phospholipid-bound AA in fenretinide treated mice (Fig 2.6B). DHA
concentrations were slightly higher in cortex samples derived from fenretinide
treated mice measured at 120 days of age, however this difference was not
statistically significant (Fig2.6D). * signifies p<0.05. n=11 or 12 for all groups.
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Fig 2.7 Quantification of surviving motor neurons at 130 days of age. A.
Images in figure A depict motor neuron staining. Qualitative observations indicate
that samples from fenretinide treated (Fen) mice possessed more robust motor
neurons then their vehicle treated (Veh) counterparts. Arrows indicate alpha motor
neurons identified in the ventral horn. B. Motor neurons counted in the ventral
horn of the 4™ lumbar spinal cord segment appeared to be more numerous in mice
treated with fenretinide however this difference failed to reach statistical
significance. n=4 for both groups.
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Fig 2.8 Quantification of reactive gliosis at 130 days of age. A. GFAP-positive
staining astrocytes occupied significantly less area of the 4™ lumbar ventral horn
in mice treated with fenretinide (Fen) compared to vehicle treated (Veh) controls.
C. Qualitative observations reveal that spinal cords from vehicle treated animals
possess greater numbers of astrocytes and that these cells are more hypertrophic
compared to samples from Fenretinide treated mice. B. Mac-2-positive microglia
were also significantly less numerous in fenretinide treated mice. D. Qualitative
observations also revealed more numerous and more hypertrophic microglia in
spinal cords from vehicle treated mice. * signifies p<0.05.
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Chapter Three
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3.1 General discussion and conclusions

3.1.1 Summary of results
Currently Riluzole is the only drug approved for treating ALS [171].

While many avenues of investigation are being explored for treating this disease
not much attention has been devoted to the role of various phospholipids in ALS.
In previous studies, we have demonstrated that treatment with fenretinide can
alter membrane lipid profiles and reduce inflammation [143, 144], (Lachance et
al., 2008 submitted). Recently, we also demonstrated that fenretinide treatment
improves recovery in a mouse model of spinal cord contusion injury by targeting
these same pathways (manuscript in preparation). In preparation for the present
study we performed a preliminary investigation into the lipid status of two
transgenic mouse models of ALS. From this work we discovered that both strains
display quite striking phospholipid imbalances. In fact, the aberrant ratio between
AA and DHA we observed in these two transgenic ALS models was very similar
to the imbalance we had observed in SCI models that was corrected by treatment
with fenretinide (manuscript in preparation). Based on these findings it seemed
likely that the lipid imbalance seen in mouse models of ALS might in fact
contribute to the etiology of the disease and we wondered if mice with ALS might
also benefit from a similar treatment strategy. A series of experiments were
subsequently conducted to determine the treatment outcome and the mechanism
of action of fenretinide using a transgenic mouse model of ALS. Specifically, we
examined disease onset and progression by measuring the physical capabilities of

SOD1%** transgenic mice on a Rota-rod treadmill. We also assessed the survival
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advantage of treated animals, analyzed essential fatty acid profiles and examined
markers of oxidative stress. Histological evaluation was performed to explore the
link between the known systemic phenotype and what is occurring within the
primary affected organ, the spinal cord.

Fenretinide, a semi-synthetic retinoid drug, is largely known for its
applications in oncology. It has proved effective in a wide range of cancers and is
an especially promising drug because it is administered orally and can be tolerated
by both children and adults at very high doses, for many consecutive years, and
with only mild or reversible side effects [137, 202-204]. While it has
demonstrated excellent success in clinical trials, its mechanism of action is still
somewhat poorly understood. In our recent study on SCI we demonstrated that
fenretinide therapy possesses anti-inflammatory and anti-oxidant actions evident
by decreasing microglial activation in the spinal cord and ameliorating the levels
of TNF-a, IL-1B, MDA and NT (manuscript in preparation). In a recent set of in
vitro experiments we also explored mechanistic pathways that could explain the
down regulation of pro-inflammatory cytokines by fenretinide. Our results
demonstrated that treatment with fenretinide reduced the phosphorylation of
extracellular signal-regulated kinase 1/2 (ERK1/2), an important member of the
mitogen-activated protein kinase (MAPK) family and a necessary pathway for
macrophage cytokine gene expression [205](Lachance et al., 2008 submitted).
Others showed that fenretinide is a potent inhibitor of prostaglandin synthesis
which may also account for its anti-inflammatory actions [206]. Based on this

work we felt confident that fenretinide could have beneficial effects for ALS.
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This thesis reports the results of experiments designed to assess the ability
of fenretinide to improve ALS phenotypes using a transgenic mouse model of
ALS disease. We have shown that 5 weekly doses of 5 mg/kg fenretinide,
beginning at 30 days of age, was sufficient to significantly improve several
disease phenotypes. The data described in this thesis demonstrated that our
treatment regimen delayed the onset of functional motor impairment and
improved voluntary motor control throughout the life of treated animals in
addition to extending their overall survival. We also showed that fenretinide
exhibits these effects by increasing the ratio of ®-3: w-6 PUFA, an environment
associated with neuroprotection and the prevention of neurodegenerative
processes [207]. Our analysis of oxidative damage revealed significantly lower
levels of lipid peroxidation products in mice treated with fenretinide while
histological examination showed that the same treatment group also possessed
fewer activated microglia and astrocytes. Our evaluation of motor neuron survival
revealed that mice treated with fenretinide possessed a greater number of motor
neurons in the ventral horn of the spinal cord however the difference detected did
not reach a statistically significant threshold so no conclusions can be drawn until

further studies are conducted.

3.1.2 Future directions
The work presented in this thesis involved three experimental groups

studied in three separate but overlapping experiments. The duration of one

experiment involving SOD1%** mice lasts at least 4-5 months and requires an
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additional several months to generate a viable colony. For the studies described in
this thesis, there was an insufficient amount of time to perform prolonged studies
using several subsequent experiments that would most certainly have improved
the statistical significance of some parameters analyzed, which although
suggestive did not reach statistically significant differences. The analysis of our
results has revealed that some experimental conditions could be improved and
further investigation may provide even more promising results. Of most interest
would be to obtain histological and organ lipid samples at 120 days of age, which
corresponds to the greatest improvement in behavior and all measures of plasma
lipids and oxidative stress. There have also been new methods developed to
precisely measure the oxidation of DHA in the CNS. Arneson and colleagues
have developed a protocol to quantify Fs-neuroprostanes, specific peroxidation
products of DHA which are inherently stable, and perhaps this method of
analysis, also performed at 120 days, would provide better insight into the
oxidation-induced CNS damage [188].

Another important avenue of investigation would be dose-escalation
studies. While our results provide exciting evidence for fenretinide’s ability to
slow ALS progression the improvements were modest and fenretinide is known to
be tolerated in humans and rodents in doses 50-fold higher than those used in our
studies [183, 202, 208]. Given the aggressiveness of ALS, a higher dose may
more effectively combat oxidative stress and inflammation providing more
pronounced survival and behavior advantages. It would also be of interest to apply

this therapy to a less aggressive disease model such as that of SOD1%"™®
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transgenic mice where treatment may have more power to overcome the disease
progression.

Today many pharmacological breakthroughs are being discovered by
combining molecules or existing therapies to create drug cocktails. Such treatment
strategies can be extremely effective by enabling the therapies to target multiple
pathways and effect diverse phenotypes. With the heterogeneity of disease
presentation and the diversity of proposed etiologies, ALS is a suitable candidate
for such therapies [209]. In fact a number of research groups have begun such
investigations with cocktails tailored to several pathways from microglial
inhibition to fatty acid supplementation [210, 211]. It is our belief that fenretinide
could be extremely effective in a cocktail with the right complementary drugs and
we hope to explore such therapies in the future.

Overall the work in this thesis provides new hope for future novel
treatment of ALS. While there is a great deal of work necessary to further
evaluate this drug and for it to advance to human trials the results from the
experiments presented here offer new insight into the contributing factors of this
devastating disease. With continued efforts and research more promising drugs
and treatment protocols are likely to become available for people suffering from
ALS and we hope our findings have contributed to the quest for efficient

treatments for ALS and other neurological diseases.
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Guidelines for completing the form are available at www.mcgill.calresearch/icompliance/animaliforms

& BB . For Office Use Only:
@ MeGill University Rrotocol#: - 9 3 1D voal
. - . ok
Animal Use Protocol — Research ——— Date%""“ 70, 0

Facility Committee: }MD\J\

Title: Determination of the Neurological Component in Respiratory Failure in Cystic Fibrosis Lung Disease
(must_match the title of the funding source application)

New)Application [[] Renewal of Protocol # ] pilot Category (see section /1)
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Phone #: 934-1934 ext.44517

Unit/Department: Medicine, Montreal General Hospital Research Institute Fax#: 934-8260
Address: Room L11-218 1650 Cedar Ave. Montreal, QC. H3G 1A4  Email: danuta.radzioch@muhc.megill.ca

o
934-1934
Name: Jennifer Henri Work #:  ext.44516 Emergency #:  (514) 991-9739
934-1934
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** All projects that have not been peer reviewed for scientific merit by the funding source require 2 Peer Review Forms to be
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Proposed Start Date of Animal Use (d/m/y): 07/05/07 or ongoing [ ]
Expected Date of Completion of Animal Use (d/m/y): 06/04/08 or ongoing [ ]
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McGill

University Animal Care Committee Comité universitaire de protection des animaux
Ethics Unit Ethique animale
Office of the Vice Principal (Research) Bureau de Vice-principal (recherche) Tel: (514) 398-2639
MeGill University Université McGill Fax :(514) 398-4644
James Administration Bldg Pavillon James de I’administration www.megill.ca/research/compliance/animal/
845 Sherbrooke Street West, room 419 345, rue Sherbrooke ouest, bureau 419
Montreal, Quebec, Canada H3A 2T35 Montréal, (Québec), Canada H3A 2T5
June 20, 2006

The McGill University Animal Care Committee certifies that
Tom Skinner has successfully completed the

Advanced Level
of the
Theory Training Course on Animal Use for

Research and Teaching -
on

June 8, 2006.

The training includes the following topics:
e Basic Level: Regulations & Procedures, Ethics, Basic Animal Care, Occupational
Health & Safety
¢ Advanced Level: Anesthesia, Analgesia, Euthanasia, Categories, Influencing
Factors and Environmental Enrichment

Please note that this certificate does NOT include practical training, which is obtained by successfully
completing an Animal Methodology Workshop where another certificate is issued.

Certification is valid for 5 years, starting on the date indicated above.

Deanna Collin
Animal Care Training Coordinator, animalcare@mecgill.ca
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Oct. 27, 2006

The McGill University Animal Care Committee certifies that
Tom Skinner has successfully completed a
Mouse Workshop on July 11, 2006.

The training included the following procedures:

Handling and restraint

Gavage (oral dosing)

Injections: subcutaneous, intramuscular, intraperitoneal
Blood collection: saphenous and cardiac puncture
Determination of anaesthetic depth

Euthanasia by cervical dislocation
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Certification is valid for 5 years, starting on the date of the workshop.

/ff/ T -
Deanna Collin
Animal Care Training Coordinator, animalcare@mcgill.ca

(Confirmation of training can be obtained by request to the above email address)

Note: Trainee must keep this certificate as other institutions may request it as evidence
of training
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Le centre universitaire de santé McGill (CUSM)
MecGill University Health Center (MUHC)

Service de radioprotection
Radiation Protection Service

Ceci certifie que :
This is to certify that :

Tom Skinner

A réussi avec succes la formation du CUSM en radioprotection & I'intention des travailleurs du secteur des radioisotopes.
Has successfully completed the MUHC radiation Safety Training for Radioisotope Workers

Date of training: 7/28/2006 RSO’s signature: \...Q\mx\ci,ﬁ L.

Radiation Protection Service
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