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» Abstract

4

In this thesis, a memory-economic finite element
renumbering strategy for 'f‘r'ontal soluti;:l"ls is intr'odu;:ed.
The new strategy is‘ based on -constr‘*uctmg' an élement level
Structure of maximal depth  within frontal étorage
1 imitat ions. The memory-resident e%ements at any stage of,‘
the renumber ing procedure are exactly the same as the
eiements of the active set in the frontal procedure.

.

O((m*N)Z) comparisons are required to construct such a level

v
'

structure, where m is the maximum number of nodes per
3

elemen't \and N is the number of elements in the mesh.

1

Extensive exberimental testing of the new algorithm is
carried o~(3T:>“on a single user minicomputer. The test
problems employed re_mge' in size from' the relatively small to
those‘ containing approximately 1000 elements,.with different

t‘Opolog ical structures.* The experimental results obtained

ind icate that the new algorithm has a reliable performance.

¢ . ' -
and great-memory saving ability.
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kRésumé

‘“' » )‘ 4
l\ préesente une nouvelle strateg ie de

Cette these

==

réénumérat ion desR\"él’ements, tres économique en mémoire, qui

|

prépare les systeémes d'équations vrencontrés dans 1les

. problemes d'éléments finis a etre résolus par solution

frontale, Cette nouvelle stratégie ordonne les,  élements en

une structure en niveaux, de profondeur maximale, tout en

respectant les restriction en mémoire imposeés par 1la

'

méthode de solut ion. Les él%ments résidents en mémoire 3

El

n'importe quelle &tape de la réénumération sont les mémes
' Ao . :

que les 'élements actifs lors de la résolution par méthode

frontale,. Le n/gmbre de compara isons requ ises, , pour

construire une telle structur;e est de 1tordre O((m*N )2), ou
N =3 &

m est le nombre max imum de noeuds par élement et N le nombre

4 -
< “

) d'éléments dans le probleéme. -
- ’ 9

Le nouvel algorithme est &prouvé avec un ordinateur' 3

usage personnel. Plusieurs problémes, qui vont de petits a ',
N
- »

.d'autres comprenant jusqu'a 100U éléments, ont tés résolus

pour différentes topologies. Les expériences démontrent de

°

grandes &conomies en mémoire et-la . haut fiabil ité de ce

w B}

: +

nouvel algor ithme.
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Chapter 1

Introduct ion

~

. »
Solut ion of cont inuum problems by the . finite element

method 1involves replacing thq differential .or integral
equaﬁions that describe a physical fielﬁ, by a set\ of
s;multaneoqs 'élgebraic eguations [4]. This system of
equat ions -is usdallyi very sparse; and many inéenious
tebhniques have . been developed 'to take advantage of the
sparsity so as to allow solution of large systems of

equat ions within reasonable 1 imitations of memory and

computer time.
&
Two es%entialli’distlncp, though related, ways ex ist
for solving finite elfement equat ions while making good use
S
of sparsity. .The first, and well establishéd, v iewpoint
. B
proceeds by noting that in the solutionvof equat ions by

Gauss ian el imination, fill-in cannot occur to the 'left of

\Y"

'the leftmost nonzero, matrix element in any row. Th is

observation leads directly to the ‘popular band-matrix and

profile~stqorage algorithms [15]. ~ However, the success of
these algor ithms depends critically on the order of node
number ing in the finite element mesh. For this rgason, a-

cons iderable amount of effort has been expended on

~developing methods for bandwidth or profile minimization by

renumber ing the nodes in the mesh.
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A widely used method 1s that first 'developed by Cuthill
and McKee (7] and " subsequently appl ied to finite elgmnent

problems. by George [10] in ,a' mildly modified form.: The

methods of Coll ins [5] and King [19] are closely related to

" the Cuthill-McKee ‘technique’, and share' its weaknesses: none

of these methods is capable of generating its nwn start ing
node for &ir{umberidg’. This problem was largely overcome by-
Gibbs, Poole and Stookmeyer [16], who. showed: how to
determiné a pair of nodes,which are at max imum, or near
r,n”axim.um, d istance gpar‘% in the graph cox:;'esp'onding to the
coefficient matrix, and thereby to identify two good

possible starting nodes.

A second viewpoint is thﬁat first propounded by Irons
[18]: sparsity of the coefficient matrix results from the
fact that all variables that oceu.r‘ in a_given finite element
are strongly connect;ed (many nonzero matrix entries), while
\variables ocecur ing in different el ements are weakly
connected (few nonzero matrix entries) if | at  all. It
theret“ore appé'ars useful to concentrate attention &n the
finite element st‘ructure rather than on the node incidence
graph. This view leads directly to the now quite widespread
frontal solut ion Itechnique. This approacﬁ has been

generalized and much more fully developed by George [11], as

the so-called hested d issect ion ‘method.

The essent ial pr inciple in the frontal procedure is to

produce the triangular factors of the coefficient matr ix’

~

~ 3

©

o e o yo——
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1

d irectly, without expl.icn:ly wri};ing out the matrix. To do
this, matrix assembly and factorization of the system of
equat ions are done 1in tandem so that only a small portion of
the matrix n‘eeds‘ to be memory-—reé ident at-any stage oif the
process. Thais mqkes it po§\sible to solvé even la’rge sets of
equations on small computers. However, success in this
qpproach depends solely on arranging the elements in such a
sequence that memory stﬂorage is minimized. ’For this r'easz)n,

a similar effort, though less, has been expended on

developing methods to find good element sequences.

The introduction of virtual-memory operat ing sys'tems
with\very large addr:‘essing spaces has led to great ease in
manipulating large matr ices, but has not in any wa? r emoyed
the need for good frontall algor‘-ithms. Virtual fneﬁlory
manégement makes 1t possible to def ine and access very large
matrices 1in a random fashion, but exacts itso price in the
form of pag ing'betv'deen random-access (real) memory and,6 a
secondary sStorage system (disec). Thus even in_a v irtual
memory system, algorithms for orcd“er'ing elements remain
essent 1al .if extreme numbers of pag ing operations are to be )

!

avoided.

v
Unfortunately, existing element sequencing algor ithms
3 7 \
[2,20] have been greatly influenced by the methods used for
. \ .
node renumbering: Ssome of them [2,25]° even' use node

renumber ing algor ithms as a necessary primary step. As a

result, they "possess an important d isadvantage: their memory

N
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demands correspond to the full set of elements and/or nodes

Y

inlthé finite element mesh. For large éroblems, this is

prohibitively large. The ironic situation then ar ises where
N s s . X
methods requir ing large computing environment are wused ¢to

find element sequences for a ‘subsequent small-core frontal

.

. solut ion.

In this thesis, we develop a method for finding element

sequences . for frontal solutions, which requires storage
T »

. amounting to the max imum size of the active element set at

any'stage of the frontal procedure. These sets which may be
initially quite large, get reduéed to a maximum size of
O(sdrt(N)), where N is the number of elements ig the mesh.
The algorithm"preseﬁted ar ises’ naturally by considering
finite eleme;t renumber ing methods from a frontal
perspective. Surprisingly, the propiem of finding- element
sequences for froﬁtal solut ions from.a minimum (real) memory
point of view has not been addressed pefore, despite ., its

-

practical importance.

The outl ine df the thesis is 3gs foilows: in chapter 2,
we briefly review the frontal.solution procedure for finite
,§lement systems of equations. 1In chapter 3, we consider the
renumbe}ing problem for such‘solutions; and.in chapter 4, we
give a fairly detailed~description‘of the new strategy.- As
is the case with renumber ing algorithms, we evaluate the new
algorithm in chapter 5 through extensive experimental tests.

Chapter 6 includes the conclusion of the work in the thesis.
. A

(o
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JThe basic matrix notations and definitions. used throughout ‘
the thesis’ are given in appendix A.
<
3 “‘ '
° »
q : -
~ ”
o oy '
: ]
. .
. . it
. , - | )
~” ¢ : - *
7
¢ €
) ! . ’
L |
b7 . > * N .
L % .
2y
&) :
Y .
&
N ~
. . g -
e . .
& s ‘



a?

Chapter 2

The Frontal Solution

- ¥r

o

Finite element equations are usu@lly assembled on an
element-by-element, rather than node-by-node, basis [6,26].
Element-oriented. frontal solutions [18] are therefore
natural to finite element problems. Only a brief account of
the frontal procédure is gﬁven below, a more complete

descr ipt ion may be found elsewhere [1].

The essential principle in the frontal procedure.is to

~

produce the triangular f;ctors of the coefficient matr ix
directly, without explicitly’wriéingﬁoutﬂthe matrix. At any
given moment during ‘the frqntal procedure, the finite
elements of a probleq may be classified 1into three sets:

F : Elements associated with matrix rows and columns that
have been already processed, i.e., decomposed and
written to a file;

A : Eleqents associated with at least some matnix rows ' and
columns tha£ have. been partly assembled, but have not
yet Been fully processed; and

é': Eleménts associated with only matr ix rows ﬂand c&lumns
whose num;rical process ing°has not yet begun.

The set of variabies connect ing these sets 1is <called the

front; the maximum size it attains is the frontwidth. The

N : .
appl ication of the‘T?g;t 1 procedure on the finite element

" mesh in figure 2.1 is demonstrated below.

L3



Page _
g
~
5
25 6" 5 12 1
‘15 2 8 4>
21 7 8 13 1%
10 .9 5 16 .
)
9 2 1 15 24
g 3 1 14 12
10 3 4. 20 23
6 i3 7 11
16 17 18 19 2
b
° b . ‘
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Evidently, only that part of the matrix correspond ing

to the front variables needs to be memory-resident. %Tt is

t

Eherefore necessary to know when all of the work with some
var iables is terminated to allow for front contraction.
Although destinatlgn allotment is completely arbitrary, it
;s usual to assign to each variable its longevity, i.e, the
span of elements for which it remains active ' (in the front).
Thus, in the above demonsttration, the variable number 1, for,
example, will have element number 14 as its destln;tion.
Dest inat ions may alternatively be assigned to the gléments

~

rather than to the nodes. 1In this case, element number 14

1

will bBe the destination for elements 1, 7, 11 and 13; and
the variabies 1, 4, 18, 19, 20 and 21 may then be eliminateq
from the front altogether. Iﬁdeed, the whole task may be
) . .
regarded as starting with all the elements belonging to the
initial set E, and continuing until all have been }elegated
to the final set F, keeping at all times only the active.

portion of the matrix in fast core;

Frontal solutions of finite element problems are quite
diverse. They ~ include, among others, direct solution
techniques for systems of 1inear -equations [18] "and the
subspace iteration method for the generalized eignvalue
problem [31./ Application'of the frontal concept to the
practical Manteuffel algorithm for stablizing incomplete

Chol &ki decompositions [27] to allow solution of finite

element field problems by the preconditioned conjugate

v

"gradients method is now an area of active re%Jérch [23].
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Chapter 3 I DN

R%numberiﬁg for Frontal Solutions

\

In this chapter, we consider the renumbering problem
for frontal sdlu?ion procedures of finite element‘s§stems of
equatigns. The'success of frontal solutions is shown to
depend solely on the order in which the elements, and not

<

the nodes, are el iminated. A criterion for finding element
Q .

sequences for these solutions is given. The convenience of

the element level structure as a vehicle in renumbering for

.frontal solutions is also established.

N a— -

3.1 Numbering Kequirements of Frontal Solutions

~

A

The success of frontal solutions - clearly ﬁinges on
reducing the frontwidth so that fast core  storage 1is
minimized. For a g iven mesh topology, the front associated
with a particular element depends only on the order ,in which
the elements are el iminated. Frontwidth reduction can be
accompl ished, . as the 31Mp1e demonstration. in chapter 2
readily,suégests, Sy arrang ing the elements 1in sucp a
sequence that o;ly relatively few elemegts belong to the

active set A at any stage of the frontal procedure.

N
+

Since adjacent elements are interconnected, minimizing
the size of set A is equivalent to minimizing the difference

N

in sequential numbers of adjacent elements. In other words,



<

exactly the same topological criteria apply to the frontal

solut ion as apply to the standard Gaussian elimination,

except for the fundamental difference that it is the element
[]

numbering, not the node “numbering, which is of prime
F .
importance. Even a truly optimal node numbering does not

guarantee the success of the (frontal solution. This is
immed iately seen from the demonstration in the previous
chapter: no matter what the - node nrumbers are, +the front

sizes remain unchanged.

Nodes may only be renumbered ® after the elements are
renumbered if at all. In fact, node renumbering 1is
considered irrelevant to the frontal brocedure, and the node
numbers are sometimes termed "nicknames§ to emphasize ,this
fact [18]. However, a good nohe number ing is still required
for more efficient computatiens, but as will be seen in
section 3.3, a reasonably 'good node number ing is
automatically:}n&uced by a“good element number ing. ‘

2

3.2 Element Renumbering for Frontal Solutions

-

Ereﬁent renumber ing strategies for frontal solutions
may be classified as direct or indirect. Direct strategies
attempt to find an element sequence yithout renumberingl\the
. ners~fi;st. On the other hand, indirect strétegies\proceed
by first renumbering the nodes so that minimum bandwidth is
obtained, and then renumber the eiemapts according to the’

new node pattern. ' Two' direct and two 1nd irect element

o . Ky



renumber ing strategies are described below.

7/

The first direct strategy 1s due to Akin and Pdrdue

L21.

In th&ir procedure,

an element of minimmum degree (the

number of adjacent elements) 1s

first.

ident 1f 1ed

and

renumbered

The elements adjacent to the first element are then

. .
renymbered 1in 1ncreasing order of their current degrees (the

number

un-renumbered elements

of

adjacent . elements

ad jacent

yet

to

each

to be renumbered).

new

The

element n

sequence (said to form an element level) are next renumbeted

in a smilar fashion.

level,

unt 11

all

the

The process 1is

elements

cont inued,

have been renumbered.
h}

level by
An
could be

element sequence for the model mesh in figure 2.1

{15, 2,

10,

9, 8, 5, 3, 1, 14, 4, 16,712, 6, 13, 7, 11}.

~

The second direct strategy has been given by L [20],,

and 13

of

E
3

based on the observation that minim1izing the number—

sfide~connections

between

el iminated

. and

remain ing

elements at any sfage of the frontal procedure can lead to a

9

A

frontwidth reduction.

T works

each element is represented by a node, and any two of

nodes

An

on the "dual graph"

are

connected

(by

mplementat ion of

of the finite element mesh,

an

correspond ing elements share

a

edge)

common

if

Liu's

and

side.

shows the dual graph of the mesh in figure 2.1.

F igure

strategy
where

these

only if theair

3.1
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16

12

11

~

/&
i Fig 3.1 The dual graph of the finite element mesh

in figure 2.1.

. ) ; The set of edg;s connect ing the renumbered and un-renumbered

nodes of the dual grapﬁ is called the edgé front; 1its size,
Dthe edge frontwidgg, iﬁ Aow the quant ity to be mlnﬁnlzedi
An element sequence 1s 1nduced as follows: at each step, “the
nodes connected to the already rehumberd ones are examlned,
and the node (element) 1increasing the\edge~frothldth the
least is renumbered next. An element sdquence for the mesh
in figure 2.1 couid be {15, 2,\3, 4, 10, 9, 5,16, 3, 1, 14,
12, 6, 13, 7, 11}.

¢

The two indirect element renumber ing strateg ies we now

-
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describe are essentially similar. The first ind irect
strategy 13 also due to Akin and Pardue . [2]. The

Cuthill-McKee algorithm is initially used to renumber the
nodes for a minimum bandwidth. The new node patteﬁn 1s ‘then
ut il ized for renumber ing the elements as follows: for each

A i

new node in sequence, the  un-renumbered elements containing
’ ‘ . N . 'sr\'
the new node are renumbered in increasing order of e ir

current degrees. A possible element and node number ing

-

‘obtained using this procedure for the mesh in figure 2.1 is

shown in figure 3.2. S

1 2 5 10 17

1 2 5 10
3 4 6 " 18

. ) 3 4 6 11,
- 7 8 g 12 19

. 7 8 9 12

. )

13 14 15 16 20

¢ 13 14 15 16

J '

21 2 23 24 25

3

——

© Fig 3.2 An element and node number ing for the mesh
in figure 2.1 obtained by the Cuthill-
McKee-Ak in-Pardue ind irect procedure.
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‘The second indirect strategy has beén '_reéently
"published by Razzaqué [251]. Again, .the nodes are first
renumbered for a minimum bandwidth, and the elements are
then -renumbered accordingly. However, element renumber ing
is now a little different: they are renumbered in increasing
order of their least anodes. If the Cuthill-McKee algorithm
is used }or node renumbering, a possible element and node
number ing fér the mesh in figure 2.1 obtained by Razzaque’s’
procedure would be similar to that given in figure 3.2\ with '
the Akin-Pardue indirect procedure.

2

3.3 Node Renumbering for Frontal Solutions

Node renumbering for ‘frontal solutions\ ié not as
crucial as element renumbering. In this section, we show
that a good node numbering is automatically induced by a
good element ndmbering. Two different techniques are

described below.

Let the elements of a mesh be renumbered by the
Akin-Pardue direct procedure. Let the nodes be renumbered
after that as they occur, element by element in sequence
(straight node renumber ing) . The fact that nodes in a
single finite element are interéonnected (10] ensures that
nodes renumbered this way wilf have a Cuthill-McKee-1 ike
pattern. Figure 3.3 shows ép element and node ?Umbering

obtained using this procedqre for the mesh in figure 2.1{‘



Liu

renumbered as they are removed

z\

q

4 e 1 5 10 17
1 2 5 10
3 2 6 1 18
3 4 6 11
,
8 3 9 12 19
) 7 8 9 v 12
14 13 15 16 20
}
3 &) )513 14 15 16
21 22 23 2&' 25
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Fig 3.3 An element and node numbering. for the mesh
) figure 2.1 obtained by the Ak in-Pardue

in

procedure,

and
straight node renumber ing.

an

~

element-by-element

17

Anotﬁer node renumber ing strategy has been suggested by

[20]: for a. given element sequence, the nodes are

el iminat ion.

from

the

mesh

by

element

Liu has developed much theory to prove that a

min imum proflie node numbering for finite element systems of

equat ions could be obtained in this way. A combination of
! I Y

Liu's element and node numbering strategies gives the

element and node number jng shown in figure 3.4.

-




Fig 3.4 An element and node numbering for the mesh
in figure 2.1 ¢btained by .a combination of
’ Liw's renumber ing strategies.

kY

"
>

b
3.4 Comments on Renumber ing fog Frontal Solutions

The frontal solution procedure has been developed to

’ ) %%low solut ion of large sets of finite element equations on

&
small computers. To be consistent, renumbering strategies

[
b

\ ,\ .
pffor frontal solut ions should draw on similar frontal 1 ines.

3 5 .
In section 3.2, two direct and two indirect element
{

renumber ing strateg ies were presented. Each direct strategy

e

f8llows a different procedure for generating an element

<
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ontwidth. Akin and

sequence that would yield a reduced
Cl N v o

Pardue wuse an element level Structure concept, while Liu
employes a m in imum edge fr dntwhdth growth c¢riterion. The
two indirect strategies, on the. other hand, are quite

similar: both ‘are designed so that the frontwidth does not

exceed the minimized bandwidth,
I

Some generated levels in: the Akin-Pardue direct
sﬁrategy, however, may cause fairly large increases in the
size of the active set A. In addition, Liu's strategy
possesses an“Amportant limitation: it may only be applied on

meshes having a constant number of nodes per element.

ﬁewertheless, the computer implementation of these two

strategies util izes adjacency 1lists whose memory demadnds
correspond to the full element and node set in the finite

element mesh. .

\Indirect element '~ renumbering strategies for frontal
solutions clearly do not enjoy the frontal spirit. Firstly,
they ne&}ed% the eminence of elements over nodes in the
frontal‘ procedure; and secondly, because of thé storage
requ irements gf node renumbering algorithms, which are
proportional to node <count [15]. Furthermore, S ince the
node level structure [16] 1is a basic construct in the
Cuth ill-McKee ( and many other) bandwidth minimizing
algorithms, induced element numbérings are produced on a
level-by-level basis. Very litt;e can therefore be said to

favour ind irect element renumbering strategies.
[+ %



Bt

LY

Page 20
Although the applicatioh of the simple element-by-
element straight node fenumberlng strategy on a mesh with a

level-based element number ing gives a good node numbering in

the Cuthill-McKee sense, Liu's. node renumbering strategy

- R
fulfils the basic frontal requirement that, for a given

element sequence, nodes are renumbered in increas ing order

v

of their longevities. Numerical stability in the matrix

~
factorization, however, mdy become the crucial factor: in
node renumbering [13]. In still another case, some
AN
factorizat ion techn iques may require a special node

numbering; for instance, a low-fill node number’ing is needed

for better incomplete Choleski decompositions.

In frfntai solutioﬂs, situat ions may ar ise whefe it is
p>eferable to process sets of elements, or superelements. A
choice of the levels in the elément level structure as
superelements adds'another measure of flexibility: process-.
iﬁg ohe such superelement eliminates from the froat all the
var iables assoc¢iated with the previous one.  In this case,
dest inations are easily élfottéd by assiéning to all the
var iables (or elements) in a particﬁlar superelement its

number (plus one). Success in this approach clearly depends

- . Ll
on having few elements in each level.

It is well known that increas ing the number of 1levels
(the depth) of the 1level:structure decreases the average
number of ‘elements in each level, and tends to reduce the

max Imum number of elements per level (the width) as well.



Page 21

Such a small width level structure will also overcome the
diff icult ies encoﬁntered with ~ the Aklp-Pardue direct
stfategy. Indeed, 1t 1s a convenient vehicle 1n renumberlng
foE frontal solut ions, and perfectly fits our criterion. In
the next cHapter,.we present a renumbering strategy based on
constructing an element level structure of maximal depth

within a frontal framework.
~ f

=




Chapter 4

""A Memory-Econom ic Finite Element and Node .
Renumber ing Strategy for Frontal Solu% ions

)

In this chapter, a memory-economic %inite element and
node renumberlng’ strategy for fronta% solut ions is
‘introduced._ The new strategy 1is shown to require stotage
amount ing to the max imum size -of the active element set A in
the frontal procedure, and O((m*N)2 ) comparisoni, where m

~

is the mnaximum number of nodes per element and N is the
W N

number of elements in the mesh.

4,1 A Memory-Economic Kenumber ing Strategy

4
The new memory-economic finite element renumbering

Strategy generates an element seauence for frontal solutions
by constructing an element ievel structure of maximal depth.
Although the procedure followed to obtain such a level °
structure i§ 31milar to that used for its nodal <counterpart
[13], their implementations differ substantially becéuse of
the frontal approach of the new implementation. A depailéd

descr iption of the new strategy is giveq below.

I Constructing an element level structure:

-

Let all the elements {e} in a finite element mesh
initially belong to the element set E, and let the final set

F be empty. The work begins by choosing an (arbitrary)

\\\\\
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element from E to constitute the active set A. At each step
of the process, a set B is QOnstructed, comprising all the
eélements .n E, wh Ich directly adjoin any element &n set A. -
In other words, B 13 the adjacent set of A fully contaulned
in E, and therefore fBrms a néw level in an element -level
structure. In the sequel, the two synonymous words set and
level may be interchanged. When ‘B has been found, F is
enlaréed to contain A; all members of B are removed from E;
and set B is substituted for 'set A. This process is

v continued until no members remain in set E. Mgre formally,

4
the following steps describe the procedure:

r

1. E :z {all elements}
F := {empty}
5 A :z= {one element in E}
N
2. E := E - A
B := {emptyl ' . S

3. for every e in E
if Inc(e,A) > 0 then.begin B := B + e /

E end

"

tr3
|

D

., 5. 'if !A! > O then go to 2 \ :

Here Inc(e,A) denotes the number of elements in the set A to '

which element e is connected; |A] 1is the number of elements |,
*

¥ /
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in A.
s

In the above description, if the set augmentation in
;tep "4 is done so as to keep F orég;ed, there will bguno
need to manipulate F . in any way, and the set isl very
'naQ?raliy accumﬁlated in a sequential file. On the other
hané, step 3 requires examination éf every element in £, so
that if the set E is kept in a file, the file must be
ré—read at evéry pass. The set exclusion (removal of
elements from E) also requires set manipulaﬁion. These are
most easily taken care of by keeping both E and F fn
sequent ial filéé, andtby creating an additional, temporary,
file G. As E is read, it is partitioned into B and G.
After eéch pass of thé‘algorighm, G is then subspituted for

E. In practice this substitution 1s best achieved by

reas$igning file names, without any need for copying one

-,

file into another.“_In detail, the algorithm then reads:

1. E := {all elements}
F := {empty}
4
A := {one element in E
. coE | >
G = E - A ' ~—
2. E := G
G :;_{empty} *
B i= {empty}

3. for every e in E

if Inc(e,A) > 0 then B := B + e
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else G 1= G + e
4, (augment every element in A)

5. F = F + A

=4
n

B ‘ .

6. if |A} > U then go. to.2

As pointed out in chapter 2, much storage will be saved
while perform ing the frontal matr ix assembly and
factorizat ion with a proper destination allotment. This s
carr ied out in step 4 above for, after step 3,.1it is an. easy
matter to determipe the-highest-numbered elemenﬁ' connected
to each element in A. The elements }n A which are not
connected to any elemenrit in B and, similar}y, those in the
lést set A may be assigdbd the highest element number in set
A itself. As a final remark, 1t may be noted that the
"frontal” attive element set A in chapter 2 1s equivalent to
the union of the two "cogputer" sets A and B above.

II Constructing an element level structure of maximal

depth: ) .

To constydct an element level structure. of “maximal
depﬁh, the work proceeds by choosing an (arbitrary) element
from the last element‘leveltat wh ich a;other rooted level
structure is constéucted in a_similar fashion. 1If the depth
of the new level structure is equal to that of the previous

one, the process terminates; otherwise, more iterations are

perforﬁed unti1l this condition has been achieved.

AN
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In faqt{'not all the elements in E need to be examined
in step 3 at ever} pass, during any of the succeed ing
iterations. Much work can be saved if element dest inations
ére used to mask the components from which each new level is
constructed. This can be accompl ished simply by assuming
that, at each pass, a set M exists, containing all elements
inn E with destinations less than the lowest element nﬁmber
in” the conétructed'portion of the new level strucﬁure: As E
is read, the eleménts which are members éf M are written
into G immediately sSo as to keep it ordered for the next
passes. Clearly, set M (empty in the first “iterat ion) is
never created; rather it is svirtually constructed by

dest inat ion allétment. The algorithm finally reads:

7. d := 1
L := {all elements}

E := {all elements}

2. 1 =0

. F := {empty}
A = foné;element in L}
G :=E - A |

3. 1 =1 + 1

N
E := G

M := {masked elements 1in E}
G := {empty} c

B :z {empty}

° [

o
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4. for every e in E . 3
ifr T e¢€ M then G := G + e else
if Inc(e,i) >0 then B := B + e
else G := G + e

5. (augment every element in A)

7. if A} > 0 then go to 3 else

if 1 > d then begin d 1

]}

L {last set A}

E := F

"go to 2 - end

Here 1 gives the depth of the element level structure,

whereas set L 1is never created.

III Element renumber ing:

S

Although the element numbering . produced by the
algorith as it stands fs good, some minor degreé of
improvement may be achieved by rearranging the elements in
each set so that the difference in sequent ial nquers‘of
adjacent elemerts is minimized. This, however, should be
done at every iteration since it is not known a prior i when

the-process will terminate. Step 5 then readss

5. (reorder elements in B)

(augment every element in A)
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This task‘;an be aacomplished by generating an array to
hold the eiemeﬁt number in A té wh ich each element in B 1is
first connected, while perform ing step 4 above; the elements
in B are then "grouped" in a Cuthéif§&g§pe sense. In this
case, aﬁ examlnatién of e&é}y element in ‘A in.step 4 is no
longer reguired, which may result in a great'saving of work.

The element pattern obtained, however, does depend on the :

" initial order of element numbers.

-

Tﬁe elements may be renumbered in other ‘convenient
ways, ‘ For instance, a King-1like element numbering can be
imposed on the level structure in a way similar to that used
. Ey Gibbs [17] in has hybrid profile reduction algorithm.
However; this will requi;e generating a "connection table"
(or another suitable adjacency structure) [15] fo} the
elements in A (the objects now to be rearranged), and an
examination of every element in A in step 4. If a
particuf;r element 1is specified to be renumbered first, only
one iteration needs to be performed, and this scheme méy 5e
favoured over the less neat (in a heuristic sense) element
’groubiné descrlbed- above, sf cour se, provided that we can
afford the ixtra.storage required. The work  involved and

the difficulties .encountered in updating the destinations

would otherwise render this scheme unacceptable.

@ AN

Other element number ing patterns may still be obtained.
The new algorithm lends itself naturally to produce a nested

d issect ion elehent number ing [ 12]. First an element 1level

o

St It . 8
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s

\
structutre of maximal depth is constructed. The&elements 1n

the mid-level that are connected to the next level are then
chosen as a separator (ties are broken arbitrarily), and
renumbered last. This scheme 1is repetitively applied to
egch connected' component until all the elements have been
renumbered; the ‘elements in any component whose le;el
structure 1s of depth 1less than or equal to 1 may be
renumberéed directly. However, this method of renumbering 1is
liable to éequire a much more careful component maéklng and
large amount of computer time, and yet still to face similar

!

dest inat ion updating problems,

IV On processing levels as superelements:
{

Proceséing levels as 1if they were superelements in thiéXQ
renumber ing strategy can lead t® great ease in coding: For
ins&ance, the elements belonging to each set are readily
recognized so that destination allotment is no prablem
whatsoever.,  Component masking dur'ing the succeedin;
iterations is also quite s imple. Let some elements in level
i of the previous level struéture be included in the
constructed portion of the new one. vfhen, all elements in
the first i-2 levels —certainly need not %o be examinea
(members of set M). Furthermore,‘éé wiil be seen in section
4,3, assessing the number of comparisons performed using
superelements is, a straight-forward exer01se.> Such an

assessment for individual element processing ®* is difficult,

aithough both should yield :the same bound.



P V A worked example:

§ .
In this section wée demonstrate the appl icat ion of the

new algorithm on the finite element mesh in figure 2.1. In

the demonstration below, levels-as-superelements ‘are

\ .

. pr.ocessed; E, F, A, G and B are the element sets described
in sections 4.1.I and 4.1.II; the elements in B appear

grouped 1in the way described in section 4.1.II1I1: and the

elements discarded by componenﬁ masking (members of set M)
‘ ¥ o

. . (pare shown encircled. The augmentation of F by 'the last set
"-7‘,' - ; -
fj’ A is omitted below. The first element is arbitrarily chosen
. , p @

to be the starting element; and at each =SsSuccéeding

S

iteration, the first element in the last level of the

’ . &
3\ - previous literation is, taken as the new root. The element
! number ing obtained in this demonstrat ion is shown in f igure
4.1.
1V
~ @ ~
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R The Appl 1lat 1on of the New Strategy on
\ the Finite Element Mesh™ in Figure 2.7
Q" . \
aQ
: } N

~ -

e - —— " —— - — - — o — — - — - — - — - o W e e W W G EP TS e m A M G
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1 12 2 1 2 3 2 1 3 2 12
\ 2 3 3 4 5 4 5 4 3 4
‘ 3 9 4 4 8 6 8 6 8§ 5 8
. 4 5 5 "M 7 M 7 12 6 12
5 6- "6 12 9 12 9 16 7 16
6 7 7 15 10 15 10 11 9 11
7 8 8 16 13 16 13 15 10 15
8 9 9 14 14 13
9/ 10 10 14
10 11 11
11 N 12 S
12 13 13
13 14 14
o 14 15 15
15 16 - 16
) 16 : "
———J#l—_’ ________________________________________ '{..___r ------
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The Second Iteration

V3

R

-
&
E G E F A G B E F A G B E F A B F A
1 1 (:) 2 1.5 1 2 5 6 1 6,2 1 6 2 6
3 3 3 3 9 3 9 7 14 7 5 14 7 7
5 5 5 . 6.10 6 10 13 4 13 9 4 13 13
6 "6 6 7 8 7 g8 11 12 11 10 12 11 10 11 6
7 7 7 13 15 13 15 16 8 16 8
9 9 9 14 14" 3 15 3 15
10 10 10 4 4 1
13 13 13 12 12 14
14 14 14 16 16 - 4
2 4 4 11° 11 12
4 8 8 16
8 12 12 3
12 16.- 16 - N .
16 11 11
11 15 1
AN : ;
] ‘ , .
( | *
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The Third Iteration

-

E F A G B E F A G .B E F A G B E F A G B F A G B
2 6 2. 2 6 2 1 @ 6 1 2 5 2 & 5 2 6 2

5 5 (5) 3 5 3 8 9 8 1 9 8 1 8

5 e, 9 (9) ;9 13 9 13 15 10 15, 10 4 3

10 10 10 10 10 4 14 4 13 14 12 13 12 »
8 8 (8) 8 8 12 7 12 7 16 5 16 ‘
15 " 15 19 15 15 16 16 15 -9 15 ‘
1 - 1 -4 14 14 11 11 11 10 11

14 14 14 4 4 14

4 4 a 12 12 7

12 12 12 16 16

16 - 16 16 7 "7

3 3 3 11 11

6. 7 7 )

7 /o 13 13 '}?R yd ’

13 11 11 ‘ ‘ _ )

Pl

.....

oo € e W AR g

» >
P N Y QNN G % YT | P N
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. le
15 10 11 12
& 7
7 6 5 14
3 2 8 13
" 4 9 16

Fig 4.1 The element number ing obtalined f&h the
above demonstration for the mesh in figure
2.1.

4,2 Node Kenumbering in the New Strategy

N

‘Finite eleménts are commonly represented as sets of
node numbers, which in turn serve’as pointers to coordinate
arrays. For exampfe, a firgt order tr iangular element would

ord inarily be represented as three integers {1i,j,k}, toes

[y

ind icate that its first node was located at x(1i), y(i),

z(i), and so on. Node r%numbering thus consists of two

N ~

,separablé tasks: thqgg?neratioq of a renumbering key, and
the régrrangemeqt»&f'the arrays of node coordinates.

4

f

- p———
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N
K renumbering key array K 15 generated as follows: K(1i)
ié the old node number corresponding to the new node number
i. Since the key array is generated in. running sequence of
the index i, it can be written éo file 1mm§d1ately. Care

should be taken, however, if constrained nodes are to be

renumbered last; or if Dbinary econstrained nodes are

included. If a particular .element is specified to be-

renumbered first, nodes may be renumbered concurrently with

elements in a very simple fashion. Step 5 then reads:

5. (reorder elements in B or A)

4

(augment every element in A)

rd
{record new node numbers)

In this case, it suffices to keep in memory a large enough
portion of K "to allow the element node numbers to be
rewritten, i.e., a portion that covers all elements in sets
A and B above. On the other hand, if the algorithm is to

iterate, a separate program run is necessary for generating
[ ;
3
the renumber ing key , array and rewriting element node

numbers. In any event, an element-by-element straight node

A

renumbering is a convenient ‘method to be used in conjunction
with any of the element renumbering schemes described in

section 4.1.I1I~

‘e

After the key array has been generated aﬁd filed, the
coord inate arrays usually need to be rearranged. This task

~

is best accompl ished in another sebarate program run that

© must réad'as much as possible of the renumbering key arréy,

£
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K; read the entiré coordinate file so as to extract the
relé&ant' coord inates; and then write these to an output
file. This process 1is then repeated as’ many ¢t imes ésl
necessary. It may be seen that thé structure;of éhis task
very closely paragllels that‘of elément renumber ing, so that
it is unnecessary to give detailed élgorithms.

4,3 Memory and Computer Time Limitations

In this section, we consider the ' (real) memory and
computer time 1limitations ' for the basic algorithm as
presented in sections 4.1.I and 4l1.II; that 1is, for

constructing an element level structure of max imal depth.

The stofage Eequirements of ﬁhis algor;thm are
immediately- seen, 'The detailed dqurip@lon given above
clearly indicates that the sets of memory~resident elements
at the different stéges of the renumbering procedure are
exactly‘theusame'as‘the active element sets in the frontal
procedure. [It is hard to g ive any bounding values for the

sizes of these sets since they largely depend on the mesh

topology and the choice of the starting element.

The estimagion of the number of comparisons performed,
however, needs a 1little algebra. Let m be the max imum
number of nodes per‘elgment, and let N pe the > number éf
elements ‘in“\ the finite element mesh, The n&mp?r of
comparisons performéd in the first’ iteration (N‘Cl:) is

t

certainly t

4
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N.CL. < mP*((N=1) + Wy *(N=l-wp) + w *(N-T-wp-ip ) +
+ WQ_l*(N—1--.--W£_l)}, i (4. 1)
2 .
= m;*[N*(1+wl+w2¢...+ wz) - (1 + wlf(1+%_) + Jd.
+ WR*N)}, (4. 2)
whé?e Wi is thHe number of elements 1in level 1, and 1 is the

"number of levels. Since wi21, the number of comparisons

becomes
2 2 - 2y %
N'Cl' < mTR{N" ~ N¥(N+1)/2} = m“*N*(N-=1)/2 (4. 3)

This represents the main fraétion of work; thét due to
subsequent iterations has been significantly slashed with
ﬁhe proper masking of element components. To 1llustrate
this point, consider the case ‘of processing levels-as<
superelements; the numbér of comparisons performed in the

1S

second iteration (N.Cz.) is then

5.
N.C.. < m“*{(w +w_.=1) v ¥ (W +w W -1=v “ee
20 S Qv o T T )t
V. *®(N-1w=V ~...=v ) (4. 4
T Ya-1 1 d-1 by A )
= mz*{(vl+ﬁ_) + ﬁ_*(%2+3 Y o+ ... +.vd_l*vd}\

where %_is the number of elements im level i, and d 1s the
number of levels in the second level structure. Although at

is hard to assess the remainders ri they can be generally

considered of 0(v), where v = max {v }. It immed iately
I | |
folllows that N.C,. is of O(nf *v2%d). Since v¥d 1s’of O(N),

s

this is obviously “of O(me*t*N) with t<<N. The number of

compar isons in other iterations will be further reduced as
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‘ level structures of smaller widths are generated. Summing
A : -
up, the total number of comparisons will be o

s p ’
m2a{N2/2 + L ¢ ANy, i , (4. 6)
i=1 i
where p 1is the number of iterations, and tl 1s  =0.5

(equat ion 4.3).

Compar ison counts appear not to oe a reliable measure

of the actual <cost of this algorithm. It is generélly

accepted that memory storage and executjon time cannot be

reduced simultaneously; an improvement of one normally leads

to a deterioration of the other. Since memory has been our

pr imary concern, thé new algorithm was developed so as to

reduce storage requirements, certainly' at the expense of

execut ion time. A substantial overhead due to many file

retrievals and memory-disk transfers is therefore expected.

4.4 Two Illustrative Model Problems

The limitations of this renumber ing algorithm may be
further illustrated by considering two model préblems,-one
two-d imensjonal and one three-d imens ional, In " two
d'imens ions, Iconéider a square array of N Quadrilateral
elements (N @ perfect square), with the starting element

chosen at one corner of the square at each iteration, so

that only fwo iterat'ions need to be performed. .

It will be.clear ﬂ{om figure 2.1, or any larger pattern

of . similar typé, that the maiimum d ifference between
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adjoining element numbers will be 2 sqrt(N) - 1, and that

the number of execution passes per iteration is sqrt(N).

'

The largest number of elements in set: A is approximately
2 sqrt(N), so that the memory-res ident number of elements  is
approximately 4 sqrt(N). If memory is available to house K

elements concurrently, a problem 1nvolving approxﬁfately

(K/4)> elements can be renumbered, in 2%(K/4) passes. To
illustrate numer ically, suppe¢se K = 1000, which represents a
_'very modest-sized minilcomputer. Renumber ing the | model

problem takes approximately 500 passes in this céEZ: The
renumber ing cépacity amounts to approx imately 62500
elements,  equivalent to 250000 nodes if nine-noded
quadrilate?alslare employed. The number of comparisons

performed is 0(1011).

Cons ider next a similar three-d imens ional model
problem: a regular cubic lattice of N brick elements (N a
perfect cube). In thais case, the number of memory—residenf
(2/3) , and the number of required passes per
iteration is approximately NU/3) . If K elements can be
housed in memory, (K/6)(3/2) total elements can be dealt
with, in 2 sqrt(K/6) passes. Taking K = 1000 as an example,
26 passes of comﬁutation will deal with about 213% elements,

or about 18000 nodes if 27-noded brick elements are used.

The copmpar isons count up to 0(109).

'

|

It may be observed iIn passing that the ratio of

requ ired _passés for the two-dimensional model to that’ for

F

S 1 ) .



Page 40U

the three-dimensional '‘model is apgrox1matély 20. This

reflects the,fact that the ratio of the elements in the two
/!“ f

mode}s is near thi§/figure (approx imately 30). A definite

reduction 1in overhead can be achieved by using fewer

elements. b
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Chapter 5

y Exper imental FResults .

»

The evaluation of renumbering algorithms 1is usually
carried out on a computer through extensive exper mmental
teéts. In this chépter, we test the‘new glgorithm on a set
of meshes that range from relatively small sizes, up to
approx mately 1000' elements, and that g@ve different
t?pological structures. Some comments wfll then be drawn on

its performénce from the results obtained.

5.1 Data Structure -- Element File Organization

In our computational implemerntation, element files are °
organized as sequential files of unformatied (binary)
records of 32 words each, with one element per record. For

N
each record, the words contain the element dest ination D, an
elemgﬁ&mtype ind icator T, a.region label\R (which serves to
ident ify material properties and 'source densities), the
number of nodes in the element N and é 1 ist 6f ndde numbers
n(1). The type T and the region iabel R are®taken as
two-character alphabetics, whereés the numerics are all

integers. An element may have up to 28 nodes under this

arrangement. Figure 5.1 shows the structure of a typical

record in element files.
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Bytes 2 . 4 6 8 10 o 32

L)

Fig*5.1 Record structure in element files.

N
5.2 Experimental R§§Ults‘

Ex ist ihg renumber ing algorithms aré iargely Heuristic:
Since there are no1stric£ théoretical grounds to evaluate
these algorithﬁs, this 1is aone’ empirically on a computer
through extensive experimental testhQ\These_tesfé need to
be performed on a set of problems thal' arise in practical

finite element appl icat ions, and that range up to reasonably

1érge sizes, with different topological structures [{81].

The set of test problems employed contains five mesh

e~
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problems especially désigned for testing renumbering
algorithms: a rectangular domain, a fectangular domain with
a hole, an L-shaped domain, an H-shaped domain and a
+—shaped domain. These meshes were produced by MagMesh (the
geometric modeller phase ~of -the MagNet 11 field analysis
system [22]) through mirror-and-j01nl operations. Since

MagMesh is 1intended to provide only first order triangular

elements, these meshes have more elements than nodes (about

R

twice as many elements as there are nodes for large models)

[9]. For each mesh, we have considered four different cases

.consisting of relativeiy few elements, up to approximately

4
1000 in number. Representative test problems are shown in

figures '5.2-5.6. In add ition, three other problems (shown

!
’

in figures 5.7-5.9) were used in  our experiments. . The

Half-pole Pitch problem (courtesy of the General Electric.

Company (GEC), UK) is typical of the problems that arise in
machine‘ design. The Bullet problem was generated by é
Mov ie.Byu facil ity [24]. The third problem (mesh 23) -is a
geometric display ‘fbrmed by MagMesh. Finally, the Circle
prbblem is taken from reference [25]. ' Test problem

statistics are présented in table 5.1.:

ke
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Fig 5.7. A 592 elements, 322 nodes Half-Pole Pitch
(mesh 21).
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Fig 5.8 A 84 elements, 74 nodes Bullet (mesh 22).

>



Fig 5.9 A geometric display of
242 nodes (mesh 23).
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Table 5.1 Test Problem Statistics

———— ———— S S e " - — " . Y - ——— . A A = . e . e o A A e At Am e e S - - -
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W 2

- ek

— —— )
OQOW O N W N — OO O~ ™ (93]

N —

fectangular Domain

Fectangular Domain
with a Hole

/
L - shapéd' Domain
H - shéped Dom a 1n
+ - shaped Domain

-

Half - Pole Pitch
Bullet .

Circle

X! x/e PR
81 3 - 871
153 3 2162
289 3 6116
561 3 19486
R
106: 3 1136
254 3 4264
388 3 7636
648 3 13132
65 3 574
208 3 2941
341 3 4929
539 3 18363
103 3 1261
205 3 3326
343 3 7490
608 3 18033
85 3 1079
147 3 2423
297 3 7582
545 3 22059
322 3 10464
T4 4,3 1270
242 3 5460

738,6 1295

319

135
39

FW RMS WF
18" 11.4789
21 14.7887
32 22.1706
57 36.7482
18 11.2862
27 17.5528
34 20.6826
35 agl.1647
13 9.2769
21 14.6981
22 14.9928
51 35.6605
21 13.0514
29 17.5799
38 23.1245
48 31.4813
19 13.6136
27 17.3725
44 26,8480
67 42.3742
53 34.1798
24 18.2409
36 23.7459
27 19.0209

e - ——————————— B e e e b e e e

Here |FE! denotes the number of elements in the
the number of nodes, x/e the number of nodes per

the profile, FW the frontwidth

BW the bandwidth,

the root-mean-square wavefront.

AN

mesh, |X|
element, PK
and ERMS WF

¥4
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\

The new algorithm was wmmplemented 1in FORTRAN, and all

AN
N

the tests were run on the McGi1ll iJniversity, Computat 1onal

Analysis and Des1gn Laboratory' LSTI-11 single user
min icomputer, wversion 3B with EIS/FIS option. In our
program,' levels-as-superelements are processed; 1l 1near

insertion [15] is used to group the elements as described 1in
section 4.1.III; and an elementhy—element straight node

renumbering 15 used.

The p&perlmental results are presented 1n tables
5.2-5.7: In these tébles, operatlons‘meén compar 130ns othef
'‘Than with zeros; time is 1n seconds; <the number of -
opératlons and time of node rénumbeflng are Ehose taken to

»generate the key array; Ehe‘depths given read'plus one more
than is formally defined; and the matrix parameters in the
laét four columns are as defined in appendix A. It. should
be noted that we report here, the frontwidth of the matrix,
which is in general different from that of the frontal
procedure defined 1in chapter 2. This 1s motivated by a
p;rtlcular appl 1cation of the new algorithm [23]. The four
rows of results for each mesh corréspohd to four different
startlﬁg elements: 1 + %1*N/4] with 0<1K3, where '[1*N/4]
denotes the 1largest integer less than or equal to 1*¥N/4, N

be ing the number of elements ‘in the- mesh. The average

“results are presented in table 5.8 where the operation

counts only are rounded to the next larger integer.

~
’
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Mesh Iter Element Numbering Depth Width Node Numbering Profile Band- Front- rms X
Operations Time . Operations Time ° width width wave front \
1 2 79098 152 . 8 26 4602 12 993 17 17 12.9066
3 114693 216 8 26 4666 12 1015 20 20 13.2642
- 3 124952 233 8 26 4653 13 953 18 - 18 12.4201
3 .116963 219 . 8 26 4617 13 ?97 17 17 12.9238
2 3 394714 6;09 16 26 BZBd 19 1676 17 17 11.3287
3 328598 g 544 16; 26 8285 19 1698 18 18 11.5050
3 327585 547 16 26 8278 18 1659 18 18 11.2317
3 325226 548 16 26 8299 1§ 1699 17 17 11.4849
o=
3 3 2375896 3224 17 62 35845 62_ 6500 34 34 23.8863
3 1893541 2587 16 52 33301 58 6202 30 30 22.2619
3 1812103 2500 16 58 34097 . 58 6321 36 36 23.0687
-

2 1359883 / 1844 16 52 33223 58 6099 30 30 21.0687
4 3 6136574 8724 32 52 61590 104 11025 30 30 ) 20.]:489
3 7405-!515 10360 32 52 61456 105 10961 . 30 30 20,0454
3 6933444 9768 32 52 61443 105 10964 30 30 20.0349

3 " 8399796 11630 32 52 61535 104 10978 30 30 20.0748

’Table 5.2: Rectangular Domain
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_Mesh Iter Element Numbering ( Depth Width Node Numbering Profile Band- Front- rms

N Operations Time Operations Time width width Vwave front

5 2 107251 213 12 20 4804 13 1099 18 18 10..8589

/ 2 101863 214 14 22 " 4419 12 1013 16 16 10.1074

( 3 136250 280 12 20 4804 13 1093 18 18 10.8084

2 101368 213 14 22 4380 13 1019 16 16 10.1892

6 3 1021251 1549 21 42 19351 36 3852 26 26 16.1179
3 952400 1508 23 50 19424 36 3895~ 30 30 16.9491 .

3 971014 1509 21 42 19413 36 3855 26 26 16.0987

3 956035 1504 22 46 19582 37 3848 28 28 16.4012

7 3 2191402 4117 31 44 29449 64 5767 26 26 15.6084

2 2129925 3634 25 56 397441 81 7918 36 36 21.9759

2 2107306 3591 25 52 3&714 76 7303 ’34 34 19.8529

2 2129083 3589 25 56 39738 ,/7 80 7717 33 33 21.1441

8 2 5432494 7981 45 38 53974 93 10528 24 24 16.7604

2 5472590 8030 45 38 54441 94 10651 '25 25 16.9755

2 5472200 8020 45 38 54405 93 10678 25 25 17.0239

2 5694937 9056 49 38 49381 87 9598 24 24 15.2999

-Table 5.3: Rectangular Domain with a Hole

-y

-
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/

Mesh Iter Element Numbering - Depth Width Node Numbering Profile Band- Front- rms

i Operations Time - Operations Time ' \ width width wave front

-9 2 43885 96 8 22° 2561 8 ) 603 15 15\\ 9.8832

3 67397 140 8 22 2533 "8 572 13 13 9.2354

3 58665 126 8 22 ( 3110 9 688 18 18 11.5758

2 48331 103 8 22 2520 9" ‘559 i3 13 9.0358

10 3 956872 1670 .18 40 14958 34 2980 - 24 24 15.2116
3 926959 1660 ’ 18 40 14954 35 2977~ 24-, 24 ~15.2045 _

3 873886 1552 18 40 ‘ 14951 ° . 34 2979 23 23 15.1998‘

3 952941 1666 18 40 14936 - 35 . 2970 23 23 " i5.1762

11 3 l9984é3 3225 40 .+ 20 19274 38 .. 3458 ' 12 12 10.4199

3 .- 1868121 3026 40 20 19330 » 39 3498 13 N 12~ 10.5486

3 - 2314493, 3539 40 20 19383 39 \ 3494 13 12 . 10.5358.

I

3 2078526 3253 40 20 18711 38 3471 13 12 . 10.4642

12 \3 .6050942 10702 38 58 51739 108 9506 32 32 19.0165

3 5832589 10404 38 . 58 51855 108 9568 32 32 ) 19.1142

3 5572488 10059 38 58 51011 107 9474 32 32 18.9104

3 \ 5778859 10221 38 58 51909 ° . los 9528 32 32 19.0516

Table 5.4: L~Shaped Domain

. /- x

—-




57

Page

Mesh Iter Element Numbering Depth Width ~Node Numbering ' Profile Band- Front- tms .
Operations Time ) Operations . Time widtl:l width - wave front .
13 2 126378 235 10 28 5120 14 1174 18 . 18 12.0040
3 171956 319 0o 28 5136 14 1213 18 18 - 12.3355 i
3 180603 . 331 10 28 5134 13 1190 18 18 © 12.1256
3 197577 366 10 34 5680 15 1223 22 22 - 12.9168
14 3 825592 1525 20 36 12252 29 . 2605 3 23 13.6498
.3 877359 - 1569~ 20 36 12252 29 52605 23 ’ 23 13.6498
3 803404 1470 — 20 36 12259 29 2663 23 23 13.6336 ’
3 . 82lq39 1500 - 020 36 12246 29 ‘ 2609 23 . i 23‘ 13.662'; '
13 2 2147564 3628 22 60 36874 76. 7044 -38 T 3§ 22.5043
3 3071337 5182 22 60 36673 * 76 7004 3; 38 22.4286
3 2846025 4871 22 60 36889 76 | 7064 38 " 38 22.5665
3 3049476 5156 22 60 36973 76 7064 39 38 22.5527
16 3 9869240 16842 33 78 82423 160 14742 46 46, -26.2138
3 10744456 18046 -33 78 R 82154 ' 160 14979 44 44 ,26.6432
. ] y ;
3 10541097 17699 33 78 82192 " 160 14990 45 a5 26.5381
3 10466413 17597- 33 78 82236 161 14982 a4 a4 26.5536

Table 5.5: H-Shaped Domain




32 Mesh Itexr ™ Elem;nt Numbering , Degth width éode Numbering Profile~ Band- Front- rms

N Operations Time . Operations Time width width wave front

o 17 2 77552 159 10 26 " 4388 12 935 18 18 11.8793

3 110871 218 10 26 - 4419 12 955 18 18 12.1641

3 101810 " 210 10 26 4434 12~ 951 18 18  12.0640

‘ . 3 102740 207 10 28« 4299 11 934 19 19 11.%620

]_é 3 371186 663 12 ) >32 11032 26 2225 7 23 23 153\8901

3 390849 700 ' 14 34. 10364 . 25 - 2045 25/ 22 i4.8734

2 263667 . 480 14 34 10313 25 2015 22 22 14.6052

3 356117 ) 653 14 36 9886 24 1973 " 23 23 14.3178

19 3 1450303 2621 24 44 23516 52 4464 27 27 15.9591

3 1831116; 3167 24 44 2‘3615 52 4494 27 27 16.05’36

3 1833601 3170 24 44 23673 52 4505 27 27 16.1131

2 1150031 2003 ;4 44 23523 52 N 4472 .;7 27 15.9810

. ) .

20 3 6753462 - 11259 24 98 m 941385 ) 182 16657 ° 54 54 33.3137

3 4840530 8575 32 72 67671 136 f3237 41 ) 41 24.3369

3 5148000 o 8271 32 72 67247 ‘ .?135 T 12005 41 41 24.0222

3 ' 6082820 10432 | 32 72 68373 136 12115 ° 40 40  24.1463

5

Table 5.6: \fjshabed Domain
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Element Numbering Depth Width Node Numbering Profile Band- Front- rms

Mesh
g)o Opefations Time Operations Time ' width width wave front B
o 21 1715703 7407 22 44 33991 60 5947 27 27 19.2953
2481434 3517 23 43 34648 60 5936 “26 26 19.2467
2965996 4284 23 43 34709 -61 5934 25 25 19.2002 ’
- 2511862 3487 21 44 34330 60 6074 2:7 27 19.5456 ‘J
22 cas124 . 77 14 18 4917 J11 1170 23 22 16.9674
o 44407 - 76 7 22 4927 11 -1 23 23 ;5.925i
47032 79 "7 ( 14 4213 "9 943 17 16  13.2517 .
. 42642 74 7 22 4902 10 1100 23 23 16.0876 8
4 23 1176372 1925 13 52 32223 63 /6910 46 46 T, 30.4116 i
779132 1284 14 55 32574 63 ., 7186 o 32.0685
= 1076020 1815 14 ‘ /55 32578 63 6939 ' 48 48 31.0071°
" © 1065769 1790 14 , 55 32760 63 7198 49 49 32.0642
24 15742 40 5 9 3552 8 1414 29 29 20.8642
9826 27 ) S 3559 8 l4le6e 31 31 20.8664
9293 26 s 9 3554 B 1414 29 29  20.8642
. 8973 . 25 4 11 4288 9 ’ 1623 43 39 24.52@; X 1
Table 5.7: Meshes 21-24
: 1
J , ‘
) ] ‘
Ny

’ ) - - e p—— ]
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Mesh Iter Element Numbering Depth Width Node Numbering Profile Bangl- Front- rms
) !
% Operations  Time - Operations Time width width wave front
© v .
e 1 2.75 91129 205 8 26 4635 12.5 989.5 18 18 12.6287 >
2 3 34403Y 562 16 26 8286 18.75 4683 17.5 17.5 11.3876
3 2.75 1860356 2539 16.25 56 34117 59 8280.5 32.5 3/2.5 22.3214
‘_./.\
4 3 7469583 10120.5 32 52 ) 61506 -104.5 10982 30 30 20.0760
S i / -
7 5 2.25 111683 230 13 2], 4602 12.75 1056 17 17 10.4910
. P . ?
° A
/ 6 3 975175 1517.25 21.75 45 19443 36.25 3462.5 27.5 27.5 16.3917
. ) §
; &
, 7 2.25 2139430 . 3732.75 26.5 52 . 36412 75.25 7176.25 32.25. 32.25 19.6453
- == - 8~ 27 7 5518056 | 8271.75 46 38~ 55551 91.75 10363.75 24.5 24.5 16.5149
;2 9 275 54570 116.25 8 ( 22 5651 8.5 605.5 14.75’ 14.75 9.9326
Vi Co
. - |
c . b ! ~
10 3 927665 1637 18 40 . 14950 345 2976.5 j23$§‘\\ 23.5 15.1980 <
;o . ' | _
11 3 4 2064909 3261 40 20 19175 38.5 3480.25 12.75i 12 10.4921
| 12 3 5808720 10346.5 /38 58 51629'- 107.75 9519 32 32 19.0232

R 14

A o d

Table 5.8: Average Results




:S Megh Iter Element Numbering Depth Width Node Numbering Profile Band- Front- ms
3) Operations Time Operations Time width width 'wave front
m -
a.
13 2.75 169129 312.75 10 29.5 5268 14 1200 19 19 12.3455
14 3 831849 1516 20 36 12253 29 *2605.5 23 23 13.6489
- 15 2.75 2778601 - 4709.25 22 60 36853 76 7044 38.5 38 22.5130
16 3 10405302 17546 33 © 78 82252 160.25 14923.25 44.75 44.75 26.4872
17 2.75 98244 198.5 10 26.5 4385 11.75 943.75 18.25 18.25 11.9924
i
18 2.75 345455 624 13.5 34 10399 25 2b64.5 22.5 22.5 14.9216
& - -
19 2.75 1566263 2741 24 44 23582 52 4483.75 27 27 16.0267
20 3 5706203 9809.25 30 78.5 74419 147.25 13253.5 44 44 26.4548
. v
21 3 2418749 3423.75 22.25 43.5 34420 60.25 5972.75 26.25 26.25 19.3470
22 2 44952 76.5 7 15 4740 10.25 1081 21.5 21 15.5580
: 1 : /
23 2.75 1024324 1703.5 13.75 54.25 32534 63 7058.25 48 48 31.3879
24 2.25 10959 29.5 4.75 9.5 3739 B8.25 1466.75 33 32 21.7803
4 »
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5.3 On the Performance of the New Algorithm

Some general comments on the berformance of the new

algorithm can be drawn from Lﬁe set of tabulated results.

[

A first and most " immediate observationk 1s that the
"number of iterations is almost always three; two iterations
were s;fficient in quite a few runs, while four iterations
was required only once in the third run for the Half-Pole
Pitch problem (mesh 21). Although it is not a rule, this
very - few number of iterations required represents an
important feature of the algoriéhm, which can be .exploiteé
to reduce the computing cost, for example, by Eé§trict1n£’
the number of iterations to dnly two.

Operation counts for élement renumber ing ind icate that
the ;Ompérison bound Eor constrScting the level structure 1in
section 4.3 1is an overest imate; in practice, it is more 1 ike
O(m*Nz), where m and N are as before,wéhe respeétlve ma#imum
number of nodes per eiement and the number of elements in
the mesh. This bound clearly illustrates the effeétiVeness

of the grouping technique 1n'reducing the overall number of

compar isons.

As was expected, comparison counts are not an accurate
measure of the actual computer time expended on element
. - . .
renumbering. Certainly, counting the number of comparisons

‘performed requires a similar number of additions to be done.

It may also be noted, however, that all ¢lement data must be
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,' man ipulated as well, which adds to the overhead due to the

many file retreivals and memory-disc transfers. The sources
of overhead, together with the practical comparison pound

above, readily suggest that a substantial reduction 1n the

total cost can be achieved by using few higher order

elements 1instead of many lower order elements, or by a
proper manual substructuring of the mesh beforehand (which
can be_ done easily for some finite element meshes: for

example, mesh 23). - ,

The widths obtalned are either equal or very close to
each other ’in the d ifferent runs for most of the problems.
A large deviaéion is found only 1in the 976 element +—Sha5ed“
Domain problem (mesh’20). Although our set of problems
contains topologically different structures, these widths, -
as an examination of the sixth column in the tabies may
prove, are in general of 0O(sqrt(N)). The max imum number of
memory-resident elements at éﬁy stage of the renumbering
procedure (usually in the first iteration), however, depends
on the mesh topology and the choice of the starting element.

It is Important to report here that the arrays used . in our

program are all integers of fixed dimension 150 long.

The number of comparisons performed and the ¢t ime
expended on generating the renumbering Kkey érray are

negl igible compared to those of element renumber ing.

However, this is not 1likely to be the case if higher order

~elements are used so that the number of 'nodes is much larger
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than the number of elements 1in the mesh. Keep 1ing in  maind
that the node renumbering phase may be entirely omaitted, a

cho1ce between doing less work and obtaining more

éomputatlonal efficiency must be made.

In spite of the very simple element and node

N )
renumber ing techniques used, the algorithm con51stéﬁt1y

reduced the original bandwidths significantly and, in most
of the runs, produced beéter profiles .and frontwidths. The
Wworst results were for mesh 23 which exhibits 5 special
topology. It "is possible, however, that the usual reversal
of the element and nodé numberings would produce a better
pattern [21]. The King-like scheme 1n section 4.1:III could
be used 1nstead to give a min}mum profile element ‘and node
numbering, 11f we can affoyd the extra work and storage
involved. A low;flll number ing can be obtalned by using the
nested dissection scheme described in the same section, but

N

this is 1l i1able to require a large amount of computer time.

To conclude, the experinental testing of the new
algorithm clearly indicates that 1t has a reliable
performance and great mémory saving ability. Furtherpore,
the choice of the startaing elemgnt appears to only havé a
\small impact on its performance. Indeed, the ;eason the new

algorithm works the way it does is directly related to the

max imal depth element level structbre it generates.

AN



Chapter 6§

Conclusion

A new memory-economic finite eleﬁent renumber 1ng
strategy fér frontal,solafions was dsyeloped in this thesais.
The new strategyﬂis based on constructing an element level
structure of maximal depth within a frontal framework. The
memory-resident element sets at the different Stages of the
renumber ing ‘procedure are exactly the same as the active
element sets ‘in the frontal procedure. |In terms of

' . 2 .
operation count, O((m*N)-) comparisons are required for

constructing such a level structure, wherem and N are the

max imum number of nodes per element and the total number of

f
°

elements in' the finite element mesh respectively.

L]

Three different element renumber ing Schemes were
cons idered: a Cuthill-McKee-1like element grouping, a King-
like element renumber ing ‘End the nested d issect 1on
techn ique. We favoured the simpler element grouping_ in our
experiments\because of its advantages. 1in 'computer space,
time, and destination allotment. Together with the element
groupiné, an element-by-element straight node renumbering

was used.

Extensive experimental testing of the new algorithm was
carried out on the McGill University, Computational Analysis

and Design Laboratory L3SI-11 single user minicomputer. The
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set of test problems employed consists of 24 meshes rang ing
in s1ize ‘froﬁ the relatively small ones t& those containing
approximatelyn 1000 elements, with different topological
structures. For each mesh, four different stgrtlng elements
were tried so that we would be able to clearly assess the.

performance of the new algorithm.

The experimental results clearly ind icate that the new
algorithm has a reliable performance:and great meméry sav ing
abil ity. The choice of the starting glement had only a
small impact on such a performance,. The {leQel widths
obtqine& were elther equal or very close £o each other in
the differeﬁt runs for mos£ of the pﬁéblems. In ééneral,
they were of Q(sqrt(iN)). %urthermore, in spite . of the
simple techniques used for element and node renumber ing, the
new algorithm consistently reduced the orig@nal bandwidths

of‘the teét problems significantly and, in most of the runs,

produced better profiles and frontwidths.

The algorithm presented 1in this thesis is an important
step in the development of .frontal solutionsl s ince it
permits a "frontgl" finite élement and node renumberiné. It
is felt phai the element sequences the new algorithm
generates are at least as good. as those obtained by ’any
other means. The immed iate extension of the new aigorithm
to produce nested d issect ion element number ing s
particularly of great significance. Indeed, the véry modest

storage requirements of this algorithm and} more important,

e
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, Practical renumber ing scheme for frontal solutions.
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consistency with the frontal procedure endorse it as a

v

ENY
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element matr 1x.

1

Appenlic A

t

Basic Matrix Notatlong\and Def init1ons ~

n
’ 7

Let 4 be an N byjN symmetrilc positive definite finite

For the 1-th row of A, let

-

1)

£ (A) = min {3 :‘aij £ U} and . (AL
b (A) = 1- £, .(A). ' ’ (A. 2).
1 1
: L4
The quantity fi(A) 1s sumply the column subscript of the

leftmost nonzero entry 1P the 1-th row, while bi(A) 1s the

‘bandwidth of the 1-th row. The bandwidth of A may then be
defined .as )
.
B(A) = max {b (&) : 1<1CNI. (A. 3)
The regioh~(locations) of A within the matrix bandwidth 1s
"called the band of A, or
Band(A) = {{1,3} : I<1-3<B(A)}. (A. 4)

The envelope of the matrix A 1s the region from the leftmost

nonzero f in every row to the main diagonal: ,
‘Env(A) = {{i,jf fi(A)gg<1}. (A.'5)
The envelope size or profile of the matrix A is
N
Profile(A) = £ bi(A). (A. 6)
i=1
The matrix of the finite element mesh in figure 2.1 (shown

in figure A.1) has a bandwidth of 19, and a profile of 207.
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Page 75
* + The frontwidth 1s an mportant notion for symmetr ic
matrices. By definitilon, the da-th frontwidth of the matrix
A, denoted by wi(A), is the number of active rows at the
i-th step of the Gaussian elmination. That 1s, the number
of rows 1n the envelope of A which_intersect column 1. More

formally),

w (A) = .{{k : k>1 and aKZ y- o'for some <1y (A, 7)
t:! 1 R ‘

The wavefront or frontwidth of the matr1x A 15 the quant ity

A

T

W(A) = max {w (A) : 1£H£N}. ‘ (A. 8)
i ! .

°
.

The root-mean-squre (rms) wavefront [8] 1s’

”

“ . - N kY .
W (A) = sqrt{( I wo(A))/N}. (A. 9)
rms i=1-t

The matr ix in figure A.1 has a frontwidth of 14, and a rms
wavefront of 911673. ‘The profile of the matrix may also be
defined as

\

Profile(A) = ? \ Wi (A). - (A. 10)
,i=1 ‘

In general, the i-th frontwidth of the ‘matrix is

d ifferent from\ that of the frontal procedure deflnéd in
chapter 2, although b%th givé the number of active matr ix
rows at the i-th step of elmination. This can be seen by'
compar ing the fourth column of the table in figure A.1 to

the 1last column in the demonstration in chapter 2. The

reason 1s that, in the first case, the Gaussian el imwnat ion

is applied to the fully assembled matr ix (node el imination);
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Page

<

Wwhereas, 1n the frontal procedure, 1s applied to partially

submatr1ices in the finite element meatr ix Eelement
N

assembled

el mminat ion).

A} ——
L

An impértant phenomenon 1n matrix computation 15 that

of fill-in. It is well known that when the Gaussian

elmination 1s applied to A, the triangular factors L and u. °

nonzeros 1n locations which are zero in A.

may have It 1s

[

then naturzl to define the fi1l11 of A to be

JF1(A) = ((1,3) : 2y =0 (e A0b, L (A1)

1]
r

fill-1in

’

whrich are the matrix locations where may oceur.

[(151].

confined to the envelope of matrix A

v

This fild-1n is

2



