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Abstract

We study the dynamics of an interface driven far from equilibrium in three dimen-
sions. We first derive the equations of motion which describe this physics. Numerical
results are then obtaiued for three models which simulate the growth of an interface:
the Kardar-Parisi-Zhang equation, a discrete version of that model, and a solid-on-
solid model with asymmetric rates of evaporation and condensation. We show that
the three models belong to the same dynamical universality class by estimating the
dynamical scaling exponents and the scaling functions. We confirm the results by a
careful study of the crossover effects. In particular, we propose a crossover scaling
ansatz and verify it numerically. Furthermore, the discrete models exhibit a kinetic
roughening transition. We study this phenomenon by monitoring the surface step
energy which shows a drastic jump at a finite temperature for a given driving force.

At the same temperature, a finite size scaling analysis on the bond energy fluctuation

shows a diverging peak.
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Résumé

Nous avons etudié la dynamique d’une interface hors de son état & 1'équilibre. Pour
ce faire, nous avons utilisé trois modéles qui simulent la croissance d’une interface,
soit 1’équation de Kardar-Parisi-Zhang, une version discréte de cette méme equa-
tion, et un modele solide-sur-solide possédant un taux de croissance différent du
taux d’évaporation. Nous montrons d’abord comment ’on obtient cette equation du
mouvement. Nous prouvons que ces trois modéles appartiennent a la méme classe
dynamique d’universalité en montrant que leurs exposants et leurs fonctions d’échelle
sont égaux. De plus, nous vérifions cette affirmation en estimant les exposants de
transfert. Nous avons en particulier numériquement estimé la fonction de trans-
fert, et vérifié qu’elle satisfaisait la forme que nous avions proposé. Par ailleurs, nous
avons remarqué que les modéles discrets exhibaient une transition rugueuse cinétique.
Nous avons étudié ce phénomene en calculant I’énergie d’un pas en fonction de la
température. Nous avons ainsi détecté la présence d’une variation trés importante de
cette énergie A une température finie qui dépend du flux incident & la surface. Enfin,

nous avons détecté la présence d’une divergence dans les fluctuations de 1’énergie.
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Chapter 1
Introduction

The physics of condensed matter surfaces and interfaces has been studied for a long
time. One can, for example, cite the discovery of catalytic action by Michael Faraday
in 1833, the rectification of electrical resistance through the presence of a thin surface
layer at the interface of a sandwich of Fe and Cu by Karl Ferdinand Braun, and the
publication by J. Willard Gibbs of his memoir (Gibbs 1348), where he completely
describes the thermodynamics of surface phases. Despite these early studies, it is
only in the 20** century that surface science has been recognized as a discipline in its
own right. Since the 1950’s, interface phenomena has been a major research area for
physicists, chemists, and material scientists.

The physical behavior of interfaces is often interesting and intricate. This is
because interfaces are low dimensional systems, that is , (d — 1)-dimensional objects
evolving in a d-dimensional world, which makes them particularly sensitive to the
fluctuations that are always present in any thermodynamic system. Furthermore,
interfaces are present in many physical systems of interest, whose properties they
often effect significantly. This reason, and others, has led physicists to study more
closely the behavior of interfaces, first in simple cases, then in more complicated
circumstances. The discovery that the equilibrium inierface between a liquid and
its vapor is not microscopically flat, as one would expect, but rather rough, is an

example which is particularly relevant to this work. Even though this roughress can



s

[N

CHAPTER 1. INTRODUCTION 2

be very small (the thickness of the interface of a glass of water is of the order of tens of
angstroms), the consequences associated with this discovery have had repercussions
in various fields of physics.

In another connection, the study of phase transitions plays a central role in mod-
ern condensed matter physics. Changes of phase are dramatic events which require
careful study for a complete understanding. In addition, the fundamental concepts
and methodology developed to study phase transitions have far-reaching utility in
other area of physics. One often has to simplify the problem dramatically while still
retaining the fundamental properties of the system, to be able to solve it. Both
first-principles and phenomenological methods are often used.

The physical phenomena associated with both interfaces and phase transitions is
complex and has been the subject of many years of research. Indeed, it is not sur-
prising that systems involving both areas pose challenging problems. The roughening
transition is such a phenomenon.

The roughening transition is a phase transition taking place in interfacial systems.
It had been known that some of the interfaces observed experimentally were micro-
scopically flat in a certain range of parameters, and rough outside this range. This
type of phenomenon -called the roughening transition - had already been conjectured
by theorists. The existence of a roughening transition in an equilibrium interface
separating two coexisting phases was first put forward in 1951 in a now famous paper
by Burton, Cabrera and Frank (Burton, Cabrera and Frank 1951). They argued that
below a certain temperature Tk, thermal fluctuations could not overcome the bar-
rier provided by surface energy, so that the interface remained microscopically flat.
However, above Tg, the surface tension would not be strong enough to prevent fluc-
tuations on all wavelengths. These fluctuations would then delocalize the interface,
whose height would then exhibit long wavelength variations. The interface would
then become rough. Their argument, which we now briefly review, makes use of the
Ising model.

The Ising model was devised to describe the statistical mechanics of classical



CHAPTER 1. INTRODUCTION

spins, and to explain the behavior of ferromagnets. The model makes use of a d-
dimensional array of spins {S;} with only two possible spin values, namely +1 and
-1. The interactions of these spins are described by the following Hamiltonian:

M =-JX;;S:S;, (l.l)

where J is the coupling constant and the indices 1 and j run over every nearest-
neighbor pair of spin. If J > 0, H descibes the interactions of spins in a ferromagnet
and, if J < 0, of an antiferromagnet. This model involves many assumpticns: localiza-
tion of the spins, uniform interactions, coupling extending only to nearest neighbors.
Nevertheless, it serves as a landmark in the field of statistical mechanics because
it was the first model exhibiting a phase transition for which an exact solution (in
d = 2) was found. In d = 3, its properties, including its phase transition, have been
carefully investigated. In addition, at this phase transition, it has universal proper-
ties identical to that of, for example, liquid-gas, ferromagnetic and binary alloy phase
transitions. Let us finally point out that the Ising model suitably transformed icto a
lattice gas model can also describe the behavior of a solid-gas or liquid-gas system,
as in the original argument of Burton et al. Essentially, the transformation involves
associating S; = +1 with a solid and S; = —1 with a gas.

The argument concerning the roughening transition is most transparent for the
(100) facet separating S = +1 and S = —1 phases of the three-dimensional simple-
cubic Ising model (Fig. 1.1). The low temperature excitations of the facet correspond
to one-block (one-spin) fluctuations either up or down. However, on looking “down”
at the facet and its excitations, one recognizes that it is equivalent to the one-phase
state of the two-dimensional Ising model with low-temperature one-block (one-spin)
excitations. One can also consider a ledge in the three-dimensional system, which
is equivalent to coexisting phases in two dimensions. This low-temperature map-
ping shows the stability of the smooth facet, and suggests that Tr of that facet is
approximately the critical temperature of the second-order phase transition in the
two-dimensional Ising model.

Since that original study, much theoretical and experimental work has been done
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Figure 1.1: a) Global view of an interface in a three dimensional Ising model. b) Top view of the
same interface. In a), the filled region on the bottom, including the one-block excitation, corresponds
to S = +1 while the empty region above corresponds to S = —1. In b), it is useful to thixk of the big
region as corresponding to S = —1 with a one-spin excitation of S = +1; i.e the “4wo-dimensional
Ising model” corresponds to the layer immediately above the S = +1 region in a).

(Van Beijeren and Nolden 1987; Weeks and Gilmer 1979; Gilmer 1982; Zia 1984; Jas-
now 1986). It is now understood that the Burton-Cabrera-Frank idea was incomplete
since it did not take into account the possibility of clusters growing on other clusters
as T approaches Tg from below. These give rise to capillary-wave excitations of the
surface. As a consequence, the roughening transition, rather than being a second-
order transition, is a Kosterlitz-Thouless transition (Kosterlitz and Thouless 1974;
Kosterlitz 1974; Chui and Wecks 1976). Despite the fact that the transition is there-
fore of infinite order, eigns of it have been observed experimentally (Wolf et al. 1985;
Rottmarn et al. 1984). Furthermore, renormalization-group techniques, in particular
that used by Kosterlitz and Thouless to analyze the two-dimensional Coulomb gas
system, have been successfully applied to the problem (Kosterlitz and Thouless 1974;
Kosterlitz 1974). Also, many computer simulations of interface models have been per-

formed to confirm the presence of the transition and quantitative results have been

obtained (Swendsen 1977; Swendsen 1978; Mon et al. 1988; Van Beijeren and Nolden
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1987). Consequently, the roughening transition occurring in equilibrium interfaces is
now well understood.

However, most interfaces observed in nature are not in equilibrium. The interfaces
of snowflakes and rapidly quenched crystals are good examples of such nonequilib-
rium systems. Furthermore, it is difficult, even in laboratory conditions, to obtain an
interface which is in its equilibrium state. Nevertheless, the nature of the roughen-
ing transition in systems which are far from equilibrium has received less attention
(Gilmer 1982). This is unfortunate since roughening transitions play an important
role in three-dimensional crystal growth (Var Beijeren and Nolden 1987; Weeks and
Gilmer 1979; Zia 1984; Rottmann and Wortis 1984). In experiments on epitaxy and
sputtering (Chang and Ploog 1985; Vossen and Kern 1978; Mazor et al. 1988), where
an interface grows at a constant rate, it is of interest to determine how a constant
driving force affects the transition. For example, one would like to know the rough-
ness of the interface above the transition temperature TR, as well as the conditions, if
any, under which an interface can be grown in the smooth faceted phase which exists
below Tr.

Experiments on crystal growth (Dougherty and Gollub 1988; Maurer et al. 1989;
Bilgram, Firmann and Hirlimann 1989; Gallet, Balibar and Rolley 1987) find that
one can go from a smooth to a rough phase by increasing the driving force beyond a
particular strength, at a fixed temperature T' < Tr. The effect of interface roughening
on the process of crystal growth is that below Ty the growth occurs layer by layer,
whereas above Ty the growth is continuous (Gilmer 1982; Rottmann and Wortis 1984;
Miiller-Krumbhar 1979). A more dramatic indication of this is that, when a crystal
grows into a metastable supercooled liquid, the shape of the dendrite tip formed
after a Mullins-Sekerka instability (which is important in crystal growth if the length
scale over which heat diffuses is small compared to the edge length of the system)
can be faceted or rounded depending on the supercooling strength (Dougherty and
Gollub 1988). Furthermore, in sputtering experiments, the interface is usually rough,
and columnar growth can be observed (Vossen and Kern 1978), while in epitaxial
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growth, very smooth interfaces can be produced (Chang and Ploog 1985). Thus at a
fixed temperature, rough or smooth interfaces can be grown by adjusting the external
driving force (Chang and Ploog 1985; Vossen and Kern 1978; Dougherty and Gollub
1988). Given the experimental and technological relevance of these systems, it is
important to understand the basic physics of interface dynamics far from equilibrium.
It should also be noted that the dynamics of a growing interface separating two phases
is a fundamental problem in condensed-matter physics.

An imporiant step in this direction was made by the work of Kardar, Parisi, and
Zhang (KPZ) (Kardar, Parisi and Zhang 1986; Medina et al. 1989). They proposed a
nonlinear differential equaiion, given below, to model a growing interface driven by an
external flux of particles. By applying a dynamical renormalization-group technique,
a scaling form of the interface correlation is obtained along with the scaling exponents
for a two-dimensional system. The width W obeys (Family and Vicsek 1985)

W(L,t) ~ IX (L"), (12)

where L is the linear size of the growing substrate, ¢ is time, and f is a scaling function.
For dimension d = 2 [the interface grows on a (d — 1)-dimensional substrate], a
fluctuation-dissipation theorem allows one to calculate the interface exponents, x = %
and z = . These are consistent with numerical simulations (Plischke and Réicz 1985;
Jullien and Botet 1985; Meakin, Jullien and Botet 1986; Zabolitzky and Stauffer 1986;
Wolf and Kertész 1987a; Meakin 1987; Family and Vicsek 1985; Meakin et al. 1986;
Plischke, Ricz and Liu 1987; Kim and Kosterlitz 1989; Huse and Henley 1985; Kardar
1985; Bovier, Frohlich and Glaus 1986; Nattermann and Renz 1988), and are different
from the equilibrium roughening exponents x, = ’—;4 and z, = 2, where the subscript
o implies no driving force. In three dimensions, namely the critical dimension d. of
the model where the nonlinear driving force is irrelevant by power counting, no direct
result was found due to the failure of perturbation theory for d < d., although a
hyperscaling relation enforces x + z = 2 when the nonlinear driving force is relevant.
Given this unclear situation, in the experimentally most important dimension, there

have been several conjectures for the values of the growth exponents as a function of
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d. If B = x/z, with x + z = 2, the conjectures for dimension d are 8 = 1, due to
Kardar, Parisi and Zhang (Kardar, Parisi and Zhang 1986); 8 = 1/(2d — 1), due to
D.E. Wolf and J. Kertesz (Wolf and Kertész 1987a); and 8 = 1/(d + 1), due to J.M.
Kim and J.M. Kosterlitz (Kim and Kosterlitz 1989).

Like all interface models with translational invariance, in the KPZ equation there
is a capillary-wave Goldstone mode due to the broken translational invariance nor-
mal to the interface. This causes the poles of response functions to be massless, and
the frequency-dependent fluctuations around equilibrium to be 1/f-like, where f is
frequency. One novelty of the nonlinear Kardar-Parisi-Zhang equation is the appear-
ance of anomalous dimensions in correlation functions (although we re-emphasize that
power-law correlations exist even for the linear case).

Computer simulations of lattice-based models, such as deposition models (Family
and Vicsek 1985; Meakin et al. 1986), Eden models (Plischke and Racz 1985; Jullien
and Botet 1985; Meakin, Jullien and Botet 1986; Zabolitzky and Stauffer 1986; Wolf
and Kertész 1987a; Meakin 1987), solid-on-solid (SOS) models (Meakin et al. 1986;
Plischke, Ricz and Liu 1987; Kim and Kosterlitz 1989), and directed polymer models
(Huse and Henley 1985; Kardar 1985; Bovier, Frohlich and Glaus 1986; Nattermann
and Renz 1988), agree with the results for the KPZ equation in two dimensions,
suggesting that all these models belong to the same universality class. In three
dimensions, however, the lattice models do not give consistent results (Jullien and
Botet 1985; Wolf and Kertész 1987b; Meakin, Jullien and Botet 1986; Meakin 1987;
Devillard and Stanley 1989; Meakin et al. 1986; Meakin 1987; Baiod et al. 1988;
Liu and Plischke 1988; Kim and Kosterlitz 1989; Forrest and Tang 1990; Kardar and
Zhang 1987).

Driven interfaces are also closely related to self-organized critical phenomena, re-
cently introduced by Bak et al. (Bak, Tang and Wiesenfeld 1988) through the study
of dynamical models that evolved automatically to a critical state without tuning
any parameter. Such a self-organized critical state is characterized by the absence

of length and time scales, and was argued to be responsible for long-range temporal
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correlations in many dissipative dynainical systems. These new critical phenomena
are fundamentally different from that near a second-order phase transition, or that
due to the equilibrium capillary-wave fluctuations on an interface (Grossmann, Guo
and Grant 1990). In the first case, the critical point can only be reached by tuning
parameters such as pressure and temperature in the phase diagram. In the second-
case, the argument goes as follows: interface equation describe a system’s behavior
after tuning onto, say, a line of liquid-vapor or solid-liquid coexistence in the phase
diagram of a pure substance: Gibb’s phase rule forbids an inhomogeneous state in
thermal equilibrium, except on, say, lines and points ina two-dimensional phase di-
agram. In this sense, interface equations are self-critical. However, they represent a
zero-fraction of the equilibrium two-dimensional phase diagram since they are only
valid on phase transition lines and points. Since they only describe an infinitesimal
portion of the phase diagram, they are not valid examples of self-organized criticality.

Driven interfaces in crystal growth do not correspond to equilibrium or close-
to-equilibrium states. Instead, for a solid growing into a supercooled liquid melt,
one can supercool the liquid to a range of different temperatures below the melting
temperature, for a given pressure. If one insists on identifying these states within an
equilidbrium phase diagram, the far-from-equilibrium states correspond to the limits to
which one can, say, supercool a liquid or superheat a solid. Driven interface equations
are thus valid on a surface of the equilibrium two-dimensional phase diagram. In this
sense, the critical state is truly reached without tuning, since it involves a nonzero
fraction of the equilibrium phase diagram. However, this point of view concerning
self-organized criticality implies strong bounds on the nature of the nonequilibrium
state, since, in the example above, the liquid is only metastable. The eventual decay
of this state by droplet nucleation implies limits on interface models which we nall
discuss below, where we present a derivation of the driven interface equation from
the Langevin equation for full space.

In this thesis we report original contributions to the issues discussed

above. Firstly, we give a derivation for the KPZ equation. Secondly, we numerically
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determine the roughening exponents at the critical dimension, d. = 3. Thirdly, we
study the nature of the roughening transition in the driven system (Guo, Grossmann
and Grant 1990a; Guo, Grossmann and Grant 1990b; Grossmann, Guo and Grant
1991a; Grossmann, Guo and Grant 1991b).

In Chapter 2 we introduce and discuss the origin of the KPZ equation. We derive
that equation from the Langevin equation for a system with a nonconserved scalar
order parameter, when an external field is present, and when an asymmetric coupling
to a conserved variable exists. We also describe a model we expect to be in the
same universality class, the asymetric Solid-On-Solid (SOS) model. We then give
a summary and a brief derivation of some exact results that are of some use for
the analysis of our results. We discuss the connection of this class of models with
nucleation phenomena. The idea of droplet nucleation implies limits on the long-time
and long-length-scale applicability of the KPZ equation to this class of problems,
which we examine.

In Chapter 3, we present the results of a numerical integration of the KPZ equation
at d. = 3; we also performed a study of crossover phenomena in this model, where tke
system crosses over from the zero-driving-force ca<e to a finite-driving-force situation
(Guo, Grossmann and Grant 1990b). We report numerical studies of models which
we expect to be in the same dynamical universality class in the rough phase. In
particular, the growth and crossover exponents were numerically determined for the
KPZ equation, and via Monte Carlo simulation on the solid-on-solid (SOS) model with
asymmetric rates of evaporation and condensation, which we expect to be in the same
universality class. Our results for both models are consistent with x/z = 0.13, and
X+ z = 2, for the KPZ equation and the SOS model in the rough phase (Chakrabarti
and Toral 1989; Guo, Grossmann and Grant 1990a).

In Chapter 4, we review the extensive results obtained for the equilibrium rough-
ening transition. We examine the behavior of relevant phyrical quantities, such as
the surface tension and the step free energy, at the transition point. We also mention

some examples of experimentally observed roughening transitions.




)y—.u.

CHAPTER 1. INTRODUCTION 10

Chapter 5 studies the possibility of a kinetic roughening transition. This was
investigated through the study of variants of two important models used to study
it in the past: the discrete Gaussian model, and the SOS model (Van Beijeren and
Nolden 1987; Weeks and Gilmer 1979; Zia 1984; Chui and Weeks 1976; Swendsen
1977; Swendsen 1978; Rottmann and Wortis 1984; Saito 1978; Saito 1980; Nozieres
and Gallet 1987). We find that our data for both a discrete KPZ mad«l, and an asym-
metric SOS model can be interpreted in terms of a roughening transition occurring
at a nonzero TR, which appears to be stronger than the usual Kosterlitz-Thouless
transition. We characterize it with a simple finite-size-scaling ansatz, as is used for
second-order phase transitions. The transition here corresponds to a nonequilibrium
phase transition such as has been studied for driven diffusive systems (Katz, Lebowitz
and Spohn 1983; Leung et al. 1988). Furthermore, we present results from a simula-
tion of the nonequilibrium SOS model in which we compute the surface step energy
(Leamy and Gilmer 1974) as a function of temperature at a given driving force, for
different system sizes. For the equilibrium roughening transition, the step energy
has been shown to be a useful indication of the transition (Leamy and Gilmer 1974;
Swendsen 1977; Swendsen 1978; Mon et al. 1988). In our study, a strong jump in
the value of the step energy at a nonzero temperature Ty is observed. The value of
TR agrees with that of a finite-size scaling analysis of the bond-energy fluctuations of
the model. We also give arguments in parallel to the original Burton-Cabrera-Frank

work to discuss the nature of the transition.




Chapter 2

Models of a Growing Interface

The process involved in creating a model which faithfully represents a physical system
can be subtle. The canonical example is the Ising model, which well simulates a
number of important phenomena. When creating a model, or modifying existing
models, one has to carefully select the elements of reality that will be kept, and the
ones that will be discarded, to avoid unnecessary complications while ensuring that
the model describes the system appropriately. As we will see later, the choice of the
model plays an important role in deciding how the physical system will be studied.
In the present case, the physical system we have in mind is one containing two
phases, one possibly metastable and the other stable, separated by an interface. The
stable phase then grows into the other phase and the interface moves at a constant
speed. The interface is smooth on a macroscopic scale, and can be faceted or rounded,
where it should be noted that interfaces that look smooth on a macroscopic scale can
still be rough. Thus, we are not dealing with large scale instabilities encountered in
out-of-equilibrium processes such as dendritic growth and directional solidification.
Also, we shall not consider the interface’s microscopic structure. We assume that
the interface is simply a low dimensional object which separates two phases. This is
because we shall not be concerned with physical phenomena involving dynamics of

the interface’s microscopic structure, such as surface reconstruction, in this work.
P:

11




CHAPTER 2. MODELS OF A GROWING INTERFACE 12

2.1 Introduction to the statistical mechanics of
equilibrium interfaces

The use of statistical mechanics to obtain the physical properties of bulk systems can
seem magical. How can one draw valid conclusions from approximations involving
10?® atoms? It is now fairly well understood that the success of statistical mechanics
is related to the fact that most of the (irrelevant) microscopic quantities obey simple
Gaussian probability statistics. Only a small number of relevant variables determine
a system’s asymptotic, long wavelength, late time properties. These thermodynamic
variables are those with which we shall be concerned.

The statistical mechanics of interfaces is more involved than that of bulk systems.
There are many reasons for this: interfaces exist between two phases and are thus
difficult to treat separately from the bulk; their properties can be of considerable im-
portance, especially close to the critical point, where the correlation length diverges;
they are low-dimensional objects; and their presence is often closely associated with
a phase transition in the system. Furthermore, interfaces are very sensitive to fluctu-
ations in the bulk. This stems essentially from the fact that they break translational
symmetry in the system. Thus, for example, in a bulk phase, a fluctuation in the
pressure is immediately counterbalanced by diffusion phenomena, restoring the sys-
tem’s pressure toward its equilibrium value. However, if an interface is present and
the fluctuation occurs close to it, the restoring force now is the surface tension, but
it is not strong enough to prevent long wavelength distortions of the interface, as will
be shown later.

A first principle approach is to consider the interface as decoupled from the bulk,
and thus as a separate entity. One can then study a (d — 1)-dimensional object. We
shall assume that the energy of the interface is proportional to its (d — 1)-dimensional

area. One can thus write the following equation:

F =aL?®?, (2.1)
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where F is the free energy of the interface, L is its length and « is the surface tension.

F= a/:" 441z [1 + (g-g)z]% (2.2)

where the interface position is given by y = h(z). Expanding in a Taylor series in
(VA)?,

Now,

2

Frali! + —g/:o 'z (g;) . (2.3)
Thus, the (Vh)? is the elastic energy associated with the elongation of the interface.
The latter term will often appear in our dynamical equations for the interface’s mo-
t{ion. Even though this free energy is simple, it allows us to calculate the thickness of
the interface, as will be seen in the section below on exact results.

As was mentioned in the introduction, numerous theoretical and numerical studies
of the equilibrium roughening transition have been made. Thos: studies made use of
various types of models that can be classified into two broad classes: the continuous or
macroscopic models and the microscopic models. Both classes hiwve some advantages
and some disadvantages.

The continuous models describe the dynamics of the interface by a stochastic
partial differential equation, known as a Langevin equation. This type of equation
is usually obtained by postulating the form of the free energy functional that de-
scribes the system and applying certain operators to it. Although the equation is
phenomenological, it can be shown that it describes the system well if it satisfies a
certain relation called the fluctuation-dissipation theorem. A well-studied example
of such a model is the roughening equation which represents the roughening of an

equilibrium interface as a function of time. It has the following form:

ahgc:,t) - V@’I;(;:,t) +9(Z,¢), (2.4)

where h(Z,t) represents the height of the interface at position Z and time t,and n(Z, t)

is the stochastic term mimicking the presence of thermal noise in the system, and

obeys the following properties

(n(z,t)) = 0 (2.5)
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(n(E,n(@,t) = 2D (& - )8t - t) (2.6)

The () symbols denote a spatial averaging of the quantity contained in between. The
second relation is the fluctuation-dissipation relation for the system, ensuring that the
model behaves in a physical way. The fluctuation-dissipation relation is enforced by
tequiring D/v = kpT/a, where kp is Boltzmann’s constant and T is the temperature.
These models give a very good description of the late-time long-wavelength behavior
of the roughening interface. However, they do not describe the roughening transition
because they are continuum models, and the roughening transition is present because
of the underlying discreteness due to the lattice.

The microscopic models describe the interface at a more microscopic level. Al-
though there are many such models, the most successful ones are the Solid On Solid
(SOS) model and the discrete Gaussian (DG) model. Those two models describe the
interfare as a set of discrete-valued variables h;, where i spans a (d — 1)dimensional
space. The h; represent the height of the interface at the coordinate i. Thus, this
representation neglects the presence of overhangs and bubbles. We will see that this
can be of some relevance in the case of the growing interface. Nevertheless, those
models describe the roughening transition well. Their disadvantage lies in the fact
that they are more difficult to solve analytically. Also, they are not as convenient
as the continuum models to describe the late-time long-wavelength behavior of the
interface. The models we have just discussed describe an interface in equilibrium.
However, as we will see later, the same distinction in two classes can be made in the

case of models for driven interfaces.

To quantitatively describe an interface, one can use the following quantity

W = (h(Z,t) - (h(Z,1)))*) (2.7)

which corresponds to the widih of the interface (see Fig. 2.1).
This quantity exhibits scaling, that is to say, it can be described by power laws. For

example, at late times, but sufficiently early that finite-size effects are unimportant,
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Figure 2.1: Width of an interface. The width is the root mean square deviation of the curve from
its average value.

the interface width can be described by the following expression:
W(L,t)~ tpfl(tL_z)a (2.8)

where ¢ is the time and f; is a scaling function. On the other hand, it can be more

conveniently written as:

WI(L,t)~ LXf2(tL™%), (2.9)

where f; is another scaling function. The quantities 3 and x, which determine the
roughness of the interface, are called the scaling exponents. It can be shown that
they obey the scaling relation

z=x/B (2.10)
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2.2 The Kardar-Parisi-Zhang (KPZ) equation

Let us now introduce the far-from-equilibrium counterparts of the above models. The
KPZ equation was first introduced to model the dynamical behavior associated with
the lateral growth of an interface. It is a nonlinear stochastic differential equation for
the time evolution of the interface height variable h(Z,t),

oh  8h )\ [(8h\?
E_ubzqw(a—i) o (2.11)

where v and ) are constants, and 7 is a random noise () = 0, which is assumed to

satisfy Gaussian statistics with
(n(Z, t)n(&,¢")) = 2D&*7 (£ - F)5(t - t'), (2-12)

where D is a constant. The vector £ determines positions in a (d — 1)-dimensional
plane of a full space ¥ = (#,y). Since it has been assumed that A is a single-valued
fonction of Z, overhangs and bubbles are not considered. We will argue below that
bubbles are relevant, for very late times, for some important experimental represen-
tations of the KPZ equation. The nonlinear term cannot be obtained from a simple
Hamiltonian and has a kinetic origin (Kardar, Parisi and Zhang 1986; Medina et al.
1989); a derivation will be presented below. This term breaks the symmetry of pos-
itive and negative h and provides a driving force which causes the interface to grow
in time. Without the stochastic term, it can be transformed into the well-known
Burger’s equation, a simplified version of the Navier-Stokes equation, where A be-
comes the velocity potential (Burgers 1974). As was mentioned above, with A = 0,
the equation describes the dynamics of interface roughening near equilibrium, where
many investigations have been performed (Chui and Weeks 1978; Saito 1980; Ed-
wards and Wilkinson 1982; Noziéres and Gallet 1987; Grant 1988). We first present

a derivation of the KPZ equation and then give a summary of exact results.
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2.2.1 Derivation of the equation of motion

To derive the KPZ interface equation of motion, we require an equation for the
full space, where the interfaces correspond to regions of rapid variation of an order-
parameter field (Some of our remarks in this section are implicit in the original work of
Kardar et al. (Kardar, Parisi and Zhang 1986)). The order-parameter field is simply
a measure of the ordering of the system, like the magnetization for a ferromagnetic
system or the density for a liquid-gas system. A dynamical equation can be prescribed
at low temperatures in an ordered state by assuming that the time dependence of a
slowly varying nonconserved orde. oarameter is due to the minimization of the local
free energy. All other degrees of freedom are modeled by a random noise whose
intensity is determined in part by the temperature. This is a consequence of the fact
that the time scale associated with the order parameter field is widely separated from
the time scales associated with the other degrees of freedom. The equation we need

is the following,

-———Wg’t) =-T [H + ww’("t)]] + by (2.13)

where F[y] is the free energy functional, I' is the mobility, and H is the external
field. The transport coefficient is related to the intensity of the random noise s by a

fluctuation-dissipation relation:

(u(T, )u(, t)) = 2PTH(F — 7)b(¢ - t'), (2.14)

where Boltzmann’s constant has been set to unity. The free energy functional F is
the sum of all the exchange interactions plus the sum of the local free energies f at
all sites F,

Fiy] = [ & [d(v9)* + f¥)] (2.15)

where f = —my? + uy*, and ¢, m, and u are positive constants. The Langevin
equation 2.13 is well known from critical dynamics (Hohenberg and Hulperin 1977;
Gunton, San Miguel and Sahni 1983; Gunton and Droz 1983), where it corresponds to
the universality class of model A, the nonconserved Ising model. It is straightforward
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to derive Eq. 2.13 from the microscopic spin-flip kinetic Ising model (Gunton and
Droz 1983).

One can also recover the Langevin equation above from a modification of model
C of critical dynamics (Hohenberg and Halperin 1977; Collins and Levine 1985;
Jorgensen, Harris and Grant 1989; Harris and Grant 1990; Caginalp 1989; Cagi-
nalp 1990), where a nonconserved order parameter 3 is coupled to a conserved field,
called e. The field e must be coupled asymmetrically to ¢ (so that e’s equilibrium
value differs in the two phases, say ¢ = +1) and, for our purposes, the length scale
for diffusion of e, Ly, must be larger than all other lengths in the system. With an
asymmetric coupling, this provides a model for the liquid-solid interface, which can
he used to study the Mullins-Sekerka instability and dendritic growth. By requiring
Lt > L, we consider length scales much smaller than those of that instability, imply-
ing our analysis is only valid, for example, near the tip of a large growing dendrite,
where curvature is small.

In equilibrium, the order parameter v will equal its time-independent value .. If
equilibrium is characterized by coexisting phases separated by a flat diffuse interface
located around y = 0, which requires H = 0, then, by solving Eq. 2.13, we obtain

_ Bly) , Of

dy? 3. = 0. (2.16)
The mean-field surface tension is given by
1 dyo\’
a—-z-c/dy(dy) . (2.17)

Far from equilibrium, the interface may be convoluted and time dependent. In-
stead of being located at y = 0, it is useful to write it as the zeros of an auxiliary
function (see Fig. 2.2)

u=0. (2.18)

To determine the equation of motion for u, we impose the solvability condition:

(7, ¢, H) = po(u(F,t, H)). (2.19)



CHAPTER 2. MODELS OF A GROWING INTERFACE 19

u(r,t)=0

Figure 2.2: Schematic representation of the seros of the interface by the auxiliary function u.

This means that the shape of the nonequilibrium interface is approximately the same
as the equilibrium shape. This is reasonable for a gently-curved surface. Note that
writing the interface as u = 0 implies that bubbles are not considered (although
overhangs have not yet been excluded), since the interfisce does not interact with
other surfaces. In the presence of a field, there can be many nucleated droplets, whose
interfaces would eventually interact as the droplets grow to macroscopic size. Thus
our analysis is restricted to the time regime when the interfaces can be considered
independent. The implications of this will be discussed below.
Using Eq. 2.20, the Langevin equation transforms into

%y# = ~T [H — cVi(u) + gjo + p. (2.20)
But from Eq. 2.16, one can eliminate §f/8v, in terms of second derivatives of v,
Budipo(u) _ d*o(u)
% du =T [H - cV3o(u) + ¢ {tdu)’ + by (221)

where £ = |[Vu|~? is the differential length in the u direction. Decomposing the
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Laplacian on the right-hand-side of the equation gives

Bu dpo(u) _ dipo(u)
5 du = -r [H +cK T + p, (2.22)
where K = —V - # is the differential curvature, and # = {Vu is the unit normal

vector to the interface. Let us now project the equation onto the interface with the

operator
dy,
P(-- )—Avb /ld 2(--1) (2.23)
where At), is the miscibility gap. We obtain
Ou THAy,
- bﬁ =— +TcK +19 (2.24)

where n = —(c/o) [ {dudp,/(Ldu)u is the noise at the interface. Finally, since the
velocity normal to the interface at u = 0 is given by v = —{8u/dt, from continuity of

flux at u = 0, we obtain:

v=A+vK +9, (2.25)
where,
A= THAY (2.26)
o
v =Te, (2.27)
the noise satisfies
(n(3,t)n(a,t")) = 2D6* (3 - & )5(t - t'), (2.28)

where §'is a vector determining positions on the u = 0 surface, and

T
D=v-— (2.29)

o
This equation can be written in terms of a free energy:

v §F,
V= —;lsu + (2.30)

where

ﬁ(u)

F, = / dF [-mp,(u) + o) (2.31)
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The first term is essentially a step function on the interface, and gives the volume
energy, while the second is a delta function on the interface, giving the surface energy.
Equations of this kind are well known in other contexts (Allen and Cahn 1979; Bausch
et al. 1981; Kawasaki and Ohta 1982a; Kawasaki and Ohta 1982b; Grant and Gunton
1983; Caginalp 1989; Caginalp 1990). For example, the equation of motion for the
case where the field H is a random quenched variable was derived several years ago
(Boyanovsky and Cardy 1983; Grant and Gunton 1984).

The form of Eq. 2.25 can also be obtained from a simple phenomenological argu-
ment (Zia 1990). A similar approach has been given by Krug and Spohn (Krug and
Spohn 1990). In the presence of a field, a flat interface will translate at a constant
velocity v = ), since velocity is proportional to thermodynamic force. If the interface
is curved, the velocity should be a function of the natural thermodynamic variables
of the system. An interface is best described, if it is very thin, by asking how curved
it is, i.e., what is its local curvature K. Thus we have v = v(K), in the most simple
case. Now, if in addition the interface is only gently curved, so that K is small, to
leading order in a Taylor series expansion, one obtains v = A + v K as above, and v
must be positive if the motion is so as to reduce curvature.

To recover the KPZ equation, we consider an interface which is almost flat, without

overhangs, i.e., u(¥,t) = y — h(Z,t) = 0. One then obtains:

ok 1

%=1 [ (2.32)
where 1/4(h) = [1 + (8h/8%)*]*/2. Thus to leading order in (Oh/8Z)?, letting b —
h — At for convenience (note this implies the KPZ equation is invariant under a

Galilean transformation), one obtains the KPZ equation,

oh 8% ,\(ah)’
+n

% ='5m 15 (233)

where the noise satisfies Eq. 2.14 to this ozder.

This derivation implies that the XPZ equation can be used to describe a flat
growing interface in the nonconscrved Ising universality class in the presence of a
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field, or a solid growing into a supercooled liquid, subject to the restrictions mentioned
above (Jorgensen, Harris and Grant 1989). We should also note that there are many
experimental representations of models A and C (It may be that derivations can be
given of the KPZ equation for other situations, without these restrictions (Krug and
Spohn 1990).). Thus, the KPZ equation is especially relevant to dendritic growth.
It can be used to describe the behavior of the solid-liquid interface at the tip of the

dendrite, where the crvature is small.

2.3 The asymmetric Solid-On-Solid (SOS) model

As mentioned above, there are many advantages to using microscopic models. Firstly,
their microscopic description of the interface is more appealing. Moreover, if prop-
erly constructed, they contain the essential elements necessary for any roughening
transition to take place. Consequently, there have been many such models developed.
The crude and simple microscopic model of a crystal is that of a compact structure
packed together out of rigid elementary building blocks, which may, for instance, be
of cubic shape, corresponding to lattice cells or parts thereof. This model is known
as the Kossel crystal (Kossel 1927). As it is, this model completely ignores lattice
vibrations, electronic structure, dislocations and other essential features of realistic
crystals, but in spite of this, it yields a good qualitative picture of realistic crystal
surfaces in some cases. A slightly more refined description of a crystal in equilibrium
with its vapor is provided by the lattice gas version of the three-dimensional Ising
model. In this model, the unit building blocks are replaced by lattice cells which may
be either empty or occupied by a single particle. In a typical two-phase equilibrium
state, there is a dense component which can be identified as the crystal phase with
a small concentration of vacancies, and a dilute phase which can be identified as the
vapor phase. The latter component consists predominantly of empty sites with a
small concentration of vapor particles, mostly monomers, but some united in small

clusters. The crystal surface can be defined microscopically as the contour separating
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the crystal phase from the vapor. Even though the description of the vapor phase by
a lattice structure is unrealistic, it is expected to be reasonable at low temperatures.
If, in such a model, one neglects the presence of bubbles - that is compact inclusions
of one phase in the other - and overhangs - that is a portion of the interface where
the height A(z) is multivalued - , one arrives at the Solid-On-Solid (SOS) meodel (see
Fig. 2.3).

The SOS model has been extensively studied both theoretically and with the aid
of computer simulations, and its equilibrium properties are well understood (Van Bei-
jeren and Nolden 1987). Consider for simplicity the case of a (100) face of an impurity-
free simple cubic crystal in equilibrium with its vapor. We can model this situation
using the lattice gas model, in which every site is either vacant or occupied by a single
atom which in turn can only interact with its nearest neighbors with an interaction
strength J. At sufficiently low temperatures, it is assumed that one can neglect the
presence of crystal defects, such as vacancies, and particularly bubbles and overhangs.
The surface of the crystal can then be represented by a set of discrete variables k; ;
representing the height of the interface at a lattice position (i, 7), with an appropriate
energy assigned to different configurations. The Hamiltonian is defined as

Hlhis) = To(lhss — hasasl + hig = higoal). (2:34)

Dynamics is introduced into the model by creating or annihilating atoms at random
positions on the surface. This process simulates the molecular exchange between the
solid and vapor phases. It is worth mentioning that simulations of the SOS model at
high temperature describe the same physical phenomenon - namely the equilibrium
roughening of an interface - as Eq. 2.4. There exists another model, the discrete
Gaussian (DG) model, which is also of interest for us. It uses the same microscopic
description of the crystal surface as the SOS model, but its energetics are slightly
different. The Hamiltonian used for the dynamics is

Hlh; ;] = Z;((h-'.:' = his1)* + (Rig — higr)?). (2.35)
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Figure 2.3: A typical configuration of the SOS model. Note the absence of overhangs and bubbles.
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Figure 2.4: Coexistence curves of 4 different fluids close to their critical temperatures. The curve is
a cubic fit to the data (Guggenheim 1945).

To first order, the square terms in this Hamiltonian mimic the finite-difference version
of a Laplacian operator. Indeed, analysis of this model is sometimes simpler than in
the absolute value model. This is why this model has been used to perform various
calculations.

If the difference in the Hamiltonians translates into a difference in the short wave-
length regime, we have to remember that, at low temperatures, the difference between
neighboring sites is small, that is, is equal to zero or unity in most of the cases. Thus,
in this case, the two models are equivalent, at least so far as long length scale and long
time properties are concerned. To be precise, for our purposes, models are equivalent
if they share common asymptotic properties, like the scaling exponents x and z, and
the scaling function defined in Eq. 1.2. One then says that the two models share the
same universality class.

The concept of universality is closely related to the field of critical phenomena. A
good example of universal behavior is well illustrated by Fig. 2.4. On this figure, the
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rescaled densities as a function of the rescaled temperature overlay perfectly, indicat-
ing all the compounds considered scale in the same way. The universal behavior of
many systems is well known experimentally. For example, it has been found that the
behavior of some ferromagnetic systems and some liquid systems are described by the
same critical exponents. As a consequence of these observations, it was conjectured
that diverse physical systems behave identically near their critical points. This uni-
versality hypothesis states that only two quantities determine the critical behavior
of most systems: the dimensionality of space d and the dimensionality of the order
parameter D. All systems having the same values of d and D are said to be in the
same universality class.

As we will see in Chapter 4, the study of the SOS and DG models was instrumental
in finding a proper description for the equilibrium roughening transition. Further-
more, if one is far enough from the transition temperature, one can recover the scaling
behavior of the roughening equation (Eq. 2.4). Those and other reasons have led many
people to devise microscopic models that exhibit the same critical exponents as the
two dimensional KPZ equation. Examples of such models are the Eden model, the
ballistic deposition model and the KK model (Kim and Kosterlitz 1989).

In the Eden model (Eden 1961), given a cluster of N particles, the (N + 1)t
particle is added at a randomly chosen perimeter site of the cluster. In the ballistic
depoeition model, spheres are dropped sequentially above randomly chosen positions
of the horizontal substrate, move towards the surface along ballistic trajectories and
stick permanently at the point of first contact with the substrate or a previously
deposited sphere. There are many variations on this model. One can allow the
sphere to “roll downhill” until it reaches a stable equilibrium. One can also perform
on- and off- lattice simulations. Finally, one can use various angles of incidence for
the trajectories.

The Kim and Kosterlitz model is a restricted SOS (RSOS) model. The energetics
are still governed by the SOS Hamiltonian, but the model restricts every nearest
neighbor height difference to a maximum value of one lattice constant.
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Although the growth exponents obtained from simulations performed on those
models agree with the KPZ equation in d = 2, the situation 1n d = 3 is much less
clear. This led us to devise a model which we thought would contain the same
feature as the KPZ equation, and consequently, would be in the same universality
class. This model, which we named the asymmetric SOS model, is described by
the same Hamiltonian as the equilibrium SOS model. To study the nonequilibrium
properties of a driven interface, we use H for Monte Carlo attempts, but bias those
attempts by an amount )., which is the fractional amount of extra attempts made
on one side. Thus A, gives the asymmetry of rates of evaporation and condensation
on the interface corresponding to A in the KPZ equation, while the temperature
T for Monte Carlo moves approximately corresponds to D/v in the KPZ equation.
This implies that A, = 0 represents the equilibrium case, while A\, > 0 causes a
constant velocity of the interface. We expect this asymmetry to allow terms even in
Oh/OZ to appear in long-wavelength equations of motion, so that this model would
be in the same universality class as the KPZ equation. We point out here that the
procedure introducing asymmetry, and thus, allowing us to use the “new” model to

study interface growth, is associated with minimal changes from the standard SOS
model.

2.4 Exact Results

Exact results for the models simulating the equilibrium roughening of an interface are
available. Most of them stem from a renormalization group analysis. This technique
has been widely used in statistical physics, because it is particularly successful at
handling the various singularities that occur at a second order phase transition. Since
some of those results are useful for the analysis of the nonequilibrium systems, we
describe them here. Let us first review a simple method that allows us to calculate
the critical exponents related to the roughening equation (Eq. 2.4).

As mentioned above, the roughening equation and the equilibrium SOS model
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both describe the roughening of an interface. Above the roughening transition, the
renormalization group calculations performed on those two models predict that the
height-height correlation, that is the width of the interface defined by Eq. 2.7, diverges.
Furthermore, the way it diverges depends on the dimensionality of the model. To see
this in an easy way, let us make use of the roughening equation. Let us Fourier

transform this equation and rewrite it in momentum and frequency space
iwh(§,w) = —vg’h(§,w) + (7, w), (2.36)

where ¢ is the momentum, w is the frequency and 7(g,w) satisfies the following rela-

tions
(n(gw)) = 0, (2.37)
(n(§win(d,o")) = 2D§(F+§)8(w +w'). (2.38)
One can thus write
h(q,w) = m’l(é}w) (2.39)

From this equation, one can immediately infer that the interface does not move, that
is, that its average position is time independent and equal to zero. This result is
simply obtained by taking the spatial and temporal average of the whole equation.
One can also find the width of the interface. We first write

(MG = oA T
We then take the Fourier transform of this equation to obtain the width in real space.
Taking the ¢ — oo limit, we obtain

] (n(w)n(q", ")) (2.40)

w(L) ~ L2, (2.41)

for d < 3, where L is the linear size of the system and d is the dimension of space.
Thus, the width of the interface diverges in the thermodynamic limit, that is, when
L — oo. This fact is a consequence of the Goldstone theorem. The free energy of
the interface (Eq. 2.15) is translationally invariant; it has an infinite number of en-
ergetically equivalent positions. By placing the interface at a particular position in
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space, one breaks this translational symmetry. As a consequence, there emerges an
excitation which malkes the interface vary slowly in space. This excitation is called
a Goldstone mode. It has a very low energy which goes to zero as the wavelength
associated with it goes to infinity. The interface is unstable against such loug wave-
length perturbations and its width increases to infinity in the thermodynamic limit.
However, note that the interface width remains small compared to the dimensions of
the system, since W/L ~ 1/13‘#1 as L — oo, for d > 1.

The above method has the advantage of allowing us to find precisely how the
interface diverges as a function of the space dimensionality much more easily than the
renormalization group technique. However, as was mentioned before, the continuum
model does not allow us to find the roughening temperature, or any of the quantities of
interest associated with the roughening transition. Nevertheless, one is able to extract
the critical exponents z, and x, from this analysis. From above, x, = (3 — d)/2, and
it can be easily shown that z, = z for d < 3. In d = 3, the situation is a bit more
delicate, because it corresponds to the npper critical dimension, that is, the dimension
above which mean field results become exact. One then finds that the width of the
interface diverges very weakly as .

W ~ vinL, t/L> 1, (2.42)
W ~ vint, t/L < 1. (2.43)

It is often difficult to obtain information on the dynamics of a system by such
simple methods. One usually has to use more involved analytic methods to obtain
such results. The renormalization group method is such a scheme. The reason it has
attracted the attention of many researchers is because it has been quite successful at
handling various analytical problems other methods could not. The philosophy behind
this method is closely associated with scaling and universality. Indeed, this universal
behavior shared by all systems at their critical points led people to think that most of
the microscopic characteristics of the system were not useful in describing the behavior
of the system - in other words, they were associated with irrelevant variables. A few

parameters were crucial to obtain the right description - the variables associated with
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these parameters were relevant variables. The renormalization group method consists
of rescaling the system, and, in so doing, integrating the irrelevant variables away
while keeping the relevant variables. Even though there are very few rigorous proofs
for doing such a thing, it can be phenomenologically justified by the scaling behavior
of critical systems. The success of the renormalization group method in equilibrium
problems prompted people to try the same type of analysis on driven systems, and in
particular on the KPZ equation. Forster, Stephen and Nelson (Forster, Nelson and
Stephen 1977) have applied the dynamical renormalization group method to the noisy
Burgers equation, and their results are also valid for the KPZ equation, as shown by
Kardar, Parisi and Zhang (Kardar, Parisi and Zhang 1986).

We illustrate their method. Consider the KPZ equation:

oh 8h X [(oh\?
-b? = VEE—’-*-_Z-(B_E) +n (2'44)

(n(Z,tm(&,¢')) = 2D8(Z — 2)8(t - t'). (2.45)

Next, we Fourier transform those equation. We thus define h(k,w) and (¥, w) such
that

M) = [ a0 [ ’:’ dth(z, t)e- o+t (2.46)
nw) = [ @[ :’ din(Z, t)e~F+ior, (2.47)

Here, A is a short wavelength cut-off corresponding to the lattice constant or the

interatomic distance. Conversely,

-1 o0 - . s
h(Z,t) = A d(;_';)?’_} /_ “; %h(k,u)e“""‘“", (2.48)
3 Ak redw p e
(3,8 = /. W /_ (ke . (2.49)
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Figure 2.5: Self-similarity of KPZ interfaces.

One can substitute the above expressions in the KPZ equation, which then assumes

the following form:

h(k,w)

(n(E,w))

(n(k,w)n(K', o'

with

= h°(i§,w)
~3Go(k,w) [ 7 (F - DHEDE - G0 - 9), (2:50)

= 0, (2.51)

= 2D(2x)%6(k + k' )6(w + w') (2.52)
-1

Go(k,‘d) = m, (2.53)

W(kw) = Go(kwm(E,w), (2.54)
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-/q.n = /1<A (::):f, /:: g% (2.55)

The way the KPZ equation is now written allows us to iterate the equation up to
any order. However, this is not quite what we are going to do. Although our goal
here is not to review the mathematical and physical background associated with the
renormalization group method, let us outline the arguments validating the procedure.
In most of the cases encountered in statistical physics, the usual perturbation theories
used to calculate any of the relevant physical quantities will work well enough. How-
ever, there is one point in the phase diagram of most compounds where this methods
fails. It is the critical point. The reason for this failure is that, at this point, the
correlation length diverges in the thermodynamic limit, thermodynamic quantities
become singular, and the perturbation expansion becomes uncontrolled, so that the
higher order a perturbation term is, the more relevant it is. Another important and
simplifying thing happens at the critical point: All the singular quantities exhibit
scaling. For example, in the present case, the width obeys the following equality:

W ~ L%, (2.56)

where L is the linear size of the system. What this means physically is well represented
by Fig. 2.5. One can hardly distinguish one figure from another - statistically, they
are equivalent - and yet one is represented on a scale which is twice the other.

Another important fact associated with the behavior of systems at the critical
point is the divergence of the correlation time - that is, the time At it takes for
W(Z,t + At) to become uncorrelated with W (Z,¢):

Jm_ (W(E W (3t + At)) = conat. (2.57)

The fact that the correlation time and correlation length diverge means that the
rapidly-varying wavelengths in the system are averaged out, and that only the lorg
wavelength behavior of the system is relevant. The renormalization-group technigue
involves a controlled averaging or “coarse-graining” of these rapidly-varying quanti-

ties.
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In the case that is of interest here, the diverging quantity is the width of the
interface W. The scaling laws obeyed by W have been given by Eqs. 2.8 and 2.9.
The first step in the renormalization group procedure is a coarse-graining procedure.
It corresponds to applying a perturbation method to this equation, that is, to iterate
the equation to first order, to replace the exact h terms in the integrals by their
unperturbed counterparts A? and to integrate over the small wave vector region, that
is, over the wave vectors forming the stochastic noise described above. Using the

notation in Fig. 2.6, we can represent Eq. 2.48 by the diagram in Fig. 2.7. We then

h(ic..w) =
(kW) = ——
G,(ie’,w) = ———

- (T k <q
-%q-(k—d):
kq

Figure 2.6:

split the integration into two parts using the symbols represented in Fig. 2.8. Note
the change in scale ! > 0, by which the rapidly-varying short-wavelengths quantities
are integrated out. We then obtain the perturbed equations represented in Fig. 2.9.
After some tedious calculations, one obtains, to first order, tie representation the

corrections to Eq. 2.48 in Fig. 2.10, which translate into the following equations:

h<(i‘."") = Gf(z’w)ﬂf(i;a“’)

2G5 (kyw) [ 36— D@ W< - G~ ), (258)
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Figure 2.7:

b (kw) = ——  B<(hw) = ——
b>(kw) = —t—  bS(Rw) =
G (kw) = ——  GS(kw) =

elA<k<A k<elA

Figure 2.8:
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with

\2
vi = v {1 + 59—'%‘—‘(—1—% e — 1]} (2.59)

_ NKii 1 1 ey
Dy = 1'){1——-4——;1—_—3 [e ~1] (2.60)
Ar = A (2.61)
(nf(kywns (F,o') = 2D1(2x)*'5(k + k')8(w + ') (2.62)

where A< refers to relevant wavectors heights, as opposed to the wavectors forming the
stochastic noise, K4_, = 1/29-2x°F I'(43!) is a constant of integration corresponding
to a (d — 1)-dimensional surface and Ao = A2D/1®. The second step is then to ensure
that the above equations obey scaling laws which are observed in the system. One

thus introduces the following scale transformations:

K = €k (2.63)
W = e w (2.64)
W(E W) = e d-6-14) p<(E W) (2.65)
n(E,w) = e @ g5 (R, w). (2.66)

Substituting those expression in Eqs. 2.56-2.60, we obtain the following:

v(l) = Ny (2.67)
D(l) = els=-2-d+1)i p, (2.68)
Al) = =2 ), (2.69)

Finally, taking [ as an infinitesimal length, one obtains the following results:

NK, .3-4d
4 d-1

du(l)
Td

= () [—2 +z+ (2.70)
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i’%ﬂ = D(l)[z—d+l—2x+% (2.11)
KD = al-2+x (2.72)

To ensure that these equation satisfy the scaling relations, one has to enforce that
v(1), D(1) and (1) are independent of I. This gives the following flow equations:

MKy, 3-d

z = 2———4—“—_1-, (2.73)
d-1 MNK4,d-2

A 3-d: 2d 5,

5 = g At KR (2.75)

to leading order in ).

The important result that comes out of these equations is that there are no stable
fixed points to the order we have calculated the critical exponents. As a matter of
fact, for d < 3, X(I) diverges exponentially with I. When d > 3, one finds that the
perturbation term (VhA)? is irrelevant, and one recovers the equilibrium roughening
critical exponents. The reason one obtains exact results when d = 2 is suggested
by the equation describing x. The last term in the flow equaticn vanishes in this
particular dimension, and one is left with x = 1/2. In fact, it can be shuwn that this
occurs to all order in ). From the hyperscaling relation y + z = 2, one can then find
B = 1/3. However, even though those results are exact, it does not mean that we did
find a fixed point. Furthermore, we do not have any such “luck” in d = 3. This can
be seen from the behavior of dA/dl. In d = 3, the first term vanishes, but the second
term is positive. Thus, the value of ) increases as the system is rescaled. It does not
flow towards a stable fixed point. This is one reason why numerical work is required
to obtain growth exponents in d = 3.
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2.5 Discussion

The derivations given above (particularly in Section 2.2.1) clarify the physical picture
represented by these models: the far-from-equilibrium states described by the KPZ
equation are regions in an equilibrium phase diagram corresponding to the limits to
which one can, say, supercool a liquid or superheat a solid. The theoretical counter-
part of this process is the quenching of an Ising model with a field applied below its
ordering temperature, or the off-critical quench of a binary liquid into the nucleation
region. The limits we refer to above also translate into limits on the range of validity
of the above models, related to a combination of the strength of the field and the
time scale of the description.

There are strong bounds on the nature of the nonequilibrium state, since, in
the example above, the liquid is only metastable. The state eventually decays by
droplet nucleation, which implies limits on driven interface models, since there is
a time regime for which bubbles are relevant. Nucleation is a subtle problem in
nonequilibrium theory, involving the nature of metastable states in the hydrodynamic
limit. (By hydrodynamic limit, we mean the late-time, large-system-size analog of
the thermodynamic limit for nonequilibrium systems). However, the nucleation rate
is easy to obtain within the classical approach of Becker and Daring (Becker and
Déring 1935; Gunton and Droz 1983). Nucleation occurs when droplets of a stable
phase form by spontaneous thermal fluctuations from a metastable matrix. Small
nucleated droplets disappear, thus the metastability, while large droplets grow. The
rate-limiting process for the formation of the stable phase involves droplets which
barely grow, called critical droplets. Classical nucleation theory has two main parts,
a quasi-equilibrium theory of the critical droplet, and a kinetic theory of its growth.

Assume the system is ordered with spins up, and an infinitesimal uniform external
field is applied which favors spins down. The free energy of a domain of down spins

is assumed to be,

F(R)~ -HR*+oR*!, (2.76)
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where R is the size of the domain and factors of 2 and » have been ignored for
convenience. The first term corresponds to the volume energy of a droplet, while the
second to its surface area, so that F,(R) is a simplified form of Eq. 2.15. The free
energy has a maximum R* = [(d — 1)/d]s/H. Domains with radii R > (<)R*, grow
(shrink) respectively, where R* is the critical droplet radius. The rate of nucleation
I is proportional to the probability of such a droplet appearing by a fluctuation, i.e.,
I « exp[—-F,(R*)/T] or

L‘ L ]
I= t—.e-"(" Wr (2.77)

where L9 is the volume of phase space accessible for such a fluctuation, and the time
scale is (fiven by
i*=(6In R*/6t)?, (2.78)

so that 1/t* is the linearized growth rate of the critical droplet. The characteristic

time scale for a droplet fluctuation is 7 ~ I, or
T exp[—H% +1n L9, (2.79)

where some numerical factors have been ignored. Note that 7 is only weakly depen-
dent on system size and dimension of space for d > 1, e.g., Tu=2 ~ exp(ln 74=s)!/2.
Thaus, for the systems mentioned above, the KPZ equation is useful on time scales
t € 7, since droplets (i.e., bubbles) are neglected by assuming h(Z,t) is single-valued.
It is known from the study of the kinetics of first-order transitions that droplet nu-
cleation becomes appreciable at the cloud point in experimental systems (Gunton,
San Miguel and Sabni 1983; Gunton and Droz 1983), when 7 = O(1). For even larger
field strengths, the system’s state can become completely unstable; for example, in
long-range-force systems (where the critical droplet is of the system size), this occurs
at the spinodal curve H = H,,(T'), which is a line of mean-field second-order transi-
tions. It should be emphasized that the nature and formal definition of a metastable
state in the hydrodynamic limit is as yet unresolved, except for the relatively unin-
teresting case of systems with long-range forces. Even with this restriction, the KPZ
equation is quite useful for describing the growth of interfaces in non-equilibrium
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systems. It is applicable to the interface of a growing bubble if the system meets
the conditions stated above. A particularly good example of such a system is den-
dritic growth, where the time scale for growth of a dendrite is on a much faster scale
than the nucleation rate in the undercooled liquid. Given the restrictions discussed
above, the KPZ equation describes dynamical roughening at the tip of such a growing
dendrite.




Chapter 3

Numerical Results for the
Interface Width

As we have seen in the previous section, it is not clear how to make further progress
analytically. At this point, we resort to numerical work. In this particular case, as we
mentioned in the previous chapter, there are no exact results available for the critical
exponents related to the roughening of the interface in d = 3. These exponents are
not only relevant to theorists, but can also be estimated experimentally, and are of
potential use in materials problems: for example, for controlling the speed at which
an interface grows. Furthermore, as we will see in the next chapter, the knowledge of
those exponents can help us analyze the dynamical roughening transition.

Based on the fact that many models yield the same results as the KPZ equation in
d = 2, people have conjectured values of those exponents as a function of d. However,
none of the models that yielded the same scaling exponents as the KPZ equation in
d = 2 have been shown to belong to the same universality class as the latter in any
dimension. Thus we felt it worthwhile to directly integrate the KPZ equation using
a finite difference scheme. This method has its advantages and its disadvantages.

The major advantage is that we obtain some values of the scaling exponents for the
KPZ equation, rather than some model that might belong to a different universality
class. There are also disadvantages with this method. It is always delicate to perform

42
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a finite difference calculation using an ordinary differential equation, because of the
many parameters one has to vary to obtain optimal results. However, in the case
of a nonlinear stochastic differential equation, things are even worse. One then has
to worry about the stability of the solution, the range of wvalidity of the various
parameters. Furthermore, the presence of noise does uot make things easier. Finally,
one has to be confident of having reached the scaling regime to evaluate meaningful
scaling exponents.

As was mentioned in Chapter 2, we expect that the asymmetric SOS model belongs
to the same universality class as the KPZ equation in any dimension. In parallel to
the numerical integration of the KPZ equation, we thus performed a Monte Carlo
simulation of this model.

In this chapter, we present the integration method we have used, and the various
tests we have performed to verify the robustness of our results. We also describe the
Monte Carlo simulations performed on the asymmetric SOS model. We then present
some two dimensional results, some crossover results, and close the chapter with the

three dimensional results for the scaling exponents and the crossover expouent.

3.1 The finite difference method

The finite difference method (or Euler method) is the simplest method to simulate dif-
ferential equations. It consists in making the following approximation for the spatial

and temporal derivatives

ah(i" t) — h(£+ Ai,t) — h(iv t)

3"?3 ) ] ( Aa)? (2,¢) | -
z,t h(Z,t + At) — h(Z,¢t
5 = At . (3.2)

Using this scheme, one can approximate the KPZ equation by the following form
(h(Z + AZ,t) + h(Z — AZ,t) — 2h(Z,t))
g (Az)°

+% (h(:i:’+ Ai:‘;:) — h(i,t)) + ,,(5,‘)] (3.3)

h(Z,t + At) = h(3,t)+ At




-
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There are of course conditions to be fulfilled for this approximation to be valid
and to give the right solution to the equation. First, Az and At have to be chosen
small enough so0 that the length and time scales of interest are larger than them. That

is

Az <« I, (3.4)
At € t (3.5)

where L and ¢ are respectively the length scales and time scales associated with
the problem. Furthermore, Az and At cannot be chosen independently. This is
seen easily if one examines closely the Euler approximation. The equations to be
solved involve both temporal and spatial derivatives. Thus, not only are there certain
length and time scales present in the system, but the two are related (for example,
through speed in the case of a wave equation). Thus, the choice of the time and space
increments must be made judiciously, first of all to avoid wasting (computer) time,
but more importantly to 2 ¢id nmmerical instabilities. For example, it is well known

that, in the case of the diffusicn :quation
8"—1(;;:9 = DV?h(Z, 1), (3.6)

Az and At have to be chosen so that At/(Az)? < 0.5. This constraint is obtained by
taking the difference between the exact solution - that is, the whole expansion -and
the approximate solution and chosing At/(Az)? such that this difference converges to
a finite bound. Furthermore, we are interested in differential equations which incor-
porate an additive noise piece. ‘This should make things worse, because it introduces
an additional deviation of the numerical results from the exact results. Finally, the
presence of a nonlinear piece introduces the possibility of bifarcation problems, which
can only be detected by careful inspection of the data. All the concerns above must
be appropriately treated in the numerical scheme.

To test the robustness of our results, we performed varivous tests. We first varied

At and Az to detect any changes in the results. We used At = 10-2,5x10-%,10~% and
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Figure 3.1: Check for the presence of finite sise effects in the KPZ simulations. t is the time, W is
the width of the interface

Az =1,05ford = 2,and At = 10"3,5x104,10~* and Az = 1,0.5 for d = 3. For all
those different parameters, our results did not change. We then varied the sizes of the
systems we simulated, to check for any size dependence in the growth of the width.
We used sizes of L = 4096,8192,16384 for d = 2 and N = 128?,2562,5122,1024? for
d = 3 (see Fig. 3.1). Again, the width did not exhibit any size dependence.

All those tests were performed with white noise, that is

V(£1 t)v ’l(i’t) € ['-1’ 1]1 (3'7)
7(Z,t) satisfying Eqs. 2.6 and 3.7. We also used a seed-shuffling algorithm to avoid
possible correlations. To further test our algorithm, we simulated the KPZ equation
with the same parameters but with gaussian noise
V(i‘, t)1 ﬂ(iv t) € [—(X), +<X>] (3'8)
and

P(n(2,)) o exp(—(n(Z,t))’). (3.9)




~
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Again, no differences were found between various runs.

To check the accuracy of our integration scheme, we made use of sum rules derived
by Fox (Fox 1990) for the KPZ equation. If one makes use of the nonlinear change
of variable w(Z,t) = exp[Ah(Z,t)/2v], one then obtains the following differential
equation:

E‘_‘”_g_’t’:’_‘_) = vV3uw(3,t) + %r’(é‘,t)w(:i:‘,t). (3.10)

This is a diffusion equation plus a multiplicative noise term. This equation is thought
to represent directed polymers, as well as quenched disorder (Krug and Spohn 1990).
The white noise assumption allows us to make use of the Furutsu-Novikov theorem

(Furutsu 1963; Novikov 1965) to obtain the following equation:

2wz, ) = v (u(@ ) + (21) D O)w(E,E),  (311)

where §9(0) is the d-dimensional delta function. We can get rid of this divergence by
introducing an ultraviolet cut-off; that is, a lattice constant which is present in any

real system. Then, the noise correlation assumes the following form
i =~ -2
(7(Z, (2", ') = 2D(2x0?)~"T exp (-9‘—2;2-)-) 5t —t') (3.12)

Taking the average of Eq. 3.10, we then obtain

gt-(w(:i:’,t)) = vV {w(Z,t)) + (é\;) D(21rtr’)'u%‘l(w(5,t)). (3.13)

Solving for (w(Z,t)), we find
(w) = exp|t (%) D(Zra’)'“—;‘ﬂ exp(tvV?)w(0) (3.14)
= exp f (-;;) D(21ra’)'u';'uJ (3.15)

We can thus say that (w(Z,t)) is an exponential function of time. More precisely,

In(w) = c (-é\-)zt (3.16)

1 4
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Figure 3.2: Sum rule test on the KPZ equation. t is the time, w is defined in Eq.
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Figure 3.4: Sum rule relation in d = 3.

where c is a constant. Thus, In(w) is a linear function of time and the slope of the
line is proportional to A2.

We then tested these predictions by calculating (w(Z,t)), taking the logarithm of
the data and plotting the variation of the slope as a function of A? (since v is held
constant). As can be seen from Figs. 3.2, 3.3 and 3.4, this exact property of the KPZ
equation is well-obeyed by our numerical integration results. '

3.2 The Monte Carlo method

The Monte Carlo method has been known for a long time, but only with the recent
advent of powerful computers has it been possible to fully utilize its advantages. Our
purpose here is not to review extensively its applications, but rather to concentrate
on the points essential to our work.

The Monte Carlo method in statistical physics permits the study of models of
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equilibrium and nonequilibrium thermodynamic system by stochastic computer sim-
ulation. Starting from the description of the desired physical system by a model
Hamiltonian, one uses random numbers to construct the appropriate probability with
which the various generated states of the systems have to be weighted. In the classical
equilibrium case, the Monte Carlo simulation allows for the calculation of the phase
space integrals associated with the following expression:
4y  fndeA(=)expl-H(z)/kaT)
Jo dz exp[—7{(z)/kpT]
where A is an observable,H(z) is the Hamiltonian of the model with phase space

(3.17)

variables z, kg is the Boltzmann constant and T is the temperature. We thus want
to calculate the statistical mechanics average of A. It was quickly realized that this
random sampling method was not of great use for problems in statistical mechanics,
because it gives the same probabilistic weight to any configuration occurring in the
phase space. Consequently, Metropolis et al. introduced the idea of importance
sampling. Instead of chosing the points in the phase space completely at random,
they are selected according to a probability P(zZ;). Then, Eq. 3.17 is approximated

by
(4) ~ T A(z,) P~ (2:) exp[—H(z:)/kpT]
£}, exp(-H(z:)/ksT] ’
where M is the number of phase space points we use for the averaging procedure. The

simplest and most natural possibility is choosing P(z;) = P.e(z,) o exp [—H(z;)/ksT).

(3.18)

Since P.q(z;) is not known explicitly in the case of interest here, the realization of Eq.
3.18 is not completely obvious. Nevertheless, it is possible to construct a random walk
of points z; via a Markov process — that is, a process which probability distribution
for any future realization of a state only depends on its present probability distribu-
tion — such that P(z;) tends towards P.(z;) as the number of points generated to
calculate the integral goes to infinity. This Markov process is defined by specifying a
transition probability W(z; — z;) from one phase space point z; to another point z;.
In order that the Markov process has the desired convergence property, it is sufficient
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to impose the detailed balance condition
P.,(z.')W(z.- — z.v) = P.,(z.-:)W(z.-- — z.'), (3.19)

which means that the ratio of transition probabilities depends on the change in energy
&M = M(z;) — H(z;) only, that is

3:%—:—1% = exp[~6M/knT). (3.20)
One choice for W(z; — z;) is
W(z: — z0) = %exp[—ﬁ?'l/kgT] §H >0 (3.21)
1
= = SH <0 (3.22)

where 7 is an arbitrary factor which does not affect detailed balance. Thus, one takes
T=1

The procedure above is applied to obtain static quantities of systems that are
in equilibrium. The application of the Monte Carlo method to calculate dynamical
quantities is more problematic. This is because many systems considered do have a
time evolution in terms of deterministic kinetic equations for their variables. However,
some important models do not have a time associated with their dynamics. The
equilibrium SOS model belongs to the latter class. Then, the kinetics associated with
Eqs. 3.21-3.22 provide a measurement of time.

Up to now, we have been focusing on equilibrium systems. It is clear that the
asymmetric SOS model does not describe an interface at or close to equilibrium.
However, we have to remember that it is a microscopic model, describing interactions
down to a very small length scale. Our assumption is that the energetics at those
length scales do not change, or, equivalently, that the interface exhibits local equilib-
rium. With this assumption, it is then reasonable to use the Monte Carlo method,
on recalling that the biggest changes in the nonequilibrium model with respect to the
equilibrium one occur in the small wavevector region, on large length scales.
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Although Monte Carlo methods are quite different from numerical integrations,
their results are hampered by similar problems: one still has to deal with finite size
effects, and the simulation time still has to be long enough to ensure that we are in
the scaling regime of interest. Furthermore, the constraints on the time step At of
the numerical integration are replaced by constraints on the temperature T at which
the Monte Carlo simulation is performed given an interaction strength J. We thus
performed various test runs to satisfy ourselves that we were simulating the model in

the right regime, and in particular, far enough away from the roughening transition.

3.3 Results in two dimensions

An important test of our algorithms and the validity of our microscopic model was the
study of the KPZ equation and the asymmetric SOS model in d = 2. On integrating
the KPZ equation, we recovered the exact results obtained previously (Forster, Nelson
and Stephen 1977; Kardar, Parisi and Zhang 1986). The equilibrium roughening
results were obtained when the driving force was zero. The equation was solved with
systems of size L = 4096 and )\ between 0 and 80, which we found was of sufficient
size to avoid finite-size effects. A time mesh At = 10~? was used; smaller values gave
essentially the same results. Results from over 100 independent integrations of the
equation were averaged. The width of the interface W was mcnitored as a function
of time t, where W ~ t?. For A = 0, we obtained # = 1/4. For large values of ),
e.g. A > 40, the driven growth result, 3 = 1/3 was obtained (see Fig. 3.5). However,
for values 0 < A < 40, effective exponents were observed, with values 1/4 < 8 < 1/3,
indicating the presence of crossover behavior.

To obtain the roughening exponent y, the equation was integrated until a steady
state was reached. We then estimated the steady-state exponent x from W ~ LX as
the system size was varied from L = 50 to 400. For all values of A\, x = 1/2 was
consistently found, in agreement with both the dynamic roughening and the driven
growth results (see Fig. 3.6).
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Figure 3.5: Behavior of the interface width related to the KPZ equation as a function of time d = 2.
t is the time, W is the width of the interface. A fit of this curve yields a growth exponent 8 = 1/3.
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Figure 3.7: Bebavior of the interface width of the SOS model as a function of sise in d = 2. A fit of
this curve yields a growth exponent x = 1/2.

Monte Carlo simulations of the nonequilibrium SOS model were performed with
the system temperature, T', set to a convenient (reasonably large) value so as to ob-
serve a continuum-like behavior. The growth exponents were found to be independent
of temperature. In d = 2, systems of size L = 6 000 and times of up to 40 000 Monte
Carlo steps were used to obtain the growth exponent 3, and smaller system sizes were
used to calculate the growth exponent x. For any nonzero A,, we expected x = 1/2
and 8 =1/3 in the hydrodynamic limit. Indeed, x = 1/2 was obtained for all values
of A, (Fig. 3.7). For A, = 1.0, i.e., when there are only growth attempts, we found
B = 1/3 in agreement with the results for the two-dimensional KPZ equation (Fig.
3.8). For smaller values of )., crossover effects were again observed, while at A\, =0,

we observed 8 = 1/4 as expected.
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Figure 3.8: Behavior of the interface width of the SOS model as a function of time d = 2. A fit of
this curve yields a growth exponent 8 =1/3.
3.4 Crossover scaling in two and three dimen-

sions

As is clear from the above, to extract reliable asymptotic results a careful analysis of
crossover effects is needed (Guo, Grossmann and Grant 1990b). Since the presence
or absence of the nonlinear driving force determines the dynamic universality class
(driven or roughening), a natural analogy arises with critical phenomena. There, com-
peting interactions lead to crossover behavior between different universality classes.
For example, adding a cubic anisotropic interaction to the N-vector model can give
crossover from Ising to Heisenberg fixed points (Brésin, LeGuillou and Zinn-Justin
1974). For the driven growth problem described above, a crossover regime is thus ex-
pected when the driving force is small, and either ¢ or L is not asymptotically large.
While the usual crossover phenomena occurs between two or more stable fixed points,

we are now dealing with a situation where the crossover is to a strong-coupling fixed
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point where dimensional analysis is of little utility (since the ¢ = d. — d expansion
involves an unstable fixed point). As a consequence, the usual dimensional and scal-
ing analysis cannot predict the crossover exponents. Thus a numerical study, as we
present below, is required.

Guided by cxperience in critical phenomena, it is natural to propose an ansatz to

account for crossover. In two dimensions it is
W(L,t,\\) ~ t* fa(tL*,t2*), (3.23)

where 3, = 1/4 and z, = 2 are the exponents for A\ = 0, f; is the crossover scaling
function, and the new exponent ¢ accounts for crossover to nonzero \. Setting A = 0,
we recover the dynamical roughening results. When ¢ < L** (or for L = o), the L
dependence of f; can be dropped:

W ~ P f2(t)%). (3.24)

If A > 0, the growth will eventually be controlled by the unknown strong-coupling
fixed point which is characterized by the driven growth exponents 3 and z. Hence we
must have W ~ tP, so that f;(u) ~ uP~# for large u. This gives

W ~ tPAME-Fe) oy 41/3)8/12 (3.25)

We expect Eqs. 3.24 and 3.25 to hold in the large L limit.

Ind = 3, the above ansatz must be modified since dynamic roughening is marginal:
W? ~ A,Int, where A, is a constant. Thus we propose the following crossover scaling
ansatz

W2(L,t,)) = Afs(tr*) — ¢1n)] (3.26)

where the scaling function satisfies fs(u) ~ lnu, for u — 0; and fa(u) ~ u?8, for
¥ — 0o0. Again, we require times ¢ << L** so that any size dependence can be
neglected. We do not consider the possibility of a logarithmic crossover, as has been
suggested by Tang et al. (Forrest and Tang 1990). The arguments which lead to the
logarithmic crossover was based on a fixed dimension calculation to one-loop order of
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the KPZ equation(Kardar, Parisi and Zhang 1986). Such a calculation is expected to
be valid only for the nonlinear coupling constant A << 1, which is not the case for all
the numerical solutions of the KPZ equation performed so far. For A > 1 the fixed
dimension calculation does not give a controlled approximation and no satisfactory
theory exists for the strong coupling regime at d = 3. We thus resort to a numerical
study.

Although no perturbable strong-coupling fixed point has been found for the KPZ
equation in d < 3, it is sti!l worthwhile to show how to find ¢ by simple scaling
arguments, if such a fixed point existed. First, we perform a scale transformation
in space and time of the KPZ equation using the exponents for A = 0: & = e~'Z,
t' = e~*t, i’ = e *!h. Next, the transformed equation is restored to the original
form by redefining the constants: v — 1/ = vel®=M A o X = )elxsts—2) ppd
D — D' = Def*~4+1=2x)_ Finally, the transformation h'(#,t',)') = e *'h(Z,t,))
implies

W(L,t,A) ~ tBe F(Lt~/% tAs/(xetse-2) (3.27)
where a choice of [ has been taken such that e! = ¢!/, This implies that the crossover
exponent ¢ = z,/(Xo + 2o —2). Thus, for d = 2, this gives ¢ = 4. However, our
numerical results of the KPZ equation below give ¢ =~ 3. This discrepancy is related
to the absence of a stable fixed point in the strong coupling regime which is required
for the scaling argument to work. Indeed, the dimensional analysis above is intimately
related to the existence of a stable ¢ = d. — d expansion, since power counting by the
Ginzburg criterion, x, + z, — 2 = 0, determines the critical dimension.

To test the crossover scaling ansats and obtain the exponent ¢, the numerical
results of the previous section were used. In d = 2, data for those values of A which
gave § < 1/3 were analyzed. The inset to Fig. 3.9 shows f; = W/t'/* as a function of
t for several values of A. The curves, each representing an average of 100 independent
runs, are well separated. If plotted as a function of tA#, as shown in Fig. 3.9, a good
data collapse can be seen on using ¢ = 3.0. This implies that our scaling ansatz is

reasonable, with the curve of Fig. 3.9 corresponding to the crossover scaling function,
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Figure 3.9: Crossover behavior of the KPZ equation in d = 2. ¢ is the crossover exponent. We find
¢ = 3.0. Note that the curves are well-separated if not rescaled, as is shown in the insert.

fa.

An independent check on the value of ¢ was performed by taking large values of
A, so that 8 =1/3. We then monitored W versus A for a fixed time. Our ansatz then
predicts, as in Eq. 3.25, a power-law dependence, W ~ A*/12, Indeed, we found that
In W vs In) was well fitted by a straight line, as shown in Fig. 3.10, with a slope
0.23 1+ 0.02 which is again consistent with ¢ ~ 3. Combining the two independent
calculations of ¢, our best estimate for the crossover exponent is ¢ = 3.0 £ 0.2.

If the nonequilibrium SOS model shares a universality class with the KPZ model,
we expect not only growth exponents, but also crossover behavior to be identical.
Thus a crossover scaling analysis of our Monte Carlo data for small values of A\, was
performed. Keeping the system at a fixed temperature T = 0.5, we averaged results
of 250 independent runs on systems of size L = 2 000, each with 4 000 Monte Carlo
steps for different values of \,. Fig. 3.11 shows the crossover scaling function defined
in Eq. 3.24 for the SOS model after data collapsing. This analysis gave a crossover
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Figure 3.10: In W vs In A for various values of A.

exponent ¢ = 3.0 which indeed agrees with that of the two-dimensional KPZ model.

In three dimensions, we integrated the KPZ equation using parameters discussed
in the next section. Data with ) ranging from 120 to 240 by steps of 20 was used for
the crossover analysis. For A < 120, much longer runs were needed. Fig. 3.12 plots
fs =w?/A, + ¢In ) versus t)A*, where A, is obtained from the fit W? = A,Int when
A =0. As shown in the plot, with ¢ = 4.5 excellent data collapsing is achieved. The
behavior of fs at large values for t\* was consistent with our results for 8 in three
dimensions in the next section. Nevertheless, we caution that systematic errors could
be present in our estimation of exponents in d = 3, because it is a marginal dimension.
We did not perform a crossover scaling analysis on the three-dimensional SOS model

dae to the complications caused by the presence of a roughening transition.
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Figure 3.11: Crossover behavior of the asymmetric SOS model in d = 2.), is the bias related to the
difference between the probability of growing and the probability of evaporating.

3.5 Roughening exponents for the driven inter-
face in three dimensions

The integration of the KPZ equation is hampered by large fluctuations and crossover
effects. Besides large number of independent runs for average, one must study suffi-
ciently large system sizes so that the growth of the width persists until the nonlinear
term becomes important. Typically the following parameters were used: At = 1073,
with 50 000 integration steps, and system sizes of 1282 and 256%. Test runs on 5122
and 1024 systems were also performed which yielded the same value for 3. Re-
ducing the time mesh to At = 2.5 x 10~* and integrating over 200 000 steps also
gave the same results. As in the two-dimensional case, we varied )\ to ensure the
system was in the driven growth regime. Fig. 3.13 shows our results for W versus
t with A = 240, from averaging 50 independent runs. For late times, we estimate
B =~ 0.13 £ 0.02, in agreement with the value obtained by Chakrabarti and Toral




CHAPTER 3. NUMERICAL RESULTS FOR THE INTERFACE WIDTH 60

407...lﬁ..wl,.'.1'

2%.0 05 1.0
tA?

Figure 3.12: Crossover behavior of the three-dimensional KPZ equation. faq is the crossover scaling
fanction.

(Chakrabarti and Toral 1989; Guo, Grossmann and Grant 1990a) but smaller than
the value obtained by Amar and Family (Amar and Family 1989). Note that the
effective exponent drops to that value from 8 ~ 0.5 for early times (due to the noise
). This phenomenon stems from the following analysis: at early times, the interface
is only driven by noise. In this case it is well known that the exponent 8 must equal
1/2. As the interface lengt:: increases and long wavelength develop, the surface ten-
sion term becomes relevant. Finally, the non-linear piece comes into play, thus the
crossover behavior described in the previous section. It is also worth mentioning that
we have undertaken some selected arnalysis of larger systems, as well as larger values
of coupling constants, and recover equivalent results. While for any nonzero A we
expect the dynamics in the asymptotic regime to be governed by the strong-coupling
fixed point, for small values of )\ crossover effects were important, as discussed above.
Nevertheless, for A > 240 we found the value quoted above.

The value for Y was more difficult to obtain because of large fluctuations, thus
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Figure 3.13: Growth exronent 3 for the three-dimensional KPZ equation and the SOS model. The
latter data have been shifted down and left to compare them more easily to the KPZ data.
requiring a large amount of computing time. Nevertheless, data for L < 30 yielded
x = 0.24 + 0.04 (Fig. 3.14). Noting that z = x/8, we thus verified numerically the
hyperscaling relation (Kardar, Parisi and Zhang 1986) x + z = 2 in d = 3. Note that
these exponents are distinctly different from those of dynamical roughening, 8, = 0
and x, = 0, where W only diverges logarithmically.

As mentioned above, the interface dynamics represented by the KPZ equation is
expected to account for that of a large universality class of lattice models, which we
expect to include the asymmetric SOS model. In d = 3, Monte Carlo simulations
of that model were done to extract the growth exponents 8 and x. Systems of size
100? were used throughout, since they were found to be of sufficient size. In Fig.
3.13, the In-In plot of W versus ¢ is shown along with that for the three-dimensional
KPZ model. For A\, = 1 and any reasonable 7' well above the roughening transition,
we estimate 8 ~ 0.13 and x = 0.25, in agreement with the results obtained for the
three-dimensional KPZ equation. From Fig. 3.15, we estimate x ~ 0.25 + 0.02,
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Figure 3.15: Saturation exponent x for the three-dimensional SOS model
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which again agrees with the hyperscaling relation. As in the two-dimensional case,
smaller A, showed strong crossover effects, as discussed above. Nevertheless, the
good agreement between the various exponents obtained in d = 2 and d = 3 make us
confident that the KPZ equation and the nonequilibrium SOS model are in the same
dynamic universality class in both two and three dimensions.

Thus, in d = 3, our best estimates for the growth exponents for both the KPZ
equation and the asymmetric SOS model are 8 =~ 0.13, and x = 0.25. These results
are not consistent with conjectures in the literature (Kardar, Parisi and Zhang 1986;
Wolf and Kertész 1987a; Kim and Kosterlitz 1989). Those conjectures were, however,
motivated by the study of simple models which, although they share similar features to
the KPZ equation, are not obviously in the same universality class. Nevertheless, we
again caution that crossover effects could play an important and subtle role in d = 3,
because it is a marginal dimension, which may imply considerable systematic errors

in our estimation of exponents. Further study is required to definitively determine
the nature of growth in d = 3.




Chapter 4

The Equilibrium Roughening

Transition

The study of phase transitions has played an important role in twentieth-century
physics. At first, this interest might appear strange, since the phase transition lines
represent only a very small portion of the phase diagram itself. Indeed, second order
phase transitions often occur only at one point in the phase diagram. In the first part
of this chapter, we will explain the importance of this phenomena.

The previous chapter was devoted to the study of interface dynamics, that is, the
way the interface grows, its speed of growth, its roughness, and so on. However, this
study did not take into account the behavior of the interface that is associated with
its underlying microscopic structure. For example, it has long been known that below
a certain temperature, the equilibrium interface should be microscopically flat. This
stems from a microscopic study of the interface, which we will describe briefly below.
Thus, there should be a certain temperature at which the interface changes state, and
this change of state is associated with a phase transition. The nature of this phase
transition has been the subject of much debate in the last 30 years. We now review

the main results of the equilibrium roughening transition.
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4.1 Introduction to phase transitions

Thermodynamic systems can exist in a number of phases, each of which can exhibit
dramatically different macroscopic behavior. Generally, systems become more or-
dered as the temperature is lowered. Forces of cohesion tend to overcome thermal
motion, and atoms rearrange themselves in a more ordered state. Phase changes
occur abruptly at some transition temperature, although evidence that one will oc-
cur can sometimes be found on a microscopic scale as the transition temperature is
approached.

The thermodynamics associated with phase transitions is relatively simple. At
a transition point, two or more phases can coexist in equilibrium with each other,
as stated by Gibb’s phase rule. As a consequence of this, the chemical potential of
the phases, and therefore the Gibbs free energy, must change continuously. However,
phase transitions can be divided into two classes according to the behavior of the
derivatives of the Gibbs free energy. Phase transitions which are accompanied by
a discontinuous change of state — a discontinuous first derivative of the Gibbs free
energy — are called first-order transitions. Phase transitions that are accompanied by
a continuous change of state — the first derivative of the Gibbs free energy varying
continuously — are called continuous or second-order phase transitions.

Phase transitions occur at, say, a critical point; a well-defined temperature above
which one phase exists, and as the temperature is lowered a new phase appears.
When a new phase appears, it often has different symmetry properties, and some new
variable, called the order paramet~r, appears which characterizes the new phase. For
first order phase transitions, there need not be a connection between the symmetries
of the high- and low-temperature states. For a continuous phase transition, however,
since the state changes continuously, there will generally be a well-defined connection
between the symmetry properties of the two phases.

The field of critical phenomena is associated with continuous phase transitions. At

the critical point one observes divergences in otherwise well-behaved thermodynamic
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quantities such as the specific heat for liquid-gas systems and the susceptibility for
magnetic systems. Those divergences allowed people to define critical exponents.
Indeed, it is now fairly well accepted that divergences occurring at the critical point
are described by power laws. Thus, if f(z) is a diverging thermodynamic function,

one writes f(z) ~ z™® as z goes to zero. This means that
lmif(e)
ltm._.o-—l;z—— = (4.1)

where z is the distance from the critical point. Usually, there are corrections to
the power law behavior of thermodynamic functions, so that. one has to be in the
asymptotic regime before calculating any meaningful critical exponent. The singu-
larities at a critical point are related to fluctuation phenomena. Consequently, it is
difficult to solve these kinds of problems exactly, because of the collective behavior
of a large number of components of the macroscopic system studied. Instead, one
uses appropriately chosen models which exhibit the right physical behavior. It is in
this context of simplicity that the concept of scaling appeared. Scaling consists in
describing the singular part of the various thermodynamic function near the critical
point in terms of distance from the critical point, thus defining a set of critical ex-
ponents. The success of this description is because the correlation length diverges at
the critical point. Scaling also explains why different systems nevertheless behaved
in exactly the same way at their respective critical point, that is, they were described
by the same sets of critical exponents. One then says that they belong to the same
universality class. This latter concept can be very useful because it allows people
to know what critical exponents describe a system without having to experimentally
find them. It also allows various tests to be performed on theoretical models. Finally,
scaling is the last step leading to renormalization group methods which have been
introduced in Chapter 2.

As was mentioned at the beginning of this section, phase transitions occur in a
variety of systems. The equilibrium roughening transition is a particularly fascinating
example of phase transition. It also provides us with a very good example of how

useful the concept of universality class can be. Let us now describe this transition in
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more detail.

4.2 The equilibrium roughening transition

In their now famous paper published in 1951, Burton, Cabrera and Franck were the
first to suggest the existence of a roughening transition in crystal surfaces. They
were actually interested by the behavior of solid surfaces in equilibrium with their
vapor, and the growth that occurs in such systems. Based on energetic considerations,
they showed that below a certain temperature, the growth due to the formation of
nucleation droplets on the surface would in practice be replaced by the growth due
to the presence of screw dislocations in the bulk. They then went on to identify the
presence of a interface in d = 3 as being well-described by a two dimensional Ising
model (Fig. 1.1). Their idea was that the surface layer was not influenced by the bulk
or the vapor because of an exact cancellation taking place between the layers above
and the layers below it. Then, as the two dimensional transition temperature for
the Ising model was approached, large fluctuations would destroy the surface layer.
According to this analysis, the roughening temperature would then have to be fairly
close to the phase transition temperature of the two-dimensional Ising model.

While qualitatively correct in some aspects, the Burton-Cabrera-Franck argument
is incomplete and not correct in detail. The main reason for the incorrectness of their
reasoning lies in the fact that Burton et al. did not take into account the possibility
of layers growing on the top of layers. By doing this, they then put a very strong
constraint on the number of degrees of freedom describing the interface. Namely,
from infinity this number was reduced to two. It is for the same reason that the exact
cancellation of interaction taking place at the surface layer can only occurat T = 0.
Fluctuations make the the behavio: of interface between two coexisting phases more
complicated than that given by the argument of Burton et al..

Even though the analogy was incomplete, experimental facts confirmed that Bur-
ton et al. were still right in their prediction that some crystal surfaces would be rough




CHAPTER 4. THE EQUILIBRIUM ROUGHENING TRANSITION 68

above a certain temperature, and flat below it. Consequently, some experimentalists
started looking for the roughening transition in various materials. However, this
proved to be a very difficult task. In fact, theorists uncovered the solution to this
problem before direct experimental observations of the transition were made. Since
we want to keep the chronological order intact, let us first describe the theory before
giving experimental facts.

4.2.1 Theory

As mentioned above, the theoretical study of the roughening transition started in the
50's with the paper by Burton et al.. Although their description is valid over a wide
range of low temperatures, it breaks down close to the roughening transition tem-
perature because it ignores the multilayer structure of the interface at (and above)
this temperature. Nevertheless, it was only in the beginning of the 70’s that people
started to realize that there was a flaw in the argument put forward in their paper.
Gallavotti and van Beijeren were the first to propose that in the three-dimensional
Ising model a phase transition delocalizing the interface between phases of positive
and negative magnetization might occur at a temperature below the bulk critical
temperature. Weeks et al. found strong evidence for such a transition from low tem-
perature expansions for moments of displacement of the interface. These expansions
were found to become divergent at temperatures roughly 10 % above the critical tem-
perature of the two-dimensional Ising model corresponding to a single layer, that is
well below the critical temperature of the three-dimensional Ising model. A major
advance in the theory took place in 1976, when Chui and Weeks successfully applied
the renormalization group method of Kosterlitz to study the roughening transition.
Chui and Weeks introduced the discrete Gaussian (DG) model described in Chapter
2. Let us rewrite the Hamiltonian associated with it:

J P
Hpe = 3T (hs — hjss)’ = STsphiGr (33" by (4.2)

= ZEJhf*G;*(q) (43)
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where
G7! =4 — 2(cos g, + cos gy) (4.4)
and
hy = -\71_172,-1;,-8# (4.5)

is the Fourier transform of the height variable ;. Note that in Eq. 4.2, the interaction
energy goes as ¢*|h,|? for small ¢’s. This behavior is characteristic of surface tension
(Buff, Lovett and Stillinger 1965), which determines the properties of interfaces at
high temperatures. Thus the Gaussian model is thought to represent a wide class of

column Hamiltonians.

The DG partition function can be written

Zpa = [ bW (k;)exp [—kBLTuDG] (4.6)

where
W(h) = Bo-_oblhs—ns) (a7)
= B, explikshs). (4.8)

The weighting function W(hk;) in Eq. 4.6 restricts the integration in Eq. 4.5 so that
only integer values of h; contribute. Substituting Eq. 4.7 in Eq. 4.5, we obtain

Z .
Ze= _Zl_:)g = L =—a (eXP (1Z;Kk;h;)) . (4.9)

Here Z, is the unweighted Gaussian model’s partition function ( the partition function
of Eq. 4.5 with W(h;) = 1), which can be evaluated exactly. The angular brackets
indicate an ensemble average in the unweighted Gaussian ensemble.

In Eq. 4.8 we note the characteristic function for the Gaussian distribution. Hence
the k; also obey a Gaussian distribution given by the inverse matrix to G;' and Eq.

4.8 becomes

ksT ..
Zc = B2_o exp [—"%,—Eﬁ'kjcl(n')"j' (4.10)
where, from Eq. 4.3, one find the inverse matrix G;(jj’) to be
1 e"'("—j')

G1(j5') = 2_NE"G—;‘(T)' (4.11)
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Eq. 4.9 is in fact the partition function for a neutral two-dimensional lattice Coulomb
gas (Chui and Weeks 1976) in which the k; represents the charges. Note the g2
dependence at small q in this equation: this behavior characterizes the Coulomb
interaction. Note also that the reduced temperature kpT/J has been inverted in going
from the DG model in Eq. 4.5 to the Coulomb gas in Eq. 4.9. Finally, restrospectively,
the fact that the Coulomb gas appears should not surprise us: the matrix Gy*(jj') in
Eq. 4.3 is the lattice analog of the Laplacian operator and hence its inverse matrix,
G1(j5') in Eq. 4.10 is the two-dimensional lattice Green'’s function, that is the two-
dimensional Coulomb potential.

Since Z, is analytic, the singularities in the DG partition function Zp are identical
with those in Z;. These had already been discussed by Kosterlitz and Thouless
(Kosterlitz and Thouless 1974; Kosterlitz 1974) in connection with their analysis of
the XY model and a dislocation model for two-dimensional melting. They established
that the Coulomb gas undergoes a phase transition from a low temperature dielectric
phase with opposite charges tightly bound together in “diatomic molecules” to a high
temperature metallic phase. The free charges in the metallic phase come from the
now disassociated “molecules” and provide the usual Debye screening. The properties
of this transition can thus be directly related to those of the roughening transition
and differ greatly from those of the two-dimensional Ising model.

Let us now describe in more details the renormalization calculations and results.
Chui and Weeks applied this method to an equation similar to Eq. 2.4, but with a
periodic term simulating the lattice potential added:

Oh
ot

= —TK™'% (h; — hjrs) ~ I‘K—lgzh,' +T (A;’) -

2x K "'Typsin 2xh; + n;, (4.12)

where K—! = 2J/T and n(Z,t) is the stochastic noise obeying Eqs. 2.5-2.6 If yo = 0,
we can solve the problem exactly ( see Chapter 2). For non-zero y,, we can take the

Fourier transform of Eq. 4.11 and rewrite the equation as

h(q,w) = G(q,w) [Au(q,w) + 1(g,w)/T — 2x K ~yoFsin 2xh(s, )] . (4.13)
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Here s is a dimensionless two-dimensional lattice vector (the unit of length being the
lattice spacing) locating the center of a column, and F indicates a Fourier transform
in space and time. The renormalization group method (Kosterlits 1974; José et al.
1977) can then be applied to the linear response function x~! of the system, defined
by the following equation

x—l(‘b“’) = XEI(Qa w) + E(q,w), (4.14)
with ¥ given by

4x2yo K ~1 F(cos[2xho(st)}h, (st, s't'))

I(q,w) = Ta(g.o)] (4.15)

The method consists in expanding the inverse linear response function x~!(g,w)
in powers of yo. Similar expansions have proven very useful in the static limit. The
zeroth order term [xg'(g,w)] gives the limiting behavior (T — o), and the higher-
order terms give corrections arising from a non-zero weighting function. We can now
use this expansion to generate differential recursion relations, as we have in Chapter
2, which relate the response in the original system with parameters K, I' and y, to
that in a system with renormalized parameters K’', I' and y;. Integration of the
recursion relations in fact provider a connection for all T' > T between the original
system and the exactly solvable system with y, = 0.

We can expand hg, h; and I in powers of yo in Eqs. 4.13-4.14 to obtain the

following expansion for the inverse linear response function

x~Yq,w) = [K-1 + 23Kty /;“ dus-—z:x] 7
—iw [7“‘ + I"‘—————(W;;y_z ) /l - du"""] +O0(y')  (4.16)
where y = yo exp[—Kc] and c is a constant approximately equal to 1x?. We can now
use the same trick we have used in Chapter 2. We divide the range of integration of
each integral in Eq. 4.15 into to parts: one from 1 to b and the other from b to oo,
with 0 < Ind <« 1 (that is, b is very close to unity). Now, the small s part of the
integration can be combined with the original constant term (either K~! or I'"?) to
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yield a new parameter value and the large s part of the integration rescaled so that
the integrals again run from 1 to oco. The scale factor is then absorbed in a redefined
y variable. Eq. 4.15 can thus be rewritten in exactly the same functional form with
K, y and T replaced by K(I), y(I) and I'(!), with | = In 4. This equivalence implies

the following differential recursion relations

:’_’_:l(_') = —a%() (4.17)
1dy?(l) 2

s = K0 =290 (4.18)
dinT(l) ='y*(])

= = TR (4.19)

which are subject to the boundary conditions K(I = 0) = K, etc. The first two
equations are essentially identical to the static recursion relation found by José et al.
(José et al. 1977) and Nelson and Kosterlitz (Nelson and Kosterlitz 1977) in their
analysis of the XY model and the two-dimensional Coulomb gas. We can define a

new variable z(l) = x K(l) — 2. Substituting this relation in Eq. 4.17, we obtain
Lazi()
2 d

Comparing this equation to Eq. 4.16 we see there is a conserved quantity

= —x'z()y¥1). (4.20)

z3(1) -- v'y?(1) = const = z*(0) — x*y*(0). (4.21)

As long as z(l) > 0 Eq. 4.19 ¢ “7es y(l) to zero as | — oo. The roughening point
can be thought of as thelow . | era ire end point of this line of critical points with
y(00) = 0 and at this end point we must have z(oo) = 0 or K(oco) = 2. This value is
universal (i.c. independent of the initial value of y and a number of other modifications
in the initial Hamiltonian that could be envisioned (Nelson and Kosterlitz 1977)) and
should hold for all roughening models.

Another feature comes from Eq. 4.20. when we evaluate it at [ = oo for tempera-

ture greater than Tx. Then y(oo) = 0 and

z*(00) = [2%(0) — x*y*(0)] T > Tp. (4.22)



CHAPTER 4. THE EQUILIBRIUM ROUGHENING TRANSITION 73

Very near Tr we can expand the right hand side in a power series about T — Ty noting

that the constant term vanishes since at Tg, z(co) = 0. We then obtain to lowest
order

2(00) = [A(T — Tg))-. (4.23)
We can also obtain an estimate for Tr from Eq. 4.16. If we set z(00) = 0, recalling
that y = yoexp[—;%*K], we obtain the equation

2
K==+ exp[—%ar’K] T = Tp. (4.24)
Setting yo = 1 to approximate the DG model we solve Eq. 4.23 by iteration and find
kTr/J ~ 1.45.
Let us now turn our attention to the behavior of the dynamical parameter -y in

Eq. 4.18. Eliminating y?(I) between Egs. 4.16 and 4.18 and integrating, we obtain

I'(c0) 7K(o0)—1
r xK-1 "~

Hence I' effectively scales with K whose behavior we have discussed above. This has

(4.25)

immediate consequences for the statics and dynamics of the interface. For example,
the average growth rate R of the crystal is related to the response to a spatially and
temporally uniform driving force when the stabilizing field g = 0. To first order in

Ap we obtain
R = lim,o—iwx(g= O,w)%ff (4.26)
= I‘(co)-AT—“ T > Tr. (4.27)

Thus the theory predicts linear growth at and above Ty in agreement with conven-
tional theories of crystal growth.

Below T, the situation is very different. Approaching the roughening temperature
from below, the response function has the limiting form

x(gw) = [k +67) -3 ()] (4.28)

with a finite correlation length ¢ and renormalized coeficients K’ and I''. Eq. 4.27
then predict a zero growth rate for T = T’ to first order in %#. This result is consistent
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with the fact that growth at low temperature occurs by a nucleation mechanism.
Nucleation theory gives the result R x exp(—c/Ap) so in fact below Ty all terms in
a power series about Ay = 0 should vanish.

One can carry the analysis of renormalization group results much further that
this has been done in this short review. Nevertheless, we have the results we need to
describe the characteristic behavior of the various quantities we are interested in. In
the generic case, one is interested in the correlation length and the specific heat of the
system. In the particular case of interfaces, one also wants to have some informations

on the statistical width of the interface, the surface tension and the step free energy.

4.2.2 Roughening temperature

Although the roughening temperature is certainly not a universal constant, Koster-
litz’s renormalization group method allows for its determination with remarkable
accuracy. As seen from the analysis of flow equations, the predicted value for the

discrete Gaussian model is of the order
Tr ~ 1.45J/kp, (4.29)

where J is the strength of the coupling constant. This value is quite close to computer
simulation estimates. The roughening transition temperature for the SOS model is

approximately the same.

4.2.3 Surface tension

The surface tension exhibits a very weak singularity at the roughening transition.
The singularity is of the following form:
C
~ B —_ . 4.30
! “"( |T—Tn|%) (440)
This equation is only valid when T is close to Tr. Here we point out that all the
derivative of v taken with respect to the temperature are smooth functions of T'

and vanish at Tr. We will see this type of mathematical behavior in most of the
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thermodynamic quantities of inierest. This is one of the reason why the experimental
observation and even the detection of the transition through computer simulations is

so difficult. The constants B and C are non-universal.

4.2.4 Correlation length

For temperatures below, but close to the roughening temperature, the correlaticn
length, which is the characteristic length for correlations between thermal excitations

of the crystal surface, behaves as

x

£ ~ exp (7(65) : (4.31)

From Eq. 4.20, we know that z(0) = y(0). Since we know the behavior of z(0) close to

the critical point, we find dependence of the correlation length £ on the temperature
to be

A
§ = foexp (m) y T <Tgr (4.32)

+o00, T>Tgr (4.33)

where {;, and A are non-universal constants. Here, we point out that { has very
little to do with the correlation length of the bulk. The latter is only responsible for
the intrinsic width of the physical interface, while the former is associated with the

statistical widih, which is much more important below the critical temperature.

4.2.5 Step free energy

The step free energy is defined as the difference of the free energy of an interface
containing a step with that of a similar interface containing no steps at all. It follows

the following form:

A
frep = foexp (“m) y T < Ty (4.34)

= 0, T>Tg (4.35)
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where f, is again a non-universal quantity and A is the same as in Eq. 4.32. This
result is obtained by observing that f,p is the dual conjugate of theinverse correlation
length in the XY model.

Thus, we can characterize the roughening transition by equating it to the facts
that, at the roughening temperature and above, the step free energy f,ip vanishes,
and the statistical width of the interface,W, diverges.

4.3 Experimental observation of the roughening
transition

There were initially few attempts to experimentally observe the roughening transition
and determine the transition mechanism because it was thought that a crystal in equi-
librium with its vapor would melt before the closest packed face would roughen. This
belief was dismissed by experiments performed by Jackson and Miller (Jackson and
Miller 1977), who found that for simple van der Waals crystals, the roughening point
was well below the melting point. Furthermore, Jackson showed that it is possible to
understand both the growth mechanisms (nucleated or continuous) and the crystal
structure (faceted or isotropic) of a very wide variety of materials by determining
whether the crystal as grown was below or above its surface roughening temperature.
However, the direct experimental observation of the roughening transition is difficult
for difierent reasons. First of all, it is generally very difficult to produce crystals with
an equilibrium shape. Shapes produced during growth are generally metastable and
their relaxation rate increases rapidly with crystal size. In experiments by Heyraud
and Métois (Heyraud and Métois 1984) on lead crystallites of only a few microm-
eters in diameter at temperatures of a few hundred degrees Kelvin, they observed
equilibration times of a few days (see Fig. 4.1).

In addition, it appears that most observable crystal faces do not exhibit a rough-
ening transition within the physical range associated with their existence. Typically,
the surfaces of crystals in equilibrium with their melt are rough ali aiong the melting
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Figure 4.1: Roughening transition in a lead crystallite viewed from two angles reproduced from
Heyraud and Métois, (Heyraud and Métois 1984).The sise of the crystallite is a few millimeters,
the temperature is 362°C. One can distingunish some facets corresponding to a microscopically fiat
interface in registry with the low index plane, while the rounded parts correspond to microscopically
rough interfaces in a crystallographic orientation for which the roughening temperature is lower.
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line, down to the triple point, whereas the principal facets of crystals in equilibrium
with their vapor tend to remain smooth along the sublimation line up to the triple
point. For crystal vapor interfaces, this difficulty can often be circumvented by con-
sidering higher index crystal faces, which are less tightly packed so they have lower
roughening temperatures. But then the problem of the long relaxation times becomes
important again, although relaxation times for the internal structure of existing facets
are generally much shorter than the relaxation times for a full reconstruction of the
crystal shape. Another experimental problem is the sensitivity of surface properties
to impurities and dislocations, which may make it hard to decide whether an ob-
served surface shape is really that of a pure crystal in equilibrium. Finally, even in
cases where a roughening transition is observed, the nature of the transition makes it
difficult to pin down the roughening temperature. Typically, facets disappear so grad-
ually at the approach of the roughening temperature that they become practically
unobservable already at temperatures distinctly below Ts.

In spite of these difficulties, roughening transitions have been observed experimen-
tally in a number of systems. Pavlovska and Nemow (Pavlovska and Nemow 1977)
studied the equilibrium shape of “negative crystals”, that is, vapor bubbles included
within a crystal in organic substances, and observed the disappearance of certain
facets within well-reproducible temperature ranges. However, the best observations
of the roughening transition so far have been made for helium crystals in equilibrium
with superfluid helium (Wolf et al. 1985). This system is ideally suited for observ-
ing the roughening transition. This is because the relaxation to equilibrium is very
fast, the heat and mass transport being extremely rapid in the superfluid. Crys-
tal grown to the size of millimeters assume their equilibrium shape within periods
ranging from milliseconds to minutes, depending on both external and internal pa-
rameters. In addition, these crystals are extremely pure because, with the exception
of 3He, all impurities can be filtered out from the superfluid very efficiently. Thus
far, roughening transitions for three different types of facets have been observed. In
addition, Wolf et al. (Wolf et al. 1985) have exploited the exceptional properties of
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the helium system in some beautiful experiments which confirm quantitatively the
predicted Kosterlitz-Thouless character of the roughening transition.



Chapter 5

The Roughening Transition in

Driven Systems

As was seen in the previous chapter, the properties of equilibrium interfaces have
been extensively studied in the past fifteen years. On the other hand, the study of
growing interfaces is a relatively new subject. While pecple have been interested in
understanding the phenomenon for a long time, only in recent times have there been
new developments in this topic. For example, new growth mechanisms have been
uncovered, and new physical models have been put forward to explain the various
growth phenomena observed in nature. It is only natural that people would try to
apply the idea of a roughening transition to growing interfaces.

However, in doing this, one then faces a serious problem. The equilibrium rough-
ening transition occurs in interfaces that are ia equilibrium. The fact that they are in
equilibrium means that one can in principle use classical statistical mechanics - parti-
tion function, entropy, etc - to solve the problem. On the contrary, growing interfaces
are far-from-equilibrium systems, for which equilibrium or close-to-equilibrium sta-
tistical mechanics does not apply. Furthermore, as we have mentioned in Chapter 2,
the two models we consider here are very closely related to nucleation phenomena,
that is, to metastable states. Up to now, no satisfactory treatments of metastable

states has been given in the framework of statistical mechanics. Thus, one has to

80
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be very careful in identifying any phase transitions in nonequilibrium systems. It is
with this word of caution in mind that we shall discuss what we called the dynamical
roughening transition, which is the subject of the second part of this chapter.

5.1 Roughening transition in driven systems

There have been some studies previously done on the roughening transition in driven
system (Chui and Weeks 1976; Noziéres and Gallet 1987). Those studies introduced
a driving force in the problem by adding a constant field, and from the results it was
concluded that the presence of such a field did not change the nature of the transition.
However, both studies did not take into account the nonlinear term coming from the
growth process, thus discarding a potentially relevant piece. Nevertheless, they are
useful guides for further analysis.

As we have mentioned in Chapter 2, Langevin equation like the KPZ equation are
not useful for describing phenomena coming from microscopic effects. However, it is
possible to modify the KPZ equation so as to obtain the proper microscopic behavior.
This is the subject of the next section. Nevertheless, treating discontinuities in space
and time with continuous fields can be difficult. This is when the asymmetric SOS
model comes into play. Since we know it belongs to the same universality class, we
can use it to look for and probe the nonequilibrium roughening transition. This is

the topic of the second section. We close the chapter with a discussion on our results.

5.1.1 The discrete Kardar-Parisi-Zhang equation

To investigate the possibility of a kinetic roughening transition, we introduce a model,
motivated by the discrete Gaussian model of Chui and Weeks (Chui and Weeks 1976),
which has been used to study the equilibrium roughening transition. It corresponds
to Eq. 2.11 on a lattice, with the height variable A restricted to integer values of the
lattice constant. We call this the discrete KPZ model, since choosing A = 0 gives
the discrete Gaussian model. Making h integer valued implies a nonzero energy gap
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15

/

10

Figuze 5.1: Growth of the three-dimensional KPZ equation by means of nucleation on the top layer.
h is average height of the interface. The various curves correspond to different values of the driving
force A at fixed temperature.

at low temperatures, for small fluctuations on the interface, which is necessary for a
roughening transition to take place. Thus translational invariance is not built into the
model, and there can be a gap in the capillary-wave spectrum at low temperatures
T < Tgr. Above any roughening transition, the energy gap is irrelevant since the
width diverges with system size. As a consequence, the asymptotic growth exponents
in the rough phase of the discrete KPZ equation will be the same as those for the
original model. The interest of the new model therefore lies in its low-temperature
properties, where the discreteness of A could be relevant.

We again performed numerical integrations of Eq. 2.11, now with integer-valued A
and edge length L = 128, as \ varied, keeping D and v constant, in essence fixing T'.
The plots of the average height of the interface for various ) versus time are shown
in Fig. 5.1,

Different curves are for varying driving forces A with the temperature T = D/v <
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Figure 5.2: Example of a smooth interface below Tr. Notice the single block temperature excitations

Tr(X = 0) fixed. For small values of A, the growth is one layer at a time (curves «
and b), suggesting that the system is in its faceted phase. Beyond a large particular
value of ), the growth becomes continuous (curve ¢) signaling that the rough phase
is reached.

Some configurations corresponding to these runs are shown in Figs. 5.2 and 5.3.
We also verified that one could go from layer-by-layer growth to continuous growth
by increasing temperature beyond a particular value, at a fixed nonzero driving force.
Those observations are in essence very similar to what one would observe at a phase
transition point. Thus, we decided to investigate the existence of a non-equilibrium
roughening transition.

Unfortunately, the discrete KPZ model is numerically a difficult problem, so our
observations are only qualitative. We could not, for example, get a precise value for
the roughening temperature. To undertake a quantitative study, we again considered

the SOS model with asymmetric rates of evaporation and condensation.
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Figure 5.3: Example of a rough interface above Tp. Notice the multilayer excitations.

5.1.2 Solid-on-solid model with asymmetric rates of evapo-

ration and condensation

As was mentioned in chapter 3, the SOS model has a roughening transition in equilib-
rinm (Weeks and Gilmer 1979; Weeks 1980; Kosterlitz and Thouless 1974; Kosterlitz
1974; Swendsen 1977; Swendsen 1978), and its nonequilibrium properties have been
previously studied by many authors (Weeks and Gilmer 1979; Weeks 1980). Analytic
work, within linear response, has been done by Chui and Weeks (Chui and Weeks
1978), Saito (Saito 1978), and Nozieres and Gallet (Noziéres and Gallet 1987). Here
we wish to determine the conditions, if any, under which the interface can be grown
layer by layer in the smooth faceted phase which exists below Tg. While signs of
such a kinetic roughening transition have been observed in experiments (Fig. 5.4)
(Dougherty and Gollub 1988; Franck and Jung 1986; Maurer et al. 1989; Bilgram,
Firmann and Hirlimann 1989; Gallet, Balibar and Rolley 1987), there is little theo-

retical understanding of the phenomena.
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Figure 5.4: Dynamic roughening transition in a dendrite as the speed of growth is decreased repro-
duced from Maurer et al.,(Maurer et al. 1989).The compound used is NH¢Br. The speed of growth
of the dendrite decreases from a) to d):a)v=0.43 pm.s~!; b)v=0.042 pm.s~'; c)v=0.015 pm.s"!;

d)close to equilibrium. One clearly sees the faceted interfaces in the last two pictures.
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The properties of the equilibrium roughening transition, on the other hand, have
been much more thoroughly investigated; many numerical studies of the SOS, Gaus-
sian, and three-dimensional Ising models (Swendsen 1977; Swendsen 1978; Mon et al.
1988), have been performed. A quantitative description of the roughening transition
is difficult to obtain since the transition is of infinite order. One useful approach, due
to Leamy and Gilmer (Leamy and Gilmer 1974), is to determine the extra energy
associated with the presence of a step on the interface, E,i,,. This should vanish at
the roughening temperature T in the thermodynamic limit. This idea, combined
with finite-size scaling, can accurately determine Tr (Mon et al. 1988).

Motivated by the success of that work for the equilibrium roughening transition,
we have applied these ideas to the nonequilibrium asymmetric SOS model. We com-
puted the step energy for a given driving force A, at different temperatures for several
system sizes. It exhibits a strong transition from a large value to a much smaller value
at a given temperature. Another quantity which shows a strong transition is the bond-
energy fluctuations, a quantity similar to the specific heat. We note here that the
specific heat does not have any divergence in the equilidrium roughening transition,
since that transition is of infinite order. However, in the equilibrium case, the width
of the interface diverges at Tx as vIn L for L — oo, whereas in driven growth the
width diverges as a power law in the steady state, W ~ L* as shown in the previ-
ous section. Thus we expect the kinetic roughening transition to be stronger than
its counterpart in equilibrium. Indeed, our finite-size scaling analysis shown below
finds that the bond-energy fluctuations show a diverging peak at Tr > 0. Moreover,
the roughening transition temperature obtained from the step energy and the bond
energy fluctuation are in good agreement.

The step energy, E,..p, can be defined as the energy difference between a surface
with one step and the same surface without such a step (Leamy and Gilmer 1974;
Swendsen 1977; Swendsen 1978)

Epep = %[(H)(onc step) — (H)(no steps)] (5.1)

In our simulations of the three-dimensional nonequilibrium SOS model, a step on
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Figure 5.5: Step free enexgy FE,iqp vs L for various temperatures for A, = 0.4. The temperature at
which the curve changes its bending direction is the roughening temperature Tp
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the surface £ = (z,,z;) can easily be created by maintaining periodic boundary
condition in, say, the z,-direction, while applying a screw boundary condition in the
z3-direction (the growth is in the y-direction). The height of the step can also be
adjusted, although we chose it to be unity.

For T < Tg, one should obtain a nonzero value of E,¢ep which increases with lattice
size. On the other hand, for T > Tr, E,.p should decrease and ultimately vanishes
a8 L — oo. We huve simulated systems of edge length L = 10 to 50 for various
temperatures. The asymmetric growth rate )\, was fixed at 0.4, The simulations
were run with and without a step for 2 x 10° Monte Carlo steps. In Fig. 5.5, E,.,
for different temperatures as a function of L is shown.

As anticipated, for different T, the curves bend upward or downward, showing a
smooth phase at low temperatures and a rough phase at high temperatures. We find
Tg = 0.55. Furthermore, plotting E,¢., as a function of temperature for various sizes

a transition of E,.p, from a large value to a much smaller one is visible. Note also
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Figure 5.6: Step free energy E,(,p vs T for various system sises with A, = 0.4. The temperature at
which the curves dip down is the roughening temperature Tg
the sharpening of the transition as L increases, and the curves’ common intersection
point at Tr = 0.55 (Fig. 5.6).

We also studied the bond-energy fluctuations defined as

1

C= LgTz((Hz) - (H>2)' (5'2)

In equilibrium, this gives the specific heat. Fig. 5.7 shows C as a function of tlL-
temperature for several driving forces A,. C is strongly peaked for nonzero A; at a
finite T', and from inspection of configurations, its peak corresponds to the roughening
transition. Thus we interpret the peak position as Tr(A,L), which shifts to lower
temperatures as ) is increased (see the insert in Fig. 5.7).

In contrast, there is no anomaly in the specific heat for roughening of an equi-
librium interface (Weeks and Gilmer 1979; Weeks 1980), although there is a small
bump close to Tg (Swendsen 1977; Swendsen 1978). This bump is actually consistent
with the form of the step free energy for the equilibrium systems. Note that as ),
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Figure 5.7: Fluctuations in the energy bond vs T for various values of the driving force A,. The
position of the peak is interpreted as being the nonequilibrium roughening temperature.
increases, the peak position of C' shifts to lower temperatures. This implies one can
go from the smooth to the rough phase by increasing the driving force at a given
temperature, as seen qualitatively for the discrete KPZ model in the previcus sub-
section. This feature has also been observed experimentally (Dougherty and Gollub
1988). The inset to Fig. 5.7 shows a fit to Tr(A) ~ Tr(0)/(1 + O(X)), motivated by
the equation of motion, where T7(0) = 1.24 is the equilibrium roughening transition
temperature for the SOS model (Weeks and Gilmer 1979).

An important issue is to determine if T(), L) is nonzero as L — oco. To estimate
the nature of possible singular behavior in C, in the absence of theory which includes
the effect of the nonlinearity, we have followed standard treatments for second-order

transitions. We make the finite-size scaling ansatz,
C ~ L*/*F(|T - Tg|L'"*) (5.3)

and fit to find a and v. These are not equilibrium exponents since C could depend
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Figure 5.8: Finite sise scaling plot of the energy bond fluctuations for A, = 0.4 for various system
sises.

on the dynamical universality class (Sun, Guo and Grant 1989). We also caution
that such a procedure is not appropriate for the equilibrium case (A, = 0) since,
as mentioned above, the equilibrium roughening traasition is of infinite order. We
believe that an ultimate validation of this ansatz can only come from further study
of the nature of the nonequilibrium phase transition. In any case, from the data
collapse shown in Fig. 5.8 for A\, = 0.4, our ansatz is self-consistent, and we estimate
afv ~ 0.5, and v = 1.5.

The transition temperature in the hydrodynamic limit is then estimated taking
the equivalent of the thermodynamic limit and using

Tgr(L) = Tr(L — o)+ O(1/L*"), (5.4)

which gives Tp(L — oo0) = 0.54. This value agrees very well with that from the
step-energy data discussed above. Indeed, the consistency of the results for the step

energy E,i.p, and the bond-energy fluctuations C, gives us confidence in interpreting
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our data in terms of a transition occurring at a nonzero temperature.

5.2 Discussion

To conclude this section, we give arguments to clarify the nature of the transition.
Some of our remarks are implicit in the earlier work of Gilmer and Weeks (Gilmer
1982; Weeks and Gilmer 1979; Weeks 1980), and Saito (Saito 1978; Saito 1980). We
expect that, for a system of any large size, a kinetic roughening transition at nonzero
temperature occurs, and that this nonzero temperature is intimately connected to the
relevance of bubbles in the KPZ equation.

Layered growth in the smooth phase can occur, unless layers themselves are ther-
mally unstable, or further ledges appear in an amount that contributes to the width
of the interface in the hydrodynamic limit. At low T, one must determine the time
scales for the speed at which a ledge grows, and for the appearance of a new nucleated
ledge. For small fields (i.e., small driving forces) in systems of finite size, the time
scale for growth is algebraic, while that for nucleation is exponentially small in the
external field. They are thus very well separated and the ledge will sweep through
the systermn before any appreciable nucleation event has the time to occur. Hence
we expect that layer-by-layer growth is possible for a significant time regime in a
finite-size system, at low T in a small field.

The question of the hydrodynamic limit, ¢ = 0o, L — oo is more subtle. Consider
Fig. 5.9, where we show an interface growing layer-by-layer in the smooth faceted
phase (perhaps with screw boundary conditions as mentioned above).

As we discussed in the introduction, it can be useful to look down from the top
of the facet. One then sees that the low-temperature one-block excitations of layered
growth in three-dimensional driven growth are equivalent to the low-temperature
fluctuations of two-dimensional driven growth, as described by the KPZ equation.
Those fluctuations are not sufficient to destroy coexistence in the two-dimensional

KPZ equation, since W/L — 0 as t,L — oco. Therefore we do not expect them to
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Figure 5.9: a) Global view of a stepped interface in a three dimensional Ising model. The dashed
line represents a nucleating bubble. b) Top view of the same interface.
destroy layer-by-layer growth at low temperatures in the three-dimensional system
Nevertheless, one must also consider the possibility of large nucleated ledges. Note
that the rate of appearance of such ledges, which could destroy growth in the smooth
phase, is essentially independent of dimension of space for d > 2. Thus the argument
below applies vo d > 3. In Fig. 5.9, the rate of appearance of new layers is independent
of whether they appear on the top or bottom ledge. So consider only the bottom,
as shown by the dotted lines. Then one sees that ledges on ledges correspond to
the droplet fluctuations occurring on very long time :z<ales r, rendering the two-
dimensional KPZ equation irrelevant, as discussed in Section 2. (Note that the time
scales for the two-dimensional droplet fluctuations are not well separated from the
time scales for three-dimensional droplet fluctuations from Eq. 2.77.). Thus, we expect
any definition of the hydrodynamic limit for the KPZ equation to also be consistent
with a kinetic roughening transition at nonzero temperature, when a finite energy
gap is introduced. Nevertheless, we cannot rule out the possibility that we are in a

crossover regime, and that there really is no transition in the thermodynamic limit.
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Some complementary analytic work on this issue has been done by Hwa et al. (Hwa,
Kardar and Paczuski 1991). To the best of our knowledge, it is unfortunately not
known how to define a metastable state in the hydrodynamic limit. Finally, we note
that the order of the transition is not clear. Although nucleation of ledges would be
a signature of a first-order transition, if the hydrodynamic limit requires the presence
of long-range forces to suppress droplet-like fluctuations, the transition could occur
at the spinodal curve, a line of second-order phase transitions.

In any event, existing experiments (Dougherty and Gollub 1988), as well as our
simulation data, seem to suggest the kinetic roughening transition occurs at a nonzero
temperature for a given driving force, in the hydrodynamic limit. We expect that a
consistent definition can therefore be found for that limit. It should also be noted
that the existence of the hydrodynamic limit for the transition from smooth to rough,
or rough to rough interfaces for d > 3 has been implicitly assumed in other studies
(Kardar, Parisi and Zhang 1986; Medina et al. 1989) (our -omments concerning nu-
cleation on the (d—1)-dimensional substrate are essentially independent of dimension
for d > 2).




Chapter 6

Conclusion

6.1 Summary and Discussion

We have studied the nature of interfaces during driven growth. The Kardar-Parisi-
Zhang equation was derived from the Langevin equations for a system with a non-
conserved scalar order parameter, for the cases where an external field is present, and
where an asymmetric coupling to a conserved variable exists.

We then numerically integrated the nonlinear stochastic differential equation pro-
posed by Kardar, Parisi and Zhang, and used Monte Carlo simulation to study a
nonequilibrium solid-on-solid model. We established that these models share the
same dynamic universality class, in both two and three dimensions, by analyzing
crossover behavior, and estimating asymptotic scaling exp >nents.

For the nonequilibrium SOS model, evidence of a kinetic roughening transition was
found. In particular, our data can be naturally and self-consistently interpreted in
terms of such a transition occurring at nonzero temperature. Moreover, this transition
seems to be stronger than the equilibrium roughening which is of Kosterlitz-Thouless
type. In order to establish this, however, further study is required. For example, it
would be interesting to study the analytic behavior of the step free energy close to the
transition point. Such a study would certainly allow for the precise determination of

’

the order of the transition. Finally, the results of this paper, in particular the kinetic
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roughening transition in driven interfacial growth, are experimentally accessible by

many methods. In our opinion, such a study would be of considerable interest.
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