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Abstract 

We atudy the dynamics of an interface driven faT from equilibrium in three dimen

sions. We fud derive the equations of motion which describe this physics. N umerical 

results are then obtaiaed for three models which simul80te the growth of an interface: 

the Kardar-Parisi-Zhang equ8otion, a discrete version of that model, and a solid-on

solid mode! with asymmetric rates of evaporation and condensation. We show that 

the three modela belong to the same dynamicaI universality clus by estimating the 

dynamicaI scaling exponents and the scaling functions. We confirm the results by a 

careful study of the crossover eft'ects. In parlicular, we propose a crossover scaling 

ansatz and verify it numerically. Furlhermore, the discrete models exhibit a kinetic 

roughening tr&llSÎtion. We study tbis phenomenon by monitoring the surface st.ep 

energy which shows a mastic jump at a bite temperature for a given driving force. 

At the same temperature, a finite size scaling anaIysis on the bond energy fluctuation 

shows a diverging peak. 
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Résumé 

Nous avons etudié la dynamique d'une interface hors de son état à l'équilibre. Pour 

ce faire, nous avons utilisé trois modèles qui simulent la croissance d'une interface, 

soit l'équation de Kardar-Parisi-Zhang, une version discrète de cette même equa

tion, et un modèle solide-sur-80lide possédant un taux de croiss&uce difFérent du 

taux d'évaporation. Nous montrons d'abord comment l'on obtient cette equation du 

mouvement. Nous prouvons que ces trois modèles appartiennent à la même classe 

dynamique d'wüversalité en montrant que leurs exposants et leurs fonctions d'échelle 

sont égaux. De plus, nous vérifions cette affirmation en estimant les exposants de 

transfert. Nous avons en particulier numériquement estimé la fonction de trans

fert, et vérifié qu'elle satisfaisait la forme que nous avions proposé. Par ailleurs, nous 

avons remarqué que les modèles discrets exhibaient une transition rugueuse cinétique. 

Nous avons étudié ce phénomène en calculant l'énergie d'un pu en fonction de la 

température. Nous avons ainsi détecté la vrésence d'une variation très importante de 

cette énergie à une température finie qui dépend du llux incident à la surface. Enfin, 

nous avons détecté la présence d'une divergence dans les lluctuatious de l'énergie. 
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Chapter 1 

Introduction 

The physics of condensed matter surfaces and interfaces has been studied for a long 

time. One can, {or example, cite the discovery of c..ablytic action by Michael Farada.y 

in 1833, the rectification of electrical resistance through the presence of a thin surface 

layer at the interface of a sandwich of Fe and Cu by Karl Ferdinand Braun, and the 

publication by J. Willard Gibbs of bis memoir (Gibbs 1948), where he completely 

describes the thermodynamics of surface phases. Despite these early studies, it is 

only in the 20th cent ury that surface science has been recognized as a discipline in its 

own right. Since the 1950's, interface phenomena has been a major research area {or 

physicists, chemists, and material scientists. 

The physical behavior of interfaces is ofien interesting and intricate. This is 

because interfaces are low dimensional systems, that is , (d - 1 )-dimensional objects 

evolving in a d.dimensional world, which makes them particularly sensitive to the 

fluctuations that are always present in any thermodynamic system. Furthermore, 

interfaces are present in many physical systems of interest, whose properties they 

often eft'ect significantly. This reason, and others, has led physicists to study more 

cloaely the behavior of interfaces, mst in simple cases, then in more complicated 

circumstances. The discovery that the equilibrium interface between a liquid and 

its vapor is not micr08copically fiat, as one would expect, but rather rough, is an 

example which is parlicularly relevant to tbis work. Even \\hough tbis roughn~88 can 
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CHAPTER 1. INTRODUOTION 2 

be very small (the thickness of the interface of a glus of water is of the order of tens of 

angstroms), the consequences u80ciated with this discovery have had repercussions 

in various fields of physics. 

In another conuection, the study of phase transitions plays a central role in mod

ern condensed matter physics. Changes of phase are dramatic events which require 

careful atudy for a complete undentanding. In addition, the fundamental concepts 

and methodology developed to study phase transitions have far-reaching utility in 

oiher area of physics. One olten hu to simplify the problem dramatically while still 

retaining the fundamental properties of the system, to be able to solve it. Both 

first-principles and phenomenological methods are often used. 

The physical phenomena &880ciated with both interfaces and phase transitions is 

complex and hu been the subject of many years of research. Indeed, it is not SUl

prising that systems involving both areu pose challenging problems. The roughening 

transition is such a phenomenon. 

The roughening transition is a phase transition taking place in interfacial systems. 

It had been DOwn that IOme of the interfaces observed expenmentally were micro-

8copically fiat in a certain range of parameters, and rough outside this range. This 

type of phenomenon -called the roughening transition - had already been conjectved 

by theorist&. The existence of a roughening transitIon in an equilibrium interface 

separating two coexisting phases was fint put forward in 1951 in a now lamous paper 

by Burton, Cabrera and Frank (Burton, Cabrera and Frank 1951). They argued that 

below a certain temperature TB, thermal luctuations could not overcome the bar

rier provided by surface energy, 80 that the interface remained miuOicopically lat. 

Howe91er, above TB, the surface tension would not be strong enough to prevent fiue

tuationl on all wavelengths. These fiuctuations would then delocalize the interface, 

whose height would then exhibit long wavelength Mations. The interface would 

then become lOUp. Their argument, which we now brie8.y review, maltes use of the 

Ising model' 

The Ising model wu devised to describe the statistical mechanics of clusical 
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spins, and to explain the behavior of ferromagneh. The mode! makes use of a d

dimensional array of spins {Sd with only two possible spin value., name!y +1 and 

-1. The interactions of these spins are described by the following Hamiltonian: 

(1.1 ) 

where J is the coupling constant and the indices i and j run over every nearest

neighbor pair of spin. If J > 0, 11. descibes the interactions of spins in a ferromagnet 

and, if J < 0, of an antiferromagnet. This mode! involves many assumpticns: localiza

tion of the spins, uniform interactions, coupling extending only to nearest neighbors. 

Neverlhe!esl, it servel as a landmark in the field of statistical mechanics because 

it wu the mst mode! exhibiting a phase transition for which an exact solution (in 

d = 2) wu found. In d = 3, its properties, including Us phase transition, have been 

carefully investigated. In addition, at this phase transition, it has universal proper

ties identical to that of, for example, liquid-gas, ferromagnetic and binary alloy phase 

transitions. Let us finally point out that the Ising mode! suitably transformed into a 

lattice gas model can also describe the behavior of a 8Olid-gas or liquid-gas system, 

as in the original argument of Burton et al. Essentially, the transformation involves 

&B80ciating Si = +1 with a 80lid and Si = -1 with agas. 

The argument conceming the roughening transition is most transparent for the 

(100) facet separating S = +1 and S = -1 phases of the three-dimensional simple

cubic Ising model (Fig. 1.1). The low temperature excitation. of the facet correspond 

to one-block (one-spin) fluctuations either up or down. However, on looking "down" 

at the lacet and ib excitations, one recognizes that it is equivalent to the one-phase 

state of the two-dimeMïonGllsing model with low-temperature one-block (one-spin) 

excitations. One can also consider a ledge in the three-dimensional system, which 

ia equivalent to coexiating phases in two dimensions. This low-temperature map

ping shows the atability of the smooth facet, and suggests that TI! of that facet is 

approximate!y the critical temperature of the second-order phase transition in the 

two-dimenaional Ising mode! . 

Since that ori8inal study, much theoretical and e.xperimental work hu been done 
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Figue l.t: a) Global ne ... oh. ÏDteDace iD a three ctimeuioullaiq model. b) Top ne ... oUbe 
... e baielûce. ID a), tbe fUled resioD OD tbe boUom, iDcl1ldiDS tbe ODe-bIoc:k ucitatiOD, cou_poDds 
to S = +1 ... hile tbe empty resioD aboye correspoDds to S = -1. ID b), it ia uefal to t~ ortbe bis 
rePoD u conapoDdiD, to S = -1 witb a ODe-lpiD excitatioD 01 S = +1; i.e tbe "t ... o-dimelLlÏ.oul 
_, model" correspoDds to the layer immecliatelr abo.e tbe S = +1 repOD iD a). 

(Van Beijeren and Nolden 1987; Week. and Gilmer 1979; Gilmer 1982; Zia 1984; Ju

now 1986). It il now understood that the Burton-Cabrera.-Frank idea was incomplete 

since it did not take into account the pouibility of cluaten growing on other clulters 

as T approaches TB from below. These give rise to capillary-wave excitations of the 

surface. AI a consequence, the roughening transition, rather the being a second

order transition, is a Kosterlitz-Thouless transition (Koeterlitz and Thouless 1974; 

Koaterlitz 1974; Chui and Weeka 1976). Despite the fact that the transition is there

fore of infinite oTder, signa of it have been obeerved experimentally (Wolf et al. 1985; 

RoUmar..n et al. 1984). Furthermore, renormalization-group techniques, in particular 

that used by Koaterlitz and Thoules. to analyze the t~dimenJÎonal Coulomb gu 

system, have been IUcCe8sfully applied to the problem (KOIterlitz and Thoules. 1974; 

Koaterlitz 1974). Alao, many computer simulation. of interface modela have been per

formed to confirm the presence of the transition and quantitative results have been 

obtained (Swendsen 1977; Swendsen 1978; Mon et al. 1988; Van Beijeren and Nolden 
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1987). Consequently, the roughening transition occurring in equilibrium interfaces is 

now weU understood. 

However j m08t interfaces observed in nature are not in equilibrium.. The interfaces 

of anoriakes and rapidly quenched crystals are good examplea of such nonequilib

rium syl'tems. Furthennore, it is difticult, even in laboratory conditions, to obtain an 

interface whim is in its equilibrium state. Nevertheless, the nature of the roughen

ing transition in Iystems which are far from equilibrium. hu received les. atiention 

(Gilmer 1982). This is unfortunate Binee rougbening transitions play an important 

role in three-dimensional crystal growth (Van Beijeren and Nolden 1987; Weeks and 

Gilmer 1979; Zia 1984; Rotimann and Wortis 1984). In experiments on epitaxy and 

sputiermg (Chang and Ploog 1985; Vossen and Kem 1978; M~or et al. 1988), where 

an interface grows at a constant rate, it il of interest to determine how a constant 

driving force affects the transition. For example, one would like to UOW the rough

ness of the interface above the transition temperature TR, 8.8 wellas the conditions, if 

any, under which an interface can be grown in the smooth faceted phase which eDsts 

below TR. 

Experimenta on crystal growth (Dougberty and GoUub 1988; Maurer et al. 1989; 

Bilgram, Firmann and Hürlimann 1989; Gallet, Balibar and RoUey 1987) find that 

one can go from a smooth to a rough phase by increasing the driving {oree beyond a 

particu1ar strength, at a fixed temperature T < Til.. The eft'ect of interface roughening 

on the process of crystal growth is that below TR the growth occura layer by layer, 

whereu above TR the growth is continuoUB (Gilmer 1982; Rotimann and Wortis 1984; 

Müller-Krumbhar 1979). A more dramatic indication of this is that, when a crystal 

grows into a metutable supercooled liquid, the shape of the dendrite tip formed 

alter a Mullins-Sekerb instability (which is important in crystal growth ü the length 

scale over whim heat cillfusea is small compared to the edge length of the system) 

C&D be faceted or rounded depending on the supercooling strength (Dougherty and 

Gollub 1988). Furthermore, in sputtering experiments, the interface is usually rougb, 

and columnar growth can be observed (VOIsen and Kem 1978), while in epitaxial 
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growth, very smoot.h int.erfaces can be produced (Chang and Ploog 1985). Thus at a 

fixed temperature, rough or smooth int.erfaces can be grown by adjust.ing the extemal 

driving force (Chang and Ploog 1985; V08aen and Kem 1978; Dougherty and Gollub 

1988). Given t.he experiment.al and technological rel~vance of theae systems, it is 

important to underatand the basic physica of interface dynamics far from equilibrium. 

It Rhould also be not.ed that. t.he dynamics of a growing int.erface separat.ing two phases 

is a fundamental problem in condenaed-maUer physics. 

An imporiant step in tbis direction was made by the work of Kardar, Parisi, and 

Zhang (KPZ) (Kardar, Parisi and Zhang 1986; Medina et. al. 1989). They propoaed a 

nonlinear different.ial equaUon, given below, to mode! a growing interface driven by an 

extemal flux of partidea. By applying a dynamical renormalization-group technique, 

a Icaling form of the interface correlat.ion is obtained along with the scaling exponents 

for a two-dimensional system. The width W obeya (Family and Vicsek 1985) 

(1.2) 

where L is the linear aize of the growing substrate, t is time, and 1 is a scaling function. 

For dimension d = 2 [the interface groWI on a (d - 1 )-dimensional substrate], a 

fluduation-dislÏpation theorem allOWB one to calculat.e t.he interface exponents, X = ~ 

and z = ~. Theae are consistent with numericalsimulations (Plischke and R8.cz 1985; 

Jullien and Bot.et. 1985; Meakin, Jullien and Bot.et 1986; Zabolitzky and Stader 1986; 

Wolf and Kertész 1987a; Meakin 1987; Family and Vicsek 1985; Meakin et al. 1986; 

Pliachke, Racz and Liu 1987; Kim and K08terlitz 1989; HUIe and HenIey 1985; Kardar 

1985; Bovier, FrOhlich and GlaUI 1986; Nattermann and Renz 1988), and are different 

from the equilibrium roughening exponent.a XO = ';tt and Zo = 2, where the lublcript 

o implies no driving force. In three dimenlÎonl, namely the critical dimenlion de of 

the mode! where the nonlinear driving force ÎI irreleftllt. by power count.ing, no direct 

reault wu found due to the failure of perturbation theory for d < de, although a 

hypencaling relation enforcea X + Z = 2 when the nonlinear driving force il relevant. 

Given this unclear situation, in the experimentally mOit. important dimenlÎon, there 

have been several conject.1U'eI for the values of the growth expGDenta as a fundioD of 
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d. H f3 = xl z, with x + z = 2, the conjectures for dimenlÎon d are f3 = ~, due to 

Kardar, Pariai and Zhang (Kardar, ParilÎ and Zhang 1986); f3 = 1/(2d - 1), due to 

D.E. Wolf and J. Kerlesz (Wolf and Kerlész 1987a); and f3 = 1/(d + 1), due to J.M. 

Kim and J.M. K08terlitz (Kim and Koderlitz 1989). 

Like aU interface modela with ha.nslational invariance, in the KPZ equation there 

is a capillary-wave Goldstone mode due to the broken translational invariance nor

mal to the interface. This causes the poles of response functions to be massless, and 

the frequency-dependent fluctuations around equilibrium to be 1/I-like, where 1 is 
frequency. One novelty of the nonlinear Kardar-Pariai-Zhang equation is the appear

anee of anomaloua dimensions in correlation functio!ls (although we re-emphasize that 

power-Iaw correlations exÎat even for the linear case). 

Computer simulations of laUice-based modela, such as deposition modela (Family 

and Vicsek 1985; Meakin et al. 1986), Eden modela (Plischke and R8.cz 1985; Jullien 

and Botet 1985; Mea.kin, Jullien and Botet 1986; Zabolitzky and Staufl'er 1986; Wolf 

and Kertész 1987a; Meakin 1987), solid-on-80lid (SOS) models (Meakin et al. 1986; 

Pliachke, R&cz and Liu 1987; Kim and Kosterlitz 1989), and directed polymer models 

(Buse and Benley 1985; Kardar 1985; Bovier, Frohlich and Glaus 1986; Nattermann 

and Renz 1988), agree with the results for the KPZ equation in two dimensions, 

suggesting that all these modela belong to the san&e universality clus. In three 

dimensions, however, the laUice modela do not give consisteni results (Jullien and 

Botet 1985; Wolf and Kertész 1987b; Meakin, Jullien and Botet 1986; Meakin 1987; 

Devillard and Stanley 1989; Meakin et al. 1986; Meakin 1987; Baiod et al. 1988; 

Liu and Plischke 1988; Kim and K08terlitz 1989; Fonest and Tang 1990; Kardar and 

Zhang 1987). 

Driven interfaces are also dosely related to self-organized critical phenomena, re

cently introduced by Bak et al. (Bak, Tang and WiesenIeld 1988) through the study 

of dynamical modela that evolved automaticaUy to a critical state without tuning 

any parameter. Sucb a self-organized critical state ia charaderized by the absence 

of length and time seales, and was argued to be responsible for long-range temporal 
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correlationl in many dissipative dynamieal systems. These ne. eritical phenomena 

are fundamentalIy dift'erent from that near a second-order phase transition, or that 

due to the equilibrium capillary-wave fluctuations on an interface (Grossmann, Guo 

and Grant 1990). In the first case, the critical point can only he reached by tunmg 

parameterl IUch as preslure and temperature in the phase diagram. In the second

case, the argument goes as follows: interface equation deseribe a system 's behavior 

&fier tuning onto, say, a line of liquid-vapor or 8Olid-liquid coexistence in the phase 

diagram of a pure substance: Gibb's phase rule forbids an inhomogeneous state in 

thermal equilibrium, except on, say, lines and points ina two-dimensional phase di

agram. In this sense, interface equations are self-eritical. However, they represent a 

zero-fraction of the equilibrium two-dimensional phase diagram sinee they are only 

valid on phase transition linu and points. Since they only deaerihe an infinitesimal 

portion of the phase diagram, they are not valid examples of self-organized criticality. 

Driven interfaces in crystal growth do not correspond to equilibrium or close

to-equilibrium states. Inatead, for a 80lid growing into a supercooled liquid meU, 

one can supereool the liquid to a range of dift"erent temperatures helow the melting 

temperature, for a given pressure. H one insista on identifying these states within an 

equili6rium phase diagram, the far-from-equilibrium states correspond to the limita to 

which one cau, say, supercool a liquid or 8uperheat a solide Driven interface equatioDl 

are thus valid on a !urface of the equilibrium two-dimensional phase diagram. In this 

sense, the critical state is truly reached without tuning, since it involves a nonzero 

fraction of the equilibrium phue diagram. However, thia point of view conceming 

self-organized eriticality impliea strong bounds on the nature of the nonequilibrium 

state, linee, in the example above, the liquid is only metutable. The eventual decay 

of this state by droplet nucleation impliea limita on interface modela which we ;ilalI 

dilcu .. below, where we present a derivation of the driven interface equation from 

the Langevin equation for full space. 

In thia tbeaia we report origiDal contributions to tbe issues diacuased 

above. Firatly, we give a derivation for the KPZ equation. Secondly, we numerically 
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determine the roughening exponenb at the critical dimension, de = 3. Thirdly, we 

study the nature of the roughening transition in the driven system (Guo, Grossmann 

and Grant 1990a; Guo, Gr08smann and Grant 1990bj Gl08smann, Guo and Grant 

1991a; Grossmann, Guo and Grant 1991b). 

In Chapter 2 we introduce and discuss the origin of the KPZ equation. We derive 

that equation from the Langevin equation for a system with a nonconserved scalar 

order parameter, when an extemal field is present, and when an asymmetric coupling 

to a conserved variable exists. We alao describe a mode! we expect to be in the 

same universality clus, the uymetric Solid-On-Solid (SOS) mode!. We then gîve 

a summary and a brief derivation of some exact resuIts that are of some use for 

the analysis of our resuIts. We discuss the connection of this clus of modela with 

nucIeation phenomena. The idea of droplet nucleation implies limita on the long-time 

and long-Iength-scale applicability of the KPZ equation to this clus of problems, 

which we examine. 

In Chapter 3, we present the results of a numerical integration of the KPZ equation 

at de = 3; we also perfonned a stuciy of cr08lOver phenomena in this mode!, where the 

system crosses over from the zero-driving-force ca .. ,e to a finite-driving-force situation 

(Guo, Gr08smann and Grant 1990b). We report numerical studies of modela which 

we exped to be in the same dynamical universality class in the rough phase. ln 

parlicular, the growth and cros80ver exponents were numerica1ly detennined for the 

KPZ equation, and via Monte Carlo simulation on the 8Olid-on-lOlid (SOS) model with 

uymmetric rates of evaporation and condensation, which we expect tO be in the same 

universality clus. Our reauIts for both modela are consistent with xl Z R: 0.13, lLIld 

X + z ~ 2, for the KPZ equation and the SOS model in the rough phase (Chakrabarti 

and Toral1989; Guo, Grossmann and Grant 1990a). 

ln Chapter 4, we review the extensive reauIts obtained for the equilibrium rough

ening transition. We exNll;ne the behavior of relevant phyrical quantities, such as 

the.urface tension and the step free energy, at the tranaition point. We alao mention 

80me examples of experimentally obaerved roughening tranJÏtiona. 
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Chapter 5 studiea the p08sibility of a kinetic roughening transition. This wu 

inveatigated through the study of variants of two important modela uaed to study 

it in the put: the discrete Gaussian mode!, and the SOS mode! (Van Beijeren and 

Nolden 1987; Weeb and Gilmer 1979; Zia 1984; Chui and Weeka 1976; Swendsen 

1977; Swendsen 1978; Rottmann and Wortu 1984; Saito 1978; Saito 1980; Nozières 

and Gallet 1987). We bd that our data for both a diacrete KPZ m(i~d, and an uym

metric SOS mode! can be interpreted in terms of a roughening transition occurring 

at a noDZero Ta, which appears to be stronger than the usual KOiierlitz-Thouless 

transition. We charaderize it with a simple finite-lÏze..scaling ansatz, as is used for 

second-order phase transitions. The transition here corresponds to a nonequilibrium 

phase transition such u has been atudied for driven diffuaive systems (Katz, Lebowitz 

and Spohn 1983; Leung et al. 1988). Furthermore, we present reaults from a simula

tion of the nonequilibrium SOS mode! in which we compute the surface step energy 

(Leamy and Gilmer 1974) as !. fundion of temperature at a given driving force, for 

difFerent system sizes. For the equilibrium roughening transition, the step energy 

hu been shown to be a useful indication of the tranaition (Leamyand Gilmer 1974; 

Swendsen 1977; Swendsen 1978; Mon et al. 1988). In our study, a strong jump in 

the value of the step energy at a nODZero temperature Ta i. observed. The value of 

TB agreea with that of a finite-BÏze scaling analyais of the bond-energy fluctuations of 

the mode!. We also give arguments in parallel to the original Burion-Cabrera-Frank 

work to discuss the nature of the transition. 



Chapter 2 

Models of a Growing Interface 

The procesl involved in creating a model which faithfully represents a physical system 

can be subtle. The ca.nonical exa.mple is the Ising model, which well simulates a 

number of important phenomena. When creating a model, or modifying msting 

modela, one hu to carefully select the elemenis of reality that will be kept, and the 

ones that will be discarded, to avoid unneceasary complications while ensurÎng that 

the model describes the Iyltem appropriately. As we will Bee later, the choice of the 

model pla yi an important role in deciding how the physical Iystem will be stuwed. 

In the present case, the physical system we have in mind is one containing two 

phases, one pOlsibly metutable and the other stable, separated by an interface. The 

stable phue then grows into the other phase and the interface moves at a constant 

speed. The interface is smooth on a macroacopie scale, and eaB be faceted or rounded, 

.. here it should be noted that interfaces that look smooth on a macrolcopic scale ean 

süll he rough. ThUl, we are not dealinS with large scale instabilities encountered in 

out-of-equilibrium processes such as dendritie growth and directional solidification. 

Allo, we Ihall not couider the inierfaœ's microscopie structure. We aslume that 

the interface is simply a 10 .. dimenaional object which separates two phases. Thil is 

becauae we shall not be concemed with physical phenomena involving dynamics of 

the interface's microscopie structure, IUch as surface reconstruction, in tbil work. 

11 
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2.1 Introduction to the statistical mechanics of 

equilibrium interfaces 

The use of statistical mechanics to obtain the physical properiies of bulk systems can 

seem magical. How can one cIraw valid conclusions &om approximations involving 

1023 atoms? U ia now fairly wdl undeniood that the SUCeelS of statistical mechanics 

is related to the fact that most of the (irre1evant) microscopie quantities obey simple 

Gauasian probability statistics. Oruy a small number of relevant variables determine 

a system's asymptotic, long wavelength, late time properties. These thermodynamic 

variables are those with which we shall be concemed. 

The statistical mechanics of interfaces is more involved than that of bulk systems. 

There are many reasons for tbis: interfaces exïat between two phases and are thus 

diflicult to treat separate1y from the buJ.k; their properties can be of considerable im

portance, especially close to the critical point, where the correlation length diverges; 

they are low-dimensional objects; and their presence is olten cloaely &880ciated with 

a phue transition in the system. Furthermore, interfaces are very sensitive to iuctu

ationa in the bulk. Thia stems essentially from the fact that they break banslational 

symmetry in the system. ThUl, for example, in a bulk phase, a iuctuation in the 

prenure is immediately counterbalanced by diffusion phenomena, restoring the sys

tem'. pressure toward ib equilibrium value. However, if an interface i. present and 

the tluduation occurs close to it, the restorlng force DOW is the surface tension, but 

it ia Dot strong enough to prevent long wavelength distortion. of the interface, as will 

he shown later. 

A fint principle approach is to consider the interface as decoupled from the bulk, 

and thua al a aeparate entity. One cau then study a (d - 1 )-dimenaional object. We 

,hall ... ume that the energy of the interface ia proportional to its (d -1 )-dimensional 

are&. One can thUi write the following equation: 

;- = aL~-l, (2.1) 
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where Fis the free energy of the interface, L is its length and Q is the surface tension. 

Now, 

La [(8h)2]1 :F = Q fo cfl-l Z 1 + 8z (2.2) 

where the interface position is given by y = h( z ). Expanding in a Taylor series in 

(Vh)2, 

-r' LcI-1 Q l Lo 
"'-1 (8h) 2 or ~ a 0 + 2' 0 a- z 8z (2.3) 

Thus, the (Vh)2 is the dastic energy as80ciated with the dongation of the interface. 

The laUer term will often appear in our dynamicaI equations for the interface's mo

tion. Even though this free energy is simple, it allows us to calculate the thickness of 

the interface, as will be seen in the section below on exact results. 

As wu mentioned in the introduction, numerous theoreticaI and numerical studies 

of the equilibrium roughening transition have been made. Thos! studies made use of 

various types of models that can be clusmed into two broad cluses: the eontinuous or 

macr08copic modela and the microscopie modela. Both classes hl~ve some advantages 

and some disadvantages. 

The continuons modela describe the dynamics of the interface by a stochastic 

partial difl'erential equation, known as a Langevin equation. This type of equation 

is usuaUy obtained by postulating the fOrIn of the free energy functionaI that de

scribes the system and applying certain operators to it. Although the equation is 

phenomenological, it can be shown that it describes the system well if it satisfies a 

certain relation called the fluctuation-dissipation theorem. A well-studied example 

of such a model is the roughening equation which represents the roughening of an 

equilibrium interface as a function of time. Ii has the following form: 

8h(z,t) _ lPh(z,t) ( .... ) 
lJt -" 8Z2 + '1 z, t , (2.4) 

where h(z,t) represents the height of~he interface at position z and time t,and '1(i,t) 

is the siochastic term mim.ickiug the presence of thermal noise in the system, and 

oheys the following properties 

('1( z, t») - 0 (2.5) 
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('1(z, t)'1(Z', t') = 2D6d
-

1(z_Z')6(t-t') (2.6) 

The 0 symbola denote a spatial averaging of the quantity contamed in between. The 

second relation is the fluctuation-dissipation relation for the system, ensuring th"t the 

model behave, in a physical way. The fluctuation-dislÏpation relation is enforced by 

requiring Div = kBTla, where kB is Boltzmann's constant and T is the temperature. 

These modela give a very good description of the late-time long-wavelength behavior 

of the roughening interface. However, they do not describe the roughening transition 

because they are continuum modela, and the l'oughening transition is present because 

of the underlying discreteness due to the lattice. 

The microscopic modela describe the interface at a more microscopic level. Al

though there are many such modela, the most successful ones are the Solid On Solid 

(SOS) model and the discrete Gaussian (DG) model. Those two modela describe the 

interfar.e as a set of discr-ete-valued variables ~, where i spans a (d - l)dimensional 

space. The h.i represent the height of the interface at the coordinate i. Thus, tbis 

representation negleds the presence of overhangs and bubbles. We will see that this 

can be of some relevance in the case of the growing interface. Nevertheless, those 

modela describe the roughening transition welle Their disadvantage lies in the fact 

that they are more diflicult to solve analytically. Also, they are not as convenient 

as the continuum modela to describe the late-time long-wavelength behavior of the 

interface. The modela we have just discussed describe an interface in equilibrium. 

However, as we will Bee later, the same distinction in two classes can be made in the 

case of modela for driven interfaces. 

To quantitatively describe an interface, one can use the following quantity 

w = V(h(z,t) - (h.(z,t)})2) (2.7) 

which corresponds to the width of the interface (see Fig. 2.1). 

Thil quantity exhibits scaling, that is to lay, it cu be described by power laws. For 

example, at late times, but su:fliciently early that finite-size eft'ects are unimportant, 
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Figue 2.1: Width oC an interface. The width ia the root mean square deYiatioD orthe cune nom 
iu average 'YÙue. 

the interface width 'C&D. be described by the following expression: 

(2.8) 

where t is the time and b is a scaling function. On the other hand, it can be more 

co:uveniently wriUen as: 

(2.9) 

where /2 is another scaling function. The quantities f3 and X, which determine the 

roughness of the interface, are called the scaling exponents. It can be shown that 

they obey the scaling relation 

z = x./{J (2.10) 
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2.2 The Kardar-Parisi-Zhang (KPZ) equation 

Let UI now introduce the far-!rom-equilibrium counterparil of the above modeb. The 

KPZ equatioD wu fuit inboduced to mode! the dynamical behavior ulOciated with 

the lateral growth of an interface. It ia a nonline&l' atochutic dift"erential equatioD for 

the time evolution of the interface height variable h(i,t), 

(2.11) 

where JI and l are constants, and " ia a random noise (,,) = 0, which. is asaumed to 

latiafy Gaulsian &tatistica with 

(,,(i,t),,(z4f,t'») = 2D6"-1(i - i')6(t - t'), (2.12) 

where D il a constant. The vector i determines poeitionl in a (d - 1 )-dimenlÎonal 

plane of a full .pace ;: = (i, 11). Since it has been asaumed th lot II. ia a single-valued 

fvuction of i, overhangl and bubbles are not coDlÎdered. We will argue below that 

bubbles are releftllt, for very Ilote times, for IOme important experimental represen

tationl of the KPZ equation. The nonlinear term cannot he obtained !rom a simple 

BamiltoDÎan and hu a kinetic origÎD (Kard&l', Pariai and Zhang 1986; Medina et al. 

1989); a derivation will be presented below. Thia term breab the Iymmetry of POI

itive and negative II. and provides a driving force which C&UJeI the interface to grow 

in time. Without the atochastic term, it C&D. be tranaformed into the well-moWD 

Burger'a equation, a limplified version of the Navier-Stokes equation, where II. be

comes the velocity potential (Bursera 1974). AI wu mentioned above, with l = 0, 

the equaüon describea the dynamica of interface roqheniq near equilibrium, where 

many investigatioDi have been performed (Chui and Weeb 1978; Saito 1980; Ed

W&l'da and Wilkinson 1982; Nozières and Gallet 1987; Grant 1988). We fint present 

a derivation of the KPZ equation and then give a aummary of exact results. 
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2.2.1 DeriYation of the equation of motion 

To derive the KPZ interface equation of motion, we require an equation for the 

full Ipace, where the interface. correspond to region. of rapid variation of an order

parameter field (Some of our remarka in thillection are implicit in the original work of 

Kardar et al. (Kardar, PariBi and Zhang 1986)). The order-parameter field i •• imply 

a meas1Ue of the ordering of the Bystem, like the magnetization for a ferromagnetic 

syBtem or the density for a liquid-gas Bystem. A dynamical equation can be prescribed 

at 1011' temperatures in an ordered state by a8suming that the time dependence of a 

slowly varying nonconserved orde. oarameter is due to the minimization of the local 

free energy. AU other degrees of freedom are modeled by a random noile whose 

intenBity is determined in part by the temperature. This is a consequence of the fact 

that the time scale aslOciated with the order parameter field is widely separated !rom 

the time BCales aslOaated with the other degrees of freedom. The equation we need 

is the following, 

8t/J(r,t) = -r [B 6F[,p(r,t)]] (2.13) 
Dt + 6'" + l', 

where Fr,;] i. the free energy functional, r is the mobility, and B is the enemal 

field. The transport coefficient is related to the intensity of the random noise p by a 

fluctuation-dissipation relation: 

(l'(r,t),,(y,t')) = 2rT6(r - ~)6(t - t'), (2.14) 

where Boltzm&DD 's constant hu been set to unity. The free energy functional F is 

the sum of aU the exchange interactions plus the SUID of the local free energiel 1 at 

aU sites r, 
(2.15) 

where / = _m",2 + .",4, and c, m, and u are positive conltants. The Langevin 

equation 2.13 il well known from critical dynamic. (Hohenberg and Hn.lperin 1977; 

Gunton, San Miguel and Sahni 1983; Gunton and Droz 1983), where it corresponds to 

the univenality clau of model A, the nonconserved Ising model. It il Itraightfonrard 
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to derive Eq. 2.13 from the microscopie spin-flip kinetic Ising mode! (Gunton and 

Droz 1983). 

One ean a1so recover the Langevin. equation above from a modification of model 

C of critical dynamia (Bohenberg and Balperin 1977; Collins and Levine 1985; 

JorgellJeD, Barris and Grant 1989; Barris and Grant 1990; Caginalp 1989; Cagi

nalp 1990), where & nonconserved order parameter '" is coupled to & conserved field, 

called e. The field e must be coupled uymmetrically to '" (80 that e's equilibrium 

value dift'ers in the tw~ phases, S&y '" = ±1) and, for our purp0&e8, the length leale 

for dift'uaion of e, Lr, mUlt be luger than aJl other lengtha in the system. With an 

uymmetric coupling, this providel a mode! for the liquid-lOlid interface, which eao 

be used to study the Mullins-Sekerb instability and dendritic growth. By requiring 

Lr :> L, we consider length scales much smaller than those of that inltability, imply

ing our analysis is omy valid, for example, neal the tip of & luge growing dendrite, 

where cunature is small. 

In equilibrium, the order parameter ,p will equal its time-independent value ,po. If 
equilibrium il characterised by coexiating phuea separated by a fiat diffuse interface 

located around 11 = 0, which requires H = 0, then, by 80lviq Eq. 2.13, we obtain 

_ dl "0 (11 ) ~ _ 0 
C d1l2 + éh/Io - • (2.16) 

The mean-field surface tension is given by 

1 (df/l )2 
fT = i C 1 d'li d,o . (2.17) 

Far from equilibrium, the interface may be convoluted and time dependent. In-

stead of being located at 11 = 0, it is useful to write it as the zeros of an awciliary 

fuDction (Bee Fig. 2.2) 

u = o. (2.18) 

TC) determine the equaûon of motion for u, we impœe the IOI .... bility condition: 

1jJ(r,t,H) ~ f/lo(u(i,t,H». (2.19) 
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t 
u(r,t)=O 

This meanl that the shape of the nonequilibrium interface il approximately the same 

u the equilibrium shape. This il reasonable for a gently-curved surface. Note that 

writing the interface as u = 0 implies that bubbles are not considered (although 

overhangl have not yet been excluded), ainee the interface does not interact with 

other surfaces. In the presence of a field, there cao be many nucleated droplet&, whose 

interfaces would eventually interact as the droplet& grow to macroscopic size. Thus 

our analysil is restricted to the Ume regime when the interfaces can be conaidered 

independent. The implications of this will be discussed below. 

Uling Eq. 2.20, the Langevin equation transforms into 

8u 8tPo(u) [ 2 () al] lJt 8u = -r H - cV ,po u + 8t/10 + p. (2.20) 

But from Eq. 2.16, one cao eJiminate 8// 8tPo in terml of second derivatives of ,po, 

8u d1/Jo{ u) [ 2 () tP"o{ u )] 
lJt du = -r H - cV ..po u + c (ldu)l + p, (2.21) 

.. here l = IVul-1 is the dift'erential length in the u direction. DecompOling the 
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Laplacian on the right-hand-side of the equation gives 

IJud,po(u) = -r [H + Kd"O(U)] + 
lJt du C idu J', (2.22) 

where K = -V· n is the differential eurvature, and n = i Vu il the unit normal 

vedor to the interface. Let us now projed the equation onto the interface with the 

operator 

P( ... ) = _1_jidu d"o ( ... ) 
Li"o idu 

(2.23) 

where Li"o is the miscibility gap. We obtain 

_ tlJu = rHLi"o + rcK + '1 
lJt fT 

(2.24) 

where '1 = -Cc/fT) J Idud"o/(tdu)1' ia the noise at the interface. Finally, sinee the 

velocity normal to the interface at u = 0 is given by 11 = -18u/ lJt, from eontinuity of 

Aux at u = 0, we obtain: 

where, 

the noise satisfies 

11 = l + vK + '1, 

l = rHLi,po, 
fT 

v= rc, 

('1(i,t),,(l,t'») = 2DçI-l(i -1)6(t - t'), 

where ; il a vedor determining positions on the u = 0 lurface, and 

T 
D=v-. 

fT 

Thil equation can be written in tenns of a free enero: 

v6F. 
11 = --- +'1 fT 16u ' 

where 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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The fust term is essentially & step function on the interface, and gives the volume 

energy, while the second is a delta fundion on the interface, giving the surface energy. 

Equations oftbis kind are well DOwn in other contms (Allen and Cahn 1979j Bausch 

et al. 1981; Kawasaki and Ohta 1982&; Kawasaki and Ohta 1982b; Grant and Gunton 

1983; Caginalp 1989; Caginalp 1990). For example, the equation of motion for the 

case where the field His a random quenched variable was derived several years ago 

(Boyanovskyand Cardy 1983; Grant and Gunton 1984). 

The form of Eq. 2.25 ean also be obtained from a simple phenomenological argu

ment (Zia 1990). A similar approach has been given by Krug and Spohn (Krug and 

Spohn 1990). In the presence of a field, a fiat interface will translate at a constant 

velocity v = À, sinee velocity is proportional to thermodynamic force. li the interface 

is curved, the velocity should be a function of the natura! thermodynamic variables 

of the system. An interface is best described, if it is very thin, by asking how curved 

it is, i.e., what is its local curvature K. Thus we have v = v(K), in the most simple 

case. Now, if in addition the interface is only gently eurved~ so that K is small, to 

leading order in a Taylor series expansion, one obtains v = À + v K as above, and Il 

mu.at be positive if the motion is 80 as to reduee eurvature. 

To recover the KPZ equation, we consider an interface whicoh is aImost fiat, without 

overhangs, i.e., u(r,t) = y - h(z,t) = O. One then obta.ins: 

(2.32) 

where l/l(h) = [1 + (8h/8Z)2]1/2. Thus to leading order in (8h/8i)2, leUing h -+ 

h - Àt for eonvenience (note tbis implies the KPZ equation is invariant under a 

Galilean transformation), one obtains the KPZ equation, 

(2.33) 

where the noise satisfies Eq. 2.14 to tbis order. 

This derivation implies that the KPZ equation can be used to describe a fiat 

growing interface in the nODcolllClVed Ising univernlity clu. in the presence of a 
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field, or a IOlid groWÏBg into a supercooled liquid, subjed to the redrictions mentioned 

above (Jorgenaen, Harris and Grant 1989). We should also note that there are many 

experimental repreaentations of modela A and C (U may be that derivations can be 

given of the KPZ equation for other situations, without theae restrictions (Krug and 

Spohn 1990).). Thus, the KPZ equation is especially relevant to dendritic growih. 

It can be used to describe the behavior of the solid-liquid interface at the tip of the 

dendrite, where the (.\'.rvature is small. 

2.3 The asymmetric Solid-On-Solid (SOS) model 

As mentioned above, there are many advantages to uaing microscopie modt-ls. Firstly, 

their microscopic description of the interface is more appealing. Moreover, ü prop

erly construded, they contain the essential elementB necessary fl)r &Dy roughening 

transition to tùe place. Consequently, there have been many such modela devdoped. 

The crude and simple microscopic mode! of a crystal is that of a compact structure 

packed together out of rigid e!ementary building blocks, which may, for instance, be 

of cubic shape, c:orresponding to lattice cella or paris thereof. This mode! is known 

as the Kossel crystal (Kossel 1927). As it is, this mode! completely ignores lattice 

vibrations, e!ectronic structure, dislocations and other essential features of realistic 

crystala, but in spite of this, it yields a good qualitative pidure of realistic crystal 

surfaces in 80me eues. A s1ightly more refined description of a crystal in equilibrium 

with its vapor il provided by the lattice gu version of the three-dimenlÎonal Ising 

mode!. In this mode!, the UDit building blocks are replaced by lattice cells which may 

be either empty or occupied by a sinsle partide. In a typical two-phue equilibrium 

state, there is a dense component which can be identified as the crystal phase with 

a small concentration of vac&Dcies, and a dilute phue which can be identified aa the 

vapor phue. The latter c:omponent conaiats predominantly of empty sites with a 

small concentration of vapor partieles, mOltly monomen, but 80me united in small 

elulters. The cryltallurface can he de:fined microscopically as the contour separating 
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the crystal phase from the vapor. Even though the description of the vapor phue by 

a lattice strudure is unrealistic, it il expeded to be reuonable at low temperatures. 

If, in IUch a model, one neglecta the presence of bubbles - that is compact inclusions 

of one phase in the other - and overhangl - that il a portion of the interface where 

the height h(z) is multivalued - , one arrives at the Solid-On-Solid (SOS) mode! (see 

Fig. 2.3). 

The SOS model hu been extenaively studied both theoretically and with the aid 

of computer simulations, and its equilibrium properties are well understood (Van Bei

jeren and Nolden 1987). Consider for simplicity the cue of a (100) face of an impurity

free simple cubic crystal in equilibrium with its vapor. We can mode! thi. situation 

UBing the laUiœ gu model, in which every site is either vacant or occupied by a single 

atom which in turn can only interact with Us nearest neighbors with an interaction 

drength J. At suflicienily low temperatures, it is &8.umed that one can negled the 

presence of crystal defects, such as vacancies, and particularly hubbles and overhangs. 

The surface of the crystal can then be represented by a set of discrete variables hi,j 

repreaenting the height of the interface at a lattice position (i,;), with an appropriate 

energy ulÎgned to dift'erent configurations. The Hamiltonian is defi.ned &8 

1l[hs,j] = L(ihs,j - hs+1,i1 + Ihs,j - h.,i+1I). 
i,j 

(2.34) 

Dynamics is introduced into the mode! by creating or unibiJating atoms at random 

positions on the surface. This process simulates the molecular exchange between the 

80lid and vapor phases. It is worth mentioning that simulations of the SOS mode! at 

high temperature describe the same physical phenomenon - namely the equilihrium 

roughening of an interface - as Eq. 2.4. There exista another mode!, the discrete 

G&u8Ïan (DG) mode!, which is alao of interest for us. It 1l8e8 the lame microscopie 

description of the crystal surface &1 the SOS model, but its energetics are alightly 

dift'erent. The Hamiltonian used for the dynamics is 

1l[hs,j] = E«h;.; - "'+l,j)2 + (hs; - "',i+.)2). 
i; 

(2.35) 
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( 

Figure 2.3: A typical configuration of the sos model. Note the absence of overhangs and bubbles. 

( 
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Pisue 2.4: Cou:iateace canes oC 4 cliI'ereat Saida cIo.e tg their criücal temperatura. The curve is 
a cubic fit to the data (G1lIIeulaeim 1946). 

To fint order, the square terms in tbis Hamiltonian mimic the finite-dift'erence version 

of a Laplacian operator. Indeed, analym of thia mode! is sometimes simpler than in 

the ablOlute value mode!. This ÎI why this mode! hu been uaed to periorm various 

calculationa. 

If the difl'erence in the HamiltoDÏa.na translates into a difl'erence in the short wave

lea.gth repne, we have to remember that, at low temperatu.rea, the difFerence between 

neighboriDg sites ÎI small, that ÎI, :ia equal to zero or unit)' in mOit of the eues. Thus, 

in thia eue, the two modela are equivalent, at leut 10 far u loDS length .cale and long 

time propertiea are concemed. To he preciae, for our p1llpOllel, modela are equinlent 

if they Ihare common uymptotic propertiea, like the sc:alins exponenta X and %, and 

the lcaling function defined in Eq. 1.2. One then lays that the two modela shue the 

aame wüvenaJity clau. 

The concept of univeraality ÎI clœely related to the field of critical phenomena. A 

good example of univenal behavior ia weil illutrated by Fig. 2.4. On thiJ figure, the 
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reacaled densities as a function of the rescaled temperature overlay perfectly, indicat

ing all the compounda conaidered lcale in the same way. The univer.a1 behavior of 

many .yltema ia well DOwn experimentally. For example, it hu been found that the 

behavior of 80me ferromagnetic systems and 80me liquid systems are deacribed by the 

lame critical exponenta. As a con.aequence of theae obaenations, it wu conjedured 

that diverse phyaical syltems behave identically near their critical points. This uni

venality hypothesis states that only two quantities determine the critical behavior 

of mOit .ysteml: the dimenaionality of Ipace d and the dimenaionality of the order 

parameter D. AlI .lystems having the same values of d and D ue laid to be in the 

lame univenality clus. 

As we will Bee in Chapter 4, the Btudy of the SOS and DG modela wu instrumental 

in finding a proper description for the equilibrium roughening transition. Further

more, if one is far enough from the tr&IUJÏtion temperature, one cau recover the BCaling 

behavior of the roughening equation (Eq. 2.4). Thoae and other reuoDl have led many 

people to deviae micrOlcopic modela that exhibit the same critical exponentl as the 

two dimenaional KPZ equation. Examples of such modela are the Eden model, the 

balli.tic depOlition mode! and the KK model (Kim and KOiterlitz 1989). 

In the Eden mode! (Eden 1961), given a cluBter of N partides, the (N + l)tA 

parlicle ia added at a randomly cboeen perimeter site of the eluster. In the ballistic 

deposition model, spherea are dropped aequentially Aboye randomly chosen pontions 

of the horizontal substrate, move towarda the surface along ballistic trajedoriea and 

.tick permane.ntly at the poÏDt of firat contact with the .nbsirate or a previously 

deposited sphere. There are many variations on tbis model. One cau allow the 

Iphere to "roll downhill" unül il reaches a stable equilibrium. One can alIO perform 

on- and off'- lattjce simulatioJU. Finall,., one cau use variOUI angles of incidence for 

the trajedories. 

The Kim and Kosterlitz mode! ia a reatricted SOS (RSOS) mode!. The ene7:geticB 

are still lovemed by the SOS Bamiltoman, but the model restrict. every neareat 

neipbor heipt dift'erence to a muimum value of one lattice comtant. 
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Although the growth exponenta obtained from simulations performed on thos-l! 

modela agree with the KPZ equation in d = 2, the situation m d = 3 is much less 

clear. This led us to devise a mode! whim we thought would contain the sa.me 

feature as the KPZ equation, and consequently, wouId be in the s&lIle univers&lity 

clus. This model, which we n&lIled the uymmetric SOS model, is deacribed by 

the B&me Hamiltonian u the equillbrium SOS model. To study the nonequilibrium 

properlies of a driven interface, we use 1l for Monte Carlo attempts, but biu those 

attempts by an &Inount À"" which is the fraction al amount of extra attempts made 

on one aide. Thua ~G gives the asymmetry of rates of evaporation and condensation 

on the interface corresponding to À in the KPZ equation, while the temperature 

T for Monte Carlo moves approximately corresponds to Div in the KPZ equation. 

This impliea that ~G = 0 represents the equilibrium case, while Àa > 0 causes a 

constant velocity of the interface. We expect tbis uymmetry to allow tenns even in 

ahl8z to appea.r in long-wavelength equations of motion, so that tbis mode! would 

be in the same universality clus as the KPZ equation. We point out here that the 

procedure inboducing asymmetry, and thus, allowing us to use the "new" model to 

study interface growth, is usociated with minim&\ changes from the standard SOS 

model. 

2.4 Exact Results 

Exact resuIts for the modela aimulating the equilibrium roughening of an interface are 

available. Maet of them stem from a renormalization group analysis. Tm. technique 

hu been widely used in statiatical phyaics, because it is particularly succesaful at 

handling the vanOUB singularities that occur at a second order phase tranaition. Since 

BOme of thoae resuIts are UJeful for the analyais of the nonequilibrium systems, we 

describe them here. Let us Mst review a simple method that allows us to calcuIate 

the critical exponents related to the roughening equation (Eq. 2.4). 

As mentioned above, the roughening equation and the equilibrium SOS model 
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both deacribe the roughening of an interface. Above the roughening transition, the 

renormalization group calculations performed on those two model.s p:edict that the 

height-height correlation, that is the width of the interface defined by Eq. 2.7, diverges. 

Furthermore, the way it diverges depends on the dimensionality of the mode!. To Bee 

,bis in an easy way, let us make use of the roughening equation. Let us Fourier 

transform tbis equaiion and rewrite it in momentum and frequency space 

(2.36) 

where ij is the momentum, w is the &equency and '1( q, w) satisfies the following rela

tions 

One can thus write 

('1(q,w») - 0, 

('1( q, w )'1( (, w'») - 2D6d
( q + ()6( w + w'). 

h(q,w) = 2 1 . '1(q,w) 
vq + IW 

(2.37) 

(2.38) 

(2.39) 

From this equation, one can immediately infer that the interface does not move, that 

is, that its aver88e position is time independent and equal to zero. This result is 

simply obtained by taking the spatial and temporal average of the whole equation. 

One can also find the width of the interface. We mst write 

(2.40) 

We then take the Fourier transform of tbis equation to obtain the width in real space. 

Taking the t --. 00 limit, we obtain 

W(L) "" L!!~, (2.41) 

for d < 3, where L is the linear size of the system and dis the dimension of space. 

Thus, the width of the interface diverses in the thermodynamic limit, that is, when 

L -. 00. This fact is a consequence of the Goldstone theorem. The free energy of 

the interface (Eq. 2.15) is translationally invariant; it has an infinite number of en

ergetically equivalent pOlÎtions. By placing the interface at a pariicular position in 
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space, one breaks tbis tranalational symmetry. As a consequence, there emerges an 

excitation which maJr.es the interface vary slowly in space. This excitation il called 

a Goldstone mode. It has a very low energy which goes to zero as the wavelength 

as80ciated. with it goes to infinity. The interface is unstable against such loug wave

length perturbations and its width increases to infinity in the thermodynamie limite 

However, note that the interface width remains small compared to the dimensions of 
'.-1) 

the system, ainee WI L '" II L:I as L -+ 00, for d> 1. 

The above method has the advantage of allowing us to find precisely how the 

interface diverges as a function of the space dimensionality much more euily than the 

renormalization group technique. However, as was mentioned belore, the continuum 

mode! does not allow us to find the roughening temperature, or any of the quantities of 

interest as80ciated with the roughening transition. Nevertheless, one is able to extract 

the critical exponents Zo and XO from this analysis. From above, XO = (3 - d)/2, and 

it can be easüy shown that Zo = z for d < 3. In d = 3, the situation is 0. bit more 

delieate, because it corresponds to the upper critical dimension, that is, the dimension 

above which mean field results become exact .. One then finds that the width of the 

interface diverges very weaJdy as 

W", v'ÏiL, 

W '" v'iiïï, 

tlL ~ 1, 

tlL < 1. 

(2.42) 

(2.43) 

li is often difticult to obtain information on the dynamiea of a system by such 

simple methods. One usually hu to use more involved analytic methods to obtaïn 

such resuIts. The renorma1ization group method is such a scheme. The reason it has 

attracted the attention of muy researchers is because it hu been quite successful at 

handling various analytieal problems other methods eould note The phil080phy behind 

this method is closely as80ciated with scaling and universality. Indeed, tbis unive18al 

behavior shared by all systems at their critieal points led people to think that most of 

the microscopie characteristics of the system were not usefol in describing the behavior 

of the system - in other words, they were ulOciated with irre1evant variables. A few 

parameten were crucial to obt&Ûl the right description - the variables aB80ciated with 
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these parameten were relevant variables. The renormalization pup method consista 

of rescaling the system, and, in 10 domg, integrating the irrelevant variables away 

while keepÏDS the relevant variables. Even thoup there are very fe .. rigorous prooû 

for doing IUch a thing, it can be phenomenologically jUitified by the lcaling behavior 

of critical lystelDl. The IUCCela of the renormalisation group method in equilibrium 

problema prompted people to try the lame type of analylu on driven IYltems, and in 

particwar on the KPZ equation. Fonter, Stephen and NelJon (Forster, Nelson and 

Stephen 1977) have applied the dynamical renormalisation group method to the noiay 

Burgers equation, and their resuIts are also valid for the KPZ equation, as ahown by 

Kardar, Pariai and Zhang (Kudu, Pa.risi and Zhang 1986). 

We illuatrate their method. Consider the KPZ equation: 

(2.44) 

(,,(i,t)'1(i',t'» = 2D8'-1(i - i')6(t - t'). (2.45) 

Next, we Fourier trannorm thoae equation. We thu define h(',,,,,) and '1(k,,,,,) such 

that 

h(k,w) (2.46) 

(2.47) 

Here, A is a short wavelength cut-off corresponding to the lattice coDitant or the 

mteratomic distance. Conversely, 

(2.48) 

(2.49) 



-

OHAPTER 2. MODELS OF A GROWING INTERFAOE 31 

1.=1024 

1.=512 

Fipre 2.5: SelC-similarit1 of KPZ iDien.ce.. 

One C&D substitute the above expreuions in the KPZ equation, which then 88sumes 

the following form: 

Ia<',,,,,) - hOC',,,,,) 

_l2Go<k,w)1 if· <' - if)h(if,n)h(k - if,,,,, - 0), (2.50) 
9.0 

(,,<',w») - 0, (2.51 ) 

(,,(k, "" ),,( k' ,w') - 2D(2r)cl6(k + k')6(w + w') (2.52) 

with 

Go(k,w) 
-1 

(2.53) - -iw+ vk2 ' 

hO(k,w) 
.. 

(2.54) - Go(k, w),,(k, w), 
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(2.55) 

The way the KPZ equation is now written allows us to iterate the equation up to 

any order. Rowever, this ia not quite .. hat we are going to do. Although our goal 

here is not to review the mathematical and phyaical background ulOciated with the 

renormwation group method, let us outline the arguments validating the procedure. 

In mOit of the cues encountered in statistical phyaica, the usual perturbation theories 

used to calculate any of the relevant physical quantitiea will work well enough. How

ever, there is one poin'- in the phase diagram of most compounds where this methods 

fails. U;.I the critical point. The reuon for tbis failure is that, at this point, the 

correlation length diverges in the thermodynamic limit, thermodynamic quantities 

become singular, and the perturbation expansion becomea uncontrolled, so that the 

higher order a perturbation term il, the more relevant it is. Another important and 

simplifying thing happena at the critical point: An the singular quantities exhibit 

sca1ing. For example, in the present eue, the width obeys the following equality: 

W~LX, (2.56) 

where L is the linear aize of the system. What thia means phyaically is well reprelented 

by Fig. 2.5. One can hardly distinguish one figure from another - statistically, they 

are equivalent - and yet one is represen.ted on a scale whim is twice the other. 

Another important fact ulOcÎated with the behavior of systems at the critical 

point is the divergence of the correlation time - that il, the time ~t it takes for 

W( z, t + ~t) to become uncorrelated with W( i, t): 

lim (W(z,t)W(i,t + ~t») = cora.t. 
A'~+oo 

(2.57) 

The fact that the correlation time and correlation length diverse means that the 

rapidly-voryirag V10veleragtM ira the .. y.tem ore averaged out, aM thot oraly the 101:'.g 

Vloveleragth 6ehovior of the .. y .. tem i.t relevant. The renomatJlizatiora-group technique 

involve, 0 controlled overaging or "c04r,e-groining" of thue rapidly-varying quanti

tie,. 
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In the cue that is of interest here, the diverging quantity is the width of the 

interface W. The scaling law8 obeyed by W have been given by Eqs. 2.8 and 2.9. 

The firat step in the renormalization group procedure is a coarse-graining procedure. 

It corresponds to applying a perturbation method to tm equation, that is, to iterate 

the equation to mst order, to replace the exact h terma in the integrala by their 

unperlurbed counterparls hO and to integrate over the small wave vector region, that 

il, over the wave vedo" forming the 8tochastic noise dellcribed above. U sing the 

notation in Fig. 2.6, we CaB represent Eq. 2.48 by the diagram in Fig. 2.7. We then 

~ 

h(k,,,,) = 
--hO(k,w) = 
~ 

Go(Ic,w) = 

-~ q. (k - q) = __ k_c;;< 
k-q 

Fiple 2.6: 

split the integration into two parts using the symbola represented in Fig. 2.8. Note 

the change in scale e' > 0, by which the rapidly-varying short-wavelengths quantities 

are intqrated out. We then obtain the periurbed equations represented in Fig. 2.9. 

After IOme tediOUI calculations, one obtains, to fint order, t1ae representation the 

corrections to Eq. 2.48 in Fig. 2.10, which translate into the {ollowing equations: 

< ... «... < ... h (k,w) = G, k,,,,),,, (k,w) 
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k,w k,w 
+ 

k,w ~ = 

... 
hO>(k,w) = --t--

h>(k,w) = --t-

G!(k,w) = ~I ._-

• 
k-q,w- {} 

Pipre 2.1: 

hO«k,w) = __ _ 

h«',w) = ---
< ... 

Go (k,w) = ---

k < e-'A 

Pipre 2.8: 

34 
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k< Ae-I t k <: k « - --- + • + 
t-q t-q 

k <: t « + • + 
t-q t-q 

, 
\ 
1< 

" 5 

t 
r 

Ae-I <k< A t k <: t « 1 
t 
; ~ =--+- + Il + 1 • , 
,< t-q t-q 

k <: k « + 1· + 1 • 

t-q t-q 

Fipre 2.9: 
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k k 
=-- + ~ y 

~ 

~
q k 

+2 

k 

k ~ k 
+2~ 

q , 
q 

k q 
+ 4---<::: 

k 
+4---<:Y 

k 
+4--G 

Fipre 2.10: 
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with 

III - /1 {1 + '\&~d-l d ~ 1 [.-.(d-I) -1] } (2.59) 

D, - D{ 1- ~~d-l d ~ 3 [.-qd-I) -1]} (2.60) 

~I - .\ (2.61) 

(2.62) 

where 11.< refera to relevant wavedors heights, as opposed to the wavedors forming the 

stochastic noise, Kd-l = 1/?;d-21r .;1 r( .1;1) is a constant of integration corresponding 

to a (d - 1 )-dimensional surface and ~~ = .\2 D / 113
• The second step is then to ensure 

that the above equationl obey scaling laws which are observed in the system. One 

thus introduces the following scale transformations: 

", = 
e' " 

(2.63) 

w' - eM 
CA) (2.64) 

h'("',w') = e-d -(d-1+x)1 < -h,(k,w) (2.65) 

,,'(k', w') = e-(d-1+x)1 ,,:(k,w). (2.66) 

Substituting thoae expression in Eqs. 2.56-2.60, we obtain the following: 

11(1) - e(.I-2)1 "I (2.67) 

D(I) - e(.I-2x-cl+1 )1 D, (2.68) 

.\(1) - e(.I-2+x)l ~I. (2.69) 

Finally, taking 1 BI an infinitesimal length, one obtaina the following relults: 

[ 
~2KcI_l 3 - dl 

- II( 1) -2 + z + 4 d _ 1 (2.70) 
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cl~(I) = ~(I) [z - 2 + X] 
dl 

38 

(2.71) 

(2.72) 

To enlure that theae equation saüafy the scaling relatioll8, one bu to emorce that 

v( 1), D( 1) and ~(I) are independent of 1. This gives the foUowing 1I0w equationa: 

to leading order in l. 

À2Kd_l 3 - cl 
z = 2- 4 cl-l' 

cl-1 i2Kd_lcl-2 
X - 1- -2- + 4 cl-l' 

dl 3 - d- 2d - 5-
dl - -2-~ + Ktl-1 4d _ 4 ~s. 

(2.73) 

(2.74) 

(2.75) 

The important result that comes out of these equatioDi ia that there are no stable 

fixed pointa to the order we have calculated the critical expGnenta. A. a matter of 

fact, for d ~ 3, l(l) diverges expoDentiaUy with ,. When d > 3, ODe findl that the 

perturbation term (Vh)2 !8 irre1eftllt, and one recoven the equilibrium roughening 

critical exponenta. The reuon one obtaina exact reaults when cl = 2 il auggeated 

hy the equation describing X. The lut term in the 1I0w equatic!! vaJÙlhes in tbis 

particular dimension, and one is left with X = 1/2. In fact, it can be 8hCJWD that this 

OCCUI to aU order in l. From the hypenca1ing relation X + z = 2, ODe can theD bd 

f3 = 1/3. However, even though thOie reaultl are exact, it doe. Dot mean that we did 

bd a fixed point. Furthermore, we do not have &Dy Inch "luck" in cl = 3. This can 

he Been &am the hehavior of dll dl. In d = 3, the fint term vaniabes, but the second 

term is positive. Thua, the value of l increuea u the Iyltem ia reacaled. It doea not 

flow towvela a stable fixed point. This l. one reUOD why numerical work il required 

to obtain growth exponents in d = 3. 

1 
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2.5 Discussion 

The derivationl given above (particularly in Sedion 2.2.1) clarify the phYlieal pidure 

repreaented by theae modela: the far-from-equilibrium states deseribed by the KPZ 

equation are regions in an equilibrium phase diagram eorreaponding to the limita to 

which one ean, say, 8upercool a liquid or superheat a solide The theoretieal eounter

part of thia process is the quenching of an Ising model with a field applied below ih 

ordering temperature, or the ofr-critical quench of a binary liquid into the nucleation 

region. The limib we refer to above alIo tranllate into limib on the range of validity 

of the above modela, related to a combinatioD of the strength of the field and the 

Ume seale of the description. 

There are strong boundl on the nature of the nonequilibrium state, sinee, in 

the example above, the liquid il only metastable. 1'he state eventually deeays by 

droplet nucleation, which implies limita on driven interface modela, sinee there is 

a time regime for whim bubbles are relevant. Nucleation is a subtle problem in 

nonequilibrium theory, involving the nature of metaatable states in the hydrodynamic 

limit. (By hydrodynamic limit, we mean the late-t.ime, large-system-size analog of 

the thermodynamic limit for nonequilibrium systeml). However, the nucIeation rate 

is euy to obtain within the daasieal approach of Becker and Doring (Becker and 

Doring 1935; Gunton and Droz 1983). Nucleation oceurs when droplets of a stable 

phase form by lpontaneous thermal fluduations !rom a met ut able matrix. Small 

nudeated dropleb disappear, thua the metutability, while large dropleb grow. The 

rate-limiting proceas for the formation of the stable phase involvea droplets which 

barely grow, ealled critical droplets. Clusical nucleation theory hu two main parts, 

a quui-equilibrium theory of the critical droplet, and a kinetic theory of its growth. 

ASlume the .yltem is ordered with spins up, and an infinitesimal uniform external 

field is applied which favors spins down. The free energy of a domain of down spins 

i. usumed to be, 

(2.76) 
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where R is the Bize of the domain and factors of 2 and 11' have been ipored for 

convenience. The mat term corresponds to the volume energy of a droplet, while the 

second to ih surface area, so that F.(R) is a simplified form of Eq. 2.15. The free 

energy hu a muimum R- = [Cd - l)/J]tT/ H. Domam. with radü R > «)R-, grow 

(shrink) relpectively, where R· is the critical droplet radius. The rate of nucleation 

/ ia proporiional to the probability of IUch a droplet appearing by a ftuduation, i.e., 

/ oc exp[-F.(R·)/T] or 

(2.77) 

where L~ is the volume of phase space accessible for such a ftuctuation, and the time 

scale is /9ven by 

(2.78) 

so that l/t- is the linearized growth rate of the critical droplet. The characteristic 

time scale for a droplet fluctuation Ï6 r '" /-1, or 

(2.79) 

where IOme numerical factors have been ipored. Note that T is only wealdy depen

dent on Iystem Bize and dimension of space for cl > l, e.g., rtl::2 ~ exp(ln Td=a)1/2. 

ThUl, for the systems mentioned above, the KPZ equation il uaeful on time scales 

t <: T, Bince dtopleta (i.e., bubbles) are neglected by &aluming h(i,t) il single-valued. 

U ia mown from the Itudy of the metics of mst-order transitions that droplet nu

deation becomes appreaable at the cloud point in experimental systems (Gunton, 

San Miguel and Sahni 1983; Gunton and Droz 1983), when r = 0(1). For even larger 

field strengths, the system 's Itate can become completely un.table; for example, in 

loq-range-force .y.tems (where the critical cboplet is of the sy.tem size), thiJ OCCUlS 

at the Ipinodal curve H = H..,(T), which is a line of mean-field Becond-order trann

tiODS. It Ihould he emphuized that the nature and formal definitioD of a metutable 

state in the hydrodynamïc limit ÏI u yet unresolved, except for the relatively UDÏD

teresting cue of .yltems with long-ranse forces. Even with this restriction, the KPZ 

equatioD is quite useful for describing the gro1rih of interfaces in non-equilibrium 
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systems. n is applicable to the interface of a growing bubble if the system meets 

the conditions stated above. A pariicularly good example of such a system is den

dritic growih, where the Ume scale for growth of a dendrite is on a much faster scale 

than the nucleation rate in the undercooled liquid. Given the restrictions discussed 

above, the KPZ equation describes dynamicai roughening at the tip of such a growing 

dendrite. 



Chapter 3 

N uDlerical Results for the 

Interface Width 

As we have seen in the previous section, it is not clear how to make furlher progress 

analytically. At tbis point, we resart to numerical work. In tbis pariicular case, u we 

mentioned in the previoUi chapter, there are no exact results available for the critical 

exponents related to the roughening of the interface in d = 3. These exponents are 

not only relevant to theorist&, but can a1so be estim.ated experimentally, and are of 

potential use in materials problems: for example, for controlling the speed at which 

an interface grows. Furlhermore, as we will Bee in the nm chapter, the knowledge of 

those exponents can help us analyze the dynamical roughening transition. 

Bued on the fact that muy modela yield the same results u the KPZ equation in 

d = 2, people have conjectured values of those exponents u a function of d. However, 

none of the modela that yielded the same scaling exponents u the KPZ equation in 

d = 2 have been shown to belong to the same universality cluB u the latter in Clny 

dimension. Thu we felt it worthwhile to directly integrate the KPZ equation using 

a finite dift'erence scheme. Thi. method hu its advantages and its disadvantages. 

The major advantage is that we obtain IOme values of the scaling exponenta for the 

KPZ equation, rather than IOme model that might belons to a dift'erent universality 

clus. There are also disadvantages with tbis method. It is ahray. delicate to perform 

42 
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a finite difference calculation using an ordinary dift'erential equation, because of the 

many parameters one hu to vary to obtain optimal reauIts. However, in the case 

of a nonlinear stochutic dift'erential. equation, things are even worse. One then bas 

to worry about the stability of the solution, the range of validity of the various 

parameters. Furthermore, the presence of noise dœs 110t mùe things euier. Finally, 

one hu to be confident of having reached the scaling regime to evaluate meaningful 

sca1ing exponents. 

A. wu mentioned in Chapter 2, we expect that the asymmetric SOS mode! belongs 

to the lame universality clu8 as the KPZ equation in any dimension. In parallel to 

the numerical integration of the KPZ equation, we thu. performed a Monte Carlo 

simulation of this mode!. 

In tbis chapter, we present the integration method we have used, and the various 

tests we have performed to verify the robustness of our resuIts. We also describe the 

Monte Carlo simulations performed on the uymmetric SOS model. We then present 

some two dimensional resuIts, some crossover results, and close the chapter witb the 

three dimenaional results for the scaling exponent8 and the ero.sover expoueont. 

3.1 The finite difFerence method 

The finite diff'erence method (or Euler method) is the simplest method to simulate dif

ferential equationl. It consista in making the fol1owing approximation for the spatial. 

and temporal derivatives 

8h(i,t) 
8i 

8h(i,t) 
Dt 

h(i + âi,t) - h(z,t) 
A.z 

h(i, t + ât) - h(i,t) 
ât 

(3.1) 

(3.2) 

Uaing tbis Icheme, one can approximate the KPZ equation by the following form 

h( ) h( "') A [ (h(z+âi,t)+h(z-âi,t)-2h(i,t» 
z,t + ât = z,t + ~t Il (4z)' 

.A (h(Z + âi,t) - h(i,t»)2 ( ... t)] 
+ 2 6z +" z, (3.3) 
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There are of course conditioll8 to be fulfilled for thil approximation to be vaUd 

and to ,pve the ript solution to the equation. Fint, âz and 4t have to be cholen 

small enough 10 that the lensth and time scales of intereat are luser than them. That 

il 

4z <: L, 

4t <: t 

(3.4) 

(3.5) 

where L and t are reapedively the length scales and time scales ulOciated with 

the problem. Furihermore, 4z and ât cannot be choeen independently. This is 

aeen euily if one examines dœely the Euler approximation. The equations to be 

80lved involve both temporal and spatial deri_tives. Tho, not ouly are there certain 

length and time scala present in the syltem, but the two are related (for example, 

through .peed in the eue of a wave equation). ThuI, the choice of the time and space 

increments must be made judicioualy, fint of aU to avoid wuting (computer) time, 

but more importantly to 1.·.0\0 il':!merical inatabilities. For example, it is weU lmown 

that, in the eue of the difru..i~-:-; .:quation 

81~!t) = DV2h(i,t), (3.6) 

4z and ât have to be chOleD 80 that 4t/(âz)2 < 0.5. This coDltraÏDt is obtained by 

talâng the dift"erence between the exact solution - that il, the whole expansion -and 

the appromnate IOlution and chœing ât/(âz)2 such that thil dift"erence converses to 

a finite bound. Furlhermore, we are interested in cWrerenüat equatioDi which incor

porate an additive noUe piece. 'l'hia Ihould make thinp wone, becaue it introduces 

&Il additional deviaüon of the nuœerical resulb from the exact raultl. Finall" the 

presence of a nonlinear piece introdUce8 the pouibility of bifurcation problema, '*hich 

can only he detected by careful iDlpection of the data. An the concerns above muat 

be appropriately beated in the numerical .cheme. 

To test the robuatneal of our reaultl, we performed vari,1l18 tests. We fust varied 

4t and âz to deted any chanses in the reaulta. We uaed ât = 10-2 ,5 X 10-1 , 10-1 and 
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Fipre 3.1: Check for the preMIlce of bite lise eft'ecb iD the KPZ .unulatiou. t ia the time, W ia 
the width or the iaterf'ace 

âz = 1,0.5 for d = 2, and At = 10-3,5 X 10-4 , 10-4 and Az = 1,0.5 for d = 3. For all 

thOie dift'ereni parameters, our resulis did Dot change. We then varied the sizes of the 

systems we simulaied, to check for any size dependence in the growth of the width. 

We used sizea of L = 4096,8192,16384 for d = 2 and N = 1282,2562 ,5122,10242 for 

d == 3 (tee Fig. 3.1). Again, the width did not exhibit any size dependenc:e. 

AU thOie tata were performed with white noiae, that is 

V(i,t),'1(i,t) E [-1,1], (3.7) 

'1(i,t) satisfying Eqs. 2.6 and 3.7. We also uaed a aeed-shufBing algorithm to avoid 

pouible correlations. To furlher test our algorithm, we limulated the KPZ equatioD 

with the same parameters but with gauslian noiae 

V(i,t),'1(i,t) E [-00,+00] (3.8) 

and 

P('1(i,t» ex exp( -('1(i, t»2). (3.9) 
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Agam, no differencel were fOUDd between MOUS runs. 

To check the accuracy of our integration scbeme, we made use of sum rules derived 

by Fox (Fox 1990) for the KPZ equation. fi one makes use of the nonlinear change 

of variable w(i,t) = exp [lh(z,t)/2J1], one then obtaina the foUomg dift'erential 

equation: 
8w( z, t) V2 (..) l ( .. ) ( .. ) lJt =11 wz,t +211'1 Z ,twz,t. (3.10) 

Thi. i. a diffuaion equation plua a multiplicative noise terme Thi. equation is thought 

to represent direded polymer., .. weU .. quencbed diJorder (Krug and Spou 1990). 

The white noise ... umption allow. us to make use of the FurutBu-Novikov theorem 

(Furubu 1963; Novikov 1965) to obtain the foUowing equation: 

! (w( i, t» = "V'(tu( z, t» + (~ )' D.s"-l(O)(W( z, t», (3.11) 

where 6"(0) i. the d-dimeDlional delta fundioD. We C&D get rid of thia divergence by 

introducing an ultraviolet cut-off; that is, a lattice coDltant wbien ÎI present in any 

real system. Theo, the noise correlation .. sumes the followiDg form 

~ (z -i")2) <'1(i,t)'1(i',t/} = 2D(211'C7'r 2 exp - 2(72 6(t - t/) (3.12) 

Taking the average of Eq. 3.10, we then obtain 

! (tu( i, t» = "V' (w(z, t» + (~ r D(21r">r 1";'1 (w( z, t». (3.13) 

Solving for (w(i,t»), we bd 

(w) = exp [t (~)' D(2",,>t~] exp(t"V')tu(O) (3.14) 

- exp [t (~ r D(21r"»-~] (3.15) 

We can thU8 Bay that (w(z,t») is an exponential fundion of time. More precisely, 

(3.16) 
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where c il a conltant. Thus, ln(w) ia a linear fundion of time and the dope of the 

line i. proportional to l2. 

We then teated theae predictions by calculating (w(i,t»), taking the logarithm of 

the data and ploUing the variation of the dope u a function of l2 (sinee JI il held 

constant). AI can he aeen &om Fig •. 3.2, 3.3 and 3.4, thia end property of the KPZ 

equation ÎI well-obeyed by our numerical integration reauIts. 

3.2 The Monte Carlo method 

The Monte Carlo method hu been mown for a long time, but only with the recent 

advent of powerful computera hu it been pOisible to fully utilize it. advantage.. Our 

purpOie here i. not to review eDenaively ita applications, but rather to concentrate 

on the pointa euential to our work. 

The Monte Carlo method in Itatiatical physica permit. the atudy of modela of 
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equilibrium and nonequilibrium thermodynamic Iyltem by Itochutic computer lim

ulation. Starling from the deecription of the desired phYlica! system by a mode! 

Hamiltonian, one uses random numbers to construd the appropriate probability with 

which the varioul generated Itates of the Iyltems have to be weighted. In the classical 

equillbrium eue, the Monte Carlo simulation allOWI for the calculation of the phase 

space integrala aslOciated with the following expression: 

(A) = Jn dzA(z)exp[-1t(z)jkBT] , 
Jn dzexp[-1l(:r:)jkBT] 

(3.17) 

where A is an observable,1t( iI:) is the Hamiltonian of the mode! with phase space 

variables z, kB is the Boltzmann conltant and T is the temperature. We thus want 

to calculate the statiatical mechanica average of A. It was quickly realized that this 

random .amplirag method was no' of great use for problem. in dati.tical mechanics, 

becaUle it givea the same probabilistic weight to any configuration occurring in the 

phase space. Conaequently, Mebopolia et al. inboduced the idea of importance 

,ampling. Instead of ch08ing the pointa in the phase space complete!y at random, 

they are seleded acCOlding to a probability pei;). Then, Eq. 3.17 is approximated 

by 
(A) _ E:!l A(Z.,)P-l(Z;)exp[-1t(z;)jkBT) 

,.... Et!l exp[-1t(z;)jkBT] , 
(3.18) 

where M is the number of phase space points we use for the averaging procedure. The 

sÎmplest and mOlt natura! pOlaibility il choosing P(z;) = p .. (z.) ex exp [-1t(z;)/kB T]. 

Since p .. (z,) ia not DOwn explicitly in the eue of interest here, the realization of Eq. 

3.18 il not completely obvioUl. Nevertheleu, it ia possible to con.trud a random walk 

of pointa z, via a Markov procal - that ia, a procesl which probability diltribution 

for any future realization of astate only depend. on its present probability distribu

tion - IUch that P(z;) tenda towardl p .. (z;) as the number of pointa generated to 

ca!culate the mtesral goes to infinity. Tm. Markov procesl il defined by Ipecifying a 

banaition probability Wez; -+ Zj) from one phue .pace point z; to another point Zj. 

ln order that the Markov proceal hu the desired convergence property, it il lufficient 
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to impoae the detailed balance condition 

(3.19) 

which meanl that the ratio of transition probabilitiea dependa on the change in energy 

~1t. = 'H(z;) -'H(z;) only, that is 

W(Zi -+ z;,) = exp[-6'H/kBT]. 
W(Zi' -+ Zi) 

One choice for W(rei ~ re;) il 

1 
W( Zi ~ Zi') - - exp [ -6'H./ kBT] 

T 

1 
61l < 0 

(3.20) 

61l> 0 (3.21) 

(3.22) 

where T il an arbitrary factor whim does not aft'ect detailed balance. Thul, one takes 

.,. = 1. 

The procedure above il appüed to obtaïn Itatic quantitiea 01 .ystems that are 

in equilibrium. The application of the Monte Carlo method to calculate dynamical 

quantities is more problematic. Thil ia becaue many systems considered do have a 

time evolution in terma of determiniatic metic equatioDl for the:ir variables. However, 

80me important modela do not have a timr. uaociated with their dynamica. The 

equilibrium SOS model belongs to the latter clau. Then, the metica ulOciated with 

Eqs. 3.21·3.22 provide a meuurement 01 time. 

Up to now, we have been focuaing on equillbrium systems. It ia cleu that the 

uymmetric SOS model doea not deacribe an interface at or cloee to equilibrium. 

However, we have to remember that il. ia a microacopic model, deacribing interactions 

down to a very small length scale. Our .. sumption ia that the energetica at thoae 

length scales do not change, or, equivalently, that the interface exhibitslocal equillb

rium. With thia uaumption, it ia then re&IOnable to use the Monte Carlo method, 

on recalling that the bigest changes in the nonequilibrium mode! with respect to the 

equilibrium one occu in the smalI wavevector region, on laqe length .cales. 
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Althoqh Monte Carlo methods are quite different &om numerical integrations, 

their result. are hampered by aimilar problems: one still hu to deal with finite lize 

eft'ecb, and the simulation time stin hu to be long enough to ensure that we a.re in 

the sc:aling regime of intereat. Fnrtherm.ore, the consbainta on the time step ât of 

the numerical integration are replaced by conatraints on the temperature T at which 

the Monte Carlo simulation is performed given an interaction strength J. We thus 

performed various test l1UlS to satiafy ouraelvea that we were simulating the mode! in 

the right regime, and in p&rticular, far enough away &om ~he roughening transition. 

3.3 Results in two dimensions 

An important test of our algorithm. and the validity of our microscopic model wu the 

study of the KPZ equation and the uymmetric SOS mode! in d = 2. On integrating 

the KPZ equation, we recovered the exact reaulte obtained previoualy (Forster, Nelson 

and Stephen 1977; Kardar, Pariai and Zhang 1986). The equilibrium roughening 

reault. were obtained when the driviDg force wu zero. The equation wu IOlved with 

systema of Bize L = 4096 and ~ between 0 and 80, which we found wu of sufficient 

aise to avoid finite-aise eft'ects. A time meah ât = 10-2 wu uaed; smaller valuea gave 

e8leJltiaUy the same resulb. Resulta &om over 100 independent integrationl of the 

equation were averaged. The width of the interface W wu monitored &8 a fundion 

of time t, where W - tfJ. For.\ = 0, we obtained {j = 1/4. For large values of ~, 

e.g. ~ > 40, the driven growth result, p = 1/3 W&8 obtained (Bee Fig. 3.5). However, 

for _ues 0 < .\ < 40, eft'ective exponenb were observed, with VÙUe8 1/4 < {3 < 1/3, 

indicatiq the presence of crouover behavior. 

To obtain the roqhening expGDent X, the equation wu integrated until a Iteady 

state wu reached. We then estimated the Iteady-state exponent X &om Ki· ,." LX &8 

the sy.tem size wu varied &om L = 50 to 400. For ail values of ~, X = 1/2 was 

conaiatently found, in apeement with both the dynamic roupening and the driven 

growth rauIt. (tee Fis. 3.6). 
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Fi8ue 3. T: Belaarior of the interface width of the SOS mode! u a fuaCÛOD or lise iD Il = 2. A fU or 
thia cane Jielda a powth upoDeat X = 1/2. 

Monte Carlo simulations of the nonequilibrium SOS mode! were performed with 

the system temperature, T, set to a coDvenient (reuonably large) value so as to ob

serve a continuum-like behavior. The growth exponents were found to he independent 

of temperature. In d = 2, systems of Bize L = 6 000 and times of up to 40 000 Monte 

Carlo steps were used to ohtain the growth exponent {J, and sm aller system sizes were 

used to calculate the growth exponent X. For any nouero ~., we expeded X = 1/2 

and {J = 1/3 in the hydrodynamic limite Indeed, X = 1/2 wu obtained for all values 

of l. (Fig. 3.7). For À. = 1.0, i.e., when there are only gro1rih attempts, we found 

p = 1/3 in agreement with the resuIt. for the two-dimeDiional KPZ equation (Fig. 

3.8). For .maller values of ~,CIOIIOver eft'ectl were again observed, while at ~a = 0, 

1re obaerved ~ = 1/4 as expected. 



OHAPTER 3. NUMERICAL RESULTS FOR THE INTERFACE WlDTH 54 

2.00 -

1.50 

1.00 

0.50 

0.00 L-I. ............... ...&... ........ "'-'.....L. ........................ -'-.............. i.-f". .................... -'-.............................. 1-01 

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 

lnt 
Fiaue 3.8: BehaYior of the iDteDace _tll of the sos model .. a fmaCtioD oC ÛlDe d = 2. A fit oC 
thia cune :JieldJ a growth upoDeat f3 = 1/3. 

3.4 Crossover scaIing in two and three dimen-

• sions 

As i. clear !rom the above, to eItract reliable uymptotic resu1.ts a careful analysis of 

CfOSlOver effects i. needed (Guo, Groumann and Grant 1990b). Since the presence 

or absence of the nonlinear driving force determines the dynamic universality clus 

(driven or roughening), a natural analogy arises with critical phenomena. There, com

peting interactions lead to croalOver beharior between diferent univenality cluses. 

For example, adding a cubic anisotropie interaction to the N-vector mode! can give 

CfœlOver !rom Iaing to Bei.enbers hed point. (Brésin, LeGuillou and Zinn-JUltin 

1974). For the driven gro1rih problem deacribed above, a crouover regime is thus ex

pected when the driviq force is small, and either t o~ L is not asymptotically large. 

While the uaual crouover phenomena OCCUll between two or more ,tdle fixed points, 

we are now dealing with a situation where the Cl08lOver ia to a strong-coupling fixed 
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point where dimenaional analysis is of little utility (sinee the E = de - d expansion 

mvolves an Ullitable fixed point). As a consequence, the usual dimension al and scal

mg analyul cannot predict the crossover exponents. Tho a numeric&l study, as wc 

present below, is required. 

Guided by cqerience in critical phenomena, it is natural to propose an ansatz to 

acCOUllt for crossover. In two dimensions it is 

(3.23) 

where /30 = 1/4 and %0 = 2 are the exponents for ~ = 0, fz is the crossover sc&ling 

function, and the new exponent tP accounta for crossover to nonzero.t Setting ~ = 0, 

we recover the dynamical roughening results. When t ~ L"· (or for L = (0), the L 

dependence of fz can he dropped: 

(3.24) 

Hl> 0, the growth will eventually be controlled by the unknOWll sbong-coupling 

futed point which il characterized hy the driven growth exponents /3 and z. Bence we 

must have W '" tfJ , BO that heu) '" u fJ - fJ• for large u. This gives 

(3.25) 

We expect Eqs. 3.24 and 3.25 to hold in the large L limit. 

In d = 3, the above ansatz must be modified since dynamic roughening is marginal: 

W 2 
"-J Ac, ln t, where .Ac, is a constant. Thus we propose the following crossover scaling 

ansatz 

(3.26) 

where the lcaling function latisfi.es Is( u) '" ln u, for u -+ 0; and Is( u) '" u2fJ , for 

u ~ 00. Again, we require timea t < < La. so that any lize dependence can be 

neglecteci. We do not couider the poauhility of a logarithmic CfOS80ver, as hu been 

8uggeated by Tang et al. (Forrest and Tang 1990). The argumenta which lead to the 

logarithmic croalOver wu buecl on a fixed dimension c&lculation to one-loop order of 
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the KPZ equation(Kardar, Parisi and Zhang 1986). Such a calculation is expeded to 

be valid only for the nonlinear coupling constant l « 1, which is not the case for ail 

the numerical solutions of the KPZ equation performed so far. For l > 1 the fixed 

dimension calcuiation does not give a conbolled approximation and no satisfactory 

theory exista for the strong coupling regime at d = 3. We thus resori to a numerical 

dudy. 

Although no perturbable strong~coupling fixed point hu been found for the KPZ 

equation in d ~ 3, it is still worthwhile to show how to find 4> by simple scaling 

argumenta, if such a fixed point exiated. First, we perform a scale transformation 

in space and time of the KPZ equation uaing the exponents for ~ = 0: zr = e-'i, 

t' = e-a.1t, h' = e-x•1 h. Next, the tran..sformed equation is restorecl to the original 

form by redefining the constants: JI -+ V = JleC •• - 2)l, l -+ ~, = leCx.+a.-2)', and 

D --+ D' = DeCa.-d+1-2x.)l. Finally, the transformation h'(i.',t',~') = e-x·'h(z,t,l) 

implies 

(3.27) 

where a choice of 1 has been taken such that e' = tl/a •. This implies that the cr08sover 

exponent 4> = zo/(Xo + Zo - 2). ThUl, for d = 2, this gives 4> = 4. However, our 

numerical resuits of the KPZ equation below give 4> R:S 3. This discrepancy is related 

to the ableDce of a stable fixed point in the strong coupling regime which is required 

for the scaling ar~ent to work. Indeed, the dimensional analysis above is intimately 

related to the existence of a stable E = de - d expansion, aince power counting by the 

Ginsburg criterion, XO + Zo - 2 = 0, determines the critical dimension. 

To test the crossover sca1ing ansat. and obtaïn the exponent 4>, the numerical 

results of the prenous section were used. In d = 2, data for those values of ~ which 

gave p < 1/3 were analyzed. The inset to Fig. 3.9 show. f, = W/tl / 4 u a function of 

t for several values of l. The cunes, each representing an average of 100 independent 

runs, are well separated. H plotted as a function of t.\~, as shown in Fig. 3.9, a good 

data collapse can be seen on uaing 4> :;. s~o. This implies that our scaling anBatz is 

reasonable, with the cune of Fig. 3.9 correaponding to the crossover scaling function, 



_. 

CBAPTER 3. NUMERICAL RESULTS FOR THE INTERFACE WIDTH 57 

dO-2 

190r---~--~---r--~----~--~--~--~---r--~ 

1.7S 
xl 0-2 

1.90 r-----...-------. 

1.75 
S 

~ 
1.60 

l.4S 0 10000 sooo 
t 

1.4S ""'-_________ -a. __ ~ ________ __' __ "___""_ __ 

0.00 0.S3 1.06xl0· 

tÂ' 
Fi&ue 3.9: Crouoyer beba-rior oC the KPZ eqaation in ci = 2. 1/1 ÏI the erouover e%pOnent. We bd 
• = 3.0. N ote tha~ ~he CUlYe8 are we11-leparated il not rescaled, &1 ÏI shown in the in.sert. 

An independent check on the value of 4> wu performed by taking large values of 

.\,10 that {3 = 1/3. We then momtored W versus.\ for a fixed Ume. Our ansatz then 

predids, &8 in Eq. 3.25, a power-Iaw dependence, W '" >.;/12. Indeed, we found that 

ln W vs ln.\ W&8 well fiUed by a straight line, as shown in Fig. 3.10, with a slope 

0.23 ± 0.02 which is &gain consistent with tP R: 3. Combining the two independent 

calculations of t/J, our best estimate for the crossover exponent is cp = 3.0 ± 0.2. 

fi the nonequilibrium SOS model sharea a universality clus wiih the KPZ model, 

we exped not only growih exponents, but alao crossover behavior to be identical. 

Tho a Cl'08sover lcaling analysis of our Monte Carlo data for small values of .\. wu 

performed. Keeping the system at a fixed temperature T = 0.5, we averaged results 

of 250 independent ruJUi on systems of Bize L = 2 000, each with 4 000 Monte Carlo 

steps for dift'erent values of .\0' Fig. 3.11 shows the crossover scaling function defi.ned 

in Eq. 3.24 for the SOS mode! after data collapling. This analysis gave a crolsover 
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exponent t/JRI 3.0 which indeed &peel with that of the tw~dimeDlÎoDal KPZ mode!. 

In three dimenaiona, 1re integrated the KPZ equation uaing parameten dilculsed 

in the nm section. Data with l ranging from 120 to 240 by Itepl of 20 wu uaed for 

the crOllOver analylÏa. For.\ < 120, much loqer ruJlI were needed. Fig. 3.12 plots 

f, = w 2 /Ao + t/Jlnl venus U., where Ao il obtained from the fit W2 = Aolnt when 

.\ = o. AI Ihown in the plot, with t/J = 4.5 excellent data collapainK il achieved. The 

behavior of f, at large values for U. wu coDlÎatent with our reluits for /3 in three 

dimenaioDi in the nat section. Neverlhe!ell, we caution that Iy.tematic errorl could 

be present in our estimation of exponentl in d = 3, becauae it i. a marginal dimenlion. 

We did not perform a croIlOver lcaling analylia on the three-dimeDlional SOS mode! 

due to the complicationa caused by the presence of a rougheDÏng tranlition. 
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3.5 Roughening exponents for the driven inter

face in three dimensions 

The integration of the KPZ equation is hampered by large fluctuations and crossover 

efl'ects. Besides large number of independent runa for average, one must study suffi

ciently large system sizes so that the growth of the width persists until the nonlinear 

term becomes important. Typically the following parameters were used: ~t = 10-8 , 

with 50 000 integration step., and system sizea of 1282 and 2562 • Test rUDS on 5122 

and 10242 systems were also performed which yielded the .&IIle value for {J. Re

ducing the time mesh to ât = 2.5 x 10-4 and iDtegrating over 200 000 steps alao 

gave the lUDe reauIts. As in the tw~dimensional eue, we varied À to ensure the 

system wu in the driven growth repne. Fig. 3.13 sho.s our reaults for W versus 

t with À = 240, from averagiDg 50 iDdependent ruJlI. For laie times, we estimate 

{3 ~ 0.13 ± 0.02, in agreement with the value obtained by Chakrabarti and Toral 
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Fipre 3.12: CrOllCWer beharior of the tuee-dimeuional KPZ eqaaûoa. 1 .. ia tbe ctœIOyer ICaliDg 
faJacûon. 

(Chakrabarti and Toral 1989; Guo, Groasm&llJl and Grant 1990a) but smaller than 

the value obtained by Amar and Family (Amal and Family 1989). Note that the 

efFective exponent drops to that value from {l '" 0.5 for early times (due to the noise 

,,). This phenomenon stems from the following analyais: at early times, the interface 

il only driven by noise. In this eue it is well DOwn that the exponent f3 must equal 

1/2. As the interface lengb increues and long wavelength develop, the surface ten

sion term becomea relevant. Finally, the non-linear piece comes into play, thus the 

crOilOver behavior described in the previous section. U ia ÙIo worth mentiomug that 

we have undertaken IOme selected ualysis of l&r8er systems, &1 well &1 luger values 

of coupling constants, &Bd rec::over equivalent reault.. White for any nonsero l we 

exped the dynamica in the &lymptotic resiJne to be soverned by the strong-coupling 

fixed point, for small values of l ClOIIOver efl'ectB were important, u diacusaed above. 

Nevertheleas, for À > 240 we found the value quoted above. 

The value for X wu more difticult to obtain becauae of large fluctuations, thua 
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requiring a luge amoUDt of computing time. Nevertheleal, data for L ~ 30 yielded 

X = 0.24 ± 0.04 (Fig. 3.14). Noting that z = x.lP, we thul verified numerically the 

hyperscaling relation (Kardar, Parisi and Zhang 1986) X + z = 2 in d = 3. Note that 

these exponents are distinctly dift'erent from those of dynamical roughening, /30 = 0 

and XO = 0, where W only diverges logarithmically. 

As mentioned above, the interface dynamicl represented by the KPZ equation is 

expected to account for that of a large universality clus of lattice modela, which we 

expect to include the uymmetric SOS mode!. In d = 3, Monte Carlo simulations 

of that model were done to extract the growth exponenta /3 and X. Systems of Bize 

1002 were uaed throughout, Binee they were found to be of lufficient lize. In Fig. 

3.13, the ln-ln plot of W venus t ÎI shown &long with th.t for the three-dimensional 

KPZ model. For ..\. = 1 and any reaaonable T weil above the roughening transition, 

we estimate P ~ 0.13 and X ~ 0.25, in agreement with the resuIts obtained for the 

three-dimensional KPZ equation. From Fig. 3.15, we estÎmate X ~ 0.25 ± 0.02, 
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which &gain agreea with the hypencaling relation. As in the two-dimenlional cue, 

Imaller .\. showed sbong crOllOver effectl, as diacuased above. Nevertheles., the 

good agreement between the MOUS exponenh obtained in d = 2 and d = 3 make UI 

confident that the KPZ equation and the nonequilibrium SOS mode! are in the Bame 

dynamic univenality clUB in 60Ua two and three dimensionB. 

Thua, in d = 3, OUI' beat estimatea for the growih exponentl for both the KPZ 

equation and the asymmetric SOS mode! are /3 ::::::::: 0.13, and X ::::::::: 0.25. Thele reBuIts 

are not conaiatent with conjectures in the literature (Kardar, Parili and Zhang 1986; 

Woll and Kertész 1987a; Kim and K08terlitz 1989). Those conjecturel were, however, 

motivated by the study of simple modela which, although they share similar features to 

the KPZ equation, are not obviously in the same universality clus. Neverthe!esB, wc 

&gain caution that crOS80ver effects couId play an important and subUe role in d = 3, 

because it is a marginal dimension, which may imply considerable systematic errors 

in our estimation of exponents. Furiher study il required to definitively determine 

the nature of growth in d = 3. 



Chapter 4 

The EquilibriuDl Roughening 

Transition 

The study of phase transitions ha played an important role in twentieth-century 

physics. At fust, this interest might appear strange, Binee the phue tranaition lines 

represent only a very small portion of the phase diagram itHlf. Indeed, second order 

phue tranaitioDl often occur only at one point in the phue diasram. In the firat part 

of this chapter, we will explain the importance of thia phenomena. 

The prenous chapter wu devoted to the study of interface dynamiCI, that il, the 

way the interface grows, its speed of growth, its roughneal, ud 80 on. However, this 

study did not talle into account the behavior of the interface that is auociated with 

its underlying microscopic structure. For example, it hu long been mown that below 

a certain temperature, the equilibrium interface should he microscopically fiat. This 

stems !rom a microscopic study of the interface, wmch we will deacribe brie1ly below. 

Thua, there should be a certain temperature at which the interface augea state, and 

tms auge of state is aslOciated with a phase tr&lllÏtion. The nature of this phase 

transition has been the subject of much debate in the lut 30 yean. We now review 

the main results of the equilibrium roughening tr&lllÎtion. 

64 
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4.1 Introduction to phase transitions 

Thermodynamic systems can exist in a number of phases, eac:h of which can exhibit 

dramatic:ally diff'erent mac:roacopic behavior. Generally, syltems bec:ome more or

dered &1 the temperature is lowered. Forces of cohesion tend to overcome thermal 

motion, and atoms rearrange themselves in a more ordered state. Phase changes 

occur abruptly at 80me transition temperature, although evidence that one will oc

cur can 80metimes be found on a microscopic scale as the transition temperature is 

approached. 

The thermodynamics ulOciated with phase transitions is relatively simple. At 

a transition point, two or more phues can coexist in equilibrium with each other, 

as stated by Gibb's phase rule. As a consequence of this, the chemical potential of 

the phases, and there{ore the Gibbs free energy, must change continuously. However, 

phase transitions can be divided into two classes ac:cording to the behavior of the 

derivatives of the Gibbs free energy. Ph&8f: transitions which are ac:companied by 

a discontinuous change of state - a discontinuous fint derivative of the Gibbs free 

energy - are called mst-order transitions. Phase transitions that are ac:companied by 

a continuous change of state - the mat derivative of the Gibbs free energy varying 

continuously - are called continuoUi or second-order phase transitions. 

Phase transitions occur ai, say, a critical point; a well-defined temperature above 

which one phase exista, and U the temperature is lowered a new phase appears. 

When a new phase appean, it often hu difFerent symmetry properlies, and Bome new 

variable, called the order pa.ramet~, appears which cbaracterizes the new phase. For 

fint order phase transitions, there need not be a connection between the symmetries 

of the high- and low-temperature states. For a continuoui phase transition, however, 

Bince the .tate changea continuously, there will generally be a well-denned connectioD 

between the symmetry properliea of the two phases. 

The field of critiw phenomena is &8IOCÏated with continuoUi phase transitions. At 

the critical point one observes diversences in otherwise well-behaved thermodynamic 
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quantities IUch as the specific heat for liquid-gas Iyltems and the susceptibility for 

magnetic systems. Thole divergences allowed people to define critical exponenta. 

Indeed, it is now fairly well accepted that divergences occurring at the critical point 

are deacribed by power lawi. ThuI, if !( z) il a diverging thermodynamic function, 

one writes I(z) '" Z-CI as z goea to zero. This means that 

lim.-o 1D~~ )] = _Q (4.1) 

where z il the distance from the critical point. UIUally, there are correctionl to 

the power law behavior of thermodyn&mÏc functions, so that. one hu to be in the 

asymptotic regime belore calculating any meaningful critical exponent. The lingu

larities at a critical point are re1ated to ftuctuation l'henomena. Consequent!y, it is 

diflicult to solve these kinds of problems exactly, because of the collective behavior 

of a large number of components of the macrOicopic syltem studied. Inatead, one 

uses appropriately chosen modela wbich exhibit the right physical behavior. It ia in 

tbis context of simplicity that the concept of lca1ing appeared. Scaling consista in 

deacribing the aingular part of the vaDOUI thermodynamic function near the critical 

pOÎDt in terml of distance from the critical point, thus defiDing a set of critical ex

ponents. The success of thia description ia because the correlation length diverges at 

the critical point. Scaling alao explains why dift'erent syltems nevertheleal behaved 

in exactly the same way at their respective critical point, that is, they were described 

by the lame sets of critical exponents. One then I.yl that they belong to the same 

univenality clus. This latter concept can be very useful hecause it allows people 

to DOW .. hat critical exponentl describe a Iyltem without having to ez:perimentally 

find them. It also allOWI V&rÏOUl testa to he performed on theoretical modela. Finally, 

scaling i. the lut step leading to renormalisation group methods wbich have been 

introduced in Chapter 2. 

AI wu mentioned at the besinning of tbis section, phase transitionl occur in a 

varlet y of Iyltems. The equilibrium roqhenÎng transition ia a particularly fucinating 

example of phase transition. It aIso provides us with a v~ good example of how 

usefal the concept of universality clau can be. Let us DOW describe thia transition in 
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more detail. 

4.2 The equillbrium roughening transition 

In their DOW famous paper published in 1951, Burton, Cabrera and Franck were the 

first to lugest the existence of a roughening tr&lUlition in cryltal surfaces. They 

were actually intereated by the behavior of solid surfaces in equilibrium with their 

vapor, and the gro1rih that OCCUll in such systeOll. Bued on energetic considerations, 

they showed that below a certain temperature, the growth due to the formation of 

nudeation dropleb on the surface would in practice be replaced by the growth due 

to the presence of screw dislocations in the bulk. They then went on to identify the 

presence of a interface in d = 3 u being well-described by a two dimensional Ising 

mode! (Fig. 1.1). Their idea wu that the surface layer wu not influenced by the bulk 

or the vapor because of an exact cancellation taking place between the layers above 

and the layera below it. Then, u the two dimenlÎonal transition temperature for 

the Ising mode! wu approached, large fluduations would destroy the surface layer. 

According to thia analysis, the roughening temperature would then have to be fairly 

close to the phase transition temperature of the two-dimensional Ising model. 

While qualitatively correct in some aspects, the Burton-Cabrera-Franck argument 

is incomplete and not correct in detail. The main reason for the mcorrectnes8 of their 

reuoning lies in the fact that Burton et al. did not talle into account the pOllibility 

of layera growing on the top of layera. By domg this, they then put a very strong 

constraint on the number of depeea of freedom describing the interface. Namely, 

from infinity this number wu reduced to two. It is for the same reuon that the exact 

cancellation of interaction taking place at the surface layer can only occu at T = O. 

Fluduations malle the the behavio: of interface between two coexisting phases more 

complicated than that given by the arpment of Burton et al .. 

Even though the &Dalogy wu incomplete, experimental facts confirmed that Bur

ton et al. were still right in their prediction that some crystal surfaces would be rough 
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above a certain temperature, and Hat below it. COJUequenily, IOme experimentalists 

stuied loomg for the roughening tranaition in varioui materiala. However, tm. 

proved to be a very diflicult tuk. In fad, theori.t. uncovered the solution to tm. 

problem before direct experimental observations of the transition were made. Since 

we want to keep the chronological order intact, let UI ir.t deacribe the theory before 

giving experimental fads. 

4.2.1 Theory 

A. mentioned above, the theoretical study of the roughening transition staried in the 

50'. with the paper by Burton et al.. Although their description is valid over a wide 

range of 10w temperatures, it breaks down close to the roughening transition tem

perature because it ignores the multilayer structure of the interface at (and above) 

thia temperature. Nevertheleas, it wu only in the beginning of the 70'. that people 

Ituiecl to realize that there wu a Haw in the argument put forward in their paper. 

GallavoUi and van Beijeren were the tir.t to propoee that in the three-dimensional 

Iaing mode! a phue tranaition de!ocaljzjng the interface hetween phues of pOlÎtive 

and negative magnetization might occ:u.r ai a temperature be!ow the bd critical 

temperature. Weeb et al. found .trong evidence for .uch a transition from low tem

perature expansions for moments of diaplacement of the interface. These expansions 

were found to become divergent at temperatures roughly 10 % Aboye the critical tem

perature of the two-dimenaional Ising mode! correaponding to a single layer, that is 

well be!ow the critical temperature of the three-dimenaional Ising mode!. A major 

advance in the theory took place in 1976, when Chui and Weeb IUccea.fully applied 

the renormalisation group method of KOiterlitz to .tudy the roushenins transition. 

Chui and Week. introduced the diacrete Ga1lllÎan (DG) mode! deacribed in Chapter 

2. Let ua rewrite the BamiltoDÏan uaociated with it: 

'H. J~ (la la )2 - J ~ la G-1 ( • ")Ia 
DG = 2~i.1 i -;+1 = 2~i;' i 1 11 i', 

= ~~fl1a,12Gïl(q) 

(4.2) 

(4.3) 
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where 

and 
1 - -h - -E -h -elllJ 

"-..jN" 
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(4.4) 

(4.5) 

is the Fourier b&ll8form oUhe height variable h;. Note that in Eq. 4.2, the interaction 

energy goea as tlh"I' for small q'l. This behavior il characteriatic of lurface tension 

(Bu:ft', LoveU and Stillinger 1965), which determinea the propeJ'tiea of interface. at 

high temperaturea. Thul the GausBÏan mode! is thought to represent a wide clus of 

column Bamiltonians. 

The DG partition function CaB be written 

where 

ZDG = f dh;II;W(h;) exp [- k~T1lDG] 

W(h;) - E:;= __ 6(h; - R;} 

- E~= __ exp[ik;h;]. 

(4.6) 

(4.7) 

(4.8) 

The weighting function W(h;) in Eq. 4.6 restricts the integration in Eq. 4.5 10 that 

only integer values of h; contribute. Substituting Eq. 4.7 in Eq. 4.5, we obtain 

Zc == Z~G = E:;= __ {exp (iE;k;h;») . (4.9) 

Bere Zo is the UDwe:ighted Gaussian model'I partition fonction ( the partition function 

of Eq. 4.5 with W( h;) = 1), which can be evaluated exactly. The angular brackets 

indicate an ensemble average in the unweighted Gaussian ensemble. 

In Eq. 4.8 we note the charactemtic function for the Gaussian distribution. Bence 

the k; alao obey a Gaulsian distribution gi'lJ'eD by the inverse matrix to Gïl and Eq. 

4.8 becomea 

Zc = Et;':-œ exp [- le;: Eij.k;G, (jj')Ie;.] 

where, !rom Eq. 4.3, one find the inverse matrix Gl(j;') to he 

Ï4(;-i') 
G ( . ") 1 E _e-:--_ 

1 13 = 2N " Gï1(q)' 

(4.10) 

(4.11) 
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Eq. 4.9 il in ract the partition function for a neutral two-dimenlionallattice Coulomb 

gas (Chui and Weeks 1976) in which the hi represents the charges. Note the q-2 

dependence at small q in tbis equation: tbis behavior characterizes the Coulomb 

interaction. Note also that the reduced temperature leBT / J hu been inveried in going 

from the DG mode! in Eq. 4.5 to the Coulomb gu in Eq. 4.9. Finally, reatroapectively, 

the tact that the Coulomb gu appears Ihould not surprise us: the matrix G1t (jj') in 

Eq. 4.3 il the laUice analog of the Laplacian operator and hence its inverse matrix, 

Gt(jj') in Eq. 4.10 is the tw~dimensionallattice Green's function, that is the tw~ 

dimensional Coulomb potential. 

Since Zo is analytic, the singularities in the DG partition function ZD are identical 

with those in Ze. These had already been discul8ed by KOIterlitz and Thouless 

(KOIterlitz and Thouless 1974; Koeterlitz 1974) in connection with their analysis of 

the XV model and a dislocation mode! for tw~dimensional melting. They established 

that the Coulomb gu undergoes a phase transition from a low temperature dielectric 

phase with opposite charges tightly bound together in "diatomic molecules" to a high 

temperature metallic phase. The free charges in the metallic phase come from the 

now disusociated "molecules" and provide the uual Debye screening. The properties 

of tbis transition can thu be directly related to those of the roughening transition 

and dift'er greatly from those of the two-dimensional Ising model. 

Let us now describe in more details the renormalization calculations and relults. 

Chui and Weeks applied tbis method to an equation similar to Eq. 2.4, but with a 

periodic term simulating the lattice potential added: 

: = -rK-1E, (h; - hi+l) - rK-lg2h; + r (A;i) -
211' K-1 ryo sin 211'hi + 'Ii, (4.12) 

where K-l == 2J/T and '1(i,t) ia the stochastic noise obeying Eqs. 2.5-2.6 H ro = 0, 

we can solve the problem exactly ( see Chapter 2). For non-zero ro, we can take the 

Fourier transform of Eq. 4.11 and rewrite the equation &8 

h(q,w) = G(q,w) [Au(q,w) + '1(q,w)/r - 211'K-1YoFsin211'h( .. ,t)]. (4.13) 
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Here , i. a dimenaionleas tw~dimensional lattice vedor (the unit of length being the 

laUice .pacing) locating the center of a column, and F indicates a Fourier transform 

in .pace and time. The renormalization group method (KOIterlib 1974; Jo.é et al. 

1977) can then be applied to the linear response fundion X-lof the sy.tem, defined 

by the following equation 

(4.14) 

with E given by 

(4.15) 

The method consista in expanding the inverse linear response fundion X-1(q,w) 

in powers of lIo, Similar expansions have proven very useful in the static limite The 

zeroth order term [x;l(q,w)] gives the limiting behr.vior (T -+ 00), and the higher

order terma give corrections ariaing from a non-zero weighting function. We can now 

use tms expansion to generate differential recursion relations, as we have in Chapter 

2, which relate the rcaponse in the original system with parameters K, r and Yo to 

that in a system with renormalized parameters K', ri and lI~. Integration of the 

recursion relations in fact provider. a connection for all T ~ TB between the original 

system and the exactly solvable system with lIo = O. 

We can expand ho, hl and E in powers of yo in Eqs. 4.13-4.14 to obtain the 

following expansion for the inverse linear rcaponse function 

(4.16) 

where y == !lo exp[-K c] and c is a constant approximately equal to ~'JI'2. We can now 

use the same trick we have used in Chapter 2. We divide the range of integration of 

each integral in Eq. 4.15 into to parts: one from 1 to b and the other from b to 00, 

with 0 < ln b <: 1 (that ÏB, bis very close to unit y). Now, the small tJ part of the 

integration can be combined with the original constant term (either K-I or r-1 ) to 
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yield a new parameter value and the large $ part of the intesration reacaled so that 

the integrala again run from 1 to 00. The scale factor is then ablOrbed in a redetined 

y variable. Eq. 4.15 can thus be rewritten in exactly the same functional form with 

K, Y and r replaced by K(l), y(l) and r(l), with 1 = lnb. This equivalence implies 

the following difl'erential recursion relations 

1 dy2(1) --- _. 
2 dl 

dln r(l) 
dl 

( 4.17) 

(4.18) 

(4.19) 

which are subject to the boundary conditions K(l = 0) = K, etc. The mat two 

equations are essentially identical to the static recursion relation found by José et al. 

(José et al. 1977) and Nelson and K08terlitz (Nelson and KOIterlitz 1977) in their 

analysis of the XY model and the tw~dimensional Coulomb gas. We can define a 

new variable z(l) = 1rK(I) - 2. Substituting this relation in Eq. 4.17, we obtain 

! dz2(1) = _1r4z(l)y2(1). (4.20) 
2 dl 

Comparing this equation to Eq. 4.16 we see there is a conserved quantity 

(4.21 ) 

As long Ba z(l) > 0 Eq. 4.19 ( . les y(l) to zero as 1 -+ 00. The roughening point 

can be thought of as the low. 1 ere \le end point of this line of critical points with 

y( (0) = 0 and at this end point we must have z( (0) = 0 or K( (0) = ~. This value is 

universal (i.e. independent of the initial value of y and a number of other modifications 

in the initial Hamiltonian that could be envisioned (Nelson and Kosterlitz 1977» and 

should hold for all roughening models. 

Another feature comes from Eq. 4.20. when we evaluate it at 1 = 00 for tempera

ture greater than TR • Then y(oo) = 0 and 

(4.22) 
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Very near TB we ca.n expand the right hand side in a power series about T - TR noting 

that the constant term V&nÎahes since at TR, z( (0) = o. We then obtain to lowest 

order 

(4.23) 

We can also obbin an estimate for TB from Eq. 4.16. If we set z(oo) = 0, recalling 

that 11 = Yo exp [ - i1r2 K], we obtain the equation 

2 2 [1 2 ] K = - + 11" yoexp --11' K 1r 2 
(4.24) 

Setting Yo = 1 to approximate the DG mode! we solve Eq. 4.23 by iteration and find 

kTB/J - 1.45. 

Let us now turn our attention to the behavior of the dynamicaI parameter ..., in 

Eq. 4.18. E1imin ating 112(1) between Eqs. 4.16 and 4.18 and integrating, we obtain 

r(oo) _ 1rK(oo) -1 
r - lrK - 1 . ( 4.25) 

Bence r e1fectively scales with K whose behavior we have diacussed above. This has 

immediate consequences for the statica and dynamica of the interface. For example, 

the average growth raie R of the crystal is related to the response to IL spatially and 

temporally uniform driving force when the stabilizing field 92 = O. To fust order in 

111' we obtain 

R - lim.., .... o - iwX( q = 0, lA) ) 'i' 
- r(oo)'i' T '? TB. 

( 4.26) 

( 4.27) 

Thus the theory predicts linear growth at and above TB in agreement with conven

tional theories of crystal growth. 

Below TB, the situation is very difFerent. Approaching the roughening temperature 

from below, the response function has the limiting form 

( 4.28) 

with a finite correlation length e and renormalized coefficients Kt and r t
• Eq. 4.27 

then predict a zero growth rate for T = TB to fuat order in ~. This result is consistent 
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with the fad that growth at low temperature OCCUlS by a nucleation mechanism. 

N ucleation theory gives the resuIt R ex exp( -cl A.p) so in fact below TB all terml in 

a power series about 11". = 0 should vanish. 

One cao carry the analysis of renormalization group reauIts much further that 

this has been done in this short review. Nevertheless, we have the resuIts we need to 

describe the characteristic behavior of the various quantitiea we are interested in. In 

the generic case, one is interested in the correlation length and the specifie heat of the 

system. In the particular case of interfaces, one also wants to have some informations 

on the statistical width of the interface, the surface tension and the step free energy. 

4.2.2 Roughening temperature 

Although the roughening temperature is certainly not a universal constant, Koster

litz's renonnlllië"!\tion group method allows for its determination with remarkable 

accuracy. As seen from the analysis of flow equations, the predicted value for the 

discrete Gaussian mode! is of the order 

(4.29) 

where J is the strength of the coupling constant. This value is quite close to computer 

simulation estimates. The roughening transition temperature for the SOS mode! is 

approximate!y the same. 

4.2.3 Surface tension 

The surface tension exhibits a very weak singularity at the roughening transition. 

The singularity is of the following form: 

"Y ~ B exp (- al) . 
IT-TBII 

(4.30) 

This equation is ooly valid when T is close to TB- Here we point out that all the 

derivative of "Y taken with respect to the temperature are smooth functioDS of T 

and vanish at TR • We will see this type of mathematical behavior in most of the 



----.--------------------------------------------~ 

CBAPTER 4. THE EQUIL1BRIUM ROUGHENING TRANSITION 75 

thermodynamic quantities of in'erest. This is one \)f the reuon why the experiment&l 

observation and even the detection of the transition through computer simulations is 

80 difticult. The conatanb B and C are non-unÎversal. 

4.2.4 Correlation length 

For temperatures below, but close to the roughening temperature, the correlatil'D 

length, whim is the characteristic length for correlations behveen thermal excitations 

of the crystal surface, behaves as 

( 4.31) 

From Eq. 4.20, we DOW that z(O) = ,(0). Since we DOW the behavior oC z(O) close to 

the critical point, we find dependence of the correlation length e on the temperature 

to be 

e - eoexp CT -~Blt)' 
- +00, T ~ TB 

( 4.32) 

(4.33) 

where eo and A are non-universal constants. Here, we point out that e has very 

liUle to do with the correlation length of the bulk. The latter is only responsible for 

the intrinsic width of the physical interface, while the former is &880ciated with the 

Btatistical width, which is much more important below the critkal temperature. 

4.2.5 Step free energy 

The 8tep free energy is defined as the difference of the free energy of an interface 

containing a step with that of a similar interface c:ontaining no steps at aIl. It follow8 

the following form: 

f_ - /O""l'( IT_ATRII)' 
- 0, T> TB 

(4.34) 

(4.35) 

1 

J 
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where Jo is again a non-universal quantity and A is the same &1 in Eq. 4.32. This 

reault is obtained by observing that J.Iep ÏI the dual conjugate of the inverse correlation 

length in the XY modela 

Thua, we can charaderize the roughening transition hy equating it to the facts 

that, at the roughening temperature and above, the step free energy f.tq vaniahes, 

and the atatiatical width of the interfa.c:e, W, divergea. 

4.3 Experimental observation of the rougheDÎng 

transition 

There were initially few attempts to experimentally observe the roughening transition 

and detennine the transition mechanism because it wu thought that a crystal in equi

librium with ih vapor would melt before the closest packed face would roughen. This 

bellef wu dismissed by experimenh performed by Jackson and Miller (Jackson and 

Miller 1977), who found that for simple van der Waals cry.tala, the roughening point 

wu well below the melting point. Furthermore, Jackson showed that it is possible to 

underBtand both the growth mechanisms (nucleated or continuous) and the crystal 

structure (fa.c:eted or isotropie) of a very wide variety of materials by determining 

whethe: the crystal &1 grown wu below or above ih surface roughening temperature. 

However, the direct experimental observation of the roughening transition is dif&cult 

for difrerent reuons. Fint of ail, it is generally very difficult to produce crystals with 

an equilibrium shape. Sh.apes produced during growth are generally metutable and 

their relaxation rate increues rapidly with crystal size. In experlments by Heyraud 

and Métoia (Beyraud and Métois 1984) on lead crystallites of ooly a few microm

etera in diameter at temperatures of a few hundred degreea Kelvin, they observed 

equilibration times of a Cew days (see Fig. 4.1). 

In addition, it appeara that most observable crystal faces do not exhibit a rough

ening transition within the physical range usociated with their existence. Typically, 

the surfaces of crystala in equilibrium with their meU are rough all aiong the melting 
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Fipre 4.1: RoqheJÙq tnuiÛOIl iD .Iead ClJ8taJlite newed ftom t .. o angle. reproduced !rom 
Bqnad ad Métoia, (Bqr&1Id ad M~toia liM).Tlae me of the c:rptalIite ÎI • le .. miDimeten, 
the temperaiue ÏI H~C. One CUl cIiItiapjà IOme laceU eonapoadia& to a mieroeeopieaJl, flat 
iIlted'aee ia repbJ wiUa tlte 10 .. iIlda plaae, .. hile the roudecl put. corre.polld tG mierœcopica1ly 
ro" iIlterface. ia • CQ'ItaIIopapIdc orieaiatio. for whicla the roqlaeaiq temperatue "lower. 
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line, down to the triple point, .hereu the principal facets of crystab in equilibrium 

with thm vapor tend to rem&În smooth along the sublimation line up to the triple 

point. For crystal vapor interfaces, thia difticulty can olten be circu.mvented by con

sidering higher index crystal faces, which are lesl tightly packed 80 they have lower 

roupening temperatures. But then the problem of the long relaxation timea becomes 

imporiant .gain, aUhough rdaxation timea for the interna! strudure of exiating facets 

are generally much shorier than the relaxation iimes for a full recoDitruction of the 

ery.ta! .hape. Anoiher experimental problem is the senaitivity of .urface properties 

to impurities and dialocatioDl, which may make it hard to decide whether an ob

served surface shape is really that of a pure crystal. in equilibrium. Finally, even in 

eues where a roughening transition is observed, the nature of the transition makes it 

diftieult to pin dOWD the rougheDÏD8 iemperature. Typically, facet. disappear so grad

ually at the approach of the roughening temperature that they become practically 

UDobaervable already at temperaturea diatincUy below Til. 

In spite of these dif&culiiea, roushening transitions have Men obaerved experimen

tally in a number of systems. Pavlov.ka and Nemow (Pavlov.ka and Nemow 1977) 

studied the equilibrium shape of "negative crystals", that il, vapor bubblea included 

within a crystal in organic substances, and observed the disappearance of certain 

facets wiihin well-reproducible temperature ranges. However, the best observati01l8 

of the roughening transition 80 far have been made for helium cry.tals in equilibrium 

with superfluid helium (Wolf et al. 1985). This system il ideally .uited for observ

ing the roughening transition. This is because the reluation tu equilibrium is very 

fut, the heat and mua transport being extremely rapid in the .upedluid. Crys

tal grown to the size of rniJJjmeten auume their equilibrium. shape within periods 

ruging &om milliaeconds to minutes, depending on both extemal and intemaI pa

rameters. In addition, these crystals are extremely pure because, with the exception 

of 'He, aIl impurities can be filtered out from the superftuid very efficiently. Thus 

far, roughening transitions for three dift'ereni types of facets have been observed. In 

addition, Wolf et al. (Wolf et al. 1985) have exploited the exceptional. properties of 
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the helium .y.tem in IOme beautiful experimenh which confirm qU&Iltitatively the 

predicted KOiterlitz-Thouleal charader of the roushening tranaition. 
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Chapter 5 

The Roughening 'lransition in 

Driven SystelDs 

A. wu aeen in the previoUJ chapter, the properties of equilibrium. interfaces have 

been e%tenaively studied in the put Meen yean. On the other hand, the studyof 

growing interfaces is a relaiively new subject. While people have been interested in 

undentandins the phenomenon for a long time, only in recent times have there been 

new deTelopmenb in thia iopic. For example, new po"trih mechaniamJ have been 

uncovered, and new phyaical modela have been p'nt forward to explain the various 

gro"trih phenomena observed in nature. Ii is only ,natura! that people would try to 

apply the idea of a roughening transition to growing interfaces. 

Bowever, in doing this, one then faces a serious problem. The equilibrium rough

ening tranlÎtion OC CUlS in interfaces that are in equilibrium. The fad that they are in 

equilibrium means that one can in principle use clauical Btatistica1 mechanics - parti

tion fundion, entropy, etc - to solve the problem. On t.he contrary, growing interfaces 

are far-from-equilibrium systems, for which equilibriwn or cloee-to-equilibrium sta

tistical mechanics does not apply. Furlhermore, as we have mentioned in Chapter 2, 

the two modela we consider here are very closely relat,ed to nucleation phenomena, 

that is, to metutable states. Up to now, no satiafactctry treatment. of metutable 

states has been given in the &amework of statistical 1I1echanics. ThUl, one has to 

80 
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be very careful in identifying any phase tranaitiolll in nonequilibrium sy.tem.. It is 

with tbi. word of caution in mind that we shall discuss what we called the dynamical 

roughening transition, whim is the 8ubjed of the second part of tbi. chapter. 

5.1 Roughening transition in driven systems 

There have been IOme studies previously done on the roughening transition in driven 

system (Chui and Weeb 1976; Nozières and Gallet 1987). Those studies introduced 

a driving force in the problem by adding a constant field, and from the re.ults it W&8 

concluded that the presence of such a field did not change the nature of the transition. 

However, both studiea did not take ÏDto account the nonlinear term coming from the 

growth process, thus discarding a potentially relevant piece. Nevertheless, they are 

uaeful guides for furlher analyais. 

A. we have mentioned in Chapter 2, Langevin equation like the KPZ equation are 

not useful for describing phenomena comÏDg from microscopic efl'eds. However, it is 

possible to modify the KPZ equation so &8 to obtain the proper microscopie behavior. 

Tm. is the Bubject of the nen section. Nevertheles., treating discontinuities in space 

and time with continuons fields CaB be difBeult. Thia i. when the asymmetric SOS 

model comea into play. Since we mow it belongs to the same universality clus, we 

can use it to look for and probe the nonequilibrium roughening transition. This is 

the topic of the second section. We close the chapter with a discussion on our results. 

5.1.1 The discrete Kardar-Parisi-Zhang equation 

To mvestigate the posaibility of a kinetic roughening transition, we introduce a model, 

motivated by the diacrete Gausoan mode! of Chui and Weeb (Chui and Weeks 1976), 

which hu been uaed to study the equilibrium roughenÏDg transition. It corresponds 

to Eq. 2.11 on a lattice, with the height variable h restrided to integer values of the 

lattice constant. We calI tbis the discrete KPZ model, since choosing À == 0 gives 

the discrete Gauaaian model. Making h integer valued implies a nonzero energy gap 
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Piple 6.1: Gro,nh oUhe three-dimeuioDÙ KPZ equaÛOD b,. meau of DucleaûOD OD the top laTer. 
h ÎI a"ela8e heiP* of the iDterf'ace. The ...no .. CUlTeI couespoDd 10 dil'emat ftlues of the driYiDg 
force l a* fixed iemperatare. 

at 10 ... temperatures, for small fluctuations on the interface, ... hich i. neceaaary for a 

roughening transition to take place. Thus tranalational invariance is not built into the 

mode!, and there C&D be a gap in the capillary-wave lpedrum at 10 ... temperatures 

T < TB. Above any roughening tr&llLsition, the energy gap is irrelevant sinee the 

width diverges with system size. As a consequence, the uymptotic growth exponents 

in the rough phase of the discrete KPZ equation will be the same as thoae for the 

original model. The interest of the ne ... mode! therefore lies in ib low-temperature 

properties, where the discreteness of h could be relevant. 

We &gain performed numerical integratioDS of Eq. 2.11, no ... with integer-valued h 

and edge length L = 128, as ,\ varied, keeping D and Il constant, in essence fixing T. 

The plots of the average height of the interface for various ,\ versus time are shown 

in Fig. 5.1. 

Different curves are for va:rying driving forces ,\ with the temperature T = D / v < 
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Figure 5.2: Example of a smooth interface below TR. Notice the single block temperature (,Xt"lllllilJll~ 

TRP. = 0) fixed. For small values of À, the growth is one layer at a timc (,Ilrv('~ li 

and b), suggesting that the system is in its facet.ed phase. Beyond a large part.icular 

value of À, the growth becomes continuous (curve e) signaling that the rough pha,>(' 

is reached, 

Sorne configurations corresponding to these runs are shown in Figs. 5.2 and :).:L 

We also verified that one could go from layer-by-layer growth to continuons growt li 

by increasing temperature beyond a particular value, at a fixed nonzero driving forct·. 

Those observations are in essence very siluilar to what one would observe at ,t ph,l!'>(' 

transition point. Thus, we decided to investigate the existence of a. non-equilibriulIl 

roughening transition. 

Unfortunately, the discrete KPZ model is numerically a difficult problem, w our 

observations are only qualitative. We could not, for example, get a precise valuc for 

the roughening temperature. To undertakc a quantitative ~tudy, wc again considered 

the SOS model with asymmetric rates of evaporation and condensation. 
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Figure 5.3: Example of a rough interface above Tn. Notice the multilayer excitations. 

5.1.2 Solid-on-solid model with asymmetric rates of evapo

ration and condensation 

As was mentioned in chapter 3, the SOS model has a roughening transition in equilib

rium (Weeks and Gilmer ] 979; Weeks 1980; Kosterlitz and Thouless 1974; Kosterlitz 

1974; Swendsen 1977; Swendsen 1978), and its nonequilibrium properties have been 

previously studied by many authors (Weeks and Gilmer 1979; Weeks 1980). Analytic 

work, within linear response, has been done by Chui and Weeks (Chui and Weeks 

1978), Saito (Saito 1978), and Nozières and Gallet (Nozières and Gallet 1987). Here 

we wish to determine the conditions, if any, under which the interface can he grown 

layer hy layer in the smooth faceted phase which exists below TR • While signs of 

such a kinetic roughening transition have been observed in experiments (Fig. 5.4) 

(Dougherty and Gollub 1988; Franck and Jung 1986; Maurer et al. 1989; Bilgram, 

Firmann and Hürlimann 1989; Gallet, Balibar and Rolley 1987), there is little theo

retical understanding of the phenomena. 
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Fipre 5.4: Dynamic rougheuing trauitioa iD a dendrite u the lpeed of grolrih ia dec:reued repro
duced mm Maurer d cal.,(M.uer el al. ID89).The compound ued ia NIltBr. The lpeed of growth 
of the daadrite dec:reue. !rom a) ta d):a)Y=O.43 " .... -1; b)Y=O.042 "m..-l ; «:)y=0.015 "m .• -l; 
d)cloee to equilibri1lDl. One clearlJ sees the f'aceted iDterfacee iD the lut t .. o pictUl~. 
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The properlies of the equilibrium roughening transition, on the other hand, have 

been much more thoroughly investigated; many numeriealstudies of the SOS, Gaus

sian, and three-dimeusional Ising models (Swendsen 1977; Swendsen 1978; Mon et al. 

1988), have heen performed. A quantitative description of the roughening transition 

is difticult to obtain sinee the transition is of infinite order. One useful appro~, due 

to Leamy and Gilmer (Leamy and Gilmer 1974), is to determine the exira energy 

ulOCÏated with the presence of a step on the interface, E.tap. This should vanish at 

the roughening temperature TB in the thermodynamie limit. This idea, combined 

wiih finite-BÏze scaling, ean aceurately determine TB (Mon et al. 1988). 

Motivated by the 8UCcesS of that work for the equilibrium roughening transition, 

we have applied these ideas to the nonequilibrium asymmetric SOS model. We com

puted the step energy for a given driving force ÀClt at different temperatures for severa! 

system sizes. Ii exhibits a strong transition from a large value to a much smaller value 

at a given temperature. Another quantity which shows a strong transition is the bond

energy fluctuations, a quantity similar to the specifie heat. We note here that the 

specifie heat does not have any divergence in the equilibrium roughening transition, 

since that transition is of infi.nite order. However, in the equilibrium case, the width 

of the interface diverges at TB as v1ïiL for L ~ 00, "'hereas in driven growth the 

width diverges as a power law in the steady state, W ,...., LX. as shown in the previ

OUi section. ThU8 we expect the kinetic roughening transition to he &tronger than 

its counterpart in equilibrium. Indeed, our finite-sÎZe scaling analysis shown below 

finda that the bond-energy fluctuations show a diverging peak at TR > O. Moreover, 

the roughening transition temperature obtained from the step energy and the bond 

eDergy fluctuation are in good agreement. 

The step energy, Ettcp, cau be defined as the energy dilI'erence between a surface 

with one step and the same surface withont silch a step (Leamy and Gilmer 1974; 

Swendsen 1977; Swendsen 1978) 

1 
E,Cq = L[{?t)(one step) - (?tHno steps)] (5.1) 

In our simulations of the three-dimensional nonequilibrium SOS model, a step on 
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Figure 5.5: Step ûec energy E".p vs L for various tem.peratures for A. = 0.4. The temperature ai 
.hich the cane changes iu bending direction ia the roughening temperature TR 

the surface i = (Z1, Z2) can easily be created by maintaining periodic boundary 

condition in, say, the zl-direction, while applying a screw boundary condition in the 

z2-direction (the growth is in the y-direction). The height of the step can also be 

adjusted, although we chose it to be unity. 

For T < TB, one should obtain a nonzero value of E.,.. which increase8 with lattice 

size. On the other hand, for T > TH, E,"" should decreaae and ultimately vanÎshes 

as L -+ 00. We hllve simulated systems of edge length L = 10 to 50 for various 

temperatures. The asymmetric growth rate ~ wu fixed at 0.4. The simulations 

were run with and without a step for 2 X 101 Monte Carlo &teps. In Fig. 5.5, Emp 

for dift'erent temperatures as a function of L is shown. 

As anticipated, f~r dift'erent T, the curves bend upward or downward, showing a 

smooth phase at low iemperatures and a rough phase ai high temperatures. We find 

TB ~ 0.55. }ùrlherm.ore, ploUing Encp as a functioD of temperature for varions sizes 

a transition of E,,.,, from a latge value to a much smaller one is visible. Note also 
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Figure 5.6: Step free eDelgy E.et, vs T Cor varioUJ system lÎIeS with ~. = 0.4. The temperature 8.\ 

which the curves dip down ÏlI the roughening temperature TB 

the sharpening of the transition as L increases, and the curves' common intersection 

point at TB = 0.55 (Fig. 5.6). 

We also Btudied the bond-energy fluctuations defined as 

(5.2) 

In equilibrium, this gives the specifie heat. Fig. 5.7 shows 0 &8 a function of tl. 0 

temperature for sever al driving forces .\a. C is strongly peaked for nonzero Àa at a 

finite T, and from inspection of configurations, its peak corresponds to the roughening 

transition. Thus we interpret the peak position as TR (.\, L), which shifts to lower 

temperatures as À is increased (see the insen in Fig. 5.7). 

In contrast, there is no anomaly in the I!Pecifi.c heat for roughening of an equi· 

librium interface (Weeks and Gilmer 1979; Weeks 1980), although there is a small 

bump close to TB (Swendsen 1977; Swendsen 1978). This bump is actually consistent 

with the form of the step free energy for the equilibrium systems. Note that as Àa 
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Figure 6.7: Fluctuaûons in the energy bond va T for variou yùuea of the driving force la. The 
pœiûon of the peak il interpreted as heing the nonequilibrium rougheuing temperature. 

increases, the peak position of 0 shifts to lower temperatures. This implies one can 

go from the smooth to the rough phase by increasing the driving force at a ~ven 

tem.perature, as seen qualitatively for th", discrete KPZ mode} in the previol1s sub

section. This feature has also been observed experimentally (Dougherty ~tl Gollub 

1988). The inset to Fig. 5.7 shows a fit to TR(.~) ,.... TR(O)j(1 + O(l»), motivated by 

the equation of motion, where T,~(O) = 1.24 is the equilibrium roughening tranllit;"'n 

tem.perature for the SOS model (Weeb and Gilmer 1979). 

An important ilisue is to rletermine if TR(~, L) is nonzero &8 L -+ 00. To estimate 

the nature of possible singular behavior in 0, in the absence of theory which indudes 

the effect of the nonlinearity, we have followed standard treatments for second-oroer 

transitions. We make the finite-size scaling ansatz, 

(5.3) 

and fit to find a and v. These are not equilibrium. exponents since 0 could depend 
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on the dynamical universa1ity class (Sun, Guo and Grani 1989). We also caution 

that such a procedure is not appropriate for the equilibrium case (,\0 = 0) sinee, 

as mentioned ab ove , the equilibrium roughening transition is of infinite order. We 

believe that an ultimate validation of this ansatz can only come from further study 

of the nature of the nonequilibrium phase transition. In any case, from the data 

collapse shown in Fig. 5.8 for Ào = 004, our ansatz is seH-consistent, and we estimate 

al Il ~ 0.5, and Il ~ 1.5. 

The transition temperature in the hydrodynamic limit is then estimated taking 

the equivalent of the thermodynamic limit and using 

TR(L) = TR(L - 00) + 0(11 Ll
/

V
), (5.4) 

which gives TR(L -+ 00) ~ 0.54. This value agrees very well with that from the 

step-energy data discussed above. Indeed, the consistency of the results for the step 

energy E.", and the bond-energy fluctuations C, gives us confidence in interpreting 



CHAPTER 5. THE ROUGHENING TRANSITION IN DRIVEN SYSTEMS 91 

our data in terms of a tram;ition occurring at a nonzero temperature. 

5.2 Discussion 

To conclu de this section, we give arguments to clarify the nature of the transition. 

Some of our remarks are implicit in the earlier work of Gilmer and Weeks (Gilmer 

1982; Weeks and Gilmer 1979; Weeks 1980), and Saito (Saito 1978; Saito 1980). We 

expect that, for a system of any large size, a kinetic roughening transition at nonzero 

temperature OCCUlS, and that this nonzero temperature is intimately connected to the 

relevance of bubbles in the KPZ equation. 

Layered growth in the smooth phase can occur, unless layers themselves are ther

mally unstable, or further ledges appear in an amount that contributes to the width 

of the interface in the hydrodynamic limit. At low T, one must determine the time 

scales for the speed at which a ledge grows, and for the appearance of a new nucleated 

ledge. For small fields (i.e., small driving forces) in systems of finite size, the time 

scale for growth is algebraic, while that for nucleation is exponentially small in the 

external field. They are thus very well separated and the ledge will sweep through 

the system before any appreciable nucleation event has the time to occur. Bence 

we expect that layer-by-layer growth is possible for a significant time regime in a 

finite-size system, at low T in Il small field. 

The question of the hydrodynamic limit, t -+ 00, L --+ 00 is more subtle. Consider 

Fig. 5.9, where we show an interface growing layer-by-layer in the smooth faceted 

phase (perhaps with screw boundary conditions as mentioned above). 

As we discussed in the introduction, it can be useful to look down from the top 

of the facet. One then sees that the low-temperature one-block excitations of layered 

growth in three-dimensional driven growth are equivalent to the low-temperature 

fluctuations of two-dimensional driven growth, as described by the KPZ equation. 

Those fluctuations are not sufficient to destroy coexistence in the two-dimensional 

KPZ equation, since W / L -+ 0 as t, L -+ 00. Therefore we do not expect them to 
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Figure 6.9: a) Global view oC a steppe<! interface in a three dimeJUÙonal Ising modd. The dashed 
line represenù a Dllcleaiing bubble. b) Top view of the same interface. 

destroy layer-by-l8oyer growth 80t low temper80tures in the three-dimensional system 

Neverlheless, one must also consider the possibility oflarge nucle80ted ledges. Note 

that the rate of appearance of such ledgcs, which could destroy growth in the smooth 

phase, is essentially independent of dimension of space for d > 2. Thus the argument 

below 80pplies '0 d ~ 3. In Fig. 5.9, the rate of appearance of new layers is independent 

of whether they appear on the top or boUom ledge. So consider only the boUom, 

as shown by the doUed lines. Then one sees that ledgl".s on ~edges correspond to 

the droplet fluctua.tions occurring on very long time ::ca!e:: r, rendering the two

dimensional KPZ equation irrelevant, as wscussed in Section 2. (Note th80t the time 

scales for the tw~dimensional droplet fluctuatiol&:; are not well separ80ted from the 

time .cales for three-dimensional droplet fluctuations from Eq. 2.77.). Thus, we expect 

any definition of the hydrodynamic limit for the KPZ equ8otion to also be consistent 

with a kinetic roughening transition 80t nonzero temperature, when a finite energy 

gap is introduced. Nevertheless, we cannot rule out the possibility th80t we are in a. 

crossover regime, and th80t there really is no transition in the thermodynamic limite 



OHAPTER 5. THE ROUGHENING TRANSITION IN DRIVEN SYSTEMS 93 

Sorne complementary analytic work on tbis issue has been done by Hwa et al. (Hwa, 

Kardar and PaczusD 1991). To the best of our knowledge, it is unfortunately not 

known how to define a metastable state in the hydrodynamic limit. Finally, we note 

that the order of the transition is not clear. Although nudeation of ledges would be 

a signature of a. fust-order transition, if the hydrodynamic limit requires the presence 

of long-range forces \0 suppress droplet-like fluctuations, the transition could occur 

at the spinodal cune, a line of second-order phase transitions. 

ln any event, œsting experiments (Dougherty and Gollub 1988), as well as our 

simulation data., seem to suggest the kinetic roughening transition occurs at {l, nonzero 

temperature for a given driving force, in the hydrodynamic limit. We expect that a 

consistent definition can therefore be found for that limit. It should also be noted 

that the existence of the hydrodynamic limit for the transition from smooth to rough, 

or rough to rough interfaces for d > 3 has been implicitly assumed in other studies 

(Kardar, Pariai and Zhang 1986; Medina et al. 1989) (our ·;omments concerning nu

deation on the (d - 1 )-dimensional substrate are essentially independent of dimension 

for d > 2). 



Chapter 6 

Conclusion 

6.1 SUlDmary and Discussion 

We have studied the nature of interfaces during driven growth. The Kardar·Parisi

Zhang equation wu derived from the Langevin equations for a system with a non

conserved scalar order parameter, for the cases where an external field is present, and 

where an uymmetric coupling to a conserved variable exists. 

We then numerically integrated the nonlinear stochastic differential equation pro

posed by Kardar, Parisi and Zhang, and used Monte Carlo simulation to study a 

nonequilibrium 8Olid-on-80lid model. We esiahlished that these models share the 

same dynamic universality clus, in both two and three dimensions, by analyzing 

crOS80ver behavior, and estimating asymptotic scaling exp lnents. 

For the nonequilihrium SOS model, evidence of a kinetic roughening transition was 

found. In particular, our data can be naturally and seH-consistently interpreted in 

terms of such a transition occurring at nonzero temperature. Moreover, this transition 

SeeDl8 to be st ronger than the equilibrium roughening which is of Kosierlitz-Thouless 

type. In order to establish this, however, further study is required. For example, it 

would he interesting to study the analytic behavior of the step free energy close to the 

transition point. Sucb a study would certainly allow for the precise determination of , 
the order of the transition. Finally, the results of this paper, in particular the kinetic 

94 
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roughening transition in driven interfacial growth, are experimentally accessible by 

many methods. In our opinion, such a study would be of considerable interest. 
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