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Abstract

It has been acknowledged for some time by the research community that the secular effect of
the Solar and Thermal Radiation Pressure (STRP) is not always negligible for spacecraft in LEO.
Indeed, it was observed that for certain orbits, the long-term behaviour of the spacecraft’s perigee
altitude is greatly affected by the SRP perturbation, whereas it usually averages out to a null secular
effect for objects in other orbits. In this thesis, we first explore the resonance behaviour exhibited
by the historical NASA’s Echo I satellite, considering the recently published phase space theory for
spherical spacecraft subject to the STRP-J2 resonance. We then put forward a novel formulation of
the resonance phenomenon that involves the attitude motion of the spacecraft. A thorough analysis
of the eccentricity evolution is then performed for a rotating plate-like spacecraft subject to the
STRP perturbation and the Earth’s second zonal harmonic effect (J2) in light of the newly identified
resonance. Based on this analysis, we highlight the capabilities and limitations of exploiting such
a phenomenon for the deorbitation of spacecraft located in Low-Earth Orbit (LEO).

The theoretical analysis of the resonance phenomenon serves as the basis on which we then
propose a novel strategy to deorbit a plate-like spacecraft by enforcing an STRP-J2 resonance in
either eccentricity or semi-major axis through proper attitude control; the goal being the reduc-
tion of the altitude to enhance atmospheric drag effects to accelerate deorbitation. The feasibility
of the two strategies is verified in a realistic environment modelled by the high-accuracy coupled
orbit-attitude propagator D-SPOSE where the full dynamics is propagated by including STRP,
gravitational and atmospheric perturbing accelerations and torques. Moreover, both the eccentric-
ity and semi-major axis resonance strategies are compared to two alternate deorbitation solutions
from prior literature that involve a bang-bang approach to either increase the orbit’s eccentricity or
lower its semi-major axis.

Finally, we perform a study of the effectiveness of the resonance solution in semi-major axis
for a scenario where STRP is exploited to counter the loss of altitude due to atmospheric drag
and track a reference in a, based on the perspective of the LightSail 2 mission. We thus highlight
the flexibility of the proposed solution, and its capability to execute orbital manoeuvring. An
assessment of the minimum maintainable altitude depending on solar activity is also performed,
testifying to the complex relation between the threshold altitude, solar intensity and area-to-mass
ratio.
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Résumé

Il est connu depuis un certain temps par la communauté scientifique que l’effet séculaire de la
Pression de Radiation Solaire et Thermique (PRST) n’est pas toujours négligeable pour un as-
tronef dans l’orbite basse terrestre. Effectivement, il a été observé que, pour certaines orbites, le
comportement à long terme de l’altitude au périgée de l’objet spatial est grandement affecté par la
perturbation SRP, tandis qu’elle est habituellement moyennée à un effet séculaire nul pour d’autres
orbites. Dans cette thèse, le comportement de la résonance précédemment mentionné est exploré
pour le satellite historique Echo I de la NASA. Ceci est accompli à l’aide des données récemment
publiées de théorie d’espace d’état pour les astronefs sphériques sujets à la résonance PRST-J2. En-
suite, est fournie une analyse inédite et exhaustive du phénomène de résonance par l’excentricité
due au couplage entre la PRST et le second effet harmonique de zone de la Terre (J2), la résonance
PRST-J2-φ . Cette analyse est faite pour un astronef plat en rotation à vitesse constante autour d’un
axe fixe. Les capacités et les limitations de l’exploitation d’un tel phénomène pour la désorbitation
d’un astronef sont ainsi soulignées.

L’analyse théorique du phénomène de résonance sert comme base sur laquelle une nouvelle
stratégie de désorbitation d’un astronef plaque est proposée. Par cette analyse, une réduction de
l’altitude pour augmenter l’effet de la traînée atmosphérique est visée afin d’accélérer la désor-
bitation et ce, par l’application de la résonance PRST-J2 sur l’excentricité ou le demi-grand axe
avec une commande appropriée de l’attitude. La faisabilité des deux stratégies est vérifiée dans
un environnement réaliste modélisé par le propagateur haute précision de couplage orbite-attitude
D-SPOSE, où les équations dynamiques complètes sont propagées en incluant la PRST, les per-
turbations gravitationnelles et atmosphériques, ainsi que les couples. De plus, les stratégies de
résonance sur l’excentricité et le demi-grand axe sont comparées à deux solutions de désorbitation
alternatives provenant de littérature antérieure et impliquant une approche bang-bang¬ pour soit
augmenter l’excentricité de l’orbite ou diminuer le demi-grand axe.

Finalement, une étude de l’efficatité de la méthode de résonance pour le demi-grand axe est ef-
fectuée dans un scénario où la PRST est exploitée afin de contrer la perte d’altitude due à la traînée
atmosphérique de façon à maintenir un demi-grand axe référence. Ceci, à la lumière des résultats
de la mission LightSail 2. On souligne ainsi la flexibilité offerte par la solution proposée pour
effectuer des manoeuvres orbitales. Finalement, une analyse de l’altitude minimale maintenable
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est effectuée et témoigne du caractère complexe de la relation entre cette limite, l’intensité solaire
et le ratio aire/masse de l’astronef.
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multiple resonance scenario

– Critical comparison of proposed schemes to previously published bang-bang type STRP-
exploiting deorbitation strategies highlighting the advantages and limitations of inves-
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– Investigation of the power/energy budget and compatibility of proposed solutions with
solar powering

• Expansion of the applications of the resonance in semi-major axis to orbital manoeuvring:
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Chapter 1

Introduction

Like a sailboat extracting energy from the wind to navigate on the sea, the natural disturbances
affecting the motion of an object in space can be channelled to perform orbital manoeuvres to
alleviate the need for fuel, or other propellants. In the past decade, such a possibility prompted
researchers to explore the effect of the Solar Radiation Pressure (SRP) on high area-to-mass ratio
objects orbiting Earth, specifically, the resonance effect due to the coupling of SRP with the Earth’s
second zonal harmonic J2. This resurgence of interest in the phenomenon leads to great advances
in its characterization and in the possibility of exploiting it to accelerate the re-entry of defunct
space assets. This, with the ultimate goal of mitigating the space debris generation and further
pollution of the Low Earth Orbits (LEO).

1.1 The SRP-J2 resonance

The research community has acknowledged for some time that the secular effect of solar radiation
pressure is not always negligible for spacecraft in LEO. Indeed, it was observed that for certain
orbits, the long-term behaviour of the spacecraft’s perigee altitude is greatly affected by the SRP
perturbation, whereas it usually averages out to a null secular effect for objects in other orbits.
Historically, the Vanguard I satellite is the first Earth-orbiting object that was observably impacted
by this phenomenon; in its 654 by 3969 km orbit, the SRP perturbation lead to a 3 km-amplitude
perigee oscillation—sufficient to reduce the estimated orbital lifetime of the 0.02 m2/kg satellite
from 2000 to 240 years [6].

NASA’s Echo I satellite (see Figure 1.1) is yet another spacecraft launched early in the space
era that has been coined to exhibit the resonance phenomenon. For the balloon-type communi-
cation satellite launched in August 1960 at an altitude of 1600 km, the resonant oscillations in
perigee altitude reached an unparalleled amplitude of 550 km, owing to its high area-to-mass ratio
estimated at 11.7 m2/kg. This ultimately led to a much faster re-entry in May 1968 due to the
resulting exponential increase in atmospheric drag at low perigee altitudes [7].
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Figure 1.1: Static inflation test of Echo I satellite in Weeksville, N.C (Taken from [8])

1.1.1 Resonance identification and characterization

The unexpected behaviour of Vanguard I led Musen et al. [9] to identify the coupling between
SRP and geopotential, specifically, the Earth’s second zonal harmonic J2, as the cause of the dis-
crepancy between Vanguard’s observed position and what was initially expected. Musen et al. also
showed that the coupling of the two perturbations can lead, under specific conditions, to secular
eccentricity oscillations of considerable amplitude, also referred to as a resonance effect [10]. A
more detailed description of the resonance and the associated conditions was later presented by
Cook [11]. More specifically, based on the averaged equations of motion, Cook identified, for
a spherical body, the location of six orbital resonances in the form of a condition on the rate of
change of the phase angles. The six phase angle rates are linearly dependent on the rates of the
Right Ascension of the Ascending Node (RAAN, Ω) of the orbit of the spacecraft, its argument of
perigee (ω) and the solar ecliptic longitude (λS), also referred to as the longitude of the Sun. In
the literature, these conditions on the phase angle rates are also referred to as the resonance condi-
tions or the commensurability conditions. Under the spherical body assumption, these resonances
are limited to specific ensembles of orbits, also referred to as deorbitation corridors [12]–[14].
Notwithstanding, the characterization of the phenomenon by Cook based solely on the phase angle
rate constraints is deficient.

To better understand the eccentricity resonance phenomenon, it is worthwhile to recall the ex-
istence of the 1933 Brown and Shook’s Planetary Theory [15]. In fact, the possibility of resonance
in celestial motion had been known for multiple decades before the first satellite launch in 1957.
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In their work, Brown and Shook highlight that a parallel can be made between the resonant be-
haviour of celestial bodies and the motion of a simple pendulum. The relation between the orbital
eccentricity of the body and a resonant phase angle resembles that of the rate and phase of the
pendulum, this model is often referred to in the literature as the first fundamental resonance model
[16]. Although the pendulum motion can serve as a good analogy to orbital mechanics under
certain conditions, the comparison loses its validity for orbits with low eccentricity. Using the
orbit-averaged Hamiltionan formulation of the equations of motions for a balloon satellite under
the single resonance hypothesis, Krivov and Getino [17] derived a more precise representation of
the phase space which can take five different topologies. He classified these based on the spacecraft
area-to-mass ratio and orbital semi-major axis.

More recent work performed by Alessi et al. [18] presents an equilibrium and stability analysis
supported with appropriate phase portraits, to evaluate and delineate the impact of the orbital in-
clination on a spherical spacecraft resonant dynamics. The study further shows the clear impact of
the area-to-mass ratio on the location of the equilibrium points. This feature is key to the character-
ization of resonance since the highest-amplitude eccentricity oscillation for a particular phase plot
is reached at the separatrix—in this case, a phase curve associated with an unstable equilibrium.
From these results, we also infer that the width in inclination of the deorbitation corridors, i.e.,
the range of inclinations leading to a significant resonance effect for a specific semi-major axis,
although very narrow for small area-to-mass ratio objects, is significantly larger when this ratio is
high.

Gkolias et al. [19] extended the work presented by Alessi et al. [18], and provided a more
detailed formulation of Hamiltonian describing the coupled dynamics of the SRP and J2 effects. A
thorough analysis of the complex resonant dynamics was performed. Their more accurate phase
space description, similar to what was presented in [17], was used to determine the minimum area-
to-mass ratio required to deorbit a spacecraft based on its location in space, and the resulting phase
space topology.

1.1.2 Exploitation of passive SRP-J2 resonance for deorbitation

In anticipation of a sheer increase of traffic in LEO, and to mitigate the inherent collision risks,
a consortium of researchers worked at identifying passive means to minimize the environmental
impact of space debris in the circumterrestrial region collaborated under the umbrella of the ReD-
SHIFT (Revolutionary Design of Spacecraft through Holistic Integration of Future Technologies)
project [14]. As part of their mandate, the team conducted, between 2016 and 2019, extensive
studies, in part, on the long-term evolution of the space population [12], [20]–[22]. Based on
their findings, one the most influential factors in the evolution of the space debris environment is
the post-mission disposal (deorbitation time) of spacecraft and rocket bodies [22]. Decreasing the
number of threatening non-active satellites by quick end-of-life deorbitation is thus expected to
reduce collision risks, hence, reduce the proliferation of space debris.
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The disposal process in LEO typically involves lowering the orbital perigee to an altitude where
atmospheric drag is sufficient to deorbit the debris in a timely manner. Based on the currently
available technologies, this is usually achieved by a single impulsive manoeuvre executed at the
apogee. This type of manoeuvres may, however, require a considerable delta-v (∆V ) impulse, i.e.,
high propulsion capabilities. Towards the goal of finding passive solutions to deorbitation, the
ReDSHIFT team built on the idea initially put forward by Lücking et al. [23]–[25], that natural
resonances could be exploited to achieve the required lowering of the perigee to ensure rapid decay.
This idea became a cornerstone of their mitigation propositions.

The teamwork of ReDSHIFT on the characterization of the passive SRP-J2 resonance corridors,
among others, to be exploited as “natural highways” for end-of-life disposal of space assets in LEO
is the most extensive up-to-date. It includes analytical studies, such as frequency analysis [26],
eccentricity amplitude estimation [27], equilibrium and stability analysis [18], as well as numerical
cartography of the resonant deorbitation corridors in the LEO region [13], [28], [29]. The objective
was to provide the necessary tools for the design of a proper and cost-effective disposal strategy
in compliance with the mitigation guidelines to minimize the environmental impact of a planned
mission. However, the inclination width of the “natural highways” is small, a few degrees, for
spacecraft with area-to-mass ratios (A/m) lower than 1 m2/kg [30]. This means that for a spacecraft
to exploit the SRP-J2 resonance for deorbitation, the spacecraft must already be near the resonant
inclination; otherwise, the ∆V required to change the orbit inclination is too costly.

1.2 Space environment in low Earth orbit

To offer broader and faster internet access, companies such as SpaceX and OneWeb have, since
2019, begun to massively populate several key orbits in the already crowded low Earth region
(altitudes below 2,000 km); this marked the beginning of a new era in space exploitation. As
of April 14, 2023, ESA’s DISCOS database catalogues 4,004 Starlink satellites (see Figure1.2)
launched by SpaceX in orbits ranging from 350 to 580 km. From this number, 301 have already
re-entered the Earth’s atmosphere [31]. Although Starlink satellites are placed in relatively low
orbits from which a rapid natural decay is ensured by the sufficiently dense atmosphere, not all
mega-constellations (actual and planned) are. OneWeb, for instance, has already placed more than
540 satellites in orbits as high as 1,230 km [31].

This sheer increase of space assets in an already compromised space environment composed of
massive pieces of debris straying the low Earth region enables space debris growth by increasing
the probability of collisions and explosions. Some of these, like Saturn IVB (13,500 kg) rocket
stages, have been in orbit since the ’60s [31], [32], and are expected to remain in orbit for many
more decades. As a testimony to the threat posed by failed or uncontrolled space assets, we can
cite the infamous 2009 collision involving the uncontrolled Russian Kosmos-2251 (900 kg) and
the active American Iridium 33 (662 kg) satellites that occurred at an altitude of 790 km with
an impact velocity of 11.6 km/s. This collision alone generated 2,368 new trackable debris, the
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Figure 1.2: Conceptual view of Starlink satellites (Credit: SpaceX)

number representing nearly 25% of the >10 cm objects in the space population at that time [33],
[34]. We can also cite numerous explosions, related to residual propellant or battery failures, that
caused hundreds of trackable debris fragments to be projected chaotically (see Table 1.1 for a non-
exhaustive list of debris-generating events). Fig. 1.3 shows the evolution of the space population
from which we can assess the clear impact of the most critical debris-generating events listed in
Table 1.1.

Table 1.1: Most critical debris generating events since 1957 and number of generated debris catalogued by
DISCOS database on April 14, 2023 [31]

Year Object Cause Nb of debris
1965 Titan IIIC Transtage engine explosion 108
1981 Kosmos-1275 battery explosion 478
1986 Ariane 1 residual propellant explosion 502
1996 Pegasus/HAPS residual propellant explosion 753
2007 FengYun-1C anti-satellite missile test 3,533
2008 Kosmos-2421 disintegrated 511
2009 Kosmos-2251, Iridium 33 accidental collision 2,368
2015 NOAA-16 battery explosion 457
2021 Kosmos-1408 anti-satellite missile test 1,775

The Inter-Agency Space Debris Coordination Committee (IADC) presented, for the first time
in 2002, their Space Debris Mitigation Guidelines in which they suggest certain means to minimize
the impact of human activity on space exploitation; the latest revision was issued in June 2021 [36].
The main takeaways from these are the necessity to passivate the spacecraft at their end-of-life, i.e.,
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Figure 1.3: Monthly number of objects in the Earth orbit officially catalogued as of March 2023 by the U.S.
Space Surveillance Network since 1957 (Taken from [35])

empty the batteries and remove any residual propellant, to prevent explosions during decay. Also,
the IADC suggests a maximum end-of-life disposal time of 25 years, also referred to as the 25-
year guideline, to curtail space debris proliferation. In its report on the space debris environment,
the IADC however estimates that, for any given year, only between 10 and 40% of the spacecraft
launched before 2017 respect the disposal guidelines [37]: the high disposal cost of space assets
being a solid disincentive for spacecraft owners and operators to abide by these legally non-binding
rules.

Even if no penalty is incurred for non-compliance to strict mitigation requirements, the leading
telecommunication companies are aware of the dangers associated with the introduction of mega-
constellations in LEO and are imposing stricter mitigation constraints than those recommended by
IADC. In October 2022, the American Institute of Aeronautics and Astronautics (AIAA) facili-
tated the publication of a best practice reference document by Iridium, SpaceX and OneWeb. The
document provides its own space debris mitigation guidelines to ensure sustainable use of space.
It further states that a disposal time of less than 5 years, preferably 1 year, should be ensured.
Although at altitudes below 400 km, atmospheric drag is sufficient to ensure compliance, at higher
altitudes, a reliable disposal strategy is required [38]. For OneWeb satellites launched to an altitude
of, 1,200 km, such active end-of-life management is imperative.
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While the leading mega-constellations companies such as SpaceX and OneWeb have the means
to equip their assets with efficient disposal technologies to comply with their self-imposed end-of-
life requirements, not all satellite owners and operators have. Following the democratization of
space access enabled by the low-cost launches offered by reusable launchers such as the falcon 9
partially reusable launch vehicle [39], a plethora of new start-ups emerged, most of them proposing
low-cost solutions for a variety of space missions [40]. In this context, the rapid population of
the limited naturally compliant orbits puts further pressure on the need to develop reliable and
affordable disposal means. Otherwise, the ability to safely access and operate satellites in the
higher low Earth orbits at reasonable costs will be jeopardized.

However, even if all new space assets abide by the strictest mitigation rules, the IADC still
forecasts growth in space population. They predict an increase in catastrophic collisions from non-
manoeuvrable upper stages and spacecraft even if no new object is injected into orbit. The low
compliance of space assets to the suggested mitigation rules only compounds the situation. In light
of this, they conclude that the sustainable management of space exploitation not only relies on
good practices but also on remediation efforts [41].

1.2.1 Spacecraft remediation

The predicted increase in catastrophic collisions by the IADC is expected to become the dominant
source of debris if no action is taken to remediate the problem. There is therefore a necessity to
remove hazardous space assets through Active Debris Removal (ADR) [41].

Many ADR concepts were put forward by researchers over the last two decades, e.g., tether-
based, dynamical system-based, sail-based, and laser-based methods to name a few [42]. However,
according to the authors of [42], most of the proposed solutions lack of experimental verification
phases, which are crucial for viable commercial deployment. Nonetheless, the main idea for up-
coming ADR missions is to send a system into space (a chaser) that will act to capture and lower a
particular debris towards its re-entry into the Earth’s atmosphere to be disintegrated. The execution
of a complete ADR mission is however a complex problem with diverse issues at the economic,
political, legal and technological levels, although, such missions are slowly starting to materialize.

As an example of upcoming ADR missions, the ESA contracted ClearSpace team is planning
to remove a Vespa rocket upper stage debris from its 750 km orbit by 2026 [43]. Another example
is the End-of-Life Services by Astroscale-demonstration (ELSA-d) mission launched in March
2021 which proved the ability to perform a controlled close approach rendezvous with a small
debris [44]. The lessons learned from these first steps toward complete debris removal will serve
for their next planned missions, namely Active Debris Removal by Astroscale-Japan (ADRAS-J,
2023) [45], and End-of-Life Services by Astroscale-Multi-client (ELSA-M, 2024) [46].

ADR solutions are still in their infancy, and there will be many years before these technologies
are thoroughly tested for widespread deployment, and before international regulations provide
an adequate framework for debris removal operations. In the meantime, it is essential to limit to a
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minimum the impact of current human activity in space. This implies reducing as much as possible
spacecraft orbiting time past their service life. To achieve this goal on a global scale, and convince
spacecraft owners and operators to adopt the required measures, it is essential to develop and make
available novel solutions that offer a reliable and affordable alternative to spacecraft deorbitation.

1.3 Solar sailing

As previously alluded the exploitation of the SRP-J2 resonance for deorbitation allows to signif-
icantly lower the disposal cost for a spacecraft initially in the vicinity of a resonance orbit. It is
expected that once an object is placed in a deorbitation corridor, no additional manoeuvring is re-
quired as the descent is passively driven by the effect of natural perturbations. However, to obtain
the desired effect, strict conditions on the spacecraft’s location must be met. For spacecraft with
functional control capabilities, other end-of-life strategies involving the maximization/minimiza-
tion of its sunlit area have also been suggested as potential solutions for deorbitation, particularly
for plate-like spacecraft.

In December 2010, JAXA’s IKAROS flew by Venus six months after it departed from Earth
making it the first interplanetary solar sail voyage [47], [48]. This mission demonstrated the pos-
sibility of navigating into space by exploiting SRP propulsion. It further showed the possibility of
controlling the spin axis of the spacecraft by changing the reflectance of its 200 m2 sail using a Re-
flectance Control Device (RCD) [48]. The RCD allows to alternate between a specular-dominant
and a diffusive-dominant surface. Synchronizing the change rate with the spinning phase allows
the reorientation of the spin axis with electrical power, thus, without the use of fuel [48]. This
highlights the importance of the spacecraft’s surface optical properties in the study of SRP effects.

The solar sailing capabilities demonstrated by the IKAROS mission could also be applied to
dispose of Earth-orbiting satellites as was suggested by Borja and Tun [49]. The authors proposed
the use of a bang-bang reorientation scheme to maximize the global effect of the SRP on the semi-
major axis decrease by either minimizing or maximizing the Sun exposed surface appropriately.
Colombo et al. [50] developed a similar strategy to increase eccentricity. The coupling between
the attitude and the SRP effect on orbital motion leads to a cumulative effect on the orbital param-
eters; such a solution can be applied to a spacecraft in any orbit as long as it possesses the ability to
reorient itself with respect to the Sun: twice per orbit in the case of semi-major axis solution pro-
posed by Borja and Tun, and every few months for the eccentricity solution proposed by Colombo
et al. Such solutions aim at accelerating deorbitation by either lowering the semi-major axis or
increasing the eccentricity but inverting the logic allows for the opposite effect. This possibility
enables orbital manoeuvring through solar sailing and could, among other things, be used to further
increase altitude as was demonstrated by the LightSail 2 mission.

LightSail 2 (see Figure 1.4) was a citizen-funded project carried by The Planetary Society, a
non-profit organization with the mission to “empower the world’s citizens to advance space science
and exploration” [51]. The controllable solar sail was successfully put into a 720 km orbit in July
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2019 and has publicly shared its telemetry data until re-entry in November 2022. Its primary
objective was to demonstrate controlled solar sailing by countering the loss of energy due to drag
with SRP propulsion. They did so by exploiting a bang-bang type strategy to maximize the altitude
increase as suggested by Borja and Tun [49], [52]. LightSail 2 served as a testing platform for
orbital manoeuvres exploiting SRP which will be useful for future NASA missions, namely ACS3,
NEA Scout, Solar Cruise and NEO Surveyor with the ultimate goal of using solar sailing to orbit
the Sun and detect potential threats to Earth.

Figure 1.4: The Planetary Society’s LightSail 2 spacecraft during sail deployment testing in 2016 (Taken
from [53])

As previously alluded these bang-bang-type methods for reorienting the spacecraft require ac-
tive control capabilities. The desire to have a fully passive deorbitation solution with no restrictions
on the initial location motivated the investigation of a quasi-rhombic-pyramid sail for passive atti-
tude stabilization to generate a substantial eccentricity increase over time [54]. The feasibility of
this concept was assessed for a simplified quasi-rhombic pyramid by Miguel and Colombo [55].
The analysis showed that stable deorbiting is indeed achievable given some restrictions depending
on the physical properties of the sail. Passive disposal means are of very high interest as they
represent end-of-life solutions robust to spacecraft failure.

Although sail propulsion may be less time efficient than fuel propulsion, the cost savings of-
fered by such a solution is a clear advantage, while also being safer and more robust due to a
reduced dependency on fuel. Also, the possibility to perform orbital manoeuvres by exploiting
natural perturbations instead of using other power sources like propellant is not only interesting
for deorbitation purposes but could be further employed for collision avoidance or interplanetary
travel. To make space exploitation more sustainable and reduce high mission costs, the Control for
Orbit Manoeuvring Through Perturbations for Application to Space Systems (COMPASS) group
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is exploring the possibility of optimizing orbital manoeuvring to use external perturbations as
propulsion forces instead of treating them as disturbances to counter [56].

1.4 Orbital propagation

The high costs related to building a technology demonstration spacecraft and launching it into
space make physical testing expensive and difficult. Spacecraft and mission design thus rely on
extensive simulation analyses, as well as accurate numerical models of the different perturbations
affecting the motion of a body in space.

Great advances have been made in the field of numerical computation since the first attempts
to characterize the SRP-J2 resonance in the early ’60s. For instance, in 1962, when studying the
resonant motion of Echo I, Cook resorted to analytical expressions of the averaged dynamics. This
model was derived from Lagrange’s planetary equations averaged over one orbit for a spacecraft
subject to SRP and J2 effects while neglecting atmospheric drag [11], [57]. Given the limited
computational resources of that era, averaging was essential to propagate complex orbital problems
in a timely manner.

Since these early studies of Echo I, more accurate perturbation models have become available,
particularly for atmospheric density, thus allowing for more accurate orbit propagation of space-
craft decay when subject to resonance, among other phenomena [58]. Also, with the considerable
improvement in numerical computation, it is now possible to perform the full numerical integration
of non-averaged equations of motion in a practical way. These capabilities enabled more precise
prediction tools of more accurate perturbation models, spacecraft with complex geometries, and
over longer periods, but there is still a trade-off to be made between precision and computation
speed. In this light, averaged models are still of interest, particularly when performing preliminary
analysis or when trying to isolate the secular tendencies from the short-period noise. Depending on
the situation, certain assumptions can be made to greatly reduce calculations, thus the computation
time, with only a small loss of accuracy.

1.4.1 Types of orbital propagators

Several orbital propagators exist, each more suitable for a certain type of application, but as a
baseline, most of them consider the major orbital perturbation sources, namely, the geopotential
and third body attraction, the atmospheric drag and the solar radiation pressure. The ReDSHIFT
team whose work we discussed earlier employed, among others, the two following propagators
[29]:

• FLORA (Fast, Long-term ORbit Analysis): this propagator exploits averaged analytical
equations omitting short-period variations; thus, it is faster, but it is not as accurate [59];
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• NEPTUNE (NPI Ephemeris Propagation Tool with Uncertainty Extrapolation): this is a
high-fidelity propagator that also allows the consideration of the Earth’s albedo, solid Earth
tides, polar tides and ocean tides, in addition to the major perturbations sources. It nu-
merically integrates the equations of motion yielding more accurate orbit predictions than
averaged propagators [29].

LEGO [60], FOP [61], DCP [61], STELA [62], THALASSA [63] and INDEMN [64] are some of
the other propagators used by the research community and there are many more.

Both FLORA and NEPTUNE were used to assess the capabilities of the propagators to iden-
tify resonance corridors. NEPTUNE (numerical integration of full equations) results showed addi-
tional SRP-J2 resonance corridors that were invisible to FLORA (averaged analytical equations).
Although not all of them could be explained, some were found to be associated with the coupling of
the shadow of the Earth and the SRP [29]. The SRP is a relatively small perturbation in comparison
to the geopotential or third-body attractions from the Sun or the Moon. However, as previously
mentioned, in the case of resonance, the cumulative effect becomes significant over time. It is
thus important to be mindful when performing the averaging as to the possibility of resonances
and consider them as long-period variations, not short-period. The comparison performed in [29]
shows that, although analytical models might be very useful for preliminary analysis, results should
always be verified using numerical integration of the most accurate equations of motion.

1.4.2 D-SPOSE

Throughout this thesis, the settings for different deorbitation strategies exploiting the resonance
phenomenon are derived from simplified mathematical models, while the efficiency of these strate-
gies is assessed using the state-of-the-art open source simulator D-SPOSE (Debris Spin/Orbit Sim-
ulation Environment) recently developed by [65]–[67]. D-SPOSE integrates numerically the full
set of equations of motions and allows for long-term motion propagation of space debris as an
alternative to the propagators previously presented.

D-SPOSE distinguishes itself from the aforementioned propagators by explicitly considering
the coupled attitude-orbital dynamics of a body in space, and by integrating into a single simu-
lator the effects on both orbital and attitude motions of the most significant perturbations. While
most propagators consider only the major perturbations, D-SPOSE also considers the eddy-current
torque, the infrared acceleration and torque, the internal energy dissipation and the hypervelocity
impacts [68]. The highly detailed modelling of attitude motion and its coupling to an equally com-
prehensive model of the orbital motion make D-SPOSE one of the most accurate and validated
against observations propagators available to the research community [66], [67]. The interaction
of a rotating object with non-conservative forces such as aerodynamic drag is of paramount im-
portance in this work, thus the improvements in accuracy offered by D-SPOSE, combined with
validation against observations, bode well for highly accurate orbital predictions of non-spherical
geometries. As alluded, attitude propagation results from D-SPOSE for several debris objects have
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been compared to observations; good agreement overall was obtained, but some differences re-
mained. One possible explanation for the discrepancies from observations was suggested to be
the Yarkovsky/YORP effect [65]. As part of the research conducted in this thesis, D-SPOSE was
therefore enhanced by the addition of the thermal radiation pressure which is the physical source
of the Yarkovsky-YORP effect.

1.5 Thesis outline

In this thesis, the aim is to provide a simple strategy that would reduce the deorbitation time of a
spacecraft at its end-of-life by exploiting the effect of natural perturbations; this, with the ultimate
goal of mitigating the spacecraft’s impact on the space debris population at a low energy cost.
Thus, Chapter 2 outlines the mathematical tools used throughout this thesis to model the dynamics
of a plate-like spacecraft subject to Solar and Thermal Radiation Pressure (STRP) and the Earth’s
second zonal harmonic J2 perturbations. Chapter 3 builds on Alessi’s phase space description
of the SRP-J2 resonance to interpret the observed behaviour of the Echo I balloon satellite and
to gain further insights into its relationship to the resonance. In Chapter 4, a novel formulation
of the resonance phenomenon that involves the attitude motion of rotating plate-like spacecraft,
referred to as STRP-J2-φ resonance, is put forward. This allows to eliminate location restrictions
of the passive STRP-J2 resonance in eccentricity. We further delineate the capabilities of this
attitude-induced resonance for deorbitation. The proposed attitude-dependant resonance is further
generalized in Chapter 5 for not only the eccentricity increase but the semi-major axis as well.
The settings for an attitude control law are defined to enforce the STRP-J2-φ resonance in both
eccentricity and semi-major axis which removes the minimum attainable altitude associated with
the eccentricity resonance solution of Chapter 4. The strategies thus put forward are then compared
in Chapter 6 to the similar end-of-life strategies discussed in Section 1.3, relying on a bang-bang
reorientation scheme to maximize the global effect of the STRP towards deorbitation. In Chapter 7,
with the perspective of the LightSail 2 mission, the settings of the semi-major axis resonance
solution are modified to allow for semi-major axis tracking in a region where atmospheric drag is
non-negligible. Finally, Chapter 8 presents a summary, conclusions, and a few directions for future
work.
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Chapter 2

Dynamics of a Plate-Like Spacecraft in LEO

As discussed in Chapter 1, the main goal of this thesis is to provide a simple strategy that would
reduce a spacecraft’s deorbitation time at its end-of-life by exploiting the effect of natural pertur-
bations instead of fuel propulsion; this, with the ultimate purpose of mitigating impact on the space
debris population at a low fuel cost. This work particularly concentrates on plate-like spacecraft or
a panel. The motivation behind this assumption stems from SpaceX’s Starlink satellite, the main
components of which are a large 9x3.3 m2 solar panel attached to a 3.3x1.4 m2 body. This specific
satellite design accounts for about 3,600 of all Earth’s orbiting objects as of March 31, 2023, a
number that is constantly increasing. A panel also accurately models a spacecraft equipped with
a drag-enhancing device such as The Planetary Society’s LightSail 2 satellite. The mission of this
particular spacecraft will be the motivation for the analysis presented in Chapter 7.

To deorbit a spacecraft, its altitude needs to be lowered either over its complete orbit, by re-
ducing its orbital semi-major axis a, or near its perigee, by increasing its orbital eccentricity e.
It is considered that when a spacecraft reaches an altitude of approximately 200 km, the friction
exerted by the atmosphere on the structure is sufficiently high to cause it to burn down and thus
disintegrate in a matter of minutes. The two deorbitation solutions put forward in this thesis and
presented in Chapters 4 and 5 are based on the premise that the lowering of a plate-like spacecraft
altitude can be achieved by modulating the amplitude of the sun-exposed area of the panel through
active control to induce a resonance effect on either the semi-major axis or the eccentricity of the
spacecraft’s orbit.

A brief discussion on the different perturbations acting on a spacecraft in LEO and their im-
portance is first presented in this chapter. This is followed by the dynamics modelling of a rotating
plate-like spacecraft in LEO subject to both the Earth’s second zonal harmonic (J2) and the Solar
and Thermal Radiation Pressure (STRP) perturbations, the coupled action of which can lead to
resonance. The relevant equations of motion are then derived based on the Hamiltonian formalism
of either the non-averaged or the averaged dynamics. These equations will serve as a basis for
the study of the STRP-J2 resonance phenomenon, both in semi-major axis and eccentricity, that
will follow in subsequent chapters. One should bear in mind that the purpose of this chapter is
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not to develop the most accurate model of spacecraft orbital dynamics in LEO. The orbital mo-
tion is affected, to a different extent, by many external perturbations which cumulatively lead to a
complex oscillating behaviour of orbital elements, not necessarily of great importance in the long
term. Rather, our goal is to provide the modelling of the J2 and STRP perturbations to demonstrate
that their coupling can result in a significant impact on the secular motion of the spacecraft. This
simplified model will serve as a tool for the identification of the attitude conditions required to
generate a resonant effect.

2.1 Orbital perturbations in LEO

The low Earth region altitudes span from 200 km to 2000 km. In the lowest part of this range, i.e.,
approximately below 600 km, the descent of the spacecraft is passively driven by the atmospheric
drag usually leading to deorbitation in a matter of months or a few years, depending on the solar
activity and area-to-mass ratio. The decent rate owed to drag, however, considerably decreases
at higher altitudes due to the exponential drop in atmospheric density, thus, extending the deor-
bitation time from months to years and ultimately decades or centuries for spacecraft located at
the highest LEO altitudes. Still in the LEO range, the geopotential, more specifically its second
zonal harmonic (J2), has a significant impact on the orbit of the spacecraft, mainly the argument
of perigee ω and RAAN Ω, because of the proximity of the orbiting object to the oblate Earth.
Another important perturbation, which for a long time researchers deemed to be negligible for
spacecraft in LEO, is the cumulative action of the Thermal Radiation Pressure (TRP) and the Solar
Radiation Pressure (SRP). These two perturbations are intrinsically linked to the gain and loss of
momentum generated by: thermal emission by the spacecraft for the TRP and either incoming or
reflected luminous radiation for the SRP. As evidenced by the motion of NASA’s Vanguard I, as
well as those of the Echo I and II balloons, under certain conditions, the action of the STRP on
the eccentricity e coupled to the J2 action on ω and Ω can cause the spacecraft to undergo strong
long-periodic oscillations in eccentricity, whereas it usually averages out to a null secular effect for
most spacecraft. The specific case of Echo I will be the subject of Chapter 3. Other gravitational
perturbations including the third body attraction of the Moon and the Sun, as well as other radiation
perturbations such as the Earth’s albedo and infrared emissions, are considered to be of very small
importance in the secular evolution of a spacecraft in LEO. The secular motion of the spacecraft is
therefore assumed to be governed by the atmospheric drag at low altitudes (< 600km) and by the
coupling of the STRP and J2 effects otherwise.

We recall that the goal of this work is to derive a solution exploiting natural perturbations
to lower the altitude of a spacecraft initially in LEO. As previously mentioned, this is passively
achieved in a timely manner by the atmospheric drag for spacecraft in the lowest part of the low
Earth region. Alternate solutions become interesting for spacecraft initially located at higher al-
titudes where the atmospheric drag is negligible. This thesis focuses on the STRP-J2 resonance
solution as a means to lower the altitude of a spacecraft initially located in the high LEO region
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to the threshold altitude of 600 km where atmospheric drag becomes the driving force towards
deorbitation. The idea is to exploit the STRP-J2 resonance effect on the motion of either the semi-
major axis or the eccentricity of a stably rotating plate-like spacecraft. This phenomenon can
happen naturally in the vicinity of certain orbits defined by a particular combination of semi-major
axis a, eccentricity e and inclination i, or it can be induced by modulating the amplitude of the
sun-exposed area of the panel, or equivalently by modulating the angle between the incoming light
direction and the panel’s normal, through active control. The attitude condition required to enforce
the resonance over the whole deorbitation process can be determined from the orbital equations of
motion of either a or e for a panel subject to both STRP and the J2 harmonic of the Earth. The
derivation of the relevant equations of motion is thus presented in the following sections for later
use.

2.2 Kinematics

In this section, we present the reference frames and parameters used throughout this work. As well,
we provide relevant transformations and vectorial quantities that will be useful in establishing the
STRP-J2 dynamics of a plate-like spacecraft rotating about the ecliptic’s normal.

2.2.1 Reference frames

In Section 2.3, we derive the perturbing potential functions associated with the STRP and the
Earth’s second zonal harmonic. These will later be of use when deriving Hamilton’s equations
of motion, but before that, we first introduce the three reference frames that are used throughout
this thesis: the Earth-Centered Inertial (ECI) frame, denoted as FECI =

{
O, i−→, j

−→
, k−→
}

, the Local-

Vertical/Local Horizontal (LVLH) frame FLVLH =
{

Ob, r−→, s−→, w−→
}

and the body-fixed frame Fb ={
Ob, x−→b

, y
−→b

, z−→b

}
. These are illustrated in Figs. 2.1 and 2.2.

For FECI, O is located at the centre of the Earth, i−→ points along the vernal equinox, k−→ points
toward the celestial north pole, while j

−→
= k−→× i−→ completes the triad. For FLVLH, Ob is located

at the spacecraft position, r−→ is directed along OOb−−→, w−→ is directed along the orbital angular mo-
mentum ( h−→), normal to the orbital plane, and s−→= w−→× r−→ completes the triad. For Fb, x−→b

is the
outward normal to the panel’s front side denoted with f , i.e., n−→ = −xb−→, z−→b

is along the minor
axis of inertia while y

−→b
= z−→b

× x−→b
completes the triad.

Note that when deriving the equations of motion, the spacecraft is assumed to rotate at a con-
stant angular velocity ω−→b

about its z−→b
-axis ( z−→b

∥ ω−→b
), which is set to be aligned with the eclip-

tic’s normal (or equivalently, the orbital angular momentum of the Sun hS−→) illustrated in Fig. 2.3.
Under this assumption, the orientation of Fb with respect to FECI is given by the attitude angle φ ,
i.e., the angle between x−→b

and i−→. This constraint on the rotation axis is imposed to maximize the
mean exposed area and is enforced with attitude control, as presented in Chapters 4 and 5. Fig. 2.3
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Figure 2.1: Orbital parameters representation and definitions of FECI, and FLVLH

Figure 2.2: Plate spacecraft with body-fixed frame Fb and attitude variables φ and ω−→b

also illustrates the longitude of the Sun λS and obliquity ε as well as the resulting incoming light
direction vector u−→. Note that the light perceived by the spacecraft is assumed to be identical to the
light perceived by the Earth, i.e., we neglect the parallax effect. Fig. 2.1 further illustrates orbital
parameters used thereafter, namely the orbital inclination, i, RAAN Ω, argument of perigee ω , and
true anomaly ν .

Moreover, we introduce the spherical coordinates of the spacecraft in Fig. 2.4: rp is the panel’s
geocentric distance, θ is the spherical geocentric latitude and λ is the longitude. The value of
θ represents the angle between r−→p

and the equatorial plane as illustrated in Fig. 2.4. Based on
spherical trigonometry, the following relation can be obtained:

sinθ = sin i sinu (2.1)
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Figure 2.3: Representation of the orbital parameters of the Sun and incoming light vector u−→

Figure 2.4: Spherical coordinates defining the spacecraft geocentric position r−→p
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with u = ω + ν as the argument of latitude. Eq. (2.1) will be of particular used in obtaining the
geopotential expression in Section 2.3.1. Finally, the magnitude of r−→p

is related to the orbital
elements as per:

rp = a
1− e2

1+ e cosν
(2.2)

2.2.2 Relevant transformations

We define here the transformation from FECI to FLVLH by using the following Direction Cosine
Matrix (DCM):

CLVLH,ECI = C3(ω +ν)C1(i)C3(Ω) (2.3)

The notation Cx,y for DCM characterizes the orientation of the reference frame Fx relative to the
reference frame Fy while Ci for i = {1, 2, 3} represents the principal i DCM. Eq. (2.3) can be
explicitly written in terms of the orbital parameters as:

CLVLH,ECI =

−sinΩ cos i sinu+ cosΩ cosu cosΩ cos i sinu+ sinΩ cosu sin i sinu

−sinΩ cos i cosu− cosΩ sinu cosΩ cos i cosu− sinΩ sinu sin i cosu

sinΩ sin i −cosΩ sin i cos i

 (2.4)

In a similar fashion, the Fb and FECI frames are related through the following DCM:

Cb,ECI = C3(φ)C1(ε) (2.5)

which can be written in terms of the obliquity of the ecliptic ε and the attitude angle φ as:

Cb,ECI =

 cosφ cosε sinφ sinε sinφ

−sinφ cosε cosφ sinε cosφ

0 −sinε cosε

 (2.6)

Note that the obliquity of the ecliptic barely varies (ε(t) ≈ 23.43◦), and is considered constant in
this work.

2.2.3 Relevant vectors in FECI

The position vector r−→p
of the panel, as well as the incoming light and panel normal vectors, u−→

and n−→, are key in establishing the disturbing potential of the STRP and J2 perturbations. Their
components in FECI are denoted by rp, u and n respectively. The former can be explicitly written
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as:

rp = CT
LVLH,ECI

1

0

0

=

−sinΩ cos i sinu+ cosΩ cosu

cosΩ cos i sinu+ sinΩ cosu

sin i sinu

 (2.7)

where CLVLH,ECI is given by Eq. (2.4).
Under the previously stated assumption that the incident light vector perceived by the spacecraft

is identical to the one perceived by the Earth, the incident light vector can be expressed in FECI as:

u =−
[
cosλS sinλS cosε sinλS sinε

]T
(2.8)

Since λ̇S is almost constant (λ̇S ≈ 1.1408e-05◦/sec), we approximate the longitude of the Sun as:
λS(t)≈ λ̇S t +λS,0 with λS,0 the initial value.

For the case studied in this work—a thin plate-like spacecraft rotating about the normal to the
ecliptic—the panel’s front side inward normal vector n−→ can be expressed in FECI using Eq. (2.6)
as:

n = CT
b,ECI nb =−

[
cosφ sinφ cosε sinφ sinε

]T
(2.9)

In Eq. (2.9), nb =−
[
1 0 0

]T
(see Figure 2.3) and φ(t) = φ̇ t +φ0 with φ̇ = |ωb−→| and φ0 depend-

ing on the initial orientation of the solar panel; it is 0 when the normal is initially opposing the
vernal equinox and π/2 when it is initially along the winter solstice. From Eqs. (2.8) and (2.9), we
find that the time-varying angle between u−→ and n−→ is:

α(t) = φ(t)−λS(t) = (φ̇ − λ̇S) t +(φ0 −λS,0) (2.10)

For simplicity, we will write α(t), φ(t) and λS(t) as α , φ and as λS, but we keep in mind that these
values are time-variant.

2.3 STRP-J2 dynamics

In this section, we derive the dynamics equations of a plate-like spacecraft rotating about the eclip-
tic’s normal when subject to the STRP and J2 perturbations. These will be essential in establishing
a deorbitation strategy exploiting the resonance due to the coupling of the two effects either in
semi-major axis or in eccentricity.
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2.3.1 J2 acceleration

The geopotential perturbation due to the non-sphericity of the Earth can be expanded in terms of
spherical harmonics [69]:

Φ(rp,θ ,λ ) =− µ

rp

∞

∑
n=2

(
Re

rp

)n n

∑
m=0

Pnm(sinθ) [Cnm cos(mλ )+Snm sin(mλ )] (2.11)

where µ is the gravitational constant of the Earth, Re is the equatorial radius of the Earth, (rp, θ , λ )
are defined in Section 2.2.1, and Pnm are the Legendre functions evaluated at sin θ . The constants
Cnm and Snm are the so-called Stokes coefficients constituting the full gravity model. As it is well
known that the dynamical flattening of the Earth, as represented by J2 = −C20 = 1082.6261e-6,
is nearly 500 times larger than any other term, we can approximate the perturbing geopotential
function by only considering its most significant term, i.e., the J2-term, that is:

Φ(rp,θ ,λ )≈ ΦJ2(rp,θ) =
J2 µ R2

e
2r3

p

(
3 sin2

θ −1
)

(2.12)

Substituting for rp and sinθ into Eq. (2.12) from their expressions in Eqs. (2.2) and (2.1), we
obtain:

Φ(rp,θ ,λ )≈ ΦJ2(rp,θ) =
J2 µ R2

e
2a3

(1+ e cosν)3

(1− e2)3

(
3 sin2 i sin2 u−1

)
(2.13)

The above expression for the geopotential perturbation will be used in the Hamiltonian formulation
of the spacecraft dynamics in Section 2.4.

2.3.2 STRP acceleration

The STRP acceleration vector of a spacecraft in direct sunlight can be expressed as [65]:

a−→STRP
= Pr β

Anom

m

(
aS

rS

)2

cosα

[
(σa +σrd) u−→+

2
3

(
σrd +σa

εl − εd

εl + εd

)
n−→+2σrs cosα n−→

]
(2.14)

for α ∈ [−π/2,π/2]. In Eq. (2.14), Pr is the radiation pressure, β accounts for the shadow effect: it
takes the value of 1 when in direct sunlight, and 0 when in the Earth’s shadow; Anom is the nominal
area of the surface exposed to the Sun, m is the mass of the spacecraft, assumed constant, aS and
rS are the orbital semi-major axis of the Sun and distance from Earth, while σa, σrd and σrs are
respectively the fraction of incident photons absorbed, reflected diffusely and reflected specularly
by the surface with σa+σrd +σrs = 1. The emissivity coefficients (associated with the TRP) of the
sunlit and dark sides of the panel are given by εl and εd , with 0 ≤ {εl, εd} ≤ 1, and α represents
the angle between u−→ and n−→ such that cosα = u−→· n−→.
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To maximize the resonant effect while requiring simple attitude motion, the plate-like space-
craft, or panel, is set to rotate, as previously mentioned, at angular velocity ω−→b

about its minor
axis of inertia, z−→b

-axis, aligned parallel to the fixed axis of the orbital angular momentum of the
Sun hS−→. Under such conditions, the STRP acceleration can be expressed, for a Lambertian surface,
in terms of its component along the incident light unit vector u−→ and the panel’s normal n−→. It was
shown in [1] that the asymmetry of the optical properties between the two sides of the panel could
be compensated by using symmetric mean values; hence, for this work, the optical properties are
considered identical on both sides. We introduce s = sign( u−→· n−→), so that the inward normal to
the exposed surface is s n−→. The STRP acceleration then takes the following form:

a−→STRP
=CSTRP cosα

[
(σa +σrd)s u−→+

2
3

(
σrd +σa

ε f − εb

ε f + εb
s
)

n−→+2σrs cosα s n−→

]
(2.15)

where we introduced
CSTRP = Pr β

Anom

m
(2.16)

and simplified for aS
rS

= 1. It is noted that Eq. (2.15) is valid for any α under the conditions set in
this section, i.e., z−→b

parallel to h−→S
and symmetrical optical properties.

The thermal radiation acceleration term appearing in Eqs. (2.14) and (2.15) was obtained from
[70, pp. 47-49], where the expression for a solar sail is given, using our notation, as:

a−→TRP
=CSTRP σa

ε f B f − εbBb

ε f + εb
s cosα n−→ (2.17)

In Eq. (2.17), the emissivity coefficients of the front and back sides of the panel are given by
ε f and εb, while B f and Bb represent the coefficients accounting for the non-Lambertian nature
of the surface. While in writing Eq. (2.14), we substituted 2/3 for the values of B f and Bb to
represent a Lambertian surface, i.e., a surface with isotropic luminance [70], an assumption held
throughout this thesis. Also, εl−εd

εl+εd
was replaced by ε f−εb

ε f+εb
s in Eq. (2.15) to lift the dependency of

the emissivity coefficients on the orientation of the panel with respect to the incoming light. We
note that Eq. (2.17) is obtained assuming that the energy absorbed from the incoming solar flux
is entirely converted into heat. In the case of a solar panel, some of the energy goes to charge
batteries, therefore reducing the magnitude of the resulting TRP acceleration. This is however
ignored here.

STRP potential

Since the Earth is far from the Sun, the incident light perceived by the spacecraft is considered
identical to the one perceived by the Earth. Under this simplifying assumption, when the spacecraft
is in direct sunlight, the STRP acceleration as given by Eq. (2.15) is independent of the spacecraft
position. The STRP acceleration can therefore be expressed at a given time as the negative gradient
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of the following specific potential function:

ΦSTRP =− a−→STRP
· r−→p

=−aTSTRP rp (2.18)

where the STRP acceleration vector is explicitly dependent on time through the position of the Sun
λS along with the panel’s orientation φ (see Eq. (2.19)). Its components in FECI are denoted by
aSTRP, and can be explicitly written as:

aSTRP =CSTRP cosα

[
(σa +σrd)su+

2
3

(
σrd +σa

ε f − εb

ε f + εb
s
)

n+2σrs cosα sn
]

(2.19)

where u and n are given by Eqs. (2.8) and (2.9) respectively. Eq. (2.18) can be rewritten using
Eqs. (2.7) to (2.10) as:

ΦSTRP =CSTRP rp cosα

6

∑
j=1

T j(ε, i)
[
(σa +σrd)s cosψ j + . . .

2
3

(
σrd +σa

ε f − εb

ε f + εb
s
)

cos(ψ j +n3 α)+2σrs cosα s cos(ψ j +n3 α)

] (2.20)

where we made use of the following intermediate expressions:

uTrp =−rp

6

∑
j=1

T j(ε, i) cosψ j

nTrp =−rp

6

∑
j=1

T j(ε, i) cos(ψ j +n3 α)

(2.21)

with the sinusoidal terms argument ψ j taking the following form:

ψ j = n1 Ω+n2 (ω +ν)+n3 λS (2.22)

The values of n1, n2 and n3 for j = {1,2, ...,6} are stated in Table 2.1. Finally, the T j(ε, i) functions
also appearing in Eq. (2.20) are defined (dropping the dependence on ε and i) as:

T1 = cos2
(

ε

2

)
cos2

(
i
2

)
T2 = cos2

(
ε

2

)
sin2

(
i
2

)
T3 =

1
2

sin(ε) sin(i) T4 =−1
2

sin(ε) sin(i)

T5 = sin2
(

ε

2

)
cos2

(
i
2

)
T6 = sin2

(
ε

2

)
sin2

(
i
2

) (2.23)

Since the obliquity of the ecliptic barely varies, the T j magnitude is therefore mainly governed by
the orbital inclination. We find that T1 > T j for all j ̸= 1 and i < 90◦, while T2 > T j for all j ̸= 2
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and i > 90◦. This will be of importance in Chapters 4 and 5 when identifying the specific resonant
term to be exploited to induce the fastest deorbitation.

Table 2.1: Indices in the argument angle ψ j = n1 Ω+n2 ω +n3 λS of periodic terms in Eq. (2.20)

j n1 n2 n3

1 -1 -1 1
2 1 -1 -1
3 0 -1 1
4 0 -1 -1
5 -1 -1 -1
6 1 -1 1

Fourier series expansion for a rotating panel

In order to express the STRP potential given by Eq. (2.20) for a rotating panel with symmetric
optical properties as a continuous function, the presence of the sign function, s, is problematic.
Indeed, as can be seen from Eq. (2.20), the STRP potential function is composed of three terms that
are either linear in scosα or scos2 α . To work around this issue, we observe that both scosα and
scos2 α are periodic of period T = π;1 therefore, we propose to approximate these two functions
by using a Fourier series expansion as a function of α .

Recall the Fourier series of a function f (x):

f (x) =
a0

2
+

∞

∑
m=1

(am cosmx+bm sinmx) (2.24)

where

am =
1
T

∫ T

−T
f (x)cos

mπx
T

dx

bm =
1
T

∫ T

−T
f (x)sin

mπx
T

dx

 m = {0, 1, 2, . . .} (2.25)

Evaluating the Fourier coefficients using Eq. (2.25) for f (α) = scosα , we obtain the values pre-
sented in Table 2.2 up to m = 4. Accounting for properties of parity yields the following expan-
sion:2

scosα =
a0

2
+

∞

∑
q=1

a(2q) cos(2qα) (2.26)

Following the same procedure, we obtain the corresponding expansion for s cos2 α (Table 2.2):

s cos2
α =

∞

∑
q=1

a(2q−1) cos((2q−1)α) (2.27)

1T = π when α̇ ̸= 0, otherwise T = ∞
2ax coefficient represents the non-zero values from the corresponding column in Table 2.2
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Table 2.2: Fourier series coefficients am and bm up to m = 4 obtained by evaluating Eq. (2.25) for f (α)
f (α) a0 a1 b1 a2 b2 a3 b3 a4 b4

scosα 4/π 0 0 4/3π 0 0 0 −4/15π 0
scos2 α 0 8/3π 0 0 0 8/15π 0 0 0

Replacing scosα and scos2 α by their Fourier expansions of Eq. (2.26) and Eq. (2.27), and
making use of the trigonometric identity cosacosb = 1

2{cos(a− b)+ cos(a+ b)}, Eq. (2.20) can
be written in a more compact form as:

ΦSTRP =CSTRP rp

6

∑
j=1

T j

∞

∑
k=−∞

Ck cosψ j,k (2.28)

with ψ j,k defined as:

ψ j,k = ψ j +n3 k α = n1 Ω+n2 (ω +ν)+n3 (λS + kα)

= n1 Ω+n2 (ω +ν)+n3 (1− k)λS +n3 k φ
(2.29)

where we made use of the ψ j expression given by Eq. (2.22). The Ck coefficient accounts for the
optical and thermal properties of the surface and is defined as:

Ck =



a|k|
(σa +σrd)

2
+a|k−1|σrs ,

a|k|
(σa +σrd)

2
+a|k−1|σrs +

1
3

σrd ,

a|k−1|
1
3

σa
ε f − εb

ε f + εb
,

k even ̸∈ {0, 2}

k ∈ {0, 2}

k odd

(2.30)

Based on the definition of Ck given by Eq. (2.30), we can conclude that the k-odd terms are as-
sociated with the TRP perturbation and the k-even terms are associated with the SRP perturbation.
Also, for the TRP terms, the magnitude of Ck−odd is linearly dependent on σa, meaning that for a
perfectly reflective body (σa = 0), the TRP vanishes. Indeed, for a perfectly reflective spacecraft,
no energy is absorbed from the incoming solar flux, therefore no heat can be emitted. The TRP
effect is however maximal for a black body (σa = 1).

For the case when k = 0, although C0 > Ck for all k ̸= 0, the attitude angle φ does not have
any impact on the argument ψ j,0 or consequentially the STRP potential of Eq. (2.28), as directly
deduced from Eq. (2.29). Moreover, we gather from Eq. (2.30) that C2 > Ck, k ̸= {0, 2} when∣∣∣ ε f−εb

ε f+εb

∣∣∣< 0.5 and C1 >Ck, k ̸= {0, 1} otherwise.

Special case of u−→ ∥ n−→
In the literature, we can find a formulation similar to Eq. (2.15) for the STRP perturbing acceler-
ation in the particular case when u−→ and n−→ are aligned, and hence, cosα = 1. The corresponding

24



STRP perturbation is given by:

a−→STRP, u−→ ∥ n−→
=CSTRP σeff u−→ (2.31)

Note that the sign function s vanishes from the general expression of Eq. (2.15), and therefore the
Fourier series expansions in k is not required; the effective STRP coefficient σeff fully accounts for
the optical properties of the spacecraft, and is defined, for a panel, as:

σeff,plate = σa +σrd +
2
3

(
σrd +σa

ε f − εb

ε f + εb

)
+2σrs (2.32)

The resulting potential thus takes the form of:

ΦSTRP, u−→ ∥ n−→
=CSTRP rp σeff

6

∑
j=1

T j cos(ψ j) (2.33)

and is a summation of only six j-terms, in contrast to the infinity of ( j,k)-terms in our more general
formulation of Eq. (2.28). This formulation will be of particular relevance for the test scenario
involving a bang-bang reorientation scheme presented in Chapter 6.

Another special case is that of a spherical spacecraft, also referred to as the cannonball case
in the literature. The net STRP acceleration is obtained by integrating Eq. (2.14) over the sun-
exposed hemisphere’s area of the spacecraft. The net acceleration is thus found to be aligned with
u−→ and its expression is given by Eq. (2.31), with:

σeff,sphere = 1+
4
9

(
σrd +σa

ε f − εb

ε f + εb

)
(2.34)

This formulation will be of importance in the study of the Echo I balloon presented in Chapter 3.

2.4 Hamiltonian formulation

Our goal in this chapter is to obtain the dynamics effect of STRP on the semi-major axis and the
eccentricity equations of motion. This can be achieved using various approaches, for example, with
Lagrange planetary equations, or its alternate formulation given by Gauss variational equations.
Here, we choose to use the Hamiltonian formulation for a spacecraft in a Keplerian motion around
the Earth and subject to the disturbing potential of the Earth’s second zonal harmonic and the STRP.
The semi-major axis and eccentricity dynamics can then be directly obtained from the Hamiltonian
of the problem. Finally, we will show that the averaged dynamics reduces to a single degree-of-
freedom when subject to a single STRP-J2-φ resonance. To the best of our knowledge, this has
never been done and will be of paramount importance for the resonance study of Chapter 4 for a
panel rotating at a constant rate. A simplification for the particular case of a spherical spacecraft
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will also be presented for later use in Chapter 3 where we will study the motion of Echo I. This
simplified resonance model corresponds to that presented by Alessi et al. in [18].

2.4.1 Complete dynamics of panel subject to STRP and J2

The Hamiltonian associated with an Earth-orbiting plate-like body subject to STRP and the J2

harmonic perturbations is given by:

H=HKepler +HSTRP +HJ2 (2.35)

where
HKepler =− µ

2a
(2.36)

is the Hamiltonian associated with the Keplerian motion of the spacecraft around Earth, while HJ2

is taken to be ΦJ2 from Eq. (2.13):

HJ2 =
J2 µ R2

e
2a3

(1+ e cosν)3

(1− e2)3

(
3 sin2 i sin2 u−1

)
(2.37)

As was emphasized in the previous section, ΦSTRP depends on the time-varying longitude of the
Sun (λS) and orientation of the panel (φ ); recall that z−→b

is assumed to be parallel to h−→S
. To render

the associated Hamiltonian autonomous, we introduce, as in [71], two conjugate pairs of variables,
(Γ, τ) and (Λ, α), such that:

τ̇ =
∂H
∂Γ

= λ̇S and α̇ =
∂H
∂Λ

(2.38)

to the STRP potential of Eq. (2.28) yielding the following expression for the STRP Hamiltonian:

HSTRP =CSTRP rp

6

∑
j=1

T j

∞

∑
k=−∞

Ck cosψ j,k + τ̇ Γ+ α̇ Λ (2.39)

To obtain Hamilton’s equations of motion, we need to define the corresponding Hamiltonian in
terms of a canonical set of variables. We thus introduce the Delaunay variables—a set of canonical
coordinates, for which, the three generalized coordinates are the mean anomaly M, the argument
of perigee ω and the RAAN Ω, while the three conjugate momenta L, G and H can be expressed
in terms of the Keplerian elements a, e and i as per:

L =
√

µ a

G = L
√

1− e2

H = Gcos i

l = M

g = ω

h = Ω

(2.40)
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The Hamiltonian of Eq. (2.35) can thus be expressed in terms of the canonical coordinates of
Eq. (2.40) as:

H=CSTRP rp

6

∑
j=1

T j(ε,H/G)
∞

∑
k=−∞

Ck cos
{

n1 h+n2 (g+ν(l))+n3 (τ + k α)
}
+τ̇ Γ+ . . .

α̇ Λ+
J2 R2

e µ4

2G6

(
1+
√

1− (G/L)2 cos(ν(l))
)3 [

3
(

1− H2

G2

)
sin2(g+ν(l))−1

]
− µ2

2L2

(2.41)
where the true anomaly ν is a function of the generalized coordinate l, i.e., the mean anomaly. It
is noted that there exists no direct analytical relation for ν(l). We note the dependency of T j from
Eq. (2.23) on H/G = cos i, which we can explicitly write as:

T1 =
1
2

cos2
(

ε

2

)(H
G
+1
)

T2 =
1
2

cos2
(

ε

2

)(
1− H

G

)

T3 =
1
2

sin(ε)

√
1−
(

H
G

)2

T4 =−1
2

sin(ε)

√
1−
(

H
G

)2

T5 =
1
2

sin2
(

ε

2

)(H
G
+1
)

T6 =
1
2

sin2
(

ε

2

)(
1− H

G

) (2.42)

The final set of action-angle coordinates is defined to be p =
[
L H G Γ Λ

]T
and q =[

l h g τ α

]T
. The equations of motion can then be derived from the Hamiltonian of Eq. (2.41)

using Hamilton’s equations:

ṗ =−
(

∂H
∂q

)T

, q̇ =

(
∂H
∂p

)T

(2.43)

As previously mentioned, the purpose of obtaining the equations of motion for a plate-like
spacecraft subject to the J2 and STRP perturbations is to use them as a tool for the identification
of the attitude condition, i.e., condition on φ , required to enforce a resonant effect. Recall that the
STRP-J2 resonance is characterized by a significant cumulative effect of the STRP perturbation
over time. Since we aim at exploiting resonances in e and a, the STRP dynamics for these two
osculating elements are specifically of interest.

Eccentricity dynamics due to STRP

From the definition of L and G in Eq. (2.40), e =
√

1− (G/L)2, and thus, the equation of motion
describing the secular evolution of the eccentricity axis is therefore related to that of L and G
through:

de
dt

=

√
1− e2

e
√

µ a

[√
1− e2 dL

dt
− dG

dt

]
(2.44)
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From Eq. (2.43) we have:

dL
dt

=−∂H
∂ l

and
dG
dt

=−∂H
∂g

(2.45)

hence, Eq. (2.44) can be rewritten as:

de
dt

=

√
1− e2

e
√

µ a

[
∂H
∂g

−
√

1− e2 ∂H
∂ l

]
(2.46)

The partial derivatives for the STRP contribution of HSTRP (see Eq. (2.39)) are given by:

∂HSTRP

∂g
=CSTRP

6

∑
j=1

T j

∞

∑
k=−∞

Ck rp sin
(
ψ j,k

)
∂HSTRP

∂ l
=CSTRP

6

∑
j=1

T j

∞

∑
k=−∞

Ck

(
rp sin

(
ψ j,k

)
+ cos

(
ψ j,k

) ∂ rp

∂ν

)
∂ν

∂ l

(2.47)

where we made use of n2 = −1 for all j (see Table 2.1). The expression for ∂ν

∂ l can be derived
from Kepler’s law of motion as shown in Appendix C for M = l:

∂ν

∂ l
=

(1+ ecosν)2

(1− e2)3/2 (2.48)

and ∂ rp
∂ν

from the relation of Eq. (2.2) as:

∂ rp

∂ν
= ae

1− e2

(1+ ecosν)2 sinν (2.49)

Making use of Eqs. (2.46) to (2.49) and rearranging, we obtain the STRP contribution to the
eccentricity dynamics:

de
dt

∣∣∣∣
STRP

=−CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck

[
cos(ψ j,k)sinν + . . .

sin(ψ j,k)

(
cosν +

cosν + e
1+ e cosν

)] (2.50)

which is equivalent to:

de
dt

∣∣∣∣
STRP

=−CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck

[
sin(ψ̃ j,k)

(
1+

1
2(1+ e cosν)

)
+ . . .

sin(ψ j,k −ν)

2(1+ e cosν)
+ e

sin(ψ j,k)

(1+ e cosν)

] (2.51)
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where we used the trigonometric identities: sin(a+ b) = sinacosb+ cosasinb and sinacosb =
1
2{sin(a+b)+ sin(a−b)}. In Eq. (2.51), we introduced the ( j,k) argument angle:

ψ̃ j,k = ψ j,k + ν = n1 Ω+n2 ω +n3 (λS + k α)

= n1 Ω+n2 ω +n3 (k φ +(1− k)λS)
(2.52)

We note that, since n2 = −1 for all j, based on Eq. (2.29), the ν-term present in ψ j,k vanishes in
ψ̃ j,k. The ψ̃ j,k angle is thus slow-varying while the other argument angles of Eq. (2.51), ψ j,k and
(ψ j,k − ν), are fast-varying. This assessment is made on the basis that, in LEO, the oscillation
period of the true anomaly ν is in the order of a few hours, the longitude of the Sun λS has a 1-year
period, while the main oscillations of Ω and ω , driven by the secular effect of J2, have periods in
the order of weeks/months at the minimum.

For orbits with small eccentricities, i.e., e ≪ 1, Eq. (2.51) can be approximated with:

de
dt

∣∣∣∣
STRP

≈−CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck

[
3
2

sin(ψ̃ j,k)+
1
2

sin(ψ j,k −ν)

]
(2.53)

This result will be used in the derivation of the attitude condition for resonance in e in Chapter 5.

Semi-major axis dynamics due to STRP

From the definition of L in Eq. (2.40), a = L2/µ , and thus, the equation of motion describing the
evolution of the semi-major axis is therefore related to that of L through:

da
dt

= 2
√

a
µ

dL
dt

=−2
√

a
µ

∂H
∂ l

(2.54)

where dL
dt is given by Eq. (2.45). Making use of ∂HSTRP

∂ l given in Eq. (2.47), we obtain from
Eq. (2.54) the STRP contribution to the semi-major axis dynamics:

da
dt

∣∣∣∣
STRP

=−CSTRP
2

n
√

1− e2

6

∑
j=1

T j

∞

∑
k=−∞

Ck
[
esin(ψ̃ j,k)+ sinψ j,k

]
(2.55)

where we made use of the ψ̃ j,k from Eq. (2.52). We emphasize once again that ψ̃ j,k (no explicit
dependence on ν) is slow varying while ψ j,k is fast-varying (explicit dependence on ν). For orbits
with small eccentricities, i.e., e ≪ 1, Eq. (2.55) can be approximated with:

da
dt

∣∣∣∣
STRP

≈−CSTRP
2

n
√

1− e2

6

∑
j=1

T j

∞

∑
k=−∞

Ck sinψ j,k (2.56)

This result will be of use in the derivation of the attitude condition of resonance in a in Chapter 5.
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2.4.2 Averaged dynamics of a panel subject to STRP and J2

The averaged Hamiltonian is obtained by integrating the Hamiltonian of Eq. (2.35) over one com-
plete period of the mean anomaly l as:

H=
1

2π

∫ 2π

0
Hdl (2.57)

Because the Hamiltonian is expressed as a function of the true anomaly ν and not the mean
anomaly l, we make use of Eq. (2.48) to rewrite Eq. (2.57) as:

H=
1

2π

∫ 2π

0
H (1− e2)3/2

(1+ ecosν)2 dν (2.58)

Performing the integration with H as per Eq. (2.41) yields the following averaged Hamiltonian:

H=−3
2

CSTRP
L
µ

√
L2 −G2

6

∑
j=1

T j(ε,H/G)
∞

∑
k=−∞

Ck cosψ j,k + τ̇ Γ+ α̇ Λ+ . . .

J2 R2
e µ4

4L3
G2 −3H2

G5 − µ2

2L2

(2.59)

where the averaged ( j,k) argument angle is:

ψ j,k = n1 h+n2 g+n3 (τ + kα)

= n1 Ω+n2 ω +n3 (1− k)λS +n3 k φ
(2.60)

and
CSTRP = Pr β

Anom

m
(2.61)

with β representing the fraction of the spacecraft orbit for which the spacecraft is in direct sunlight.
It is understood that averaged quantities are used in the averaged dynamics model even if not
explicitly noted.

We observe from Eq. (2.59) that L, or equivalently a (refer to Eq. (2.40)), is constant since
H does not depend on its canonical counterpart l, owing to the averaging of the STRP potential
expansion. Thus, with l as an ignorable (cyclic) coordinate, the set of action-angle coordinates for

the averaged dynamics can be reduced to p =
[
H G Γ Λ

]T
and q =

[
h g τ α

]T
.

Similarly to the derivation of the non-averaged eccentricity equation of motion presented in the
previous section, it is possible to derive the equation describing secular evolution of the eccentricity
from the averaged Hamiltonian of Eq. (2.59).
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Eccentricity averaged equation of motion

From Eq. (2.40), e =
√

1− (G/L)2 and recalling that L is constant, the equation of motion describ-
ing the secular evolution of the eccentricity axis is therefore related to that of G through:

de
dt

=−
√

1− e2

e
√

µ a
dG
dt

=

√
1− e2

e
√

µ a
∂H
∂g

(2.62)

The secular evolution of the mean eccentricity is obtained from Eq. (2.59) similarly as for Eq. (2.50)
thus:

de
dt

=−3
2

CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck sin(ψ j,k) (2.63)

It is noted that the J2 term in Eq. (2.59) has a null secular effect on e as it is not dependant on
g (or equivalently ω). We also make a note of the close resemblance of Eq. (2.63) to Eq. (2.53).
Eq. (2.63) will be used in the derivation of the attitude condition for resonance in e in Chapter 4.

2.5 Single resonance scenario for averaged dynamics

The work presented in this section is based on the assumption that for a single-resonance scenario,
the dynamics is mainly governed by the resonant term of the STRP potential series expansion,
whereas the contributions from other terms average out to a null long-term effect. Under such
conditions, the four-degree-of-freedom averaged system presented in Section 2.4.2 further reduces
to a single degree-of-freedom system. Important insights into the STRP-J2-resonance phenomenon
can then be obtained from the study of the reduced system.

Under the single-resonance assumption, the averaged Hamiltonian reduces to a single ( j,k)-
term of the expression in Eq. (2.59), that is:

H j,k =−3
2

CSTRP
L
µ

√
L2 −G2T j(ε,H/G)Ck cosψ j,k +

J2 Re2 µ4

4L3
G2 −3H2

G5 + τ̇ Γ+ α̇ Λ− µ2

2L2

(2.64)
where ψ j,k from Eq. (2.60) is the resonant ( j,k) angle, and L is constant. Following Daquin et
al. [71] and Alessi et al. [18], we apply the canonical transformation:

T=


n1 n2 n3 n3 k

1/n2 0 0 0

0 0 1 0

0 0 0 1

 (2.65)
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to p =
[
H G Γ Λ

]T
and q =

[
h g τ α

]T
yielding the following action-angle variables:

ΣΣΣ =
(
T−1)T p , σσσ = Tq (2.66)

In the above, ΣΣΣ = [Σ1, Σ2, Σ3, Σ4]
T, and σσσ = [σ1, σ2, σ3, σ4]

T are defined explicitly as:

Σ1 = n−1
2 G ,

Σ2 =−n1 G+n2 H ,

Σ3 =−n−1
2 n3 G+Γ ,

Σ4 =−n−1
2 n3 k G+Λ ,

σ1 = n1 h+n2 g+n3 (τ + kα) ,

σ2 = n−1
2 h ,

σ3 = τ ,

σ4 = α

(2.67)

where σ1 = ψ j,k is the resonant ( j,k) angle and Σ2 is the constant of motion as stated in [18]3. The
averaged Hamiltonian can then be expressed explicitly as a function of the resonant ( j,k) angle as
in Alessi et al. [18]4:

H j,k =−3
2

CSTRP
L2

µ

√
1− Σ2

1
L2 T j(ε,Σ2/Σ1)Ck cosσ1 + τ̇ (n3 Σ1 +Σ3)−

µ2

2L2 + . . .

J2 Re2 µ4

4L3

(
−3n1 Σ2

1 +Σ2
1 −6Σ1Σ2 n1 n2 −3Σ2

2
)

Σ5
1 n2

+n3 Σ1 (τ̇ + k α̇)+Σ3 τ̇ +Σ4 α̇

(2.68)

We note the dependency of T j from Eq. (2.42) on Σ2/Σ1 = (H/G−n1 n2). The equations of motion
are then obtained with Eq. (2.68) for the new set of action-angle coordinates:

Σ̇i =−
∂H j,k

∂σi
, σ̇i =

∂H j,k

∂Σi
(2.69)

3The authors of [18] refer to the constant of motion denoted here with Σ2 as Λ
4Since n1 ∈ {0, 1} and n2 ∈ {−1, 1}, then n2

1 = n1 and n2
2 = 1
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which reduces to a one-degree-of-freedom system described by:

Σ̇1 = − 3
2

CSTRP
L2

µ
T j Ck

√
1− Σ2

1
L2 sinσ1

Σ̇2 = Σ̇3 = Σ̇4 = 0

σ̇1 = − 3
2

CSTRP
L2

µ
Ck

∂T j

∂Σ1

√
1− Σ2

1
L2 −T j

1√
1− Σ2

1
L2

Σ1

L2

cosσ1 + . . .

3J2 R2
e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
+n3 (τ̇ + k α̇)

σ̇2 = − 3
2

CSTRP
L2

µ
Ck

∂T j

∂Σ2

√
1− Σ2

1
L2 cosσ1 −

6J2 R2
e µ4

4L3 n2 Σ4
1

(
n1 n2 +

Σ2

Σ1

)
σ̇3 = τ̇

σ̇4 = α̇

(2.70)

We can conclude from the system of Eq. (2.70) that Σ2 is indeed a constant of motion as are Σ3

and Σ4. The spacecraft resonant dynamics is thus entirely described by Σ̇1 and σ̇1 for specific and
constant values of j, a (or L), Σ2

L and Aeff
m Ck for which we define effective the area-to-mass ratio as:

Aeff

m
=

Anom

m
β (2.71)

We also note here the ranges of the normalized Σ1 and Σ2 variables:

Σ1

L
= n−1

2

√
1− e2 ∈ [0, 1]×n2

Σ2

L
= (n2 cos i−n1)

√
1− e2 ∈ [−1, 1]−n1

(2.72)

which vary with n1 and n2 defined in Table 2.1 for a specific j.

Special case of a spherical spacecraft

In the particular case of a spherical spacecraft, α = 0, the STRP Hamiltonian is given by Eq. (2.33)
and the total averaged Hamiltonian reduces to:

H u−→∥ n−→
=−3

2
CSTRP σeff,sphere

L
µ

√
L2 −G2

6

∑
j=1

T j(ε,H/G) cosψ j + τ̇ Γ+ . . .

J2 R2
e µ4

4L3
G2 −3H2

G5 − µ2

2L2

(2.73)
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with the set of action-angle coordinates defined as p =
[
H G Γ

]T
and q =

[
h g τ

]T
. This is

equivalent to the Hamiltonian given by Alessi et al. in [18] where H is omitted. In Eq. (2.73), ψ j

is defined as:
ψ j = n1 Ω+n2 ω +n3 λS (2.74)

When subject to a single j resonance, like the Echo I balloon (see Chapter 3), the three-degree-
of-freedom system reduces to a single degree-of-freedom system described by:

Σ̇1 = − 3
2

CSTRP σeff,sphere
L2

µ
T j

√
1− Σ2

1
L2 sinσ1

σ̇1 = − 3
2

CSTRP σeff,sphere
L2

µ

∂T j

∂Σ1

√
1− Σ2

1
L2 −T j

1√
1− Σ2

1
L2

Σ1

L2

cosσ1 + . . .

3J2 R2
e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
+n3 τ̇

(2.75)

with
Σ1 = n−1

2 G ,

Σ2 =−n1 G+n2 H

σ1 = n1 h+n2 g+n3 τ
(2.76)

which correspond to Eq. (2.67) with α = 0 and Ck = σeff,sphere. Note that the definition of Σ1 and
Σ2 is unchanged, thus Eq. (2.72) still holds. Also recall that for a spherical spacecraft, the effective
STRP coefficient σeff,sphere of Eq. (2.34) fully accounts for the optical properties of the balloon.
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Chapter 3

Echo I Case Study – Passive eee-Resonance

Through the ’60s, many authors studied the case of Echo I up to a two-year period. Those studies
used the orbit propagation tools limited by the computational resources of that era, and with lim-
ited fidelity of the perturbation models available at the time. Thus, Jastrow and Bryant wrongly
estimated the lifetime of Echo I to be 20 years based on its orbital period rate of change [72];
Shapiro and Jones used the recorded data from Echo I to gain a better insight into the density
behaviour at 1600 km altitudes [73], while Cook utilized his averaged model [11] to estimate the
area-to-mass ratio of Echo I, as it was suspected to have changed over its life due to skin punctures
by meteorites [57]. All of these efforts, nevertheless, confirmed the leading role of the SRP in the
spacecraft dynamics.

In this Chapter, we revisit the orbital motion of Echo I, now considering its complete life
span. We aim to support the resonance theory for its motion, in light of the more mature un-
derstanding and the recent findings on this phenomenon, more specifically, the equilibrium and
stability theory as presented by Alessi et al. [18]. The satellite’s motion is first propagated with D-
SPOSE software-—a high-fidelity coupled orbital-attitude propagator developed in-house—which
includes, among others, the most accurate models to date for the SRP, geopotential, and atmo-
spheric perturbations [65]–[67]. Note, we are neglecting the TRP for this particular study as its
effect was found to be negligible for Echo I. We first demonstrate that our propagation model is
in very good agreement with the recorded Two-Line Element (TLE) data of the satellite [32]. We
then follow the work of Alessi et al. on the SRP-J2 phase space to model the resonant dynam-
ics of Echo I using the previously identified propagation parameters. This model is later used to
interpret the observed behaviour of the spherical spacecraft. Finally, we take the analysis further
and modify the original orbit of Echo I, which we then propagate using the realistic environment
modelling of D-SPOSE, to reflect: a stable equilibrium situation, and a strong resonance scenario.
The results thus obtained offer several new findings and insights into the behaviour of Echo I and
its relationship to the SRP-J2-resonance.
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3.1 Orbital propagation of Echo I

In this section, we compare Echo I observed position over its entire lifetime to the propagation
results obtained with D-SPOSE, to verify our numerical model. This model will later be used to
illustrate characteristic features of the eccentricity resonance.

3.1.1 Model of Echo I

Echo I was a 30.48-m-diameter balloon constructed with Mylar polyester film covered with vapour-
deposited aluminum to allow for passive reflection of radio frequency signals [74], [75]. The
satellite weighed 62.3 kg and contained an additional 13.6 kg of sublimating powders to maintain
an internal pressure sufficient to preserve the geometrical integrity of the sphere [57], [76]. The
authors of [77], suggested, based on the observed eccentricity evolution, that internal gas was
leaking from the satellite through punctures in the skin of the balloon caused by meteorite impacts.
It is assumed that only a small quantity remained inside on January 11, 1961, meaning that the
area-to-mass ratio Anom

m of the satellite would have increased up to a value of 11.7 m2/kg [57], and
Echo I progressively lost its spherical shape [75].

For the propagations in D-SPOSE, since it is believed that the Anom
m of Echo I was changing

over its first year due to aforementioned gas leakage, we initialize our propagation at epoch May
12, 1962, 14:23:48, with the associated orbit defined by the Keplerian elements in Table 3.1, and
propagate until the re-entry of the spacecraft on May 24, 1968. Also, since the time evolution of the
satellite shape is unknown, the spacecraft is modelled as a near-sphere with 224 surface elements
as illustrated in Fig. 3.1. The spacecraft dimensions and parameters are presented in Table 3.2.
Considering that by May 12, 1962, 14:23:48, all the gas had escaped the balloon, the nominal
area-to-mass ratio was computed from the sphere cross-section (729.7 m2) and the remaining mass
of the spacecraft of 62.3 kg and thus set to 11.7 m2/kg. Also, we found that the best fit between
D-SPOSE’s orbital propagation results and Echo I observed position was obtained by setting the
effective reflectivity coefficient to σeff,sphere = 1.08, and the drag coefficient to Cd = 3.46; these
values are justified as follows.

Table 3.1: Orbital conditions at initial epoch 1962/05/12 14:23:48

a (km) e i (◦) Ω (◦) ω (◦) ν (◦)
7,892 1.255e-3 47.214 29.83 324.21 35.68

We note that σeff,sphere can be computed, based on the shape of the object, from the optical
parameters of the spacecraft σa, σrd and σrs which are respectively the fraction of incident photons
absorbed, reflected diffusely and reflected specularly by the surface with σa+σrd +σrs = 1. In the
special case of a spherical spacecraft, the effective reflectivity coefficient for SRP computation can
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Figure 3.1: Echo I geometrical model to be used in D-SPOSE

Table 3.2: Echo I model parameters

Parameter Description Value Units
d diameter 30.48 m

Anom
m nominal area-to-mass 11.7 m2/kg

σeff,sphere effective reflectivity 1.08 -
Cd drag coefficient 3.46 -
β mean shadow coefficient 0.77 -

be obtained from σrd only, as in [78], using Eq. (2.34):

σeff,sphere = 1+
4
9

σrd (3.1)

for a Lambertian surface. In Eq. (3.1), the emissivity contribution is neglected since we assume the
heat emission to be evenly distributed around the sphere. Based on NASA’s reference coefficient
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for aluminized coatings [79], the effective reflectivity value should lie within σeff-sphere,NASA ∈
[1.0089, 1.0512] which is very close to our estimate of σeff,sphere = 1.08.

For the drag coefficient, our estimation for Echo I is uncertain, and we consider Cd constant,
which is not exact. The drag coefficient is expected to vary with solar activity, and it is also ex-
pected to increase with height due to the decrease in the mean molecular weight of the atmosphere.
Cook [80] evaluated that, under the most advantageous conditions—mean molecular weight of the
atmosphere of 1—the drag coefficient of a sphere at altitudes ranging from 1000 km to 2000 km
should be between 3.4 and 3.7 depending on the solar activity. For a more realistic mean molec-
ular weight of 4, Cd is expected to be between 2.8 and 3.1.1 Even though drag estimation is still
a challenging problem, the fitted value of 3.46 used here tends to indicate that Echo I is not ex-
actly spherical, as was suggested by Wilson [75], with a shape in-between the perfect sphere and a
deflated balloon.

3.1.2 Propagation Results

We first verify our numerical model against the TLE data for Echo I available on Space-Track.org
[32]. A propagation is thus carried out in D-SPOSE using the model of the spacecraft as described
in Section 3.1.1 with a fixed time step of 30 s, and the accelerations due to the following perturba-
tions are included:

• SRP: For a constant radiation pressure2 Pr =
1,361

c
N

m2

• gravitational field: EGM2008 up to degree and order 5

• atmospheric drag: NRLMSISE-00 with recorded equivalent planetary amplitude AP and
solar radiation flux F10.7cm

• Moon and Sun third body interactions

• Earth shadow: geometric model with penumbra transition

The semi-major axis a and eccentricity e time responses obtained from the propagation are
compared to the recorded TLEs in Fig. 3.2. A very good fit can be observed, therefore confirming
the validity of our model. Also clearly observable are the oscillations in the eccentricity response,
between the near-zero values and the maximum value of 0.068, these with an approximate period
of 324 days. Although our results exhibit an excellent match for the eccentricity response, a dis-
crepancy of about 10 km is observable between D-SPOSE semi-major axis prediction and the TLE
data between the years 1965 and 1968. This might be explained by the constant Cd value employed
to model the drag coefficient. We can deduce from this difference, in line with the discussion on
the drag coefficient in Section 3.1.1, that a higher Cd should be employed at higher altitudes, and
it should decrease as the altitude decreases.

1Cook’s [80] results are based on the assumption that the mean molecular weight of the spacecraft surface is 16
2c = 299,792,458 m/s represents the speed of light
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Figure 3.2: Semi-major axis and eccentricity responses for the propagation of the orbit of Table 3.1 at initial
epoch 1962/05/12 14:23:48

Additional propagations with D-SPOSE—one where the SRP perturbation is excluded, and
another where the J2 perturbation is excluded—allow, by comparing the corresponding time his-
tories to those obtained including all the perturbations (see Fig. 3.3), to partially corroborate the
conclusions of the early investigations related to this satellite [57], [72], [73]: the large oscillations
in eccentricity are indeed due to the action of the SRP perturbations, and they contributed to accel-
erating the re-entry of Echo I by about 3 years and 10 months. However, the results of Fig. 3.3 also
reveal that the J2 perturbation seems to only have a slight effect on the oscillation period, without
much effect on the amplitude. This contradicts the conclusions found in the literature stating that
the large oscillations in eccentricity are due to the coupling action of both the SRP and the J2 per-
turbations. It will be made clear in the following sections that Echo I was indeed subject to the
SRP-J2-resonance phenomenon, although, for the specific orbit of Echo I, the J2 action on the first
( j = 1) resonance is small.

As partially reflected in Fig 3.3, the SRP-J2-resonance is a multi-faceted phenomenon with
several dependencies, and to adequately capture its complexity, we must resort to the analysis of
the resonant phase space. We gather from [18] that the commensurability condition established
by Cook [11] is deficient in the characterization of the resonance phenomenon, and that a stability
analysis of the spacecraft dynamics model provides a better portrait of its resonant behaviour.
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Figure 3.3: Semi-major axis and eccentricity responses for the propagation of the orbit of Table 3.1 at initial
epoch 1962/05/12 14:23:48 comparing including SRP, gravitational and drag perturbations (blue), excluding
SRP (orange), and excluding gravitational (yellow)

3.2 Echo I resonance study

In this section, we apply the stability theory put forward by Alessi et al. [18] for spherical space-
craft in resonance to the motion of Echo I. From the single resonance averaged Hamiltonian for-
mulation presented in Section 2.5, we identify the equilibrium points which are key to establishing
the topology of the phase portrait. We then use the theoretical model of resonance, and our under-
standing of it, to interpret the observed behaviour of Echo I.

3.2.1 Equilibrium identification

The normalized parameter values computed for the orbit of Table 3.1 are listed in Table 3.3 as a
function of j using Eq. (2.72).

Table 3.3: Σ1
L and Σ2

L evaluated for the orbit of Table 3.1 (e = 1.255e-3 and i = 47.214◦) for different j

j Σ1/L Σ2/L

1, 5 0.9999992 -0.3207
2, 6 -0.9999992 -1.6793
3, 4 0.9999992 0.6793
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Also, from the one-degree-of-freedom Hamiltonian system described by Eq. (2.75), we see that
the oscillation period is given by σ̇1 which can be approximated by evaluating the given expression
at σ1 =

π

2 :

σ̇1,J2 = n3 τ̇ +
3J2 R2

e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
(3.2)

We note that in the particular case of Eq. (3.3), σ̇1 is only affected by the J2 perturbation. From
Eq. (3.2), we can write the commensurability condition initially expressed by Cook [11] as:

0 = n3 τ̇ +
3J2 R2

e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
(3.3)

As will be shown in the following section, the driving term in the motion of Echo I is the j = 1
term. Evaluating Eq. (3.2) for j = 1 (i.e., n1 =−1, n2 =−1, n3 = 1) and the orbit of Table 3.1, we
find that σ̇1,J2 =−2.237e-7 rad/sec yielding a period of T = 325 days. This is consistent with the
eccentricity response in Fig. 3.2 for which a period of 324 days was identified. We note here that,
in this particular case, the contribution of the J2-term in Eq. (3.2) is smaller than that of the τ̇-term
by a factor of 10. This explains the fact that a similar resonance effect can be observed even when
neglecting the geopotential (see Fig. 3.3 yellow vs. blue lines).

As established in Section 2.5, the resonant dynamics of the spacecraft is entirely defined by Σ̇1

and σ̇1 of Eq. (2.75). The equilibrium conditions are thus derived by solving:

Σ̇1 = 0 , σ̇1 = 0 (3.4)

The equilibrium conditions can then be found for two distinct cases: the general case where Σ1 ̸= L,
or equivalently e ̸= 0 (refer to Eqs. (2.40) and (2.76)), and the specific case where Σ1 = L (or e= 0).

ΣΣΣ111 ̸ ̸ ̸=== LLL (eee ̸ ̸ ̸=== 000) case:
Here, Σ̇1 can only be null when σ1 = 0 or σ1 = π . The second condition for equilibrium in

Eq. (3.4) can therefore be restated as σ̇1(σ1 = {0, π}) = 0, or explicitly as:

0 = ±3
2

CSRP σeff,sphere
L2

µ

∂T j

∂Σ1

√
1− Σ2

1
L2 −T j(ε,Σ2/Σ1)

1√
1− Σ2

1
L2

Σ1

L2

+n3 τ̇ + . . .

3J2 R2
e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

) (3.5)

Solving Eq. (3.5) allows to identify the equilibrium values (Σ1,eq, σ1,eq) associated with a par-
ticular combination of j, a (or L), Σ2

L and Aeff
m σeff,sphere. Recall that Aeff

m is given by Eq. (2.71).
The nature of the equilibrium, stable or unstable, can be determined based on the Jacobian matrix
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eigenvalues at the equilibrium:

JΣ1 ̸=L =

 0 ∂ Σ̇1
∂σ1

∣∣∣
(Σ1,eq,σ1,eq)

∂ σ̇1
∂Σ1

∣∣∣
(Σ1,eq,σ1,eq)

0

 (3.6)

A negative sign for ∂ Σ̇1
∂σ1

∣∣∣
(Σ1,eq,σ1,eq)

× ∂ σ̇1
∂Σ1

∣∣∣
(Σ1,eq,σ1,eq)

indicates a stable equilibrium (two imaginary

eigenvalues), and a positive sign implies the opposite (two real eigenvalues: one positive, one
negative). A maximum of 3 equilibria can exist when Σ1 ̸= L for a fixed combination of j, a, Σ2

L
and Aeff

m as can be concluded from [18].

ΣΣΣ111 === LLL (eee === 000) case:
In this special case, Σ̇1 from Eq. (2.75) is necessarily null. The equilibrium conditions of

Eq. (3.4) thus reduce to σ̇1 = 0. With the use of Eq. (2.75), we find that this can only be met for:

0 =
3
2

CSRP σeff,sphere aT j(ε,Σ2/Σ1)
Σ1

L2 cosσ1 (3.7)

which is only satisfied at σ1 =
π

2 (or σ1 =
3π

2 ). Otherwise the CSRP-term of the σ̇1 expression in
Eq. (2.75) tends toward infinity. The resulting point, (e, σ1) = (0, {π

2 ,
3π

2 }), exists for any j, a, Σ2
L

and Aeff
m σeff,sphere values.

In addition, for the equilibrium condition to hold, the summation of the J2- and τ̇-terms of the
σ̇1 expression in Eq. (2.75) must also be null, i.e., Cook’s commensurability condition of Eq. (3.3)
must be met. As alluded to in Chapter 1, for a spherical body, this condition is only met for specific
orbits, and this is not the case for the orbit of Echo I. However, as alluded earlier in this section,
for the particular case of Echo I and the orbit of Table 3.1 with e = 0 we find that σ̇1,J2 =−2.24e-
7 rad/sec which is small. For this reason, we refer to the point (eq-eq, σ1,q-eq) = (0, {π

2 ,
3π

2 }) as a
quasi-equilibrium and treat it as an unstable equilibrium in the remainder of this chapter as will be
justified by the phase plot analysis.

Solving the equilibrium condition of Eq. (3.5) for the initial semi-major axis value of Echo I
from Table 3.1: a= 7,892 km, constant effective area-to-mass ratio Aeff

m σeff,sphere = 9.73 m2/kg, and
initial Σ2

L from Table 3.3 allows to identify the stable and unstable equilibrium points associated
with each j resonance. These equilibria are listed in Table 3.4 along with the unstable quasi-
equilibria at e = 0 and σ1 = {π

2 ,
3π

2 } deduced from Eq. (3.7) which, as aforementioned, exist
for any j, a, Σ2

L and Aeff
m σeff,sphere combinations. The value of the effective area-to-mass ratio,

Aeff
m σeff,sphere = 9.73 m2/kg, was computed using Eqs. (2.71) with the parameters listed in Table 3.2.

The equilibrium points of Table 3.4 come in pairs (stable/unstable), and, as it will be made
clear in the following section, each pair defines a libration region in its respective j resonance
phase space. The stable equilibrium is located at the eye of the region bounded by the unstable
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Table 3.4: Equilibrium points locations in the i ∈ [0, 90]◦ range for a = 7,892 km, Aeff
m σeff,sphere =

9.73 m2/kg, and Σ2
L from Table 3.3

P j e i (◦) σ1 stability
1-0 1 0 N/A π

2 , 3π

2 unstable
1-1 1 0.03345 47.23 0 stable
2-0 2 0 N/A π

2 , 3π

2 unstable
2-1 2 9.738e-4 47.21 π stable
3-0 3 0 N/A π

2 , 3π

2 unstable
3-1 3 3.196e-3 47.21 π stable
4-0 4 0 N/A π

2 , 3π

2 unstable
4-1 4 1.650e-3 47.21 0 stable
5-0 5 0 N/A π

2 , 3π

2 unstable
5-1 5 1.845e-3 47.21 π stable
5-2 5 0.4744 50.53 0 stable
5-3 5 0.4735 50.52 π unstable
6-0 6 0 N/A π

2 , 3π

2 unstable
6-1 6 5.725e-5 47.21 π stable

equilibrium (or quasi-equilibrium) associated phase curve. This particular phase curve, also re-
ferred to as a separatrix, represents the locations for which the resonance effect is maximal within
each particular phase space, as it manifests the greatest change in eccentricity. The amplitude of
this variation progressively diminishes the further the phase curve is from this limit and becomes
null at the stable equilibrium.

3.2.2 Stability analysis

Following the stability analysis performed by Alessi et al. [18] and solving the equilibrium condi-
tion of Eq. (3.5) for the same semi-major axis and effective area-to-mass ratio as for the equilibria
of Table 3.4, but with Σ2

L ranging from −1− n1 to 1− n1 yields the results of Figs. 3.4 to 3.6.
The three figures illustrate the location of the equilibrium points associated with, respectively, the
j = {1, 5}, j = {2, 6} and j = {3, 4} resonances in the [0, 90] deg inclination interval. We note
that the equilibria initially computed in terms of Σ1 for a range of Σ2 were transformed into the
more understandable eccentricity and inclination parameters using Eqs. (2.40) and (2.76), with
a = 7,892 km.

The equilibrium locations for the phase spaces of the orbit in Table 3.1 are identified with black
‘x’s in Figs. 3.4 to 3.6. These equilibria correspond to the Σ2

L values of Table 3.3. The following
observations can be made on these equilibria.

jjj === {222,,, 666} resonances: We gather from the equilibrium values listed in Table 3.4 for j = 2
and j = 6, that the equilibrium points are located at very low eccentricities (e < 0.001), and from
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Figure 3.4: Location of the equilibrium points associated with the j = {1, 5} resonances for a = 7,892 km
and Aeff

m σeff,sphere = 9.73 m2/kg. The equilibrium points associated with the orbit of Table 3.1 are marked by
a ‘x’

the corresponding phase plots that the effect due to both the j = 2 and j = 6 resonances is only
of small significance on the orbit of Echo I. The phase plots (not included here) show libration
regions of small amplitudes: ∆e ≈ 0.002 around P2−1 for j = 2, and ∆e ≈ 1.1e-4 around P6−1 for
j = 6. These plots are not presented here, but they can be obtained by propagating Eq. (2.75) at
different (Σ1, σ1) combinations.3

jjj === {333,,, 444} resonances: Similar conclusions can be drawn for the j = {3, 4} resonances as for
j = {2, 6}.

jjj === {111,,, 555} resonances: Fig. 3.7 shows an expanded view of Fig. 3.4 to offer a clearer view of
the equilibrium points locations for j = 1 and j = 5. Differently from the j = {2, 6} resonances,
Fig. 3.7 shows equilibrium values at high eccentricity locations: e ≈ 0.47 for the pair P5−2/P5−3 as
listed in Table 3.4. From the phase plot, a libration region with an amplitude of ∆e ≈ 0.06 can be
observed around the stable P5−2. The region is bounded by the phase curve of the unstable P5−3.
This region does not extend to the eccentricity range of Echo I which is < 0.068. Similarly, the
stable/unstable equilibrium pair P5−1/P5−0 defines a second libration region of small amplitude

3Propagating Eq. (2.75) at the equilibrium points provide the most important phase curves which contain all the
necessary information to establish the phase portrait topology.
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Figure 3.5: Location of the equilibrium points associated with the j = {2, 6} resonances for a = 7,892 km
and Aeff

m σeff,sphere = 9.73 m2/kg. The equilibrium points associated with the orbit of Table 3.1 are marked by
a ‘x’

∆e = 3.8e-3 around P5−1. Once again, the phase plot for j = 5 is not presented here, but it can be
obtained from Eq. (2.75).

Finally, for the j = 1 resonance, we note the presence of a libration region of significant ampli-
tude, ∆e ≈ 0.067, around the stable point P1−1 and bounded by the phase curve associated with the
unstable quasi-equilibrium P1−0. Fig. 3.9 illustrates the corresponding phase plot along with P1−0

and P1−1 resulting phase curves. We recall that σ1 = ψ j, with ψ j as per Eq. (2.22). The amplitude
and closeness of the libration region to the eccentricity range of Echo I make the j = 1 resonance
a major contributor to the oscillations in eccentricity observed for the spacecraft. Based on the
previous findings for the different resonances, we further conclude that the j = 1 resonance is the
only one significantly affecting the secular evolution of Echo I. A deeper analysis of this specific
resonance is thus conducted in the following section for the special case of Echo I.

3.2.3 Phase plot analysis

In Section 3.2.2, we identified the j = 1 resonance as the only major contributor to the eccentricity
oscillations experienced by Echo I. In this section, to further investigate its impact, we analyze its
phase portrait in comparison to observations of the orbital position of Echo I.
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Figure 3.6: Location of the equilibrium points associated with the j = {3, 4} resonances for a = 7,892 km
and Aeff

m σeff,sphere = 9.73 m2/kg. The equilibrium points associated with the orbit of Table 3.1 are marked by
a ‘x’

Table 3.5: Orbital observations of Echo I from TLEs and values of Σ2
L computed with Eq. (2.72) for j = 1

date a (km) e i (deg) ψ1 (rad) Σ2/L
T0yr 1962/05/12 7,892 1.25e-3 47.21 5.30 -0.3207

14:23:48
T2yr 1964/05/11 7,808 5.03e-2 47.27 0.54 -0.3210

11:40:22
T5yr 1967/05/22 7,619 3.45e-2 47.28 5.71 -0.3213

21:46:09

Up to this point, the semi-major axis was considered constant as it is not secularly affected by
the SRP and the J2 perturbations. However, the lowering of the perigee (to about 550 km) because
of the eccentricity increase, along with the high area-to-mass ratio of Echo I (11.7 m2/kg), lead
to considerable alterations of the Hamiltonian associated with the Keplerian motion (HKepler) of
Eq. (2.36) due to the atmospheric drag action, thus, significantly affecting the system described by
the Hamiltonian of Eq. (2.41). To evaluate this impact, the j = 1 resonance phase plots associated
with three observed orbits, recorded respectfully at about 0, 2, and 5 years from the initial epoch
May 12, 1962, 14:23:48, are presented in Figs. 3.9 to 3.11. Recall from Section. 2.5 that a reso-
nance phase plot is defined by constant a, Σ2

L (e, i) and Aeff
m σeff,sphere for a specific j. The location
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Figure 3.7: Location of the equilibrium points associated with the j = {1, 5} resonances for a = 7,892 km
and Aeff

m σeff,sphere = 9.73 m2/kg, expanded view of Fig. 3.4. The equilibrium points associated with the orbit
of Table 3.1 are marked by a ‘x’

of the observed orbits on their respective phase plots is marked by a green dot and the resulting
phase curve is drawn in dark red. The details of the three orbits are listed in Table 3.5, and are also
identified in Fig. 3.8 which shows the recorded a and e values obtained from Echo I TLEs.

We first note from the general form of the phase plots in Figs. 3.9 to 3.11, that they do not vary
much over the 5-year time frame. From Fig. 3.9, we can also assess the importance of the phase
curves associated with the unstable quasi-equilibrium and stable equilibrium, respectively P1−0 and
P1−1. The former in particular, as the associated phase curve is delineating the libration region.
As already mentioned, this specific phase curve, the separatrix, manifests the greatest change in
eccentricity, whereas the oscillation amplitude is null at the stable equilibrium.

Still from Fig. 3.9, we note the proximity of the initial position of Echo I (T0yr from Table 3.1,
green dot) to the separatrix, confirming the importance of the j = 1 resonance on the motion
of Echo I. However, comparing these results to those of Figs. 3.10 and 3.11, the Echo I related
phase curve changes considerably from T0yr to T5yr. Generating the same figures for many more
recordings of Echo I would show that the phase curve in dark red oscillates around the separatrix,
sometimes even nearing the stable equilibrium. Such variation might be attributable to neglected
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Figure 3.8: Evolution of a and e for Echo I as recorded by the TLEs, and identification of the TLEs listed
in Table 3.5: T0yr, T2yr and T5yr (green dots)

Figure 3.9: Phase plot associated with the j = 1 resonance, for orbit T0yr (green dot) as defined in Table 3.5,
and Aeff

m σeff,sphere = 9.73 m2/kg.
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Figure 3.10: Phase plot associated with the j = 1 resonance, for orbit T2yr (green dot) as defined in Table 3.5,
and Aeff

m σeff,sphere = 9.73 m2/kg

Figure 3.11: Phase plot associated with the j = 1 resonance, for orbit T5yr (green dot) as defined in Table 3.5,
and Aeff

m σeff,sphere = 9.73 m2/kg
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external perturbations, short-period effects of the SRP, or non-resonant SRP terms, all of which are
neglected when generating the phase plots.

As can be seen from the equidistant (in ∆H1) phase curves of Figs. 3.9 to 3.11, only a small
difference in the Hamiltonian distinguishes the stable and unstable equilibria. Thus, even small
perturbations might lead to a critical alteration of the phase curve. We must also bear in mind the
limited accuracy of the recorded TLEs which might also explain these variations.

We can conclude from the analysis performed in this section that the resonance phase plots
allow us to illustrate the leading behaviour of the spacecraft dynamics when in resonance. It is
however a simplified model and the contribution of the omitted dynamics, although small, should
be considered. Particular attention must be paid to objects in the vicinity of the separatrix, as small
variations in H j can lead to a change of regime, libration vs circulation. This is even more impor-
tant for dynamics similar to that represented by the phase plot topology of Fig. 3.15 (presented in
the following section) for which a change of regime represents a drastic change in the amplitude
of the eccentricity oscillations.

3.3 Echo I resonance test cases

In this section, we extrapolate the Echo I resonance model presented in the previous section for two
extreme scenarios: the motion near a stable equilibrium for which we expect e to remain constant,
and the motion under the strongest possible resonance for which we expect e to be subject to the
fastest increase. For this analysis, we first employ the resonance model of the previous section to
identify the initial orbital conditions for each aforementioned scenario. The corresponding ficti-
tious orbits of the satellite are then propagated using D-SPOSE. The results thus obtained offer
new findings and insights into the behaviour of Echo I and the SRP-J2-resonance.

3.3.1 Echo I placed in stable equilibrium orbit

In Section 3.2.1, we identified for a j = 1 resonance the equilibria associated with the phase space
defined by the effective area-to-mass ratio of Echo I Aeff

m σeff,sphere = 9.73 m2/kg, and Echo I initial
orbit of Table 3.1, more specifically: a = 7,892 km and Σ2

L = −0.3207. For our analysis, we
modify the initial orbit to that of Table 3.6 so that the new orbit is located at the stable equilibrium
P1−1 of Table 3.4, still with a = 7,892 km and Σ2

L = −0.3207. We note that on May 12, 1962, at
14:23:48, the longitude of the Sun is λS = 51.4◦. The values of Ω and ω are thus set so that ψ1 = 0
for the modified orbit (see Eq. (2.22) for j = 1).

Table 3.6: Fictitious orbital initial conditions of stable equilibrium at initial epoch 1962/05/12 14:23:48
(λS = 51.4◦)

a (km) e i (◦) Ω (◦) ω (◦) ν (◦)
7,892 0.03345 47.23 51.4 0 35.68
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Propagating the orbit of Table 3.6 under the same conditions as in Section 3.1.2, we obtain
the semi-major axis and eccentricity time responses presented in Fig. 3.12. The associated phase
response of the eccentricity is shown in Fig. 3.13 for the first four years. We note from these results
that the eccentricity oscillates between 0.0294 and 0.0447 while ψ1 remains within -0.157 rad and
0.215 rad (-8.95◦ and 12.3◦) over the first four years. Although we observe some small oscillations
in e and ψ1 resulting from the action of the external perturbations and non-resonant terms neglected
when generating the phase plot, we conclude that the motion of the spacecraft remains in the
vicinity of the stable equilibrium location, as was expected.

We further observe from Fig. 3.12, that even without reaching the highest eccentricity values of
Echo I, the higher eccentricity average, e ≈ 0.03345, for the stable equilibrium test case decreases
the perigee sufficiently (about 260 km) to deorbit the spacecraft within seven years starting at the
initial epoch of May 12, 1962, 14:23:48 used for our propagations.

1963 1964 1965 1966 1967 1968 1969
7000

7500

8000

1963 1964 1965 1966 1967 1968 1969
0

0.05

0.1

0.15

Figure 3.12: Semi-major axis and eccentricity responses for the propagation of the orbit of Table 3.6 in
D-SPOSE at initial epoch 1962/05/12 14:23:48 (blue) in comparison to the observed TLEs (black dots)

3.3.2 Echo I placed in strongest resonance

As mentioned in Section 1.1.2, for an orbit defined by specific a and e, the range of inclinations
leading to a significant resonance effect is usually very narrow for objects with area-to-mass ratios
smaller than 1 m2/kg. For large area-to-mass ratio objects, like Echo I, the width of this corridor
becomes much larger. Indeed, even though Echo I orbit was located about 8◦ from the inclination
leading to the strongest resonance, it still experienced eccentricity variations on the order of 0.068.
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Figure 3.13: Phase response for the 4-year propagation of the orbit of Table 3.6 in D-SPOSE at initial epoch
1962/05/12 14:23:48 (green dots around the P1−1 equilibrium) superimposed over the phase plot associated
with the j = 1 resonance for a = 7982 km, Σ2

L =−0.3207 and Aeff
m σeff,sphere = 9.73 m2/kg

This was enough to significantly vary its perigee height (about 550 km oscillations), and thus
reduce its lifetime by nearly four years as was concluded in Section 3.1.2. Had Echo I been located
at the resonant inclination, however, its lifetime would have been even shorter, in fact, shorter than
7 months, as we will see from the results presented in this section.

The condition for a resonance as presented by Cook [11] and given by Eq. (3.3) allows to
identify, for the actual orbital a and e of Echo I, as listed in Table 3.1, the inclination expected to
yield the strongest resonant effect:

ires, Cook = 39.766◦ ↔ Σ2

L

∣∣∣∣
res, Cook

=−0.23134 (3.8)

However, as alluded in Section 3.1, and made clear by the resonance analysis performed by Alessi
et al. in [18], this condition is deficient in characterizing the resonance phenomenon. This is
further confirmed by the results of Figs. 3.14 and 3.15. Fig. 3.14 presents the phase plot associated
with Σ2

L

∣∣∣
res, Cook

while Fig. 3.15 presents the phase plot for which the eccentricity is subject to the

highest variation. The latter corresponds to:

imax ∆e = 39.143◦ ↔ Σ2

L

∣∣∣∣
max ∆e

=−0.22442 (3.9)
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still for a and e from Table 3.1. We note that the inclination values of Eqs. (3.8) and (3.9) are very
close. However, in the vicinity of Σ2

L

∣∣∣
res, Cook

and Σ2
L

∣∣∣
max ∆e

, small differences lead to significant

discrepancies in the phase plots, as clearly evident from Figs. 3.14 and 3.15. Comparing the two
phase portraits separatrices (black curves), we observe that the maximum variation in eccentricity
is ∆e = 0.632 for Cook’s resonance while a maximum ∆e = 0.699 is reached for Σ2

L

∣∣∣
max ∆e

.
The resulting j = 1 equilibrium points for the latter scenario obtained from Eqs. (3.5) and (3.7)

for the orbit defined by a and e from Table 3.1 and imax ∆e from Eq. (3.9) are presented in Table 3.7
and identified in Fig. 3.15. We note that the maximum possible ∆e is reached for the case where
the Hamiltonian of the unstable quasi-equilibrium P1−0 and unstable equilibrium P1−2, coincide.

Table 3.7: Equilibrium points locations associated with the j = 1 resonance, for a = 7982 km, Σ2
L

∣∣
max ∆e =

−0.22442 and Aeff
m σeff,sphere = 9.73 m2/kg

P j e i (◦) σ1 stability ∆H1 (m2/s2)
1-0 1 0 N/A π

2 , 3π

2 unstable 490
1-1 1 0.2751 39.95 π stable 561
1-2 1 0.5432 42.89 π unstable 490
1-3 1 0.5816 43.60 0 stable 0

Propagating the initial conditions of Table 3.1 in D-SPOSE, but with i = {ires, Cook, imax ∆e}
from Eqs. (3.8) and (3.9), and under the same conditions as in Section 3.1.2, we obtain the results
of Fig. 3.16 shown in comparison to the observed motion of Echo I. For these orbits, Echo I would
have been expected to be deorbited within only seven months instead of > 6 years, once again,
about the initial epoch of May 12, 1962, 14:23:48.

We also note by comparing Figs. 3.14 and 3.15 that, in the case of Σ2
L

∣∣∣
res, Cook

, the separatrix

remains near ψ1 =
π

2 for e ∈ [0, 0.5] while for Σ2
L

∣∣∣
max ∆e

it does not. Moreover, from Eq. (2.75),

we gather that the maximum rate of change in Σ1, equivalently in e, is achieved at ψ1 =
π

2 . The

case of Σ2
L

∣∣∣
res, Cook

might thus lead to a faster increase in eccentricity in the e ∈ [0, 0.5] range. The

difference is, however, not significant in the scenario of Fig. 3.16 (orange vs. blue curves) for
which the spacecraft evolves from e = 0.0125 to a maximum eccentricity of e = 0.11 before it
is deorbited. Within this range, ψ1 ≈ π

2 for both cases as can be seen from Figs. 3.14 and 3.15,
therefore leading to a similar increase rate in e.

3.4 Concluding remarks

In this Chapter, we analyzed the orbital motion of Echo I in light of the SRP-J2-resonance phase
space theory recently published by Alessi et al. [18] for spherical spacecraft. It was found that
even though Echo I was located far from the theoretical resonant orbit given by Cook’s commen-
surability condition [11], the satellite’s eccentricity still exhibited a resonant behaviour due to its
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Figure 3.14: Phase plot associated with the j = 1 resonance, for a = 7982 km, Σ2
L

∣∣
res, Cook =−0.23134 and

Aeff
m σeff,sphere = 9.73 m2/kg

Figure 3.15: Phase plot associated with the j = 1 resonance, for a = 7982 km, Σ2
L

∣∣
max ∆e = −0.22442 and

Aeff
m σeff,sphere = 9.73 m2/kg
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Figure 3.16: Semi-major axis and eccentricity responses for the propagation of the orbit T0yr of Table 3.5
with i = {ires, Cook, imax ∆e} in D-SPOSE at initial epoch 1962/05/12 14:23:48 in comparison to the observed
TLEs (black dots)

proximity to the separatrix, i.e., the phase curve associated with an unstable equilibrium point, in
the phase space of the first ( j = 1) resonance. The separatrix, in this particular case, has an am-
plitude in eccentricity of ∆e ≈ 0.067 owing to the high area-to-mass ratio of Echo I (11.7 m2/kg),
which is consistent with the recorded TLEs for Echo I.

We also deepened the resonance analysis of Echo I by placing the satellite in two extreme fic-
titious orbits, which we then propagated using the realistic environment modelled by D-SPOSE.
We thus confirmed that, in the vicinity of a stable equilibrium, both the phase angle and the eccen-
tricity remain nearly constant. We also concluded that, although the fastest eccentricity increase
is obtained for the orbit given by solving Cook’s commensurability condition for small e, the
highest eccentricity variation is reached for the case where the Hamiltonian of the unstable quasi-
equilibrium and unstable equilibrium, exist and coincide. The propagation of the latter fictitious
orbit showed that, had the inclination of Echo I been i = 39.766◦ instead of i = 47.214◦ on May
12, 1962, 14:23:48, then it would have deorbited in less than 7 months, instead of > 6 years as was
its finale.

As was demonstrated in this chapter, the coupling of the SRP and J2 perturbations can have a
strong resonance effect in eccentricity that acts to passively deorbit the spacecraft. As well, the
magnitude of the effect is highly dependent on the location of the spacecraft and the effective area-
to-mass ratio. In the next chapter, we aim to lift this limitation of the spacecraft position and show
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that a strong resonance in eccentricity can be generated for a plate-like spacecraft by orienting it
properly.
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Chapter 4

eee-Resonance for Constant Rotation Rate

As suggested by Lücking et al. [23]–[25], the STRP-J2 resonance can be used to accelerate the de-
orbitation time of a spacecraft by increasing the eccentricity of its orbit, thus reducing the perigee’s
altitude to a point where the atmospheric drag becomes non-negligible. Existing analyses of this
phenomenon are, however, based on the limiting cannonball assumption, whereby the STRP per-
turbing acceleration is aligned with the incoming light ( u−→) and the effective STRP coefficient
(σeff) of the object in question is a constant, as highlighted in Chapter 2. Although the ensuing
conclusions adequately apply to balloon spacecraft, as Echo I discussed in Chapter 3, they fail to
characterize the resonant behaviour of a rotating non-spherical spacecraft. It has been argued that
the cannonball results also hold for non-spherical spacecraft, although, if an averaged effective
STRP coefficient is employed, resonance can only occur at very specific locations. The cannonball
resonances, inherently restricted to only a few specific orbits, severely confine the possibility of
deorbitation exploiting the STRP-J2 resonance. Indeed, the spacecraft is required to already be
near one of these specific locations; otherwise, the ∆V required to change the orbit at end-of-life is
too costly.

In this chapter, we explore the effect of rotational motion of the spacecraft/debris on the reso-
nance phenomenon. We suggest that a resonance effect of considerable strength can be achieved
for non-spherical spacecraft in any orbit, by adopting an appropriate rotational motion scenario.
We refer to this type of resonance, i.e., resonance involving attitude changes, as a φ -resonance. In
this way, a spacecraft can exploit the STRP-J2-φ resonance to accelerate its deorbitation, without
any restrictions on its initial orbital inclination. More specifically, this chapter focuses on the case
of a thin planar spacecraft—a panel—rotating at a constant rate φ̇ about the ecliptic’s normal for
which the dynamics was established in Chapter 2. The suggested approach, however, shows some
limitations as it will be made clear by the analysis of the relevant phase plots.
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4.1 Resonance study for plate-like spacecraft

In this section, we study the STRP-J2 resonance for a plate-like spacecraft modelled with the
parameters of Table 4.1, and rotating at a constant rate φ̇ about the normal to the ecliptic. We first
derive the resonance condition analogue to the condition derived by Cook under the cannonball
assumption. We then perform a stability analysis to provide more insight into the eccentricity
evolution as a function of the resonant angle and rotation rate. Finally, we highlight the limitations
of exploiting this phenomenon for deorbitation.

Table 4.1: Spacecraft Model Parameters

Parameter Description Value Units
m mass variable -
ly length along y

−→b
3.3 m

lz length along z−→b
9 m

Anom nominal area ly lz = 29.7 m2

Cd drag coefficient 2.2 -
σa absorptivity 1 -
σrs specular reflectivity 0 -
σrd diffuse reflectivity 0 -

4.1.1 Resonance condition derivation

There is a strong similarity between the equations describing the STRP-J2-φ single-resonance
dynamics of a panel rotating a constant rate (φ̇ ) and that of a sphere. As can be gathered from the
Echo I resonance study in Chapter 3, for a spherical spacecraft, the resonance dynamics is dictated
by the combination of a, e and i (or Σ2

L ), in other words, the only way to influence the strength
of the resonance is to modify the orbit of the spacecraft. In Section 3.3.2, this was achieved by
modifying the orbit’s inclination. Performing orbital manoeuvres can, however, be very costly in
terms of fuel requirements, especially for inclination changes. The introduction of the α̇ parameter
in the plate-like system dynamics offers more flexibility. It is assumed that α̇ can be fixed by setting
φ̇ accordingly (see Eq. (2.10)) using the attitude control system of the spacecraft. Recall that α

corresponds to the angle between the incoming light u−→ and the inward normal of the panel front
side n−→.

As alluded to in the previous chapters, a resonance occurs when one of the periodic terms in
the equation of motion of an osculating element—here we are interested in the eccentricity e—has
a nearly null frequency. In such a case, the long-term behaviour of the element is governed by the
associated resonant term. In light of this, the condition for a resonance to occur can be identified
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directly from the eccentricity equation of motion. The criterion for a resonance can therefore be
derived from Eq. (2.63), which we rewrite here:

de
dt

=−3
2

CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck sin(ψ j,k) (4.1)

For the analysis presented in this chapter, we will refer to the one degree-of-freedom system de-
rived in Section. 2.5 based on the averaged Hamiltonian dynamics. For consistency, the eccentric-
ity equation of motion averaged over one revolution of the spacecraft is employed to derive the
resonance condition, that is ψ̇ j,k ≈ 0, and it takes the form of:

dψ j,k

dt
= n1 Ω̇+n2 ω̇ +n3 (λ̇S + k α̇ j,k)

= n1 Ω̇+n2 ω̇ +n3 (1− k) λ̇S +n3 k φ̇ j,k ≈ 0
(4.2)

where ψ j,k is as per Eq. (2.29). As stated in Section 2.5, under the single-resonance assumption,
the dynamics of the rotating panel is given by the one-degree-of-freedom averaged Hamiltonian
system of Eq. (2.70) with σ̇1 = ψ̇ j,k. The commensurability condition thus takes the form:

σ̇1 =− 3
2

CSTRPCk
L2

µ

∂T j

∂Σ1

√
1− Σ2

1
L2 −T j(ε,Σ2/Σ1)

1√
1− Σ2

1
L2

Σ1

L2

cosσ1 + . . .

n3 (τ̇ + kα̇)+
3J2 R2

e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
≈ 0

(4.3)

which can be approximated by evaluating the given expression at σ1 = π

2 (as in [11]) where the
STRP term vanishes:

σ̇1,J2 = n3 (τ̇ + kα̇)+
3J2 R2

e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

)
≈ 0 (4.4)

We recall that τ̇ = λ̇S and L =
√

µ a from Eq. (2.40) are considered constant, Σ2
L = (n2 cos i−

n1)
√

1− e2 from Eq. (2.72) is a constant of motion, while the value of Σ1 = L
√

1− e2 oscillates
under the resonance action: the stronger the resonance, the larger the amplitude ∆Σ1, and equiva-
lently ∆e.

We reiterate here that the attitude angle φ , equivalently α (see Eq. (2.10)), has an effect on the
resonant rate only if k ̸= 0; in which case, it is possible to solve the commensurability condition
of Eq. (4.4) for α̇ given any combination of a, e and Σ2

L , that is for any orbit. This expands the
possibility of exploiting a resonance phenomenon in any orbit instead of a very specific ensemble
of orbits, as is the case for a spherical spacecraft. Solving Eq. (4.4) for α̇ yields the resonant-( j,k)
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α rate:

dα j,k

dt

(
a, e,

Σ2

L

)
=−1

k
λ̇S +

3J2 R2
e n

4k n2 n3 µ a3 (1− e2)3

[
−5Σ

2
2 −8n1 Σ2

√
µ a(1− e2)

(1−3n1)µ a(1− e2)

] (4.5)

and ultimately, using Eq. (2.10), the resonant-( j,k) rotation rate of the panel:

dφ j,k

dt

(
a, e,

Σ2

L

)
=

dα j,k

dt

(
a, e,

Σ2

L

)
+ λ̇S (4.6)

This means that to generate a φ -resonance, the panel needs to rotate at a rate of φ̇ ≈ φ̇ j,k computed
for the values of a, e and Σ2

L associated with its orbit. Bear in mind that while a and Σ2
L are constant

over time, e oscillates due to the resonance. For the purpose of our analysis, φ̇ j,k, or equivalently
α̇ j,k, is defined for the eccentricity value of the initial orbit.

It was shown in Chapter 3 that the condition expressed by Eq. (4.4)—equivalent to Cook’s
commensurability condition derived under the cannonball assumption (see Eq. (3.3))—is deficient
in characterizing the resonant behaviour; a phase plot/stability analysis is necessary to paint a
proper portrait of the resonance. Nonetheless, solving σ̇1,J2 = 0 for φ̇ at a specific orbit still gives
a good approximation of the rotation rate that would yield the strongest ( j,k)-resonance effect in
the vicinity of this orbit.

In the following sections, we investigate the effect of the rotation rate on the (1,2)-resonance
dynamics of a panel initially located in the orbit of Table 4.2, O2. We further show, through the
study of the relevant phase plots, that small variations in φ̇—on the order of a few percent from
the computed φ̇1,2 =−3.9432e-6◦/sec—may have a determining effect on the long term evolution
of the eccentricity. We note that orbit O2 is chosen because φ̇1,2 associated with this orbit is well
separated from φ̇ j,2 for j ∈ {2, . . . , 6} so that there is no coupling between the first and other
resonances.

Table 4.2: Orbital elements of O2 and resonance parameters for j = 1 and k = 2

a (km) e i (◦) β Ω (◦) ω (◦) ν (◦) Σ2
L φ̇1,2 (◦/sec)

O2 8,078 0.01 60 0.78 0 0 45 -0.49997 -3.9432e-6

We note that there exists an infinity of possible resonances, each modulated by the associated T j

and Ck coefficients. In the remainder of this section, we restrict our analysis to the (1,2)-resonance
since, based on our observations previously stated in Section 2.3, for

∣∣∣ ε f−εb
ε f+εb

∣∣∣ < 0.5 and i < 90◦,
it is the one with the strongest effect, i.e., T1C2 > T j Ck for all j ̸= 1 and k ̸= {0, 2}. We also
emphasize the fact that the ( j,0) resonances are associated with specific orbits and, therefore,
cannot be exploited in a φ -resonance deorbitation scenario. In the literature, these are referred to
as the resonant orbits and were identified under the cannonball assumption [11], [27].
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4.1.2 Equilibrium identification

Recall from the previous chapter that the form of the phase plot is intrinsically linked to the lo-
cations of the equilibria. We subsequently show how these are derived from the (Σ1, σ1)-system
of Eq. (2.70). Due to the close similarity between the rotating panel case and the cannonball case
previously addressed, only the main results are briefly provided here. For more details, the reader
may refer to Section 3.2.1.

The equilibria are obtained by solving:

Σ̇1 = 0 , σ̇1 = 0 (4.7)

where, in the case of a rotating panel, Σ̇1 and σ̇1 are given by Eq. (2.70) for which we note an
explicit dependency on α̇ . Solving Eq. (4.7), we conclude that for e ̸= 0 (or Σ1 ̸= 1), an equilibrium
(Σ1,eq,σ1,eq) exists only if σ1 ∈ {0,π} and:

0 = −3
2

CSRPCk
L2

µ

∂T j

∂Σ1

√
1− Σ2

1
L2 −T j(ε,Σ2/Σ1)

1√
1− Σ2

1
L2

Σ1

L2

cosσ1 +n3 (τ̇ + kα̇)+ . . .

3J2 R2
e µ4

4L3 n2 Σ4
1

(
3n1 −1+8n1 n2

Σ2

Σ1
+5

Σ2
2

Σ2
1

) (4.8)

in which case, the stability of the equilibrium point is deduced from the product ∂ Σ̇1
∂σ1

∣∣∣
(Σ1,eq,σ1,eq)

×

∂ σ̇1
∂Σ1

∣∣∣
(Σ1,eq,σ1,eq)

: a negative sign indicates that the point is stable, otherwise it is unstable. Fig. 4.1

illustrates the eccentricity locations of the equilibrium points associated with the (1,2)-resonance
in the vicinity of φ̇1,2 for a Aeff

m = 1 m2/kg panel modelled as a black body (σa = 1), and located
in O2 orbit of Table 4.2. The equilibrium associated with φ̇1,2 computed for O2 (see Table 4.2 for
φ̇1,2 value) is identified with a black ‘x’ in Fig. 4.1.

Another point of interest is the quasi-equilibrium, (eq-eq, σ1,q-eq) = (0, {π

2 ,
3π

2 })1, that exists
for any j, a, Σ2

L , α̇ (or φ̇ ) and Aeff
m Ck values. This point is always unstable since, even though Σ̇1 = 0,

σ̇1 =±∞ whenever σ̇1,J2(e = 0) ̸= 0 (see Eqs. (2.70) and (4.4)).
From Fig. 4.1, we gather that for O2, there exist three equilibria when φ̇ < −3.9070e-6◦/sec

and only one otherwise. Together with the quasi-equilibrium, we come to the same conclusion as
in Section 3.2.1: the equilibria come in pairs (stable/unstable). Each pair defines a libration region
bounded by the unstable equilibrium phase curve, the separatrix, with the stable equilibrium at its
centre. This will be confirmed by the phase plot analysis presented in the following section. We
also conclude from Fig. 4.1, that small variations in φ̇ , on the order of a few percent (-4e-6◦/sec to
-3.6e-6◦/sec), significantly change the locations of the equilibria, ultimately affecting the number

1α̇ is finite
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Figure 4.1: Equilibrium location for O2 assuming Aeff
m = 1 m2/kg and σa = 1 obtained by solving Eq. (2.70)

of equilibrium points and the form of the phase portrait. This supports our previous statement that
φ̇ has a determining effect on the long-term evolution of the eccentricity.

It is worth mentioning that the coupling of the different ( j,k)-resonances that may arise for
certain orbits might lead to a more complex phase portrait with more equilibria. In particular, there
is coupling between the j = 1 and j = 2 resonances at Sun-synchronous orbits since Ω̇ = λ̇S. There
is also coupling when generating a φ -resonance (k ̸= 0) in the vicinity of a resonant orbit, i.e., an
orbit for which the commensurability condition of Eq. (4.2) with k = 0 is passively met. Even
though resonance coupling is not covered by the analysis presented in this chapter, the possibility
of coupling exists and must be assessed beforehand since the results presented in this chapter are
obtained under the generally, but not always, admissible single-resonance assumption.

4.1.3 Phase plot analysis

In the remainder of this section, we investigate how the change in the equilibria affects the phase
plots. Recall that the phase curves associated with the stable and unstable equilibria/quasi-equilibria
contain all the necessary information to establish the phase portrait topology. The information
contained in Fig. 4.1 is thus sufficient to generate the 2D phase plots associated with values of φ̇

ranging from -4.5e-6◦/sec to -3.2e-6◦/sec. We draw in Figs. 4.2 to 4.6 five (1,2)-resonance phase
plots for a 1 m2/kg black panel initially in O2 and rotating at five selected rotation rates, respec-
tively. Table 4.3 lists the resulting equilibrium locations for all five φ̇ values. We note that Fig. 4.3
represents the special case for which the Hamiltonian of the unstable quasi-equilibrium P0 and un-
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stable equilibrium P2 coincide, i.e., the associated separatrices coincide.2 This corresponds to the
case for which the maximum ∆e is reached as was stated in Section 3.3.2 for the spherical case,
and we denote the generating φ̇ value as φ̇1,2-max∆e. Also, Fig. 4.6 represents the special case for
which φ̇ = φ̇1,2-O2. Figs. 4.2, 4.4 and 4.5 are intermediate cases selected to depict the possible
topologies of the phase portraits.

For our analysis, we define:

• P0 as the unstable quasi-equilibrium located at e = 0 and ψ1,2 = {π

2 ,
3π

2 };

• P1 as the stable equilibrium at ψ1,2 = 0, blue line in Figs. 4.2(b) to 4.6(b);

• P2 as the unstable equilibrium at ψ1,2 = π , yellow line in Figs. 4.2(b) to 4.6(b);

• P3 as the stable equilibrium at ψ1,2 = π , purple line in Figs. 4.2(b) to 4.6(b).

Note that points P2 and P3 do not exist for φ̇ >−3.9070e-6◦/sec.

Table 4.3: Equilibrium points locations for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m =

1 m2/kg, σa = 1, with a and Σ2
L from Table 4.2

P φ̇ (◦/sec) e i (◦) σ1 stability ∆H1,2 (m2/s2)
1-0 -4.3920e-6 0 N/A π

2 , 3π

2 unstable 8.217
1-1 -4.3920e-6 0.15022 60.38 0 stable 0
1-2 -4.3920e-6 0.14397 60.35 π unstable 2.462
1-3 -4.3920e-6 0.00664 60.00 π stable 8.245
2-0 -3.9432e-6 0 N/A π

2 , 3π

2 unstable 1.352
2-1 -3.9432e-6 0.09069 60.14 0 stable 0
2-2 -3.9432e-6 0.06668 60.07 π unstable 1.352
2-3 -3.9432e-6 0.02441 60.01 π stable 1.450
3-0 -3.9170e-6 0 N/A π

2 , 3π

2 unstable 1.149
3-1 -3.9170e-6 0.08609 60.12 0 stable 0
3-2 -3.9170e-6 0.05563 60.05 π unstable 1.247
3-3 -3.9170e-6 0.03087 60.01 π stable 1.266
4-0 -3.9020e-6 0 N/A π

2 , 3π

2 unstable 1.042
4-1 -3.9020e-6 0.08338 60.11 0 stable 0
5-0 -3.7555e-6 0 N/A π

2 , 3π

2 unstable 0.341
5-1 -3.7555e-6 0.05352 60.05 π stable 0

Figs. 4.2 to 4.4 each shows two libration regions. In the phase plot of Fig. 4.2, the two regions
are defined by the P3/P0 and P1/P2 stable/unstable pairs while in the phase plot of Fig. 4.4 the pairs
P1/P0 and P3/P2 define the libration zones. The change in the pairing occurs at the limit case of
Fig. 4.3 for which the P0 and P1 phase curves coincide when φ̇ = φ̇1,2-max∆e = −3.9432e-6◦/sec

2The averaged Hamiltonian given by Eq. (2.59) remains constant along each phase curve.
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(a) Phase plot
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Figure 4.2: Phase plot and equilibria for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg,

σa = 1, with a and Σ2
L from Table 4.2, and rotating at φ̇ =−4.3920e-6◦/sec about the ecliptic normal

(a) Phase plot
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Figure 4.3: Phase plot and equilibria for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg,

σa = 1, with a and Σ2
L from Table 4.2, and rotating at φ̇ = φ̇1,2-max∆e = −3.9432e-6◦/sec about the ecliptic

normal

(from Table 4.3: ∆H1,2 = 1.352 m2/s2 for both P0 and P2). The maximum eccentricity variation,
∆e = 0.1323 is reached at the separatrix of Fig. 4.3(a) as compared to ∆e = 0.1263 for Fig. 4.4(a),
∆e = 0.1227 for Fig. 4.5(a), ∆e = 0.0871 for Fig. 4.2(a) and ∆e = 0.0674 for Fig. 4.6(a). This is
in line with the conclusions of Section 3.3.2.
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Figure 4.4: Phase plot and equilibria for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg,

σa = 1, with a and Σ2
L from Table 4.2, and rotating at φ̇ =−3.9170e-6◦/sec about the ecliptic normal
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Figure 4.5: Phase plot and equilibria for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg,

σa = 1, with a and Σ2
L from Table 4.2, and rotating at φ̇ =−3.9020e-6◦/sec about the ecliptic normal

In the following section, we assess the validity of the phase plots analysis, and the possibility
of exploiting the φ -resonance to deorbit a spacecraft initially in O2, based on the assumption that
the maximum ∆e is reached at the separatrix.
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Figure 4.6: Phase plot and equilibria for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg,

σa = 1, with a and Σ2
L from Table 4.2, and rotating at φ̇ = φ̇1,2-O2 =−3.7555e-6◦/sec about the ecliptic normal

4.2 Deorbitation with constant rotation rate

The phase plots presented in the previous section describe the averaged single-resonance system
of Eq. (2.70), meaning that only the j = 1 and k = 2 term, H1,2, of the averaged Hamiltonian H
(Eq. (2.59)) is considered. In a more realistic environment, the non-averaged short-period oscilla-
tions of H1,2 as well as the other H j,k terms along with the omitted (n,m)-terms of the geopotential
(see Eqs. (2.11) and (2.12)) would also contribute to the dynamics of the spacecraft. Another very
important perturbation that was omitted so far is the atmospheric drag. As was concluded in Sec-
tion. 3.2.3, its effect can drastically alter the dynamics of a spacecraft at low altitudes.

To evaluate the impact of the neglected dynamics and perturbing accelerations on the spacecraft
resonance dynamics when rotating at a constant rate, a 60-year propagation is carried out in D-
SPOSE including the STRP, the geopotential up to degree and order 2, and this, with and without
the inclusion of atmospheric drag and/or the Earth shadow. The perturbing torques were excluded
to allow a constant rotation rate without requiring active control. The perturbing accelerations in
D-SPOSE are implemented using the following models [65]–[67]:

• STRP: Eq. (2.14) for a constant radiation pressure3 Pr =
1,361

c
N

m2

• gravitational field: EGM2008 up to degree and order 2

• drag: NRLMSISE-00 with constant equivalent planetary amplitude Ap = 15 and solar radio
flux F10.7 cm = 140 sfu

• Earth shadow: geometric model with penumbra transition as implemented in D-SPOSE [65]
3c = 299,792,458 m/s represents the speed of light
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Figure 4.7: Phase plot for a (1,2)-resonance obtained by solving Eq. (2.70) for Aeff
m = 1 m2/kg, σa = 1, with

a and Σ2
L from Table 4.2, and rotating at φ̇ = φ̇1,2-max∆e = −3.9432e-6◦/sec about the ecliptic normal. The

phase curves associated with the O2 orbit for initial ψ1,2 = 0 and ψ1,2 = π are shown in dark red

For all investigated perturbation cases, the initial orbit O2 is defined in Table 4.2, with the
panel modelled by the parameters of Table 4.1. The mass is adjusted to yield an effective area-to-
mass ratio of Anom

m = 1 m2/kg (see Eq. (2.71)). All propagations are initialized at epoch 2000-01-
01T00:00:00 (λS = 280◦) with a fixed time step of 30 sec. For these simulations, a rotation rate of
φ̇ = φ̇1,2-max∆e = −3.9432e-06◦/sec is chosen as it is expected to yield the maximum eccentricity
increase for orbits with nearly null e.

In Fig. 4.7, we draw over the phase plot of Fig. 4.3(a) (obtained for φ̇ = φ̇1,2-max∆e), the phase
curves associated with the O2 orbit, for initial ψ1,2 = 0 and ψ1,2 = π , to highlight the effect of
the initial phase angle on the eccentricity evolution. Indeed, the initial φ value must be carefully
selected as the phase curves associated with ψ1,2 = 0 and ψ1,2 = π , for φ̇ = −3.9432e-06◦/sec,
yield very different maximum values of e: 0.1309 and 0.0414 respectively as can be seen from
Fig. 4.7.
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We make a note that, although in theory, the greatest eccentricity increase is observed at the
separatrix, in a realistic case, the effect of neglected perturbations might lead to an unwanted
change of regime that would prevent this. For instance, in the particular case of Fig. 4.7, a panel
initially located at the separatrix could, under the action of neglected perturbations, be pushed
to the libration region defined by the P2−3/P2−0 stable/unstable equilibrium pair, for which the
maximum attainable eccentricity is much smaller. In light of this, when setting the initial attitude
angle φ , it is better to distance the (ψ1,2, e) location from the separatrix so that the panel is more
likely to remain within the high-amplitude libration region defined by the P2−1/P2−2 pair. For the
simulations presented in this section, the panel is thus set to be initially oriented at φ = 140◦ so
that ψ1,2 = 0 (see Eq. (2.60)). The time responses of a, e and perigee height hp—where the perigee
height hp = a(1− e)−Re with Re the Earth’s equatorial radius—as well as e vs. ψ1,2 are shown
in Fig. 4.8. Additionally, the reference responses obtained from the averaged system of Eq. (2.70)
for O2 are also shown in dark red in Fig. 4.8.

We subsequently analyze the results for the three perturbation cases: the first one excluding
both the Earth shadow and atmospheric drag, the second one including the Earth shadow but ex-
cluding atmospheric drag, and the final one including both the Earth shadow and atmospheric drag.
We note that in all three cases, the STRP and geopotential up to degree and order 2 are always in-
cluded.

4.2.1 Without Earth shadow and atmospheric drag

For this case, β = 1 and Anom
m is set to 1 m2/kg for the propagation in D-SPOSE. We observe from

the e vs. ψ1,2 response of Fig. 4.8, that the results obtained in D-SPOSE (blue curve) follow the
expected results obtained from the averaged single-resonance system of Eq. (2.70) for O2 (dark red
curve). Also, from the semi-major axis a time response of Fig. 4.8 (blue curve), we confirm that
the mean value of a remains constant over time, an assumption that was fundamental to obtaining
Eq. (2.70), and consequentially the phase plots of section 4.1.3 for O2. We conclude from these
results that for the case of O2, the contribution of the short-period dynamics along with the non-
resonant term in the system Hamiltonian H and omitted (n,m) geopotential terms are negligible as
far as the long-term behaviour of the panel when rotating at a constant rate of φ̇ = φ̇1,2-max∆e. The
single-resonance assumption holds.

We also note from the eccentricity time response and phase plot of Fig. 4.8 (two bottom figures)
the decrease in the magnitude of the eccentricity time rate, |ė|, as the averaged resonant phase angle
ψ1,2 nears 0 (or 2π) and π . This will be further discussed shortly.

4.2.2 With Earth shadow and without atmospheric drag:

For this case, the Earth shadow is not ignored, therefore β = 0.78 and Anom
m is set to 1.28 m2/kg for

the propagation in D-SPOSE, so that Aeff
m = 1 m2/kg. An important observation we can make from
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Figure 4.8: Time response of a (1,2) resonance when propagating O2 over 60 years in D-SPOSE with and
without the Earth shadow and/or the atmospheric drag and with φ̇ =−3.9432e-06◦/sec

the semi-major axis time response of Fig. 4.8 is that the mean value of a is not constant over time;
it varies in the range 8,078-8,046 km. Apart from including the shadow effect, the perturbation
conditions are identical to the previous case. This indicates that the coupled effect of the Earth
shadow and STRP perturbation is at play in the secular variation of a.4 Recall that the explicit
dependence of β on the true anomaly ν was not considered in the averaging of H to obtain H
(see Eqs. (2.57) to (2.61)). Rather, an approximate mean value representing the sunlight period
vs. orbital period ratio was used, β . As noted earlier, the assumption that a remains constant is
fundamental to obtaining the averaged dynamics of the reference model, but it does not hold for
this case. Indeed, a small change in the semi-major axis has an important impact on the form of
the phase plot, especially near the heart of the resonance, i.e., where the effect is the strongest.
The variation in a due to the shadow effect thus explains the discrepancy between the eccentricity
time responses of Fig. 4.8 with (orange curves) and without (blue curves) the inclusion of the Earth

4The geopotential is not affected by the Sun, thus the inclusion or exclusion of the Earth shadow has no effect on
this perturbation.
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shadow. The former reaches a maximum eccentricity of e = 0.113, which is less than the latter,
which reaches a maximum eccentricity of e = 0.131.

4.2.3 With Earth shadow and atmospheric drag

As for the previous case, the Earth shadow is not ignored, therefore β = 0.78 and Anom
m is set to

1.28 m2/kg for this case as well, and similar conclusions can be drawn. Although, in the present
case, the change in the semi-major axis is accentuated by the effect of the atmospheric drag.

We can further observe, from the eccentricity responses in Fig. 4.8 (yellow curves), the change
from a libration to a circulation regime after about 20 years. The reduction of the mean value
of a from 8,078 km to 8,020 km during these first 20 years considerably impacts the shape of
the resonance. The amplitude of the eccentricity oscillations in the circulation regime further
reduces as a decreases, along with the amplitude of the libration region (the maximum eccentricity
amplitude), which we recall is given by the phase curve associated with the quasi-equilibrium at
e = 0 and ψ1,2 = {π

2 ,
3π

2 }, P0, see Fig. 4.4(a). Although the resonance significantly lowers the
altitude of the perigee —it reaches a minimum value of hp = 805 km after 20 years—this is not
enough to deorbit the spacecraft initially in O2.

In the absence of perturbations for O2, the minimum attainable perigee altitude is 585 km (dark
red curves in Fig. 4.8), but with the inclusion of atmospheric drag and Earth shadow, this minimum
hp value increases to 805 km (yellow curve in Fig. 4.8). This is counterintuitive as atmospheric
drag normally acts towards lowering an orbiting body.

4.3 Concluding remarks

We can first conclude that it is not necessarily possible to deorbit a panel initially located in a high
LEO orbit in a reasonable time frame by exploiting the eccentricity resonance under a constant
rotational rate assumption. Indeed the resonance effect might not be sufficiently strong to lower the
perigee enough for the atmospheric drag to ensure the spacecraft’s re-entry. We further showed that
the change in the semi-major axis resulting from the atmospheric drag can considerably weaken
the resonance. Recall that we set φ̇ so that the resonance is at its strongest, i.e., the phase curve is
collocated with the separatrix of the libration region for the initial orbit. There are no provisions
to maintain this condition as orbital parameters vary under the action of neglected disturbances.

Also, we can conclude that for a constant rotation rate, the amplitude of the eccentricity oscil-
lations is necessarily bounded, therefore, there is a minimum attainable altitude of perigee. This
minimum is likely to increase as the semi-major axis changes.

Finally, the stability and phase plot analyses allow us to identify the conditions that would yield
the highest increase in eccentricity. The separatrix indeed leads to the highest amplitude in e, but
this, is regardless of the rate. As previously noted, the O2 propagation results showed that the rate
at which the eccentricity varies, |ė|, diminishes as ψ1,2 approaches 0 (or 2π) or π . This is in line

70



with Eq. (4.1) which shows that the resonant ( j,k)-term of the eccentricity rate does not explicitly
depend on ψ̇ j,k, but rather on ψ j,k.

These insights motivate the implementation, in Chapter 5, of an attitude tracking control law
over φ , rather than maintaining a constant φ̇ , so as to maximize the rate of increase in eccentricity
over the whole deorbitation process. This approach will further allow to overcome the minimum
attainable hp limitation. Moreover, a similar procedure will be employed to generate a resonance
directly in the semi-major axis by also tracking φ .
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Chapter 5

STRP-J2-φ Resonance Deorbitation
Strategies

In Chapter 4, we concluded that when exploiting a resonance in eccentricity with a constant rotation
rate φ̇ , the variation in e is necessarily bounded and, therefore, there is a minimum attainable
altitude which may not be low enough for efficient deorbitation. Also, we concluded that the
weakening of the resonance due to the change in a further rises this minimum altitude. In this
chapter, we put forward a solution to overcome this limitation through a systematic approach to
identify the optimal deorbitation strategy. The method exploits attitude control to enforce a STRP-
J2-φ resonance in eccentricity of a plate-like spacecraft rotating about the ecliptic’s normal.

A similar approach is also applied to generate a STRP-J2-φ resonance in the semi-major axis.
The motivation for this alternate strategy stems from the fact that increasing the orbital eccentricity
produces the desired lowering of the orbit only near the perigee, whereas decreasing the semi-major
axis has this effect over the whole orbit. Even though it is not possible to enforce a φ -resonance in
a with a constant rotation rate φ̇ as was done in Chapter 4 for a resonance in e, it is possible to do
so by tracking the rotation angle φ instead.

In order to evaluate the robustness of the suggested deorbitation strategies, the feasibility of
a complete spacecraft deorbitation exploiting both the eccentricity and the semi-major axis reso-
nances is verified using the state-of-the-art coupled orbit-attitude propagator, D-SPOSE presented
in Section 1.4.2. The high-accuracy modelling of atmospheric drag effects enabled by D-SPOSE
is of paramount importance to establishing a deorbitation strategy by prescribing attitude motion.
Consequently, we implemented active attitude control [81] in D-SPOSE to enforce the resonance
condition that would otherwise drift.

5.1 φ -tracking criteria for orbital resonance

As concluded in Section 4.3, under the single resonance assumption, the secular eccentricity rate
is governed by its resonant ( j,k)-term, whereas the contributions from other terms average out
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to a null long-term effect. Therefore, the maximum increase rate is achieved by appropriately
modulating the rotation angle φ . A similar resonant effect can also be produced to decrease the
semi-major axis by using the same approach. In this light, we subsequently present the derivation
of the tracking criterion on φ to generate a resonance in eccentricity and the tracking criterion to
produce a resonance in semi-major axis.

5.1.1 Eccentricity resonance tracking criterion

The non-averaged eccentricity dynamics is dictated by Eq. (2.51) as stated in Section 2.4:

de
dt

∣∣∣∣
STRP

=−CSTRP

√
1− e2

na

6
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j=1

T j

∞
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1
2(1+ e cosν)

)
+ . . .

sin(ψ j,k −ν)

2(1+ e cosν)
+ e

sin(ψ j,k)

(1+ e cosν)

] (5.1)

where the argument angle ψ̃ j,k is given by Eq. (2.52). For orbits with small eccentricities, i.e.,
e ≪ 1, Eq. (5.1) can be approximated by:

de
dt

∣∣∣∣
STRP

≈−CSTRP

√
1− e2

na

6

∑
j=1

T j

∞

∑
k=−∞

Ck

[
3
2

sin(ψ̃ j,k)+
1
2

sin(ψ j,k −ν)

]
(5.2)

Recall from Section 2.4.1, that ψ̃ j,k is slow-varying while ψ j,k − ν is fast-varying. Based on
Eq. (5.2), both terms could be made resonant. However, since the amplitude of a sin(ψ̃ j,k)-term
is three times that of the associated sin(ψ j,k − ν)-term, the former is selected as a candidate for
the resonance. We reiterate once again that, under the single-resonance assumption, the secular
evolution of the eccentricity is governed by its resonant STRP ( j,k)-term, therefore:

de
dt

∣∣∣∣
STRP

≈ ė j,k =−3
2

CSTRP

√
1− e2

na
T j Ck sin(ψ̃ j,k) (5.3)

The resonance condition, or the commensurability condition, can then be deduced from Eqs. (5.3)
and Eq. (2.52) as:

dψ̃ j,k

dt
= n1 Ω̇+n2 ω̇ +n3 (λ̇S + k α̇)

= n1 Ω̇+n2 ω̇ +n3 (k φ̇ +(1− k) λ̇S) = 0
(5.4)

Based on Eq. (5.3), the maximum eccentricity increase rate is achieved for ψ̃1,2 = −π

2 . The
(1,2)-resonance is chosen since, as already noted in Chapter 4, from Section 2.3, we have for∣∣∣ ε f−εb

ε f+εb

∣∣∣ < 0.5 and i < 90◦, T1C2 > T j Ck for all j ̸= 1 and k ̸= {0, 2}, while for k = 0, φ has no

effect on ψ̃ j,0. When i > 90◦, the (2,2)-resonance should be chosen instead. It is important to
mention that the ψ̃1,2 = −π

2 condition also enforces ˙̃ψ1,2 = 0, so that the necessary condition for
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resonance, i.e., the commensurability condition of Eq. (5.4), is implicitly satisfied. In this light, we
choose to implement an attitude controller to track:

ψ̃1,2 =−Ω−ω −λS +2φr,e-resonance =−π

2
(5.5)

where ψ̃1,2 is obtained from Eq. (2.52) with j = 1 and k = 2. From Eq. (5.5), the reference attitude
to be tracked, specifically the angle φr,e-resonance, is evaluated based on the observed values of Ω, ω

and λS as:

φr,e-resonance =
Ω+ω +λS − π

2
2

(5.6)

In Eq. (5.6), Ω, ω and λS are slow-varying angles with λ̇S almost constant, while the rates of Ω

and ω are mainly governed by the Earth’s J2 harmonics, and are respectively given by Ω̇J2 and
ω̇J2 from Eq. (B.2) in Appendix B. These depend on the values of a, e and i. For orbits in LEO,
the combination of Ω̇, ω̇ and λ̇S leads to periods on the order of weeks/months at the minimum
as noted in Section. 2.4.1; the resulting φr,e-resonance oscillations should therefore have a similar
period.

5.1.2 Semi-major axis resonance tracking criterion

The non-averaged semi-major axis dynamics is dictated by Eq. (2.55) as stated in Section 2.4:

da
dt

∣∣∣∣
STRP

=−CSTRP
2

n
√

1− e2

6

∑
j=1

T j

∞

∑
k=−∞

Ck
[
esin(ψ̃ j,k)+ sin(ψ j,k)

]
(5.7)

The subsequent derivation proceeds analogously to that of Section 5.1.1. Thus, for orbits with
small eccentricities, i.e., e ≪ 1, Eq. (5.7) can be approximated by:

da
dt

∣∣∣∣
STRP

≈−CSTRP
2

n
√

1− e2

6

∑
j=1

T j

∞

∑
k=−∞

Ck sin(ψ j,k) (5.8)

Under the single-resonance assumption, the secular evolution of the semi-major axis is governed
by its resonant STRP ( j,k)-term, therefore:

da
dt

≈ ȧ j,k =−CSTRP
2

n
√

1− e2
T j Ck sin(ψ j,k) (5.9)

The resonance condition, or the commensurability condition, can then be deduced from Eq. (5.9),
and using Eq. (2.29) we can write it as:

dψ j,k

dt
= n1 Ω̇+n2 (ω̇ + ν̇)+n3 (λ̇S + k α̇)

= n1 Ω̇+n2 (ω̇ + ν̇)+n3 (k φ̇ +(1− k) λ̇S) = 0
(5.10)
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Based on Eq. (5.9), the maximum semi-major axis decrease rate is achieved for ψ1,2 =
π

2 . As
for the eccentricity resonance, enforcing ψ1,2 =

π

2 also implicitly enforces the resonance condition
of Eq. (5.10). In light of this, we choose to track:

ψ1,2 =−Ω−ω −ν −λS +2φr,a-resonance =
π

2
(5.11)

where we made use of Eq. (2.29). From Eq. (5.11), the reference attitude to be tracked, φr,a-resonance,
is evaluated based on the observed values of Ω, ω , ν and λS as:

φr,a-resonance =
Ω+ω +ν +λS +

π

2
2

(5.12)

where ν is a fast-varying angle with ν̇ on the order of n (ν̇ ≈ n for e ≪ 1), the mean motion,
while Ω, ω and λS, as previously mentioned, are slow-varying angles. We then conclude using
Eq. (5.12), that the panel rotation rate magnitude is approximately:∣∣∣∣dφr,a-resonance

dt
(a)
∣∣∣∣≈ n

2
=

√
µ

a3
1
2

(5.13)

where we made use of n =
√

µ/a3. When tracking φr,a-resonance, the spacecraft completes one
rotation about every two orbits.

It is worth noting that, in theory, the sin(ψ̃ j,k)-terms in Eq. (5.7) could also be made resonant
by tracking ψ̃ j,k = ±π

2 , as is the case when enforcing an e-resonance (see Eq. (5.5)). However,
for small eccentricities, the magnitude of the effect is also small. These terms are therefore not
considered for a φ -resonance in a. It is also important to mention that, as previously noted, ψ̃ j,k

is slow-varying. The required rotation rate to make any of the sin(ψ̃ j,k)-terms resonant is equally
slow. Coupling between these and the sin(ψ j,k)-terms is therefore not possible when enforcing a
particular resonance in a. This conclusion is also valid regarding the impact of tracking ψ j,k =

±π

2 , as is the case when enforcing an a-resonance (see Eq. (5.11)), on the sin(ψ j,k)-terms in the
eccentricity equation of motion, Eq. (5.2).

5.2 Implementation in D-SPOSE

The objective of this section is to numerically verify, using the high-fidelity propagator D-SPOSE
[65]–[67], that a STRP-J2-φ resonance in both e and a is achievable in a realistic orbital envi-
ronment, and can lead to deorbitation of a plate-like spacecraft notwithstanding the simplifying
assumptions made when deriving the resonance criteria in the previous section. We first describe
how the tracking criteria for both an e-resonance and an a-resonance are computed in D-SPOSE.
Then, the implementation of the tracking control law is outlined, and finally, numerical results
confirming the validity of the resonance strategies for deorbitation are presented.
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5.2.1 Tracking criteria computation

Recalling from Chapter 1, D-SPOSE explicitly propagates, with high accuracy, the coupled orbital-
attitude dynamics of a body in space. Specifically, D-SPOSE propagates, for a fixed time step, the
absolute position and velocity vectors expressed in FECI (r and v) as well as the quaternion repre-
sentation of Fb’s orientation with respect to FECI (q) and its absolute angular velocity expressed
in the FECI frame (ωωωb).

In order to implement a control law to track φ = {φr,e-resonance, φr,a-resonance} from Eqs. (5.6) and
(5.12), the RAAN, Ω, and the argument of perigee, ω , must be computed from r and v. However,
the singularity of ω , when the eccentricity tends to 0, may become problematic [82]. To work
around this issue, we employ the equinoctial elements presented in Appendix A. In particular, with
the equinoctial parameters h and k computed from the values of r and v, the reference angle in
Eq. (5.6) for an e-resonance is rewritten as:

φr,e-resonance =
arctan2(h,k)+λS − π

2
2

(5.14)

where arctan2(h,k) = Ω+ω , and λS is obtained from the ephemeris for a specific epoch.
The reference angle in Eq. (5.12) for an a-resonance is rewritten in terms of the true longitude

L as:

φr,a-resonance =
L+λS +

π

2
2

(5.15)

where L = Ω+ω +ν is computed from r and v as per Curtis [69].

5.2.2 Tracking control law

In an unperturbed environment, the spacecraft’s rotation, initially set to be about a single body-
fixed axis, z−→b

, can be parameterized by a single angle, φ , about that axis. The consideration of the
complete 3-axis rotation of the spacecraft is, however, inevitable under the action of the perturbing
torques, and a different representation of the reference attitude is required. We choose to use the
Direction Cosine Matrix (DCM) and design the Proportional-Integral-Derivative (PID) control law
accordingly. This yields the following expression for the computation of the control torques [81]:

τττc = Kp

(
Cb,r −CT

b,r

)V
−Kd ωωωb +Ki

∫ t

0

(
Cb,r −CT

b,r

)V
dt (5.16)

The notation Cb,r characterizes the DCM orientation of the body-fixed frame Fb relative to the
reference attitude frame Fr. The control gain matrices are such that Kp = diag{Kp1, Kp2, Kp3},
Kd = diag{Kd1, Kd2, Kd3} and Ki = diag{Ki1, Ki2, Ki3}. The uncross operator [·]V appearing in
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Eq. (5.16) is defined for a skew-symmetric matrix as: 0 −a3 a2

a3 0 −a1

−a2 a1 0


V

=

a1

a2

a3

 (5.17)

The attitude error between Fb and Fr is obtained as follows:

Cb,r = Cb,ECI CECI,r (5.18)

The DCM representing the orientation of the inertial frame FECI relative to Fr is computed from
the reference rotation angle φr with:

CECI,r = C1(−ε̄)C3(−φr)

=

 cosφr −sinφr 0

cos ε̄ sinφr cos ε̄ cosφr −sin ε̄

sin ε̄ sinφr sin ε̄ cosφr cos ε̄

 (5.19)

where Cx for x = {1, 2, 3} represents the principal x DCM and ε̄ = 23.43◦ is the mean obliquity of
the ecliptic. The DCM representing the attitude of the body frame Fb relative to FECI of Eq. (2.6)
is computed from the quaternion q = [q0 qT

1:3]
T with q1:3 = [q1 q2 q3]

T using:

Cb,ECI =

 q2
0 +q2

1 −q2
2 −q2

3 2(q1 q2 +q0 q3) 2(q1 q3 −q0 q2)

2(q1 q2 −q0 q3) q2
0 −q2

1 +q2
2 −q2

3 2(q0 q1 +q2 q3)

2(q0 q2 +q1 q3) 2(q2 q3 −q0 q1) q2
0 −q2

1 −q2
2 +q2

3

 (5.20)

The control torque of Eq. (5.16) is applied in the rotational equations of motion implemented in
D-SPOSE for the propagation duration.

5.2.3 Numerical verification

With the attitude tracking controller defined, we can now verify that a STRP-J2-φ resonance in
e and in a can lead to the deorbitation, i.e., a final altitude lower than 200 km, of a plate-like
spacecraft in a realistic environment. Propagations are thus carried out in D-SPOSE under the
attitude control law of Eq. (5.16) for φr = {φr,e-resonance, φr,a-resonance} where the accelerations and
torques due to the following perturbations are included:

• STRP: Eq. (2.14) for a constant radiation pressure1 Pr =
1,361

c
N

m2

1c = 299,792,458 m/s represents the speed of light
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• gravitational field: EGM2008 up to degree and order 5

• drag: NRLMSISE-00 with constant equivalent planetary amplitude Ap = 15 and solar radio
flux F10.7 cm = 140 sfu

• Earth shadow: geometric model with penumbra transition as implemented in D-SPOSE [65]

The above are the same perturbations as included in the simulations of Section 4.2, but in this
section, the torques are also considered along with higher order geopotential terms.

The O2 orbit introduced in Chapter 4 is used to initialize the simulations, and the propagations
are carried out using the spacecraft model of Chapter 4 as well. The orbital parameters of O2 are
recalled in Table 5.1 (same orbit as in Table 4.2), and the parameters employed to model the panel
are recalled in Table 5.2 (same parameters as in Table 4.1 for Aeff

m = 1 m2/kg).

Table 5.1: Orbital initial conditions for O2 (as per Table 4.2)

a (km) e i (◦) β Ω (◦) ω (◦) ν (◦)
O2 8,078 0.01 60 0.78 0 0 45

Table 5.2: Spacecraft model parameters

Parameter Description Value Units
m mass 23.166 kg
ly length along y

−→b
3.3 m

lz length along z−→b
9 m

Anom nominal area ly lz = 29.7 m2

Ixx moment of inertia in x m
12

(
l2
y + l2

z
)
= 177.4 kg.m2

Iyy moment of inertia in y m
12 l2

z = 156.4 kg.m2

Izz moment of inertia in z m
12 l2

y = 21.02 kg.m2

Cd drag coefficient 2.2 -
σa absorptivity 1 -
σrs specular reflectivity 0 -
σrd diffuse reflectivity 0 -
ε f front side emissivity 0.81 -
εb back side emissivity 0.85 -

Recall that the O2 orbit is selected as a test case and is not associated with any specific known
spacecraft. The spacecraft is modelled as a black body (σa = 1), but with the emissivity parameters
of the GOES-8 solar panel (ε f = 0.81 and εb = 0.85) [83]. Given these thermal properties, we
conclude that the thermal radiation has a negligible effect on the spacecraft dynamics with ε f−εb

ε f+εb
=

0.0241. The spacecraft dimensions are taken to be those of Starlink’s solar panel; a 9 m x 3.3 m
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rectangular plate [31]. The propagation is initialized for a rotation angle φ = 0◦ at epoch T1: 2000-
01-01T00:00:00. It is carried out with a fixed time step of 30 sec, and Kp = 0.0047I3, Kd = 1.56I3

and Ki = 3.90e-5I3 as control gains. A small time step of 30 sec is required due to the attitude
modelling and attitude control during the propagation.

The results for the orbital time responses obtained when implementing φr = {φr,e-resonance,

φr,a-resonance} are presented in Fig. 5.1 (purple curves for e-resonance and green curves for a-
resonance) where they are compared to the equivalent results of Fig. 4.8 (yellow curves) obtained
for a constant φ̇ =−3.9645e-06◦/sec. It is noted that these latter results were obtained by neglect-
ing perturbing torques and higher geopotential terms. The results for the attitude time responses are
presented in Figs. 5.2 and 5.3 for the eccentricity and the semi-major axis resonances respectively.

0 5 10 15 20 25
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0 5 10 15 20 25 30
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0 5 10 15 20 25 30
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1500

Figure 5.1: Orbital time response with tracking of φr = {φr,e-resonance, φr,a-resonance} when propagating O2
in D-SPOSE (purple and green curves) under STRP, J2 and drag perturbing accelerations and torques for a
time step of 30 sec compared to the results with constant φ̇ of Fig. 4.8 (yellow curves)

From Fig. 5.1, we can conclude that for the e-resonance (purple curves), a complete deorbi-
tation is achievable within 28 years and 5 days. Also, at a threshold perigee altitude of around
600 km which is reached after 24 years, the drag perturbation becomes the driving force toward
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Figure 5.2: Attitude and resonant angle ψ̃1,2 time responses when propagating O2 in D-SPOSE with track-
ing of φr = φr,e-resonance under STRP, J2 and drag perturbing accelerations and torques for a time step of 30
sec with Kp = 0.006I3, Kd = 2I3, Ki = 5e-5I3 compared to attitude response for φ̇ = −3.9645e-06◦/sec
(yellow curve)

the spacecraft’s re-entry, as shown by the drastic decrease in semi-major axis after this time. We
can also observe that, in the region where the drag effect is small and the eccentricity dynamics is
mainly governed by the STRP disturbance (t ∈ [0, 24] yr), the amplitude of the eccentricity varia-
tion is not bounded. This is in line with the resonant ψ̃1,2 angle response of Fig. 5.2 remaining in
the vicinity of 270◦ (−π

2 ) throughout the propagation. From Fig. 5.2, we further conclude that, for
the e-resonance with φ tracking, the slight variation in the rotation angle rate (φ̇ , the slope of the
φ response) is sufficient to deorbit the spacecraft completely, and that, with only a small control
torque τc on the order of 10−5 N·m.

Fig. 5.1 also shows that when enforcing full attitude control to track φr = φr,a-resonance (green
curves) on a spacecraft initially in O2 and subject to perturbing accelerations and torques, the
STRP-J2-φ resonance in semi-major axis can lead to deorbitation within 17 years and 123 days.
This is about 1.6 times faster than when tracking φr = φr,e-resonance under the same conditions
(purple curves). Moreover, Fig. 5.3 confirms the result of Eq. (5.13), stating that the magnitude
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Figure 5.3: Attitude and resonant angle ψ1,2 time responses when propagating O2 in D-SPOSE with track-
ing of φr = φr,a-resonance under STRP, J2 and drag perturbing accelerations and torques for a time step of 30
sec with Kp = 0.006I3, Kd = 2I3, Ki = 5e-5I3. Note, the horizontal scale is in hours

of the rate of change of the attitude angle φ is half the orbital rate. Indeed the panel executes a
complete revolution about its z−→b

axis in two orbital periods as indicated by the vertical solid black
lines in the figure.

In the following section, we present an estimation method for the maximum descent rate asso-
ciated with the STRP-J2-φ resonance in eccentricity and semi-major axis.

5.3 Resonance descent rate estimation

The fundamental idea of this study is to exploit the resonance effect to increase the orbital ec-
centricity or decrease the semi-major axis of a spacecraft initially located at a high LEO altitude
(>1000 km), with the ultimate goal of lowering its altitude to a threshold altitude of 600 km, at
which, the atmosphere is sufficiently thick for the atmospheric drag to deorbit the spacecraft in
a short period of time—few years or even months depending on the ballistic coefficient and the
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environment. In this context, as already mentioned, the parameter of interest for the deorbitation
of a spacecraft is its altitude, or more specifically the altitude of its orbit perigee hp—the point
of the orbit at which the magnitude of the atmospheric drag is the most significant. The perigee
altitude is related to the eccentricity and semi-major axis through:

hp = a(1− e)−Re (5.21)

Its time rate can thereby be expressed as:

dhp

dt
= (1− e)

da
dt

−a
de
dt

(5.22)

In LEO, only orbits with low eccentricities are realistic, typically e < 0.2, thus Eq. (5.22) can be
approximated by:

dhp

dt
≈ da

dt
−a

de
dt

(5.23)

Descent rate for eee-resonance: The proposed solution aims at exploiting the STRP-J2-φ resonance
in e in the region where drag effects are either small or almost non-existent. We defined this region
as any altitude above 600 km, and we assume that, in this zone, the semi-major axis changes slowly
enough so that ȧ ≈ 0, yielding the estimated perigee descent rate from Eq. (5.23):

ḣp,e-resonance ≈−a ė (5.24)

for small eccentricity orbits. Eq. (5.24) can be further approximated for a (1,2)-resonance with
ψ̃1,2 = −π

2 by making use of Eq. (5.3). Dropping the e2-term and using n =
√

µ/a3, the altitude
of perigee for a panel subject to a (1,2)-resonance in e thus varies at a rate of approximately:

ḣp,e-resonance ≈−3
2

CSTRP

√
a3

µ
T1(ε, i)C2 (5.25)

where we recall CSTRP = Pr β
Anom

m , with the constant radiation pressure Pr =
1,361

299,792,458
N

m2 .
Fig. 5.4 illustrates Eq. (5.25) in terms of a and i for a (1,2)-resonance, β = 1 and Anom

m C2 =

1m2

kg C2,bb where C2,bb = 0.2122 (see Eq. (2.30) for σa = 1) is the optical coefficient of a black body.
From the results in Fig. 5.4, the maximum descent rate in LEO can be approximately bounded, for
an e-resonance, by:2

ḣp,e-resonance ∈ [−53,−19] km/yr ×β
Anom

m
(m2/kg)

C2

C2,bb
(5.26)

2Based on Eq. (2.30), 1 ≤ C2
C2,bb

≤ 4
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It is important to note that T2(ε, i) = T1(ε,π − i), therefore, if i > 90◦, the maximum descent rate
is obtained for a (2,2)-resonance, in which case, it can be deduced from Fig. 5.4 by substituting
π − i for i.

Figure 5.4: Estimated perigee descent rate given by Eq. (5.25) as a function of i and a for a (1,2)-resonance
with β = 1 and Anom

m C2 = 1 m2

kg C2,bb

Descent rate for aaa-resonance: As reflected by the simulation results of Section 5.2.3, when ex-
ploiting the a-resonance for deorbitation, the eccentricity remains almost constant. It is therefore
reasonable to assume ė ≈ 0, yielding the estimated perigee descent rate from Eq. (5.23):

ḣp,a-resonance ≈ ȧ (5.27)

for small eccentricity orbits. Similarly as for Eq. (5.24), Eq. (5.27) can be approximated for a
(1,2)-resonance with ψ1,2 =

π

2 by making use of Eq. (5.7):

ḣp,a-resonance ≈−2CSTRP (1− e)

√
a3

µ
T1(ε, i)C2 (5.28)
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Comparing Eq. (5.28) to Eq. (5.25), we find that, for identical initial conditions, the expected
descent rate of hp when exploiting a a-resonance is about 4

3 times larger than when exploiting a
e-resonance. We can thus deduce from Fig. 5.4 the boundaries on the perigee altitude descent rate
for an a-resonance in LEO. These are:

ḣp,a-resonance ∈ [−71,−26] km/yr × (1− e)β
Anom

m
(m2/kg)

C2

C2,bb
(5.29)

The ḣp estimates obtained here indicate that the feasibility of deorbitation within a reasonable
time frame depends on the spacecraft Anom

m and optical properties, and which strategy is employed—
the e-resonance or the a-resonance. It is important to mention that the results obtained in this
section serve as an approximation of the descent rate, and hold only under the single resonance
assumption. In the following section, we evaluate different scenarios associated with several orbits
for which deorbitation is achieved within the 25-year IADC guideline.

5.4 Deorbitation test cases with φ -tracking

In this section, the three cases of Table 5.3 are simulated to illustrate how the deorbitation solutions
exploiting the STRP-J2-φ resonances in e and a can be used to fully deorbit a spacecraft within
25 years, given different initial conditions and spacecraft properties. For each orbit case, the two
methods are defined with the corresponding reference angles, in particular, φr = {φr,e-resonance,

φr,a-resonance} given by Eqs. (5.14) and (5.15). The propagations are initialized for a rotation angle
φ = 0◦ at epoch T1: 2000-01-01T00:00:00. The model parameters of Table 5.2 are still used but
with the masses and optical coefficients as per last columns of Table 5.3.3 The control gains are
adjusted based on the spacecraft mass m for each propagation case as:

Kp = 0.006
m

29.7 kg
I3 , Kd = 2

m
29.7 kg

I3 , Ki = 5e-5
m

29.7 kg
I3 (5.30)

Table 5.3: Orbital initial conditions and associated spacecraft model parameters

a (km) e i (◦) Ω (◦) ω (◦) ν (◦) m (kg) (σrs, σrd, σa)

O3 7,200 0.001 20 0 0 45 227 (0.16, 0.25, 0.59)
O4 8,400 0.001 20 0 0 45 29.7 (1, 0, 0)
O5 7,400 0.001 45 0 0 45 56 (0, 0, 1)

It is noted that the O3 parameters in Table 5.3 were chosen to represent a plausible case scenario
for a mega-constellation satellite:

• initial altitude in mid-LEO, about 800 km;
3The parameters Ixx =

m
12

(
l2
y + l2

z
)
, Iyy =

m
12 l2

z and Izz =
m
12 l2

y are adjusted as well as per the new value of m.
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• realistic optical properties for a solar panel, in this case, the mean values of Envisat’s solar
array [84];

• realistic area and mass properties, taken to be those of the first Starlink satellites: m= 227 kg
and Anom = 29.7 m2 [31].

The nominal area-to-mass ratio and optical coefficients of case O4 is representative of a spacecraft
equipped with a perfectly reflective area-augmentation device (Anom

m = 1 m2/kg and σrs = 1). The
case of O5 represents nothing in particular: it was selected as an intermediate test case.
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Figure 5.5: Propagation results for cases O3 to O5 of Table 5.3 in D-SPOSE with tracking of φr,e-resonance
under STRP, J2 and drag perturbing accelerations and torques for a time step of 30 sec

Figs. 5.5 and 5.6 show the propagation results for cases O3 to O5 of Table 5.3 exploiting
a STRP-J2-φ resonance in e and in a respectively. The slopes of the dashed lines in Figs. 5.5
and 5.6, ḣp,e-res. from Eq. (5.25) and ḣp,a-res. from Eq. (5.28) respectively, are given in Table 5.4
along with the respective deorbitation times for all three cases. We make a note that the initial
value of semi-major axis, a = a(t = 0), was used to approximate ḣp,e-res., while a median value of
a = 1

2(a(t = 0)+alim) was used to approximate ḣp,a-res. with alim = 600 km+Re representing the
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Figure 5.6: Propagation results for cases O3 to O5 of Table 5.3 in D-SPOSE with tracking of φr,a-resonance
under STRP, J2 and drag perturbing accelerations and torques for a time step of 30 sec

Table 5.4: Estimated descent rate (from Eqs. (5.25) and (5.28)) and deorbitation times for the propagations
of the three initial orbits and spacecraft properties of Table 5.3

β
C2

C2,bb

Anom
m (kg/m2) ḣp,e-res. (km/yr) ḣp,a-res. (km/yr) Te−res. (yr) Ta−res. (yr)

O3 0.67 1.873 0.13 -6.66 -8.67 24.7 12.9
O4 0.74 4 1.00 -153 -179 10.3 7.69
O5 0.73 1 0.53 -14.6 -18.6 25.2 11.9

limit at which drag becomes the driving force towards the re-entry. This is justified by the fact that,
in the region where the atmospheric drag is negligible—altitudes above 600 km—the semi-major
axis remains almost constant for an e-resonance, while it decreases at an almost constant rate for
an a-resonance.

The results of Figs. 5.5 and 5.6 confirm that the exploitation of the STRP-J2-φ single reso-
nance can enable the deorbitation of the spacecraft within 25 years for certain orbits and spacecraft
properties. The results confirm the validity of ḣp,e-res. from Eq. (5.25) and ḣp,a-res. from Eq. (5.28)
(dashed lines) to approximate the descent rate of a plate-like spacecraft subject to a φ -resonance
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above 600 km. We can therefore extrapolate from these results and conclude that the higher the
area-to-mass ratio, Anom

m , and/or the optical coefficient, C2, the faster the decay. This was high-
lighted by the considerably steeper descent—both for the e-resonance and the a-resonance—of
the 1 m2/kg perfectly reflective spacecraft of the O4 case in comparison to that of the O3 and O5
cases. We can further confirm that, still under single-resonance conditions, the descent rate for a
semi-major axis resonance is considerably faster than for an eccentricity resonance.

The results presented in this section are all obtained for a spacecraft subject to a single res-
onance. Coupling is however possible and specifically arises between the (1,k) and the (2,−k)-
terms for any Sun-synchronous orbit. In the following section, we investigate the impact of such
coupling between two e-resonant terms.

Deorbitation from Sun-synchronous orbit

A Sun-synchronous orbit is defined as an orbit for which Ω̇ = λ̇S. Since Ω̇ is mainly governed by
the secular effect of the Earth’s second zonal harmonics, an orbit is Sun-synchronous when:

Ω̇J2 =−3
2

J2 R2
e n

a2 (1− e2)2 cos i = λ̇S (5.31)

The expression for Ω̇J2 comes from Appendix B. For Sun-synchronous orbits, the commensura-
bility condition of Eq. (5.4) for a (1,k)-resonance and a (2,−k)-resonance become identical:

dψ̃2,−k

dt
=−ω̇ + kα̇ =

dψ̃1,k

dt
= 0 (5.32)

Since the commensurability condition is met for both the (1,k)-term and the (2,−k)-term, both are
resonant and both are likely to have a non-negligible long-term effect. If ψ̃1,k =−π

2 is tracked, as in
Eq. (5.5) for a (1,2)-resonance in eccentricity, then the second resonant angle takes the following
value:

ψ̃2,−k = 2(Ω−λS)−
π

2
(5.33)

We recall that the impact of a resonant angle on the eccentricity rate is modulated by the sine
function of this resonant angle, as can be gathered from Eq. (5.3). We thus conclude from Eq. (5.33)
that, when tracking ψ̃1,k = −π

2 , the contribution of the second resonant term, the (2,−k)-term,
depends on the RAAN, Ω, and the longitude of the Sun λS. In light of this, we propagate, under
the exact same conditions as before, the motion of a Anom

m = 1 m2/kg black body (σa = 1) initially in
the Sun-synchronous orbits of Table 5.5, starting at epoch T1: 2000-01-01T00:00:00 (λS = 280.9◦)
and rotation angle φ = 0◦. The propagations are carried out for a (1,2)-resonance in eccentricity by
tracking φr,e-resonance as given in Eq. (5.14). Based on the values of ψ2,−2, computed with Eq. (5.33)
and given in Table 5.5 for the initial conditions of cases O6.1 to O6.3, the resonant-(2,−2) term is
expected to either contribute to the increase in eccentricity generated by the (1,2)-resonance (case
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O6.3, with sin(270◦)< 0), oppose it (case O6.1, with sin(68.2◦)> 0), or leave it unaffected (case
O6.2, with sin(0◦) = 0). This will be further discussed shortly.

Table 5.5: Orbital initial conditions for a Sun-synchronous orbit with varied RAAN starting at epoch T1:
2000-01-01T00:00:00 (λS = 280.9◦)

a (km) e i (◦) Ω (◦) ω (◦) ν (◦) ψ̃1,2 (◦) ψ̃2,−2 (◦)
O6.1 8,059 0.001 103 0 0 45 270 68.2
O6.2 8,059 0.001 103 325.9 0 45 270 0
O6.3 8,059 0.001 103 280.9 0 45 270 270

Figs. 5.7 and 5.8 show the orbital time responses for a, e and hp, and the resonant angle time
responses for ψ̃1,2 and ψ̃2,−2 to be compared to the eccentricity response. We gather from Fig. 5.8
that, although the initial settings are such that ˙̃ψ2,−2 = 0, this condition does not firmly hold as the
orbit of the spacecraft evolves under the action of external perturbations. Since the tracking law
is set to enforce the (1,2)-resonance, these perturbations cause the (2,-2) resonant angle ψ̃2,−2 to
drift over time. We can also observe from the angle responses of case O6.1 (blue curves) that it is
difficult to track precisely ψ̃1,2 =−π

2 when the eccentricity is almost null.
Furthermore, for the particular case of O6.1, because sin(ψ̃2,−2) > 0 initially, and because

i = 103◦ > 90◦ and σa = 1, C−2T2 > C2T1 (see Eqs. (2.30) and (2.23)); the contribution of
the sin(ψ̃2,−2)-term to the decrease in eccentricity is thus stronger than the contribution of the
sin(ψ̃1,2)-term to its increase leading e to remain near zero all through the first 18 years of the
propagation. The effect reduces as sin(ψ̃2,−2) diminishes, and is reversed when ψ̃2,−2 crosses the
180◦ threshold at which point sin(ψ̃2,−2) becomes negative. Similar conclusions to these presented
for O6.1 can be drawn from the results of cases O6.2 (orange curves) and O6.3 (yellow curves)
based on the values of sin(ψ̃2,−2) over time. Particular attention must thus be paid to the ini-
tial conditions for Ω and λS when evaluating the possibility of exploiting STRP-J2-φ resonances
for deorbitation. Indeed, depending on these, the effect could be completely cancelled or, on the
contrary, it could be greatly enhanced.

The same conclusions can be drawn for an a-resonance; however, because of the larger change
in semi-major axis when exploiting this resonance, the rate of the second resonant angle—ψ̇2,−2

in the case of an a-resonance—diverges more quickly from 0, thus breaking the commensurability
condition.

5.5 Concluding Remarks

To conclude, we demonstrated in this chapter that, it is feasible to deorbit a spacecraft subject to
STRP, J2 and drag perturbations, by generating a resonance either in eccentricity or semi-major
axis. This was achieved by tracking φr to enforce: ψ̃1,2 = −π

2 for an e-resonance, or ψ1,2 = π

2
for an a-resonance. This particular strategy was shown to overcome the limitation on the reso-
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Figure 5.7: Orbital results over for cases O6.1 to O6.3 of Table 5.5 in D-SPOSE with tracking of φr,e-resonance
under STRP, J2 and drag perturbing accelerations and torques for a time step of 30 sec

nance strength and amplitude when φ̇ is constant, therefore allowing the spacecraft to descend to
a sufficiently low altitude (∼ 600 km) to be deorbited by the action of atmospheric drag.

These findings were also verified in a realistic environment modelled by D-SPOSE where the
full dynamics was propagated while including STRP, geopotential and atmospheric perturbing
accelerations as well as torques. The PID control law employed was shown to be robust to perturb-
ing torques. The deorbitation strategy suggested was applied to four distinct simulation scenarios
from which we can conclude that, in order to deorbit a satellite from a high LEO altitude, the
nominal area-to-mass ratio must be significantly high Anom

m > 0.5 m2/kg, i.e., the spacecraft must
be equipped with an area-augmentation device.

Finally, investigation of the special case of a spacecraft in a Sun-synchronous orbit for which
there is an inherent coupling between the (1,k)-resonance and the (2,−k)-resonance highlighted
the importance of the initial RAAN and longitude of the Sun values on the secular evolution of
the eccentricity for this particular scenario, whereas these are of small significance for a single-
resonance scenario.
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Figure 5.8: Resonant angles results for cases O6.1 to O6.3 of Table 5.5 in D-SPOSE with tracking of
φr,e-resonance under STRP, J2 and drag perturbing accelerations and torques for a time step of 30 sec
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Chapter 6

Comparison to Other Deorbitation
Strategies

In Chapter 5, we demonstrated that it is possible to generate a resonance of considerable strength
either in semi-major axis or eccentricity, referred to as the φ -resonance, for a plate-like spacecraft,
in arbitrary orbit. This requires adopting a specific rotational motion of the spacecraft, i.e., pre-
scribing the attitude angle φ appropriately which is enforced through controlled rotational motion.

Other end-of-life strategies involving rotating the spacecraft have also been suggested in the
literature as potential solutions for the deorbitation of plate-like spacecraft. Borja and Tun [49]
proposed the use of a bang-bang reorientation scheme to maximize the global effect of the STRP
on the semi-major axis decrease by either minimizing or maximizing the Sun exposed surface
appropriately. Colombo et al. [50] developed a similar strategy to increase eccentricity. Solutions
aiming to change the orbit’s semi-major axis were also developed for spacecraft equipped with a
perfectly reflective solar sail. One may refer to [85], [86] for more information, specifically on
end-of-life strategies proposed for solar sails.

To assess the effectiveness of the deorbitation strategies proposed in Chapter 5, the solutions
are evaluated and a comparison is made to the two different deorbitation strategies proposed by
Colombo et al. [50], and Borja and Tun [49] for five distinct use cases. A computation of the
energy budget is finally performed to evaluate and compare the feasibility of deorbitation strategies
exploiting the semi-major axis variation; these are shown to be much more efficient than those
exploiting the eccentricity variation when not in the vicinity of a deorbitation corridor.

6.1 Bang-bang approaches to deorbitation exploiting STRP

In this section, we present two alternate deorbitation methods which are based on a similar prin-
ciple: to prescribe the attitude of a plate-like spacecraft, or a sail, to amplify the secular effect of
the STRP on the altitude. The first method from [50], referred to here as e-bang-bang, exploits
the STRP to increase the eccentricity by employing a bang-bang approach, or on-off approach, to
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attitude change. The second scheme from [49], a-bang-bang, also uses a bang-bang strategy, but to
reduce the semi-major axis instead. We briefly summarize both solutions and derive the reference
attitude angle using the same formalism as in Chapter 5.

6.1.1 e-Bang-bang

Colombo et al. [50] propose to modulate the projected effective area-to-mass ratio
(

Aeff
m cosα ,

with Aeff
m as per Eq. (2.71)

)
either to maximize or to minimize the SRP acceleration depending

on its effect on the eccentricity. For consistency, we also account for the thermal acceleration
in our implementation of their deorbitation solution. The logic for the modulation of the STRP
acceleration magnitude is therefore defined as:

aSTRP =


aSTRP,max

aSTRP,min

if
sign

(
de
dt

∣∣∣∣
STRP

)
≥ 0

sign

(
de
dt

∣∣∣∣
STRP

)
< 0

(6.1)

Recall that e refers to the orbit-averaged eccentricity.
Colombo et al. [50] further claim that for a sail, equivalent to a plate-like spacecraft, one way

to modulate the effective area-to-mass ratio is by changing the sail attitude so that it is either in
face-on mode or edge-on mode with respect to the Sun.
Face-on mode: The panel is fully facing the Sun so that u−→∥ n−→ (cosα = 1), the STRP acceleration
is maximal, and the eccentricity secular rate is governed by [17]:

de
dt

∣∣∣∣
STRP,face-on

=
1

na2 e

(
−
√

1− e2 ∂RSRP

∂ω

)
(6.2)

where

∂RSRP

∂ω
=

3
2

Pr cR
Anom

m
a4 n2 e

µ

{
cosω

(
cosΩ cosλS + sinΩ sinλS cosε

)
+ . . .

sinω
(
cosΩ cos i sinλS cosε + sin i sinλS sinε − sinΩ cos i cosλS

)} (6.3)

with cR the reflectivity coefficient. For consistency with the formulation of eccentricity dynamics
used in this thesis and to account for the TRP, we rewrite Eq. (6.2) in the following form:

de
dt

∣∣∣∣
STRP,face-on

=−3
2

Pr
Anom

m
σeff

√
1− e2

na

6

∑
j=1

T j sinψ j (6.4)

with ψ j = n1 Ω+ n2 ω + n3 λS and the effective STRP coefficient of Eq. (2.32) employed in lieu
of the reflectivity coefficient cR from [17]. We notice here that the magnitude of the STRP for the
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bang-bang strategy is modulated by the effective STRP coefficient, σeff of Eq. (2.32), instead of the
Ck coefficient of Eq. (2.30) (compare equations of motion (5.2) and (6.4)). As well, all six j-terms
are included instead of only a single (resonant) term in the resonance strategy, which implies that
the efficacy of the two solutions cannot be compared solely on the basis of Ck and σeff values.
Edge-on mode: The panel’s normal is exactly perpendicular to the Earth-Sun line so that n−→⊥ u−→
(cosα = 0) which yields a null scenario:

de
dt

∣∣∣∣
STRP,edge-on

= 0 (6.5)

In this mode, the surface of the panel exposed to the Sun is null. Therefore, the STRP acceleration
is also null as per Eq (2.14) and has no effect on the eccentricity.

As for the e-resonance method, only the eccentricity secular evolution is considered in [50]. Its
sign can be obtained from the eccentricity averaged equation of motion Eq. (6.4):

sign

(
de
dt

∣∣∣∣
STRP

)
= sign

(
−

6

∑
j=1

T j sinψ j

)
(6.6)

We note here that if the component of the STRP acceleration along-track (see as,STRP from Eq. (B.3)
in Appendix B) is positive, then the averaged eccentricity increases; otherwise it decreases. As
mentioned in Section 2.2.1, the z−→b

-axis of the panel is set to be aligned with the Sun’s angular
momentum h−→S

. Then, based on Eq. (2.10), u−→ is aligned with n−→ when φ = λS, and, u−→ is perpen-
dicular to n−→ when φ = λS ±π/2. Following the logic of Eq. (6.1) along with Eq. (6.6), we thus
define the reference angle of the panel required to increase the eccentricity as:1

φr,e−bang-bang =


λS

λS +
π

2

if

sign

(
−

6

∑
j=1

T j sinψ j

)
≥ 0

sign

(
−

6

∑
j=1

T j sinψ j

)
< 0

(6.7)

The results presented in [50] were obtained in an environment subject to the SRP acceleration
only by using the averaged eccentricity equation of motion. Bearing this in mind, in Fig. 6.1,
we compare the eccentricity e and perigee altitude hp responses for the propagation of O2 in D-
SPOSE with the tracking of φr,e−bang-bang including both the SRP and the geopotential (GP) (up
to degree and order 2) accelerations to those obtained with only the SRP acceleration. We are
neglecting the thermal radiation and shadow effects for this comparison since they were ignored
in [50]. From Fig. 6.1, we notice a significant loss of efficiency (∼20%) over 12 years caused
by including the geopotential perturbations. Also, the higher number of steps, clearly visible in
the e and hp responses of Fig. 6.1, when including the geopotential perturbation (orange curve)

1For the edge-on case, φr = λS +π/2 was chosen arbitrarily. Choosing φr = λS −π/2 would yield the same results
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indicates a considerable increase in the rate at which the panel switches from its aSTRP,max mode
to its aSTRP,min mode. We thus conclude that the efficiency claim made by Colombo et al. [50]
may be considerably degraded by additional perturbations, but overall, the solution is successful
in generating an increase in eccentricity.

0 2 4 6 8 10 12
0

0.05

0.1

0 2 4 6 8 10 12

400

600

800

1000

1200

Figure 6.1: 12-year propagation of O2 with tracking of φr,e−bang-bang obtained using D-SPOSE including
SRP only (blue) vs. SRP and geopotential accelerations (orange)

6.1.2 a-bang-bang

For this next deorbitation method, we are following Borja and Tun [49] who suggested that it is
possible to obtain a net change in the semi-major axis by reorienting a spacecraft’s solar panels
twice per orbit, either to maximize or to minimize the SRP acceleration according to its effect on
a. In our implementation, we use the following logic for the modulation of the STRP acceleration
magnitude:

aSTRP =


aSTRP,max

aSTRP,min

if
s−→· u−→≤ 0

s−→· u−→> 0
(6.8)
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where we recall from Section 2.2.1, s−→ is the along-track vector aligned with the spacecraft veloc-
ity. For this solution, as for the e-bang-bang solution, the plate-like spacecraft is either in face-on
mode ( n−→ ∥ u−→) or in edge-on mode ( n−→⊥ u−→).
Face-on mode: The panel is fully facing the Sun so that u−→ ∥ n−→ yielding the maximum STRP
acceleration as given by Eq. (2.31). Resolving it in the local vertical/local horizontal frame FLVLH,
we get: {

ar,STRP

as,STRP

}
face-on

=−CSTRP σeff

6

∑
j=1

T j

{
cosψ j

sinψ j

}
(6.9)

where ar,STRP is the radial component of the STRP acceleration and as,STRP is the along-track
component. In Eq. (6.9), σeff is as per Eq. (2.32), and:

ψ j = n1 Ω+n2 (ω +ν)+n3 λS (6.10)

is as per Eq. (2.22). From the semi-major axis equation of motion approximated for e ≪ 1 and
given by Eq. (2.56), we thus obtain in face-on mode:

da
dt

∣∣∣∣
STRP,face-on

≈−CSTRP
2

n
√

1− e2
σeff

6

∑
j=1

T j sin(ψ j) (6.11)

We note that, in this mode, the perturbing acceleration is aligned with u−→ (see Eq. (2.31)), therefore
its component along s−→ in FLVLH (as,STRP) acts to reduce a when s−→· u−→ is negative. This confirms
the settings of the a-bang-bang solution in Eq. (6.8).
Edge-on mode: The panel’s normal is exactly perpendicular to the Earth-Sun line so that n−→⊥ u−→
and cosα = 0 which yields a null scenario:

da
dt

∣∣∣∣
STRP,edge-on

= 0 (6.12)

As for the e-bang-bang solution, in this mode, the surface of the panel exposed to the Sun is null,
therefore, the STRP has no effect on the semi-major axis.

Similar to the eccentricity maximization, we can define a condition to decrease the semi-major
axis based on the logic of Eq. (6.8):

φr,a−bang-bang =


λS

λS +
π

2

if
s−→· u−→≤ 0

s−→· u−→> 0
(6.13)

which defines the reference attitude angle for the a-bang-bang scheme.
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6.2 Numerical comparison

In this section, we compare, in a realistic environment, the efficiency of the four previously in-
troduced deorbiting strategies, namely a-resonance (Section 5.1.2), e-resonance (Section 5.1.1),
a-bang-bang (Section 6.1.2) and e-bang-bang (Section 6.1.1), and we do so for orbit test-cases
defined in Table 6.1. The simulation conditions are as before (Section 5.2.3)

For each orbit case, the four methods are defined with the corresponding reference angles,
in particular, φr = {φr,a−resonance, φr,e−resonance, φr,a−bang-bang, φr,e−bang-bang

}
given by Eqs. (5.12),

(5.6), (6.13) and (6.7). Table 5.2 model parameters are still used but with the masses and optical
coefficients as per the last columns of Table 6.1. The control gains are adjusted based on the
spacecraft mass m for each propagation case, based on Eq. (5.30).

Recall that the O3 parameters in Table 6.1 were chosen to represent a plausible case scenario
for a mega-constellation satellite and that the O4 parameters were selected to represent a spacecraft
equipped with a perfectly reflective area-augmentation device. Cases O2 and O5 were chosen to
highlight the effect of relevant parameters on the descent rate of the spacecraft for the four methods;
they do not represent any particular scenario. Finally, case O7 was defined to lie within the j = 1
passive eccentricity resonance corridor (or deorbitation corridor) associated with the values of
a = 7,600 km and e = 0.001. The resonant inclination i = 40.58◦ was computed by solving Cook’s
commensurability condition ψ̇1 = 0, at ψ1 =

π

2 (see Eq. (2.74)) as per [13]. This is equivalent to
solving Eq. (3.3) for which the Σi are related to the Keplerian parameters through Eqs. (2.40)
and (2.76). As mentioned in Chapter 1, this particular resonance leads to a passively accelerated
re-entry, and the resonance condition does not depend on the rotation rate of the spacecraft φ̇ .

Table 6.1: Orbital initial conditions and associated spacecraft model parameters

a (km) e i (◦) Ω (◦) ω (◦) ν (◦) m (kg) (σrs, σrd, σa)

O2 8,078 0.01 60 0 0 45 23.2 (0, 0, 1)
O3 7,200 0.001 20 0 0 45 227 (0.16, 0.25, 0.59)
O4 8,400 0.001 20 0 0 45 29.7 (1, 0, 0)
O5 7,400 0.001 45 0 0 45 56.0 (0, 0, 1)
O7 7,600 0.001 40.58 0 0 45 29.7 (0, 0, 1)

The a, e and hp time responses for O2, O3 and O7 are presented in Figs. 6.2 to 6.4 while few
cycles of the attitude responses for case O3 propagations are presented in Figs. 6.5 and 6.6, for the
a and e methods respectively. A summary of the propagation results for O2 to O7 is presented in
Table 6.2.

The first conclusion to draw from Figs. 6.2 and 6.3 is that when outside the passive resonance
corridor, exploiting the solar radiation pressure to decrease the semi-major axis is more effective
than exploiting it to increase the orbital eccentricity. Comparing the case of a-resonance to e-
resonance, the deorbitation time is reduced by a factor ranging from 1.3 to 2.1 for the considered
orbits. Also, outside the deorbiting corridor, i.e., excluding the O7 case, the bang-bang methods
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Figure 6.2: Orbital response for the propagation of O2 in D-SPOSE with φr = {φr,a−resonance,
φr,e−resonance, φr,a−bang-bang, φr,e−bang-bang

}
including STRP, geopotential and drag perturbing accelerations

and torques

are more efficient than their associated resonance methods, leading to faster deorbitation. While
the bang-bang solutions maximize the effect of all the oscillating terms, that is, for the semi-major
axis case, all the terms in Eq. (2.56) (respectively all the terms in Eq. (5.2) for the eccentricity
case), the resonance methods aim to maximize only the effect of a single resonant term.

For the particular case of O7, the different strategies lead to different deorbitation times, as can
be gathered from Fig. 6.4, and the e methods appear to be more efficient. We can also observe
from this figure that, for the a methods, in the passive eccentricity resonance corridor, the reso-
nant effects in a and e are superimposed, i.e., the semi-major axis and eccentricity decreases and
increases respectively leading to a cumulative effect on the altitude of the perigee hp. The eccen-
tricity increase, however, is not as large as for the e methods. This is in direct correlation to the
cosα evolution: taking its mean value over the whole propagation for the 4 different strategies, we
find that mean(cosα(t)) ≲ 1 for the e-methods, whereas it is only mean(cosα(t)) ≈ 0.65 for the
a-resonance scheme and mean(cosα(t))≈ 0.55 for the a-bang-bang scheme. The two latter values
also explain why the eccentricity increase is slightly smaller for the a-bang-bang strategy than for
the a-resonance. However, this is insufficient to compensate for the faster decrease in a achieved
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Figure 6.3: Orbital response for the propagation of O3 in D-SPOSE with φr = {φr,a−resonance,
φr,e−resonance, φr,a−bang-bang, φr,e−bang-bang

}
including STRP, geopotential and drag perturbing accelerations

and torques

with the bang-bang solution, which ultimately leads to faster deorbitation than for the a-resonance
scheme.

Fig. 6.4 also illustrates a similar behaviour for the e-resonance and the e-bang-bang strate-
gies: for both solutions, the spacecraft is fully facing the Sun as is confirmed by the resulting
mean(cosα(t)) ≲ 1 value. Although, when the semi-major axis decreases considerably, cosα

starts to diverge from 1 for the e-resonance solution but not for the e-bang-bang. This difference in
the panel orientation at low altitudes leads to a higher descent rate for the e-resonance case when
the atmospheric drag becomes the main driver for deorbitation. This highlights the coupling effect
between the spacecraft’s attitude and atmospheric drag and suggests that, in the low LEO region
(< 600 km), a drag-enhancing solution might be favourable to our solutions exploiting STRP.

Still for the particular case of O7, when the panel is constantly facing the Sun, as is the case
here for the e solutions, the resonance effect is identical to what has been published previously in
[13], [26], assuming a spherical spacecraft with equivalent area-to-mass ratio and effective STRP
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Figure 6.4: Orbital response for the propagation of O7 in D-SPOSE with φr = {φr,a−resonance,
φr,e−resonance, φr,a−bang-bang, φr,e−bang-bang

}
including STRP, geopotential and drag perturbing accelerations

and torques

coefficient.2 We note that the atmospheric drag effect would, however, be of lesser importance
since, for a plate-like spacecraft, if u−→ ∥ n−→, then n−→ is not necessarily opposing the velocity, thus
leading to a smaller deceleration than for an equivalent sphere. We further note that active control
is required to maintain cosα(t) = 1 for a plate-like spacecraft. Without active control, a passive
resonance in eccentricity would still occur as confirmed by the a strategies responses in e presented
in Fig. 6.4, but it would be weaker and would depend on mean(cosα(t)).

Comparing the deorbitation times obtained for the bang-bang methods Tx-bang-bang to their asso-
ciated resonance methods Tx-resonance presented in Table. 6.2, we notice that the deorbitation times
obtained by exploiting either strategy for a and e are similar for case O3, for which recall, the mean
optical properties of Envisat’s solar panel are employed [84]. Moreover, the resonance methods
outperform the bang-bang methods for case O4 with the optical properties characterizing a perfect
mirror (σrs = 1). On the other hand, the bang-bang method is clearly superior for the black body
panel (cases O2 and O5, σa = 1). This can be explained by the fact that the osculating element

2For a sphere with a Lambertian surface: σeff = 1+ 4
9

(
σrd +σa

ε f −εb
ε f +εb

)
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Table 6.2: Deorbitation times T in years
a (km) i (◦) m (kg) C2

C2,bb
σeff Ta−resonance Ta−bang-bang Te−resonance Te−bang-bang

O2 7,600 60 29.7 1 1 11.7 8.91 23.8 15.8
O3 7,200 20 227 1.873 1.357 12.9 12.3 21.6 21.1
O4 8,400 20 29.7 4 2 7.68 8.85 10.2 12.8
O5 7,400 45 56 1 1 11.9 9.72 24.6 18.8
O7 7,600 40.58 29.7 1 1 6.23 5.87 5.36 5.42

rates are sensitive to the optical coefficients, as can be deduced from Eqs. (2.56), (5.2), (6.4) and
(6.11). Indeed, while the effect of the bang-bang approach on the time rate of either a or e scales
with the effective optical coefficient σeff given by Eq. (2.32), it scales with the optical coefficient
C2 for the resonance methods, as given by Eq. (2.30). Comparing the scaling coefficients to their
limiting values for the black body (xbb), we can establish the following bounds:

1 ≤ σeff

σeff,bb
≤ 2 =

σeff(σrs = 1)
σeff,bb

1 ≤ C2

C2,bb
≤ 4 =

C2(σrs = 1)
C2,bb

(6.14)

The upper bounds on the non-dimensional optical coefficients correspond to the case of a perfect
mirror (σrs = 1). As can be seen from Eq. (6.14), for such a body, the effectiveness of the resonance
method is increased by a factor of 4 while only by a factor of 2 for the bang-bang method. This
difference explains the smaller deorbitation time for the former, as shown by the results in Table 6.2
for O4. For the propagation of O3, the scaling coefficients are C2

C2,bb
= 1.873 and σeff

σeff,bb
= 1.357

respectively; thus, explaining the smaller difference in deorbitation times for O3 as compared to
those for O2 and O5.

From Fig. 6.2, we observe that a-resonance and e-bang-bang methods have a similar altitude
of perigee descent rate; however, for a-resonance, the semi-major axis decreases faster than for
e-bang-bang yielding a more continuous drag effect over the whole orbit. This is sufficient to
accelerate the deorbitation by a few years.

The φ -plots and ψ1,2-plots of Figs. 6.5 and 6.6 show proper tracking of ψ1,2 = 90◦ and ψ̃1,2 =

−90◦ for the resonance methods as per Eqs. (5.11) and (5.5) respectively, and φ =

{
λS

λS +90◦
for

the bang-bang methods as per Eqs. (6.13) and (6.7). We further notice from the φ -plots in Figs. 6.5
and 6.6 that the two resonance methods require an almost constant panel’s angular rate while the
bang-bang solutions, a-bang-bang and e-bang-bang, require sudden changes in the orientation:
only about once every two months for the e-bang-bang, but twice per orbital period for the a-bang-
bang, therefore, requiring more active control. Moreover, we notice from the cosα-plot of Fig. 6.5
that for the a-resonance strategy, the panel’s backside is facing the Sun once every other orbit, in
which case the panel’s power generation is null.
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Figure 6.5: Attitude response for the propagation of O3 in D-SPOSE with φr = {φr,a−resonance,
φr,a−bang-bang

}
including STRP, geopotential and drag perturbing accelerations and torques

Finally, the results for the e methods in Fig. 6.6 show that for periods of about 45 days, either
the panel’s backside is facing the Sun (e-resonance, cosα < 0) or the exposed area is almost null
(e-bang-bang, cosα = 0). If the system had to be powered by its solar panel, these solutions would
be clearly inoperable. Therefore, in the following section, we only study the energy cost of the two
a methods and simulate the power and energy requirements for a specific case scenario.

6.3 Power Analysis

In this section, we compare the resonance and bang-bang semi-major axis deorbitation strategies
on the basis of their power generation, energy storage and depletion responses. We compare, for
both methods, the propagation results of O3 given in Fig. 6.3 and 6.5 with particular attention on
the rotational motion over the initial cycles since it has direct implications for the power generation.
We recall that the orbital parameters for O3 are presented in Table 6.1 as well as the associated
spacecraft model parameters.

Propagating over 12 hours for the spacecraft initially in O3 with φr = {φr,a−resonance,

φr,a−bang-bang
}

and under the same perturbations as in the previous sections for a fixed time step
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Figure 6.6: Attitude response for the propagation of O3 in D-SPOSE with φr = {φr,e−resonance,
φr,e−bang-bang

}
including STRP, geopotential and drag perturbing accelerations and torques

of 0.01 sec yields the attitude responses shown in Fig. 6.7. In Fig. 6.7, we plot the z-body-fixed
component of the angular velocity and control torque. The x and y components are not presented
since they are too small in comparison to the corresponding z component: < 1e-5 rad/s for ωb,x

and ωb,y, and < 1e-4 N·m for τc,x and τc,y.
As noted in Section 6.2, for the O3 use-case, a faster deorbiting time is obtained for the bang-

bang method (for which the panel has to reorient twice per orbital period) than for the resonance
method (for which the panel rotates at an almost constant rate). However, higher control torques are
required for the bang-bang attitude changes as can be seen from the τc,z response in Fig. 6.7. The
power required to rotate the panel when tracking either φr,a−bang-bang or φr,a−resonance is however
very small, on the order of 0.1 mW, and is thus neglected in the power consumption.

6.3.1 Power generation and energy storage

An important aspect when evaluating the feasibility of deorbitation strategies is the power source
as well as power generation vs. power consumption. In this research, we have considered plate-
like spacecraft on the basis that a spacecraft solar panel is typically subject to a much stronger
STRP acceleration than the spacecraft body due to its large area. It is then natural to assume that,
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Figure 6.7: Attitude response for the propagation of O3 in D-SPOSE with φr = {φr,a−resonance,
φr,a−bang-bang

}
including STRP, geopotential and drag perturbing accelerations and torques

for such a spacecraft, power should come from the solar array employed alongside batteries for
energy storage and power generation when in the Earth’s shadow.

Based on Table 6.2, the time required to deorbit the spacecraft using the a-schemes is on the
order of 12 years which is significantly longer than the typical 5-year lifetime of small space-
craft in LEO. Proper power management is therefore of utmost importance. Fig. 6.8 shows the
power income from the solar panel Ps (solid lines) along with the battery energy storage Es for
the simulation results for O3 use-case over the initial 12 hours of deorbiting with a-resonance and
a-bang-bang schemes. The power income response computed by neglecting the Earth’s shadow
is also shown in Fig. 6.8 with dashed lines for reference. The power and energy responses were
obtained using the parameters of Table 6.3 and:

Ps =

{
Pmax (1−β ) cosα ,

0 ,

cosα >= 0

cosα < 0

Es =
1

Emax

∫
{Ps(t)−Peol (t)}dt

(6.15)
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with β = 0 when the spacecraft is completely in the Earth’s shadow; β = 1 when it is in complete
sunlight; and 0 < β < 1 when in-between [65]. The stored energy Es is bounded by maximum
battery capacity (at 100%). The solar cell and power management system efficiencies of Table 6.3,
ηc and ηm, are estimated based on the currently available technologies. An overview of the current
state-of-the-art technologies for power generation, management and distribution systems is pro-
vided in Chapter 3 of [87]. We assume the end-of-life power consumption of the spacecraft Peol to
be 2 kW and the maximum battery capacity, Emax, to be 8 kWh.
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Figure 6.8: Power income with Earth’s shadow (solid line) and without Earth’s shadow (dashed line), and
energy storing analysis for the first cycles of Fig. 6.7 propagations

The power income response from Fig. 6.8 shows that for O3, about 35% of the orbit is in
Earth’s shadow (∼35 minutes of the ∼101-minute period). As a reference, the power income,
if the spacecraft was in constant sunlight, is given in Fig. 6.8 by the dashed line. During that
time, the energy from the battery is used to power the system. For the bang-bang method, the
panel completely faces the Sun long enough to completely recharge the battery every orbit, the
maximum depth of discharge is therefore smaller than for the resonance strategy, for which the
panel faces the Sun once every other orbit (see cosα-plot in Fig. 6.7). The maximum depths of
discharge for the a-bang-bang and a-resonance methods are, respectively, ∼ 25% against ∼60%.
The battery is however subject to half the number of charge/discharge cycles for the latter solution,
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Table 6.3: Power Parameters

Parameter Description Value Units
Emax maximum capacity 8 kWh
Peol end-of-life power consumption 2 kW
Ac cell surface area 29.7 m2

ηc solar cell efficiency 0.3 -
ηm power management system efficiency 0.9 -
Sr solar constant 1360.8 W/m2

Pmax maximum available power Ac ηc ηm Sr = 10.912 kW

which may have a non-negligible effect on the battery life expectancy. Nevertheless, the results
presented here indicate that both a deorbitation strategies are power-feasible.

6.4 Concluding remarks

The deorbitation strategies proposed in Chapter 5 were compared to two previously proposed de-
orbitation strategies aiming to lower the altitude of perigee by either lowering the semi-major axis
or increasing the eccentricity. The semi-major axis schemes were shown to be more efficient than
the eccentricity solutions when not in the vicinity of the j = 1 deorbitation corridor, otherwise the
passive increase in e leads to a faster descent. Moreover, the bang-bang strategies lead to shorter
deorbitation times than their associated resonance solutions for a black body, but vice-versa when
the optical coefficients are nearing those of a perfectly reflective mirror.

Finally, an investigation of the power/energy budget was conducted considering a spacecraft for
which the greatest exposed area is that of its solar panel. In this context, the eccentricity strategies
are not viable since the solar panel would have to face away from the Sun for long periods of time,
up to a few months. The analysis however showed that the semi-major axis deorbitation schemes
are compatible with solar power. It also revealed that the control power required to deorbit a
spacecraft by exploiting either the resonance or the bang-bang solution is not sufficient to justify
the choice of one strategy over the other. However, the difference in the Sun exposure over time
for the two methods might have a non-negligible effect on the lifetime of the batteries. While the
bang-bang solution led to a maximum depth of discharge of ∼25% and a number of cycles equal
to the number of orbits, the resonance solution led to a maximum depth of discharge of ∼60% with
half the number of cycles.

The final choice of deorbitation strategy among those proposed and evaluated in this work
would require simulations and analysis for the specific mission scenario.
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Chapter 7

Exploiting a-resonance for Drag
Compensation in Low Earth Orbits

We showed in Chapter 6 that, for a plate-like spacecraft, the resonance effect produced by the
coupling between rotational motion and STRP could be exploited to accelerate the descent of a
spacecraft in LEO from arbitrary orbital conditions. The efficiency of the phenomenon as an end-
of-life solution was assessed in comparison to bang-bang-type strategies previously published. For
the purpose of deorbitation, these solutions aimed to either increase the orbital eccentricity in order
to lower the altitude of perigee (e-resonance or e-bang-bang), or to lower the altitude by decreasing
the semi-major axis (a-resonance or a-bang-bang). Besides, by choosing the specific settings of
the a-schemes combined with appropriate tracking conditions, it is possible to raise the orbit by
increasing the semi-major axis.

To demonstrate how STRP can be exploited in LEO, the LightSail 2 mission, introduced in
Chapter 1, was launched in 2019. The LightSail was a CubeSat equipped with a controllable
reflective solar sail initially launched to an altitude of 720 km. The ability of the spacecraft to
orient its sail allowed the implementation of a a-bang-bang control logic to compensate for the
loss of altitude induced by atmospheric drag.

In Chapter 6, we concluded that for a perfectly reflective panel or sail, the exploitation of the a-
resonance leads to a faster descent than the a-bang-bang solution. With that in mind, we expand, in
this chapter, the spectrum of applications of the a-resonance solution to semi-major axis tracking.
We first present an overview of the LightSail 2 three-year mission, which motivated our a-tracking
study, highlighting the capabilities and limitations of the suggested approach.

7.1 Overview of LightSail 2 mission

As described in Chapter 1, LightSail 2 is a citizen-funded project executed by The Planetary Soci-
ety that successfully put into a 720 km orbit, a 3U CubeSat of 5 kg equipped with a controllable
32 m2 Mylar solar sail, in July 2019. Until its re-entry in November 2022, LightSail 2 demon-
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strated controlled solar sailing as a means to counter orbital energy loss due to atmospheric drag
by exploiting Borja and Tun’s suggested bang-bang type approach [49], [52].

Even though LightSail 2 showed rather poor Sun pointing accuracy, with angular error ranging
from 20◦ to 45◦, it was able to achieve substantial drag compensation in a region where drag is
non-negligible.1 This strategy extended the lifetime of the spacecraft, initially expected to re-enter
by the end of 2021, to longer than three years [52]. For reference, Fig. 7.1 shows the recorded
semi-major axis, eccentricity, and perigee altitude data of LightSail 2 obtained from the Space-
Track TLE database [32]. The presented data starts with the first recorded position on July 7,
2019, to its re-entry on November 17, 2022, and include the recorded solar radio flux F10.7 cm
over the same time frame. From this information, we can infer that the increasing trend in the solar
flux precipitated the re-entry of the solar sail. It is assumed that the drag generated by the resulting
atmospheric density increase exceeded the STRP propulsion capacity of the sail.
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Figure 7.1: Recorded TLE data of LightSail 2 from July 7, 2019, to its re-entry on November 17, 2022,
obtained in [32] compared to the recorded solar radio flux over the same period

1At different points, the operators of LightSail 2 changed the control parameters for testing purposes. This impacted
the pointing accuracy during the mission.
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It is important to note that the propulsion capacity of the spacecraft must have been reduced
by the poor pointing accuracy, ranging from a 20◦ to 45◦-error, as previously mentioned, but also
the need to desaturate the momentum wheel. Based on [52], the drag compensation mode of
LightSail 2, which re-orients the panel twice per orbit, relies on a momentum wheel-based control
system that cannot be used indefinitely; it requires periodic desaturation during which the accu-
mulated momentum is dumped to restore manoeuvrability and allow for adequate attitude control.
The authors of [52] approximate the ON/OFF ratio of the drag compensation mode at 80% for
LightSail 2.

The outcome of the Lightsail 2 mission motivates the analysis presented in the following sec-
tion where we show how the previously presented resonance solution can be applied for semi-major
axis tracking by exploiting STRP propulsion to compensate for the loss of altitude induced by the
atmospheric drag in the low end of the LEO region.

7.2 Semi-major axis tracking criterion

Based on the results of Chapter 5, under the single-resonance assumption, the secular evolution
of the semi-major axis a is governed by its resonant STRP ( j,k)-term given by Eq. (5.9) from
which we can deduce the extreme decrease and increase rates given for ψ j,k =

π

2 and ψ j,k = −π

2
respectively:

ȧ j,k-min =−τdesatCSTRP
2

n
√

1− e2
T j Ck

ȧ j,k-max = τdesatCSTRP
2

n
√

1− e2
T j Ck

(7.1)

where CSTRP = Pr β
Anom

m as per Eq. (2.16). Note that τdesat was introduced in Eq. (7.1) to account
for the required desaturation periods, and hence, it represents the fraction of the time for which the
tracking is active.

The magnitude of the semi-major axis rate is the greatest for maximal values of T j and Ck given
by Eqs. (2.23) and (2.30) respectively. As noted previously throughout the thesis, notwithstanding
the k = 0 passive resonance corridor, these are maximal for a (1,2)-resonance (when i < 90◦).
Moreover, the Ck value is at its peak for σrs = 1, i.e., a perfectly reflective surface similar to the
Mylar sail of LightSail 2. Thereupon, we define the following control setpoint for tracking of the
semi-major axis reference aref:

ψ1,2 ref = arctan
{

Kp (aref −a))
}

(7.2)

Because we are interested in the secular evolution of the semi-major axis, we filter the short-period
oscillations in a over an orbit to obtain a used in the computation of the reference resonant angle
ψ1,2 ref. In Eq. (7.2), the proportional gain Kp is computed, based on Eq. (7.1), as a function of the
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desired response time τr as:

Kp = τdesatCSTRP
2

n
√

1− e2
T j Ck τr (7.3)

The reference attitude φr,a-tracking is therefore obtained similarly to Eq. (5.12) as:

φr,a-tracking =
Ω+ω +ν +λS + arctan

{
Kp (aref −a))

}
2

(7.4)

In the following section, we implement this tracking criterion in D-SPOSE and generate results for
various semi-major axis references.

7.3 Numerical verification

The goal of this section is to verify in D-SPOSE that a STRP-J2-φ resonance in a allows the
tracking of aref by a reflective sail (σrs = 1). We first generate results for a 1 m2/kg sail, and
compare them to propagation results obtained for a 6.4 m2/kg sail, which is more representative
of the LightSail 2. As for the previous simulations, propagations are carried out under the attitude
control law of Eq. (5.16) for φr = φr,a-tracking of Eq. (7.4) where the accelerations and torques due
to the following perturbations are included:

• STRP: Eq. (2.14) for a constant radiation pressure Pr =
1,361

c
N

m2

• gravitational field: EGM2008 up to degree and order 5

• drag: NRLMSISE-00 with recorded equivalent planetary amplitude Ap and solar radio flux
F10.7 cm

• Earth shadow: geometric model with penumbra transition as implemented in D-SPOSE [65]

Note that, differently from the simulations of Section 5.2.3, we use here the recorded equivalent
planetary amplitude Ap and solar radio flux F10.7 cm since the time variation of the latter is of
critical importance for this analysis. The O8 and O9 orbits defined in Table 7.1 are used to initialize
the simulations. The O9 orbit, employed for the propagation of the 6.4 m2/kg sail, corresponds
to the recorded position of LightSail 2 at epoch T2: 2019-09-21T20:13:56. This epoch is used to
initialize all simulations. For the Anom

m = 1 m2/kg sail case, the initial conditions are set to be those
of the O8 orbit. It corresponds to O9 but with i = 60◦ instead. Desaturation periods of 2.4 hours
for which active control is turned off (τc = 0 see Eq. (5.16)) were also included in D-SPOSE twice
per day (τdesat = 0.80). For the propagations presented in this section, Kp is set to 1,800 so that
the response time τr is on the order of a few hours. The drag coefficient is set to Cd = 2.2 for the
simulations.

Table 7.2 compares the deorbitation dates of the various test cases presented in this section.
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Table 7.1: Orbital initial conditions for a-tracking analysis and associated area-to-mass ratio

a (km) e i (◦) Ω (◦) ω (◦) ν (◦) φ (◦) Anom
m (m2/kg)

O8 7,093 0.0010 60.00 172.8 47.38 312.8 0 1
O9 7,093 0.0010 24.00 172.8 47.38 312.8 0 6.4

Table 7.2: Re-entry date for propagation test-cases of Section 7.3
Fig. aref (km) φref (◦) Anom

m (m2/kg) Re-entry date
7.2, 7.3 N/A 0 1 Feb. 10, 2023

7.2 7,093 N/A 1 N/A
7.2 7,200 N/A 1 N/A
7.3 7,000 N/A 1 Nov. 22, 2022
7.3 7,050 N/A 1 N/A
7.5 N/A 0 6.4 Jan. 11, 2021
7.5 7,093 N/A 6.4 Feb. 24, 2023
7.6 7,000 N/A 6.4 Mar. 31, 2022

7.3.1 1 m2/kg sail test case

For this first test case, the sail is modelled as a 32 m2 square as per LightSail 2 dimensions, but
with a mass of m = 32 kg yielding an area-to-mass ratio of Anom

m = 1 m2/kg. The control gains are
adjusted as per the spacecraft mass, based on Eq. (5.30).

Fig. 7.2 shows the orbital a, e and hp as well as the (1,2)-resonant angle responses when track-
ing aref = 7,093 km so as to maintain the initial semi-major axis (yellow curves), and when tracking
the higher aref = 7,200 km (orange curves). This last setpoint is chosen to assess the capabilities
of the a-resonance strategy for orbit raising. For comparison, the results obtained for the constant
value of φr = 0◦, i.e., where the spacecraft maintains a constant attitude in inertial space, are also
shown in Fig. 7.2 (blue curves).

The ability to maintain altitude is clearly demonstrated by the results of Fig. 7.2. The reflective
1 m2/kg panel in O8 at epoch T2 would deorbit by February 2023 when a constant attitude setpoint
is used (blue curves). However, under active aref tracking, results indicate the maintenance of the
semi-major axis within ±10 km passed that date. The ±10 km variations are due to the short-
period oscillations which we do not account for in the suggested tracking law. Indeed, only the
secular evolution of a is of interest here.

Moreover, until December 2022, the semi-major axis tracking at a = 7,093 km is achieved
while keeping the resonant angle ψ1,2 between −65◦ and 10◦. This is well within the limits of
maximal propulsion: ψ1,2 =±90◦ (see yellow curves in Fig. 7.2). However, due to the increase in
solar activity passed that date, the resonant angle ψ1,2 saturates at the −90◦ limit after December
2022. The increase in atmospheric density resulting from higher solar activity becomes too im-
portant, and the maximum STRP propulsion capabilities of the sail are insufficient to completely
compensate for the atmospheric drag. A prolonged period of intense solar activity would cause

110



6800

7000

7200

400

600

800
0

0.005

0.01

Jan 2020

Jan 2021

Jan 2022

Jan 2023

-90

0

90

Figure 7.2: Orbital and resonant angle responses for propagation of 1 m2/kg panel in D-SPOSE with semi-
major axis tracking control

the sail to descend further. To better illustrate the correlation between the solar activity and the
required propulsion efforts, Fig. 7.4 compares the recorded solar radio flux F10.7 cm to the ψ1,2

evolution for the tracking of aref = 7,093 km setpoint.
An increase in eccentricity, from 0.001 to 0.009 for the tracking of aref = 7,093 km (yellow

curves) and aref = 7,200 km (orange curves), is also observed in Fig. 7.2. The increase is suffi-
ciently high after three years to reduce the altitude of the perigee by ∼ 65 km, which, for these
orbits, is significant vis-a-vis the resulting increase in atmospheric drag. The tracking criterion of
Eq. (7.4) is designed to track a, but contains no provision for maintaining a constant eccentricity.
Future investigations should consider the trade-off of maintaining a vs. e.

The ability to raise the semi-major axis to a reference value is also established by the propa-
gation results of Fig. 7.2 (orange curves) where the spacecraft is set to reach a reference a value
of 7,200 km. As presented in Section 7.2, the rate at which the spacecraft is able to raise its orbit
is limited by the value ȧ1,2-max achieved at ψ1,2 = −90◦ (see Eq. (7.1)). This is confirmed by the
resonant angle response over the first year and the constant slope in a over that same period. We
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make a note that for a given ( j,k)-resonance and specific optical properties, the increase/decrease
rates of a are mainly limited by the nominal area-to-mass ratio of the spacecraft.

Semi-major axis tracking at low altitudes

Fig. 7.3 shows the orbital a, e and hp as well as the (1,2)-resonant angle responses when tracking
low semi-major axis reference values of aref = {7000; 7050} km. For comparison, the results
obtained for φr = 0◦ are shown as well (blue curves).
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Figure 7.3: Orbital and resonant angle responses for propagation of 1 m2/kg panel in D-SPOSE with semi-
major axis tracking control

In Fig. 7.3, we explore the ability of the solar sail to maintain its semi-major axis in a region
where atmospheric drag is substantial, i.e., under 700 km altitudes. These results further show
the sensitivity of the a-resonance scheme to solar flux intensity and altitude. To support this,
Fig. 7.4 compares the recorded solar radio flux F10.7 cm to the ψ1,2 evolution for the tracking
of aref = {7,050; 7,000} km. These semi-major axis values correspond to perigee altitudes of
∼ 675 km and ∼ 625 km, respectively. As we can see from Fig. 7.4, the solar flux increases in
the second part of 2021 and the trend continues through 2022. As a result, in January 2022, the
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atmospheric drag at ∼ 625 km is too large for altitude maintenance and causes the 1 m2/kg sail to
re-enter Earth’s atmosphere in November 2022 (green curves in Figs. 7.3 and 7.4).

Although the high solar intensity observed during that period is not sufficient to trigger the
decay of the slightly higher sail (∼ 675 km), the even stronger increase in solar activity passed
November 2022 is (purple curves in Figs. 7.3 and 7.4). In Fig. 7.3, we can see the decrease in
semi-major axis from a = 7,050 km in December 2022 to a = 7,000 km in April 2023.

Finally, from the ψ1,2 time responses in Figs. 7.2 and 7.3, we can observe that, the higher the
altitude, the closer the mean ψ1,2 value is to 0 indicating that less propulsion power is required.
This is in line with the reduction of atmospheric drag at higher altitudes, thus, this strategy shows
better altitude manoeuvring capabilities at higher orbits.
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Figure 7.4: Solar radio flux impact on resonant angle (from Fig. 7.5) for propagation of 1 m2/kg panel in
D-SPOSE with semi-major axis tracking control

7.3.2 6.4 m2/kg sail test case

For this second test case, the sail parameters are set to represent those of the LightSail 2 spacecraft.
The sail is still modelled as a 32 m2 square, but with a mass equal to that of LightSail 2, i.e.,

113



m = 5 kg, yielding an area-to-mass ratio of Anom
m = 6.4 m2/kg. The control gains are adjusted as per

the spacecraft mass, based on Eq.(5.30). Propagations are carried out under the same conditions
as for Figs. 7.2 and 7.3. The resulting orbital a, e and hp as well as the (1,2)-resonant angle
responses when tracking semi-major axis reference values of aref = 7,093 km and aref = 7,000 km
are presented in Figs. 7.5 and 7.6 respectively. The results obtained for φr = 0◦ (blue curves) are
also shown as reference in the first figure. Note that the semi-major axis response of the 1 m2/kg
sail for aref = 7,093 km setpoint presented in Fig. 7.2 is included in Fig. 7.5 for comparison. The
same for the a response of Fig. 7.3 when tracking aref = 7,000 km which we included in Fig. 7.6.
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Figure 7.5: Orbital and resonant angle responses for propagation of 6.4 m2/kg panel in D-SPOSE with
semi-major axis tracking control for aref = 7,093 km

As observed for the 1 m2/kg sail, using the proposed tracking criterion allows the spacecraft to
maintain the orbit significantly longer than when φr = 0◦ (yellow vs. blue curves in Fig. 7.5). We
can also observe from the results of Fig. 7.6, a steeper decrease in a at ψ1,2 =−90◦ limit value due
to the 6.4 times higher area-to-mass ratio compared to the sail of Fig. 7.3 (solid vs. dashed purple
curves). This increase in Anom

m allows for stronger STRP propulsion which accelerates the descent
from a 7,093 km to a 7,000 km semi-major axis.
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Figure 7.6: Orbital and resonant angle responses for propagation of 6.4 m2/kg panel in D-SPOSE with
semi-major axis tracking control for aref = 7,000 km

Although the high-area-to-mass ratio of the spacecraft improves the STRP propulsion, it makes
it even more sensitive to atmospheric drag and fluctuations in solar flux. According to the propa-
gation data presented in this section, the 1 m2/kg sail was able to properly track a semi-major axis
reference of 7,093 km passed April 2023, while the 6.4 m2/kg sail was not, and this, under the
exact same conditions (solid vs. dashed curves in Fig. 7.5). The same was observed when tracking
the 7,000 km setpoint, for which the lower Anom

m sail remained in orbit longer, and this, even with
the higher STRP propulsion capabilities of the 6.4 m2/kg sail, enabled by the larger area-to-mass
ratio (solid vs. dashed curves in Fig. 7.6).

7.4 Concluding remarks

With the perspective of the LightSail 2 mission, we expanded the application of the a-resonance
strategy to semi-major axis tracking. The key takeaway from the analysis presented in this chapter
is the high sensitivity of the minimum maintainable altitude to solar activity. This threshold altitude
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is highly dependent on the relative propulsion power extracted from STRP vs. the strength of the
atmospheric drag.

A higher Anom
m has a positive effect on the former, but also increases the latter through raising the

atmospheric drag. Therefore, the interplay of these factors should be evaluated on a case-by-case
basis to establish the feasibility of a-tracking and hence, orbit maintenance through the exploitation
of a-resonance for a particular mission.
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Chapter 8

Conclusion

This thesis focused on the case of spacecraft in LEO where the main perturbations at play are the
STRP, the geopotential (mainly its second zonal harmonic) and atmospheric drag. More specif-
ically, this work investigated the possibility of exploiting STRP-J2-φ resonances for end-of-life
disposal of spacecraft; the main objective was to propose a low-cost, reliable deorbitation alterna-
tive to mitigate the spacecraft impact on space debris proliferation.

8.1 Fundamental theory of the STRP-J2-φ resonance

To this end, we built on the most up-to-date analysis of the SRP-J2 resonance of spherical space-
craft provided in the literature. Alessi’s phase space equilibrium/stability theory was verified
against the recorded motion of NASA’s ’60s Echo I balloon spacecraft. Results allowed us to
draw general conclusions regarding the impact on the resonance magnitude of the spacecraft area-
to-mass ratio, its proximity to the resonant inclination (as identified in the literature) and the phase
angle. The main takeaway from this study is that, for typical area-to-mass ratio values, the inten-
sity of the resonance is directly constrained by the location of the spacecraft and its proximity to
the resonant inclination, also referred to as a passive deorbitation corridor. This is however not the
case for non-spherical rotating spacecraft for which this theory is deficient.

Whereas state-of-the-art research falls short in terms of the resonant behaviour of a rotating
object with a stable spin, a similar development to what is found in the literature was applied
to generalize the resonant dynamics model. For this derivation, we considered a stably rotating
panel as a fundamental model instead of the previously used cannonball assumption. Based on our
formulation of the STRP-J2-φ resonance model, a resonance effect can be generated at any point
around Earth and is enabled by the coupling of the STRP, geopotential and periodic rotational
motion. In this new scenario, the main factor influencing the state of the resonance is the rotation
rate. Although the magnitude of a STRP-J2-φ resonance is of smaller intensity than for the passive
STRP-J2 resonance, the potential of applications is much wider.
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The case of a panel subject to STRP and J2 perturbations, rotating at a constant rate about a
fixed axis normal to the ecliptic plane acts as a proof for the possibility of coupled attitude-orbit
resonances. These conditions were selected as they generate the strongest resonance for a given
area-to-mass ratio to be used for spacecraft deorbitation. However, such a resonance scenario does
not only apply to panels in this rotating state. The motion of an object of a more complex shape
with periodic attitude variation could also lead to a resonance effect of considerable strength. As
long as one can use a Fourier series expansion to express the spacecraft attitude with respect to
the Sun (we used the α angle in this thesis) by a Fourier series expansion, the same approach can
be employed, and similar conclusions can be drawn. Essentially, the higher the amplitude of the
term associated with the fundamental frequency, the stronger can the effect be. The potential of
resonant coupling between attitude and orbital motion is extremely important. Whereas attitude
and orbital motions are two problems usually tackled independently, the work presented in this
thesis confirmed the importance of seeing the two in combination.

In the case of eccentricity resonance for which the fundamental frequency is low (periods on the
order of hundreds of days in LEO), the average dynamics was found to adequately characterize the
resonant motion. This simplification however predicts a constant semi-major axis over time, which
might not hold in resonance. As was shown in this thesis, the fundamental frequency characterizing
the semi-major axis dynamics is fast varying, on the order of the mean motion n. When the rate of
attitude change with respect to the incoming light direction is commensurate with the mean motion
n, then short-period oscillations become secular. Averaged models are very useful to isolate main
secular tendencies, and in the field of orbital propagation, are very convenient to quickly predict
long-term motion. The strict assumptions made in developing the averaged models found in the
literature, however, limit the applications of such models. With complex oscillatory motion, one
needs to be mindful of the possibility of having frequencies that are commensurate. The takeaways
from this could be used to develop more accurate averaged orbital models, that would account for
coupling to rotational motion, for better fast predictions.

8.2 STRP-J2-φ resonances for deorbitation

The newly developed theory, based on the assumption that the only perturbations at play are STRP
and the geopotential J2 harmonic, was used to assess the ability to exploit this phenomenon to in-
duce re-entry. The conclusions were verified in the numerical environment modelled by D-SPOSE.
Although the eccentricity resonance for constant rotation speed could lead to a great increase in e,
this might not be sufficient to ensure the complete decay of the spacecraft. Under certain condi-
tions, it may even have the opposite effect. It was shown that the neglected perturbations can have
a substantial impact on the resonance dynamics by affecting the regime—libration or circulation—
and the proximity to either a stable or unstable equilibrium, in turn, affecting the minimum attain-
able altitude.
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Building on the theoretical analysis put forward for a rotating plate-like spacecraft, we thus
proposed a novel strategy relying on attitude control to lift the minimum attainable altitude limi-
tation associated with a constant rotation rate, to achieve full spacecraft decay at end-of-life. The
goal is the reduction of the altitude to enhance atmospheric drag effects to accelerate deorbitation.
Through proper attitude control, we demonstrated that it is possible to exploit the resonant action
of the STRP to produce a change in eccentricity, then further extended the solution to semi-major
axis resonance as well. The latter was also shown to allow for semi-major axis tracking, which tes-
tifies to the applicability of such a solution to orbital manoeuvring, assuming active attitude control
of the spacecraft. A thorough analysis of the resonance solution, in eccentricity or in semi-major
axis, was provided based on simulation results obtained in D-SPOSE.

A critical comparison of the proposed schemes to previously published bang-bang type STRP-
exploiting deorbitation strategies was performed, from which we highlighted the advantages and
limitations of the different solutions. The first takeaway from this analysis is that, for an object
in the vicinity of a deorbitation corridor, the fastest way towards deorbitation by exploiting STRP
propulsion is to exploit the passive deorbitation corridor. Not only is the resonance effect stronger,
but it is also robust to spacecraft failure. However, this solution can only be employed if the satellite
is already near such a deorbitation corridor so that the delta-v required to change the initial orbit is
small. When not in the vicinity of such a corridor, solutions aiming to decrease the semi-major axis
are more efficient than those aiming to increase the eccentricity. And, in the case of a perfectly
reflective panel, it is the resonance in the semi-major axis that produces a slightly faster decay
than the bang-bang approach. However, we suggest that, in light of the much simpler attitude
requirements of the resonance solution, i.e., maintaining an almost constant rate of rotation about
a fixed axis, makes it a more practical solution than the bang-bang scheme. The latter solution
requires the spacecraft to perform 90◦ changes in its orientation twice per orbit.

8.3 Possible application of STRP-J2-φ resonances for ADR

The majority of hazardous debris is not orbiting in the vicinity of the very specific passive deor-
bitation corridors. To eliminate this limitation on the orbit, the proposed deorbitation solutions
exploiting resonance in either semi-major axis or eccentricity were suggested as end-of-life dis-
posal means. They are particularly suitable for spacecraft equipped with a large and controllable
surface (e.g. a sail) relative to their mass. As well, these strategies rely on the ability of the space-
craft to orient itself with respect to the Sun. Although, in the analysis provided, it was assumed that
control capabilities had to come from the internal satellite control system, i.e., that the spacecraft
be operable, this is not essential. The proposed solution could be applied to uncontrolled debris if
external control of its attitude can be implemented.

The first phase of the Astroscale ADR mission objective, the ELSA-d mission, carried out from
2021 to 2022, proved the feasibility of a close approach between a chaser and debris. This is the
first step towards a complete ADR mission. Although, to the best of our knowledge, Astroscale
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has not yet divulged how the chaser will provoke the re-entry of the debris in their future missions,
one can expect that they will use a strategical delta-v (∆V ) impulse generated by propulsion means
still undetermined. For the Astroscale mission, the debris is small. However, in the case of large
and massive debris, such a strategy turns out to be very onerous as the required power to generate
the desired ∆V increases with mass. In these cases, STRP propulsion could be an advantageous
alternative. Furthermore, the possibility of exploiting the own area of the debris to enhance the
propulsion power of STRP with strategies discussed in this thesis, makes it an interesting option.
Also, using the resonance greatly reduces the power requirements for the chaser as it only requires
enforcing an almost constant rotation rate contrary to the bang-bang type solutions that would re-
quire large periodic reorientation manoeuvres. STRP-J2-φ resonances thus appear like a suitable
option for the disposal of large orbiting debris, with reasonable area-to-mass ratios. The possibil-
ities enabled by this approach could greatly reduce the cost of future ADR missions, which will
become essential in the near future, as predicted by the IADC for the mega-constellation era.
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Appendix A

Equinoctial Elements

We present in this appendix the equinoctial elements used to work around the singularity arising
when using the Keplerian element ω based on [82].

Several sets of equinoctial elements exist including the retrograde and the direct sets. Here
we use the latter. It is important to note that this set of equations presents singularities when the
inclination tends to π for equatorial satellites.

In order to define the equinoctial elements, we first introduce the equinoctial frame FE =

{O, f
−→
, g
−→
, w−→} illustrated in Fig. A.1. The direct equinoctial elements expressed in terms of the

Keplerian elements are:
a = a

h = esin(ω +Ω)

k = ecos(ω +Ω)

p = tan
(

i
2

)
sinΩ

q = tan
(

i
2

)
cosΩ

L = ν +ω +Ω

(A.1)

Based on Eqs. (5.14) and (5.15), the parameters of interest in Eq. (A.1) are h, k, and the true
longitude L.

D-SPOSE propagates the position and velocity vectors expressed in the Earth-Centred-Inertial
(ECI) frame, FECI denoted by r, v respectively. The first step in determining the equinoctial
elements from the position and velocity vectors expressed in FECI is to compute the FE basis

121



𝑖
Ω

Node line

Equatorial plane

𝑂

𝑘

𝑖

𝑗

𝑤

𝑓

𝑔 Unit circle

Ω

Figure A.1: Direct equinoctial reference frame reproduced from [82]

vectors also expressed in FECI (f, g, w) as follows:

w =
r×v
|r×v|

f =
1

1+ p2 +q2

1− p2 +q2

2 pq

−2 p



g =
1

1+ p2 +q2

 2 pq

1+ p2 −q2

2q


(A.2)

where the elements p and q are given by:

p =
wx

1+wz

q =−
wy

1+wz

(A.3)

and w = [wx, wy wz]. The eccentricity vector expressed in FE is given by:

e =−r
v
+

v× (r×v)
µ

(A.4)

The equinoctial elements h and k are then:

h = e ·g
k = e · f

(A.5)
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In order to obtain the true longitude L, we still need to compute the position coordinates in FE :

X = r · f
Y = r ·g

(A.6)

which are employed to obtain the eccentric longitude F :

sinF = h+
(1−h2 b)Y −hk bX

a
√

1−h2 − k2

cosF = k+
(1− k2 b)X −hk bY

a
√

1−h2 − k2

(A.7)

where:
b =

1
1+

√
1−h2 − k2

(A.8)

Finally, the true longitude L = arctan2(sinL, cosL) can be computed from:

sinL =
(1− k2 b) sinF +hk b cosF −h

1−h sinF − k cosF

cosL =
(1−h2 b) cosF +hk b sinF − k

1−h sinF − k cosF

(A.9)
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Appendix B

Gauss’ Singly-Averaged Equations of
Motion

Gauss’ equations of motion averaged over one orbit of the spacecraft (ν ∈ [0,2π]) for an object
subject to STRP and J2 perturbations are [11], [18]:

da
dt

= 0

de
dt

=
3
2
(1− e2)

1
2

na
a∗s,SRP

di
dt

=−3
2

e cosω

na(1− e2)
1
2

aw,SRP

dΩ

dt
= Ω̇J2 + Ω̇SRP

dω

dt
= ω̇J2 + ω̇SRP

(B.1)

where n =
√

µ/a3 is the spacecraft mean motion. In the last two equations, the contributions to Ω̇

and ω̇ from the SRP and J2 effects can be independently expressed as:

Ω̇SRP =−3
2

e sinω

na(1− e2)
1
2 sin i

aw,SRP

Ω̇J2 =−3
2

J2 R2
e n

a2 (1− e2)2 cos i

ω̇SRP =−3
2
(1− e2)

1
2

nae
a∗r,SRP − Ω̇SRP cos i

ω̇J2 =
3
2

J2 R2
e n

a2 (1− e2)2

(
5
2

cos2 i− 1
2

)
(B.2)
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In Eqs. (B.1) and (B.2), ar,SRP, as,SRP and aw,SRP are the components of the STRP acceleration
(see Eq. (2.14)) in FLVLH ( a−→SRP

= ar,SRP r−→+ as,SRP s−→+ aw,SRP w−→). Their, values are given in
Eq. (B.3) for a black-body (σa = 1) [11]. The * notation used in Eqs. (B.1) and (B.2) represents
the value at perigee, i.e., at ν = 0.{

a∗r,SRP

a∗s,SRP

}
= Pr β

Ap(t)
m

6

∑
j=1

T j

{
cosψ j

−sinψ j

}

aw,SRP

{
sinω

cosω

}
= Pr β

Ap(t)
m

6

∑
j=1

∂T j

∂ i

{
cosψ j

−sinψ j

} (B.3)

with the time-variant projected area Ap(t) = cosα(t)Anom. The argument ψ j employed in (B.3)
can be expressed as ψ j = n1 Ω+n2 ω +n3 λS where the values of n1, n2 and n3 for j = {1,2, ...,6}
are stated in Table 2.1.
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Appendix C

Differential Equation of True vs. Mean
Anomaly

From Kepler’s law of motion the mean anomaly M can be expressed in terms of the eccentric
anomaly E, and the eccentricity e as:

M = E − esinE (C.1)

Differentiating this equation with respect to E yields:

dM
dE

= 1− ecosE (C.2)

Also, still from Kepler’s law of motion, we have:

ν = arccos
[

cosE − e
1− ecosE

]
(C.3)

Differentiating this equation and simplifying yields:

dν

dE
=

(1− e2)1/2

1− ecosE
(C.4)

Then, from Eqs. (C.2) and (C.4), we have:

dM
dν

=
(1− ecosE)2

(1− e2)1/2 (C.5)

Making use of

1− ecosE =
1− e2

1+ ecosν
(C.6)
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along with Eq. (C.5), we finally have:

dM
dν

=
(1− e2)3/2

(1+ ecosν)2 (C.7)

and inversely
dν

dM
=

(1+ ecosν)2

(1− e2)3/2 (C.8)
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