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Summary

Considerable statistical work done on dynamic treatment regimes (DTRs) is in the frequentist paradigm,

but Bayesian methods may have much to offer in this setting as they allow for the appropriate representation

and propagation of uncertainty, including at the individual level. In this work, we extend the use of recently

developed Bayesian methods for Marginal Structural Models (MSMs) to arrive at inference of DTRs. We do

this 1) by linking the observational world with a world in which all patients are randomized to a DTR, thereby

allowing for causal inference and then 2) by maximizing a posterior predictive utility, where the posterior

distribution has been obtained from non-parametric prior assumptions on the observational world data-

generating process. Our approach relies on Bayesian semi-parametric inference, where inference about a finite-

dimensional parameter is made all while working within an infinite-dimensional space of distributions. We

further study Bayesian inference of DTRs in the double robust setting by using posterior predictive inference
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and the non-parametric Bayesian bootstrap. The proposed methods allow for uncertainty quantification at

the individual level, thereby enabling personalized decision making. We examine the performance of these

methods via simulation and demonstrate their utility by exploring whether to adapt HIV therapy to a

measure of patients’ liver health, in order to minimize liver scarring.

Key words: Bayesian inference; Dynamic treatment regimes; Marginal Structural Models.

1. Introduction

Precision medicine is a research area that seeks to tailor patient care to improve health outcomes, all while

reducing over-treatment. For conditions that require sustained therapy through time, assigned treatments

may vary through stages of the treatment process. To identify treatment strategies that follow the principles

of precision medicine, stage-specific treatments must be allowed to change with patients’ evolving charac-

teristics. These treatment strategies are termed dynamic treatment regimes (DTRs). DTRs contrast static

treatment regimes, where time-varying treatments are assigned at study-start. One tool employed to infer

about time-varying treatments are marginal structural models (MSMs). These models were developed to

evaluate the effect of static regimes (Robins and others, 2000) and later extended to evaluate adherence

to DTRs (Murphy and others, 2001), and to identify optimal DTRs (Orellana and others, 2010; van der

Laan and Petersen, 2007). MSMs rely on an appealing estimation strategy; they allow scientists to target a

finite set of causal estimands without requiring restrictive assumptions about the family of data generating

distributions. Semi-parametric methods like these have mostly been studied from a frequentist viewpoint.

Semi-parametric methods are enviable as they avoid specifying fully parametric probabilistic models that

face a high risk of misspecification. These methods may be contrasted with the conventional Bayesian ap-

proach to inference, which seeks to multiply a parametric likelihood with a prior. In simple settings, this

approach works well, but in more complex settings, like in sequential decision-making, the correct specifi-

cation of a likelihood is highly suspect. Some work has been done examining the effects of model misspec-

ification in Bayesian inference. For example, Walker (2013) shows that under some conditions, parameters

in the misspecified model converge to the minimizers of the Kullback-Leibler divergence. Although this is

reassuring, it does mean that inference cannot be guaranteed to be consistent and consequently, treatment

recommendations based on misspecified models could be suboptimal. Furthermore, in a setting with time-
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varying confounding and mediation, the correct specification of a likelihood with parameters representing

causal treatment effects will not yield fruitful results; this is because only confounded data are available and

this data follows a different probability law. Now, one approach that may guarantee consistency is Bayesian

inference via completely non-parametric specifications. In the DTR setting Bayesian non-parametrics have

been used to estimate the effect of a small number of dynamic regimes (Xu and others, 2016), but when the

family of regimes grows, this approach may not be feasible to identify optimal regimes, due to computational

limitations. Generally, it is unresolved how Bayesians may best capitalize on semi-parametric approaches to

inference about DTRs, and this is one of the challenges that our work addresses.

A variety of other methods for estimating the effect of DTRs have been proposed. For example g-methods

including g-computation (Robins, 1986), and G-estimation of structural nested models (Robins, 1993). Other

ways by which to identify optimal DTRs include Q-learning (Zhao and others, 2009), and outcome weighted

learning (Zhao and others, 2012). In a Bayesian setting, a standard parametric approach to inference requires

specifying the full dynamics of the data generating process in order to learn about dynamic regimes. For

example Saarela and others (2015a) use a predictive Bayesian approach that requires the specification of

parametric distributions for outcomes and intermediate covariates in order to identify optimal DTRs. Murray

and others (2018) propose a Bayesian adaptation to Q-learning that utilizes machine learning methods

for flexible modeling, however the approach still relies on likelihoods for stage-specific rewards/outcomes.

Exceptionally, a few researchers have explored the use of Bayesian non-parametric methods in the DTR

setting; Arjas and Saarela (2010) take this approach, however their method is not computationally feasible

as the number of confounders increases.

Ideally, Bayesians would target a finite dimensional estimand that indexes a large family of regimes,

all while working within an infinite dimensional class of data generating distributions. Recent work has

elucidated ways in which semi-parametric inference may be viewed through a Bayesian lens. First, let us

review the frequentist setup. Frequentist semi-parametrics begins with an estimating function, which under

certain modeling assumptions (e.g. for the mean) is an unbiased estimator of zero. For finite samples, setting

the estimating function equal to zero and solving for a parameter of interest β yields an estimator β̂∗n

which, under regularity conditions, is consistent and asymptotically normal. A framework for Bayesian semi-

parametric inference should allow us to take a similar approach. It was not until recently that MSMs for
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static regimes were provided with a Bayesian motivation by considering the maximization of an expected

posterior predictive utility (Saarela and others, 2015b), which required solving for β in a manner analogous

to the frequentist procedure. Later, using a similar flavor, Bayesian double robust inference was motivated

(Saarela and others, 2016). Other similar recent approaches have further considered inference via utility

functions (Bissiri and others, 2016) and through the loss-likelihood bootstrap (Lyddon and others, 2019).

What is particularly liberating about these inferential procedures is that Bayesian methods can be used

to infer about parameters that are not necessarily embedded in a likelihood, which would undoubtedly be

misspecified. However, none of these approaches have examined causal inference for optimal DTRs.

Our work looks to build on the general framework developed by Saarela and others (2015b) for perform-

ing Bayesian causal inference with MSMs. Those authors focused on inferring about stage-specific causal

treatment effects of static regimes. As it is well established that MSMs can also be used to infer about

(optimal) DTRs, our work seeks to examine how to use this general framework to perform Bayesian causal

inference of DTRs. This requires us to carefully interpret the estimands of interest, so that we may conceive

of a counterfactual world that allows for causal inference. In the double robust setting, we explore posterior

predictive inference for DTRs. This approach to inference was proposed by Saarela and others (2016), but

it has only been studied in the cross-sectional setting. We transparently lay out the use of this new frame-

work for Bayesian causal inference, and with this in mind, we explore the performance of this approach via

simulations with treatment rules like “assign treatment when a covariate value x exceeds a threshold θ”,

with the aim of identifying θopt that optimizes a final outcome. Additionally, with the purpose of illustrating

how this methodology may be used in practice, we consider an analysis of HIV therapy using data from the

North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) where we aim to learn

about whether to tailor on FIB4, a measure of liver scarring, in order to decide when to switch antiretroviral

therapies, with the aim of minimizing long term liver damage.

In addition to the above-mentioned contributions, we note that frequentist uncertainty quantification

does not allow for decision-makers to ask if a new patient will benefit from therapy suggested by an optimal

DTR. As we will elaborate, Bayesian posterior predictive inference allows for decision-makers to assess the

probability that therapy is optimal for a specific patient, thereby allowing for individualized care. To our

knowledge, no other approach quantifies uncertainty at the patient-level decision-making process.
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The approach to inference presented here uses the posterior predictive distribution in order to answer

causal questions about DTRs; there is no need to model counterfactual outcomes directly. The advantages

and detriments of counterfactuals has been studied by, for example, Dawid (2000). Arjas (2012) presents an

approach similar to the one taken here, where the quantities of interest are expected conditional outcomes.

2. Estimation Strategy

In this section, we first describe the inferential setting and motivate Bayesian inference via a utility maxi-

mization framework. We follow this by a precise definition and formulation for connecting two probability

laws: the observational world law and the law that allows us to draw causal inference about optimal DTRs

by eliminating confounding. We then provide a prior that facilitates robust inference in the developed frame-

work. Lastly, we examine specific utilities that allow for causal inference about optimal DTRs. Some of the

developments parallel Saarela and others (2015b), but require some specific considerations for our context;

we also take the opportunity to emphasize some of the nuanced arguments present in this framework.

2.1 Inferential Setting

We consider a sequential decision problem with K decision points and a final outcome y to be observed at

stage K+1. Decisions taken up to stage k give rise to a sequence of treatments z̄k = (z1, ..., zk), zj ∈ {0, 1}. At

each stage k, a set of covariates xk is available for decision-making and it is assumed that these consist of all

time-fixed and time-varying confounders. To denote covariate history up to time k, we write x̄k = {x1, ..., xk}.

Subscripts are omitted when referencing history through stage K. We denote a DTR-enforced treatment

history by g(x̄) = (g1(x1), ..., gK(x̄K)). Our focus is restricted to deterministic DTRs. Throughout, we will

consider a family of DTRs, which will be indexed by r ∈ I to give G = {gr(x̄); r ∈ I}. The index is omitted

when it is clear that our focus lies on a single DTR. Treatment and covariate histories may be considered

under the probability laws in two worlds: the observational world O which denotes the law giving rise to the

data in the study population, and the experimental world E , which denotes a world in which causal inference

may be performed. In the next sections, the definition of E will be made more precise. Lastly, variables

sampled from a posterior distributions are shown with ∗.

As in Saarela and others (2015b), we assume that for each i = 1, .., n, n+1, ..., bi = (yi, x̄i, z̄i) are infinitely
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exchangeable sequences to deduce the de Finetti representation (as in Bernardo and Smith (2009)) in the

observational world:

pO(b1, ..., bn) =

∫
τ,φ,γ

n∏
i=1

pO(yi|x̄i, z̄i, τ)

K∏
j=1

pO(xij |z̄i(j−1), x̄i(j−1), φj)pO(zij |z̄i(j−1), x̄ij , γj)p(τ, φ, γ)dτdφdγ.

(2.1)

In Web Appendix A, we provide a more general representation in cases where there may be unmeasured causes

u of both intermediary and the final outcome. Outcomes do not inform the treatment assignment mechanism,

characterized by a parameter γ (i.e. pO(γ|b̄) ∝ p(γ|x̄, z̄))(Saarela and others, 2015b). The no-unmeasured

confounders assumption (Arjas, 2012) allows us to model treatment assignment probabilities in equation (2.1)

with observed covariates only as pO(zij |z̄i(j−1), x̄ij , γj). This assumption is not often encountered outside

the counterfactual framework, so we provide it in Web Appendix A.

2.2 Bayesian MSMs for Dynamic Regimes

Saarela and others (2015b) have previously considered Bayesian MSMs to estimate the stage-specific effect of

static regimes. However, in a precision medicine setting, it is not immediately clear how to employ this method

of inference to infer about DTRs. In what follows, we adapt their work to the dynamic MSM setting for

DTRs, attempting in the process to clarify the nuances in this general framework. To allow for MSMs to make

Bayesian inference of optimal DTRs, we must make several considerations. First, consider a utility function

U(b̄, g, β); which represents a patient’s utility as a function of patient covariates and regime assignment,

parameterized by an unknown parameter β. This utility may take any form relevant to the decision-maker

(further details about this decision-theoretic approach may be found in Walker (2010)). We will see that

some specific utilities allow us to infer about the causal parameters of interest. As Bayesian decision-makers,

we are interested in finding the value of β that maximizes the posterior expected utility EE [U(b̄∗, g, β)|b̄].

This is an expectation taken with respect to the experimental measure in which patients are randomized to

regimes in G at study start, with probability p(g). When we consider a finite set of regimes in which patients

have equal probability of randomization, we may replace this probability with 1/Cg, where Cg = |I|. In the
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experimental setting consider vi = (bi, gi) ≡ (xi, zi, yi, gi), and assume infinite exchangeability to obtain:

pE(v1,..., vn) =

∫ n∏
i=1

pE(yi|x̄i, z̄i, gi, τ)

K∏
j=1

pE(xij |z̄i(j−1), x̄i(j−1), gi, φj)pE(zij |z̄i(j−1), x̄i(j−1), gi, αj)p(gi)p(τ, φ, α)dτdφdα. (2.2)

Note pE(zij |zi(j−1), xi(j−1), gi, αj) = 1g(x̄i(j−1))(zij), as treatment is deterministically assigned conditional on

regime. For convenience, we re-express the product across all stages as
∏K
j=1 1gj(x̄i(j−1))(zij) = 1g(x̄i)(z̄i).

This representation differs from that presented in Saarela and others (2015b), as the experimental world here

differs. Now, we seek to link E and O. In particular, we make this link with respect to the posterior predictive

distribution. Note that considering measures E andO under a predictive inferential setting allows us to bypass

the use of counterfactual quantities and allows us to directly consider the conditional distributions of Y given

Z (Arjas, 2012). For any utility, an importance sampling argument yields

EE [U(b∗, g, β)|b̄] =EGE

[
Eb∗E |g[U(b∗, g, β)|g, b̄]

∣∣∣b̄]
=EGE

[∫
b∗
U(b∗, g, β)pE(b

∗|g, b̄)pO(b∗|b̄)
pO(b∗|b̄)

∣∣∣∣b̄]

=EO

 1

CG

∑
{r∈I}

w∗rU(b∗, gr, β)

∣∣∣∣∣∣b̄
 . (2.3)

Randomization to regime gr is equiprobable for all regimes in our experimental world; this is captured by

the constant CG (See Web Appendix A for more details). The weights wr in equation (2.3) are given by

w∗r =
1gr(x̄∗)(z̄

∗)∏K
j=1 pO(z∗j |z̄∗j−1, x̄

∗
j−1, b̄)

.

The denominator is the well-known treatment probability in the observational measure; the numerator is

the probability of a sequence of treatments conditional on regime assignment. Note that this weight formula

differs from that presented in Saarela and others (2015b), though the general procedure is the same. For

equation (2.3) to hold for the entire support of the data, we require that for each g, pE(b
∗|g, b̄) be absolutely

continuous with respect to PO; this is equivalent to the positivity condition cited in the causal inference

literature. Practically, this means that if a patient following regime g has recorded history (x̄k, z̄k−1) and

receives treatment zk, then in the observational world we should be able to find patients of this sort. Note that

as in the frequentist setting, these dynamic MSM weights are not stabilized, and the above argumentation

clarifies why the usual stabilization is not possible in the DTR framework. Although importance sampling
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can motivate inverse probability of treatment weighting – a classical approach to estimating MSMs in the

frequentist setting – the inferential machinery must still come from semi-parametric theory. In Bayesian

inference, importance sampling and an appropriate prior lead to a method of inference. In the frequentist

literature, the linking of two measures is not usually termed importance sampling; this is done via a Radon-

Nykodym derivative. This derivative was first used by Murphy and others (2001) to connect the observational

distribution with the distribution in which all patients follow a DTR, and it has been further adapted in

works like Orellana and others (2010), Johnson and Tsiatis (2004, 2005), and Hu and others (2018).

Now that we know how to link the expected utility in the experimental worlds with the observational

world, we must consider how to infer about the parameter of interest β. Recall that as Bayesian decision

makers, our best estimate for β is one that maximizes the posterior expected utility. This requires a posterior

distribution to characterize the uncertainty of this maximizer. Consequently, before specifying the utility of

choice and before performing the necessary maximization, we must specify a prior. The prior we consider is

not placed on β ∈ B as is done in Bayesian parametric inference; the prior is placed on the family of data

generating distributions in the observational world PO, and denoted by PF . In fact, this prior induces a prior

on β as PB(β ∈ Ω) = PF ({PO : β(PO) ∈ Ω}). A robust, non-informative choice of prior in the observational

measure is the non-parametric Dirichlet process (DP) prior, which asymptotically concentrates around the

true data generating distribution. Stephens and others (2021) explore in detail the consequences of what

the Dirichlet process prior implies for a prior on a functional, like β. Now, when DP(α,Gx) is chosen such

that |α| → 0, we obtain the non-parametric Bayesian bootstrap as the posterior predictive distribution.

This Bayesian bootstrap is the same as that employed by Saarela and others (2015b), however we have been

explicit about the assumptions needed to utilize it. This bootstrap is analogous to the Bayesian bootstrap

presented in Rubin (1981). Under this specification, one sample drawn from the posterior DP is given by

p(b∗|b̄, π) =
∑n
i=1 πi1bi(b

∗), where π = (π1, ..., πn) is a sample from Π ∼ Dir(1, ..., 1), a Dirichlet distributed

random variable with all concentration parameters equal to one. Note that under the Bayesian bootstrap

assumptions, any distribution sampled from the posterior DP is uniquely determined by Π. To compute

functionals of the posterior predictive, we require p(b∗ ∈ A|b̄) = EΠ[p(b∗ ∈ A|b̄,Π)] which are estimated by

resampling weights (π1, ..., πn) from Dir(1, ..., 1), and computing the average over samples. Consequently,
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under Bayesian bootstrap assumptions, we compute the expected posterior experimental world utility via:

EE [U(b∗, g, β)|b̄] = EΠ[EE [U(b∗, g, β)|b̄,Π]] = EΠ

[
1

CG

n∑
i=1

∑
r∈I

πiw
∗r
i U(bi, g

r, β)

]
. (2.4)

βopt, the true maximizer of the expected utility, can be expressed by maximizing the expected posterior

utility: βopt = argmaxβ
∑n
i=1EΠ

[∑
i πi
∑
r∈I w

∗r
i U(bi, g

r, β)
]
. Furthermore, the uncertainty around βopt

may be characterized by noting that βopt is a deterministic function of π, computed as

βopt(π) = argmax
β

n∑
i=1

πi
∑
r∈I

w∗ri U(bi, g
r, β).

Thus, uncertainty in the posterior distribution reflects uncertainty in βopt; this approach to Bayesian inference

is discussed by Walker (2010). We may disregard CG for the purposes of predictive inference. Modulo Monte

Carlo error, this is an exact Bayesian procedure, regardless of the sample size. In work by Saarela and

others (2015b), simulations show that multiplying πi with importance sampling weights dampens the effect of

extreme weights thereby leading to improved variance estimators as compared to those relying on asymptotic

approximations, the latter tending to underestimate variance.From equation (2.4), we note that to draw

inference in the experimental world, we require an analytic expression for the weight w; this leads us to

modeling the treatment assignment probabilities. We touch on this in Section 2.3. Furthermore, we note that

inverse probability weighting methods may not be adequate in settings with many stages, as these require

us to take the product of many probabilities, thereby leading to large weights and yielding both bias and

imprecision (Robins and others, 2008; Scharfstein and others, 1999). We now present some utilities that

allow for causal inference of DTRs.

2.2.1 Utility as Negative Squared Error Loss: An appealing choice of utility is the negative square error

loss given by: U(b∗, gr, β, ) = −(y∗ − h(β, r))2, where h(β, r) models E[y∗|gr, b̄]. This leads to solving:

βopt(π) = argmax
β

[
−

n∑
i=1

πi
∑
r∈I

w∗ri (yi − E[yi|gr, β])2

]
. (2.5)

Again, over repeated draws from Π, this is an exact Bayesian procedure for finite samples, modulo Monte

Carlo variation. This procedure allows us to leverage the possibility that patients adhere to multiple DTRs,

thereby contributing to the objective function multiple times. Orellana and others (2010) show that solving

for βopt = argmaxβ
[
−
∑n
i=1

∑
r∈I w

∗r
i (yi − E[yi|gri , β])2

]
yields a consistent estimator for β when the mean

model is correct. We note that dynamic MSMs are not impacted by issues of non-regularity that arise in
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methods like Q-learning and G-estimation. See Web Appendix B. Analogously, our procedure can be seen

to be consistent for β, by computing the posterior expected utility:

EE
[
−(y∗ − h(β, r))2|b̄

]
= −

∫
b∗

∑
r∈I

w∗r(y∗ − E[y∗|gr, β])2pO(b∗|b̄)db∗

= −
∫
b∗

∑
r∈I

w∗r(y∗ − E[y∗|gr, β])2 1

n

n∑
i=1

Ibi(b
∗)db∗

= − 1

n

n∑
i=1

∑
r∈I

w∗ri (yi − E[yi|gr, β])2.

We see that βn that maximizes the equation above is the same one that solves the estimating equation in

Orellana and others (2010). Indeed we see why our approach may be regarded as a way to unify Bayesian

inference with dynamic MSMs. Now, we need not limit ourselves to a finite family of regimes. If the family

of DTRs is indexed by a continuous parameter, then a relaxed positivity condition described in Orellana and

others (2010) will allow us to perform inference on values of the index where positivity may not hold. This

condition says that instead of requiring that we observe patients who followed all regimes of interest, we

require for patients to follow a subset of regimes. More specifically, β in h(β, r) may be identified ∀r ∈ I even

when the positivity assumption fails for some r, and it suffices to observe r for sufficient points such that β is

identifiable. For example, a model h(β, r) = β0+β1r+β2r
2 that is correctly specified is identifiable if positivity

is met for at least three values of r ∈ I. Of course, the model should be correct in the range of inference. For

example, if the identified optimal r is far from the range of observed values, we should question the resulting

inference. When searching for optimal DTRs via smooth modeling, we must keep in mind that there are two

optimal posteriors we are after: The first is the posterior distribution of β̄ = (β0,opt, β1,opt, β2,opt); the second

is the posterior distribution of ropt which is a deterministic function of β̄.

2.2.2 Utility as Negative Log Likelihood: If we choose the utility as the negative log likelihood of the

outcome conditional on regime assignment in E , then for repeated samples of Π we can compute

βopt(π) = argmax
β

n∑
i=1

πi
∑
r∈I

w∗ri,K`(yi|gr, β). (2.6)

The choice of this utility is guided by aiming to minimize the Kullback-Leibler divergence between `(yi|gr, β)

and the data-generating distribution. β may describe the relationship between gr and y for any r ∈ I thus

making it a target for causal inference. Interestingly, this utility actually allows us to consider conventional

parametric Bayesian inference (i.e. likelihood times prior) by making use of the weighted likelihood bootstrap
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(Newton and Raftery, 1994). We show that
∑
r w
∗r
i,K`(yi|gr, β) can be regarded as a weighted likelihood in

order to connect the Bayesian bootstrapping procedure with the weighted likelihood bootstrap. Denote Ai

as the set of regimes that patient i adheres to, then for r1, r2 ∈ Ai we have that w∗Ai
= w∗r1K = w∗r2K . These

weights are zero otherwise. Then, we may write equation (2.6) as

βopt(π) = argmax
β

n∑
i=1

πiw
∗
Ai

∑
r∈Ai

`(yi|gr, β). (2.7)

Note that w∗Ai

∑
r∈Ai

`(yi|gr, β) is a weighted likelihood; in accordance with the weighted likelihood boot-

strap, βopt(π) may be regarded as a sample from the posterior distribution of β under a flat prior. Thus,

repeated sampling from this posterior allows for quantification of uncertainty around β. Other priors may be

incorporated via sampling importance resampling, but this is not essential and is not the focus of our work.

2.3 Implementation

To clearly lay out how to perform Bayesian causal inference using the proposed approach, we provide Algo-

rithm 1. Here, the aim is to obtain a sample from the posterior distribution of β̄. The algorithm is shown

for when the utility is proportional to the squared error loss, or the Normal log likelihood, but it is straight-

forward to see how it may be adapted to other likelihoods. The data-augmentation procedure described can

be further understood from Cain and others (2010), where a new row of data is created for every regime

to which a patient adheres. Recall that equation (2.4) leads us to requiring a model for the weights w. For

a given draw of the posterior distribution, we consider the model pO(z∗j |z̄∗j−1, x̄
∗
j , γj(π)), j = 1, ...,K. The

parameters γj may be regarded as coming from a posterior utility maximization framework with the same

non-parametric prior. When the utility is the negative log-likelihood, we solve:

γj(π) = argmax
γj

n∑
i

πi log pO(zi,j |z̄i,j−1, x̄i,j , γj).

Then, for every draw of Π, we first fit the weighted treatment propensity model and use the resulting

weight w(π) in equation (2.5). By computing EΠ{EE [U(b∗, g, β)|b̄,Π]}, we are indirectly incorporating the

uncertainty about γj into the estimation procedure.
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3. Predictive Double Robust Bayesian Inference for DTRs

In the frequentist literature, inverse probability of treatment weighting (IPW) is known to be an inefficient

semi-parametric procedure; it also yields inconsistent inference if the treatment models are miss-specified. To

gain efficiency and robustness, researchers can consider the double robust estimator for the marginal mean

of a DTR. This requires identifying a series of conditional outcome models, so that consistent inference is

attained when either a set of treatment models or a set of outcome models is correctly specified. We now

use some of the inferential framework presented in the previous section, and first developed in Saarela and

others (2016), in order to arrive at Bayesian double robust inference for the expected outcome of a DTR g.

Though the underlying mechanics hinge on the developments of Saarela and others (2016), examining and

evaluating the use of this double robust estimator in a sequential DTR setting is of scientific pertinence.

For reasons that will be elaborated on in the following, we no longer seek to model in a unified manner

the expected outcome for regimes in a family G, and therefore no longer consider inference via utilities. To

preserve the notation we have developed so far, it is enough to consider a family G containing a single DTR.

Consequently, identifying optimal DTRs now requires evaluating the double robust estimator to be proposed

at each DTR of interest and comparing the expect outcomes. Effectively, these are expectations in a regime

enforced world, where everyone in the study population follows a regime g; this contrasts the previously

considered experimental world where patients are randomized to DTRs in a family. With this aim in mind,

consider a sequence of conditional predictive outcomes φ∗k+1, k = 1, ...,K. For k = K, these are defined as

φ∗K+1(x̄∗K) = EO[y∗|x̄∗K , z̄∗K = ḡK(x̄K), b̄]. (3.8)

For k = K − 1, ..., 1, φ∗k+1 are defined as

φ∗k+1(x̄∗k) = EO[φ∗k+2(x̄k+1)|x̄k, z̄∗k = ḡk(x̄∗k), b̄]. (3.9)

These are expected outcomes in the observational world, conditional on subjects who had covariate history

x̄k and that followed the regime g up to time k. It can be shown via a conditional expectation argument

that Eg[y
∗|b̄] = EO[φ∗2(x∗1)|b̄], the estimand of interest.

Next, we describe how models for φ∗k may be fit in a Bayesian framework; following this, we motivate the

double robust estimator when models for φ∗k+1 are correct or when models for w∗k are correct. Based on the

de Finetti representation in equation (2.2), we see that outcome models are parameterized by τ such that
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φ∗k+1(x̄k) = φ∗k+1(x̄k; τ). From equations (3.8) and (3.9) we see exactly how a model should be fit for the

mean of the conditional outcomes. We should begin by fitting a model for time point k = K and continue

backward; the outcomes for stage k can be computed once a model for stage k + 1 has been fit. We can

treat uncertainty in τ analogously to how we treated uncertainty in γ, the parameter corresponding to the

treatment assignment model in the observational world: we make it dependent on Π via a non-parametric,

non-informative prior. However, instead of posing a likelihood model as was done for the treatment assignment

mechanism, we consider the negative squared error loss utility and pose a model for the conditional outcomes.

Then, for every draw of Π, we can estimate φ∗k+1(x̄k, π) = Eg[y
∗|x̄∗k = x̄k, π, τ(π)]. In Web Appendix C.1,

we provide details as to how τ may be estimated and incorporated into the inferential procedure.

Ultimately, we seek to estimate Eg[y
∗|b̄] unbiasedly either when the conditional outcome models are

correct, or when the treatment models are correct. This may be achieved by noting the following equality,

which follows directly from Orellana and others (2010):

Eg[y
∗|b̄] = EO

[
φ∗2(x̄∗1) +

K∑
k=2

w∗k−1(φ∗k+1(x̄∗k)− φ∗k(x̄∗k−1)) + w∗K(y∗ − φ∗K+1(x̄∗K))

∣∣∣∣∣ b̄
]

. (3.10)

From (3.10), we see that when outcome models are correct the estimator is unbiased (see Web Appendix

C.2). To see that it is an unbiased estimator when treatment models are correct, we change the form of the

estimator. Define h(b̄) = Eg[y
∗|b̄] and add 0 =

∑K
k=1 w

∗
k−1[h(b̄)− h(b̄)] to obtain

Eg[y
∗|b̄] = EO

[
h(b̄) + w∗K

(
y∗ − h(b̄)

)
−

K∑
k=1

(w∗k − w∗k−1)(φ∗k+1(x̄∗k)− h(b̄))

∣∣∣∣∣ b̄
]
, (3.11)

where w0
.
= 1. In Web Appendix C.2, we show how to arrive at this equation and that it is unbiased.

Now that we have identified our estimator of choice for any posterior distribution, let us use the same

prior used in the singly robust case and obtain the Bayesian non-parametric bootstrap as the posterior.

Then, conditional on a posterior draw, we write (3.10) as

Eg[y
∗|b̄,Π] =

n∑
i=1

πi

[
φ∗i2(xi1) +

K∑
k=2

w∗ik−1(φ∗ik+1(x̄ik)− φ∗ik(x̄ik−1)) + w∗iK(yi − φ∗iK+1(x̄Ki))

]
. (3.12)

Models for the φs and ws now depend on Π and may be incorporated into the inferential process as in (2.3).

Furthermore, we may compute Eg[y
∗|b̄] = EΠ

[
Eg[y

∗|b̄,Π]
]

by resampling Dirichlet weights, thereby enabling

us to obtain a double robust estimator for the value of a DTR, including its uncertainty. As mentioned, the

double robust Bayesian estimator proposed is only for the marginal mean of a DTR, not for the parameters in
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a model for the marginal mean linking a family of DTRs (e.g E[y∗|b̄, gr] = β0+β1r). In order to obtain double

robust estimators of the latter, an appropriate utility would have to be proposed so that when importance

sampling is used to link the experimental world with the observational world, the obtained expression in

the observational world is doubly robust. Then, to use the proposed estimator to identify optimal DTRs, we

are required to perform a grid search. Murphy and others (2001) suggested that outcome models should be

coherently parameterized so that for k2 > k1, a model conditional on information up to time k2 would yield

a model conditional on information up to time k1 when covariates between k2 and k1 are marginalized.

4. Individualized Decision Making

Now that we have developed the inferential approach, we turn our attention to examining how to incorporate

this into an individualized decision-making scheme. This consideration is particular to the DTR setting that

we explore. For exemplary purposes, we focus on the following class of regimes: treat if xk > θ for k = 1, ...,K.

Suppose that a new patient is observed with covariate value xnew1 . Our interest is in deciding whether this

patient should be treated based on our belief about the optimal θ. To do this, we are interested in computing

P (θ∗opt < xnew1 |b̄). This may be done by taking a sample of size m from the posterior distribution and

computing p1 = (1/m)
∑
θ 1(θ∗i < xnew1 ). Indeed this can be done for all stages pk. Effectively, this probability

is informing the decision-maker about how certain they should be in switching treatment given the patient’s

current health status, if the aim is to select an optimal therapy. It is then up to the decision-maker to make

a treatment decision given that probability. Note that a patient’s decision about treatment at a given stage

does not alter the optimality of consequent decision rules, though it may alter the optimality of the overall

treatment course. This individualized approach may be taken with any optimal regime derived through the

proposed methodology, and we elaborate on this in the simulations.

5. Simulations

In this section, we use simulations to evaluate how this Bayesian approach to inference can be used to infer

about optimal DTRs. We focus on multi-stage problems with a sample size of n = 500. All results are

presented over 500 Monte Carlo replications. For comparison, we also provide results for the frequentist ap-

proach. Generally the strategy was to induce time varying confounding with treatment-confounder feedback.
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All intermediary variables were Gaussian, and all treatment variables Bernoulli. We followed the approach in

Stephens (2015) to generate outcomes that allowed for the analytic identification of the optimal regimes. The

true value (expected outcome) under the optimal regime was obtained by generating a large sample of data

in which patients adhered to the optimal regime. Further simulation details can be found in Web Appendix

D, as well as results for other sample sizes and for when intermediary variables are Gamma-distributed.

For simulation I, we considered a family of regimes indexed by θ1, θ2 where treatment is assigned when

xk exceeds θk, θk ∈ [0, 1], k = 1, 2. The known optimum is (θ1opt, θ2opt) = (0.4, 0.8) and the outcome

y = x1 − (−θ1opt + x1)(1θ1opt>z1 − z1)− (−θ2opt + x2)(1θ2opt>z2 − z2) +
√

0.5ε, ε ∼ N(0, 1). We evaluate the

performance of both the IPW and double robust estimator thereby leading us to compute these estimators

for discrete values of θk ∈ {0, 0.1, 0.2, ..., 0.9, 1}. Table 1 shows the results of the estimation procedure.

The first column indicates the type of estimation procedure that was used. The second refers to the model

specification. For the double robust estimator “None” means that both treatment and outcome models are

miss-specified ; “Treat” means the treatment models are correctly specified; “Outcome” means that outcome

models are correctly specified; “Both” means all models are correctly specified. “IPW” refers to the IPW

estimator with correctly specified treatment models. For incorrectly specified models, we use intercept-only

regressions. For the Bayesian approach, point estimates are provided at the posterior mean. For simulation

I, the mean outcome at the optimal regime can be seen (from the data-generating mechanism) to be 0.

In Table 1 we observe that estimators with at least one set of models correct are unbiased. As expected,

when the treatment and outcome models are all correctly specified, efficiency is maximized. The coverage

probability measures the proportion of time that the true optimum is inside a 95% credible interval, across

replications. As far as we are aware, there is no way to obtain a confidence interval for the optimal threshold in

the frequentist setup. This is because we have evaluated the estimator in a grid of thresholds θ and identified

the θ̂opt that maximizes the mean outcome; for the Bayesian setup, we have sampled the posterior distribution

of θopt. “Estimated Outcome Train Pop.” refers to estimated expected outcome under the optimal regime,

this is known to be 0; “Mean Outcome Test Pop.” refers to the mean outcome under the optimal DTR, in a

new population with a different distribution for intermediate covariates. Thinking about the mean outcome

in a test population allows us to think about how the identified optimal DTR will perform once deployed

in the real world. We see that the frequentist and Bayesian methods perform similarly, and surprisingly the
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“no models correct” scenario leads to good performance in the testing set, though this is due in part to the

scale of the value function which has a narrow range (see Web Appendix D). The uncertainty measures for

θk,opt appear to be slightly higher for the Bayesian analysis than for the Frequentist analysis. One reason

for this may be that the Bayesian method acknowledges uncertainty in the outcome and treatment models,

whereas the frequentist method takes these as known. The coverage probability for θ1 in the no models

correct scenario is low, and surprisingly it is close to nominal for θ2. For the other setups, the coverage

probabilities are slightly higher than their nominal value. Of course, it is important to keep in mind that

this was a discrete problem and the coverage probabilities depend on the coarseness of the exploration grid;

we have observed in other simulations that finer grids lead to further tightening of the confidence intervals

toward the nominal value (results not shown). However, this must be balanced with the computational costs

of an estimation procedure on a fine grid.

Now, we can ask whether newly observed patients will benefit from the estimated optimal rule. For

illustrative purposes, we restrict the family of regimes to have a common threshold across periods: θ1 = θ2 =

θ, with θopt = 0.6 (see Web Appendix D). Now, Figure 1(a) shows the probability that a patient should receive

treatment z = 1 at stage 1 for a single Monte Carlo replicate. This is a step function as θ was computed over

a set of discrete values. Patients with low and high values of x1 experience high certainty as to whether they

should receive optimal treatment or not. Patients whose covariate is near the true optimal threshold of 0.6

experience low certainty. Figure 1(b) shows the same result across 500 Monte-Carlo replicates, emphasizing

that there is high uncertainty around the true value. It can also be useful to obtain a smooth decision curve.

This may be done by evaluating the double robust estimator over a much finer grid of points or by modeling

E[y∗|b̄, gθ] via a smooth function such as β0 + β1θ+ β2θ
2 (quadratic) and using IPW. Figure 1(c) shows the

results of the individualized rule with the quadratic model and IPW estimator; the decision rule is much

smoother and provides high certainty for most values of x1, except for those closest to 0.6. Figure 1(d) shows

the Monte Carlo variation around this curve; most uncertainty is around the true value of the threshold.

For simulation II, we explore a family of regimes indexed by ψ1, ψ2, ψ3 such that ψ1xk1 + ψ2xk2 >

0.5− 3ψ3u; k = 1, ..., 4; xk1, xk2 are normally distributed intermediary covariates and u is a binary baseline

covariate. This regime has an interpretation that treatment should be given if the weighted sum of xk1 and

xk2 is above a threshold, and this threshold depends on patients’ baseline covariate u. Increments of 0.05 were
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used for ψ1, ψ2 and of 0.1 for ψ3. Web Appendix D.3 shows the data generating mechanism for this setup.

The optimal regime is given by ψ1opt = ψ2opt = 0.5, ψ3opt = 0.1, with a value of 1. We see from Table 2 that

all scenarios, except the no models correct scenario are unbiased, with the all models correct scenario yielding

the best results. Getting the outcome model correct provides improvement in the estimation of the value at

the optimum over just getting the treatment model correct. We do not include a ψ2 column in the table, as

the constraint ψ1 + ψ2 = 1 makes this redundant. We note again that the coverage probabilities are high,

recall that this is driven by the coarseness of the exploration grid; a finer grid in this problem would be very

computationally intensive. Web Appendix D.2 presents a similar simulation without the binary covariate.

In Figure 2 we further illustrate how the Bayesian framework can be leveraged for individualized inference.

We observe, for one replicate, the probability that a patient should be treated under the optimal decision

rule, given as set of covariates. These probabilities are computed by using the posterior distribution of

ψ1opt, ψ2opt, ψ3opt via P (ψ∗1optx11 +ψ∗2optx12 +ψ∗3optu > 0.5). There are regions of high certainty that indicate

patients should or should not receive treatment according to the optimal rule; there are also regions with

more uncertainty regarding the choice of optimal treatment. In fact, patients with baseline covariate u = 0

face higher uncertainty overall than those with u = 1.

There is some debate in the literature on choice of double versus singly robust estimators, this includes

Kang and Schafer (2007) and Bang and Robins (2005). Our simulations emphasize that a lot is to be gained,

in precision and accuracy, if we correctly specify the outcome models, when compared to the double robust

estimator with only treatment models correct or the IPW estimator. Efficiency is maximized when all models

are correct, thereby clarifying that these considerations are not just theoretical; they also impact analyses

with finite sample size. When deciding whether to use the singly robust or the doubly robust estimator, it

is important to ask what is better understood: the treatment assignment process, or the outcome process.

6. Case Study: Analysis of the NA-ACCORD

Treatment for HIV infection with antiretroviral therapy (ART) must be lifelong to maintain control of

HIV viral replication and improve immune function. Consequently, there is concern that some combinations

of drugs may cause long-term harm. The multi-drug nature of this therapy allows for some flexibility in

treatment course. Research by Klein and others. (2016) is consistent with the possibility that some ART
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agents contribute to long term liver damage in patients with chronic hepatitis C (HCV) infection. ART

agents, like protease inhibitors (PI), may also help reduce adverse liver outcomes by providing virologic

control (Maćıas and others, 2006), while also having some detrimental effects on liver health (Young and

others, 2021). We examine how to tailor ART therapy to reduce liver damage by exploring the use of

Bayesian dynamic MSMs for tailoring therapy to patients’ FIB4 score, an age-adjusted score that quantifies

liver fibrosis; higher values indicate greater damage (Sterling and others, 2006). We aim to identify whether

there is an optimal FIB4 score at which patients should switch therapy, in order to minimize subsequent

FIB4. In particular, for the purposes of demonstrating the use of the proposed methods, we explore the effect

of switching into PI (z=1) and away from any other ART regimen (z=0) when FIB4 score surpasses a level

θ, and when all patients start out on a non-PI based therapy. This is a thresholding regime, where we search

for the optimal θ in the DTR: switch when FIB4> θ.

We use data from the NA-ACCORD to identify a cohort of patients who initiated ART therapy from

2004 onwards, the period in which modern ART treatments were approved. Patients in this cohort may or

may not have other viral infections, such as HCV and hepatitis B (HBV). Study initiation (time zero) is the

first instance of ART treatment, after which patients are followed-up for a 12 month exposure ascertainment

period. It is in this period where we may examine what DTRs patients follow. Lastly, outcomes are taken

to be the first FIB4 measurement 18 to 30 months after study initiation. The outcome observation period

is as defined because liver measurements are not taken at every follow-up visit, though they should occur

at least annually as per standard of care. Patients are lost to follow-up if they stopped receiving ART, had

missing ART records, or if they did not have an observed outcome. The range of thresholds is determined by

the fifth and ninety-fifth quantile of FIB4 scores at baseline. We identify patient records every six months

and record the treatment that patients received. Potential confounders included were: time-varying CD4-

cell count, time-varying viral load, and the following baseline variables: insurance status, indicator of risky

alcohol consumption, drug use, HCV status, HBV status, race, and sex.

Based on the six-month observation intervals, there were a total three decision points, each requiring

a set of models. Potential confounders were identified a priori through discussions with a subject matter

expert. Stage-specific propensity scores were then fit to achieve balance across treatments at each time

point. Censoring weights were incorporated to eliminate selection bias. For the doubly robust estimator, it
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was assumed that the variables in outcome models explained both confounding and/or selection. The models

that were fit can be found in Web Appendix E. Sensitivity analyses were performed in order to determine

whether results were sensitive to model specifications. Balance from the propensity scores was assessed using

standardized differences and by using a frequentist fit of the propensity scores. Balance was examined at all

stages. Outcome models were examined to ensure the predicted distribution did not differ from the observed.

For a fixed value of θ, patients are indicated to switch treatments when their FIB4 measurements surpass

θ. Accordingly, patients in the study could be categorized into five groups for each regime (gθ) considered:

those 1) indicated to switch but did not switch (ISNS), or switched at the wrong time; 2) indicated to switch

and switched (ISS); 3) not indicated to switch and did not switch (NISNS); 4) not indicated to switch and

switched (NISS); and 5) those who were assigned to PI at baseline (NR). Patients indicated to switch were

given six months to do so (a grace period). To improve the properties of the estimators, we normalized the

weights in the analysis and assessed positivity for each candidate regime by checking whether the distribution

of the propensity scores at each interval for the modeled treatment are similar in the regime adherent group

and the regime non-adherent group. The propensity to switch treatment was generally small, highlighting

that relatively few individuals contribute to the estimation of our regime of interest – a limitation that must

be acknowledged; more details can be found in Web Appendices E.3 and E.4. Only patients in the ISS and

NISNS groups could adhere to a regime for the full study period. Consequently, patients in the other groups

were artificially censored when they deviated off the specified regime. 95% credible intervals were calculated

for all point estimates, approximated using 500 draws from the posterior distribution; point estimates were

reported at the posterior mean. Details of the analysis plan can be found in Web Appendix E.

We evaluated the estimators at thresholds of 0.4 to 2.8 in units of 0.2; the minimum and maximum

threshold value correspond to the 5th and 95th percentile of the FIB4 distribution. In Table 3, we present

follow-up information for a subset of these regimes. We did not pose a marginal structural model as a function

of θ (e.g. a quadratic form) as we wanted to make use of both the IPW and double robust estimators. Although

our overall sample size is large, we see that only half of patients follow a non-PI ART regimen at study start.

Additionally, roughly 30% of ISS and NISS patients are censored or artificially censored. The number of

NISNS patients varies strikingly across regimes. However, this is to be expected: for a threshold of 0.5, only

a small proportion of patients are not indicated to switch, and a relatively large proportion of patients switch
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in the first year of the study. The sample size in the ISS group is generally low, which is unfortunate. In

part, this is due to the fact that when patients are indicated to switch, not only should they switch, but

they should switch within the indicated time. The sample size in the ISS group is further reduced for large

values of θ as for these values, only a small number of patients would be indicated to switch.

From Figure 3 (a), we confirm that we are underpowered to detect any differences in final FIB4 scores,

and that the doubly robust estimator provided some gains in efficiency. It is noteworthy that FIB4 scores

drop overall at the end of the study, compared to the baseline values. We note that from this figure, there is

no interior point that clearly minimizes FIB4 score, thereby suggesting that there is no benefit to tailoring.

A threshold of θ = 0.4 yields a DTR that is very close to the static treatment always switch into PI. Though

this may raise the question as to why patients would be given a different drug other than PI, we remind the

reader that there are a variety of other ART treatments, some of which may be more beneficial and some

which may be more detrimental. From Table 4 we can examine the expected outcomes for a subset of regimes.

We note that the IPW and doubly robust estimator yield very similar point estimates across most regimes;

both estimators point to the same conclusions. In addition, Figure 3(a) also leads us to question the utility

of individualized inference in this scenario. Though the figure shows a relatively flat relationship between

the value function and the threshold (with considerable uncertainty), the value function under adherence to

each candidate regime is not flat, as is shown in Web Figure 4. Consequently, we can ask the probability that

a patient’s FIB4 value is greater than the optimal threshold. This results in Figure 3(b), which indicates

that when a patients FIB4 score is at 0.8 or greater, they have a high probability of being above the optimal

threshold. We discuss this further in Web Appendix E.6.

This analysis had several limitations. First, the follow-up may have been too short for the outcome of

interest, as switching therapies may not have an immediate effect on liver scarring; this is likely a long-term

process. The reason for the short follow-up was that after the first year, therapeutic switches were relatively

rare. Also, there was a trade-off in extending the follow-up time: it would allow for more therapeutic switches

but also increase artificial censoring due to going off regime. Though many confounders were included in the

analysis, some may have been missed. Importantly, we did not have information on why patients switched

therapy. Additionally, it would have been beneficial to study only patients co-infected with HCV and HBV,

as these are at higher risk of liver complications. However, sample size limitations did not allow for this.
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7. Discussion

In this work, we explored recently developed Bayesian semi-parametric methods to infer about optimal DTRs.

For this purpose, we sought to transparently develop a way to utilize Bayesian dynamic MSMs, this involved

targeting experimental world causal parameters when only observational world data was available. We also

inferred about optimal DTRs via posterior predictive inference and a double robust estimator; this approach

had not been studied in a longitudinal DTR setting. Our simulations showed that the proposed methods

work well, though they exhibit slightly more variability than their frequentist counterpart. The analysis of

the NA-ACCORD provided a demonstration of how these methods might be used in clinical research, though

we note that the results were limited by the fact that therapeutic switching was infrequent in practice. Still,

this case study aimed to show that our proposed inference could be implemented meaningfully. Though

our approach does not necessitate counterfactual notation, the idea of counterfactuals still permeates this

work; the experimental world considered, is indeed a world where, counter to fact, patients have been

randomized to a specific treatment strategy of interest. Additionally, the resulting conditional posterior

predictive quantities are equal to their counterfactual counterparts in this unconfounded world. Throughout,

we focused on the non-parametric Bayesian bootstrap in order to draw inference in a non-informative, robust

way. Indeed our choice of prior allowed us to connect our approach to the way frequentist semi-parametric

estimators are obtained. Though these methods may feel different, they have the same ingredients that

appear in conventional Bayesian analyses. A prior leads to posterior inference in the observational world,

and importance sampling allows us to infer about worlds that are of scientific interest. When we are interested

about inferring about parameters in a utility, the Dirichlet process prior that we make use of implicitly induces

a prior on these parameters; these ideas as explored further in Stephens and others (2021). We remind the

reader that the proposed method is valid for any sample size. We also note that methods discussed herein are

not limited to decisions taken at fixed dates; they may also be triggered by events. For example, a second-line

therapy may be given only when first-line therapy lacks efficacy, as in Krakow and others (2017).

8. Software

Software in the form of R code can be found on GitHub on the following link: https://github.com/Danroduq/Semi-

parametric-Bayesian-DTRs.
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9. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Data: DATAO

for r ← 1 to CG do // Create AUGDATAO based on regime adherence

Replicate rows of DATAO for patients adherent to regime gr

end
Posit model for h(r, β)
for i← 1 to B do // B is number of posterior draws

Draw π = (π1, ..., πn) from ∼ Dir(1, ..., 1)
Estimate pO(zk|z̄k−1, x̄k, γj , π) ∀k
Compute weights wi(π), i = 1, ..., n // n is number of patients

Add weights to AUGDATAO

Run regression with mean h(r, β) and with weights πiw
r
i (π)

end
Output: Posterior distribution of β∗

DATAO is input data with one row per patient and is used to fit treatment models. AUGDATAO is
augmented data, where patients are duplicated for as many DTRs as they adhere to. This dataset is
used to run regression for h(r, β).

Algorithm 1: Fitting procedure for Bayesian dynamic MSM.

Table 1: Results for simulation I (n=500; 500 Monte Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.247 (0.116) 0.641 (0.183) 0.250 (0.120) — 0.587 (0.012)
Frequentist Treat 0.468 (0.232) 0.753 (0.207) 0.045 (0.066) — 0.584 (0.017)
Frequentist Outcome 0.385 (0.193) 0.735 (0.210) 0.022 (0.065) — 0.588 (0.014)
Frequentist Both 0.415 (0.182) 0.793 (0.162) 0.018 (0.056) — 0.591 (0.011)
Frequentist IPW 0.441 (0.205) 0.747 (0.209) 0.035 (0.064) — 0.587 (0.014)
Bayesian None 0.246 (0.124) 0.641 (0.192) 0.271 (0.119) 0.860, 0.914 0.586 (0.012)
Bayesian Treat 0.480 (0.253) 0.759 (0.203) 0.070 (0.064) 0.990, 0.964 0.582 (0.019)
Bayesian Outcome 0.371 (0.207) 0.737 (0.232) 0.037 (0.065) 0.974, 0.986 0.585 (0.015)
Bayesian Both 0.414 (0.194) 0.797 (0.166) 0.029 (0.056) 0.978, 0.974 0.590 (0.012)
Bayesian IPW 0.454 (0.218) 0.761 (0.214) 0.055 (0.063) 0.990, 0.964 0.585 (0.017)

Table 2: Results for simulation II (n=500; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂3 Estimated
Outcome

Train Pop.

Coverage
Probability
ψ1, ψ3

Mean
Outcome
Test Pop.

Freq. None 0.590 (0.126) 0.103 (0.104) 2.003 (0.355) — 0.526 (0.064)
Freq. Treat 0.479 (0.157) 0.101 (0.125) 1.160 (0.155) — 0.530 (0.057)
Freq. Outcome 0.503 (0.048) 0.102 (0.020) 1.004 (0.068) — 0.581 (0.010)
Freq. Both 0.499 (0.031) 0.100 (0.004) 1.000 (0.065) — 0.585 (0.004)
Freq. IPW 0.464 (0.157) 0.089 (0.134) 1.198 (0.184) — 0.529 (0.055)

Bayes. None 0.589 (0.123) 0.094 (0.106) 2.200 (0.351) 0.952 0.996 0.549 (0.022)
Bayes. Treat 0.481 (0.165) 0.089 (0.124) 1.254 (0.150) 0.992 1 0.539 (0.025)
Bayes. Outcome 0.498 (0.050) 0.101 (0.016) 1.008 (0.066) 0.994 1 0.587 (0.005)
Bayes. Both 0.497 (0.029) 0.100 (0.004) 1.001 (0.064) 1 1 0.591 (0.003)
Bayes. IPW 0.468 (0.163) 0.072 (0.130) 1.317 (0.198) 0.992 1 0.537 (0.024)
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Table 3: NA-ACCORD case study: follow-up information for a subset of regimes (n=22,768).

θ ISNS ISS NISNS NISS NR Uncensored
ISS

Uncensored
NISNS

0.4 12172 611 244 8 9733 412 244
1.0 6798 398 5618 221 9733 276 5618
1.6 3194 213 9222 406 9733 143 9222
2.2 1732 143 10684 476 9733 89 10684
2.8 1136 111 11280 508 9733 73 11280

Note: ISNS=“Indicated to switch & did not switch”; ISS=“Indicated to switch & switched” NISNS=“Not indicated
to switch & did not switch” NISS=“Not indicated to switch and switched”; NR=“Received PI at baseline”

Table 4: NA-ACCORD case study: expected FIB4 (outcome) under adherence to regime θ.

θ IPW Double Robust
0.4 1.145 (0.054) 1.116 (0.048)
1.0 1.176 (0.051) 1.133 (0.044)
1.6 1.205 (0.048) 1.159 (0.039)
2.2 1.221 (0.048) 1.183 (0.040)
2.8 1.214 (0.045) 1.184 (0.039)
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(a) (b)

(c) (d)

Fig. 1: Simulation I, stage 1 individualized treatment probabilities: (a) Individualized decision rule using
double robust estimator with only the treatment model correct; (b) Same as (a) over 500 Monte Carlo
replicates; (c) Individualized decision rule using IPW with a quadratic MSM; (d) Same as (c) over 500
Monte Carlo replicates.
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(a) (b)

Fig. 2: Simulation II individualized treatment probabilities using IPW estimator; (a) Stage 1 treatment
probability for those with u = 0 (b) Stage 1 treatment probability for those with u = 1.

(a) (b)

Fig. 3: (a) Mean FIB4 score under each DTR based on Bayesian IPW and doubly robust analyses, with 95%
credible intervals (from 500 posterior draws). (b) Individualized treatment probability using double robust
estimator.

Note that in (a) the points corresponding to each method are presented out of phase for illustrative purposes. In
reality, points are on top of each other starting at 0.4 and continuing in increments of 0.2.


