
 

 

 

Web-based visual analytics for multi-omics data integration 

 

 

 

Guangyan Zhou 

Institute of Parasitology 

McGill University, 

Montreal, Quebec 

 

 

 

A thesis submitted to McGill University in partial fulfillment  

of the requirements of the degree of  

Doctor of Philosophy 

 

 

 ©Guangyan Zhou, December 2021 



 

ii 

 

Abstract 

With advances in high-throughput molecular profiling technologies, there is an increase in types 

and quantities of omics data available for researchers to gain insights for biomedical research. 

However, effective extraction of information and integration of these data remain challenging due 

to the complex nature of multi-omics data. This thesis aims to address the challenges of 

transcriptomics data analysis and multi-omics data integration by developing easy-to-use, web-

based platforms to support advanced statistics and visual analytics for broad bench scientists 

without programming expertise. 

Firstly, I developed the version 3.0 of NetworkAnalyst, a web-based platform for comprehensive 

analysis and interpretation of transcriptomics data. It supports both thorough data processing and 

comparative analysis including nested comparisons and time series. It offers a rich set of visual 

analytics methods encompassing network, volcano, heatmap, chord diagram, Venn diagram and 

scatter plot visualization coupled with molecular interaction and enrichment analysis for functional 

interpretation of transcriptomics data.  NetworkAnalyst also allows meta-analysis of multiple gene 

expression tables or gene lists using a combination of advanced statistical meta-analysis methods 

and integrative visual analytics. 

Secondly, I developed OmicsNet, a web-based visual analytics platform dedicated for network-

based multi-omics integration and visual exploration. The tool distinguishes itself by enabling 

web-based 3D visualization of biological networks in various innovative graphical layouts. By 

leveraging known molecular interactions from public databases, OmicsNet is able to build multi-

omics interaction network from user supplied lists of molecules encompassing genes, proteins, 

miRNA, transcription factors and metabolites to facilitate holistic data understanding.  
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Lastly, I developed OmicsAnalyst, a web-based platform that implements data-driven multi-omics 

integration methods coupled with advanced visual analytics. The tool supports three distinct 

strategies for multi-omics integration including correlation-based, clustering-based and dimension 

reduction-based approaches, coupled with network, heatmap and 3D scatter plot visual analytics 

respectively. OmicsAnalyst was able to integrate proteomics and metabolomics datasets to reveal 

important expression patterns and key biomarker signatures from a recent multi-omics study on 

human pregnancy.  

Overall, this thesis shows how web-based visual analytics frameworks can be used to facilitate 

omics data analysis processes and expedite data exploration process for hypothesis generation and 

more targeted studies. 
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Abrégé 

Avec les progrès des technologies de profilage moléculaire à haut débit, on assiste à une 

augmentation des types et des quantités de données omiques disponibles pour les chercheurs 

dans le cadre de la recherche biomédicale. Cependant, l'extraction efficace d'informations et 

l'intégration de ces données restent difficiles en raison de la nature complexe des données multi-

omiques. Cette thèse vise à relever les défis de l'analyse des données transcriptomiques et de 

l'intégration des données multi-omiques en développant des plates-formes web faciles à utiliser 

en utilisant statistiques avancées et analyse visuelle, pour faciliter la tâche des scientifiques sans 

expertise en programmation. 

Tout d'abord, j'ai développé la version 3.0 de NetworkAnalyst, une plateforme web pour 

l'analyse et l'interprétation complètes des données transcriptomiques. Elle prend en charge à la 

fois le traitement complet des données et l'analyse comparative, y compris les comparaisons 

imbriquées et les séries chronologiques. Elle offre un riche ensemble de méthodes d'analyse 

visuelle comprenant la visualisation de réseaux, de volcans, de cartes thermiques, de diagrammes 

d'accord, de diagrammes de Venn et de diagrammes de dispersion, ainsi que l'analyse des 

interactions moléculaires et de l'enrichissement pour l'interprétation fonctionnelle des données 

transcriptomiques.  NetworkAnalyst permet également la méta-analyse de plusieurs tableaux 

d'expression génique ou de listes de gènes en utilisant une combinaison de méthodes statistiques 

avancées de méta-analyse et d'analyse visuelle intégrative. 

Deuxièmement, j'ai développé OmicsNet, une plateforme d'analyse visuelle basée sur le web et 

dédiée à l'intégration et à l'exploration visuelle de données multi-omiques basées sur les réseaux. 

L'outil se distingue en permettant la visualisation en 3D de réseaux biologiques sur le web dans 
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diverses dispositions graphiques innovantes. En exploitant les interactions moléculaires connues 

des bases de données publiques, OmicsNet est capable de construire un réseau d'interactions 

multi-omiques à partir de listes de molécules fournies par l'utilisateur, comprenant des gènes, des 

protéines, des miRNA, des facteurs de transcription et des métabolites, afin de faciliter la 

compréhension holistique des données.  

Enfin, j'ai développé OmicsAnalyst, une plateforme web qui met en œuvre des méthodes 

d'intégration multi-omique axées sur les données, couplées à des analyses visuelles avancées. 

L'outil utilise trois stratégies distinctes d'intégration multi-omique, notamment les approches 

basées sur la corrélation, le regroupement et la réduction des dimensions, couplées 

respectivement à des analyses visuelles de réseaux, de cartes thermiques et de diagrammes de 

dispersion en 3D. Dans une étude de cas, OmicsAnalyst a été en mesure d'intégrer des ensembles 

de données protéomiques et métabolomiques pour révéler d'importants modèles d'expression et 

des signatures de biomarqueurs clés à partir d'une étude multi-omique récente sur la grossesse 

humaine.  

Dans l'ensemble, cette thèse montre comment les outils d'analyse visuelle basés sur le web 

peuvent être utilisés pour faciliter l’analyse des données omiques et accélérer l’exploration des 

données pour la génération d'hypothèses et des études plus ciblées. 
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Contribution to Original Knowledge 

The proposed methods aim to lower the barrier of entry to transcriptomics and multi-omics data 

analysis and interpretation which remain a critical bottleneck in current biomedical research where 

data generation capabilities significantly outpacing the development of bioinformatics tools. By 

developing intuitive and easy-to-use web-based platforms, we enable and empower bench 

scientists with advanced visual analytics so that they can focus on data understanding rather than 

learning how to write scripts for data analysis. More specific contributions are listed below: 

1. NetworkAnalyst supports multi-list meta-analysis, a feature that is lacking in the current 

landscape of bioinformatics tools. It facilitates integration and comparison of differentially 

expressed genes identified in multiple studies. 

2. NetworkAnalyst supports enrichment network visualization for both over-representation 

analysis (ORA) and gene set enrichment (GSEA) results. The novelty comes from meta-

node feature that enables the expanding of nodes representing enriched terms to display the 

underlying genes involved. This feature allows a simplified overview of the overall 

enriched terms by default while providing more details on demand. 

3. OmicsNet is a web-based tool dedicated for visualizing biological networks in 3D space. 

Previous 3D-based network visualization tools for biological networks are stand-alone and 

require local installations. 

4. OmicsNet implements 3D spherical layout to facilitate visual interpretation of complex 

network. 

5. Implementing edge bundling functionality in 3D network visual analytics to alleviate 

hairball effect and highlight connection patterns. Edge bundling is not a novel concept, but 

it is not seen in 3D-based network biology tools. 
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6. Web-based tool dedicated for data-driven multi-omics integration is lacking. 

OmicsAnalyst is an intuitive and easy-to-use platform that offers advanced visual analytics 

solution to multi-omics data analysis. 

7. OmicsAnalyst supports advanced scatter plot visual analytics framework for joint 

dimension reduction results. It is complemented with flexible clustering analysis, 

comparative analysis, and enrichment analysis to allow users to gain insights and to test 

their hypothesis. 

8. OmicsAnalyst offers flexible biplot visualization in its 3D scatter plot visual analytics to 

quickly assess feature contributions to overall sample separation. 

9. OmicsAnalyst supports a dual view heatmap visual analytics to enable simultaneous 

visualization of two different omics data. Both heatmaps are synchronized with each other 

upon reordering columns facilitating the visual assessment of clustering patterns.  
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Chapter 1: Introduction 

With the rapid progress of high-throughput sequencing technologies, multi-omics datasets have 

become increasingly available. Understanding complex biological processes requires taking more 

holistic approaches that integrate multiple datasets in order to identify key biomolecules involved, 

understand their biological functions and interactions among them. However, analyzing and 

integrating these datasets pose significant challenges due to the high heterogeneity and complexity 

of the datasets. It is safe to say that the current bottleneck to multi-omics studies remains in the 

lack of tools and methods dedicated for such integrative analysis. This dissertation attempts to 

address the challenges associated with multi-omics analysis by proposing and developing a series 

of visual analytics tool designed to facilitate this task. The proposed tools can be used to explore 

high-dimensional omics data, identify relevant biomolecules, explore their interactions, and derive 

actionable insights for translational applications.  

In this chapter, I first discuss the motivation of this work (Section 1.1), followed by an overview 

to the research areas, background information and previous works related to the thesis (Section 1.3 

and 1.4). In the next section, I try to summarize the overall contributions and achievements of this 

thesis in the research context (Section 1.3). Finally, I describe the overall structure of the following 

chapters. 

1.1 Motivation 

Complex diseases often involve dysregulations of a plethora of biological processes. Using 

conventional molecular biology approach where one or few molecules are studied in isolation is 

insufficient to understand the whole picture (1). Systems biology approaches, where interactions 

between molecules are considered within the whole system, are more suitable to study these 
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diseases. With the advent of high-throughput omics technologies and increasing computational 

storage and power, omics-based studies have become more and more prevalent in biomedical 

research over the last two decades. For instance, since 2008, the decrease in cost of genomics data 

sequencing has been outpacing Moore’s Law by a factor of 4 (2). The proliferation of omics data 

has arguably led to a paradigm change from molecular biology to systems biology aiming for 

comprehensive understanding the molecular underpinnings of health and diseases (3). It has led to 

numerous landmark studies where large-scale multi-omics data has been generated to characterize 

biological conditions or diseases. For instance, The Cancer Genome Atlas (TCGA) program (4), 

led by National Cancer Institute (NCI) and National Human Genome Research Institute, 

catalogues over 20,000 cancer and matched normal samples spanning 33 cancer types, across 

genomics, epigenomic, transcriptomic and proteomic layers. Large publicly available repositories 

also greatly facilitate access to multi-omics datasets. OmicsDI (Omics Discovery Index) provides 

datasets from 11 different repositories in a standard format (5). 

 

Although data generation technology has become more and more accessible, the subsequent 

analysis of high-throughput omics data is still lagging, especially data interpretation (6). 

Additionally, issues associated with misuse of statistical methods and over-reliance of P-values 

have played important roles in the ongoing reproducibility crisis in biomedical science research 

(7,8). To successfully convert omics data into meaningful biological knowledge, there remain 

multiple challenges, some of them are listed below: 

(i) Heterogeneity of omics data of different types and platforms, and lack of standardized 

formats pose significant hurdles to multi-omics integration.  

(ii) It is hard to differentiate signals from noise based on statistical methods alone.  
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(iii) High dimensionality of omics data results in high computational costs and poses 

challenges to statistical analysis. Feature prioritization is necessary to filter out noise 

and focus on relevant features. 

(iv) Omics data analysis is a complex task that often requires both advanced bioinformatics 

skills and domain knowledge on the biological problems under study. Interdisciplinary 

knowledge of both domains is required to perform in-depth analysis.  

(v) Most omics bioinformatics tools are stand-alone software or web services that is 

designed for specific analytical task. Additionally, users often need to have 

programming language knowledge and utilize multiple tools to analyze their data 

thoroughly.  

(vi) Biological networks are often large and complex which causes undesired “hairball 

effect” when visualized. New graph layout and visualization techniques need to be 

developed to attenuate the infamous “hairball effect”. 

 

To address the increasing need for analyses of large omics datasets and multi-omics integration, 

this thesis aims to develop bioinformatics applications that tackle some of the challenges 

mentioned above. I have taken a visual analytics approach to empower and engage researchers. 

The objective is to take advantage of their domain knowledge and cognitive reasoning to further 

improve the data analysis and interpretation process. Specifically, thesis presents three overall 

aims: 

Aim 1 Develop web-based platform to address functional profiling, network 

integration and meta-analysis of transcriptomics data. 
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Aim 2  Develop web-based platform for multi-omics network integration and 3D 

visualization. 

Aim 3 Develop web-based platform to enable data-driven integration on multi-

omics datasets. 

To address Aim 1, I have worked on improving NetworkAnalyst, an existing web-based platform 

for transcriptomics data analysis. For Aim 2, I presented OmicsNet, a web-based visual analytics 

tool to build multi-omics interaction network from lists of features. Lastly, Aim 3 was addressed 

by developing OmicsAnalyst, a web-based visual analytics platform allowing users to perform 

multi-omics integration through correlation analysis, integrative clustering and dimension 

reduction. Our proposed approaches are supported by case studies to illustrate their usage.  

1.2 Background and scope of research 

1.2.1 Transcriptomics 

Transcriptomics is defined as the study of transcriptome – the whole set of RNA transcripts 

produced by the genome, using high-throughput methods such as microarray or RNA sequencing. 

The measured transcripts can come from a large population of input cells or a single cell. One of 

the main approaches of transcriptomics is to perform gene expression profiling. This is performed 

on the expression matrix obtained from preprocessing raw sequencing data. This type of 

experiment aims to simultaneously measure expression levels of thousands of genes to study the 

change in gene expression caused by certain conditions (treatment, disease, infection, etc.). It is 

also referred as comparative analysis because the gene expression level of experimental group is 

compared with the gene expression of control group.  



 

5 

 

The current form of microarray dates from late 1990s and early 2000s, although related array 

technologies have appeared as early as in the mid 1970s (9). It is currently still widely used to 

measure relative abundance of nucleic acid sequence, but it is slowly getting replaced by RNA-

seq (RNA-sequencing) starting from the last decade. The strategy is to use hybridization followed 

by quantification of hybridization events by using fluorescent detection. It involves in adding 

nucleic acid mixture to wells containing probes consisting of thousands of nucleic acid sequences 

attached to a solid surface.  

As for RNA-seq, the technique is to convert RNA population into a complementary RNA (cDNA) 

library through reverse transcription. This is done by fragmenting the cDNA, adding adapters at 

the end of each fragment, and amplifying these fragments. The next step is to analyze cDNA library 

by Next-Generation Sequencing (NGS) to generate sequences corresponding to these fragments.  

The resulting reads are then to be aligned either to a reference genome if available or to be 

assembled de novo to produce a sequence map spanning the whole transcriptome. 

NGS is the key technology propelling the rapid decrease in cost of DNA sequencing. There exists 

multiple commercially available NGS platforms using different sequencing technologies, of which 

detailed description of these technologies is beyond the scope of this thesis. Generally, the 

sequencing procedure is conducted in the following manner. First step consists of generating the 

DNA sequencing libraries using clonal amplification. Second, sequencing of DNA is done using 

synthesis approach where nucleotides are added to complementary strands. Lastly, millions of 

amplified DNA fragments are sequenced in a massively parallel fashion. NGS can be used both to 

sequence entire genomes but also specific parts of the genomes. Additionally, NGS can sequence 

each base multiple times (referred as sequencing depth), providing insights into DNA variation 

and more accurate sequencing data. 
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There are several reasons why RNA-seq is considered superior to microarray technology. 

Foremost, the possibility of using de novo assembly approach means that RNA-seq is not limited 

by the current knowledge of genomic sequences. It can detect novel transcripts, small nucleotide 

polymorphisms and other alterations. Second, mapping cDNA sequences to targeted genomic 

regions can significantly reduce experimental noise. Additionally, hybridization issues commonly 

affecting microarrays do not apply to RNA-seq. Finally, RNA-seq is a more quantifiable 

technology where counts are obtained in contrast to microarray where expression values are 

relative to other signals detected on the array.  

In transcriptomics data analysis, there are typically three levels of analysis: (i) raw data 

preprocessing; (ii) data processing and statistical testing (iii) data interpretation by visual analytics 

and functional profiling. The first two levels are currently well-established. In contrast, data 

interpretation requires interactive implementation and is relatively lacking in the current 

bioinformatics landscape. Raw data preprocessing steps corresponds to processing raw data file 

(i.e. FASTQ) into feature count matrix which can be used for subsequent statistical analysis. Data 

processing steps try to remove low quality data and technical variations while preserving biological 

signals. In statistical testing, the overall objective is to compare different experimental conditions 

to identify a set of features that are differentially abundant. Most straightforward approach is to 

use single pairwise comparison (i.e. control against diseased groups) in contrast to more complex 

multiple contrasts or time series. Lastly, visual analytics such as network and heatmap are used to 

facilitate functional interpretation. 

  



 

7 

 

1.2.2 Multi-omics data 

Omics data are generated from different levels of biological systems and are used to assess 

different aspects of biological processes. Multi-omics integration attempts to understand the 

interaction between different omics layers and have a more holistic understanding of their 

functions.  

Table 1.1 List of selected multi-omics data repositories 

Data Description Type Links 
NCI60 (US National Cancer 

Institute 60 human tumour cell 

lines anticancer drug screen) 

Drug screening on 60 human tumor cell 

lines. 

Transcriptome, 

proteome 

https://dtp.cancer.gov/discovery

_development/nci-60/ 

TCGA (The Cancer Genome 

Atlas) 
Cancer genomics project containing 

~20000 samples from 33 cancer types 

and normal samples 

Genome, 

transcriptome, 

proteome 

https://www.cancer.gov/about-

nci/organization/ccg/research/st

ructural-genomics/tcga 

TopMed (Trans-Omics for 

Precision Medicine ) 

Large project to study heart, lung, 

blood, and sleep disorders using omics 

data from ~ 155k participants across 

more than 80 studies 

Genome, 

transcriptome, 

proteome, 

metabolome 

https://www.nhlbi.nih.gov/scien

ce/trans-omics-precision-

medicine-topmed-program 

jMorp (Japanese Multi Omics 

Reference Panel) 
Large multi-omics database generated 

using samples from 5000 healthy 

Japanese volunteers  

Genome, 

transcriptome, 

proteome, 

metabolome 

https://jmorp.megabank.tohoku.

ac.jp 

iHMP (Integrative Human 

Microbiome Project) 

Multi-omics data characterizing 

microbiome-host profiles in health and 

disease (pregnancy and preterm birth, 

inflammatory bowel disease, type II 

diabetes) 

Genome, 

transcriptome, 

metabolome, 

proteome, 

microbiome 

https://www.hmpdacc.org/ihm/ 

OmicsDI (Omics Discovery 

Index) 
A meta-database for multi-omics data.  

Genome, 

transcriptome, 

proteome, 

metabolome 
https://www.omicsdi.org/ 

MuTHER (Multiple Tissue 

Human Expression Resource) 
Multi-omics data from a range of 

tissues collected from a set of ~850 UK 

twins 
Genome, 

transcriptome 
http://www.muther.ac.uk/ 

METSIM (Metabolic 

Syndrome In Man) 

Population-based study to investigate 

nongenetic and genetic factors 

associated with the risk of T2D and 

CVD 

Genome, 

transcriptome, 

metabolomic 
http://www.nationalbiobanks.fi/

index.php/studies2/10-metsim 
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ICGC (International Cancer 

Genome Consortium) 
Multi-omics data from mutational 

abnormalities in  in 21 primary cancer 

sites from ~20 000 donors 

Genome, genomic 

variation (somatic 

and germline 

mutation) 
https://dcc.icgc.org/ 

TARGET (Therapeutically 

Applicable Research To 

Generate Effective Treatments) 

Multi-omics resources of childhood 

cancers collected from ~1700 paediatric 

leukaemia and solid tumors. 

Genome, 

transcriptome, 

metabolomic 
https://ocg.cancer.gov/programs

/target 

With the advent of high-throughput data generation, there is an accumulation of large volumes of 

multi-omics data from different types. Large-scale projects such as The Cancer Genome Atlas 

(TCGA) (6) and Human Microbiome Project (HMP) (10) have taken systematic approach where 

large number of individuals are profiled across multiple omics layers, resulting in numerous 

publicly available multi-omics datasets. The availability of multi-omics data resources is a first 

stage towards more comprehensive characterization of healthy individuals and disease conditions 

at molecular level. Please refer to Table 1.1 for a list of multi-omics data repositories available to 

the public. Next stage is to develop the tools necessary for in-depth analysis in order to move 

towards personalized medicine (11). 

1.2.3 Integrative analysis 

Integrative analysis refers to the use of multiple sources of data to gain additional insights on the 

studied system. This integration can be performed both within a single omics type and across omics 

(Figure 1.2). The former, also known as meta-analysis, attempts to integrate samples from different 

studies from a single omics sharing same research question to increase statistical power and 

eliminate bias from individual studies (12). The latter aims to integrate different levels of omics 

measures of same samples to better understand the biological system. The shortfalls of single 

omics analysis lay in its inability to explain the etiology of complex diseases and to understand the 

causative mechanisms behind the biological processes (13). Most processes involve more than one 

omics layers and interrelations between them play an important role (14). Although multi-omics 
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integration is promising, the heterogeneity between the different data types and their data 

complexity makes the integration process challenging. 

 

Figure 1.1 A schematic view of two types of omics integration: meta-analysis and multi-omics. 

Meta-analysis is a term that refers to the combination results from multiple previous studies to 

confirm reliability and generalizability of individual studies. In omics studies, such as 

transcriptomics, the combination is more specifically applied to expression matrices from 

individual studies. This approach is to address some of the issues associated with individual studies 

such as lack of reproducibility (15), lack of robustness to data perturbations (16) and small sample 

size. Using meta-analysis, researchers can obtain more precise estimate of expression/abundance 

values with additional sample size and identify core molecular signature shared across studies. In 

a study I performed in 2016, I was able to identify a core host gene expression signature associated 
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with immune response against helminth infection by integrating datasets from nine different 

transcriptomics studies (17). Overall, the process increases both reliability and generalizability of 

the results. Additionally, meta-analysis is relatively inexpensive since they take as input already 

available datasets. 

Multi-omics approach has become increasingly used to fill gaps in understanding health and 

disease conditions (13). Studies range from understanding host-pathogen interactions (18) to 

complex and chronic diseases (19). In recent years, multi-omics approach has enabled the rise of 

personalized medicine (20). Overall, there are multi-omics integration can be used to achieve four 

different objectives: 

• Mechanistic insights: Identify novel molecular interactions between different omics data 

types to improve our current understanding of certain biological processes or disease 

conditions. 

• Patterns and trends: Explore overall global structure of samples or patients and compare 

similarities of different clusters. Leverage existing knowledge to understand the molecular 

context. This can be useful to improve sample classification and disease subtyping. 

• Systems biology: Build models such as genome-scale reconstruction of metabolic networks 

where flux-balance analysis can be performed. This leads to deeper systems-level 

understanding and novel knowledge discovery. 

• Predictive modeling: use multi-omics datasets to classify new samples or patients into 

different “healthy” and “disease” categories. 

In my research, I focus on pattern and trends discovery within the datasets using advanced visual 

analytics, leading to data-driven hypothesis generation, and discovering novel insights. I also 
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provide methods to identify potential molecular interactions using correlation analysis, but it 

remains peripheral. Deriving mechanistic insights leans more towards molecular biology approach 

requiring different experimental design. The other two objectives are beyond the scope of this 

thesis.  

Multi-omics integration can be further categorized into three main approaches: conceptual 

integration, knowledge-driven and data-driven integration (21). Conceptual integration is a natural 

extension from single omics analysis. In this approach, the analysis of individual omics datasets is 

performed separately, and the resulting findings are compared without analyzing the datasets 

together. This can be achieved incrementally where results from a single omics data analysis is 

complemented with results from additional omics layers. The idea is to use the additional omics 

layers to refine the molecular context and have a better grasp of the pathways involved. The core 

omics is often from an omics technology that is more mature and complete compared to the others 

(i.e transcriptomics). Alternatively, equal weights can be attributed to different omics layers. 

In knowledge-driven network integration, the objective is to better understand the molecular 

context of the omics datasets. It can be achieved by either mapping them into existing molecular 

interaction data (i.e protein-protein interaction, metabolic pathways, regulatory networks, etc.) or 

pathway knowledge to form context relevant subnetworks or attempt to infer interactions by 

assessing pairwise relationships using measures such as correlation or mutual information. The 

mapping process can be summarized into three steps: 

1. Perform data processing and comparative statistical analysis on individual omics data to 

identify significant features. 
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2. Map the features to the current knowledge universe defined by the available molecular 

interaction databases. 

3. Visualize and analyze the resulting multi-omics subnetwork. 

The resulted subnetwork serves as a framework for downstream functional and topological 

analysis. It allows researchers to explore the connection patterns of their molecules of interest and 

visualize them in the context of current network knowledge.  

Data-driven integration relies on statistical methods and algorithms to extract information from 

the datasets. Unlike the other two approaches, this has the advantage of being more conductive to 

discover new knowledge and being relatively free of bias associated with prior knowledge and 

researcher domain knowledge. In the recent years, machine learning algorithms, such as deep 

neural networks and random forest have found use in building highly predictive models using 

omics datasets. Additionally, aside from being used for predictive modeling such as classifying 

samples and patients, algorithms adapted to uncover underlying mechanisms of biological 

processes have become increasingly available (22). On the other side, one complaint that is often 

voiced by the research community is the “black-box” phenomenon, referring to the lack of 

transparency and understanding about the inner mechanisms of the models (23). There is an 

ongoing effort to alleviate this problem, but it remains an active research topic in machine learning 

communities (24).  

In this thesis, I focus on integrative methods that are more intuitive to life scientists and scalable 

for large data. Emphasis is put on exploratory data analysis of multi-omics integration, aiming to 

reveal inherent patterns and trends from the datasets using three distinct approaches: correlation, 

clustering and joint dimension reduction. Correlation analysis focuses on assessing pairwise 
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associations between biological features using different measures such as correlation, mutual 

information and co-expression. Clustering analysis leverages the recent progress in multi-view 

clustering to identify groups of similar samples using multi-omics datasets. Lastly, joint dimension 

reduction analysis uses advanced multivariate statistics to summarize the datasets into lower-

dimensional space while minimizing information loss and integrate them. This is both useful in 

exploring inherent data structure and clustering of samples and identify features of interest 

contributing to sample variation.  

1.2.4 Network analysis 

To understand biological processes, it is essential to not only study the biological entities 

themselves but also how they interact with each other. Using network framework is a natural and 

intuitive way to display data-derived interconnections between features (i.e correlation and mutual 

information) or model biological data such as ecological, metabolic, molecular interaction and 

gene regulatory networks. Network analysis is not only useful for visual explorations, but it also 

makes use of graph theories to analyze and to derive novel biological insights from the underlying 

topological structures. Networks can be in the form of undirected or directed network. Protein-

protein interaction or co-expression networks are undirected as there is no specific direction 

associated with each edge. On the other hand, regulatory network and metabolic network are 

directed. 

Progresses in graph theory have also unraveled insights on topological properties of biological 

networks more generally. For instance, studies have found that biological networks are not random 

but tend to form scale-free network. Scale-free network is a type of network which has a skewed 

degree distribution which follows the power law. One of the most noticeable consequences is that 

the network contains small number of hub nodes that are responsible for connecting most of the 
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network together (25). In protein-protein interaction networks, genes encoding hub proteins tend 

to be essential genes. Genes are considered essential if their encoded functions are essential to 

early development. 

In studying human diseases, network-based approach offers a useful framework to identify 

potential drug targets by not only gain better understanding the intrinsic molecular interplays 

involved in disease but also identify disease-related pathways and genes. Concretely, network-

based drug-repurposing has identified four potential drugs for treating SARS-CoV-2 in a recent 

study (26). The authors used a plethora of algorithms based on artificial intelligence, network 

diffusion and network proximity to rank over 6000 drugs for their effectiveness against SARS-

CoV-2 virus. Experimental validation was performed on the top ranked candidates, and they were 

able to observe reduction in viral infection. More interestingly, among the 77 drugs identified to 

reduce viral load, 76 of them do not bind to the proteins directly targeted by SARS-CoV-2 virus. 

It would not be possible to identify them using the conventional docking-based strategies. 

Leveraging acquired knowledge and concepts from network biology and network theory, 

researchers can better understand the molecular context of their omics data and gain novel 

biological insights. For instance, a key assumption in network analysis is guilt-by-association 

where direct interacting partners tend to be involved in the same biochemical process or similar 

roles (27). Network-based approach in omics data analysis can be further divided into two main 

methods relating to network building: (i) knowledge-based network by mapping omics data onto 

known interactions, usually obtained from publicly available databases or previous studies. (ii) 

data-driven networks formed using statistical methods such as correlation or co-expression 

analysis  (28);  
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Knowledge-based network relies on the existing interaction databases to provide molecular context 

to the multi-omics data. The main objective is to map the experimental data onto known interaction 

network to study the relationships between them and other biological entities. Among biological 

networks, most used are protein-protein interaction and metabolic networks. In omics data analysis, 

the main approach is to identify subnetworks enriched for biological entities of interest, which 

corresponds to context-specific functional modules characterizing the biological system under 

study. The resulting subnetwork provides a framework for further downstream analysis including 

module detection, functional enrichment analysis, identify relevant molecules undetected from 

omics data analysis using the principle of guilt-by-association.  

Data-driven networks are often computed based on similarities between each entity (expression 

level, concentration, count, etc.). A straightforward and somewhat naïve approach consists of 

computing pairwise correlation between entities and assign weighted edges between entities with 

a correlation score above a certain predefined threshold. Network edges would represent 

corresponding correlation score between the two connecting nodes. The resulting network can then 

be used to infer novel potential interactions, identify candidate biomarkers and therapeutic targets.  

1.2.5 Visual analytics 

I choose to use visual analytics approach to tackle the complexity and size of multi-omics data. 

Visual analytics is defined as “the science of analytical reasoning facilitated by interactive visual 

interfaces” (29).  It is an emerging field that comes from information visualization and scientific 

visualization that integrates data analysis with interactive visualization with the goal of facilitating 

analytical reasoning. Visual analytics approach is well suited for omics data analysis because of 

the following points: 
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1. Domain knowledge, intuition and creativity of users can be incorporated in the analytical 

process using interactive visualization. 

2. Data visualization takes advantage of human cognitive reasoning and perception to 

facilitate insights generations within large datasets. 

3. Integration of statistical analysis algorithms and computational models make use of well-

established methods to complement visual assessment. 

4. Interactivity enables iterative data analysis processes and facilitate incremental data 

understanding in which initial hypothesis generation and insight discovery can be used as 

a starting point for further in-depth studies. 

Overall, visual analytics can be summarized into four main components: data, statistical modeling, 

interactive visualization, and knowledge discovery from users (Figure 1.2). It allows users to enter 

in a sense-making loop where visualization and statistical parameters can be interactively tuned to 

gain better understanding and help knowledge discovery (30). This thesis presents three 

applications to explore, integrate and analyze omics data, where visual analytics components play 

a central role in their design and implementation. Our work highlights the usefulness of visual 

analytics approach by presenting practical use cases in gene expression profiling and multi-omics 

integration. 
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Figure 1.2 Schematic view of the visual analytics process. It is characterized as an interaction loop 

composed of data, visualization, statistical models of the data and knowledge discovery from users. 

1.2.6 Web-based interactive visualization 

The main reason why visual analytics is so important lies in its ability to include the users in the 

sense-making loop. Data visualization itself can reveal previously hidden data characteristics but 

combined with interactivity, it can allow users to dissect the data more thoroughly and to perform 

targeted analysis on the fly. Adequate visual analytics addressing current data challenges in life 

science research is lacking in the current landscape of bioinformatics tools available for omics data 

analysis (31). 

In the past decade, there has been a significant improvement in browser technologies, giving rise 

to impressive web-based interactive graphics. JavaScript libraries like sigma.js (www.sigmajs.org) 

and D3.js (d3js.org) are supported by all major browsers and can render complex graphics and 

networks with thousands of nodes and edges while providing an interactive experience to the users. 

More recently, WebGL technology has enabled the modern browsers to leverage processing from 

dedicated graphical processor units (GPU), effectively enabling advanced web-based 3D 

http://www.sigmajs.org/
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interactive visualization. However, low-level nature of WebGL programming requires advanced 

knowledge of mathematics behind 3D graphics and presents a steep learning curve for developers 

(32). In this case, low-level means that WebGL codes are sent directly to the hardware (i.e. GPU) 

as instructions to render the graphics. In other words, it focuses on rendering speed and efficiency 

rather than ease of use. This has led to the development of graphical libraries such as Three.js 

(threejs.org) and Babylon.js (www.babylonjs.com) which have significantly lowered the barrier of 

entry to developing WebGL-based applications. In summary, it can be argued that web-based 

interactive visualization has become much more adapted for developing visual analytics tools for 

sense-making purpose during interactive data analysis process coupled with R-based visualization 

for publication quality static images. 

1.2.7 Democratizing omics data analysis 

Although there exist several bioinformatics tools dedicated for omics data analysis, they are often 

inaccessible to average life scientists due to their highly technical nature and requiring basic 

programming knowledge. For instance, most of the current bioinformatics tools are in the form of 

R packages from Bioconductor (33), requiring users to have a minimum of knowledge of R 

language. Additionally, most tools are designed to accomplish specific data analysis tasks and 

researchers often need to use a combination of different tools to achieve a thorough analysis of 

their data. This makes omics data analysis quite tedious due to the different data formatting 

standards of each tool. 

To address this issue, development of intuitive and easy-to-use bioinformatics platforms that are 

easily accessible is needed. In this case, a bioinformatics platform refers to a collection of simpler 

tools dedicated for specific tasks organized in a well-designed system. The objective is for the 

platform to be more useful than the sum of individual tools. For instance, in the field of software 

http://www.babylonjs.com/
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development, programmers have been using Integrated Developer Environment (IDE) for 

developing their applications. IDE is composed of a series of basic tools such as source code editor, 

file manager, syntax highlighting, version control system and much more. As a system, IDE can 

increase the productivity of programmers significantly. 

In bioinformatics, MetaboAnalyst is a good example of bioinformatics platform, as it provides an 

end-to-end solution of metabolomics data processing, analysis and visual analytics (34). 

Specifically, it supports spectral processing, exploratory statistical analysis, functional analysis 

(network, pathway, enrichment) and functional meta-analysis. Each of these modules are designed 

for specific tasks but, as a whole, it becomes a one-stop-shop for metabolomics data analysis and 

interpretation. Instead of using numerous different bioinformatics tools or web servers, user can 

simply input their metabolomics data and use the methods described above to interpret their data. 

This not only saves researchers’ time but also presents multiple facets of the metabolomics data 

which may help in generating biological insights. It also closes the gap between bioinformatics 

and average life scientists by providing an easy-to-use and intuitive user interface that removes the 

need for scripting knowledge.  

1.3 Previous works 

The emergence of computational biology and bioinformatics has led to a paradigm shift in biology 

from reductionist approach to holistic approach where multiple levels of omics data are collected 

and analyzed. This section serves to review a selection of visual analytics tools and methods used 

for omics data analysis and integration. A summary of selected recent approaches in 

transcriptomics and multi-omics are going to be presented.  

Visual analytics for omics data 
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Visual analytics has been an important tool to decipher complex data from different fields and 

omics data is not an exception. The benefits of using visual analytics in biomedical science has 

been further demonstrated in recent studies. For instance, network visual analytics using 

NetworkAnalyst has been useful in elucidating functional pathways involved in disease 

progression of patients infected with Sars-CoV-2 (35). In this study, the authors were able to 

identify key genes and pathways related to immune responses in COVID-19 using protein-protein 

interaction network analysis. For instance, they identified genes related to T-cell-receptor signaling 

pathway to be involved and they were able to perform CyTOF mass cytometry to detect a reduction 

of T cells proportions. In the following chapter, I am going to review three visualization techniques 

that are relevant to omics data analysis. Each approach has their own strengths and is designed to 

tackle different analytical tasks.  

1.3.1 Networks 

Visualization of biological network focuses on highlighting interconnections between biological 

entities. It is a key method bridging statistical analysis and biological understanding. 

Fundamentally, most network visualizations use vertices and edges approach where vertices 

represent biological entities and edges represent relationship between two biological entities 

(protein interaction, regulatory relationship, physical binding, correlation, etc.).  

Numerous tools have been developed for visualization of biological networks. Cytoscape is 

arguably the most widely used bioinformatics tools in visualization and analysis of biological data 

(Figure 1.3) (36). It is a Java stand-alone software with an intuitive interface that is accessible to 

users without programming knowledge and supports a wide variety of community-developed plug-

ins to address specific tasks. It also has an extensive customization support for nodes, edges and 

network layouts. The 3Omics web application supports correlation network analysis of human 
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transcriptomics, metabolomics, and proteomics data (37).  The correlation network is computed 

from a pairwise similarity matrix based on abundance data (Figure 1.4). It also enables other 

analysis approaches including heatmap co-expression analysis, phenotype analysis and functional 

enrichment analysis. InnateDB, an interaction database focused on curated protein-protein 

interactions involved in the innate immune system, also supports network analysis (38). It allows 

users to build context-specific networks from a list of differentially expressed genes by mapping 

them into the interaction database. For interactive network visualization, InnateDB delegates the 

task to third-party applications such as Cytoscape, NetworkAnalyst and BioLayout Express 3D. 

With the growing complexity and size of networks, graph layout has become important to provide 

meaningful and intuitive network visualization. In larger networks, the conventional force-directed 

layout becomes less effective and results in the so-called “hairball effect”, where the visualized 

network resembles a hairball due to the excessive number of nodes and edges. Development of 

novel network layouts remains critical to improve interpretability of network visualization. 

Cerebral, a plug-in developed for Cytoscape, incorporates cellular location information to separate 

nodes into different layers, presenting a biologically intuitive layout (39). The concept of multi-

layered layout has also been applied in a 3D space (40). This layout organizes nodes from different 

data types into different layers, effectively dividing a larger network into several smaller ones, 

reducing visual complexity. Another example is the hive plot, a novel network layout which 

emphasizes on connection patterns and reproducible network visualizations (41). The nodes are 

positioned on radially distributed linear axes based on their topological property and connected 

with curved edges.  In a recent paper, this layout was used to visualize connectivity of specific 

lung cell types and highlight the differences across different cell types (42).  
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Figure 1.3 A screenshot of Cytoscape software’s user interface displaying protein–protein and 

protein–DNA interactions related to the galactose-utilization pathway in yeast. On the left panel 

there is ma 
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Figure 1.4 An example of correlation network of transcriptomics and proteomics data generated 

by 3Omics. 

1.3.2 Scatter plot 

A scatter plot is a type of plot that uses Cartesian coordinates to explore dependencies of two or 

three sets of variables from a series of data values. As omics datasets are high dimensional, 

dimensionality reduction methods such as principal component analysis (PCA) must be first 

applied to the data before scatter plot visualization. These methods are used derive a two- or three-
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dimensional representation of the overall data profile while preserving as much variability as 

possible. Their overall objective is to summarize the dataset into fewer components that explain 

most of the variance, facilitating visualization of general patterns in the data (43). Some of the 

most widely used methods for this purpose include PCA (44) and multidimensional scaling or 

MDS (45). This approach is widely used in the exploratory data analysis of single omics data sets. 

Exploratory data analysis is an important component in the early stage of omics data analysis 

where the researchers can assess the main characteristics of the dataset and identify outliers or 

potential issues regarding batch effects and overall data quality.  

PCA is arguably one of the most widely used dimension reduction methods in omics data analysis 

(46). A typical visualization of PCA result and many other dimension reduction methods consists 

of score and loading plots (Figure 1.5). The score plot projects sample data points into lower 

dimensions while the loading plot visualizes the overall feature contributions to the separation of 

sample points. These two plots can be further combined into a biplot where vectors representing 

feature contributions are drawn on top of the score plot. As a whole, they can be used to quickly 

identify features driving the overall sample separation. 
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Figure 1.5 Example of a PCA score and a loading plot generated from the MetaboAnalyst platform. 

In the score plot, color and shape are used to represent different metadata factors. In the loading 

plot, color hue intensity is used to represent relative contribution of feature to sample separation.  

Single-cell RNA (scRNA) data widely relies on dimension reduction techniques for both 

visualization and analytical purposes due to its high-dimensional and complex nature. It is 

especially useful in visually identifying cell clusters. Aside from classical PCA, nonlinear 

dimension reduction methods such as t-SNE and UMAP are also commonly used techniques in 

single-cell data (47,48). Nonlinear methods, in contrast to linear methods such as PCA, have the 

advantage of distinguishing distinct clusters that are overlapping with each other.  

In the past decade, with the increasing availability of multi-omics datasets, there has been much 

effort in extending dimension reduction approaches to integrate multiple datasets (43). These 

methods integrate two or more data matrices of same samples measuring different features. Some 

of these methods are generalized SVD (49), Co-Inertia Analysis (50), Procrustes Analysis (51) and 

Canonical Correlation Analysis (CCA) (52). Notably, several research groups have developed 

variations of CCA for omics data integration (53,54).  
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Although various dimension reduction methods are available, there is a lack of web-based tools 

supporting interactive visualization and analysis. Many of the current bioinformatics tools mainly 

support basic score plot visualization for data overview purposes such as viewing sample 

separation, identifying outliers and assessing data quality. Babelomics, a web-based platform for 

transcriptomics functional profiling, offers PCA viewer among others (55). Omics Playground, 

another web-based platform for transcriptomics data analysis, provides graphical representation of 

the data using PCA and t-SNE (56). Similarly, in MiBiOmics, an interactive web application for 

multi-omics data integration and integration, PCA and Principal Coordinates Analysis (PCoA) are 

proposed to visualize each individual omics. In addition, MiBiOmics also proposes visualization 

using integrative methods MCIA and Procrustes Analysis. On the other hand, in scRNA data 

analysis, scatter plot visualization plays a more important role as it is important for visualizing 

both cell clustering and expression pattern. In this case, each data point represents individual cells 

instead of samples, resulting in a much denser scatter plot. In ASAP, a web-based pipeline for 

comprehensive analysis of scRNA data analysis, interactive visualization of dimension reduction 

results from PCA, t-SNE, Multidimensional Scaling (MDS) and Zero-Inflated Factor Analysis 

(ZIFA) is supported, with the ability to manually select cells for further downstream analysis (57). 

1.3.3 Heatmap 

Heatmap is widely used to represent omics data (Figure 1.6). It is well suited for visualizing data 

in the form of matrix such as a gene expression table. In omics field, the columns of heatmap 

usually represent samples (patient, tissue) while the rows correspond to features (gene, transcripts, 

metabolites, etc.). Each colored cell represents expression or abundance value which can vary by 

hues or intensity. Clustering is a key component of heatmap visualization for pattern discovery. 

This process consists of reordering the columns or rows so that similar samples or features are 
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positioned next to each other. The samples can also be ordered according to metadata groups, 

facilitating group comparisons (58,59). Overall, heatmap is useful in visualizing the overall 

expression pattern and how the samples or feature clusters over space. 

 

Figure 1.6 An example of heatmap visualization of gene expression meta-analysis from 

NetworkAnalyst. The columns represent samples and rows represent genes. Annotation bar located 

on the top indicate the experimental group and dataset origin from which the samples are from. 

1.3.4 Single omics data analysis 

High-throughput technologies generate huge amounts of omics data that remain uninterpretable 

without an analytical framework dedicated for functional profiling. The data analysis procedures 

differ according to the omics type of the data but there exists a general approach to analyze 

abundance or count-based data. It is usually the data preprocessing step that remains unique to 
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different data generation platforms. After the feature abundance/expression matrix is obtained, the 

remaining steps remain relatively similar across omics types. In the following section, 

transcriptomics data analysis will be reviewed as an example of single omics data analysis. 

As mentioned in the introductory chapter, omics data analysis can be stratified into three levels: (i) 

raw data preprocessing; (ii) data processing and statistical testing; (iii) visual analytics and 

functional interpretation. Since raw data preprocessing is more straightforward and omics-specific, 

most of the publicly available bioinformatics tools focus on the last two levels of analysis. Usually, 

most comprehensive tools take as input a count or expression matrix generated from preprocessing 

steps and they offer various filtering and normalization methods to prepare the data for statistical 

testing. Other tools focus on interpreting list of differentially expressed genes. In statistical testing, 

identification of DEGs remain one of the most important steps in single omics analysis. Finally, 

data interpretation consists of approaches such as functional enrichment analysis, pathway analysis 

and network analysis to help understand which biological processes are involved. Note that these 

tools require a built-in knowledge base to support the approaches mentioned above. Please refer 

to Figure 1.7 for an example of transcriptomics data analysis workflow. 
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Figure 1.7 An example workflow of transcriptomics data analysis starting from preprocessed 

count or gene expression data matrix. 

Babelomics, first published in 2005, is a web-based platform that provides a comprehensive and 

easy-to-use solution to genomics, transcriptomics and proteomics data analysis. It supports 

primary data processing such as filtering and normalization, differential expression analysis 

accommodating different experimental designs, and advanced functional profiling such as network 

analysis, enrichment analysis and de novo functional annotation (60). Similarly, the earlier 

versions of NetworkAnalyst, developed in 2014, was a comprehensive platform for 

transcriptomics data analysis which primarily focuses on protein-protein network analysis but also 

supports primary data processing, flexible differential expression analysis, heatmap visualization 

and meta-analysis (61,62). Omics Playground, a web-based platform developed in 2019, supports 

comprehensive functional profiling support for proteomics, bulk and single-cell transcriptomics 

(56). It provides a rich set of visual analytics such as volcano plot, heatmap and scatter plots to 

support functional modules such as DEG analysis, gene set enrichment analysis, functional 

analysis, and single cell profiling. Other tools, such as EnrichR, g:profiler and WebGestalt, focuses 

on functional enrichment analysis of gene lists (63-65). Although they are focused on a narrower 
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task, they excel in the size and quality of their knowledge base and, in the case of g:profiler, 

number of organisms covered. 

Multi-omics data analysis 

In multi-omics studies, the objective is to integrate multiple datasets from different omics to study 

their relationships and generate novel insights. In the last decade, there have been significant 

developments in integrative methods. In this section, I am going to discuss three general categories 

of multi-omics integration: conceptual integration, network-based and data-driven integration 

(Figure 1.8). 

 

Figure 1.8 Overview of multi-omics integration approaches 

1.3.5 Conceptual integration 

Conceptual integration uses a straightforward approach of performing individual data analysis on 

each omics type and then aggregate the results obtained individually without analyzing the 
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different datasets as a whole. This whole process relies on researchers’ domain knowledge and 

capacity to synthesize findings. Although considered as a naïve approach, this type of integration 

has the advantage of being flexible and not limited by the heterogeneity of different types of omics 

data. For instance, the approach allowed the authors to link variation in metabolites to gene 

expression change by using a priori pathway information (66,67). The key drawbacks of this 

approach are time consuming, subjective, and will miss those associations that can only be 

identified from analyzing the datasets together. 

1.3.6 Network-based integration 

Network-based integration takes advantage of graph theory framework to visualize and analyze 

multi-omics datasets (19). The overall objective is to better understand the relationships between 

different omics features. This approach can be further divided into two subcategories: data-driven 

or knowledge-driven integration. The objective of data-driven integration is to infer significant 

associations between measurements of individual features from different omics type using 

statistical methods such as correlation analysis. It aims to use the datasets to infer overall patterns 

and shared signatures across multiple omics datasets. Knowledge-driven integration aims to map 

experimental data from multi-omics studies into the context of prior network interaction 

knowledge in the form of trans-omics networks. Most commonly used biological networks are 

protein-protein interaction networks and metabolic networks (68).  

The most straightforward approach to build data-driven network is to infer relationships between 

features. This is achieved by assessing pairwise association measures by using methods such as 

correlation or mutual information. Pearson’s and Spearman’s correlation methods are designed to 

identify linear relationships for parametric and non-parametric data, respectively. Alternatively, 

nonlinear relationships can be detected using mutual information method (69). These methods 



 

32 

 

have the advantage of not being affected by confirmation biases from prior knowledge. However, 

heterogeneity in omics datasets, the lack of correlation and varying correlation strength between 

certain pairs of associated omics features are some of the drawbacks (70). Also, they often yield 

very dense networks (high edge number) due to its inability to discriminate direct and indirect 

effects (71). Additionally, a study by Bradley and al. has found that correlation between 

metabolites and related genes can vary significantly depending of the study conditions (72).  

Knowledge-based approach to network integration aims to study the known relationships between 

biological entities using prior knowledge framework. One of the strategies is to start with 

identifying molecules of interest (seeds) from the dataset using comparative analysis for instance, 

followed by identifying context relevant subnetwork by mapping these molecules into the 

interaction databases. This process is not only useful to connect the seeds but can also reveal 

additional molecules (their direct interaction partners) which may not be detected as significantly 

altered from experiments but may still play an important role. Overall, the process contains two 

main components: the underlying interaction database and the network building algorithm. 

Foremost, the quality of interaction data is primordial as the current landscape contains both 

computationally predicted and experimentally validated interaction data. For well-studied 

organisms, there is an abundance of experimentally validated interaction data, although they 

remain incomplete in most of the cases. This is not the case for non-model organisms which mainly 

contains computationally predicted interactions. Secondly, the choice of a network building 

procedure is crucial to control network size and to only include relevant nodes for subsequent 

analysis. The main objective of network building is to identify a subnetwork from the whole 

interactome that is enriched with seeds, to better understand the molecular context. 
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Network building can resort to straightforward approaches such as building zero-order or first-

order networks. Zero-order approach identifies interactions between molecules of interests (seeds) 

and connect them. Main limitation of this approach is the possible lack of direct interactions 

between seeds, resulting in many orphan nodes and very sparse subnetwork. First-order approach 

extends zero-order network by including direct interacting partners of seeds in the network. The 

latter approach would connect more seeds together through these intermediate nodes. Please refer 

to Figure 1.9 for an example of first-order network. Prize Collecting Steiner Forest (PCSF) is an 

example of more advanced algorithms for network building. The algorithm itself is a well-known 

problem in graph theory. The goal is to identify subnetwork enriched with seeds in an undirected 

network in which the vertices are assigned prizes, and edges are assigned costs. The optimization 

objective is to minimize total cost assigned to edges while maximizing the total node prizes within 

the network. 
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Figure 1.9 An example of first order multi-omics network generated using OmicsNet. The seeds 

are gene/protein nodes colored in red and green. Predicted transcription factors are colored in 

purple. Genes/proteins are colored by their expression value using a green-red gradient. Grey 

nodes refers to predicted interacting partner of seeds. Predicted metabolites are colored in yellow. 

A shortest path between a transcription factor and metabolite is highlighted in blue 

Although knowledge-based approach is widely used, there remains numerous drawbacks from 

which I will name a few. First, the fact that this approach is confined to prior knowledge makes it 

unsuitable in studying non-model organisms. Another issue is the inherent bias of the knowledge 

domain towards well-studied molecules, granting them excessive importance. Finally, this 

approach is simply unsuitable for discovering novel relationships between biomolecules. 

Depending on the biological question of interest, data-driven integration or using a mix of both 

approaches may be better suited. 
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1.3.7 Data-driven integration 

Data-driven integration relies on various statistical methods to integrate multi-omics datasets 

simultaneously. It is outside the reach of this thesis to review the whole literature of multi-omics 

integration methods. In the following section, a brief overview will be provided on dimension 

reduction and multi-view clustering methods that are used in multi-omics integration. 

The different dimension reduction methods model features as a set and considers relationships 

between different features unlike conventional univariate statistical methods such as ANOVA or 

t-tests. One of its key features is the ability to perform dimension reduction, which is to project 

data into subspace with lower dimensions while capturing largest sources of variation. This is 

especially useful for visualization purposes when the subspace is reduced to two or three 

dimensions. Additionally, multivariate methods usually do not have strict assumptions on data 

distribution, making it flexible for omics data analysis (43). 

Multivariate statistical methods such as Principal Component Analysis (PCA) (73) and Non-

Matrix Factorization (NMF) (74) have been widely used on single data matrix. Many of these 

single dataset methods have been extended or adapted to integrate a pair of data matrices. Such 

methods include Procrustes analysis, Co-Inertia Analysis (CIA), Partial Least Squares (PLS) and 

Canonical Correlation Analysis (CCA). Procrustes analysis attempts to conform points from both 

matrices by applying linear transformation on one of the data matrices (51). It is widely used in 

the domains of ecological science and microbiology (75,76). CIA achieves integration by 

constraining projections of orthogonal axes while maximizing covariance of lower dimensional 

representations of the initial datasets (77). PLS integrates two data matrices by maximizing 

covariances between sets of variables. On the other hand, CCA maximizes correlation between 

components instead. There are many implementations derived from the methods mentioned above 
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to deal with specific characteristics of omics datasets and generalized to integrate more than two 

datasets (78,79). 

Overall, model-based integration is used for exploratory data analysis, exposing global structure 

across datasets, and highlighting batch effects within individual datasets. It provides an intuitive 

framework and visualization for further in-depth analysis of the elements within, both samples and 

features (genes, metabolites, etc.). Similarly, this type of framework facilitates downstream 

enrichment or pathway analysis. For instance, Multiple Co-inertial Analysis (MCIA) can facilitate 

the identification of features contributing most to global data structure by making them comparable 

across datasets using a transformation procedure. 

In clustering analysis, the main objective is to identify cluster of samples or patients that are more 

similar to each other than the rest of the data. Single omics clustering remains effective, but it is 

missing out from the complementary and consensus information across different omics types. 

Multi-view clustering algorithms, a research topic investigated independently in machine learning 

community, is applicable to multi-omics datasets. Recent multi-omics studies have seen 

application of such algorithms (22,80).  

In a review by N. Rappoport and R. Shamir (81), the authors classify multi-view clustering into 

three main categories:  

1. Early integration: Concatenate omics data matrices to form a single multi-omics matrix 

and applies clustering algorithms on it. 

2. Late integration: Each omics data matrix is clustered separately, and the results are 

integrated to obtain a single solution. 
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3. Intermediate integration: Use original omics matrices to build shared and omics-

specific models.  

Early integration is arguably the most straightforward approach where clustering is applied on an 

aggregated multi-omics matrix. Any clustering algorithm can be used but it suffers from several 

drawbacks such as different weights attributed to each omics layers due to different number of 

features, different data distributions and worsening the data dimension (aggregating features). Late 

integration is equally flexible as any clustering algorithm can be used to perform clustering on 

individual omics matrix and does not suffer from the drawbacks of early integration. However, 

there is a loss of weak signals from each individual omics. Intermediate integration includes 

several different types of methods: sample similarities-based, joint dimension reduction and 

statistical modeling. In the following section, several well-known implemented methods are going 

to be covered. 

The iCluster algorithm is one of the earliest integrative methods. It performs multi-omics 

integration by mapping the individual data into a joint low-dimensional latent space (82). It was 

applied in lung and breast cancer data for the purpose of patient stratification using copy number 

variation and mRNA expression data (82). PINS is a late integration method that leverages 

connectivity matrices of different omics to performing cluster integration. Perturbations are 

applied on the data to test robustness of clustering results and help identify the optimal number of 

clusters. Similarity Network Fusion (SNF) was among the first sample similarity methods 

developed for multi-omics data (83). The algorithm first construct individual similarity network 

for each omics. The resulting networks are then fused together using message passing algorithms 

through an iterative process (84). Please refer to Figure 1.10 for a schematic view of SNF algorithm. 
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It has seen applications in the integration of cancer subtypes data from TCGA composed of gene 

expression, methylation and miRNA expression (83). 

 

Figure 1.10 Schematic representation illustrating SNF approach on integrating two datasets from 

different omics. Edge color represents which dataset is contributing to the given similarity. 

1.4 Theis statement 

Multi-omics data analysis can reveal novel biological insights which lead to better understanding 

of health and disease. By coupling visual analytics with advanced statistics, analyzing single omics 

data and integrate omics data from different biological layers can address some of the current 

challenges in omics data analysis including large data size, high heterogeneity, and complexity. 

The tools and case studies described subsequently will propose potential biomarkers and 

biological processes involved in specific developmental, physiological or disease conditions. 

1.5 Outline of achievements 

The following section presents the three main projects composing this dissertation. 

1. NetworkAnalyst: a comprehensive network visual analytics platform for gene expression 

analysis 
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I have updated NetworkAnalyst, a web-based platform dedicated for functional profiling 

of transcriptomics data. It offers a comprehensive workflow from raw RNA-seq data pre-

processing to advanced comparative analysis and visual analytics. I have expanded the 

interaction databases considerably from generic protein-protein interaction (PPI) to cell-

type or tissue-specific PPI, gene regulatory networks, gene co-expression networks, drug-

protein and chemical-protein networks. A new module dedicated for meta-analysis of gene 

lists have been added. It is coupled with a series of visual analytics tools including 

interactive heatmap, Venn diagrams, chord diagrams, enrichment network and interaction 

network to further explore, compare and analyze the gene lists. 

 

2. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space  

OmicsNet has been developed to create multi-omics interaction networks and visualize 

them in 3D space. It accepts as input one of multiple lists of genes, miRNA, transcription 

factors and metabolites to create and merge different types of biological networks. 

OmicsNet supports three different graph layouts to facilitate network navigation: force-

directed layout, multi-layered layout and spherical layout. The network viewer is supported 

with a rich set of functions to perform coloring, shading, topology analysis, and enrichment 

analysis. 

 

3. OmicsAnalyst: navigating complex landscapes of multi-omics data integration via intuitive 

visual analytics. 

OmicsAnalyst has been developed to integrate multi-omics datasets using well-established 

methods coupled with advanced visual analytics features. It proposes three different 
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analytic tracks: (i) correlation network analysis, where users choose one of the proposed 

feature selection methods and explore relationships of important features in 2D or 3D 

network. (ii) cluster heatmap analysis, to visualize and analyze results from multi-view 

clustering methods on a pair of omics datasets using interactive dual heatmap. (iii) 

dimension reduction analysis, coupling integrative multivariate statistical methods with 

interactive 3D scatter plots to explore global data structures via corresponding score and 

loading plots.  
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Preface to Chapter 2 

This chapter described an extensive update to NetworkAnalyst, a web-based visual analytics tool 

designed to perform functional profiling of transcriptomics data. It offers a comprehensive 

workflow of data processing along with differential expression analysis functions and various 

visual analytics options to explore and analyze transcriptomics data. It is composed of four 

different modules, depending on what type of input the user has: 1) Gene List Input; 2) Gene 

Expression Table; 3) Multiple Gene Expression Tables; 4) Raw RNA-seq data. It offers a wide 

array visual analytics tools to facilitate data interpretation and analysis. In this update, network 

visual analytics have been improved by expanding the interaction knowledge base from generic 

PPI to other interaction types and adding new network layouts. Secondly, enrichment network 

visual analytics were added to assess the overall relationships between enriched terms, and their 

associated genes. Lastly, to address the need of tools supporting meta-analysis of multiple gene 

lists, the existing visual analytics have been adapted to facilitate their simultaneous analysis. 
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Chapter 2: NetworkAnalyst - a comprehensive network visual 

analytics platform for gene expression profiling 
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2.1 Introduction 

The scientific community is in the midst of a boom of transcriptomics yet there are few accepted 

and standardized bioinformatics tools to organize, analyze, visualize and interpret the resulting big 

data. To deal with the challenges from such datasets, new-generation bioinformatics tools must be 

high performance (i.e. scalable for large data or user traffic), intuitive to use (i.e. to enable complex 

analytics via a simple interface) and universally accessible (i.e. web/cloud-based). Here, we 

introduce NetworkAnalyst 3.0 as a powerful web-based visual analytics platform for 

comprehensive profiling, meta-analysis and systems-level interpretation of gene expression data. 

NetworkAnalyst was first released in 2014 centered on PPI network analysis and visualization (61). 

It was soon updated (version 2.0) in mid 2015, with a completely revamped user interface and 

enhanced workflow for statistical meta-analysis of multiple gene expression studies (62). Over the 

years, we have made continuous updates and feature enhancements based on community feedback. 

According to Google Analytics, the public server has performed >220 000 data analysis jobs 

submitted from >14 000 users worldwide over the past 12-month period. 

The development of NetworkAnalyst, and subsequent updates, have been driven by the practical 

data analysis challenges facing researchers from a wide variety of different areas. Addressing these 

needs has required different levels of effort and expertise. At the basic level, we have expanded 

support from the initial five model organisms to currently 17 species covering mammals, birds, 

bacteria, plants and parasites. In addition, many researchers do not have access to high-end 

computational infrastructure, and thus we have developed and made available a public Galaxy 

server to support raw RNAseq processing for all the 17 species. At the intermediate level, we have 

spent significant efforts in curating high-quality, comprehensive molecular interaction data to 
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allow users to create gene regulatory networks, tissue or cell-type specific networks as well as 

gene co-expression networks to enable more biologically meaningful analysis. For gene expression 

analysis, we have implemented an interactive volcano plot and added the widely used gene set 

enrichment analysis (GSEA) method (85). At the advanced level, we have spent most of our efforts 

on developing and improving visual analytics methods to address several key challenges in big 

data analysis of omics data. To address the ‘hairball’ effect associated with large network 

visualization, we have implemented 3D and VR network visualization. For networks with 

hierarchical structures such as enrichment network, we have developed a ‘meta-node’ feature 

which can be expanded to show more details upon user click. To overcome the limitations of Venn 

diagrams and chord diagrams, we have developed simple yet powerful heatmaps to allow users to 

intuitively compare gene lists of varying sizes for meta-analysis. Finally, NetworkAnalyst now 

allows users to save their data analysis projects and resume analysis later. Meanwhile, we have 

performed thorough code refactoring, updated the framework, and enhanced the user interface to 

significantly improve its efficiency and user experience. We have also updated the frequently 

asked questions (FAQs) and have added new tutorials for first-time users. All these changes and 

updates have been released as NetworkAnalyst 3.0. It is now available freely at 

https://www.networkanalyst.ca. 

2.2 Overall Design 

NetworkAnalyst accepts five types of data inputs - one or multiple gene lists, a single gene 

expression data table, multiple gene expression data tables, raw RNAseq reads as well as common 

network files. To start analysis, users can click the corresponding circular menu from the 

NetworkAnalyst home page. Each data input corresponds to a data analysis module with specific 

data processing steps. The analysis results will be presented in several highly interactive visual 

https://www.networkanalyst.ca/
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analytics methods with built-in support for functional enrichment analysis against multiple 

libraries available from our knowledge base. The main workflow of NetworkAnalyst is 

summarized in Figure 2.1. In the following sections, we will focus primarily on the new or 

improved features introduced in the NetworkAnalyst 3.0. Other features can be found in our prior 

publications (59,61,62,85,86). 
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Figure 2.1 Overview of the workflow of NetworkAnalyst 3.0 
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2.3 Program description and methods 

2.3.1 Enhancing gene expression analysis 

Given the prevalence of transcriptome studies across life sciences, we have spent substantial effort 

in improving both the capacity and the workflow for gene expression analysis, with a particular 

focus on RNAseq data analysis and interpretation. 

Raw RNAseq processing 

NetworkAnalyst now features a Galaxy-based pipeline for processing raw RNAseq, which 

includes trimming, quality checking, read mapping and quantification. In particular, we have 

implemented both the classical spliced aligner—HISAT2 (87), as well as the ultra-fast 

pseudoalignment based method—kallisto (88) to support raw RNAseq mapping for the 17 species. 

The resulting gene count tables can then be used for gene expression analysis as described below. 

Gene expression profiling 

To enable more refined data analysis and to improve the user experience, we have expanded the 

previous single-page gene expression analysis module into multiple pages spanning data upload, 

quality check, normalization and differential expression analysis steps. Both the quality check page 

and the normalization page include a number of diagnostic plots to provide different perspectives 

on the data. For instance, users can view the distributions of gene expression values across samples 

(box plots) or experimental factors (density plots), and the effects of different normalization 

methods on sample clustering can be visualized via PCA plots. All these figures can be 

downloaded as high-resolution images for publication. Differentially expressed genes (DEG) can 

be identified using limma (89), edgeR (90) or DESeq2 (91). Users can further select different 

parameters based on their study designs and comparisons of interest. 
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Interactive volcano plot 

This is a simple yet powerful visualization method that integrates statistical significance (p values) 

and biological significance (fold changes) to allow users to quickly identify the most promising 

gene candidates from differential expression analysis results. The interactive volcano plot was 

implemented based on the canvasDesigner package (92). Users can directly click any data point to 

view the corresponding gene name and its expression profile as a boxplot. Users can perform 

enrichment analysis on all DEG, up-regulated DEG, down-regulated DEG, as well as genes in the 

current selection. Double clicking any returned function name will highlight the corresponding 

genes in the volcano plot. A screenshot is shown in Figure 2.2A. 
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Figure 2.2 Screenshots of selected features introduced in NetworkAnalyst 3.0. (A) Interactive 

volcano plot. Users can click a data point to view the corresponding boxplot or click a function 

name to highlight the corresponding genes (shown in orange border). (B) Enrichment network with 

meta-nodes. Users can double click a meta-node (large semitransparent circles) to view all its 

associated genes (small solid circles). (C) 3D network viewer displaying a force-directed tissue-

specific PPI network with several modules highlighted; D) Multi-list heatmap viewer. Users can 

intuitively identify and select shared or unique gene subsets and then perform enrichment analysis. 
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Gene Set Enrichment Analysis (GSEA) 

In the previous versions of NetworkAnalyst, enrichment analysis was limited to over-

representation analysis (ORA) on DEGs identified based on user selected cut-offs. Cut-off free 

methods, such as GSEA (85), utilizing the entire list of genes to compute functional enrichment, 

allows the detection of subtle yet consistent changes in gene expression profiles. GSEA in 

NetworkAnalyst is based on the high-performance fgsea R package (93). As GSEA requires a list 

of ranked genes as input, how to order the genes is an important parameter. NetworkAnalyst offers 

four robust gene ranking methods (moderated T-test, signal-to-noise ratio, fold change and 

statistics from the current DE method) based on a recent benchmark study (94). The results can be 

visualized as interactive heatmaps or enrichment networks. The heatmap visualization tool shows 

detailed gene expression patterns underlying individual functions; while the enrichment network 

tool (discussed further below) provides an overview of all enriched functions with similar ones 

connected by edges. A screenshot of an enrichment network is given in Figure 2.2B. 

2.3.2 Expanding molecular interaction knowledgebase 

Biological networks provide an intuitive framework to help understand complex molecular 

interactions. While PPI networks are widely used to aid in the interpretation of gene expression 

data, it is clear that other types of networks are also needed to obtain deeper mechanistic insights. 

For example, gene regulatory networks incorporating transcription factors (TFs) or microRNAs 

(miRNAs) are critical to infer causal link of molecular interactions, while applying tissue or cell-

type specific PPI can greatly reduce false positives. In addition, gene co-expression networks based 

on large-scale gene expression studies can complement networks based on experimental evidence 

to facilitate novel hypothesis generation (95). We have spent extensive efforts to expand the 

underlying molecular interaction knowledge base as discussed below. 
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Context-specific networks 

Our newly added human tissue-specific PPI data comes from the DifferentialNet database (96), 

covering 42 different tissues. The interaction data were generated by mapping tissue-specific co-

expression data from GTEx (97) to experimentally detected PPI data from four major interaction 

databases. The tissue-specific co-expression data comes from the TCSBN database (98), covering 

46 tissues. The cell type specific co-expression data comes from Immuno-Navigator (99), covering 

24 immune cell types in mouse and human. 

Gene regulatory networks 

Transcriptional and post-transcriptional gene regulation plays important roles in many biological 

processes and cellular functions. We have added two key players in gene regulation: TFs and 

miRNAs. TarBase (100) and miRTarbase (101) have been used to obtain experimentally validated 

miRNA–gene target information, while ENCODE (102), JASPAR (103) and CHEA (104) have 

been used to obtain TF–gene target information. We also included the TF–miRNA–gene 

coregulatory networks built by RegNetwork. 

Other biological networks 

To address growing needs in toxicogenomics and pharmacogenomics, NetworkAnalyst now also 

includes protein-chemical interactions from the Comparative Toxicogenomics Database (CTD) 

(105) and protein-drug interactions from DrugBank (106). The CTD is a comprehensive public 

database of toxicogenomic information manually curated from the literature, providing key 

information on the effects of environmental chemicals. DrugBank is a public database specialized 

in drug molecular information, mechanisms of action and drug-target information for >10 000 

drugs. Additionally, we have included gene-disease association networks for humans from 
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DisGeNet (107) which is a comprehensive database covering most of the known human disease-

specific genotype–phenotype relationships. 

2.3.3 Addressing the ‘Hairball’ issue 

As biological networks become increasingly large and complex, they often suffer from the well-

known ‘hairball’ effect which greatly reduces their practical utilities and uptake. Two general 

approaches can be performed to overcome this issue: trimming the default network to retain only 

those significant nodes/edges; and developing better visualization methods to reduce edge and 

node occlusions. In NetworkAnalyst 3.0, we have implemented new functions employing both 

approaches. 

Network customization 

The default networks are created by searching for direct interaction partners in the molecular 

interaction knowledge base. They are generally known as the first-order interaction networks. For 

very small networks, users can further expand the networks to create the second-order networks. 

When there are a large number of query genes (‘seeds’), it is reasonable to focus only on the 

interactions among those seeds (i.e. zero-order networks). However, many seeds could become 

orphan nodes when switching to zero-order networks. A ‘gentle’ approach is to extract, from the 

first-order network, a minimal subnetwork that maximally connects those seeds, a process known 

as Prize-collecting Steiner Forest (PCSF) algorithm. In NetworkAnalyst 3.0, we have added the 

support for efficient PCSF-based subnetwork extraction (108), as well as many other empirical 

trimming methods (available under ‘Network Tools’) based on shortest paths, node degree or 

betweenness values. 
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Network visualization in 3D and VR 

Shifting from 2D to 3D can be a potential solution as it provides users a larger space for network 

layout and additional viewing angles. Although the hairball effect may still be problematic in 3D 

visualization, users will have more interaction freedom. Additionally, it may help expose some 

patterns otherwise undetectable in 2D visualization. Our implementation enables highly interactive 

network exploration in 3D space and allows extensive customization in terms of color, opacity, 

shading, etc. A screenshot of a 3D network generated by NetworkAnalyst is shown in Figure 2.2C. 

We have also added a virtual reality (VR) version of the 3D network based on the A-Frame 

framework (https://aframe.io/). VR brings to the table not only an immersive experience but also 

a much larger field of view that will not be limited by the size of the computer screen. Users with 

a compatible VR device (such as Oculus Rift) can view the network through web browsers. Please 

note our current implementation of the VR network is still in its prototype stage. We intend to 

develop a fully featured VR environment for 3D network visual exploration in the near future. 

2.3.4 Powering multi-list comparisons through visual analytics 

NetworkAnalyst supports comprehensive meta-analysis of multiple gene expression tables 

through various statistical methods. In many cases, however, researchers may simply have a 

number of different lists of DEGs generated from different studies or different comparisons from 

the same studies, for which they wish to compare and analyze. This observation has been 

demonstrated by the tremendous popularities of several web-based tools dedicated to functional 

interpretation of a given gene list, such as WebGestalt (109), g:Profiler (64) and Enrichr (63). The 

research community is increasingly interested in comparing results across multiple studies, a key 

feature missing in the aforementioned tools is the ability to perform meta-analysis of multiple gene 

lists to identify their shared as well as unique functions. There is an unmet need for intuitive yet 

https://aframe.io/
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flexible bioinformatics tools to allow researchers to easily compare multiple gene lists to gain 

biological insights. 

In NetworkAnalyst 3.0, multiple gene lists can be easily uploaded using the gene list module. Users 

simply insert a ‘//’ line to separate different gene lists when using the text area directly, or upload 

each gene list as an individual file. Please note NetworkAnalyst can also accept gene lists 

submitted programmatically as external requests based on our specified RESTful API 

(https://www.networkanalyst.ca/faces/docs/Resources.xhtml). After ID checking and conversion, 

users can visually compare different lists and perform enrichment analysis on a subset of genes 

generated from different set operations (i.e. unique, union, intersections for selected gene lists) 

using multiple visual analytics tools. A Venn diagram is probably the most straightforward way to 

compare a few gene lists - up to four gene lists are supported in our current implementation of 

Venn diagram. A chord diagram is also a popular visualization method to show pair-wise 

relationships between genes in multiple gene lists. However, a chord diagram can become too 

crowded when there are large number of genes and connections (>1000). To address these 

limitations, we have implemented two new methods to support the meta-analysis of genes and 

gene lists of arbitrary sizes. 

Multi-list heatmaps 

Heatmaps are a very popular visualization method for gene expression data. When used for 

visualizing multiple gene lists, heatmaps are able to show the presence or absence of genes in 

particular gene list in addition to the fold-change patterns. This form of presentation provides an 

overall picture of how the DEGs are shared across multiple lists. Our implementation allows users 

to directly click-and-drag to select a ‘patch’ of interest and perform enrichment analysis on the 

https://www.networkanalyst.ca/faces/docs/Resources.xhtml
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selected genes. Figure 2.2D shows a screenshot of the multi-list heatmaps in which different colors 

represent the frequencies of the genes appearing across all gene lists. 

Enrichment network 

To improve the interpretability of the results from enrichment analysis, we have implemented an 

interactive enrichment network viewer based on a similar concept introduced by ClueGO and 

EnrichmentMap (110,111). Users can now visualize the relationships among enriched function 

terms and their associated genes in a similarity network (Figure 2.2B). By default, the viewer 

shows a global enrichment network in which nodes represent functions and edges are determined 

by the overlap ratio between genes associated with the two functions. These nodes are 

implemented as meta-nodes. Users can double click to expand any meta-node to view its associated 

genes. Our implementation allows users to easily customize the style of the network (colors, layout, 

etc.) or to extract a subnetwork based on selected functions of interest. 

2.3.5 Enabling resumable and reproducible data analysis 

There is a growing interest in the bioinformatics research community to develop solutions for 

sharing data and analysis steps to support publications and scientific claims (112,113). Due to the 

wide array of visual analytics methods available in NetworkAnalyst, users may not be able to 

complete their analyses in a single session. This can partially explain the >220 000 data analysis 

jobs submitted to NetworkAnalyst from ∼14 000 users over the past year—it is likely that many 

jobs were re-analyzing the same datasets submitted from the same users. There is a need for 

NetworkAnalyst to store user data and analysis steps to allow users to resume their data analysis 

later. 
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In NetworkAnalyst 3.0, we have developed a project management component as an initiative to 

address the challenges associated with reproducible research. Users can now create up to 10 

projects. These projects can be loaded, updated or deleted. Within each project, all key analysis 

steps are tracked. Since these projects need to be stored securely, users need to create an account 

to manage their projects. It should be noted, however, that creating an account, is not required for 

using any data analysis module in NetworkAnalyst 3.0.  

2.4 Implementation 

NetworkAnalyst 3.0 was implemented based on the PrimeFaces (v6.2) component library 

(http://primefaces.org/) and R (version 3.5.1). The various visual analytics methods have been 

developed based on several powerful JavaScript libraries including sigma.js (http://sigmajs.org) 

for 2D interactive network visualization, three.js (https://threejs.org) for 3D network visualization 

and canvasXpress (https://canvasxpress.org) for heatmaps and volcano plots. The system is hosted 

on a Google Cloud n1-highmem-8 instance (52GB RAM and eight virtual CPUs with 2.6 GHz 

each). The project management component has been developed as a microservice hosted on a 

separate server using Spring Boot and Spring Security. As a web-based tool, NetworkAnalyst is 

mainly designed to support analysis of gene expression data generated from small to medium-sized 

studies. For raw RNAseq data processing, our Galaxy Server offers 100 GB disc space per user by 

default (∼30–50 samples dependent on the organisms and sequencing depth); For gene expression 

table, users can upload files with a maximum size of 50 MB (∼200 samples with ∼25 000 genes 

for each sample). For meta-analysis, users can upload up to 1000 samples in total. For large-scale 

studies, we recommend users to first process their data locally and upload gene lists for network 

analysis and visual exploration. 

http://primefaces.org/
http://sigmajs.org/
https://threejs.org/
https://canvasxpress.org/
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Table 2.1 Comparison with other web-based network analysis tools. Symbols used for feature 

evaluations with ‘√’  for present, ‘-’  for absent, and ‘+’  for a more quantitative 

assessment (more ‘+’ indicate better support). The URLs for each tool are given below. 

Tools NetworkAnalyst WebGestalt g:Profiler Enrichr 

Inputs  Gene lists, gene 
expression data, 
network files  

Gene lists  Gene lists  Gene lists, BED 
file  

Organisms  17 species  12 species  213 species  6 species  

Gene expression analysis  

RNAseq processing  √  -  -  -  

DE analysis  √  -  -  -  

Enrichment analysis  ++  +++  ++  +++  

Knowledgebase  ++  +++  +++  +++  

Network construction and visualization  

Network types  +++  ++  +  +  

3D/VR network  √  -  -  -  

Meta-analysis and visual analytics  

Multiple lists  Enrichment analysis on 
any sets (union, 
intersection, unique)  

Enrichment analysis on individual 
lists  

-  

Multiple tables  √  -  -  -  

Heatmap view  √  √  √  √  

Chord diagram  √  -  -  -  

Venn diagram  √  -  -  -  

Enrichment network  √  √  -  √  

Volcano plot  √(genes)  √ (gene sets)  -  -  

 

2.4.1 Comparison with other web-based tools 
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Table 2.1 shows the comparisons between NetworkAnalyst 3.0 and several other well-known web-

based tools dedicated to functional profiling of transcriptomics data, including WebGestalt (109), 

g:Profiler (64) and Enrichr (63). The WebGestalt web application, first released in 2005, provides 

comprehensive enrichment analysis for 12 selected organisms and also supports user-supplied 

functional enrichment categories. The g:Profiler tool suite, first released in 2007, provides the 

broadest species coverage by supporting >200 species and corresponding gene ID conversions. 

Additional features include mapping human single nucleotide polymorphism (SNP) to gene name 

as well as ortholog search. The Enrichr web server, first released in 2013, provides the broadest 

functional coverage by supporting enrichment analysis against >100 gene set libraries. A key 

contribution of Enrichr is its curation effort, and allowing users to download their curated gene 

sets. Another unique feature of Enrichr is its support for BED file as input for enrichment analysis. 

These three tools are powerful web-based platforms that offer rich annotations for a given gene 

list. In contrast, NetworkAnalyst distinguishes itself from other web-based tool by providing 

cutting-edge network visualization, versatile visual analytics, comprehensive support for gene 

expression profiling, meta-analysis and multi-list comparisons. NetworkAnalyst 3.0 offers an end-

to-end solution for RNAseq analysis - from raw reads mapping to differential expression analysis 

and identification of important pathways and functions. 

2.5 Conclusion 

NetworkAnalyst 3.0 is a unique online visual analytics platform specialized in transcriptome profiling, 

network analysis, and meta-analysis for gene expression data. NetworkAnalyst has been developed to 

address three unique gaps in the current landscape of bioinformatics tools. Firstly, NetworkAnalyst 

aims to provide a web-based tool for creating and visualizing biological networks to complement the 

widely used stand-alone tools such as Cytoscape (114). We will continue to add new features with a 
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special consideration of emergent revolutions in web technologies (i.e. cloud, WebVR and browser 

computing) in the coming years. Secondly, NetworkAnalyst has filled a unique gap by enabling web-

based meta-analysis of gene expression data. Gene expression meta-analysis is a very complex process 

and is usually performed by statisticians using R and Bioconductor packages rather than by average 

life science researchers. Curating as well as uploading and processing multiple datasets using online 

tools can be a challenging, unreliable (i.e. unstable connections) and time-consuming task. The 

implementation of the project management component is a first step towards addressing these concerns. 

Users can now save their projects (including datasets and steps) and resume analysis at a later time. In 

addition, the new multi-list comparison feature enables more flexible meta-analysis by accepting gene 

lists generated using users’ own favorite tools and methods. Finally, it is now widely accepted that the 

over-reliance on p-values (among other statistical missteps) have contributed to the current crisis in 

reproducible research (8,115). With the proliferation of datasets that are increasingly large and 

complex, there is a great need to design and develop novel and intuitive bioinformatics tools to better 

educate, empower and engage users. We believe that integrating a range of visual analytics tools 

together with ‘conversational’ data analysis steps as used by NetworkAnalyst is a promising approach 

towards addressing this issue. 
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Preface to Chapter 3 

Chapter 3 presents, OmicsNet, a visual analytics tool that performs multi-omics network 

integration using a knowledge-based approach. OmicsNet is designed to explore the overall 

molecular context of features of interest by leveraging well-established interaction databases. In 

contrast to NetworkAnalyst which is centered for the analysis of transcriptomics data, OmicsNet 

takes as input lists of genes, metabolites, transcription factors and miRNA and outputs a multi-

omics interaction network that links them. Other key features include the use of 3D space to 

visually represent the interactive network and employment of multi-layered and module-based 

layout to facilitate data interpretation. Please refer to the following link for a video demo of 3D 

network visualization by OmicsNet (https://youtu.be/4q8LFQmlYNk). 
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3.1 Background and motivation 

The growing applications of large-scale multi-omics studies in current life sciences have generated 

vast amounts of molecular measurements at DNA, RNA, protein, and metabolite levels. Novel 

bioinformatics tools and computational methods are urgently needed to help researchers analyze 

these complex datasets to facilitate systems-level understanding. Two general approaches have 

emerged - the statistical approach and the network-based approach. The statistical approach aims 

to identify overall patterns or shared signatures across multiple datasets by employing various 

multivariate statistical methods (43,116), while the network-based approach views the biological 

system as interconnected networks of molecular entities, and is primarily concerned with creating 

and computing on such networks (117,118)(3,4). Multivariate statistics are inherently complex. 

Although numerous methods have been developed to deal with multi-omics datasets, there is a 

general lack of well-established guidelines and strong use cases to promote their wide adoption 

and application (21). In contrast, the network-based approach is particularly appealing as networks 

can easily integrate new data into current knowledge framework and visually engage researchers 

to facilitate data understanding. Over the past decade, large-scale experiments have enabled 

comprehensive collection of high-quality molecular interaction data. Many excellent public 

databases and bioinformatics tools have been developed for storage, visualization, and analysis of 

such data (36,38,119-122). These expansive resources have made the network-based approach the 

preferred choice in current multi-omics data integration and systems biology. 

The first step in the network-based approach is to create a subnetwork (or a few subnetworks) that 

connects significant molecules identified from individual omics data analysis. Protein–protein 

interactions (PPI) and metabolic reactions have been widely used for building such subnetworks. 

In general, there is a lack of easy-to-use bioinformatics tools that permits facile incorporation of 
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important regulators such as microRNAs (miRNAs) or transcription factors (TFs) into biological 

networks. These two types of molecules are important players in gene regulations and are integral 

components in systems biology. High-quality public resources housing gene regulator data have 

become readily available in recent years. For instance, TarBase (100) and miRTarBase (101) are 

two comprehensive databases that host experimentally validated miRNA-target interactions. 

Meanwhile, the ENCODE (102), JASPAR (123) and TRRUST (124) databases have provided 

high-quality information on TFs and their potential target genes. Integrating these resources to 

allow users to easily include these important players into widely-supported PPI or metabolic 

networks would therefore enable deep insights for systems understanding. 

After the creation of subnetworks that can, ideally, connect a significant portion of the molecules 

of interest, the next step is to analyze the subnetworks. Although graph theory is often used to help 

identify important patterns and links, a key strength of network analysis lies in organizing and 

visualizing the considerable knowledge about the interplay among biological molecules to help 

researchers make informed decisions or to develop new hypotheses (68). Therefore, an important 

goal of network visualization is to facilitate easy interpretation and absorption of large quantities 

of information without being overwhelmed by it. However, as networks become larger, it often 

leads to the well-known ‘hairball’ effect, which is caused by a large number of overlapping nodes 

and edges. Many empirical methods have been developed to address this issue such as trimming 

uninformative nodes, edge bundling or applying different layouts (39,125). One potential solution 

is to increase the visualization space from the conventional 2D to 3D space, thereby providing 

more viewing perspectives and reducing intersections between nodes and edges. In addition, the 

extra dimension can present critical information unique in multi-omics and time-series data to 

facilitate systems-level understanding (126,127). 
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Most current network visualization tools are standalone programs focusing primarily on 2D 

network visualization, such as Cytoscape (36) and Gephi (128). A few of them also support 3D 

visualizations such as BioLayout3D (129), iCAVE (130), NAViGaTOR (121), Arena3D (127) and 

3DScapeCS (131). Over the past several years, there is a clear trend to move away from standalone 

applications towards integration of visualization within web browsers (62,132,133). To the best of 

our knowledge, no dedicated web-based tools are currently available to support 3D visualization 

of biological networks. There are some technical reasons behind this. Early 3D rendering was often 

implemented using Flash or Java 3D, both of which require plugins in order to work within a web 

browser. In addition, 3D rendering is inherently a computationally intensive task, and displaying 

large networks in 3D could easily exceed the computing capacity of early web browsers. The 

situation has significantly changed over the past few years. Modern web browsers are much more 

powerful. Browser-based applications with hardware acceleration using graphics processing units 

(GPUs) can deliver excellent user experience through their interactive, media-rich interfaces. The 

recent arrival of WebGL technology, now standard in all modern web browsers, has made it 

possible to implement interactive 3D graphics directly in a web browser. When properly 

implemented, WebGL can deliver higher performance as compared to other existing technologies 

such as canvas or scalable vector graphics (SVG) (134). Leveraging this new web technology to 

enable intuitive online 3D network visualization represent a promising direction to address the 

current challenges in large network visualization and multi-omics integration. 

We introduce OmicsNet, a novel web-based tool for biological network creation and visual 

exploration in 3D space. OmicsNet was developed using the state-of-the-art WebGL technology 

to enable 3D network visual analytics, with built-in support for flexible creations of composite 

networks. The key features of OmisNet include: 
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• Accepting lists of genes/proteins, transcription factors, miRNAs, metabolites, as well as 

network files (.txt, .sif or .graphml); 

• Supporting ten molecular interaction databases on protein-protein, miRNA-target, TF-

target and enzyme-metabolite interactions, with multiple procedures for network 

customization; 

• Fully-featured 3D network visualization system supporting three layouts (force-directed 

layout, multi-layered perspective layout and spherical layout) and a wide array of 3D visual 

effects and interactions (shading, zooming, highlighting, rotating, drag-and-drop, etc.); 

• Comprehensive support for functional analysis based on GO, KEGG, Reactome and 

PANTHER (135-138), as well as network topology analysis including module detection, 

computing shortest paths and node centralities; 

OmicsNet contains a comprehensive list of frequently asked questions (FAQs) and multiple 

tutorials on different use cases to help researchers navigate common analysis tasks. The public 

server is freely available at http://www.omicsnet.ca. 

3.2 Program description and methods 

OmicsNet is mainly composed of three web pages corresponding to the three tasks - data input, 

network creation, and network visual analytics. Figure 3.1 shows the overall design and workflow 

of OmicsNet. Users can upload lists of genes/proteins, TFs, miRNAs or metabolites to search 

different molecular interaction databases. The results will be used to create different subnetworks, 

which can be explored in our 3D visualization system. Each component is furnished with various 

options to facilitate users’ tasks. The key features of each page are described in the sections below. 

http://www.omicsnet.ca/
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Figure 3.1 The overall workflow of OmicsNet. Users can upload lists of genes/proteins, TFs, 

miRNAs or metabolites to search different molecular interaction databases. The results will be 

used to create composite networks, which can be explored in a powerful 3D visualization system 

with comprehensive built-in support for different layouts, topology analysis and functional 

analysis. 

3.2.1 Creation of knowledge base on molecular interactions 

To support the construction of biological networks for different types of molecules, the first task 

is to create a comprehensive knowledge base on molecular interactions. In addition to PPI and 

metabolic interactions, we have also included transcriptional and post-transcriptional regulations. 
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Together they represent the four main types of molecular interactions in a simplified biological 

system. In total, data from ten different databases were collected, including three PPI databases 

(STRING (119), InnateDB (38), and IntAct (120)), two miRNA-target database (TarBase (100) 

and miRTarBase (101)), two metabolic databases (KEGG (136) and Recon2 (139)), and three TF-

target databases (TRRUST (124), JASPAR (123), and ENCODE (102)). These publicly available 

databases are well maintained. We will perform annual check to synchronize our knowledge base 

with the major releases of these databases. 

3.2.2 Data upload and processing 

The query input can be one or multiple lists of genes/proteins, miRNAs, TFs or metabolites. 

OmicsNet currently supports nine organisms (human, mouse, rat, cattle, chicken, zebra fish, fruit 

fly, Caenorhabditis elegans and Schistosoma mansoni). In addition to supporting creation of 

conventional PPI, miRNA-gene, TF-gene and metabolic networks, OmicsNet has been designed 

to support three general use cases for systems biology and multi-omics integration: (i) starting 

from a list of genes, proteins or metabolites to build PPI or metabolic networks and further include 

miRNAs or TFs that target these nodes; (ii) starting from a few miRNAs or TFs to identify their 

target genes and further add interactions between these target genes/proteins based on PPI 

information. Note it is not advisable to start from a long list of TFs or miRNAs as primary queries 

because they tend to have large numbers of interaction partners, making it impossible to identify 

any meaningful connections through visual inspection of the resulting networks; (iii) starting from 

multiple lists of molecules (genes, miRNAs, and TFs) to identify known interactions among them. 

Finally, users can also directly upload their own networks in several common graph file formats 

(.txt, .sif, or .graphml) for 3D visual exploration. 

3.2.3 Network construction 
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After users have uploaded one or more lists of molecules of interest, they can proceed to the next 

page for network building. The interface allows users to select one or more (up to three) types of 

interactions (PPI, miRNA-gene, TF-gene or protein–metabolite) to be included in the network. For 

building composite network containing more than one interaction types, users need to specify the 

order of network creation (primary, secondary, or tertiary interactions). The primary interaction 

should be selected to build networks consisting of molecular entities of main interest and their 

immediate interactors. The secondary and tertiary interactions are mainly to ‘enrich’ the 

information contained in the primary network through: (a) adding new edges - when the PPI 

database is chosen as secondary, the process will introduce new edges between gene/protein nodes 

in the current network; or (b) adding new nodes - when the TF or miRNA database is chosen, the 

process will introduce new regulator nodes that target gene nodes in the current network. If 

multiple lists are uploaded, the lists corresponding to the secondary and/or tertiary interactions will 

serve as constraints to make the resulting networks more context-specific by filtering out nodes 

that are not in the input lists. In addition, we have implemented the ‘targeted node search’ function, 

which allows users to search for higher-order interactions for a selected node during the network 

visualization stage. The details will be described later in the corresponding section. 

Once interaction types are chosen and submitted for network building, a table will be displayed 

indicating the number of edges and nodes of the resulting networks to help users make decisions 

regarding whether to perform network filtering or proceed to network visualization. The purpose 

of network filtering is to reduce the network size by excluding less-informative nodes based on 

their topological properties, such as degrees or betweenness. Users can also compute and extract 

a minimum network that connects all current seed nodes. 

3.2.4 Network visual analytics 
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OmicsNet offers comprehensive options for network visualization, customization, topology 

analysis, and functional analysis. A screenshot of the Network Viewer page is shown in Figure 

3.2A. The top tool bar contains various menu items for network viewing and customization, the 

left panel displays node-related information, the center panel shows the network, and the right 

panel consists of various functions for enrichment analysis and network topology analysis. 
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Figure 3.2 Some screenshots of the Network Viewer showing the main features and different 

network layouts. (A) A force-directed subnetwork composed of ∼2000 nodes and ∼4000 edges. 

Seed nodes are indicated using halo effect, and nodes from two enriched pathways are highlighted 

in different colors. (B) A 2D perspective view of PPI subnetwork further enhanced with TFs and 

miRNAs targeting the key genes; (C) A spherical layout showing a module extracted from a large 

PPI network 
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Visual exploration through mouse controls 

OmicsNet allows users to intuitively navigate 3D network using a mouse or trackpad. The basic 

mouse controls are described below: 

• Zoom in/out: scroll the mouse wheel in the middle. Node labels will show up automatically 

based on the zoom levels; 

• Rotate the current view: press the left mouse button and drag. The network will stay in the 

center; 

• Obtain node information: move the mouse over a node to show its label; click a node to 

display more detailed information about the node in the ‘Current selections’ panel on the 

bottom right; 

• Drag and drop: in the 3D force-directed layout, users can directly drag a single node or a 

group of highlighted nodes depending on the current scope selection. In the 2D perspective 

mode, users can drag and drop individual layers using the grey triangle located at one 

corner of the layer. Node dragging is not yet supported at the moment in the spherical 

layout. 

• Other advanced options: users can right-click on a node to search for interaction partners 

for this particular node against several databases (targeted node search will be discussed 

later), or select two nodes (source and target) and search for shortest paths between them. 

Coloring 

Coloring is probably the most important factor for effective visualizations. OmicsNet provides 

three places for users to adjust the colors of their networks. The ‘Coloring Options’ panel on the 

top-left corner allow users to set the background color, as well as to customize the node colors for 

different molecular types. The ‘Node’ option on the top tool bar provides a comprehensive list of 
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coloring schemes based on different node topology measures or node expression values (if 

available). Some of the most commonly used functions are provided in the vertical toolbar located 

inside the network view. Located on the top is the color picker, which is used to set the current 

highlight color that will be applied in subsequent highlighting when users double click a node or 

click the halo icon (a circle with rays) to indicate the ‘seed’ nodes. 

Shading 

Shading is a unique feature in 3D visualization. When applied, the colors of a node surface will 

vary based on its angle and distance to the light source to produce more realistic 3D effects. To 

minimize memory load, the default network nodes are generated using premade texture mapped 

to point primitives to simulate 3D effect. OmicsNet supports six different shading options under 

the ‘Shading’ drop-down menu. Note the ‘Mesh-phong’ shading was implemented based on 3D 

mesh objects, which is more memory intensive thus only suitable for small and medium networks. 

For visualization of very large networks, it is recommended to turn off the shading effects for 

better performance. 

Node highlighting 

This is an important function to help bring out important nodes and connections. OmicsNet 

currently supports three options for node highlighting - mixed mode (default), halo effect and node 

color. In the default mixed mode, halo effect is used for node searching (when users click a node 

name in the node table), and for highlighting seed nodes (when users click the halo icon); while 

the node coloring is used for direct node highlighting (when user double click a node in the network) 

and for highlighting functions, modules, or shortest paths (when users click an item from the results 

of enrichment analysis, module detection, or shortest path finding). The highlighting color 
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(including the color for halo effect) is controlled by the color palette located on the top-left corner 

of the center panel. 

Network layout 

Network layout (arrangements of nodes) plays a critical role in revealing important patterns during 

network visualization. Unlike the 2D layout where numerous algorithms have been implemented, 

very few ready-to-use algorithms are available for 3D network layout. OmicsNet offers the 

standard 3D force-directed layout as default. We have also spent significant efforts to implement 

two other layouts - a multi-layered 2D perspective layout and a 3D spherical layout. These three 

layouts are described below. 

Force-directed layout. This algorithm was adapted from the standard 2D force-directed layout 

algorithm (37). It rearranges nodes in the current network using a physical model where all pairs 

of nodes repulse and adjacent nodes attract each other with edges acting as springs. It often results 

in an aesthetically pleasing graph with reasonable node distribution and clustering. An example is 

shown in Figure 3.2A. In some cases, the default force-directed layout in 3D may seem even more 

cluttered than the 2D view. There are several options to help partially resolve this issue including 

edge bundling, manual drag-and-drop of nodes to reduce overlap, decreasing edge opacity using 

the ‘Edge’ option in the top toolbar, or rotating the network to a different viewing angle. 

Multi-layered perspective layout. When networks contain more than one node type (i.e. bipartite 

or tripartite graphs), it is often more intuitive to apply a multi-layered layout that takes advantage 

of the best of both 2D and 3D. This layout, first introduced by Arena3D (127), separates the 

network into an array of 2D networks using existing context information (i.e. types of molecules). 

This arrangement can greatly reduce the number of edge-crossings and emphasizes the source data 
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type of each node. This feature is also available in iCAVE (130). An example is shown in Figure 

3.2B. Users can use their mouse to move each layer by dragging the grey triangle at one corner to 

improve the layout. The type of layer (grid, plane, or none) can also be specified using the 

corresponding option under the ‘More Options’ menu. 

Spherical layout. The spherical layout is inspired by flight paths around the globe, which is 

implemented by projecting a 2D force-directed network onto the surface of a sphere. This layout 

improves the visual experience in some cases by reducing visual occlusions and avoids information 

overload by showing only a part of the network. An example is shown in Figure 3.2C. Users can 

change both the color and opacity of the globe using the corresponding option under the ‘More 

Options’ menu. 

Functional and topology analysis 

OmicsNet supports functional enrichment analysis on genes displayed in the current network. It 

uses hypergeometric tests for over-representation analysis (140), and can be performed against 

GO, PANTHER GO-Slim, Reactome or KEGG pathways (135-138) . OmicsNet supports three 

network topology analyses including node centrality analysis, module detection, and shortest path 

finding. Five different node centrality measures can be computed (degree, betweenness, closeness, 

eigenvalue, and transitivity), with degree being the default. To view different centrality measures, 

users can use the ‘Topology’ option under the ‘View’ menu or the ‘Color’ option under the ‘Node’ 

menu. Module analysis aims to find subsets of nodes that are more closely connected than expected 

by chance. Three module detection algorithms are supported in OmicsNet including InfoMap (141), 

Walktrap (142) and Label Propagation (143). Finally, users can use the ‘Path Explorer’ panel to 

search for the shortest paths between any two nodes of interest. Users can either enter the 
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corresponding node IDs or right click the two nodes to define the source and target. Click a 

returned path will highlighted it in the current network. 

Targeted node search 

Due to practical reasons, the network creation interface does not allow users to introduce high-

order interaction partners in batches (i.e. for all nodes). To address this limitation, we added the 

‘Targeted node search’ to allow users to search higher-order interactions for a particular node 

displayed in the current network. To do this, users must right click a node of interest to show a 

drop-down menu containing different databases, then click to search a particular database. The 

detailed results will be displayed in the ‘Regulation Explorer’ panel on the right. Users can then 

use checkboxes to select one or more hits, and then click the ‘Add nodes’ button located directly 

above the result table. These new nodes will be added to the current network via connections to 

the target node. 

Other features 

The top menu bar contains most of the functions related to network viewing and customization. 

From the left side, the ‘Network’ menu allows users to access the other subnetworks created during 

network building; the ‘Layout’ menu contains the three different layout options; the ‘Shading’ 

menu allow users to select different shading effects or turn off the shading; the ‘Node’ and ‘Edge’ 

menus allow users to customize the node style (size, color and label) and edge style (opacity, color 

and bundling). Finally, the ‘More Options’ menu contains various advanced functions to customize 

the scope of selection for highlighting, dragging as highlighting styles. The network can be 

exported as a PNG image or graph files (.txt, .sif or .graphml) in the ‘Download’ menu. 
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4.3 Case study: Understanding complex immune regulations during helminth 

infection 

Parasitic nematodes (helminths) are known to employ a wide array of immunomodulatory 

mechanisms in order to maintain their long-time survival in the host (144). To better understand 

the effects of helminth infection, we recently performed a meta-analysis of multiple gene 

expression datasets from helminth-infected mice, and revealed a core signature of genes that are 

differentially expressed across multiple independent studies (17). It is of great interest to further 

identify potential regulators (i.e. miRNAs or TFs) involved in the host immune response. To 

achieve this, we first built a PPI network using the InnateDB database from the signature gene list 

that maximally connects all seed genes and then further included miRNA-gene and TF-gene 

regulatory relationships using the miRNet and TRRUST databases. From the 2D perspective view, 

Sp1 and mir-9-5p clearly stands out as the key regulatory hub nodes in the composite network. 

Literature search indicates that both molecules play important roles in the immune system. Sp1 is 

a transcription factor involved in the regulation of Il-10 (145), a key effector in regulatory T cell 

response that mediates helminth-mediated immunoregulation (146), while the miRNA-9 family is 

involved in the regulation of the immune response (147,148). More detailed step-by-step analysis 

together with screenshots are available as Tutorial #4 on the OmicsNet website. 

4.4 Implementation and tools comparison 

4.4.1 Implementation 

OmicsNet was developed using a server-client design. The server side was implemented using the 

PrimeFaces component library (version 6.1) for the web framework, and R (version 3.4.3) for 

back-end computing. The client side was implemented based on JavaScript using the Three.js 

library (https://threejs.org/) as an interface to WebGL. WebGL can take advantage of the GPU 
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acceleration by sending and executing code directly on the GPU to render graphics. This type of 

code is termed shader. To minimize the memory load and computational resources required, we 

used material rendered using low-level custom shader to represent nodes as opposed to memory 

intensive meshes. Additionally, to minimize the instances of time-consuming data passing to CPU, 

we store the geometry data of nodes and edges in buffers before sending them. Our empirical 

testing shows that OmicsNet can display large networks with ∼10,000 nodes. A key limiting factor 

in terms of performance is the high interactivity of the current implementation. Supporting features 

such as drag-and-drop and dynamic updating visual properties (color, size, etc.) of nodes/edges 

requires a large amount of event listeners which will negatively impact the performance in the 

cases of larger networks. We are developing a specialized version for 3D viewing only (zoom and 

rotate) that will allow visualization of up to one million nodes with same size and color. We intend 

to add this option in the near future. Meanwhile, we recommend users to keep network size 

between 200 and 2000 for practical reasons. OmicsNet also supports retina display by 

automatically adjusts the pixels of rendered networks depending on the user's screen resolution. 

Since most of the network visualization functions come from browser-side JavaScript functions, 

its performance is dependent on the user's browser and graphics card. The public server is hosted 

on a Google Cloud Engine with 30GB of RAM and eight virtual CPUs with 2.6 GHz each. 

OmicsNet has been tested in most major web browsers such as Chrome 50+, Firefox 47+, Safari 

10.1+ and Edge 12+ with WebGL enabled. 

4.4.2 Comparison with other tools 

OmicsNet is a 3D network visualization and integrative analysis tool containing a comprehensive 

built-in molecular interaction knowledge base that supports an array of different organisms. To the 

best of our knowledge, it is currently the only web-based application dedicated for visualizing 
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biological network in 3D space. Table 3.1 compares OmicsNet with several well-known stand-

alone tools that support 3D biological network visualization, including 3DScapeCS, BioLayout3D, 

Arena3D, and NAViGaTOR. Compared to these tools, OmicsNet distinguishes itself as being the 

only web-based tool with comprehensive built-in support for generation of different types of 

molecular interaction networks and a fully-featured 3D visualization system. 
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Table 3.1 Comparison of OmicsNet with other network visualization tools 

Tools  OmicsNet  NetworkAnalyst  BioLayout3D  Arena3D  NAViGaTOR

  

  

Platform   Web  Web  Standalone  Standalone

  

Standalone  

Inputs  One or 

more lists of 

genes, proteins, 

TFs, miRNAs, 

metabolites; Or 

graph files 

(.sif, graphml)  

List of genes, 

expression matrix  

List of 

genes, Multiple 

graph 

files, expressio

n matrix  

Multiple 

graph files; 

time-series 

data  

List of 

genes, multipl

e graph files  

Network Construction and Integration  

Built-in 

database support  

Yes   Yes  Yes  -   Yes   

Network integration

  

Up to three types 

of interactions  

-  -  -  -  

Network Visualization and Analysis  

3D visualization  Yes  -  Yes  Yes  Yes  

2D 

perspective layout  

Yes  -  -  Yes  -  

Spherical layout  Yes  -  -  -  -  

Node drag-drop  Yes  Yes  2D only  -  Yes  

Enrichment 

Analysis  

GO, 

KEGG, Reactome

, PANTHER    

GO, 

KEGG, Reactome

  

-  -  -  

Module Detection  Yes  Yes  -  -  -  

The URL for each tool is given below the table (note, evaluation for 3DScapeCS is based on 

functions offered by the plug-in itself). 

• OmicsNet: http://omicsnet.ca/. 

• 3DScapeCS: http://scape3d.sourceforge.net/. 

• BioLayout3D: https://kajeka.com/graphia-professional/. 

• Arena3D: http://arena3d.org/. 

http://omicsnet.ca/
http://scape3d.sourceforge.net/
https://kajeka.com/graphia-professional/
http://arena3d.org/
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• NAViGaTOR: http://ophid.utoronto.ca/navigator/. 

4.5 Conclusion 

Current limitations and future perspectives 

While the standard 3D visualization increases the viewing space and provides greater freedom in 

navigation, new issues are introduced such as edge occlusion and lack of perceptual reproducibility 

due to excessive numbers of viewing perspectives. To address these issues, we have implemented 

two enhanced layout options by dividing the nodes into multiple layers based on node types (the 

multi-layered perspective view), and by projecting the network on a globe's surface to mask 

network complexity while maintaining connectivity and ease of navigation (the sphere view). To 

further reduce edge occlusion, we implemented a force-directed edge bundling. In the future, we 

will implement additional network layouts and editing options to improve both the performance 

and visualization experience. Meanwhile, we also intend to increase its interoperability with 

community network visualization tools such as Cytoscape (36) and Gephi (128). At the moment, 

OmicsNet does not support directed or weighted edges, both features are important for many 

biological network visualization and interpretation. This will be our focus in the next updates. 

Other features to be added is the support of time-series, dynamic networks and general 

functionalities to perform differential network analysis. Indeed, as tremendous progresses have 

been made in the field of personalized medicine, there is an increasing need in the processing and 

visualization of -omics data from a single source over a period of time (149). This remains a huge 

challenge in the field and novel features such as integrating animation and other additional 

dimensions could facilitate its visualization and analysis (150). Another extension of the current 

work is to explore the effects of virtual reality (VR) through browsers using the WebVR API. This 

is already achievable with either Firefox or Chrome using a VR device such as the Oculus Rift. 

http://ophid.utoronto.ca/navigator/
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Conclusion 

Driven by the growing numbers of studies on multi-omics data integration and systems biology, 

there are strong demands for user-friendly web-based tools to allow researchers to easily create, 

integrate and visualize different types of biological networks. To address this need, we have 

developed OmicsNet to support intuitive network construction from a single or multiple lists of 

molecules. To facilitate data visualization experience, OmicsNet leverages the powerful WebGL 

technology to enable native 3D rendering of complex biological networks within modern web 

browsers. Three graph layouts have been implemented to provide different perspectives of the 

same network. The interface allows users to easily customize their visualizations through coloring, 

shading, highlighting, drag-and-drop, etc. In addition, users can also perform targeted node search, 

functional enrichment analysis, module detection, and shortest path computing. OmicsNet 

therefore fills an important gap by providing an easy-to-use web-based tool for 3D network visual 

analytics. 
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Preface to Chapter 4 

Chapter 4 presents OmicsAnalyst, a visual analytics platform focusing on data-driven multi-omics 

integration. The platform offers three different integrative tracks: correlation network analysis, 

heatmap clustering analysis and dimension reduction analysis. Correlation network analysis aims 

to identify correlative relationships between features across two omics layers by using both 

univariate and multivariate methods. The result is visualized using interactive 2D/3D network. 

Heatmap clustering analysis uses cutting-edge multi-view clustering method coupled with dual-

heatmap viewer. Finally, the last track couples dimension reduction methods with interactive 

visualization of score plots, loading plots and biplots in 3D space. Please refer to the following 

links for a video showcasing dimensionality reduction analysis (https://youtu.be/3_no0nCH2uE) 

and joint heatmap visualization (https://youtu.be/DWoeL1y9FHU). 
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4.1 Introduction 

The rapid development and increasing accessibility of various omics profiling technologies such 

as massive parallel sequencing and mass spectrometry have made multi-omics data collection 

more routine practices in recent years. These multi-omics studies promise to provide more holistic 

pictures to enable comprehensive understanding of complex diseases and biological processes 

(13,151). As a result, the last few years have witnessed a growing number of bioinformatics tools 

and statistical methods developed for multi-omics integration (21,81). These computational 

approaches can be largely classified as either knowledge-driven or data-driven strategies. The 

knowledge-driven strategy is well established. A typical example is to map genes and metabolites 

of interest into known metabolic pathways or networks and then visually explore the results for 

hypothesis generation (152-154). A key limitation of this strategy is its dependency on a prior 

knowledge base. Data analysis and interpretation will be conducted within the confines of this 

knowledge domain, making it unsuitable for novel discoveries and applications to non-model 

organisms. The data-driven strategy, on the other hand, depends primarily on the datasets 

themselves, and can be applied in a more general and unbiased manner (155). 

Many different data-driven approaches have been proposed and practiced for multi-omics 

integration. They can be loosely put into three categories based on their main themes, including 

(i) Feature correlation analysis -this theme aims to identify features that are correlated across 

different omics layers and/or co-vary under the conditions of interest. These correlated features 

provide more detailed delineations of underlying biological processes than those obtained from a 

single omics layer; (ii) Sample clustering analysis -this theme aims to leverage multiple molecular 

profiles to improve sample characterization, such as to identify subsets of cancer patients for more 

targeted treatments (156); (iii) Understanding global structure -this theme aims to gain a high-
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level overview of multi-omics data by extracting and examining their shared structural variations 

and local patterns. Compared to the knowledge-driven strategy where many user-friendly tools are 

available, most data-driven methods are in the form of complex multivariate statistics or machine 

learning algorithms, available mainly in the form of command line programs (78,83,157-159). For 

most researchers, they are harder to use, and the results are harder to interpret. User-friendly 

bioinformatics tools supporting data-driven strategy are urgently needed to help convert the 

complex multi-omics data into meaningful patterns and insights. 

Here, we introduce OmicsAnalyst, a web-based visual analytics platform dedicated for data-driven 

multi-omics integration. It currently supports more than a dozen well-established methods through 

three visual analytics tracks - correlation network analysis, cluster heatmap analysis, and 

dimension reduction analysis. These three visualization tracks are equipped with comprehensive 

functions and menus to allow users to perform parameter customization, visual exploration and 

interactive analysis. To help users navigate the tool, we have compiled a comprehensive list of 

frequently asked questions (FAQs), four different screenshot tutorials, and a case study. The main 

features of OmicsAnalyst are described below. 

4.2 Overview of OmicsAnalyst 

The workflow of OmicsAnalyst is shown in Figure 4.1. It consists of three main phases to help 

users to navigate the complex procedures of multi-omics analysis. In the Phase 1 (data processing), 

users go through the conventional single omics data analysis workflow including data upload, 

annotation, missing value estimation, data filtering, and identification of significant features. After 

basic quality check and optional data normalization for multi-omics integration, users enter the 

Phase 2 (method selection). OmicsAnalyst offers a wide array of approaches organized under three 

categories: correlation network analysis, cluster heatmap analysis, and dimension reduction 
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analysis. After method selection, users are presented with an overview and diagnostic plots to 

decide whether the default parameters (if any) should be updated. Finally, users enter the Phase 3 

(visual analytics) and explore the results through interactive visualization coupled with various 

statistical and functional analysis. 

 

Figure 4.1 Overall workflow of OmicsAnalyst. Multi-omics integration is divided into three main 

phases - data processing, method selection and visual analytics. Each phase contains multiple steps 

and options to allow comprehensive analysis and customization. 

4.2.1 Data processing 

Data upload and annotation 

OmicsAnalyst accepts data tables containing feature abundance values (raw or normalized) 

generated from different omics platforms. They must share the same sample names and metadata 

information. For data from human and mouse, users can further perform feature annotation for 

transcriptomics, proteomics, metabolomics and miRNA. The annotation is required for enrichment 

analysis in the visual analytics stage. Missing value estimation. Omics data often contain missing 
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values which could cause potential issues in downstream analysis. Users can exclude features with 

too many missing values or perform missing value estimation based on several widely used 

methods. Data filtering. Given the high-dimensional nature of omics data, it is strongly 

recommended to perform unspecific data filtering to exclude features that are unlikely to be useful 

in downstream analysis. In particular, features that are relatively consistent can be safely excluded 

based on their inter-quantile ranges (IQRs) or other variance measures. Features that are of very 

low abundance should also be excluded, as they contribute little to the overall variance-covariance 

structure in multi-omics integration. Differential analysis. Users can perform conventional 

statistical comparisons to identify significant features within individual omics data. These features 

will be available for correlation network creation or highlighted in heatmaps or scatter 

plots. Quality checking and normalization/scaling. The goal is to make different omics data more 

‘integrable’ by sharing similar distributions. Users can visually examine the distribution of 

individual omics data through density plot, principal component analysis (PCA) plot, and t-

distributed stochastic neighbor embedding (t-SNE) plot. Based on the visual assessment, users can 

choose among a variety of data transformation, centering and scaling options to improve the 

integrability. 

4.2.2 Correlation network analysis track 

The objective of the correlation network analysis is to identify and visualize relationships between 

key features from two omics datasets. It consists of three main steps, detailed below. 

Network creation 

This step involves selecting the key features and computing their pairwise correlations. By default, 

significant features identified by differential analysis during the data processing phase will be used 

for network creation. However, users can also select top features based on the loading scores from 
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the multivariate dimension reduction methods. Details on the dimension reduction techniques can 

be found in the ‘Dimension Reduction Analysis Track’ section. The next step is to compute 

pairwise similarities between selected features. Due to their simplicity and widespread familiarity, 

univariate methods, such as Pearson correlation, are usually computed as a first line of analysis. 

However, these methods can produce many false connections due to presence of highly collinear 

features in omics data. Partial correlation, a multivariate method that measures the correlation 

between two variables while controlling for all others, has been successfully applied to omics data 

to detect connections between features that are more likely to represent true dependencies (160). 

Network customization 

Networks with a large number of nodes and edges are too complex and overwhelming for 

visualization and interpretation. OmicsAnalyst partially addresses this issue by allowing users to 

control network sizes based on the strengths of correlations. However, applying a single threshold 

can often produce networks with the majority of edges existing between nodes of the same omics 

type. This is because in many cases, correlations between features of the same omics type are 

categorically higher than those of different omics types, likely due to technical differences between 

platforms. To address this issue, OmicsAnalyst offers two filters to control correlation strengths, 

one for within-omics and the other for between-omics, with a more stringent default threshold for 

the former. In addition, users can also apply degree or betweenness filters to control network size 

based purely on the topological properties of the nodes. 

Network visual analytics 

In addition to providing different filters to allow users to refine the nodes and edges that comprise 

the network, OmicsAnalyst offers a variety of simple and advanced functions to facilitate visual 

identification of important network structures. For instance, binary edge coloring is used to 
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differentiate positive and negative correlations, and edge thickness is used to reflect strengths of 

the correlation to enable quick identification of feature pairs that are highly correlated. 

OmicsAnalyst also offers 3D network visualization for a deeper perspective of the relationships. 

Advanced graph layout algorithms, for example edge bundling can be applied to aggregate similar 

edges into groups to reduce clutter in visualization. Other features such as the concentric circular 

layout facilitate the evaluation of focal nodes and hierarchical relationships within network. When 

features are annotated during data processing, users can perform enrichment analysis on a group 

of nodes selected either manually or through automatic module detection algorithms. 

4.2.3 Cluster heatmap analysis track 

The objective of the track is to identify and visually explore relationships between samples and 

key features in side-by-side heatmaps, each displaying data from one omics type. It consists of two 

main steps, detailed below. 

Sample cluster detection 

In multi-omics data, each omics type is a separate representation of the same samples, making it 

suitable for multi-view clustering (81). One main advantage of multi-view clustering is that it tends 

to reduce spurious correlations that are due to random noise or platform-specific technical artifacts, 

as it is highly unlikely that exact same erroneous effects are present across multiple datasets. 

OmicsAnalyst currently supports three multi-view clustering algorithms: spectral clustering (159), 

perturbation-based clustering (161) and similarity network fusion (83). The distinguishing features 

of these three methods are as follows. Spectral clustering makes use of eigenvalues derived from 

a similarity matrix to perform clustering based on fewer dimensions, which greatly increases the 

speed (162). OmicsAnalyst employs the Spectrum R package, which combines the advantages of 

spectral clustering with several other advanced techniques (159). Perturbation clustering assumes 
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that reliable clusters are robust to small alterations to the data (81). OmicsAnalyst uses the 

perturbation clustering for data integration and disease subtyping (PINSplus) R package to support 

this approach (161). The similar network fusion (SNF) method involves fusing individual sample 

similarity matrices together using a rapid nearest neighbour approach (83). Since the 

associated SNFtool package does not support cluster detection, the spectral clustering is applied to 

the learned status matrix for this purpose. 

Heatmap visual analytics 

The results of clustering analysis can be intuitively explored via heatmaps, which use visual cues 

to show how samples are clustered and how feature abundances vary across samples. 

OmicsAnalyst implements an interactive joint-heatmap viewer where two different omics datasets 

can be visualized and analyzed simultaneously. The interactive visualization was implemented 

based on the INVEX heatmap viewer (59). It is organized into two main views consisting of an 

overview and a focus view for each omics data. The overview heatmap displays the overall 

abundance patterns for all features. Users can click-and-drag to select a region of interest to be 

displayed in the focus view for a more detailed inspection. The annotation bars along the top 

indicate the original group memberships as well as the cluster memberships based on the selected 

multi-view clustering algorithm. Similar to the correlation network analysis, users can perform 

enrichment analysis on the features displayed in the focus view for each omics type, when features 

are annotated during data processing. 

4.2.4 Dimension reduction analysis track 

The objective of this track is to perform dimension reduction, and then visually explore 

corresponding scores, loadings and biplots in interactive 3D scatter plots to understand high-level 

trends and associated key features. It consists of two main steps, detailed below. 
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Multi-omics dimension reduction 

Many standard multivariate dimension reduction techniques do not perform well on multi-omics 

datasets, which typically have many more features than observations (p >> n) and a multicollinear 

structure. Multivariate regression, the foundation of many multivariate dimension reduction 

techniques, performs poorly in these cases and so special care has been taken to develop more 

robust techniques for multi-omics data integration (163-165). OmicsAnalyst provides five 

different methods including multiple co-inertia analysis (MCIA), consensus PCA (CPCA), 

projection to latent structures (PLS), Procrustes analysis, and data integration analysis for 

biomarker discovery using latent components (DIABLO) (76,78,157,166). In general, these 

algorithms aim to identify sets of components that capture maximum variance within individual 

datasets and maximum association across datasets. They can be distinguished by individual 

optimization and constraint criteria used to identify component sets across the omics datasets. 

More detailed information and comparisons on these methods are provided in our FAQs under the 

‘Dimension Reduction Analysis’ tab. 

Visual analytics based on 3D scatter plots 

OmicsAnalyst offers an interactive 3D scatter plot viewer that can display sample space (score 

plot), feature space (loading plot), as well as a ‘merged’ space (biplot) that overlays sample and 

feature spaces in the same plot to showcase contributions of key feature to the overall patterns. 

The 3D scatter plot viewer is divided into four different sections. The left panel contains a top 

section (‘Settings’) for controlling the overall visual environment of the scatter plots. The middle 

section (‘Overall Pattern’) allows users to change the grouping of nodes based on different 

metadata or clustering analysis. It offers extensive options such as colors, shapes, and highlighting 

effects for group visualization. The bottom section displays information related to the current 
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selections. The main scatter plot viewer in the center displays the current view - score plot, loading 

plot or biplot which allow users to specify features of interest to be shown as arrows on top of 

sample space. Users can also overlay different metadata groups as ellipsoids on top of the feature 

space. The right panel is divided into top (‘Comparison Test’) and bottom (‘Enrichment Analysis’) 

sections to allow users to perform targeted statistical and functional analysis on the current selected 

groups or clusters, respectively. Click a row of the result tables, the corresponding feature(s) will 

be displayed as arrows in the current score plot. 

4.3 Case study: multi-omics analysis of human pregnancy 

To facilitate users to explore different features of OmicsAnalyst, three example multi-omics 

datasets have been provided including one from the Cancer Genome Atlas 

(TCGA, https://www.cancer.gov/tcga), one from the STATegra (167) and one from a recent multi-

omics study on human pregnancy (168). Here, we provide a case study using the proteomics and 

metabolomics datasets from the pregnancy study. 

Various physiological systems are known to change predictably throughout pregnancy (169). This 

study was conducted to collect comprehensive molecular data (repeated samples from the first 

three trimesters and 6 weeks postpartum for baseline levels; n = 17 women) to build a predictive 

model for gestational age (168). Here, we re-analyze the proteomics and metabolomics data sets 

as a case study. Differential analysis was performed using ANOVA/t-tests with thresholds chosen 

to give ∼30% significant features (|log2FC| > 1; adjusted P-value < 0.005), and datasets were auto-

scaled before integration. All three visual analytics tracks were used to gain complementary 

perspectives of the data. First, we used the ‘Free Exploration’ mode of the Heatmap Visual 

Analytics track to understand patterns present in individual omics. While the baseline samples 

form a weak cluster, samples from the three trimesters are very mixed. Next, we computed the 

https://www.cancer.gov/tcga
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multidimensional components that best separated the sample groups using DIABLO and explored 

the results with 3D scatter plots. The global structure confirms what we expect, with baseline 

samples well distinguished from those collected during pregnancy, and samples collected during 

later trimesters located further away from the baseline (Figure 4.2A). The biplot overlays the 

sample space with the top features that most contribute to the separation (Figure 4.2B), in this case 

highlighting several proteins and metabolites that are consistent with the biology of pregnancy. 

Three out of the five top metabolites are associated with hormones that are elevated during 

pregnancy (thyroxine, pregnanediol-3-glucuronide, and cortisol). One of the top proteins 

(ADAM12) is a serum marker for pregnancy, two (GDF15 and GPC3) are encoded by genes that 

have high expression in placenta relative to other tissues, and one is angiotensin (AGT), a hormone 

known to be elevated during pregnancy (170). All feature arrows point in the same direction, 

except for the DL-2-aminooctinoic acid metabolite. Finally, we used correlation networks to 

visualize relationships between key features from the top three DIABLO components. The network 

has a central cluster of proteins that are positively correlated with the proteins and metabolites on 

the left, and negatively correlated with the metabolites on the right (Figure 4.2C). Inspecting 

several individual features shows that the structure is consistent with Figure 4.2B: the central 

proteins and positively correlated metabolites contain many of the previously highlighted biplot 

features (ADAM12, Cortisol, Sunitinib, and Pregnanediol-3-glucuronide) while one of the 

negatively correlated metabolites is DL-2-aminooctinoic acid, the lone biplot feature that pointed 

in the opposite direction. Network module analysis with the ‘WalkTrap’ algorithm resulted in three 

modules, all of which contained both proteins and metabolites (Figure 4.2D). The blue module 

was statistically significant, and enrichment analysis revealed that it is significantly enriched for 

the Reactome pathway ‘Regulation of Insulin-like Growth Factor (IGF) transport and uptake by 
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Insulin-like Growth Factor Binding Proteins (IGFBPs)’. IGF is known to be elevated during 

pregnancy (171). This case study has illustrated the improved insights and rich biological context 

when multi-omics data and visual analytics are used together. More details and figures from the 

case study are available from the ‘Tutorial’ page (under the ‘Case Study’ tab) of OmicsAnalyst. 
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Figure 4.2 Example outputs from the case study. Dimension reduction was performed with 

DIABLO and results visualized with (A) 3D scatter plot of score plot, and (B) 3D biplot with 

elliptical summaries of sample groups (red = baseline, green = first trimester, dark blue = second 

trimester, light blue = third trimester) and the contributions of top five differentially expressed 

proteins and metabolites (red arrows). Correlation networks of features selected from the top three 

DIABLO components in (C) concentric circular layout, and (D) linear bipartite/tripartite layout, 

with modules detected by the ‘WalkTrap’ algorithm. 



 

96 

 

4.4 Implementation 

OmicsAnalyst was implemented based on JavaServer Faces (JSF) using the PrimeFaces (v10.0) 

library (http://primefaces.org/) and R (version 4.0.2). The visual analytics methods have been 

developed based on several JavaScript libraries including sigma.js (http://sigmajs.org) for 2D 

network visualization, and three.js (https://threejs.org) for 3D network and scatter plot 

visualization. The system is hosted on a Google Cloud n1-highmem-8 instance (64 GB RAM and 

eight virtual CPUs with 2.6 GHz each). 

Comparison with other web-based tools 

Table 4.1 shows the comparisons between OmicsAnalyst and three other web-based tools 

dedicated for multi-omics integration and analysis, including 3Omics (37), MiBiOmics (172) and 

OmicsNet (154). The 3Omics supports analysis of transcriptomics, proteomics and metabolomics 

data from human. It includes modules for correlation analysis, co-expression profiling, phenotype 

mapping and functional enrichment analysis. MiBiOmics tackles multi-omics integration through 

correlation analysis using WGCNA-based approach and dimension reduction analysis using 

MCIA and Procrustes analysis. Finally, OmicsNet uses a priori interaction information to 

construct multi-omics networks for genes, proteins, metabolites, miRNA, and transcription factors. 

The resulting network is interactively visualized in 3D space. OmicsAnalyst distinguishes itself 

by bringing together multivariate, data-driven feature selection and integration with innovative 

visual analytics for unbiased exploration and interrogation of complex multi-omics datasets. 

 

http://primefaces.org/
http://sigmajs.org/
https://threejs.org/
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Table 4.1 Comparison of OmicsAnalyst with other web-based tools. Symbols used for feature 

evaluations with ‘√’ for present, ‘-’ for absent and ‘+’ for a more quantitative 

assessment (more ‘+’ indicating better support). The URLs for each tool are given below. 

 OmicsAnalyst 3Omics MiBiOmics OmicsNet 

Input format Matrix List, matrix Matrix List 

Data processing 

Annotation +++    +++ - +++ 

Filtering +++ - + - 

Normalization +++ - + - 

Scaling +++ - + - 

Differential expression +++ - - - 

Integration methods 

Univariate correlation ✓ ✓ ✓ - 

Partial correlation ✓ - - - 

Similarity network fusion ✓ - - - 

Spectral clustering ✓ - - - 

Perturbation-based clustering ✓ - - - 

MCIA ✓ - ✓ - 

CPCA ✓ - - - 

Procrustes ✓ - ✓ - 

PLS ✓ - - - 

DIABLO ✓ - - - 

Visual analytics 

Scatter plot +++ - + - 

Heatmap +++ ++ ++ - 

Network +++ - ++ +++ 

Contextual enrichment analysis 

Metabolite sets ++ ++ - ++ 

Gene sets ++ ++ - ++ 

miRNA sets ++ - - - 

• OmicsAnalyst: https://www.omicsanalyst.ca/ 

• 3Omics: https://3omics.cmdm.tw/ 

• MiBiOmics: https://shiny-bird.univ-nantes.fr/app/Mibiomics 

• OmicsNet: https://www.omicsnet.ca/ 

https://www.omicsanalyst.ca/
https://3omics.cmdm.tw/
https://shiny-bird.univ-nantes.fr/app/Mibiomics
https://www.omicsnet.ca/
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4.5 Conclusion 

The motivation for OmicsAnalyst was to create an intuitive, web-based platform for multi-omics 

integration that allows researchers to fuse statistical and visual streams of evidence together to 

make more informed judgements. In particular, we implemented three distinct visual analytics 

tracks - feature correlation analysis coupled with networks, sample clustering analysis coupled 

with heatmaps, and dimension reduction analysis coupled with 3D scatter plots. In doing so, 

OmicsAnalyst enables users to dissect large and complex multi-omics datasets by facilitating 

pattern recognition and cognitive reasoning through powerful yet intuitive visual analytics. 
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Chapter 5: Conclusion and Future Works 

Omics data analysis has become essential in biomedical science for both basic research and clinical 

practices. Integrative analysis using data from multiple omics layers facilitates the understanding 

of interplays between biological entities to gain novel insights into the etiology and pathogenesis 

of complex diseases. However, bioinformatics tools for multi-omics data analysis are lacking and 

inaccessible to average researcher without programming knowledge. There is an urgent demand 

for development of new tools and methods coupled with easy-to-use interface to facilitate 

hypothesis generation and knowledge discovery from multi-omics data.  

This thesis aims to develop bioinformatics tools to overcome some of the challenges associated 

with omics data analysis. Throughout my thesis, one of the main themes is to extend static results 

from existing methods with interactive visualization to enable iterative and conversational analytic 

processes. Three specific tasks were achieved in this thesis: 

Aim 1 Developing web-based visual analytics platform to address functional 

profiling, network integration and meta-analysis of transcriptomics data. 

Aim 2  Developing web-based platform for multi-omics network integration and 

3D visualization. 

Aim 3 Developing web-based visual analytics platform to enable data-driven 

integration of multi-omics datasets. 

Chapter 2 presents the version 3.0 of NetworkAnalyst, a comprehensive web-based visual 

analytics platform designed to perform functional profiling of transcriptomics data. In the new 

update, I have expanded the molecular interaction beyond generic protein-protein interaction with 

the addition of gene regulatory network, protein-chemical and protein-drug interactions. 
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Additionally, I have collected protein-protein interaction data with more refined context such as 

tissue-specific and cell-specific PPI data. Another addition is enrichment network which allows 

users to quickly assess the relationships between enriched terms and corresponding genes. This 

update also added support for multi-list comparisons through heatmap, Venn diagram and chord 

diagram visual analytics. This addresses an unmet need for intuitive and flexible bioinformatics 

tools for performing meta-analysis of multiple gene lists. 

Chapter 3 presents OmicsNet, a web-based visual analytics platform, which enables network-

based multi-omics integration and 3D network visualization. This tool allows researchers to map 

their lists of genes, proteins, transcription factors, miRNA and metabolites within context of 

current knowledge framework of molecular interactions. OmicsNet also offers network 

visualization in 3D space to address the issue of hairball effect associated with large and complex 

networks. The network viewer seamlessly integrates visualization and functional analysis. 

OmicsNet also proposes a module-based analysis approach which aims to facilitate biological 

interpretation of complex networks. It aims to simplify the network into a series of graph modules 

and focus on interpreting the individual modules. 

Chapter 4 proposes OmicsAnalyst, a web-based visual analytics platform dedicated for data-

driven multi-omics integration. As a tool primarily designed for exploratory data analysis, it offers 

three analytics tracks allowing researchers to explore different facets of their multi-omics datasets 

via correlation network, heatmap clustering and dimension reduction analysis to facilitate 

hypothesis generation. To explore results from dimension reduction methods, OmicsAnalyst 

proposes an innovative 3D scatter plot viewer that enables users to effectively explore and analyze 

their datasets. The scatter plot viewer is supported by a set of functions that allows users to perform 

in-depth and targeted analysis of their multi-omics datasets.  
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More generally, the projects described in this thesis have addressed several important challenges 

in current omics data analysis: 

• Most bioinformatics tools for omics data analysis and integration are command line based 

and require users to have some degree of programming knowledge. Additionally, they tend 

to be designed for more specific tasks and have limited outreach. This leads to a gap 

between bioinformatics analysis and average life science researchers. In this dissertation, 

all the projects are web-based platforms integrating multiple approaches otherwise harder 

to access, they aim to be intuitive and easily accessible by a larger audience, from bench 

researchers to clinicians. They offer user-friendly graphical user interface to lower the 

barrier of entry to omics data analysis.  

• Data interpretation is currently the bottleneck in omics data analysis. In contrast to the 

“black-box” models seen in machine learning, my focus is to implement interpretable and 

intuitive data analysis process complemented with visual analytics. Throughout the 

different projects, I always attempt to create engaging analytical process with interactive 

visualization to help users make sense of their data using cognitive reasoning and domain 

knowledge. 

• Reproducibility remains an important issue in life science. To alleviate this problem, 

NetworkAnalyst has implemented a project management system to allow users to save the 

progress of their analysis and resume later. Additionally, sharable links can be created on 

visual analytics page to foster collaborations and sharing results between researchers. 

• “Hairball effect” plagues network visualization and reduces its effectiveness in exploratory 

data analysis. Throughout the thesis, several features were implemented to address this 

issue.  
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o In NetworkAnalyst, the use of meta-nodes was added to simplify networks with 

hierarchical structure such as enrichment network. Meta-nodes can be expanded on 

node click events to show genes associated with functional terms in an enrichment 

network.  

o Edge bundling has been implemented to alleviate the visual occlusion issue 

associated with large quantities of edge crossings in both 2D and 3D networks. In 

edge bundling, similar edges are deformed and grouped together. The procedure 

also highlights connection patterns within the network. 

o Using different network layouts in 2D and 3D help understand different aspects of 

complex networks. For instance, concentric circular layout, first implemented in 

NetworkAnalyst, enables rapid assessment of how one focal node relates to the rest 

of the network in terms of shortest path lengths. In OmicsNet, multi-layered layout 

in 3D facilitates the visualization of multi-omics networks by layering nodes from 

each omics separately.  

• Network visualization in 3D space is not well supported in the web. Visualizing networks 

in 3D space provides additional visual perspectives and layout space. This may facilitate 

the interpretation of biological networks depending on the user preferences and/or the 

layout used. For instance, layered layout excels in displaying networks with hierarchical 

structure such as multi-omics network. I believe it is beneficial to provide such option for 

researchers. OmicsNet facilitates access to 3D-based network visual analytics of biological 

networks. 

• In dimension reduction analysis, linking features to sample separation requires the use of 

biplots. Additionally, these biplots can be used to assess how features correlate with each 
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other. OmicsAnalyst has implemented interactive and intuitive biplot functionalities in its 

3D-based scatter plot visual analytics. 

There remains much room for future research in omics data analysis. In the following section, I 

list some future directions for the tools described in this thesis. 

• Time series analysis. Current omics studies mainly involve snapshot omics datasets. This 

approach has significant limitations in their scope due to different time scales of change 

associated with different omics layers. Although single data point omics can be used to 

identify correlations between omics layers at steady state, it cannot be used for studying 

causative and mechanistic aspects of the system. For instance, when integrating 

transcriptomics and metabolomics datasets, it is known that changes in metabolic 

concentrations will occur after transcriptional changes. Therefore, capturing time course of 

samples from each omics type is better suited to study the dynamic behavior and regulatory 

relationships of cellular constituents.  

 

In time series approach, data points are collected successively at a pace that is usually 

equally spaced in time between each of them. Classical statistical approaches are often 

unsuitable for the analysis of time series data due to some specific characteristics to time 

series data including low number of replicates, importance of sample synchronization and 

uneven sampling due to missing data (173). With the advent of high throughput and single-

cell sequencing technologies, time series studies will become more and more prevalent. 

There is a high demand for bioinformatics tools to explore and analyze time series data, 

especially in the context of joint analysis of multiple omics layers (174,175). Appropriate 
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visual analytics will greatly help in the tasks of exploring and understanding this type of 

data. 

 

• Network analysis. Rarely does a biomolecule act alone and most biological processes are 

mediated by cellular components interacting with other cellular components. Network is a 

useful framework to understand the molecular context of biological molecules and it is the 

key to understand how they contribute to phenotypes (176). Although biological networks 

can be come extremely complex, graph theory comes in handy in deriving information 

from them. In this thesis, there is a need to complement the visual analytics with more 

advanced network mining algorithms.  

 

The first challenge is to address the problem of visualizing large network (more than ten 

thousand nodes). The approaches proposed throughout this thesis mainly center on 

trimming network size, but it can cause bias and may not be desirable in cases where 

analysis needs to be performed on the whole interactome. Additional efforts need to be 

spent on implementing visual analytics solutions able to handle interactive visualization of 

large networks and proposing effective visualization techniques to interpret the data. There 

exists multiple stand-alone applications supporting up to millions of nodes and edges 

(128,177) but web-based implementation presents inherent challenges due to limited 

access to the computing resource of the operating system (i.e. max of 2G memory for most 

laptop browsers).  
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This thesis mainly focuses on active subnetwork approach where the objective is to identify 

a subnetwork enriched with biomolecules of interest, which is key to understand the 

molecular basis of diseases or phenotypes. There are many other approaches that can be 

used to investigate their biological roles and molecular context. For instance, diffusion-

based approaches aim to identify pathways closest to these biomolecules. This type of 

algorithm uses random walks starting from biomolecules of interest and diffuse along the 

edges to visit the rest of the network with equal probability. The closest nodes and edges 

will be visited more often by the random walkers. This is useful in prioritizing nodes and 

interactions based on network proximity to biomolecules of interest (68).  

 

• Additional omics data types and clinical data. The tools described in this thesis are 

restricted to transcriptomics, miRNA, proteomics, metabolomics, and microbiome data. 

The next step is to extend support to single nucleotide polymorphism and epigenomics data 

to enable a more complete genotype-phenotype integrative approach. Additionally, with 

the rise of precision medicine, clinical data has become another layer to be considered. 

Integrating phenotypic and clinical information or metadata in general with omics data 

remains an active research topic (178,179). There is a clear need for bioinformatics tools 

that can address omics and non-omics (such as phenomics data)integration.  

 

In addition to data complexity and heterogeneity that also plague omics data, non-omics 

data especially suffers from lack of uniformity and standardization: a same descriptor can 

take form of both quantitative and qualitative variables to characterize the same samples 

depending on the study. The subjective nature of such data can also severely limit their 
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integration with omics data. Moreover, the relationship between omics and non-omics data 

can also be problematic. Ascertainment bias in case-control studies can also result in 

unwanted correlations between omics and non-omics data. For instance, DNA methylation 

measurements may be associated with age and gender (180). Additionally, extra care needs 

to be taken to address collinearity and redundancy between metadata themselves to avoid 

statistical missteps. 

 

• Support virtual reality (VR) based visual analytics. Shifting from standard computer 

screens to virtual reality will provide an alternative environment for data analysis that may 

be more intuitive, immersive, and interactive for users. Current visual analytics mainly 

consists of multiple isolated “point-and-click” interfaces that leads to a fragmented analytic 

experience. In recent years, extending visual analytics to VR-related technology, also 

referred as immersive analytics, has become an active research area. In a paper by Chandler 

et al., the authors defined the term immersive analytics as investigating how new 

interaction and display technologies can be used to support analytical reasoning and 

decision-making (181). VR promotes an integrated and linked multi-view environment 

with a unifying graphical interface. Most importantly, VR provides stereoscopic 

visualization to create immersive environment (182). Furthermore, VR can support 

multimodal interaction interface in which multiple senses are involved including haptic 

input and olfactory feedback.  

 

Recent progress in VR and graphics processing technologies have significantly lowered 

the entry barrier to virtual reality access and increased its market share. The global market 
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of VR has increased by 42.2% from US$1.03 billion to US$1.47 billion in 2020 (183). 

Additionally, WebVR technology and frameworks such as A-frame and Unity has greatly 

facilitated the development of browser-based VR experience (184-186). The 3D-based 

visual analytics systems described in the thesis translate well in VR environment. In 

NetworkAnalyst, I have implemented a prototype version of VR-based network 

visualization. 

 

• Artificial intelligence and machine learning. With the age of big data, artificial intelligence 

(AI) and machine learning (ML) are key to address the complexity of omics data. ML 

algorithms excel in predictive modeling and, more and more, they are being used to 

understand the underlying mechanisms of biological processes (187). With the rapid 

advancement in computational speed, capacity, and software programming, it is a matter 

of time that ML and AI will supplement traditional regression-based methods in analyzing 

health data. Additionally, there has been significant progress in standardized and open 

source implementations of ML algorithms from software packages such as scikit-learn 

(188), Weka (189), or TensorFlow, leading to much more accessibility for researchers. 

 

In life and biomedical science, the adoption of ML has been mainly limited due to the lack 

of understanding of the algorithms and the black-box nature of predictive models (190). 

Indeed, compared to other fields, the rate of adoption is low. There remain many issues to 

be addressed. Foremost, there is the issue of generalizability due to study-specific technical 

bias or other confounding factors that make ML findings unreliable (191). Another key 

challenge in machine learning is the selection of the right algorithm for the problem. To 
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address some of the challenges, coupling machine learning with interactive visualization 

can facilitate both algorithm selection and interpretation of different machine learning 

models (192). Visual analytics can also help with building machine learning models to 

complement conventional automated algorithms or AI-driven platforms for such tasks 

(193). Complementing machine learning with visual analytics will be the next state-of-art 

framework for omics data analysis. 

Multi-omics data analysis is still an emerging research field. It is recommended to use multiple 

integrative methods and visualizations rather than relying on single method. My work aims to 

provide intuitive and easy-to-use bioinformatics platforms for researchers as new options to 

explore and analyze their datasets. Well thought-out tool suites enable more complex analysis 

normally restricted to experienced bioinformaticians, leading to democratization of omics data 

analysis and integration. The future directions mentioned above can improve the current tools 

leading to more insights in multi-omics studies and, in my opinion, represent the next stage of 

multi-omics data analysis. 
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