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Abstract

The study of the asymptotic shape, such as the height, width, and size of Bien-

aymé trees, more commonly called Galton-Watson trees, is well-developed ([2],

[3], [12]). However, most bounds on these quantities make restrictive assump-

tions on the trees’ weight sequences and offspring distributions. We prove novel

non-asymptotic tail bounds on the height of randomly sampled nodes in trees

with given degree statistics. To achieve this, we construct a sampling procedure

that generates a random variable with the same law as the height of a random

node, and then adapt a Poissonization trick from Camarri and Pitman [7]. Fi-

nally, we describe results from joint work with Addario-Berry, Brandenberger,

and Hamdan [4]. We show how bounds on the height and width of conditioned

Bienaymé trees can be deduced from our previous arguments, resulting in the

proofs of conjectures of Janson [11].
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Abrégé

Les propriétés asymptotiques d’arbres de Bienaymé, également connus sous le

nom d’arbres de Galton-Watson, telles que la taille, la hauteur et la largeur ont

été sujet à de nombreuses études ([2], [3], [12]). Désormais, la plupart des bornes

établies sur les propriétés nommées ci-dessus nécessitent des conditions restric-

tives sur la séquence de poids et la loi de reproduction. Nous prouvons de

nouvelles bornes exponentielles non asymptotiques sur la hauteur d’un sommet

aléatoire dans un arbre combinatoire aléatoire. Notre preuve repose sur la con-

struction d’un processus d’échantillonage qui génère une variable aléatoire avec

la même loi que la hauteur d’un sommet aléatoire. Nous utilisons également

une technique de poissonisation introduite par Camarri et Pitman [7]. Enfin,

nous décrivons les résultats d’un project conjoint avec Addario-Berry, Branden-

berger, and Hamdan [4]. Nous démontrons comment des bornes de la hauteur

et la largeur d’arbres Bienaymé conditionnés peuvent être déduites à partir des

résultats ci-dessus. Nous résolvons ainsi certaines conjectures de Janson [11].
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Chapter 1

INTRODUCTION

In this thesis we prove novel non-asymptotic tail bounds on the height of a ran-

domly sampled node in a tree with a given degree statistics. These bounds hold

for arbitrary degree statistics. The motivation behind studying trees with given

degree statistics is to prove bounds on the heights and widths of Bienaymé trees,

more commonly called Galton-Watson trees. Moreover, our results allow us to

prove a conjecture and solve an open problem from [11]. This thesis focuses on

the proof of tail bounds for the height of a random node of a random tree with a

given degree statistics and briefly describes how bounds on Bienaymé trees can

be deduced.

We begin with some definitions and notation. We define the Ulam-Harris tree U as

the infinite rooted tree with root ∅ and node set

V = VU :=
⋃
n≥0

Nn,

with N0 := {∅} and where Nn is the set of all finite strings i1...in, with i1, ..., in ∈ N.

Further, any node u = i1...in+1 ∈ V has parent i1...in and ordered children {ui :

i ≥ 1} = {i1...in+1i, i ≥ 1}. Next, define the set T as the set of rooted ordered
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subtrees t of U with the following properties,

∅ ∈ Vt, (1.1)

i1...in ∈ Vt =⇒ i1...in−1 ∈ Vt, (1.2)

i1...in−1in ∈ Vt =⇒ i1...in−1i ∈ Vt for all 1 ≤ i ≤ in, (1.3)

where Vt denotes the node set of t. A rooted tree t is said to be ordered if for each

node u ∈ t the children of u are ordered in a sequence. Then, we can note that T

defines the set of ordered rooted trees, also known as plane trees.

Given some tree t ∈ T, write r(t) to denote the root of tree t and note that r(t) = ∅.

If u ∈ t then we say u is a node of t. The size of t is the number of nodes in t and is

denoted by |t|. Define the height of a node u ∈ t as the number of edges on the path

from the root r(t) to u and denote it by |u|. By this definition, the height of ∅ is 0.

We define the set of children of a node u ∈ t as c(u) = ct(u) := {ui ∈ Vt : i ≥ 1}

and denote the size of this set as |ct(u)|. The degree of a node u ∈ t, denoted by

d(u) = dt(u), is the number of children of u in t, that is dt(u) = |ct(u)|. Given a

node u = i1...in ∈ t where n ≥ 0 and i1, ..., in ∈ N, we define uk := i1...ik for

0 ≤ k ≤ n to be the (n − k)th ancestor of u, that is, the kth node on the path from

r(t) to u. Note that u0 := ∅. The width of tree t at level k ≥ 0, denoted by Lk(t),

is the number of nodes at height k, thus Lk(t) = #{u ∈ t : |u| = k}. The width of

t is wid(t) := max(Lk(t) : k ≥ 0) and the height of t is ht(t) := max(|u| : u ∈ t).

Define T∗ := {t ∈ T : |t| < ∞} to be the set of all finite plane trees. In this thesis,

by tree we refer to a finite plane tree in T∗. We define the lexicographic depth-first

search ordering on the nodes of trees t ∈ T∗ as the ordering listing the nodes of t

in lexicographic order. This lexicographic order has the property that every non-

root node u ∈ t appears in the order after its parent in t.
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We now define Bienaymé trees, also known as Galton-Watson trees1. They are a

class of random ordered rooted trees. Given a random variable ξ with distribution

µ = (µi, i ≥ 0) defined on N, a Bienaymé tree is recursively constructed from the

root, giving each node a number of children that is an independent copy of ξ. We

call µ the offspring distribution of such Bienaymé tree. We say a Bienaymé process

is subcritical, critical or supercritical if E [ξ] < 1, E [ξ] = 1 or E [ξ] > 1 respectively.

Further, when E [ξ] ≤ 1 and P {ξ = 1} < 1, then the Bienaymé tree is a.s. finite and

when E [ξ] > 1 or P {ξ = 1} = 1, then the Bienaymé tree is infinite with positive

probability. The Bienaymé process induces a measure Pµ on random finite trees.

Given a tree t ∈ T∗,

Pµ{t} =
∏
u∈t

µdt(u).

Remark, when E [ξ] ≤ 1 and P {ξ = 1} < 1, then Pµ defines a probability measure

on T∗.

Next, we will introduce simply generated trees, which are a generalization of

Bienaymé trees. We say w = (wk, k ≥ 0) is a weight sequence if it is a sequence of

non-negative real numbers with w0 > 0. Fix a weight sequence w. We define the

weight of a finite tree t ∈ T∗ as

w(t) :=
∏
u∈t

wdt(u).

Meir and Moon introduced trees with such weights in [15] and named them sim-

ply generated trees. For n ∈ N, we define a probability measure Pw
n on T∗ by setting,

for t ∈ T∗,

Pw
n (t) :=

w(t)

Zn
1[|t|=n], (1.4)

1We propose to use the name ”Bienaymé tree“ instead of ”Galton-Watson trees“ as Bienaymé
[5] was the first to introduce such trees and correctly state the criticality theorem, as can be read
in historical surveys by Heyde and Seneta [9] and by Jagers [10].
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where Zn is the normalizing factor defined by Zn := Zn(w) :=
∑

T∈Tn
w(t). Note

that Zn is finite as |Tn| is finite and Zn > 0 since w0 > 0. We now present the

correspondence between simply generated trees and conditioned Bienaymé trees,

as described by Janson [11, Section 2.3].

Proposition 1.1. Fix n ≥ 0 and a weight sequence w = (wk, k ≥ 0) with
∑

k≥0wk = 1.

Then, the law of a Bienaymé tree with offspring distribution w conditioned on having n

nodes is equivalent to the law of a simply generated tree with n nodes and weight sequence

w.

Proof. Let T (µ) denote a Bienaymé tree with offspring distribution µ and let Tn(w)

denote a random simply generated tree with n nodes and weight sequence w.

Then, considering the Bienaymé tree T (w), we have for t ∈ T∗,

P {T (w) = t} = Pw{t} =
∏
u∈t

wdt(u) = w(t).

Thus, Zn =
∑

t∈Tn
w(t) =

∑
t∈Tn

Pw{t} = P {|T (w)| = n}. It follows that,

P {Tn(w) = t} = Pw
n (t) =

w(t)

Zn
1[|t|=n] =

P {T (w) = t}
P {|T (w)| = n}

1[|t|=n]

= P {T (w) = t | |T (w)| = n} .

Thus, the law of a Bienaymé tree with offspring distribution w conditioned on

having n nodes is equivalent to the law of a simply generated tree with n nodes

and weight sequence w.

Let Φ(z) = Φw(z) =
∑

k≥0wkz
k be the generating function of w and let ρ = ρw

be the radius of convergence of Φ. For t > 0 such that Φ(t) <∞, let

Ψ(t) = Ψw(t) =
tΦ′(t)

Φ(t)
=

∑
k≥0 kwkt

k∑
k≥0wktk

.
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If Φ(ρ) = ∞, then define Ψ(ρ) = Ψw(ρ) = limt↑ρ Ψ(t). By [11, Lemma 3.1(i)], this

limit exists. Further, let ν = ν(w) = Ψw(ρ) and assume ν ≤ 1. Define σ2 = ρΨ′(ρ).

Janson states the following conjectures and problems [11, Conjectures 21.5, 21.6

and Problems 21.7, 21.8].

Conjecture 1. Let w = (wk, k ≥ 0) be a weight sequence with w0 > 0 and wk > 0 for

some k ≥ 2. Let Tn be a simply generated tree of size nwith weight sequence w, whenever

n ≥ 0 satisfies Zn(w) > 0.

(1) If ν = 1 and σ2 =∞ then ht(Tn)/
√
n

p→ 0.

(2) If ν = 1 and σ2 =∞ then wid(Tn)/
√
n

p→∞.

(3) If ν < 1 then ht(Tn)/
√
n

p→ 0.

(4) If ν < 1 then wid(Tn)/
√
n

p→∞.

In the context of joint work with Addario-Berry, Brandenberger, Hamdan [4]

we were able to prove results similar to Conjectures (1) and (2) for conditioned

Bienaymé trees.

Theorem 1.2. [4, Theorem 1.2.] Fix a probability distribution µ supported by N with

|µ|1 ≤ 1 and |µ|2 =∞. For n ∈ N, let Tn be a Bienaymé tree with offspring distribution

µ conditioned to have size n, and let Vn be a uniformly random node in Tn. Then

wid(Tn)/
√
n→∞, |Vn|/

√
n→ 0 and ht(Tn)/(

√
n log3 n)→ 0,

where the convergence results hold both in probability and in expectation, as n→∞.

In fact in [4] we also prove (4) and a slight weakening of (3) but these re-

sults are not presented in detail in the current work. The study of the asymptotic

shape, such as the height, width and size, of simply generated trees and Bienaymé

trees is well-developed ([2], [3], [12]). However, most bounds established make
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restrictive assumptions on weight sequences and offspring distributions. Work

by Addario-Berry, Devroye and Janson [3] establishes uniform sub-Gaussian tail

bounds for the width and height of critical conditioned Bienaymé trees with finite

variance (|µ|1 = 1, 0 < |µ|2 <∞),

P {wid(Tn) ≥ x} ≤ C1e
−c1x2/n, and P {ht(Tn) ≥ h} ≤ C2e

−c2h2/n,

for x, h ≥ 0 and some constants C1, c1, C2, c2. Kortchemski [12] extends these

results to hold for critical Bienaymé trees when the offspring distribution µ is in

the domain of attraction of a stable law. (We say that a random variable X with

distribution µ belongs to the domain of attraction of a stable law of index α ∈

(0, 2[ if P {X ≥ k} = L(k)/kα where L : R+ → R+ is a slowly varying function,

that is, limx→∞ L(tx)/L(x) = 1 for t > 0.) Theorem 1.2 establishes results on

the shape of Bienaymé trees without restrictive assumptions about the offspring

distribution µ. This theorem is a consequence of bounds we established on the

height of random nodes of trees with fixed degree statistics, which we introduce

below. The degree statistics (singular) of a tree t is the sequence nt = (nt(c), c ≥ 0),

where nt(c) := |{u ∈ t : dt(u) = c}| is the number of nodes of t with c children.

Note that since a tree with n nodes has n − 1 edges and every edge is associated

to a child in a tree, we have that

∑
c≥0

nt(c) = 1 +
∑
c≥0

cnt(c).

For any sequence n = (n(c), c ≥ 0) define

k(n) :=
∑
c≥0

(1− c)n(c).

A sequence n = (n(c), c ≥ 0) of non-negative integers is the degree statistics of

some tree in T∗ if and only if k(n) = 1. For such sequences, we write Tn for the
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set of finite plane trees with degree statistics n. For n ≥ r ≥ 0, define the degree

statistics bin(n, r) := (n, 0, n−r, 0, ...). Then Tbin(n,1) denotes the set of binary trees

with n leaves.

Given sequences n = (n(c), c ≥ 0) and m = (m(c), c ≥ 0) of natural numbers,

define n + m := (n(c) + m(c), c ≥ 0). Further, write ‖n‖ :=
∑

c≥0 n(c) and for

p > 0 we write |n|p := (
∑

c≥0 c
pn(c))1/p. Note that for a tree t, we have ‖nt‖ = |t|

and |nt|1 = |t| − 1. Thus, ‖nt‖ = |nt|1 + 1. We write n = ‖n‖ and nt = ‖nt‖ for

readability. For a natural number n ≥ 1, we write [n] for {1, ..., n}. For a finite set

S, we write X ∈u S to mean that X is a uniformly random element of set S .

Fix a degree statistics n with k(n) = 1. We define a probability measure Pn on

T∗. For t ∈ T∗,

Pn(t) :=
1

Zn

1[nt=n], (1.5)

where Zn := |Tn|. Fix a weight sequence w = (wk, k ≥ 0). We define the weight of

a degree statistics n as

w̃(n) :=
∏
k≥0

w
n(k)
k .

Remark that for any tree t ∈ T∗, since nt(c) = |{u ∈ t : dt(u) = c}| for c ≥ 0,

w(t) =
∏
u∈t

wdt(u) =
∏
c≥0

∏
u∈t

dt(u)=c

wc =
∏
c≥0

wnt(c)
c = w̃(nt).

The following proposition relates trees with a fixed degree statistics to simply

generated trees.

Proposition 1.3. Fix a degree statistics n = (n(c), c ≥ 0) and a weight sequence w.

Then, the law of a simply generated tree with weight sequence w conditioned on having

degree statistics n is equivalent to the law of a tree with fixed degree statistics n.

7



Proof. Recall that n =
∑

c≥0 n(c). Let Tn be a random tree chosen according to

Pn and Tn(w) be a random tree chosen according to Pw
n . Then, using (1.4), since

w(t) = w̃(nt) and Zn = |Tn|,

P
{
nTn(w) = n

}
=
∑
t:nt=n

P {Tn(w) = t} =
∑
t:nt=n

Pw
n (t)

=
∑
t:nt=n

w(t)

Zn
1[|T |=n] =

∑
t:nt=n

w̃(nt)

Zn

=
w̃(n)

Zn
|Tn| =

w̃(n)

Zn
Zn.

Further, for t ∈ T∗,

P
{
Tn(w) = t,nTn(w) = n

}
= P {Tn(w) = t}1[nt=n] =

w(t)

Zn
1[|t|=n]1[nt=n] =

w̃(n)

Zn
1[nt=n].

Combining these two equalities, by (1.5) we conclude that for t ∈ T∗,

P
{
Tn(w) = t | nTn(w) = n

}
=

P
{
Tn(w) = t,nTn(w) = n

}
P
{
nTn(w) = n

}
=

1

Zn

1[nt=n] = Pn(t).

In words, the random simply generated trees Tn(w) conditioned on nTn(w) = n is

equivalent to the random tree with fixed degree statistics Tn.

The main results of this thesis are contained in the following two theorems.

Theorem 1.4. Fix a degree statistics n = (n(c), c ≥ 0) with k(n) = 1 and let (T, V ) ∈u

T
(1)
n . Then for all α > 173/2,

P

{
|V | > α

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
,
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and if n(1) = 0, then for all ` ≥ 1,

P {|V | ≥ `} ≤ exp

(
− `2

2|n|1

)
.

Theorem 1.5. Let m ≥ 1. Let n = (n(c), c ≥ 0) be a degree statistics with n(0) = m,

n(1) = 0 and k(n) = 1. Further, recall that bin(m, 1) := (m, 0,m − 1, 0, ...). Let

(T, V ) ∈u T(1)
n and (T ′,W ) ∈u T(1)

bin(m,1) be random marked trees. Then,

|V | �st |W |.

Theorem 1.4 states a non-asymptotic tail bound on the height of a randomly

sampled node in a random tree. Theorem 1.5 states that the height of a random

node in a random binary tree with m leaves stochastically dominates the height

of a random node in a random tree with m leaves and no degree one nodes. The

latter theorem is not used in the proof of Theorem 1.2 but is an interesting result

in its own right.

The thesis focuses on the proof of Theorem 1.4 and Theorem 1.5. Chapter 2 de-

scribes the correspondence between trees and lattice paths and outlines how this

correspondence is used in [3] to prove bounds on the height and width of con-

ditioned Bienaymé trees. Further, Chapter 2 establishes combinatorial identities

on the number of trees and forests with a fixed degree statistics using this corre-

spondence. These well-studied identities ([14], [13], [16]) are necessary to prove

the theorems from the following chapter. Chapter 3 describes the proofs of The-

orem 1.4, Theorem 1.5 and Theorem 1.2. In the conclusion, we present a possible

generalisation of Theorem 1.5 and possible future problems around Conjecture 1.

9



Chapter 2

COMBINATORIAL IDENTITIES

This chapter focuses on the relation between random trees and random lattice

walks. The correspondence between random walk paths and trees is well-understood.

Harris noted in 1952 [8] that “walks and trees are abstractly identical objects” by

encoding trees into paths. This connection has proven to be an important tool

in studying properties of trees. The first section of this chapter briefly examines

how the correspondence between trees and random walks is used in [3] to prove

bounds on the height and width of random trees. The second section focuses on

proving known combinatorial identities on the number of trees and forests with

a given degree statistics.

2.1 Applications of the correspondence between ran-

dom walk paths and trees.

The correspondence between random walk paths and trees has been a key tool

for studying the shape of random trees ([1], [3], [12]). In [1], Addario-Berry estab-

lishes tail bounds for the height and width of a random tree with a given degree

statistics n by encoding trees into lattice paths and using martingale concentra-

tion results to bound the maximum height of the respective lattice paths. These

10



bounds are tight when
∑

c≥0 n(c)2 = O(n). Similarly, in [12], Kortchemski estab-

lishes bounds on the width, height and maximal degree of certain conditioned

Bienaymé trees by bounding the height of the encoded lattice paths.

We describe how the correspondence between random walk paths and trees is

used in [3] to prove bounds on the height and width of Bienaymé trees. The

methods used in [3] are similar to those in [1] and [12]. We begin by defining

three orderings on the nodes of a tree t.

- The breadth first search (BFS) order list the nodes of t in increasing order of depth,

and for nodes of the same depth, in lexicographic order.

- The lexicographic depth first search (lex-DFS) order of a tree list the nodes of t in

lexicographic order.

- Let t′ be the mirror-image of t, then the reversed depth first search (rev-DFS) order

of t corresponds to the lex-DFS order of t′.

Let (u1, ..., u|t|) be ordered nodes of t. We define a queue process on the nodes of

t as follows. Let Qt(0) = 0 and Qt(i) = Qt(i − 1) − 1 + dt(ui) for i ∈ [|t|]. We

let (Qb
t(i), i ∈ [|t|]), (Ql

t(i), i ∈ [|t|]) and (Qr
t (i), i ∈ [|t|]) be the respective queue

process for the BFS, lex-DFS and rev-DFS order. The lex-DFS queue (Ql
t(i), i ∈

[|t|]) of a tree t corresponds to the Łukasiewicz path W(t) of t we define in the

following section. We begin with stating the bounds on the height and width of

conditioned Bienaymé trees established in [3].

Theorem 2.1. [3, Theorem 1.1., Theorem 1.2.] Fix an offspring distribution µ such that

E [µ] = 1 and 0 < Var(µ) <∞. Let Tn be a Bienaymé tree with offspring distribution µ

conditioned to have size n. Then,

P {wid(Tn) ≥ x} ≤ C1 exp
(
−c1x2/n

)
,

P {ht(Tn) ≥ h} ≤ C2 exp
(
−c2h2/n

)
,

11



for all x, h ≥ 0 and n ≥ 1 and constants C1, c1, C2, c2.

First, we outline the proof for the bound on the width of conditioned Bi-

enaymé trees. Recall that the width of a tree t at level k ≥ 0 is defined as

Lk(t) := |{u ∈ t : |u| = k}| and the width of a tree t is wid(t) := max(Lk(t) : k ≥ 0).

Remark the following property of the BFS queue process. When exploring a tree t

via BFS, we note that after exploring all nodes of a level k ≥ 0, the queue process

then consists precisely of all the nodes at level k + 1. Therefore, for each k ≥ 0,

let ik be the step at which we finished exploring all nodes of level k, we have that

Lk(t) = Qb
t(ik). It follows that for any tree t,

wid(t) = max
k≥0

Lk(t) ≤ max
i≥0

Qb
t(i),

and further, for x ≥ 0

P {wid(t) ≥ x} ≤ P

{
max
i≥0

Qb
t(i) ≥ x

}
. (2.1)

We now study the BFS queue (Qb
t(i), i ∈ [|t|]) for Bienaymé trees. Let T be a

Bienaymé tree with offspring distribution µ and let (Xi, i ≥ 0) be i.i.d.µ dis-

tributed random variables. Note that for all u ∈ T , Xi and dT (u) follow the same

law. Therefore, for i ≥ 1, Qb
T (i) =

∑i
j=1(dT (uj) − 1) follows the same law as

W (i) =
∑i

j=1(Xj − 1). Further, the tree T has size n if and only if Qb
T (j) > −1

for all 0 ≤ j < n and Qb
T (n) = −1; equivalently W (j) > −1 for 0 ≤ j < n and

W (n) = −1. We can therefore rewrite the upperbound of (2.1) as follows.

P {wid(Tn) ≥ x} ≤ P

{
max
i≥0

Qb
Tn(i) ≥ x

}
= P

{
max
i≥0

W (i) ≥ x | W (i) > −1, 0 ≤ j < n and W (n) = −1

}
.
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In the proof of [3, Theorem 1.1], the authors bound the last term using rotation

arguments, tail bounds on W (i) and various computations, which we omit the

details of.

Next, we describe how bounds on the height of conditioned Bienaymé trees can

be established. For simplicity, assume that P {µ = 1} = 0. For u ∈ t, let l(u) and

r(u) be the respective index of u when the nodes of t are listed in lex-DFS and

rev-DFS. Note that at time l(u), since P {µ = 1} = 0, every ancestor of u has at

least two children, at least one of which is not an ancestor of u. Therefore, every

ancestor of u contributes at least one to either Ql
T (l(u)) or Qr

T (r(u)). Since u has

|u| ancestors, it follows that either Ql
T (l(u)) ≥ |u|/2 or Qr

T (r(u)) ≥ |u|/2. Then, for

x ≥ 1,

P {ht(T ) ≥ x} = P

{
max
u∈T
|u| ≥ x

}
≤ P

{
max
0≤i≤n

Ql
T (i) ≥ dxe/2

}
+ P

{
max
0≤i≤n

Qr
T (i) ≥ dxe/2

}
= 2P

{
max
0≤i≤n

Qb
T (i) ≥ dxe/2

}
.

The last inequality follows from the fact that (Ql
T (i), i ∈ [|T |]), (Qr

T (i), i ∈ [|T |])

and (Qb
T (i), i ∈ [|T |]) all have the same distribution. By similar arguments for

the proof of width bounds in [3, Theorem 1.1], bounds on the height of Tn can be

deduced.

2.2 Combinatorial identities.

Combinatorial identities around plane trees and forests have been widely studied

([13], [14], [17], [16]). The number of plane trees and forests with a given degree

statistics can be found in [17, Exercise 6.2.1]. This chapter derives combinatorial

identities on the number of plane forests with given degree statistics by counting

the number of encoded lattice paths. In [13], Kortchemski formalizes the corre-
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spondence between trees with a fixed number of nodes and lattice walks. We

closely follow [13], adapting the propositions and proofs to hold for trees and

forests with a fixed degree statistics and to prove the desired identities. In partic-

ular, Proposition 2.3 corresponds to [13, Proposition 3.2] and the presentation of

the Cyclic Lemma 2.5 follows that given in [13, Section 3.3].

We begin by introducing a slightly modified version of the Ulam Harris Tree

U in order to define forests. Let U(j) be the infinite rooted subtree of U consisting

of all descendants of node j. For j ≥ 1, define T(j) := {jt : t ∈ T} as the

set of plane subtrees of U(j). Further let T∗(j) := {jt : t ∈ T∗} and Tn(j) :=

{jt : t ∈ Tn}, for some degree statistics n. We define the Ulam Harris Forest

F := (U(j), j ≥ 1) as an infinite forest composed of infinite plane trees. Further,

define Fk := T∗(1) × T∗(2) × ... × T∗(k) and F∗ := ∪k≥1Fk as respectively the set

of forests with k finite plane trees and the set of finite forests composed of finite

plane trees. We have that Fk and F∗ are both subforests of F . In the sequel, the

term forest will refer to a finite forest in F∗. Given a forest f ∈ Fk, we can write

f = (t1, ..., tk) for some (t1, ..., tk) ∈ T∗(1) × T∗(2) × ... × T∗(k). If u ∈ tj for some

j ∈ [k], then we write u ∈ f and say that u is a node of f . In this case u = ji1...in

for some n ≥ 0 and i1, .., in ∈ N. The size of a forest f is the number of nodes in f

and is denoted by |f |. Define the degree of a node u ∈ f as d(u) := df (u) = dtj(u),

where u ∈ tj . By viewing forests as a subset of F , every node u of a forest f is a

unique string u = i1...in, for some n ≥ 1 and i1, ..., in ∈ N.

The lexicographic depth-first search ordering on the nodes of forests f ∈ T∗ is the

ordering listing the nodes of f in lexicographic order. This order has the property

that every non-root node u ∈ f = (t1, ..., tk) appears in the order after its parent

in f . Further, for all 1 < j ≤ k, when a node in tj appears in the order, all nodes

in ti, for 1 ≤ i < j, have already appeared.

We now introduce the degree statistics of a forest f ∈ F∗. The degree statistics of f

14



is the sequence nf = (nf (c), c ≥ 0), where nf (c) := |{u ∈ f : df (u) = c}|. Note

that the definition of the degree statistics in F∗ is an extension of the respective

definition in T∗. Remark that for integers n ≥ k ≥ 1, any forest f with n nodes

and k trees has n − k edges. Further, every edge can be associated to a unique

child in f . Thus, recalling that k(nf ) :=
∑

c≥0(1− c)nf (c), we then have

k(nf ) =
∑
c≥0

nf (c)−
∑
c≥0

cnf (c) = k.

For k ≥ 1, sequence n = (n(c), c ≥ 0) of non-negative integers is the degree

statistics of some forest in Fk if and only if k(n) = k. Further, n = (n(c), c ≥ 0)

is the degree statistics of some forest in F∗ if and only if k(n) ≥ 1. For such

sequences, we write Fn for the set of finite forests with degree statistics n.

We define a (n, k)-lattice path as a path with starting point (0, 0) and ending point

(n,−k), that consists of steps lying in {(1, i), i ∈ {−1, 0, 1, ..}}. The length of a path

corresponds to the number of its steps n and we say that the step size of (1, i) is i.

Given a (n, k)-lattice path, we define its step sequence as the sequence (ij, j ∈ [n])

where ij is the step size of the jth step (1, ij). Let f ∈ F∗, let u1, u2, ..., u|f | be the

nodes of f , listed in lexicographic order. We can characterize forests by encoding

them into lattice paths as follows. We define the Łukasiewicz path of a forest f as

the vectorW(f) = (Wi(f), 0 ≤ i ≤ |f |), where

W0(f) = 0 andWi+1(f) =Wi(f) + df (ui+1)− 1 for 0 ≤ i < |f |.

Remark that the Łukasiewicz lattice path ((i,Wi(f)), 0 ≤ i ≤ |f |) is a (|f |, k(nf ))-

lattice path with step sequence (df (ui)−1, 1 ≤ i ≤ |f |). We say that (df (ui)−1, 1 ≤

i ≤ |f |) is the step sequence of f . Further, the step sequence (df (ui)− 1, 1 ≤ i ≤ |f |)

of a forest f satisfies #{1 ≤ i ≤ |f |, df (ui)− 1 = j − 1} = nf (c), for all c ≥ 0.

Now let x = (xj, j ≥ 0) be a finite sequence of integers. We define the vector
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h(x) = (h(x, c), c ≥ 0) such that for all c ≥ 0,

h(x, c) := #{j ≥ 1 : xj = c− 1}. (2.2)

Given a sequence n = (n(c), c ≥ 0) of non-negative integers, we define the sets

Sn := {x = (x1, ..., xn) ∈ {−1, 0, 1, ...}n : ∀c ≥ 0, h(x, c) = n(c)},

S̄n := {(x1, ..., xn) ∈ Sn : ∀ 1 ≤ j < n, x1 + ...+ xj > −k(n)}.

Note that for x ∈ Sn, we have h(x) = n. We can think of Sn as the set of step

sequences x of the corresponding (n,−k(n))-lattice paths with n(c) steps of size

c − 1 for each c ≥ 0. The set S̄n is the set of step sequences in Sn where the

corresponding lattice paths stay above −k(n) until the last step. Remark that the

step sequence (df (ui) − 1, 1 ≤ i ≤ |f |) of a forest f belongs to the set S̄nf
: for

1 ≤ j < |f |,
∑j

i=1(df (ui) − 1) =
∑j

i=1 df (ui) − j and the sum
∑j

i=1 df (ui) counts

the number of children of the nodes u1, ..., uj . At most min(j + 1, k(n)) nodes

amongst u2, ..., uj+1 are roots of trees in f . Since the nodes are in lexicographic

order, it follows that at least j−k(n) nodes amongst u2, ..., uj+1 are children of the

nodes u1, ..., uj . Thus,
∑j

i=1 df (ui) ≥ j − k(n) and so f ∈ S̄nf
.

The following proposition relates the sets Fn and S̄n by constructing a bijection

between forests and sequences in S̄n.

Proposition 2.2. Let n be a degree statistics. Define the function fn as

fn :Fn → S̄n

f 7→ (df (ui)− 1, 1 ≤ i ≤ n),

where u1, ..., un are the nodes in f in lexicographic order. Then fn is a bijection.
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We prove that fn is a bijection for any degree statistics n by induction on k(n).

We thus begin by stating and proving Proposition 2.2 for degree statistics n that

satisfy k(n) = 1.

Proposition 2.3. Let n be a degree statistics satisfying k(n) = 1. Define the function fn

as

fn :Tn → S̄n

t 7→ (dt(ui)− 1, 1 ≤ i ≤ n),

where u1, ..., un are the nodes of t in lexicographic order. Then fn is a bijection.

Since there is an obvious bijection between Tn and Tn(j) for all j ≥ 1, Propo-

sition 2.3 implies that the function f jn : Tn(j) → S̄n defined as f jn(jt) := fn(t) for

t ∈ Tn is also a bijection.

Proof of Proposition 2.3. We begin by proving the following intermediate result.

For any two vectors x = (x1, ..., xn) and y = (y1, ..., ym) we denote the concatena-

tion of x and y by xy := (x1, ..., xn, y1, ..., ym).

Lemma 2.4. Let n be some degree statistics and let x = (x1, ..., xn) ∈ S̄n, then there

exists a unique set of k := k(n) vectors y1, ...,yk such that

x = y1...yk,

where |yi|1 = −1 and yi ∈ S̄h(yi). Further, for each i ∈ [k],

yi := (xli−1+1, ..., xli),

where l0 := 0 and li := min(j ∈ [n] : x1 + .... + xj = −i). Remark that for all i ∈ [k],

h(yi) is a degree statistics with k(h(yi)) = 1.
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Proof. We start by proving that the vectors (yi = (xli−1+1, ..., xli), i ∈ [k]) satisfy

the conditions above. A sequence x ∈ S̄n stays above −k until step n, thus lk = n

and li ≤ li+1 for all i ∈ [n − 1]. Therefore, we have that x = y1...yk and for each

i ∈ [k],

|yi|1 =

li∑
j=li−1+1

xj =

li∑
j=1

xj −
li−1∑
j=1

xj = −i+ (i− 1) = −1.

By definition, we know that h(yi) for i ∈ [k] is a sequence of non-negative integers

and since |yi|1 =
∑

c≥0(c−1)h(yi, c) = −1, we have that h(yi) is a degree statistics.

By construction of the li’s, for all 1 < i ≤ n and a < li,

a∑
j=li−1+1

xj =
a∑
j=1

xj −
li−1∑
j=1

xj > −i−
li−1∑
j=1

xj = −1.

Therefore, yi ∈ S̄h(yi) for all i ∈ [k]. We now show that our choice of vectors

(yi, i ∈ [k]) is unique by contradiction. Suppose there exist vectors (zi, i ∈ [k])

satisfying the conditions of the lemma. WLOG suppose that y1 = (x1, ..., xl1) 6=

z1 = (x1, ..., xj) for some j 6= l1 ≥ 1. If j < l1, then l1 is not the smallest time the

sum attains −1. If l1 < j, then x1 + ...+ xl1 = −1 and z1 /∈ S̄h(z1).

We now proceed to prove Proposition 2.3. We begin by showing that fn is

injective. Let t1, t2 ∈ Tn such that t1 6= t2 and let u1, ..., u|t1| and v1, ..., v|t2| be the

respective nodes of t1 and t2 listed in lexicographic order. Suppose |t1| 6= |t2|, then

|fn(t1)| 6= |fn(t1)|. Now suppose |t1| = |t2|, since t1 6= t2, there exists at least one

1 ≤ i ≤ |t1| such that dt1(ui) 6= dt2(vi) and thus fn(t1) 6= fn(t2).

We prove by induction on the size n of the degree statistics n that fn is surjective.

For the base case n = 1, we have that
∑

c≥0 cn(c) = n− 1 = 0, hence n(0) = 1 and

n(c) = 0 for all c ≥ 1. Then, Tn = {∅} and fn(∅) = {(−1)} = S̄n.

For the induction step, let x = (k, x2, ..., xn) ∈ S̄n for any k ≥ 1. Then, z :=

(x2, ..., xn) ∈ S̄h(z) and k(h(z)) =
∑

c≥0(1 − c)h(z, c) = k + 1. By the previous

lemma we can rewrite z uniquely as y1...yk+1, where h(yi) is a degree statistics
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with |h(yi)|1 < n for each i ∈ [k + 1]. By the induction hypothesis, fh(yi) is a

bijection. Thus there exists ti ∈ Th(yi) such that fh(yi)(ti) = yi. Define the tree t,

t := {∅} ∪
k+1⋃
i=1

ti,

with root ∅ satisfying dt(∅) = k + 1 and with subtrees t1, ..., tk+1, listed in lexico-

graphic order. Then, by construction, fn(t) = (k, x2, ..., xn) = x.

Proof of Proposition 2.2. We prove the theorem by induction on k(n). Proposition

2.3 handles the base case k(n) = 1. To prove the inductive step, we first introduce

some notation. Given degree statistics n = (n(c), c ≥ 0) and m = (m(c), c ≥ 0),

we define the set

S̄nS̄m := {xy : x ∈ S̄n, y ∈ S̄m}.

Then, S̄nS̄m ⊆ S̄n+m, where n + m = (n(c) + m(c), c ≥ 0). Now let n be a degree

statistics and define Mn := {nt1 : (t1, ..., tk(n)) ∈ Fn} to be the set of all possible

degree statistics of the first tree of a forest in Fn. Thus, we can rewrite Fn as the

disjoint union of sets,

Fn =
⋃

m∈Mn

Tm(1)× Fn−m.

Let m ∈ Mn and (t, f) ∈ Tm(1)× Fn−m. Let u1, ..., um, um+1, ..., un be the nodes of

(t, f) in lexicographic order. Then,

fn(t, f) = (dt(u1)− 1, ..., dt(um)− 1, df (um+1)− 1, ..., df (un))

= (dt(u1)− 1, ..., dt(um)− 1)(df (um+1)− 1...df (un))

= fm(t)fn−m(f).
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By the induction hypothesis, since m and n −m are degree statistics satisfying

k(m) = 1 and k(n−m) < k, we have that fm and fn−m are bijections. Thus,

fn(Tm(1)× Fn−m) = fm(Tm(1))fn−m(Fn−m) = S̄mS̄n−m.

Since this holds for all m ∈Mn,

fn(Fn) =
⋃

m∈Mm

fn(Tm(1)× Fn−m) =
⋃

m∈Mn

S̄mS̄n−m = S̄n,

where the last equality follows from Lemma 2.4. We conclude that fn is a bijection

for all degree statistics n.

We now study the relationship between Sn and S̄n via the Cyclic Lemma.

Given a vector z = (z1, ..., zr), we define z(i) for i ≥ 0 to be the permutation of

z generated by a cyclic shift of i:

z(i) = (z1+i, ..., zr+i),

where zj+i = zj+i mod r for j ∈ [r]. Given a degree statistics n, for x ∈ Sn we

define the set

Cx := {i ∈ Z/nZ : x(i) ∈ S̄n}.

We write |Cx| to denote the cardinality of Cx and note that for all i ∈ Z, |Cx| =

|Cx(i) |.

Proposition 2.5 (Cyclic Lemma). Let n be a degree statistics and let x = (x1, ..., xn) ∈

Sn. Then,

Cx =
{
λ1(x), ..., λk(n)(x)

}
,

where for 1 ≤ i ≤ k(n),

λi(x) := min(j ∈ [n] : x1 + ...+ xj = m+ i− 1),
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where m = min(x1 + ...+ xj : j ∈ [n]).

Before proving the Cyclic lemma, we state and prove the following interme-

diate result.

Lemma 2.6. Let n be a degree statistics and let x ∈ Sn, then,

|Cx| = k(n).

Proof. Let n be a degree statistics and let x = (x1, ..., xn) ∈ Sn. For a ≥ 1, define

the sequence a := (a,−1, ...,−1) composed of a followed by a times−1. Recalling

the definition of h from (2.2), note that h(a) = (h(a, c), c ≥ 0) satisfies k(h(a)) =∑
c≥0(1 − c)h(a, c) = 0 since h(a, 0) = a and h(a, a + 1) = 1. Further, note that

since h(ax) = h(a) + h(x),

k(h(ax)) =
∑
c≥0

(1− c)h(ax, c) = k(h(a)) + k(h(x)) = k(h(x)) = k(n). (2.3)

It follows that h(ax) is a degree statistics and ax ∈ Sh(ax). Thus Cax is defined. We

begin by proving that for all a ≥ 1,

|Cx| = |Cax|. (2.4)

Clearly, 0 ∈ Cx if and only if 0 ∈ Cax. Now, for 0 ≤ j ≤ n− 1, we note that

(ax)(a+1+j) = (xj+1, ..., xn, a,−1, ...,−1, x1, ..., xj).

We can see that j ∈ Cx if and only if a + 1 + j ∈ Cax, for all 0 ≤ j ≤ n − 1. Now,

for i ∈ [a], the sequence (ax)(i) begins with −1 and can therefore not be in S̄h(ax),

it follows that i /∈ Cax for all i ∈ [a]. This shows that (2.4) holds.

We now proceed to show that for all fixed k ≥ 0 and degree statistics n with

k(n) = k, we have that |Cx| = k. Fix k ≥ 0. We show this result by induction on
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the size n of n. Since k(n) = k, the base case is given by n = k, precisely, when

n = (k, 0, 0, ...). In this case, x = (x1, ..., xk) = (−1, ...,−1), thus for all i ∈ [k],

i ∈ Cx and |Cx| = k. We now prove the induction step. Let n be a degree statistics

with k(n) = k and let x = (x1, ..., xn) ∈ Sn. By definition of Cx, for any cyclic

permutation x(i) of x we have that |Cx| = |Cx(i)|. If n ≥ k, there exists some i ∈ [n]

such that xi ≥ 0. We can assume without loss of generality that x1 ≥ 0. Denote

by 1 = i1 < i2 < ... < im the indices such that xij ≥ 0. Define im+1 := n + 1 and

note that for 1 ≤ j ≤ m, the number of consecutive −1 following xij is given by

ij+1 − ij − 1. Then we can write,

−k(n) =
n∑
i=1

xi =
m∑
j=1

(xij − (ij+1 − ij − 1)).

As the sum is negative, there exists some index J ∈ [m] such that xiJ ≤ iJ+1−iJ−1.

Thus, the sequence (xiJ ,−1, ... − 1), containing xiJ times −1 is a substring of x.

Let z be the sequence obtained by removing this substring from x. Note that

k(h(z)) = k(h(x)) = k(n) = k by (2.3). Since h(z) is a degree statistics with

k(h(z)) = k and |h(z)|1 < n, by induction we have that |Cz| = k. Now, by (2.4)

and since |Cx| does not change for cyclic permutations of x, we conclude that

|Cx| = |Cz| = k.

Proof of the Cyclic Lemma. Let n be a degree statistics and let x ∈ Sn. We now

proceed to show that Cx =
{
λ1(x), ..., λk(n)(x)

}
. For λ = λ1(x) := min(j ∈ [n] :

x1 + ...+ xj), we have that for all j ∈ [n],

j∑
i=1

xi+λ =

j+λ∑
i=1

xi −
λ∑
i=1

xi ≥ 0 > −1.

Therefore x(λ) = (x1+λ, ..., xn+λ) ∈ S̄n. Further, by Lemma 2.4, we can rewrite x(λ)

as

x(λ) = y1...yk,
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where k = k(n) and yi = (x1+λ+li , ..., x1+λ+li+1
), with l1 = 0 and li = min(j ∈ [n] :

x1+λ + ... + x1+λ+j = −i + 1). Since for each i ∈ [k], yi ∈ S̄h(yi), we have that for

0 ≤ i ≤ k − 1,

x(λ+li) = yi...yi+k ∈ S̄n.

Let m = min(x1 + ...+ xj : j ∈ [n]), then for i ∈ [k],

λi = λ+ li = min(j ∈ [n] : x1 + ...+ xj = m+ i− 1 : j ∈ [n]).

Corollary 2.7. For a degree statistics n,

|S̄n| =
k(n)

n
|Sn|.

Proof. The corollary holds since the Cyclic Lemma 2.5 gives that each x ∈ Sn

generates k(n) vectors in S̄n and for each x ∈ Sn, its n cyclic shifts of x ∈ Sn

generate the same k(n) vectors in S̄n.

Using these results, we can deduce the following combinatorial identities.

Proposition 2.8. For any degree statistics n = (n(c), c ≥ 0), we have

|Fn| =
k(n)

n

(
n

n(c), c ≥ 0

)
.

Proof. Given a degree statistics n = (n(c), c ≥ 0), by Proposition 2.2 and Corollary

2.7 ,

|Fn| = |S̄n| =
k(n)

n
|Sn|.

Remark that by definition, Sn is equivalent to the set of (n, k(n))-lattice paths with

n(c) steps of size c−1 for all c ≥ 0. Thus, |Sn| is the number of such (n, k(n))-lattice
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paths, precisely,

|Sn| =
(

n

n(c), c ≥ 0

)
.

The proposition follows.

Proposition 2.9. For any degree statistics n = (n(c), c ≥ 0) with k(n) = 1, we have

|Tn| =
1

n

(
n

n(c), c ≥ 0

)
.

Proof. From the definition of Tn(j), |Tn(j)| = |Tn|. Further, for degree statistics

n with k(n) = 1 it holds that |Fn| = |Tn(1)|. Applying Proposition 2.8 gives the

desired equality.

Proposition 2.10. Given n ≥ 1, let bin(n, 1) := (n, 0, n−1, 0, 0, ...). Recall that Tbin(n,1)

is the set of binary trees with n leaves. Then,

|Tbin(n,1)| =
1

2n− 1

(
2n− 1

n

)
.

Proof. This is a straightforward application of Proposition 2.9 with n = bin(n, 1).

Given a degree statistics n, we define a marked forest to be a pair (f, u), where

f ∈ Fn and u ∈ f and call the node u the mark of f . For 1 ≤ i ≤ k(n), we define

the set F(i)
n as the set of marked forests, with forests in Fn and with a mark in the

ith tree,

F(i)
n := {((t1, ..., tk(n)), u) : (t1, ..., tk(n)) ∈ Fn, u ∈ ti}.

In particular, if n is a degree statistics, then we define a marked tree as a pair (t, u),

where t ∈ Tn and u ∈ t, and define

T(1)
n := {(t, u) : t ∈ Tn, u ∈ t}
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as the set of marked trees with degree statistics n. Similarly, for j ≥ 1, let T(1)
n (j) :=

{(jt, u) : t ∈ Tn, u ∈ jt} and note that |T(1)
n (j)| = |T(1)

n |. We now deduce combi-

natorial identities on the number of marked trees and forests.

Proposition 2.11. For any degree statistics n = (n(c), c ≥ 0) with k(n) = 1, the

number of marked trees with degree statistics n is given by

∣∣T(1)
n

∣∣ =

(
n

n(c), c ≥ 0

)
.

Proof. For all t ∈ Tn, we have |t| = n thus |{(t, u) : u ∈ t}| = n and

∣∣T(1)
n

∣∣ = n · |Tn| =
(

n

n(c), c ≥ 0

)
,

where the second equality follows by Proposition 2.9.

Proposition 2.12. For any degree statistics n = (n(c), c ≥ 0) and i ∈ [k(n)], the

number of forests with degree statistics n and a mark in the ith tree is given by

∣∣F(i)
n

∣∣ =

(
n

n(c), c ≥ 0

)
.

Proof. We begin by noting that for any 1 ≤ i < j ≤ k := k(n), we have ((t1, ..., ti, ...,

tj, ..., tk), u) ∈ F
(i)
n if and only if ((t1, ..., tj, ..., ti, ..., tk), u) ∈ F

(j)
n . Therefore

∣∣∣F(i)
n

∣∣∣ =∣∣∣F(j)
n

∣∣∣ for all 1 ≤ i, j ≤ k and
∣∣∣⋃k

i=1 F
(i)
n

∣∣∣ = k
∣∣∣F(1)

n

∣∣∣. Now, for f ∈ Fn, |f | = n and

so |(f, v) : v ∈ f | = n. Thus, every forest f ∈ Fn generates n marked forests in⋃k
i=1 F

(i)
n . Therefore,

|Fn| =
1

n

∣∣∣∣∣
k⋃
i=1

F(i)
n

∣∣∣∣∣ =
k

n

∣∣F(1)
n

∣∣ .
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By rearranging we get,

∣∣F(1)
n

∣∣ =
n

k
|Fn| =

(
n

n(c), c ≥ 0

)
,

where the last equality holds by Proposition 2.8.

Proposition 2.13. For n ≥ k ≥ 1 and 1 ≤ i ≤ k, the number of binary forests with n

leaves, k trees and a mark in the ith tree is given by

∣∣∣F(i)
bin(n,k)

∣∣∣ =

(
2n− k
n

)
,

where bin(n, k) := (n, 0, n− k, 0, 0, ...).

Proof. This is a straightforward application of Proposition 2.12 with n = bin(n, k).
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Chapter 3

BOUNDS ON THE HEIGHT OF A

RANDOM NODE IN A RANDOM

TREE

This chapter focuses on proving novel bounds on the height of random nodes

in random trees with a fixed degree statistics. Recall the main theorems of this

thesis.

Theorem 1.4. Fix a degree statistics n = (n(c), c ≥ 0) with k(n) = 1 and let (T, V ) ∈u

T
(1)
n . Then for all α > 173/2,

P

{
|V | > α

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
,

and if n(1) = 0, then for all ` ≥ 1,

P {|V | ≥ `} ≤ exp

(
− `2

2|n|1

)
.

Theorem 1.5. Let m ≥ 1. Let n = (n(c), c ≥ 0) be a degree statistics with n(0) = m,

n(1) = 0 and k(n) = 1. Further, recall that bin(m, 1) := (m, 0,m − 1, 0, ...). Let
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(T, V ) ∈u T(1)
n and (T ′,W ) ∈u T(1)

bin(m,1) be random marked trees. Then,

|V | �st |W |.

Note that Theorem 1.5 yields the second bound of Theorem 1.4 though this is

not exactly how we prove that bound.

3.1 Proof of Theorem 1.5

Theorem 1.5 is essentially a consequence of the following Proposition.

Proposition 3.1. Under the same assumptions of Theorem 1.5 we have that for all k ≥ 0,

P {|V | = k | |V | > k − 1} ≥ P {|W | = k | |W | > k − 1} .

In order to prove Theorem 1.5 from Proposition 3.1 we use the following

lemma.

Lemma 3.2. Given two non-negative integer random variables X, Y such that for all

k ∈ N, P {X = k | X > k − 1} ≥ P {Y = k | Y > k − 1} then X �st Y .

Proof. Define pk := P {Y = k | Y > k − 1} and qk = P {X = k | X > k − 1} for

k ≥ 0, by assumption pk ≤ qk. Note that X �st Y holds if and only if there exists a

coupling (X̂ , Ŷ ) of X and Y such that P
{
Ŷ ≤ k

}
≤ P

{
X̂ ≤ k

}
for all k ≥ 0. We

thus construct such a coupling. Let (Ui, i ≥ 0) be a sequence of i.i.d. Uniform[0, 1]

random variables. Define

X̂ := min(i ≥ 0 : Ui ≤ qi) and Ŷ := min(i ≥ 0 : Ui ≤ pi).
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By this definition, Ŷ ≤ X̂ . We now show that (X̂ , Ŷ ) is indeed a coupling of X

and Y . For k = 0, P
{
X̂ = 0

}
= P {X = 0} and for k ≥ 1,

P
{
X̂ = k

}
= P {min(i ≥ 0 : Ui ≤ qi) = k}

= (1− q0) · (1− q1) · ... · (1− qk−1) · qk

= P {X > 0}P {X > 1 | X > 0} ...P {X = k | X > k − 1}

= P {X = k} .

The same reasoning gives P
{
Ŷ = k

}
= P {Y = k} for all k ≥ 0.

By applying Proposition 3.1 to Lemma 3.2, we conclude that |V | �st |W |, in

other words, Theorem 1.5 holds. We now focus on proving Proposition 3.1. The

method to prove this proposition consists in decomposing a marked tree into

a branch from the root to the marked node, and the forest formed by the trees

hanging off the branch. We begin by introducing the notion of a spine of a marked

tree. Recall that given a node u = i1...i|u| ∈ t where i1, ..., i|u| ∈ N, we defined

uk := i1...ik for 0 ≤ k ≤ |u|, where u0 = ∅. Now, given a degree statistics n =

(n(c), c ≥ 0) with k(n) = 1, let (t, v) ∈ T
(1)
n be a marked tree. We define the k-spine

of (t, v) as a subtree of t containing all nodes, and its children, that are on the path

from the root to the marked node. Formally, the k-spine of (t, v) is the subtree

Sk(t, v) := {∅} ∪

{
k−1⋃
i=0

ct(vi)

}
,

with S0(t, v) := ∅. By construction, Sk(t, v) contains k − 1 internal nodes with

degrees dt(v0), ..., dt(vk−1) and where vi−1 is the parent node of vi for each 1 ≤ i ≤

k. Further, we define the marked k-spine of (t, v) to be the marked tree

S•k(t, v) := (Sk(t, v), vk).
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When k = |v|, we say S(t, v) := S|v|(t, v) is the spine of (t, v) and S•(t, v) :=

S•|v|(t, v) = (S(t, v), v) is the marked spine of (t, v).

Let t̂ ∈ T∗ be some finite tree and let (t, v) be a marked tree such that t is a

subtree of t̂ and v ∈ t is not a leaf in t̂. For 1 ≤ b ≤ dt̂(v), we define the marked

tree

(t, v)b := (t′, vb),

where t′ := t ∪
⋃

1≤i≤dt̂(v)
{vi} and vb is the bth child of v. From this definition, we

note that for a marked tree (t, v), for 1 ≤ b ≤ dt̂(v) and 0 ≤ k ≤ |v|,

(S•k(t, v))b := (Sk+1(t, v), vkb).

For (T, V ) ∈u T
(1)
n , the proposition below gives the probability that |V | > k and

|V | = k respectively, given the marked k-spine of (T, V ).

Proposition 3.3. Let n = (n(c), c ≥ 0) be a degree statistics with k(n) = 1 and let

(T, V ) ∈u T
(1)
n . Fix k ≥ 0 and a marked tree (t, v) such that P {S•k(T, V ) = (t, v)} > 0,

then

P {V 6= v | S•k(T, V ) = (t, v)} =

∑
c≥0 c(n(c)− nt(c))

n− k
. (3.1)

Further,

P {V = v | S•k(T, V ) = (t, v)} =
nt(0)

n− k
. (3.2)

The idea behind these equalities is to decompose a marked tree into its k-

spine t, containing nt(0) leaves, and a forest composed of nt(0) trees hanging off

the leaves of t. The number of nodes in this forest is precisely n − k (if we count

the leaves of t as roots of the trees in the forest). Given S•k(T, V ) = (t, v), since

V ∈u T , the probability that V = v is one over the size of the tree attached to v.
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The second equality can then be interpreted as the inverse of the expected size of

the subtree above v, given that S•k(T, V ) = (t, v). Before proving Proposition 3.3,

we prove the following lemmas.

Lemma 3.4. Let n = (n(c), c ≥ 0) be a degree statistics with k(n) = 1 and let (T, V ) ∈u

T
(1)
n . Fix k ≥ 0 and a marked tree (t, v) such that P {S•k(T, V ) = (t, v)} > 0, then

P {S•k(T, V ) = (t, v)} =
∣∣F(1)

qt

∣∣ · ∣∣T(1)
n

∣∣−1 ,
where qt := (qt(c), c ≥ 0), with qt(0) = n(0) and qt(c) = n(c)− nt(c) for all c ≥ 1.

Proof. Define the set

Ak(t, v) :=
{

(t̂, v̂) ∈ T(1)
n : S•k(t̂, v̂) = (t, v)

}
,

as the set of marked trees in T
(1)
n with k-spine (t, v). Denote by |Ak(t, v)| the size of

the set Ak(t, v). Note that since P {S•k(T, V ) = (t, v)} > 0, we have |Ak(t, v)| > 0.

The probability that (T, V ) has marked k-spine (t, v) is given by the number of

trees in T
(1)
n with marked k-spine (t, v), divided by the total number of trees in

T
(1)
n . Thus,

P {S•k(T, V ) = (t, v)} = |Ak(t, v)| ·
∣∣T(1)

n

∣∣−1 .
We now compute |Ak(t, v)|. Define the degree statistics qt := (qt(c), c ≥ 0) as

qt(0) := n(0) and qt(c) := n(c) − nt(c) for all c ≥ 1. This is in fact a degree

statistics since t is a subtree of t̂, thus qt(c) ≥ 0 for all c ≥ 0 and

k(qt) =
∑
c≥0

(1− c)qt(c) = k(n)−
∑
c≥1

(1− c)nt(c) = k(n)− k(nt) + nt(0) = nt(0).

Consider F(1)
qt , the set of forests with degree statistics qt, with k(qt) = n0(t) trees

and a mark in the first tree. Given a marked forest (f, u) ∈ F
(1)
qt , where f =
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(t1, ..., tn0(t)) and u = 1û, we construct a marked tree in Ak(t, v) as follows. Note

that the mark v is a leaf node in t. Let l1 := v and l2, ..., lnt(0) be the remaining

leaves of t in lexicographic order. Now, take the tree t and, for all 1 ≤ i ≤ nt(0),

respectively attach the tree ti to the leaf li. Call the resulting tree t̂ and let v̂ := vû.

The degree statistics of t̂ is nt̂ = (nt̂(c), c ≥ 0) where nt̂(0) = n(0) and nt̂(c) =

qt(c) + nt(c) = n(c) for all c ≥ 0 thus nt̂ = n. Therefore we have that (t̂, v̂) ∈

Ak(t, v). Further, for any tree in Ak(t, v) we can recover a unique forest in F
(1)
qt via

the reverse process. We conclude that |Ak(t, v)| =
∣∣∣F(1)

q

∣∣∣.
Proof of Proposition 3.3. We now proceed to prove that for a fixed k ≥ 0 and a

marked tree (t, v) with P {S•k(T, V ) = (t, v)} > 0, we have that

P {V 6= v | S•k(T, V ) = (t, v)} =

∑
c≥0 c(n(c)− nt(c))

n− k
.

Note that if V 6= v then dT (v) > 0. Hence,

P {V 6= v | S•k(T, V ) = (t, v)}

=
∑
b>0

P {V 6= v, dT (v) = b | S•k(T, V ) = (t, v)}

=
∑
b>0

b∑
c=1

P
{
dT (v) = b, S•k+1(T, V ) = (t, v)c

∣∣ S•k(T, V ) = (t, v)
}

=
∑
b>0

b ·P
{
dT (v) = b, S•k+1(T, V ) = (t, v)1

∣∣ S•k(T, V ) = (t, v)
}
,

where the last equality holds by symmetry. Let (t′, v1) = (t, v)1, then note that if

dT (v) = b and S•k+1(T, V ) = (t, v)1, we have that nt′(b) = nt(b)+1 and nt′(c) = nt(c)

for all c 6= b. By Lemma 3.4,

P {V 6= v | S•k(T, V ) = (t, v)} =
∑
b>0

b
∣∣∣F(1)

qt′

∣∣∣ · ∣∣F(1)
qt

∣∣−1 .
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Note that ‖qt′‖ = ‖qt‖ − 1, qt′(b) = qt(b) − 1 and qt′(c) = qt(c) for all c 6= b.

Further, since t contains k internal nodes, ‖qt‖ = n(0)+
∑

c≥1(n(c)−nt(c) = n−k.

Therefore, by Proposition 2.12,

P {V 6= v | S•k(T, V ) = (t, v)} =
∑
b>0

b

(
‖qt′‖

qt′(c), c ≥ 0

)(
‖qt‖

qt(c), c ≥ 0

)
=
∑
b>0

b
qt(b)

‖q‖
=
∑
b>0

b
n(b)− nt(b)

n− k
.

This is precisely the first equality of Proposition 3.3. To show the second equality,

note that,

P {V = v | S•k(T, V ) = (t, v)} = 1−P {V 6= v | S•k(T, V ) = (t, v)}

= 1−
∑

c>0 c(n(c)− nt(c))

n− k

=
n− k −

∑
c>0 c(n(c)− nt(c))

n− k

=
1 +

∑
c>0(c− 1)nt(c)

n− k
,

where the last equality holds since n =
∑

c≥0 cn(c) + 1 and
∑

c>0 nt(c) = k, so

n − k −
∑

c>0 c(n(c) − nt(c)) = 1 − k +
∑

c>0 cnt(c) = 1 +
∑

c>0(c − 1)nt(c). Now

since k(n) =
∑

c≥0(1− c)nt(c) = 1, it follows that 1 +
∑

c>0(c− 1)nt(c) = nt(0). We

conclude that

P {V = v | S•k(T, V ) = (t, v)} =
n0(t)

n− k
.

We now have all the tools to prove Proposition 3.1.

Proof of Proposition 3.1. Let m ≥ 1 and let n = (n(c), c ≥ 0) be a degree statistics

with n(0) = m, n(1) = 0 and k(n) = 1. Further, let bin(m, 1) = (m, 0,m −

1, 0, ...). Let (T, V ) ∈u T
(1)
n and (T ′,W ) ∈u T

(1)
bin(m,1) be random marked trees. In

the following equalities we write
⋃

(t,v) and
∑

(t,v) to mean that we are iterating
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through all marked trees (t, v) satisfying P{S•k(T, V ) = (t, v)} > 0. Similarly, we

write
⋃

(t′,w) and
∑

(t′,w) to mean that we are iterating through all marked trees

(t′, w) satisfying P{S•k(T ′,W ) = (t′, w)} > 0. Note that we can rewrite the events

{|V | > k − 1} and {|W | > k − 1} as disjoint unions,

{|V | > k − 1} =
⋃
(t,v)

{S•k(T, V ) = (t, v)} and {|W | > k − 1} =
⋃
(t′,w)

{S•k(T ′,W ) = (t′, w)}.

Therefore,

P {|V | = k | |V | > k − 1}

=
P {|V | > k − 1, |V | = k}

P {|V | > k − 1}
=
∑
(t,v)

P {S•k(T, V ) = (t, v), |V | = k}
P {|V | > k − 1}

=
∑
(t,v)

P {|V | = k | S•k(T, V ) = (t, v)} · P {S
•
k(T, V ) = (t, v)}

P {|V | > k − 1}

=
∑
(t,v)

P {|V | = k | S•k(T, V ) = (t, v)} ·P {S•k(T, V ) = (t, v) | |V | > k − 1}

=
∑
(t,v)

nt(0)

n− k
·P {S•k(T, V ) = (t, v) | |V | > k − 1} ,

where the last equality holds by Proposition 3.3. Remark that, since n(1) = 0,

n =
∑

c≥0 cn(c) + 1 ≥ 2
∑

c≥2 n(c) + 1 = 2n− 2m + 1. Thus, n ≤ 2m− 1. Further,

since t has k internal nodes and by assumption n satisfies n(1) = 0, we have that

each internal node has at least degree 2. Thus t contains at least k + 1 leaves,

nt(0) ≥ k + 1. It follows that nt(0)/(n− k) ≥ (k + 1)/(2n− 1− k) and,

P {|V | = k | |V | > k − 1} ≥ k + 1

2m− 1− k
∑
(t,v)

P {S•k(T, V ) = (t, v) | |V | > k − 1}

=
k + 1

2m− 1− k
. (3.3)
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Similarly, for k ≥ 0,

P {|W | = k | |W | > k − 1}

=
∑
(t′,w)

P {W = w | S•k(T
′,W ) = (t′, w)}P {S•k(T

′,W ) = (t′, w) | |W | > k − 1}

=
k + 1

2m− k − 1

∑
(t′,w)

P {S•k(T
′,W ) = (t′, w) | |W | > k − 1} =

k + 1

2m− k − 1
, (3.4)

where the last equality holds by applying Proposition 3.3 with the degree statis-

tics bin(m, 1). Combining (3.3) and (3.4) gives us the desired result,. For all k ≥ 0,

P {|V | = k | |V | > k − 1} ≥ P {|W | = k | |W | > k − 1} .

3.2 Proof of Theorem 1.4

Theorem 1.4. Fix a degree statistics n = (n(c), c ≥ 0) with k(n) = 1 and let (T, V ) ∈u

T
(1)
n . Then for all α > 173/2,

P

{
|V | > α

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
,

and if n(1) = 0, then for all ` ≥ 1,

P {|V | ≥ `} ≤ exp

(
− `2

2|n|1

)
.

We begin with defining a size biasing. Let n = (n(c), c ≥ 0) be a degree statis-

tics. A random vector D = (D1, ..., Dn) is a size biasing of n if for any degree

sequence d = (d1, ..., dn) satisfying |{i ∈ [n] : di = c}| = n(c) for all c ≥ 0, the
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following holds. For each k ∈ [n],

P {Dk = dk | (D1, ..., Dk−1) = (d1, ..., dk−1)} =
dk(n(dk)− w((d1, ..., dk−1), dk))

|n|1 − d1 − ....− dk−1
,

(3.5)

for all k ∈ [n], where w((d1, ..., dk), c) := |{1 ≤ i ≤ k : di = c}| for all c ≥ 0. When

d1 + ... + dk−1 = |n|1, we consider the fraction to be equal to 1. By this definition,

we have that the last n(0) ≥ 1 entries of D are equal to 0, further Dn = 0.

Our method for proving Theorem 1.4 is a sampling procedure that, for (T, V ) ∈u

T
(1)
n , generates a random variable with the same law as |V |. We then derive tail

bounds on this new random variable to deduce the desired bounds on |V |.

Proposition 3.5. For a degree statistics n with k(n) = 1, let (T, V ) ∈u T
(1)
n and let

D = (D1, ..., Dn) be a size biasing of n. Let (U1, ..., Un) be i.i.d. Uniform[0, 1] random

variables independent of D. For i ∈ [n], define

Ai :=


1 if Ui ≤

1+
∑i−1

j=1(Dj−1)
n+1−i ,

0 otherwise.

Let M = inf(i ≥ 1 : Ai = 1). Then |V | d= M − 1.

Proposition 3.6. For a degree statistics n = (n(c), c ≥ 0) with k(n) = 1, let D =

(D0, ..., Dn−1) be a size biasing of n. Let (U1, ..., Un) be i.i.d. Uniform[0, 1] random vari-

ables independent of D. For i ∈ [n], define

Bi :=


1 if Ui ≤

∑i−1
j=1(Dj−1)
n−i ,

0 otherwise.
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Let σ = inf(i ≥ 1 : Bi = 1). Then for α ≥ 173/2,

P

{
σ > α

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
,

and if n(1) = 0, then for all ` ≥ 1,

P {σ ≥ `} ≤ exp

(
−(l − 1)2

2|n|1

)
.

Theorem 1.4 is a consequence of these two propositions.

Proof of Theorem 1.4. Remark that for a size biasing D = (D1, ..., Dn) of n, we have

that for all i ∈ [n],
∑i−1

j=1Dj ≤
∑n

j=1Dj = n− 1. Thus,

1 +
∑i−1

j=1(Dj − 1)∑i−1
j=1(Dj − 1)

= 1 +
1∑i−1

j=1(Dj − 1)
≥ 1 +

1

n− i
=
n+ 1− i
n− i

.

Equivalently, we have that

1 +
∑i−1

j=1(Dj − 1)

n+ 1− i
≥
∑i−1

j=1(Dj − 1)

n− i
.

Remark that in Proposition 3.5, Ai = 1 if and only if Ui ≤
1+

∑i−1
j=1(Dj−1)
n+1−i and in

Proposition 3.6, Bi = 1 if and only if Ui ≤
∑i−1

j=1(Dj−1)
n−i . Therefore σ = inf(i ≥ 1 :

Bi = 1) stochastically dominates M = inf(i ≥ 1 : Ai = 1). It follows that for x ≥ 0,

P {|V | ≥ x} = P {M ≥ x+ 1} ≤ P {σ ≥ x+ 1} ≤ P {σ ≥ x} .

Then, by the first inequality of Proposition 3.6, we have that for all α ≥ 172/3,

P

{
|V | > α

|n|1
(|n|22 − n(1))1/2

}
≤ P

{
M > α

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
.
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Finally, to prove the second inequality of Theorem 1.4, we apply the second in-

equality of Proposition 3.6 and get that for degree statistics with n = (n(c), c ≥ 0)

with k(n) = 1 and n(1) = 0, for all ` ≥ 1,

P {|V | ≥ `} ≤ P {σ ≥ `+ 1} ≤ exp

(
− l2

2|n|1

)
.

The remainder of this chapter focuses on proving Propositions 3.5 and 3.6.

3.2.1 Proof of Proposition 3.5

Proposition 3.5 is a consequence of the following result. Let (T, V ) ∈u T
(1)
n and

d(Vi) = dT (Vi) for all i ≥ 0. Fix k ≥ 0. For d = (d1, ..., dk) ∈ Nk,

P {(d(V0), ..., d(Vk−1) = d, |V | > k − 1} = P {(D1, ..., Dk) = d, M > k} . (3.6)

From this, we can easily see that P {|V | > k} = P {M > k + 1} for k ≥ 0,

P {|V | > k − 1} =
∑

d=(d1,...,dk)

P {|V | > k − 1, (d(V0), ..., d(Vk−1)) = d}

=
∑

d=(d1,...,dk)

P {M > k, (D1, ..., Dk) = d} = P {M > k} .

Thus |V | d
= M − 1, Proposition 3.5 holds. We now prove (3.6) and begin by

studying P {(D1, ..., Dk) = d, M > k}. Since D = (D1, ..., Dn) is a size biasing,

(3.5) gives us that for d = (d1, ..., dk) satisfying w(d, c) ≤ n(c) for all c ≥ 0,

P {(D1, ..., Dk) = d} =
k∏
i=1

P {Di = di | (D1, ..., Di−1) = (d1, ..., di−1)}

=
k∏
i=1

di(n(di)− w((d1, ..., di−1), di)

n− 1− d1 − ...− di−1
. (3.7)
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Further, given (D1, ..., Dk) = d, we have that > k if and only if for each i ∈ [k],

Ui >
1 +

∑i−1
j=1(dj − 1)

n+ 1− i
.

Therefore,

P {M > k | (D1, ..., Dk) = d} =
k∏
i=1

P

{
Ui >

1 +
∑i−1

j=1(dj − 1)

n+ 1− i

}

=
k∏
i=1

n− 1− d1 − ...− di−1
n+ 1− i

,

where the last equality holds since n+1−i−(1+
∑i−1

j=1(dj−1)) = n−1−d1−...−di−1.

We then have that

P {(D1, ..., Dk) = d, M > k} =
k∏
i=1

di(n(di)− w((d1, ..., di−1), di)

n+ 1− i
. (3.8)

Next, we study the probability P {(d(V0), .., d(Vk−1)) = d, |V | > k − 1}. Below, we

write
∑

(t,v)
dt(vi−1)=di, i∈[k]

to mean that we are summing over marked trees (t, v) with

non zero degrees (dt(vi), 0 ≤ i ≤ k − 1) and satisfying P {S•k(T, V ) = (t, v)} > 0.

There are precisely d1...dk such marked trees. By Lemma 3.4, Propositions 2.11

and 2.12, we have that

P {(d(V0), .., d(Vk−1)) = d, |V | > k − 1}

=
∑
(t,v)

dt(vi−1)=di, i∈[k]

P { S•k(T, V ) = (t, v)}

=
∑
(t,v)

dt(vi−1)=di, i∈[k]

∣∣F(1)
qt

∣∣ ∣∣T(1)
n

∣∣−1

=
∑
(t,v)

dt(vi−1)=di, i∈[k]

(
‖qt‖

qt(c), c ≥ 0

)(
n

n(c), c ≥ 0

)−1
,
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where qt = (qt(c), c ≥ 0), with qt(0) = n(0) and qt(c) = n(c) − nt(c) for c ≥ 1.

Note that w(d, 0) = 0 since d are the degrees of the internal nodes of t. Further,

we are summing over marked trees that satisfy
∑

c≥1 nt(c) = k and nt(c) = w(d, c)

for c ≥ 1. From this we have that ‖qt‖ = n− k, so

P {(d(V0), .., d(Vk−1)) = d, |V | > k − 1}

= d1...dk
(n− k)!∏

c≥0(n(c)− w(d, c))!

∏
c≥0 n(c)!

n!
.

Suppose the following equality holds,

k∏
i=1

(n(di)− w((d1, ..., di−1), di)) =
∏
c≥0

n(c)!

(n(c)− w(d, c))!
, (3.9)

then by (3.8) and since (n− k)!/n! =
∏k

i=1 1/(n+ 1− i),

P {(d(V0), .., d(Vk−1)) = d, |V | > k − 1} =
k∏
i=1

di(n(di)− w((d1, ..., di−1), di)

n+ 1− i

= P {(D1, ..., Dk) = d, M > k} .

Therefore, we are left to prove (3.9). For b ≥ 0, define (ij(b), j ∈ [w(d, b)]) as strictly

increasing indices satisfying dij(b) = b. Note that w((d1, ..., dij(b)−1), b) = j − 1 for

j ∈ [w(d, b)]. We can conclude that

k∏
i=1

(n(di)− w((d1, ..., di−1), di)) =
∏
b≥0

w(d,b)∏
j=1

(n(b)− w((d1, ..., dij(b)−1), b))

=
∏
b≥0

w(d,b)∏
j=1

(n(b)− j + 1)

=
∏
b≥0

n(b)!

(n(b)− w(d, b))!
.
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3.2.2 Proof of Proposition 3.6.

For this proof, we construct a random variable σ̃ with the same distribution as σ

and prove the desired probability bounds on σ̃. The key tool is to use a Poisson

embedding as described in [7, Section 4.1]. We define a homogenous Poisson

process N on [0,∞) × [0, 1] of rate 1 per unit area, with points {(Sj, Uj), j ≥ 1}

where 0 < S1 < S2 < .... We treat the Sj’s as arrival times for the points Uj .

The (Sj, j ≥ 1) are a Poisson process on [0,∞) of rate 1 per unit length and the

(Uj, j ≥ 1) are i.i.d. Uniform[0, 1] random variables, independent of (Sj, j ≥ 1).

Let (d1, ..., dn) be a sequence satisfying {1 ≤ i ≤ n : di = c} = n(c) for each c ≥ 0.

Let l1 := 0 and for 1 ≤ i ≤ n, let li+1 := li + di/(n − 1) and ri = li + max(0, (di −

1)/(n − 1)) ≤ li+1. Define the intervals Ii := [li, li+1) and I−i := [li, ri). Note that

the disjoint intervals (Ii, i ∈ [n]) partition the interval [0, 1). Further, I−i ⊆ Ii for

each i ∈ [n].

Define, for ` ≥ 1, the index of the interval containing the point U` as J(`), thus

U` ∈ IJ(`). Now, define the sequence of indices (M(`), ` ≥ 1) satisfying

M(`+ 1) = inf

(
j > M(`) : Uj /∈

⋃̀
k=1

IJ(M(k))

)
,

and M(1) = 1. Then (M(`), ` ≥ 1) is the sequence of indices such that the points

(UM(`), ` ≥ 1) fall into distinct intervals (Ii, i ∈ [n]). Now, let (j(1), .., j(`)) be

a vector of distinct elements of {1, ..., n} and let (m(1), ...,m(`)) be an increasing

sequence of integers with m(1) = 1. Then

P {J(m(`)) = j(l), M(`) = m(`) | J(m(k)) = j(k), M(k) = m(k), ∀ k ∈ [`− 1]}

= P

{
Um(`) ∈ Ij(`), Uj ∈

`−1⋃
k=1

Ij(k) ∀ j ∈ {m(`− 1) + 1, ...,m(`)− 1}

}

=
dj(`)
n− 1

·

(∑`−1
k=1 dj(k)
n− 1

)m(`)−m(`−1)−1

.
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Now, if
∑`−1

k=1 dj(k) < n− 1, we have that

P {J(M(`)) = j(`) | J(m(k)) = j(k), M(k) = m(k), ∀ k ∈ [`− 1]}

=
∑
a≥1

P {J(M(`)) = j(`), M(`) = m(`− 1) + a | J(m(k)) = j(k), M(k) = m(k), ∀ k ∈ [`− 1]}

=
∑
a≥1

dj(`)
n− 1

·

(∑`−1
k=1 dj(k)
n− 1

)a−1

=
dj(`)

n− 1− dj(1) − ...− dj(`−1)
.

Therefore,

P {J(M(l)) = j(`) | J(M(k)) = j(k), ∀ k ∈ [`− 1]} =
dj(`)

n− 1− dj(1) − ...− dj(`−1)
.

Define the sequence (D(1), ..., D(n)) by

D(`) =


dJ(M(`)) if 1 ≤ ` ≤ n− n(0)

0 otherwise.

Then, remark that

P {D(`) = d | (D(1), ..., D(`− 1)) = (d1, ..., d`−1)}

= P
{
dJ(M(`)) = d

∣∣ (dJ(M(1)), ..., dJ(M(`−1))) = (d1, ..., d`−1)
}

=
∑
i∈[n]

P
{
J(M(`)) = i, di = d | (dJ(M(1)), ..., dJ(M(`−1))) = (d1, ..., d`−1)

}
.

Recallw((d1, ..., d`−1), d) = |{i ∈ [`−1] : di = d}|. Suppose (dJ(M(1)), ..., dJ(M(`−1))) =

(d1, ..., d`−1), then the number of indices i ∈ [n] \ {J(M(k), k ∈ [` − 1]} satisfying

di = d is given by n(d)− w((d1, ..., d`−1), d). Thus,

P {D(`) = d | (D(1), ..., D(`− 1)) = (d1, ..., d`−1)} =
d(n(d)− w((d1, ..., d`−1), d)

n− 1− d1 − ...− d`−1
,
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showing that the sequence (D(1), ..., D(n)) is is a size-biasing of n. Next, for ` ≥ 1,

define C` =
⋃`
k=1[rJ(k), lJ(k)). Then, for each k ≤ l, Uk ∈ IJ(k) and C` contains the

subinterval [rJ(k), lJ(k)) ⊂ IJ(k) of size 1/(n−1) subinterval of size 1/(n−1). Define

τ̃ = inf

(
` ≥ 1 : U` ∈

`−1⋃
k=1

IJ(k) \ C`−1

)
= inf

(
` ≥ 1 : U` ∈

`−1⋃
k=1

[lJ(k), rJ(k))

)
.

Recall that the indices (M(`), ` ≥ 1) are defined as the first indices of the se-

quence (Uj, j ≥ 1) that all fall into distinct intervals of (Ii, i ∈ [n]). Therefore,

τ̃ /∈ {M(`), ` ≥ 1} and CM(`) = ∪`k=1[rJ(M(k)), lJ(M(k))). For UM(k) ∈ IJ(M(k)), we can

think of [rJ(M(k)), lJ(M(k))] as a censored subinterval of IJ(M(k)) of size dJ(M(k))/(n−

1). Then, CM(`) is a union of censored subintervals and τ̃ is the first time a point

U` falls into a previously seen interval in
⋃`−1
k=1 IJ(k) but not in the censored region

C`−1.

Now, fix (j(1), ..., j(`)) a sequence of distinct elements of [n] and (m(1), ...,m(`))

an increasing sequence of integers with m(1) = 1. Assume that J(m(k)) = j(k)

and M(k) = m(k) for all k ∈ [` − 1], and τ̃ > m(l − 1). Then τ̃ ≤ M(`) holds

if and only if the first point among (Um, m > m(` − 1)) that doesn’t fall into

Cm(`−1) = ∪`−1k=1[rj(k), lj(k)), falls into

`−1⋃
k=1

IJ(M(k)) \ Cm(`−1) =
`−1⋃
k=1

Ij(k) \ Cm(`−1) =
`−1⋃
k=1

[lj(k), rj(k)).

Therefore, for U a Uniform[0, 1] random variable,

P { τ̃ < M(`) | τ̃ > M(`− 1), J(m(k)) = j(k), M(k) = m(k)∀ 1 ≤ k ≤ `− 1}

= P

{
U ∈

`−1⋃
k=1

[lj(k), rj(k))

∣∣∣∣∣ U /∈
`−1⋃
k=1

[rj(k), lj(k)+1)

}

=

∑`−1
k=1(dj(k) − 1)

n− 1

(
1− `− 1

n− 1

)−1
=

∑`−1
k=1(dj(k) − 1)

n
.
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Note that
∑`−1

k=1(dj(k) − 1)/n only depends on the values (dj(1), ..., dj(`−1)) and that

D(k) = dJ(M(k)) for all k ≥ 1. Therefore,

P { τ̃ ≤M(`) | D(1), ..., D(`− 1), τ̃ > M(`− 1)}

= P { τ̃ < M(`) | D(1), ..., D(`− 1), τ̃ > M(`− 1)}

=

∑`−1
k=1(D(k)− 1)

n− `
. (3.10)

Next, define σ̃ := sup(k ≥ 1 : τ̃ > M(k)). Note that σ̃ ≥ l if and only if

τ̃ > M(`). Thus,

P { σ̃ = ` | D(1), ..., D(`− 1), σ̃ > `− 1} = P { τ̃ ≤M(`) | D(1), ..., D(`− 1), τ̃ > M(`− 1)}

=

∑`−1
k=1(D(k)− 1)

n− `
.

Recall in the statement of Proposition 3.6, we defined σ := inf(i ≥ 1 : Bi = 1),

with

Bi :=


1 if Ui ≤

∑i−1
j=1(Dj−1)
n−i ,

0 otherwise,

where (Uj, j ≥ 1) are i.i.d. Uniform[0, 1] random variables and (D1, ..., Dn) is a

size-biasing of n. Therefore, for a Uniform[0, 1] random variable U ,

P {σ = ` | (D1, ..., D`−1), σ > `− 1}

= P

{
U ≤

∑`−1
j=1(Dj − 1)

n− `

∣∣∣∣∣ (D1, ..., D`−1), σ > `− 1

}

=

∑`−1
j=1(Dj − 1)

n− `
.
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We have that σ d
= σ̃ and therefore,

P {σ ≥ `} = P {σ̃ ≥ `} = P {τ̃ > M(`)} ≤ P {τ̃ > `} .

From this, we can deduce the second bound of Proposition 3.6. Note that if n(1) =

0, then for all di 6= 0 we have that di ≥ 2 and therefore, |[li, ri)| = (di−1)/(n−1) ≥

1/(n − 1). Further, if τ̃ > M(` − 1), then D(k) ≥ 2 for all 1 ≤ k ≤ ` − 1. Then, by

(3.10), for all ` ≥ 2,

P { τ̃ ≤M(`) | τ̃ > M(`− 1)} ≥ `− 1

n− `
.

From the above inequality and the fact that P {τ̃ > M(1)} = 1 as M(1) = 1, it

follows that

P {σ ≥ `} = P {τ̃ > M(`)} =
∏̀
k=2

P { τ̃ > M(k) | τ̃ > M(k − 1)}

=
∏̀
k=2

(1−P { τ̃ ≤M(k) | τ̃ > M(k − 1)})

≤
∏̀
k=2

(
1− k − 1

n− k

)
≤

`−1∏
k=1

(
1− k

n− k

)
.

We show by induction that for all ` ≥ 1,

P {σ ≥ `} ≤ exp

(
− (`− 1)2

2(n− 1)

)
,

which is precisely the second inequality in Proposition 3.6. The base case ` = 1 is

trivial. By the induction hypothesis and the fact that 1− x ≤ e−x, we have that

∏̀
k=1

(
1− k

n− k

)
=

(
1− `

n− `

) `−1∏
k=1

(
1− k

n− k

)
≤
(

1− `

n− `

)
exp

(
− (`− 1)2

2(n− 1)

)
≤ exp

(
−
(

`

n− `
+

(`− 1)2

2(n− 1)

))
.
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We can conclude the proof by noting that, since `/(n− `) ≥ `/(n− 1),

`

n− `
+

(`− 1)2

2(n− 1)
≥ `2 + 1

2(n− 1)
≥ `2

2(n− 1)
.

Next, we prove the first inequality of Proposition 3.6 by using the following

proposition.

Proposition 3.7. Let v =
∑

i:di≥2 d
2
i /(n− 1). Then for all α ≥ 173/2,

P

{
τ̃ > α

(n− 1)1/2

v1/2

}
≤ exp

(
−1

3

(
α2/3(n− 1)

v

)1/2
)

+ 2 exp

(
−α

2/3

24

)
.

The first inequality of Proposition 3.6 follows directly from the above propo-

sition since P {σ ≥ x} ≤ P {τ̃ > x} for x ≥ 1,
∑

i:di≥2 d
2
i = |n|22 − n(1) and |n|1 =

n − 1, therefore n−1
v

=
|n|21

|n|22−n(1)
. To prove Proposition 3.7 we will use the earlier

defined Poisson process N. For t ≥ 0, let N(t) := |N ∩ {[0, t]× [0, 1]}| be the num-

ber of points in the Poisson process N seen up to time t. Further, for 1 ≤ i ≤ n, let

Ni(t) := |N ∩ {[0, t] × [li, ri)}| be the number of points seen in the interval [li, ri)

up to time t. Remark that if for some 1 ≤ i ≤ n we have that Ni(t) ≥ 2, then by

construction τ̃ ≤ t. Define the stopping time

T := inf

(
t ≥ 0 : max

i∈[n]
Ni(t) ≥ 2

)
.

Note that τ̃ ≤ N(T ). Further, for any h ∈ N, if N(t) ≤ h and T ≤ t then τ̃ ≤ h,

hence

P {τ̃ > h} ≤ inf
t≥0

(P {N(t) > h}+ P {T > t}) . (3.11)

To bound P {N(t) > h}we use the following Poisson tail bound. For h ≥ t,

P {Poisson(t) > h} ≤ exp

(
−t
(
h

t
log

(
h

t

)
− h

t
+ 1

))
. (3.12)
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The proof of (3.12) can be found in [6, Page 23]. Next we proceed to bound

P {T > t}. Remark that (Ni(t), 1 ≤ i ≤ n) are independent random variables

and Ni(t) is Poisson(t(ri − li))-distributed. Thus,

P {T > t} = P {N(t) < τ̃} =
∏
i∈[n]
di≥2

P {Ni(t) ≤ 1} =
∏
i:di≥2

(1 + t(ri − li))e−t(ri−li).

Define p = (pi, 1 ≤ i ≤ n), where pi := di/2(n − 1). Recall that when di ≤ 1 we

have ri − li = 0 and for di ≥ 2, ri − li = (di − 1)/(n − 1) ≥ pi. Since the function

f(x) = (1 + x)e−x is decreasing for x ≥ 0, we have that

P {T > t} ≤
∏
i:di≥2

(1 + pit)e
−pit. (3.13)

Next, we bound the RHS using the following Lemma, based on Lemma 9 from [7].

Lemma 3.8. Let d = (d1, ..., dn) and let g(t,d) =
∏

i:di≥2(1 + pit)e
−pit, with pi =

di/2(n − 1). Define pmax = maxi∈[n] pi and dmax = maxi∈[n] di. For all 0 ≤ t <

1/pmax = 2(n− 1)/dmax,

log g(t,d) =
∑
k≥2

(−1)k+1

k

∑
i:di≥2

(
dit

2(n− 1)

)k
.

Further,

∣∣∣∣∣log g(t,d) +
∑
i:di≥2

(dit)
2

8(n− 1)2

∣∣∣∣∣ ≤ dmaxt

6(n− 1)− 3dmaxt
·
∑
i:di≥2

(dit)
2

4(n− 1)2
.

Proof. Recall that the expansion of log(1 + x) around 0 for |x| < 1 is given by

log(1 + x) =
∑
k≥1

(−1)k+1x
k

k
. (3.14)
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Note that for 0 ≤ t < 1/pmax,

∑
k≥2

1

k

∑
i:di≥2

(pit)
k ≤ n

∑
k≥2

(pmaxt)
k

k
<∞.

For 0 ≤ pmaxt < 1, by (3.14) and Tonelli’s theorem, we have that

log(g(t,d)) = log

( ∏
i:di≥2

(1 + pit)e
−pit

)
=
∑
i:di≥2

(log(1 + pit)− pit)

=
∑
i:di≥2

∑
k≥1

(−1)k+1

k
(pit)

k −
∑
i:di≥2

pit

=
∑
k≥2

(−1)k+1

k

∑
i:di≥2

(pit)
k.

This proves the equality in Lemma 3.8. Now, note that for k ≥ 2,

∑
i:di≥2

pki ≤ pk−2max

∑
i:di≥2

p2i . (3.15)

Therefore,

∑
k≥3

∑
i:di≥2

1

k
(pit)

k ≤

(∑
i:di≥2

(pit)
2

)∑
k≥3

(pmaxt)
k−2

k
≤

(∑
i:di≥2

(pit)
2

)
pmaxt

3(1− pmaxt)
.

Since

log g(t,d) =
∑
k≥3

(−1)k+1

k

∑
i:di≥2

(pit)
k − 1

2

∑
i:di≥2

(pit)
2,

we can then conclude that

∣∣∣∣∣log g(t,d) +
∑
i:di≥2

(pit)
2

2

∣∣∣∣∣ ≤∑
k≥3

∑
i:di≥2

1

k
(pit)

k ≤

(∑
i:di≥2

(pit)
2

)
pmaxt

3(1− pmaxt)
.

Replacing pi = di/2(n− 1) and pmax = dmax/2(n− 1) yields the desired inequality.
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Corollary 3.9. Let v =
∑

i:di≥2 d
2
i /(n− 1). For all 0 ≤ t ≤ (n− 1)/dmax,

g(t,d) ≤ exp

(
−vt2

24(n− 1)

)
.

Proof. Note that (dit)
2/(n− 1)2 = vt2/(n− 1), and for t ≤ (n− 1)/dmax,

dmaxt

6(n− 1)− 3dmaxt
≤ n− 1

3(n− 1)
=

1

3
.

Thus, by inequality in Lemma 3.8,

log g(t,d) ≤ dmaxt

6(n− 1)− 3dmaxt
·
∑
i:di≥2

(dit)
2

4(n− 1)2
−
∑
i:di≥2

(dit)
2

8(n− 1)2

≤ vt2

12(n− 1)
− vt2

8(n− 1)
= − vt2

24(n− 1)
.

Proof of Proposition 3.7. We begin by noting that when dmax = 1, then v = 0 and

τ̃
a.s.
= ∞. Thus, P {τ̃ >∞} = 0 and the non-negative upper bound in Propo-

sition 3.7 holds. For the rest of the proof we assume that dmax ≥ 2. Let v =∑
i:di≥2 d

2
i /(n− 1). By (3.11) and (3.13), we have that

P {τ̃ > h} ≤ inf
t≥0

(P {N(t) > h}+ P {T > t}) ≤ inf
t≥0

(P {N(t) > h}+ g(t,d)) .

Further, by (3.12) and Corollary 3.9,

P {τ̃ > h} ≤ inf
t≥0

(
exp

(
−t
(
h

t
log

(
h

t

)
− h

t
+ 1

))
+ exp

(
−vt2

24(n− 1)

))
.

Fix C ≥ 2. If dmax ≤
(∑

i:di≥2 d
2
i

)1/2
C−1 = ((n−1)v)1/2

C
, then for t = C(n−1)1/2

v1/2
,

exp

(
−vt2

24(n− 1)

)
= exp

(
−C2

24

)
.

49



Further, for h = 2t = 2C(n−1)1/2
v1/2

, we note that

t

(
h

t
log

(
h

t

)
− h

t
+ 1

)
= t (2 log(2)− 1) >

t

3
.

Therefore, we have that for fixedC ≥ 2 and dmax ≤
(∑

i:di≥2 d
2
i

)1/2
C−1 = ((n−1)v)1/2

C
,

P

{
τ̃ >

2C(n− 1)1/2

v1/2

}
≤ exp

(
−C

3

(n− 1)1/2

v1/2

)
+ exp

(
−C2

24

)
. (3.16)

Next, suppose that dmax >
(∑

i:di≥2 d
2
i

)1/2
C−1 = ((n−1)v)1/2

C
. Let m = arg maxi∈[n] di,

so dm = dmax ≥ 2. Recall that if for some K > 0 and i ∈ [n] we have that

Ni(K) ≥ 2, then τ̃ ≤ K. Therefore, for K > 0,

P {τ̃ > K} ≤ P {τ̃ > bKc} ≤ P {∀ i ∈ [n], Ni(bKc) ≤ 1}

≤ P {Nm(bKc) ≤ 1} = P {|∀ k ∈ [bKc] : Uk ∈ [lm, rm)| ≤ 1}

= P {Bin(bKc, rm − lm) ∈ {0, 1}}

= (1− (rm − lm))bKc−1(1− (rm − lm) + bKc(rm − lm)).

Now since dmax ≥ 2, we have that rm − lm = (dmax − 1)/(n − 1) ≥ dmax/2(n − 1).

Further, (n−1)1/2
v1/2

= (n−1)
(∑

i:di≥2 d
2
i

)−1/2 ≥ 1. Thus, forK ≥ 2C (n−1)1/2
v1/2

≥ 4, using

the fact that 1− x ≤ e−x and bKc − 1 > K/2, it follows that

P {τ̃ > K} ≤
(

1− dmax

2(n− 1)

)bKc−1(
1 + (bKc − 1)

dmax

n− 1

)
≤ exp

(
−K dmax

4(n− 1)

)(
1 + (bKc − 1)

dmax

n− 1

)
.

Next, using that (bKc−1)dmax

n−1 > Kdmax

2(n−1) ≥ 2, we have that 1 + (bKc−1)dmax

n−1 < 2Kdmax

n−1 .

Thus,

P {τ̃ > K} ≤ 2K
dmax

n− 1
exp

(
−K dmax

4(n− 1)

)
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Now, let K = xC(n−1)1/2
v1/2

where x ≥ 4. We suppose dmax > ((n−1)v)1/2
C

, thus

Kdmax/(n− 1) ≥ x. The function 2xe−x/4 is decreasing for x ≥ 4, thus

P

{
τ̃ > xC

(n− 1)1/2

v1/2

}
≤ 2xe−x/4. (3.17)

Finally, we combine the inequalities (3.16) and (3.17) such that we get a bound

independent of the value of dmax. Fix α ≥ 173/2 and let x = α2/3 ≥ 4 and C =

α1/3 > 2. Then, 2C ≤ α and xC = α. In any case, one bound of (3.16) or (3.17)

applies, thus,

P

{
τ̃ > α

(n− 1)1/2

v1/2

}
= P

{
τ̃ > xC

(n− 1)1/2

v1/2

}
≤ exp

(
−C

3

(n− 1)1/2

v1/2

)
+ exp

(
−C

2

24

)
+ 2xe−x/4

= exp

(
−α

1/3

3

(n− 1)1/2

v1/2

)
+ exp

(
−α

2/3

24

)
+ 2α2/3 exp

(
−α

2/3

4

)
.

Remark that for y ≥ 17, we have that e−y/24 + 2ye−y/4 ≤ 2e−y/24. We can thus

conclude that

P

{
τ̃ > α

(n− 1)1/2

v1/2

}
≤ exp

(
−α

1/3

3

(n− 1)1/2

v1/2

)
+ 2 exp

(
−α

2/3

24

)
.

3.3 Proof of Theorem 1.2

Below we briefly outline the proof of Theorem 1.2 using Theorem 1.4. Recall

Theorem 1.2.

Theorem 1.2. [4, Theorem 1.2.] Fix a probability distribution µ supported by N with

|µ|1 ≤ 1 and |µ|2 =∞. For n ∈ N, let Tn be a Bienaymé tree with offspring distribution

µ conditioned to have size n, and let Vn be a uniformly random node in Tn. Then

wid(Tn)/
√
n→∞, |Vn|/

√
n→ 0 and ht(Tn)/(

√
n log3 n)→ 0,
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where the convergence results hold both in probability and in expectation, as n→∞.

The main fact we use is that Bienaymé trees conditioned to have a fixed size

and degree statistics, are uniformly random trees with those degree statistics.

Therefore, for degree statistics n satisfying P {nTn = n} > 0, by conditioning that

nTn = n, we can apply Theorem 1.4 to Vn. That is, for α ≥ 173/2, we have

P

{
|Vn| ≥ α

|n|1
(|n|22 − n(1))1/2

| nTn = n

}
≤ exp

(
−α

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−α

2/3

24

)
. (3.18)

We further use the following proposition from [4, Proposition 2.3].

Proposition 3.10. Fix a probability distribution µ supported by N with |µ|1 ≤ 1 and

|µ|2 =∞. For n ∈ N, let Tn be a Bienaymé tree with offspring distribution µ conditioned

to have size n, and let nTn be the degree statistics of Tn. Then for any C > 0, there exists

c = c(C) > 0 such that P {|nTn|22 < C|nTn|1} < e−cn for all n sufficiently large.

Fix C > 0, then by Proposition 3.10, for h ≥ 0,

P {|Vn| ≥ h} = P
{
|Vn| ≥ h, |nTn|22 < C|nTn|1

}
+ P

{
|Vn| ≥ h, |nTn|22 ≥ C|nTn|1

}
≤ P

{
|nTn|22 < C|nTn|1

}
+ sup

n:|n|22≥C|n|1
P {|Vn| ≥ h | nTn = n}

≤ e−cn + sup
n:|n|22≥C|n|1

P {|Vn| ≥ h | nTn = n}

where c > 0 is a constant depending on C. Let ε > 0. By choosing an appropriate

C = C(ε) = 1 + ε4, we obtain that

P
{
|Vn| ≥ 63ε2(n− 1)1/2 log3 n

}
= O

(
1

n2

)
, (3.19)

we omit the computational details. Through similar reasoning and a few more

computations, it can be shown that E [|Vn|] = o(n1/2). The convergence results on
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the height of Tn rely on the following inequality. If we suppose that the height

of Tn is greater than some positive integer h, then Tn must contain at least one

node with height at least h. Then, since Vn is a uniformly random node of Tn,

P {|Vn| ≥ h | ht(Tn) ≥ h} ≥ 1/n. Using the fact that |Vn| ≥ h implies ht(Tn) ≥ h,

we then have

P {ht(Tn) ≥ h} =
P {ht(Tn) ≥ h}P {|Vn| ≥ h}
P {|Vn| ≥ h, ht(Tn) ≥ h}

≤ nP {|Vn| ≥ h} .

By combining (3.19) with the above inequality, it follows that

P
{

ht(Tn) ≥ 63ε2(n− 1)1/2 log3 n
}

= O

(
1

n

)
. (3.20)

Since this holds for any ε > 0, we get that ht(Tn)/((n − 1)1/2 log3 n) → 0 in prob-

ability. To show convergence in expectation, we note that ht(Tn) ≤ n − 1 and so

for any positive real h,

E [ht(Tn)] = E
[
ht(Tn)1[ht(Tn)<h]

]
+ E

[
ht(Tn)1[ht(Tn)≥h]

]
≤ h+ (n− 1)P {ht(Tn) ≥ h} .

Applying this inequality to h = 63ε2(n− 1)1/2 log3 n, combining it with (3.20) and

the fact that (3.20) holds for any ε > 0, we have that ht(Tn)/((n− 1)1/2 log3 n)→ 0

in expectation.

Lastly, we prove the convergence results on the width of Tn. Since Vn is a uni-

formly random node of Tn, if for some positive integer h, at least half of the nodes

of Tn have height h, then |Vn| ≥ h with probability at least 1/2. Now, fix ε > 0

and let n be sufficiently large such that E [|Vn|] ≤ ε2n1/2. Then by the above and

by applying Markov’s inequality,

1

2
P
{
|{u ∈ Tn : |u| ≥ εn1/2}| ≥ n

2

}
≤ P

{
|Vn| ≥ εn1/2

}
≤ E [|Vn|]

εn1/2
≤ ε. (3.21)
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Now, assume that at most half of the nodes of Tn have height greater that εn1/2.

Then there are over n/2 nodes within the first εn1/2 levels of Tn. In this case, the

width of Tn is at least wid(Tn) ≥ (n/2)/(εn1/2) = n1/2/(2ε). From this and (3.21),

it follows that

P

{
wid(Tn) ≥ n1/2

(2ε)

}
≥ P

{
|{u ∈ Tn : |u| ≥ εn1/2}| < n

2

}
≥ 1− 2ε.

Since this holds for arbitrary ε > 0, we can conclude that wid(Tn)/n1/2 → ∞ in

probability and in expectation. This concludes the proof of Theorem 1.2.
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Chapter 4

CONCLUSION

In this chapter, we briefly describe open problems and future research directions.

We begin by stating a possible generalisation of Theorem 1.5. Let n,m be degree

statistics with k(n) = k(m) = 1. We define the partial order n � m by the

following covering relation. We have n � m if there exists a, b ≥ 1 such that

for all c ≥ 0,

m(c) = n(c)− 1[c=a+b−1] + 1[c=a] + 1[c=b]. (4.1)

A possible extension of Theorem 1.5 is described in the following problem.

Problem 4.1. Let n,m be degree statistics with k(n) = k(m) = 1 and such that there

exists c1, c2 > 2 such that n(c1) > 0 and n(c2) > 0. Let (T, V ) ∈u T
(1)
n and (T ′,W ) ∈u

T
(1)
m . Does n �m imply |V | �st |W |?

To see that this statement is in fact a generalisation of Theorem 1.5, it suffices

to show that n � m, where n and m are defined as in the statement of Theorem

1.5. We can prove n �m by induction on the maximal degree dmax = max(c ≥ 0 :
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n(c) > 0) of n. Define n′ = (n′(c), c ≥ 0) such that

n′(c) =



n(2) + 1 if c = 2

n(dmax − 1) + 1 if c = dmax − 1

n(dmax)− 1 if c = dmax

n(c) otherwise.

It can be easily verified that n � n′, by taking a = dmax − 1 and b = 2. Then, by

the induction hypothesis, it follows that n � n′ �m.

Next, we mention future work around Theorem 1.2. Recall the conjectures and

problems stated by Janson on simply generated trees [11, Conjectures 21.5, 21.6

and Problems 21.7, 21.8].

Conjecture 1. Let w = (wk, k ≥ 0) be a weight sequence with w0 > 0 and wk > 0 for

some k ≥ 2. Let Tn be a simply generated tree of size nwith weight sequence w, whenever

n ≥ 0 satisfies Zn(w) > 0.

(1) If ν = 1 and σ2 =∞ then ht(Tn)/
√
n

p→ 0.

(2) If ν = 1 and σ2 =∞ then wid(Tn)/
√
n

p→∞.

(3) If ν < 1 then ht(Tn)/
√
n

p→ 0.

(4) If ν < 1 then wid(Tn)/
√
n

p→∞.

In the joint project with Addario-Berry, Brandenberger and Hamdan [4], we

describe how Theorem 1.4 can be applied to prove (2) and (4) and to prove a

modification of (1) and (3), with an additional log3 n term. It would be desirable

to see whether the convergence results on the height of |Vn| in Theorem 1.2 can

be stated without the additional log3 n factor, similarly for our modified version

of (3). Janson suggests that this would be possible in [11].
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To conclude, the above work describes new universal bounds on a random

node of a random tree and further bounds on the height of conditioned Bienaymé

trees. Our method for proving such bounds is to define a sampling procedure that

generates a random variable with the same law as the height of a random node

in a random tree with fixed degree statistics. We further adapt a Poissonization

trick from Camarri and Pitman [7] to trees with fixed degree statistics. While it

is notable that our bounds solve and almost solve conjectures from Janson [11,

Conjectures 21.5, 21.6 and Problems 21.7, 21.8], it would be desirable to further

improve our bounds on the heights of random trees.
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