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Abstract

This thesis investigates the invariant extended Kalman �lter (IEKF), a recently intro-

duced method for nonlinear state estimation on matrix Lie groups. The IEKF is well suited

to a particular class of systems, namely those with group-a�ne process models and invariant

measurement models. In fact, when these conditions are met, the IEKF is a locally asymptot-

ically convergent observer. However, in practice, process models are often not group-a�ne,

and measurement models are often not invariant. The e�ect of removing these assumptions

is investigated in this thesis. In particular, a 3D example is considered, with and with-

out bias estimation. Estimating bias renders the process model not group a�ne. Then,

a non-invariant measurement model is considered. Two di�erent techniques are proposed

to incorporate this measurement model into an IEKF, a standard approach using the non-

invariant model and a novel approach in which the measurement is preprocessed to force the

preprocessed measurement to be invariant. These practical extensions of the IEKF are tested

in simulation to determine the e�ectiveness of the IEKF for more general state estimation

problems. Lastly, batch estimation in the invariant framework is formulated. The problem

of interest is the simultaneous localization and mapping (SLAM) problem. A general deriva-

tion of the SLAM problem on matrix Lie groups is presented. Invariant estimation theory is

then leveraged. An inertial navigation example with bias estimation is then presented, with

testing done in simulation.
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Résumé

Cette thèse étudie le �lter de Kalman invariant (IEKF), une méthode récemment intro-

duite pour l'estimation d'état non linéaire sur des groupes de Lie matriciels. L'IEKF est

bien adapté à une classe particulière de systèmes, plus précisément ceux dotés de fonctions

a�nes et de fonctions d'observation invariantes. En fait, lorsque ces conditions sont satis-

faites, l'IEKF est un observateur localement asymptotiquement convergent. Cependant, en

situation pratique, ces conditions ne sont souvent pas satisfaites. Des scénarios ou ces condi-

tions ne sont pas satisfaites sont étudié ici. En particulier, un exemple 3D est considéré, avec

et sans estimation de biais dans le gyroscope. L'estimation du biais rend la fonction non-

a�née. Ensuite, une fonction d'observation non-invariante est considéré. Deux techniques

di�érentes sont proposées pour incorporer cette fonction d'observation dans un IEKF, une

approche standard utilisant la fonction non-invariante et une nouvelle approche dans laquelle

la mesure est prétraitée pour la forcer être invariante. Ces extensions pratiques du IEKF sont

testées en simulation pour déterminer son e�cacités pour des problèmes d'estimation d'état

plus généraux. En�n, une technique d'estimation par lot dans le cadre invariant est formulée.

Un intérêt particulier est porté au problème de la localisation et de la cartographie simulta-

nées (SLAM). Une dérivation générale du problème SLAM sur les groupes de Lie matriciels

est présentée. La théorie de l'estimation invariante est ensuite mise à pro�t. Un exemple de

navigation inertielle avec estimation du biais est ensuite présenté, avec des tests e�ectués en

simulation.
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Chapter 1

Introduction

The onboard computers of autonomous robots, such as unmanned aerial vehicles (UAV),

mobile robots, or autonomous underwater vehicles (AUV), run navigation, guidance, and

control algorithms that enable the robotic system to perform desired tasks. The navigation

algorithm is responsible for estimating the states of the robot. The guidance algorithm

considers planning the path the robot will take to complete its task. Lastly, the controller

computes control inputs, such as forces and torques, to be applied so that the robot follows

the desired trajectory. These three modules are of equal importance, and are intrinsically

linked.

This thesis is focused on the navigation problem, also commonly called the state esti-

mation problem. State estimation is the process of estimating the states of a system given

noisy and biased sensor data. For example, an UAV must typically maintain a robust and

accurate estimate of its position, velocity, and attitude in order to perform precision tasks,

such as parcel delivery or surveillance. However, the sensors onboard UAVs are often of lower

quality, to minimize the cost of the system, necessitating a state estimation algorithm that

can reliably estimate the position, velocity, and attitude of the UAV given low-qulity senor

data.

Several di�erent state estimation techniques exist, each with their advantages and disad-

vantages. Roughly speaking, they can be separated into batch algorithms, which typically

run o�ine, and sequential algorithms, which typically run in real time. Batch algorithms use

sensor data over the entire trajectory to in turn provide an estimate of the states over the

entire trajectory. Traditional batch algorithms include the (nonlinear) least-squares formula-

tion [3, Sec. 4.3] and the forward-backward smoother [3, Sec. 3.2.2] and Rauch-Tung-Striebel

smoother [3, Sec. 3.2.3]. Batch algorithms are especially useful when reconstructing scenes

for metrology or photogrammetry applications, for example. In addition, simultaneous lo-

calization and mapping (SLAM) algorithms are often batch algorithms that do not run in

1



real time.

In real-time applications, sequential state estimation methods are often preferred. The

most commonly used algorithms for real-time state estimation are approximations of the

Bayes �lter [4], such as the Kalman �lter, extended Kalman �lter (EKF), or sigma-point

Kalman �lter. Other real-time state estimation methods that leverage concepts from the

batch formulation, such as using a bundle of sensor data or iteration, include the sliding

window �lter [5], iterative extended Kalman �lter [3, Sec. 4.2.5], and iterative sigma-point

Kalman �lter [3, Sec. 4.2.10].

In industry, the EKF is often the algorithm of choice, due to its relative simplicity and its

track record of e�ectiveness. However, it does have its de�ciencies. In this thesis, a variant

of the EKF, the invariant extended Kalman �lter (IEKF) is considered. For a review of the

IEKF, see Chapter 3. The main idea behind the invariant �ltering framework is that certain

problems (i.e., so-called �left-invariant� problems) do not explicitly depend on a particular

inertial frame, and others (i.e., so-called �right-invariant� problems) do not explicitly depend

on a particular body-�xed frame. Not all estimation problems �t the invariant �ltering

framework, but when an estimation problem does, extremely appealing properties appear.

1.1 Thesis Objective

The objective of this thesis is to determine how the invariant �ltering framework can

be used to improve existing state estimation methods. In particular, the contribution of

this thesis is an overview of practical considerations of the IEKF and an extension of the

invariant estimation theory to the SLAM problem posed in a batch framework.

Another contribution of this thesis is to thoroughly summarize the theory behind the

IEKF. This includes some proofs that are missing from the literature. A major contribution

of this thesis is to compare the various error de�nitions that can be used in solving the

SLAM problem. This includes a general formulation for performing SLAM when the state

can be formulated as an element of a matrix Lie group. Modifying the error de�nitions leads

to Jacobians that may depend less, or not at all, on the state estimate. Lastly, this thesis

provides a thorough analysis of the practical implications of the IEKF. The theory behind

the IEKF is sound, but the assumptions made often do not hold in practice. Of note, a novel

method of using the IEKF in conjunction with a stereo camera is presented.

1.2 Thesis Overview

This thesis is structured as follows.

2



Chapter 2 summarizes mathematical concepts and notation that are used throughout

this thesis.

Chapter 3 outlines the IEKF. The relevant theorems and proofs are presented in con-

tinuous and discrete-time. The left-invariant extended Kalman �lter and right-invariant

extended Kalman �lter are then detailed.

In Chapter 4, several examples of the IEKF are presented to illustrate how to practically

implement an IEKF and to compare its performance to that of a standard multiplicative

extended Kalman �lter (MEKF).

In Chapter 5, a solution to the SLAM problem in the invariant framework is presented.

Simulation results are shown comparing the novel formulation to more traditional batch-

based solutions to the SLAM problem.

This thesis is concluded in Chapter 6, where a summary of the �ndings are presented,

along with recommended future work.
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Chapter 2

Preliminaries

2.1 Matrix Lie Groups

In many robotics applications, the states are an element of a matrix Lie groups. Any nav-

igation, guidance, or control algorithm should explicitly accommodate the matrix Lie group

nature of the states. As such, matrix Lie group properties and theory will be introduced

next.

2.1.1 Overview

This summary of matrix Lie group theory is based on Section 2 of [6]. A matrix Lie group

G, is composed of invertible n× n matrices that is closed under matrix multiplication. The

matrix Lie algebra associated with G, denoted g, is the tangent space around the identity

of G, denoted T1G. The tangent space of G at any X ∈ G is denoted TXG. The matrix

Lie algebra is a vector space closed under the operation of the matrix Lie bracket de�ned

[A,B] = AB− BA, ∀A,B ∈ g. Furthermore, XAX−1 ∈ g, ∀X ∈ G, ∀A ∈ g. Any A ∈ g can

be written as A = ξ∧ =
∑n

i=1 ξiBi, where {B1, . . . ,Bn} is a basis for g, also known as the

generators, and A = [ξ1, . . . , ξn]T ∈ Rn is the column matrix of coe�cients associated with

A. Alternatively, A∨ = ξ.

The exponential map takes elements in the Lie algebra and maps them to the Lie group.

For matrix Lie groups, the exponential map is simply the matrix exponential. The inverse

of the matrix exponential, the matrix logarithm, is also de�ned and maps elements of the

matrix Lie group to the matrix Lie algebra. In more detail,

X = exp (ξ∧)

4



and

ξ∧ = log(X)

where X ∈ G and ξ∧ ∈ g.

The matrix representation of the adjoint operator is used throughout this thesis. It is

not unique, as it depends on the parametrization. Denoting the adjoint representation of X
as Ad(X), then (Ad(X)ξ)∧ = Xξ∧X−1. This leads to the useful identity

X exp(ξ∧)X−1 = exp
(
(Ad(X)ξ)∧

)
. (2.1)

The adjoint representation of an element of the matrix Lie algebra can also be de�ned [1, 7].

Given ξ∧, ζ∧ ∈ g, the adjoint matrix satis�es ad(ζ)ξ = −ad(ξ)ζ and

ξ∧ζ∧ − ζ∧ξ∧ = (−ad(ζ)ξ)∧ . (2.2)

2.1.2 Uncertainty Representations

In standard linear vector spaces, uncertainty is simply additive, such that x = x̄ + δx,
where δx ∼ N (0,Σ). However, this is not applicable to matrix Lie groups, as they are not

closed under addition. Rather, a multiplicative uncertainty must be used [8]. This leads to

two distinct options, namely

X = X̄ exp (δξ∧) , (2.3)

X = exp (δξ∧) X̄, (2.4)

where δξ ∼ N (0,Σ). Note that X is not normally distributed. Two additional uncertainty

de�nitions can also be de�ned. They are

X = X̄ exp (−δξ∧) , (2.5)

X = exp (−δξ∧) X̄, (2.6)

de�ned as the left-invariant and right-invariant uncertainty representations, respectively.

They are named as such as they are consistent with left and right-invariant error de�nitions,

which are introduced in Chapter 3.

5



2.1.3 The Baker-Campbell-Hausdor� Formula

The Baker-Campbell-Hausdor� (BCH) formula is the solution to the equation [3]

z∧ = log (exp (a∧) exp (b∧)) .

The detailed solution is available in [3, pp. 230-232]. Herein only a �rst-order approximation

is needed, that being

log (exp (a∧) exp (b∧)) = a∧ + b∧.

This is exact in the case that [a∧,b∧] = 0.

2.1.4 Linearization

Any element of a matrix Lie group can be expressed using the exponential map, which

is in fact the matrix exponential,

X = exp (ξ∧) .

The matrix exponential itself is de�ned by a power series,

exp (ξ∧) =
∞∑
k=0

1

k!
(ξ∧)k

= 1 + ξ∧ +
(ξ∧)2

2
+

(ξ∧)3

6
+ . . .

Now, consider the case where ξ can be considered small. This small element of Rd is denoted

δξ and δX = exp (δξ∧). As δξ is already considered small, it is common to assume that

terms of order O(‖δξ‖2) can be neglected, leading to the approximation

δX ≈ 1 + δξ∧.

Thus, the uncertainty representations (2.3) and (2.4) can be approximated as

X = X̄(1 + δξ∧),

X = (1 + δξ∧)X̄,

respectively. Similarly for (2.5) and (2.6),

X = X̄(1− δξ∧),

X = (1− δξ∧)X̄.
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2.2 The Special Orthogonal Group SO(3)

The properties of SO(3) are from [3, Ch. 7]. Three dimensional rotations can be repre-

sented by the special orthogonal group SO(3),

SO(3) =
{

C ∈ R3×3 | CTC = 1, det C = +1
}
.

The matrix C is known as a direction cosine matrix (DCM). SO(3) has three degrees of

freedom for rotation. The Lie algebra associated with SO(3) is

so(3) =
{
φ× ∈ R3×3 | φ ∈ R3

}
,

where φ× is the skew-symmetric representation of φ,

φ× =

 φ1

φ2

φ3


×

=

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 .
The adjoint representation of an element of SO(3) is identically that element, Ad(C) = C.
Similarly, the adjoint representation of an element of so(3) is identical to that element,

ad(φ) = φ×. The closed form of the exponential map from so(3) to SO(3) is known as the

Rodrigues formula,

exp(φ×) = cosφ1 + (1− cosφ)aaT + sinφa×,

where φ = ‖φ‖ and a = φ/φ. The logarithmic map from SO(3) to so(3) is

log(C) = (aφ)× ,

where the angle φ is given by

φ = cos−1

(
tr(C)− 1)

2

)
+ 2πm

and the axis a is

a =
1

2 sin(φ)

 C2,3 − C3,2

C3,1 − C1,3

C1,2 − C2,1

 .
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2.3 The Special Euclidean Group SE(3)

Poses can be represented by the special euclidean group SE(3) [3, Ch. 7],

SE(3) =

{
T =

[
C r
0 1

]
∈ R4×4

∣∣∣∣ C ∈ SO(3), r ∈ R3

}
.

SE(3) has three degrees of freedom for rotation and three for translation, for a total of six.

The inverse of T is de�ned as

T−1 =

[
CT −CTr
0 1

]
.

The matrix Lie algebra associated with SE(3) is

se(3) =
{
Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6

}
,

where

ξ∧ =

[
ξφ

ξr

]∧
=

[
ξφ
×
ξr

0 0

]
∈ R4×4, ξφ, ξr ∈ R3.

Note that, in [3], ξ is de�ned in the opposite order, such that ξφ is below ξr. The convention

used here is adopted from [1]. The exponential map from se(3) to SE(3) is

exp (ξ∧) =

[
expSO(3)

(
ξφ
×
)

Jξr

0 1

]
,

where

J =
sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a×, (2.7)

where φ =
∥∥ξφ∥∥ and a = ξφ/φ. The logarithmic map from SE(3) to se(3) is

log(T) =

[
logSO(3)(C) J−1r

0 0

]
,

where

J−1 =
φ

2
cot

φ

2
1 +

(
1− φ

2
cot

φ

2

)
aaT − φ

2
a×. (2.8)

The adjoint representation of an element of SE(3) is

Ad(T) =

[
C 0

r×C C

]
∈ R6×6.
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The inverse of Ad(T) is

(Ad(T))−1 = Ad
(
T−1

)
=

[
CT 0
−CTr× CT

]
∈ R6×6.

The adjoint representation of an element of se(3) is

ad(ξ) =

[
ξφ
× 0

ξr× ξφ
×

]
.

2.4 The Group of Double Direct Isometries SE2(3)

Introduced in [9] and explored in detail in [10], SE2(3), the group of double direct isome-

tries, is

SE2(3) =

T =

 C v r
0 1 0

0 0 1

 ∈ R5×5

∣∣∣∣ C ∈ SO(3), v, r ∈ R3

 .

The matrix Lie algebra associated with SE2(3) is

se2(3) =
{
Ξ = ξ∧ ∈ R5×5 | ξ ∈ R9

}
,

where

ξ∧ =

 ξ
φ

ξv

ξr


∧

=

 ξ
φ× ξv ξr

0 0 0

0 0 0

 .
The exponential map from se2(3) to SE2(3) is

exp (ξ∧) =


expSO(3)

(
ξφ
×
)

Jξv Jξr

0 1 0

0 0 1

 ,
where J is given by (2.7). The logarithmic map from SE2(3) to se2(3) is

log(T) =

 logSO(3)(C) J−1v J−1r
0 0 0

0 0 0

 ,
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where J−1 is given by (2.8). The adjoint representation of an element of SE2(3) is

Ad(T) =

 C 0 0
v×C C 0
r×C 0 C

 .
The adjoint representation of an element of se2(3) is

ad(ξ) =

 ξ
φ× 0 0
ξv× ξφ

× 0
ξr× 0 ξφ

×

 .

2.5 Geometry

A reference frame Fa is de�ned by three physical basis vectors a−→
1, a−→

2, and a−→
3. In

particular, the vectrix F−→a can be de�ned as [11]

F−→a =

 a−→
1

a−→
2

a−→
3

 .
A physical vector u−→ can then be written as

u−→ = F−→
T
aua,

where u−→ ∈ P and ua ∈ R3 is the physical vector u−→ resolved in Fa. The orientation of Fb
relative to Fa is given by a DCM Cab ∈ SO(3). The relationship between u−→ resolved in Fa,
ua, and u−→ resolved in Fb, ub, is ua = Cabub.

2.6 Kinematics

The position of point z relative to point w is described by the physical vector r−→
zw.

The rate of change of r−→
zw with respect to Fa is denoted r−→

zw·a = v−→
zw/a. Similarly,

r−→
zw·a·a = v−→

zw/a·a = a−→
zw/a/a. These physical vectors can all then be resolved in a frame,

as appropriate. Poisson's equation is

Ċab = Cabω
ba
b

×
,
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where ωbab is the angular velocity of Fb relative to Fa resolved in Fb. When discretized,

Poisson's equation becomes

Cabk = Cabk−1
exp

((
Tω

bk−1a
bk−1

)×)
,

where T = tk − tk−1.

2.7 Optimization

Consider a standard optimization problem

x? = argmin
x∈Rn

J(x),

where x? is the minimizing solution of the cost function J(x). Two types of optimization

problems are of interest here, namely linear and nonlinear least squares.

2.7.1 Linear Least Squares

Consider a linear system that can be written

Ax = b,

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. De�ne the error to be ρ(x) = Ax− b. The objective
function to be minimized is

J(x) =
1

2
ρ(x)Tρ(x). (2.9)

The solution minimizing (2.9) is

x? =
(
ATA

)−1 (ATb
)
.

Explicitly computing the inverse of ATA can be computationally costly. To alleviate these

costs, a Cholesky factorization can be used to decompose ATA. This leads to

ATA = LLT,

where L is lower triangular. The linear least squares problem can then be rewritten as

LLTx? = ATb.
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Letting LTx? = z, it is possible to solve

LTz = ATb

for z via forwards substitution. The minimizing solution x? is then found by solving Lx? = z
using backward substitution.

2.7.2 Nonlinear Least Squares

This section is based on [3]. In practice, the error function ρ(x) is often not linear, and

is instead some nonlinear function of x. In this case, a Taylor series expansion of the cost

function is used to linearize the problem. Consider a function f(·) : Rn → Rm. A Taylor

series expansion of f is

f(xop + δx) = f(xop) +

[
∂f(x)

∂x

∣∣∣∣
x=xop

]
δx +

1

2
δxT

[
∂2f(x)

∂x∂xT

∣∣∣∣
x=xop

]
δx +O

(∥∥δx3
∥∥) ,

where xop is the operating point. The Jacobian of f is

∇f(xop) =
∂f(x)

∂x

∣∣∣∣
x=xop

and the Hessian of f is

∇2f(xop) =
∂2f(x)

∂x∂xT

∣∣∣∣
x=xop

.

2.7.2.1 Newton's Method [3]

Taking a second-order Taylor series expansion of the cost function J(x) yields

J(xop + δx) = J(xop) +∇J(xop)δx +
1

2
δxT∇2J(xop)δx. (2.10)

To minimize the cost function, the derivative of (2.10) with respect to δx is computed and

set to zero,

∇J(xop) + δx?T∇2J(xop) = 0,

∇2J(xop)δx? = −∇J(xop). (2.11)

Assuming the Hessian is positive de�nite and therefore invertible, (2.11) can be solved. The

operating point is then updated,

xop ← xop + δx?.
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To improve the performance of Newton's method, it is common to multiply the update by a

step length α > 0, leading to

xop ← xop + αδx?.

A backtracking procedure is used to �nd the step length [12, p. 37]. This method is

summarized in Algorithm 2.1. The parameter c is typically chosen to be small (approximately

10−4) and ρ is tuned to a desired convergence rate. In Newton methods, ᾱ = 1.

Algorithm 2.1

1: Select ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1)
2: Set α← ᾱ
3: while J(xop + αδx?) > J(xop) + cα∇J(xop)Tδx? do
4: α← ρα
5: end while

2.7.2.2 Gauss-Newton Method

The Gauss-Newton method [3] is applicable when the cost function is a nonlinear least

squares cost function,

J(x) =
1

2
ρ(x)Tρ(x).

A �rst-order Taylor series expansion yields

J(xop + δx) =
1

2
ρ(xop + δx)Tρ(xop + δx),

2J(xop + δx) = (ρ(xop) +∇J(xop)δx)T (ρ(xop) +∇J(xop)δx)

= ρ(xop)Tρ(xop) + ρ(xop)T∇J(xop)δx + (∇J(xop)δx)T ρ(xop)+

(∇J(xop)δx)T∇J(xop)δx. (2.12)

Once again, the derivative of (2.12) is taken with respect to δx and set to zero, yielding

2
∂J(xop + δx)

∂δx
= 2ρ(xop)T∇J(xop) + 2δxT∇J(xop)T∇J(xop) = 0,

leading to

∇J(xop)T∇J(xop)δx = −∇J(xop)Tρ(xop).

This is often written (
HHT

)
δx = −HTρ(xop),
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where

H = ∇J(xop).

This is iterated until convergence using the technique described in Section 2.7.2.1 .

2.7.2.3 Levenberg-Marquardt Method

A small modi�cation to the Gauss-Newton method leads to the Levenberg-Marquardt

method [13, 14, 15], (
HHT + λdiag(HHT)

)
δx = −HTρ(xop),

where λ ≥ 0 is a damping factor. This damping factor allows the condition of the Hessian

to be improved. Multiplying by the diagonal elements of the Hessian allows for the scaling

of the problem to be preserved. The parameter λ can be found using a technique such as

the one shown in Algortihm 2.2. The value of λ is chosen such that the computed update

will result in a decrease of the objective function. If the initial λ is too low, it is increased.

Algorithm 2.2

1: Set λ = 0
2: Compute δx?
3: Set λ ≥ 0
4: while J(xop + δx?) > J(xop) do
5: λ← 10λ
6: Recompute δx?
7: end while

2.8 State Estimation

A robotic system can be described by a set of states. These states often include position,

attitude, and any other quantity that can help describe the motion of the body. Two methods

of state estimation are considered herein, namely the Kalman �lter and batch estimation.

2.8.1 Extended Kalman Filtering

The Kalman �lter and its nonlinear variant, the extended Kalman �lter (EKF), are two

of the most common state estimation algorithms used today. Only the EKF is presented
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here. Consider nonlinear process and measurement models given by

ẋ = f(x,u,w), (2.13)

yk = gk(xk, vk), (2.14)

where x ∈ Rnx is the state, u ∈ Rnu is the interoceptive measurement, w ∈ Rnu is the

interoceptive measurement, or process, noise, yk ∈ Rny is the exteroceptive measurement at

time tk and vk ∼ N (0,Rk) is the exteroceptive measurement noise. The process noise is

white and band-limited, and, when discretized, is normally distributed with zero mean and

covariance Qk.

To implement an EKF, the process and measurement models must be linearized about

an operating point. A �rst-order Taylor series expansion of (2.13) yields

δẋ = Aδx + Lδw,

where

A =
∂f(x,u,w)

∂x

∣∣∣∣
x̄,u,w̄

,

L =
∂f(x,u,w)

∂w

∣∣∣∣
x̄,u,w̄

,

are the process model Jacobians evaluated at the nominal solution. Similarly, a �rst-order

Taylor series expansion of (2.14) yields

δyk = Hkδxk + Lkδvk,

where

Hk =
∂gk(xk, vk)

∂xk

∣∣∣∣
x̄k,v̄k

,

Mk =
∂gk(xk, vk)

∂vk

∣∣∣∣
x̄k,v̄k

,

are the measurement model Jacobians evaluated at the nominal solution. In an EKF, the

nominal noise values are assumed to be w̄ = 0 and v̄k = 0, and the nominal value of the

state is the best estimate provided by the �lter.

As interoceptive measurements are available, the state estimate is predicted by integrating
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(2.13),

x̌k = x̂k−1 +

ˆ tk

tk−1

f(x̂,u, 0)dt,

where (̂·) is used to denote the corrected state and (̌·) is used to denote the predicted state.

The covariance is predicted using

P̌k = Ak−1Pk−1AT
k−1 + Lk−1Qk−1LT

k−1.

When exteroceptive measurements are available, the state estimate is corrected. The cor-

rection equations are

Kk = P̌kHT
k (HkP̌kHT

k + MkŘkMT
k )−1,

x̂k = x̌k + Kk(yk − g(x̌k, 0)),

Pk = (1−KkHk)P̌k(1−KkHk)
T + KkMkRkMT

kKT
k ,

where Kk is the Kalman gain.

2.8.2 Batch Estimation [3, pp.127-143]

Batch estimation is useful in situations when the estimation algorithm does not need to

run in real time. Once again, only the nonlinear variant of batch estimation is presented.

The state at each time step composes the trajectory

x =


x0

x1

...

xn

 ,

where t ∈ [t0, tn]. The discrete-time kinematics are given by

xk = fk−1 (xk−1,uk−1,wk−1) ,

where uk−1 are the interoceptive measurements, or inputs, and wk−1 ∼ N (0,Qk−1) is zero-

mean white noise. The exteroceptive measurements are modelled as

yk = gk(xk) + vk
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where vk ∼ N (0,Rk). A batch maximum a posteriori method is be used to solve the batch

estimation problem. The input errors are

eu,0(x) = x̌0 − x0.

eu,k(x) = fk−1(xk−1,uk−1, 0)− xk, k = 1, . . . , n,

where x̌0 is the initial state estimate, x̌0 ∼ N (0,P0). The errors in the exteroceptive mea-

surements are

ey,k(x) = yk − gk(xk), k = 1, . . . , n.

The objective function to minimize is

J(x) =
1

2
eu,0(x)TW−1

u,0eu,0(x) +
1

2

n∑
k=1

eu,k(x)TW−1
u,keu,k(x) +

1

2

n∑
k=1

ey,k(x)TW−1
y,key,k(x),

where Wu,0, Wu,k, and Wy,k are weighting matrices related to the error distribution. The

error is deemed Gaussian, as it is assumed that it arises only due to the presence of Gaussian

noise in the measurements. Further de�ning

e(x) =



eu,0(x)
...

eu,n(x)

ey,1(x)
...

ey,n(x)


,

and Wu = diag(Wu,0,Wu,1, . . . ,Wu,n), Wy = diag(Wy,1, . . . ,Wy,n) and W = diag(Wu,Wy),

the objective function is rewritten as

J(x) =
1

2
e(x)TW−1e(x).

To minimize this objective function, linearize the errors about an operating point xop. The

linearized prior error has the form

eu,0(x) = eu,0(xop)− F2
0δε0,
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where δεk is the error between the operating and truth trajectory. The linearized input error

has the form

eu,k(x) = eu,k(xop) + F1
kδεk−1 − F2

kδεk.

The linearized measurement error has the form

ey,k(x) = ey,k(xop)−Hkδεk.

By stacking the estimation errors

δx =


δε0

...

δεn

 ,
the linearized system can then be written

e(x) = e(xop)− Γδx,

where

Γ =

[
A−1

H

]
,

where

A−1 =


F2

0

F1
1 F2

1

. . . . . .

F1
n−1 F2

n−1

 ,
and

H =


H1

. . .

Hn

 .
The linearized objective function is

J(x + xop) = (e(xop) + Γδx)TW−1(e(xop) + Γδx) (2.15)

Minimizing (2.15) with respect to δx yields the Gauss-Newton update,

(
ΓTW−1Γ

)
δx = ΓTW−1e(xop),

which can be iteratively solved for the minimizing solution δx?.
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2.9 Summary

The tools presented in this chapter are used throughout this thesis. The invariant �l-

tering theory applies directly to problems de�ned on matrix Lie groups. Matrix lie group

theory, along with knowledge of geometry and kinematics, are used to build models. The

optimization techniques detailed here are extensively used in solving SLAM problems and

are essential to understanding the material presented in Chapter 5. Lastly, this thesis builds

on several well established state estimation techniques.
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Chapter 3

Invariant Extended Kalman Filtering

For many robotics applications, the extended Kalman �lter (EKF) is the state estima-

tion algorithm of choice. Unlike its linear counterpart, the EKF does not have any global

convergence properties. The EKF, when treated as an observer, has been shown to have

locally convergent error dynamics when the initial error in the state estimate is su�ciently

small [16, 17]. This is due to the fact that, in general, the Jacobians used in an EKF depend

on the states. As these states are not known, only the best estimate can be used. When

this estimate is far from the true state, the Jacobians can be inaccurate, leading to poor

�lter performance, and, in some cases, divergence. However, in practice, the EKF is often

su�cient, as demonstrated by its pervasiveness in many state estimation applications.

In recent years, Barrau and Bonnabel have introduced the invariant extended Kalman

�lter (IEKF) [1], building on the theory of symmetry-preserving observers on matrix Lie

groups [18, 19]. The IEKF exploits the fact that, in robotics, the estimated states are not

elements of a linear vector space, but are rather elements of a matrix Lie group. For a

certain class of systems, known as group-a�ne systems, Barrau and Bonnabel show that a

careful de�nition of the error leads to state-independent error dynamics [1]. This implies

the process model Jacobian is state independent. Furthermore, for speci�c measurement

models, the measurement model Jacobian is also state-independent. Using the fact that the

Jacobians are state-independent, it can be shown that the IEKF is a locally asymptotically

stable observer, no matter the trajectory. An estimate for x(t), denoted x̂(t), is said to be

locally asymptotically stable if ∀ε > 0,∃δ(ε) > 0 such that

‖x(0)− x̂(t)‖ < δ(ε) =⇒ ‖φ(t, x(0), x̂(t))‖ < ε,∀t ≥ 0
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and ∃η > 0 such that

‖x(0)− x̂(t)‖ < η =⇒ lim
t→∞
‖φ(t, x(0), x̂(t))‖ = 0.

.

In this chapter, the IEKF theory is presented, along with relevant proofs. The continuous-

time [1] and discrete-time [2] variants are shown. For each, both the left-invariant extended

Kalman �lter (LIEKF) and right-invariant extended Kalman �lter (RIEKF) are presented.

3.1 Invariant Filtering in Continuous Time

This section is a summary of the results from [1]. In addition, the proofs for a right-

invariant error de�nition are included here. Let G ⊂ Rn×n be a matrix Lie group. Denote

its matrix Lie algebra g ⊂ Rd×d. Suppose the evolution of the system can be described by

the di�erential equation

Ẋ(t) = F(X(t),u(t)) + X(t)W(t), (3.1)

where u(t) ∈ Rnu is an input variable, X(t) ∈ G is the state, and W(t) ∈ g is band-limited

white noise. The noise in Rd is W(t)∨ = w(t). The argument of time will be suppressed

throughout for brevity. When discretized, the noise at time tk is wk ∼ N (0,Qk). An

alternative model is Ẋ(t) = F(X(t),u(t)) + W(t)X(t), however, problems found in real-world

applications almost never have this form. As such, the form given in (3.1) is exclusively

considered for the remainder of this thesis. The function F (X,u) is said to be group a�ne

if it satis�es

F (X1X2,u) = F (X1,u) X2 + X1F (X2,u)− X1F (1,u) X2, (3.2)

where X1, X2 ∈ G.
Consider the true state X and the estimated state X̂. The left and right-invariant errors

are

δXL = X−1X̂, (3.3)

δXR = X̂X−1, (3.4)

respectively. The errors are said to have state-independent propagation if their derivative

with respect to time satis�es the di�erential equation

δẊ = G (δX,u) . (3.5)
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Theorem 3.1. For (3.1), where noise has been neglected, the following three statements are

equivalent.

1. The left invariant error propagation (3.3) is state independent.

2. The right invariant error propagation (3.4) is state independent.

3. Equation (3.2) is satis�ed.

Note that the case of left and right-invariant functions is captured by (3.2). The proofs

shown below are based on [1, 9]. Proof It will be shown that 1 =⇒ 3. The proof will use

the identity

d

dt
X−1 =

d

dt

(
X−1XX−1

)
=

d

dt
X−1 + X−1 d

dt

(
XX−1

)
=

d

dt
X−1 + X−1ẊX−1 + X−1X

d

dt
X−1

= −X−1ẊX−1. (3.6)

Given the left-invariant error (3.3) and using (3.6), write (3.5) as

G
(
X−1
a Xb,u

)
=

d

dt

(
X−1
a Xb

)
=

d

dt
X−1
a Xb + X−1

a Ẋb

= −X−1
a ẊaX−1

a Xb + X−1
a F (Xb,u)

= −X−1
a F (Xa,u) X−1

a Xb + X−1
a F (Xb,u) , (3.7)

where Xa,Xb ∈ G. Letting Xb = X2 and Xa = 1, (3.7) is

G (X2,u) = −F (1,u) X2 + F (X2,u) . (3.8)

Next, let Xb = X1X2 and Xa = X1 in (3.7) to get

G
(
X−1

1 X1X2,u
)

= −X−1
1 F (X1,u) X−1

1 X1X2 + X−1
1 F (X1X2,u) ,

G (X2,u) = −X−1
1 F (X1,u) X2 + X−1

1 F (X1X2,u) . (3.9)
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Equating (3.8) and (3.9),

−X−1
1 F (X1,u) X2 + X−1

1 F (X1X2,u) = −F (1,u) X2 + F (X2,u) ,

X−1
1 F (X1X2,u) = X−1

1 F (X1,u) X2 + F (X2,u)− F (1,u) X2,

F (X1X2,u) = F (X1,u) X2 + X1F (X2,u)− X1F (1,u) X2,

which is (3.2). Thus, 1 =⇒ 3. Proving 2 =⇒ 3 is analogous. To prove 3 =⇒ 1, begin

with (3.2) and rearrange to yield

F (X1X2,u) = X1F (X2,u) + F (X1,u) X2 − X1F (1,u) X2,

X−1
1 F (X1X2,u) = F (X2,u) + X−1

1 F (X1,u) X2 − F (1,u) X2,

−X−1
1 F (X1,u) X2 + X−1

1 F (X1X2,u) = F (X2,u)− F (1,u) X2. (3.10)

Letting X1 = Xa and X2 = X−1
a Xb, (3.10) becomes

−X−1
a F (Xa,u) X−1

a Xb + X−1
a F

(
XaX−1

a Xb,u
)

= F
(
X−1
a Xb,u

)
− F (1,u) X−1

a Xb,

−X−1
a ẊaX−1

a Xb + X−1
a Ẋb = F

(
X−1
a Xb,u

)
− F (1,u) X−1

a Xb. (3.11)

Using (3.6) and de�ning X−1
a Xb to be the left-invariant error δXL, (3.11) is

d

dt
X−1
a Xb + X−1

a Ẋb = G
(
δXL,u

)
,

d

dt

(
X−1
a Xb

)
= G

(
δXL,u

)
,

δẊL = G
(
δXL,u

)
.

which is (3.5). Thus, 3 =⇒ 1. The proof that 3 =⇒ 2 is similar.

Theorem 3.2. Consider the error δX between two trajectories and let A be de�ned such

that

G(exp (ξ∧)) = Aξ +O(‖δξ‖2).

Let ξ(0) be de�ned such that exp (ξ(0)∧) = δX(0). If ξ is de�ned for t > 0 by the linear

di�erential equation
d

dt
ξ = Aξ, (3.12)

then

δX = exp (ξ∧) , ∀t ≥ 0.

Theorem 3.2 implies that the nonlinear error can be recovered exactly from a time-varying
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linear di�erential equation. The proof of this theorem can be found in [1].

Theorems 3.1 and 3.2 form the basis of invariant �ltering. Building on these theorems,

it can be shown that the IEKF is a locally asymptotically stable observer. The proof, which

can be found in [1], is outside the scope of this thesis. However, it can be understood through

an analogy with the Kalman �lter. For a linear system, the Kalman �lter is asymptotically

stable, meaning the norm of the error goes to zero as time goes to in�nity. The regular EKF

does not have the same stability characteristics because the di�erential equation describing

the evolution of the error is only accurate to �rst order. However, as seen in (3.12), the

linearized error propagation in an IEKF is exact. As such, the stability properties of the

IEKF is then more akin to the linear Kalman �lter. Note, this is just a high-level overview

of why the IEKF possess such stability properties. The proof in [1] should be consulted for

a rigorous explanation of local asymptotic stability.

3.2 Invariant Filtering in Discrete Time

The discrete-time invariant extended Kalman �lter was introduced in [2]. However, only

the left-invariant case is presented. Here, both the left and right-invariant cases are con-

sidered. The proofs shown herein are also either incomplete or missing in the literature

[20, 21]. The proofs are similar to those presented in Section 3.1. However, the de�nition of

a group-a�ne function is di�erent for a discrete-time process model, and Theorem 3.1 must

be altered.

Consider the discrete-time system

Xk = Fk−1(Xk−1,uk−1,wk−1). (3.13)

Equation (3.13) represents the most general case, as using (3.13) allows for the noise to enter

the system in a physically meaningful way. However, an approximation is often used to ease

derivations. This approximation makes use of the uncertainty representations described in

Section 2.1.2. Recall the de�nition of the left-invariant error (3.3). Letting Fk−1(Xk−1,uk−1)

be the true state, the perturbed state can be written as

Xk = Fk−1(Xk−1,uk−1) exp
(
w∧k−1

)
. (3.14)

Similarly, for a right-invariant error,

Xk = exp
(
w∧k−1

)
Fk−1(Xk−1,uk−1). (3.15)
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The discrete-time model must be group a�ne. As the group-a�ne de�nition neglects noise,

the choice of model is irrelevant. Choosing the discrete-time model (3.13), a discrete-time

group a�ne function satis�es

F (X1X2,u, 0) = F (X1,u, 0) F (1,u, 0)−1 F (X2,u, 0) , (3.16)

where the subscripts k have been dropped.

Theorem 3.3. For (3.14) or (3.15), where noise has been neglected, the following three

statements are equivalent:

1. There exists a function G such that F(X2,u)−1F(X1,u) = G(X−1
2 X1,u).

2. There exists a function G such that F(X2,u)F(X1,u)−1 = G(X2X−1
1 ,u).

3. Equation (3.16) is satis�ed.

Moreover, for each u ∈ Rnu , there exists a matrix A ∈ Rd×d such that ∀ξ ∈
Rd, G (exp (ξ∧) ,u) = exp

(
(Aξ)∧

)
.

The proofs for this theorem can be partly found in [20, 21]. A partial proof is presented

here. Proof : To prove 1 =⇒ 3, begin with F(Xb,u)−1F(Xa,u) = G(X−1
b Xa,u) and let

Xa = X2 and Xb = 1. Then,

F(1,u)−1F(X2,u) = G(X2,u). (3.17)

Now, let Xb = X1 and Xa = X1X2 giving

F(X1,u)−1F(X1X2,u) = G(X−1
1 X1X2,u) = G(X2,u). (3.18)

Equating (3.17) and (3.18) yields

F(X1,u)−1F(X1X2,u) = F(1,u)−1F(X2,u),

F(X1X2,u) = F(X1,u)F(1,u)−1F(X2,u),

which is 3.

To show 3 =⇒ 1, begin with

F(Xa,u)F(1,u)−1F(Xb,u) = F(XaXb,u),

F(Xa,u)G(Xb,u) = F(XaXb,u),

G(Xb,u) = F(Xa,u)−1F(XaXb,u).
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Letting Xa = X2 and Xb = X−1
2 X1, then

G
(
X−1

2 X1

)
= F(X2,u)−1F(X1,u),

which is 1.

To prove 2 =⇒ 3, similarly begin with F(Xb,u)F(Xa,u)−1 = G(XbX−1
a ,u) and let

Xb = X1 and Xa = 1. Then,

F(X1,u)F(1,u)−1 = G(X1,u). (3.19)

Now, let Xb = X1X2 and Xa = X2 giving

F(X1X2,u)F(X2,u)−1 = G(X1X2X−1
2 ,u) = G(X1,u). (3.20)

Equating (3.19) and (3.20) yields

F(X1X2,u)F(X2,u)−1 = F(X1,u)F(1,u)−1,

F(X1X2,u) = F(X1,u)F(1,u)−1F(X2,u),

which is 3.

To show 3 =⇒ 2, begin with

F(Xa,u)F(1,u)−1F(Xb,u) = F(XaXb,u),

G(Xa,u)F(Xb,u) = F(XaXb,u),

G(Xa,u) = F(XaXb,u)F(Xb,u)−1.

Letting Xa = X1X−1
2 and Xb = X2, then

G
(
X1X−1

2

)
= F(X1,u)F(X2,u)−1,

which is 1.

The proof that for each u ∈ Rnu , there exists a matrix A ∈ Rd×d such that ∀ξ ∈
Rd, G (exp (ξ∧) ,u) = exp

(
(Aξ)∧

)
is out of the scope of this thesis, but can be found in [1].

The input u is generally absorbed by A, but it may also vanish in the derivation.
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3.3 Invariant Extended Kalman Filtering

This section, along with Sections 3.4 and 3.5, summarizes in more detail some main

results from [1] and [2], in which the authors outline how to implement the IEKF. As with

any Kalman �lter, the states are predicted using the input u and corrected using some

measurement yk ∈ Rny . Throughout this thesis, X̌ and X̂ are used to denote the estimated

state after the prediction and correction steps, respectively.

The continuous-time prediction step is

˙̌X = F(X̂,u, 0), (3.21)

˙̌P = AP̂ + P̂AT + LQLT. (3.22)

The method to �nd A and L is described in Sections 3.4.1 and 3.5.1 for left and right-

invariant errors, respectively. In practice, (3.21) and (3.22) must be integrated using some

numerical integration method, such as an Euler integration or a Runge-Kutta method. The

discrete-time prediction is

X̌k = Fk−1(X̂k−1,uk−1, 0), (3.23)

P̌k = Ak−1P̂k−1AT
k−1 + Lk−1Qk−1LT

k−1. (3.24)

The discrete-time Jacobians are derived in Sections 3.4.2 and 3.5.2 for left and right-invariant

errors, respectively. The correction step is performed when a measurement yk is available.
The left and right-invariant measurement models considered in this thesis are

yL
k = Xkbk + vk, (3.25)

yR
k = X−1

k bk + vk, (3.26)

respectively, where bk is some known vector and vk ∼ N (0,Rk). Typically, a �rst-order

Taylor series expansion of the measurement model leads to the measurement model and

noise Jacobians Hk and Mk. Here an alternative method is used, where the innovation is

linearized. The cases for both the left and right-invariant measurement models are covered

in Sections 3.4 and 3.5, respectively. The Kalman gain at time tk is computed using

Kk = P̌kHT
k (HkP̌kHT

k + MkRkMT
k )−1. (3.27)
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The covariance update is

P̂k = (1−KkHk)P̌k(1−KkHk)
T + KkMkRkMT

kKT
k . (3.28)

3.4 Left-Invariant Extended Kalman Filter

The LIEKF is used for a left-invariant measurement model of the form (3.25). Multiple

vector measurements may be used, but only one is shown here. The measurement model is

left-invariant because, in the absence of noise,

yk = Xkbk,

X′kyk = X′k (Xkbk) ,

ỹk = X̃kbk,

where X′k is arbitrary element of G. The left-invariant error is given by (3.3). This error is

left-invariant because the error is invariant to left multiplication by an element of G,

δXL = (X′X)
−1
(

X′X̂
)
,

= X−1X′−1X′X̂

= X−1X̂,

where X′ ∈ G.
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3.4.1 Continuous-Time Prediction

The error propagation, found by computing the time-derivative of (3.3), leads to an

equation of the form

δẊL =
d

dt
(X−1X̂)

=
d

dt
X−1X̂ + X−1 ˙̂X

= −X−1ẊX−1X̂ + X−1 ˙̂X

= −X−1ẊδXL + X−1 ˙̂X

= −X−1(F (X,u) + XW)δXL + X−1F
(

X̂,u
)

= X−1
(

F
(

X̂,u
)
− F (X,u) δXL

)
−WδXL

= X−1
(
F
(
XδXL,u

)
− F (X,u) δXL

)
−WδXL. (3.29)

Rearranging part of (3.29) using (3.2) where X1 = X and X2 = δXL,

δẊL = X−1
(
XF
(
δXL,u

)
− XF (1,u) δXL

)
−WδXL

= F
(
δXL,u

)
− F (1,u) δXL −WδXL. (3.30)

Equation (3.30) is then linearized by letting δXL ≈ 1 + δξL∧ . The noise is linearized by

letting w = w̄ + δw, where δw = δW∨. As the noise is assumed band-limited and white,

w̄ = 0 and w = δw. The exact linearization depends on the function F(X,u), but, neglecting

second order terms, it will have the form

δξ̇L = AδξL + Lδw. (3.31)

As guaranteed by Theorem 3.1, as (3.1) is group a�ne, the left-invariant error propagation

(3.30), in the absence of noise, is state independent. This remains true even when linearizing.

Thus, A will be state-independent. However, no guarantees are made regarding L.
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3.4.2 Discrete-Time Prediction

Here, the discrete-time model consistent with a left-invariant error, given by (3.14), is

used. The left-invariant error at time tk is

δX̌L
k = X−1

k X̌k

=
[
F (Xk−1,uk−1) exp

(
w∧k−1

)]−1 F
(

X̂k−1,uk−1

)
= exp

(
−w∧k−1

)
[F (Xk−1,uk−1)]−1 F

(
X̂k−1uk−1

)
. (3.32)

Assuming the system satis�es (3.16), Theorem 3.3 states that

[F (Xk−1,uk−1)]−1 F
(

X̂k−1uk−1

)
= G

(
X−1
k−1X̂k−1,uk−1

)
= G

(
δXL

k−1,uk−1

)
= G

(
exp

(
δξL

k−1

∧
)
,uk−1

)
= exp

((
Ak−1δξ

L
k−1

)∧)
. (3.33)

Substituting (3.33) into (3.32) and letting wk−1 = w̄k−1+δwk−1, where w̄k−1 = 0, a �rst-order
approximation of the error is

δX̌L
k = exp

(
−δw∧k−1

)
exp

((
Ak−1δξ

L
k−1

)∧)
, (3.34)

exp
(
δξ̌L

k

∧
)

= exp
((
−δwk−1 + Ak−1δξ

L
k−1

)∧)
, (3.35)

δξ̌L
k = Ak−1δξ

L
k−1 − δwk−1, (3.36)

where Lk−1 = 1. This is a �rst order approximation because the BCH formula was used to

go from (3.34) to (3.35).

3.4.3 Discrete-Time Correction

In the seminal IEKF literature [1], the left-invariant update is

X̂k = X̌k exp ((Kkzk)∧) ,

which is not consistent with the left-invariant error de�nition. The authors remedy this by

negating the measurement Jacobian Hk, which in turn negates the gain Kk. This approach

is not used here, and an update consistent with the left-invariant error de�nition is used.
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This left-invariant correction is

X̂k = X̌k exp
(
− (Kkzk)∧

)
. (3.37)

This form emerges from rearranging the de�nition of the left-invariant error. The left-

invariant error between the predicted and corrected state is δXL
k = X̂−1

k X̌k. Rearranging

leads to

δXL
k = X̂−1

k X̌k,

X̂kδXL
k = X̌k,

X̂k = X̌kδXL
k

−1

= X̌k exp
(
(Kkzk)∧

)−1

= X̌k exp
(
− (Kkzk)∧

)
,

which is (3.37). The innovation zk can be written as

zk = X̌−1
k (yk − y̌k) (3.38)

= X̌−1
k (Xkbk + vk − X̌kbk)

= δX̌L
k

−1bk + X̌−1
k vk − bk. (3.39)

The innovation is written as (3.38) to ensure that the left-invariant error appears in (3.39).

To linearize (3.39), as in the prediction step, let δX̌L
k

−1
= 1− δξ̌L

k

∧
, and vk = v̄k + δvk with

v̄k = 0,

zk =
(

1− δξ̌L
k

∧
)

bk + X̌−1
k δvk − bk. (3.40)

= −δξ̌L
k

∧bk + X̌−1
k δvk. (3.41)

Lastly, (3.41) must be rearranged such that it can be written as

zk = Hkδξ̌
L
k + Mkδvk, (3.42)

where Mk = X̌−1
k . The measurement model Jacobian Hk will only depend on the known

vector bk.
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3.5 Right-Invariant Extended Kalman Filter

The RIEKF is to be used for a right-invariant measurement model of the form (3.26).

Multiple vector measurements may be used, but only one is shown here. The measurement

model is right-invariant because, in the absence of noise,

yk = X−1
k bk,

X′−1
k yk = X′−1

k

(
X−1
k bk

)
= (XkX′k)

−1 bk,

ỹk = X̃−1
k bk.

where X′k is an arbitrary element of G. The right-invariant error is given by (3.4). This error

is right-invariant because it is invariant to right multiplication by an element of G,

δXR =
(

X̂X′
)

(XX′)−1

= X̂X′X′−1X−1

= X̂X−1.

where X′ ∈ G.

3.5.1 Continuous-Time Prediction

The error propagation, found by computing the time-derivative of (3.4), leads to an

equation of the form

δẊR =
d

dt

(
X̂X−1

)
=

˙̂XX−1 + X̂
d

dt
X−1

=
˙̂XX−1 − X̂X−1ẊX−1

= F
(

X̂,u
)

X−1 − δXR (F (X,u) + XW) X−1

=
(

F
(

X̂,u
)
− δXRF (X,u)

)
X−1 − δXRXWX−1

=
(

F
(

X̂,u
)
− δXRF (X,u)

)
X−1 − X̂WX̂−1δXR. (3.43)
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Rearranging part of (3.43) using (3.2) where X1 = δXR and X2 = X,

δẊR =
(
F
(
δXR,u

)
X− δXRF (1,u) X

)
X−1 − X̂WX̂−1δXR

= F
(
δXR,u

)
− δXRF (1,u)− X̂WX̂−1δXR. (3.44)

As in the left-invariant case, (3.44) is linearized by letting δXR ≈ 1 + δξR∧ , W = δW, and

neglecting second order terms. The exact linearization depends on the function F(X,u), but

it will have the form

δξ̇R = AδξR + Lδw, (3.45)

where δw = δW∨.

3.5.2 Discrete-Time Prediction

Here, the discrete-time model consistent with a right-invariant error, given by (3.15), is

used. The right-invariant error at time tk is

δX̌R
k = X̌kX−1

k

= F
(

X̂k−1,uk−1

) [
exp

(
w∧k−1

)
F (Xk−1,uk−1)

]−1

= F
(

X̂k−1,uk−1

)
[F (Xk−1,uk−1)]−1 exp

(
−w∧k−1

)
(3.46)

From (3.46), the result of Theorem 3.3 can now be used to yield

δX̌R
k = F

(
X̂k−1,uk−1

)
[F (Xk−1,uk−1)]−1 exp (−wk−1

∧)

=
[
G
(

X−1
k−1X̂k−1,uk−1

)]−1

exp
(
−w∧k−1

)
=
[
G
(
δXR

k−1

−1
,uk−1

)]−1

exp
(
−w∧k−1

)
=
[
G
(

exp
(
−δξR

k−1

∧
)
,uk−1

)]−1

exp
(
−w∧k−1

)
= [exp

(
−
(
Ak−1δξ

R
k−1

)∧)
]−1 exp

(
−w∧k−1

)
= exp

((
Ak−1δξ

R
k−1

)∧)
exp

(
−w∧k−1

)
= exp

((
Ak−1δξ

R
k−1 − wk−1

)∧)
. (3.47)
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Letting δX̌R
k = exp

(
δξ̌R

k

∧
)
, a �rst-order approximation of (3.47) is

exp
(
δξ̌R

k

∧
)

= exp
((

Ak−1δξ
R
k−1 − wk−1

)∧)
,

δξ̌R
k = Ak−1δξ

R
k−1 + Lk−1wk−1.

where Lk−1 = −1.
The previous derivation uses a mathematically consistent uncertainty representation

when injecting noise into the system. However, this approach does not properly represent

the way noise typically enters systems. Noise typically enters in a way much more consistent

with a left-invariant error de�nition, as will be seen in Chapter 4. Therefore, an alternate

derivation is presented, where the discrete-time noisy kinematics are given by (3.14). The

right-invariant error at time tk is

δX̌R
k = X̌kX−1

k

= F
(

X̂k−1,uk−1

)
[F (Xk−1,uk−1) exp (wk−1

∧)]
−1

= F
(

X̂k−1,uk−1

)
exp (−wk−1

∧) [F (Xk−1,uk−1)]−1

= F
(

X̂k−1,uk−1

)
exp (−wk−1

∧)
[
F
(

X̂k−1,uk−1

)]−1

F
(

X̂k−1,uk−1

)
[F (Xk−1,uk−1)]−1 .

(3.48)

Given that F
(

X̂k−1uk−1

)
∈ G, and using the adjoint identity (2.1), (3.48) can be written as

δX̌R
k = exp

[
−
(
Ad
(

F
(

X̂k−1,uk−1

))
wk−1

)∧]
F
(

X̂k−1,uk−1

)
[F (Xk−1,uk−1)]−1 . (3.49)

For ease of notation, let Ad(F̂) = Ad
(

F(X̂k−1,uk−1)
)
. From (3.49), the result of Theorem 3.3
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can now be used to yield

δX̌R
k = exp

(
−
(
Ad(F̂)wk−1

)∧)
F
(

X̂k−1,uk−1

)
[F (Xk−1,uk−1)]−1

= exp

(
−
(
Ad(F̂)wk−1

)∧)[
G
(

X−1
k−1X̂k−1,uk−1

)]−1

= exp

(
−
(
Ad(F̂)wk−1

)∧)[
G
(
δXR

k−1

−1
,uk−1

)]−1

= exp

(
−
(
Ad(F̂)wk−1

)∧)[
G
(

exp
(
−δξR

k−1

∧
)
,uk−1

)]−1

= exp

(
−
(
Ad(F̂)wk−1

)∧)
[exp

(
−
(
Ak−1δξ

R
k−1

)∧)
]−1

= exp

(
−
(
Ad(F̂)wk−1

)∧)
exp

((
Ak−1δξ

R
k−1

)∧)
. (3.50)

Letting δX̌R
k = exp

(
δξ̌R

k

∧
)
and using the BCH formula, a �rst-order approximation of (3.50)

is

exp
(
δξ̌R

k

∧
)

= exp

(
−
(
Ad(F̂)wk−1

)∧)
exp

((
Ak−1δξ

R
k−1

)∧)
≈ exp

((
Ak−1δξ

R
k−1 − Ad(F̂)wk−1

)∧)
,

δξ̌R
k = Ak−1δξ

R
k−1 + Lk−1wk−1.

where Lk−1 = −Ad(F̂).

3.5.3 Discrete-Time Correction

The right-invariant update in the literature is

X̂k = X̌k exp ((Kkzk)∧) ,

which is not consistent with the right-invariant error de�nition. An update consistent with

the right-invariant error de�nition is used. This right-invariant correction is

X̂k = exp
(
− (Kkzk)∧

)
X̌k. (3.51)

This form emerges from rearranging the de�nition of the right-invariant error. The right-

invariant error between the predicted and corrected state is δXR
k = X̌kX̂−1

k . Rearranging
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leads to

δXR
k = X̌kX̂−1

k ,

δXR
k X̂k = X̌k,

X̂k = δXR
k

−1X̌k

= exp
(
(Kkzk)∧

)−1 X̌k

= exp
(
− (Kkzk)∧

)
X̌k,

which is (3.51).

The innovation zk can be written as

zk = X̌k (yk − y̌k) (3.52)

= X̌k

(
X−1
k bk + vk − X̌−1

k bk
)

= δX̌R
k bk − bk + X̌kvk. (3.53)

The innovation is written as (3.52) to ensure that the right-invariant error appears in (3.53).

To linearize (3.53), let δX̌R
k ≈ 1 + δξ̌R

k

∧
and vk = v̄k + δvk with v̄k = 0. Neglecting second

order terms, (3.53) is then

zk ≈
(

1 + δξ̌R
k

∧
)

bk − bk + X̌kδvk

= δξ̌R
k

∧bk + X̌kδvk, (3.54)

Lastly, (3.54) must be rearranged such that it can be written as

zk = Hkδξ̌
R
k + Mkδvk, (3.55)

where Mk = X̌k. Once again, the measurement model Jacobian Hk is state independent, as

it only depends on the known vector bk.

3.6 Summary

Table 3.1 o�ers a summary of some key equations that di�er between the standard (ex-

tended) Kalman �lter, MEKF, LIEKF, and RIEKF.

The key driving force behind the forms of the LIEKF and RIEKF stem from the form

of the measurement model. The measurement model dictates which IEKF is used. In

particular, if yk is left invariant, then a left-invariant innovation, error, and state correction

36



Error De�nition Innovation State Correction

KF/EKF δx = x− x̂ zk = y− y̌k x̂k = x̌k + Kkzk
MEKF δX = XX̂−1 zk = y− y̌k X̂k = exp ((Kkzk)∧) X̌k

LIEKF δXL = X−1X̂ zk = X̌−1
k (yk − y̌k) X̂k = X̌k exp (−(Kkzk)∧)

RIEKF δXR = X̂X−1 zk = X̌k(yk − y̌k) X̂k = exp (−(Kkzk)∧) X̌k

Table 3.1: Summary of the key KF/EKF, MEKF, LIEKF, RIEKF equations.

should be used. On the other hand, if yk is right invariant, then a right-invariant innovation,

error, and state correction should be used. Using the correct invariant formulation will lead

to matrices A, or Ak−1, and Hk being state-estimate independent.

Note, although A, or Ak−1, and Hk will be state independent, the invariant framework

does not assure L, or Lk−1, and Mk will be state independent.
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Chapter 4

Practical Implications of the IEKF

Several applied examples of the IEKF can be found in the literature. Barrau and

Bonnabel provide examples of the IEKF applied to two problems in [1]. In [22], three

di�erent applications of the IEKF are presented. However, no results were shown. A case

study, clearly demonstrating the geometric advantages of the IEKF is presented in [23]. An

IEKF applied to scan matching-aided navigation is shown in [24]. A quaternion-based IEKF

is applied to a spacecraft attitude estimation problem in [25]. An IEKF is used as a state

estimator for a bipedal robot in [26], which includes bias estimation. The IEKF has also been

used to improve on the classic EKF-SLAM solution [27]. The popular multi-state constrained

Kalman �lter [28] is formulated in an invariant framework, including bias estimation, in [29].

However, some questions remained unanswered. In this chapter, a sample problem is used to

illustrate the performance of the IEKF in both simulation and using experimental data. A

3D problem, where the state is an element of SE(3), is considered. The goal of this chapter

is to answer four questions left at least partially unanswered in the literature, in order to

better explain the practical implications of the IEKF. These questions are as follows.

1. Given a left-invariant measurement model, is it more advantageous to use a LIEKF than

an MEKF, and given a right-invariant measurement model, is it more advantageous to

use a RIEKF than an MEKF?

2. What is the e�ect of process and measurement noise? How quickly do the convergence

properties of the IEKF claimed in [1, 2] break down?

3. How can the IEKF be used in situations when the measurement model isn't left or

right-invariant?

4. How can bias estimation be performed in an invariant framework?
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Figure 4.1: Problem setup.

To answer the �rst two questions, a sample problem is presented, followed by some

simulation results. The sample problem is then modi�ed in Section 4.2 to �t a realistic

measurement model. This new sample problem is then tested on simulated and experimental

data. Lastly, the sample problem is once again modi�ed to incorporate bias, followed by

simulation results. This will build on the work presented in , [9], [26] and [29].

4.1 Sample Problem: SE(3)

4.1.1 System Modelling

Consider a body free to translate and rotate in 3D space. Let Fa be a global frame and

Fb be a frame which rotates with the body. Point z moves with the body, while point w is

a reference point. The problem setup is illustrated in Figure 4.1. The estimated states are

rzwa and Cab. The pose can be represented as an element of SE(3) as

Tab =

[
Cab rzwa
0 1

]
.

The kinematics of this problem are

Ċab = Cabω
ba×

b ,

ṙzwa = vzw/aa .
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In matrix form, the kinematics are

Ṫab = Tab$
∧
b ,

where $b =
[
ωbab

T vzw/ab

T
]T
. The body is equipped with a rate gyro which measures

u1
b = ωbab − w1

b ,

where w1
b is band-limited white noise. When discretized, w1

bk
∼ N (0,Q1

k). The body is also

equipped with a velocity sensor that measures

u2
b = vzw/ab − w2

b ,

where w2
b is band-limited white noise. When discretized, w2

bk
∼ N (0,Q2

k). Rearranging and

substituting into the kinematics leads to

Ċab = Cab

(
u1
b + w1

b

)×
,

ṙzwa = Cab

(
u2
b + w2

b

)
.

Incorporating the measurement model, the kinematics in matrix form are

Ṫab = Tab (ub + wb)
∧ ,

where ub =
[

u1
b
T u2

b
T
]T

and wb =
[

w1
b
T w2

b
T
]T
. Throughout this chapter, the subscripts

on Tab are dropped to be concise.

4.1.2 Left-Invariant Extended Kalman Filter Derivation

In order to derive a LIEKF, the exteroceptive measurement model must be left invariant.

In this case, approriate measurements are position measurements, which could be from a

GPS receiver, for example. The discrete-time measurement model is[
yak
0

]
=

[
rzkwa + vak

1

]
= Tk

[
0
1

]
+

[
vak
0

]
, (4.1)

where vak ∼ N (0,Rk).

The left-invariant error δT = T−1T̂ is used because the measurement model is left invari-
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ant. The error propagation is

δṪ = Ṫ−1T̂ + T−1 ˙̂T

= −T−1ṪT−1T̂ + T−1T̂u∧b
= −T−1T (ub + wb)

∧ T−1T̂ + δTu∧b
= − (ub + wb)

∧ δT + δTu∧b . (4.2)

To linearize (4.2), let δT ≈ 1 + δξ∧, δT−1 ≈ 1− δξ∧, and wb = δwb. Neglecting second order

terms, (4.2) is then approximated as

d

dt
(1 + δξ∧) = (1 + δξ∧) u∧b − (ub + δwb)

∧ (1 + δξ∧) ,

δξ̇∧ = u∧b + δξ∧u∧b − (ub + δwb)
∧ − (ub + δwb)

∧ δξ∧

= δξ∧u∧b − u∧b δξ
∧ − δw∧b . (4.3)

Using the identity (2.2), (4.3) is rewritten as

δξ̇∧ = (−ad(ub)δξ)∧ − δw∧b ,

which in turn can be written as

δξ̇ = −ad(ub)δξ − δwb.

Therefore, A = −ad(ub) and L = −1. Notice that A is only a function of the measurement

ub.
When a position measurement yak is available, the state estimate is corrected. This

correction has the form

T̂k = Ťk exp
(
− (Kkzk)∧

)
.

The innovation is [
zk
0

]
= Ť−1

k

([
yak
1

]
−

[
y̌ak
1

])

= Ť−1
k

(
Tk

[
0
1

]
+

[
vak
0

]
− Ťk

[
0
1

])

= δŤ−1
k

[
0
1

]
+ Ť−1

k

[
vak
0

]
−

[
0
1

]
. (4.4)
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Linearizing (4.4) by letting δŤ−1
k ≈ 1− δξ̌∧k and vak = δvak ,[

zk
0

]
≈
(
1− δξ̌∧k

) [ 0
1

]
+ Ť−1

k

[
δvak

0

]
−

[
0
1

]

= −δξ̌∧k

[
0
1

]
+ Ť−1

k

[
δvak

0

]

= −

[
δξ̌φ

×
δξ̌rk

0 0

][
0
1

]
+ Ť−1

k

[
δvak

0

]

= H̃δξ̌k + Ť−1
k

[
δvak

0

]
, (4.5)

where

H̃ =

[
0 −1
0 0

]
.

Noting that the bottom row of (4.5) is only zeros, it can be written

zk = Hδξ̌k + Mkδvak

where

H =
[

0 −1
]

and Mk = ČT
abk

. Notice that H is constant.

4.1.3 Right-Invariant Extended Kalman Filter Derivation

In order to derive a RIEKF, the exteroceptive measurement model must be right invari-

ant. In this case, appropriate measurements are landmark measurements resolved in (i.e.

observed in) the body frame, which could be from a LIDAR or camera, for example. In

reality, the measurement model depends on the sensor. However, for the sake of simplicity,

the exteroceptive measurements are modelled as relative landmark locations. This ensures

the measurement model is actually right-invariant. Let point pi be associated with the ith

landmark. The position of the ith landmark relative to point w resolved in Fa is rpiwa . The

landmark sensor is assumed to measure rpizb . Figure 4.2 displays the geometry of the problem.

The discrete-time measurement model is then[
yibk
1

]
=

[
CT
abk

(rpiwa − rzkwa ) + vibk
1

]
= T−1

k

[
rpiwa

1

]
+

[
vibk
0

]
, (4.6)
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Figure 4.2: Problem setup, where the blue crosses are the observed landmarks.

where vibk ∼ N (0,Ri
k), i = 1, . . . ,m, where m is the number of landmarks.

The right-invariant error δT = T̂T−1 is used. The error propagation is

δṪ =
˙̂TT−1 + T̂Ṫ−1

= T̂u∧b T−1 − T̂T−1ṪT−1

= T̂u∧b T−1 − T̂T−1T (ub + wb)
∧ T−1

= T̂ (ub − ub − wb)
∧ T−1

= −T̂w∧b T̂−1δT

= −
(
Ad(T̂)wb

)∧
δT. (4.7)

To linearize (4.7), let δT ≈ 1 + δξ∧ and wb = δwb. Neglecting second order terms, (4.7) is

then

d

dt
(1 + δξ∧) = −

(
Ad(T̂)δwb

)∧
(1 + δξ∧) ,

δξ̇∧ = −
(
Ad(T̂)δwb

)∧
,

δξ̇ = −Ad(T̂)δwb. (4.8)

Therefore, A = 0 and L = −Ad(T̂). Notice that A is constant.

When a relative landmark measurement yibk is available, the state estimate is corrected.

This correction has the form

T̂k = Ťk exp
(
− (Kkzk)∧

)
.
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The innovation associated with the ith landmark is[
zik
0

]
= Ťk

([
yibk
1

]
−

[
y̌ibk
1

])

= Ťk

(
T−1
k

[
rpiwa

1

]
+

[
vibk
0

]
− Ť−1

k

[
rpiwa

1

])

= δŤk

[
rpiwa

1

]
+ Ťk

[
vibk
0

]
−

[
rpiwa

1

]
. (4.9)

Linearizing (4.9) by letting δŤk ≈ 1 + δξ̌∧k and vbk = δvbk ,[
zik
0

]
≈
(
1 + δξ̌∧k

) [ rpiwa
1

]
+ Ťk

[
δvibk

0

]
−

[
rpiwa

1

]

= δξ̌∧k

[
rpiwa

1

]
+ Ťk

[
δvibk

0

]

=

[
δξ̌φk

×
δξ̌rk

0 0

][
rpiwa

1

]
+ Ťk

[
δvibk

0

]

=

[
δξ̌φk

×
rpiwa + δξ̌rk

0

]
+ Ťk

[
δvibk

0

]

=

[
−rpiwa ×δξ̌φk + δξ̌rk

0

]
+ Ťk

[
δvibk

0

]

= Hiδξ̌k + Ťk

[
δvibk

0

]
, (4.10)

where

H̃ =

[
−rpiwa × 1

0 0

]
.

Noting that the bottom row of (4.10) is full of zeros, it can be written

zik = Hiδξ̌k + Mkδvibk

where

Hi =
[
−rpiwa × 1

]
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and Mk = ČT
abk

. For the m landmarks,

H = row
i=1,...,m

([
−rpiwa × 1

])
(4.11)

and Mk = diag
(
ČT
abk
, . . . , ČT

abk

)
. Once again, notice that H is constant, because rpiwa , i =

1, . . . ,m are constant and known a priori.

4.1.4 MEKF Solutions

Throughout this section, the results are compared to that of a standard multiplicative

extended Kalman �lter (MEKF). A MEKF is a variant of the EKF better suited for attitude

estimation. The Jacobians for the MEKF are presented here, but no derivation is given.

The errors are de�ned as δC = C̄T
abCab and δr = rzwa − r̄zwa . Two di�erent MEKFs must

be used for the two di�erent measurement models. The �rst MEKF, which uses the left-

invariant measurements (4.1), is referred to as MEKF-L. The MEKF using the right-invariant

measurements (4.6) is referred to as MEKF-R. The process model Jacobians for both are

A =

[
−u1

b
× 0

−Ĉabu2
b
× 0

]
, L =

[
1 0
0 Ĉab

]
.

Note that A depends on the attitude estimate, which was not the case for the IEKFs. For

the MEKF-L, the measurement model Jacobians are

H =
[

0 1
]
, M = 1.

For the MEKF-R, the measurement model Jacobians are

Hi
k =

[ (
ČT
abk

(
rpiwa − řz

i
kw
a

))×
−ČT

abk

]
, M = 1.

For the m landmarks,

Hk = row
i=1,...,m

([ (
ČT
abk

(
rpiwa − řz

i
kw
a

))×
−ČT

abk

])
(4.12)

and M = 1. The MEKF-R's measurement model Jacobian Hk depends on the state estimate,

which was not the case for the RIEKF.
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4.1.5 Simulation Results

In this section, simulations are performed to compare the four Kalman �lters shown in

Sections 4.1.2, 4.1.3, and 4.1.4, namely the LIEKF, RIEKF, MEKF-L and MEKF-R. The

�rst question raised in the introduction of this chapter asked whether it was advantageous

to use an invariant �lter over its standard multiplicative counterpart. The second question

concerns the e�ect of noise on the theoretical convergence properties of the IEKF. The two

questions are simultaneously addressed in this section.

4.1.5.1 Simulation Parameters

In one set of trials, the MEKF-L and LIEKF are compared. In another, the RIEKF and

MEKF-R are compared. Certain parameters are kept constant throughout the simulation.

The trajectory used is shown in Figure 4.3. The landmarks used in the RIEKF and MEKF-R

are also displayed. It is assumed that, at any given time, all the landmarks are visible. The

rate gyro and velocity sensor operate at 100 Hz, while the corrections occur at 10 Hz. The

trajectory is parametrized such that
∥∥∥vzw/ab

∥∥∥ is constant at 1 m/s. The resulting trajectory

takes slightly over 30 s to execute, which is generally enough time for the transients associated

with the convergence of the �lters to dissipate. The attitude is constrained to have constant

roll. To simplify the situation, the sensor noise is assumed isotropic. That is, Q1
k = σ1

k
21,

Q2
k = σ2

k
21, and Ri

k = σRk
21. Doing this makes the fact Mk may depend on Čabk irrelevant

because MT
kRkMk = Rk thereby making the computation of the Kalman gain independent

of Mk. In many applications, the covariance matrices are seen as tuning parameters. Here,

no tuning is done. Tuning may greatly e�ect the results, but in simulation, keeping the

theoretical values is more valuable because it demonstrates how the �lters behave �out of

the box� without extensive tuning.

4.1.5.2 Initialization

To run appropriate Monte Carlo trials, a discussion of the initial error is necessary.

When testing any EKF variant using Monte Carlo trials, the initial error δx0 is drawn from

a normal distribution with zero mean and covariance P0. That is, δx0 ∼ N (0,P0). This

initial error, along with the truth data, is then used to initialize the �lters. For the MEKF-R

and MEKF-L, this means

r̂z0wa = rz0wa − δr0,

Ĉab0 = Cab0δC
T
0 .
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Figure 4.3: Trajectory used in simulations. The blue markers represent the landmarks, the
trajectory is shown in black, and a triad is used to show the orientation at various times

during the trajectory.
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For the LIEKF,

T̂0 = T0δT0,

where δT0 = exp (δξ∧0 ). Similarly, for the RIEKF,

T̂0 = δT0T0.

By using the appropriate error de�nition to initialize each �lter, the same initial error leads

to di�erent actual initial conditions. This should not, in theory, change the di�culty of the

estimation problem. Nonetheless, the e�ect of these di�ering initial conditions is tested.

To determine the e�ect of changing the initial error de�nition, 50 Monte Carlo trials are

run using two di�erent ways of initializing the invariant �lters. First, the invariant �lters are

initialized in a manner consistent with their error de�nition. They are then initialized in the

same manner as the MEKF. The sensor noise standard deviations were set to σ1
k = 0.05 rad/s,

σ2
k = 0.05 m/s and σR

k = 0.05 m. The initial errors are drawn from a normal distribution

with covariance P0 = diag
(

0.121,
(
π
4

)2 1
)
, with appropriate units.

The results obtained from initializing the �lters in di�erent manners are shown in Ta-

ble 4.1. In practice, it is preferable to know the error in position and error in attitude

separately, rather than the error in the pose. Therefore, it may be more representative to

compare the �lters using the MEKF error de�nitions. Thus, unless otherwise speci�ed, the

attitude error at each time step is given by δφk = logSO(3)

(
ĈT
abk

Cabk

)∨
and the position

error is δrk = ‖rzkwa − r̂zkwa ‖. Using this metric, the initialization technique does not have

a signi�cant e�ect on the performance of the �lters. For the LIEKF, changing from the

correct initialization to the MEKF initialization sees a slight increase in mean root mean

square error (RMSE) for both position and attitude. The di�erence for the RIEKF is neg-

ligible. Importantly, independent of the way the invariant �lters are initialized, they still

outperform the MEKFs. In this thesis, the appropriate error de�nition is used to initialize

the �lters. In fact, doing so ensures that the initial covariance is actually representative

of the initial uncertainty in the state estimate, meaning the �lters are always consistent to

begin the simulation.

4.1.5.3 Monte Carlo Results

Having determined the appropriate procedure for comparing the �lters, they can be

extensively tested to determine the e�ect of sensor noise on their performance. To do so,

the noise in each sensor is varied independently. Four di�erent trials are run. The standard

deviations of the noises injected into each measurement for each trial are summarized in

Table 4.2. When the sensor noise is varied, it is incremented by 0.05. At each noise level,
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Filter Mean Attitude RMSE (rad) Mean Position RMSE (m)

MEKF-L 0.2035 0.0310
LIEKF - App. Init. 0.1993 0.0288
LIEKF - MEKF Init. 0.2017 0.0297
MEKF-R 0.0739 0.0532
RIEKF - App. Init. 0.0734 0.0475
RIEKF - MEKF Init. 0.0733 0.0473

Table 4.1: Mean RMSE in the estimated states over 50 Monte Carlo simulations. The
LIEKF and RIEKF were initialized both using an appropriate error de�nition consistent

with the left and right-invariant erros and the error de�nition used to initialize the MEKFs.

Trial σ1
k (rad/s) σ2

k (m/s) σRk (m)

Rate Gyro Noise 0 to 1 0.05 0.05
Velocity Sensor Noise 0.05 0 to 1 0.05
Exteroceptive Sensor Noise 0.05 0.05 0 to 1
All Noises 0 to 1 0 to 1 0 to 1

Table 4.2: Standard deviation of the noise injected into each measurement for each trial.

50 Monte Carlo trials are run, where the initial state estimate error and the noise pro�le is

varied. As in the previous simulations, the initial errors are drawn from a normal distribution

with covariance P0 = diag
(

0.121,
(
π
4

)2 1
)
, with appropriate units.

The results from varying the noise in the gyro, velocity sensor, correcting sensor, and

all the sensors simultaneously can be found in Figures 4.4 to 4.11. Each �gure presents the

mean RMSE at each noise level for the IEKF and MEKF. The shaded areas encompass 80%

of the data, to show the spread of the results. The di�erence between the mean MEKF

and IEKF RMSE is also shown. A positive value indicates that the IEKF outperformed the

MEKF. The shaded area once again represents 80% of the data. A convincing result would

see the shaded area be entirely positive, meaning that only on rare occasions did the MEKF

outperform the IEKF. On average, the invariant �lters outperformed the standard MEKF

in all the trials. A few important trends to note are as follows.

• The increased noise magnitude had a relatively small impact on the MEKF-R and

RIEKF, meaning the di�erence in the �lters remained somewhat constant over the all

the trials.

• Increasing the noise in the velocity sensor led to erratic behaviour of the MEKF-L,

leading to some outliers.

• Increasing the noise in the GPS measurements led to an increase in the di�erence

between the LIEKF and MEKF-L, as seen in Figure 4.8.
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(a) Mean RMSE for each state.

(b) Di�erence between in RMSE of MEKF-L and

LIEKF.

Figure 4.4: Results of 50 Monte Carlo simulations comparing the MEKF-L and LIEKF,
where the amplitude of the noise in the rate gyro sensor was varied.

It is unsurprising that the IEKF would outperform the MEKF. The state-independent Ja-

cobians mean the computed Kalman gain is accurate, as all the matrices used in its com-

putations are known or are made up of noise-corrupted measurements, except for the error

covariance P. However, at steady state, the state estimate should be close enough to the

true state that the state-dependence of the Jacobians is mitigated. This means that the

improvement of the IEKF over the MEKF may simply be due to better performance in the

transient. This is investigated in the next section.
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(a) Mean RMSE for each state.

(b) Di�erence in RMSE between MEKF-R and

RIEKF.

Figure 4.5: Results of 50 Monte Carlo simulations comparing the MEKF-R and RIEKF,
where the amplitude of the noise in the rate gyro sensor was varied.

(a) Mean RMSE for each state.

(b) Di�erence between in RMSE of MEKF-L and

LIEKF.

Figure 4.6: Results of 50 Monte Carlo simulations comparing the MEKF-L and LIEKF,
where the amplitude of the noise in the velocity sensor was varied.
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(a) Mean RMSE for each state.

(b) Di�erence between in RMSE of MEKF-R

and RIEKF.

Figure 4.7: Results of 50 Monte Carlo simulations comparing the MEKF-R and RIEKF,
where the amplitude of the noise in the velocity sensor was varied.

(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF-L and

LIEKF.

Figure 4.8: Results of 50 Monte Carlo simulations comparing the MEKF-L and LIEKF,
where the amplitude of the noise in the correcting sensor was varied.
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(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF-R and

RIEKF.

Figure 4.9: Results of 50 Monte Carlo simulations comparing the MEKF-R and RIEKF,
where the amplitude of the noise in the correcting sensor was varied.

(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF-L and

LIEKF.

Figure 4.10: Results of 50 Monte Carlo simulations comparing the MEKF-L and LIEKF,
where the amplitude of the noise in all sensors was varied.
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(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF-R and

RIEKF.

Figure 4.11: Results of 50 Monte Carlo simulations comparing the MEKF-R and RIEKF,
where the amplitude of the noise in all sensors was varied.

4.1.5.4 E�ect of Initial Attitude Error

As discussed in [1] and [2], the main advantage the IEKF claims over the MEKF are its

convergence properties. Therefore, it may be reasonable to expect the IEKFs to perform

substantially better than the MEKFs for high initial error. To test this, δφ3 was varied from

0 rad to 23π
24

rad in increments of π/24 rad. In degrees, δφ3 is varied from 0◦ to 172.5◦ in

increments of 7.5◦. The initial position was initialized such that there was zero initial error.

The magnitude of the standard deviation of the noise in the sensors are set to σ1
k =

0.05 rad/s, σ2
k = 0.05 m/s and σR

k = 0.05 m. The initial covariance is set P0 = diag(δφ2
31, 1×

10−41), with appropriate units. This was chosen to re�ect the varying uncertainty in the

initial attitude and high certainty in the initial position. At each initial attitude error, 50

trials were run, where the noise pro�le was varied. The results of these simulations are shown

in Figure 4.12. The results comparing the RIEKF and MEKF-R show that at high initial

attitude, error, the RIEKF consistently outperforms the MEKF-R. This is especially the case

for position. The improvement in attitude error is marginal. The trend is less clear when

comparing the LIEKF and MEFK-L, but the conclusion is similar. As expected, when the

initial estimate of the state is poor, the invariant �lters o�er superior performance. When

the initial state estimate is accurate, the Jacobians are close to the true Jacobians, nullifying

any advantage the IEKFs had over the MEKFs, and their performance is indistinguishable.
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(a) MEKF-R and RIEKF Comparison. (b) MEKF-L and LIEKF Comparison.

Figure 4.12: Results of 50 di�erent noise pro�les comparing invariant and multiplicative
�lters, where δφ3 was varied.

4.2 Applying the IEKF to a Realistic Data Set

The measurement model used in Section 4.1.3 is perfectly right-invariant. However, this

is not a realistic measurement model, as no sensor exists that directly measures a relative

landmark position. Rather, a LIDAR or camera is used. These measurements are neither left

nor right-invariant. Therefore, the IEKF can not be directly applied, and must be adapted,

as demonstrated in [30] with a range-and-bearing measurement model. To illustrate this, the

sample problem from the previous section is replicated using a camera as an exteroceptive

sensor. Let point c be �xed to the camera, and frame Fc rotate with the camera. The

position of the ith landmark pi relative to c resolved in the camera frame is

rpicc = CT
bc(CT

ab(rpiwa − rzwa )− rczb ), (4.13)

where Cbc and rczb are known. Letting rpicc = [ xi yi zi ]T, the measurements from a stereo

camera at time tk are then [3, p. 208]

yik = g(rpickck
) =

1

zik


fux

i
k

fvy
i
k

fu(x
i
k − b)
fvy

i
k

+


cu

cv

cu

cv

+ vk (4.14)
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where cu and cv are the horizontal and vertical optical centres of the camera in pixels, fu and

fv are the horizontal and vertical focal lengths of the camera in pixels, and b is the distance

between the two centers of projection of the camera, in meters. The noise vk ∼ N (0,Rk) is

zero-mean white noise with covariance Rk.

4.2.1 Right-Invariant Kalman Filter Derivation

As the measurement model (4.14) is a function of a right-invariant measurement (4.13), a

RIEKF is implemented. Therefore, the process model Jacobians from Section 4.1.3 are kept.

Typically, the innovation zik = Ťk(yik − y̌ik) would be linearized to obtain the measurement

model Jacobians. However, this is impossible to do in this case, as it is impossible to

multiply the measurement from the camera by an element of SE(3). To avoid this, the

standard innovation from the EKF, zik = yik − y̌ik, must be used.
To compute the new measurement model Jacobians, consider the �rst-order Taylor series

expansion of (4.14),

y̌ik + δyik = g(řpickck
) +

∂g(rpickck
)

∂xk

∣∣∣∣
x̌k,v̌k︸ ︷︷ ︸

Hk

δxk +
∂g(rpickck

)

∂vk

∣∣∣∣
x̌k,v̌k︸ ︷︷ ︸

Mk

δvk.

Using the chain rule, the matrix Hk is

Hk =
∂g(rpickck

)

∂xk

∣∣∣∣
x̌k,v̌k

=
∂g(rpickck

)

∂rpickck

∂rpickck

∂xk

∣∣∣∣
x̌k,v̌k

.

The term
∂rpickck

∂xk

∣∣∣
x̌k,v̌k

is found using the perturbation method. The right-invariant error in
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the pose δŤk can be written as

δŤk = ŤkT−1
k

=

[
Čabk řzkwa

0 1

][
CT
abk
−CT

abk
rzkwa

0 1

]

=

[
ČabkCT

abk
ČabkCT

abk
rzkwa − řzkwa

0 1

]

=

[
δČk δČkrzkwa − řzkwa

0 1

]

=

[
δČk δřk

0 1

]

=

[
expSO(3)

(
δξ̌φk

)
Jδξ̌r

k

0 1

]
.

Thus, perturbing the attitude results in Cabk = δČT
k Čabk , which can also be written Cabk =

expSO(3)

(
−δξ̌φk

)
Čabk . The position perturbation results in rzkwa = δCT

k (řzkwa − δrk), which is

equivalent to rzkwa = expSO(3)

(
−δξ̌φk

)
(řzkwa − Jδξ̌r

k). Using these perturbations, along with

rpickck
= řpickck

+ δrpickck
, yields

rpickck
= CT

bc(CT
abk

(rpiwa − rz
i
kw
a )− rczb ),

řpickck
+ δrpickck

= CT
bc

((
expSO(3)

(
−δξ̌φk

)
Čabk

)T
(

rpiwa − expSO(3)

(
−δξ̌φk

) (
řzkwa − Jδξ̌r

k

))
− rczb

)
= CT

bc

(
ČT
abk

expSO(3)

(
δξ̌φk

)(
rpiwa − expSO(3)

(
−δξ̌φk

)
(řzkwa − Jδξ̌r

k)
)
− rczb

)
.

(4.15)

Linearizing (4.15) by letting expSO(3)

(
−δξ̌φk

)
≈ 1 + δξ̌φk

×
and J ≈ 1,

řpickck
+ δrpickck

= CT
bc(ČT

abk
(1 + δξ̌φk

×
)(rpiwa − (1− δξ̌φk

×
)(řzkwa − δξ̌r

k))− rczb )

= CT
bc(ČT

abk
(rpiwa − řzkwa ) + ČT

abk
(δξ̌r

k + δξ̌φk
×

řzkwa ) + ČT
abk
δξ̌φk

×
(rpiwa − řzkwa )− rczb ),

δrpickck
= CT

bc(ČT
abk

(δξ̌r
k + δξ̌φk

×
řzkwa ) + ČT

abk
δξ̌φk

×
(rpiwa − řzkwa ))

= CT
bc(ČT

abk
δξ̌r

k + ČT
abk
δξ̌φk

×
(rpiwa − řzkwa + řzkwa ))

= CT
bcČ

T
abk
δξ̌r

k − CT
bcČ

T
abk

rpiwa
×δξ̌φk .
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Therefore
∂rpickck

∂xk

∣∣∣∣
x̌k,v̌k

=
[
−CT

bcČT
abk

rpiwa × CT
bcČT

abk

]
.

The term
∂g(rpickck

)

∂rpickck

is computed analytically, yielding

∂g(rpickck
)

∂rpickck

=
1

zik


fu 0 −fuxik

zik

0 fv −fvyik
zik

fu 0 −fu(xik−b)
zik

0 fv −fvyik
zik

 .

Therefore, the measurement model Jacobians are

Hk = row
i=1,...,m


1

zik


fu 0 −fuxik

zik

0 fv −fvyik
zik

fu 0 −fu(xik−b)
zik

0 fv −fvyik
zik


[
−CT

bcČT
abk

rpiwa × CT
bcČT

abk

]
 (4.16)

and M = 1. Comparing (4.16) to (4.11), the impacts of the using the camera model become
clear. The measurement model Jacobian depends on the state estimate, as it depends on

řpickck
and Čabk .

4.2.2 MEKF Solution

The process model Jacobians are identical to those in Section 4.1.4. Using a similar

technique to the RIEKF just described, the measurement Jacobians for the MEKF are

Hk = row
i=1,...,m


1

zik


fu 0 −fuxik

zik

0 fv −fvyik
zik

fu 0 −fu(xik−b)
zik

0 fv −fvyik
zik


[

CT
bc

(
ČT
abk

(rpiwa − řzkwa )
)× −CT

bcČT
abk

]


(4.17)

and M = 1.

4.2.3 Filtering Using Pseudo-measurements

To avoid the state-dependent Hk matrix from the previous section, the measurement

model must be right-invariant. To attain this using the nonlinear camera model, the mea-
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surements are preprocessed so that the output of the sensor is rpizkbk
. The issue with doing

this is that the noise is no longer Gaussian. However, in practice, EKFs perform well despite

the Gaussian noise assumption being routinely not met.

In a pre-processing step, the output from the camera is passed through

υik = h(yik) = Cbc

 b

yik1 − y
i
k3

 yik1 − cu
fu
fv

(yik2 − cv)
fu


+ rczb

where the output of the camera model rpizkbk
is denoted υik. These are the pesudo-

measurements. Given the truth data, it is also possible to compute the expected pesudo-

measurements, υ̂ik, using

υ̂ik = CT
abk

(rpiwa − rz
i
kw
a ). (4.18)

To obtain the noise, each pseudomeasurement is subtracted from its expected value, νik =

υik − υ̂ik. The noises at each pseudomeasurement are then arranged in a wide matrix,

ν =
[
ν1 · · · νk

]
.

Each row of ν can now be treated as an observation drawn from some probability distribution.

For the Kalman �lter assumptions to hold, this distribution must be a zero-mean Gaussian

distribution. Computing the sample mean yields ν̄ = E [ν], which, ideally, should be 0. The
sample covariance is then computed to yield R. This value can be used as an approximate

measurement noise covariance matrix in the �lters derived below.

By preprocessing the measurement, a right-invariant measurement model (4.18) is ob-

tained, and a standard RIEKF can be used. The right-invariant innovation is

zik = Cabk(υik − υ̌ik).

The derivation of the measurement model Jacobians is identical to that in Section 4.1.3.

Therefore,

H = row
i=1,...,m

([
−rpiwa × 1

])
and Mk = diag

(
Čabk , . . . , Čabk

)
. As before, the MEKF measurement Jacobians are

Hk = row
i=1,...,m

([ (
ČT
abk

(rpiwa − řzkwa )
)× −ČT

abk

])
and M = 1.

59



4.2.4 Results

Using the 4 di�erent �lters derived above, namely the camera-based MEKF

(MEKF-C), camera-based RIEKF (RIEKF-C), the MEKF using the relative landmark

pesudo-measurements(MEKF-RL), and the RIEKF using the relative landmark pesudo-

measurements(RIEKF-RL), it is possible to determine whether it is still bene�cial to use the

invariant framework, despite the measurement model being neither left nor right-invariant.

First, the �lters are tested in simulation, followed by testing done on the experimental data

from the Starry Night dataset [31].

To use the pseudo-measurements for the RIEKF-RL and MEKF-RL, the covariance ma-

trix of the new measurements must be found. Using the methodology described above, the

sample mean of the pseudo-measurements from the Starry Night dataset is

E [ν] =

 0.0047

0.0031

−0.0024

m.

The distribution is close to zero-mean, but as expected, the nonlinear transformation has

shifted the mean. The sample covariance is

R = E
[
(ν − E [ν]) (ν − E [ν])T

]
=

 1.11× 10−3 1.59× 10−4 −1.23× 10−4

1.59× 10−4 2.42× 10−4 −1.07× 10−4

−1.23× 10−4 −1.07× 10−4 7.00× 10−4

m2.

These values are used in both simulation and on the experimental data.

In simulation, simple Monte Carlo trials are run to evaluate the performance of the �lters.

The covariance matrices of the noise in the sensors are set to the values found in the Starry

Night data set. Several di�erent initial covariances P0 were considered to initialize the �lters.

The performance was found to be highly dependent on the magnitude of the initial attitude

error. Figure 4.13 shows the e�ect of initial attitude error on the mean RMSE in simulation.

There is therefore already a clear advantage of using the pseudo-measurements as opposed

to the camera-based model, regardless of the chosen EKF variant. The �lters using the

pesudomeasurements converge for a much wider range of initial attitude errors.

Based on these results, the error in the initial conditions were drawn from a zero-mean

normal distribution with covariance P0 = diag
(

0.121,
(
π
12

)2 1
)
. The four �lters are initially

tested in simulation. The results of 500 MC simulations are shown in Figure 4.14, where the

error bars capture 80% of the data. On average, the �lters using the pseudo-measurements

outperformed the sensors using the camera measurements directly. The RIEKF-C yielded a
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(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF-R and

RIEKF.

Figure 4.13: Results of 50 Monte Carlo trials comparing the RIEKF-C and RIEKF-RL at
di�erent initial attitude errors.

better attitude estimate than the MEKF-C, but a poorer position estimate. This trend is

repeated in the �lters using the pseudo-measurements. However, there is signi�cant spread

in the results, as shown by the overlapping error bars. The RIEKF-C did indeed have a

lower mean attitude RMSE than the MEKF-C, but it only outperformed the MEKF-C in

51.2% of the trials. A similar trend is observed in the �lters which use pseudo-measurments,

where the RIEKF-RL outperformed the MEKF-RL in 53.2% of the trials. The RIEKF does

provide a better attitude estimate than the MEKF on average, but the impact is marginal.

Running similar trials on real data reinforced some ideas from simulation. In particular, the

MEKFs outperformed the IEKFs in position estimation. Furthermore, there was again little

di�erence in the atittude estimate. These results are shown in Figure 4.15. Despite having a

clearly higher mean RMSE, the RIEKF-C outperformed the MEFK-C in 45.6% of the trials.

Similarly, the RIEKF-RL outperformed the MEKF-RL 43% of the time, the camera-based

�lters outperform the �lters that use the pseudo-measurements.
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Figure 4.14: Results of 500 Monte Carlo trials comparing the MEKF-C, RIEKF-C,
MEKF-RL, and RIEKF-RL on simulated data. The mean RMSEs in attitude (left) and

position (right) are shown.

Figure 4.15: Results of 500 Monte Carlo trials comparing the MEKF-C, RIEKF-C,
MEKF-RL, and RIEKF-RL on real data. The mean RMSEs in attitude (left) and position

(right) are shown.

62



4.3 Estimating Bias In the Invariant Framework

In many estimation problems, sensor biases must be estimated. The IEKF is not par-

ticularly well suited for bias estimation, as including bias in the process model destroys the

group-a�ne property. Despite this, there still may be advantages to estimating bias in the

invariant framework. To illustrate this, the sample problem is modi�ed to include a time-

varying bias in the rate gyro. For the sake of brevity, only the right-invariant model is shown.

The rate gyro measurement model is now

u1
b = ωbab − βb − w1

b ,

where the bias is modelled as a random walk with β̇b ∼ N (0,Q3).

The state can now be formulated as an element of a new matrix Lie group [29], G1. An

element of G1 is

X =


Cab rzwa

1

1 βb

1

 .
The inverse is

X−1 =


Cab −Cabrzwa

1

1 −βb
1

 .
Let g1 be the matrix Lie algebra of G1. The column matrix ξ ∈ R9 is mapped to g1 using

ξ∧ =

 ξ
φ

ξr

ξβ


∧

=


ξφ
×
ξr

0

0 ξβ

0

 .

The exponential map from g1 to G1 is

exp (ξ∧) =


expSO(3)

(
ξφ
×
)

Jξr

1

1 ξβ

1

 ,
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where J is given by (2.7). The adjoint representation of an element of G1 is

Ad(X) =

 Cab 0 0
rzwa ×Cab Cab 0

0 0 1


The kinematics in matrix form are

Ẋ = X$∧,

where

$ =

 ωbab
vzw/ab

0

 .
Substituting for the measurement model,

Ẋ = X(ub + wb)
∧,

where

ub =

 u1
b

u2
b

0


and

wb =

 w1
b

w2
b

w3
b

 .
The kinematics (4.3) are not group a�ne due to the bias. Therefore, the process model

Jacobians will depend on the state estimate. However, using an invariant error de�nition,

the Jacobians can still be derived in a way that causes the Jacobians to be state dependent in

di�erent ways. Whether this is advantageous is a question to be answered, at least partially,

in this section, and may depend on the problem. It will be tested on the SE(3) sample

problem in the right-invariant case, using the measurement model (4.6).
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The right-invariant error between some estimated state X̄ and the true state X is

δX = X̄X−1

=


C̄ab r̄zwa

1

1 β̄1
b

1




CT
ab −Cabrzwa

1

1 −β1
b

1



=


C̄abCT

ab r̄zwa − C̄abCT
abrzwa

1

1 β̄1
b − β1

b

1



=


δC δr

1

1 δβ

1

 .

De�ning

ûb =

 u1
b + β̂b

u2
b

0

 ,
the right-invariant error propagation is

δẊ =
˙̂XX−1 + X̂Ẋ−1

= X̂û∧b X−1 + X̂X−1ẊX−1

= X̂û∧b X−1 + X̂X−1X(ub + wb)
∧X−1

= X̂(ûb − ub − wb)
∧X−1

= X̂(ûb − ub − wb)
∧X̂−1X̂X−1

=
(
Ad(X̂)(ûb − ub − wb)

)∧
δX.
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To simplify, let

δu = ûb − ub

=

 u1
b + β̂b

u2
b

0

−
 u1

b + βb

u2
b

0



=

 δβ

0
0


= Bδξ,

where

B =

 0 0 1
0 0 0
0 0 0

 .
Linearizing by letting δX = 1 + δξ∧ and neglecting second order terms,

d

dt
(1 + δξ∧) =

(
Ad(X̂)(Bδξ − wb)

)∧
(1 + δξ∧),

δξ̇∧ =
(
Ad(X̂)(Bδξ − wb)

)∧
,

δξ̇ = Ad(X̂)Bδξ − Ad(X̂)wb.

Therefore, A = Ad(X̂)B and L = −Ad(X̂). Explicitly,

A =

 0 0 Ĉab

0 0 r̂zwa
×Ĉab

0 0 0

 .
The matrix A depends on the state estimate because the process model is not group a�ne.
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The innovation associated with the ith landmark is

[
zik
0

]
= X̌k


 yibk

1

0

−
 y̌ibk

1

0




= X̌k

X−1
k

 rpiwa
1

0

+

[
vbk
0

]
− X̌−1

k

 rpiwa
1

0




= δŤk

[
rpiwa

1

]
+ Ťk

[
vbk
0

]
−

[
rpiwa

1

]
. (4.19)

Linearizing (4.19) by letting δX̌k ≈ 1 + δξ̌∧k and vbk = δvbk ,

[
zik
0

]
≈
(
1 + δξ̌∧k

) rpiwa
1

0

+ X̌k

[
δvibk

0

]
−

 rpiwa
1

0



= δξ̌∧k

 rpiwa
1

0

+ X̌k

[
δvibk

0

]

=

[
δξ̌φ

×
δξ̌rk

0 0

] rpiwa
1

0

+ X̌k

[
δvibk

0

]

=

[
δξ̌φ

×rpiwa + δξ̌rk
0

]
+ X̌k

[
δvibk

0

]

=

[
−rpiwa ×δξ̌φ + δξ̌rk

0

]
+ X̌k

[
δvibk

0

]

= H̃iδξ̌k + X̌k

[
δvibk

0

]
, (4.20)

where

H̃i =

[
−rpiwa × 1 0

0 0 0

]
.

Noting that the bottom row of (4.20) is always 0, it can be written

zik = Hiδξ̌k + Mi
kδv

i
bk
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where

Hi =
[
−rpiwa × 1 0

]
and Mi

k = ČT
abk

. For the m landmarks,

H = row
i=1,...,m

([
−rpiwa × 1

])
(4.21)

and Mk = diag
(
ČT
abk
, . . . , ČT

abk

)
. In this case, H is state independent.

4.3.1 MEKF Solution

Similar to Section 4.1.4, the RIEKF is compared to an MEKF. The MEKF errors are

de�ned as δC = C̄T
abCab, δr = rzwa − r̄zwa , and δβb = βb − β̄b. The MEKF process model

Jacobians are

A =

 −u1
b
× 0 1

−Ĉabu2
b
× 0 0

0 0 0


and L = 1, while the measurement Jacobians are

Hk = row
i=1,...,m

([ (
ČT
abk

(
rpiwa − řz

i
kw
a

))×
−ČT

abk
0
])

and Mk = 1.

4.3.2 Simulation Results

The MEKF and RIEKF are compared in simulation. The noise standard deviations

are the same as those in Table 4.2. In addition, the noise in the bias random walk is

assumed isotropic, Q3
k = σ3

k
21 and is set to σ3

k = 0.0051 rad/s. The error in the ini-

tial conditions were drawn from a zero-mean normal distribution with covariance P0 =

diag
(

0.121,
(
π
4

)2 1, 0.0121
)
. The results obtained from varying the noise in the gyro, velocity

sensors, landmark sensor and all the sensors simultaneously are shown in Figures 4.16 to 4.19.

On average, the RIEKF outperforms the MEKF, but the improvement is not as stark as

when bias wasn't being estimated. This is due to the states now appearing in the process

model Jacobian. However, as the measurement model Jacobians are independent of the state

estimate, there is still an advantage to using the RIEKF.
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(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF and

RIEKF.

Figure 4.16: Results of 50 Monte Carlo trials comparing the MEKF and RIEKF, where the
noise in the rate gyro was varied.

(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF and

RIEKF.

Figure 4.17: Results of 50 Monte Carlo trials comparing the MEKF and RIEKF, where the
noise in the velocity sensor was varied.
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(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF and

RIEKF.

Figure 4.18: Results of 50 Monte Carlo trials comparing the MEKF and RIEKF, where the
noise in the landmark sensor was varied.

(a) Mean RMSE for each state.

(b) Di�erence in mean RMSE of MEKF and

RIEKF.

Figure 4.19: Results of 50 Monte Carlo trials comparing the MEKF and RIEKF, where the
noise in all the sensors varied.
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4.4 Conclusion

In the introduction to this chapter, a set of questions were presented to guide an in-depth

discussion on the practical implications of the IEKF. It is useful to revisit these questions at

the end of this chapter.

1. Given a left-invariant measurement model, is it more advantageous to use a LIEKF

than an MEKF, and given a right-invariant measurement model, is it more advanta-

geous to use a RIEKF than an MEKF?

2. What is the e�ect of process and measurement noise? How quickly do the convergence

properties of the IEKF claimed in [1, 2] break down?

The �rst two questions posed regarded the perfomance of the IEKF relative to a standard

MEKF. In general, over all the experimental trials, the IEKF outperformed the MEKF. How-

ever, a more in-depth analysis revealed that much of the improvement could be attributed

to better performance in the transient, as it is during this time that the Jacobians in the

IEKF are much more accurate than those of the MEKF. During these trials, the e�ect of

sensor noise was also isolated. Despite the convergence properties holding only when noise

is negelected, the IEKF is still more e�ective than the MEKF in the presence of noise.

3. How can the IEKF be used in situations when the measurement model isn't left or

right-invariant?

A realistic stereo camera measurement model was used to demonstrate how the IEKF

can be used when the measurement model is neither left nor right-invariant. In this scenario,

the RIEKF and MEKF provided similar performance, due to the fact that the measurement

model was not exactly right-invariant. This was seen both when modifying the IEKF to

use the raw measurements, and preprocessing the measurements to create right-invariant

pseudomeasurements.

4. How can bias estimation be performed in an invariant framework?

Lastly, bias estimation was performed in the invariant framework, using results from [9],

[26] and [29]. The RIEKF provided better performance than the MEKF, but to a lesser

degree than previously shown due to the process model no longer being group a�ne.
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Chapter 5

Invariant Batch SLAM

In Chapters 3 and 4 of this thesis, the IEKF was presented and its practical implications

were explored. The IEKF itself relies on three core concepts, namely invariant measurement

models, invariant error, and group-a�ne process models.. When a left-invariant error de�-

nition is used in a situation with group-a�ne kinematics and a left-invariant measurement

model, the remarkable properties resulting from the state independence of the Jacobians

are recovered. The same can be said for a right-invariant error and a right-invariant mea-

surement model. The properties, however, were only leveraged in the �ltering case. In this

chapter, batch estimation in an invariant framework is examined. Invariant batch estimation

was �rst done in [20]. It was then applied to visual-inertial odometry in [32] using inertial

measurement unit (IMU) preintegration. Here, the landmark-based batch SLAM problem is

addressed. This problem di�ers from the previous work because the landmark positions are

being estimated. The chapter is structured as follows. First, the problem is presented, and a

standard solution for matrix Lie groups is shown. Next, the invariant framework is applied

to the landmark-based batch SLAM solution. Lastly, a sample problem is presented along

with simulation results.

5.1 Simultaneous Localization and Mapping on Matrix Lie Groups

The states of a robotic system are given by X ∈ G. Typically, only the pose and landmark
locations are estimated. Therefore, the estimated states are typically elements of SE(2) or

SE(3). However, the theory is applicable to other matrix Lie groups, as is shown here. The

location of the jth landmark is typically rpjwa , where Fa is some global reference frame, w

is a reference point and pj is the point associated with the jth landmark. Here, to be more

concise, they are denoted pj ∈ Rny , j = 1, . . . ,m. Estimating the landmark locations and
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the robots' states at each time step means estimating

x =
{

X0, . . . ,Xn,p1, . . . ,pm
}
,

where tk ∈ [t0, tn]. The discrete-time kinematics are given by

Xk = Fk−1 (Xk−1,uk−1,wk−1) , (5.1)

where uk−1 are the interoceptive measurements, or inputs, and wk−1 ∼ N (0,Qk−1) is zero-

mean white noise. The exteroceptive measurements are

y = {y1,1, . . . , y1,m, . . . , yn,1, . . . , yn,m} ,

where yk,j represents a measurement of the jth landmark at time tk. The measurements are

modelled as

yk,j = gk
(
Xk,pj

)
+ νk,j

where νk,j ∼ N (0,Rk,j). A batch maximum a posteriori method is be used to solve the

SLAM problem.

The SLAM solution is initialized by specifying X̌0, the best guess of the initial state. The

error in the initial state is then Eu,0(x). In [3], a left-invariant error de�nition is used,

exp
(

eLu,0
∧
)

= EL
u,0(x) = X−1

0 X̌0.

However, a right-invariant error

exp
(

eRu,0
∧
)

= ER
u,0(x) = X̌0X−1

0

can also be used.

De�ne the error due to the input to be Eu,k(x) ∈ G. This error can either be left or right

invariant. The left-invariant input error is

exp
(

eLu,k
∧
)

= EL
u,k(x) = X̄−1

k Fk−1

(
X̄k−1,uk−1, 0

)
, (5.2)

whereas the right-invariant input error is

exp
(

eRu,k
∧
)

= ER
u,k(x) = Fk−1

(
X̄k−1,uk−1, 0

)
X̄−1
k . (5.3)
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Here, X̄k is the nominal state. The measurement error ey,k,j(x) is typically de�ned as

ey,k,j(x) = yk,j − gk
(
Xk,pj

)
. (5.4)

Follwing [3, pp. 127-143], the SLAM problem is to minimize

J(x) =
1

2
eu,0(x)TW−1

u,0eu,0(x) +
1

2

n∑
k=1

eu,k(x)TW−1
u,keu,k(x) +

1

2

n∑
k=1

m∑
j=1

ey,k,j(x)TW−1
y,k,jey,k,j(x),

where Wu,0, Wu,k, and Wy,k,j are weighting matrices related to the probability distribution

of the error. The error is deemed Gaussian, as it is assumed that it arises only due to the

presence of Gaussian noise in the measurements. Further de�ning

e(x) =



eu,0(x)
...

eu,n(x)

ey,1,1(x)

ey,1,2(x)
...

ey,n,m(x)


,

and Wu = diag(Wu,0,Wu,1, . . . ,Wu,n), Wy = diag(Wy,1,1,Wy,1,2,Wy,n,m) and W =

diag(Wu,Wy), the objective function is rewritten as

J(x) =
1

2
e(x)TW−1e(x).

To minimize this objective function, the errors are linearized about an operating point xop.

The linearization is to be done with an uncertainty representation consistent with the choice

of error. If a left-invariant error is chosen, the left-invariant uncertainty representation

(2.5) should be used. If a right-invariant error is chosen, the right-invariant uncertainty

representation (2.6) should be used. Note that the alternative uncertainty representations

given in (2.3) and (2.4) could also be used. Doing so would simply lead to a change in

sign on various Jacobians that, once incorporated into the nonlinear least squares problem,

are inconsequential. However, in order to be consistent with the de�nition of right- or left-

invariant error, the uncertainty representations (2.5) or (2.6) should be used. The linearized

prior error has the form

eu,0(x) = eu,0(xop)− F2
0δε0, (5.5)
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where δεk is the error between the operating and truth trajectory. The linearized input error

has the form

eu,k(x) = eu,k(xop) + F1
kδεk−1 − F2

kδεk. (5.6)

The linearized measurement error has the form

ey,k,j(x) = ey,k,j(xop)−H1
k,jδεk −H2

k,jδζj, (5.7)

where δζj is the error between the operating position estimate and the true position of the

jth landmark. Various methods of obtaining (5.5), (5.6), and (5.7) are demonstrated in

Section 5.3. By stacking the estimation errors

δx =



δε0

...

δεn

δζ1

...

δζm


,

the linearized system can then be written

e(x) = e(xop)− Γδx,

where

Γ =

[
A−1 0
H1 H2

]
,
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where

A−1 =


F2

0

F1
1 F2

1

. . . . . .

F1
n−1 F2

n−1

 ,

H1 =



H1
1,1
...

H1
1,m

H1
2,1
...

H1
2,m

. . .

. . .

H1
n,1
...

H1
n,m



,

and

H2 =



H2
1,1

. . .

H2
1,1

...

...

H2
n,1

. . .

H2
n,m


.

The linearized objective function is

J(xop + δx) = (e(xop) + Γδx)TW−1(e(xop) + Γδx). (5.8)

Minimizing (5.8) with respect to δx yields the Gauss-Newton update,

(
ΓTW−1Γ

)
δx = ΓTW−1e(xop),

which can be iteratively solved for the minimizing solution δx?. The minimizing solution is
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composed of the state update at every time step, δx?k and the landmark updates δx?j .
The operating point is updated using the proper uncertainty representation. If a left-

invariant error is used, the state at each time step is updated using

Xk = exp
(
−δx?k

∧)Xop
k . (5.9)

If a right-invariant error is used

Xk = Xop
k exp

(
−δx?k

∧) . (5.10)

The landmark position estimate is updated using

pj = pjop
+ δx?j ,

5.2 Leveraging the Invariant Framework in Batch SLAM

As was seen in Chapters 3 and 4, a left-invariant error de�nition, used when the kinemat-

ics are group-a�ne and the measurement model is left-invariant leads to state-independent

Jacobians. This is also the case for a right-invariant error de�nition and right-invariant mea-

surement model. In SLAM, it is typical to have measurement models that are right-invariant,

as only information relative to the body of interest is available. Despite this, both the left

and right-invariant cases will be considered. In both cases, if the landmark positions were

known a priori, it would be possible to obtain state-independent Jacobians. However, as

the landmark positions are unknown, the best possible result would be to obtain a Jacobian

dependent on only the estimated landmark position. This is seen in Section 5.3.

5.2.1 Left-Invariant Error

Assume the discrete-time kinematics (5.1) are group-a�ne, meaning they satisfy (3.16).

The left-invariant error is δX = X−1X̄. The left-invariant input error remains de�ned as

(5.2). The main di�erence to consider is the measurement error is now de�ned

ey,k,j = X̄k

(
yk,j − gk(Xk,pj)

)
.

5.2.2 Right-Invariant Error

Assume the discrete-time kinematics (5.1) are group-a�ne, meaning they satisfy (3.16).

The right-invariant error is δX = X̄X−1. The right-invariant input error remains de�ned as
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(5.2). The main di�erence to consider is the measurement error is now de�ned

ey,k,j = X̄−1
k

(
yk,j − gk(Xk,pj)

)
.

5.3 Sample Problem 3: Inertial Navigation with Bias

Consider a body moving in 3D space, equipped with an accelerometer, a rate gyro and

some sensor that provides relative landmark locations. The problem setup is illustrated in

Figure 4.2. Here, Fa is an inertial frame. The discrete-time kinematics are

Cabk = Cabk−1
expSO(3)

(
Tω

bk−1a
bk−1

×)
,

vzkw/aa = vzk−1w/a
a + T (Cabk−1

fbk−1
+ ga),

rzkwa = rzk−1w
a + Tvzk−1w/a

a ,

where fb are the speci�c body forces resolved in Fb and ga is the gravity resolved in Fa. The
rate gyro model is

u1
bk

= ωbkabk
− β1

bk
− w1

bk
,

where w1
bk
∼ N (0,Q1

k). The bias in the rate gyro is modelled as a random walk, β̇1
bk
∼

N (0,Q3
k). The accelerometer model is

u2
bk

= fbk − β2
bk
− w2

bk
,

where w2
bk
∼ N (0,Q2

k). The bias in the accelerometer is modelled as a random walk,

β̇2
bk
∼ N (0,Q4

k). The landmark sensor model is

yjk = CT
abk

(rpjaa − rzkaa ) + νjk,

where νjk ∼ N (0,Rk,j). This is not a realistic measurement model, but is used here to

simplify the problem. There may be advantages to this, as was shown in Chapter 4. To

ease the notation, let Ck = Cabk , rk = rzkwa , vk = vzkw/aa , uik = uibk , β
i
k = βibk , wi

k = wi
bk
and

rpjwa = pj.
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5.3.1 Matrix Lie Group

Consider the matrix Lie group G2, where

Xk =



Ck vk rk
1

1

1 β1
k β2

k

1

1


.

The inverse of an element of G2 is

X−1
k =



CT
k −CT

k vk −Ckrk
1

1

1 −β1
k −β2

k

1

1


.

Let g2 be the Lie algebra of G2. The column matrix ξ ∈ R15 is mapped to g2 using

ξ∧ =


ξφ

ξv

ξr

ξ1

ξ2



∧

=



ξφ
×
ξv ξr

0

0

0 ξ1 ξ2

0

0


.

The exponential map from g2 to G2 is

exp (ξ∧) =



expSO(3)

(
ξφ
×
)

Jξv Jξr

1

1

1 ξ1 ξ2

1

1


,
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where J is given by (2.7). The adjoint representation of an element of G2 is

Ad(Xk) =


Ck

v×k Ck Ck

r×k Ck Ck

1
1

 .

The discrete-time kinematics are

Xk = Fk−1(Xk−1)Ξnoisy
k−1 ,

where

Fk−1(Xk−1) =



Ck−1 vk−1 + Tg rk−1 + Tvk−1

1

1

1 β1
k β2

k

1

1


and

Ξnoisy
k−1 =



expSO(3)(T (u1
k−1 + β1

k−1 + w1
k−1)×) T

(
u2
k−1 + β2

k−1 + w2
k−1

)
0

1

1

1 w3
k−1 w4

k−1

1

1


.

This will be approximated as

Xk = Fk−1(Xk−1)Ξk−1 exp
(
w∧k−1

)
,
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where wk−1 = [ w1
k−1

T w2
k−1

T 0 w3
k−1

T w4
k−1

T
]T ∼ N (0,Qk−1),

Ξk−1 =



Ψk−1 T
(
u2
k−1 + β2

k−1

)
0

1

1

1 0 0
1

1


,

and Ψk−1 = expSO(3)(T (u1
k−1 + β1

k−1)×). The noise covariance is Qk−1 =

diag
(
Q1
k−1,Q2

k−1, 0,Q3
k−1,Q4

k−1

)
. The measurement model is

yk,j = CT
k (pj − rk) + νk,j,

where νk,j ∼ N (0,Rk,j). It can be represented using an element of G2 as

ỹk,j = X−1
k


pj

0

1

0

+ ν̃k,j, (5.11)

where ỹk,j = [ yT
k,j 0 1 0 ]T and ν̃k,j = [ νT

k,j 0 ]T.

Six di�erent approaches are compared. First, a standard left-invariant error de�nition

is used, as the one described in Section 5.1. The left-invariant error derivation is then

changed in a way that leads to Jacobians dependent only on the measurement and not on the

state. Next, the right-invariant error de�nition is used. Lastly, these three aforementioned

approaches are repeated, using the appropriate invariant measurement error as shown in

Section 5.2. Tables 5.1 and 5.2 summarize the various approaches.

5.3.2 Approach 1: Left-Invariant Error De�nition with Type 1 Jacobians

Let the error be de�ned as δX = X−1X̄. The uncertainty representation is X =

X̄ exp (−δξ∧). Therefore the state is updated using (5.10). The left-invariant error in the
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App. Eu,k Wu,k F1
k F2

k

1 X−1
k Fk−1Ξk−1 Qk Ad(Xop

k
−1Fop

k−1)BL + DL
k−1 −1

2 X−1
k Fk−1Ξk−1 Qk Ad(Ξop

k−1
−1)BL + DL

k−1 −1

3 Fk−1Ξk−1X−1
k Ad(F̄k−1Ξk−1)QkAd(F̄k−1Ξk−1)T BR + Ad(Fop

k−1)DR
k−1 −1

4 X−1
k Fk−1Ξk−1 Qk Ad(Xop

k
−1Fop

k−1)BL + DL
k−1 −1

5 X−1
k Fk−1Ξk−1 Qk Ad(Ξop

k−1
−1)BL + DL

k−1 −1

6 Fk−1Ξk−1X−1
k Ad(F̄k−1Ξk−1)QkAd(F̄k−1Ξk−1)T BR + Ad(Fop

k−1)DR
k−1 −1

Table 5.1: Summary of input errors and Jacobians for the 6 di�erent approaches. Approach
1 uses the standard left-invariant approach with the type 1 Jacobians, while Approach 2 uses
the type 2 Jacobians. Approach 3 uses the right-invariant error. Approaches 4, 5, and 6
replicate Approaches 1, 2, and 3, substituting the regular measurement error for an invariant
measurement error.

App. ẽy,k,j Wy,k,j H1
k,j H2

k,j

1 ỹjk − X−1
k p̃j Rk,j −

[ (
Cop
k

T(pjop − rop
k )
)×

0 −1 0 0
]

Cop
k

T

2 ỹjk − X−1
k p̃j Rk,j −

[ (
Cop
k

T(pjop − rop
k )
)×

0 −1 0 0
]

Cop
k

T

3 ỹjk − X−1
k p̃j Rk,j −

[
Cop
k

Tpjop× 0 −Cop
k

T 0 0
]

Cop
k

T

4 X̄k(ỹjk − X−1
k p̃j) C̄kRk,jC̄T

k −
[

(pjop − rop
k )×Cop

k 0 −Cop
k 0 0

]
1

5 X̄k(ỹjk − X−1
k p̃j) C̄kRk,jC̄T

k −
[

(pjop − rop
k )×Cop

k 0 −Cop
k 0 0

]
1

6 X̄−1
k (ỹjk − X−1

k p̃j) C̄T
kRk,jC̄k −

[
pjop× 0 −1 0 0

]
1

Table 5.2: Summary of input errors and Jacobians for the 6 di�erent approaches. Approach
1 uses the standard left-invariant approach with the type 1 Jacobians, while Approach 2 uses
the type 2 Jacobians. Approach 3 uses the right-invariant error. Approaches 4, 5, and 6
replicate Approaches 1, 2, and 3, substituting the regular measurement error for an invariant
measurement error.
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state is

X−1
k X̄k =



CT
k −CT

k vk −Ckrk
1

1

1 −β1
k −β2

k

1

1





C̄k v̄k r̄k
1

1

1 β̄1
k β̄2

k

1

1



=



CT
k C̄k CT

k (v̄k − vk) CT
k (r̄k − rk)

1

1

1 β̄1
k − β1

k β̄2
k − β2

k

1

1



=



δCk δvk δrk
1

1

1 δβ1
k δβ2

k

1

1


.

Thus, the perturbation in R15 is de�ned as

δξk =


logSO(3)(δCk)

∨

J−1
k δvk

J−1
k δrk
δβ1

k

δβ2
k

 .
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The left-invariant error in Fk(Xk) is

δFk = Fk(Xk)
−1Fk(X̄k)

=



CT
k −CT

k (vk + Tg) −CT
k (rk + Tvk)

1

1

1 −β1
k −β2

k

1

1




C̄k v̄k + Tg r̄k + T v̄k
1

1

1 β̄1
k β̄2

k

1

1



=



CT
k C̄k CT

k (v̄k − vk) CT
k (r̄k + T v̄k − rk − Tvk)

1

1

1 β̄1
k − β1

k β̄2
k − β2

k

1

1



=



δCk δvk CT
k (r̄k − rk) + TCT

k (v̄k − vk)
1

1

1 δβ1
k δβ2

k

1

1



=



δCk δvk δrk + Tδvk
1

1

1 δβ1
k δβ2

k

1

1


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As δFk ∈ G2, it can be written using the exponential map as δFk = exp (δf∧k ), where

δfk =


logSO(3)(δCk)

∨

J−1
k δvk

J−1
k (δrk + Tδvk)

δβ1
k

δβ2
k

 .

This can be rewritten as δfk = BLδξk, where

BL =


1 0 0 0 0
0 1 0 0 0
0 T1 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

As Ξk ∈ G2 is state-dependent, it has an associated left-invariant error, which is δΞk =
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Ξ−1
k Ξ̄k. Letting Ψ̄k = expSO(3)

(
T (u1

k + β̄1
k)
×), the left-invariant error is

δΞk = Ξ−1
k Ξ̄k

=



ΨT
k −TΨT

k (u2
k + β2

k) 0
1

1

1 0 0
1

1





Ψ̄k T (u2
k + β̄2

k) 0
1

1

1 0 0
1

1



=



ΨT
k Ψ̄k TΨT

k (u2
k + β̄2

k)− TΨT
k (u2

k + β2
k) 0

1

1

1 0 0
1

1



=



ΨT
k Ψ̄k TΨT

k (β̄2
k − β2

k) 0
1

1

1 0 0
1

1



≈



expSO(3)

(
−T (β1

k − β̄1
k)
×) TΨT

k δβ
2
k 0

1

1

1 0 0
1

1



=



expSO(3)

(
Tδβ1

k
×
)

TΨT
k δβ

2
k 0

1

1

1 0 0
1

1


.

To simplify, let ΨT
k = expSO(3)

(
Tδβ1

k
×
)

Ψ̄T
k , and linearize by letting expSO(3)

(
Tδβ1

k
×
)
≈
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1 + Tδβ1
k
×
and neglecting second order terms. Then,

δΞk =



expSO(3)

(
Tδβ1

k
×
)

T expSO(3)

(
Tδβ1

k
×
)

Ψ̄T
k δβ

2
k 0

1

0

1 0 0
1

1



≈



expSO(3)

(
Tδβ1

k
×
)

T (1 + Tδβ1
k
×

)Ψ̄T
k δβ

2
k 0

1

1

1 0 0
1

1



=



expSO(3)

(
Tδβ1

k
×
)

T Ψ̄T
k δβ

2
k 0

1

1

1 0 0
1

1


.

As δΞk ∈ G2, it can be expressed using the exponential map as δΞk = exp (δu∧k ), where

δuk =

 Tδβ1
k

TJ−1Ψ̄T
k δβ

2
k

0

 .
This can be rewritten as δuk = DL

kδξk, where

DL
k =


0 0 0 T1 0
0 0 0 0 T Ψ̄T

k

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
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5.3.2.1 Probability Distribution of the Errors

The prior error probability distribution is found by linearizing Eu,0 = X−1
0 X̄0. Letting

X0 = X̄0 exp (−δξ∧0 ), the prior input error is

Eu,0(x) = X−1
0 X̄0,

exp
(
e∧u,0
)

= exp (δξ∧0 ) X̄−1
0 X̄0

= exp (δξ∧0 ) ,

e∧u,0 ≈ δξ∧0 ,

eu,0 = δξ0.

Thus, eu,0 ∼ N (0,P0), where P0 is the covariance matrix of the initial error, which is assumed

to have the form P0 = diag(Pφ0 , Pv
0 ,Pr

0, P4
0, P5

0).

To �nd the input error probability distribution, the process model is linearized and the

e�ect of noise is recovered. The linearized kinematics are

Xk = Fk−1(Xk−1)Ξk−1 exp(w∧k−1),

X̄k exp (−δξ∧k ) = Fk−1(X̄k−1) exp
(
−(BLδξk−1)∧

)
Ξ̄k−1 exp

(
−(DL

k−1δξk−1)∧
)

exp(w∧k−1),

exp (−δξ∧k ) = X̄−1
k Fk−1(X̄k−1) exp

(
−(BLδξk−1)∧

)
Ξ̄k−1 exp

(
−(DL

k−1δξk−1)∧
)

exp(w∧k−1)

= Ξ̄−1
k−1 exp

(
−(BLδξk−1)∧

)
Ξ̄k−1 exp

(
−(DL

k−1δξk−1)∧
)

exp(w∧k−1). (5.12)

Using (2.2) and the BCH formula, (5.12) simpli�es to

exp (−δξ∧k ) = exp
(
−
(
Ad(Ξ̄−1

k−1)BLδξk−1

)∧)
exp

(
−(DL

k−1δξk−1)∧
)

exp
(
w∧k−1

)
≈ exp

((
−
(
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 + wk−1

)∧)
,

−δξ∧k =
(
−
(
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 + wk−1

)∧
,

δξk =
(
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 − wk−1. (5.13)

Similarly, the linearized input error is

Eu,k = X−1
k Fk−1(Xk−1)Ξk−1

= exp (δξ∧k ) X̄−1
k Fk−1(X̄k−1) exp

(
−(BLδξk−1)∧

)
Ξ̄k−1 exp

(
−(DL

k−1δξk−1)∧
)

= exp (δξ∧k ) Ξ̄−1
k−1 exp

(
−(BLδξk−1)∧

)
Ξ̄k−1 exp

(
−(DL

k−1δξk−1)∧
)
. (5.14)
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Using (2.2) and the BCH formula, (5.14) simpli�es to

exp
(
ẽ∧u,k
)

= exp (δξ∧k ) exp
(
−
(
Ad(Ξ̄−1

k−1)BLδξk−1

)∧)
exp

(
−(DL

k−1δξk−1)∧
)

≈ exp
(
−
((
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 + δξk

)∧)
e∧u,k = −

((
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 + δξk

)∧
,

eu,k = −
(
Ad(Ξ̄−1

k−1)BL + DL
k−1

)
δξk−1 + δξk (5.15)

= −wk−1. (5.16)

Going from (5.15) to (5.16) is done by rearranging (5.13). Thus, eu,k ∼ N (0,Qk).

The measurement error is

ẽy,k,j = ỹjk − X−1
k


pj

0

1

0


= ν̃k,j.

Eliminating the rows of zeros without consequence, ey,k,j ∼ N (0,Rk,j).

5.3.2.2 Linearized Error at Operating Point

The uncertainty representation used when linearizing the error about the operating tra-

jectory xop is Xk = Xop
k exp (−δε∧k ). The linearized prior error is

Eu,0(x) = X−1
0 X̌0

= exp (δε∧0 ) Xop
0
−1X̌0

= exp (δε∧0 ) Eu,0(xop),

exp (eu,0(x∧) ≈ exp
(
(eu,0(xop) + δε0)∧

)
,

eu,0(x) = eu,0(xop) + δε0.

This has the form of (5.5). Therefore, F2
0 = 1.
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Letting Fk−1

(
Xop
k−1

)
= Fop

k−1, the linearized input error is

Eu,k = X−1
k Fk−1(Xk−1)Ξk−1

= exp (δε∧k ) Xop
k
−1Fop

k−1 exp (−(Bδεk−1)∧) Ξop
k−1 exp (−(Dk−1δεk−1)∧) (5.17)

= exp (δε∧k ) Xop
k
−1Fop

k−1 exp (−(Bδεk−1)∧)(
Xop
k
−1Fop

k−1

)−1

Xop
k
−1Fop

k−1Ξ
op
k−1 exp (−(Dk−1δεk−1)∧)

= exp (δε∧k ) Xop
k
−1Fop

k−1 exp (−(Bδεk−1)∧)
(

Xop
k
−1Fop

k−1

)−1

Eu,k(xop) exp (−(Dk−1δεk−1)∧) ,

(5.18)

where the error at the operating point is Eu,k(xop) = Xop
k
−1Fop

k−1Ξk−1. Using the identity

(2.2) and the BCH formula, (5.18) is

exp
(
e∧u,k
)

= exp (δε∧k ) exp

(
−
(
Ad(Xop

k
−1Fop

k−1)BLδεk−1

)∧)
Eu,k(xop) exp

(
−(DL

k−1δεk−1)∧
)

= exp (δε∧k ) exp

(
−
(
Ad(Xop

k
−1Fop

k−1)BLδεk−1

)∧)
exp (eu,k(xop)∧) exp

(
−(DL

k−1δεk−1)∧
)

≈ exp

((
eu,k(xop)−

(
Ad(Xop

k
−1Fop

k−1)BL + DL
k−1

)
δεk−1 + δεk

)∧)
,

e∧u,k =
(

eu,k(xop)−
(
Ad(Xop

k
−1Fop

k−1)BL + DL
k−1

)
δεk−1 + δεk

)∧
,

eu,k = eu,k(xop)−
(
Ad(Xop

k
−1Fop

k−1)BL + DL
k−1

)
δεk−1 + δεk.

This has the form of (5.6). Therefore, F1
k =

(
Ad(Xop

k
−1Fop

k−1)BL + DL
k−1

)
and F2

k = −1.
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The linearized measurement error is

ẽy,k,j(x) = ỹjk − X−1
k


pj

0

1

0



= ỹjk − (Xop
k exp (−δε∧k ))

−1


pjop + δζj

0

1

0



= ỹjk − exp (δε∧k ) Xop
k
−1


pjop + δζj

0

1

0



≈ ỹjk − (1 + δε∧k ) Xop
k
−1


pjop + δζj

0

1

0



= ỹjk − Xop
k
−1


pjop

0

1

0

− Xop
k
−1

[
δζj

0

]
− δε∧kXop

k
−1


pjop + δζj

0

1

0



= ẽy,k,j(xop)− Xop
k
−1

[
δζj

0

]
− δε∧kXop

k
−1


pjop + δζj

0

1

0


= ẽy,k,j(xop)−

[
Cop
k

Tδζj

0

]
−

[
δεφk

×
Cop
k

Tpjop − δεφk
×

Cop
k

Tropk + δεrk
0

]
.

Neglecting the bottom rows of zeros,

ey,k,j(x) = ey,k,j(xop)− Cop
k

Tδζj − δεφk
×

Cop
k

T (pjop − ropk
)
− δεrk

= ey,k,j(xop)− δεrk +
(

Cop
k

T (pjop − ropk
))×

δεφk − Cop
k

Tδζj

= ey,k,j(xop) +
[ (

Cop
k

T (pjop − ropk
))×

0 −1 0 0
]
δεk − Cop

k
Tδζj,
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which has the form of (5.7), where

H1
k,j = −

[ (
Cop
k

T (pjop − ropk
))×

0 −1 0 0
]

and H2
k,j = Cop

k
T.

5.3.3 Approach 2: Left-Invariant Error De�ntion with Type 2 Jacobians

This section o�ers an alternative way of linearizing the input error from Section 5.3.2.2,

leading to Jacobians referred to here as type 2 Jacobians. Consider (5.17). In Sec-

tion 5.3.2.2, the term
(

Xop
k
−1Fop

k−1

)−1

Xop
k
−1Fop

k−1 is inserted such that the nominal error

Eu,k(xop) = Xop
k
−1Fop

k−1Ξ
op
k−1 appears. Alternatively, the nominal error is rearranged to

Eu,k(xop)Ξop
k−1
−1 = Xop

k
−1Fop

k−1. Substituting this into (5.17) yields

Eu,k = exp (δε∧k ) Xop
k
−1Fop

k−1 exp
(
−(BLδεk−1)∧

)
Ξop
k−1 exp

(
−(DL

k−1δεk−1)∧
)

= exp (δε∧k ) Eu,k(xop)Ξop
k−1
−1 exp

(
−(BLδεk−1)∧

)
Ξop
k−1 exp

(
−(DL

k−1δεk−1)∧
)
. (5.19)

Using the identity (2.2) and the BCH formula, (5.19) is

Eu,k(x) = exp (δε∧k ) Eu,k(xop) exp

(
−
(
Ad(Ξop

k−1
−1)BLδεk−1

)∧)
exp

(
−(DL

k−1δεk−1)∧
)
,

exp (eu,k(x)∧) = exp (δε∧k ) exp (eu,k(xop)∧) exp
(
−(Ad(Ξop

k−1
−1)BLδεk−1)∧

)
exp

(
−(DL

k−1δεk−1)∧
)

≈ exp

((
eu,k(xop)−

(
Ad
(
Ξop
k−1
−1
)

BL + DL
k−1

)
δεk−1 + δεk

)∧)
,

eu,k(x)∧ =
(

eu,k(xop)−
(
Ad
(
Ξop
k−1
−1
)

BL + DL
k−1

)
δεk−1 + δεk

)∧
,

eu,k(x) = eu,k(xop)−
(
Ad
(
Ξop
k−1
−1
)

BL + DL
k−1

)
δεk−1 + δεk.

This has the form of (5.6). Therefore, F1
k =

(
Ad
(
Ξop
k−1
−1
)

BL + DL
k−1

)
and F2

k = −1. The

other Jacobians from Section 5.3.2 hold, meaning F2
0 = −1, H2

k,j = Cop
k

T and

H1
k,j = −

[ (
Cop
k

T (pjop − ropk
))×

0 −1 0 0
]
.

The weighting matrices remain Wu,0 = P0, Wu,k = Qk, and Wy,k,j = Rk,j.

92



5.3.4 Approach 3: Right-Invariant Error De�nition

Let the error be de�ned as δX = X̄X−1. The uncertainty representation is X =

exp (δξ∧) X̄. Therefore the state is updated using (5.9). The right-invariant error in the

state is

X̄kX−1
k =



C̄k v̄k r̄k
1

1

1 β̄1
k β̄2

k

1

1





CT
k −CT

k vk −Ckrk
1

1

1 −β1
k −β2

k

1

1



=



C̄kCT
k v̄k − C̄kCT

k vk r̄k − C̄kCT
k rk

1

1

1 β̄1
k − β1

k β̄2
k − β2

k

1

1



=



δCk δvk δrk
1

1

1 δβ1
k δβ2

k

1

1


.

Thus, the perturbation in R15 is de�ned as

δξk =


logSO(3)(δCk)

∨

J−1
k δvk

J−1
k δrk
δβ1

k

δβ2
k

 .
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The right-invariant error in Fk(Xk) is

δFk = Fk(X̄k)Fk(Xk)
−1

=



C̄k v̄k + Tg r̄k + T v̄k
1

1

1 β̄1
k β̄2

k

1

1




CT
k −CT

k (vk + Tg) −CT
k (rk + Tvk)

1

1

1 −β1
k −β2

k

1

1



=



C̄kCT
k δvk + T (1− δCk)g δrk + Tδvk

1

1

1 β̄1
k − β1

k β̄2
k − β2

k

1

1


.
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To simplify, let δCk = 1 + δξφk
×
to yield

δFk ≈



δCk δvk + T (1− 1− δξφk
×

)g δrk + Tδvk
1

1

1 δβ1
k δβ2

k

1

1



=



δCk δvk − Tδξφk
×

g δrk + Tδvk
1

1

1 δβ1
k δβ2

k

1

1



=



δCk δvk + Tg×δξφk δrk + Tδvk
1

1

1 δβ1
k δβ2

k

1

1


.

As in Section 5.3.2, this can be written using the exponential map as δFk = exp
(
(BRδξk)

∧),
where

BR =


1 0 0 0 0

Tg× 1 0 0 0
0 T1 1 0 0
0 0 0 1 0
0 0 0 0 1


As Ξk−1 is state-dependent, it has an associated right-invariant error, which is δΞk =
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Ξ̄kΞ
−1
k . Expanding, the right-invariant error is

δΞk = Ξ−1
k Ξ̄k

=



Ψ̄k T (u2
k + β̄2

k)

1

1

1 0 0
1

1





ΨT
k −TΨT

k (u2
k + β2

k) 0
1

1

1 0 0
1

1



=



Ψ̄kΨ
T
k −T Ψ̄kΨ

T
k (u2

k + β2
k) + T (u2

k + β̄2
k)

1

0

1 0 0
1

1



≈



expSO(3)

(
Tδβ1

k
×
)
−T expSO(3)

(
Tδβ1

k
×
)

(u2
k + β2

k) + T (u2
k + β̄2

k)

1

0

1 0 0
1

1


.

Linearizing by letting expSO(3)

(
Tδβ1

k
×
)
≈ 1 + Tδβ1

k
×
and neglecting second order terms
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yields

δΞk ≈



expSO(3)

(
Tδβ1

k
×
)
−T (1 + Tδβ1

k
×

)(u2
k + β2

k) + T (u2
k + β̄2

k)

1

0

1 0 0
1

1



=



expSO(3)

(
Tδβ1

k
×
)

T 2δβ1
k
×u2

k − Tβ2
k + T β̄2

k 0

1

1

1 0 0
1

1



=



expSO(3)

(
Tδβ1

k
×
)
−T 2u2

k
×
δβ1

k + Tδβ2
k 0

1

1

1 0 0
1

1


.

As δΞk ∈ G2, it can be expressed using the exponential map as δΞk = exp (δu∧k ), where

δuk =

 Tδβ1
k

J−1(−T 2u2
k
×
δβ1

k + Tδβ2
k)

0

 .
This can be rewritten as δΞk = exp

((
DR
k δξk

)∧)
, where

DR
k =


0 0 0 T1 0
0 0 0 −T 2u2

k
×

T1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
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5.3.4.1 Probability Distribution of the Error

The prior error distribution is found by linearizing Eu,0(x) = X̄0X−1
0 . Letting X0 =

exp (−δξ∧0 ) X̄0,

Eu,0(x) = X̄0X−1
0 ,

exp (eu,0(x)∧) = X̄0X̄−1
0 exp (δξ∧0 )

= exp (δξ∧0 ) ,

eu,0(x)∧ ≈ δξ∧0 ,

eu,0(x) = δξ0.

Thus, eu,0(x) ∼ N (0,P0).

To �nd the input error probability distribution, the process model is linearized and the

e�ect of noise is recovered. To ease the notation, let Fk−1(Xk−1) = Fk−1. Letting Fk−1 =

exp
(
−
(
BRδξk−1

)∧) F̄k−1 and Ξk−1 = exp
(
−
(
DR
k−1δξk−1

)∧)
Ξ̄k−1 the linearized process

model is

Xk = Fk−1Ξk−1 exp
(
w∧k−1

)
,

exp (−δξ∧k ) X̄k = exp
(
−(BRδξk−1)∧

)
F̄k−1 exp

(
−
(
DR
k−1δξk−1

)∧)
Ξ̄k−1 exp

(
w∧k−1

)
,

exp (−δξ∧k ) = exp
(
−
(
BRδξk−1

)∧) F̄k−1 exp
(
−
(
DR
k−1δξk−1

)∧)
Ξ̄k−1 exp

(
w∧k−1

)
X̄−1
k

= exp
(
−(BRδξk−1)∧

)
F̄k−1 exp

(
−
(
DR
k−1δξk−1

)∧)
F̄−1
k−1F̄k−1Ξ̄k−1 exp

(
w∧k−1

) (
F̄k−1Ξ̄k−1

)−1
.

(5.20)

Using (2.2) and the BCH formula, (5.20) simpli�es to

exp (−δξ∧k ) = exp
(
−(BRδξk−1)∧

)
exp

(
−(Ad(F̄k−1)DR

k−1δξk−1)∧
)

exp
((
Ad(F̄k−1Ξ̄k−1)wk−1

)∧)
≈ exp

(
−
(
(B + Ad(F̄k−1)DR

k−1)δξk−1 + Ad(F̄k−1Ξ̄k−1)wk−1

)∧)
,

δξk = (BR + Ad(F̄k−1)DR
k−1)δξk−1 − Ad(F̄k−1Ξ̄k−1)wk−1. (5.21)

Letting Fk−1 = exp
(
−
(
BRδξk−1

)∧) F̄k−1 and Ξk−1 = exp
((

DR
k−1δξk−1

)∧)
Ξ̄k−1, the lin-
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earized input error is

Eu,k(x) = Fk−1Ξk−1X−1
k

= exp
(
−
(
BRδξk−1

)∧) F̄k−1 exp
(
−
(
DR
k−1δξk−1

)∧)
Ξ̄k−1X̄−1

k exp (δξ∧k )

= exp
(
−
(
BRδξk−1

)∧) F̄k−1 exp
(
−
(
DR
k−1δξk−1

)∧) F̄−1
k−1F̄k−1Ξ̄k−1X̄−1

k exp (δξ∧k )

= exp
(
−
(
BRδξk−1

)∧) F̄k−1 exp
(
−
(
DR
k−1δξk−1

)∧) F̄−1
k−1F̄k−1 exp (δξ∧k ) . (5.22)

Using (2.2) and the BCH formula, (5.22) simpli�es to

exp (eu,k(x)∧) = exp
(
−
(
BRδξk−1

)∧)
exp

(
−
(
Ad(F̄k−1)DR

k−1δξk−1

)∧)
exp (δξ∧k )

≈ exp
((
−(BR + Ad(F̄k−1)DR

k−1)δξk−1 + δξk
)∧)

,

eu,k(x)∧ =
(
−(BR + Ad(F̄k−1)DR

k−1)δξk−1 + δξk
)∧
,

eu,k(x) = −(BR + Ad(F̄k−1)DR
k−1)δξk−1 + δξk (5.23)

= −Ad(F̄k−1Ξ̄k−1)wk−1. (5.24)

Going from (5.23) to (5.24) is done by rearranging (5.21). Thus, eu,k(x) ∼
N
(
0,Ad(F̄k−1Ξ̄k−1)QkAd(F̄k−1Ξ̄k−1)T

)
.

The measurement error distribution is found in a manner identical to that used in Sec-

tion 5.3.2, yielding ey,k,j(x) ∼ N (0,Rk,j).

5.3.4.2 Linearized Error at Operating Point

The uncertainty representation used when linearizing the error about the operating tra-

jectory xop is Xk = exp (−δε∧k ) Xop
k . It the follows that Fk−1 = exp

(
−
(
BRδεk−1

)∧)Fop
k−1 and

Ξk−1 = exp
(
−
(
DR
k−1δξk−1

)∧)
Ξop
k−1.

The linearized prior error is

Eu,0(x) = X̌0X−1
0

= X̌0Xop
0
−1 exp (δε∧0 )

= Eu,0(xop) exp (δε∧0 )

≈ exp
(
(eu,0(xop) + δε0)∧

)
eu,0(x) = eu,0(xop) + δε0.

This has the form of (5.5). Therefore, F2
0 = 1.
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The linearized input error is

Eu,k = Fk−1Ξk−1X−1
k

= exp
(
−
(
BRδεk−1

)∧)Fop
k−1 exp

(
−
(
DR
k−1δξk−1

)∧)
Ξop
k−1Xop

k
−1 exp (δε∧k )

= exp
(
−
(
BRδεk−1

)∧)Fop
k−1 exp

(
−
(
DR
k−1δξk−1

)∧)Fop
k−1
−1Fop

k−1Ξ
op
k−1Xop

k
−1 exp (δε∧k )

= exp
(
−
(
BRδεk−1

)∧)Fop
k−1 exp

(
−
(
DR
k−1δξk−1

)∧)Fop
k−1
−1Eu,k(xop) exp (δε∧k ) , (5.25)

where the error at the operating point is Eu,k(xop) = Fop
k−1Ξ

op
k−1Xop

k
−1. Using (2.2) and the

BCH formula, (5.25) is

exp (eu,k(x)∧) = exp
(
−
(
BRδεk−1

)∧)
exp

(
−(Ad(Fop

k−1)DR
k−1δεk−1)∧

)
Eu,k(xop) exp (δε∧k )

≈ exp
((

eu,k(xop)− (BR + Ad(Fop
k−1)DR

k−1)δεk−1 + δεk
)∧)

,

eu,k(x)∧ =
(
eu,k(xop)− (BR + Ad(Fop

k−1)DR
k−1)δεk−1 + δεk

)∧
,

eu,k(x) = eu,k(xop)− (BR + Ad(Fop
k−1)DR

k−1)δεk−1 + δεk.

This has the form of (5.6). Therefore, F1
k = BR + Ad(Fop

k−1)DR
k−1 and F2

k = −1.
Letting ẽy,k,j = [ ey,k,j(x)T 0 ]T, the measurement error is

ẽy,k,j(x) = ỹk,j − X−1
k


pj

0

1

0



= ỹk,j − (exp (−δε∧k ) Xop
k )


pjop

+ δζj

0

1

0



= ỹk,j − Xop
k
−1 exp (δε∧k )


pjop

+ δζj

0

1

0

 . (5.26)
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Linearizing with exp (δε∧k ) ≈ 1 + δε∧k , and neglecting second order terms, (5.26) becomes

ẽy,k,j(x) = ỹjk − Xop
k
−1 (1 + δε∧k )


pjop

+ δζj

0

1

0



= ỹk,j − Xop
k
−1


pjop

+ δζj

0

1

0

− Xop
k
−1δε∧k


pjop

+ δζj

0

1

0



= ẽy,k,j(xop)− Xop
k
−1

[
δζj

0

]
− Xop

k
−1δε∧k


pjop

+ δζj

0

1

0



= ẽy,k,j(xop)− Xop
k
−1

[
δζj

0

]
− Xop

k
−1δε∧k


pjop

0

1

0

− Xop
k
−1δε∧k

[
δζj

0

]

= ẽy,k,j(xop)−

[
Cop
k

Tδζj

0

]
−

[
Cop
k

Tδεφk
×

pjop
+ Cop

k
Tδεrk

0

]

= ẽy,k,j(xop)−

[
Cop
k

Tδζj

0

]
−

[
−Cop

k
Tpjop×

δεφk + Cop
k

Tδεrk
0

]
. (5.27)

Removing the bottom rows of zeros of (5.27) without consequence yields

ey,k,j(x) = ey,k,j(xop)− Cop
k

Tδζj + Cop
k

Tpjop×
δεφk − Cop

k
Tδεrk

= ey,k,j(xop) +
[

Cop
k

Tpjop× −Cop
k

T 0 0 0
]
δεk − Cop

k
Tδζj,

which has the form of (5.7), where

H1
k,j = −

[
Cop
k

Tpjop× 0 −Cop
k

T 0 0
]

and H2
k,j = Cop

k
T.
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5.3.5 Approaches 4 and 5: Left-Invariant Error with Invariant Measurement

Error

The previous three approaches de�ned the measurement error as (5.4). Consider instead

a left-invariant measurement error,

ẽy,k,j(x) = X̄k

ỹk,j − X−1
k


pj

0

1

0




Using this error de�nition runs counter to what is done in the literature. It is only advan-

tageous to use a left-invariant error with a left-invariant measurement model. However, this

measurement model is right-invariant. Despite this, the derivation is presented for complete-

ness. The probability distribution of this new measurement error is

ẽy,k,j(x) = X̄k

ỹk,j − X−1
k


pj

0

1

0




= X̄kνk,j

By removing the unnecessary rows of zeros, ey,k,j(x) = C̄kνk,j and ey,k,j(x) ∼
N
(
0, C̄kRk,jC̄T

k

)
.

Letting X̄k = Xop
k , Xk = Xop

k exp (−δε∧k ) and pj = pjop
+ δζj, the measurement error at
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the operating point is

ẽy,k,j(x) = Xop
k

ỹk,j − X−1
k


pj

0

1

0




= Xop
k

ỹk,j − exp (δε∧k ) Xop
k
−1


pjop

+ δζj

0

1

0




= Xop
k ỹk,j − Xop

k exp (δε∧k ) Xop
k
−1


pjop

+ δζj

0

1

0



= Xop
k ỹk,j − exp ((Ad(Xop

k )δε∧k ))


pjop

+ δζj

0

1

0

 .

Linearizing by letting exp (Ad(Xop
k )δε∧k ) ≈ 1+Ad(Xop

k )δεk and neglecting higher order terms
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yields

ẽy,k,j(x) ≈ Xop
k ỹk,j − (1 + (Ad(Xop

k )δεk)
∧)


pjop

+ δζj

0

1

0



= Xop
k ỹk,j −


pjop

0

1

0

−
[
δζj

0

]
− (Ad(Xop

k )δεk)
∧


pjop

+ δζj

0

1

0



= ẽy,k,j(xop)−

[
δζj

0

]
− (Ad(Xop

k )δεk)
∧


pjop

+ δζj

0

1

0


= ẽy,k,j(xop)−

[
δζj

0

]
−

[
(Cop

k δε
φ
k)×pjop

+ rop
k
×Cop

k δε
φ
k + Cop

k δε
r
k

0

]

= ẽy,k,j(xop)−

[
δζj

0

]
−

[
−pjop×Cop

k δε
φ
k + rop

k
×Cop

k δε
φ
k + Cop

k δε
r
k

0

]
. (5.28)

Neglecting the bottom three rows of (5.28) without consequence yields

ey,k,j(x) = ey,k,j(xop)− δζj + pjop×Cop
k δε

φ
k − rop

k
×Cop

k δε
φ
k − Cop

k δε
r
k

= ey,k,j(xop) +
[

(pjop − rkop)×Cop
k 0 −Cop

k 0 0
]
δεk − δζj,

which has the form of (5.7), where

H1
k,j = −

[
(pjop − rkop)×Cop

k 0 −Cop
k 0 0

]
and H2

k,j = 1.
Approach 4 substitutes the measurement Jacobians of Approach 1 with those derived

here, while Approach 5 substitutes the measurement Jacobians of Approach 2 with those

derived here. In both cases, the left-invariant measurement error is used to compute the

measurement error.
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5.3.6 Approach 6: Right-Invariant Error with Invariant Measurement Error

Similarly to Approaches 4 and 5, an invariant measurement error is used instead of (5.4).

The right-invariant measurement error used here is

ẽy,k,j(x) = X̄−1
k

ỹk,j − X−1
k


pj

0

1

0


 .

Using this measurement error de�nition, coupled with the fact that the measurement model

(5.11) is right invariant, leads to Jacobians dependent only on the landmark estimate. The

probability distribution of this new measurement error is

ẽy,k,j(x) = X̄−1
k

ỹk,j − X−1
k


pj

0

1

0




= X̄−1
k νk,j

By removing the three unnecessary rows of zeros, ey,k,j(x) = C̄T
kνk,j and ey,k,j(x) ∼

N
(
0, C̄T

kRk,jC̄k

)
.

Letting X̄k = Xop
k , Xk = exp (−δε∧k ) Xop

k and pj = pjop
+ δζj, the measurement error at
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the operating point is

ẽy,k,j(x) = Xop
k
−1

ỹk,j − X−1
k


pj

0

1

0




= Xop
k
−1

ỹk,j − exp (δε∧k ) Xop
k
−1


pjop

+ δζj

0

1

0




= Xop
k
−1ỹk,j − exp (δε∧k ) Xop

k Xop
k
−1


pjop

+ δζj

0

1

0



= Xop
k
−1ỹk,j − exp (δε∧k )


pjop

+ δζj

0

1

0

 .
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Linearizing by letting exp (δε∧k ) ≈ 1 + δεk and neglecting higher order terms yields

ẽy,k,j(x) ≈ Xop
k
−1ỹk,j − (1 + δεk)

∧


pjop

+ δζj

0

1

0



= Xop
k
−1ỹk,j −


pjop

0

1

0

−
[
δζj

0

]
− δε∧k


pjop

+ δζj

0

1

0



= ẽy,k,j(xop)−

[
δζj

0

]
− δε∧k


pjop

+ δζj

0

1

0


= ẽy,k,j(xop)−

[
δζj

0

]
−

[
δεφk

×
pjop

+ δεrk
0

]

= ẽy,k,j(xop)−

[
δζj

0

]
−

[
−pjop×

δεφk + δεrk
0

]
. (5.29)

Neglecting the bottom rows of zeros (5.29) without consequence yields

ey,k,j(x) = ey,k,j(xop)− δζj + pjop×
δεφk − δε

r
k

= ey,k,j(xop) +
[

pjop× 0 −1 0 0
]
δεk − δζj,

which has the form of (5.7), where

H1
k,j = −

[
pjop× 0 −1 0 0

]
and H2

k,j = 1.
To implement Approach 6, the measurement Jacobians of Approach 3 are substituted

with those derived here, and the right-invariant innovation is used to compute the measure-

ment error.
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Trial σ1
k rad σ2

k m/s σ3
k rad/s2 σ4

k m/s2 σk,j m

Rate Gyro Noise 0.05 to 1 0.05 0.005 0.005 0.05
Accelerometer Noise 0.05 0.05 to 1 0.001 0.005 0.05
Rate Gyro Bias Noise 0.05 0.05 0 to 0.1 0.005 0.05
Accelerometer Bias Noise 0.05 0.05 0.005 0 to 0.1 0.05
Landmark Sensor Noise 0.05 0.05 0.005 0.005 0.05 to 1

Table 5.3: Standard deviation of the noise injected into each measurement for each trial.

5.4 Simulation Results

The proposed batch SLAM approaches are all compared in simulation. The e�ect of noise

in the sensors is investigated for two reasons. The noise in the sensors directly e�ects the

quality of the dead-reckoning solution, which is used to initialize the nonlinear least squares

problem. The quality of this initialization typically has a signi�cant e�ect on the speed of

convergence and accuracy of the solution. The magnitude of the noise in the sensors will

also e�ect the accuracy of the Jacobians which mainly depend on measurements, namely F1
k

of Approaches 2 and 5.

The trajectory used is similar to that used in Chapter 4. However, this trajectory, shown

in Figure 5.1 is shorter, to reduce the computational load. As in Chapter 4, the noise is

assumed isotropic. Therefore, Qi
k = σik1 and Rk,j = σk,j1. The noise standard deviations

used in the simulations are found in Table 5.3. The sensor noises are incremented by 0.05,

while the bias noises are incremented by 0.005, where appropriate units are assumed. At each

noise level, 25 simulations are performed, where the noise pro�le and initial bias estimate are

varied. As the initial position, attitude and velocity are not observable, they are initialized

accurately. However, the initial biases are observable. The initial gyro bias error is sampled

from a zero-mean Gaussian distribution with covariance P4
0 = 0.0121 (rad/s2)2 and the initial

accelerometer bias error is sampled from a zero-mean Gaussian distribution with covariance

P5
0 = 0.0121 (m/s2)2. A simple Gauss-Newton scheme is used to solve the nonlinear least-

squares problem. The line-search method and Levenberg-Marquardt method presented in

Chapter 2 were tested, but in the end did not provide better results than simple Gauss-

Newton.

The results are presented in Figures 5.2 to 5.6. The main takeaway is that, generally, the

six di�erent approaches provide similar results. In particular, there is no discernible di�erence

between using the invariant formulations of the measurement error (Approaches 4, 5, and

6) as opposed to their standard counterparts (Approaches 1, 2, and 3). The results from

Approaches 1, 2, 4, and 5 are similar to such an extent that they are often indistinguishable

when they are overlaid. Furthermore, the impact of reducing the state dependence of the
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Figure 5.1: Trajectory used in simulations. The blue markers represent the landmarks, the
trajectory is shown in black, and a triad is used to show the orientation at various times

during the trajectory.
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Figure 5.2: Results of 25 Monte Carlo trials comparing the various batch SLAM
approaches, where the noise in the rate gyro was varied.

Jacobians is unclear. After multiple iterations of the nonlinear least squares solver, the

operating trajectory begins approaching the truth trajectory. Thus, assuming the solver

converges to the optimal solution, the Jacobians become more and more accurate. The

advantage of state-independent Jacobians is most notable in situations when the Jacobians

are normally inaccurate, which isn't the case here. In addition, the error de�nitions used to

derive the Jacobians in Approaches 3 and 6 simply shift the state dependence from F1
k to

weighting matrix Wu,k. Some additional observations are as follows.

• Increasing the magnitude of the standard deviation of the noise in the gyro had the

largest impact on the results, as seen in Figure 5.2. While Approaches 2 and 5 have a

lower mean RMSE over a wide range of noise magnitudes, these formulations converge

much slower than the other approaches. In the end, the left-invariant error de�nition

using the type 1 Jacobians performed best when the noise level was increased.

• In general, a measurement-dependent Jacobian should be avoided when there is a lot

of noise in the measurement, as it increases greatly the amount of steps needed to

converge

• The right-invariant approaches show improved performance when there is signi�cant

noise in the landmark sensor and the accelerometer.
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Figure 5.3: Results of 25 Monte Carlo trials comparing the various batch SLAM
approaches, where the noise in the accelerometer was varied.

0 0.02 0.04 0.06 0.08 0.1
3.2

3.3

3.4

10-3

0 0.02 0.04 0.06 0.08 0.1

7.9

7.95

8

10-3

0 0.02 0.04 0.06 0.08 0.1

7.4

7.5

7.6

10-3

0 0.02 0.04 0.06 0.08 0.1

5

10
10-3

0 0.02 0.04 0.06 0.08 0.1

4.98

5

10-3

(a) Mean RMSE for each state.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

(b) Percentage of trials that have converged at

each GN iteration.

Figure 5.4: Results of 25 Monte Carlo trials comparing the various batch SLAM
approaches, where the noise in the gyro bias was varied.

111



0 0.02 0.04 0.06 0.08 0.1
3.2

3.3

10-3

0 0.02 0.04 0.06 0.08 0.1

8

8.5

9
10-3

0 0.02 0.04 0.06 0.08 0.1

7.5

8
10-3

0 0.02 0.04 0.06 0.08 0.1
3.155

3.16

3.165
10-3

0 0.02 0.04 0.06 0.08 0.1
5

10

10-3

(a) Mean RMSE for each state.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

(b) Percentage of trials that have converged at

each GN iteration.

Figure 5.5: Results of 25 Monte Carlo trials comparing the various batch SLAM
approaches, where the noise in the accelerometer bias was varied.
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Figure 5.6: Results of 25 Monte Carlo trials comparing the various batch SLAM
approaches, where the noise in the landmark sensor was varied.
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Chapter 6

Closing Remarks and Future Work

6.1 Conclusions

In this thesis, an in-depth analysis of state estimation in an invariant framework is pre-

sented. Through rigorous testing, the advantages and limitations of these di�erent techniques

are determined. Furthermore, an extension of invariant �ltering theory to the problem of a

batch solution to the SLAM problem is presented.

The IEKF is superior to the traditional MEKF in certain situations. It is better suited

to problems where the state can be de�ned on matrix Lie groups, which is the case for

many robotics problems. Throughout the simulations presented herein, the performance of

the IEKF is on average better than that of the MEKF. However, only particular sample

problems are used to illustrate this. It would therefore be irresponsible to state that the

IEKF would always perform better than the MEKF. However, certain clear conclusions can

be drawn.

First, state-independent Jacobians, such as those obtained in an IEKF, are advantageous

in cases where the best estimate of the state is far from the true value. In most situations,

this is seen when the initialization is poor. The IEKF's better performance is therefore

mostly attributed to better performance in the transient period before the �lter reaches

steady state. Thus, the IEKF should be the state estimator of choice in applications where

the initial state is unknown, and no other initialization scheme is available.

Second, leveraging the invariant framework in batch estimation only has limited advan-

tages. In standard batch estimation, the Jacobians may initially be inaccurate if they depend

on the state. However, as the solution converges, the Jacobians will be closer to the true

Jacobians, as the error in the state estimate decreases. At this stage, there is minimal dif-

ference between a state-independent Jacobian and a Jacobian computed using an accurate

state estimate.
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6.2 Future Work

In Chapter 4, the IEKF is compared to the MEKF. The MEKF was used a baseline as

it is commonly used. However, comparing the IEKF to an iterative version of the MEKF

may yield di�erent results. The iterative MEKF improves upon the MEKF by recomputing

the Jacobians at each time step until convergence. Furthermore, an iterative version of the

IEKF could also be developed. This iterative IEKF would only be useful in scenarios where

the process model is not group a�ne, or the measurement model is not invariant, leading to

state dependent Jacobians like the MEKF.

Another avenue to explore would involve using a realistic sensor model in invariant batch

SLAM. A future study using a stereo camera model or LIDAR model would also allow the

invariant batch SLAM algorithms to be tested on experimental data.

Lastly, a study analyzing the consistency of the IEKF versus other other �ltering tech-

niques should be conducted. The IEKF should theoretically be more consistent, as its more

accurate Jacobians mean the covariance better captures the underlying distribution. In a

similar vein, the impact of unknown disturbances should be studied. The IEKF may be

better suited to handle these, once again, due to theoretically exact Jacobians.
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