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ABSTRACT

State-space models are used to study non-stationary data. However, in the presence on non-

Gaussian error terms the standard state-space model does not apply. We investigate the

properties of univariate and multivariate state-space models under conditional heteroskedas-

ticity and multiple structural breaks. This allows us to extend the standard state-space

models to heavy tailed data and allow for dynamic parameters. We develop a Gibbs sam-

pling algorithm to carry out Bayesian inference on the parameters and the latent state vector.

Finally, we carry out an empirical study on ICU data. We find that our models are better

able to capture the variation in the data than the standard state-space models.
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ABRÉGÉ

Les modèles d’espace d’ètats sont utilisés pour étudier des données non stationnaires. Cepen-

dant, en présence de termes d’erreur non gaussiens, le modèle d’espace d’états standard ne

s’applique pas. Nous étudions les propriétés des modèles univariés et multivariés d’espace-

état sous hétéroskédasticité conditionnelle et fractures structurelles multiples. Cela nous per-

met d’étendre les modèles d’espace d’états standard aux données à queue lourde et de prendre

en compte les paramètres dynamiques. Nous développons un algorithme d’échantillonnage

de Gibbs pour réaliser l’inférence bayésienne sur les paramètres et le vecteur d’état latent.

Enfin, nous menons une étude empirique sur les données de l’unité de soins intensifs. Nous

constatons que nos modèles sont mieux à même de rendre compte de la variation des données

par rapport aux modèles despace à états standard.
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CHAPTER 1
Introduction

1.1 Introduction

Studying non-stationary time series is an important part of statistics. First introduced in

Kalman et al. (1960) and Kalman and Bucy (1961), state-space models (SSM), form a rich

class of models that may be used to study non-stationary data. These models have been

studied for a while now and their flexibility in allowing for time varying parameters and

structural changes make them extremely useful. These models have many applications in

the field of economics, engineering and the health sciences. Kim et al. (1999), Hamilton

(1994), Harvey (1990) and Durbin and Koopman (2012) have a list of applications and ex-

amples of problem where SSMs are used.

An SSM is a two component model. The first component is a latent or hidden state that

evolves with time and the second component is the observation component that is driven

by these latent states. The Gaussian-SSM (or standard SSMs) assumes that the distribu-

tion of the errors for these two components are Gaussian in nature. The assumption of

having error terms that are Gaussian, gives SSMs many of their elegant properties. This

assumption in fact makes the recursions described in Kalman et al. (1960) quite tractable

and makes estimating these complex models fairly easy. However, this assumption also may

be a disadvantage. While standard SSMs allow for time varying variance parameters, het-

eroskedasticity is still maintained under the Gaussianity assumption. We may very well want

to allow for non-Gaussianity, however, in doing so we lose the tractability of the Kalman

Filter and Kalman recursions.
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We would like to extend SSMs to having heteroskedastic errors of a more general form in-

stead of the strict Gaussianity assumption without completely abandoning the tractability

that this assumption permits. This leads us to the idea of conditionally Gaussian error

terms. Using the ideas introduced by Engle (1982) and Bollerslev (1986) we can extend the

standard SSM to have errors that allow for a more general form of heteroskedasticity while

maintaining conditional Gaussianity.

There is a great deal of literature for non-linear and non-Gaussian state space models. We

refer the interested reader to Douc et al. (2014) for an exposition into these non-standard

SSMs. More on special exponential family of dsitribution can be found in Gamerman et al.

(2013). Further, Kitagawa (1987), Konishi and Kitagawa (2008) describes an extended ver-

sion of the Kalman Filter in order to estimate these non-Gaussian models. However, as

mentioned above these techniques lose their analytic tractability when in the non-Gaussian

case.

The Auto-Regressive-Conditional-Heteroskedasticity (ARCH), introduced by Engle (1982)

and Generalized-ARCH (GARCH) models introduced by Bollerslev (1986) have played cru-

cial roles in modeling financial and economic time series data. The intuition behind these

ideas is that, while the error terms might be uncorrelated, their higher order moments may

have some kind of dependence. For example if we witness a huge market shock today, it

is very likely that the volatility of this shock will persist tomorrow and maybe even for a

longer period of time. Hence, we would like the volatility of tomorrow to depend on the

volatility of today. In this way over time we are getting residuals that are uncorrelated but

heteroskedastic in nature.

Our first goal is to extend the Gaussian-SSM to allow for GARCH errors. We call this model

a GARCH-SSM. One can immediately see why this would be a useful model by studying
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some of the properties of the Gaussian distribution. The Gaussain distribution has a kurtosis

of 3, which leads to thin tails. As a result Gaussian distribution is not a good distribution

to model data sets with outliers and large deviations. The GARCH model however, has

a kurtosis greater than 3 and is better equipped to deal with large scale deviations from

the mean. Gouriéroux (2012) gives a good exposition into the properties of the ARCH and

GARCH models. It is this ability to deal with outliers and thicker tails that we would like

our SSMs to have. Further we also want to be able to use the ability of SSMs to deal with

structural changes to have structurally changing GARCH parameters.

Although extending the standard SSM to have GARCH errors is quite a natural extension,

as will be shown later on, there has not been a lot of work looking into this. The best we

have found about GARCH and SSMs is the work by Wong et al. (2006), which looks at

model EEG data using state-variances that are GARCH. However, this does not look to

extend the GARCH error assumption to the observation level of the SSM and also does not

look at any structural breaks in the GARCH-SSM model. We show that this assumption

of GARCH errors still allow us to use the Kalman recursions and estimate the SSMs quite

elegantly without having to rely on the intractable estimation techniques that we would have

to use if we chose other distributions.

Our second goal is to estimate these models using Bayesian techniques. However, one may

also choose to use maximum likelihood to estimate these models. To estimate and do infer-

ence on the latent states, Frühwirth-Schnatter (1994), Carter and Kohn (1994) proposed a

Forward Filtering Backward Sampling (FFBS) algorithm. Due to the nature of the GARCH-

SSM the FFBS algorithm is still applicable for estimating the state vectors and is relied on

heavily in estimating the states of the models shown later on. For general study of estimat-

ing SSMs we refer the reader to Prado and West (2010), West and Harrison (1997), Petris

et al. (2009) which describe in details the Bayesian approach to estimating SSMs. For a
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general introduction to Bayesian estimation and computation techniques a large number of

resources are available. We refer the reader to Robert (2007), Gelman et al. (2013), Robert

and Casella (2013), Bernardo and Smith (1994), Gamerman and Lopes (2006).

Our main inspiration for this project came from the BrainIT core data set provided by col-

laborators at McGill University Department of Epidemiology, Biostatistics and Occupational

Health. The dataset contains various physiological readings from anonymous patients at the

Intensive Care Unit (ICU). ICU’s are complex environments, where patients are constantly

monitored. This leads to the opportunity of extracting vast amounts of data from the ICU.

The BrainIT data set contains a large amount of physiological data tracking patients in

differing conditions.

The data obtained from the ICU is of interest to physicians and hospitals who may use

this data for on-line detection of events that show changes in the status of a patient. The

volume of data available in these data heavy situation may pose a challenge to physicians.

Thus it would be of interest to design potentially multivariate models that summarize these

heterogeneous data and allow for easier monitoring of patients. It is also important to be

able to develop models that are able to handle missing data, which may be missing due to

a variety of reasons.

While it is easy to think of a number of reasons why care givers would be interested in

developing concise models to improve the quality of care, what is more difficult is to develop

accurate models for these types of data. We show two sets of measurements obtained from

a particular patient in the BrainIT data set.
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Figure 1–1: Left: Heart Rate of a particular patient; Right: Blood Pressure of the same

patient. Both series show measurements taken at 4-minute intervals.

The data seems rather quite challenging to deal with. Clearly due to the non-stationarity

nature of the data we cannot use simple classical time series modeling. Secondly, due to

the presence of large deviations from the mean we also need to be able to use appropriate

distributions to account for this behaviour. Further, do we actually believe that this is a
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single regime model, i.e. do the same parameters operate on the data the entire time or

do they change? If so, then can we say anything about the structural break? When did it

happen? Why did it happen? So on and so forth.

Gordon and Smith (1990) applied SSMs to a variety of health data with missing values and

with discontinuous change points. We wanted to build a similar type of model for our health

series above that would be able to address the different properties shown in the series in

Figure 1. What ever model we choose must be able to deal with the type of non-stationarity,

structural breaks and the outliers seen in many of these data sets. Given the structure of the

mean level of the model we chose to use SSMs, since they have the ability to deal with these

types of non-stationary data. However, the standard Gaussian-SSM would be ill equipped to

model the outliers present in many of our physiological time series. Our need to model the

heavy-tailed behaviour of this data without losing the analytical tractability of the Kalman

Filter estimates eventually led us to study a GARCH process and thereafter formulate the

GARCH-SSM. This model retains the analytical tractability of the Kalman recursions while

also retaining the ability to model the heavier tails.

It has been known for sometime that the physiological patterns in humans follow a complex

interrelated patterns. As early as the 18th century, research was being conducted into mea-

suring and studying the correlation between the complex dynamical systems that operate

within our bodies. Hales (1733) studied the correlation between the heart rate, blood pres-

sure and respiration. While we are fortunate to have the Brain IT data that measures many

more features than what Hales had the luxury of measuring, our choice of studying the heart

rate and blood pressure is as much due to convenience as it is to the their connection with

each other. We use convenience to refer to the completeness of the data. For many patients,

other than the heart rate and blood pressure series, many of the other measurements, like

respiration rate, are missing as much as of 50% or more of the data. On it own modeling
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such incomplete data does not pose any difficulty. However, since we are interested in some

multivariate modeling as well, trying to build such a model where one series is near complete

while the other has 50% of its values missing seems like a rather impractical task. One can

make the argument that we can just model both series from a time point where ‘sufficient’

amount of data is available. While that would be a sound argument we decided to try our

hand instead with data that already is sufficiently complete. And we use the term sufficiently

complete because we can see that in the heart rate series in Figure 1, slightly after 1200H

there is gap in the series indicating the presence of missing data. Thus an appropriate model

developed for this data must be able to handle missing data.

1.2 Outline of the Thesis:

The objective of this thesis is to build a model that addresses the aforementioned features of

the health data available from the Brain IT data set. We organize this document in the fol-

lowing manner. Chapter 2 looks at the theory of SSMs; Chapter 3 looks at the estimation of

SSMs through both the Bayesian and Frequentist viewpoints, where the emphasis is given on

the Bayesian framework; Chapter 4 gives a brief theory of the conditional heteroskedasticity

in the univariate and multivariate case; Chapter 5 looks at the extension of the standard

SSM to the GARCH-SSM; Chapter 6 looks at the time varying parameters and SSMs with

structural breaks; Chapter 7 shows a simulation study; Chapter 8 applies the GARCH-SSM

to the Brain IT data.
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CHAPTER 2
Basic Theory

2.1 State Space Models:

Consider a real valued (n×1) vector time series {yt} indexed by t ∈ N, where N is countable.

A state space representation of yt, is a representation that allows us to write the dynamics

of yt in terms of a latent or hidden state, θt, where, θt is another real valued (r × 1) vector

random variable indexed by t ∈ N. In particular, the representation of {yt} is given by,

(Observation equation) yt = F ′tθt + vt, vt ∼ WN(0,Vt)

(State equation) θt = Gtθt−1 +wt, wt ∼ WN(0,Wt),

(2.1)

where, Ft is an (n× r) matrix known as the design matrix, Gt is an (r× r) matrix known as

the state/evolution matrix, vt is an (n×1) vector white noise process, Vt is an (n×n) covari-

ance matrix, wt is an (r×1) vector white noise process andWt is an (r×r) covariance matrix.

We have the following assumptions of independence for the error terms.

E(vtv
′
s) =


Vt

(n×n)
t = s

0 otherwise

E(wtw
′
s) =


Wt
(r×r)

t = s

0 otherwise

(2.2)
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We further assume that vt and wt are mutually uncorrelated at all lags, i.e.

E(vtw
′
s) = 0, ∀t, s ∈ N (2.3)

The quadruple (Ft,Gt,Vt,Wt) specifies the SSM at time t. We can also have that these

parameters are time invariant, in which case we have that the quadruple may be written as

(Ft,Gt,Vt,Wt) = (F ,G,V ,W ).

With this specification SSMs satisfy the following assumption,

A.1 (θt) is Markovian, i.e. p(θt|θt−1, ...,θ0) = p(θt|θt−1).

A.2 Conditional on θt, yt is fully specified i.e p(yt|θt, ...,θ0,yt−1, ...,y1) = p(yt|θt).

This gives us that the joint distribution of the state vector and the observation vector is then

given by,

p(θ0:t,y1:t) = p(θ0)
t∏
i=1

p(θi|θi−1)p(yi|θi) (2.4)

When vt and wt are Gaussian random variables, we have referred to them as Gaussian-SSM

or standard SSM.

2.2 Examples of State Space Models:

2.2.1 Random Walk plus Drift Model:

Let yt be a real valued time series whose state space representation is specified by the

quadruple below,

(F ,G,V ,W ) =
{

1, 1, V,W
}

The state-space representation of yt is given by,
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yt = θt + vt vt ∼ N(0, V )

θt = θt−1 + wt, wt ∼ N(0,W )

This type of Gaussian-SSM is alternatively known as a first-order polynomial SSM (uni-

variate case).

2.2.2 Multivariate First Order Polynomial:

Let yt be an (n × 1) vector time series whose state space representation is specified by the

quadruple below,

(F ,G,V ,W ) =

{
In, In, diag(V1, ..., Vn), diag(W1, ...,Wn)

}

This gives us that,

yt = Inθt + vt vt ∼ N(0,V )

θt = Inθt−1 +wt, wt ∼ N(0,W )

θt =


θt,1
...

θn,1


The multivariate first order polynomial models is then basically n univariate random walk

plus drift models evolving together. More details about the general jth order polynomial

SSM may be found in West and Harrison (1997).

2.3 Estimating the Distributions of the State Vector:

Given a Gaussian SSM, our main task with these models is to make inference on the un-

observed state vectors and the unknown variances. We could also use the data available to

carry out forecasting exercises. Gaussianity allows us to use the normal equations to help
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derive the conditional distributions for the unknown state vectors and the forecasts.

We give three definitions. The distribution of the state vector at time t conditional on the

data up to time t is given by π(θt|y1:t), is called the filtering distribution. The distribution

of the forecast at time s conditional on the data up to time t, s > t is given by π(ys|y1:t)

and is called the forecasting distribution. The distribution of the state vector at time s

conditional on the data up to time t, s < t is given by π(θs|y1:t), and this distribution is

called smoothing distribution.

2.4 Filtering Distributions:

Suppose that we have a DLM specified by the quadruple (Ft,Gt,Vt,Wt) and that we start

with the distribution, π(θ0) ∼ N(m0,C0). The following theorem describes the prior, pos-

terior and one-step-ahead forecast distributions for the multivariate DLM.

The filtering distribution is given by,

1. The prior distribution at time t for the state vector is:

θt|y1:t−1 ∼ N(at,Rt) (2.5)

Where at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt

2. The one-step-ahead forecast for the observation vector is:

yt|y1:t−1 ∼ N(ft,Qt) (2.6)

Where ft = F ′tat and Qt = F ′tRtFt + Vt

3. The posterior distribution of the state at time t is then given by:

θt|y1:t ∼ N(mt,Ct) (2.7)
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Where,

mt = at +Ktet

Ct = Rt −KtQtK
′
t

Kt = RtFtQ
−1
t

et = yt − ft

(2.8)

We have et ∼ N(0,Qt). The term Kt = RtFtQ
−1
t is known as the Kalman gain matrix

or gain matrix for short. The solution above is known as the Kalman Filter recursion and

was first proposed by Kalman et al. (1960) as a theory for optimal prediction. The proof

of the above is simple and relies heavily on the normal equations and the fact that we have

conditional independence of the state and observation vectors on account of A.1 and A.2

(see West and Harrison (1997) for more details) .

2.5 Smoothing:

The previous section was focused on using the current information to produce estimates for

the future. However, often, it is just as important to use the current information to make

estimations of the past in order to better understand the underlying process governing the

system. Using the current information to make inference on the past values of the state vec-

tor is known as smoothing. The distribution of (θt−k|y1:t), k ≥ 1, is called the smoothing

distribution.

We described above using at(k),Rt(k) and ft(k),Qt(k), for the filtered and smoothed dis-

tribution we describe them using −k.

The smoothing distribution is
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θt−k|y1:t ∼ N [at(−k),Rt(−k)], (2.9)

where,

at(−k) = mt−k +Bt−k[at(−k + 1)− at−k+1]

Rt(−k) = Ct−k −Bt−k[Rt(−k + 1)−Rt−k+1]B
′
t−k

Bt = CtG
′
t+1R

−1
t+1,

(2.10)

where,

at(0) = mt, Rt(0) = Ct

2.6 Missing Data:

In the event of a missing data the filtering equations are easy to calculate. Let us first look

at the univariate case. Suppose we have that yt is missing. In terms of the distribution for

the unknown state vector we have that π(θt|y1:t) = π(θt|y1:t−1). Formally, having a missing

value at time t is the same as having F ′t = 0 at time t. This is saying that there is no link

between the state vector and the observation at time t. This affects the Kalman gain in (8)

and Kt becomes 0. This results in the filtered values in (8) becoming,

E[θt|y1:t] = E[θt|y1:t−1] = mt = at

V ar[θt|y1:t] = V ar[θt|y1:t−1] = Ct = Rt

This seems obvious, since there is no information at time t and hence all the information up

to time t− 1 is just carried forward.

We now describe missing values for the multivariate case. Suppose that yt is a p × 1 di-

mensional vector. There are two possibilities that we need to specify. The first one is when

information is missing across the entire vector at time t, i.e. all the components of yt are
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missing. In this case the update is similar to the univariate case. The observation matrix F ′t

is zero. This also results in the Kalman gain matrix to be a matrix of 0′s. And the filtered

updates are given as,

E[θt|y1:t] = E[θt|y1:t−1] = mt = at

V ar[θt|y1:t] = V ar[θt|y1:t−1] = Ct = Rt

The second possibility is that only some of the observations at time t are missing. That is,

for yt, only some components are missing while the others are present. In this case, we have

that the components in the observation matrix F ′t that correspond to the missing values,

are set to 0. This results in the a Kalman gain matrix, whose columns, corresponding to the

missing values, contain zeros.
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CHAPTER 3
Estimating the Parameters of a State Space Model:

3.1 Maximum Likelihood estimation:

Suppose that we have a multivariate time series y1, ...,yn, whose distribution depends on

some unknown parameter ψ and that in particular yt has a Gaussian-SSM state space

representation. To build the likelihood equation we use the conditional likelihood. Notice

that by assumption A.2, which gives us that the yt depends only on the state vector θt,

if we had the state vectors then we could use (2.1) to build a fully Gaussian likelihood.

However, since the state vectors are latent and in most case must be estimated we resort to

the conditional likelihood method given by,

p(y1, ...,yn|ψ) =
n∏
t=1

p(yt|y1:t−1,ψ) (3.1)

We know from previous results that yt|y1:t−1, ψ ∼ N(ft, Qt), where ft and Qt are obtained

from the Kalman Recursions given in section 1.3.1, equation (6). This then gives us the joint

distribution,

p(y1, ...,yn|ψ) =
n∏
t=1

1√
2π det(Qt)

exp
((yt − ft)′Q−1t (yt − ft)

−2

)
=⇒ l(ψ) = −1

2

n∑
t=1

det(Qt)−
1

2

n∑
t=1

(
(yt − ft)′Q−1t (yt − ft)

)
.

(3.2)

Where the last line above is the log-likelihood. This can be numerically optimized to obtain

the maxmum likelihood estimates (MLE) for the unknown parameters. Jensen et al. (1999)

give regularity conditions needed for weak consistency of the MLE as well as their asymptotic

normality. Further details on the asymptotic behaviour of the MLE can be found in Hannan
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and Deistler (1988) and Caines (2018).

3.2 Bayesian Inference for SSMs:

While the maximum likelihood method is one approach to estimating SSM’s, we can also

use Bayesian techniques to estimate the parameters and make inference on them. In fact

the latency of the state parameters makes the Bayesian method a natural approach for ex-

ploring the distributional properties of the unknown parameters and the latent state vectors.

For SSMs the assumptions A.1 and A.2 and the subsequent joint distribution of the obser-

vation and state vectors given by,

p(θ0:t,y1:t|ψ) = p(θ0|ψ)
t∏
i=1

p(θi|θi−1,ψ)p(yi|θi,ψ) (3.3)

allows a straightforward way of carrying out a Bayesian estimation of the model. Based on

a series of observations, y1, ...,yt and some parameters ψ, we would like to sample the full

posterior p(θ1, ...,θn|y1:t).

This gives the posterior distribution for the state parameters as,

p(θ0:n,ψ|y1:t) =
p(θ0:n,y1:t,ψ)

p(y1:t)

∝ p(ψ)p(θ0|ψ)
t∏
i=1

p(θi|θi−1,ψ)p(yi|θi,ψ).

(3.4)

The goal now is to sample from the posterior distribution the parameters and possibly the

latent states. It is almost always easier to sample from p(ψ|θ0:t,y1:t) than from just p(ψ|y1:t),

where ψ is a set of unknown parameters. In the same way to sample the unknown states we

can sample from p(θ0:t|ψ,y1:t). However, notice that to sample from this latter distribution

means that we would need to identify the cross correlations between ant θs and θt. However,

we can get around this by noticing that,
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p(θ0:n|ψ,y1:t) =
t∏
i=0

p(θi|θi+1:t, ψ,y1:t).

Where the last term is just p(θt|y1:t, ψ). We have that,

p(θi|θi+1:t,ψ,y1:t) = p(θi|θi+1,ψ,y1:i) ∼ N(hi,Hi)

where,

hi = mi +CiGi+1R
−1
i+1(θi+1 − ai+1)

Hi = Ci −CiG
′
i+1R

−1
i+1Gi+1C

′
i

(3.5)

This owes to the fact that by assumption A.1 we have that the θ′ts are Markovian and by

assumption we have that θt|θt−1 is Gaussian, hence by inverting the distribution we can find

the distribution of θt−1|θt.

Now that we have specified the distribution p(θ0:t|ψ,y1:t) conditional on the observation y

and the unknown parameters ψ we can draw a sample of the state vectors. This type of

sampling of the state vectors is known as forward filtering and backward sampling (FFBS)

and was proposed by Carter and Kohn (1994) and Frühwirth-Schnatter (1994). The FFBS

algorithm is given below.

Algorithm 1: FFBS

1. We run the Kalman filter

2. Draw θn ∼ N(mn,Cn), where mn,Cn can be found in (2.8)

3. For t = n− 1, ..., 0 draw θt ∼ N(ht,Ht), where ht,Ht can be found in (3.5)

However, drawing posterior samples of the state vector is not our only goal. We would also

want to be able to sample the unknown parameters ψ. To sample ψ from the posterior

distribution given in (14), we can use a Gibbs Sampling or Metropolis Hastings algorithm

depending on how complex the posterior distribution is. Suppose, like that the unknown
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parameter is ψ, where the unknown parameter can be decomposed into multiple components

ψ = (ψ1, ψ2, ...ψp). We set up the sampler as follows:

Algorithm 2: Posterior Sampling with FFBS step

1. Initialize the unknown parameters, ψ
(0)
1 , ψ

(0)
2 , ..., ψ

(0)
p

2. Draw the state parameters using FFBS using, θ
(0)
0:n ∼ p(θ

(0)
0:n|y1:n, ψ

(0)
1 , ..., ψ

(0)
p ).

3. Then for iteration i,

- Draw ψ
(i)
1 ∼ p(ψ

(i)
1 |y1:n,θ

(i−1)
0:n , ψ

(i−1)
2 , ..., ψ

(i−1)
p )

- Draw ψ
(i)
2 ∼ p(ψ

(i)
2 |y1:n,θ

(i−1)
0:n , ψ

(i)
1 , ψ

(i−1)
3 , ..., ψ

(i−1)
p )

...

- Draw ψ
(i)
j ∼ p(ψ

(i)
j |y1:n,θ

(i−1)
0:n , ψ

(i)
1 , ..., ψ

(i)
j−1, ψ

(i−1)
j+1 , ..., ψ

(i−1)
p )

- Draw the state parameters using FFBS using, θ
(i)
0:n ∼ p(θ

(i)
0:n|y1:n, ψ

(i)
1 , ..., ψ

(i)
p ).

4. i = i+ 1; Return to step 2

In algorithm 2 we are sampling each unknown parameter, ψj individually. We can modify

and do a multivariate sampling as well. Suppose that, ψ = (ψ1, ψ2, ...ψp) = [ψ1,ψ2], then

do a blocked sampling. Depending on the form of the full conditional distributions given in

Step 3 we can do a Gibb’s sampling or use do a Metropolis-Hastings sampling regime. More

details on the Gibbs-Sampling and Metropolis-Hastings sampling may be found in Marin

and Robert (2007).

3.2.1 Example of a Univariate DLM:

We use a simple univariate first order DLM to give an illustration of how our posterior

sampling can be done. As we have seen before the first order DLM is given by the quadruple

{1, 1, V,W}. Here our unknown parameters are the observation and state variances, V and

W , respectively (and obviously the latent state-vectors which can be obtained as a by-product

of the estimation).
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Yi = θi + vi, vi ∼ N(0, V )

θi = θi−1 + wi, wi ∼ N(0,W )

The full posterior distribution is then given by,

p(θ, V,W |Y1:n) ∝ L(θ, V,W |y)p(θ|V,W )π0(V )π0(W )

∝
n∏
i=1

p(Yi|θi, V )p(θi|θi−1,W )p(θ0|W )π0(V )π0(W )

∝ (V )−n/2 exp
(∑n

i=1(Yi − θi)2

−2V

)
×

(W )−n/2 exp
(∑n

i=1(θi − θi−1)2

−2W

)
p(θ0|W )π0(V )π0(W )

Given the form of the posterior this is how we would apply Algorithm 2 to simulate from

the posterior distribution.

1. We specify an initial value for V and W , call these V (0) and W (0) (this is the Step 1 in

Algorithm 2).

2. Then using these initial values we run the FFBS to obtain a sample of the state vectors

θ(0) (this is the Step 2 in Algorithm 2).

3. Using these state vectors we then draw V (1) and W (1) from their full conditional posterior

distributions (Step 3 in Algorithm 2).

4. Using these updated values of V (1) and W (1) we run the FFBS again to obtain θ(1) and

using the updated state vectors we update the sample V and W and so on and so forth.

First thing to note is that by choosing Inverse-Gamma priors for V and W we can do a

conjugate analysis for V and W . Suppose that π0(V ) ∼ Inv − Gam(αy, βy) and π0(W ) ∼

Inv −Gam(αS, βS). Then,
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p(V |θ,W, Y ) ∝ (V )−
n
2
−αy−1 exp

(∑n
i=1(Yi − θi)2 + 2βy

−2V

)
∝ Inv −Gamma

(
n

2
+ αy,

(∑n
i=1(Yi − θi)2 + 2βy

−2

))

p(W |θ, V, Y ) ∝ (W )−
n
2
−αS−1 exp

(∑n
i=1(θi − θi−1)2 + 2βS

−2W

)
∝ Inv −Gamma

(
n

2
+ αS,

(∑n
i=1(θi − θi−1)2 + 2βS

−2

))

3.2.2 Example of a Multivariate DLM:

Suppose now that we have a multivariate first order DLM. The observation at time t is

the vector yt, where, yt is a p × 1 vector. The first order DLM in this multivariate case is

specified by the quadruple {Ip, Ip,Σv,Σw}. Ip is the p−dimensional identity matrix. This

model is akin to the univariate first oder model that we have seen above.

yt = θt + vt, vt ∼ N(0,Σv)

θt = θt−1 +wt, wi ∼ N(0,Σw)

The posterior is then given by,

p(θ,Σv,Σw|Y1:n) ∝

(
1√
|Σv|

)n

exp
(∑T

i=1(yi − θi)>Σ−1v (yi − θi)
−2

)
×

(
1√
|Σw|

)n

exp
(∑n

i=1(θi − θi−1)>Σ−1w (θi − θi−1)
−2

)
× π0(Σv)π0(Σw)

Choosing that π0(Σv) and π0(Σw) are Inverse-Wishart priors with parameters, (νv,Ψv) and

(νw,Ψw) respectively we can do a conjugate analysis for Σv and Σw. Where.
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π0(Σv) ∝ exp

(
− 1

2
tr(ΨvΣ

−1
v )

)(
1

|Σv|

)(νv+dv+1)/2

π0(Σw) ∝ exp

(
− 1

2
tr(ΨwΣ−1w )

)(
1

|Σw|

)(νw+dw+1)/2

Given the form of the posterior this is how we would apply Algorithm 2 to simulate from the

posterior distribution. As in the univariate case above, we start with some initial values for

Σv and Σw use the FFBS algorithm to draw an instance of the state, use these state vectors

to update Σv and Σw and then use these updated variance parameters to do the next FFBS

update of the state and so on and so forth.

The full conditionals for the variance-covariance parameters are given as,

p(Σv|Σw, Y1:n,θ) ∝ exp
(∑n

i=1(yi − θi)>Σ−1v (yi − θi) + tr(ΨvΣ
−1
v )

−2

)( 1

|Σv|

)(n+νv+dv+1)/2

∝ exp
(∑n

i=1 tr[(yi − θi)(yi − θi)>Σ−1v ] + tr(ΨvΣ
−1
v )

−2

)( 1

|Σv|

)(n+νv+dv+1)/2

∝ exp
(tr(∑n

i=1(yi − θi)(yi − θi)> + Ψv)Σ
−1
v )

−2

)( 1

|Σv|

)(n+νv+dv+1)/2

∼ Inv −Wishart(T + νv,
n∑
i=1

(yi − θi)(yi − θi)> + Ψv)

A similar result holds for Σw.
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CHAPTER 4
Conditional Heteroskedasticity:

4.1 ARCH(p) and GARCH(p, q) Errors:

Autoregressive conditional heteroscedasticity (ARCH) models, first proposed by Engle (1982),

and their extensions the generalized ARCH (GARCH), proposed by Bollerslev (1986), have

proven to be very successful in modeling volatility of financial time series. A good survey of

these types of models can be found in Bollerslev et al. (1994). GARCH models help explain

the thick tailed distribution as seen in many financial data. The main idea is that conditional

heteroskedacticity allows us to incorporate information from the past into the variance of

the present.

A GARCH(p, q) process is defined by the following equations,

Xt = σtεt, εt ∼ N(0, 1)

σ2
t = α0 + α1X

2
t−1 + α2X

2
t−2 + ...+ αpX

2
t−p + β1σ

2
t−1 + ...+ βqσ

2
t−q, αi, βj ∈ R+.

(4.1)

A GARCH(p, 0) process, i.e if βj = 0 ∀ j, is the equivalent of an ARCH(p) process. We

expand on some of the properties of a GARCH(p, q) process. We would like to point out

that in (4.1), εt need not be a standard normal random variable, it may have a Student’s-T

distribution, for example. However, for our purpose we assume that it has a standard normal

distribution.

Let m = max(p, q),
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X2
t − σ2

t = σ2
t (ε

2
t − 1) := Zt

=⇒ X2
t − (α0 + α1X

2
t−1 + ...+ αmX

2
t−m + β1σ

2
t−1 + ...+ βmσ

2
t−m) = Zt

=⇒ X2
t − α1X

2
t−1 − ...− αmX2

t−m − β1σ2
t−1 − ...− βmσ2

t−m = α0 + Zt

=⇒ X2
t − α1X

2
t−1 − ...− αmX2

t−m − β1(X2
t−1 − Zt−1)− ...− βm(X2

t−1 − Zt−m) = α0 + Zt

=⇒ X2
t − (α1 + β1)X

2
t−1 − ...− (αm + βm)X2

t−m = α0 + Zt + β1Zt−1 + ...+ βmZt−m.

Here we have that αi = 0 for i > p and βj = 0 for j > q. Now it just remains to be verified

that Zt is white noise and then we have that X2
t is a standard ARMA(p,q) model. First

define FXt−1 to be an information set containing all the information up to time t− 1. Notice

that due to the assumption of normality of εt we have that,

Xt|FXt−1 ∼ N(0, σ2
t )

=⇒ E(X2
t |FXt−1) = σ2

t .

(4.2)

Thus Xt is conditionally Gaussian, where the conditioning is on all the previous information

available. Next to show that Zt is a white noise process observe the following,

E[Zt] = E[E[Zt|FXt−1]]

= E[σ2
tE[ε2t − 1|FXt−1]]

= 0

E(ZtZt+h) = E[E[ZtZt+h|FXt+h−1]]

= E
[
Ztσ

2
t+hE[ε2t+h − 1|FXt+h−1]

]
= 0.

We also have that for a stationary GARCH(p, q), the unconditional variance of the process

is then given by,
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E[X2
t − (α1 + β1)X

2
t−1 − ...− (αm + βm)X2

t−m] = E[α0 + Zt − β1Zt−1 − ...− βmZt−m]

µ− φ1µ− ...− φpµ = α0

µ =
α0

1− φ1 − ...− φp
,

where φi = αi + βi.

A sufficient and necessary condition for stationarity of the process is that
∑m

i=1 φi < 1, see

Bollerslev (1986) and Bollerslev et al. (1994) for more details on the properties of these

models.

We mentioned earlier the leptokurtic properties of the GARCH model. For a GARCH(1, 1)

process where the error terms are conditionally Gaussian, it is easliy seen that,

E(X4
t |FXt−1) = 3[E(X2

t |FXt−1)]2 = 3(σ2
t )

2.

For a GARCH(1, 1) process, where κ is the kurtosis, we have that,

E(X4
t ) = E[E[X4

t |FXt−1]]

≥ 3E[X2
t ]2

=⇒ κ =
E(X4

t )

[E(Xt)2]2
≥ 3.

With a bit more work we can actually see that,

κ =
E[E[X4

t |FXt−1]]
[E(Xt)2]2

=
3E[(σ2

t )
2]

[E(Xt)2]2
=

3V ar[(σ2
t )] + 3(E[(σ2

t )])
2

[E(Xt)2]2
= 3 + 3

V ar[E(X2
t |FXt−1)]

[E(Xt)2]2
.

4.2 Asymmetric GARCH Model:

We can further generalize the GARCH(p, q) by allowing positive and negative innovations

to have an asymmetric effect on the conditional variance. Take the following specification
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for a GARCH(1, 1) process.

Xt = σtεt, εt ∼ N(0, 1)

σ2
t = α0 + α11X

2
t−1IXt>0 + α12X

2
t−1IXt<0 + β1σ

2
t−1

= α0 + α11X
2
t−1Iεt>0 + α12X

2
t−1Iεt<0 + β1σ

2
t−1.

In this case we are modeling the positive innovations to have a coefficient of α1,1 and the

negative innovations to have a coefficient of α1,2. This specification was first introduced by

Glosten et al. (1993) and is known as the GJR-GARCH(1, 1), named after the authors.

It is a simple exercise to show that under the weak stationarity assumption for σ2
t we have

that,

X2
t − σ2

t = σ2
t (ε

2
t − 1) := Wt

X2
t − (α0 + α11X

2
t−1Iεt>0 + α12X

2
t−1Iεt<0 + β1σ

2
t−1) = σ2

t

X2
t − (α11X

2
t−1Iεt>0 + α12X

2
t−1Iεt<0) + β1(X

2
t−1 −Wt−1) = α0 +Wt

X2
t − (α11X

2
t−1Iεt>0 + α12X

2
t−1Iεt<0 + β1X

2
t−1) = α0 +Wt + β1Wt−1

=⇒ E(X2
t )− 0.5α1,1E(X2

t )− 0.5α1,2E(X2
t ) + βE(X2

t−1) = α0

E(X2
t ) =

α0

1− 0.5α1,1 − 0.5α1,2 − β
.

4.3 Estimating GARCH(p, q):

The GARCH(p, q) model is easy to estimate due to the form of the conditional likelihood.

L(θ;X1, ..., Xp, σ
2
p−q+1 = ... = σ2

p = 0) =
n∏

t=p+1

p(Xt|Xt−1:1)

=
n∏

t=p+1

1√
2πσ2

t

exp
( X2

t

−2σ2
t

)
,

(4.3)

where the unknown parameters to maximize the likelihood over are, θ = α0, ..., αp, β1, ..., βq.

However due to the non-linear nature of the likelihood in terms of the unknown parameter

numerical methods are used. Notice from (4.3), σ2
t is a non-linear function in terms of α0,
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α1 and β1.

For a Bayesian estimation we would need to specify priors for the GARCH parameters and

the posterior is then given by,

π(α0, α1, β1|X1:t) ∝
n∏

t=p+1

1√
2πht

exp
( X2

t

−2ht

)
π0(α0)π0(α1)π0(β1). (4.4)

Given that the posterior distribution is a non-linear function in terms of α0, α1 and β1, we

cannot do a conjugate analysis and hence would have to use other simulation techniques to

obtain posterior samples of the parameter.

4.4 Multivariate GARCH(1, 1):

Bollerslev et al. (1990) proposes a multivariate GARCH process known as the Constant Con-

ditional Correlation GARCH process (CCC-GARCH). Suppose now that Xt is a p × 1 di-

mensional process, where, the value of the ith series at time t is Xi,t. The CCC-GARCH(1, 1)

is formulated as the following,

Xt = Htεt, εt ∼ N(0, Ip)

H2
t = DtRtD

′
t, Ht = chol(H2

t )

Dt = diag(σ1,t, ..., σp,t)

Rt =



1 ρ1,2 ... ρ1,p

ρ2,1 1 ... ρ2,p
...

. . .
...

ρp,1 ρp,2 ... 1


σ2
i,t = α

(i)
0 + α

(i)
1 Y

2
i,t−1 + β

(i)
1 σ2

i,t−1.

(4.5)

Here chol(H2
t ) is the Cholesky decomposition of the matrix H2

t .
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In this model specification what is essentially happening is that we have for i = 1, ..., p, the

series Xi has a GARCH(1, 1) process given by,

Xi,t = σi,tεt

σ2
i,t = α

(i)
0 + α

(i)
1 X

2
i,t−1 + β

(i)
1 σ2

i,t−1,

with the instantaneous correlation between Xi,t and Xj,t given by ρi,j, i, j = 1, ..., p for all t.

The simplest case for this model is when ρi,j = 0, i.e. Rt is just the p−dimensional identity

matrix. In that case we have that each of the series Xi is mutually independent from the

other series. On the other hand when ρi,j is not zero and is unknown, the parameter space

increases quadratically. In a p dimensional model the unknown parameters are α
(i)
0 , α

(i)
1 , β

(i)
1

and {ρi,j}pj,i=1,j>i, which gives a total number of unknown parameters as 3p+ p(p− 1)/2. In

the bivariate case we have 7 unknown parameters which grows to 12 in the trivariate case.

However, despite the growth of the parameter space, this model is still quite flexible, be-

cause it allows us to apply restrictions or asymmetries on the individual GARCH series is

desired. For example, suppose one hypothesizes that in a bivariate case, the first series has a

GARCH(1, 1) process and the second series has an asymmetric-GARCH process (as specified

in the previous section), the CCC-GARCH model allows us to put in those restrictions.

4.5 Estimating the Multivariate GARCH(1, 1) Model:

The estimation technique for the multivariate GARCH model is similar to that of the uni-

variate GARCH model. The conditional likelihood is given by,

L(X1:t;α0,α1,β1,ρ) =
t∏
i=1

1√
det(2πHi)

exp
(X ′iH−1i Xi

−2

)
,
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and is non-linear in the GARCH parameters and must be numerically optimized, which is a

rather tall task given the dimensionality of the problem.

Similarly the Bayesian analysis can be done by specifying a prior distribution on the GARCH

parameters and then sampling from the posterior using different sampling techniques. The

posterior is given by,

π(α0,α1,β1,ρ|X1:t) ∝
t∏
i=1

1√
det(2πHi)

exp
(X ′iH−1i Xi

−2

)
π0(α0)π0(α1)π0(β1).
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CHAPTER 5
Extending the Gaussian SSM

5.1 State Space model with GARCH(1, 1) Errors:

In the previous chapters we discussed the Gaussian-SSMs and stadard GARCH models. In

this chapter we extend the Gaussian-SSM to have GARCH errors at the observation level

instead of a constant variance.

Suppose that yt is a univariate time series with a state space representation specified by

the design matrices {F ,G}, a constant state level variance W and an observation variance

which is a stationary GARCH(1, 1) process. The model may be written as,

yt = F ′θt + zt

θt = Gθt−1 + wt, wt ∼ N(0,W )

zt = stεt, εt ∼ N(0, 1)

s2t = α0 + α1z
2
t−1 + β1s

2
t−1.

(5.1)

Given this specification we need to appropriately model the Kalman-Filter recursions to ac-

count for the changing variance at the observation level. This task turns out to be rather

straight forward owing to the conditional nature of both the Kalman recursions and the

GARCH errors, where, in both cases the conditioning at time t is done on all the previous

information available.

Recall that the GARCH(1, 1) errors are conditionally Gaussian. The modified Kalman Re-

cursion is given below. Suppose that we have the filtered distributions at time t− 1, i.e.
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θt−1|Y1:t−1 ∼ N(mt−1,Ct−1)

Yt−1|θt−1, Y0:t−2 ∼ N(F ′θt−1, St−1).

The one-step ahead distribution for the observation is given by, Yt|y1:t−1 ∼ N(ft, Qt). Where,

ft = F ′at

Qt = V ar(Yt|y1:t−1)

= E(V ar(Yt|y1:t−1,θ0:t)|y1:t−1) + V ar(E(Yt|y1:t−1,θ0:t)|y1:t−1)

= E(V ar(zt|y1:t−1,θ0:t)|y1:t−1) + F ′RtF .

The variance on the left hand term is given by,

V ar(zt|y1:t−1,θ0:t−1) = E([zt − E(zt|y1:t−1,θ0:t−1)]2|y1:t−1,θ0:t−1)

= E(z2t |y1:t−1,θ0:t−1)

= E(s2t ε
2
t |y1:t−1,θ0:t−1)

= E(s2t |y1:t−1,θ0:t−1)

= E(α0 + α1z
2
t−1 + β1s

2
t−1|y1:t−1,θ0:t−1)

= α0 + α1E(z2t−1|y1:t−1,θ0:t−1) + β1E(s2t−1|y1:t−1,θ0:t−1)

= α0 + α1E((Yt−1 − F ′θt−1)2|y1:t−1,θ0:t−1) + β1s
2
t−1

= α0 + α1E(Y 2
t−1 − 2Yt−1F

′θt−1 + F ′θt−1θ
′
t−1F )|y1:t−1,θ0:t−1) + β1s

2
t−1

V ar(zt|y1:t−1,θ0:t−1) = α0 + α1(Y
2
t−1 − 2Yt−1F

′θt−1 + F ′θt−1θ
′
t−1F ) + β1s

2
t−1.

Next, taking the conditional expectation over this variance will give us,

E(V ar(zt|y1:t−1,θ0:t)|y1:t−1) = E
[
α0 + α1(Y

2
t−1 − 2Yt−1F

′θt−1 + F ′θt−1θ
′
t−1F ) + β1s

2
t−1

∣∣∣y1:t−1]
= α0 + α1

(
Y 2
t−1 − 2Yt−1F

′mt−1 + F ′(Ct−1 +mt−1m
′
t−1)F

)
+ β1s

2
t−1,
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where we have that,

E(V ar(zt|y1:t−1,θ0:t)|y1:t−1) = E(V ar(Yt|y1:t−1,θ0:t)|y1:t−1)

= E(E(s2t |y1:t−1,θ0:t)|y1:t−1)

= E(s2t |y1:t−1)

= s2t

=⇒ s2t = α0 + α1

(
Y 2
t−1−2Yt−1F

′mt−1 + F ′(Ct−1 +mt−1m
′
t−1)F

)
+ β1s

2
t−1.

(5.2)

Hence finally we have that,

Qt = s2t + F ′RtF .

5.2 SSM with GARCH(p, q) Errors:

The details from the GARCH(1, 1) case, allows us to quite easily extend the model to the

GARCH(p, q) case. The GARCH(p, q) SSM is specified by,

yt = F ′θt + zt

θt = Gθt−1 + wt, wt ∼ N(0,W )

zt = stεt, εt ∼ N(0, 1)

s2t = α0 + α1z
2
t−1 + ...+ αpz

2
t−p + β1s

2
t−1 + ...+ βqs

2
t−q

(5.3)

Suppose that at time t− 1 we have that,

θt−1|Y1:t−1 ∼ N(mt−1,Ct−1)

Yt−1|θt−1, Y0:t−2 ∼ N(F ′θt−1, St−1)

Then following the same construction as in the GARCH(1, 1) case, we have that, the Kalman

Filter recursion needs to be modified only at the point of the one-step-ahead distribution.

This is given by, Yt|y1:t−1 ∼ N(ft, Qt), where,
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ft = F ′at

Qt = V ar(Yt|y1:t−1)

= s2t + F ′RtF

s2t = α0 + α1

(
Y 2
t−1−2Yt−1F

′mt−1 + F ′(Ct−1 +mt−1m
′
t−1)F

)
+ ...

+αp

(
Y 2
t−p−2Yt−pF

′mt−p + F ′(Ct−p +mt−pm
′
t−p)F

)
+ β1s

2
t−1+

...+ βqs
2
t−q

5.3 Multivariate SSM with GARCH Error:

Once we see the details in the case where the observation is univariate, the extension to the

case where the observation is multivariate becomes straight forward. Here we have that the

one-step ahead prediction and error term is given by,

ft = F ′at

Qt = S2
t + F ′RtF

where,

S2
t = DtRtD

′
t, St = chol(H2

t )

Dt = diag(S1,t, ..., Sp,t)

Rt =



1 ρ1,2 ... ρ1,p

ρ2,1 1 ... ρ2,p
...

. . .
...

ρp,1 ρp,2 ... 1


S2
i,t = α

(i)
0 + α

(i)
1

(
Y 2
i,,t−1 − 2Yi,t−1(F

′mt−1)(i) + [F ′(Ct−1 +mt−1m
′
t−1)F ](i)

)
+ β1S

2
i,t−1

(5.4)
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5.4 Bayesian Posterior Analysis:

We take the SSM with a univariate GARCH(1, 1) error at the observational level given in

(5.1). The posterior distribution is then given by,

p(θ0:n, α0, α1, β1,W |y1:n) ∝ π0(W )π0(α0, α1, β1)
n∏
i=1

p(θi|θi−1,W )p(yi|θi, α0, α1, β1)

∝ π0(W )π0(α0, α1, β1)
n∏
i=0

(
1√
s2i

)
exp

((Yi − F ′θi)2

−2s2i

)
×

n∏
i=0

(
1

|W |

)
exp

(∑n
i=1(θi −Gθi−1)>W−1(θi −Gθi−1)

−2

)
.

By choosing the prior on W to be an Inverse-Wishart prior, allows us to do a conjugate

analysis on theW . The Inverse-Wishart prior with parameters degrees of freedom parameter

ν and scale parameter Ψ is given by,

π0(W ) ∝ exp

(
− 1

2
tr(ΨW−1)

)(
1

|W |

)(ν+d+1)/2

where d is the dimension of W . The full conditional distribution for W is then given by,

p(W |θ0:n, α0, α1, β1,y1:n) ∝ π0(W )
n∏
i=0

(
1

|W |

)
exp

(∑n
i=1(θi −Gθi−1)>W−1(θi −Gθi−1)

−2

)

∝

(
− 1

2
tr(

[
n∑
i=1

(θi −Gθi−1)>(θi −Gθi−1) + Ψ

]
W−1)

)(
1

|W |

)(n+ν+d+1)/2

∝ Inv −Wishart(n+ ν,
n∑
i=1

(θi −Gθi−1)>(θi −Gθi−1) + Ψ).

On the other hand for the other parameters of the model, α0, α1, β1, the full conditional

distribution is not of some recognizable form and so we must use the Metropolis-Hastings

algorithm, with a multivariate random walk proposal, to sample from it. We can choose

independent Half-Cauchy priors for the α0, α1, β1 parameters. The conditional posterior for

the GARCH parameters is given by,

p(α0, α1, β1|W ,θ0:n,y1:n) ∝ π0(α0, α1, β1)
n∏
i=0

(
1√
s2i

)
exp

((Yi − F ′θi)2

−2s2i

)
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We can see that this conditional posterior is not any easily recognized distribution and hence,

to draw posterior samples of the GARCH parameters we must use the Metropolis-Hastings

algorithm. It must also be noted that stationarity assumptions for the GARCH(1, 1) model

imply that α1 + β1 < 1 and this information can and should be incorporated into the prior

information if so desired.

Finally to obtain posterior samples of the unknown state vectors we use FFBS, as we did in

Algorithm 2. All of the above steps combined now allow us to estimate the model parameters.
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CHAPTER 6
Simulation Study:

We run a few simulation studies of DLM’s to show that we are able to estimate the param-

eters of the model well.

6.1 Symmetric GARCH-SSM:

We simulate a symmetric GARCH-SSM with different sample sizes. The estimates of the

model parameters for different sample sizes, based on 4500 draws from the posterior distri-

bution are given below. Below in brackets are the variances of the posterior samples. The

true value of the parameters are: α0 = 4, α1 = 0.1, γ1 = 0.1, β1 = 0.8,W = 0.2.

Sample size α0 α1 γ1 β1 W

n = 500 3.52 0.124 0.129 0.794 0.105

(4.407) (0.0022) (0.0029) (0.0048) (0.001)

n = 2000 5.56 0.119 0.109 0.752 0.064

(2.67) (0.0008) (0.0008) (0.003) (0.0002259)

n = 5000 3.94 0.113 0.0957 0.801 0.166

(0.419) (0.002) (0.0002) (0.0005) (0.00066)

Table 6–1: Posterior median estimates of the parameter of a univariate symmetric GARCH-

SSM.
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The prior specification for the model is,

π0(α0) ∼ Cauchy(0, 1)Iα0>0

π0(α1) ∼ Cauchy(0, 1)Iα1>0

π0(β1) ∼ Cauchy(0, 1)Iβ1>0

π0(W ) ∼ IG(10, 10)

The priors are kept quite vague. The choice of the Inverse-Gamma prior allows us to do a

conjugate analysis for the parameter W . Due to the form of the posterior distribution for the

GARCH parameters to sample from the posterior we use the Metropolis-Hastings algorithm.

As the sample size grows we are better able to retrieve the true value of the parameters.

6.2 Asymmetric GARCH-SSM:

The next model that we simulate is a univariate SSM with asymmetric GARCH(1, 1) errors.

Since by default a symmetric GARCH model is nested in the asymmetric model, if we are able

to estimate the parameters of the asymmetric then we will be fine for the symmetric model.

The parameter estimates for the asymmetric model based on 4500 draws from the posterior

distribution are given below. Below in brackets are the variances of the posterior samples.

The true value of the parameters are: α0 = 4, α1 = 0.4, γ1 = 0.1, β1 = 0.2,W = 0.01.
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Sample size α0 α1 γ1 β1 W

n = 500 2.82 0.276 0.092 0.433 0.0146

(1.90) (0.0122) (0.00395) (0.0503) (0.0000237)

n = 2000 3.841 0.409 0.111 0.227 0.00812

(0.247) (0.00378) (0.00163) (0.00569) 0.000003

n = 5000 3.70 0.489 0.081 0.228 0.0128

(0.069) (0.002) (0.0005) (0.002) (0.00004)

Table 6–2: Posterior median estimates of the parameter of a univariate asymmetric

GARCH-SSM model.

We used the following priors for the model,

π0(α0) ∼ Cauchy(0, 1)Iα0>0

π0(α1) ∼ Cauchy(0, 1)Iα1>0

π0(γ1) ∼ Cauchy(0, 1)Iγ1>0

π0(β1) ∼ Cauchy(0, 1)Iβ1>0

π0(W ) ∼ IG(10, 10)

We note that the priors for all the parameters are fairly vague. We have that the choice of the

Inverse-Gamma prior for W leads to a conjugate analysis for W . From Table 2 we see that we

are able to estimate the parameters of the model quite well. We use the Metropolis-Hastings

algorithm to sample from the posterior distribution. As in the symmetric GARCH-SSM case

the parameter estimates are better for larger sample sizes.

6.3 Bivariate Gaussian SSM:

We start with a simple bi-variate model.Since we have a Gaussian SSM by choosing Inverse-

Wishart priors we can do a conjugate analysis. For both V and W we choose an Inv −
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Wishart(10, diag(10, 10)) prior, which acts a weakly informative prior.

V =

 2 −0.5

−0.5 2

 , W =

 1 0.5

0.5 1


In each case we have convergence, we ran 10000 simulations, with a burn in of 2000, and

thinning of 10 (R seed = 201901).

Sample size V11 V22 V12 W11 W22 W12

n = 500 2.05 1.50 -0.544 1.30 1.32 0.697

(0.044) (0.0347) (0.022) (0.0381) (0.055) (0.0299)

n = 2000 1.94 1.83 -0.523 1.26 0.986 0.494

(0.0105) (0.0088) (0.0049) (0.0093) (0.0073) (0.00394)

n = 5000 1.91 1.96 -0.447 1.182 0.935 0.440

(0.0042) (0.0038) (0.00190) (0.0032) (0.00264) (0.0013)

Table 6–3: Posterior median estimates of the parameter of a bi-variate Gaussian-SSM for

different sample sizes. Below in brackets are the variances of the posterior samples.

We can see in Table 6-3, that as the sample size grows we are able to retrieve the true values

of the parameters.

6.4 Bivariate GARCH-SSM:

Now we simulate a Bivariate GARCH-SSM. We use the CCC-GARCH specification given in

the previous chapter. the model specification is,

α1
0 = 1, α1

1 = 0.1, β2
1 = 0.8,W1,1 = 2

α2
0 = 5, α2

1 = 0.4, β2
1 = 0.1,W2,2 = 0.5

ρ = −0.5,W1,2 = 0.
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Sample size α1
0 α1

1 β1
1 W11 ρ

n = 500

1.155 0.084 0.818 1.639 -0.56

(0.3331) (0.0011) (0.0037) (0.1301) (0.0017)

α2
0 α2

1 β2
1 W22 W12

4.210 0.274 0.231 0.831 0.174

(1.0833) (0.0049) (0.0173) (0.0437) (0.0172)

n = 2000

α1
0 α1

1 β1
1 W11 ρ

1.667 0.092 0.742 2.143 -0.495

(0.2287) (0.0004) (0.0031) (0.0405) (0.0004)

α2
0 α2

1 β2
1 W22 W12

4.557 0.269 0.235 0.546 0.084

(0.4395) (0.0016) (0.0065) (0.0056) (0.0022)

n = 5000

α1
0 α1

1 β1
1 W11 ρ

0.844 0.052 0.861 2.092 -0.507

(0.0649) (0.0001) (0.0009) (0.0163) (0.0002)

α2
0 α2

1 β2
1 W22 W12

4.973 0.270 0.164 0.879 0.153

(0.2514) (0.0006) (0.0035) (0.0073) (0.0019)

Table 6–4: Posterior median estimates of the Bivariate GARCH-SSM for different sample

sizes. Below in brackets are the variances of the posterior samples.

We used the following priors for the model,
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π0(α
i
0) ∼ Cauchy(0, 1)Iαi

0>0

π0(α
i
1) ∼ Cauchy(0, 1)Iαi

1>0

π0(γ
i
1) ∼ Cauchy(0, 1)Iγi1>0

π0(β
i
1) ∼ Cauchy(0, 1)Iβi

1>0

π0(W ) ∼ Inverse−Wishart(10, 10)

π0(ρ) ∼ Unif(−1, 1).

6.5 Model Selection:

A key feature of estimating parameters is also deducing redundancies in the models. Model

selection allows us to choose the best model given a choice of competing models. Particu-

larly in our case we have three competing models, a Gaussian-SSM, a GARCH-SSM and an

asymmetric-GARCH-SSM.

One of the main tools for model selections is the information criterion, in particular Akaike’s

information criteria (AIC), Bayes (or Schwarz’) Information Criteria (BIC) use the maxi-

mum likelihood estimates and the log predictive distribution. Both AIC and BIC penalize

for model complexity. We refer the reader Konishi and Kitagawa (2008) for more details.

Following Gelman et al. (2013) we use an information criteria proposed by Watanabe (2010),

known as the Watanabe-Akaike Information criteria also known as the widely-applicable

information Criteria (WAIC) to select our model. As mentioned in Gelman et al. (2013), the

WAIC is a more Bayesian approach to the out of sample prediction performance and allows

to assess the performance of our model using the posterior samples that we have drawn.

WAIC = lppd− pwaic
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Where lppd is the log pointwise predictive density and pwaic is a bias correction. The lppd is

given by,

lppd =
n∑
i=1

log

∫
p(yi|ψ)dppost(ψ) =

n∑
i=1

(
log[Epostp(yi|ψ)]

)
pwaic = 2

n∑
i=1

{(
log[Epostp(yi|ψ)]

)
−
(
Epost log[p(yi|ψ)]

)}

WAIC = 2
n∑
i=1

(
Epost log[p(yi|ψ)]

)
−

n∑
i=1

(
log[Epostp(yi|ψ)]

)
(6.1)

From Gelman et al. (2013), we have that −2 times the WAIC in (6.1) brings it on the

deviance scale. This allows for a more straight forward comparison with the AIC and DIC.

We do not however do this in our case. For us, a larger WAIC value implies a better model fit.

Here ψ is the unknown set of parameters. In our case we have that the unknown parameters

is the set observation variances and the state variance. The integrations in (6.1) may be in-

tractable since we have to integrate over the posterior distribution. However, the consistency

of the sample means and the continuity of the log-function gives us that,

log

(
1

S

S∑
s=1

p(yi|θs)

)
p→ log

(
Epostp(yi|θ)

)
(

1

S

S∑
s=1

log(p
(
yi|θs)

)) p→ Epost log
(
p(yi|θ)

)
This gives the computed WAIC as,

cWAIC = 2
n∑
i=1

(
1

S

S∑
s=1

log(p
(
yi|θs)

))
−

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)

and cWAIC converges in probability to WAIC as S goes to infinity., where S is the size of

the posterior sample.
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In the following exercise we use the WAIC to select between a symmetric and an asymmetric

GARCH model. We estimate both models and calculate the WAIC. The values are given

below in Table 6-5. The true model was a symmetric GARCH model which has the follow-

ing parameters α0 = 4, α1 = 0.4, β1 = 0.1,W = 1. We see that in each case the symmetric

model has a higher WAIC than the asymmetric one. Hence we will be choosing the sym-

metric model as the most appropriate model.

WAIC n = 500 n = 2000 n = 5000

Symmetric -1299.8 -5243.1 -13133.4

Asymmetric -1301.5 -5244.5 -13135.0

Table 6–5: The WAIC was calculated for different sample sizes. The true model is a sym-

metric GARCH model.

In the following example we have that the true model is an asymmetric GARCH model given

by the following parameters α0 = 4, α1 = 0.4, γ1 = 0.1, β1 = 0.1,W = 1. In this case we

have that, for the larger sample sizes, the WAIC for the asymmetric model is larger than

that of the symmetric model. Hence we are correctly choosing the asymmetric model as the

most appropriate model for the larger sample sizes. However, for the smallest sample size,

n = 500 we have that the symmetric model has the higher WAIC. Hence for the smallest

sample size we would be choosing the incorrect model. In this case the performance of the

WAIC has improved with sample size.
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WAIC n = 500 n = 2000 n = 5000

Symmetric -1249.6 -5007.9 -12669.5

Asymmetric -1252.5 -5002.6 -12652.5

Table 6–6: The WAIC was calculated for different sample sizes. The true model is an

asymmetric GARCH model.
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CHAPTER 7
Multiple Regime SSM:

So far in our study we have looked at SSMs whose parameters stay constant over time, i.e.

without any structural breaks. One reason for this assumption is that it makes the analysis

easier since we do not need to know how or when the parameters are evolving over time.

In many cases we actually may know at what time point the parameters are changing. In

Section 1, the equations of the Kalman Filter recursions are general enough to allow for time

varying variance.

Suppose that we have a univariate time series from time t = 1 to t = T . If the model

parameters do not vary over time, we say there is no change point (alternatively there is

only one regime the model is operating under). We say there are two regimes if from

some k ∈ [1, T ], between the time interval t = [1, k] we have one set of parameters and

between t = [k + 1, T ] we have another set of parameters. Here at t = k we have a

change point. More generally speaking if we have r regimes then each of the time intervals,

[1, k1], [k1+1, k2], [k2+1, k3]..., [kr−1+1, T ] we have different parameters, where k1, k2, ..., kr−1

are the change points. We take k0 = 0 and kr = T .

7.1 The Time-Varying SSM:

For simplicity let us assume that we have a univariate Gaussian SSM. In the single regime

case we have that the parameters of the model are the unknown variances V and W . Now

suppose that the model has 3 regimes. This means that under each of the regimes we have a

different variances V1,W1 under the first regime, V2,W2 under the second regime and V3,W3

under the third regime. Hence the augmented parameter space of the three regime model is

{V1,W1, V2,W2, V3,W3}. For the general r regime model we have the augmented parameter
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space as, {V1,W1, ..., Vr,Wr}. In this case the model is specified as,

yt = F ′θt + vt

θt = Gθt−1 +wt,

(7.1)

where, the observation and state errors are distributed in the following manner,

vt ∼


N(0, V1), k0 ≤ t < k1

...
...

N(0, Vr), kr−1 ≤ t < kr

wt ∼


N(0,W1), k0 ≤ t < k1

...
...

N(0,Wr), kr−1 ≤ t < kr

. (7.2)

Here the change points k0, ..., kr are assumed to be known. Thus, by correctly inputing the

proper state and observation variances into the Kalman Filter we can carry on with the usual

analysis that we have been doing so far.

An easy way to think of this model is to think of it as multiple pieces of data. Where

Y 1 = y1:k1−1, Y
2 = yk1:k2−1, ..., Y r = ykr−1:T . Here {yt} is the original data. The individual

series Y 1, ..., Yr glue together make up the original series {yt}. Before mentioning the poste-

rior distribution we describe the prior distribution for the parameters.

7.2 Estimating the Time-Varying SSM:

In the univariate single regime case we had chosen an Inverse-Gamma prior for V . If the

state vector is univariate we also chose an Inverse-Gamma prior for W and if the state

was multivariate we chose an Inverse-Wishart prior for W . Using the same logic, for the

multi-regime case we also choose Inverse-Gamma prior for the observation variances and

an Inverse-Gamma prior or an Inverse-Wishart prior for the state variances for each of the

regimes. We further assume that mutual independence between the priors, i.e. Vi ⊥ Vj,

Wi ⊥ Wj and Vi ⊥ Wj for all i, j ∈ {1, ..., r} (To keep things consistent with the model
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stated in (24) we keep the state errors as multivariate). This leads us to,

π0(V1,W1, ..., Vr,Wr) = π0(V1)π0(W1)× ...× π0(Vr)π0(Wr).

The posterior distribution can then be written as,

πn(V1:r,W1:r,θ|Y1:n) ∝
n∏
i=1

π(yi|V1:r,θi)
n∏
i=1

π(θi|W1:r,θi−1)π0(V1,W1, ..., Vr,Wr)

∝
k1−1∏
i=1

π(yi|V1,θi)π(θi|W1,θi−1)×

k2−1∏
i=k1

π(yi|V2,θi)π(θi|W2,θi−1)× ...×

T∏
i=kr−1

π(yi|Vr,θi)π(θi|Wr,θi−1)× π0(V1)π0(W1)× ...× π0(Vr)π0(Wr),

(7.3)

we can see from above that the posterior may be factorized based on the different regimes.

This gives us the following conditional distributions,

πn(Vj|V(−j),W1:r,θ, Y1:n) ∝ π0(Vj)

kj−1∏
i=kj−1

π(yi|Vj,θi)

πn(Wj|V1:r,W(−j),θ, Y1:n) ∝ π0(Wj)

kj−1∏
i=kj−1

π(θi|Wj,θi−1).

(7.4)

Thus the conditional distributions are quite simplified. On a final note, one can easily im-

plement the multiple regime Gaussian SSM for multivariate observations.

Given the posterior distribution in (7.4) the analysis of the parameters V1,W1, ..., VrWr

maybe carried using Algorithm 2, i.e. we run the FFBS to get a sample of the state vectors

and then conditional of this sample of the state vectors we draw the posterior samples of the

variance parameters.
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7.3 The Time-Varying GARCH-SSM:

Now we can formulate the GARCH-SSM to have time varying GARCH parameters. This

is really quite easy to implement and the Kalman recursions for the time varying GARCH

SSM are given next. For simplicity suppose that we have a univariate GARCH-SSM from

time t = 1, ..., T . Again suppose that the change points are at time k1, k2, ..., kr−1 and they

are known. We assume a GARCH(1, 1) model at the observation level.

yt = F ′θt + zt

θt = Gθt−1 +wt

zt = stεt, εt ∼ N(0, 1)

(7.5)

s2t =


α1
0 + α1

1z
2
t−1 + β1

1s
2
t−1, k0 ≤ t < k1

...
...

αr0 + αr1z
2
t−1 + βr1s

2
t−1, kr−1 ≤ t < kr

wt ∼


N(0,W1), k0 ≤ t < k1

...
...

N(0,Wr), kr−1 ≤ t < kr.

(7.6)

This gives us the following set of parameters {α1
0, α

1
1, β

1
1 ,W1, ..., α

r
0, α

r
1, β

r
1 ,Wr}.

Like before, an easy way to think of this model is to think of it as multiple separate pieces

of data, Y 1 = y1:k1−1, Y
2 = yk1:k2−1, ..., Y r = ykr−1:T , glued together make up the original se-

ries y. And for each of these series we have a different set of parameters making up the model.

For clarity we give the full Kalman recursion equations. The filtering distribution is given

by,

1. Assume that at time t− 1 we have the distributions,

θt−1|y0:t−1 ∼ N(mt−1,Ct−1)
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2. Then, the one-step-ahead forecast for the state vector is:

θt|y0:t−1 ∼ N(at,Rt) (7.7)

Where at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt, where,

Wt =


W1, k0 ≤ t < k1

...
...

Wr, kr−1 ≤ t < kr

3. The one-step-ahead forecast for the observation vector is:

yt|y0:t−1 ∼ N(ft,Qt), (7.8)

where ft = F ′tat and Qt = F ′tRtFt + s2t

s2t =


α0 + α1

(
y2t−1 − 2yt−1F

′mt−1 + F ′(Ct−1 +mt−1m
′
t−1)F

)
+ β1s

2
t−1, ≤ t < k1

...
...

...
...

...
...

αr0 + αr1

(
y2t−1 − 2yt−1F

′mt−1 + F ′(Ct−1 +mt−1m
′
t−1)F

)
+ βr1s

2
t−1, kr−1 ≤ t < kr

(7.9)

4. The filtered distribution at time t is then given by:

θt|y0:t−1 ∼ N(mt,Ct) (7.10)
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Where,

mt = at +Ktet

Ct = Rt −KtQtK
′
t

Kt = RtFtQ
−1
t

et = yt − ft

(7.11)

7.4 Estimating the Time-Varying GARCH-SSM:

In Section 4.2 we laid out the posterior distribution of the GARCH-SSM model and how to

estimate the parameters. Just like in Section 4.2, to draw samples of the state vectors we use

FFBS. The difference now is that the Kalman filter is run with the time varying parameters

given in Section 6.2. For the single regime case we had chosen the an Half-Cauchy priors for

the GARCH parameters and for the state variance we had chosen an Inverse-Gamma prior if

it was univariate or an Inverse-Wishart prior if it was multivariate. Following this we choose

mutually independent priors for the multi-regime GARCH-SSM. In particular we have that,

π0(α
1
0, α

1
1, β

1
1 ,W1, ..., α

r
0, α

r
1, β

r
1 ,Wr) = π0(α

1
0)π0(α

1
1)π0(β

1
1)π0(W1)× ...

×π0(αr0)π0(αr1)π0(βr1)π0(Wr)

Now we can describe the posterior distribution for the model as,

p(θ0:n, α
1:r
0 , α1:r

1 , β1:r
1 ,W1:r) ∝ π0(α

1:r
0 , α1:r

1 , β1:r
1 ,W1:r)

n∏
i=1

π(yi|α1:r
0 , α1:r

1 , β1:r
1 ,θi)π(θi|W1:r,θi−1)

∝
k1−1∏
i=1

π(yi|α1
0, α

1
1, β

1
1 ,θi)π(θi|W1,θi−1)×

k2−1∏
i=k1

π(yi|α2
0, α

2
1, β

2
1 ,θi)π(θi|W2,θi−1)× ...×

T∏
i=kr−1

π(yi|αr0, αr1, βr1 ,θi)π(θi|Wr,θi−1)×

π0(α
1
0)π0(α

1
1)π0(β

1
1)π0(W1)× ...× π0(αr0)π0(αr1)π0(βr1)π0(Wr).

(7.12)
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Here α1:r
0 = {α1

0, ..., α
r
0} and similarly for α1:r

1 and β1:r
1 .

Just like in the non-GARCH case, we see how the posterior distribution is factorizes based on

the different regimes. This leads us to have the following conditional posterior distributions

for the individual regime parameters,

πn(αj0, α
j
1, β

j
1|α

(−j)
0 , α

(−j)
1 , β

(−j)
1 ,W1:r,θ, Y1:n) ∝ π0(α

j
0)π0(α

j
1)π0(β

j
1)

kj−1∏
i=kj−1

π(yi|αj0, α
j
1, β

j
1,θi)

πn(Wj|α1:r
0 , α1:r

1 , β1:r
1 ,W(−j),θ, Y1:n) ∝ π0(Wj)

kj−1∏
i=kj−1

π(θi|Wj,θi−1),

(7.13)

where α
(−j)
0 = {α1

0, ..., α
j−1
0 , αj+1

0 , ..., αr0} and similarly for α
(−j)
1 and β

(−j)
1 .

Thus we see from above that the conditional distributions breaks down quite easily for each

of the regimes. Since these conditional distributions are not tractable standard distribution

with respect to the parameters αj0, α
j
1, β

j
1, we use the Metropolis-Hastings algorithm to sam-

ple from the posterior. For the Wj on the other hand an Inverse-Wishart prior is a conjugate

prior.

7.5 Unknown Change Point:

So far in this section we have assumed that the change points k1, ..., kr−1 are known. How-

ever, in reality the position of the change points may be unknown. Further the number of

change points present may also be unknown. We defer the discussion of the latter to section

6.5. For know let us assume that the number of change points is known but their positions

unknown.

Like before, let k1, ..., kr−1 be the change points, whose values are unknown. We would like to

place a prior distribution on the change points. Following Green (1995), we may choose the

50



prior on k1, ..., kr−1 to be the even-numbered order statistics from 2r−1 points drawn from the

discrete uniform distribution on [0, T ]. Meaning, if j(1), j(2), ..., j(2r−1) are the order statistics

obtained from the uniform distribution on [0, T ] then k1 = j(2), k2 = j(4), ..., kr−1 = j(2r−2).

This formulation of taking the even ordered statistics gives a nice formulation for the joint

distribution of k1, ..., kr−1.

π0(k1, ..., kr−1) = π0(j2, j4, ..., j2(r−1))

= (2r − 1)!
(j2)(j4 − j2)...(j2r−2 − j2(r−2))

T r−1
(T − j2r−2)

T
×

(
1

T

)r−1

Itmin≥0Itmax≤L

= (2r − 1)!
(k1)(k2 − k1)...(kr−1 − kr−2)

T r−1
(T − kr)

T
×

(
1

T

)r−1

Is(0)≥0Ismax≤L

= (2r − 1)!
(k1)(k2 − k1)...(kr−1 − kr−2)(T − kr−1)

T 2r−1

=
(2r − 1)!

T (2r−1)

r∏
i=1

(ki − ki−1).

(7.14)

Here we take k0 = 0 and kr = T . This prior has been adapted from Green (1995), which

looked at an example of Bayesian change point analysis.
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The resulting posterior distribution is very similar to what we have already seen so far.

πn(θ0:n, α
1:r
0 , α1:r

1 , β1:r
1 ,W1:r, k1:r−1|y1:n) ∝

π0(α
1:r
0 , α1:r

1 , β1:r
1 ,W1:r, k1:r−1)

T∏
i=1

π(yi|α1:r
0 , α1:r

1 , β1:r
1 ,θi)π(θi|W1:r,θi−1)

∝
k1−1∏
i=1

π(yi|α1
0, α

1
1, β

1
1 , k1,θi)π(θi|W1,θi−1, k1)×

k2−1∏
i=k1

π(yi|α2
0, α

2
1, β

2
1 , k2,θi)π(θi|W2,θi−1, k2)× ...×

T∏
i=kr−1

π(yi|αr0, αr1, βr1 , kr,θi)π(θi|Wr,θi−1, kr)×

π0(α
1
0)π0(α

1
1)π0(β

1
1)π0(W1)× ...× π0(αr0)π0(αr1)π0(βr1)π0(Wr)×

(2r − 1)!

T (2r−1)

r∏
i=1

(ki − ki−1).

(7.15)

Like before the conditional distribution for the GARCH parameters are factorize quite easily

based on the different regimes. To sample from the posterior distribution we follow our

usual steps of running the FFBS to get the state vectors and then conditional on the state

vectors we can use the Metropolis-Hastings algorithm to draw posterior samples of the other

parameters.

Simulation Study:

We simulate a GARCH-SSM with two regimes. We have 2000 observations. The change

point occurs at time t = 1000. The parameters of the model are,

α1
0 = 1, α1

1 = 0.3, β1
1 = 0.1,W 1 = 0.04

α2
0 = 2, α1

1 = 0.1, β1
1 = 0.5,W 1 = 0.01

(7.16)
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Figure 7–1: A two-regime GARCH SSM. The red line in the middle shows where the change

point occurs.

Our goal here is to estimate the parameters operating under the two regimes and also estimate

the change point. The estimated parameters are given in the table below. We can see that

the parameters are pretty close to the true values. In terms of the estimate for the change

point, we are estimating that the change point occurred at time t = 995.63 which is very

close to the true value of the change point (t = 1000).

Regime 1 α1
0 α1

1 β1
0 W 1

0.9194 0.2528 0.2467 0.0280

0.0487 0.0029 0.0199 0.00004

Regime 2 α2
0 α2

1 β2
0 W 2

1.9748 0.2399 0.4317 0.0091

0.3495 0.0027 0.0140 0.00001

Change Point WAIC

995.63 -4102.823

Table 7–1: Posterior median of the GARCH parameters based on 5000 draws from the

posterior distribution.
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We fitted two more models to this data. The first assumed that there was just one regime,

i.e. no change point. The second assumed that there was three regimes operating. We would

want to be able to reject both these models using WAIC. For the single regime model the

WAIC was −4219.746. And for the three regime model the WAIC was −4087.151. The

three-regime model has the highest WAIC. Ideally we would like the two-regime model to

have the highest WAIC. In this case it is interesting to see the traceplots for the estimate of

the change points in the two-regime and three-regime model. These are given in Figure 7-2

and Figure 7-3 respectively.
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Figure 7–2: The traceplot (left) and the histogram (right) of the posterior samples of the

change point. We can see that the chain has converged quite well. The histogram shows us

that the posterior value for the change point is meaned around 1000.
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Figure 7–3: The traceplot (above) and the histogram (below) of the posterior samples of the

change point. In black is the traceplot of the first change point and red is the traceplot of

the second change point. We can see that the chain has converged quite well. The histogram

shows us that the posterior value for the change point is meaned around 1000.

For the two-regime model we see that the traceplot is fluctuating very evenly around the

value of 1000. We know that this is the true change point and is the only change point and
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hence the two-regime model is correctly estimating the true value of the change point. For

the three regime model, the first change point is being estimated around the point 1000. If

we look at the black traceplot in Figure 7-3, which is the traceplot of the first change point

we see that it is fluctuating within a narrow band around the point 1000, our true change

point value. Where as, the red line, which, is the traceplot of the second change point, is

uniformly fluctuating between the points 1000 to 2000. This means that the second change

point is similarly high posterior probability along the interval 1000 to 2000.

A look at the estimates of the three-regime model shows us that the estimates of the pa-

rameters for the second and third regime in the two-regime model are extremely similar.

Which again is no surprise, since in truth the model after time t = 1000 has follows the same

regime. The first regime in the three-regime model is also being correctly estimated, with

the parameter estimates close to the true parameters of the first regime given in (7.16).

Regime 1 α1
0 α1

1 β1
0 W 1

0.9363 0.2471 0.2212 0.0281

0.04196 0.00259 0.01750 0.00004

Regime 2 α2
0 α2

1 β2
0 W 2

2.3558 0.2569 0.3362 0.0096

0.89348 0.00886 0.02670 0.00001

Regime 3 α3
0 α3

1 β3
0 W 3

2.3318 0.2659 0.3718 0.0099

0.91242 0.00872 0.01974 0.00001

Change Point 1 Change Point 2 WAIC

990.88 1518.405 -4087.151

Table 7–2: Posterior median of the GARCH parameters based on 5000 draws from the

posterior distribution.
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7.6 Unknown Number of Change Points:

So far we have assumed the number of change points to be known. However, it may be

of interest to estimate the number of change points supported by the posterior distribu-

tion. Green (1995) uses the technology of reversible jump MCMC (RJMCMC) to tackle

the problem of finding the number of change points in a particular data set. In this section

we discuss how we may also use this technology in the context of estimating the number of

regimes for our SSM. In one sense RJMCMC can be used as a method of assessing Bayesian

model selection by helping us choose the number of regimes and location of the change points

most supported by the posterior distribution. To keep things simple we assume a standard

Gaussian first order SSM’s (random walk plus noise SSM) with multiple regimes. We show

later how this method can later be extended to GARCH-SSMs with multiple change points.

For clarity we specify the model here again.

yt = θt + vt

θt = θt−1 + wt,

(7.17)

where the observation and state errors are distributed in the following manner,

vt ∼


N(0, V1), k0 ≤ t < k1

...
...

N(0, Vr), kr−1 ≤ t < kr

wt ∼


N(0,W1), k0 ≤ t < k1

...
...

N(0,Wr), kr−1 ≤ t < kr

, (7.18)

where r is now a parameter that must be estimated.

7.6.1 Prior Specification:

First we specify the prior for the number of regimes (i.e. nuber of change points in the

model), r. The prior for the regimes is set to be a Truncated Poisson distribution. In

particular we have that,
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π0(r) =
exp(−λ)λr−1

(r − 1)!
Ir≤rmaxIr≥1 r = 1, 2, ..., rmax

where we set rmax is set deterministically.

Finally, we specify the priors of the variances conditional on the number of regimes. Like

before we take independent Inverse-Gamma priors for the variances. So given that there are

r regimes in the model we have that the prior variances are given by,

π0(V1,W1, ..., Vr,Wr|r) = π0(V1)π0(W1)× ...× π0(Vr)π0(Wr)

where, Vi ∼ IG(α1, β1) and Wi ∼ IG(α2, β2), for all i = 1, ..., r.

The posterior distribution is thus given by,

πn(V1:rW1:r, r, k1:r−1,θ|Y1:n) ∝
n∏
i=1

π(Yi|V1:r, θi, k1:r−1)
n∏
i=1

π(θi|W1:r, θi−1, k1:r−1)π0(V1:r,W1:r, k1:r−1, r)

∝ L(y|V1:r,θ, k1:r−1)L(θ|W1:r, k1:r−1)π0(V1:r,W1:r|r)π0(k1:r−1|r)π0(r)

∝ L(y|V1:r,θ, k1:r−1)L(θ|W1:r, k1:r−1)
r∏
j=1

π0(Vj|r)π0(Wj|r)π0(k1:r−1|r)π0(r)

∝ L(y|V1:r,θ, k1:r−1)L(θ|W1:r, k1:r−1)
r∏
j=1

π0(Vj|r)π0(Wj|r)π0(k1:r−1|r)π0(r)

7.6.2 Jumps:

Now that we have the priors for the model we describe the “moves” that our model can

make. Our objective here is two folds. First we want to obtain information regarding the

change points as supported by the data. By this we mean that we want to know the optimal

number of change points suggested by the data and estimate their positions. Secondly given

these change points change points we want to estimate the variances in each regime.
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We define here the possible jumps that our model can make. Suppose that we have univari-

ate DLM. Now suppose that in the current state we have k regimes. There are 4 possible

moves that we can make. The first move is a position move, the second move is a birth

move, the third move is a death move and finally the fourth move is call a local move.

The position move, keeps us in the same number of regimes but proposes to change the

length one of the regimes. For this we randomly choose one of the change points k1, ..., kr−1

with uniform probability, say we choose kj. We propose to then move is uniformly between

[kj−1, kj+1]. The second possible move, the birth move, proposes to increase the number of

regimes, from r to r + 1. And the third move, the death move, proposes to decrease the

number of regimes from r to r − 1. The fourth move, the local move, keeps the regimes

and the change points the same and updates the state and observational variances for that

regime, using Gibbs sampling.

We quickly note some exceptions. If currently we have only one regime, i.e. r = 1, then we

cannot make a death move. Similarly if we have that r = rmax then we cannot make a birth

move.

In the next part we discuss each of these moves and their proposal and acceptance probabil-

ities in more details.

7.6.3 Acceptance Probabilities:

We discuss the acceptance probabilities of each move. In general the acceptance probability

of a reversible jump step is given by,

α(Mk,Mk′) = min

{
1,
πn(θk′)q(k

′, k)
←
rk′

πn(θk)q(k, k′)
→
rk
|J |

}

60



Here πn() is the posterior probability, q() is the proposal probability,
←
r is the backward

probability,
→
r is the forward probability and |J | is the Jacobian.

We start with the local move. Suppose that in our current state we have r regimes. Our

parameters are the V1, ..., Vr observation variances, W1, ...,Wr state variances and k1, ..., kr−1

change points. For this move we keep the number of regimes and the current change points

fixed and update the variances using a Gibbs sampling. This would be done in the usual

way, we run the FFBS using our time varying variances and obtain a sample of the state

vectors. Then for each regime we have that,

πn(Vi|θ, r, k1, ..., kr−1) ∝ Inv −Gam

(
ki − ki−1

2
+ α1,

∑ki
j=ki−1

(Yj − θj)2

2
+ β1

)

πn(Wi|θ, r, k1, ..., kr−1) ∝ Inv −Gam

(
ki − ki−1

2
+ α2,

∑ki
j=ki−1

(θj − θj−1)2

2
+ β2

)

It is easy to arrive at these above distributions. To illustrate this we write the full posterior

distribution below. We run the FFBS and we get a sample of the state vectors. As shown

previously the full posterior distribution is given by,

πn(V1:rW1:r, r, k1:r−1,θ|Y1:n) ∝ L(y|V1:r,θ, k1:r−1)L(θ|W1:r, k1:r−1)
r∏
j=1

π0(Vj|r)π0(Wj|r)π0(k1:r−1|r)π0(r)

We since Vi,Wj are mutually independent priors for all i, j we have that the priors factorize

out completely conditional on the number of regimes, r. When finding the conditional dis-

tribution of Vi, we see that in the likelihood, the only Y ′s that depend on the Vi are terms

that are in the regime i, i.e. the Y ′i s that are in the interval (ki−1, ki]. Similarly the only

terms that depend on the parameter Wi are the θ′s that are in the interval (ki−1, ki]. Thus

we get the conditional distributions that we have above.
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The last thing that we have to specify is the probability of choosing this move. For now let us

just suppose that we choose to make a local move when we have r regimes with probability cr.

The next move that we describe is the position move. Suppose that currently, we are at r

regimes. We run the FFBS, using the current value of parameters, and obtain a sample of

the state vectors. Next, for the position move we choose to alter one of the change points,

k1, ..., kr−1, which we pick randomly. Suppose we choose kj. We propose a new value of k′j,

picked uniformly over the interval [kj−1, kj+1]. Then using these state vectors we calculate

the posterior under the proposed value and current value. We use a Metropolis-Hastings

step to accept or reject the proposed value of k′j, with the acceptance probability being given

by,

min

{
1,
L(y|V1:r,θ, k−j, k′j)L(θ|W1:r, k1:r−1)(k

′
j − kj−1)(kj+1 − k′j)

L(y|V1:r,θ, k1:r−1)L(θ|W1:r, k1:r−1)(kj − kj−1)(kj+1 − kj)

}

The probability of choosing to make a position move is given by pr.

We now describe the birth move. As stated before, this type of move proposes to increase

the number of regimes from the current value r to r + 1. First, we run the FFBS, using

the current value of parameters (from the r regime model) and obtain a sample of the state

vectors. Next, we uniformly choose a point in the interval [1, T ], call it k∗. With prob-

ability 1 we have that this point lies inside one of the r regimes, given by the intervals

[k0, k1], ..., [kr−1, T ]. Suppose that it lies in the jth regime, i.e., k∗ ∈ [kj−1, kj]. Our new

proposed change points are then given by, k1, ..., kj−1, k
∗, kj, ..., kr−1. Now given these new

intervals, [kj−1, k
∗] and [k∗, kj] we need to also propose a new observation and state variances

operating in these new proposed intervals. We choose to make a deterministic proposal for

these new variances, however, one can also make a stochastic proposal.
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For the interval [kj−1, k
∗], we propose the variances to be based on the sample variances of

the observation and the states operating in these intervals. This would thus be given by,

V ∗j =
1

#{Y ∈ [kj−1, k∗]} − 1

∑
Yi∈[kj−1,k∗]

(ui − ū)2

W ∗
j =

1

#{θ ∈ [kj−1, k∗]} − 1

∑
θi∈[kj−1,k∗]

(zi − z̄)2,

(7.19)

where,

ui = Yi − θi, zi = θi − θi−1.

One recognizes that 7.19 is exactly the sample variance formula. A look at the model

description given in (7.17) gives us the motivation of our proposal. Similarly, for the interval

[k∗, kj], we have the new variances proposed using the sample variances within these intervals,

given by,

V ∗j+1 =
1

#{Y ∈ [k∗, kj]} − 1

∑
Yi∈[k∗,kj ]

(ui − ū)2

W ∗
j+1 =

1

#{θ ∈ [k∗, kj]} − 1

∑
θi∈[k∗,kj ]

(zi − z̄)2,

where,

ui = Yi − θi, zi = θi − θi−1.

This describes the full set of parameter augmentation to go from r regimes to r+ 1 regimes.

We use a Metropolis Hastings step to accept or reject our proposed parameters. Before we go

into the details about acceptance probabilities, we expose the process of a death step, since

we will need this to describe the reverse move used to calculate the acceptance probability.

The death move allows us to move from r regimes to r − 1 regimes. As before, first, we

run the FFBS, using the current value of parameters (from the r regime model) and obtain

a sample of the state vectors. Next, we randomly choose one of the r regimes, suppose we

63



choose regime j, which operates over the interval [kj−1, kj] and then we collapse it. Which

means that we remove the point kj. This then gives us the single interval [kj−1, kj+1].

Currently we have the variances Vj,Wj and Vj+1,Wj+1 operating on the intervals [kj−1, kj]

and [kj, kj+1] respectively. Since we have merged these two intervals into a single interval

we need to somehow propose a single variance operating in this new regime. We propose

the new variance deterministically, by choosing the sample variance operating in the newly

collapsed regime. This then gives us the variances as,

V ∗j =
1

#{Y ∈ [kj−1, kj+1]} − 1

∑
Yi∈[kj−1,kj+1]

(ui − ū)2

W ∗
j =

1

#{θ ∈ [kj−1, kj+1]} − 1

∑
θi∈[kj−1,kj+1]

(zi − z̄)2,

(7.20)

where,

ui = Yi − θi, zi = θi − θi−1.

We choose the birth move with probability br and the death move with probability dr.

The last thing we expose before discussing the acceptance probability at length is the cal-

culation of the Jacobian, J . Due to our choice of proposals in the dimension matching it

is easy to see that the Jacobian, |J | is unity. In fact, this is not a coincidence but rather

premeditated. However, depending on the choice of the proposals used, the Jacobian would

change.

Now we have everything that we need to find the acceptance probability. Suppose we choose

to make a birth move. We use FFBS to obtain a sample of the states. Then, given our

current parameter values we propose the augmented parameters and accept these parameter
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using with probability,

min

{
1,
πn(V ′,W ′,k′,θ)1/(r + 1)dr+1

πn(V ,W ,k,θ)(1/T )br
|J |

}

Here V = (V1, ..., Vr), W = (W1, ...,Wr), k = (k1, ..., kr−1), V
′ = (V ′1 , ..., V

′
r+1), W

′ =

(W ′
1, ...,W

′
r+1) and k′ = (k′1, ..., k

′
r).

Finally the acceptance probability of a death move is given by,

min

{
1,
πn(V ′,W ′,k′,θ)(1/T )br
πn(V ,W ,k,θ)(1/r)dr−1

|J |−1
}

Here V = (V1, ..., Vr), W = (W1, ...,Wr), k = (k1, ..., kr−1), V
′ = (V ′1 , ..., V

′
r−1), W

′ =

(W ′
1, ...,W

′
r−1) and k′ = (k′1, ..., k

′
r−2).

Simulation:

We simulate a Gaussian SSM with four regimes. In this model T = 2000 and the change

points are place at t = 500, 1000, 1500. For the first and the third regime we have that the

observation variance is 100 and the state variance is 0.04. For the second and the third

regime we have that the observation variance is 10 and the state variance is 0.01. We want

to use the RJMCMC technology to estimate the value of the parameters and the number of

change points.

We use the priors given previously. The priors for the variances are re-stated for convenience.

Vi ∼ IG(α1, β1) and Wi ∼ IG(α2, β2), for all i = 1, ..., r. Where α1 = 2.5, β1 = 0.01 and

α1 = 2.5, β1 = 1. For this model we set rmax = 10, i.e. there can be a max 10 regimes (9

change points).
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Figure 7–4: 4-regime model (3 change points)

The first plot we show is the histogram of the number of change points estimated by the

model. We see from the histogram below that 3 change point model has the highest posterior

probability. The 4 change point model also has a high posterior probability. Having any

other number of change points has a very low posterior probability. Looking at the trace

plots of estimates of the change points of these models paints a much clearer picture on

which model is the clear winner.
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Figure 7–5: Histogram of the number of change points
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Figure 7–6: Left: Trace Plots of the estimated change points from the 3 change points model;

Right: Trace Plots of the estimated change points from the 4 change points.

The plot on the left shows the trace plots of the change points from the three change point

model. We see that each of the trace plots are quite stationary and fluctuating evenly around

the true change point values of 500, 1000, 1500. Clearly the change points are also quite well

identified.

For the plot on the right, the 4 change point model, the first change point at t = 500 is well

identified and estimated. However, if we look ad the next three change points they seem

be a bit all over the place. Recall that in Figure 4, where the true model had only one

change point, the second change point was uniformly fluctuating about. In this 4 change

point model, we see a similar pattern, with 3 of the change points uniformly fluctuating

between the intervals (500, 1000), (1000, 1500) and (1500, 2000), unlike the 3 change point

model where we see that the estimates have ‘settled’ in quite well. Thus we would be correct

in choosing the three change point model as the best model in for this data, which is good

since we know that this is the true model specification.

The estimates of the models are given in the table below.
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Sample size V 1 V 2 V 3 V 4

T = 2000 95.012 9.972 91.103 9.529

(46.884) (0.717) (56.521) (0.406)

W 1 W 2 W 3 W 4

0.188 0.157 0.317 0.114

(0.010) (0.003) (0.029) (0.002)

Change Point 1 Change Point 2 Change Point 3

516.549 978.980 1510.193

Table 7–3: Posterior median estimates from the 3-change point model.

The estimates of the observation variance and the change points are very close to the true

values. However, the estimates of the state variances are biased. The estimates of the state

variances can be improved by using a larger sample size and/or different priors.

One note of caution to mention is that the ability to properly estimate the number of regimes

in the model and where the change points lie is dependent on the length of each regime. In

our case here each regime had a length of 500 data points, which seems to be good enough

to help us in correctly estimating the model. The model is also quite sensitive to the choice

of prior as well. Below is the histogram of the posterior estimates of the number of change

points when changing the rate parameter for the state prior from β2 = 1 to β2 = 0.1. We

see that the 5 change point model is now the posterior mode.
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CHAPTER 8
Analyzing the ICU Data:

In this section we will apply our GARCH-SSM to the heart rate (HRT) and blood pressure

(BP) series. As mentioned earlier both these series show non-stationarity properties in mean

and variance. We thus analyze the data using the methods developed in the previous sections.

In terms of the overall structure of the model, for both the HRT and BP series we use the

univariate first order polynomial SSM (random walk plus drift) with GARCH errors. Thus

the model specification is,

yt = θt + vt

θt = θt−1 + wt, wt ∼ N(0,W )

vt = σtεt, εt ∼ N(0, 1)

σ2
t = α0 + α1z

2
t−1 + β1σ

2
t−1

We used the following priors for the model,

π0(α0) ∼ Cauchy(0, 1)Iα0>0

π0(α1) ∼ Cauchy(0, 1)Iα10

π0(β1) ∼ Cauchy(0, 1)Iβ1>0

π0(W ) ∼ IG(10, 10)

(8.1)

We will also want to analyze the data for evidence of any structural breaks. For the multi

structure model we used the prior described in (37) for the unknown change points. And for

the GARCH parameters for each of the regimes we used the prior given in (45).
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A quick look at the data would suggest that there is at least one structural break in both

series, which, have been re-plotted below for convenience. Further, the large spike in the

data that are present throughout both series are characteristics of having volatility clusters.
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Figure 8–1: Left: Heart Rate; Right: Blood Pressure.

Slightly after Saturday 1200 hr there seems to be a structural break in both series.

Given these observations, we believe that a SSM with GARCH(1, 1) errors would be an ap-

propriate model. The SSM can help us estimate the latent process driving the level of the

model, while the GARCH(1, 1) errors would help us to model the heteroskedasticity present

in the data. We compare this GARCH-SSM to the standard Gaussian SSM, which we can

use as a benchmark. We also consider fitting a model with two regimes to account for the

structural break seen in the data and compare the single regime model to the model with a

structural break. Finally we fit a bivariate model.

8.1 Estimating the Heart Rate Series:

We start with the HRT series. We use the Metropolis-Hastings algorithm to sample from

the posterior distribution to estimate the single regime GARCH-SSM. We simulated 50,000

samples from the posterior distribution and the estimates below are the posterior-median
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estimates of the parameters. For the Gaussian-SSM we used Gibbs sampling to simulate from

the posterior distribution since a conjugate analysis is available. This is computationally

much faster than the Metropolis Hastings algorithm. Below are the estimates of the single

regime HRT series.

GARCH-SSM

Sample size α0 α1 β1 W WAIC

T = 2029 1.235 0.305 0.689 0.653 -6220.22

(0.0856) (0.0017) (0.0017) (0.0080)

Gaussian-SSM

V W WAIC

26.395 0.7274 -6450.00

(0.860) (0.0168)

Table 8–1: Posterior estimates of the parameters for the HRT series when fitting a GARCH-

SSM and when fitting a Gaussian-SSM based on 5000 draws from the posterior distribution.

In parenthesis are the standard errors of the estimates.

Comparing the WAIC of the GARCH model with that of the Gaussian model, we see that

for the heart rate series, the GARCH model has a higher WAIC (-6220.22) than the standard

Gaussian model (-6450.00). Recall that WAIC is a measure for predictive accuracy, thus in

terms of prediction accuracy the GARCH SSM is more appropriate than the standard Gaus-

sian SSM. From Table-9 above we see that for the heart rate series, the GARCH parameters

are very close to the non-stationary region. The estimate for the unconditional variance for

the heart rate at the observational level is,

V ar(Y ) =
α̂0

1− α̂1 − β̂1
=

1.235

1− 0.305− 0.689
= 205.83
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In terms of interpretation for the parameter estimates, the values of α̂1 and β̂1 prescribe

how the variance/volatility will change over time. α0 is the baseline variance. A high value

for α1 implies that large deviations will have a big impact on the variance, while a large

value of β1 allows for change in variance to persist over time. If α1 was very small, then

large deviations would not have much effect on the variance. Similarly if β1 was very small,

then we have that the variance would very quickly revert back to its mean. In our case we

have that the estimate for α1 = 0.305 and the estimate for β1 = 0.689. The high value of β̂1

means that variances will revert to its mean much slowly, i.e. high persistence in the variance.

We now fit a GARCH-SSM with two regimes to the HRT series.

Regime 1 α1
0 α1

1 β1
0 W 1

1.2959 0.5989 0.3054 0.1818

(0.22893) (0.01229) (0.01038) (0.00270)

Regime 2 α2
0 α2

1 β2
0 W 2

4.9377 0.2389 0.6680 0.5248

(2.56028) (0.00354) (0.00576) (0.01201)

Change Point 1 WAIC

600.905 -6166.319

Table 8–2: Posterior median of the GARCH parameters and the estimate of the change point

based on 5000 draws from the posterior distribution. In parenthesis are the standard errors

of the estimates.

The first thing we notice is that the WAIC for the two-regime model is −6166.319, which is

higher than the WAIC for the other two models. Secondly, unlike the single regime estimates

the GARCH parameter estimates for both regimes are not close to the non-stationary region.

And we see that for each regime, the estimates are considerably different. The unconditional

variance for each regime is,
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V ar(Y 1) =
α̂0

1− α̂1 − β̂1
=

1.2959

1− 0.5989− 0.3054
= 13.541

V ar(Y 2) =
α̂0

1− α̂1 − β̂1
=

4.9377

1− 0.2389− 0.6680
= 53.037

For both regimes, we see that the unconditional variance is considerably less than the that

of the single regime GARCH-SSM (which was 205.83). We also have that the second regime

is considerably longer than the first regime, since the change point is estimate to be around

time t ≈ 600. Recall from our simulation study, how the sample size effects the parameter

estimates. Thus if the estimated length of a regime is long then its parameter estimates will

be better.

The figure below shows us the estimated values of the states and the residuals from fitted

the GARCH model. The line in red in the plot below is the posterior mean of the state

vectors over time. Both the single regime and two-regime model seem to have captured the

mean level of the model well.
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Figure 8–2: Left: Posterior estimates of the state vector; Right: standardized forecasting

residuals. Top: Single Regime Model; Bottom: Two regime model.

The plot on the right hand side is the estimate of the standardized residuals from the one

step ahead forecast. Given the raw residuals and the GARCH parameter estimates, we can

calculate the variance at time t. Thus by scaling the raw residual at time t by the variance

at that time gives us the standardized residual. We see that in this series our standardized

residuals are evenly spread around zero. There still are a few number of large deviations

from zero in both the single regime and the two-regime model. It is actually quite difficult

to notice the difference between the two residual plots. So instead we look at the RMSE for

both models. The single regime model has an RMSE of 1.2735 while two-regime model has

an RMSE of 1.2554.

The Normal-QQ plot also shows us that our residuals seem to have very heavy tails. Just

like the residual plots the QQ plots are hard to distinguish from each other.
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Figure 8–3: QQ-plot for the standardized residuals.

Overall the model seems to be fitting well. The residual plot shows why fitting a constant

variance model like the standard Gaussian-SSM would be problematic. The large deviations

that we see in the residual plot would not be properly captured by the constant variance

Gaussian-SSM.

Change points analysis for the Heart Rate series:

In the last part we fixed the number of regimes to two and analyzed the data. In this part we

can use our reversible jump technology from Chapter 7 to estimate the number of regimes

in the model. Below is the histogram for the posterior estimate of the number of change

points in the model. (We remind the reader that the reversible jump technology is assuming

Gaussian-SSMs.)
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Figure 8–4: Plot for the posterior estimate of the regimes.

We see above, a large mass on having one change point. The two change point model has

about half as much mass. The three change point model has negligible mass and higher

change points have zero mass. In this model the rmax, which is the maximum number of

change points, was set at 10. We see that model is quite reasonable. Because if we look at

the heart rate series in Figure 8-1, we see that there seems to be a structural break that

occurs at around t = 600.

The posterior median estimate of the change point for the one change point model (two-

regime model) is around 554.8. Which is very similar to the estimate we had of the change

point in Table 8-2.

In the previous part we had used the WAIC to suggest that the two-regime model is better

than the one regime model and the reversible jump is giving us a similar result. Thus from

this, it would be a reasonable assumption to take the two-regime point model is probably

the best model to fit this data.
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8.2 Estimating the Blood Pressure Series:

Next we analyze the blood pressure series (BP). As before we start with the comparison

between the single regime GARCH-SSM and the Gaussian-SSM before doing a two-regime

model.

GARCH-SSM

Sample size α0 α1 β1 W WAIC

T = 2029 1.175 0.275 0.712 0.617 -6067.63

(0.0972) (0.0019) (0.0019) (0.0068)

Gaussian-SSM

V W WAIC

19.95 1.074 -6204.86

(0.6062) (0.0359)

Table 8–3: Posterior estimates of the parameters for the GARCH SSM. In parenthesis are

the standard errors of the estimates.

For this series as well, we see that using WAIC for model selection, we have that the GARCH

model has a much higher WAIC (-6067.63) than the Standard Gaussian SSM (-6204.86), thus

giving us that GARCH model is more appropriate than the standard Guassian-SSM.

For the blood pressure series, we have that the parameter estimates for α̂1 = 0.275 and

β̂1 = 0.712, which are also really close to the non-stationarity region. For the blood pressure

series the estimate of the unconditional observational variance is,

V ar(BP ) =
1.175

1− 0.275− 0.712
= 90.38462.

Next we estimate the two-regime model and the parameter estimates are given in Table-12.

We see in this case as well that the WAIC for the two-regime GARCH-SSM is -5954.372,

which is higher than the single regime GARCH-SSM. In terms of the GARCH parameter
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estimates, for both regimes the GARCH parameters are well away from the non-stationary

region. We also have that the unconditional variance of each regime is less than the uncondi-

tional variance from the single regime model. The posterior median estimate for the change

point is 692.84. Both regimes are long enough for the estimates to be reasonable.

V ar(Y 1) =
α̂1
0

1− α̂1
1 − β̂1

1

=
2.0253

1− 0.5652− 0.2130
= 9.1311

V ar(Y 2) =
α̂2
0

1− α̂2
1 − β̂2

1

=
12.6645

1− 0.1826− 0.4247
= 32.2499

Regime 1 α1
0 α1

1 β1
0 W 1

2.0253 0.5652 0.2130 0.4369

(0.20836) (0.01007) (0.01144) (0.00759)

Regime 2 α2
0 α2

1 β2
0 W 2

12.6645 0.1826 0.4247 0.2593

(9.11390) (0.00293) (0.01261) (0.00771)

Change Point 1 WAIC

692.84 -5954.372

Table 8–4: Posterior median of the GARCH parameters based on 5000 draws from the

posterior distribution. In parenthesis are the standard errors of the estimates.

The residual plots below gives us that the standardized residuals are quite evenly spread

across a mean of zero. Again it is difficult to differentiate between the residual plots of the

single regime model and the residuals from the two-regime model. Thus we use the RMSE

again. The RMSE of the single regime model is 1.1528 and the RMSE of the two-regime

model is 1.1251. Both models seem to be capturing the mean level of the model quite well.
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Figure 8–5: Left: Posterior estimates of the state vector; Right: standardized forecasting

residuals. Top: Single Regime Model; Bottom: Two regime model.

The comments pertaining to the QQ plots are similar to that of the heart rate series. It

is difficult to distinguish one plot from another. The one difference between the heart rate

series and the blood pressure series is that the blood pressure series seems to contain less

outliers compared to the heart rate series.
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Figure 8–6: QQ-plot standardized forecasting residuals.
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Change points analysis for the Blood Pressure series:

Like for the heart rate series, we do a estimate the number of regimes in the blood pres-

sure series using the Reversible Jump technology. The histogram below gives the posterior

estimate of the number of regimes.
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Figure 8–7: Plot for the posterior estimate of the regimes.

The results are interesting because unlike the heart rate series where we saw that the two-

regime model was dominating, in this case we see the four-regime model (3 change-points

model) being the dominating one closely followed by the three-regime and then the five

regime model. In fact the two-regime model has almost zero mass in this analysis. Thus for

the blood pressure series the two-regime model is perhaps not the most adequate model.

We give the estimate of the parameters from the four-regime model below. We see from the

table that the middle change point around t = 646 is very close to the change point from

Table 8-4. Other than that the model is picking up change points around t = 452 and a very

late change point at t = 1886.
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Regime 1 Regime 2 Regime 3 Regime 4

V 9.288 1.887 26.196 29.213

(3.678) (0.171) (2.397) (20.272)

W 0.924 0.764 1.317 0.485

(0.072) (0.085) (0.146) (0.162)

Change Point 1 Change Point 2 Change Point 3

452.194 646.115 1886.376

Table 8–5: Posterior median estimates of the four-regime model for the blood pressure series.

In parenthesis are the standard errors of the estimates.

8.3 Another Example:

While estimating the models we might also want to check if there is a general preference

of the WAIC to always choose the GARCH-SSM. The example below shows that this need

not be the case. The heart rate series from another patient is plotted below. The estimate

for the single regime GARCH-SSM and the Gaussian-SSM are given in the table below.

We see that the WAIC for the GARCH model (-12487.51) is lower than the WAIC for the

standard Gaussian SSM (-12477.5). Thus for this patient we would feel comfortable using

the Gaussian-SSM instead of the GARCH-SSM.

82



GARCH-SSM

Sample size α0 α1 β1 W WAIC

T = 4194 2.016 0.428 0.539 1.382 -12487.51

(0.1027) (0.0012) (0.0013) (0.0143)

Gaussian-SSM

V W

T = 4194 13.000 3.776 -12477.5

(0.1947) (0.0830)

Table 8–6: Posterior estimates of the parameters for the GARCH SSM. In parenthesis are

the standard errors of the estimates.

8.4 Bivariate Model:

In this section we do a joint modeling of the HRT and BP series. Recall that from the

previous sections we had that for both models the GARCH model is an appropriate model.

We would thus expect that for the bivariate model a bivariate GARCH model should be more

appropriate. Thus we estimate this model using the CCC-GARCH introduced in Chapter 4.

We also estimate a bivariate Gaussian-SSM to see how it compares with the GARCH-SSM

compares.
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Sample size VHR VBP VHR,BP

T = 2029 25.168 19.813 1.213

(0.873) (0.534) (0.358)

WHR WBP WHR,BP

1.287 0.93 0.15

(0.038) (0.02) (0.005)

WAIC

-24676.8

Table 8–7: Bivariate Gaussian-SSM estimates of the parameters. Here VHR,BP is the estimate

of the correlation between the observation errors of the HRT series and the BP series and

WHR,BP is the estimate of the correlation between the state errors of both series.

In the estimates above we have that

Sample size αHR0 αHR1 βHR1 WHR ρ

T = 2029 0.876 0.237 0.749 3.871 0.039

(0.0592) (0.0019) (0.0019) (0.2650) (0.0009)

αBP0 αBP1 βBP1 WBP WHR,BP

0.350 0.173 0.818 2.660 0.824

(0.0116) (0.0009) (0.0008) (0.0978) (0.0460)

WAIC

-24522.08

Table 8–8: Standard Gaussian SSM estimates of the parameters of other patients.

Recall that in this model ρ is the correlation between the GARCH errors of both series and

WHR,BP is the correlation between the state observations of both series.
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Like in the univariate case, we have that for the bivariate case the GARCH-SSM is a better

model given the higher value of the WAIC for the GARCH model than the Gaussian model.

In terms of the estimate of the correlation, ρ, the estimate of ρ is quite small thus indicating

that there may not be any significant correlation between the observation errors.
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CHAPTER 9
Conclusion:

In this thesis our goal was to develop a SSM able to deal with heteroskedastic data. The

GARCH-SSM developed allows us to deal with time varying variance. This model is also

able to deal with multiple structural breaks. We have been able to extend the model to the

multivariate case as well. The Gaussian-SSM has been used as a benchmark to compare

with the GARCH-SSM. Our analysis of the Brain IT data has shown that the GARCH-

SSM with structural breaks is a more appropriate model for the HRT and BP series than

the Gaussian-SSM.

We carried simulations studies to show that our model is able to estimate the parameters

and the state vectors. We also showed how we would be able to estimate the a multiple

regime model. Using the WAIC we showed how we might choose between the Gaussian-

SSM, GARCH-SSM and multiple regime GARCH-SSM. Finally we saw how the reversible

jump technology might be used to select the number of regimes that the model is operating

under.

9.1 Future Work and Limitations:

While we implemented the reversible jump technology in the univariate case, applying it

to the multivariate case would be an interesting problem to look at. In this thesis we also

did not look at the reversible jump technology for the GARCH-SSM and this is also some-

thing that can be developed. In fact the reversible jump technology is quite versatile in

terms of validating model adequacy and its use is not only limited to assess the number

of regimes. We should also be able to use it to chose between a local level model and a

linear growth model, for example. We saw in the univariate case during our simulation
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that the estimation of the number of regimes is quite sensitive to the prior specification of

the model. We suspect this would be a similar issue when testing different model hypotheses.

Currently there is not any software that can handle models with unknown types of struc-

tural breaks and multivariate models from a Bayesian point of view. This something that

our model can handle and given their utility it might be worthwhile to develop such a soft-

ware. However, that being said, these models are computationally quite challenging. The

FFBS algorithm requires running the Kalman Filter at every iteration. While this is simple

enough in the univariate case and when the series are not too long, in the higher dimensional

case and/or with very large series the estimation becomes quite slow. Even with using RCPP,

which integrates C++ with R and works at lightening speed compared to standard R, estimat-

ing some these larger models is quite exhausting.

Further, with data that display a large amount of variability and large changes in trend it

is often difficult to discern between where the variability in the series is coming from, the

states or the observation.

In general our algorithm was not sensitive to starting values and in almost all cases was able

to retrieve the true values of the parameter, however, for the observation error in many cases

we actually see a significant correlation between the α0 and β1 parameter of the GARCH

model. This may effect the convergence of the MCMC thus requiring larger numbers of

posterior simulations.
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