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ABSTRACT

The first essay considers a class of generalized linear models (deemed “partially linear
models”) where parameters of interest determine the distribution of the data through mul-
tiplication by a known matrix, such as a matrix of explanatory variables whose rank may
be deficient. This setup not only covers linear regression models with collinearity (such
as cases where the number of explanatory variables is potentially very large or the number
observations is inferior to the number of variables) and a general error covariance matrix,
but a wide spectrum of other models used in econometrics, such as linear median regres-
sions and quantile regressions, generalized linear mixed models, probit and Tobit mod-
els, multinomial logit models and other discrete choice models, exponential models, index
models, etc. In this essay, we first provide a general necessary and sufficient condition for
the global identification of a general transformation of model parameters (when the full
parameter vector is not typically identified) based on a new separability condition. This
general global identification condition is no way limited to partially linear models, but its
discovery was motivated by such models. The general result is then applied to partially
linear models, and the class of identifiable parameters is fully characterized for such mod-
els. Even though none of the original individual parameters of the model may be identified,
it is possible to describe the class of linear transforms which can be identified. In view
of deriving illuminating and usable conditions, several different (though equivalent) char-
acterizations are derived through abstract linear algebra and generalized inverse methods.
The effect of adding restrictions is also considered, and the corresponding identification
conditions are supplied. Despite their fundamental nature, these results are new and should
be useful in many areas of statistics and econometrics.

The second essay reconsiders the problem of characterizing identifiable parameters in
linear IV regressions and simultaneous equations models (SEMs), using methods similar to
the ones developed in the first essay. The recent econometric literature on weak instruments
mainly deals with this basic setup, and the distributional theory as well as the appropriate
statistical methods depend crucially on whether the parameters of interest are identifiable.
Surprisingly, a general characterization of such parameters is not available. Further, the
case where the instrument matrix does not have full rank [e.g., when the number of in-
struments exceeds the number of observations] has not been apparently considered. In this
work, we extend the approaches and results given in the first essay to this general setup.
More precisely, we study the general case where some model parameters are not identi-
fiable, without any restriction on the rank of the instrument matrix, and we characterize
which linear transformations of the structural parameters are identifiable. An important ob-
servation is that identifiable parameters may depend on the instrument matrix (in addition
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to the parameters of the reduced form), and a number of alternative characterizations are
provided. These results are also applicable to partially linear IV-type models where the
linear IV structure is embedded in a nonlinear structure, such as a quantile specification or
a discrete choice model (as in the first essay).

The third essay takes up the challenging problem of characterizing the identification of
nonlinear functions of parameters in nonlinear models. The setup is fundamentally semi-
parametric, and the basic assumption is that structural parameters of interest determine a
number of identifiable parameters through a nonlinear equation (such as a conditional or
unconditional moment equation). Such models are quite common in econometrics, and in-
clude for example nonlinear models typically estimated by GMM, and dynamic stochastic
general equilibrium (DSGE) models (used in macroeconomics and finance). Again, we
consider the general case where not all model parameters are identifiable, with the purpose
of characterizing nonlinear parameter transformations which are identifiable. The litera-
ture on this problem is very thin, and only deals with the identification of the full parameter
vector in the equation of interest. In view of the fact global identification is extremely
difficult to achieve, this paper looks at the problem from a local identification viewpoint.
Both sufficient conditions, as well as necessary and sufficient conditions are derived under
assumptions of differentiability of the relevant moment equations and parameter transfor-
mations. On the way, a notion of identification intermediate between global identification
and the standard notion of local identification (at a point), namely identification around a
point, is introduced and plays an important role in the proposed theory. Some classical
results on identification in likelihood models are also derived and extended. Finally, the
results are applied to identification problems in DSGE models.
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RÉSUMÉ

Cette thèse comprend trois d’essais sur l’identification des modèles économétriques. La lit-
térature sur les problèmes d’identification s’est beaucoup développée au cours des dernières
années, particulièrement dans le but de proposer des méthodes d’inférence statistique fi-
ables lorsque certains paramètres ne sont pas identifiables (ou faiblement identifiables).
Ici, nous nous concentrons sur l’établissement de conditions nécessaires et suffisantes pour
l’identification de modèles linéaires et non-linéaires, dans le but de développer des méth-
odes d’inférence statistique fiables sur les paramètres identifiables.

Le premier essai considère une classe générale de modèles linéaires généralisés (ap-
pelés “modèles partiellement linéaires”) où les paramètres d’intérêt déterminent la distri-
bution des données via une multiplication par une matrice connue, telle une matrice de
variables explicatives dont le rang peut être déficient. Ce cadre comprend non seulement
les modèles de régression linéaire avec collinéarité (ce qui se produit, par exemple, lorsque
le nombre de variables explicatives est supérieur au nombre d’observations) et une matrice
de covariance générale, mais aussi une gamme d’autres modèles économétriques, tels la
régression en médiane et la régression-quantile, les modèles linéaires généralisés mixtes,
les modèles probit et Tobit, les modèles logit multilinéaires ainsi que divers modèles de
choix discrets, etc. Dans cet essai, nous donnons d’abord une condition nécessaire et suff-
isante générale pour l’identification globale d’une transformation générale des paramètres
du modèle (lorsque le vecteur complet des paramètres du modèle n’est pas identifiable) sous
une hypothèse de séparabilité. Cette condition globale n’est en rien limitée aux modèles
partiellement linéaires, mais sa formulation est motivée par ces modèles. Nous appliquons
ensuite ce résultat aux modèles partiellement linéaires, et nous caractérisons complètement
la classe des paramètres linéaires identifiables. Même si aucun des paramètres originaux
du modèle n’est identifiable, nous montrons qu’il est possible de décrire la classe des trans-
formations linéaires de ces paramètres qui sont identifiables. Afin d’obtenir des conditions
faciles à interpréter et à utiliser, nous dérivons plusieurs formulations différentes en ex-
ploitant divers résultats d’algèbre linéaires notamment sur les inverses généralisées. Nous
traitons aussi le cas où des restrictions sont ajoutées au modèle, et nous donnons les condi-
tions d’identification applicables dans ce cas. En dépit de leur caractère fondamental, ces
résultats sont nouveaux et devraient être utiles dans plusieurs domaines de la statistique et
de l’économétrie.

Le second essai reconsidère le problème qui consiste à caractériser les paramètres iden-
tifiables dans les modèles de régression IV et les modèles à équations simultanées linéaires,
en utilisant des méthodes semblables à celles mises en oeuvre dans le premier essai. La lit-
térature économétrique récente sur les instruments faibles considère ce cadre, et la théorie
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distributionnelle ainsi les méthodes statistiques appropriées dépendent des paramètres qui
sont identifiables. Étonnamment, une théorie générale ne semble pas disponible. En parti-
culier, le cas où la matrice des instruments n’est pas de plein rang [e.g., lorsque le nombre
d’instruments excède le nombre d’observations] n’a pas été étudié. Dans cet essai, nous
étendons les approches et les résultats du premier essai à ce cadre général. Plus précisé-
ment, nous étudions des modèles où certains paramètres ne sont pas identifiables, sans
restriction sur le rang de la matrice des instruments, et nous établissons quelles trans-
formations linéaires des paramètres du modèle sont identifiables. Nous soulignons que
l’identifiabilité des paramètres dépend de la matrice des instruments (en sus des paramètres
de la forme réduite), et nous donnons plusieurs caractérisations. Ces résultats sont aussi
applicables à des modèles partiellement linéaires de type IV, où la structure linéaire IV est
plongée dans une structure non-linéaire, tels qu’une spécification basées sur des quantiles
ou un modèle à choix discrets.

Le troisième essai étudie le problème qui consiste à caractériser l’identification de
paramètres non-linéaires dans des modèles non-linéaires. Le cadre considéré est semi-
paramétrique. Nous supposons que les paramètres structurels d’intérêt déterminent les
paramètres identifiables via une équation non-linéaire, telle une équation de moment con-
ditionnelle ou inconditionnelle. De tels modèles sont communs en économétrie, et com-
prennent par exemple des modèles non-linéaires estimés par la méthode généralisée des
moments (GMM) et divers modèles dynamiques d’équilibre général (DGSE) utilisés en
macroéconomie et en finance. À nouveau, nous considérons le cas où tous les paramètres
peuvent ne pas être identifiables, dans le but de caractériser les transformations non-
linéaires de paramètres qui sont identifiables. La littérature sur ce sujet est très mince,
et les quelques résultats disponibles considèrent l’identification du vecteur complet des
paramètres du modèle. Étant donné que l’identification globale est difficile à caractériser
dans les modèles non-linéaires, nous étudions l’identification d’un point de vue local. Nous
donnons des conditions suffisantes d’identification, ainsi que des conditions nécessaires et
suffisantes sous des hypothèses de différentiabilité des conditions de moments et des trans-
formations des paramètres. Nous proposons aussi une notion d’identification intermédiaire
entre l’identification globale et l’identification en un point: l’identification autour d’un
point. Celle-ci joue une rôle important dans la théorie proposée. Nous généralisons cer-
tains résultats classiques d’identification dans les modèles de vraisemblance. Finalement,
nous appliquons nos résultats à l’identification dans les modèles DSGE.
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Chapter 1

Introduction

The earliest study on identification can be traced back to Lenoir (1913); see Fox (1968) and
Christ (1985). However, identification has not become a heated topic until the seminal work
by Koopmans and Reiersøl (1950) who look at identification issue through reformulation
of specification problems. Statistical inference on linear regression models has generally
focused on the estimability of parameters and hypothesis testing on estimable parameters.
In comparison, identification has been relatively less studied in the literature. Nevertheless,
it is now widely accepted that identification should be treated independently of statistical
inference and it is always advisable to check identifiability of parameters before we conduct
any statistical inference; see Manski (1995). Without identification of parameters, distri-
butional theories and statistical methods could become unreliable and even misleading; see
Dufour and Hsiao (2008). Even though researchers realize the potential threats imposed on
by identification failures, it is usually difficult to verify identification directly from empir-
ical models especially when they involve high dimensional and highly nonlinear functions
of parameters. Thus the literature usually assume identification without serious check on
it.

However, due to the fact that there exists a relationship between identifiability and es-
timability [see Chipman (1964), Reiersøl (1963), Rothenberg (1971), Bunke and Bunke
(1974) and Seely (1977)], i.e., estimability implies identifiability but the converse is not
generally true, it is interesting to ask whether it is possible to obtain identification condi-
tions from well-established results regarding estimability in the sense of Bose (1944) in
linear models. The first essay not only provides the above question with an affirmative
answer, but also proposes both necessary and sufficient conditions for identification in the
much wider class of partially linear models where the classical conditions for estimabil-
ity do not hold since Xβ in partially linear models is no longer the mean of the response
variable but rather a monotone nonlinear function of the mean and the maximum like-
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lihood estimators obtained through numerical methods are generally biased. A partially
linear model includes linear regression models with collinearity as well as a wide spec-
trum of other models used in econometrics, such as linear median regressions and quantile
regressions, generalized linear mixed models, probit and Tobit models, multinomial logit
models, discrete choice models, exponential models, index models, etc. This paper focuses
on identification of an arbitrary linear transformation Qβ given that Xβ is identifiable,
where the design matrix X may not have a full-column rank. We propose a necessary and
sufficient condition for identification of a transformation of model parameters, which is
applied to partially linear models where the class of identifiable parameters can be fully
characterized. Equivalent closed-form representations are also provided to easily check
identifiability through properties of linear subspaces and generalized inverse techniques.
We also consider the effect of restrictions on identification for partially linear models.

The general identification conditions for the partially linear models can be either local
or global based on the specific setups of the models. Since recent research on weak instru-
ments mainly focuses on linear IV regressions and SEMs, it is worthwhile investigating
parametric function identification of the SEMs in the most general framework. The sec-
ond essay studies global identification conditions in a linear system, i.e., both the structural
equations and the prior restrictions are linear in structural parameters. It aims to answer
the following questions. Under what circumstances can the arbitrary linear combinations
of parameters Q(X)A be identified although A itself is not identifiable? What are the nec-
essary and sufficient conditions for identifiability when nuisance parameters are involved?
How can we check identification of the SEMs in a more straightforward way compared to
the classical rank and order conditions? This paper provides global identification condi-
tions in the most general way by relaxing a series of classical assumptions. To begin with,
since the full rank matrix of the exogenous variables and the nonsingular coefficient matrix
of the endogenous variables are only conducive to identifying the reduced form parame-
ters and not directly related to the identification of structural parameters, identification of
the deep parameters can be achieved even if the reduced form equation does not have a
unique expression. Besides, the SEMs setup is extended to include instrumental variables
X. Therefore, we can study identification through conditional expectation on instruments,
which means the parameter identification depends on the realized value of instruments. The
relaxation of exogenous or fixed X provides flexibility of studying identification in that it
helps deal with some essential issues in econometrics, such as many instruments, weak
instruments and missing instruments. In addition, our SEMs setup allows for the presence
of nuisance parameters and also the distribution of the structural shocks can have a mean-
variance structure that is not separable. The proposed general rank condition is applied to
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both univariate structural equation and multivariate structural equations. It is shown that
the influential global identification results by Rothenberg (1971) and Richmond (1974) can
be easily included as special cases of our general rank condition.

Global identification of parameters of interest θ could be achieved for linear regression
models under strong assumptions and usually researchers can only obtain local identifica-
tion for nonlinear regression models; see Rothenberg (1971). The third essay looks into
identification conditions of a general nonlinear function β (θ) in terms of another identi-
fiable nonlinear function γ(θ) in nonlinear models and we name it “parametric function
identification”. In comparison to the first and second essays, we assume both β (θ) and
γ(θ) are nonlinear functions of θ . Hence, the general conditions for global identification
based on the ranks of X and Q in linear models has to be replaced by the conditions for lo-
cal identification through the relationship between the ranks of the Jacobian matrix of β (θ)
and the Jacobian matrix of γ(θ). This is a major breakthrough in identification research in
that we do not impose any restriction on these Jacobian matrices and it is still possible to
identify some function of θ despite the failure to fully identify θ . More specifically, despite
the situation where none of the structural parameters may be identified, it is still possible to
characterize some nonlinear transformation which is identifiable. Nevertheless, literature
on this topic is very scarce and focuses on full identification of the entire parameter vector.
Furthermore, we are interested in point identification of parametric functions which is an
extension to the partial identification in the sense of Phillips (1989) and Bekker and Wans-
beek (2001) but is different from set-valued identification by Manski (2003) and Tamer
(2010). Moreover, since we assume that the probability distribution of observed variables
depends not only on parameters of interest but also nuisance parameters which are allowed
to be infinite in number, the setup of this paper is fundamentally semiparametric. Besides,
parameters of interest can determine a number of parameters through a nonlinear equation,
for instance, a nonlinear conditional or unconditional moment equation. Thus our frame-
work covers moment conditions as a special case. On the other hand, from a statistician or
an econometrician point of view, it is inadequate to just establish local identification con-
ditions at a specific parameter value θ 0 as the current literature does. Rather it makes more
sense to study local identification within a neighborhood of θ 0 so that we can justify an
estimator as locally identifiable, which lays a solid foundation for reliable statistical infer-
ence. This paper provides both necessary and sufficient conditions for local identification
under the assumption that the relevant moments equations or nonlinear transformations are
differentiable. On top of that, we take into account the restrictions on parameters of inter-
est which represent hypotheses about parameters. Therefore the proposed necessary and
sufficient conditions are very useful for statistical inference purpose. Last but not least,

3



this paper is conducive to empirical research for identification. We demonstrate that the
proposed identification conditions of nonlinear parametric functions can generalize a num-
ber of well-known classical rank conditions as special cases, whether these conclusions
are reached for SEMs by Fisher (1966), Rothenberg (1971), Bowden (1973), Bekker, Mer-
ckens and Wansbeek (1994) and Chen, Chernozhukov, Lee and Newey (2011) or for the
DSGE models by Iskrev (2010) and Komunjer and Ng (2011).

The thesis is organized as follows. The second chapter proposes a general global iden-
tification condition for a general function of parameters based on separability assumption.
Chapter Three focuses on global identification for linear SEMs and IV regressions. The
fourth chapter deals with local identification of nonlinear parametric functions in nonlinear
models. Chapter Five concludes.
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Chapter 2

Parameter separability, canonical
representations, estimability and global
partial identification of linear
parameters

Jean-Marie Dufour and Xin Liang

Abstract In this paper, we give necessary and sufficient conditions for global pointwise
identification of certain parameters when the complete parameter vector is not identified.
We first derive a widely applicable condition for the identification of a parameter trans-
formation (linear or nonlinear) in a general statistical model. The proposed identification
condition relies on parameter sufficiency and a general form of (potentially nonlinear) sep-
arability. These results are then applied to study the identifiability of linear parameters in
partially linear models. A model is partially linear for the parameter vector β if the con-
ditional distribution of the data given X depends on β through Xβ , where X is a known
matrix. We focus here on situations where X may not have full-column rank, and Xβ
can be interpreted as an identifiable parameter (such as the mean of the observations).
Besides linear regressions with possibly non-scalar error covariance matrix (allowing for
heteroskedasticity and serial dependence), partially linear models include several widely
used statistical models: generalized linear models and linear mixed models, median re-
gression, quantile regressions, various discrete choice models (such as probit and Tobit
models), single index models, etc. The relationship between estimability and identifiability
of linear parameters in partially linear models is studied. We observe that usual condi-
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tions for parameter estimability in linear regressions – a fortiori in partially linear models
– are not necessary for identification, so estimability is not equivalent to identifiability. We
characterize the identification of an arbitrary vector Qβ in a partially linear model, where
Q is a fixed matrix. Several equivalent identifiability conditions are provided, and close-
form representations are provided for the corresponding “identification sets”. The proposed
identifiability conditions include a number of easily interpretable conditions not previously
supplied in the literature on estimability. Among several possible alternative representa-
tions, we propose two representations which are both unique in all cases and intuitively
appealing: (1) the QR representation and (2) the Hermite representation. In particular, the
Hermite representation clearly separates the components of β which are individually iden-
tifiable from those which are not, and provides parsimonious interpretable representations
for the other identifiable linear parameters. Several applications of the proposed results are
finally discussed.

2.1. Introduction

A central feature which determines inference on a statistical model is parameter identifica-
tion. By that, we mean whether parameter values are uniquely determined by the distribu-
tion of the observations. This concept has a long history in statistics and econometrics; see
the review in Dufour and Hsiao (2008) and the references therein.

Identification theory most often focuses on formulating conditions for identifying the
full parameter vector associated with a model. Identification theory and the relevant infer-
ence procedures are much more difficult when full identification fails. Models, however,
may easily not be fully identifiable, even though some parameters (or parameter transfor-
mations) may be identifiable (partial identification). Similarly, results on global identifi-

cation are much scarcer than partial identification ones (which characterize identification
in the neighborhood of a point); see Komunjer (2012). In this paper, we focus on global
necessary and sufficient identification conditions which allow for identification failure for
the model as a whole. We make two types of contributions to this topic.

First, we consider a general statistical model and define a flexible notion of identifia-
bility as a relation between two parametric functions. In this comprehensive framework,
we derive a widely applicable condition for global identification of certain transformations
(linear or nonlinear) of model parameters. The proposed identification condition relies
on parameter sufficiency [Barankin (1960)] and a general form of (potentially nonlinear)
parameter separability. This result is applicable in parametric, semiparametric, and even
nonparametric models (in the sense that finite and infinite-dimensional parameters may
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be considered). The “nature” of the parameters is weakly specified: the parameters and
parametric functions considered may be points, sets, functions, etc.

Second, we reconsider one of the most basic identification problems, namely the iden-
tification of “linear parameters”. More precisely, if β is a k×1 real vector, we consider the
problem of identifying Qβ when Xβ is identifiable (although β may not be identifiable),
where Q and X are q× k and n× k real matrices. A standard setup of this type is the linear
regression model

y = Xβ +u (2.1.1)

where E(y) = Xβ . If X does not have full-column rank, then β is typically not identifiable.
Linear models where the regressor matrix X has deficient rank show up easily in the

presence of dummy explanatory variables or structural shifts [see Dufour (1982)]. Allow-
ing for regressor matrices with deficient rank provides one with great flexibility in selecting
regressors. In particular, no arbitrary regressor selection or reparameterization is needed,
so the model may be studied using a coordinate-free approach [Kruskal (1961, 1968), Du-
four (1982)]. As a result, many standard treatments of linear regression models allow for
regressor matrices with deficient rank; see, for example, Scheffé (1959), Searle (1971),
Rao (1973), Magnus and Neudecker (1998) and Christensen (2011). Situations where the
number of regressors exceeds the number of observations can be considered, such as the
estimation of reduced form equations when the number of instruments is larger than the
number of equations and when studying structural change [Dufour (1982), Cantrell, Bur-
rows and Vuong (1991)]. Interestingly, the fact that the number of explanatory variables
exceeds the number of observations does not preclude identification of certain parameters.
We provide here conditions for deciding which linear parameters remain identifiable in
such situations.

Other models involving linear parameters include: (1) median regression, where Xβ
represents the medians of the observations in y [see Coudin and Dufour (2009)]; (2) quan-
tile regression, where Xβ contains the q-quantiles of the components of y [Koenker (2005)];
(3) various models based on distributions in exponential families [Lehmann (2005, Chapter
2)]; (4) many discrete choice models, including probit, Tobit, and multinomial logit models
[Gouriéroux (2000), Lewbel (2000), Collett (2003a, 2003b)]; (5) generalized linear models
[Nelder and Wedderburn (1972), McCullagh and Nelder (1989), Diggle, Heagerty, Liang
and Zeger (2002), Jiang (2007), Dobson and Barnett (2008)]; (6) index models [Horowitz
(2009)]; etc. When the distribution of the data involves a parameter of the form Xβ , we will
say that the model is partially linear with respect to β . In such models, Xβ may not repre-
sent the mean of y, but another feature of the distribution. The fact X has full column rank
is typically taken for granted in this literature. In general partially linear models where X
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can have arbitrary rank, the problem of identifying parameter transformations such as Qβ
has been barely studied, if at all. It turns out that the generic identification characterization
discussed above will be useful for that purpose.

Discussions of statistical inference on linear regression models have generally focused
on characterizing, estimating and testing so-called estimable parameters. Following the in-
troduction of this notion by Bose (1944), a parameter Qβ is “estimable” in the context of
a linear regression if it is possible to find an unbiased linear estimator of Qβ . The standard
condition for the estimability of Qβ is the existence of a matrix B such that Q′ = X ′B;
see Rao (1945, 1973) and Scheffé (1959). Various estimability conditions have been pro-
posed, and the literature on this topic is now considerable; see for instance Tuncer (1985),
Seely (1970), Alalouf and Styan (1979a), Alalouf and Styan (1979b), Marsaglia and Styan
(1974), Milliken (1971), Baksalary and Kala (1976), Eubank and Webster (1985). In more
general partially linear models, Qβ may not be estimable even if Q′ = X ′B holds.

The relationship between identifiability and estimability has been occasionally dis-
cussed in the literature; see Chipman (1964), Reiersøl (1963), Rothenberg (1971), Bunke
and Bunke (1974), Seely (1977), Paulino and de Bragança Pereira (1994), Dufour and
Hsiao (2008) and Christensen (2011, Ch. 2). It is easy to see that an estimable parameter
must be identifiable (estimability entails identifiability); see Rothenberg (1971, Theorem
4). But the converse is not generally true: even if Qβ is not identifiable through Xβ , it
could be identifiable through other features of the distribution. In section 2.5 of this paper,
we provide a simple counter-example. There are special cases where indeed identifiability
and estimability are equivalent [such as the classical linear model discussed by Reiersøl
(1963), Bunke and Bunke (1974), Seely (1977)], but this setup is quite restrictive. It would
be useful to have more general conditions for ensuring such an equivalence. In this pa-
per, we study the relation between identifiability and estimability in partially linear models
along the following lines.

First, on observing that standard conditions for estimability may not be necessary for
identifying a linear parameter Qβ , we give a general condition under which conditions for
estimability are indeed necessary and sufficient. This result has independent interest which
goes beyond the framework of linear or partially linear models. Indeed, no linear struc-
ture is required and the conditions are applicable even if the model contains unidentified
nuisance parameters.

Second, we show that various conditions proposed for checking estimability in linear
regression can in fact be applied to check identifiability in the much wider class of partially
linear models. For the sake of generality, we also allow for the presence of linear restric-
tions on regression coefficients [like Baksalary and Kala (1976), Seely (1977), and Alalouf
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and Styan (1979b)] as well as a general covariance matrix (characterizing heteroskedastic-
ity and serial dependence) which may depend on unknown parameters.

Third, out of looking at estimability from the viewpoint of identifiability, we derive
alternative conditions for both identifiability and estimability which are intuitive and easy
to apply. Namely, the condition Q′ = X ′B states that the coefficient vector that defines each
component of Qβ is a linear combination of the observations in X (which correspond to
the rows of X). The required conditions on the explanatory variables (the columns of X)
of the model are not apparent. Since empirical investigators usually think in terms of the
variables of a model, such a condition may not be easy to understand and apply in practice.
We propose new estimability conditions based on the required relationships between model
explanatory variables.

Fourth, we discuss how the complete set of identifiable parameters may be represented
in a convenient way through a canonical representation which is both unique and inter-
pretable. We observe that, among several representation, two representations are especially
appealing: (1) the QR representation and (2) the Hermite normal representation.

Fifth, the results presented are applied to linear regression models with possibly non-
scalar covariance matrix – allowing for heteroskedasticity and error dependence which may
depend on unknown parameters – as well as several partially linear models.

In Section 2.2, we recall and complete some basic definitions relevant to the concept of
identification considered in this paper, in particular identification of a general parametric
function in terms of another parametric function. In Section 2.3, we give general neces-
sary and conditions for identification of a (possibly nonlinear) parametric vector function.
In Section 2.4, we review alternative conditions for the existence of functional relations
between subspaces of Euclidean vector space. In Section 2.5, we give general necessary
and sufficient conditions for partial global identification of linear parameters in linear re-
gression with possibly non-scalar covariance matrix which allows for heteroskedasticity
and error dependence. Canonical identifiable representations are proposed in Section 2.6.
Applications to (non-regression) partially linear models are discussed in Section 2.7. A
number of more specific examples are discussed in Section 2.8. We conclude in Section
2.9. The proofs are presented in Appendix.

2.2. Identification

In this section, we recall and complete some basic definitions relevant to the concept of
identification. We consider a general parameter ψ(θ) in models parameterized by θ .

Let (Ω , A , P) be a statistical model, where Ω is a sample space, A is a σ -algebra
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of subsets of Ω , P = {Pθ : θ ∈ Θ} is a family of probability measure on (Ω , A ), and
Θ is a parameter space. Let also Θ0 be a subset of Θ (Θ0 ⊆ Θ). We consider a general
parametric function ψ : Θ0 →Ψ . At this point, no restriction is imposed on the dimensions
of Θ , Θ0 or Ψ , so both parametric and nonparametric models are allowed. In particular,
there is no restriction on the structure of the space Ψ , which may consist of points in a
Euclidean vector space, subsets of another space (e.g., equivalence classes 1), functions,
etc. Reference to subsets Θ0 of Θ will allow us to consider functions ψ which may not be
defined everywhere, as well as restrictions on the parameter space.

Definition 2.2.1 IDENTIFICATION OF PARAMETRIC FUNCTIONS. Let Θ0 ⊆ Θ . The

parametric function ψ : Θ0 →Ψ is identifiable on Θ0 if and only if

(
ψ(θ 1) ̸= ψ(θ 2)

)
⇒
(
Pθ 1 ̸= Pθ 2

)
, ∀θ 1, θ 2 ∈Θ0 . (2.2.1)

This definition emphasizes the fact that different values of ψ(θ) can be distinguished
empirically by looking at the distribution of the data. Condition (2.2.1) is equivalent to

(
Pθ 1 = Pθ 2

)
⇒
(
ψ(θ 1) = ψ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 . (2.2.2)

When Θ0 is not empty (Θ0 ̸=∅),the parameter ψ(θ) is identifiable if it can be represented
as a function which depends on θ only through Pθ :

ψ(θ) = hψ(Pθ ) for θ ∈Θ0 (2.2.3)

where hψ : P(Θ0) → Ψ and P(Θ0) = {Pθ : θ ∈ Θ0}. Here, identifiability is defined
on some given subset Θ0 of Θ , which includes Θ0 = Θ as a special case. Even though
we wish to focus on cases where Θ0 = Θ , it will be useful to have the above general
definition. Because the property (2.2.1) holds for every pair of points in Θ0 [as opposed to
neighborhoods of individual points], the identification is “global” for Θ0.

When Θ0is empty (Θ0 =∅), the implication (2.2.1) is trivially satisfied, so we will con-
sider that any parameter ψ(θ) is identifiable on the empty set. Even though this degenerate
case has little practical interest, this convention is convenient and will allow us to simplify
exposition.

1Equivalence class determined by an element x of a set A, is defined as a certain subset E of A such that

E = {y |y ∼ x},

where the symbol “∼” is called equivalence relation on the set A which has three properties: reflexivity,
symmetry and transitivity. For more details on equivalence relations, please refer to Munkres (2000).
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To make Definition 2.2.1 easier to apply, we shall focus on the case where two para-
metric functions δ (θ) and γ(θ) are considered, and one of them [say, γ(θ)] is identifiable.
If (

δ (θ 1) ̸= δ (θ 2)
)
⇒
(
γ(θ 1) ̸= γ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 , (2.2.4)

or, equivalently, if
δ (θ) = δ̄

(
γ(θ)

)
, ∀θ ∈Θ0 , (2.2.5)

for some function δ̄ : Γ → B, it is straightforward to see that δ (θ) is identifiable on Θ0. In
such cases, we will say that δ (θ) is identifiable by γ(θ) or γ(θ)-identifiable on Θ0. For
future reference, we state formally this definition.

Definition 2.2.2 IDENTIFICATION IN TERMS OF ANOTHER PARAMETRIC FUNCTION.

Let δ : Θ0 → B and γ : Θ0 → Γ be two parametric functions on the statistical model

(Ω , A , P) where P = {Pθ : θ ∈ Θ}, where Θ0 ⊆ Θ . If γ(θ) is identifiable on Θ0 and

condition (2.2.4) holds, we say that δ (θ) is γ(θ)-identifiable on Θ0.

Constraints are often imposed on model parameters, such as

ρ(θ) = ρ0 , ∀θ ∈Θ0 , (2.2.6)

where ρ : Θ0 →C is another parametric function and ρ0 ∈C. In such cases, ρ(θ) can also
be viewed as a “parameter”. Following Definition 2.2.2, ρ(θ) is identifiable on Θ0 under
the restriction (2.2.6), because we have

ρ(θ 1) = ρ(θ 2), ∀θ 1, θ 2 ∈Θ0 , (2.2.7)

and the implication

(
Pθ 1 = Pθ 2

)
⇒
(
ρ(θ 1) = ρ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 ,

immediately holds. In other words, imposing a parametric restriction is equivalent to the
introduction of an identifiable parameter [in addition to γ(θ)].

2.3. Necessary and sufficient conditions for global partial
identification

A condition of the form (2.2.4) is sufficient for identification, but it is not necessary. In
many cases, it is also useful to have conditions which are both necessary and sufficient. We
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will now give general conditions of this type, which can be applied in many setups.
Following Barankin (1960), we consider the case where the parametric function γ(θ)

is “sufficient” on Θ0 according to the following definition.

Definition 2.3.1 PARAMETRIC FUNCTION SUFFICIENCY. Let γ : Θ → Γ a parametric

function on the statistical model (Ω , A , P) with P = {Pθ : θ ∈ Θ}, and ∅ ̸= Θ0 ⊆ Θ .

The parametric function γ(θ) is sufficient for P on Θ0 if and only if

(
γ(θ 1) = γ(θ 2)

)
⇒
(
Pθ 1 = Pθ 2

)
, ∀θ 1, θ 2 ∈Θ0 . (2.3.1)

The above sufficiency property means that Pθ can be parameterized in terms of γ(θ) at
least for θ ∈Θ0, i.e. we can find a family of probability measures P̄(Θ0) = {P̄θ : θ ∈Θ0}
on (Ω , A ) such that Pθ = P̄γ(θ) for θ ∈Θ0.

2 Note γ(θ) need not be identifiable. Following
Paulino and de Bragança Pereira (1994) and Dasgupta, Self and Gupta (2007), we will say
that γ(θ) is “identifying” on Θ0 if γ(θ) is both sufficient and identifiable on Θ0. When this
is the case, it is easy to see that condition (2.2.4) is both necessary and sufficient (as opposed
to only sufficient) for identifying another parametric function δ (θ). For completeness sake,
we state this basic observation in the following proposition.

Proposition 2.3.2 NECESSARY AND SUFFICIENT CONDITION FOR IDENTIFICATION

WITHOUT NUISANCE PARAMETERS. Let δ : Θ0 → B and γ : Θ0 → Γ be two parametric

functions on the statistical model (Ω , A , P) with P = {Pθ : θ ∈Θ}, and ∅ ̸=Θ0 ⊆Θ .

Suppose γ(θ) is both sufficient for P on Θ0 and identifiable on Θ0. Then, δ (θ) is identifi-

able on Θ0 if and only if

(
δ (θ 1) ̸= δ (θ 2)

)
⇒
(
γ(θ 1) ̸= γ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 . (2.3.2)

The assumption that γ(θ) is identifying is however quite restrictive. The typical situa-
tion is one where δ (θ) depends on γ(θ), while Pθ also depends on nuisance parameters.
We will now consider a general setup which allows for nuisance parameters. In such cases,
we will need restrictions on the family of probability distributions in order to obtain neces-
sary and sufficient conditions for identification of δ (θ).

Besides δ : Θ0 → B, we consider two other functions γ1 : Θ0 → Γ1 and γ2 : Θ0 → Γ2,
one of which [γ2(θ)] may be interpreted as a “nuisance parameter”. We now make the
following generic assumption.

2For further discussion of the concept of parameter sufficiency, the reader may consult: Florens, Mouchart
and Rolin (1985), Florens, Mouchart and Rolin (1990), Paulino and de Bragança Pereira (1994), and Oulhaj
and Mouchart (2003).
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Assumption 2.3.3 NUISANCE PARAMETER SEPARABILITY. For any θ ∈ Θ0 and γ̄2 ∈
γ2(Θ0), we can find θ ∗ ∈Θ0 such that

δ (θ ∗) = δ (θ) , γ1(θ
∗) = γ1(θ) and γ2(θ

∗) = γ̄2 . (2.3.3)

The latter condition means that γ2(θ) is not restricted by setting the values of δ (θ) and
γ1(θ), so (in this sense) the parametric function γ2(θ) is “free” with respect to δ (θ) and
γ1(θ). We can then state the following necessary and sufficient condition for the identifi-
cation of δ (θ).

Theorem 2.3.4 NECESSARY AND SUFFICIENT CONDITION FOR IDENTIFICATION WITH

NUISANCE PARAMETERS. Let δ : Θ0 → B, γ1 : Θ0 → Γ1 and γ2 : Θ0 → Γ2 be three

parametric functions on the statistical model (Ω , A , P) with P = {Pθ : θ ∈Θ}, γ(θ) =(
γ1(θ), γ2(θ)

)
∈Γ1×Γ2, where ∅ ̸=Θ0 ⊆Θ . Suppose the following three conditions hold:

(1) Assumption 2.3.3 (nuisance parameter separability) is satisfied;

(2) γ(θ) is sufficient for P on Θ0;

(3) γ1(θ) is identifiable on Θ0.

Then, δ (θ) is identifiable on Θ0 if and only if

(
δ (θ 1) ̸= δ (θ 2)

)
⇒
(
γ1(θ 1) ̸= γ1(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 . (2.3.4)

In the latter theorem, there is no identifiability assumption on γ2(θ) or γ(θ). The
parameter sufficiency condition for γ(θ) means the distribution Pθ depends on θ only
through γ1(θ)and γ2(θ). Then, when γ1(θ) is identifiable and γ2(θ) is “free” as described
by Assumption 2.3.3, condition (2.3.4) is necessary and sufficient for δ (θ) to be identifiable
(on Θ0). Clearly, (2.3.4) is equivalent to

(
γ1(θ 1) = γ1(θ 2)

)
⇒
(
δ (θ 1) = δ (θ 2)

)
, ∀θ 1, θ 2 ∈Θ , (2.3.5)

which means there is a function δ̄ (·) such that

δ
(
θ
)
= δ̄

(
γ1(θ)

)
, ∀θ . (2.3.6)

We now give alternative conditions which may be easier to check in practice.
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Assumption 2.3.5 REDUCIBILITY. There is a function ϕ : Θ0 → ∆ , such that

(
ϕ(θ 1) = ϕ(θ 2)

)
⇒
(
δ (θ 1) = δ (θ 2) and γ1(θ 1) = γ1(θ 2)

)
, ∀θ 1, θ 2 ∈Θ0 . (2.3.7)

Assumption 2.3.6 SEPARABILITY. The function ϕ : Θ0 → ∆ is separable from γ2 : Θ0 →
Γ2 in the following sense: for any θ ∈Θ0 and γ̄2 ∈ γ2(Θ0), we can find θ ∗ ∈Θ0 such that

ϕ(θ ∗) = ϕ(θ) and γ2(θ
∗) = γ̄2 . (2.3.8)

Assumption 2.3.5 means that both γ1(θ) and δ (θ) can be expressed as functions of
ϕ(θ) :

δ (θ) = g[ϕ(θ)] and γ1(θ) = h1[ϕ(θ)] , ∀θ ∈Θ0 , (2.3.9)

for some functions g : ∆ → B and h1 : ∆ → Γ1.

Proposition 2.3.7 REDUCIBILITY CHARACTERIZATION OF NUISANCE PARAMETER

SEPARABILITY. Assumption 2.3.3 is equivalent to the conjunction of Assumptions 2.3.5
and 2.3.6.

It is also interesting to observe that the separability property in Assumption 2.3.6 can
be reformulated as an assumption on the image sets of the functions ϕ : Θ0 → ∆ and γ2 :
Θ0 → Γ2 as follows.

Proposition 2.3.8 IMAGE SET CHARACTERIZATION OF NUISANCE PARAMETER SEPA-
RABILITY. Let ν : Θ0 → ∆ ×Γ2 be the function defined by ν(θ) =

(
ϕ(θ), γ2(θ)

)
. Then

the separability Assumption 2.3.6 is equivalent to

ν(Θ0) = ϕ(Θ0)× γ2(Θ0) . (2.3.10)

In the context of the latter formulation, neither ϕ(θ) nor γ2(θ) need be identifiable.
Only γ1(θ) is taken to be identifiable. An important special case of conditions 2.3.5 - 2.3.6
is the one where ϕ(θ) is a subvector of θ ; for example, we may have:

θ =

[
θ (1)

θ (2)

]
, ϕ(θ) = θ (1) . (2.3.11)

In this case, Assumption 2.3.6 reduces to the case where θ (2) can move freely of θ (1).

Again, neither θ (1) nor θ (2) needs to be identifiable.
Theorem 2.3.4 is quite general. Both linear and nonlinear models are covered, and the
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identifiable parametric function γ1(θ) is not restricted to be mean of the observations. We
will give an example to illustrate this argument in section 2.5.

2.4. Functional dependence between linear subspaces

In view of studying the identification of linear parameters, we will now review and extend
some useful linear algebra results with the purpose of explicitly formulating functional de-
pendence properties between subspaces of a Euclidean space. Even though these properties
follow directly from general linear algebra, the formulation given here – in particular, the
interpretation in terms of functional dependence – is not available elsewhere. It is especially
well adapted to study identification. Unless otherwise stated, we make no rank assumption
on the matrices considered.

For any real m×n matrix A, we denote the column (or image) space of A by Im(A) ≡
{y ∈ Rm : Ax = y for some x ∈ Rn}, and the corresponding kernel space by ker(A) ≡ {x ∈
Rn : Ax = 0}. Further, any n×m matrix A− such that AA−A = A is called a generalized

inverse (or g-inverse) of A; see Rao and Mitra (1971). We denote the i-th row of A by Ai·

and its j-th column by A· j, so Ai· is a 1×n matrix and A· j an m×1 matrix. Further, A(i·) is
the (m−1)×n matrix obtained by suppressing the i-th row of A, and A(· j) the m× (n−1)
matrix obtained by suppressing the j-th column of A.

For future reference, we first state a basic lemma linking the rank of a matrix to the
ranks of linear transformations of its submatrices. We could not find a source where this
lemma is stated in appropriate form.

Lemma 2.4.1 CONDITIONS FOR SUBMATRIX RANK ADDITIVITY. Let Z, Q, V1 and V2

be p× k, q× k, q× p and p×q real matrices. Then,

rank

[
Z

Q

]
= rank

[
Z

Q+V1Z

]
= rank

[
Z +V2Q

Q

]
(2.4.1)

and the following rank additivity properties hold:

(a) if

Im(Z′)∩ Im(Q′+Z′V1
′) = {0} (2.4.2)

then

rank

[
Z

Q

]
= rank(Z)+ rank(Q+V1Z) ; (2.4.3)
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(b) if

Im(Q′)∩ Im(Z′+Q′V2
′) = {0} (2.4.4)

then

rank

[
Z

Q

]
= rank(Z +V2Q)+ rank(Q) ; (2.4.5)

(c) if V1 =−QZ− for some g-inverse Z− of Z, then (2.4.2) and (2.4.3) hold;

(d) if V2 =−ZQ− for some g-inverse Q− of Q, then (2.4.4) and (2.4.5) hold.

We will now give several characterizations of functional dependence between two linear
subspaces.

Proposition 2.4.2 CONDITIONS FOR FUNCTIONAL DEPENDENCE BETWEEN LINEAR

SUBSPACES. Let Z and Q be p× k and q× k real matrices. Then the following state-

ments are equivalent:

there is a function g : Im(Z) 7→ Im(Q) such that Qβ = g(Zβ ), ∀β ∈ Rk ; (2.4.6)

[(Zβ 1 = Zβ 2)⇒ (Qβ 1 = Qβ 2)] (∀β 1, β 2 ∈ Rk) ; (2.4.7)

ker(Z)⊆ ker(Q) ; (2.4.8)

Im(Q′)⊆ Im(Z′) ; (2.4.9)

Q = BZ, for some matrix B ; (2.4.10)

rank

[
Z

Q

]
= rank(Z) ; (2.4.11)

rank

[
Z

Q+V1Z

]
= rank(Z), for any q× p matrix V1 ; (2.4.12)

rank

[
Z +V2Q

Q

]
= rank(Z), for any p×q matrix V2 ; (2.4.13)

rank

[
Z

SQ

]
= rank(Z), for any matrix S such that rank(SQ) = rank(Q) ; (2.4.14)

Q = QZ−Z, for some g-inverse Z− ; (2.4.15)

rank[Z(Ik −Q−Q) ] = rank(Z)− rank(Q), for some g-inverse Q− . (2.4.16)
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The above proposition gives conditions for checking the property that Qβ is determined
by Zβ , i.e. Qβ is a function of Zβ [as stated by (2.4.6)]. Interestingly, no additional a pri-

ori assumption on the form of the function g(·) is needed, and no restriction is imposed on
the ranks of Z and Q. In particular, the rows of Q may be linearly dependent, which allows
one to consider situations with “redundant parameters” in a transparent way. The equiva-
lence with (2.4.7) simply means the functional dependence property is an injective relation
between Zβ to Qβ . (2.4.8) and (2.4.9) show that functional dependence can be interpreted
as the nesting of subspaces: either between the column spaces of Z and Q, or between the
kernel spaces of Q′ and Z′. (2.4.10) expresses the fact that the rows of Q must be linear
combinations of the rows of Z. (2.4.11) - (2.4.14) allow one to check functional dependence
by looking at the ranks of extended matrices built from linear transformations of Z and Q.
Finally, (2.4.15) and (2.4.16) show that functional dependence can be handily expressed
through projection operators. This follows on observing that (Z−Z)′ is a projection matrix
on the space Im(Z′), while equation (2.4.15) can be rewritten as

(Z−Z)′Q′ = Q′ , (2.4.17)

i.e. any column of Q′ [or any row of Q] belongs to the space spanned by the columns of
(Z−Z)′ [the rows of (Z−Z)]. Similarly (Ik −Q−Q)′ = Ik − (Q−Q)′ is a projection matrix
on Im(Q′)⊥ = ker(Q), the subspace orthogonal to Im(Q′): each column of the matrix [Ik −
(Q−Q)′]Z′ is the projection of the corresponding column of Z′ on ker(Q); see Baksalary
and Kala (1976) for further discussion of this type of condition in the context of studying
estimability.

Clearly, the conditions of Proposition 2.4.2 are satisfied when Q = 0, for in this case
Qβ is a constant function (Qβ = 0). An important case to which Proposition 2.4.2 applies
is the one where Qβ is a scalar, i.e. Q = l′ where l is a k × 1 vector. Any one of the
conditions (2.4.7) - (2.4.16) can be used to check the functional dependence of l′β on Zβ .
In particular, (2.4.9) means that l must belong to the column space of Z′, i.e.

l ∈ Im(Z′) (2.4.18)

while (2.4.11) takes the form

rank

[
Z

l′

]
= rank(Z) . (2.4.19)

For example, if l = (1, 0, . . . , 0)′ and β = (β 1, . . . , β k)
′, we have l′β = β 1 the first com-

17



ponent of β . On writing Z =
[

z1 Z2

]
where z1 is the first column of Z, we get the

condition:

rank [z1 Z2 ] = rank

[
z1 Z2

1 0′

]
= 1+ rank(Z2) . (2.4.20)

In other words, β 1 is uniquely determined by Zβ if and only if z1 is linearly independent
of the other columns of Z :

z1 /∈ Im(Z2) and z1 ̸= 0 . (2.4.21)

This holds irrespective of the rank of Z2. More generally, it is easy to see that the k-
th component of β is uniquely determined by Zβ if and only if the k-th column of Z is
linearly independent of the other columns of Z.

Identification is often achieved by imposing restrictions on model parameters. To take
this into account, we will now extend Proposition 2.4.2 to allow for linear restrictions.
There are two distinct ways of doing this.

The first one consists in imposing linear implicit restrictions of the form

Rβ = c0 (2.4.22)

where R is an m×k matrix (with m ≥ 1). We shall not make any assumption on the rank of
R. However, using this type of restriction requires one to make a consistency assumption,
i.e. c0 ∈ Im(R); without it, the equation (2.4.22) has no solution. Because Rβ is a linear
function, we call such restrictions implicit linear restrictions.

The second approach consists in imposing explicit restrictions of the form:

β = b0 +Ce for some e ∈ Rm (2.4.23)

where b0 is a k× 1 vector, and C is a k×m real matrix. Here, b0 and C are fixed, while
e is a free variable, so β belongs to an affine subset of Rk. No condition is imposed on
the value of m or the rank of C, so we may have m ≤ k or m > k. Further, no additional
consistency assumption is needed here, because the set {β : β = b0 +Cd, d ∈ Rm} ⊆ Rk

is never empty. Because Cd is linear function, we call such restrictions explicit linear

restrictions, even though the set of values β which satisfy (2.4.23) is an affine subset of Rk

(not a linear subspace).
Implicit linear restrictions can be reexpressed in explicit form, and vice-versa. For

future reference, we state precisely this basic property in the following lemma.

Lemma 2.4.3 EQUIVALENCE BETWEEN IMPLICIT AND EXPLICIT LINEAR RESTRIC-
TIONS. Let R and C be m× k and k ×m real matrices, respectively, c0 an m× 1 real
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vector, and b0 a k×1 real vector. Then, the following equivalences hold: (a) if c0 ∈ Im(R),

then, for any g-inverse R− of R,

[
Rβ = c0

]
⇔
[
β = R−c0 +(Ik −R−R)d , for some d ∈ Rk] ; (2.4.24)

(b) for any g-inverse C− of C,

[
β = b0 +Ce for some e ∈ Rm] ⇔ [

(Ik −CC−)β = (Ik −CC−)b0
]
. (2.4.25)

We underscore again the matrices R and C need not have full rank, so the ranks of R

and C can be smaller than m, and the choice of g-inverses R− and C− is arbitrary. While
(2.4.24) is a standard result of linear algebra, we did not find a source where the sufficiency
of the condition (Ik −CC−)β = (Ik −CC−)b0 in (2.4.25) is stated. The main interest of
this condition consists in characterizing the existence of solutions for the representation
β = b0+Ce, when C is not invertible. Indeed, when m= k and C is invertible, the condition
holds trivially, for then C− = C−1, Ik −CC− = 0, and β = b0 +Ce has a unique solution
for e.

Despite the formal equivalence between implicit and explicit formulations, these two
approaches yield different types of functional dependence conditions, each of which may
be useful in different circumstances. In the following proposition, we consider the case of
implicit linear restrictions.

Proposition 2.4.4 CONDITIONS FOR FUNCTIONAL DEPENDENCE BETWEEN SUB-
SPACES WITH IMPLICIT LINEAR RESTRICTIONS. Let Z, Q and R be p× k, q× k and

m× k real matrices, respectively, c0 ∈ Im(R), LI(R, c0) = {x ∈ Rk : Rx = c0}, and

Z̄ =

[
Z

R

]
. (2.4.26)

Then the following statements are equivalent:

for any c0 ∈ Im(R), there is a function gc0 : Im(Z) 7→ Im(Q)

such that Qβ = gc0(Zβ ), ∀β ∈ LI(R, c0); (2.4.27)

there is a function ḡ : Im(Z̄) 7→ Im(Q) such that Qβ = ḡ(Z̄β ), ∀β ∈ Rk ; (2.4.28)

[(Z̄β 1 = Z̄β 2)⇒ (Qβ 1 = Qβ 2)] (∀β 1, β 2 ∈ Rk) ; (2.4.29)

ker(Z̄)⊆ ker(Q) ; (2.4.30)
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Im(Q′)⊆ Im(Z̄′) ; (2.4.31)

Q = BZ̄, for some matrix B ; (2.4.32)

rank

[
Z̄

Q

]
= rank(Z̄) ; (2.4.33)

rank

[
Z̄

Q+V1Z̄

]
= rank(Z̄), for any q× (p+m) matrix V1 ; (2.4.34)

rank

[
Z̄ +V2Q

Q

]
= rank(Z̄), for any (p+m)×q matrix V2 ; (2.4.35)

rank

[
Z̄

SQ

]
= rank(Z̄), for any matrix S such that rank(SQ) = rank(Q) ; (2.4.36)

Q = QZ̄−Z̄, for some g-inverse Z̄− ; (2.4.37)

rank[ Z̄(Ik −Q−Q) ] = rank(Z̄)− rank(Q), for some g-inverse Q− . (2.4.38)

The property (2.4.27), for which characterizations are given above, means that for
c0 ∈ Im(R), Qβ is uniquely determined by Zβ when β ∈ LI(R, c0). In (2.4.28), this is
formulated as the existence of a function of the type:

Qβ = ḡ(Z̄β ) = g(Zβ , Rβ ) , β ∈ Rk. (2.4.39)

In other words, once the value of Rβ is set, Qβ is uniquely by Zβ . Then, the other char-
acterizations given in Proposition 2.4.2 all apply provided Z is replaced by the enlarged
matrix Z̄. In other words, adding linear (consistent) restrictions can be viewed as equiva-
lent to adding rows to to the Z matrix, which in turn can increase the rank of Z, hence the
chance that Zβ uniquely determines Qβ .

In particular, condition (2.4.33) can be rewritten as:

rank

 Z

R

Q

= rank

[
Z

R

]
. (2.4.40)

Clearly, if condition (2.4.11) holds (no restriction), then (2.4.40) must also hold irrespective
of the matrix R. The condition

rank

[
R

Q

]
= rank(R) (2.4.41)
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also entails (2.4.33), so it is sufficient (though not necessary) for the functional dependence
property to hold under restrictions of the type (2.4.22). In this case, Qβ is completely
determined by the restrictions, and the Z matrix is irrelevant.

If R = 0, there is no restriction on β , and we have:

rank

 Z

R

Q

= rank

[
Z

Q

]
, rank

[
Z

R

]
= rank(Z) , (2.4.42)

so condition (2.4.33) entails (2.4.11). If Q = (1, 0, . . . , 0)′ and R =
[

r1 R2

]
where r1 is

the first column of R, we get the condition:

rank

 z1 Z2

r1 R2

1 0′

= rank

[
z1 Z2

r1 R2

]
. (2.4.43)

So, if r1 ̸= 0 and R2 = 0, this condition is satisfied.
We will now give characterizations based on explicit linear restrictions.

Proposition 2.4.5 CONDITIONS FOR FUNCTIONAL DEPENDENCE BETWEEN SUB-
SPACES WITH EXPLICIT LINEAR RESTRICTIONS. Let Z and Q be p× k and q× k real

matrices. Suppose β satisfies the restriction (2.4.23) and let LE(C, b0) = {x ∈ Rk : x =

b0 +Cy, y ∈ Rm}. Then the following statements are equivalent:

for any b0 ∈Rk, there is a function gb0 : Im(Z) 7→ Im(Q) such that Qβ = gb0(Zβ ), ∀β ∈LE(C, b0) ;
(2.4.44)

[(ZCd1 = ZCd2)⇒ (QCd1 = QCd2)](∀d1, d2 ∈ Rm) ; (2.4.45)

ker(ZC)⊆ ker(QC) ; (2.4.46)

Im(C′Q′)⊆ Im(C′Z′) ; (2.4.47)

QC = BZC, for some matrix B ; (2.4.48)

rank

[
ZC

QC

]
= rank(ZC) ; (2.4.49)

rank

[
ZC

QC+V1ZC

]
= rank(ZC), for any q× p matrix V1 ; (2.4.50)
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rank

[
ZC+V2QC

QC

]
= rank(ZC), for any p×q matrix V2 ; (2.4.51)

rank

[
ZC

SQC

]
= rank(ZC), for any matrix S such that rank(SQC) = rank(QC) ; (2.4.52)

QC = QC(ZC)−ZC, for some g-inverse (ZC)− ; (2.4.53)

rank(ZC[Ik − (QC)−QC]) = rank(ZC)− rank(QC), for some g-inverse (QC)− . (2.4.54)

As opposed to restrictions in implicit form, the above characterizations are “multiplica-
tive” for they involve multiplying Z and Q by C, rather than extending Z. By taking m = k

and C = Ik, we see that Proposition 2.4.2 is entailed by Proposition 2.4.5; the value of b0

is then irrelevant. In the opposite case where C = 0, we have β = b0, so β is completely
restricted and g(·) is a constant function [g(β ) = b0]. It is then easy to directly check any
one of the equivalent conditions of Proposition 2.4.5. More generally, on applying (2.4.46),
we see that the functional dependence property holds whenever QC = 0, i.e. if each col-
umn of C is orthogonal to the rows of Q [the spaces Im(C) and Im(Q′) are orthogonal]; the
structure of the Z matrix is then irrelevant.

Let us now look at the case where Qβ is scalar (Q = l′). The extension of the linear
independence condition (2.4.21) to situations where general linear restrictions are imposed
on β leads to a more complex result. In the following proposition, we provide such an
extension which is applicable to l′β under such restrictions. Here, C· j denotes the j-th
column of C (a k×1 matrix), and C(· j) the k× (m−1) matrix obtained by suppressing the
j-th column of C. Similarly, C j· denotes the j-th row of C (a 1×m matrix), and C( j·) the
(k−1)×m matrix obtained by suppressing the j-th row of C. Since functional dependence
holds immediately when C′l = 0, we focus on the case where C′l ̸= 0, so there is at least
one column C· j such that C′

· jl ̸= 0.

Proposition 2.4.6 CONDITIONS FOR FUNCTIONAL DEPENDENCE OF A LINEAR

SCALAR PARAMETER WITH EXPLICIT LINEAR RESTRICTIONS. Let l = (l1, . . . , lk)′

be a k × 1 real vector. Suppose β satisfies the restriction (2.4.23), with C′l ̸= 0 . Let

L= {x : x = b0 +Cy, y ∈ Rm}, C· j any column of C such that C′
· jl ̸= 0, where 1 ≤ j ≤ m,

N j = Ik −
1

C′
· jl

C· jl′ (2.4.55)

and l( j) the (k−1)×1 vector obtained by dropping the j-th component l j from l. Then the
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following conditions are equivalent:

there is a function g : L 7→ Im(Q) such that l′β = g(Zβ ), ∀β ∈ L ; (2.4.56)

C′l =C′
j·l j +C′

( j·)l( j) ∈ Im
(
C′Z′); (2.4.57)

rank [ZC] = 1+ rank
[
ZN jC(· j)

]
; (2.4.58)

ZC· j /∈ Im
[
ZN jC(· j)

]
. (2.4.59)

Note the matrix N j is an idempotent matrix such that N jC· j = 0, i.e. a projector onto
the space orthogonal to C· j. For C = Ik (no restriction) and l = (1, 0, . . . , 0)′, conditions
(2.4.20) and (2.4.21) follow from the above proposition: simply set j = 1, so

C·1 = (1, 0, . . . , 0)′, C(·1) =

[
0′

Ik−1

]
, N1 = Ik −C·1l′ =

[
0 0′

0 Ik−1

]
, (2.4.60)

ZC·1 = [z1 Z2 ]C·1 = z1, ZN1C(·1) = [z1 Z2 ]

[
0′

Ik−1

]
= Z2 . (2.4.61)

When C·1 = (1, 0, . . . , 0)′ and C(·1) = 0, all the components of β are fixed except β 1, and
condition (2.4.59) means that z1 ̸= 0, without further conditions on Z. Of course, Proposi-
tion 2.4.6 covers a wide array of more complex cases.

As mentioned earlier, implicit linear restrictions can be put in explicit form, and vice-
versa. Consequently, in view of (2.4.24), the conditions of Proposition 2.4.5 can be applied
to implicit linear restrictions by taking C = Ik −R−R. Similarly, in view of (2.4.25) the
conditions of Proposition 2.4.4 can be applied to explicit restrictions with R = Ik −CC−.

For example, for implicit linear restrictions, condition (2.4.49) yields:

rank

[
Z(Ik −R−R)

Q(Ik −R−R)

]
= rank[Z(Ik −R−R)] . (2.4.62)

Similarly, for explicit linear restrictions, condition (2.4.49) gives:

rank

 Z

Ik −CC−

Q

= rank

[
Z

Ik −CC−

]
. (2.4.63)
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2.5. Identification of linear parameters in linear regres-
sions with non-scalar covariance

In this section, we study the identification of linear parameters in the context of a linear
regression model. More precisely, we consider the model

y = Xβ +u (2.5.1)

where y is an n×1 vector of observations, X is an n×k matrix of rank r with 0 ≤ r ≤ k, u is
an n×1 vector of random disturbances whose distribution depends on X , β and a (possibly
infinite dimensional) parameter λ ∈ Λ , where

θ ∈Θ0 ⊆ Rk ×Λ where θ :=

(
β
λ

)
. (2.5.2)

Further, the distribution of u – which we denote Pu(θ , X) – has finite second moments (for
X given) with

Eθ (u |X) = 0 , Eθ (uu′|X) = Σ(θ |X) , (2.5.3)

where Eθ (· |X) and Vθ (· |X) represent the expected value and variance operator, under the
distribution Pu(θ , X). Thus,

Eθ (y |X) = Xβ , Vθ (y|X) = Σ(θ |X) . (2.5.4)

Assumption (2.5.3) allows for general forms of heteroskedasticity and dependence between
model disturbances, as well as dependence of Pu(θ , X) on β and X . Further, neither β nor
λ need be identifiable, but Xβ and Σ(θ |X)are identifiable because they are moments of
observed variables. Note also the parameters β and λ may be restricted in arbitrary ways,
through the condition θ ∈ Θ0 in (2.5.2), and Σ(θ |X) can be singular. A standard special
case of the above model is the one where

u ∼ N[0, σ2In] (2.5.5)

i.e. λ = σ2 and Λ = [0,∞).

We wish to study the identification of Qβ in the context of such models. For future
reference, we define the functions β (θ) and λ (θ) as the corresponding components of θ ,
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with β (Θ0) and λ (Θ0) the images of Θ0 induced by these functions:

β (θ) = β , λ (θ) = λ , (2.5.6)

β (Θ0) = {x ∈ Rk : x = β (θ) , θ ∈Θ0}, (2.5.7)

λ (Θ0) = {z ∈ Λ : z = λ (θ) , θ ∈Θ0} . (2.5.8)

Note Pu(θ , X) may be viewed as a parameter (a probability measure determined by θ and
X) in a space of functions. If we set λ (θ) = Pu(θ , X), the error distribution depends on
θ only through λ (θ). In such a case, λ (θ) may be viewed a parameter which takes its
values in space of functions (the probability measures which represent the allowed error
distributions).

2.5.1. Identification of linear parameters in linear regression

The usual estimability condition for Qβ is

Im(Q′)⊆ Im(X ′) . (2.5.9)

Consequently, each one of the conditions (2.4.8) - (2.4.16) with Z =X [in Proposition 2.4.2]
is sufficient to ensure the estimability of Qβ . This also entails the same conditions are
sufficient for identifiability of Qβ .

It is easy to see that these conditions are not necessary for identifiability. This comes
from the fact that V(y |X) may depend on β , and thus provide information on Qβ even
when E(y |X) = Xβ does not. The following example provides a simple example of this
possibility.

Example 2.5.1 Consider a linear model with a univariate regressor

yi = xiβ +ui, i = 1,2, . . . , n, (2.5.10)

where xi is a scalar fixed variable, n is an even integer, and u1, u2, . . . , un are random
disturbances such that

u2i = u2i−1β + ε2i, i = 1,2, . . . , n/2. (2.5.11)

and ε1, ε2, . . . , εn are i.i.d N[0,σ2], with σ2 > 0. If xi = 0, for i = 1,2, . . . , n, we have
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Xβ = 0, so β is not identifiable from Xβ . However, when Xβ = 0, we also have:

y2i = y2i−1β + ε2i, i = 1,2, . . . , n/2. (2.5.12)

Using the regression (2.5.12), the ordinary least squares estimator of β is unbiased, and β
is thus identifiable.

We will give a general condition under which restrictions on X and Q are both necessary
and sufficient for Qβ to be Xβ -identifiable. For this, we consider the following separability
assumption.

Assumption 2.5.2 NUISANCE PARAMETER SEPARABILITY. Let Q be an m× k fixed

matrix. In the context of the model described by (2.5.1) - (2.5.3), we have the following

property: for any θ ∈Θ0, we can find θ ∗ ∈Θ0 such that

Qβ (θ ∗) = Qβ (θ) , Xβ (θ ∗) = Xβ (θ) and Pu(θ ∗, X) = Pu(θ , X) . (2.5.13)

It is easy to see that the above assumption holds when β is not restricted by λ and the
distribution of u does not depend on β , i.e. if we have the following two properties:

[β (θ 1) = β (θ 2)]⇒ [Eθ 1(y |X) = Eθ 2(y |X)] , ∀θ 1, θ 2 ∈Θ0 , (2.5.14)

[λ (θ 1) = λ (θ 2)]⇒ [Pu(θ 1, X) = Pu(θ 2, X)] , ∀θ 1, θ 2 ∈Θ0 . (2.5.15)

These conditions may be interpreted in terms of “parameter sufficiency” (on Θ0): accord-
ing to (2.5.14), β is “sufficient” for Eθ (y |X), while (2.5.15) means λ (θ) is sufficient for
Pu(θ , X). Of course, these conditions imply Assumption 2.5.2, but they are not necessary
for it. The results presented below do not require (2.5.14) - (2.5.15). It is also of interest to
note that Assumption 2.5.2 allows for both linear and nonlinear restrictions on β [through
the set Θ0].

We first state a generic necessary and sufficient condition for the identification of Qβ .

Theorem 2.5.3 IDENTIFIABILITY OF LINEAR REGRESSION COEFFICIENTS UNDER ER-
ROR DISTRIBUTION SEPARABILITY. Let Q be an m× k fixed matrix. In the context of

the model described by (2.5.1) - (2.5.3), suppose Assumption 2.5.2 holds. Then, Qβ is

(Xβ )-identifiable on Θ0 if and only if

(Xβ 1 = Xβ 2)⇒ (Qβ 1 = Qβ 2) , ∀β 1, β 2 ∈ β (Θ0) . (2.5.16)
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This theorem allows one to focus on the relationship between Qβ and Xβ in order to
study the identification of Qβ , namely to state characterizations of (Xβ )-identifiability.
Of course, the sufficiency of condition (2.5.16) follows directly from Definition 2.2.2. The
main point consists in observing that condition (2.5.16) is also necessary in the linear model
(2.5.1) - (2.5.3) when parameter separability holds.

We can now give necessary and sufficient conditions for identifiability of linear param-
eters in linear regression models with deficient rank and general error structures.

Theorem 2.5.4 CONDITIONS FOR IDENTIFICATION OF LINEAR PARAMETERS IN LIN-
EAR REGRESSIONS. Let Q be an m× k fixed real matrix. In the context of the model

described by (2.5.1) - (2.5.3), each one of the following equivalent conditions entails that

Qβ is (Xβ )-identifiable on Θ0:

ker(X)⊆ ker(Q) ; (2.5.17)

Im
(
Q′)⊆ Im

(
X ′) ; (2.5.18)

Q = AX , for some matrix A ; (2.5.19)

rank
[

X

Q

]
= rank(X) ; (2.5.20)

rank
[

X

Q+V1X

]
= rank(X), for any q×n matrix V1 ; (2.5.21)

rank
[

X +V2Q

Q

]
= rank(X), for any n×q matrix V2 ; (2.5.22)

rank
[

X

SQ

]
= rank(X) , for any matrix S such that rank(SQ) = rank(Q) ; (2.5.23)

rank
{

X
(
Ik −Q−Q

)}
= rank(X)− rank(Q) , for some g-inverse Q− ; (2.5.24)

Q = QX−X , for some g-inverse X− . (2.5.25)

If furthermore Assumption 2.5.2 holds and β (Θ0) =Rk, each one of the conditions (2.5.17)
- (2.5.25) is necessary for Qβ to be (Xβ )-identifiable on Θ0 .

Let us now consider the case where linear restrictions are imposed on β . We first
consider implicit linear restrictions:

Rβ = c0 (2.5.26)

where R is an m×k matrix (with m≥ 1) and c0 ∈ Im(R). We make no rank assumption on R.
Using the results of sections 2.3 and 2.4, we get the following theorem on the identification
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of Qβ when implicit linear restrictions are imposed.

Theorem 2.5.5 CONDITIONS FOR IDENTIFICATION OF LINEAR PARAMETERS IN LIN-
EAR REGRESSION WITH IMPLICIT LINEAR RESTRICTIONS. Let Q and R be q× k and

m× k real matrices, respectively, c0 ∈ Im(R), and

X̄ =

[
X

R

]
. (2.5.27)

In the context of the model described by (2.5.1) - (2.5.3), suppose the implicit linear re-

striction (2.5.26) holds, and let Θ̄0I(R, c0) = {θ ∈ Θ0 : Rβ (θ) = c0}, β̄ I(R, c0) = {x ∈
Rk : x = β (θ), θ ∈ Θ̄0I(R, c0)}. Then, each one of the following equivalent conditions

entails that Qβ is (Xβ )-identifiable on Θ̄0I(R, c0), for any c0 ∈ Im(R):

ker(X̄)⊆ ker(Q) ; (2.5.28)

Im(Q′)⊆ Im(X̄ ′) ; (2.5.29)

Q = BX̄ , for some matrix B ; (2.5.30)

rank

[
X̄

Q

]
= rank(X̄) ; (2.5.31)

rank

[
X̄

Q+V1X̄

]
= rank(X̄), for any q× (p+m) matrix V1 ; (2.5.32)

rank

[
X̄ +V2Q

Q

]
= rank(X̄), for any (p+m)×q matrix V2 ; (2.5.33)

rank

[
X̄

SQ

]
= rank(X̄), for any matrix S such that rank(SQ) = rank(Q) ; (2.5.34)

Q = QX̄−X̄ , for some g-inverse X̄− ; (2.5.35)

rank[ (Ik −Q−Q) ] = rank(X̄)− rank(Q), for some g-inverse Q− . (2.5.36)

If furthermore Assumption 2.5.2 holds and β̄ I(R, c0) = {β ∈Rk : Rβ = c0}, each one of the

conditions (2.5.28) - (2.5.36) is necessary for Qβ to be (Xβ )-identifiable on Θ̄0I(R, c0).

In certain cases, linear restrictions in explicit form may be more convenient:

β = b0 +Ce for some e ∈ Rm (2.5.37)
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where b0 is some k× 1 vector and C is some k×m real matrix. This yields the following
characterizations of identifiability. for Qβ .

Theorem 2.5.6 CONDITIONS FOR IDENTIFICATION OF LINEAR PARAMETERS IN LIN-
EAR REGRESSION WITH EXPLICIT LINEAR RESTRICTIONS. Let Q be a q× k real ma-

trices. In the context of the model described by (2.5.1) - (2.5.3), suppose the explicit lin-

ear restriction (2.5.37) holds, and let Θ̄0E(C, b0) = {θ ∈ Θ0 : β (θ) = b0 +Ce for some

e ∈ Rm}, β̄ E(C, b0) = {β ∈ Rk : β = β (θ), θ ∈ Θ̄0E(C, b0)}. Then, each one of the fol-

lowing equivalent conditions entails that Qβ is (Xβ )-identifiable on Θ̄0E(C, b0), for any

b0 ∈ Rk:

ker(XC)⊆ ker(QC) ; (2.5.38)

Im(C′Q′)⊆ Im(C′X ′) ; (2.5.39)

QC = BXC, for some matrix B ; (2.5.40)

rank

[
XC

QC

]
= rank(XC) ; (2.5.41)

rank

[
XC

QC+V1XC

]
= rank(XC), for any q× p matrix V1 ; (2.5.42)

rank

[
XC+V2QC

QC

]
= rank(XC), for any p×q matrix V2 ; (2.5.43)

rank

[
XC

SQC

]
= rank(XC), for any matrix S such that rank(SQC) = rank(QC) ; (2.5.44)

QC = QC(XC)−XC, for some g-inverse (XC)− ; (2.5.45)

rank(XC[Ik − (QC)−QC]) = rank(XC)− rank(QC), for some g-inverse (QC)− . (2.5.46)

If furthermore Assumption 2.5.2 holds and β̄ E(C, c0) = {β ∈ Rk : β = b0 +Ce for some

e ∈ Rm}, each one of the conditions (2.5.38) - (2.5.46) is necessary for Qβ to be (Xβ )-
identifiable on Θ̄0E(C, b0), for any b0 ∈ Rk.

As mentioned earlier, implicit linear restrictions can be put in explicit form, and vice-
versa. Consequently, in view of (2.4.24), the conditions of Theorem 2.5.6 can be applied
to implicit linear restrictions on taking C = Ik −R−R. Similarly, in view of (2.4.25) the
conditions of Theorem 2.5.5 can be applied to explicit restrictions with R = Ik −CC−.
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For example, for implicit linear restrictions, condition (2.5.31) yields:

rank

[
X(Ik −R−R)

Q(Ik −R−R)

]
= rank[X(Ik −R−R)] . (2.5.47)

Similarly, for explicit linear restrictions, condition (2.5.41) gives:

rank

 X

Ik −CC−

Q

= rank

[
X

Ik −CC−

]
. (2.5.48)

2.5.2. Identification of a scalar linear parameter

We will now discuss the identification of a single component of β when no restriction is
imposed on β . Without loss of generality, we can focus on the first component of β , i.e.,
we consider Qβ = l′β = β 1 where Q = l′ =

[
1 0 · · · 0

]
=
[

1 0′
]
. Since Xβ is

identifiable, condition (2.5.20) of Theorem 2.5.4 takes the form

rank
[

X

l′

]
= rank

(
X
)

(2.5.49)

where x1 is the first column of X , which is equivalent to

rank
[

x1 X2

1 0′

]
= 1+ rank

(
X2
)
= rank

[
x1 X2

]
. (2.5.50)

This means that the first column of X does not belong to the space spanned by the columns
of X2:

x1 /∈ Im [X2] . (2.5.51)

This condition is sufficient for the identification of β 1. If, furthermore, separability between
regression and covariance parameters holds [Assumption 2.5.2], this condition is also nec-
essary for identification of β 1. Note (2.5.50) is also the estimability condition given by
Kounias and Chalikias (2008) in the standard linear regression model.

As a second special case, let us consider the identification of β 1 when linear restrictions
of the form Rβ = c0 are imposed on β . Setting R =

[
r1 R2

]
where r1 is a scalar and

X̄ =

[
X

R

]
=

[
x1 X2

r1 R2

]
, (2.5.52)
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condition (2.5.31) of Theorem 2.5.5 yields the following sufficient condition for the iden-
tification of β 1 :

rank

 x1 X2

r1 R2

1 0′

= 1+ rank
[

X2

R2

]
= rank

[
x1 X2

r1 R2

]

This means that the first column of the augmented matrix X̄ does not belong to the space
spanned by the other columns of X̄ , i.e.

[
x1

r1

]
/∈ Im

(
X2

R2

)
.

If, furthermore, separability between regression and covariance parameters holds [Assump-
tion 2.5.2], this condition is also necessary for identification of β 1.

The identification conditions for general linear scalar parameters Qβ = l′β with general
(explicit) restrictions of the form (2.4.23) follow on applying Theorem 2.5.6. For complete-
ness, we state it below. Proposition restrictions of the Let us now look at the case where
Qβ is scalar (Q = l′). The extension of the linear independence condition (2.4.21) to situa-
tions where general linear restrictions are imposed on β leads to a more complex result. In
the following proposition, we provide such an extension which is applicable to l′β under
such restrictions. Here, C· j denotes the j-th column of C (a k × 1 matrix), and C(· j) the
k× (m− 1) matrix obtained by suppressing the j-th column of C. Similarly, C j· denotes
the j-th row of C (a 1×m matrix), and C( j·) the (k−1)×m matrix obtained by suppressing
the j-th row of C. Since functional dependence holds immediately when C′l = 0, we focus
on the case where C′l ̸= 0, so there is at least one column C· j such that C′

· jl ̸= 0. We also
denote 0k the zero k× k matrix.

Proposition 2.5.7 CONDITIONS FOR IDENTIFICATION OF A LINEAR SCALAR PARAME-
TER WITH EXPLICIT LINEAR RESTRICTIONS. In the context of the model described by

(2.5.1) - (2.5.3), suppose β belongs to the affine subset L= {x : x = b0 +Cy, y ∈ Rm} ⊆
Rk. Let Θ̄0E(C, b0) = {θ ∈ Θ0 : β (θ) ∈ L }, β̄ E(C, b0) = {β ∈ Rk : β = β (θ), θ ∈
Θ̄0E(C, b0)}, l = (l1, . . . , lk)′ a k × 1 real vector such that.C′l ̸= 0, C· j any column of C

such that C′
· jl ̸= 0, where 1 ≤ j ≤ m, C(· j) the k× (m−1) matrix obtained by suppressing

the j-th column of C, l( j) the (k−1)×1 vector obtained by dropping the j-th component l j

from l, and

N j = Ik −
1

C′
· jl

C· jl′ . (2.5.53)
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Then, each one of the following equivalent conditions entails that l′β is (Xβ )-identifiable

on Θ̄0E(C, b0):

C′l =C′
j·l j +C′

( j·)l( j) ∈ Im
(
C′X ′); (2.5.54)

rank [XC] = 1+ rank
[
XN jC(· j)

]
; (2.5.55)

XC· j /∈ Im
[
XN jC(· j)

]
. (2.5.56)

If furthermore Assumption 2.5.2 holds and β̄ E(C, b0) = {β ∈ Rk : β = b0 +Ce for some

e ∈ Rm}, each one of the conditions (2.5.54) - (2.5.56) is necessary for Qβ to be (Xβ )-
identifiable on Θ̄0E(C, b0).It will be interest to consider a few special cases.

1. For C = Ik (no restriction) and l = (1, 0, . . . , 0)′, condition (2.5.51) follows from the
above proposition: simply set j = 1, so

C·1 = (1, 0, . . . , 0)′, C(·1) =

[
0′

Ik−1

]
, (2.5.57)

C′
·1l = 1, C·1l′ =


1
0
...
0

(1, 0, . . . , 0) =

[
1 0′

0 0k−1

]
,N1 = Ik −C·1l′ =

[
0 0′

0 Ik−1

]
,

(2.5.58)

XC·1 = [x1 X2 ]C·1 = x1, XN1C(·1) = [x1 X2 ]

[
0′

Ik−1

]
= X2 . (2.5.59)

2. More generally, if C = Ik and l1 ̸= 0 (without restrictions on l(1), the other elements
of l), we have (2.5.57), C′

·1l = l1 and

C·1l′ =

[
l1 l′(1)
0 0k−1

]
, N1 = Ik −

1
l1

C·1l′ =

[
0 − 1

l1
l′(1)

0 Ik−1

]
, (2.5.60)

XC·1 = [x1 X2 ]C·1 = x1, (2.5.61)

XN1C(·1) = [x1 X2 ]

[
0 −l′(1)/l1
0 Ik−1

]
=
[

0 X2 − 1
l1

x1l′(1)
]
. (2.5.62)

Then, applying condition (2.5.56), we see that the condition

x1 /∈ Im
[

X2 −
1
l1

x1l′(1)

]
(2.5.63)
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entails that l1β 1 is identifiable. Clearly this condition applies to β 1 on taking l1 = 1.
Again no assumption on the ranks of X2 and X2 − 1

l1
x1l′(1) is needed.

3. When C·1 = (1, 0, . . . , 0)′ and C(·1) = 0, all the components of β are set by the re-
striction except for β 1, and condition (2.4.59) means that x1 ̸= 0, without further
conditions on X .

Of course, Proposition 2.5.7 covers a wide array of more complex cases.

2.6. Canonical identifiable representations

Due to the close relationship between the features of the eigenvalues and the rank of a given
matrix, under certain circumstances it will be more convenient to characterize some of the
results in Sections 2.4 and 2.5 by using decomposition or factorization methods, such as the
rank factorization theorem, the LU decomposition, QR factorization, reduced row echelon
form and singular value decomposition (SVD) technique. Recall that the rank factorization
theorem states that if Z is a p× k matrix of rank r then it can be factorized by

Z = AB,

where A and B are p× r and r× k matrices of rank r [see Rao (1973)]. Obviously, neither
A nor B is unique.

For empirical study, it is convenient to characterize Z through a basis of Im
(
Z′). Recall

that a basis for a vector space U is a finite set of linearly independent vectors in U that
spans U [see Harville (2008)].

Proposition 2.6.1 LINEAR FUNCTION EXPRESSION USING BASIS. Let Z be any p× k

matrix of rank r and C be a k× r matrix whose columns form a basis of Im
(
Z′). Then C′β

can be expressed as a linear function of Zβ .

Proposition 2.6.1 is easily applicable since computer programs will help us find a basis
of a subvector space spanned by the columns of a known matrix through different decompo-
sition methods such as SVD, Cholesky factorization, Schur decomposition, LU matrix fac-
torization and QR decomposition. The corresponding Matlab functions are “svd”, “chol”,
“schur”, “lu” and “qr” respectively. Note that some factorization methods are limited to
specific type of matrices. For example, a matrix must be positive definite to be decom-
posed by Cholesky method and Schur decomposition can only factorize square matrices.
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In contrast, SVD, LU decomposition and QR factorization methods can decompose an ar-
bitrary matrix. Moreover, Matlab has a Toolbox which defines a function “colspace” that
can return a basis for the column space of a given matrix. It also has a function “rref”
produces the reduced row echelon form of a given matrix using Gauss-Jordan elimination
with partial pivoting. Using the echelon form we can construct a basis of the column space
of a matrix.

Since the rank theorem does not provide a unique factorization of a general matrix, it is
interesting to check the uniqueness of other decomposition methods.

First we look at QR factorization of an arbitrary matrix. Recall that for any p×k matrix
Z, we can always decompose it as

Z = QR,

where Q is a unitary matrix and R is an upper triangular matrix. The QR factorization is
useful in that the linear relationships among the columns of the decomposed matrix are
preserved exactly in the columns of R which is an upper triangular matrix. Since Q is
unitary and can be expressed as a product of elementary matrices, if it is postmultiplied by
R, the linear relationships among the columns of R will not change. Thus it is convenient
to form a basis of the column space of a given matrix by checking the triangular matrix R.
In Matlab, the function for QR factorization is “qr”. If Z has full column rank k, then Z has
the “thin QR” factorization as

Z = Q1R1,

where Q1 is p×k and composed of the first k orthonormal columns of Q and R1 is an upper
triangular matrix of k × k. Furthermore, if the diagonal elements of R are positive, then
both Q and R are unique [see Golub and Van Loan (2013, Theorem 5.2.2)].

Second, we can choose to decompose a p× k matrix Z through LU decomposition as
follows

Z = LU,

where L is a lower triangular matrix and U is an upper triangular matrix. The Matlab func-
tion for LU decomposition is “lu”. Using Matlab toolbox, we can choose L as a unit lower
triangular matrix and the original decomposed matrix Z premultiplied by a permutation
matrix P. Then the column relationships of upper triangular matrix U will be the same as
those of the original matrix Z. Thus the LU method is similar to QR in that we can con-
struct a basis by checking the column linear independency of U. The problem with LU
decomposition is that it does not always exist. The sufficient condition for the existence
of an LU decomposition of Z is that all the leading principal minors of Z are nonzero [see
Meyer (2000)]. Again if Z is nonsingular and the LU decomposition exists, then the LU
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decomposition is unique [see Golub and Van Loan (2013, Theorem 3.2.1)].
Third, we consider the SVD tool. For convenience, we restate the following singular

value decomposition theorem. Let Z be a p× k real matrix of rank r. Also let M and N

be two p× p and k × k orthogonal matrices containing the orthonormal eigenvectors of
ZZ′ and Z′Z respectively. Let D be a r× r nonsingular diagonal matrix with its diagonal
elements being the square roots of the eigenvalues of ZZ′ or Z′Z. Suppose we can partition
M and N as M =

[
M1 M2

]
and N =

[
N1 N2

]
, where M1 is p×r and N1 is k×r. Then

Im
(
Z′)= Im(N1) = ker

(
N2

′) (2.6.64)

and

ker(Z) = ker
(
N1

′)= Im(N2). (2.6.65)

Thus SVD provides an alternative way of thinking about the structure of the matrix Z

and therefore extending the results of Proposition 2.4.2 by exploiting the SVD [Mandel
(1982), Eubank and Webster (1985), Nelder (1985)]. For instance, instead of checking
whether or not the kernel space of Z is a subspace of that of Q in (4.4.6), we can just
examine whether the kernel space of N′

1 can be spanned by the columns of Q. Additionally,
if more than one of the singular values of Z is zero, Z will have a deficient rank, which
will lead to the multicollinearity issue in the regression models. Frequently, another related
issue may occur when some of the singular values of Z are very close to zero despite Z

still has a full column rank. That fact that determinant of Z, Z′Z or ZZ′ is close to zero
means that there exists almost a perfect linear relationship among the columns of Z, which
can lead to many serious inference problems in statistical models. However, some linear
combinations of parameters may still be identified in both cases and this is exactly what this
paper concentrates on in the following sections. Furthermore, SVD provides a convenient
way to find the basis of a linear space. Specifically, using SVD we know that a p×k matrix
Z of rank r can be decomposed as

Z′ = N1DM1
′.

It follows from (2.6.64) that the columns of N1 form a basis of Im
(
Z′). Then we conclude

that N1
′β can be written as a linear function of Zβ from Proposition 2.6.1. Note that

although the singular values of Z are unique, the orthogonal matrices U and V are not.
However, when the singular values are distinct, the columns of U and V are unique up to a
sign.
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Last, we can also use reduced row echelon form to find the basis of a linear space.
Since conducting only elementary operations on the rows of Z′ does not change the linear
relationship among the columns of Z′, the basis of Im

(
Z′) can be easily found. Besides,

the reduced row echelon form is unique [see Meyer (2000)].

2.7. Partially linear models

The application of the identification conditions of linear parameters established in Sec-
tion 2.2 to the linear regression model is just one example. In fact, these necessary and
sufficient identification conditions can also be applied to a much wider class of statistical
models named the partially linear model. In this section, we first analyze the identification
conditions for different types of partially linear models that are commonly used in statis-
tics. As shown hereinafter almost all statistical models such as logit and probit models,
discrete choice models, quantile regression, single index models, etc., can be generalized
into a framework such that either Proposition 2.3.2 or Theorem 2.3.4 is applicable. We also
discuss the estimability issue the relationship with identifiability in partially linear models.

Using the same notations of Section 2.5, we hereinafter assume no additional restric-
tions on parameters for simplicity and all the results we derive can be easily extended to
the case where linear restrictions are imposed on the linear parameters of interest. As in
many classical textbooks, for instance, McCullagh and Nelder (1989), we start with a sin-
gle random variable in partially linear models and denote the mean of such a univariate
response yi as µ i, i = 1,2, . . . ,n, and the vector x′i as the ith row of X . Obviously, this is just
a simplification and the rationale of the model set up of partially linear models will be the
same for the multivariate case, as shown hereinafter when we demonstrate the application
of the theoretical results in Section 2.2 by establishing the mappings from the fundamental
parameters into the parameters of partially linear models.

2.7.1. Generalized linear models

Nelder and Wedderburn (1972) propose the generalized linear model as

g
(
E(yi)

)
= x′iβ , i = 1,2, . . . ,n, (2.7.1)

where the function g is differentiable and monotone in the expectation of yi and is de-
fined as the link function. They state that all the yi

,s must belong to an exponential family
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distribution in the form of

f (yi;ρ i,ϕ i) = exp
(

yiρ i −b(ρ i)

a(ϕ i)

)
c(yi,ϕ i), where ϕ i is the dispersion parameter. (2.7.2)

The dispersion parameter ϕ i is independent of ρ i and thus does not depend on β . Note that
ϕ i can be either fixed or unknown. If ρ i is the only parameter of interest, ϕ i will represent
the nuisance parameter. However, our paper distinguishes from the classical literature on
the generalized linear model in two major aspects. First, we do not assume the response
variable must follow a distribution that is a member of an exponential family distribution
or an exponential dispersion family distribution. Rather, we only require the existence of a
link function that connects the mean of yi and the linear predictor x′iβ . That is to say, only
the most general functional form g

(
E(yi)

)
= x′iβ is needed in our paper. Therefore the

generalized linear model can be trivially treated as a special case where such an exponen-
tial distribution assumption is indispensable. Second, the link function does not have to be
either differentiable or monotone. Both differentiability and monotonicity of the link func-
tion will have no influence on the identification of linear parameters. Again the existence
of the link function will suffice in this paper. Conventionally, we call ρ i the canonical pa-
rameter which is a function of µ i and thus the above distribution is in canonical form. If we
choose ρ i = x′iβ , the link function g(µ i) becomes the canonical link function. We can also
choose non-canonical link functions but this will complicate the calculations. Obviously, if
the link function has the identity form, i.e., g(µ i) = µ i, we obtain the general linear model
E(yi) = x′iβ . Thus the classical linear model is just a special case of the generalized linear
model. To illustrate the rationale of the generalized linear models, let’s take the normal
distribution as an example

f (yi;ρ i,ϕ i) =
1√

2πσ i2
exp
(
− (yi −µ i)

2

2σ i2

)
(2.7.3)

= exp
(

yiµ i −µ i
2/2

σ i2

)
exp
(
− y2

i
2σ i2

− log(2πσ i
2)

2

)
. (2.7.4)

Then the normal distribution is in the canonical form and

ρ i = µ i, a(ϕ i) = ϕ i = σ i
2, b(ρ i) = µ i

2/2.

It is straightforward that the canonical link function for the normal distribution is indeed
in the identity form.

Note that as in the case of the linear regression model in Section 2.5, we emphasize
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herein that if the probability distribution of the observations depends on nuisance parame-
ters and yet we can separate the parameters of interest from the nuisance parameters after
the underlying probability distribution is reparameterized, the identification condition in
Proposition 2.3.2 will not represent a necessary condition anymore. However, the iden-
tification condition in Theorem 2.3.4 is still both necessary and sufficient and therefore
applicable in this situation.

Let’s demonstrate how Proposition 2.3.2 and Theorem 2.3.4 can be applied in the frame-
work of the generalized linear models by relating the parameters of probability distribution
in the form of (2.7.2) to the parameters of the general parametric functions in Section 2.2.
Let the random variables y1, y2, . . ., yn be a random sample of size n. Then equation (2.7.1)
can be expressed as

g
(
E(y)

)
= g(µ) = Xβ , (2.7.5)

where

y =


y1

y2
...

yn

 , X =


x′1
x′2
...

x′n

 , µ =


µ1

µ2
...

µn

 .
Accordingly, the likelihood function of y is

L(y; ρ , ϕ) =
n

∏
i=1

exp
(

yiρ i −b(ρ i)

a(ϕ i)

)
c(yi,ϕ i), (2.7.6)

where

ρ =


ρ1

ρ2
...

ρn

 , ϕ =


ϕ 1

ϕ 2
...

ϕ n

 .
Given the canonical link, (2.7.6) can be rewritten as

L(y; θ ∗) = L(y; ρ , ϕ) = L(y; Xβ , ϕ) =
n

∏
i=1

exp
(

yi ·x′iβ −b(x′iβ )
a(ϕ i)

)
c(yi,ϕ i), (2.7.7)

where

θ ∗ =

[
ρ
ϕ

]
=

[
Xβ
ϕ

]
.
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Furthermore, (2.7.7) can be reparameterized as

L(y; θ ∗) = L(y; ρ, ϕ) = L(y; γ1(θ), γ2(θ)) = L̄(y; θ) = L̄(y; β , ϕ), (2.7.8)

where

θ =

[
β
ϕ

]
, β (θ) = Qβ , γ1(θ) = Xβ , γ2(θ) = ϕ .

Note that θ , β (θ), γ1(θ) and γ2(θ) stand for the fundamental parameter, the linear com-
bination of parameters that is of interest, the identifiable parameter and the nuisance pa-
rameter respectively in Section 2.2 whereas β and ϕ are the parameter of interest and the
nuisance parameter defined in the generalized linear model. In addition, suppose the mean
µ of y exists. Then the linear predictor Xβ , which is a function of µ through the link func-
tion g(µ), is identifiable. If the dispersion parameter ϕ is known, we can apply directly
Proposition 2.3.2 since the distribution does not contain any nuisance parameter. On the
other hand, if any element of the nuisance parameter ϕ is unknown, Proposition 2.3.2 is not
applicable. Nevertheless, the canonical links for the exponential distribution family lead to
a complete separation of the nuisance parameter ϕ from the parameter of interest β . That
is to say, Assumption 2.3.3 is satisfied. Consequently any linear combination of parameters
Qβ which is a function of Xβ is also identifiable. Hence Theorem 2.3.4 applies. Let’s take
the normal distribution (2.7.3) as an example. The parameter of interest and the unknown
nuisance parameter are

ρ =


µ1

µ2
...

µn

 , ϕ =


σ1

2

σ2
2

...
σn

2

 ,
which implies that the identification condition in Proposition 2.3.2 is sufficient but not
necessary. However, under the identity canonical link ϕ is independent of ρ . That is to
say, ϕ can be completely separated from the parameter of interest β . Therefore, we can
establish the necessary and sufficient condition for identification of a linear combination of
parameters Qβ by Theorem 2.3.4.

Almost all relevant literatures which study the generalized linear model we have found
so far have mainly concentrated on the estimability of the parameters and assume the de-
sign matrix has full column rank. In contrast, we impose no restrictions on the rank of the
design matrix and analyze the identification condition for an arbitrary linear combination of
parameters. Thus it may well be the case that we cannot identify the entire parameter vec-
tor β in the generalized linear models but only a subvector or some linear combination of
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components of β . The following model types are referred to Dobson and Barnett (2008),
Christensen (1997), McCullagh and Nelder (1989), Hosmer and Lemeshow (2000), Cox
and Snell (1989), Davidson and MacKinnon (2004), Gouriéroux (2000), Agresti (1984),
Collett (2003a), Collett (2003b) and Wood (2006). We hereby list all major types of gener-
alized linear models and apply the theoretical identification results to each of these models.

First, we focus on log-linear model and Poisson regression. The canonical link function
of the Poisson distribution is the logarithmic function and we can write the generalized
linear model as

E(yi) = µ i = ex′iβ , i = 1,2, . . . ,n. (2.7.9)

Clearly the linear predictor x′iβ is not the mean or variance of the observation yi. Rather
it is a function of the mean or variance. Since the dispersion parameter for the Poisson
distribution equals 1, it follows easily that x′iβ is identifiable by Definition 2.2.2 and Propo-
sition 2.3.2.

Second, we look at some binary response models, such as Probit and logit models. The
canonical link function can be chosen to be the logistic function and the corresponding
generalized linear model is the logit model

E(yi) = µ i =
ex′iβ

1+ ex′iβ
, i = 1,2, . . . ,n. (2.7.10)

On the other hand, if we choose the inverse of standard normal probability function as the
link function between the mean µ i and the linear predictor x′iβ , we have the probit model.
If the binomial distribution involves nuisance parameters, the necessary and sufficient con-
dition for the identification of Xβ applies from Theorem 2.3.4 since the canonical link will
satisfy Assumption 2.3.3. Otherwise, Proposition 2.3.2 is applicable.

Third, we check nominal and ordered logit models. Although the Multinomial distri-
bution usually does not belong to the exponential family of distributions, if it is assumed
that the total number of trials follows a Poisson distribution we can rewrite the density of
a Multinomial distribution as the joint density of the independent observations, each of
which follows a Poisson distribution. As a consequence, the generalized linear model can
be used to deal with the Multinomial data and either Proposition 2.3.2 or Theorem 2.3.4
will apply.

Fourth, we study survival time and duration models. One of the most common ways of
modeling the survival data is to assume that yi follows an exponential distribution and the
canonical link function under the exponential distribution takes the reciprocal form. Since
the dispersion parameter of the exponential distribution is a constant, Proposition 2.3.2 ap-
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plies. An immediate example that deals with the censored or truncated data in survival
analysis is the Tobit model. According to Aitkin and Clayton (1980), the censoring data
can be considered as a random variable following a Poisson distribution. Using the natu-
ral log link function as the canonical link, if the first moment of the observations exists,
Proposition 2.3.2 is applicable.

Since the generalized linear model method deals with most of the special distributions
in statistics, such as the Poisson distribution, the binomial distribution, the negative bino-
mial distribution, the Gaussian distribution, the inverse Gaussian distribution, the gamma
distribution inclusive of the chi squared distribution and the exponential distribution as spe-
cial cases, all of which can be written in the form of (2.7.2), we can obtain the necessary and
sufficient condition for identification by either Proposition 2.3.2 if the distribution involves
only a single parameter or Theorem 2.3.4 if the distribution contains nuisance parameters.
Furthermore, this technique can be readily extended to other types of partially linear mod-
els as shown hereinafter. Hence, our identification conditions established in Section 2.5,
especially Theorem 2.3.4, are quite general and powerful.

2.7.2. Generalized linear mixed models

All the above generalized linear models assume that the response variable yi is drawn in-
dependently. However, it is also common to measure a given subject for repeated times
or sometimes we need the measurements of subjects that are correlated. Such longitudinal
data will often generate dependence among the response variables. The longitudinal data
analysis so far only focused on the estimation of parameters, see Diggle et al. (2002), Jiang
(2007) and Dobson and Barnett (2008).In contrast, we hereby demonstrate that our identifi-
cation condition can also apply to the generalized linear mixed model which is an extension
to the generalized linear model. The generalized linear mixed model is constructed as

g
(
E(yi|α)

)
= x′iβ + z′iα, i = 1,2, . . . ,n, (2.7.11)

where β are the fixed effects, α are the random effects which are usually assumed to follow
a distribution of an exponential family. Similar to the generalized linear model, g is the link
function and our paper again does not need the restriction that the conditional distribution
of yi given α belongs to an exponential family distribution nor does it require that the
distribution of the random coefficients α belong to the exponential family distribution. If
we denote ḡ as the link function and rewrite the generalized linear mixed model in the
matrix form

ḡ
(
E(y|α)

)
= Xβ +Zα,
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where Z is n× l and α is l ×1, then Xβ +Zα is identifiable by Definition 2.2.2. Further-

more, any arbitrary linear combination of parameter Qη ,where η =

[
β
α

]
can be identi-

fied if it can rewritten as a function of Xβ +Zα and this condition is both necessary and
sufficient by Proposition 2.3.2 in the absence of nuisance parameters. On the other hand, if
the probability distribution contains nuisance parameters, then Proposition 2.3.2 is no loner
applicable. Nonetheless, if the nuisance parameters are independent of the parameters of
interest or can be separated from the latter after reparameterization of the probability dis-
tribution, the necessary and sufficient condition for identification in Theorem 2.3.4 is still
valid.

Denote T = [ X Z ] and suppose T η = Xβ +Zα is identifiable. According to Propo-
sition 2.4.2 it is trivial to have the necessary and sufficient identification conditions of any
arbitrary linear combination of parameters Qη .

2.7.3. Quantile regression

Quantile regression (see Koenker and Bassett (1978)) can provide useful information about
the distribution of the response variables besides the classical least-squares regression, es-
pecially when the existence of significant statistical dispersion such as influential outliers
makes the statistical inference less robust. Following the steps by Koenker (2005), the prob-
lem of finding the τ th quantile is derived from solving the minimization problem where we
intend to minimize the expected loss function ρτ(u) = u(τ − I(u < 0)). The conditional
quantile function can be specified as

Qyi|xi(τ) = x′iβ (τ), i = 1,2, . . . ,n, where β (τ) solves minβE[ρτ(yi −x′iβ )]. (2.7.12)

Thus, x′iβ is the τ th quantile of the distribution of the response variable yi given xi. Again,
Proposition 2.3.2 provides the necessary and sufficient condition for the identification of
Qβ when the distribution of the observations does not depend on nuisance parameters. If
the nuisance parameters are in presence and separable, we are guaranteed the necessary
and sufficient condition for identification through Theorem 2.3.4.

As for quantile regression models, the necessary and sufficient conditions for identi-
fication will be the same as those of generalized linear models because we can treat the
conditional quantile function as the link function.
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2.7.4. Single index models

One semiparametric model that has been widely used in econometrics is the so called single
index model; see Robinson (1988), Klein and Spady (1993), Ichimura (1993) and Li and
Racine (2007). The single index model resembles the generalized linear model in that it
also involves the linear form Xβ in the conditional expectation of the response variable.
However, it differs from all the above mentioned generalized linear models because the
link function is now unspecified. The single index model is given by

E(yi) = h
(
x′iβ
)
, i = 1,2, . . . ,n, (2.7.13)

where the link function h in unknown. Li and Racine (2007) list three requirements for the
identification of β and h function. First, xi should not include an intercept term and must
contain one continuous variable. Second, h function is differential and is not a constant
function. Third, changing the values of the discrete variables in xi will not lead to disjoint
subsets of the support of x′iβ . Suppose the link function is one-to-one. Then Qβ is identifi-
able if we apply Proposition 2.3.2 or Theorem 2.3.4. Indeed, for the identification purpose,
we could regard the single index model

E(y) = h(Xβ )

as the inverse of the link function g in generalized linear models. Thus the necessary and
sufficient identification conditions can be easily established.

2.8. Examples

We look at an example that demonstrates the application of the identification conditions
established in previous sections.

2.8.1. Linear regression

The following data is about monthly salaries and employment characteristics of 49 employ-
ees in a given company [see Ramanathan (2002)]:
Sample size=49; Wage=dollars per month; Gender=1 for a male and 0 for a female;
Educ=years of education beyond eighth grade; Exper=number of years at the company;
Age=age of employee. Researchers want to know if there exists a gender discrimination in
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Wage Gender Educ Exper Age
1345 0 6 2 38
2435 1 4 18 52
1715 1 6 4 45
1461 1 6 4 58
1639 1 9 3 30
1345 0 5 8 43
1602 0 7 6 30
1144 0 4 3 33
1566 1 6 23 51
1496 1 4 15 37
1234 0 4 9 45

...
...

...
...

...
1839 1 4 13 32
1288 1 4 9 58
1288 0 6 4 29

terms of salaries among this group of employees. A usual specification is as follows:

Wage = β 0 +β 1Gender+β 2Educ+β 3Exper+β 4Age+u.

To avoid the dummy variable trap, we must satisfy the rule that the number of dummy
variables is always one less than the number of categories. Otherwise, if the model includes
both genders

Wage = β 0 +β 1Male+β 2Female+β 3Educ+β 4Exper+β 5Age+u, (2.8.14)

there exists exact multicollinearity among the columns of the design matrix X which is
deficient in rank, where

X =



1 0 1 6 2 38
1 1 0 4 18 52
1 1 0 6 4 45
1 1 0 6 4 58
1 1 0 9 3 30
1 0 1 5 8 43
...

...
...

...
...

...
1 1 0 4 9 58
1 0 1 6 4 29



.
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Now we want to show the dummy variable trap issue is in nature an identification failure.
We cannot identify all the parameters in (2.8.14) because the parameters of interest do not
satisfy the necessary and sufficient conditions for identification in Theorem 2.5.4.

Specifically, choose Q1 = I6 and denote β =
[

β 0 β 1 β 2 β 3 β 4 β 5

]′
so that the

parameters of interest β in (2.8.14) can be written as Q1β . Clearly

E[Wage|X ] = Xβ

which is identifiable. It is also easily seen that rank(X) = 5 due to the fact that Male+
Female = 1. However,

rank
[

X

Q1

]
= rank

[
X

I6

]
= 6 ̸= rank(X).

Thus identification condition (2.5.20) is not satisfied and Q1β which is β in the setup is not
identifiable. Although we do not have full identification of β , it is possible to still identify
part of β , say

[
β 3 β 4 β 5

]′
. If we set

Q2 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

Q2β =
[

β 3 β 4 β 5

]′
. Plug both Q2 and X in (2.5.20) and we have

rank
[

X

Q2

]
= rank(X) = 5.

Next if we substitute “Male+Female” for the constant term in (2.8.14), we can rewrite
the model as follows

Wage = γ0 + γ1Male+ γ2Female+ γ3Educ+ γ4Exper+ γ5Age+u, (2.8.15)

where
γ0 = 0, γ1 = β 0 +β 1, γ2 = β 0 +β 2, γ3 = β 3, γ4 = β 4, γ5 = β 5.

The transformation of (2.8.14) without a constant term is known to be estimable so that all

45



the parameters γ i, i = 0,1,2, . . . ,5 are identifiable. In fact we can construct a matrix Q2

Q3 =



1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


so that

Q3β =
[

β 0 +β 1 β 0 +β 2 β 3 β 4 β 5

]′
.

It can be readily verified that

rank
[

X

Q3

]
= rank(X) = 5.

Thus Q3β is identifiable.
Alternatively, we can substitute “1-Female” for “Male” in (2.8.14) and get

Wage = λ 0 +λ 1Female+λ 2Educ+λ 3Exper+λ 4Age+u, (2.8.16)

where
λ 0 = β 0 +β 1, λ 1 = β 2 −β 1, λ 2 = β 3, λ 3 = β 4, λ 4 = β 5.

The selection matrix Q4 is

Q4 =



1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and

Q4β =
[

β 0 +β 1 β 2 −β 1 β 3 β 4 β 5

]′
.

Again

rank
[

X

Q4

]
= rank(X) = 5
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and Q4β is identifiable.
Similarly, “Female” in (2.8.14) can be replaced by “1-Male” and (2.8.14) is rewritten

as
Wage = δ 0 +δ 1Male+δ 2Educ+δ 3Exper+δ 4Age+u, (2.8.17)

where
δ 0 = β 0 +β 2, δ 1 = β 1 −β 2, δ 2 = β 3, δ 3 = β 4, δ 4 = β 5.

Then we choose

Q5 =



1 0 1 0 0 0
0 1 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and Q5β is identifiable since

rank
[

X

Q5

]
= rank(X) = 5.

We have already seen that Theorem 2.5.4 is very useful to check identifiability of linear
parameters in practice. On the other hand, we demonstrate that the basis of a vector space
also provides useful information on identification given by Proposition 2.6.1. First using
function “rref” given by Matlab, we get the reduced row echelon form of X ′ as 3



1 0 0 0 0 . . . 0 1
0 1 0 0 0 . . . 0.3250 0.1500
0 0 1 0 0 . . . 0.8193 0.4077
0 0 0 1 0 . . . 0.3058 −0.6577
0 0 0 0 1 . . . −0.4500 0.1000
0 0 0 0 0 . . . 0 0


.

Since performing Gauss-Jordan elimination on rows only will not change the linear rela-
tionship among the columns of X ′, we can pick up the first 5 columns of X ′ and form a

3We can also use other decomposition methods such as QR, LU and SVD to find the basis of Im(X ′).
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basis of Im(X ′). Denote this submatrix of X ′ as B1, i.e.

B1 =



1 1 1 1 1
0 1 1 1 1
1 0 0 0 0
6 4 6 6 9
2 18 4 4 3

38 52 45 58 30


.

Obviously, B1
′β is identifiable due to Proposition 2.6.1 or condition (2.5.20). Yet, we want

to make identifiable parameters have economic meanings. For instance we are interested in
identification of β 0 +β 2 which is average salary for the “Female” group without consider-
ing other explanatory variables rather than β 0+β 2+6β 3+2β 4+38β 5 which makes little
sense for interpreting the parameters. Nevertheless, we can get another basis B2 of Im(X ′)

based on B1 as follows

B2 =



1 1 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

Then the parameter B2
′β is identifiable from Proposition 2.6.1 and

B2
′β =

[
β 0 +β 2 β 0 +β 1 β 3 β 4 β 5

]′
,

where each element has a good economic interpretation. Since the basis of any linear
space is not unique, it is always possible to build an infinite number of bases of a vector
space by multiply a known basis by an invertible matrix called transitional matrix. For our
specific model setups (2.8.15), (2.8.16) and (2.8.17), we construct other bases of Im(X ′)

by postmultiply B2 by a transitional matrix T so that the identifiable parameters are easy to
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interpret. Hence

B3 ≡ B2T1 =



1 1 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

B2



0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

T1

=



1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


= Q3

′.

Similarly,

B4 ≡ B2T2 =



1 1 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

B2



0 1 0 0 0
1 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

T2

=



1 0 0 0 0
1 −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


= Q4

′

and

B5 ≡ B2T3 =



1 1 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

B2



1 −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

T3

=



1 0 0 0 0
0 1 0 0 0
1 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


= Q5

′.

Therefore, the transposed selection matrices Q3, Q4 and Q5 are actually different bases of
Im(X ′) and B′

3β , B′
4β and B′

5β are all identifiable.
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2.8.2. Binary choice logit model

The example here is about the determinants of women’s labor force participation rates,
i.e., the percentage of women over age 16 who are either employed or looking for jobs
[see Ramanathan (2002)]. The 1990 census data cover 50 states in terms of the following
variables:

Wlfp = Proportion of women over 16 who are in labor force

Yf = Median earning by females (in thousands of dollars)

Ym = Median earning by males (in thousands of dollars)

Educ = Percentage of female high school graduates over 24

Unemp = Unemployment rate

Marr = Marriage rate of women at least 16

Divc = Divorce rate

Urb = Percent of urban population

Wht = Percent of women over 16 who are white.

Suppose Wlfp satisfies a logit specification as follows:

log
(

Wl f p
1−Wl f p

)
= Xβ (2.8.18)

= β 0 +β 1Y f +β 2Y m+β 3Educ+β 4Unemp+β 5Marr (2.8.19)

+β 6Divc+β 7Urb+β 8Wht.

Since the log function is strictly monotonic over its domain, it is easily to write (2.8.19) as

Wl f p =
exp(Xβ )

1+ exp(Xβ )
.

If we denote the binary variable “women labor force” as “WL” then

E(WL)=
exp(β 0 +β 1Y f +β 2Y m+β 3Educ+β 4Unemp+β 5Marr+β 6Divc+β 7Urb+β 8Wht)

1+ exp(β 0 +β 1Y f +β 2Y m+β 3Educ+β 4Unemp+β 5Marr+β 6Divc+β 7Urb+β 8Wht)
.

The identification of Xβ is straightforward since it is a monotone function of the mean
E(WL). As we have demonstrated in subsection 2.8.1, if the right hand side of the model
(2.8.19) is misspecified by including variables that are exact multicollinear, we will not
be able to identify β in a logit setup as in (2.8.19). However, applying the identification
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results we can still identify some linear combinations of the elements of β that have certain
economic meanings. Furthermore, we know that such identifiable linear combinations will
not be unique due to the infinite number of basis of a given vector space spanned by the
columns of the design matrix. It is essential to choose a basis that can produce a linear
function of β which is easy to interpret.

2.9. Conclusion

We summarize the major points and contributions of this paper as follows. First, we analyze
the conditions for identification of linear parameters Qβ when the design matrix X does
not have full column rank. The current literature is mainly concerned about estimability
of parameters without a formal verification of parameter identification, which could lead
to unreliable or even misleading statistical inference; see Dufour (2003). This paper has
established the necessary and sufficient conditions of identification for an arbitrary linear
combination of parameters, such as any scalar parameter, a subvector of parameters and the
entire parameter vector.

Second, we demonstrate that the identification conditions are quite general. To begin
with, no restrictions are imposed on the structure of the model so that our identification re-
sults can be applied to almost all types of statistical models frequently used so far, such as
general linear models, generalized linear models, generalized linear mixed models, quan-
tile regressions and single index models, etc. Therefore, our necessary and sufficient condi-
tions provide a very powerful tool to check identification before any meaningful statistical
inference should be conducted. Additionally, these conditions are still valid in spite of the
presence of nuisance parameters which is a common phenomenon in statistics. When the
underlying probability distribution involves nuisance parameters, the identification condi-
tion in Proposition 2.3.2 is only sufficient. However, if the parameter of interest can be
completely separated from the nuisance parameter after we reparameterize the underlying
distribution, as is the case for a large number of partially linear models, the identification
condition in Theorem 2.3.4 is still necessary and sufficient. Furthermore, adding a group
of a priori consistent linear restrictions will have no impact on the validity of the necessary
and sufficient conditions for identification derived in this paper.

Third, we study the conditions for both estimability and identifiability of linear pa-
rameters. As for the linear regression models, under the restrictive classical assumptions
the well-known necessary and sufficient conditions for estimability [see Reiersøl (1963)
and Rao (1973)] are generally also necessary and sufficient for identification. However,
considering the more general class of partially linear models which relaxes the model as-
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sumptions of additivity of the error term and the complete separation of the mean from the
covariance, the conditions for identification will not be applicable to estimability. In fact,
the linear parameters in the partially linear models will generally no longer be estimable
in the sense of Bose (1944) because the linear predictor Xβ is usually not the mean any
more but a nonlinear function of the mean. Nevertheless, we have shown that the classical
conditions for estimability in the linear regression models are still valid for identification of
the linear parameters in the partially linear models. We emphasize that even for the linear
regression model, the identification of linear parameters is not restricted to the mean of the
observations. It is possible to identify these parameters through other statistical properties
such as covariances, quantiles or statistical estimators.

Fourth, we propose a set of equivalent conditions for identification which are intuitive
and easy to apply. The standard conditions for estimability and identifiability focus on
characteristics of the row spaces, which is somewhat inconvenient for empirical analysis
since people conventionally investigate the relationships among the explanatory variables.
Thus the introduced conditions for identification concentrating on the column spaces are
straightforward. Moreover, since there are no restrictions on the selection matrix Q we
generalize the identification conditions by including the statements regarding the g-inverse
Q−, which is quite useful in practice.

Hence, the identification conclusions in this paper are comprehensive and widely ap-
plicable. No matter what statistical properties we are considering, as long as they are
identifiable any linear combinations of parameters which are functions of such properties
can also be identified. The statistical inferences of such identified parameters will be the
subject of future research.
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Chapter 3

Necessary and sufficient conditions for
identification of parametric functions in
IV regressions

Xin Liang

Abstract We provide the general conditions for identification in the simultaneous equations
models (SEMs). Compared to the classical SEMs setup, the design matrix of the reduced
form under discussion is not assumed to have full column rank. Under such a circum-
stance, an arbitrary linear combination of the structural parameters may still be identifiable
when the proposed identification conditions are satisfied. Moreover, we relax the classi-
cal assumption that the design matrix is exogenous or fixed and analyze the conditions for
identification of structural parameters when the expectations of endogenous variables in
the simultaneous equations are conditional on some chosen instruments X . By introducing
the randomness into the design matrix, we extend the application of our results to a more
general framework. Furthermore, we impose no exogeneity constraints on the instruments
and some instruments are allowed to be endogenous. This has a quite striking influence on
identification research because how to select strong instruments from an infinite set is still
an open issue. As an illustration, the identification conditions can be easily applied to the
classical SEMs by Richmond (1974) which are included as a special case of our general
setup. In addition, the identification conditions in the SEMs of our paper are valid without
any restrictions on the specification of the model itself and they are readily applicable to
cases where nuisance parameters are present.
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3.1. Introduction

There have been a considerable number of papers about the estimability of parameters in
linear models; see Seely (1970), Milliken (1971), Eubank and Webster (1985), Baksalary
and Kala (1976), Alalouf and Styan (1979a), Seely and Birkes (1980), Kounias and Cha-
likias (2008), etc. In contrast, identifiability has been relatively less studied in literature,
not to mention the identification conditions of any arbitrary linear combinations of struc-
tural parameters in a system of simultaneous equations; see the review of the long history
of identifiability by Dufour and Hsiao (2008). Working (1927) initiates the discussion of
the nature of the identifiability issue in economics and mentions the importance of methods
of analysis and the variability of demand curves. Fisher (1966) systematically studies the
identification problems for a single structural equation of the simultaneous equations mod-
els (SEMs). Among the few literatures that touch on the identifiability issue, the research
on the identification conditions of the parameters is somewhat limited. First of all, almost
all classical analyses of identifiability assume the design matrix has a full column rank.
Specifically, let’s consider a simple SEMs setup:

y = Y β 1 +X1γ1 +u, (3.1.1)

Y = X1Π1 +X2Π2 + v, (3.1.2)

where y is a T × 1 endogenous vector, Y is a T × G matrix of endogenous variables,
X =

[
X1 X2

]
and X is assumed to have a full column rank with Xi of a dimension

of T × Ki (i = 1, 2), β 1 and γ1 are G × 1 and K1 × 1 vectors of unknown coefficients,

Π =
[

Π ′
1 Π ′

2

]′
and Π1 and Π2 are K1 ×G and K2 ×G matrices of unknown coeffi-

cients, u and v are error terms with zero means. The traditional way of studying the SEMs
focuses on establishing the identification conditions of the structural parameters β 1 and γ1;
see Richmond (1974) and Dufour and Hsiao (2008). Plugging (3.1.2) into (3.1.1), we have

y = X1π1 +X2π2 +w,

where π1 = Π1β 1 + γ1, π2 = Π2β 1 and w = vβ 1 +u . The standard rank condition which
is both necessary and sufficient for the identifiability of β 1 (and thus γ1) is rank(Π2) = G.

Meanwhile, the corresponding standard order condition which is only necessary and not
sufficient is that the number of excluded exogenous variables which is K2 must be greater
or equal to the number of included endogenous variables minus one which is G. It is thus
well-known that the rank condition implies the order condition. Under the assumption
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of full rank X , the coefficients in the reduced form of simultaneous equations are always
identifiable. This requirement is, however, rather restrictive and unrealistic in applications.
Quite often, the observational data will produce a design matrix that either has a deficient
rank or is close to be deficient which makes the identification of the entire parameter vec-
tor of interest impossible. Second, the existing identification conditions rely heavily on
pure mathematical derivations, which makes them difficult to apply; see Bowden (1973)
and Rothenberg (1971). Third, almost no literature has ever studied the necessary and
sufficient conditions of identifiability in the presence of nuisance parameters. As is well
know, nuisance parameters are quite common in statistical models and will cause serious
problems when it comes to statistical inference.

In this paper, we intend to provide the most general statements of identification by
dealing with all the above mentioned limitations of current research. First, we relax the
assumption that the design matrix in the reduced form of the simultaneous equations sys-
tem has full column rank. Indeed, whether or not the design matrix has full rank will only
have an effect on identification of the reduce form parameters and is not directly related
to identification of structural parameters. As for the multivariate SEMs, even if the design
matrix is deficient in rank, with the help of additional a priori information on the structural
parameters, we can still achieve full identification. On the other hand, full identification
of the univariate SEMs without instruments is possible if our general conditions for iden-
tification are satisfied. Furthermore, although we sometimes cannot identify the whole set
of structural parameters when X has deficient rank, we may still be able to identify some
linear combinations of the structural parameters, which include the subvector and the scalar
parameter as special cases. As a further extension to the standard results, we do not im-
pose the assumption that the coefficient matrix of the endogenous variables is nonsingular.
Hence the rank conditions and its equivalences proposed are valid even when the reduce
form equation does not have a unique expression. Second, we relax the assumption that the
design matrix X is exogenous or fixed so that the expectations of the endogenous variables
in the simultaneous equations are now conditional on X and the parameter identification
depends on the realized value x of X . This leads to a more general setup of SEMs in that no
exogeneity constraints are imposed on the instruments and some instruments are allowed
to be endogenous. Moreover, we allow for collinearity among the instruments, i.e., weak
instruments. Besides, our results can deal with other instrumental variable issues, such as
missing instruments and many instruments. Thus our conditions for identification have an
influence on the empirical research since how to select strong instruments from an infinite
set of candidates is still an open issue and we are not so sure about having chosen all rele-
vant instruments. Third, we consider the situation where nuisance parameters are involved
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in the identification of parameters in simultaneous equations system. Last, we show that the
general theoretical results established by our paper are easy to understand and convenient
to apply to a wide range of statistical models.

The paper is organized as follows. Section 3.2 introduces a general setup of the SEMs
which allows for a variety of specifications, such as a mixture of endogenous variables and
exogenous variables, multicollinearity among the columns of the design matrix, introduc-
tion of instruments and nuisance parameters. Section 3.3 provides a group of equivalent
conditions for identification with brief explanations on each condition. Section 3.4 dis-
cusses the applications of the established results to some well-known SEMs. It shows that
the standard results can be easily generalized as special cases of our rank conditions. Sec-
tion 3.5 concludes.

3.2. The general framework of simultaneous equation
models

We introduce a general setup of the simultaneous equations system that imposes no con-
straints on the specification of the system of equations and makes no assumptions on the
linear relationships among the columns of either endogenous or exogenous variables. This
is followed by the discussions of identification both through the conditional expectation
and the linear projector.

3.2.1. Definitions

First recall the definitions of identification of parametric functions [Dufour and Liang
(2012)]. Let (Ω , A , P) be a statistical model parameterized by θ . Denote ψ(θ) as a
general parametric function.

Definition 3.2.1 IDENTIFICATION OF PARAMETRIC FUNCTIONS. The parametric func-

tion ψ : Θ →Ψ is identifiable if and only if

(
ψ(θ 1) ̸= ψ(θ 2)

)
⇒
(
Pθ 1 ̸= Pθ 2

)
, ∀θ 1, θ 2 ∈Θ . (3.2.1)

Definition 3.2.2 IDENTIFICATION IN TERMS OF ANOTHER PARAMETRIC FUNCTION.

Let β : Θ → B and γ : Θ → Γ be two parametric functions on the statistical model

(Ω , A , P) where P = {Pθ : θ ∈Θ}. If γ(θ) is identifiable and

(
β (θ 1) ̸= β (θ 2)

)
⇒
(
γ(θ 1) ̸= γ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ ,
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we say that β (θ) is γ(θ)-identifiable.

To facilitate the analysis of identification through instruments in the following section,
we give three related definitions [see Rao and Mitra (1971)].

Definition 3.2.3 DIRECT SUM. Let A1 and A2 be subspaces of a linear space of A . If

(1) A1
∩

A2 consists of only the null vector;

(2) every vector x ∈ A can be expressed as x = x1 + x2, such that x1 ∈ A1 and x2 ∈ A2;

then A is called the direct sum of A1 and A2, which is denoted as

A = A1 ⊕A2.

Definition 3.2.4 PROJECTION OPERATOR. Let any vector x ∈A which is a direct sum of

A1 and A2 such that x = x1 + x2, x1 ∈ A1 and x2 ∈ A2. Then the linear mapping denoted

as PA1∥A2 : x → x1 is called the projection operator of x on A1 along A2.

Definition 3.2.5 ORTHOGONAL PROJECTION OPERATOR. In the special case where A2

is the orthogonal complement of A1 in A , the projection operator is called the orthogonal

projection operator denoted as PL.

We will simply call the “orthogonal projection operator” the “projection operator” here-
inafter if such a simplification does not cause any confusion.

Now let’s consider the following simultaneous equation model setup

Z = Y A+W, (3.2.2)

where Z is T ×H, Y is T ×G, the unknown coefficients matrix A is G×H and the error
term W is T ×H. We assume E(W ) = 0 and call Z the endogenous variables. Taking
expectations on both sides of equation (3.2.2), we obtain

E(Z) = E(Y )A. (3.2.3)

(3.2.3) is called a linear system and the linearity is in terms of the unknown coefficient A.
We replicate some of the related well-known statements for convenience. First, any value
of the parameter A that satisfies the linear system (3.2.3) is called a solution to the linear
system. Second, the linear system (3.2.3) is consistent if and only if it has at least one
solution; see Harville (2008).
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Remark 3.2.6 The setup of Y is inclusive since it can either contain only exogenous vari-
ables or consists of both endogenous and exogenous variables. Besides, it can be either a
random variable or a fixed variable as in the standard linear regression model. Furthermore,
we impose no assumptions on the rank of E(Y ) so that if E(Y ) is deficient in rank, it is im-
possible to identify the entire matrix A without further information. However, we can still
achieve a unique solution of some linear combination of A provided that certain conditions
are satisfied, which becomes a more interesting issue for empirical studies and sometimes
the best possible choice we can make. In addition, the general framework (3.2.2) takes into
account the situation when the underlying probability distribution family depends on both
the parameters of interest and the nuisance parameters.

3.2.2. Identification of a linear system

We turn to the relationship between identification of coefficient matrix A of (3.2.3) and the
unique solution to such a linear system. Let θ denote all deep parameters in the linear SEMs
(3.2.2). Also let γ1 : Θ → Γ1, γ2 : Θ → Γ2 and β : Θ → B be three parametric functions,
which stand for the identifiable parameter, the nuisance parameter and the parameter of
interest respectively. First of all, we claim that the existence of a unique solution to (3.2.3)
is only sufficient and not necessary for identification on A. We then provide both necessary
and sufficient condition for identification under some stronger assumption.

Theorem 3.2.7 SUFFICIENT CONDITION OF IDENTIFICATION OF PARAMETER MATRIX.

If there exists a unique solution to (3.2.3), the parameter A in the SEMs (3.2.2) is identifi-

able.

Since the general setup (3.2.2) allows for the situation where the underlying distribution
of the error term W depends on nuisance parameters, the existence of a unique solution to
(3.2.3) is not necessary for identification of A. Recall from the conclusion of necessary and
sufficient condition for identification with nuisance parameters [Dufour and Liang (2012,
Theorem 2.3.4)], if the underlying distribution of W involves nuisance parameters, identi-
fication of A can be achieved through other statistical properties rather than the mean of Z.
In other words, we can identify A using the useful information provided by the nuisance
parameters. To make the result in Theorem 3.2.7 both necessary and sufficient, we need to
impose an additional assumption that the nuisance parameter can be completely separated
from the parameter of interest; see Dufour and Liang (2012, Assumption 2.3.3).

Assumption 3.2.8 NUISANCE PARAMETER SEPARABILITY. For any θ ∈ Θ and γ̄2 ∈
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γ2(Θ), we can find θ ∗ ∈Θ such that

β (θ ∗) = β (θ) , γ1(θ
∗) = γ1(θ) and γ2(θ

∗) = γ̄2. (3.2.4)

This assumption means that the value of the nuisance parameter γ2(θ) is not affected by
the values of the identifiable parameter γ1(θ) and the parameter of interest β (θ). In other
words, the parametric function γ2(θ) is “free” in terms of γ1(θ) and β (θ). In the case of
model (3.2.2), it follows that we can set

γ1(θ) = E(Z), β (θ) = A.

Note that the nuisance parameter γ2(θ) can be part of the characterizations of the distri-
bution of W . However, as long as the value of the nuisance parameter is not affected by
the values of E(Z) and A, the unique solution to (3.2.3) is both necessary and sufficient for
identification of A whether or not the nuisance parameter is identifiable. This can lead to
rigorous statistical inferences.

Theorem 3.2.9 NECESSARY AND SUFFICIENT CONDITION FOR IDENTIFICATION OF

PARAMETER MATRIX. Suppose Assumption 3.2.8 is satisfied. The parameter A in the

SEMs (3.2.2) is identifiable if and only if there exist a unique solution to (3.2.3).

Therefore, despite the presence of nuisance parameters, it is still possible to use the tech-
niques discussed by Dufour and Liang (2012, Theorem 2.3.4) so that the probability distri-
butions can be reparameterized through a complete separation of nuisance parameters and
parameters of interest as in the case of the generalized linear models and other partially
linear models in Dufour and Liang (2012). Hence we can achieve identification of param-
eters of interest without concerning whether or not the nuisance parameters are identifible,
which eases the burden of dealing with nuisance parameters and leads to the valid statistical
inferences.

3.2.3. Identification through instruments

Often we can modify the assumption of zero unconditional mean of W by introducing some
random matrix X with dimension T ×K whose K variables are called instrumental variables
or instruments. If we assume E(W |X) = 0 then equation (3.2.3) becomes

E(Z|X) = E(Y |X)A. (3.2.5)
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Since the conditional expectation E(Y |X) can be interpreted as the orthogonal projection
of Ȳ on any square integrable function of X [see Gouriéroux and Monfort (1995)], both
E(Z|X) and E(Y |X) can be nonlinear functions of X . On the other hand, we can express
equation (3.2.5) in terms of the projection operator PL as

PL(Z|X) = PL(Y |X)A. (3.2.6)

Likewise, nuisance parameters are allowed in the conditional distribution of W and we can
set γ1(θ), γ2(θ) and β (θ) equal to E(Z|X) (or PL(Z|X)), the nuisance parameter and A

in the setups (3.2.5) and (3.2.6). Similar to the analysis in Subsection 3.2.2, we give the
following results for identification of A both through the conditional expectation and the
linear projector.

Proposition 3.2.10 IDENTIFICATION THROUGH THE CONDITIONAL EXPECTATION. If

there exists a unique solution to (3.2.5), the parameter A in the SEMs (3.2.2) is identifiable.

Furthermore, suppose Assumption 3.2.8 is satisfied, the existence of such a unique solution

is both necessary and sufficient for identification of A in (3.2.2).

Proposition 3.2.11 IDENTIFICATION THROUGH THE LINEAR PROJECTOR. If there exist

a unique solution to (3.2.6), the parameter A in the SEMs (3.2.2) is identifiable. Further-

more, suppose Assumption 3.2.8 is satisfied, the existence of such a unique solution is both

necessary and sufficient for identification of A in (3.2.2).

Since the linear projection operator PL(Y |X) is derived by minimizing the mean squared
prediction error in a linear regression of Y on X , it is a special case of E(Y |X). Under the
assumption of invertibility of the covariance matrix of each column of (X), we have

PL(Y j|Xi) = E(Y j)+C(Xi,Y j)V(Xi)
−1(Xi −E(Xi)

)
, i = 1,2, . . . ,K, j = 1,2, . . . ,G,

(3.2.7)
where C(Xi,Y j) is the covariance of Xi and Y j. The immediate issue regarding identifiabil-
ity of A in (3.2.5) and (3.2.6) is whether the identification conditions in both situations are
equivalent. That is to say, can the identifiability of A in (3.2.5) lead to the identifiability of
A in (3.2.6) and vice versa?

For illustration purpose, we consider only the univariate regressor xi and scalar param-
eter case where the regressor xi and the error term ui are uncorrelated and the conditional
mean of the error term is zero. First, let’s assume a linear regression model as follows:

yi = α(x2
i −1)+ui, i = 1,2, . . . ,n,
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where α is the scalar parameter and xi ∼ N[0,1]. Then

C(xi,yi) = E(uixi)+E
(
αxi(x2

i −1)
)
= αE(x3

i )−αE(xi) = 0

and thus

PL(yi|xi) = E(yi) = 0.

However, E(yi|xi) = α(x2
i − 1) which is a random variable is not equal to zero unless

xi = ±1. Clearly, the scalar parameter α can be identified through the conditional ex-
pectation E(yi|xi) but not the linear projector PL(yi|xi) when xi ̸= ±1. Since E(yi|xi) is
a function of the random variable xi and is itself random, it is not equal to a zero con-
stant unless xi takes on some specific realized values. In contrast, the linear projector
PL(yi|xi) = E(yi)+C(xi,yi)V(xi)

−1(xi −E
(
xi)
)
, can be a constant or a function of xi de-

pending on the moments of xi and yi. Thus identification of A through the conditional
expectation does not imply that through the linear projector. On the other hand, we want to
check if the reverse is true. We first claim that the following statement holds.

Lemma 3.2.12 FAILURE OF IDENTIFICATION THROUGH THE CONDITIONAL EXPECTA-
TION IMPLIES FAILURE OF IDENTIFICATION THROUGH THE LINEAR PROJECTOR.

(
E(Y |X) = 0

)
⇒
(
PL(Y |X) = 0

)
, (3.2.8)

or equivalently

(
PL(Y |X) ̸= 0

)
⇒
(
E(Y |X) ̸= 0

)
. (3.2.9)

Although (3.2.8) means that if A cannot be uniquely determined through the conditional
expectation it cannot be uniquely determined through the linear projector either, we cannot
conclude from (3.2.9) that identification of A through PL(Y |X) implies that through E(Y |X)

because E(Y |X) ̸= 0 or PL(Y |X) ̸= 0 does not provide any information on the rank of
E(Y |X) or PL(Y |X) and thus does not necessarily lead to a unique solution of A in (3.2.6)
or (3.2.5). Specifically, we need to impose restrictions on the relationships among the
columns of both E(Y |X) and PL(Y |X) so that they have full column rank. Otherwise, it can
be the case that both of E(Y |X) and PL(Y |X) are nonzero but with different ranks. It then
follows that the elements of A that can be identified through the conditional expectation may
be different from those identified through the linear projector. Hence, the identifiability
conditions for A in (3.2.5) and (3.2.6) are not equivalent despite the fact that the linear
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projection operator is a special case of the conditional expectation. The critical point is that
E(Y |X) is a function of X and its value depends on the realized values of X . In contrast,
the linear projector PL(Y |X) involves both the realized values of X and the unconditional
second order moments of X and Y which may contain some useful information that will
help identify the parameters of interest but is not included in the conditional expectation.
Consequently, the failure of identification of A through the conditional expectation E(Y |X)

implies the failure of identification of A through the linear projector PL(Y |X) but the reverse
is not true.

We now take a brief look at the identification conditions of linear parameters in the
general setup (3.2.2). Without loss of generality, let’s assume the random variable Y con-
tains some of the columns of the exogenous matrix X . Under such a circumstance, we can
partition Y as

Y =
[

Y1 X1

]
,

where Y1 is endogenous with a dimension of T ×G1, X1 is exogenous with a dimension of
T ×K1 and X1 ⊂ X . Note that X1 = X is just a trivial case in this setup.

Also A can be partitioned conformably as

A =

[
A1

A2

]
,

where A1 is G1 ×H and A2 is K1 ×H. Thus equation (3.2.5) can be rewritten as

E(Z|X) = E(Y |X)A

=
[
E(Y1|X) X1

][ A1

A2

]
= E(Y1|X)A1 +X1A2, (3.2.10)

where

E(Y |X) =
[
E(Y1|X) X1

]
.

It is clear that since both E(Z|X) and E(Y1|X) are the first moments conditional on X , they
are identifiable for any realized value x of X .

Remark 3.2.13 The exogenous matrix X1 in the structural form (3.2.10) is assumed to have
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full column rank in the classical literature. Meanwhile, if we are further given a system
of reduced equations with extra exogenous matrix X2 being excluded from (3.2.10), the
augmented matrix [ X1 X2 ] is assumed to be full in rank; see Fisher (1966), Rothenberg
(1971), Richmond (1974) and Bekker and Wansbeek (2001). However, this is not the case
in our general setup as we only require the existence of the conditional moment E(Y |X).
Our interest hereby is to establish the necessary and sufficient conditions of identifiability
of arbitrary linear combinations of parameters Q(X)A =Θ , where Q(X) is a function of X

with a dimension of q×G, provided that E(Y |X)A is identifiable, which is indeed the case.

Clearly, the propositions regarding necessary and sufficient conditions for identification
that we have already established in Dufour and Liang (2012) can be readily applied in the
SEMs under discussion. In particular, we can treat both Q(X)A and E(Y |X)A as parametric
functions of A. Then the necessary and sufficient condition for the identification of Q(X)A

is that Q(X)A can be expressed as a function of E(Y |X)A.

3.3. Necessary and sufficient conditions for identification

We can simplify the process of identifying any arbitrary linear combination of parameter A

in Section 3.2 and establish the necessary and sufficient conditions for identification which
are more intuitive and easier to check in practice. We first propose a necessary and suffi-
cient condition for identification of an arbitrary linear combinations of coefficient matrix A

followed by a group of equivalent statements based on rank conditions and characteristics
of vector subspaces. Let E(Y |X) and Q(X) be T ×G and q×G matrices of real numbers.
Suppose Assumption 3.2.8 is satisfied and we can set

γ1(θ) = E(Y |X)A, β (θ) = Q(X)A.

Meanwhile assume E(Y |X)A is identifiable and (3.2.5) is consistent.

Definition 3.3.1 COLUMN SPACE. Let A be a m× n matrix. The column space of A

denoted as Im(A) is the set

Im(A)≡ {y ∈ Rm : Ax = y}.

Proposition 3.3.2 NECESSARY AND SUFFICIENT CONDITION FOR A UNIQUE EXPRES-
SION OF LINEAR COMBINATIONS OF PARAMETER MATRIX. Q(X)A has a unique expres-

sion if and only if

Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′)
.
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Proposition 3.3.3 EQUIVALENT CONDITIONS FOR IDENTIFIABILITY. Suppose As-

sumption 3.2.8 holds. Then Q(X)A is
(
E(Y |X)A

)
-identifiable if and only if one of the

following statements holds:

There is a function g : Im
[
E(Y |X)

]
7→ Im

(
Q(X)

)
such that

Q(X)A = g
(
E(Y |X)A

)
, ∀A ∈ RG×H ;

(3.3.1)

(
∀A1, A2 ∈ RG×H)[(E(Y |X)A1 = E(Y |X)A2

)
⇒
(
Q(X)A1 = Q(X)A2

)]
; (3.3.2)

ker
(
E(Y |X)

)
⊆ ker

(
Q(X)

)
; (3.3.3)

Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′); (3.3.4)

Q(X) = DE(Y |X), for some matrix D; (3.3.5)

rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)
; (3.3.6)

rank
[
E(Y |X)+V1Q(X)

Q(X)

]
= rank

(
E(Y |X)

)
, for some T ×q matrix V1; (3.3.7)

rank
[

E(Y |X)

Q(X)+V2E(Y |X)

]
= rank

(
E(Y |X)

)
, for some q×T matrix V2; (3.3.8)

rank
[
E(Y |X)

SQ(X)

]
= rank

(
E(Y |X)

)
, where S is s×q and s = rank

(
SQ(X)

)
= rank

(
Q(X)

)
.

(3.3.9)
rank

{
E(Y |X)

(
I −
(
Q(X)

)−Q(X)
)}

= rank
(
E(Y |X)

)
− rank

(
Q(X)

)
,

for some g-inverse
(
Q(X)

)−;
(3.3.10)

Q(X) = Q(X)
(
E(Y |X)

)−E(Y |X), for some g-inverse
(
E(Y |X)

)−
. (3.3.11)

First of all, Proposition 3.3.2 is an extension to the estimability result by Seely (1977)
who discusses the equivalent conditions for estimability of the linear combination of a
parameter vector.

Furthermore, as discussed in Section 3.2, identification through the linear projector is
different from identification through the conditional expectation. However, since the lin-
ear projector PL(Y |X) is the optimal prediction achieved by projecting Y on the subspace
spanned by any linear function of X compared to E(Y |X) which is the optimal prediction
of Y on the subspace spanned by any function of X , both Proposition 3.3.2 and Proposi-
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tion 3.3.3 are still valid if we substitute the linear projector PL(Y |X) for the conditional
expectation E(Y |X). Additionally, if Assumption 3.2.8 is not satisfied, i.e, the underlying
distribution depends on nuisance parameter which is not separable from the identifiable
parameters E(Y |X)A, the equivalent conditions in Proposition 3.3.3 are only sufficient for
identification of Q(X)A.

Of the above identification conditions, (3.3.1) and (3.3.2) are the direct paraphrases of
the definition of identification. The identification conditions based on the characteristics
of linear subspaces in (3.3.2), (3.3.3) and (3.3.4) are quite straightforward because we just
need to check whether any row of Q(X) belongs to the subspace spanned by the rows of ma-
trix E(Y |X). If this the case, then Q(X)A is identifiable. Otherwise, it cannot be identified.
Additionally, the rank conditions in (3.3.6), (3.3.7), (3.3.8) and (3.3.9) provide alternative
ways of identifying Q(X)A, which are convenient to use and can simplify the calculations
in certain statistical models. Conditions (3.3.10) and (3.3.11) are the more general state-
ments for the identification of Q(X)A when either E(Y |X) or Q(X) has a deficient rank,
which further demonstrates that our paper does not impose any restrictions on the rank of
X and on that of its functions. All the equivalent statements are necessary and sufficient
conditions for the identification of Q(X)A. In particular, if the column space of

(
Q(X)

)′ is
contained in that of

(
E(Y |X)

)′, then Q(X)A can be identified. In other words, each of the
columns of

(
Q(X)

)′ can be expressed as a linear combination of the columns of
(
E(Y |X)

)′
if and only if Q(X)A is identifiable.

As discussed in the first chapter, we can establish identification conditions with linear
restrictions on parameter matrix A. Consider the restriction in the implicit form:

R(X)A =C0 (3.3.12)

where R is an m×G matrix (with m ≥ 1) and Im(C0) ⊆ Im
(
R(X)

)
. We make no rank

assumption on R(X) and the following theorem on the identification of Q(X)A is straight-
forward.

Theorem 3.3.4 CONDITIONS FOR IDENTIFICATION OF LINEAR PARAMETERS IN IV
REGRESSION WITH IMPLICIT LINEAR RESTRICTIONS. Let Q(X) and R(X) be q×G

and m×G real matrices, respectively, Im(C0)⊆ Im
(
R(X)

)
, and

X̃ =

[
E(Y |X)

R(X)

]
. (3.3.13)

Suppose the implicit linear restriction (3.3.12) holds, and let Θ̄0I
(
R(X),C0

)
= {θ ∈
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Θ0 : R(X)A(θ) = C0}, ĀI
(
R(X),C0

)
= {Z ∈ RG×H : Z = A(θ), θ ∈ Θ̄0I

(
R(X),C0

)
}.

Then, each one of the following equivalent conditions entails that Q(X)A is
(
E(Y |X)A

)
-

identifiable on Θ̄0I
(
R(X),C0

)
, for any Im(C0)⊆ Im

(
R(X)

)
:

ker(X̃)⊆ ker
(
Q(X)

)
; (3.3.14)

Im
(
Q(X)′

)
⊆ Im(X̃ ′) ; (3.3.15)

Q(X) = BX̃ , for some matrix B ; (3.3.16)

rank

[
X̃

Q(X)

]
= rank(X̃) ; (3.3.17)

rank

[
X̃

Q(X)+V1X̃

]
= rank(X̃), for any q× (T +m) matrix V1 ; (3.3.18)

rank

[
X̃ +V2Q(X)

Q(X)

]
= rank(X̃), for any (T +m)×q matrix V2 ; (3.3.19)

rank

[
X̃

SQ(X)

]
= rank(X̃), for any matrix S such that rank

(
SQ(X)

)
= rank

(
Q(X)

)
;

(3.3.20)
Q(X) = Q(X)X̃−X̃ , for some g-inverse X̃− ; (3.3.21)

rank[ (IG−Q(X)−Q(X)) ] = rank(X̃)− rank
(
Q(X)

)
, for some g-inverse Q(X)− . (3.3.22)

If furthermore Assumption 3.2.8 holds and ĀI
(
R(X),C0) = {A ∈ RG×H : R(X)A = C0},

each one of the conditions (3.3.14) - (3.3.22) is necessary for Q(X)A to be
(
E(Y |X)A

)
-

identifiable on Θ̄0I
(
R(X),C0

)
.

Now consider linear restrictions in explicit form:

A = B0 +CL for some L ∈ Rl×H (3.3.23)

where B0 is some G×H vector and C is some G× l real matrix. This yields the following
characterizations of identifiability for Q(X)A.

Theorem 3.3.5 CONDITIONS FOR IDENTIFICATION OF LINEAR PARAMETERS IN IV
REGRESSION WITH EXPLICIT LINEAR RESTRICTIONS. Let Q be a q × G real matri-

ces. Suppose the explicit linear restriction (3.3.23) holds, and let Θ̄0E(C, B0) = {θ ∈
Θ0 : A(θ) = B0 +CL for some L ∈ Rl×H}, ĀE(C, B0) = {A ∈ RG×H : A = A(θ), θ ∈
Θ̄0E(C, B0)}. Then, each one of the following equivalent conditions entails that Q(X)A
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is
(
E(Y |X)A

)
-identifiable on Θ̄0E(C, B0), for any B0 ∈ RG×H:

ker
(
E(Y |X)C

)
⊆ ker

(
Q(X)C

)
; (3.3.24)

Im(C′Q(X)′)⊆ Im
(
C′(E(Y |X))′

)
; (3.3.25)

Q(X)C = D
(
E(Y |X)

)
C, for some matrix D ; (3.3.26)

rank

[
E(Y |X)C

Q(X)C

]
= rank

(
E(Y |X)C

)
; (3.3.27)

rank

[
E(Y |X)C

Q(X)C+V1
(
E(Y |X)

)
C

]
= rank

(
E(Y |X)C

)
, for any q×T matrix V1 ; (3.3.28)

rank

[
E(Y |X)C+V2Q(X)C

Q(X)C

]
= rank

(
E(Y |X)C

)
, for any T ×q matrix V2 ; (3.3.29)

rank

[
E(Y |X)C

SQ(X)C

]
= rank

(
E(Y |X)C

)
, for any matrix S such that rank

(
SQ(X)C

)
= rank

(
Q(X)C

)
;

(3.3.30)
Q(X)C = Q(X)C

(
E(Y |X)C

)−E(Y |X)C, for some g-inverse
(
E(Y |X)C

)− ; (3.3.31)

rank
(
E(Y |X)C[Il − (Q(X)C)−Q(X)C]

)
= rank

(
E(Y |X)C

)
− rank(Q(X)C),

for some g-inverse (Q(X)C)− .
(3.3.32)

If furthermore Assumption 3.2.8 holds and ĀE(C, B0) = {A ∈ RG×H : A = B0 +CL for

some L ∈ Rl×H}, each one of the conditions (3.3.24) - (3.3.32) is necessary for Q(X)A to

be
(
E(Y |X)A

)
-identifiable on Θ̄0E(C, B0), for any B0 ∈ RG×H .

A simple but useful application is the case when we are interested in identifying any
arbitrary scalar parameter of A. Let’s denote the i-th column of A as

α i =


α i1

α i2
...

α iG

 , i = 1,2, . . . ,H.

Without loss of generality, we choose to identify the first element α11. Suppose we can
partition Y as

Y =
[

y Y2

]
,
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where y is the first column of Y . Without loss of generality, choose

Q′ =


1
0
...
0

 .

Then the necessary and sufficient conditions for identification of Q(X)α1 = α11 by Propo-
sition 3.3.3 is

rank
[
E(Y |X)

Q(X)

]
= rank

[
E(y|X) E(Y2|X)

1 O

]
= 1+ rank

(
E(Y2|X)

)
= rank

(
E(Y |X)

)
.

Equivalently, the necessary and sufficient condition for the identification of α11 is that
conditional on X the expectation of the first column y does not belong to the subspace
spanned by the remaining G−1 components of Y .

3.4. Applications

Due to the generality of (3.2.2), we can discuss identification of the structural parameters
when the SEMs take different specific forms. In particular, an interesting empirical situ-
ation arises when the design matrix X of the reduced form equations does not have full
column rank. Furthermore, it will be helpful if we can establish identification conditions
for structural parameters even though the reduced form equation does not have a unique ex-
pression since the coefficient matrix of the endogenous variables is allowed to be singular.
We will study identification issue for two scenarios, namely univariate structural equation
and multivariate structural equations.

3.4.1. Univariate structural equation

We start with identification of the simple SEMs setup (3.1.1) and (3.1.2) where the struc-
tural form consists of a single equation. We relax the classical assumption that X has full
column rank. Furthermore, the linearity assumption (3.1.2) can be relaxed and either linear
or nonlinear specifications are allowed. Hence, any particular form of partially linear mod-
els can be part of the simultaneous equations system. However, we require (3.1.1) to be in
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the linear form in order to employ the linearity property of conditional expectations. Let’s
denote

Y =
[

Y X1

]
and

β =

[
β 1

γ1

]
.

To simplify analysis, we do not impose a prior restrictions on the structural parameters.
Suppose both the conditional means of u and v on X exist. Also assume Y is the endogenous
variable and X =

[
X1 X2

]
consists of all exogenous instrumental variables. Then the

SEMs can be constructed as a special case of (3.2.2). We have discussed briefly the standard
rank and order conditions for identification of this setup when X has full column rank
in the introduction. However, our intention herein is to demonstrate how the necessary
and sufficient identification conditions can be applied to such a conventional SEMs setup.
Taking expectations on both sides of (3.1.1) conditional on X we have

E(y|X)−E(u|X) = E(Y |X)β ≡ E(Y |X)β 1 +X1γ1, (3.4.1)

and

E(Y |X)−E(v|X) = XΠ

= X1Π1 +X2Π2, (3.4.2)

which are identifiable for any realized value of X . Since we are not concerned about the
identification of Π in (3.4.2) whether or not X has a full column rank has no impact on the
analysis. In fact, only the existence of the conditional expectations of y and u will justify
the application of Proposition 3.3.3.

We are interested in identifying arbitrary linear combinations of β denoted as
Q1(X)β 1 +Q2(X)γ1. According to the general rank condition (3.3.6), the necessary and
sufficient condition for identification of Q1(X)β 1 +Q2(X)γ1 can be expressed as

rank

[
E(Y |X) X1

Q1(X) Q2(X)

]
= rank

[
E(Y |X) X1

]
. (3.4.3)

Let’s take a close look at the identification issue in this univariate structural equation setup
for different situations. First, we want to identify the entire structural parameter in (3.1.1).
It follows from (3.4.3) that the condition for identification of β is
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rank

 E(Y |X) X1

IG O

O IK1

= rank
[
E(Y |X) X1

]
, (3.4.4)

which means that
rank

[
E(Y |X) X1

]
= G+K1. (3.4.5)

Hence, all the columns of
[
E(Y |X) X1

]
are linearly independent. It follows from (3.4.2)

where we assume E(v|X) = 0 for simplicity that

[
E(Y |X) X1

][ IG

−Π1

]
= X2Π2.

In combination with (3.4.5), we have

rank
[

IG

−Π1

]
= G = rank(X2Π2).

Given the assumption that X has full column rank, it follows that

rank(Π2) = G (3.4.6)

and it is the classical rank condition for identification. On the other hand, provided that X

has full rank, it is trivial to show (3.4.6) implies (3.4.5). Since

(rank(Π2) = G)⇒ (rank(X2Π2) = G)

⇒ rank

([
E(Y |X) X1

][ IG

−Π1

])
= G

and
rank(E(Y |X)) = G,

the column subspaces of E(Y |X) and X1 are essentially disjoint. Otherwise,

rank(E(Y |X))< G.

Hence (3.4.5) holds.
Second, it is easy to examine if either β 1 or γ1 is identifiable by checking the following

rank conditions:
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rank

[
E(Y |X) X1

IG O

]
= rank

[
E(Y |X) X1

]
and

rank

[
E(Y |X) X1

O IK1

]
= rank

[
E(Y |X) X1

]
,

which is equivalent to check whether

rank
[
E(Y |X) X1

]
= G+ rank(X1) (3.4.7)

and

rank
[
E(Y |X) X1

]
= K1 + rank(E(Y |X)). (3.4.8)

It then follows that (3.4.7) and (3.4.8) imply respectively

rank(E(Y |X)) = G (3.4.9)

and
rank(X1) = K1. (3.4.10)

Note that both (3.4.9) and (3.4.10) are only necessary conditions. They become both nec-
essary and sufficient conditions for identification when we further assume that the column
subspaces of E(Y |X) and X1 are essentially disjoint.

Third, we can check whether a subvector β 1,p of β 1 is identifiable, where β 1,p stands
for the first p elements of β 1. It is then straightforward to choose the selection matrix

Qβ ,p =
[

Ip O
]

and verify whether the following condition holds

rank
[
E(Y |X)

Qβ ,p

]
= rank

(
E(Y |X)

)
.

Similarly, the condition for identification of a subvector γ1,q of γ1 can be given as

rank
[
E(Y |X)

Qβ ,q

]
= rank

(
E(Y |X)

)
,
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where
Qβ ,q =

[
O Iq

]
.

Fourth, the identification of any linear combination of β denoted as l′β can be checked by
the following condition

rank
[
E(Y |X)

l′1

]
= rank

(
E(Y |X)

)
.

In particular, it is handy to verify whether a scalar parameter of β can be identified. Without
loss of generality, let’s give the rank condition for the identification of the first element β 11

of β 1 as

rank
[
E(Y |X)

e′1

]
= rank

(
E(Y |X)

)
. (3.4.11)

Clearly, (3.4.11) can be rewritten as

rank
(
E(Y |X)

)
= rank

[
E(Y 1|X) E(Y 2|X)

1 O

]
= 1+ rank

(
E(Y 2|X)

)
,

where Y 1 is the first column of Y . Hence, the necessary and sufficient condition for identi-
fication of the first element of β 1 is that the the first column of E(Y |X) does not belong to
the subspace spanned by the columns of E(Y 2|X); see Dufour and Liang (2012).

Remark 3.4.1 We can discuss the conditions for identification without the instruments X2

and the results will be similar. Let’s consider only (3.1.1) and denote

Y ≡
[

Y X1

]
.

Following the same steps, the conditional expectation of (3.1.1) on X1 instead of X leads to

E(y|X1)−E(u|X) = E(Y |X1)≡ E(Y |X1)β 1 +X1γ1.

Hence, the conditions for identification of β , any subvector and an arbitrary linear combi-
nation of β will be the same as above except that we condition all the random variables on
X1.

We have shown the generality of (3.4.3) by discussing identification of the whole struc-
tural parameter β , any subvector, any linear combination and any scalar parameter. Mean-
while, the classical results about identification can be readily generalized as special cases
of Proposition 3.3.3, which will be discussed hereinafter.
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On the other hand, we can check identification of the structural parameters in a slightly
different way by including the instrument X2. Let’s express (3.1.1) and (3.1.2) in the fol-
lowing compact matrix form:

[
y Y

][ 1 O

−β 1 IG

]
=
[

X1 X2

][ γ1 Π1

O Π2

]
+
[

u v
]
, (3.4.12)

or

Ỹ B̃ = XΓ̃ +Ũ , (3.4.13)

where

Ỹ =
[

y Y
]
, Ũ =

[
u v

]
,

B̃ =

[
1 O

−β 1 IG

]
, Γ̃ =

[
γ1 Π1

O Π2

]
.

Obviously, B̃ is nonsingular. Rewrite (3.4.12) and (3.4.13) in the structural forms:

[
y Y X1 X2

]


1 O

−β 1 IG

−γ1 −Π1

O −Π2

=
[

u v
]

and

[
Ỹ X

][ B̃

−Γ̃

]
= Ũ . (3.4.14)

Again taking conditional expectation on both sides of (3.4.14), we have

[
E(Ỹ |X) X

][ B̃

−Γ̃

]
= E(Ũ |X).

It then follows that the condition for identification of Q1(X)β 1 +Q2(X)γ1 is

rank

[
E(y|X) E(Y |X) X1 X2

O −Q1(X) −Q2(X) O

]
= rank

[
E(y|X) E(Y |X) X1 X2

]
.

(3.4.15)

73



We emphasize that (3.4.3) can generalize (3.4.15) since they are only equivalent if we im-
pose further assumption on the structure of (3.4.14). In contrast, the rank condition (3.4.3)
holds despite the relationships among the columns of

[
E(y|X) E(Y |X) X1 X2

]
. That

is to say, without such additional assumptions, (3.4.15) may not be applicable but (3.4.3)
still holds. This is due to the fact that the setup of (3.4.14) implicitly assumes that the
reduced form is unique, i.e., B̃ is invertible while the validity of (3.4.3) does not rely on
such an assumption. If the column subspaces of

[
E(y|X) X2

]
and

[
E(Y |X) X1

]
are

essentially disjoint, it follows that

rank

[
E(y|X) E(Y |X) X1 X2

O −Q1(X) −Q2(X) O

]
= rank

[
E(y|X) X2

O O

]
+rank

[
E(Y |X) X1

−Q1(X) −Q2(X)

]

and

rank
[
E(y|X) E(Y |X) X1 X2

]
= rank

[
E(y|X) X2

]
+ rank

[
E(Y |X) X1

]
.

Hence (3.4.15) and (3.4.3) indeed equivalent. Without such an assumption, (3.4.15) is a
special case of (3.4.3) as demonstrated by the following example.

Let’s consider identification conditions in the following situations. First, the condition
for identification of β can be written as

rank

 E(y|X) E(Y |X) X1 X2

O IG O O

O O IK1 O

= rank
[
E(y|X) E(Y |X) X1 X2

]
. (3.4.16)

That is to say,

rank
[
E(y|X) E(Y |X) X1 X2

]
= G+K1 + rank

[
E(y|X) X2

]
.

Remark 3.4.2 If E(y|X) belongs to the column space of
[
E(Y |X) X1

]
but cannot be

spanned by the column space of X2, we cannot identify β using (3.4.16) since

RHS = rank
[
E(Y |X) X1 X2

]
≤ rank

[
E(Y |X) X1

]
+ rank(X2)≤G+K1+ rank(X2)

and

LHS = G+K1 + rank
[
E(y|X) X2

]
= G+K1 +1+ rank(X2)> G+K1 + rank(X2).
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Thus we have contradiction and (3.4.16) will not apply. However, (3.4.4) is still valid and
so is (3.4.3).

Second, we provide the condition for identification of β 1 as

rank

[
E(y|X) E(Y |X) X1 X2

O IG O O

]
= rank

[
E(y|X) E(Y |X) X1 X2

]
,

which means

rank
[
E(y|X) E(Y |X) X1 X2

]
= G+ rank

[
E(y|X) X1 X2

]
. (3.4.17)

Likewise, the condition for identification of γ1 is

rank
[
E(y|X) E(Y |X) X1 X2

]
= K1 + rank

[
E(y|X) E(Y |X) X2

]
. (3.4.18)

Third, we check identification of any scalar parameter by verifying the following rank
condition

rank

[
E(y|X) E(Y |X) X2

O e′i O

]
= rank

[
E(y|X) E(Y |X) X2

]
. (3.4.19)

3.4.2. Multivariate structural equations

Consider a system of G simultaneous equations in the standard structural form:

Y B+XΓ =U, (3.4.20)

where Y is a T ×G matrix of endogenous variables, X is a T ×K random matrix of exoge-
nous variables, B and Γ are G×G and K ×G matrices of unknown coefficients. Assume
(3.4.20) satisfies the following regularity conditions:

E(U |X) exists; (3.4.21)

Var(Ut |X) = Σ exists and is nonsingular, where U ′ =
[

U1 U2 . . . UT

]
; (3.4.22)

E(X ′U) = 0; (3.4.23)
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the distribution of U can be fully characterized through its first two moments. (3.4.24)

We take a closer look at the above regularity assumptions. First, there is no restriction on the
rank of X . It can be deficient in rank compared to the standard setup of the SEMs where X

is assumed to have full column rank. Second, we impose no assumptions on the coefficient
matrix B. It can be singular or a non-square matrix with or without full rank. Thus (3.4.20)
allows for the situation when we do not have a unique expression for the reduce form.
Third, we allow for the case where the distribution of the structural shocks can have a mean-
variance structure that is not separable, i.e., the variance can be functionally dependent on
the mean. This extends the analysis of identification in the classical literature where the
distribution is either normal or has a separate mean-variance structure; see Rothenberg
(1971) and Richmond (1974).

Meanwhile, we add a system of linear restrictions about the structural parameters

C1B+C2Γ = D, (3.4.25)

where C1, C2 and D are c×G, c×K and c×G know matrices. Taking conditional expec-
tation on both sides of (3.4.20) gives

E(Y |X)B+XΓ = E(U |X). (3.4.26)

We rewrite (3.4.25) and (3.4.26) in the matrix form[
E(Y |X) X

C1 C2

][
B

Γ

]
=

[
E(U |X)

D

]
. (3.4.27)

It follows that the LHS of (3.4.27) is identifiable due to construction. Therefore we can
apply (3.3.6) in Proposition 3.3.3 and state that the necessary and sufficient condition for
identification of arbitrary linear combinations Q1(X)B+Q2(X)Γ is

rank

 E(Y |X) X

C1 C2

Q1(X) Q2(X)

= rank

[
E(Y |X) X

C1 C2

]
(3.4.28)

Remark 3.4.3 Since we do not impose restrictions on the rank of either X or B, (3.4.28) is
valid despite the linear relationships among the columns of X and B.

To demonstrate the generality of (3.4.28), let’s consider the following cases. First, we
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can check the identification of

[
B

Γ

]
by choosing the selection matrix IG+K . The rank

condition for identification of

[
B

Γ

]
is

rank


E(Y |X) X

C1 C2

IG O

O IK

= rank

[
E(Y |X) X

C1 C2

]
, (3.4.29)

which entails that

rank

[
E(Y |X) X

C1 C2

]
= G+K.

This coincides with the requirement for a unique solution

[
B

Γ

]
to (3.4.27), i.e.,[

E(Y |X) X

C1 C2

]
has full column rank.

Second, it is straightforward to check the identification of either B or Γ by verifying
their respective rank conditions as follows:

rank

 E(Y |X) X

C1 C2

IG O

= rank

[
E(Y |X) X

C1 C2

]
(3.4.30)

and

rank

 E(Y |X) X

C1 C2

O IK

= rank

[
E(Y |X) X

C1 C2

]
. (3.4.31)

Both (3.4.30) and (3.4.31) can be further simplified by

rank

[
E(Y |X) X

C1 C2

]
= G+ rank

[
X

C2

]
(3.4.32)

rank

[
E(Y |X) X

C1 C2

]
= K + rank

[
E(Y |X)

C1

]
. (3.4.33)
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Since

rank

[
E(Y |X) X

C1 C2

]
≤ rank

[
E(Y |X)

C1

]
+ rank

[
X

C2

]
,

it follows from (3.4.32) that

rank

[
E(Y |X)

C1

]
= G. (3.4.34)

Likewise, (3.4.33) entails

rank

[
X

C2

]
= K. (3.4.35)

We herein point out that both (3.4.34) and (3.4.35) become only necessary for identifi-
cation of B and Γ respectively. They are both necessary and sufficient unless the column

subspaces of

[
E(Y |X)

C1

]
and

[
X

C2

]
are essentially disjoint; see Harville (2008, Theorem

17.2.4).

Third, it is also convenient to check identification of any row of

[
B

Γ

]
. Without loss

of generality, let’s consider the first row. Then the necessary and sufficient condition for
identification becomes

rank

 E(Y |X) X

C1 C2

e′1 O

= rank

[
E(Y |X) X

C1 C2

]
. (3.4.36)

As mentioned earlier, the standard results on identification of the SEMs in the literature
are only restricted to the setup where the exogenous matrix X has full column rank so that
there is a unique solution to the reduced form equation. In contrast, we have demonstrated
that the general rank condition (3.3.6) or (3.4.28) in case of the multivariate structural
equation is valid without imposing assumption on the rank of X . Furthermore, whether or
not we are able to have a unique reduced form will have no influence on the validity of our
rank condition and its equivalence in Proposition 3.3.3. Therefore, it is quite easy to check
identification of any possible combinations of the structural parameters.

3.4.3. Generalization of standard results

Identification in the SEMs has been studied extensively in the classical literature; Fisher
(1966), Rothenberg (1971) and Richmond (1974). We herein only focus on the conditions
for identification in the linear framework of SEMs and leave the discussions of identifica-
tion for nonlinear SEMs in Dufour and Liang (2013b).
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Let’s first generalize the standard conditions for identification in the univariate struc-
tural equation (3.1.1) and (3.1.2). Assume X is exogenous and has full column rank. Sup-
pose we want to check identification of β 1. Let’s construct a selection matrix Q with
dimension G× (G+K1) and partition it as follows:

Q =
[

IG O
]
.

Then

Qβ =
[

IG O
][ β 1

γ1

]
= β 1.

From (3.3.6), it follows that the necessary and sufficient condition for identification of β 1

is

rank
[
E(Y |X)

Q

]
= rank

(
E(Y |X)

)
. (3.4.37)

Since

rank
[
E(Y |X)

Q

]
≡ rank

[
E(Y |X) X1

IG O

]

= rank

[
XΠ X1

IG O

]
= G+ rank(X1)

= G+K1,

(3.4.37) means that

rank
(
E(Y |X)

)
= G+K1. (3.4.38)

Meanwhile, plugging (3.4.2) into (3.4.1) gives

E(y|X) = XΠβ 1 +X1γ1

=
[

XΠ X1

][ β 1

γ1

]

=
[

X1 X2

][ Π1 IK1

Π2 O

][
β 1

γ1

]
. (3.4.39)
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Provided that rank(Π2) = G, it follows that

rank
(
E(Y |X)

)
≡ rank

[
E(Y |X) X1

]
= rank

[
XΠ X1

]
= rank

([
X1 X2

][ Π1 IK1

Π2 O

])

= rank
[

Π1 IK1

Π2 O

]
= G+K1. (3.4.40)

Since the matrix
[

XΠ X1

]
has full column rank G+K1, the structural parameters β 1

(and thus γ1) are identifiable. Under the assumption of X having full column rank, it is
clear that (

rank
[

XΠ X1

]
= G+K1

)
⇐⇒

(
rank(Π2) = G

)
. (3.4.41)

Note that the second part of (3.4.41) is the standard rank condition which is a special case
of (3.4.37) when X is assumed to have full column rank. On top of that, due to the structure
of (3.1.1) and (3.1.2), γ1 is identifiable only after β 1 is identified. However, we can identify
both β 1 and γ1 simultaneously rather than sequentially by applying (3.3.6). Specifically,
let’s choose

Q = IG+K1.

Since E(Y |X)β is identifiable, we can check whether the following rank condition holds

rank
[
E(Y |X)

IG+K1

]
= rank

(
E(Y |X)

)
. (3.4.42)

Clearly

rank
[
E(Y |X)

IG+K1

]
= G+K1.

Now the question reduces to checking whether

rank
(
E(Y |X)

)
= G+K1.

This coincides with the necessary and sufficient identification condition discussed in
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(3.4.41).
At first glance, our general rank condition (3.4.42) seems to be the same as the standard

one. Nonetheless, there is a crucial difference between them. The validation of (3.4.42)
does not depend on the assumption that the reduced form design matrix X has full column
rank. Without such an assumption, the standard rank condition for identification of β 1

(and thus γ1) fails but (3.4.42) still holds. On the other hand, let’s suppose either of the
rank conditions in (3.4.41) does not hold. Then we cannot identify β 1 and neither can we
identify γ1 but it is straightforward to check identification of an arbitrary linear combination
of β as shown in subsection 3.4.1.

Next, we look at the standard setup (3.4.20). In comparison to the standard identifica-
tion results, we need to make additional assumptions besides the ones in subsection 3.4.2.
Thus we assume the following regularity conditions:

E(U) = 0; (3.4.43)

Var(Ut) = Σ exists and is nonsingular, where U ′ =
[

U1 U2 . . . UT

]
; (3.4.44)

X is exogenous and has full column rank; (3.4.45)

E(X ′U) = 0; (3.4.46)

B is nonsingular; (3.4.47)

the distribution of the error terms can be fully characterized through its first two moments.
(3.4.48)

We emphasize herein that X is assumed to be exogenous is for simplicity. Otherwise, we
can condition on all related moments on X . Besides, we simplify the notation by assuming
(3.4.43). In fact, the existence of E(U) suffices. Moreover, the normality assumption about
the distribution of the error term is not required in our paper compared to Rothenberg
(1971) who imposes normal distribution with a separate mean-variance structure. However,
we do require that B and Γ are independent of Σ so that if assumption (3.4.48) is satisfied
the identification of B and Γ implies that of Σ but the reverse is not true; see Bekker
and Wansbeek (2001). As for the univariate random variable with normal distribution, the
identification of one moment entails that of another and vice versa; see Dufour and Liang
(2012). In addition, without assumption (3.4.48), the general rank condition (3.3.6) and its
equivalences are only sufficient and not necessary since the structural parameters may be
identified through higher order moments or other statistical properties rather than the first
two moments.
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Since B is nonsingular, we obtain the reduced form:

Y = XΠ +V, (3.4.49)

where
Π =−Γ B−1 (3.4.50)

and V =UB−1. For illustration purpose, we rewrite the above structural form and reduced
form of the SEMs by observing that:

B′Yt +Γ ′Xt =Ut , t = 1,2, . . . ,T (3.4.51)

and
Yt = Π ′Xt +Vt , t = 1,2, . . . ,T, (3.4.52)

where Vt =
(
B′)−1Ut and Yt , Xt and Vt are respectively the t-th row of Y , X and V . Since the

random vector Ut is assumed to have a zero mean and a positive definite covariance matrix
Σ , we have

E(Vt) = 0

and

Var(Vt)≡ Ω =
(
B−1)′Σ(B−1). (3.4.53)

Denote the G2 +GK structural parameters as

η =

(
vec(B)
vec(Γ )

)
and assume the M linear restrictions take the form

Φη = d (3.4.54)

which does not depend on Σ . Let’s rewrite (3.4.50) as

ψ(η)≡
[

Π IK

][ B

Γ

]
= 0. (3.4.55)

and denote η0 such that ψ(η0) and Ω(η0) satisfy (3.4.55) and (3.4.53).

Remark 3.4.4 (3.4.54) and (3.4.55) are both identifiable and consist of a linear system of
equations in η . This becomes clear if we take partial derivatives of ψ(η) with respect to η
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and the resulting linear operator can be denoted as

Ψ ≡
[

IG ⊗Π IGK

]
Therefore

ψ(η) =Ψη

and the SEMs are a linear system of equations[
Ψ
Φ

]
η =

[
O

d

]
.

To identify the G2+GK vector η , we choose the selection matrix Q(X) in (3.3.6) to be the
identity matrix IG2+GK . It follows that the necessary and sufficient condition for identifica-
tion of η becomes

rank

 Ψ
Φ

IG2+GK

= rank
[

Ψ
Φ

]
, (3.4.56)

which is equivalent to

rank
[

Ψ
Φ

]
= G2 +GK. (3.4.57)

Note that Richmond (1974, Theorem 5) reaches the same conclusion as (3.4.57) which is
just a special case of (3.3.6).

Let’s denote the following (GK +M)× (G2 +GK) matrix as

J ≡

[
Ψ
Φ

]

and J(1) as the submatrix of J by dropping off its first column. Then it is easy to check
identification of the i-th scalar parameter η i by verifying the following condition

rank

[
J

e′i

]
= rank(J).

Without loss of generality, let’s consider identification of the first element η1 by checking

rank

[
J

e′1

]
= rank(J). (3.4.58)
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Since

rank

[
J

e′1

]
= rank

[
O J(1)
1 O

]
= 1+ rank(J(1)),

(3.4.58) leads to

rank(J) = 1+ rank(J(1)), (3.4.59)

which is the same conclusion by Richmond (1974, Theorem 3). It is noticeable that the
standard results such as (3.4.57) and (3.4.59) are based on the linear SEMs setup. In fact,
the linear form of both (3.4.54) and (3.4.55) can be generalized to nonlinear specifications.
If we relax (3.4.48) or the assumption that the mean-variance structure is separate or the
linear restrictions (3.4.54) does not depend on the covariance matrix Σ , identification of
the structural parameters will also rely on the second moment of the reduced shocks which
becomes a nonlinear function of η . In the presence of nonlinearity the standard rank con-
ditions will fail. However, (3.3.6) and other statements in Proposition 3.3.3 are still valid
for checking identification of nonlinear SEMs; see Dufour and Liang (2013b).

Applying (3.3.6), we can also derive identification condition for an arbitrary structural
equation of (3.4.20). Let A =

[
B′ Γ ′

]
and denote Ai

′ the i-th row of A, i = 1,2, . . . ,G.
Suppose the linear restrictions are

ϕ iAi = 0, , i = 1,2, . . . ,G,

where ϕ i is a Mi × (G+K) constant matrix.
Clearly if empirical studies are interested in identification of some linear combination

l′η , it is straightforward to write the rank condition as

rank

[
J

l′

]
= rank(J). (3.4.60)

3.5. Conclusion

We study the necessary and sufficient conditions for the SEMs with particular attention
paid to the linear system, where both the structural equations and the prior restrictions are
linear in the structural parameters. We introduce a general framework for the system of
simultaneous equations which provides the flexibility of including a variety of the SEMs
setups commonly encountered in the literature, such as Fisher (1966), Rothenberg (1971),
Richmond (1974) and Bekker and Wansbeek (2001), etc. In contrast to the classical SEMs,
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we relax a series of assumptions on the usual model specifications so that the standard
identification conditions can be easily generalized as special cases of our rank condition
and its equivalences. First of all, the design matrix in the reduced form may not have full
column rank. Since we are concerned about the identification of structural parameters but
the full rank constraint is only conductive to identifying the reduced form parameters and is
not related to the identification of structural parameters, relaxation of this assumption does
not cause direct effect on identification of deep parameters. With the help of additional
prior information, it is possible to achieve a complete identification of the whole structural
model. Otherwise, we are still able to identify some linear combinations of parameters
provided that the structure of the SEMs under consideration satisfies certain identification
conditions we have proposed, i.e., parametric function identification is feasible when the
design matrix is deficient in rank. Furthermore, the coefficient matrix of the endogenous
variables can be singular. Therefore, our general rank condition is applicable even if there
does not exist a unique reduced form of the SEMs. Indeed, since we focus directly on
the structural equations, the validity of the general identification conditions holds despite
the existence of a unique reduced form. Besides, we relax the assumption that the design
matrix is either exogenous or fixed. Thus all endogenous variables are now conditioned
on the instruments and identification conditions now rely on the realized values of these
instrumental variables. Note that we allow for some of the instruments to be endogenous
and this has an influential impact on the study of instrumental variables since it is always a
challenging issue to deal with missing instruments and weak instruments and how to select
the strong instruments from a large set of candidates is still open. Moreover, our SEMs
setup takes into account the presences of nuisance parameters and their role in identifica-
tion. As argued by Dufour and Liang (2012), the necessary and sufficient conditions are
valid as long as the nuisance parameters can be completely separated from the parameters
of interest (i.e., structural parameters or deep parameters). Otherwise, the identification
conditions established therein are only sufficient and not necessary. What needs to be men-
tioned is that the standard normality assumption on the distribution of the structural shocks
implies a separate mean-variance structure. Thus the classical identification conditions are
special cases of our results. Additionally, we demonstrate the generality of proposed identi-
fication conditions by considering two types of SEMs setups: univariate structural equation
and multivariate structural equations, and provide conditions for identification of the entire
structural parameter vector, a subvector or any arbitrary scalar element of the structural
parameter vector and any linear combination of its components.

The identification conditions established are global in the sense that they can check
identification of the structural parameters over the entire parameter space or constrained
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space under some prior information. If the SEMs are nonlinear in the structural parame-
ters, we generally can only obtain local identification within some neighborhoods of given
parameter values. However, it is still possible to achieve global identification for nonlin-
ear models inclusive of nonlinear SEMs using other techniques based on global univalence
theorems. These interesting issues will be discussed as separate topics in our following
papers.
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Chapter 4

Necessary and sufficient conditions for
nonlinear parametric function
identification

Jean-Marie Dufour and Xin Liang

Abstract We study identification conditions of a general nonlinear function β (θ) in terms
of another nonlinear parametric function γ(θ) which is identifiable in nonlinear models
and call it “parametric function identification”. The setup is fundamentally semiparamet-
ric, and the basic assumption is that structural parameters of interest determine a number
of identifiable parameters through a nonlinear equation (such as a conditional or uncondi-
tional moment equation). Such models are quite common in econometrics, and include for
example nonlinear models typically estimated by GMM, and dynamic stochastic general
equilibrium (DSGE) models (used in macroeconomics and finance). This paper consid-
ers the general case where not all model parameters are identifiable, with the purpose of
characterizing nonlinear parameter transformations which are identifiable. The literature
on this problem is very thin, and only deals with the identification of the full parameter
vector in the equation of interest. The contributions of this paper lies in the following
aspects. First, we propose both necessary and sufficient conditions for local parametric
function identifications when the classical assumption of full rank Jacobian matrix fails. It
is noted that such necessary and sufficient conditions for parametric function identification
are valid under rather weak assumptions and they hold with or without linear and nonlinear
restrictions. The framework under investigation is quite general since γ(θ) is not limited to
either unconditional moment equations or conditional moment equations, as studied in the
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literature. Besides, we allow for parametric functions to have infinite dimensions although
we focus on identification for parametric models. Second, we introduce to the literature the
concept of local identification around a parameter value and distinguish it from the classi-
cal definition of local identification at a parameter value which is restrictive for statistical
inference. This new concept will help achieve local parametric function identification in
the restricted parameter space, which helps justify the existence of a consistent estimator.
Third, we provide a group of equivalent conditions for parametric function identification
that are intuitive and easy to check in practice. The useful rank condition for parametric
function identification is just one of these equivalences. Fourth, we verify that the es-
tablished identification conditions can be readily applied to the likelihood model setups
through Kullback-Leibler divergence and local parametric function identification can be
achieved by higher order moments. Fifth, this paper can help empirical research for identi-
fication since the general parametric function identification conditions proposed are easily
applicable to the simultaneous models and the DSGE models. It shows that most of the
classical rank identification conditions in the literature can be generalized as special cases.

4.1. Introduction

The earliest known study in English on identification problem is attributed to Wright
(1915); see Stock and Trebbi (2003) who mention the fact that Lenoir (1913) appears to
be the first to notice identification issue in French, which is noted by both Fox (1968) and
Christ (1985). Although the important results of Wright (1915) have been discussed by
Working (1927), identification has not become a heated topic in econometrics until it is
rekindled by Koopmans and Reiersøl (1950) who formally study the identification issue
through reformulating the specification problem. Some later influential work on identifi-
cation with particular statistical model framework includes Fisher (1966) and Rothenberg
(1971). Of course mathematicians and statisticians have a long history of interest in the
unique solution to a given system; see Birkhoff (1934), Whyburn (1942) and Arens (1946)
who analyze the properties of homeomorphism group in the topological space. If such a
uniqueness does exist it is named (global) univalence. Parthasarathy (1983) gives a detailed
background on univalence and its related theorems. Since homeomorphism is sufficient for
injectivity and hence univalence, a large amount of fruitful work on global homeomor-
phism and local homeomorphism and the relationship between them is closely related and
includes Church (1962), Church (1963), Gale and Nikaidô (1965), Plastock (1974), Kojima
and Saigal (1979), Garcia and Zangwill (1979), Pourciau (1982). In essence, identification
can be treated as a problem of univalence over the parameter space because if there is a
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one-to-one function between the parameter θ of interest and the probability distribution
Pθ , then θ is (globally) identifiable.

Generally speaking, identifiability of parameters should be treated independently of
and prior to statistical inference issues as advocated by Manski (1995). Meaningful con-
sistent estimators of linear parameters in statistical models entail identifiability of such
parameters. Unless identification holds, any statistical inference derived and interpreta-
tions induced thereon could become unreliable or even misleading. Although theoretical
verification of identifiability should always be conducted before we perform statistical in-
ference, it is often difficult to do so, especially for nonlinear regression models such as
simultaneous equations models (SEMs). Therefore, the literature has to assume identifia-
bility in most cases. Another reason of performing estimation first may be that sometimes
the interval estimators can provide useful information about the identifiability of certain
parameters. That is to say, if the confidence intervals are unbounded or cover the entire
parameter space, then we can conclude that these parameters are not identifiable. Global
identification of parameters could be achieved in linear regression models and usually we
can obtain only local identification for nonlinear regression models; see the discussions in
Rothenberg (1971). The most recent paper that discusses global identification in nonlinear
models is by Komunjer (2012) who relaxes the classical Gale-Nikaidô-Fisher-Rothenberg
conditions by assuming a nonnegative determinant of the Jacobian matrix. As a trade-off,
other restrictions, such as properness and countably many solutions to a mapping at its crit-
ical values, have to be imposed to obtain sufficient conditions for global identification. On
the other hand, an increasing number of literature focus on global or local identification in
nonparametric and semiparametric models based on conditional moment restrictions, i.e.,
conditional on the instrumental variables; see Florens (2003), Newey and Powell (2003),
Florens, Johanes and Van Bellegem (2012), Chernozhukov, Imbens and Newey (2007),
Chen et al. (2011). Chen et al. (2011) state a sufficient condition for local identification
which is close to one of the identification conditions we propose in the paper but they only
consider sufficient condition for local identification at θ 0 through the rank of the Jacobian
matrix of the moment conditions. Meanwhile, we recognize that global identification in
the context of nonlinear models is quite challenging. Rothenberg (1971) gives a sufficient
condition for global identification under strong assumptions such as multivariate normality,
known covariance matrix and full rank information matrix. Our paper focuses on condi-
tions for both global identification and local identification.

Another important issue studied in the paper is what we call “parametric function iden-
tification” or “function identification” for simplicity when it causes no ambiguity, which
means that the parameter vector θ may not be identifiable but a function of θ can still be
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identified. Surprisingly, the literature on this topic is quite scarce. For instance, Fisher
(1966) considers identification of a single equation within the SEMs setups while Rich-
mond (1974) concentrates on global identification of either the entire parameter vector θ
or an element of it. But neither paper discusses identification of a general nonlinear func-
tion of θ . Meanwhile, Rothenberg (1971) studies identification of a scalar of θ but his
results are limited to likelihood models [see also Bowden (1973)] and do not cover iden-
tification of nonlinear functions. To the best of our knowledge, we are the first to look at
identification conditions of a general nonlinear function β (θ) in terms of another nonlinear
function γ(θ) which is identifiable in nonlinear models. On one hand, the concept of “para-
metric function identification” extends that of partial identification in the sense of Phillips
(1989) and Bekker and Wansbeek (2001) who are interested in identification of either a
scalar element or a subvector of θ without mentioning identification of a function of θ . In
contrast, we provide both necessary and sufficient conditions for identification of a general
function of θ which can be linear or nonlinear in θ . This makes our identification results
applicable to some well-known statistical and econometric models, such as the likelihood
models, the simultaneous equations models, the DSGE models, etc. On the other hand, we
use the term “parametric function identification” to distinguish it from the concept of set-
valued identification region, which is also named partial identification by Manski (1995),
Manski (2003) and Tamer (2010). Nevertheless, Manski (1995) employs partial identifi-
cation to compare with point identification and does not mean partially identified models
as Phillips (1989) and Bekker and Wansbeek (2001) do. In essence, we concern ourselves
with point identification of a parametric function of θ rather than putting identification
bounds on the parameters. Hence “parametric function identification” will help clarify the
confusion caused by partial identification in the literature.

Empirically, identification issue has gained popularity in the literature especially when
researchers try to derive reliable statistical inferences in the presence of weak instruments
and weak identification. For instance, the New Keynesian Phillips curves (NKPC) have
been studied extensively and particular attentions concentrate on the hybrid NKPC by Galí
and Gertler (1999) and its variations; see Mavroeidis (2005), Rudd and Whelan (2006),
Zhang, Osborn and Kim (2007), Tsoukis, Kapetanios and Pearlman (2011) and Nymoen,
Swensen and Tveter (2012). Moreover, recent literature has also made progress in using
identification robust methods to deal with weak identification problem in the NKPC; see
Dufour, Khalaf and Kichian (2006), Nason and Smith (2008), Martins and Gabriel (2009),
Dees, Pesaran, Smith and Smith (2009), Kleibergen and Mavroeidis (2009), etc. Never-
theless, there does not exist a simple and unified approach that can check identification
of a function of deep parameters. This paper makes a breakthrough in examining differ-
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ent types of identification issues under a general framework, i.e., we provide identification
conditions to analyze both identification failure and weak identification with the flexibility
to study any functional form (linear and nonlinear) of structural parameters.

Our paper makes contributions to the analysis of identification conditions in the fol-
lowing aspects. First, we establish both necessary and sufficient conditions for parametric
function identification with and without linear or nonlinear restrictions. It will be inter-
esting to achieve function identification rather than identification of the whole parameter
vector because often identifying a subvector or a linear combination of parameter vector is
more feasible and efficient when identification of each element of the parameter vector be-
comes impossible without further information about the underlying distributions. Note that
our conditions for identification of functions of parameters include the local identification
of the entire parameters vector as a special case. Second, we introduce to the literature a
new concept of local identification around θ 0 and distinguish it from the classical defini-
tion of local identification at θ 0. Some extensions of the standard identification conditions
have been made. Third, a group of intuitive equivalent necessary and sufficient conditions
for parametric function identification are introduced using vector space properties since
empirical researchers usually examine a statistical model through its explanatory variables.
Therefore, our results are easier to verify in practice.

This paper is organized as follows. We give the classical definitions of global and local
identifications for parameters of interest and related standard results with slight extensions
in Section 4.2. Section 4.3 introduces the concept of local identification around a point
and both necessary and sufficient conditions for local identification based on the modified
inverse function theorem. Section 4.4 provides the local identification conditions for gen-
eral parametric functions and alternative conclusions on local identification based on linear
parameters. Section 4.5 investigates identification conditions in likelihood models. Sec-
tion 4.6 applies the identification results in the context of the SEMs and the DSGE models.
Section 4.7 demonstrates how to easily check identification failure and weak identifica-
tion issues using our proposed general rank condition (and its equivalences) through real
macroeconomic models. Section 4.8 concludes.

4.2. Framework

We start with the well-known definitions of observational equivalence, global identification
and local identification at θ 0 as in the classical literature. Let (Ω , A , P) be a statistical
model, where Ω is a sample space, A is a σ -algebra of subsets of Ω , P = {Pθ : θ ∈Θ} is
a family of probability measures on (Ω , A ), the open connected set Θ ∈Rk is a topological
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parameter space. Also let γ : Θ → Γ be some parametric function of θ . For instance, we
can take γ(θ) to be the moment equation as follows:

γ(θ) = E[g(Yt ;θ)]

or
γ(θ) = E[g(Yt ;θ)|Zt ].

Note that γ(θ) does not have to take the form of a moment condition as the literature usu-
ally assumes. In fact, it can be any nonlinear transformation of moments. Furthermore, the
probability distribution of g(Yt ;θ) is allowed to depend on both θ and the nuisance param-
eter ν ∈ Ξ which can have an infinite dimension. In other words, ν can be any assumption
regarding the distribution of observed variables – such as g(Yt ;θ) in the case of a moment
equation– which is not completely identified through θ . Therefore, the distribution of ob-
served variables is not necessarily specified up to a finite number of parameters and our
framework covers semiparametric setups.

4.2.1. Definitions

We now define different types of identifications as follows. Suppose the nuisance parameter
ν can be separated from the parameter of interest θ and denote the probability distribution
as Pθ̄ ≡ P(θ ,ν), ∀ν ∈ Ξ .

Definition 4.2.1 OBSERVATIONAL EQUIVALENCE. If θ̄ 1 = (θ 1,ν1) and θ̄ 2 = (θ 2,ν2)

satisfy the condition Pθ̄ 1
= Pθ̄ 2

,we say that θ̄ 1 and θ̄ 2 are observationally equivalent.

Although observational equivalence has been defined in classical papers [see Koopmans
and Reiersøl (1950) and Rothenberg (1971)], Definition 4.2.1 is the first in the literature
to explicitly take into account nuisance parameters and therefore contains semiparametric
frameworks.

Definition 4.2.2 GLOBAL IDENTIFICATION AT θ 0 AND OVER Θ . The parameter θ is

globally identifiable at θ 0 ∈Θ if and only if

(
θ ̸= θ 0

)
⇒
(
P(θ ,ν1) ̸= P(θ 0,ν2)

)
, ∀θ ∈Θ , ∀ν1, ν2 ∈ Ξ . (4.2.1)

On the other hand, the parameter θ is said to be globally identifiable over Θ if and only if

(
θ 1 ̸= θ 2

)
⇒
(
P(θ 1,ν1) ̸= P(θ 2,ν2)

)
, ∀θ 1, θ 2 ∈Θ , ∀ν1, ν2 ∈ Ξ . (4.2.2)

92



Empirically, it is feasible to identify a parametric function of θ even if θ itself is not
identifiable and we denote such a transformation γ(θ).

Definition 4.2.3 GLOBAL IDENTIFICATION OF PARAMETRIC FUNCTIONS AT θ 0 AND

OVER Θ . The parametric function γ : Θ →Γ is globally identifiable at θ 0 ∈Θ if and only

if (
γ(θ) ̸= γ(θ 0)

)
⇒
(
P(θ ,ν1) ̸= P(θ 0,ν2)

)
, ∀θ ∈Θ , ∀ν1, ν2 ∈ Ξ . (4.2.3)

On the other hand, the parametric function γ : Θ →Γ is globally identifiable over Θ if and

only if

(
γ(θ 1) ̸= γ(θ 2)

)
⇒
(
P(θ 1,ν1) ̸= P(θ 2,ν2)

)
, ∀θ 1, θ 2 ∈Θ , ∀ν1, ν2 ∈ Ξ . (4.2.4)

Definition 4.2.3 states that γ(θ) is globally identifiable if and only if we can empirically
distinguish different values of γ(θ) from different probability distributions of the observed
data. It separates itself from the standard global identification at θ 0 in the literature [see
Gouriéroux and Monfort (1995)] by considering nuisance parameters in the framework.
Moreover, it is convenient to generalize Definition 4.2.3 by studying identification of a
parametric function of θ in terms of another identifiable parametric function, which we
call parametric function identification.

Definition 4.2.4 GLOBAL IDENTIFICATION IN TERMS OF ANOTHER PARAMETRIC

FUNCTION AT θ 0 AND OVER Θ . Let β : Θ → B and γ : Θ → Γ be two parametric

functions. β (θ) is globally identifiable in terms of γ(θ) at θ 0 ∈Θ if and only if

(
β (θ) ̸= β (θ 0)

)
⇒
(
γ(θ) ̸= γ(θ 0)

)
, ∀θ ∈Θ . (4.2.5)

On the other hand, β (θ) is globally identifiable in terms of γ(θ) over Θ if and only if

(
β (θ 1) ̸= β (θ 2)

)
⇒
(
γ(θ 1) ̸= γ(θ 2)

)
, ∀θ 1, θ 2 ∈Θ . (4.2.6)

Note that the statement in Definition 4.2.4 is equivalent to saying that β (θ) can be ex-
pressed as a transformation of γ(θ) in Θ , which entails that β (θ) can be globally identified
as long as γ(θ) is globally identifiable. Similarly, we can define local identifications at θ 0

as follows.

Definition 4.2.5 LOCAL IDENTIFICATION OF PARAMETERS AT θ 0. The parameter θ is

locally identifiable at θ 0 ∈Θ if and only if there exists an open neighborhood V (θ 0) of θ 0
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such that

(
θ ̸= θ 0

)
⇒
(
P(θ ,ν1) ̸= P(θ 0,ν2)

)
, ∀θ ∈ V (θ 0), ∀ν1, ν2 ∈ Ξ . (4.2.7)

Definition 4.2.6 LOCAL IDENTIFICATION OF PARAMETRIC FUNCTIONS AT θ 0. The

parametric function γ : Θ → Γ is locally identifiable at θ 0 ∈ Θ if and only if there exists

an open neighborhood V (θ 0) of θ 0 such that

(
γ(θ) ̸= γ(θ 0)

)
⇒
(
P(θ ,ν1) ̸= P(θ 0,ν2)

)
, ∀θ ∈ V (θ 0), ∀ν1, ν2 ∈ Ξ . (4.2.8)

Definition 4.2.7 LOCAL IDENTIFICATION IN TERMS OF ANOTHER PARAMETRIC FUNC-
TION AT θ 0. Let β : Θ → B and γ : Θ → Γ be two parametric functions. β (θ) is locally

identifiable in terms of γ(θ) at θ 0 ∈ Θ if and only if there exists an open neighborhood

V (θ 0) of θ 0 such that

(
β (θ) ̸= β (θ 0)

)
⇒
(
γ(θ) ̸= γ(θ 0)

)
, ∀θ ∈ V (θ 0). (4.2.9)

For instance, we can take γ(θ) and β (θ) to be the reduced form parameters and the
structural parameters in the dynamic stochastic general equilibrium (DSGE) models. We
want to retrieve useful information about β (θ) from the identifiable structural parameter
γ(θ). That is to say, we need to check whether β (θ) depends on θ only through γ(θ).

We need the following definition to achieve both necessary and sufficient conditions for
local identification; see Fisher (1966), Rothenberg (1971) and Shapiro (1986).

Definition 4.2.8 REGULAR POINT. Let θ be a parameter vector in the parameter space

Θ ⊂ Rk and M(θ) a matrix whose elements are continuous functions of θ . Then θ 0 is a

regular point of the matrix M(θ) if there is an open neighborhood V (θ 0) of θ 0 such that

M(θ) has the same rank for all θ ∈ V (θ 0).

In fact, the above definitions are valid without specifying the dimension of the param-
eter space Θ . Nevertheless, we focus on the establishment of identification conditions
through the rank of Jacobian matrices which requires that Θ has a finite dimension.

4.2.2. Standard results

We now provide the classical condition for global and local identifications at θ 0 [see Fisher
(1966), Rothenberg (1971), Bowden (1973) and Bekker et al. (1994)] that can help establish
more general identification conditions hereinafter, which will in turn lay a solid foundation
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for our derivation of the necessary and sufficient local identification conditions for nonlin-
ear models, such as the DSGE models. For reference purpose, we replicate some of them
below. Rothenberg (1971) has established the well-known global and local identification
conditions based on the likelihood function and the rank of the Fisher information matrix
under a series of assumptions; Rothenberg (1971, Theorem 3).

Theorem 4.2.9 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION. Let θ 0 be a regular point of the Fisher information matrix. Then θ is locally

identifiable at θ 0 if and only if the Fisher information matrix evaluated at θ 0 is nonsingu-

lar.

Moreover, Rothenberg (1971) proposes conditions for identification of a scalar param-
eter of the simultaneous equations models (SEMs); see Rothenberg (1971, Theorem 8,
Corollary 3). Suppose there exist M continuously differentiable restrictions on the struc-
tural parameters

ϕ(θ) = 0 (4.2.10)

and we denote the Jacobian matrix of ϕ as Jϕ (θ).

Theorem 4.2.10 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION OF A SCALAR PARAMETER. Suppose

(1) Θ is an open set in Rk;

(2) the parameter space Θ is restricted to (4.2.10) and denoted by Θ̄ ;

(3) f (y;θ) depends on θ only through the g reduced form parameters η = ρ(θ) such that

f (y;θ) = f ∗(y;η) and ρ is continuously differentiable in Θ with Jacobian matrix Jρ(θ);

(4) Ξ ⊆ Rg is the image of Θ̄ under ρ;

(5) every η ∈ Ξ is globally identifiable.

Let Q(θ)≡

[
Jρ(θ)
Jϕ (θ)

]
and Q1(θ)≡

[
Q(θ)

e1
′

]
, where e1 is the unit vector with one as its

first element and zero elsewhere. Let θ 0 is a regular point of of both Q(θ) and Q1(θ). Also

denote θ 1 and θ 0,1 as the first element of θ and θ 0. Then the first element θ 1 is locally

identifiable at θ 0,1 if and only if Q(θ) and Q1(θ) have the same rank.

Now consider a system of G structural equations:

Y B+XΓ =U, (4.2.11)
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where Y is a T ×G matrix of endogenous variables, X is a T ×K matrix of exogenous
variables, B and Γ are G×G and K ×G matrices of unknown coefficients. Let Ut , t =

1,2, . . . ,T, be the element of U and assume it is normally distributed with zero mean and
covariance matrix Ω .

Theorem 4.2.11 NECESSARY AND SUFFICIENT CONDITION FOR GLOBAL IDENTIFI-
CATION OF A SINGLE EQUATION. Let A ≡

[
B′ Γ ′

]
and Ai be the i-th column of

A′, i = 1,2, . . . ,G. Suppose there exist linear restrictions Mi on Ai such that ϕ iAi = 0, i =

1,2, . . . ,G, where ϕ i is a constant matrix. Then Ai is globally identifiable at the true value

A0,i if and only if rank(ϕ iA
′) = G.

Bekker and Wansbeek (2001) restate the main conclusions of Rothenberg (1971) and
generalize the identified parametric function to include higher order moments for nonnor-
mal distributions. They also provide a different condition for local identification of a scalar
parameter under similar assumptions of Theorem 4.2.10; see Bekker and Wansbeek (2001,
Theorem 9).

Theorem 4.2.12 ALTERNATIVE SUFFICIENT CONDITION FOR LOCAL IDENTIFICATION

OF A SCALAR PARAMETER. Suppose the assumptions of Theorem 4.2.10 are satisfied.

Let Q(i)(θ) be the Jacobian matrix Q(θ) without the i-th column and θ 0 be a regular point

of of both Q(i)(θ) and Q(θ). If rank
(
Q(i)(θ)

)
< rank(Q(θ)), then θ i is locally identifiable

at θ 0,i.

Recently, Chen et al. (2011) propose a sufficient condition for local identification at θ 0

using the rank of the Jacobian matrix of the moment conditions. For convenience, we state
it as a corollary as follows.

Corollary 4.2.13 SUFFICIENT CONDITION FOR LOCAL IDENTIFICATION WITH MO-
MENT CONDITIONS. Let g(θ) : Θ ⊆ Rk 7→ Rp be moment functions. If g(θ) is differ-

entiable at θ 0 and rank[Jg(θ 0)] = p, where Jg(θ) is the Jacobian matrix of g(θ), then θ is

locally identifiable at θ 0.

In comparison to the above mentioned classical identification conclusions, we herein
propose somewhat different conditions for local identification at θ 0. Specifically, we do not
limit a priori the locally identifiable function as the likelihood functions of the observations
as in Rothenberg (1971) or the moment conditions as in Chen et al. (2011). Rather it can
take the form of any locally identifiable functions such as the Kullback-Leibler divergence,
the first order partial derivative of the Kullback-Leibler divergence, the auto-covariance
function as in Komunjer and Ng (2011), the quantile function of the probability function
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or any moment of the data which depends on the deep parameter θ . Thus the following
conclusions can be treated as a complement to the classical literature on local identification
at θ 0.

Theorem 4.2.14 SUFFICIENT CONDITION FOR LOCAL IDENTIFICATION AT θ 0. Let

θ 0 ∈Θ and γ : Θ ⊆ Rk 7→ RG be a parametric function which is locally identifiable at θ 0.

Suppose γ(θ) is differentiable at θ 0 with Jacobian matrix Jγ(θ 0). Then the condition

rank[Jγ(θ 0)] = k (4.2.12)

implies that θ is locally identifiable at θ 0.

It is worth noting that the parametric function γ(θ) in Theorem 4.2.14 is in a general
form without any specification restrictions. Hence, Theorem 4.2.14 includes the statement
by Chen et al. (2011) as a special case if γ(θ) takes the form of the moment function.

4.2.3. Necessary and sufficient condition for local identification at a
point

As a further extension to the classical condition for identification at θ 0, we state a condition
for local identification at θ 0 which is both necessary and sufficient with rigorous proof.

Theorem 4.2.15 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION AT θ 0. Let θ 0 ∈Θ and γ : Θ ⊆ Rk 7→ RG be a parametric function which is locally

identifiable at θ 0. Suppose γ(θ) is continuously differentiable in some open neighborhood

of θ 0 with Jacobian matrix Jγ(θ) and θ 0 is a regular point of Jγ(θ). Then θ is locally

identifiable at θ 0 if and only if

rank[Jγ(θ 0)] = k. (4.2.13)

Chen et al. (2011) propose a sufficient condition for identification through nonlinear
moment equations and they focus on identification of the linear parameter θ , rather than
an arbitrary nonlinear function of θ which we call parametric function identification and
will be studied in detail in Section 4.4. In comparison, Theorem 4.2.15 establishes both
both necessary and sufficient condition for local identification. Hence, we need to impose
stronger assumptions in Theorem 4.2.15 than those in both Corollary 4.2.13 and Theo-
rem 4.2.14. First of all, the parametric function γ(θ) has to be continuously differentiable
in some open neighborhood of θ 0. In constrast, the sufficient condition in Theorem 4.2.14
only requires that γ(θ) is differentiable at θ 0. Second, the assumption that θ 0 is a reg-
ular point of Jγ(θ) is crucial for the establishment of necessity; see Rothenberg (1971)

97



and Shapiro (1986). On the other hand, the validity of sufficient condition alone in The-
orem 4.2.14 does not need such a regularity assumption. Nevertheless, Theorem 4.2.15
is still classical because it relies on full rank Jacobian matrix to obtain local identification
at θ 0. In the following sections, we will derive more powerful identification conclusions
based on Theorem 4.2.15 that substitute much weaker conditions for the full rank or non-
singular Jacobian matrix assumption.

4.3. Local identification around a point

In this section, we introduce the definition of local identification around θ 0 which implies
the usual meaning of local identification at θ 0 and establish both necessary and sufficient
condition for local identification in this stronger concept. As discussed, more often we have
to settle for local identification due to the difficulty of globally identifying the parameter of
interest. Nevertheless, if parameters can be identified within a neighborhood of some other
given parameter values rather than over the entire parameter space, we can still achieve
“global” identification in the sense that any two distinct parameter points will entail two
different parameterized probability distributions within the whole neighborhood which can
be treated as a restricted parameter space.

As discussed in Section 4.2, the following definitions also take into account the semi-
parametric setup by allowing the nuisance parameter space Ξ to be infinitely dimensional
based on the assumption that the parameter of interest θ can be separated form the nuisance
parameter ν .

Definition 4.3.1 LOCAL IDENTIFICATION OF PARAMETERS AROUND θ 0. The parame-

ter θ is locally identifiable around θ 0 ∈Θ if and only if there exists an open neighborhood

V (θ 0) of θ 0 such that

(
θ 1 ̸= θ 2

)
⇒
(
P(θ 1,ν1) ̸= P(θ 2,ν2)

)
, ∀θ 1, θ 2 ∈ V (θ 0), ∀ν1, ν2 ∈ Ξ . (4.3.1)

Compared to Definition 4.2.5 which states that θ is locally identifiable at θ 0 if and only
if there does not exist any other parameter in such an open neighborhood of θ 0 which is
observationally equivalent to θ 0, Definition 4.3.1 emphasizes that θ is locally identifiable
around θ 0 if and only if no point in the neighborhood of θ 0 is observationally equivalent to
any other distinct point in the same neighborhood. As a consequence, local identification
around θ 0 is stronger than local identification at θ 0 and thus implies the latter. Equivalently
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we can rewrite (4.3.1) as

(
P(θ 1,ν1) = P(θ 2,ν2)

)
⇒
(
θ 1 = θ 2

)
, ∀θ 1, θ 2 ∈ V (θ 0), ∀ν1, ν2 ∈ Ξ . (4.3.2)

Similarly, we define local identification of parametric function around θ 0 and local identi-
fication through another identifiable parametric function.

Definition 4.3.2 LOCAL IDENTIFICATION OF PARAMETRIC FUNCTIONS AROUND θ 0.

The parametric function γ : Θ →Γ is locally identifiable around θ 0 ∈Θ if and only if there

exists an open neighborhood V (θ 0) of θ 0 such that

(
γ(θ 1) ̸= γ(θ 2)

)
⇒
(
P(θ 1,ν1) ̸= P(θ 2,ν2)

)
, ∀θ 1, θ 2 ∈ V (θ 0), ∀ν1, ν2 ∈ Ξ . (4.3.3)

Definition 4.3.3 LOCAL IDENTIFICATION IN TERMS OF ANOTHER PARAMETRIC FUNC-
TION AROUND θ 0. Let β : Θ → B and γ : Θ → Γ be two parametric functions. β (θ)
is locally identifiable in terms of γ(θ) around θ 0 ∈ Θ if and only if there exists an open

neighborhood V (θ 0) of θ 0 such that

(
β (θ 1) ̸= β (θ 2)

)
⇒
(
γ(θ 1) ̸= γ(θ 2)

)
, ∀θ 1, θ 2 ∈ V (θ 0). (4.3.4)

Assuming γ(θ) is locally identifiable around θ 0 and continuously differentiable in The-
orem 4.2.15, we can derive the the conditions for local identification of θ around θ 0.

We next state a modified inverse function theorem based on which the conditions for
local identification around a point θ 0 can be established. Note that the continuity of the Ja-
cobian matrix at θ 0 plays a crucial role in the conditions for the local identification around
θ 0 as demonstrated in the proof. In fact, the inverse function theorem by Rudin (1976)
should be modified slightly by more accurate assumptions on the continuity and differen-
tiability of the parametric functions. First, recall the definitions of continuous differentia-
bility of a function at a point and on an open set in Rudin (1976, Definition 9.20). Let E

be an open set of Rn and assume f : Rn 7→Rm be a differentiable mapping on E . Then f is
continuously differentiable at a ∈ E if for every ε > 0 there exists a δ > 0 such that

∥J f (x)− J f (a)∥< ε

for all points x ∈ E and ∥x−a∥< δ . If f is continuously differentiable at every point of E ,
then f is said to be continuously differentiable on E . Next, we summarize such a variation
of the inversion function theorem as follows.
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Theorem 4.3.4 POINTWISE INVERSE FUNCTION THEOREM. Let f : Rm 7→ Rm be a

differentiable mapping in some open set E ⊆ Rm with continuous differentiability at some

a ∈ E . Suppose J f (a) is invertible and f (a) = b. Then there exist open sets A and B in

Rm such that a ∈ A , and b ∈ B, f is one-to-one on A and f (A ) = B. If g is the inverse

of f and defined in B by

g( f (x)) = x, (x ∈ A ), (4.3.5)

then g is differentiable in B. Furthermore, if assume f : Rm 7→ Rm is continuously dif-

ferentiable in some open set E ⊆ Rm and keep other assumptions unchanged, then g is

continuously differentiable in B.

As pointed out by Rudin (1976) and Nijenhuis (1974), the differentiability of f in E ,
the invertibility of J f (a) and the continuity of J f at a are sufficient to guarantee f being
one-to-one on A and the existence of the inverse function g. The assumption of the con-
tinuous differentiability of f on E is only required to show that the inverse function g is
continuously differentiable in B, which has no impact on the local identification of θ in
this paper. Hence the assumptions that are required to establish the local identification
around θ 0 are weaker than those in the inverse function theorem by Rudin (1976).

Theorem 4.3.5 CONDITIONS FOR LOCAL IDENTIFICATION AROUND θ 0. Let θ 0 ∈ Θ
and γ : Θ 7→ RG be a parametric function which is locally identifiable around θ 0. Suppose

γ(θ) is differentiable in some open neighborhood of θ 0 with continuous differentiability at

θ 0. Then the condition

rank[Jγ(θ 0)] = k (4.3.6)

implies that θ is locally identifiable around θ 0. Furthermore, suppose γ(θ) is continuously

differentiable in some open neighborhood of θ 0 and θ 0 is a regular point of Jγ(θ). Then θ
is locally identifiable around θ 0 if and only if rank[Jγ(θ 0)] = k.

The establishment of Theorem 4.3.5 depends on the inverse function theorem [see
Rudin (1976)]. However, as pointed out by Krantz and Parks (2002, Theorem 3.3.2) and
Clarke (1976), we can have a stronger version of the inverse function theorem where γ(θ)
is p-th order continuously differentiable. For convenience, let’s recall the definition of the
p-th order continuous differentiability from Lieb and Loss (2000).

Definition 4.3.6 p-TH ORDER CONTINUOUS DIFFERENTIABILITY. Let f : Ψ ⊆ Rn 7→
Rm and ∂ p f j

∂xi1 ...∂ xip
be the p-th partial derivative of f j with respect to xi1, . . . ,xip , where

j = 1,2, . . . ,m. If ∂ p f j
∂xi1 ...∂xip

exist at all x ∈Ψ and are continuous functions on Ψ , then f is

said to be p-th order continuously differentiable in Ψ and denoted as Cp(Ψ).
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Hence we give the following proposition based on a stronger version of the inverse
function theorem.

Theorem 4.3.7 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION AROUND θ 0 WITH THE p-TH ORDER CONTINUOUSLY DIFFERENTIABLE FUNC-
TION. Let θ 0 ∈Θ and γ : Θ 7→ RG be a parametric function which is locally identifiable

around θ 0. Suppose γ(θ) is p-th order continuously differentiable in some open neighbor-

hood of θ 0 and θ 0 is a regular point of Jγ(θ). Then θ is locally identifiable around θ 0 if

and only if

rank[Jγ(θ 0)] = k. (4.3.7)

In connection to the proof of necessity of Theorem 4.2.15 and Theorem 4.3.5, we es-
tablish herein a statement that justifies the reverse argument of the inverse function theorem
.

Proposition 4.3.8 INVERTIBILITY OF THE JACOBIAN MATRIX. Let γ : Θ 7→ RG be a

parametric function which is locally identifiable around θ 0 and continuously differentiable

on V (θ 0). Suppose the inverse function of γ(θ) exists and is continuously differentiable. If

θ is locally identifiable around θ 0, then rank[Jγ(θ)] = k, ∀θ ∈ V (θ 0).

4.4. Parametric function identification

Rothenberg (1971) proposes the the classical identification conditions for the parameter
vector of interest or a scalar parameter through the rank of the Jacobian matrix of a given lo-
cally identifiable function. Bowden (1973) generalizes some of the conclusions of Rothen-
berg (1971) based on Kullback’s information criterion without imposing a series of regu-
larity assumptions on the density function. Bekker and Wansbeek (2001) attack on para-
metric function identification but only focus on the scalar parameter. Recently, Dasgupta
et al. (2007) manage to extend the local identification conditions by Rothenberg (1971)
to a function of parameters using the Fisher information matrix. More often, people are
interested in the identification of a linear combination of parameters either because it is in-
feasible to identify the entire parameter vector or because the information induced from the
identification of a function of the parameters will suffice to conduct statistical inference.
Therefore we establish herein a theorem that generalizes all the above classical identifica-
tion results through the local identification condition of a parametric function in terms of
another locally identifiable parametric function appealing to the linear subspace properties
of their kernels. Such a parametric function of interest can be the entire parameter vector
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θ , any scalar component of θ , an arbitrary linear combination of θ or any mapping of θ
that can be expressed as a transformation of an identifiable parametric function. Moreover,
it can take the form of the score function, the Kullback-Leibler divergence and the first
order partial derivative of the Kullback-Leibler divergence, which includes the parametric
function identification conditions in Bowden (1973) and Dasgupta et al. (2007) as special
cases. Furthermore, it is also worth emphasizing that the general condition is just one of
a series of powerful equivalent statements in Dufour and Liang (2012) which are readily
modified for local identification.

4.4.1. Identification of general parametric functions

First recall the definitions of the image space and the kernel space; see Abadir and Magnus
(2005).

Definition 4.4.1 IMAGE SPACE. Let A be a m×n matrix. The image space of A denoted

as Im(A) is the set

Im(A)≡ {y ∈ Rm : Ax = y for some x ∈ Rn}.

Definition 4.4.2 KERNEL SPACE. Let A be a m×n matrix. The kernel space of A denoted

as ker(A) is the set

ker(A)≡ {x ∈ Rn : Ax = 0}.

Theorem 4.4.3 CONDITIONS FOR LOCAL IDENTIFICATION OF PARAMETRIC FUNC-
TIONS AT θ 0. Suppose γ : Rk 7→ RG is differentiable at θ 0 and locally identifiable at

θ 0. Also assume β : Rk 7→ RH is continuously differentiable in an open neighborhood of

θ 0 and θ 0 is a regular point of Jβ (θ). Then the condition

Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′) (4.4.1)

implies that β (θ) is locally identifiable in terms of γ(θ) at θ 0. Furthermore, suppose γ(θ)
and β (θ) are continuously differentiable in an open neighborhood of θ 0 and θ 0 is a regular

point of both Jγ(θ) and Jβ (θ). Then β (θ) is locally identifiable in terms of γ(θ) at θ 0 if

and only if Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′).
More often it will be interesting to obtain identification condition of linear parameters

Qθ which is a special case of the general setup β (θ).

102



Corollary 4.4.4 CONDITIONS FOR LOCAL IDENTIFICATION OF LINEAR PARAMETRIC

FUNCTIONS AT θ 0. Suppose γ : Rk 7→ RG is differentiable at θ 0 and locally identifiable

at θ 0. Let Q be a H × k matrix. Then the condition

Im
(
Q′)⊆ Im

(
Jγ(θ 0)

′) (4.4.2)

implies that Qθ is locally identifiable in terms of γ(θ) at θ 0. Furthermore, suppose γ(θ)
is continuously differentiable in an open neighborhood of θ 0 and θ 0 is a regular point

of Jγ(θ). Then Qθ is locally identifiable in terms of γ(θ) at θ 0 if and only if Im
(
Q′) ⊆

Im
(
Jγ(θ 0)

′).
Corollary 4.4.4 is a generalization of Theorem 4.2.15, which becomes clear if we think

of the parametric function Qθ as θ . It is trivial that θ is continuously differentiable in Θ
and its Jacobian matrix has a constant rank k, i.e.,

Q = Ik, ∀θ ∈Θ ,

which means that
Im
(
Q′)= Rk, ∀θ ∈Θ .

If
Im
(
Q′)⊆ Im

(
Jγ(θ 0)

′),
it follows that Im

(
Jγ(θ 0)

′)= Rk. Hence

rank
[
Jγ(θ 0)

]
= rank

[
Jγ(θ 0)

′]= dim
(
Jγ(θ 0)

′)= k,

which is the result of Theorem 4.2.15. On the other hand, if we assume

rank
[
Jγ(θ 0)

]
= k,

the image space of Jγ(θ 0)
′ equals Rk which contains any other image space whose element

is of k dimension. Meanwhile, Im
(
Q′)= Rk and we have

[
Im
(
Q′)= Im

(
Jγ(θ 0)

′)]⇒ [
Im
(
Q′)⊆ Im

(
Jγ(θ 0)

′)] .
So (4.2.12) and (4.4.2) are equivalent if Qθ is taken to be θ .

It is natural to extend the above conditions for local identification at θ 0 to local identi-
fication around θ 0. As it turns out, such a generalization will require stronger assumptions.
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Particularly, the establishment of sufficiency needs θ 0 to be a regular point of both Jγ(θ)
and Jβ (θ) compared to Theorem 4.4.3 where we achieve sufficiency assuming that θ 0 is a
regular point of only Jβ (θ).

Theorem 4.4.5 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION OF PARAMETRIC FUNCTIONS AROUND θ 0. Let γ : Rk 7→ RG and β : Rk 7→ RH be

two parametric functions. Assume γ(θ) is locally identifiable around θ 0. Suppose γ(θ) and

β (θ) are continuously differentiable in an open neighborhood of θ 0 and θ 0 is a regular

point of both Jγ(θ) and Jβ (θ). Then β (θ) is locally identifiable in terms of γ(θ) around

θ 0 if and only if

Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′). (4.4.3)

Remark 4.4.6 Different from the case of the local identification of the parameter θ , we
need the assumption that θ 0 is a regular point of the Jacobian matrices to establish both the
necessary and sufficient for the local identification condition of β (θ) around θ 0.

As a direct consequence of Theorem 4.4.5, we provide two useful results on the differ-
entiability given β (θ) is locally identifiable in terms of γ(θ) around θ 0.

Proposition 4.4.7 DIFFERENTIABILITY OF THE REPARAMETERIZED FUNCTION. Let

γ : Rk 7→ RG and β : Rk 7→ RH be two parametric functions. Assume β (θ) is locally

identifiable in terms of γ(θ) around θ 0. Suppose γ(θ) and β (θ) are continuously differ-

entiable in an open neighborhood V (θ 0) of θ 0 and θ 0 is a regular point of both Jγ(θ)
and Jβ (θ). Then there exists a mapping β̄ : U 7→ V , where U ⊆ {γ(θ) : θ ∈ V (θ 0)} and

V ⊆ {β (θ) : θ ∈ V (θ 0)} and β̄ is differentiable in γ .

Proposition 4.4.8 DIFFERENTIABILITY OF THE REPARAMETERIZED FUNCTION WITH

p-TH ORDER CONTINUOUS DIFFERENTIABILITY. Let γ : Rk 7→ RG and β : Rk 7→ RH be

two parametric functions. Assume β (θ) is locally identifiable in terms of γ(θ) around θ 0.

Suppose γ(θ) and β (θ) are p-th order continuously differentiable in an open neighborhood

V (θ 0) of θ 0 and θ 0 is a regular point of both Jγ(θ) and Jβ (θ). Then there exists a mapping

β̄ : U 7→ V , where U ⊆ {γ(θ) : θ ∈ V (θ 0)} and V ⊆ {β (θ) : θ ∈ V (θ 0)} and β̄ is p-th

order continuously differentiable in γ .

In many statistical cases, the information from the observations alone is inadequate to
identify the parameters of interest and some prior information has to be imposed. Let’s
denote such a prior information regarding the parameters as

ξ (θ 0) = c, (4.4.4)
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where ξ : Rk 7→ RR and c is a known constant. Let Jξ (θ) be the Jacobian matrix of ξ (θ).
Along the lines to Theorem 4.4.3 and Theorem 4.4.5, we state the general local identifica-
tion condition with restrictions as follows.

Corollary 4.4.9 LOCAL IDENTIFICATION OF PARAMETRIC FUNCTIONS AT θ 0 WITH RE-
STRICTIONS. Suppose γ(θ), β (θ) and ξ (θ) are continuously differentiable in an open

neighborhood of θ 0 and θ 0 is a regular point of Jγ(θ), Jβ (θ) and Jξ (θ). Suppose γ(θ) is

locally identifiable at θ 0. Then

Im
(
Jβ (θ 0)

′)⊆ Im
[

Jγ(θ 0)
′ Jξ (θ 0)

′
]

is both necessary and sufficient for β (θ) to be locally identifiable at θ 0.

Corollary 4.4.10 LOCAL IDENTIFICATION OF PARAMETRIC FUNCTIONS AROUND θ 0

WITH RESTRICTIONS. Suppose γ(θ), β (θ) and ξ (θ) are continuously differentiable in

an open neighborhood of θ 0 and θ 0 is a regular point of Jγ(θ), Jβ (θ) and Jξ (θ). Suppose

γ(θ) is locally identifiable around θ 0. Then

Im
(
Jβ (θ 0)

′)⊆ Im
[

Jγ(θ 0)
′ Jξ (θ 0)

′
]

is both necessary and sufficient for β (θ) to be locally identifiable around θ 0.

Since linear or loglinear approximation has been a popular method to deal with the so-
lution to the DSGE models, we provide an interesting necessary and sufficient condition of
local identification for the product of the deep parameter and its Jacobian matrix evaluated
at some point in a subset of the parameter space.

Proposition 4.4.11 EQUIVALENT LOCAL IDENTIFICATION OF A PARAMETRIC FUNC-
TION AND THE PRODUCT OF ITS JACOBIAN AND THE PARAMETER. Let γ : Rk 7→ RG be

a differentiable parametric function. Suppose θ 0 is a regular point of Jγ(θ). Then the local

identification of γ(θ) around (or at) θ 0 entails the local identification of Jγ(θ 0)θ around

(or at) θ 0 and vice versa.

Proposition 4.4.11 does not impose any restrictions on the rank of the Jacobian matrix
Jγ(θ 0) in contrast to Theorem 4.2.15. As a consequence the Jacobian matrix Jγ(θ) eval-
uated at θ 0 can be deficient in rank. More importantly, the identification of the product
of the parameters and the partial derivatives of a nonlinear function with respect to these
parameters can be extended to higher order derivative case.
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4.4.2. Alternative formulations of local identification conditions based
on linearization

In order to show the generality of our proposed equivalent statements regarding the neces-
sary and sufficient identification conditions for an arbitrary linear combination of parame-
ters, it is straightforward to slightly modify our global identification results and concentrate
on the identification of parameters of nonlinear models within the given neighborhoods of
specified parameter values; see Dufour and Liang (2012). Specifically, if γ(θ) is locally
identifiable around θ 0 and the subspace condition (4.4.3) holds, β (θ) is locally identifiable
around θ 0 by Theorem 4.4.5. Nevertheless, such a kernel property is not straightforward
and may be hard to check in practice since statisticians usually look at a model through ex-
planatory variables. Thus we propose a group of equivalent identification conditions based
on the characteristics of subspaces.

Proposition 4.4.12 EQUIVALENT NECESSARY AND SUFFICIENT CONDITIONS FOR LO-
CAL IDENTIFICATION AROUND θ 0. Let γ : Θ 7→ RG and β : Θ 7→ RH be at differentiable

at θ 0 with derivatives Jγ(θ 0) and Jβ (θ 0) repectively. Then the following properties are

equivalent:

Im[Jβ (θ 0)
′]⊆ Im[Jγ(θ 0)

′] ; (4.4.5)

ker[Jγ(θ 0)]⊆ ker[Jβ (θ 0)] ; (4.4.6)

Jβ (θ 0) = F(θ 0)Jγ(θ 0), for some matrix F(θ 0) ; (4.4.7)

rank
[

Jγ(θ 0)

Jβ (θ 0)

]
= rank(Jγ(θ 0)) ; (4.4.8)

rank
[

Jγ(θ 0)

Jβ (θ 0)+V1(θ 0)Jγ(θ 0)

]
= rank(Jγ(θ 0)), for any q× p matrix V1(θ 0); (4.4.9)

rank
[

Jγ(θ 0)+V2(θ 0)Jβ (θ 0)

Jβ (θ 0)

]
= rank(Jγ(θ 0)), for any p×q matrix V2(θ 0); (4.4.10)

rank
[

Jγ(θ 0)

S(θ 0)Jβ (θ 0)

]
= rank(Jγ(θ 0)), (4.4.11)

where S(θ 0) is a q1 ×q matrix such that q1 = rank[S(θ 0)Jβ (θ 0)] = rank[Jβ (θ 0)];

rank
{

Jγ(θ 0)(I−Jβ (θ 0)
−Jβ (θ 0))

}
= rank(Jγ(θ 0))−rank(Jβ (θ 0)), for some g-inverse Jβ (θ 0)

−;
(4.4.12)

Jβ (θ 0) = Jβ (θ 0)Jγ(θ 0)
−Jγ(θ 0), for some g-inverse Jγ(θ 0)

−. (4.4.13)
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We herein emphasize that (4.4.5) is just one of a group of equivalences that can be used
as necessary and sufficient conditions for local identification under different assumptions.
For instance, given γ(θ) is locally identifiable at θ 0, if we further assume continuous dif-
ferentiability of γ(θ) and β (θ) and regularity of θ 0, all the equivalent conditions in Propo-
sition 4.4.12 are both necessary and sufficient for local identification of β (θ) in terms of
γ(θ) at θ 0 according to Theorem 4.4.3. If we substitute the assumption of local identifi-
cation of γ(θ 0) around θ 0 with that at θ 0 while keeping unchanged all other restrictions,
Theorem 4.4.5 shows that these equivalent conditions are both necessary and sufficient for
local identification of β (θ) in terms of γ(θ) around θ 0. Furthermore, the elements of Jγ(θ)
and Jβ (θ) are generally nonlinear transformations of θ . However, they can also be either
independent of θ or linear functions of θ . If this is the case, we are back to the classical
linear regression models where the necessary and sufficient identification conditions of an
arbitrary linear combination of parameters are global. Thus the above modified local iden-
tification conditions are indeed an extension to our global identificaion results. As can be
seen later, such an extension is crucial for the analysis of identifiability of parameters in the
DSGE models.

We next explain in detail the meaning of the above equivalent conditions and demon-
strate that they are intuitive and easy to apply. (4.4.6) and (4.4.5) are equivalent due to
the duality between the kernel space and the image space, see Gouriéroux and Monfort
(1995). (4.4.6) plays an important role in the proof the fundamental results, such as The-
orem 4.4.3 and Theorem 4.4.5 whereas (4.4.6) is more intuitive since empirical research
using regression analysis usually looks at the design matrix in columns. As for the linear
regression models, Rao and Mitra (1971) and among others propose estimability condi-
tions that are similar to (4.4.5) and (4.4.7). In fact, Reiersøl (1963) and Seely (1977) show
that these conditions are necessary and sufficient for both estimability and identifiability of
the whole parameter vector. In contrast, we extend the classical results on identification
from linear parameters to nonlinear parameters. Specifically, (4.4.5) and (4.4.7) are con-
cerned about identification of parameter in a more general form. Both γ(θ) and β (θ) can
be either linear or nonlinear functions of θ . If they are both linear in θ , then the Jacobian
matrices Jγ(θ) and Jβ (θ) become constant and we are back to the identification for linear
parameters. Besides, β (θ) can be the whole parameter θ , any element of θ or an arbitrary
linear combination of θ , see Dufour and Liang (2012). On the other hand, if either γ(θ)
or β (θ) is nonlinear or both of them are nonlinear, then we can check the relationship
between the subvector spaces of their Jacobian matrices. That is to say, if Jβ (θ 0)

′ can be
spanned by the columns of Jγ(θ 0)

′, β (θ) is identifiable in terms of γ(θ). Otherwise, we
cannot locally identify β (θ) around (or at) θ 0. Moreover the rank condition (4.4.8) and
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its variations (4.4.9), (4.4.10) and (4.4.11) provide a straightforward of checking the iden-
tification of β (θ) given that γ(θ) is locally identifiable. As it turns out that (4.4.8) can be
easily applied to some important statistical and economic models, such as the simultane-
ous equation model and the DSGE models. What is worth mentioning is that these rank
conditions are no longer in the classical sense since they are both necessary and sufficient
for parametric function identification of β (θ) rather than θ and we impose no restrictions
on the rank of the Jacobian matrices of γ(θ) and β (θ) evaluated at θ 0 which can be de-
ficient in our setup. Finally, the generalized inverse conditions (4.4.12) and (4.4.12) are
natural extensions to the estimability results by Alalouf and Styan (1979a) in a nonlinear
framework for parametric function identification. In the following discussions we will first
focus particularly the rank condition (4.4.8). Then we look through other equivalent local
identification conditions.

4.5. Identification in likelihood models

We now concentrate on parametric models and assume θ contains all model parameters so
that no nuisance parameter is involved in the parametric model setups. To demonstrate the
applications of the results hereinbefore, such as Theorem 4.2.15, we can take the locally
identifiable parametric function γ(θ) as the Kullback-Leibler distance and its first order
derivative. We show they are both locally identifiable and the subsequent consequences
coincide with the conclusion by Rothenberg (1971).

Recall first the definition of the Kullback-Leibler divergence [see also Gouriéroux and
Monfort (1995)]. Let (Ω , A , P) be a statistical model on a set of observations Y , where
Ω is a sample space, A is a σ -algebra of subsets of Ω , P = {Pθ : θ ∈ Θ} is a family
of probability measures on (Ω , A ), Θ is an open subset of Rk. Assume the probability
distributions have densities with respect to the same dominating measure µ . Let f (y;θ)
and f (y;θ 0) be two densities related to Pθ and Pθ 0 respectively. Then the measure of the
distance between Pθ and Pθ 0

DKL(θ |θ 0)≡ Eθ 0log
f (y;θ 0)

f (y;θ)
=
∫
Y

log
f (y;θ 0)

f (y;θ)
f (y;θ 0)µ(dy)

is called the Kullback-Leibler divergence.

Proposition 4.5.1 GLOBAL IDENTIFICATION OF THE KULLBACK-LEIBLER DIVER-
GENCE OVER Θ . The Kullback-Leibler divergence DKL : Θ 7→ R is globally identifiable

over Θ .
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It follows immediately that DKL : Θ 7→ R is globally identifiable at θ 0 and is locally
identifiable around θ 0. Furthermore, we can demonstrate that the first order partial deriva-
tive of the Kullback-Leibler divergence is locally identifiable at θ 0 based on Lebesgue’s
dominated convergence theorem [see Rudin (1976) and Casella and Berger (2002)], which
will lead to the well-known classical rank condition for identification.

Proposition 4.5.2 GLOBAL IDENTIFICATION OF THE FIRST ORDER DERIVATIVE OF THE

KULLBACK-LEIBLER DIVERGENCE AT θ 0. Suppose the following assumptions are sat-

isfied:

(1) f (y;θ) is strictly positive and differentiable on Θ ∀y ∈ Y ;

(2) DKL(θ |θ 0) is differentiable on Θ ;

(3) There exists a Lebesgue integrable function g1(y;θ) on Y and a constant c1 such that∣∣∣∣(∂ log f (y;θ)
∂θ

)
θ=θ ′

∣∣∣∣≤ g1(y;θ) ∀θ ′ such that |θ ′−θ | ≤ c1 and ∀y ∈ Y ;

(4) There exists a Lebesgue integrable function g2(y;θ) on Y and a constant c2 such that∣∣∣∣(∂ f (y;θ)
∂θ

)
θ=θ∗

∣∣∣∣≤ g2(y;θ) ∀θ ∗ such that |θ ∗−θ | ≤ c2 and ∀y ∈ Y .

Then the first order derivative of the Kullback-Leibler divergence ∂DKL(θ |θ 0)
∂θ is globally

identifiable at θ 0.

If replacing Θ with V (θ 0) in conditions (1) and (2) in Proposition 4.5.2, we con-
clude that the first order derivative of the Kullback-Leibler divergence ∂DKL(θ |θ 0)

∂θ is locally
identifiable at θ 0. Moreover, the first order derivative of the Kullback-Leibler divergence,
however, is usually not locally identifiable around θ 0 (and thus not globally identifiable
over Θ ) unless the probability distribution parameterized at any θ ∈ V (θ 0) is equal to the
true Pθ 0 . Additionally, the second order derivative of DKL(θ |θ 0) evaluated at θ 0, which is
the Fisher information matrix I (θ 0) , is not locally identifiable at θ 0. Suppose

Pθ = Pθ 0.

Then

∂ 2DKL(θ |θ 0)

∂θ∂θ ′ =−
∫
Y

∂ 2log f (y;θ)
∂θ∂θ ′ f (y;θ 0)µ(dy)

=−Eθ
∂ 2log f (y;θ)

∂θ∂θ ′
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= I (θ),

which is generally not equal to I (θ 0). Interestingly, using the definition of the Kullback-
Leibler divergence, we can provide an alternative way of showing the identity property of
the Fisher information matrix 1.

Since the first order derivative of the Kullback-Leibler divergence is locally identifiable
at θ 0 from Proposition 4.5.2, if we take it as γ(θ) in Theorem 4.2.15 we can establish the
condition for the local identification of θ through the rank of the Hessian matrix of the
Kullback-Leibler divergence by applying Theorem 4.2.15.

Theorem 4.5.3 CONDITIONS FOR LOCAL IDENTIFICATION THROUGH THE

KULLBACK-LEIBLER DIVERGENCE. Suppose DKL(θ |θ 0) is twice differentiable at

θ 0 with Hessian matrix HKL(θ 0|θ 0). Then the condition

rank[HKL(θ 0|θ 0)] = k (4.5.1)

implies that θ is locally identifiable at θ 0. Furthermore, suppose DKL(θ |θ 0) is twice con-

tinuously differentiable in V (θ 0) with Hessian matrix HKL(θ |θ 0), and θ 0 is a regular point

of HKL(θ |θ 0). Then θ is locally identifiable at θ 0 if and only if rank[HKL(θ 0|θ 0)] = k.

As shown in the appendix, the first order partial derivative of DKL(θ |θ 0) with respect
to θ evaluated at θ 0 equals zero and thus locally identifiable at θ 0. Therefore the Hessian
matrix of DKL(θ |θ 0) has full rank at θ 0 if and only if θ is locally identifiable at θ 0 from
Theorem 4.2.15. The definition of the Kullback-Leibler divergence leads to

∂ 2DKL(θ |θ 0)

∂θ∂θ ′ =−Eθ 0

∂ 2log f (y;θ)
∂θ∂θ ′ , ∀θ ∈Θ .

Thus the Hessian matrix HKL(θ |θ 0) evaluated at θ 0 is equal to the Fisher information
matrix at θ 0. This is the exact necessary and sufficient local identification condition for θ
at θ 0 by Rothenberg (1971). Therefore we just establish the classical condition using the
Kullback-Leibler divergence and the properties of the score vector. Note that the classical
local identification condition by Rothenberg (1971) can be treated as a special case of
Theorem 4.2.15 as shown above. However, there is a crucial distinction of our results from
those by Rothenberg (1971). To achieve the sufficient condition for local identification of θ
at θ 0 Rothenberg (1971) assumes continuous differentiability of the density function in the
entire parameter space. In contrast, we only require that the Kullback-Leibler divergence is

1Please refer to Corollary A.1 in Appendix.
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differentiable at θ 0 in Theorem 4.5.3. Thus our sufficient condition for local identification
at θ 0 is much less restrictive than that of Rothenberg (1971) and consequently implies the
latter. Besides, regularity assumption plays no role in the establishment of sufficiency but
is essential for necessity as shown in the appendix. This issue has been noticed by Bowden
(1973).

Remark 4.5.4 Bowden (1973) proposes a similar statement of identifiability based directly
on the rank of the Fisher information matrix. Nonetheless, it is worth pointing out that our
result differs in the following aspects. First, we only assume twice differentiability of
DKL(θ |θ 0) at θ 0 to establish sufficiency compared to Bowden (1973) who requires that the
density function is twice continuously differentiable in a neighborhood of θ 0. As demon-
strated in the proof of Theorem 4.5.3 , the assumption of continuous differentiability is only
required to show necessity. Thus we somehow generalize the sufficient result of Bowden
(1973). Second, our rank condition is derived from the fact that the first order deriva-
tive ∂ DKL(θ |θ 0)

∂θ is locally identifiable at θ 0 from Theorem 4.2.15 whereas the conclusion in
Bowden (1973) still depends on the full rank of the Fisher information matrix as Rothen-
berg (1971) does. This verifies our argument that the parametric function γ(θ) can be quite
inclusive and when it takes the form of the first order derivative of the Kullback-Leibler
divergence, Theorem 4.2.15 includes Theorem 4.5.3 and thus the argument by Bowden
(1973) as special cases. Third, we make a distinction between local identification around
θ 0 and at θ 0 and point out that the first order derivative of the Kullback-Leibler divergence
is only locally identifiable at θ 0 but not around θ 0. Consequently, we excludes the possi-
bility of establishing local identification of θ around θ 0 and thus global identification over
Θ through the characteristics of the Kullback-Leibler divergence.

Since DKL(θ |θ 0) is a function of θ and ∂DKL(θ |θ 0)
∂θ is globally identifiable at θ 0, we

can apply the conclusions of parametric function identification in Section 4.4 to identify a
parametric function β (θ) at θ 0.

Corollary 4.5.5 CONDITIONS FOR LOCAL PARAMETRIC FUNCTION IDENTIFICATION

THROUGH THE KULLBACK-LEIBLER DIVERGENCE. Suppose DKL(θ |θ 0) is twice differ-

entiable at θ 0 with Hessian matrix HKL(θ 0|θ 0) and β (θ) is differentiable at θ 0. Then the

condition

Im
(
Jβ (θ 0)

′)⊆ Im
(
HKL(θ 0|θ 0)

′)
implies that β (θ) is locally identifiable in terms of ∂DKL(θ |θ 0)

∂θ at θ 0. Furthermore, suppose

DKL(θ |θ 0) is twice continuously differentiable and β (θ) is continuously differentiable in

an open neighborhood of θ 0. Also assume θ 0 is a regular point of both HKL(θ |θ 0) and
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Jβ (θ). Then β (θ) is locally identifiable in terms of ∂DKL(θ |θ 0)
∂θ if and only if Im

(
Jβ (θ 0)

′)⊆
Im
(
HKL(θ 0|θ 0)

′) .
4.6. Applications

In this section, we apply our results of (global) local identification and function identifica-
tion to some econometric and macroeconomic models, including the simultaneous equa-
tions models (SEMs) and the DSGE models. We demonstrate that the standard condi-
tions for identification so far in the literature can be easily generalized as special cases of
identification conditions, in particular the results in Subsection 4.4.1 and their equivalent
statements in Subsection 4.4.2.

4.6.1. Simultaneous equations models

Consider a system of G simultaneous equations (4.2.11) in the structural form that satisfies
the following conditions:

E(Ut) = µ exists, where t = 1,2, . . . ,T and U ′ =
[

U1 U2 . . . UT

]
; (4.6.1)

Var(Ut) = Σ exists and is nonsingular; (4.6.2)

E(X ′U) = 0; (4.6.3)

the first and second moments of all elements of Y and X exist; (4.6.4)

the distribution of the error terms can be fully characterized through its first two moments.
(4.6.5)

Note that the necessary and sufficient conditions for identification in a general setup of
the SEMs without any constraints on the ranks of X and B have been discussed by Dufour
and Liang (2013a). Let’s denote the (2G2 +GK +G) structural parameters as

θ ≡


vec(B)
vec(Γ )

µ
vec(Σ)

 . (4.6.6)

Meanwhile, suppose we are given M continuously differentiable constraints based on a

112



prior information on structural parameters

ϕ(θ) =


ϕ 1(θ)
ϕ 2(θ)

...
ϕ M(θ)

= 0 (4.6.7)

whose Jacobian matrix is denoted as Jϕ (θ). Also let’s denote the partial derivatives of ϕ(θ)
with respect to vec(B), vec(Γ ), µ and vec(Σ) as Jϕ ,B(θ), Jϕ ,Γ (θ), Jϕ ,µ(θ) and Jϕ ,Σ (θ).

The SEMs framework (4.2.11) under assumptions (4.6.1) through (4.6.5) differs from
the classical setup in the following aspects. First, the normality assumption (4.6.5) about
the distribution of the error term is not required herein compared to Rothenberg (1971) who
imposes normal distribution with a separate mean-variance structure. Second, we impose
no constraints on the functional forms of a prior restrictions in comparison to Richmond
(1974) who assumes that the additional restrictions on the structural parameters are all in
linear form. Third, the a prior restrictions can depend on the covariance matrix or the sec-
ond order moments of the structural shocks compared to Bekker and Wansbeek (2001) who
assume that the a prior restrictions are independent of the covariance matrix and functions
of only B and Γ . Hence our framework allows for nonlinearity in both the simultaneous
structural equations and the a prior restrictions.

For illustration purpose, we rewrite the above structural form and reduced form of the
SEMs observation by observation

B′Yt +Γ ′Xt =Ut , t = 1,2, . . . ,T (4.6.8)

which can be expressed in the matrix form

[
B′ Γ ′

][ Yt

Xt

]
=Ut , (4.6.9)

where Yt , Xt and Ut are respectively the t-th row of Y , X and U . Due to the assumptions
(4.6.1), (4.6.2) and (4.6.4), we write the moment functions

m1(θ)≡
[

B′ Γ ′
][ µYt

µXt

]
−µ = 0 (4.6.10)
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and

m2(θ)≡
[

B′ Γ ′
][ ΣYt ΣYtXt

ΣXtYt ΣXt

][
B

Γ

]
−Σ = 0. (4.6.11)

Let’s denote θ 0 such that (4.6.7), (4.6.10) and (4.6.11) are satisfied. Clearly, both m1(θ)
and m2(θ) and identifiable. However, the first moment equation m1 is linear in θ but the
second moment equation m2 is a nonlinear function of θ . Take partial derivatives of m1(θ)
and m2(θ) and denote the (G+G2)× (2G2 +GK +G) Jacobian matrix as

Jm(θ)≡

[
Jm1(θ)
Jm2(θ)

]
=

[
IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ) C2(θ) O −IG2

]
,

where

C1(θ) = (IG2 +MG2)(IG ⊗B′ΣYt )+ IG ⊗Γ ′ΣXtYt +(Γ ′ΣXtYt ⊗ IG)MG2,

C2(θ) = (IG2 +MG2)(IG ⊗Γ ′ΣXt )+ IG ⊗B′ΣYtXt +(B′ΣYtXt ⊗ IG)MGK.

M stands for the commutation matrix 2; see Abadir and Magnus (2005). Hence, we can
readily give the necessary and sufficient condition for identification of an arbitrary para-
metric function β (θ) according to the general rank condition (4.4.8) as follows:

rank

 Jm(θ 0)

Jϕ (θ 0)

Jβ (θ 0)

= rank

[
Jm(θ 0)

Jϕ (θ 0)

]
. (4.6.12)

It is noticeable that without assumption (4.6.5), (4.6.12) and its equivalences are only
sufficient and not necessary since the structural parameters may be identified through
higher order moments or other statistical properties rather than the first two moments. Fur-
thermore, the validity of (4.6.12) and thus (4.4.8) and its equivalent statements do not de-
pend on the assumptions of full rank X and nonsingular B compared to the standard rank
conditions in literature which will fail when either X is deficient in rank or B is singular.

Remark 4.6.1 We do not impose the assumption that µ is completely separable from Σ
compared to the zero mean normality assumption in the classical literature. Therefore, the
covariance matrix can be a differentiable function in the mean, which is denoted as Σ(µ).

2The commutation matrix Kmn of a m×n matrix A is a permutation matrix such that

KmnvecA = vecA′.
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If this the is case, the structural parameters that need to be identified can be reduced to

θ ≡

 vec(B)
vec(Γ )

µ


and the Jacobian matrix of the moment equations becomes

Jm(θ) =

[
IG
⊗

µYt
′ IG

⊗
µXt

′ −IG

C1(θ) C2(θ) C3(θ)

]
,

where C3(θ) is the G2 ×G matrix −JΣ (µ). It follows that the rank condition will be the
same as (4.6.12).

Specifically, let’s consider identification issue for the following cases. First, we check
identification of θ . Set

β (θ) = θ .

From (4.6.12), it follows that the necessary and sufficient condition for identification of θ
is

rank

 Jm(θ 0)

Jϕ (θ 0)

I2G2+GK+G

= rank

[
Jm(θ 0)

Jϕ (θ 0)

]

which is equivalent to

rank

[
Jm(θ 0)

Jϕ (θ 0)

]
= 2G2 +GK +G. (4.6.13)

We emphasize that (4.6.13) is a generalization of Bekker and Wansbeek (2001, Theo-
rem 10). First of all, we do not put any constraint on the rank of B. Therefore, (4.6.13)
is valid despite the nonexistence of a unique reduced form equation. Besides, the a prior
restriction ϕ(θ) also depends on the covariance matrix Σ . On top of that, the distribution
of the structural shocks does not have to be normal. In fact, upon normality assumption
and independence of ϕ(θ) from Σ , we only need to focus on the identification of B and
Γ without concerning about the identification of the covariance matrix Σ since the normal
distribution is fully characterized by its first two moments and the identification of B and
Γ implies that of Σ . As for the scalar case under normality assumption, the identification
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of one moment entails that of another moment and vice versa; see the appendix of Dufour
and Liang (2012).

Second, it is easy to obtain the condition for identification of a subvector of θ , such as
vec(B) by setting

β (θ) = vec(B)

and the condition becomes

rank


IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

IG2 O O O


= rank

 IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

 (4.6.14)

Similarly, it follows that the rank conditions for vec(Γ ), µ and vec(Σ) are respectively

rank


IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

O IGK O O


= rank

 IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

 ,

rank


IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

O O IG O


= rank

 IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)


and
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rank


IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

O O O IG2


= rank

 IG
⊗

µYt
′ IG

⊗
µXt

′ −IG O

C1(θ 0) C2(θ 0) O −IG2

Jϕ ,B(θ 0) Jϕ ,Γ (θ 0) Jϕ ,µ(θ 0) Jϕ ,Σ (θ 0)

 .
Third, we can identify any scalar parameter θ i by setting

β (θ) = θ i, i = 1,2, . . . ,2G2 +GK

and the rank condition is

rank

 Jm(θ 0)

Jϕ (θ 0)

e′i

= rank

[
Jm(θ 0)

Jϕ (θ 0)

]
(4.6.15)

We next generalize some of the well-known rank conditions in the classical literature
as the special cases of our general rank condition and its equivalent statements in subsec-
tion 4.4.2 ; see Fisher (1966), Rothenberg (1971) and Bekker and Wansbeek (2001). For
comparison purpose, let’s further make the standard assumptions that X has full column
rank and B is nonsingular. Let’s assume E(Ut) = 0 for simplicity. Then we obtain the
reduced form of (4.2.11)

Π =−Γ B−1 (4.6.16)

and V =UB−1. Accordingly, the reduced form of (4.6.8) is

Yt = Π ′Xt +Vt , t = 1,2, . . . ,T, (4.6.17)

where Vt =
(
B′)−1Ut and is the t-th row of V . Since the random vector Ut is assumed to

have a zero mean and a positive definite covariance matrix Σ , we have

E(Vt) = 0

and
Var(Vt)≡ Ω =

(
B−1)′Σ(B−1). (4.6.18)
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Let’s denote the G2 +GKreduced parameters as

ψ(θ) =

(
vec(Π(θ))
vec(Ω(θ))

)
. (4.6.19)

and its Jacobian matrix as Jψ(θ). Also assume Π(θ 0) and Ω(θ 0) satisfy (4.6.16) and
(4.6.18).

Remark 4.6.2 Both Π(θ) and Ω(θ) are functions of the structural parameters. More
importantly, they are locally identifiable at θ 0 since they both can be expressed as the
moments of functions of observations X and Y .

First, we consider identification of θ . Following Corollary 4.4.9 let’s set

γ(θ) = ψ(θ), ξ (θ) = ϕ(θ), β (θ) = θ .

Applying the rank condition (4.4.8), we achieve the necessary and sufficient condition for
the local identification of θ at θ 0

rank

 Jψ(θ 0)

Jϕ (θ 0)

I2G2+GK

= rank

[
Jψ(θ 0)

Jϕ (θ 0)

]
(4.6.20)

which implies that

rank

[
Jψ(θ 0)

Jϕ (θ 0)

]
= 2G2 +GK. (4.6.21)

If we further assume that the distribution is normal and all M restrictions ϕ(θ) are lin-
ear functions of only B and Γ , (4.6.20) becomes the condition for global identification of θ
at θ 0; see Rothenberg (1971, Corollary 2) and Bekker and Wansbeek (2001, Corollary 2).
Moreover, (4.6.21) also includes the identification condition in the linear SEMs by Rich-
mond (1974, Theorem 5) as a special case. On the other hand, (4.6.21) is an extension
to Rothenberg (1971, Theorem 9) since our sufficient result does not assume continuous
differentiability of ψ(θ) and ϕ(θ). Obviously, (4.6.21) is a special case of (4.6.13) by
imposing restrictions on the ranks of both X and B. Additionally, (4.6.21) is also a direct
consequence of Theorem 4.2.15 which is in turn a special case of Theorem 4.4.3 or Corol-
lary 4.4.9. Thus we generalize the classical condition for local identification in Rothenberg
(1971) for SEMs.

Second, we can check identification for scalar parameters in SEMs using our estab-
lished conclusions. Without loss of generality, we choose to identify the first structural
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parameter θ 1 since we can always conduct the elementary operations on the columns of Jψ(θ 0)

Jϕ (θ 0)

e′i,


such that the column with its first element equal to 1 becomes the first column without
changing the linear relationships among the original columns. Since both ψ(θ) and ϕ(θ)
are locally identifiable at θ 0 and continuously differentiable, it follows from (4.4.8) or
(4.6.15) that the necessary and sufficient condition for local identification of θ 1 is

rank

 Jψ(θ 0)

Jϕ (θ 0)

e′1

= rank

[
Jψ(θ 0)

Jϕ (θ 0)

]
. (4.6.22)

Remark 4.6.3 θ 0 is assumed to be a regular point of both Jψ(θ) and Jϕ (θ) which is es-
sential for the establishment of necessity.

Let’s compare the rank condition (4.6.22) with other well-known results in the classical
literature. To begin with, (4.6.22) resembles Theorem 4.2.10 except that we do not assume
continuous differentiability of both the reduced parameters and the constraints to establish
sufficiency. Furthermore, Fisher (1966, Theorem 6.4.1) proposes a similar argument with a
stronger assumption that θ 0 is a normal point rather than a regular point 3. However, since
the rank of e1 is constant, we believe that θ 0 is normal if and only if it is regular. Besides,
we state that the regularity assumption plays a role only in the establishment of necessity
and can be dropped off for sufficiency in comparison to Fisher (1966) who argues the
reverse. In addition, (4.6.22) also generalizes the conclusion by Richmond (1974, Theorem
3) in a linear SEMs setup; see Dufour and Liang (2013a). Moreover, the conclusion of
Bekker and Wansbeek (2001, Corollary 1) can also be derived from (4.6.22). Suppose

D(θ 0)K (θ 0) = 0,

where

D(θ 0)≡

[
Jψ(θ 0)

Jϕ (θ 0)

]
and K (θ 0) is a basis of ker(D(θ 0)). For notation ease, drop off the argument θ 0 from

3Recall that θ 0 is a normal point of matrix M(θ) if and only if it is a regular point of both M(θ) and
M(1)(θ) which consists of the columns of M(θ) except the first one.
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D(θ 0). If e′1K (θ 0) = 0, then K (θ 0) is also the basis of ker

[
D

e′1

]
which implies that

ker

[
D

e′1

]
= ker(D).

From the fundamental link between the columns and rows

dim

(
col

[
D

e′1

])
+dim

(
ker

[
D

e′1

])
= 2G2 +GK = dim(col(D))+dim(ker(D)) ,

it follows that

rank

[
D

e′1

]
= rank(D)

which is (4.6.22). The reverse holds trivially since

rank

[
D

e′1

]
= rank(D)

implies that

dim

(
ker

[
D

e′1

])
= dim(ker(D)) .

Due to the fact

ker

[
D

e′1

]
⊆ ker(D),

it follows that

ker

[
D

e′1

]
= ker(D).

Hence
DK (θ 0) = 0

entails
e′1K (θ 0) = 0.

Note that we can show that (4.6.22) makes the result of Theorem 4.2.12 both necessary
and sufficient. Denote

D1(θ 0) =

 Jψ(θ 0)

Jϕ (θ 0)

e′1

 .
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Proposition 4.6.4 NECESSARY AND SUFFICIENT CONDITION FOR LOCAL IDENTIFICA-
TION OF A SCALAR PARAMETER. Suppose the assumptions of Theorem 4.2.10 are sat-

isfied. Let D(i)(θ) be the Jacobian matrix D(θ) without the i-th column. Let θ 0 be a

regular point of of both D(i)(θ) and D(θ).Then θ i is locally identifiable at θ 0,i if and only

if rank
(
D(i)(θ)

)
< rank(D(θ)).

As shown above, all the classical conditions of either global (local) identification and
function identification in the SEMs under the standard assumptions are special cases of
our general results in Section 4.2 and Section 4.4, particularly the equivalent statements
related to the rank conditions in subsection 4.4.2. As long as γ(θ) is identifiable and the
continuous Jacobian matrix satisfies (4.4.8) or any other equivalent condition, we achieve
sufficient conditions for identification (either local identification or global identification
based on stronger assumptions) of an arbitrary parametric function β (θ). If θ 0 is further
assumed to be regular, these general conditions become both necessary and sufficient. As
discussed hereinabove, if β (θ) is set to be θ , our general identification conditions guar-
antee identification of θ . Indeed, Jβ (θ 0) turns out to be identity matrix and the linear
combination Jβ (θ 0)θ is still θ . In addition, if β (θ) is the i-th element of θ , the corre-
sponding Jacobian matrix becomes a unit vector ei. More often, empirical studies may
be interested in the identification of some linear combinations of θ , for instance θ 1 +θ 2.
Then the Jacobian matrix is the vector [ 1 1 0 . . . 0 ] which can be plugged into any
identification condition as Jβ (θ 0) in subsection 4.4.2. Provided that we are interested in a
group of nonlinear functions of θ , the identifiability can be easily checked by comparing

the ranks of two matrices Jγ(θ 0) and
[

Jγ(θ 0)

Jβ (θ 0)

]
. If the two ranks are equal, the interested

nonlinear functions are identifiable. They cannot be identified otherwise.

4.6.2. The DSGE models

The DSGE models are usually solved numerically without serious verification of parameter
identification. Since the establishment of our identification conditions is not limited to
the model specifications and the dimension of parameter space, they are applicable to the
highly dimensional and highly nonlinear DSGE models. Let’s consider the state-space
form of the DSGE models [see An and Schorfheide (2007)]:

Xt+1 = A(θ)Xt +B(θ)ut+1 (4.6.23)

and
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Yt+1 =C(θ)Xt +D(θ)ut+1, (4.6.24)

where θ is a k× 1 vector of deep or structural parameters, u is the structural shocks, A is
n×n, B is n×m, C is p×n and D is p×m. These coefficients are the nonlinear functions
of θ . Assume

E(ut) = 0

and

E(utus) = σ2
t−sΣ(θ),

where Σ(θ) is symmetric positive definite. The Cholesky decomposition leads to

Σ(θ) = L(θ)L(θ)′.

We call (4.6.23) the state equation and (4.6.24) the measurement equation. The state
vector X may be partially observable or totally unobservable while the measurement vector
Y can be observed. Such a state space system can be solved by the Kalman filter. Clearly,
in the context of linearized DSGE models, we are dealing with the local identification.
Therefore, the necessary and sufficient identification conditions hereinafter are only local.

Suppose θ 0 is the true parameter of the state space model and that the statistical prop-
erties of the vector of innovations ut in the state space representation (4.6.23) and (4.6.24)
can be fully characterized by its first two moments which are continuously differentiable in
the neighborhood of θ 0. We also assume that θ 0 is a regular point. Let’s denote the mean
of the p×1 observation Yt as

E(Yt) = µY (θ)

and the covariance matrix of the vectorized vec(ȲT ) as

E(vecȲT (vecȲT )
′) = ΣT (θ),

where ȲT = [ Y1 Y2 . . . YT ]. Note that both µY (θ) and ΣT (θ) are also functions of
the A, B, C, D coefficients. Next let’s denote the vector that consists of the distinguished
values of all the first and second moments of the observations as δ (θ) which is of length
(T −1)p2 + 1

2 p(p+1). Since the probability distribution of Yt depends on θ only through
δ (θ), Jδ (θ 0)θ is locally identifiable at θ 0 by Proposition 4.4.11.
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If we are interested in identification of the entire structural parameter θ , we can set γ(θ)
and β (θ) in Theorem 4.4.3 to be δ (θ) and θ respectively and the selection matrix Jβ (θ 0)

becomes the identity matrix. Therefore θ is locally identifiable at θ 0 provided that (4.4.1)
holds, i.e.,

rank

[
Jδ (θ 0)

Ik

]
= rank [Jδ (θ 0)] , (4.6.25)

which implies
rank [Jδ (θ 0)] = k. (4.6.26)

If we relax the assumption that the distribution of ut can be fully characterized by its
first two moments, (4.6.25) is only sufficient and not necessary; see Iskrev (2010). On the
other hand, the argument by Iskrev (2010, Theorem 2) is different from Theorem 4.2.15
which is generalized by Theorem 4.4.3 or (4.6.25). First, we do not assume a complete
separation of the mean of the structural shocks from their variance. Actually they can
be dependent upon each other. Second, the assumption that θ 0 is a regular point of the
Jacobian matrix is indispensable to establish the necessity of the identification condition.
Third, differentiability of δ (θ) at θ 0 will suffice to show sufficiency whereas continuous
differentiability of δ (θ) in the neighborhood of θ 0 is only required for necessity.

Remark 4.6.5 Theorem 4.4.3 does not impose full rank restriction on the Jacobian matrix
Jδ (θ 0). If Jδ (θ 0) has deficient rank, θ is not locally identifiable at θ 0 by Theorem 4.2.15.
But we can reach the same conclusion by checking whether (4.6.25) holds. Plugging the
deficient rank matrix Jδ (θ 0) and the identity matrix Ik on both sides of (4.6.25) leads to
contradiction.

Clearly, if we are interested in identifying any scalar parameter or an arbitrary linear
combination of parameters of the DSGE models, (4.4.8) provides a straightforward crite-
rion to do so. For instance, suppose we want to identify the first scalar structural parameter
θ 1. Then the necessary and sufficient condition is

rank

[
Jδ (θ 0)

e′1

]
= rank [Jδ (θ 0)] . (4.6.27)

Recently Komunjer and Ng (2011) discuss the necessary and sufficient condition of
parametric function identification in the DSGE models by combining the spectral factor-
ization and similarity transformation. We now show that such a condition for function
identification is indeed a special case of our general rank condition and its equivalent state-
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ments based on their assumptions; see Komunjer and Ng (2011). Let’s denote

ξ (θ) =


vecA(θ)
vecB(θ)
vecC(θ)
vecD(θ)
vecΣ(θ)

 .

If Yt is weak stationary, we can solve the state space system of the DSGE models and derive
the V MA(∞) representation of Yt as

Yt =
(
C(θ)(aI −A(θ))−1B(θ)+D(θ)

)
ut .

Let’s denote the transfer function as g such that

g(a;θ) =C(θ)(aI −A(θ))−1B(θ)+D(θ).

Then we can write the spectral density Y as

fY (a;θ) = g(a;θ)Σ(θ)g(a−1;θ)−1.

Also denote Λ(θ) as the Jacobian of the vector

λ (θ , S, T ) =



vec
(
SA(θ)S−1)

vec(SB(θ)T )
vec
(
C(θ)S−1)

vec(D(θ)T )
vech

(
T−1Σ(θ)T−1′

)


.

S is a n× n non-singular matrix that links two sets of coefficients A, B, C, D in a similar
transformation so that the transfer function g(a;θ) has equal values at θ 1 and θ 2. That is
to say,

(A(θ 1),B(θ 1),C(θ 1),D(θ 1)) =
(
SA(θ 2)S−1,SB(θ 2),C(θ 2)S−1,D(θ 2)

)
for some S

if and only if

g(a;θ 1) = g(a;θ 2).
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T is a m×m non-singular matrix which is equal to L(θ 2)V L(θ 1)
−1, where L(θ) is the

Cholesky decomposition of Σ(θ) and V is an orthogonal matrix such that the following
holds

g(a;θ 1)L(θ 1) = g(a;θ 2)L(θ 2)V.

Accordingly, denote Λ(θ 0) as the Jacobian matrix of λ (θ , S, T ) evaluated at a triplet
(θ 0, In, Im). We simplify the notation by combining the elements of S and T as

W̃ =

[
S O

O T

]

and

vecW =

[
vecS

vecT

]
,

where vecW is a j×1 vector, j = n2 +m2 and denote the Jacobian matrix with respect to
vecW as Jλ ,W (θ). So the first order partial derivatives with respect to θ and vecW evaluated
at (θ 0, I j) can be written as

Λ(θ 0) =
[

Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)
]
,

where j = n+m. Suppose want to identify all deep parameters θ . Due to Komunjer and
Ng (2011, Proposition 1-S, Lemma 2-S), local identification of θ at θ 0 is equivalent to the
existence of a unique solution

[ θ W̃ ] = [ θ 0 Il ], l = n+m

to 

vec
(
SA(θ)S−1)

vec(SB(θ)T )
vec
(
C(θ)S−1)

vec(D(θ)T )
vech

(
T−1Σ(θ)T−1′

)


=


vecA(θ 0)

vecB(θ 0)

vecC(θ 0)

vecD(θ 0)

vecΣ(θ 0)

 .

Hence if we set

β (θ) =

[
θ

vecW

]
,

it follows from Proposition 4.4.11 and the general rank condition (4.4.8) that the necessary
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and sufficient condition for local identification of θ is

rank

 Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)

Ik O

O I j

= rank
[

Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)
]
, (4.6.28)

which entails that
rank

[
Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)

]
= k+ j. (4.6.29)

On the other hand, our rank condition (4.4.8) and its equivalent arguments also make
it easy to check the identification of any part of deep parameters. Let’s denote θ q as a
q dimension subvector of θ that need to be identified and θ k−q the rest of the elements.
Without loss of generality, we can always rearrange the components of θ such that the first
q elements of θ is θ q. We write the partial derivatives with respect to θ q and θ k−q as
Jλ ,θ q(θ) and Jλ ,θ k−q

(θ) respectively. If we set

β (θ) =

[
θ q

vecW

]
,

the necessary and sufficient condition for identification of θ q becomes

rank

 Jλ ,θ q(θ 0, I j) Jλ ,θ k−q
(θ 0, I j) Jλ ,W (θ 0, I j)

Iq O O

O O I j


= rank

[
Jλ ,θ q(θ 0, I j) Jλ ,θ k−q

(θ 0, I j) Jλ ,W (θ 0, I j)
]

(4.6.30)

and this leads to

rank
[

Jλ ,θ q(θ 0, I j) Jλ ,θ k−q
(θ 0, I j) Jλ ,W (θ 0, I j)

]
= (q+ j)+ rank

(
Jλ ,θ k−q

(θ 0, I j)
)
.

(4.6.31)
The rank conditions (4.6.29) and (4.6.31) are just special cases of (4.4.8) when we ei-

ther choose β (θ) to be
[

θ ′ (vecW )′
]′

to identify θ or
[

θ ′
q (vecW )′

]′
to identify

θ q. These results are similar to Komunjer and Ng (2011, Proposition 2-S, Proposition 4).
However, we only assume continuous differentiability of ξ (θ) in a neighborhood of θ 0

rather than the entire parameter space since we are concerned about local identification in
the DSGE models. Besides, the validity of sufficiency of the above identification condi-
tions does not depend on continuous differentiability of ξ (θ) in the neighborhood of θ .
Differentiability at θ 0 will suffice. Furthermore, Komunjer and Ng (2011) also discusses
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identification conditions for a nonsingular system when the left invertibility assumption
fails. Our results can also generalize their conclusions in this setup; see Komunjer and Ng
(2011, Proposition 2-NS, Proposition 3). Nevertheless, identification through the spectral
density employs information only about the second moments of the second order stationary
observations. Thus compared to the classical approach that relies on the first two moments
for identification of deep parameters in the DSGE models, such a method comes with a
cost of imposing a series of much stronger assumptions, such as left-invertibility and/or
minimality of the system. Clearly if the probability distribution of the underlying process
does involve the first moment, the identification conditions established from the spectral
density could become only sufficient and not necessary.

It is trivial that we can choose to identify any scalar parameter of θ or any linear com-
binations of θ as long as the selection matrix Jλ (θ 0) can satisfy our general rank condition
(4.4.8) or other relevant identification conditions established hereinabove. For instance, the
condition for identification of the first element θ 1 should be

rank

 Jλ ,θ 1(θ 0, I j) Jλ ,θ k−1
(θ 0, I j) Jλ ,W (θ 0, I j)

1 O O

O O I j


= rank

[
Jλ ,θ 1(θ 0, I j) Jλ ,θ k−1

(θ 0, I j) Jλ ,W (θ 0, I j)
]

= (1+ j)+ rank
(
Jλ ,θ k−1

(θ 0, I j)
)
.

Meanwhile, we can also identify any linear combinations l′θ using (4.4.8)

rank

 Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)

l′ O

O I j

= rank
[

Jλ ,θ (θ 0, I j) Jλ ,W (θ 0, I j)
]
. (4.6.32)

4.7. Three examples

We look at three macroeconomic models and show that it is convenient to apply the results
on parametric function identification in Section 4.4. The first two examples help demon-
strate the usefulness of the proposed identification condition through identification failure
in two macroeconomic models. The third one is about both weak identification and identi-
fication failure.
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4.7.1. A two-equation SEMs example

We now demonstrate the results on parametric function identification through a two-
equation SEMs [see Wooldridge (2006)]. Romer (1993) proposes and tests the theory
that inflation rates will be higher for less “open” countries using 114 countries data. The
openness denoted as “Open” is measured by the average share of imports in gross domestic
or national product since 1973 and inflation denoted as “Inf” is measured as the average
annual change in the log of GDP or log of GNP deflator since 1973. Besides Romer (1993)
also uses instrumental variables for estimation, some of which are defined as follows:

Rincpc = real income per capita for1980; Land = a country’s land area (square miles);

Oil =
{ 1 a country is a major oil producer

0 for woman
;

Good =
{ 1 a country whose national accounts data receive a rating of C or better

0 otherwise
.

The identification failure of linear models caused by multicollinearity in the dummy
variable case has been discussed in detail by Dufour and Liang (2012). Thus we hereby
focus on identification failure of SEMs. We specify the following two-equation system:

In f = α0 +α1Open+α2log(Rincpc)+u1 (4.7.1)

Open = β 0 +β 1In f +β 2log(Rincpc)+β 3log(Land)+u2. (4.7.2)

Assume that α1β 1 ̸= 1 and we have the reduced form equations:

In f = η0 +η1log(Rincpc)+η2log(Land)+w1 (4.7.3)

Open = λ 0 +λ 1log(Rincpc)+λ 2log(Land)+w2, (4.7.4)

where

η0 =
α0 +α1β 0
1−α1β 1

, η1 =
α1β 2 +α2

1−α1β 1
, η2 =

α1β 3
1−α1β 1

, w1 =
u1 +α1u2

1−α1β 1

and
λ 0 =

α0β 1 +β 0
1−α1β 1

, λ 1 =
α2β 1 +β 2
1−α1β 1

, λ 2 =
β 3

1−α1β 1
, w2 =

β 1u1 +u2

1−α1β 1
.

Now let θ , γ(θ), β In f (θ) and β Open(θ) be the structural parameters, reduced form param-
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eters and parameters of interest respectively and set

θ =



α0

α1

α2

β 0

β 1

β 2

β 3


, γ(θ) =



η0

η1

η2

λ 0

λ 1

λ 2


, β In f (θ) =

 α0

α1

α2

 , β Open(θ) =


β 0

β 1

β 2

β 3

 .

The Jacobian matrices can be written as

Jγ(θ) =
1

1−α1β 1



1 α0β 1+β 0
1−α1β 1

0 α1
(α0+α1β 0)α1

1−α1β 1
0 0

0 α2β 1+β 2
1−α1β 1

1 0 (α1β 2+α2)α1
1−α1β 1

α1 0

0 β 3
1−α1β 1

0 0 α1
2β 3

1−α1β 1
0 α1

β 1
(α0β 1+β 0)β 1

1−α1β 1
0 1 α0+α1β 0

1−α1β 1
0 0

0 (α2β 1+β 2)β 1
1−α1β 1

β 1 0 α2+α1β 2
1−α1β 1

1 0

0 β 1β 3
1−α1β 1

0 0 α1β 3
1−α1β 1

0 1


,

Jβ In f
(θ) =

 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 , Jβ Open
(θ) =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .

Assume β 3 ̸= 0. We calculate the ranks of the following matrices

rank
(
Jγ(θ)

)
= 6, rank

[
Jγ(θ)

Jβ In f
(θ)

]
= 6, rank

[
Jγ(θ)

Jβ Open
(θ)

]
= 7.

From (4.4.8), we immediately know that (4.7.1) is identifiable and (4.7.2) is unidentifiable.
In fact, none of the parameters in (4.7.2) can be identified.

Next assume β 3 = 0. Then θ 1 =
[

α0 α1 α2 β 0 β 1 β 2 0
]′

is an irregular
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point of Jγ(θ) since

rank
(
Jγ(θ 1)

)
=

1
1−α1β 1



1 α0β 1+β 0
1−α1β 1

0 α1
(α0+α1β 0)α1

1−α1β 1
0 0

0 α2β 1+β 2
1−α1β 1

1 0 (α1β 2+α2)α1
1−α1β 1

α1 0

0 0 0 0 0 0 α1

β 1
(β 0+α0β 1)β 1

1−α1β 1
0 1 α0+α1β 0

1−α1β 1
0 0

0 (α2β 1+β 2)β 1
1−α1β 1

β 1 0 α2+α1β 2
1−α1β 1

1 0

0 0 0 0 0 0 1


= 5.

Meanwhile, we have

rank
[

Jγ(θ 1)

Jβ In f
(θ 1)

]
= 6

and

rank
[

Jγ(θ 1)

Jβ Open
(θ 1)

]
= 6.

This leads to the conclusion that both (4.7.1) and (4.7.2) are not identifiable since the gen-
eral rank condition is not satisfied. However, we should bear in mind that when the Jaco-
bian matrix is evaluated at irregular points, our general rank condition is only sufficient and
not necessary. Thus, it is possible that certain parameters of interest can still be identified
even though the general rank condition is violated when Jacobian matrices are evaluated at
irregular points. We will give an example at the end of next subsection.

4.7.2. A three-equation New Keynesian model

Let y, π and R be the output gap, inflation rate and nominal interest rate set by the central
bank, we write the standard three-equation New Keynesian model in the rational expecta-
tions system after log-linearization as follows [see also Smets and Wouters (2003), An and
Schorfheide (2007), Nason and Smith (2008) and Canova (2009)]:

yt =
h

1+h
yt−1 +

1
1+h

Etyt+1 +
1
τ
(Rt −Etπt+1)+ εyt (4.7.5)

πt =
ψ

1+ψβ
πt−1 +

β
1+ψβ

Etπt+1 +
(τ +ν)(1−ξ β )(1−ξ )

(1+ψβ )ξ
yt + επt (4.7.6)

Rt = ϕ RRt−1 +(1−ϕ R)(ϕ ππt−1 +ϕ yyt−1)+ εRt , (4.7.7)
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where h is the degree of habit persistence and measured by a portion of consumption of
previous period 4, τ is the coefficient of relative risk aversion of households or the inverse
of the intertemporal elasticity of substitution, β is the discount factor, ψ is the degree of
price indexation 5, ξ is the degree of price stickiness 6, ν is the elasticity of labor supply,
ϕ R, ϕ π and ϕ y are the coefficients of the Taylor rule. Also we assume that εyt and επt

follow an AR(1) process with coefficients ρπ and ρy and the monetary policy shock is
serially uncorrelated. Denote the variances of the shocks as σ2

y , σ2
π and σ2

R. Note that
(4.7.5) is the dynamic IS schedule and (4.7.6) is the New Keynesian Phillips curve.

We can write out the structural parameters as

θ strc =
[

h τ ψ β ν ξ ϕ R ϕ π ϕ y ρπ ρy σ2
y σ2

π σ2
R

]′
.

For simplicity, we focus on identification of only economic parameters θ 1 and ignore the
auxiliary parameters θ 2, where

θ 1 =
[

h τ ψ β ν ξ ϕ R ϕ π ϕ y

]′
θ 2 =

[
ρπ ρy σ2

y σ2
π σ2

R

]′
.

Now the semi-structural version of the above model can be written as:

yt = ζ 1yt−1 +ζ 2Etyt+1 +ζ 3(Rt −Etπt+1)+ εyt (4.7.8)

πt = δ 1πt−1 +δ 2Etπt+1 +δ 3yt + επt (4.7.9)

Rt = κ1Rt−1 +κ2πt−1 +κ3yt−1 + εRt , (4.7.10)

where

ζ 1 =
h

1+h
, ζ 2 =

1
1+h

, ζ 3 =
1
τ
,

δ 1 =
ψ

1+ψβ
, δ 2 =

β
1+ψβ

, δ 3 =
(τ +ν)(1−ξ β )(1−ξ )

(1+ψβ )ξ
,

κ1 = ϕ R, κ2 = (1−ϕ R)ϕ π , κ3 = (1−ϕ R)ϕ y.

Suppose that the system of (4.7.8) through (4.7.10) satisfies all three conditions men-
tioned by Canova (2009), then the semistructural parameters are locally identifiable and we

4The habit feature is often omitted from the basic setups of New Keynesian models but is included in large
scale DSGE models [see Canova (2009)].

5When ψ = 0, the inflation equation becomes the standard purely forward-looking Phillips curve.
6When all prices are flexible, ξ = 0.
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denote them as θ s

θ semi =
[

ζ 1 ζ 2 ζ 3 δ 1 δ 2 δ 3 κ1 κ2 κ3 ρπ ρy σ2
y σ2

π σ2
R

]′
.

We are interested in identifying the structural parameter θ , particularly the economic struc-
tural parameters θ 1. Set

γsemi(θ
1) =

[
ζ 1 ζ 2 ζ 3 δ 1 δ 2 δ 3 κ1 κ2 κ3

]′
β strc(θ

1) = θ 1 =
[

h τ ψ β ν ξ ϕ R ϕ π ϕ y

]′
.

Although both γsemi(θ
1) and β strc(θ

1) have the same number of parameters, it is not clear
whether we can retrieve all the information about structural parameter β strc(θ

1) from the
semi-structural parameter γsemi(θ

1). More interestingly, we would like to know exactly
which structural parameters are identifiable and which are not, i.e., parametric function
identification. We list the following Jacobian matrices for convenience.

Jγsemi(θ
1) =

[
B1 O

O B2

]
,

where

B1 =



1
(1+h)2 0 0 0 0 0

− 1
(1+h)2 0 0 0 0 0

0 − 1
τ2 0 0 0 0

0 0 1
(1+ψβ )2 − ψ2

(1+ψβ )2 0 0

0 0 − β 2

(1+ψβ )2
1

(1+ψβ )2 0 0

0 (1−ξ β )(1−ξ )
(1+ψβ )ξ −β (τ+ν)(1−ξ β )(1−ξ )

(1+ψβ )2ξ − (τ+ν)(1−ξ )(ψ+ξ )
(1+ψβ )2ξ

(1−ξ β )(1−ξ )
(1+ψβ )ξ − (τ+ν)(1−ξ 2β )

(1+ψβ )ξ 2


and

B2 =

 1 0 0
−ϕ π 1−ϕ R 0
−ϕ y 0 1−ϕ R

 .
Clearly

rank
(
Jγsemi(θ

1)
)
= rank(B1)+ rank(B2) = 8.

Now we check identifiability of each of the economic parameters that have interesting
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economic interpretations. Denote ei, i = 1,2, . . . ,9, be a unit vector whose i-th element is 1
and 0 otherwise. The matrix operations lead to the following results:

rank
[ (

Jγsemi(θ
1)
)

ei
′

]
= 8 = rank

(
Jγsemi(θ

1)
)
, i = 1,2,3,4,7,8,9

and

rank
[ (

Jγsemi(θ
1)
)

ei
′

]
= 9 ̸= rank

(
Jγsemi(θ

1)
)
, i = 5,6.

Since ei
′ is the Jacobian matrix of the ith element of θ 1 with respect to θ 1′, we immediately

conclude that the structural parameters h, τ , ψ , β , ϕ R, ϕ π and ϕ y are identifiable. Both the
elasticity of labor supply ν and the degree of price stickiness ξ are not identifiable.

We are the first to study identification failure in the New Keynesian model using our
general rank conditions. Although Canova (2009) focuses on the same simplified three-
equation New Keynesian model and points out that ν and ξ are not locally identifiable,
no explanations are provided on why only these two parameters are not identifiable. We
hereby provide a closed-form analysis and demonstrate that identification problem with
this type of dynamic New Keynesian model is a simple application of the rank condi-
tion. Furthermore, despite the fact that ν and ξ enter the slope of the Phillips curve in
a multiplicative way, identification of one does not necessarily guarantee identification of
the other. For instance, we impose additional assumption that there is no price flexibility
in the system, i.e., ξ = 1 and we want to identify ν without further relative information.
Note that θ 1

0 =
[

h τ ψ β ν 1 ϕ R ϕ π ϕ y

]′
is a regular point of Jγsemi(θ

1) since

rank
(
Jγsemi(θ

1
0)
)
= 8 around the neighborhood of θ 1

0. Then we have

rank
[ (

Jγsemi(θ
1
0)
)

e5
′

]
= 9 ̸= rank

(
Jγsemi(θ

1
0)
)

and conclude that ν is not identifiable.
Moreover, if the previous period of interest rate has an one-to-one effect on current

interest rate, i.e., when ϕ R = 1 we have

rank
(
Jγsemi(θ

1
0)
)
= 6

and

rank
[ (

Jγsemi(θ
1
0)
)

ei
′

]
= 7, i = 8,9.
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Therefore, we may reach the conclusion that both ϕ π and ϕ y are not identifiable. This is
obvious from the expressions of κ2 and κ3. However, we have to bear in mind that the
necessary and sufficient conditions hold conditional on the fact that the rank of Jacobian
matrices must be evaluated at regular points. Otherwise, the general rank condition is only
sufficient and not necessary. Take the following case as an example. Suppose ξ = 1 and
β = 1. Then θ 1

0 =
[

h τ ψ 1 ν 1 ϕ R ϕ π ϕ y

]′
is an irregular point of Jγsemi(θ

1).
Then we get

rank
(
Jγsemi(θ

1
0)
)
= 7

and

rank
[ (

Jγsemi(θ
1
0)
)

e6
′

]
= 8.

Clearly

rank
(
Jγsemi(θ

1
0)
)
̸= rank

[ (
Jγsemi(θ

1
0)
)

e6
′

]
.

But we know that ξ is equal to 1 and thus identifiable. Hence the rank condition is only
sufficient and not necessary.

Besides, the Jacobian matrix Jγ(θ 1) makes it possible to draw other important conclu-
sions related to weak identification. Suppose ϕ R is close to 1. Theoretically we can still
identify ϕ π and ϕ y using the rank condition but they are now both weakly identified. Note
that additional information might be helpful in identifying structural parameters, but we
have to be cautious about imposing restrictions on structure parameters since it is difficult
to justify these subjective assumptions as demonstrated by Carlstrom, Fuerst and Paustian
(2009) in a basic Dynamic New Keynesian model.

4.7.3. New Keynesian Phillips Curves (NKPC)

The NKPC has been an important part of the standard macroeconomic policy models
and different variants of the baseline NKPC have been studied by the literature. Since
the proposition of the hybrid form of New Keynesian Philipps curve (NKPC) by Galí
and Gertler (1999), which considers both conventionally forward-looking and backward-
looking behavior, it has become increasingly popular in empirical study for modeling the
evolution of inflation. However, there has been empirical evidence that both the basic
NKPC and the hybrid NKPC models suffer from identifiability problems; see Dufour et al.
(2006) and the references therein. We show that how the identification conditions in this
paper can be used to check identification failure and weak identification in the NKPC mod-
els.
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4.7.3.1. A baseline NKPC

Due to the formulation by Calvo (1983), in any given period each firm has a probability of
1−η to adjust its price, a portion η of firms will not be able to change prices each period.
The baseline NKPC specifies the current inflation rate as a function of current marginal
cost and expected inflation rate of the next period. It takes the following econometric form:

πt = λ st +βEtπt+1 +ut+1, (4.7.11)

where st is the real marginal cost and usually measured by the output gap, β is the subjective
discount factor and λ = (1−η)(1−βη)/η . Clearly we can denote the deep parameters
and semi-structural parameters as

θ =

[
η
β

]
, γ(θ) =

[
λ
β

]
.

To establish identification condition for η , we calculate the Jacobian matrices of γ(θ) and
η with respect to θ as follows;

Jγ(θ) =

[
βη2−1

η2 η −1

0 1

]
, Jη(θ) =

[
1 0

]
.

From Proposition 4.4.12, one necessary and sufficient condition for identification of η
provided that γ(θ) is identifiable is

Im

[
1
0

]
⊆ Im

[
βη2−1

η2 0

η −1 1

]
. (4.7.12)

Obviously (4.7.12) holds if and only if

βη2 −1 ̸= 0. (4.7.13)

Note that (4.7.13) is also a necessary and sufficient for

[
η
β

]
to be a regular point of Jγ(θ).

Hence η is identifiable if and only if

βη2 ̸= 1. (4.7.14)

Condition (4.7.14) is new to the literature and it demonstrates that imposing restrictions
on deep parameters does not guarantee identification. In the baseline NKPC example, if
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βη2 = 1 given that β is identifiable and η > 0, η is still unidentified. Obviously, identi-
fication failure of the baseline NKPC can also occur when we retrieve information of the
semi-structural parameters γ(θ) from the reduced formed parameters using instrumental
variable regression. We will discuss this type of identification issue in the following more
complicated hybrid NKPC which nests the baseline NKPC.

4.7.3.2. The Hybrid NKPC [Galí and Gertler (1999)]

Galí and Gertler (1999) assume Calvo formulation. Meanwhile they assume that a fraction
ω of firms that are allowed to change prices choose to use a rule of thumb rather than to
optimize. This group of firms is said to be backward-looking. For convenience, the hybrid
NKPC by Galí and Gertler (1999) in an econometric setup is restated as follows:

πt = λ st + γ fEtπt+1 + γbπt−1 +ut+1, (4.7.15)

where

λ =
(1−ω)(1−η)(1−βη)

η +ω [1−η(1−β )]
,

γ f =
βη

η +ω[1−η(1−β )]
,

γb =
ω

η +ω[1−η(1−β )]
.

Denote the deep parameters as θ =
[

ω η β
]′

and the semi-structural parameters as

γ(θ) =
[

λ γ f γb

]′
. Since the semi-structural parameters are nonlinear functions of the

deep parameters, identification of the former does not necessarily guarantee identification
of the latter which we are interested in [see Ma (2002)]. If there does not exist an inverse
mapping from γ(θ) to θ as we have shown in the three-equation New Keynesian model

and the baseline NKPC, we still fail to identify structural parameters
[

ω η β
]′

of
the hybrid NKPC. We check if the hybrid NKPC also has such an identification problem.
For simplicity , suppose we can identify all the semi-structural parameters

[
λ γ f γb

]′
.

Then applying the general rank condition we have

Jγ(θ)=
1

(η +ω −ωη +ωβη)2

 a11 a12 a13

−βη(1−η +βη) βω η(η +ω −ωη)

η −ω(1−ω +ωβ ) −ω2η


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where

a11 =−(1−η)(1−βη),

a12 = (1−ω)(−1−2ωβ +2ωβη +βη2 −ωβη2 +ωβ 2η2),

a13 = (1−ω)(1−η)(−η2 −2ωη +ωη2).

Note that
[

ω 0 1
]′

,
[

ω 1 1
]′

and
[

0 0 β
]′

are irregular points of Jγ(θ),
∀ω, β . Thus except for irregular points,

rank
(
Jγ(θ)

)
= rank

[
Jγ(θ)

ei
′

]
= 3, i = 1,2,3.

Hence there exists a inverse mapping from the semi-structural parameters to the structural
parameters and θ can be identified given that γ(θ) is identifiable.

Nevertheless, the semi-structural parameters themselves are not always identifiable and
some of them are prone to weak identification as we will show hereinafter, it is not sur-
prising that we have a serious identification issue with the deep parameters of the hybrid
NKPC in practice. Specifically, using πt+1 as a proxy for Etπt+1, we notice that both
st and πt+1 on the right hand side of (4.7.15) are endogenous variables. We can choose
to use the IV regression method to deal with endogeneity issue which is intrinsic to the
hybrid NKPC and achieve consistent estimators of the above semi-structural parameters.
We follow Dufour et al. (2006) and use the quarterly data for the U.S. over the period of
1970 : 1−1997 : 4. The choice of instrumental variables varies in the literature. To make
the results comparable, we choose four lags of inflation, labour share, commodity-price
inflation, wage inflation, the long-short interest rate and output gap as instruments (24 in
total 7) [see also Galí and Gertler (1999)]. For convenience, we express the IV equation
and rewrite (4.7.15) in the matrix form with T observations as follows:

y = Y ϑ +X1γb +u (4.7.16)

Y = X1Π1 +X2Π2 + v, (4.7.17)

where y is the T ×1 endogenous vector of πt , Y is the T ×2 matrix of endogenous variables[
st πt+1

]
, X1 is the T ×1 exogenous vector of πt−1, X2 is a T ×24 matrix of instruments.

7To estimate the reduced form equations we add the constant term which can be treated as an additional
instrument.
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We also define the following partitioned matrices:

ϑ =

[
λ
γ f

]
, Π1 =

[
Π11 Π12

]
, Π2 =

[
Π21 Π22

]
, Πs =

[
Π11

Π21

]
, Πin f =

[
Π12

Π22

]
.

Clearly Πs and Πin f are the coefficients of output gap equation and inflation equation re-
spectively in the IV equation (4.7.17)

The reduced form equation of (4.7.16) is

y = X1φ1 +X2φ2 +w, (4.7.18)

where

φ1 = Π1ϑ + γb = Π11λ +Π12γ f + γb, (4.7.19)

φ2 = Π2ϑ = Π21λ +Π22γ f , (4.7.20)

w = vϑ +u. (4.7.21)

Based on our IV construction, φ1 and φ2 are functions of semi-structural parameters[
λ γ f γb

]′
and are identifiable. It is easy to calculate the Jacobian matrix of φ =[

φ1 φ2

]′
with respect to the semi-structural parameters as

Jφ(λ ,γ f ,γb) =

[
Π1 1
Π2 O

]
=

[
Π11 Π12 1
Π21 Π22 O

]
.

Thus
rank

(
Jφ(λ ,γ f ,γb)

)
= 1+ rank(Π2). (4.7.22)

As can be seen, to get the rank information from (4.7.22) we can plug in the estimated
the reduced form parameters Π̂ . We list the estimated parameter matrix, the t-statistics and
p-values in Table 4.1, where π , win f , cin f , rd, lshare and s stand for inflation rate, wage
inflation, commodity-price inflation, the difference between long and short interest rates,
labour share and output gap respectively.
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TABLE 4.1
Estimation for reduced form parameters, 1970:1-1997:4

IV Π̂s t-stat p-value Π̂in f t-stat p-value
πt−1 -0.1459 -0.4500 0.6538 0.0597 0.5329 0.5955
πt−2 0.4369 1.3315 0.1865 -0.0379 -0.3342 0.7391
πt−3 -0.3228 -0.9859 0.3270 0.1687 1.4895 0.1400
πt−4 0.2917 0.9060 0.3675 0.2819 2.5313 0.0132
πt−5 -0.2416 -0.8078 0.4214 -0.0063 -0.0611 0.9514
win ft−1 -0.0783 -1.6249 0.1078 0.0692 4.1488 7.8e-05
win ft−2 -0.0450 -0.9290 0.3555 0.0682 4.0692 1.0e-04
win ft−3 0.0772 1.5334 0.1288 -0.0186 -1.0662 0.2893
win ft−4 0.0476 1.0575 0.2932 -0.0264 -1.6941 0.0939
cin ft−1 0.0028 0.5735 0.5678 0.0052 3.0881 0.0027
cin ft−2 -0.0088 -1.8011 0.0752 0.0051 3.0076 0.0035
cin ft−3 -7.9e-04 -0.1561 0.8764 0.0050 2.8434 0.0056
cin ft−4 0.0025 0.4816 0.6313 9.6e-04 0.5444 0.5876
rdt−1 0.1026 0.8631 0.3905 -0.0396 -0.9643 0.3376
rdt−2 0.1865 1.1605 0.2490 0.0730 1.3130 0.1927
rdt−3 -0.2156 -1.3258 0.1884 -0.0248 -0.4405 0.6607
rdt−4 0.0725 0.5982 0.5513 0.0154 0.3684 0.7135
lsharet−1 2.7647 2.3692 0.0201 -0.6325 -1.5671 0.1208
lsharet−2 -1.6450 -1.0280 0.3068 -0.1065 -0.1923 0.8479
lsharet−3 -1.8844 -1.1128 0.2689 0.9819 1.6765 0.0973
lsharet−4 1.7304 1.4434 0.1525 -0.0609 -0.1470 0.8835
st−1 1.3590 8.8223 1.1e-13 -0.0906 -1.7012 0.0925
st−2 -0.1990 -0.8323 0.4075 -0.0100 -0.1206 0.9043
st−3 -0.2936 -1.2132 0.2284 0.1579 1.8868 0.0626
st−4 0.1038 0.6722 0.5032 -0.0322 -0.6026 0.5483
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Π̂11 =−0.1459, Π̂12 = 0.0597, Π̂21 =



0.4369
−0.3228
0.2917
−0.2416
−0.0783
−0.0450
0.0722
0.0476
0.0028
−0.0088
−7.9e-04

0.0025
0.1026
0.1865
−0.2156
0.0725
2.7647
−1.6450
−1.8844
1.7304
1.3590
−0.1990
−0.2936
0.1038



, Π̂22 =



−0.0379
0.1687
0.2819
−0.0063
0.0692
0.0682
−0.0186
−0.0264
0.0052
0.0051
0.0050
9.6e-04
−0.0396
0.0730
−0.0248
0.0154
−0.6325
−0.1065
0.9819
−0.0609
−0.0906
−0.0100
0.1579
−0.0322



.

To simplify the notation, we will use Π rather than Π̂ for the following analysis when
there is no confusion. According to the above results, we can substitute 0 for the estimated
coefficients that are statistically insignificant at 0.05 and 0.01 significance levels. Then the
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corresponding estimated matrices become

Π̂(0.05) =



0 0
0 0
0 0
0 0.2819
0 0
0 0.0692
0 0.0682
0 0
0 0
0 0.0052
0 0.0051
0 0.0050
0 0
0 0
0 0
0 0
0 0

2.7647 0
0 0
0 0
0 0

1.3590 0
0 0
0 0
0 0



, Π̂(0.01) =



0 0
0 0
0 0
0 0
0 0
0 0.0692
0 0.0682
0 0
0 0
0 0.0052
0 0.0051
0 0.0050
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1.3590 0
0 0
0 0
0 0


We can check identification of λ , γ f and γb in detail by applying the general rank

condition (4.4.8). First, we look at identification of λ .

rank

[
Jφ(λ ,γ f ,γb)

e1
′

]
= rank

 Π11 Π12 1
Π21 Π22 O

1 0 0


= 1+ rank

[
Π12 1
Π22 O

]
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= 2+ rank(Π22). (4.7.23)

The necessary and sufficient condition for identification of λ is

rank
(

Jφ(λ ,γ f ,γb)
)
= rank

[
Jφ(λ ,γ f ,γb)

e1
′

]

and equating (4.7.22) and (4.7.23) we have

rank(Π2) = 1+ rank(Π22). (4.7.24)

That means either Π22 is zero or Π21 and Π22 are linearly independent if Π22 is nonzero
[see Harville (2008, Theorem 17.2.4)]. It can be easily verified that the validity of (4.7.24)
entails

Π21 ̸= O.

This is consistent with the expression (4.7.20) since λ is unidentifiable if Π21 is zero.
Furthermore, when Π21 is not equal to zero but close to be zero, we can only have weak
identification of λ . Besides, when Π21 and Π22 are close to be linearly dependent, λ is also
weakly identified. We can now use the estimated parameters to verify the above analysis. It
is trivial that Π22 is nonzero and Π21 and Π22 are linearly independent. (4.7.24) is satisfied

rank(Π2) = 2 = 1+ rank(Π22).

So λ is indeed identifiable.
Second, we want to identify the forward-looking coefficient γ f and calculate the rank

as follows

rank

[
Jφ(λ ,γ f ,γb)

e2
′

]
= rank

 Π11 Π12 1
Π21 Π22 O

0 1 0


= 1+ rank

[
Π21 Π22

0 1

]
= 2+ rank(Π21). (4.7.25)

Similarly, we have necessary and sufficient condition for identification from γ f by equating
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(4.7.22) and (4.7.25) as follows

rank(Π2) = 1+ rank(Π21). (4.7.26)

That is to say the condition for identification of the forward-looking behaviour of inflation
is either Π21 is zero or Π21 and Π22 are linearly independent if Π21 is nonzero. We cannot
identify γ f when Π22 is zero, which is evidenced by (4.7.20). Again weak identification of
γ f occurs when Π22 is close to be zero or there exists a close collinearity between Π21 and
Π22. Similarly, using the data we can easily calculate that

rank(Π2) = 2 = 1+ rank(Π21).

Therefore the forward-looking behaviour of inflation γ f is also identifiable.
Third, we check identification of the backward-looking component γb of inflation. The

rank calculation leads to

rank

[
Jφ(λ ,γ f ,γb)

e3
′

]
= rank

 Π11 Π12 1
Π21 Π22 O

0 0 1


= 1+ rank(Π). (4.7.27)

Hence the necessary and sufficient condition for identification of γb is

rank(Π2) = rank(Π), (4.7.28)

which means that the information contained by Π1 is already included in the rows of Π2.
In the extreme case where Π1 is zero, γb is obviously identifiable from (4.7.19). If all the
columns of Π2 are linearly independent, (4.7.28) holds. Given the specific data we use, we
find that this is exactly the case and (4.7.28) is satisfied trivially. Thus we conclude that the
backword-looking behaviour of inflation γb is identifiable.

Fourth, we want to identify both λ and γ f . Then the rank of the augmented matrix
becomes

rank

 Jφ(λ ,γ f ,γb)

e1
′

e2
′

= rank


Π11 Π12 1
Π21 Π22 O

1 0 0
0 1 0


= 3. (4.7.29)

143



From (4.7.22) and (4.7.29), we have the identification condition for both λ and γ f is

rank(Π2) = 2, (4.7.30)

which means that Π2 has full column rank and it is the same as the conventional rank
condition for IV regression models. It is trivial that the condition for identification of the
entire semi-structural parameters

[
λ γ f γb

]′
is the same as (4.7.30), which is obvious

from (4.7.19) since identification of λ and γ f implies that of γb. Likewise, the chosen data
show that (4.7.30) holds. Thus both λ and γ f are identified.

Considering the small estimated values in Π22 and fact that the Federal Reserve System
changed its monetary policy from pursuit of multiple goals during the pre-1980 period to
a sole goal of price after-1980 due to the impact of the revision in economic theory by
Sargent and Wallace (1975), Lucas (1976), Friedman (1977), Barro (1977) and Kydland
and Prescott (1977) [see Handa (2009)], which has a far-reaching influence on inflation
rates, we check the robustness of the estimated parameters using data over the period of
1980 : 1−1997 : 4. The estimated coefficients with t-statistics and p-values are as follows:

Substituting 0 for the estimated coefficients that are statistically insignificant at 0.05
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TABLE 4.2
Estimation for reduced form parameters, 1980:1-1997:4

IV Π̂s t-stat p-value Π̂in f t-stat p-value
πt−1 -0.1697 -0.3612 0.7196 0.2421 1.4979 0.1410
πt−2 0.2485 0.4954 0.6227 0.1741 1.0086 0.3184
πt−3 -0.4678 -0.9439 0.3502 0.0639 0.3748 0.7095
πt−4 0.2460 0.4794 0.6339 0.0107 0.0607 0.9518
πt−5 -0.6260 -1.2547 0.2159 -0.0291 -0.1697 0.8660
win ft−1 -0.0477 -0.7498 0.4572 0.0413 1.8855 0.0657
win ft−2 -0.0057 -0.0894 0.9292 0.0569 2.6055 0.0123
win ft−3 0.0383 0.5823 0.5632 -0.0014 -0.0609 0.9517
win ft−4 -0.0044 -0.0812 0.9357 -0.0253 -1.3575 0.1813
cin ft−1 -0.0029 -0.4048 0.6875 0.0044 1.7690 0.0835
cin ft−2 -0.0113 -1.6528 0.1052 0.0040 1.6830 0.0991
cin ft−3 0.0035 0.5131 0.6103 0.0043 1.8233 0.0748
cin ft−4 0.0069 1.0080 0.3187 2.3e-04 0.0981 0.9223
rdt−1 -0.1405 -1.1017 0.2763 -0.0256 -0.5837 0.5623
rdt−2 0.4776 2.8982 0.0057 -0.0118 -0.2086 0.8357
rdt−3 -0.3914 -2.1232 0.0391 0.0305 0.4813 0.6326
rdt−4 -0.0059 -0.0428 0.9660 0.0022 0.0473 0.9625
lsharet−1 2.0562 1.1230 0.2313 -0.1610 -0.2760 0.7837
lsharet−2 -2.3632 -1.1230 0.2673 -0.2385 -0.3293 0.7434
lsharet−3 1.3774 0.6703 0.5060 0.0699 0.0988 0.9217
lsharet−4 0.8957 0.6014 0.5506 0.8357 1.6305 0.1098
st−1 1.4086 6.6600 3.0e-08 -0.1140 -1.5659 0.1242
st−2 -0.3048 -0.9248 0.3599 0.0172 0.1520 0.8798
st−3 -0.1977 -0.6131 0.5428 0.1079 0.9726 0.3358
st−4 0.0202 0.0983 0.9221 0.0042 0.0598 0.9526
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and 0.01 significance levels, we have

Π̂(0.05) =



0 0
0 0
0 0
0 0
0 0
0 0
0 0.0569
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.4776 0
−0.3914 0

0 0
0 0
0 0
0 0
0 0

1.4086 0
0 0
0 0
0 0



, Π̂(0.01) =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1.4086 0
0 0
0 0
0 0


We notice that the rank of estimated Π is equal to 1 if the significance level is chosen

to be 0.01, which casts light on some interesting identification issues. First, we check
identifiability of λ . Clearly (4.7.24) holds and

rank(Π2) = 1+ rank(Π22) = 1.

λ is identifiable.
Second, we look at identification of the forward-looking component of inflation γ f .
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Simple rank calculations lead to

1+ rank(Π21) = 2 > rank(Π2) = 1.

Thus (4.7.26) is violated. Since such violation is based on the substitution of 0 for estimated
parameters which equal to 0 with a null probability in practice, it is more accurate to argue
that γ f is weakly identified. Meanwhile, it is worth mentioning that weak identification of
γ f will not have any effect on identification of λ since (4.7.24) holds even if Π22 is equal
to 0.

Third, we check identification of the backward-looking behaviour of inflation γb. From
(4.7.28), it follows that if some columns of Π2 are linearly dependent, then the added
elements in Π1 will determine whether or not (4.7.28) is true. Given the specific data we
use, since the estimated parameters in Π22 are all statistically insignificant at 0.01 level
and relative small in magnitude Π22 approximates to 0. Therefore, the columns of Π2

are close to be linearly dependent. Moreover, the estimated Π12 equals 0.24 which is
statistically insignificant even at 0.14 level. Thus we conclude that (4.7.28) is satisfied and
the backward-looking behaviour of inflation γb is identifiable whether or not γ f is weakly
identified.

Fourth, we check identification of both λ and γ f . Likewise, the chosen data show that
the rank of Π2 is 1 if we replace insignificant estimated parameters in Π with 0. Therefore
(4.7.30) is not satisfied due to the fact that γ f can only be weakly identified.

Fifth, it is interesting to study whether γ in f = γ f + γb is identifiable 8. Plugging in the
derivative of γ in f into the Jacobian matrix and calculating the rank, we have

rank

[
Jφ(λ ,γ f ,γb)

Jγ in f

]
= rank

 Π11 Π12 1
Π21 Π22 O

0 1 1



= rank

 Π11 Π12 −1 0
Π21 Π22 O

0 1 1


= 1+ rank

[
Π11 Π12 −1
Π21 Π22

]
. (4.7.31)

Note that the second equality sign is due to Gaussian elimination. Equating (4.7.22) and

8Galí and Gertler (1999) consider the case where the discount factor β = 1 so that γ f + γb = 1.
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(4.7.31) leads to

rank(Π2) = rank

[
Π11 Π12 −1
Π21 Π22

]
. (4.7.32)

Again if the columns of Π2 are linearly independent, (4.7.32) holds and γ f + γb is identifi-
able. However, the estimated Π22 is statistically insignificant at 0.01 significance level and
(Π12 − 1) is −0.76 which is statistically significant with a p-value very close to 0. Thus
when γ f is weakly identified,

rank(Π2) = 1 < rank

[
Π11 Π12 −1
Π21 Π22

]
= 2

and (4.7.32) fails. So we can only weakly identify the linear function γ f + γb. Hence
we should cast doubt on the assumption of β = 1 which implies that γ f + γb = 1 in the
related literature on NKPC [see Galí and Gertler (1999), Lindé (2005), Rudd and Whelan
(2005) and Nason and Smith (2008), etc.] when forward-looking behaviour of inflation γ f

is weakly identified.
Our analysis leads to the similar conclusion of Dufour et al. (2006) that hybrid NKPC

of Galí and Gertler (1999) is somehow supported by the U.S. data over 1970 : 1−1997 : 4.
However, this paper also checks the robustness of the NKPC setup using the U.S. data
1980 : 1− 1997 : 4. We find out that Galí and Gertler (1999) NKPC involves weak iden-
tification issues. Although all the semi-structure parameters are individually identifiable,
the forward-looking component of inflation is only weakly identified. Specifically, our pa-
per makes the following two major contributions to NKPC identification research. On one
hand, the existing literature focuses on estimation of NKPC and obtains reliable statisti-
cal inference when some parameters are weakly identified or unidentified [see Mavroeidis,
Plagborg-Møller and Stock (2014) and the references therein]. In contrast, we are the first
to give explicit necessary and sufficient conditions for identification of semi-structural pa-
rameters of the hybrid NKPC. We provide a more general framework which unifies all
types of identification issues, including exact identification, weak identification and identi-
fication failure. It is very convenient to study identification of each of these semi-structural
parameters. Empirical researchers will now have a clear idea about how likely the weak
identification of certain parameter can occur and how to measure the weakness of identifi-
cation. Take output gap coefficient λ and the forward-looking bahaviour γ f as an example.
Given none of the columns of Π2 is 0, the more stronger is the linear relationship be-
tween the columns of Π2, the more likely λ and γ f are weakly identified. Furthermore,
the stronger the linear dependence of the columns of Π2, the weaker is the identification.
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Meanwhile, if one column of Π2 is close to 0 as demonstrated in the above case, we can
identify one parameter Λ and weakly identify another γ f . On the other hand, the generality
of our proposed identification conditions also allows for checking identification of an arbi-
trary function of parameters of interest, which has been scarcely studied in the literature.
For instance, we point out that γ f + γb can be very well weakly identified as proven by our
data. Therefore the popular analysis based on the assumption β = 1 should be treated with
caution. Note that identification failure (or weak identification) of γ f does not necessarily
lead to identification failure (or weak identification)of a function of it. To summarize, it is
likely that we cannot identify all the semi-structural parameters unless all the relevant rank
conditions are satisfied. In fact it might well be the case that all parameters are identifiable
but some are only weakly identified, such as the coefficient of forward-looking component
of inflation γ f .

4.8. Conclusion

We have been focusing on several important issues related to identification in this paper.
First of all, we examine the conditions for parametric function identification with and with-
out linear or nonlinear restrictions. Specifically, we are interested in identifying a paramet-
ric function β (θ) in terms of another identifiable parametric function γ(θ). Since there is
no constraint on the function form of β (θ), it can be linear or nonlinear in θ . For instance, it
can take the form of θ itself, an arbitrary subvector or a scalar of θ , any linear combination
of θ , the score function and the Kullback-Leibler divergence. Therefore, the necessary and
sufficient condition for parametric function identification includes the classical statement of
identification of θ as a special case. Besides, for the convenience of empirical researchers
who usually study statistical models through the explanatory variables, we also provide
some equivalent conditions that are intuitive and easy to check based on the properties of
linear subspaces.

Second, due to the importance and yet difficulty of globally identifying the parameter
θ [see Rothenberg (1971)], we define a stronger version of local identification, i.e., lo-
cal identification of θ around a particular parameter value θ 0 in the sense that it entails
the standard definition of local identification at θ 0. The purpose of introducing this new
concept is that we can still identify the parameters of interest within a neighborhood of
some given point although achieving global identification over the entire parameter space
is challenging in most cases without further useful information. Thus this arbitrarily small
“neighborhood” can be treated as a reduced parameter space where any two distinguished
parameter values imply different probability distributions characterized by parameters. We
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have established a necessary and sufficient condition for local identification around θ 0 un-
der weaker assumptions in comparison to some well-known results on local identification
at θ 0, such as these by Rothenberg (1971), Bekker and Wansbeek (2001) and Chen et al.
(2011).

Third, we establish sufficient conditions (and sometimes both necessary and sufficient
conditions) for identification through the Kullback-Leibler divergence and the first order
partial derivative of the Kullback-Leibler divergence. It can be easily verified that the as-
sumptions about the standard conditions for local identification are more restrictive than
needed and can be replaced with weaker ones. Furthermore, we can reach the same con-
clusions as those by Rothenberg (1971) and Bowden (1973) using the rank information
about the Hessian matrix of the Kullback-Leibler divergence evaluated at the true θ 0 which
is equivalent to the Fisher information matrix at θ 0. Specifically, we give the necessary and
sufficient rank condition for local identification of θ at θ 0 through the Kullback-Leibler
divergence. Besides, it is straightforward to establish the condition for parametric function
identification within the likelihood model setup.

Fourth, we show that our identification conditions can be applicable to some impor-
tant statistical and macroeconomic models, namely the SEMs and the DSGE models. In
comparison to the classical literature, we relax some of the classical regularity assumptions
about the simultaneous models, such as normality of the structural shocks, nonsingular
coefficient matrix of the endogenous variables and linearity of the restrictions, etc; see
Fisher (1966), Rothenberg (1971), Richmond (1974) and Bekker and Wansbeek (2001). It
follows that the general rank condition, which is just one of a group of equivalent identifica-
tion conditions, holds whether or not the design matrix has full column rank. Furthermore,
the validity of our rank condition is not affected by whether we can have a unique expres-
sion of the reduced form of the simultaneous equation system since it is derived from the
constructed system of moment conditions. Consequently, all the standard conditions in the
simultaneous models are special cases of the general rank condition. On the other hand,
it is easy to apply our results for function identification to the DSGE models with high
dimension and high nonlinearity properties. Similarly, the statements of identification in
the literature for the DSGE models can be generalized as special cases.

Fifth, we look into some real macroeconomic models and extend our identification re-
sults to analysis of weak identification. We consider a two-equation SEMs of Romer (1993)
followed by a three-equation dynamic New Keynesian model in the format of Canova
(2009). Since the hybrid NKPC proposed by Galí and Gertler (1999) gains popularity in
the study of inflation behaviour, we examine this particular type of model and derive some
interesting results on identification of the semi-structural parameters, which are new to the
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literature. More importantly, our general framework provides the flexibility of checking
both identification failure and weak identification, which has been regarded as a big chal-
lenge for getting reliable statistical inference. As shown in the paper, the measurement of
weak identification can be reduced to verifying the linear dependent relationship among
certain rows or columns of known matrices, which provides a convenient tool for empirical
study on parameter identification and estimation.

There are some possible extensions to the main conclusions of this paper. Recently, Cho
and White (2012) study the asymptotic distribution of the extreme estimator by generalizing
some of the statistical inference results from the standard differentiable econometric models
to the models where the functions are directionally differentiable. Thus it is promising
to investigate identification conditions when the partial derivatives are not well defined
along certain coordinates whereas the directional derivatives exist. Another interesting
topic related to this paper is how to achieve global (parametric function) identification for
nonlinear regression models.
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Chapter 5

Conclusion

Since distributional theory and reliable statistical inference depend critically on which pa-
rameters or transformations of parameters are identifiable, this thesis characterizes suffi-
cient conditions as well as necessary and sufficient conditions for different types of identi-
fications – global identification, local identification and parametric function identification –
in both linear and nonlinear models. It covers the following important topics: relationship
between conditions for estimability and identifiability and global identification of linear
functions of parameters, identification of parametric functions in IV regressions and SEMs,
local identification of nonlinear parametric function identification and global identification
in nonlinear models.

In view of the fact that the necessary and sufficient conditions for estimability coincide
with those for identifiability when we have a separable mean-variance structure in gen-
eral linear models [see Reiersøl (1963), Rao and Mitra (1971) and Kounias and Chalikias
(2008)], it is a natural way to study identification from familiar results on estimability in a
linear setup in the literature. The first essay looks at identification conditions for partially
linear models which includes most of the frequently used models in statistics and econo-
metrics, such as general linear models, generalized linear models, linear mixed models,
linear median regressions and quantile regressions, single index models, etc. We propose
a general necessary and sufficient condition for global identification of a general trans-
formation of parameters under separability assumption where parameters of interest can
be completely separated from nuisance parameters. This separability assumption guaran-
tees both necessity and sufficiency of the proposed condition which will otherwise lose
necessity. Furthermore, this condition is applied to partially linear models and the model
parameters can be fully characterized despite the fact that partially linear models usually
relax assumptions of additivity of the error term and separability of mean-variance struc-
ture. Besides, since restrictions are closely related to statistical inference, such as test and

152



hypothesis, we take into account the effect of adding linear restrictions on identification
and the corresponding conditions are provided. Additionally, a group of intuitive equiv-
alent conditions are proposed based on properties of column subspaces and generalized
inverse methods.

As the current literature on weak instruments concentrate on linear IV regression and
SEMs, the second essay studies global identification of parametric functions in such mod-
els. The framework of this paper is quite general in that a series of standard assumptions
regarding model specification are relaxed [see Bekker and Wansbeek (2001)]. First, we do
not impose full column rank assumption on the design matrix of the reduced form equations
because it is irrelevant to our interest in identification of structural parameters. Second, we
can still characterize identification of a linear transformation of deep parameters although
none of the original model parameters can be identified. Third, the design matrix does not
have to be exogeneous, which provides flexibility in dealing with some crucial issues on
instruments. Indeed, identification of parameters depend on realized values of instruments.
Fourth, we allows for the presence of nuisance parameters in the model setup so that the
proposed general condition for identification in the first essay is easily extended to linear
IV regressions.

Given the growing popularity of specifying nonlinear models to tackle economic prob-
lems, such as nonlinear models estimated by GMM and the DSGE models, the third essay
studies identification of nonlinear parametric functions in nonlinear models. Parametric
function identification is a new concept introduced to literature which generalizes partial
identification of a scalar parameter or a subvector of parameters by Phillips (1989) and
Bekker and Wansbeek (2001). It also distinguishes itself from partial identification by
Manski (1995) who uses this terminology to refer to set-valued identification. We propose
both necessary and sufficient conditions for nonlinear parametric function identification
with and without nonlinear restrictions. Meanwhile, considering the difficulty of achieving
global identification in nonlinear models, this paper focuses on local identification around
a point which lies between global identification and classical local identification at a point.
The reason of introducing local identification around a point is that this stronger version of
local identification will secure a consistent estimator whereas local identification at a point
is very restrictive for statistical inference and we might lose consistency under certain cir-
cumstances. To make our general condition easier to apply, we provide a set of equivalent
conditions based on the conclusions in the first essay. Moreover, we demonstrate the gen-
erality of the proposed condition by applying it to nonlinear SEMs, likelihood models and
DSGE models.

There are some promising extensions to the topics covered in this thesis. First, it is
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interesting to obtain identification conditions through properties of a monotone operator.
Employing monotonicity to achieve identification conditions has some gains. For instance,
the parametric function does not have to be smooth and we do not need to calculate rank
of a Jacobian matrix. Besides, it is possible to achieve global identification even if the
function is not continuous. Second, identification is feasible through higher order moments
when information given by the first two moments is inadequate to obtain identification. For
example, in the likelihood models, suppose the Hessian matrix of the Kullback-Leibler di-
vergence is singular, a sufficient condition for local identification can be derived based on
the information on the third order derivatives of the Kullback-Leibler divergence. Third,
it is interesting to study identification in a multi-dimensional space where certain partial
derivatives are not well defined along specific coordinates whereas the directional deriva-
tives exist. Thus directional derivatives rather than partial derivatives can help identify
parameters of interest.
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Appendix
PROOF OF PROPOSITION 2.3.2 Suppose (2.3.2) holds. Then, the identifiability of δ (θ)
on Θ0 simply follows by applying Definition 2.2.1 with ψ(θ) = δ (θ). Conversely, suppose
δ (θ) is identifiable on Θ0, but condition (2.3.2) does not hold. In this case, we can find θ 1,
θ 2 ∈ Θ0 such that δ (θ 1) ̸= δ (θ 2) and γ(θ 1) = γ(θ 2). Since δ (θ) is identifiable on Θ0, we
have Pθ 1 ̸= Pθ 2 . On the other hand, since γ(θ 1) = γ(θ 2),

Pθ 1 = P̄γ(θ 1) = P̄γ(θ 2) = Pθ 2.

This leads to a contradiction, so condition (2.3.2) is necessary for the identifiability of δ (θ)
on Θ0.

PROOF OF THEOREM 2.3.4 Suppose (2.3.4) holds. Then, the identifiability of δ (θ) on
Θ0 simply follows by applying Definition 2.2.1 with ψ(θ) = γ1(θ). Conversely, suppose
δ (θ) is identifiable on Θ0, but condition (2.3.4) does not hold. Then we can find θ 1, θ 2 ∈
Θ0 such that δ (θ 1) ̸= δ (θ 2) and γ1(θ 1) = γ1(θ 2). Using Assumption 2.3.3 with θ = θ 1

and γ̄2 = γ2(θ 2), we can also find θ ∗
1 such that δ (θ ∗

1) = δ (θ 1), γ1(θ
∗
1) = γ1(θ 1) and

γ2(θ
∗
1) = γ2(θ 2), so that

γ(θ ∗
1) = (γ1(θ

∗
1), γ2(θ

∗
1)) = (γ1(θ 1), γ2(θ 2)) = (γ1(θ 2), γ2(θ 2)) = γ(θ 2) . (A.1)

Since δ (θ ∗
1) = δ (θ 1) ̸= δ (θ 2) and δ (θ) is identifiable on Θ0, we must have Pθ∗

1
̸= Pθ 2 . On

the other hand, since γ(θ) is sufficient for P on Θ0, (A.1) entails Pθ∗
1
= Pθ 2 . This leads to

a contradiction, so condition (2.3.4) is necessary for the identifiability of δ (θ) on Θ0.

PROOF OF PROPOSITION 2.3.7 The fact that Assumption 2.3.3 entails Assumptions
2.3.5 and 2.3.6 follows by taking ϕ(θ)=

(
δ (θ), γ1(θ)

)
. Conversely, suppose Assumptions

2.3.5 and 2.3.6 hold. By Assumption 2.3.5, we have

δ (θ) = g[ϕ(θ)] and γ1(θ) = h1[ϕ(θ)] , ∀θ ∈Θ0 ,

for some functions g and h1. Further, by Assumption 2.3.6, for any θ ∈Θ and γ̄2 ∈ γ2(Θ0),

we can find θ ∗ ∈Θ0 such that ϕ(θ ∗) = ϕ(θ) and γ2(θ
∗) = γ̄2 , hence

δ (θ ∗) = g[ϕ(θ ∗)] = g[ϕ(θ)] = δ (θ), γ1(θ
∗) = h1[ϕ(θ ∗)] = h1[ϕ(θ)] = γ1(θ)

and (2.3.3) holds. Assumption 2.3.3 is thus satisfied.
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PROOF OF PROPOSITION 2.3.8 The fact that (2.3.10) entails Assumption 2.3.6 follows
directly from the definition of the Cartesian product. Suppose now Assumption 2.3.6 holds.
It is easy to see that ν(Θ0)⊆ ϕ(Θ0)× γ2(Θ0). Let ν̄ = (ϕ̄ , γ̄2) ∈ ϕ(Θ0)× γ2(Θ0). We can
then find θ 1, θ 2 ∈ Θ0 such that ϕ(θ 1) = ϕ̄ and γ2(θ 2) = γ̄2. By Assumption 2.3.6, we
can find θ ∗

1 ∈Θ0 such that ϕ(θ ∗
1) = ϕ̄ and γ2(θ

∗
1) = γ̄2, hence ν(θ ∗

1) =
(
ϕ(θ ∗

1), γ2(θ
∗
1)
)
∈

ν(Θ0). Thus ϕ(Θ0)× γ2(Θ0)⊆ ν(Θ0), which along with ν(Θ0)⊆ ϕ(Θ0)× γ2(Θ0), entails
ν(Θ0) = ϕ(Θ0)× γ2(Θ0).

PROOF OF LEMMA 2.4.1 Consider the block triangular matrices:

TL =

[
Ip O

V1 Iq

]
, TU =

[
Ip V2

O Iq

]
.

Clearly, TL and TU are invertible, hence

rank
[

Z

Q

]
= rank

{[
Ip O

V1 Iq

][
Z

Q

]}
= rank

[
Z

Q+V1Z

]
, (A.2)

rank
[

Z

Q

]
= rank

{[
Ip V2

O Iq

][
Z

Q

]}
= rank

[
Z +V2Q

Q

]
. (A.3)

This establishes (2.4.1). We can now look at the rank additivity properties.
(a) If (2.4.2) holds, each row of Z is linearly independent of the row space of Q+V1Z are
essentially disjoint. Thus

rank
[

Z

Q

]
= rank

[
Z

Q+V1Z

]
= rank(Z)+ rank(Q+V1Z)

and (2.4.3) holds.
(b) If (2.4.4) holds, each row of Z +V2Q is linearly independent of the row space of Q.
Thus

rank
[

Z

Q

]
= rank

[
Z +V2Q

Q

]
= rank(Z +V2Q)+ rank(Q)

and (2.4.5) holds.
(c) Suppose V1 =−QZ− but (2.4.2) does not hold, i.e. V1 =−QZ− and Im

(
Z′)∩ Im

(
Q′+

Z′V1
′) ̸= {0}. We can then find non-zero vectors x1 and x2 such that

Z′x1 =
(
Q′+Z′V1

′)x2 ̸= 0 ,
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hence
x1

′Z = x2
′(Q−V1Z) = x2

′Q(Ik −Z−Z) ̸= 0 (A.4)

and, on post-multiplying by (Ik −Z−Z),

x1
′Z(Ik −Z−Z) = x2

′Q(Ik −Z−Z)(Ik −Z−Z) = x2
′Q(Ik −Z−Z) ̸= 0 .

However,
x1

′Z(Ik −Z−Z) = x1
′(Z −ZZ−Z) = 0 (A.5)

and we have a contradiction. Consequently, (2.4.2) must hold. (2.4.3) follows from part (a)
of this Lemma.
(d) Suppose V2 =−ZQ− but (2.4.4) does not hold: i.e. V2 =−ZQ− and Im

(
Q′)∩ Im

(
Z′+

Q′V2
′) ̸= {0}. We can then find non-zero vectors x1 and x2 such that

Q′x1 =
(
Z′+Q′V2

′)x2 ̸= 0 . (A.6)

hence
x′1Q = x′2

(
Z +V2Q

)
= x′2Z

(
Ik−Q−Q

)
̸= 0 (A.7)

and, on post-multiplying by (Ik −Q−Q),

x′1Q(Ik −Q−Q) = x2
′Z(Ik −Q−Q)(Ik −Q−Q) = x2

′Z(Ik −Q−Q) ̸= 0 . (A.8)

However,
x′1Q(Ik −Q−Q) = x′1(Q−QQ−Q) = 0 (A.9)

and we have a contradiction. Consequently, (2.4.4) must hold. (2.4.5) follows from part (b)
of this Lemma.

PROOF OF PROPOSITION 2.4.2 Let d ≡ β 1 −β 2. The equivalence between (2.4.6) and
(2.4.7) simply follows from the definition of a function. Further,

[
(Zβ 1 = Zβ 2)⇒ (Qβ 1 = Qβ 2),∀β 1, β 2

]
⇔
[
(Zδ = 0)⇒ (Qδ = 0),∀d ∈ Rk]

⇔
[(

d ∈ ker(Z)
)
⇒
(
d ∈ ker(Q)

)
,∀d
]

⇔
[
ker(Z)⊆ ker(Q)

]
⇔
[[

Im(Z′)
]⊥ ⊆

[
Im(Q′)

]⊥]
⇔
[
Im(Q′)⊆ Im(Z′)

]
⇔
[
Q′ = Z′B′, for some matrix B

]
⇔ rank

[
Z′ Q′ ]= rank

(
Z′)
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⇔ rank
[

Z

Q

]
= rank(Z)

⇔ rank
[

Z

Q+V1Z

]
= rank(Z)

⇔ rank
[

Z +V2Q

Q

]
= rank(Z)

where we use the well known relation between the kernel of a matrix C and and the image
of of its transpose C′:

ker(C) = [Im(C′)]⊥, for any matrix C ;

see Gouriéroux and Monfort (1995). The last two equivalences follow from (2.4.1). This
establishes the equivalences between the statements (2.4.7) to (2.4.13).
We now show that (2.4.14) and (2.4.9) are equivalent. Suppose (2.4.9) holds: Im(Q′) ⊆
Im(Z′). For any q1 × q matrix S, we thus have Im

(
Q′S′

)
⊆ Im

(
Q′) ⊆ Im

(
Z′), hence

rank[Z′ Q′S′ ] = rank(Z′). Since the latter identity holds for any q1 × q matrix (without
rank restriction), we have

rank
[

Z

SQ

]
= rank(Z)

for any S matrix such that rank(SQ) = rank(Q). i.e. (2.4.14) holds. Conversely, suppose
(2.4.14) holds. When rank(SQ) = rank(Q), we must have Im(Q′S′) = Im(Q′); see Harville
(2008, Theorem 4.4.7). Further,

[
rank

[
Z

SQ

]
= rank(Z)

]
⇒
[
rank[Z′ Q′S′ ] = rank(Z′)

]
⇒
[
Im(Q′S′)⊆ Im(Z′)

]
⇒
[
Im(Q′)⊆ Im(Z′)

]
and (2.4.9) holds.
To get (2.4.15), suppose (2.4.11) holds. Using Lemma 2.4.1 with V1 = −QZ−, where Z−

is a g-inverse of Z, we see that

rank(Z) = rank
[

Z

Q

]
= rank(Z)+ rank(Q−QZ−Z)

hence rank
{

Q−QZ−Z
}
= 0 and Q = QZ−Z. Thus (4.4.13) holds. Conversely, suppose
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Q = QZ−Z, for some g-inverse Z− of Z. Then Q′ = Z′(QZ−)′

Q′ = Z′(QZ−)′

which entails rank
[

Z′ Q′ ]= rank
(
Z′) and

rank
[

Z

Q

]
= rank(Z) .

This establishes the equivalence between (2.4.15) and (2.4.11). each one of the conditions
(2.4.7) to (2.4.14).
Finally, to get (2.4.16), suppose (2.4.11) holds. Using Lemma 2.4.1 with V2 = −ZQ−,
where Q− is a g-inverse of Q, we have:

rank(Z) = rank
[

Z

Q

]
= rank

{
Z −ZQ−Q

}
+ rank(Q) = rank

{
Z(Ik −Q−Q)

}
+ rank(Q)

(A.10)
and (2.4.16) holds. Conversely, suppose (2.4.16) holds, i.e.,

rank(Z) = rank
{

Z(Ik −Q−Q)
}
+ rank(Q) (A.11)

for some g-inverse Q−. It is easy to see that:

rank
[

Z

Q

]
≥ rank(Z) . (A.12)

Further, using (2.4.1) with V2 =−ZQ−, we see that

rank
[

Z

Q

]
= rank

[
Z −ZQ−Q

Q

]
= rank

[
Z(Ik −Q−Q)

Q

]
≤ rank

{
Z(Ik −Q−Q)

}
+ rank(Q) = rank(Z) . (A.13)

On combining (A.12) with (A.13), we get

rank
[

Z

Q

]
= rank(Z) (A.14)

and (2.4.11) holds. The equivalence between (2.4.16) and (2.4.11) follows.
All the required equivalences have been established.
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PROOF OF LEMMA 2.4.3 The equivalence (2.4.24) follows from standard results on
solutions of linear equations: namely, if c0 ∈ Im(R), the set of all solutions of equation
(2.4.22) is given by:

β = R−c0 +(Ik −R−R)d, d ∈ Rk, (A.15)

where R is any generalized inverse of R; see Rao and Mitra (1971) or Harville (1997,
Section 11.2). To get (2.4.25), suppose first that: β = b0+Ce for some e∈Rm. Multiplying
both sides of this equation by (Ik −CC−), we get:

(Ik −CC−)β = (Ik −CC−)b0 +(C−CC−C)e = (Ik −CC−)b0 . (A.16)

Conversely, suppose the latter identity holds. This is a linear equation system, and its
general solution can be written:

β = D−Db0 +(Ik −D−D)d = b0 +(Ik −D−D)(d −b0), d ∈ Rk, (A.17)

where D = Ik −CC−. We can take D− = Ik +CC−, for D− verifies the definition of a
g-inverse of D:

DD−D = (Ik −CC−)(Ik +CC−)(Ik −CC−) = (Ik −CC−)(Ik −CC−CC−)

= (Ik −CC−)(Ik −CC−) = (Ik −CC−) = D . (A.18)

Further, D−D = D and Ik −D =CC−, hence

β = b0 +(Ik −D)(d −b0) = b0 +CC−(d −b0) = b0 +Ce (A.19)

where e =C−(d −b0) ∈ Rm. This completes the proof of the equivalence (2.4.25).

PROOF OF PROPOSITION 2.4.4 Suppose (2.4.27) holds, and let c0 ∈ Im(R). Then we
can find a function gc0 : Im(Z) 7→ Im(Q) such that

Qβ = gc0(Zβ ), ∀β ∈ LI(R, c0) . (A.20)

Set

g(Zβ , c0) = gc0(Zβ ) for β ∈ LI(R, c0) , (A.21)

ḡ(Z̄β ) = g(Zβ , Rβ ) for β ∈ Rk . (A.22)

160



Clearly,
ḡ(Z̄β ) = g(Zβ , Rβ ) = g(Zβ , c0) = Qβ for β ∈ LI(R, c0) (A.23)

and ḡ satisfies (2.4.28). Conversely, if we have (2.4.28), it is clear (2.4.27) holds upon
considering restricted-domain functions of the form: gc0(Zβ ) = ḡ(Z̄β ) = g(Zβ , c0) for β ∈
LI(R, c0). Thus (2.4.27) and (2.4.28) are equivalent. The equivalences between (2.4.28)
and the other statements (2.4.29) - (2.4.38) of the Proposition follow as in Proposition 2.4.2
after replacing Z by Z̄.

PROOF OF PROPOSITION 2.4.5 Suppose (2.4.44) holds, and let β 1, β 2 ∈ LE(C, b0).
We thus have (

Zβ 1 = Zβ 2
)
⇒
(
Qβ 1 = Qβ 2

)
(A.24)

and we can find d1, d2 ∈Rm such that β 1 = b0+Cd1 and β 2 = b0+Cd2. Further, it is clear
that: (

Zβ 1 = Zβ 2
)
⇔
(
ZCd1 = ZCd2

)
, (A.25)(

Qβ 1 = Qβ 2
)
⇔
(
QCd1 = QCd2

)
, (A.26)

hence (
ZCd1 = ZCd2

)
⇒
(
QCd1 = QCd2

)
. (A.27)

Since this holds for any β 1, β 2 ∈ LE(C, b0) , (2.4.45) follows. Conversely, suppose
(2.4.45) holds. Then (2.4.44) follows from (A.25) - (A.26) and the definition of a func-
tion. (2.4.44) and (2.4.45) are thus equivalent. The equivalences between the statements
(2.4.45) - (2.4.54) can be proved as in Proposition 2.4.2 on replacing Z by ZC and Q by
QC.

PROOF OF PROPOSITION 2.4.6 The equivalence between (2.4.56) and (2.4.57) follows
from the equivalence between (2.4.44) and (2.4.47) in Proposition 2.4.5 with Q = l′: in this
case, C′Q′ = C′l =C′

j·l j +C′
( j·)l( j) ̸= 0 a non-zero vector, and

[Im(C′Q′)⊆ Im(C′Z′)]⇔C′l ∈ Im(C′Z′) . (A.28)

To get (2.4.58), we use condition (2.4.49) with Q = l′:

rank(ZC) = rank

[
ZC

l′C

]
= rank [Z̄C] where Z̄ =

[
Z

l′

]
. (A.29)

Further, on noting that ZC· j is the j-th column of ZC while ZC(· j) gathers the other columns
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of ZC, we see that

rank(ZC) = rank[ZC· j ZC(· j) ] = rank[ZC· j ZN jC(· j) ] (A.30)

where the second identity is based on on observing that the matrix

ZN jC(· j) = Z

[
Ik −

1
C′
· jl

C· jl′
]

C(· j) = ZC(· j)− (ZC· j)
1

C′
· jl

(l′C(· j)) (A.31)

is obtained by subtracting from each column of ZC(· j) a multiple of the first column ZC· j,
so the ranks of [ZC· j ZC(· j) ] and [ZC· j ZN jC(· j) ] are identical. Similarly,

rank(Z̄C) = rank[ Z̄C· j Z̄C(· j) ] = rank[ Z̄C· j Z̄N jC(· j) ]

= rank

[
ZC· j ZN jC(· j)

l′C· j l′N jC(· j)

]
= rank

[
ZC· j ZN jC(· j)

l′C· j 0′

]
= 1+ rank

[
ZN jC(· j)

]
(A.32)

where we use the facts that l′N jC(· j) = 0′ and C′
· jl ̸= 0. Combining (A.30) and (A.32), we

see that (2.4.58) is equivalent to (A.29). Finally, the identity

rank[ZC· j ZN jC(· j) ] = 1+ rank
[
ZN jC(· j)

]
(A.33)

means that ZC· j /∈ Im
[
ZN jC(· j)

]
.

PROOF OF THEOREM 2.5.3 Set δ (θ) = Qβ , γ1(θ) = Xβ , γ2(θ) = Pu(θ , X), and Γ2 =

{Pu(θ , X) : θ ∈ Θ0} the set of all error distributions determined by θ ∈ Θ0, where X is
taken as a known matrix of constants. In this model, the distribution of y is completely
determined by Xβ (a fixed vector) and the distribution of u. Clearly, γ(θ)=

(
γ1(θ), γ2(θ)

)
is sufficient on Θ0. Further, γ1(θ) = Eθ (y |X) is identifiable on Θ0, and Assumption 2.3.3
is satisfied [by Assumption 2.5.2]. The result then follows on applying Theorem 2.3.4.

PROOF OF THEOREM 2.5.4 By Proposition 2.4.2 with Z = X , each one of the conditions
(2.5.17) - (2.5.25) is equivalent to

[(Xβ 1 = Xβ 2)⇒ (Qβ 1 = Qβ 2)] (∀β 1, β 2 ∈ Rk) (A.34)
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hence, on noting that β 1 = β (θ 1) and β 2 = β (θ 2) [see (2.5.6)],

[(
Xβ (θ 1) = Xβ (θ 2)

)
⇒
(
Qβ (θ 1) = Qβ (θ 2)

)]
(∀θ 1, θ 2 ∈Θ0) . (A.35)

This means that Qβ is (Xβ )-identifiable on Θ0.
Conversely, suppose Qβ is (Xβ )-identifiable on Θ0, along with Assumption 2.5.2 and
β (Θ0) = Rk. By Theorem 2.5.3, this entails (A.35). Further, since β (Θ0) = Rk, (A.35)
implies (A.34), hence [by Proposition 2.4.2] each one of the conditions (2.5.17) - (2.5.25).
This completes the proof.

PROOF OF THEOREM 2.5.5 By Proposition 2.4.4 with Z̄ = X̄ , each one of the conditions
(2.5.28) - (2.5.36) is equivalent to

[(X̄β 1 = X̄β 2)⇒ (Qβ 1 = Qβ 2)]
(
∀β 1, β 2 ∈ Rk) (A.36)

hence, for any c0 ∈ Im(R),

[(
Xβ (θ 1) = Xβ (θ 2)

)
⇒
(
Qβ (θ 1) = Qβ (θ 2)

)] (
∀θ 1, θ 2 ∈ Θ̄0I(R, c0)

)
. (A.37)

This means that Qβ is (Xβ )-identifiable on Θ̄0I(R, c0), for any c0 ∈ Im(R).
Conversely, suppose Qβ is (Xβ )-identifiable on Θ̄0I(R, c0), for any c0 ∈ Im(R), along with
Assumption 2.5.2 and β̄ I(R, c0) = {β ∈Rk : Rβ = c0}. Under Assumption 2.5.2, Theorem
2.5.3 entails that (A.37) holds for any c0 ∈ Im(R). Further, β̄ I(R, c0) = β

(
Θ̄0I(R, c0)

)
⊆

{β ∈Rk : Rβ = c0}=LI(R, c0): so, when β̄ I(R, c0) = {β ∈Rk : Rβ = c0}, (A.37) entails

[(Xβ 1 = Xβ 2)⇒ (Qβ 1 = Qβ 2)]
(
∀β 1, β 2 ∈ LI(R, c0)

)
(A.38)

for any c0 ∈ Im(R). Further, since (A.38) holds for any c0 ∈ Im(R), we must have (A.36),
hence [by Proposition 2.4.4] each one of the conditions (2.5.28) - (2.5.36). This completes
the proof.

PROOF OF THEOREM 2.5.6 By Proposition 2.4.5 with Z = X , each one of the conditions
(2.5.38) - (2.5.46) is equivalent to

[(XCd1 = XCd2)⇒ (QCd1 = QCd2)](∀d1, d2 ∈ Rm) (A.39)
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hence, for any b0 ∈ Rk,

[(
Xβ (θ 1) = Xβ (θ 2)

)
⇒
(
Qβ (θ 1) = Qβ (θ 2)

)] (
∀θ 1, θ 2 ∈ Θ̄0E(C, b0)

)
. (A.40)

This means that Qβ is (Xβ )-identifiable on Θ̄0E(C, b0), for any b0 ∈ Rk.
Conversely, suppose Qβ is (Xβ )-identifiable on Θ̄0E(C, b0), for any b0 ∈ Rk. Under As-
sumption 2.5.2, Theorem 2.5.3 then entails that (A.40) holds for any b0 ∈ Rk. Further,
β̄ E(C, b0) = β

(
Θ̄0E(C, b0)

)
⊆ {β ∈ Rk : β = b0 +Cy, y ∈ Rm} = LE(C, b0): so, when

β̄ E(C, b0) = {β ∈ Rk : β = b0 +Cy, y ∈ Rm}, (A.35) entails

[(Xβ 1 = Xβ 2)⇒ (Qβ 1 = Qβ 2)]
(
∀β 1, β 2 ∈ LE(C, b0)

)
(A.41)

for any b0 ∈ Rk. Further, since (A.41) holds for any b0 ∈ Rk, we must have (A.39), hence
[by Proposition 2.4.5] each one of the conditions (2.5.38) - (2.5.46). This completes the
proof.

PROOF OF PROPOSITION 2.5.7 This proposition follows on applying Theorem 2.5.6
along with Proposition 2.4.6 with Z = X .

Corollary A.1 Given a linear parametric model

y = Xβ +u,

where u ∼ N[0,σ2I] and X is fixed, the mean is sufficient to identify the parameters β in

terms of the family of a normal probability distribution.

PROOF. We want to show that we can identify the parameter β as long as the mean can
be identifiable in a normal distribution setup. To be more specific, let’s define a parameter
vector as follows,

θ =

[
β
σ2

]
.

By the definition of identification, we know that if Pθ 1 = Pθ 2 =⇒ θ 1 = θ 2, then θ is
identifiable. Here we want to show that the above identification condition is equivalent to

Pθ 1 = Pθ 2 =⇒ β 1 = β 2 ⇐⇒ θ 1 = θ 2.

Consider the classical linear model y = Xβ +µ , where µ ∼ N[0,σ2I] and X is fixed.
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Pθ 1 = Pθ 2 ⇐⇒ F(y,θ 1) = F(y,θ 2)

⇐⇒ 1(√
2πσ2

1

)n exp
[
− 1

2σ2
1
∥y−Xβ 1∥

2
]

=
1(√

2πσ2
2

)n exp
[
− 1

2σ2
2
∥y−Xβ 2∥

2
]
.

Taking logarithm on both sides, we have

Pθ 1 = Pθ 2 ⇐⇒ −n
2

log2π − n
2

logσ2
1 −

1
2σ2

1
∥y−Xβ 1∥

2

=−n
2

log2π − n
2

logσ2
2 −

1
2σ2

2
∥y−Xβ 2∥

2

⇐⇒ n
2

log
σ2

1
σ2

2
=

1
2σ2

1
∥y−Xβ 1∥

2 − 1
2σ2

2
∥y−Xβ 2∥

2.

As can be seen,

σ2
1 = σ2

2 = σ2 =⇒ 1
2σ2

[
∥y−Xβ 1∥

2 −∥y−Xβ 2∥
2
]
= 0 (A.42)

=⇒ y′y−2y′Xβ 1 +β ′
1X ′Xβ 1 − y′y+2y′Xβ 2 −β ′

2X ′Xβ 2 = 0 (A.43)

=⇒ 2y′X(β 2 −β 1)+(β ′
1X ′Xβ 1 −β ′

2X ′Xβ 2) = 0,∀y. (A.44)

Suppose β 1 ̸= β 2, then we can always take y large enough so that equation(A.44) does not
hold. Thus we must require that β 1 = β 2 to make equation(A.44) hold for any y. That is to
say σ2

1 = σ2
2 =⇒ β 1 = β 2.

On the other hand,

β 1 = β 2 = β =⇒ 1
2
∥y−Xβ∥2(

1
σ2

1
− 1

σ2
2
) =

n
2

log
σ2

1
σ2

2
,∀y. (A.45)

Similarly by contradiction, suppose σ2
1 ̸= σ2

2. Since σ2
1, σ2

2 and β are parameters and n

is given, the right hand side of equation(A.45) is actually a constant but the left hand side
of equation(A.45) is changing with y. Therefore, equation(A.45) cannot hold for any y

if σ2
1 ̸= σ2

2. That is to say β 1 = β 2 =⇒ σ2
1 = σ2

2. To summarize, under the normality
assumption, the necessary and sufficient condition for the identification of θ , i.e., Pθ 1 =

Pθ 2 =⇒ θ 1 = θ 2 is equivalent to Pθ 1 = Pθ 2 ⇐⇒ β 1 = β 2 ⇐⇒ θ 1 = θ 2. This completes
the proof.
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PROOF OF THEOREM 3.2.7 Let’s denote all the deep parameters in the linear system as
θ and set

γ(θ) = E(Y )A

and
β (θ) = A.

Since E(Z) is the first moment of observable random variable Z, it is identifiable when it
exists. Meanwhile it is obvious

(
Pθ 1 = Pθ 2

)
⇒
(
E(Y )A1 = E(Y )A2

)
.

From Definition 3.2.1 and 3.2.2, A is identifiable if

(
E(Y )A1 = E(Y )A2

)
⇒ (A1 = A2), (A.46)

which is equivalent to stating that the linear system (3.2.3) has a unique solution. This
completes the proof.

PROOF OF THEOREM 3.2.9 Sufficiency is shown in the proof of Theorem 3.2.7. The
establishment of necessity is a direct consequence of Dufour and Liang (2012, Theorem
2.3.4) if we replace γ1(θ), γ2(θ) and β (θ) with E(Z), the nuisance parameter and A re-
spectively. This completes the proof.

PROOF OF PROPOSITION 3.2.10 The proof is the same as that of Theorem 3.2.9 except
by replacing E(Y ) with E(Y |X). This completes the proof.

PROOF OF PROPOSITION 3.2.11 Substituting PL(Y |X) for E(Y |X) in the proof of Propo-
sition 3.2.10 will lead to the result. This completes the proof.

PROOF OF LEMMA 3.2.12 To ease notation, let’s denote the j-th and i-th column of Y

and X as Y j and Xi, where j = 1,2, . . . ,G and i = 1,2, . . . ,K. Suppose

E(Y |X) = 0

which means
E(Y j|X) = 0.
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Then
E(Y j) = 0

and
E(XiY j

′
) = 0.

Hence
C(Xi,Y j) = E(XiY j

′
)−E(Xi)E(Y j

′
) = 0.

Since the above arguments are true for any Y j and Xi, where j = 1,2, . . . ,G and i =

1,2, . . . ,K, it follows from (3.2.7) that

PL(Y |X) = 0.

This completes the proof.

PROOF OF PROPOSITION 3.3.2 From Rao and Mitra (1971, Theorem 2.3.2), the general
solution of A to the linear system

E(Y |X)A = E(Z|X)

is
A∗ =

(
E(Y |X)

)−E(Z|X)+M−
(
E(Y |X)

)− (E(Y |X)
)

M,

where M is an arbitrary G×H matrix. It follows that[
Q(X)

((
E(Y |X)

)−E(Z|X)+M−
(
E(Y |X)

)− (E(Y |X)
)

M
)
= Q(X)

(
E(Y |X)

)−E(Z|X), ∀M
]

⇐⇒
[
Q(X)M = Q(X)

(
E(Y |X)

)−E(Y |X)M, ∀M
]

⇐⇒
[
Q(X) = Q(X)

(
E(Y |X)

)−E(Y |X)
]

⇐⇒
[
Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′)]
.

The last equivalent sign is due to Rao and Mitra (1971, Lemma 2.2.4). This completes the
proof.

PROOF OF PROPOSITION 3.3.3 Let’s define ∆ ≡ B1−B2 and let δ be any given column
of ∆ .

First, we show the equivalence among the statements from (3.3.1) through (3.3.6). Ob-
viously, the equivalence between (3.3.1) and (3.3.2) simply follows from the definition of
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identification and that of a function.

[(
E(Y |X)B1 = E(Y |X)B2

)
⇒
(
Q(X)B1 = Q(X)B2

)
,∀B1, B2 ∈ RG×H

]
⇐⇒

[(
E(Y |X)∆ = 0

)
⇒
(
Q(X)∆ = 0

)
,∀∆ ∈ RG×H

]
⇐⇒

[(
δ ∈ ker

(
E(Y |X)

))
⇒
(

δ ∈ ker
(
Q(X)

))
,∀δ ∈ ∆

]
⇐⇒

[
ker
(
E(Y |X)

)
⊆ ker

(
Q(X)

)]
⇐⇒

[[
Im
(
(E(Y |X))′

)]⊥
⊆
[
Im
(
(Q(X))′

)]⊥]
⇐⇒

[
Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′)]
⇐⇒

[(
Q(X)

)′
=
(
E(Y |X)

)′D′, for some matrix D
]

⇐⇒ rank
[ (

E(Y |X)
)′ (Q(X)

)′ ]
= rank

((
E(Y |X)

)′)
⇐⇒ rank

[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)
.

Second, we show (3.3.6), (3.3.7) and (3.3.8) are equivalent. Let’s construct a lower
triangular matrix TL and an upper triangular matrix TU with conformable dimensions

TU =

[
I V1

O I

]
and TL =

[
I O

V2 I

]
,

where V1 and V2 are arbitrary. Since both triangular matrices are nonsingular we can express
their inverses as

T−1
U =

[
I −V1

O I

]
and T−1

L =

[
I O

−V2 I

]
.

Then

rank
[
E(Y |X)

Q(X)

]
= rank

{[
I V1

O I

][
E(Y |X)

Q(X)

]}
= rank

[
E(Y |X)+V1Q(X)

Q(X)

]
.

and
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rank
[
E(Y |X)

Q(X)

]
= rank

{[
I O

V2 I

][
E(Y |X)

Q(X)

]}
= rank

[
E(Y |X)

Q(X)+V2E(Y |X)

]
Since both V1 and V2 are arbitrarily chosen it is always possible to construct some upper
and lower triangular matrices such that

rank
[
E(Y |X)

Q(X)

]
= rank

[
E(Y |X)+V1Q(X)

Q(X)

]
and

rank
[
E(Y |X)

Q(X)

]
= rank

[
E(Y |X)

Q(X)+V2E(Y |X)

]
.

Clearly, the statements (3.3.6), (3.3.7) and (3.3.8) are equivalent.
Third, we prove the equivalence between (3.3.6) and (3.3.9). Let’s start by demonstrat-

ing that condition (3.3.6) implies (3.3.9). We have shown that

[
rank

[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)]
⇐⇒

[
Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′)]
.

Since

Im
((

Q(X)
)′S′)⊆ Im

((
Q(X)

)′)
,

we have

Im
((

Q(X)
)′S′)⊆ Im

((
E(Y |X)

)′)
,

which implies

rank
[ (

E(Y |X)
)′ (Q(X)

)′S′ ]= rank
((

E(Y |X)
)′)

.

In other words, we obtain

rank
[
E(Y |X)

SQ(X)

]
= rank

(
E(Y |X)

)
, for some matrix S with a dimension s×q.
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To show that (3.3.9) implies (3.3.6), we notice

rank
[
E(Y |X)

SQ(X)

]
= rank

(
E(Y |X)

)
⇐⇒ rank

[ (
E(Y |X)

)′ (Q(X)
)′S′ ]= rank

((
E(Y |X)

)′)
⇐⇒ Im

((
Q(X)

)′S′)⊆ Im
((

E(Y |X)
)′)

.

Since

rank
(
SQ(X)

)
= rank

(
Q(X)

)
= s

and

Im
((

Q(X)
)′S′)⊆ Im

((
Q(X)

)′)
,

we have

Im
((

Q(X)
)′S′)= Im

((
Q(X)

)′)
.

Therefore

Im
((

Q(X)
)′)⊆ Im

((
E(Y |X)

)′)
and this is equivalent to

rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)
.

Thus (3.3.6) and (3.3.9) are equivalent.
Finally, we establish the equivalence among conditions (3.3.6), (3.3.10) and (3.3.11).

The crucial step here is to find some conformable matrices V1 and V2 such that the row
spaces of E(Y |X)+V1Q(X) and Q(X) are essentially disjoint and the row spaces of E(Y |X)

and Q(X)+V2E(Y |X) are essentially disjoint as well. That is to say, we need to show

Im
((

E(Y |X)
)′
+
(
Q(X)

)′V ′
1

)
∩ Im

((
Q(X)

)′)
= {0}

and

Im
((

E(Y |X)
)′)∩ Im

((
Q(X)′

)
+
(
E(Y |X)

)′V ′
2

)
= {0}.
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Since V1 is arbitrary by construction we can take V1 =−E(Y |X)
(
Q(X)

)−. Then

E(Y |X)+V1Q(X) = E(Y |X)−E(Y |X)
(
Q(X)

)−Q(X) = E(Y |X)
(

I −
(
Q(X)

)−Q(X)
)
.

Suppose

Im
((

E(Y |X)
)′
+
(
Q(X)

)′V ′
1

)
∩ Im

((
Q(X)

)′) ̸= {0},

then there exist non-zero vectors x1 and x2 such that

((
E(Y |X)

)′
+
(
Q(X)

)′V ′
1

)
x1 =

(
Q(X)

)′x2 ̸= 0.

Hence

(
x1

′(E(Y |X)+V1Q(X)
)
= x2

′Q(X) ̸= 0
)
⇒
(

x1
′E(Y |X)

(
I −
(
Q(X)

)−Q(X)
)
= x2

′Q(X) ̸= 0
)
.

If we multiply both sides by
(

I −
(
Q(X)

)−Q(X)
)

, we have

x1
′E(Y |X)

(
I−
(
Q(X)

)−Q(X)
)(

I−
(
Q(X)

)−Q(X)
)
= x1

′E(Y |X)
(

I−
(
Q(X)

)−Q(X)
)
̸= 0,

and

x2
′Q(X)

(
I −
(
Q(X)

)−Q(X)
)
= 0.

This is a contradiction and thus

Im
((

E(Y |X)
)′
+
(
Q(X)

)′V ′
1

)
∩ Im

((
Q(X)

)′)
= {0}.

Therefore,

rank
[
E(Y |X)

Q(X)

]
= rank

[
E(Y |X)−E(Y |X)

(
Q(X)

)−Q(X)

Q(X)

]
= rank

(
E(Y |X)−E(Y |X)

(
Q(X)

)−Q(X)
)
+ rank

(
Q(X)

)
.

This is equivalent to
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rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

(
I −
(
Q(X)

)−Q(X)
))

+ rank
(
Q(X)

)
. (A.47)

Similarly, we can take V2 =−Q(X)
(
E(Y |X)

)−. Then

Q(X)+V2E(Y |X) = Q(X)−Q(X)
(
E(Y |X)

)−E(Y |X) = Q(X)
(

I −
(
E(Y |X)

)−E(Y |X)
)
.

Suppose

Im
((

E(Y |X)
)′)∩ Im

((
Q(X)′

)
+
(
E(Y |X)

)′V ′
2

)
̸= {0}.

Then we can always find some non-zero vectors x1 and x2 such that

(
E(Y |X)

)′x1 =
((

Q(X)′
)
+
(
E(Y |X)

)′V ′
2

)
x2 ̸= 0.

Thus

x1
′E(Y |X) = x2

′(Q(X)+V2E(Y |X)
)
= x2

′Q(X)
(

I −
(
E(Y |X)

)−E(Y |X)
)
̸= 0.

If we multiply both sides by
(

I −
(
E(Y |X)

)−E(Y |X)
)

, we get

x1
′E(Y |X)

(
I −
(
E(Y |X)

)−E(Y |X)
)
= x1

′E(Y |X)− x1
′E(Y |X) = 0

and

x2
′Q(X)

(
I−
(
E(Y |X)

)−E(Y |X)
)(

I−
(
E(Y |X)

)−E(Y |X)
)
= x2

′Q(X)
(

I−
(
E(Y |X)

)−E(Y |X)
)
̸= 0.

Again, this leads to the contradiction and thus

Im
((

E(Y |X)
)′)∩ Im

((
Q(X)′

)
+
(
E(Y |X)

)′V ′
2

)
= {0}.

Likely, we have
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rank
[
E(Y |X)

Q(X)

]
= rank

[
E(Y |X)

Q(X)−Q(X)
(
E(Y |X)

)−E(Y |X)

]
= rank

(
E(Y |X)

)
+ rank

(
Q(X)−Q(X)

(
E(Y |X)

)−E(Y |X)
)
.

This is equivalent to

rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)
+ rank

(
Q(X)

(
I −
(
E(Y |X)

)−E(Y |X)
))

. (A.48)

Combining the above results, we have

rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

(
I −
(
Q(X)

)−Q(X)
))

+ rank
(
Q(X)

)
= rank

(
E(Y |X)

)
+ rank

(
Q(X)

(
I −
(
E(Y |X)

)−E(Y |X)
))

.

Given this equation holds, it is obvious that

rank
[
E(Y |X)

Q(X)

]
= rank

(
E(Y |X)

)
⇐⇒ rank

(
Q(X)

(
I −
(
E(Y |X)

)−E(Y |X)
))

= 0

⇐⇒ rank
(
E(Y |X)

)
= rank

(
E(Y |X)

(
I −
(
Q(X)

)−Q(X)
))

+ rank
(
Q(X)

)
⇐⇒

[
Q(X)

(
I −
(
E(Y |X)

)−E(Y |X)
)
= 0
]

⇐⇒
[
Q(X) = Q(X)

(
E(Y |X)

)−E(Y |X), for some g-inverse
(
E(Y |X)

)−]
.

This completes the proof.

PROOF OF THEOREM 3.3.4 The proof is the same as that of Dufour and Liang (2012,
Theorem 2.5.5) except by replacing X̄ , R and β with X̃ , R(X) and A. This completes the
proof.

PROOF OF THEOREM 3.3.5 The proof is the same as that of Dufour and Liang (2012,
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Theorem 2.5.6) except by replacing X , Q and β with E(Y |X), Q(X) and A. This completes
the proof.

PROOF OF THEOREM 4.2.14 Suppose (4.2.12) holds but θ is not locally identifiable
at θ 0. Then within any open neighborhood of θ 0, we can always construct an infinite
sequence of parameters {θ m}∞

m=1 such that

θ m ̸= θ 0, Pθ m = Pθ 0 and θ m → θ 0 as m → ∞.

Since γ(θ) is locally identifiable at θ 0, we must also have

γ(θ m) = γ(θ 0), for m ≥ m0, (A.49)

where m0 < ∞. By the differentiability assumption [see Rudin (1976)], it follows that

lim
m→∞

∥Jγ(θ 0)(θ m −θ 0)∥
∥θ m −θ 0∥

= lim
m→∞

∥γ(θ m)− γ(θ 0)− Jγ(θ 0)(θ m −θ 0)∥
∥θ m −θ 0∥

= 0. (A.50)

Let
dm =

θ m −θ 0

∥θ m −θ 0∥
, m = 1, 2, . . . .

Clearly,
∥dm∥= 1, ∀m ≥ 1.

Since the infinite sequence {dm}∞
m=1 is on the unit sphere, it is bounded. Thus there exists

a convergent subsequence
{dm j}

∞
j=1 ⊆ {dm}∞

m=1

such that
dm j → d0 as j → ∞,

where d0 ∈ Rk and ∥d0∥= 1. Since

dm j =
θ m j −θ 0

∥θ m j −θ 0∥

we have ∥dm j∥= 1 and
θ m j −θ 0 = dm j∥θ m j −θ 0∥.
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By (A.50), it follows that

lim
j→∞

∥Jγ(θ 0)(θ m j −θ 0)∥
∥θ m j −θ 0∥

= lim
j→∞

∥Jγ(θ 0)dm j∥θ m j −θ 0∥∥
∥θ m j −θ 0∥

= lim
j→∞

∥Jγ(θ 0)dm j∥

= 0.

Since
dm j → d0 ̸= 0 as j → ∞,

we have
Jγ(θ 0)dm j → Jγ(θ 0)d0 as j → ∞.

In other words,
∥Jγ(θ 0)d0∥= 0.

which is equivalent to
Jγ(θ 0)d0 = 0,

where d0 ̸= 0. It follows that
rank[Jγ(θ 0)]< k.

This contradicts (4.2.12). Consequently, the rank condition

rank[Jγ(θ 0)] = k

entails that θ is locally identifiable at θ 0. This completes the proof.

PROOF OF THEOREM 4.2.15 The establishment of sufficiency is the same as that of
Theorem 4.2.14. We next show that the necessity holds as well. Suppose that Jγ(θ) does
not have a full column rank in an open neighborhood of θ 0 which we denote as V (θ 0). In
other words,

rank[Jγ(θ)′Jγ(θ)] = rank[Jγ(θ)] = k̄ < k, ∀θ ∈ V (θ 0).

This means Jγ(θ)′Jγ(θ) has at least one zero eigenvalue with possible alge-
braic multiplicity larger than one. Let’s denote the distinct eigenvalues of
Jγ(θ)′Jγ(θ) as λ 1(θ), λ 2(θ), . . . , λ j(θ) and their associated eigenprojections as
Pλ 1(θ), Pλ 2(θ), . . . , Pλ j(θ). Denote the geometric multiplicity of λ i as ν i and the
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corresponding orthonormal eigenvectors as qi1(θ), qi2(θ), . . . , qiν i(θ) which span the
eigenspace associated with λ i. From the spectral decomposition of the real symmetric
matrix [see Harville (2008)], it follows that

Jγ(θ)′Jγ(θ) =
j

∑
m=1

λ m(θ)Pλ m(θ),

where

Pλ i(θ) =
ν i

∑
l=1

qil(θ)qil(θ)′.

Without loss of generality, take
λ 1 = 0

and choose the first nonzero column of Pλ 1(θ) and denote it as pλ 1(θ). Hence

pλ 1(θ)
′Jγ(θ)′Jγ(θ)pλ 1(θ) = 0, ∀θ ∈ V (θ 0). (A.51)

Since γ(θ) is continuously differentiable in V (θ 0), it follows that Jγ(θ)′Jγ(θ) is contin-
uous in V (θ 0). According to Tyler (1981), both the eigenvalues and eigenprojection ma-
trices of Jγ(θ)′Jγ(θ) are continuous. Since the composite of two continuous functions is
continuous, pλ 1(θ) can be chosen to be continuous in the neighborhood V (θ 0). Let’s
define a mapping θ(t) which is the solution to the differential equation for t ∈ [0, t∗]

∂θ (t)
∂ t

= pλ 1(θ) (A.52)

and
θ(0) = θ 0.

From (A.51), it follows that

∂γ(θ)
∂ t

= Jγ(θ)pλ 1(θ) = 0.

This implies that γ(θ) is constant along the curve θ(t) on [0, t∗] and therefore constant in
θ(t) within the neighborhood V (θ 0). Since pλ 1(θ) is chosen to be nonzero, (A.52) shows
that θ(t) cannot be constant at least within a small neighborhood of some point t ∈ [0, t∗].
Therefore the following statements hold simultaneously for at least some θ ∈ V (θ 0)

Pθ = Pθ 0, γ(θ(t)) = γ(θ 0) and θ(t) ̸= θ 0.
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From Definition 4.2.5, we conclude that θ is not locally identifiable at θ 0 which contradicts
the assumption that θ is locally identifiable at θ 0. Thus

(θ is locally identifiable at θ 0)⇒ (rank[J(θ 0)] = k) .

This completes the proof.

PROOF OF THEOREM 4.3.5 According to Rudin (1976), if γ(θ) is continuously differ-
entiable at θ 0 and the Jacobian matrix Jγ(θ 0) has a full column rank, we conclude by the
inverse function theorem that there exist open subsets A (θ 0) ⊂ Θ with center at θ 0 and
B ⊂ RG such that γ(θ) is one-to-one on A (θ 0) and

γ(A (θ 0)) = B.

If γ(θ) is locally identifiable around θ 0 and one-to-one on some open neighborhood of
θ 0, then it follows that θ is locally identifiable around θ 0 by Definition 4.3.1 and Defini-
tion 4.3.2. On the other hand, if θ is locally identifiable around θ 0, it follows that every
θ in such an open neighborhood of θ 0 is locally identifiable at θ 0 due to Definition 4.2.5.
Then Theorem 4.2.15 leads to

rank[Jγ(θ 0)] = k.

This completes the proof.

PROOF OF THEOREM 4.3.7 From the stronger version of the inverse function theorem by
Krantz and Parks (2002, Theorem 3.3.2), it follows that there exist open subsets A (θ 0)⊂
Θ with center at θ 0 and B ⊂ RG such that γ(θ) is one-to-one on A (θ 0). Besides, its
inverse function denoted as γ−1 is also p-th order continuously differentiable. Thus local
identification of γ(θ) around θ 0 implies local identification of θ around θ 0. The necessity
holds trivially. This completes the proof.

PROOF OF PROPOSITION 4.3.8 Since θ is locally identifiable at θ 0, there must exists a
transformation g : RG 7→ Rk such that for some open neighborhood V (θ 0)

θ = g(γ(θ)), ∀θ ∈ V (θ 0). (A.53)

Suppose there does not exist such a function g. Then we must have

γ(θ 1) = γ(θ 2)
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and
θ 1 ̸= θ 2

for some θ ∈ V (θ 0). However, this contradicts our assumptions that both γ(θ) and θ are
locally identifiable at θ 0 (see Definition 4.2.6). Obviously, g is the inverse function of γ .
Thus taking the partial derivative with respect to θ on both sides of (A.53) gives

Ik =
∂g
∂γ ′

Jγ(θ), ∀θ ∈ V (θ 0). (A.54)

Suppose an arbitrary k-vector ϕ(θ) ∈ ker(Jγ(θ)). From (A.54), we have

ϕ(θ) =
∂g
∂γ ′

Jγ(θ)ϕ(θ) = 0, ∀θ ∈ V (θ 0).

That is to say, the only element in the kernel space of the Jacobian matrix Jγ(θ) in a
neighborhood of θ 0 is the zero vector. Thus

dim
(
col(Jγ(θ))

)
= k−dim

(
ker(Jγ(θ))

)
= k, ∀θ ∈ V (θ 0).

This implies that
rank[Jγ(θ)] = k, ∀θ ∈ V (θ 0).

This completes the proof.

PROOF OF THEOREM 4.4.3 We first prove sufficiency. Let’s distinguish between two
situations:

(a) Jγ(θ 0) = 0;

(b) Jγ(θ 0) ̸= 0.

If Jγ(θ 0) = 0, we have ker(Jγ(θ 0)) = Rk so that

[
Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′)] ⇐⇒
[
ker(Jγ(θ 0))⊆ ker(Jβ (θ 0))

]
⇒
[
ker(Jβ (θ 0)) = Rk

]
⇐⇒ [Jβ (θ 0) = 0].

Meanwhile, since β (θ) is continuously differentiable on V (θ 0) and θ 0 is a regular point
of Jβ (θ), it follows from the rank theorem [see Rudin (1976, Theorem 9.32)] that there
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exist an open neighborhood E ⊂ Rk of η0 and an open neighborhood F ⊂ Rk of θ 0 such
that there exists a local diffeomorphism g : E 7→ F

θ = g(η), θ 0 = g(η0)

and
β (θ) = β (g(g−1(θ))) = β (g(η)) = Jβ (θ 0)η +ϕ(Jβ (θ 0)η), ∀η ∈ E .

If Jβ (θ 0) = 0, it follows that

β (θ) = 0+ϕ(0), ∀θ ∈ F ,

which is a constant. Since the statement β (θ) = β (θ 0) is true for ∀θ ∈ F , we have the
following implication

(γ(θ) = γ(θ 0))⇒ (β (θ) = β (θ 0)) ,

for any θ in some open neighborhood of θ 0. Second, Jγ(θ 0) ̸= 0. Again it follows from the
rank theorem that there exists a local diffeomorhpism g such that θ = g(η) and θ 0 = g(η0).
Meanwhile, we can rewrite β (θ) in terms of η within the neighborhood of θ 0 as

β (θ) = β (g(η)) = β̃ (η).

Then the chain rule leads to
Jβ (θ)Jg(η) = Jβ̃ (η)

which implies
Jβ (θ 0)Jg(η0) = Jβ̃ (η0).

Thus ker(Jg(η0))⊆ ker(Jβ̃ (η0)). Since the mapping g is a local diffeomorphism, we have

[rank(Jg(η0)) = k] ⇐⇒
[
ker(Jg(η0)) = Rk

]
⇒
[
ker(Jβ̃ (η0)) = Rk

]
.

On the other hand, for some point θ ∈ V (θ 0) and θ ̸= θ 0, we can always define a normal-
ized direction from θ 0 to θ as

h =
θ −θ 0

∥θ −θ 0∥

and an infinite sequence {θ m}∞
m=1 along h such that

θ m = θ 0 + tmh,
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where tm > 0 and tm → 0 as m → ∞. Accordingly, we can also define a normalized direction
from η0 to η as

hη =
η −η0
∥η −η0∥

and an infinite sequence {ηm}
∞
m=1 along hη such that

ηm = η0 +dmhη ,

where dm > 0 and dm → 0 as m → ∞. Therefore, the rank theorem gives

[β (θ m) ̸= β (θ 0)]⇒
[
Jβ (θ 0)ηm ̸= Jβ (θ 0)η0

]
⇒ [ηm ̸= η0]

⇒ [Jg(η0)ηm ̸= Jg(η0)η0]

⇐⇒ [(ηm −η0) /∈ ker(Jg(η0))]

⇒
[
(ηm −η0) /∈ ker(Jβ̃ (η0))

]
⇐⇒

[
Jβ̃ (η0)ηm ̸= Jβ̃ (η0)η0

]
⇒
[

Jβ̃ (η0)
ηm −η0

∥ηm −η0∥
̸= 0
]

⇒
[
Jβ̃ (η0)hη ̸= 0

]
.

Then it follows that

Jβ (θ 0)(θ m −θ 0) = Jβ (θ 0)(g(ηm)−g(η0))

= Jβ (θ 0)(Jg(η0)(ηm −η0)+ rg(ηm −η0))

= Jβ (θ 0)

([
Jg(η0)

ηm −η0
∥ηm −η0∥

+
rg(ηm −η0)

∥ηm −η0∥

]
∥ηm −η0∥

)
= Jβ (θ 0)

([
Jg(η0)hη +

rg(ηm −η0)

dm

]
dm

)
=

[
Jβ (θ 0)Jg(η0)hη + Jβ (θ 0)

rg(ηm −η0)

dm

]
dm

=

[
Jβ̃ (η0)hη + Jβ (θ 0)

rg(ηm −η0)

dm

]
dm,

where
lim

ηm→η0

∥rg(ηm −η0)∥
∥ηm −η0∥

= lim
m→∞

∥rg(ηm −η0)∥
dm

= 0.
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Since ∥Jβ (θ 0)∥ is bounded and Jβ̃ (η0)hη ̸= 0, within the square brackets the second term
is dominated by the first term. Thus Jβ (θ 0)(θ m −θ 0) ̸= 0. It then follows that

[β (θ m) ̸= β (θ 0)]⇒
[
Jβ (θ 0)(θ m −θ 0) ̸= 0

]
.

By assumption ker(Jγ(θ 0))⊆ ker(Jβ (θ 0)), we have

[
Jβ (θ 0)(θ m −θ 0) ̸= 0

]
⇒
[
Jγ(θ 0)(θ m −θ 0) ̸= 0

]
⇒
[

Jγ(θ 0)
θ m −θ 0

∥θ m −θ 0∥
̸= 0
]

⇒
[
Jγ(θ 0)h ̸= 0

]
.

Since γ(θ) is differentiable at θ 0, it follows that

γ(θ m)− γ(θ 0) = Jγ(θ 0)(θ m −θ 0)+ rγ(θ m −θ 0)

=

[
Jγ(θ 0)

θ m −θ 0

∥θ m −θ 0∥
+

rγ(θ m −θ 0)

∥θ m −θ 0∥

]
∥θ m −θ 0∥

=

[
Jγ(θ 0)h+

rγ(θ m −θ 0)

tm

]
tm, (A.55)

where
lim

θ m→θ 0

∥rγ(θ m −θ 0)∥
∥θ m −θ 0∥

= 0.

Since on the right hand side (RHS) of (A.55) within the square brackets the first term is
nonzero and dominates the second term, it then follows that

γ(θ m) ̸= γ(θ 0).

That is to say
[β (θ m) ̸= β (θ 0)]⇒ [γ(θ m) ̸= γ(θ 0)] .

Since the direction h is chosen arbitrarily, it follows that for any θ in the neighborhood of
θ 0 we have

[β (θ) ̸= β (θ 0)]⇒ [γ(θ) ̸= γ(θ 0)] .

Therefore β (θ) is locally identifiable in terms of γ(θ) at θ 0. Next we establish neces-
sity, i.e., we want to show that if β (θ) is locally identifiable in terms of γ(θ) at θ 0, then
ker(Jγ(θ 0)) ⊆ ker(Jβ (θ 0)). If we set θ 1 = θ and θ 2 = θ 0, the proof will follow that of
Theorem 4.4.5. This completes the proof.
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PROOF OF COROLLARY 4.4.4 We first prove sufficiency. Let’s distinguish between two
situations:

(a) Jγ(θ 0) = 0;

(b) Jγ(θ 0) ̸= 0.

If Jγ(θ 0) = 0, we have ker(Jγ(θ 0)) = Rk so that

[
ImQ′ ⊆ Im(Jγ(θ 0)

′)
]
⇐⇒

[
ker(Jγ(θ 0))⊆ ker(Q)

]
⇒
[
ker(Q) = Rk

]
⇒ [Q= 0]⇒ [Qθ = 0], ∀θ .

Then the statement Qθ ̸= Qθ 0 is false and we have the the following implication

[Qθ ̸= Qθ 0]⇒ [γ(θ) ̸= γ(θ 0)] , ∀θ

which is equivalent to

[γ(θ) = γ(θ 0)]⇒ [Qθ = Qθ 0 = 0] , ∀θ ∈ V (θ 0).

Hence, Qθ is locally identifiable at θ 0 in terms of γ(θ). Now let Jγ(θ 0) ̸= 0. We wish to
show that

[Qθ ̸= Qθ 0]⇒ [γ(θ) ̸= γ(θ 0)] , ∀θ ∈ V (θ 0)

where V (θ 0) is an open neighborhood of θ 0. Since θ ̸= θ 0, we can define an arbitrary
normalized direction from θ 0 to θ as

h =
θ −θ 0

∥θ −θ 0∥

and an infinite sequence {θ m}∞
m=1 along the direction h as

θ m = θ 0 + tmh, tm > 0 and tm → 0 as m → ∞.

Since ker(Jγ(θ 0))⊆ ker(Q), we have

[Qθ m ̸= Qθ 0] ⇐⇒ [Q(θ m −θ 0) ̸= 0]

⇐⇒ [(θ m −θ 0) /∈ ker(Q)]

⇒
[
(θ m −θ 0) /∈ ker(Jγ(θ 0))

]
⇐⇒

[
Jγ(θ 0)(θ m −θ 0) ̸= 0

]
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⇒
[

Jγ(θ 0)
θ m −θ 0

∥θ m −θ 0∥
̸= 0
]

⇒
[
Jγ(θ 0)h ̸= 0

]
.

The rest of the sufficiency proof will be the same as that of Theorem 4.4.3. Therefore
Qθ is locally identifiable in terms of γ(θ) at θ 0. The proof of necessity follows that of
Theorem 4.4.5. This completes the proof.

PROOF OF THEOREM 4.4.5 We first establish sufficiency. Suppose

Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′)
which is equivalent to

ker(Jγ(θ 0))⊆ ker(Jβ (θ 0)).

Let’s denote Pγ as a projection in RG with image space Im(Pγ) = Im(Jγ(θ 0)). Similarly,
denote Pβ as a projection in RH with image space Im(Pβ ) = Im(Jβ (θ 0)). Also denote
the kernel spaces of Pγ and Pβ as ker(Pγ) and ker(Pβ ) respectively. Since both γ(θ)
and β (θ) are continuously differentiable on an open neighborhood V (θ 0) of θ 0 and θ 0

is a regular point of both Jγ(θ) and Jβ (θ), it follows from the rank theorem [see Rudin
(1976, Theorem 9.32)] that there exist an open neighborhood E ⊂ Rk of η0 and an open
neighborhood F ⊂ Rk of θ 0 such that there exists a local diffeomorphism g : E 7→ F

θ = g(η), θ 0 = g(η0)

and
γ(θ) = γ(g(g−1(θ))) = γ(g(η)) = Jγ(θ 0)η +ϕ γ(Jγ(θ 0)η), ∀η ∈ E

β (θ) = β (g(g−1(θ))) = β (g(η)) = Jβ (θ 0)η +ϕ β (Jβ (θ 0)η), ∀η ∈ E

where ϕ γ : Jγ(θ 0)(E ) 7→ ker(Pγ) and ϕ β : Jβ (θ 0)(E ) 7→ ker(Pβ ) are both continuously
differentiable. Let θ 1 and θ 2 by any two distinct points in F . Then

[β (θ 1) ̸= β (θ 2)]⇒
[
Jβ (θ 0)η1 ̸= Jβ (θ 0)η2

]
⇐⇒

[
Jβ (θ 0)(η1 −η2) ̸= 0

]
⇐⇒

[
(η1 −η2) /∈ ker(Jβ (θ 0))

]
⇒
[
(η1 −η2) /∈ ker(Jγ(θ 0))

]
⇐⇒

[
Jγ(θ 0)η1 ̸= Jγ(θ 0)η2

]
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⇒ [γ(θ 1) ̸= γ(θ 2)] ,

where the last implication holds due to the fact that

Pγγ(θ) = Jγ(θ 0)η ,∀γ(θ) ∈ γ(F )

and Pγ is a one-to-one mapping restricted to γ(F ). Since γ(θ) is locally identifiable around
θ 0, it follows from Definition 4.3.3 that β (θ) is locally identifiable in terms of γ(θ) around
θ 0.

We next show that necessity holds. Let’s denote an arbitrary open neighborhood of θ 0

as V (θ 0) and consider two situations:

(a) Jγ(θ 0) = 0;

(b) Jγ(θ 0) ̸= 0.

First assume Jγ(θ 0) = 0. Since γ(θ) is differentiable on V (θ 0) and θ 0 is a regular point of
Jγ(θ), it follows from Rudin (1976, Theorem 9.19) that γ(θ) is constant in V (θ 0). On the
other hand, since β (θ) is locally identifiable in terms of γ(θ) around θ 0, we can rewrite

β (θ) = β̄ (γ(θ)), ∀θ ∈ V (θ 0).

Then it follows that β (θ) is also constant in V (θ 0). Since θ 0 is a regular point of Jβ (θ),
we have Jβ (θ) = 0, ∀θ ∈V (θ 0). Hence the only element in Im

(
Jβ (θ 0)

′) and Im
(
Jγ(θ 0)

′)
is the k-dimension zero vector and we have

Im
(
Jβ (θ 0)

′)= Im
(
Jγ(θ 0)

′),
which implies that

Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′).
Now let Jγ(θ 0) ̸= 0. By assumption there exists a transformation β̄ : RG 7→ RH such that

β (θ) = β̄ (γ(θ)), ∀θ ∈ V (θ 0). (A.56)

We now show that the transformation β̄ is differentiable in γ . Denote V (θ 0) as an open
connected neighborhood of θ 0. Let’s arbitrarily choose two distinct points θ 1,θ 2 ∈ V (θ 0)
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such that the normalized direction

hγ =
γ(θ 1)− γ(θ 2)

∥γ(θ 1)− γ(θ 2)∥

is nonzero, which can be expressed in the matrix form
hγ1

hγ2
...

hγG

=




γ1(θ 1)

γ2(θ 1)
...

γG(θ 1)

−


γ1(θ 2)

γ2(θ 2)
...

γG(θ 2)


 1

∥γ(θ 1)− γ(θ 2)∥
.

Obviously, 0 ≤ ∥hγ i∥ ≤ 1, i = 1,2, . . . ,G. Since θ 0 is a regular point of Jγ(θ), we have

[
Jγ(θ 0) ̸= 0

]
⇒
[
Jγ(θ 2) ̸= 0

]
,

which means that at least one row or column of Jγ(θ 2) is nonzero. Without loss of gen-
erality, let’s assume the first row of Jγ(θ 2) is nonzero, i.e., Jγ1(θ 2) ̸= 0. Since γ(θ) is
continuous in V (θ 0), for any convergent sequence {θ m}∞

m=1 that approaches θ 2 as m → ∞,
there always exists a convergent sequence {γ(θ m)}∞

m=1 in RG such that

γ(θ m)→ γ(θ 2) as m → ∞

and
γ(θ m) = γ(θ 2)+ tmhγ ,

where tm > 0 and tm → 0 as m → ∞. That is to say, for any point γ(θ m) along the direction
of hγ , there exists a point θ m in the neighborhood of θ 0 such that the direction between
γ(θ m) and γ(θ 2) equals tmhγ . It follows from the mean value theorem for the real-valued
function that

γ i(θ m)− γ i(θ 2) = Jγ i(θ̂ i)(θ m −θ 2) = tmhγ i, i = 1,2, . . . ,G,

where
θ̂ i = aiθ m +(1−ai)θ 2.

Then

hγ1 = lim
m→∞

γ1(θ m)− γ1(θ 2)

tm
= lim

m→∞
Jγ1(θ̂ 1) lim

m→∞

θ m −θ 2

tm
= Jγ1(θ 2) lim

m→∞

θ m −θ 2

tm
.
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Since Jγ1(θ 2) ̸= 0 and hγ1 is bounded, limm→∞
θ m−θ 0

tm
exists. Likewise, the mean value

theorem for the real-valued function leads to

β̄ j(γ(θ 2)+ tmhγ)− β̄ j(γ(θ 2)) = β j(θ m)−β j(θ 2) = Jβ j
(θ j

∗)(θ m −θ 2), j = 1,2, . . . ,H,

where
θ j

∗ = b jθ m +(1−b j)θ 2.

It follows that

lim
m→∞

β̄ j(γ(θ 2)+ tmhγ)− β̄ j(γ(θ 2))

tm
= Jβ j

(θ 2) lim
m→∞

θ m −θ 2

tm
, j = 1,2, . . . ,H. (A.57)

Since β (θ) is continuously differentiable on V (θ 0), Jβ (θ 2) exists. Thus the limit on the
left hand side (LHS) of (A.57) exists for any nonzero hγ . Since the direction hγ is arbitrarily
chosen, β̄ is differentiable with respect to any component of vector γ . Hence it follows from
the chain rule that

Jβ (θ) = Jβ̄ (γ)Jγ(θ), ∀θ ∈ V (θ 0)

which implies that
ker(Jγ(θ 0))⊆ ker(Jβ (θ 0)).

Hence
Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′).
This completes the proof.

PROOF OF PROPOSITION 4.4.7 Since β (θ) is locally identifiable in terms of γ(θ)
around θ 0, there exists a mapping β̄ such that

β (θ) = β̄ (γ(θ)), ∀θ ∈ V (θ 0).

As in the necessity proof of Theorem 4.4.5, we consider two situations:

(a) Jγ(θ 0) = 0;

(b) Jγ(θ 0) ̸= 0.

If Jγ(θ 0) = 0, γ(θ) is constant in V (θ 0) since γ(θ) is differentiable on V (θ 0) and θ 0

is a regular point of Jγ(θ). It follows that β̄ is also a constant and so is β (θ). Thus β̄ is
differentiable in γ . If fact it is C∞. If Jγ(θ 0) ̸= 0, then we can apply the mean value theorem
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as in the proof of Theorem 4.4.5 to show that β̄ is differentiable in γ . This completes the
proof.

PROOF OF COROLLARY 4.4.9 The necessity is straightforward. By assumption the R

restrictions ξ (θ) are locally identifiable at θ 0. Since

Im
(
Jγ(θ)′

)
⊆ Im

[
Jγ(θ)′ Jξ (θ)

′
]
, ∀θ ∈ V (θ 0)

and θ 0 is the regular point, Theorem 4.4.3 leads to

Im
(
Jβ (θ 0)

′)⊆ Im
(
Jγ(θ 0)

′)⊆ Im
[

Jγ(θ 0)
′ Jξ (θ 0)

′
]
.

To prove that sufficiency holds, we notice that both γ(θ) and ξ (θ) are locally identifiable
at θ 0 and the same arguments for the sufficiency proof of Theorem 4.4.3 will follow. This
completes the proof.

PROOF OF COROLLARY 4.4.10 Since the R restrictions ξ (θ) are constant and thus
locally identifiable around θ 0, given that θ 0 is a regular point, the proof will be similar to
that of Corollary 4.4.3 and is a direct consequence of Theorem 4.4.5. This completes the
proof.

PROOF OF PROPOSITION 4.4.11 This corollary is a direct consequence of Theo-
rem 4.4.3 and Theorem 4.4.5 by treating J(θ 0)θ as β (θ). If we take partial derivative
of J(θ 0)θ with respect to θ and evaluated at θ 0, we obtain the identity

Im
(
J(θ 0)

′)= Im
(
J(θ 0)

′) .
This completes the proof.

PROOF OF PROPOSITION 4.5.1 From the definition of the Kullback-Leibler divergence,
it is straightforward that

(Pθ 1 = Pθ 2)⇒ (DKL(θ 1|θ 0) = DKL(θ 2|θ 0)) , ∀θ 1, θ 2 ∈Θ .

This completes the proof.
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PROOF OF PROPOSITION 4.5.2 We want to show that

[
Pθ = Pθ 0

]
⇒
[

∂DKL(θ |θ 0)

∂θ
=

∂DKL(θ 0|θ 0)

∂θ 0

]
, ∀θ ∈Θ .

Let θ ∈Θ and
Pθ = Pθ 0.

Then
f (y;θ) = f (y;θ 0) a.e.

Let’s define
SKL(θ |θ 0)≡

∂DKL(θ |θ 0)

∂θ
.

Thus

SKL(θ |θ 0) =−
∫
Y

∂ log f (y;θ)
∂θ

f (y;θ 0)µ(dy)

=−
∫
Y

1
f (y;θ)

∂ f (y;θ)
∂θ

f (y;θ 0)µ(dy)

=−
∫
Y

∂ f (y;θ)
∂θ

µ(dy)

=− ∂
∂θ

∫
Y

f (y;θ)µ(dy)

= 0.

Meanwhile

SKL(θ 0|θ 0) =

(
−
∫
Y

∂ log f (y;θ)
∂θ

f (y;θ 0)µ(dy)
)

θ=θ 0

= 0. (A.58)

Therefore (
Pθ = Pθ 0

)
⇒
(
SKL(θ |θ 0) = SKL(θ 0|θ 0) = 0

)
, ∀θ ∈Θ .

This completes the proof.

PROOF OF THEOREM 4.5.3 From Proposition 4.5.2, ∂DKL(θ |θ 0)
∂θ is locally identifiable

at θ 0. If the Hessian matrix of DKL(θ |θ 0) evaluated at θ 0 has full column rank, applying
Theorem 4.2.15 leads to the desired result. On the other hand, given that θ 0 is a regu-
lar point of the Hessian matrix of DKL(θ |θ 0) and ∂DKL(θ |θ 0)

∂θ is locally identifiable at θ 0,
we conclude that θ is locally identifiable at θ 0 if and only if rank[HKL(θ 0|θ 0)] = k from
Theorem 4.2.15. This completes the proof.
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PROOF OF COROLLARY 4.5.5 Substituting ∂DKL(θ |θ 0)
∂θ for γ(θ) in Theorem 4.4.3 pro-

duces the result. This completes the proof.

PROOF OF PROPOSITION 4.6.4 Sufficiency is given by Bekker and Wansbeek (2001,
Theorem 9). We show that necessity holds. Partition D1(θ 0) as

Q1(θ 0) =

[
q1(θ 0) D(1)(θ 0)

1 O

]
.

It follows from (4.6.22) that θ 1 is locally identifiable if and only if

rank(D1(θ 0)) = rank(D(θ 0)) .

Conducting elementary operations on D1(θ 0) gives

rank(D1(θ 0)) = rank

[
O D(1)(θ 0)

1 O

]
= 1+ rank

(
D(1)(θ 0)

)
,

which implies that
rank(D(θ 0))> rank

(
D(1)(θ 0)

)
.

Since θ 1 is chosen arbitrarily, if θ i is locally identifiable, we have

rank(D(θ 0))> rank
(
D(i)(θ 0)

)
.

This completes the proof.

Corollary A.2 The following identity holds

∂ 2DKL(θ 0|θ 0)

∂θ 0∂θ 0
′ =−Eθ 0

∂ 2log f (y;θ 0)

∂θ 0∂θ 0
′ = Eθ 0

(
∂ log f (y;θ 0)

∂θ 0

∂ log f (y;θ 0)

∂θ ′
0

)
.

PROOF. From the definition of the the Kullback-Leibler divergence, it follows

∂ 2DKL(θ |θ 0)

∂θ∂θ ′ =−
∫
Y

∂ 2log f (y;θ)
∂θ∂θ ′ f (y;θ 0)µ(dy).

Replacing θ with θ 0, we have

∂ 2DKL(θ 0|θ 0)

∂θ 0∂θ 0
′ =−

∫
Y

∂ 2log f (y;θ 0)

∂θ 0∂θ 0
′ f (y;θ 0)µ(dy)
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=−Eθ 0

∂ 2log f (y;θ 0)

∂θ 0∂θ 0
′ .

On the other hand,

∂ 2DKL(θ |θ 0)

∂θ∂θ ′ =
∫
Y

1
f 2(y;θ)

∂ f (y;θ)
∂θ

∂ f (y;θ)
∂θ ′ f (y;θ 0)µ(dy)−

∫
Y

1
f (y;θ)

∂ 2 f (y;θ)
∂θ∂θ ′ f (y;θ 0)µ(dy).

Again, substituting θ 0 for θ leads to

∂ 2DKL(θ |θ 0)

∂θ∂θ ′ =
∫
Y

1
f 2(y;θ 0)

∂ f (y;θ 0)

∂θ 0

∂ f (y;θ 0)

∂θ 0
′ f (y;θ 0)µ(dy)−

∫
Y

∂ 2 f (y;θ 0)

∂θ 0∂θ 0
′ µ(dy)

=
∫
Y

∂ log f (y;θ 0)

∂θ 0

∂ log f (y;θ 0)

∂θ ′
0

f (y;θ 0)µ(dy)− ∂ 2

∂θ 0∂θ ′
0

∫
Y

f (y;θ 0)µ(dy)

= Eθ 0

(
∂ log f (y;θ 0)

∂θ 0

∂ log f (y;θ 0)

∂θ ′
0

)
.

This completes the proof.
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