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ABSTRACT 

 

The transmission line based analytical solutions have simplified engineering of complex 

microwave circuits like electromagnetic bandgap structures (EBGs). In this thesis, planar 

EBG structures are studied by derivation of lumped element and transmission line 

equivalent circuits followed by utilizing analytical formulations. Based on this approach, 

a code is developed that predicts the dispersion characteristics of these periodic structures 

in a matter of few seconds. Planar EBG structures containing meander sections are 

investigated and a method for development of an equivalent circuit for the meander line 

portion is presented. The analysis of the studied EBG structures begins from a simple 1D 

geometry and is extended to more complex 2D geometries. The analytical simulation 

results are evaluated against full-wave simulations. Inclusion of the meander sections 

reduces the beginning of the bandgap to below 1GHz resulting in a more attractive 

structure for low frequency omni-directional filtering. 
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Abrégé 

 

Les solutions analytiques basées sur des lignes de transmission ont simplifié l'ingénierie 

de circuits micro-ondes complexes, tel que les EBG. La présente thèse étudie les 

structures coplanaires EBG à partir d'éléments discrets et de modèles de lignes de 

transmission, auxquels sont ensuite appliquées des formules analytiques. Grâce à cette 

approche, un logiciel a été développé permettant de prédire les caractéristiques de 

dispersion de ces structures périodiques en quelques secondes seulement. Les structures 

coplanaires EBG contenant des sections courbes sont étudiées et un modèle de circuit 

équivalent à la portion courbe est proposé. L'analyse des structures EBG commence par 

une simple géométrie 1D, puis est étendue à des géométries 2D plus complexes. Le 

résultat des simulations analytiques est évalué par rapport au résultat des simulations 

analogues. Lorsque les sections courbes sont incluses, le début de la bande interdite est 

porté en deçà de 1GHz, rendant la structure plus intéressante pour le filtrage basse 

fréquence omni- directionnel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

 

ACKNOWLEDGEMENTS 

 

It is difficult not to overstate my gratitude to my supervisor, Prof. Ramesh Abhari. With 

her enthusiasm, inspiration and great efforts to explain things as lucidly as possible, she 

made my learning experience an absolute pleasure. Throughout the duration of my thesis 

work, she provided encouragement, sound advice, good teaching and most importantly, 

her invaluable time. It would be an understatement if I said that I would have been lost 

without her guidance and able support. 

I am thankful to my student colleagues, especially Kasra Payandehjoo, for sharing their 

wealth of knowledge with me and always being there to help me out. 

I would also like to thank Ashwan Singh and Yogini Nath for their immense help and 

support. I would like to thank Madhusudanan Srinivasaraghavan and François Leduc-

Primeau for providing invaluable inputs during the thesis writeup. 

Lastly, and most importantly, I wish to thank my parents, Mrs. Rajeshwari 

Venkateswaran and Mr. P.N. Venkateswaran. No amount of words can express the 

unconditional love and support I have received from them. To them I dedicate this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

TABLE OF CONTENTS 

 

 

CHAPTER 1 Introduction ........................................................................................... 1 

1.1 Motivations and Objectives ..................................................................................... 2 

1.2 Methodology ........................................................................................................... 3 

1.3 Thesis organization ................................................................................................. 4 

CHAPTER 2 Review of Transmission Lines .............................................................. 6 

2.1 Transmission Line Circuits ..................................................................................... 6 

2.2 Analysis of Two Conductor Transmission Lines .................................................... 8 

2.3 Analysis of Multi-conductor Transmission Lines (MTLs) ................................... 12 

2.4 Conclusion ............................................................................................................. 19 

CHAPTER 3 Electromagnetic Bandgap Structures ............................................... 20 

3.1 Overview of EBG Geometries .............................................................................. 21 

3.2 Electromagnetic Waves Supported by EBG structures ......................................... 22 

3.2.1   Review of Maxwell’s Equations ................................................................... 22 

3.2.2   Floquet’s Theorem ........................................................................................ 25 

3.2.3   Forward, Backward and Evanescent Waves in a Periodic Array .................. 27 

3.2.4   Spatial Harmonics in Periodic Arrays ........................................................... 32 

3.2.5   Surface Waves ............................................................................................... 34 

3.3 Effective Model ..................................................................................................... 35 

3.4 Application of EBG Structures in Suppression of Power/Ground Noise.............. 36 

3.4.1  Use of Discrete Decoupling Capacitors ........................................................ 37 

3.4.2   Use of Embedded Capacitors ........................................................................ 37 

3.4.3   Use of Shorting Vias and Islands .................................................................. 38 

3.5 Other Applications of EBG Structures .................................................................. 38 

3.6 Conclusion ............................................................................................................. 39 

CHAPTER 4 Modeling using Transmission Line Circuit ...................................... 40 

4.1 Analysis of a Single Microstrip Line .................................................................... 40 



 v

4.2 Analysis of 1D and 2D EBG Structures Made with Two Conductor 

Transmission Line Circuits ................................................................................... 45 

4.2.1   Derivation of Dispersion Equation: 1D Stepped Impedance Structure......... 46 

4.2.2   Derivation of Dispersion Equation: 2D Stepped Impedance Structure......... 49 

4.3 Dispersion Diagrams ............................................................................................. 53 

4.4 Planar EBG Structures Based on Stepped Impedance Design .............................. 56 

4.4.1   Studied 1D Stepped Impedance Structure ..................................................... 56 

4.4.2   Predicting the Insertion Loss Information from the Dispersion Equation .... 58 

4.4.3   Studied 2D Stepped Impedance Structure ..................................................... 60 

4.4.4   Insertion Loss Simulation and Measurement ................................................ 63 

4.5 Conclusion ............................................................................................................. 66 

CHAPTER 5 Design and Modeling of Meander lines ............................................. 67 

5.1 Inductance of the Meander Line............................................................................ 67 

5.1.1   Calculation of Self Inductance ...................................................................... 67 

5.1.2   Calculation of Mutual Inductance ................................................................. 69 

5.1.3   Capacitance of a Meander Line ..................................................................... 77 

5.2 Conclusion ............................................................................................................. 78 

CHAPTER 6 Planar EBG Structures Containing Meander Line Sections .......... 79 

6.1 Unit cells with Meander Transmission Line Sections ........................................... 79 

6.2 1D EBG Design A ................................................................................................. 83 

6.3 1D EBG Design B ................................................................................................. 89 

6.4 2D EBG Design A ................................................................................................. 93 

6.5 2D EBG Design B ................................................................................................. 98 

6.6 Conclusion ........................................................................................................... 103 

CHAPTER 7 Conclusions ........................................................................................ 105 

7.1 Concluding Remarks ........................................................................................... 105 

7.2 Recommendations for Future Work .................................................................... 106 

References ...................................................................................................................... 108 

 

 

 



 vi

LIST OF FIGURES 

 

Figure 1.1: (Left) Textured and (Right) planar EBG structures sandwiched between 

power planes for the suppression of noise in PCB designs ............................... 2 

Figure 1.2:  Analysis procedure using transmission line modeling method ....................... 5 

Figure 2.1: Planar microwave transmission lines................................................................ 8 

Figure 2.2: Parallel plate two conductor system ................................................................. 8 

Figure 2.3: Section of a transmission line [13] ................................................................... 9 

Figure 2.4: Lumped component model of the section of transmission line [13] ................ 9 

Figure 2.5 Definition of contour for the derivation of first set of MTL equation [27] ..... 13 

Figure 2.6: Definition of contour for the derivation of second set of MTL equation 

[27] .................................................................................................................. 17 

Figure 2.7: Lumped component model of a three conductor MTL segment [27] ............. 19 

Figure 3.1: Top view of unit cells of various types of EBG structures ............................. 23 

Figure 3.2: One dimensional representation of a periodic structure ................................. 26 

Figure 3.3: An infinite x infinite dipole array with inter-element spacings 

of xD and zD , and element length of l2 [50]. .................................................. 28 

Figure 3.4: Array mutual impedance 1,2Z  between an array with element orientation 
( )1p̂  and an external element with orientation ( )2p̂  is obtained from the 

plane wave expression, (3.19) [50]. ................................................................ 30 

Figure 3.5: Wave amplitudes in a periodic structure [42] ................................................. 32 

Figure 3.6: Generation of Switching noise and its suppression using EBG structures ..... 36 

Figure 4.1: Cross section of a microstrip line configuration ............................................. 40 

Figure 4.2: Important parameters and port definition for the analysis of a microstrip 

line ................................................................................................................... 41 

Figure 4.3: (a) Simulation setup for the analysis of a microstrip line, and (b) field 

distribution corresponding to excitation of a microstrip line .......................... 44 

Figure 4.4: Variation of (a) effective dielectric constant, and (b) characteristic 

impedance with frequency. The WebCalculator results are from [77] ........... 44 

Figure 4.5: (a) Return loss, and (b) insertion loss of the studied microstrip line .............. 45 



 vii

Figure 4.6: One dimensional representation of a periodic structure ................................. 46 

Figure 4.7: Unit Cell of a 1D stepped impedance filter .................................................... 46 

Figure 4.8: Cascading of ABCD matrices of sections ...................................................... 47 

Figure 4.9: A unit cell of a 2D EBG structure and its equivalent transmission line 

network ............................................................................................................ 50 

Figure 4.10: Four port network representation of a unit cell of a two dimensional 

periodic structure ............................................................................................. 51 

Figure 4.11: Irreducible Brillouin zone of an isotropic square reciprocal lattice with 

lattice constant d .............................................................................................. 54 

Figure 4.12: (a) Unit cell of a one dimensional stepped impedance filter, (b)Design 

parameters, and (c) The equivalent transmission line model. ......................... 57 

Figure 4.13: (a) Dispersion diagram from TLM based code, (b) Dispersion diagram 

from full wave solver (c) Insertion loss for a finite structure consisting of 

three unit cells ................................................................................................. 60 

Figure 4.14: Cross section of the TL model of the 2D stepped impedance EBG 

structure ........................................................................................................... 62 

Figure 4.15: Dispersion diagram of the 2D stepped impedance structure based on 

Design A predicted by the TLM code ............................................................. 62 

Figure 4.16: Dispersion diagram of the 2D stepped impedance structure based on 

Design A obtained from HFSS full-wave solver ............................................ 63 

Figure 4.17: Illustration of the EBG structure constituted of several cascaded unit 

cells along with the port definitions for the calculation of the Insertion 

Loss ................................................................................................................. 64 

Figure 4.18: Magnitude of S21 for finite size stepped impedance structure for the 

arrangement shown in Figure 4.17 and calculated between 28 segments 

along x-direction ............................................................................................. 65 

Figure 5.1: Various segments of a meander line for the calculation inductance .............. 68 

Figure 5.2:  A conducting segment of a meander line ...................................................... 68 

Figure 5.3: Middle segments used for the calculation of inductances .............................. 68 

Figure 5.4: Mutual inductance of two equal parallel straight filaments............................ 69 

Figure 5.5: Two intersecting unequal filaments inclined at an angle θ  [97].................... 69 



 viii 

Figure 5.6: Two non-intersecting unequal filaments inclined at an angle θ  [97] ............ 70 

Figure 5.7: Two parallel segments displaced by a finite distance ..................................... 71 

Figure 5.8: Two unequal overlapping parallel segments with one end along the 

same perpendicular .......................................................................................... 71 

Figure 5.9: Two non-overlapping parallel segments with one end along the same 

perpendicular ................................................................................................... 71 

Figure 5.10: Two non-overlapping segments sharing the same axial plane and 

separated by a finite distance .......................................................................... 72 

Figure 5.11:  Two scenarios for Case I ............................................................................. 72 

Figure 5.12: Two scenarios for Case II ............................................................................. 73 

Figure 5.13:  Segment alignment for Case III ................................................................... 73 

Figure 5.14: Segment alignment for Case IV .................................................................... 74 

Figure 5.15: Segment alignment for Case V ..................................................................... 74 

Figure 5.16: Segment alignment for Case VI .................................................................... 75 

Figure 5.17: Segment alignment for Case VII .................................................................. 76 

Figure 6.1: The unit cell design of an EBG structure, Design A, containing meander 

sections. ........................................................................................................... 79 

Figure 6.2: Unit cell design of the EBG structure from [38] , called here as Design 

B, containing meander sections. ...................................................................... 80 

Figure 6.3: Capacitor geometry to calculate the fringe capacitance due to two co-

planar metal patches [28] ................................................................................ 81 

Figure 6.4: Basic model represent the meander loading. .................................................. 82 

Figure 6.5:  (a) 1D meander loaded transmission line Design A. (b) The equivalent 

transmission line model for the unit cell used in the TLM code. .................... 84 

Figure 6.6: Dispersion diagram of 1D EBG structure Design A predicted by the 

TLM code based. .................................................................................................  85 

Figure 6.7: Dispersion diagram of 1D EBG structure Design A predicted from full wave 

analysis. ......................................................................................................... 895 

Figure 6.8:  Insertion loss plot for Design A ..................................................................... 88 

Figure 6.9:  Magnified image of Figure 6.8 ...................................................................... 88 



 ix

Figure 6.10: (a) 1D meander loaded transmission line Design B. (b) The equivalent 

transmission line model for the unit cell used in the TLM code. .................... 89 

Figure 6.11: Dispersion diagram of 1D EBG structure Design B predicted by the 

TLM code based. ............................................................................................. 90 

Figure 6.12: Dispersion diagram of 1D EBG structure Design B predicted from full 

wave analysis................................................................................................... 90 

Figure 6.13: Insertion loss plot of the structure shown in Figure 6.10 (a) ........................ 91 

Figure 6.14: Zoomed in version of the graph shown in Figure 6.13. ................................ 92 

Figure 6.15: Simulation setup for the unit cell of 2D EBG structure of Design A. .......... 93 

Figure 6.16: Dispersion diagram of the 2D EBG Design A obtained from the TLM 

code. ................................................................................................................ 94 

Figure 6.17: Dispersion diagram of the 2D EBG Design A obtained from full-wave 

analysis. ........................................................................................................... 94 

Figure 6.18: Unit cell of the 2D meander loaded EBG structure in ADS schematic 

window. ........................................................................................................... 95 

Figure 6.19: Illustration of the EBG structure constituted of several cascaded unit 

cells along with the port definitions for the calculation of the Insertion 

Loss ................................................................................................................. 96 

Figure 6.20: (a) Magnitude of S21 for a finite size 2D meander loaded EBG structure 

Design A. (b) Magnified scale of the shaded region shown in (a). ................. 97 

Figure 6.21: Unit cell of the 2D meander loaded EBG structure in ADS schematic 

window. ........................................................................................................... 98 

Figure 6.22: Dispersion diagram of the 2D EBG Design B obtained from the TLM 

code. ................................................................................................................ 99 

Figure 6.23: Dispersion diagram of the 2D EBG Design B obtained from full-wave 

analysis. ........................................................................................................... 99 

Figure 6.24: Illustration of the EBG structure constituted of several cascaded unit 

cells along with the port definitions for the calculation of the Insertion 

Loss ............................................................................................................... 100 

Figure 6.25: (a) Magnitude of S21 for a finite size 2D meander loaded EBG structure 

Design B. (b) Magnified scale of the shaded region shown in (a). ............... 102 



 x

LIST OF TABLES 

 

 

Table 3.1: The differential form of Maxwell’s equations [42] ......................................... 23 

Table 4.1: Microstrip line parameters ............................................................................... 42 

Table 4.2: Comparison between the stopbands found from TLM code and full wave 

solver (HFSS) results for 1D stepped impedance based EBG design ............. 60 

Table 4.3: Comparison between the TLM code and full wave solver results ................... 65 

Table 5.1: Inductance values for meander line designs with different number of 

turns ................................................................................................................. 77 

Table 6.1: Geometrical parameters of meander lines of Design A and B and 

calculated inductance ...................................................................................... 80 

Table 6.2: Parameter Values for Capacitance calculation ................................................. 82 

Table 6.3: Comparison between the TLM code and fullwave solver results for 1D 

EBG designs .................................................................................................... 92 

Table 6.4: Comparison between the TLM code and fullwave solver results for 2D 

EBG Design A and Design B from dispersion simulations .......................... 102 

Table 6.5: Comparison between the TLM code and full wave solver results for 1D 

EBG Designs ................................................................................................. 103 

 

 

 

 

 

 

 

 

 

�

 



 xi

LIST OF ACRONYMS 

 

FSS  Frequency Selective Surface 

PBG  Photonic Band-Gap  

EBG  Electromagnetic Band-Gap 

PDN  Power Distribution Network 

AMC  Artificial Magnetic Conductor 

EM  Electro-Magnetic 

TLM  Transmission Line Modeling 

TL  Transmission Line 

IC  Integrated Circuit 

TEM  Transverse Electro-Magnetic 

TE  Transverse Electric 

TM  Transverse Magnetic 

PCB  Printed Circuit Board 

KCL  Kirchhoff’s Current Law 

KVL  Kirchhoff’s Voltage Law 

RL  Return Loss 

RHS  Right Hand Side 

LHS  Left Hand Side 

MTL  Multi-conductor Transmission Line 

1D  One-Dimensional 

2D  Two-Dimensional 

3D  Three-Dimensional 

SSN  Simultaneous Switching Noise 

HIS  High Impedance Surface 

PPW  Parallel Plate Waveguide 

MoM  Method of Moments 

TDSE  Time Dependent Schroedinger Equation 

FEM� � ����������������������Finite Element Method�



Analysis of Planar EBG Structures Using Transmission Line Models 1

 

CHAPTER 1                                        Introduction 

Advances in fabrication technology have enabled realization of many complicated 

microwave circuits using low cost printed circuit board technologies. Electromagnetic 

bandgap structures (EBGs) [1]-[3], metamaterials [4], [5] and substrate integrated 

waveguides (SIWs) [6], [7] are examples of such advanced structures. EBG structures are 

used in designing low profile antennas, microwave filtering and noise suppression in 

power delivery networks [3], [8]-[10]. 

 

Power/ground noise is an increasing problem in modern systems due to the ever rising 

clock frequencies and decreasing rise and fall times associated with the newer 

generations of electronic devices. EBG structures have been employed as filters for 

suppression of noise in power distribution networks (PDNs). This is achieved by 

replacing one of the power/ground planes by an EBG surface. The stopband induced by 

the EBG layer suppresses the noise in all planar directions within the PDN. The EBG 

layer is either a Textured (via based) or a Uniplanar (without vias) geometry. Figure 1.1 

shows two parallel plate PDNs containing these two types of EBG structures. This thesis 

focuses on the analysis of Uniplanar or planar EBG structures and in particular the 

structures that can be modeled using lumped component and two-conductor transmission 

line circuits. Determination of the stopbands and the degree of isolation obtained in the 

forbidden bands of EBG structures in filtering and noise suppression applications are the 

two most important measures of their efficiency. These characteristics can be ascertained 

from the dispersion diagram and scattering parameter (s-parameter) plots. 

 

Over the past few years, different methodologies have been employed to generate the 

dispersion and insertion loss plots and predict the modal characteristics of these 

geometries. These methods include full wave numerical analysis and analytical solutions. 

This thesis focuses on the analysis of planar EBG structures using transmission line 

modeling and analytical solutions. 
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1.1 Motivations and Objectives 

As stated earlier, in order to predict the frequency selective behaviour of the EBG 

structures, the dispersion characteristics and the s-parameters should be extracted. The 

dispersion characteristic is the plot of propagation constant of every mode versus 

frequency, commonly known as β−k  diagram in waveguides. To obtain such plots, 

eigenvalues of the electromagnetic problem should be found. The most commonly used 

procedure to obtain these attributes is by utilizing commercial electromagnetic (EM) field 

solvers. These tools are very accurate in predicting the EBG characteristics, but they 

often require a lot of time to converge on the eigenvalues especially when a large number 

of modes are investigated. Hence, any modification to the layout for the purpose of 

design optimization results in hours of simulation time.  

 

�

 

Figure 1.1: (Left) Textured and (Right) planar EBG structures sandwiched between 

power planes for the suppression of noise in PCB designs 

 

Two most commonly used EM solvers are Ansoft’s High Frequency Structure Simulator 

(HFSS) and Agilent’s Advanced Design System (ADS). These tools are also used in the 

investigation of the studied structures. In this thesis, driven port simulations in HFSS and 

ADS Momentum are utilized for generating the s-parameters. Of the two solvers 

Eigenmode solution is only available in HFSS and is used for generating the dispersion 

diagrams. HFSS is a finite element method (FEM) based solver whereas ADS 

Momentum is a Method of Moments (MoM) solver. FEM solvers divide the domain into 

finite elements (triangles for 2D elements and tetrahedra for 3D elements). HFSS is an 

efficient tool for the extraction of modal information. It can be used for simulation of 
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antennas and includes definition of closed and open boundaries as well as perfectly 

matched layers (PML). ADS Momentum is a planar analysis tool which can be broadly 

used for the analysis of open and shielded 2.5D structures. The MoM also involves the 

subdivision of the domain into a mesh. Once it is achieved, the MoM code solves for the 

current on each small rectangular or triangular patch. Green’s function is used to fill the 

moment matrix. Scattering parameters and radiation patterns are examples of output data 

generated by ADS Momentum analysis. Both HFSS and ADS give extremely accurate 

scattering parameter results but are expensive and time consuming. EBG structures have 

become very popular in microwave engineering and there is a need for an inexpensive 

way to analyze them. The goal of this thesis is to utilize an analytical method by which 

the frequency selective characteristics of EBG structures could be predicted with an 

acceptable degree of accuracy in a matter of few seconds, when compared to the 

simulation time required by EM solvers.  

1.2 Methodology 

The primary objective of this thesis is to develop an alternative approach to predict the 

dispersion and suppression characteristics of planar EBG structures in a cost effective 

way. This is achieved by employing the transmission line modeling (TLM) method to 

represent EBG structures. As stated earlier, Eigenmode analysis of EBG structures using 

commercial EM solvers is expensive and time consuming. Moreover, the size of the mesh 

associated with such structures is limited by the memory availability of the machine. 

Hence, the only way around such a problem is a reduction in the mesh size, which 

compromises the accuracy of the network and modal analysis.  The method in this thesis 

mainly relies on the derivation of simplified models and obtaining Kirchhoff’s Voltage 

Law (KVL) and Kirchhoff’s Current Law (KCL) and multi-port network solutions. Since 

the recently developed EBG structures are based on printed circuit geometries, 

transmission line modeling (TLM) plays a significant role in their analytical investigation 

[5], [11], [12].The equivalent circuit of an EBG structure can be composed of two or 

multi-conductor transmission line segments with some lumped loading components to 

represent the periodic discontinuity. Voltage and current variables, which could be 
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vectors in the case of multi-conductor structures, are used to derive the representative 

network parameters. 

 

In order to find the eigenvalues of the system, Floquet’s theorem is applied to voltage and 

current variables at the two ends of the unit cell of the EBG structure [13]. Solving the 

resultant matrix equation yields the dispersion (or characteristic) equation of the EM 

problem. The representative transfer matrix of the unit cell can be utilized to obtain 

insertion loss signature of the structure without including the effect of excitation ports 

and only by considering the number of cells between the two ports. A summary of the 

steps involved in each of the processes to obtain the desired output data is shown in 

Figure 1.2 . This diagram also serves as the basis for development of a TLM-code in 

MATLAB. 

 

In this thesis, in order to demonstrate the capability of the TLM based analysis, few 

planar EBG geometries are analyzed. The results generated by the TLM-based code are 

compared with those obtained from full-wave analysis. Using this analytical 

methodology, the design of the EBG structures can be improved to achieve low 

frequency stopbands below 1GHz.  

1.3 Thesis organization 

After the brief introduction provided in this chapter, Chapter 2 presents a review of 

transmission line fundamentals, Chapter 3 surveys the history, fundamentals and 

applications of EBG structures. Chapter 4 discusses the methodology for analysis of EBG 

structures using transmission line modeling and provides examples of analysis of planar 

EBG structures. Chapter 5 describes an analytical technique to obtain the equivalent 

inductance of a meander line. Chapter 6 presents the analysis of a few planar EBG 

structures containing meander line sections. Dispersion diagrams are generated to study 

the modal characteristics of the geometries reviewed in Chapters 4 and 6. As well s-

parameter plots are obtained to provide information about the isolation achieved in the 

investigated EBG geometries. In chapter 7, closing remarks and discussions about the 

scope of future work are presented. 
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β−k ( )α

 
 

Figure 1.2:  Analysis procedure using transmission line modeling method 
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CHAPTER 2    Review of Transmission Lines 

This chapter reviews the analysis of various types of transmission lines that are 

commonly used in electronic systems and discusses the differences between them. The 

major part of the chapter deals with the derivation of the Telegraphers’ equations for two 

conductor and multiconductor transmission line networks and describes the various 

circuit parameters involved in the analysis. 

�

2.1 Transmission Line Circuits 

When analyzing transmission line circuits, generally their lumped element model or 

distributed element model is referred. Maxwell’s equations are applicable to all types of 

electromagnetic behaviour at all frequencies. When the electrical length of the circuit is 

smaller than the operating wavelength of the circuit, static field equations apply, and 

lumped components are used to represent the electrically small section of a transmission 

line. In such cases, the circuit components can be considered as frequency independent 

parameters. The lumped component model is also utilized when modeling transmission 

line discontinuities with parasitic components [14]. At higher frequencies, such as those 

in the microwave region (defined between 300 MHz to 30 GHz [13]), the electrical 

length of the circuit becomes relatively large due to which the time delay factor becomes 

prominent and wave equations should be used in the analysis of circuits. In this case, the 

circuit is known as a distributed circuit. In such cases, a distributed element model is 

preferred. The distributed model can be assumed to be composed of small lumped 

element sections. For circuits operating at microwave and millimetre wave frequencies 

and even in the analysis of micro-scale circuits such as ICs, distributed models are often 

used. 

Transmission line circuits have been utilized as signal guiding structures for over 50 

years [15]. Some of the most popular transmission lines that are used in printed circuits 

include striplines, microstrip lines, coplanar waveguides and twinstrips, slotlines and 

finlines [16]. Striplines most commonly employ homogenous dielectrics, thus supporting 

a dominant transverse electromagnetic (TEM) propagating mode. Their major 
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applications include the design of microwave filters [17], hybrids [18], directional 

couplers [19] and stepped impedance transformers [20]. Microstrip lines are preferred in 

low cost circuit design because of the convenience they provide in the mounting of the 

transistors or lumped components. The drawback associated with microstrip lines is the 

difficulty in accessing the ground plane that requires punching through the substrate. In 

addition to this, the substrate must be very thin in order to avoid higher order mode 

propagation at higher frequencies [16]. This would result in a very delicate framework. 

This was considered in the development of other types of transmission lines such as 

coplanar waveguides and twinstrip lines. These transmission lines were realized by 

moving the ground plane to the same side of the substrate as the signal land. The signal 

line could either be placed symmetrically between the two ground plane lands (coplanar 

waveguide) or adjacent to a single ground land (twinstrip). Slotlines have been used in 

conjunction with microstrip lines to design filters [21] and directional couplers [22]. 

Finlines (also referred to as E-planes [16], [23]) have been used to create filters [24], 

detectors [23] and mixers [25], [26]. Figure 2.1 shows the various commonly used 

microwave planar transmission lines. 

 

Microstrip lines, owing to the non homogenous nature of the dielectric medium, support 

hybrid TE and TM modes. At lower frequencies, microstrips appear to have a guided 

wavelength and characteristic impedance very similar to that of a TEM line. As the 

frequency increases, this mode deviates from the TEM behaviour and hence such a mode 

is conceptually referred to as a quasi-TEM mode. 

 

Another type of transmission line is a parallel plate two conductor system which, as the 

name suggests, consists of parallel conductor plates as shown in Figure 2.2. The power 

distribution network (PDN) in various printed circuit systems like PCBs, ICs, is used to 

provide biasing current to the circuit components constituting a system. In addition to this 

the power/ground planes also act as efficient shields.  

In addition to routing signals between two or more locations, transmission lines are the 

basic structures used in creating filters, couplers, resonators and circuit components. 

Hence, analysis of a two conductor transmission line provides invaluable insight into the 
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propagation characteristics of electromagnetic waves in such structures. Derivations of 

voltage and current wave equations are discussed in the following section. 

    
 

   Figure 2.1: Planar microwave transmission lines 

 

 

   

 

( )tz,E x

( )tz,H y

 
 

   Figure 2.2: Parallel plate two conductor system 

2.2 Analysis of Two Conductor Transmission Lines 

As stated earlier, transmission line analysis is employed when the length of the 

transmission line is a comparable fraction of the signal wavelength. Circuit theory deals 

with only lumped component parameters whereas transmission line theory deals with 
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distributed component parameters. If we consider a small segment of a transmission line 

of length z∆  shown in Figure 2.3, then the lumped element circuit model of that section 

of transmission line can be represented as shown in Figure 2.4 [13]. The lumped 

component model consists of series resistance, series inductance, shunt capacitance and 

shunt conductance, all of which have been normalized per unit length of the transmission 

line. 

 

 
 

Figure 2.3: Section of a transmission line [13] 

 
 

Figure 2.4: Lumped component model of the section of transmission line [13] 

 

where =R  Per unit length series resistance in m/Ω      

 =L  Per unit length series inductance in mH /  

 =G  Per unit length shunt conductance in  mS /  

 =C  Per unit length shunt capacitance in  mF /  
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Applying Kirchhoff’s Voltage Law to the circuit shown in Figure 2.4, we obtain, 

   ( ) ( ) ( ) ( ) 0,
,

,, =∆+−
∂

∂
∆−∆− tzzv

t
tzi

zLtzziRtzv  (2.1) 

Similarly, applying Kirchhoff’s Current Law to the circuit shown in Figure 2.4, we 

obtain, 

   ( ) ( ) ( ) ( ) 0,
,

,, =∆+−
∂
∆+∂

∆−∆+∆− tzzi
t

tzzv
zCtzzzvGtzi  (2.2) 

Dividing (2.1) and (2.2) by z∆  and applying
0

lim
→∆z

, we obtain the following set of 

differential equations, 

   
( ) ( ) ( )

z
tzi

LtzRi
z
tzv

∂
∂

−−=
∂

∂ ,
,

,
 (2.3) 

   
( ) ( ) ( )

z
tzv

CtzGv
z
tzi

∂
∂

−−=
∂

∂ ,
,

,
 (2.4) 

 

 

(2.3) and (2.4) are known as Telegraphers’ equations. 

The steady state equations for (2.3) and (2.4) are: 

   
( ) ( )zILjR
z
zV

)( ω+−=
∂

∂
 (2.5) 

   
( ) ( )zVCjG
z
zI

)( ω+−=
∂
∂

 (2.6) 

Partially differentiating (2.5) and (2.6) with respect to z  

    
( ) ( )

z
zI

LjR
z
zV

∂
∂

+−=
∂

∂
)(2

2

ω  (2.7) 

   
( ) ( )

z
zV

CjG
z
zI

∂
∂

+−=
∂
∂

)(2

2

ω  (2.8) 

Substituting (2.5) and (2.6) in (2.8) and (2.7) respectively 

   
( ) ( )zVCjGLjR
z
zV

))((2

2

ωω ++=
∂

∂
 (2.9) 

   
( ) ( )zILjRCjG
z
zI

))((2

2

ωω ++=
∂
∂

 (2.10) 
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Rearranging (2.9) and (2.10), we obtain the voltage and current wave equations as 

follows: 

   
( ) ( ) 02
2

2

=−
∂

∂
zV

z
zV

γ  (2.11) 

   
( ) ( ) 02
2

2

=−
∂
∂

zI
z
zI

γ  (2.12) 

where   βαωωγ jCjGLjR +=++= ))((  (2.13) 

is the complex propagation constant of the transmission line and is a frequency dependent 

parameter. The propagation constant is a measure of the change in the amplitude and 

phase of a wave between the points of origin or reference, and a point at a distance z  as 

it travels along the transmission line.  

 

The propagation constant consists of two discernible parts: (a) A real part ‘α ’ known as 

the attenuation constant which is a measure of the attenuation that a wave suffers per 

metre travel along the transmission line, and (b) an imaginary part ‘ β ’ known as the 

phase constant. β , along with the characteristic impedance 0Z  (refer to Equation (2.16)), 

is one of the two most important descriptive parameters of a transmission line and is a 

measure of the change in phase that a wave suffers per metre travel along the 

transmission line. 

The solution to the set of differential equations (2.11) and (2.12) is given by 

   ( ) zz eVeVzV γγ +−−+ += 00  (2.14) 

   ( ) zz eIeIzI γγ +−−+ += 00  (2.15) 

where  +
0V  and +

0I  are the amplitudes of the voltage and current of the incident wave, and 

similarly, −
0V  and −

0I   are amplitudes of the voltage and current of the reflected wave. 

The characteristic impedance of a transmission line is defined by 

   
CjG
LjR

I

V

I

V
Z

ω
ω

+
+

===
−

−

+

+

0

0

0

0
0  (2.16) 



Analysis of Planar EBG Structures Using Transmission Line Models 12

Whenever a transmission line is terminated in an arbitrary load, 0ZZ L ≠ , an important 

parameter, known as the reflection coefficient, comes into existence. The refection 

coefficient is given by 

   
0

0

ZZ
ZZ

L

L

+
−

=Γ  (2.17) 

The return loss (RL) of a transmission line is a measure of the amount of power delivered 

from the source to the load and is provided by the equation 

   dBlog20RL    Γ−=  (2.18) 

A matched load (which implies no part of the incident power is reflected) has RL of ∞  

dB whereas total reflection (which implies all the incident power is reflected) has a RL of 

0 dB. 

2.3 Analysis of Multi-conductor Transmission Lines (MTLs)  

Having investigated a two conductor transmission line in the previous section, we now 

investigate a multiconductor transmission line segment [27] as shown in Figure 2.5. The 

system is composed of n''  conductors and the conductor numbered ‘0’, which provides 

the return path for all the other conductors in the system, is defined as the reference 

conductor. 

For the Voltage equation: 

According to Faraday’s law 

      ∫ ∫ ⋅−=⋅
c s

sdH
dt
d

ldE
rrrr

µ  (2.19) 

When we apply Faraday’s law along the contours ,,, cdbcab and da  which enclose the 

surface is  and move in a clockwise direction, we obtain 

   ( )∫∫∫∫∫ −⋅−=⋅+⋅+⋅+⋅
is

nt

a

d
l

d

c
t

c

b
l

b

a
t sdaH

dt
d

ldEldEldEldE
rrrrrrrrrr

ˆµ  (2.20) 

where tE
r

 and tH
r

 represent the transverse electric and magnetic fields (with the subscript 

‘t’ representing the transverse direction) and lE
r

 represents the longitudinal electric field 

(with the subscript ‘l’ representing the longitudinal direction). nâ  is the surface unit 
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vector nâ  directed perpendicular to the surface is  and is directed out of the plane. Since 

nâ  and the magnetic field associated with the surface is  are in opposite directions, hence 

the right hand side (RHS) term will become positive and hence (2.20) evolves to the 

following, 

 

 

z zz ∆+

lE

lE

tE tE
na

tH

ds
is

∑
=

3

1k
kI

),(1 tzI

),( tzIn

),(2 tzI

( )tzVi , ( )tzzVi ,∆+
ic

 
 

Figure 2.5 Definition of contour for the derivation of first set of MTL equation [27] 

 

   ( )∫∫∫∫∫ ⋅=⋅+⋅+⋅+⋅
is

nt

a

d
l

d

c
t

c

b
l

b

a
t sdaH

dt
d

ldEldEldEldE
rrrrrrrrrr

ˆµ  (2.21) 

We consider a TEM mode of propagation and in accordance with such a mode, the 

voltage relationships between the thi  conductor and the reference conductor at the 

beginning and at the end of the section are given by 

    ( ) ( )∫ ⋅−=
b

a
ti ldtzyxEtzV

rr
,,,,  (2.22) 

   ( ) ( )∫ ⋅∆+−=∆+
d

c
ti ldtzzyxEtzzV

rr
,,,,     (2.23) 
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Since a TEM mode of propagation is possible only in perfect conductors, in order to 

accommodate wave propagation in imperfect conductors in a quasi-TEM mode of 

propagation, we include a per-unit-length conductor resistance, r mΩ . 

For the purpose of simplification of our analysis, let us consider an MTL segment 

consisting of three conductors and one reference conductor [27].  

Voltage drops along the sections (assuming imperfect conductor): 

   Along bc  = ∫ ⋅−
c

b
l ldE

rr
 (2.24) 

   Along da  = ∫ ⋅−
a

d
l ldE

rr
 (2.25) 

Or we can say that: 

   ( )tzzIrldE ii

c

b
l ,∆−=⋅− ∫

rr
 (2.26) 

   ( )tzzIrldE
a

d
l ,00∆−=⋅− ∫

rr
 (2.27) 

where 0& rri are the per unit conductor resistances of the thi and reference conductors, 

and ( )tzI i ,  &  ( ) ( )∑
=

=
3

1
0 ,,

k
k tzItzI  (k varies from 1 to 3 because we are analysing a 

specific case of three conductors for an n-conductor multiconductor transmission line 

system) are the currents on the thi  and reference conductors.  

According to Ampere’s law: 

   ( ) ∫ ⋅=
ic

ti ldHtzI
rr

,  (2.28) 

where ic  is a contour just off the surface of the thi  conductor and enclosing the thi  

conductor. 

Substituting (2.22) to (2.28) in (2.20) we get: 

  ( ) ( ) ( ) ( ) ( )∫∑ −⋅=∆++∆+∆+−
=

is
nti

k
kiii sdaH

dt
d

tzzVtzIzrtzzIrtzV
rr

ˆ,,,,
3

1
0 µ  (2.29) 

Rearranging the above equation  
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  ( ) ( ) ( ) ( ) ( )∫∑ ⋅+







∆+∆−=−∆+

=
is

nt
k

kiiii sdaH
dt
d

tzIzrtzzIrtzVtzzV
rr

ˆ,,,,
3

1
0 µ  (2.30) 

Dividing the LHS and RHS by  z∆  

  
( ) ( ) ( ) ( ) ( )∫∑ ⋅

∆
+







+−=

∆
−∆+

=
is

nt
k

kii
ii sdaH

dt
d

z
tzIrtzIr

z
tzVtzzV rr

ˆ1
,,

,, 3

1
0 µ  (2.31) 

Hence, 

   

( ) ( ) ( ) ( ) ( ) ( )[ ]

( )∫ ⋅
∆

+

++−−=
∆

−∆+

is
nt

ii
ii

sdaH
dt
d

z
                                    

tzItzItzIrtzIr
z

tzVtzzV

rr
ˆ1

,,,,
,,

3210

µ
 (2.32) 

The total magnetic flux penetrating the surface is given by 

   ∑∫
=

=
→∆

=⋅
∆

−=
3

1
0

ˆ1
lim

n

j
jij

s
ntzi IlsdaH

z
i

rr
µψ  (2.33) 

where ijl  refers to the per-unit-inductance in mH  

Applying 
0

lim
→∆z

 in (2.32) and substituting (2.33) in it, we obtain 

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
t
tzI

l
t
tzI

l
t
tzI

l                 

tzIrtzIrrtzIr
z
tzV

iii

ii
i

∂
∂

−
∂

∂
−

∂
∂

−

+−−=
∂

∂

,,,

,...,...,
,

3
3

2
2

1
1

30010

 (2.34) 

Using matrix notation, (2.34) can be rewritten as [27] 

   
( ) ( ) ( )

t
tzI

LtzRI
z
tzV

∂
∂

−−=
∂

∂ ,
,

,
 (2.35) 

where, 

   ( )
( )
( )
( )
















=

tzV

tzV

tzV

tzV

,

,

,

,

3

2

1

 (2.36) 

   ( )
( )
( )
( )
















=

tzI

tzI

tzI

tzI

,

,

,

,

3

2

1

 (2.37) 

The per-unit-inductance matrix is given by 
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















=

333231

232221

131211

lll

lll

lll

L  (2.38) 

and the per-unit-resistance matrix is denoted by 

   
















+

+

+

=

3000

0200

0010

rrrr

rrrr

rrrr

R  (2.39) 

We can clearly observe that (2.35) is identical to the two conductor transmission line 

equation (2.5) derived in the previous section. 

   

For the current equation: 

Referring to Figure 2.6, let us consider a surface ŝ  enclosing the thi  conductor as shown. 

It consists of two parts; the end areas represented by eŝ  and the enclosing section 

represented by oŝ . The continuity equation for the conservation of charge states 

   ∫∫ ∂
∂

−=⋅
s

encQ
t

sdJ
ˆ

ˆ
rr

 (2.40) 

where encQ is the charge enclosed by the surface. 

Applying the continuity equation to over the end caps we have, 

   ( ) ( )∫∫ −∆+=⋅
es

ii tzItzzIsdJ
ˆ

,,ˆ
rr

 (2.41) 

Similarly, application of the continuity equation over the side surface yields, 

   ∫∫∫∫ ⋅=⋅
oo s

t
s

c sdEsdJ
ˆˆ

ˆˆ
rrrr

σ  (2.42) 

where tc EJ
rr

σ=  is the conduction current and (2.42) represents the transverse current 

flowing between the conductors. 

Again, for the purpose of simplification of our analysis, let us consider an MTL segment 

consisting of three conductors and one reference conductor [27].  
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z zz ∆+

ds),( tzI i na

tE

tE
),( tzVi ),( tzzVi ∆+

oŝ

eŝ

µεσ ,,

),( tzzI i ∆+

 
Figure 2.6: Definition of contour for the derivation of second set of MTL equation [27]  

 

 

We know that,  

  

( ) ( ) ( )

( ) ( ) ( ) ( )∑

∫∫

=

→∆

+−−−=

−+−+−=⋅
∆

3

1
332211

33
ˆ

22110

,,,,

ˆ1
lim

0

k
kikiii

ii
s

iiiitz

tzVgtzVgtzVgtzVg                                

VVgVVgVVgsdE
z

rr
σ

 (2.43) 

where ijg is the per-unit-conductance in mS  

By Gauss’s law, the total charge enclosed by the surface encircling the conductor is given 

by, 

   ∫∫ ⋅=
0ˆ

ˆ
s

tenc sdEQ
rr

ε  (2.44) 

The charge per unit length of line is obtained by [27], 
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( ) ( ) ( )

( ) ( ) ( ) ( )∑

∫∫

=

→∆

+−−−=

+−+−+−=⋅
∆

3

1
332211

332211
ˆ

0

,,,,

ˆ1
lim

0

k
kikiii

iiiiiiiii
s

tz

tzVctzVctzVctzVc                               

VcVVcVVcVVcsdE
z

rr
ε

 (2.45) 

where ijc is the per-unit-capacitance in mF  

Substituting (2.41), (2.42) and (2.44) in equation (2.40), we get, 

   ( ) ( ) ∫∫∫∫ ⋅−=⋅+−∆+
00 ˆˆ

ˆˆ,,
s

t
s

tii sdEsdEtzItzzI
rrrr

εσ  (2.46) 

Dividing both sides by z∆  we get, 

   
( ) ( )

∫∫∫∫ ⋅
∆

−=⋅
∆

+
∆

−∆+

00 ˆˆ

ˆˆ
,,

s
t

s
t

ii sdE
z

sdE
zz

tzItzzI rrrr εσ
 (2.47) 

Applying 
0

lim
→∆z

 to (2.47) and substituting (2.43) and (2.45) yields, 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )







−++

∂
∂

+

−++=
∂

∂

∑

∑

=

=

3

1
332211

3

1
332211

,,,,

,,,,
,

k
kikiii

k
kikiii

i

tzVctzVctzVctzVc
t

                

tzVgtzVgtzVgtzVg
z
tzI

 (2.48) 

   
( ) ( ) ( )tzV

t
CtzGV

z
tzI i ,,

,
∂
∂

−=
∂

∂
≈  (2.49) 

where the per-unit-conductance matrix is represented as 

   
















++−−

−++−

−−++

=

3332313231

2323222121

1312131211

ggggg

ggggg

ggggg

G  (2.50) 

and the per-unit-capacitance matrix is represented as 

   
















++−−

−++−

−−++

=

3332313231

2323222121

1312131211

ccccc

ccccc

ccccc

C  (2.51) 

It can be observed that (2.49) resembles (2.6) derived in the previous section pertaining to 

two conductor transmission lines. Figure 2.7 shows a lumped component model of a four 

conductor MTL segment, one of which is a reference conductor. 
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 zr ∆3

zr ∆2

zr ∆1

zr ∆− 0

zl ∆33

zl ∆22

zl ∆11

zg ∆32

zg ∆33

zg ∆31zg ∆12

zg ∆11 zg ∆22

zc ∆32

zc ∆12 zc ∆31

zc ∆11 zc ∆22 zc ∆33

),(1 tzI

),(2 tzI

),(3 tzI

),(1 tzzI ∆+

),(2 tzzI ∆+

),(3 tzzI ∆+

∑
=

∆+
3

1

),(
k

k tzzI∑
=

3

1

),(
k

k tzI

),(1 tzV

),(2 tzV

),(3 tzV

),(1 tzzV ∆+

),(2 tzzV ∆+zlij∆

 
Figure 2.7: Lumped component model of a three conductor MTL segment [27] 

 

2.4 Conclusion 

This chapter presented a brief discussion about the types and applications of transmission 

lines.The fundamentals of transmission line networks discussed in this chapter are 

essential in analytical studies of a transmission line circuit. In the subsequent chapters, 

we will discuss equivalent models of various transmission line based geometries and 

utilize analytical derivations to find the network parameters of the studied structures. The 

important parameter that we intend to find in the analysis is the propagation constant, β , 

of  the transmission line-based circuit. 
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CHAPTER 3          Electromagnetic Bandgap 

Structures  

Electromagnetic bandgap (EBG) structures are periodic geometries constructed by 

repetition of a unit cell or building block in one, two or three dimensions. Mostly they are 

used to ideally eliminate propagation of electromagnetic waves within certain frequency 

bands. Practically though, only partial elimination is possible. One dimensional (1D) 

periodic structures, i.e. structures in which repetition of the unit cell occurs in one 

dimension, are often utilized as microwave filters. Their properties have been studied in 

[13], [25]-[28]. Two dimensional (2D) periodic structures, i.e. repetition exists along two 

directions, are the most popular type of EBG structures. They have been utilized in the 

design of antennas, microwave filters and even for suppression of power/ground or 

simultaneous switching noise (SSN) in electronic circuits [29] and [30]. They have been 

dealt with in numerous publications due to the ease of fabrication especially when 

compared with 3D geometries. Three dimensional (3D) EBG structures, i.e. unit cell 

repeats along all three spatial dimensions,  have been studied in [31]. Note that the 1D 

and 2D EBG structures may be 3D geometries as they are often developed on a dielectric 

substrate and may include a conductor plane for grounding or shielding. The most 

commonly used 2D EBG structures in microwave circuits contain conductor parts like an 

array of metal protrusions or metal patches arranged in one or two dimensions. 

 

Terminologies like High impedance surfaces (HIS) [28] or Frequency Selective Surfaces 

(FSSs) are also used to refer to 2D EBG structures especially when they are used as 

reflector planes and for the purpose of spatial wave filtering or eliminating surface waves 

and currents.   

 

This chapter provides a brief introduction about common 2D EBG structures, explains 

their modal characteristics and elaborates on some important applications. 
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3.1 Overview of EBG Geometries 

EBG structures used in microwave and electronic engineering are mainly 2D periodic 

structures. These 2D geometries can be broadly classified into two categories: Textured 

(Mushroom or thumbtack) type and Uniplanar (or patterned) structures. Textured 

surfaces consist of an array of bumps and waves travelling over such an undulating 

surface, interact with these small bumps. The bumps basically behave as speed breakers 

and hence there is a change in the velocity of the bound waves when they travel over 

these bumps [28]. Due to the interference and change in velocity brought about by this 

association, the textured surfaces prevent the propagation of surface bound waves and 

this results in the production of a two directional bandgap [28]. Initial studies of this type 

of structure involved obtaining a high impedance surface by using small bumps patterned 

on a silver film [32], [33]. These bumpy structures were later developed into the 

mushroom structures, also known as Sievenpiper’s structures [34]. These structures are 

inductive at low frequencies and hence support TM waves and are capacitive at high 

frequencies which enables them to support TE waves [28]. Within the forbidden gap 

though, these structures suppress both TE and TM waves from propagating through the 

structure. 

 

Uniplanar or patterned EBG structures can be realized as a grid/meshed plane [35], a 2D 

stepped impedance structure [36], interconnected slotted patches [37], metal patches 

connected by meander lines [3], [38] or other parasitic sections.   Some of the geometries 

used for developing planar patterned and mushroom EBG structures have been shown in 

Figure 3.1. Figure 3.1 (a) is the mushroom structure developed by Sievenpiper [28]. 

Figure 3.1 (c) is another uniplanar EBG used for suppression of ground/power noise [39]. 

Figure 3.1 (d) is also another one of Sivenpiper’s EBG structures [26], [27], while Figure 

3.1 (e) shows the structure without the via. Note that in Figures 3.1(a) and 3.1(e), a 

double sided substrate is used and the via stitches the patches on one side to the solid 

conductor on the other side. Figure 3.1 (f) is an L-bridge loaded transmission line 

structure [40]. Figure 3.1(g) is the stepped impedance structure and Figure 3.1 (h) is a 

meander loaded transmission line structure [41]. A modified geometry used to obtain 
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ultra wide bandgap, known as a super cell [3], is shown in Figure 3.1 (i). The super cell 

was designed by combining two different geometries into a super cell structure. The 

bandgap obtained due to the new structure is found to amalgamate the bandgaps arising 

due to individual geometries, in addition to the bandgap arising from the combined 

periodicity formed by the super cell topology. All of these geometries have shown 

bandgap properties and provide various degrees of isolation characteristics. 

 
In this thesis, only patterned EBG geometries have been analyzed. The stepped 

impedance structure of Figure 3.1(g) and the structure of metal patches connected by 

meander lines shown in Figure 3.1(h) serve as the basis for the EBG geometries studied 

in this thesis. 

 

The geometry of these EBG structures can be altered in order to obtain the bandgap in the 

desired frequency region. In simplified cases an EBG structure can be approximated with 

a surface impedance. This enables prediction of the bandgap using analytical approaches.  

 

3.2 Electromagnetic Waves Supported by EBG structures  

3.2.1 Review of Maxwell’s Equations 

Maxwell’s equations hinge on the idea that light is an electromagnetic wave and they 

provide one of the most effective and succinct ways to correlate the electric and magnetic 

fields associated with the wave to their sources such as charge density and current 

density. Although deceptively simple to look at, these equations epitomize a high level of 

mathematical sophistication. Table 3.1 summarizes these equations. 
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Figure 3.1: Top view of unit cells of various types of EBG structures 

Table 3.1: The differential form of Maxwell’s equations [42] 

Name of the Law Equation 

Gauss’ s Law ρ=•∇ D  

Gauss’s law for magnetism [43]* 0B =•∇  

Faraday’s Law of Induction 
t
B

E
∂
∂

−=×∇  

Ampere’s loop law 
t
D

JH
∂
∂

+=×∇  

 

* Although the term is widely used, it is not a universal law. This law is also known as “Absence of free magnetic poles” [44] 
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where   E  is the electric field intensity in Volt/meter. 

  D  is the electric flux density in Newton/Volt-meter. 

  ρ  is the total charge density in Coulomb/m3 

  B  is the magnetic field density in Tesla 

  H  is the magnetic field intensity in Ampere/meter 

  J  is the total current density in Ampere/m2 

and, 

   D
1

E
ε

=  (3.1)  

Here    0εεε r=  (3.2) 

rε  is the relative permittivity of the medium, 0ε  is the free space permittivity in 

Farads/metre, the value of which equals 8.85x10-12 m-3kg-1s4A2 

 

Another important expression is the equation of continuity which relates the electric 

charge density to the electric current density.  

   
t∂

∂
−=•∇

ρ
J  (3.3) 

�

These are the basic equations which can be used individually, as well as in combination 

to describe the electromagnetic interactions taking place. The wave equation, also known 

as Helmholtz’s equation, can be obtained by combining Faraday’s law and Ampere’s 

loop law and is given by, 

   0F-F
1 2

0 =×∇×∇ qk
p

 (3.4) 

where 000 εµω=k  is known as the free space wave number, and, ),( rrp εµ= , 

),( rrq µε=  for H)(E,F = . 

(3.4) is the governing expression for electromagnetic wave propagation in any medium 

including periodic structure. 

In a source-free region, (3.4) becomes 
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0HH

0EE
22

22

=+∇

=+∇

k

k
 (3.5) 

Where k  is known as the wave number and is given by 

   ( )mrad        
u

k
ω

µεω ==  (3.6) 

3.2.2 Floquet’s Theorem 

The fundamental expression underlying the analysis of periodic structures is known as 

Floquet theorem which was proposed by Gaston Floquet in [45]. The theorem is pertinent 

to quantum mechanics and an analysis dealing with time dependent Schroedinger 

equation (TDSE) has been described in [46].  Floquet theorem has also been discussed in 

detail in [47]. According to this theorem, if we have a periodic continuous function ( )xQ   

with a minimum period of π  such that 

   ( ) ( )xQxQ =+π  (3.7) 

Then the second order first degree differential equation 

   ( ) 0" =+ yxQy  (3.8) 

has two continuously differentiable solutions )(1 xy  and )(2 xy . 

If we take a closer look at (3.5) and (3.8), we observe the correlation between the various 

parameters ( kQy ⇔⇔ ;H)E,( ) 

Consider a characteristic equation is given by, 

   ( ) ( ){ } 01'21
2 =++− ρππρ yy  (3.9) 

The above equation has two Eigen values in πρ iae=1  and πρ iae−=2  respectively. Since 

both Eigen values are different from each other, then (3.9) has two linearly independent 

solutions, 

   ( ) ( )xpexf iax
11 =  (3.10) 

   ( ) ( )xpexf iax
22

−=  (3.11) 

where ( )xp1  and ( )xp2  are periodic  functions with period π . 
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In solid state physics, Felix Bloch applied the theorem to periodic boundary conditions 

and generalized it to three dimensions. This came to be known as Bloch’s theorem. 

Bloch’s work dealing with quantum mechanical structure of electrons in crystal lattices 

which are periodic geometries has been discussed in detail in [48], [49].  

 

Hence in analysis of periodic structures in microwave engineering often the terminology 

Bloch-Floquet Theorem is used. According to this theorem, there exists a correlation 

between the fields at a point in an infinite periodic structure and the fields at a point  

period a  away and they are found to differ from each other by a propagation factor ae γ− , 

where γ  is the propagation constant in the direction of propagation. 

Based on this theorem, for the structure shown in  Figure 3.2 depicting a one dimensional 

periodic structure with a periodd , the voltage and current relationships are given by 

   d
nn eVV γ−

+ =1  (3.12) 

   d
nn eII γ−

+ =1  (3.13) 

 

 
Figure 3.2: One dimensional representation of a periodic structure 

 

The most important derivation from Floquet’s theorem is the possibility of expressing 

fields in a periodic geometry by restricting the analysis to a unit cell of the periodic 

structure. Once the field solution F  at a particular point is determined, it is possible to 

predict the field solutions at a period ma , away by the following relationship, 

   ( ) ( )zyxemazyx ma ,,F,,F γ−=+  (3.14) 
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In this thesis, the analysis and prediction of the modal characteristics of the studied EBG 

structures has been performed by using the methodology mentioned above, which 

involves application of Bloch-Floquet theorem to a unit cell of the EBG structure. 

3.2.3 Forward, Backward and Evanescent Waves in a Periodic Array 

In order to examine the various modes supported by EBG structures, a review of 

propagating modes in a 2D infinite periodic structure from [50] is presented here. A 2D 

array of dipoles in Figure 3.3 is considered. The array is infinitely periodic along x- and 

z-directions with a period xD and zD , respectively. The array is excited by plane wave 

propagating in the direction described by 

   zyx szsysxs ˆˆˆˆ ++=  (3.15) 

where zyx sss ,,  are referred to as the direction cosines of the unit direction vector ŝ of the 

plane wave. 

 

Since it is an infinite periodic array, the current in each element obeys Floquet’s theorem 

and is given by, 

   zzmxxq sDjsDj
qm eeII ββ −−= 0,0  (3.16) 

 

where q  and m  refer to the column and row of an element, and 

 0,0I  refers to the current in the reference element in the array. 

In accordance with Ohm’s law, the voltage in the reference element is,  

   [ ] 0,0
0,00,0 IZZV L +=  (3.17) 

where   ∑ ∑
∞

−∞=

∞

−∞=

−−=
q m

sDjsDj
qm

zzmxxq eeZZ ββ
,0

0,0  (3.18) 

is known as the scan impedance [50] and is defined as the array mutual impedance of the 

reference element. It is composed of numerous elemental mutual impedances referred to 

as qmZ ,0 . LZ  is the load impedance on the reference element. 
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Figure 3.3: An infinite x infinite dipole array with inter-element spacings of xD and zD , 

and element length of l2 [50]. 

 

When we consider an array element arbitrarily oriented along ( )1p̂  with the reference 

element of the array at ( )1R  and an external element oriented along ( )2p̂  and having a 

reference element at ( )2R  (illustrated in Figure 3.4), then the mutual array impedance, 

based on (3.16) and (3.17) is given in [50] as, 

  
( ) ( )( )

( ) ( ) ( ) ( )[ ]∑ ∑
∞

−∞=
⊥⊥

∞

−∞=

⋅−−

+=−=
k

tt

n y

rRRj

zx

PPPP
r

e
DD

Z
I
V

Z 2
||

1
||

21
ˆ

0

0,0

1,2
1,2

12

2

β

  (3.19) 

where 







++±








+=

z
zy

x
x D

nszry
D

ksxr
λλ

ˆˆˆˆ  for 0≠y  (3.20) 
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xy D

ns
D

ksr
λλ

 (3.21) 

 ( ) ( ) ( )1

||

11

||

ˆˆ PnpP ⊥⊥ ⋅=   (3.22) 



Analysis of Planar EBG Structures Using Transmission Line Models 29

 ( ) ( ) ( )tt PnpP 2

||

22

||

ˆˆ ⊥⊥ ⋅=   (3.23) 

 ( )
( ) ( )( )

( ) ( ) ( )

∫
−

⋅=
1

1

1 ˆˆ1
011

0

1 1 l

l

rplj dlelI
RI

P β   (3.24) 

 ( )
( ) ( )( )

( ) ( ) ( )

∫
−

⋅−=
2

2

2 ˆˆ2
022

0

2 1 l

l

rpljt
t

t dlelI
RI

P β   (3.25) 

In the above expressions, ( )1P  and ( )tP 2  are known as the pattern factors, n̂⊥  and n̂||  are 

the unit vectors perpendicular and parallel to the directional vector r̂ . (3.20) and (3.21) 

are the governing expressions for determining the nature of the mode of propagation 

associated with the given array. 

 

The exponential term in (3.19) is affiliated to a family of plane waves emanating from 
( )1R  and propagating in the direction r̂ . The direction and nature of these plane waves are 

strongly dependent upon the summation indices k  andn . For the event when 0== nk , 

the plane wave direction expression can be written as 

    zyx szrysxr ˆˆˆˆ ++=  (3.26) 

and,   zyx szrysxr ˆˆˆˆ +−=  (3.27) 

(3.26) refers to the fact that plane waves follow the direction of propagation of the 

incident wave, zyx szsysxs ˆˆˆˆ ++=  and are hence termed forward scattering waves. 

 

Similarly, (3.27) signify that the plane waves associated with them are in a direction 

opposite to the direction of the incident wave and are hence referred to as bistatic 

reflected propagating waves. The nature of the waves depends upon the period of the 

array too. If xD and zD  are large, then (3.21) will result in real values of yr , which implies 

that propagation is possible along this/these direction(s) as well.  As xD and zD  tend 

to ∞ , (3.21) yields imaginary values of yr  which results in the attenuation of the 

propagating waves. 
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Figure 3.4: Array mutual impedance 1,2Z  between an array with element orientation ( )1p̂  

and an external element with orientation ( )2p̂  is obtained from the plane wave expression, 

(3.19) [50]. 

 

These waves are known as evanescent waves. An interesting property of these waves is 

that their phase velocity remains real in the direction of periodicity [50], i.e. along xr  

and zr , where 







+=

x
xx D

ksr
λ

 and 







+=

z
zz D

nsr
λ

, respectively.  

However, the phase in the y-direction for imaginary yr  remains unchanged. Hence, the 

magnitudes of these waves are inconsequential when compared to those of the 

propagating modes as one tends to move further away from the array, but are extremely 

strong as the other one (evanescent) moves closer to the array. Another interesting 

phenomenon is the onset of grating lobes [50] which occurs when 0=yr  and (3.21) 

modifies to, 
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This equation represents a family of circles with their centers at 
zx D

n
D

k
λλ

, . 

The above explanation pertains to dipole arrays. In order to generalize the concept of 

forward and backward propagating waves on periodic structures, we consider an 

explanation provided in [42]. Referring to Figure 3.5, we consider the amplitudes of the 

forward and backward propagating waves at the nth and n+1th section of a periodic 

structure as +
nc , −

nc , +
+1nc  and −

+1nc . The amplitudes at the nth and n+1th section are related 

to each other by the wave amplitude transmission matrix [42]. The wave amplitude 

transmission matrix relates the incident and reflected wave amplitudes on the input side 

of a junction to those on the output side of the junction. For sign convention, as seen from 

Figure 3.5, we consider waves propagating to the right with a positive notation and those 

propagating to the left with a negative notation. The equation below relates the input and 

output wave amplitudes as, 

   
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According to Bloch-Floquet theorem, 
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Substituting (3.30) in (3.29) yields,  

   0
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γ

 (3.31) 

Since the voltage amplitudes cannot be zero, for a nontrivial solution the determinant 

should vanish. Hence, 

   ( ) 02211
2

21122211 =+−+− AAeeAAAA dd γγ   (3.32) 

If normalized amplitudes are used, (3.32) becomes, 

   ( )
2

cosh 2211 AA
d

+
=γ  (3.33) 

The ratio of −
nc  to +

nc  is called the characteristic reflection coefficient, BΓ . 
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Figure 3.5: Wave amplitudes in a periodic structure [42] 

3.2.4 Spatial Harmonics in Periodic Arrays 

If we consider a unit cell with a lengthd , then for an infinite periodic structure, the Bloch 

modes repeat themselves at every terminal differing by a propagation factor de γ− . 

The EM fields in a periodic structure which is periodic in the z-direction with a period d  

are defined by, 
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zyxezyx
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=

=
 (3.34) 

where pE  and pH  are periodic functions given by, 

   ( ) ( )zyxndzyx pp ,,F,,F =+  (3.35) 

where ( )ppp H,EF =  

From Bloch-Floquet theorem, the field at a point 1z  is related to the field at a point dz +1  

by, 
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which captures the repetitive properties of a Bloch wave as necessitated by (3.34). 

Expanding ( )zyxp ,,F  into its infinite Fourier series [51], the field solutions can then be 

represented by, 
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∑
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=
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z
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where 






 ++=
d
n

jn
πβαγ 2

 and pnF  are the expansion coefficients that are vector 

functions of x and y given by, 

   ( )∫=
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ppn dzezyx
d 0
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F
π

 (3.38) 

Each term in the expansion (3.37) is called a spatial harmonic (or a Hartree harmonic). 

The nth harmonic has a phase constant 
d
n

n

πββ 2
+= , often referred to as Floquet’s 

mode numbers. The phase velocity pnv  and the group velocity gnv for an nth harmonic is 

given by, 

   
n

pnv
β
ω

=  (3.39) 

   
n

gn d
d

v
β
ω

=  (3.40) 

 

Some harmonics which have negative values of nβ , and hence negative phase and group 

velocities, are called backward travelling waves and the harmonics with the positive 

value of nβ  are called forward travelling waves. 

The exact solution for the one dimensional periodic problem involves finding the 

complex mode numbers nγ  and the Floquet periodic vector pF . This method is termed as 

plane wave expansion method [52] and ordinarily results in an eigenvalue equation 

whose solution is obtained by equating the Fourier series coefficients on both sides of the 

equation. Finding expansion coefficients for two and three dimensional periodic 
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structures is a mathematically rigorous task and closed-form formulas are only available 

for specific unit shapes [53]. Therefore, alternative solution techniques, such as numerical 

methods should be used for general cases. Simple structures, like the one discussed in this 

thesis can be analyzed using transmission line modeling. 

3.2.5 Surface Waves 

Conductor surfaces, dielectric slabs and grounded dielectric slabs are capable of 

conducting surface waves from DC frequency onwards to higher frequencies [28]. 

Surface waves come into existence at the interface between two different media (for 

example an interface between two different dielectrics) and are referred to as surface 

waves due to their tendency to remain tightly bound to the interface [13]. The EBG 

surfaces are in fact such boundaries and hence, we expect the existence of surface waves 

on EBG structures. 

 

When an infinite ground plane is used as reflector for an antenna, the ground plane will 

not only reflect the plane waves, but also allow the propagation of surface currents 

generated on the sheet due to the incident waves. These surface currents would result in 

only a minor reduction in the radiation efficiency. However, for all practical purposes, the 

ground plane is finite. Hence a surface wave propagating on a ground plane would 

encounter an edge (discontinuity). A current may be induced at the edge that can radiate 

and result in multipath interference or speckle [28] but some part of the surface wave may 

be reflected back (if the angle of incidence is greater than the critical angle [54] for the 

air-dielectric interface, the entire wave may be reflected back) and this may interfere with 

the incident surface wave and give rise to standing waves. Moreover, multiple 

components sharing the same ground plane may experience mutual coupling due these 

surface waves on the ground plane. 

 

Surface waves are a major cause of concern in microwave engineering. EBG surfaces 

have been used for the suppression of surface waves and improvement of radiation 

patterns in antenna applications [55], [56]. In high-speed electronic circuits this 

characteristic of EBG structures in suppression of surface currents within certain 
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frequency bands is used to suppress unwanted parallel-plate waveguide mode in power 

distribution networks [29], [30]. This mode is behind the voltage fluctuations on the 

reference voltage planes and is excited by the switching current of electronic devices 

[25]. When a large number of electronic devices switch at the same time it gives rise to 

simultaneous switching noise (SSN). SSN is dependent upon the slew rate and switching 

time, thus needs significant attention in high edge rate devices [9], [57]. More discussion 

on this topic is provided in Section 3.4. 

3.3 Effective Model 

All high impedance structures can be studied on the basis of an effective model which 

consists of a resonant LC circuit as we will discuss in the following sections. In the case 

of mushroom structures, the capacitance arises due to the fringing fields between two 

adjacent metal plates whereas the inductance arises from current propagation through the 

small loop consisting of two adjacent vias and the ground plane [28]. Analytical formulas 

for sheet inductance and capacitance and approximate center frequency of the bandgap 

are provided in [28]. The center frequency of the bandgap is given by, 

   
LCπ2

1
fc =  (3.41) 

 

In the case of planar EBG structures, the sheet or effective capacitance arises not only 

because of the fringing fields between adjacent plates, but also due to the parasitic 

capacitance that comes into play due the substrate and the proximity between the 

patterned plane and the ground plane. The sheet or effective inductance results from the 

per unit length inductance of the transmission line sections as well as any meander 

structure that may be included in the planar design  Hence, often the EBG structure is 

crudely modeled as a  resonant LC circuit. In [58] a planar EBG structure is investigated 

and the following formula is given to calculate the approximate bandwidth when the 

effective inductance and capacitance model is used. 

   
C
L

BW
ηω

ω 1

0

=
∆

=  (3.42) 
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3.4 Application of EBG Structures in Suppression of Power/Ground 

Noise 

Power delivery network (PDN) of modern electronic systems from chip level to PCBs 

and backplanes contain parallel conductor plate arrangements. The parallel-plate pair 

configures a parallel-plate waveguide which can be modeled by parallel-plate 

transmission lines. This parallel plate waveguide can be excited by the switching currents 

on the through vias used for power and ground connection. The dominant mode of the 

parallel-plate waveguide, which is TEM, results in fluctuations of the reference voltages 

that are supposed to be fixed DC values supplied throughout the system by the PDN. The 

cumulative effect of a large number of buffers switching at the same time creates 

appreciable power/ground noise or SSN. Such noise can be extremely detrimental to the 

performance of circuits as it may cause false switching and malfunctioning of devices. As 

well, when this unwanted mode is excited it propagates in the system substrate and 

reflects back and forth when reaching the edges of the board while also radiating to free 

space at the edges. Figure 3.6 depicts the generation of SSN in PCBs, propagation and 

suppression in an EBG structure (a Sievenpiper mushroom structure) and radiation from 

the edges of the PCBs [10]. 

 

       
 

   Figure 3.6 Generation of Switching noise and its suppression using EBG structures 
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In the following subsections, we discuss various methods that have been tried to mitigate 

the adverse effects of SSN, one of the most prevalent problems faced today by integrated 

circuits (ICs) operating at higher frequencies with lower power supply voltages.  

3.4.1 Use of Discrete Decoupling Capacitors 

One of the most popular noise suppression methods involves the use of decoupling 

capacitors [59]-[65]. Decoupling capacitors provide a shorting path for the SSN. The 

capacitor has connecting leads for attachment to the PDN. The inductance associated 

with the lead of the decoupling capacitors creates a self resonant frequency, thereby 

decreasing the effectiveness of the capacitor dramatically beyond this frequency [66]. 

The effectiveness of the capacitor can be increased by various means which include 

placing more decoupling capacitors closer to the chip [67], connecting the decoupling 

capacitors directly to the power and ground planes through vias rather than traces since 

the trace loop adds to the inductance. There are approaches to optimize the values and 

location of the decoupling capacitor [29], [66], which include placing the decoupling 

capacitors closer to the device power/ground pins [68]. 

However, the effectiveness of decoupling capacitors is basically in the low operating 

frequency regions (in the sub 600 MHz range). 

3.4.2 Use of Embedded Capacitors 

Another method involves the use of embedded capacitors to suppress power ground noise 

[69], [70]. This method has been found to very effective in the suppression of ground 

bounce noise up to 5GHz [71], [72]. The effectiveness of this method depends heavily 

upon the dielectric constant of the substrate and hence places a bottleneck on the 

performance of embedded capacitors. Very high dielectric constant substrates have been 

used to increase the capacitance between the layers [73] but the problem with such high 

permittivity dielectrics is that they are not as cost effective as discrete decoupling 

capacitors. 
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3.4.3 Use of Shorting Vias and Islands 

This method uses shorting vias and virtual island- like patches to block SSN from 

reaching sensitive devices. The shorting vias provide a low impedance path to the 

returning current and the islands stop the propagation of PPW noises through the 

power/ground pair in the PCB’s. In this method too, noise suppression is achievable only 

over a very narrow frequency range [74]. 

3.5 Other Applications of EBG Structures 

As stated earlier, one of the main applications of EBG structures is as a reflective HIS. 

HISs are used in antenna applications and also in miniaturization of circuit components 

like printed inductors [75]. 

 

In these applications, the HISs behave as an artificial magnetic conductor (AMC). 

Whenever an antenna is placed in close proximity to an AMC surface, a part of the 

antenna signal is radiated and part of it is directed towards the AMC surface and gets 

reflected. When the antenna is placed close to a conductor reflector, it can technically be 

shorted as the reflection from the ground plane would interfere destructively with the 

radiated wave and result in a deterioration of the radiation pattern and cancellation of it in 

the extreme case. An AMC, surface on the other hand results in no phase change in the 

reflected wave and hence, this reflected wave interferes constructively with the radiated 

wave from the antenna to give an improved radiation pattern. 

 

High impedance surfaces acting as AMC conductors have an additional advantage too. In 

addition to providing a scenario for constructive interference, these surfaces have 

forbidden bands associated with them. An important property of operation of these 

surfaces within the forbidden band is that they stop wave propagation within these bands. 

Once this occurs, the surface waves are eliminated within the forbidden band of operation 

or are almost negligible. Hence, in the absence of surface waves, the radiation pattern is 

further ameliorated [28]. This region of the bandgap where the reflected wave provides 

maximum constructive interference with the incident wave can be a subset of the 
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bandgap itself [76]. As discussed in [76], when a reflected signal is evaluated at a 

distance d  from a reflective plane, the reflection phase introduced due to a regular and 

non patterned continuous metal ground plane is given by, 

   




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 •−= 360180
λ

φ d
 (degrees) (3.43) 

When the continuous metal plane is replaced by an EBG plane, the reflection phase for 

the reflected wave is given by, 
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where SCATTEREDE  is the scattered E field data from an incident wave ŝ  and S  is surface 

over which the phase needs to be evaluated.  

3.6 Conclusion 

In this chapter, an overview of EBG structures and the various geometries associated with 

them are presented. The concept of surface waves and the various modes that come into 

existence in periodic structures are discussed. The correlation of these modes with 

Maxwell’s equations and the methodology behind capturing the modal characteristics are 

introduced. The concept of SSN and methods, particularly the use of EBG structures, to 

mitigate SSN are also discussed. The chapter also deals with other applications of EBG 

structures such as their use as AMC surfaces for antenna applications. 
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CHAPTER 4 Modeling using Transmission 

Line Circuit 

Most EBG structures used in microwave filtering applications consist of two conductors 

in which one is the reference conductor also acting as a shield. In PDNs and multilayer 

circuits, we generally encounter at least three conductor layers. The focus of this thesis is 

on the two metal layer structures as they can be modeled using conventional transmission 

line circuits. These structures are mainly composed of microstrip line sections. In order to 

better understand the characteristics of EBG structures realized using microstrip lines, we 

need to analyse the operation of a microstrip line. In this chapter, a review of a microstrip 

line is presented followed by the modeling of EBG structures. Then, a stepped impedance 

EBG structure is analyzed.  

4.1 Analysis of a Single Microstrip Line 

Microstrip lines are widely used as interconnects of choice due to their ease of 

fabrication. A microstrip line consists of a conductor placed over a grounded dielectric 

substrate. The important geometrical parameters in the design of the microstrip line are 

its width ( )W , length ( )L , distance from the ground plane ( )b  and the relative permittivity 

of the dielectric medium ( )rε . The fundamental characteristics of the microstrip line, 0Z  

and β , depend upon the width of the microstrip line and the relative permittivity of the 

substrate. This can observed from the expressions discussed later under this section. 

Since the electromagnetic wave supported by a microstrip line is exposed to two different 

dielectric media, the microstrip line supports a quasi-TEM wave. 

 

 

 
 

Figure 4.1: Cross section of a microstrip line configuration 
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Figure 4.2: Important parameters and port definition for the analysis of a microstrip line 

 

Based on [13], [77] references, the effective dielectric constant of a microstrip line is 

given by 
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Same references provide the following formulas for the characteristic impedance of the 

microstrip line 
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To verify the closed-form formulas, the microstrip line is analyzed using ADS LineCalc. 

The dimensions of the simulated microstrip line being analyzed are provided in Table 

4.1. FR4 is the dielectric substrate. For these design parameters, 1>
b
W

, and Equations 

(4.1) and (4.2) yield the DC effective dielectric constant of, 3426.30, =effε F/m, and a 

characteristic impedance, 89.480 =Z Ω . 

The frequency dependent characteristic impedance of a microstrip line as provided in 

[78] is given by 
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where Feff ,ε  is the frequency dependent effective dielectric constant. 

 

   Table 4.1: Microstrip line parameters 

Parameter Value Units 

Width of the Microstrip line W  10 Mil 

Thickness of the Microstrip line 
t  

1.3 Mil 

Distance from the ground plane 
b  

5 Mil 

Permittivity of the medium rε  4.4 None 

Length of the Mcrostrip line L  100 Mil 

�

  

Modifying (4.3) in order to calculate Feff ,ε  yields 
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Choosing only the addition in the numerator of the RHS of Equation (4.4), the frequency 

dependent Feff ,ε  can be calculated. 

 

The most accurate way to find characteristic impedance and permittivity of a microstrip 

line is by conducting full-wave simulations which provide these parameters as functions 

of frequency. Hence, the microstrip described in Table 4.1 was simulated using two main 
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microwave circuit simulators; Ansoft’s High Frequency Structure Simulator (HFSS) and 

Agilent’s Advanced Design Systems (ADS). ADS is a 2.5-D solver based on the method 

of moments (MoM). By 2.5-D it is meant that only 2D planar layouts and particular 

vertical conductor structures like vias can be simulated. This allows for stacking up of 

one layer above another but not a structure with 3D complexities. ADS is widely used to 

analyze planar circuits like microstrip- or stripline-based geometries. HFSS is a 3D field 

solver operating based on the finite element method (FEM) for the numerical analysis. It 

is a robust and accurate software that enables the analysis of complex 3D geometries. 

FR4 was used as the dielectric substrate.  

 

One of the most important steps in the design process using HFSS is the definition of the 

ports. A wave port is commonly chosen for the excitation. HFSS generates a solution by 

exciting each wave port individually. Each mode incident on a port contains one Watt of 

time-averaged power. Care has to be taken in defining the ports as wrong field excitation 

at the port can lead to incorrect results. In the conducted simulations, the height of the 

port is chosen to be approximately ten times the height of the substrate and the width was 

chosen to be approximately fifty percent of the dielectric width.  This definition is in 

accordance with the recommended guidelines of the simulator. Another important feature 

is the definition of the radiation boundary. Since most of the designs discussed in this 

thesis are open boundary problems and hence radiation boundaries are used to emulate a 

wave radiating infinitely far into space. It does so by essentially absorbing the wave at the 

radiation boundary thereby distending the boundary to theoretical infinity. 

 

Figure 4.3(a) shows the layout of a microstrip line in HFSS. Figure 4.3(b) shows the field 

distribution when a waveport is used for excitation. It clearly depicts the quasi-TEM 

nature of the wave supported by the microstrip line. Figure 4.4 (a) depicts the frequency 

dependent effective relative permittivity and Figure 4.4 (b) shows the plot of the 

characteristic impedance of the microstrip line and its variation with frequency. Three 

methods are used to derive the results of Figure 4.4; HFSS, ADS Momentum and the web 

calculator from [77]. 
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Figure 4.5 shows the return loss and insertion loss of the studied microstrip line found 

from three methods, HFSS, ADS Momentum, ADS Schematic window simulations 

which uses library models for the transmission lines as opposed to full-wave simulations.  

It is observed at low frequencies, the microstrip line transmits almost all the power from 

the source to the load. This behaviour changes with the increase in frequency; the power 

at the load end is always lesser than the power at the source end. This is attributed to the 

radiation, conductor and dielectric losses. 

  

 
 

Figure 4.3: (a) Simulation setup for the analysis of a microstrip line, and (b) field 

distribution corresponding to excitation of a microstrip line 

 

 

(a)                               (b) 

Figure 4.4: Variation of (a) effective dielectric constant, and (b) characteristic impedance 

with frequency. The WebCalculator results are from [77] 
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Figure 4.5: (a) Return loss, and (b) insertion loss of the studied microstrip line 

 

Radiated power or electromagnetic interference at high frequencies can be a serious 

problem as it can affect the performance of the circuit as well as those of the adjacent 

circuits. This has been discussed in detail in [79].  

4.2 Analysis of 1D and 2D EBG Structures Made with Two Conductor 

Transmission Line Circuits  

As indicated in the introduction of this chapter, many of the EBG structures used in 

microwave and electronic engineering are designed by using transmission line circuits. 

The focus of study in this thesis is on the structures containing two conductor layers. In 

this chapter mainly the stepped impedance type EBG structures are considered for 

modeling and analysis using transmission line network theory and Floquet’s Theorem. 

Using these analytical procedures, the characteristic equation or dispersion equation can 

be obtained which provides the information about the excited modes and their 

propagation constants. 
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A good understanding can be obtained by first analysing a 1D EBG structure. The two 

dimensional periodic structure can then be treated as a deduction of the one dimensional 

geometry. 

4.2.1 Derivation of Dispersion Equation: 1D Stepped Impedance Structure 

Figure 4.6 depicts a one dimensional periodic structure with the period. When this 

structure is based on transmission line structures, the voltage and current relationships 

according to Floquet’s Theorem are given by 

 

   d
nn eVV γ−

+ =1  (4.5) 

   d
nn eII γ−

+ =1  (4.6) 

To showcase the derivation of the dispersion equation of a one dimensional periodic 

structure, a 1D stepped impedance filter also known as hlZZ (Z-low Z-high) filter is 

considered.  The unit cell has been divided into three sections (refer to Figure 4.7). Then, 

the transfer matrix of each section is cascaded with the transfer matrix of the subsequent 

section (refer Figure 4.8) to obtain a single equivalent transfer matrix for the unit cell. 

 
Figure 4.6: One dimensional representation of a periodic structure 
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Figure 4.7: Unit Cell of a 1D stepped impedance filter 
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Figure 4.8: Cascading of ABCD matrices of sections 

 

From the analysis of microstrip lines, we know that a narrow section has higher 

characteristic impedance than a wider section. Hence the parameters of the transmission 

line-based unit cell are as follows, 

Impedance of the broad section =  LZ  Ω  

Impedance of the narrow section =  HZ  Ω  

Admittance of the broad section = 
L

L Z
Y

1
=  1−Ω   

Admittance of the narrow section = 
H

H Z
Y

1
= 1−Ω   

Length of the sections 1 and 3 (the two narrow sections on either side) = 1d  

Length of the section 2 (the broad section in the middle) = 2d  

Relative permeability of the medium = rµ  

Relative permittivity of the medium = rε  

Permittivity of the medium 0.εεε r=     

Permeability of the medium 0.µµµ r=     

Where 0ε  is the permittivity of free space = 121085.8 −×  24-1-3 Askgm  

 0µ  is the permeability of free space = -7104 ×π  -2N.A  

Intrinsic impedance of the medium εµη .=    

Wave Number ηπ f..2k =    

  Where ‘f’ is the operational frequency 

Electrical length of the narrow sections = 11 k d×=θ    

Electrical length of the broad section = 22 k d×=θ   

The transfer or ABCD matrices of the narrow and wide sections are 
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where X and Y denote the transfer matrices of the high impedance and low impedance 

sections, respectively. 

The ABCD matrix of the unit cell is, therefore 
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





DC

BA
= X*Y*X (4.9) 

The Voltage and Current at the beginning and the end of a unit cell are defined using 

matrices, 
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Using Floquet’s Theorem: 
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Hence the (4.10) can be rewritten as, 
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Rearranging the above equation yields, 
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   ( )( ) 0=−−−⇒ BCeDeA dd γγ   

   ( ) 02 =+−+−⇒ dd eDAeBCAD γγ      (4.15) 

For a reciprocal network 

   1=−⇒ BCAD  (4.16) 

Therefore (4.15) becomes, 

   ( ) 01 2 =+−+⇒ dd eDAe γγ  

   ( )DAee dd +=−⇒ − γγ  
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   ( )dreal γα =⇒ d  (4.18) 

   ( )dimaginary γβ =⇒ d  (4.19) 

This analytical derivation is clearly explained in [13] 

4.2.2 Derivation of Dispersion Equation: 2D Stepped Impedance Structure 

The transmission line model (TLM) developed in the one dimensional problem above can 

be extended to the two dimensional geometry as well.  The two dimensional 

implementation of the transmission line model is discussed in detail in [80]-[84] . These 

ideas have also been extended to multilayered and multiconductor geometries [35], [85]-

[87]. In references [36], [81], [88], these models are combined with Bloch-Floquet 

Theorem and derivation of 2D dispersion equation is presented [88]. 

To showcase these derivations again a sample 2D EBG structure composed of dissimilar 

transmission line sections shown in Figure 4.9 is analyzed. The length of the unit cell is 

a  and the length of the broad section of microstrip line is 2d . The length of the narrow 

transmission line sections is thus, 






 −
=

2
2

1

da
d . 

 

The model consists of transmission line sections in two perpendicular directions as shown 

by overlapping circuit on the 2D stepped impedance structure depicted in Figure 4.9 . 

Each transmission line section is represented by its corresponding Transfer matrix as 

follows 

   
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where dβ  is the phase constant of the transmission line section. This matrix pertains to 

the narrow transmission line segments, thus it is referred to as high impedance TL section 

represented by the subscript h  in the equation. 

   

 

lZ

lZ

lZ lZ

hZ

hZ

hZ hZ xx’

y

y’

xI

xV
yI y

V

a
x

xeI β−

a
x

xeV β−
a

y
y

e
I

β
−

a
y

y
e

V
β

−

[ ]ixT

[ ]oxT

[
]i yT

[
]

o yT

a

d2

d1

 
 

Figure 4.9: A unit cell of a 2D EBG structure and its equivalent transmission line network 

 

Similarly, the transfer matrix of the wider section is represented by 
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where dβ  is the phase constant of the transmission line section and is considered 

identical for both the transmission line sections as the substrate of all the transmission 

line sections is the same. The overall transmission matrix of each section composed of 

the high and low impedance transmission lines is found from  
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where the superscript i  represents the input segment, o  represents the output segment in 

case different transmission lines are used in the input and output sections as labelled in 

Figure 4.9. Note that there are two directions of propagation, x and y, which follow a 

similar derivation process to obtain the transfer matrices. Thus index k is included in the 

formulations where yxk ,=  represents the direction along the axes under consideration. 

The transmission line model constructed based on this analysis for structure of Figure 4.9 

is depicted in Figure 4.10 
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Figure 4.10: Four port network representation of a unit cell of a two dimensional periodic 

structure 

     

An infinite periodic structure can be viewed as a repetitive array of one such unit cell in x 

and y directions. By applying the Bloch-Floquet theorem in both directions and thereby 
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relating the voltages and current at one port to the voltages and current at other port along 

the same axis, similar to what presented for the 1D structure, dispersion equation can be 

found. Note: here the Floquet’s phase progression along the x and y directions is 

determined by axβ and bxβ  factors and denoted by axe β−  and aye β−  in the following 

equations. In addition to this, Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current 

Law (KCL) are applied to establish the voltage and current relationships at the 

intersection of the x and y directed circuits. The following equations are the result of 

these calculations, 
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where i
k

i
k

i
k

i
k

i
k CBDA −=∆ , yxk ,=  and xβ , yβ  represent the phase constants along x and 

y axes, respectively. 

Eliminating xI , yI  from Equations (4.32) to (4.35) we obtain the simplified system of 

linear homogenous matrix equation  
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where o
k

o
k

o
k

io
k

o
k CBDA −=∆ , yxk ,= . These formulations are fully derived and explained 

in [88]. 

From Equation (4.28) it can be observed that the solution to the matrix equation is 

possible if either the determinant of the voltage matrix is zero, or if the determinant of the 
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coefficient G matrix is zero. For a non-trivial solution we conclude that ( ) 0det =G . 

Solving for this condition, we obtain the following dispersion equation 
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where 21 22 dda += . Losses are ignored in this analysis; hence, the attenuation constant 

is neglected. The general dispersion equation including losses is: 
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where xxx jβαγ += , yyy jβαγ +=  represent the propagation constants along x and y 

axes, respectively. 

4.3 Dispersion Diagrams  

The dispersion diagram, also known as β−k  diagram, is obtained from dispersion 

equation. For a 1D periodic structure, this diagram is simply a β−k  diagram and β  is 

the propagation constant along the direction of repetition, k  is the wavenumber in the 

medium for propagation of light. When the structure is periodic along 2 or 3 directions 

plotting such a β−k diagram is complicated. Hence, Brillouin Diagrams are used which 

were originally introduced by Leon Brillouin. Based on the directions of propagation, and 

propagation constants along those directions and lattice of periodic structures, Brillouin 

identified zones to cluster directions of propagations. These zones are studied in detail in 

[89]. The 2D periodic structures studied in this thesis are symmetric with respect to x and 

y axes and have a square lattice structure. According to Brillouin, all possible directions 

of propagation in x and y directions can be combined in an irreducible Brillouin zone 

[90]. The irreducible zone for the studied structures is a triangular wedge with ( )th8/1  the 

area of a square, i.e. the full Brillouin zone. The method of selection of the triangular 

irreducible Brillouin zone from the deducted square  reciprocal lattice has been discussed 

in detail in [90]. Figure 4.11 shows a diagram of the irreducible Brillouin zone. This 
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figure shows all the possible values of phase constants along x and y directions.  For 

plotting a 2D dispersion equation such as Equation (4.31), the possible values for xβ  and 

yβ  are found from the limits set by the irreducible Brillouin zone.  
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Figure 4.11: Irreducible Brillouin zone of an isotropic square reciprocal lattice with 

lattice constant d 

 

Plotting the 2D dispersion diagram involves three major steps [91] 

• The phase constant along the perpendicular direction y is fixed at 0 degrees. 

Correspondingly, the phase constant along x direction, the base of the Brillouin 

triangle, called Χ−Γ  direction, is varied from 0 to 180 degrees. Then, from 

numerical simulations or calculations of the dispersion equation the first set of 

Eigen mode frequencies are found. This generates the frequency dataset for the 

wave propagation in the  Χ−Γ  segment of the Brillouin triangle. 

• The phase constant along the Χ−Γ  segment of the Brillouin triangle, x direction, 

is then fixed at 180 degrees and the phase constant along the Μ−Χ  segment, y 
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direction, is varied from 0 to 180 degrees. Then, from simulations or calculation 

of dispersion equation the second set of Eigen mode frequencies are found 

• The phase constant along both the segments, Χ−Γ  and Μ−Χ , are varied in 

synchronization with each other from 180 to 0 degrees. Hence, the third set of 

eigenmode frequencies are found for the  Γ−Μ  segment of the Brillouin triangle. 

 

Generally dispersion diagrams also contain the light line which indicates the propagation 

behaviour of light in Χ−Γ  and Γ−Μ  directions. 

The dispersion diagram can be obtained from the numerical codes with eigen value 

solvers. The dispersion equations provided in this thesis are found from transmission line 

models thus predict the TM modes and lose accuracy as the frequency goes up. The 

numerical methods are more accurate as they provide eigen values for all possible modes, 

TE and TM. Ansoft HFSS or CST Microwave Studio Suite are the only popular CAD 

tools with such capability. CST Studio Suite seems to be more preferred over HFSS for 

closed structures as it is comparatively faster. However, the drawback associated with 

CST Microwave Studio Suite is its inability to simulate open structures which are very 

essential for antenna applications. Ansoft HFSS can predict the dispersion diagram for 

both open and closed structures, although it can be a bit tedious and requires a clear 

insight into the method of obtaining the dispersion diagram. This enables the user to 

optimize the results and obtain accurate results. A  detailed approach for generating  

dispersion diagrams with Ansoft HFSS is discussed in [76] . Once the dispersion diagram 

is obtained, the filtering characteristics are predicted from the bandgap regions between 

the β−k curves of various modes for all the phase combinations according to the 

irreducible Brillouin zone. 

As indicated earlier in 2D dispersion diagrams the light lines are plotted in regions. They 

are very important in the sense that they are the boundaries of slow-wave (surface wave) 

region. The slope of these light lines marks the propagation velocity. For the waves 

bound by the substrate (surface waves), the speed is less than that of a light propagating 

in a homogeneous medium. Hence, in the 2D transmission line based structures studied in 

this thesis, the waves are bound to the transmission line. 
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4.4 Planar EBG Structures Based on Stepped Impedance Design 

Planar EBG structures are via-less structures. They have the distinct advantage of the 

ease of fabrication over structures containing via-holes (Textured EBG structures). Planar 

EBG structures essentially consist of a patterned power/ground plane backed by a layer 

of dielectric substrate that may be grounded. A surface wave can easily propagate 

through such structures owing to their behaviour as a dielectric slab waveguide [92]. 

Planar EBG structures have been investigated in [1], [3], [93]-[95] .  

 

In the following sections, the studied 1D and 2D EBG structures which are based on a 

stepped impedance structure are described and their design parameters are presented. 

Dispersion diagram of these structures are generated following the procedure explained 

earlier. The studied geometries has DC connectivity and can be considered to have a low 

pass configuration, hence, a passband exists at low frequencies. 

4.4.1 Studied 1D Stepped Impedance Structure 

A 1D stepped impedance filter is designed based on the lookup tables given in [13]. It 

can be realized by cascading alternate high and low impedance sections. This in turn can 

be achieved by either introducing a variation in the widths of the sections or a variation in 

the effective dielectric constant [96] or a combination of both. In the present studied case, 

a stepped impedance filter uses wide microstrip lines to approximate shunt capacitors and 

narrow lines to approximate series inductors in order to provide a lowpass frequency 

response. Two such stepped impedance filter designs are investigated in [36].  In this 

thesis Design A is considered for evaluations. Design A has the following parameters: 

10W1 =  mm, 5.0W2 =  mm and 6g =  mm. Rogers RO3010 with a thickness h of 1.27 

mm is used as the substrate of choice with thickness t of the copper cladding being 0.017 

mm. Hence, the total length of the edges of the unit cell a  is 16 mm. Figure 4.12 shows 

the layout of Design A with its equivalent transmission line circuit. 
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Figure 4.12: (a) Unit cell of a one dimensional stepped impedance filter, (b)Design 

parameters, and (c) The equivalent transmission line model. 

 

Equation (4.17) is the dispersion equation for this planar 1D structure. Based on this, the 

dispersion diagram for the design is generated and compared with its corresponding 

dispersion diagram obtained using a full wave solver. 

 

Since the structure is periodic in one dimension, propagation vector assumes the form 

x̂kk x= . Phase is varied along x-axis, Χ−Γ  direction, from 0 to 180 degrees and the 

corresponding eigenfrequencies are obtained. Figure 4.13 (a) and Figure 4.13 (b) depict 

the dispersion diagrams obtained using the code developed based on calculation of 

Equation (4.17) (let us refer to this as transmission line modeling method or TLM for 

brevity) and by using a full wave solver, respectively. 

 

From the two figures it can be observed that the dispersion diagram obtained from the 

full wave solver predicts a higher number of modes. Plotting the light line divides this 

diagram into two distinct regions known as the fast wave region (lying above the light 

line) and the slow wave region (lying below the light line). The portion of the 

eigenmodes lying above the light line represents the portion of the eigenmodes that are 

not bound to the surface and are radiative in nature. These waves are known as leaky 
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waves [28]. The modes that lie above the light line can radiate energy away by coupling 

to the external plane waves (when the EBG surface is used as reflector in antenna 

applications). They are radiatively unstable and have an imaginary frequency component. 

Below the light line are the waves that are bound to the substrate and closer to what is 

predicted by the transmission line modeling method.  

4.4.2 Predicting the Insertion Loss Information from the Dispersion 

Equation 

By modifying the TLM based code, the S21-parameter characteristic of a finite size 

structure composed of n unit cells can be predicted.  This can be achieved by the 

following relation 

 

   ( )( )nd  rfeS ˆ
21 log20 ⋅−= α  (4.33) 

 

where n  is the number of unit cells included between the two measurement ports, ( )fα  is 

the frequency dependent attenuation constant and d  is the lattice constant and 21S  is 

expressed in decibel. The attenuation constant for the different frequency points is infact 

obtained from the complex propagation constant found from Equation (4.17). Basically it 

is β  in the stopband. 

 

To obtain other scattering parameters one can obtain the equivalent transfer matrix of the 

n  unit cells by cascading the transfer matrices of all the cells between the ports 

converting them to scattering parameter matrix.  

 

The insertion loss plots obtained by different methodologies, from full-wave HFSS, ADS 

Momentum and TLM method are depicted in Figure 4.13 (c). It can be observed that a 

very good match is found between the results obtained using the TLM based code and the 

full wave analysis.  
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Table 4.2 presents the numerical values of the stopband predicted from the results shown 

in Figure 4.13 (a) and (b). 

 

   (a) 

 

(b) 
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(c) 

Figure 4.13: (a) Dispersion diagram from TLM based code, (b) Dispersion diagram from 

full wave solver (c) Insertion loss for a finite structure consisting of three unit cells 

  

Table 4.2: Comparison between the stopbands found from TLM code and full wave 

solver (HFSS) results for 1D stepped impedance based EBG design 

 

EBG 
geometry 

 

Bandgap 
from TLM 
based code  

( )codeBW  

(GHz) 

Bandgap 
from full 
wave 
solver 
(HFSS)  

( ) wavefullBW  

(GHz) 

Time to 
simulate 
the results 
using TLM 
based code 

Time to 
simulate 
the results 
using 
HFSS 

Percentage 
match in 
bandgap 

 

100
BW

BW

code

 wavefull ×







 

 

Design A 

 

1.49~4.149 

 

 

1.662~3.969 

 

 

107 seconds 

 

1 hour and 52 
minutes 

 

86.8 

4.4.3  Studied 2D Stepped Impedance Structure 

Having analysed the one dimensional stepped impedance filter, the same design 

specifications are extended to a two dimensional geometry. In fact the studied layout is 
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the structure shown in Figure 4.9. The analysis of the structure follows the same pattern 

as discussed for a one dimensional stepped impedance filter with the sectioning of the 

unit cell being the only exception. The one dimensional structure consisted of 3 sections 

for the analysis whereas the two dimensional structure, owing to its symmetry about the 

x- and y-axes, is split into four sections. The same method could have been applied to the 

one dimensional structure too, considering the unit cell is symmetrical about a transverse 

axis (in our case the y-axis) passing through the center of the unit cell. However, for ease 

of calculation, a three section method was followed. Figure 4.14  shows the cross section 

of a transmission line model for the unit cell of this 2D structure along one direction to 

show the segmentation used for the analysis. The four port network representation of the 

unit cell is shown in Figure 4.10. 

 

Employing the methodology discussed in section 4.2.2, the dispersion equation for the 

planar 2D EBG structure shown in Figure 4.9 is given by 
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 (4.34) 

 

where lZ  and hZ  are the characteristic impedances of the broad and narrow transmission 

line sections, respectively. The effective dielectric constant and characteristic impedance 

of a microstrip line is given by (4.1) and (4.2), respectively.   

The stopband obtained by this EBG structure can be considered to be omni-directional as 

it occurs in all azimuthal directions of propagation. 

 

Figure 4.15 and Figure 4.16 present a comparison between the dispersion diagrams 

obtained using the TLM method and a full wave solver (HFSS), respectively. Table 

presents the numerical values of the bandgap predicted from the results shown in Figure 

4.15 and Figure 4.16 
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Figure 4.14: Cross section of the TL model of the 2D stepped impedance EBG structure 

 

 
 Figure 4.15: Dispersion diagram of the 2D stepped impedance structure based on 

Design A predicted by the TLM code   
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Figure 4.16: Dispersion diagram of the 2D stepped impedance structure based on Design 

A obtained from HFSS full-wave solver 

4.4.4 Insertion Loss Simulation and Measurement 

The insertion loss information is obtained from the scattering parameter S21. In order to 

extract the values of S21 using the TLM method, the same approach that has been applied 

to the 1D EBG design is employed for the 2D EBG design. This involves generating the 

equivalent transfer matrix for n unit cells between two ports on the EBG structure and 

then carrying out the conversion from the transfer matrix to the scattering parameter 

matrix. Once the scattering parameter matrix is obtained, the S21 values are easily 

extracted from it. 

 

Another method to obtain the scattering parameters is by conducting a measurement on 

the fabricated structure. The EBG structure used for insertion loss simulation and 
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measurement, is shown in Figure 4.17. The figure also denotes the location of the vertical 

SMA connectors used for excitation. Anritsu’s 37397D Vector Network Analyzer (VNA) 

(Lightning, 40MHz to 65 GHz) is used for measuring the scattering parameters and from 

the recorded data, the S21 information is extracted and plotted. 

 

The insertion loss plot in Figure 4.18 depicts the results obtained from using different 

methods, including full wave simulation results, along with the S21 results of a parallel-

plate structure which is used as a reference. Port 1 is located at ( )mm 72,mm 40  and Port 

2 is located at ( )mm 72,mm 120 . 

 

Port 1

Port 2

 
 

Figure 4.17: Illustration of the EBG structure constituted of several cascaded unit cells 

along with the port definitions for the calculation of the Insertion Loss 
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Figure 4.18: Magnitude of S21 for finite size stepped impedance structure for the 

arrangement shown in Figure 4.17 and calculated between 28 segments along x-direction 

  

Table 4.3: Comparison between the TLM code and full wave solver results 

 

EBG 
geometry 

Bandgap 
from TLM 
based code  

( )codeBW  

(GHz) 

 

Bandgap 
from full 
wave 
solver 
HFSS 

( ) wavefullBW   

(GHz) 

Time to 
simulate 
the results 
using TLM 
based code 

Time to 
simulate 
the results 
using 
HFSS 

Percentage 
match in 
bandgap 

100
BW

BW

code

 wavefull ×








 

Design A 1.49~4.151 

 

2.368~3.836 

 

115 seconds 3 hours and 36 
minutes 

55.1672 
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4.5 Conclusion 

In this chapter, we analysed the behaviour of a microstrip line as this is the TL of our 

choice for realising the various EBG geometries discussed in this thesis. We also 

introduced the concept of using transmission line model (TLM) for the analysis of 1D 

and 2D two conductor EBG structures. The methodology behind the analysis was 

discussed in detail. We discussed the method of extraction of the modal characteristics of 

the EBG structures discussed in this thesis within a defined irreducible Brillouin zone. A 

stepped impedance based EBG structure was investigated in order to validate the results 

obtained using the TLM based code and verify its accuracy with respect to results 

obtained from full wave analysis. 

The only drawback with the TL modeling is that only TM (Transverse Magnetic) modes 

of propagation are captured but not the TE (Transverse Electric) modes. 
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CHAPTER 5          Design and Modeling of 

Meander lines 

As discussed in Section 3.3 of Chapter 3, an EBG structure can be approximated by an 

effective surface impedance and the centre frequency can be estimated by LC  and the 

width of the bandgap is related to CL . Hence, it can be inferred that in order to 

achieve a bandgap at lower frequencies with a wide bandwidth, methods for increasing 

the effective inductance of the unit cell should be employed. In the planar EBG structures 

reported in [3], [38], [94], [95], a meander line is used to connect microstrip line sections, 

instead of the high impedance transmission line section shown in Figure 4.9 of Chapter 4. 

The meander line increases the inductance of the unit cell which in turn reduces the lower 

edge of the bandgap. Application of this method results in the achievement of ultra-

wideband noise suppression as reported in [3]. 

 

In this chapter we review the methodology behind obtaining the lumped component 

model of a meander line so that it may be effectively employed in a TLM of an EBG 

structure consisting of metal patches connected by meander lines. 

5.1 Inductance of the Meander Line 

The layout of a typical meander line is shown in Figure 5.1. To extract the equivalent 

inductance of a meander line, its layout is decomposed into straight conductive segments. 

The total inductance is found from the sum of the self inductances of all the segments and 

the mutual inductances between all combinations of the straight segments.  

5.1.1 Calculation of Self Inductance 

 The self inductance of a straight conductor with a rectangular cross section as shown in 

Figure 5.2 is given in [97], [98] by the following formula 
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Figure 5.1: Various segments of a meander line for the calculation inductance 

 

 
 

Figure 5.2:  A conducting segment of a meander line 

 

where L is the inductance in Hµ , l is the length, w is the width and t the thickness of the 

conducting segment in centimeters. The above equation is valid for materials with a 

magnetic permeability equal to unity and the inductance is assumed to be frequency 

independent. The closed form equation provides a cumulative self inductance due to both, 

the internal and the partial external inductance of an element. 

 

As an example let us consider the meander inductor geometry shown in Figure 5.1 

 

 

 
 

Figure 5.3: Middle segments used for the calculation of inductances 
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The total self inductance of all the segments is given by 

   dhbaselftot 1)L(NNL2L2LL ++++=  (5.2) 

where  dhbaL ,,,  are self inductances of segments with lengths dhbal ,,,=   respectively. 

  N- Number of segments of greatest length h (which for the geometry shown in 

Figure 5.3  and Figure 5.3 is 6)       

5.1.2 Calculation of Mutual Inductance 

The general equation for the mutual inductance of the segments with equal length l and 

separated by a distance r is given by  

 

 

Figure 5.4: Mutual inductance of two equal parallel straight filaments 
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Mutual inductance between unequal filaments intersecting at a point at an angle θ  is 

given by [97] 
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Figure 5.5: Two intersecting unequal filaments inclined at an angle θ  [97] 
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Mutual inductance between two unequal filaments in the same plane not meeting at any 

point is given by [97] 

 

 

Figure 5.6: Two non-intersecting unequal filaments inclined at an angle θ  [97] 
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where  
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From (5.4) and (5.5), we conclude that mutually perpendicular segments exhibit no 

mutual inductance. Figure 5.1 shows the meander line geometry in addition to the various 

parameters that were used for the calculation of inductance. 

Mutual inductance of other segments can be expressed using the above expressions. In 

[98] various scenarios are discussed. The expressions for calculating the mutual 

inductance in each case are presented herein. 
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Figure 5.7:Two parallel segments displaced by a finite distance 

 

For the arrangement shown in Figure 5.7, the mutual inductance between the two 

segments is given by 

 [ ]r)s,(lMr)s,(lMr)(s,Mr)s,l(lM0.5s)r,,l,(lM 2c1cc21c21a1 +−+−+++⋅=  (5.9) 

For the arrangement shown in Figure 5.8, the mutual inductance between the two 

segments is given by 

   [ ]r),l(lMr),(lMr),(lM0.5r),l,(lM 21c2c1c21a2 −−+⋅=  (5.10) 

 

 
 

Figure 5.8: Two unequal overlapping parallel segments with one end along the same 

perpendicular 

   

 

 
Figure 5.9: Two non-overlapping parallel segments with one end along the same 

perpendicular 
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For the arrangement shown in Figure 5.9, the mutual inductance between the two 

segments is given by 

   [ ]r),(lMr),(lMr),l(lM0.5r),l,(lM 2c1c21c21a3 −−+⋅=  (5.11) 

   

 

 
Figure 5.10: Two non-overlapping segments sharing the same axial plane and separated 

by a finite distance  

For the arrangement shown in Figure 5.10, the mutual inductance between the two 

segments is given by 

   
[
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Equations (5.9)-(5.12) provide the four basic expressions that are essential for the 

calculation of the various cases of mutual inductance in a meander line.  

The following text provides more specific examples of these calculations for a meander 

line and their contribution to the ultimate equivalent inductance. 

�������

Mutual inductance between two opposite short sections joining the longer segments (see 

Figure 5.11) 
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N is even 

 

 

N is odd 

 

Figure 5.11:  Two scenarios for Case I 
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For the case when i=1, the right hand side (RHS) of expression (6.13) becomes 

   h,0)d,(d,M2N a1⋅  (5.15) 

It can also be observed that, 

   h)d,(d,Mh,0)d,(d,M a3a1 →  (5.16) 

��������

Mutual inductance between two adjacent short sections joining the longer segments (see 

Figure 5.12) 
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N is even 

 

 

N is odd 

 

Figure 5.12: Two scenarios for Case II 

 

���������

Mutual inductance between the two end sections (refer Figure 5.13) 

   1)d)(Na,(a,M2M b3 +⋅=  (5.19) 

   

 

 
 

Figure 5.13:  Segment alignment for Case III 
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��������

Mutual inductance between the end sections and the short sections joining the longer 

segments (see Figure 5.14) 
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Figure 5.14: Segment alignment for Case IV 

 

For the case when i=1, the RHS of expression (5.20) becomes 

   b,0)d,(a,M4 a1⋅  (5.21) 

It can also be observed that, 

   b)d,(a,Mb,0)d,(a,M a3a1 →  (5.22) 

�������

Mutual inductance between the longer segments (in Figure 5.15) 
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h h

 

 

Figure 5.15: Segment alignment for Case V 

 

For the case when i=0, the RHS of expression (5.23) becomes 

   (h,0)M0)(N21)( c
0 ⋅−⋅⋅−  (5.24) 
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If we observe closely we can notice that, 

   ∞→⋅−⋅⋅− (h,0)M0)(N21)( c
0  (5.25) 

The reason for this observation is the fact that if ‘r’ becomes zero, then the case becomes 

equivalent to the self inductance of the conducting segment. 

 

��������

Mutual inductance between the two semi-long segments, i.e. segments with half the 

length of the long segments, at either end (refer Figure 5.16) 

   1)d)(N(b,M2M c6 +⋅−=  ; If N is even (5.26) 

   1)d)(Nb,(b,M2M a36 +⋅+=  ; If N is odd (5.27) 

 

 

 

N is even 

 

 

 

N is odd 

�

Figure 5.16: Segment alignment for Case VI 

 

���������

Mutual inductance between a semi long segments and a long segment as shown in Figure 

5.17 is 

   ∑
=

⋅⋅−=
N

0i
a2

i
7 id)h,(b,M41)(M  (5.28) 
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Figure 5.17: Segment alignment for Case VII 

 

For the case when i=0, the RHS of equation (5.28) becomes 

   h,0)(b,M41)( a2
0 ⋅⋅−  (5.29) 

A close observation of this expression reveals that 

   ∞→⋅⋅− h,0)(b,M41)( a2
0  (5.30) 

This is due to the fact that when distance ‘r’ becomes zero, the case is equivalent to the 

self inductance of a conducting segment. 

 

The total mutual inductance due to all the segments is calculated by the following 

summation 

   7654321tot MMMMMMMM ++++++=  (5.31) 

The total inductance of the meander line geometry is found from, 

   totselftottot MLL +=  (5.32) 

where   totL  is the total inductance of the meander line in Hµ  

  selftotL  is the total self inductance of the meander line in Hµ  

  totM  is the total mutual inductance due to all the segments in Hµ  

 

It should be point out when current flows in the various segments it may have opposite 

directions in some parallel segments. This co-directional and contra directional currents 

affect the sign of the mutual inductance. This is already accounted for in the expressions. 

For example, for the meander design in Figure 6.1, 5M  corresponds to a negative value 

and for the meander design in Figure 6.2, both 5M  and 7M  have negative values. 
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In order to verify the analytical approach described herein for calculation of inductance, 

field simulations are conducted using Ansoft Q3D. Three meander lines with various 

number for segments with the layout parameters shown in Table 5.1 are simulated in 

Q3D. A MATLAB code is written that calculates the value total inductance using the 

aforementioned analytical formulas. 

Table 5.1 presents the calculated and simulated results for the meander structures. It can 

be inferred that there is an excellent match between the inductance values obtained from 

the code and those obtained through field simulation. 

 

Table 5.1: Inductance values for meander line designs with different number of turns 

 

Design 
Number 

 

Number of 
Segments 

 

( )mµ   w  

 

( )mµ   d  
measuredL  

Extracted from 
Q3D 

(nH) 

TotL  

Calculated 

(nH) 

1 5 40 40 1.5 1.3 

2 8 24 24 2.0 2.2 

3 11 17 17 2.5 2.8 

 

5.1.3 Capacitance of a Meander Line 

In order to predict the behavior of a meander line with more accuracy, parasitic 

capacitances should also be accounted for in modeling. The parasitic capacitance effect 

arises due to the capacitance between the conducting segments of the meander line as 

well as due to the capacitance between the meander signal line and the bottom ground 

plane for which the substrate behaves as a dielectric [3], [5]. The total stray capacitance 

can be calculated from the equation presented in [99] and repeated here as follows: 
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πεε

 (5.33) 

where totl  is the total length of the meander line, t  is the thickness of the conductor, w  is 
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the width of the conductor and h  is the thickness of the substrate. It is suggested in [99], 

in order to model the meander line this capacitance comes in parallel with the Ltot  

component calculated in Section 5.1 

5.2 Conclusion 

In this chapter, a schema for improving the bandgap of the EBG structure analyzed in 

Chapter 4 is studied. It involves replacing the dc link in the design with a meander line. 

In order to analyze the EBG structure containing meander section using the TLM based 

code, the equivalent model for the meander line is needed. This chapter presents a 

methodology for derivation of the equivalent circuit using closed-form relations. This 

approach and the found parameters of the equivalent circuit in this chapter are used in the 

design and analysis of the EBG structures presented in the next chapter. 
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CHAPTER 6        Planar EBG Structures Containing 

Meander Line Sections 

In the previous chapter it was shown that a meander section can be represented by an 

inductor. In this chapter 1D and 2D EBG structures that contain meander sections are 

studied using the general approach discussed in Chapter 4. 

In this chapter, we will discuss two EBG structures consisting of metal patches linked by 

meander lines. The analysis of such structures was carried out using the TLM method 

after developing the proper models and by full wave analysis. The results have been 

tabulated at the end of the chapter. 

6.1 Unit cells with Meander Transmission Line Sections 

Two meander line designs (refer to Figure 6.1 and Figure 6.2) are analyzed using the 

approach of Chapter 5. Figure 6.1, called Design A, is designed based on the stepped 

impedance structure presented in Chapter 4 (Refer Figure 4.12 (a)). Figure 6.2, called 

Design B is the layout of a design presented in [38]. 

�
�

 

Figure 6.1: The unit cell design of an EBG structure, Design A, containing meander 

sections. 
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The first objective is the calculation of the equivalent inductance of the meander section 

Design A and Design B using the methodology of Chapter 5. Table 6.1 summarizes 

geometrical parameter values for each of the two meander line designs along with their 

calculated inductances 

 
    

Figure 6.2: Unit cell design of the EBG structure from [38] , called here as Design B, 

containing meander sections. 

 

Table 6.1: Geometrical parameters of meander lines of Design A and B and calculated 

inductance  

 

Design Parameter Design A Design B 

a  (mm) 1.25 0.6625 

b  (mm) 1.75 7.5 

d  (mm) 0.75 0.825 

h  (mm) 3 15 

t  (mm) 0.017 0.017 

L  (nH) 13 20 
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When these meander sections interconnect conductor patches (the patches are seen in 

Figure 6.1 and Figure 6.2), a capacitive element comes in parallel with the effective 

inductance. In order to find this capacitance, two adjacent patches in the two consecutive 

unit cells should be considered. Please refer to Figure 6.3 to see the side view of adjacent 

patches. 

 

The capacitance due to two adjacent co-planar metal patches results in a fringing 

capacitance which can be derived using conformal mapping technique as explained in 

[28]. If we consider two co-planar metal patches of width x surrounded by air on one side 

of the interface and by a dielectric substrate with relative permittivity rε  on the other 

side, then the gap capacitance is given by the expression 

�
� � � ( )






⋅
+

= −

2z
y

cosh
1x2 10

π
εε r

gC �Farad� �6.1��

�
Where ‘y’ is the distance between the centers of the two adjacent metal patches and ‘z’ is 

the gap between the two patches as depicted in Figure 6.3.  

�
 

�
�
Figure 6.3: Capacitor geometry to calculate the fringe capacitance due to two co-planar 

metal patches [28] 



Analysis of Planar EBG Structures Using Transmission Line Models 82

 

 

Table 6.2: Parameter Values for Capacitance calculation 

Design Parameter Design A Design B 

y  (mm) 17 18.8 

x  (mm) 10 15 

z  (mm) 7 3.8 

gC  (pF) 0.40605 0.70735 

 

For a preliminary and crude analysis of the EBG structure, the loading effect of the 

meander line can be modeled with an inductor in parallel with a capacitor. This 

approximate model is shown in Figure 6.4 

   

 

 
 

Figure 6.4: Basic model represent the meander loading. 

 

Now we can proceed to calculate the resonant frequency of the meander line. This is of 

principal importance because the behaviour of an inductor changes with the resonant 

frequency. The resonant frequency of a meander line is given by  

   
gapLCπ2

1
f0 =  (6.2) 

For an inductance of 13 nH and parasitic capacitance of 0.40605 pF, the resonant 

frequency equates to 2.19 GHz. 
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The unit cells depicted in Figure 6.1 and Figure 6.2 are used to create 1D and 2D EBG 

geometries in the following sections. 

 

6.2 1D EBG Design A 

The unit cell shown in Figure 6.1 is now adjusted (only removing the meander loadings 

in the perpendicular direction) to create a 1D periodic structure. Two symmetric meander 

sections are inserted between wide microstrip line sections as depicted in Figure 6.5 (a). 

The meander sections load microstrip transmission lines having widths and lengths of 10 

mm respectively. Figure 6.5 (b) depicts the equivalent circuit for the unit cell of this 

structure for use in the transmission line code. 

 

The substrate and its thickness used for Design A is the same as the one used for the 

design analyzed in Chapter 4 (Rogers RO3010 which has 2.10=rε  and a thickness of 

1.27 mm).  

 

A total of nine segments or 3 unit cells are used to create the 1D EBG structures. First the 

modified unit cell is simulated to generate the 1D dispersion diagrams from transmission 

line modeling and eigenvalue HFSS simulations. The results are shown in Figure 6.6 and 

Figure 6.7 
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(a) 

 

 

 

 

 

 
 

(b) 

 

Figure 6.5:  (a) 1D meander loaded transmission line Design A. (b) The equivalent 

transmission line model for the unit cell used in the TLM code.   

 

The dispersion diagram of this 1D periodic structure is created using the developed Code 

and HFSS Eigenvalue solver. From the dispersion diagrams we notice that the TLM 
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based code captures the β−k  diagrams of the first and second mode with a reasonable 

accuracy. HFSS result yields all the TE and TM modes dispersion results. TLM based 

code basically predicts only TM modes and does not provide the full modal 

characteristics. This causes the results from the TLM based code (Figure 6.6) to predict a 

stopband from 631 MHz to 4.39 GHz, while the HFSS result (Figure 6.7) shows a 

stopband only in the slow-wave region, below the light line, from 0.9 GHz to 1.97 GHz 

[28], [100], [101]. This again can be attributed to the fact that the TLM based code is not 

as accurate as a full-wave solver and the inclusion of the lumped element model of the 

meander line further compromises the accuracy of the code. However, for a fast 

estimation of the bandgaps, the TLM based code is a highly efficient tool.  

 

 
Figure 6.6: Dispersion diagram of 1D EBG structure Design A predicted by the TLM 

code based. 
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Figure 6.7: Dispersion diagram of 1D EBG structure Design A predicted from full wave 

analysis 

 

To summarize the results, Table 6.3 is included at the end of Section 6.3 to compare the 

predicted stopband by various methods and state the simulation times. The computational 

platform used for these simulations is a dual Pentium Xeon 3.60 GHz system with a 

Windows XP (32-bit) platform which enables a total maximum memory usage of 4 GB 

(RAM). This summary table shows that the TLM based code predicts the eigen 

frequencies with acceptable accuracy and at a much faster speed than full wave solvers. 

 

Next, the 1D structure composed of three unit cells (shown in Figure 6.5 (a)) is simulated 

to extract the insertion loss parameter. Again, ADS Momentum and HFSS driven 

simulations are used to evaluate the results obtained from transmission line code. From 

the insertion loss plot (refer to Figure 6.8 and Figure 6.9), it can be observed that the 

stopband predicted by ADS begins at 0.7 GHz whereas the one predicted by HFSS begins 

at 0.8 GHz.  
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If all the dispersion diagrams and S21 results are compared with the 1D stepped 

impedance EBG design (refer to Figure 4.13), it can be observed that inserting the 

meander line sections reduces the lower edge of the first bandgap by almost one-half the 

value obtained for the stepped impedance structure. Here, the inductance of the segment 

connecting the patches has increased from 1.5706 nH for the DC link (high-impedance 

transmission line section) in Chapter 4 to 13 nH for the meander line.  The width of the 

bandgap has decreased from 2.659 GHz to 1.559 GHz (from the TLM code) and from 

2.307 GHz to 1.061 GHz (from HFSS simulation result). 

 

A closer look at the S21 results reveals that the TLM code fails to closely follow the 

insertion loss behaviour. Even though the start of stopband is very accurately predicted, 

(see Figure 6.8 and Figure 6.9) the width and shape of the stopband is not captured. This 

shows limitation of the code in full prediction of driven-port network simulations. 

However, the validity and efficiency of the approach to conduct eigenvalue solutions 

should not be undermined by this drawback which stems from not including the physical 

port and finite substrate geometry in the analysis. 
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Figure 6.8:  Insertion loss plot for Design A 

 

 
Figure 6.9:  Magnified image of Figure 6.8 
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6.3 1D EBG Design B 

Next, the unit cell shown in Figure 6.2 is modified by removing the meander loadings in 

the perpendicular direction to create another 1D periodic structure. The geometry of the 

1D EBG structure based on Design B is shown in Figure 6.10 (a).  Figure 6.10 (b) depicts 

the equivalent circuit of the unit cell of this structure for use in the transmission line code.   

The substrate and its thickness used for Design B is FR4 ( )4.4=rε  with a thickness of 

0.02 cm as provided in [38] The microstrip patches have the length and width 1.5 cm. 

 

(a) 

 

(b) 

 

Figure 6.10: (a) 1D meander loaded transmission line Design B. (b) The equivalent 

transmission line model for the unit cell used in the TLM code. 
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The modified unit cell is simulated to generate the 1D dispersion diagrams from 

transmission line modeling and eigenvalue HFSS simulations. These results are shown in 

Figure 6.11 and Figure 6.12 

 
Figure 6.11: Dispersion diagram of 1D EBG structure Design B predicted by the TLM 

code based. 

  

 
Figure 6.12: Dispersion diagram of 1D EBG structure Design B predicted from full wave 

analysis 

 

From the dispersion diagrams it can be noticed that the TLM based code captures the 

β−k  diagrams of the first and second mode with a reasonable accuracy and does not 

predict the TE modes found from HFSS simulations. The TLM code predicts the 
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stopband from 0.282 MHz to 1.33 GHz (Figure 6.11) while the HFSS bandgap (Figure 

6.12) is from 0.364 MHz to 0.947 MHz.  A summary of these results are also listed in 

Table 6.3.  The fast simulation time of the TLM code should be noted in Table 6.3. 

 

Port driven simulation of the finite size structure (shown in Figure 6.10 (a))are also 

conducted and the insertion loss results predicted by ADS Momentum, HFSS and TLM 

code are shown in Figure 6.13 and Figure 6.14. It can be observed that like Design A the 

beginning of the stopband is predicated by the TLM code with excellent accuracy while 

there are discrepancies between the full-wave simulations and code results in the shape 

and width of the stopband.  

 

 

 

 

Figure 6.13: Insertion loss plot of the structure shown in Figure 6.10 (a) 
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Figure 6.14: Zoomed in version of the graph shown in Figure 6.13.  

 

Table 6.3: Comparison between the TLM code and full-wave solver results for 1D EBG 

designs 

 

 

EBG 
geometry 

Bandgap 
from TLM 
based code  

( )codeBW  

(GHz) 

 

Bandgap 
from full 
wave 
solver 
HFSS 

( ) wavefullBW   

(GHz) 

Time to 
simulate 
the results 
using TLM 
based code 

Time to 
simulate 
the results 
using 
HFSS 

Percentage 
match in 
bandgap 

100
BW

BW

code

 wavefull ×







 

Design A 0.631~2.19 

 

0.904~1.965 

 

45 seconds 1 hour and 56 
minutes 

68.1 

Design B 0.282~1.33 

 

0.364~0.947 

 

52 seconds 2 hours and 44 
minutes 

55.63 

�
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6.4 2D EBG Design A 

Subsequently, the unit cell designs are used to develop 2D EBG structures. The model 

shown in Figure 6.11(b) is extended to y direction to conduct the 2D transmission line 

simulation. Figure 6.15 shows the volumetric view of the Design A unit cell. Since it is 

an open structure, perfectly matched layer (PML) boundary is used to define the top 

boundary condition in HFSS simulations. It should be mentioned that PML is defined for 

the top boundaries of the 1D and 2D periodic structures discussed in this Chapter and 

Chapter 4 in HFSS eigenvalue analysis.   

�

 

Figure 6.15: Simulation setup for the unit cell of 2D EBG structure of Design A. 

 

The results obtained from the full wave solver are compared with the dispersion diagram 

obtained from the TLM based code. The dispersion equation for the 2D EBG structure is 

the same as (4.34) with just one modification. The meander model now replaces the dc 

link in (4.34) and hence the impedance of the narrow section is replaced by 

   
LC

L
Z h 21 ω

ω
−

=  (6.3) 

Where L  and C  are the values of inductance and capacitance of the meander line 

obtained in Table 6.1 and Table 6.2. 
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Figure 6.16: Dispersion diagram of the 2D EBG Design A obtained from the TLM code. 

 

Figure 6.17: Dispersion diagram of the 2D EBG Design A obtained from full-wave 

analysis. 

 

Figure 6.16 and Figure 6.17 present the dispersion diagrams obtained from the TLM code 

and HFSS eigenvalue solver. Considering the wide frequency range of simulation, a large 

number of modes are predicted from HFSS simulations. The first mode is a TM0 mode 

that is captured by the transmission line modeling approach as well. 
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The next step is extraction of insertion loss characteristics. For this a finite size 2D EBG 

structure is considered and simulated using various tools; HFSS, ADS and approximation 

using the TLM method’s code.  

 

The finite 2D EBG structure used for the simulation consists of 5 rows and 5 columns of 

EBG unit cells cascaded along x- and y-directions. Hence, the entire setup consists of 25 

unit cells of the EBG with a total area of 120 mm2 along with a finite continuous ground 

plane. Two excitation ports are used at ( )mm 12,mm 21  and ( )mm 108,mm 081 , 

respectively. Figure 6.19 shows the simulation setup for obtaining the insertion loss 

between port 1 and port 2. 

 

Another way to approximate the S21 quickly is by setting up the equivalent circuit of the 

finite size EBG in ADS schematic window and including the model of Figure 6.4 for the 

meander section.  The unit cell of this circuit is shown in Figure 6.18. 

 

    

Figure 6.18: Unit cell of the 2D meander loaded EBG structure in ADS schematic 

window. 
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The magnitude of S21 obtained from all the aforementioned simulation approaches is 

shown in Figure 6.20 (a) (Figure 6.20 (b) is the zoomed in version). 

 

For comparison a parallel-plate structure with an area of 120 mm2 and with Rogers 

RO3010 dielectric between them, is used as reference. Two ports at exactly the same 

location, i.e. at ( )mm 12,mm 21  and ( )mm 108,mm 081 , have been used for excitation. As 

expected with the parallel-plate structure, there is no stopband as opposed to the EBG 

based geometry and this has been clearly depicted in Figure 6.20 (a) and Figure 6.20 (b).  

 

In Figure 6.20, it can be observed that the isolation obtained using Design A is 

approximately 60 dB higher compared to the parallel-plate structure. The S21 predicted 

from ADS schematic simulations closely follows the TLM code results but fails to 

capture the detailed variations of S21 as predicted by HFSS simulations. 

 

 
 

Figure 6.19: Illustration of the EBG structure constituted of several cascaded unit cells 

along with the port definitions for the calculation of the Insertion Loss  
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(a) 
 

�
����
�

Figure 6.20 (a) Magnitude of S21 for a finite size 2D meander loaded EBG structure 

Design A. (b) Magnified scale of the shaded region shown in (a). 
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6.5 2D EBG Design B 

The parameters used for this design are based on a structure presented in . Here, FR4 of 

thickness 0.02 cm is used as the dielectric substrate of choice. The dimensions of the 

patch are 1.5 cm x 1.5cm and the total dimension of the unit cell is 2.26cm x 2.26 cm. 

The geometrical parameters of the meander line are shown in Figure 6.2.  

The dispersion diagram predicted from the transmission line modeling method is shown 

in Figure 6.22 and the one obtained from HFSS eigenvalue simulations is presented in 

Figure 6.23. It can be observed that there is a very good match between the bandgap 

obtained by both the processes. The bandgap predicted from the TLM code is from 0.442 

GHz to 1.185 GHz and the slow-wave bandgap from HFSS extends from 0.618 GHz to 

1.004 GHz. Table 6.4 lists these values along with the percentage difference. 

 

    
 

Figure 6.21: Unit cell of the 2D meander loaded EBG structure in ADS schematic 

window. 
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Figure 6.22: Dispersion diagram of the 2D EBG Design B obtained from the TLM code.   

 
 

Figure 6.23: Dispersion diagram of the 2D EBG Design B obtained from full-wave 

analysis. 
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The transmission characteristic of this structure is evaluated through full-wave 

simulations and TLM code analysis. For this a finite size 2D EBG structure is considered 

and simulated.  

 

The finite 2D EBG structure used for the simulation consists of 10 rows and 10 columns 

of EBG unit cells cascaded along x- and y-directions. Hence, the entire setup consists of 

100 unit cells of the EBG with a total area of 22.6 22.6 cm2 along with a finite continuous 

ground plane. Two excitation ports are used at ( )cm 17.10,cm 65.5  and 

( )cm 17.10,cm 95.16 , respectively. Figure 6.24 shows the simulation setup for obtaining 

the insertion loss between port 1 and port 2. The location of the ports is not the same as 

described in [38]. 

 

 
 

Figure 6.24: Illustration of the EBG structure constituted of several cascaded unit cells 

along with the port definitions for the calculation of the Insertion Loss 
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The simulation results are shown in Figure 6.25 (a) (Figure 6.25 (b) is the zoomed in 

version). Similar to the case of Design A, a circuit is set up in the ADS schematic 

window and scattering parameter simulations are conducted. 

 

Again, like in the previous case, for comparison a parallel-plate structure with FR4 

dielectric between them, is used as reference. Two ports at exactly the same location, i.e. 

at ( )mm 17.10,mm 65.5  and ( )mm 17.10,mm 95.16 , have been used for excitation. As 

expected with the parallel-plate structure, there is no stopband as opposed to the EBG 

based geometry and this has been clearly depicted in Figure 6.25 (a) and Figure 6.25 (b). 

 

From Figure 6.25, it can be observed that the insertion loss in the bandgap for this design 

is 80 dB higher than that for a continuous power plane geometry. Similar to Design A 

results, the S21 predicted from ADS schematic simulations closely follows the TLM code 

results. These S21 graphs do not provide the realistic magnitudes and variations predicted 

from full-wave simulations due to the fact that losses are ignored, limited modes are 

captured and approximations are used in modeling.   

  

   (a) 
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�
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Figure 6.25: (a) Magnitude of S21 for a finite size 2D meander loaded EBG structure 

Design B. (b) Magnified scale of the shaded region shown in (a). 

 

Table 6.4: Comparison between the TLM code and full-wave solver results for 2D EBG 

Design A and Design B from dispersion simulations 

 

 

EBG 
geometry 

Bandgap 
from TLM 
based code  

( )codeBW  

(GHz) 

 

Bandgap 
from full 
wave 
solver 
HFSS 

( ) wavefullBW   

(GHz) 

Time to 
simulate 
the results 
using TLM 
based code 

Time to 
simulate 
the results 
using 
HFSS 

Percentage 
match in 
bandgap 

100
BW

BW

code

 wavefull ×







 

Design A 0.665~2.309 

 

1.26~1.935 

 

105 seconds 4 hours and 28 
minutes 

41.0584 

Design B 0.442~1.185 

 

0.618~1.004 

 

113 seconds 6 hours and 32 
minutes 

51.9650 

 



Analysis of Planar EBG Structures Using Transmission Line Models 103

Finally, to show the impact of adding the meander sections to the EBG design and 

compare the designs of this chapter and the one presented in Chapter 4, Table 6.5 is 

presented.   

 

Table 6.5 provides information about the reduction in the lower edge of the stopband for 

the two new EBG designs with respect to the stepped impedance based EBG design 

discussed in Section 4.4 of Chapter 4. Table 6.5 also sheds light on the reduction of the 

width of the stopbands for the meander based designs with respect to the stepped 

impedance EBG implementation. This is due to the added parasitic capacitances because 

of the meander sections in the EBG designs discussed in this chapter (refer to Equation 

5.33 in Chapter 5).  

 

Table 6.5: Comparison between the TLM code and full wave solver results for 1D EBG 

Designs 

Heading Lower end of 
the bandgap 

Upper end of the 
bandgap  

Bandwidth 

Units (GHz) (GHz) (GHz) 

Stepped Impedance 
EBG of Chapter 4 

2.368 3.836 1.468 

Meander EBG Design 
A 

1.26 1.935 0.675 

Meander EBG Design 
B 

0.618 1.004 0.386 

 

6.6 Conclusion 

In this chapter, two EBG structures consisting of metal patches linked by meander lines 

are investigated. The two designs are uniplanar structures chosen over textured 

geometries due to their more economical fabrication costs.  The primary goal of using 

meander loading is to achieve a reduced lower edge of the bandgap. Compared to the 

design discussed in Chapter 4, the lower edge of the bandgap is brought down by almost 

half. This enables application of this type of EBG structure as a filter or noise suppression 
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component at low frequencies. Dispersion diagrams and transmission coefficients are 

obtained from the TLM based code and compared with full-wave simulation results. The 

TLM results are created in less than a couple of minutes while full-wave simulations can 

extend to few hours using the same computational platform. However, the accuracy of 

the TLM result at cases is compromised due to the simplifications made in the modeling. 
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CHAPTER 7                                                     Conclusions 

7.1 Concluding Remarks 

Planar EBG structures are used extensively for wireless applications and microwave 

circuit design. The properties arising from the periodicity of these structures provide 

solutions to numerous engineering problems. The analysis of EBG structures is based on 

solving Maxwell’s equations for the pertinent boundary conditions, depending on the 

nature of the application. Numerous CAD tools and analytical methods provide driven 

port and eigenvalue solutions needed for the analysis of EBG structures. 

 

The thesis discusses the application of transmission line modeling approach in analysis of 

planar EBG structures. Multiple designs are analyzed and their frequency selective 

behaviour is predicted by this modeling method. The generated dispersion diagrams and 

insertion loss results are validated with full-wave simulations. 

 

To develop the transmission line modeling method, a particular group of planar EBG 

structure, which is composed of periodic wide microstrip sections (low characteristic 

impedance) interconnected with narrow (high characteristic impedance)  microstrips or 

meander microstrip lines, is studied. The method is applied to 1D periodic layouts, and 

then it is extended to 2D EBG structures. First, the EBG structures are modeled using 

transmission line circuits. For the case of the structures with interconnecting meander 

lines a lumped element equivalent circuit composed of L and C components is developed 

to represent the meander loading. The values of the lumped components in the equivalent 

circuit are found by using closed-form formulas. By applying Floquet’s Theorem to the 

representative network of the unit cell of these periodic circuits, the characteristic 

equations or the complex dispersion equations are derived. A code is developed to plot 

the dispersion equation and extract the approximate insertion loss characteristic for the 

case of a finite size 1D or 2D EBG structure. 

 



Analysis of Planar EBG Structures Using Transmission Line Models 106

It is observed that the transmission line modeling allows for an extremely fast estimation 

of the bandgap of the studied EBG structures when compared to full-wave numerical 

simulations while providing a reasonable accuracy. Full-wave solvers generate complete 

modal information, accurate dispersion plots and full scattering parameters but they are 

expensive in terms of simulation time and computational resources.  

 

In the cases studied in this thesis, the transmission line models and derived formulations 

are obtained with some simplifications and approximations, due to which the accuracy of 

the dispersion and insertion loss results is limited. For example, TE modes and higher 

order TM modes are not captured in the employed transmission line modeling technique. 

Moreover, the code does not capture the behaviour of the modes in the fast wave region. 

As well, it should be mentioned that transmission line and lumped circuit models that can 

be easily determined by using analytical formulas are not always available for all types of 

EBG structures, especially the ones with asymmetric unit cell or with complex parasitics. 

The cases studied in this thesis are among the most popular EBG structures and can serve 

as the starting design layout for more complicated geometries.  

 

Owing to the fast nature of the presented method in predicting the behaviour of these 

EBG structures, it can be concluded that it is an efficient means for designing and 

optimizing transmission line based EBG structures for target applications.  

 

The replacement of the high impedance microstrip patches by meander lines leads to an 

appreciable reduction in the lower edge of the bandgap. This is of major importance 

because it enables the designers to incorporate this method in low frequency operations 

too, an area which predominantly uses discrete decoupling capacitors to provide 

isolation. 

7.2 Recommendations for Future Work 

The present thesis can be extended in two major directions; first, generalization of the 

code, and second, investigation of other examples of EBG structures and their 

applications. 
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In the studied cases, a simple LC circuit was used to represent the meander loading. The 

TLM code can be further extended by including higher order lumped models to represent 

periodic loadings and achieve more accuracy in predicting the results. Moreover, the code 

can be enhanced by including multi-conductor transmission line formulations. This 

enables investigation of multilayer systems and covered EBG structures. 

 

EBG structures have proven to provide an efficient means for the mitigation of 

power/ground noise, and every year new designs emerge to improve the noise 

suppression characteristics [102]. The possibility of modeling these structures using the 

presented technique should be investigated. 

 

Furthermore, signal and power integrity issues associated with the structures presented in 

Chapters 4 and 6 should be studied. Many design modifications, like adjustment of the 

geometrical features of the layout and changing the dielectric constant can be employed 

to control the width and location of the bandgap. 
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