
Stability of a Rotating Cylindrical Shell Containing 

Axial Viscous Flow 

by 

Frédérick Gosselin 

Department of Mechanical Engineering 

McGill University 

Montréal, Québec, Canada 

Under the supervision of 

Dr Michael P. Païdoussis 

Submitted in September 2006 

Thesis submitted to McGill University in partial fulfillment of the 

requirements of the degree of Master of Engineering 

Copyright © 2006 by Frédérick Gosselin 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-32592-6 
Our file Notre référence 
ISBN: 978-0-494-32592-6 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Table of contents 

ABSTRACT ................................................................................................................................................. IV 

SOMMAIRE ................................................................................................................................................ VI 

ACKNOWLEDGEMENTS .................................................................................................................... VIn 

CHAPTER 1: INTRODUCTION ................................................................................................................ 1 

1.1 PRELIMINARY REMARKS ........................................................................................................................ 1 

1.1. LITERA TURE REVIEW ............................................................................................................................ 2 

1.1.1 Cylindrical shells subjected to swirling flow ................................................................................ 2 
1.1.2 Pipeflow and rotatingflow ........................................... ................................................................ 3 
1.1.3 Shear-flow-structure interaction ........................................... ........................................................ 6 
1.1.4 Numerical solutions for pipe flow ........... ...................................................................................... 9 

1.2. AIMS AND OVERVIEW OF THE THESIS .................................................................................................. 12 

CHAPTER 2: FORMULATION OF INVISCID MODEL ••••••.•••.••.••.•.••••••••..•.••.•.•••••••..•••.•.•..•••.••••..••.•.• 14 

2.1. FORMULATION OF THE STRUCTURAL PART OF THE PROBLEM .............................................................. 14 

2.2. FORMULATION OF THE INVISCID FLUID MODEL .....................•............................................................. 21 

2.3. COUPLING OF FLUID AND STRUCTURE ................................................................................................. 27 

CHAPTER 3: FORMULATION OF VlSCOUS MODEL •••••••••••••••.•.••••••.••..••.••••..••....•...•...••••..•...•....... 30 

3.1. EQUATIONS OF MOTION OF THE VISCOUS FLUID .................................................................................. 31 

3.2. TRIPLE PERTURBATION SCHEME .......................................................................................................... 34 

3.3. MEAN FLOW SOLUTIONS ..................................................................................................................... 36 

3.3.1. Laminar meanflow .................................................................................................................... 36 
3.3.2. Turbulent meanflow .................................................................................................................. 38 

3.4. PERTURBATION FLOW SOLUTION ........................................................................................................ 40 

3.5. BOUNDARY CONDITIONS OF THE VISCOUS FLUID ............................................................................... .41 

3.6. COUPLING FLUID AND STRUCTURE ...................................................................................................... 43 

3.7 EFFECT ON THE ST ABILITY OF THE CLASSICAL NO-SLIP BOUNDARY CONDITIONS ................................ .47 

3.8. THE VISCOUS MODELS ......................................................................................................................... 49 

3.8.1. The classical viscous model ..................................................................... .................................. 49 
3.8.2. The slip model ................................. ........................................................................................... 49 
3.8.3. The average-velo city model ............................................................... ........................................ 51 
3.8.4. The delta model .............................................................. ............................................................ 52 

CHAPTER 4: NUMERICAL SOLUTION OF VlSCOUS EQUATIONS ............................................. 54 

4.1. FINITE DIFFERENCE SCHEME ............................................................................................................... 54 

4.2. FROM PHYSICAL BOUNDARIES TO NUMERICAL BOUNDARlES ............................................................... 54 

4.3. STAGGERED GRID DISCRETISATION ..................................................................................................... 56 

4.4. COUPLING THE FLUID SOLUTION WITH THE SHELL .............................................................................. 62 

4.5. ITERATIVE LOOP .................................................................................................................................. 63 

4.6. NUMERICAL SOLUTIONS TO THE VISCOUS MODELS ............................................................................. 64 

II 



4.6.1. Numerical solution ta the classical no-slip model ..................................................................... 64 
4.6.2. Numerical solution ta the slip model ................................................. ......................................... 64 
4.6.3. Numerical solution to the average-velocity model ..................................................................... 65 
4.6.4. Numerical solution to the delta model ................................................. ...................................... 66 

CHAPTER 5: INVISCID THE ORY RESULTS ....................................................................................... 68 

5.1. PURE AXIAL FLOW .............................................................................................................................. 68 

5.2. ROTATION ........................................................................................................................................... 71 

5.3. DISCONTINUITIES IN THE PRESSURE SOLUTION ................................................................................... 72 

5.4. BESSEL APPROXIMATIONS ................................................................................................................... 73 

5.5. FLOW BLOCKING ................................................................................................................................. 77 

CHAPTER 6: VISCOUS THE ORY RESUL TS ....................................................................................... 79 

6.1 PURE AXIAL FLOW ............................................................................................................................... 79 

6.1.1. Classical viscous model results .................................................................................................. 81 
6.1.2. Slip model.. ................................................................... .............................................................. 87 
6.1.3. Average-velocity model .................................................................. ............................................ 89 
6.1.4. Delta model ......................................................... ....................................................................... 93 

6.2 EFFECT OF ROTATION ......................................................................................................................... 103 

CHAPTER 7: CONCLUSION ................................................................................................................. 109 

7.1. CONCLUDING REMARKS .................................................................................................................... 109 

7.2. FUTURE WORK .................................................................................................................................. 112 

SHELL-FLUID INTERFACE LINEARIZATION ................................................................................ 114 

THE LINEAR EULER EQUATION ....................................................................................................... 116 

THE LINEAR NAVIER-STOKES EQUATION .................................................................................... 118 

ACCURACY OF THE NUMERICAL SCHEME .................................................................................. 122 

MATLAB CODE FOR THE DELTA MODEL ...................................................................................... 125 

BIBLIOGRAPHY ...................................................................................................................................... 139 

III 



Abstract 

The present thesis studies the stability of a rotating cylindrical shell containing a 

co-rotating axial viscous flow. The system can be thought of as a long thin-walled pipe 

carrying an internaI axial flow while the whole is in a frame of reference rotating at a 

prescribed rate. The equations of the previously solved inviscid model are rederived and 

the problem is studied further. The results obtained for purely axial flow are reproduced, 

but as expected from literature, it is impossible to obtain satisfactory results for the 

system subjected to rotation due to the presence of singularities in the flow pressure 

solution. A hypothetical physical explanation for these singularities is put forward and 

has similarities with the phenomenon of atmospheric flow blocking. 

Considering the unsuccessful results obtained with the inviscid theory, it is 

be1ieved that the added realism brought in by the introduction ofviscosity in the theory 

can lead to a successful model. Assuming a travelling-wave perturbation scheme, the 

linear Donnell-Mushtari thin shell equations are coupled with the fluid stresses obtained 

by solving numerically the incompressible Navier-Stokes equation for a laminar or 

turbulent flow. A novel triple-perturbation approach is established to consider the 

interaction between the fluid and the structure. This triple-perturbation approach is in 

essence a superposition of three fluid fields caused by the three components of the shell 

deformation for a given oscillation mode. It is found that the usual technique for linear 

aeroelasticity studies consisting of applying the fluid boundary conditions at the 

undeformed position of the wall instead of the instantaneous deformed position greatly 

alters the stability of the system. To remedy to this problem, three different corrections 

are applied and tested on the carefully derived model. The dynamics of the system 

subjected to purely axial flow with no rotation is successfully studied with the viscous 

model for both laminar and turbulent flow conditions. Because no experimental or 

previous theoretical data is available, it is impossible to validate the results obtained in 

the laminar regime. For the turbulent regime, as the Reynolds number is increased, the 

results tend more and more towards those obtained with the inviscid theory. 

The results obtained for small rates of rotation show that both in the laminar and 

in the turbulent regime, the system tends to be stabilised when subjected to a small rate of 
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rotation. On the other hand, this tendency should be reversed for higher rates ofrotation, 

but it is impossible to show this due to the limitations of the root-finding method 

employed. 
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Sommaire 

Le présent mémoire a pour but d'étudier la stabilité d'une coque cylindrique en 

rotation contenant un écoulement axial visqueux lui aussi soumis à la même rotation. On 

peut imaginer le système comme étant un long tuyau à parois mince contenant un 

écoulement axial, alors que le tout est en rotation autour de l'axe du tuyau. Les équations 

du modèle non visqueux déjà résolu sont redérivées et la compréhension du problème est 

approfondie. Les résultats obtenus pour un écoulement purement axial sont reproduits 

mais tel que mentionpé dans la littérature, il est impossible d'obtenir des résultats 

satisfaisants pour le system suj et à la rotation dû à la présence de singularités dans la 

solution de la pression de l'écoulement. Une hypothétique explication physique de ces 

singularités est avancée et a des similarités avec le phénomène de blocage atmosphérique. 

Considérant les résultats infructueux obtenus avec la théorie non visqueuse, on est 

porté à croire que le réalisme que peut apporter l'introduction de viscosité dans la théorie 

peut mener à un modèle qui fonctionne. En cherchant une solution de la forme d'une onde 

progressive de perturbation, les équations linéaires de Donnell-Mushtari pour modéliser 

une coque mince sont couplées avec les contraintes du fluide obtenues en résolvant 

numériquement les équations de Navier-Stokes pour un écoulement incompressible 

laminaire ou turbulent. Une nouvelle approche de triple perturbation est établie pour 

prendre en considération l'interaction entre le fluide et la structure. Cette approche de 

triple perturbation est en fait une superposition de trois écoulements de perturbation 

causés par les trois composantes de la déformation de la coque pour un mode d'oscillation 

donné. TI est démontré que la technique conventionnelle d' aéroélasticité linéaire 

consistant à appliquer les conditions frontières du fluide à la position non déformée du 

mur au lieu de la position déformée instantanée influence grandement la stabilité du 

système. Pour remédier à ce problème, des trois types de corrections sont appliqués et 

testés sur le modèle visqueux. La dynamique du système sujet à un écoulement purement 

axial sans rotation est étudiée avec succès avec le modèle visqueux pour des écoulements 

laminaires et des écoulements turbulents. Parce qu'il n'y a pas de résultats expérimentaux 

ou théoriques disponible pour comparer les résultats du régime laminaire, il est 

impossible de les valider. Cependant, pour le régime turbulent, à mesure que le nombre 
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de Reynolds est augmenté, les résultats obtenus tendent de plus en plus vers ceux obtenus 

avec la théorie non visqueuse. 

Les résultats obtenus pour de petits taux de rotation montrent que dans le régime 

laminaire et dans le régime turbulent, le système tend à se stabiliser lorsque le taux de 

rotation augmente. D'un autre côté, cette tendance devrait s'inverser pour de plus hauts 

taux de rotation, cependant il n'est pas possible de le démontrer dû aux limitations de la 

méthode employée pour trouver les fréquences complexes admissibles du système. 
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Chapter 1 

Introduction 

1. 1 Preliminary remarks 

Ever since the seventies, the dynamics ofthin cylindrical shells coupled with 

subsonic flows has been of interest to engineers. Paidoussis and Denise (1972) made the 

fortuitous discovery that shells containing low-speed flow do flutter and paved the way to 

a new area of research in fluid-structure interactions (FSI). Since then, the research has 

evolved in different branches ranging from the stability of coaxial shells with flow [see 

Païdoussis et al. (1984)], the dynamics of pliable shells resembling physiological systems 

[see Shapiro (1977)], the study ofthe non-linear large amplitude behaviour of shells [see 

Karagiozis et al. (2005)] to name only a few. See Paidoussis (2003) for a full review of 

the research done on the dynamics of shells interacting with fluid. 

The present thesis studies the stability of a rotating cylindrical shell containing a 

co-rotating axial viscous flow. The system can be thought of as a long thin-walled pipe 

carrying an internaI axial flow while the whole is in a frame of reference rotating at a 

prescribed rate. Practical examples of such a system include swirling flow in dual spool 

aircraft jet-engines, rotating drums used in the process industry, some nuclear 

applications [Païdoussis (2003, section 7.6)], spin-stabilised rockets, piping in a rotating 

space-station. There are also many applications to slightly different systems such as fluid 

prerotation in the inlet region of a centrifugaI pump, cyclone dust separators [Pareschi and 

Montanelli (1980)], or the intense neutron generator system [Païdoussis (2003, section 

7.6.3)]. 

A literature review is presented in the following section, divided in four parts: Ci) 

cylindrical shells subjected to swirling flows, (ii) pipe flow and rotating flow, (iii) shear­

flow-structure interaction, and (iv) numerical solutions to pipe flow. This literature 

review is essential to understand the motivations and objectives of the present research 

work. These motivations and objectives along with the detailed overview of the thesis are 
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presented at the end of the present chapter (Section 1.2). 

1. 1. Literature review 

1.1.1 Cylindrical shells subjected to swirling flow 

Only a handful of studies have been conducted on the problem of shells subjected 

to a swirling (helical) flow. Paidoussis (2003, section 7.6) offers a review of the work 

performed in this field and on related problems. Srinivasan (1971) undertook the first 

study that added the complexity of rotation to the problem of a cylindrical shell subjected 

to axial flow. In this study, the stability ofa thin infinitely long cylindrical shell exposed 

to an outer inviscid helical flow is investigated. Through numerical simulations, it is 

found that when the critical velocity is reached, the system loses stability by coupled 

mode flutter as the forward and the backward travelling waves coalesce. Past the critical 

flow velocity, the forward travelling waves become unstable while the backward 

travelling ones tend to remain stable. 

In Lai and Chow (1973), the stability of a rotating thin shell containing inviscid 

fluid flow is investigated. Here, just as in the present study, both the fluid and the shell 

are rotating about the axis of the cylindrical shell at a constant given rate. * The linear 

Donnell shell theory is modified to account for the solid body rotation and is coupled to 

the fluid equations, similar in essence to those derived by Chow (1969). It is found that 

the critical flow rate in the shell decreases with increasing angular velo city. Using 

essentially the same method of solution as Lai and Chow, Chen and Bert (1977) study the 

dynamics of a stationarY shell carrying a rotating flow. This study differs from Lai and 

Chow's only in the fact that the shell is not rotating. Once again, it is found that rotation 

severely decreases the stability of the fluid-shell system. 

The validity of the results obtained by Lai and Chow and Chen and Bert was 

questioned by Cortelezzi, Pong and Païdoussis (2004), who found it impossible to 

reproduce the results of Lai and Chow. In particular regions ofthe parameter space, the 

flow solution is not bounded, which makes it impossible to obtain the critical velocity of 

"It has come to the attention of the author of the present thesis that equation (2.4) in Lai and Chow (1973) 
has two typographie errors in it. In Lai (1972), the equivalent equation (4) is written eorreetly. 
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the system in many cases. It is emphasised that the problem lies within the flow solution 

and is possibly due to the absence ofviscous effects. 

Based on sorne work by Cortelezzi et al. (2004), Chaumond (2003) made a first 

attempt at incorporating viscosity in the problem of rotating shells with a co-rotating axial 

flow. In this work the equations ofmotion for a viscous rotating flow first derived by 

Cortelezzi (2002) are rederived from the Navier-Stokes equations by using a travelling 

wave linear perturbation scheme. The system of equations thus obtained was solved 

numerically by using a finite-difference algorithm. Difficulties were encountered while 

applying boundary conditions on the flow at the flow-wall interface, because the pressure 

exerted by the wall on the fluid is not known a priori. For this reason, the flow-field was 

solved for a prescribed external wall pressure. A full coupled FSI analysis was attempted 

without success. 

1.1.2 Pipe flow and rotating flow 

As mentioned ab ove, it was found by Cortelezzi et al. (2004) that the region of no 

solution in the parameter space of the problem ofrotating shells with a co-rotating axial 

flow has its origin in the fluid model. For this reason, a review of the literature on the 

fluid mechanics problem of swirling flow is desirable. 

Rayleigh (1917) treats the stability of Couette flow, i.e. the steady circular flow of 

a fluid between two rotating coaxial cylinders. The equations of motion derived are for a 

3-D inviscid theory and axisymmetric disturbances. The analysis led Rayleigh to define 

the general criterion, named after him, which states that: " ... the equilibrium of fluid 

revolving one way round in cylindricallayers and inc1uded between coaxial cylindrical 

walls is stable only under the condition that the circulation (k = vr = o.r2 
) always 

increases [in magnitude] with r." In other words the inviscid flow rotating between two 

coaxial cylinders is stable if d(r4Q,2 )/dr > 0 everywhere in the interval; and further, that 

it is unstable if (r 2o. r should decrease anywhere inside the annulus. 

Chandrasekhar (1961) applies the equations derived by Lord Rayleigh for 

revolving fluids to study the stability of a rotating fluid flowing axially between 
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concentric cylinders. The equation of motion of the flow is derived starting with Euler's 

equation and applying a linear perturbation scheme while considering only small 

axisymmetric disturbances. It is found that the addition of rotation to the axial flow 

changes qualitatively the problem. In the presence of rotation, the stability of the axially 

moving flow depends solely on Rayleigh's criterion. Through a method making use of the 

variational principle, it is shown that Rayleigh's criterion for the stability of a pure 

rotational flow continues to be valid in the presence of an arbitrary axial flow (for any 

profile in r). This is a very bold daim. It implies that the stability of the flow is 

independent of the axial flow velocity in the presence of an arbitrarily small rotation rate. 

Howard and Gupta (1962) attempt to derive a general stability criterion for non­

dissipative swirling flows in the same fashion as was done by Rayleigh (1917) with the 

Rayleigh number. The stability of a rotating flow with no axial component between two 

concentric cylinders is analogous to that of a density-stratified fluid at rest, under the 

action of gravit y; so long as only axisymmetric perturbations are considered. If the 

analogy is pushed further, it suggests that, when an axial flow is also present, the effect of 

the swirl component may be analogous to the effect of density stratification (in the 

presence of gravit y) on a parallel shear flow. It is known that, for flows in the presence of 

gravit y, statically stable density stratification tends to have a stabilising influence on any 

shear instability. This effect is measured by the Richardson number which is given by 

( )
_ -g(dpjdz) 

J z - 2 ' 
p(dUjdz) 

where g is the gravit y acceleration, p is the density of the stratified fluid, U is the 

velocity of the flow, and z is the vertical co~rdinate. Pursuing the analogy further, an 

appropriate Richardson number for the swirling flow is introduced as a sufficient 

condition for stability to axisymmetric perturbations. For the specific case of solid 

rotation, the condition simplifies to 

where n is the rotation rate and r is the radial coordinate. As with the density 

stratification problem, the sufficient stability condition is J (y) ~ ~ everywhere. Work is 
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also done in that paper on non-axisymmetric disturbances. Although a general stability 

criterion for non-axisymmetric disturbances is not found, a sufficient stability condition 

for particular wavelengths and wavenumbers is obtained. For the particular case of solid 

rotation, the stability condition which depends on the wavelength and the circumferential 

wavenumber simplifies to 

(1.1) 

everywhere. This condition ensures stability; but failing to satisfy it does not 

automatically imply instability. Although the authors do not discuss this, their results 

imply that rotation has a strong stabilising effect on the flow. By their results and also 

with concrete examples, Howard and Gupta also refute the result by Chandrasekhar 

(1961) affirming that the stability ofinviscid flows with both axial and swirl components 

is determined by Rayleigh' s criterion alone, without reference to the axial component. 

AIso, the effect of (electromagnetic) force fields on the fluid flow is studied but is of no 

interest in the present study. 

In Chow (1969), the swirling inviscid and incompressible fluid flow in cylindrical 

tubes with axisymmetric and periodic deformations is investigated. The flow is 

characterised by the Rossby number, which relates the axial to the circumferential flow 

velo city: 

(1.2) 

It is found that for flows with certain values of Rossby number, the flow near the wall is 

"blocked". At those critical values of Rossby number, no flow solution can be found to 

satisfy the boundary conditions. What happens physically is visualised by studying the 
. 

flow at a Rossby number close to a critical one: S ~ Sc . Fig. 1 shows that the streamlines 

become parallel with the pipe, and the fluid near the wall is almost stagnant. This 

phenomenon ofblocking is characteristic of stratified fluid flow over obstacles and is 

discussed in detail, along with analogies to rotating fluid, by Yih (1965). 
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Fig. 1. First blocking encountered for swirling flow in a tube witb large axysimmetric periodic wall 
deformation. [Figure inspired by Cbow (1969)] 

Lai and Chow (1973) cite Chow (1969) when their fluid solution is introduced and 

they make mention of the flow near the wall being blocked under certain conditions. It 

seems that the interpretation Lai and Chow make of flow blocking may not be correct. 

Could flow blocking have something to do with the region of no solution in the parameter 

space found by Cortelezzi et al. (2004)? This is discussed in Chapter 5. 

Making use ofthe equations developed by Howard and Gupta (1962) for inviscid 

flow subjected to non-axisymmetric disturbances, Maslowe (1974) studies the stability of 

the particular case of rotating Poiseuille flow for an arbitrary Rossby number, &. It is 

found that the growth rate of the most unstable helical perturbation is proportional to &, 

provided that & « 1, but it then decreases for larger values of & . In the limit & ~ 0 , the 

flow is stable as it tends towards a purely rotating flow, and in the limit & ~ 00, the flow 

is stable again as it tends towards a pure Poiseuille flow. 

1.1.3 Shear-flow-structure interaction 

Dowell (1971) obtains a theoretical solution to the problem of a flexible plate 

subjected to a shear flow. A horizontal rectangular plate of finite dimensions is subjected 

to a horizontal compressible flow with a fully developed shear velocity profile. Through a 

nonlinear flutter analysis of the flexible plate, its stability is examined and the effects of 

the shear flow are studied. The direct effects of viscosity are neglected in the perturbation 

flow, and viscosity enters only through the effect ofthe mean flow on the perturbation 
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flow. The mean flow profile respects a no-slip boundary condition at the mean position of 

the oscillating plate and models a boundary layer of constant thickness. The inviscid 

perturbation flow is solved by applying a free-slip boundary condition at the 

instantaneous position of the plate. This is an important detail because normally, in the 

framework of linear aerodynamic theory, the boundary conditions are applied on the fixed 

reference surface. Dowell shows that by applying the conditions on the mean position of 

the surface, the stabilising effect ofthe boundary layer is overestimated as a result of the 

fact that the mean velocity is zero at the mean wall position. In order to apply the 

boundary condition on the instantaneous body surface, a nonzero value of displacement 

of the plate Zw is assumed and the flutter analysis is performed to determine the stability 

ofthat system for that range of motion. In other words, instead of applying the 

impermeability condition at Z = 0 where the undeformed plate lies, it is applied at an 

assumed position just off the plate z = zw. The pressure ofthe fluid acting on the plate is 

also taken at z = Zw instead of z = O. 

Implicit in this analysis is the assumption that the boundary layer of the mean flow 

is unaffected by the panel motion. As Dowell mentions, this is a reasonable assumption 

when the panel amplitude is small compared to the boundary layer thickness. As it tums 

out, that is when the shear flow has its most significant effect. On the other hand, when 

the boundary layer thickness is of the same scale or sm aller than the panel amplitude, the 

assumption is not valid. 

Païdoussis et al. (1985) study the stability of c1amped-c1amped coaxial shells 

conveying viscous fluid. To study this problem, the shell-vibration-dependent fluid forces 

are detennined by means ofinviscid, potential-flow theory, whereas the visc@us forces 

are detennined separately in a time-averaged sense. This time-averaged effect ofthe 

viscous forces is introduced in the system as a pre-stress on the shells. Flügge' s standard 

thin-shell equations [see Leissa (1973)] are rederived taking into account the steady 

pressure head 10ss and the shear stresses caused by the mean viscous flow. The equations 

ofmotion of the prestressed shells are then coupled with the time-varying equations 

describing the inviscid flow. The steady viscous forces have for effect the pressurisation 

and tensioning of the shell. Viscous damping is not accounted for. 
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El Chebair et al. (1990) theoretically study the stability of coaxial shells subjected 

to viscous inner flow in the shell and to annular flow. The novelty in this study is that 

here both the mean and the unsteady forces of the viscous flow on the shells are taken 

into account. The mean viscous forces are accounted for by using the equations of motion 

of shells subjected to viscous flow developed by Païdoussis et al. (1985). Then, instead of 

coupling these equations with an inviscid time-dependent flow solution as was done by 

Païdoussis et al., theyare coupled to an unsteady solution of the Navier-Stokes equation 

written using nonprimitive variables, namely the flow potential and a ve10city 

perturbation vector which represents the viscous perturbations. The point in using these 

nonprimitive variables is to separate the viscous and non-viscous effects in the flow into 

different equations so that they can be solved for independently. These independent 

solutions of the inviscid and viscous effects are then recombined in the linearised Navier­

Stokes equation to lead to the pressure and shear caused on the shell by the flow. In order 

to solve for the flow, a mean velocity profile has to be assumed. Although it is not 

mentioned in El Chebair et al. (1990), from El Chebair (1988) it can be learnt that a 

power law profile [see Schlicting (1979)] was used to model the entire flow, despite its 

weaknesses near the wall and near the centreline. 

El Chebair et al. encountered problems in applying the boundary conditions on the 

flow at the fluid-solid interface. In viscous theory, the no-slip condition must be applied 

at the wall: the velo city of the fluid at the wall must be equal to that ofthe wall. This 

requires that the mean flow velocity must be zero on the wall. It is argued that, in the 

absence ofmean flow velo city on the wall, the centrifugaI forces responsible for the static 

instability in the physical system vanish. This issue is similar to what Dowell (1971) 

encountered for the problem of the flat plate in shear flow. In order to recover the 

centrifugaI forces, two methods are tested: (i) allow a slip condition at the wall and 

assume that an average velocity is acting at the wall, and (ii) apply the boundary 

condition at a distance from the wall equivalent to the radial shell deformation. Both 

methods give similar results. It is shown, by comparing results obtained using the 

aforementioned theory, with results from the inviscid theory that the unsteady viscous 

effects are insignificant on the stability of the system for internaI flow and annular flow 

with a large gap between the shells. 
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Similar problems, re1ated to the application of the boundary conditions on the 

shell wall, were encountered byNguyen et al. (1994), who produced a fully coupled CFD 

solution for a cantilevered shell subjected to viscous annular flow with a rigid:-pipe outer 

containment, These problems were resolved in a similar manner as in El Chebair et al. 

[see Païdoussis (2003, Section 11.7.2)]. 

1.1.4 Numerical solutions for pipe flow 

Many different methods are employed to obtain numerical solutions for various 

types of pipe-flows in cylindrical coordinates. 

Sadeghi and Higgins (1991) and Sadeghi (1991) study the linear stability of 

sliding Couette-Poisseuille flow in an annulus through the use of the compound matrix 

method. This method involves combining the continuity and the three momentum 

equations into two third-order equations by eliminating the pressure and a velo city 

component, to later convert this system into a system of six first-order equations. The 

minors of this system of equations are integrated in space by me ans of an appropriate 

Runge-Kutta method, making use ofthe boundary condition at the lower bound of 

integration. An iterative procedure is required to find the eigenvalues which will satisfy 

the boundary conditions at the upper bound. Once the eigenvalues are found, the 

equations relating the minors to the solution are integrated numerically in space to obtain 

the eigenfunctions. The main advantage of the compound matrix method is its ease of 

implementation; its obvious drawback is that iterations are required to find the 

eigenvalues, and the initial guess must be close to the actual value in order for the method 

to converge. 

Maslowe (1973) studies the stability ofrigidly rotating inviscid flows subjected to 

non-axisymmetric disturbances. Because the case being studied is inviscid, it is possible 

by linearization to obtain a single second-order differential equation to define the radial 

velocity of the flow with respect to the radial position r. This equation can be integrated 

along the radial direction by making use of an explicit finite-difference scheme, i.e. a 

Runge-Kutta procedure. To deal with the singularity at the centre of the flow, the 
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differential equation is expanded about this point by the method of Frobenius to find the 

values of the radial velocity and its r-derivative at the lowest bound of integration. The 

integration does not start from r=0, because, according to the Frobenius expansion, the 

velocity and its derivative are both zero at this point, which leads to a trivial solution. The 

integration is therefore started at a pointjust off the centre. The major disadvantage of 

this scheme is that iterations are necessary in order to find the correct real and imaginary 

frequencies which allow for the flow solution to satisfy the impermeability boundary 

condition on the wall. For each iteration, the entire flow has to be integrated over again. 

Soh and Goodrich (1988) introduced a technique based on the finite-difference 

method, using a time-marching scheme with artificial compressibility to solve the 

incompressible Navier-Stokes equations. The momentum equations are discretised in 

physical time and are then written in a continuous pseudo-time derivative form. The 

continuity equation is preconditioned with a pseudo-time derivative of the pressure. In 

order to find the flow solution at each time step, the system of equations with artificial 

compressibility is marched in pseudo-time until the pseudo-time steady-state solution is 

reached. At this point the artificial compressibility and pseudo-time terms vanish and a 

solution is attained for the physical time-step. This scheme is repeated for every physical 

time-step. In effect, this pseudo-time marching is nothing but a c1ever way to introduce an 

iterative process. This scheme is used successfully by Nguyen, Païdoussis and Misra 

(1994) to study the dynamics of cantilevered coaxial cylindrical shells conveying fluid. 

To do this they solve the unsteady viscous flow between the coaxial shells in cylindrical 

coordinates. This method of solution allows studying the dynamics of the system really 

well but, on the other hand, a time-marching scheme is less efficient than an eigenvalue 

analysis for studying stability. 

Verzicco and Orlandi (1995) introduce a new time-dependent finite-difference 

scheme for solving the Navier-Stokes equations for the case ofthree-dimensional 

incompressible flows in cylindrical coordinates. The novelty of their study is the 

introduction of the radial flux on a staggered mesh, which simplifies the treatment of the 

region near the axis. The radial flux is equal to the radial velo city component times the 

radial position. In their study, because of the staggered grid, only the radial flux is defined 

at the centre of the flow and it is zero by definition. 
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Harlow and We1ch (1965) study transient viscous flows with a free surface. One 

key point of this work is the introduction of a staggered grid on which the Navier-Stokes 

and the continuity equations are discretised. The two-dimensional problem is solved in 

Cartesian coordinates where the velocity components and the pressure are defined on an 

Eulerian mesh of cells covering the computational region. For each ceIl, the local field 

variables are centred as shown in Fig. 2. Moreover, the x- and y-momentum equations are 

differenced, respectively, about the points where the x- and y- components of the velocity 

are defined. The continuity equation is differenced about the points where the pressure is 

defined. The scheme makes use of averages of adjacent values to evaluate the velo city 

components at points on the mesh where they are not defined. At first glance, this choice 

of grid might seem a little arbitrary, considering that no reason is given by the authors to 

justify their disposition of the variables on the mesh. On the other hand, their 

computational experiments do show "considerable numerical stability" for their 

computing technique. Patankar (1980) brings a possible explanation to this stability 

feature. On a grid which is not staggered (or which is staggered differently), the central 

pressure difference in the momentum equations and the central velocity differences in the 

continuity equation are evaluated using two altemate grid points instead oftwo adjacent 

ones. This not only diminishes the accuracy of the scheme but it also allows for a "zig­

zag field" where the values of the field variables oscillate from one grid point to the next. 

This numerical phenomenon is also referred to as "odd-even decoupling" or "sawtooth 

mode" [see Kallinderis (1992)]. Patankar (1980) also notes that these troublesome hurdles 

seem to be associated with the first derivatives, while the second derivatives are always 

well behaved and create no difficulties. 

Bélanger (1991), Mateescu et al. (1994a), Mekanik (1994) and Mateescu et al. 

(1996) adapted the staggered grid of Harlow and Welch (1965) to cylindrical coordinates 

to solve their problems. 
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Fig. 2. Field variable value placement about a computational cell. Velocities are defined at the cell 
boundaries while pressures are defined at cell centres. [Figure inspired from Harlow and Welch 
(1965). ] 

Vinokur (1982) studies the stretching functions employed for finite-difference 

calculations. In order to make a finite difference scheme more efficient, stretching 

functions are used to concentrate more grid points in the regions ofhigher gradients. This 

technique is especially useful for problems with moving walls or problems including 

boundary layer effects. Bélanger (1991), Mateescu et al. (1994a), Mekanik (1994) and 

Mateescu et al. (1996) use the grid stretching functions ofVinokur (1982). 

1.2. Aims and overview of the thesis 

This thesis aims at developing a model to study the effects of viscosity on the 

stability of a rotating thin cylindrical shell conveying a co-rotating viscous flow. Building 

upon the discovery made by Cortelezzi et al. (2004) that the inviscid model is flawed, it is 

believed that the added realism brought by the introduction of viscosity in the model will 

lead to a successful model. 

The objectives ofthis thesis are quadruple: Ci) rederive the inviscid mode! 

developed by Lai and Chow, to set a benchmark for the viscous model and to explain 

further the results ofCortelezzi et al.; (ii) develop a model considering the interaction 

between the viscous fluid and the structure, while paying special attention to the interface 
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between the fluid and the structure; (iii) develop an original numerical method to solve 

the viscous flow; (iv) characterise the linear behaviour of the system. 

The objectives of the thesis are met in the following 6 chapters: the shell equations 

are introduced and the inviscid fluid model is rederived in Chapter 2; the viscous model is 

derived in Chapter 3; the numerical scheme to solve the viscous model is explained in 

Chapter 4; the results obtained with the inviscid theory are presented in Chapter 5; the 

results obtained with the viscous theory and the numerical scheme utilized are presented 

in Chapter 6; the thesis is conc1uded in Chapter 7. 
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Chapter 2 

Formulation of inviscid model 

2. 1. Formulation of the structural part of the problem 

Consider a cylindrical shell ofradius R', thickness h' ,ofinfinite length, 

containing an axial fluid flow. The whole system is in a frame ofreference rotating about 

the axis of the cylinder at rate n'as illustrated in Fig. 3. In other words the fluid-shell 

assembly is undergoing solid body rotation. The system is described with the orthogonal 

dimensional coordinates r' , (), Z', respectively in the radial, circumferential and axial 

directions. Along these coordinates are defined the unit vectors ër , ëo and ëz • The 

equations of motion for the coupled fluid-structure system can be found by summing the 

forces in the three directions z' , (), r' . This sum of forces can be written in matrix form, 

where the dynamics ofboth the structure and the fluid can be accounted for by a matrix 

linear differential operator: 

(2.1) 

where u' , v' and w' are the orthogonal time-dependent components of displacement in 

the z' , () and r' directions, respective1y. These components of displacement are 

functions of the independent variables () and Z'. 

Note that to differentiate dimensional variables from dimensionless ones, the 

dimensional quantities are marked with a prime, ( )'. 
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Fig. 3. Schematic of the system. 

The deformation of a cylindrical shell of radius R', thickness h', Young' s 

modulus E' and Poisson's ratio v can be modelled using the Donnell-Mushtari theory. 

The derivation of this shell theory can be found in many reference textbooks, such as 

Leissa (1973), Soede1 (2004), Kraus (1967) and many others. Using the Donnell-Mushtari 

theory, the structural rigidity of a thin cylindrical shell is govemed by three force 

intensity (force per unit area) equations associated with the longitudinal, circumferential 

and radial directions of the shell: 

E'h' [a2
u' 1-va2

u' 1+v a2
v' v aw'] 

1-v2 az,2 + 2R,2 ae2 + 2R' az' ae + R' az' = -q~ , (2.2) 

(2.3) 

(2.4) 

where 

(2.5) 
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and q:, q~ and q; are the force intensity components accounting for all body and surface 

force intensities acting on the shen. The Donnell-Mushtari thin cylindrical shell equation 

is based on the following assumptions: the thickness of the shell is small compared with 

its radius, which implies among other things that shear deformation is negligible; strains 

and displacements are sufficiently small for quantities of second- and higher-order 

magnitude in the strain-displacement relations to be neglected in comparison with the 

first-order terms; the radial normal stress is small compared with the other two normal 

stress components and may be neglected; at every location on the shen, the normal to the 

underformed middle surface remains aligned in the same direction and normal to the 

deformed middle surface as the shell deforms (this assumption, which is also referred to 

as the Kirchhoffhypothesis, represents an extension to the case of a thin elastic shen of 

the familiar Euler-Bemoulli- hypothesis ofbeam theory which states that "plane sections 

remain plane"; the assumption of the preservation of the normal implies, among other 

things, that an of the strain components in the direction of the normal to the reference 

surface vanish); in the changes in curvature and in the twist of the midsurface, the 

tangential displacements and their derivatives are neglected (from this simplification, the 

stretch of the shen only depends on the strain and the transverse displacement); Hooke's 

law is the constitutive law obeyed by the material; shen material is isotropic; symmetry of 

the stress tensor (neglect body couples). The interested reader is referred to Leissa (1973) 

for more information relative to the derivation of these shell equations. 

We can express the position of an arbitrary element of the undeformed shen with 

the fonowing position vector: 

(2.6) 

This same arbitrary e1ement of the deformed shen is then located at 

-t (R' ')- ,- (' ')-1j = + w er + ven + z + u ez • (2.7) 

Because the radius ofthe shen is much larger than its thickness, we can neglect 

the effect of rotary inertia; therefore, the only body force intensity acting on the shen in 

this problem is the d'Alembert force caused by the translatory inertia measured in the 

rotating frame ofreference. The absolute acce1eration of a shell element located at ~' is 

given by 
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(2.8) 

where the relative velocity with respect to the rotating frame of reference is given by 

_, a , 
{U'} 

V
rel = at' :' , 

(2.9) 

and the relative acceleration by 

(2.10) 

The three components of the absolute acceleration can then be written as 

a2 , 
, U 

a =--
z &'2' 

(2.11 ) 

a2 , ~.l 
, V Il,2, 211' uw a =---;loO!: v + ;loO!:-, 
8 at,2 at' 

(2.12) 

(2.13) 

The d'Alembert force intensity created by the acceleration of a shen element is 

proportional to its density p; multiplied by its thickness (the mass of a unit surface area) 

F-, 'h'-' 
DA = -Ps a. (2.14) 

The only surface force intensity acting on the shen is caused by the interaction of 

the shen with the fluid at the interface: 

{
F;,:} 

F; = F~,8 , (2.15) 

Ff,r 

where F;,z' Fi,8 and Fi,r are, respectively, the longitudinal, circumferential and radial 

components of the force intensity caused by the fluid on the wall. 

The total force intensities acting on the shen surface are then (i) the d'Alembert 

force intensity of eq. (2.14), which can be evaluated using the acceleration components of 

eqs. (2.11 )-(2.13), and (ii) the fluid force intensities of eq. (2.15): 
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(2.16) 

q' =_P'h,[82V' _Q'2V'+2Q,aw']+F' , 
o s 8t,2 8t' J,O 

(2.17) 

, =_P'h,[8
2
W' _2Q'8v' _Q'2W'_R'Q'2]+F' . 

qr s 8t,2 8t' J,r 
(2.18) 

By substituting eqs. (2.16)-(2.18) into eqs. (2.2)-(2.4), the structural part of the 

problem can be expressed in one linear matrix operator: 

[~1{::} = P;h'{ ~ }-{ ~:: }, (2.19) 
W' R'Q,2 -F' 

J,r 

where 

1-v2 

E'h' [~1= 

[a' l-v a' 
8Z,2 + 2R,2 8e2 

l+v 82 v 8 
----

l-v' a'] 2R' 8z'8e R' 8z' , 
-PS E 8t,2 

l+v 82 

[l-V a' 1 a' 
-2- 8Z,2 + R,2 ae2 [1 8 

R,2 ae (2.20) ----
2R' az'ae _ ,l-v' (~-o,,)] -20' ,l-v' ~] 

Ps E' at,2 Ps E' at' 

V a 
[1 a 

R,2 ae 
[_1_ + h,2 ,\/'2,\/'2 

R,2 12 

R'Oz' -20' ,l-v' ~] , 1 - v' (a' 0" ) ] 
Ps E' at' +PS E at,2-

One can notice that the signs of the radial components of eq. (2.19) are reversed as 

compared with eq. (2.4). The sign change was made to preserve the symmetry of the 

matrix linear operator. As pointed out in Leissa (1973), nonsymmetric equations of 

motion can yield imaginary vibration frequencies. 
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The following quantities are introduced to make the analysis dimensionless, 

namely the timescale, the thickness ratio and the density ratio: 

, ~ R' ~ ,1-v' h ~ !{ r ~ p; 
y Ps E" R' ' p' ' 

(2.21) 

which Iead to dimensionless quantities oftime, rotation rate, position, force intensity and 

deformation: 

t ' 
t=~, o=yn', 

y 

r' 
r=­

R' ' 

Z' 
z=­

R' ' 

12 

F =-y-F' 
J p'R'2 J' 

J,z ,2 J,z 1 

{
F } {FI} {U} {U

I
} 

(2.22) 

~:: ~ :R" ~::' : ~ R<, . 
With the quantities of eqs. (2.22), the undeformed and deformed position vectors (2.6) 

and (2.7) can be made dimensionless: 

~ = (1 + w) ër + vëo + ( z + u) ëz • 

(2.23) 

(2.24) 

Eq. (2.19) can then be rewritten in dimensionless form: 

{
U} {O} _1{FJ,z} 

[41 : - ~, ~ hr :;:;, , 
(2.25) 

where the dimensionless structural operator take this form: 

[L:s ] = 
a2 I-v a2 a2 l+v a2 

-+------az2 2 ae?- at2 
----

2 azae 
a 

v-az 
l+v a2 I-v a2 a2 

2 a2 

----+-+0 --
a a .(2.26) 
--20-----

2 azae 
a 

v-az 

2 az2 ae2 at2 

~-20~ 
ae at 

ae at 
1 h2 n2n2 n2 a2 

+-Y y -Io,/; +-
12 at2 

In eq. (2.25) the 0 2 term accounts for the static centrifugaI force acting on the 

shell introduced by the steady rotation. Its effect is not accounted for in this stability 

analysis as it only induces a static deformation. The interested reader can refer to 
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Païdoussis et al. (1985) to understand how the static forces can be accounted for in the 

model. 

To investigate the stability ofthe shell to travelling waves, we assume a solution 

of the following form: 

{:} = me~( -ib - inB + imt) ~ {;}eXP(ia), (2.27) 

where OJ, k and n are the dimensionless frequency, axial wavenumber and cÏrcumferential 

wavenumber and where fi , v and w are the initial dimensionless amplitudes much 

smaller than 1. Substituting the solution of eq. (2.27) in eq. (2.25) leads to: 

{fi} { 0 } { Ff,z } [L.l : exp ( -ib-inB+iœt)- ~, ~;;. :;;, ' (2.28) 

where 

-ivk 

-in-i2QOJ 
.(2.29) 

-ivk -in-i2QOJ 

The objective now is to eventually express eq. (2.28) in the form 

(2.30) 

where [L] is a 3 x 3 matrix accounting for both the structural and the fluid forces of the 

system. By rewriting the force balance as an eigenvalue problem, we can obtain a 

dispersion relation (a relation between OJ, k, n, and Q) by expanding det[ L] = O. For 

this, we first need to reformulate the fluid forces acting on the shell in the same form as 

eq. (2.27). 
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2.2. Formulation of the inviscid fluid model 

The fluid force intensities acting on the shen and defined in eq. (2.15) are the 

projection of the fluid stress tensor on the interface 

{F'} {' } 
J,z cr T% 

F; = ;',8 = - ~8 __ ' 
J,r " r =r. 

(2.31) 

where cr~, cr;8 and cr~ are respectively the shear stresses and the radial stress in the fluid 

and where if is the position of the defonned wall defined in eq. (2.7). Notice that here we 

make the approximation that the difference between the position of the middle and the 

inner surface of the shen is negligible. This approximation, which only influences the 

ca1culations ofthe effect of the fluid on the shen, is acceptable for very thin shells, as is 

the case here. It is usual to make this simplification in fluid-structure interaction studies 

with shells and it was also made by Lai and Chow (1973) and El Chebair et al. (1990). 

With the quantities of eqs. (2.21), we can define the dimensionless stresses in the 

fluid 

(2.32) 

By assuming inviscid flow, the shear components ofthe fluid stress can be set to 

zero: 

cr =crn=O 
T% r" 

(2.33) 

and the radial component is simply the pre~sure: 

cr" =-p. (2.34) 

In order to find the effect of the fluid on the shell, aIl that must be found is the pressure P 

at position ~ . 

Consider an incompressible inviscid fluid of density p' bounded by a cylindrical 

surface of infinite length and radius R'. The whole undergoes solid body rotation about 

the axis of the cylinder at rate Q' , and the dynamics is studied in a frame ofreference 

rotating at the same rate Q' . The fluid flows axially with a velocity (J' , constant across 

21 



the section of the cylinder. The system is described with the same orthogonal dimensional 

coordinates defined for the structural problem in Section 2.1; namely r' , f), z' which are 

respectively in the radial, circumferential and axial directions. Along these coordinates 

are defined the unit vectors ër , ëo and ëz • Recall that the dimensional variables are 

marked with a prime, ( )', as opposed to the dimensionless variables. The general 

behaviour of the inviscid flow of an incompressible fluid with constant density obeys 

Euler's equation and continuity: 

(2.35) 

V'·V'=o. (2.36) 

In order to nondimensionalize the equations ofmotion of the fluid (eqs. (2.35)-(2.36», a 

scaling velocity has to be introduced. The reduced velo city sc ales the average mean flow 

velocity with respect to the structural timescale and size scale (eqs. (2.21 »: 

U'r' - (1-v2
) 

U ---=U' , 
R - R' - PS~E-'~ (2.37) 

where U' is the average dimensional flow velocity in the cylinder. Sorne authors utilize 

the Strouhal number - strictly the inverse of the reduced velocity - to nondimensionalize 

their equations. We also introduce the dimensionless pressure, fluid partic1e velocity and 

external force 

p'r,2 
p=--- p'R,2' 

- V'r' v=­R' , 
- o.'r,2 
Q=-. 

R' 
(2.38) 

Making use of the quantities defined in eqs. (2.21), (2,22) and (2.38), eqs. (2.35) and 

(2.36) can be rewritten in dimensionless form: 

av (- -) - - -at + V·V V=-VP+Q, (2.39) 

v·v=o. (2.40) 

We consider the fluid in a frame of reference rotating at the same rate as the solid body 

rotation the shell-fluid assembly is subjected to. The effect of the solid body rotation on 

the fluid can be expressed as a force field: 
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(2.41) 

Ifwe introduce the dimensionless velocity components in the radial, circumferential and 

axial directions 

(2.42) 

the dimensionless Euler equation (2.39) can be rewritten in cylindrical coordinates in 

scalar form: 

ôv;. _ 2n v: + V ôVr + Ve ôVr _ V: + V ôVr _ n2r = _ ôP 
ôt e r Br r ôB r Z ôz Br ' 

ôVe +2nV +V ôVe + Ve ôVe + v;.Ve +V ôVe =_! ôP 
ôt r r ôr r ôB r Z ôz r ôB' 

(2.43) 

ôVz + v;. ô~ + Ve ôVz + V
z 

ôVz = _ ôP. 
ôt ôr r ôB Bz ôz 

In eqs. (2.43) the Coriolis terms arise from the rotating frame ofreference. The continuity 

equation (2.40) in cylindrical coordinates is as follows: 

!~(rv;.)+! ôVe + ôVz =0. 
r ôr r ôB ôz 

(2.44) 

Because the present study is linear, we make the assumption that the normal to the 

underformed shen surface remains unchanged as the shen deforms. Because of this 

simplification, we make the implicit assumption that only the radial displacement w (eq. 

(2.27)) of the shell influences the flow (not the circumferential and the axial 

displacements u and v). This is inevitable, as an inviscid fluid cannot transmit shear. 

Since we assume that the normal vector to the shell surface does not change as the . 
shen deforms, the impermeability condition is applied in the direction of the normal to the 

surface and free slip is allowed in the parallel directions. Knowing that the normal to the 

undeformed cylindrical shell wall is in the radial direction, in order to satisfy the no 

penetration boundary condition, the radial velocity of the flow has to match the radial 

velo city of the shell wall: 

(2.45) 

in which 
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D a Vu a a a 
-=v-+---+v-+-
Dt r ar r aB z az at' 

(2.46) 

and where w is defined in eq. (2.27) and ~ in eq. (2.24). Eq. (2.46) is substituted into eq. 

(2.45), yielding 

V = V -+---+V -+- . [ aw Vu aw aw aw] 
rlr=ii. r ar r aB Z az at r=ii. 

(2.47) 

The derivatives of w can be evaluated by making use of the definition of eq. (2.27) 

Vrlr=ii. =[w( -in; -ik~ +iOJ )] ___ ' 
r-Ij 

(2.48) 

In view of eq. (2.27), we can apply a perturbation scheme with a travelling wave solution 

of the foIlowing form : 

= Po (r) + p (r) eiŒ 
, P = Pa (r) + p(r ) exp (-ikz - inB + iOJt) 

Vr = vr(r)exp(-ikz-inB+iOJt) 

Vu = Vu (r)exp(-ikz-inB+iOJt) 

= vr (r )e
iŒ

, 

=vu(r)eiŒ
, 

(2.49) 

Vz = UR + Vz (r )exp( -ikz - inB + iOJt) = UR +VZ (r )e
iŒ

• 

The perturbation solution (2.49) is then substituted into eq. (2.48) ; thus, 

[v,ela 
],., = [+",-in ~ w-ik{UR +v,w})L . (2.50) 

Because the boundary condition (2.50) is exclusively composed of perturbation terms, the 

difference between evaluating it at the instantaneous sheIl position ~ or at the mean 

position of the sheIl Fo is of second order, hence negligible. This is further discussed in 

Appendix A. By neglecting second-order terms as weIl as the difference between 

evaluating eq. (2.50) at Fo instead of ~, the first-order approximation of the radial 

velocity at the boundary can be written as 

vrL=t =i(OJ-kUR)w or v;.lr=t =i(OJ-kUR)w, (2.51) 

where the definitions of eqs. (2.27) and (2.49) are used to relate the two versions of eq. 

(2.51). The no-penetration boundary condition obtained in eq. (2.51) is identical to what 

Lai and Chow (1973) obtained. In the circumferential and longitudinal directions, the 

fluid is subjected to a free-slip boundary condition. 
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We can find the steady pressure distribution by substituting the perturbation 

scheme of eqs. (2.49) into the first of eqs. (2.43) and setting all perturbation tenns equal 

to zero. This gives 

(2.52) 

By integrating we get 

(2.53) 

where PR is the constant pressure at the shell-fluid interface. This tenn, which leads to a 

static defonnation, can be used to model the pressurisation of the shell, but its effect 

cannot be accounted for with the CUITent fonn of this linear stability analysis. This issue is 

similar to what is discussed just after eq. (2.26) for the 0 2 tenn of eq. (2.25). The 

pressure in the flow can be found by substituting the steady pressure from eq. (2.53) into 

the perturbation solution of eqs. (2.49) 

P = PR _~02 (1-r2)+ p(r )eia
• (2.54) 

We substitute the perturbation scheme of eqs. (2.49) into the three components of 

Euler's equation (2.43) and the continuity equation (2.44), making use of eq. (2.52) to 

remove the steady pressure tenns; thus we get 

.( -) Bp 1 OJ-U k v -20v =--
R, e Br' (2.55) 

( -) in 20vr +i OJ-URk ve =-p, 
r 

(2.56) 

(2.57) 

v, av, in ·kv 0 -+---V -1 = r Br r e z • 
(2.58) 

The reader might be interested in having a look at the partial differential equation system 

obtained by introducing a simple perturbation scheme into eqs. (2.43)-(2.44) and have a 

carefullook at the linearization of the system ofequations. This is done in Appendix B. 

By making use of eqs. (2.49), (2.55) and (2.56), after sorne manipulation the 

boundary condition of eq. (2.51) can be reformulated as a pressure boundary condition: 
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[BP -n 20 p] =(OJ-kURr(l-( 20 )2JW' 
Br OJ - kUR r r=\ OJ - kUR 

(2.59) 

We now define a dimensionless parameter relating the rate of rotation to the 

difference between the travelling-wave velo city and the axial flow rate: 

A= 20 
OJ-kUR 

(2.60) 

This dimensionless parameter can be thought of as the inverse of the pitch of the flow: it 

counts how many rotations a flow partic1e undergoes during its axial travel between two 

crests of amplitude of a travelling wave. To relate to the work of Chow (1969) and 

Maslowe (1974), the quantity l/kA can be thought of as a modified Rossby number, 

where UR -OJ/k is the velocity of the flow relative to the travelling waves in the shell. 

The Rossby number was defined in eq. (2) ofChapter 1 as & = UR /20. 

With sorne manipulations, eqs. (2.55)-(2.58) can be combined with eq. (2.60), to 

reduce the system of four equations and four variable to an ODE of the perturbation 

pressure: 

B
2 
P 1 Bp [n2 2 2 ] -+--- -+k (I-A ) p=o. 

Br2 r Br ,2 
(2.61) 

Eq. (2.61) is a variant of Bessel's equation. It can be solved withdifferent functions 

depending on the value of A. The solution is completely determined by satisfying the 

boundary condition of eq. (2.59). 

Three solutions are obtained: 

for A2 > 1 

(2.62) 

for A2 < 1 

(2.63) 

for A 2 = 1 and n '* 0 

26 



(2.64) 

and for A 2 = 1 and n = 0, no solution other than the trivial solution is found. 

Eqs. (2.62) and (2.63) are equivalent to the perturbation pressure found by Lai and 

Chow (1973). However, eq. (2.64) differs slightly from the solution of Lai and Chowt . 

Little infonnation is given by Lai and Chow (1973) or even Lai (1972) relative to the 

algebraic manipulations leading to their perturbation pressure solution. In any case, the 

solution of eq. (2.64) is only valid for two straight lines on the 0) - UR parameter space. 

2.3. Coupling of fluid and structure 

The pressure exerted by the fluid on the shell surface can be expressed linearly by 

expanding it around the mean wall position and neglecting the second order terms of a 

Taylor expansion: 

pl ___ =pl-_- +w ap 
+ v.!. apI +uapi +o(u2 )+o(v2 )+O(W2

). (2.65) 
r-rl r-ro ar _ _ r aB _ _ az __ 

r=~ r=~ r=~ 

We substitute the pressure given by eq. (2.54) into the expansion of eq. (2.65) and neglect 

second order terms. Recalling that the mean position of the wall Fa is given in eq. (2.23), 

the pressure at the wall can then be written as a linear function of the wall displacement 

(2.66) 

Substituting eq. (2.66) into eq. (2.34) and making use of eqs. (2.33), the fluid stresses 

acting on the shell wall are found to be 

(2.67) 

2 8(n+l)w!:irn - 2 2 n n(n+l) 
tInLaiandChow,for A =1, p(r)= 2 =(OJ-kU

R
) -r W 2 wasobtainedas 

n(n+l)+k n (n+l)+k 

opposed to eq. (2.64) here. 
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In order to substitute eq. (2.67) back into the fluid-structure problem eq. (2.28), 

we introduce the following quantity, which can be thought of as a pressure influence 

coefficient relating the pressure exerted at the wall with the amplitude of the wall 

deflection: 

(2.68) 
w 

Using eq. (2.68), eq. (2.67) can be substituted back into the fluid-structure problem eq. 

(2.28) to give 

o ]{U} {O} {O} 1 o v =- 0 + 0 . 
7r+Q2 W hr P

R 
Q2 

(2.69) 

One notices that the terms on the left-hand-side of eq. (2.69) are all perturbation terms 

proportional to u, v, w, while on the right-hand-side the terms are of zeroth order. These 

zeroth order terms cause static deformation of the shell. As discussed just after eqs. (2.26) 

and (2.53), the method of solution used here does not allow taking into consideration 

static deformation. If one drops these static terms of the right-hand-side, eq. (2.69) can be 

rewritten in the desired form of eq. (2.30), where the linear matrix accounting for the 

dynamics of the coupled system is given by 

I-v _k2 ___ n2 +oi _1+v kn -ivk 
2 2 

[L]= _1+v kn 
[_I~V e-n2 

-in-i2Qm (2.70) 
2 

+ Q' +",' ] 

-ivk -in -i2Qm 

[h' , 1 + 12 ( k2 + n2) _ Q2 

_m2 __ 1 (7r+Q2)] 
hr 
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Eq. (2.30) with matrix [L] given by eq. (2.70) can be solved by taking its 

determinant equal to zero. A sixth order polynomial of variable OJ is then obtained. Two 

methods are used to obtain the dispersion relation and be able to plot curves of OJ versus 

UR. The first is an iterative numerical root-finding method, which consists offinding the 

pair of roots closest to zero, and then following their values as the flow velocity is 

incremented. The second is a zero-Ievel contour method. For a given domain of OJ and 

UR' the dispersion relation is evaluated and a zero-Ievel contour plot is realized with this 

data. More information about these methods can be found in Pong (2000). 
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Chapter 3 

Formulation of viscous model 

In the formulation of the structural part of the inviscid mode1 in Chapter 2, no 

assumptions were made regarding the flow which interacts with the shell. The shell model 

developed in Section 2.1 can therefore be used in the formulation of the viscous theory 

model as well. Eq. (29) from Section 2.1 gives the summation of forces in the three 

directions: 

[L.lmeXP(-i~-inB+iœt)-{1,}~ ~~ {3;,}· (3.1) 

where on the left-hand side of eq. (3.1) are the shell-related terms with the matrix [.ca] 

defined in eq. (2.29), and where on the right-hand side of the equation is the vector of the 

force intensities produced by the fluid on the shell wall. 

From eq.(2.31), recall that the dimensionless fluid force intensities acting on the 

shell are written as the fluid stresses evaluated at the deformed position of the shell 

(3.2) 

One has to be careful with the signs ofthe three fluid stresses. Recall that in eq.(3.1), 

every tenn in the radial direction was made negative to preserve the symmetry of the 

matrix [.ca]' As in Chapter 2, we aim to get a flow solution which allows us to write the 

problem in the desired fonn, i.e., 

(3.3) 
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3.1. Equations of motion of the viscous fluid 

Consider an incompressible viscous fluid of density p' and viscosity p', bounded 

by a cylindrical surface of infinite length and radius R' . The whole undergoes solid body 

rotation about the axis of the cylinder at rate Q' , and the dynamics is studied in a frame 

of reference rotating at the same rate Q' . The fluid flows axially with a fully developed 

velocity~rofile U' (r'). The system is described with the same orthogonal dimensional 

coordinates defined for the structural problem in Section 2.1; namely r' , (), z', which are 

respectively in the radial, circumferential, and axial directions. Along these coordinates 

are defined the unit vectors ër , ëe and ëz • Recall that the dimensional variables are 

marked with a prime, ( )', as opposed to the dimensionless variables. The equations of 

motion governing an incompressible viscous flow are the Navier-Stokes and the 

continui1yequations: 

(3.4) 

V'·V'=o, (3.5) 

where V' is the fluid velocity and Q' is an external force acting on the fluid. In order to 

nondimensionalise the equations of motion of the fluid, we recall the timescale defined in 

eqs. (22) of Chapter 2: 

'~R-J ,1-v' r - Ps E' . 

With this timescale, we can define the reduced velocity UR (r) and the average reduced 

velo city OR which scale the mean flow velo city U(r) and the mean flow velo city 

averaged across the section of the cylinder 0 with respect to the structure time and size 

scales: 

U (r)= U'(r')r' =u'(r')~p' I-v2 

R R' S E' , (3.6) 

U-" W2 o =-'L=O' ,~ 
R R' Ps E' , (3.7) 
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where U' is the average dimensional flow velocity across the section of the cylindrical 

shell. We also introduce the dimensionless pressure, fluid partic1e velocity and external 

force, defined as follows: 

p'y,2 
p=-­

- p'R,2' 
- V'y' v=-- R' , 

- Q'y,2 
Q=-. 

R' 

The Reynolds number relates the inertial forces to the viscous forces in the flow: 

2U'R'p' 
Re= . 

Ji' 

(3.8) 

(3.9) 

Making use of the definitions of eqs. (3.7)-(3.9), the Navier-Stokes equation (3.4) and the 

continuity equation (3.5) can be rewritten in a dimensionless fashion: 

av (- -) - - 2U [ -J --+ v·v V=-Vp+ __ R V 2V +Q, 
al Re 

(3.10) 

v·v=o. (3.11) 

Here, the rotating frame of reference leads to the following external body force: 

- 2-Q = n rer • (3.12) 

If we introduce the dimensionless flow velo city components in the radial, circumferential 

and axial directions, 

the dimensionless Navier-Stokes equation (3.10) can be rewritten in cylindrical 

coordinates in scalar form: 

(3.13) 

(3.14) 

(3.15) 
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(3.16) 

In eqs. (3.14) and (3.15), the Coriolis tenns arise from the rotating frame ofreference. 

The continuity equation (3.11) in cylindrical coordinates written with respect to the 

ve10city components of eq. (3.13), is 

.!.~(rVr)+.!. aVe + avz =0. 
r ar r ae az 

(3.17) 

Consistently with the assumptions made to derive the Donnell-Mushtari shell 

equations, we make the assumption that the nonnal vector to the shell surface does not 

change as the shell defonns; this is conventional in a linear analysis. Renee, for a no-slip 

boundary condition, the velo city of the fluid at the wall is simply the velocity of the wall: 

v,lr=~ = n;1- _ ' 
r='t 

V __ =- , 
1 

Dvl 
e r=1j Dt __ 

r=1j 

1 

Du V __ =- , 
z r=rl Dt __ 

r=1j 

where u, v, w are the three shell perturbation quantities defined in eq. (2.27): 

{:} = {~}exP( -ib- ine + iwt) ~ {~}eXP(ia). 
The material derivative is given by 

D a a Ve a a -=-+v,-+---+v:-. 
Dt at ar r ae az 

(3.18) 

(3.19) 

(3.20) 

Making use of the definitions of eqs. (3.19) and (3.20), the boundary conditions of eqs. 

(3.18) can be rewritten as 
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~I ___ = W[im- in Ve -ik~J ' 
r-Ij r __ 

r=1j 

(3.21) 

One quickly notices the added complexity when comparing eqs. (3.21) with eq. (2.51), 

the boundary conditions of the inviscid theory; under the free-slip and impermeability 

conditions, only the transverse displacement w affects the flow, as shear cannot be 

transmitted by inviscid flow. With the inclusion ofviscosity in the model, all three shell 

perturbation components have an influence on the flow. So, now, we are dealing with a 

system subjected to not one but three perturbations. The idea to be developed in what 

follows, is to superpose three different fluid solutions, each proportional to one of the 

three perturbations. 

3.2. Triple perturbation scheme 

Similarly to what is done in the inviscid model, the velo city of the fluid is 

decomposed in two distinct parts, namely the steady mean flow velocityand the unsteady 

perturbation velo city: 

il (r,e, z,t) = Va (r) +v (r )eia
, (3.22) 

where the perturbation velocity bears a travelling-wave form identical to eq. (3.19). Since 

the perturbation of the flow is due to the three deflections of the shell, the perturbation 

velocity is expanded as a power series of the amplitude ofthese deflections 

v(r) =~w (r )w+~v (r)v +~u (r)i7 + ~! [~ww (r )w2 +~vv (r )v2 +~uu (r )i72 

+2~vw (r )vw+ 2~uv (r )i7v + 2~uw (r)i7 wJ+ ... , 
(3.23) 

where the vectors ~x (r) are velocity "influence functions" which relate the fluid velo city 

at location r caused by one or more perturbation indicated in the subscript. These ve10city 

influence functions are not small; the amplitude of the shell deflections, on the other 
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hand, is assumed in the derivation of the shell equations to be arbitrarily small. Since this 

is a linear study, we consider only first-order terms, 

(3.24) 

The perturbation velocity vector of eq. (3.24) can be written in componentlmatrix form: 

(3.25) 

Since the only mean flow ve10city component is along the axis and is given by eq. (3.6), 

eq. (3.22) can be rewritten in component form by making use of eq. (3.25): 

(3.26) 

Through the Navier-Stokes equations (3.14)-(3.16), the perturbation velocity 

causes a perturbation pressure in the fluid, which takes a similar form as eq. (3.22), 

P(r,e,z,t) = PR + Po (r,z)+ p(r )eia 
• (3.27) 

Similarly to the flow velocity influence functions of eq. (3.24), we introduce the pressure 

influence functions which are the superposed pressure perturbations caused by the three 

distinct perturbation amplitudes: 

p(r) = Pu (r)U- + Pv (r)v + Pw (r)w. (3.28) 

We then combine eqs. (3.27) and (3.28): 

P(r,e,z,t) = PR + Po (r,z)+[pu (r)U- + P. (r)v + Pw (r)w Jeia 
• (3.29) 

'fhe introduction of the velo city and pressure influence functions is necessary in 

this solution scheme because of the nature of the problem we are solving. Since we are 

solving an eigenvalue problem (a linear problem), the amplitude of oscillation of the shell 

is unknown and arbitrary; it cannot be solved for. In analytical studies such as Lai and 

Chow (1973), the amplitude is explicitly kept throughout the derivation of the equations 

of motion, and it is cancelled out in the end when the equations of the shell and the fluid 

are coupled back together. It is impossible to do this here. Since we use numerical 

methods to solve the fluid we must solve for floating point values. The values we solve 

35 



for numerically cannot contain the arbitrary amplitude; this is why we shaH solve for the 

velo city and pressure influence functions in order to obtain a solution for the flow. 

3.3. Mean flow solutions 

Two different mean flows are presented here: the laminar mean flow derived from 

the leading order terms of the Navier-Stokes equations and the turbulent mean flow based 

on empirical relationships. 

3.3.1. Laminar mean flow 

The steady solution to the problem ofrotating viscous pipe-flow can be found by 

applying the perturbation scheme of eqs. (3.26) and (3.29) to eqs. (3.14) and (3.16) while 

keeping only the leading order terms: 

(3.30) 

0= - BPo + 2UR [!~(r~UR (r ))]. 
Bz Re r Br Br 

(3.31) 

Since the flow is fully developed, we can assume that the steady pressure solution has the 

following form: 

Po (r, z) = IJI (r) + ç (z). (3.32) 

We substitute this solution back into eq.(3.30): . 
(3.33) 

and by integrating we obtain 

(3.34) 

Then we substitute eq. (3.32) into eq. (3.31) and separate the z-dependant term from the r­

dependant terms: 

-=- -- r-UR(r) = const. , BÇ 2U R [1 B (B )] 
Bz Re r Br Br 

(3.35) 
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which when integrated leads to the steady axial flow velocity profile: 

UR (r) = Clr2 + C2 ln(r )+C3 , (3.36) 

Since the velo city profile has to be finite for 0::; r ::; l, the logarithmic term must vanish; 

i.e., C2 = o. 
Introducing the perturbation scheme of eq. (3.26) into the longitudinal boundary 

condition (3.18) and keeping only the zeroth-order term leads to the mean no-slip 

boundary condition 

(3.37) 

Substituting eq. (3.37) in eq. (3.36), one finds that C3 = -Cl' AlI that is missing to 

completely define the flow profile is a scaling constant. Since the average flow velocity 

UR is aIready present in the equations of motion, it will be employed to sc ale the flow 

profile: 

- lJ( 2 ) 2 UR = Clr -Cl dr =--Cl · 
o 3 

(3.38) 

We can then express the velo city flow profile as 

(3.39) 

This is the typicallaminar Poisseuille or parabolic velocity profile. Inserting the velocity 

profile of eq. (3.39) in eq. (3.35), the axial pressure distribution can be found to be 

U 2 

s=-12-R-z. 
Re 

(3.40) 

Substituting the axial and the radial pressure distributions of eqs. (3.34) and (3.40) into . 
eq. (3.32), the steady static pressure in the flow is then given by 

- 2 

Po(r,z)=~n2(r2-1)-12ie z, (3.41) 

where the first term is the pressure term accounting for the centrifugaI force field in the 

fluid and the second term accounts for the change of pressure along the length of the 

cylinder due to the viscous friction with the walIs. 
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3.3.2. Turbulent mean flow 

The turbulent mean flow used here is based on widely adopted empirical 

re1ationships, namely the venerable 117th power-Iaw profile, the empiricallaw ofthe wall 

and Colebrook's equation. 

From Munson et al. (2002), the 117th empirical power-law velocity profile is 

(3.42) 

where Uc is the centreline reduced velocity. By integrating eq. (3.42) over r from 0 to 1, 

we can replace the centreline velocity for the average mean velocity in the equation: 

(3.43) 

The power-law profile has a flaw at the wall (at r=1): its slope is infinite. For this reason 

the law of the wall is employed to evaluate the slope of the profiles at the wall. This slope 

is calculated using Colebrook's equation to find the friction factor for a rough pipe. From 

Munson et al. (2002), the law of the wall is given by 
, 

U' (r') = (R' - r') 1'~ , 

Jl 
(3.44) 

where the shear on the wall can be found in terms of the pressure drop along the length of 

the axis of the cylinder: 

R' dP,' , 0 
l' =----

w 2 dz' , 

and where the pressure drop is function of the Darcy friction factor f: 

dP; _ _ p'(l' 2 

dz' - f 4R' . 

(3.45) 

(3.46) 

The Darcy friction factor is found by solving the transcendental equation of Colebrook 

_1_--210 (~+ 2.51 ) Jl- g 7.4R' ReJl ' 
where s' is the equivalent roughness of the surface ofthe wall. Introducing the 

dimensionless equivalent roughness 

s =s'/R', 

eq. (3.47) can be rewritten as 

(3.47) 

(3.48) 
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_1_ - -210 (~+ 2.51 J J7 - g 7.4 Re J7 . (3.49) 

The roughness of the surface has for effect to increase the slope of the profile at the walL 

The rougher the pipe, the more "square" the profile is. 

We combine and nondimensionalize eqs. (3.44)-(3.46) using the quantities of eqs. 

(2.22), (3.6)-(3.9) : 

(3.50) 

(3.51) 

Over the cross-section of the cylinder, the profile is then the minimum of eqs. 

(3.43) and (3.50): 

(3.52) 

which when plotted for a Reynolds number of 106 gives the profile plotted in Fig. 4. 

Because of the law of the wall, the slope of the velocity profile at the wall varies with the 

Reynolds number. On the other hand, the core of the flow is invariant with the Reynolds 

number. The exponent of the power law model should really be a weak function ofthe 

Reynolds number, but for sake of simplicity it is taken constant at 1/7 here. One could 

also argue that the power-law profile is not valid at the centreline of the flow cross­

section since dUR / dr * 0 at r = 0 . It is nevertheless a reasonable approximation and, 

since the location where the profile is not valid is farthest from the wall, its effect on the 

shell is diminished. 
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Fig. 4. Power-Iaw / law of the wall velocity profile for a Re=1 06
• 

Assuming a fully developed flow, from eqs. (3.30) and (3.51), the mean pressure 

distribution in the flow is 

(3.53) 

- 3.4. Perturbation flow solution 

Although the dynamics of the three perturbations of eq. (3.19) is coupled through 

the equations ofmotion (3.1), since they are three linearly independent perturbations, the 

introduction ofthe triple perturbation scheme of eqs. (3.26) and (3.29) into the equations 

of motion (3.14)-(3.17) leads to three distinct superimposed flow solutions. By 

introducing the scheme of eqs. (3.26) and (3.29) into the equations ofmotion (3.14)­

(3.17) and keeping only the first-order terms, one finds the following three sets of four 

equations: 

iOJvr,x (r) - 2Qve,x (r) - ikUR (r )vr,x (r) = _ op~~r) + 

2(jR[~(!~(rV (r)))-n2~v (r)-ev (r)+in~v (r)] forx=u,v,w, (3.54) Re or r or r,x r2 r,x r,x r2 e,x 
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iOJvo,x (r) + 2Qvr,x (r) - ikUR (r )Ve,x (r) = in~ Px (r)+ 

2UR [~(!~(rv (r)))-n2~v (r)-k 2v (r)-in~v (r)] for x=u v w (355) 
R ::l... ~. e,x 2 (J,x (J,x 2 r,x " , . e ur r ur r r 

. " () OUR (r)" (). ()" () ." ( ) lOJVz,x r + or Vr,x r -lkUR r Vz,x r =lkpx r + 

2UR [1 0 (8Vz,x(r)] 2 1" () k2 " ()] -- -- r - n -v r - v r 
Re r or or r2 z,X z,x for X=U,V,W, (3.56) 

(3.57) 

where x = u, v, W refers to the three superimposed solutions associated with the three 

perturbations in the triple perturbation scheme of eqs. (3.26) and (3.29). The reader might 

be interested in having a look at the partial differential equation system obtained by 

introducing a simple perturbation scheme into eqs. (3.14)-(3.17) and have a carefullook 

at the linearization of the system of equations. This is done in Appendix C. 

Since we are seeking a linear solution, we do a first-order approximation and 

neglect the non-linear coupling in the fluid between the effect of one perturbation and that 

of another. This coupling is obviously of second order since it has to be proportional to 

the product oftwo perturbations. It is important to emphasise that the non-linear coupling 

between the effects of the different perturbations is neglected, but as we shall see in eq. 

(3.83) the linear coupling arising in the force summation of the shell equations (3.1) is 

enhanced, as the three deformations produce forces in aU three directions in the fluid. 

Therefore, in this linear analysis, it is reasonable (and inevitable) to neglect the non-linear 

coupling and simply consider, three distinct linear flow solutions superimr>osed on one 

another. 

3.5. Boundary conditions of the viscous fluid 

Because ofthe triple perturbation scheme, we obtained three sets of equations of 

motion (3.54)-(3.57) and we can also expect three sets ofboundary conditions. The triple 
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perturbation scheme of eqs. (3.26) and (3.29) is substituted into eqs. (3.21) and the terms 

of second order are neglected; thusm 

[vr,w (r)w+vr,v (r)v+vr,u (r)u J=~ = [iww-ikUR (r)w 1=~, (3.58) 

[vo,w(r)w+vo,v(r)v+vo,u(r)u J;:=~ =[iwv-ikUR(r)vJ;:=~, (3.59) 

[UR (r) + Vz,w (r )W+Vz,v (r)v + Vz,u (r)u J;:=~ = [iwu-ikUR (r)u J=~ . (3.60) 

Eqs. (3.58) and (3.59) contain only first-order quantities, as explained in Appendix A; 

they can be evaluated at the mean position of the wall instead ofthe instantaneous 

position of the wall without introducing a significant error: 

[Vr w (r) W+ vr v (r)v + vr u (r)liJ __ eia = [iw w-ikUR (r) wJ- _ eia
, (3.61) 

, , 'r=,o r=,o 

[vo,w (r) W+ vo,v (r)v + vo,u (r)li J;:=;:o eia 
= [iwv -ikUR (r)v 1=;:0 eia 

• (3.62) 

On the other hand, eq. (3.60) contains a leading order term dependent on r, so its 

evaluation at the instantaneous position of the wall can be done by expanding about the 

mean position ofwall and keeping only first order terms: 

(3.63) 

The mean velocity boundary condition (3.37) can be subtracted from eq. (3.63), 

[v, .• (r)w+v, .• (r)i> +v" (r)u ],.,. e,a ~ li"'u -ikUR (r)u - au ~(r) w L. e,a .(3.64) 

We have thus obtained three equations (eqs. (3.61), (3.62) and (3.64)) describing the, 

boundaries. Since li, v and w are three independent perturbation amplitudes, the three 

boundary condition equations (3.61), (3.62) and (3.64) must be satisfied for anyarbitrary 

combinations of li, v and W. We say that li, v and w are linearly independent and 

eqs. (3.61), (3.62) and (3.64) lead to 3 sets of3 boundary conditions 

vz,u (r )L1 = iw - ik UR (r )1,=1 ' 

VOu (r)1 =0, , r=1 
Vru (r)1 = 0, , r=1 

(3.65) 
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Vz v (r)1 = 0, 
, r=1 

(3.66) 

(3.67) 

3.6. Coupling fluid and structure 

As written in eq. (3.2), the effect of the fluid on the shell cornes from the fluid 

stresses acting on the wall of the shell. From Munson et al. (2002) the viscous fluid 

stresses acting on a surface perpendicular to the radial direction in cylindrical coordinates 

take the following dimensional form: 

(j' = [av: + av:] 
l'Z Ji a'z ar' , 

-, [ , a (V;) 1 av:] (j - r- - +--
re - Ji ar' r' r' aB' , 

, _[ P' 2 av:] (j - - + Ji-
rr ar' _ ' 

(3.68) 

(3.69) 

(3.70) 

where V;, v; and v; are the dimensional components of the flow velo city. Eqs. (3.68) to 

(3.70) can be put into dimensionless form by using eqs. (3.7)-(3.9) and (2.32): 

(j l'Z = 2 a R [av, + avz ], 

Re az ar 

(jrB = 2 UR [r~(VB )+.!. aVr J, 
Re ar r r aB 

(j =[-P+4 aR av,]. 
rr Re ar 

(3.71) 

(3.72) 

(3.73) 
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We then substitute the perturbation scheme of eqs. (3.26) and (3.29) into eqs. (3.71)­

(3.73): 

rI. ~ 2 ~; [-ik {v". (r )w+v", (r)v + v", (r )u) 

BUR (r) BVz w (r) BVz v (r) BVz u (r) ] + +. w+ . v+ . u 
Br Br Br Br' 

(3.74) 

UR [BVew(r) BVev(r) BVeu(r) (J'e=2- . w+ . v+ . U 
r Re Br Br Br 

-~{ve,w (r )w+ve,v (r)v + ve,u (r )u} - i; {vr,w (r )w+ vr.v (r)v +vr.u (r )u} J. 
(3.75) 

rI" ~[-PR -p'(r,z)- p.(r)w- p,(r)v- p, (r)u 

+4 UR {BVr,w (r) w+ BVr,v (r) v+ BVr,u (r) u}]. 
Re Br Br Br 

(3.76) 

The fluid forces acting on the shell are given by evaluating eqs. (3.74)-(3.76) as in eq. 

(3.2): 

Fr" ~ -2 ~; [ -ik {v". (r )w+v", (r)v+ v", (r )u) 

BUR(r) BVzw(r)- BVzv(r) BVzu(r)] 
+ + ' w+ ' v+ ' u 

Br Br Br Br __ ' 
r='i 

UR [BVew(r) BVev(r) BVeu(r) 
Ft (J = -2 - . w + ' v + ' u 

. Re Br Br Br 

-~{ve,. (r)w+ve" (r)v+ve" (r)u)- i; {v". (r)w+v,..(r)v + v" (r )u) L, 
Fr" ~ -[ -PR -P, (r,z) - P. (r )w- p, (r )v- p. (r)u 

+4 UR {BVr,w (r) w+ BVr,v (r) v + BVr.u (r) u}] . 
Re Br Br Br 

r=ii 

(3.77) 

(3.78) 

(3.79) 

As explained in Appendix A, because eqs. (3.77) and (3.79) contain terms ofleading 

order, their evaluation at the instantaneous position of the wall can be done by expanding 

about the mean position of the wall and keeping only first-order terms; while eq. (3.78) 
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contains only first order quantities, so it can be evaluated at the mean position of the wall 

instead of the instantaneous position of the wall without introducing a significant error: 

FI.' ~ -2 ~~ [ -ik {v, .• (r )w+ 1\.. (r)v + v, .• (r )u) 

+ BUR(r) + ovz,w(r)w+ ovz,v(r)v+ ovz,u(r)u] _2UR w B2UR (r) 
Br Br Br Br _ _ Re Br2 

r=~ r=~ 

F = -2 UR [ove,w (r) w + OVe,v (r) V + OVe,u (r) u 
I,e Re Br ôr Br 

-~{vo .• (r )w+ vo .• (r )v+vo .• (r )u)- i; {v, .• (r )w+ v, .• (r)v + v, .• (r )u) L. ' 
FI.' ~ -[ -PR - Po (r,z) - P. (r )w- P. (r)v - P. (r)u 

+4 UR {ovr,w(r)w+ ovr,v(r)v+ ovr,u(r)u}] +wBPo(r,z) +uBPo(r,z) 
Re Br ôr Br Br ÔZ 

;=;0 r=ro r=ro 

Rewriting eqs. (3.80)-(3.82) in vector form, we get 

{

F } 
J,z 

FJ,e =-

FI,r 

2UR ÔURI 
Re ôr --r=ro 

o 
-PR - Po 1-_-r-ro ÔPoI 7r --r,u a z - -r=ro 

where the force influence coefficients are defined as 

{

'lrZ,x} 2U 'Ir = __ R 
e,x Re 

'lrr,x 

OVz,x -ikV 
Br r,x 

~~ " 
UVex vex in" --' --' --vrx Br r r ' 

2 ôVr,x _ Re " 
Br 2U

R 
Px 

- 2 

'lrz,w +2 UR Ô UR 
Re ôr2 

ÔPol 'Ir --r,w 
Br ;=;0 

r=ro 

, for x = u, V, w, 

r=1 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

where the (r) indicating that the ve10city influence functions li are functions of r, as in 

eqs. (3.80)-(3.82), have been dropped for conciseness. 
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The forces of eq. (3.83) can be substituted back into the fluid-structure problem 

eq. (3.1), yielding 

BPoI 1r --
r,w Br __ 

={ ~ }+_l 
0 2 hr 

r=ro 

2tJRBURI 
Re Br --r=ro 

o 
-PR -PoI-_-r-ro 

(3.85) 

One notices that the tenns on the left-hand-side of eq. (3.85) are aIl perturbation tenns 

proportional to u, v, W, while on the right-hand-side the tenns are of zeroth order. These 

zeroth order tenns cause static defonnation of the sheIl. As discussed in Chapter 2, the 

method of solution used here does not allow taking into consideration static defonnation. 

If one drops these static tenns of the right-hand side, eq. (3.85) can be rewritten in the 

desired fonn of eq. (3.3) where the linear matrix accounting for the dynamics of the 

coupled system is given by 

[_k2 _l~V n2 

+<v'- :~ ] 
1 +v kn 7lz ,v --- --

2 hr 

[ 

7lz W 

-ivk- hr 

[Ll = 
1 +v kn 1re,u --- --

2 hr 
•. 7le,w 

-zn -12Qm ---
hr 

(3.86) 

[

. 1rr ,u 
-lVk+-

hr 

1 BPo 1 ] 
hr Bz - -r;;::ro 

.. 7lr,v -zn-z20m+-
hr 
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Eq. (3.3) with its matrix [Ll given by eq. (3.86) can be solved by taking its determinant 

equal to zero. In order to do so, the 7r -coefficients which depend on m, k, n, n, Re and 

UR which express the fluid force intensities acting on the shell must be found using a 

numerical method. This is discussed in the next chapter. For a given prescribed mode of 

oscillation of the shell, the flow is solved and its reaction is imposed on the shell in this 

strong-coupling FSI analysis. 

However, despite the careful derivation ofthe equations, early tests done with the 

boundary conditions derived in Section 3.5 demonstrated a failure of the model. 

Modifications to the boundary conditions therefore proved necessary. This is discussed in 

the following sections. 

3.7 Effect on the stability of the classical no-slip boundary 
conditions 

In fluid-structure interactions, the interface between the fluid and the solid is 

critical. Both the fluid and the solid models must exchange information in order to 

achieve the desired coupling. The problem with linear shear-flow/structure interactions is 

that this information exchange is compromised. In the inviscid model, there are two terms 

in the fluid boundary conditions which transmit the structure's slope (or position) -ikw 

and its velo city imw; the linear boundary condition given by eq. (2.51) is the following: 

v,.lr=1 = imw - ikU R W • (3.87) 

Information about the velocity and the position of the wall is transmitted to the fluid. This 

makes possible centrifugaI (added stiffness), Coriolis and added mass forces among 

others acting on the structure. But for the linear boundary conditions ofviscous flow, 

since the mean flow velocity is zero at the wall for both the laminar and the turbulent 

velo city profiles, the position-dependent term disappears from eqs. (3.65)-(3.67), as 

UR (r )\'=1 = o. There is a position-dependent term in the axial direction component of eq. 

(3.67), but it does not take into account the slope of the wall since it has no k-dependence. 

Because all effects relative to the slope of the wall are removed, the dynamics of the 
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system is greatly impoverished. In fact, the model simply does not predict the dynamics 

properly; hence this is why the classical viscous model (see subsection 3.8.1) is extremely 

stable for laminar flow and extremely unstable for turbulent flow, as shown in the results 

of Section 6.1. Dowell (1971) had found that the approximation ofapplying the boundary 

conditions at the undeformed position of the wall, instead ofits instantaneous position 

overestimates the stabilizing effect of the boundary layer, as a result ofthe fact that the 

mean velocity at the undeformed position of the wall is zero. 

The disappearance of the slope of the wall in the boundary conditions is an 

artefact oflinearization due to the application of the boundary conditions at the mean 

position of the wall instead ofits instantaneous deformed position. 

One possible way to correct this problem would be to do a large amplitude 

analysis and apply the boundary conditions at the deformed position of the wall. A large 

deformation analysis would require a non-linear model. There seems to be no elegant or 

formally derivable solution or correction to the linear problem in this framework of 

solution methods. For additional discussion, the reader is referred to Paidoussis (2003, 

Section 11.5.2(f)). 

To overcome this problem, three corrections to the linear formulation of the 

problem are attempted here. The first one consists of forgetting about the no-slip 

boundary condition altogether and applying a slip condition on the viscous model which 

reinstates the position-related terms in the radial boundary conditions, while also getting 

rid of the velocity profile. The second attempt involves the modification of the 

perturbation no-slip boundary conditions by allowing a non-zero mean velocity acting on 

the wall, even though the steady velo city profile has zero-flow velocity on the wall, in the 

manner of El Chebair et al. (1990). The third attempt is inspired by Dowell (1971), and it 

was also implemented by El Chebair et al. (1990): instead of applying the boundary 

conditions at r = 1 at the undeformed shell position, it is applied at an assumed position 

just offthe shell mean position. 
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3.8. The viscous models 

Four models are presented in the following subsections: (i) the classical viscous model, 

(ii) the slip model, (iii) the average velocity model, (iv) the delta mode!. 

3.8.1. The classical viscous model 

The c1assical viscous model has been carefully derived in Sections 3.1-3.6, 

utilizing the conventional no-slip boundary conditions. The equations of motion (3.54)­

(3.57) must be solved three times, once for each of the three perturbations u, v, w using 

each set ofboundary conditions given in eqs. (3.65), (3.66) and (3.67). The fluid forces 

are given in eqs. (3.83)-(3.84). In the laminar regime, the mean pressure solution is of the 

form of eq. (3.41) and the parabolic flow profile is as given in eq. (3.39). For the turbulent 

regime, the mean pressure solution is of the form of eq. (3.53) and the turbulent flow 

profile is as given in eq. (3.52). 

3.8.2. The slip model 

Ifwe substitute the requirement of no-slip on the wall for a slip boundary 

condition, the ve10city profile becomes "square". We then obtain a model with effectively 

no velo city profile, where viscosity affects the flow solution only through shear stress and 

dissipation. Although this model has very limited realism, we have reasons to believe that 

the dissipative effect ofviscosity is a necessary component for a rotating flow mode!. The 

other motivation for using this scheme is that it allows to test and to validate the solution 

methods for viscous flow. In the case ofvanishing viscosity, the results with this model 

should tend toward those obtained with the inviscid mode!. In the slip model, the radial 

velocity boundary condition is identical to the one given by eq. (2.51) for the inviscid 

model: 

(3.88) 
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For the other two directions, a certain slip is allowed. Therefore, the boundary condition 

is applied on the second r-derivative of the circumferential and axial velocities, 

B2V __ 0 0 
2 =, 

Br r=\ 

(3.89) 

(3.90) 

These are not free-slip conditions since they concem the second derivatives; free-slip 

boundary conditions are concemed with the first derivatives with respect to the coordinate 

normal to the surface of the velo city components parallel to the surface. It is thought that 

a condition on the second derivative is a little more constraining than a free-slip 

condition, hence a little more realistic. 

Because of the form ofthe boundary conditions of eqs. (3.88)-(3.90), the flow 

solution obtained with the slip model depends only on the w-perturbation. The triple 

perturbation scheme is therefore not necessary here, and the u and v velocity and pressure 

influence functions can be set to zero; thus, 

" A ,... " " " A. " 0 
Vr,u = VO,u = Vz,u = Vr,v = Vo,v = Vz,v = Pu = Pv = . (3.91) 

Applying the solution scheme of eq. (3.26) on the boundary conditions (3.88)-(3.90) 

while utilizing eq. (3.91), we obtain 

(3.92) 

B2A 

~ 0 2 =, 
Br r=\ 

(3.93) 

(3.94) 

and 

(3.95) 

Because the reduced velocity flow profile of eq. (3.95) is constant across the section, the 

term related to the viscous friction with the walls in the mean pressure solution of eq. 

(3.41) vanishes, leading to 

(3.96) 
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With the simplification of eq. (3.91), it is oruy necessary to solve eqs. (3.54)-(3.57) for 

the w-perturbation. The fluid forces acting on the shell are given by eq. (3.83) where, 

because onlyone flow solution is required, the force influence coefficients of eq. (3.84) 

simplify to: 

° ° 
ovz,w ·kV ---l Br r,w 

[n 1rz,v n.,. ] Re z,u OV A 

° ° 
e,w ve,w in A 

(3.97) -- 1r 1re,v 1re,w = ------v 2U
R 

e,U Br r r r,w 
1rr,u 1rr,v 1rr,w 

2 ovr,w _ Re A 

° ° Br 2UR Pw 
r=1 

3.8.3. The average-velocity model 

Although this solution can be considered to be not rigorous, it will be seen (in 

Chapter 6) to work acceptably well and it incorporates all the aspects of the real physical 

system: boundary layer, velo city flow profile, and a non-vanishing centrifugaI force. The 

idea here is to use the boundary conditions of eqs. (3.65), (3.66) and (3.67), but to utilize 

the averaged mean flow velocity UR' instead of UR (r) which evaluated at r = 1 is zero. 

This gives 

vz,U(r)L=1 =ico-ikUR , 

veu(r)\ =0, , r=1 

vru (r)\ = 0, , r=1 

Vz v (r)\ = 0, , r=1 

Ve,v (r )\r=1 = ico - ikUR, 

lIr v (r)\ = 0, , r=1 

v (r)\ = au R (r) 
z,W r=1 Br 

r=1 

vew(r)\ =0, , r=1 

vrw(r)\ =ico-ikUR • , r=1 

(3.98) 

(3.99) 

(3.100) 
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Only the perturbation boundary conditions are changed in this scheme with respect to the 

c1assical no-slip model. Despite the non-zero velocity effective at the wall, the average­

velocity model presents the same velocity profiles as in the c1assical no-slip model. In the 

laminar regime, the parabolic flow profile is as given in eq. (3.39) and the mean pressure 

solution is ofthe form of eq. (3.41). For the turbulent regime, the flow profile is as given 

in eq. (3.52) and the mean pressure solution is of the form of eq (3.53). The fluid forces in 

eqs. (3.83) and (3.84) are left in the same form. 

3.8.4. The delta model 

The application of the average mean velocity in the boundary conditions of the 

average-velo city model is arbitrary. An effective velocity has to be stitched to the 

boundary conditions of the carefully derived c1assical no-slip model in order to obtain 

acceptable results. A more justifiable approach for applying a non-zero effective mean 

velocity in the boundary conditions is attempted here with the delta mode!. This model 

was introduced by Dowell (1971) for flow over flat plates and it was later applied to 

flows in cylindrical shells by El Chebair et al. (1990). It consists of applying the boundary 

conditions at a position off the mean undeformed position of the wall, 

r=I-8, (3.101) 

rather than at the undeformed position of the wall r = 1 as in the c1assical no-slip model; 

8 is equivalent to the shell deformation in the radial direction. The flow is solved over 

the interval 0 ~ r ~ 1-8 and the forces produced by the fluid acting on the shell are 

evaluated at r = 1-8 . As 8 ~ 0 the c1assical viscous model is recovered. The boundary 

conditions of eqs. (3.65)-(3.67) can then be rewritten as 

vzu(r)1 = iOJ-ikUR (r)1 ' 
'r=I-6 r=I-6 

vou (r)1 = 0, 
, r=I-6 

(3.102) 

vr,u (r )lr=I-6 = 0, 
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Vz • (r)\ = 0, 
, r=I-8 

vo.(7)1 =im-ikUR(r)\ ' 
'r=I-8 r=I-8 

(3.103) 

Vr • (r)\ = 0, 
, r=I-8 

vow(r)\ =0, 
, r=I-8 

(3.104) 

vrw(r)\ =im-ikUR(r)1 . 
'r=I-8 r=I-8 

The model still bears the same velocity profiles as in the c1assical no-slip model. In the 

laminar regime, the parabolic flow profile is as given in eq. (3.39) and the mean pressure 

solution is of the form of eq. (3.41). For the turbulent regime, the flow profile is as given 

in eq. (3.52) and the mean pressure solution is of the form of eq (3.53). Eqs. (3.54)-(3.57) 

must be solved for aIl three perturbations u, v, W over the domain 0 ~ r ~ 1-8 , and the 

fluid forces in eqs. (3.83) and (3.84) are evaluated at r = 1- 8 . Thus, in eqs. (3.83) and 

(3.84), the position vector is taken to be 

Fo = (1-8) ër + zëz • (3.105) 
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Chapter 4 

Numerical Solution of Viscous Equations 

4. 1. Finite difference scheme 

Many different methods are employed to numerically solve pipe-flows in 

cylindrical coordinates. From the literature (see section 1.1.4), the ideal approach which 

would maximise both simplicity and efficiency would thus make use of flux quantities 

and a staggered grid to avoid iterating, get rid of the singularity at the centre of the flow 

and maximise the accuracy for the number of grid points. 

In Section 3.7, four different viscous models are presented. These four models 

obey the same equations of motion (3.54)-(3.57), but have different boundary conditions, 

different domains ofintegration and require a different number of solutions of the 

equations of motion. The following numerical method is derived for the c1assical viscous 

model of Section 3.7.1; it is then adapted for the different models in Section 4.6. 

The equations ofmotion (3.54)-(3.57) relate the different components ofvelocity 

influence functions and the pressure influence functions. For brevity, in this chapter they 

will simply be referred to as pressure and velo city. 

4.2. From physical bdundaries to numerical boundaries 

The physical boundary conditions in this fluid problem are c1ear: the fluid domain 

has very large (infinite) axiallength, on the wall the velo city of the fluid is dictated by the 

no-slip boundary condition and the pressure is unknown (this is in part what we are 

looking for in order to couple the fluid with the shell). Mathematically, because we 

introduced the travelling-wave solution for the perturbation quantities, the solution to the 

time-dependent three-dimensional flow takes the form of a sinusoidal fluctuation in e, z 

and t of the solution along the radius. The numerical domain is then limited to one 
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dimension going from r=0 to r=1. Consequently, boundary conditions have to be imposed 

at both boundaries of the domain, although a priori nothing is known about the flow at its 

centre. Add to this that the equations of motion ofthe flow (eqs. (3.54)-(3.57)) have a 

common singularity at r=0: the four equations blow up at r=0. It must be emphasised that 

this singularity is a mathematical artefact; it is not physical: the velocities and the 

pressure of the flow at the centre of a pipe are finite. In the literature, different schemes 

are used to get around this singularity, as discussed in Section 1.1.4. 

In order to solve the equations of motion (eqs . (3.54)-(3.57)) over the numerical 

domain, we need eight boundary conditions: the three velocity components and the 

pressure at r=0 and r= 1; but we only have three: the three velocity components on the 

wall. Since the nature of the boundary at r=0 is more mathematical than physical, it seems 

logical that a condition for that boundary could be introduced in the same way. Verzicco 

and Orlandi (1996) showed that making a change of variable by introducing the flux of a 

quantity allows imposing a homogeneous boundary condition at r=0. The trick has been 

adopted here and we introduce the pressure flux influence function which we will refer to 

as simply the pressure flux: 

and by definition t}xL=o == O. This modifies the equations of motion into: 

iOJvr - 2Q.vu - ikUR (r )i\ = -~(!q) + 
Br r 

- [() ]' 2U R B 1 B" 2 1" 2 " • 2" -- - --(rvr ) -n -vr -k vr + zn-vu 
Re Br r Br r2 r2 

." 2r'\" ·kU ( )" . l " lOJVu + uVr -1 R t Vu = zn-2 q+ 
r 

2U R [ B (1 B ( ")) 2 1" k2 " • 2,,] , -- - -- rvu -n -vu - Vu -zn-vr Re Br r Br r2 r2 

1 B ( ") . 1" .,_": 0 -- rv -zn-v -lll-v = 
B

rU z , 
r r r 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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where the subscript x present in every influence functions of eqs. (3.54)-(3.57) relative to 

the three perturbations u, v, w is dropped for conciseness. This brings the total number of 

boundary conditions to 4: the three ve10city components on the wall and the pressure flux 

at the centre. Keeping in mind this limited number ofboundary conditions, we proceed to 

the next step which involves discretising the continuity and the three momentum 

equations. 

4.3. Sfaggered grid discrefisafion 

A straightforward way to solve the problem would be to use a finite difference 

scheme to solve the four equations simultaneously with the limited number ofboundary 

conditions and iterate for the missing ones. Of course the value of sorne of the velo city 

components on the axis can be deduced from the physics of the problem, depending on 

the circumferential wavenumber. Such a method is cumbersome but was attempted by 

Chaumond (2003) without much success. Instead ofusing iterations, we use a staggered 

grid similar to that of Harlow and We1ch (1965) to discretise the problem and hence make 

our numerical model such that it only requires the information we know: the four 

boundary conditions. 

In the same spirit as in Verzicco and Orlandi (1995), the momentum and 

continuity equations are discretised on a staggered grid in such a way that only the known 

quantities are defined on the boundaries. However, this is done in a different fashion here. 

The three velo city components are defined at the points r = rj + ~ /).r and the pressure flux 

is defined at the points r = rj • The grid is shown schematically in Fig. 5 and we use a 

notation similar to that ofKress and Nilsson (2003): 
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where rj = j & and & = V ( N + ~ ) . As in Mateescu et al. (1994b), a central differencing 

procedure is then applied about the velocity points r = rj + ~ & on the three momentum 

equations (4.2)-(4.4), and about the pressure flux points r = rj on the continuity equation 

(4.5): 

(4.6) 

-[v ] 2U RAI A 8,j-} 2 1 A 2 A • 2 A 

-- D_D+v ._-'- +--Dov_-,- --2--n -2-V ._-'- -k V ._1 -m-2-v ._1 , 
Re 8,j 2 r. 1 8,j 2 r. 1 r. 1 8,j 2 8,j ï r. 1 r,j ï 

~i j, ~i j, 

(4.7) 

(4.8) 

v .1 +v .1 
ik Z,j+i Z,j-i = 0 

2 ' 
(4.9) 

where the difference operators are defined as 
A A 

A Vr ,j+l - Vr,j 
D+vrj· = , 

, /).r 

A A 

A Vr j. - Vr j'-l 
Dv=' , 

- r,j /).r 

D v - _v...;,r,j'-·+.:....l _-_V-'-'r,~j-..:....l 
o r,j - 2& ' 

and where interpolation has been used to define the pressure flux on the velocity points 

and vice versa: 

57 



v .1+'0 .1 
" r')+2" r,J-ï 
V r,j ::: ---"-2--":" 

The resulting scheme is second-order accurate, as shown in Appendix D. 

1 #II, " " " "-

1· qo VI % qN V 1 
- N+ï CO---il ... 2-~Of----__ --J I----{ }---4 __ ---{ )---__ 

1 

'\ Centre of the flow, r=O Wall,r=J 
Fig. 5. Schema tic of the staggered grid arrangement. 

At point j = 1 , because of the boundary at r = 0, the derivatives of the velocities 

in the three momentum equations require special treatment. For j = 1, the continuity eq. 

(4.9) is left unchanged but the three momentum equations read 

." 2r'\" 'kU ()" 1 D" 1 qj+qj-I Il1JV . 1 - ;!,~v . 1 -1 R r. 1 v . 1 = --- -qj + 2 + 
r,j-I 8,j-I j-I r,j-I r. 1 r. 1 2 

j-I j-ï 

[
A] - v 

2U R 2" 1 " r,j-j. 2 1" 2" • 2 " 
-- Dc+V ._1 +--Dc+v_, --2--n -2-V ._1 -k v . 1 +m-2-v . 1 , 
Re r,j 1 r. 1 r,j 1 r. 1 r. 1 r,j 1 r,j-ï r. 1 8,j-I 

j~ J~ j~ rI 

(4.10) 

." 2r'\" 'kU ( )" . 1 qj +qj-I Il1JV .,+ ;!,~v .,-1 R r. 1 v .1=m-2 - + 
8,j-I r,j-I j-I 8,j-I r. 1 2 

j-I 

(4.11) 

" 'kU ( ) " _ ik qj + qj-I 
V . ,-1 R r. 1 v . 1 --- + 

r,j-I j-I Z,j-ï r. 1 2 
r 1 )-1 
11 

(4.12) 
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where the difference operators acting on the velocities are multipoint second-order 

accurate forward-differences: 

A +4 A 3A 
A -Vj+2 Vj+1 - Vj 

D v = ---"---"----"-
c+ r,j 2!1r 

A +4 A 5A +2A 2 A -Vj+3 Vj+2 - Vj+1 Vj 
Dc+Vrj" = 2 , !1r 

These finite-difference operators are only used at the point j = 1. 

(4.13) 

(4.14) 

The special set of eqs. (4.10), (4.11), (4.12) and (4.9) used at point j = 1 along 

with the N -1 set of eqs. (4.6)-(4.9) for the other N -1 points can be rewritten in matrix 

form in order to solve the problem implicitly: 

[A] = (4.15) 
o 

-[ Aj+ ]{V}N+~ 
2 

A 

qN 

where [A] is the 4N x 4N linear finite-difference matrix 

[Acl] {P+} [Ac2] 0 [Ac3] 0 [Ac4] 0 0 0 

[ Aj_] {p_} [Aj] {~} [Aj+] 0 0 0 0 0 

0 0 [ Aj_] {p_} [ Aj] {~} [Aj+] 0 0 0 
[A]= (4.16) 

0 0 0 0 0 0 

0 0 0 0 [ Aj_] {p_} [ Aj] {P+} [Aj+] 0 

0 0 0 0 0 0 [Aj_] {p_} [ Aj] {P+} 

and where the coefficient matrices and vectors of eqs. (4.15) and (4.16) are given as 
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Aff 
2Q . 2UR 2 a +m--

Re r 2 
. \ 
J-ï 

. 2UR 2 
Aff a -2Q-m--

Re r 2 
, \ 

[ Aj]= 
J--2 

(4.17) 
BUR(r) A, + 2UR _l_ a 

Br .u Re r 2 
. \ 

r\ J--
)- 2 

2 

1 1 1 ik --- -in- --
2rj & 2rj 2 

where 

. "kU ( ) 2U t + n' k' 2} Aff=-lOJ+l R r,_\ -- -2-+ +-2 ' 
J ï Re r, \ & 

J--2 

2U. [ 1 1 J 
Re &2 + 2rj_~ & 

a a 

a 2U. [ 1 1] a 
Re &2 + 2rj_~ & 

[ Aj+] = (4.18) 

a a 2U. [ 1 1] 
Re &2 + 2rj_~ & 

1 1 1 ik 
-+- -in- --
2rj & 2rj 2 

2U. [ 1 1 J 
Re &2 2rj_~ & 

a a 

a 2U. [ 1 1 J 0 
[ Aj_] = Re &2 2rj_~ & (4.19) 

a a 2U. [ 1 1] 
Re &2 2rj_~ & 

a a a 

6a 



1 1 

. 1 zn--

1 1 
--+--
2r2

1 r. I~ 
j-ï j-ï 

. 1 zn--
2r2 

. 1 
J--2 

,{f.}= 2r2 
. 1 

J--2 
(4.20), (4.21) 

.k 1 
1 --

2r 2 
. 1 
j-ï 

a a 

ACjj 
20 . 2UR 2 a +zn----

Re r 2 
. 1 
j--

2 

. 2UR 2 
ACjj a -20-zn----

Re r 2 
. 1 
j--

[Acl] = 
2 

(4.22) 
BUR (r) AC. + 2UR _l_ a 

Br JJ Re r 2 
. 1 

rI j--
J- 2 

2 

1 1 1 ik --- -in-
2rj ~ 2rj 2 

. .k ( ) 2UR {3 1 + n
2 

k2 2} AC =-l{O+l UR r. 1 --- +--+ --, 
11 j-ï Re 2r ~ r 2 ~2 

. 1 . 1 
. j-ï j-ï 

2UR [ 2 __ 5] 
Re rj_~!lr ~2 

a a 

a 2UR [_2 __ 5] a 
[Ac2] = 

Re rj_~~ ~2 
, (4.23) 

a a 2UR [ 2 __ 5] 
Re rj_~~ ~2 

1 1 1 ik 
-+- -in- --
2rj & 2rj 2 
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o 

[4:3] = 
o 

o o 

o o 

o 

o 

o 

o 

o 

o 

o 

o 

2~: [ -2r
j
:, Ilr + ~, ] 

o 

o 

_ 2UR _1_ 

Re !::.r2 

o 

o 

4.4. Coupling the fluid solution with the shell 

,(4.24) 

(4.25) 

Because of the way the grid is staggered, the value of the pressure flux on the wall 

is not found directly. The pressure-flux is not discretised on the wall, as seen on Fig. 5. In 

order to evaluate it at the wall, a second-order-accurate extrapolation is used: 

A 15QN- IOQN_1+ 3qN_2 
qN+4 = 8 (4.26) 

The fluid stresses on the wall also depend on the r-derivative of the velo city components. 

It is therefore necessary to define a multipoint backward difference for the velocity with 

an equation analogous to eqs. (4.13): 

3
A 4A A 

A Vr )' - Vr )'-1 + Vr )'-2 D V.=' , , 
W - r,) 2!::.r (4.27) 

The forces produced by the fluid acting on the shell wall are modelled through the 

force influence coefficients of eq. (3.84). Making use of eq. (4.27), the force influence 
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coefficients of eq. (3.84) can be expressed as functions of the numerical solution of the 

flow specifie to a given set ofparameters (j), k, n, n, Re, UR: 

_ 2tJ RD" 'k 2tJ R " 
7rz --- w_v 1 -1 --v l' Re z,N+'î Re r,N+'î 

(4.28) 

..... _- 2tJ RD" 2U RI" . 2tJ RI" ,. w_V 1 -----v 1 -m----v l' 
e Re () N+- Re r e,N+'î Re r r,N+'î 

(4.29) 
1 N+!. N+'î 2 

4tJR D" " 7r --- V -q 
r- R w- rN+!. N+!.' 

(4.30) 
e '2 2 

where as in the rest ofthis chapter the subscript x present in every influence function has 

been dropped for brevity. 

4.5. Iterative loop 

To summarise the problem, we have the summation of forces given by eq. (3.3). By 

setting the determinant of the matrix [L] in eq. (3.3) to zero, we obtain a dispersion 

relation, and for a given set ofparameters k, n, n, Re' tJR, h, r, V we can solve for 

the complex frequencies of the system (j). Because the fluid force influence coefficients 

obtained through the numerical solution of the flow in eqs. (4.28)-(4.30) depend on the 

complex frequency of the system (j), the dispersion relation is implicit in (j) and we must 

iterate to find the admissible frequencies of the system. 

The scheme employed to obtain the curves of the evolution of the complex 

frequencies versus the mean flow rate is to first find the lowest frequencies of the system 

with no axial flow by iterating using a Müller root-finding algorithm [see Burden and 

Faires (2001)]. Once these are obtained, we proceed to slowly increment the flow rate 

using the frequencies of the previous step as a first guess. 
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4.6. Numerical solutions to the viscous models 

4.6.1. Numerical solution to the classical no-slip model 

The c1assical no-slip model defined in Section 3.8.1 requires three solutions of the 

finite difference system of equations (4.15) over the domain 0:::;; r :::;; 1 with the flow 

profile defined in eq. (3.39) if the flow is laminar, 

UR (ri) = ~ UR (1- rf) , (4.31) 

or the flow profile defined in eq. (3.52) if the flow is turbulent 

for the three sets ofboundary conditions 

(4.33) 

(4.34) 

(4.35) 

and by definition iio == 0 always. The fluid forces of eq. (3.83) can be substituted in the 

matrix [L] defined in eq. (3.86) once they have been computed according to eqs. (4.28)-

(4.30). 

4.6.2. Numerical solution to the slip model 

The slip model defined in Section 3.8.2 requires one solution of the flow for a w­

perturbation. In order to impose the boundary conditions of the form given in eqs. (3.89) 
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and (3.90), we defme a second-order multipoint backward difference, analogous to eq. 

(4.14), 

2
A 5A 4 A A 

2 v. - v. 1 + v. 2 -v. 3 D V = J J- J- J-
w- r,} I1r2 (4.36) 

In the system of finite difference equations (4.15), we can then treat il 1 and il 1 as 
e,N+'i z,N+'i 

unknowns and move them from the right-hand side of the equation to the left-hand side. 

This requires the introduction oftwo more equations in the system based on eqs. (3.89), 

(3.90) and (4.36): 

(4.37) 

(4.38) 

The other boundary condition on the wall is provided by the no-penetration condition: 

(4.39) 

The boundary conditions at the centre of the flow is by definition qo == o. The flow can 

then be solved over the domain 0 ~ r ~ 1 with a square flow profile 

UR(r})=UR, 

BUR (r) =0. 

(4.40) 

Br 
(4.41) 

The forces the fluid produce on the shell are given in eqs. (3.83), (3.97) and can be 

computed according to eqs. (4.28)-(4.30). 

4.6.3. Numerical solution to the average-velocity model 

The numerical solution to the average-velocity model defined in Section 3.8.3 is 

essentially the same as that of the c1assical no-slip model, except that the boundary 

conditions at the wall are the following: 
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(4.42) 

(4.43) 

(4.44) 

4.6.4. Numerical solution to the delta model 

The numerical solution to delta mode1 defined in Section 3.8.4 requires three 

solutions of the finite difference system of equations (4.15) over the domain 0 ~ r ~ 1- Ô , 

with the flow profile defined in eq. (3.39) if the flow is laminar, 

(4.45) 

or the flow profile defined in eq. (3.52) if the flow is turbulent 

UR (r)L, = min [ {(I-r,) ~ReUR}' {fUR (I-r, )!4}l (4.46) 

for the three sets ofboundary conditions 

iOJ -ikUR (r)\ r=I-S 

o (4.47) 

o 

(4.48) 
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Vz,w 
Br 

r=l-o 

V 
{

A } 

e,w = o (4.49) 

Vr,w N+~ 
2 

iOJ - ik UR (r )Ll-O 

and by definition qo == 0 always. In this numerical solution rj = jM and 

~r = (I-Ô)/( N +~). The fluid forces of eq. (3.83) can be substituted in the matrix [Ll 

given by eq. (3.86) once they have been computed according to eqs. (4.28)-(4.30). 

A copy of the Matlab code used to find the numerical solution to the delta model 

is presented in Appendix E. 
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Chapter 5 

Inviscid theory results 

In this chapter, the results to the problem formulated in Chapter 2, namely that of 

a cylindrical shen subjected to an internaI inviscid fluid flow are presented. These results 

are obtained to (i) reproduce in part the work of Lai and Chow (1973), (ii) to attempt 

explaining further the results of Cortelezzi et al. (2004) and build upon their findings, and 

(iii) to establish a benchmark for the viscous theory results of the next chapter. 

The calculations are performed for the case of a rubber tube carrying water flow. 

The values of the shen and fluid parameters employed in the analyses are given in Table 

1. Lai and Chow (1973) and Cortelezzi et al. (2004) studied the same system with 

identical parameter values. 

Parameter Value 

R' [ml 0.019 

h' [ml 3.8E-4 

v 0.49 

E' [Pa] 1.033E6 

p; [kg/m3
] 1050 

P~ [kg/m3
] 1000 

Table 1. Shell and f1uid parameter values of the inviscid system studied 

5. 1. Pure axial flow 

The shen is first subjected to a pure axial flow. The evolution of the frequencies of 

the system for increasing internaI flow velocity is plotted for four different axial 

68 



wavenumbers in Fig. 6. Notice that the scale varies from plot to plot. In each of its 

vibrating modes, defined by its particular combination of axial and circumferential 

wavenumbers, the system loses stability by coupled-mode flutter when the forward and 

the backward travelling wave frequencies coalescet . By comparing the results of Fig. 6 

(b) to those obtained by and Lai and Chow (1973), one notices that the match is exact. 

The only difference cornes from the fact that here an iterative complex-root-finding 

algorithm was employed to obtain the frequencies rather than a method using only real 

frequencies. This allowed obtaining the post instability frequencies with the complex 

parts. The modes are said to be unstable when one of the imaginary frequencies becomes 

negative. For example, in Fig. 6 (a) for an axial wavenumber of k = 15, the 

circumferential mode n = 0 becomes unstable at a critical reduced flow velo city 

UR =0.12; n=6 becomesunstableat UR =0.13; n=8 becomesunstableat UR =0.14. 

Out of the limited number of frequency evolutions shown in Fig. 6, for mode n = 6 , 

k = 5 has the lowest critical reduced flow velo city at UR = 0.105. 

The main objective of a linear stability analysis is to define precisely the critical 

points of the onset of instability. This is done by plotting the neutral stability curve of the 

system, as is done in Fig. 7. It is observed that the most unstable circumferential 

wavenumber depends on the axial wavenumber. For the studied circumferential 

wavenumbers presented in Fig. 7, n = 0 has the lowest critical reduced flow veloci~y for 

large axial wavenumbers k > 10, n = 6 has the lowest critical reduced flow velo city for 

medium axial wavenumbers 2 < k < 10, and n = 3 has the lowest critical reduced flow 

velocity for small axial wavenumbers k < 2 . 

f It is noted that, actually, before this happens, the backward travelling wave becomes a second forward 
travelling one, when it crosses the Real(w)=O line. That point has been considered to represent a forrn of 
divergence in the system. 
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Fig. 6. Evolution of the frequencies of a non-rotating tube vibrating at dimensionless wavenumbers 
(a) : k=15; (b) : k=7.2; (c) : k=5; (d) : k=2 
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Fig. 7. Neutral stability curves ofvibrating modes ofnon-rotating tube with flowing inviscid fluid. 

5.2. Rotation 

As mentioned in Chapter l, Cortelezzi et al. (2004) found it impossible to 

reproduce the results of Lai and Chow (1973) when there is rotation, because of the 

existence of singularities. These singularities make the problem such that no solution 

exists. Because we know that the solution does not exist for a particular region of the 

parameter space, we employ the technique of the zero-Ievel contour method described in 

Pong (2000) to obtain results. 

The dispersion relation curve for 0 = 0.1, k = 10 and n = 0 is computed and 

shown in Fig. 8 superimposéd on the contour plot of the value of A, which is defined in 

eq. (2.60) as A = 20/( OJ - kU R). In Fig. 8 the dispersion relation is exactly the same as 

that obtained by Cortelezzi et al. The "islets where a solution is not feasible" described by 

Cortelezzi et al. really are numerous infinitely long lines that appear as islets only because 

oflack ofresolution. These lines of no-solution are parallel to the A-isolines as can be 

seen in Fig. 8 in the region where lAI> 1. The breakdown of the flow solution is directly 

related to the value of this parameter A, which motivates a deeper look at the formulation 

ofthe inviscid flow solution. This is done in the next sections ofthis chapter. 
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1.5 

1.0 

0.0 

-0.5 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

Fig. 8. Stability curve of the inviscid fluid model superimposed on the contour plot of the absolute 
value of A. The shades of grey represent th'e contour plot of the absolute value of A with which is 
associated the legend in the lower right corner. 

5.3. Discontinuities in the pressure solution 

The inviscid fluid pressure solution is given in by eqs. (2.62)-(2.64). Depending 

on the absolute value of A, the flow solution takes the fonn of a modified Bessel 

function, a Bessel function or a polynomial. As can be seen in Fig. 8 by comparing the 

dispersion relation with the A -contours, it is the Bessel function which is responsible for 
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these infinite lines of no-solution in the lAI> 1 region. A typical pressure flow solution 

obtained with the Bessel solution is shown in Fig. 9 for a small range of A. It is seen that 

the pressure solution has a great number of poles for various values of A. As pictured in 

the contour plot in Fig. 8, for the domain of OJ of interest and tJ R' lAI cau take values 

ranging from almost 0 to 00. As the Bessel function has an infinite number of roots, in the 

region where lAI> 1 the denominator of eq. (2.62) go es to zero an infinite number of 

times. Each time, there is no bounded solution, as Cortelezzi et al. had found, and for 

each critical value of Athis leads to a line of no-solution in the dispersion relation. 

0.10 

0.05 

~ ,.-.. 0.00 - '-- '--"' "\ "\ "\ 
'-' 
I:l., 

-0.05 

-0.10 
1.0 1.2 1.4 1.6 1.8 2.0 

A 

Fig. 9. Typical pressure flow solution obtained with the modified Bessel function for the parameters: 
k=10, n=O, 0=0.1, UR=O.1. 

5.4. Bessel approximations 

From many good mathematical textbooks, it can be found that Bessel functions 

may be expressed in the following infinite series form: 

'" {-Ir (x)2m+n 
ln{x)= ~m!{m+n)! 2 ' 

(5.1) 

and modified Bessel functions are given by this series: 

'" 1 (x)2m+n 
In (x) = ~m!{m+n)! 2" (5.2) 
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Obviously when doing numerical computations, the series of eqs. (5.1) and (5.2) have to 

be truncated to a finite number ofterms. 

In eq. (2.62) the quantity ofinterest isJn (x)/{xJn_I (x) - nf( x )Jn (x)), where 

f ( x ) = ~1 + x2 
/ k2 + 1 and x = k.J A 2 -1 . This quantity can be approximated by a finite 

number ofterms of eq. (5.1): 

1 term 

J n (x) =: 1 for n > 0 and =: -
2 for n = 0 (5.3) 

xJ n-I (x) - ni ( x ) J n (x) n ( 2 - 1 (x) ) x2
' 

2 terms 

Jn (x) (n+l)-(~r 
xJ._1 (x)-1if(x)J. (x) = 2(n+n(n-(iz)')-nf (x)((n+l)-(iz)')' 

(5.4) 

3 terms 

Jn (x) 
----::--:--"---'--'-::--:----:--,-- =: 

xJ n-I (x) - ni ( x ) J n ( X ) 

2(n+2)((n+I)-(~r)+(~r (5.5) 

2(n+2)( 2(n+1)( n-(~r)+(~r)-nf(x)( 2(n+2)( (n+l)-(~r)+(~r) 
The Bessel function rather than the modified one is used as a solution only when A 2 > 1 ; 

therefore, x> 0 and I(x) > 2. It is then obvious that the I-term approximation ofeq. 

(5.3) is continuous over the range ofits application. But, ifwe increase the number of . 
terms, the order of the polynomial of the denominator increases and so does the number 

of roots. For each root of the polynomial of the denominator within the range of 

application ( A 2 > 1), the solution has a pole and the calculated pressure is infinite. As the 

number of terms of the solution tends to infinity, the number of poles tends to infinity too. 

In the case where n = 0, eqs (5.3), (5.4) and (5.5) do not have poles in the range 

where A 2 > 1 or x > 0; but the 4-term expansion contains a pole, and the subsequent 

expansions contain more and more poles. For the n "# 0 cases, it is not as simple, and 
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poles start to appear in the 2-term expansion and become more numerous because of the 

nf ( x) term in the denominator. 

In the work by Lai and Chow (1973), it is not c1ear how many terms they used in 

the expansion of the pressure solution; however, but, form the above analysis, we are led 

to conclude that this number was not very high. The way they succeeded in having c10sed 

curves for the dispersion relations oftheir different figures was most probably by using a 

limited number of expansion terms. 

In an attempt to reproduce the results obtained by Lai & Chow (1973), eq. (2.30) 

is solved using various numbers of terms in the expansion ofthe pressure solution. The 

effect of the number ofterms in the expansion of the pressure solution is shown in Fig. 10 

for n = 0 and in Fig. 11 for n = 8 . 

As expected, the curves obtained with a I-term and a 3-term expansion are 

perfectly continuous in Fig. 10 (a) and (b). When the number ofterms is increased to 

four, the discontinuities appear, as shown in Fig. 10 (c) and (d). 

In Fig. Il (a) as well, the curve obtained with only 1 term is perfectly continuous, 

but discontÏnuities are readily visible as soon as two terms or more are employed in the 

expansion of Fig. 11 (b) and (c). The nf{x) terms in the denominatorofeqs (5.4) and 

(5.5) increase the number ofpoles as compared to the n = 0 case. 

In Fig. 10 (d) and Fig. Il (d) the Bessel functions and modified Bessel functions 

are computed using the Matlab functions "besselj" and "besseli". These algorithms use a 

high enough number ofterms of the series for the value of the function to converge to 15 

significant digits. The solutions offered by these Matlab functions will be referred to here 

as semi-infinite, as their precision is as good as the rest of the computations. With these 

semi-infinite expansions, the results obtained are the same as those of Cortelezzi et aL 

(2004) and the lines ofno solution start showing. Since we only find solutions for a finite 

number of values of UR and (j), the discontinuities appear as islets, but, as shown in the 

previous section, these discontinuities should appear as an infinite number of isolines of 

A between in the zone where A 2 > 1. 
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Fig. 10. Comparative study ofthe effect ofthe number of terms in the Bessel functions on the 
continuity of the pressure solution in the case of n = 0 circumferential waves and axial wavenumber 
k = 10: (a) I-term Bessel expansion; (b) 3-term Bessel expansion; (c)43-term Bessel expansiQn; (d) 
semi-infinite Bessel expansion. 
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Fig. 11. Comparative study of the effect of the number ofterms in the Bessel functions on the 
continuity of the pressure solution in the case of n = 8 circumferential waves and axial wavenumber 
k = 10: (a) I-term Bessel expansion; (b) 2-term Bessel expansion; (c) 3-term Bessel expansion; (d) 
semi-infinite Bessel expansion. 

5.5. Flow blocking 

Chow (1969) investigates the swirling fluid flow in cylindrical tubes with 

permanent axisymmetric periodic deformations (varicose-shaped tubes). This is done by 

solving for the stream function in the goveming equations for steady inviscid and 
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incompressible fluid flow. The problem studied by Chow (1969) is similar to the fluid 

part of the problem we are concemed with in this section; two major differences are that 

in Chow (1969) (i) the solution sought is a steady-state one because the boundary of the 

fluid is not moving and (ii) the deformations in the boundary are not necessarily small. 

Nevertheless, the two problems share a similar flow solution based on the Bessel 

functions and both have their dynamics dictated by the Rossby number (here, 1/ kA is a 

modified Rossby number because of the moving walls). In Chow (1969), for critical 

values of the Rossby number, the system exhibits what the author calls "flow blocking". 

The effective radius of the pipe is diminished by an amount equal to the size of the 

permanent undulation of the wall and the flow near the wall becomes stagnant. This 

phenomenon of flow blocking is observed in stratified flow over obstacles and is 

discussed more in the literature review of Chapter 1. The similarities between swirling 

flows and stratified flows were first proposed by Rayleigh (1920) and they are discussed 

further with an analogy between gravitation and acceleration in Howard and Gupta (1962) 

and in Yih (1965, Chapter 6). 

Flow blocking occurs in Chow (1969) when the fluid solution blows up at a critical 

Rossby number. Mathematically, something similar happens in the problem considered 

here when the flow solution has a pole (see sections 5.3 and 5.4). These similarities 

between the two systems lead us to believe that the poles in the flow studied here could 

possibly be related to flow blocking. However, due to the way the boundary conditions 

are applied -at the mean wall position instead of the instantaneous wall position- it is not 

possible to witness flow blocking. Possibly a non-linear flow model taking into 

consideration large boundary deformations could show fluid stagnation near the walls at 

Rossby numbers close to the critical values. 
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Chapter 6 

Viscous theory results 

The purpose ofthis chapter is to present the results ofthe investigation on the 

dynamical hehaviour of the system defined in Chapter 3, namely that of a cylindrical shell 

subjected to an internaI viscous flow. Because no analytical solution is available for the 

viscous flow equations ofthis particular problem, the flow is solved with a numerical 

method presented in Chapter 4. 

The ca1culations are performed for the same case of the rubber tube carrying water 

flow studied in Chapter 5. The parameters kept constant in this studyare given in Table 2. 

Parameter Value 

R' [ml 0.019 

h' [ml 3.8E-4 

v 0.49 

E' [Pa] 1.033E6 

p; [kg/m3
] 1050 

pi [kg/m3
] 1000 

Table 2. Shell and fluid parameter values of the viscous system studied. 

6. 1 Pure axial flow 

The value of the Reynolds number of the flow is varied to study the effect of 

viscosity. One might wonder why the Reynolds number is taken to he constant for a given 

set of results instead of increasing as the mean flow velo city is incremented. In an 

experimental system, as the flow rate is increased, the Reynolds number of the flow 

would increase too, but here, in this theoretical study, the Reynolds number is taken to be 
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constant for a given frequency evolution graph. The reason the system is studied for 

constant values of Reynolds number rather than for a constant value of the viscosity or 

Stokes number is twofold. First, the entire simulation is run for a single Reynolds number 

which insures that the flow stays in the same regime throughout, laminar or turbulent. For 

values of the Reynolds number below 2000, the laminar mean flow model of Section 

3.3.1 is used, while for values ab ove 4000, the turbulent model described in Section 3.3.2 

is used. Secondly, for a finite value of the Reynolds number, since the diameter and the 

fluid density are kept constant, as the flow velocity tends to zero, the viscosity must tend 

to zero too. This has as a consequence to make the damping in the system vanish as 

UR ~ O. For vanishingly small flow ve1ocity, the frequencies of the system are then 

purely real. It is then simple to iteratively find the real frequencies of the system at close 

to zero flow velocity and then make use of a complex iterative method to follow the 

frequencies for incrementing flow velo city. For a constant value of the Reynolds number 

it is not possible to solve the fluid equations for zero reduced velocity. The solution is 

therefore obtained for close to zero flow velocity. 

It has been shown [see Païdoussis (2003, section 7.2.4(b»] that an FSI model ofa 

cylindrical shell conveying fluid using linear inviscid theory can predict acceptably weIl 

the critical reduced flow velocity of the system. Païdoussisand Denise (1972) compared 

the prediction of the onset of instability of their linear theory with experimental 

observations. From the characteristics of their experimental systems and from standard 

values of air viscosity, the range of the Reynolds number in their experiment can be 

calculated to be 0 to 29200§. In their experiments, depending on the boundary conditions, 

the error margin between the inviscid theoretical prediction of the onset of instability and 

the measured critical velocity was between 0 and 20%. Karagiozis (2006) has also shown 

§ In Païdoussis and Denise (1972), the maximal experimental critical flow velocity found is about OR = 0.7 . 

Their dimensionless ve10city is equivalent to the reduced velocity defined here in eq. (chapter 3.7). Two 
different tubes are used in their experiments, but the highest Reynolds number is reached for the silicone 
rubber tube with properties E' = 1.48E6pa, p; = 1030kg/m3 

, v = 0.47 , and R' = 0.0071 lm. The highest 

critical reduced ve10city is then equivalent to the dimensional flow ve10city 0 = 30m/s . The experiments 

were done using air, so assurning standard atmosphere conditions, the kinematic viscosity of air can be 
found from Munson et al. (2002) to be v. = l.46E - 5 m 2/S . This leads to a maximum Reynolds number of 

arr 

Re = 29200. 
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good agreement between his inviscid theory and his experimental observations for 

Reynolds number at the onset of instability ranging from 104 to 106
• 

Because of the limited experimental data available and because in this analysis we 

study an infinitely long shell and do not use physical structural boundary conditions, there 

are no experimental data available to reliably compare to our theoretical results. Because 

of the satisfactory results obtained with inviscid theory in the previously cited studies, we 

expect that the added realism brought in by the addition of the unsteady viscous forces in 

the system should not change the predicted critical flow velocities too much from those 

found with the inviscid theory, in the turbulent regime at least. Engineering judgement 

leads us to believe that as the Reynolds number becomes larger and larger, the behaviour 

ofthe system should tend towards that predicted with the inviscid theory. From the 

comparisons of inviscid theoretical predictions with experimental results by Païdoussis 

and Denise and by Karagiozis, we expect that, in the turbulent regime, the viscous 

predictions should match in the inviscid predictions at Reynolds numbers of the order of 

104 and higher. 

6.1.1. Classical viscous model results 

The dynamics of the system predicted by the carefully derived c1assical viscous 

model detailed in Section 3.8.1 with its numerical method of solution developed in 

Section 4.6.1 is shown here. The frequency evolution for incrementing average reduced 

velocity obtained with the c1assical no-slip model is plotted in Fig. 12 for a laminar mean 

flow with a Reynolds number of 1000. On the same plots, the complex frequencies 

predicted by the inviscid theory are also shown. In Fig. 12 (a), for dimensionless 

wavenumbers k=15, and n=8, the c1assical no-slip model predicts that the system loses 

stability as the backward travelling wave flutters at UR = 1.04, while the inviscid 

prediction for the onset of instability by coupled-mode flutter is at UR = 0.14 . In Fig. 12 

(b), for k=1O, n=O, the c1assical no-slip model critical reduced velocity is UR = 1.92, and 

for the inviscid theory, it is UR = 0.115; in Fig. 12 (c), for k=5, n=6, the c1assical no-slip 

model critical reduced velocity is UR = 1.80, and for the inviscid theory, it is UR = 0.107 ; 
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in Fig. 12 (d), for k=2, n=3, the classical no-slip model critical reduced velocity is 

UR = 0.14, and with the inviscid theory it is UR = 0.137 . Except for the last case, the 

predictions for the onset of instability by the classical no-slip and the inviscid theories 

differ by as much as an order of magnitude. 
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Fig. 12. Comparison of the frequency evolution of a vibrating non-rotating tube conveying laminar 
flow obtained with the classical no-slip mode1 at Re=103 

(--), and with the inviscid model (--------), 
for dimensionless wavenumbers (a) k=15, n=8; (b) k=10, n=O; (c) k=5, n=6; (d) k=2, n=3. The letters F 
and B indicate the forward and backward travelling waves. 

Let us look at the effect of viscosity on the stability of short waves, i.e. large axial 

wavenumbers. The frequency evolution of the oscillatory mode with dimensionless 
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wavenumbers k=15 and n=8 is plotted in Fig. 12 (a) for a Reynolds number of 103
; in 

Fig. 13 (a)-(d), the frequency evolution of the same mode is plotted for Reynolds numbers 

of 101, 102
, 104

, and 107
• Note that here the parabolic profile was used to obtain aIl the 

results plotted in Fig. 12 and Fig. 13. Here when studying the system with a parabolic 

profile at Reynolds numbers higher than the range of the laminar regime, this is done 

simply to emphasise the effect of viscosity or the lack thereof. At very a very low 

Reynolds number of 101 
, as the reduced velocity is increased, the backward travelling 

wave dies out asymptotically, this could possibly be a form of divergence. For a Reynolds 

number of 102
, the backward travelling wave flutters at UR = 0.455, at Re = 103 it 

flutters at UR = 1.04, and at Re = 104 the system seems stable at reduced velocities in the 

range 0 ~ UR ~ 2. If the Reynolds number is increased further and further, we can see in 

Fig. 13 (d) that the prediction of the critical velocity of the c1assical no-slip model 

approaches that of the inviscid model. One can also notice that in Fig. 13 (b) and in Fig. 

12 (a), for a Reynolds number of 102 -103
, it is the backward travelling wave which 

makes the system unstable through flutter while in Fig. 13 (d), it is the forward travelling 

wave. Of course what the model with a parabolic profile predicts at Reynolds number of 

104 or 107 is questionable, as it is outside the laminar regime. 

Now looking at the effect of viscosity on a longer wave, i.e. a wave with a small 

axial wavenumber, the frequency evolution of the oscillatory mode with dimensionless 

wavenumbers k=2, n=3 is plotted in Fig. 14 (a)-(d) for values of the Reynolds number of 

102
, 103

, 104
, and 105

• Similarly as for the short wave, the increase ofthe Reynolds 

number from 103 to 104 greatly delays the instability. Again as with the short wave, the 

increase ofthe Reynolds number past 104 makes the system lose stability earlier and 

earlier and it is the forward travelling wave that flutters rather than the backward one. 

One also notices that the agreement in the prediction of the loss of instability between the 

classical no-slip and the inviscid theories which was good in the case of Fig. 12 (d) 

deteriorates as the Reynolds number is increased. This is contrary to the notion that 

decreasing the viscosity will make the viscous theory tend towards the inviscid theory. 
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Fig. 13. Effect of the Reynolds number on the classical no-slip model prediction of the frequency 
evolution of a vibrating non-rotating tube conveying laminar flow for dimensionless wavenumbers 
k=15 and n=8 (--), for (a) Re=101

; (b) Re=102
; (c) Re=104

; (d) Re=107
• The letters F and B indicate 

the forward and backward travelling waves. The inviscid results are plotted for comparison (--------). 
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Fig. 14. Effect of the Reynolds number on the c1assical no-slip model prediction orthe frequency 
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; (d) Re=10s. The letters F and B indicate 
the forward and backward travelling waves. The inviscid results are plotted for comparison ( ........ ). 

The results of Figs. 12-14 were obtained with the classical no-slip model for a 

laminar profile. For the turbulent regime, the profile based on the empirical power-law 

and the law of the wall is used. The frequency evolutions of modes k=15, n=8 and k=10, 

n=O are plotted in Fig. 15. Two things are noticeable: (i) the critical velocity ofboth 

modes is very low, and (ii) a third travelling wave, the Z-wave, emanates from the origin. 
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Considering the low critical velocity, it seems strange that, compared to the 

inviscid model, the addition ofviscosity, therefore dissipation, dramatically destabilises 

the system. The fact that the boundary conditions are applied at the undeformed position 

of the wall really influences the stability ofthe system, as discussed in Section 3.7. In the 

viscous model, the velocity components at the wall interface are subjected to no slip 

boundary conditions. This leads to two things: the perturbation velo city components at 

the wall match the Lagrangian velo city of the shell, and the mean velocity profile is zero 

on the wall. Since the mean flow velocity is zero at the wall, the position-dependent terms 

disappear from the perturbation velocity boundary conditions and this greatly alters the 

stability of the system. Three different models are presented and derived in Section 3.8 to 

address this issue. The results obtained with these models follow in the next subsections. 

The Z-wave, which at zero flow velocity does not exist, possibly arises from the 

fluid in the system. Although the very low critical velocity makes the results of Fig. 15 

questionable, the presence of the Z-wave is still relevant; as we shall see it is still present 

in sorne results of obtained with the delta mode!. It is discussed more in Section 6.1.3. 
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Fig. 15. Comparison of the frequency evolution of a vibrating non-rotating tube conveying turbulent 
Dow obtained with the c1assical no-slip model at Re=105 

(--), and with the inviscid model (-----.--), 
for dimensionless wavenumbers (a) k=IS, n=8; (b) k=10, n=O. The letters F and B indicate the 
forward and backward travelling waves and the letter Z indicates the travelling wave emanating 
from the origin. 
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6.1.2. Slip model 

The equations of the slip model tend towards those of the inviscid theory as the 

Reynolds number is increased; we can therefore assume that the results and predictions 

with this model will do the same as the Reynolds number is increased. In the slip model, 

viscosity allows for the transmission of a little shear from the flow to the wall (recall that 

this is not afree-slip model), but its major role is to provide dissipation to the system. In 

Fig. 16, the frequency evolutions obtained with the slip model are compared with those 

obtained with the inviscid theory. The four oscillatory modes studied are the same four as 

in Fig. 12 for the classical no-slip mode!. The behaviour ofthe system obeying the slip 

model is very close to the inviscid one. Not only are the predicted critical reduced flow 

velocities close, the complex frequencies are also very similar. One difference which is 

expected is that when the inviscid system loses stability through coupled-mode flutter, in 

the system obeying the slip model it is the forward travelling wave that flutters. AIso, one 

could have thought that the addition of dissipation in the system would delay the onset of 

instability, but for all four cases of Fig. 16, the critical flow velo city is lower for the slip 

model than for the inviscid one. 

As mentioned earlier, the main effect viscosity has in the slip model is to provide 

dissipation. In order to understand the repercussions ofthis on the dynamics of the 

system, we compare the frequency evolution of mode k=15, n=8 obtained at a Reynolds 

number of 103 in Fig. 16 (a) and at Reynolds numbers 10, 102
, 104 and 105 in Fig. 17. It 

can be seen that for low Reynolds numbers 1 0 ~ Re ~ 103 
, viscosity has a strong effect on 

the real frequencies while, as the Reynolds number is increased past 103 
, the frequency 

curves seem to converge towards the inviscid theory frequency curves. The imaginary 

frequencies of the system decrease steeply as the Reynolds number increases. The 

surprising thing from Fig. 17, is that the predicted critical reduced flow velocity of the 

system does not vary with the Reynolds number. The slip model predicts that the forward 

travelling wave starts fluttering at UR = 0.12 for the entire range ofstudied Reynolds 

numbers 10 ~ Re ~ 105 (note that this is so even for Fig. 17 (d), though not c1early 

visible). One would usually expect that a change in the damping ofa system would not 
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influence the occurrence of a static instability, i.e. a divergence, but that it would 

influence the onset of a dynamic instability such as the flutter encountered here. 
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• The letters F and B indicate the forward and 
backward travelling waves. The inviscid results are plotted for comparison (--------). 

6.1.3. Average-velocity model 

The average-velocity model presented in Section 3.8.3 with its numerical method 

of solution developed in Section 4.6.3 is based on the classical no-slip model, but in the 

perturbation velo city boundary condition the mean reduced velocity evaluated at the wall 
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has been replaced with the average mean reduced velo city. This can be interpreted as an 

effective velocity acting on the wall. 

The four oscillatory modes studied in Fig. 12 for the c1assical no-slip model and in 

Fig. 16 for the slip model are again studied in Fig. 18, but this time the results are 

obtained with the average-velocity model. In Fig. 16 (a)-(d), for a laminar flow with 

Re = 103
, the average-velo city model predicts instability for the combinations of 

dimensionless wavenumbers k=15 with n=8, k=10 with n=O, k=5 with n=6, and k=2 with 

n=3 at UR =0.105, UR =0.070, UR =0.073 and UR =0.165 respectively. These 

predictions are in the same range as those of the inviscid model: UR = 0.140, 

{j R = 0.115, {j R = 0.107 , UR = 0.13 7 . 

The neutral stability curves of the system are obtained using the average-velocity 

model; they are plotted in Fig. 19. Although the values of the critical reduced velocities 

differ, the neutral stability curves obtained with the average-velocity model display the 

same trends as those obtained with the inviscid theory in Fig. 7 ofChapter 5. At high 

axial wavenumber, for every circumferential wavenumber, the critical flow velocity 

increases as the axial wavenumber is increased further. At low axial wavenumber, except 

for the axisymmetric mode (n=O), the critical flow velocity of every circumferential mode 

increases as the axial wavenumber is decreased. It is not obvious why the axisymmetric 

mode has a neutral stability curve different from the other circumferential wavenumbers. 

Also it is quite peculiar that it is always the axisymmetric mode that is the most unstable 

mode for any axial wavenumber. Recall that with the inviscid model, in Fig. 7, the most 

unstable circumferential wavenumber depends on the axial wavenumber. 

They results obtained with the average vélo city model are interesting in the sense 

that the onset of instability and complex frequencies are c10ser to the inviscid ones. 

Nevertheless, the "effective velocity" applied on the wall is completely arbitrary and it is 

therefore hard to consider these results as being any better than those obtained with the 

c1assical no-slip or the slip model. 
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Fig. 18. Comparison of the frequency evolution of a vibrating non-rotating tube conveying laminar 
flow obtained with the average-velocity model at Re=103 

(--), and with the inviscid model (--------), 
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91 



25 ~--------------~~------, 

O+-----"~-----------i---------l 

0.00 0.05 [J 0.10 
R 

0.15 0.20 

Fig. 19. Neutral stability curves of vibrating modes of non-rotating tube with flowing vis cous fluid 
modelled with the average-velocity model at Re=103

• 

The average-velocity model is applied to the case of a cylindrical shell conveying 

a turbulent flow with a Reynolds number of 105
• The frequency evolutions of the modes 

with wavenumbers k=15, n=8, and k=1O, n=O are plotted in Fig. 20. We see that the real 

part of the complex frequencies found with the average-velocity model matches well with 

the inviscid model for this high Reynolds number; but, as was the case when modelling 

turbulent flow with the c1assical no-slip model, the critical flow velocity of the system is 

far too low to be believable. The "effective velocity" applied at the wall being completely 

arbitrary, it is probable that it is simply too large. If only a fraction of the average mean 

velocity was applied at the wall, would the results make more sense? The delta model 

allows more flexibility in the level of correction and avoids the arbitratiness of the 

correction of the average-velocity model. 

In El Chebair (1988) and El Chebair et al. (1990), satisfactory results are obtained 

with a model similar to the average-velo city model in the turbulent regime. It is not 

obvious why it worked there and not here but significant differences arise between the 

two models. In El Chebair, the turbulent profile simply consists in the empirical power 

law. The law of the wall is not used. Therefore, the slope oftheir profile is infinite at the 

wall but it does not affect their results because, in their application of the perturbation 

boundary conditions, the first-order difference between applying them at the deformed 
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position or the undeformed position was neglected; here it leads to the w[auR/ar ];:=i1 

term in eq. (3.63). 
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Fig. 20. Comparison of the frequency evolution of a vibrating non-rotating tube conveying turbulent 
flow obtained with average-velocity model at Re=105 

(--), and with the inviscid model (---.----), for 
dimensionless wavenumbers (a) k=IS, n=8; (b) k=10, n=O. The letters F and B indicate the forward 
and backward travelling waves. 

6.1.4. Delta model 

The delta model is presented in Section 3.8.4. with its numerical method of 

solution developed in Section 4.6.4. Based on the original ide a of Dowell (1971),.the flow 

is solved over the domain 0 ~ r ~ (1- 5) , where 5 corresponds to the deformation of the 

shell measured in percentage of the radius. This 5 has for effect to restore the term which 

depends on the slope of the wall in the perturbation velo city boundary conditions. By 

varying the distance 5 , the level of correction brought to the theory can be changed. The 

correction has a measure: it is equivalent to the deformation ofthe shell, which gives a 

physical meaning to the parameter 5 , in contrast to the arbitrary "effective velocity" of 

the average-velo city model. This makes the model easier to accept. 
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The frequency evolution of the mode with wavenumbers k=10 and n=O obtained 

with the delta model is shown in Fig. 21 for values of the parameter 8 ranging from 0 to 

50%. Of course a value of 8 = 50% is absurd (even 8 = 10% is extreme1y large); but the 

stability of the system is not very sensitive to the parameter 8 and it has to reach these 

high values in order to have a significant effect. In Fig. 21 (e), the dynamics obtained 

with the delta model approaches that of the inviscid model; but at a value of 40%, the 

parameter 5 cannot be judged to be physically meaningful. The parabolic profile seems 

to render the system insensitive to the 5 parameter. As shown next, the delta mode1 is 

very effective with a turbulent profile. 
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Fig. 21. Effeet of the parameter ô on the frequeney evo1ution of a vibrating non-rotating tube 
obtained with the delta model at Re=103 
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El Chebair et al. (1990) found that as the value of 8 was increased, the onset of 

instability converged towards the value obtained with the average-velocity model. As the 

average-velo city model has not been successful at predicting the stability of the system 

for turbulent flow here (as explained in Section 6.1.3), instead we compare the results 

with the inviscid model. Based on experimentally measured deformations, El Chebair et 

al. picked values of 8 between 1 % and 2%. 
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The dynamics in the mode with wavenumbers k=15 and n=8, as predicted by the 

delta model for a turbulent flow with Re = 105 
, is presented in Fig. 22 for values of the 

parameter ô ranging from 0 to 1%. In Fig. 22 Ca), the dynamics obtained for ô = 0 is, as 

expected, the same as the c1assical no-slip model in Fig. 15 Ca). The very interesting result 

here is that, as ô is increased, the shape ofthe complex frequency curves of the system 

takes a similar form as in the inviscid model and the ô parameter does not have to reach 

astronomical values as was the case in the presence of a laminar profile. The critical 

reduced flow velocities for ô = 0, 0.1%, 0.5% and 1 % are 0.048,0.023,0.122 and 

0.135 respectively tends to approach the value predicted by the inviscid theory of 0.1395 

as ô is increased. This is even more obvious in Fig. 23, where the critical reduced flow 

velo city of the mode with wavenumbers k=15, n=8 is plotted versus ô. It shows c1early 

that as ô is increased to about 1 %, the critical flow ve10city converges towards the 

prediction of the critical velocity of the inviscid theory. If the parameter ô is varied 

between half a percent to a percent the critical flow velocity does not change appreciably. 

This makes the correction of the delta model much less arbitrary than in the average-

velo city model. 
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The profile in the delta model seems to have an important effect on the complex 

frequencies of the system. The curves of the 8 = 1 % have the same shape as those 

obtained with the inviscid models, but the values are fairly different, even though the 

critical flow velocities match. On the other hand, the slip model with its "square" profile 

has complex frequencies very close to the inviscid ones for high enough Reynolds 

number (see Fig. 15 and Fig. 16).80, for equivalent average reduced flow ve10city UR' 

the viscous flow has a faster centreline velocity than the inviscid flow as shown in Fig. 4 

and this could certainly affect the values of the frequencies of the system. 

Adopting a value of 8 = 1 % , the dynamics of the system can be obtained for 

different modes of oscillations. The frequency evolutions of the modes with the 

combinations of dimensionless wavenumbers k=15 with n=8, k=10 with n=O, k=5 with 

n=6, and k=2 with n=3 are obtained for a turbulent profile at Re = 105 in Fig. 24 and for 

Re = 104 in Fig. 25. At a Reynolds number of 105
, an the predictions ofinstability are 

within 15% below the inviscid predictions. When the Reynolds number is reduced to 104
, 

the predictions of the onset ofinstability of the three modes of Fig. 25 (a)-(c) do not 

change very much and still faU within 15% below the inviscid predictions, but the mode 

k=2, n=3 is well below at a critical reduced velocity of 0.079 versus 0.137 for the inviscid 
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theory. It turns out that if the parameter 0 is increased further past 1 % (not shown), the 

critical flow velocity ofthis mode will converge again towards the inviscid prediction. 

An interesting particularity of the results obtained with the delta model for the 

turbulent regime is that in some cases, not only is there a forward and a backward 

travelling wave, but a Z-wave is present as well. The Z-wave emanates from the origin 

and the real part of its frequency increases proportionally to the mean flow velo city. In 

most of the cases where it is present, the real part of the Z-wave frequency traces a 

straight line proportional to the reduced flow velocity, but in some cases, such as in Fig. 

25 (a)-(c), the straight line of the Z-frequency evolution bends abruptly as it gets close to 

the frequency of another travelling wave. Païdoussis (2003 Section 7.4.2) refers to this 

phenomenon as "mode exchange" via "mode veering". The two modes then exchange 

their properties: where it is usually the forward travelling wave which becomes unstable 

as in Fig. 26 (b )-( d), in Fig. 26 (a) a "mode exchange" occurs around a R = 0.13 and it is 

the Z-wave which subsequently becomes unstable. 

The Z-wave was not found in every plot, but this is probably due to the technique 

employed to obtain the frequency evolution curves. It is plausible that the Z-wave is 

present in all cases modelled by the delta model with the turbulent profile or with 

c1assical no-slip model since it is equivalent to the delta model at 0 = 0 . As discussed at 

the beginning ofthis chapter, to obtain the frequency curves, the frequencies are first 

found for a very small flow velocity and the flow velocity is then incremented. At this 

small velocity the Z-frequency is numerically nil. Add to this the fact that the Müller 

algorithm used to iteratively find the roots of the dispersion relation defined in Chapter 3 

tends to converge much more easily on the forward and backward travelling wave 

frequencies than on the Z-wave. One must therefore know almost exactly where the Z­

wave curve lies to find it. The Z-wave was actually discovered fortuitously. In the case of 

Fig. 25 (a), because of the "mode exchange", iftoo few points were used while 

incrementing the reduced flow velo city, the algorithm would tend to jump from one mode 

solution to another. If more points are used, one can really see the dynamics as plotted in 

Fig. 25 (a); namely that the two frequency curves bend abruptly and perform a "mode 

exchange". The reliability of the root-finding process has been a concem due to the lack 

of success in finding these Z-waves in all cases, but it seems that when they play a major 

99 



role in the stability of the system, Le. when they become unstable, they tend to do it by 

first doing a "mode exchange" and hence influencing the forward travelling wave. One 

can then notice the reorientation or the deformation of the forward travelling wave which 

is a clue as to the presence of the Z-wave. 
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Fig. 24. Comparison of the frequency evolution of a vihrating non-rotating tube obtained with the 
delta model and a power-law/law of the wall velocity profile at Re=105 and ô=1 % (--), and with 
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Fig. 25. Comparison of the frequency evolution of a vibrating non-rotating tube obtained with the 
delta model and a power-law/law of the wall velocity profile at Re=104 and ô=l % (--), and with 
the inviscid model (--------), for dimensionless wavenumbers (a) k=15, n=8; (b) k=10, n=O; (c) k=5, 
n=6; (d) k=2, n=3. The letters F and B indicate the forward and backward travelling waves and the 
letter Z indicates the travelling wave emanating from the origin. 

In Fig. 26 is plotted the dynamics ofthe mode k=15, n=8 for values of the 

Reynolds number 104
, 105

, 106 and 107
• As the Reynolds number is increased, the 

complex frequency curves become rounder and tend to match the shape of the inviscid 

model more and more. This is in agreement with engineering judgement, which leads us 

to believe that as the Reynolds number increases in a viscous theory, things tend towards 
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the inviscid theory. On the other hand, agreement between the inviscid and the delta 

model predictions of the onset of instability decreases as the Reynolds number is 

increased. For Re = 104
, lOs, 106 and 107 

, the delta model critical reduced flow 

velocities are 0.137, 0.135,0.128 and 0.119 respectively while with the inviscid theory, 

the critical reduced flow velocity is 0.1395. 

2.0 r--:,..,.,--...,---...,-:------,-----,-~""7'""C...,,-----::=" 

1.5 
'à 1.0 
'-' 
~ 0.5 
~ 0.0 

-0.5 
-1.0 -F--~~~~~ __ ~~~------1 

0.00 0.05 0.10 0.15 0.20 0.25 

0.5 

-0.5 

................. ;. 
1 

1 

\ 
\ 
\ 

B 

F 

z 

2.0 
1.5 

'à 1.0 
;:::( 
~ 0.5 
~ 0.0 + ................................. ~ .. ~ ..... "".-c ......................................................... . 

'à 

-0.5 
-1.0 -F--~~~~~~~~~~---l 

0.00 0.05 0.1 0 0.15 0.20 0.25 

0.5 

1 

/ 
1 B 

~ .s 0.0 -!------==!====::::-: 

~ ...... F 
-0.5 

(a) 0.00 0.05 0.10 0.15 0.20 
UR 

0.25 (b) 0.10 0.15 
UR 

0.20 0.25 0.00 0.05 

2.0 ~-=======:::::-;:;===:J 
1.5 

'à 1.0 

~ 0.5 
~ 0.0 

-0.5 
-1.0 +------~-~-------I 

0.00 0.05 0.10 0.15 0.20 0.25 

0.5 / B 
'à 1 

~ ( .s 0.0 t---------+\ -==:::: 
~ \ 

...::1 \ F 
-0.5 \ 

2.0 -r:========:::;===:J 
1.5 

'à 1.0 
;:::( 
~ 0.5 
~ 0.0 

-0.5 
-1.0 +--~---~-~-------I 

0.00 0.05 0.10 0.15 0.20 0.25 

0.5 
B / 

'à 1 

~ ( .s 0.0 +--------+-\ ~=-~ 

1 \ 
-0.5 \ 

F 

(c) 
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 

UR (d) 
0.10 0.15 0.20 0.25 

UR 

Fig. 26. Effeet of the Reynolds number on the prediction of the frequeney evolution of a vibrating 
non-rotating tube for dimensionless wavenumbers k=15 and n=8 obtained with the delta model with a 
power-Iawnaw of the wall veloeity profile and ô=l% (--), for (a) Re=104

; (b) Re=105
; (e) Re=106

; 

(d) Re=107
• The letters F and B indieate the forward and baekward travelling waves and the letter Z 

indieates the travelling wave emanating from the origin. The inviscid results are plotted for 
eomparison (--------). 
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6.2 Effect of rotation 

As mentioned in the beginning of Chapter 6, if the Reynolds number is taken as a 

constant for an entire frequency evolution plot, then the viscosity, and therefore the 

damping, tends to zero as the reduced velocity tends to zero. It was found, while studying 

the effect of rotation in the inviscid model that the lines of singularities coyer the entire 

range ofreduced velocities. Therefore, it seems appropriate to consider the viscosity of 

the fluid to be constant and have the Reynolds number be proportional to the reduced 

velocity. Let us define the Stokes number 

2R'p' 
ST=-­

Ji 
(6.1) 

In the simulations containing rotation, the Stokes number is kept constant. The physical 

properties of the system presented in Table 2 are that of a rubber tube containing water 

flow. From Munson et al. (2002), at room temperature, water has a viscosity 

p' = 1.12 x 10-6 N . sim 2 
• The Stokes number of the system with properties given in Table 

2 can be calculated to be ST = 1 220 795 . Simulations are performed for this Stokes 

number and also for a Stokes number 100 times smaller; this would be representative of a 

system with a fluid with the same density as water but a hundred times more viscous, 

such as oil. 

The first simulations with rotation are performed using the c1assical no-slip model 

in the laminar regime and are presented in Fig. 27. Without rotation in Fig. 27 (a), the 

model predicts no instability. The addition of rotation does not change this aspect of the 

results. The case presented in Fig. 27 (b) for Q = 0.1 is the same as the one studied with 

the inviscid theory in Fig. 8 ofChapter 5. With the c1assical no-slip model, the addition of 

rotation seems to stabilise the system as the lowest imaginary frequencies Fig. 27 (b) are 

higher than in (a). AIso, the introduction of rotation causes more "mode exchanges". 

In Fig. 27, the F- and B- waves are shown to interact through "mode exchange" 

with the MIO- and M5- waves. It happens here because the stability of the system is 

studied for a large range of UR. This is done to show that the system stays stable even for 

very large values ofthe reduced velocity. In the previously studied cases, whether 
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rotating or not, if large enough reduced velocities are reached, the lowest frequencies 

(here labelled F- and B-waves) do interact with the higher frequencies. We did not show 

such large ranges of UR for those cases because instability was a1ready reached. 
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Fig. 27. Effect of rotation on the prediction of the frequency evolution of a vibrating tube for 
dimensionless wavenumbers k=10, n=O obtained with the classical no-slip model with a parabolic 
velocity profile for Sri 220795 (--), for (a) !!=O; (b) !!=O.l. The letters F and B indicate the 
forward and backward travelling waves, while M5 and MIO indicate the modes originating at real 
frequencies of about 5 and 10 respectively. 

Using the delta model with a value of ô = 1 % in the turbulent regime, the effect 

of rotation on the mode with wavenumbers k=15, n=8 is plotted in Fig. 28 for 

Sr = 1 220 795 and in Fig. 29 for Sr = 12 208; on the mode with wavenumbers k= 10, n=O 

it is plotted in fig. 30 for Sr = 1 220 795 and in Fig. 31 for Sr = 12 208. In an four cases, 

the small rate of rotation imposed on the system has a stabilising effect. In Fig. 28 and 

Fig. 30, for the cases with Sr = 1 220 795 the imaginary frequencies have a small dimple 

at UR = 0.02. The k=10, n=O mode even becomes unstable for a very briefrange offlow 

velocity, and then regains stability. This phenomenon is still present with the introduction 

of rotation but disappears from the more viscous cases. 

The effect of rotation on the stability of the system is shown in Fig. 32. For the 

two modes studied and for high or low viscosity, the addition of a small rate of rotation 
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stabilises the system. It would seem though that if subjected to higher rates of rotation, 

the critical velocity of the system should decrease. 8rinivasan and Lauterbach (1971) 

showed that, if spun fast enough, empty cylindrical shells become unstable. One would 

think that the same applies to fluid filled shells. If the shell-fluid system is spun fast 

enough, it will be unstable even without flow. 80, before that critical rotation rate is 

reached, the critical flow rate should decrease. 
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Fig. 28. Effect of rotation on the prediction of the frequency evolution of a vibrating tube for 
dimensionless wavenumbers k=15, n=8 obtained with the classical no-slip model with a parabolic 
velocity profile for Sr=1 220795 (--), for (a) n=o; (b) n=0.05. The inviscid resuIts for the case 
without rotation are plotted for comparison (--------). The letters F and B indicate the forward and 
backward travelling waves. 
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Fig. 29. Effect of rotation on the prediction of the frequency evolution of a vibrating tube for 
dimensionless wavenumbers k=15, n=8 obtained with the classical no-slip model with a parabolic 
velocity profile for Sr=12 208 (--), for (a) 0=0; (b) 0=0.05. The inviscid resuIts for the case 
without rotation are plotted for comparison (--------). The letters F and B indicate the forward and 
backward travelling waves. 
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without rotation are plotted for comparison (--------). The letters F and B indicate the forward and 
backward travelling waves. 
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Fig. 32. Effeet of rotation on the prediction of the onset of instability of the delta model for ô=1 % for 
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The results for higher rates of rotation are not presented because they were 

deemed not satisfactory. It seems that the "Hnes ofno solution" discussed in Chapter 5 for 

the inviscid theory give rise to more frequencies in the viscous model in the same region 

of the parameter space, i.e. where A 2 ~ 1 . In the viscous model, these are not 
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singularities, simply frequencies arising from the fluid. The problem is that the method 

employed for finding the roots ofthe dispersion relation was not appropriate to find these 

additional frequencies. The method employed was based on a Müller algorithm which 

would follow the frequencies found as the flow velocity Was increased. But at high rates 

of rotation, when the region A 2 
;;::: 1 becomes large, the program would jump from one 

solution to the other and it would be very hard to obtain smooth curves. It must be 

emphasized that this issue is not due to singularities or inconsistencies in the model; it 

appears to be due solely to the root-finding method employed. 

Since for any non-zero rate of rotation, there is a region in the parameter space 

where A 2 ~ 1, it is very probable that, even in the results presented here for small rates of 

rotation, some additional frequencies exist, but due to the root-finding method, they were 

not found. On the other hand, engineering judgement would lead us to believe that a 

frequency arising from the addition of a small rate of rotation should not influence the 

dynamics of the system dramatically. 
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Chapter 7 

Conclusion 

7.1. Concluding remarks 

In this thesis the problem of the stability of a rotating cylindrical shell containing a 

co-rotating axial viscous flow is studied through the development of a theoretical fluid­

structure interaction model. Learning from the flaws and breakdown of the inviscid 

model, it was believed that the added realism brought in by the introduction of viscosity 

in the theory would lead for a successful model. Adding viscosity in the model proved to 

be anything but trivial, and obtaining satisfactory results with the viscous theory has been 

in itself a challenging problem. 

The equations of the inviscid model of Lai and Chow (1973) were rederived and 

the problem was studied further. The results that Lai and Chow obtained without rotation 

were reproduced, but it was impossible to obtain the same curves they have for the system 

subjected to rotation. Cortelezzi et al. (2004) had pointed out that it was impossible to 

reproduce the curves of Lai and Chow because of the presence of "islets where a solution 

is not feasible" in the parameter space due to the form of the pressure solution. It was 

shown in Chapter 5 that there were in fact an infinite number of lines of no solution and 

that a plausible explanation to the smooth curves exempt of singularities of Lai and Chow 

possibly is the very limited number ofterms used in the evaluation ofthe Bessel functions 

expansions. Finally, a hypothetical physical explanation for the singÜlarities in the 

inviscid model pressure solution was put forward in Chapter 5. Because ofthe often cited 

similarities between swirling flows and stratified flows, it is believed that a phenomenon 

similar to atmospheric flow blocking could explain the poles in the pressure solution of 

the rotating flow in the presence of the deforming wall. 

Once the weaknesses of the inviscid theory were fully assessed, a new model 

based on viscous theory was developed. Assuming a travelling-wave perturbation 

scheme, the linear Donnell-Mushtari thin shell equations were coupled with the fluid 
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stresses obtained by solving the incompressible Navier-Stokes equation for a laminar or 

turbulent flow. A novel triple-perturbation approach had to be established to consider the 

interaction between the fluid and the structure. This triple-perturbation approach is in 

essence a superposition of three fluid fields caused by the three components of shell 

deformation for a given oscillation mode. 

The complexity of the problem at the shell-fluid interface and the inclusion of 

viscosity rendered necessary the development of an original numerical method to solve 

the flow. Due to the limited number ofboundary conditions at the shell-fluid interface, a 

staggered grid was used to discretise the fluid domain. To deal with the mathematical 

singularity in the fluid equations ofmotion at the centre of the flow, the pressure flux was 

introduced in the equations. 

Similarly to the problems encountered by Dowell (1971) and El Chebair et al. 

(1990), it was found that the usual technique for linear aeroelasticity studies, consisting of 

applying the fluid boundary conditions at the undeformed position of the wall instead of 

the instantaneous deformed position, greatly alters the stability ofthe system. Since the 

mean flow velo city is zero at the wall (contrary to the inviscid model where the mean 

flow velo city is constant across the flow cross-section), the shell-position-dependent 

terms in the fluid boundary conditions disappear. This is believed to be the source of the 

unreasonable results obtained. To remedy this problem, corrections were applied in the 

form ofthree variants of the classical no-slip model: (i) the slip model, (ii) the average­

velocity model, and (iii) the delta model. In the first model, a slip is permitted at the wall, 

which reinstates the position-related terms in the boundary conditions, but it also gets rid 

of the velo city profile. In the average-velocity model, the perturbation boundary 

conditions are modified to allow a non-zero mean velo city acting on the wall, while 

leaving the steady velocity profile unaffected. In the delta model, the boundary conditions 

are applied at an assumed deformed positionjust off the shell mean position. 

The dynamics ofthe system subjected to purely axial flow with no rotation was 

successfully studied with the classical no-slip model for both laminar and turbulent flow 

conditions. Because no experimental or previous theoretical data was available, it was 

impossible to validate the results obtained in the laminar regime. On the other hand it was 
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found that the system was overly unstable in the turbulent regime which made necessary 

the application of correction models. 

With the slip model, it was possible to model the system for a wide range of 

Reynolds number and achieve results which approached the inviscid theory results as the 

Reynolds number was increased. It was a1so found that the Reynolds number does not 

influence the ons et of instability with this mode!. 

The average-velocity model used in the laminar regime allowed obtaining 

predictions of instability in the same range as those of the inviscid theory. This may well 

be fortuitous. On the other hand, when used in the turbulent regime, the average-velocity 

model predicted that the system is very unstable. The model was deemed very arbitrary, 

hence motivating the use of the delta mode!. 

It was found that in the laminar regime the system was insensitive to the 

deformation scale parameter of the delta mode!. In contrast, in the turbulent regime, for 

acceptably small values of the deformation scale parameter, the prediction of the onset of 

instability of the system tended towards that predicted by the inviscid mode!. As the 

Reynolds number was increased, the frequency curves produced with the delta model 

tended to become more similar to those obtained with the inviscid mode!. The delta 

model in the turbulent regime also predicted the presence of a third frequency emerging 

from the origin and growing proportional to the mean flow velo city. In certain cases, it 

plays a role in the stability of the system through "mode exchange". 

The results obtained for small rates of rotation showed that, both in the laminar 

and in the turbulent regime, the system tends to be stabilised when subjected to a small 

rate of rotation. On the other hand, it seems reasonable to suppose that this tendency 

should be reversed for higher rates of rotation, but it was impossible to show this due to 

the limitations of the root-finding method employed. The important finding this thesis led 

to is that the addition ofviscosity in the theory allows successfully modelling the system 

subjected to rotation. The flow solution no longer breaks down as was the case with the 

inviscid theory. 
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7.2. Future work 

As well as answering sorne questions, many new ones were raised in this thesis. 

The future work that the present thesis could provide the basis for is presented in the 

following lines, starting with the most readily feasible projects. 

The models developed here were not fully exploited. It is probable that better 

results for the rotating system and more information about the Z-waves could have been 

obtained ifbetter root finding methods had been employed. Due to time constraints, it 

was impossible to test different methods in the framework ofthis project. When solving 

the inviscid flow, the zero-contour level method was employed. It was deemed to be too 

computationally intensive to use this technique with the viscous flow because, for the 

viscous models, the frequencies are all complex. The technique could still be used but, 

instead of solving the system for a range of real frequencies and a range of flow 

velocities, the system would now have to be solved for a range of real frequencies, a 

range of imaginary frequencies, and a range of flow velocities. This then increases the 

amount of computations by an order of magnitude. Add to this the fact that the viscous 

flow requires much more computations than the inviscid flow, and the amount of 

computation time has to be counted in months rather than minutes for a single graph of 

frequency evolution. The technique was attempted here for a very low resolution plot, but 

the results were not conclusive and are not included in the thesis. Better techniques are 

most probably available which would be more efficient yet would capture every 

frequency. 

In order to be able to compare the viscous models with experiments, the 

theoretical model should be applied to a finite-Iength system with structural boundary 

conditions. This would also make it possible to eventually study the problem of a fixed 

thin pipe with an axially flowing fluid entering with a rotation component. The rotation 

would die out with distance along the length ofthe pipe, hence why a finite-length system 

is required for this problem. 

The stability of the system was altered by the application of the boundary 

conditions at the undeformed position of the wall rather than at the instantaneous 

deformed position. This rendered necessary the use of models with corrections. It seems 
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that there is no elegant solution to this linear problem. Thus, a large-amplitude (non­

linear) study would be required to apply the boundary conditions at the instantaneous 

position of the shell wall. The difficulties encountered here conceming the boundary 

conditions would also be encountered in the 2-D problem ofviscous flow over a flat 

plate. If one were to tackle the problem of shear-flow-structure interaction in the hope of 

finding a more elegant solution to deal with the interface and the application of the fluid 

boundary conditions, it would be good to first attempt the geometrically simpler 2-D flow 

over a flat plate. The other motivation to develop a large-amplitude flow model would be 

to prove or disprove the hypothesis that the physical phenomenon of "flow blocking" is 

what makes the inviscid solution blow up when rotation is present. 

The last interesting idea would be to add a turbulence model to the flow model to 

account for the Reynolds stresses in the fluid. 
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AppendixA 

Shell-fluid interface linearization 

An arbitrary shell element is originally located at 

(8.1) 

Once the shen deforms, it is located at 

~ = (1 + w) ë, + vëo + (zo + u) ëz • (8.2) 

Because this is a linear study, the velocity of an element located at a deformed position ~ 

must be imposed on the element originany located at ~ in computational space. To do 

that, Taylor expansions can be used to at least inc1ude the linear difference between what 

happens at ~ and ~ in the mode!. 

A velocity evaluated at the instantaneous shell position can be approximated by 

me ans of a Taylor series expansion about the mean position ofthe shen: 

aVI 1 aVI aVI vl_ =vl_ +w- +v-- +u-
li '0 ar - r ae - Bz - . (8.3) 70 ro 70 

+o( w2 )+O( v2 )+O( u2 )+O(uw)+O(vw)+O(uv). 

As can be expected, if V (r, e, z) is a perturbation quantity, its evaluation at the deformed 

or undeformed position of the shen only differs by second order quantities. To show it, let 

(8.4) 

The evaluation of eq. (8.4) at the deformed position of the shell is 

Val- :::qÎa (r )wl_ +w~[va (r )wJI +v.!.~[va (r )wJI +u~[va (r )wJI; (8.5) 
Tl '0 ar _ r ae - az _ 

~ ~ ~ 

recalling that w = wei(lüt-kz-nO) and with sorne manipulation eq. (8.5) becomes 

Val- ::: va (r)wl_ +[BVa(r)(W2 )_in va (r)(VW)-ikl\(r)(uw)] . (8.6) 
li ~ & r 

ro 
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Since u, v, w are perturbation quantities, we see from eq. (8.6) that the difference between 

evaluating a perturbation velocity at the instantaneous deformed position of the shell or at 

its mean position is of second order. 

On the other hand, ifin eq. (8.3), we substitute a velocity that has a zeroth order 

term, evaluating the equation at the instantaneous position of the shellleads to a 

significant change versus evaluating it at the mean position of the shell. Let the velocity 

have a zeroth order term: 

v: (r,e,z) = Ub (r )+vb (r)w. (8.7) 

We evaluate this velo city of eq. (8.7) at the instantaneous position of the shell using a 

Taylor expansion as in eq. (8.3) : 

V,I" ~[U,(r)+v,(r)w l +w ![u,(r)+v,(r)w JI.. 

+v~~[vb(r)wJI +u~[vb(r)wJI· 
r ae - az -ro '0 

(8.8) 

Once again, recalling that w = wei(mt-kz-nO) , eq. (8.8) can be manipulated to 

(8.9) 

The terms in the third square bracket are of second order and can be neglected; but, unlike 

eq. (8.6), the evaluation at the instantaneous position of the shell introduces an extra term 

in eq. (8.9), name1y the term in the second square bracket. 

To summarise, evaluation of a perturbation quantity at the mean position of the 

shell or at its instantaneous position differs by negligible second-order terms, while the 

evaluation of a zeroth-order term at the mean position of the shell or at its instantaneous 

position differs by a significant first-order term. 
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AppendixB 

The linear Euler equation 

In the derivation of the inviscid fluid model ofChapter 2, the perturbation scheme 

is applied directly through the introduction of the travelling wave solution of eqs. (2.49). 

For a better understanding, one might want to have a carefullook at the linearization of 

eqs. (2.43) and (2.44). Let us assume a perturbation scheme ofthe following form: 

v;. =v,(r,e,z,t), 
Vo = Vo (r,e,z,t), 

~ =[JR +vz(r,e,z,t), 
P=Po(r)+ p(r,e,z,t), 

(9.1) 

where the perturbation quantities are denoted by a tilde (-). Upon introducing eqs. (9.1) 

into eqs. (2.43) and (2.44), one obtains 

àV, 2r.- - ôV, Vo ôV, v~ (u- -) ôV, r.2 aPo ap 
-- uV +v -+-----+ +v --~l. r =----at 0, ar r aB r R z az ar ar ' 
àVo 2r.- - ôVo Vo àVo vrVO (u- -) àVo 1 ap -+ uV +v -+---+-+ +v -=---at "ar r aB r R z az r ae' 

(9.2) 

àVz - 8Vz Vo 8Vz (u- -) àVz ap -+v,-+---+ R+vz -=--, 
at ar r aB az az 

and 

.!.~(rVr)+.!. ôVo + ôVz =0. 
r ar r aB az 

(9.3) 

Ifwe keep only the leading-order terms in eqs. (9.2) we obtain 

-02r = _ aPo . 
ar 

(9.4) 

Ifwe keep only the first-order terms in eqs. (9.2) and (9.3), we obtain 
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OVr -2Qv +(J ovr = _ ap 
at 0 Raz Br' 

OVo - - OVo 1 ap 
-+2Qv +U -=---
at r R az raB' 

OVz +(J OVz = _ ap 
at Raz az' 

(9.5) 

OVr + Vr +.!. OVo + OVz = o. 
Br r r aB az 

Assuming that the perturbation quantities of eqs. (9.5) take the fonn of travelling 

waves, 

p= p(r )exp( -ikz -inB + iOJt) = p(r)eia
, 

v = Vr (r) exp ( -ikz - inB + iOJt) = Vr (r )eia
, r 

Vo = Vo (r )exp( -ikz -inB + iOJt) = vo(r)eia
, 

(9.6) 

v = z Vz (r ) exp (-ikz - inB + iOJt) =vz(r)eia
, 

the equations ofmotion (2.55)-(2.58) are obtained. 
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Appendix C 

The linear Navier-Stokes equation 

In the derivation of the viscous fluid model of Chapter 3, the perturbation scheme 

is applied directly through the introduction of the travelling wave solution of eq.(3.22). 

For a better understanding, one might want to have a carefullook at the linearization of 

eqs. (3.14)-(3.17). Let us assume a perturbation scheme of the following form: 

Vr = vr (r,e,z,t), 
Vo = Vo (r,e,z,t), 
~ =UR(r)+vZ(r,e,z,t), 
P = Po (r,z)+ jJ(r,e,z,t), 

(10.1) 

where the perturbation quantities are denoted by a tilde (-). Upon introducing eqs. (10.1) 

into eqs. (3.14)-(3.17), one obtains 

and 

àVr 21""\- - àVr Vo àVr v~ (U () -) àVr 1""\2 -- uV +v -+-----+ r +v --~,/; r at ° r ar r aB r R z az 

aPo ajJ 2UR [a (1 a ( _)) 1 a2vr a2vr 2 àVo] 
=- ar - ar + Re ar -;:ar rvr +?" ae2 + az2 -?" ae ' 

_z +v R +_z + Vo _z +(U (r)+v )_z àV (au (r) àV) - àV àV 
at r ar ar r ae R z az 

= _ aPo _ ajJ + 2UR [!~(r aUR (r) +r àVz )+~ a2

vz + a
2

vz], 
az az Re r ar ar ar r2 ae2 az2 

!~(rvr)+! àVo + àVz =0. 
r ar r aB az 

Ifwe keep only the leading-order terms in eqs. (10.2) and (10.4), we obtain 

(10.2) 

(10.3) 

(10.4) 

(10.5) 
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-Q?r =_ aPo 
ar ' 

If we keep on1y the first-order terms in eqs. (10.2)-(10.5), we obtain 

OVr 2n - U ( )ovr 
-- uV + r-at 0 R az 

= _ ap + 2(JR [~(!~(rV ))+~ a2

vr + a
2

vr _~ ovo] 
Br Re ar r Br r r2 aB2 az2 r2 aB ' 

OVr Vr 1 OVo OVz 0 -+-+--+-= . 
ar r r aB 8z 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

Assuming that the perturbation quantities of eqs. (10.8)-(10.11) take the form of a 

triple perturbation travelling wave proportional to the three shell wall defonnations: 

Vz = [vz,u (r)u +vz,v (r)v +vz,w (r)w Jexp( -ikz-inB+imt), 

Vo = [vo,u (r)u +vo,v(r)v +vo,w(r)wJexp(-ikz-inB+imt), 

vr = [vr,u (r)u +vr,v (r)v +vr,w (r)w Jexp( -ikz-inB+ imt) , 

the following four equations are obtained: 

(10.12) 
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2~ ~w- ~.- ~u-+-- --'-W+--'-V +--'-U 
- [{ a2 A a2 A a2 

A } 

Re ar2 ar2 ar2 

{
1 BVrw _ 1 BVr• _ 1 BVru _} 

+ --'-W+---' v +---' U 
rBr rar rar 

(
1+n2 k2){A _ A _ A _} 

- ~+ Vr,wW+Vr,.V +Vr,uU 

(iOJ-ikUR (r) ){Ve,wW+ Ve,.V +Ve,uU} + 2Q{vr,wW+Vr,.V +Vr,uU} 

= in {Pww+ P.v + Puu} 
r 

- [{ a2 A a2 
A a2 

A } 2~ ~w- ~.- ~u-+-- --'-W+--'-V +--' U 
Re ar2 ar2 ar2 

{ 
1 BVe w _ 1 BVe• _ 1 BVe u _} 

+ --'-W+---' v +---' U 
rar rar rar 

(10.13) 

(10.14) 

(10.15) 
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{av av av} rw - rv - ru - 1 A _ " _ A. -

-'-W+--' v +--' U +-{VrwW+VrvV +vruu} 
Br Br Br r' , , 

(10.16) 

Since the perturbations ïi, V, w are linearly independent, eqs. (10.13)-(10.16) must be 

valid for any combination of the perturbations. These four equations can be broken into 

three sets of four equations of motion (3.54)-(3.57), representing three superimposed flow 

solutions. 
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AppendixD 

Accuracy of the numerical scheme 

In Chapter 4, the continuity equation (4.5) is given by 

1 a ( A) . 1 A '7_": 0 -- rv -zn-v -ZK,V = a re r , 
r r r 

and from eq. (4.9) is discretised on the staggered grid as 

I v. 1 +v .1 . e,J+ï e,J-ï m-----=---..... 
v .1 +v .1 

ik r,J+ï r,J-ï = O. 
ri 2 2 

Expressing a velo city influence function in a Taylor series expansion, one gets 

co (r. 1 _ri)m [amA] _ "'" j+ï V + ... -~ -
m=O ml ar

m 

r=rj 

which is equivalent to 

V 1 =v.+ M avl + ~ Mm [amv] 
i+-2 j 2 ar r=r. ~ 2mm' arm ' m=2 . r=r. 

) } 

where as in Chapter 4, we let rj.+l - rJo = M or r. 1 - rj. = M . Similarly, 
j+ï 2 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

We can rewrite ~he numerical approximation ofthe continuity eq. (11.2) and set it 

equal to its local truncation error: 

V 1 -v . 1 1 v . 1 +v . 1 1 r,j+ï r,j-ï + r,j+ï r,j-ï _ in 

M ri 2 ri 

V 1 +v 1 il. 1 +v . 1 
e,J+ï e,j-ï -'k Z,j+ï Z,j-ï =;: 0 

l ':>c j • 

2 2' 
(11.6) 

We substitute the Taylor series expansion of eqs. (11.4) and (11.5) into eq. (11.6) 
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(11.7) 

This can be rewritten as 

(11.8) 

The first line of eq. (11.8), is the exact continuity eq. (11.1). The local truncation error is 

then 

Taking the first non-zero terms of the error out of the series summation, we get 

ç, . =!1r2[J..- a
3
vr +_1_a

2
vr -in~ a2

ve -ik! a
2vz ] + 

C,} 24 ar3 8r. ar2 8r &2 8 ar2 

} r=rj 

(11.10) 
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where the right-hand side of the first line is the leading-order error tenn. We can therefore 

say that the leading error tenn is proportional to the second power of /::"r. 

Similarly for the r- B - and z-momentum equations (4.10)-(4.12), their respective 

local truncation errors are found: 

[ ~{[! __ 1 ]{I_(_I)m} /::,.rm-l amq _ 2UR [~{1_(_1)m} /::,.rm-l amvr ]} 

~ r 2r 2 2m m! ôrm Re 2r m! ôrm 

[ 

1 co /::,.rm am q 2U 1 co /::,.rm-l amv 
-in-2 I{I+(-lr}-m ,-m __ R -I{1-(-lr}-, -!-

2r m=3 2 m. ar Re 2r m=4 m. ar 

_ 2UR f{I+(-lr} /::,.rm;2 am~] , 
Re m=5 m. ar 

T;r 1 
j-

2 

(11.11) 

(11.12) 

(11.13) 

In eqs. (11.11)-(11.13), the first term on the right-hand side is the leading order error 

term. Since the leading error terms in aU equations of the numerical scheme are aU 

proportional to the second power of /).r, the scheme can be said second-order accurate. 

124 



AppendixE 

Matlab Code for the Delta Model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% RUNTONIGHT.M : TOP LEVEL PROGRAM FROM WHICH THE SIMULATIONS ARE RUN 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Umin=O.OOOOl; %Minimal velocity of the omega VS UR plot 
Umax=0.25001; %Maximal velocity of the omega VS UR plot 
Npoints=200; %Nurnber of points on the omega VS UR plot 
tol=lE-3; %Relative tolerance on each complex part of the 

%frequency for the Muller algorithm in the 
%dispertion relation 
Ornega=O; %Rotation rate 
nu=0.49; %Poisson's ratio 
Garnrna=1.0536/1.0; %Density ratio 
chi=.03S/1.9; %Thickness to radius ratio of the shell (Called h in 
%the thesis) 
N=400; %Nurnber of pressure points in the discretisation of 
%the flow domain. Usually between 400-2000. 

%LOOp for various values of the Reynolds nurnber 
for nV=5:-1:5 

end 

RE=l*lOA(nv) 
%Loop for various values of the delta parameter in the delta model 
for delta=O:O.OOl:O 

end 

clear freq 
freq(1)=0.5; 
freq(2)=-0.5; 
k=lO; 
n=O; 
curverey 

clear freq 
freq(1)=0.2; 
freq(2)=-0.2; 
k=5; 
n=6; 
curverey 

%Guess of the frequency at UR=Umin 
%Guess of the frequency at UR=Umin 
%Axial wavenurnber 
%Circumferential wavenurnber 
%Calls the program CURVEREY.M 

%Guess of the frequency at UR=Umin 
%Guess of the frequency at UR=Umin 
%Axial wavenurnber 
%Circumferential wavenurnber 
%Calls the program CURVEREY.M 

return 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CURVEREY.M : PROGRAM WHICH FOLLOWS FREQUENCY CURVES FOR INCREMENTING 
% VALUES OF UR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

h=(Umax-Umin)/(Npoints-l); %UR step 
clear results 

%Loop for the different frequencies to be followed by the program 
[garbage,nzl =size (freq) ; 
for nf=l:nz 

oi=freq(nf) %Frequencies for vanishingly small UR 
U=Umin; 

%Loop for the incrementing UR on the omega VS UR plot 
for iu=O: (Npoints-l) 
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U=Umin+h*iu %Incrementing UR 
%Returns the converge complex frequency for the given parameters 
omega=mullervisc (nu,n,Omega,k,Gamma, chi,U,RE,N,tol,oi,oi*. 99,oi*.98,delt=> a) 
%Put the results in a matrix 
results(iu+l,nf*3-2)=U; 
results(iu+l,nf*3-l)=real(omega); 
results(iu+l,nf*3-0)=imag(omega); 

%Use linear extrapolation to guess the complex frequency at the 
if iu>o 

%next UR step 

oi=2*omega-omegao; 
el se 

oi=omega; 
end 
omegao=omega; 

end; 
end; 

%Save the results on a CSV file 
strl='PowLaw-3per-Omega='; 
str2=num2str(Omega); 
str3= 1 -NI; 
str4=num2str(N) ; 
strS= 1 -RE=lE= 1 ; 

str6=num2str(nv) ; 
str7= 1 -n= 1 ; 

str8=num2str(n) ; 
str9= 1 -k= 1 ; 

strlO=num2str(k) ; 
strll='-delta='; 
strl2=num2str(delta); 
strend='partl.csv ' ; 
filename=strcat(strl,str2,str3,str4,strS,str6,str7,str8,str9,strlO,strll=> ,strl2,strend); 
csvwrite(filename,results,O,O); 
return 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MULLERVISC.M : MULLER ROOT-FINDING ALGORITHM FINDING A COMPLEX FREQUENCY BASED ON THE 
% PROVIDED GUESS TO SATISFY THE DISPERSION RELATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function omega = mullervisc(nu,n,Omega,k,Gamma,chi,U,RE,N,tol,oi,oil,oi2,delta) 

toi, oil and oi3 are the three guesses for the complex frequency 

%Evaluation of the determinant of the L-Matrix for two different guesses 
%of the complex frequency. This value should converge to zero as the 
%guess of omega gets closer to the solution. 
fi2=omegavisc(nu,n,Omega,k,Gamma,chi,U,RE,N,oi2,delta) ; 
fil=omegavisc (nu,n, Omega,k,Gamma, chi,U,RE,N,oil,delta) ; 

er=10*tol; %Initialise the error 

while er>tol 
%Muller algorithm 
fi=omegavisc(nu,n,Omega,k,Gamma,chi,U,RE,N,oi,delta); %Evaluation of 

aO=fi; 
aa=(fil-fi)/(oil-oi) ; 
a2=«fi2-fil)/(oi2-oil)-aa)/(oi2-oi); 
al=aa+(oi-oil)*a2; 

%the determinant of the L-Matrix 

%From Muller, l obtain two possibilities of omega. l keep the one 
%closest to my guesses. 
oipl=oi+2*aO/(-al+sqrt(al A 2-4*aO*a2» ; 
oip2=oi+2*aO/(-al-sqrt(al A 2-4*aO*a2» ; 

oi2=oil; 
fi2=fil; 
oil=oi; 
fil=fi; 
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%The convergence criterion is based on the relative error of 
%imaginary and real parts of the frequency independently. Even if 
%one part is converged, it keeps iterating until the other part 
%converges. 
erreall=abs(real«oi-oipl)/oi»; 
erimagl=abs(imag«oi-oipl)/oi»; 
erl=max(erreall,erimagl) ; 
erreaI2=abs(real«oi-oip2)/oi»; 
erimag2=abs(imag«oi-oip2)/oi»; 
er2=max(errea12,erimag2) ; 
if erl>er2 

oi=oip2; 
er=er2; 

else 

end 

oi=oipl; 
er=erl; 

end 
omega=oi; 
return 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OMEGAVISC.M : FOR A GUESS OF THE COMPLEX FREQUENCY, THE OMEGAVISC FUNCTION RETURNS THE 
% EVALUATION OF THE DETERMINANT OF THE EIGENVALUE PROBLEM MATRIX. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function result = omegavisc(nu,n,Omega,k,Gamma,chi,U,RE,N,omega,delta) 

%Avoid singular cases 
if omega-k*U==O 

omega=O.99999999*omega; 
end 

Lambda=2*Omega/(omega-k*U); 

%Find the fluid forces per unit deformation acting on the shell 
clear GG 
G=order2profilew(n,Omega,omega,k,Lambda,U,RE,N,delta)/chi/Gamma; %Fluid stresses caused by 

%w-deformation of the shell 
GG(3,3)=G(1); 
GG(2,3)=G(2); 
GG(1,3)=G(3); 

G=order2profilev(n,Omega,omega,k,Lambda,U,RE,N,delta)/chi/Gamma; %Fluid stresses caused by 
%v-deformation of the shell 

GG(3,2)=G(1) ; 
GG(2,2)=G(2); 
GG(1,2)=G(3); 

G=order2profileu(n,Omega,omega,k,Lambda,U,RE,N,delta)/chi/Gamma; %Fluid stresses caused by 
%u-deformation of the shell 

GG(3,1)=G(1); 
GG(2,1)=G(2); 
GG(1,1)=G(3); 

%Determinant of the matrix of the eigenvalue problem is a polynomial of %degree 6 of omega 
%This equation solves the force summation in the three directions 
deg6=-1; 
deg5=O; 
deg4={GG{2,2)+1/6*chiA2*kA2*nA2-1/2*kA2*nu+l/12*chiA2*nA4+1/12*chiA2*kA4+GG(1,1)+GG(3,3) 
=> +1+3/2*nA2+2*OmegaA2+3/2*kA2-1/2*nA2*nu) ; 
deg3=(2*i*Omega*GG(3,2)-2*i*GG(2,3)*Omega+4*n*Omega); 
deg2=(-GG(2,2)-GG(1,1)+OmegaA2-1/2*nA2-3/2*kA2-1/8*kA6*chiA2+1/8*kA4*nu*chi A2*nA2 
=> +1/8*kA2*nu*chiA2*nA4+1/6*OmegaA2*chiA2*kA2*nA2-1/6*GG(2,2)*chiA2*kA2*nA2 
=> +1/2*kA2*nu-kA2*nA2-3/2*kA2*OmegaA2-1/8*nA6*chiA2-3/2*kA2 *GG(3,3)-3/2*nA2*GG(3,3) 

=> +OmegaA2*GG(3,3)+GG(2,2)*OmegaA2-GG(2,2)*GG(3,3)+GG(2,3)*GG(3,2)-1/2*kA4-1/2*nA4 

=> -OmegaA4+1/2*k*n*GG(1,2)+1/2*nA2*nu*GG(2,2)+1/2*GG(1,1)*k
A
2*nu+l/2*GG(2,1)*k*n 

=> +1/2*k*n*nu*GG(1,2)+1/2*GG(2,1)*k*n*nu-kA2*GG(2,2)-1/2*nA2*GG(2,2) 
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=> -2*GG{1,1)*OmegaA2-1/2*GG{1,1)*kA2-GG{1,1)*GG{2,2)+GG{2,1)*GG{1,2) 
=> +1/2*nA2*nu+l/2*kA4*nu+nA2*kA2*nu+nA2*nu*OmegaA2+1/2*nA4*nu+nuA2*kA2 

=> +GG{3,1)*GG{1,3)-GG{1,1)*GG{3,3)-GG{1,1)*nA2-1/6*GG{1,1)*chiA2*kA2*n
A

2 
=> +i*GG{3,1)*nu*k-i*nu*k*GG{1,3)+1/24*nA6*nu*chi A2+1/2*nA2*nu*GG{3,3) 
=> -1/12*GG{1,1)*chiA2*nA4-1/12*GG{1,1)*chiA2*kA4-i*GG{2,3)*n' 
=> +1/2*kA2*nu*GG{3,3)+i*n*GG{3,2)-1/12*GG{2,2)*chiA2*nA4-1/12*GG{2,2)*chiA2*kA4 
=> +1/12*OmegaA2*chiA2*nA4+1/12*OmegaA2*chiA2*kA4-1/2*kA2*nu*OmegaA2 
=> +1/24*kA6*nu*chiA2-3/8*kA2*chiA2*nA4-3/8*kA4*chiA2*nA2); 
degl={-i*k*n*nu*GG{1,3)*Omega-i*nA2*Omega*GG{3,2)+2*nu*k*GG{1,2) * Omega 
=> -i*nA2*nu*GG{2,3)*Omega+i*nA2*GG{2,3)*Omega+2*kA2*n*nuA2* Omega 
=> +2*nA3*nu*Omega-*i*kA2*Omega*GG{3,2)+2*i*GG{1,1)*GG{2,3)*Omega 
=> +2*GG{2,1) *nu*k*Omega+2*i*kA2*GG{2,3) *Omega+i*nA2*nu*Omeg a*GG{3,2) 
=> +i*GG{3,1) *k*n*nu*Omega+i*GG{3,1) *k*n*Omega-4*kA2*n*Omega +2*kA2*n*nu*Omega 
=> -2*nA3*Omega-2*i*GG{1,1)*Omega*GG{3,2)-i*k*n*GG{1,3)*Omega 

=> +2*i*GG{3,1)*GG{1,2)*Omega-4*GG{1,1)*n*Omega-2*i*GG{2,1)*GG{1,3)*Omega); 
degO=-kA2*OmegaA2-1/2*nA2*OmegaA2+1/2*kA4+1/2*kA4*GG{3,3) 
=> +1/12*nA4*nu*OmegaA2*chiA2*kA2+1/24*nA2*nu*OmegaA2*chiA2*kA4-1/2*k*n*GG{1,2) 

=> -GG{2,1)*GG{1,2)*GG{3,3)-1/2*GG{3,1)*GG{1,3)*kA2-GG{3,1)*GG{1,3)*nA2 
=> +GG{3,1)*GG{1,3)*OmegaA2-GG{3,1)*GG{1,3)*GG{2,2)+kA2*nA2*GG{3,3) 
=> -kA2*OmegaA2*GG{3,3)-kA2*GG{2,2)*OmegaA2+kA2*GG{2,2)*GG{3,3)-kA2*GG{2,3)*GG{3,2) 
=> +1/12*kA6*GG{2,2)*chiA2-1/2*kA4*nu*GG{3,3)-1/2*nA2*OmegaA2*GG{3,3) 
=> -1/2*nA2*GG{2,2)*OmegaA2+1/2*nA2*GG{2,2)*GG{3,3)-1/2*nA2*GG{2,3)*GG{3,2) 

=> +1/24*nA6*GG{2,2) *chiA2-1/2*nA4*nu*GG{3,3) +1/12*GG{1,1 )*nA6*chiA2 
=> -GG{1,1)*OmegaA2*GG{3,3)-GG{1,1)*GG{2,2)*OmegaA2-GG{1,1)*nA2*OmegaA2 
=> +GG{3,1)*GG{1,2)*GG{2,3)+GG{2,1)*GG{1,2)*OmegaA2-1/2*GG(1,1)*kA2*OmegaA2 
=> +1/24*GG{1,1)*kA6*chiA2-GG{1,1)*GG{2,3)*GG{3,2)+1/2*GG{1,1)*kA2*GG{3,3) 
=> +GG{2,1)*GG{1,3)*GG{3,2)+GG{1,1)*nA2*GG{3,3)-1/2*nA2*nu*GG{2,2)-1/2*GG{1,1)*kA2*nu 
=> +GG{1,1)*GG{2,2)*GG{3,3)-1/2*GG{2,1)*k*n-nuA2*kA2*GG{2,2)+1/2*k*n*nu*GG{1,2) 
=> -1/12*GG{2,1)*GG{1,2)*chiA2*kA4-1/12*GG{2,1)*GG{1,2)*chi A2*nA4-
=> 1/2*GG{2,1)*k*n*GG{3,3)+1/2*GG{2,1)*k*n*OmegaA2-1/24*GG(2,1)*k*nAS*chiA2 
=> -1/12*GG{2,1)*kA3*nA3*chiA2-1/24*GG{2,1)*kAS*n*chiA2+1/2*GG{2,1)*k*n*nu 

=> +1/2*GG{3,1)*k*n*GG{2,3)+i*GG{3,1)*GG{1,2)*n+l/2*GG{3,1)*GG{1,3)*kA2*nu 
=> +S/24*kA4*GG{2,2)*chiA2*nA2+1/6*kA2*GG{2,2)*chiA2*nA4+i*kA2*GG{2,3)*n 

=> -nA2*kA2*nu*GG{3,3) +1/2*nA2*nu*OmegaA2*GG{3,3) +1/2*nA2* nu*GG{2,2)*OmegaA2 
=> -1/2*nA2*nu*GG{2,2)*GG{3,3)+1/2*nA2*nu*GG{2,3)*GG{3,2)-1/24*nA6*nu*GG{2,2)*chi A2 
=> +1/12*GG{1,1)*GG{2,2)*chi A2*kA4+1/12*GG{1,1)*GG{2,2)*chiA2 *nA4 
=> +i*GG{1,1)*GG{2,3)*n-l/12*GG{1,1)*OmegaA2*chiA2*nA4-1/12*GG{1,1)*OmegaA2*chiA2*kA4 

=> +1/2*GG{1,1) *kA2*nu*OmegaA2-1/24*GG{1,1) *kA6*nu*chi A2+S /24*GG{1,1)*kA2*chi A2*nA4 
=> +1/6*GG{1,1)*kA4*chiA2*nA2-1/2*GG{1,1)*kA2*nu*GG{3,3)+1/2*k*n*GG{1,2)*OmegaA2 

=> -1/2*k*n*GG{1,2)*GG{3,3)+1/2*k*n*GG{1,3)*GG{3,2)-1/12*kA3*nA3*GG{1,2)*chiA2 
=> -1/24*kAS*n*GG{1,2)*chiA2-1/24*k*nAS*GG{1,2)*chiA2-i*GG{2,1)*GG{1,3)*n 
=> +1/2*i*nu*kA3*GG{1,3)-1/2*i*nuA2*kA3*GG{1,3)+1/2*i*GG{3,1)*k*nA2 
=> -1/2*i*GG{3,1) *nu*kA3+1/2*i*GG{3,1) *nuA2*kA3-i*kA2*n*G G{3,2)-1/2*i*nA3*nu*GG{2,3) 
=> +1/2*i*nA3*nu*GG{3,2)-i*GG{1,1)*n*GG{3,2)-1/2*i*k*nA2*GG{1,3) 
=> +kA2*GG{2,2)+1/2*nA4*GG{3,3)+1/2*nA2*GG{2,2)-GG{1,1)*OmegaA2 
=> +1/2*GG{1,1)*kA2+GG{1,1)*GG{2,2)+GG{1,1)*OmegaA4-GG{2,1)*GG{1,2)+1/2*nuA3*kA4 
=> -1/2*nuA2*kA4+1/24*kA8*chiA2-1/2*kA4*nu-l/2*kA4*OmegaA2+kA2*OmegaA4+1/24*nA8*chiA2 
=> -1/2*nA4*OmegaA2+1/2*nA2*OmegaA4-1/6*kA6*nu*chiA2*nA2-1/4*kA4*nu*chi A2*nA4 
=> -S/24*kA4*OmegaA2*chiA2*nA2-1/6*kA2*OmegaA2*chiA2*nA4-1/6*nA6*kA2*nu*chiA2 
=> +nA2*kA2*nu*omegaA2+1/24*nA6*nu*OmegaA2*chiA2+1/6*kA2*nA6*chi A2-kA2*nA2*OmegaA2 
=> -1/12*kA6*OmegaA2*chiA2+1/2*kA4*nu*OmegaA2-1/24*kA8*nu*chiA2+ 
=> 1/4*kA4*chiA2*nA4+1/6*kA6*chiA2*nA2-1/24*nA6*OmegaA2*chiA2+1/2*nA2*nu*OmegaA2 
=> -1/24*nA8*nu*chiA2+1/2*nA4*nu*OmegaA2-1/2*nA2*nu*OmegaA4 
=> -1/12*GG{1,1) *kA4*nu*chiA2*nA2+1/2*GG(3,1) *k*n*nu*GG(2 ,3) 
=> +1/2*k*n*nu*GG{1,2) *OmegaA2-1/2*k*n*nu*GG{1,2) *GG{3,3) 
=> -1/12*nA4*nu*GG{2,2) *chiA2*kA2-1/24*nA2*nu*GG{2,2) *chi A2 *kA4 
=> -1/6*GG(1,1)*OmegaA2*chiA2*kA2*nA2+1/6*GG{1,1)*GG(2,2)*chiA2*kA2*nA2 
=> +1/2*k*n*nu*GG{1,3)*GG(3,2)-1/12*kA3*nA3*nu*GG{1,2)*chiA2 
=> -1/24*kAS*n*nu*GG{1,2) *chiA2-1/24*k*nAS*nu*GG{1,2) *chi A2 
=> -1/24*GG{2,1) *kAS*n*nu*chiA2-1/12*GG{2,1) *kA3*nA3*nu*c hiA2 
=> -1/24*GG{2,1) *k*nAS*nu*chiA2+1/2*GG{2,1) *k*n*nu*OmegaA2 -1/2*GG{2,1)*k*n*nu*GG{3,3) 
=> -1/6*GG{2,1)*GG{1,2)*chiA2*kA2*nA2+i*GG{2,1)*nu*k*GG{3,2) 
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=> +i*nu*k*GG(l,3) *GG(2,2)+i*GG(3,l) *nu*k*OmegaA2-1/24*GG(l, 1)*kA2*nu*chiA2*nA4 
=> +1/2*i*kA2*n*nu*GG(3,2)-1/2*i*nu*kA2*n*GG(2,3)+1/2*i*kA2*n*nuA2*GG(3,2) 
=> +1/2*i*k*nA2*nu*GG(l,3)-1/2*i*nuA2*kA2*n*GG(2,3)-i*nu*k*GG(l,2)*GG(2,3) 
=> -i*nu*k*GG(l,3) *OmegaA2-i*GG(3,l) *nu*k*GG(2,2)+nuA2*kA2 *OmegaA2-1/2*i*nA3*GG(3,2) 
=> -1/2*i*GG(3,l)*k*nA2*nu+1/2*i*nA3*GG(2,3); 

%Eva1uate the determinant for the current value of omega 
eq=[deg6 degS deg4 deg3 deg2 deg1 degOl; 
result=polyval(eq,omega); 
return 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ORDER2PROFILEU.M : FUNCTION RETURNING THE FLUID FORCES PER UNIT OF u-PERTURBATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function stressout = order2profileu(n,Omega,omega,k,Lambda,UR,RE,N,delta) 

h=(1-delta)/(N+1/2); 
clear a; 
clear b; 
clear x; 
a=sparse(4*(N) ,4*N); 
b=sparse(4*N,l) ; 

%Distance between two pressure points 
% [al {x}={b} 

%Compute the velocity profile and its derivative over the section 
ru=O:1/(2*N-1) :1; 
U=profile(UR,RE,2*N-1,delta); %Compute the velocity profile 

%Boundary Conditions 
r=O; 
b(l)=O; 

%Velocity influence functions at the wall 
r=l-delta; 
vrw=O; 
vtw=O; 
vsw=i*omega-i*k*interp1(ru,U(l, :),r, 'linear'); 

%Boundary conditions 
r=l-h-delta; 
rc=r+h/2; 
b(4*N-3)=-2*UR/RE*(1/hA2+1/2/r/h)*vrw; 
b(4*N-2)=O; 
b(4*N-1)=-2*UR/RE*(1/hA2+1/2/r/h)*vsw; 
b(4*N-O)=-(1/2/rc+1/h)*vrw+i*k/2*vsw; 

%Special first node next to the centre of the flow 
r=h/2; 
rc=h; 
%Aa 
a(l,l)=-i*omega+i*k*interp1(ru,U(l, :),r, 'linear')-2*UR/RE*(3/2/r/h+(1+nA2)/rA2+kA2-2/hA2); 
a(l,2)=2*Omega+i*n*2*UR/RE*2/rA2; 
a(l,3)=O; 
a(2,l)=-a(l,2) ; 
a(2, 2) =a(l,l); 
a(2,3)=O; 
a(3,l)=-interp1(ru,U(2,:) ,r, 'linear'); 
a(3,2)=O; 
a(3,3)=a(l,l)+2*UR/RE/rA2; 
a(4,l)=1/2/rc-1/h; 
a(4,2)=-i*n/2/rc; 
a(4,3)=-i*k/2; 
%P1 
a(l,4)=1/2/rA2-1/r/h; 
a(2,4)=i*n/2/rA2; 
a(3,4)=i*k/2/r; 
a(4,4)=O; 
%Ab 
a(l,S) =2*UR/RE* (2/r/h-S/hA2) ; 
a(l,6)=O; 
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a(l.,7)=0; 
a(2,S)=0; 
a (2 , 6) =a (l. , 5) ; 
a(2,7)=0; 
a(3,S)=0; 
a(3,6)=0; 
a(3,7)=a(l.,S); 
a(4,S)=(l./2/rc+l./h) ; 
a(4,6)=-i*n/2/rc; 
a(4,7)=-i*k/2; 
%Ac 
a(l.,9) =2*UR/RE*(-l./2/r/h+4/hA2); 
a(l.,l.O)=O; 
a(l.,J.J.) =0; 
a(2,9) =0; 
a(2,l.0)=a(l.,9) ; 
a(2,J.J.)=0; 
a(3,9) =0; 
a(3,l.0)=0; 
a(3,J.J.)=a(l.,9); 
a(4,9) =0; 
a(4,l.0)=0; 
a(4,J.J.)=0; 
%Ad 
a(l.,l.3)=-2*UR/RE/hA2; 
a(l.,l.4)=0; 
a(l.,l.S)=O; 
a(2,J.3)=0; 
a (2, 14) =a (l., 13) ; 
a(2,l.S)=0; 
a(3,l.3)=0; 
a(3,14)=0; 
a(3,l.S)=a(l.,J.3) ; 
a(4,l.3)=0; 
a(4,14)=0; 
a(4,lS)=0; 

%LOOp for aIl the nodes in the domain 
for j=2:N 

r=0.00+(j-l/2)*h; 
rc=r+h/2; 

if j>l. 
%A3 
a(4*j-3,4*j-7)=2*UR/RE*(1/hA2-1/2/r/h) ; 
a(4*j-3,4*j-6)=0; 
a(4*j-3,4*j-S)=0; 
a(4*j-2,4*j-7)=0; 
a(4*j-2,4*j-6)=a(4*j-3,4*j-7); 
a(4*j-2,4*j-S)=0; 
a(4*j-l.,4*j-7)=0; 
a(4*j-l,4*j-6)=0; 
a(4*j-l,4*j-S)=a(4*j-3,4*j-7); 
a(4*j-0,4*j-7)=0; 
a(4*j-0,4*j-6)=0; 
a(4*j-0,4*j-S)=0; 

%P2 
a(4*j-3,4*j-4)=l./2/rA2+l./r/h; 
a(4*j-2,4*j-4)=i*n/2/rA2; 
a(4*j-l.,4*j-4)=i*k/2/r; 
a(4*j-0,4*j-4)=0; 
end 

%Al. 
a(4*j-3,4*j-3) =-i*omega+i*k*interpl. (ru,U(l., :),r, 'linear') 

=> -2*UR/RE*«l.+nA2)/rA2+kA2+2/hA2); 
a(4*j-3,4*j-2)=2*Omega+i*n*2*UR/RE*2/rA2; 
a(4*j-3,4*j-l.)=0; 
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end; 

a(4*j-2,4*j-3)=-a(4*j-3,4*j-2); 
a(4*j-2,4*j-2)=a(4*j-3,4*j-3); 
a(4*j-2,4*j-l)=O; 
a (4*j -l, 4*j -3) =-interpl (ru, U(2, :) ,r, 'linear') ; 
a(4*j-l,4*j-2)=O; 
a(4*j-l,4*j-l)=a(4*j-3,4*j-3)+2*UR/RE/rA2; 
a(4*j-O,4*j-3)=1/2/rc-l/h; 
a(4*j-O,4*j-2)=-i*n/2/rc; 
a(4*j-O,4*j-l)=-i*k/2; 

%Pl 
a(4*j-3,4*j+O)=1/2/rA2-l/r/h; 
a(4*j-2,4*j+O)=i*n/2/rA2; 
a(4*j-l,4*j+O)=i*k/2/r; 
a(4*j-O,4*j+O)=O; 

if j<N 
%A2 
a(4*j-3,4*j+l)=2*UR/RE*(1/hA2+l/2/h/r) ; 
a(4*j-3,4*j+2)=O; 
a(4*j-3,4*j+3)=O; 
a(4*j-2,4*j+l)=O; 
a(4*j-2,4*j+2)=a(4*j-3,4*j+l); 
a(4*j-2,4*j+3)=O; 
a(4*j-l,4*j+l)=O; 
a(4*j-l,4*j+2)=O; 
a(4*j-l,4*j+3)=a(4*j-3,4*j+l) ; 
a(4*j-O,4*j+l)=1/2/rc+l/h; 
a(4*j-O,4*j+2)=-i*n/2/rc; 
a(4*j-O,4*j+3)=-i*k/2; 
end 

%conditionnumb=condest(a) 
x=a\b; 

clear rr 
clear rrp 
clear vr 
clear vt 
clear vs 
clear q 

%Pressure and velocity influence function values found close to the wall 
vr(N-2)=x(4*(N-2)-3) ; 
vr(N-l)=X(4*(N-l)-3) ; 
vr(N)=x(4*N-3); 
rrp(N-l)=O.OO+(N-l)*h; 
rrp(N)=O.OO+N*h; 
q(N-2)=x(4*(N-2)-O) ; 
q(N-l)=x(4*(N-l)-O) ; 
q(N) =x(4*N-O); 
%Evaluation of the pressure flux influence function on the wall 
q(N+l)=(lS*q(N)-lO*q(N-l)+3*q(N-2))/S; 
stressout=zeros(3,l) ; 
%Pressure and velocity influence function values close to the wall 
rW=l-delta; 
piw=q(N+l)/rw; 
vswl=x(4*N-l) ; 
vtwl=x(4*N-2) ; 
vrwl=x(4*N-3) ; 
vBw2=x(4*N-S) ; 
vtw2=x(4*N-6); 
vrw2=x(4*N-7) ; 
%Velocity influence function derivatives close to the wall 
dvtdr=(3*vtw-4*vtwl+vtw2)/2/h; 
dvsdr=(3*vsw-4*vswl+vsw2)/2/h; 

%viscous sublayer. This is only used to evaluate dpdz if the turbulent velocity profile is 
used. 
fi=sqrt(O.02) ; 
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for jj=1:2S 
fi=(-2*loglO(delta/7.4+2.S1/RE/fi»A(-1); 

end 
fcolebrook=fi A2; 
dpdz=-fcolebrook*URA2/4; 
%dpdz=-12*URA2/RE; %Evaluation of the mean quantity dpdz if the laminar velocity profile 
is used. 

%Fluid stresses per unit u-perturbation on the wall 
stressout(1)=-piw+4*UR/RE*(i*n*vtw/rw+i*k*vsw-vrw/rw)-dpdz; 
stressout (2) =2*UR/RE* (-vtw/rw+dvtdr-i*n/rw*vrw) ; 
stressout(3)=2*UR/RE*(-i*k*vrw+dvsdr); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ORDER2PROFILEV.M : FUNCTION RETURNING THE FLUID FORCES PER UNIT OF v-PERTURBATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function stressout = order2profilev(n,Omega,omega,k,Lambda,UR,RE,N,delta) 

h=(1-delta)/(N+l/2) ; 
clear a; 
clear b; 
clear x; 
a=sparse(4*(N),4*N) ; 
b=sparse(4*N,1) ; 

%Distance between two pressure points 
% [al {x}={b} 

%Compute the velocity profile and its derivative over the section 
ru=O:1/(2*N-l) :1; 
U=profile(UR,RE,2*N-l,delta); %Compute the velocity profile 

%Boundary Conditions 
r=O; 
b(l)=O; 

%Velocity influence functions at the wall 
r=l-delta; 
vrw=O; 
vtw=i*omega-i*k*interpl(ru,U(l, :),r, 'linear'); 
vsw=O; 

%Boundary conditions 
r=l-h-delta; 
rc=r+h/2; 
b(4*N-3) =-2*UR/RE* (1/hA2+1/2/r/h) *vrw; 
b(4*N-2)=O; 
b(4*N-l)=-2*UR/RE* (1/hA2+1/2/r/h) *vsw; 
b(4*N-O)=-(1/2/rc+l/h)*vrw+i*k/2*vsw; 

%Special first node next to the centre of the flow 
r=h/2; 
rc=h; 
%Aa 
a(l,l)=-i*ornega+i*k*interpl(ru,U(l,:) ,r, 'linear')-2*UR/RE*(3/2/r/h+(1+nA2)/rA2+kA2-2/hA2); 
a(1,2)=2*Omega+i*n*2*UR/RE*2/rA2; 
a(1,3)=O; 
a(2,1)=-a(1,2) ; 
a (2, 2) =a (l, 1) ; 
a(2,3)=O; 
a(3,1)=-interpl(ru,U(2,:) ,r, 'linear'); 
a(3,2)=O; 
a(3,3)=a(1,1)+2*UR/RE/rA2; 
a{4,1)=1/2/rc-l/h; 
a(4,2)=-i*n/2/rc; 
a(4,3)=-i*k/2; 
%Pl 
a(1,4)=1/2/rA2-1/r/h; 
a{2,4)=i*n/2/rA2; 
a{3,4)=i*k/2/r; 
a{4,4)=O; 
%Ab 
a(1,S)=2*UR/RE*{2/r/h-S/hA2) ; 
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a(1,6)=0; 
a(1,7)=0; 
a(2,S)=0; 
a(2,6)=a(1,S) ; 
a(2,7)=0; 
a(3,S)=0; 
a(3,6)=0; 
a ( 3 , 7) =a ( 1 , 5) ; 
a(4,S)=(1/2/rc+l/h) ; 
a(4,6)=-i*n/2/rc; 
a(4,7)=-i*k/2; 
%Ac 
a(1,9) =2*UR/RE*(-1/2/r/h+4/hA2); 
a(l,lO)=O; 
a(l,l1)=O; 
a(2,9) =0; 
a(2,10)=a(1,9) ; 
a(2,11)=0; 
a(3,9) =0; 
a(3,10)=0; 
a(3, 11) =a(l, 9); 
a(4,9) =0; 
a(4,10)=0; 
a(4,11)=0; 
%Ad 
a(1,13)=-2*UR/RE/hA2; 
a(1,14)=0; 
a(l,lS)=O; 
a(2,13)=0; 
a(2,14)=a(1,13) ; 
a(2,lS)=0; 
a(3,13)=0; 
a(3,14)=0; 
a(3,lS)=a(1,13) ; 
a(4,13)=0; 
a(4,14)=0; 
a(4,lS)=0; 

%Loop for aIl the nodes in the domain 
for j=2:N 

r=0.00+(j-l/2)*h; 
rc=r+h/2; 

if j>l 
%A3 
a(4*j-3,4*j-7)=2*UR/RE*(1/hA2-1/2/r/h) ; 
a(4*j-3,4*j-6)=0; 
a(4*j-3,4*j-S)=0; 
a(4*j-2,4*j-7)=0; 
a(4*j-2,4*j-6)=a(4*j-3,4*j-7); 
a(4*j-2,4*j-S)=0; 
a(4*j-l,4*j-7)=0; 
a(4*j-l,4*j-6)=0; 
a(4*j-l,4*j-S) =a(4*j-3,4*j-7); 
a(4*j-0,4*j-7)=0; 
a(4*j-0,4*j-6)=0; 
a(4*j-0,4*j-S)=0; 

%P2 
a(4*j-3,4*j-4)=1/2/rA2+1/r/h; 
a(4*j-2,4*j-4)=i*n/2/rA2; 
a(4*j-l,4*j-4)=i*k/2/r; 
a(4*j-0,4*j-4)=0; 
end 

%Al 
a(4*j-3,4*j-3)=-i*omega+i*k*interpl(ru,U(1, :),r, 'linear') 

=> -2*UR/RE*((1+nA2)/rA2+kA2+2/hA2); 
a(4*j-3,4*j-2)=2*Omega+i*n*2*UR/RE*2/rA2; 
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end; 

a(4*j-3,4*j-l)=0; 
a(4*j-2,4*j-3) =-a(4*j-3,4*j-2); 
a(4*j-2,4*j-2)=a(4*j-3,4*j-3); 
a(4*j-2,4*j-l)=0; 
a(4*j-l,4*j-3)=-interpl(ru,U(2, :),r, 'linear'); 
a(4*j-l,4*j-2)=0; 
a(4*j-l,4*j-l)=a(4*j-3,4*j-3)+2*UR/RE/rA 2; 
a(4*j-0,4*j-3)=1/2/rc-l/h; 
a(4*j-0,4*j-2)=-i*n/2/rc; 
a(4*j-0,4*j-l)=-i*k/2; 

%Pl 
a(4*j-3,4*j+0)=1/2/rA 2-1/r/h; 
a(4*j-2,4*j+0)=i*n/2/rA 2; 
a(4*j-l,4*j+0)=i*k/2/r; 
a(4*j-0,4*j+0)=0; 

if j<N 
%A2 
a(4*j-3,4*j+l)=2*UR/RE*(1/hA 2+1/2/h/r) ; 
a(4*j-3,4*j+2)=0; 
a(4*j-3,4*j+3)=0; 
a(4*j-2,4*j+l)=0; 
a(4*j-2,4*j+2) =a(4*j-3,4*j+l); 
a(4*j-2,4*j+3)=0; 
a(4*j-l,4*j+l)=0; 
a(4*j-l,4*j+2)=0; 
a(4*j-l,4*j+3)=a(4*j-3,4*j+l) ; 
a(4*j-0,4*j+l)=1/2/rc+l/h; 
a(4*j-0,4*j+2)=-i*n/2/rc; 
a(4*j-0,4*j+3)=-i*k/2; 
end 

%conditionnumb=condest(a) 
x=a\b; 

clear rr 
clear rrp 
clear vr 
clear vt 
clear vs 
clear q 

%Pressure and velocity influence function values found close to the wall 
vr(N-2)=x(4*(N-2)-3); 
vr(N-l)=x(4*(N-l)-3) ; 
vr(N)=x(4*N-3) ; 
rrp(N-l)=O.OO+(N-l)*h; 
rrp(N)=O.OO+N*h; 
q(N-2) =x(4* (N-2) -0); 
q(N-l)=x(4*(N-l)-0) ; 
q(N)=x(4*N-O) ; 
%Evaluation of the pressure flux influence function on the wall 
q(N+l)=(lS*q(N)-10*q(N-l)+3*q(N-2))/S; 
stressout=zeros(3,1) ; 
%Pressure and velocity influence function values close to the wall 
rW=l-delta; 
piw=q(N+l)/rw; 
vswl=x(4*N-l) ; 
vtwl=x (4*N-2) ; 
vrwl=x(4*N-3) ; 
vsw2=x(4*N-S) ; 
vtw2=x(4*N-6) ; 
vrw2=x(4*N-7) ; 
%Velocity influence function derivatives close to the wall 
dvtdr=(3*vtw-4*vtwl+vtw2)/2/h; 
dvsdr=(3*vsw-4*vswl+vsw2)/2/h; 

%Fluid stresses per unit v-perturbation on the wall 
stressout(1)=-piw+4*UR/RE*(i*n*vtw/rw+i*k*vsw-vrw/rw); 
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stressout (2) =2*UR/RE* (-vtw/rw+dvtdr-i*n/rw*vrw) ; 
stressout (3) =2*UR/RE* (-i*k*vrw+dvsdr) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ORDER2PROFILEW.M : FUNCTION RETURNING THE FLUID FORCES PER UNIT OF w-PERTURBATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function stressout = order2profilew(n,Omega,omega,k,Lambda,UR,RE,N,delta) 

h=(1-delta)/(N+l/2) ; 
clear a; 
clear b; 
clear x; 
a=sparse(4*(N),4*N) ; 
b=sparse(4*N,1); 

%Distance between two pressure points 
% [al {x}={b} 

%Compute the velocity profile and its derivative over the section 
ru=O:1/(2*N-l) :1; 
U=profile(UR,RE,2*N-l,delta); %Compute the velocity profile 

%Boundary Conditions 
r=O; 
b(l)=O; 

%Velocity influence functions at the wall 
r=l-delta; 
vrw=i*omega-i*k*interpl(ru,U(l,:) ,r, 'linear'); 
vtw=O; 
vsw=-interpl(ru,U(2, :),r, 'linear'); 

%Boundary conditions 
r=l-h-delta; 
rc=r+h/2; 
b(4*N-3)=-2*UR/RE* (1/hA2+1/2/r/h) *vrw; 
b(4*N-2)=O; 
b(4*N-l) =-2*UR/RE* (1/hA2+1/2/r/h) *vsw; 
b(4*N-O)=-(1/2/rc+l/h)*vrw+i*k/2*vsw; 

%Special first node next to the centre of the flow 
r=h/2; 
rc=h; 
%Aa 
a(l,l) =-i*omega+i*k*interpl (ru,U(l, :) ,r, 'linear')-2*UR/RE*(3/2/r/h+(1+nA2)/rA2+kA2-2/hA2); 
a(1,2)=2*Omega+i*n*2*UR/RE*2/rA2; 
a(1,3)=O; 
a(2,1)=-a(1,2) ; 
a (2, 2) =a (l, 1) ; 
a(2,3)=O; 
a(3, 1) =-interpl (ru, U(2, :), r, 'linear') ; 
a(3,2)=O; 
a(3,3)=a(1,1)+2*UR/RE/rA2; 
a(4,1)=1/2/rc-l/h; 
a(4,2)=-i*n/2/rc; 
a(4,3)=-i*k/2; 
%Pl 
a(1,4)=1/2/rA2-1/r/h; 
a(2,4)=i*n/2/rA2; 
a(3,4)=i*k/2/r; 
a(4,4)=O; 
%Ab 
a(1,S)=2*UR/RE*(2/r/h-S/hA2); 
a(1,6)=O; 
a(1,7)=O; 
a(2,S)=O; 
a ( 2 , 6 ) =a ( 1 , 5) ; 
a(2,7)=O; 
a(3,S)=O; 
a(3,6)=O; 
a(3,7)=a(1,S) ; 
a(4,S)=(1/2/rc+l/h) ; 
a(4,6)=-i*n/2/rc; 
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a(4,7)=-i*k/2; 
%Ac 
a(l,9) =2*UR/RE*(-1/2/r/h+4/hA2); 
a(l,lO)=O; 
a(l,ll)=O; 
a(2,9) =0; 
a(2,lO) =a(l, 9); 
a(2,l1) =0; 
a(3,9) =0; 
a(3,lO)=0; 
a(3,ll)=a(l,9) ; 
a(4,9) =0; 
a(4,lO)=0; 
a(4,ll)=0; 
%Ad 
a(l,13)=-2*UR/RE/hA2; 
a(l,14)=0; 
a(l,lS)=O; 
a(2,13)=0; 
a(2 ,14) =a (1,13) ; 
a(2,lS)=0; 
a(3,13)=0; 
a(3,14)=0; 
a(3,lS)=a(l,13) ; 
a(4,13)=0; 
a(4,14)=0; 
a(4,lS)=0; 

%Loop for aIl the nodes in the domain 
for j=2:N 

r=0.00+(j-1/2)*h; 
rc=r+h/2; 

if j>l 
%A3 
a(4*j-3,4*j-7)=2*UR/RE*(1/hA2-1/2/r/h) ; 
a(4*j-3,4*j-6)=0; 
a(4*j-3,4*j-S)=0; 
a(4*j-2,4*j-7)=0; 
a(4*j-2,4*j-6)=a(4*j-3,4*j-7); 
a(4*j-2,4*j-S)=0; 
a(4*j-1,4*j-7)=0; 
a(4*j-1,4*j-6)=0; 
a(4*j-1,4*j-S)=a(4*j-3,4*j-7); 
a(4*j-O,4*j-7)=0; 
a(4*j-O,4*j-6)=0; 
a(4*j-O,4*j-S)=0; 

%P2 
a(4*j-3,4*j-4)=1/2/rA2+1/r/h; 
a(4*j-2,4*j-4)=i*n/2/rA2; 
a(4*j-1,4*j-4)=i*k/2/r; 
a(4*j-O,4*j-4)=0; 
end 

%A1 
a(4*j-3,4*j-3)=-i*omega+i*k*interp1(ru,U(l, :),r, 'linear') 

=> -2*UR/RE*((1+nA2)/rA2+kA2+2/hA2); 
a(4*j-3,4*j-2)=2*Omega+i*n*2*UR/RE*2/rA2; 
a(4*j-3,4*j-l)=0; 
a(4*j-2,4*j-3)=-a(4*j-3,4*j-2) ; 
a(4*j-2,4*j-2)=a(4*j-3,4*j-3); 
a(4*j-2,4*j-1)=0; 
a(4*j-1,4*j-3)=-interp1(ru,U(2, :),r, 'linear'); 
a(4*j-1,4*j-2)=0; 
a(4*j-1,4*j-1)=a(4*j-3,4*j-3)+2*UR/RE/rA2; 
a(4*j-O,4*j-3)=1/2/rc-1/h; 
a(4*j-O,4*j-2)=-i*n/2/rc; 
a(4*j-O,4*j-1)=-i*k/2; 
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end; 

%Pl 
a(4*j-3,4*j+O)=1/2/rA2-l/r/h; 
a(4*j-2,4*j+O)=i*n/2/rA2; 
a(4*j-l,4*j+O)=i*k/2/r; 
a(4*j-O,4*j+O)=O; 

if j<N 
%A2 
a(4*j-3,4*j+l)=2*UR/RE*(1/hA2+l/2/h/r) ; 
a(4*j-3,4*j+2)=O; 
a(4*j-3,4*j+3)=O; 
a(4*j-2,4*j+l)=O; 
a(4*j-2,4*j+2)=a(4*j-3,4*j+l); 
a(4*j-2,4*j+3)=O; 
a(4*j-l,4*j+l)=O; 
a(4*j-l,4*j+2)=O; 
a (4*j -l, 4*j+3) =a (4*j -3, 4*j+l) ; 
a(4*j-O,4*j+l)=1/2/rc+l/h; 
a(4*j-O,4*j+2)=-i*n/2/rc; 
a(4*j-O,4*j+3)=-i*k/2; 
end 

%conditionnumb=condest(a) 
x=a\b; 

clear rr 
clear rrp 
clear vr 
clear vt 
clear vs 
clear q 

%Pressure and velocity influence function values found close to the wall 
vr(N-2)=x(4*(N-2)-3); 
vr(N-l)=x(4*(N-l)-3); 
vr(N)=x(4*N-3) ; 
rrp(N-l)=O.OO+(N-l)*h; 
rrp(N)=O.OO+N*h; 
q(N-2)=x(4*(N-2)-O); 
q(N-l)=x(4*(N-l)-O) ; 
q(N)=x(4*N-O); 
%Evaluation of the pressure flux influence function on the wall 
q(N+l)=(lS*q(N)-lO*q(N-l)+3*q(N-2»/S; 
stressout=zeros(3,l) ; 
%Pressure and velocity influence function values close to the wall 
rw=l-delta; 
piw=q(N+l)/rw; 
vswl=x(4*N-l); 
vtwl=x(4*N-2) ; 
vrwl=x(4*N-3) ; 
v'sw2=x(4*N-S) ; 
vtw2=x(4*N-6); 
vrw2=x(4*N-7) ; 
%Velocity influence function derivatives close to the wall 
dvtdr=(3*vtw-4*vtwl+vtw2)/2/h; 
dvsdr=(3*vsw-4*vswl+vsw2)/2/h; 

%Fluid stresses per unit w-perturbation on the wall 
stressout(1)=-piw+4*UR/RE*(i*n*vtw/rw+i*k*vsw-vrw/rw)-0megaA2*rw; 
stressout(2)=2*UR/RE*(-vtw/rw+dvtdr-i*n/rw*vrw); 
stressout(3)=2*UR/RE* (-i*k*vrw+dvsdr+interpl (ru,U(2, :),l-delta, 'linear'»; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PROFILE.M : FONCTION RETURNING MEAN VELOCITY PROFILE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function U = profile(UR,RE,N,delta) %UR and RE are the average values over the pipe 

%radius 
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r=O:l/N:l; 

%eta=l; %For a laminar profile, use eta=l. Higher eta leads to higher polynomial profiles. 
%for j=l:N+l 
% rr=r(j); 
% U(1,j)=UR*(1/2*(1-rrÀ(2*eta))/eta*(2*eta+l)); 
% U(2,j)=UR*(-rrÀ(2*eta-l)*(2*eta+l)); 
%end 

%return 

%Viscous sublayer 
fi=sqrt(O.02) ; 
for jj=1:25 

fi=(-2*loglO(delta/7.4+2.51/RE/fi))À(-1) ; 
end 
fcolebrook=fi À2; 
dusublayer=-fcolebrook*UR*RE/16; 
usublayer=(r-l)*dusublayer; 

%Core region power law model 
a2c=.8750000000; 
URc=UR/a2c; 
for j=l:N+l 

rr=r(j); 
upow(j)=URc*(1-rr)À(1/7); 

end; 

U=zeros(2,N+l); 
for j=l:N+O 

end 

U(l,j)=min(upow(j),usublayer(j)); %Mean velocity profile 
if U(l,j)==usublayer(j) 

el se 

end 

U(2,j)=dusublayer; %r-derivative of the mean velocity profile 

rj=r(j) ; 
U(2,j)=URc*(-1/7*1/«1-rj)À(6/7))); 

return 
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