
Analyses of High-dimensional Stochastic

Algorithms: Towards Adaptive Stepsizes

Andrew W. Mackenzie

Department of Mathematics and Statistics

McGill University, Montreal

December, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science

©Andrew W. Mackenzie, 2024

Table of Contents

Abstract . iv

Abrégé . vi

Acknowledgements . viii

Contributions . x

List of Figures . xiii

List of Tables . xiv

1 Introduction 1

2 History 4

2.1 Theoretical Beginnings . 5

2.1.1 Robbins-Munro [1951] . 5

2.1.2 Kiefer-Wolfowitz [1952] . 7

2.1.3 Perceptron [1958] and ADALINE [1960] 7

2.2 Digital Implementations . 9

2.2.1 Backpropagation [1986] . 9

2.2.2 Nemirovski-Yudin [1983] . 10

2.2.3 Polyak-Juditsky [1992] . 12

2.3 Deep Learning . 16

2.3.1 AdaGrad [2011] . 17

2.3.2 RMSProp [2012] . 18

2.3.3 Adam [2014] . 19

i

2.3.4 Cutting Through the Noise [2021-] . 20

3 Concentration Inequality Background 22

4 Dynamics of Stochastic Adaptive Learning Algorithms 24

4.1 Introduction . 24

4.1.1 Model Set-up . 29

4.1.2 Algorithmic set-up . 31

4.2 Deterministic dynamics for SGD with adaptive learning rates 33

4.3 Idealized Exact Line Search and Polyak Stepsize 36

4.4 AdaGrad-Norm analysis . 39

5 Proofs, Examples, and Simulations 43

5.1 SGD adaptive learning rate algorithms and stepsizes 43

5.2 The Dynamical nexus . 45

5.2.1 Discussion of the assumptions on f 45

5.2.2 Integro-differential equation for S(t, z) 49

5.3 SGD-AL is an approximate solution . 53

5.3.1 SGD-AL is an approximated solution 54

5.3.2 Error bounds . 58

5.3.3 Specific learning rates . 73

5.4 Proofs for AdaGrad-Norm analysis . 78

5.4.1 Strongly convex setting . 78

5.4.2 Least squares setting . 81

5.5 Polyak Stepsize . 92

5.6 Line Search . 94

5.6.1 General Line Search . 94

5.6.2 Line Search on least squares . 95

5.7 Examples . 98

ii

5.7.1 Binary logistic regression . 98

5.7.2 CIFAR 5m . 99

5.8 Numerical simulation details . 100

iii

Abstract

The aim of this work is to provide a precise characterization of how stochastic adaptive

learning rate algorithms behave in high-dimensional settings, particularly focusing on their

dynamics when both the number of parameters and samples are large. While adaptive

learning rate strategies like AdaGrad and Adam have shown immense practical success in

machine learning applications, our theoretical understanding of their behavior remains

limited, especially regarding how they interact with the geometry of high-dimensional

optimization problems.

We develop a framework for analyzing the exact dynamics of both the risk and learning

rates for stochastic adaptive algorithms on a class of problems we call "high-dimensional

linear composite functions." In this setting, we prove that as dimension grows, the training

dynamics concentrate around deterministic curves described by a system of ordinary

differential equations (ODEs). This concentration result enables us to derive precise

predictions about how adaptive algorithms interact with problem geometry, leading to

several insights: First, we show that exact line search (greedily minimizing the risk at

each step) can perform arbitrarily worse than simpler strategies like Polyak stepsize when

the data covariance exhibits strong anisotropy. Second, we prove that AdaGrad-Norm

automatically discovers near-optimal stepsizes when initialized properly, though it pays a

constant factor penalty related to the initial distance to optimality. Finally, we demonstrate

how AdaGrad-Norm’s behavior undergoes a phase transition on problems with power-

law spectra - for easier problems it maintains a constant learning rate, while for harder

problems it adopts a specific decay schedule that we characterize exactly.

iv

Our framework provides one of the first theoretical approaches that can meaningfully

distinguish between different adaptive algorithms that achieve minimax optimal rates.

The resulting ODEs offer remarkably accurate predictions of algorithmic behavior even

for medium-sized problems, as we verify through numerical experiments. This work

takes important steps toward a more complete understanding of adaptive optimization

in the high-dimensional regime that increasingly characterizes modern machine learning

problems.

Along with our results, which may seem somewhat technical and specific, we provide

a brief history of the various approaches taken to analyze SGD. This situates our work as

part of an ongoing long-term project, one we hope will fully explain what is emerging as

the most consequential algorithm of our time.

v

Abrégé

Ce travail vise à fournir une caractérisation précise du comportement des algorithmes

stochastiques à taux d’apprentissage adaptatif dans des contextes de haute dimension, en

se concentrant particulièrement sur leur dynamique lorsque le nombre de paramètres et

d’échantillons est élevé. Bien que les stratégies de taux d’apprentissage adaptatif comme

AdaGrad et Adam aient démontré un immense succès pratique dans les applications

d’apprentissage automatique, notre compréhension théorique de leur comportement

reste limitée, notamment concernant leur interaction avec la géométrie des problèmes

d’optimisation en haute dimension.

Nous développons un cadre pour analyser les dynamiques exactes du risque et des

taux d’apprentissage pour les algorithmes adaptatifs stochastiques sur une classe de

problèmes que nous appelons "fonctions composites linéaires de haute dimension". Dans

ce contexte, nous prouvons qu’à mesure que la dimension augmente, les dynamiques

d’entraînement se concentrent autour de courbes déterministes décrites par un système

d’équations différentielles ordinaires (EDO). Ce résultat de concentration nous permet de

dériver des prédictions précises sur la façon dont les algorithmes adaptatifs interagissent

avec la géométrie du problème, menant à plusieurs observations : Premièrement, nous

montrons que la recherche linéaire exacte (minimisation gloutonne du risque à chaque

étape) peut donner des résultats arbitrairement moins bons que des stratégies plus simples

comme le pas de Polyak lorsque la covariance des données présente une forte anisotropie.

Deuxièmement, nous prouvons qu’AdaGrad-Norm découvre automatiquement des pas

quasi-optimaux lorsqu’il est correctement initialisé, bien qu’il paie une pénalité en facteur

vi

constant liée à la distance initiale à l’optimalité. Enfin, nous démontrons comment le

comportement d’AdaGrad-Norm subit une transition de phase sur des problèmes avec

des spectres en loi de puissance - pour les problèmes plus simples, il maintient un taux

d’apprentissage constant, tandis que pour les problèmes plus difficiles, il adopte un

programme de décroissance spécifique que nous caractérisons exactement.

Notre cadre fournit l’une des premières approches théoriques permettant de distinguer

significativement différents algorithmes adaptatifs qui atteignent des taux minimax op-

timaux. Les EDO résultantes offrent des prédictions remarquablement précises du com-

portement algorithmique même pour des problèmes de taille moyenne, comme nous le

vérifions par des expériences numériques. Ce travail constitue des avancées importantes

vers une compréhension plus complète de l’optimisation adaptative dans le régime de

haute dimension qui caractérise de plus en plus les problèmes modernes d’apprentissage

automatique.

Avec nos résultats, qui peuvent sembler quelque peu techniques et spécifiques, nous

fournissons un bref historique des différentes approches utilisées pour analyser la SGD.

Cela situe notre travail comme faisant partie d’un projet à long terme en cours, dont

nous espérons qu’il expliquera pleinement ce qui s’impose comme l’algorithme le plus

important de notre époque.

vii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Courtney

Paquette. Unfailingly encouraging, she would answer every last one of my questions, even

when I stubbornly refused to believe her. Above and beyond technical math, she helped

me with everything, both concrete and undefinable, needed for successful research, all

while providing insight into the ins and outs of academia and industry. I’m not sure what

magic she used, but there was never a day I would leave her office without being inspired

anew.

Next, thank you to Elliot Paquette. His impromptu derivations have shown me what

true mathematical mastery looks like, and his combination of reassurance, insight and

sangfroid have given me yet another ideal to aspire to.

Thank you to my wonderful friend Tomer Moran. A year ahead of me in undergrad,

he infected me with his love for real analysis; late-night presentations on PDEs in my

basement turned into years of collaboration, in school and outside of it. Tomer has always

had my back; be it in startups, New York City, or skiing trips, he has been a constant source

of wisdom and energy.

Thank you to the best parents in the world. All else aside, not every high-schooler has

the privilege of being taught linear algebra in a little home library - my dad is the one who,

early on, sparked my love of real math. And my mom, who decided to homeschool us

kids while working nights in emergency, was really the one who made all of this possible.

Thank you to my grandparents, who left their lives in Russia to provide their grand-

children with the sort of opportunities I have now. Thank you to my siblings, who’ve been

viii

with me through thick and thin. And, finally, thank you to all the rest of my friends, who

continue to make my life bright and unpredictable.

ix

Contributions

This thesis is based largely on a recent paper, The High Line: Exact Dynamics of Stochastic

Adaptive Learning Algorithms [17]. The main novelty in this paper is its general analysis

of adaptive learning rates. Subject to some Lipschitz conditions, we provide an exact

system of ODEs for SGD algorithms with stepsizes depending on the history of losses and

gradient norms up to the current moment. Previous analogues required the stepsize to be

determined in advance, limiting their applicability to the most efficient and widely-used

variants of SGD.

Along with the theoretical foundations it introduces, this paper demonstrates the appli-

cability of its methods by dissecting, among others, the AdaGrad-Norm algorithm. We

categorize a variety of different possible convergence rates for AdaGrad-Norm, depending

on the eigenvalues of the underlying data distribution, and identify a phase transition in

the case where these eigenvalues follow a power law.

These results are part of a collaborative project; the main contributions from Andrew

Mackenzie, the author of this thesis, are contained Section 5.3. He generalized the ODE

in [15] from deterministic to adaptive stepsizes and provided the error bounds necessary

to show concentration in this new setting. Andrew is also responsible for the numerical

simulations involving AdaGrad-Norm (Figure 4.1) and the experiments on real data

(Section 5.7.2).

Elizabeth Collins-Woodfin and Inbar Seroussi used the resulting ODE to analyze the

behaviours of AdaGrad-Norm and Polyak stepsize, while Begoña García Malaxechebarría

x

investigated line search. Courtney and Elliot Paquette, the advisors of the author, provided

intuition, high-level planning, and direction.

xi

List of Figures

4.1 Concentration of learning rate and risk for AdaGrad-Norm on least squares

with label noise ω = 1 (left) and logistic regression with no noise (right).

As dimension increases, both risk and learning rate concentrate around

a deterministic limit (red) described by our ODE in Theorem 4.2.1. The

initial risk increase (left) suggests the learning rate started too high, but

AdaGrad-Norm adapts. Our ODEs predict this behavior. See Sec. 5.8 for

simulation details. 25

4.2 Comparison for Exact Line Search and Polyak Stepsize on a noiseless least

squares problem. The left plot illustrates the convergence of the risk func-

tion, while the right plot depicts the convergence of the quotient γt/
λmin(K)
1
d
Tr(K2)

for Polyak stepsize and exact line search. Both plots highlight the impli-

cation of equation (4.13) in high-dimensional settings, where a broader

spectrum of K results in λmin(K)
1
d
Tr(K2)

≪ 1
1
d
Tr(K)

, indicating slower risk conver-

gence and poorer performance of exact line search (unmarked) as it deviates

from the Polyak stepsize (circle markers) . The gray shaded region demon-

strates that equation (4.13) is satisfied. See Appendix 5.8 for simulation

details. 37

xii

4.3 Quantities effecting AdaGrad-Norm learning rate. (left): Effect of noise

(ω = 1.0) on risk (left axis) and learning rate (right axis). Depicted is
learning rate

asymptotic l.r. so it approaches 1. (Center, right): Noiseless least squares (ω = 0).

As predicted in Prop. 4.4.2, limt→∞ γt depends on avg. eig. of K (Tr(K)/d)

and ∥X0 − X⋆∥2 but not κ = λmax/λmin. See Appendix 5.8 for simulation

details. 39

4.4 Power law covariance in AdaGrad Norm on a least squares problem. Ran

exact predictions (ODE) for the risk and learning rate (solid lines). Dashed

lines give the predictions from Prop. 4.4.4 which match experimental results

exactly. Phase transition as δ+β varies. When δ+β < 1 (green), the learning

rate (right) is constant as t→∞. In contrast, when 2 > δ + β > 1 (purple),

the learning rate decreases at a rate t−1+1/(β+δ) with δ + β = 1 (white) where

the change occurs. The same phase transition occurs in the sublinear rate of

the risk decay (left) (see Prop. 4.4.4). 41

5.1 Convergence in Exact Line Search on a noiseless least squares problem.

The plot on the left illustrates the convergence of the risk function, while

the center and right plots depict the convergence of the quotient Dλ2
(t)

Dλ1
(t)

and the learning rate γt, respectively. Further details and formulas for the

limiting behavior can be found in the Appendix 5.6.2. See Appendix 5.8 for

simulation details. 94

5.2 Predicting the training dynamics on a real dataset, CIFAR-5m [50], using

multi-pass AdaGrad-Norm. This suggests the theory extends beyond Gaus-

sian data and one-pass. Note that the curves look significantly different

for different n; smaller values of n lead to an overparametrized problem,

allowing least squares to memorize datapoints, whereas for larger n, least

squares must learn a general function mapping images of cars and airplanes

to their respective labels. 101

xiii

List of Tables

4.1 Summary of adaptive learning rates results on the least squares prob-

lem. We summarize our results for line search and AdaGrad-Norm under

various assumptions on the covariance matrix K. We denote λmin the small-

est non-zero eigenvalue of K and Tr(K)
d

the average eigenvalue. Power

law(δ, β) assumes the eigenvalues of K, {λi}di=1, follow a power law distri-

bution, that is, for 0 < β < 1, λi ∼ (1 − β)λ−β1(0,1) for all 1 ≤ i ≤ d and

⟨X0 −X⋆, ωi⟩2 ∼ λ−δ
i where {ωi}di=1 are eigenvectors of K (see Prop 4.4.4).

For ∗ (see Prop. 4.4.2), requires a good initialization on b, η. 27
4.2 Two adaptive learning rates considered in detail. The stochastic adaptive

learning rate, gk, is the learning rate directly used in the update for SGD

whereas the deterministic, γt, is the deterministic equivalent of gk after

scaling. The deterministic equivalent γt utilizes quantities B(s) and R(s)

derived from the ODE system described in Section 4.2. 31

xiv

Chapter 1

Introduction

The current state of artificial intelligence (AI) is marked by a dynamic tension between

empirical success and theoretical foundations, with practice often leading theory by sev-

eral years, if not decades. While large-scale experiments drive many of the field’s most

significant discoveries, the underlying mathematical principles often remain unclear until

years after their practical validation.

At the heart of modern AI lies a remarkably simple algorithm: stochastic gradient

descent (SGD) [64]. Given a loss function f(w) to minimize, SGD iteratively updates its

estimate of the optimum via

wk+1 = wk − ηk∇̃f(wk), (1.1)

where ηk is a learning rate and ∇̃f(wk) is a stochastic gradient - a noisy but unbiased

estimate of the true gradient∇f(wk). Despite its simplicity, this basic update rule, along

with its adaptive variants, underlies virtually all of contemporary deep learning.

What puts this algorithm in such a unique position is the sheer scale at which it is

currently run. One of the major discoveries of the past decade has been the fact that

neural networks become predictably more capable as they grow larger. Consequently,

modern architectures contain billions or even trillions of parameters, operating in spaces

of correspondingly high dimension. SGD remains the only optimization algorithm capable

of training these models effectively, but the computational resources required are immense,

1

to the point where companies are now negotiating nuclear power plant purchases for their

datacenters.

At this scale, experimentation becomes prohibitively expensive, and the field’s reliance

on empirical heuristics becomes a liability. A particularly recent example of this theory-

practice gap can be found in the evolution of our understanding of neural network scaling

laws.

In 2022, researchers at DeepMind [34] demonstrated “optimal" compute trade-offs,

or “scaling laws," for large language models, refining similar empirical work from Ope-

nAI [37]. Very recently, theoretical work [60] derived these same scaling relationships from

first principles. While the general power-law form remained constant, the new analysis

included previously overlooked lower-order terms. These terms, difficult to detect ex-

perimentally, had potentially multi-million dollar implications for industrial AI training,

throwing into stark relief the incompleteness of our understanding of SGD dynamics.

This thesis aims to contribute to closing this theory-practice gap by developing rigorous

mathematical foundations for modern optimization techniques. Building on exact analyses

of vanilla SGD and momentum methods, we extend these tools to adaptive learning

rate algorithms such as AdaGrad-Norm [47]. This extension is particularly significant

given that adaptive optimizers like AdamW [46] have become the de facto standard in

contemporary deep learning practice.

To properly contextualize our contributions, we begin with a survey of both the math-

ematical and practical evolution of the field. We present several archetypal proofs from

different eras, not only for their technical content but also to illustrate how theoretical fo-

cuses shifted as computational capabilities expanded. This dual perspective highlights how

hardware constraints, practical needs, intuitive engineering and mathematical insights

have shaped the development of optimization algorithms.

The technical core of our work draws heavily on random matrix theory and general

high-dimensional probability. Given that these mathematical tools may be unfamiliar to

some readers, we provide a self-contained introduction to the key concepts and techniques

2

needed to understand our main results. Finally, with this foundation established, we

proceed to our analyses.

3

Chapter 2

History

Theoretical work on SGD has, unsurprisingly, evolved alongside its practical applications.

The first major discussion of SGD [64], in 1951, made no reference to implementation

details, or even the concept that the algorithm could be run on a computer. (Coincidentally,

the first commercial computer, the UNIVAC I, was released that same year; it had a

production volume of 46 units.) Due to the virtual absence of computational power,

stochastic optimization was primarily of mathematical interest. Research at the time

guaranteed convergence in the limit, and did not concern itself with rates.

Years passed; Moore’s law advanced and research kept pace. In 1986, Geoffrey Hinton

described how neural networks could be trained using backpropagation and gradient

descent. By then, computers had moved from vacuum tubes to integrated circuits, and

the leading chip, Intel’s i386, sold for $299 and ran at around 4M instructions per second.

While still largely academic, SGD was now regularly run in practice. Time complexity

considerations were now inevitable.

In this context, the decade saw tight asymptotic bounds on the convergence rate of all

versions of SGD, along with variants achieving this theoretical limit. In terms of imple-

mentation, a new momentum algorithm [67] achieved significant practical speedups. Most

SGD runs, however, were one-offs, so analyses held the size of the network and dataset

4

constant when determining time complexity; only 30 years later would this assumption be

revised.

A defining moment came in 2011, when a group, led by, once again, Geoffrey Hinton1,

demonstrated deep learning’s practical viability. Training on a pair of NVIDIA GTX

580 GPUs, they dramatically improved the state-of-the-art on the ImageNet challenge

with a convolutional neural network and momentum SGD2. With teraflops now at every

researcher’s disposal, algorithmic innovation surged: RMSProp [32], AdaGrad [23], and

Adam [39] brought adaptive learning rates that transformed training dynamics. The

importance of scale was dramatically validated by GPT-2 [63] and GPT-3 [12]’s capability

jumps in 2020; optimization theory is still struggling to fully explain these dimension-

dependent, average-case3, nonconvex results.

As of late 2024, massive GPU clusters are being built: X.ai’s Memphis datacenter, for

example, houses 100K NVIDIA H100s, each offering a petaflop of float16 arithmetic. AI

research shows signs of becoming an epoch-defining project and is increasingly facilitated

by the very language models it produces. In a race between countries and labs, a significant

proportion of discoveries are kept private, making it difficult to pinpoint the state of the

art; the limits of scaling, in particular, remain a major open question.

2.1 Theoretical Beginnings

2.1.1 Robbins-Munro [1951]

The first mathematical foundations of stochastic gradient descent were laid by Herbert

Robbins and Sutton Monro in their now-classic 1951 paper A Stochastic Approximation

Method [64]. The paper mentions in passing that the idea for the algorithm presented

was first suggested in Naval Ordnance Report No. 65, back in 1946. (The writer of said

report just so happened to be J. W. Tukey. Some 20 years later, motivated by the need to

1Nobel Prize: well deserved.
2Unchanged since the 80s.
3As contrasted with worst-case; here the average is taken over the randomness in the gradient noise.

5

detect Soviet nuclear weapons tests from seismometer readings, he would rediscover and

popularize the FFT algorithm.)

Robbins and Monro’s key contribution was proving convergence for a general class

of stochastic approximation methods. Consider finding a root θ∗ ∈ R of M(θ) = α, where

M(θ) = E[Y (θ)] for some family of random variables (Y (θ))θ∈R. Rather than requiring

direct access to M(θ), they proposed the iteration

θn+1 = θn − an(Y (θn)− α), (2.1)

where {an} is a sequence of positive steps satisfying:

∑
an =∞,

∑
a2n <∞. (2.2)

Under these conditions on the step sizes {an}, assuming the random observations have

bounded variance (i.e., supθ E[(Y (θ) −M(θ))2] < ∞), and some further assumptions on

the behaviour of the function M (e.g., monotonicity and bounds on its growth), the paper

proved, through fairly straightforward algebra, that θn would converge in L2 to the root θ∗.

Phrased as it is, the algorithm above does not resemble standard SGD: there are no

gradients mentioned; nothing is being minimized. Note, however, that minimizing a

function f(θ) is, under certain conditions, equivalent to solving f ′(θ) = 0. Set α = 0

and M(θ) = f ′(θ). Let g(θ) be a random variable such that f ′(θ) = E[g(θ)]. Then the

Robbins-Monro update becomes

θn+1 = θn − ang(θn),

which is immediately recognizeable as single-variable SGD with stepsize schedule an.

Robbins and Monro did not, at this time, inquire further into the rates at which their

algorithm would converge. Neither did they they search for the optimal values of an.

6

However, their analysis was groundbreaking in showing that noisy information was

sufficient for exact optimization – a result that would kick off an entire new field.

2.1.2 Kiefer-Wolfowitz [1952]

While Robbins and Monro showed how to find roots given noisy function evaluations,

Jack Kiefer and Jacob Wolfowitz [38] turned their attention to the problem of minimization,

bringing the theory closer to what we now recognize as stochastic gradient descent. In

cases where gradients were unavailable, they proposed an direct solution: approximate the

gradient using finite differences. For a function f(w), w ∈ R, they suggested the iteration

wn+1 = wn − an
Y (wn + cn)− Y (wn − cn)

2cn
, (2.3)

where Y (w) is a noisy observation of f(w), and {an}, {cn} are sequences of positive num-

bers converging to zero.

This scheme represents one of the earliest forms of what we would now recognize as

SGD. The key difference from modern methods lies in the gradient computation: rather

than using automatic differentiation (or “backpropagation"), Kiefer-Wolfowitz relies on

finite differences, requiring two function evaluations per update. While theoretically

sound, this approach becomes prohibitively expensive in high dimensions, requiring 2d

evaluations for a d-dimensional problem.

2.1.3 Perceptron [1958] and ADALINE [1960]

The late 1950s saw the first marriage of stochastic optimization with neural computation,

albeit in extremely simplified forms. Two key developments emerged almost simultane-

ously: Rosenblatt’s Perceptron [66] and Widrow and Hoff’s ADALINE (ADAptive LInear

NEuron) [79]. Notably, both systems were implemented in custom-built hardware rather

than general-purpose computers—a necessity in an era when digital computers were still

rare and expensive.

7

The Mark I Perceptron, built at Cornell Aeronautical Laboratory, was a room-sized

machine that used motor-driven potentiometers for weights and photocells for inputs. It

implemented a simple binary threshold function4,

ŷ = sign(wTx) =


1 if wTx > 0

−1 otherwise

(2.4)

Its training algorithm updated weights only on misclassified examples:

wt+1 =


wt + η ytxt if yt(wT

t xt) ≤ 0

wt otherwise

(2.5)

where yt is the true label. While theoretically guaranteed to converge for linearly separable

data, the discontinuous threshold function made analysis difficult.

ADALINE, developed at Stanford and also implemented in specialized hardware, took

a different approach. Instead of thresholding, it worked directly with the linear response

wTx, minimizing the squared error (y−wTx)2. This seemingly minor change had profound

implications: the resulting system could be analyzed using classical optimization theory,

and its stochastic gradient descent update

wt+1 = wt + η(yt − wT
t xt)xt (2.6)

became a template for future neural network training algorithms.5

These early systems, while primitive by modern standards, demonstrated two crucial

points: first, that neural-inspired architectures could be trained using stochastic opti-

mization, and second, that careful choice of objective function could make the difference

between tractable and intractable analysis. Both insights would prove vital in the devel-

4Modern formulations have minor differences, but we stick with the original presentation here.
5Note that this is exactly linear regression.

8

opment of deep learning decades later, when the shift to general-purpose computers and

eventually GPUs would enable far more complex architectures.

2.2 Digital Implementations

By the 1970s, vacuum tubes had given way to microprocessors, and Robbins-Monro’s

abstract algorithm could finally be tested at scale. A new generation of researchers, armed

with DEC VAX minicomputers, gradually began exploring what worked in practice. The

results were sometimes surprising: theoretical guarantees of asymptotic convergence of-

fered little guidance on whether a network would train in hours or months, and seemingly

minor implementation choices like momentum and learning rate schedules proved crucial.

Thus a new era of theoretical work on SGD began.

2.2.1 Backpropagation [1986]

In 1986, Geoffrey Hinton, David Rumelhart, and Ronald Williams published their seminal

work on backpropagation [67], which established practical methods for training neural

networks using gradient descent. The paper introduced several key ideas that would

become standard practice, including the momentum method for accelerating training.

The basic intuition behind momentum comes from physics: rather than having the gra-

dient directly determine the update (as in standard SGD), momentum methods maintain a

"velocity" term that is influenced by gradients. The resulting update equations are

vk+1 = µvk + (1− µ)∇̃f(xk) (2.7)

xk+1 = xk − ηvk+1, (2.8)

where µ ∈ [0, 1) is the momentum coefficient. This modification has several advantages

over vanilla SGD. First, it helps smooth out the high-frequency components of the gradient

noise - if successive gradients point in different random directions, they tend to cancel out

9

in the velocity term. Second, and perhaps more importantly, momentum helps accelerate

progress along low-curvature directions. In the presence of a long, narrow valley in the

loss landscape, standard SGD must zigzag down the valley, while momentum allows the

optimizer to build up speed in the correct direction.

Hinton and colleagues empirically demonstrated that momentum could dramatically

speed up neural network training, particularly in the presence of "plateaus" - regions where

the gradient is small but non-zero. While the theoretical understanding of momentum’s

benefits would only come later, this stood as one of the first attempts to accelerate SGD on

a computer.

2.2.2 Nemirovski-Yudin [1983]

Even as faster SGD algorithms were discovered, proofs came out showing that stochastic

gradient descent had its limits, no matter how sophisticated the algorithm used. In the late

1970s6, Nemirovski and Yudin [52] introduced the random oracle model of SGD, which

they used to prove upper bounds on the achievable convergence rate.

In this model, an optimization algorithm faces off against an adversarial oracle. The

oracle is responsible for returning stochastic gradients while staying within certain con-

straints: the gradients it provides must be unbiased and have bounded variance. That is, if

we are seeking to minimize an objective f(x), the oracle’s stochastic gradients g(x) must

satisfy

E[g(x)] = ∇f(x), E[∥g(x)−∇f(x)∥2] ≤ σ2. (2.9)

As an example of this style of proof, we show that, no matter the stepsize schedule, SGD

can not converge at a rate faster than k−1. To do this, we provide a “difficult" objective

function with a corresponding random oracle.

Set the objective to optimize as the one-dimensional function f(x) = 1
2
(x2 + 1). For

ξ chosen randomly from {−1, 1}, let the random oracle provide the stochastic gradient

6Originally published in Russian, their work was only translated in 1983.

10

g(x) = x− ξ. Note that both the bias and variance constraints are satisfied, as

E[g(x)] = x = ∇
(
1

2
(x2 + 1)

)
= ∇f(x) (2.10)

E[∥g(x)−∇f(x)∥2] = E[g(x)2]−∇f(x)2 = (x2 + 1)− x2 = 1. (2.11)

For a fixed stepsize schedule ηk, our SGD iterates are given by

xk+1 = xk − ηkg(xk) = xk − ηk(xk − ξ) = (1− ηk)xk + ηkξ (2.12)

Taking squares and expectations:

E[x2
k+1] = (1− ηk)

2 E
[
x2
k

]
+ η2kE

[
ξ2k
]
+ 2 (1− ηk) ηkE [xkξk] = (1− ηk)

2 E
[
x2
k

]
+ η2k. (2.13)

It is then straightforward to inductively show that, for some c > 0,

E[x2
k] ≥

c

k
. (2.14)

To finish, note that

E[f(xk)− f(x∗)] = E
[
1

2

(
x2
k + 1

)
− 1

2

]
=

1

2
E
[
x2
k

]
=

c

2k
. (2.15)

This means that to find a function value within ϵ of the optimal, we must have ϵ ≥ c
2k
, or

k ≥ c
2ϵ

, giving us a clear limit of the speed at which this flavor of SGD can converge in the

worst case.

This is, of course, a simplified proof. Firstly, we have assumed that the stepsizes ηk are

deterministic; secondly, the bound we have obtained is not as tight as possible (though,

in fact, this rate is optimal for strongly convex functions, of which f is a representative.)

Using slightly more sophisticated choices of objective function and oracle, we can show

that on convex functions, the worst case learning rate is on the order of k− 1
2 (a particularly

11

elegant proof can be found in Agarwal et. al [1]). The general approach, however, remains

unchanged: we try to construct a maximally uninformative oracle while remaining within

the given constraints.

2.2.3 Polyak-Juditsky [1992]

Along with their upper bounds on the speed of SGD, Nemirovski and Yudin [52] described

an algorithm that would achieve the optimal n
1
2 rate, given only stochastic gradients. For

pedagogical purposes, we describe a later, cleaner formulation of this optimal algorithm,

due to Polyak and Juditsky [62].

As before, we wish to minimize a convex function f given stochastic gradients g(x)

satisfying the unbiasedness and bounded variance conditions:

E[g(x)] = ∇f(x), E[∥g(x)−∇f(x)∥2] ≤ σ2. (2.16)

For the sake of this proof, we assume we are working within a convex, closed, and bounded

set X such that for any x, x′ ∈ X , ∥x− x′∥ ≤ D. Let x∗ be a minimizer of f in X . We also

assume the true gradients are bounded on X , i.e., ∥∇f(x)∥ ≤ G for all x ∈ X .

The algorithm we present achieves this minimization using iterate averaging. We run

standard SGD iterates xk defined as

xk+1 = ΠX (xk − ηkg(xk)), (2.17)

where ΠX is the projection onto the set X . For simplicity in the analysis below, we often

omit the projection, assuming the steps stay within X or noting that projection does not

increase distance to points within the convex set X (specifically ∥ΠX (y)− x∗∥ ≤ ∥y − x∗∥

for x∗ ∈ X). We define the averaged iterate as

xn =

∑n
k=1 ηkxk∑n
k=1 ηk

. (2.18)

12

We will show that with an appropriate choice of stepsize ηk,

E[f(xn)− f(x∗)] ≤ O

(
1√
n

)
. (2.19)

The proof relies on analyzing the squared distance to the optimum and applying convexity

properties.

First, let’s bound the expected squared norm of the stochastic gradient conditioned on

xk:

E[∥g(xk)∥2 | xk] = E[∥g(xk)−∇f(xk) +∇f(xk)∥2 | xk]

= E[∥g(xk)−∇f(xk)∥2 | xk] + ∥∇f(xk)∥2

+ 2E[(g(xk)−∇f(xk))⊤∇f(xk) | xk]

= E[∥g(xk)−∇f(xk)∥2 | xk] + ∥∇f(xk)∥2 (2.20)

≤ σ2 + ∥∇f(xk)∥2 (2.21)

≤ σ2 +G2, (2.22)

where (2.20) follows because E[g(xk)−∇f(xk) | xk] = E[g(xk) | xk]−∇f(xk) = ∇f(xk)−

∇f(xk) = 0, making the cross-term zero. Step (2.21) uses the bounded variance assumption

from (2.16), and (2.22) uses the assumed bound G on the true gradient norm.

Now consider the SGD update step (ignoring projection for simplicity here, as it only

helps):

∥xk+1 − x∗∥2 = ∥xk − ηkg(xk)− x∗∥2

= ∥xk − x∗∥2 − 2ηkg(xk)
⊤(xk − x∗) + η2k∥g(xk)∥2. (2.23)

13

Taking the expectation conditioned on the history Fk (which determines xk):

E[∥xk+1 − x∗∥2 | Fk] = ∥xk − x∗∥2 − 2ηkE[g(xk) | Fk]⊤(xk − x∗) + η2kE[∥g(xk)∥2 | Fk]

= ∥xk − x∗∥2 − 2ηk∇f(xk)⊤(xk − x∗) + η2kE[∥g(xk)∥2 | Fk]. (2.24)

By convexity of f , we know f(x∗) ≥ f(xk)+∇f(xk)⊤(x∗−xk), which implies∇f(xk)⊤(xk−

x∗) ≥ f(xk)− f(x∗). Using this and the bound (2.22) in (2.24):

E[∥xk+1 − x∗∥2 | Fk] ≤ ∥xk − x∗∥2 − 2ηk(f(xk)− f(x∗)) + η2k(G
2 + σ2). (2.25)

Taking the total expectation (using the law of iterated expectations E[·] = E[E[· | Fk]]):

E[∥xk+1 − x∗∥2] ≤ E[∥xk − x∗∥2]− 2ηkE[f(xk)− f(x∗)] + η2k(G
2 + σ2). (2.26)

Rearranging gives:

2ηkE[f(xk)− f(x∗)] ≤ E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2] + η2k(G
2 + σ2). (2.27)

Summing this inequality (2.27) from k = 1 to n:

n∑
k=1

2ηkE[f(xk)− f(x∗)] ≤
n∑
k=1

(
E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2]

)
+

n∑
k=1

η2k(G
2 + σ2)

=
(
E[∥x1 − x∗∥2]− E[∥xn+1 − x∗∥2]

)
+ (G2 + σ2)

n∑
k=1

η2k

≤ E[∥x1 − x∗∥2] + (G2 + σ2)
n∑
k=1

η2k, (2.28)

where the sum telescopes, and we used E[∥xn+1 − x∗∥2] ≥ 0. Since x1, x
∗ ∈ X , we have

∥x1 − x∗∥2 ≤ D2. Thus,

n∑
k=1

2ηkE [f(xk)− f(x∗)] ≤ D2 + (G2 + σ2)
n∑
k=1

η2k. (2.29)

14

Now, consider the averaged iterate x̄n. By the convexity of f and Jensen’s inequality for

expectations:

E[f(x̄n)] = E
[
f

(∑n
k=1 ηkxk∑n
k=1 ηk

)]
≤ E

[∑n
k=1 ηkf(xk)∑n

k=1 ηk

]
=

∑n
k=1 ηkE[f(xk)]∑n

k=1 ηk
. (2.30)

Subtracting f(x∗) from both sides (note f(x∗) is a constant):

E[f(x̄n)]− f(x∗) ≤
∑n

k=1 ηk(E[f(xk)]− f(x∗))∑n
k=1 ηk

=

∑n
k=1 ηkE[f(xk)− f(x∗)]∑n

k=1 ηk
. (2.31)

Combining (2.29) and (2.31):

E[f(x̄n)− f(x∗)] ≤ 1∑n
k=1 ηk

(
1

2

n∑
k=1

2ηkE [f(xk)− f(x∗)]

)

≤ D2 + (G2 + σ2)
∑n

k=1 η
2
k

2
∑n

k=1 ηk
. (2.32)

To minimize this bound, we choose a constant stepsize ηk = η for all k = 1, . . . , n. The

bound (2.32) becomes:

E[f(x̄n)− f(x∗)] ≤ D2 + (G2 + σ2)nη2

2nη
=

D2

2nη
+

(G2 + σ2)η

2
. (2.33)

This expression is minimized by balancing the two terms. The optimal constant step size

for a fixed n is found by taking the derivative with respect to η and setting it to zero, or by

setting the terms equal:

D2

2nη
=

(G2 + σ2)η

2
=⇒ η2 =

D2

n(G2 + σ2)
=⇒ ηopt =

D√
n(G2 + σ2)

.

15

Setting ηk = ηopt for all k = 1, . . . , n, we substitute this back into (2.33):

E[f(x̄n)− f(x∗)] ≤ D2

2n

√
n(G2 + σ2)

D
+

(G2 + σ2)

2

D√
n(G2 + σ2)

=
D
√
G2 + σ2

2
√
n

+
D
√
G2 + σ2

2
√
n

=
D
√
G2 + σ2

√
n

. (2.34)

This demonstrates that Polyak-Juditsky averaging with an appropriately chosen constant

stepsize achieves the optimal O(1/
√
n) convergence rate for convex stochastic optimization.

(Note: A decreasing step size like ηk ∝ 1/
√
k can also achieve this rate asymptotically

without needing to know n in advance).

Together, these results fully categorize the asymptotic learning rate for the minimax

optimal stochastic gradient algorithm under convexity assumptions. The key words here,

however, are “minimax" and “asymptotic"; for practical purposes, we will eventually wish

to compare constants across algorithms, as well as finding average-case behaviour for a

given distribution of target functions.

2.3 Deep Learning

In the early 2010s, deep learning underwent a dramatic transformation from academic

curiosity to industrial workhorse. Three key developments enabled this shift. First, the

introduction of ReLU activations [49] and careful initialization schemes largely solved the

vanishing gradient problem that had previously made deep networks untrainable. Second,

the emergence of CUDA [53] and general GPU computing provided the raw computational

power needed to train large models. Most importantly, empirical results started showimg

clear returns to scale - larger, deeper networks, trained on more data with more compute,

reliably produced better results.

16

This new regime placed unprecedented demands on optimization algorithms. Net-

works grew from thousands to billions of parameters, training runs stretched from hours to

months, and compute budgets ballooned into the millions of dollars. Small improvements

in optimization efficiency could translate into massive cost savings. The field’s focus

shifted accordingly - while theoretical understanding remained important, the ability to

reliably train ever-larger models became paramount.

This pressure led to the development of a new generation of optimizers, starting with

AdaGrad [23] in 2011. These adaptive methods attempted to automatically tune learning

rates across different layers and time scales, eliminating much of the manual scheduling

that had previously been required. While their worst-case guarantees were often no better

than vanilla SGD, their practical performance on the large, overparameterized models of

modern deep learning proved consistently superior.

2.3.1 AdaGrad [2011]

The key insight behind AdaGrad, introduced by Duchi et al [23], was that each parameter

in a neural network might require its own learning rate - parameters that receive larger or

more noisy gradients should take smaller steps, while parameters that are updated rarely

should take larger ones.

AdaGrad implements this by maintaining a running sum of squared gradients for each

parameter:

gk,i = ∇̃xif(xk) (2.35)

vk,i = vk−1,i + g2k,i (2.36)

xk+1,i = xk,i −
η√

vk,i + b2
gk,i (2.37)

where i indexes the parameters, η is a global learning rate, and b2 is a small constant added

for numerical stability. This coordinate-wise scaling provides automatic regularization -

frequently updated parameters get smaller effective learning rates, inversely proportional

17

to their standard deviations - and partially obviates the need for manual learning rate

tuning.

A simpler variant, AdaGrad-Norm [47], uses a single adaptive scalar for the entire

parameter vector:

vk+1 = vk + ∥∇̃f(xk+1)∥2 (2.38)

xk+1 = xk −
η√

vk + b2
∇̃f(xk). (2.39)

While less flexible than the full version, AdaGrad-Norm retains many of the key theoretical

properties while being significantly easier to analyze.

2.3.2 RMSProp [2012]

While AdaGrad’s parameter-specific learning rates proved effective in many settings, its

accumulation of squared gradients meant that learning rates would eventually become

vanishingly small. Geoffrey Hinton proposed RMSProp [32] as a simple fix: replace the

sum with an exponential moving average:

gk = ∇̃f(xk) (2.40)

vk = βvk−1 + (1− β)gk ⊙ gk (2.41)

xk+1 = xk −
η√

vk + ϵ
⊙ gk (2.42)

where β is typically set to 0.9, ϵ is a small constant for numerical stability, and ⊙ denotes

element-wise multiplication. This modification allows the algorithm to "forget" old gra-

dients, maintaining responsiveness throughout training while still adapting to the local

geometry of the loss surface.

The theoretical properties of RMSProp proved somewhat more difficult to analyze than

those of AdaGrad. While empirical results showed clear benefits, especially in training

deep neural networks, formal convergence guarantees remained elusive for several years

18

[20]. The key challenge lay in analyzing the interaction between the momentum-like

exponential averaging and the adaptive learning rates.

2.3.3 Adam [2014]

Adam [40], introduced by Kingma and Ba in 2014, represents perhaps the most successful

synthesis of ideas from momentum and adaptive methods. It maintains exponential

moving averages of both the gradients (first moment) and their squares (second moment):

gk = ∇̃f(xk) (2.43)

mk = β1mk−1 + (1− β1)gk (2.44)

vk = β2vk−1 + (1− β2)gk ⊙ gk (2.45)

m̂k =
mk

1− βk1
(2.46)

v̂k =
vk

1− βk2
(2.47)

xk+1 = xk − η
m̂k√
v̂k + ϵ

(2.48)

where β1 and β2 are decay rates (typically set to 0.9 and 0.999 respectively). The bias

correction terms (1− βki) ensure unbiased estimates of the moments early in training.

Adam’s combination of momentum and adaptive learning rates proved particularly

effective for training large neural networks. The momentum term helps navigate ravines in

the loss landscape, while the adaptive rates allow different parameters to learn at different

speeds. This robustness to hyperparameter choices made Adam especially valuable in

practice - while it might not always achieve the best possible performance, it reliably

achieves good performance across a wide range of architectures and problems.

Despite its practical success, Adam’s theoretical properties remain somewhat myste-

rious. While convergence can be proven under certain conditions, examples exist where

Adam fails to converge to the optimal solution. These counterexamples led to various

modifications (AdaMax [39], AdamW [46], etc.) attempting to maintain Adam’s practical

19

benefits while providing stronger theoretical guarantees. Nevertheless, vanilla Adam

remains the default choice for many deep learning applications, particularly in natu-

ral language processing where models like GPT and BERT [22] have demonstrated its

effectiveness at massive scale.

2.3.4 Cutting Through the Noise [2021-]

Even as hundreds of new techniques pushed the limits of deep learning, some fundamental

questions about SGD remained mysterious. One among these was an exact description of

average-case performance. Convergence rates were often known, but more comprehensive

results remained out of reach.

In 2020, a group of researchers, led by Courtney and Elliot Paquette, set out to reduce

the problem to its bare essentials [55]. They considered the simplest possible optimization

problem – linear regression with random data – along with the simplest possible opti-

mization algorithm – fixed-stepsize SGD. Drawing on a range of techniques from random

matrix theory, high dimensional probability, complex analysis, and Itô calculus, they were

able to fully predict the loss dynamics of SGD, without needing to know the trajectory of

the individual parameters.

Behind this prediction were two key equations. The first, capturing the inherent

randomness in finite-dimensional SGD, was a stochastic differential equation (SDE) driven

by Brownian motion. The second, a deterministic Volterra equation, was perhaps more

surprising.

Among the simplifying assumptions made in the paper, one had been conspicuously

lacking: the dimensionality of the problem was allowed to grow arbitrarily large, rather

than being fixed at some constant value. This, as it turned out, was a prescient choice. In

the high dimensional limit, with appropriate scalings, SGD loss was proved to concentrate

around a deterministic limit, described by the aforementioned by the Volterra equation.

Now, characteristics of this Volterra equation could be directly translated into predictions

20

about SGD: in order to discover the optimal stepsize, one needed only determine how the

stepsize affected the Volterra equation.

This approach proved powerful and easily extensible. Over the next several years, the

same framework was adapted to problems with non-linear structure [15], minibatching

[41], momentum methods [41], and more, discovering optimal hyperparameter choices,

categorizing phase transitions, and ranking algorithms by average-case high-dimensional

performance.

We now move into the 2010s by extending this framework to modern adaptive methods.

We present a general framework for analyzing adaptive stepsizes, and categorize the

behaviour of a selection of these algorithms, including AdaGrad-Norm.

21

Chapter 3

Concentration Inequality Background

A large part of what makes our analyses possible is the existence of relvant concentration

inequalities. This chapter presents several fundamental technical results that facilitate our

technical analysis by allowing us to conveniently bound random variables, be they matrix

or scalar. More details can be found in [74].

Proposition 3.0.1 (Subgaussian properties). Let X be a random variable. Then the following

properties are equivalent; the parameters Ki > 0 appearing in these properties differ from each other

by at most an absolute constant factor.

(i) There exists K1 > 0 such that

P{|X| ≥ t} ≤ 2 exp(−t2/K2
1) for all t ≥ 0.

(ii) There exists K2 > 0 such that

∥X∥Lp = (E|X|p)1/p ≤ K2
√
p for all p ≥ 1.

(iii) There exists K3 > 0 such that

E exp(X2/K2
3) ≤ 2.

22

Definition 3.0.1 (Subgaussian random variables). A random variable X that satisfies one of

the equivalent properties i-iii in Proposition 3.0.1 is called a subgaussian random variable. The

subgaussian norm of X , denoted ∥X∥ψ2 , is defined to be the smallest K3 in property iii. In other

words, we define

∥X∥ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}. (2.13)

Throughout most of our later proofs, we will use the fact that a Gaussian random

variable is, a fortiori, subgaussian; we do not deal with subgaussian random variables in

their full generality. The subgaussian formulation, however, is useful in that it allows us to

state several concentration results cleanly.

We now present two concentration inequalities, which allow us to bound deviations

from our predicted deterministic limit for SGD loss.

Theorem 3.0.1 (Hanson-Wright Inequality). Let X = (X1, . . . , Xn) be a random vector with

independent components Xi that satisfy E[Xi] = 0 and ∥Xi∥ψ2 ≤ K. Let A be an n× n matrix.

Then for all t > 0:

P (|XTAX − E[XTAX]| > t) ≤ 2 exp

(
−cmin

{
t2

K4∥A∥2F
,

t

K2∥A∥op

})

where c > 0 is an absolute constant, ∥A∥F is the Frobenius norm, and ∥A∥op is the operator

norm.

The Azuma-Hoeffding inequality provides concentration bounds for martingales with

bounded differences. This makes it especially valuable for analyzing iterative algorithms

where each step depends on previous iterations.

Theorem 3.0.2 (Azuma-Hoeffding). Let {Xk}nk=0 be a martingale sequence with |Xk−Xk−1| ≤

ck almost surely. Then for all t > 0:

P (|Xn −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

k=1 c
2
k

)
.

23

Chapter 4

Dynamics of Stochastic Adaptive

Learning Algorithms

4.1 Introduction

In this work, we develop a framework for analyzing the exact dynamics of the risk and

adaptive learning rate strategies for a wide class of optimization problems that we call high-

dimensional linear (high line) composite functions. In this class, the objective function takes

the form of an expected riskR : Rd → R over high-dimensional data (a, ϵ) ∼ D ⊂ Rd × R

of a function f : R3 → R composed with the linear functions ⟨X, a⟩, ⟨X⋆, a⟩. That is, we

seek to solve

min
X∈Rd

{
R(X)

def
= Ea,ϵ[f(⟨a,X⟩, ⟨a,X⋆⟩, ϵ)] for (a, ϵ) ∼ D, X⋆ ∈ Rd

}
. (4.1)

We suppose a ∼ N (0, K) where K ∈ Rd×d is a covariance matrix. We train (4.1)

using (one-pass) stochastic gradient descent with adaptive learning rates, gk (SGD+AL).

Our main goal is to give a framework for better1 performance analysis of these adaptive

methods. We then illustrate this framework by considering two adaptive learning rate

1More realistic, in that it deals with high-dimensional anisotropic loss geometries and more precise, in
that it can distinguish minimax optimal algorithms as better-or-worse-performing.

24

10 2 10 1 100 101

SGD Iterations/d

100

Le
ar

ni
ng

 ra
te

100

6 × 10 1

Ri
sk

AdaGrad-Norm Least Squares

d = 256
d = 1024
d = 4096
d = 16384
Theory, learn. rate
Theory, risk

10 1 100 101

SGD Iterations/d

100

9.2 × 10 1

9.3 × 10 1

9.4 × 10 1

9.5 × 10 1

9.6 × 10 1

9.7 × 10 1

9.8 × 10 1

9.9 × 10 1

Le
ar

ni
ng

 ra
te

10 4

10 3

10 2

10 1

100

Ri
sk

AdaGrad-Norm Logistic Regression

d = 16
d = 32
d = 64
d = 128
Theory, learn. rate
Theory, risk

Figure 4.1: Concentration of learning rate and risk for AdaGrad-Norm on least squares

with label noise ω = 1 (left) and logistic regression with no noise (right). As dimension

increases, both risk and learning rate concentrate around a deterministic limit (red) de-

scribed by our ODE in Theorem 4.2.1. The initial risk increase (left) suggests the learning

rate started too high, but AdaGrad-Norm adapts. Our ODEs predict this behavior. See

Sec. 5.8 for simulation details.

algorithms on the least squares problem2, the results of which appear in Table 4.1: exact

line-search (idealistic) (Sec. 4.3) and AdaGrad-Norm (Sec. 4.4). We expect other losses and

adaptive learning rates can be studied using this approach.

Main contributions. Performance analysis framework. We provide an equivalence ofR(Xk)

and learning rate gk under SGD+AL to deterministic functions R(t) and γt via solving a

deterministic system of ODEs (see Section 4.2), which we then analyze to show how the

covariance spectrum influences the optimization. See Figure 4.1. As the dimension d of

the problem grows, the learning curves of R(Xk) become closer to R(t) and the curves

concentrate around R(t) with probability better than any inverse power of d (See Theorem

4.2.1).

Greed can be arbitrarily bad in the presence of strong anisotropy (that is, Tr(K)/d≪ Tr(K2)/d).

Our analysis reveals that exact line search, which is to say optimally decreasing the risk at

each step, can run arbitrarily slower than the best fixed learning rate for SGD on a least

squares problem when λmin
def
= λmin(K) > C > 0. The best fixed stepsize (least squares

2We extend some results to the general strongly convex setting.

25

problem) is (Tr(K)/d)−1 or the inverse of the average eigenvalue, as shown in the Polyak

stepsize paper [61]. Line search, on the other hand, converges to a fixed stepsize of order

λmin/(Tr(K2)/d). It can be that λmin/(Tr(K2)/d) ≪ (Tr(K)/d)−1 making exact line search

substantially underperform Polyak stepsize. We further explore this and, in the case where

d-eigenvalues of K take only two values λ1 > λ2 > 0, we give an exact expression as a

function of λ1 and λ2 for the limiting behavior of γt as t→∞ (See Fig. 5.1).

AdaGrad-Norm selects the optimal step-size, provided it has a warm start. In the absence of

label noise and when the smallest eigenvalue of K satisfies λmin > C > 0, the learning rate

converges to a deterministic constant that depends on the average condition number (like

in Polyak) and scales inversely with Tr(K)
d
∥X0 −X⋆∥2. Therefore it attains automatically

the optimal fixed stepsize in terms of the covariance without knowledge of Tr(K), but

pays a penalty in the constant, namely ∥X0 − X⋆∥2. If one knew ∥X0 − X⋆∥2 then by

tuning the parameters of AdaGrad-Norm one might achieve performance consistent with

Polyak; this also motivates more sophisticated adaptive algorithms such as DoG [35] and

D-Adaptation [21], which adaptively compensate and/or estimate ∥X0 −X⋆∥2.

AdaGrad-Norm can use overly pessimistic decaying schedules on hard problems. Consider

power law behavior for the spectrum of K and the signal X⋆. This is a natural setting as

power law distributions have been observed in many datasets [78]. Here the learning rate

and asymptotic convergence of K undergo a phase transition. For power laws corresponding

to easier optimization problems, the learning rate goes to a constant and the risk decays

at t−α1 . For harder problems, the learning rate decays like t−η1 and the risk decays at a

different sublinear rate t−α2 . See Table 4.1 and Sec. 4.4 for details.

Notation. Define R+ = [0,∞). We say a sequence (Ed)d≥1 of events holds with over-

whelming probability, w.o.p., if there is a function ω : N → R with ω(d)/ log d → ∞ so that

P(Ed) ≥ 1 − e−ω(d). We let 1A(x) be the indicator function of the set A: that is, 1 if x ∈ A

and 0 otherwise. For a matrix A ∈ Rm×d, we use ∥A∥F to denote the Frobenius norm

and ∥A∥op to denote the operator-2 norm. If unspecified, we assume that the norm is the

Frobenius norm. For normed vector spaces A, B with norms ∥ · ∥A and ∥ · ∥B, respectively,

26

Table 4.1: Summary of adaptive learning rates results on the least squares problem.

We summarize our results for line search and AdaGrad-Norm under various assump-

tions on the covariance matrix K. We denote λmin the smallest non-zero eigenvalue of

K and Tr(K)
d

the average eigenvalue. Power law(δ, β) assumes the eigenvalues of K,

{λi}di=1, follow a power law distribution, that is, for 0 < β < 1, λi ∼ (1 − β)λ−β1(0,1)

for all 1 ≤ i ≤ d and ⟨X0 −X⋆, ωi⟩2 ∼ λ−δ
i where {ωi}di=1 are eigenvectors of K (see

Prop 4.4.4). For ∗ (see Prop. 4.4.2), requires a good initialization on b, η.

Learning rate K assumption Limiting γ∞ Convergence rate

AdaGrad-Norm(b, η)

(see Sec. 4.4)
λmin > C γt ≍ η2

b
η+ 1

4d Tr(K)∥X0−X⋆∥2 log(R)∗ ≍ −λminγ∞t

AdaGrad-Norm(b, η)

Power law

(see Sec. 4.4)

β + δ < 1 γt ≍δ,β 1 R(t) ≍δ,β tβ+δ−2

β + δ = 1 γt ≍δ,β 1
log(t+1)

R(t) ≍δ,β

(
t

log(t+1)

)−1

1 < β + δ < 2 γt ≍δ,β t−1+ 1
β+δ R(t) ≍δ,β t−

2
β+δ+1

Exact line search,

idealized

(see Sec. 4.3)

λmin > C γt ≍ λmin

Tr(K2)/d log(R) ≍ −λminγ∞t

Polyak stepsize

(see Sec. 4.3)
λmin > C γt =

1
Tr(K)/d log(R) ≍ −λminγ∞t

and for α ≥ 0, we say a function F : A → B is α-pseudo-Lipschitz with constant L if for any

A, Â ∈ A, we have

∥F (A)− F (Â)∥B ≤ L∥A− Â∥A(1 + ∥A∥αA + ∥Â∥αA).

We write f(t) ≍ g(t) if there exist absolute constants C, c > 0 such that c·g(t) ≤ f(t) ≤ C ·g(t)

for all t. If the constants depend on parameters, e.g., α, then we write ≍α.

Related work. Some notable adaptive learning rates in the literature are AdaGrad-

Norm [42, 77, 80], RMSprop [33], stochastic line search, stochastic Polyak stepsize [45], and

27

more recently DoG [35] and D-Adaptation [21]. In this work, we introduce a framework

for analyzing these algorithms, and we strongly believe it can be used to analyze many

more adaptive algorithms. We highlight below a nonexhaustive list of related work.

AdaGrad-Norm. AdaGrad, introduced by [23, 47], updates the learning rate at each

iteration using the stochastic gradient information. The single stepsize version [42, 77, 80],

that depends on the norm of the gradient, (see Table 4.2 for the updates), has been shown

to be robust to input parameters [44]. Several works have shown worst-case convergence

guarantees [25, 43, 75, 77]. A linear rate of O(exp(−κT)) is possible for µ-strongly convex,

L-smooth functions (κ is the condition number µ/L). In [81] (a similar idea appears

in [80]), the authors show for strongly convex, smooth stochastic objectives (with additional

assumptions) that the AdaGrad-Norm learning rate exhibits a two stage behavior – a burn

in phase and then when it reaches the smoothness constant it self-stablizes.

Stochastic line search and Polyak stepsizes. Recently there has been renewed interest

in studying stochastic line search [24, 59, 71] and stochastic Polyak stepsize (and their

variants) [7,30,31,36,45,51,54,65]. Much of this research focuses on worst-case convergence

guarantees for strongly convex and smooth functions (see e.g., [45]) and designing practical

algorithms. In [72], the authors provide a bound on the learning rate for Armijo line search

in the finite sum setting with a rate of Lmax/avg. µ where avg. µ is the avg. strong

convexity and Lmax is the max. Lipschitz constant of the individual functions. In this work,

we consider a slightly different problem. We work with the population loss and we note

that the analogue to Lmax for us would require that the samples a satisfy ∥aaT∥op ≤ Lmax

for all a; this fails to hold for a ∼ N (0, K). Moreover, Lmax could be much worse than

E[∥aaT∥op].

Deterministic dynamics of stochastic algorithms in high-dimensions. The literature

on deterministic dynamics for isotropic Gaussian data has a long history [9,10,68,69]. These

results have been rigorously proven and extended to other models under the isotropic

Gaussian assumption [2, 3, 6, 18, 19, 27, 76]. Extensions to multi-pass SGD with small mini-

batches [57] as well as momentum [41] have also been studied. Other high-dimensional

28

limits leading to a different class of dynamics also exist [11, 13, 14, 26, 48]. Recently, signif-

icant contributions have been made in understanding the effects of a non-identity data

covariance matrix on the training dynamics [5, 15, 16, 28, 29, 82]. The non-identity covari-

ance modifies the optimization landscape and affects convergence properties, as discussed

in [15]. This work extends the findings of [15] to stochastic adaptive algorithms, explor-

ing the effect of non-identity covariance within these algorithms. Notably, Theorem 1.1

from [15] is restricted to deterministic learning rate schedules, limiting its applicability in

many practical scenarios. In contrast, our Theorem 4.2.1 accommodates stochastic adaptive

learning rates, aligning with widely used algorithms in practice.

4.1.1 Model Set-up

We suppose that a sequence of independent samples {(ak, yk)} is provided, drawn from

a data-generating distribution D over Rd × R. Here, ak ∈ Rd represents the input feature

and yk ∈ R is the corresponding target label. We assume a model where the target yk is

generated based on the feature ak, a fixed (but unknown) ground truth signal X⋆ ∈ Rd, and

some random label noise ϵk ∈ R. Specifically, the relationship is captured by the function

Ψ in Equation (4.2), implying yk is related to ⟨ak, X∗⟩ and ϵk.

Since yk is determined by ak and ϵk (given the model structure and X∗), the fundamental

random variables governing the distribution D are the feature a and the noise ϵ. Therefore,

we place our distributional assumptions directly on these underlying variables:

Assumption 1 (Feature and Noise Distributions). The underlying random variables a (input

feature) and ϵ (label noise) are assumed to be independent and normally distributed:

• The noise ϵ follows a normal distribution, ϵ ∼ N (0, ω2), where ω ∈ R.

• The feature a follows a multivariate normal distribution, a ∼ N (0, K), where the covariance

matrix K ∈ Rd×d is positive semi-definite and bounded in operator norm independent of d,

i.e., ∥K∥op ≤ C for some constant C.

29

For a,X,X⋆ ∈ Rd, ϵ ∈ R, and a function f : R3 → R, we seek to minimize an expected

risk functionR : Rd → R, which we refer to as the high-dimensional linear composite3, of the

form

R(X)
def
= Ea,ϵ[Ψ(X; a, ϵ)] for (a, ϵ) ∼ D, and Ψ(X; a, ϵ) = f(⟨a,X⟩, ⟨a,X⋆⟩, ϵ). (4.2)

In what follows, we use the matrix W = [X|X⋆] ∈ Rd×2 that concatenates X and X⋆, and

we shall let B = B(W) = W TKW . Note that B is the covariance matrix of the Gaussian

vector (⟨a,X⟩, ⟨a,X⋆⟩). SinceR(X) and I(B) (defined below) involve expectations over a,

they depend on the distribution of this vector and thus are functions of B.

Assumption 2 (Pseudo-lipschitz f). The function f : R3 → R is α-pseudo-Lipschitz with

α ≤ 1.

By assumption,R(X) involves an expectation over the correlated Gaussians ⟨a,X⟩ and

⟨a,X⋆⟩. We can express this asR(X)
def
= h(B) for some well-behaved function h : R2×2 →

R.

Assumption 3 (Risk representation). There exists a function h : R2×2 → R such that h(B) =

R(X) is differentiable and satisfies (assuming sufficient regularity of f to exchange expectation

and differentiation)

∇XR(X) = Ea,ϵ∇XΨ(X; a, ϵ).

Furthermore, h is continuously differentiable and its derivative∇h is α-pseudo-Lipschitz for some

0 ≤ α ≤ 1, with constant L(∇h).

The final assumption is the well-behavedness of the Fisher information matrix of the

gradients. The first coordinate of f is special, as the optimizer must be able to differentiate it.

Thus, we treat f(x, x⋆, ϵ) as a function of a single variable with two parameters: f(x, x⋆, ϵ) =

f(x;x⋆, ϵ) and denote the (almost everywhere) derivative with respect to the first variable

as f ′.
3Note that d need not be large to define this, but the structure allows us to consider d as a tunable

parameter. Moreover, as we increase d, the analysis we do will be more meaningful.

30

Table 4.2: Two adaptive learning rates considered in detail. The stochastic

adaptive learning rate, gk, is the learning rate directly used in the update

for SGD whereas the deterministic, γt, is the deterministic equivalent of gk
after scaling. The deterministic equivalent γt utilizes quantities B(s) and

R(s) derived from the ODE system described in Section 4.2.

Algorithm General update Least squares

AdaGrad-

Norm(b, η)

b0 = b× d

gk
b2k = b2k−1 + ∥∇Ψ(Xk−1)∥2;

gk−1 = d× η
|bk|

same

γt
η√

b2+
Tr(K)

d

∫ t
0
I(B(s)) ds

η√
b2+

2Tr(K)
d

∫ t
0 R(s) ds

Exact line

search

(idealized)

gk
∥∇R(Xk)∥2

Tr(∇2R(Xk)K)
d

Ea,ϵ[(f ′(⟨a,Xk⟩;⟨a,X⋆⟩,ϵ))2]

∥∇R(Xk)∥2
2Tr(K2)

d
R(Xk)

γt arg min
γ

dR(t)
∑d

i=1 λ
2
i D2

i (t)

2Tr(K2)R(t)

Assumption 4 (Fisher matrix). Define I(B)
def
= Ea,ϵ[(f ′(⟨a,X⟩; ⟨a,X⋆⟩, ϵ))2] where the function

I : R2×2 → R. (Note that I(B) is a scalar function related to the expected squared gradient

magnitude, distinct from the 2× 2 covariance matrix B.) We assume I is α-pseudo-Lipschitz with

constant L(I) for some α ≤ 1.

A large class of natural regression problems fit within this framework, such as logistic

regression and least squares (see [15, Appendix B]). We also note that Assumptions 3 and

4 are nearly satisfied for L-smooth objectives f (see Lemma 5.2.1), and a version of the

main theorem holds under just this assumption (albeit with a weaker conclusion).

4.1.2 Algorithmic set-up

We apply one-pass or streaming SGD with an adaptive learning rate gk (SGD+AL) to min-

imize the risk R(X) defined in (4.2). Let X0 ∈ Rd be an initial vector (random or non-

random). Then SGD+AL iterates by selecting a new, independent data point (ak+1, ϵk+1)

31

such that ak+1 ∼ N (0, K) and ϵk+1 ∼ N (0, ω2) and makes the update

Xk+1 = Xk −
gk
d
· ∇XΨ(Xk; ak+1, ϵk+1) = Xk −

gk
d
f ′(⟨ak+1, Xk⟩; ⟨ak+1, X

⋆⟩, ϵk+1)ak+1, (4.3)

where gk > 0 is a learning rate (see assumptions below).4 To perform our analysis, we

place the following assumption on the initialization X0 and the signal X⋆ (see Eq. (4.1)).

Assumption 5 (Initialization and signal). The initialization point X0 and the signal X⋆ are

bounded independent of d, that is, max{∥X0∥, ∥X⋆∥} ≤ C for some C independent of d.

Adaptive learning rate. Our analysis requires some mild assumptions on the learning

rate. To this end, we define a learning rate function γ : R+ × D([0,∞)) × D([0,∞)) ×

D([0,∞))→ R+ by5

gk
def
= γ(k,Nk(d× ·), Gk(d× ·), Qk(d× ·)), for k ∈ N, where for any t ≥ 0,

(Nk(t), Gk(t), Qk(t))
def
= 1{t<k}

(
W T

⌊t⌋W⌊t⌋,
1
d∥∇XΨ(X⌊t⌋; a⌊t⌋+1, ϵ⌊t⌋+1)∥2,R(X⌊t⌋)

)
.

(4.4)

In this definition, for functions taking integer arguments, we extend them to real-valued

inputs by first taking the floor function of its argument. Note that the adaptive learning

rates can depend on the whole history of stochastic iterates (Nk), gradients (Gk), and risk

(Qk) via this definition.

We also define a conditional expectation version of Gk where the filtration Fk =

σ(X⋆, X0, . . . , Xk):

Gk(t)
def
= 1{t<k}

1

d
E[∥∇XΨ(X⌊t⌋; a⌊t⌋+1, ϵ⌊t⌋+1)∥2|F⌊t⌋] for t ≥ 0.

With this, we impose the following learning rate condition.

4Note that cases where Tr(K2)/d = o(d) can lead to dynamics that converge to full-batch gradient

flow. While our theorem specifically addresses the scenario where the intrinsic dimension, Dim(K)
def
=

Tr(K)∥K∥op/∥K∥2F , satisfies Dim(K) = Θ(d), other cases, such as Dim(K) = o(d), may require different
learning rate scalings.

5D([0,∞)) is the càdlàg function class on [0,∞).

32

Assumption 6 (Learning rate). The learning rate function γ : R+ ×D([0,∞))×D([0,∞))×

D([0,∞)) → R is α-pseudo-Lipschitz with constant L(γ) (independent of d) in its last three

arguments (the function spaces, equipped with the topology of uniform convergence on compact

intervals). Moreover, for some constant C = C(γ) > 0 independent of d and δ > 0,

E [|γ(k, f,Gk(d×·), q)− γ(k, f,Gk(d×·), q)| | Fk] ≤ Cd−δ(1 + ∥f∥α∞ + ∥q∥α∞) w.o.p. (4.5)

Finally, γ satisfies the growth condition: there exists a constant Ĉ = Ĉ(γ) > 0 independent of d so

that

γ(k, f, g, q) ≤ Ĉ(1 + ∥f∥α∞ + ∥g∥α∞ + ∥q∥α∞). (4.6)

The inequality (4.5) ensures that the learning rate concentrates around the mean be-

havior of the stochastic gradients. Many well-known adaptive stepsizes satisfy (4.4) and

Assumption 6 including AdaGrad-Norm, DoG, D-Adaptation, and RMSProp (see Table 4.2,

Sec. 5.1, and Sec. 5.3.3).

4.2 Deterministic dynamics for SGD with adaptive learning

rates

Intuition for deriving dynamics: The risk R(X) and Fisher matrix can be evaluated

solely in terms of the covariance matrix B. Thus, to know the evolution of the risk

over time, it would suffice to know the evolution of B. Alas, except in the isotropic

case where K is a multiple of the identity, the evolution of B is not autonomous (i.e.,

its time evolution depends on other unknown variables). However, if we let (λi, ωi)

be the eigenvalues and corresponding orthonormal eigenvectors of K, we can consider

projections Vi(Xk) = d ·W T
k ωiω

T
i Wk, and it turns out that these behave autonomously.

33

Deterministic dynamics. To derive deterministic dynamics, we make the following

change to continuous time by setting

k iterations of SGD = ⌊td⌋, where t ∈ R is the continuous time parameter.

This time change is necessary, as when we scale the size of the problem, more time is

needed to solve the underlying problem. This scaling law scales SGD so all training

dynamics live on the same space. One can solve a smaller d problem and scale it to recover

the training dynamics of the larger problem.6

We now introduce a coupled system of differential equations, which will allow us to

model the behaviour of our learning algorithms. For the ith (λi, ωi)-eigenvalue/eigenvector

of K, set

Vi(t)
def
=

V11,i(t) V12,i(t)

V12,i(t) V22,i(t)

 and averaging over i, B(t)
def
=

1

d

d∑
i=1

λiVi(t).

The Vi(t) and B(t) are deterministic continuous analogues of Vi(X⌊td⌋) and B(X⌊td⌋) re-

spectively. Define the following continuous analogues

∇h(B(t))
def
=

H1,t H2,t

H2,t H3,t

 , N (t)
def
=

1

d

d∑
i=1

Vi(t), R(t)
def
= h(B(t)), I (t)

def
= I(B(t)),

and finally γt
def
= γ(t,1{·≤t}N (·), Tr(K)

d
1{·≤t}I (·),1{·≤t}R(·)).

6Note that, holding time fixed, we perform O(d) gradient updates for a problem of dimension d. For the
problems considered here, this scaling leads to consistent dynamics, but there do exist related problems
where a different scaling is more appropriate. For example, under random initialization, to capture the escape
of phase retrieval from the high-dimensional saddle, O(d log d) iterations are needed; see for example [74].

34

We now introduce a system of coupled ODEs for each (λi, ωi)-eigenvalue/eigenvector pair

of K

dV11,i(t) = −2λiγt (V11,i(t)H1,t +H1,tV11,i(t) + V12,i(t)H2,t +H2,tV12,i(t)) + λiγ
2
tI (t),

dV12,i(t) = −2λiγt (H1,tV12,i(t) +H2,tV22,i(t))

dV22,i(t) = 0 (since X⋆ is fixed)

(4.7)

with the initialization of Vi(0) given by Vi(X0) = d · W T
0 ωiω

T
i W0. We finally state the

deterministic dynamics for the risk and learning rate.

Theorem 4.2.1. Under Assumptions 1, 2, 3, 4, 5, 6, then for any ε ∈ (0, 1
2
) and any T > 0

sup
0≤t≤T

∥∥∥∥∥∥∥
R(X⌊td⌋)

g⌊td⌋

−
R(t)

γt


∥∥∥∥∥∥∥ < d−ε, w.o.p. (4.8)

The same bounds hold comparing W T
⌊td⌋W⌊td⌋ to N (t) and W T

⌊td⌋KW⌊td⌋ to B(t).

In fact, we can derive deterministic dynamics for a large class of statistics which are

linear combinations of Vi(t) and functions thereof (See Theorem 5.2.1, and Corollary 5.2.1).

One important corollary is a deterministic limit for the distance to optimality, D2(Xk) =

∥Xk −X⋆∥2, which is a quadratic form of W T
k Wk and hence covered by Thm. 4.2.1. The

equivalent deterministic dynamics are

D2(t) =
1

d

d∑
i=1

D2
i (t) =

1

d

d∑
i=1

(V11,i(t)− 2V12,i(t) + V22,i(t)), (4.9)

where D2
i (t) corresponds to d× (⟨X⌊td⌋ −X⋆, ωi⟩)2.

Example: Least Squares. One canonical example of (4.2) is least squares, where we aim

to recover the target X⋆ given noisy observations ⟨a,X⋆⟩+ ϵ. In this case, the least squares

35

problem is

min
X∈Rd

{
R(X) = 1

2
Ea,ϵ[(⟨a,X −X⋆⟩ − ϵ)2] = 1

2
ω2 + 1

2
(X −X⋆)TK(X −X⋆)

}
. (4.10)

The pair of functions h (Assumption 3) and I (Assumption 4) can be evaluated simply:

h(B(W)) = 1
2
I(B(W)) = 1

2
(X −X⋆)TK(X −X⋆) + 1

2
ω2.

The deterministic dynamics for the risk R(t) in this case can be simplified to:

R(t) = 1
2
(X0 −X⋆)TKe−2K

∫ t
0 γs ds(X0 −X⋆) + 1

2
ω2 + 1

d

∫ t
0
γ2
sTr(K2e−2K

∫ t
s γτ dτ)R(s) ds,

where γs is the deterministic learning rate from the ODE system (4.7). This is a convolution

Volterra equation with a convergence threshold of γt < 2d
TrK [16, 56–58].

In the noiseless label case (i.e., ω = 0), the risk is given by R(t) = 1
2d

∑d
i=1 λiD

2
i (t).

Using the ODEs in (4.7), we get the following deterministic equivalent ODE for the D2
i ’s:

d
dt

D2
i (t) = −2γtλiD2

i (t) + 2γ2
t λiR(t). (4.11)

We will perform a deep analysis of the dynamics of the learning rate on least squares (4.10),

which will generalize to settings where the outer function f is strongly convex (see 5.4.1).

4.3 Idealized Exact Line Search and Polyak Stepsize

In this section, we consider two classical idealized algorithms – exact line search and Polyak

stepsize. In deterministic optimization, these learning rate strategies are chosen so that

the function value (exact line search) or distance to optimality (Polyak) produces the

largest decrease in function value (resp. distance to optimality) at the next iteration. For

stochastic algorithms, we can ask this to hold for the deterministic equivalent to the

risk R(t) (resp. distance to optimality, D(t)) since we know that SGD is close to these

36

Figure 4.2: Comparison for Exact Line Search and Polyak Stepsize on a noiseless least

squares problem. The left plot illustrates the convergence of the risk function, while the

right plot depicts the convergence of the quotient γt/
λmin(K)
1
d
Tr(K2)

for Polyak stepsize and exact

line search. Both plots highlight the implication of equation (4.13) in high-dimensional

settings, where a broader spectrum of K results in λmin(K)
1
d
Tr(K2)

≪ 1
1
d
Tr(K)

, indicating slower risk

convergence and poorer performance of exact line search (unmarked) as it deviates from

the Polyak stepsize (circle markers) . The gray shaded region demonstrates that equation

(4.13) is satisfied. See Appendix 5.8 for simulation details.

deterministic equivalents by Theorem 4.2.1. Thus, the question is: what choice of learning

rate optimally decreases the R(t) (exact line search) and/or D(t) (Polyak stepsize)? We will

restrict to least squares in this section – see Appendix 5.6.1 and 5.6.2 for general functions

as well as proofs for least squares. These are idealized algorithms because we can not

implement them as they require distributional knowledge of a or X⋆. Despite this, they

provide a basis for more practical algorithms.

Polyak Stepsize

A natural threshold to consider is the stability limit for the distance to optimality. We

define γ̄D
t as the largest (continuous-time) learning rate such that the deterministic distance

equivalent D(t) decreases, i.e., dD(t) < 0. Using the least squares ODE (4.11) (specifically,

37

summing it over i), this threshold is precisely

γ̄D
t =

(2R(t)− ω2)
Tr(K)
d

R(t)
and ḡDk =

(2R(Xk)− ω2)
Tr(K)
d
R(Xk)

.7 (4.12)

Without label noise (ω = 0), equation (4.12) simplifies to γ̄D
t = ḡDk = 2

Tr(K)/d
, which

corresponds to the exact stability threshold for convergence in the noiseless least squares

case.

A greedy stepsize strategy aims to maximize the decrease in the distance to optimality

at each iteration. This defines the Polyak stepsize, γPolyak
t ∈ argminγ dD(t). For the specific

case of least squares, this yields

γPolyak
t = 1

2
γ̄D
t and gPolyakk = 1

2
ḡDk .

The discrete-time version, gPolyakk , is known to yield the optimal fixed learning rate (up to

absolute constant factors) for a noiseless target in a least squares problem [45, 61].8

Exact Line Search

In the context of risk, using (4.11) and noting that R(t) = 1
2d

∑d
i=1 λiD

2
i (t), we can find

γline
t ∈ arg minγ dR(t); i.e., the greedy learning rate that decreases the risk the most in the

next iteration. We call this exact line search. Expressions for the learning rates are given in

Table 4.2, (c.f. Appendix 5.6.1 for general losses). Because these come from ODEs, we can

use ODE theory to give exact limiting values for the deterministic equivalent of gline
k .

7Here, ω2 = E[ϵ2] is the variance of the label noise ϵ (see Assumption 1), and is distinct from the
eigenvectors ωi of the covariance matrix K mentioned elsewhere.

8The Polyak stepsize analyzed here, based on minimizing the ODE for D(t), coincides with the classic
R(Xk)−R(X∗)
||∇R(Xk)||2 for least squares. We use the ODE-based definition derived from minimizing the distance

decrease directly, which avoids an approximation step sometimes used in derivations [31].

38

100 102 104 106

SGD iterations

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

Ri
sk

(Noisy) Least Squares AdaGrad, =1.0, b = 1.0, = 2.5, d = 500
100

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

Le
ar

ni
ng

 ra
te

 /
t^

(-1
/2

)

SGD
Predicted

100 101 102 103 104 105

SGD iterations

100

2 × 100

3 × 100

4 × 100

le
ar

ni
ng

 ra
te

SGD, =719.69
SGD, =100.00
SGD, =51.79
SGD, =31.62
SGD, =12.33

100 101 102 103 104 105

SGD iterations

100le
ar

ni
ng

 ra
te

SGD, ||X0 X * ||2=1.0
SGD, ||X0 X * ||2=2.0
SGD, ||X0 X * ||2=4.0
SGD, ||X0 X * ||2=8.0
SGD, ||X0 X * ||2=16.0

Figure 4.3: Quantities effecting AdaGrad-Norm learning rate. (left): Effect of noise

(ω = 1.0) on risk (left axis) and learning rate (right axis). Depicted is learning rate
asymptotic l.r. so it

approaches 1. (Center, right): Noiseless least squares (ω = 0). As predicted in Prop. 4.4.2,

limt→∞ γt depends on avg. eig. of K (Tr(K)/d) and ∥X0 −X⋆∥2 but not κ = λmax/λmin. See

Appendix 5.8 for simulation details.

Proposition 4.3.1. [Limiting learning rate; line search on noiseless least squares] Consider the

noiseless (ω = 0) least squares problem (4.10) . Then the learning rate is always lower bounded by

λmin(K)
1
d
Tr(K2)

≤ γline
t for all t ≥ 0.

Moreover, suppose K has only two distinct eigenvalues λ1 > λ2 > 0, i.e., K has d/2 eigenvalues

equal to λ1 eigenvalues and d/2 eigenvalues equal to λ2. Then

λmin(K)
1
d
Tr(K2)

≤ lim
t→∞

γline
t ≤ 2λmin(K)

1
d
Tr(K2)

. (4.13)

For a proof and explicit formula for limt→∞ γline
t , see Section 5.6.2. Hence, being greedy

for the risk in a sufficiently anisotropic setting will badly underperform Polyak stepsize

(see Fig. 4.2).

4.4 AdaGrad-Norm analysis

In this section, we analyze the behavior of AdaGrad-Norm learning rate in the least squares

setting (see Sec. 5.4 for general strongly convex functions). In the presence of additive noise,

the AdaGrad-Norm learning rate decays like t−1/2, regardless of the data covariance K. In

39

contrast, the model with no noise exhibits a learning rate that depends on the spectrum

of K, as illustrated in Figure 4.3. The learning rate is bounded below by a constant when

λmin(K) > 0 is fixed as d→∞, and we quantify this lower bound. If the limiting spectral

measure of K has unbounded density near 0 (e.g. power law spectrum), then the learning

rate can approach zero and we quantify the rate of this convergence in the least squares

setting as a function of spectral parameters.

For least squares with additive noise (ω2 > 0), the learning rate asymptotic γt ≍

η/(b2 + ω2

d
Tr(K)t)(1/2) is the fastest decay that AdaGrad-Norm can exhibit. In contrast,

the propositions below concern the noiseless case (ω = 0) where, for various covariance

examples, the decay rate of γt changes. This is tightly connected to whether the risk is

integrable or not. In the simple case of identity covariance, we obtain a closed formula for

the trajectory of the integral of the risk and therefore also the learning rate.

Proposition 4.4.1. In the case of identity covariance (K = Id) and no noise (ω = 0), the risk

solves the differential equation

d
dt

R(t) = η2R(t)

b2+2
∫ t
0 R(s) ds

− 2ηR(t)√
b2+2

∫ t
0 R(s) ds

, (4.14)

with R(0) = 1
2
∥X0 −X⋆∥2.

The solution
∫ t
0
R(s) ds approaches (from below) a positive constant which yields a

computable lower bound to which γt will converge. Generalizing this to a broader class of

covariance matrices, we get the next proposition, which captures the dependence of γt on

Tr(K).

Proposition 4.4.2. Consider the noiseless case (ω = 0). Suppose 1
d
Tr(K) ≤ b/η, and that∫∞

0
R(s) ds <∞. Let γs be the AdaGrad-Norm learning rate for least squares (Table 4.2). Then

γt → γ∞ > 0 and γ∞ ≍ η2
b
η
+ η

2d
Tr(K)D2(0)

.

An analog of Proposition 4.4.2 for the strongly convex setting appears in Sec. 5.4 (see

Prop. 5.4.1). We now consider two cases in which, as d→∞, there are eigenvalues of K

arbitrarily close to 0.

40

10 1 100 101 102 103 104 105 106 107

time (t)
10 4

10 2

100

102

104

106

ris
k

t^(beta + delta - 2)
delta + beta = 0.2
delta + beta = 0.4
delta + beta = 0.6
delta + beta = 0.8
delta + beta = 1.0
delta + beta = 1.2
delta + beta = 1.4
delta + beta = 1.6
delta + beta = 1.8
t^(1-2/(beta + delta))
delta + beta = 2.0

10 5 10 3 10 1 101 103 105 107

time (t)

10 6

10 5

10 4

10 3

10 2

10 1

100

le
ar

ni
ng

 ra
te

constant
delta + beta = 0.2
delta + beta = 0.4
delta + beta = 0.6
delta + beta = 0.8
delta + beta = 1.0
delta + beta = 1.2
delta + beta = 1.4
delta + beta = 1.6
delta + beta = 1.8
delta + beta = 2.0
t^(-1 + 1/(beta+delta))

Figure 4.4: Power law covariance in AdaGrad Norm on a least squares problem. Ran

exact predictions (ODE) for the risk and learning rate (solid lines). Dashed lines give the

predictions from Prop. 4.4.4 which match experimental results exactly. Phase transition as

δ + β varies. When δ + β < 1 (green), the learning rate (right) is constant as t → ∞. In

contrast, when 2 > δ + β > 1 (purple), the learning rate decreases at a rate t−1+1/(β+δ)

with δ + β = 1 (white) where the change occurs. The same phase transition occurs in the

sublinear rate of the risk decay (left) (see Prop. 4.4.4).

Proposition 4.4.3. Consider the noiseless case (ω = 0). Assume that, for some C > 0, the

number of eigenvalues of K below C is o(d), and that ⟨X⋆, ωi⟩ = O(d−1/2) for all i, (i.e. X⋆ is not

concentrated in any eigenvector direction). Then, with the initialization X0 = 0, there exists some

γ̃ > 0 such that γt > γ̃ for all t > 0.

Proposition 4.4.4. Consider the noiseless case (ω = 0). Let K have a spectrum that converges

as d→∞ to the power law measure ρ(λ) = (1− β)λ−β1(0,1), for some9 β < 1, and suppose that

D2
i (0) ∼ λ−δ

i for δ ≥ 0. Then:

• For 1 > β + δ, there exists γ̃ > 0 such that γt ≥ γ̃ for all t ≥ 0, and R(t) ≍δ,β tβ+δ−2 for all

t ≥ 1.

• For 1 < β + δ < 2, γt ≍δ,β t−1+ 1
β+δ , and R(t) ≍δ,β t−

2
β+δ

+1 for all t ≥ 1.

• For 1 = β + δ, γt ≍δ,β 1
log(t+1)

, and R(t) ≍δ,β (t
log(t+1)

)−1 for all, t ≥ 1.

This proposition shows non-trivial decay of the learning rate is dictated by the residuals

(distance to optimality at initialization) and the spectrum of K. We note that δ = 0

9Our result can be compared to existing findings for SGD under power-law distributions in [8, 70, 73].
While these works explore similar assumptions regarding the covariance matrix spectrum, they do not
address the high-dimensional regime with diverging Tr(K), focusing primarily on β > 1.

41

corresponds to uniform contribution of each mode (e.g. X0 normally distributed). As the

eigenmodes of the residuals become more localized, the decay of the learning rate is closer

to the behaviour in the presence of additive noise. Furthermore, the scaling behaviour of

the loss is affected by the structure of the AdaGrad-Norm algorithm (see Fig. 4.4). Lastly,

constant stepsize SGD yields R(t) ≍ tβ+δ−2, with no transition occurring at β + δ = 1.

Proofs of the above propositions, in a slightly more general setting, are deferred to

Sec. 5.4.

42

Chapter 5

Proofs, Examples, and Simulations

5.1 SGD adaptive learning rate algorithms and stepsizes

In this section, we write down the explicit update rules for 2 different adaptive stochastic

gradient descent algorithms.

Example: AdaGrad-Norm. We begin with AdaGrad-Norm (see Algorithm 1). Note by

unraveling the recursion, we have that

gk =
η√

b2 + 1
d2

∑k
j=0 ∥∇XΨ(Xj; aj+1, ϵj+1)∥2

, (5.1)

with the deterministic equivalent (see Section 4.2 and also 5.3.3) for this learning rate being

γt =
η√

b2 + Tr(K)
d

∫ t
0
I(B(s)) ds

. (5.2)

In the case of the least squares problem, the quantity I(B(t)) is explicit and

γt =
η√

b2 + 2Tr(K)
d

∫ t
0
R(s) ds

. (5.3)

43

Algorithm 1 AdaGrad-Norm

Require: Initialize η > 0, X0 ∈ Rd, b ∈ R and set b0 = b× d
for k = 1, 2, . . . , do

Generate new sample ak ∼ N (0, K), ϵk ∼ N (0, ω2);
b2k ← b2k−1 + ∥∇XΨ(Xk−1; ak, ϵk)∥2;
gk−1 = d× η

|bk|
; ▷ updating learning rate

Xk ← Xk−1 − gk−1

d
∇XΨ(Xk−1; ak, ϵk); ▷ updating step with stochastic gradient

end for

Example: RMSprop-Norm We consider the "normed" version of RMSprop, that is, where

there is only one learning rate parameter.

We consider Algorithm 2 where we put a factor of the learning into the exponential

moving average for RMSprop. The deterministic equivalent for gk for Alg. 2 (see Section 4.2)

is

γt =
η√

b2e−αt + Tr(K)
d

∫ t
0
e−α(t−s)I(B(s)) ds

. (5.4)

In the case of the least squares problem, the quantity I(B(t)) is explicit and

γt =
η√

b2e−αt + 2Tr(K)
d

∫ t
0
e−α(t−s)R(s) ds

. (5.5)

Algorithm 2 RMSprop-Norm, α Exponential Moving Average

Require: Initialize η > 0, X0 ∈ Rd, b ∈ R and set b0 = d × b, α > 0 exponential moving
avg.
g−1 = d× η

b0
;

for k = 1, 2, . . . , do
Generate new sample ak ∼ N (0, K), ϵk ∼ N (0, ω2);
b2k ← α · b2k−1 + (1− α)∥∇XΨ(Xk−1; ak, ϵk)∥2;
gk−1 = d× η

|bk|
; ▷ updating learning rate

Xk ← Xk−1 − gk−1

d
∇XΨ(Xk−1; ak, ϵk); ▷ updating step with stochastic gradient

end for

44

5.2 The Dynamical nexus

In this section, we prove the main theorem on concentration of the risk curves and learning

rates. We shall set some notation. In what follows, we again use W = [X|X⋆] ∈ Rd×2. We

also use W+ = [W |X0] = [X|X⋆|X0].

We shall also use the shorthand r = ⟨a,W ⟩, and x = ⟨a,X⟩ so that f(⟨a,X⟩, ⟨a,X⋆⟩; ϵ) =

f(⟨a,W ⟩; ϵ) = f(r; ϵ).

We shall let B = B(X) = W TKW be the covariance matrix of the Gaussian vector r.

We also write f ′ for the ∂xf .

5.2.1 Discussion of the assumptions on f

In this section we show how the assumptions we put on h and I are almost satisfied for

L-smooth f . We say that f is L-smooth if:

∥∇f(r1, ϵ1)−∇f(r2, ϵ2)∥ ≤ L
√

(∥r1 − r2∥2 + ∥ϵ1 − ϵ2∥2),

which we note implies f is α-pseudo Lipschitz with α = 1.

Lemma 5.2.1. 1. There exists a function h : R2×2 → R such that h(B(X)) = R(X) is

differentiable and satisfies

∇XR(X) = Ea,ϵ∇XΨ(X; a, ϵ).

Furthermore, h is continuously differentiable on {B : detB ̸= 0} and its derivative ∇h

satisfies an estimate

∥∇h(B1)−∇h(B2)∥ ≤ (
√
2 + 1)L(f)min{∥B−1

1 ∥op, ∥B−1
2 ∥op}∥B1 −B2∥F .

45

2. The function I(B) = Ea,ϵ[(f ′(⟨a,X⟩; ⟨a,X⋆⟩, ϵ))2] satisfies an estimate

|I(B1)− I(B2)| ≤ L(f)
√
I(B1) + I(B2)min{∥B−1

1 ∥op, ∥B−1
2 ∥op}∥B1 −B2∥F .

Proof. To derive the existence of h, note that

R(X) = E(E(f(⟨a,X⟩, ⟨a,X⋆⟩, ϵ)|ϵ))

is an expectation of a Gaussian vector r = (⟨a,X⟩, ⟨a,X⋆⟩). This vector can be expressed as

an image of an iid Gaussian vector z by representing r =
√
Bz, and hence we have

h(B)
def
= E(E(f(

√
Bz, ϵ)|ϵ)).

As the function f is absolutely continuous with a Lipschitz gradient, we can differentiate

under the integral sign and conclude

∇XR(X) = ∇X E f(⟨a,X⟩, ⟨a,X⋆⟩, ϵ) = E∇Xf(⟨a,X⟩, ⟨a,X⋆⟩, ϵ).

For the differentiability of h, suppose for the moment that f is C2 with bounded second

derivatives.1 Setting Q =
√
B the positive semi-definite square root of B, we have

∂Qij
h(Q2) = E(E(∂Qij

f(Qz, ϵ)|ϵ)).

Then using the chain rule, and setting ∂if to be the i-th partial derivative of f ,

∂Qij
h(Q2) = E(E(zj∂if(Qz, ϵ)|ϵ)) = E(E([Qij∂i +Qjj∂j]∂if(Qz, ϵ)|ϵ)),

1This condition can be removed in a standard way: one creates an fϵ which is an approximation to
f formed by convolving with an isotropic Gaussian of variance ϵ. This is C2 and has bounded second
derivatives (as f was smooth). One then takes the limit as ϵ→ 0.

46

where we have applied Stein’s Lemma. We conclude when detQ ̸= 0 by the implicit

function theorem that h is differentiable and we have

∂Qij
h(Q2) =

∑
∂klh∂Qij

(Q2)kl =
∑
l

(∂ilh)Qjl +
∑
k

(∂kjh)Qik.

As a matrix equation, this can be written as

(Dh)Q+Q(Dh) = JQ where Jkl = E(E((∂k∂lf)(Qz, ϵ)|ϵ)).

This is a linear equation in Dh. When Q ≻ 0, we can define

A =

∫ ∞

0

e−tQ(JQ)e−tQ dt,

and note

AQ+QA = −
∫ ∞

0

d

dt

(
e−tQ(JQ)e−tQ

)
dt = JQ.

Moreover, the mapping M 7→
∫∞
0

e−tQMe−tQ dt defines a two-sided inverse for M 7→

MQ+QM , and so Dh = A. Note that by symmetry of J , Q, and Dh

JQ = (Dh)Q+Q(Dh) = QJ,

and therefore

(Dh)Q+Q(Dh) =
1

2
(JQ+QJ),

and so taking inverses on both sides, Dh = J.

Undoing Stein’s Lemma, we have Q(Dh) = (Dh)Q = M, where Mij = E(E(zj∂if(Qz, ϵ)|ϵ)).

From L-smoothness of f

∥M(Q1)−M(Q2)∥ ≤ LE(∥z∥∥Q1z −Q2z∥) ≤
√
2L∥Q1 −Q2∥F .

47

Hence

∥Dh(Q2
1)−Dh(Q2

2)∥ = ∥Q−1
1 M(Q1)−Q−1

2 M(Q2)∥

≤ ∥Q−1
1 ∥op∥M(Q1)−Q1Q

−1
2 M(Q2)∥

≤ ∥Q−1
1 ∥op

(
∥M(Q1)−M(Q2)∥+ ∥(Q2 −Q1)Q

−1
2 M(Q2)∥

)
.

Note Q−1
2 M(Q2) = (Dh)(Q2

2) is bounded by L(f), and so we arrive at

∥Dh(Q2
1)−Dh(Q2

2)∥ ≤ (
√
2 + 1)L(f)∥Q−1

1 ∥op∥Q1 −Q2∥F

≤ (
√
2 + 1)L(f)∥Q−2

1 ∥op∥Q2
1 −Q2

2∥F .

We note the bound is symmetric in Q1 and Q2, and by density of C2 in space of C1,lip, this

holds for L-smooth f . This concludes the estimates for the derivative of h.

For the Fisher matrix, I(B), from L-smoothness, we have again with Q =
√
B,

I(Q2) = E(E((∂1f(Qz, ϵ))2|ϵ)).

Then

|I(Q2
1)− I(Q2

2)| ≤
∣∣E(E((∂1f(Q1z, ϵ))

2 − (∂1f(Q2z, ϵ))
2|ϵ))

∣∣ .
Applying Cauchy-Schwarz and using the L-smoothness of f ,

|I(Q2
1)− I(Q2

2)| ≤
√

I(Q2
1) + I(Q2

2)× L(f)∥Q1 −Q2∥F .

This lemma shows that an L-smooth function nearly satisfies Assumption 3 and 4

provided that ∥B−1∥op is bounded. Therefore, our concentration result Theorem 5.2.1 and

its Corollaries will hold provided we add a stopping time. Fix M > 0 and let

ℏM(B)
def
= inf{t > 0 : ∥B−1∥op > M}.

48

Then the concentration of the risk under SGD to a deterministic function, Theorem 5.2.1,

holds with t replaced with t∧ ℏM(B)∧ ℏM(B). The corollaries of Theorem 5.2.1 also follow

under this added stopping time.

In the next section, we prove this concentration theorem, Theorem 5.2.1.

5.2.2 Integro-differential equation for S (t, z)

A goal of this paper is to show that quadratic statistics φ : Rd → R applied to SGD converge

to a deterministic function. This argument hinges on understanding the deterministic

dynamics of one important statistic, defined as

S(W, z) = W⊤R(z;K)W,

applied to W⌊td⌋ (SGD updates). Here W = [X|X⋆] and R(z;K) = (K − zId)
−1 for z ∈ C

is the resolvent of the matrix K. The statistic S(W, z) is valuable because it encodes

many other important quantities including W⊤q(K)W for all polynomials q. We show

that S(W⌊td⌋, z), is close to a deterministic function (t, z) 7→ S (t, z) which satisfies an

integro-differential equation.

To introduce the integro-differential equation, recall by Assumptions 3 and 4

R(X) = h ◦B(W) and Ea,ϵ[f ′(a⊤W)2] = I ◦B(W) with B(W) = W⊤KW,

and α-pseudo-Lipschitz functions h : R2×2 → R differentiable and I : R2×2 → R. It will

be useful, throughout the remaining paper, to express∇h explicitly as a 2× 2 matrix, that

is,

∇h ∼=

 ∇h11 ∇h12

∇h21 ∇h22

 .

With these recollections, the integro-differential equation is defined below.

49

Integro-Differential Equation for S (t, z). For any contour Ω ⊂ C enclosing the

eigenvalues of K, we have an expression for the derivative of S :

dS (t, ·) = F(z,S (t, ·)) dt (5.6)

where F(z,S (t, ·)) def
= −2γt

((
−1
2πi

∮
Ω

S (t, z) dz

)
H(B(t))

+HT (B(t))

(
−1
2πi

∮
Ω

S (t, z) dz

))

+
γ2
t

d

 Tr(KR(z;K))I(B(t)) 0

0 0

 (5.7)

− γt(S (t, z)(2zH(B(t))) + (2zHT (B(t)))S (t, z)).

Here B(t) =
−1
2πi

∮
Ω

zS (t, z) dz, H(B) =

 ∇h11(B) 0

∇h21(B) 0

 ,

γt is defined in (4.7), and the initialization is S (0, z) = W⊤
0 R(z;K)W0. (5.8)

The functions h : R2×2 → R and I : R2×2 → R are defined in Assumption 3 and

Assumption 4, respectively.

We first note that there is an actual solution to the integro-differential equation. This

solution is the same as the ODEs defined in the introduction (see (4.7)) and proved in [15,

Lemma 4.1].

Lemma 5.2.2 (Equivalence to coupled ODEs.). The unique solution of (5.7) with initial

condition (5.8) is given by

S (t, z) =
1

d

d∑
i=1

1

λi − z
Vi(t).

50

In this section, we will be working with approximate solutions to the integro-differential

equation (5.6) (see below for specifics). For working with these solutions, we introduce

some notation. We shall always work on a fixed contour Ω surrounding the spectrum of K,

given by Ω
def
=
{
z : |z| = max

{
1, 2∥K∥op

}}
. We note that this contour is always distance

at least 1
2

from the spectrum of K. We define a norm, ∥ · ∥Ω, on a continuous function

A : C→ R as

∥A∥Ω = max
z∈Ω
∥A(z)∥. (5.9)

Definition 5.2.1 ((ε,M, T)-approximate solution to the integro-differential equation). For

constants M,T, ε > 0, we call a continuous function S : [0,∞) × C → R2×2 an (ε,M, T)-

approximate solution of (5.6) if with

τ̂M(S)
def
= inf

{
t ≥ 0 : ∥S(t, ·)∥Ω > M

}
,

then

sup
0≤t≤(τ̂M∧T)

∥∥S(t, ·)− S(0, ·)−
∫ t

0

F(·, S(s, ·)) ds
∥∥
Ω
≤ ε

and S(0, ·) = W⊤
0 R(·, K)W0, where W0 = [X0|X⋆] is the initialization of SGD.

We suppress the S in the notation for τ̂M , that is, τ̂M = τ̂M(S), when the function S is

clear from the context.

We are now ready to state and prove one of our main results.

Theorem 5.2.1 (Concentration of SGD and deterministic function S (t, z)). Suppose the

risk function R(X) (4.2) satisfies Assumptions 2, 3, and 4. Suppose the learning rate satisfies

Assumption 6, and the initialization X0 and hidden parameters X⋆ satisfy Assumption 5. Moreover

the data a ∼ N (0, K) and label noise ϵ satisfy Assumption 1. Let {W⌊td⌋} be generated from the

iterates of SGD. Then there is an ε > 0 so that for any T,M > 0 and d sufficiently large, with

51

overwhelming probability

sup
0≤t≤T∧τ̂M (S(W,·))∧τ̂M (S)

∥S(W⌊td⌋, ·)−S (t, ·)∥Ω ≤ d−ε, (5.10)

where the deterministic function S (t, z) solves the integro-differential equation (5.6).

Proof. By Proposition 5.3.1, for any M and T , we can find a ε̃ > 0 such that the function

S(Wtd, z) is an (d−ε̃,M, T)-approximate solution. (For the deterministic function S , it is an

(0,M, T)-approximate solution by definition.) We now apply the stability result, [15, Prop.

4.1], to conclude that there exists a ε > 0 such that

sup
0≤t≤T∧τ̂M

∥S (t, z)− S(Wtd, z)∥Ω ≤ d−ε, w.o.p, (5.11)

where τ̂M is shorthand for τ̂M(S(W, ·)) ∧ τ̂M(S). The result immediately follows.

Corollary 5.2.1. Suppose the assumptions of Theorem 5.2.1 hold. Let f be an α-pseudo-Lipschitz

function with α ≤ 1 and let q be a polynomial. Set

φ(X)
def
= f(W T q(K)W), ϕ(t)

def
= f

(
−1
2πi

∮
Ω

q(z)S (t, z) dz

)
, where S (t, z) solves (5.6).

Then there is an ε > 0 such that for d sufficiently large, with overwhelming probability,

sup
0≤t≤T

|φ (Xtd)− ϕ(t)| ≤ d−ε.

Proof. This is basically equivalent to [15, Corollary 4.2]. The only difference is that [15,

Corollary 4.2] requires the boundedness of N ; however, since our function f is α-pseudo-

Lipschitz with α ≤ 1, this boundedness follows from [15, Proposition 1.2], and the rest of

the proof is identical to the one in [15].

Remark 5.2.1. The learning rate gk, technically, is not a function of W T q(K)W . However,

Assumption 6 ensures that the learning rate concentrates around a function W T q(K)W . Therefore,

Corollary 5.2.1 applies to the learning rate.

52

5.3 SGD-AL is an approximate solution

We introduce a rescaling of time to relate the k-th iteration of SGD to the continuous time

parameter t in the differential equation through the relationship k = ⌊td⌋. Thus, when t = 1,

SGD has done exactly d updates. Since the parameter t is continuous and the iteration

counter k (integer) discrete, to simplify the discussion below, we extend k to continuous

values through the floor operation, Xk
def
= X⌊k⌋. Using the continuous parameter t, the

iterates are related by Xtd = X⌊td⌋.

The paper [15] provides a net argument showing that we do not need to work with

every z on the contour Ω defining the integro-differential equation, but only polynomially

many in d. Recall that Ω = {z : |z| = max{2∥K∥op, 1}}. For a fixed ξ > 0, we say that Ωξ is

a d−ξ-mesh of Ω if Ωξ ⊂ Ω and for every z ∈ Ω there exists a z̄ ∈ Ωξ such that |z − z̄| < d−ξ.

We can achieve this with Ωξ having cardinality, |Ωξ| = C(|Ω|)dξ.

Lemma 5.3.1 (Net argument, [15], Lemma 5.1). Fix T,M > 0 and let ξ > 0. Suppose Ωξ is a

d−ξ mesh of Ω with |Ωξ| = C · dξ and positive C > 0. Let the function S(t, z) = S(Wtd, z) satisfy

sup
0≤t≤(τ̂M∧T)

∥S(t, ·)− S(0, ·)−
∫ t

0

F(·, S(s, ·)) ds∥Ωξ
≤ ε (5.12)

with τ̂M = inf{t ≥ 0 : ∥S(t, ·)∥Ω > M}. Then S is a (ε + C(M,T, ∥K∥op)d
−ξ,M, T)-

approximate solution to the integro-differential equation, that is,

sup
0≤t≤(τ̂M∧T)

∥S(t, ·)− S(0, ·)−
∫ t

0

F(·, S(s, ·)) ds∥Ω ≤ ε+ C · d−ξ,

where C = C(M,T, ∥K∥op, L(I), L(h)) is a positive constant.

(We prove in Section 5.3.1 that S(t, z) does indeed satisfy inequality (5.12).) We also

cite the following lemma, which relates two stopping times used throughout this paper.

Lemma 5.3.2 (Stopping time, [15], Lemma 4.2). For a constant C depending on ∥K∥op, we have

C ≤ ∥S(Wtd, ·)∥Ω
∥Wtd∥2

≤ 2.

53

Remark 5.3.1. Fix M > 0 and define the stopping time on ∥Wtd∥, ϑ = ϑM , by

ϑM(Wtd)
def
= inf

{
t ≥ 0 : ∥Wtd∥2 > M

}
.

Due to the previous lemma, any stopping time τ̂M defined on ∥S(t, ·)∥Ω corresponds to a stopping

time ϑ on ∥Wtd∥, that is, for c = C−1, τ̂M ≤ ϑcM .

5.3.1 SGD-AL is an approximated solution

Proposition 5.3.1 (SGD-AL is an approximate solution). Fix a T,M > 0 and 0 < ε < δ/8,

where δ is defined in Assumption 6. Then S(Wtd, z) is a (d−ε,M, T)-approximate solution w.o.p.,

that is,

sup
0≤t≤(T∧τM)

∥S(Wtd, z)− S(W0, z)−
∫ t

0

F(z, S(Wsd, z)) ds∥Ω ≤ d−ε. (5.13)

Again, the proof is very similar to [15, Prop. 5.2]. The one difference is that the

martingales and error terms are slightly more involved, because of the non-deterministic

stepsize we are using. The remainder of this section, along with section 5.3.2, fills in the

details of bounding these lower-order terms, so that the proof can proceed as in [15].

Shorthand notation

In the following sections, we will be using various versions of the stepsize γ. In order to

simplify notation, we set

γ(Gk) = γ(k,Nk(d× ·), Gk(d× ·), Qk(d× ·)),

γ(Gk) = γ(k,Nk(d× ·),Gk(d× ·), Qk(d× ·)),

γ(Bk) = γ(k,Nk(d× ·),Tr(K)I(Bk(d× ·))/d,Qk(d× ·)).

54

Further, setting ∆k
def
= f ′(rk)ak+1, define

I1(k)
def
= ∆⊤

k∇2φ(Xk)∆k/d, I2(k)
def
= Tr(∇2φ(Xk)K)E[f ′(rk)

2 | Fk]/d, I3(k)
def
= ∇φ(Xk)

⊤∆k.

The normalization here (dividing by d) is chosen so that the I terms are all O(1); this is

formally shown in Lemma 5.3.5.

SGD-AL under the statistic

We follow the approach in [15, Section 5.3] to rewrite the SGD adaptive learning rate

update rule as an integral equation. Considering a quadratic function φ : Rd → R and

performing Taylor expansion, we obtain

φ(Xk+1) = φ(Xk)−
γ(Gk)

d
∇φ(Xk)

⊤∆k +
γ(Gk)

2

2d2
∆⊤
k∇2φ(Xk)∆k. (5.14)

We will now relate this equation to its expectation by performing a Doob decomposition,

involving the following martingale increments and error terms:

∆Mgrad
k (φ)

def
=

1

d

(
−γ(Gk)I3(k) + E

[
γ(Gk)I3(k)

∣∣Fk]) , (5.15)

∆MHess
k (φ)

def
=

1

2d

(
γ(Gk)

2I1(k)− E
[
γ(Gk)

2I1(k)
∣∣Fk]) , (5.16)

E[EHess
k (φ) | Fk]

def
=

1

2d

(
E
[
γ(Gk)

2I1(k)
∣∣Fk]− γ(Bk)

2I2(k)
)
, (5.17)

E[Egrad
k (φ) | Fk]

def
=

1

d

(
−E

[
γ(Gk)I3(k)

∣∣Fk]+ γ(Bk)∇φ(Xk)
⊤∇R(Xk)

)
. (5.18)

We can then write

φ(Xk+1) = φ(Xk)−
γ(Bk)

d
∇φ(Xk)

⊤∇R(Xk) +
γ(Bk)

2

2d2
Tr(∇2φ(Xk)K)E[f ′(rk)

2 | Fk]

+ ∆Mgrad
k (φ) + ∆MHess

k (φ) + E[EHess
k (φ) | Fk] + E[Egrad

k (φ) | Fk].

55

Extending Xk into continuous time by defining Xt = X⌊t⌋, we sum up (integrate). For this,

we introduce the forward difference

(∆φ)(Xj)
def
= φ(Xj+1)− φ(Xj),

giving us

φ(Xtd) = φ(X0) +

⌊td⌋−1∑
j=0

(∆φ)(Xj)
def
= φ(X0) +

∫ t

0

d · (∆φ)(Xsd) ds+ ξtd,

where |ξtd| =
∣∣∣∣ ∫ t

(⌊td⌋−1)/d

d · ∆φ(Xsd) ds

∣∣∣∣ ≤ max
0≤j≤⌈td⌉

{|∆φ(Xj)|}. With this, we obtain the

Doob decomposition for SGD-AL:

φ(Xtd) = φ(X0)−
∫ t

0

γ(Bsd)∇φ(Xsd)
⊤∇R(Xsd) ds (5.19)

+
1

2d

∫ t

0

γ(Bsd)
2Tr(K∇2φ(Xsd))E[f ′(rsd)

2 | Fsd] ds

+

⌊td⌋−1∑
j=0

Eall
j (φ),

with Eall
j (φ) = ∆Mgrad

j (φ) + ∆MHess
j (φ) (5.20)

+ E[EHess
j (φ) | Fj] + E[Egrad

j (φ) | Fj]

+ ξtd(φ).

From here, we can proceed as in [15, Section 5.3] to show that SGD-AL is an (ε,M, T)-

approximated solution.

S(Wtd, z) is an approximate solution

Proof of Proposition 5.3.1. The appropriate stepsize, as a function of Wtd, is

γt = γ(td,Ntd,Tr(K)I(Btd)/d,Qtd).

56

(Note that N , I and Q can all be found as functions of S(Wtd, ·) using contour integration.)

It is shown in the proof of [15, Proposition 5.2] that given the analogue of (5.19) for

deterministic stepsize, S(Wtd, ·) satisfies

S (Wtd, z) = S (W0, z) +

∫ t

0

F (z, S (Wsd, z)) ds+

⌊td⌋−1∑
i=0

Eall
j (S).

The only terms of (5.19) that differ in our case are the martingale and error terms. Thus to

show that S(Wtd, ·) is an approximate solution of the integro-differential equation (5.6) all

we need is to bound the martingales and error terms contained in Eall
j . Let Ω = {z : |z| =

max{1, 2∥K∥op}}, as previously. We thus have that for all z ∈ Ω,

sup
0≤t≤T∧τ̂M

∣∣∣∣S(Wtd, z)− S(W0, z)−
∫ t

0

F(z, S(Wsd, z)) ds

∣∣∣∣ ≤ sup
0≤t≤T∧τ̂M

∥Eall
td (S(·, z))∥. (5.21)

Next, fix a constant ξ > 0. Let Ωξ ⊂ Ω such that there exists a z̄ ∈ Ωξ such that |z − z̄| ≤ d−ξ

and the cardinality of Ωξ, |Ωξ| = Cdξ where C > 0 can depend on ∥K∥op. For all z ∈ Ω,

we note that τ̂M ≤ ϑcM (see Lemma 5.3.2). Consequently, we evaluate the error with the

stopped process W ϑ
td

def
= Wd(t∧ϑ) instead of using τ̂M . By Proposition 5.3.2, the proof of

which we have deferred to Section 5.3.2, we have, for any δ̂ > 0

sup
z∈Ωξ

sup
0≤t≤T∧ϑcM

∥Eall
dt (S(·, z))∥ ≤ d−δ/4+δ̂ w.o.p. (5.22)

We deduce that

sup
0≤t≤T∧τ̂M

∥S(Wtd, z)− S(W0, z)−
∫ t

0

F(z, S(Wsd, z)) ds∥Ωξ
≤ dδ̂−δ/4 w.o.p.

An application of the net argument, Lemma 5.3.1, finishes the proof after setting δ̂ = δ/8

and ξ = δ/8.

57

5.3.2 Error bounds

All the martingale and error terms (5.20) go to 0 as d grows. Formally,

Proposition 5.3.2. Let the function f be defined as in Assumption 2. Let the statistic S :

[0,∞)× C→ R2×2 be defined as

S(t, z) = W⊤
⌊td⌋R(z;K)W⌊td⌋, (5.23)

where W = [X|X⋆]. Then, for any z ∈ Ω and T,M, ζ > 0, with overwhelming probability,

sup
0≤t≤T∧ϑ

∥∥E all
dt (S(·, z))

∥∥ ≤ d−δ/4+ζ ,

where to suppress notation we use ϑ as shorthand for ϑcM , and c is the constant from Lemma 5.3.2.

Proof. This follows from combining Propositions 5.3.3, 5.3.4, 5.3.5, 5.3.6, and 5.3.7.

The remainder of this subsection is devoted to proving these supporting proposi-

tions; throughout these proofs we will work with the stopping time ϑ as defined in the

proposition above.

Bounds on the lower order terms in the gradient and hessian

Proposition 5.3.3 (Hessian error term). Let f and S be defined as in Assumption 2 and (5.23).

Then, for any z ∈ Ω, T > 0 and ζ > 0, with overwhelming probability,

sup
0≤t≤T∧ϑ

⌊td⌋−1∑
k=0

∥∥E [EHess
k (S(·, z)) | Fk

]∥∥ ≤ d−δ/4+ζ .

58

Proof. For arbitrary z ∈ Ω and k ≤ (T ∧ ϑ)d− 1, set φ(X) = Sij(W, z) to be the ij-th entry

of the matrix S(W, z). Then

2dE[EHess
k (φ) | Fk] = E

[
γ(Gk)

2I1(k) | Fk
]
− γ(Bk)

2I2(k)

= E[(γ(Gk)
2 − γ(Gk)2)I1(k) | Fk]

+ (γ(Gk)2 − γ(Bk)
2)E[I1(k) | Fk] + γ(Bk)

2 E[(I1(k)− I2(k) | Fk]

= E1 + E2 + E3.

We look at |E1| first.

|E1| =
∣∣E [(γ(Gk)

2 − γ(Gk)2)I1(k) | Fk
]∣∣

≤ E
[∣∣(γ(Gk)

2 − γ(Gk)2)
∣∣2 | Fk] 1

2 · E
[∣∣I1(k) |2Fk∣∣] 1

2

≤ E
[
|γ(Gk) + γ(Gk)|

7
2 |γ(Gk)− γ(Gk)|

1
2 | Fk

] 1
2 · E

[∣∣I1(k) |2Fk∣∣] 1
2

≤ E
[
|γ(Gk) + γ(Gk)|7 | Fk

] 1
4 · E [|γ(Gk)− γ(Gk)| | Fk]

1
4 · E

[
|I1(k)|2 | Fk

] 1
2 .

For the first term, we use (4.6). We have

E
[
|γ(Gk) + γ(Gk)|7 | Fk

]
≤ Ĉ(γ) · E

[
|2 + 2∥Nk∥α∞ + 2∥Qk∥α∞ + ∥Gk∥α∞ + ∥Gk∥α∞|

7 | Fk
]
.

All the terms inside the expectation, apart from ∥Gk∥α∞, are deterministic with respect

to Fk and bounded by a constant independent of d (see Lemma 5.3.6). Since we know

from Lemma 5.3.6 that for any ε > 0, all moments of ∥Gk∥∞ are bounded by dε w.o.p., we

conclude

E
[
|γ(Gk) + γ(Gk)|7 | Fk

]
≤ dε w.o.p.

For the second term, we use (4.5). Again, since ∥Nk∥∞ and ∥Qk∥∞ are bounded due to our

stopping time, we have

E [|γ(Gk)− γ(Gk)| | Fk]
1
4 ≤ d−δ/4.

59

The last term, E
[
|I1(k)|2 | Fk

] 1
2 , is also bounded by a constant (see Lemma 5.3.5), and all

together, we find that |E1| ≤ dε−δ/4 with overwhelming probability.

Now let us consider |E2|:

|E2| = |(γ(Gk)2 − γ(Bk)
2)E[I1(k) | Fk]| = |γ(Gk) + γ(Bk)| · |γ(Gk)− γ(Bk)| · |E[I1(k) | Fk]|.

The first term is bounded by (4.6), since Gk and Tr(K)I(Bk)/d are bounded independent

of d; the second term is bounded Cd−1 by Lemma 5.3.9, and the last term is bounded by a

constant by Lemma 5.3.5.

Finally, consider |E3|:

|E3| = γ(Bk)
2 · |E[(I1(k)− I2(k) | Fk]| .

By (4.6), the first term is bounded by Ĉ(γ)2(1+ ∥Nk∥α∞+ ∥Qk∥α∞+ ∥Tr(K)I(Bk)/d∥α∞)2. All

of these terms are bounded by a constant independent of d (because of the stopping time.)

The second term satisfies the assumptions of Lemma 5.3.8 with H = ∇2φ(Xk), and is thus

bounded by Cd−1. All together,

2dE[EHess
k (φ) | Fk] ≤ d−δ/4+ε.

Summing up to k = Td and dividing through by 2d, we obtain the desired bound.

Proposition 5.3.4 (Gradient error term). Let f and S be defined as in Assumption 2 and (5.23).

Then, for any z ∈ Ω, ζ > 0 and T > 0, with overwhelming probability,

sup
0≤t≤T∧ϑ

⌊td⌋−1∑
k=0

∥∥∥E [Egrad
k (S(·, z)) | Fk

]∥∥∥ ≤ d−δ/4+ζ .

60

Proof. We have

dE[Egrad
k | Fk] = −E[γ(Gk)⟨∇φ(Xk),∆k⟩ | Fk] + γ(Bk)⟨∇φ(Xk),∇R(Xk)⟩

= −E[(γ(Gk)− γ(Gk))I3(k) | Fk]− (γ(Gk)− γ(Bk)E[I3(k) | Fk]

= E1 + E2.

We then have

|E1| ≤ E
[
|γ(Gk)− γ(Gk)|2 | Fk

] 1
2 · E

[
|I3(k)|2 | Fk

] 1
2

≤ E
[
|γ(Gk) + γ(Gk)|3 | Fk

] 1
4 · E [|γ(Gk)− γ(Gk)| | Fk]

1
4 · E

[
|I3(k)|2 | Fk

] 1
2 .

Just as in the Hessian argument, (4.6) lets us bound E
[
|γ(Gk) + γ(Gk)|3 | Fk

] 1
4 by dε w.o.p.,

(4.5) lets us bound E [|γ(Gk)− γ(Gk)| | Fk]
1
4 by d−δ/4 w.o.p., and Lemma 5.3.5 lets us bound

E
[
|I3(k)|2 | Fk

] 1
2 by a constant, giving an overall bound of |E1| ≤ d−δ/4+ε.

By the same argument as in the Hessian case, |E2| is bounded by Cd−1; in conclusion,

dE[Egrad
k | Fk] ≤ dε−δ/4.

Summing and dividing through by d, we obtain the desired result with ζ = ε.

Proposition 5.3.5 (Gradient martingale). Let f and S be defined as in Assumption 2 and (5.23).

Then, for any z ∈ Ω, ζ > 0 and T > 0, with overwhelming probability,

sup
0≤t≤T∧ϑ

∥∥∥Mgrad
⌊dt⌋ (S(·, z))

∥∥∥ ≤ d−1/2+ζ .

Proof. For notational convenience, set ∆Mk = ∆Mgrad
d(k/d∧ϑ), and Fk = −γ(Gk)I3(k)/d, so

that

∆Mk = Fk − E[Fk | Fk].

61

Set F β
k = Projβ(Fk), that is, ensuring Fk stays in [−β, β]. Then F β

k −E[F
β
k | Fk] is in [−2β, 2β],

and so for the martingaleMβ
k with increments ∆Mβ

k = F β
k −E[F

β
k | Fk], Azuma’s inequality

tells us that

P
(
|Mβ

k | ≥ t
)
≤ 2 exp

(
−t2

2
∑k

i=0(2β)
2

)
≤ 2 exp

(
−t2

2Td(2β)2

)
.

Set β = d−1+ζ/2 and t = d−1/2+ζ ; this becomes

P
(
|Mβ

k | ≥ d−1/2+ζ
)
≤ 2 exp

(
−dζ

8T

)
.

However,Mβ
k is not quite the martingale we started with: there is still an error term,

|Mk −Mβ
k | =

∣∣∣∣∣
k∑
i=0

(Fk − E[Fk | Fk])− (F β
k − E[F β

k | Fk])

∣∣∣∣∣
≤

k∑
i=0

∣∣∣Fk − F β
k

∣∣∣+ ∣∣∣E[Fk − F β
k | Fk]

∣∣∣ .
We bound this term in overwhelming probability. We have

P
(
Fk − F β

k ̸= 0
)
= P (|Fk| > β)

= P
(
|γ(Gk)I3(k)/d| > d−1+ζ/2

)
≤ P

(
γ(Gk) ≥ dζ/4

)
+ P

(
|I3(k)| ≥ dζ/4

)
.

62

The second term is superpolynomially small by Lemma 5.3.5; the first term is superpoly-

nomially small by (4.6) and (5.3.6).

∣∣∣E[Fk − F β
k | Fk]

∣∣∣ = ∣∣∣E[(Fk − F β
k)1{|Fk|>β} | Fk]

∣∣∣
≤ E[(Fk − F β

k)
2 | Fk]

1
2 · E[12

{|Fk|>β} | Fk]
1
2

≤ 4E[F 2
k | Fk]

1
2 · E[1{|Fk|>β} | Fk]

1
2

≤ 4d−1 E[γ(Gk)
4 | Fk]

1
4 · E[I3(k)4 | Fk]

1
4 · E[1{|Fk|>β} | Fk]

1
2 .

As before, the first and second expectations are bounded by constants, and the last expec-

tation is just the probability that |Fk| > β, which we have already shown is superpolyno-

mially small. So with overwhelming probability, we have

|Mk −Mβ
k | =

∣∣∣∣∣
k∑
i=0

(Fk − E[Fk | Fk])− (F β
k − E[F β

k | Fk])

∣∣∣∣∣ ≤ d−1/2+ζ

(any power of d would have worked). Combining the error term and the projected

martingale, we find that, with overwhelming probability,

|Mk| ≤ d−1/2+ζ .

We can now take the maximum over k from 0 to Td using a union bound; this does not

affect the overwhelming probability statement.

Proposition 5.3.6 (Hessian martingale). Let f and S be defined as in Assumption 2 and (5.23).

Then, for any z ∈ Ω, ζ > 0 and T > 0, with overwhelming probability,

sup
0≤t≤T∧ϑ

∥∥MHess
⌊td⌋ (S(·, z))

∥∥ ≤ d−1/2+ζ .

Proof. The proof here is basically identical to the previous one. Again, set Fk = γ(Gk)
2I1(k)/d

and F β
k = Projβ(Fk), with their associated martingales beingMk = Fk − E[Fk | Fk] and

63

Mβ
k = F β

k − E[F β
k | Fk]. As before, Azuma’s inequality, with β = d−1+ζ/2, gives us

P(Mβ
k ≥ d−1/2+ζ) ≤ 2 exp

(
− dζ

8T

)
.

The error term is also quite similar:

|Mk −Mβ
k | ≤

k∑
i=0

|Fk − F β
k |+ |E[Fk − F β

k | Fk]|.

We have

P(Fk − F β
k ̸= 0) ≤ P(γ(Gk)

2 ≤ dζ/4) + P(|I2(k)| ≤ dζ/4),

both of which are superpolynomially small by (4.6) and Lemma 5.3.5. For the expectation,

we have

|E[Fk − F β
k | Fk]| ≤ 4d−1 E[γ(Gk)

8 | Fk]
1
4 · E[I1(k)4 | Fk]

1
4 · E[1{|Fk|>β} | Fk]

1
2 ;

this product is superpolynomially small by (4.6), Lemma 5.3.6, and Lemma 5.3.5. Overall,

we have, with overwhelming probability,

|Mk| ≤ d−1/2+ζ .

Taking the supremum, we obtain the desired result.

Proposition 5.3.7 (Integral error term). Let f and S be defined as in Assumption 2 and (5.23).

Then, for z ∈ Ω,

|ξtd(S(·, z))| ≤ d−1/2.

64

Proof. We have, as above,

|ξtd| =
∣∣∣∣ ∫ t

(⌊td⌋−1)/d

d ·∆φ(Xsd) ds

∣∣∣∣
≤ max

0≤j≤⌈td⌉
{|∆φ(Xj)|},

which is bounded by d−1/2 w.o.p. by the boundedness of I1, I2, I3, and γ(Bk).

General bounds

In this section, we make use of the subgaussian norm ∥ · ∥ψ2 of a random variable (see [74]

for details.) When it exists, this norm is defined as

∥X∥ψ2 ≍ inf
{
V > 0 : ∀t > 0, P(|X| > t) ≤ 2e−t

2/V 2
}
. (5.24)

In particular, Gaussian random variables have a well-defined subgaussian norm.

Lemma 5.3.3 ([15], Lemma 5.3). There exist constants c, C > 0 such that

c∥W∥2 ≤ ∥S(W, z)∥Ω ≤ C∥W∥2, ∥∇XS(W, z)∥Ω ≤ C∥W∥, and ∥∇2
XS(W, z)∥Ω ≤ C.

Lemma 5.3.4 (Preliminary bounds). With f and ∆k defined as above, for ε > 0 and λ ≥ 0, we

have

f ′(rk) ≤ dε w.o.p. and E[|f ′(rk)|λ | Fk] ≤ C(λ), (5.25)

∥∆k∥2

d
≤ dε w.o.p. and E

[(
∥∆k∥2

d

)λ
| Fk

]
≤ C(λ). (5.26)

Proof of (5.25) in Lemma 5.3.4. By [15, Lemma 3.4], if function f is α-pseudo-Lipschitz with

Lipschitz constant L(f) (as in (2)) and the noise ϵ is independent of a, then

|f ′(r)| ≤ C(α)(L(f))(1 + |r|+ |ϵ|)max{1,α}.

65

Then

|f ′(rk)| ≤ C(α)(L(f))(1 + |rk|+ |ϵ|)max{1,α}

≤ C(α)(L(f))(1 + |X⊤
k ak+1|+ |ϵ|)max{1,α}. (5.27)

Now, since ak+1 is Gaussian, we can write ak+1 =
√
Kvk, for a standard normal vk. Then

we see that X⊤
k ak+1 = X⊤

k

√
Kvk is a single-variable Gaussian, with variance |X⊤

k KXk| ≤

∥Xk∥2 · ∥K∥op (bounded independently of d because of the stopping time on Xk). Similarly,

ϵ is Gaussian and independent of ak+1, so the expression (5.27) is bounded w.o.p. by dε,

and

E
[(
C(α)(L(f))(1 + |X⊤

k ak+1|+ |ϵ|)max{1,α})λ ∣∣Fk] ≤ C(λ)

for some constant C(λ).

Proof of (5.26) in Lemma 5.3.4. We can write ak+1 =
√
Kvk, where vk is a standard d-dimensional

normal vector. Then, by Hanson-Wright, we have

P
(∣∣∥ak+1∥2 − E[∥ak+1∥2 | Fk]

∣∣ ≥ d
)
= P

(∣∣v⊤k Kvk − E[v⊤k Kvk | Fk]
∣∣ ≥ d

)
≤ 2 exp

(
− cd2

∥K∥2F + ∥K∥opd

)
≤ 2 exp

(
− cd2

d(∥K∥op + ∥K∥2op

)
≤ 2 exp (−Cd) .

Now, note that E[v⊤k Kvk | Fk] = Tr(K) ≤ d∥K∥op. Together, we get that ∥ak+1∥2 ≤ d1+ϵ

with overwhelming probability. Then

∥∆k∥2

d
=
∥f ′(rk)ak+1∥2

d
=
∥ak+1∥2f ′(rk)

2

d
,

66

which is bounded by d2ε w.o.p. Now for the expectation:

E

[(
∥∆k∥2

d

)λ
| Fk

]
≤ E

(∥√Kvk∥2

d

)2λ

| Fk

 1
2

· E
[
f ′(rk)

4λ | Fk
] 1

2

≤ E

[(∥K∥op · ∥vk∥2

d

)2λ

| Fk

] 1
2

· E
[
f ′(rk)

4λ | Fk
] 1

2 (5.28)

For the first term, we have

E

[(∥K∥op · ∥vk∥2

d

)2λ

| Fk

]
= ∥K∥2λop · E

[(
∥vk∥2

d

)2λ

| Fk

]

≤ ∥K∥2λop ·
1

d

d−1∑
i=0

E
[(
∥vik∥2

)2λ | Fk] (Jensen’s inequality)

= ∥K∥2λop · E
[
∥v0k∥4λ | Fk

]
, (i.i.d. assumption)

where we are using the notation vik to refer to the ith component of the vector vk. Now,

since v0k is just a standard Gaussian, all of its moments are bounded. The second term in

(5.28) is bounded by a constant by (5.25), as desired.

Lemma 5.3.5 (Gradient and Hessian bounds). Setting

I1(k)
def
= ∆⊤

k∇2φ(Xk)∆k/d, I2(k)
def
= Tr(∇2φ(Xk)K)E[f ′(rk)

2 | Fk]/d,

I3(k)
def
= ∇φ(Xk)

⊤∆k,

for any ε > 0 and λ ≥ 0, we have

|I1(k)| ≤ dε w.o.p. and E
[
|I1(k)|λ | Fk

]
≤ C(λ), (5.29)

|I2(k)| ≤ C, (5.30)

|I3(k)| ≤ dε w.o.p. and E
[
|I3(k)|λ | Fk

]
≤ C(λ). (5.31)

67

Proof of (5.29) in Lemma 5.3.5. Using the fact that ∥∇2φ(Xk)∥op ≤ ∥S(Wk, ·)∥Ω,

|∆⊤
k∇2φ(Xk)∆k|

d
≤ ∥S(Wk, ·)∥Ω∥∆k∥2

d

≤ C∥Wk∥2∥∆k∥2

d
. (Lemma 5.3.3)

Now, ∥Wk∥ is bounded by the stopping time. From Lemma 5.3.4, ∥∆k∥2
d

is bounded by dε

w.o.p., and every moment of this expression is bounded independent of d, as desired.

Proof of (5.30) in Lemma 5.3.5. We have

|Tr(∇2φ(Xk)K)E[f ′(rk)
2 | Fk]|

d
≤

d∥∇2φ(Xk)K∥op · E[f ′(rk)
2 | Fk]

d

≤ ∥∇2φ(Xk)∥op · ∥K∥op · E[f ′(rk)
2 | Fk]

≤ CM2 E[f ′(rk)
2 | Fk]. (Lemma 5.3.3)

From Lemma 5.3.4, E[f ′(rk)
2 | Fk] is bounded by a constant independent of d, as desired.

Proof of (5.31) in Lemma 5.3.5. We have

|∇φ(Xk)
⊤∆k| ≤ |∇φ(Xk)

⊤ak+1| · |f ′(rk)|.

By Lemma 5.3.3, ∥∇φ(Xk)∥ ≤ C∥Wk∥ ≤ CM (since we are working under a stopping

time), and so ∇φ(Xk)
⊤ak+1 is subgaussian (and thus bounded by dε w.o.p.). By (5.25),

f ′(rk) is bounded by dε w.o.p., and so their product is bounded by d2ε w.o.p., as desired.

Now for the expectation:

E
[
|∇φ(Xk)

⊤∆k| | Fk
]
≤ E

[
|∇φ(Xk)

⊤ak+1| · |f ′(rk)| | Fk
]

≤ E
[
|∇φ(Xk)

⊤ak+1|2 | Fk
] 1

2 · E
[
f ′(rk)

2 | Fk
] 1

2

68

The first term is bounded by a constant independent of d, since subgaussian moments are

bounded. The second term is bounded by Lemma 5.3.4, completing the proof.

Lemma 5.3.6 (Infinity norm bounds). For Gk, Nk, Qk as defined in 4.1.2, we have, for any

ε, λ > 0, there exists C > 0 such that,

∥Gk∥∞ ≤ dε w.o.p. and E[∥Gk∥λ∞ | Fk] ≤ dε w.o.p., (5.32)

∥Nk∥∞ ≤ C, ∥Qk∥∞ ≤ C, ∥Gk∥∞ ≤ C. (5.33)

Proof. The first line, (5.32), follows from (5.26). For the first inequality, ∥Gk∥∞ = max0≤j≤k
∥∆j∥2
d

,

which are all bounded by dε with overwhelming probability. A union bound tells us that

the maximum is also bounded by dε w.o.p.. For the second inequality,

E[|Gk|λ∞ | Fk] ≤ E

[(
∥∆k∥2

d

)λ
| Fk

]
+ E

[
max

0≤j≤k−1

(
∥∆j∥2

d

)λ
| Fk

]

≤ E

[(
∥∆k∥2

d

)λ
| Fk

]
+ max

0≤j≤k−1

(
∥∆j∥2

d

)λ
≤ dε, (w.o.p.)

as desired. The second line is more straightforward:

∥Nk∥∞ = max
0≤j≤k

∥(W+
j)

⊤W+
j ∥.

Now, ∥X⋆∥ and ∥X0∥ are bounded independent of d, and ∥Xj∥ is bounded by cM (because

of the stopping time we are using.) Thus the maximum over j of their inner products are

bounded by a constant. The same thing holds for ∥Qk∥∞:

∥Qk∥∞ = max
0≤j≤k

R(Xj)

= max
0≤j≤k

h(W⊤
j KWj).

69

Since the derivative of h is pseudo-Lipschitz, h is continuous, and thus bounded for

bounded arguments. And indeed, the argument to h is bounded:

∥W⊤
j KWj∥ ≤ ∥Wj∥2∥K∥op,

both of which are bounded independent of d. Finally, a similar argument applies to Gk:

∥Gk∥∞ = max
0≤j≤k

E
[
∥∆j∥2

d
| Fj
]
≤ max

0≤j≤k
C = C

by Lemma 5.3.4.

We now prove a concentration result that closely follows [15, Proposition 5.6].

Lemma 5.3.7 ([15], Lemma 5.2). Suppose v ∈ Rd is distributed N (0, Id) and U ∈ Rd×2 has

orthonormal columns. Then

v |U⊤v ∼ v − U(U⊤v) + UU⊤v, (5.34)

where v−U
(
UTv

)
∼ N

(
0, Id − UUT

)
and UUTv ∼ N

(
0, UUT

)
with v−U

(
UTv

)
independent

of UUTv.

Lemma 5.3.8. For a matrix H = Hk with bounded operator norm, or ∥H∥op < C and E[Hk | Fk] =

Hk, set q(a) = a⊤Ha. Then

∣∣E[q(ak+1)f
′(rk)

2 | Fk]− Tr(KH)E[f ′(rk)
2 | Fk]

∣∣ ≤ C(H).

Note that the H used here is not the same as the matrix used in the integro-differential equation.

Proof. Many of the computations in this proof are taken directly from [15], but we repeat

them here for completeness. We have Fk = σ({Wi}ki=0); set F̂k = σ({Wi}ki=0, {ri}ki=0). A

70

simple calculation shows that

E[q(ak+1)f
′(rk)

2 | F̂k] = E[q(ak+1 − E[ak+1 | F̂k]) | F̂k]Eϵ[f ′(rk)
2]

+ q(E[ak+1 | F̂k])Eϵ[f ′(rk)
2]. (5.35)

To compute the conditional mean E[ak+1 | F̂k] and covariance (ak+1 − E[ak+1 | F̂k])(ak+1 −

E[ak+1 | F̂k])⊤, we use Lemma 5.3.7. By Assumption 1, we can write ak+1 =
√
Kvk, for

vk ∼ N (0, Id).

Now we perform a QR-decomposition on
√
KWk

def
= QkRk where Qk ∈ Rd×2 with or-

thonormal columns and Rk ∈ R2×2 is upper triangular (and invertible). Set Πk
def
= QkQ

T
k .

In distribution,

ak+1 | a⊤k+1Wk
d
=
√
Kvk |RT

kQ
T
k vk.

As Rk is invertible, by Lemma 5.3.7,

ak+1 | a⊤k+1Wk
d
=
√
Kvk |QT

k vk
d
=
√
K
(
vk − Πkvk

)
+
√
KΠkvk. (5.36)

We note that (Id−Πk)vk ∼ N(0, Id−Πk) and Πkvk ∼ N(0,Πk) with (Id−Πk)vk independent

of Πkvk. From this, we have that

E[ak+1 | F̂k] =
√
KΠkvk, where vk ∼ N(0, Id). (5.37)

Moreover the conditional covariance of ak+1 is precisely

(E[(ak+1 − E[ak+1 | F̂k])(ak+1 − E[ak+1 | F̂k])⊤ |F̂k]) (5.38)

=
√
K(Id − Πk)

√
K, where Πk = QkQ

T
k .

71

Next, using that E[Hk | Fk] = Hk, we expand (5.35) to get the leading order behavior

E[q(ak+1)f
′(rk)

2 | F̂k] = Tr(HK)Eϵ[f ′(rk)
2]

− Tr(H
√
KΠk

√
K)Eϵ[f ′(rk)

2]

+ q(
√
KΠkvk)Eϵ[f ′(rk)

2].

(5.39)

Taking the expectation with respect to Fk, we obtain

E[q(ak+1)f
′(rk)

2 | Fk]− Tr(HK)E[f ′(rk)
2 | Fk] = E[Ek | Fk], (5.40)

where the error Ek is defined as

Ek =− Tr(H
√
KΠk

√
K)Eϵ[f ′(rk)

2] (5.41)

+ q(
√
KΠkvk)Eϵ[f ′(rk)

2]. (5.42)

The proof now turns to bounding the expectation of this error quantity.

|Tr(H
√
KΠk

√
K)E[f ′(rk)

2 | Fk]| = |Tr(H
√
KΠk

√
K)| · E[f ′(rk)

2 | Fk]

≤ ∥H∥op∥K∥op|Tr(Πk)| · E[f ′(rk)
2 | Fk]

≤ ∥H∥op∥K∥op · rank(Qk)E[f ′(rk)
2 | Fk]

≤ 2∥H∥op∥K∥op E[f ′(rk)
2 | Fk].

By (5.25), the expectation is bounded by a constant, so this term is overall bounded by a

constant. We move on to the next term in the error:

q(
√
KΠkvk)f

′(rk)
2 ≤ ∥H∥op∥K∥op∥Πkvk∥2f ′(rk)

2.

72

Taking expectations and using Cauchy Schwarz, we obtain

E[q(
√
KΠkvk)f

′(rk)
2 | Fk] ≤ ∥H∥op∥K∥op ·

√
E[∥Πkvk∥4 | Fk] ·

√
E[f ′(rk)4 | Fk].

The first expectation is E[∥Πkvk∥2 | Fk] = ∥Πk∥4F = 8, and the second is bounded by (5.25)

as before. We thus conclude that E[Ek | Fk] is bounded by a constant depending on ∥H∥op,

completing the proof.

Lemma 5.3.9. There is a constant C such that

|γ(Gk)− γ(Bk)| ≤ Cd−1.

Proof. Using the Lipschitz condition on the stepsize, we have

|γ(Gk)− γ(Bk)|

≤ ∥Gk − Tr(K)I(Bk)/d∥∞ × (1 + 2∥Nk∥α∞ + ∥Gk∥α∞ + ∥Tr(K)I(Bk)/d∥α∞ + 2∥Qk∥α∞)

≤ C∥Gk − Tr(K)I(Bk)/d∥∞ (Lemma 5.3.6)

≤ Cd−1 max
0≤j≤k

∥∥E[a⊤j+1aj+1f
′(rj)

2 | Fj]− Tr(K)E[f ′(rj)
2 | Fj]

∥∥
≤ Cd−1, (Lemma 5.3.8)

as desired.

5.3.3 Specific learning rates

In this section, we confirm that AdaGrad-Norm satisfies Assumption 6. In the notation of

Assumption 6, we have, for AdaGrad-Norm,

γ(td, f, g, q) =
η√

b2 +
∫∞
0

g(s) ds
.

73

Note that this reduces to the discrete stepsize if we plug in g = Gk:

γ(td, f,Gk(d× ·), q) =
η√

b2 +
∫∞
0

Gk(ds) ds

=
η√

b2 +
∫∞
0

(
1{ds≤k}

1
d

∑k
i=0 ∥∇XΨ(Xi; ai+1, ϵi+1)∥21[i,i+1)(ds)

)
ds

=
η√

b2 +
∫∞
0

(
1{u≤k}

1
d2

∑k
i=0 ∥∇XΨ(Xi; ai+1, ϵi+1)∥21[i,i+1)(u)

)
du

=
η√

b2 + 1
d2

∑k
i=0 ∥∇XΨ(Xi; ai+1, ϵi+1)∥2

,

which is exactly the discrete version of the AdaGrad-Norm stepsize.

Proposition 5.3.8 (Lipschitz). For functions f, g, q such that f(ds) = g(ds) = q(ds) = 0 for

s > t, the AdaGrad stepsize γ is Lipschitz. That is,

|γ(td, f(d× ·), g(d× ·), q(d× ·))− γ(td, f̂(d× ·), ĝ(d× ·), q̂(d× ·))| ≤ C(t, γ)(∥g − ĝ∥∞).

Remark 5.3.2. This is a stronger condition than the α-pseudo Lipschitz one in Assumption 6.

Proof. To show this, we look at the derivative of the AdaGrad stepsize function. Setting

F (x) = η√
b2+x

, we have

|F ′(x)| = η

2(b2 + x)3/2
≤ η

2b3

74

for x ∈ [0,∞). We thus have

|γ(td, f(d× ·), g(d× ·), q(d× ·))− γ(td, f̂(d× ·), ĝ(d× ·), q̂(d× ·))|

=

∣∣∣∣∣∣ η√
b2 +

∫∞
0

g(ds) ds
− η√

b2 +
∫∞
0

ĝ(ds) ds

∣∣∣∣∣∣
=

∣∣∣∣F (∫ ∞

0

g(ds) ds

)
− F

(∫ ∞

0

ĝ(ds) ds

)∣∣∣∣
≤ η

2b3

∣∣∣∣∫ ∞

0

g(ds) ds−
∫ ∞

0

ĝ(ds) ds

∣∣∣∣
≤ η

2b3

∣∣∣∣∫ t

0

g(ds) ds−
∫ t

0

ĝ(ds) ds

∣∣∣∣
≤ η

2b3
(t · ∥g − ĝ∥∞)

≤ ηt

2b3
· ∥g − ĝ∥∞,

where we were able to replace the∞ with a t because g(ds) = 0 for s > t. We have thus

obtained a Lipschitz constant ηt
2b3

depending only on t.

Next we show that the AdaGrad-Norm is bounded.

Proposition 5.3.9 (Boundedness). Suppose γ is AdaGrad-Norm. Then (4.6), as part of Assump-

tion 6, holds.

Proof. This is immediate:

γ(td, f, g, q) =
η√

b2 +
∫ t
0
g(s) ds

≤ η

b
.

It remains to show that AdaGrad-Norm satisfies (4.5) in Assumption 6.

Proposition 5.3.10 (Concentration). Suppose γ is AdaGrad-Norm, with Gk and Gk being defined

as before. Then Equation (4.5), as part of Assumption 6, holds:

E[|γ(Gk)− γ(Gk)| | Fk] ≤ Cd−δ(1 + ∥f∥α∞ + ∥q∥α∞).

75

Proof. Looking to remove the square roots, we have

|γ(Gk)− γ(Gk)| ≤ |γ(Gk)
2 − γ(Gk)2|

1
2 .

For AdaGrad-Norm, we have

∣∣γ(Gk)
2 − γ(Gk)2

∣∣ = η2

∣∣∣∣∣ 1

b2 + 1
d2

∑k
j=0 ∥∆j∥2

− 1

b2 + 1
d2

∑k
j=0 E[∥∆j∥2 | Fj]

∣∣∣∣∣
≤ η2

d2b4
·

∣∣∣∣∣
k∑
j=0

(E[∥∆j∥2 | Fj]− ∥∆j∥2)

∣∣∣∣∣ . (5.43)

We now bound the sum above. Set Fi = ∥∆i∥2/d, F β
i = Projβ(Fi), ∆Mi = Fi − E[Fi | Fi],

and ∆Mβ
i = F β

i − E[F β
i | Fi]. Then |∆Mβ

i | ∈ [−2β, 2β], so Azuma’s inequality gives us

P
(
|Mβ

k | ≥ t
)
≤ 2 exp

(
− −t2

2
∑k

i=0(2β)
2

)
,

P
(
|Mβ

k | ≥ d1/2+ε
)
≤ 2 exp

(
− −d1+2ε

2Td(2dε/2)2

)
= exp

(
− dε

8T

)
.

where we set β = dε/2. This is close to the bound we want: the error is

|Mk −Mβ
k | ≤

k∑
i=0

|Fi − F β
i |+ |E[Fi − F β

i | Fi]|.

We have

P(Fi − F β
i ̸= 0) = P(|Fi| > β) = P

(
∥∆i∥2

d
> dε/2

)
,

which superpolynomially small by (5.26). The expectation is similar:

|E[Fi − F β
i | Fi]| = |E[(Fi − F β

i)1{|Fi|>β} | Fi]|

≤ E[|Fi − F β
i |2 | Fi]

1
2 · E[1{|Fi|>β} | Fi]

1
2

≤ 4E[|Fi|2 | Fi]
1
2 · E[1{|Fi|>β} | Fi]

1
2 .

76

The first expectation is bounded by a constant independent of d by (5.26), and the second

expectation is superpolynomially small by the same argument as above. We then have

|Mk −Mβ
k | ≤ d1/2+ε

with overwhelming probability (note that this would be true for any power of d, by the

definition of superpolynomially small.) We thus conclude that

|Mk| ≤ d1/2+ε

with overwhelming probability. Multiplying by d, we find that

∣∣∣∣∣
k∑
j=0

(E[∥∆j∥2 | Fj]− ∥∆j∥2)

∣∣∣∣∣ ≤ d3/2+ε w.o.p.

Plugging this back into (5.43), we find that

∣∣γ(Gk)
2 − γ(Gk)2

∣∣ ≤ η2

d2b4
d3/2+ε

≤ Cd−1/2+ε

with overwhelming probability, and so, taking the square root,

|γ(Gk)− γ(Gk)| ≤ Cd−1/4+ε/2 w.o.p,

which is less than d−1/4+ε as d grows (we replaced the constant with an extra factor of dε/2.)

Controlling the expectation via the boundedness of γ, we find that with δ = 1/8,

E[|γ(Gk)− γ(Gk)| | Fk] ≤ d−δ w.o.p.,

as desired.

77

5.4 Proofs for AdaGrad-Norm analysis

In this section we provide proofs of the propositions related to AdaGrad-Norm in the

least squares setting as well as the more general strongly convex setting. Statements of the

propositions for least squares examples are found in Section 4.4.

5.4.1 Strongly convex setting

In order to derive the limiting learning rate in this case, we need the following assumption

and some standard definitions of strong convexity.

Assumption 7 (Risk and loss minimizer). Suppose that

X⋆ ∈ arg minX
{
R(X) = Ea,ϵ[f(⟨X, a⟩, ⟨X⋆, a⟩), ϵ]

}
exists and has norm bounded independent of d. Then one has,

⟨X⋆, a⟩ ∈ arg minx{f(x, ⟨X
⋆, a⟩, ϵ)}, for almost surely a ∼ N (0, K) and ϵ.

While at first, this assumption seems quite strong, in fact, in a typical student-teacher setup

when label noise is 0 (i.e., ϵ = 0), where the targets have the same model as the outputs,

the assumption is satisfied. Our goal here is not to be exhaustive, but simply to illustrate

that our framework admits a nontrivial and useful analysis and which gives nontrivial

conclusions for the optimization theory of these problems.

Definition 5.4.1 (L̂-smoothness of outer function f). A function f : R3 → R that is C1-

smooth (in the first variable) is called L̂(f)-smooth if the following quadratic upper bound holds for

any x, x̂, y, z ∈ R

f(x̂, y, z) ≤ f(x, y, z) + ⟨f ′(x, y, z), x̂− x⟩+ L̂(f)
2
|x̂− x|2. (5.44)

78

Note that if f ′ = ∂
∂x
f(x, y, z) is L̂(f)-Lipschitz, i.e., |f ′(x, y, z) − f ′(x̂, y, z)| ≤ L̂(f)|x − x̂|,

then the inequality (5.44) holds with constant L̂. Suppose x⋆ ∈ arg minx{f(x, y, z)} exists.

An immediate consequence of (5.44) is that

1

2L̂(f)
|f ′(x, y, z)|2 ≤ f(x, y, z)− f(x⋆, y, z) ≤ L̂(f)

2
|x− x⋆|2. (5.45)

Definition 5.4.2 (Restricted Secant Inequality). A function f : R3 → R that is C1-smooth

(in the first variable) satisfies the (µ, θ)–restricted secant inequality (RSI) if, for any x ∈ R and

x⋆ ∈ arg minx{f(x)},

⟨x− x⋆, f ′(x)⟩ ≥


µ|x− x⋆|2, if max{|x⋆|2, |x− x⋆|2} ≤ θ,

0, otherwise.

If f satisfies the above for θ =∞, then we say f satisfies the µ–RSI.

Proposition 5.4.1. Let the outer function f : R3 → R be a L̂(f)-smooth function satisfying the

RSI condition with µ̂(f) with respect to x ∈ R. Suppose X⋆ ∈ argminX{R(X)} exists bounded,

independent of d and Assumption 7 holds and that γ0 = η
b
= 2µ̂(f)

(L̂(f))2
1
d
Tr(K)

ζ, for some ζ ∈ (0, 1),

and that
∫∞
0

R(s)γs ds <∞ with γs as in Table 4.2 (AdaGrad-Norm, general formula), then

γ∞ ≥
γ0η

2

1 + ζ
1−ζD

2(0)
.

Proof. Given the Eq. (5.73) for the distance to optimality, with (x, x⋆) ∼ N (0,B),

d

dt
D2(t) = −2γt Ea,ϵ[⟨x− x⋆, f ′(x, x⋆)⟩] + γ2

t

d
Tr(K)Ea,ϵ[(f ′(x, x⋆))2]

By the RSI (with constant µ̂(f)) condition on f , we have that

Ea,ϵ
[
⟨x− x⋆, f ′(x, x⋆)⟩

]
≥ µ̂(f)Ea,ϵ[(x− x⋆)2] = 2µ̂(f)R(t), (5.46)

79

where x = ⟨X, a⟩ and x⋆ = ⟨X⋆, a⟩ and we note that x has t-dependence due to the

t-dependence in B. By L̂(f)-smoothness,

1

2L̂(f)
(f ′(x))2 ≤ L̂(f)

2
(x− x⋆)2.

This implies that

1

2(L̂(f))2
Ea,ϵ
[
(f ′(x, x⋆)2

]
≤ 1

2
Ea,ϵ
[
(x− x⋆)2

]
= R(t). (5.47)

Thus by (5.46) and (5.47), we have that

d

dt
D2(t) ≤ −γt

(
4µ̂(f)− 2(L̂(f))2

1

d
Tr(K)γt

)
R(t)

Which then yield:

D2(t) ≤ D2(0)− 2

(
2µ̂(f)− (L̂(f))2

1

d
Tr(K)γ0

)∫ t

0

R(s)γs ds.

Changing variables u = Γ(t) =
∫ t
0
γs ds, we have that

∫∞
0

R(t)γt dt =
∫∞
0

r(u) du =

∥r∥1. Rearranging the term in the above equation and taking t → ∞. We obtain:

∥r∥1 ≤ D2(0)

(2µ̂(f)−(L̂(f))2 1
d
Tr(K)γ0)

, given that 2̂µ(f)

(L̂(f))2 1
d
Tr(K)

> γ0. Using Lemma 5.4.1, with

i(v) = I(B(Γ−1(v))) = Ea,ϵ
[
(f ′(x, x⋆)2

]
instead of the risk

γ∞ =
η2

b
η
+ 1

2d
Tr(K)

∫∞
0

i(v) dv
≥ η2

b
η
+ 1

d
Tr(K)(L̂(f))2

∫∞
0

r(v) dv
(5.48)

≥ η2

b
η
+ 1

d
Tr(K) (L̂(f))2D2(0)

(2µ̂(f)−(L̂(f))2 1
d
Tr(K)γ0)

=
η2

b
η
+

1
d
Tr(K)(L̂(f))2

2µ̂(f)(1−ζ) D2(0)
.

where the first inequality is by Eq. 5.47, and the last transition is by taking the initial

learning rate to be γ0 =
2µ̂(f)

(L̂(f))2
1
d

Tr(K)
ζ, for ζ ∈ (0, 1).

80

Lemma 5.4.1. Given γt as in Table 4.2 (AdaGrad-Norm), defining g(u) = γ(Γ−1(u)), with

Γ(t) =
∫ t
0
γs ds, then g(u) = η2

b
η
+ 1

2d
Tr(K)

∫ u
0 i(v) dv

with i(v) = I(B(Γ−1(v))).

Proof. Taking the square of both sides of the γt equation in Table 4.2 (AdaGrad-Norm),

changing variables to u = Γ(t) and rearranging the terms:

b2 + Tr(K)
d

∫ u

0

i(v)

g(v)
dv =

η2

g(u)2
, (5.49)

such that i(v) = I(B(Γ−1(v))). Taking derivative with respect to u, rearranging terms and

integrating leads to the desired result.

5.4.2 Least squares setting

To study the effect of the structured covariance matrix and cases in which the problem is not

strongly convex, we will focus on the linear least square problem. In this setting, the con-

tinuum limit of the risk for the AdaGrad-Norm algorithm has the form of a convolutional

integral Volterra equation,

R(t) = F (Γ(t)) +

∫ t

0

γ2
sK(Γ(t)− Γ(s))R(s) ds (5.50)

where Γ(t) :=
∫ t
0
γs ds with,

F (x)
def
=

1

2d

d∑
i=1

λiD
2
i (0)e

−2λix, (5.51)

K(x) def
=

1

d

d∑
i=1

λ2
i e

−2λix. (5.52)

In the following we consider three cases, a strongly convex risk in which the spectrum

of the eigenvalues is bounded from below (section 5.4.2). A case in which the spectrum

is not bounded from below as d→∞, but the number of eigenvalues below some fixed

threshold is o(d) (section 5.4.2). Finally, power law spectrum supported on [0, 1] with

d→∞ (section 5.4.2).

81

Proofs for case of fixed d

Proof of Proposition 4.4.2. Define the composite functions r(u) = R(Γ−1(u)), and g(u) =

γ(Γ−1(u)). Integrating the formula for the risk:∫ t

0

r(u) du =

∫ t

0

F (u) du+

∫ t

0

∫ Γ−1(u)

0

γ2
sK(u− Γ(s))R(s) ds du

=

∫ t

0

F (u) du+

∫ t

0

∫ u

0

K(u− x)r(x)g(x) dx du

≤
∫ t

0

F (u) du+ γ0

∫ t

0

r(x)

∫ t

x

K(u− x) du dx

Taking t→∞, we get

∥r∥1 ≤ ∥F∥1 + γ0∥K∥1∥r∥1.

Using ∥K∥1 =
∫∞
0
K(x) dx < γ−1

0 , and noting that by Eq. (5.52), and Eq. (5.51), we have

that ∥F∥1 = 1
4
D2(0), and ∥K∥1 = 1

2d
Tr(K),

∥r∥1 ≤
∥F∥1

1− γ0∥K∥1
=

1
4
D2(0)

1− γ0
2d
Tr(K)

.

On the hand following Lemma 5.4.3, 1
4
D2(0)(1 + γ0

2d
Tr(K)) ≤ ∥r∥1. Therefore, ∥r∥1 ≍

1
4
D2(0).

Next, rewriting the γt equation in Table 4.2 (AdaGrad-Norm for least squares) in terms

of g(u) (Lemma 5.4.1), we obtain

g(u) =
η2

b
η
+ 1

d
Tr(K)

∫ u
0
r(x) dx

(5.53)

Taking u→∞, and using ∥r∥1 ≍ 1
4
D2(0),

γ∞ = g(∞) =
η2

b
η
+ 1

d
Tr(K)∥r∥1

≍ η2

b
η
+ 1

4d
Tr(K)D2(0)

. (5.54)

This then completes the proof.

82

Remark 5.4.1. We note that, on the Least square problem L̂(f) = µ̂(f) = 1, therefore, the bound

in Proposition 5.4.1 yields η2
b
η
+ 1

2(1−ζ)
1
d
Tr(K)D2(0)

.

Proof of Proposition 4.4.1. Using the equation for the distance to optimality (Eq. 4.11), we

can derive an equation for the integral of the risk (with no target noise) which we denote

by g(t) =
∫ t
0
R(s) ds:

g′′(t) = −γt
∑
i

λ2
iD

2
i (t) + γ2

t

Tr(K2)

d
g′(t). (5.55)

For K = Id, this equation simplifies,

g′′(t) = −2γtg′(t) + γ2
t

Tr(K2)

d
g′(t). (5.56)

Plugging in the equation for the AdaGrad-Norm learning rate (Table 4.2) leads to the

desired result. We note that by using the equation for the learning rate, one can also derive

a close equation for the learning rate itself.

Vanishingly few eigenvalues near 0 as d→∞

We now consider the case where, as d→∞, there are eigenvalues of K arbitrarily close

to 0. In Proposition 4.4.2 we saw a constant lower bound on γt when d is fixed (and thus

there are finitely many eigenvalues within any fixed distance of 0). This can be extended

to the case where we have some C > 0 such that the number of eigenvalues of K below C

is o(d) (see Proposition 4.4.3).

Proof of Proposition 4.4.3. Following the structure of the loss, after some time the risk starts

to decrease, and therefore R(t) ≤ R0 for and t ≥ 0. Using these observations, we obtain a

preliminary lower bound of γt > C1t
−1/2 (for t > 0), which enables us to deduce that R(t)

is integrable and finally obtain a constant lower bound for γt. The details of this are below.

83

For t ≥ 0 and some C1 > 0,

γt =
η√

b2 + 2
d
Tr(K)

∫ t
0
R(s)ds

≥ η√
b2 + 2

d
Tr(K)R0t

≥ C1t
−1/2. (5.57)

Next, to show that the risk is integrable, we divide the matrix K into two parts K+, and

K−, such that the eigenvalues of K+ are greater than some αs > 0 and the eigenvalues of

K− are smaller than αs where αs is a decreasing function of s to be determined later. We

then have that, following Eq. (4.11), and the definition of the risk R(t) = 1
2d

∑d
i=1 λiD

2
i (t),

R(t) = R(0)− 1

d

d∑
i=1

λ2
i

∫ t

0

γsDi(s)ds+
1

d

∫ t

0

γ2
s Tr(K

2) ·R(s)ds (5.58)

≤ R(0)−
∫ t

0

γs(2αs − γs
1

d
Tr(K2)) ·R(s)ds+ 2

∫ t

0

γsR2(s) ds

with R2(s) =
1
2d

∑
i:λi≤αs

λiD2
i (s). Next, choosing αs = γs

1
d
Tr(K2), we show that the last

term is of order od(1). By Lemma 5.4.2 ∀i, D2
i (t) ≤ max (γt1R(t1),D2

i (0)) = c0 where the

bound c0 comes from the assumption ⟨X⋆, ωi⟩ = O(d−1/2) and the initialization X0 = 0.

Therefore,

2

∫ t

0

γsR2(s) ds ≤
1

d2
Tr(K2)c0

∫ t

0

γsNs ds. (5.59)

where Ns =
∑d

i=1 1λi≤γs 1
d
Tr(K2). This implies that, if γsNs = o(d), then 2

∫ t
0
γsR2(s) ds =

od(1), provided that d is taken to be large before t.

We then have that up to od(1) constant,

R(t) ≤ R(0)− 1

d
Tr(K2)

∫ t

0

γ2
s ·R(s)ds. (5.60)

Using Gronwall’s inequality,

R(t) ≤ R(0)e−
1
d
Tr(K2)

∫ t
0 γ

2
s ds ≤ R(0)e−

1
d
Tr(K2)C2

1 t (5.61)

84

where in the last transition we used the lower bound on the learning rate derived in Eq.

(5.57). Thus, the risk is integrable, i.e. there is some C3 such that

∫ t

0

R(s) ds ≤ R(0)
1
d
Tr(K2)C2

1

for all t > 0. Finally, we plug this into the formula for γt and conclude that, for all t > 0,

γt ≥
η√

b2 +
1
d
Tr(K)R(0)

1
d
Tr(K2)C2

1

. (5.62)

Lemma 5.4.2. Assume that the risk is bounded and attains its maximum at time t1. Then, for each

i, we have D2
i (t) ≤ max(γt1R(t1),D2

i (0)) for all t ≥ 0.

Proof. Case 1: Suppose that D2
i (0) ≤ γ0R(0). Then, by equation (4.11), d

dt
D2
i (0) ≥ 0. How-

ever, since D2
i (t),R(t) are continuous, this equation implies that D2

i (t) ≤ γtR(t) for all t

and thus D2
i (t) ≤ γt1R(t1) for all t.

Case 2: Suppose that D2
i (0) > γ0R(0). Then, by equation (4.11), d

dt
D2
i (0) < 0. If

d
dt

D2
i (t) < 0 for all t, then D2

i (t) ≤ D2
i (0) for all t. If at some point d

dt
D2
i (t) > 0, this implies

D2
i (t) ≤ γtR(t) and we are in Case 1.

In the next section, we consider cases in which the risk is not integrable, an example of

such case is when the spectrum of K is supported on the interval [0, 1] or has power-law

behavior near 0.

Power law behavior at d→∞

Non-asymptotic bound for the Convolutional Volterra In this section, we use the

convolutional Volterra structure of the risk (Eq. (5.50)) to derive non-asymptotic bounds

on the risk, which will be useful in Section 5.4.2 to derive the asymptotic behavior of the

85

risk and the learning rate under power law assumption on the spectrum of the covariance

matrix and the discrepancy from the target at initialization.

Lemma 5.4.3. Let Γ(t) :=
∫ t
0
γs ds and let

R(t) = F (Γ(t)) +

∫ t

0

γ2
sK(Γ(t)− Γ(s))R(s) ds

where γt,K are monotonically decreasing, with ∥K∥1 <∞. Then all t,

R(t) ≥ F (Γ(t)) +

∫ t

0

γ2
sK(Γ(t)− Γ(s))F (Γ(s)) ds

If in addition, there exist ϵ > 0 and T > 0 such that, for all t > T ,

∫ t

0

K(s)K(t− s) ds ≤ 2(1 + ϵ)∥K∥1K(t) and 2∥K∥1(1 + ϵ)γ0 < 1

then for all t

R(t) ≤ F (Γ(t)) + C

∫ t

0

γ2
sK(Γ(t)− Γ(s))F (Γ(s)) ds

for

C =

(
K(0)

K(T)(2ϵ+ 1)
+ 2

)
1

1− 2γ(0)∥K∥1(1 + ϵ)
.

Proof. The lower bound holds trivially, using R(s) ≥ F (Γ(s)). For the upper bound, we

start with the following change of variables:

R(t) = F (Γ(t)) +

∫ Γ(t)

0

g(u)K(Γ(t)− u))R(u) du,

with g(u) = γΓ−1(u). Let us define the convolution map

G(f)(Γ) = K ∗ (gf)(Γ) =
∫ Γ

0

K(Γ− u)g(u)f(u) du.

86

Next we show that this map is contracting and in particular,

G2(f) = G(G(f))(t) =
∫ t

0

K(t− s)G(f)(s)g(s) ds (5.63)

=

∫ t

0

K(t− s)

∫ s

0

K(s− u)g(u)f(u) dug(s) ds

=

∫ t

0

(∫ t

u

K(t− s)K(s− u)g(s) ds

)
g(u)f(u) du

≤
∫ t

0

K∗2(t− u)g(u)2f(u) du

where the third transition is since u < s < t. The last transition is by change of variables

and the assumption that γt is a monotone decreasing function. Consecutive application of

the convolution map will then yield by induction,

Gj(f)(t) ≤
∫ t

0

K∗(j)(t− u)g(u)jf(u) du.

Therefore, expanding the loss and using the above upper bound, and denote by q =

2(1 + ε)∥K∥1γ0 such that q < 1,

R(t) = F (t) +
∞∑
j=1

Gj(F)(t) (5.64)

≤ F (t) +
∞∑
j=1

∫ t

0

K∗(j)(t− u)g(u)jF (u) du

≤ F (t) +

(
∞∑
j=0

(2∥K∥1γ0(1 + ε))j − 1

)
C1

∫ t

0

K(t− u)g(u)F (u) du

≤ F (t) +
q

1− q
C1(K ∗ (gF))(t) (5.65)

where the third transition is by Lemma 5.4.4, with C1 =
K(0)

K(T)(2ϵ+1)
+1, which then completes

the proof.

87

Lemma 5.4.4 (Lemma IV.4.7 in [4]). Suppose K is monotonically decreasing, with ∥K∥1 <∞,

and that there exists T > 0 such that ∀t ≥ T , and ϵ ≥ 0,

∫ t

0

K(s)K(t− s) ds ≤ 2(1 + ϵ)∥K∥1K(t). (5.66)

Then,

sup
t≥0

K∗n(t)

K(t)
≤ (2∥K∥1(1 + ϵ))n−1

(
K(0)

K(T)(2ϵ+ 1)
+ 1

)
(5.67)

Proof. Define αn = supt≥0
K∗n(t)

K(t)(2∥K∥1)n−1 , trivially α1 = 1. Consider the n+ 1 convolution,

K∗(n+1)(t)

K(t)(2∥K∥1)n
=

1

K(t)

∫ t

0

K(s)K∗n(t− s)

(2∥K∥1)n
ds (5.68)

By the assumption of the Lemma, we know that there exists some T > 0 such that for

∀t ≥ T

∫ t

0

K(s)K(t− s)

2∥K∥1
ds ≤ (1 + ϵ)K(t). (5.69)

Therefore, if t ≥ T , we have

1

K(t)

∫ t

0

K(s)K∗n(t− s)

(2∥K∥1)n
ds (5.70)

=

∫ t

0

K(s)K(t− s)

2∥K∥1
K∗n(t− s)

K(t− s)(2∥K∥1)n−1
ds ≤ αn(1 + ϵ)

On the other hand, if t < T ,

1

K(t)

∫ t

0

K(s)K∗n(t− s)

(2∥K∥1)n
ds ≤ K(0)

K(T)
∥K∗n(t)∥1
(2∥K∥1)n

≤ K(0)
K(T)2n

(5.71)

88

Taking supremum in Eq. (5.68), and combining the results of Eq. (5.71), and Eq. (5.70), we

obtain that,

αn+1 ≤
K(0)
K(T)2n

+ αn(1 + ϵ)

Solving the above recursion equation,

αn ≤
K(0)
K(T)

n−2∑
k=0

1

2n−k−1
(1 + ϵ)k + (1 + ϵ)n−1 =

K(0)
K(T)2n−1

1− (2(1 + ϵ))n−1

1− 2(1 + ϵ)
+ (1 + ϵ)n−1

≤ (1 + ϵ)n−1

(
K(0)

K(T)(2ϵ+ 1)
+ 1

)
,

rearranging the terms we arrived at the required result.

Asymptotic analysis of the risk Here, we consider a family of models with d→∞, for

which the following power law asymptotics assumption is satisfied:

Assumption 8. F (x) ≍ x−κ1 and K(x) ≍ x−κ2 for x ≥ 1 with κ1 ≥ 0, κ2 > 1

Corollary 5.4.1 apply Lemma 5.4.3 in the setting for which F , and K has a power law

behavior asymptotically. It shows that the risk will then be dominated by F only. Corollary

5.4.2 shows the behavior of the learning rate in this setting. Finally, Lemma 5.4.5 shows

that Assumption 8 is a consequence of a power law spectrum near zero on the eigenvalues

of the covariance matrix and a power law assumption on the projected discrepancy at

initialization.

Corollary 5.4.1. Suppose Assumption 8 is satisfied, then R(t) ≍ F (Γ(t)).

89

Proof. Define g(u) = γΓ−1(u) and r(u) = R(Γ−1(u)) and observe that g(u) is a decreasing

function. Then, from the upper bound in Lemma 5.4.3, we have

r(u) ≤ F (u) + C

∫ u

0

g(v)K(u− v)F (v) dv

= F (u) + C

(∫ u/2

0

g(v)K(u− v)F (v) dv +

∫ u

u/2

g(v)K(u− v)F (v) dv

)

≤ F (u) + C1g(0)

((u
2

)−κ2 ∫ u/2

0

F (v) dv +
(u
2

)−κ1 ∫ u

u/2

K(u− v) dv

)
≤ F (u) + C2(u

−κ2+1−κ1 + u−κ1∥K∥)

= O(F (u)).

(5.72)

Combining this upper bound with the lower bound from Lemma 5.4.3 and that κ2 > 1, we

conclude that r(u) ≍ F (u) and R(t) ≍ F (Γ(t)).

Next, we derive the asymptotics of γt. There are three different cases, depending on

whether the risk is integrable, which translates to a threshold with respect to the parameter

κ1.

Corollary 5.4.2. Suppose Assumption 8 then the following asymptotics for the learning rate hold:

• For κ1 > 1, there exists γ̃ such that γt ≥ γ̃ and R(t) ≍ t−κ1 for all t ≥ 0.

• For κ1 < 1, γt ≍ t−(1−κ1)/(2−κ1) and R(t) ≍ t
− κ1

2−κ1 for all t ≥ 1.

• For κ1 = 1, γt ≍ 1
log(t+1)

and R(t) ≍ (t
log(t+1)

)−κ1 for all t ≥ 1.

Proof. Using the notations g(u) and r(u) defined above along with the change of variable

u = Γ(t), we get
∫ t
0
R(s) ds =

∫ u
0
r(v)
g(v)

dv. Combining this with Corollary 5.4.1 and the

formula for γt we get

g(u) ≍ η√
b2 + 2

d
Tr(K)

∫ u
0

(1+v)−κ1

g(v)
dv

.

90

Let I(u) = b2+2
d
Tr(K)

∫ u
0

(1+v)−κ1

g(v)
dv and observe that g(u) ≍ 1√

I(u)
and I ′(u) = 2

d
Tr(K) (1+u)

−κ1

g(u)
.

Thus, I(u) satisfies I′(u)√
I(u)
≍ (1 + u)−κ1 so we have

√
I(u)−

√
I(0) ≍

∫ u

0

(1 + v)−κ1 dv.

In the case of κ1 > 1, this implies
√
I(u) ≤

√
I(0) + C

∫
(1 + v)−κ1 dv. This upper bound

on I(u) gives a corresponding lower bound on g(u) and thus a lower bound on γt.

In the case of κ1 < 1, we have
√

I(u)−
√

I(0) ≍ (1 + v)1−κ1 so, for u sufficiently large,

g(u) ≍ (1 + u)κ1−1. To recover the asymptotic for γt, we observe that d
du
Γ−1(u) = 1

g(u)
≍

(1+u)1−κ1 . Integrating both sides and changing back to t variables, we get t ≍ (1+Γ(t))2−κ1

(or equivalently 1 + Γ(t) ≍ t1/(2−κ1)). Finally, plugging this into the formula for γt and

applying Corollary 5.4.1, we get

γt ≍
η√

b2 + 2
d
Tr(K)

∫ t
0
F (Γ(s)) ds

≍ (1 + t)−(1−κ1)/(2−κ1).

In the case of κ1 = 1, we follow a similar procedure as for κ1 < 1 to show that

t ≍ Γ(t) log(Γ(t)) for sufficiently large t. This implies Γ(t) ≍ t/ log(t) which gives the

desired result after integration. The decay rate of the risk is then immediate using Corollary

5.4.1.

Lemma 5.4.5. Let K have a spectrum that converges as d → ∞ to the power law measure

ρ(λ) = Cλ−β1(0,λmax), with C−1 = λ1−β
max

1−β for some β < 1, and λmax > 0, and suppose that

D2
i (0) ∼ λ−δ

i , then F (t) ≍ t−κ1 , and K(t) ≍ t−κ2 , with κ1 = 2 − β − δ, and κ2 = 3 − β. In

addition, K(t) ≍ t−κ2 , satisfies Eq. (5.66).

Proof. Following the definition in Eq. (5.52), and Eq. (5.51)

F (x) =
1− β

2λ1−β
max

∫ λmax

0

λ1−β−δe−2λx dλ

=
1− β

2λ1−β
max(2x)2−β−δ

∫ 2λmaxx

0

y1−β−δe−y dy =
1− β

λ1−β
max23−β−δ

γ(2− β − δ, 2λmaxx)

x2−β−δ .

91

Similarly for K,

K(x) = 1− β

λ1−β
max

∫ λmax

0

λ2−βe−2λx dλ =
1− β

λ1−β
max23−β

γ(3− β, 2λmaxx)

x3−β .

with γ(s, z) =
∫ z
0
xs−1e−x dx is the incomplete gamma function. For large z, γ(s, z) ≍ Γ(s),

the complete gamma function. We therefore obtain κ1 = 2− β − δ, and κ2 = 3− β. Next,

we show that K(x) ≍ x−κ2 satisfies Eq. (5.66),

∫ t

0

K(s)K(t− s) ds ≤
∫ t/2

0

K(t)K(t− s) ds+

∫ t

t/2

K(t)K(t− s) ds

≤ K(t/2)

(∫ t/2

0

K(s) ds+
∫ t

t/2

K(t− s) ds

)
≤ 2K(t/2)∥K∥1

by the power-law assumption for t > T , K(t/2) ≍ K(t) which then complete the proof.

Proof of Proposition 4.4.4. The proof is an immediate application of Corollary 5.4.2 with,

κ1 = 2− β − δ as implied by Lemma 5.4.5.

Remark 5.4.2. This includes the case β = 0, which is the uniform measure on [0, λmax].

5.5 Polyak Stepsize

The distance to optimality of SGD is measured say by D2(X) = ∥X−X⋆∥2. Let us consider

the deterministic equivalent for the distance to optimality D2(t) in (4.9). Fixing T > 0

and any ε ∈ (0, 1/2), we have by Theorem 4.2.1 (see also corollary 5.2.1 which show

concentration for large class of statistics) that sup0≤t≤T |∥X⌊td⌋−X⋆∥2−D2(t)| ≤ d−ε, w.o.p.

In this way, if we want to guarantee that the distance to optimality of SGD decreases, we

need dD2(t) < 0 with the maximum decrease being minγt dD2(t).

92

As it turns out, the evolution of D2 is particular simple, as it solves the differential

equation (derived from the ODE in (4.7))

d

dt
D2(t) = −2γtA(B(t)) +

γ2
t

d
Tr(K)I(B(t)),


A(B) = Ea,ϵ[⟨x− x⋆, f ′(x⊕ x⋆)⟩],

I(B) = Ea,ϵ[f ′(x⊕ x⋆)2], where

(x⊕ x⋆) ∼ N(0,B).

(5.73)

The distance to optimality threshold, γ̄D
t , occurs precisely when dD2 < 0. This choice

of γ makes the ODE for the distance to optimality stable. By translating the relevant

deterministic quantities in γ̄D
t back to SGD quantities, we get

ḡD
k

def
=

2⟨Xk −X⋆,∇R(Xk)⟩
Tr(K)
d

Ea,ϵ[f ′(⟨Xk, a⟩; ⟨X⋆, a⟩, ϵ)2]
with the deterministic equiv. γ̄D

t =
2A(B(t))

Tr(K)
d

I(B(t))
.

(5.74)

A greedy learning rate that maximizes the decrease at each iteration is simply given by

g
Polyak
t ∈ arg min dD2(t). This has a closed form and we call this Polyak stepsize2. Again

translating this back to SGD, we have

Polyak learning rate g
Polyak
k = 1

2
ḡD
k and deterministic equivalent γ

Polyak
t = 1

2
γ̄D
t .

(5.75)

In this context, the Polyak learning rate is impractical because we do not known X⋆. In

spite of this, we can learn some things about this learning rate as it is the natural extension

of Polyak learning rate to SGD.

The quantities A(B) and I(B) in (5.74) and (5.75) only depend on the low-dimensional

function f and thus do not carry any covariance K or d dependence. Moreover, under

additional assumptions on the function such as (strong) convexity, we can bound from

below A(B)/I(B). Thus, in terms covariance K and d, the Polyak stepsize g
Polyak
k ≍

1
Tr(K)/(d)

= 1
avg. eig of K .

2This is the idea of Polyak stepsize when the problem is deterministic.

93

Figure 5.1: Convergence in Exact Line Search on a noiseless least squares problem. The

plot on the left illustrates the convergence of the risk function, while the center and right

plots depict the convergence of the quotient Dλ2
(t)

Dλ1
(t)

and the learning rate γt, respectively.

Further details and formulas for the limiting behavior can be found in the Appendix 5.6.2.

See Appendix 5.8 for simulation details.

In the case of least squares (see (4.10)), we get

g
Polyak
k =

2R(Xk)− ω2

2Tr(K)
d
R(Xk)

and on a noiseless least squares, g
Polyak
k =

1
Tr(K)
d

.

The latter gives the best fixed learning rate for a noiseless target on a LS problem (as noted

in [45, 55]).

5.6 Line Search

5.6.1 General Line Search

Naturally, one can ask a similar question as in Polyak in the context of line search (i.e.,

decreasing risk at each iteration of SGD). First, by the structure of the risk (Assumption 3

and 4),

∥∇R(X)∥2 = m(W TK2W) and Tr(∇2R(X)K) = v(K). (5.76)

Therefore using (4.7), we have that the deterministic equivalent for ∥∇R(X)∥2 is M (t) =

1
2

∑d
i=1 m(Vi(t)λ2

i). In this case, the deterministic equivalent for the risk R satisfies the

following ODE

dR = −γtM (t) dt+
γ2
t

d
v(K)I(B(t)). (5.77)

94

From this, we get an immediate learning rate (stability) threshold for the risk, that is, ḡR
k

is the largest learning rate for which SGD is guaranteed to decrease at each iteration, i.e.,

when the deterministic equivalent of R satisfies dR < 0 or equivalently after translating

relevant terms into SGD quantities

risk threshold ḡR
k =

∥∇R(Xk)∥2
Tr(K∇2R(Xk))

d
I(W T

k KWk)
and deterministic equiv γ̄R

t =
M (t)

v(K)
d

I(B(t))
.

(5.78)

The greediest approach, which we call exact line search, would choose the learning rate

such that γline
t ∈ arg minγ dR. In this case, we get

gline
k = 1

2
gR
k and deterministic equiv γline

t = 1
2
γR
t .

5.6.2 Line Search on least squares

In this section, we provide a proof of Proposition 4.3.1, but, we show more than this

including the exact limiting value for γt.

Proposition 5.6.1. Consider the noiseless (ω = 0) least squares problem (4.10) . Then the learning

rate is always lower bounded by

λmin(K)
1
d
Tr(K2)

≤ γline
t for all t ≥ 0.

Moreover, suppose K has only two distinct eigenvalues λ1 > λ2 > 0, i.e., K has d/2 eigenvalues

equal to λ1 eigenvalues and d/2 eigenvalues equal to λ2. In this context, the exact limiting value of

γline
t is given by

lim
k→∞

γline
t =

2 (λ2
1 + λ2

2x)

(λ1 + λ2x) (λ2
1 + λ2

2)
, (5.79)

where x is the positive real root of the second-degree polynomial

P(x) = λ1λ2(x+ 1)(λ2x− λ1) + (λ2 − λ1)
3x. (5.80)

95

This leads to
λmin(K)
1
d
Tr(K2)

≤ lim
t→∞

γline
t ≤ 2λmin(K)

1
d
Tr(K2)

. (5.81)

Proof. We establish the inequality

λmin(K)
1
d
Tr(K2)

≤ γline
t for all t ≥ 0

by observing

1

d

d∑
i=1

λ2
iD

2
i (t) ≥ 2λmin(K)

1

2d

d∑
i=1

λiD
2
i (t) = 2λmin(K)R(t).

Now let us consider K ∼ 1
2
λ1 +

1
2
λ2 for λ1 > λ2 > 0.

We define Dλ(t)
def
=
∑d

λi=λ
D2
i (t). Utilizing the ODEs in (4.7), we derive

d

dt
Dλ(t) = −2γtλDλ(t) + 2γ2

t λ× |{λ = λi}di=1| ×R(t)

for each distinct eigenvalue λ of K. Here |{λ = λi}di=1| is the number of eigenvalues of K

that are equal to λ. It immediately follows by our construction of K that |{λ = λi}di=1| = d
2
.

Thus, we establish the following system of ODEs


d
dt

Dλ1(t) = −2γtλ1Dλ1(t) + dγ2
t λ1R(t)

d
dt

Dλ2(t) = −2γtλ2Dλ2(t) + dγ2
t λ2R(t)

(5.82)

where R(t) = 1
2d
(λ1Dλ1(t) + λ2Dλ2(t)) and γline

t =
2(λ21Dλ1

(t)+λ22Dλ2
(t))

(λ1Dλ1
(t)+λ2Dλ2

(t))(λ21+λ22)
.

Since Dλ2(t) ≥ 0 and λ1 > λ2 > 0, we infer that R(t) = 1
2d
(λ1Dλ1(t) + λ2Dλ2(t)) ≥

1
2d
λ1Dλ1(t) ≥ 0. The structure of the exact line search algorithm ensures limt→∞ R(t) = 0,

hence limt→∞ Dλ1(t) = 0. Similarly, we deduce limt→∞ Dλ2(t) = 0.

96

By applying L’Hôpital’s rule and substituting the expressions for γline
t and R(t) in terms

of Dλ1(t) and Dλ2(t), we derive

lim
t→∞

Dλ2(t)

Dλ1(t)
= lim

t→∞

dDλ2(t)

dDλ1(t)

= lim
t→∞

−2γtλ2 Dλ2(t) + dγ2
t λ2R(t)

−2γtλ1 Dλ1(t) + dγ2
t λ1R(t)

= lim
t→∞

−2λ2 Dλ2(t) + dγtλ2R(t)

−2λ1 Dλ1(t) + dγtλ1R(t)

= lim
t→∞

γt
λ1λ2
2

Dλ1(t) + λ2Dλ2(t)
(
γt
λ2
2
− 2
)

γt
λ1λ2
2

Dλ2(t) + λ1Dλ1(t)
(
γt
λ1
2
− 2
)

= lim
t→∞

Dλ1(t)
2λ3

1λ2 + Dλ1(t)Dλ2(t)(−λ1λ
3
2 + λ2

1λ
2
2 − 2λ3

1λ2) + Dλ2(t)
2(−λ4

2 − 2λ2
1λ

2
2)

Dλ1(t)
2(−λ4

1 − 2λ2
1λ

2
2) + Dλ1(t)Dλ2(t)(−λ3

1λ2 + λ2
1λ

2
2 − 2λ1λ3

2) + Dλ2(t)
2λ1λ3

2

=
λ3
1λ2 + limt→∞

Dλ2
(t)

Dλ1
(t)
(−λ1λ

3
2 + λ2

1λ
2
2 − 2λ3

1λ2) +
(
limt→∞

Dλ2
(t)

Dλ1
(t)

)2
(−λ4

2 − 2λ2
1λ

2
2)

(−λ4
1 − 2λ2

1λ
2
2) + limt→∞

Dλ2
(t)

Dλ1
(t)
(−λ3

1λ2 + λ2
1λ

2
2 − 2λ1λ3

2) +
(
limt→∞

Dλ2
(t)

Dλ1
(t)

)2
λ1λ3

2

.

Therefore, limt→∞
Dλ2

(t)

Dλ1
(t)

is the positive real root of the second-degree polynomial

P(x) = λ1λ2(x+ 1)(λ2x− λ1) + (λ2 − λ1)
3x. (5.83)

Solving for x > 0, we derive the explicit formula

lim
t→∞

Dλ2(t)

Dλ1(t)

=
λ3
1 − 2λ2

1λ2 + 2λ1λ
2
2 − λ3

2 +
√
λ6
1 − 4λ5

1λ2 + 8λ4
1λ

2
2 − 6λ3

1λ
3
2 + 8λ2

1λ
4
2 − 4λ1λ5

2 + λ6
2

2λ1λ2
2

.

(5.84)

Given

γline
t =

2 (λ2
1Dλ1(t) + λ2

2Dλ2(t))

(λ1Dλ1(t) + λ2Dλ2(t)) (λ
2
1 + λ2

2)
=

2
(
λ2
1 + λ2

2
Dλ2

(t)

Dλ1
(t)

)
(
λ1 + λ2

Dλ2
(t)

Dλ1
(t)

)
(λ2

1 + λ2
2)
, (5.85)

we have

lim
t→∞

γline
t =

2
(
λ2
1 + λ2

2 limt→∞
Dλ2

(t)

Dλ1
(t)

)
(
λ1 + λ2 limt→∞

Dλ2
(t)

Dλ1
(t)

)
(λ2

1 + λ2
2)
. (5.86)

97

By substituting (5.84), we get

lim
t→∞

γline
t

=
λ3
1 + 2λ2

1λ2 + 2λ1λ
2
2 + λ3

2 −
√

λ6
1 − 4λ5

1λ2 + 8λ4
1λ

2
2 − 6λ3

1λ
3
2 + 8λ2

1λ
4
2 − 4λ1λ5

2 + λ6
2

(λ2
1 + λ2

2)
2 .

(5.87)

A direct calculation reveals that λ1 > λ2 > 0 implies limt→∞ γline
t ≤ 2λmin(K)

1
d

Tr(K2)
.

Remark 5.6.1. For the scenario where K has an arbitrary number n of distinct eigenvalues,

equation (4.13) remains valid. The proof parallels the one outlined above. However, in this case, the

expression for limk→∞ gk is given by

lim
k→∞

gk =
n (λ2

1 + λ2
2x1 + · · ·+ λ2

nxn−1)

(λ1 + λ2x1 + . . . λnxn−1) (λ2
1 + · · ·+ λ2

n)
, (5.88)

where x1, . . . , xn−1 > 0 satisfy a more intricate coupled system of n− 1 equations.

5.7 Examples

Any single index model with α-pseudo Lipschitz (α ≤ 1) activation function is covered by

our SGD+AL theory. In this section, we provide key learning problems within this family

of models.

5.7.1 Binary logistic regression

We consider a binary logistic regression problem with ϵ = 0 where we are trying to classify

two classes. We will follow a Student-Teacher model, in which there exists a true vector

X⋆ to be the true direction such that possible labels are, y = exp(⟨X⋆,a⟩)
exp(⟨X⋆,a⟩)+1

. or 1− y. In order

to classify the data we minimize the KL-divergence between the label y and our estimate

defined by the below formula,

R(X) = Ea
[
− ⟨X, a⟩ · exp(⟨X⋆, a⟩)

exp(⟨X⋆, a⟩) + 1
+ log (exp(⟨X, a⟩) + 1)

]
. (5.89)

98

To study the ODE dynamics of SGD in Eq. (4.7) one needs the deterministic risk h(B),

and I(B) = Ea[f ′(⟨X, a⟩, ⟨X⋆, a⟩)2], with B = W TKW . Following the computation in

Appendix D example D.4 in [15] we obtain that

h(B) = −B21Ez
[

exp(
√
B22 · z)

(1 + exp(
√
B22 · z))2

]
+ Ew

[
log(exp(w

√
B11) + 1)

]
, (5.90)

where z, w ∼ N (0, 1). The I function can also be computed explicitly by solving the

following Gaussian integral, where we define g(x)
def
= exp(x)

1+exp(y)

I(B) =
1

2π
√

det(B)

∫
R2

(g(x)− g(y))2 exp

−1

2

x

y


T

B−1

x

y


 dx dy. (5.91)

We note that the logistic regression is (µ, θ)–RSI (see 5.4.2) with µ = 1

ℓe
√
4θ

(see section

2.2 in [15]). Its Lipschitz constant is L̂(f) = 1. Using Proposition 5.4.1 one can derive a

lower bound on the limiting learning of AdaGrad Norm.

For more details and more examples, see [15].

5.7.2 CIFAR 5m

Finally, we include an example that uses real-world data, that is, the CIFAR 5m dataset [50].

Our theory does not explicitly deal with non-Gaussian distributions, but we find that the

theoretical risk curves generalize cleanly to that case.

As we are now working with discrete data points rather than a distribution, the learning

setup, while closely analogous to what was presented earlier, has some slight differences.

We start with a subset of the data consisting of n grayscale images, each of which is

32× 32 pixels, that is, A ∈ Rn×1024. We fill a vector b ∈ Rn with the corresponding labels

(0 for an image of a plane, 1 for an image of a car.) We then randomly choose a matrix

W ∈ R1024×d with i.i.d. Gaussian entries to generate the features F = relu(AW). We want

99

https://github.com/preetum/cifar5m

to use least squares to predict the label from the features, i.e., find

arg minX∈Rd

{
R(X) :=

1

2n
∥FX − b∥2 = 1

2n

n∑
i=1

(fi ·X − bi)
2

}
, (5.92)

where fi is the ith row of F . The SGD we now consider is

Xk+1 = Xk − γk
(
fik+1

·X − bik+1

)
fik+1

, {ik} iid Unif({1, 2, · · · , n}), (5.93)

where γk is the usual AdaGrad-Norm stepsize, as in (5.1). Our empirical covariance matrix

K (remembering that fi is a row vector) is then

K = Ei∈[n],j∈[n]
[
f⊤
i fj
]
=

1

n
F⊤F. (5.94)

We now use (5.50), with the AdaGrad-Norm stepsize, to numerically simulate the SGD

loss, which we then compare to the actual loss. Our theory matches empirical results very

closely.

5.8 Numerical simulation details

Here, for the sake of reproducibility, we provide more details for the figures that appear in

the main paper.

Figure 4.1: Concentration learning rate and risk for AdaGrad-Norm on a least squares

problem with label noise ω = 1 (left) and on a logistic regression problem with no label

noise (right). For logistic, see Section 5.7. 30 runs of AdaGrad-Norm with parameters b = 1

and η = 1 for each d; X⋆ ∼ N (0, Id/d), X0 = 0, and K = Id. The shaded region represents a

90% confidence interval for the SGD runs. As the dimension increases, the risk and stepsize

both concentrate around a deterministic limit (red). The deterministic limit is described by

an ODE in Theorem 4.2.1. The initial loss increase in the least squares problem suggesting

100

100 101 102 103

SGD Iterations/d

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Em
pi

ric
al

 R
isk

CIFAR AdaGrad-Norm Least Squares
n = 2048
n = 4096
n = 8192
n = 16384

Figure 5.2: Predicting the training dynamics on a real dataset, CIFAR-5m [50], using

multi-pass AdaGrad-Norm. This suggests the theory extends beyond Gaussian data and

one-pass. Note that the curves look significantly different for different n; smaller values of

n lead to an overparametrized problem, allowing least squares to memorize datapoints,

whereas for larger n, least squares must learn a general function mapping images of cars

and airplanes to their respective labels.

that the learning rate was initially too high, but AdaGrad-Norm naturally adapts and still

the loss converges. Our ODEs predict this behavior.

Figure 4.2: Comparison for Exact Line Search and Polyak Stepsize on a noiseless least

squares problem. The left plot illustrates the convergence of the risk function, while

the right plot depicts the convergence of the quotient γt/
λmin(K)
1
d
Tr(K2)

for Polyak stepsize and

exact line search. Both ODE theory and SGD results are presented, showing a close

agreement between the two approaches. The covariance matrix K is generated such that

the eigenvalues follow the expression λi(K) =
√

d∑d
i=1(i

d+1)
−2/s ·

(
i

d+1

)−1/s
, i = 1, . . . , d,

where s > 2 is a constant. As s approaches 2, the spectrum becomes more spread out,

resulting in larger values of 1
d
Tr(K2). Larger values of s correspond to smaller spreads

in the spectrum. Additionally, Tr(K)/d = 1 for all s. Both plots highlight the implication

of equation (4.13) in high-dimensional settings, where a broader spectrum of K results

in λmin(K)
1
d
Tr(K2)

≪ 1
1
d
Tr(K)

, indicating slower risk convergence and poorer performance of exact

101

line search (unmarked) as it deviates from the Polyak stepsize (circle markers). The gray

shaded region demonstrates that equation (4.13) is satisfied.

Figure 4.3: Quantities effecting AdaGrad-Norm learning rate. (left): The effect of

adding noise to the targets (ω = 1.0) to the risk (left axis) and learning rate (right axis).

Ran AdaGrad-Norm(b = 1.0, η = 2.5) on least squares problem with d = 500. X0,

X⋆ ∼ N (0, Id/d). A single run of the SGD (solid line purple) matches exactly the pre-

diction (ODE, teal). The shaded region represents 10 runs of SGD with 90% confidence

interval. The learning rate decays at the exact predicted rate of η√
b2+ TrKω2

d
t
. Depicted is

learning rate
asymptotic l.r. so it approaches 1. (center, right): Noiseless least squares setting (ω = 0). (center):

Prop. 4.4.2 predicts the avg. eig of K (Tr(K)/d) as compared with λmax affects the limk→∞ gk.

Indeed, this is true. We varied the κ = λmax/λmin while keeping the Tr(K)/d and all other

parameters fixed. All the learning rates behave identically verifying our theory about the

effect of Tr(K)/d on learning rates. (right): Varying the learning rate of AdaGrad norm by

∥X0 −X⋆∥2; our predictions (dashed) match and we see the inverse relationship predicted

by Prop. 4.4.2. See Appendix 5.4 for details. Additionally, we did the following.

• Center plot: AdaGrad with b = 0.5, η = 2.5 is run on the least squares problem with

d = 1000 and X0, X
⋆ ∼ 1√

d
N (0, I). The covariance matrix K is generated so that the

eigenvalues are

λi(K) =

√
d∑d

i=1

(
i

d+1

)−2/s
·
(

i

d+ 1

)−1/s

, i = 1, . . . , d.

The constant s > 2. When s is near 2, the spectrum is more spread out, i.e., κ = λmax

λmin

is large. Larger values of s mean smaller the spreads. Moreover Tr(K)/d = 1 for all

s. In the simulations, we used s ∈ {2.1, 3.0, 3.5, 4.0, 5.5} and recorded the condition

number κ.

102

• Right plot: Ran AdaGrad with b = 0.5, η = 2.5 on the least squares problem with

d = 1000. X⋆ = 0 and X0 ∼
√

p
d
N (0, I) where p ∈ {1, 2, 4, 8, 16}. In this way,

∥X0 −X⋆∥2 = p.

Figure 4.4: Power law covariance in AdaGrad Norm on a least squares problem. Gener-

ated covariance K such that the density of eigenvalues are (1− β)λ−β where β = 0.2 and

set X0 = 0. Choose (X⋆
i)
d
i=1 = (λ

−δ/2
i)di=1 where λi is the i-th eigenvalue of K and we vary

δ ∈ (0, 1.8) so that 0 < δ + β ≤ 2. Setting of Prop. 4.4.4.

Figure 5.1: Convergence in Exact Line Search on a noiseless least squares problem. The

plot on the left illustrates the convergence of the risk function, while the center and right

plots depict the convergence of the quotient Dλ2
(t)

Dλ1
(t)

and the learning rate γt, respectively.

Predictions from ODE theory are compared with results obtained from SGD, demonstrating

close agreement between the two approaches. Initialization was performed randomly, with

X0 ∼ N (0, Id/d) and X⋆ ∼ 1√
d
1, where d = 400. The covariance matrix K has two distinct

eigenvalues λ1 = 1 > λ2 > 0, and was constructed by specifying the spectrum, with λi

sampled from a discrete uniform distribution U{1, λ2} for i = 1, . . . , d = 400, and setting

K = diag(λi : i = 1, . . . , 400). Further details and formulas for the limiting behavior can

be found in the Appendix 5.6.2.

Figure 5.2 Convergence on CIFAR 5m [50]. We train a classifier to distinguish between

images of airplanes and cars. Fix d = 2000. Then for multiple values of n, we run AdaGrad-

Norm with initialization X0 = 0, b = 0.1 and η = 5, randomly sampling a datapoint from

F at every step. Details of the setup can be found in Appendix 5.7.2.

103

Bibliography

[1] AGARWAL, A., BARTLETT, P. L., RAVIKUMAR, P., AND WAINWRIGHT, M. J.

Information-theoretic lower bounds on the oracle complexity of stochastic convex

optimization, 2011.

[2] ARNABOLDI, L., KRZAKALA, F., LOUREIRO, B., AND STEPHAN, L. Escaping medi-

ocrity: how two-layer networks learn hard single-index models with SGD. arXiv

preprint arXiv:2305.18502 (2023).

[3] ARNABOLDI, L., STEPHAN, L., KRZAKALA, F., AND LOUREIRO, B. From high-

dimensional and mean-field dynamics to dimensionless ODEs: A unifying approach

to SGD in two-layers networks. arXiv preprint arXiv:2302.05882 (2023).

[4] ATHREYA, K. B., NEY, P. E., AND NEY, P. Branching processes. Courier Corporation,

2004.

[5] BALASUBRAMANIAN, K., GHOSAL, P., AND HE, Y. High-dimensional scaling limits

and fluctuations of online least-squares SGD with smooth covariance. arXiv preprint

arXiv:2304.00707 (2023).

[6] BEN AROUS, G., GHEISSARI, R., AND JAGANNATH, A. High-dimensional limit

theorems for SGD: Effective dynamics and critical scaling. In Advances in Neural

Information Processing Systems (New York, 2022), vol. 35, Curran Associates, Inc.,

pp. 25349–25362.

104

[7] BERRADA, L., ZISSERMAN, A., AND KUMAR, M. P. Training neural networks for

and by interpolation. In International conference on machine learning (2020), PMLR,

pp. 799–809.

[8] BERTHIER, R., BACH, F., AND GAILLARD, P. Tight Nonparametric Convergence

Rates for Stochastic Gradient Descent under the Noiseless Linear Model. In Advances

in Neural Information Processing Systems (NeurIPS) (2020).

[9] BIEHL, M., AND RIEGLER, P. On-line learning with a perceptron. Europhysics Letters

28, 7 (1994), 525.

[10] BIEHL, M., AND SCHWARZE, H. Learning by on-line gradient descent. Journal of

Physics A: Mathematical and general 28, 3 (1995), 643.

[11] BORDELON, B., AND PEHLEVAN, C. Learning Curves for SGD on Structured Features.

In International Conference on Learning Representations (ICLR) (2022).

[12] BROWN, T., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J. D., DHARIWAL, P.,

NEELAKANTAN, A., SHYAM, P., SASTRY, G., ASKELL, A., ET AL. Language models

are few-shot learners. Advances in Neural Information Processing Systems 33 (2020),

1877–1901.

[13] CELENTANO, M., CHENG, C., AND MONTANARI, A. The high-dimensional asymp-

totics of first order methods with random data. arXiv preprint arXiv:2112.07572 (2021).

[14] CHANDRASEKHER, K. A., PANANJADY, A., AND THRAMPOULIDIS, C. Sharp global

convergence guarantees for iterative nonconvex optimization with random data. Ann.

Statist. 51, 1 (2023), 179–210.

[15] COLLINS-WOODFIN, E., PAQUETTE, C., PAQUETTE, E., AND SEROUSSI, I. Hitting

the high-dimensional notes: An ODE for SGD learning dynamics on GLMs and

multi-index models. arXiv preprint arXiv:2308.08977 (2023).

105

https://proceedings.neurips.cc/paper_files/paper/2020/file/1b33d16fc562464579b7199ca3114982-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1b33d16fc562464579b7199ca3114982-Paper.pdf
https://openreview.net/forum?id=WPI2vbkAl3Q

[16] COLLINS-WOODFIN, E., AND PAQUETTE, E. High-dimensional limit of one-pass SGD

on least squares. Electronic Communications in Probability 29 (2024), 1–15.

[17] COLLINS-WOODFIN, E., SEROUSSI, I., MALAXECHEBARRÍA, B. G., MACKENZIE,

A. W., PAQUETTE, E., AND PAQUETTE, C. The high line: Exact risk and learning rate

curves of stochastic adaptive learning rate algorithms, 2024.

[18] DAMIAN, A., NICHANI, E., GE, R., AND LEE, J. D. Smoothing the landscape boosts

the signal for sgd: Optimal sample complexity for learning single index models. In

Advances in Neural Information Processing Systems (2023), vol. 36, pp. 752–784.

[19] DANDI, Y., TROIANI, E., ARNABOLDI, L., PESCE, L., ZDEBOROVÁ, L., AND KRZA-

KALA, F. The benefits of reusing batches for gradient descent in two-layer networks:

Breaking the curse of information and leap exponents. arXiv preprint arXiv:2402.03220

(2024).

[20] DE, S., MUKHERJEE, A., AND ULLAH, E. Convergence guarantees for rmsprop

and adam in non-convex optimization and an empirical comparison to nesterov

acceleration, 2018.

[21] DEFAZIO, A., AND MISHCHENKO, K. Learning-rate-free learning by d-adaptation. In

International Conference on Machine Learning (2023), PMLR, pp. 7449–7479.

[22] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-training of

deep bidirectional transformers for language understanding, 2019.

[23] DUCHI, J., HAZAN, E., AND SINGER, Y. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research 12, 7 (2011).

[24] DVINSKIKH, D., OGALTSOV, A., GASNIKOV, A., DVURECHENSKY, P., TYURIN, A.,

AND SPOKOINY, V. Adaptive gradient descent for convex and non-convex stochastic

optimization. arXiv preprint arXiv:1911.08380 (2019).

106

[25] FAW, M., ROUT, L., CARAMANIS, C., AND SHAKKOTTAI, S. Beyond uniform smooth-

ness: A stopped analysis of adaptive SGD. In The Thirty Sixth Annual Conference on

Learning Theory (2023), PMLR, pp. 89–160.

[26] GERBELOT, C., TROIANI, E., MIGNACCO, F., KRZAKALA, F., AND ZDEBOROVÁ, L.

Rigorous dynamical mean-field theory for stochastic gradient descent methods. SIAM

Journal on Mathematics of Data Science 6, 2 (2024), 400–427.

[27] GOLDT, S., ADVANI, M., SAXE, A. M., KRZAKALA, F., AND ZDEBOROVÁ, L. Dynam-

ics of stochastic gradient descent for two-layer neural networks in the teacher-student

setup. Advances in neural information processing systems 32 (2019).

[28] GOLDT, S., LOUREIRO, B., REEVES, G., KRZAKALA, F., MÉZARD, M., AND ZDE-

BOROVÁ, L. The gaussian equivalence of generative models for learning with shallow

neural networks. In Mathematical and Scientific Machine Learning (New York, New

York, USA, 2022), PMLR, pp. 426–471.

[29] GOLDT, S., MÉZARD, M., KRZAKALA, F., AND ZDEBOROVÁ, L. Modeling the

influence of data structure on learning in neural networks: The hidden manifold

model. Physical Review X 10, 4 (2020), 041044.

[30] GOWER, R. M., DEFAZIO, A., AND RABBAT, M. Stochastic polyak stepsize with a

moving target. arXiv preprint arXiv:2106.11851 (2021).

[31] HAZAN, E., AND KAKADE, S. Revisiting the polyak step size. arXiv preprint

arXiv:1905.00313 (2019).

[32] HINTON, G. Neural networks for machine learning - lecture 6a - overview of mini-

batch gradient descent. Coursera Lecture Notes, 2012. Accessed: 2024.

[33] HINTON, G., SRIVASTAVA, N., AND SWERSKY, K. Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent. Cited on 14, 8 (2012), 2.

107

[34] HOFFMANN, J., BORGEAUD, S., MENSCH, A., BUCHATSKAYA, E., CAI, T., RUTHER-

FORD, E., DE LAS CASAS, D., HENDRICKS, L. A., WELBL, J., CLARK, A., HENNIGAN,

T., NOLAND, E., MILLICAN, K., VAN DEN DRIESSCHE, G., DAMOC, B., GUY, A.,

OSINDERO, S., SIMONYAN, K., ELSEN, E., RAE, J. W., VINYALS, O., AND SIFRE, L.

Training compute-optimal large language models, 2022.

[35] IVGI, M., HINDER, O., AND CARMON, Y. DoG is SGD’s best friend: A parameter-free

dynamic step size schedule. arXiv preprint arXiv:2302.12022 (2023).

[36] JIANG, X., AND STICH, S. U. Adaptive SGD with polyak stepsize and line-search:

Robust convergence and variance reduction. Advances in Neural Information Processing

Systems 36 (2024).

[37] KAPLAN, J., MCCANDLISH, S., HENIGHAN, T., BROWN, T. B., CHESS, B., CHILD, R.,

GRAY, S., RADFORD, A., WU, J., AND AMODEI, D. Scaling laws for neural language

models, 2020.

[38] KIEFER, J., AND WOLFOWITZ, J. Stochastic Estimation of the Maximum of a Regres-

sion Function. Ann. Math. Statist. 23, 3 (1952), 462–466.

[39] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. In

International Conference on Learning Representations (ICLR) (2014).

[40] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization, 2017.

[41] LEE, K., CHENG, A. N., PAQUETTE, C., AND PAQUETTE, E. Trajectory of Mini-Batch

Momentum: Batch Size Saturation and Convergence in High Dimensions. To Appear

in NeurIPS 2022 (June 2022), 38pp.

[42] LEVY, K. Online to offline conversions, universality and adaptive minibatch sizes.

Advances in Neural Information Processing Systems 30 (2017).

[43] LEVY, K. Y., YURTSEVER, A., AND CEVHER, V. Online adaptive methods, universality

and acceleration. Advances in neural information processing systems 31 (2018).

108

[44] LI, X., AND ORABONA, F. On the convergence of stochastic gradient descent with

adaptive stepsizes. In Proceedings of the Twenty-Second International Conference on

Artificial Intelligence and Statistics (2019), vol. 89 of Proceedings of Machine Learning

Research, pp. 983–992.

[45] LOIZOU, N., VASWANI, S., LARADJI, I. H., AND LACOSTE-JULIEN, S. Stochastic

polyak step-size for SGD: An adaptive learning rate for fast convergence. In Interna-

tional Conference on Artificial Intelligence and Statistics (2021), PMLR, pp. 1306–1314.

[46] LOSHCHILOV, I., AND HUTTER, F. Decoupled weight decay regularization, 2019.

[47] MCMAHAN, H. B., AND STREETER, M. Adaptive bound optimization for online

convex optimization. arXiv preprint arXiv:1002.4908 (2010).

[48] MIGNACCO, F., KRZAKALA, F., URBANI, P., AND ZDEBOROVÁ, L. Dynamical mean-

field theory for stochastic gradient descent in gaussian mixture classification. In

Advances in Neural Information Processing Systems (2020), vol. 33, pp. 9540–9550.

[49] NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International Conference

on Machine Learning (Madison, WI, USA, 2010), ICML’10, Omnipress, p. 807–814.

[50] NAKKIRAN, P., NEYSHABUR, B., AND SEDGHI, H. The Deep Bootstrap Framework:

Good Online Learners are Good Offline Generalizers. In International Conference on

Learning Representations (ICLR) (2021).

[51] NEDIĆ, A., AND BERTSEKAS, D. Convergence rate of incremental subgradient

algorithms. Stochastic optimization: algorithms and applications (2001), 223–264.

[52] NEMIROVSKI, A., AND YUDIN, D. Problem Complexity and Method Efficiency in Op-

timization. Wiley-Interscience, New York, 1983. Translated from Russian by E. R.

Dawson.

109

https://openreview.net/pdf?id=guetrIHLFGI
https://openreview.net/pdf?id=guetrIHLFGI

[53] NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K. Scalable parallel pro-

gramming with cuda. In ACM SIGGRAPH 2008 Classes (New York, NY, USA, 2008),

SIGGRAPH ’08, Association for Computing Machinery.

[54] ORVIETO, A., LACOSTE-JULIEN, S., AND LOIZOU, N. Dynamics of SGD with stochas-

tic polyak stepsizes: Truly adaptive variants and convergence to exact solution.

Advances in Neural Information Processing Systems 35 (2022), 26943–26954.

[55] PAQUETTE, C., LEE, K., PEDREGOSA, F., AND PAQUETTE, E. SGD in the Large:

Average-case Analysis, Asymptotics, and Stepsize Criticality. In Proceedings of Thirty

Fourth Conference on Learning Theory (COLT) (2021), vol. 134, pp. 3548–3626.

[56] PAQUETTE, C., AND PAQUETTE, E. Dynamics of stochastic momentum methods on

large-scale, quadratic models. In Advances in Neural Information Processing Systems

(2021), vol. 34, pp. 9229–9240.

[57] PAQUETTE, C., PAQUETTE, E., ADLAM, B., AND PENNINGTON, J. Homogenization

of SGD in high-dimensions: Exact dynamics and generalization properties. arXiv

e-prints (May 2022), 64pp.

[58] PAQUETTE, C., PAQUETTE, E., ADLAM, B., AND PENNINGTON, J. Implicit regular-

ization or implicit conditioning? exact risk trajectories of sgd in high dimensions. In

Advances in Neural Information Processing Systems (New York, 2022), vol. 35, Curran

Associates, Inc., pp. 35984–35999.

[59] PAQUETTE, C., AND SCHEINBERG, K. A stochastic line search method with expected

complexity analysis. SIAM J. Optim. 30, 1 (2020), 349–376.

[60] PAQUETTE, E., PAQUETTE, C., XIAO, L., AND PENNINGTON, J. 4+3 phases of

compute-optimal neural scaling laws, 2024.

[61] POLYAK, B. T. Introduction to optimization.

110

http://proceedings.mlr.press/v134/paquette21a/paquette21a.pdf
http://proceedings.mlr.press/v134/paquette21a/paquette21a.pdf

[62] POLYAK, B. T., AND JUDITSKY, A. B. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization 30, 4 (1992), 838–855.

[63] RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., AND SUTSKEVER, I.

Language models are unsupervised multitask learners. OpenAI Blog 1, 8 (2019), 9.

[64] ROBBINS, H., AND MONRO, S. A Stochastic Approximation Method. Ann. Math.

Statist. (1951).

[65] ROLINEK, M., AND MARTIUS, G. L4: Practical loss-based stepsize adaptation for

deep learning. Advances in neural information processing systems 31 (2018).

[66] ROSENBLATT, F. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review 65, 6 (nov 1958), 386–408.

[67] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning representations

by back-propagating errors. Nature 323, 6088 (1986), 533–536.

[68] SAAD, D., AND SOLLA, S. Dynamics of on-line gradient descent learning for mul-

tilayer neural networks. In Advances in Neural Information Processing Systems (1995),

vol. 8, MIT Press.

[69] SAAD, D., AND SOLLA, S. A. Exact solution for on-line learning in multilayer neural

networks. Physical Review Letters 74, 21 (1995), 4337.

[70] VARRE, A., PILLAUD-VIVIEN, L., AND FLAMMARION, N. Last iterate convergence of

SGD for Least-Squares in the Interpolation regime. In Advances in Neural Information

Processing Systems (NeurIPS) (2021).

[71] VASWANI, S., LARADJI, I., KUNSTNER, F., MENG, S. Y., SCHMIDT, M., AND LACOSTE-

JULIEN, S. Adaptive gradient methods converge faster with over-parameterization

(but you should do a line-search). arXiv preprint arXiv:2006.06835 (2020).

111

https://doi.org/10.1214/aoms/1177729586
https://papers.neurips.cc/paper_files/paper/2021/file/b4a0e0fbaa9f16d8947c49f4e610b549-Paper.pdf
https://papers.neurips.cc/paper_files/paper/2021/file/b4a0e0fbaa9f16d8947c49f4e610b549-Paper.pdf

[72] VASWANI, S., MISHKIN, A., LARADJI, I., SCHMIDT, M., GIDEL, G., AND LACOSTE-

JULIEN, S. Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence

Rates. In Advances in Neural Information Processing Systems (NeurIPS) (2019), vol. 32,

pp. 3732–3745.

[73] VELIKANOV, M., KUZNEDELEV, D., AND YAROTSKY, D. A view of mini-batch SGD

via generating functions: conditions of convergence, phase transitions, benefit from

negative momenta. In International Conference on Learning Representations (ICLR) (2023).

[74] VERSHYNIN, R. High-dimensional probability: An introduction with applications in data

science. Cambridge University Press, Cambridge, UK, 2018.

[75] WANG, B., ZHANG, H., MA, Z., AND CHEN, W. Convergence of adagrad for non-

convex objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual

Conference on Learning Theory (2023), PMLR, pp. 161–190.

[76] WANG, C., HU, H., AND LU, Y. A solvable high-dimensional model of GAN. In

Advances in Neural Information Processing Systems (New York, 2019), vol. 32, Curran

Associates, Inc.

[77] WARD, R., WU, X., AND BOTTOU, L. Adagrad stepsizes: Sharp convergence over

nonconvex landscapes. The Journal of Machine Learning Research 21, 1 (2020), 9047–9076.

[78] WEI, A., HU, W., AND STEINHARDT, J. More than a toy: Random matrix models

predict how real-world neural representations generalize. In International Conference

on Machine Learning (2022), PMLR, pp. 23549–23588.

[79] WIDROW, B., AND HOFF, M. E. Adaptive switching circuits. IRE WESCON Convention

Record 4 (1960), 96–104.

[80] WU, X., WARD, R., AND BOTTOU, L. Wngrad: Learn the learning rate in gradient

descent. arXiv preprint arXiv:1803.02865 (2018).

112

https://proceedings.neurips.cc/paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf
https://openreview.net/pdf?id=bzaPGEllsjE
https://openreview.net/pdf?id=bzaPGEllsjE
https://openreview.net/pdf?id=bzaPGEllsjE

[81] XIE, Y., WU, X., AND WARD, R. Linear convergence of adaptive stochastic gradi-

ent descent. In Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics (2020), vol. 108 of Proceedings of Machine Learning Research,

pp. 1475–1485.

[82] YOSHIDA, Y., AND OKADA, M. Data-dependence of plateau phenomenon in learning

with neural network—statistical mechanical analysis. In Advances in Neural Information

Processing Systems (New York, 2019), vol. 32, Curran Associates, Inc.

113

	Abstract
	Abrégé
	Acknowledgements
	Contributions
	List of Figures
	List of Tables
	Introduction
	History
	Theoretical Beginnings
	Robbins-Munro [1951]
	Kiefer-Wolfowitz [1952]
	Perceptron [1958] and ADALINE [1960]

	Digital Implementations
	Backpropagation [1986]
	Nemirovski-Yudin [1983]
	Polyak-Juditsky [1992]

	Deep Learning
	AdaGrad [2011]
	RMSProp [2012]
	Adam [2014]
	Cutting Through the Noise [2021-]

	Concentration Inequality Background
	Dynamics of Stochastic Adaptive Learning Algorithms
	Introduction
	Model Set-up
	Algorithmic set-up

	Deterministic dynamics for SGD with adaptive learning rates
	Idealized Exact Line Search and Polyak Stepsize
	AdaGrad-Norm analysis

	Proofs, Examples, and Simulations
	SGD adaptive learning rate algorithms and stepsizes
	The Dynamical nexus
	Discussion of the assumptions on f
	Integro-differential equation for S(t, z)

	SGD-AL is an approximate solution
	SGD-AL is an approximated solution
	Error bounds
	Specific learning rates

	Proofs for AdaGrad-Norm analysis
	Strongly convex setting
	Least squares setting

	Polyak Stepsize
	Line Search
	General Line Search
	Line Search on least squares

	Examples
	Binary logistic regression
	CIFAR 5m

	Numerical simulation details

