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Abstract 

Transposable elements (TEs) are DNA elements able to create copies of themselves across the 

genome and constitute about half of the human genome. TEs have long been overlooked partly 

due to the complexity of their analysis but also due to their overall low of activity. However, 

despite their silencing, there is a rising amount of evidence for their involvement in regulation such 

as their predominance in regulatory sequences and some cases of co-options like the AIM2 gene 

coming from a MER41 TE. It was also observed that older TEs tend to have more regulatory 

potential and become more enhancer-like as they age in terms of epigenetic state, transcription 

factor binding potential or methylation levels. This highlights that a large part of TE’s impact 

might come from their relationship with the epigenome rather than their expression. However, a 

comprehensive analysis of TEs and its relationship with the epigenome and especially the 

reference histone marks remain lacking.   

In this work, I present an analysis of TEs and their association with the epigenome across human 

cell types through a large and varied dataset. First, we leveraged a new dataset from the 

international human epigenome consortium (IHEC) with over 4867 ChIP-seq samples across 6 

histone marks and 175 cell annotations grouped into 47 cell categories to show that TEs have 

drastically different enrichment levels across histone marks. We observe that although TEs cover 

on average 55.8% of the histone peaks, TEs are generally depleted in repressive H3K9me3 histone 

mark, except for L1 where they are highly enriched. In contrast, MIRs were enriched in H3K4me1, 

H3K27ac and H3K27me3 and Alus were enriched in H3K36me3. We also find some significant 

differences in TE enrichment between cell types and that in 20% of the cases, these enrichments 

were cell-type specific. We report that at least 4% of health status comparison, within cell types 
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featuring both healthy and diseased samples, were significantly different. Finally, we used cell 

type specificity and extreme enrichments to identify 456 TE-cell type-histone association standout 

candidates. 

Next, we used the results of our analysis to build an online portal with interactive access to the 

results and data. We realized that the true barrier to more widespread consideration of TEs may be 

accessibility and ease of analysis. Thus, we built an online portal that allows users to not only look 

for any TE’s coverage and enrichment within any histone marks and cell types but also to rapidly 

analyze the TEs within their own data in a similar way and directly compare the results with the 

portal’s IHEC dataset. 

This work further supports the role of TE in genome regulation, highlights novel relationships 

between TEs and the epigenome and makes the analysis and interpretation of TEs easier and more 

accessible. 

 

  



iii 

 

Résumé 

Les transposons sont des séquences ADN ayant l’habilité de créé des copies d’elles même a travers 

le génome et compose environ la moitié du génome humain. Les transposons ont longtemps été 

ignorés en grande part du a la complexité de leur analyse, mais aussi a cause de leur bas niveau 

d’activité. Par contre, malgré leur répression, il y a de plus en plus de support pour leur implication 

dans la régulation tel leur prédominance dans les séquences régulatrices et dans certain cas, leur 

intégration au génome come le gène AIM2 provenant d’un transposon MER41. Il fut aussi observé 

que les transposons plus anciens ont tendance à gagner du potentiel de régulation et devenir plus 

similaire a des amplificateurs avec l’âge. Cela amène l’idée que peut être que l’influence des 

transposons provienne de leur relation avec l’épigénome plutôt que leur expression. Par contre, 

une analyse compréhensive des transposons et leur relation avec l’épigénome, plus 

particulièrement avec les modifications histones demeure manquante. 

Dans cette thèse, je présente une analyse des transposons et leur association avec l’épigénome à 

travers les différents types de cellules humaines grâce à une large banque de données. 

Premièrement, nous avons utilisé les nouvelles données du consortium international de 

l’épigénome humain (IHEC) contenant 4867 échantillons ChIP-seq à travers 6 modifications 

d’histones et 175 annotations de cellules regroupées dans 47 type de cellules. Nous démontrons 

que les transposons ont des niveaux d’enrichissement différents dépendamment de la modification 

d’histone avec lequel ils sont associés. Nous observons que les transposons couvrent 55.8% des 

pics d’histones, que transposons sont généralement appauvri en H3K9me3 sauf pour L1 qui est 

extrêmement enrichi. Par contraste, MIR est enrichi dans H3K4me1, H3K27ac et H3K27me3 et 

Alu enrichi pour H3K36me3. Nous trouvons des différences significatives en termes 
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d’enrichissement entres les types de cellules et dans 20% des cas, ces enrichissements sont 

spécifiques au type de cellule. Nous reportons qu’il y a des différences significatives entre l’état 

de santé dans un type de cellule pour aux moins 4% des comparaisons. Finalement, nous avons 

utilisé les associations extrême et spécifique entre cellule et transposons pour identifier 456 

candidats pour association notable entre transposon, histone et type de cellule. 

Ensuite, nous avons utilisé nos résultats pour développer un portail en ligne offrant un accès 

dynamique à nos résultats et donnés. Nous avons réalisé qu’une des barrières additionnelles à 

l’adoption des transposons dans les analyses génomiques pourrais aussi être l’accessibilité aux 

donnés. Donc, nous avons construits un portail qui permets aux chercheurs de non seulement, 

observer le croisement des histones par les transposons et types de cellules, mais aussi de lancer 

des analyses de leurs propres données et les comparer avec celles inclut dans le portail. 

Le travail de cette thèse offre du support supplémentaire au rôle des transposons dans la régulation 

du génome, présente des relations entre les transposons et l’épigénome et facilite l’analyse et 

l’interprétation des transposons. 
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Chapter 1 

Introduction 

1.1 Transposable elements 

1.1.1 Transposable Elements: The Long Elusive DNA Elements 

Transposable elements (TEs) are DNA sequences with the ability to create copies of themselves 

and change position within the genome. From their discovery in the 1950s by Barbara 

McClintock1, TEs, also known as mobile elements and repeats, have faced skepticism and 

pushback on their place and importance within the genome. Due to their large number of copies 

genomes yet their sequences not necessarily being translated into productive proteins to the host, 

TEs have long been dismissed as selfish elements or junk DNA2,3. However, a growing body of 

evidence is lending credence to TEs contribution to the regulatory network, evolution and disease4–

7. In humans, TEs account for about 50% of the genome, but the vast majority of elements have 

lost their ability to transpose8,9. TEs are also generally repressed so that, those that still can, do not 

transpose and threaten genome integrity. Nonetheless, their remains within our genome can help 

trace back the evolution of our regulatory transcriptome and the rare novel transposition can lead 

to diseases, cancers and sometimes evolutionary innovation. 

1.1.2 Family classification and characteristics 

Transposable elements are classified in two classes depending on their transposition mechanism. 

DNA transposons which excise themselves before re-integrating the genome in another location. 

This is more akin to cut and paste as the original copy is removed. However, artefacts, errors, 
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repair and various mechanisms enable the number of copies to increase and for some partial 

remnants to remain at excisions sites10,11. The other main group are retrotransposons are elements 

that pass by an RNA intermediate which reverse transcribes back into DNA to reintegrates the 

genome in another location12,13. This mechanism is often referred to as copy and paste, the original 

copy remains and a new one is integrated in the genome. 

DNA transposon cover about 3% of the genome and are no longer active but used to be 37 million 

years ago(Myr)14. Retrotransposons represents most of the transposable elements within the 

genome and are grouped into two large categories depending on the presence or absence of long 

terminal repeats (LTRs). LTR retrotransposons, commonly called human endogenous retroviruses 

(HERV or ERV), were inserted 25 Myr ago with limited activity and cover 8% of the human 

genome. Non retrotransposons make up the majority of all TEs. According to repeatmasker’s 

classification15, they include long interspersed elements (LINE) and short interspersed elements 

(SINE) classes. These classes each contain families such as LINE1 (L1) Alu and SVA 

(SINE/VNTR/Alu; a composite family). These 3 families constitute about 1/3 of the human 

genome and are the only ones with some reported current activity13,16,17. L1 and Alu, for instance, 

account for 60% of all interspersed repeats which seems to be specific to human as other organisms 

do not share that elevated concentration8. 

The families can be subdivided into subfamilies based on nucleotide insertion and deletions shared 

across the members of the subfamily. Since only a few elements successfully transfer, these 

elements own unique sequence is the one that propagates causing an expansion of that specific 

element, which eventually forms a subfamily. There is thus a form of hierarchical relationship 

between subfamilies as they will tend to originate from an older subfamily akin to a linear 

evolutionary sequence. For instance, all L1 subfamilies in human originate from a single lineage 
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over the past 40 Myr18. It is important to note that the subfamily names are attempts to group 

elements in a form of relatedness, however, the methods are not necessarily perfect and some 

annotations can sometimes feel inaccurate19–21. 

Thus TE families and subfamilies all have their own sequences, history and properties. L1 are 

LINEs of about 6 kilo base pairs (kbp) with two open reading frames (ORF1 and ORF2) which 

cover about 17% of the human genome through their over 500,000 copies8. However, the vast 

majority are no longer active due to incomplete reverse transcription, truncation and stop codons 

within ORFs22. The active L1 elements are mostly found within L1HS (or L1PA1) and L1PA2, 

the youngest L1PA subfamilies8,23. Alus are a primate specific family of 1 million 280 nucleotides 

long copies covering about 11% of the genome. The family is 65 Myr old and since it has no 

coding capacity, it depends on part of the L1 replication machinery to transpose. Active Alus are 

AluY, AluYa5 and AluYb824,25. SVAs are even younger, particular to hominoid evolution 

(25MYR) with 3000 2 kbp long copies26. They are also non-autonomous and depend on L1 

machinery. The more ancient families comprise only a small proportion of the human genome, 

nonetheless some families such as LINE2 (L2) and Mammalian wide interspersed repeat (MIR) 

have had major expansions8,27. 

1.1.3 General consequences and function 

Expansions 

The unique transposition ability of transposable elements cause consequences to the host genome. 

The most obvious one is genome expansions. As previously noted, many of the elements have 

thousands of instances, if not hundreds of thousands going up all the way to millions. Each instance 

brings with it additional base pairs to the genome that adds up over evolutionary timescales. L1 
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and Alu contributed about 750Mb or the human epigenome8, over the past 6 Myr they have 

contributed to 8 Mb to the human genome28. But the TEs expansions are not a constant linear 

process, it often happens in spontaneous burst or expansions. For instance, AluYb is and ancient 

family (18-25 Myr) dating to early hominid which had for the longest time very low activity. Only 

recently, over the past few million years, did it have an expansion to ~2000 elements29. This is 

notable in that it suggests that the family remained able to transpose but did not explode until a 

copy became highly active. It is worth noting that a more active family would be deleterious and 

thus selected against and thus low transposition may be a beneficial features for TEs30.  

Germ line 

While transposition may happen in any cell, it is important to remember that they may only be 

inherited and integrated when in the germ line. That is the only way for the transposition to pass 

on to the next progeny. Such events are fairly rare (estimated to be 1/8 individuals being born with 

a new transpositions), it is reported that there are about 1 SVA per 900 births, 1 L1 in 200 based 

on disease and 1 Alu per 20 births based on genome and disease31. 

Insertions 

Another important thing to note is that TEs are not randomly distributed32. Since, as mentioned 

before, the different TEs have their own size, instance count, properties and expansions, it makes 

sense that TEs are not randomly distributed. In fact, ideal position are usually a balancing act 

between potential for future propagation and avoiding deleterious impact on host cell33. Some 

elements have even evolved their own mechanism to target those ideal sites32. Overall, TE 

insertions follow the rules of natural selection: deleterious insertions are discarded and only neutral 
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ones may remain, but they in turn may become unrecognizable though continuous mutations. For 

instance, L1 can be found in gene exons34 but is rarely found within a gene33,35.  

There are a lot of ways by which TE insertions can impact genome structure, TEs can insert within 

a gene leading to a disrupted gene, ectopic recombination between non-allelic homologous 

retrotransposons may cause genomic rearrangements such as deletion or duplication of the 

intervening genomic sequence, and during duplication of a TE it is possible for its flanking regions 

on either side to also be copied and inserted leading to a 3’ or 5’ transduction13,36. 

But TEs’ impact is not exclusive to insertion led disruptions, some TE proteins such as L1’s 

ORF2p can induce DNA break and genome instability37. Accumulation of RNA transcript can also 

trigger innate immune response causing autoimmune diseases.  The activation of interferon 

response is a supported property of ERV transcripts38,39. 

While, as previously mentioned, TEs can only be integrated and conserved if inserted in the 

germline, somatic transposition also happens. TE roles within soma includes early embryo and 

stem cells (pluripotency), expression within brain potentially for brain plasticity and TEs are often 

found in cancer and tumors since some insertions can disrupt tumor suppressors and oncogenes 

leading to cancer40. 

Repression 

Since transposable elements have such deleterious potential, the genome has many mechanisms to 

silence them such as TRIM28-mediated transcription silencing, the repressive histone marks 

H3K9me3 and H3K27me3, DNA methylation and heterochromatin41–44.  TEs are generally found 

within heterochromatin, inaccessible due to DNA methylation or H3K9me345 and are not 

expressed nor do they transpose. TEs are also targeted by Krüppel-associated box domain zinc 
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finger proteins (KZFP), a family of transcriptional regulators of higher vertebrates45. KRAB 

binding factors KAP1/TRIM28 as well as some KZFPs are able to repress TEs. The majority of 

KZFP associate with at least one TE while some TE subfamilies are recognized by multiple KZFP. 

With TEs being repressed by KZFP able to bind with them, a sort of arms race is established as 

TEs go through mutations that enables escape repression until KZFP genes evolve new zinc finger 

arrays that can recognize the escaped TE45–47. 

 

1.1.4 Currently known functional cases 

TEs can impact the genome in many ways, from disrupting regulatory enhancers, promoters or 

regulatory elements all the way to the creation of new genes by insertion or the disruption of 

existing genes. While these can have positive effect on fitness, TE transposition and activity often 

causes diseases. Of the 124 disease causing insertions that have been reported, most are from 

insertional mutagenesis or aberrant splicing34. There has been reports of TEs being active in 

brain48–50. Through a retrotransposition method by Baillie et al. it was found that L1, Alu and SVA 

retotransposition occurred in human hippocampus and caudate nucleus51. While the extent of 

retrotransposition remains unclear, there is definitely TE activity within the brain. Some speculate 

that this retrotransposition and the resulting mosaicism may have to do with brain plasticity48,52. 

In fact, there is also reports of TEs being involved in brain diseases. Increased L1 transposition in 

neuron in schizophrenia53. Over expression of TE derived envelope (Env) proteins can be cytotoxic 

and has been linked to neurodegenerative diseases33,54. 

It is widely understood that genome instability is a hallmark of cancer. Thus, it is not surprising 

that TEs, with so many ways to disrupt the genome, are associated with cancer. One reported 
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disease causing insertion would be an L1 insertion into the adenomatous polyposis coli (APC) 

gene of a cancer patient55. Notably, that insertion was somatic as it was absent from the rest of the 

colon. This shows how an insertion in the wrong place can lead to issues even somatically. Another 

example is a de novo L1 insertion in intron 14 of the tumor suppressor retinoblastoma 1 (RB1) 

which caused aberrant RB1 splicing leading to retinoblastoma. 

A standout context in which TEs appear to have evolutionarily contributed is human placenta and 

pregnancy. The placenta is a complex organ crucial to pregnancy that controls blood and nutrient 

exchange between fetus and mother. THE1B was identified as a ERV TE  Using genetic editing, 

it was demonstrated that some TEs act as transcriptional enhancers to placental genes such as 

CSF1R and PSG556. In addition, they identified LTR10A as an element that regulates endoglin 

gene (ENG) expression. 

The immune system is a host defense system against retroviruses but also against 

retrotransposition. While viruses infect the cell from the outside, TEs generally remain within the 

cell. If TEs such as Alu are expressed in a cell, which can happen during viral infection57, various 

nucleic acid forms of Alu may appear such as single stranded RNA, double stranded DNA, 

heteroduplex or double stranded DNA58. Since those a native to host cell, the innate immune 

system can tolerate a basal level of these free Alus. However, if their level grows to high or the 

immune system reacts too strongly, it may lead to autoimmune disorders59. In a study of TE’s 

impact on flu infection, Chen et al. found that many TEs were upregulated post infection but that 

it did not correlate with viral load60. Furthermore, there was high inter-individual chromatin 

accessibility variability. They reported that there was some difference in the behavior and 

properties of sites with high or low variability and that KRAB-ZNF may have a role in immunity.  
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While TE activity is associated with a lot of diseases, there is also potential therapeutic or 

diagnostic usage. Since TE expression is often a sign that genome integrity has been compromised, 

TE measurements could be leveraged as a diagnostic as has been proposed for L1 in cancer61. 

Taken together, it is clear that TEs have had and continue to maintain a large impact on human 

evolution. And as the recent discovery of TEs potentially being the cause of the human tail loss62 

and SVA insertions affecting skin pigmentation63 shows, more research into TEs is sure reveal 

new insight into human evolution, phenotypes and health. 

 

1.2 Epigenome 

1.2.1 The epigenome: Going Beyond the DNA Sequence 

The epigenome is the set of marks, modification and chemical compounds that control and 

modulate the genome. Thus, epigenomics studies the phenotype changes and mechanisms that are 

not linked to the DNA sequence. While the DNA sequence contains the instructions for genes and 

their expression, there are multiple mechanisms that can further modulate gene expression. After 

all, if all cells in an organism possess the same DNA, how can they develop and behave differently? 

This is done through multiple mechanisms including modifying the chromatin, the physiological 

form of our genetic information64. The introduction of chromatin immunoprecipitation and 

sequencing (ChIP-seq) has enabled the profiling of the epigenome through measurement of 

histones marks and genomic sequences64. The epigenome is mostly investigated though histone 

marks, DNA methylation and chromatin state. 
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1.2.2 Histone marks 

DNA is compacted through a complex coiling organization called chromatin. A major component 

of chromatin are the nucleosomes, protein complexes wrapped by DNA. A nucleosome is made of 

2 subunits containing 4 histones (H2A, H2B, H3 and H4) and each of these histone can have 

several modifications at several positions. The main modifications (commonly referred as marks) 

are acetylation, methylation, phosphorylation and ubiquitylation and we mainly focused on 

acetylation and methylation, the most commonly studied modifications. Each of the modifications 

have different properties and lead to changes in the histone and thus DNA properties and 

interactions. For instance, acetylation usually occurs on lysine residues, neutralizing their positive 

charge and reducing the interaction potential65. 

Thus an example of a histone mark would be H3K27ac, which describes an acetylation (ac) of the 

27th lysine (K27) on the histone H3. Histone marks are commonly the target of ChIP-Seq 

experiments to assess their binding sites and the regions in which they may have an influence. 

Thus there is a large amount of ChIP-seq data for histone marks. Specifically, H3K4me3, 

H3K4me1, H3K27ac, H3K36me3, H3K27me3, H3K9me3 are often assayed together for samples 

as they constitute a reference epigenome66. The reference epigenome defines that group of histones 

which can together describe the overall epigenetic state of the genome fairly well. The various 

combinations of histone and modifications form something akin to a “histone code”64. This histone 

code can be interpreted to determine the location of promoters, enhancers, gene activation and the 

status of other gene regulatory elements. Generally, H3K27ac is in enhancer and promoter regions, 

H3K4me1 is an enhancer mark, H3K4me3 is in active promoter regions, H3K36me3 is often found 

in gene bodies, and associated with gene splicing67, H3K27me3 has a repressive role in promoter 

regions and H3K9me3 is mostly found in repressed regions68. 
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Table 1. Summary of histone marks function and location within genome 

 

Bernstein et al. added complexity to the histone interaction by showing regions with H3K4me3 

and H3K27me3, an active and repressing histone, being found together69. These regions, termed 

bivalent, were particularly found in ES cells and would resolve through differentiation, providing 

a new “poised” state and a model of for an initial histone state and how pluripotency works at the 

histone level69–71. This highlight the overall importance of histones as they are dynamic, they can 

vary between cell type and condition, and can give an idea of how the genes from the fixed 

sequence will be expressed. Although histones have all this dynamic potential, they tend to be 

rather consistent within a cell type. Thanks to this, models were developed to impute histone mark 

tracks by using information from the other histones72. Imputed samples generally accurately 

predict the histone tracks but they display less variability. 

One notable feature of histones is that they are inherited by progeny even if they although they are 

not part of the DNA sequence. It is commonly understood that histone positions are inherited by 

progeny even if the how remains unclear. It has been reported that histone are indeed conserved 

from parental inheritance73, at least in yeast, but the mechanism remains unknown as it does not 

seem like the histone modifications alone are sufficient for inheritance71,74. 

Histone mark Function and/or location 

H3K27ac Enhancer and promoter region 

H3K4me1 Enhancer 

H3K4me3 Promoter region; poised state 

H3K36me3 Gene bodies 

H3K27me3 Repression in promoter region; poised state 

H3K9me3 Repression 
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1.2.3 DNA Methylation 

DNA methylation is another major component that controls gene regulation, chromatin 

organization and thus cell identity and cell development. DNA methylation has a repressive role 

and is typically found on CpG dinucleotides. DNA methylation is established by DNA 

methyltransferases (DNMTs) which transfers a methyl group to the C’5 and prevents proper 

binding of transcriptional regulators75. DNA methylation is generally measured through whole 

genome bisulfite sequencing (WGBS) and often reported as differentially methylated regions 

(DMRs), regions with distinct methylation between samples. 

Histones and methylation has some interplay, within normal cell, H3K4me3 blocks DNMTs while 

H3K9me3 and H3K27me3 recruit it. Thus the repressive methylated histone marks may also lead 

to DNA methylation. Cancer can impact things, it can disrupt or remove H3K4me3 enabling 

DNMTs, lead to the substitution of H3K4me3 by a repressive or other mark, or simply lead to the 

loss of all histones75. In the context of repressive H3K9 and H3K27, the relevant lysine 

methyltransferases, SUV39H1/2 and EZH2, respectively, interact with the DNA methylation 

DNMTs75,76. DNA methylation also contributes to chromatin formation through its interaction 

with the other epigenome elements such as histones and polycomb complexes. 

In mammals, most CGs are methylated but those in promoters tend to be protected from 

methylation. Hypomethylation, which is losing methylation, is a hallmark of cancer as it disrupts 

the normal expression patterns75. DNA methylation is crucial to methylation maintenance as it is 

present on both strands and can thus be recovered when DNA copies are made (from the copied 

strand still bearing the methylation). DNA methylation is closely associated with cell type 

differentiation, methylation tends to be absent for specific cell types77. It was found that enhancers 

are generally demethylated  and that each cell type has regions that are uniquely demethylated 
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compared to others78. Furthermore, the unmethylated site can have motifs relevant to cell type 

regulators78 which makes everything come together.  Unmethylated sites are accessible to binding 

factors and serve as enhancers to specific cell type genes and regulators since those demethylated 

regions are unique to select cell types.  

1.2.4 Chromatin accessibility and states 

One of the first component of the epigenome to be discovered would be chromatin and the 

distinction between euchromatin and heterochromatin, states that can actually be visually 

observed. As briefly alluded to, chromatin is the physiological form the genome and it was found 

that it can be found in two state: Euchromatin where the DNA is decondensed and is accessible, 

and heterochromatin, where the DNA is condensed, less accessible and genes are rarer64.  

Chromatin state can go beyond this binary state through profiling of the other epigenome elements 

(histones, DNA methylation, etc.) to detect regulatory elements. In particular, the combination of 

histone modifications can provide even more insight. Ernst et al. investigated the recurring patterns 

of chromatin mark combinations to define a model of 15 finer chromatin states called 

chromHMM68,79. These include: repressed, poised and active promoters, strong and weak 

enhancers, putative insulators, transcribed regions and large scale repressed and inactive 

domains68. These states sacrifice the direct measurement nature of histone ChIP-seq for a 

prediction of a more interpretable chromatin state. The chromHMM chromatin states are 

increasingly used in the field, but their interpretability and the ability to compare results across 

experiments will always depends on the model and underlying data used. Nonetheless, the 

predicted states and inferred cis regulatory make for testable predictions many of which were 

confirmed which supports the value of this expanded set of states. 
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1.3 The Interplay Between TEs and The Epigenome 

Since TEs are genomic elements with dynamics controlled in part by the epigenome and in reverse, 

the epigenome can be affected by TE insertions and expression, there is potential for complex 

interplay between the two. And it seems that this relationship between TE and the epigenome has 

left quite an impact on human evolution. Even with assessment of chromatin accessibility (Open 

chromatin with DNAse 1 hypersensitivity), it was found that the majority of primate-specific 

regulatory sequences were derived by TEs80. Specifically, they found that 63% of DNase I 

hypersensitive sites (DHS) regions overlapped TEs in primate specific sequences, that 36% of the 

DHS associated TEs were statistically enriched for at least one TF and that TE sequences were 

active in cell type specific manner80. 

Generally, epigenetic repressors are used to repress TEs. In normal cells, TEs are methylated and 

thus silenced, but when DNA methylation is absent, TEs can transpose which can lead to genomic 

instability81,82. For instance, in brain cancer it was found that Alu levels of methylations decreased 

compared to normal cells83. It was also found that colon cancer cells were 10 times more 

unmethylated than normal cells84. Thus TEs seem to be less methylated in cancer cells. Another 

context in which there is loss of methylation is primordial germ cells (PGCs) and early embryo as 

it is essential for a return to pluripotent state85.  

In a more recent study of chromHMM epigenomic states relationship with TEs86, it was found that 

TEs encompass a quarter of the regulatory epigenome. It was also found that 47% of elements 

could be found in active regulatory state, that SINEs were enriched for active marks and that TEs 

overlapped the heterochromatin epigenetic state the most out of all 15 states. The study also found 
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that SINE elements with CpG islands are prone to more DNA methylation but that the CpGs 

islands are lost from TEs as they age. 

Zhuo et al. reports clear signal of TE-derived tissue specific putative enhancers and promoters in 

human and chimpanzee87. They identified LTR5 as putative promoters in IPSCs although that TE 

had also been reported as an enhancer in human embryonal carcinoma cells by Fuentes et al88. 

They also found NR2F1 binding to be correlated with enhancer signatures on the 3’ end of SVA 

elements and report limited TE associated heterochromatin spread87. 

Thus it is clear that TEs, which are not expressed much but spread all across the genome, should 

be studied further. Especially their relationship with the epigenome which is likely much more 

complex than the repression it is known for. There seems to be a complimentary or synergetic 

potential between TEs and the epigenome. After all, if TE insertions can change the regulatory 

transcriptome, they can disrupt enhancers and promoters and thus the chromatin state of a region 

which could have its own cascade of effect. 

 

1.4 Genomic Tools and datasets 

1.4.1 TE Analysis Limitations 

While extensive study of TEs may seem like something that should have been done already, TE’s 

repetitive nature has unfortunately led them to a long neglect. Indeed, repetition of sequence in the 

genome leads to numerous challenges within most genomic analysis and methods. When it comes 

to genomic experiments we often target specific genes sites or targets but when studying a TE with 

extremely similar instances throughout the genome, targeting specific instances is not trivial33. 

These reads or sequences that cannot be placed in a unique location, often called multi-mapped 
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reads, are ambiguous and prone to biases. For these reasons, TE are often ignored or masked within 

genomic experiments89,90. As technologies improves, a lot of the current challenges can potentially 

be resolved. The increasing of sequencing length through long read sequencing is promising for 

the proper assessment and positioning of TEs. However, for some widely used experiments such 

as ChIP-seq, using smaller reads, resolving multi-mapped reads or clever TE measurements 

methods will remain a challenge worth tackling. 

Usually, to be able to account for ambiguous reads, TE approaches will use methods prior to 

alignments where they can try to better place the reads or directly count the TE instances89,90. For 

analysis with processed genomic file formats, which public datasets usually make available, such 

as BEDs or Peak files, the approach is usually to intersect the samples peaks with 

RepeatMasker’s15 repeat positions. 

1.4.2 TE Hub 

To tackle the challenges of TE analysis, members of the TE community established TE Hub91, an 

open and collaborative platform providing a reference point for all transposable elements methods 

and resources. TE Hub presents over 100 TE analysis methods, teaching resources and databases 

to help researchers get started on studying TEs. The methods are numerous because some focus 

on single TE families or specific solutions to specific problems. Creative heuristics are often 

needed to estimate TE measurements, which can lead to different coding languages and large 

dependencies. Thus, it is worth noting that it can often be complicated to install the tools, which 

are sometimes resource heavy and may need to be run on remote servers. While data sharing has 

made tremendous advances, methods and tools sharing can remain challenging due to external 

dependencies, different machines and the need for maintenance. Nonetheless, TE hub is a great 

resource for TE tools and a testament to the growing interest on TEs. 
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1.4.3 The UCSC Repeat (and Genome) Browser 

The UCSC genome browser92 is probably one of the most useful tool for the study and visualization 

of the genome. The UCSC browser makes available human (although other organisms are 

available) genome tracks with a large number of annotation and additional tracks. Among the 

tracks, the Repeat Masker15 track, allows to visualize TE positions across the genome side by side 

with other annotations. Although the Repeat Masker track in the browser is useful, it is hard to 

glance at the overall general sequence and the environment of the elements as instances are spread 

across the genome, each in their own context and with their own sequence. 

Fernandes et al. reversed the emphasis with the UCSC Repeat browser93 which consists of a 

complete set of repeat reference sequence from RepeatMasker. The UCSC Repeat browser 

displays a consensus sequence of the TE of interest and alignments of the various instances across 

the genome to that consensus. It also provides processed tracks of some publicly available datasets 

of interest such as ChIP-seq data. Thus, the browser enables intuitive visualization of genomic data 

on TE consensus sequences. Since the repeat browser is online, there is no installation process and 

it works on any machine, furthermore it leverages the already familiar interface of the UCSC 

genome browser making it a straightforward and intuitive tool for TE investigation. Paradoxically, 

one of its limitation would be that although its interface and branding are closely associated to the 

UCSC genome browser, the repeat browser is actually a rather independent and standalone tool 

that does not have all the genome browser annotations and tracks available. 

1.4.4 The International Human Epigenome Consortium and its 

Portal 

The developments and improvements in sequencing technologies have allowed a large amount of 

genomic data to be generated. With the interest in the epigenome rising, many groups and 
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consortiums have generated large epigenome datasets. The international human epigenomce 

consortium (IHEC) was formed with the overall objective to understand the extent to which the 

epigenome has shaped human evolution. It is a consortium of international consortium with data 

contributed by 7 members: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-

CREST, and KNIH. Some of its goals are to coordinate the distribution of data across the research 

community with minimal restriction, coordinate development of bioinformatics standards and 

analytical tools to organize and display the epigenomic data generated by the consortium. 

Perhaps as a realization of its goal, IHEC has an online portal94, that provides access to over 7,000 

reference epigenome datasets generated from over 600 tissues. The portal facilitates discovery 

through an intuitive grid interface, data visualization, straightforward sharing and connectivity to 

the UCSC browser for further analysis.  

IHEC is currently preparing a new dataset, the EpiATLAS, which is a uniform reprocessing of 

samples from its many consortiums now including EpiHK and GIS in addition to the former 7 

members. This dataset includes 5473 histone ChIP-seq samples, 645 WGBS DNA methylation 

samples and 1555 RNAseq samples which were grouped into 47 cell categories through cell labels 

harmonization. The data also has extensive metadata data such as health status, donor life stage, 

donor age, phenotypes and sex. This makes EpiATLAS one of the largest, most varied and 

promising uniformly processed dataset to date. 

1.4.5 Other online datasets and tools 

But making data accessible is not the only way to support reuse of scholarly data. Online 

visualization of results and online analysis are a great way to spread knowledge and encourage 

method adoption. For instance, the Genotype-Tissue Expression (GTEX) project makes available 
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genetic associations and gene expression and splicing in 838 individuals over 49 tissues 95–97. The 

data is presented as dynamic plots which make it easy to interpret data and judge it before 

downloading or incorporating it in an experiment. The GTEX project has went on to increase its 

dataset and the experiments it covers. This is another advantage of browser tools; they can update 

while always being up to date for all users. However, this can lead to reproducibility issues so it is 

important to keep versioning and wise to push discrete updates.  

Chip-Atlas is a data-mining suite for exploring epigenomic landscapes by fully integrating 419,000 

ChIP-seq, ATAC-seq and Bisulfite-seq experiments98. Thus it has a large dataset (mining data 

from various sources, including non-human organism), but it also allows running experiments 

directly on the website. Although the data navigation and discovery is not as straightforward as 

the IHEC portal, the analysis and data download of their vast dataset is a great use case. 

Another particularly relevant tool is the Genomic Regions Enrichment of Annotations Tool 

(GREAT)99,100. GREAT is a tool that predicts functions of cis-regulatory regions. While genes are 

usually well annotated with their biological function, non-coding regions are often devoid of such 

descriptions. GREAT infers the biological meaning of a set of genomic regions by analyzing the 

annotations of nearby genes. The tool is available online as a web page which takes BED file (or 

plain text) as input and outputs gene ontologies terms as well as closely associated genes relevant 

to the input regions. The GREAT result benefit from their webpage nature through connectivity 

with and a website like page linkage structure. GREAT served over 1 million jobs as of 2018 and 

has probably only gotten more popular since with its latest in 2022100. 

In brief, TEs are challenging to assess due to their repetitiveness and one of the ways to surmount 

that challenge are complex tools and methods, which can be hard to adopt. In parallel, there is a 

growing amount of epigenome data being made available and visual methods to select and observe 
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the data greatly contribute to accessibility and adoption. While there are some online TE browsing 

tools, it seems to be an area with a lot of untapped potential. 

1.5 Hypothesis and Objectives 

It is clear that TEs are an under-explored component of the human genome with high regulatory 

potential and impact on human health and disease. Due to their repression, TEs are not expressed 

much, however, due to their long history within the human genome, they also had the opportunity 

to integrate the genome and have a regulatory impact through the epigenome. The epigenome 

regulates gene expression across cells, independently from sequence, through changes in 

chromatin state, DNA methylation and histone marks. Together, TE and the epigenome appear 

promising for a larger regulatory and disease impact. 

We hypothesize that TEs have unaccounted regulatory function, are critical to our proper 

understanding of regulation and disease and that their impact is associated with the epigenome. To 

support our hypothesis, we first made a comprehensive analysis of TEs overlap and enrichment 

across the cell types and histone marks within a new IHEC dataset of over 4000 uniformly 

reprocessed ChIP-seq samples. Next, we wanted to make sure that the resulting data from our 

analysis would be used beyond our observations and that our approach was in a privileged position 

to be widely used. We inspired ourselves by some of the various online genome tools to build a 

webtool that reports the results of our analysis in an intuitive and accessible manner and enables 

the analysis of TEs within user uploaded data. Finally, while we mostly investigated the 

relationship between TE and the epigenome through histones, we used a similar approach for some 

perspective on the relationship between TEs and DNA methylation. 
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Chapter 2 

Large Scale Analysis of Transposable Elements 

Interaction with the Epigenome 
 

Preface: bridging text between chapter 1 and chapter 2 

Having introduced our main topics of interest, transposable elements and the epigenome, and 

established our hypothesis of there being some unaccounted for TE modulated genome regulatory 

function in chapter 1, we designed an experiment for a broad survey TEs and the epigenome. 

In this chapter we leverage the EpiATLAS, a new large epigenome dataset from IHEC containing 

4867 samples, including 47 cell types, 6 histone marks and healthy, disease and cancer cells to 

characterize the relationship between TE, cell types and the histone marks. We first broadly 

characterized the overlap between TEs and the histone marks and looked at the enrichments by 

comparing the overlaps to those from TSS distribution matching simulated controls. We then dived 

into TE subfamilies. Since the majority of subfamilies were depleted we focused on a subset of 

the most enriched subfamilies across all samples. For a full perspective on the TEs and their 

associations with the epigenome, we looked at association with TE age, cell types, cell type 

specificity and health status. Due to the large number of combinations cell types, TE families and 

histones, we found an overwhelming number of associations. We devised a candidate selection 

approach to highlight some of the most extreme and cell type specific cell types-histone-TE 
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associations and report them. Our hope is that some of these candidates will be TEs with regulatory 

function related to the cell type they are associated with. 

 

This study was published as a preprint in biorxiv and is meant to be part of a collection of 

publications associated with the release of the EpiATLAS dataset. 

Appendix B contains supplementary figures and tables descriptions. 
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2.1 Abstract 

Transposable elements (TEs) are DNA sequences able to create copies of themselves within the 

genome. Despite their limited expression due to silencing, TEs still manage to impact the host 

genome. For instance, some TEs have been shown to act as cis-regulatory elements and be co-

opted in the human genome. This highlights that the contributions of TEs to the host might come 

from their relationship with the epigenome rather than their expression. However, a systematic 

analysis that relates TEs in the human genome directly with chromatin histone marks across 

distinct cell types remains lacking. Here we leverage a new dataset from the International Human 

Epigenome Consortium with 4867 uniformly processed ChIP-seq experiments for 6 histone marks 

across 175 annotated cell labels and show that TEs have drastically different enrichments levels 

across marks. Overall, we find that TEs are generally depleted in H3K9me3 histone modification, 

except for L1s, while MIRs were highly enriched in H3K4me1, H3K27ac and H3K27me3 and 

Alus were enriched in H3K36me3. Furthermore, we present a generalised profile of the 

relationship between TEs enrichment and TE age which reveals a few TE families (Alu, MIR, L2) 

as diverging from expected dynamics. We also find significant differences in TE enrichment 

between cell types and that in 20% of the cases, these enrichments were cell-type specific. 

Moreover, we report that at least 4% of cell types-histone-TE combinations featured significant 

differences in enrichment between healthy and cancer samples. Notably, we identify 456 cell type-

histone-TE triplets with strong cell-type specific enrichments. We show that many of these triplets 

are associated with relevant biological processes and genes expressed in the relevant cell type. 

These results further support a role for TE in genome regulation and highlight novel associations 

between TEs and histone marks across cell types. 
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2.2 Introduction 

Transposable elements (TEs) are DNA sequences with the ability to duplicate themselves within 

the genome. This transposition is done through 2 main mechanisms which define TE classes. 

Retrotransposons are sequences that use an RNA intermediate which reverse transcribes back into 

DNA and integrates in another genomic location akin to a copy and paste approach; while DNA 

transposons excise themselves before inserting elsewhere using a cut and paste mechanism101,102. 

Within classes, TEs are grouped into families, which capture the elements origin and history, and 

also into subfamilies representing more closely related elements and finer divergence within those 

families19,103,104. Through their replication, TEs have proliferated through genomes and currently 

cover at least 50% of the human genome15.  

 

One reason why TEs have gathered increased attention is due to their involvement in host gene 

regulation. Indeed, while most TEs in the human genome have lost their transposition ability, some 

TEs have been found to be associated with enhancers105. For instance, they were shown to be 

associated with the core regulatory network of human embryonic stem cells4,106 and some TEs 

have been co-opted into the human genome such as an ERV by the Aim2 gene107. Furthermore, 

about 750 SVAs were found to act as enhancers or promoters modulating gene expressions in 

pluripotent cells6. 

 

A recent investigation with 19 different cell types showed that TE encompassed one quarter of the 

regulatory epigenome and that 47% of TE instances could be found in an active state86. This study, 
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primarily centered on epigenetic states, highlighted that cell type specific TE associations could 

be detected. In other studies, the histone mark H3K9me3, a hallmark of heterochromatin, has been 

shown to be associated with repeat elements108,109. More targeted investigations of specific TEs 

such as Alus or L1 and histone marks have demonstrated that TEs can behave as enhancers105,110 

and in a cell-type specific manner111. These results demonstrate that cell type differentiation and 

function may be partly regulated by TEs. However, a comprehensive analysis that relates multiple 

TEs with reference histone marks across distinct cell types is lacking. Thus, we set out to 

investigate TE’s associations with histone marks to better understand TEs and their relationship 

with the epigenome. 

 

With the generation of a large epigenome dataset from the International Human Epigenome 

Consortium (IHEC)94, it is now possible to investigate all TEs in the human genome, across 

reference histone marks in various cell types. The latest IHEC reprocessing EpiATLAS dataset 

makes available 4867 Chromatin Immunoprecipitation sequencing (ChIP-Seq) datasets from 6 

histone marks (H3K4me1, H3K36me3, H3K9me3, H3K27me3, H3K4me3 and H3K27ac), from 

175 annotated cell labels which were grouped into 47 cell types112. This dataset contains novel 

cells types for TE investigation, such as lymphocytes of B lineage and thyroid, has more samples 

of tissues previously reported to be associated with TEs such as twice the brain sample count from 

NIH Roadmap66 , has a larger set of repressive mark data to contrast activating marks, contains 

healthy and disease samples from the same tissue and includes many replicates to characterise the 

variability of our observations. 
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Here, we present an overview of TE overlap found in the EpiATLAS dataset and a comprehensive 

map of TE subfamily enrichment across cell type and histone marks. We investigated the 

relationship between TE enrichment and TE age, we surveyed the TE enrichment across cell types 

and whether they changed depending on health status. We measured the cell type specificity of the 

TE enrichments and identified TE-cell type regulatory candidates in terms of specific and extreme 

associations. Some candidates were associated with relevant biological processes and reports of 

genes expression in the given cell type. Taken together, these results provide a consensus resource 

of the TE profile across cell types and histone marks. 

 

2.3 Results 

A large and varied comprehensive inter-consortium dataset 

Our analysis leveraged the EpiATLAS dataset, a large uniformly processed dataset generated by 

a consortium of consortiums94,112. Specifically, we obtained 4867 ChIP-seq samples for 6 histone 

marks (H3K4me1, H3K36me3, H3K9me3, H3K27me3, H3K4me3 and H3K27ac), coming from 

7 consortiums (Blueprint, CEEHRC, DEEP, AMED-CREST, NIH Roadmap Epigenomics, GIS, 

EpiHK) and prepared by the IHEC EpiATLAS integrative analysis group (Methods). Of the 

consortiums from which the data originated Blueprint & CEEHRC accounted for more than 2/3 of 

the samples (Fig 1A).  Our dataset consisted of 175 different cell labels which were grouped into 

47 broad cell types (Fig 1B). Compared to the NIH Roadmap reference epigenomes66, this 

represents more than five times the number of samples (4867 vs 733), including 6 times the brain 

samples (476 vs 72) and introduced sample in novel cell types such as various lymphocytes (373) 
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(Fig 1B). It is also more than 3 times the number of samples from the more recent ENCODE 

epigenome dataset113 (See Methods). In IHEC, each cell types contained on average 104 samples 

with a mean of 18 biological or technical replicates per assay. While most samples did not have 

all 6 histone marks, they were represented in comparable amounts (Fig 1C) with a larger number 

coming from H3K27ac (1481). Notably, the EpiATLAS dataset also included samples with 

different health conditions: 3557 healthy samples, 1007 cancer samples and 303 diseased samples 

(Fig 1D).   

 

To make sure that the samples obtained from different consortiums were of good quality and 

comparable, we looked at their distribution of peaks relative to genes transcription start sites (TSS) 

and found that it remained consistent within assay across consortium (Supplemental Fig 1A). For 

instance, we find that 84.7% of H3K36me3 peaks were in intragenic regions across all 

consortiums. This was much lower for H3K9me3 samples at around 33.4%. The distinct 

distributions between assays combined with consistency across consortium indicated the data 

captured the similarly located regions across samples. Of the 4867 samples only 253 samples were 

deemed outliers based on peak distribution and were discarded (Supplemental Fig 1B, Methods). 

We visualised the 4614 retained samples through a UMAP dimension reduction on the peak counts 

within genome windows of 10 kilo base pairs (kbp) and found that, as expected, the assay type 

showed strongest clusters (Fig 1E, Methods). Within the assays, the consortium mostly mixed, but 

there were some consortium-specific clusters suggesting either cell-type or sample preparation 

effects (Supplemental Fig 2A). We also note that at that level, cell type associations were not clear, 

except within some H3K27ac and H3K4me1 datasets (Fig 1E-F, Supplemental Fig 2E). We used 

PCA as an alternative data visualization method and also found that assays form clusters based on 
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first 2 PCs, while cell types and consortium do not (Supplemental Fig 2B-C,F). The assay clusters 

are still visible between PC 2 and 3 (Supplemental Fig 2D).  

 

Thus we make use of a more comprehensive dataset, which includes many replicates, novel healthy 

and disease tissues and is consistent even across consortiums, enabling our TE analysis to explore 

new associations and patterns. 
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Figure 2.1 An expansive dataset obtained from IHEC. 
 A| Sample count by consortium B| Sample count for each cell type  C| Proportion of samples in from 

the various assays. D|By health status E| UMAP on peak counts within 10kb regions across the genome 

for the 4614 samples. Only the 20,000 windows with most variance (excluding the first 1000) were used. 

Color represents the assay. F| Same as E but only for H3K27ac with cell type coloring from B. 
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TEs have distinct epigenetic marks association profiles  

Next, to characterize the contribution of TEs to ChIP-seq peaks, we measured the percentage of 

peaks within each sample that overlapped such elements. We found that the overlap with TE 

families remained largely consistent within assays (Fig 2A). On average, 55.8% of peaks were 

found to overlap with TEs and we observed that the activating mark H3K4me1 (54.2%) and 

H3K27ac (50.7%) displayed more similar TE overlap profiles. In contrast, the repressing mark 

H3K9me3 had a distinctively higher TE overlap (78.3%), which is consistent with the reported 

role of H3K9me3 in TE repression109,114,115. We also found that most of the TE overlap came from 

the top 5 most common families (Alu, L1, MIR, L2, ERVL-MaLR, Supplemental Fig 3A). TEs 

can cause multi-mapped reads which can lead to analysis issues. To make sure that mappability 

was not impacting these observations, we used the mappability track from the UCSC Genome 

browser116 (Methods). We found that mappability did not correlate with the overlap we observed 

and only Telo, SVA, Satellite, Centr and acro families featured a median mappability below 80% 

(Supplemental Fig 3A-B, 4). Next, we explored the cumulative and mean TE Length and the TE 

instance count and found that the TE overlap profile was most similar to the instance count 

(Supplemental Fig 3A, C-E).  

 

To better capture TE enrichment, we identified TE families that featured significantly higher 

overlap (p-val < 0.005) than in distribution matched random simulations (Methods). Using the 

difference between the observed and the expected (obs-exp, which we called an enrichment), we 

noted distinct patterns such as an enrichment of L1 and ERV TEs in H3K9me3 and Alu in 

H3K36me3 (Fig 2B). The low enrichment also exposed that while there was high overlap with TE 
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families in the genome, most of it could be attributed to chance and that significant TE associations 

arose from a minority of regions.  

 

Next, to detect more specific associations, we repeated this enrichment analysis using TE 

subfamilies instead of families. We found that the majority of TE subfamilies were not 

significantly enriched (Supplemental Fig 5A) and decided to focused on the most globally enriched 

subfamilies. This was done by adding up all significant subfamily enrichment across all samples 

and selecting the 164 subfamilies with the highest contribution (Supplemental Fig 5B, Methods). 

We then built a heatmap providing a comprehensive overview of TE enrichment for these 164 

subfamilies across 4614 samples and six histone marks (Fig 2C). We observed that TE subfamilies 

within a family tend to feature similar enrichments, for instance, the enrichment in H3K9me3 

appears to be generalised across many L1 subfamilies. The same is true for most family clusters. 

TE families also seem to have distinct histone mark preferences. For instance, within the top 20 

most enriched subfamilies, H3K4me1, H3K27ac & H3K27me3 share a similar profile of MIR and 

L2 subfamilies while H3K36me3 features Alu and H3K9me3 L1 andd ERVL-MaLR 

(Supplemental Fig 5C). 

 

This perspective further supports the antagonism between activating and repressing mark TE 

enrichments and highlighted several enrichment clusters (Fig 2C). The enrichment of L1 in 

H3K9me3 while it is depleted everywhere else may be linked to previously reported TE repressing 

mechanisms49,117. A similarly high association can be found with ERV elements, another family 

noted for being repressed42,44,118. The enrichment of Alu in H3K36me3 stands out and is further 
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investigated in the following sections. We also notice that MIR is highly enriched in marks that 

are depleted for the other TE families (H3K4me1, H3K27ac, H3K4me3), which may be due to 

their association with enhancers110. We found a widespread enrichment of ERVs across the 

different histones albeit at lower levels and less consistently. Since ERVs subfamilies are small 

and might not be the most enriched based on our obs–exp metric, we also explored enrichment 

based on fold change (observed / expected). We found that ERVs, were the most enriched 

according to fold change while Alu, L1 and MIR elements were most enriched according obs-exp 

(Supplemental Fig 6).  

 

Taken together, these results suggest that TE families seem to have distinct preferences for histone 

mark enrichment and shows the complex, yet conserved relationship between TE and the 

epigenome. 
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Figure 2.2 TE displays distinct association profiles with histone modifications  

TE displays distinct association profiles with histone modifications. A| Percentage of peaks overlapping 

TEs colored by TE family for the 4614 samples. Samples are annotated by cell type. B| Difference 

between the Observed overlap (A) and the simulated background overlap for using only significantly 

enriched (p-val < 0.005) TEs. Same annotations as A.  C| Heatmap of the TE subfamily enrichment of 

the selected 164 subfamilies for the 4614 samples. Enrichment (obs-exp in percent, including non- 

significantly enriched TEs). TE subfamilies are grouped by family (x axis), Samples are grouped by Assay 

(y axis) and annotated for cell type. The samples within groups are hierarchically clustered.  
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The different TE families display different enrichment dynamics as they age  

Since older TE instances are more likely to have been either degraded by mutations or co-opted 

by the host genome119, we expect TEs epigenetic profile to change based on their age. It was 

reported in Su et al.105, that older Alus had a profile more like enhancers in terms of epigenetic 

state, conservation and TF binding potential. Pehrsson et al.86 also showed that DNA methylation 

of Alu went down with age. To determine if the age relationship was something that could be 

generalised across all TE families, we performed linear regressions of TE enrichment (mean across 

cell types for each subfamily) as a function of TE age (Fig 3A-B, Supplemental Fig 7). We 

observed that within some families (L1, ERVL-MaLR), many of the younger subfamilies were 

depleted in some mark (H3K27me3, H3K36me3) while enriched in others (H3K9me3) (Fig 3A). 

At the same time, for L1 and ERVL-MaLR, we found a general pattern of TEs within a family 

approaching 0% enrichment as they age (0% enrichment being the equivalent of being near the 

random simulations). This is consistent with TEs being degraded into background as they age120, 

which appears to be true whether they show an enrichment when they are young (H3K9me3) or a 

depletion (H3K27me3, H3K36me3). 

 

While we found that some TE families tend towards no enrichment as they age, we also found a 

few families that diverged from the expected level. Alus show a distinct decline in enrichment in 

H3K4me3, H3K9me3 and H3K27me3 while for H3K36me3 it was an increase (Fig 3B, 

Supplemental Fig 7B). There are also many cases where there were little to no differences as they 

aged, such as for ERVK, ERVL and ERV1 (Supplemental Fig 7C). This exposes that the 
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relationship between TE age and enrichment in the epigenome is complex and varies depending 

on family. We also looked at subfamily average length and instance count as potential cofounders 

and found that there were some correlations with TE age (Supplemental Fig 8). This means that 

those properties could also be associated with the observed TE enrichment evolution over time. In 

addition, since younger TEs tend to be harder to characterize due to mappability issues (less time 

for mutations to generate unique reads), we investigated the mappability and TE age correlation 

and only found it to be noticeable within L1 and Alu (Supplemental Fig 9A). However, we note 

that the less mappable TEs were not necessarily less enriched (Supplemental Fig 9 B,C) and thus, 

unlikely to be the cause of the observed enrichments.  

 

Overall, two contrasting age dynamics were found: some TE families become more enriched or 

depleted as they age and others tend towards the expected background. To better characterise these 

dynamics, we measured the absolute enrichment of old and young TEs. We split the top 50% oldest 

and youngest TE subfamilies per group (Methods). We observed once again that some families 

had diverged from expectation as they aged (Alu, L2, MIR) while others converged to expectation 

(L1, ERVL-MaLR) (Fig 3C). These results are also summarized with more TE families in Fig 3D.  

 

Taken together, these results highlight the complex TE enrichment association with histone marks 

that evolved differently depending on the TE family. 
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Figure 2.3 TE enrichment follows a family and context dependent age continuum. 
A| TE Family enrichment (obs-exp%) in function of estimated age for L1 and ERVL-MaLR in 

H3K27me3, H3K9me3 and H3K36me3. Each point is the mean enrichment (obs-exp%) of a TE 

subfamily across all samples. Black line is at 0% enrichment. Line shows linear regression fit, crosses 

are small sized subfamilies excluded from regression., B| Same as A for Alu TE family. C| Absolute 

enrichment (distance from 0 obs-exp% enrichment) of Young and Old TE subfamilies. Black line 

connects the means of age groups. (*: p <= 0.05,**: p <= 0.01,***: p <= 0.001,****: p <= 0.0001) Color 

in corner represents the trend.  D| Dynamic of TE enrichment between young and old. Categorises the 

observations of C by dynamics and includes additional families. No change: no significant change, 

Diverge: Older TE have higher Absolute enrichment, Converge: Older TE have lower Absolute 

enrichment thus converge to 0.  
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TE enrichment varies between cell types and histone mark contexts 

Next, we were interested in whether TEs could be involved in distinct cellular profiles and we 

measured the association of enrichment with cell types. Since the TE enrichment was primarily 

associated with the assay, we first grouped all samples per assay and then performed t-tests of cell 

type’s TE enrichment (significant only) against the mean for each histone mark and TE family 

pairs and sorted the cell types (Methods, Supplemental Table 1, 2).  

 

For instance, looking at Alus within H3K36me3 due to their unexpected enrichment (Fig 2C), one 

notable cell type was the colon, which were significantly more enriched than the mean (10.9% 

average obs-exp versus 5.5% Fig 4A). We also observed high variability in some tissue’s 

enrichment. Indeed, looking at brain, lymphocytes of B lineage or endoderm derived structure, we 

found some samples enriched from among the lowest across all cell types to the highest (Fig 4A). 

Since each of our cell types were in fact heterogeneous groupings, we then investigated the 

underlying original cell labels. We found that the variability was due, at least in part, to the 

underlying cell label within the assigned cell types (Fig 4B). This exposed a high variability of TE 

enrichment across cell labels, even within a given cell type. We found that the Alu enrichment 

within lymphocytes of B lineage was mainly driven by the B cells (mean 19.3%) and not observed 

in tonsil germinal center B cell (mean 1.1%). Conversely, the colon cell type had more consistent 

results and smaller variance in its enrichment.  

 

We were also interested in the L1 enrichment observed in H3K9me3 (Fig 2C). There, brain had 

the highest enrichment (mean 24.1% versus 13.3% across cell types Fig 4C), which is line with 
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reports of high brain and L1 associations in different contexts. L1s are upregulated in neural cell 

differentiation, in stress (rat hippocampus), brain diseases and for mosaicism while also being 

repressed by H3K9me348,121–123. In contrast to Alu in H3K36me3, keratinocyte, colon and 

lymphocytes of B lineage had lower enrichment relative to mean (Fig 4A-C). This shows that the 

TE associations with histone marks change between tissues. Notably, within the brain cell type we 

find that differently annotated samples could have drastically different levels of enrichment (37% 

to 3%) further supporting that better and finer cell type annotation may help better understand the 

contribution of TEs (Fig 4D).  

 

Finally, we tested if the health status of the samples had an impact on the enrichment levels 

observed in the different cell types. Of the cell types-histone pairs with multiple health status 

available (2024, 33% of samples), we found that 218 cases (4% of the total) of TEs featuring 

significant differences between health statuses (Fig 4E, Supplemental Fig 10). We highlight the 

top 10 of the cell types-histone pairs that had the most significant health associated differences 

(Fig 4F). For instance, we find that in H3K4me1 brain samples TE enrichment was significantly 

distinct between healthy and cancer cells across 21 TE families. We also show the top 4 cases with 

the most significant differences between healthy and cancer samples (Fig 4G). In all those cases, 

we find that cancer samples had a significantly higher TE enrichment.  

 

These results show that different TEs are associated with different cell types and that health status 

can also affect those associations. 
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Figure 2.4 TE are enriched in histones in a cell type specific manner. 

A| Mean Alu Enrichment in H3K36me3 samples grouped by cell type. Each point is the mean of all Alu 

enrichment (obs-exp%, significantly enriched only) for one sample. Boxplot shows distribution across 

samples, number of samples for each cell type listed below. Sorted by category Mean enrichment. Dashed 

line, overall mean. Only cell types including more than one enriched sample are shown. Highlighted in 

red are Cell types displayed in B. B| Underlying cell type label within select cell types displayed in A. C-

D| Same as figure A and B for L1 in H3K9me3 E| Proportion of cases (cell type-histone pairs and TE 

combinations) where there were significant differences depending on sample’s health status. F| Top 10 
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Cell type – Histone pairs with the most TE’s featuring significant differences between health statuses. X 

axis is the number of TE families featuring the significant difference (orange) or having no difference 

(gray). G| Four examples of TE enrichment (obs-exp, significantly enriched only) significant differences 

within cell type – Histone pairs. 

 

 

Identifying notable TE candidates from cell type specific enrichments 

Having found clear associations between TEs and cell types, we wanted to know how specific 

these associations were and if we could leverage their specificity to identify notable associations. 

To get an idea of the cell type specificity of TE enrichments, we first grouped all samples by cell 

type and histone mark and measured the proportion of samples in which each of the select TEs 

were significantly enriched (Supplemental Fig 11A). We found that most TEs were enriched in 

only a few cell types, except for H3K9me3 samples enriched across most cell types. Next, we 

added up the number of cell types in which TE subfamilies were enriched, to measure the cell type 

specificity of TE enrichments and confirmed that it differed based on histone marks (Fig 5A). 

H3K9me3 featured multiple families that were enriched across many (>30) cell types while 

H3K4me3 and H3K27ac are highly specific with few (<30) cell types enriched. In particular, L1 

and ERV TEs were enriched across cell types in H3K9me3, suggesting these TEs are repressed in 

a non-cell type specific way.  We observed that the MIR family had the opposite trend. Although 

a family with few subfamilies, the number of cell types in which these subfamilies were enriched 

was high (~43) in H3K27ac and low (~10) in H3K9me3.  

 

In summary, we found that across all marks, 1663 (21.8%) subfamilies were enriched in 1 to 5 cell 

types, 2827 (37.1%) in 6 to 30 cell types and 928 (12.2%) in 30 or more cell types (out of 47 ell 
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types, Fig 5B).  We catalogued the TE subfamilies that were enriched in a cell type specific manner 

(enriched in 1-5 cell types) and found that ERV1 subfamilies had the most specific TE enrichments 

across all marks (Supplemental Fig 11B). Broken down by histone mark, we find that for 

H3K9me3 only 151 (11.9%) were enriched in 1 to 5 cell types compared to 361 (28.4%) for 

H3K27ac (Supplemental Fig 11C). 

 

Finally to identify TE to cell type associations for further analyses, we selected TE candidates 

through two approaches: (i) cell type specific TE association with high enrichment (top specific 

obs-exp (TS.EN) or fold change (TS.FC)) and (ii) TEs that were much more enriched for a cell 

type than all the others (surplus obs-exp (S.EN) or fold change (S.FC)). For the top specific 

enrichment, we selected as candidates the TE-Cell type-Histone triplets that were more enriched 

than the 95th percentile of their histone group for either enrichment metric (Fig 5C and 

Supplemental Fig 12A). This led to the selection of 219 triplets based on obs-exp (TS.EN) and 219 

triplets based on fold change (TS.FC, Supplemental Table 3). For instance, in H3K4me3, AluYb8 

TE subfamily was selected since it had the highest fold change (14.19) in brain. Similarly, also in 

H3K4me4, L1PA7 was selected since it had the highest obs-exp enrichment (1.11%) in T-cell.  

 

For the highest surplus, we identified the TEs that were much more enriched for a cell type than 

all the others by calculating the difference between the individual cell type TE enrichment and the 

mean across all cell types for each subfamily. We selected as candidate the top 20 TE-cell type 

pairs with the most difference in terms of obs-exp enrichment (S.EN, Supplemental Fig 11D) and 

Fold change (S.FC, Supplemental Fig 11E). The enrichment surplus was dominated by Alu 
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subfamilies associated with Brain, hematopoietic cells and mammary gland epithelial cells. For 

instance, AluY was 5.6% enriched for H3K9me3 in the brain, 4.5% more than the average across 

cell types (1.1%). Meanwhile, fold change surplus was mostly associated with GSAT centr repeats 

and ERV TEs. THE1C-int in H3K27ac had a 16.5 fold change enrichment while the mean fold 

change was only 2.8 fold. From all of this, we compiled a list of 456 cell type-histone-TE candidate 

triplets with their methods of identification (438 from cell type specific TE associations and 40 

from the surplus criteria, with some being shared) (Fig 5D, Supplemental Table 3). Among the 

candidates, we note multiple previously observed associations such as MER11D in placenta56,124, 

SVA_A for Stem cell being in line with pluripotent cell associations6and many Alus being 

enriched in brain125,126.  

 

These observations highlight how our candidate selection managed to recapture many previous 

associations and suggests that some of these new candidates could serve as cell type specific 

regulatory elements and are worth further investigation. 
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Figure 2.5 Identifying notable TE candidates from cell type specific enrichments. 

A| Number of TE subfamilies within each family that were enriched for each number of cell types. X 

axis shows the different TE families, Y axis shows the count of enriched TE subfamilies and the color 

shows the number of cell types the enrichment was observed in (Red=Specific, Blue=Non-Specific).B| 

Pie chart of the number of subfamilies enriched in 3 bins of cell type numbers (or not enriched, gray) 

across all histones C| Fold change and obs–exp % enrichment of significantly enriched TE subfamilies 

per cell type of cell type specific subfamilies (enriched in 5 or less cell types, red segment in B). Labels 

are a random subset of the candidates: most enriched (95th percentile) points in terms of obs – exp or fold 

change. Only 3 histones are shown (H3K27ac, H3K4me3 and H3K9me3). D| Top 40 (10 selected per 

method) of the putative TE candidates annotated by the method of determination in y axis. S.FC is surplus 

fold change, TS.FC is top specific fold change, S.EN is surplus enrichment (obs-exp) and TS.EN is top 

specific enrichment (Obs-exp). 
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Identified TEs candidates are associated with relevant cell type biological processes and 

genes 

Finally, we wanted to determine if we could link any of our 456 putative candidate TE subfamilies 

to potential activity through gene ontology associations. We merged the samples from a given 

candidate triplet to have one aggregate representative per context (merging of all peaks across 

samples from a cell type, assay and TE subfamily, Methods). For each merged sample we also 

generated a TE subfamily control keeping only the select TE’s instances that did not have peaks 

in the aforementioned representative sample (Supplemental Fig 13). This was to check the 

importance of overlapping the histone within cell type for our triplets. Next, we looked at the 

biological processes terms that were significant compared to genomic background with 

GREAT99,127 (Methods). For the 31 H3K27ac triplets, we found that there was some similarity in 

enriched terms between samples covering the same TEs, even across cell types (Fig 6A, 

Supplemental Table 4). Across marks, a similar pattern was observed for a subset of 209 triplets 

(Supplemental Fig 14, 15). It was clear that different processes were enriched within different 

triplets and thus, that TEs were, on some level, associated with different biological processes. 

 

For example, we investigated MER11D in placenta and the associated biological processes and 

found enrichments for female pregnancy, ceramid and sphingolipids translocation (Supplemental 

Fig 14, 15A), all biological processes that are also involved in pregnancy and placenta128,129. We 

found a cluster of peaks within the PSG gene cluster (Fig 6B), near the ABCB1 gene (and 

overlapping RUNDC3B) and near the EPO gene where a peak overlapped a candidate cis-

regulatory elements (cCRE) (Supplemental Fig 16A, B). The PSG gene cluster stands for 
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pregnancy-specific glycoprotein is directly related to pregnancy, while ABCB1 is associated with 

ceramid and transports proteins and EPO promotes blood cells and is secreted from fetal liver.  

 

The enrichment of oxygen associated terms in MER51-int H3K27ac iPSCs also stood out as they 

were highly significant and high in fold change (cellular response to hypoxia, 4 hit, 1005 fold 

enrichment, pval= 9.37E-12; response to hyperoxia, 6 hits, 67 fold enrichment, pval=4.92E-10; 

regulation of release of cytochrome c from mitochondria, 8 hits, 42 fold enrichment, pval=1.95E-

11; Supplemental 14, 15B). With the triplet (MER51-int H3K27ac iPSCs) containing 59 peaks, 

these terms accounted for between 6.78% to 13.56% of the peaks in this cell type. This is consistent 

with the fact that oxygen levels are known to be important in iPSCs and pluripotency130. When we 

looked at the genes that explained these biological processes enrichments, we found 3, BNIP3, 

HDAC2 and HGF. Among those, we highlight BNIP3 a gene linked to the 3 terms and near (within 

50kb) 5 MER51-int associated peaks in H3K27ac. These peaks were missing from other cell types 

and were not found in H3K9me3 samples (Fig 6C). This shows an example of a TE, MER51-int, 

being associated with activating histone mark H3K27ac near a gene associated with biological 

processes relevant to a cell type of interest. We also note that these peaks did not overlap previously 

annotated cCREs, even if some were close (Supplemental Fig 16C). We found that AluY 

H3K4me3 peaks in brain were associated with autophagosome and many peaks around two brain 

related genes, SYT11 and RIT1 (Supplemental Fig 15C, 16D). Finally, we looked at genes near 

peaks and found multiple cases (20-31%; Fig 6D, star annotated genes) of the gene or protein 

product being expressed in the candidate’s cell type. For instance, 32 peaks from L1PA7 

H3K4me3 T-cell triplet were closest to FAAH2 (Fig 6D) a gene highly expressed in T-cell 

according to The Human Protein Atlas (www.proteinatlas.org, Supplemental Fig 17A)131. We also 
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found SLC25A18 (closest to 20 peaks) within H3K36me3 AluY Brain triplet being mainly 

expressed in brain and ABR (closest to 35 peaks) for H3K4me1 AluSx1 Brain triplet was also most 

expressed in brain (Supplemental 17B, C).  

 

Taken together, these results show that through our candidate selection, we could find cases of TE 

instances in proximity to genes associated with biological processes relevant to their cell type. 

 

Figure 2.6 TEs associates with cell type relevant biological processes and genes. 

A|Fold change enrichment difference from TE control of GO biological processes within H3K27ac 

candidate triplet (TE-Assay-Cell Type) samples. (fold change data – fold change of associated TE 

control) red enriched, yellow between -1 and 1, blue depleted. Circle sizes represents significance of the 

enrichment. Terms selected based on data, favored most enriched terms per candidates. In rectangle are 

some mentioned processes.  B| Genome tracks around PSG gene cluster (blue highlight) showing a cluster 

of MER11D overlapping peaks from H3K27ac placenta sample C| Genome tracks around BNIP3 gene 

(blue highlight) showing a few nearby MER51-int instances (green highlight) and IPSC H3K27ac and 

H3K9me3 tracks, as well as an H3K27ac IMR90 sample track, all from the IHEC portal (part of the 

underlying samples, but distinct from the actual data used due to the reprocessing). D| number of peaks 

near genes (within 50kb) found within candidate triplets samples. Colored by TE family, only top gene 

per sample shown. star: supported RNA/protein expression data, red star: weaker support. 
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2.4 Discussion 

A number of recent studies have suggested a role for TEs in genome regulation 48,61,80,107,132–134. In 

this context, a comprehensive study of TE and their association with the epigenome was needed. 

Here we investigated, 4614 samples spanning 175 cell annotations from 47 cell types and 6 histone 

marks. On average 55.8% of peaks were found to overlap with TE and that the overlap varied 

greatly depending on the histone mark investigated. This is in line with the observations by 

Pehrsson et al.86 where they found varying degrees of TE overlap depending on epigenetic state. 

We also observed that H3K9me3, a less investigated repressive mark, had far more overlap with 

TEs (78.3%). We find that H3K9me3 is enriched especially in L1 and that this enrichment was not 

cell type specific. There was almost no enrichment in L1 for other histone marks. The role of 

H3K9me3 in silencing TE was established before48,115,117 and was particularly highlighted in the 

context of brain tissue49,123. Our findings suggest that L1 is specifically being targeted by 

H3K9me3 histone modification across tissues to silence it.  

 

While observing an association of TEs with a repressing mark was expected, we also found distinct 

enrichment of Alus with H3K36me3. Alus are one of the few TE families still able to transpose in 

the human genome136. In contrast to L1, they featured little association with H3K9me3. We also 

found that ERVs TEs were the most widespread TEs with some level of enrichment across most 

histone marks further supporting the ERV’s contribution to the transcriptional landscape80,137. 
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The TE-age association is a perspective that is worthy to explore as it relates to the time a TE had 

to be co-opted or decay within the genome. It was previously found that Alu and SINE become 

less methylated as they age86, Alu become more preferred by H3K36me3 as they age105, that older 

SINE are more in open chromatin and that generally TEs lose their motifs as they age138. Su et al. 

proposed Alus as proto-enhancers due to their general properties becoming more enhancer like as 

they aged and we were interested in seeing if that observation held true for other TEs. We found 

that while their general observation for Alu held true, the overall relationship between other TEs 

and TE age was complex. We find that in L1 and ERV TE families, whether they start enriched or 

depleted, TEs tend toward no enrichment as they get older. This can be interpreted as most TE 

degrading into background which is supported by previous results138. Notably, we found that some 

TE families (Alu, MIR, L2, Fig 3D), instead diverged from no enrichment as they got older, 

indicating they either became more enriched or depleted. This can be interpreted as most TE 

degrading into background which is supported by previous results138. Our results highlight varying 

TE family associations with histone marks and evolutionary trajectories over time. 

 

The idea that TEs are involved in a cell type specific way has been supported by many studies 

111,139 and here, with our large and varied dataset, we aimed to test and establish to what extent the 

association of TEs and the epigenome was cell type specific. We found that TEs can be enriched 

within histone marks in a cell type specific manner. While most cell types have a similar TE 

enrichment, select tissues displayed significantly distinct enrichments depending on TE and 

histone mark. Alus in H3K36me3 were significantly more enriched in colon than most other 

tissues. We also found a high enrichment within Lymphocytes. The importance of TEs in the 

immunity has been reported before 58,107,132,140 and here we also observe high variability which is 
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a factor of developing importance in the context of immunity141.  L1 TEs were more enriched in 

brain than most other TEs within H3K9me3, which supports previous reports of L1 associations 

with brain48,122,123  and H3K9me342,43,117 . We also found that in 4% of cell types-histone 

combinations cancer (or disease) samples could also feature significantly different TE enrichments 

than healthy ones. However, due to our datasets limited focus on health status contrast, we may be 

missing a lot of health associated TE enrichment differences.    

 

We also measured cell type specificity of TE enrichments, through the number of cell types in 

which they were enriched. We found that TEs tended to be specific for most subfamilies in the 

activating marks while they were more non-specific subfamily in H3K9me3 (Fig 5A, supplemental 

Fig 13C). In contrast, we note that MIR elements were non-specific in H3K27ac while specific in 

H3K9me3 (Fig 5A). Given previous reports of MIR enhancer activity110, we speculate that MIR 

is widely present in enhancers but selectively repressed for cell type specific purposes.  

 

Finally, we used a set of criteria to identify 456 enriched cell type-histone-TE candidates (Fig 

5D,G). We found that within our candidates, some biological processes were enriched in specific 

triplets. Among our candidates we identify MER11D in H3K27ac related to placenta and 

extraembryonic cells. The association between MER11 and placenta was observed before56,124 and 

we found a cluster of MER11D associated peaks within the PSG gene cluster. We also highlight a 

MER51-int H3K27ac iPSCs enrichment in oxygen associated terms (Fig 6A). This enrichment 

came in part from MER51-int elements near BNIP3 gene which were missing from repressive 

mark and some other cell types (Fig 6C). Looking directly at genes, we found that the genes closest 
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to our peaks, tended to have been reported as expressed within the triplet’s cell type. However, the 

fact that the associations came from peak clusters near the same genes might be a confounding 

factor. 

 

While our large and heterogeneous dataset enabled our comprehensive study, it also came with 

some limitations. First although a harmonized reprocessing was made through a singular pipeline 

for all samples, some batch effect from the different consortium could still be detected. However, 

since different consortium mostly investigated different cell types, the specific cell types within 

the categories would also influence such differences. Additionally, we observed many cell type 

specific enrichments but it would be interesting to perform a similar TE analysis on single cell data 

to better capture the differences between cell types which could be lost in our bulk and aggregated 

data. Finally, due to the ambiguity that comes from multi-mapped reads, only uniquely mapped 

reads were used for in this study. Since TEs can lead to multi-mapped reads89, it is likely that some 

TE reads, and thus TE peaks, may have been lost leading to underestimating enrichments. It would 

be interesting to assess the exact TE contents lost from multi-map reads in future studies. 

 

In summary, our data present an comprehensive overview of TE contents across histone marks and 

cell types. It shows the consistent yet complex relationship between TEs and the epigenome and 

further supports the implication of TEs in genome regulation. 
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2.6 Methods 

Data Collection 

The dataset was downloaded from the IHEC EpiATLAS integrative analysis sFTP server on 

January 23rd 2023 and also available on the IHEC data portal (https://epigenomesportal.ca/ihec/ , 

https://ihec-epigenomes.org/epiatlas/data/ ). The available ChIPSeq narrowPeak files for the 6 

main histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9me3, H3K36me3) were 

downloaded. The narrowPeaks were obtained using GRCh38 reference build, with pval of 0.01. 

The data downloaded included samples from 8 consortiums (Blueprint, CEEHRC, ENCODE, 

DEEP, NIH Roadmap Epigenomics, AMED-CREST, GIS, EpiHK). The cell type and all metadata 

annotations was taken from the IHEC metadata harmonization v1.2. Only samples with an Epirr 

id within the metadata v1.2 were used (ENCODE samples were dismissed). Comparison were 

made with Roadmap complete Epigenomes while only considering the 6 main histone marks. 

https://epigenomesportal.ca/ihec/
https://ihec-epigenomes.org/epiatlas/data/


52 

 

ENCODE dataset sample count for comparison was obtained by filtering within the Experiment 

matrix, epigenome dataset for the 6 main histones totalling 1426 available samples 

(https://www.encodeproject.org/, Jan 2024).  

 

Quality control and sample selection 

For each sample, we measured the distribution of peaks within regions relative to transcription 

start sites (TSS). Peaks were attributed to the first group they fell within among: TSS (within 1000 

bp from TSS), Promoter (within 5000 bp upstream of TSS), Intragenic (Overlapping genes), 

Proximal (within 10 kbp from TSS), Distal (within 100 kbp from TSS) and desert (further than 

100 kbp from TSS). The coverage of each region was compared between samples from the same 

histone mark and samples that were an outlier (according to boxplots, above (75% quantile) + 1.5 

* interquartile range (IQR) or bellow (25% quantile) - 1.5 * IQR) in the covered percentage for 2 

different regions were discarded. In addition, samples that were outliers in terms of peak count 

when grouped by histone marks were also discarded. 

 

Dimension reduction on ChIP-seq samples 

To have broad overview of our samples similarity and do dimension reduction to display the data, 

we counted the number of peaks within 10 kbp windows across the entire genome using bedtools142 

intersect for each sample. We sorted the windows by variance across the samples and kept the top 

21,000 windows before discarding the top 1000 to protect against potential irregularities (e.g. 

regions with very high coverage). This resulted in 20,000 windows upon which UMAP was 

performed with r umap package using default arguments with 400 epochs.  
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Measuring TE enrichment 

Histone mark peaks were annotated using the UCSC RepeatMasker track15. We resized the peaks 

to 200bp around their center and counted the number of times ChIP-seq peaks overlapped TE 

instances with bedtool intersect, when more than one TE overlapped the peak, the largest overlap 

was kept. As done before 80,143, to have a random baseline to compare against, we simulated for 

each sample a library of 200 bp random regions, with the same distribution of distances to nearest 

genes. This was done using the distribution of peaks described in Quality control and sample 

selection method.  For each sample, the simulation was repeated 1000 times and we counted the 

incidence of observed count being higher than the random baseline for each repeat subfamily. A 

repeat subfamily was identified as significantly over-represented (enriched) when the over-

represented incidence was greater than 995/1000 (p < 0.005).  coverage percentages were 

measured as peaks overlapping TE/sample (or simulated sample) peak count. Observed – Expected 

metric was calculated by subtracting the expected coverage (resulting from mean across the 1000 

simulations) from the observed coverage from the sample. Significant Observed – Expected was 

calculated using the only the repeat subfamilies identified as significantly overepresented (thus 

always positive, because observed in inherently higher than expected for each subfamily used). 

 

Selection of the most enriched TE subfamilies 

The most enriched TE were selected by doing a cumulative sum of the positive (>0) enrichment 

(observed-expected) TE subfamilies (excluding the simple_repeats) across all samples. Upon this 



54 

 

cumulative measure, the threshold was set as the value of the upper whisker of a boxplot, the value 

beyond which values are considered outliers. It was defined as (75% quantile) + 1.5 * IQR. 

 

Correlation between samples and TEs 

The correlation between samples was done with a matrix keeping the count of peaks found within 

the 20,000 10 kbp windows with highest variance (as described in the Dimension reduction on 

ChIP-seq samples section above) on which we grouped samples by assay and calculated the mean 

peak count per assay for each window. Then, the correlation between the assays was calculated 

with the Corr function in R. 

The correlation between TEs was done with a matrix keeping the Observed – Expected (%) 

enrichment of the selected TE families for each sample on which we grouped the samples by assay 

and calculated the mean enrichment per assay for each TE family. Then the correlation between 

the assays was calculated with Corr function in R. 

 

Estimation of TE Mappability, age and age categorization 

TE mappability was calculated using the 50 bp Mappability track116 from the UCSC Genome 

Browser, which is a conservative estimate of the true mappability since most of the reads in IHEC 

were targeting 75 bp and mappability increases with read length. The coverage of all TEs (also 

UCSC track) by the 50bp Unique Mappability (Umap 50) track gave us the proportion of each TEs 

that could be uniquely mapped which we used as mappability metric. The age estimates of each 

TE were based on the sequence divergence (milliDiv value from RepeatMasker) as described in 
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Bogdan et al.132 We first divided the milliDiv value of each TE by 1000 and then by 2.2x10-9, the 

substitution rate of the human genome to calculate the age. The age of each family and subfamily 

was then obtained from the mean of all their instance’s age. We categorized the subfamilies into 

Old or Young depending on the subfamily’s age rank within the family. The youngest 50% were 

categorised young and oldest 50% old. For the dynamic groupings, if the difference between the 

old and young TE absolute enrichment (absolute value enrichment) was less than the young 

absolute enrichment (did not double or halve) and the p-value was larger than 0.05, the context 

(TE family for Histone mark) was deemed to have no change. If there was change, when the Old 

TEs absolute enrichment was larger than the Young TE’s the context was categorized as diverging 

(moving away from 0 enrichment) and otherwise converging (approaching 0 enrichment). 

 

Candidate selection 

We selected TE candidates through two approaches: (i) cell type specific TE association with high 

enrichment (top specific obs-exp (TS.EN) or fold change (TS.FC)) and (ii) TEs that were much 

more enriched for a cell type than all the others (surplus obs-exp (S.EN) or fold change (S.FC)). 

For the top specific enrichment, we selected as candidates the TE-Cell type-Histone triplets that 

were more enriched than the 95th percentile enrichment of their histone group for either enrichment 

metric (obs-expected or fold change). For the surplus method, we calculated the mean TE 

enrichment across all cell types and subtracted it from each cell type’s enrichment. We selected 

the top 20 (for both obs-expected and fold change) 
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This resulted in a final set of 456 candidates. For a more restrained and manageable set, we selected 

a subset of the top 15 most enriched candidates per histone for top specific obs-exp and fold change 

using their respective metric (obs-exp and fold change, respectively). We thus had 90 top specific 

obs-exp candidates, 90 top specific fold change and the 40 surplus candidates. This resulted in a 

reduced set of 209 candidates (due to some candidates being identified by more than one method).  

 

Identification of associated GO terms 

To identify the GO terms associated with TEs depending on histone or cell type, we first merged 

all bed files by cell type and histone to have 1 representative per doublet (e.g. peaks from 

H3K9me3 in Brain cells). We then split the merged samples by TE to have the peaks associated 

with each TE for all doublets and resulting in triplets (e.g. peaks from H3K9me3 in brain cells 

overlapping L1PA4). As a control to observe the influence of TEs on their own, triplet controls 

were made by taking all instances of the given TE (straight from repeatmasker) and removing all 

those that overlapped peaks from the given triplet. These triplet controls represent the instances of 

the TE not within peaks of the cell type and histone (ex: L1PA4 peaks that are not in H3K9me3 

brain peaks). We obtained the associated GO terms from these Triplets and associated controls 

using the R version of GREAT (rGREAT)127. We used the default configurations (5kb upstream, 

1kb downstream, up to 1000kb) and background (genomic background) for the analysis. To 

account for the use of genomic background, the same analysis was made on the controls which 

were used to assess if the enrichment observed could be explained by our controls (TE itself or 

Histone-Cell type doublets). For visualisation purposes, GO term p-value was capped at 10E-200. 

The GO terms to show are selected by sorting the terms by p-value first and fold-change second. 

The genes supporting the GO term associations as well as the location of relevant peaks were 
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obtained by using the GREAT website (https://great.stanford.edu/great/public/html/index.php) 

version 4.04, hg38 and default configuration. 

 

Visualisation 

Figure generation was done using R144, heatmaps were made using complexheatmap145 

 

  

https://great.stanford.edu/great/public/html/index.php
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Chapter 3 

Building a Web Tool for Transposable Element 

Enrichment Visualization and Analysis 
 

Preface: bridging text between chapter 2 and chapter 3 

In the experiment described in the previous chapter we did a comprehensive analysis of 

transposable elements in the epigenome across histone marks and cell types. We highlighted some 

of the most striking results and presented some putative regulatory TE candidates. However, with 

a set of more than 300 histones and TE family combinations, each with their measurements of 47 

cell types, it was clear that we could not cover every noteworthy association within a publication. 

Furthermore, we only noted the standout association such as extreme TE enrichments or large TE 

enrichments differences between cell types, we could not even begin to cover all the subtler yet 

biologically striking results requiring specific cell type expertise. 

In this chapter, we set out to make this data more accessible by building an online portal. Inspired 

by some of the tools we used (or failed to) during the project of Chapter 2, I determined that an 

online tool would be the best way to minimize friction and encourage adoption. We leveraged 

some of the results from Chapter 2 and built an interface to enable querying specific combinations 

of TE, cell type and histone marks. Our objective was for anyone who saw the results of Chapter 

2 but was interested in a context that we did not cover in the main text to be able to query it 
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themselves. In this way, our results become more than our own conclusion but rather, serve as a 

resource.  Once our tool could display our TE enrichment and overlap measurements we thought 

to expand the tool with an analysis functionality. We thought that an atlas was useful, but the 

ability to for other researchers to assess their own data and compare it to all the data available on 

the portal would be even better.  The objective for the portal is thus two fold, first, to answer any 

TE curiosities of researchers and second, to ease in the adoption of measuring TE overlap and 

enrichments through a simple, no installation TE analysis functionality. Although Chapter 2 and 3 

both use the EpiATLAS dataset, disparities between in results values may happen due to 

differences in the specific version used. 

 

This manuscript is to be submitted. 
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3.1 Abstract 

Motivation 

Transposable elements (TEs) are genomic sequences that can create copies of themselves and 

move within the genome. TEs cover about half of the human genome and there is a growing 

amount of studies that support their implication in genome regulation, their co-option and their 

association with cancer. However, their repetitive nature makes them challenging to analyze and 

thus often overlooked. The specialized tools needed to analyze TEs are often complicated to use 

or targeted to a specific TE family. In a previous study, we leveraged 4614 ChIP-seq samples from 

the EpiATLAS dataset and did a comprehensive analysis of the relationship of TEs with 6 histone 

marks and 47 human cell types. However, due to the number variable combinations, there were 

too many associations to highlight. We thought that those results could be useful to other 

researchers and that, in order to expand the consideration of TE involvement in genomic studies, 

they should be shared in an accessible and intuitive manner.  

Results 

Leveraging results from our previous study, we developed a web tool, TEExplorer, which makes 

available TE enrichment data for 57 cell types across 6 histone marks and works as an Atlas of TE 

overlap and TE enrichment across histone marks and cell types. The tool has 3 sections: the TE 

overview, TE subfamilies and Import sections. Within TE overview, the user can have a broad 

look at TE families and their overall overlap and enrichments across any of the 57 cell types and 

6 histone marks. The TE subfamilies section allows the investigation of TE subfamilies within a 

Select TE family. The section reports the TE enrichments or overlap of the TE subfamilies within 

a select histone mark across cell types.  Finally, the Import section allows users to upload their 
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own ChIP-seq BED file and obtain the TE overlap and enrichment of their own data and to 

compare their data with the EpiATLAS dataset. For the last 2 sections, the resulting overlap and 

enrichment can be downloaded as a table and 3 TE metrics can be visualized. With TEExplorer 

researchers with an interest in a particular histone mark, cell type or TE explore all the existing the 

associations found within the large EpiATLAS dataset with a dynamic interface.  

Availability 

Online portal: https://teexplorer.c3g.sd4h.ca 

  

https://teexplorer.c3g.sd4h.ca/
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3.2 Introduction 

Transposable elements (TEs) are DNA sequences with the ability to transpose and duplicate 

themselves, which cover about half of the human genome102.  The ability to duplicate themselves 

has generated some interest in their potential to act as regulatory units that disseminated regulatory 

sequences throughout our genome33. However, due to our limited ability to characterize TEs 

because of their repetitive nature89, much of their potential has only recently started to be explored. 

Moreover, uptake is still limited because their importance within regulation still isn’t widely 

known and their analysis requires specialised tools which are often hard to use. Notably, one of 

the ways to spread scientific methods and approaches is to share data and results but it is just as 

important to make that the data is easily accessible and interpretable146. Some of the most 

widespread methods such as GREAT99 and the UCSC genome browser92 or datasets such as 

ENCODE147, GTEX96 leverage an online interface for ease of access, usage and sharing. These 

resources all highlight that when data and tools are made easy to use and interpret, it greatly 

expands their usage by researchers. The international human epigenome consortium (IHEC)94 is a 

consortium of international consortiums with the overall objective to better understand the role of 

the epigenome in human evolution. The consortium makes available a large number of epigenome 

datasets including histone mark ChIP-seq samples. Recently the consortium has been working on 

a new uniformly reprocessed dataset, the EpiAtlas. 

In our previous study148 leveraging the IHEC EpiATLAS new dataset, we presented a 

comprehensive overview of the relationship between TEs, cell types and the epigenome. This 

included TE overlap with histone marks and TE enrichments measured by comparing observed 

overlaps relative to random control overlaps. However, we could only highlight some of the most 



64 

 

striking examples that we detected, and we believed that there are many more noteworthy 

associations.  We wanted to make our results available in an easily navigable and interpretable 

manner and promote TE consideration by making similar TE analysis easy to initiate. 

Here we present TEExplorer, a web portal that makes available TE enrichment data for 57 cell 

categories across 6 histone marks, which can be plotted and presented for 3 different metrics and 

investigated at the level of 60 TE family or 1,426 TE subfamilies. Notably, the portal also allows 

users to upload their own data for a rapid analysis of the TE overlap and enrichment of their own 

samples as well as to compare user results to those of the large IHEC consortium. 

 

3.3 Dataset and Features 

3.3.1  Data and structure 

To enable our web tool, we used data from EpiATLAS dataset from the IHEC94 and our previous 

TE study148. The data included 4614 Chromatin Immunoprecipitation sequencing (ChIP-Seq) 

samples from 57 cell types across 6 histone marks (H3K27ac, H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, H3K9me3). We obtained the overall TE overlap from all the samples as well as their 

associated controls from the former TE assessment of the EpiATLAS dataset, a uniformly 

reprocessed dataset of samples from 8 consortiums within the IHEC. Through this we obtained 

6,572,151 measurements of ChIP-Seq peak overlaps with TE and the associated expected overlap 

from controls.  We also used RepeatMasker’s15 data for TE family information and the 50 bases 

pair UCSC mappability track116 data for mappability estimations. The data was summarized into 

2 databases that covered the two main TE data granularity, TE subfamily and TE family. The TE 
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subfamily database contained an entry for each TE subfamily per sample and its cell type, assay, 

observed overlap count, expected count from random simulations, total peak count in the sample 

and calculated metrics such as observed-expected count and fold change over expected. The TE 

family database was a pre-calculated aggregate of the former database where we grouped added 

up all overlap count within subfamilies to tally family level totals per samples. Following the tally, 

fold change is calculated through observed/expected. This allowed us to save computations on 

always adding subfamilies for all family level results. 

 

The webtool is divided in 3 sections, the TE overview section for a broad look at TE families and 

their overall enrichments, the TE Subfamilies section to investigate a specific TE subfamily within 

a select histone mark across cell types and TE subfamilies and the Import section allows users to 

quickly obtain the TE measurements of their own data as well as to compare it with the EpiATLAS 

dataset. 
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Figure 3.1 Overview of main plots from TE overview and TE subfamilies sections 

A) Bar plot of mean TE overlap within the 6 histone marks broken down by TE family (fill 

color). The results shown depend on the user input query. B) Heatmap of TE subfamily 

enrichment of the samples matching the user input query, left bar annotations are cell type, top 

annotations are TE families. C) Mean enrichment of TE families for each selected assay D) 

Boxplot of TE Family enrichment of selected TE family (here Alu) across cell types sorted in 

descending mean order. E) TE subfamily enrichment heatmap of the TE subfamilies within a 

chosen family (here Alu) within cell types. F) TE subfamily enrichment boxplots within a 

chosen family (here Alu) across cell types (boxplot colors). Shown in zoom in on a specific 

subfamily (AluSz), the plots E, F, G are interactive and can zoom on select part for more clarity. 
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3.3.2 TE overview 

The TE overview tab provides an overview of TE family enrichment across cell types and histone 

marks (Figure 3.1A,B,C). By default, this section displays data for all major TE families across all 

cell type and histone marks, but users can select specific TE families, histone marks and cell types 

of interest for more specific inquiry. After selecting the input and running the query, this section 

displays 3 plots. First a barplot the percentage of TE overlap for all selected histone and TE 

families (Figure 3.1A). Second, a heatmap of the TE enrichment relative to control (observed – 

expected) for all samples matching the query parameters across the TE subfamilies within the 

selected families (Figure 3.1B). By default, only the top TE subfamilies are shown but all 

subfamilies can also be toggled on. The third plot is a bar plot of the enrichment relative to control 

of TE families (Figure 3.1C).  

With these plots users can get an idea of which TE families are most present in each cell type for 

the various histone marks. The heatmap enables the comparison of enrichment profiles between 

samples and cell types. 

3.3.3 TE Subfamilies 

The TE subfamily tab allows the investigation of specific TE families and their subfamilies 

coverage and enrichment across cell types. The user can select a TE family and a histone mark and 

obtain a breakdown of the TE enrichment or observed count across cell types and subfamilies. 

This section first reports basic information of the selected TE family (instance count, subfamily 

count and estimated mappability) and displays a boxplot of that family’s enrichment or observed 

count for the selected TE family and histone across cell types (Figure 3.1D). It also reports the TE 
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enrichment or count for each subfamily within the select TE family across the cell types as a 

heatmap (Figure 3.1E) and boxplots (Figure 3.1F). Finally, the data from the query can be explored 

as a table and also downloaded. 

Through this section, users can gain insight on the level of enrichment of a chosen TE across cell 

types and have a breakdown of the TE subfamilies contributing to this enrichment. 

3.3.4 Import  

The import tab allows users to import their own bed and get their TE overlap as well as TE 

enrichments and comparisons to the EpiATLAS data. The user can upload multiple bed files and 

select which cell type and assay (histone) to compare them to (this would usually from the same 

cell type as their samples, Figure 3.2A). When the analysis is launched, the uploaded files TE 

overlap is measured and compared to the EpiATLAS pre-generated random control TE overlaps 

(matching the cell type and assay query). The samples are also projected upon a UMAP plot to see 

if it aligns with the EpiATLAS data as a visual quality control(Figure 3.2B). 

This section reports the TE overlap percentage broken down per TE family for each sample as well 

as those from the mean of all EpiATLAS samples matching the selected cell type and assay (Figure 

3.2C). The user can then choose between 3 metrics for the other results plots: Observed – Expected, 

Observed count or Fold change. The web tool then displays a heatmap of the TE subfamilies for 

the uploaded samples in comparison to the EpiATLAS samples matching the query (Figure 3.2D), 

the mean TE family enrichment or mean observed count within each uploaded samples, and then 

two TE subfamilies breakdown as boxplots (Figure 3.2E) and a heatmap (Figure 3.2F), once again 

comparing the user data to the EpiATLAS samples. Finally, we also report a table of the data 

which includes the TE count for each subfamily per sample, the total peak count within the sample, 
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the expected count according to the chosen cell type and assay as well as two enrichment metrics, 

Observed - Expected and Fold change. This table can be downloaded to power further analysis or 

allow custom plotting.  

These plots and data allow users to get an overview of the TE content of their own data and 

compare it to the existing EpiATLAs data. It can give an idea of which TE families and subfamilies 

are most present, if they are found more than expected. If all cell types are chosen, it can also be 

used to identify which cell type the uploaded cell type is most similar to. 
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Figure 3.2 Main plots of the Import tab 

A) Interface of data upload and input selection. B) UMAP on peak counts within 10kb regions 

across the genome for the EpiATLAS samples. Only the 20,000 windows with most variance 

(excluding the first 1000) were used. Color represents the assay. Overlaid green diamonds are 

the uploaded samples using the same method and regions.  C) Bar plot of TE coverage the 

EpiATLAS data from selected histone and cell category and associated random simulation (top) 

and of the uploaded samples (bottom) D) TE enrichment relative to random controls of select 

subfamilies from EpiATLAS data (top) TE enrichment relative to the mean of random controls 

of the uploaded samples. E) Boxplot of the TE enrichment of TE subfamilies within a chosen 

family (here Alu). Compared between the EpiATLAS data and the uploaded samples 

(imported). F) heatmap of the TE enrichment of the TE subfamilies within a chosen family (here 

Alu) within samples. Shown in EpiATLAS samples (top) and the uploaded samples (bottom). 

The values shown in D, E and F can be Observed – Expected (shown), Observed count or Fold 

change. For all plots EpiATLAS samples used are a subset matching the chosen cell type and 

assay. 
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3.4 Implementation and methods 

3.4.1 Implementation and data transformation 

The webtool is powered by R144 and R shiny and is available online at 

https://teexplorer.c3g.sd4h.ca.  To improve performance, the data which were large tables were 

converted into sqlite databases149.  

For quality control purposes and to compare samples, we kept a sample peak approximation in the 

form of the total peak count within 10 kilobase pair (kbp) windows across the genome. These 

counts were tabulated into a table of 321186 rows per sample is reduced to the 20 000 most variable 

windows by variance and the index of these windows to reuse on user uploaded data. We ran a 

UMAP150 (from umap R package) dimension reduction on those 20000 windows for all samples 

and show the first 2 dimensions in a plot that shows sample similarity and retain the model for user 

uploaded data projection. 

3.4.2 Data import 

The webtool can analyze bed and bed-like files such as narrow and broad peaks. The human 

reference used is hg38. Uploading up to 50mb of files is allowed. For each uploaded hg38 bed file, 

an overlap with the RepeatMasker TEs and with a template bed file of 10kbp windows across the 

genome are performed using genomicranges151 and counts of peaks overlapping TEs and 10kbp 

windows respectively are obtained. By default, the uploaded peaks will be resized to 200bp in 

order to match the size of the peaks that were used for the EpiATLAS data. Of the 321186 10kbp 

windows, the 20 000 most variable windows from our data, as previously determined and saved, 

are kept. To compare the user uploaded samples to those from our data, we project the user samples 

https://teexplorer.c3g.sd4h.ca/
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(with the R predict function applied to the retained umap model) onto the previously generated 

calculated UMAP plot on the EpiATLAS data. Since this is a computationally intensive step it is 

hidden by default and only calculated if the user expands the Quality control section. 

 

The TE overlapping counts of uploaded samples are kept as a separate table with proportions being 

calculated through peak overlapping TE count/peak count in sample for each subfamily. 

For the TE enrichments and comparisons between user and our data a new temporary table is 

created by combining a subset of our dataset that matches the chosen cell type and assay. The 

subset’s expected counts are averaged across all samples and used as the user uploaded sample 

expected TE counts. This provides a random sample approximation without having to perform all 

simulation the computation. 

3.4.3 Data visualization 

The plots were generated with ggplot2, plotly for dynamic plots as well as complexheatmap145 for 

the static heatmaps. The overall interface was powered by shinydashboard and shinyWidgets152. 

3.5 Conclusion 

In summary, TEExplorer simplifies TE consideration by allowing researchers without TE 

expertise to explore which TEs are predominant within their experiment and how these TEs 

compare to expected levels. Thus, the portal can highlight whether TEs could have been 

overlooked within an experiment.  From our previous study, we found more associations between 

TE, histone and cell type than we could ever highlight. This portal allows researchers with an 
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interest in a particular histone mark, cell type or TE interests to explore a vast array of associations 

directly. It can also quickly provide researchers with the TE overlap and enrichment of their own 

ChIP-seq BED files and show how it compares to the portal’s data and the simulated controls used 

for the portal’s analysis. While specialized tools will always be necessary for more in-depth TE 

analysis, our portal establishes a straightforward starting point towards greater TE consideration. 
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Chapter 4 

Discussion of Results 

This thesis has shown the various ways in which TEs have and may continue to impact the human 

genome. In Chapters 2 and 3 we presented an overview of TE’s association with the epigenome, 

in Chapter 3 we improved this overview by adding more metrics, performing analysis at the 

subfamily level and developing a dynamic interface to visualize the results for any subset of user 

interest. We have compiled and made these results accessible on a web portal and developed a 

process for other researcher to obtain comparable TE analysis. I believe that these results bring 

novel insight into the importance of TEs and their intricate relationship with the epigenome and 

that they will help expand their consideration in genomic research. In this chapter, I will discuss 

some more specific results related to my methods, the associations between TEs and histone, cell 

types, health and DNA methylation. I also discuss some use cases for my tool TEExplorer. 

Associated supplemental figures are in Appendix C 

4.1 Distribution Matching Simulated Controls 

The two data chapters leverage the implementation of a distance to TSS distribution matching set 

of simulated controls. This allowed us to have, by the virtue of matching the sample’s peak 

distribution, more representative controls that could be generated for all samples. A common 

approach to controls in genomic experiments is to use randomized or scrambled simulated 

samples. These allow the comparison of observed measurements with what would be expected by 

chance. Since transposable elements are not randomly distributed, adjusting the distribution of our 

simulated controls such that it was not fully random, but rather representative of the sample was 
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an elegant solution. This ensured that peaks did not go in regions where they wouldn’t be expected 

in the first place for TEs and were not biased by the nature of a general control. Although, the 

simulated samples were rather similar to each other, there were still some slight differences in 

terms of the TE constitution of these simulated samples, especially between assays, no doubt due 

to the distribution matching adjustment (Supplemental Figure S2. 1). In our implementation we 

used 6 region categories –  TSS, promoter, intragenic, proximal, distal and desert –  but these 

regions and the distances could be customized and fine-tuned to become more representative of 

samples. We used the commonly used ranges for these regions, but it might be interesting to study 

different values and their impact on results. Reusing the distribution measurements as a sample 

approximation proxy for quality control and comparison purposes was an innovative approach that 

may need to further explored and expanded. 

4.2 The Complex Associations Between TE and the 

Histone Marks 

We found that, as generally known8, while TE covered a high proportion of the genome (mean of 

55.8%), TE enrichment relative to expected levels was much lower (10.7%). In fact, TE 

subfamilies where found to be significantly enriched compared to simulated controls in less than 

2% of cases. However, those enriched elements displayed clear patterns of association with histone 

marks. The repressive histone H3K9me3 had far more TE overlap (78.3%) than all other marks, 

and was also more enriched (27.1%). Different TE families were enriched for distinct histone 

marks; and we often observed enrichment contrasts between activating and deactivating marks 

within one mark and cell types had different levels of enrichments depending on which histone 

and TE family we looked at. For instance, we found that MIR an ancient TE family tended to be 

much more associated with activating histone marks, especially compared to L1 elements that were 
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highly repressed by H3K9me3, or Alus that were particularly enriched for H3K36me3. While the 

association between L1 and H3K9me3 was not entirely surprising, it is not entirely clear why Alus 

are enriched in H3K36me3. MIR was previously recognized as a family with positive correlation 

to tissue specific gene expression and exapted into enhancers110. Thus it is reassuring that we also 

found this distinct activating histone association. It was reported that Alus being in H3K36me3 

regions may lead to Alu transcript expression105, but there are very few reports on this pairing at 

this time. Interestingly, both Alus and H3K36me3 are heavily reported to be involved with 

splicing153,154. It might be worth investigating if there is a mechanism that connects Alus and 

H3K36me3 with mRNA splicing. It was also interesting to note that some of the TE subfamilies 

that we highlighted, such as AluYb8 and L1PA2(candidate), were some of the youngest TE 

subfamilies, which are reported to still be active8,23–25.  

The heatmaps of TE subfamily enrichment per sample featured in both Chapter 2 and 3, highlight 

how the different TE families had preference of associations for certain histone marks, but left me 

curious about the potential of combinations of histones. What about poised states of H3K27me3 

with H3K4me3? Are the other histone marks also sometimes found together? These would be 

challenging experiments and would lead to an explosion of possibility (on an experiment that 

already featured too many variables). Through this line of thinking I have come to better 

understand the value of chromatin states and the chromHMM model that essentially takes the 

numerous combination possibilities and reduce them to a reasonable (15) set of states. 
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4.3 The Relationship Between TEs and Cell Types 

Depends on Histone Marks 

In our results, it was striking to see that the TE enrichment varied so much across cell types. For 

example, for L1 in H3K9me3, brain was the most enriched at 24% (mean) meanwhile the lowest 

enrichment was in endo-epithelial cells at 1%. Furthermore, the results varied drastically 

depending on the specific TE-histone combination we studied. For instance, highlighting only the 

most enriched cell type (means enrichment, n>1): for Alu in H3K36me3, keratinocyte (14%); for 

Alu H3K9me3, hematopoietic cell (22%); for Alu H3K4me3, lymphocyte of B lineage (4%); for 

MIR in H3K27ac, digestive system (3%). This could suggest that the profile of histone mark-TE 

associations may contribute to cell type differentiation or proper gene regulation. It is worth 

mentioning that being able to explore all these combinations is a great use case for our tool 

TEExplorer. One of the more unexpected results that we found was that some TE enrichments 

within a cell type had very large variability. When we looked at the underlying cell labels within 

the cell types (the cell types were ontology supported groupings of original manual cell 

annotations), we found that distinct cell labels could explain some of the variability. While it is 

possible that there was some cofounder such as the source consortium or batch effect, this suggests 

that the cell type groupings might be too broad and cell type-TE enrichments are attached to finer 

cell type resolution.  

It could also be that the variability has a functional purpose as it was shown for TEs involved in 

immunity141. To clarify the reality and significance of this variance, it may be interesting to use a 

dataset with many replicates per individual for a few cell types. With this, we could account for 

the inter-individual variability and the variability across replicates within a single individual. 

Furthermore, single cell sequencing technology could be leveraged to start get much finer cell type 
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resolution. With these we could avoid the aggregate measure from bulk samples and distinguish 

cell types within a tissue. For instance, to determine if there are differences between astrocytes, 

neurons and other brain cells.  

 

4.4 TEs and their Association with Health and 

Diseases 

Important applications of genomic studies include health and disease risk assessment and medical 

diagnostics. Since we had data from samples of healthy tissue, cancers and tissue with diseases, 

we leveraged that information to see if the health status was associated with any differences in TE 

enrichments. There have been many reports of TEs being associated with diseases33,40,54,141, with 

some even being causal55, but these are usually found in studies directly studying the disease. Here 

we reported many such associations across cell types and assays through an array like survey of 

all possibilities. While the set of samples featuring multiple health statuses (2024 samples) limited 

our power, we nonetheless found 4% that featured significant differences between health statuses. 

By case, we mean a comparison (Wilcoxon, pval <0.05) between the TE family enrichment of 

healthy samples and cancer or disease samples within a set cell type and assay. We found that the 

cancer samples generally had higher TE enrichment, which is in line with reports of TEs being 

more expressed in cancer155. Overall, we found the highest proportion of TEs featuring significant 

differences between health statuses within brain. This proportion was highest for the H3K4me1 

(21/37, 57%, differently enriched TE between health statuses / not differently enriched between 

health statuses) mark and lowest for H3K9me3 (4/21, 19%). Other cell types with a notable 

proportion of TE enrichment differences between health statuses include monocytes, lymphocytes 

of B lineage and mesoderm-derived structure; which may support the involvement of TE in the 
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immune system5,38,141,156. Split by assay (each totaling 918 comparisons), we found 38:397 (cases 

of health difference: no health difference) in H3K27me3 samples, 67:358 for H3K4me1, 13:212 

for H3K4me3, 45:308 for H3K27ac, 22:263 for H3K36me3 and 33:286 for H3K9me3. Given the 

limitations of the dataset (across all assays, more than 50% of cases were lacked the data to 

compare across health statuses (NA)), it is likely that our results underestimate the difference in 

association of TEs between healthy and disease or cancer data. Nonetheless, the results show there 

can be significant differences in TE enrichment depending on health status within a cell type. It 

would be interesting to see if the enrichments we’ve observed overlap disease associations found 

by GWAS. Some early work that was not taken further suggested that our TE candidates were 

associated relevant diseases according to GWAS, however we had not distinguished the health 

status of the samples. It could be worth revisiting our candidate selection and adding the layer of 

health status before assessing their trait association with GWAS and observing if health status 

leads to a difference in diseases and traits.  

 

4.5 Identifying TEs with Potential Transcriptome 

Regulatory Function 

Part of this work’s objective was to identify TEs that may be co-opted or have genome regulatory 

functions. To do this we set up a system that highlighted TEs that were strongly associated with a 

cell type or were cell type specific and highly enriched. Through this we identified 456 potential 

regulatory TE candidates. A novel aspect of our selection strategy was to try and capture both 

observe-expected and fold change enrichment when selecting notable TEs. Usually projects select 

one of the two metrics, but we noticed that fold change and observed-expected highlighted 

different families. This is in part due to families having different instance counts and thus small 
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families reaching high fold changes more easily due to the low denominator. L1 and Alus generally 

did not reach high fold change, meanwhile it was clear that they systematically found in higher 

levels than expected (obs-exp). 

Overall, some of the candidates that we highlighted recaptured existing research, such as MER11D 

in placenta56,124 and Alus in brain125,126, suggesting that some of the unsupported findings may also 

be worth investigating. According to Frost et al56, the MER11D TEs possess GATA3 binding 

motifs and in the PSG region they are closely associated with enhancer H3K27ac, which we have 

also observed. One of the limitations of my experiments was that my research was fully 

computational, thus even through using other datasets or gene ontologies for function, the support 

I could provide was associations or correlations at best. Moving forward, it might be interesting to 

try some collaboration for wet lab confirmation of enhancer or promoter activity of some of our 

candidates. 

4.6 Taking the TE Analysis to DNA Methylation  

With Chapter 2 and 3 having found notable associations between TEs and histones, it would make 

sense to try a similar survey for DNA methylation, another important element of the epigenome. 

DNA Methylation is a repressive marker of the genome closely associated to gene expression. We 

performed such a survey on the epigenome data from the IHEC consortium as part of a figure and 

chapter contribution of the flagship publication of the EpiATLAS data reprocessing analysis 

(manuscript in preparation). 

Our Study used 645 DNA methylation samples from the EpiATLAS dataset, which had already 

been converted into a matrix of percentage of coverage per CpG site for each sample. Since most 

samples had about 200 sites with no value (NA), we placed our selection threshold at 300 and 
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discard sites with more NA entries (Supplemental Figure S4.2 A). For the remaining sites, we 

selected a coverage of 80% for a CpG site to be considered methylated. Next, while considering 

only sites with >=80% coverage, we calculated the percentage of methylated samples with 

methylated samples count (>=80%) / sample count (>0% <80%) not including the NA values. 

We found a lot of sites with CpGs in 0 sample but also a lot of sites with CpG in a high (>95%) 

number of samples and we considered these constitutive (Supplemental Figure S4.2 B). We 

categorized sites based on how prevalent they were across samples: low for <25%, intermediate 

for >25% & <95% and high (or constitutive) for >95%. Thus, a CpG site categorized as high was 

methylated across nearly all samples while a site categorized as low was only methylated within 

less than 25% of samples. The majority of CpGs were of intermediate prevalence (but it had a 

much larger prevalence percent range), across the genome we found 4,083,000 constitutive, 

17,093,368 intermediate and 3,701,616 low methylated CpG sites (Supplemental Figure S4.2 C). 

We found that about 50% of all sites overlapped TEs, with a higher overlap for constitutive sites 

(~60%) (Supplemental Figure S4.3  A, Supplemental Figure S4.2 C, D). About 25% of sites that 

did not overlap TEs overlapped genes for constitutive and intermediate prevalence categories 

(Supplemental Figure S4.2 D). Low prevalence sites tended to be much less common in TEs and 

split between genes and other (non-characterized) regions. The TE families that overlapped CpG 

sites and their proportions were similar to those that overlapped the histones (for high and 

intermediate). However, some differences were Alu overlap being much higher in high prevalence 

CpG sites and MIR, L1 and ERVL-MaLR being lower in CpGs than histones (Supplemental Figure 

S4.3A,B). We next explored the position of sites relative to genes and found that the majority of 

sites were within 50kbp of gene TSS, and tended to have higher density close to the gene. Across 

the prevalence categories, the lowest prevalence sites tended to be concentrated near genes, 
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probably due to overlapping genes a lot. High and intermediate prevalence sites had much more 

similar profiles to each other. Interestingly, the only difference between CpGs overlapping TEs 

and those that did not was a dip near 0 for TE associated sites (Supplemental Figure S4.3C). This 

dip might be explained by TEs generally not overlapping genes  

This preliminary work highlights a significant association between TEs and DNA methylation. 

Notably, while DNA methylation has a repressive role on TEs, its TE overlap profile is distinct 

from the repressive histone marks H3K27me3 and H3K9me3. The predominance of Alu in the 

constitutive CpG sites relative to the two histone mark and the absence of large L1 overlap found 

for H3K9me3 may suggest different repression mechanisms for these TE families. It would be 

interesting to take this work further and analyze these results at the subfamily level and to 

distinguish cell types as in the main chapters to see if cell type specificity is also observed here. 

 

4.7 Applications of TE tool TEExplorer 

One of the unexpected challenges that I faced within the experiments described in Chapter Large 

Scale Analysis of Transposable Elements Interaction with the Epigenome2 was that our analysis 

gave results for too many cases for us to cover. Our candidate selection process attempted to reduce 

all the relationships we observed to the most notable and potentially relevant ones. However, it 

was clear that not only was it possible for us to have missed important associations, but also that 

we were limited in the amount of relationships we could discuss within a publication. The 

TEExplorer tool allows users to query our results and investigate specific TE-hitstone-cell type 

relationships that they may be interested in. A common use case may be to confirm if an 

observation made has also been found in the EpiAtlas dataset. For instance, the tool was used to 
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identify if a specific L1 subfamily found to be enriched in lymphocytes could be supported by the 

epigenome. It was also used to look at if a certain ERV was enriched in any cell type or histone. 

Do note that the lack of specificity or result for the two examples is deliberate as they were not my 

own projects. 

As exploratory investigation, TEExplorer was used to compare external macrophage data from 

patients with influenza to the EpiAtlas data. We found that the TE proportion was much higher in 

the influenza157 dataset (subset of 8 H3K27ac samples AF04, AF06, EU03, EU05 infected and 

non-infected), however the broad profile of family enrichment or depletion was very similar 

between EpiAtlas and the external flue data. The specific TE subfamilies enrichment, we could 

determine that the two datasets had significant differences in enrichments (while the heatmap 

trends were similar, the boxplots highlighted significant differences). One major difference was 

the Alu subfamilies which were enriched in 4 subfamilies in the macrophages of the EpiAtlas data, 

but were not enriched for any of the shown families in the influenza data. 
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Chapter 5 

Future Directions and conclusion 

The work in this thesis has contributed to a better understanding of TEs and their relationship with 

the epigenome, however there were some limitations to the experiment and some results opened 

new questions. Some of these questions have been mentioned in the discussion: in this chapter I 

elaborate on some challenges that I think are worth exploring in the future. 

5.1 Tackling the multi-mapped reads from a new angle 

TEs are still held back by the problem of their repetitiveness and multi-mapped reads89. My 

experiments were no exception and did not consider multi-mapped reads. Long reads can help 

better place TEs and have a better idea of where the TEs are within a genome and assembly. 

However, a large amount of the publically available data are in post assembly and peak calling 

format BED, peaks etc. These provide genomic ranges of interest and may not have considered 

multi-mapped reads if the data generator did not go out of their way to. I believe that it would be 

interesting to be able to recapture the lost TEs from multi-mapped reads on all the currently 

available data which may have discarded them. While I can only speculate on the viability of the 

approach, I am interested in the idea of imputing BED files with multi-mapped reads re-inserted 

from BED files without them. With a large enough dataset it could be possible to compare the TEs 

detected with and without keeping multi-mapped reads and taking an imputation approach similar 

to ChromImpute72 be able to predict the expected TEs with multi-mapped reads from a sample that 

discarded them. That is, if the multi-mapped reads exist in large enough quantity to support such 

an approach. My preliminary work has identified very low multi-mapped reads in human 
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epigenome data. Of course, approaches that can better handle multi-mapped reads would be 

instrumental to better TE data going forward, but I believe there might be overlooked value in 

finding a way to bring forward existing data. 

5.2 Taking TEExplorer to new frontiers 

TEExplorer is a useful tool and resource but there are a lot of features that I would like to add to a 

future version. The most important enhancement would be to expand the dataset. While the first 

version leverages data that I was already familiar with and had privileged access to, there is 

constantly more data being made available which could lead to better discoveries and insights. 

Even within the EpiATLAS dataset, I would be interested in adding the methylation dataset, thus 

TEExplorer would go beyond only characterizing histone marks. It may also be interesting to add 

the imputed histone marks dataset that were not initially available to me, but could provide much 

more additional data. Finally, I would be like to try to incorporate the ChromHMM79 states in 

TEExplorer. While I was initially skeptical of their value relative to histone marks, I’ve come 

around to appreciate their interpretability and more nuanced state determination.  

When it comes to user uploaded data, one of the limitation was that we do not create sample 

tailored controls for our enrichment measures. Instead we use an average of all the EpiATLAS 

samples matching the selected cell type and assay, which is much less computationally intensive. 

I believe that it works as an appropriate baseline, however I would like make it so user uploaded 

samples also get their own TSS distribution matching controls to make all the comparison fairer 

and avoid any dataset led biases. Another useful feature would be grouping of samples. While the 

TEExplorer allows comparisons between the user uploaded samples and the EpiATLAS dataset, 

it doesn’t take into consideration that the user may have samples from multiple groups. It could be 
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useful to be able to assign groups to the user samples so that they can be compared to each other’s 

(and the EpiAtlas data). 

Moving forward I would also like to implement some form of result highlights to user uploaded 

analysis. This is to point out notable TE families or subfamilies similar to how I identified some 

TE candidates in Chapter 2. This change would improve accessibility because while the analysis 

does make available measurements for all subfamilies, if the user does not have a hypothesis, they 

might not know where to look or notice standout results.  

Finally, while I set out to make this TEExplorer online for ease of access and use, I’ve also realized 

some of its downsides such as scalability, that is using TEExplorer on large amounts of user data, 

and the ability to integrate it within a larger pipeline. A standalone command line version of the 

method is something that I hope to work on. 

5.3 Conclusion 

In conclusion, we believed that that TEs had more epigenome associated regulatory functions than 

currently understood and that they were critical to our proper understanding of gene regulation and 

disease. We wanted to expand current knowledge of TEs and especially how they related to the 

epigenome. With our large scale analysis, we achieved our goal by presenting a comprehensive 

overview of the relationship between TEs and histone marks. We identified TE-cell type 

candidates some of which were already supported lending credence to viability of the unsupported 

ones. Finally, we developed TEExplorer to make this TE knowledge accessible and push forward 

TE analysis which should continue to evolve into the future. It is my hope that one day transposable 

elements will be characterized just as well as genes because I believe that even with everything 

that we’ve found, their known contribution will keep on expanding.  
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Supplemental Figures 

 
Figure S2. 1 Distribution of the peaks in regions relative to TSS 

A) Distribution of peaks within annotations relative to gene TSS. Horizontal facets are the 

different regions, the Y axis is the proportion found within the region B) X axis are the samples 

faceted by their assay and consortium. Y axis is the proportion found within the colored regions. 

Color are the different regions, transparent samples are those discarded due to outlier samples. 
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Figure S2. 2 ChIP-Seq samples data dimension reduction 

 

A) UMAP on peak count within 10kb regions across full genome of the 4614 samples. Only the 

20,000 windows with most variance (excluding the first 1000) were used colored by consortium 

B) PCA of first 2 PCs using same data as A colored by Sample’s Consortium C) colored by 

Sample’s assay D) PCA of 2nd  and 3rd PC colored by sample’s assay E) Same as A colored by 

cell type F)PCA of first 2 PCs as in B and C colored by Cell type G) Cell type Color legend of 

E and F 
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Figure S2. 3 TE Family Overlap and TE family properties. 

A) Mean TE overlap across all samples B) TE Mappability estimates C) Cummulative bp length 

within the genome D) Mean TE instance length E) TE instance count. X axis sorted according 

to TE overlap(A). Only families containing at least 1000 instances shown. Centr family excluded 

due to extreme outlier mean length. 
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Figure S2. 4 TE Families Mappability distribution 

Density distribution of TE instances Mappability (TE coverage by the 50bp Unique Mappability 

(Umap 50) track) within the TE families. (Empty if not enough instances) 
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Figure S2. 5 Breakdown of TE Enrichments Within Subfamilies 

A) Percentage of TE subfamilies enriched or depleted relative to random simulation across 

assays. Each TE subfamily is enrichment is recorded individually for each sample. NS are non 

significantly enriched TEs B)Sorted cumulative sum of the 1045 TE subfamilies enrichment 

(obs-exp, significantly enriched, and therefore >0, only) across all samples. The 164 TE 

subfamilies above the threshold line (dashed line) were selected for the downstream analysis. 

The threshold was selected as the upper whisker from the boxplot of the cumulative sum of TE 

enrichment C) Top 20 of Cummulative sum of TE subfamilies genome overlap across all 

samples grouped by Histone mark. Vertical line is the sum of the enrichment across all assays. 

Thus, the bar size relative to the vertical line represents the proportion of the enrichment coming 

from the given assay. 
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Figure S2. 6 Fold change Enrichment in function of Obs-Exp 

Mean Fold change in function of observed – expected enrichment of TE subfamilies (mean 

across cell types). Colored by TE family. 
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Figure S2. 7 Expanded regression set 

A) TE Family enrichment (obs-expected%) in function of estimated age for L1, ERVL-MaLR 

across all 6 Histone marks. Black line is at 0 enrichment. Line shows linear regression fit, crosses 

are small sized subfamilies excluded from regression. B) For Alu,L2 and MIR C) For ERV1, 

ERVK and ERVL 
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Figure S2. 8 Potential TE properties cofounding with age 

A) Mean in instance count of TE subfamilies in function of their mean age estimate for Alu, 

MIR and L2. B) same as A for L1 and ERVL-MaLR. C) Mean TE Length of TE subfamilies in 

function of their mean age estimates for Alu, L2 and MIR. D) same as C for L1 and ERVL 

MaLR. X shapes are subfamilies too small (less than ) in instance count and were not used for 

regression. 

 



113 

 

 
Figure S2. 9 TE Mappability and Age 

A) TE Mappability in function of TE age. B) Enrichment in function of mappability for Alu, L2 

and MIR C) Same as B for ERVL-MaLR and L1 TE families 
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Figure S2. 10 Cell type enrichments with significant differences between health statuses 

 

A) Comparison between the cell type’s health status for the listed TE families. Orange means 

there was at least 1 significant pairwise difference between the health status, light gray no 

significant difference, dark gray: Not enough data for the comparison (Only one health status 

available) B) Tally of the proportion TE families with health status differences (orange) or no 

difference (light gray) for each cell types (Aligned with A). 
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Figure S2. 11 Measurements of cell type specificity and surplus 

A) Proportion of samples within each cell type with TE subfamily Enriched (pval<0.001). x axis 

shows the all TE subfamilies, y axis shows the 47 cell types  grouped by histone mark. The TE 

subfamilies are hierarchically clustered.B) Top 10 families with most TE subfamilies (with at 

least 100 instances) enriched in less than 6 cell types (red part of fig 5B pie chart) C) Number 

of TE subfamilies that were enriched in bins of numbers of cell types. Separated by histone 

mark. D) Enrichment surplus of TE subfamily for given cell type. Surplus represent difference 

between the cell type enrichment and the mean across all cell types. E) Same as E for Fold 

change.  
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Figure S2. 12 Expanded set of Cell type specific TE-histone pairs 

Fold change and Observed – Expected TE enrichment of TE subfamilies per cell type. Labeled 

are random subset of the candidates: most enriched (95th percentile) points in terms of Obs – 

expected or Fold change.  
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Figure S2. 13 Diagram of merged sample and control’s generation 

Diagram of merged sample and control’s generation (Blue, green and red represent TE families, 

blue is the TE family of interest for this example) 1. Merge samples from merging all peaks for 

each Assay-cell type combinations and keeping only the peaks from select TE to compose 

merged candidates. 2. A TE control keeping only the select TE’s instances that were not in the 

aforementioned triplet. A merged candidate file and associated TE control was generated for all 

candidates.  
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Figure S2. 14 GO biological process enrichments of TE candidate subset 

Fold change enrichment difference from TE control of GO biological processes within for subset 

of 209 candidate triplet (TE-Assay-Cell Type) samples across histones. (fold change data – fold 

change of associated TE control) red enriched, yellow between -1 and 1, blue depleted. Circle sizes 

represents significance of the data. Terms selected based on data, favored most enriched terms per 

candidates. In rectangle are some mentioned processes.   
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Figure S2. 15 GO biological processes enrichments within select candidate triplets 

A) Fold change enrichment of GO biological processes within select candidate triplets within 

H3K27ac placenta MER11D triplet. B) Within H3K27ac IPS cell MER51-int triplet. C) Within 

H3K4me3 brain AluY. For all plots, showing up to the top 30 processes with fold enrichment 

>= 2 and –log10(pval) > 5. 
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Figure S2. 16 Genome tracks of candidate associated peaks 

A) H3K27ac Placenta peaks overlapping MER11D near ABCB1 gene. B) H3K27ac Placenta 

peak overlapping MER11D near EPO gene. C) H3K27ac IPS cells peaks overlapping MER51-

int near BNIP3 gene. Close up shows the peaks not overlapping cCREs. D) Cluster of H3K4me3 

brain peaks overlapping AluY around SYT11 and RIT1 genes. 
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Figure S2. 17 RNA tissue expression of select genes 

A) Single cell expression clustering of FAAH2 gene from protein 

Atlas(https://www.proteinatlas.org/ENSG00000165591-FAAH2/single+cell+type) B) 

Expression clustering of SCL25A18 and ABR genes, they both grouped in the same cluster. 

C) RNA normalized expression across tissues for SLC15A18 

gene(https://www.proteinatlas.org/ENSG00000182902-SLC25A18/tissue) D) Same as C for 

ABR gene(https://www.proteinatlas.org/ENSG00000159842-ABR/tissue). Images and data 

available from v23.proteinatlas.org 
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Supplemental Tables 

Files available: https://bitbucket.org/hyacinthe_j/thesis-data/src/main/ 

Supplementary Table 1. 

Cell type TE enrichement. 

Summary statistics (Mean, Median, Max, Min, n) and rank (cell type per assay and TE family) 

of TE enrichments. Only TE subfamilies that were significantly enriched (Obs-Exp, thus 

positive) were used and added up for one TE family measurement per sample. The summary 

statistics are obtained from the summary of all samples grouped by assay and cell type. 

STable1_summary_te_cell_data_enriched.csv 
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Supplementary Table 2  

Cell type TE enrichment including non-significant (and depleted) elements 

Summary statistics (Mean, Median, Max, Min, n) and rank (cell type per assay and TE family) 

of TE enrichments. All TE subfamilies that were used were used and added up for one TE family 

measurement per sample. Negative values are possible for cases where Obs-Exp was depleted. 

The summary statistics are obtained from the summary of all samples grouped by assay and cell 

type. (same as table 1, but including non significantly enriched TEs) 

STable2_summary_te_cell_data_all.csv 
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Supplementary Table 3  

Select candidates table full set 

Candidate TE name, family and associated assay and cell type with the TE enrichment of that 

grouping as obs-exp (count_obs_exp_percent) and fold change (count_fold_change). For 

candidates identified by surplus, the difference from the mean (cell_mean_delta, 

cell_mean_fold_delta) are also listed. The sample count (n), number of times the observed count 

was higher than expected (time_over,1000 trial per sample) and resulting pvalue (pval) are 

listed. And the 4 candidate identifications are shown as true or false (top_obs, top_foldchange, 

obs_surplus, foldchange_surplus) with the valid method count (method_count) in the last 

column for each candidate. 

STable3_TE_candidates_full_set.csv 
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Supplementary Table 4  

Select candidates table 209 subset 

Candidate TE name, family and associated assay and cell type with the TE enrichment of that 

grouping as obs-exp (count_obs_exp_percent) and fold change (count_fold_change). For 

candidates identified by surplus, the difference from the mean (cell_mean_delta, 

cell_mean_fold_delta) are also listed. The sample count (n), number of times the observed count 

was higher than expected (time_over,1000 trial per sample) and resulting pvalue (pval) are 

listed. And the 4 candidate identifications are shown as true or false (top_obs, top_foldchange, 

obs_surplus, foldchange_surplus) with the valid method count (method_count) in the last 

column for each candidate. 

Subset visualised that was selected as a subset of the top 15 most enriched candidates per histone 

for top specific obs-exp and fold change using their respective metric (obs-exp and fold change, 

respectively). And keeping the 40 surplus candidates. 

STable4_TE_candidates_subset.csv 
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Appendix C 

 

Supplementary material for Chapter 0  

Supplementary figures 

 

Figure S4.1 TE overlap from distribution matching controls   

 

Overlap of peaks from simulated samples with TE family in 4614 samples. Samples are 

annotated by cell type 
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Figure S4.2 CpG sites determination thresholds and prevalence categories   

 

A) distribution of the number of NA sites in chromosome 1, red line is the 300 selected threshold. 

Sites with less NA are kept. B) Distribution of the proportion of proportion of samples 

(prevalence) CpG sites were methylated in (>=80% coverage), category thresholds of under 25% 

for low and above 95% for high(vertical lines), intermediate in between. C) Number of CpG 

sites in the 3 prevalence categories, count listed on top of bars, colored by what the site 

overlapped between TE or gene, if either (source). D) same as D but displayed as percentages. 
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Figure S4.3 CpG site TE overlap and distance to TSS according to prevalence 

A) CpG sites overlap with TEs depending on site’s prevalence distribution Colors are TE 

families, Numbers at top are the numbers of sites. Note that High, the highest percentage, has a 

lower number of sites than intermediate.  B) Mean TE overlap of histones (from chapter 2 and 

3). TE family are the colors. C) Distance to nearest gene TSS for the CpG sites depending on 

prevalence category (color) and whether the site overlapped TEs (line type) 
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