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Abstract

When a moving shock wave reflects from a concave cylindrical surface, transition from an

Inverse Mach Reflection (InMR) to a Transitioned Regular Reflection (TRR) takes place.

The triple point of a Mach Reflection approaches the reflecting surface in a tangential

manner, resulting in minute Mach stems and, hence, significant difficulties in the prediction

of the transition point location. In the present work, the location of the transition point is

found using a high-resolution finite-volume Computational Fluid Dynamics (CFD) solver

based on the Euler equations and an approximate Geometrical Shock Dynamics (GSD)

finite-difference solver. The GSD model is governed by the relationship between the local

geometry (area) of the shock and its local velocity (Mach number). It has previously been

shown to provide, in a very efficient manner, accurate estimates of the shock front for

various reflections but was not yet applied to analysis of the InMR-to-TRR transition.

Thorough grid-convergence studies are performed both for the CFD and GSD solvers. The

CFD and GSD results are compared to historical and recent experimental results as well

as to various analytical predictions available in the literature.
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Sommaire

Lorsqu’une onde de choc en mouvement se réfléchit à partir d’une surface cylindrique

concave, la transition d’une réflexion de Mach inverse (InMR) à une réflexion régulière

transitionnée (TRR) se déroule. À cause de la trajectoire du point triple, qui s’approche

la surface réfléchissante de manière tangentielle, la tige de Mach juste avant transition

devient très petite. Par consequence, la prédiction du point de transition devient difficile.

Dans ce travail, le point de transition est trouvé à l’aide d’un solveur de Mécanique des

fluides numérique (CFD) et par un solveur approximatif de dynamique de choc géométrique

(GSD). Le modèle GSD est régi par la relation entre la géométrie locale (l’aire) du choc et

sa vitesse locale (nombre de Mach). GSD a déjà été démontré qu’il fournit, de manière très

efficace, des estimations précises de l’onde de choc pour plusieurs réflexions, mais n’a pas

encore été appliqué à l’analyse de la transition InMR-TRR. Des analyzes de convergences

sont effectuées pour le solver CFD et le solver GSD. Les résultats obtenus par CFD et

GSD sont comparés avec des résultats expérimentaux et avec des prédictions analytiques

disponibles dans la littérature.
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Chapter 1

Introduction

1.1 Shock Wave Definition and Formation

A shock wave is a propagating disturbance with a near instantaneous change in pressure,

temperature and density. A shock wave propagates into a medium with supersonic speed

Ms > 1. Similarly, a sound wave is a propagating disturbance which travels at the local

speed of sound c =
√
γRT .

To understand the formation of a shock wave, consider Figure 1.1. An initial sound

wave, c1, is created resulting in a small but instantaneous increase in pressure, temperature

and density. This is followed by consecutive sound waves c2, c3, etc. Because each sound

wave travels at the local speed of sound, based on the medium it is propagating into, each

successive sound wave is faster then its predecessor (i.e. c3 > c2 > c1) due to the small

increase in temperature after each sound wave. The merging of all sound waves results in

a shock wave with a finite amplitude. A normal shock wave is shown in Figure 1.2.
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Fig. 1.1 Pressure profile for consecutive sound waves resulting in a shock
wave. Reproduced from [1].

1.2 Normal Shock Waves

A normal shock wave propagates at supersonic speed Ms > 1. If a normal shock wave

propagates into a gas at rest, as seen in Figure 1.2 (Left), then a simple change in the

frame of reference, from that of the observer on ground, to that of the shock wave, would

result in a resting normal shock wave. This can be seen in Figure 1.2 (Right).

The relations between the flow characteristics between the two states, both ahead and

behind the normal shock wave, can be obtained from conservation laws. These relations

are known as the Rankine-Hugoniot relations [1], which are the following:
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Fig. 1.2 Left: Normal Shock Wave in the laboratory frame of reference.
Right: Normal Shock Wave in the shock frame of reference.

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

(1.1)

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
(1.2)

ρ2
ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(1.3)

T2
T1

=
[2γM2

1 − (γ − 1)][2 + (γ − 1)M2
1 ]

(γ + 1)2M2
1

(1.4)

1.3 Shock Wave Reflections

When a shock wave propagates into a medium and obliquely encounters another medium,

it experiences a reflection known as an oblique shock reflection [2]. These shock wave

reflections were first discovered by Ernst Mach, who recorded two different shock wave

configurations. These experiments were re-conducted by Krehl and van der Geest [3] after

being re-examined by Reichenbach [4].
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The two initial main shock wave configurations are known as Regular Reflection (RR),

a two-shock wave configuration, and as Mach Reflection (MR), a three-shock wave config-

uration. These wave configurations are displayed in Figure 1.3. The governing equations

for these two main reflection configurations are provided in Section 1.3.1.

More recent work has led to the conclusion that more than two wave configurations

exist. These shock wave configurations are described in Section 1.4.

Fig. 1.3 Schematic of Regular Reflection (Left) and Mach Reflection (Right).

1.3.1 Governing Equations of Two- and Three-Shock Theories

Two-Shock Theory (2ST) and Three-Shock Theory (3ST) were first proposed by von Neu-

mann and are described by Ben-Dor [2]. In order to find an analytical solution to the RR

and MR wave configurations in Figure 1.3, the governing equations across an oblique shock

need to be defined.

Consider a general oblique shock, pictured in Figure 1.4. The flow states ahead of the

oblique shock are defined with i, while behind the shock, the flow states are defined with j.

Angle ϕj is defined as the angle of incidence between the incoming flow and oblique shock
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Fig. 1.4 Schematic of oblique shock with flow states ahead (i) and behind
(j) the shock.

wave while angle θj is the deflection angle of the flow behind the oblique shock.

The conservation equations, for mass, momentum and energy, are written across the

oblique shock to relate state i with state j.

The Conservation of Mass:

ρiui sinϕj = ρjuj sin(ϕj − θj) (1.5)

The Conservation of Momentum in the normal direction:

pi + ρiu
2
i sin

2 θj = pj + ρju
2
j sin

2(ϕj − θj) (1.6)

The Conservation of Momentum in the tangential direction:

ρi tanϕj = ρj tan(ϕj − θj) (1.7)
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The Conservation of Energy:

hi +
1

2
u2i sin

2 ϕj = hj +
1

2
u2j sin

2(ϕj − θj) (1.8)

In equations 1.5 to 1.8, u is the flow velocity (in the oblique shock frame of reference),

ρ is density, p is pressure and h is enthalpy. If thermodynamic equilibrium on either side

of the oblique shock is assumed, then knowing any four of the eight parameters (ui, uj, pi,

pj, Ti, Tj, ϕj, θj), will allow for the equations to be solved.

These Equations 1.5 to 1.8 are the basis of the Two-Shock and Three-Shock theories.

1.3.2 Two-Shock Theory (2ST)

The Two-Shock Theory (2ST) is an analytical model for solving for flow parameters near

the reflection point of a Regular Reflection. The 2ST is provided by Ben-Dor [2]. Figure

1.5 provides a schematic for the 2ST applied on a Regular Reflection.

Fig. 1.5 Schematic for the Two-Shock Theory (2ST). Reproduced from [2].

Applying Equations 1.5 to 1.8 for oblique shocks onto both the incident wave i and the
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reflected wave r, yields the following eight equations:

• 4 Equations across Incident shock, i:

ρ0u0 sinϕ1 = ρ1u1 sin(ϕ1 − θ1) (1.9)

p0 + ρ0u
2
0 sin

2 ϕ1 = p1 + ρ1u
2
1 sin

2(ϕ1 − θ1) (1.10)

ρ0 tanϕ1 = ρ1 tan(ϕ1 − θ1) (1.11)

h0 +
1

2
u20 sin

2 ϕ1 = h1 +
1

2
u21 sin

2(ϕ1 − θ1) (1.12)

• 4 Equations across Reflected shock, r:

ρ1u1 sinϕ2 = ρ2u2 sin(ϕ2 − θ2) (1.13)

p1 + ρ1u
2
1 sin

2 ϕ2 = p2 + ρ2u
2
2 sin

2(ϕ2 − θ2) (1.14)

ρ1 tanϕ2 = ρ2 tan(ϕ2 − θ2) (1.15)

h1 +
1

2
u21 sin

2 ϕ2 = h2 +
1

2
u22 sin

2(ϕ2 − θ2) (1.16)

Because the flow behind the shock wave, in region 2, must be parallel to the reflecting

surface, an additional equation equation for inviscid flow is found:

θ1 − θ2 = 0 (1.17)

With the assumption of thermodynamic equilibrium in all three states, the nine 2ST

equations can be expressed with 13 parameters (u0, u1, u2, p0, p1, p2, T0, T1, T2, ϕ1, ϕ2, θ1,

θ2), meaning four of these parameters need to be known in order to solve 2ST.
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1.3.3 Three-Shock Theory (3ST)

The Three-Shock Theory (3ST) is an analytical model for solving for flow parameters near

the triple point of a Mach Reflection. The 3ST is provided by Ben-Dor [2].

Fig. 1.6 Schematic for the Three-Shock Theory (3ST). Reproduced from [2].

Applying Equations 1.5 to 1.8 for oblique shocks onto both the incident wave i, the

reflected wave r, and the Mach stem m, yields the following 12 equations:

• 4 Equations across Incident shock, i:

ρ0u0 sinϕ1 = ρ1u1 sin(ϕ1 − θ1) (1.18)

p0 + ρ0u
2
0 sin

2 ϕ1 = p1 + ρ1u
2
1 sin

2(ϕ1 − θ1) (1.19)

ρ0 tanϕ1 = ρ1 tan(ϕ1 − θ1) (1.20)

h0 +
1

2
u20 sin

2 ϕ1 = h1 +
1

2
u21 sin

2(ϕ1 − θ1) (1.21)

• 4 Equations across Reflected shock, r:
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ρ1u1 sinϕ2 = ρ2u2 sin(ϕ2 − θ2) (1.22)

p1 + ρ1u
2
1 sin

2 ϕ2 = p2 + ρ2u
2
2 sin

2(ϕ2 − θ2) (1.23)

ρ1 tanϕ2 = ρ2 tan(ϕ2 − θ2) (1.24)

h1 +
1

2
u21 sin

2 ϕ2 = h2 +
1

2
u22 sin

2(ϕ2 − θ2) (1.25)

• 4 Equations across Mach stem, m:

ρ0u0 sinϕ3 = ρ3u3 sin(ϕ3 − θ3) (1.26)

p0 + ρ0u
2
0 sin

2 ϕ3 = p3 + ρ3u
2
3 sin

2(ϕ3 − θ3) (1.27)

ρ0 tanϕ3 = ρ3 tan(ϕ3 − θ3) (1.28)

h0 +
1

2
u20 sin

2 ϕ3 = h3 +
1

2
u23 sin

2(ϕ3 − θ3) (1.29)

Because the flow states of region (2) and (3) are only separated by a contact surface,

or slipstream s, then the pressure across this surface is constant:

p2 = p3 (1.30)

And with the assumption of inviscid flow, as well as a thin contact surface, s, with stream-

lines on both sides being parallel, the following equation applies:

θ1 ∓ θ2 = θ3 (1.31)

This gives rise to two possible solutions, which therefore means the solution is not unique.

• Standard Three-Shock Theory: θ1 − θ2 = θ3 (Mach Reflection)
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• Nonstandard Three-Shock Theory: θ1 + θ2 = θ3 (von Neumann Reflection)

With the assumption of thermodynamic equilibrium in all four states, the 14 3ST equa-

tions can be expressed with 18 parameters (u0, u1, u2, u3, p0, p1, p2, p3, T0, T1, T2, T3, ϕ1,

ϕ2, ϕ3, θ1, θ2, θ3), meaning four of these parameters need to be known in order to solve

3ST.

1.4 All Possible Shock Wave Reflections

Although there were initially just two shock wave reflection configurations discovered by

Ernest Mach [3][4], newer research has suggested that there are many more unique shock

wave configurations [5]. Currently, there are 13 known shock wave configurations, which

are presented in Figure 1.7 [2] [5].

Based on current knowledge, the two main reflections are known as Regular Reflection

(RR), shown in Figure 1.3 (Left) and the Irregular Reflection (IR). Irregular Reflections

are subdivided into the categories of strong shock reflections called Mach Reflections (MR),

as seen in Figure 1.3 (Right), and weak shock reflections called von Neumann Reflections

(vNR), Guderley Reflections (GR) and Vasilev Reflections (VR) [2][6][7][8][9]. These wave

configurations are portrayed in Figure 1.9.

1.4.1 vNR/GR/VR Configurations

The two-shock and three-shock theories, derived in Sections 1.3.2 and 1.3.3, describe the

flow field behind both the Regular Reflection and the Mach Reflection with the assumption

of shocks with negligible thickness and that all the shocks respect the Rankine-Hugoniot

conditions, Equations 1.2, 1.3 and 1.4. The two-shock and three-shock theories provide good

agreement with experimental data for strong shocks, but not for weak ones. Experimental
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Fig. 1.7 13 Possible Shock Reflections taken from [5]

data showed a reflection flow pattern, similar to IR, also exists in a range where von

Neumann theory predicts neither RR nor IR. This discrepancy between the theoretical and

experimental results is known as the von Neumann paradox [2][6][9]. The von Neumann

paradox shows that during experiments, the Regular Reflection exists under conditions to

which no theoretical solution should exist.

The triple point paradox [10] is another discrepancy. This paradox shows a reflected

shock wave with a similar configuration to the Mach Reflection (MR) for weak shocks, even

though theoretical analysis would show no triple point should exist.
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In order to solve the paradoxes, Guderley [7] [11] proposed a four-wave structure (Figure

1.8), in which the Mach stem (M), incident wave (I) and reflected wave (R) are featured as

before but with the addition of a Prandtl-Meyer expansion fan, emanating from the triple

point. This results in some of the flow near the triple point, behind the incident shock

wave, to be supersonic.

Fig. 1.8 The Guderley 4-wave structure taken from [5].

The work from Vasilev [8] resulted in a third possible configuration for these weak

shocks, called Vasilev Reflection (VR).

Fig. 1.9 (a) von Neumann Reflection (b) Vasilev Reflection (c) Guderley
Reflection. (NOTE: Gray shaded regions denote subsonic flow). Figure taken
from [8].

All three of these weak reflections are displayed in Figure 1.9 and are typical for weak
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shocks and small reflecting wedge angles [2].

1.4.2 Mach Reflection (MR) Configurations

The MR Configurations are characterized by: an incident shock wave, a reflected shock

wave, a Mach stem and a slip stream which all converge at the triple point [2]. These

Mach Reflections can be subdivided into Direct Mach Reflection (DiMR), Stationary Mach

Reflection (StMR) and Inverse Mach Reflection (InMR) [2] [12]:

• DiMR if the triple Point trajectory moves away from the reflecting surface.

• StMR if the triple Point trajectory moves parallel to the reflecting surface.

• InMR if the triple Point trajectory moves towards the reflecting surface.

These three MR sub-configurations are shown in Figure 1.10 [2].

Fig. 1.10 Left: DiMR Mid: StMR Right: InMR

The DiMR is possible for both pseudo steady and unsteady flows while the StMR and

InMR are only possible for unsteady flows.

1.4.3 Transitioned Regular Reflection (TRR) Configuration

Since the InMR is only possible for unsteady flows, and the path of the triple point leads

to the reflecting surface, then the InMR must terminate once the triple point collides with
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the reflecting surface, becoming a Regular Reflection. Because this RR is created following

a transition from InMR, it is called a Transitioned Regular Reflection (TRR) [2] [12]. A

schematic of the TRR is provided in Figure 1.11. The transition from InMR to TRR is the

primary focus of this thesis.

Fig. 1.11 Schematic of the Transitioned Regular Reflection (TRR). Repro-
duced from [2].

1.5 Problem Statement

The main objective of this thesis is to find the transition point between an Inverse Mach

Reflection (InMR) and a Transitioned Regular Reflection (TRR) over a concave cylindrical

surface. Figure 1.12 portrays this transition.

Initially, a normal shock propagates with Ms > 1 into a gas at rest on a flat surface

up to x = 0 (Figure 1.12 - Left). Once the normal shock reaches the start of the concave

reflecting surface at x = 0, with an initial wall angle of θ0w = 0o, a triple point is generated

resulting in an Irregular Reflection (IR). At low wall angles for sufficiently weak shocks, it

is suggested by Vasilev [8] that this reflection may initially be a weak shock reflection, such
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Fig. 1.12 Left: The initial normal shock wave. Mid: The Inverse Mach
Reflection (InMR). Right: The Transition Point.

as vNR/VR/GR. Karzova [13] identified this weak reflection as when the incident shock

develops a curvature normal to the reflecting surface, before a Mach stem is formed. Cohen

[14] later called these reflections a Compressive Reflection (CR).

However, if the shock is sufficiently strong, then a DiMR would develop with the triple

point moving away from the reflecting surface [15]. The shock configuration eventually

becomes an InMR with a triple point trajectory towards the reflecting surface (Figure 1.12

- Mid). The triple point will eventually reach the reflecting surface (Figure 1.12 - Right) at

θtrw and xtr. Finding θtrw is the primary objective of this research. The wave then transitions

into a Transitioned Regular Reflection (TRR), with a configuration as shown in Figure

1.11.

Cohen [14] suggests that for weak shocks, such as Ms < 1.1, the transition between

InMR and TRR is not direct. Instead, there is an intermediate RR configuration. In

his experiments, he found both the InMR-to-RR and RR-to-TRR transition points. He

suggests that at higher Mach numbers, the difference between the two transition points

approaches zero resulting in a singular transition point, as stated earlier. These findings

are further discussed in Section 3.4.
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1.6 Objectives of the Present Research and Structure of the

Thesis

In general, the results of shock wave reflections are expected to be important for virtually

all practical areas of research involving shock waves, such as: supersonic flight, explosion

safety, and medical applications.

The main objective of this thesis is to find the transition point between an Inverse Mach

Reflection (InMR) and a Transitioned Regular Reflection (TRR) over a concave cylindrical

surface. Finding this transition point is important because different reflection configu-

rations result in different surface loads and temperatures experienced by the reflecting

surface.

Previous studies to find the InMR-to-TRR transition point have not provided the most

accurate solutions. This is mainly due not being able to visualize small Mach stem heights

before reaching the transition point. This results in a significantly large error on the

transition angle predicted, because the triple point trajectory is nearly tangent to the

reflecting surface just before transition. Therefore, it is important to revisit this problem

using newer methods.

This thesis will first outline analytical methods used to predict the InMR-to-TRR tran-

sition point in Chapter 2. These methods will include using the transition criteria developed

by von Neumann and Hormung [2] which is based on two- and three-shock theory. Other

analytical predictions, including those proposed by Ben-Dor [16] [17], where three different

pathways for the corner-generated signals are selected, and those described by Itoh [18],

which are the Classical and Modified CCW equations, are also described. These analytical

solutions are plotted over a range of incident shock Mach numbers ofMs > 1 up toMs = 4.

Chapter 3 discusses the previous experiments used to find the transition point. First,
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older experiments by Ben-Dor and Takayama (1980) [19] and Takayama and Sasaki (1983)

[20] are presented. Then the recent experiments by Kleine [21][22], which directly address

some of the faults of these early experiments, are discussed. Finally, the results from weak

shock (Ms < 1.1) experiments by Gruber [23] and Cohen [14] are shown.

Chapter 4 focuses on the Computational Fluid Dynamics (CFD) predictions. First,

numerical predictions by Taieb [24], using an in-house WENO method, and Koronio [15],

using a commercial solver ANSYS FLUENT, are shown. Then the CFD predictions using

our in-house flow solver, Masterix [25], are described. A grid convergence study is included

to ensure the results obtained are independent from the mesh size.

Chapter 5 describes using Geometric Shock Dynamics (GSD) as a numerical technique

to find the transition angle. The governing equation, known as the A − M rule, and

the numerical scheme used are both derived. Then the results obtained using GSD are

presented along with a grid convergence study.

A general comparison of the results is performed in Chapter 6. While previous chapters

mainly focused on finding the InMR-to-TRR transition point, this chapter also looks at

the InMR wave configuration before the transition point, as predicted by each method.

For instance, the triple point trajectory and Mach stem height evolution found using each

method is plotted. This chapter will also provide a overall summary of all the methods

used to find the InMR-to-TRR transition point. Some concluding remarks and future work

are discussed in Chapter 7.
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Chapter 2

Analytical Predictions

2.1 Introduction

Predicting the InMR-to-TRR transition point has been of interest for many researchers

over the years. Early research in the 1940s was focused on finding the IR to RR transition.

Based on the work done mainly by von Neumann [26], four transition criteria are proposed

in Section 2.2 for finding the RR to MR transition point [2]. Continuous research has been

done since this time due to the inconsistency in finding a singular transition criterion for

all ranges of Mach numbers.

In 1981, Itoh [18] used Geometric Shock Dynamics (GSD) to predict the triple point

trajectory of the MR over a concave cylindrical surface. This work is summarized in Section

2.4. Later, based on the length-scale concept by Hornung [27], Ben-Dor and Takayama

developed their own theory based on the physical communication of the flow to the triple

point [2][16][28]. This theory relied on selecting a pathway for the corner-generated signals

to travel from the corner of the cylindrical wedge to the transtion point. This work is

detailed in Section 2.3.
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2.2 Transition Criteria

Early analytical predictions for finding the transition angle involved the transition criteria

between 2ST (see Section 1.3.2) and 3ST (see Section 1.3.3). These transition criteria

are known as the four suggested RR-to-IR transition criteria [2]. Figure 2.1 provides the

schematic for the shock polar diagrams used to predict the transition angle between RR

and MR.

Fig. 2.1 The schematic used for the RR (Left) and MR (right) Shock Polar
diagrams.

2.2.1 Shock Polars

In order to understand the transition criteria, shock polars must be defined. Shock polars,

which were first proposed by Kawamura and Saito [2] [29] in order to help better understand

the boundary conditions for MR and RR. These shock polars use a graphical representation

to express the boundary conditions in terms of the flow direction angle, δ, and the flow

static pressure, p.

An example of a shock polar is shown in Figure 2.2. In this example figure, point a

indicates the location where the flow parameters on either side of the oblique shock are
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Fig. 2.2 Left: Example Shock Polar with M0 = 5. Right: Example Shock
Polars with M0 = 5, M0 = 3 and M0 = 1.6.

identical. This occurs when ϕ1 (ϕj from Figure 1.4) equals µ0 = sin−1(1/M0). Point b

refers to the location where the oblique shock becomes a normal shock, and is thus the

strongest shock configuration. Point m is the point of maximum deflection. Point s divides

the diagram into 2 sections: Section a− s for the weak shock portion, where M1 > 1 and

Section s − b for the strong shock portion, where M1 < 1. Figure 2.2 (Right) shows the

effect of the initial Mach number M0 on the shock polar configuration.

While Figure 2.2 provides a good example of a shock polar for the incident shock,

Figure 2.3 provides a polar representation of both the incident shock wave and reflected

shock wave. For the case on the left with δ = 25o, the intersecting point between the

reflected shock polar and the strong shock portion of the incident shock wave represents

the existence of a Mach Reflection (MR). For the case on the right with δ = 15o, the

intersecting point between the reflected shock polar and the y-axis represents the existence

of a Regular Reflection (RR).

Although Figure 2.3 shows two distinct cases, for MR and RR, Figure 2.4 represents a
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Fig. 2.3 Left: Example Shock Polar with Ms = 3 and a δ = 25o resulting in
a Mach Reflection. Right: Example Shock Polar with Ms = 3, and a δ = 15o

resulting in a Regular Reflection.

case where both solutions are possible. This is called the dual-solution domain. In order to

find the transition point, four transition criteria were proposed [2] and these are described

in Section 2.2.2.

2.2.2 Four Transition Criteria Description

The transition criteria between 2ST and 3ST has been studied for years and four transition

criteria have been proposed, three of them by von Neumann [2] and one by Hornung [27].

Detachment Criterion

The Detachment Criterion states that from a Regular Reflection, once the reflected shock

can no longer completely turn the incoming supersonic flow tangentially to the reflected

surface, then a RR can no longer exist. This triggers the need for a Mach stem, which

results in a Mach Reflection [2].
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Fig. 2.4 Example Shock Polar with Ms = 3 and a δ = 20o resulting in both
possible solutions: MR and RR.

Mechanical Equilibrium Criterion

This criterion requires that both MR (using 3ST) and RR (using 2ST) configurations must

result in identical post-shock pressures. This maintains mechanical equilibrium during the

transition between the two wave configurations [2].

Sonic Criterion

The sonic criterion occurs when the flow behind the reflected shock reaches sonic speed (in

the incident shock frame of reference) and therefore, when acoustic signals generated on

the reflecting surface cannot catch up to the reflecting point and communicate this obstacle

to the incident shock, there is a transition from RR to MR [2].

Length-Scale Criterion

The length-scale criterion, developed by Hormung [27], says that the Mach stem has a

finite size. Therefore, pressure signals must be communicated to the reflection point for the

transition from RR to MR to occur. This criterion happens to predict the same transition
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Fig. 2.5 Example Shock Polar with M0 = 3 showing each of the transition
criteria.

point as the sonic criterion for pseudo-steady flows and the mechanical equilibrium criterion

of steady flows.

Shock Polar Representation of Each Transition Criteria

The Shock Polar representation of each of the four transition criteria is shown in Figure

2.5. The Detachment and sonic criterion provide nearly identical transition points and

therefore will be referred to as the sonic/detachment criteria in future figures. In Figure

2.5, any shock polars to the left of the Mechanical Equilibrium criterion will be Regular

Reflections while any shock polars to the right of the sonic/detachment criteria will be

Mach Reflections. Shock polars in between are within the dual-solution domain.
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2.2.3 Predictions

The predictions for the transition criteria are provided in Figure 2.6. The plot on the left

uses the incident shock Mach number on the x-axis while the plot on the right uses the

inverse pressure ratio of the incident shock on the x-axis. This ratio can be found using

the Rankine-Hugoniot relation for a normal shock (equation 1.2).

Fig. 2.6 The predicted Mach Reflection to Regular Reflection transition an-
gle for the sonic/detachment criteria and the mechanical equilibrium criteria.

From Figure 2.6, it can be seen that the RR domain is shown as being above the mechan-

ical equilibrium criteria while the MR domain is for wall angles below the sonic/detachment

criteria. The domain in between is called the dual-solution domain.

2.3 Ben-Dor 3 Analytical Predictions

Ben-Dor provides three different predictions for the transition angle [2] [16] [28] [17]. All

three predictions are based on the same assumption: That a Mach Reflection will exist
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when corner-generated perturbation signals catch-up with the wave front, resulting in a

Mach stem and that a Regular Reflection will exist once these signals fail to catch-up with

the wave front.

This assumption is based on the length-scale concept of Hornung [27] which states that

the wave configuration for Regular Reflection has no length scale since both the incident

and reflected waves can extend towards infinity. However, the Mach Reflection includes a

length scale due to the existence of the Mach stem connecting the reflected point to the

triple point. Therefore, in order for a Mach Reflection to exist, a physical length scale must

exist.

Fig. 2.7 Problem setup for Ben-Dor predictions. Reproduced from [2].

The governing equation of the Ben-Dor analytical predictions, based on the length-scale

concept, is derived in Appendix A.1. It is given as:

R sin θtrw = S
Ms

V10 + C10

(2.1)
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V10 =
2(M2

s − 1)

(γ + 1)Ms

(2.2)

C10 =
γ − 1

γ + 1

1

Ms

√(
2γ

γ − 1
M2

s − 1

)(
M2

s +
2

γ − 1

)
(2.3)

The path S needs to be selected. Three possible paths proposed by Ben-Dor are given in

Figure 2.8.

Fig. 2.8 Three pathways proposed by Ben-Dor [16][28].

Path (a): Propagation path is along reflecting surface

The first predicted path is that of a propagation path along the reflecting surface. This is

seen in green in Figure 2.8. This implies a path S of:

S = Rθtrw (2.4)
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Substituting the path S from Equation 2.4 into Equation 2.1, and rearranging the terms

yields the following:

sin θtrw
θtrw

=
Ms

V10 + C10

(2.5)

Path (b): Propagation path is a straight line

The second predicted path is that of a propagation path in a straight line from the corner

to the transition point. This is seen in purple in Figure 2.8. This implies a path S of:

S = 2R sin

(
θtrw
2

)
(2.6)

Substituting the path S from Equation 2.6 into Equation 2.1, and rearranging the terms

yields the following:

cos

(
θtrw
2

)
=

Ms

V10 + C10

(2.7)

Path (l + r): Propagation path is vector sum of particle path l and disturbance

path r

The third predicted path is that of a vector sum of the particle path l, which considers the

velocity V1 and the disturbance path r, which considers the speed of sound, c1. This path

is seen in cyan in Figure 2.8. Path l and r are defined as follows:

l = Rθ = V1∆t (2.8)

θ =
V10
Ms

sin θtrw (2.9)

r = a1∆t (2.10)
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Substituting path S = l+r from Equations 2.8 and 2.10 into Equation 2.1 and rearranging

the terms yields:

2 sin θtrw−θ
2

sin θtrw
=
C10

Ms

(2.11)

Results

Figures 2.11 and 2.12 provide the predictions from the Ben-Dor analytical solutions with

Mach numbers ranging from Ms > 1 up to Ms = 4. All three Ben-Dor solutions produce

higher transition angle predictions than from the transition criteria of Section 2.2.2. Path

(a) predicts the lowest transition angle while path (b) predicts the highest. The difference

between path (a) and path (b) angles approaches 10o when Ms > 1.5. These predictions

are also compared to the Classical and Modified CCW predictions, which are described in

Section 2.4.

2.4 Itoh Classical and Modified CCW Predictions

Itoh [18] provides two analytical solution to track the Mach stem height as a function

of initial Mach number, Ms, of the shock wave and of wall angle, θw. These analytical

predictions also find the transition angle, θtrw , between Mach and Regular Reflection.

These two analytical predictions are based on Geometric Shock Dynamics (GSD), which

directly relates the local geometry with the local Mach number along the shock front. The

basis of the GSD is from the Chester [30], Chisnell [31] and Whitham [32] (CCW) theory.

A schematic for the derivation of the Classical and Modified CCW Equations is shown in

Figure 2.9.
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Fig. 2.9 Schematic for both CCW Equations taken from [18].

2.4.1 Classical CCW

Based on the work by Whitham [32] and Itoh [18], the analytical solution using Geometric

Shock Dynamics, referred to as the CCW theory, can be found.

The A−M rule [33], obtained from the 1D Euler system (with x in the axial direction),

with all flow properties expressed in terms of area and Mach number, is:

1

A

dA

dx
+
Mλ(M)

M2 − 1

dM

dx
= 0 (2.12)

λ(M) =

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

M2

)
(2.13)

µ =

√
(γ − 1)M2 + 2

2γM2 + 1− γ
(2.14)
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A coordinate transformation from Cartesian coordinates (x,y) to local coordinates (α, β)

(see Figure 5.1) is expressed as follows:

∂x

∂α
=M cos θ;

∂y

∂α
=M sin θ;

∂x

∂β
= −A sin θ;

∂y

∂β
= A cos θ;

(2.15)

Using these coordinate transformations, the A−M Rule from Equation 2.12 becomes:

1

A

dA

dα
+
Mλ(M)

M2 − 1

dM

dα
= 0 (2.16)

Whitham [32] was able to use Equation 2.16 to relate the wall angle to the strength of the

shock:

θw =

∫ M

Ms

[
λ(M)

M2 − 1

]1/2
dM (2.17)

Equation 2.17 is referred to as the Classical CCW Equation by Itoh [18]. Like GSD, the

Classical CCW Equation is only dependent on the shock front, and not the flow properties

behind the shock wave.

2.4.2 Modified CCW

Itoh [18] then proposed a modified version of Equation 2.17 by introducing a new term, η,

to account for effects of the reflected shock and slip stream:

θw =

∫ M

Ms

[
λ(M)

M2 − 1
+

η

M2

]1/2
dM (2.18)

η =

(
1− M2

s

M2

)
(F + 2B)E

(M2 − 1)BD
+

1

2
ln

(
A0

A

)
D3/2(M2 + 1) + 4(M2 − 1)2F

(M2 − 1)DE
(2.19)

A0 = cos θ0 − (1− h) cos(θ0 + ϕ) (2.20)
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A1 = h (2.21)

B = 2γM2 − (γ − 1) (2.22)

C = (γ − 1)M2 + 2 (2.23)

D = BC (2.24)

E = 2(M2 − 1) +
√
D (2.25)

F = (γ − 1)(1 + γM4) (2.26)

Equation 2.18 is referred to as the Modified CCW Equation. The Classical CCW Equation

can be found by making η = 0 in the Modified CCW Equation. For the purposes of this

problem, θ0 = 0, thus θw = θ0 + ϕ = ϕ. Therefore, A0 = h cos(θw) where h refers to the

Mach stem height. Itoh [18] proposes using Equation 2.27 to relate Equation 2.18 to the

Mach stem height for a shock propagating on a concave cylindrical surface.

dh

dϕ
=

1− h

tan(θ0 + ϕ)
− 1− h/2

sin(θ0 + ϕ)

(
Ms

M1

)
(2.27)

Simultaneously solving Equations 2.18 and 2.27 provides a Mach stem height for each wall

angle θw. The InMR-to-TRR transition angle θtrw is found when h = 0 for Equations 2.18

and 2.27 [18].

2.4.3 Results

The results for the Mach stem height usingMs = 1.6 as an example is shown in Figure 2.10.

The solid red line is the solution for the Classical CCW (Equation 2.17) which predicts

the transition point to be θtrw = 68.0o. The dashed red line is the solution for the Modified

CCW (Equation 2.18) predicts the transition point to be θtrw = 64.8o. These transition
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Fig. 2.10 The normalized Mach stem height h̃ = h/R for the InMR over a
concave surface with Ms = 1.6 for both Classical and Modified CCW.

points are found when h̃ = h/R = 0.

Results for the predicted Classical and Modified CCW transition angles (1 < Ms ≤ 4)

are shown in Figures 2.11 and 2.12 with the three analytical predictions from Ben-Dor, the

sonic/detachment criteria and the mechanical equilibrium criteria included for reference.

The results from Figures 2.11 and 2.12 show the Modified CCW predicting a lower

transition angle than the Classical CCW. However, both of these solutions are bounded by

the Ben-Dor path (a) and path (b) solutions. Furthermore, the 2ST and 3ST transition

criteria under-predict the InMR-to-TRR transition angle.

2.5 Conclusion

Chapter 2 mainly discussed the analytical methods used to predict the transition point from

InMR-to-TRR. Section 2.2 provided details on the transition criteria proposed by Ben-Dor

[2] and Hornung [27] and introduced the concept of shock polars. The results (Figure 2.6)
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showed three regions of note: The Regular Reflection, the Mach Reflection and a dual-

solution domain. Then Section 2.3 discussed the three analytical predictions proposed by

Ben-Dor and Takayama [2][16][28] and the Classical and Modified CCW equations used

by Itoh [18]. The results of these analytical predictions are seen in Figures 2.11 and 2.12,

where all five predictions show transition angles greater than the transition criteria.

Further comparisons of the transition angle continue in Chapter 3 for experiment results,

in Chapter 4 for Computational Fluid Dynamics (CFD) and in Chapter 5 for Geometric

Shock Dynamics (GSD).
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Chapter 3

Experimental Investigations

3.1 Introduction

Many experiments have been performed to find the InMR-to-TRR tansition angle, θtrw .

Although older experiments by Ben-Dor and Takayama (1980) [19] and Takayama and

Sasaki (1983) [20] have provided estimated transition points, more recent experiments were

performed to improve the accuracy of the predicted InMR-to-TRR transition point [21][22].

Experiments were also conducted to find the transition point of weak shock (Ms < 1.1)

reflections [14][23]. The results of all these experiments are compared to the analytical

predictions of Chapter 2.

3.2 Older Experiments

The experiment results by Ben-Dor and Takayama [19] were collected using streak camera

photography with a radius of the cylindrical concave wedge of 40 mm. The results from

Takayama and Sasaki (1983) [20] were similarly collected with a streak camera with curved

slits. The data is collected and shown in Figures 3.5 and 3.6 as blue un-filled (Ben-Dor and
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Takayama [19]) and filled (Takayama and Sasaki [20]) squares.

Timofeev and Previtali [21] suggest two main reasons for the low predictions of these

early experimental results. The first is due to viscous effects, which present themselves in

the shock thickness and therefore affect the local wall angle measured. The second reason

is due to poor optical resolution, which is due to small Mach stems just prior to transition

(see Figure 3.1). This results in a challenge to obtain accurate measurements.

Fig. 3.1 Theoretical triple point trajectory which shows the trajectory S
approaching the transition angle nearly tangential to the concave cylindrical
surface.

The results from Kleine [21] [22] clarified the measured transition angle by addressing

these issues: The viscous effects are alleviated by using a larger radius of curvature, thus in-

creasing the Reynolds number and the size of the Mach stem (which is directly proportional

to the radius). Using a larger radius of curvature (140 mm compared with 40 mm) also

helps improve the optical visualization. These new experiments are discussed in Section

3.3.
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3.3 Recent Experiments by Kleine

3.3.1 Setup

The experiments [22] were conducted using a diaphragm-operated shock tube in air (γ =

1.4) with temperatures ranging from 290 K to 293 K. In Figure 3.2, the cylindrical reflecting

surface is shown with a radius of 140 mm, and goes from 0o to 90o. The incident Mach

number, Ms, was found using two pressure transducers with an uncertainty of ±0.008. The

test section had optical access for a for a high-speed camera capable of 5,000,000 fps.

Fig. 3.2 Schematic of the test section for the experiments by Kleine [21].
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3.3.2 Results

The results obtained had incident Mach numbers, Ms, ranging from Ms = 1.03 to Ms =

3.17. An example of the results is shown in Figure 3.3 for Ms = 1.596± 0.008. The results

are obtained from schlieren images, showing the change in density across each of the shocks

(incident, reflected and Mach stem) and slip stream.

Fig. 3.3 The experiment results for Ms = 1.596 [22]. Left: Inverse Mach
Reflection (InMR) with normalized Mach stem height of h̃ = h/R = 0.0106.
Mid-Left: InMR with normalized Mach stem height of h̃ = h/R = 0.0056.
Mid-Right: Transition Point θtrw = 65.0o. Right: Transitioned Regular
Reflection (TRR).

Figure 3.3 (Left) portrays the Mach Reflection at θw = 60.0o. This wave configuration

is evident due to the presence of the incident shock wave, the Mach stem, the reflected

shock and the slip stream. At this moment, the normalized Mach stem height is h̃ =

h/R = 0.0106. The next image in Figure 3.3 (Mid-Left) shows the Mach reflection with

h̃ = 0.0056 at θw = 62.0o. The decrease in Mach stem height indicates the presence of

an Inverse Mach Stem (InMR). Figure 3.3 (Mid-Right) then shows the transition point

at θtrw = 65.0o. Figure 3.3 (Right) shows the Transitioned Regular Reflection (TRR) when

θw = 68.0o. The results for all the tests with different Mach numbers are plotted in Figures
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3.5 and 3.6.

Overall, the new experiment results provide higher predictions for the transition angle

θtrw , than from the earlier experiments. Previtali [22] suggests these results are more accurate

than previous experiments due to the higher Reynolds number and better optical resolution.

These results will be further compared with Computational Fluid Dynamics (CFD) results

in Chapter 4 and with Geometric Shock Dynamics in Chapter 5.

3.4 Weak Shock Wave Experiments

Gruber and Skews [23] (2013) conducted experiments with weak shocks (1.03 < Ms < 1.1).

Weak shock reflections were found to provide a different wave configuration than the strong

ones. As the weak shock develops, it becomes a vNR/GR/VR (later called a Compressive

Reflection, CR, by Cohen [14]) before becoming a MR. It was hypothesized by Gruber

[23] that an intermediary step would exist in the transition from InMR-to-TRR as Ms

approaches the acoustic limit (Ms → 1). This intermediary step would be a RR. However,

the results from these weak shock experiments had resolution constraints and therefore the

exact configuration could not be distinguished [23].

Later, Cohen and Skews (2020) [14] provided experimental data with weaker shocks

ranging from 1.007 < Ms < 1.1. For these weak shocks, Cohen [14] found an intermediate

step between the transition from InMR-to-TRR. Experiments showed two-distinct transi-

tions: An InMR-to-RR transition followed by a RR-to-TRR transition. The results for

these two transition points are found in Figure 3.4. Based on these results, Cohen [14]

suggests that the two transition points, InMR-to-RR and RR-to-TRR, converge at higher

Mach numbers. This may have resulted in the assumption of a singular InMR-to-TRR

transition point from earlier literature.
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Fig. 3.4 The transition angles for CR-to-InMR (labelled as IR), InMR-to-
RR and RR-to-TRR transition points found from experiments by Cohen [14].
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Fig. 3.5 The predicted transition angle, θtrw , plotted with Ms, based on the
on the various experiment results obtained in this study [14][19][20][22][23] and
previously obtained analytical predictions.

The data for the transition to TRR, the filled red squares in Figure 3.4, is compared

with the previous methods used to find this transition point in Figures 3.5 and 3.6. For

these weak shocks, the transition point to the TRR configuration produces data close to
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the data from Kleine [22]. It is important to note, however, that obtaining high accuracy

experimental results of the transition points for weak shocks is still difficult due to poor

optical resolution [14][23].

3.5 Conclusion

This chapter covered previous experiments used to predict the InMR-to-TRR transition

point. Section 3.2 discussed two older experiments by Ben-Dor and Takayama (1980) [19]

and Takayama and Sasaki [20]. These experiments provided results with poor accuracy due

to low optical resolution. Therefore, small Mach stems could not be resolved. Section 3.3

discussed the results by Kleine (2018) [21] [22] which attempted to alleviate the issues from

earlier experiments by using a larger radius of curvature in experiments and using better

measurement devices. Finally, Section 3.4 presented some weak shock results by Gruber
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[23] and Cohen [14]. These results are shown in Figures 3.5 and 3.6.

The experiment results from Kleine [22] predict higher transition angles than from the

early experiments dealing with poor optical resolution. Furthermore, both weak shock

experiment [14][23] results agree with the limited weak shock data from Kleine.

Further comparisons of the transition angle will continue in Chapter 4 for Computational

Fluid Dynamics (CFD) and in Chapter 5 for Geometric Shock Dynamics (GSD).
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Chapter 4

Computational Fluid Dynamics

While Chapter 2 focused on analytical predictions [16] [18] and Chapter 3 focused on

experiments [14] [19] [20] [23] [21] [22], this Chapter 4 will focus on using Computational

Fluid Dynamics (CFD) in order to predict the InMR-to-TRR transition angle θtrw . First,

previous results obtained using numerical simulations will be discussed. Then the CFD

results obtained using an in-house CFD solver called Masterix will be presented.

4.1 Previous Numerical Studies

Numerical studies performed by Taieb (2010) [24] and Koronio (2020) [15] are discussed in

this section. Both numerical techniques, WENO and ANSYS FLUENT, are different than

the Masterix flow solver used in this thesis. The results of both studies are included in

Figures 4.6 and 4.7 as purple circles (Taieb) and stars (Koronio). Overall, the limited data

collected by Taieb and Koronio corresponds quite well with the CFD results found using

Masterix.
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4.1.1 Taieb

Taieb [24] found the InMR-to-TRR transition angle with in-house code using the WENO

method. The symmetric reflecting surface shown in Figure 4.1 is the shape used in this

study. However, because of the symmetry, only half of the reflecting surface is needed for

numerical calculations.

Fig. 4.1 A schematic of the reflecting surface analyzed in this numerical
study. The schematic is taken from [24].

Taieb found the predicted transition angles (tabulated in Table 4.1) with accuracy of

±1o [24]. Figures 4.6 and 4.7 show the four data points from Table 4.1 plotted as purple

circles to compare with other methods.

Table 4.1 Tabular data of the InMR-to-TRR transition point found using
the in-house WENO code by Taeib [24].

θtrw Ms = 1.38 Ms = 1.8 Ms = 2.0 Ms = 3.0
WENO 60.37o 66.68o 69.57o 73.58o

4.1.2 Koronio

Koronio [15] found the InmR-to-TRR transition angle using a commercial solver, ANSYS

FLUENT technique. The scheme used to approximate the inviscid Euler equations was

second-order in space and time. The numerical predictions were calculated with:
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• Three different reflecting surface radii, R: 40 mm, 60.6 mm and 100 mm.

• Three different Mach numbers, Ms: 1.3, 1.4 and 1.5.

• Three different gases: Air (γ = 1.4), argon (γ = 1.67) and CO2 (γ = 1.28).

This study confirmed the radius of curvature had no effect. The transition angle for

each Mach number propagating through air is tabulated in Table 4.2. Koronio [15] was

able to show good correlation between the numerical results and experiments. The three

data points from Table 4.2 are plotted in Figures 4.6 and 4.7 as purple stars.

Table 4.2 Tabular data of the InMR-to-TRR transition point (in air) found
using ANSYS FLUENT by Koronio [15].

θtrw Ms = 1.3 Ms = 1.4 Ms = 1.5
ANSYS 57.5o 61.0o 63.3o

4.2 Introduction to Masterix

Masterix is an adaptive unstructured finite-volume Euler code. It uses a second-order in

accuracy, for space and time, node-centered MUSCL-Hancock TVD flow solver [34]. For

these CFD computations, it is assumed that the flow is inviscid and non-heat conducting.

The governing equation for the conservation law is given as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (4.1)

Where U is a vector of conserved quantities, F is the flux in the x− direction direction

and G is the flux in the y − direction. These three vectors are given by:
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U =



ρ

ρu

ρv

ρe


F =



ρu

ρu2 + p

ρuv

(ρe+ p)u


G =



ρv

ρuv

ρv2 + p

(ρe+ p)v


(4.2)

Where ρ is density, u is velocity in the x− direction, v is the velocity in the y − direction,

p is pressure and e is the energy.

Fig. 4.2 The computational domain used in Masterix to find the InMR-to-
TRR transition point. The Boundary Conditions are: (1) Concave Cylindrical
Surface, (2) and (4) Walls and (3) Dirichlet B.C.s for the inflow.

An example visualization of the computational domain in Masterix is shown in Figure

4.2. In this example, the non-dimensional density is visualized, which allows for the incident

shock, reflected shock, Mach stem and slip stream to be seen. The boundary conditions

used for this CFD analysis are:



4 Computational Fluid Dynamics 47

• (1) Concave cylindrical reflecting surface, acting as a wall.

• (2) and (4) Walls.

• (3) Dirichlet boundary conditions for the inflow.

Boundary (1) has a radius of curvature of R = 1 and spans from θ = 0o to θ = 75o. The

boundary was capped at 75o to decrease the computational time, knowing the transition

angle for the Mach numbers chosen to study would less than 75o. Boundary (2) spans

from x = 0.966 to x = −0.1. Boundary (3) spans from y = 0.741 to y = 0. Boundary

(4) spans from x = −0.1 to x = 0. The computational domain is discretized using an

unstructured mesh with triangular elements. A discussion on the mesh discretization is

available in Section 4.4.

For the problem setup, the shock wave is initially placed at x = −0.05 and propagates

with an initial Mach number Ms. Once the normal shock reaches x = 0, the reflection will

begin to occur. A triple point will begin to form eventually resulting in an Inverse Mach

Reflection (InMR) appearing. The shock will continue to propagate until the Mach stem

disappears (at θtrw) and then a Transitioned Regular Reflection (TRR) will form.

4.3 CFD Example

As an example, the problem with Ms = 2 is shown. Some screenshots of the computations

in Masterix are shown in Figure 4.3. The colour coding refers to non-dimensional density.

Figure 4.3 (a) shows the initial shock wave withMs = 2. In this case, since reflection has

not yet occurred, solving the flow parameters behind the shock wave would be simple. By

changing the frame of reference and applying the Rankine-Hugoniot relations (Equations

1.1 to 1.4), the flow parameters behind the normal shock wave can be found.
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Fig. 4.3 Masterix Visualizations with density colour coded. (a) The initial
normal shock wave (Ms = 2). (b) The IR without a well-defined triple point.
(c) A MR with a well-defined Mach stem and reflected shock wave. (d) An
InMR with a well-defined triple point and a visible slip stream. (e) The tran-
sition point from InMR-to-TRR. (f) A magnified view of the transition point.
(g) Transitioned Regular Reflection (TRR). (h) Magnified view of TRR.
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Some time later, an ill-defined triple point can be seen in Figure 4.3 (b). For the

reflection at this low wedge angle, Vasilev [8] suggests that this may be a vNR/GR/VR.

Cohen [14] later calls this configuration a Compressive Reflection (CR). In Figure 4.3 (c),

the triple point becomes better defined as the shock continues to propagate. At this stage,

the reflected wave and Mach stem are both easily discernible.

In Figure 4.3 (d), the Inverse Mach Reflection has all its characteristics visible. The 3

shocks (incident, reflected and Mach stem) and the slip stream can all be seen meeting at

the triple point. Once the transition point is reached (Figure 4.3 (e) and (f)), θtrw can be

found. In this case forMs = 2, θtrw = 70.8o. At this transition point, there is still a reflected

shock wave and a slip stream, but the Mach stem has disappeared. After the transition

point, the Transitioned Regular Reflection (TRR) forms (Figure 4.3 (g) and (h)).

The results shown in Figure 4.3 are based on the most refined mesh used for this study.

A grid convergence study is demonstrated forMs = 2 in Section 4.4. Full results for various

Mach numbers are provided in Section 4.5.

4.4 Grid Convergence

When using CFD, discretizing the domain is important because the mesh chosen to solve

the problem will influence the solution. Therefore, there is a need to find a grid-independent

solution for the transition angle.

The baseline mesh with zero refinement is a triangular mesh with grid spacing of l0 =

0.05. Subsequent levels of grid refinement result in data point spacing of:

l =
l0

2Level
; l0 = 0.05 (4.3)
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4.4.1 Mesh Selection

Each computation has two associated grid sizes, called Min Level and Max Level. The

Max level is associated with the mesh at the shocks and slip stream. These locations are

identified where there is a jump between the density of two data points of ±2% or more.

The Min level corresponds to the region behind the reflected wave and Mach stem. The

mesh behind the incident shock wave stays at level 0 as the flow parameters do not vary in

this region. For the same reason, the mesh of the undisturbed flow stays at level 0 as well.

Four example meshes are provided in Figure 4.4.

Fig. 4.4 Extremes of the meshes selected for the grid convergence study.

Different meshes have provided different result for the InMR-to-TRR transition angle.

For instance, for the mesh with Max level of 4 and Min level 0 (with Ms = 2.0), the
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transition angle is predicted to be θtrw = 68.8o while the transition angle predicted for Max

level 10 and Min level 4 is θtrw = 70.8o. In order to obtain a grid-independent solution, a

grid-convergence study is performed.

4.4.2 Richardson Extrapolation

In order to find the grid-independent solution, various meshes are chosen for the same

Ms = 2. The meshes will vary from Max level of 4 up to 10 and Min level of 0 up to 4. A

Max level of 10 is the limit selected due to excessive computational time and a Min level

of 4 is the limit due to the limits on computer memory and computational power.

Fig. 4.5 Grid Convergence Study for Ms = 2.

The transition points for each mesh were found and plotted in Figure 4.5. For each
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Max Level 4, 5, ..., 10, the transition angle for the Min Level mesh ranging from 0 to 4

was obtained. A simple linear extrapolation was done up to Min Level equalling Max

Level. Once each extrapolated value was calculated for Max Level 4 to 10, a Richardson

extrapolation [35] was performed on the final three data points (i.e. Max Level 8, 9 and

10). The Richardson extrapolation is as follows:

f̃exact = f1 −
ϵ21

rp̃12 − 1
(4.4)

p̃ =
ln(ϵ32/ϵ21)

ln(r)
(4.5)

r12 =
l2
l1

(4.6)

ϵ21 = f2 − f1 (4.7)

ϵ32 = f3 − f2 (4.8)

Where f̃exact refers to grid-independent solution, f1, f2 and f3 are the linear extrapolated

values for Max level 8, 9 and 10 respectively and l is the grid spacing. By using exponents

of 2, r12 = 0.5 in this case.

Using the data from Figure 4.5, the Richardson extrapolation gives fexact = θtrw = 71.1o.

Considering a transition angle predicted from section 4.3 under-predicts the transition angle

as 70.8o, then the difference between the grid-independent solution and the most refined

mesh chosen is 0.3o.
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4.5 CFD Results

The results using Masterix are provided in Figures 4.6 and 4.7. Some of these Masterix

results came from this study, while others came from Previtali [21][22]. The solutions shown

are not the grid-independent solutions as discussed in section 4.5. Instead, transition angles

shown in magenta are the results of using Max level 10, and Min level 4. The error bars

are not shown because they are smaller than the data points used to plot the figure.
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Fig. 4.6 The transition angles found using the current CFD from Masterix
[25], and past numerical results from Taieb [24] and Koronio [15] with previ-
ously obtained analytical predictions and experiment results.

The Masterix CFD results in Figures 4.6 and 4.7 (magenta diamonds), in general, agree

with the recent experiment results. On average, the CFD results predict about 1o higher

than the recent experiment results by Kleine [22]. Considering the new experiment results

are still suggested to under-predict the transition point [21] due to insufficient optical
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Fig. 4.7 The transition angles found using the current CFD from Masterix
[25], and past numerical results from Taieb [24] and Koronio [15] with previ-
ously obtained analytical predictions and experiment results.

resolution and some lingering viscous effects, then the CFD predictions can now be seen as

the most accurate results for finding the InMR-to-TRR transition point.

The CFD results with Masterix can also be compared with the numerical results from

Taieb [24] and Koronio [15]. Table 4.3 tabulates the common Mach numbers studied. The

current and previous numerical results compare favorably with each other.

Table 4.3 Tabular data of the InMR-to-TRR transition point found using
numerical techniques by Taieb [24], Koronio [15] and Masterix [25].

θtrw Ms = 1.3 Ms = 1.4 Ms = 1.5 Ms = 2.0 Ms = 3.0
Masterix 58.3o 61.4o 63.9o 70.8o 73.8o

Taieb - - - 69.6o 73.6o

Koronio 57.5o 61.0o 63.3o - -
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4.6 Conclusion

This chapter focused on using Computational Fluid Dynamics (CFD) to find the InMR-

to-TRR transition point over a concave cylindrical surface. First, the results obtained by

Taeib [24] using an in-house WENO method and the results obtained by Koronio [15] using

a commercial software, ANSYS FLUENT, are described in Section 4.1. Then, the in-house

CFD flow solver Masterix [25] is introduced in Section 4.2. An example using Ms = 2 was

shown in Section 4.3 showing each aspect of the problem statement, from the initial normal

shock to the formation of the InMR, to the transition point and finally becoming a TRR.

A grid-convergence study is performed in Section 4.4 to obtain a grid-independent solution

for the transition point.

The results from the CFD solver for Mach numbers ranging from Ms = 1.1 to Ms = 4

with the most refined mesh are shown in Figures 4.6 and 4.7. Overall, the results obtained

using CFD techniques correspond quite well with the most recent experiment results (sec-

tion 3.3).

Chapter 5 discusses the use of Geometric Shock Dynamics (GSD) to find the InMR-

to-TRR transition angle. Chapter 6 provides further comparisons of the various methods

used to predict the transition point.
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Chapter 5

Geometric Shock Dynamics

5.1 Introduction to Geometric Shock Dynamics (GSD)

While Chapter 4 focused on using Computational Fluid Dynamics (CFD) as a numerical

method for finding the InMR-to-TRR transition angle, this chapter focuses on a differ-

ent numerical method - Geometric Shock Dynamics (GSD). GSD was first described by

Whitham [32][36][37] in 1957. Based on his work, GSD was capable of estimating the

shock reflections of various geometries with lower computational time, compared to CFD

techniques, while still maintaining accuracy [33].

Unlike CFD, where the gasdynamic equations are solved directly based on flow prop-

erties (see Chapter 4), in GSD, the motion of the shock is found by directly relating the

local geometry with the local Mach number [38]. The geometry of the shock front is es-

timated without calculating the flow field behind. This decreases the computational time

when compared with CFD techniques with similar grid sizes. The decrease in time would

become even more evident when solving 3-D problems. It is for this reason that GSD

must be studied despite knowing CFD techniques can provide accurate predictions for the
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InMR-to-TRR transition point.

For sustained shock propagation problems, GSD has been shown to be accurate [33]

[39] [40]. In these examples, the geometry was converging, just like the problem statement

of this thesis. However, the original GSD has limitations. For convex geometries with

sufficiently weak shocks, there is no solution for the entire shock front up to the reflecting

surface. Ridoux [33] proposes an additional transverse term for these expansive waves to

resolve the entire shock front. Ridoux refers to this as GSDT (GSD Transverse). Because

this transverse term only exists for convex geometries, and the problem statement for InMR-

to-TRR transition is a concave geometry, the numerical scheme will simply be referred to

as GSD.

The basis of GSD is to introduce rays (orthogonal trajectories for successive positions

of the shock) based on the geometry the shock encounters. Figure 5.1 shows how these

rays are built. The change in area of each ray tube, caused by the local curvature, links

with the shock wave velocity in what is known as the A −M rule. The scheme used for

this research is based on the work done by Ridoux [33].

Fig. 5.1 Schematic for 2D shock propagation using GSD taken from [33].
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Section 5.2 derives the A−M Rule used in GSD. Section 5.3 provides a very detailed

description of the numerical scheme used in these studies. This numerical scheme is based

on the work done by Ridoux [33]. The results for finding the InMR-to-TRR transition

angle with GSD are presented in Sections 5.4 and 5.6.

5.2 Derivation of GSD

GSD [33] is based on splitting the shock front into elementary areas, A, using rays as seen

in Figure 5.1. The method of creating these areas allows for cross flow to be neglected

which reduces the problem to a quasi-1D problem of a planar shock with varying area

propagating through a channel. Each successive shock front location is provided by the

α = cst lines while the β = cst are perpendicular to the shock front as seen in Figure 5.1.

The coordinate α and time t are related using α = c0t where c0 =
√

γp0
ρ0

. The following

geometric relations are for the local coordinates of the shock front.

∂θ

∂β
− 1

M

∂A

∂α
= 0 (5.1)

∂θ

∂α
+

1

A

∂M

∂β
= 0 (5.2)

The curvilinear abscissa along the shock s is given by:

ds = Adβ (5.3)

By assuming each ray tube to be a channel with solid walls, the A −M rule can be used

to link the area and Mach number. This A−M rule is derived from the 1D Euler System
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with varying cross-section and was described by Best [41]:

1

A

dA

dα
+
Mλ(M)

M2 − 1

dM

dα
+ h(M)Q = 0 (5.4)

λ(M) =

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

M2

)
(5.5)

µ =

√
(γ − 1)M2 + 2

2γM2 + 1− γ
(5.6)

h(M) =
γ + 1

2

µ(µ− 1)

M2 − 1
(5.7)

Q =
(∂tp+ ρc∂tv)−

p0c30
(5.8)

Whitman neglected h(M) in Equation 5.4 which results in the following modification:

1

A

dA

dα
+
Mλ(M)

M2 − 1

dM

dα
= 0 (5.9)

Equation 5.9 is known as the A −M Rule. It has been shown that neglecting the term

h(M) still provides accurate predictions for certain shock wave reflections [33][42]. Area A

is only a function of M :

A(M) = exp

(
−
∫ M

M0

mλ(m)

m2 − 1
dm

)
(5.10)

Due to the fact that GSD is a hyperbolic system, based on the geometric relations for

the local coordinates in Equation 5.1 and 5.2, some waves may develop along the shock

front. These perturbations travel with velocity:

Adβ

dα
= ±Au(M) = ±A(M)u(M) =

√
M2 − 1

λ(M)
(5.11)
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These perturbations are responsible for the modification of the shock front. The equations

to express the Cartesian coordinates (x, y) from the local coordinates (α, β) is:

∂x

∂α
=M cos θ;

∂y

∂α
=M sin θ;

∂x

∂β
= −A sin θ;

∂y

∂β
= A cos θ;

(5.12)

Ridoux [33] studied GSD and discovered a limitation in the GSD model for expansive

waves over convex surfaces. In order to take into account the transverse flow in Whitham’s

A−M Rule, a modification is proposed in order to remove the limitation of the GSD model

for all expansive shocks over convex surfaces while not affecting compressive waves over

concave surfaces. Ridoux [33] proposed the following ad hoc modification to Whitham’s

A−M relation by taking into account the variation of the Mach number along the shock

front with respect to the curvilinear abscissa s. Equation 5.9 can be modified to:

1

A

dA

dα
+
Mλ(M)

M2 − 1

dM

dα
+H(κ)f(M)

∣∣∣∣ ∂MA∂β
∣∣∣∣ = 0 (5.13)

The function f is defined as the following:

f(M) =
kλ(M)

2
− 2M2

k(M2 − 1)
, k = 0.985 (5.14)

κ is the curvature of the shock front. Because this ad hoc modification is only required for

expansive waves, the function H is used:

H(κ) =


0 if κ ≤ 0

1 if κ > 0

(5.15)
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Therefore, for finding the InMR-to-TRR transition point, H(κ ≤ 0) = 0. Thus the extra

transverse term can be ignored and simply using GSD with the A −M rule of Equation

5.9 would be sufficient. However, for the purpose of completeness, to be able to apply the

developed GSD code to any geometry, the full GSDT A−M rule of Equation 5.13 will be

used to write the numerical scheme in Section 5.3.

5.3 GSD Numerical Scheme

The numerical scheme used to solve for the shock front is based on the work provided by

Ridoux [33]. The GSD model improves on that of Henshaw [38] by managing the number

of data points on the shock front by adding points for expansive waves to maintain a fine

mesh and removing points from compressive waves to avoid intersecting rays. Furthermore,

in the original scheme, the shock front was interpolated using a cubic spline to estimate

the unit normal vectors. But Ridoux has suggested to use a local monotone cubic spline

[43] to avoid oscillations. The final major change to the GSD model by Ridoux is the use

of a total variation diminishing (TVD) third-order Runge-Kutta scheme to propagate the

shock wave to each subsequent time step.

Consider an initial shock front, at time α0, often taken to be equal to 0. The shock

front has the following Cartesian coordinates where the variable X is two-dimensional:

X(α0, β) =

x(α0, β)

y(α0, β)

 (5.16)

The Mach number along the shock front is initialized:

M0 =M(α0, β) (5.17)
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Let N be the number of points in the initial shock front such that (β)i=1,...,N is the dis-

cretization of the β coordinate. The shock front at any time α ≥ α0 is approximated using

a finite set of points:

X(α, βi) = Xi(α) =

xi
yi


i=1,...,N

(5.18)

Equation 5.3 links the the curvilinear abscissa s and the β coordinate. Discretizing s along

the shock:

si =


0 if i = 1

si−1 + ∥Xi −Xi−1∥ if i = 2,...,N

(5.19)

With ∥X∥ =
√
x2 + y2. Also, ∆si = si − si−1 for i = 2, ..., N and its initial shock

discretization will be uniform:

∆s =
1

N

N∑
i=2

(si(α0)− si−1(α0)) =
sNα0

N
(5.20)

Using Figure 5.2, it can be seen that each point Xi(α) has an associated ray tube area

Ai and a local Mach number Mi(α). The unit normal vector, outwards from point Xi is

labelled as ni(α). The position of the shock front is the solution to the following ODE:

dX

dt
= c0Mn (5.21)

Using this information, the data points, Xi are moved one time step further by integrating

Equation 5.21 in the α coordinate system, remembering α = c0t:

dXi

dα
=Mini for i = 1, ..., N (5.22)



5 Geometric Shock Dynamics 63

Fig. 5.2 Schematic of the shock front discretization for GSD taken from [33].

The ODE 5.22 is integrated using a TVD third-order Runge-Kutta scheme with the fol-

lowing three steps:

X
(1)
i = Xi(α) + ∆αMi(α)ni(α) (5.23)

X
(2)
i =

3

4
Xi(α) + +

1

4
X

(1)
i +

∆α

4
M

(1)
i n

(1)
i (5.24)

Xi(α +∆α) =
1

3
Xi(α) +

2

3
X

(2)
i +

2∆α

3
M

(2)
i n

(2)
i (5.25)

The values for Mi and ni are evaluated between each of these three steps. The details of

this numerical scheme are described in Appendix A.2.

5.4 GSD Example Result

Using the GSD numerical scheme presented in section 5.3 with Ms = 1.6, a visualization

of the propagating shock wave is shown in Figure 5.3. Figure 5.4 (Left) shows a magnified

shock front allowing each individual data point to be seen. From this figure, the incident

shock wave, triple point and Mach stem can each be seen. The reflected shock wave is not
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Fig. 5.3 A plot of the propagating shock using Geometric Shock Dynamics
with Ms = 1.6 and an initial grid spacing of dy = 0.0002.

seen because GSD only calculates the shock front, and not the flow behind the shock.

The transition point, θtrw with the GSD solution is found from Figure 5.4 (right). As can

be seen, the transition point is determined when the Mach stem has just two data points

remaining: the triple point and the foot of the Mach stem. This assumption is made because

early numerical results showed that the Mach stem would never fully disappear along the

concave reflecting surface. This observation was also noted by Peton [44] performing similar

work.

Based on the data seen in Figure 5.4 (right), the transition point is found to be θtrw =

76.0o for Ms = 1.6 and dy = 0.0002. However, using a different mesh size resulted in a

different solution. Therefore, a grid convergence study for GSD is shown in Section 5.5.
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Fig. 5.4 Left: A magnified view of the InMR using GSD with θw = 60o

(x = 0.866) for Ms = 1.6 and dy = 0.0002. Right: The GSD solution for θtrw
with Ms = 1.6 and dy = 0.0002.

5.5 GSD Grid Convergence

A grid convergence study was undertaken for finding the InMR-to-TRR transition angle

using GSD. As can be seen in Figure 5.5, changing the mesh size significantly changes

the transition angle. For example, using Ms = 1.6, θtrw = 71.3o with dy = 0.002 and

θtrw = 76.0o with dy = 0.0002. However, unlike the grid convergence for the CFD predictions

(see section 4.4), a realistic converged value could not be found. Attempting Richardson

extrapolations [35] at larger Mach numbers, Ms > 1.5 provided a near constant transition

angle of about θtrw ≈ 80o. Meanwhile, Richardson extrapolation for lower Mach numbers,

Ms ≤ 1.5 resulted in a wide range of predictions with θtrw > 80o. These extrapolated

predictions, especially for lower Mach numbers, are significantly higher than all previously

obtained transition points. Due to the lack of grid-independent GSD predictions, the data

is Figure 5.7 is presented with three different mesh sizes is included.
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Fig. 5.5 Left: The InMR using GSD with θw = 60o (x = 0.866) for Ms =
1.6 with dy = 0.0002 and dy = 0.002. Right: The GSD InMR-to-TRR
transition point solution for for Ms = 1.6 with θtrw = 76.0o with dy = 0.0002
and θtrw = 71.3o with dy = 0.002.

One possible reason for the inability of Geometric Shock Dynamics (GSD) to accurately

predict the InMR-to-TRR transition point can be explained using Figure 5.6. In this figure,

the Mach number at the foot of the Mach stem, Mst, is plotted for all wall angles, θw, up

to θtrw .

Mst can be calculated for the analytical predictions. In the case for the three analytical

solutions proposed by Ben-Dor [2] [16], a constant velocity was assumed. This velocity, in

terms of a Mach number, can be found by simply adding V10 and C10 (adding equations

A.8 and A.9). This gives Mst = V10 + C10 = 1.99 when Ms = 1.6. For the Classical CCW

equation [18], at every θw, the value of M in equation 2.17 is found.

All the predictions (except for the Ben-Dor constant velocity prediction) correspond

quite well with each other when θw < 45o. After this point, the CCW prediction continues

to predict a linear increase in Mst while the CFD and GSD predictions begin to show an

exponential increase in Mst.
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Fig. 5.6 The Mach number at the foot of the Mach stem, Mst for various
GSD meshes, the CFD prediction, and the CCW and Ben-Dor analytical so-
lutions for Ms = 1.6.

The magenta dotted line for CFD in Figure 5.6 shows an exponential increase up to

the transition point with a max value of Mst = 3.2. However, the GSD solutions, with

higher grid refinement, continue to show an increasing Mst. For GSD, the grid spacing

of dy = 0.002 and dy = 0.0002, the value of Mst is the same up to the transition angle

for dy = 0.002. Beyond this angle, for GSD with dy = 0.0002, Mst continues to increase

exponentially up to Mst = 6.8. This indicates that for GSD, because of the A −M Rule

(Equation 5.13) as the grid size decrease, dy → 0, then the area also decreases, A→ 0, then

Mst must increase to infinity, Mst → ∞. Therefore, as seen with the results, continually

decreasing dy does not result in a converged solution.

Because the CFD results, experiment results and analytical predictions each indicate

a finite Mach number for the velocity of the Mach stem, then it can be concluded that
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Geometric Shock Dynamics cannot be used to predict the InMR-to-TRR transition point.

5.6 GSD Overall Results

The results for the InMR-to-TRR transition point predictions using GSD for a range of

Mach numbers from Ms > 1 to Ms = 4 are shown in Figure 5.7. The GSD predictions with

dy = 0.02, dy = 0.002 and dy = 0.0002 are compared with some of the previous results.

Fig. 5.7 The InMR-to-TRR transition point predictions using Geometric
Shock Dynamics (GSD) with mesh sizes of dy = 0.02, dy = 0.002 and
dy = 0.0002 compared with the CCW analytical predictions [18], the recent
experiments by Kleine [22] and the CFD predictions using Masterix [25].

These predictions show that there is no reasonable grid-independent solution for finding

the InMR-to-TRR transition point using Geometric Shock Dynamics. The results for GSD

with dy = 0.02 seem to correspond with the experiment results [22] for Ms ≤ 1.5, but for

Ms > 1.5, dy = 0.02 under-predicts the transition point. Furthermore, the results using

dy = 0.002 seem to compare similarly with the CFD results for Ms > 3 but over-predicts
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the transition point for Ms ≤ 3. The further refined mesh of dy = 0.0002 over-predicts for

all Mach numbers shown.

5.7 Conclusion

This chapter focused on using Geometric Shock Dynamics to predict the InMR-to-TRR

transition point over a concave cylindrical surface. A derivation of the governing equations

(A−M Rule) is shown in Section 5.2 while the detailed numerical scheme used is presented

in Section 5.3. Results showing the shock propagation at various time steps are shown

in Section 5.4 while a discussion on the lack of grid-independent solution using GSD is

discussed in Section 5.5. Finally, the results using GSD with Mach numbers ranging from

Ms > 1 to Ms = 4 are shown in Figure 5.7.

Based on the analysis of the results, GSD is not a reliable numerical method to pre-

dict the InMR-to-TRR transition point. Although GSD had previously been shown to be

capable of providing an accurate prediction for the geometry of the shock front [33] [39]

[40], GSD failed at converging to a grid-independent prediction for the transition point.

This conclusion is backed up by Peton [44] who explicitly states that a triple point (called a

shock-shock in his paper) will always appear in GSD, but with a small Mach stem height for

cases in which a Regular Reflection is expected. Furthermore, Figure 5.6 shows Mst → ∞

as the grid spacing decreases, indicating that the Mach stem will not disappear using GSD.

Chapter 6 provides direct comparisons of the various methods used to predict the tran-

sition point.
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Chapter 6

Comparison of Results

Previous chapters focused on the methodology used to obtain the transition point. Chapter

2 focused on finding the transition point using, the MR-to-RR transition criteria [2], the

three pathways proposed by Ben-Dor [16], the two analytical solutions described by Itoh

[18]. Chapter 3 discussed older experiments by Ben-Dor and Takayama [19] and Takayama

and Sasaki [20], weak-shock experiments by Gruber [23] and Cohen [14] and the recent

experiments by Kleine [22]. Chapter 4 discussed CFD techniques, including Masterix [25] as

a CFD flow solver, to find the transition point while Chapter 5 focused on using Geometric

Shock Dynamics (GSD) to find the InMR-to-TRR transition point.

In Section 6.1, a direct comparison between the various methods used will be shown,

going beyond just finding the transition point. This will include comparing the wave

configurations of the experiments by Kleine [22], the CFD solution using Masterix [25] and

the GSD solution at θw = 60o. Furthermore, the triple point trajectory and Mach stem

height for each method are plotted and discussed in Sections 6.1.3 and 6.1.4.

Section 6.2 provides the plots for the transition angles obtained from all the methods

studied in this thesis.
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6.1 Comparison for Ms = 1.6

6.1.1 Comparison at θw = 60o

Figure 6.1 shows the results from the recent experiment [22], the CFD solver [25] and from

GSD on the same scale and superimposed on each other at the moment when the triple

point is at θw = 60o.

These results are super-imposed onto each other to allow for a better comparison of the

InMR configuration seen. The CFD and experiment results are nearly identical as they

Fig. 6.1 Comparing the InMR experiment, CFD and GSD results withMs =
1.6 at θw = 60o with super-imposed images. The experiment shows the InMR
with Mach stem height h̃ = h/R = 0.0106. CFD shows the InMR with
Mach stem height h̃ = 0.0110. GSD shows the InMR with Mach stem height
h̃ = 0.0151 using dy = 0.0002.
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seamlessly super-impose one another. Each of the three shocks, incident, reflected, and

Mach stem, as well as the slip stream, align almost perfectly. However, the GSD solution

with dy = 0.0002 clearly shows a longer Mach stem than the other methods.

The Mach stem height for the experiments with Ms = 1.6 and θw = 60o is h̃ = h/R =

0.0106. The CFD solution had a similar Mach stem height of h̃ = 0.00110 with the most

refined mesh of Max Level 10 and Min Level 4. The Mach stem height using GSD with

dy = 0.0002 is h̃ = 0.0151.

6.1.2 Comparison at θtrw

Figure 6.2 shows the visualization of the InMR-to-TRR transition point found from ex-

periments (Left), using the CFD solver Masterix (Middle) and using Geometric Shock

Dynamics (Right).

Both the experiment and CFD results show the incident shock, reflected shock and the

slip stream with no Mach stem as expected. The transition angles withMs = 1.6 are found

to be θtrw = 65.0o for the experiment and θtrw = 65.9o for CFD. The similarity between the

experiment result by Kleine [22] and the inviscid CFD solver, at both θw = 60o in Figure

6.1 and in the 0.9o difference seen in Figure 6.2 for the transition angle, demonstrates

the good comparison between these results. The small difference may be simply due to

insufficient optical resolution and some viscous effects from the experiment.

The GSD solution, however, over-predicts the transition point with continuous mesh

refinement as no grid-independent solution can be found.

6.1.3 Comparison of Triple Point Trajectory

Figure 6.3 shows the triple point trajectories of each of the methods used to find the

transition point: The three pathways proposed by Ben-Dor [16], the Classical and Modified
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Fig. 6.2 Comparing the InMR experiment, CFD and GSD results withMs =
1.6 at θtrw . Left: Experiment Results showing transition point at θtrw = 65.0o.
Mid: CFD schlieren visualization of transition point at θtrw = 65.9o. Right:
GSD results showing transition point at θtrw = 76.0o using dy = 0.0002.

CCW [18], two grid sizes from GSD, the CFD solution and the experiments by Kleine [22].

From Figure 6.3, it can be easily seen that the pathways proposed by Ben-Dor for the

corner-generated signals are not the actual triple point pathways. However, path (a) and

path (b) provide boundaries for the likely triple point trajectory - since path (a) is already

along the reflecting surface and based on experiment results, the triple point does not

exceed the boundary of path (b). To analyze the other pathways, the magnified Figure 6.4

is used.

Each triple-point trajectory reaches the reflecting surface at a low angle (i.e. almost

tangentially) as predicted. Because of this characteristic, early experiments were unable

to visualize the small Mach stem near the transition point and thus under-predicted the

transition point. This effect can be shown when comparing the triple point trajectory of the
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Fig. 6.3 The triple point trajectories of each method with Ms = 1.6 for the
InMR on a concave cylindrical surface.

CFD solver with the recent experiments. Based on Figure 6.4, the CFD and experiments

show a nearly identical triple point trajectory until the final experiment data point before

transition. The transition point is then found to be θtrw = 65.0o for the experiments while

the CFD solver continues to find even smaller Mach stems up until θtrw = 65.9o forMs = 1.6.

6.1.4 Comparison of Mach Stem Height

Figure 6.5 shows the Mach stem height of the InMR prior to the transition point. Based

on Figure 6.5, the inviscid CFD solver and from the recent experiment show similarly sized

Mach stems. However, the GSD solutions shows how the Mach stem height asymptotes to

the wall until h̃ ≤ dy. These GSD results do not agree with the experiment or CFD results.

Both the Classical and Modified CCW predictions do not predict the trend for Mach
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Fig. 6.4 Magnified view of the triple point trajectories of each method with
Ms = 1.6 for the InMR on a concave cylindrical surface.

stem height for all wall angles. However, it is worth noting the transition point found for

the Modified CCW, which accounts for the reflected shock and slip stream, is similar in

value to the CFD and experiment transition points at Ms = 1.6.

CFD vs Experiment

The difference between the the CFD solution and experiment results is likely due to the

shock thickness in the schlieren visualization (see Figure 6.2 (Left)). This shock thickness

at Ms = 1.6 is about τ = 0.54 mm or τ̃ = 0.0038 if non-dimensionalized with R = 140

mm. Since the measurement of the Mach stem height h̃ is taken from the mid-point of the

incident shock, then shocks with h̃ < τ̃/2 cannot be measured.
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Fig. 6.5 The Mach stem height of the InMR using Ms = 1.6.

Figure 6.5 displays this measurement issue. The Mach stem height measured is nearly

identical for the CFD and experiment values, except for the transition point. The smallest

Mach stem height found from experiments was h̃ = 0.0018, which is just smaller than half

the incident shock thickness. However, using CFD, smaller Mach stems can be found. The

smallest Mach stem height found using CFD at Ms = 1.6 is h̃ = 3.24x10−5.

6.2 Overall Comparison

All the InMR-to-TRR transition points (θtrw) found from Ms > 1 to Ms = 4 are plotted in

Figures 6.6 and 6.7 for each technique studied.

For stronger shocks (Ms > 1.1), CFD appears to be a valid technique to find the InMR-

to-TRR transition point as all three methods (WENO, ANSYS FLUENT and Masterix)
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Fig. 6.7 InMR-to-TRR transition point predictions for all methods studied.
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predict nearly identical transition points which are also in line with experimental results.

For the current research, weak shocks withMs < 1.1 were not studied using CFD. However,

there appears to be good agreement between the weak shock experiments by Gruber [23]

and Cohen [14] with the limited weak shock data from Kleine [22].

For analytical predictions, although it appears that the Modified CCW equation predicts

an accurate transition point, this may simply be a coincidence because the evolution of the

Mach stem height (Figure 6.5) does not show good agreement between the Mach stem

heights of the Modified CCW equation and the CFD and experiment results.
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Chapter 7

Concluding Remarks and Future

Work

This thesis focused on studying unsteady shock wave reflections. Specifically, the main

objective of this thesis is to find the transition point between an Inverse Mach Reflection

(InMR) and a Transitioned Regular Reflection (TRR) over a concave cylindrical surface. A

literature review on previous studies to find the InMR-to-TRR transition point revealed un-

satisfactory agreement between analytical predictions and experimental results. Therefore,

newer methods were studied in order to find a most accurate prediction of this transition

point.

The in-house Computational Fluid Dynamics (CFD) flow solver, Masterix [25], was

used to solve the set of 2-D Euler equations for inviscid and non-heat conducting flow over

a concave cylindrical surface. Due to the dependence of the mesh size in CFD, a grid

independent solution was found using Richardson extrapolation [35]. These results were

found for a range of incident Mach numbers (1.1 ≤Ms ≤ 4). These CFD results compared

favorably to previous numerical studies by Taieb [24] and Koronio [15].
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Although accurate InMR-to-TRR transition point predictions were found using CFD,

due to computational constraints, finding a faster numerical method, while maintaining

computational accuracy, is important for future work when analyzing 3-D shock wave

reflections. Therefore, Geometric Shock Dynamics (GSD) was also studied to find the

InMR-to-TRR transition point. GSD was chosen because it has previously been found

to provide accurate estimations of shock reflections for various geometries [33]. Since the

propagation of the shock reflection is found by directly relating the local geometry with the

local Mach number, then the flow field behind the shock is not calculated. This decreases

the computational time when compared to CFD techniques with similar grid sizes.

The GSD numerical scheme used was outlined by Ridoux [33]. Unlike the CFD flow

solver Masterix, the GSD results did not provide a grid-independent solution for the InMR-

to-TRR transition point. This was due to the direct relation between local area and Mach

number: Continuing to refine the mesh by reducing dy, and therefore decreasing the small-

est local area, resulted in a larger finalMst than found from the CFD prediction (see Figure

5.6). The conclusion that GSD cannot be used to accurately predict the InMR-to-TRR

transition point is substantiated independently by Peton [44].

In order to judge the accuracy of the results obtained using numerical methods, the data

from previous experiments needed to be found. First, results from two older experiments by

Ben-Dor and Takayama [19] and Takayama and Sasaki [20] were found in literature. These

experiments provided results with poor accuracy due to low optical resolution and therefore

small Mach stems could not be resolved. The experiments by Kleine [22] addressed these

issues by using a larger radius of curvature for the reflecting surface and using better mea-

surement devices. These experiment results compared favorably with the results obtained

using CFD.

Multiple analytical predictions were also considered in this thesis. The first predictions
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are based on the four IR-to-RR transition criteria proposed by von Neumann and Hornung

[2]: Detachment, mechanical equilibrium, sonic and length-scale criteria. These criteria

resulted in three domains of solution: Regular Reflection, Mach Reflection and a dual-

solution domain. These predictions significantly under-predict the actual InMR-to-TRR

transition point found using CFD and recent experiments.

Then the analytical solutions proposed by Ben-Dor [16][28], which predicted three differ-

ent pathways for the corner-generated perturbation signals, were studied. These predictions

were based on the assumption that the transition point would occur once corner-generated

signals could no longer catch-up with the reflection point and that the velocity of the cor-

ner generated signal is based on the flow behind the incident shock. However, CFD results

have found that the corner-generated signal propagates with the speed of the Mach stem

[21], which varies throughout the evolution of the shock reflection. For this reason, none of

these analytical solutions provided accurate results over the entire range of Mach numbers.

Finally, the Classical and Modified CCW Equations described by Itoh [18] were stud-

ied. The Classical CCW Equation (2.17) is based on GSD. The Modified CCW Equation

(2.18) added an extra term, η, to account for the flow behind the shock front. Both of

these equations calculate the evolution of the Mach stem height. The transition points

found using these equations appear to be reasonably accurate when compared to the recent

experiments and CFD results. However, when looking at Figure 6.5, both the Classical and

Modified CCW Equations provide very different Mach stem heights prior to transition.

Based on this study, it appears that numerical predictions using CFD provide the

most accurate results for finding the InMR-to-TRR transition point for a wide range of

Mach numbers (1.1 ≤ Ms ≤ 4) as these results are the most comparable with the recent

experiment results. Despite the conclusions from this thesis, there are still some unanswered

questions.
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For example, weak shock results by Gruber [23] and Cohen [14] were also found in

literature. Some future work would be needed to compare these results with numerical

methods at low Mach numbers. Because two transition points (InMR-to-RR and RR-to-

TRR) were observed in weak shock experiments, it is important to discover if numerical

solutions found using a CFD solver could accurately find both of these transition points.

Further numerical studies could also be done for stronger shocks, such as detonation

wave reflections. Yuan [45] has provided some preliminary work on this topic using a

two-step induction-reaction kinetic model. Numerical observations showed a detonation

reflection evolution similar to the shock reflection evolution described in Section 1.5 for

strong shock waves: DiMR → InMR → TRR. At low wall angles, the triple point trajectory

for detonation reflections was similar to that of shock reflections, but the paths diverged at

higher wall angles. This results in smaller InMR-to-TRR transition angles for detonation

reflections than for shock reflections. Furthermore, the transition point can be affected by

the activation energy of the detonation, ϵr. Increasing ϵr increases the transition angle, θtrw .

More work could also be done in order to find an accurate analytical solution to find

the InMR-to-TRR transition point. Timofeev and Previtali [21] proposed a semi-analytical

solution. This analytical solution uses a similar problem setup as the Ben-Dor path (a)

solution, except for using the velocity at the foot of the Mach stem instead of the constant

flow velocity behind the incident shock. This method is semi-analytical because the Mach

number at the foot of the Mach stem is found using the previously obtained results from

CFD. Therefore, it is not yet a fully analytical prediction. Further details can be found in

Appendix A.3.

Some future work would also be to study the shock wave propagation over more complex

geometries. For example:
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• Soni [46] and Brahmi [47] studied the shock reflection over double-concave cylindrical

surfaces.

• Ram [48] and Reshma [49] studied the shock wave reflection over convex-concave

cylindrical surfaces.

• Krassovskaya [50] and Koronio [15] studied the shock wave reflection over multi-

faceted concave surfaces.

• Liang [51] and Gruber [23] studied the shock reflection over parabolic concave sur-

faces.
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Appendix A

Extra Derivations

A.1 Deriving the Ben-Dor Governing Equation

This derivation is taken from [2]. The corner-generated perturbation signals travel with a

speed of V +c, where V is the local velocity and c is the local speed of sound. The analytical

solution states that the distance S, shown in Figure 2.7 as the triple point trajectory, in

which the signals have propagated during the time interval from the leading edge to the

transition point is given by:

S =

∫ ∆t

0

(V + c)dt (A.1)

Where ∆t is the time for the incident shock to travel from x = 0 to x = xtr. In general,

both V and c will vary throughout the domain. However, because reflected shock waves

near the reflecting surface are generally weak, the flow properties do not vary much, and

therefore they can be assumed constant.

V + c = V1 + c1 (A.2)
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Thus the distance travelled becomes

S = (V1 + c1)∆t (A.3)

Substituting in ∆t = xtr

Vs
, where Vs is the speed of the incident shock:

S = (V1 + c1)
xtr

Vs
(A.4)

Now dividing both sides of the equation by the speed of sound of the undisturbed gas, c0:

S

c0
=
V1 + c1
c0

xtr

Vs
(A.5)

S

(
Vs
c0

)
= (V10 + C10)x

tr (A.6)

xtr = S

(
Ms

V10 + C10

)
(A.7)

Where V10 and C10 are functions of Ms given by Ben-Dor [2] as:

V10 =
2(M2

s − 1)

(γ + 1)Ms

(A.8)

C10 =
γ − 1

γ + 1

1

Ms

√(
2γ

γ − 1
M2

s − 1

)(
M2

s +
2

γ − 1

)
(A.9)

The distance travelled by the incident shock can also be found geometrically from Figure

2.7:

xtr = R sin θtrw (A.10)
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Equating both equations A.7 and A.10 yields:

R sin θtrw = S
Ms

V10 + C10

(A.11)

A.2 Detailed GSD Numerical Scheme

The TVD third-order Runge-Katta scheme to solve the A −M rule is given by equations

5.23, 5.24 and 5.25. Further details for solving this scheme are provided below. This

numerical scheme is based on the work by Ridoux [33].

A.2.1 Selecting ∆α

The time step, ∆α, needs to be selected. This value is restricted by the stability condition

of this algorithm and by the limit on the number of points interacting with the boundary.

The first restriction on ∆α is that the scheme must be stable under the Courant-

Friedrichs-Lewy (CFL) condition:

∆α ≤ ∆αs = dmin∆s mini=1,...,N

(√
λ(Mi)

M2
i − 1

,
2Mi

k(M2
i − 1)

)
(A.12)

Where dmin is a parameter introduced later. This inequality must exist due to the pertur-

bation velocities along the shock front:

ds

dα
= ±Au(M) =

√
M2 − 1

λ(M)
(A.13)

The second restriction on ∆α is that the rays do not cross. Numerically, this means:

∆α ≤ ∆αc = miniεI

(
li−1

Mi−1

,
ki
Mi

)
(A.14)
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li−1 =

−−−−→
Xi−1Xi · ni−1 − (

−−−−→
Xi−1Xi · ni)(ni−1 · ni)

1− (ni−1 · ni)2
(A.15)

ki = −
−−−−→
Xi−1Xi · ni − (

−−−−→
Xi−1Xi · ni−1)(ni−1 · ni)

1− (ni−1 · ni)2
(A.16)

I = i = 2, ...,
N

li−1

> 0, ki > 0 and |ni−1 · ni|≠ 1 (A.17)

Then based on the two conditions, equations A.12 and A.14, the time step, ∆α is chosen:

∆α = δ min(∆αs,∆αc) (A.18)

Where δ is a safety coefficient between 0 and 1.

A.2.2 Finding ni, Ai and Mi

Interpolation of Shock Surface

An interpolation of the shock surface is performed over all the data (si, xi)i=1,...,N ,

(si, yi)i=1,...,N using a monotone cubic method [43]. This is done in order to avoid cre-

ating new extreme values. The unit normal vector is first calculated:

ni =
(Y

′
(si)−X

′
(si))

T√
X ′(si)2 + Y ′(si)2

for i = 1, ..., N (A.19)

Where the interpolates are denoted s→ X(s) and s→ Y (s).
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Finding the Local Area

The local area is found using a central scheme (the endpoints have a one-sided scheme).

To note, ν = 0 for 2D planar and ν = 1 for 2D asymmetric flow.

Ai =
πν

2


∆s2(x2 + x1)

ν if i = 1

∆si+1(xi+1 + xi)
ν +∆si(xi + xi−1)

ν if i = 2, ..., N − 1

∆sN(xN + xN−1)
ν if i = N

(A.20)

Finding Mach Number

To find the Mach number at time α+∆α, the A−M relation must be integrated numerically

along each ray tube:

log

(
Ai(α +∆α)

Ai(α)

)
+

∫ Mi(α+∆α)

Mi(α)

mλ(m)

m2 − 1
dm+

∫ α+∆α

α

H(κ)f(M)

∣∣∣∣∂M∂s
∣∣∣∣ dτ = 0 (A.21)

Actually solving this integration is discussed in section A.2.4.

A.2.3 Inserting or Deleting Points

After the shock front for the next time step is calculated, new data points either need to

be inserted in expansive regions to maintain sufficient resolution or deleted in compressive

regions to avoid excessive data points. The point spacing should be:

dmin∆s ≤ ∆si ≤ dmax∆s (A.22)

Where dmin < 1 and dmax > 1 with commonly chosen values of 0.5 and 1.5 respectively.

Therefore, if ∆si < dmin∆s, then the point xi is removed from the shock front. Similarly,



A Extra Derivations 89

if ∆si > dmax∆s, then a new point, xi− 1
2
is added using a cubic spline interpolation. This

interpolation is evaluated as 1
2
(si−1+si). To note, in these cases, the same points are added

or removed from the initial shock front in order to conserve the scheme for the area ratio of

Ai(α+∆α)
Ai(α0)

. A smoothing procedure is applied to help dampen the errors in the shock front.

After a set number of iterations ns, which range from 10 up to 50, for i = 2, ..., N − 1:

xi =
hr

hl + hr
xi−1 +

hl
hl + hr

xi+1 (A.23)

This is with hl = ||xi − xi−1|| and hr = ||xi+1 − xi||. With a wall, boundary conditions

must be applied to keep the shock locally normal to the wall. This is done by:

X
′
(sbound) = Nx and Y

′
(sbound) = Ny (A.24)

Where sbound defines the shock boundary and N =

Nx

Ny

 is the unit normal vector to the

wall. The normal vector at the wall is defined by:

n(sbound) =

 Ny

−Nx

 (A.25)

This ensures that the bounding point moves along the wall.

A.2.4 Integrating the A−M Equation

Due to the insertion or deletion of some data points along the shock front, there may be a

loss in conservativity of the numerical scheme. Without any regularization, the integration
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of the A−M relation could simply be done from the initial time α0 to α +∆α.

log

(
Ai(α +∆α)

Ai(α0)

)
+

∫ Mi(α+∆α)

Mi(α0)

mλ(m)

m2 − 1
dm = 0 (A.26)

With regularization, the integration needs to be split in two. Since the information at time

α would already be known based on integration performed before regularization, then the

second portion of the integral would be from α to α + ∆α. For the case of simple GSD

without the ad hoc modification (H(κ) = 0), this integral can be calculated:

log

(
Ai(α +∆α)

Ai(α)

)
+

∫ Mi(α+∆α)

Mi(α)

mλ(m)

m2 − 1
dm = 0 (A.27)

With regularisation, this integration would not work. Instead, the following needs to be

done. Assume the shock front is first regularized at α + ∆α, resulting in the removal of

point xj, then the ray tubes indexed by j−1 and j+1 are then modified (as seen in Figure

A.1) which modifies the corresponding Aj−1 and Aj+1. Due to the change in the number

of points, some modifications must be made.

For the following description, assume any quantities before regularization are denoted as

ψ̃ and ψ after regularization. For instance, the deletion of a point would not modify Mach

number (M(α0) = M̃(α0)), but the ray tube areas have changed: Aj±1(α0) ̸= Ãj±1(α0).

For example, at node xj+1, the Mach number at α +∆α can be evaluated with:

log

(
Aj+1(α +∆α)

Aj+1(α)

)
+

∫ Mj+1(α+∆α)

M̃j+1(α)

mλ(m)

m2 − 1
dm = 0 (A.28)

Using equation A.27, and knowing shock front at time α, its value must be the same with
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Fig. A.1 Schematic of redefining the ray tubes after a deleted point in GSD
[33].

an integration from the initial time (equation A.26).

log

(
Aj+1(α +∆α)

Aj+1(α0)

)
+

∫ Mj+1(α+∆α)

Mj+1(α0)

mλ(m)

m2 − 1
dm = 0 (A.29)

The Mach number at time α is known before regularization:

log

(
Ãj+1(α)

Ãj+1(α0)

)
+

∫ M̃j+1(α+∆α)

Mj+1(α0)

mλ(m)

m2 − 1
dm = 0 (A.30)

Applying equation A.30 and A.28 and get:

log

(
Aj+1(α +∆α)

Aj+1(α0)

)
+

∫ Mj+1(α+∆α)

Mj+1(α0)

mλ(m)

m2 − 1
dm+ log

(
Ãj+1(α)

Aj+1(α)

Aj+1(α0)

Ãj+1(α0)

)
= 0 (A.31)

This equation A.31 differs from equation A.29 due to modification of local areas. This im-

plies a loss in conservativity of the scheme and therefore a modification is needed. Equation

A.32 is the general form of the A−M relation.
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1

A

∂A

∂α
+
Mλ(M)

M2 − 1

∂M

∂α
+R(α, β) = 0 (A.32)

R(α, β) = H(κ)f(M)

∣∣∣∣∂M∂s
∣∣∣∣ (A.33)

Deleting Points

For deleting points, Ridoux [33] proposes the following modification: If Ãi and M̃i are the

area and Mach number for point Xi before regularization, then Ai and Mi are the area and

Mach number after regularization.

log

(
Ai(α +∆α)

Ãi(α)

Ãi(α0)

Ai(α0)

)
+

∫ Mi(α+∆α)

M̃i(α)

mλ(m)

m2 − 1
dm+

∫ α+∆α

α

R(τ, βi)dτ = 0 (A.34)

Inserting Points

For inserting points, Ridoux [33] proposes the following modification: If Ai and Mi are the

area and Mach number after regularization, and Xi+1/2 is inserted on the shock front at

time α +∆α, then Mi+1/2(α +∆α) can be estimated:

I +

∫ Mi+1/2(α+∆α)

Mi(α+∆α)

mλ(m)

m2 − 1
dm+

∫ Mi+1/2(α+∆α)

Mi+1(α+∆α)

mλ(m)

m2 − 1
dm = 0 (A.35)

I = 2log

(
Ai+1/2(α +∆α)

Ai+1/2(α0)

√
Ai(α0)

Ai(α +∆α)

Ai+1(α0)

Ai+1(α +∆α)

)

+

∫ Mi(α0)

Mi+1/2(α0)

mλ(m)

m2 − 1
dm+

∫ Mi+1(α0)

Mi+1/2(α0)

mλ(m)

m2 − 1
dm

(A.36)



A Extra Derivations 93

Calculating Mach Number

The Mach number at time α+∆α is estimated by first applying equation A.34 to all points

but the newly added points. Then applying equation A.35 for the inserted points.

Integrating the Transverse Term

The transverse term is:

f(M)

∣∣∣∣ ∂MA∂β
∣∣∣∣ = sign(f(M))

∣∣∣∣∂F (M)

∂s

∣∣∣∣ (A.37)

With F (M) =
∫
f(m)dm and sign(f(M)) defined as:

sign(f(M)) =


1 if f(M) > 0

−1 if f(M) ≤ 0

(A.38)

The equation can be solved with a monotone upwind scheme:

f(M)

∣∣∣∣∂M∂s
∣∣∣∣
M=Mi

≈ sign(f(Mi))max(∆lFi,−∆rFi, 0) (A.39)

Where the terms ∆lFi and ∆rFi are the estimated slopes of F (M) on both sides of Mi:

∆lFi =
F (Mi)− F (Mi−1)

si − si−1

∆rFi =
F (Mi+1)− F (Mi)

si+1 − si
(A.40)

When a wall boundary exists, the local shock front must be perpendicular to the wall

surface. Consequently, the transverse variation of the Mach number at a shock boundary
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is equal to zero:

∂F (M)

∂s

∣∣∣∣
s=sbound

= 0 (A.41)

On each ray tube, the integration of the A−M relation from time α +∆α is written as:

log

(
Ai(α +∆α)

Ai(α)

)
+

∫ Mi(α+∆α)

Mi(α)

mλ(m)

m2 − 1
dm

+

∫ α+∆α

α

H(κi)sign(f(Mi))max(∆lFi,−∆rFi, 0)δτ = 0

(A.42)

The first integral is calculated with Simpson’s rule, while the second integral is solved with

trapezoidal rule. Then, a Newton algorithm can solve the nonlinear system.

A.2.5 Finding the Local Shock Curvature

In order to solve equation A.42, the sign of the local shock curvature, κi at xi, is needed:

κi =
4 sin(ϕi/2)

||
−−−−→
Xi−1Xi||+||

−−−−→
XiXi+1||

(A.43)

Where ϕi is the angle between
−−−−→
Xi−1Xi and

−−−−→
XiXi+1. The local curvature, κi = 0 if the

points Xi−1, Xi and Xi+1 are aligned, κi > 0 if the points are convex (expansive shock)

and κi < 0 if the points are concave (compressive shock).

Because the local curvature can show many small oscillations on the shock front, there

is the need for a temporary coarse distribution on the shock front to evaluate the curvature

- A line simplification algorithm [52]. The intermediate points are interpolated with a

monotone quadratic spline [53]. The local curvature is then defined at Xi using equation

A.43 at temporary points.

Near a shock-shock (or triple point) where a discontinuity occurs, the transverse term

needs to eliminated in order to ensure convergence. The transverse term at node Xl, at
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a distance of dc from the point where the Mach number variation is the highest, Xc, is

deactivated: H(κl) = 0. dc can be commonly taken as 0.05 [33].

A.3 Semi-Analytical Prediction

This prediction was first proposed by Timofeev and Previtali [21]. Consider that the corner

generated signal travels at the speed of the Mach stem along the wall (i.e. the foot of the

Mach stem). Since transition occurs at ttr when x = xtr, and the incident shock moves at a

constant velocity of Vs, then t
tr = xtr/Vs. The foot of the Mach stem moves with a variable

velocity of Vst. Time ttr can also be found by integrating along the reflecting surface:

xtr

Vs
=

∫ str

0

ds

Vst
(A.44)

Where str is the path along reflecting surface from the origin to the transition point. Know-

ing that xtr = Rsinθtrw and ds = Rdθw, and converting Vs and Vst toMs andMst respectively

by dividing by the speed of sound, and after diving both sides by R, Equation A.44 becomes:

sinθtrw
Ms

=

∫ θtrw

0

dθw

Mst(θw)
(A.45)

Dividing both sides by θtrw yields the following:

sinθtrw
θtrw

=Ms

[
1

θtrw

∫ θtrw

0

dθw

Mst(θw)

]
(A.46)

Solving Equation A.47 usingMst values taken from CFD results yields analytical predictions

of the transition point similar to that of the results found using CFD. However, because

Mst needs to be found using CFD, this is not a fully analytical solution.
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Recovering Ben-Dor Path (a) Prediction

If the square bracket in Equation A.46 were taken as an average, then:

sinθtrw
θtrw

=Ms

〈
1

Mst

〉
(A.47)

Assume Mst = V10 + C10, then Equation A.47 would become:

sin θtrw
θtrw

=
Ms

V10 + C10

(A.48)

Where Equation A.48 is identical to the Ben-Dor Path (a) solution (Equation 2.5).
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