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Abstract

The computational prediction of functions associated with biological sequences is of high

importance in bioinformatics research. It is crucial in understanding complex cellular

mechanisms by complementing wet-lab experiments and to study diseases related to mu-

tations in such sequences. However, the existing sequence-based predictors are quite in-

ferior compared to the analogous wet-lab experiments. In this thesis, we present two

approaches that make use of evolutionary information in order to boost the performance

on biological sequence function prediction tasks. Our first approach, PhyloReg, is a semi-

supervised approach that regularizes a given supervised model, e.g. logistic regression or

convolutional neural network, such that the resulting model predicts similar scores over

the neighbouring orthologous sequences in the phylogenetic tree. The second approach,

PhyloPGM, is applicable to the inference stage. It combines prediction scores of a previ-

ously trained classifier on orthologous sequences to boost the prediction accuracy. Lastly,

we provide a web-interface to compute PhyloPGM scores on given genomic location(s)

that will allow researchers to focus on the PhyloPGM outcomes.

The results with 422 ChIP-seq datasets show that PhyloReg improves the transcrip-

tion factor binding sites (TFBSs) prediction accuracy significantly. Similarly, PhyloPGM is

shown to effectively boost the RNA binding prediction accuracy in 31 CLIP-seq datasets.

The web interface provides a practical application of PhyloPGM where user can analyze

whether a genomic location binds to a RBP. We showcase our methodologies w.r.t. the

TFBSs and RNA binding prediction problems, however, both PhyloReg and PhyloPGM

are, in principle, applicable to any supervised learning algorithms and other sequence
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function prediction tasks such as miRNA target gene and mRNA subcellular localization

predictions.
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Abrégé

La prédiction informatique des fonctions associées aux séquences biologiques est d’une

grande importance dans la recherche en bioinformatique. Elle est cruciale pour com-

prendre les mécanismes cellulaires complexes en complétant les expériences en labora-

toire humide et pour étudier les maladies liées aux mutations dans de telles séquences.

Cependant, les prédicteurs basés sur les séquences existants sont assez inférieurs aux

expériences analogues en laboratoire humide. Dans cette proposition, nous présentons

deux approches qui utilisent des informations évolutives afin d’améliorer les performances

des tâches de prédiction de fonction de séquence biologique. Notre première approche,

PhyloReg, est une approche semi-supervisée qui régularise un modèle supervisé donné,

par ex. régression logistique ou réseau neuronal convolutif de telle sorte que le modèle

résultant prédit des scores similaires sur les séquences orthologues voisines dans l’arbre

phylogénétique. La deuxième approche, PhyloPGM, est applicable à l’étape d’inférence

qui combine les scores de prédiction du classificateur préalablement formé sur des séquences

orthologues pour augmenter la précision de la prédiction. Enfin, nous fournissons une

interface Web pour calculer les scores PhyloPGM sur un ou plusieurs emplacements

génomiques donnés, ce qui permettra aux chercheurs de se concentrer sur les résultats

de PhyloPGM.

Les résultats avec 422 ensembles de données ChIP-seq montrent que PhyloReg améliore

considérablement la précision de prédiction des sites de liaison aux facteurs de transcrip-

tion. De même, il est démontré que PhyloPGM augmente efficacement la précision de

la prédiction de la liaison à l’ARN dans 31 ensembles de données CLIP-seq. L’interface
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Web fournit une application pratique de PhyloPGM où l’utilisateur peut analyser si un

emplacement génomique se lie à un RBP. Nous présentons nos méthodologies w.r.t. les

problèmes de prédiction de liaison de TFBS et d’ARN, cependant, PhyloReg et Phy-

loPGM sont, en principe, applicables à tous les algorithmes d’apprentissage supervisé

et à d’autres tâches de prédiction de fonction de séquence par exemple les prédictions de

localisation subcellulaire du mARN et les prédictions du gène cible du mi-ARN.
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Chapter 1

Introduction

1.1 Overview

The binding of proteins to DNA or RNA sequence is an integral part of biological func-

tions within a cell of a living organism. The computational prediction of protein bindings

to DNA or RNA sequences will allow to comprehend associated functions and to study

related diseases that may occur due to erroneous binding. For example, the problem of

whether a given DNA sequence will bind to a protein called transcription factor (TF) is

relevant for the study of gene regulatory networks and the diseases associated with the

mutations in the DNA regulatory regions [Slattery et al., 2014, Spielmann and Mundlos,

2013]. Similarly, the binding prediction of a protein called RNA binding protein (RBP) to

an RNA sequence is significant in comprehending post-transcriptional regulation and the

associated diseases [Stefl et al., 2005, Lukong et al., 2008a].

Recent years have seen an explosion of machine learning (ML) tools, especially deep

learning algorithms, for various sequence-function prediction tasks and have superseded

the results of classical computational approaches [Alipanahi et al., 2015, Quang and Xie,

2016, Pan and Shen, 2018]. Although machine learning based methods have outper-

formed classical computational methods, existing computational methods are yet to re-

place their experimental counterparts due to high false positive prediction rates.
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One broad area that is less explored for the biological sequence-function prediction

tasks is the use of evolutionary information, which not only will augment the training

data, but will allow identifying TF or RBP binding sites in the light of evolution. Further-

more, the orthologous regions in different organisms i.e. the genomic regions derived

from the same common ancestor, are indeed observed to be under selection as per the or-

thologous conjecture [Shiraishi et al., 2001, Shabalina et al., 2004, Papatsenko et al., 2006,

Cooper and Brown, 2008, Chen and Zhang, 2012, Stamboulian et al., 2020]. However,

the raw integration of sequence conservation information may not improve sequence-

function prediction models due to a phenomenon called binding sites turnover [Sinha

and Siggia, 2005, Moses et al., 2006]. Under this phenomenon, the binding property of a

given region such as the number of binding sites, is maintained, but the sequence itself is

not conserved. Moreover, a study by Kheradpour et al. [2013] suggests that the conser-

vation of transcription factor binding sites (TFBSs) is more crucial for enhancer activity

than the overall sequence conservation. Therefore, a more sophisticated integration of se-

quence conservation information is required for a robust computational model to predict

TF and RBP binding sites.

In this chapter, we first describe biology of transcriptional regulation and wet-lab ex-

perimental identification of TFBSs in § 1.2 and § 1.3. Then, we describe biology of RBP and

wet-lab experimental identification of RBP binding sites in § 1.4 and § 1.5. We provide a

brief survey on existing computational models to predict TF or RBP binding sites § 1.6. In

§ 1.7, we discuss some of the major challenges associated with the problem of predicting

TF or RBP binding sites. We describe comparative genomics approaches to predict TF or

RBP binding sites in § 1.8. Finally, we present the thesis outline and mention the author

contributions in § 1.9.
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1.2 Biology of Transcriptional Regulation

A particular DNA segment is transcribed into a RNA molecule through a process called

transcription, which has a significant part in the synthesis, regulation and processing of

proteins. A transcription factor (TF) is a protein that binds to regulatory regions in DNA

and regulates the transcription process of adjacent gene. Several regulatory regions in the

DNA e.g. promoter, enhancer and silencer, help to direct and regulate transcription of the

DNA segment.

Figure 1.1: Transcription process. Multiple TFs bind to promoter region in DNA and

recruit RNA polymerase to initiate the transcription process. During the elongation step,

the RNA polymerase move in 5’ to 3’ direction and a RNA transcript is formed. The

transcription process terminates after a stop sequence is reached by the RNA polymerase.

The DNA segment where transcription process starts is called transcription start site

(TSS). The promoter region of a gene is usually 100-1000 base pairs long and is located

near the TSS [Pacheco, 2013]. A transcription process, in general, is consist of three steps:
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initiation, elongation and termination. In the initiation step, TFs bind to promoter region

and initiate the transcription process. The bound TFs recruit RNA polymerase enzyme

in the promoter region and a transcription bubble is created. In the elongation step, the

transcription bubble divides the DNA strand while moving in 5’ to 3’ direction and si-

multaneously a RNA transcript is formed. The transcription process terminates when a

stop sequence is detected by the RNA polymerase. Figure 1.1 describes a transcription

process.

A gene may have enhancers and silencers as regulatory regions in DNA. The enhancer

regions are usually 50-1500 base pairs long and can be located in either direction from

TSS as far as 1,000,000 base pairs away [Pennacchio et al., 2013]. Some TFs can bind to

enhancer regions and increase the transcription rate [Griffiths et al., 2005]. The silencer

regions have similar features as enhancers in terms of length and location [Riethoven,

2010]. The transcription rate can decrease if some TFs bind to silencer region [Lieberman

and Marks, 2009].

In human genome, there are around 1600 TFs as suggested by Lambert et al. [2018] and

the number of observed genes are about one order higher in magnitude (∼20,000 [Pen-

nisi, 2012]. Several TFs, instead of a single TF, work together for the production of a gene.

Similar to other proteins, TFs are transcribed from a DNA segment into an RNA molecule

and then translated to a protein. The TFs are translated in cell’s cytoplasm in eukaryotes

and need to be relocated to nucleus, where DNA is located, in order to regulate transcrip-

tion process. Many other proteins direct TFs to the nucleus through nuclear localization

signals [Whiteside and Goodbourn, 1993]. A TF can even regulate itself by regulating the

gene that produces it.

A TF has a signal sensing domain (SSD) that can make it active or inactive and only

an active TF can take part in gene regulation. There are many ways that a TF can be

activated, e.g. ligand binding, phosphorylation [Bohmann, 1990], interaction with other

TFs [Massagué et al., 2005, Glass and Rosenfeld, 2000]. Apart from SSD, a TF has two main

binding domains: DNA-binding domain (DBD) and trans-activating domain (TAD). The
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DBD allows a TF to bind with regulatory regions and the TAD helps to bind with other

proteins such as coactivators or corepressors.

The specific DNA sequences to which a TF binds are known as transcription factor

binding sites (TFBSs) and are usually 6 to 20 base pairs long Zambelli et al. [2012]. In

general, a TF binds to a TFBS in a sequence specific way and the specific pattern to which

a TF binds is known as its motif. A TF may not bind to all the bases in TFBS and bind-

ing strength with different bases may differ. Moreover, a motif can be degenerate i.e. a

nucleotide occurring at a paricular position in TFBS is not fixed. Thus, a TF can bind to a

subset of closely related sequences. It should be noted that TFs binding is observed to be

highly clustered i.e. TFBSs of many TFs are usually present in relatively same genomic

regions [Yan et al., 2013].

A TF may bind in one cell type and not the other for a given genomic location even if

its motif is present. The cell-type specificity of a TF binding is determined by multitudes

of factors. A TF may require cooperative binding with other TFs and the required TFs

may be absent in some cell-types [Panne, 2008, Wasson and Hartemink, 2009, Meijsing

et al., 2009, Kitayner et al., 2010, Siggers et al., 2011, Slattery et al., 2011]. A TF may need

to compete with other TFs and proteins in order to bind with a genomic location [Miller

and Widom, 2003, Mirny, 2010, Teif and Rippe, 2010]. Moreover, some regulatory regions

may not be accessible to TFs [Bai and Morozov, 2010, Pique-Regi et al., 2011]. Therefore,

chromatin context is an important factor for cell-type specificity of TF binding. For ex-

ample, addition of methyl groups to histones, known as histone methylation, can either

increase or decrease the rate of TF binding [Gupta et al., 2010]. Additionally, DNA can

temporarily become accessible to TFs due to thermal fluctuations that can partially un-

wrap the nucleosome [Cuesta-López et al., 2011]. One other reason of cell-type specificity

of TF binding is the presence of pioneer TFs that are capable of binding with inaccessible

nucleosomal DNA and making it accessible to other TFs [Glatt et al., 2011, Barozzi et al.,

2014].
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Mutations in TFBSs may disrupt the gene regulatory network and may lead to a dis-

ease [Spielmann and Mundlos, 2013]. For example deletions in the regulatory regions

of FOXL2 gene is linked to blepharophimosis syndrome that affects eyelids develop-

ment [Beysen et al., 2005]. Benko et al. [2009] report that deletions in the regulatory re-

gions of SOX9 gene are associated with Pierre Robin syndrome that causes small jaw and

cleft palate. A study by Lettice et al. [2011] suggests that changes in enhancer activities

of SHH gene may result into holoprosencephaly spectrum (HPES) disorder that causes

limb malformation. Similarly, a study by Dathe et al. [2009] suggests that duplication of

a regulatory region of BMP2 gene may lead to autosomal-dominant brachydactyly type

A2 (BDA2) and result into limb malformation. Alterations in regulatory regions may

cause transcriptional dysregulation and, possibly, lead to cancer causing genetic alter-

ations [Bradner et al., 2017].

1.3 Experimental Identification of Transcription Factor Bind-

ing Sites

A ChIP-seq experiment is an in vivo wet lab experiment to identify the TFBSs for a TF

in the entire genome of a cell [Solomon et al., 1988, Johnson et al., 2007, Robertson et al.,

2007]. The TF of choice is cross-linked with DNA, usually, by treating cell with formalde-

hyde. The DNA is then fragmented and the TF-bound DNA fragments are immunopre-

cipitated using a specific antibody. The precipitated TF-DNA complexes are recovered,

sequenced and aligned to a reference genome. The regions with enriched alignments in-

dicate TFBSs and are identified through peak-calling programs [Robertson et al., 2007,

Fejes et al., 2008, Zhang et al., 2008]. A typical ChIP-seq experiment results into 2-20 mil-

lion genomic regions of 200-300 bps in length where a TF can bind in the given type of

cell [Pepke et al., 2009]. One ChIP-seq experiment costs around 500-100$ in general. The

ENCODE consortium [Consortium et al., 2012] has provided the ChIP-seq based TFBSs

for hundreds of transcription factors in more than eighty cell lines. It should be noted
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that ChIP-seq experiments are unable to identify the exact TFBSs due to experimental

limitations during the sonication stage. A ChIP-exo experiment is a refined version of

ChIP-Seq that uses enzymes called exonuclease to trim immunoprecipitated DNA pre-

cisely from the cross-linked site and, in theory, can identify TFBSs in single nucleotide

resolution [Rhee and Pugh, 2011].

Figure 1.2: ChIP-seq workflow. In the ChIP step, a TF is cross-linked with DNA us-

ing formaldehyde. The DNA is then fragmented by sonication. The cross-linked DNA

segments are then immunoprecipitated using an antibody. A library is constructed with

the precipitated TF-DNA complexes. The recovered DNA fragments are sequenced and

aligned to get the genomic positions. The genomic regions with enriched alignments

are identified through peak calling programs and are considered as TFBSs. The figure is

from Liu et al. [2010]

The discernment of gene regulatory network will require ChIP-seq experiments to

be repeated for all pairs of TF and cell type and will be immensely expensive and time

consuming. Moreover, ChIP-seq identified regions may be false positive TFBSs or incon-

sequential binding [Vanhille et al., 2015, Barakat et al., 2018]. Despite of the shortcomings,
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the ChIP-seq experiments are preferred wet-lab experiments for genome-wide studies of

identifying in vivo TFBSs at the time of this thesis also discussed in a recent study [Ferraz

et al., 2021].

1.4 Biology of RNA Binding Proteins

An RNA binding protein (RBP) is a protein that binds to a specific sequence motif in a

RNA sequence and plays a significant regulatory process in the post-transcriptional phase

of gene expression such as RNA stability, splicing, subcellular localization and transla-

tion [Keene, 2001, Stefl et al., 2005] (see figure 1.3). The length of a human RBP motif

roughly varies from 4-10 bps [Gabut et al., 2008, Cook et al., 2010]. The RBPs mostly

bind in the 3’ untranslated region (UTR) of RNA whose average length in human is about

800 bps [Mignone and Pesole, 2018]. In fact, multiple RBPs bind to the 3’ UTR of RNA

and their unison regulates the gene expression [Quattrone and Dassi, 2019]. There are

around 2000 RBPs reported in human [Castello et al., 2012, Quattrone and Dassi, 2019,

Benoit Bouvrette et al., 2020]. An RBP has a RNA binding domain that recognizes a RNA

region to bind to [Stefl et al., 2005]. The most abundant RNA binding domains are RNA-

recognition motif (RRM), double stranded RNA-binding motif (dsRBM), and the nucleic-

acid-binding domain, the CCHH-type zinc-finger domain [Stefl et al., 2005].

A RRM domain interacts with RNA, mostly, in a sequence specific way [Handa et al.,

1999]. RBPs with more than one RRMs require cooperative binding of at least two RRMs

with the RNA for the high-affinity binding [Stefl et al., 2005]. RBPs with RRM domain

play an essential role in many cellular functions, such as RNA processing, splicing, export

and stability [Dreyfuss et al., 2002]. In contrast to RRM domain, a dsRBM binding is

determined by the specific shape of the target RNA [Stefl et al., 2005]. RBPs with dsRBM

domain play an essential role in RNA processing, editing, interference, localization and

repression [Doyle and Jantsch, 2002, Saunders and Barber, 2003]. A study by Lu et al.

[2003] found that the zinc fingers first interact with the backbone double helix structure
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Figure 1.3: The binding of RBPs to RNAs has important biological functions e.g. splicing,

export, localization, translation etc. Figure is from Gebauer et al. [2020]

and then specifically recognize the individual bases in the RNA loop regions. RBPs with

the CCHH-type zinc finger domain play an essential role in transcription regulation, RNA

processing and degradation [Lu et al., 2003, Hudson et al., 2004].

The structure of RNA sequence plays a crucial role in the RNA binding to RBPs [Lee

et al., 1997, Montange and Batey, 2008, Mortimer et al., 2014, De Groot et al., 2019]. RNA

structure can be predicted from its sequence and can be represented into two levels: sec-

ondary structure that involves canonical base-pairing and tertiary structure, the three di-

mensional shape of RNA molecule [Mathews et al., 1999]. The RNA secondary structure

are usually determined by free energy minimization [Lück et al., 1996, Mathews et al.,

1997]. RNAfold computes the minimum free energy and uses dynamic programming

to backtrace the optimal secondary structure [Lorenz et al., 2011]. RNAfold and many
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other tools to compute optimal, sub-optimal, locally stable RNA secondary structures

are available in the viennaRNA package [Lorenz et al., 2011]. The secondary structure

with minimum free energy may not represent the complete possible structures [Ding and

Lawrence, 2003]. SFOLD provides ensemble of secondary structure based on statistical

sampling [Ding and Lawrence, 2003]. The RNAShape tool can categorize various sec-

ondary structures of a RNA sequence into a simplified form [Steffen et al., 2006].

Computing tertiary structure of RNA is challenging due to the effect of environmen-

tal conditions (e.g. ion concentrations and temperature) [Pucci and Schug, 2019]. Some

approaches to predict RNA tertiary structure use secondary structure as input and match

parts of the secondary structure with templates in a database of known RNA tertiary

structures e.g. RNAComposer [Biesiada et al., 2016], Vfold3D [Zhao et al., 2017], 3dRNA [Zhao

et al., 2012]. Other methods make use of specific conformations (iFoldRNA [Ding et al.,

2008], NAST [Flores and Altman, 2010], SimRNA [Boniecki et al., 2016]) or matching tem-

plates based on structure and geometry (RNABuilder [Flores et al., 2010], ModeRNA [Rother

et al., 2011]).

Aberrations in RBP bindings to RNA may result in neurological disorders and can-

cer [Lukong et al., 2008b]. A fragile X syndrome (FXS) may result from undesired changes

in the 5’ UTR of the FMR1 gene [Chelly and Mandel, 2001]. Similarly, myotonic dys-

trophy type 1 (DM1) may result from erratic functions of RBPs MBNL1 and CUGBP1

due to changes in the 3’ UTR of myotonic dystrophy protein kinase (DMPK) messen-

ger RNA [Wang and Cooper, 2007]. Studies have suggested that erroneous regulation of

RBPs are linked to cancer e.g. over expressed RBP Sam68 is linked to breast and prostate

cancers [Lukong et al., 2005, Busa et al., 2007, Paronetto et al., 2010], under expressed RBP

QKI is linked to gliomas [Chénard and Richard, 2008]. Hong [2017] reviewed probable

roles of RBPs in cancer development.
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1.5 Experimental Identification of RBP Binding Sites

Much similar to ChIP-seq, a CLIP-seq (Cross-linking immunoprecipitation Sequencing)

experiment is an in vivo wet-lab experiment that can locate the RBP binding sites for a

given RBP [Ule et al., 2003, Licatalosi et al., 2008b, Chi et al., 2009, Darnell, 2010]. In a

CLIP process, the RNA and RBP are in vivo cross-linked using ultraviolet (UV) light that

forms covalent bonds between RBP and RNA nucleotides. Then, the cells are lysed and

RNAs are fragmented. The RNA-RBP complex are separated through immunoprecipita-

tion. The nucleotides that were cross-linked are then converted to complementary DNAs

(cDNAs), which in turn are sequenced and mapped to the genome to obtain the genomic

locations of RBP binding sites. Optinally, peak calling programs such as Piranha [Uren

et al., 2012], CLIPper [Lovci et al., 2013] and PureCLIP [Krakau et al., 2017] may be used to

identify the locations of RBP binding sites. The identified RBP binding sites are roughly

100 nucleotides long. A typical CLIP-seq method is described in the figure 1.4.

The CLIP-seq experiments vary based on the CLIP protocols applied for the cross-

linking and immunoprecipitation. The photoactivable ribonucleoside-enhnced cross-linking

and immunoprecipitation (PAR-CLIP) method incorporates photoreactive ribonucleosides

analogs like 4-thiouridine and 6-thioguanosine into RNA for enhanced recovery of RBP

binding sites [Hafner et al., 2010b]. Although PAR-CLIP can locate RBP binding sites with

high accuracy, it is limited to cultured cells and may cause nuclear stress response [Sheng

and Cai, 2012, Burger et al., 2013]. The individual nucleotide-resolution cross-linking and

immunoprecipitation (iCLIP) method reverse transcribes RNAs to identify the RBP bind-

ing sites at high resolution [König et al., 2010, Wang et al., 2010, Tollervey et al., 2011].

However, the effect of reverse transcription on CLIP method is not completely known.

Additionally, the identification of cross-linked induced mutation sites (CIMS) along with

the CLIP method is shown to identify the RBP binding sites [Zhang and Darnell, 2011].

Stražar et al. [Stražar et al., 2016] compiled a RBP binding sites dataset for 31 RBPs

obtained from various CLIP-seq experiments. Each dataset consists of around 3,283-6,000
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Figure 1.4: CLIP-Seq experiment. First, RNAs and RBPs are cross-linked to form covalent

bonds in between them in the presence of ultraviolet(UV) radiation. After cell lysis, RNAs

are fragmented. RNA-RBP complexes are separated through immunoprecipitation. Ob-

tained RNAs are purified and converted to complementary DNAs (cDNAs). The cDNAs

are sequenced and mapped to a reference genome. The peaks in the mapped regions,

which are identified through peak-calling programs, are termed as RBP binding sites.

positive examples and 23,672-26,214 negative examples in train set and 1,892-2,000 pos-

itive examples and 7,725-7,991 negative examples in test set. The positive examples are

the regions of the transcriptome identified as cross-linking sites in the CLIP-seq experi-

ments. The negative examples are sampled regions from genes that were not identified

as cross-linking sites in any of the CLIP-seq experiments. The length of each example is

101 nucleotides.

In general, a CLIP-seq experiment costs around 500$-1000$. Similar to ChIP-seq ex-

periments, multiple CLIP-seq experiments for each RBP across each cell line is required

to comprehend the post-transcriptional regulatory network, which will be expensive and
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time consuming. Moreover, CLIP-seq experiment involves multiple steps with some steps

posing optimization difficulties and low efficiencies [König et al., 2012, Moore et al., 2014,

Ule et al., 2005]. Furthermore, some sequence bias in cross-linking step of CLIP-seq due

to UV radiation is reported , but, the effect of bias is not clear [Sugimoto et al., 2012].

Nonetheless, CLIP-seq approaches are considered state-of-the-art wet-lab experiment to

identify genome-wide RBP binding sites [Uhl et al., 2020]. The ENCORE project [Van Nos-

trand et al., 2020] used CLIP-seq methods as one of the tools to compile 1,223 data sets

of 356 RBPs for characterizing and mapping RBPs in terms of their binding preferences,

sub-cellular localization and the function associated with RBP binding sites [Deakyne and

Mazin, 2011].

1.6 Computational Approaches to Predict TF and RBP bind-

ing sites

Computational approaches to predict TF and RBP binding sites offer several benefits over

the associated wet-lab experiments. The computational approaches will allow to reduce

the time and cost related to wet-lab experiments. The TF and RBP binding site locations

obtained from wet-lab experiments are with respect to a reference genome. An individual

genome may differ from the reference genome and using a computational model to know

the binding sites will be more affordable than the wet-lab experiments in terms of time

and cost. It will be easier to learn the impact of mutations with a computational model.

Moreover, computational models will allow to comprehend the mechanisms determining

the binding. It is possible with computational approaches to rapidly evaluate candidate

sequences to assist therapeutic approaches. Finally, computational models will be quite

useful in the scenarios where wet-lab experiments are virtually impossible e.g. to deter-

mine binding sites in the brain cell of a live individual or to determine binding sites in

species whose genomes are difficult to obtain.

13



1.6.1 Shallow Learning Approaches

The classical computational approaches to predict TFBS are based on motif models that

use consensus sequence or position weight matrices to represent the motifs [Stormo et al.,

1982]. A consensus sequence is the sequence of predominant bases in the alignment of ex-

perimentally determined binding sites. Similarly, the position weight matrix denotes the

relative frequency of bases (A,C,G,T) at each location of the aligned binding sites. Apart

from aligning sequences of known binding sites, there are computational approaches that

aim to discover new motifs in terms of consensus sequence or PWM from a given set of

sequences and are known as motif-discovery approaches e.g. MEME [Bailey et al., 2006],

REFINE [Bailey et al., 1994] and HOMER [Heinz et al., 2010]. Motif based models are

applied in a sliding window fashion across the entire genome to obtain a score at each

location and the locations with scores higher than a selected threshold are deemed as

binding sites. One major drawback of motif based models is that the nucleotides at dif-

ferent positions in a consensus sequence or a PWM are assumed to be independent of

each other, which is not always true [Man and Stormo, 2001, Bulyk et al., 2002, Maerkl

and Quake, 2007]. The other major drawback is that they do not consider the sequence

context and will indicate all genomic locations as binding sites that match with a cho-

sen consensus sequence or PWM resulting into a high false positive rate. Moreover, the

motif-based models are unable to distinguish between cell-type specific binding sites i.e.

the locations where a certain TF binds in one cell type and not in the other, since the

nucleotides at each position are same. Day and McMorris [1992], Stormo [2000] provide

a detailed overview of motif-based models along with their strength and weakness. It

should be noted that profile-HMMs, which can convert a multiple sequence alignment

into a position-specific scoring system, can be used to identify motifs and locate tran-

scription factor binding sites [Eddy, 1998]. For example, Mapper [Marinescu et al., 2005]

used HMMER [Eddy, 1998, Bateman et al., 2002] on the alignment of known TFBSs to

search for putative TFBSs. Mathelier and Wasserman [2013] used HMMs with ChIP-seq
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data to graphically represent motifs in order to identify TFBSs. HMM-based models to

predict TFBSs are reviewed in Slattery et al. [2014].

The motif-based models are now significantly outperformed by machine learning based

approaches that allow to learn variable sized motifs and inter-dependent relations among

the nucleotides [Li et al., 2015]. In general, DNA sequences of fixed lengths are labelled as

bound or non-bound sites through wet-lab experiments, e.g. ChIP-seq. The sequence fea-

tures are, often, represented as k-mer counts, which are used to train a supervised model

as a binary classifier to predict TFBSs. For example Arvey et al. [2012] used support vector

machines (SVM) [Cortes and Vapnik, 1995] and k-mer features with certain mis-matches

allowed, Ghandi et al. [2014] allowed gaps within k-mers with SVM, and Sharmin et al.

[2016] used k-mer features with ensemble models to predict TFBSs in a given cell type.

The sequence-based computational models to predict TFBSs are applicable to predict

RBP binding sites [Tacke and Manley, 1995, Pérez et al., 1997, Liu et al., 1998, Sanford

et al., 2008, 2009, Agostini et al., 2014]. For example Hogan et al. [2008] used MEME [Bai-

ley et al., 2006] and REFINE [Bailey et al., 1994] to identify RBP binding motifs in yeast.

RNACompete [Ray et al., 2009] used AlignACE [Roth et al., 1998, Hughes et al., 2000],

MEME [Bailey et al., 2006] and MEMERIS [Hiller et al., 2006] to identify in vitro and in

vivo RNA binding motifs. RBPmap is based on PWMs to predict RBP binding sites in

human, mouse and Drosophila [Paz et al., 2014]. RPISeq applies SVM and Random For-

est models to k-mer features of both RNA and RBP sequences to predict RBP binding

sites [Muppirala et al., 2011].

There are many computational tools that use both sequence and structure informa-

tion to predict RBP binding sites ( catRAPID [Agostini et al., 2013], Livi and Blanzieri

[2014], RCK [Orenstein et al., 2016] ). For example, RNAContext [Kazan et al., 2010] anno-

tated sequence nucleotides into paired, hairpin loop, unstructed and miscellaneous using

SFOLD [Ding and Lawrence, 2003]. GraphProt [Maticzka et al., 2014] used RNAShape

with graph kernels [Costa and De Grave, 2010] and SVM. CapR [Fukunaga et al., 2014]

computed the binding preference probabilities for each bases within the secondary struc-
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ture contexts and RPIBind [Luo et al., 2017] used local conformation structures of RNA to

predict the RBP binding sites.

1.6.2 Deep Learning Approaches

The deep learning based approaches further improved the TFBS prediction accuracy over

the shallow models [Koo and Ploenzke, 2020]. The deep learning based approaches dif-

fer in terms of model architectures. Convolutional neural networks (CNNs) are used to

predict TFBSs by representing genomic sequences as image-like data [Alipanahi et al.,

2015, Zhou and Troyanskaya, 2015, Zeng et al., 2016]. Typically, an l-sized sequence is

transformed into a l × 4 matrix by one-hot encoding of each nucleotide in the sequence.

A CNN architecture is consist of a set of filters, known as convolutional filters or con-

volutional kernels that act as motif detectors, like PWMs. Each filter is represented as a

m× 4 matrix whose values are learned using training data. First, the convolutional filters

are applied to the one-hot encoded input. Then, a pooling operation is applied by taking

the maximum of the outputs of each convolutional filters, which is known as global-max

pooling. It should be noted that pooling stage may involve other computations such as

taking average or both maximum and average etc. The goal of the pooling operation is

to aggregate the motif signals detected from convolutional filters. Afterwards, the output

from pooling stage is passed through one or multiple fully connected neural networks to

obtain the final prediction score. Alipanahi et al. [2015] used a CNN architecture to pre-

dict both TF and RBP binding sites. Zeng et al. [2016] explored several CNN architectures

for TFBSs prediction problem.

One major drawback with CNN architectures is its inability to capture the positional

dynamics of motifs in a sequence due to the indirect assumption of at most one motif ex-

isting in a sequence [Hassanzadeh and Wang, 2016]. A recurrent neural network (RNN)

is able to capture temporal/spatial dynamics in sequence-like data and is shown to pre-

dict TFBSs [Shen et al., 2018]. An RNN architecture has connections between its units

that forms a directed cycle, which facilitates to have an internal state and to learn dy-
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namic temporal and spatial patterns in the data. However, traditional RNN suffers from

a problem called vanishing gradient effect that inhibits to back-propagate the errors from

a distant point of time [Hochreiter, 1998]. A long short term memory network (LSTM)

is a type of RNNs that aims to solve the vanishing gradient problem with the help of a

gating mechanism that allows it to retain or discard information [Hochreiter and Schmid-

huber, 1997]. A gated recurrent unit (GRU) is another RNN architecture that uses gating

mechanism to solve the vanishing gradient problem [Chung et al., 2014]. A bi-directional

LSTM (BLSTM) or a bi-directional GRU applies two LSTMs or GRUs from both sides of

a sequence and their outputs are combined to obtain the final output. Shen et al. [2018]

trained bi-directional GRUs with k-mer embeddings on ChIP-seq datasets to predict TF-

BSs. Koo and Ploenzke [2020] provide summary of several deep learning architectures

that are use in genomics with a focus on TFBS prediction.

Figure 1.5: Example of a hybrid of CNN and RNN architecture, Deeperbind, which was

designed to predict TFBS. Figure is from the figure 2 of Hassanzadeh and Wang [2016]
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Figure 1.6: Example of a hybrid of CNN and RNN, RNATracker, which was designed to

predict mRNA sub-cellular localization. Figure is from the figure 2 of Yan et al. [2019]

A hybrid of CNN and RNN architectures benefit from both type of networks and is

shown to outperform a CNN or a RNN on TF and RBP binding site prediction tasks [Has-

sanzadeh and Wang, 2016, Quang and Xie, 2016, Pan et al., 2018, Yan et al., 2019, Quang

and Xie, 2019, Park et al., 2020]. For example Deeperbind [Hassanzadeh and Wang,

2016] applies a convolutional layer to one-hot enocoded input sequence, followed by a

bi-directional LSTM layer and a fully-connected neural network to predict TFBSs. Fig-

ure 1.5 shows a typical Deeperbind architecture. FactorNet [Quang and Xie, 2019] is an-

other CNN-RNN hybrid architecture that can use DNA sequence information to predict

TFBSs. An input to FactorNet is a sequence and its reverse complement. FactorNet ap-

plies a convolutional layer of 32 filters to both inputs. Then a dropout layer is applied
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where a certain number of randomly selected neurons are set to zero in order to avoid

overfitting. Afterwards, a max pool layer and a bi-directional LSTM layer are applied.

A dropout layer is applied for one more time. Finally, both outputs from the previous

layers are passed through a fully-connected neural network and averaged to obtain the

final prediction score. In terms of predicting RBP binding sites from sequence input,

RNATracker [Yan et al., 2019] is one such example of a CNN-RNN hybrid architecture.

Although RNATracker is designed to predict sub-cullular localization of messenger RNA

(mRNA), RNATracker should be suitable for other prediction tasks related to RNA such

as RBP binding site prediction. RNATracker applies two conolutional layers to an one-

hot encoded sequence input. Then a pooling layer is applied, which is followed by a

bi-directional LSTM layer with attention. Afterwards, a fully-connected neural network

is used to obtain the final prediction score. RNATracker applies a dropout layer after each

convolutional and bi-directional LSTM layer to avoid overfitting. Figure 1.6 shows the

RNATracker architecture.

1.6.3 Model Evaluation

Most of the computational TF and RBP binding site predictors are build as a supervised

binary classifiers with a goal to predict whether a binding site is present or not in a given

input sequence. There are some deep-learning based approaches, such as Avsec et al.

[2021] that predicts the number of ChIP-seq reads at each position of the input sequence to

identify TF motifs. The commonly used metrics to evaluate all these models are area un-

der curve of receiver operating characteristic (AUROC) and area under curve of precision-

recall (AUPR). A specificity of a model is defined as the correctly identified number

of non-bound sequences and a recall score measures the correctly identified bound se-

quences. A precision score measures the correct predictions made on the total number

of identified bound sequences. The specificity, recall and precision scores of a model can

vary based on the threshold used over the model prediction scores. An AUROC score

measures the are under the curve of specificity and recall scores, while an AUPR score
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measures the area under the curve of precision and recall scores. An AUPR score is a bet-

ter evaluation metrics than an AUROC score on the imbalanced datasets where number

of non-bound sequences are much larger than the bound sequences. A false discovery

rate (FDR) measures the proportion of incorrect binding sites identified by a model. The

genome-wide number of binding sites of a TF or an RBP is much smaller (<<0.1%) than

the number not-bound sites. Thus, a recall score at a lower FDR score (e.g. 0.1% or 0.05%)

should provide an insight on genome-wide application of a binding site predictor for a

TF or an RBP.

1.6.4 ENCODE-DREAM Competition

A recent DREAM competition [Kundaje et al., 2021] was organised to predict in vivo bind-

ing sites of 31 TFs in 13 cell lines with the use of DNA sequences, in vitro DNA shape

parameters, in vivo chromatin accessibility profiles and gene expression data. The partici-

pants were provided with ChIP-seq datasets from ENCODE and were evaluated on held-

out cell lines and held-out chromosomes. Apart from the main task of predicting TFBSs,

participants were evaluated on several other parameters, such as influence of training and

testing contexts on predictor performance, the extent to which guaranteed performance

can be obtained, effect of cellular contexts on TFs and families of TFs, and relative con-

tribution of sequence and chromatin features for binding prediction. The models were

evaluated on AUPR scores and recall scores at various FDR thresholds.

Out of the top three winning submissions [Li et al., 2019, Keilwagen et al., 2019, Quang

and Xie, 2019], only FactorNet was capable of taking only sequence data as input if re-

quired. Despite using sequence and non-sequence information related to TFBSs, none

of the approaches could replicate the wet-lab experiments results. Moreover, the evolu-

tionary data related to TF or RBP binding sites were neglected. A sequence-based TF or

RBP binding sites predictor is preferred due to easier access to sequence data compared

to non-sequence information. Moreover, sequence-based predictors could be integrated

with other computational approaches that use sequence and other non-sequence data
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e.g. chromatin accessibility, DNA shape etc. Our main focus in this thesis is to develop

sequence-based approaches to predict TF and RBP binding sites that integrate evolution-

ary information with deep learning techniques.

1.7 Challenges in predicting TFBS and RNA-RBP binding

The computational prediction of TF or RBP binding sites is extremely challenging due to

numerous reasons. The TF binding to DNA is determined by multitude of factors e.g.

cooperative binding with other TFs [Kitayner et al., 2010, Meijsing et al., 2009, Panne,

2008, Wasson and Hartemink, 2009, Siggers et al., 2011, Slattery et al., 2011], chromatin

accessibility [Bai and Morozov, 2010, Pique-Regi et al., 2011], competition with other TFs

and proteins [Miller and Widom, 2003, Mirny, 2010, Teif and Rippe, 2010], and presence

of pioneer TFs [Glatt et al., 2011, Barozzi et al., 2014]. The RBP binding to RNA also

depends on similar factors e.g. cooperative binding of RRMs Stefl et al. [2005], presence

of inter-domain linker [Stefl et al., 2005].

The epigenetics factors play a major role in TFs binding to DNA, e.g. DNA methy-

lation (addition of methyl group to DNA strand) can recruit certain TFs in the promoter

region and silence a gene expression [Lazarovici et al., 2013, Bird, 2002], histone modifi-

cation can increase or decrease the transcription rate [Gupta et al., 2010]. Epigenetics can

also affect RBP binding to RNA e.g. Dor and Cedar [2018] review the post-transcriptional

regulation due to RNA methylation.

The RNA structure is quite flexible compared to DNA and are observed to play major

role in RNA binding to RBPs [Ray et al., 2013, Daubner et al., 2013, Gupta and Gribskov,

2011]. Although a DNA sequence structure is more constrained than an RNA sequence,

studies have suggested DNA structure as one of the determining factor of TF binding to

DNA [Joshi et al., 2007, Rohs et al., 2009, White et al., 2013].

Finally, the present state-of-the-art computational methods for the TF or RBP binding

site prediction problem are, mostly, based on binary classification problem i.e. the goal is
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to predict whether a given DNA or RNA sequence will bind to a TF or RBP. Such methods,

often, require training data sets to be roughly balanced i.e. equal number of binding and

non-binding sites. Similarly, the trained models are, in general, evaluated on roughly

balanced testing sets. However, the actual number of TF or RBP binding sites are much

less (<<0.1%) than the non-bound sites. Therefore, a model that predicts even 1% of data

as false positive will result into a large number of false positive (∼99%) genome-wide.

1.8 Comparative Genomics Data and Approaches

One of the goal of comparative genomics is to analyze genomes from different species

and identify the regions under selection. Such regions are supposed to be associated with

important biological functions in species. The sequencing of genomes of multiple species

has allowed the study of many biological functional activities in the light of evolution; for

example to identify the conserved regions associated with certain biological functions in

enteric bacteria [McClelland et al., 2000], yeast [Cliften et al., 2001, 2003, Kellis et al., 2003],

mouse and humans [Consortium et al., 2002], caenorhabditis brigase and caenorhabditis

elegans genomes [Stein et al., 2003], Arabidobsis and rice [Movahedi et al., 2011], fungi

[Li and Breaker, 2017], drosophila [Berman et al., 2004], and to identify conserved non-

coding segments in a wide range of vertebrates [Thomas et al., 2003], and within closely

related species such as primates [Gumucio et al., 1992, Boffelli et al., 2003, Lawrie and

Petrov, 2014]. The application of comparing genomes of different species are extensively

reviewed [Collins et al., 2003, Hardison, 2003, Alföldi and Lindblad-Toh, 2013, Xiao et al.,

2014, Yu et al., 2017, Eichler, 2019].

The comparative genomics approaches to predict binding sites are mostly based on

the phylogenetic footprinting method [Tagle et al., 1988]. The main principle is that the

function of binding sites should be conserved across species and the corresponding region

should show differential selection pressure. The workflow consists of aligning the region

of interest with its orthologs and analyzing the conserved portions. Pairwise alignment
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tools such as BLASTZ [Schwartz et al., 2003b], LASTZ [Harris, 2007] can be used to align

sequences of two species. To align sequences of more than two species, usually, a refer-

ence sequence is selected and all other sequences are compared and aligned accordingly

in order to align the multiple sequences from different species [Bray and Pachter, 2003,

Brudno et al., 2003, Schwartz et al., 2003a]. MultiZ allows to have a reference sequence in

local regions and sub-groups of species [Blanchette et al., 2004b]. AVID [Bray et al., 2003]

and LAGAN [Brudno et al., 2003] recursively align the given sequences and look for an-

chors, ie non-crossing and non-overlapping matches. The short-comings and advantages

of the sequence alignment algorithms are reviewed in multiple surveys (e.g. Kumar and

Filipski [2007], Li and Homer [2010], Wang et al. [2015]).

The conservation score at different positions are commonly measured through tree-

based markov models e.g. PhastCons, PhyloP [Felsenstein and Churchill, 1996, Siepel

et al., 2005, Siepel and Haussler, 2005, Yang, 1995]. PhastCons [Siepel et al., 2005] uses a

hidden Markov model on multiple sequences aligned to compute the probability of each

nucleotide in the alignment column of being conserved. PhastCons takes flanking re-

gions into account for computing the conservation score at a given position. PhyloP [Sie-

pel et al., 2006] applies similar techniques, but, focus on individual columns and ignore

the effects of flanking columns. PhyloP can distinguish between fast-evolving and slow-

evolving regions. PhastCons is more suited for detecting long continuous conserved ele-

ments and PhyloP is more effective in identifying evolutionary selection at specified class

of nucleotides such as third codon positions.

There are many techniques that applied phylogenetic footprinting to find TFBSs or

RBP binding sites. Kellis et al. [2003] computed motif conservation score based on the

count of conserved regions to identify short conserved motifs and the process is repeated

with neighboring regions to find a large set of motifs in yeast. The rVISTA tool [Loots

and Ovcharenko, 2004] identified binding sites of multiple TFs in a given region based

on motif-matching and filters the final TFBSs candidates based on sequence conserva-

tion of orthologous regions. MONKEY [Moses et al., 2004] used evolutionary distances in
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probabilistic framework to identify conserved TFBSs. Li et al. [2008b] found that the prob-

able functional TFBSs identified through PWM matching had higher PhastCons scores in

Drosophila. Nettling et al. [2017] combined phylogenetic footprinting with intra-motif

dependencies that is measured through computing mutual information of neighbouring

regions in order to classify TFBSs. Ray et al. [2013] used RNACompete analysis and Phy-

loP scores to identify the functional roles of RBP binding sites.

The aligned sequences from closely related species may pose difficulties in identifying

the binding sites, which are relatively short sequences as the non-functional regions may

be equally conserved [Cliften et al., 2001, Blanchette and Tompa, 2002]. On the other hand,

the sequences from distant related species may become too diverged to be accurately

aligned and the short conserved regions may become difficult to be indentified [Cliften

et al., 2001, Blanchette and Tompa, 2002]. Blanchette and Tompa [2002] make use of phy-

logenetic tree with phylogenetic footprinting and parsimony-based approach to identify

the most conserved k-mers to circumvent the problem caused by sequence alignment.

CONREAL [Berezikov et al., 2004] used PWMs to identify TFBSs candidates in different

species, which are then aligned using anchoring technique similar to AVID and LAGAN

to produce ordered set of most conserved TFBSs.

Ancestral sequence reconstruction (ASR) is another step of comparative genomics that

could be used to identify the regions in genome that are associated with important bio-

logical functions [Sadri et al., 2011, Gumulya and Gillam, 2017]. The ASR requires mul-

tiple sequence alignment of orthologous regions from related extant species and a phy-

logenetic tree that relates those extant species. Then, the ancestral bases may be recon-

structed based on greedy algorithm [Blanchette et al., 2008], maximum likelihood (e.g.

PAML [Yang, 2007], Ancestors 1.0 [Diallo et al., 2010], FastML [Ashkenazy et al., 2012]),

or bayesian approaches (e.g. LAZARUS [Hanson-Smith et al., 2010], PhyloBot [Hanson-

Smith and Johnson, 2016]) that can explain the insertions, deletions and substitutions in

the descendant species. In this thesis, we use ancestral sequences generated by Ances-

tors 1.0 [Diallo et al., 2010] to predict TF or RBP binding sites. Constructing an ances-
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tor sequence that minimizes the number of insertions or deletions of nucleotides in the

descendants is an NP-hard problem [Chindelevitch et al., 2006]. Ancestors 1.0 [Diallo

et al., 2010] uses a heuristics approach based on tree-HMM [Diallo et al., 2007] to infer the

insertions and deletions of nucleotides during the construction of ancestral sequences.

Gumulya and Gillam [2017] provided a survey on the ASR approaches and their applica-

tions. Although the intermediate steps involved in ASR are error-prone (e.g. in sequence

alignment [Anisimova et al., 2010], in phylogenetic tree [DeGiorgio and Rosenberg, 2016,

Stadler et al., 2016]), the ancestral sequences are shown to have provided useful insights to

functional sites in genome [Zhang and Rosenberg, 2002, Ugalde et al., 2004, Voordeckers

et al., 2012, Bar-Rogovsky et al., 2013, Sadri et al., 2011]. Sadri et al. [2011] used MUL-

TIZ and ancestor 1.0 programs to find orthologous regions to human sequences and com-

posed features of count of conserved and substituted sites, which are then used with SVM

to predict whether a position in human genome will mutate or not. Blanchette [2012]

used inferred ancestral mammalian genomes with PWMs to predict TFBSs. MirAnces-

Tar [Leclercq et al., 2017] used ancestral genomes and mammalian orthologs to boost the

accuracy of existing human micro RNA target sites predictors by taking account of bind-

ing sites turnover. The ancestral sequences offer a large amount of data and evolutionary

history that should be useful with sophisticated approaches like deep learning to identify

TFBSs and RNA binding sites.

1.9 Thesis Roadmap and Author Contributions

In Chapter 2, we propose several ML methods that use evolutionary information to boost

the performance of computational models for the biological sequence function predic-

tion tasks. First, we develop a semi-supervised regularization approach called PhyloReg

for the problem of TFBSs prediction. The PhyloReg approach assumes that the ortholo-

gous regions have same label i.e. whether the regions bind to a given TF and requires

a base TFBS predictor that minimizes a loss function e.g. cross-entropy loss function. A
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phylogenetic loss is added such that the base model is penalized for mis-predicting the

orthologous regions. The resulting trained model is shown to improve the accuracy of

base model in simulated and real data. The PhyloReg principle, in theory, is applicable

to any sequence-based model for any sequence-function prediction task that minimizes

some loss function.

In Chapter 3, we propose a probabilistic aggregation approch called PhyloPGM that

combines the predictions of an existing TFBS predictor or RNA binding predictor on or-

thologs of a given human genomic sequence. The goal of PhyloPGM is to boost the base

model prediction accuracy on the given human sequence. Unlike PhyloReg, model train-

ing is not required in the PhyloPGM approach. We show that the PhyloPGM significantly

improved the accuracy of the base models for the TFBS and RNA binding prediction prob-

lem. Interestingly, the PhyloPGM model efficiently predicted more functional regions in

human i.e. the TFBSs or RBP binding sites that are related to the fitness of human species

than the base models.

In Chapter 4, we provide a web service called PhyloPGM-Web to analyze and assess

a submitted human genomic sequence using PhyloPGM. The web service is developed

using Cloudgene http://www.cloudgene.io/, nginx and python on a linux platform.

A public url is provided where the user can submit the desired genomic location. In the

background, the web service executes PhyloPGM with a number of pre-trained TF and

RBP binding site predictors. Once the execution is complete, the user is presented with

the predicted outcomes (a TF binding probability or a RBP binding probability).

In Chapter 5, we summarize our results and analyses with PhyloReg and phyloPGM

and discuss the future aspects.

1.9.1 Author’s contribution

This thesis includes the text and figures from three scientific articles and each article has

been published, submitted, or is in preparation for submission to a journal. Faizy Ahsan
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is the first author of each article found in Chapter 2-4. Listed below are the articles in their

order of appearance throughout the thesis.

Chapter 2 is the extended version of

Ahsan, Faizy, Alexandre Drouin, François Laviolette, Doina Precup, and Mathieu

Blanchette. ”Phylogenetic Manifold Regularization: A semi-supervised approach to pre-

dict transcription factor binding sites.” In 2020 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), pp. 62-66. IEEE, 2020.

FA performed the computational analysis and prepared the manuscript draft. FA and MB

contributed equally to the final manuscript draft. All authors were involved in the discussion and

development of the project.

Chapter 3

Faizy Ahsan, Zichao Yan, Doina Precup, and Mathieu Blanchette (2021) PhyloPGM:

Boosting Regulatory Function Prediction Accuracy Using Evolutionary Information. In

preparation for submission to Nature Methods.

FA performed the computational analysis and prepared the manuscript draft. ZY helped in the

implementation of RNATracker model. FA, DP and MB were involved in the discussion leading to

the development of PhyloPGM approach. FA and MB contributed equally to the final manuscript

draft.
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Chapter 4

Faizy Ahsan, Zichao Yan, and Mathieu Blanchette (2021) PhyloPGM As A Web Ser-

vice. In preparation for submission to Bioinformatics Application Note.

FA implemented the web service and prepared the manuscript under the guidance and super-

vision of MB. ZY helped in the implementation of RNATracker model.
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Chapter 2

Learning Transcription Factor Binding

Site Predictor Using Evolutionary Data

In the following manuscript, I show that evolutionary data in terms of orthologous re-

gions are helpful in improving the prediction accuracy of a sequence-based transcription

factor binding site (TFBS) predictor. I propose a regularization technique, PhyloReg, that

can be applied in a semi-supervised fashion for the TFBS prediction task. First, I de-

sign and implement an algorithm to create artificial datasets of a set of orthologs. The

algorithm mimics the evolution of a biological function (activity) associated with a se-

quence. Then, I show that PhyloReg technique is helpful in predicting the activity if

sufficient amount of selection pressure and training examples are present. Afterwards,

I process and compile a previously published TFBS prediction datasets and extract or-

thologs/ancestors. I apply PhyloReg to a previously published deep neural network on

the compiled dataset. I show that PhyloReg is more accurate in predicting TFBSs than the

base model and sequence conservation techniques. I find that PhyloReg is more useful

in the cases where base model has relatively lower accuracy or the number of training

examples is relatively smaller. I observe that for certain transcription factors (TFs), the

species that were closer to human in terms of evolutionary distance were more relevant

in PhyloReg results, while for other TFs even distant species were relevant.
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Mathieu Blanchette. ”Phylogenetic Manifold Regularization: A semi-supervised approach

to predict transcription factor binding sites.” In 2020 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pp. 62-66. IEEE, 2020.

2.1 Manuscript 1: Phylogenetic Manifold Regularization:

A semi-supervised approach to predict transcription fac-

tor binding sites

Authors: Faizy Ahsan1, Alexandre Drouin2, François Laviolette2, Doina Precup1, and

Mathieu Blanchette1

1School of Computer Science, McGill University, Montreal, Quebec, Canada

2Université Laval, Quebec, Canada

2.2 Abstract

The computational prediction of transcription factor binding sites remains a challenging

problems in bioinformatics, despite significant methodological developments from the

field of machine learning. Such computational models are essential to help interpret the

non-coding portion of human genomes, and to learn more about the regulatory mecha-

nisms controlling gene expression. In parallel, massive genome sequencing efforts have

produced assembled genomes for hundred of vertebrate species, but this data is under-

used. We present PhyloReg, a new semi-supervised learning approach that can be used

for a wide variety of sequence-to-function prediction problems, and that takes advantage

of hundreds of millions of years of evolution to regularize predictors and improve accu-

racy. We demonstrate that PhyloReg can be used to better train a previously proposed

deep learning model of transcription factor binding. Simulation studies further help de-
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lineate the benefits of the approach. Gains in prediction accuracy are obtained over a

broad set of transcription factors and cell types.

2.3 Introduction

The specific binding of transcription factors (TFs) to genomic regions called transcription

factor binding sites (TFBSs) are key events in the regulation of gene expression. These

protein-DNA interactions define gene regulatory networks and control biological func-

tions. Mutations in TFBSs are known to cause numerous diseases [Slattery et al., 2014,

Spielmann and Mundlos, 2013]. The information defining TF binding sites is present

both in the DNA sequence itself [Barolo, 2016] and its cell-type specific context (e.g. DNA

accessibility and methylation, and presence of other bound TFs) [Arvey et al., 2012]. Com-

putational models to predict TFBSs and their cell-type specificity from sequence alone are

of high importance in genomics, computational and molecular biology as they would

enable fast screening of personal genomes for non-coding regulatory mutations, among

other benefits. In some cases, these models may also suggest biological factors and mech-

anisms that may impact binding, which could then be tested experimentally.

Humans have ∼2000 TFs, each with its own complex affinity to DNA [Brivanlou and

Darnell, 2002]. TFs bind to specific 6-20np DNA motifs that may be located either prox-

imally (promoters) or distally (enhancers) from the gene they regulate [Zambelli et al.,

2012]. Classically, these motifs are represented as consensus sequences or position weight

matrices (PWMs), which can be used to weakly discriminate between bound and un-

bound sites w.r.t. a given TF [Stormo, 2000, Stormo et al., 1982]. However, these simple

motif-based models ignore sequence context dependencies associated with co-operative

binding of TFs or nucleosome positioning. Machine-learning-based models attempt to

predict a TF’s binding sites by considering a broader region (e.g. 100-200 bp regions ob-

tained by ChIP-Seq experiments) surrounding a candidate site. Shallow ML-based mod-

els (e.g. string-kernel SVM [Arvey et al., 2012], gapped kernel SVM [Ghandi et al., 2014],
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and ensemble approaches [Sharmin et al., 2016]) represent candidate DNA sequences as

sets of k-mers, which allows to capture some interactions among motifs. More recently,

deep learning approaches based on convolutional and recurrent neural network (CNN,

RNN) models improved on shallow models by capturing wide range of motif features

from the sequences [Alipanahi et al., 2015, Zhou and Troyanskaya, 2015, Zeng et al., 2016].

However, current approaches are far from having sufficient accuracy to replace laboratory

experiments, as shown by a recent DREAM competition [Kundaje et al., 2021].

One approach to improving existing approaches for sequence function prediction tasks

is to exploit evolutionary information. Because of selective pressure, functional regions

tend to be more conserved across species than surrounding non-functional regions [Hardi-

son, 2003, Chen et al., 2007]. Phylogenetic footprinting approaches have successfully

taken advantage of this phenomenon to identify non-coding functional elements [Tagle

et al., 1988, Blanchette and Tompa, 2002, Moses et al., 2004, Loots and Ovcharenko, 2004,

Boffelli et al., 2003]. However, the assumption that TFBSs are conserved across species is

not completely accurate, as shown in multiple studies [Moses et al., 2006, Lawrie et al.,

2011, Li et al., 2008a, Halfon et al., 2011, Wang et al., 2016]. This is particularly due to a

phenomenon called binding site turnover, where a binding site for a given TF may be-

come replaced by another functionally analogous binding site (either for the same TF or

for a different one) located nearby [Sinha and Siggia, 2005, Moses et al., 2006]. More so-

phisticated phylogenetic footprinting models are more robust to this type of event and

report accuracy gains in both yeast [Hawkins et al., 2009] and human [Blanchette, 2012].

Although individual binding sites are often lost due to mutations, selective pressure often

results in the overall function of a promoter or enhancer to remain conserved over long

evolutionary periods [Shelest and Wingender, 2005]. Based on this criterion, methods

have been developed that use the high-level feature information across different species

rather than simply the low-level sequence conservation. This includes the idea that TF-

BSs often occur as dense clusters in the regulatory regions and various studies make use

of presence of densely clustered binding sites in conserved regions to predict TFBSs in
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Drosophila [Berman et al., 2004, Ross et al., 2018, Crocker et al., 2015], mouse [Boulling

et al., 2013] and human [Blanchette et al., 2006].

Deep neural network models require a sufficiently large number of training examples

to perform well. However, the number of positive examples (binding sites) for a given TF

in a given human cell type typically ranges from 10,000 to 100,000, which is insufficient

to take full advantage of the power of these sophisticated models. On the other hand,

binding sites from the genome of interest (e.g. human) have orthologs in many other

mammals. Those can be identified using whole-genome alignments [Kent et al., 2002]

and ancestral genomes can be reconstructed with high accuracy [Blanchette et al., 2004a,

Paten et al., 2008, Diallo et al., 2009, 2007, Westesson et al., 2012]. Thus, the use of evo-

lutionary information such as orthologous regions in other species offers the possibility

to augment the training data. However, this data is mostly unlabelled due to a lack of

wet-lab experimental results in most species. In addition, orthologous and ancestral se-

quences are related through a phylogenetic tree, thus, violating the i.i.d. assumptions of

many supervised ML models.

In this paper, we introduce a phylogenetic regularization approach called PhyloReg,

to improve the training of deep learning TFBS predictors by making use of evolution-

ary data to reduce overfitting. PhyloReg is a semi-supervised ML approach based on

manifold regularization [Belkin et al., 2006]. It is well suited for scenarios where rela-

tively few labelled examples but abundant unlabelled examples (orthologous regions in

extant and ancestral species) are available. We demonstrate with simulated and real data

that PhyloReg consistently produces models that are more accurate than those based on

single-species data. In addition, PhyloReg is applicable to any sequence-based function

predictor that optimizes a continuous loss function (e.g. all CNN and recurrent neural

networks, and many k-mer based models).
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2.4 Methods

2.4.1 Phylogenetic Regularization

In general, machine learning models perform better when trained with large amounts of

data. Our phylogenetic regularization approach aims to augment the data used to train

TFBS prediction models in humans with orthologous sequences from other modern mam-

mals and ancestors. Although, the labels of such orthologs are generally unknown, Phy-

loReg relies on the assumption that orthologs and ancestors from closely related species

(according to a given phylogenetic tree) tend to share similar functional properties. Ex-

ploiting this concept, and the fact that for mammals orthologous and ancestral sequences

can accurately be identified/inferred (see below), PhyloReg is a regularization approach

that encourages a model to make predictions that are phylogenetically consistent, i.e. that

do not (or rarely) change too drastically between neighboring species.

Concretely, a regularization term is added to the training objective of the supervised

learning algorithm of our choice. Let L(ŷ, y) be a function that measures prediction error

(e.g., cross-entropy or mean squared error) between the predicted and observed target

values. PhyloReg augments this loss function as follows:

1

N

N∑
i=1

L(f(xi), yi) + β · 1
N

N∑
i=1

(
1

|Ei|
∑
e∈Ei

(f(ep)− f(ec))2
)

(2.1)

where we have a set of N labeled examples {(xi, yi)}N1 , with sequence xi and label yi. For

each example xi, we have a phylogenetic tree containing xi as a leaf, made of a set of

branches Ei connecting xi to its unlabelled orthologous and ancestral sequences. ep and

ec are the sequences associated to the parent and child nodes of edge e. Finally, f is a

learned model and β controls the importance of the phylogenetic regularization term.

The key notion of equation (2.1) is to shape the model’s predictions based on the phy-

logenetic manifold. The first term uses the labelled examples to train the model to get a

good fit, while the second term encourages that similar predictions be made on orthologs.
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A key benefit of PhyloReg is that the number of unlabelled ortologous examples can be

much larger than the number of labelled examples, leading to a biologically-principled

data augmentation strategy.

2.4.2 PhyloReg implementation

In our study, we implemented the PhyloReg loss term for a regression task on a simu-

lated dataset and a classification task on TFBSs dataset. We observed that the optimiz-

ing the loss terms in equation 2.1 became easier if the phylogenetic loss term is con-

sidered in the loss function only at a certain epoch c rather than at every epoch. This

helps with both running time and convergence. In our experiments, we tried c from

[1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50] and selected c = 25 based on accuracy and training

time.

For the prediction of TFBS, we use a CNN-RNN hybrid architecture recently pro-

posed by Quang and Xie [2019] called FactorNet that came as one of the best perform-

ing sequence-based model in a recent DREAM competition [Kundaje et al., 2021]. Al-

though, FactorNet can incorporate non-sequence information as well, in this study we

used the FactorNet architecture that makes use of solely sequence information. Factor-

Net takes a sequence and its reverse complement as input. The first layer is a convo-

lution layer with 32 filters of size 26 and ReLU activation layer. Then a dropout layer

of p = 0.1 is used. The convolution layer is followed by a max pool layer of filter

size 13. The output from these layers is passed through a single bidirectional LSTM

layer of hidden size 32. Again, a dropout layer of p = 0.5 is used. Then, the output is

passed through a fully connected layer of size 128 with ReLu activation function, which

is followed by a last dropout layer of p = 0.5. Finally, a fully connected layer of size

1 with sigmoid activation function yields the output. The final output of FactorNet is

the mean of the outputs of the sequence and its reverse complement. The FactorNet

models are trained batch-wise with batch size of 128 labelled examples along with their

orthologs (in case of PhyloReg version). A validation set with early stopping is used to
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avoid overfitting. Weights are learned by minimizing the equation (2.1) using Adam op-

timizer [Kingma and Ba, 2014] with its default parameters. The models used in our study

are implemented using pytorch package [Paszke et al., 2017]. The code is available at

https://github.com/BlanchetteLab/PhyloReg and the supplementary materi-

als are available at https://github.com/BlanchetteLab/PhyloReg/tree/mas

ter/Supplementary.

2.4.3 Datasets

We use a dataset based on 422 ChIP-Seq experiments, originally assembled by Zeng et al.

Zeng et al. [2016], who used it to train and assess the CNN model they proposed, available

at http://cnn.csail.mit.edu/motif\ occupancy/, originally produced by the

Encode project Consortium et al. [2012], to evaluate the performance of the PhyloReg

approach. Each positive example is a 101 bp region centered on a ChIP-seq peak for a

given transcription factor in a give human cell type. For each TF, Zeng et al. randomly

selected as negative examples an equal number of genomic regions, ensuring to match

the GC-content and motif-binding affinity of the positive examples. In this study, we

extended each sequence to 1000 bp by adding the neighboring 450 bp on both sides of a

given sequence. We elongated the sequences because the original FactorNet is shown to

perform well on 1000 bp input and the binding sites in the orthologs may have altered its

position from the ChIP-Seq peak position in human.

We use blat [Kent, 2002] and liftover to map regions from the hg19 assembly to the

hg38 assembly. The examples with overlapping regions (even by 1 bp) within each exper-

iment are excluded using BEDOPS [Neph et al., 2012]. We randomly divided each data

set in 4:1 ratio to create training and test sets. A portion of the training set of size min(500,

0.1 × train size) was further set aside as validation set, to detect and avoid overfitting.

We extracted mammalian orthologous regions for each training and test examples

using a 100-way vertebrate whole-genome alignment available from the UCSC genome

browser [Kent et al., 2002, Blanchette et al., 2004b]. We complemented those sequences
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Figure 2.1: Example of a two-dimensional simulated data set. 100 points (marked with

plus and minus signs) are chosen to initialize the evolutionary process. The orthologs

evolve randomly along the branches of a complete binary tree of depth 5, producing a set

of 31 points. The activity function isA(x1, x2) = σ(x21 ·w1+x1 ·x2 ·w2+x
2
2 ·w3+w4). (a) Data

set generated using a selection coefficient of zero. Orthologs cluster around their ancestor.

(b) At higher selecion coefficient (100), orthologs tend to stay on the same contour line as

their ancestor. This effect is most notable in portions of the space with a strong gradient,

(e.g. near the black curves).

with computationally predicted ancestral sequences produced by Ancestor1.0 ([Diallo

et al., 2009]). The resulting orthologous and ancestral sequences may not all be of exactly

1000 bp. When needed sequences were truncated or zero-padded to yield sequences of

fixed size. We ignore the orthologs sequences of size < 500 bp. The average number of

examples in ChIP-seq experiments used in this study is 65,000 with a minimum of 600 and

a maximum of 246,266. Each human sequence has on average 80 orthologous/ancestral

examples.

2.4.4 Phylogenetic Simulation

To evaluate the effectiveness of PhyloReg, we use a simple simulation process that gen-

erates a set of orthologous feature vectors, evolved along the branches of a given phy-
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logenetic tree (in our case, a complete binary tree with equal branch lengths). Evolution

of feature vectors is constrained by selective pressure (with selection coefficient S) on the

value of a user-defined function we call the activity function, which tends to be preserved

during evolution. The activity of a feature vector x aims to mimic the level of biological

activity (e.g. TF binding affinity) of x. Briefly, the simulation procedure starts by select-

ing a random feature vector xr at the root of the tree. It then evolves this vector along

the branches of T by perturbing each feature value with independent Gaussian noise

with standard deviation m (herein called the mutation rate), and accepting or rejecting

the change based on the difference in the value of the activity function of the proposed

descendant xc compared to that of the parent xp:

Pr
accept

(xc|xp) =
Norm(S · (act(xp)− act(xc));µ = 0, σ2 = 1)

Norm(0;µ = 0, σ2 = 1)
.

Hence if the product of the change in activity and the selection coefficient is large, it

is unlikely to be accepted. If the proposed change is rejected, another perturbation is

attempted on xp, until the change is accepted. The resulting set of orthologous feature

vectors and their activity values can then be used to assess the impact of phylogenetic

regularization on prediction accuracy, depending on various simulation parameters. An

example of two simulated data sets is shown in Figure 2.1.

2.5 Results

In this section, we first present the results obtained with PhyloReg on both artificial and

real data sets, and compare them to other approaches.
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Figure 2.2: Mean-squared error (MSE) on test data, for simulated data sets with default

values as follows: Number of labeled examples n = 25; Number of unlabeled orthologs

per training example m = 14; Selection coefficient S = 100; dimensionality (d=10), which

yields
(
d
2

)
+1 weight parameters to be estimated. The results reported are the median over

100 repetitions. For each panel, different values of regularization weight β are considered,

and one of the experiment’s parameters is varied, leaving the others to their default value.

2.5.1 Results on simulated data

To assess the ability of phylogenetic regularization to help with generalization and re-

duce prediction error, we designed a simulation study where an activity function A is a

quadratic function of a set of d variables X = x1, ..., xd : A(X) = sigmoid(
∑

i

∑
j wi,jxixj+

w0). In the simulation, vector X is initialized randomly at the root of a complete binary

phylogenetic tree, and then evolves randomly along the branches of the tree according
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to a Brownian motion, but subject to selective pressure to maintain an activation value

similar to that of the parent node (see Methods). The value of wi,j are chosen randomly

ahead of the simulation and remain fixed. See Methods for details. Hence, at high values

of the selection coefficient, examples tend to evolve along the contour lines of the activity

function (see Fig 2.1). This process mimics natural selection on a biological process en-

coded by a set of genetically defined variable X , where there is selective pressure on each

example to have an activity that is similar to its parent. For example, a given regulatory

region may be under selective pressure to maintain a given affinity for a certain transcrip-

tion factor, or a gene’s promoter might be under selection to yield expression near a given

optimal value (neither too high nor too low).

This evolutionary process is repeated n times, every time resulting in a group Oi =

X i
1, ..., X

i
m of m orthologous vectors (one for each node of the tree), and a single real-

valued activity value yi associated with a pre-selected leaf of the tree (mimicking the ref-

erence species from which experimental data is available). We then train a logistic regres-

sion model to estimate the
(
d
2

)
+ 1 weight parameters, using a loss function that includes

the phylogenetic regularization term, weighted by regularization weight β. Finally, the

model’s performance is evaluated using the mean-squared error (MSE) on left-out data.

We used our simulation data to assess the benefits of phylogenetic regularization in

the context of different parameters, including the selection coefficient (S), the dimension-

ality of the feature space (
(
d
2

)
+ 1), the number of training examples (n), and the number

of orthologs (m) per labeled example. Note that setting β = 0 yields a standard regres-

sion model trained on the n labeled examples, which is our baseline. Additionally, we

added a `2 penalty term to the loss term and observed a decrease in model performance.

Therefore, we excluded the `2 penalty term in the experiments with the simulated data.

Fig. 2.2 (a) shows that phylogenetic regularization is able to take advantage of ortholo-

gous data, compared to a standard regression model (β = 0), which, based on the small

number of training examples available, is unable to generalize. Furthermore, the im-

pact of phylogenetic regularization increases with the selection coefficient, and the ideal
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choice of phylogenetic regularization weight β depends on that coefficient. Fig. 2.2 (b)

illustrates that when dealing with a limited number of labeled examples, phylogenetic

regularization enables learning in higher dimensional spaces. For example, with phylo-

genetic regularization and under strong selection coefficients, 25 labeled examples suffice

to accurately learn models with up to
(
25
2

)
+ 1 = 326 parameters. Similarly (Fig. 2.2 (c)),

at a fixed dimensionality, the number of labeled examples needed to learn an accurate

model is much lower with phylogenetic regularization than without. Finally, the benefits

of phylogenetic regularization increase with the size of the tree (Fig. 2.2 (d)).

2.5.2 Experiments with real datasets

Phylogenetic regularization is applicable to any supervised ML algorithm that explicitly

minimizes some loss function. The experiments with simulated data validated phylo-

genetic regularization assumptions in a regression problem setting. Here, we elected to

test our approach on the well studied binary classification problem of transcription factor

binding site prediction. We used 422 ChIP-seq data sets (106 TFs across 88 cell types) from

the Encode project [Consortium et al., 2012] that were used in previous publications and

available at http://cnn.csail.mit.edu/motif\ occupancy/ [Zeng et al., 2016].

Positive examples are 1000 bp regions centered around ChIP-seq peaks, and negative ex-

amples are the regions not bound by the TF in the same cell type with similar GC content

and motif strength as that of the positive examples.

We trained several FactorNet models with the architecture described in Section 2.4,

taken from Quang and Xie [2019]. The first is the standard FactorNet model without

phylogenetic regularization, trained on the human data alone. The second, called Phylo-

FactorNet, uses phylogenetic regularization with β = 1000. The choice of β = 1000 was

made empirically selected from [0.1, 1, 10, 100, 1000, 10000] based on a simple grid search

of a separate validation subsets. Phylogenetic regularization was based on either all mam-

mals (PhyloFactorNet (mammals)) or only primates (PhyloFactorNet (primates)).
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Since inter-species sequence conservation has long been used as a guide toward func-

tional regions, we trained a model called FactorNet+PhastCons, which uses the afore-

mentioned FactorNet model trained on human data only, and combined its output with

PhastCons conservation score computed across vertebrates [Siepel et al., 2005, Siepel and

Haussler, 2005], using a simple logistic regression trained on each data set. We also con-

sidered the PhastCons score alone as a predictor.

For each of the 422 ChIP-seq data sets, all models were trained on the same train/test

splits and were evaluated using the Area Under the receiving-operating curve (AUC)

scores on the test data. Furthermore, we computed Recall scores at different False Discov-

ery Rates for the improvement of PhyloFactorNet (mammals) over PhyloFactorNet (hu-

man). The evaluation metrics are computed using scikit-learn [Pedregosa et al., 2011a].

0.5 0.6 0.7 0.8 0.9 1.0
AUC Score

PhastCons

FactorNet(Human)+PhastCons

FactorNet (Human)

PhyloFactorNet (primates)

PhyloFactorNet (mammals)

Figure 2.3: Test AUC scores of 8 different types of predictors, across the 422 ChIP-Seq

experiments used in this study.

Figure 2.3 show the distribution of AUC values obtained for the different models.

PhyloFactorNet(mammals) outperfoms the FactorNet(human) by 2% (median AUCs)(p-

value: 2.08 × 10−27; Wilcox signed-rank test); a very significant margin considering that

recent papers in the field rarely exhibit gains of more than a couple percent over pre-

decessors. An improvement in prediction accuracy is observed across 289 (PhyloFactor-

Net(primates)) and 278 (PhyloFactorNet(mammals)) of the 422 data sets. It should be

noted that the improvement from PhyloReg is observed with large magnitudes in smaller
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Figure 2.4: AUC score improvement in percentages over FactorNet (human) using Phylo-

FactorNet (mammals) on 422 ChIP-Seq data sets. X-axis: AUC score of FactorNet trained

on human data alone; Y-axis: FactorNet predictor trained using phylogenetic regulariza-

tion.
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Figure 2.5: Median percentage improvement in AUC score over FactorNet (Human) us-

ing PhyloFactorNet (primates) and PhyloFactorNet (mammals) for the TFs present in at

least 5 of the 422 ChIP-Seq experiments and train size >= 10, 000.

datasets as shown in the Supplementary Figure 2.7. Adding the PhastCons score to the

FactorNet(human) predictor does not significantly improve the predictions.

As visible in Figure 2.4, the gains provided by the phylogenetic regularization is most

notable for TFs for which the FactorNet(human) accuracy is moderate, suggesting that

our approach is a good way to improve prediction accuracy for TFs for which the de-
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Figure 2.6: Mean of relative percentage improvement in Recall score with PhyloFactorNet

(mammals) over FactorNet (human).

terminants of binding are complex (e.g. those dependent on co-factors or nucleosome

positioning). Figure 2.5 shows the AUC gain for the TFs. For several TFs (e.g. Nuclear

Respiratory Factor1 (Nrf1) and Neuron-Restrictive Silencer Factor (NRSF)) the gains pro-

vided by PhyloFactorNet exceed 5%. Notably, on this subset of datasets, the number of

examples in the test set is sufficiently large, which provides a low-variance estimate of

the true AUC.

One should keep in mind that in a classification problem where negative examples

actually outnumber positive examples by approximately 1000-to-1 (as they do in the hu-

man genome, for a typical TF), even setting a relatively low false positive rate threshold

(e.g. 10−2) would yield a high false discovery rate (FDR) (approximately 90%). Thus, to

estimate the performance of a predictor, one should pay particular attention to the Recall

score in very low FDR regimes. Figure 2.6 shows that the Recall gains obtained by Phylo-

FactorNet approach is particularly strong in those range, with relative gains of more than

70% at FDR=0.05.

2.5.3 Species informativity

To further understand when and how phylogenetic regularization is particularly power-

ful, we applied the PhyloFactorNet(mammals) trained models to obtain prediction scores
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for each ortholog and ancestral sequence of each data set. We then measured the extent

to which the prediction score obtained on sequences from a given species/ancestor are

informative for the prediction of the label of the corresponding human sequence, effec-

tively asking the question: how well can the human label be predicted by looking only at

the ortholog’s sequence in species X? Focusing on the K562, GM12878, cell types, Supple-

mentary Figures 2.8, 2.9, show that, unsurprisingly, species closely related to human (par-

ticularly old-world monkeys) generally yield most accurate predictions of human labels.

However, for many transcription factors/cell types, similar performances are obtained

using much more distantly related mammals. For example, the binding of transcrip-

tion factors such as NF-YA, Elk1, Nrf1, and ATF3 in human is predicted with nearly as

good accuracy using orthologous data from any mammalian species. We note that these

TFs tend to exhibit relatively ubiquitous expression across cell types. In contrast, for

transcription factors such as CEBPB, NF-E2, PU.1, MafK, and MafF, non-primate species

yield predictions that are much less accurate than those obtained on human. Remarkably,

most of these transcription factors are bZip transcription factors active in the erythroid

lineage (which K562 cells belong to). Similar observations are made in GM12878, H1-

hESC, and HepG2 (see Supplementary material), with cell-type specific TFs (e.g. NFKB

in GM12878, derived from B-lymphocytes) exhibiting reduced prediction power in non-

primate species. We speculate that the binding sites of some of these TFs may be under

weaker selection, which would reduce the benefits offered by PhyloReg.

2.6 Discussion and Conclusion

We present PhyloReg, a semi-supervised approach for TFBSs predictions that comple-

ments labeled sequence data in a given species of interest (e.g. human) with a potentially

very large number of readily available orthologous and ancestral sequences. PhyloReg

takes advantage of the selective pressure on regulatory regions to enable models that

generalize better than those trained on human data alone. We report substantial improve-
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ments obtained by using phylogenetic regularization to improve the training of a recently

published machine learning approach based on convolutional neural networks for tran-

scription factor binding prediction. PhyloReg enable one to increase by more than 2% the

performance (AUC) of a state-of-the-art FactorNet neural network.

Although the main application featured here is a classification task, we demonstrate

using simulated data that the approach is also applicable to regression tasks, in a context

where selective pressure results in a conservation of the activity level of a given sequence.

Remarkably, in this setting, PhyloReg enables learning complex predictive models from

high-dimensional data from significantly fewer training examples than would be needed

if only labeled examples were used.

Although this work did not explore questions related to model interpretability, this is

an important area of research, especially for bioinformatics applications of ML. We spec-

ulate that phylogenetic regularization will help in this direction, by providing predictors

that are not only more accurate, but also more evolutionarily robust, and hence probably

better disentangled models.

Another exciting direction is to design automated approaches to learn to weigh the

changes in values of f along the different branches of our phylogenetic tree. For example,

it may be that certain species may be much less relevant than others in studying certain

types of functions (binding of specific transcription factors, or other types of functions),

e.g. because of different conditions that species is exposed to, or because of genetic dif-

ferences (e.g. the transcription factor may not even exist in that genome, or may not be

expressed in that cell type). The approach presented in Supplementary Figures 2.8, 2.9,

2.10 and 2.11 are a step in that direction, but more sophisticated approaches may be ben-

eficial and informative from an evolution standpoint.

A major benefit of phylogenetic regularization is that, in theory, it is easily applicable

to any sequence-to-function prediction task where an ML model explicitly aims to min-

imizes some loss function (e.g. most neural network based approaches). This family of

problems includes many other types of interaction prediction tasks (microRNA binding
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target sites, binding sites of RNA-binding proteins to RNA, protein-protein interactions,

nucleosome localization, and protein post-translational modifications, etc.), as well as

higher-level functions such as control of gene expression levels by regulatory regions,

mRNA splicing and stability. Notably, machine learning models have already been pro-

posed for each of these tasks, and more. PhyloReg offers the potential benefit of boosting

the accuracy of these approaches at very little extra cost.
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Figure 2.8: The test AUC scores obtained by using the score of the trained predictor ap-

plied to individual orthologous sequence, against the label of the human ortholog in K562

cells.
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Figure 2.9: The test AUC scores obtained by using the score of the trained predictor

applied to individual orthologous sequence, against the label of the human ortholog in

GM12878 cells.
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Figure 2.10: The test AUC scores obtained by using the score of the trained predictor

applied to individual orthologous sequence, against the label of the human ortholog in

H1-hESC cells.
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Figure 2.11: The test AUC scores obtained by using the score of the trained predictor

applied to individual orthologous sequence, against the label of the human ortholog in

HepG2 cells.
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Chapter 3

Inferring Regulatory Function Using

Evolutionary Data

In the following manuscript, I propose a learning algorithm, PhyloPGM, to boost the ac-

curacy of previously trained transcription factor (TF) and RNA binding protein (RBP)

binding site predictors. PhyloPGM assumes that the regulatory function is maintained

in the orthologous regions and is applicable at the inference stage of a machine learning

pipeline. First, I process and compile previously published transcription factor binding

site (TFBS) and RBP binding site datasets. I extract the corresponding orthologs/ancestors

sequences. I apply previously trained TF and RBP binding site predictors on the datasets

to obtain orthologous prediction scores. These scores are used in the PhyloPGM pipeline

to obtain the PhyloPGM score. I show that PhyloPGM improves the accuracy of base

models and the amount of improvement is larger for the cases where base models have

relatively lower accuracy. Then, I process and compile datasets of human genomic re-

gions where mutations are linked to adverse effects. I find that PhyloPGM is more helpful

than base model or sequence conservation approach to identify the disease-causing hu-

man non-coding variants. I observe that different branches in the phylogenetic tree have

different impact on PhyloPGM results.
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3.2 Abstract

The computational prediction of a function associated with a genomic sequence is of ut-

ter importance in -omics study. The binding prediction of transcription factor (TF) to a

regulatory region will allow to understand the gene regulatory mechanism. The bind-

ing prediction of RNA and RNA binding protein will allow to comprehend the post-

transcriptional gene expression. However, the existing computational methods for tran-

scription factor binding sites (TFBSs) and RNA-RBP binding proteins suffer from high

false positive rates and seldom use the evolutionary information. The vast amount of

available orthologous data across multitudes of extant and ancestral genomes present an

opportunity to improve the accuracy of existing computational methods.

We present a novel probabilistic approach called PhyloPGM that aggregates the predic-

tion scores of a previously trained TFBS predictor or RNA-RBP binding predictors on or-

thologous regions to boost their respective prediction accuracy. PhyloPGM significantly

improves the prediction accuracy of RNATracker, a sequence-based RNA-RBP binding
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predictor and of Factornet, a sequence-based TFBS predictor. PhyloPGM is simple to im-

plement, yet, yields remarkable results.

3.3 Introduction

The binding of transcription factors (TFs) to specific DNA regions, determines the gene

regulatory network. The TF binding is determined by both the presence of motifs, specific

∼6-20 bps patterns in the DNA sequence and the cell-type specific context such as DNA

accessibility and methylation, and presence of other bound TFs) [Slattery et al., 2014].

The sequence and cell-type specific interaction between proteins and either DNA or RNA

drives both transcriptional and post-transcriptional regulation [Stefl et al., 2005]. Some

representative examples include RNA splicing that prepares the nascent RNA transcript

for maturation, and the subsequent localization which transports the messenger RNA

(mRNA) to certain subcellular compartments where their products are needed. These reg-

ulatory processes are mediated by a diverse population of RNA binding proteins (RBPs),

each having an affinity for a specific RNA motif, and aberrations from their usual inter-

action scheme with the RNAs are known to implicate a series of neurological disorders

and possibly cancer [Lukong et al., 2008a]. Therefore, it is crucial to characterize the TF

and the RBP binding specificity in order to comprehend the gene regulatory network, to

scrutinize the associated disease pathways and possibly, to develop related therapeutic

approaches.

The ChIP-Seq experiment is an in-vivo experiment that can identify the binding sites

of one transcription factor in one cell type within a resolution of ∼200 bps [Johnson et al.,

2007]. The ENCODE consortium has produced ChIP-Seq experiments data for hundreds

of transcription factors in dozens of cell types [Consortium et al., 2012]. Similarly, the

wet-lab experiments called CLIP-Seq (abbreviation of cross-linking immunoprecipitation

and high throughput RNA sequencing;PARCLIP [Hafner et al., 2010a], HITSCLIP [Licat-

alosi et al., 2008a], ICLIP [Konig et al., 2010]) can identify the in vivo RNA binding to a
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given RBP. In the CLIP-Seq experiment, a RBP and RNA are cross-linked with UV light,

which is followed by lysing, immunoprecipation and sequencing. Although, the CLIP-

Seq experiments yield a resolution of∼100 bps in RNA that bound with the RBP, the exact

location is not known, which is also true for the ChIP-Seq experiments. Moreover, it is

impractical to conduct ChIP-Seq and CLIP-Seq experiments for each combination of TFs

and cell-types and RNA and RBPs in order to characterize the binding specificity of the

TFs and RBPs. Therefore, a computational method is required to predict the TFBSs and

RNA-RBP binding to profile the sequence specificity of the TFs and RBPs.

The recent computational methods to predict TFBSs and RNA-RBP binding are heav-

ily dominated with deep learning based approaches in terms of prediction accuracy e.g.

convolutional neural networks [Alipanahi et al., 2015] or a hybrid of computational neu-

ral network and recurrent neural network [Pan et al., 2018]. In general, a DNA sequence

of roughly 1000 bps or a RNA sequence of ∼100 bps is represented as a one-hot encoded

tensor, which is then passed through the deep neural network of choice to predict whether

the DNA sequence will bind to the TF or the DNA sequence will bind to the RBP of in-

terest or not. Although, the deep learning approaches [Zhang et al., 2016, Quang and Xie,

2016, Pan and Shen, 2017, 2018] have outperformed the classical computational methods

and shallow machine learning approaches [Hiller et al., 2006, Kazan et al., 2010, Li et al.,

2010, Maticzka et al., 2014, Fukunaga et al., 2014, Pietrosanto et al., 2016] , they are often

prone to high false positive rate and are yet to be established as wet-lab alternatives.

Due to the biological importance of TFBSs and RNA-RBP binding, the features present

in the RNA sequence that allow to bind with the RBP or the regulatory regions to the

TFs should be conserved during the evolution. Indeed, the sequence function across the

orthologous regions in different organisms are observed to be conserved according to the

orthologs conjecture [Shiraishi et al., 2001, Shabalina et al., 2004, Papatsenko et al., 2006,

Cooper and Brown, 2008, Chen and Zhang, 2012, Stamboulian et al., 2020]. Intuitively, the

sequence function conservation based approaches should yield a better model for RNA-

RBP binding prediction. However, the conservation based approaches may suffer from
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binding sites turnover phenomenon, where the number of binding sites in a given region

is maintained, but the sequence itself is not conserved in the ortholgous regions [Sinha

and Siggia, 2005, Moses et al., 2006]. Therefore, a more sophisticated operation is required

to use the sequence function conservation property rather than the crude combination of

sequence conservation score with the deep learning methods [Ahsan et al., 2020].

In this study, we present an aggregation approach called PhyloPGM which aims to

boost the accuracy of a pre-trained base predictor for a specific type of function (see Fig-

ure 3.1). The base predictor is a machine learning predictor that assigns a prediction score

(real number) to a given input sequence. In this paper, we use PhyloPGM for two types of

functional prediction tasks: transcription factor (using FactorNet [Quang and Xie, 2019]

as base predictor) and RNA-binding protein (using RNATracker [Yan et al., 2019]) occu-

pancy prediction. To obtain a prediction on a given human sequence, the base predictor is

first applied to that sequence and its orthologous regions from up to 58 other mammalian

species as well as up to 57 computationally reconstructed ancestral sequences. PhyloPGM

then aggregates the prediction scores using a phylogenetically-informed, probabilistic

graphical model, essentially computing a likelihood ratio test contrasting the hypothe-

ses that the human sequence is a positive (Y=1) or negative (Y=0) example. PhyloPGM

takes advantage of the fact that selective pressure makes changes in sequence function

rare. Hence, predictions made on orthologous and ancestral sequences are informative

about the function of the given human sequence. In cases where the base predictor is

relatively inaccurate, and where function changes are relatively rare, PhyloPGM could

in principle use predictions made on orthologous/ancestral sequences to ”correct” the

prediction made on the human sequence, especially when the latter is borderline. Impor-

tantly, because PhyloPGM treats the base predictor as a black box (i.e. it does not need any

information about the base predictor’s inner workings), it is highly flexible and applica-

ble to a wide variety of sequence function prediction problems for which the community

has developed base predictors.
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(c)
 (d)


Figure 3.1: PhyloPGM workflow. (a) the phylogenetic tree, (b) the input human sequence

and its orthologs are fed to trained base predictor in order to obtain the orthologous pre-

diction scores, (c) Each branch weight denotes the log likelihood ratio of child score given

parent score (LLRc p obtained by treating human as the root species and the human weight

denotes the log likelihood ratio of root (LLRroot, (d) the equations used to compute the the

log likelihood ratio and the PhyloPGM score. echild,parent is the evolutionary distance be-

tween child and parent species. The human sequence label is assigned 1 (binding site) if

the PhyloPGM score ¿ 0, otherwise 0 (non-binding site).

The goal of PhyloPGM is to combine the prediction scores on a set of related ortholo-

gous and inferred ancestral sequences. Multi-Instance Learning (MIL) is a class of ML ap-

proaches that work under a similar setting i.e. the task is to classify a group of instances,

termed as bag [Dietterich et al., 1997]. The MIL classifier labels the bag as positive if at

least one of the instance is positive, otherwise negative. The classical MIL algorithms as-

sume instances to be i.i.d., though there are MIL algorithms that handle non i.i.d. cases

as well [Ping et al., 2010, Zhou et al., 2009]. Gao and Ruan [2015] used MIL with DNA

structure data for in vitro TFBSs predictions in mouse without phylogenetic context. The

MIL algorithms are extensively reviewed in Amores [2013], Foulds and Frank [2010]. Our

requirement for the aggregating approach differs from the classical MIL in two principal
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ways: (1) the instances are prediction scores obtained from a base predictor (rather than

raw sequences or feature vectors); (2) the goal is to predict the label of a specific example

from each bag (corresponding to the human sequence); (3) instances in the bag are not

i.i.d. but are phylogenetically related through a known and fixed tree.

3.4 Results

In this section, we present and evaluate the results obtained using PhyloPGM for the

tasks of binary TF and RBP occupancy prediction. In both cases, given a short (101-nt)

DNA or RNA sequences), the goal is to predict whether a given TF or RBP would bind

this sequence in a given cell type. The input sequence is much longer than the putative

binding site itself, which provides important sequence context (e.g. for the presence of

binding sites for co-factors, or structural RNA elements) to the base predictor.

3.4.1 PhyloPGM improves predictors’ performance

We first applied PhyoPGM to the task of TF occupancy prediction, using FactorNet [Quang

and Xie, 2019] as base predictor. FactorNet is a recently developed hybrid of convolu-

tional and recurrent neural network architectures, which performed particularly well on

a recent ENCODE-DREAM challenge [Kundaje et al., 2021]. We used a set of 13 ChIP-Seq

datasets, obtained from the ENCODE-DREAM website https://www.synapse.org/

#!Synapse:syn6131484/wiki/402026. The data sets originate from four different

cell types and contain 56,700 to 423,218 positive examples and 50,356,411 to 51,164,150

negative examples (see Methods).

The performance of the predictors is evaluated on the test set provided by ENCODE-

DREAM [Kundaje et al., 2021], using the Area Under the Precision-Recall curve (AUPR),

which better reflects the true predictor’s performance with imbalanced data sets, com-

pared to the more traditional AUC score. Overall, PhyloPGM improves the AUPR scores

of the FactorNet models by approximately 30% (FactorNet median test AUPR: 0.13, Phy-
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Figure 3.2: Model comparison for TFBS prediction problem. (a) Test AUPR scores of

FactorNet, PhyloStackNN and PhyloPGM over 13 ChIP-Seq datasets. (b) Distribution of

test AUPR. (c) Test AUPR improvement percentage of PhyloPGM over FactorNet. (d)

Mean relative percentage improvement of PhyloPGM test recall score over FactorNet for

different false discovery rate thresholds.
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Figure 3.3: Model comparison for RNA binding prediction problem. (a) Test AUPR scores

of RNATracker, PhyloStackNN and PhyloPGM over 31 CLIP-Seq datasets. (b) Distri-

bution of test AUPR. (c) Test AUPR improvement percentage of PhyloPGM over RNA-

Tracker. (d) Mean relative percentage improvement of PhyloPGM test recall score over

RNATracker for different false discovery rate thresholds.
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loPGM median test AUPR: 0.17; wilcoxon signed rank test p-value: 0.019) (see Figure

3.2a and 3.2b). We also evaluated another approach, called PhyloStackNN, which uses

a neural network to learn to optimally combine the base prediction scores, but without

prior knowledge of the phylogenetic tree (see Methods). PhyloPGM outperforms Phy-

loStackNN by a smaller margin (PhyloStackNN median test AUPR: 0.15; Wilcoxon signed

rank test p-value: 0.0058), which shows that utilizing the phylogenetic tree to combine the

orthologous scores is indeed helpful. Notably, PhyloPGM seems particularly effective

at improving prediction accuracy in liver, and less so in induced pluripotent stem cells

(IPSC).

We repeated a similar evaluation for the RBP occupancy prediction task based on 31

CLIP-Seq datasets from Stražar et al. [2016] . These data were collected in HEK293, HeLa,

and U266 cell types and contain 3283 to 6000 positive examples and 23672 to 26214 neg-

ative examples (see Methods). Here, we used RNATracker [Yan et al., 2019], a hybrid of

convolutional and recurrent neural networks, as such architectures have shown remark-

able prediction accuracy with sequence function prediction tasks [Pan et al., 2018, Quang

and Xie, 2019]. Again, we find that PhyloPGM outperforms the base predictor (RNA-

Tracker median test AUPR: 0.74, PhyloPGM median test AUPR: 0.793; Wilcoxon signed

rank test p-value: 8.65× 10−6) (see Figures 3.3a and 3.3b). PhyloPGM improves upon the

base model in 26 of the 31 data sets; for the remaining 5 data sets (FUS, hnRNPC-1/2,

QKI, TDP-43), the AUPR scores differ by less than 1%. Similarly to the TFBS prediction

problem, we find that the PhyloPGM appraoch performs better than the PhyloStackNN

approach where the phylogenetic relationship is not used (PhyloStackNN median test

AUPR: 0.787; Wilcoxon signed rank test p-value: 6.57× 10−6).

3.4.2 Improvement to the Recall score

In general, TF and RBP binding predictors suffer from high false discovery rates, due to

the fact that the ratio of negative to positive examples. Thus, apart from AUPR scores,

such models should also be evaluated on the recall score at different false discovery rates
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(FDRs). Figures 3.2d and 3.3d report the relative percentage improvement in the mean re-

call scores of PhyloPGM over FactorNet and RNATracker at different FDR thresholds. We

find that PhyloPGM yields particularly large gains in recall at low FDR ranges (FDR¡0.1),

which is there range of particular interest for genome-wide applications. The relative im-

provement in the recall score at 1% FDR is ∼18% with PhyloPGM over FactorNet in the

ChIP-Seq data sets and ∼300% over RNATracker in the CLIP-Seq data sets.

3.4.3 PhyloPGM most significantly improves weaker models

One of the main PhyloPGM design principle is to make use of orthologous examples in

correctly predicting the labels that are difficult to classify with the base predictor. We ob-

serve that the amounts of improvement with PhyloPGM over FactorNet and RNATracker

are larger for weaker base models, i.e. for datasets where the base models obtain a low

AUPR scores (see Figures 3.2c and 3.3c). This confirms that the information from orthol-

ogous/ancestral sequences is particularly beneficial for hard-to-predict TFs and RBPs.

3.4.4 Contribution of each phylogenetic tree branches

The PhyloPGM score is essentially a sum of log-likelihood ratios over the branches of

the tree, with the change in prediction score observed along each branch contributing

to nudging the final prediction toward the positive or negative class. Hence it is mean-

ingful to investigate which branch of the tree contributes most to the boost of prediction

accuracy obtained by PhyloPGM. To this end, we computed, for each data sets and each

branch in the tree, the mean difference of the branch log likelihood ratio of positive and

negative examples (see Figures 3.4a and 3.5a). The branches most beneficial to the Phy-

loPGM predictions are those where this difference is largest. Notably, nearly all branches

are at least minimally useful for all data sets, justifying the use of the full phylogenetic

tree. However, the extent of branch-specific signals are beneficial varies significantly. For

TF occupancy prediction tasks (Figures 3.4a), branches closest to human generally the
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Figure 3.4: Each cell represents difference of mean of branch likelihood ratio of positive

and negative examples for a branch of the phylogenetic tree in a ChIP-Seq experiment.

The examples are represented as positive or negative based on the human orthologue.

The branch likelihood ratio is computed from the FactorNet scores on the orthologous

examples. The columns are sorted w.r.t evolutionary distance of the branch from human.

Each column is named as species followed by its direct parent. The species A i denotes

ancestral species, where i indicates the evolutionary distance from human (i=1 is closest

to human).
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Figure 3.5: Each cell represents difference of mean of branch likelihood ratio of positive

and negative examples for a branch of the phylogenetic tree in a CLIP-Seq experiment.

The examples are represented as positive or negative based on the human ortholog. The

branch likelihood ratio is computed from the RNATracker scores on the orthologous ex-

amples. The columns are sorted w.r.t evolutionary distance of the branch from human.

Each column is named as species followed by its direct parent. The species A i denotes

ancestral species, where i indicates the evolutionary distance from human (i=1 is closest

to human).
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most predictive value. This is particularly true for CTCF and Nanog, which also happen

to be those data sets obtained from IPSCs, and for which PhyloPGM underperforms. We

hypothesize that many of the human binding sites for these proteins may have arisen re-

cently during primate evolution, as suggested by Ni et al. [2012] and Scerbo et al. [2014].

On the contrary, transcription factors such as E2F1, GAPBA, and TAF1 (all assayed in

liver) display a high level of branch informativeness across much of the mammalian tree.

This suggests a lower turnover of regulatory regions for those TFs.

To investigate the role of conservation in more details, we compared the percentage

improvement from PhyloPGM in AUPR with the mean of PhastCons scores in the bound

examples for each dataset (see Figures 3.4b and 3.5b). We observe that the amount of

improvement in AUPR is highly correlated with the PhastCons scores. Moreover, the ma-

jority of CLIP-seq data have higher PhastCons scores than the ChIP-Seq data, which is ex-

pected due to RNA binding sites being generally more conserved than the TFBSs [Payne

et al., 2018]. Therefore, PhyloPGM seems to be more effective in boosting the binding

prediction accuracy of TFs and RBPs whose binding sites are more conserved. The major

exception to this trend is NANOG and IPSC data, may be due to the absence of binding

sites in the orthologous regions [Scerbo et al., 2014].

3.4.5 PhyloPGM helps identifying disease-causing human non-coding

variants

ChIP-Seq and CLIP-Seq experiments are limited to the question of whether a given pro-

tein binds a certain genomic region or not, but does not reveal information on the func-

tional consequences of this interaction. Indeed many binding events appear to have no or

only limited consequences on gene expression [Vanhille et al., 2015, Barakat et al., 2018],

and hence be evolutionarily neutral. Because PhyloPGM indirectly measures the level

of selective pressure to maintain the binding potential of a region for a given TF/RBP, it

stands to reason that regions with high PhyloPGM scores not only have a higher chance
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of being bound, but also that this binding event is more likely to be of functional conse-

quences.

To test this hypothesis, we used a variety of external data sources to identify binding

events that are more likely to be of functional consequences, including: (i) the non-coding

portion of the ClinVar database [Landrum et al., 2016], which human mutations associ-

ated to diseases; (ii) the non-coding human variants linked to phenotypic consequences

through several publications [Biggs et al., 2020]; (iii) the list of deleterious non-coding

variants identified through machine learning and other computational techniques [Wells

et al., 2019]. Regions of the human genome bound by a TF/RBP and overlapping at least

of those data sets are deemed more likely to harbor functional binding events and are

called putatively functional.

We then measured, for each TF/RBP, the extent to which the bound regions that are

assigned the highest PhyloPGM scores (top 30%) overlap the set of putatively functional

sites. The same procedure was applied to the top regions ranked based on the base pre-

dictor (FactorNet or RNATracker) or a simpler measure of sequence conservation (Phast-

Cons).

Figure 3.6 shows that for 11 of the 12 TF data sets, high-scoring putatively functional

TF binding siteds are more commonly found within high-scoring PhyloPGM sites regions

assigned a high score by PhyloPGM overlap a larger number of putatively functional sites

Figure 3.7 show that PhyloPGM is more effective in predicting the functional regions

e.g. in (E2F1, K562), (EGR1,liver), (GABPA, liver) of the ChIP-Seq datasets and in Mut

FUS, SRSF1, Ago2-1 of the CLIP-Seq datasets. This is an interesting benefit of PhyloPGM

because PhyloPGM not only boost the base model performance, but, is also more predic-

tive of the functional aspects.
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FactorNet (human).
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3.5 Discussion

We present PhyloPGM, an aggregation approach to boost the prediction accuracy of a

previously trained TF or RBP binding predictor. We show that PhyloPGM significantly

improves the median AUPR scores of FactorNet and RNATracker models trained on hu-

man sequences by more than 4% in 13 ChIP-Seq datasets and 5% in 31 CLIP-Seq datasets.

PhyloPGM, in principle, is designed to improve the prediction accuracy of the labelled ex-

amples that are difficult to classify i.e. the examples that lie closer to the decision bound-

ary. Indeed, our analysis show that the log-likelihood ratio of the parents and descen-

dants in the orthologous set improve the prediction quality of such examples. The most

improvements in the AUPR score with PhyloPGM are observed on datasets where Fac-

torNet or RNATracker performed relatively poorly. Moreover, we show that the explicit

use of the phylogenetic tree provides significant gain for PhyloPGM over PhyloStackNN,

which combines the orthologous predcition scores with a neural network without taking

into account of the phylogenetic relationship. Additionally, PhyloPGM is shown to have

better recall scores at lower false discovery rates than the base models in both ChIP-Seq

and CLIP-Seq datasets.

We find that the datasets showing more improvement with PhyloPGM over base mod-

els have relatively higher PhastCons scores i.e. the sequences are more conserved. We

observe that PhyloPGM improves the base model relatively more in CLIP-Seq data com-

pared to ChIP-Seq data. The RNA binding sites are mostly observed in the 3’ UTR region,

which are generally more conserved than transcriptional regulatory regions. This may

explain the comparatively better performance of PhyloPGM in CLIP-Seq data. Further-

more, binding site turnover may affect transcriptional regulatory regions more than 3’

UTRs, which may cause loss of or larger shifting of binding sites in the orthologs.

The comparison of branches in the phylogenetic tree in terms of the impact of the like-

lihood ratio on PhyloPGM shows that the branches that are farther from human are rela-

tively more useful. However, the branch likelehood ratio seems to be less/not useful after
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a certain distance from the human, which may indicate loss of binding sites in such or-

thologs. In the similar direction, we should explore other phylogenetic relationships such

as the effect of subset of species on the PhyloPGM accuracy, relationship between the reg-

ulatory function associated with a sequence and its conservation across different species.

More of such investigations should allow to identify important evolutionary changes that

had impact on regulatory regions. Additionally, this should open up the possibility of us-

ing PhyloPGM as a potential comparative genomics tool that can be applied in many

other related areas e.g. therapeutic approaches, studying evolution of regulatory activi-

ties and other functions related to biological sequences. Furthermore, the application of

PhyloPGM on a subset of useful species rather than the entire orthologs shall reduce the

computational run time of PhyloPGM with some loss or gain in the accuracy.

An important observation from the analysis with the ClinVar datasets is that Phy-

loPGM is more predictive of the human genomic regions where mutations are linked to

diseases. One aspect of results with ClinVar datasets is that PhyloPGM is capable of iden-

tifying deleterious regions. Moreover, one can compare base model predictions on refer-

ence genome and an individual genome to filter the regions with significant prediction

differences. Then, PhyloPGM can be applied on these selected regions of an individual

genome to detect regions with any concerned mutations. The other aspect of results with

ClinVar datasets is that the regions where mutations are linked to diseases could be con-

sidered as functional, in the sense that mutations in such regions could affect the fitness

of species. Such regions should be associated with some regulatory activities. Now, the

ChIP-seq and CLIP-seq experiments are not free from noise (e.g. false TF or RBP binding

sites, inconsequential binding etc) [Vanhille et al., 2015, Barakat et al., 2018, König et al.,

2012, Moore et al., 2014, Ule et al., 2005]. It can be a case that such wet-lab experiments

identify a genomic location as a potential binding site for a TF or RBP, however, a TF or

RBP binding to such location has no impact on any regulatory activity. Improving the

wet-lab experiment data with more functional regions (i.e. identified binding sites has

some role in a regulatory activity) may result into further improvement in the accuracy
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with PhyloPGM. The improved PhyloPGM scores can further be used to identify regions

associated with regulatory activities.

At present, PhyloPGM is presented for a binary classification task, but, is potentially

extendable to multi classification tasks (e.g. with one-vs-all setting). This should allow

PhyloPGM to be applicable to other sequence function prediction tasks that involves

more than one labels, for example protein function prediction [Kulmanov and Hoehn-

dorf, 2020], mRNA subcellular localization [Yan et al., 2019]. PhyloPGM is inherently

designed for classification tasks and will require modifications in order to be applicable

to regression-based sequence function prediction tasks e.g. predicting gene expression

value from a sequence. The discretization of regression values may allow the applica-

tion of PhyloPGM in the regression tasks. Furthermore, the use of beta distribution and

conditional multivariate distribution in place of multinomial distribution may allow to

better fit the log-likelihood ratio of the branches in PhyloPGM pipeline. Although many

sequence function prediction tasks have computational models and datasets (e.g. [Kul-

manov and Hoehndorf, 2020, Yan et al., 2019, Leclercq et al., 2017]), applying PhyloPGM

to them will require necessary adjustments w.r.t. the base predictors and datasets. The

datasets size and base predictor forms vary from one sequence function prediction tasks

to another. Furthermore, the improvement in accuracy and evolutionary insights from

PhyloPGM for a given sequence function prediction task depends on the base predictor

and the datasets (s.t. sequence function is maintained during evolution).

3.6 Methods

We define the problem of aggregating prediction scores in order to improve prediction

accuracy as,

Given: a set of prediction scores on the orthologous and ancestral genomic sequences ob-

tained from a base model, B, which is previously trained using human genomic sequences

only, and a phylogenetic tree that relates the involved species.
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Goal: to predict the label of a human genomic sequence such that the resulting prediction

improves the accuracy of B.

We first describe the ChIP-Seq data, CLIP-Seq data and orthologous data that are used

to demonstrate the efficiency of PhyloPGM. Then, we detail the Factornet and RNA-

Tracker models, which are used as base predictors. We conclude by describing the Phy-

loPGM and PhyloStackNN algorithms.

3.6.1 ChIP-Seq data

A recent DREAM challenge “ENCODE-DREAM in vivo Transcription Factor Binding Site

Prediction Challenge” provided ChIP-Seq data from ENCODE for various problems re-

lated to TFBSs prediction [Kundaje et al., 2021]. One of the labelling problems is to build

a TFBS prediction model for a given cell-type. The data consist of 13 TF/cell-type pairs

from 12 TFs and three cell-types (liver, PC-3, induced pluripotent stem cell (IPSC)). The

train and test sets both belong to the same cell-type. The test examples are from chromo-

somes 1, 8 and 21 for a given cell-type and the other chromosomes form train examples.

The test set size is 8 million examples. We sub-sampled negative examples to the same

number of positive examples in the train set during the training phase. We use 20% of the

train set as validation set.

3.6.2 CLIP-Seq data

The protein binding data is originally proposed in Strazar et al. [2016] and includes re-

sults of 31 RBP binding experiments conducted under the CLIP-Seq protocol. Each of the

experiment provides 8000 positive examples that contain a binding site for a specific RBP,

and 32000 negative (unbound) examples, where an example is an RNA sequence of 101

nt. A partition into a fixed train-test split is then used in the original paper, each con-

taining 20% positive examples. The positive binding sites are identified through several
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variants of the CLIP-Seq protocol such as PAR-CLIP [Hafner et al., 2010a], iCLIP [Konig

et al., 2010] and HITS-CLIP [Licatalosi et al., 2008a].

3.6.3 Orthologous data

The orthologous regions of each human genomic region in other mammals are extracted

using mafsInRegion program (https://hgdownload.soe.ucsc.edu/admin/exe/

linux.x86 64/mafsInRegion) from a 100-way vertebrate whole-genome alignment

available from the UCSC genome browser [Kent et al., 2002]. Only the 58 mammalian

sequences were used in this study. The orthologous regions are complemented with com-

putationally predicted ancestral sequences produced by Ancestor1.0 [Diallo et al., 2009].

The collected orthologous regions are symmetrically trimmed or joined with surround-

ing regions to yield sequences sized 1000 bps (TFBS prediction problem) or 101 bps (RBP

binding site prediction problem). Each example has on average 80 orthologous and an-

cestral sequences. We ignore orthologous regions that are smaller than 70% of the corre-

sponding human sequence.

3.6.4 FactorNet as base predictor

FactorNet [Quang and Xie, 2019] is one of the best performing sequence-based model in a

recent DREAM competition[Kundaje et al., 2021]. In this study, we used the FactorNet ar-

chitecture that takes sequence information as sole input. The input is a genomic sequence

and its reverse complement, which are passed to a convolution layer of 32 filters. The size

of each filter is 26 and the resulting output is passed through a ReLU activation layer. A

dropout layer of p = 0.1 is applied, which is followed by a max pooling layer with a filter

size of 13. Then, a single birectional LSTM layer of hidden size 32 is used with a dropout

layer of p = 0.5. Afterwards, a fully connected layer of size 128 with ReLU activation

function is used. The output of fully connected layer is then passed through a dropout

layer of p = 0.5. The final output layer is a fully connected layer of size 1 with a sigmoid
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activation function. The mean of the FactorNet outputs from the given genomic sequence

and its reverse complement is the final output of the FactorNet. In this study, we trained

FactorNet batch-wise (batch size = 128) with early stopping using a validation set.

3.6.5 RNATracker as base predictor

Yan et al. [2019] proposed a hybrid of convolutional and recurrent neural network ar-

chitecture, called RNATracker, to predict the mRNA localization. A mRNA sequence is

represented as a one-hot encoded vector, which is then passed through two convolutional

layers. Then, a pooling layer is used to aggregate the motif scores. Finally, a bi-directional

LSTM with attention is used to aggregate the motif features. The resulting output is

passed through a fully connected layer followed by a linear layer to predict the RNA-

RBP binding. Although, RNATracker was developed to predict mRNA localization, the

architecture is equally capable of predicting RNA-protein binding. The RNATracker ar-

chitecture used in this study has two convolutional layers, where each convolution layer

has 32 filters of length 10 followed by a max pooling layer of window size 3 and stride

3. The subsequent bidirectional LSTM layer has 100 hidden units and the following fully

connected layer has 128 units. The output layer has one unit with sigmoid activation

function that gives the final prediction score. A dropout layer (p = 0.1) is used after each

convolutional and bidirectional LSTM layer.

3.6.6 PhyloPGM: Probabilistic Aggregation Approach

PhyloPGM is a prediction score aggregation approach, which is inspired from the prob-

abilistic graphical models [Koller et al., 2009]. Consider a model trained for the TF or

RBP binding prediction problem and a phylogenetic tree, ψ, where each node represents

the real-valued score assigned by a base predictor to the corresponding orthologous se-

quence. A simple way to combine the predictions would be to take a weighted-average.

However, this ignores the dependencies modeled by the tree structure and a smaller num-
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ber of strong predictions can get undermined by a majority of weak predictions. A better

approach could be to utilize a probabilistic graphical model view of combining the scores.

Consider a phylogenetic tree, ψ, with n nodes, where index 1 is the root , si denotes the

base model score assigned to node i, and eij is the evolutionary distance between parent

i and descendant j. Let the label of the root species be Y . Then the probability of Y = y

given the set of prediction scores is:

P [Y = y | s1, s2, ..., sn] ∝ P [s1, s2, ..., sn| Y = y] · P [Y = y]

= P [s1|Y = y] ·
∏

(p,c)∈edges(ψ)

P [sc|sp, Y = y, ep,c] (3.1)

where p, c are parent-descendant pairs and ep,c is the evolutionary distance between them

in ψ.

The final combined score to predict Y is the log likelihood ratio of eq. 3.1 with Y = 1

and Y = 0, where 1 and 0 denotes positive and negative labels respectively:

PhyloPGM Score = log

(
P [Y = 1 | s1, s2, ..., sn]
P [Y = 0 | s1, s2, ..., sn]

)
(3.2)

= log

(
P [s1|Y = 1]

P [s1|Y = 0]

)
+

∑
(p,c)∈edges(ψ)

log

(
P [sc|sp, Y = 1, ep,c]

P [sc|sp, Y = 0, ep,c]

)
(3.3)

∝ log
P [s1|Y = 1]

P [s1|Y = 0]
+ α ·

∑
(p,c)∈edges(ψ)

log
P [sc|sp, Y = 1, ep,c]

P [sc|sp, Y = 0, ep,c]
(3.4)

where α is a model hyper parameter to balance the effect of likelihood ratio of non-root

species.

The conditional probabilities (P [sc|sp, Y = y, ep,c]) of the base model score on a de-

scendant species given the parent score, label and the evolutionary distance is difficult

to compute. We estimate the conditional probabilities of scores on root node and over

each edge empirically from the scores in the training dataset, T . In order to empirically
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estimate the conditional probabilities, the base prediction scores, which are assumed to

be between 0 and 1, are rounded to first decimal place and binned in 12 bins (0-1, and one

extra bin for the missing values). The required probabilities in the eq. 3.4 are estimated

as,

P [s1|Y = y] =

∑
i∈T 1si1=s1∧l(i)=y + ε∑
i∈T 1l(i)=y + 12ε

P [sc|sp, Y = y] =

∑
i∈T 1sic=sc∧sip=sp∧l(i)=y + ε∑
i∈T 1sip=sp∧l(i)=y + 12ε

where ε is a pseudo count set to ε = 1

It should be noted that for a given example, sc or sp may be missing due to the absence

of orthologous regions in the corresponding species. The missing values are ignored in

such cases. In this study, we use the phylogenetic tree available from https://hg

download.soe.ucsc.edu/goldenPath/hg38/multiz100way/ and rerooted

the tree so that human becomes the root node. We empirically selected α = 0.1 from

[0.001, 0.01, 0.1, 1, 10, 100, 1000].

3.6.7 PhyloStackNN Approach

The goal of the stacking approach, PhyloStackNN, is to test the importance of the ex-

plicit use of the phylogenetic tree in the PhyloPGM approach. PhyloStackNN is a simple

multi-layer perceptron that takes base predictor scores s1, s2, ..., sn as input and is trained

to predict the label. It is trained on the same train/test split as PhyloPGM. The MLP ar-

chitecture is chosen from the hyper-parameter search over {‘hidden layer sizes’: [(32,),

(100,), (64, 32)], ‘`2 penalty’: [0.1, 1, 10]} using 10-fold cross validation.

3.6.8 Implementation Details and Availability

We used PyTorch [Paszke et al., 2019] v1.4.0 to train RNATracker and FactorNet mod-

els. The scikit-learn [Pedregosa et al., 2011b] is used to implement PhyloStackNN and
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to compute AUPR, precision and recall scores. The PhyloPGM package is available at

https://github.com/BlanchetteLab/PhyloPGM.
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Chapter 4

A Web Interface to PhyloPGM

In the following manuscript, I develop and implement PhyloPGM-Web, a web interface

for predicting transcription factor (TF) and RNA binding protein (RBP) binding sites.

First, I configure and manage a web server. Then, I integrated software framework

to the web server that allows user to register, submitting and monitoring a computa-

tional job. I process and compiled previously published TF and RBP binding sites data,

which are used to train a previously published deep learning model. I extracted the or-

thologs/ancestors sequences that are used in PhyloPGM pipeline. I find that PhyloPGM

improved the accuracy of base predictor in both TF and RBP binding site datasets. After-

wards, I implemented PhyloPGM pipeline within the software framework. PhyloPGM-

Web allows users to submit human genomic locations, executes PhyloPGM pipeline and

outputs predictions from 31 RBP and 435 TF binding predictors. The results are shown

with interactive plots and an e-mail notification is sent to the user once the results are

complete. I showcase PhyloPGM-Web with an analysis of Polypyrimidine Tract Binding

Protein 3 (PTBP3) gene. I observe that branches with longer evolutionary distance can

have more impact on PhyloPGM result even if the associated species are farther from

human in terms of evolutionary distance.

Citation: Faizy Ahsan, Zichao Yan, and Mathieu Blanchette (2021) PhyloPGM As A

Web Service. In preparation for submission to Bioinformatics Application Note.
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4.1 Manuscript 3: PhyloPGM-Web: An online platform for

evolutionarily-boosted prediction of protein-DNA/RNA

interactions

Authors: Faizy Ahsan1, Zichao Yan1, Mathieu Blanchette1

1School of Computer Science, McGill University, Montreal, Quebec, Canada

4.2 Abstract

We present PhyloPGM-Web, a user-friendly web service to predict human transcription

factor (TF) and RNA binding protein (RBP) binding sites by taking advantage of deep

multiple genome alignments to boost prediction accuracy. PhyloPGM-Web uses deep

learning approach called RNATracker as base model, applies it to the human sequence

of interest as well as to its orthologs and ancestors, and combines the prediction scores

obtained using PhyloPGM. The web service allows a user to submit a set of genomic

locations of interest and predicts the RBPs or TFs binding sites of 31 RBPs and 435 TFs in

multiple cell lines. Along with the RNATracker and PhyloPGM prediction scores, a user

may investigate the contribution of individual species and branches of the phylogenetic

tree towards the PhyloPGM score.

4.3 Introduction

The computational prediction of transcription factor (TF) and RNA binding protein (RBP)

binding sites will allow to comprehend transcriptional and post-transcriptional gene reg-

ulatory networks. It has several advantages over wet-lab experiments, such as time and

cost reductions, rapid evaluation of candidate sequences, and, possibly, assisting thera-

peutic approaches. Although computational models based on deep learning approaches

have been shown to outperform classical computational models to predict TF and RBP
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binding sites, they are far from replacing wet-lab experiments in terms of prediction ac-

curacy [Alipanahi et al., 2015, Yan et al., 2019, Quang and Xie, 2019, Ahsan et al., 2020].

Even if computational models are imperfect, they have many advantages over wet-lab ex-

periments, for example motif analysis, candidate selection, studying impact of mutation,

and analyzing genomes that are difficult to obtain.

Using computational models often requires a high level computational expertise, which

represents a major obstacle to biologists benefiting from these tools. A web-interface to a

computation model that predicts TF or RBP binding sites in a given input genomic loca-

tion will allow a user to focus on the model outcomes without dealing with the complex

computational pipeline. For example LASAGNA-Search [Lee and Huang, 2013] is a web

tool that uses position weight matrix (PWM) models to predict TFBSs in a given input

sequence and RNAsite [Su et al., 2021] is a web-interface that uses sequence and structure

information to predict RBP binding sites.

We recently introduced PhyloPGM, a tool that improves the prediction accuracy of

a previously trained predictor for both TF and RBP binding prediction problem [Ahsan

et al., 2021]. PhyloPGM works by aggregating the prediction scores on the target sequence

and its orthologous regions from a pretrained predictor to predict TF or RBP binding sites

in human. PhyloPGM implementation is a complex pipeline, relies on a set of pretrained

predictors and requires very large alignment files that are not easy to distribute. In this

chapter, we present a web-interface for PhyloPGM where a user may submit a set of

genomic locations to find binding sites for a set of TF or RBP. In addition to providing

accurate prediction of TF/RBP binding sites, PhyloPGM scores capture the level of selec-

tion pressure on those sites, and hence provides a way to assess which binding site may

be more critical to fitness.
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4.4 Results

4.4.1 Overview of PhyloPGM-Web pipeline

PhyloPGM-Web provides easy access to the PhyloPGM algorithm to predict TF binding

sites in a given set of human DNA sequences, and RBP binding sites in the RNA se-

quences that would be transcribed from them. The PhyloPGM-Web pipeline is described

in Figure 4.1. A user is first required to register on the web-interface. Registration en-

ables the system to keep track of user’s ongoing jobs and past results. The user starts

by providing as input a bed file of human genomic regions (hg38 assembly), optionally

providing a transcriptional strand for each region (relevant only for RBP binding pre-

diction). They then select one or more TF or RBPs for which they want predictions to be

made. Currently, PhyloPGM-Web allows selecting models for 435 TFs across multiple cell

types (from the DREAM datasets [Kundaje et al., 2021] and the MIT-CSAIL datasets [Zeng

et al., 2016]) and 31 RBPs (from the CLIP-Seq datasets). To maximize prediction accuracy,

PhyloPGM-Web applies RNATracker to regions of 1000 bp (for TFBS prediction) or 101

nt (for RBP binding prediction). Once a user submits the bed file, the web-interface ex-

tends the input location(s) on both sides by 500 bps or 50 bps. Then the corresponding

orthologs/ancestors sequences from 58 mammals and 57 computationally reconstructed

ancestors are fetched. Afterwards pretrained RNATracker models are applied to each or-

thologs/ancestor sequence and the RNATracker scores are combined using PhyloPGM.

The RNATracker/PhyloPGM score assigned to a given position of an input sequence is

the score of the window centered at that position. The user is sent an e-mail notification

when the PhyloPGM scores are computed. The web interface presents the results as inter-

active plots of PhyloPGM and RNATracker prediction scores for the selected TFs/RBPs

at each position along the sequence. The user may select which TFs or RBPs should be

shown. A slider bar with false discovery rate (FDR) threshold enables the user to control

the quantity of results that are reported. Furthermore, the user is provided with the inter-

active heatmaps of RNATracker prediction scores for each species and log-likelihood ratio
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of each branch of the phylogenetic tree. The log-likelihood ratio provides phylogenetic

information that contrasts the hypothesis that the given human sequence is a TF/RBP

binding site or not.

Figure 4.1: PhyloPGM-Web pipeline. The user is required to submit a bed file with input

location(s) and to choose whether to predict binding sites for transcription factors, RNA

binding proteins, or both. Then, orthologous regions in extant and ancestral species are

extracted. RNATracker scores and PhyloPGM scores are computed for each window in

the input location(s). PhyloPGM-Web provides RNATracker and PhyloPGM scores, log-

likelihood ratio (LLR) of each branch of the phylogenetic tree and the intermediate text

files.

4.4.2 Evaluation of Trained Models on PhyloPGM-Web

We use RNATracker to train TFBS predictors on ChIP-seq data for 13 TF/cell-type pairs

from the ENCODE-DREAM challenge data [Kundaje et al., 2021] and 422 TF/cell-type

pairs from the MIT-CSAIL data [Zeng et al., 2016]. The trained TFBS RNATracker predic-

tors are used to build PhyloPGM models. We find that PhyloPGM improves the median

test AUPR score of RNATracker on both the ENCODE-DREAM challenge data [Kundaje

et al., 2021] (RNATracker median test AUPR: 0.13, PhyloPGM median test AUPR: 0.14;

Wilcoxon signed rank test p-value: 0.46) and MIT-CSAIL data [Zeng et al., 2016] (RNA-

Tracker median test AUPR: 0.85 , PhyloPGM median test AUPR: 0.86; Wilcoxon signed
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rank test p-value: 1.98 × 10−59). It should be noted that the test set size and the ratio of

binding and non-binding sites in test sets are different for both TFBS data. The test sets in

MIT-CSAIL data [Zeng et al., 2016] are approximately balanced with an average number

of 68,044 examples, while test sets in ENCODE-DREAM challenge data [Kundaje et al.,

2021] are highly imbalanced (<< 1% binding sites) with an average number of∼8 million

examples.

We observe that the amount of improvement in test AUPR score is larger for the cases

where RNATracker has relatively lower test AUPR score (see Figures 4.5 and 4.6). The test

AUPR scores of RNATracker and PhyloPGM for both TFBS data are shown in Table 4.1

and Table 4.2. Similarly, we previously trained RNATracker models on 31 CLIP-seq data,

which are then used as base models to build PhyloPGM models for predicting RBP bind-

ing sites. Ahsan et al. [2021] found that PhyloPGM improves the test AUPR score of

RNATracker on 31 CLIP-seq data (RNATracker median test AUPR: 0.74, PhyloPGM me-

dian test AUPR: 0.793; Wilcoxon signed rank test p-value: 8.65× 10−6.

4.4.3 Analysis of PTBP3 3’UTR with PhyloPGM-Web

We illustrate the use of PhyloPGM-Web to analyse the 3’ UTR of the human Polypyrim-

idine Tract Binding Protein 3 (PTBP3) gene (chr9:112217716-112223851, reverse strand).

The regulation of PTBP3 was used to showcase the integrated data analysis with EN-

CORE pipeline [Van Nostrand et al., 2020]. The protein encoded by PTBP3 plays a role

in the regulation of cell differentiation [Yamamoto et al., 1999, Sadvakassova et al., 2009].

Mutations in PTBP3 are associated with fanconi anemia, which can cause malformations

in major organ systems, affect bone marrow and pose a high risk to cancer [Deakyne and

Mazin, 2011].

Figure 4.2 illustrates the main output of PhyloPGM-Web, with RNATracker and Phy-

loPGM scores computed for every window of 101 nt, with 50 nt offsets. For comparison,

we included in the figure a snapshot of the UCSC genome browser showing the binding

sites identified by eCLIP for the same RBPs, from the ENCORE project [Van Nostrand
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et al., 2020]. At a 5% FDR threshold, we find that RNATracker is able to identify 5 out of

the 10 RBPs that have eCLIP peaks in this sequence, while PhyloPGM-Web find 9. Note

the PhyloPGM-Web does not attempt to pinpoint the precise location of binding sites, but

instead assesses the binding potential of 101-nt windows. Hence, it is expected that the

position of the eCLIP peaks only approximately match the predictions. The comparison

shows that the PhyloPGM approach is able to boost the RNATracker scores to identify

more potential RBPs that can bind to the input location.
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(A)

(B)

(C)

Figure 4.2: RBP binding prediction results for the PTBP3 3’UTR. (A) UCSC genome

browser eCLIP results (K562 cell-type, replicate 1 only) for the 31 RBPs used in our study.

(B) PhyloPGM RBP binding prediction, and (C) RNATracker RBP binding prediction from

PhyloPGM-Web at every 50 nt over the window of 101 nt at 5% FDR.
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In Figure 4.3, we present how PhyloPGM-Web allows a detailed analysis of the pu-

tative binding sites of PUM2, and their evolution across mammals. Figure 4.3(B) shows

the prediction scores from the RNATracker model trained on PUM2 CLIP-seq data for the

58 mammals and their ancestors. Figure 4.3(C) shows the likelihood ratio of each branch

in the phylogenetic tree, as computed by PhyloPGM. We observe that the log-likelihood

ratio scores of longer branches (e.g. rodents) are higher than those obtained for the rela-

tively shorter branches (e.g. primates) in the highly conserved regions. This result could

imply that regulatory functions are maintained at different levels in a species and its par-

ent across the phylogenetic tree. More investigation into species analysis with PhyloPGM

should reveal relevant information regarding the evolution of regulatory regions and its

impact on human.
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(C)

Figure 4.3: Comparison of eCLIP peaks of PUM2 (K562 cells, replicate 1) from UCSC

genome browser (A) and heat maps obtained from PhyloPGM-Web for the 3’UTR of

PTBP3. (B) The heat map shows the RNATracker prediction scores on the 58 mammals

and their ancestors obtained from a RNATracker model trained on PUM2 CLIP-seq data.

The gray regions are the missing ortholgs. The two genomic regions with missing or-

thologs outside primates correspond to two Alu transposable elements. (C) Heat map

showing the log-likelihood ratio of each branch in the phylogenetic tree. The row ”Hu-

man” is the likelihood ratio of human species as per the PhyloPGM approach.
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4.5 Methods

4.5.1 Datasets

For the TF binding prediction task, we use one of the ENCODE-DREAM challenge data [Kun-

daje et al., 2021] (available at https://www.synapse.org/#!Synapse:syn61314

84/wiki/402026) that consist of 13 TF/cell-type pairs (12 TFs and three cell types:liver,

PC-3 and induced pluripotent stem cell) to train RNATracker [Yan et al., 2019] models for

TFBS prediction problem. The training sets consist of human genomic sequences of 200

bp from each chromosome except for chromosomes 1, 8 and 21 and test sets are from chro-

mosomes 1, 8 and 21. The labels of both training and test sets are from same cell types.

The average number of test examples per TF is ∼8 million. In our study, we sub-sample

negative examples (sequences with no binding sites for a given TF) in training sets to

match the number of positive examples. The average number of training examples after

sub-sampling is 400,482 of which 20% is set aside as a validation set. We elongate each

sequence from both sides to get a sequence of 1000 bp because binding sites of a given TF

may shift in orthologous regions.

We further expand the list of TF binding predictors on PhyloPGM-Web by including

the 422 ChIP-seq datasets available at http://cnn.csail.mit.edu/motif\ occ

upancy/. The dataset was originally produced by ENCODE [Consortium et al., 2012]

and assembled by Zeng et al. [2016]. Each example is a 101 bp human genomic region,

where positive examples are centered on a ChIP-Seq peak and negative examples are

randomly selected genomic region with matching GC-content and motif-binding affinity

as the positive examples. The average number of examples in the training set is 68,044

with a minimum of 600 and a maximum of 692,340. The average number of examples

in the test set is 17,012 with a minimum of 150 and a maximum of 173,086. Again, each

example is extended to 1000 bp. We exclude training examples that overlap by even 1 bp

with examples from the test set using BEDOPS tool [Neph et al., 2012]. The combination

of both TFBS dataset provides 435 TF predictors to the PhyloPGM-Web.
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For the RBP binding prediction task, we use 31 CLIP-Seq datasets from Strazar et al.

[2016] to train RNATracker. The data is from cell types HEK293, HeLa and U266. The

train and test sets consist of approximately 30,000 and 10,000 human genomic sequences,

where each sequence is 101 bps long. Similar to TFBS problem, we sub-sample negative

examples to obtain a balanced dataset.

Each RNATracker model is trained on human training examples with early stopping

using a validation set. In all the three datasets mentioned above, the genomic regions

are mapped from the hg19 assembly to the hg38 assembly using liftover. We extract

orthologous regions of human sequences in 58 mammals using a 100-way vertebrate

whole-genome alignment from the UCSC genome browser [Kent et al., 2002]. The extant

and ancestral orthologous regions are extracted using mafsInRegion program (https:

//hgdownload.soe.ucsc.edu/admin/exe/linux.x86 64/mafsInRegion).

Additionally, we complement the orthologous regions with computationally predicted

ancestral sequences from Ancestor1.0 [Diallo et al., 2007]. We ignore an orthologous se-

quence whose length is less than 70% of their human counterpart. The trained models

compute orthologous prediction scores that are aggregated using PhyloPGM approach

(see Chapter 3 Methods). A PhyloPGM score above zero indicates that the TF or RBP

binds in the given location and below zero indicates otherwise. Figure 4.4 shows the tree

used in our study. We compute FDR as the ratio of false positive to the sum of true posi-

tive and false positives. The true positives are the number of correctly predicted binding

sites and false positives are the number of examples incorrectly predicted as binding sites

at a given threshold.
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Figure 4.4: The phylogenetic tree of 58 mammals and their ancestors that we use in our

study.
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4.5.2 Implementation

PhyloPGM-Web is implemented with cloudgene [Schönherr et al., 2012], nginx, BASH

and python 3.8.3 on a linux platform and is available at http://webtext.cs.mcgil

l.ca. We used plotly [Inc., 2015] to create interactive plots. All accuracy measures are

computed using scikit-learn [Pedregosa et al., 2011a].

4.6 Discussion and Conclusion

We present a user-friendly web-interface for PhyloPGM approach to predict the TFs or

RBPs that bind to a given genomic location. Although we use RNATracker as base model

in the PhyloPGM approach, other predictors could easily be used. Using PhyloPGM-

Web, a user can compare the binding preferences of 115 TFs and 31 RBPs and perform

phylogenetic analysis for 58 mammals and their ancestors with interactive plots. In the

future, more models for more TFs and RBPs will be added, using ChIP-seq and eCLIP

data. Furthermore, we will explore motif analysis and model interpretation. Other areas

to explore with the web-interface is to facilitate other sequence function prediction tasks

such as protein-function prediction, mRNA sub-cellular localization, and micro-RNA tar-

get binding sites prediction. We will also extend PhyloPGM-Web to use a recently pub-

lished 200-mammal alignment [Armstrong et al., 2020]. Finally, one more useful addition

will be to allow users to train their own base models or to submit their trained models

that can be used with the PhyloPGM approach.
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Figure 4.5: Scatter plot of AUPR scores of RNATracker and improvement in AUPR score

with PhyloPGM for the 13 ChIP-Seq data from the ENCODE-DREAM challenge [Kundaje

et al., 2021].
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Table 4.1 PhyloPGM Results with ENCODE-DREAM Challenge
Transcription Factor Cell Type RNATracker(AUPR) PhyloPGM(AUPR)

CTCF PC-3 0.62 0.57
CTCF IPSC 0.66 0.60
E2F1 K562 0.14 0.20
EGR1 Liver 0.07 0.08

FOXA1 Liver 0.09 0.09
FOXA2 Liver 0.13 0.12
GABPA Liver 0.14 0.16
HNF4A Liver 0.22 0.22
JUND Liver 0.12 0.14
MAX Liver 0.13 0.15

NANOG IPSC 0.07 0.06
REST Liver 0.12 0.14
TAF1 Liver 0.12 0.13

Table 4.1: Test AUPR scores of RNATracker and PhyloPGM on the 13 ChIP-seq data of

ENCODE-DREAM challenge [Kundaje et al., 2021].
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Figure 4.6: Scatter plot of AUPR scores of RNATracker and improvement in AUPR score

with PhyloPGM for the MIT-CSAIL datasets [Zeng et al., 2016].
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Table 4.2 PhyloPGM Results with MIT-CSAIL datasets

Transcription Factor Cell Type RNATracker(AUPR) PhyloPGM(AUPR)

CTCF Dnd41 0.96 0.96

CTCF GM12878 0.93 0.94

CTCF H1-hESC 0.93 0.93

CTCF HeLa-S3 0.96 0.96

CTCF HepG2 0.96 0.97

CTCF HMEC 0.96 0.96

CTCF HSMM 0.93 0.94

CTCF HSMMtube 0.92 0.92

CTCF HUVEC 0.94 0.95

CTCF K562 0.95 0.95

CTCF NH-A 0.93 0.94

CTCF NHDF-Ad 0.96 0.97

CTCF NHEK 0.93 0.94

CTCF NHLF 0.97 0.97

CTCF Osteobl 0.96 0.96

ATF3 A549 0.65 0.71

CREB1 (SC-240) A549 0.88 0.88

CTCF (SC-5916) A549 0.97 0.98

CTCF (SC-5916) A549 0.94 0.95

ELF1 (SC-631) A549 0.84 0.85

ETS1 A549 0.91 0.91

FOSL2 A549 0.9 0.91

FOXA1 (SC-101058) A549 0.83 0.83

GR A549 0.54 0.65

GR A549 0.74 0.76
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GR A549 0.72 0.76

GR A549 0.8 0.81

NRSF A549 0.77 0.79

TCF12 A549 0.85 0.85

USF-1 A549 0.74 0.77

USF-1 A549 0.73 0.75

USF-1 A549 0.8 0.81

YY1 (SC-281) A549 0.87 0.87

ZBTB33 A549 0.85 0.86

CTCF (SC-5916) ECC-1 0.97 0.97

ERalpha a ECC-1 0.64 0.71

ERalpha a ECC-1 0.66 0.7

ERalpha a ECC-1 0.62 0.67

FOXA1 (SC-6553) ECC-1 0.79 0.82

GR ECC-1 0.56 0.6

ATF3 GM12878 0.44 0.74

BATF GM12878 0.87 0.87

CEBPB (SC-150) GM12878 0.65 0.72

EBF1 (SC-137065) GM12878 0.75 0.76

Egr-1 GM12878 0.83 0.83

ELF1 (SC-631) GM12878 0.86 0.86

ETS1 GM12878 0.87 0.87

MEF2A GM12878 0.84 0.85

MEF2C (SC-13268) GM12878 0.86 0.86

NFATC1 (SC-17834) GM12878 0.59 0.64

NFIC (SC-81335) GM12878 0.86 0.87

NRSF GM12878 0.73 0.75
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PAX5-C20 GM12878 0.82 0.83

PAX5-N19 GM12878 0.82 0.83

POU2F2 GM12878 0.73 0.75

PU.1 GM12878 0.94 0.94

RUNX3 (SC-101553) GM12878 0.85 0.86

RXRA GM12878 0.64 0.67

SP1 GM12878 0.88 0.88

SRF GM12878 0.78 0.79

STAT5A (SC-74442) GM12878 0.83 0.84

TCF12 GM12878 0.79 0.79

TCF3 (SC-349) GM12878 0.8 0.81

USF-1 GM12878 0.78 0.79

YY1 (SC-281) GM12878 0.84 0.85

ZBTB33 GM12878 0.85 0.87

ZEB1 (SC-25388) GM12878 0.78 0.79

PAX5-C20 GM12891 0.83 0.83

POU2F2 GM12891 0.77 0.78

PU.1 GM12891 0.93 0.93

YY1 (SC-281) GM12891 0.88 0.88

PAX5-C20 GM12892 0.84 0.85

YY1 GM12892 0.87 0.88

ATF3 H1-hESC 0.75 0.77

CTCF (SC-5916) H1-hESC 0.94 0.94

Egr-1 H1-hESC 0.83 0.83

FOSL1 (SC-183) H1-hESC 0.76 0.75

JunD H1-hESC 0.7 0.73

NRSF H1-hESC 0.73 0.76
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POU5F1 (SC-9081) H1-hESC 0.6 0.65

RXRA H1-hESC 0.64 0.68

SP1 H1-hESC 0.86 0.86

SP2 (SC-643) H1-hESC 0.92 0.93

SP4 (V-20) H1-hESC 0.88 0.88

SRF H1-hESC 0.79 0.79

TCF12 H1-hESC 0.81 0.82

TEAD4 (SC-101184) H1-hESC 0.85 0.85

USF-1 H1-hESC 0.86 0.85

YY1 (SC-281) H1-hESC 0.84 0.85

YY1 (SC-281) HCT-116 0.86 0.87

ZBTB33 HCT-116 0.88 0.89

NRSF HeLa-S3 0.7 0.73

ATF3 HepG2 0.85 0.85

BHLHE40 HepG2 0.66 0.7

CEBPB (SC-150) HepG2 0.75 0.76

CEBPD (SC-636) HepG2 0.66 0.7

CTCF (SC-5916) HepG2 0.95 0.95

ELF1 (SC-631) HepG2 0.85 0.84

FOSL2 HepG2 0.81 0.81

FOXA1 (SC-101058) HepG2 0.86 0.86

FOXA1 (SC-6553) HepG2 0.88 0.88

FOXA2 (SC-6554) HepG2 0.87 0.87

HNF4A (SC-8987) HepG2 0.89 0.9

HNF4G (SC-6558) HepG2 0.89 0.89

JunD HepG2 0.63 0.66

MYBL2 (SC-81192) HepG2 0.8 0.81
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NFIC (SC-81335) HepG2 0.8 0.82

NRSF HepG2 0.67 0.7

NRSF HepG2 0.85 0.85

RXRA HepG2 0.8 0.82

SP1 HepG2 0.83 0.84

SP2 (SC-643) HepG2 0.8 0.83

SRF HepG2 0.82 0.82

TCF12 HepG2 0.52 0.66

TEAD4 (SC-101184) HepG2 0.74 0.76

USF-1 HepG2 0.82 0.83

YY1 (SC-281) HepG2 0.88 0.88

ZBTB33 HepG2 0.88 0.89

ZBTB7A (SC-34508) HepG2 0.77 0.79

ATF3 K562 0.89 0.91

CEBPB (SC-150) K562 0.77 0.77

CTCF (SC-5916) K562 0.97 0.96

E2F6 K562 0.85 0.85

Egr-1 K562 0.9 0.9

ELF1 (SC-631) K562 0.84 0.85

ETS1 K562 0.86 0.86

FOSL1 (SC-183) K562 0.72 0.74

GATA2 (SC-267) K562 0.79 0.79

Max K562 0.78 0.78

MEF2A K562 0.67 0.72

NRSF K562 0.78 0.79

PU.1 K562 0.81 0.82

SP1 K562 0.87 0.88
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SP2 (SC-643) K562 0.92 0.92

SRF K562 0.72 0.7

STAT5A (SC-74442) K562 0.65 0.67

TEAD4 (SC-101184) K562 0.72 0.74

THAP1 (SC-98174) K562 0.9 0.91

USF-1 K562 0.85 0.85

YY1 (SC-281) K562 0.89 0.9

YY1 K562 0.84 0.84

ZBTB33 K562 0.84 0.85

ZBTB7A (SC-34508) K562 0.8 0.8

NRSF PANC-1 0.65 0.69

FOXP2 PFSK-1 0.86 0.87

NRSF PFSK-1 0.82 0.82

FOXP2 SK-N-MC 0.87 0.88

NRSF SK-N-SH 0.82 0.83

NRSF SK-N-SH 0.78 0.81

CTCF SK-N-SH RA 0.98 0.98

USF1 (SC-8983) SK-N-SH RA 0.92 0.92

YY1 (SC-281) SK-N-SHRA 0.87 0.89

CTCF (SC-5916) T-47D 0.94 0.94

ERalpha a T-47D 0.57 0.66

ERalpha a T-47D 0.6 0.65

ERalpha a T-47D 0.6 0.65

FOXA1 (SC-6553) T-47D 0.87 0.87

GATA3 (SC-268) T-47D 0.78 0.78

NRSF U87 0.83 0.84

BHLHE40 A549 0.68 0.73
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CEBPB A549 0.94 0.94

Max A549 0.82 0.82

NFKB GM10847 0.87 0.87

BHLHE40 (NB100-1800) GM12878 0.81 0.82

c-Fos GM12878 0.78 0.81

CTCF (SC-15914) GM12878 0.96 0.96

E2F4 GM12878 0.89 0.9

EBF1 (SC-137065) GM12878 0.81 0.81

ELK1 (1277-1) GM12878 0.89 0.9

JunD GM12878 0.58 0.65

Max GM12878 0.85 0.84

NF-E2 (SC-22827) GM12878 0.49 0.75

NFKB GM12878 0.89 0.89

NF-YA GM12878 0.86 0.88

NF-YB GM12878 0.86 0.86

Nrf1 GM12878 0.88 0.89

RFX5 (200-401-194) GM12878 0.73 0.77

STAT1 GM12878 0.76 0.79

STAT3 GM12878 0.8 0.83

TBP GM12878 0.73 0.76

TR4 GM12878 0.75 0.78

USF2 GM12878 0.88 0.89

YY1 GM12878 0.82 0.84

Znf143 (16618-1-AP) GM12878 0.92 0.94

NFKB GM12891 0.89 0.89

NFKB GM12892 0.83 0.84

NFKB GM15510 0.85 0.86
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NFKB GM18505 0.85 0.86

NFKB GM18526 0.8 0.82

NFKB GM18951 0.85 0.86

NFKB GM19099 0.84 0.85

NFKB GM19193 0.87 0.88

Bach1 (sc-14700) H1-hESC 0.81 0.81

CEBPB H1-hESC 0.87 0.87

c-Jun H1-hESC 0.82 0.84

c-Myc H1-hESC 0.87 0.88

JunD H1-hESC 0.77 0.79

MafK (ab50322) H1-hESC 0.97 0.97

Max H1-hESC 0.81 0.82

Nrf1 H1-hESC 0.89 0.9

RFX5 (200-401-194) H1-hESC 0.57 0.65

TBP H1-hESC 0.83 0.85

USF2 H1-hESC 0.91 0.91

Znf143 (16618-1-AP) H1-hESC 0.85 0.86

TCF7L2 HCT-116 0.81 0.82

ELK4 HEK293 0.91 0.91

TCF7L2 HEK293 0.84 0.85

ZNF263 HEK293-T-REx 0.84 0.83

AP-2alpha HeLa-S3 0.77 0.77

AP-2gamma HeLa-S3 0.81 0.81

CEBPB HeLa-S3 0.82 0.83

c-Fos HeLa-S3 0.86 0.88

c-Jun HeLa-S3 0.92 0.92

c-Myc HeLa-S3 0.81 0.83
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E2F1 HeLa-S3 0.85 0.87

E2F4 HeLa-S3 0.88 0.89

E2F6 HeLa-S3 0.89 0.9

ELK1 (1277-1) HeLa-S3 0.9 0.91

ELK4 HeLa-S3 0.91 0.91

HA-E2F1 HeLa-S3 0.84 0.85

JunD HeLa-S3 0.89 0.9

MafK (ab50322) HeLa-S3 0.96 0.96

Max HeLa-S3 0.82 0.82

NF-YA HeLa-S3 0.86 0.86

NF-YB HeLa-S3 0.83 0.84

Nrf1 HeLa-S3 0.88 0.89

PRDM1 (9115) HeLa-S3 0.73 0.76

RFX5 (200-401-194) HeLa-S3 0.64 0.7

STAT1 HeLa-S3 0.78 0.79

STAT3 HeLa-S3 0.81 0.83

TBP HeLa-S3 0.78 0.81

TCF7L2 C9B9 (2565) HeLa-S3 0.81 0.82

TCF7L2 HeLa-S3 0.73 0.77

TR4 HeLa-S3 0.74 0.79

USF2 HeLa-S3 0.87 0.87

Znf143 (16618-1-AP) HeLa-S3 0.82 0.84

ARID3A (NB100-279) HepG2 0.73 0.75

BHLHE40 (NB100-1800) HepG2 0.78 0.79

CEBPB HepG2 0.78 0.79

CEBPB HepG2 0.93 0.93

c-Jun HepG2 0.95 0.95
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ERRA HepG2 0.68 0.71

GRp20 HepG2 0.87 0.76

HNF4A HepG2 0.81 0.82

HSF1 HepG2 0.7 0.69

JunD HepG2 0.92 0.93

MafF (M8194) HepG2 0.97 0.97

MafK (ab50322) HepG2 0.98 0.98

MafK (SC-477) HepG2 0.98 0.98

Max HepG2 0.78 0.79

Nrf1 HepG2 0.87 0.89

RFX5 (200-401-194) HepG2 0.69 0.72

SREBP1 HepG2 0.81 0.84

TBP HepG2 0.76 0.79

TCF7L2 HepG2 0.6 0.69

TR4 HepG2 0.76 0.8

USF2 HepG2 0.91 0.92

c-Fos HUVEC 0.9 0.91

c-Jun HUVEC 0.86 0.87

GATA-2 HUVEC 0.87 0.88

Max HUVEC 0.85 0.85

CEBPB IMR90 0.9 0.91

CTCF (SC-15914) IMR90 0.94 0.95

MafK (ab50322) IMR90 0.96 0.96

ARID3A (sc-8821) K562 0.61 0.69

ATF1 (06-325) K562 0.88 0.89

ATF3 K562 0.75 0.74

Bach1 (sc-14700) K562 0.73 0.74
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BHLHE40 (NB100-1800) K562 0.8 0.8

CEBPB K562 0.89 0.89

c-Fos K562 0.61 0.66

c-Jun K562 0.63 0.69

c-Jun K562 0.65 0.67

c-Jun K562 0.71 0.74

c-Jun K562 0.63 0.69

c-Jun K562 0.68 0.7

c-Myc K562 0.81 0.83

c-Myc K562 0.83 0.84

c-Myc K562 0.8 0.81

c-Myc K562 0.81 0.82

c-Myc K562 0.83 0.83

c-Myc K562 0.84 0.85

CTCF (SC-15914) K562 0.93 0.94

E2F4 K562 0.86 0.87

E2F6 K562 0.87 0.87

ELK1 (1277-1) K562 0.91 0.92

GATA-1 K562 0.59 0.64

GATA-2 K562 0.62 0.65

IRF1 K562 0.72 0.74

IRF1 K562 0.76 0.77

IRF1 K562 0.78 0.79

IRF1 K562 0.88 0.89

JunD K562 0.75 0.76

MafF (M8194) K562 0.97 0.97

MafK (ab50322) K562 0.98 0.98
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Max K562 0.78 0.79

NF-E2 K562 0.9 0.89

NF-YA K562 0.87 0.87

NF-YB K562 0.87 0.86

Nrf1 K562 0.91 0.92

RFX5 (200-401-194) K562 0.69 0.73

STAT1 K562 0.64 0.63

STAT1 K562 0.68 0.68

STAT1 K562 0.66 0.69

STAT1 K562 0.67 0.68

TBP K562 0.79 0.81

TR4 K562 0.79 0.8

USF2 K562 0.79 0.8

YY1 K562 0.81 0.83

Znf143 (16618-1-AP) K562 0.71 0.74

ZNF263 K562 0.71 0.7

c-Fos MCF10A-Er-Src 0.9 0.9

c-Fos MCF10A-Er-Src 0.91 0.91

c-Fos MCF10A-Er-Src 0.89 0.89

c-Fos MCF10A-Er-Src 0.92 0.93

c-Myc MCF10A-Er-Src 0.84 0.85

c-Myc MCF10A-Er-Src 0.87 0.88

E2F4 MCF10A-Er-Src 0.88 0.88

STAT3 MCF10A-Er-Src 0.93 0.93

STAT3 MCF10A-Er-Src 0.94 0.94

STAT3 MCF10A-Er-Src 0.88 0.89

STAT3 MCF10A-Er-Src 0.93 0.94
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STAT3 MCF10A-Er-Src 0.94 0.94

GATA3 (SC-269) MCF-7 0.76 0.77

GATA3 (SC-268) MCF-7 0.57 0.62

HA-E2F1 MCF-7 0.87 0.87

TCF7L2 MCF-7 0.74 0.77

c-Myc NB4 0.84 0.84

Max NB4 0.79 0.79

YY1 NT2-D1 0.91 0.91

TCF7L2 PANC-1 0.82 0.83

GATA-1 PBDEFetal 0.59 0.63

GATA-1 PBDE 0.75 0.76

GATA-2 SH-SY5Y 0.86 0.86

GATA3 (SC-269) SH-SY5Y 0.87 0.87

eGFP-FOS K562 0.75 0.77

eGFP-GATA2 K562 0.78 0.77

eGFP-JunB K562 0.61 0.66

eGFP-JunD K562 0.65 0.68

CTCF A549 0.95 0.96

CTCF Fibrobl 0.95 0.95

CTCF Gliobla 0.96 0.96

c-Myc GM12878 0.9 0.89

CTCF GM12878 0.97 0.97

CTCF GM12891 0.94 0.94

CTCF GM12892 0.94 0.94

CTCF GM19238 0.94 0.94

CTCF GM19239 0.95 0.95

CTCF GM19240 0.95 0.95
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c-Myc H1-hESC 0.67 0.68

CTCF H1-hESC 0.96 0.96

c-Myc HeLa-S3 0.69 0.73

CTCF HeLa-S3 0.97 0.97

c-Myc HepG2 0.75 0.77

CTCF HepG2 0.98 0.98

c-Myc HUVEC 0.82 0.82

CTCF HUVEC 0.98 0.98

c-Myc K562 0.86 0.86

CTCF K562 0.94 0.94

c-Myc MCF-7 0.71 0.73

c-Myc MCF-7 0.8 0.8

c-Myc MCF-7 0.77 0.79

c-Myc MCF-7 0.81 0.82

CTCF MCF-7 0.94 0.94

CTCF MCF-7 0.92 0.93

CTCF MCF-7 0.94 0.94

CTCF MCF-7 0.94 0.94

CTCF MCF-7 0.95 0.96

CTCF NHEK 0.96 0.96

CTCF ProgFib 0.93 0.94

CTCF A549 0.93 0.94

CTCF AG04449 0.96 0.96

CTCF AG04450 0.93 0.94

CTCF AG09309 0.94 0.94

CTCF AG09319 0.96 0.96

CTCF AG10803 0.96 0.96
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CTCF AoAF 0.93 0.94

CTCF BE2 C 0.93 0.94

CTCF BJ 0.92 0.93

CTCF Caco-2 0.93 0.94

CTCF GM06990 0.94 0.94

CTCF GM12801 0.78 0.8

CTCF GM12864 0.97 0.97

CTCF GM12865 0.97 0.97

CTCF GM12872 0.95 0.95

CTCF GM12873 0.94 0.95

CTCF GM12874 0.94 0.95

CTCF GM12875 0.93 0.94

CTCF GM12878 0.93 0.94

CTCF HAc 0.96 0.96

CTCF HA-sp 0.95 0.95

CTCF HBMEC 0.93 0.93

CTCF HCFaa 0.93 0.94

CTCF HCM 0.96 0.96

CTCF HCPEpiC 0.96 0.96

CTCF HCT-116 0.94 0.94

CTCF HEEpiC 0.96 0.97

CTCF HEK293 0.95 0.95

CTCF HeLa-S3 0.95 0.95

CTCF HepG2 0.94 0.94

CTCF HFF 0.97 0.98

CTCF HFF-Myc 0.94 0.95

CTCF HL-60 0.9 0.91
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CTCF HMEC 0.93 0.94

CTCF HMF 0.94 0.95

CTCF HPAF 0.96 0.97

CTCF HPF 0.94 0.95

CTCF HRE 0.93 0.94

CTCF HRPEpiC 0.97 0.97

CTCF HUVEC 0.94 0.94

CTCF HVMF 0.94 0.95

CTCF K562 0.97 0.97

CTCF MCF-7 0.97 0.97

CTCF NB4 0.95 0.96

CTCF NHDF-neo 0.93 0.93

CTCF NHEK 0.93 0.93

CTCF NHLF 0.96 0.96

CTCF RPTEC 0.96 0.96

CTCF SAEC 0.95 0.95

CTCF SK-N-SH RA 0.95 0.95

CTCF WERI-Rb-1 0.96 0.97

CTCF WI-38 0.98 0.98

Table 4.2: Test AUPR scores of RNATracker and PhyloPGM on the MIT-CSAIL

datasets [Zeng et al., 2016]

111



Chapter 5

Conclusion

Deep learning based approaches have improved the prediction accuracy of TF and RBP

binding site predictors, but remain far from replacing the wet-lab experiments [Kundaje

et al., 2021, Pan et al., 2018]. Many studies have shown that biological functions associated

with a DNA or RNA sequences are mostly conserved. However, computational models

to predict a function associated with a sequence e.g. TF or RBP binding site prediction,

seldomly utilize sequence conservation information.

Comparative genomics techniques offer a wide range of data and tools to explore func-

tions associated with genomic sequences. The multiple sequence alignment algorithms

allow to identify similar regions within a group of species. The ancestral reconstructions

algorithms can provide orthologous regions from extinct species and reveal valuable in-

formation about sequence function. One of the major challenges to the integration of

such evolutionary information with sequence binding prediction models is binding sites

turnover phenomenon, where a genomic region may maintain its binding property e.g.

number of binding sites, while the region itself may not be conserved during the evolu-

tion. More sophisticated approaches that utilize phylogenetic relationship and ancestral

sequences are shown to counter such effects [Sadri et al., 2011, Blanchette, 2012, Leclercq

et al., 2017].
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In this thesis, we develop a semi-supervised learning approach, PhyloReg, that uses

labeled human examples and unlabeled orthologs to produce a robust TFBS predictor.

Then, we present a probabilistic aggregation approach, PhyloPGM, that can boost the

prediction accuracy of previously trained RNA-RBP binding predictor. Finally, we pro-

vide a web interface for PhyloPGM that can predict the binding of TFs and RBPs to given

genomic locations.

5.1 Summary of Contributions

To our knowledge, the methodologies developed in our study are first of a kind that

bridge machine learning and evolution for studying regulation and they will, hopefully,

serve as basis for valuable future developments.

In chapter 2, we address the problem of predicting whether a given genomic loca-

tion binds to a TF in a cell-type by using evolutionary information. We develop a semi-

supervised regularization approach called PhyloReg approach. The major advantage of

PhyloReg is that it allows to use the vast amount of unlabelled examples (orthologous

regions in extant and ancestral species) with machine learning techniques to build a ro-

bust model. The orthologous regions of human genomic regions are relatively cheaper

to obtain compared to the labelled examples that require expensive wet-lab experiments.

Although PhyloReg loss is simple to integrate with a loss function of a supervised learn-

ing model, the learning of combined loss can become computationally intensive with a

large amount of unlabelled data. We use heuristics like updating the PhyloReg loss at

certain intervals to reduce the computation time. One other key observation is that in

the cases where the accuracy of a model trained on human data is lower, the amount of

improvement with PhyloReg is larger. Finally, PhyloReg assumes that a sequence label

(e.g. whether it binds to a TF) is maintained in its orthologs. Therefore, PhyloReg should

perform better than the models trained on human data alone when selective pressure is

present in the regulatory regions.
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In chapter 3, we develop a probabilistic aggregation approach called PhyloPGM for

the TF and RBP binding prediction tasks. We show that PhyloPGM boosts the prediction

accuracy of previously trained models on human data using evolutionary information.

Similar to PhyloReg, the amount of improvement in accuracy with PhyloPGM is more

for base models with relatively lower accuracy. Unlike PhyloReg that requires training,

PhyloPGM is applicable at inference stage. PhyloPGM integrates the log-likelihood ra-

tio (LLR) of base model prediction scores on the branches of the phylogenetic tree and

accuracy improvement with PhyloPGM shall signify the contribution of LLR from each

branch. Interestingly, we find that the branches that are relatively evolutionary farther

from human have more impact on the PhyloPGM score for the cases where PhyloPGM

provides relatively large amount of improvement. Thus, PhyloPGM is able to capture

important long-range evolutionary changes. Furthermore, we find that the PhyloPGM

is more capable than the base model or a conservation-based approach of predicting ge-

nomic regions where alterations can cause a disease. Therefore, PhyloPGM can be used to

analyze the impact of mutation in a given genomic region. For example, the predictions

of a base model on a reference genome and a genome from an individual can be com-

pared. The PhyloPGM score on the regions with prediction discrepancies can be used to

identify deleterious mutations.

The major challenges with PhyloPGM is its dependence on a pretrained predictor and

computation involving large alignment files. In chapter 4, we present PhyloPGM-Web, a

user-friendly web interface to PhyloPGM for predicting TF and RBP binding sites. A user

may submit genomic regions of interest to find possible TFs or RBPs that can bind from a

list of 115 TFs and 31 RBPs. PhyloPGM-Web handles the complex pipeline of PhyloPGM

in background so that a may focus on the phylogenetic analysis and binding preferences

of the submitted genomic regions.
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5.2 Perspectives on Future Work

One major goal in terms of future work with PhyloReg is to explore the aspects related

to model interpretability. We suppose that phylogenetic regularization should allow to

study the role of evolution on regulatory regions. In one such analysis with PhyloReg,

we find that primate species are more relevant for the TF binding prediction in human

for certain TFs (e.g. CEBPB, MafK). While distant related species of human are found as

relevant as closely related for certain TFs (e.g. Elk1, ATF3). However, more investigation

is needed in this regard to have firm conclusions.

Another feature to add in PhyloReg is to allow adaptive weights to each branch in

the phylogenetic tree during the computation of PhyloReg loss. It is possible that certain

species may be less relevant than others for a function linked with a human genomic

location (e.g. TF or RBP binding sites). Different weights with different species should

allow PhyloReg to learn more robust models. In the similar direction, we should consider

evolutionary distances between species while calculating PhyloReg loss function.

PhyloReg should be explored with other sequence function prediction tasks, such as

protein function prediction, RNA localisation, microRNA target sites prediction and with

other supervised learning algorithms. Adapting PhyloReg to other sequence function

prediction tasks poses a challenge of suitable integration of PhyloReg loss with the loss

function of existing models for such problems that may involve some heuristics. For

example predicting protein functions often requires building a multi-class predictor [Kul-

manov and Hoehndorf, 2020] with a different set of metrics to evaluate model perfor-

mance e.g. CAFA3 evaluation [Zhou et al., 2019]. Other sequence function prediction

tasks such as mRNA subcellular localization requires to predict multiple regression val-

ues that represent expression distribution across several cellular fraction for a given in-

put [Yan et al., 2019]. Additionally, the training data of other sequence function predic-

tion tasks may be highly imbalanced, especially in multi-class setting, where some classes
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may have most examples and others relatively few. Learning PhyloReg with such data

will require necessary adjustments and caliberations.

One of the core components of PhyloPGM is to estimate conditional probability of a

descendant species prediction score given its parent species’ prediction score and human

label using multinomial distribution. We should explore other distributions e.g. univari-

ate normal distribution or beta distribution to estimate such conditional probabilities to

better fit the underlying conditional distribution. Another aspect to explore with Phy-

loPGM approach is to use a subset of species rather than the entire mammalian orthologs

to reduce the computation time. This may increase or decrease the accuracy as we have

observed different species have differing impact on PhyloPGM accuracy for certain TFs or

RBPs. We implement PhyloPGM as a binary classifier in our study. One possible direction

in future work should include extension of PhyloPGM approach to regression and muli-

class prediction problems. This will allow PhyloPGM to be applicable to other sequence

function prediction tasks that require regression (e.g. mRNA subcellular localization) or

multi-class (e.g. protein function prediction) predictors.

We plan to add more TF and RBP binding site predictors to PhyloPGM-Web in future.

The present version of web-interface uses RNATracker as base model and an interesting

extension will be to allow users to submit their own pretrained base models. In the sim-

ilar direction, we should enhance the web-interface to handle other sequence function

prediction tasks. This will add several benefits to PhyloPGM-Web application such as

comparison of newly developed base models, staying up to date with the state-of-the-art

and studying evolution of sequence function based on the base model features. How-

ever, adding the feature of allowing users’ pretrained base models will require to solve

scalability and security challenges. Nevertheless, a user submitting a desired base model

for a designated sequence function prediction task to get the evolutionary insights and

improved prediction scores will indeed be a useful application of PhyloPGM-Web.

With the sequencing of new genomes (eg. [Armstrong et al., 2020]), we can expect Phy-

loReg and PhyloPGM to be more powerful in producing more robust models for sequence
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function prediction tasks as more evolutionary evidences will be available. However, suf-

ficient amount of selection pressure is required to be present in data for the effective work-

ing of PhyloReg and PhyloPGM. The availability of more genomic data not only present

computational challenge of integrating vast amount of data with the complex process-

ing of PhyloReg or PhyloPGM, but also an intricate challenge of distinguishing between

noise and evolutionary signatures related to sequence functions.

Finally, we aim to design model interpretation techniques and more phylogenetic op-

erations in PhyloPGM-Web. Some of the useful additions will be to represent the iden-

tified motifs in the input sequence as sequence logo [Schneider and Stephens, 1990] and

to show the impact of various subset of species on the PhyloPGM score. Furthermore,

allowing user to submit synthetic sequences or a genomic region from an individual’s

genome as input should help studying the effect of mutation and, hopefully, should be

beneficial for therapeutic developments.
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da Silva, Diana Filipa Viana Moreira, Maria João Nogueira Ferreira, and Sı́lvia Vieira

de Almeida Coimbra. Dna–protein interaction studies: a historical and comparative

analysis. Plant Methods, 17(1):1–21, 2021.

C Flores and RB Altman. Coarse-grained modeling of large rna molecules with

knowledge-based potentials and structural filters. RNA, 15(9):1769–1778, 2010.

Samuel C Flores, Yaqi Wan, Rick Russell, and Russ B Altman. Predicting rna structure

by multiple template homology modeling. In Biocomputing 2010, pages 216–227. World

Scientific, 2010.

James Foulds and Eibe Frank. A review of multi-instance learning assumptions. The

Knowledge Engineering Review, 25(1):1–25, 2010.

Tsukasa Fukunaga, Haruka Ozaki, Goro Terai, Kiyoshi Asai, Wataru Iwasaki, and

Hisanori Kiryu. Capr: revealing structural specificities of rna-binding protein target

recognition using clip-seq data. Genome biology, 15(1):R16, 2014.

Mathieu Gabut, Sidharth Chaudhry, and Benjamin J Blencowe. Snapshot: The splicing

regulatory machinery. Cell, 133(1):192–192, 2008.

Zhen Gao and Jianhua Ruan. A structure-based multiple-instance learning approach to

predicting in vitro transcription factor-dna interaction. BMC genomics, 16(4):S3, 2015.

128



Fátima Gebauer, Thomas Schwarzl, Juan Valcárcel, and Matthias W Hentze. Rna-binding
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