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Abstract 

Microbial identification and strain typing by Fourier transform infrared (FTIR) spectroscopy for 

clinical diagnostic applications have been demonstrated over the past decade using the 

transmission and attenuated total reflection modes of spectral acquisition. The transflection (Tr) 

mode has been less explored for such applications but may offer significant advantages in relation 

to routine implementation because spectra can be acquired from samples deposited on low-cost 

disposable slides made from infrared reflective materials such as low-emissivity glass. To evaluate 

the capabilities of Tr-FTIR spectroscopy for microbial discrimination and identification at the 

genus and species levels, a spectral database comprised of Tr-FTIR spectra of bacteria and yeasts 

was constructed, and multivariate analysis methods were applied to these spectral data to develop 

multi-tier classification models for identification of unknowns. A validation study with 1103 

isolates of Enterococcus faecalis, E. faecium and Staphylococcus aureus, which are leading causes 

of hospital-acquired infections, yielded over 98% concordance with the results of reference 

methods. Isolates belonging to other genera or species with less representation in the Tr-FTIR 

spectral database did not achieve highly concordant results in the validation study. Although 

increased concordance is expected with increased representation of these species in the spectral 

database, further investigations is required to determine the extent of the method’s discriminatory 

capabilities in these cases. The Tr-FTIR spectral database was also shown to be capable in 

identification of isolates cultured on antibiotic-containing media, as part of a novel FTIR-based 

method for the discrimination of methicillin-resistant S. aureus (MRSA) from methicillin-sensitive 

S. aureus and coagulase-negative staphylococcal species. MRSA identification was achieved with 

100% sensitivity and 95.3% specificity after 24-h growth of isolates (n = 56) on agar containing 

cefoxitin at a concentration of 4 µg/ml. Strain typing by Tr-FTIR spectroscopy was evaluated using 

vancomycin-resistant E. faecium (VRE) isolates acquired from patient and environmental 

screening samples and compared against pulsed-field gel electrophoresis (PFGE). Spectral 

analyses on isolates belonging to two pulsotypes, AA and CC, identified sufficient differences for 

strain typing, resulting in 91.7% and 91% categorical agreement respectively. The method was 

also evaluated in a 7-month prospective study, where collected VRE isolates from 2 hospitals were 

routinely analysed and reported on a weekly basis. At the end of the study, among the 23 clusters 

identified by Tr-FTIR spectroscopy, 11 (47%), and 6 (26%) clusters yielded 90-100% and 80-90% 

categorical agreement with PFGE results. Endemic strains that likely resulted in patient 

colonization were identified based on spectral clustering of environmental samples with those from 

patients. These studies revealed the usefulness of FTIR spectral profiling as a rapid routine strain 

typing method for VRE outbreak detection. High-resolution magic-angle spinning nuclear 

magnetic resonance spectroscopy was used to acquire 1H and 31P NMR spectra from live bacteria 

as proof of concept for its ability to discriminate at species and subspecies level. Proton and 31P 

NMR spectra of VRE isolates belonging to pulsotypes AA and CC revealed potential biomarkers 

related to differences between the pulsotypes. Metabolomic analyses identified increased levels of 

phospholipids in isolates belonging to the CC pulsotype. Although the identified biomarkers are 

likely not the sole differences between these VRE strain types, key FTIR spectral regions identified 

for differentiation between AA and CC pulsotypes correlate with peaks unique to these 

phospholipids. Overall, the results from this thesis demonstrated the capabilities and limitations of 

using Tr-FTIR spectroscopy for clinical diagnostic and strain typing applications.  
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Résumé 

L'identification microbienne et le typage des souches par spectroscopie infrarouge à transformée 

de Fourier (FTIR) pour des applications de diagnostic clinique ont été démontrés au cours de la 

dernière décennie en utilisant les modes de transmission et de réflexion totale atténuée. Le mode 

de transflexion (Tr) a été moins exploré pour de telles applications mais peut offrir des avantages 

significatifs par rapport à la mise en œuvre de routine car les spectres peuvent être acquis à partir 

d'échantillons déposés sur des lames jetables à faible coût fabriquées à partir de matériaux 

réfléchissant les infrarouges. Pour évaluer les capacités de la spectroscopie Tr-FTIR pour la 

discrimination et l'identification microbiennes au niveau du genre et de l'espèce, une base de 

données spectrale composée de spectres Tr-FTIR de bactéries et de levures a été construite et des 

méthodes d'analyse multivariée ont été appliquées à ces données spectrales pour développer des 

modèles de classification à plusieurs niveaux pour l'identification des inconnues. Une étude de 

validation avec des isolats d'Enterococcus faecalis, d'E. faecium et de Staphylococcus aureus a 

donné plus de 98 % de concordance avec les résultats des méthodes de référence. Les isolats 

appartenant à d'autres espèces moins représentés dans la base de données spectrale n'ont pas obtenu 

de résultats très concordants. Bien qu'une concordance accrue puisse être attendue avec une 

représentation accrue de ces espèces dans la base de données spectrale, des investigations 

supplémentaires seraient nécessaires pour déterminer l'étendue des capacités discriminatoires de 

la méthode dans ces cas. La méthode Tr-FTIR a également correctement identifié les isolats 

cultivés sur des milieux contenant des antibiotiques, dansd'une nouvelle méthode basée sur le FTIR 

pour la discrimination de S. aureus résistant à la méthicilline (SARM) de S. aureus sensible à la 

méthicilline et des espèces de staphylocoques à coagulase négative. Une sensibilité de 100 % et 

une spécificité de 95,3 % ont été obtenues pour l'identification du SARM (n = 56) sur gélose avec 

4 µg/ml de céfoxitine. Le typage des souches par spectroscopie Tr-FTIR a été évalué à l'aide 

d'isolats d'E. faecium résistants à la vancomycine (ERV) acquis à partir d'échantillons de dépistage 

de patients et d’environnementaux et comparé à l'électrophorèse sur gel en champ pulsé (PFGE). 

Les analyses spectrales sur deux pulsotypes, AA et CC, ont identifié des différences pour le typage 

des souches, résultant en un accord catégorique de 91,7 % et 91 % respectivement. La méthode a 

été évaluée prospectivement pour 7 mois; les ERV collectés ont été analysés et rapportés sur une 

base hebdomadaire, et comparés rétrospectivement aux résultats de PFGE. Parmi les 23 clusters 

identifiés par spectroscopie Tr-FTIR, 11 (47 %), et 6 (26 %) clusters ont donné un accord 

catégorique de 90 à 100 % et 80 à 90 % avec les résultats de la PFGE. Ces études ont révélé l'utilité 

du spectroscopie FTIR en tant que méthode rapide de typage des souches de routine pour la 

surveillance. Les spectres RMN à haute résolution de rotation à l'angle magique des bactériennes 

vivantes ont démontré les capacités à discriminer au niveau des espèces et des sous-espèces. Les 

spectres RMN d’isolats ERV appartenant aux pulsotypes AA et CC ont révélé des biomarqueurs 

potentiels liés aux différences dans ces pulsotypes. Les analyses métabolomiques ont identifié une 

présence accrue des phospholipides dans le CC. Bien que ces biomarqueurs identifiés ne soient 

probablement pas les seules différences entre ces isolats, leur contribution à la différenciation entre 

les pulsotypes AA et CC par spectroscopie FTIR est cohérente avec les régions spectrales FTIR 

jugées essentielles pour une différenciation réussie. Les résultats de cette thèse ont démontré les 

capacités et les limites de l'utilisation de la spectroscopie Tr-FTIR pour les applications de 

diagnostic microbien clinique et de typage des souches. 
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Contributions to Knowledge 

This thesis introduced novel methods utilizing transflection-FTIR spectroscopy and HR-MAS 

NMR spectroscopy for microbial identification and strain typing. These include the development 

of a spectral database for species identification, a strain typing method for outbreak detection, as 

well as a new method to accurately identify MRSA using FTIR spectroscopy. The primary 

contributions to knowledge resulting from this research are summarized below: 

1. Comparison of transflection FTIR spectral acquisition method against ATR- and 

transmission modes in microbial discrimination. 

The three spectral acquisition modes were compared for their ease of sample preparation, data 

acquisition and data analyses, as well as spectral quality for application in microbial 

discrimination, using a common set of microorganisms. Comparable spectral quality and 

discriminatory capabilities were observed in the transflection mode, relative to ATR and 

transmission spectral acquisition modes.  

2. Development and evaluation of a transflection-FTIR spectral database encompassing 

Gram-positive and Gram-negative bacteria and yeasts for reliable identification of 

certain microorganisms. 

Transflection FTIR spectra of clinically relevant isolates, with a focus on Gram-positive 

species, were collected and a classification system for microorganisms based on spectral 

differences was developed. Spectral data acquired at local and international laboratories 

showcased that with standardized sample preparation and sufficient species representation in 

the spectral database, correct identification to the species level was possible, regardless of the 

specimen source such as clinical, food or veterinary origin. 

3. Optimization of MRSA detection using FTIR spectroscopy through the addition of 

antibiotics to culture media. 

The method for MRSA identification using FTIR spectroscopy was developed by combining 

the capability of FTIR-spectroscopy to discriminate S. aureus from CoNS species, and the 

ability to selectively grow methicillin-resistant staphylococci on a culture medium that 

contains the antibiotic cefoxitin. A bi-plate concept, where staphylococcal isolates were 

cultured on blood agar plates with and without cefoxitin, allowed for detection of both sensitive 

and resistant strains. All samples with positive growth were subjected to spectral analyses, for 

identification of S. aureus.  
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4. Development and evaluation of a routine strain typing method using transflection-FTIR 

spectroscopy to detect nosocomial outbreaks, and to continuously track the transmission 

of pathogens. 

Transflection-FTIR spectra acquired from VRE isolates with previously identified PFGE 

pulsotypes were analysed using supervised and unsupervised multivariate statistical analysis 

techniques. Successful differentiation of VRE isolates based on pulsotypes as well as 

retrospective identification of clonal isolates was achieved. A method for identifying spectrally 

indistinguishable isolates based on the degree of similarity of FTIR spectral characteristics was 

developed, and was tested in a prospective 6-month study, for two Montreal hospitals; the 

method showcased the benefit of routinely analyzing data, rather than in retrospect for VRE 

outbreak detection. 

5. Demonstration of microbial discrimination using spectra acquired by HR-MAS NMR 

spectroscopy 

Bacterial colonies were directly analyzed using 1H and 31P HR-MAS NMR spectroscopy, as a 

proof of concept, showcasing the capability to discriminate between species and strain types, 

similarly to FTIR spectroscopy. As demonstrated with transflection FTIR spectroscopy, 

spectral acquisition and analysis conducted on live cells by HR-MAS NMR spectroscopy has 

the potential to become more relevant as a diagnostic tool in clinical microbiology upon 

reductions in instrument size, and cost and in sample size, together with automation and 

standardization of the method. Differences observed in the 1H and 31P HR-MAS NMR spectra 

between VRE pulsotypes tentatively identified biomolecules that may have contributed to 

FTIR spectral differences between these pulsotypes.  

6. Preliminary data acquisition using high resolution magic angle spinning nuclear 

magnetic resonance (HR-MAS NMR) spectroscopy, mass spectrometry (MS) and whole 

genome sequencing for biomarker elucidation and correlation to FTIR spectral strain 

typing data 

Based on the FTIR and HR-MAS NMR spectral analyses of VRE isolates, preliminary analysis 

on biomarker elucidation was conducted to identify biomolecules contributing to successful 

spectral discrimination between VRE isolates of different pulsotypes. Whole genome 

sequencing data, as well as MS and NMR spectra of extracted chloroform-soluble fractions 

were obtained to gain insight into the genotypic and biomolecular differences. Phosphorus-
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containing biomarker(s) as well as choline-containing components were tentatively identified 

as potential biomarkers in discriminating between the studied VRE strain types. The genotypic 

and spectroscopic data acquired contributed toward understanding the biochemical differences 

that were observed in FTIR spectral data for successful strain type discrimination.  
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Chapter 1.  Introduction 

1.1 General Introduction 

Hospital associated outbreaks and hospital acquired infections are critical problems, and 

have serious consequences to patients staying at hospital, increasing their mortality and morbidity 

rates [1]. Pathogens causing nosocomial infections and outbreaks are increasingly becoming 

antibiotic resistant as a result of increased exposure to antibiotics within hospitals [2]. It is critical 

to actively screen patients at the time of admission and periodically throughout their hospitalization 

to monitor the presence of antibiotic resistant pathogens such as methicillin-resistant 

Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) as part 

of infection control and nosocomial outbreak surveillance. In Canada and many countries around 

the world, VRE is one of the Gram-positive pathogens that is commonly isolated from the hospital 

environment, and is often considered as an indicator for insufficient adherence to sanitation 

protocols [3]. VRE screening samples must be identified using a combination of techniques, such 

as screening broth, PCR for vancomycin resistance gene detection, and isolation on chromogenic 

agar, which can take up to three days cumulatively. Upon confirmation of VRE presence 

relatedness between isolates is investigated via strain typing. Pulsed field gel electrophoresis 

(PFGE), the current gold standard for strain typing, is a time-consuming and laborious technique, 

and the slow turnover rate for results by PFGE hinders the infection control team to implement 

actions necessary based on results from both molecular and epidemiological information. PFGE 

remained to be the gold standard for over two decades, despite its limited resolution, slow-

turnaround time to results, and lack of reproducibility related to the degree of difficulty in the 

method. Although whole genome sequencing (WGS), another genotypic method, is starting to 

replace PFGE as the standard for strain typing, the lack of standardized and streamlined processes 

and the burden of computing enormous amounts of data are currently hindering its routine use [4]. 

In order to better track the presence and transmission of pathogenic organisms within hospitals, 

rapid microbial identification and routine strain typing are necessary.  

Whole-organism fingerprinting techniques, such as Fourier transform infrared (FTIR) 

spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, acquire spectral data of 

microorganisms with minimal to no sample preparation. Both FTIR and NMR spectra acquired in 

this manner characterize the biochemical makeup of the intact microbial cells, and the sensitivity 

of these whole-organism fingerprinting techniques to biochemical differences between 
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microorganisms as been shown to be sufficient for subspecies level discrimination of 

microorganisms [5-10]. An important benefit of these techniques is that the spectra acquired from 

samples can be used in many applications, such as identification and strain typing, through the use 

of various multivariate statistical analyses. FTIR spectroscopy in particular, has the potential to be 

implemented as a rapid screening method, with its fast data acquisition capabilities. 

Transflection is a spectral acquisition mode for FTIR spectroscopy that has been less 

commonly studied for microbial applications in comparison to transmission and attenuated total 

reflectance (ATR) acquisition modes. For spectral acquisitiom in the transflection mode, the 

sample is placed on an infrared-reflective substrate, and the infrared bean is transmitted through 

the sample, reflected back from the surface of the substrate, and transmitted through the sample 

for the second time and then directed by the optics to the infrared detector. The transflection mode 

has been less popular due to reported spectral distortion caused by the differences in the refractive 

index changes at the air/sample and sample/substrate interfaces [11]. However, there are also 

reports indicating that mathematical processing of the spectra prior to analyses can eliminate such 

distortions, and enable successful qualitative analyses [12, 13]. The substrate on which samples 

are deposited for transflection mode spectral acquisition is a cheaper alternative compared to the 

infrared-transparent windows used for to acquire transmission spectra, thereby making 

transflection a more cost-effective method compared to transmission mode [12]. Furthermore, the 

cheaper costs enable the slides to be used as a one-time-disposable consumable, making handling 

of pathogenic microbial samples for lab personnel, while eliminating the protocols required for 

reusing a more expensive substrate. In addition, the transflection mode has the potential for 

automated spectral acquisition with a motorized stage, which is not as easy to implement for the 

ATR mode. In this thesis, the main focus was to evaluate transflection FTIR spectroscopy for 

microbial identification and strain typing applications, with a focus on the most prevalent 

antibiotic-resistant Gram-positive pathogens, namely VRE and MRSA. 

High-resolution magic-angle spinning (HR-MAS) NMR spectroscopy is a type of NMR 

spectral acquisition technique that is employed to acquire highly resolved NMR spectra from live 

microbial cells, enabling direct analysis of microbial samples in their native state. Applications of 

HR-MAS NMR spectroscopy for characterization of cell-surface polysaccharides and strain types 

from whole cells [14]. NMR spectroscopy is commonly used in metabolomics in combination with 

mass spectrometry [15]. Like FTIR spectral data, spectra acquired by HR-MAS NMR 
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spectroscopy provide a snapshot on the metabolic and structural state of the live microbial cells. 

By taking advantage of the higher chemical specificity that NMR spectroscopy offers, 

identification of specific biomarkers may be achieved in metabolomic studies by HR-MAS NMR 

spectroscopy may be correlated to FTIR spectral data. 

1.2 Overview and Objectives of the Research 

 Goal of the Research 

The main objective of this thesis was to evaluate transflection FTIR spectroscopy, as a rapid 

technique for identification and strain typing of clinically relevant Gram-positive bacteria. The 

research included development and evaluation of a transflection FTIR spectral database for species 

identification and a FTIR spectroscopy based strain typing method. A key objective was to 

showcase the benefits of using spectroscopic techniques as rapid, screening tools, at a time where 

genotypic techniques are gaining popularity. The focuses were to a) develop a transflection FTIR-

based spectroscopic technique that can be integrated into the current workflow in microbial 

diagnostic laboratories for both identification and strain typing, b) to optimize the culturing 

conditions of bacteria to improve FTIR spectral identification and strain typing of antibiotic-

resistant microorganisms, with MRSA as an example, and c) to demonstrate and use HR-MAS 

NMR spectroscopy for studying live bacteria cells for subspecies spectral discrimination, as well 

as biomarker elucidation in combination with other spectroscopic and genotypic methods. The 

FTIR spectra of microorganisms represent their biochemical status, and therefore in combination 

with various multivariate statistical analysis tools, the spectra can provide useful data for 

characterization at multiple taxonomic levels.  

 Specific Objectives of the Research 

(i) To develop and evaluate a transflection-FTIR spectral database for microbial 

identification with isolates obtained from clinical and food sources 

(ii) To develop and evaluate a method for rapid and accurate identification of MRSA 

using FTIR spectroscopy in combination with selective media, as a cheaper 

alternative method to the use of chromogenic agar 

(iii) To develop and evaluate a protocol for determining strain relatedness between 

nosocomial VRE strains using FTIR spectroscopy, for routine outbreak detection 

and surveillance applications 
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(iv) To demonstrate the potential of 1H and 31P HR-MAS NMR spectroscopy in 

microbial characterization, discrimination and strain typing from live microbial 

cells 

(v) To attempt correlating between NMR and FTIR spectral data to elucidate 

biomarkers associated within FTIR spectral discrimination between VRE isolates 

at the strain level, in combination with mass spectrometry and whole genome 

sequencing 
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Chapter 2.  Literature Review 

2.1 Abstract 

Nosocomial outbreaks and hospital acquired infections are critical problems, that have serious 

consequences to patients staying at hospitals or long term acute care facility. Pathogens causing 

nosocomial infections and outbreaks are increasingly becoming antibiotic resistant as a result of 

increased exposure to antibiotics within the hospitals. It is critical to screen patients at the time of 

admission and continue to do so periodically throughout their hospitalization to monitor the 

presence of microorganisms such as methicillin resistant Staphylococcus aureus and vancomycin 

resistant enterococci as part of infection control and nosocomial outbreak surveillance. 

Combinations of techniques are used to identify and strain type the target organisms. Pulsed field 

gel electrophoresis (PFGE), the current gold standard for strain typing is a time-consuming and 

laborious technique. The slow turnover rate for results by PFGE hinders the infection control team 

to implement optimal necessary actions, as it is only able to provide results retrospectively. 

Although whole genome sequencing (WGS) is starting to replace PFGE as the standard for strain 

typing, the lack of streamlined processes and the burden of computing enormous amounts of data 

is currently hindering its use routinely. In order to minimize transmission of pathogenic organisms 

between patients in hospitals, rapid microbial identification and strain typing is necessary. Whole-

organism fingerprinting techniques, such as Fourier transform infrared (FTIR) spectroscopy and 

nuclear magnetic resonance (NMR) spectroscopy acquire data based on the biochemical makeup 

of live organisms with minimal to no sample preparation once colonies are isolated. FTIR and 

NMR spectroscopy both have been shown to have sufficient sensitivity for subspecies level 

discrimination. Furthermore, by exploiting the abundant spectral information, each acquired 

spectrum can be used for identification and strain type characterization with use of multivariate 

statistical analysis methods, thereby reducing the time and expertise required to conduct multiple 

techniques for microbial characterisation. The gap in routine strain typing could potentially be 

filled by using FTIR spectroscopy. Furthermore, by utilizing complementary techniques such as 

NMR spectroscopy, in combination with genotypic and other spectroscopic techniques, further 

understanding on the biochemical differences attributed to metabolic or structural differences and 

changes in live microbial cells that are reflected in the FTIR spectra can be correlated. 
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2.2 Introduction 

In healthcare settings, the identification of bacteria is necessary to enable doctors to 

appropriately treat infections, or to track hospital acquired colonization and infection, to 

implement infection prevention and control protocols to minimize or intercept transmission of 

pathogens within healthcare facilities. Antibiotic resistant bacteria are becoming more ubiquitous, 

found in animals (both domesticated and wild), humans, and in food [1-6]. Pathogens associated 

with hospital acquired infections are often antibiotic resistant, such as vancomycin resistant 

Enterococcus faecium (VRE), methicillin resistant S. aureus (MRSA), and extended spectrum β-

lactamase (ESBL) producing and carbapenem-resistant Enterobacteriaceae species (CRE). 

Hospitals create a unique environment for bacteria to gain resistance against multiple antibiotics, 

caused by frequent exposures to antimicrobial agents [7]. Infection control is crucial in order to 

track ongoing outbreaks and to prevent new ones from occurring. Nosocomial outbreaks caused 

by antibiotic resistant pathogens are of particular interest because patients who are affected tend 

to be at high risk of infection through acquired colonization; these people include those with 

compromised immune systems, who have undergone surgeries, and of extreme ages (very young 

or old). It is crucial to identify reservoirs/sources and prevent/stop transmission of nosocomial 

pathogens within healthcare settings to new patients through the use of active screening as part of 

infection prevention and control protocols. Surveillances for such pathogens are done at different 

scales ranging from local (i.e. within the hospital), regional, provincial, national and international 

levels. Surveillance allows monitoring and detection of outbreaks, based on information obtained 

from the molecular tests, patient records and space-time epidemiology. Routine screening for 

universal and targeted admission have been correlated to reduction in prevalence rates for both 

MRSA and VRE [8]. Molecular typing techniques play an important role in surveillance and 

outbreak investigation by providing genotypic and/or phenotypic information regarding the 

pathogen, enabling comparison between isolates obtained from patient screening and infection 

sites. Combinations of techniques are used to identify and confirm its strain type, such as 

polymerase chain reaction (PCR), selective and differential media, mass spectrometry and pulsed 

field gel-electrophoresis. These techniques cumulatively are very time consuming and labor 

intensive. The strain type results is used in retrospect, while infection control protocols are 

implemented upon presumption that there is an outbreak, when new cases arise from screening at 

higher than usual (baseline) rate. While being proactive and implementing strategies to prevent 
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transmission of pathogens within the hospital is important, conducting these procedures when 

unnecessary (e.g. if there is actually no outbreak going on), can be costly for the hospitals. Actions 

taken for infection prevention and control include increased frequency for active patient and 

environmental screening, isolating colonized patients in different rooms, and conducting deep 

cleaning, to remove pathogens from high-contact surfaces, equipment and linens. If these 

molecular information on the pathogens can be obtained with a shorter turnaround time, it can be 

used to optimize when to implement such infection control protocols, and overall, will allow 

hospitals to track in real time of nosocomial pathogens and outbreaks. 

Thus, rapid and accurate identification and strain typing techniques are required to effectively 

monitor the state of nosocomial pathogens and outbreaks. Whole-organism fingerprinting 

techniques such as Fourier transform infrared (FTIR) spectroscopy and high-resolution magic 

angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy are rapid and reagent 

free techniques that can acquire information from whole, live organisms including bacteria. 

Spectra acquired from these techniques are spectroscopic fingerprints of the isolates based on their 

unique biochemical makeup. Among these techniques, FTIR spectroscopy has been the most 

widely studied, with reports on bacteria identification and sub-species level differentiation dating 

back to 1950s. Bacterial identification and strain typing by these techniques will be reviewed in 

context with current techniques, evaluating the potential implementation of FTIR and HR-MAS 

NMR spectroscopy for routine rapid bacteria identification and strain typing in surveillance 

agencies and hospitals. 

2.3 Antimicrobial-resistant Gram-positive bacteria: MRSA and VRE 

MRSA and VRE are the two of the most common nosocomial pathogens in Canada along with 

Clostridium difficile [8]. Median prevalence of MRSA colonization and infection, and VRE 

colonization and infection per 100 in-patients were 4.1 and 0.8 respectively [8]. MRSA is the 

leading cause of hospital acquired infection (HAI) in the USA with ~80,500 severe MRSA 

infections per year reported in 2013 [7]. In Europe, S. aureus and enterococcal species are among 

the top 10 organisms that cause HAI in acute care hospitals [9].  

Methicillin-resistant Staphylococcus aureus (MRSA) 

S. aureus is a commensal Gram-positive bacterium, that colonizes humans in sites such as, 

but not limited to, the nasal carriage, skin, hair, nail, and rectum [10]. Unlike most other 
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staphylococcal species, S. aureus are known to be invasive, causing infections and toxin-mediated 

diseases [11]. Invasive S. aureus infection is a major cause of morbidity and mortality. S. aureus 

infections can be acquired at hospitals through transmission between patients and/or healthcare 

personnel. More complicated infections occur when surgical wounds or entrance sites of 

indwelling intravenous devices become infected. Such infections occur when proper sterilization 

was not achieved. S. aureus is the most common cause of post-operative wound infections 

worldwide [12]. These infections are difficult to treat, even when the bacteria are antibiotic 

susceptible, as these sites can become persistently infected. Bloodstream infections are especially 

very serious as infections can spread throughout the body. Skin and soft tissue infections caused 

by S. aureus are common and tend to result from community-acquired (CA) - MRSA infections, 

rather than hospital-acquired (HA) – MRSA infections. S. aureus produces many types of 

extracellular toxins, that cause toxin-mediated diseases such as food poisoning, toxic shock 

syndrome, and staphylococcal scalded skin syndrome [11]. Without appropriate treatment, S. 

aureus infections can result in death. 

MRSA is defined as “isolates that carry the mecA gene or a related variant known as mecC, 

that confer resistance to all β-lactam antibiotics, including cephalosporins and carbapenems” [13]. 

Methicillin is a penicillinase-stable antibiotic that was first introduced to treat S. aureus infections, 

but resistance against this antibiotic quickly emerged [14]. Methicillin and other β-lactam 

antibiotics inhibit cell-wall synthesis by preventing the transpeptidation between peptides of 

adjacent peptidoglycan strands in S. aureus, by acting as a substrate analog of D-Ala-D-Ala 

peptidoglycan side chain. MRSA is known to be heterogeneously resistant to β-lactams, where 

most cells display low levels of resistance, with only 0.01-0.1% of the colony displaying high 

resistance levels. MRSA that express homogenous resistance is rare. MRSA can be induced to 

express homogeneous resistance through culturing with exposures to β-lactams, and this is 

reported to be the result of gene expression alteration rather than adaptation to the antibiotics [15]. 

Cefoxitin, a second-generation cephamycin antibiotic, is commonly used to detect MRSA, and is 

known to be a better surrogate for identifying MRSA compared to oxacillin, as it improved 

detection for heterogeneously resistant strains [16]. Growth in the presence of cefoxitin enables 

for accurate MRSA identification, as MSSA have minimum inhibition concentration (MIC)              

≤ 4mg/L, whereas MRSA exhibit MIC ≥ 8mg/L, most of which have MIC ≥ 125mg/L [17].  
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2.3.1.1  Methicillin resistance mechanism in MRSA 

Staphylococcal cassette chromosome mec (SCCmec) is a mobile gene element that is only 

present in Staphylcoccus species that are resistant against methicillin. mecA, a part of the mec gene 

complex of SCCmec encodes the production of penicillin-binding protein 2a (PBP2a), a modified 

version of the original penicillin-biding protein (PBP), used for transglycosylation and 

transpeptidation for cell wall synthesis. PBP2a reduces the affinity of the cell wall to almost all    

β-lactam antibiotics. By doing so, the transpeptidation step in the cell wall synthesis is maintained 

[15, 18]. The mecC gene, like the mecA gene is part of SCCmec. mecC is a relatively new resistance 

gene discovered in MRSA in 2011. Since then, mecC MRSA has been identified in river water 

[19], and in domesticated animals such deer, cows, and sheep [1, 4, 5]. The mecC gene shares 70% 

of its gene sequence with mecA, and the PBP produced by mecC is ~ 63% similar to PBP2a. Due 

to its low genetic similarity to mecA gene, mecC MRSA cannot be detected using identification 

techniques developed for the mecA gene [14, 20, 21]. To further complicate matters, mecC MRSA 

isolates have low resistance against oxacillin, and therefore can go undetected during antibiotic 

susceptibility testing. Dupieux et al. (2017) tested the performance of four different brands of 

antibiotic containing chromogenic agar for mecC MRSA detection, and reported that depending 

on the brand of the chromogenic agar, the sensitivity level for mecC MRSA varied from 63% to 

99% [20]. 

2.3.1.2  MRSA strain types 

MRSA is generally categorized into three groups, hospital-associated, community-

associated and livestock-associated, depending on where the MRSA originates or its reservoir.       

S. aureus evolved and adapted to various environmental conditions, which became separate 

lineages, through acquisition of SCCmec and other mobile genetic elements. CA-MRSA was 

discovered when a patient without a record of hospital admission was diagnosed with MRSA, in 

the 1990s. Since then, CA-MRSA has been categorized separately from HA-MRSA, as it had 

different antibiotic susceptibility profiles, and virulence. CA-MRSA can infect the people who are 

young, and healthy, with low risks of acquiring HA-MRSA infections, while HA-MRSA cause 

invasive infections in immunocompromised patients, during or shortly after their visit or stay at 

healthcare facilities [22, 23]. CA-MRSA is often associated with skin and soft-tissue infection, 

while HA-MRSA is associated with bacteremia and infections in surgical sites. Due to difference 
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in the genotypic characteristics, CA-MRSA and HA-MRSA can be differentiated rather easily. 

CA-MRSA tend to be less resistant against antibiotics (i.e. clindamycin susceptible), compared to 

HA-MRSA isolates, but are known to be more virulent, caused by the possession of genes 

encoding for Panton-Valentine leucocidin (PVL), a pore-forming toxin. Additionally, the SCCmec 

type is different between CA- and HA-MRSA, where the former typically contain SCCmec type 

IV or V, while the latter possess SCCmec type I-III. The combination of the PVL encoding genes 

lukS-PV and lukF-PV, with SCCmec V or IV are reported to have increased pathogenicity, and 

infection rate, making certain CA-MRSA strains more dangerous than HA-MRSA strains [10]. 

SCCmec typing can be used for epidemiology surveillance of MRSA, classifying strains by the 

SCCmec type (I to IX), along with other genotypic methods introduced in later sections, such as 

pulsed field gel electrophoresis [15].With the increasing prevalence of MRSA, isolates that are 

characterised as community acquired, are becoming more prevalent in hospitals, as transmission 

of these strain types spread in healthcare facilities [24]. 

Vancomycin resistant enterococci (VRE) 

E. faecium and E. faecalis are two Enterococcus species that are clinically important due to 

their ability to acquire resistance against vancomycin, as well as being the two common species 

that cause infections in humans [25]. Enterococci are tolerant to β-lactam antibiotics, and are also 

intrinsically resistant to many antibiotics, such as semi-synthetic penicillin, clindamycin and 

cephalosporins. Some strains of VRE are also known to have resistance against last-line antibiotics 

like linezolid and daptomycin, which limits treatment options for VRE infections [26, 27].                 

E. faecium is known to acquire plasmids, prophages, and genomic islands, among other genetic 

mobile elements through horizontal gene transfer. This genomic plasticity makes E. faecium fit for 

adaptation to its environment, and is also the reason why they have been successful in evolving to 

acquire drug resistance, and persistently colonize healthcare facility environment and transmit to 

susceptible hosts [27]. CDC estimated 54,500 cases of HAI, and 5,400 deaths caused by VRE in 

2017 in the USA. Approximately 30% of enterococcal HAI were by VRE (~20,000 infections) in 

the USA, with the majority identified as E. faecium [7]. 

2.3.2.1  Resistance mechanism against vancomycin in Enterococcus species 

Vancomycin is a glycopeptide, that is used as the last line of defense against Gram-positive 

bacteria. It interferes the biosynthesis of peptidoglycan, by forming a complex with the peptide 
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termini, D-Ala-D-Ala of peptidoglycan precursors. By doing so, peptidoglycan precursors cannot 

be used as substrates for cell wall biosynthesis (transglycosylation and transpeptidation). 

Vancomycin resistance in enterococci occurs as the result of an alteration in the peptidoglycan 

precursor peptide termini, with the replacement of D-Ala with D-Lac or D-Ser, which decreases 

the affinity by 1000 and 7 folds respectively for vancomycin. This amino acid modification enables 

cell wall synthesis to continue for bacterial growth. The gene operon that dictates the bacteria’s 

capacity to be resistant can be found in the core genome or on mobile genetic elements. In the 

latter case, horizontal gene transfers can occur, and pass the resistance gene to enterococcal 

colonies that were otherwise susceptible to vancomycin. There are nine known gene clusters that 

cause glycopeptide resistance in enterococci, but the most common types are vanA and vanB in 

clinical VRE isolates. The Van gene clusters differ from one another by the physical location (on 

a mobile genetic element or in the core genome), specific glycopeptides that they are resistant to 

(vancomycin only or vancomycin and teicoplanin), the degree of resistance, if resistance is induced 

or constantly expressed, and the type of peptidoglycan precursor produced (D-Ala-D-Lac or           

D-Ala-D-Ser) [26]. Although less common, vanA gene have also been found in other enterococcal 

species such as E. avium, E. durans, and E. raffinosus. vanA genes are associated with inducing 

high resistance level to both vancomycin and teicoplanin, while vanB gene induces moderate to 

high-level resistance to only vancomycin. The peptidoglycan precursor produced by both vanA 

and vanB is D-Ala-D-Lac. vanA gene are encoded on Tn1546, while vanB gene can be found on 

Tn1547 or Tn1549 mobile elements on plasmids or in the chromosome [26, 28].  

2.4 Current techniques for bacterial identification and antimicrobial susceptibility testing 

As part of the screening process for nosocomial pathogens, a combination of genotypic and 

phenotypic techniques are used for identification and determination of the level of antimicrobial 

resistance. Matrix assisted laser desorption ionization – time of flight mass spectrometry (MALDI-

TOF MS) recently became the overwhelmingly popular choice for microbial identification due to 

its ease in sample preparation and rapid turnaround time[29]. Genotypic methods such as 

polymerase chain reaction (PCR) can identify targeted species and resistance genes, while 

antimicrobial susceptibility tests (AST) like microdilution inhibition tests can quantitatively 

determine the level of resistance. Without the knowledge of the antibiotic resistance profile of the 

isolated microorganism, misuse of antibiotics may occur, where antibiotics may be ineffective in 

treatment or lead to antibiotic resistance due to unnecessary exposures. Phenotypic tests such as 
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broth microdilution, disk diffusion test, and agar dilution are the gold standard for antimicrobial 

susceptibility testing , due to its flexibility, as well as the ease to conduct the tests, in order to 

determine the therapeutic dose required in infection treatments [30]. 

Biochemical reaction-based identification systems 

The VITEK system (bioMérieux SA, Marcy l’Étoile, France) was first developed in the 1970s, 

as an identification and AST system, based on a series of biochemical reactions which measures 

metabolic activities. Some of the biochemical changes that are observed for analysis include 

carbon source utilization, acidification, alkalinization, enzymatic hydrolysis, effect of inhibitory 

substances [31]. Other manufacturers have developed similar automated biochemical based 

identification systems, such as BD Phoenix (BD Diagnostics). Briefly, a 0.5-0.63 McFarland 

turbidity standard is prepared with 0.45-0.5% saline solution. This is then automatically filled into 

a card with many wells, and inserted into the system where the card is incubated at 35.5 °C and 

data is acquired every 15 minutes using an optical system which measures turbidity, color, and 

colorimetric signals. Results for Gram-positive bacteria can be identified in eight hours or less [31, 

32].  

AST is a feature of the VITEK 2 system, where antibiotics are tested for MIC. For example, 

the antibiotics tested for Gram-positive cocci in clusters that suggest Staphylococcus spp., are 

benzylpenicillin, cefoxitin, vancomycin, rifampicin and linezolid. For Gram-positive cocci in 

chains, suggesting Enterococcus or Streptococcus spp., MIC against benzylpenicillin, ampicillin, 

imipenem, vancomycin, linezolid and high-level gentamicin are determined [33]. Based on the 

optical density of the microwells after incubation with a range of antibiotic doses, MIC is 

determined for each tested antibiotic. Rapid (4 to 15 hours) identification by VITEK 2 AST have 

been reported, with accuracies between 94-100%, 90-100%, and 91-100% for S. aureus, CoNS, 

and Enterococcus species respectively [32, 34], making it a reliable AST method.  

Matrix assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF 

MS) 

In recent years, MALDI-TOF MS has become a popular microbial identification technique 

that is widely used around the world in application for clinical diagnostics. Ease of preparation 

and use of system, as well as the rapid turnaround time (as fast as under an hour) for results are 

key reasons for the popularity. MALDI-TOF MS, like other mass spectrometry (MS) techniques, 
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ionizes analytes into charged molecules, and produces mass spectra, where the intensity is plotted 

over a range of mass to charge (m/z) ratio. MALDI-TOF MS was developed in the 1980s, with the 

intended use for biological samples, which are larger in size compared to chemical samples 

traditionally analyzed by other MS techniques. [35]. Identification of the microorganism by 

MALDI-TOF MS is based on the use of a spectral database, and identifying species with high 

degree of similarity in the m/z profiles observed in the range of 2-20 kDa, which correspond to the 

ribosomal proteins detection region [35]. 

The advantages of MALDI-TOF MS is that it is a rapid technique, with simple preparation 

steps, and can produce accurate results. Despite the high initial cost for the equipment, cost per 

test is less expensive compared to traditional molecular and immunological based methods, as a 

result of smaller volume of reagent required. MALDI-TOF MS reported a significantly reduced 

turnaround time for identification, resulting in faster implementation of appropriate antibiotic 

treatment, in reference to biochemical assays. In combination with the reduced use of consumables 

and reagents, the use of MALDI-TOF MS resulted in reduction of overall waste and expense 

associated with bacteria identification [36]. Unlike techniques such as polymerase chain reaction 

(PCR) which require highly trained personnel to perform the tests, MALDI-TOF MS does not 

require extensive training. MALDI-TOF MS is recognized as a culture media independent method; 

studies have shown that the use of different media such as blood agar, tryptic soy agar, and 

chromogenic agar were able to obtain the same identification results, because the ribosomal protein 

expression does not alter from the change in media [37, 38]. In order to obtain high confidence 

results, it is critical that the sample being analyzed have been well isolated.  

In terms of performance, MALDI-TOF MS was reported to have lower error rates at both the 

genus and species level compared to VITEK 2 [39]. Bruker Biotyper and VITEK MS MALDI-

TOF MS systems, manufactured by Bruker Corporation and bioMérieux SA respectively, were 

able to identify microorganisms at 85 % or better, even when identifying unusual or difficult 

microorganisms, showcasing comparable, high results between the two manufactures [29, 36, 40]. 

Despite many advantages, MALDI-TOF MS has a few disadvantages as a bacteria identification 

system. Due to the reliance on difference in a limited region of the mass spectrum, groups of 

bacteria that are closely related that have highly similar ribosomal protein mass fragment patterns 

may be unsuccessfully differentiated [41]. Examples include differentiation between Shigella spp. 

vs E. coli, Streptococcus pneumoniae vs S. mitis, species within the Enterobacter cloacae complex, 
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Burkholderia cepacian complex, and Acinetobacter spp. [42]. Expanding the m/z region of interest 

to include those outside of the current 2-20kDa region may result in improved identification by 

MALDI-TOF MS [43]. Unfortunately, not all hospitals can afford a MALDI-TOF MS systems, 

especially in small hospitals, where funding is limited, and sample throughput is low, and therefore 

cheaper alternatives that are able to produce similarly reliable results are necessary. 

In extension to using MALDI-TOF MS for rapid identification from isolated colonies, 

interests in direct identification from positive blood culture and urine samples have been increasing, 

owing to the very little biomass required for analysis, and the urgency of bloodstream and urinary 

tract infections to be treated [44-48]. In the study by Mitchell and Alby, MALDI-TOF MS and 

VITEK2 AST used to identify isolates from small colonies obtained on solid agar at minimal 

incubation for a faster turnaround time. Identification and AST results were obtained within 5 to 

12 hours from positive blood culture, with 84-88 % concordant identification and 99 % categorical 

agreement to standardized protocols for respective techniques from colonies grown at 24 hours on 

solid media. [45]. 

Applications in sub-typing, strain typing, and detection of antibiotic resistance has also been 

reported, although the m/z region used are not the same as the MALDI-TOF MS for bacterial 

identification. Attempts in differentiating antibiotic susceptible from resistant strain have been 

reported by detecting peaks related to antibiotics and their metabolized products [35, 48, 49]. One 

report showed that MALDI-TOF MS can detect characteristic peaks that are specific to MRSA 

and MSSA, and had 84.2 % and 90.9 % accuracy rate respectively [50]. Another reported the 

capabilities of MALDI-TOF MS to not only identify the organisms, but also detect vanA or vanB 

type resistance in E. faecium and type the isolates for relatedness from the same spectra [51]. 

Despite these reports, the use of MALDI-TOF MS for sub-species level discrimination is still in 

debate. There are contradicting reports of successful and unsuccessful discrimination for strain 

typing and detection of antibiotic resistant strain from their susceptible counterparts such as MRSA 

vs MSSA and VRE vs VSE [41, 52, 53]. The discrepant reports maybe be due to differences in, or 

insufficient representation in the strain types of these organisms. For example, the biomarker 

(hiracin) identified by Griffin et al (2012) for vanB–type VRE was reported to only be found in a 

subpopulation of VRE. Use of such biomarkers was criticized of having low positive predictive 

values [54]. Bruker Corporation’s MALDI Biotyper released a method for identifying antibiotic 

resistance in KPC-producing Klebsiella pneumoniae, MRSA, and carbapenemase-producing 
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Bacillus fragilis using MALDI-TOF MS. Although identification of KPC-producing K. 

pneumoniae and caprbapenemase-producing B. fragilis were successful, MRSA was identified 

with low specificity. MRSA detection relied on the detection of a peak related to phenol soluble 

modulin - mec (PSM-mec) peptide. A large geographical variation in the proportion of MRSA that 

possess PSM-mec was discovered, explaining the low sensitivity in the MALDI-TOF MS method 

[52, 55-57]. Mixed results on successful strain typing of organisms for outbreak detection by 

MALDI-TOF MS proves the need for more extensive studies to fully evaluate its potential [58-

60].  

16S rRNA sequencing 

16S rRNA is a part of the 30S ribosomal subunit, that is ~1500 base pairs. It is the most 

commonly used housekeeping genetic marker for studying phylogeny and taxonomy, and is 

considered a reliable molecular marker for identification. 16S rRNA is present in all prokaryotic 

cells and has conserved and variable sequence regions that evolve at different rates. It is especially 

useful for identification of organisms that are fastidious and slow-growing such as mycobacteria 

as it does not rely on the use of culturing. The main limitation is that there are limited resolution, 

which results in low correct identification, especially at the species level. Bacteria of different 

species or genera can have high similarity in the 16S rRNA genes, despite having distinct 

biochemical and overall DNA homology [61]. Srinivasan et al (2015) reported 96 % and 87.5 % 

correct identification by 16S rRNA sequencing at the genus and species level upon testing 617 

samples from a wide range of Gram-negative and -positive organisms [62], while others have 

reported as low as 62.5 % correct species level identification [61]. 16S rRNA sequencing is 

therefore not frequently used for routine identification, and is rather used for determining 

phylogenetic studies, reclassification of taxonomy and identification of new species [61].  

Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is a genotypic technique that can be used for detection of 

specific organisms [63], antibiotic resistance [64, 65], or toxins [66] based on the presence of their 

associated gene. The target gene is amplified using thermocycle, and detected for its presence. 

PCR is useful in screening for specific pathogens, such as VRE, and MRSA, as it requires the use 

of specific primers, to detect target gene relating to their antibiotic resistance. For VRE screening, 

the detection of vanA and vanB genes are used [67, 68] while mecA gene is used for MRSA 
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detection or methicillin resistance in other staphylococcus isolates [69]. Due to the presence of 

mecA in methicillin resistant coagulase negative staphylococci, PCR primers that detect orfX or 

nuc gene, specific to S. aureus has also been developed, allowing a one-step detection for MRSA, 

by simultaneously detecting both genes [23, 70]. Multiplex PCR panels have been developed for 

detection of multiple microorganisms from respiratory and central nervous system samples [71]. 

Although rapid resistance gene detection (or the lack thereof), can lead to adjustment in appropriate 

antimicrobial therapy reflected as the escalation or de-escalation of treatment, the lack of the 

resistance gene does not necessarily ensure susceptibility to the associated antibiotic. The lack of 

understanding in correlation between genotypic to phenotypic characteristics in terms of antibiotic 

susceptibility, therefore requires that genotypic AST should be a supplement to phenotypic test 

[30]. The time to detection is significantly shorter than culturing methods, and some such as 

BioFire Diagnostic’s panels for pneumonia, meningitis/encephalitis, and respiratory have the 

capabilities to identify viral infections, which is important in determining whether antibiotics are 

required for treatment [30]. However, multiplex PCR panels are known to be expensive, making 

it less accessible for routine diagnostic use [30]. 

Chromogenic agar 

Chromogenic agar is a selective and differential media utilized to screen and identify specific 

pathogens, including those that are antibiotic resistant. It contains chromogenic substrates, which 

can only react with specific to enzymes that are possessed by target pathogen(s). Color is produced 

through enzymatic modification of the chromogen, allowing for visual identification on the surface 

of the agar plate upon cultivation. Chromogenic agar is selective and differential in nature, as it 

contains compounds that inhibit the growth of non-target microorganisms that can metabolize the 

same chromogenic substrate as the target pathogen, and often, selective reagents such as inhibitors 

and antibiotics are added to prevent growth of non-targeted microorganisms. This reduces growth 

of background flora, which could otherwise overwhelm target organisms or cause them to be 

overlooked on generic media. The goal of using chromogenic agar is to make identification of 

target pathogens easier, which may lead to faster turnaround time for confirmation of pathogen 

colonization or infection. [72]. 

Chromogenic agar targeted to detect MRSA was first reported in 2000. MRSA detecting 

chromogenic agar contains cefoxitin which inhibits the growth of MSSA, thereby leaving positive 
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growth of MRSA on the agar. Improvement in sensitivity is observed through incubation for 

48hours, compared to 24 hours. However, it also known that there is a decrease in specificity, as 

non-MRSA isolates show positive growth at 48 hours. Improvement in sensitivity for MRSA 

detection on chromogenic agar can be done using an overnight broth enrichment step prior to 

inoculation onto the agar, rather than directly from swabs [72, 73]. Chromogenic agar used to 

screen for VRE contains vancomycin to inhibit growth of VSE. In chromID VRE (bioMérieux SA, 

Marcy l’Étoile, France), α-glucopyranoside and β-galactopyranoside are utilized to visually 

differentiate between E. faecalis and E. faecium, through generation of different colors (green-blue 

and purple respectively). Positive growth on chromogenic agar aid in confirmation of VRE, 

especially for vanB VRE, since PCR has high false positive rates caused by the possession of vanB 

gene in non-enterococcal species [68]. 

2.5 Strain typing techniques for surveillance of nosocomial pathogens 

As highlighted in previous sections, surveillance and investigations of nosocomial outbreaks 

are critical in preventing spread of the causative agent, especially of those that are antibiotic 

resistant strains. Hospitals have different surveillance protocols depending on their size and 

capacity. Surveillance is important, as it provides a baseline rate, allowing detection of atypical 

surge in colonization and infection rate, which are referred as outbreaks. Long term trends can be 

observed, and through surveillance any new or unusual strains identified can be requested for 

further testing and characterisation. Screenings are commonly used to track colonization and 

transmission of pathogens within healthcare systems. There are two types of screening: active and 

passive. Active screening is the act of routinely testing patients for certain organisms such as VRE 

and MRSA, typically at the time they are admitted, and also on a weekly or bi-weekly basis 

depending on the protocol set at the facility. Passive screening is the identification of target 

organisms from sources such as infections, rather than from routine screening. Passive screening 

is not ideal because it does not allow the hospital to monitor asymptomatic colonization, which 

can be transmitted to new patients. Continued routine screening can also aid in removing patients 

from contact precautions once decolonization is confirmed [74]. Since asymptomatic carriers are 

major reservoirs, acting as the source for transmission of drug resistant pathogens, active screening 

not only helps non-colonized at-risk patients from increased risk of HAI, but it also reduces 

healthcare costs in the long run, if outbreaks and transmission can be prevented [75]. 
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Nasal and rectal screenings are common for identification of MRSA and VRE respectively. 

Environmental screenings can also detect reservoirs of pathogens on abiotic surfaces such as 

gowns and medical equipment. Once target pathogens are identified, strain typing is required to 

provide molecular evidence to establish the presence of nosocomial outbreaks, in combination 

with patient history and space-time epidemiological data. Pulsed field gel electrophoresis (PFGE) 

is considered the gold standard in strain typing for epidemiological studies due to its high 

discriminatory capabilities, and its ability to analyze a variety of bacteria by choosing the 

appropriate restriction enzyme for DNA fragmentation. Other methods have also been developed 

for strain typing, such as ribotyping, serotyping, spa typing and multilocus sequence typing 

(MLST) but may be more specific to certain microorganisms, and/or less discriminatory compared 

to PFGE [76, 77]. Whole genome sequencing (WGS) is gaining popularity in the clinical 

microbiology world, and is thought to be very useful for epidemiological purposes. Due to its high 

information content and sensitivity, WGS may replace PFGE as the new gold standard in 

molecular typing in the near future. 

Pulsed field gel electrophoresis (PFGE) 

PFGE is currently the gold standard in strain typing of a variety of microorganisms 

including MRSA and VRE. The determination of clonality between isolates by PFGE rely on 

differences in the band patterns created by fragmented DNA fractions. Briefly, DNA are extracted 

from cells, fragmented using restriction enzyme, which are then separated within an agarose gel 

using electrophoresis, based on their molecular weight. The final PFGE band patterns are 

compared pair-wise and in batches to evaluate the degree of relatedness between isolates. Although 

it has been considered the gold standard for so many years, there are criticisms to the technique. 

PFGE is time consuming (upwards of 5 days), labor intensive, utilizes costly reagents, and requires 

technicians to be highly trained to run the analyses. Perhaps the most concerning point is that data 

analysis is subjective, and will vary depending on the technician conducting the analyses. The 

methods’ variability between users is a problem, which hinders its use for easy data sharing and 

comparison between laboratories in large-scale epidemiological surveillances, as it results in a lack 

of reproducibility. PFGE has demonstrated successful use in surveillance at national (USA and 

Canada) and international levels, through rigorous method standardization, which included 

specifying the equipment, restriction enzymes, and reagents to be used. Examples include PulseNet 

for identification of foodborne pathogens related to multi-state outbreaks, as well as a nationwide 
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PFGE surveillance in Canada [60]. Ten laboratories across Europe also conducted a study in effort 

to harmonize PFGE protocols for MRSA strain typing [78]. Despite extended efforts to standardize 

the method for transferability and widespread comparison of isolate, PFGE still hold an inherent 

limitation. As genetic mutations and transfer of genetic elements occur in isolates and between 

cells over time and in varying environment, there are cases in which phenotypically different 

isolates may have the same PFGE band characteristics. In other cases, clonal strains may have 

different PFGE band patterns, due to a mutation that results in added or reduced fragmentation, or 

generation of different molecular weight fragments [79, 80]. Microorganisms that have high 

genome plasticity, such as enterococci make them more susceptible to such changes, and the 

reliability of strain typing by PFGE is reduced for these organisms. These genetic tendencies that 

are unique to each microorganisms should be understood and considered while determining strain 

types and isolate relatedness using PFGE. For example, sample collection dates should be taken 

into account during analysis, especially for such organisms with high genomic plasticity, which 

may observe higher degree of genetic change compared to other microorganisms that are more 

genetically conserved in the same time frame [60, 81]. 

Other genotypic methods, such as multi-locus variable number of tandem repeats analysis 

(MLVA), spa typing (for MRSA), and MLST have been compared against PFGE, challenging to 

replace it as the gold standard over the years. However, reports varied in degrees of success 

dependent on the target pathogen. The fact that PFGE uses the genome in it entirety as fragmented 

patterns, whereas these other methods utilize small portions of the genome, enabled PFGE to 

remain as a superior technique over these other genotypic methods [60].  

Whole genome sequencing (WGS) 

Whole genome sequencing in its first phase was a time-consuming task. However, with the 

development of next generation sequencing (NGS) instruments, high-throughput genome 

sequencing became possible, allowing the entire genome of bacteria to be sequenced within a day. 

In combination with improved computing and processing power, time required for sequencing and 

data analysis has been significantly shortened. WGS is able to observe differences as small as one 

nucleotide difference between isolates, showcasing extremely high resolution, providing an 

enormous amount of data. WGS has been gaining popularity for epidemiological typing, and many 

have compared WGS against current techniques such as PFGE and MLST, in providing genotypic 
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data for outbreak investigations, reporting high discriminatory power and success in identifying 

clonal strains [81-83]. The main advantages of WGS over traditional genotypic typing techniques, 

are that the resolution is higher, and is able to provide more information from the genome, such as 

possession of antibiotic resistance genes, virulence genes, plasmids, as well as its ability to track 

phylogenetic evolutions of the bacteria. The ability to look at the entire core and accessory 

genomes, rather than specific regions of it also expands the genotypic content that can be analyzed 

to answer strain typing and other microbiological questions [84]. 

There are different sequencing technologies that provide long or short reads. The second 

generation sequencing platforms, such as Illumina MiSeq are known to be highly accurate with 

low error rate, but has the disadvantage of producing short reads, which make it difficult to 

assemble complex genomic regions [84]. Illumina sequencers sequence by synthesis, determining 

the genetic sequence by using fluorescently labeled nucleotides that bind with DNA fragments, 

known as clusters. Fluorescent labeled nucleotides are added to flow cells where they are 

incorporated into the DNA fragments, and captured as images, before fluorescent colors are 

cleaved off, and the next fluorescent labeled nucleotides are incorporated and repeated. In contrast, 

third generation sequencing platforms like Pacific Biosciences’ Sequel system is based on single-

molecule real time (SMRT) sequencing. This method detects the colors of the labels that cleave 

off of fluorescently labeled nucleotides, as they get incorporated into the DNA strand. Light pulses 

are recorded in real time, to determine the nucleotide sequence, as a continuous long read (> 20kb). 

The disadvantage of the long read sequencing is that the error rate is higher than short read 

sequencing methods, as a result of errors accumulating from detection of nucleotides that are not 

being incorporated but dwell in the active site of DNA polymerases long enough for detection [84]. 

Long read sequencing is suitable for de novo assembly. Genomes are assembled using one of 

various analysis tools available as web-based or command line. Hybrid assembly enables genome 

data acquired from both long and short reads together, to further improve the assembly, in 

comparison to when data from each is assembled independently. Short read sequences correct 

errors made in long read sequences, and overall, the repeat resolution increases and gaps are filled 

in the assembly [84].  

For strain typing, different genome analysis methods can be employed, such as core genome 

single nucleotide polymorphism (cgSNP), core genome MLST typing (cgMLST), whole genome 

MLST, and clustered regularly interspaced short palindromic repeats (CRISPR) [81, 82, 85]. Core 
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genome MLST typing (cgMLST) and SNP analyses were compared for strain typing of VRE         

(E. faecium, E. faecalis), resulting in comparable results between the two analysis methods [81, 

82]. WGS data can be used to determine the MLST sequence type in silico, using housekeeping 

genes and identifying the alleles on each gene. Conventional MLST only utilizes the data 

associated with the housekeeping genes, while cgMLST and wgMLST uses the common genes 

identified in the core and pan genome respectively between isolates, utilizing more of the genomic 

data to compare and determine differences between isolates in question for strain relatedness [84].  

WGS data provides insight on the presence of genes related to antimicrobial resistance in 

isolates [14, 79, 86]. Resistance genes can be identified using tools such as ResFinder [87], among 

other web-based tools. Studies comparing WGS-based antimicrobial-resistance detection against 

phenotypic AST in 155 E. coli, 332 Salmonella Typhi and 271 Salmonella Paratyphi samples, 

reported that detection of known genes related to antimicrobial resistance was a robust approach 

for monitoring antimicrobial resistance in bacteria, for surveillance purposes. WGS can provide 

presumptive detection of antibiotic resistance, via detection of known drug-resistance genes and 

mutations, before phenotypic results are available [88-90]. Additionally, information regarding the 

presence of virulence genes, plasmids, and phages can be determined from web-based tools such 

as VirulenceFinder [91], PlasmidFinder [92], and PHASTER [93, 94]. Detection of plasmids are 

important, as antimicrobial resistance genes and virulence genes could be present on plasmids.  

It is estimated that with the reduction in cost, and increased speed in analysis via automated, 

streamlined analysis, WGS for epidemiological typing can provide answers as fast as 48hrs from 

obtaining the sample, making it more available for routine use. WGS has been used to track the 

transmission of pathogens such as MRSA, VRE, Listeria monocytogenes, group A Streptococcus 

and Acinetobacter baumanii in hospitals and their surrounding communities [95-100], proving to 

be a very valuable technology for infection prevention and control, and surveillance at both local 

and global scales [101]. In order for WGS to be routinely used in clinical laboratories, 

standardization is required, as there are various sample preparation, data acquisition, genome 

assembly and analytical methods being used currently by many researchers [84]. 
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2.6 Whole-organism fingerprinting techniques: potential in rapid identification and strain typing 

applications 

Whole-organisms fingerprinting techniques acquire information from whole-cells in a non-

destructive manner. These include spectroscopic techniques, such as infrared spectroscopy, Raman 

spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Spectra acquired by these 

techniques are made up of biochemical signals obtained from all components of the bacteria (e.g. 

proteins, carbohydrates, lipids, nucleic acids), rather than specific components such as ribosomal 

proteins in MALDI-TOF MS, or the DNA for genotypic methods. Non-destructive analytical 

techniques therefore allow microbial samples to be analyzed in its native form. Whole-organism 

fingerprinting techniques are typically armed with multivariate statistical tools such as hierarchical 

cluster analysis (HCA) and principal component analysis (PCA), for applications in discrimination 

or classification . Like WGS, where the genomic data can be applied to various analysis for mining 

a range of information regarding the microorganisms, the application of various multivarious 

statistical analysis methods allows the use of one spectrum for species identification, but also for 

characterization and determine spectral relatedness between microbial samples at the subspecies 

level (e.g. serotyping, antibiotic resistance, strain typing).  

Vibrational spectroscopic techniques 

Vibrational spectroscopic techniques include infrared (IR) and Raman spectroscopy. Both 

techniques measure changes in vibrational energy, when samples interact with an energy source. 

IR and Raman spectroscopy are complimentary techniques; infrared observes stretching and 

bending vibrations of functional groups, whereas Raman observes polarizability. IR spectroscopy 

in the mid-IR region (4000-400 cm-1) is by far the most commonly used to study bacteria, although 

there are exploratory studies reported for near-IR [102-108] and Raman spectroscopy [109-118] 

as well.  

2.6.1.1  Mid-infrared spectroscopy in clinical diagnostics and bacteria identification 

Since the 1950s when IR spectroscopy was first used as a technique for bacteria identification, 

many studies have demonstrated IR spectroscopy’s ability to discriminate bacteria at various 

taxonomic levels including sub-species level, such as serotypes, toxin types, and antibiotic 

susceptibility for both Gram-positive and Gram-negative bacteria. The development of Fourier-

transform infrared (FTIR) spectroscopy allowed the technique to have excellent sensitivity and 
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reproducibility, while shortening the spectral acquisition time. Combined with the increased 

processing power of computers, FTIR spectrometers gained the ability to obtain high quality, 

highly reproducible bacterial spectra rapidly (~1 minute), and non-destructively, with minimal, if 

any sample preparation at all [119]. 

Like the MALDI-TOF MS, identification by FTIR spectroscopy requires a spectral database 

developed from spectra collected from pure and well characterized microbial isolates. The ability 

to identify the bacteria accurately is therefore dependent on the size of the spectral database(s) and 

its ability to represent the diversity observed at the genus and species level by the current 

taxonomic classification system. The FTIR spectrum of a microbial isolate reflects the metabolic 

and structural characteristics at the time of spectral acquisition. This entails that the spectral 

characteristics of an isolate are affected by culturing conditions such as growth media type, 

temperature and incubation time [120-122]. To identify unknown microorganisms from an FTIR 

spectral database, one of two things must occur: 1. isolates much be cultured only using the culture 

medium that is present in the spectral database, or 2. develop spectral databases using FTIR spectra 

acquired from microorganisms grown on many different culture media, so that the spectral 

database is effectively media independent. 

There have been many studies showcasing the potential use of FTIR spectroscopy as a 

diagnostic technique, using various spectral acquisition methods, such as transmission, and 

attenuated total reflectance, using single element detectors or focal plane array detectors           

(Table 2.1). The results from different reports all demonstrate that IR spectra contain sufficient 

chemical information and sensitivity for bacterial discrimination even at sub-species level. In the 

following subsections, different FTIR spectral acquisition modes are briefly reviewed. 
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Table 2.1 List of publications on microbial discrimination using FTIR spectroscopy (2011-2019) 

Tested Organism FTIR Spectral 

Acquisition Mode 

Reference Method Reference 

Candida species ATR ChromAgar 

Candida, PCR (ITS1 

and ITS4) 

[123] 

Foodborne Pathogens 

(Salmonella, Listeria, 

Shigella) 

ATR 
 

[124] 

Klebsiella capsule typing ATR (Dry) MLST, PFGE [125] 

Acinetobacter baumannii 

strain typing 

ATR (Dry) PFGE, MLST, 

carbapenem-

hydrolysing class D 

β-lactamase-CHDL 

[126] 

Salmonella serogroups and 

serotypes 

ATR (dry) serotyping [127] 

Shigella spp. vs E. coli ATR (Wet) 
 

[128] 

Yeast identification ATR (Wet) MALDI-TOF MS, 

gene sequencing on 

D1/D2 or ITS region 

[129] 

Proteus mirabilis strain 

typing 

ATR (Wet) O-specific 

polysaccharide of 

lipopolysaccharides 

[130] 

Campylobacter species FPA-FTIR imaging 

transmission (ZnSe) 

 
[122] 

E. coli O157:H7 strain 

typing and toxin-based 

typing 

reflectance microscope MLVA and PFGE [131] 

Candida species 

Differentiation (C. albicans, 

C. glabrata, C. krusei) 

ChromAgar 

Specular reflectance sequencing (D1/D2 

region of the 

ribosomal 26S gene, 

NL1 and NL4 

primers) 

[132] 

CA-MRSA vs HA-MRSA Transmission PFGE [133] 

Abbreviations: PCR - polymerase chain reaction; MLST – multilocus sequence typing, PFGE – 

pulsed field gel electrophoresis, CHDL – carbapenem-hydrolyzing class D beta-lactamases, 

MALDI-TOF MS – matrix assisted laser/desorption ionization time of flight mass spectrometry, 

ITS – internal transcribed spacer, MLVA – multiple locus variable-number tandem repeat analysis , 

CA-MRSA – community acquired methicillin resistant S. aureus, HA-MRSA – hospital acquired 

methicillin resistant S. aureus 

(continued) 
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Tested Organism FTIR Spectral 

Acquisition Mode 

Reference Method Reference 

Salmonella serorgoups and 

serotypes 

Transmission serologic 

identification 

(agglutination with 

specific serums) 

[134] 

Filamentous fungi 

identification 

Transmission (Silicon) DNA Sequencing [135] 

Candida species 

identification 

Transmission (Silicon) WGS [136] 

Klebsiella strain typing Transmission (silicon) WGS (SNP 

analysis), MLST 

[137] 

GN bacilli (P. aeruginosa, K. 

pneumoniae, E. cloacae, A. 

baumannii) – Strain Typing 

Transmission (silicon) MLST, PFGE [138] 

Yeast identification Transmission (ZnSe) PCR, RFLP of 5.8 

R-ITS region 

[139] 

Trueperella pyogenes 

identification 

Transmission (ZnSe) 
 

[140] 

Food-related bacteria Transmission (ZnSe) 16S rRNA 

sequencing, PCR 

[141] 

Listeria species 

identification 

Transmission (ZnSe) PCR (16S-23S IGS 

region) 

[142] 

Bacillus species and 

subspecies 

Transmission (ZnSe) pacC nucleotide 

sequences, presence 

of toxins,  

[143] 

UPEC strain typing Transmission (ZnSe) MLST [144] 

Carbapenem-resistant 

Acinetobacter baumannii 

strain typing 

Transmission (ZnSe) PFGE, MLST, 

sequence groups, 

blaoxa-51-like 

[145] 

S. aureus sub-typing Transmission (ZnSe) PFGE, spa typing [146] 

Klebsiella oxytoca strain 

typing 

transmission (ZnSe) MLST, PFGE, WGS 

(SNP) 

[147] 

Vibrio parahaemolyticus 

sub-typing 

Transmission (ZnSe) PCR [148] 

ESBL+/- E.coli Transmission (ZnSe) Disk diffusion test [149] 

 Abbreviations: WGS – whole genome sequencing, SNP – single nucleotide polymorphism, 

MLST – multilocus sequence typing, PFGE – pulsed field gel electrophoresis, PCR - polymerase 

chain reaction; RFLP – restriction fragment length polymorphism, ITS – internal transcribed 

spacer, MALDI-TOF MS – matrix assisted laser/desorption ionization time of flight mass 

spectrometry, IGS – intergenic spacer, UPEC – uropathogenic Escherichia coli, ESBL – extended 

spectrum beta-lactamse  
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2.6.1.1.1 Transmission FTIR spectroscopy 

Pioneering studies on bacteria identification by FTIR spectroscopy was done in transmission mode, 

and hence transmission has been the most frequently used spectral acquisition mode for bacteria 

discrimination and identification, as seen in Table 2.1. Samples are prepared for spectral 

acquisition by deposition of colonies (directly from agar plates, or after cell suspension or cell 

washing) onto IR-transparent material such as zinc-selenide (ZnSe), calcium fluoride (CaF2) or 

silicon. Under controlled conditions in a low-temperature oven, samples are dried, and 

simultaneously may also be deactivated using disinfectants, if desired, prior to spectral acquisition. 

The disadvantage of acquiring IR spectra by transmission mode is that samples are limited by 

thickness and concentration, to ensure that the absorbance level is not off scale [119]. 

2.6.1.1.2 Attenuated total reflectance FTIR spectroscopy 

Attenuated total reflectance (ATR)-FTIR spectroscopy utilizes the principle of total 

internal reflectance of an infrared transmitting crystal (i.e. ZnSe, Ge, diamond, Si) to produce an 

evanescent wave perpendicular to the propagating IR beam undergoing internal reflection within 

the crystal. The evanescent wave is emitted into the sample when infrared light internally reflects 

within the crystal. The evanescent wave interacts with the sample placed on the surface of the 

crystal, and is attenuated by the sample. The evanescent wave is only able to penetrate between 

0.5 to 2 microns into the sample, due to its wavelength dependence and exponential decay in 

energy. This makes spectral acquisition by the ATR mode immune to sample thickness variability, 

as long as there is sufficient contact between sample and the ATR crystal. This enables spectral 

acquisition from solid, semi-solid and liquid samples that would typically be too thick, or too 

concentrated for analysis by transmission and transflection modes. A few research groups acquired 

ATR-FTIR spectra by direct application of microorganisms onto the ATR detector from solid 

media [123, 128, 129, 150, 151], while others made bacteria containing solution, or created dried 

films on the ATR surface prior to spectral acquisition [126, 152, 153]. The differences in sample 

preparation does not seem to affect the spectral discriminatory capabilities, however, drying the 

samples at room temperature directly on the ATR crystal is a time-consuming step, that acts as a 

bottleneck in a technique that can acquire FTIR spectra in as little time as ~ 1 minute per spectrum.  
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2.6.1.1.3 Transflection FTIR spectroscopy 

Compared to transmission and ATR modes, spectral acquisition by transflection acquisition mode 

is less studied. Even in the past decade (Table 2.1), only two studies reported the use of 

transflection for studying microbial discriminatory capabilities. Transflection-FTIR spectroscopy 

utilizes an IR-reflective substrate, such as low-emissivity (low-e) glass, or slides coated with silver 

or gold, rather than IR-transparent materials used for transmission spectral acquisition. E-glass is 

an optically transparent, low-cost material, made through the deposition of thin layers of Ag/ZnO 

on glass microscope slides, and can be used as single-use disposables [154, 155]. In transflection, 

the IR source enters the sample, reflects off the reflective surface, and passes through the sample 

again on its way back to the detector. This technique essentially doubles the pathlength compared 

to transmission mode, where the IR source only passes through once before reaching the detector. 

The disadvantage of transflection FTIR is that spectral distortions are more prominent as a result 

of interferences and reflections caused by change in refractive index at the air-sample interface 

and sample-reflective surface interface [154-156]. Electric field standing wave effect creates 

spectral artefacts resulting in spectral distortions. This effect is a result of the creation of sinusoidal 

standing-wave in the electric field, with a node at the surface of the reflective metal surface and 

the deposited sample, through the interference between incident and reflected waves. The 

refractive index of the sample, and the wavelength of the incident light determines the node-

antinode spacing [157]. Filik et al. (2012) reported that there is a non-linear relationship between 

the absorbance and sample thickness in transflection, which was not observed in transmission data, 

which was determined to be caused by the combined effects of electric field standing wave, and 

internal reflection from the top of sample surface to air [156]. However, it was reported by Lee 

(2017) that the effects are not dependent on the sample thickness, but on the interference and 

reflections that occur at the interface between air and the sample [158]. According to Lee, and 

other investigators, these spectral distortions as a result of change in refractive index is not a 

problem that is unique to transflection, and exists in other spectral acquisition modes like 

transmission, although the observed effect is much stronger in transflection mode [158, 159]. 

Another concern with transflection-FTIR spectroscopy is that with non-uniform sample thickness, 

it may suffer from spectral distortions caused by optical phenomena such as resonant Mie 

scattering [159, 160]. It has also been reported that with consistency in sample thickness, and 

spectral pre-processing, the effects of electric field standing wave can be minimized [161]. It has 
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been previously suggested that transflection-FTIR spectroscopy can be used for qualitative but not 

for quantitative analyses [159]. Up to this point in time, only three studies were reported using 

reflectance spectral acquisition mode, where one was using specular reflectance (also known as 

transflection) for microbial studies using FTIR spectroscopy: discrimination between three 

Candida species [132] , diffuse reflectance for discriminating between E. coli, S. aureus and C. 

albicans [162] and lastly, reflectance FTIR microscopy in sub-typing E. coli [131]. 

 

  

2.6.1.1.4 FTIR imaging and mapping  

Focal-plane-array (FPA) - and linear array (LA) – FTIR spectroscopy are used for FTIR 

imaging and mapping. They are techniques that utilize multiple detectors that are aligned side by 

side (LA; in a line), or in a grid (FPA i.e. 16x16, 32x32, 64x64, or 128x128 grid detectors). FPA-

FTIR spectrometers acquire hyperspectral FTIR images, where each pixel of the FTIR image 

contains the IR spectrum acquired from its spatial position. The same image can be acquired by a 

LA-FTIR spectrometer, or even a single element detector spectrometer, but would require much 

more time, as the number of spectra acquired at once differ substantially. FPA-FTIR spectrometers 

are often equipped with a microscope, allowing micro-images to be acquired, with spatial 

resolution as low as ~5 µm across a surface area of 0.3mm x 0.3 mm. FTIR images can be acquired 

by transmission, transflection or ATR mode, by utilizing the appropriate substrates and accessories. 

Figure 2.1 Example of a transflection FTIR spectrum of thinly dried bacterial colony 
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Extended details on the theoretical aspects, instrumentation, sample preparation and spectral 

acquisition methods have been explained by [163]. Some examples of studies conducted on 

bacteria using FPA-FTIR spectroscopy include differentiation between Campylobacter jejuni and 

C. coli [122], differentiation between group I and group II Clostridium botulinum [164], and the 

antimicrobial activity of select disinfectants on MRSA [165]. 

Raman Spectroscopy 

Raman spectroscopy is a vibrational spectroscopic technique that compliments infrared 

spectroscopy, producing spectra based on the observations of Raman inelastic scattering. The 

scattering relies on changes in polarizability of the functional groups, in particular, non-polar 

functional groups such as C-C and S-S have strong peaks. Contrary to FTIR spectroscopy which 

has a very strong absorbance from water, Raman spectroscopy has a low water signal, making it a 

preferable technique for biological samples, which tend to contain high water content. Due to the 

weak Raman scattering effect (one in 108 photons), longer acquisition time is required to increase 

the sensitivity, compared to FTIR spectroscopy [110, 113]. Lasers with excitation in the range of 

infrared to UV have been used in Raman spectroscopy, and within each range (IR, visible and UV) 

of the electromagnetic spectrum, there are observable Raman scattering peaks associated to 

biomolecules that can be found in bacteria. For example, UV excitation obtain signals from DNA, 

RNA and aromatic amino acids, and visible excitation observes signals from chromophores such 

as cytochromes. However, there are also problems associated with using high-energy excitation 

lasers. The use of UV excitation lasers has been reported to cause photochemical degradation of 

the sample, and hence is not recommended for biological samples. Additionally, the lasers that 

utilize visible and near-infrared excitation can cause fluorescent emissions from samples. 

Fluorescent emissions have strong and broad peaks, which would overlap and interfere with the 

samples’ Raman scattering peaks [113, 166]. 

There are two types of Raman spectroscopy techniques that are used in bacteria identification. 

The first is surface-enhanced Raman spectroscopy (SERS), and the second is Raman 

microspectroscopy. SERS is known to enhance the Raman scattering process by 103-106 folds, 

with the use of a roughened or nanostructured metal, typically gold or silver. The enhanced signal 

comes from the resonance that occurs between the surface plasmons of the metal surface and the 

incident and scattered radiation fields. In addition to increasing the signal from samples, SERS 
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uses lasers that have vibrational excitations, and therefore prevents damage to the analyte. 

Additionally, SERS has a fluorescence quenching effect, which provides additional information 

about the bacteria samples being analyzed [113, 115, 166]. The disadvantage of SERS is that the 

substrate used, as well as its size and shape, may distort the Raman spectra, making it incompatible 

for combined analysis with spectra obtained by the standard Raman spectroscopy, and even spectra 

obtained from SERS that utilize different substrates [166]. An example of successful use of SERS 

for microbial discrimination includes successful species discrimination of 9 staphylococcal species 

using machine learning algorithms [167]. 

Raman microspectroscopy is a similar concept to FTIR microspectroscopy. It incorporates a 

microscope, to observe a small surface area, and increase the spatial resolution where the spectral 

measurements are obtained. In the case of Raman microspectroscopy, the spatial resolution can be 

improved to as high as ~1μm, which provides Raman spectroscopy with the potential to obtain 

spectra from single bacterial cells and microcolonies [110]. This is an advantage in rapid bacteria 

identification, as it holds the potential to reduce the culturing/incubation time required, prior to 

spectral acquisition for identification. Maquelin et al (2000) demonstrated that bacteria 

differentiation was achieved using Raman microspectroscopy, by acquiring spectra from 

microcolonies (defined as grown for 6 hours from inoculation) directly from solid media [111]. In 

another study, clinical isolates from UTI patients were differentiated at both species and strain 

level using SERS alone [118]  and in combination with a microscope [113]. A retrospective study 

on nosocomial E. coli outbreak was conducted using Raman spectroscopy [117], showcasing 

Raman spectroscopy’s potential in strain-typing. Some other studies that utilize Raman 

spectroscopy for bacteria identification include species level analysis on Mycobacterium species 

[116], and a feasibility study for rapid identification of positive blood culture samples using SERS 

[115]. Spectral acquisition from single cells from dried samples were acquired, and demonstrated 

the ability to discriminate Raman spectra between 9 genera, using machine learning techniques 

[168]. 

NMR spectroscopy 

NMR spectroscopy is a technique traditionally used in chemistry, physics and biochemistry, 

mainly for molecular structure elucidation, amino acid sequence in proteins, reaction rates and 

dynamic studies. Recently, it has been gaining popularity as an analytical technique to study 
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biological materials, such as food and beverages, biofluids, tissues and whole cells [169-173]. 

NMR has the ability to identify the presence of specific biomolecules from its spectrum, achieving 

higher chemical specificity compared to FTIR and Raman spectroscopy. 

Proton (1H) is the most commonly used nucleus in NMR spectroscopy due to its highest 

natural abundance (99.98 %), and high gyromagnetic ratio (267.51γ). These two factors allow for 

acquisition of high quality spectra in a relatively short amount of time. Other commonly used 

nuclei in NMR spectroscopy include 13C, 15N, 31P, and 2H. Phosphorus (31P) is another nucleus 

that has high abundance (100 %) and relatively high gyromagnetic ratio (108.29 γ), like 1H. 

Phosphorus NMR enables spectral acquisition and study of phosphorous containing biomolecules, 

such as lipids, nucleotides, proteins/peptides and carbohydrates without the need for isotopic 

labelling. It is particularly useful in studying phospholipids, and their structure in lipid membranes. 

Chemical shift observed in 31P NMR spectral acquisition in solution state is dependent on the 

solvent used to dissolve the samples. The addition of Cs-EDTA (cesium ethylendiamine tetraacetic 

acid) eliminates line broadening that would otherwise be present due to the presence of 

paramagnetic ions [174]. Phospholipids can also be dissolved in aqueous solvents through the 

addition of cholate [175]. Bilayers in aqueous solvent, and inverse micelles in an organic solvent 

both cause line broadening in the 31P spectrum. Stable lipid micelles are formed when the solvent 

contains compounds like cholate which possess both nonpolar and polar groups. 

2.6.3.1  High-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy 

HR-MAS NMR spectroscopy is a technique that was developed to acquire high resolution 

NMR spectra that are comparable in spectral quality to those acquired by solid-state and liquid-

state state NMR experiments, from semi-solid or heterogenous samples. Many biological samples 

require the use of HR-MAS NMR spectroscopy, as they are very heterogenous in nature, composed 

of molecules with varying sizes, shapes, and mobility. In solid-state and liquid-state NMR 

spectroscopy, such heterogeneity within samples lead to line broadening caused by chemical shift 

anisotropy and dipolar coupling. In HR-MAS NMR spectroscopy samples are rotated at the magic 

angle (~54.74°) relative to the external magnetic field to suppress the effects of dipolar coupling 

and chemical shift anisotropy. This magic angle was determined from the following equation: 

3cos2θm−1

2
= 0  where θm = ~54.74°  [176]. The required sample volume is very small 

(approximately 100μl), and it is spun at a low speed (up to a few kHz), in a rotor. This allows 
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NMR spectra to be acquired from intact whole cells and tissues, without damaging them during 

spectral acquisition, while spinning fast enough that the spinning side bands are not overlapping 

with spectral peaks derived from samples [177]. Previous studies reported the use of HR-MAS 

NMR spectroscopy to study bacteria, and showed that the survival rate of bacteria within a sealed 

NMR insert after two hours was higher than 93 % [178], thereby confirming that the NMR spectra 

acquired were of live cells. According to Li, HR-MAS NMR spectroscopy is only able to observe 

biomolecules that are in abundant concentration and are mobile within the bacteria [179]. 

One dimensional NMR spectroscopy is a commonly used spectral acquisition technique, 

largely due to its simplicity compared to multidimensional experiments. For bacteria and other 

biological samples that are comprised of many different compounds, the one dimensional spectrum 

is comprised of many overlapping peaks in the 1H NMR spectra, and therefore peak assignment 

and identification of biomolecules is not a simple task. While some metabolites have unique peaks 

that do not overlap with other metabolites, some require 2D NMR experiments to resolve the peaks 

from other metabolites for definitive identification [180]. Similarly to FTIR spectra, 1H HR-MAS 

NMR spectra of biological samples serve as spectral fingerprints that can be acquired rapidly, and 

provide important chemical information that can be analyzed using multivariate statistical analysis 

methods for global differences between samples [179]. Multidimensional NMR experiments (2D, 

3D and higher dimensions) use and correlate between one or more nucleus. Multidimensional 

NMR experiments are used to for structural biology, and is useful in identification of metabolites 

and structural compounds [179]. Compared to 1D NMR experiments, multidimensional NMR 

experiments are complex, with many parameters to consider such as pulse sequence, rotor 

geometry and how fast the samples are rotated along the magic angle. Li reported the importance 

of rotor synchronicity, as it affects the intensity or the detection of signals when not aligned [178]. 
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Figure 2.2 Example 1H HRMAS NMR spectra of bacteria (E. faecium) in spectral region δ = 0.8-

4.2ppm 

 

2.6.3.2  NMR applications in microbiology and metabolomics 

There are a limited number of studies that have utilized NMR spectroscopy for microbial 

discrimination and strain typing. This is most likely due to the high capital expense associated with 

NMR spectrometers, lack of automation in set-up and lack of NMR laboratories that allow spectral 

acquisition of live pathogenic microorganisms. Additionally, at the current state, the NMR 

instrumentation is large, and requires a dedicated space. Miniaturization of the NMR spectrometer 

and ease of use (through automation) may decrease the hurdles for routine use. Proof of concept 

papers demonstrated the utility of solution-state NMR spectroscopy in combination with 

multivariate statistical analysis methods for the discrimination of microorganisms, for example, 

between Enterococcus, Streptococcus and Staphylococcus isolates, as well as Candida species 

including two closely related, C. albicans and C. dubliniensis, with 86-96 % concordance with 

their respective identification reference methods [181-184]. Additionally, by acquiring spectral 

data from the broth media after cultivation of microorganisms, differentiation between pathogens 

could be successfully achieved based on their exo-metabolomes [185, 186]. T2 Diagnostics is a 

company that developed a benchtop assay that combines NMR spectroscopy and PCR for direct 

detection of pathogens such as Candida species and drug-resistant Gram-positive and Gram-

negative pathogens (i.e. E. faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
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Pseudomonas aeruginosa, Enterobacter species, E coli) from whole blood samples. By utilizing 

genes specific to target pathogens, the amplified DNA are attached to magnetic beads, which are 

detected with NMR. It is reported to obtain identification of pathogens, and their antibiotic 

resistance (via detection of genes) within 3-5 hours from concentration as low as 1CFU/ml [187-

189]. 

Multidimensional HR-MAS NMR experiments also showcased potential in microbial studies. 

Serotyping was achieved by identifying the polysaccharide moieties on cell wall structures of live 

Neisseria meningitidis and Candida albicans, glycans on Campylobacter species and O-specific 

polysaccharides from Yokenella regensburgei [190-198]. Gudlavalleti et al reported that the peaks 

observed in purified capsular polysaccharides could be observed in 1H HR-MAS NMR spectra 

acquired from the whole cell, suggesting that direct analysis may be able to identify potential 

biomarkers that are associated with virulence [195]. Maes et al. studied the phenotypic differences 

between C. albicans serotype strains using 2D HR-MAS NMR spectroscopy, reporting that whole 

cell analysis by HR-MAS NMR spectroscopy was in concordance with in vitro analyses of the 

polysaccharide structures [198].  

NMR spectroscopy is a popular technique for metabolomics due to its non-destructive and 

non-targeted nature, as well as its ability to acquire data from very small sample volume/size. It 

has been suggested by many that NMR metabolomics can be applied for drug discovery, studying 

drug-cell interactions, understanding the effects of gene mutations, mechanisms in pathogenicity, 

and serotyping/cell surface characteristics [191, 195, 199]. NMR studies on bacteria metabolomics 

used to be conducted using solid-state spectrometers, upon isolation of molecules of interest (e.g. 

cell wall, peptidoglycan, etc.) [197, 200]. More recently, there have been metabolomic studies on 

whole-cell bacteria and yeasts by using HR-MAS NMR spectroscopy, observing the effects of 

aging, nutrient variation, osmotic differences, drugs and gene mutations [191, 196, 199, 201]. 

Bundy et al (2005) reported that metabolic extracts from Bacillus cereus strains originated from 

different ecotypes could be differentiated by using NMR spectroscopy in conjunction with 

chemometrics although there were no significant differences between the samples’ genomic DNA 

and detection of gene related to toxin production and virulence factors present [202]. By acquiring 

FTIR and HR-MAS NMR spectra from live microbial cells taken directly from agar plates, it 

allows us to obtained and characterize metabolic information about the strains in its native state. 
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The two techniques compliment each other, allowing us to further understand the biochemical 

differences that are reflected in the spectra between microbial isolates.  

Whole-organism fingerprinting techniques have strong potential in bacteria identification and 

discrimination, even at the sub-species level. Non-targeted metabolomics by NMR spectroscopy 

can help identify key metabolites that are contributing to the observed biochemical differences 

between strain types by FTIR spectroscopy. Whole organism fingerprinting techniques can take 

advantage of these microbial characteristics to observe enhanced differences amongst strain types, 

and possibly differentiate antibiotic resistant from susceptible species through use of selective or 

differential media. Correlation between genotypic, phenotypic and spectroscopic techniques 

would aid in better understanding the relationship between genes present in the bacteria with their 

metabolic expression, allowing for a more comprehensive understanding of the differences at the 

sub-species level, or between strain types of microbial species. 
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2.7 Conclusion 

Strain type characterization and determination of isolate relatedness for outbreak detection 

currently relies on the use of PFGE. Furthermore, strain typing is only done once isolates have 

been identified to be one of the pathogens of interest, through multiple genotypic and phenotypic 

methods such as MALDI-TOF MS, PCR and automated biochemical tests like VITEK 2 (AST), 

which also require a minimum of two days. FTIR spectroscopy in conjunction with multivariate 

statistical analysis methods can provide species identification and strain relatedness at a fraction 

of the cost, and time compared to current techniques, providing a means for prospective strain 

typing method, thus providing a rapid and simple, alternative approach to PFGE. This could benefit 

infection prevention and control in minimizing the transmission and outbreaks caused by 

antimicrobial-resistant pathogens such as MRSA and VRE. Although it is expected that WGS will 

become more available for routine use in the near future, there is a lack of understanding in the 

relationship between genotypic and phenotypic characteristics of microorganisms, which means 

that phenotypic tests cannot be omitted completely out of the microbial diagnostic routine. In a 

time where WGS is gaining momentum and popularity for routine applications in clinical 

diagnostics and outbreak surveillance, whole-organism fingerprinting techniques can provide 

valuable information on the spectroscopic characteristics based on the metabolic and structural 

composition of microbial samples. Tranflection FTIR spectroscopy was identified to be less 

commonly used in studying microbial discriminatory applications by FTIR spectroscopy, and thus 

would benefit a series of experiments that address whether there are inherent limitations in the 

transflection mode that prevent its use for microbial diagnostic. Additionally, the combined use of 

transflection FTIR spectroscopy and HR-MAS NMR spectroscopy may provide biochemical 

insight into differences between microbial isolates at species and subspecies level, that can provide 

additional data to genotypic and phenotypic characteristics that can be acquired by WGS and 

standard molecular methods.  
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Chapter 3.  Rapid Identification of Clinical Pathogens by Transflection-

FTIR Spectroscopy. 
3.1 Abstract. 

FTIR spectroscopy is gaining interest as a technique for microbial identification and discrimination. 

Transmission and attenuated total reflectance (ATR) spectral acquisition methods are commonly 

used, whereas transflection has rarely been used in the past for this application. In this study, 

isolates were subjected to spectral acquisition by all three acquisition modes to compare and 

determine whether transflection mode has the capabilities to acquire high quality spectra suitable 

for microbial analyses. Transflection FTIR spectra showed comparable signal-to-noise levels, and 

spectral discrimination capabilities, with successful discrimination of S. aureus from coagulase 

negative Staphylococcus species. To further assess the capabilities of transflection FTIR 

spectroscopy for microbial identification, a multi-tiered spectral database was developed, using 

principal component analysis and support vector machine. The database was constructed using 

1095 isolates collected at 4 different microbiology laboratories across Canada, representing 22 

genera [14 Gram-negative (GN), 7 Gram-positive (GP) and 1 yeast genera]. At the species level, 

the database was constructed for the identification of 9 Staphylococcus spp., 3 Enterococcus spp., 

and 2 Shigella spp., as well as the identification of L. monocytogenes. The database was evaluated 

using two sets of isolates that were independent of isolates used for spectral database construction. 

The validation set (n = 740) only comprised of genera and species that were represented in the 

spectral database, while the test set (n = 1793) also included isolates that were not represented in 

the database. Isolates of non-represented genera and species were used to evaluate the database’s 

ability to provide a no-identification result for isolates with unfamiliar spectral features. The 

spectral database’s identification capabilities were evaluated against reference methods such as 

VITEK 2, MALDI-TOF MS, and whole genome sequencing. Genus-level identification for GP 

bacteria achieved 99.6 % and 96.5 % concordance to reference methods for validation and test set 

respectively, while GN genera achieved 82.8 % and 64.7 % correct identification for validation 

and test set respectively. Well-represented species in the spectral database such as E. faecium, E. 

faecalis, and S. aureus performed well with an overall concordance rate of over 98 % in both 

validation and test sets, demonstrating successful species-level identification. Genera and species 

that were lacking representation in the spectral database was unable to make robust correct 
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identification with high confidence levels. Misidentification of non-represented isolates that were 

tested also occurred at 51.4 % (n = 36), 81 % (n = 17) and 37.5 % (n = 6) respectively for GN 

genera, GP genera and staphylococcal species. Further investigation on spectral discrimination 

between genera and species that are difficult to differentiate are required prior to their addition for 

database expansion. The study demonstrated that the constructed transflection spectral database 

demonstrated successful identification capabilities for species that are well represented.  
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3.2 Introduction 

Rapid microbial identification is critical for determining the causative agent of infections, 

and for providing optimal treatment to patients. There are many identification methods that are 

currently accepted and used for diagnostic purposes, such as matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry (MALDI-TOF MS) and biochemical based assays. 

MALDI-TOF MS has become increasingly popular in the past few years, due to its ease in sample 

preparation and relatively fast turnaround time to results (up to an hour from acquiring isolated 

colonies on agar) [1]. The disadvantage of MALDI-TOF MS is the high principle capital cost, 

which prevents laboratories with low budgets from purchase and use [2]. Furthermore, some 

genera, and species are difficult to identify using these reference methods, such as discrimination 

between Shigella species and Escherichia coli and differentiation between S. pneumoniae and S. 

mitis/oralis group by MALDI-TOF MS [3, 4]. Automated biochemical-based assay systems, such 

as VITEK 2 (bioMérieux SA, Marcy l’Étoile, France) and Pheonix (BD, USA) take longer to 

obtain results, sometimes requiring overnight testing [1].  

FTIR spectroscopy in microbial identification/discrimination 

Microbial discrimination using infrared spectroscopy at the species and sub-species level 

has been studied over the past few decades exploring the advantages and limitations for microbial 

diagnostic purposes [5, 6]. There are three different spectral acquisition modes in FTIR 

spectroscopy, transmission, ATR and transflection (In studies conducted over the years, various 

mathematical and multivariate statistical analysis methods have been applied to optimize and 

evaluate spectral discrimination capabilities of FTIR spectral data. Successful spectral 

discrimination have been demonstrated using principal component analyses (PCA)[20], 

hierarchical cluster analysis (HCA)[7], partial least-squares-discriminant analysis (PLS-DA)[21], 

artificial neural network (ANN)[22, 23], and other machine learning techniques such as support 

vector machine (SVM)[12], self-organizing map (SOM) and K-nearest neighbour (KNN)[24], or 

combinations thereof [25, 26].  

Although the advantages and limitations of using different spectral acquisition modes were 

briefly explained by Wenning &Scheer (2013), there has yet to be reports that directly compare 

the three techniques using the same samples, to minimize variability from sample size, sample 

preparation, spectral analysis methods [5]. Therefore in this study, a limited set of bacteria was 
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subjected to spectral acquisition by transmission (FPA-FTIR imaging), ATR and transflection 

modes to compare the spectral quality, as well as the differences in sample preparation and ease 

of spectral acquisition. Additionally, due to the lack of evaluation in spectral discrimination and 

identification of microorganisms using transflection-FTIR spectroscopy, the second portion of the 

chapter focused on the development, and evaluation of a transflection FTIR spectral database for 

a limited set of genera and species, mainly focusing on Gram-positive bacteria. Microbial 

identification results produced by transflection-FTIR spectral database were compared against 

clinically accepted identification methods, including biochemical-based assays (VITEK 2), 

MALDI-TOF MS, 16S rRNA sequencing and whole genome sequencing (WGS).  

Figure 3.1). Transmission has been the most commonly used spectral acquisition mode for 

studying microbial discrimination, followed by attenuated total reflectance (ATR). The sampling 

techniques provide different advantages and disadvantages for use in microbial identification. 

Additionally, with the use of a light microscope and a focal-plane-array detector, FTIR spectra and 

images can be acquired from a smaller surface area than what can be achieved using a single-

element detector spectrometer. Previous work from the McGill IR group showcased successful 

discrimination of bacteria collected by FPA-FTIR imaging in transmission mode at genus, species 

and sub-species level through optimization and standardization of sample preparation, spectral 

acquisition and spectral processing [7-9].  

3.2.1.1  Transmission FTIR spectroscopy 

For spectral acquisition in transmission mode, microbial sample is deposited on an IR-

transparent substrate such as zinc selenide (ZnSe), silicon (Si) or calcium fluoride (CaF2). The 

infrared light passes through the sample on the substrate, and reaches the detector. To minimize 

artefacts relating to sample thickness heterogeneity, it is important that the samples are deposited 

as evenly as possible at the optimal thickness (2-8 µm). Many studies have implemented a sample 

preparation protocol that involves suspending microbial colonies in water and pipetting the sample 

solution to achieve homogeneity across the surface area [5, 10]. The IR-transparent substrate used 

for spectral acquisition is not cheap depending on the material chosen (such as ZnSe), and hence 

would be costly for single-use applications. Proper sterilization would be required to re-use these 

substrates, to prevent cross-contamination between samples, and to ensure the safety of the 

laboratory technicians who handle the samples. These IR transparent optical materials also have 
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different spectral ranges for IR signal, and vary in water solubility, which should be considered 

when choosing the substrate [10, 11].  

3.2.1.2  Attenuated total reflectance (ATR) FTIR spectroscopy 

ATR-FTIR spectroscopy utilizes a IR-transparent crystal made of high-refractive index 

material, such as diamond, zinc selenide or germanium, with a defined angle, where the sample 

and infrared light interacts. The angle of the crystal should be larger than the critical angle for the 

infrared beam to achieve total internal reflection, and reach the detector. When the infrared beam 

reflects off of the ATR-crystal, which is in contact with the analyte, an evanescent wave is 

attenuated by the sample. The advantage of the ATR mode is that the technique is immune to 

sample thickness, as long as the sample is in sufficient contact with the ATR-crystal, since the 

evanescent wave is only capable of penetrating a few microns (wavelength dependent) into the 

sample [5]. Many studies that utilize ATR spectral acquisition modes for studying bacteria require 

a lengthy step of air-drying the colony that have been directly deposited on the ATR-crystal. This 

drying process makes ATR spectral acquisition a very time-consuming method, as each spectral 

acquisition requires approximately 30 minutes [12]. ATR-FTIR spectra were acquired from wet 

colonies in protocols developed by the McGill IR Group. The removal of the drying step required 

by other groups improves the overall spectral acquisition time. Due to the strong absorbance signal 

from free- and bound-water, the signals from other biochemical constituents are rather limited, in 

comparison to spectra acquired from dried samples [13]. However, the development and 

performance of an extensive spectral database for clinical yeast identification was not hindered, 

and achieved highly accurate identification results relative to MALDI-TOF MS [13].  

3.2.1.3  Transflection FTIR spectroscopy 

Compared to transmission and ATR spectral acquisition, there are only a handful of studies 

conducted using reflectance (for both diffuse and specular) for microbial discrimination evaluation 

[14-17]. Transflection-FTIR spectroscopy’s lack of popularity in microbial studies may be due to 

reported spectral distortions caused by light scattering and electron free-stranding waves when IR 

light interacts with the sample and the IR reflective surface [18]. However, with application of 

mathematical pre-processing to the spectra, transflection FTIR spectra can provide the same 

analytical conclusion in application towards biological materials, such as spectral discrimination 

between control (healthy) and malignant cells, or discrimination of microorganisms [10, 11]. 
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Transflection mode has a few advantages, first being that the substrates used for sample deposition 

are cheaper than those used in transmission FTIR spectroscopy [10]. Low-emissivity glass             

(E-glass) from Kevley technologies (Chesterland, Ohio, USA) provides microscope glass slides 

with IR reflective coatings. E-glass and other surfaces coated with metallic substances such as gold, 

silver or zinc oxide, are also cheaper alternative to IR transparent materials. By taking advantage 

of cheaper materials, IR-reflective substrates can be used for single-use, and easily disposed in 

microbiology laboratories making it easier to ensure sanitary and safe working area [18]. By using 

the E-glass, which is optically transparent, samples can be observed under a microscope using 

visible light, making it available for visual inspection. E-glass has been a popular choice for some 

time in acquiring FTIR images from cells and tissues for this very reason [10]. Compared to 

transmission mode, the signal obtained from transflection mode on the same sample would 

effectively double, since the infrared light passes through the sample twice prior to reaching the 

detector [10].  

3.2.1.4  FPA-FTIR imaging spectroscopy 

A focal plane array (FPA) -FTIR spectrometer is typically used in IR microspectroscopy, 

by combining a spectrometer with a microscope. The FPA detector has the ability to acquire tens 

and thousands of spectra in one spectral acquisition, due to the presence of many elemental 

detectors combined into a grid form (i.e. 16x16, 64x64 or even 128x128), producing FTIR images 

with up to 16,384 spectra per image. The FPA detector produces FTIR images with spatial 

resolutions as high as ~5 microns across an area of 0.3 mm x 0.3 mm in IR microspectrometery. 

In order to achieve high signal to noise ratio (SNR) spectra in the FTIR images, mercury cadmium 

telluride (MCT) detector is used. The MCT detector requires the use of liquid nitrogen, to improve 

the SNR of the spectra acquired. FTIR imaging is useful in studying cells, tissues and any biofluids, 

as it allows for observation of chemical distribution and interaction across the sample, rather than 

obtaining one representative spectrum achieved by a single detector spectrometer. All three 

spectral acquisition modes can be used in FPA-FTIR imaging. In microbial identification 

applications, FPA-FTIR spectroscopy holds potential in identification from direct clinical samples, 

or simultaneous identification of multiple organisms present in mixed cultures [19]. 
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3.2.1.5  FTIR spectral processing and data analysis 

In studies conducted over the years, various mathematical and multivariate statistical 

analysis methods have been applied to optimize and evaluate spectral discrimination capabilities 

of FTIR spectral data. Successful spectral discrimination have been demonstrated using principal 

component analyses (PCA)[20], hierarchical cluster analysis (HCA)[7], partial least-squares-

discriminant analysis (PLS-DA)[21], artificial neural network (ANN)[22, 23], and other machine 

learning techniques such as support vector machine (SVM)[12], self-organizing map (SOM) and 

K-nearest neighbour (KNN)[24], or combinations thereof [25, 26].  

Although the advantages and limitations of using different spectral acquisition modes were 

briefly explained by Wenning &Scheer (2013), there has yet to be reports that directly compare 

the three techniques using the same samples, to minimize variability from sample size, sample 

preparation, spectral analysis methods [5]. Therefore in this study, a limited set of bacteria was 

subjected to spectral acquisition by transmission (FPA-FTIR imaging), ATR and transflection 

modes to compare the spectral quality, as well as the differences in sample preparation and ease 

of spectral acquisition. Additionally, due to the lack of evaluation in spectral discrimination and 

identification of microorganisms using transflection-FTIR spectroscopy, the second portion of the 

chapter focused on the development, and evaluation of a transflection FTIR spectral database for 

a limited set of genera and species, mainly focusing on Gram-positive bacteria. Microbial 

identification results produced by transflection-FTIR spectral database were compared against 

clinically accepted identification methods, including biochemical-based assays (VITEK 2), 

MALDI-TOF MS, 16S rRNA sequencing and whole genome sequencing (WGS).  
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Figure 3.1 Description of the three FTIR spectral acquisition modes 
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3.3 Materials and Methods 

Isolates for construction of transflection-FTIR spectral database of select clinically relevant 

genera and species 

1835 bacterial and yeast isolates (6692 spectra), representing 22 genera were employed in 

the development and evaluation of the spectral database (Table 3.1 and Table 3.2). 60 % of isolates 

(1095 isolates, 4020 spectra) were used for database construction, and the remaining 40 % (740 

isolates, 2672 spectra) were used for the evaluation of the database’s ability to correctly identify 

isolates. Isolates were provided by microbiology laboratories at the McGill University Health 

Centre (MUHC), Centre hospitalier universitaire Sainte Justine (CHUSJ), Laboratoire de santé 

publique du Québec (LSPQ) and Canadian Food Inspection Agency (CFIA) where they have been 

previously identified using reference methods such as MALDI-TOF MS, VITEK 2 and whole 

genome sequencing (WGS) and stored in 10 % glycerol stock at -80 °C. Isolates were thawed, 

cultured onto Columbia agar with 5 % sheep blood (BAP), and incubated at 35 °C for 24 hours. 

Prior to spectral acquisition, samples were sub-cultured and incubated following the same 

procedure.  

Isolates for evaluation of the developed transflection-FTIR spectral database 

1793 additional clinical isolates (from skin, blood, urine, and other specimens) were 

collected retrospectively and prospectively at hospitals, research institutes and reference 

laboratories (Table 3.2) as part of a second evaluation of the developed spectral database. Isolates 

were identified at the respective locations, using one or a combination of reference methods, such 

as MALDI-TOF MS (VITEK MS, bioMérieux SA, Marcy l’Étoile, France; MALDI Biotyper, 

Bruker Corporation, Billerica, MA, USA), VITEK 2 (VITEK MS, bioMérieux SA, Marcy l’Étoile, 

France), 16S rRNA sequencing and WGS. These samples were collected independently from those 

used to develop the spectral database. 

FTIR spectral acquisition and pre-processing parameters 

Isolated colonies were picked and deposited onto MirrIR IR reflective slide (E-glass) 

(Kevley Technologies, Chesterland, OH) using a sterile, disposable 1µl loop, and air dried into a 

thin film. Transflection-FTIR spectra were acquired using a Cary 630 FTIR spectrometer (Agilent 

Technologies, Santa Clara, CA), with a 10° specular reflectance accessory (Agilent Technologies, 
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Santa Clara, CA), or a SurveyIR microscope (Czitek, Danbury, CT, USA) with 1 mm aperture. 

Spectra were acquired with 64 coadded scans in the spectral range 650 to 4000 cm-1 with 8 cm-1 

resolution and a zero-filling factor of 8. A background spectrum was collected from a bare surface 

of the E-glass prior to every spectral acquisition from samples, with the same spectral acquisition 

parameter settings. Triplicate spectra were acquired per isolate, from different surface areas of the 

sample deposition(s). Reproducibility of the triplicate spectra acquired for each isolate was 

examined for spectral quality check, based on proximity in a dendrogram produced by HCA of the 

FTIR spectra based on spectral similarity [13]. Spectra were processed using first derivative and 

vector normalization in order to remove variability caused by spectral baseline shifts and sample 

thickness respectively, prior to employing multivariate statistical analyses for discrimination and 

identification.  

Comparison of spectral acquisition modes 

Isolates collected in Brisbane, Australia were used to compare the three spectral acquisition 

modes, transmission, ATR and transflection, based on their ease of instrument use and sample 

preparation, as well as spectral quality and spectral discriminatory capabilities. ATR-FTIR spectra 

were acquired using a single-bounce diamond ATR accessory on the same FTIR spectrometer as 

the one used for transflection-FTIR spectral acquisition. Triplicate spectra were acquired per 

sample in the spectral range 4000 cm-1 to 650 cm-1 with 64 co-added scans, and zero-filling factor 

of 2 was employed. A background spectrum was acquired with the same parameters from a bare 

ATR crystal. Transmission FPA-FTIR spectroscopy acquired 16,384 spectra (FTIR image 

comprised of 128 x 128 pixels) simultaneously from each isolate per image. Triplicate images 

were acquired per isolate on ZnSe and CaF2 substrate. For FPA images, each image was filtered 

to remove spectral data which had inadequate signal to noise ratio, and insufficient absorbance in 

the amide I and II region. All images were processed using an in-house software, to retrieve high-

quality spectra from each image (Cognisolve Inc, Montreal, QC, Canada). Like the transflection 

FTIR spectra, ATR- and transmission FTIR spectra were processed by taking the first derivative 

and vector normalized to remove the effect of baseline shifts and sample thickness variability 

respectively. 
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Transflection-FTIR spectral database construction 

Upon spectral pre-processing and removal of spectra that did not meet minimum spectral 

quality requirements, spectral database was constructed in a hierarchical fashion, where isolates 

were categorized based on their Gram morphology, followed by genera and species discrimination 

(Figure 3.2) [13]. Variable reduction was conducted by employing PCA to the spectral region 

1350-800 cm-1. Sixteen principal components (PC) were kept and used to create the SVM-based 

spectral database. Each PC score that was used for subsequent analyses explained > 1 % of total 

variance between spectral data, resulting in a total explained variables of 87.4 % by the 16 PCs. 

Using radial basis function support vector machine (SVM) in JMP Pro ver. 15.2.0 (SAS Institute 

Inc., Cary, NC, USA) prediction models were developed at each level of the database. At each 

level of identification, prediction models were developed in binary and multiclass PCA-SVM 

analyses. The SVM variables, cost and gamma, were maintained at cost = 1 and gamma = 0.0625, 

throughout all levels of the spectral database. Gamma value was calculated based on the number 

of datapoints, where gamma = 
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑆𝑉𝑀 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛
. Select genera and 

species were represented in the database (Table 3.2). The database was then used to predict newly 

acquired spectral data to determine whether these isolates could be correctly identified at the genus 

and/or species level. Due to the limited genera and species representation in the database, the 

database was also tested whether or not it was able to identify non-represented species and produce 

results as “non-identifiable”.  
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Table 3.1 Distribution of isolates between database construction (training), validation and test of 

transflection-FTIR spectral database. 

Location Time 

Period 

Sample 

Type 

Isolates Reference 

ID 

Method(s) Training Validation Test 

MUHC 

(Montreal, 

Canada) 

2017-

2019 

Clinical 570 382 1025 MALDI-

TOF MS 

NML 

(Winnipeg, 

Canada) 

May 2018 Clinical 0 0 172 spa typing 

and PCR 

CHU-Sainte-

Justine 

(Montreal, 

Canada) 

July-

November 

2018 

Clinical 274 174 533 VITEK 2 

QIMR 

Berghofer 

(Brisbane, 

Australia) 

August-

November 

2018 

Clinical 0 0 63 MALDI-

TOF MS  

CFIA-

Ottawa 

(Ottawa, 

Canada) 

May 2019 Food/Feed- 

borne 

164 117 0 WGS 

McGill 

Macdonald 

Campus 

(Sainte-

Anne-de-

Bellevue, 

Canada) 

2019-

2020 

Cow 

Mastitis 

87 67 0 MALDI-

TOF MS 

TOTAL  1095 740 1793  
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Figure 3.2 The overview of genera and species represented in the tier-wise transflection-FTIR 

spectral database 
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Table 3.2 Number of isolates and spectra used to represent select genera and species in the 

transflection FTIR spectral database. 

Genus Species Isolates in Database Spectra in Database 

Achromobacter species 22 74 

Acinetobacter species 8 24 

Aeromonas species 14 53 

Burkholderia species 13 42 

Citrobacter amalonaticus 2 6 

Citrobacter freundii 10 48 

Citrobacter koseri 3 18 

Citrobacter youngae 2 6 

Citrobacter species 4 12 

Enterobacter cloacae-complex 17 76 

Enterobacter species 5 15 

Escherichia coli 59 201 

Klebsiella aerogenes 9 51 

Klebsiella oxytoca 10s 49 

Klebsiella pneumoniae 22 80 

Proteus species 11 33 

Pseudomonas aeruginosa 33 114 

Salmonella bongori 3 9 

Salmonella enterica 94 316 

Serratia marcescens 8 36 

Shigella flexneri 14 42 

Shigella sonnei 11 48 

Stenotrophomonas species 15 49 

Vibrio species 4 12 

Bacillus cereus 7 21 

Bacillus megaterium 4 12 

Bacillus subtilis 1 3 

Bacillus species 4 10 

Corynebacterium amylolactum 1 3 

Corynebacterium aurimucosum 1 3 

Corynebacterium bovis 1 3 

Corynebacterium imitans 1 3 

Corynebacterium jeikeium 1 3 

Corynebacterium striatum 2 6 

(continued) 
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Genus Species Isolates in Database Spectra in Database 

Corynebacterium tuberculosis 1 3 

Corynebacterium species 1 3 

Enterococcus faecalis 42 131 

Enterococcus faecium 120 676 

Enterococcus gallinarum 2 13 

Listeria grayi 2 6 

Listeria innocua 2 6 

Listeria monocytogenes 24 78 

Listeria seeligeri 1 3 

Listeria welshimeri 2 6 

Micrococcus luteus 5 15 

Staphylococcus aureus 297 1016 

Staphylococcus capitis 14 42 

Staphylococcus caprae 1 3 

Staphylococcus carnosus 1 3 

Staphylococcus cohnii 11 33 

Staphylococcus epidermidis 19 61 

Staphylococcus equorum 1 3 

Staphylococcus haemolyticus 11 33 

Staphylococcus hominis 15 48 

Staphylococcus lugdunensis 7 21 

Staphylococcus saprophyticus 8 24 

Staphylococcus warneri 8 24 

Staphylococcus xylosus 1 3 

Staphylococcus species 3 9 

Streptococcus agalactiae 7 24 

Streptococcus anginosus 4 18 

Streptococcus mitis-oralis group 5 15 

Streptococcus pyogenes 11 33 

Streptococcus salivarius 6 18 

Candida albicans 25 85 

Candida glabrata 12 51 

Candida guilliermondii 1 6 

Candida krusei 1 5 

Candida lusitaniae 2 6 

Candida parapsilosis 6 18 

 

(continued) 
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Genus Species Isolates in Database Spectra in Database 

Candida tropicalis 2 6 

TOTAL  1097 4026 

 

Identification and confidence level determination for identified isolates. 

At each level within the spectral database as per Figure 3.2, the identification results were 

obtained based on the results produced for each replicate spectrum acquired from every isolate. 

The isolates were given an identification to one of the categories present at the tested tier within 

the database, or as not-identifiable based on the criteria developed (Table 3.3). Non-identifiable 

results were reported in cases when i) triplicate spectra did not provide the same identification 

result, ii) one or more spectra of the isolate predicted to be more than one category in the binary 

analyses, iii) spectra were not predicted to be any of the categories in the binary analyses, iv) binary 

analyses and multiclass analyses had contradicting identification results. Identification was only 

given when binary and multiclass analyses provided the same result. For isolates that obtained an 

identification, a newly calculated probability of the isolate belonging to the identified group was 

calculated based on the weighed ratio as per Table 3.4. The level of confidence was then 

determined based on which calculated probability range the isolates obtained (Table 3.5).  

 

Table 3.3 Determination of isolates with correct identification, no identification or 

misidentification based on binary and multiclass SVM analyses 

Result Outcome Conditions 

Identification results 

provided 

Predicted result from binary and multiclass SVM are consistent 

No identification Predicted result from binary and multiclass SVM are inconsistent 

Most likely identification is defined as the class with the largest probability. Based on the SVM 

modelling, rare cases of contradicting results between predicted and most likely identification were 

observed. However, predicted results were taken to be identification results, rather than most likely 

results in these cases.  
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Table 3.4 Calculation method for determining confidence levels of identified isolates 

Condition 
Probability of the identification 

result (%) 

Weight 

given 

Predicted and most likely result 

from SVM analysis are consistent 
>50 0.5 

Predicted and most likely result 

from SVM analysis are inconsistent 
>50 0.3 

Predicted and most likely result 

from SVM analysis are inconsistent 
<50 0.3 

To calculate the combined probability based on binary and multiclass SVM analyses, the 

probabilities determined by each analyses were taken and ratioed based on whether the predicted 

and most likely results were concordant or not. For cases when they were concordant, the weight 

of the probability calculated was given a 0.5 weight, while discordant results resulted in 0.3 weight. 

The relative importance of binary and multiclass SVM analyses were proportioned to be equal, 

with 50 % weight each.  

 

Table 3.5 Determination of confidence level, based on the calculated probability of isolates 

Calculated Probability (%) based on average 

from replicate spectra 

Confidence Level 

0-50 Low 

51-80 Mid 

81-100 High 

Confidence level was determined based on the average of calculated probability, using the ratios 

mentioned in Table 3.5. Identification was determined to be low if the average probability was 

50 % or lower, mid-confidence in 51-80 % range, and high for 81 % and above. Non-identified 

replicates were used as part of the averaging calculating with 0 % probability.  

3.4 Results and Discussion 

Comparison of transflection spectral acquisition mode against ATR and transmission 

modes 

Three spectral acquisition modes, transmission, ATR and transflection, were compared in 

this study, with the focus on determining whether transflection spectral acquisition mode is 
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appropriate for microbial studies by FTIR spectroscopy. A summary of the notable differences 

between the spectral acquisition modes are listed in Table 3.6. 

3.4.1.1  Comparison in sample preparation and spectral acquisition 

Prior to spectral acquisition, samples required preparation for transmission and 

transflection modes. ATR mode required no sample preparation, and therefore was the simplest in 

regards to pre-spectral acquisition step. Transmission and transflection both required that isolated 

colonies are picked and deposited as thin films onto IR transparent and reflective materials 

respectively. This step may be cumbersome, depending on the microorganism and media used to 

culture the samples. For example, Escherichia coli cultured on MacConkey agar is more difficult 

to deposit evenly thin films compared to when cultured on blood agar due to the bile salt 

precipitation (caused by fermentation of lactose, present in the medium, and the decrease of pH of 

the agar) [27]. Optimal film thickness is required for transmission and transflection modes (2-8 

µm and 1-4 µm respectively [10]). The added benefit for using transmission and transflection is 

that when spectral acquisition is automated with a motorized staged, manual labor required in 

spectral acquisition will be reduced to sample deposition and logging sample positions into a 

computer system, similarly to how MALDI-TOF MS systems currently function for clinical 

microbial identification. The ATR-FTIR spectral acquisition protocol developed by the McGill IR 

Group required that spectra are acquired from a wet-microbial colonies, rather than waiting for 

deposited samples to dry on the ATR crystals [13]. ATR spectral acquisition required sufficient 

biomass to cover the ATR-crystal, and rapid spectral acquisition to prevent evaporation. This may 

be difficult for microorganisms with slow growth (low biomass) or for those that dry into films 

quickly. However, it could be combatted by implementing a high moisture chamber over the 

sample and ATR crystal, during spectral acquisition. The disadvantage of ATR-mode is that each 

spectral acquisition requires deposition of new colonies, and therefore overall more biomass is 

required compared to transmission and transflection mode.  

Spectral acquisition by ATR and transflection mode on the Cary 630 (single element DTGS 

detector) with 64 coadded scans and 8 cm-1 resolution, required approximately 1 minute per 

spectrum, totaling 3 minutes per isolate in this study. The FPA-FTIR spectrometer required longer 

set-up time compared to a single element detector spectrometer. The MCT detector on the FPA-

FTIR spectrometer must be cooled down first, by filling it with liquid nitrogen. The cooled MCT 
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detector must maintain the cooled temperature, in order to acquire spectra with high signal to noise 

ratio for the FTIR images [28]. Additionally, sample acquisition by FPA-FTIR spectrometer 

requires the samples to be spotted and focused onto, prior to spectral acquisition through the 

attached microscope. Overall FTIR images require more time for spectral acquisition, compared 

to single element detectors. However, considering that in the time taken to obtain an FTIR image 

(~4 minutes), many more FTIR spectra (16,834 spectra per image in the case of the spectrometer 

used in this study) are generated compared to 1 ATR- and transflection-FTIR spectrum per 

acquisition, the FPA-FTIR excels in spectral acquisition efficiency in terms of spectrum acquired 

per minute. It should also be kept in mind that with each FPA-FTIR image acquisition, the data 

file is much larger, at approximately 114MB in this study, compared to 8-29KB per spectrum 

acquired by SED spectrometers. The number of datapoints generated and the file size of each 

spectrum is dependent on both the resolution and zero-filling. This was reflected in the 

transflection data files, which increased from 8 to 29KB through the increased zero-filling from 2 

to 8 orders (data not shown). Thus, in order to process high volumes of FTIR images, a powerful 

computing system with large storage locations are required. It should also be noted that for any 

spectral acquisition mode, on any spectrometer, there is a correlation between acquisition time and 

the resolution, as well as the number of coadded scans. The higher the resolution, and the higher 

the number of coadded scans, the longer the spectral acquisition time [29].  

Accurate microbial identification by FTIR spectroscopy relies on successful isolation of 

organisms prior to data acquisition. Identification of organisms rely on the spectral similarity to 

those part of the spectral database, and therefore, spectra acquired from a mixed culture would 

struggle to be identified correctly. Since spectra acquired by single element detectors acquire data 

from the available field of view/aperture, it is critical that the deposition is homogeneous (from 

one species/strain type). Perhaps the main advantage of using FPA-FTIR imaging is in its ability 

to identify mixed cultures. This was demonstrated by the McGill IR Group through the 

development of PLS models, to identify the relative proportions of different microorganisms that 

comprised of the FTIR images [8].  
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Table 3.6 Spectral acquisition parameters for FTIR spectroscopy 

Parameters Transmission 

FPA-FTIR 

imaging 

Transflection 

FPA-FTIR 

imaging 

ATR Transflection 

Sample 

preparation 

Deposition onto 

IR transparent 

material 

(ZnSe, CaF2) 

Deposition onto 

IR reflective 

material 

(E-glass) 

none Deposition onto 

IR reflectance 

material (E-

glass) 

Spectrometer used Cary 670 FTIR 

spectrometer + 

Cary 620 FTIR 

microscope 

Cary 670 FTIR 

spectrometer + 

Cary 620 FTIR 

microscope 

Cary 630 + 

diamond 

ATR 

accessory 

Cary 630 + 10° 

specular 

reflectance 

accessory 

Detector type MCT (mercury 

cadmium 

telluride) 

MCT DTGS 

(deuterated 

triglycine 

sulfate) 

DGTS 

Field of View 700 x 700 µm 

Pixel size 5.5 x 

5.5 µm 

700 x 700 µm 

Pixel size 5.5 x 

5.5 µm 

 6 mm aperture 

Spectral Range 

(cm-1) 

3900-800 (ZnSe) 

3900-850 (CaF2) 

3900-800 4000-650 4000-650 

Resolution (cm-1) 8 8 8 8 

Zero-filling Auto Auto 2 2 + 8 

Data spacing 3.8568 

 

3.8568 1.8637 1.8637 (2 zero 

fill) 

0.4659 (8 zero 

fill) 

Background scan 128 128 64 64 

Co-add scans 64 64 64 64 

Approximate 

spectral acquisition 

time per 

spectrum/image 

 2-5 mins  2-5 mins 1 min 1 min 

Post Acquisition 

Processing 

Pixel Filtration 

Averaging – per 

image 

Pixel Filtration 

Averaging – per 

image 

Quality 

check – 

remove unfit 

spectra 

Quality check – 

remove unfit 

spectra 
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3.4.1.2  Comparison in spectral quality check and processing  

Upon spectral acquisition, the quality of each spectrum was checked prior to further 

analysis. The quality check process was applied to both FTIR images and spectra. For the spectral 

images, individual spectra that make up each acquired FTIR image were subjected to the quality 

check. Any spectra with high levels of noise (root-mean-square (RMS) >0.001) and spectra with 

absorbance outside of the 0.4-1.2 units in the amide I region (1700-1600 cm-1) after baseline 

correction were filtered out. Figure 3.3 shows relative absorbance intensity across an FTIR image 

by color, with red being highest intensity, to dark blue indicating low intensity in the amide I 

region. The collection of spectra that passed the quality check were used to produced one average 

spectrum per image, which was then further used for comparison in spectral quality and 

discriminatory analysis. For ATR-FTIR spectra, spectra with a ratio between water (absorbance at 

3200 cm-1) and amide I region less than 1.33 was removed, due to the lack of moisture content in 

the sample during spectral acquisition. Figure 3.4 shows an example of acceptable (red) and non-

acceptable (green) ATR-FTIR spectra. For transflection FTIR spectra, spectra with absorbance 

outside of the 0.4-1.2 absorbance units in the amide I region were removed. Figure 3.3 shows an 

example of acceptable (red) and non-acceptable (green) transflection FTIR spectra, based on the 

amide I region absorbance intensity. 

Figure 3.3 Example of an FPA-FTIR image acquired from a bacterial deposition on ZnSe, showing 

the differences in relative absorbance intensity in spectral region 1480-980 cm-1- (higher 

absorbance is visualized as red/orange regions, and low absorbance regions are displayed as 

green/blue) 
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Figure 3.4 Example of good (red) and poor (green) quality ATR-FTIR spectra acquired from bacterial colonies 

 

Red spectrum is an example of a passing spectrum based on the quality control parameters set. The moisture content is maintained, and 

the ratio between the water absorbance at 3270 cm-1 was 0.37, and the absorbance at amide I was 0.27, resulting in a water/amide I 

region ratio of 1.33. Green spectrum is an example of a poor quality spectrum due to the partial drying in the sample, represented by 

lower moisture-related absorbance in the 3300 cm-1 region, and higher absorbance observed in the amide I and II region. The ratio 

becomes <1.33, thereby deeming the spectra unfit for further analysis.  
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Figure 3.5 Example of good (red) and poor (green) quality transflection FTIR spectra acquired from bacterial depositions on E-glass 

 

Red spectrum is an example of a passing spectrum based on the quality control parameters set. The absorbance at amide I was 1.06. 

Green spectrum is an example of a poor quality spectrum due to the low overall absorbance, relating to insufficient sample deposition. 

The lack of sample on the E-glass resulted in baseline shift. Such spectra were removed from further analysis. 
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Figure 3.6 Overlay averaged, first derivative FTIR spectra acquired by transmission FPA (ZnSe 

in orange, CaF2 in blue), ATR (pink and purple), and transflection (light and dark green for single 

element DGTS and red for FPA) in region 2700-2400 cm-1 and 1400-900 cm-1. 

 

Noise level of averaged, first derivative FTIR spectra acquired from transmission (by ZnSe in 

Orange, CaF2 in blue), transflection (light and dark green on single element DGTS detector with 

8 and 2 zero fill respectively, FPA in red), and ATR (pink and purple) in spectral region              

2700-2400 cm-1. Spectral region 1400-900 cm-1 shows the signal in first derivative spectra.  
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Table 3.7 Calculated noise level comparison in spectra acquired by different acquisition modes 

Spectral 

Acquisition 

Mode 

Number of 

Averaged spectra 

Noise 

(Peak to Peak) 

2700-2400 cm-1 

Noise  

(root mean 

squared)  

2700-2400 cm-1 

Signal to Noise 

Ratio (SNR) 

Mean/SD 

(whole 

spectrum) 

ATR 72 0.0001154 2.991 x10-5 0.874991 

ATR 36 0.0001248 3.004 x10-5 0.869314 

ATR 36 0.0001279 3.22 x10-5 0.882867 

Transflection 36 0.0003683 7.153 x10-5 1.450002 

Transflection 

2 zerofill 

36 0.0003367 6.21 x10-5 1.579071 

E-glass FPA 48* 7.056 x10-5 1.694 x10-5 1.124291 

ZnSe FPA 35* 0.0001698 3.706 x10-5 0.857766 

CaF2 FPA 28* 5.65 x10-5 1.437 x10-5 1.364181 

Noise levels were calculated from averaged spectra (number of spectra used to generate 

the average spectrum per acquisition mode are indicated in the second column of Table 3.7), upon 

application of vector normalization and first derivative. In Figure 3.6, ATR spectra (pink and 

purple) displayed smaller noise level, compared to transflection (dark and light green). FPA-FTIR 

spectrometer acquired spectra (transmission on ZnSe and CaF2 and transflection on E-glass) had 

even smaller noise levels. However, taking into consideration that these averages are obtained 

from averaged spectra taken from each FTIR image acquired (hundreds to tens of thousands of 

spectra averaged into one), the noise per acquired spectrum by FPA-FTIR spectrometers, 

regardless of the acquisition mode, is inferior to those acquired by single-DTGS detectors. Due to 

the inherent non-uniformity between detector elements in the FPA, the noise level is higher in FPA 

detectors compared to single element detectors. Further adding to the problem, the repeated 

temperature cycling of array detectors can result in pixel degradations and inoperative pixels over 

time [28, 30]. Signal-to-noise ratio (SNR) was calculated by the mean signal detected across the 

whole spectrum over the standard deviation. Although ATR has low noise level, the SNR was 

lower than transflection because ATR has a smaller pathlength compared to transflection, which 

results in overall lower signal (observed in Figure 3.6) [10].  

.  
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3.4.1.3  Comparison in spectral discrimination capabilities 

For each spectral acquisition mode, analysis in discriminating FTIR spectra of Gram-

negative bacteria from Gram-positive bacteria was conducted, and shown to be successful in a 

dendrogram generated by HCA (Figure 3.8), and PCA (transmission spectral data example shown 

in Figure 3.7. Additionally, successful spectral discrimination between S. aureus and coagulase 

negative staphylococcal species (CoNS) was demonstrated for each spectral acquisition mode 

upon identifying optimal spectral regions that enhance the differentiation between the two groups, 

using forward region selection algorithms (Figure 3.8). Due to the limited sample size, no further 

analyses could be conducted to evaluate whether transflection mode could provide FTIR spectra 

for microbial analysis, in direct comparison to transmission and ATR modes. At this level of 

discrimination, transflection spectral acquisition mode showed discriminatory capabilities that 

matched the ATR and transmission FTIR data that were previously published for S. aureus 

discrimination from CoNS [26, 31]. To provide further in-depth analysis and comparison between 

the acquisition modes on their discriminatory capabilities, the three acquisition modes should be 

compared directly and evaluated on their abilities to discriminate at the sub-species and strain 

typing levels. 

Figure 3.7 Spectral discrimination of averaged transmission spectra acquired on ZnSe and CaF2 

by genera of select Gram-negative (purple) and Gram-positive bacteria (blue, green and red) 

showcased successful spectral discrimination in a PC score plot for PC3 vs PC2 
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Figure 3.8 Dendrogram generated by HCA visualizing the discrimination between S. aureus (Red) and CoNS (Black) using spectral 

regions selected from feature selection algorithm on FTIR spectra acquired in a) transmission mode on ZnSe from averaged FTIR 

images, b) ATR- and c) transflection acquisition modes. 
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Transflection FTIR spectral database construction and evaluation. 

To further evaluate the discriminatory capabilities of transflection FTIR spectral data for 

microbial analysis, a multitier spectral database was constructed, and tested for identification of 

microbial isolates. Using PCA-SVM, the isolates used for spectral database construction were 

successfully discriminated at each level, with correct prediction ranging from 86.1 - 100 % for the 

training set (Table 3.8 - Table 3.13). The database was created by taking 60 % of the isolates from 

retrospective sets of data acquired at clinical and food microbiology laboratories, with a particular 

focus on Enterococcus and Staphylococcus species. Staphylococcus and Enterococcus species 

isolates represented 36.2 % (n = 396) and 15.1 % (n = 165) of the spectral database respectively. 

On the Gram-negative bacteria side, Salmonella (n = 97, 8.9 %) and Escherichia species (n = 59, 

5.4 %) had the largest representation. Genera and species that were chosen to be represented 

required to have 10 or more isolates must be included in the database, with the exception of 

Corynebacterium (n = 9), Micrococcus (n = 5), and Acinetobacter (n = 8) which had unique FTIR 

spectral characteristics that enabled for correct identification with little spectral representation. 

Serratia species (n = 8), were included in the database due to its clinical importance [32, 33]. At 

the species level, databases were constructed for select species within the genera Enterococcus     

(E. faecalis, E. faecium, E. gallinarum), Staphylococcus (S. aureus, S. capitis, S. cohnii,                      

S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. warneri) and 

Shigella (S. flexneri and S. sonnei). Additionally, due to the importance of discriminating and 

identifying Listeria monocytogenes from non-monocytogenes Listeria species, the database was 

created to discriminate between the two groups [34]. Misidentification and no-identification rates 

ranged from 0-4.4 % and 0-9.5 % respectively for the training set across all levels of the multi-tier 

spectral database. A total of 37 isolates had no-identification, and 17 isolates were mis-identified 

at the genus level. Upon inspection of the incorrect and non-identified isolates in the training set, 

at the genus level, all errors occurred within the Gram-negative bacterial isolates (Table 3.11). Of 

the 14 Gram-negative genera that were represented in the database, 6 genera (Achromobacter, 

Acinetobacter, Klebsiella, Proteus, Serratia, Shigella) had > 90 % correct discrimination in the 

training set. Five genera (Burkholderia, Escherichia, Pseudomonas, Salmonella, and 

Stenotrophomonas) had a correct discrimination rate ranging between 80 % and 90 %. Gram-

negative genera that had less than 80% correct discrimination in the training set were Aeromonas, 

Citrobacter, and Enterobacter with correct discrimination rates of 64. 3%, 52.4 % and 68.2 % 
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respectively, contributed to 7 misidentified and 15 non-identifiable isolates combined. Escherichia 

and Salmonella also contributed 6 and 11 isolates that could not be identified respectively. At the 

species level, the training model resulted in 98.2 % (n = 606) correct classification                        

(Table 3.12). The 6 non-identified isolates were S. cohnii (n = 1), S. lugdunensis (n = 3),                        

S. saprophyticus (n = 1), and S. warneri (n = 1). With the exception of S. lugdunensis, and S. 

warneri, > 90 % correct discrimination at the species level was achieved. 100 % discrimination 

between E. faecalis and E. faecium, S. flexneri and S. sonnei, and L. monocytogenes and non-

monocytogenes Listeria species were achieved. The constructed database showed that 

discrimination of microbial species were achievable using transflection-FTIR spectra when 

employing PCA-SVM.  

Using the developed database, the 40 % of isolates that were set aside as validation set 

were identified. 99.9 % correct identification was achieved at the Gram-level, and all yeast isolates 

were correctly identified (n = 34). At the genus level, the correct identification rates were 72.8 % 

(n = 182) and 98.9 % (n = 447) respectively for Gram-negative and Gram-positive isolates. 0.9 % 

(n = 4) and 0.2 % (n = 1) of Gram-positive isolates were misidentified and not-identified 

respectively, whereas 9.2 % (n = 23) of Gram-negative bacterial isolates were misidentified and 

18.0 % (n = 45) were not identified. Errors in the Gram-positive isolates were due to one 

Corynebacterium isolate not being identifiable past the Gram-level, and misidentification of 2 

Bacillus, 1 Enterococcus and 1 Listeria isolates. The non-identified Corynebacterium isolate had 

low probability (10-25 % probability) of it being Bacillus, Corynebacterium or Micrococcus in the 

binary analyses, and less than 50 % probability it being Corynebacterium in the multiclass SVM 

analysis. PCA revealed that the FTIR spectra of this isolate was spectrally distinct from the other 

Corynebacterium isolates (Figure 3.9). One Bacillus isolate was predicted to be Staphylococcus 

species and another predicted as a Gram-negative bacteria. These isolates were also individually 

re-analysed, and based on the characteristics in the spectral range 1350-800 cm-1, spectra of these 

two Bacillus isolates were more similar to Staphylococcus and Gram-negative bacteria (Figure 

3.10 - Figure 3.13). 

Achromobacter, Acinetobacter, and Shigella achieved > 90 % correct identification in the 

validation set. However, most other genera had poor correct identification rates below 80 %. In 

particular, Citrobacter had 18.2 % (n = 2) and Enterobacter had 40.0 % (n = 6) correct 
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identification. Genera within the Enterobacteriaceae family such as Citrobacter, Enterobacter, 

Escherichia, Klebsiella and Salmonella had many non-identifiable isolates, making up 34 of 37 

non-identifiable isolates. Out of these genera, Escherichia, Klebsiella and Salmonella had the 

largest number of isolates present in the database, with 59, 41 and 97 respectively. These were the 

genera with the highest correct identification rates (68.9 %, 84.6 % and 82.0 % respectively), with 

the exception of Shigella (100 % correct) which was represented by 25 isolates.  

At the species level, 95.2 % of the isolates were correctly identified in the validation set. 

Fourteen isolates (3.3 %) were not identified, and 6 isolates (1.4 %) were misidentified. 100% 

correct identification was achieved for E. faecalis, E. faecium, S. capitis, S. cohnii, S. flexneri and 

S. sonnei. Additionally, L. monocytogenes, S. aureus, S. epidermidis had > 90 % correct 

identification (Table 3.12). However, some species identification performed poorly. These 

included S. haemolyticus, S. hominis, S. saprophyticus and S. warneri with 44.4 % (n = 4), 75.0 % 

(n = 9), 57.1 % (n = 4) and 50.0 % (n = 4) correct identification respectively. The common factor 

among these species was that they each had 15 or less isolates representing the species in the 

spectral database, indicating a lack of representation in the spectral database. The discordant results 

and non-identified isolates within the CoNS were also observed at the cluster group level          

(Table 3.13). This was especially the case for the haemolyticus group, saprophyticus group and 

warneri group. Lugdunensis, saprophyticus and warneri groups especially have low representation 

in the database, with 7, 11, 8 isolates respectively.  

The test set constituted of isolates collected over a four year period (2017-2020), in four 

different microbiology laboratories, located in Montreal, Canada, Winnipeg, Canada and Brisbane, 

Australia (Table 3.2). A set of isolates were obtained at CHUSJ in the following months after 

isolates were collected for database construction and validation. Isolates collected at MUHC 

mainly focused on isolates that were later used for strain typing, for nosocomial outbreak detection. 

Isolates collected in Brisbane, Australia were derived from skin swabs, obtained from patients with 

different stages of skin cell carcinoma. Isolates collected at NML were cultured on modified blood 

agar plates. Overall, there were 1793 isolates that were used to evaluate the database performance. 

Fifteen isolates were yeast and 1778 isolates were bacteria. 80 % (n = 12) of yeast isolates were 

correctly identified as yeast, with 3 isolates incorrectly predicting as Staphylococcus species. All 

1606 bacterial isolates predicted correctly as bacteria. At the Gram-level, 95.9 % (n = 260) and 

98.8 % (n = 1491) concordant identification was achieved for Gram-negative and Gram-positive 
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bacteria respectively. Within the Gram-positive bacteria, 95.8 % (n = 1443) correct genus 

identification was achieved, with 0.9 % (n = 14) and 3.3 % (n = 50) of the isolates resulting in no-

identification and misidentification respectively. Of the 50 misidentified isolates, 16 were 

misidentified at the Gram-level, where the Gram-positive isolates were identified as Gram-

negative bacteria. The majority of the misidentification at the genus level within Gram-positive 

bacteria resulted from non-represented genera isolates being identified as one of the genera 

represented in the database. For example, Lactobacillus (n = 3, 75 %) and Lactococcus isolates   

(n = 1, 100 %) predicted as Enterococcus, a close genus within the lactic acid bacteria group [35]. 

Overall, of the 21 non-represented isolates that were part of the test set, 4 isolates (19.0 %) could 

not be identified past Gram-positive, and the remaining 17 isolates (81.0 %) were misidentified as 

one of seven represented genera in the database.  

Amongst the 7 Gram-positive genera that were represented in the database, Bacillus 

performed the worst, with 27.3 % (n = 3) correct identification, and 72.7 % (n = 8) 

misidentification. Bacillus isolates were predicted to be GN (n = 4), S. aureus (n = 3) and 

Corynebacterium (n = 1). All other genera that were represented in the database (Corynebacterium, 

Micrococcus, Enterococcus, Staphylococcus and Streptococcus) had high concordant 

identification results, ranging between 87.2 and 100 %. There were no Listeria isolates within the 

test set to evaluate the database for its identification performance. At the species level, 90.6 %        

(n = 1185) correct identification was achieved, with 3.7 % (n = 49) no identification and 5.7%       

(n = 74) mis-identification rates. Identification of E. faecalis and E. faecium was highly concordant 

to reference methods, at 98.5 % (n = 65) and 99.2 % (n = 360) respectively. Other enterococcal 

species (E. avium, E. casseliflavis and E. gallinarum) had low representation or no representation 

in the database, and therefore these isolates were mostly incorrectly identified as E. faecalis, or 

not identified at the species level. S. aureus had a 98.4 % (n = 663) correct identification, 

showcasing high concordance between transflection-FTIR spectroscopy and reference methods. 

However staphylococcal species identification within the coagulase negative staphylococcus 

species did not perform as well, ranging between 0 % and 100 % correct species identification.     

S. cohnii, S. lugdunensis and S. warneri had no correct identification. S. saprophyticus had 100 %   

(n = 1) correct identification. Combined with the 7 isolates tested in the validation set, 5 out of 8 

S. saprophyticus isolates (62.5 %) predicted correctly using this database. Although species like   

S. capitis, S. cohnii, S. epidermidis, and S. hominis had > 90 % correct identification in the 
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validation set, the performance using the test set was much worse, with 58.3 %, 0 %, 61.6 %, and 

71.0 % concordant results respectively, relative to reference methods. Species such as S. capitis, 

S. lugdunensis and S. saprophyticus had contrasting performance results between validation and 

test sets. S. saprophyticus had 57.1 % (n = 4) correct identification, and S. lugudnensis had 100 %        

(n = 1) correct identification in the validation set. But both species had 0% correct identification 

in the test set. S. capitis performed well in the validation set but not in test set, with 100 % (n = 8) 

and 62.5 % (n = 15) correct identification respectively. Despite having 14 isolates representing the 

species in the database, accurate species identification could not be achieved. Of the 6 

misidentified S. capitis isolates, 3 isolates were identified as S. epidermidis, another species within 

the S. epidermidis subgroup [36]. Another 3 isolates were identified as S. haemoylticus, and               

S. hominis, species within the S. haemolyticus subgroup [36]. Other species such as S. caprae,         

S. pasteuri, and S. xylosus were also tested, despite their lack of representation in the database. 

62.5 % (n = 10) of non-represented Staphylococcus species achieved no-identification at the 

species level, with the remaining 37.5 % (n = 6) being misidentified as one of the species present 

in the database. 

The successful identification of S. aureus (n = 216, 99.5 % and n = 663, 98.4 % respectively 

for validation and test set) indicated that the database is robust and is able to identify S. aureus 

from CoNS species with high confidence, due to sufficient spectral representation in the database 

for S. aureus. Since S. aureus is clinically more important compared to other Staphylococcus 

species, it is a crucial component for the spectral database to achieve [37]. In addition, the 

successful identification of E. faecalis and E. faecium isolates showcase that with sufficient 

spectral representation in the database, isolates of that genus and species can be correctly identified.  

Contrary to Gram-positive bacteria identification results, Gram-negative genus 

identification performed poorly in the test set, with 41.3 % overall correct identification (n = 112), 

28.0 % (n = 76) no identification and 30.6 % (n = 83) misidentification rates. While some genera 

like Proteus (n = 4) and Achromobacter (n = 6) achieved 100 % correct identification, other genera 

that were represented in the database were not able to identify isolates correctly. In particular, 

Aeromonas (n = 6), Burkholderia (n = 3), Citrobacter (n = 1) had no correct identification, while 

Acinetobacter (n = 9), Enterobacter (n = 23), Escherichia (n = 46), Klebsiella (n = 17), Serratia 

(n = 3), Shigella (n = 10), and Stenotrophomonas (n = 18) all had less than 80 % of test isolates 

were correctly identified. With the exception of Escherichia, Klebsiella and Salmonella, other 
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genera were represented in the database with less than 25 isolates. Genera such as Aeromonas, 

Citrobacter and Enterobacter had < 80 % correct discrimination in the training set, which likely 

affected and contributed to the low identification performance of the test isolates. Another factor 

that may have contributed to misidentification is that different species within a genus may have 

vastly different FTIR spectral features as a result of varying biochemical and metabolic functions 

[38]. Therefore without sufficient species representation within each of these genera, certain 

species may not predict correctly when underrepresented in the database. This may have been the 

case for Pseudomonas isolates that were incorrectly identified in the test set. Of the 43 tested 

Pseudomonas isolates, 9 isolates were non-P. aeruginosa species, none of which were represented 

in the database. Seven out of these 9 isolates (77.8 %) did not predict correctly as Pseudomonas 

isolates, whereas only 2 of 34 P. aeruginosa isolates (5.9 %) was misidentified, and 3 (8.8 %) 

could not be identified at the genus level.  

34 of 70 (48.6 %) non-represented Gram-negative genera in the test set were not predicted 

to be identifiable at the genus level, while the remaining 51.4 % (n = 36) were incorrectly identified 

as one of the genera present in the spectral database (Table 3.14). Compared to isolates of non-

represented Gram-positive genera, more isolates were properly classified as not-identifiable at the 

genus level for the Gram-negative bacterial isolates. Overall 40.0 % (n = 38) of non-represented 

Gram-negative bacterial isolates were reported as not-identifiable. At the species level, for Shigella 

species, only two species were represented in the database. The SVM forces all interrogated 

isolates to be identified as one of the two groups, and does not provide a third option - “neither of 

the two groups”. Hence, isolates were forced to be identified to the group that they are spectrally 

most similar to. This was the case for species such as S. dysenteriae, which predicted as S. sonnei 

with mid-level confidence (77.1 % probability being S. sonnei). Unlike Shigella species, 

Enterococcus species level identification was based on discrimination between 3 species,                  

E. faecalis, E. faecium and E. gallinarum. The issue in the Enterococcus species identification was 

that only two isolates represented E. gallinarum in the spectral database, and hence, none of the 

tested E. gallinarum isolates could correctly be identified. However, the presence of a third species 

option opened up possibilities for isolates to be not-identifiable at the species level, rather than 

being forced into predicting as one of two available options.  
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Table 3.8 Identification results for training, validation and test set at the bacteria-yeast level 

 
Training Validation Test 

 
Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

Bacteria 1047 1047 100 0 0 0 0 706 706 100 0 0 0 0 1774 1774 100 0 0 0 0 

Yeast 49 49 100 0 0 0 0 34 34 100 0 0 0 0 15 12 80 0 0 3 20 

TOTAL 1096 1096 100 0 0 0 0 740 740 100 0 0 0 0 1789 1786 99.8 0 0 3 0.2 

 

 

Table 3.9 Identification results for training, validation and test set for Gram-negative and Gram-positive bacteria. 

Gram Training Validation Test 
 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

GN 393 393 100 0 0 0 0 254 254 100 0 0 0 0 269 258 95.9 
 

0 11 4.1 

GP 654 654 100 0 0 0 0 452 451 99.8 0 0 1 0.2 1505 1489 98.9 0 0 16 1.1 

TOTAL 1047 1047 100 0 0 0 0 706 705 99.9 0 0 1 0.1 1774 1747 98.5 0 0 27 1.5 

GN = Gram-negative. GP = Gram-positive. 
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Table 3.10 Gram-positive genus identification results for training, validation and test set 

GP Genera Training Validation Test 

  Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Aerocococcus 
          

   
 

2 0 0 0 0 2 100 

Bacillus 15 15 100 0 0 0 0 9 7 77.8 0 0 2 22.2 11 3 27.3 0 0 8 72.7 

Corynebacterium 9 9 100 0 0 0 0 3 2 66.7 1 33.3 0 0 6 6 100 0 0 0 0 

Dermabacter 
          

    3 0 0 0 0 3 100 

Enterococcus 164 164 100 0 0 0 0 94 93 98.9 0 0 1 1.1 466 457 98.1 6 1.3 3 0.6 

Gordonia 
          

   
 

1 0 0 0 0 1 100 

Kocuria 
          

   
 

3 0 0 0 0 3 100 

Kytococcus 
          

   
 

1 0 0 1 100 0 0 

Lactobacillus 
          

   
 

4 0 0 1 25 3 75 

Lactococcus 
          

   
 

1 0 0 0 0 1 100 

Listeria 31 31 100 0 0 0 0 26 25 96.2 0 0 1 3.8 
       

Micrococcus 5 5 100 0 0 0 0 3 3 100 0 0 0 0 11 10 90.9 1 9.1 0 0 

Rhodococcus 
          

   
 

1 0 0 1 100 0 0 

Rothia 
          

   
 

1 0 0 0 0 1 100 

Staphylococcus 397 397 100 0 0 0 0 289 289 100 0 0 0 0 898 888 98.9 3 0.3 8 0.9 

Streptococcus 33 33 100 0 0 0 0 28 28 100 0 0 0 0 94 79 84 0 0 15 16 

Turicella 
          

   
 

2 0 0 0 0 2 100 

TOTAL 654 654 100 0 0 0 0 452 447 98.9 1 0.2 4 0.9 1505 1443 95.9 13 0.9 50 3.3 

REPRESENTED 

 GENERA 

654 654 100 0 0 0 0 452 447 98.9 1 0.2 4 0.9 1486 1443 97.1 10 0.7 34 2.3 
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Table 3.11 Gram-negative genus identification results for training, validation and test set. 

GN Genera Training Validation Test 

  
  

Total Correct 

(n, %) 

NO ID 

(n, %) 

Mis ID 

(n, %) 

Total  Correct 

(n, %) 

NO ID 

(n, %) 

Mis ID 

(n, %) 

Total  Correct 

(n, %) 

NO ID 

(n, %) 

Mis id 

(n, %) 

Achromobacter 22 22 100 0 0 0 0 13 12 92.3 0 0 1 7.7 6 6 100 0 0 0 0 

Acinetobacter 8 8 100 0 0 0 0 5 5 100 0 0 0 0 9 3 33.3 0 0 6 66.7 

Aeromonas 14 9 64.3 0 0 5 35.7 7 4 57.1 0 0 3 42.9 6 0 0 0 0 6 100 

Burkholderia 13 11 84.6 2 15.4 0 0 8 6 75 2 25 0 0 3 0 0 2 66.7 1 33.3 

Citrobacter 21 12 57.1 9 42.9 0 0 11 1 9.1 9 81.8 1 9.1 1 0 0 0 0 1 100 

Enterobacter 22 16 72.7 5 22.7 1 4.5 15 7 46.7 5 33.3 3 20 23 3 13 14 60.9 6 26.1 

Escherichia 59 53 89.8 6 10.2 0 0 45 31 68.9 10 22.2 4 8.9 46 30 65.2 8 17.4 8 17.4 

Klebsiella 41 39 95.1 2 4.9 0 0 26 22 84.6 3 11.5 1 3.8 17 12 70.6 2 11.8 3 17.6 

Proteus 11 10 90.9 0 0 1 9.1 5 4 80 1 20 0 0 4 4 100 0 0 0 0 

Pseudomonas 33 28 84.8 1 3 4 12.1 20 13 65 3 15 4 20 43 32 74.4 2 4.7 9 20.9 

Salmonella 97 88 90.7 9 9.3 0 0 61 50 82 10 16.4 1 1.6 12 9 75 1 8.3 2 16.7 

Serratia 8 8 100 0 0 0 0 5 3 60 1 20 1 20 3 2 66.7 1 33.3 0 0 

Shigella 25 24 96 0 0 1 4 16 16 100 0 0 0 0 10 2 20 6 60 2 20 

Stenotrophomonas 15 12 80 2 13.3 1 6.7 13 7 53.8 2 15.4 4 30.8 18 8 44.4 5 27.8 5 27.8 

Vibrio 4 0 0 1 25 3 75 4 0 0 0 0 4 100 
       

TOTAL 393 340 0.87 37 0.09 16 0.04 254 181 0.71 46 0.18 27 0.11 201 111 0.55 41 0.2 49 0.24 
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Table 3.12 Species identification for Enterococcus, Listeria, Staphylococcus and Shigella isolates in training, validation and test sets 

species Training Validation Test 
 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

E. faecalis 42 42 100 0 0 0 0 17 17 100 0 0 0 0 66 65 98.5 1 1.5 0 0 

E. faecium 120 120 100 0 0 0 0 77 75 97.4 0 0 2 2.6 363 360 99.2 1 0.3 2 0.6 

E. gallinarum 2 2 100 0 0 0 0 0 0 0 0 0 0 0 16 0 0 4 25 12 75 

E. species 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 100 

L.  

monocytogenes 
24 24 100 0 0 0 0 20 17 85 2 10 1 5 0 0 0 0 0 0 0 

L. species 7 7 100 0 100 0 0 6 4 66.7 0 0 2 33.3 0 0 0 0 0 0 0 

S. aureus 297 297 100 
 

0 0 0 217 216 99.5 0 0 1 0.5 674 663 98.4 0 0 11 1.6 

S. capitis 14 14 100 0 0 0 0 8 7 87.5 0 0 1 12.5 24 14 58.3 3 12.5 7 29.2 

S. cohnii 11 11 100 0 0 0 0 7 6 85.7 1 14.3 0 0 1 0 0 1 100 0 0 

S. epidermidis 19 19 100 0 0 0 0 16 13 81.3 2 12.5 1 6.3 73 45 61.6 16 21.9 12 16.4 

S. 

haemolyticus 

11 10 90.9 0 0 1 9.1 9 5 55.6 3 33.3 1 11.1 14 4 28.6 6 42.9 4 28.6 

S. hominis 15 14 93.3 0 0 1 6.7 12 9 75 2 16.7 1 8.3 31 22 71 9 29 0 0 

S. 

lugdunensis 

7 4 57.1 3 42.9 0 0 1 1 100 0 0 0 0 9 0 0 6 66.7 3 33.3 

S. 

saprophyticus 

8 7 87.5 1 12.5 0 0 7 4 57.1 0 0 3 42.9 2 0 0 2 100 0 0 

S. warneri 8 7 87.5 0 0 1 12.5 8 3 37.5 3 37.5 2 25 9 0 0 7 77.8 2 22.2 

S. species 4 0 0 0 0 4 100 4 0 0 0 0 4 100 18 0 0 12 66.7 6 33.3 

S. flexneri 14 13 92.9 0 0 1 7.1 9 9 100 0 0 0 0 1 
 

0 
 

0 1 100 

S. sonnei 11 11 100 0 0 0 0 7 7 100 0 0 0 0 4 1 25 
 

0 3 75 

S. species 
              

5 
    

5 100 

Total 614 602 98 4 0.7 8 1.3 425 393 92.5 13 3.1 19 4.5 1314 1174 89.3 68 5.2 72 5.5 
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Table 3.13 Coagulase negative Staphylococcus species subgroup identification, based on phylogenetic and biochemical properties of 

Staphylococcus species 

CoNS subgroups Training Validation Test 
 

Total Correct 

(n, %) 

No ID 

(n,%) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

cohnii group 11 11 100 0 0 0 0 7 6 85.7 1 14.3 0 0 1 0 0 1 100 0 0 

epidermidis group 34 33 97.1 1 2.9 0 0 25 22 88.0 2 8.0 1 4.0 102 69 67.6 23 22.5 10 9.8 

haemolyticus group 26 25 96.2 0 0 1 3.8 21 15 71.4 5 23.8 1 4.8 45 27 60 14 31.1 4 8.9 

lugdunensis group 7 4 57.1 3 42.9 0 0 1 1 100 0 0 0 0 9 0 0 6 66.7 3 33.3 

saprophyticus group 11 9 81.8 1 9.1 1 9.1 8 6 75.0 0 0 2 25.0 2 0 0 2 100 0 0 

warneri group 8 7 87.5 0 0 1 12.5 10 4 40 3 30 3 30 11 0 0 9 81.8 2 18.2 

Total 86 78 90.7 5 5.8 3 3.5 65 48 73.8 10 15.4 7 10.8 170 96 56.5 55 32.4 19 11.2 
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Table 3.14 Non-represented Gram-negative genera identification results in the test set 

  Total Correct ID 

(n, %) 

No ID 

(n, %) 

Mis-ID 

(n, %) 

Brevundimonas 2 0 0 0 0 2 100 

Chryseobacterium 8 0 0 2 25 6 75 

Cupriavidus 2 0 0 1 50 1 50 

Delftia 1 0 0 0 0 1 100 

Edwardsiella 1 0 0 1 100 0 0 

Kingella 3 0 0 0 0 3 100 

Moraxella 1 0 0 1 100 0 0 

Morganella 12 0 0 5 41.7 7 58.3 

Ochrobactrum 7 0 0 4 57.1 3 42.9 

Pantoea 10 0 0 7 70 3 30 

Paracoccus 2 0 0 2 100 0 0 

Pasteurella 1 0 0 0 0 1 100 

Plesiomonas 4 0 0 2 50 2 50 

Prevotella 1 0 0 0 0 1 100 

Providencia 3   0 2 66.7 1 33.3 

Raoultella 4 0 0 3 75 1 25 

Sphingomonas 2 0 0 0 0 2 100 

Yersinia 4   0 3 75 1 25 

TOTAL 68 0 0 33 0.49 35 0.51 
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Figure 3.9 PCA of transflection FTIR spectra of Corynebacterium isolates, confirming spectral 

difference between outlier (red) and correctly identified isolates (blue). 

 

3.4.2.1  Limitations of transflection FTIR spectral-based microbial identification system 

Although transflection FTIR spectroscopy has the potential to be implemented in 

laboratories as a routine microbial identification method, there are a few limitations to the 

technique that must be addressed. In this study, main issues in the spectral database arose in three 

parts: a) misidentification of Bacillus isolates, b) lack of identification for some of the represented 

genera and species, in particular, the genera within Enterobacteriaceae family, and the species 

identification of CoNS isolates, and c) misidentification of isolates that are not well represented, 

or represented at all in the spectral database. There are potential explanations that address these 

results; 1) the lack of spectral representation in database, 2) high spectral variability within the 

categorized group that could not be accounted for in the database, and 3) lack of spectral variability 

between groups of interest. While some genera were spectrally unique enough to correctly identify 

them with less than 10 isolates present in the database, such as Corynebacterium and Micrococcus, 

(9 and 5 isolates respectively), some genera and species had poor identification results, despite 

having many more isolates represented in the database. This indicates that the minimum required 

isolate (and spectral) representation in the database is genus and species dependent.  
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3.4.2.1.1 Effect of increased isolate representation in the spectral database 

One way to determine if identification was to increase the representation of genera and 

species in the spectral database. Although the proportions of all genera and species in the database 

could not be equal, an updated database with increased numbers of isolates per genera/species was 

developed, With the remaining isolates that were not added to the database, the identification 

results were determined and compared to the original results. Isolates of all genera and species 

with the exception of Achromobacter, Escherichia, Proteus and Salmonella, and E. faecalis, E. 

faecium and S. aureus were added to the database. Representation of E. faecalis, E. faecium, S. 

aureus, and Salmonella species were decreased in the updated database, to offer a more balanced 

proportion in representation. One of the concern was an over representation of certain species such 

as E. faecalis, E. faecium and S. aureus, compared to genera such as Serratia, Citrobacter and 

Enterobacter which represented 0.2 % (n = 8), 5.3 % (n = 21) and 5.6 % (n = 22) of the GN bacteria 

spectral database respectively. Salmonella isolates alone made up 24.7 % (n = 97) of the spectra 

representing GN bacteria in the spectral database. Due to the low number of isolates of Serratia 

marcescens (n = 16) and E. gallinarum (n = 18) available, they were removed from the spectral 

database. 

The adjustment of genus and species representation in the spectral database showcased that 

the with a more balanced representation, identification can be improved. Detailed results from the 

updated spectral database are available in the Appendix (Supplementary Table 1 - Supplementary 

Table 4).The discrimination of isolates in the training sets were improved for several GN genera, 

such as Aeromonas (from 64.3 % to 78.9 %), Burkholderia (from 84.6 % to 90 %), Citrobacter 

(from 57.1% to 69.2%), Enterobacter (from 72.7% to 80.0%), Escherichia (from 89.8 % to 

91.5 %), Klebsiella (from 95.1 % to 97.9 %), Pseudomonas (from 84.8 % to 87.5 %), Shigella 

(from 96 % to 96.7 %), and Stenotrophomonas (from 80.0 % to 90.0 %). Despite no changes in 

the number of isolates in training, Escherichia isolates in the training set improved in identification 

from other Enterobacteriaceae genera, most likely as a result of increased representation of the 

other genera. Salmonella was the only GN genus that had decreased discrimination performance 

in the updated database (90.7 % to 83.3 %) that may be attributed to the reduced representation 

from 97 to 60 isolates. The decreased performance for Salmonella identification was confirmed 

through lower correct identification rates in validation and test set combined (80.8 %, n = 59 in 

original spectral database 75.5 % n = 83 in updated spectral database). All the isolates that were 
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initially incorrectly identified or not identified had the same identification results using the updated 

database. The original database had 9 isolates (9.3 %) that could not be identified at the GN genus 

level in the training set, and these isolates remained as outliers in the training (n = 7) and test          

(n = 2) set of the updated database. Despite having a training set that improved in discrimination, 

Escherichia isolates in the validation and test set performed worse in the updated database, with 

increase in isolates that could not be identified past GN (n = 18 to n = 22). Enterobacter isolates 

had overall improved identification in both training and validation/test set after increasing 

representation in the database from 22 to 30 isolates.  

All CoNS subgroups had improved identification rates in the validation/test sets after 

increasing their represented isolates in the training set except lugdunensis group and cohnii group 

which had decreased and the same correct identification performances respectively. All CoNS 

subgroups except lugdunensis group performed worse in terms of correct identification rates in the 

training set in the updated database. However, the improved identification at this level for the 

validation and test sets combined show that the updated database was more robust and able to more 

reliably predict isolates to the correct subgroup within the CoNS. The results show that with further 

addition of isolates into the database to represent various CoNS species would improve the 

reliability and robustness of the transflection FTIR spectral database. The number of isolates that 

were not-identifiable past CoNS and misidentified at the subgroup level decreased with the 

updated database, resulting in 36 and 16 isolates less respectively for not-identified and 

misidentified results. Warneri group did not have improved identification results in the 

validation/test set, as only two isolates were consistently correctly identified. 

There were 6 misidentified isolates based on the provided identification results, that were 

3 pairs of isolates had two isolates originating from the same sample, indicated by a dashed number 

(i.e. -1, -2, -3, etc.). These dashed numbers indicate that multiple colonies of different morphology 

were isolated from the same sample and identified. These 6 incorrectly identified isolates had been 

predicted with high confidence as the corresponding other dashed number isolate identification 

from the same sample (Supplementary Table 5). For example, sample XVIII291-2 was identified 

as Acinetobacter, despite being identified as Klebsiella pneumoniae by MALDI-TOF MS, the 

reference method. However, its counterpart sample, XVIII291-3 (original identification 

Acinetobacter baumanii complex) was identified as Klebsiella by the spectral database both in the 

original and updated versions of the database. Both of these isolates were predicted by the spectral 
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database with high probability over 97 %. The results did not change after the update in the 

database. Likewise, across the training, validation and test sets, there were 198 isolates (7.8 %) 

that had predicted the same results incorrectly (or a lack of identification at the genus or species 

level) using the original and updated databases. At this time, isolates could not be reanalyzed for 

confirmation. 

One limitation in this study was that there were insufficient number of isolates for many 

genera evaluated, making it difficult to conclude whether the database truly improved or not. For 

example, Klebsiella had improved discrimination in the training set, after increasing the number 

of isolates representing the genus from 41 to 48. However when looking at the validation and test 

sets, there were 4 isolates that were incorrectly identified as another GN genus, and another 4 that 

were not furthered identified past Enterobacteriaceae by both the original and updated spectral 

databases. Only one isolate that was originally identified as Enterobacteriaceae was correctly 

identified as Klebsiella with the updated spectral database When observing each isolate’s results, 

the incremental improvement in the identification is noticeable. Yet, when reporting in percentage, 

the percent correct in the validation and test sets combined decrease from 79.1 % to 77.8 %, as a 

result of reduced overall tested isolates (n = 43 to n = 36). Another example is Citrobacter isolates. 

There were only 33 isolates total, and therefore when increasing the number of isolates in the 

spectral database, the test/validation set decreased from 12 to 7 isolates, making it difficult to 

determine if the addition of 5 isolates in the training set improved the Citrobacter identification 

capabilities of the database. In the training set, the Citrobacter identification improved with 

increased isolates, where 3 isolate that originally could not be identified past GN was correctly 

identified. There was only one isolate that correctly identified as Citrobacter in the validation and 

training set in both original and updated database. The updated spectral database had 3 

misidentified isolates, compared to 2 in the original spectral database. Both Shigella flexneri and 

S. sonnei had decreased identification performance with the updated spectral database. However, 

the incorrect isolates were consistent between the two databases, and the decrease in correct 

identification rate was due to the smaller number of isolates tested in validation/test, as a result of 

increasing representation in the training set. 

Overall, the addition of isolates into training had improved the identification results. This 

should be further evaluated when more spectra acquired from new samples are available to test the 

performance of the spectral database. A key thing to note also from the updated database, was that 
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the decrease in representation of S. aureus, E. faecalis and E. faecium did not affect the capability 

of the spectral database to identify these three species correctly. All three isolates had over 98 % 

correct identification rates in the validation/test sets, with n = 1022,  n = 85 and n = 519 respectively. 

3.4.2.1.2 Misidentification of Bacillus isolates: A case of high spectral and biochemical 

differences within the genera 

Bacillus isolates had low correct identification based on the developed spectral database. 

Errors occurred at multiple levels of the database, starting off with incorrect identification at the 

Gram-level, followed by misidentification at the genus level. Bacillus species are known to be 

diverse in their phenotype, with some species being Gram variable [39, 40]. The variability in 

Bacillus species morphology and phenotypic characteristics was also reflected in the FTIR spectra 

(Figure 3.10). Three Bacillus isolates in the test set were incorrectly predicted at the Gram-level, 

identified as Gram-negative isolates. The three-dimensional PCA plot (Figure 3.11) based on data 

points in the spectral region 1350-800 cm-1, displayed how relative to spectra of Gram-positive 

isolates (green) and Gram-negative isolates (red), the spectra of the three Bacillus outlier isolates 

(purple) are not similar to either groups. However, due to the nature of binary SVM analyses, 

spectra were required to be predicted as one of the two classes. This resulted in the isolates 

predicting as Gram-negative bacteria, since it was spectrally more similar to the spectra of Gram-

negative bacteria than to Gram-positive bacteria in the database. These outlier isolates were not 

identified to the species level by reference methods, and therefore, it was not possible to further 

analyze and determine whether the GN identification by the FTIR spectral database reflected the 

Gram-variable nature of these Bacillus isolates [39].  

Similarly to the Gram-negative identification, some Bacillus species were spectrally more 

similar to Staphylococcus species, rather than to other Bacillus isolates (Figure 3.12) The 

difference was visible to the naked eye in the raw FTIR spectra when comparing Bacillus cereus 

group/B. megaterium and B. subtilis/B. circulans at peaks around 1740 cm-1, related to the C=O 

stretching of carbonyl bands (Figure 3.10). This is in concordance with the groupings of Bacillus 

species based on morphology and recent taxonomic development, which splits the Bacillus genus 

into two groups, the B. subtilis group, which includes B. circulans, B. coagulans, B. lichenformis, 

B. pumilus and B. subtilis, and the B. cereus group, including species such as B. anthracis, B. 

cereus, B. megaterium, B. mycoides and B. thuringiensis [39]. B. circulans and B. subtilis spectra 
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have more spectral features that are similar to Staphylococcus (Figure 3.12). This was further 

demonstrated in Figure 3.13 where the HCA (cosine distance metric and ward linkage type) in the 

region 1350-800 cm-1 showcased spectral similarity of B. circulans and B. subtilis to S. aureus 

rather than to B. cereus group isolates. As per Figure 3.10 and Figure 3.12, the spectra of one of 

the incorrectly identified Bacillus species isolate is likely to be an isolate that is not part of the 

Bacillus cereus group. Despite understanding that there are spectral similarities between 

Staphylococcus species and some Bacillus species, the lack of B. subtilis group isolates available 

during data acquisition (n = 1) prevented the development of an additional analysis level that 

allows for Bacillus species identification. Furthermore, 12 isolates (34.3%) were only identified 

as Bacillus species by the reference method(s), thereby hindering the use of these isolates for 

species specific classification and identification. By adding more Bacillus isolates that have been 

identified to the species level into the database, it may be possible to predict Bacillus isolates 

correctly.  

Spectral differences between averaged FTIR spectra of GP genera and species that were 

present in the spectral database were showcased, both in broad region (1350-800 cm-1) and with 

region selection to maximize difference between the genera/species (Figure 3.14). GP genera 

showcased that with the exception of Bacillus species, spectral differences between the genera 

were prominent. 
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Figure 3.10 Overlay of raw transflection FTIR spectra of Bacillus species 

 

Raw average FTIR spectra of B. cereus group and B. megaterium isolates in blue, overlayed with raw average FTIR spectra of B. 

circulans and B. subtilis isolates (red). Overlay spectra show differences in features, notably the 1738 cm-1, related to lipids [41]. 1745 

cm-1 C=O Stretching attributed to lactam of muramic acid, or saturate esters (covalent link between teichoic and teichuronic acid) in 

Bacillus subtilis [42].  
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Figure 3.11 Three-dimensional principal component plot visualizing the spectral dissimilarity of 

FTIR spectra acquired from Bacillus isolates (purple dots, circled in red) to both Gram-negative 

(red dots) and Gram-positive (green dots) 

 

Three Bacillus isolates that were incorrectly predicted at the Gram-level observed unique features 

in the spectral region 1350-800 cm-1. The three-dimensional PCA plot shows how relative to 

spectra of Gram-positive bacterial isolates (green) and Gram-negative bacterial isolates (red), the 

spectra of the three Bacillus isolates are not similar to either groups.   
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Figure 3.12 Overlay of raw transflection FTIR spectra of Bacillus circulans (red on top figure,), 

Bacillus subtilis (red on top figure) and Staphylococcus aureus (green). Spectrum of outlier isolate 

(red, bottom figure) showcasing spectral similarity to S. aureus rather than Bacillus cereus and 

Bacillus spectra (blue spectra, bottom figure) 
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Figure 3.13 Bacillus species spectral difference based on spectral region 1350-800 cm-1 visulaized 

in a dendrogram generated by HCA indicate spectral similarity of S. aureus (blue), B. circulans 

(Orange) and B. subtilis (Purple). 
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Figure 3.14 HCA of averaged FTIR spectra of GP genera in selected regions (without (left) and 

with (right) the use of forward search) between spectral region 1350-800 cm-1, showcasing the 

relative similarities and dissimilarities that enable for successful GP genera identification by FTIR 

spectroscopy. 

 

Averaged spectra of Bacillus cereus and B. megaterium are not similar to Bacillus circulans-

subtilis average spectrum, which is clustering closest to the averaged Listeria spectra. 
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3.4.2.1.3 Misidentification of Gram-negative bacterial isolates at the genus level 

There were 7 Enterobacteriaceae genera in the transflection FTIR spectral database. At the 

genus level, concordant classification in the training set, relative to reference methods ranged from 

57.1 % to 96 %, where Citrobacter and Enterobacter performed particularly poorly. The 

concordance between the FTIR spectral database and reference methods for identification in the 

validation and test sets were lower than the training set, which indicates poor modelling in the 

training set, potentially as a result of overfitting. This portion of the database proved to be 

unreliable for robust identification. Similarly to the spectral analyses conducted for GP genera and 

species, averaged GN genera and species spectra were visualized in HCA to showcase their relative 

spectral similarities in both broad and specific regions (identified by forward region search). In 

Figure 3.15, HCA showed that Klebsiella species are spectrally unique from other 

Enterobacteriaceae genera, with selected spectral regions from 1350-800 cm-1 with (left figure) 

and without (right figure) the 2800-3000 cm-1, which corresponds to the C-H absorption, strongly 

associated with lipids [43]. With spectral region selection, there were spectral regions that enabled 

discrimination amongst the Enterobacteriaceae genera. It is interesting to note that the addition of 

the C-H region (2800-3000 cm-1) increased spectral difference between spectra of E. coli and 

Citrobacter species, while spectral difference between Shigella and E. coli decreased. Additionally, 

the spectral difference between Citrobacter and Enterobacter decreased with the added C-H region. 

Citrobacter has great phenotypic variability as well., with atypical strains of C. freundii frequently 

identified. It was reported previously that there are strain types that are more similar to Salmonella 

and Escherichia coli [44, 45]. Citrobacter is reported to cause false positive results for Salmonella 

detection in foods, due to similarities in the metabolic and antigenic properties [46]. Therefore, it 

is not surprising that the spectral similarities between these Enterobacteriaceae genera are high, 

and resulted in high misidentification rates. 

Additionally, in Figure 3.16, spectral difference between all GN genera that were part of 

the database were visualized in HCA using spectral regions identified from forward search 

algorithm. Although most non-Enterobacteriaceae genera were clustered away from 

Enterobacteriaceae genera, there were some exceptions. First, Aeromonas spectra were found in a 

cluster closest to spectra of genera such as Shigella and E. coli. Based on broad spectral regions, 

1800-800 cm-1, and 2800-3000 cm-1, Aeromonas spectra were most similar to Salmonella spectra 

in HCA (data not shown). Aeromonas is known to have many species that are genotypically and 
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phenotypically diverse. Many of its species, including A. hydrophila, A. veronii and A. caviae, 

which are species that were represented in the database, are known to have open pangenomes, and 

contain high proportions of accessory genes (62 %, 53 %, 51 % respectively). This is known to be 

related to high variation in virulence genes and antimicrobial resistance profiles [47]. Additionally, 

it is known that identification based on phenotype is difficult for Aeromonas isolates, as it is 

recognized to be phenotypically similar to Vibrio, and result in low concordance to phylogenetic 

identification methods such as rpoB sequencing [48]. It is likely that Aeromonas representation in 

a database constructed with 14 Aeromonas isolates was underrepresented in trying to achieve 

robust identification. Despite most errors that occurred in for Aeromonas isolates consisted of 

identification as Enterobacteriaceae or Salmonella, no reports have suggested that there are 

biochemical or genotypic similarities between Aeromonas and Salmonella.  

Another genus that showed spectral similarity to Enterobacteriaceae was non-aeruginosa 

Pseudomonas species. Although in the database structure, discrimination between 

Enterobacteriaceae and non-Enterobacteriaceae genera was built-in as an intermediate step for GN 

genera identification, based on spectral region selection it is now apparent that discriminating 

bacterial isolates based on family classification may not be suitable for some genera. Furthermore, 

for genera like Serratia and Acinetobacter, which were not part of the region selection algorithm, 

despite not being a part of the Enterobacteriaceae family, they were observed to be more spectrally 

similar to them than to non-Enterobacteriaceae bacteria.  
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Figure 3.15 HCA of averaged Enterobacteriaceae genera with spectral regions identified by forward search algorithm in regions 

1350-800 cm-1 and 2800-3000 cm-1 (left) and 1350-800 cm-1 (right). 

 

 

Enterobacteriaceae genera have spectral differences that should enable discrimination between them. The discrimination was not as 

successful when doing region selection in 1350-800 cm-1, without the lipid regions 2800-3000 cm-1. This indicates that the lipid regions 

are more critical in discrimination between Gram-negative bacteria. This coincides with the fact that Gram-negative bacteria have a 

lipid layer as part of the cell membrane/wall. Without the use of the lipid regions, the discrimination between Citrobacter and 

Escherichia are less obvious. Klebsiella and Shigella isolates appear to be the most spectrally distinct from other Enterobacteriaceae 

genera 
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Figure 3.16 HCA of averaged GN genera with regions identified by forward search algorithm in regions 1350-800 cm-1 and 2800-

3000 cm-1 

 

Although the HCA includes Serratia, Acinetobacter, Burkholderia, and Proteus, these genera were not included in the region selection 

process. While some genera such as Achromobacter, Burkholderia, Pseudomonas (aeruginosa) and Stenotrophomonas are spectrally 

unique and do not cluster with Enterobacteriaceae genera isolates, genera such as Proteus, Serratia and Aeromonas clustered within 

the Enterobacteriaceae genera.   
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3.4.2.1.4 Misidentification of isolates that are underrepresented in the database 

Although the spectral database was developed using genera and species that are commonly 

associated with clinical and food-industry settings, there are many microorganisms that must be 

identified when identifying the causative agent of a patient’s infection. Because these rarely 

occurring or newly emerging microorganisms are difficult to encounter, the number of isolates that 

were available for data collection in this experiment was small. Lactic acid bacteria such as 

Lactobacillus and Lactococcus isolates were misidentified with medium to high confidence level 

as Enterococcus species. These errors, that result from high biochemical and spectral similarity 

can only be resolved through the addition of the underrepresented genera. It is not surprising at all 

that isolates of these genera were misidentified as Enterococcus species, as they are all part of the 

lactic acid bacteria group. Successful discrimination between Enterococcus species and other 

lactic acid bacteria have been demonstrated previously, indicating that with sufficient 

representation of these genera, the database can also successfully identify Lactobacillus and 

Lactococcus isolates, thereby reducing false positive identification of Enterococcus species 

[35]The lack of representation in the spectral database is a problem which can be addressed 

relatively easily, and improved upon over time through the spectral addition of well-characterized 

isolates of more (new and rare) genera and species. Emerging and rare microorganisms can 

increasingly be identified as databases are updated periodically. Other techniques such as MALDI-

TOF MS, which also rely on the use of reference databases for identification, also run into this 

problem. Improved identification of clinically relevant yeast species using ATR-FTIR 

spectroscopy-based technique was previously demonstrated through the expansion of the database 

[13]. In the current database, only 7 Gram-positive, 14 Gram-negative and 1 yeast genera were 

represented, limiting the use for rare microorganisms in the clinical and food-industry settings. 
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3.5 Conclusion 

In this study, transflection FTIR spectral acquisition mode was first compared in sample 

preparation, spectral acquisition and spectral quality relative to ATR and transmission FTIR 

spectral modes, which are the two commonly used spectral acquisition modes for microbial studies. 

Transflection spectral acquisition, although not as popular as ATR and transmission modes, 

showcased high spectral quality and discriminatory capabilities that were comparable to ATR and 

transmission modes, suitable for microbial identification and discrimination purposes. This was 

further confirmed through the development of a transflection-FTIR spectral database, using spectra 

acquired from a limited number of genera and species of Gram-positive and Gram-negative 

bacteria and yeast isolates that are relevant in clinical and food microbiology. The scope of this 

study was to evaluate whether developing a spectral database using transflection FTIR data was 

possible, and to determine possible limitations in this approach. Based on the current study, a 

spectral database developed using a series of PCA and SVM was able to achieve highly concordant 

identification for species such as Staphylococcus aureus, Enterococcus faecalis and Enterococcus 

faecium relative to reference methods such as VITEK 2 (biochemical assays), and MALDI-TOF 

MS. The database also showed that with lacking representation in the database, the confidence 

level as well as the number of correctly identified isolates deteriorate and become less reliable. 

However, with increased representation in the spectral database, identification accuracy and 

robustness can be improved.  
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Connecting Statement 

Transflection-FTIR spectral acquisition mode showcased that it has the capability to collect FTIR 

spectra with sufficient and comparable spectral quality to those acquired by transmission and ATR 

modes. Furthermore, the spectral database developed using transflection-FTIR spectra showcased 

that with sufficient representation (number of isolates required in database is genus and species 

dependent), isolates can be identified with high confidence, robustly. In the next chapter, FTIR 

spectroscopy was evaluated for its capability to identify MRSA, through the combined use of the 

spectral database and antibiotic containing media.   
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Chapter 4.  Use of Antibiotic-Containing Agar for Rapid MRSA Identification by FTIR 

Spectroscopy  

4.1 Abstract 

Staphylococcus aureus is a leading cause of bacterial infections in humans, ranging from skin, 

wound, and surgical-site infections to potentially life-threatening invasive endocarditis and 

bloodstream infections. It is critical to rapidly identify methicillin-susceptible (MSSA) and 

methicillin-resistant S. aureus (MRSA) for appropriate treatment of invasive infections, as well as 

for detecting new colonization in hospitalized patients. Current MRSA screening method for 

surveillance purpose utilizes a combination of polymerase chain reaction (PCR) and chromogenic 

agar, where the techniques detect the MRSA with the presence of the mecA gene, relating to 

methicillin-resistance, and color change on the chromogenic agar. The chromogenic agar is a 

selective and differential medium that is expensive relative to generic culture medium, due to the 

addition of specific chromogens that enable visual detection of MRSA. Fourier transform infrared 

(FTIR) spectroscopy has successfully demonstrated rapid identification between S. aureus and 

coagulase-negative staphylococci (CoNS) isolates through the use of a FTIR spectral database. In 

this study, we use this spectral database in conjunction with a modified growth media protocol, 

employing the antibiotic cefoxitin, to inhibit growth of MSSA, for FTIR-spectroscopy based 

MRSA identification. Modified blood agar plates were made using Columbia agar with 5 % sheep 

blood supplemented with colistin (10 µg/mL) and nalidixic acid (15 µg/mL) (CNA) to inhibit 

Gram-negative bacteria and with cefoxitin at concentrations of 4 µg/mL (4FOX) and 8 µg/mL 

(8FOX). 229 staphylococcal isolates that were previously identified by MALDI-TOF MS, were 

cultured on BAP, 4FOX-CNA-BAP, 8FOX-CNA-BAP and MRSA selective chromogenic agar. 

Isolated colonies were deposited onto IR-reflective slides for FTIR spectral acquisition and 

identified as S. aureus or CoNS by matching their spectra against the FTIR spectral database. 

Isolates were identified as MRSA if colonies growing on cefoxitin-containing agar were spectrally 

identified as S. aureus. All S. aureus (n = 99) and CoNS (n = 130) isolates were correctly identified 

using the FTIR spectral database. The modification in media made by the addition of antibiotics 

did not affect the identification of S. aureus from CoNS. In reference to VITEK 2 AST results, 

MRSA was identified with 100 % sensitivity and 95.3 % specificity on 4FOX-CNA-BAP after 24 

hours of incubation, achieving 98 % categorical agreement. 100 % sensitivity and 91.1 % 

specificity was achieved after 24 hours incubation when isolates were grown on 8FOX-CNA-BAP. 
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These results were comparable to those obtained with MRSA selective chromogenic agar (100 % 

sensitivity and 97.8 % specificity). This FTIR spectroscopy based method for MRSA identification 

using 4 µg/mL cefoxitin achieved high sensitivity and specificity for MRSA through accurate 

identification of S. aureus isolates on cefoxitin-containing agar. As an MRSA screening tool, this 

methodology may provide an alternative to the use of costly chromogenic media at substantially 

lower cost. 
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4.2 Introduction 

Staphylococcus aureus is a commensal microorganism which can become invasive, 

causing infections in skin, soft tissues, organs, and bloodstreams. It is known to be one of the most 

common pathogens in both health-care and community associated infections [1]. Accurate and 

rapid identification of Staphylococcus aureus, especially those that are methicillin-resistant 

(MRSA) is critical in making the appropriate treatment decisions. Resistance to methicillin in          

S. aureus is becoming increasingly prevalent as the use of antibiotics became more frequent in 

treating both humans and animals. MRSA is listed as one of many antibiotic resistant organisms 

that are of concern to the World Health Organization (WHO), due to its presence in five of six 

WHO regions with national reports of 50% resistance or more [2]. MRSA is one of the most 

prevalent nosocomial pathogens in Canada along with vancomycin resistant enterococci (VRE) 

and Clostridium difficile. In the USA, it is the leading cause of hospital acquired infection (HAI), 

with approximately 80,000 severe MRSA infections per year, reported in 2013 [3]. Centers for 

Disease Control and Prevention (CDC) reported an estimated 323,700 cases of MRSA related HAI 

and 10,600 deaths in 2017. Despite the decrease in overall MRSA infections between 2005 and 

2016 (17 % decline per year), decline is suggested to have slowed, with no change between 2013 

and 2016 for hospital acquired MRSA bloodstream infections [4]. MRSA colonization and 

infection are both known to increase morbidity and mortality of patients. Furthermore, infections 

caused by antibiotic resistant microorganisms result in increased risk of worse clinical outcome 

and death [2, 3]. Therefore, it is critical that appropriate infection control is implemented and the 

transmission of MRSA is minimized within health care facilities between the environment, 

healthcare personnel and patients. 

Current identification methods of Staphylococcus species and their resistance to antibiotics 

Current identification methods for MRSA and MSSA relies on the combined use of 

phenotypic and genotypic technologies. MALDI-TOF MS is a popular technology in rapid 

microbial identification due to its ease of sample preparation and use of system [5]. Although it is 

an excellent and reliable method for identification, it is not approved for detection of antimicrobial 

resistance. Therefore, additional antibiotic susceptibility testing, such as microbroth dilution or 

disk diffusion are needed. This requires an additional 16-24 hours to achieve the AST results. 

Genotypic methods, such as polymerase chain reaction (PCR) is extremely useful in screening, as 
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it looks for specific target genes that are unique to the organisms of interest. Furthermore, it can 

be used as confirmation for presence of genes related to antibiotic resistance. PCR identifies the 

presence of specific gene sequences, such as nuc and mecA genes, which are used to determine if 

the sample is S. aureus and methicillin resistant respectively [6]. Although multiplex PCR can 

identify MRSA in a single test, the test is expensive, hindering its use for routine screening, 

especially in smaller scale laboratories [7]. Furthermore, variants of mecA gene, such as mecC, 

which only have 70% homology to mecA, makes PCR susceptible to misidentifying these isolates 

as MSSA [8]. Chromogenic media is a selective and differential media, which allows visual 

identification of target pathogens like MRSA on agar plates. Chromogenic agar incorporates 

chromogens that can be hydrolyzed by enzymes possessed by target pathogens, to produce desired 

colors. In order to reduce false positive identification, the media also incorporates inhibitors and 

antibiotics (to inhibit growth of unwanted organisms), or other chromogens to visually differentiate 

from target pathogens. Chromogenic agar for MRSA contains cefoxitin to eliminate the growth of 

MSSA, which allows for MRSA identification through positive growth on the medium. It is 

particularly useful as a screening tool, as it can be inoculated directly from swabs, or after an 

enrichment broth incubation. This has the ability to detect MRSA between 18 to 48 hours from 

acquiring clinical or screening samples [9, 10]. Laboratories typically use a combination of these 

techniques, as a way to confirm the results. 

FTIR spectroscopy for microbial identification and discrimination based on antibiotic-

resistance 

FTIR spectroscopy is a rapid, and reagent-free microbial identification method. Like the 

MALDI-TOF MS, the technique is based on interrogating a spectral database to determine the 

identity of unknown isolates. FTIR spectra is the resultant fingerprint based on the biochemical 

makeup of the isolates. Various spectral regions can be exploited to analyze for species and sub-

species level identification as well as strain typing [11-13]. Despite successful reports of 

microorganism identification using FTIR spectroscopy, there is a lack of report on successful 

discrimination between antibiotic resistant and sensitive microorganisms. Discrimination between 

glycopeptide intermediate and methicillin resistant S. aureus using FTIR spectroscopy combined 

with multivariate statistical analyses is one example of successful spectral discrimination based on 

antimicrobial resistance characteristics [14]. The use of machine-learning algorithms, support 

vector machine and artificial neural network were reported for discrimination between extended-
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spectrum β-lactamase (ESBL) producing Escherichia coli and ESBL-negative isolates, as well as 

between E. coli isolates that are resistant and sensitive to antibiotics [15-17]. The limited number 

of studies published to date indicate the difficulty faced by FTIR spectroscopy in reliably 

discriminating antibiotic-resistant isolates from sensitives ones. Reported studies were lacking in 

sample size, and therefore is likely that the isolates used in the study did not encompass and 

represent the diversity in resistance-mechanisms that the isolates can possess, and the variability 

that pertain to non-resistance related sub-species characteristics [17, 18]. This study focused on 

whether identification of MRSA was possible through the combined use of a selective media and 

FTIR spectroscopy. The idea was to inhibit the growth of MSSA through the addition of cefoxitin 

into the media, and identifying S. aureus, from CoNS using the previously developed transflection 

FTIR spectral database. The results obtained from FTIR spectroscopy were compared to that of 

MALDI-TOF MS, the reference identification method, and false-positive and false-negative rates 

were determined for MRSA identification based on AST results based on minimum inhibition 

concentrations provided by VITEK 2 AST. 

4.3 Materials and Methods 

Clinical Staphylococcus isolates used for evaluation of the FTIR spectroscopy based 

identification of MRSA 

Two hundred thirty five staphylococcal isolates (Table 4.1) from nasal screening, positive 

blood and sterile body fluid samples were prepared for FTIR spectral acquisition through two 

consecutive culturing from frozen glycerol stocks on blood agar plates (BAP). Identification 

results were provided by MALDI-TOF MS, and resistance to oxacillin were reported using VITEK 

2 AST for staphylococcal isolates (bioMérieux SA, Marcy l’Étoile, France), to classify samples as 

methicillin-resistant or sensitive. 
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Table 4.1 Source and methicillin-resistance status of staphylococcal isolates used in the study 

Genus Species Resistance Total 

Isolates 

Positive 

Blood 

Sterile 

Body 

Fluids 

Nasal 

Screening 

Staphylococcus aureus MRSA 51 13 13 25 

Staphylococcus aureus MSSA 32 16 16 0 

Staphylococcus capitis MRS 6 5 1 0 

Staphylococcus capitis MSS 19 11 8 0 

Staphylococcus caprae MSS 2 1 1 0 

Staphylococcus cohnii MRS 1 0 1 0 

Staphylococcus epidermidis MRS 37 28 9 0 

Staphylococcus epidermidis MSS 23 13 10 0 

Staphylococcus haemolyticus MRS 10 4 6 0 

Staphylococcus haemolyticus MSS 3 1 2 0 

Staphylococcus hominis MRS 12 7 5 0 

Staphylococcus hominis MSS 15 10 5 0 

Staphylococcus lugdunensis MRS 3 1 2 0 

Staphylococcus lugdunensis MSS 7 4 3 0 

Staphylococcus simulans penicillin 

resistant 

1 0 1 0 

Staphylococcus species MRS 3 3 0 0 

Staphylococcus species MSS 5 5 0 0 

Staphylococcus warneri MSS 5 0 5 0 

Total 235 122 88 25 
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Composition of media used for evaluation on the effect on FTIR spectroscopy based 

identification 

Modified Columbia agar with 5 % sheep blood (BAP) was prepared as described in Table 

4.2 using the base Columbia agar powder (Oxoid, Nepean, ON), defibrinated sheep blood 

(QuadFive, Ryegate, MT, USA), cefoxitin salt (MilliporeSigma, St. Louis, MN, USA), and 

Strep/Staph Supplement (Oxoid, Nepean, ON). Additionally, commercially prepared BAP (Oxoid, 

Nepean, ON), and BBL ChromAgar MRSA II (Becton, Dickenson and Company, Franklin Lakes, 

New Jersey, USA) were used, to compare the spectral features and confirm antibiotic resistance 

respectively. 

 

Table 4.2 Formula of tested culture media in the study 

Code Base [FOX] (µg/ml) [CNA] 

BAPO Columbia with 5 % 

Sheep blood 

0 0 

BAPT Columbia with 5 % 

Sheep blood 

0 0 

4FOX Columbia with 5 % 

Sheep blood 

4 0 

4FOX_CNA Columbia with 5 % 

Sheep blood 

4 15 µg/ml Nalidixic Acid 

10 µg/ml Colistin 

8FOX Columbia with 5 % 

Sheep blood 

8 0 

8FOX_CNA Columbia with 5 % 

Sheep blood 

8 15 µg/ml Nalidixic Acid 

10 µg/ml Colistin 

CNAO Columbia with 5 % 

Sheep blood 

0 10 µg/ml Nalidixic Acid 

10 µg/ml Colistin 

CNAT Columbia with 5 % 

Sheep blood 

0 15 µg/ml Nalidixic Acid 

10 µg/ml Colistin 

Chrome BD BBL ChromAgar 

MRSA II 

5.2 7.52mg combined 
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FTIR spectral acquisition and processing parameters used for microbial identification 

Using sterile 1µl disposable loops, isolated colonies were deposited onto IR reflective E-

glass (Kevley Technologies, Chesterland, OH, USA) as thin films and air-dried. Using the Cary 

630 FTIR spectrometer (Agilent Technologies, Santa Clara, CA, USA) coupled with a SurveyIR 

microscope (Czitek, Danbury, CT, USA) with 1 mm aperture, triplicate spectra were acquired per 

isolate, per media type. Using MicroLab Software (Agilent Technologies, Santa Clara, CA, USA), 

Triplicate spectra were acquired per isolate with 64 coadded scans at 8 cm-1 resolution and zero-

filling with a factor of 8, in the spectral range 4000-650 cm-1 per spectrum. A background spectrum 

was acquired from a bare space on E-glass with the same spectral parameters, between spectral 

acquisition. FTIR spectra were processed using first derivative and vector normalization to remove 

effects from baseline shifts and sample thickness variability respectively. Genus and species level 

identification was achieved through the use of a previously developed transflection FTIR spectral 

database.  

FTIR spectral analysis: the effect of the presence of antibiotics in culture media on the 

spectral features of staphylococcal isolates, and identification at the genus and species level. 

The effect of media composition modification on the FTIR spectral fingerprints of the 

staphylococcal isolates was determined using principal component analysis (PCA), hierarchical 

cluster analysis (HCA) and forward search algorithm. Forward search algorithm identified spectral 

regions that optimized separation between groups of interest (i.e. FTIR spectra of isolates cultured 

with and without presence of antibiotics). The extent of spectral discrimination between isolates 

cultured with and without antibiotics were visualized using HCA and PCA, in dendrograms and 

PC plots respectively, using broad and specific spectral regions that were identified by the forward 

search algorithm. Isolates were identified as S. aureus or CoNS, using a previously developed 

transflection-FTIR spectral database in the previous chapter, based on spectral similarity to those 

in the database. Isolates with discrepant species identity between MALDI-TOF MS and FTIR 

spectroscopy were reidentified by both techniques for confirmation. 
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4.4 Results and Discussion 

Effect of cefoxitin and CNA on FTIR spectra of microorganisms 

The FTIR spectral database developed previously for species identification was based on 

isolates cultured on BAP that were commercially prepared by Oxoid Canada (Thermo Fisher 

Scientific, ON, Canada). One of the concerns with the media modification with the addition of 

antibiotics was that there would be substantial changes reflected in the bacteria’s FTIR spectral 

profile, as a result of changed metabolism, that may hinder accurate genus and species level 

identification. The identification capability of the spectral database with isolates that were cultured 

on modified BAP has not been done prior to this study. The FTIR spectra acquired from isolates 

cultured on media with and without antibiotics were all identified using the previously developed 

transflection-FTIR spectral database. Based on prior identification results for S. aureus isolates (n 

= 891, 98.7 %), FTIR spectral identification of isolates cultured on Oxoid BAP (BAPO) were 

considered reliable, and used for comparison in identification performance to those cultured on the 

modified media.  

Using PCA and HCA, FTIR spectra acquired from BAPO and BAPT were compared in 

supervised and unsupervised analyses (Figure 4.1). Based on the broad spectral region 1350-800 

cm-1, the PC score plot of PC 1 vs PC 2 showed that there were no clear spectral clustering between 

S. aureus cultured on the two differently prepared BAP. Although spectral regions for optimized 

spectral discrimination was identified with the forward search algorithm, there were no clear 

spectral distinction that could be made between the two groups (Figure 4.2). The manual BAP 

media preparation was not a contributing variable in the differences observed between spectra 

acquired from colonies cultured with and without the presence of antibiotics in the following 

analyses.  

The effect of cefoxitin presence on the MRSA spectral profile was determined in a pairwise 

comparison of spectra that were acquired from BAP with and without cefoxitin. As per Figure 4.3, 

the difference between FTIR spectra of MRSA cultured on BAP with and without cefoxitin             

(4 µg/ml) were not enough to distinguish the two groups in PCA using broad spectral region. No 

distinct spectral clustering were observed when using identified spectral regions from forward 

search algorithm. This was also confirmed in HCA, where the generated dendrogram were 

constructed using cosine distance and Ward linkage. Schelli et al. reported metabolic changes for 

both MSSA and MRSA when comparing cultivation with and without sub-lethal doses of 
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methicillin, indicating that the presence of methicillin during growth affected several metabolic 

pathways in S. aureus. The differences observed in MSSA isolates’ metabolism was much more 

dramatic compared to that of MRSA isolates, speculating that the MRSA were likely less 

susceptible to metabolic changes due to the possession of resistance mechanisms (SCCmec and 

PBP2a system) [19].  

The same analyses were employed to determine whether the presence of CNA altered the 

spectral characteristics of S. aureus isolates. It was confirmed that there was a lack of differences 

between the FTIR spectral profiles between S. aureus isolates cultured on BAPO and BAP with 

CNA (CNAT) (Figure 4.4). Colistin is an antibiotic that binds to phosphate groups of lipid A on 

Gram-negative bacteria, through electrostatic interaction, and therefore, is not known to interact 

with Gram-positive bacteria. Staphylococcus aureus is intrinsically resistant to colistin, via the 

presence of genes that encode subunits of ATP synthase [20]. Studies have indicated that the 

presence of colistin in media during growth of S. aureus affects their characteristics, such as 

increase in autolytic activity, decrease in positive charge in the cell surface and decrease in ions 

such as Na+, Mg2+, K+ (increased leakage of ions) [21]. Nalidixic acid is a broad-spectrum, 

quinolone antibiotic, that is used against Gram-negative bacteria. A mutation in the grlA of S. 

aureus, which encodes topoisomerase IV (A2B2 enzyme), is known to implicate nalidixic acid 

resistance through decreased levels of binding to the enzyme [22, 23]. Overexpression of efflux 

pumps (such as NorA) that prevent introduction of nalidixic acid and other quinolones into the 

bacteria may occur [23]. However, PCA and HCA indicate that the changes caused by the presence 

of colistin and nalidixic acid did not affect the FTIR spectra to distinguish those from FTIR spectra 

acquired from isolates cultured without their presence.  

Despite the metabolic and structural differences that may result from presence of these 

antibiotics, their addition to BAP did not affect the identification of the Staphylococcus isolates 

based on the use of transflection-FTIR spectral database, at the level of identifying CoNS and S. 

aureus (Table 4.3).  
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Figure 4.1 PCA in spectral region 1350-800 cm-1, showcasing a lack of spectral differences 

between FTIR spectra of S. aureus isolates cultured on Oxoid manufactured (Red circle) and self-

prepared (Blue diamond) BAP in score plot for PC 1 vs PC 2 

 

Score plot PC1 vs PC2 shows that transflection FTIR spectra acquired from S. aureus isolates 

cultured on pre-prepared Oxoid BAP and self-prepared BAP do not have differences in their 

spectra when analyzed unsupervised in spectral region 1350-800 cm-1. This indicated that the 

BAPT were comparable to the commercially prepared counterpart, passing the quality check in 

terms of properly preparing the agar plates. 
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Figure 4.2 PCA in selected spectral region (989-994,1036-1052,1168-1172 cm-1, highlighted in 

top image), showcasing the lack of spectral differences between FTIR spectra of S. aureus isolates 

cultured on Oxoid manufactured (red circle) and self-prepared (blue diamond) BAP in score plot 

for PC 2 vs PC 3 (bottom). 

 

Spectral differences in the selected regions (highlighted in the spectrum in top figure) were not 

clear, although some separation can be observed in the score plot (PC2 vs PC3). This further 

confirms that the media preparation method did not affect the FTIR spectral characteristics, and 

thus is not a variable that need to be considered when comparing FTIR spectra of isolate cultured 

on media with and without antibiotics.  
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Figure 4.3 PCA in broad (1350-800 cm-1, top figure ) and selected spectral regions (926-936,966-

972,1030-1036,1058-1070,1088-1096,1174-1186,1276-1292 cm-1-, bottom figure, highlighted in 

middle figure )showcasing the lack of spectral differences between FTIR spectra acquired from 

MRSA isolates cultured on BAP with (blue diamond) and without (red circle) 4 µg/ml cefoxitin in 

score plot for PC 2 vs PC 3. 
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Figure 4.4 PCA in broad (1350-800 cm-1, top figure) and selected (804-810,1014-1020,1088-

1094,1194-1232,1290-1298 cm-1 bottom figure, highlighted in middle figure) spectral region, 

showcasing the lack of spectral discrimination between FTIR spectra acquired from MRSA 

isolates cultured on BAP with (blue diamond) and without (red circle) CNA in score plot for PC 2 

vs PC 3. 
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Identification of staphylococcal species using FTIR spectroscopy 

A total of 4200 spectra were collected from 229 staphylococcal isolates, cultured on three 

different media types, BAP without any antibiotics (control), with 4 µg/ml cefoxitin and 15 µg/ml 

CNA, and with 8 µg/ml cefoxitin and 15 µg/ml CNA. The identity of the isolates that had positive 

growth on the media were predicted using a transflection-FTIR spectral database. One isolate was 

identified as Escherichia coli and another was predicted as Enterococcus faecalis. These isolates 

were re-identified by both FTIR spectroscopy and MALDI-TOF MS, and was confirmed that the 

original FTIR spectral identification results were correct. These isolates were therefore removed 

from subsequent analyses and statistics for sensitivity and specificity for MRSA detection. Overall, 

100 % correct identification of S. aureus was achieved on all media (data only shown in table for 

three media types; Table 4.3). Furthermore, 100 %, 98.1 % and 100 % of the CoNS were correctly 

identified as CoNS when cultured on BAP, CNA_4FOX and CNA_8FOX respectively. All S. 

aureus isolates on all media were correctly identified as such, resulting in 100 % correct 

identification, in reference to MALDI-TOF MS. At the species level for CoNS species, BAP, 

CNA_4FOX and CNA_8FOX media had 61.7 %, 28.8 % and 30 % concordance to MALDI-TOF 

MS results. Although MRSA identification using FTIR spectra acquired from media containing 

cefoxitin, colistin and nalidixic acid, the species level identification with CoNS performed lower 

for CNA_4FOX and CNA_8FOX, relative to BAP.  
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Table 4.3 Summary of identification results for S. aureus and CoNS using transflection FTIR 

spectral database, from isolates cultured on BAP with and without antibiotics 

 
BAP CNA_4FOX CNA_8FOX 

Species n Correct (%) n Correct (%) n Correct (%) 

S. aureus 99 99 100 58 58 100 51 51 100 

CoNS 130 130 100 53 50 94.34 48 42 87.5 

Total 229 229 100  111 108 97.3 99 93 93.9 

100 % of S. aureus isolates were identified correctly on all three media types, whereas 100 %, 

85.4% and 87.5 % of CoNS isolates were correctly identified on BAP, CNA_4FOX and 

CNA_8FOX respectively. Overall, the spectral database had 100 %, 97.3 % and 93.9 % correct 

identification using the transflection FTIR spectral database.  

MRSA detection using modified agar in combination with FTIR spectroscopy 

Sensitivity and specificity were 100 % and 95.3 % respectively for S. aureus (n = 99), 

using 4 µg/ml cefoxitin agar plates at 24 hours incubation. This was shown to be better than 8 

µg/ml cefoxitin agar plates, which had 100 % specificity, but 92.9 % sensitivity (n = 52), and 

7.1 % (n = 5) very major error. Very major error is defines as false negative result, where MRSA 

is misidentified as MSSA. Major error is the false positive error, where MSSA isolates are 

identified as MRSA. Clinically, a very major error implicates that ineffective treatment course may 

be implemented to a patient, which may worsen their health condition due to the lack of appropriate 

antibiotic therapy choice. A major error in the clinical world implies that a strong antibiotic that 

perhaps may be considered a last-line of defense is used unnecessarily. The excessive use of 

antibiotics is one of the causes of increased prevalence of antibiotic resistant microorganisms. 

Therefore improvement in appropriate use of antibiotics, as well as reduction in unnecessary use 

are important part of preventing further increase in antibiotic resistant microorganisms [4, 24] . 

Chromogenic agar had 92.9 % sensitivity, resulting in 7.1 % very major error (n = 4), and 100 % 

specificity. After 48 hours of incubation, the sensitivity of MRSA detection improved to 100 %, 

94.6 % and 100 % for CNA_4FOX, CNA_8FOX and chrome agar respectively. After 48 hours of 

incubation all MRSA isolates had positive growth on CNA_4FOX and chrome agar. Of the 4 

MRSA isolates that did not grow on CNA_8FOX after 24 hours of incubation, three isolates were 

mecC MRSA, and these were the only three that did not show growth after 48 hours of incubation. 
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It is important to note that these isolates had growth on CNA_4FOX media at both 24 and 48 hours 

incubation. mecC MRSA tend to have lower resistance level against oxacillin and cefoxitin, and 

therefore the concentration of cefoxitin present in the media at 8 µg/ml may have been sufficient 

to prevent the growth of mecC MRSA isolates [25]. Additionally, two of the three mecC MRSA 

isolates that failed to grow on CNA_8FOX lacked growth after 24 hours of incubation on chrome 

agar. The specificity of the CNA_8FOX remained at 100 %, but the specificity of CNA_4FOX 

and chrome agar decreased from 95.3 % to 88.4 % and 100 % to 97.7 % respectively. The MSSA 

isolate that had positive growth on chrome agar after 48 hours incubation showed to be white 

colonies, and thus not MRSA, but likely a MR-CoNS isolate. MSSA isolates that had positive 

growth on the CNA_4FOX media after 24 and 48 hours incubation were all identified as S. aureus. 

Overall, CNA_4FOX agar plates had the best performance for correctly detecting MRSA isolates, 

with a categorical agreement of 98 % after 24 hours of incubation. Chrome agar performed the 

best overall (categorical agreement) after 48 hours, with 99 %. However, the modified media both 

did well, with 98 % and 949 % categorical agreement as well. Based on the ISO accepted very 

major error and major error rates (≤1.5 % and ≤3 % respectively) for a new method [24], 

CNA_4FOX obtained acceptable results, in sensitivity, with very major error rates less than 1.5 % 

at both 24 and 48 hours. However, it was not able to meet the standard for major error rates, 

resulting in 4.7 % major error rates. CNA_8FOX on the other hand met the standard for major 

error, but not the very major error rates (8.9 %). Based on these results, the CNA_4FOX media 

would provide the most reliable presumptive MRSA results, prior to obtaining MIC results by 

other methods. 

Compared to the high sensitivity and specificity for MRSA detection, both the sensitivity 

and specificity for MR-CoNS were lower after both 24 and 48 hours incubation. The results were 

not surprising, as CLSI recommends the detection of methicillin resistance in CoNS except               

S. lugdunensis by using disk diffusion test using oxacillin or cefoxitin, or MIC from oxacillin [26]. 

Cefoxitin MIC is regarded to be inferior compared to disk diffusion using 30 µg cefoxitin by 

EUCAST [27], for all CoNS species with the exception of S. lugdunensis. Despite the use of 

cefoxitin MIC as an accepted method for determining methicillin resistance in S. lugdunensis, in 

this study, out of three MRS-S. lugudensis, only one isolate had positive growth on CNA_4FOX 

after 24 hours incubation, whereas, the other two isolates did not grow on any media even after 48 

hours of incubation. CNA_4FOX had the best overall performance, with 91.4 % sensitivity and 
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100 % specificity after 24 hours incubation for MRS-CONS. CNA-8FOX and chrome agar 

performed worse, at 85.5 % and 60 % sensitivity respectively, and 100 % specificity for both media. 

Since BD’s BBL ChromAgar MRSA II is a selective media for MRSA screening, as expected, 

there was low sensitivity and high very major error rates, at both 24 and 48 hours for detecting 

MR-CoNS (Table 4.4 and Table 4.5). This is due to the presence of inhibitory agents  in the media 

composition, to favor the isolation of MRSA from screening samples. After 48 hours of incubation, 

one MS-S. epidermidis showed positive growth, but was identified as MRSA, rather than            

MR-S. epidermidis. Overall the specificity after 48 hours for MR-CONS identification was 87.7 %, 

100 % and 98.6 % for CNA_4FOX, CNA_8FOX and chrome agar respectively. The overall 

categorical agreement for MR-CONS on CNA_4FOX, CNA_8FOX and chrome agar were 91.4 %, 

93.8 %, and 82.9 % respectively. 
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Table 4.4 Positive growth at 24 and 48hrs of incubation on cefoxitin containing media for staphylococcal isolates 

  
CNA_4FOX CNA_8FOX Chrome 

Species 
 

n 24 

hrs 

48 

hrs 

(% ) 

24 

hrs 

(%) 

48 

hrs 

n 24 

hrs 

48 

hrs 

(% ) 

24 

hrs 

(%) 

48 

hrs 

n 24 

hrs 

48 

hrs 

(% ) 

24 

hrs 

(%) 

48 

hrs 

S. aureus MRSA 56 56 56 100 100 56 51 53 91.1 94.6 56 52 56 92.9 100 

S. capitis MRS 5 5 5 100 100 5 5 5 100 100 5 3 3 60 60 

S. cohnii MRS 1 1 1 100 100 1 1 1 100 100 1 1 1 100 100 

S. epidermidis MRS 27 27 27 100 100 27 26 27 96.3 100 27 15 18 55.6 66.7 

S. haemolyticus MRS 9 9 9 100 100 9 8 9 88.9 100 9 8 8 88.9 88.9 

S. hominis MRS 10 7 8 70 80 10 7 7 70 70 10 6 6 60 60 

S. lugdunensis MRS 3 1 1 33.3 33.3 3 0 0 0 0 3 0 0 0 0 

S. species MRS 1 1 1 100 100 1 1 1 100 100 1 0 0 0 0 

S. aureus MSSA 43 2 2 4.7 4.7 43 0 0 0 0 43 0 1 0 2.3 

S. capitis MSS 19 0 1 0 5.3 19 0 0 0 0 19 1 1 5.3 5.3 

S. caprae MSS 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 

S. epidermidis MSS 22 0 0 0 0 22 0 0 0 0 22 0 0 0 0 

S. haemolyticus MSS 3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 

S. hominis MSS 15 0 0 0 0 15 0 0 0 0 15 0 0 0 0 

S. lugdunensis MSS 7 0 0 0 0 7 0 0 0 0 7 0 0 0 0 

S. species MSS 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 

S. warneri MSS 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 

True Positive 

Rate  

 112 107 108 95.5 96.4 112 99 103 88.4 92 112 85 92 75.9 82.1 

False Negative 

Rate  

 112 5 4 4.5 3.6 112 13 9 11.6 8 112 27 20 24.1 17.9 

True Negative 

Rate 

 117 115 112 98.3 95.7 117 117 117 100 100 117 116 114 99.1 97.4 

False Positive 

Rate 

 117 2 3 1.7 2.6 117 0 0 0 0 117 1 2 0.9 1.7 

Categorical 

Agreement 
 229 222 220 96.9 96.1 229 216 220 94.3 96.1 229 201 206 87.8 90 
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Table 4.5 Sensitivity, specificity, and categorical agreement for S. aureus and CoNS cultured on antibiotic containing media, in 

comparison to chromogenic agar 

 CNA_4FOX CNA_8FOX Chrome 

S. aureus 

n 

 (24 

hrs) 

% 
n (48 

hrs) 
% 

n (24 

hrs) 
% 

n (48 

hrs) 
% 

n (24 

hrs) 
% 

n (48 

hrs) 
% 

Sensitivity 56 100.0 56 100.0 51 91.1 53 94.6 52 92.9 56 100.0 

Specificity 41 95.3 41 95.3 43 100.0 43 100.0 43 100.0 42 97.7 

Very Major 

Error 
0 0.0 0 0.0 5 8.9 3 5.4 4 7.1 0 0.0 

Major Error 2 4.7 2 4.7 0 0.0 0 0.0 0 0.0 1 2.3 

Categorical 

Agreement 
97 98.0 97 98.0 94 94.9 96 97.0 95 96.0 98 99.0 

 CNA_4FOX CNA_8FOX Chrome 

CoNS 
n (24 

hrs) 
% 

n (48 

hrs) 
% 

n (24 

hrs) 
% 

n (48 

hrs) 
% 

n (24 

hrs) 
% 

n (48 

hrs) 
% 

Sensitivity 50 90.9 51 92.7 47 85.5 49 89.1 33 60.0 36 65.5 

Specificity 74 100.0 73 98.6 74 100.0 74 100.0 74 100.0 73 98.6 

Very Major 

Error 
5 9.1 4 7.3 8 14.5 6 10.9 22 40.0 19 34.5 

Major Error 0 0.0 1 1.4 0 0.0 0 0.0 0 0.0 1 1.4 

Categorical 

Agreement 
124 96.1 124 96.1 121 93.8 123 95.3 107 82.9 109 84.5 
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4.5 Conclusion 

A bi-plate identification concept with FTIR spectroscopy where staphylococcal isolates were 

cultured on BAP and BAP with cefoxitin and CNA was tested for its MRSA identification 

capabilities. The selective growth on cefoxitin containing media allowed identification of 

methicillin resistant isolates, while the growth of methicillin sensitive isolates were inhibited. The 

transflection FTIR spectral database correctly identified 100 % (n = 99) S. aureus from CoNS       

(n = 130) on media both with and without cefoxitin, enabling the identification of MRSA. In this 

study, 98 % categorical agreement, with 0 % very major error and 4.7 % major error was achieved 

after 24 hours incubation, using BAP containing 4 µg/ml cefoxitin for MRSA identification. This 

media variation also had the best categorical agreement for MRS-CoNS as well at 96.1 %. 

Although it is not suitable for MRS-CoNS identification, the method provides as a reliable 

screening step in identifying presumptive MRSA isolates, which can later be confirmed through 

molecular and phenotypic methods. In the long-term this may also contribute to antimicrobial 

stewardship, as it helps reduce overuse of antibiotics through faster determination of the 

methicillin resistance of staphylococcal isolates. This in turn can contribute to slowing down 

emergence of microorganisms that are more resistant to one or more antibiotics. The presumptive 

identification of MRSA should be confirmed with AST results the following day, along with the 

AST profiles for other classes of antibiotics. Furthermore, the use of this modified agar in 

combination with FTIR spectroscopy, provides a cheaper alternative to using chromogenic agar 

plates. An extended study with more strain types and source variation should be conducted to 

evaluate whether there are other limiting factors that arise that were not observed in the current 

study. The advantage of the method is that isolate characterization at species and subspecies level 

can be carried out on the same acquired FTIR spectral data. This is particularly beneficial for 

infection control as it shortens the time required until isolates are identified for further strain typing 

analyses. This modified agar approach should be evaluated for other pathogens of interest such as 

vancomycin resistant enterococci and carbapenem resistant Enterobacteriaceae, by adding the 

antibiotics of interest in the generic blood agar media. 
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Connecting Statement 

Successful identification of MRSA was achieved through the combined use of antibiotic 

containing media and FTIR spectral database. To further evaluate the discriminatory capabilities 

of transflection-FTIR spectroscopy, in the next chapter, the technique was subjected to sub-species 

level discrimination, focusing on discrimination between strain-types, using supervised and 

unsupervised multivariate statistical techniques using VRE isolates collected from patient 

screening samples.   
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Chapter 5.  FTIR Spectroscopy as Alternative Strain Typing Technique 

for Infection Control. 

5.1 Abstract 

Whole-organism fingerprinting by transflection-FTIR spectroscopy is a rapid, reagent-free 

technique for bacterial identification and classification with subspecies-level discriminatory 

capabilities. Rapid strain typing is useful in surveying and detecting nosocomial outbreaks, and 

can help infection control team, to implement necessary protocols to intercept the spread of 

pathogens to at-risk patients. Pulsed-field gel electrophoresis (PFGE) is the current gold-standard 

method for strain typing in outbreak investigations for many organisms including vancomycin 

resistant Enterococcus faecium (VRE). Transflection-FTIR spectroscopy was evaluated for its 

VRE subspecies level discrimination capabilities in reference to PFGE clustering results, in 

retrospective (n = 214) and prospective (n = 129) studies that analyzed samples collected from 

environmental and patient screenings over a 18 and seven month period respectively. Spectral 

discrimination between the two most common pulsotypes, AA (n = 34) and CC (n = 109) was 

demonstrated by principal component analysis (PCA) in combination with support vector machine 

and unsupervised PCA-linear discriminant analysis (PCA-LDA). Discrimination resulted in four 

(2.8 %) outliers. However, upon re-analysis of these samples by PFGE, the FTIR results for three 

of these outliers were found to be correct, improving the concordance between the two methods to 

99.3 %. A cut-off value for determining spectrally “clonal” isolates was determined using squared 

Mahalanobis distances calculated between each isolate in PCA-LDA. Based on the developed 

method, AA and CC isolates respectively had 91.7 % and 91 % categorical agreement with PFGE. 

In both retrospective and prospective studies, the FTIR spectrotyping method had high true 

positive rates relative to PFGE pulsotype clustering, showcasing that isolates of the same pulsotype 

tend to also be spectrally indistinguishable. Discrepancies between PFGE and FTIR spectrotyping 

were also observed, likely because FTIR spectra represent the metabolic and structural status of 

the organism, while PFGE is based on macrofragments of the DNA. Overall, the method was able 

to identify clusters prospectively, with analyses performed per unit, with the addition of new 

samples on an incoming basis. At the end of the prospective study, 8 and 15 clusters were identified 

in 5 and 12 wards respectively. Clustering between environmental and patient isolates that 

originated from the same ward by spectrotyping demonstrated that the sample source does not 

affect the analysis, and has potential in tracing transmission routes. The ease of the method enables 
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more samples and data to be acquired to have a broader understanding on the VRE strain type 

evolution within patients, between patients and in the environment. Furthermore, when combined 

with a transflection-FTIR spectral database for species identification, both identification and strain 

typing results can be achieved from the same set of FTIR spectra acquired from samples, thereby 

reducing the time and cost required for outbreak investigation. The results in this study 

demonstrated that transflection-FTIR spectrotyping can be considered for routine use, with high 

throughput capabilities and improved turnaround time to results relative to PFGE. 
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5.2 Introduction 

Infection prevention and control is critical in minimizing hospital acquired infections, 

especially those caused by antibiotic resistant organisms, such as vancomycin resistant 

Enterococcus faecium (VRE), methicillin resistant Staphylococcus aureus (MRSA) and 

carbapenem resistant Enterobacteriaceae. These organisms tend to be resistant to many antibiotics, 

limiting treatment options, and increasing the morbidity and mortality of the patient [1]. VRE in 

particular is known to be persistent, and resists many external stressors, such as chemical 

treatments, and can survive under a wide range of pH, temperature and salt concentrations. VRE 

can therefore remain on abiotic surfaces and contaminate hospital wards for many years, and is 

often used as an indicator to determine the cleanliness of the environment [2]. The prevalence of 

such nosocomial pathogens are monitored through surveillance, which encompass patient and 

environmental screenings, the detection, identification and strain type characterization of 

pathogens. Through surveillance, outbreaks are detected and actions such as patient isolation, 

reinforcement of hand hygiene protocol, and decontamination of wards, can be taken to interrupt 

further transmission to new patients [1]. 

Different strain typing methods can be used depending on the target pathogen, but pulsed 

field gel electrophoresis (PFGE) is popular and has been considered the gold standard for many 

bacterial pathogens, as it can be used to type many different organisms, by choosing the 

appropriate restriction enzyme to digest the DNA. Despite being used as the gold standard for over 

20 years, PFGE has its limitations, such as the technique being laborious, requiring highly trained 

personnel, and has long turnaround time to results. It is not realistic to run PFGE analyses in real-

time, and thus microbial strain typing is commonly conducted retrospectively [3]. Furthermore, 

PFGE is not suitable for long-term strain type comparison for organisms like VRE which have 

high recombinant rates [4]. Although the degree of relatedness between strain types are currently 

determined by the extent of similarity (and the number of band differences) in PFGE fragment 

patterns, the genetic diversity between isolates is not necessarily reflected in this way. The 

restriction enzyme used in PFGE cuts the genome into pieces where specific nucleotide patterns 

exist (i.e. CCCGGG for SmaI restriction enzyme), and thus depending on the location in which 

genetic alterations occur, through acquisition and loss of accessory genes related to pathogenicity 

and virulence, the extent of variation in DNA fragmentation and band patterns for PFGE can be 

impacted with little or vast changes, or non at all [4]. The genetic diversity amongst closely related 
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isolates may result in diverse PFGE band patterns, or insufficient PFGE pattern differences 

between unrelated isolates may occur, resulting in incorrect strain type interpretations [3]. PFGE 

is known to also have low data transferability, making it difficult to compare isolates characterized 

in different laboratories, unlike other strain typing techniques such as multilocus sequence typing 

(MLST) which have a standardized nomenclature based on the number and location of alleles 

present on the housekeeping genes [5]. Alternative strain typing options to PFGE are required 

where data can be acquired routinely, and provide results to infection prevention and control teams 

for optimized decision making. Although whole genome sequencing (WGS) is gaining popularity, 

and many laboratories have demonstrated successful strain typing in retrospective and prospective 

studies, the standardization in the method, both data acquisition and analysis is still required before 

it can replace PFGE as the gold standard [2, 6].  

FTIR spectroscopy is a rapid, and reagent free technique that has been studied for strain 

typing applications [4, 7, 8]. FTIR spectroscopy has the ability to acquire spectral data within 

minutes, and produce results with an additional few minutes upon obtaining isolated colonies from 

agar plates, thereby reducing the data acquisition and analysis time compared to PFGE (Figure 

5.2). With the release of Bruker’s IR Biotyper, the interest in using FTIR spectroscopy for strain 

typing increased over the past years, and reports on subspecies typing on microorganisms such as 

methicillin resistant S. aureus, Klebsiella pneumoniae, and Enterobacter cloacae have been 

published, in ATR or transmission mode [7, 9-14]. Many of these findings approach subspecies 

characterization and identification similarly to how genus and species identification are achieved 

using FTIR spectroscopy, through the development of spectral databases based on known 

serotypes. In 2016, AlMasoud et al. [15] used transmission FTIR spectroscopy in combination 

with chemometric analyses to discriminate between strain types of 35 VRE isolates, in reference 

to PFGE. They reported 89 % concordance to PFGE classification, using supervised analysis 

(principal component analysis– linear discriminant analysis; PCA-LDA). However, PCA-LDA 

applied to differentiate isolates, rather than strain types, resulted in isolates clustering that was 

54 % concordance to PFGE [15]. In current study, the capabilities of transflection-FTIR 

spectroscopy for strain typing was evaluated, using VRE with supervised and unsupervised 

multivariate statistical analyses. The objective was to evaluate the discriminatory capabilities and 

report on clustering results based on spectral differences, in reference to PFGE typing results with 

retrospective and prospective datasets comprised of 214 and 129 isolates respectively. 
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Figure 5.1 Techniques used for VRE detection and the time required for each and cumulative 

analyses, prior to strain type characterization at the clinical microbiology laboratory 
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Figure 5.2 Overview of the time and steps required for strain typing by PFGE and FTIR 

spectroscopy, showcasing the improvement in turnaround time to results by FTIR spectroscopy. 
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5.3 Materials and Methods 

Clinical isolates for retrospective and prospective VRE strain typing analysis 

A set of 214 vancomycin resistant E. faecium (VRE) isolates, which were collected and 

characterized by PFGE between April 2016 and September 2017 were used in this study. The 

samples were obtained from patient and environmental screenings conducted at the Montreal 

General Hospital (). Isolates were cultured from frozen glycerol stocks onto Columbia agar with 

5 % sheep blood (BAP) and incubated for 24 hours at 35 °C under aerobic condition. Prior to FTIR 

spectral acquisition, all isolates were sub cultured and incubated under the same conditions as the 

first passage, and also cultured onto VRE ChromAgar (bioMérieux SA, Marcy l’Étoile, France) 

for visual confirmation as VRE. 

For the prospective 6-month VRE surveillance study, 129 isolates of VRE were routinely 

collected over a 6-month period (December 2018 to June 2019), from patient and environmental 

screenings at two hospitals in Montreal, Quebec, the Montreal General Hospital (MGH) and Royal 

Victoria Hospital (RVH). The samples were all identified as VRE using VRE screening broth 

(Oxoid, Neepawa, ON) , PCR (for identification of vanA or vanB gene) and VRE ChromAgar 

(bioMérieux SA, Marcy l’Étoile, France) (Figure 5.1). All samples were provided on VRE 

ChromAgar (bioMérieux SA, Marcy l’Étoile, France), and sub-cultured onto BAP (Oxoid, 

Neepawa, ON), and incubated at 35 °C for 24 hours prior to spectral acquisition. 

Transflection FTIR spectral acquisition, pre-processing and analyses for microbial 

discrimination at the strain type level 

Using sterile 1 µl disposable loops, isolated colonies were picked directly from agar plates 

and smeared onto IR reflective, low-E slides (Kevley Technologies, Chesterland, OH, USA) as 

thin films in triplicate spots and air-dried. Using the Cary 630 FTIR spectrometer (Agilent 

Technologies, Santa Clara, CA) with a 10° specular reflectance sample interface (Agilent 

Technologies, Santa Clara, CA) or a SurveyIR microscope (Czitek, Danbury, CT, USA) and 

MicroLab Software (Agilent Technologies, Santa Clara, CA), trasnflection spectra were acquired 

with 64 coadded scans at 8 cm-1 resolution and 8 zero-filling, in the spectral range 4000-650 cm-1. 

Prior to spectral acquisition, background spectra were acquired from a bare surface area of the E-

glass slide with the same settings as spectral acquisition. Spectra were pre-processed by taking the 



142 

 

first derivative and vector normalization to eliminate variability caused by baseline shifting and 

sample thickness respectively. 

5.3.2.1  Supervised and unsupervised multivariate statistical analysis methods applied on FTIR 

spectra acquired from VRE isolates 

First, to evaluate whether spectral differences exist between strain types, supervised and 

unsupervised analyses were employed on select VRE isolates. AA and CC pulsotypes (and their 

1-3 band pattern variants) were chosen due to high sample representation of each types (n = 34 

and 109 isolates respectively). Using the spectral region 1350-800 cm-1, the spectra of these 

isolates were subjected to hierarchical cluster analysis (HCA) and principal component analysis 

(PCA) for unsupervised analysis to ascertain whether there were any global differences between 

the two strain types, using JMP Pro ver. 15.2.0 (Cary, North Carolina, USA). PCA was also used 

to reduce variables for subsequent multivariate analyses. Supervised analysis were conducted 

using support vector machine (PCA-SVM), and PCA-LDA, using 75 % of isolates as the training 

set, and remaining 25 % as validation. SVM model was made using radial basis function, with cost 

= 1 and gamma = 0.125. Gamma was calculated as the inverse of the number of variables. 

Analysis to determine spectral relatedness between isolates were conducted with 

modifications to that reported by AlMasoud [15]. Briefly, variable reduction was conducted using 

PCA, by identifying the number of PCs that explained over 1 % of the variance among the spectra. 

Using these PCs, the PC scores of the isolates were subjected to PCA-LDA,  using each isolate as 

a unique class. PCA-LDA maximized the distance between isolates, and minimized the distance 

between replicate spectra per isolate, by determining the weight of importance of the PCs. Squared 

Mahalanobis distances for each spectrum to the mean of each class, were calculated. Using the 

obtained squared distances, isolates were clustered by HCA with average linkage visualizing the 

spectral similarity between isolates in a dendrogram. Based on the squared distances observed 

between AA and CC pulsotype isolates, as well as between isolates within each pulsotype, a cut-

off value was determined for identifying spectrally indistinguishable isolates. Spectral 

discrimination and clustering results were compared against PFGE pulsotype clustering, to 

determine the level of concordance. 
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5.3.2.2  Application of the developed unsupervised FTIR spectral analysis method on retrospective 

and prospective VRE isolates 

The aforementioned PCA-LDA analysis was conducted in subsets of the dataset, divided 

by known pulsotype, and by unit where isolates were acquired (Table 5.1). Using the determined 

cut-off value (squared Mahalanobis distance <  500 as spectrally indistinguishable) in the prior 

analysis, the isolates were clustered based on spectral similarity. The level of concordance to PFGE 

pulsotype clustering were reported for each individual analysis. In the prospective study, the 

method was applied and analyzed for each unit/ward, where the colonized patient had stayed 

during hospitalization (Table 5.2) The presence or absence of clusters (an outbreak or a 

continuation of one) based on spectral data were determined and reported on a weekly basis, and 

retrospectively (2-3 weeks later) compared to PFGE results. 

Pulsed field gel electrophoresis 

PFGE analysis was conducted based on the method by Morrison et al [16]. Briefly, cells 

were collected from an overnight culture in Brain Heart Infusion broth, and lysed for DNA 

extraction using lyostaphin, lysozyme, and proteinase K. DNA was fragmented using SmaI. PFGE 

profiles were analysed using Bionumerics software (Applied Maths, Saint-Martens-Latem, 

Belgium). Dice coefficient with 0.5 % optimization and 1.5 % tolerance for band matching was 

used, and UPGMA clustering method was used to generate dendrograms in HCA.  
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Table 5.1 VRE isolates and their PFGE pulsotype by unit where identified 

 
Unit  

PFGE 11 12 13 14 15 17 18 CCU ICU SSU total 

A 0 0 1 0 4 0 0 0 0 0 5 

A2 0 2 0 0 0 0 0 0 0 0 2 

A-2 0 0 0 0 5 0 0 0 0 0 5 

A-3 0 0 0 0 0 0 0 1 0 0 1 

A-31 0 0 0 0 0 0 1 0 0 1 2 

AA 0 8 0 1 2 2 3 1 8 0 25 

AA1 0 0 0 0 0 0 1 0 0 0 1 

AA-1 2 3 0 0 0 0 2 0 1 0 8 

B1 8 0 0 0 0 0 0 0 1 0 9 

B1-1 0 0 0 0 0 1 0 0 0 0 1 

BB 0 0 0 0 0 1 0 0 0 0 1 

BB-3 0 0 0 0 2 2 0 0 0 0 4 

CC 6 10 0 2 18 55 5 2 5 1 104 

CC1 0 0 0 0 0 1 0 0 0 0 1 

CC-1 0 0 0 0 1 1 0 0 0 0 2 

CC-2 0 0 0 0 1 1 0 0 0 0 2 

CC-3 0 0 0 0 0 1 0 0 0 0 1 

DD 0 0 0 0 0 1 0 0 0 0 1 

DD-1 0 0 0 0 1 0 0 0 0 0 1 

E-2 0 0 0 0 2 0 0 0 0 0 2 

EE 1 0 0 0 0 0 0 0 0 0 1 

FF 1 0 0 0 0 0 0 0 0 0 1 

GG 0 0 0 0 0 2 0 0 0 0 2 

GG-2 0 0 0 0 0 1 0 0 0 0 1 

LL 0 0 0 1 1 1 0 0 0 0 3 

M-2 0 0 0 1 0 0 0 0 0 0 1 

M-3 0 4 0 0 0 0 0 0 0 0 4 

P-2 0 0 0 0 0 0 1 0 0 0 1 

Q1 0 0 0 0 0 0 0 0 1 0 1 

T 0 1 0 0 0 0 0 0 0 0 1 

W-1 0 1 0 0 0 0 0 0 0 0 1 

X 0 0 2 0 2 1 2 0 2 0 9 

X-1 0 0 0 0 0 1 0 0 0 0 1 

Y 0 0 0 0 2 0 1 0 0 0 3 

Z-1 0 0 0 2 1 0 1 0 0 0 4 

Z-2 0 1 0 0 0 0 0 0 0 0 1 

Z-3 0 1 0 0 0 0 0 0 0 0 1 

Total 18 31 3 7 42 72 17 4 18 2 214 

* ICU = intensive care unit, CCU = cardiac/coronary care unit, SSU = short stay unit. 
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Table 5.2 Hospital units and number of VRE positive patients that stayed between December 

2018-May 2019 

MGH    

Unit 
Number of VRE pos 

patients that stayed 

Number of patients who 

acquired VRE in this 

unit 

Number of patients who 

acquired VRE elsewhere 

11 2 1 1 

12 7 4 3 

14 1 0 1 

15 12 5 7 

17 6 4 2 

18 4 1 3 

ICU 14 5 7 

RVH    

Unit 
Number of VRE positive 

patients that stayed 

Number of patients who 

acquired VRE in this 

unit 

Number of patients who 

acquired VRE elsewhere 

C07C 1 1 0 

C07N 8 5 3 

C07S 4 2 2 

C07 13 8 5 

C08C 5 4 1 

C08N 4 3 1 

C08S 12 10 2 

C08    

C09C 11 7 4 

C09N 1 0 1 

C09S 9 9 0 

C09    

C10C 4 1 3 

C10N 4 3 1 

C10S 3 0 3 

C10 11 4 7 

D03C 8 2 6 

D07 3 0 3 

D08N 2 1 1 

D08S 2 0 2 

D08 5 1 4 

D09 5 2 3 

D10 4 0 4 
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5.4 Results 

Unsupervised and supervised analyses for FTIR spectral discrimination of AA and CC 

pulsotype VRE isolates 

In infection control, there are two important questions to answer through strain type 

characterization. 1.When there is an increase in new positive cases (above the baseline) of highly 

pathogenic microorganisms, are these isolates indistinguishable based on microbiological tests? – 

Is there an outbreak starting to occur within the hospital setting? 2. Is the new positive isolate from 

a patient indistinguishable from isolates part of a pre-existing outbreak or endemic strains in the 

hospital? In previous FTIR based strain typing studies, multi-drug resistant pathogens like MRSA 

and KPC-positive K. pneumoniae, were discriminated and classified using supervised analysis and 

development of spectral databases, based on the capsular polysaccharide characteristics [9, 17]. E. 

faecium is typically typed for strain relatedness based on genotypic methods such as PFGE, MLST, 

core genome MLST and single nucleotide polymorphism (SNP) using WGS data. It is recognized 

that due to the high recombination rates and horizontal gene transfer in the auxiliary genome, the 

phenotype of E. faecium isolates vary extensively, even for isolates with close genetic relatedness 

by core genome analyses. In order to identify clonal isolates in this study, FTIR spectral data of 

VRE isolates were analyzed without a database, using unsupervised analyses.  

AA and CC pulsotypes were the two most common strain types identified to be present over 

the 16 month period (April 2016-September 2017) which VRE samples were chosen from archive, 

with 34 and 109 isolates respectively (Table 5.1). PFGE band patterns of AA and CC pulsotypes 

were distinct, and show clear discrimination between them in HCA (Figure 5.3). FTIR spectra 

were pre-processed prior to conducting PCA on spectral region 1350-800 cm-1. The first 8 principal 

components (PCs) contributed to 91.975 % of the total explained variable among the spectra, 

where each PC contributed over 1 % of the explained variable (Table 5.3). In PCA, natural 

clustering of AA and CC isolates were observed in a biplot of PC 2 vs PC 4, indicating that there 

are global spectral differences between the two pulsotypes (Figure 5.4).  

SVM model was developed using 75 % of each pulsotypes, with the 8 PCs. The remaining 

25 % of isolates were used as a validation set, to determine if the supervised discrimination model 

can correctly predict AA and CC pulsotypes. The discrimination between AA and CC pulsotypes 

were successful at 97.2 % concordance, with 4 outliers identified (3 and 1 isolates from the training 
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and validation sets respectively). The isolates that were correctly identified were predicted with a 

mean probability of 93.6 % (confidence interval (CI) 95 % [94.3-92.9 %]) and 98.8 % (CI 95 % 

[99.0-98.7 %]) as AA and CC respectively, indicating high confidence for these predictions. 

Among the 4 outliers, one outlier predicted as CC (identified as AA by PFGE) with > 96 % 

probability on 5 of 6 spectral replicates (6th spectrum had 85 % probability as CC (Table 5.4)). The 

remaining three outliers were isolates identified as CC by PFGE that were spectrally more similar 

to AA isolates and were predicted as AA with probabilities ranging between 75 and 90 %. Upon 

re-analyzing the outliers by PFGE, it was confirmed that the original PFGE strain type 

identification for three of the four isolates was incorrect, and the results of the PFGE re-analysis 

for these three isolates was concordant with the FTIR results (Table 5.4). In addition to supervised 

analysis employing PCA-SVM, unsupervised analyses of the spectra of the VRE isolates were 

conducted by PCA-LDA and HCA. In PCA-LDA, the spectral replicates acquired for each isolate 

were labeled as an individual group (by sample ID), and a model was created that maximizes 

distances between groups and minimizing distances between spectral replicates. Averaged squared 

Mahalanobis distances were calculated between all isolates subjected in the PCA-LDA. These 

values were then used in HCA, with average linkage to show relatedness (Figure 5.5). The HCA 

was in agreement with the PCA-SVM analysis in regards to the 4 observed outliers. 

A total of 15 isolates that were variants of the AA and CC pulsotypes (9 and 6 respectively) 

were included in the study. Variants were of the pulsotypes were given labels such as -1 and -2, 

which indicate the presence or loss of one or two band features. Isolates that are variants of AA 

and CC pulsotype are not as distinctive in the HCA based on spectral data from non-variant AA 

and CC pulsotype isolates. This indicates that the spectral features do not necessarily reflect the 

genotypic changes observed in PFGE. In some cases, the genetic evolution or change is reflected 

in spectral changes. For example, CC1 isolate (dull light green highlighted in  Figure 5.5), which 

had an extra band in the PFGE band pattern relative to the CC pulsotype (and 76.9 % similarity to 

other CC isolates by PFGE), had a higher spectral similarity to AA isolates compared to CC 

isolates. In the dendrogram obtained by HCA, it was observed to fall under the main arm that 

clusters AA isolates together. In the SVM analysis, when the CC1 isolates was removed from the 

training set, it had 42.2 % and 57.8 % probability of being AA and CC respectively, indicating that 

it is not spectrally similar to either clusters. Although this isolate was re-analyzed by both PFGE 

and FTIR spectroscopy, the discordant results remained. A CC isolate (XIV315, most right isolate 
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(Figure 5.5) based on the HCA was not spectrally similar to all AA isolates and most CC isolates. 

Based on the spectral analyses this isolate could not be considered a CC pulsotype. Since this 

isolate was used as part of the training set in SVM analysis, it was not identified to be an outlier, 

and had high probability of being CC. When removed from the training set, this isolate had a 

probability of 14.2 % and 85.8 % as AA and CC respectively. Considering that other isolates had 

probability values ranging between the mid and high 90s, the probability reflects the lesser degree 

of spectral similarity between this isolate to other CC isolates.  

The distinction between clusters was also visualized by plotting the squared Mahalanobis 

distances of an isolate to all other isolates (Figure 5.6). The plots were colored based on the 

pulsotype designation provided by PFGE. The clustering of isolates corresponded with the squared 

distances. For instance, in Figure 5.6, it was evident that the sample being analyzed (XVIII822) 

was an AA, due to its small squared distances to other AA isolates (where smaller squared distance 

means higher spectral similarity). These squared distances were less than 500, while some outliers, 

and variants of AA were observed to have a squared distance of 600 or less. Spectral similarity to 

non-AA isolates was also observed, and these isolates were the outliers observed in both the SVM 

and HCA results. The scatterplot also visualized the distinct spectral differences between AA and 

CC pulsotypes. Three outliers that were previously identified, also show high spectral similarity 

to this isolate (68-400 squared Mahalanobis distance), whereas the remaining CC isolates had 

squared distances mostly over 1100, and an average of 2746. The AA outlier was also 2647 squared 

distance away, indicating that it is clustering with CC, and not with other isolates that were 

identified as AA pulsotype. Based on pre-identified PFGE pulsotypes (AA and CC) and the 

squared distances calculated between these isolates, cut-off values were determined (Table 5.5). 

Isolates were considered spectrally indistinguishable when the squared distance was less than 500, 

while isolates were considered subclusters when squared distance was between 500 and 1000. 

Isolates with squared distances over 1000 were determined as not related. AA and CC isolates 

were spectrally clustered into two main groups, with two subclusters (one per group), and three 

singleton isolates, that were spectrally unrelated to all other isolates (Table 5.6). For AA and CC 

pulsotype VRE isolates, these cut-off values provided high concordance to PFGE strain typing, 

with 91.7 % and 91.0 % categorical agreement respectively. 

Cluster 2 and 4 were sub-clusters that are spectrally similar to some but not all isolates that 

belong in Cluster 1 and 3 respectively. Based on the squared distances and the cut-offs, Cluster 1 
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and 3 represent isolates that were identified as AA and CC respectively. When comparing to PFGE 

pulsotypes, the true positive rates for AA was 88 %, and CC was 90.4 %. False positive rates for 

AA and CC were 9.2 % and 15 % respectively, mostly as a result of PFGE variants clustering with 

the main clusters(Table 5.7). Most of the discrepancies between FTIR spectral based and PFGE 

typing arose from the clustering of variant PFGE types with the corresponding non-variants in 

FTIR based clustering (Table 5.6). In the following sections, the method was applied to evaluate 

whether clusters of isolates associated with outbreaks can be identified, in retrospective analysis 

by unit and pulsotype, using 214 isolates, as well as in a 6-month prospective study.  

 

Figure 5.3 Dendrograms obtained by HCA of PFGE pattern data for sub-set of VRE isolates, AA 

and CC. 

 

Clear differentiation between CC and AA strains (sub-set of all isolates used in this analysis) 

observed in the PFGE pulsotype.  
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Table 5.3 Principal components and explained variable (%) for AA and CC VRE spectra 

PC Eigenvalue Explained 

Variable (%) 

Cumulative Explained 

Variable (%) 

1 367.5065 31.118 31.118 

2 335.3489 28.395 59.514 

3 166.0014 14.056 73.570 

4 114.7855 9.719 83.289 

5 33.7482 2.858 86.147 

6 29.9060 2.532 88.679 

7 25.8306 2.187 90.866 

8 13.1311 1.112 91.978 

9 9.7870 0.829 92.807 

10 7.8444 0.664 93.471 

The principal components, and their respective eigenvalue and percent variable explained within 

spectra of VRE isolates of AA and CC pulsotypes.  

 

 

Figure 5.4 PCA in spectral region 1350-800 cm-1, showcasing global spectral differences between 

VRE AA (purple) and CC (green) pulsotypes in score plot for PC 2 vs PC 4. 

  

PCA in broad fingerprint spectral region showed global differences exist between AA (purple) and 

CC (green) isolates.  
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Table 5.4 List of outlier isolates identified by SVM and typing results from PFGE 

Outliers Training / 

Validation 

Unit 

Tested 

Date 

Acquired 

PFGE 

Pulsotype 

FTIR 

(PC-

SVM) 

Averaged 

probability 

by PC-

SVM as AA 

Averaged 

probability 

by PC-

SVM as CC 

PFGE 

2nd 

analysis 

XVII476 Training 12 Jan 2017 AA CC 4.6% 95.4% CC 

XVII347 Validation 11 May 2017 CC AA 89.1% 10.9% AA 

XVII639 Training 15 May 2017 CC AA 85.6% 14.4% AA 

XVII936 Training 12 Jan 2017 CC AA 75.7% 24.3% N/A 

XVII456 Training / 

Validation 

17 Sept 2016 CC1 CC / 

AA 

2.6% 

42.2% 

97.4% 

57.8% 

CC 

XVII315 Validation 15 July 2017 CC CC 14.2% 85.8% N/A 

 

Outliers from the SVM analysis, as well as an outlier observed from HCA (Figure 5.5). PFGE 

analysis was not redone on sample XVII315 and XVII639.  
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Figure 5.5 Dendrogram of averaged replicate spectra of AA and CC isolate showcasing spectral differences between the two strain 

types in an unsupervised HCA 

 
 

The dendrogram was generated using average linkage and Euclidean distance. The HCA showcased global clustering of CC isolates 

(green) and AA isolates (purple) .The HCA also was in agreement with the SVM analysis in regards to the 4 observed outliers. CC-2 

(red), CC-1 (Orange) clustered with CC isolates, and were considered spectrally indistinguishable from CC isolates. AA-1 (turquoise) 

and AA1 (blue) clustered with AA isolates. 
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Figure 5.6 Averaged, squared Mahalanobios distance to each isolate for sample XVIII822 

 

Table 5.5 Cut-off value determined for FTIR spectroscopy based on strain type difference AA 

and CC VRE pulsotypes 

Squared distance FTIR spectral result 

0-500 Clonal/cluster 

500-1000 Potential spectral similarity 

> 1000 Not spectrally considered 

clonal / part of a cluster 
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Table 5.6 Clusters identified based on FTIR spectral analyses of AA and CC VRE pulsotypes 

PFGE Isolates Cluster 1 Cluster 2* Cluster 3 Cluster 4* Cluster 5 Cluster 6 Cluster 7 

AA 26 24 2 0 0 0 0 0 

AA1 1 0 1 0 0 0 0 0 

AA-1 8 8 0 0 0 0 0 0 

CC 103 1 0 95 4 1 1 1 

CC1 1 1 0 0 0 0 0 0 

CC-1 2 0 0 2 0 0 0 0 

CC-2 2 0 0 2 0 0 0 0 

CC-3 1 0 0 1 0 0 0 0 

Total 144 34 3 100 4 1 1 1 

Cluster 2 and 4 were sub-clusters that are spectrally similar to some but not all isolates that belong 

in Cluster 1 and 3 respectively. Based on the squared distances and the cut-offs, Cluster 1 and 3 

represent isolates that were identified as AA and CC respectively. When comparing to PFGE 

pulsotypes, the true positive rates for AA was 88 %, and CC was 90.4 %. False positive rates for 

AA and CC were 9.2  % and 15% respectively, mostly as a result of PFGE variants clustering with 

the main clusters. 

 

Table 5.7 Concordance between PFGE and FTIR spectral typing results for clustering of AA and 

CC pulsotype VRE isolates 

 AA AA1 CC 

True Positive 92.3 % 100 % 92.2 % 

False Positive 8.5 % 1.4 % 12.2 % 

True Negative 91.5 % 98.6 % 87.8 % 

False Negative 7.7 % 0 % 7.8 % 

Categorical 

agreement 

91.7 % 98.6 % 91.0 % 

Based on the squared Mahalanobis distances calculated between AA and CC pulsotype isolates 

in PC-LDA, the clustering of isolates based on spectral similarity resulted in 91.7 % and 91.0 % 

categorical agreement to PFGE for AA and CC pulsotype isolates respectively.  
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Unsupervised analyses for simulation of prospective VRE typing by FTIR spectroscopy 

Following the unsupervised, PCA-LDA method described in the previous section, a total 

of 214 VRE samples (191 patient screening and 23 environmental samples) collected between 

April 2016 and July 2017 were analysed for the spectral relatedness. The samples were previously 

identified by PCR and VRE ChromAgar (bioMérieux SA, Marcy l’Étoile, France) as vancomycin 

resistant E. faecium, and the strain relatedness between isolates were determined by PFGE. The 

samples were prepared from frozen (-80°C), onto Columbia agar with 5 % sheep blood (BAP) and 

reconfirmed as VRE using Chrome agar. PCA was conducted on all spectra from 214 isolates, 

identifying 9 PCs that each contribute > 1 % of total variance between spectra. These 9 PCs were 

subsequently used in LDA, as variable reduction The PCA-LDA was applied to the entire dataset, 

as well as subsets of VRE isolates, divided by PFGE pulsotypes, and hospital units where patients 

were screened.  

In Table 5.8 the results of analyses conducted per pulsotype and the relative concordance 

between FTIR spectral typing results and PFGE pulsotypes are presented. For pulsotypes that had 

large numbers of isolates present like AA (n=24) and CC (n=101), the concordance between PFGE 

and FTIR analyses was > 90 % for true positive rate, indicating that isolates that were identified 

to be spectrally indistinguishable were also identified to be clonal by PFGE. Among the isolates 

classified by PFGE as AA and CC variants, some clustered spectrally with AA and CC isolates 

(and hence were false positives), while some were part of subclusters, or determined to be 

unrelated to isolates of their corresponding non-variant pulsotype. Although in PFGE analyses, 

isolates with 1-3 band difference are considered closely or possibly related [3], the FTIR typing 

results indicate that not all isolates with the same PFGE band variation (ie AA-1) have the same 

phenotype, and can cluster separately from AA and remaining AA-1 isolates (which had no 

observable spectral difference from AA isolates). In the case of CC pulsotype variants CC-1, CC-

2 and CC-3, four out of five isolates were spectrally indistinguishable from CC pulsotype isolates, 

and therefore despite PFGE band differences (thereby also genetic changes), these changes had no 

effect in the FTIR spectral features of the VRE isolates. Similar non-discriminatory (and hence 

false positive) results were observed for Z-3 pulsotype isolate that was spectrally similar to the Z-

1 isolates. For pulsotype GG, none of the three isolates were considered spectrally clonal. However, 

upon closer inspection of the PFGE results, the three isolates had inconsistent PFGE band patterns, 

despite given the same pulsotype. Such inconsistent naming system caused by manual error can 
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occur, within a single laboratory by one person (as observed in this example), and demonstrates 

the difficulty to standardize PFGE results for comparison. Reproducibility between PFGE runs can 

occur, further complicating the pairwise comparisons [3]. Similarly, BB-3 pulsotype isolates were 

analysed with a BB pulsotype isolate, and resulted in two distinct clusters, each comprised of two 

isolates, with the fifth isolate being sporadic and spectrally not related to either clusters. Overall, 

the FTIR spectrotyping method resulted in 67-100 % true positive rates relative to PFGE 

pulsotypes. For four pulsotypes, LL (n = 3), M-3 (n = 4), X (n = 10), and Z-1 (n = 4), the true 

positive rates were 100 %, showcasing that clonal isolates cluster together based on spectral 

similarity, despite the fact that PCA-LDA is modeled to maximize distances between all isolates. 

Although the categorical agreement upon analysis with variants are important, as it describes the 

FTIR spectrotyping’s ability to reliably differentiate sporadic isolates from a cluster, the effect on 

the spectral patterns and therefore clustering is not consistent enough to consider these variant 

isolates as separate nor part of the clusters. In routine analyses, the strain types are yet to be known, 

and therefore the most important factor is whether accurate identification of clonal isolates can be 

achieved or not. Based on the results in Table 5.8, FTIR spectrotyping method demonstrated its 

ability to identify isolates that are indistinguishable (and thus considered “clonal” to each other) 

based on spectral features.  

In the analyses conducted by hospital unit, the method was tested to determine if it was 

capable of discriminating between various unrelated pulsotypes, while clustering clonal isolates. 

Table 5.1 shows the prevalence of each pulsotype by units, and the corresponding results from 

FTIR spectral typing in reference to PFGE pulsotypes are presented in Table 5.11. Overall, 

clustering was observed by FTIR spectrotyping in Units 11, 12, 13, 14, 18, CCU, ICU and SSU. 

Categorical agreement was calculated for each pulsotype with more than one isolate represented 

in the unit-by-unit analysis, and ranged from 26.8 % to 100 %. Low concordance between PFGE 

and FTIR spectrotyping was observed when isolates with various pulsotypes were considered 

clonal and clustered together. This was the case for a cluster in Unit 15 (Table 5.7). FTIR 

spectrotyping of 41 isolates from Unit 15 yielded 3 clusters and 3 sporadic isolates whereas these 

were clustered into 11 pulsotypes by the PFGE analysis, of which 3 were considered sporadic. 

Only one of the three sporadic isolates were in agreement between FTIR spectrotyping and PFGE 

pulsotype. Meanwhile, the two other sporadic isolates by PFGE (DD-1 and CC-2) were 

respectively clustered with isolates that were predominantly AA and CC pulsotype. In Unit 11, 



157 

 

there were 15 VRE positive patients identified between December 2016 and August 2017. Seven 

of these were isolated in January 2017, prompting an environmental screening for VRE, where 

three additional samples were identified. Based on the PFGE results, there was an outbreak caused 

by pulsotype B1, with two other potential clusters occurring, unrelated to the outbreak. However, 

based on FTIR spectrotyping, there were two outbreaks, one outbreak constituting of isolates that 

were designated pulsotypes B1 and AA-1, and another cluster composed of CC pulsotypes. The 

sporadic isolate identified by PFGE (EE) was also identified as a sporadic isolate by FTIR 

spectrotyping. FF pulsotype isolate however clustered closely with the CC pulsotype isolates by 

FTIR spectrotyping.  Despite the varying categorical agreement results, the true positive rates for 

each pulsotype ranged from 80 % to 100 %. The method has the ability to accurately identify 

isolates with the same PFGE pulsotypes as spectrally indistinguishable. However, the high false 

positive rates in some cases indicate either a lack of spectral difference between pulsotypes, despite 

the PFGE differences, or a need for improvement in the cut-off value for clonal determination in 

the method. The developed method was further tested in a 6-month prospective study, to identify 

clonal isolates and outbreaks.  
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Table 5.8 Comparison of FTIR spectrotyping and PFGE results by pulsotypes of retrospective VRE isolates 

PFGE 

Pulsotype 

No. of 

isolates per 

pulssotype 

Cluster True 

positive 

rate 

False 

negative 

rate 

False 

positive 

rate 

True 

negative 

rate 

Categoric 

agreement 

Subcluster 

1 

Subcluster 

2 

AA 

AA1 

AA-1 

24 

1 

8 

 

22 

0 

5 

91.7 % 

 

8.3 % 55.6 % 44.4 % 78.8 % 2 

1 

0 

0 

0 

3 

B1 8 6 75 % 25 % - - 75 % 2  

BB 

BB-3* 

1 

4 

2 50 % 50 % 0 % 100 % 60 % 2  

CC 

CC-1 

CC-2 

CC-3 

101 

2 

2 

1 

93 

1 

2 

1 

92.1 % 7.9 % 80 % 20 % 88.7 % 4  

DD 

DD-1 

1 

1 

No 

cluster 

    100 %   

GG 

GG-2 

2 

1 

No 

cluster. 

All non-

related 

    0 %   

LL 3 3 100 % 0   100 %   

M-3 4 4 100 % 0   100 %   

X 10 10 100 % 0   100 %   

Y 3 2 66.7 % 33.3 %   66.7 %   

Z-1 

Z-2 

Z-3 

4 

1 

1 

4 

0 

1 

100 % 0 50 % 50 % 83.3 %   

 

The 5 BB isolates spectrally separated into two clusters of two isolates, and one unrelated isolate. 
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Table 5.9 Clusters of isolates identified by FTIR spectrotyping per unit in the retrospective VRE isolates 

Unit Clusters observed 

by spectrotyping 

PFGE 

pulsotype 

True Positive False Positive True Negative False Negative Categorical Agreement 

11 

Cluster 1: B1 (8) /AA-1 (2) / FF (1) 

Cluster 2: CC (5) 

2 sporadic isolates: EE (1) / CC (1) 

18 

B1 8 100 % 3 30 % 7 70% 18 B1 8 100 % 

AA-1 2 100 % 9 56.3 % 7 43.8% 0 AA-1 2 100 % 

CC 5 83.3 % 1 8.3 % 11 91.7% 1 CC 5 83.3 % 

12 

Cluster 1: CC (10) /A2 (2) / T (1) / Z-2 (1) / Z-3 (1) 

Cluster 2: AA (7) / AA-1 (3) / CC (1) / W-1 (1) / M-3* (4)      *M-3 observed as a subcluster of AA cluster 

31 

CC 10 90.9 % 5 25 % 15 75% 31 CC 10 90.9 % 

A2 2 100 % 13 44.8 % 16 55.2% 0 A2 2 100 % 

AA 7 100 % 9 36 % 15 62.5% 0 AA 7 100 % 

AA-1 3 100 % 13 46.4 % 15 53.6% 0 AA-1 3 100 % 

M-3 4 100 % 12 44.4 % 15 55.6% 0 M-3 4 100 % 

13 

Cluster: X (2) 

A was sporadic 

3 X 2 100 % 0 0 % 1 100% 3 X 2 100 % 

14 

Cluster 1: AA (1) /M-2 (1) 

Cluster 2: CC (2) /Z-1 (2) 

LL is sporadic 

7 

AA/M- 0 0 % 2 33.4 % 5 83.3% 7 AA/M- 0 0 % 

CC 2 100 % 2 40 % 3 60% 0 CC 2 100 % 

Z-1 2 100 % 2 40 % 3 60% 0 Z-1 2 100 % 

(continued) 
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Unit Isolates observed  

per unit 

PFGE 

pulsotype 

True Positive False Positive True Negative False Negative Categorical Agreement 

15 

Cluster 1: CC (16) /A-2 (5)/ E-2 (2) /Z-1 (1) / A (4) / BB-3 (2) / Y (1) / CC-2 (1), 

Cluster 2: AA (3) / DD-1 (1) 

Cluster 3: X (2) 

3 sporadic isolates (Y, CC, LL) 

41 

CC 16 94.1 % 16 66.7 % 8 33.3 % 41 CC 16 94.1 % 

A-2 5 100 % 27 75 % 9 25 % 0 A-2 5 100 % 

E-2 2 100 % 30 76.9 % 9 23.1 % 0 E-2 2 100 % 

A 4 100 % 28 75.7 % 9 24.3 % 0 A 4 100 % 

BB-3 2 100 % 30 76.9 % 9 23.1 % 0 BB-3 2 100 % 

AA 3 100 % 1 2.6 % 37 97.4 % 0 AA 3 100 % 

X 2 100 % 0 0 % 39 100 % 0 X 2 100 % 

17 

Cluster 1: CC (51) / BB-3 (2) / CC-1(1) / CC-3 (1) / GG (1) / LL (1) 

Cluster 2: CC (3) / CC-2 (1) 

Cluster 3: GG (1) / GG-2 (1) 

Cluster 4: X (1) / X-1 (1) / BB (1) 

one CC isolate was sporadic 

66 
AA 2 100 % 3 4.3 % 67 95.7 % 66 AA 2 100 % 

CC 51 92.7 % 6 35.3 % 11 64.7 % 4 CC 51 92.7 % 

18 

Cluster 1: CC (5) / Y (1) / Z-1 (1) 

Cluster 2: AA (3) / AA-1 (1) / X (1), 

Cluster 3: AA1 (1) / AA-1 (1) / X (1) subgroup of AA, 

2 sporadic isolates P-2 and A-31 

17 
CC 5 100 % 2 16.7 % 10 83.3 % 17 CC 5 100 % 

AA 3 100 % 2 14.3 % 12 85.7 % 0 AA 3 100 % 

(continued) 
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Unit 
Isolates observed 

per unit 

PFGE 

pulsotype 
True Positive False Positive True Negative False Negative Categorical Agreement 

CCU 

Cluster: CC (2) 

Sporadic isolates A-3 and AA 

4 CC 2 100 % 0 0 % 2 100 % 4 CC 2 100 % 

ICU 

Cluster 1: AA (7) 

Cluster 2: AA(1) AA-1(1), Q1(1) 

Cluster 3: CC(4). 

Cluster 4: X(2) B1(1) 

One sporadic isolate: CC 

18 

AA 7 87.5 % 0 0 % 10 100 % 18 AA 7 87.5 % 

CC 4 80. % 0 0 % 13 100 % 1 CC 4 80. % 

X 2 100 % 1 6.3 % 15 93.8 % 0 X 2 100 % 

AA-1/Q1/AA 
  

3 16.7 % 15 83.3 % 0 AA-1/Q1/AA 
  

SSU Two sporadic isolates (no clusters)                        100 % 
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Six-month prospective analyses for VRE outbreaks 

In this prospective study, the VRE isolates collected from patients staying at the Montreal 

General Hospital and Royal Victoria Hospital were analyzed by the units where patients were 

hospitalized, to determine whether the FTIR spectrotyping method has the ability to identify clonal 

isolates routinely for surveillance purposes. Taking into consideration that patients often move 

between wards, patients that moved between wards were analyzed and compared to other patients’ 

VRE isolates by date that patients were admitted into the ward or when VRE screening results 

were positive. By combining the epidemiological data and spectrotyping results, the potential 

routes of VRE transmission between wards can be speculated. Twenty-five patients at Montreal 

General Hospital moved between 2 to 8 units (median = 4), and 2 to 20 rooms (median = 8) during 

their stay (0-204 days, median = 14 days). Ten of these patients were admitted into the hospital 

more than once (2 – 5 times) during the study period. One patient was a previously known VRE 

carrier, while another patient was identified as a new VRE carrier. VRE isolates were collected 

from 64 patients at Royal Victoria Hospital, where patients stayed in 1-10 wards (median = 5), and 

1-27 rooms (median = 9), over a period of 0-218 days (median = 17 days).  

Out of 16 analyses (one per ward) that were conducted with two VRE isolates, 6 analyses 

(37.5 %) had discordant results with PFGE. Out of these 6 wards, 4 had isolates that were not 

clonal, while 2 units had isolates that were considered clonal by PFGE. When the analyses were 

conducted with 3 samples, concordance between FTIR spectrotyping and PFGE was improved, 

with only 1 ward (6.7 %) with discordant results, and 3 wards (20 %) that had partially concordant 

clustering. In two of the three cases, isolates that were considered to have 1 or 3 PFGE band 

differences (e.g. BB and BB-3, QQ and QQ-1) were determined to be spectrally clonal. In the last 

case, the third isolate that was analysed was spectrally clonal to one of the two pre-existing isolates, 

despite all three isolates having the same pulsotype designation.  

  



 

163 

 

Table 5.10 FTIR spectrotyping results for clusters of isolates for potential outbreak detection, in comparison with PFGE pulsotype 

designation for MGH units at the end of the study period. 

Ward Isolates PFGE cluster  

designation 

True Positive 

(n, %) 

False Positive 

(n, %) 

True Negative 

 (n, %) 

False Negative 

 (n, %) 

Categorical 

Agreement (n, %) 

12 5 Z-1 3 100.0 % 1 50.0 % 1 50.0 % 0 0.0 % 80.0 % 

15 7 AAA 2 50.0 % 0 0.0 % 5 100.0 % 2 50.0 % 71.4 % 

15 7 AAA1 2 100.0 % 0 0.0 % 5 100.0 % 0 0.0 % 100.0 % 

17 4 AAA 2 100.0 % 0 0.0 % 2 100.0 % 0 0.0 % 100.0 % 

17 4 BB/BB-3 - - 2 50.0 % 2 50.0 % - - 50.0 % 

18 2 Z-1/BB - - 2 100.0 % 0 0.0 % - - 0.0 % 

ICU 6 AAA 4 100.0 % 0 0.0 %  2 100.0 % 0 0.0 % 100.0 % 

ICU 6 BB/Z-1 - - 2 33.3 % 4 66.7 % - - 66.7 % 

all 18 BB/Z-1 8 100.0 % 1 10.0 % 9 90.0 % 0 0.0 % 94.4 % 

all 18 BB 3 100.0 % 6 40.0 % 9 60.0 % 0 0.0 % 66.7 % 

all 18 Z-1 5 100.0 % 4 30.8 % 9 69.2 % 0 0.0 % 77.8 % 

all 18 AAA 4 80.0 % 1 7.7 % 13 92.3 % 1 20.0 % 88.9 % 

all 18 AAA1 2 100.0 % 0 0.0 % 16 100.0 % 0 0.0 % 100.0 % 
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Table 5.11 FTIR spectrotyping results for clusters of isolates for potential outbreak detection, in comparison with PFGE pulsotype 

designation for RVH wards at the end of the study period 

Ward Isolates PFGE cluster  

designation 

True Positive 

(n, %) 

False Positive 

(n, %) 

True Negative 

 (n, %) 

False Negative 

 (n, %) 

Categorical 

Agreement (n, %) 

C07N 7 V-2 4 100.0 % 0 0.0 % 3 100.0 % 0 0.0 % 100.0 % 

C07S 3 V-2 2 100.0 % 0 0.0 % 1 100.0 % 0 0.0 % 100.0 % 

C08C 5 BBB 2 100.0 % 0 0.0 % 3 100.0 % 0 0.0 % 100.0 % 

C08N 4 T 3 100.0 % 0 0.0 % 1 100.0 % 0 0.0 % 100.0 % 

C08S 12 T 10 100.0 % 1 33.3 % 2 66.7 % 0 0.0 % 92.3 % 

C09C 12 HH-1 2 66.7 % 0 0.0 % 9 100.0 % 1 33.3 % 91.7 % 

C09S 10 CC 3 100.0 % 3 42.9 % 4 57.1 % 0 0.0 % 70.0 % 

C09S 10 QQ/QQ-1 - - 2 20.0 % 8 80.0 % - - 80.0 % 

C10 9 BBB 2 100.0 % 1 14.3 % 6 85.7 % 0 0.0 % 88.9 % 

C10 9 QQ-2 

/EEE/HH/ 

unidentified 

- - 4 44.4 % 5 55.6 % - - 55.6 % 

D03 7 BBB 4 100.0 % 1 25.0 % 3 75.0 % 0 0.0 % 85.7 % 

D03 7 HH/V-2 - -  28.6 %  71.4 % - - 71.4 % 

D07 3 T/QQ-2/ 

unidentified 

- - 0 0.0 % 3 100.0 % - - 100.0 % 

D09 4 BBB/T - - 2 50.0 % 2 50.0 % - - 50.0 % 

D10 4 T 2 100.0 % 0 0.0 % 2 100.0 % 0 0.0 % 100.0 % 
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FTIR spectrotyping identified 8 clusters in 5 wards at MGH (Table 5.8). In unit 15, 17 and 

ICU, two clusters were identified per ward. Out of the 8 clusters, 5 clusters were concordant to the 

PFGE results, with 71-100 % categorical agreement. Three clusters identified by FTIR 

spectrotyping were not identified as clusters by PFGE. Two of these clusters contained isolates 

with pulsotype Z-1 and BB (in Unit 18 and ICU). Based on an analysis that was conducted on all 

samples from MGH, it was revealed that all BB, BB-3 and Z-1 isolates clustered together by FTIR 

spectrotyping. Based on the PFGE band patterns, the two pulsotypes are 84 % similar (Figure 5.7). 

Isolates of AAA pulsotype, another cluster of isolates that were identified within MGH wards, 

varied in PFGE pulsotype by up to 23 % (minimum 77 % similarity) within the same pulsotype 

(Figure 5.8) This indicated that Z-1 and BB pulsotypes are more similar by PFGE, than some AAA 

pulsotype isolates are to each other; this coincides with FTIR spectrotyping results. Despite 

examples of isolates belonging to variants of a given pulsotype having spectral clonality to their 

non-variant type, not all variants are spectrally similar to their non-variant type. This was observed 

in Unit 15, where AAA1 pulsotype isolates, were spectrally distinct from AAA isolates, resulting 

in two separate clusters, rather than one.  

Analyses revealed that isolates that are spectrally similar were identified in 4 out of 5 units. 

For example, pulsotype AAA isolate colonized 3 patients during their stay in ICU (n = 2) and Unit 

15 (n = 1). These patients and one more patient who had the AAA puslotype VRE stayed in 4 units. 

Based on the dates that the patients stayed in each ward, the two patients that acquired VRE in 

ICU were not overlapping in stay. Although frequent change in wards where patients stayed were 

observed, the likelihood that the same strain was transmitted across multiple wards in the hospital 

was low, based on their movement and timeline. The patient who stayed in the ward after the first 

patient was VRE positive was already VRE positive prior to staying in the said ward, indicating 

that the transmission of VRE likely occurred via other routes. The main source of the transmission 

to patients seem to be from the environment, as patient to patient transmission seems unlikely due 

to lack of overlap in stay, as well as the dates and location where patients are suspected to have 

acquired VRE. Persistent colonization of VRE in the environment is likely the cause, and this may 

explain why patients from different units acquired the same strain type VRE.  
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Figure 5.7 Pulsotype BB and Z-1 for VRE isolates in HCA based on PFGE band patterns 
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Figure 5.8 AAA pulsotype isolates and their relative similarity based on PFGE, colored based on spectrotyping results 
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Within 12 wards that were analysed at RVH, at the end of the study period, 15 clusters of 

isolates based on spectral similarity were identified (Table 5.11). Of these 15 clusters, 7 clusters 

were 100 % concordant with PFGE results. FTIR spectrotyping identified 4 additional clusters that 

were not identified by PFGE. These clusters were comprised of 2-4 isolates all with different 

pulsotypes, which were considered sporadic strains. The categorical agreement in cluster 

identification for wards in RVH ranged from 55.6 % to 100 % (Table 5.11). There were a few 

PFGE pulsotypes that were identified across multiple wards, including pulsotypes V-2, T and BBB, 

that were identified as clusters by FTIR spectrotyping. In wards C09S and D03, multiple clusters 

were observed, indicating potential presence of two outbreaks that were ongoing at the same time. 

Environmental isolates were acquired in RVH units, C08S and C09C and C09S. Isolation from 

unit environment indicates persistent presence of VRE. In the case for C08S, environmental 

isolates were clustering with the isolates that were identified as an outbreak. Environmental 

samples were typed during the outbreak in late February 2019. At this point, 5 patients were 

screened positive during their stay in the ward, where none of these patients were previously 

colonized with VRE. During the time of the study, the VRE screening also revealed that three 

more patients that had stayed at the unit in mid to late March also acquired the same pulsotype 

VRE, indicating that the outbreak was still ongoing (Figure 5.9). This was later confirmed by 

PFGE, where all isolates that clustered by FTIR were identified as pulsotype T. In Table 5.10, 

consecutive analysis by date in which new VRE positive patients are identified or is moved into 

the ward from other wards. The analyses provided concordance to PFGE results at every analysis, 

with the exception of one, where a sporadic isolate (pulsotype BBB) was considered clonal to the 

outbreak isolates. However, interestingly, the once considered clonal isolate was determined to be 

non-related to the outbreak in consecutive analyses.  

In ward C09S, environmental sample ES37 clustered with VRE samples of patients that 

had stayed in the unit, indicating again, that the environmental sample and patient samples were 

clonal. On the contrary, in ward C09C, spectrotyping results indicated that the environmental 

sample, ES54 was a unique, and sporadic isolate. This result was discordant to PFGE results, which 

indicated that the environmental sample was clonal to a sample, that acquired VRE colonization 

as of February 18th. The environmental sample was collected and analysed on March 5th. This unit 

resulted in two clusters, one which comprised of a CC and CC-1 isolate (n = 2), and another of 4 

sporadic isolates (DDD, HH-3, LL-2 and QQ-1). Two of the four sporadic isolates that clustered 
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together were from patients who were already VRE colonized prior to staying in the ward, 

indicating that the transmission did not occur in this ward. However, it does not preclude the idea 

that the same strain type VRE colonized all four patients, as the same strain type VRE may have 

adapted and persisted in the environment across wards within the hospital. Based on the FTIR 

results, two outbreaks were ongoing in this subunit, however, it is likely that only one patient was 

colonized from a VRE transmitted in this ward. 

 



 

170 

 

Figure 5.9 Timeline of patients' stay and VRE colonization and pulsotype at subunit C08S 

 

Example timeline of patient movement within a subunit at a hospital. Green bars represent time during the patients’ stay without VRE 

colonization. Red bars represent time spent in the subunit with VRE positive colonization. PFGE pulsotype indicated above initial 

colonization time  
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Table 5.12 Results by date in Subunit C08S over a 4-month period, by FTIR spectrotyping and PFGE 

Isolates 

analysed (N) 

Date Added New 

Sample ID 

PFGE pulsotype 

designation 

Result by FTIR 

spectrotyping 

Outbreak 

Detection by FTIR 

spectrotyping 

(Y/N) 

Result in 

comparison 

to PFGE 

4 12-Feb-19 RV18066,  

RV18073, 

RV18076, 

RV18077 

T x4 clonal Yes concordant 

6 19-Feb-19 RV18084, 

RV18085 

T x 5 

 T-3 

Clonal for all T samples. 

New sample (#085, T-3) 

not clonal 

Yes concordant 

8 27-Feb-19 ES11, ES13 T x 7/T-3 clonal for all T samples.  Yes concordant 

9 04-Mar-19 RV18075 T x 7/ 

T-3/BBB 

new sample clonal to all 

T samples 

Yes not 

concordant 

10 05-Mar-19 RV18092 T x 7/T-3 

/BBB/AAA 

Sporadic. Previously 

identified clonal sample 

was not clonal in this 

analysis 

No new isolates 

part of outbreak 

concordant 

13 25-Mar-19 RV18101, 

RV18102, 

RV18103 

T x 7/T-3 

/BBB/AAA/ 

T x 3 

new samples all clonal 

to T samples 

 concordant 

14 01-May-19 Non-hospital 

acquired isolate 

T x 7/T-3 

/BBB/AAA/ 

T x 3/non-hospital 

acquired 

new sample is sporadic  concordant 
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Discussion 

The FTIR spectrotyping method was developed based on the knowledge of VRE strain types 

provided by PFGE analysis. Using the PFGE results of retrospective isolates, a cut-off value for 

spectrally “clonal” isolates was determined (500 squared Mahalanobis distance). The PCA-LDA 

method does not rely on any prior knowledge on strain type or relatedness between samples. Using 

the spectral replicates for each isolate that were analysed, distances between isolates were 

maximized by identification of spectral regions that contribute to differentiation of isolates. This 

method was developed on the idea that spectral similarities between clonal isolates should be high 

even with the PCA-LDA model undergoing an optimization in maximizing distances between such 

isolates, because the clonal isolates should be spectrally indistinguishable. PCA was conducted 

first prior to LDA for each analysis, to ensure that isolates are not differentiated on variables other 

than the microbial differences, such as instrumental variability. Additionally with variable 

reduction, LDA can be completed faster compared to when analysis is conducted using all 

datapoints that are present in the spectral region 1350-800 cm-1 (1181 datapoints). Discrimination 

in a PCA-LDA between isolates of the two most commonly acquired pulsotypes AA and CC, 

resulted in clustering of isolates with 91.7 % and 91 % categorical agreement respectively, 

showcasing the presence of spectral differences amongst VRE isolates with different pulsotypes. 

In both the retrospective and prospective studies, FTIR spectrotyping clustered isolates of 

the same pulsotype with success, reflected by high true positive rates. The false positive rates 

varied between analyses, indicating that the spectrotyping did not observe sufficient spectral 

difference between some pulsotypes, while others were easier to discriminate due to larger spectral 

differences. PFGE patterns are known to be affected in the number of bands present, as well as in 

the patterns, through the introduction of transposons, and van genes into the genome [18]. Since 

accessory genomes are known to cause large variations in phenotypic characteristics within E. 

faecium, it is no surprise that there are discordant clustering results between FTIR spectrotyping 

and PFGE. Follow-up analysis that compares FTIR spectrotyping with WGS, as well as correlation 

between genotypic and spectral characteristics may further aid in understanding the extent in which 

FTIR spectrotyping can be used and be beneficial as a rapid routine screening method of clonal 

isolates.  
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There were a few limitations to this study that must be mentioned. The first limitation in this 

study was that the VRE samples that were considered non-nosocomial (the patient acquired VRE 

prior to hospitalization) were not analysed for strain type by PFGE, and these isolates reported as 

unidentified. Additionally, PFGE analysis was only conducted on the first VRE isolate obtained 

from screening per patient, or when the patient was VRE positive again after at least 3 months of 

being VRE-negative. Since PFGE is both labor and time intensive, and impractical to analyze all 

isolated VRE samples, subsequent VRE samples isolated from patients who were previously 

identified to be VRE-positive in prior screening were not analyzed by PFGE, despite patients on 

outbreak wards being screened on a weekly basis (or once every two weeks for patients staying on 

non-outbreak wards). Thus, these VRE samples isolated in subsequent screenings from VRE 

colonized patients were also not available for FTIR spectral acquisition. Colonization with 

multiple E. faecium strain types occur commonly [18, 19], and although repeated screenings can 

identify whether patients are colonized or not, without the strain typing results by PFGE on 

consecutive samples from the first positive sample, it is not clear whether the patient is still 

colonized with the same strain type, or has acquired new strain types during hospitalization. Ideally, 

repeated VRE samples that are isolated from colonized patients should be strain typed and 

characterized in order to track changes like acquisition of antimicrobial resistance and virulence 

genes. Although genome diversification is known to occur through optimization to host during 

colonization and infection, the extent of the microorganisms’ genotypic and phenotypic changes 

are not well known [20]. Frequent strain typing also makes identification of pathogen transmission 

in the environment and to new patients easier. The advantage of the FTIR spectrotyping method 

is that it can handle high sample throughput, as no complicated sample preparation are required, 

and spectral acquisition can be achieved within a few minutes from obtaining isolated colonies on 

agar plates. Furthermore, the FTIR spectrum reflects the metabolic and structural characteristics 

of the live, whole-cell of microbial sample, which may detect both genetic and phenotypic changes 

that occur in microorganisms. 

 Although common pulsotypes were observed in multiple wards, based on the movements 

of patients between wards as well as the dates when colonization were first detected for patients, 

patient to patient transmission was rarely observed. The presence of VRE in the environment, 

which were spectrally and genotypically clonal to that of patients who stayed in the ward indicate 

that there are endemic VRE strains. The results show that among the wards in both RVH and MGH, 



174 

 

there were pulsotypes that were present in both hospitals, such as AAA pulsotype, which indicate 

the potential spread of strain types between hospitals. The FTIR spectrotyping result for AAA 

pulsotype that was identified in both MGH and RVH during the 6-month prospective study showed 

that the samples were spectrally indistinguishable, and the clustering was concordant to PFGE 

results. Multiple endemic VRE strain types were present in both hospitals, which is commonly 

observed in hospitals [18]. A report on a VRE outbreak at a neonatal intensive care unit in Montreal 

that occurred in August 2018, indicated that the hand hygiene protocol was only followed by 62 % 

by hospital workers, patients and their visitors [21] . Education of the patients and workers, as well 

as visitors was suggested to increase adherence to hygiene protocol and result in better control 

over the outbreaks. The current cleaning and hand washing policies that are implemented when 

VRE positive patients are identified at the hospital include 1) daily cleaning of surface areas that 

are frequently touched, 2) disinfection of all equipment with approved disinfectant, and 3) hand 

washing must be done with alcohol based rinse, or with soap and water. When isolation precautions 

are removed, a final cleaning is required for the ward where the patient had been hospitalized. 

VRE have been reported to be resistant against chemicals used in standard cleaning procedures, 

which makes decontamination harder, as they continually adapt to and persist in their environment 

[2, 22].  

The FTIR spectrotyping method is indeed useful when an outbreak is occurring, and 

furthermore, it is useful in identifying a sample with unusual spectral characteristic. However, it 

should be noted that there are reduced levels of confidence in identifying clusters when more than 

one outbreak is simultaneously occurring. Although not impossible to identify more than one 

cluster of isolates in a unit (like Unit 17 and 15 at MGH), it seems that in wards like C09C, C09S 

and C10 where more than 6 pulsotypes of VRE isolates were present, it was difficult to 

discriminate between isolates well. However, due to the lack of additional genotypic information 

on the isolates (such as MLST sequence type and the types of genes each isolate possesses for 

virulence and pathogenicity) it is difficult to determine whether these various pulsotypes are part 

of a broader MLST sequence type, or are phylogenetically more similar to each other than to other 

strain types. The knowledge on E. faecium strain types is limited, and expected to expand and 

change as more isolates are whole genome sequenced and recategorized [20]. 

When comparing samples, it assumed that the VRE strain type that colonized patients were 

consistently the same throughout their hospitalization, and that only one strain type colonized the 
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patient, rather than possibly multiple types. The results for clustering was also based on the 

assumption that there were no genetic and phenotypic evolutions that occurred while colonizing 

patients. VRE has a high recombinant rate compared to other organisms, and therefore, this study 

could be improved through the spectral data acquisition from every positive sample that the 

screening identified. To address these limitations, future studies should acquire FTIR and 

genotypic data from patients repeatedly to track the changes, and evaluate whether FTIR 

spectroscopy is able to rapidly identify outbreaks or odd samples, that can be further analyzed for 

characterization, to provide a better global understanding from typing results that would better 

track the transmission and evolution of VRE colonization in patients. 
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5.5 Conclusion 

In this study, transflection FTIR spectroscopy demonstrated its ability to identify clusters of 

bacterial isolates based on spectral similarity using VRE isolates for outbreak surveillance. Using 

unsupervised and supervised multivariate statistical analyses, spectral discrimination of two VRE 

strain types (previously identified by PFGE as AA and CC) was successfully achieved. A 

unsupervised PCA-LDA method, with a cut-off criteria to determine spectrally indistinguishable 

isolates was developed using the AA and CC pulsotype VRE isolates, resulting in 91.7 % and 91 % 

concordant clustering relative to PFGE results. The method was evaluated on 214 retrospective 

isolates that were collected from patients who acquired VRE from 10 different wards, and in 

prospective studies with 129 isolates from two Montreal hospitals. Analyses indicated that the 

FTIR spectrotyping method had high true positive rates relative to PFGE results, showcasing its 

ability to identify clusters of VRE isolates that were spectrally indistinguishable. The detection of 

VRE clusters by FTIR spectrotyping which were later confirmed by PFGE in the prospective study 

demonstrated its utility as a routine method in the clinical setting. The discrepant results in 

clustering between FTIR spectrotyping and PFGE could not be studied by a third method like 

WGS, which could provide genotypic insight, such as sequence types by MLST, as well as SNP 

differences. WGS analyses may provide insight into genotypic characteristics that may be related 

to spectral differences (or the lack thereof) observed between VRE isolates that had discrepant 

results between FTIR spectrotyping and PFGE pulsotype analyses. FTIR spectrotyping would 

serve as a useful tool in rapidly screening and identifying clusters of isolates that may be related 

to an outbreak, as well as spectrally unique strains, which can then be further characterized by 

genotypic methods such as whole genome sequencing. 
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Connecting Statement 

Successful discrimination between pulsotypes of VRE isolates related to nosocomial outbreaks 

was demonstrated, using transflection-FTIR spectroscopy. A method was developed to identify 

isolates that were considered clonal based on spectral similarity. The method was tested on 

prospective samples and like the retrospective isolates, proved the method to successfully identify 

clusters of isolates that are spectrally clonal. The method’s ease of sample preparation, data 

acquisition, and analysis demonstrated its potential use as routine typing technique, possibly in 

replacement of PFGE, and as a screening method prior to genotypic methods like WGS. However, 

owing to the extensive overlap in FTIR spectral regions where absorbances are observed for 

different biochemical constituents from derived from structural and metabolic features of the 

microorganisms, it is near impossible to identify the exact biomolecules that contribute in 

successful spectral discrimination. In the following chapter, high-resolution magic-angle spinning 

(HR-MAS) NMR spectroscopy, a spectroscopic technique with higher chemical specificity was 

used to acquire and spectrally differentiate microorganisms based on their highly resolved NMR 

spectra from whole, live cells. Utilizing this technique in combination with whole genome 

sequencing and mass spectrometry, a tentative assignment of biomolecules that enabled spectral 

differentiation between E. faecium strain types by FTIR spectroscopy were identified.  
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Chapter 6.  Preliminary data acquired for correlation between genotypic 

and spectroscopic data for biomarker elucidation and correlation to FTIR 

spectral analysis, using NMR spectroscopy and whole genome 

sequencing 

6.1 Abstract 

High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy 

is a whole-organism fingerprinting technique similarly to FTIR spectroscopy, capable of acquiring 

spectral data from live microbial cells. While both techniques analyze the overall biochemical 

composition of live cells, NMR spectroscopy has gained popularity in studying metabolomics and 

cell-wall structures of intact microorganisms owing to its high chemical specificity and rich 

information content. In the present study, 1H and 31P HR-MAS NMR spectroscopy were explored 

for their discriminatory capabilities, for potential in rapid identification and strain typing. Genus 

and species discrimination were demonstrated using 46 reference and clinical strains of yeasts and 

Gram-positive and Gram-negative bacteria. Furthermore, 28 vancomycin resistant Enterococcus 

faecium (VRE) isolates were selected to examine the potential applicability of 1H and 31P HR-

MAS NMR spectroscopy for discrimination amongst isolates from three nosocomial outbreaks. 

Following overnight culture on blood agar, sufficient microbial mass was collected and placed in 

an 80µl HR-MAS NMR insert which was then put in a 4mm MAS rotor. Spectral data analyses 

were performed by hierarchical cluster analysis (HCA) and principal component analysis (PCA) 

in conjunction with the use of feature selection algorithms. Classification of the VRE isolates by 

both PCA and HCA of the 1H or 31P HR-MAS NMR spectra yielded 100 % and 96 % concordance 

with PFGE results respectively. This proof-of-concept study demonstrated how genotypic 

differences among strain types are reflected in phenotypic differences that can be observed by 1H 

and 31P HR-MAS NMR whole-organism fingerprinting techniques and supports the potential 

development of HR-MAS NMR spectroscopy as a strain typing tool for nosocomial outbreak 

surveillance. Additionally, owing to the increased chemical specificity of HR-MAS NMR relative 

to FTIR spectroscopy, tentative biomarker identification was achieved using 1H and 31P NMR 

spectroscopy, in combination with genotypic data acquired from whole genome sequencing 

(WGS) and mass spectrometric (MS) data, that differentiates between the VRE strain types 
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associated with three different nosocomial outbreaks. Phosphorus and choline containing 

molecules were identified as potential metabolic or structural differences that were spectrally 

observed between the VRE pulsotypes, in FTIR and NMR spectral analyses. Additionally, WGS 

data revealed that the genotypic differences between the strain types were extensive, with the 

pulsotypes only sharing 27 % of the core genome. CC pulsotype isolates were missing a 

housekeeping gene, pstS, which encodes for a protein that binds to phosphate for uptake. Extended 

studies in the future are required to confirm the identity of tentatively identified biomarkers with 

additional multidimensional NMR experiments and targeted mass spectrometry. This work 

provided a list of potential biomarkers that result in differences observed in FTIR spectral 

characteristics between VRE isolates at the subspecies level, making a strong case for rapid and 

routine strain typing by FTIR spectroscopy as a screening method.  
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6.2 Introduction 

As presented in the previous chapters and by many other researchers, microbial 

discrimination and identification at species and sub-species level can be achieved using FTIR 

spectroscopy in combination with multivariate statistical analyses [1-13]. Due to overlapping 

absorption signals from various biochemical constituents of the microorganisms’ structural and 

metabolic composition, specific biomarkers or biochemical differences that enable spectral 

discrimination are seldom identified. In addition to reporting the capabilities of FTIR spectroscopy 

for rapid microbial identification and analyses, to become a widely accepted method, it is 

important to explain the observed infrared spectral differences by supplementing the data with 

other techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 

(MS).  

NMR Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical 

technique used in many different fields including chemistry, particularly organic chemistry, 

physics and biochemistry. The most commonly used nuclei include 1H, 13C, 15N and 31P when 

studying biological samples [14]. Common uses include elucidation of molecular structures, amino 

acid sequence in proteins, and studies of reaction rates and dynamics. NMR spectroscopy is also 

applied in studying metabolomics, observing the state of and the change in metabolism under 

different conditions. Acquiring high resolution NMR spectra in solution-state and solid-state NMR 

spectroscopy, traditionally required that samples be in a homogeneous liquid form and crystalline 

solid state respectively, limiting the types of samples and the applications for which NMR 

spectroscopy was suited. The development of the technique known as high-resolution magic-angle 

spinning (HR-MAS) NMR spectroscopy provided the ability to analyze much more diverse sample 

types, including semi-solids, and heterogenous samples, such as microorganisms, tissues, and 

whole cells, as well as food and beverage products [15-20]. This increased NMR spectroscopy’s 

popularity in metabolomic studies, expanding into disciplines such as food science, agricultural 

science, and medical studies. HR-MAS NMR spectroscopy has the ability to acquire high-

resolution spectra that look similar to spectra acquired in solution-state NMR spectroscopy through 

the suppression of line broadening caused by dipole-dipole interactions and chemical shift 

anisotropy. This is achieved by spinning the sample at the “magic angle” relative to the external 
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magnetic field, where the magic angle θm  =  ~54.74° , was determined from the following 

equation: cos2θm  =  
1

3
 [21]. HR-MAS NMR spectroscopy allows samples like bacteria to be 

analyzed without preparation steps such as extraction, purification and concentration which were 

required for solution-state and solid-state NMR experiments. Not only does this shorten the sample 

preparation time substantially, but it also allows analysis of the sample in its most natural state. 

The advantage of NMR spectroscopy over vibrational spectroscopic techniques (FTIR and Raman) 

is that it has superior chemical specificity, allowing the presence and identity of metabolites to be 

determined from the NMR spectra, especially through the use of multidimensional NMR 

experiments. 

6.2.1.1  Applications of NMR spectroscopy in microbial identification. 

Successful microbial discrimination at genus and species level has been demonstrated in 

solution-state, where microbial colonies were suspended in solution, or the spectra were acquired 

from the broth media after growth and removal of microbial colonies [22-25]. In order to acquire 

high resolution spectra in the solution-state, bacteria and yeasts were suspended in liquid broth, 

and spectra were acquired before the microorganisms sedimented to the bottom of the NMR tube. 

The experiments conducted on the broth media relied on observations of the metabolites that were 

released by the bacterial species, in order to discriminate between organisms. These studies 

showcase the potential applicability of HR-MAS NMR spectroscopy in rapid identification and 

strain typing of microorganisms, directly from live cells. At the time of writing, there have yet to 

be any studies conducted in 1H or 31P HR-MAS NMR spectroscopy, for microbial identification 

or strain typing. However, multidimensional HR-MAS NMR experiments have been popular in 

studying microorganisms. The potential in serotyping was reported through identification of 

polysaccharide moieties on cell wall structures of live Neisseria meningitidis and Candida 

albicans, glycans on Campylobacter species and O-specific polysaccharides on Yokenella 

regensburgei, which were matched with in vitro analyses [26-29]. By acquiring the data from 

microorganisms in their live state, HR-MAS NMR spectroscopy can be used to study the 

interaction between the microorganism and desired factors, such as the effect of drugs, gene 

mutation, osmotic pressure, aging and nutrient variation [15, 28, 30-33].  
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Mass spectrometry for metabolomics 

Mass spectrometry is a complementary technique to NMR spectroscopy in metabolomics, 

as it has better sensitivity, with a lower limit of detection, ranging from pM to nM [34]. While 

NMR spectroscopy can identify metabolites with little or no prior knowledge, MS can identify 

metabolites through the measured mass, to determine the elemental composition and molecular 

formula [34].  

Genotypic techniques for strain typing and characterization 

Genotypic techniques used for VRE strain typing includes methods like pulsed field gel 

electrophoresis (PFGE), multiple locus variable number of tandem repeat analysis (MLVA), multi-

locus sequence typing (MLST), whole genome sequencing (WGS) and transposon analysis [35]. 

Core genome MLST (extracted from WGS data) has excellent discriminatory power, and 

reproducibility, as well as improved ease of performance and data exchange compared to PFGE. 

With the increasing popularity of WGS, cost is expected to decrease, making it a viable option 

upon standardization and validation of the WGS procedure and data interpretation. WGS is also 

beneficial due to its wealth of information, such as the possession of virulence factors, resistance 

genes, plasmids and other characteristic genetic markers that may be of interest [35]. Especially in 

the case of E. faecium, which has high genetic plasticity, frequent acquisition and deletion of genes 

through plasmid transfers can be observed through analysis of the whole genome data.  

6.3 Materials and Methods 

Clinical isolates used for evaluating the discriminatory capabilities of 1H spectra acquired by 

HR-MAS NMR spectroscopy 

Forty-six isolates, including 12 ATCC strains were chosen to demonstrate the 

discriminatory capabilities of 1H HR-MAS NMR spectroscopy at the Gram stain, genus and 

species levels, as well as sub-species level, demonstrated by discrimination of MRSA and MSSA. 

All isolates were cultured from frozen 10 % glycerol stock onto Columbia agar with 5 % sheep 

blood (BAP) (Oxoid, Nepean, ON) and incubated for 24 hours at 35˚C. Prior to spectral acquisition, 

isolates were sub-cultured onto BAP and grown under the same conditions.  
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VRE isolates used for evaluating the discriminatory capabilities of 1H and 31P NMR spectra 

acquired by HR-MAS NMR spectroscopy and tentative biomarker identification relating to strain-

type differences in spectral data 

Vancomycin-resistant E. faecium (VRE) isolates (n = 28) originating from 3 different 

nosocomial outbreaks at the Montreal General Hospital (MGH) between April 2016 to December 

2017 were used to evaluate the potential applicability of 1H and 31P HR-MAS NMR spectroscopy 

as rapid strain typing techniques retrospectively. All isolates were previously identified by routine 

clinical laboratory identification methods (VRE screening broth, PCR and chromogenic VRE agar), 

and analyzed by PFGE for their strain type characterization (Figure 6.1and Table 6.1). Isolates 

were prepared from frozen 10 % glycerol stock, by culturing on Columbia agar with 5 % sheep 

blood (BAP) (Oxoid, Nepean, ON), and incubating at 35°C for 18-24 hours. They were sub-

cultured on BAP under the same conditions prior to spectral acquisition by FTIR and HR-MAS 

NMR spectroscopy. Cultures on VRE ChromAgar plates (Biomeriux, FR) were checked to 

confirm the isolates’ vancomycin resistance, by the color of the grown colonies (blue/purple for E. 

faecium). 

 

Table 6.1 PFGE pulsotypes of vancomycin resistant E. faecium isolates used in study for 

discrimination by HR-MAS NMR spectroscopy. 

PFGE Pulsotype Isolates Outbreak Dates 

AA 11 ICU/Unit 12E Sep-Oct 2016 

B1 5 Unit 11E Jan 2017 

CC 12 Unit 17E/15 Jan – March 2017 
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Figure 6.1 Dendrogram generated from hierarchical cluster analysis using PFGE band patterns 

of VRE isolates from three hospital outbreaks 

 

HCA of PFGE band patterns identified three clusters (AA, B1 and CC), that occurred from 

September 2016 to March 2017. Axis on the dendrogram arm indicates percent similarity between 

isolates’ PFGE band patterns. AA showed highest degree of variability amongst the isolates within 

each pulsotype, noted by (-) 1 in the PFGE pulsotype nomenclature when an extra band is present 

or missing.  

1H and 31P HR-MAS NMR spectral acquisition and processing parameters 

The 1H HR-MAS NMR spectra of bacteria were acquired using an AVANCE III 600 MHz 

NMR spectrometer (Bruker Corporation, GE) equipped with a room temperature (25 ℃) HCP and 

HCN Z-gradient HR-MAS probes. All spectra were acquired by co-adding 256 scans, performed 

with pre-saturation of the water peak and a pulse at 90º (pulse program zgpr). Disposable 80μl 

inserts were filled half-way with bacterial colonies directly from agar, using a centrifuge at 10000 

rpm. 3-(Trimethylsilyl)propanoic acid (TSP) was dissolved in D2O at a concentration of 1 % (w/v) 

and used as an internal standard. A 5 μl aliquot of the TSP solution was pipetted into the rotor 

Pulsotype
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before the bacteria-filled insert was put in. This prevented any potential H-D exchange between 

the D2O and the bacteria. Due to the lack of D2O in the rotor relative to the sample, the field was 

locked on a separate insert containing 1:1 ratio of H2O/D2O solution. The sample was spun at 5 

kHz at the magic angle (54.7°) relative to the external magnetic field. Each spectrum was phased, 

referenced (TSP at δ = 0 ppm), and baseline-corrected using the Topspin Software ver. 3.6.3 

(Bruker Corporation, Billerica, MA, USA).  

Phosphorous HR-MAS NMR spectra were spectra were acquired with 512 coadded scans 

using the pulse program zg, spinning at 5 kHz at the magic angle (~54.74°) relative to the external 

magnetic field. A rotor containing triphenyl phosphate (TPP) dissolved in acetone was used as an 

external standard at -27.5 ppm. A 31P HR-MAS NMR spectrum of the external standard was 

acquired once a day, before or after sample spectral acquisitions. The spectra of samples were 

referenced according to the spectral shift observed in the TPP spectrum acquired on the same day. 

The post-processed NMR data were subjected to statistical analysis using AMIX software 

(Bruker Corporation, Billerica, MA, USA). PCA was employed on the NMR spectra using the 

region δ = 0.5 ppm to δ = 10ppm, excluding the water peak region (δ = 4.5-5.2 ppm). Additionally, 

the NMR spectra were pre-processed using vector normalization and hierarchical cluster analysis 

(HCA) was employed to visualize the spectral similarities between NMR spectra of different 

microbial organisms, using SpectrAnalysis software (Cognisolve Inc., Montreal, QC).  

Transflection FTIR spectral acquisition and data processing parameters 

Is Isolated colonies were picked directly from agar plates using sterile 1-µl disposable 

loops and smeared onto IR-reflective, low-E slides (Kevley Technologies, Chesterland, OH, USA) 

as thin films in triplicate spots and air-dried. Using the Cary 630 FTIR spectrometer (Agilent 

Technologies, Santa Clara, CA) with a 10° specular reflectance sample interface (Agilent 

Technologies, Santa Clara, CA) or a SurveyIR microscope (Czitek, Danbury, CT, USA) and 

MicroLab Software (Agilent Technologies, Santa Clara, CA), trasnflection spectra were acquired 

with 64 coadded scans at 8 cm-1 resolution and a zero-filling factor of 8, in the spectral range 4000-

650 cm-1. Prior to spectral acquisition, background spectra were acquired from a bare surface area 

of the E-glass slide with the same spectral acquisition parameter settings. Spectra were pre-

processed by taking the first derivative and vector normalization to eliminate variability caused by 

baseline shifting and sample thickness respectively. 
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Using the spectral region 1350-800 cm-1, the spectra were subjected to hierarchical cluster 

analysis (HCA) and principal component analysis (PCA) to ascertain whether there were any 

global differences between the two strain types, using JMP Pro ver. 15.2.0 (Cary, North Carolina, 

USA). PCA was also used to reduce the dimensionality of the spectral data for subsequent 

multivariate analyses. Analysis to determine spectral relatedness between isolates was conducted 

with modifications to that reported by AlMasoud [36]. The scores of every PC that explained over 

1 % of total variance were used for subsequence linear discriminant analysis (LDA). Unsupervised 

PC-LDA developed a model that maximized the distance between isolates (where each isolate was 

classified as its own group), and minimized the distance between replicate spectra per isolate. 

Squared Mahalanobis distances for each spectrum to the mean of each class, were calculated from 

the PC-LDA model. Using the obtained squared distances, isolates were clustered by HCA with 

average linkage and the results were plotted in a dendrogram to visualize the spectral similarity 

between isolates. Additionally, using a forward-search spectral feature selection algorithm in 

SpectrAnalysis software (Cognisolve Inc., Montreal, QC), spectral regions within the fingerprint 

region (1350-800 cm-1) that contribute to spectral differentiation between the three pulsotypes 

were identified in intervals of minimum 10 cm-1. 

Phenotypic antimicrobial susceptibility test 

Using VITEK 2 AST, all VRE isolates were tested to obtain the antimicrobial resistance 

profile for select antibiotics. The tested antibiotics were benzylpenicillin, gentamycin (high level), 

streptomycin (high level), quinupristin/dalfopristin, linezolid, tigecycline, ampicillin, 

ciprofloxacin, levofloxacin, vancomycin, tetracycline, and nitrofurantoin. The resistance status 

towards each antibiotics was reported in qualitative terms (R = resistant, I = intermediate and S = 

sensitive), along with quantitative values reported from the determined minimum inhibitory 

concentration (MIC) in µg/ml. 

Genotypic data acquisition using whole genome sequencing of VRE isolates representing 

AA, B1 and CC pulsotypes 

6.3.6.1  Sample Preparation: DNA extraction 

Using QIAamp® DNA Mini Kit (Qiagen, Germany), DNA was extracted manually from 

VRE isolates, as per manufacturer’s handbook, based on protocols for bacteria. Briefly, isolates 

were sub-cultured in Brain Heart Infusion (BHI) broth overnight from the first passage plate 
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prepared on BAP, from frozen 10 % glycerol stock solution. Bacterial colonies were pelleted using 

a centrifuge at 5000 x g (7500 rpm) for 10 minutes, from 1ml of bacteria broth culture. The bacteria 

pellet was then suspended in 180µl of enzyme solution, containing 20 mg/ml lysozyme, or 200 

µg/ml lysostaphin, 20 mM Tris-HCl (pH 8.0), 2 mM EDTA and 1.2 % Triton, and incubated for 

30 minutes at 37 °C. Following the addition of 20 µl of proteinase K and 200 µl of Buffer AL, the 

sample was vortexed and further incubated at 56°C for 30 minutes, followed by 15 minutes at 

95 °C. After 200 µl of 96-100 % ethanol was added, the sample was vortexed prior to applying the 

mixture to the QIAamp Mini spin column. The sample was then centrifuged at 6000 x g (8000 

rpm) for 1 minute. The filtrate was discarded, and 500 µl of Buffer AW1 was added to the spin 

column held in a new collection tube. The sample was centrifuged again at 6000 x g (8000 rpm) 

for 1 minute, and the filtrate was discarded. Buffer AW2 (500 µl) was added to the spin column 

placed in a new collection tube and centrifuged at 20,000 x g (14,000 rpm) for 3 minutes, and the 

filtrate was discarded. The spin column containing the sample DNA was then transferred to a clean 

microcentrifuge tube, and 200 µl of Buffer AE was added, and incubated at room temperature for 

1 minute, prior to centrifugation at 6000 x g (8000 rpm) for 1 minute, to obtain the DNA fraction. 

6.3.6.2  Whole genome sequencing 

The extracted DNA fragments were quantified using the Quant-iTTM High Sensitivity 

Assay Kit (Life Technologies Inc., Burlington, ON, Canada) according to manufacturers’ 

recommendations. Sequencing libraries were constructed using the Nextera XT DNA sample 

preparation and Nextera XT Index Kits (Illumina Inc., San Diego, CA, USA). Paired-end 

sequencing was performed on the Illumina MiSeq platform, using 600-cycle MiSeq reagent kits 

(v3) with 5 % PhiX Control (Illumina Inc., San Diego, CA, USA) 

6.3.6.3  Quality control and data analysis of genomic data 

The acquired raw sequencing data was evaluated on the quality, using FastQC version 

0.11.8. Sequences were checked for contamination using ConFindr version 0.5.0. Identification of 

the microorganism was confirmed based on the sequence, by identifying to the closest match in 

MASH Reference Genome. Based on quality control parameters (N50 value, number of contigs, 

total genome length and average coverage depth), each sequencing was given a pass or fail. Single 

nucleotide variant (SNV) analysis was conducted with all 25 isolates, with sample SEQ164 as the 

reference isolate. Three additional SNV analyses, one for each cluster (0-1 SNV between samples) 
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observed in the first SNV analysis was conducted, with 4, 11 and 7 isolates respectively. 

Antimicrobial resistance genes were identified using ResFindr v4.1 [37]. VirulenceFinder [38, 39] 

and PlasmidFinder [40, 41] were also used to identify genes relating to virulence and plasmids 

respectively. Lastly, using the Web database for multi-locus sequence typing from the Center for 

Genomic Epidemiology, MLST sequence types were determined for the isolates [42].  

Preliminary data acquisition of fractionated components of VRE isolates of AA and CC 

pulsotype 

6.3.7.1  Cell lysis and fractionation 

Isolated colonies were harvested from BAP using L-shape spreaders, into sterilized glass 

tubes. Solvents were added to the harvested colonies. First, 1 ml of methanol-d4 (Sigma-Aldrich, 

Missouri, USA) and 1 ml of chloroform-d (Sigma-Aldrich, Missouri, USA) were added, and the 

sample mixture was vortexed. Samples were then ultrasonicated for 15 minutes using Vibra Cell 

Ultrasonic Liquid Processors Model VCX 130PB 130 Watt (Sonics & Materials Newtown, CT, 

USA), with settings: 20 % amplitude at room temperature. One ml of D2O was added and the 

mixture was vortexed and ultrasonicated with the same setting for 30 minutes. Sample mixtures 

were transferred to sterilized microcentrifuge tubes, and centrifuged for 10 minutes at 10,000 x g. 

The separated solvent phases were then pipetted out into separate tubes, and stored at -20°C until 

ready for analysis. 

6.3.7.2  FTIR spectral acquisition 

FTIR spectra of extracted CDCl3 and D2O/methanol-D phases were deposited in 1µl 

quantities on IR reflective, low-E glass slides (Kevley Technologies, Chesterland, OH, USA). 

Solvents were evaporated off, and deposits were layered until peaks of sufficient absorbance (ie. 

~0.30 absorbance units in one or more spectral region of the spectrum) were observed in real-time. 

Spectra were acquired with 64 coadded scans, 8 cm-1 resolution and a zero-fill factor of 8 in the 

region 4000 to 650 cm-1. Spectral processing and analyses were conducted using OMNIC 

Spectroscopy Software ver. 9.9.509 (Thermo Fischer Scientific Inc. Waltham, MA, USA).  

6.3.7.3  Solution state 1H and 31P NMR spectral acquisition and data processing 

An AVANCE III 400 MHz NMR spectrometer (Bruker Corporation, GE) equipped with a 

room temperature (25 ℃) HCP probe was used to acquire 1H and 31P spectra from extracted 
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fractions. Samples were transferred into 5mm NMR tubes, with 5 µl of 1 % TSP dissolved in D2O 

for water phase samples. Proton NMR spectra were acquired with water suppression and a 90° 

pulse (zgpr) with 64 transient scans. Phosphorus NMR spectra were acquired with proton-

decoupling (zg) and 2048 transient scans. The 31P NMR spectra were referenced to an external 

reference (TPP dissolved in acetone- d6) which was acquired on the same day as the spectral 

acquisition of the samples. Proton NMR spectra were referenced using the deuterated methanol 

peaks at 3.35 ppm and 4.78 ppm. Spectra were then corrected for baseline shift and phase. 

6.3.7.4  MALDI imaging mass spectrometry 

MALDI matrices 1,5-diaminonaphtalene (DAN), 2,5-dihydroxybenzoic acid (DHB) and 

trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich (St-Louis, MO, USA). Liquid 

chromatography grade solvents were purchased from VWR (Radnor, PA, USA). For statistical 

analysis of the organic phase samples, one microliter of the sample (in chloroform) was deposited 

and allowed to dry on a MALDI target. The manipulation was repeated 2 times to concentrate the 

compounds before matrix deposition. The MALDI matrix DAN was deposited onto the dry 

droplets using the HTX M3 TM-sprayer connected to an isocratic LC pump using the following 

parameters: 1,5-DAN solution 5 mg/ml in 67 % acetonitrile; nozzle temperature 65 °C; nozzle 

height 40 mm; nitrogen pressure 10 psi; flow rate 75 μl/min; z-arm velocity 1200 mm/min; moving 

pattern VV; track spacing 3 mm; number of passes 26; and drying time 0 s. For the profiling on 

the aqueous phases (water/methanol), the dried-droplet technique was used. The sample and the 

matrix were mixed in a 1:1 ratio, and then deposited on the MALDI target. Two MALDI matrices 

were tested: DAN (10 mg/mL, 67 % acetonitrile) and DHB (20 mg/mL, 50 % methanol). Imaging 

and profiling were performed on a MALDI TOF/TOF Ultraflextreme mass spectrometer equipped 

with a SmartBeam II Nd:YAG 355 nm laser operating at 2000 Hz, using the small laser focus 

setting (Bruker Daltonics, Billerica, MA, USA). IMS data were acquired in positive and negative 

modes. For imaging MS, 500 shots per pixel were used with a spatial resolution of 200 μm (random 

walk: 100 shots in a 200 μm diameter) in a mass range of 0-1500 Da. External calibration was 

carried out using a lipid homemade mix. Post-IMS internal calibration was also performed using 

matrix signals and known signals. The MALDI IMS data were visualized using the FlexImaging 

3.0 software (Bruker Daltonics) and the SCiLS software (2019b Premium 3D, Bruker Daltonics). 

Lipids were not identified by MS/MS. Only preliminary identification was made through LIPID 

MAPS based on the exact mass after internal calibration.  
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6.4 Results 

Microbial discrimination using HR-MAS NMR spectroscopy 

Isolated bacterial colonies that were cultured onto blood agar and MacConkey agar plates 

were directly filled into HR-MAS NMR inserts, without further sample preparation steps prior to 

spectral acquisition by 1H HR-MAS NMR spectroscopy. Upon spectral acquisition spectra were 

referenced using an internal reference (TSP dissolved in D2O) and corrected for baseline and phase 

shifts. Successful discrimination between Gram-positive and Gram-negative bacteria was 

demonstrated using broad chemical shift region (δ = 0.5-4.5 ppm), as visualized in a dendrogram 

generated from HCA using Ward linkage in Figure 6.2. Furthermore, without spectral feature 

selection, sufficient spectral differences were observed to discriminate at the genus level 

(Staphylococcus, Enterococcus, Shigella, Escherichia, Candida) and the species level using the 

broad chemical shift region (Figure 6.2 and Figure 6.3). The sample size in this proof-of-concept 

study was small, with only 12 ATCC isolates, and therefore extended studies with more isolates 

per genus and species, as well as a diverse list of genera and species should be conducted to 

determine the extent of discrimination that HR-MAS NMR spectroscopy is capable of. Spectral 

discrimination between Shigella species and E. coli was demonstrated using both blood agar and 

MacConkey agar grown isolates (Figure 6.4). Like the FTIR spectra, NMR spectra demonstrated 

that there are biochemical differences between Shigella species and E. coli that can be observed 

by spectroscopic techniques in contrast to difficulties encountered by MALDI-TOF MS in the 

ribosomal protein regions used for microbial identification [12, 43]. The overall spectral 

discrimination results obtained using the 12 ATCC microbial isolates were in agreement with 

previous NMR spectroscopy studies that differentiated among various bacteria or yeast samples 

[22-25, 44, 45]. Differentiation between 9 MSSA and 5 MRSA isolates was also achieved in this 

study using 1H NMR spectral regions identified by feature selection algorithm within the δ = 0.5-

4.5 ppm spectral region, as visualized in the dendrogram (Figure 6.5) generated by HCA, 

demonstrating subspecies level discrimination.  

6.4.1.1  VRE strain typing by 1H HR-MAS NMR spectroscopy 

Twenty-eight VRE isolates, originating from 3 different nosocomial outbreaks were 

utilized to determine if 1H HR-MAS NMR spectroscopy has the discriminatory capabilities for 

strain typing. These isolates were analyzed and classified as three different strain types using PFGE, 
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given the pulsotype label AA, B1 and CC. Feature selection algorithm was used to determine 

regions that contributed to successful discrimination by the PFGE pulsotypes. The 1H HR-MAS 

NMR spectra of the three strain types, AA, B1 and CC, are shown in Figure 6.6. Spectral 

differences could be identified by visual inspection. A feature selection algorithm was used to 

determine spectral regions that contributed to discrimination among the PFGE pulsotypes. 

Successful discrimination by 1H HR-MAS NMR spectroscopy was confirmed in the dendrogram 

generated by HCA using Ward linkage, resulting in 100 % concordance with PFGE pulsotypes. 

The variance spectrum between the 1H NMR spectra of AA and CC VRE pulsotypes (Figure 6.7) 

observed a strong peak in the CC pulsotype isolates at δ = 3.25 ppm, which was present at much 

lower abundance in the AA pulsotype. Identification of the biomolecule(s) that observe 1H signal 

at δ = 3.25 ppm may provide insight on the biochemical differences between AA and CC isolates.   
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Figure 6.2 Discrimination of 1H HR-MAS NMR spectra acquired from yeast, and Gram-positive and Gram-negative bacteria, using 

spectral region δ = 0.5-4.5 ppm. 

 

Successful discrimination between Gram-positive (GP) and Gram-negative (GN) and yeast (YT) using 1H HR-MAS NMR spectra in 

the spectral region of δ = 0.5-4.5 ppm. Discrimination between species, Enterococcus faecalis, E. faecium, Staphylococcus. aureus,         

S. epidermidis, Escherichia coli (O157:H7 vs non-O157:H7), Shigella flexneri and S. sonnei using the same broad spectral region. 

  

YT 

GP 

GN 
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Figure 6.3 Discrimination between species, E. faecalis, E. faecium, S. aureus and S. epidermidis, demonstrated in HCA based on 1H 

HR-MAS NMR spectra in the spectral region of δ = 0.5-4.5 ppm. 

 

 

Discrimination between Enterococcus and Staphylococcus, as well as species within each genera (E. faecium from E. faecalis, and     

S. aureus from S. epidermidis).  
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Figure 6.4 HCA showing differentiation between E. coli O157:H7, non-verotoxigenic E. coli and Shigella species grown on blood 

agar (A) and MacConkey agar (B) at 35 °C for 18-24 hours using region selection by 1H HR-MAS NMR spectroscopy 
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Figure 6.5 HCA showing the differentiation between MRSA (red) and MSSA (black) grown on blood agar at 35 °C for 18-24 hours 

using region selection by 1H NMR spectroscopy 
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Figure 6.6 Overlaid 1H HR-MAS NMR spectra of VRE isolates with pulsotypes AA, B1 and CC in the spectral range of δ = 0.5-4.5 ppm 

(left) and the corresponding dendrogram from HCA using Ward linkage (right) 

 

Overlaid spectra of thre VRE pulsotypes AA (black), B1 (blue) and CC (red) in spectral region δ = 0.5-4.5 ppm. The most notable 

spectral difference in this region is that the CC pulsotype has an increased peak at δ = 3.25 ppm, relative to AA and B1. 
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Figure 6.7 Variance spectra obtained from averaged AA and CC 1H chemical shift (ppm) 

 

Variance spectra (red) between the AA and CC spectra (blue). Potential biomarker that differentiates the two strain types identified at 

δ = 3.25 ppm (indicated with a star). 
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Identification of biomarker related to VRE pulsotype differences 

6.4.2.1  FTIR spectral discrimination of VRE strain types 

Transflection FTIR spectra were acquired from the same 28 isolates that were analyzed by 

1H HR-MAS NMR spectroscopy. Six replicates were acquired per isolate. Discrimination of FTIR 

spectra based on pulsotypes was achieved using supervised and unsupervised spectral analyses. A 

previously developed FTIR spectrotyping method using unsupervised PC-LDA was applied to 

cluster the samples based on spectral similarities. The clustering determined by the spectral 

similarities was then visualized in a dendrogram generated by HCA, as per Figure 6.8, which 

showcased concordant results with PFGE pulsotypes. With the use of a feature selection algorithm, 

three spectral regions that contribute to discrimination among these three PFGE pulsotypes were 

identified, and their associated band assignments to biomolecules are listed in Table 6.2. The 

selected regions were checked in the averaged second-derivative FTIR spectra (Figure 6.9), and 

differences were observed in the selected regions, 1054-1075, 1147-1187, and 1306-1316 cm-1. 

Within each of the 10 to 40 cm-1 spectral window, peaks were identified to be associated with 

nucleotides, carbohydrates, and amino acids. Although there are spectral differences that correlate 

to PFGE pulsotypes, it was evident that biomarker identification solely based on FTIR 

spectroscopic data for this dataset was not possible. In the 1H HR-MAS NMR spectra of VRE 

isolates of the AA and CC pulsotypes, the CC pulsotype exhibited a strong peak at a chemical shift 

correspond to the 1H resonance of the methyl groups in choline (that may be part of 

phosphatyidylcholine) [46-49]. Consistent with the latter finding, the second derivative FTIR 

spectra show an increased absorbance at 970 cm-1, corresponding to a band in the FTIR spectrum 

of choline portion of phosphatidylcholine in the CC spectrum (Figure 6.10) [50]. In order to 

determine if biomarkers related to identified spectral regions in transflection FTIR spectra and 1H 

HR-MAS NMR spectra, additional spectral analyses were conducted by acquiring 31P HR-MAS 

NMR spectra from whole cell , as well as analyses on fractionated lipophilic and hydrophilic 

components of one isolate each of AA and CC pulsotype VRE samples by MALDI MS, and 

solution state NMR spectroscopy. Whole genome sequencing data were acquired from a subset of 

isolates to determine whether the spectroscopic observations could be correlated to genotypic data. 
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Figure 6.8 Dendrogram showcasing the spectral similarities between AA, B1 and CC VRE pulsotype isolates, which were sources of 

three independent hospital-associated outbreaks.  

 

Using non-supervised spectral analyses, FTIR spectra acquired from VRE isolates with known pulsotypes AA (black), B1 (blue) and 

CC (red) were discriminated in concordance to the PFGE pulsotypes. The HCA used ward linkage and Euclidean distance to generate 

the dendrogram. 

CC AA B1 
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Table 6.2 Tentative band assignments associated with FTIR spectral regions that were identified 

by feature selection algorithm for discrimination amongst AA, B1 and CC VRE pulsotypes 

Pairwise 

Discrimination 

Spectral 

Region 

(cm-1) 

Tentative Band Assignment References 

AA vs B1 1054-1075 C-OH str. membrane bound oligosaccharide 

PO2- str. Phosphate residues 

C-O str. deoxyribose, ribose, phosphodiester 

[51-53] 

AA vs CC 

AA vs CC 1147-1187 C-O str. carbohydrates, phosphodiester  

C-C carotenoid structure  

C-O str. from C-OH groups in serine, 

threonine, tyrosine 

C-O-C ring 

B1 vs CC 

AA vs B1 1306-1316 Amide III and amino acid side chain 

Table of spectral regions identified to discriminate between the 3 VRE pulsotypes, and their band 

assignments based on literature. Based on the tentative band assignments, it is clear that it is very 

difficult to identify specific biomarkers based on FTIR spectral regions that are different between 

classes of bacteria, due to overlapping absorbance signals from various biochemical components. 
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Figure 6.9 Second derivative FTIR spectra of VRE pulsotypes AA, B1 and CC and the spectral regions identified from feature selection 

algorithm display key differences that are attributed to successful spectral discrimination between the three pulsotypes. 

 

Overlay of second derivative FTIR spectra acquired from VRE pulsotypes AA (green), B1 (blue) and CC (red). Boxed regions in the 

figure indicate regions that were selected using the feature selection algorithm, which identifies key regions that enhance the 

discrimination between labeled groups (in this case the 3 pulsotypes). Regions identified were 1054-1075 cm-1, 1147-1187 cm-1, and 

1306-1316 cm-1.  
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Figure 6.10 Averaged second derivative FTIR spectra of VRE pulsotypes AA, B1 and CC 

 

Second derivative FTIR spectra of VRE pulsotypes AA (green), B1 (blue) and CC (red) in spectral region 1000-960 cm-1. CC had 

increased absorbance at 970 cm-1, which is associated with the N+(CH3)3 stretching of phosphatidylcholine, relative to other pulsotypes. 

This is in concordance with the increase peak observed in the 1H HR-MAS NMR spectra for CC, relative to AA and B1 pulsotype. 

CC

AA

B1

Phosphatidylcholine 
N+-(CH3)3 peak 

970cm-1

Wavenumber (cm-1)
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6.4.2.2  VRE strain typing by 31P HR-MAS NMR spectroscopy 

Phosphorus HR-MAS NMR spectra were acquired from VRE isolates. Due to the lower 

amount of 31P nuclei naturally present in the samples compared to 1H, the spectral acquisition 

required double the number of transient scans. In order to prevent interaction between the bacteria 

sample and the reference, an external reference (TPP dissolved in acetone) was used. TPP spectra 

were acquired once a day and used during spectral pre-processing to ensure that the NMR spectra 

were properly aligned. Spectral regions were identified using a feature selection algorithm, and 

clustering based on these regions was visualized in a dendrogram generated by HCA with Ward 

linkage as seen in Figure 6.11. Compared to the complete concordance that was achieved between 

1H HR-MAS NMR spectra and PFGE pulsotypes, one isolate was an outlier in the clustering based 

on 31P HR-MAS NMR spectra, where a B1 isolate clustered with AA isolates. As in the case of 

the 1H NMR spectra, CC pulsotype isolates had a unique 31P HR-MAS NMR spectral profile that 

allowed them to be distinguished from AA and B1 pulsotype isolates by visual inspection of the 

31P NMR spectra (Figure 6.12). The differences between B1 and AA in the 31P NMR spectra were 

subtle in comparison. The major distinguishing feature of the spectra of CC pulsotype isolates was 

the absence of a peak at δ = -0.82 ppm, which may be associated with phosphatidylcholine (PC), 

or phosphoenolypyruvic acid (PEP) (Table 6.3). In addition, the 31P NMR spectra for the CC 

pulsotype were distinguished by the higher intensity of the peaks at δ = +0.57 ppm and δ = +0.92 

ppm, which are reported to be associated with phosphodiester bridges in teichoic acid, and 

intracellular organic phosphate respectively [54-56].  
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Figure 6.11 Dendrogram generated from HCA demonstrating spectral discrimination between three VR E. faecium pulsotypes AA 

(Black), B1 (Blue) and CC (Red) using 31P HR-MAS NMR spectra 

 

HCA of spectra acquired by 31P HR-MAS NMR spectroscopy, using regions obtained from broad region (δ = -2 to δ = 2ppm). Successful 

discrimination of CC from AA and B1 was achieved. One outlier of B1 clustering with AA was observed. 

* 

CC 

AA 

B1 
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Figure 6.12 Stacked 31P HR-MAS NMR spectra of VRE pulsotypes AA, B1 and CC in spectral 

range δ = -0.2 to δ =  2.5 ppm showcasing spectral differences between the three pulsotypes 

 

Table 6.3 Table of tentative band assignment from literature for 31P NMR spectroscopy 

Chemical Shift (ppm) Tentative Band Assignment Reference 

-1.27 Nucleic acids [53] 

-0.82 Phosphoenolpyruvic acid (PEP), 

Phosphatidylcholine 

[54] 

0.00 Orthophosphoric acid [55] 

0.40-0.58 Phosphodiester bridges (in teichoic acid) [50, 51] 

0.65 Monobasic form of inorganic phosphate [56] 

0.98-0.82 Intracellular inorganic phosphate [52] 
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6.4.2.3  Phenotypic antimicrobial susceptibility of VRE isolates 

Isolates were tested for their antimicrobial susceptibility profile, using VITEK 2 AST, with 

the setting for Enterococcus faecium. All isolates were resistant to vancomycin (MIC ≥ 16 µg/ml), 

benzylpenicillin (MIC = 32 µg/ml or ≥ 64 µg/ml), ciprofloxacin (MIC ≥ 8 µg/ml), levofloxacin 

(MIC ≥ 8 µg/ml), and tetracycline (MIC ≥ 16 µg/ml) and had intermediate resistance to 

nitrofurantoin (MIC = 64 µg/ml). Table 6.4 shows results for resistance level, and MIC (µg/ml) 

for selected antibiotics to which the VRE isolates had varying levels of resistance. The main 

difference was that B1 pulsotype isolates were sensitive to the gentamicin-streptomycin 

combination, whereas AA and CC pulsotypes were resistant. No clear difference relating to the 

antimicrobial resistance profiles could be observed between AA and CC pulsotypes. For samples 

AA-1 and AA1 (indicated as AA_101 and AA_102 respectively in (Table 6.4), MIC for tigecycline 

could not be determined, even after 24hrs of run-time in the VITEK 2 AST system, and therefore 

was reported as terminated (TERM).  
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Table 6.4 Antimicrobial susceptibility test results on select antibiotics obtained from VITEK 2 AST 

Code Isolate WGS_ID Benzylpenicillin Gentamicin 

High Level 

(synergy) 

Streptomycin 

High Level 

(synergy) 

Quinupristin/ 

Dalfopristin 

Linezolid Tigecycline 

AA_01 XVI360 SEQ-161 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S 0.25 

AA_02 XVI514 SEQ-162 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S 0.25 

AA_03 XVI822 SEQ-163 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S 0.25 

AA_04 XVI621 SEQ-164 R 32 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_05 XVI633 SEQ-165 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_06 XVI171 SEQ-166 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_07 XVI325 
 

R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_08 XVI264 
 

R 32 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_09 XVI027 SEQ-167 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

AA_10 XVI097 
 

R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

B1_01 XVII329 
 

R ≥ 64 S SYN-S S SYN-S S 1 S 2 S ≤ 0.12 

B1_02 XVII809 
 

R ≥ 64 S SYN-S S SYN-S S 1 I 4 S ≤ 0.12 

B1_03 XVII056 
 

R ≥ 64 S SYN-S S SYN-S S 0.5 S 2 S ≤ 0.12 

B1_04 XVII062 SEQ-171 R ≥ 64 S SYN-S S SYN-S S 1 S 2 S ≤ 0.12 

B1_05 XVII288 SEQ-172 R ≥ 64 S SYN-S S SYN-S S 1 S 2 S ≤ 0.12 

CC_01 XVII796 SEQ-173 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_02 XVII798 SEQ-174 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_03 XVII177 SEQ-175 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_04 XVII293 SEQ-176 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_05 XVII297 SEQ-177 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_06 XVII303 SEQ-178 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_07 XVII223 SEQ-179 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_08 XVII599 SEQ-180 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_09 XVII624 SEQ-181 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_10 XVII692 SEQ-182 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_11 XVII699 SEQ-183 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 S ≤ 0.12 

CC_12 XVII747 SEQ-184 R ≥ 64 R SYN-R R SYN-R S 1 S 2 S ≤ 0.12 

AA_101 XVII129 SEQ-170 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 
 

TERM 

AA_102 XVII388 SEQ-169 R ≥ 64 R SYN-R R SYN-R S 0.5 S 2 
 

TERM 
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6.4.2.4  Genotypic characterization of the outbreak related VRE isolates 

Whole genome sequencing data was acquired from 23 isolates using Illumina MiSeq. The 

quality of the data was evaluated using total base pair length, N50 and number of contigs. N50 is 

the value that describes the base pair length of the shortest contig in an assembly, where a minimum 

of half the total base pair length of all contigs are equal or longer in length [61]. Three isolates 

failed the quality check, due to low total length (1.4-1.7Mbp). The total length ranged between 

2.3-2.8Mbp per isolate. The average base pairs observed by PFGE pulsotypes AA, B1 and CC 

were 2.53 Mbp, 2.70 Mbp, and 2.76 Mbp respectively. Total genomic length is known to vary 

among E. faecium isolates, as a result of its high genomic plasticity, through the acquisition and 

loss of plasmids and virulence genes [62].  

Using single nucleotide polymorphism (SNP) analysis on the genome, WGS data 

confirmed concordance with PFGE pulsotype clustering and spectrotyping by FTIR and HR-MAS 

NMR spectroscopy. The cluster tree based on whole genome sequence of VRE isolates in Figure 

6.13 visualized the SNP differences observed between the VRE isolates. SEQ-164 was used as the 

reference strain to develop the tree. Each cluster (boxed in blue, black and red) was concordant to 

one of the three PFGE pulsotypes identified. Numbers along the arms of the dendrogram indicate 

the number of SNPs between each cluster or isolate. Within each cluster, there were 0-1 SNP, 

showcasing high genotypic similarity among isolates in each cluster. The SNPs between clusters 

ranged from 32 to 58 SNP differences, showcasing clear differences between clusters. SEQ-190 

and SEQ-191were E. faecium isolates unrelated to any of the three outbreak strain types. The SNP 

differences were analyzed in genes that were common across all analyzed isolates, which 

encompassed 23.44 % of all positions that are valid, included, and part of the core genome, 

indicating low similarity between the analyzed isolates. SNP analysis within each clusters was 

conducted using 72.26 %, 94.91 % and 85 % of all valid parts of the core genome for AA, B1 and 

CC pulsotype isolates respectively. The SNP differences observed (0-5 SNP) between isolates of 

the same pulsotype are presented in Table 6.5. The SNP analysis for all 20 isolates together only 

observed 27.17 % of the core genome to be common, indicating that there are large genotypic 

differences among the three pulsotypes. Furthermore, in the SNP analysis, 60 SNP differences 

were observed between AA and CC pulsotype isolates, 42-44 SNP differences between AA and 

B1 isolates, and 74-76 SNP differences between B1 and CC pulsotype isolates.  
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Whole genome sequencing data of the 20 VRE isolates were also analysed using an in 

silico MLST sequence type database from the Center for Genomic Epidemiology [42]. Based on 

the alleles of 7 loci related to housekeeping genes in the Enterococcus genome (adk, atpA, ddl, 

gdh, gyd, pstS, and purK), the MLST sequence types were determined. AA isolates were all 

identified to be ST203, whereas B1 was ST17, and CC was determined as non-typable due to the 

lack of the pstS locus. However, based on the alleles of the remaining 6 loci, the sequence type for 

CC pulsotype isolates was determined to be ST1478. pstS-null VRE E. faecium isolates have been 

observed in a number of countries like Australia, England, Scotland, South Korea and Canada [63-

68]. In Canada, between 2013 and 2018 there was an increase in pstS-null ST1478 VRE isolates 

(the same ST as the CC pulsotype in this study), which coincided with increased rates of VRE 

bloodstream infections [64]. pstS-null isolates identified in other countries were of different 

sequence types, indicating that a unique VRE sequence type has disseminated across Canada. PstS 

is an inorganic phosphate binding lipoprotein that is part of the high-affinity phosphate (Pi) 

transport system. The lipoprotein is located in the periplasmic space, where it binds inorganic 

phosphate for cellular uptake [69]. High expression of the PstS protein occurs under stress, such 

as under alkali-acid conditions, or in the presence of sub-inhibitory concentrations of penicillin. It 

acts like a multi-emergency protein that help cells adapt to different habitats. The PstS protein does 

not exhibit high affinity for Pi when the cells have sufficient Pi [69-71]. 

Genes relating to antimicrobial resistance were identified for each isolate. A summary of 

the prevalence of the genes and their locations is presented in Table 6.7. All 20 isolates were 

confirmed to possess VanHAX, for vancomycin resistance. All VRE isolates’ resistance genes for 

VanHAX were located on transposons (Tn1656 for all AA and B1 isolates, and Tn1656 and 

Tn1649 for CC isolates). aph(3’)-IIIa was not identified in any AA puslotype isolates. This gene 

encodes for APH (3’)-III, an aminoglycoside phosphotransferase, and is associated with 

kanamycin resistance [72]. cat (pC221), which was only identified in CC isolates (8 of 12 isolates), 

is related to chloramphenicol resistance [73]. Despite tetracycline resistance observed by VITEK 

2 AST in all samples, some isolates did not possess tet(L) nor tet(M) gene. While 8 out of 12 CC 

isolates possessed both tet(L) and tet(M) genes, 3 isolates had one of the two genes, and 1 isolate 

had neither. tet(M) was identified in 1 of 9 AA isolates, while 5 AA isolates had tet(L). Sample 

2020- 161 (an AA pulsotype isolate) had both genes, and 4 isolates had neither of the two genes. 

B1 isolates only possessed tet(L) genes. msr(C), which encodes for macrolide resistance, was 
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identified in 11 out of 12 CC pulsotype isolates, while 7 AA and 2 B1 isolates were found to also 

possess the gene. erm(B) was only identified on 3 out of 12 CC isolates, while all AA and B1 

isolates possessed the resistance gene. AA isolates possessed the gene on Tn1642 (n = 7) and on 

the chromosome (n = 2), while the gene was located on Tn1649 in B1 isolates, and on Tn3050 (n 

= 2) and chromosome (n = 1) in CC isolates. aac(6’) was identified in all VRE isolates, all on the 

chromosome. This gene is intrinsic to E. faecium, and confers low level resistance to kanamycin 

and tobramycin [74]. A three-year study in Australia on E. faecium collected from sepsis reported 

70 % of ST17 isolates (the same ST as B1) to have aph(3’)-III, and none of the isolates possessed 

cat (pC221), while ST203 (same ST as AA) had 78 % of their isolates possessing aph(3’)-III, and 

11.1 % possessing the cat(pC221) gene [73]. The antimicrobial resistance patterns and genes 

related to antimicrobial resistance present in the VRE isolates in this study showcase that isolates 

belonging to the same PFGE pulsotype do not all possess the same antimicrobial resistance-related 

genes, nor do they necessarily possess a given resistance-related gene in the same location within 

their genome (i.e. chromosome vs plasmids).  

VirulenceFinder was used to identify virulence factors present in all isolates [75, 78]. 

Sample SEQ-166 had no virulence factor identified from the assembled genome, and samples 

SEQ-162, SEQ-164, SEQ-180, and SEQ-181 could not have their virulence factors determined. 

Based on the results from VirulenceFinder, it was determined that all AA isolates had 2 virulence 

factors, acm, and efaAfm, while B1 and CC isolates had 3 virulence factors, acm, efaAfm, and hylEfm 

(Supplementary Table 10). Although all isolates had 100 % identity for acm, the genomes had 

varying length of the gene sequence missing (845-848 base pairs missing), with the exception of 

samples SEQ-171. Acm encourages collagen adhesion (cell wall-anchored collagen adhesin), and 

has characteristics of MSCRAMM (microbial surface components recognizing adhesive matrix 

molecules), and plays a role in endocarditis [79, 80]. EfaAfm is an adhesion associated protein for 

E. faecium, commonly observed in clinical enterococcal isolates [81]. HylEfm is an enzyme, 

glycoside hydrolase, that has β-N-acetylglucosaminidase activity, which is an important factor 

involved in colonization and adhesion [76, 79, 82]. Although the presence of HylEfm does not 

directly contribute to E. faecium colonization, it has been observed that the presence of the gene 

hylefm resulted in higher bacteria load during colonization [82]. CC pulsotype isolates were found 

to have more plasmids and virulence genes compared to AA and B1 pulsotype isolates, which 

correlates with the larger genome size observed for CC isolates. 
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PlasmidFinder was used to determine the presence of plasmids in the VRE isolates 

(Supplementary Table 11) [41, 75]. Plasmids make up a large part of the accessory genes in 

Enterococcus genomes and are responsible for horizontal gene transfer of antibiotic resistance and 

virulence characteristics of hospital adapted strains [76]. Four to nine plasmids were identified per 

isolate. Overall, the median number of plasmids per PFGE pulsotype were 7, 6, and 8 for AA, B1 

and CC respectively. AA, B1 and CC pulsotypes had plasmids from rep_trans, rep1, rep3, and 

repA_N family. Only CC pulsotype isolates had plasmids from the Inc18 family. Plasmid 

pNB2354 is known to have association with hly adhesion [77]; however, not all VRE isolates 

investigated in the current study had hly genes identified as a virulence factor. Plasmid pEF418 

was only identified in AA and B1 isolates, and pKQ10 was only found in AA isolates. Plasmid 

pRE25 is known to carry antimicrobial resistance genes such as erm(B), cat and aph(3’)-III [77]. 

This plasmid was only identified in CC pulsotype isolates, and the associated antimicrobial 

resistance genes were identified.  
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Figure 6.13 Whole genome sequencing cluster tree of VRE isolates originating from three different outbreaks 
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Table 6.5 The percentage of core genome utilized in SNP analysis per VRE pulsotype cluster, and 

the SNP difference observed between samples 

Pulsotype No. of samples 

analyzed 

% core genome 

utilized in 

analysis 

SNP difference 

between samples 

AA 7 72.26 % 1-5 

B1 2 4.91 % 2 

CC 11 85 % 0-1 

All 20 27.17 % AA-B1: 42-44 

AA-CC: 60 

B1-CC: 74-76 

 

Table 6.6 MLST sequence type identified from WGS data using in silico MLST sequence analyses 

PFGE Sequence Type 

AA 203 

B1 17 

CC Non-typable → 1478 
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Figure 6.14 Example of MLST result for a CC pulsotye VRE isolate 
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Table 6.7 Resistance genes and their locations identified in the VRE isolates 

Gene Allele Resistance Location AA B1 CC 

aac(6’) 1 aminoglycoside Chromosome 7 (77.8 %) 2 (100 %) 11 (91.7 %) 

ant(6)-la 1 aminoglycoside Plasmid 1642 7 (77.8 %)     

ant(6)-la 1 aminoglycoside Plasmid 1656 1 (11.1 %)     

ant(6)-la 1 aminoglycoside Plasmid 1649   2 (100 %)   

ant(6)-la 1 aminoglycoside Chromosome     1 (8.3 %) 

ant(6)-la 1 aminoglycoside Plasmid 3050     9 (75 %) 

ant(6)-la 1 aminoglycoside Plasmid 1866     1 (8.3 %) 

ant(6)-la 1 aminoglycoside Plasmid 1656     1 (8.3 %) 

aph(3’)-III 1 aminoglycoside Chromosome     1 (8.3 %) 

aph(3’)-III 1 aminoglycoside Plasmid 1649   2 (100 %)   

aph(3’)-III 1 aminoglycoside Plasmid 1656     9 (75 %) 

aph(3’)-III 1 aminoglycoside Plasmid 1866     1 (8.3 %) 

aph(3’)-III 1 aminoglycoside Plasmid 3050     1 (8.3 %) 

cat(pC221) 1 phenicol Chromosome     3 (25 %) 

cat(pC221) 1 phenicol Novel_0     3 (25 %) 

cat(pC221) 1 phenicol Plasmid 1866     1 (8.3 %) 

cat(pC221) 1 phenicol Plasmid 2351     1 (8.3 %) 

dfrG 1 trimethoprim Chromosome 7 (77.8 %) 2 (100 %) 8 (66.7 %) 

erm(B) 7 macrolide Chromosome 1 (11.1 %)     

erm(B) 9 macrolide Chromosome 1 (11.1 %)     

erm(B) 9 macrolide Plasmid 1642 7 (77.8 %)     

erm(B) 9 macrolide Plasmid 1649   2 (100 %)   

erm(B) 9 macrolide Plasmid 3050     2 (16.7 %) 

msr(C) 1 macrolide Chromosome 7 (77.8 %) 2 (100 %) 11 (91.7 %) 

tet(L) 2 tetracycline Chromosome     1 (8.3 %) 

tet(L) 2 tetracycline Plasmid 2351 6 (66.7 %) 2 (100 %) 6 (50 %) 

tet(L) 2 tetracycline Plasmid 1866 1 (11.1 %)   2 (16.7 %) 

tet(M) 10 tetracycline Chromosome     1 (8.3 %) 

tet(M) 10 tetracycline Plasmid 1866 1 (11.1 %)   9 (75 %) 

VanHAX 2 glycopeptide Novel_1     1 (8.3 %) 

VanHAX 2 glycopeptide Chromosome 1 (11.1 %)     

VanHAX 2 glycopeptide Plasmid 1649     6 (50 %) 

VanHAX 2 glycopeptide Plasmid 1656 8 (88.9 %) 2 (100 %) 5 (41.7 %) 
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6.4.2.5  Preliminary results from NMR spectroscopy and MALDI MS on fractionated components 

One isolate each of AA and CC VRE pulsotype were subjected to extractions for separation 

and analysis of hydrophilic and hydrophobic components, using a modified Folch method. The 

extraction was done using deuterated solvents, in order to acquire NMR spectra in solution state 

directly from the hydrophilic and hydrophobic phases. The aqueous phase contained molecules 

that are highly polar, and miscible in D2O and deuterated methanol. The non-aqueous phase 

contained molecules that were miscible in deuterated chloroform. All insoluble components were 

not analysed in this study. To ensure that there were extracted metabolites and biomolecules in 

both the hydrophilic and hydrophobic phases, 3-10 µl of each phase was deposited onto a low E-

glass slide for spectral acquisition by transflection FTIR microspectroscopy, using a 250 µm 

aperture microscope. FTIR spectra indicated that there were more variance between AA and CC 

in the hydrophobic phase compared to the hydrophilic phase (data not shown). 

6.4.2.5.1 Solution-state NMR spectroscopy 

Proton and 31P NMR spectra were acquired from both D2O/methanol-D and chloroform-D 

phases, for both AA and CC VRE isolates using a 600-MHz NMR spectrometer (Bruker, GE). The 

31P NMR spectra were externally referenced, using TPP dissolved in acetone. Proton NMR spectra 

were referenced using methanol-D peaks at δ = 3.35 ppm and δ = 4.78 ppm. Proton NMR spectra 

acquired from CC samples were scaled based on the difference in biomass of AA and CC (0.38 g 

and 0.60 g, respectively) at the extraction step. The 1H NMR spectra acquired from the 

D2O/methanol-D phase of the AA and CC extracts are shown in Figure 6.15. The CC spectrum 

had higher relative intensity at δ = 1.90 ppm, δ = 2.00 ppm, and δ = 2.47-2.67 ppm; and exhibited 

a multiplet at δ = 4.40-4.44 ppm whereas the AA spectrum showed higher relative peaks between 

δ = 2.01-2.06 ppm, as well as peaks at δ = 2.1-2.18 ppm and a triplet at δ = 2.36-2.40 ppm. Thus, 

these spectra are indicative of differences in the metabolite profiles of the AA and CC pulsotype 

isolates. In addition, the intense peak at δ = 2.00 ppm in the CC spectrum may be associated with 

unsaturated lipid, as the extraction used methanol, and it is possible that the aqueous phase may 

contain highly polar lipids. In previous studies employing the Folch extraction method, 

phospholipids such as PC, sphingomyelin, and cardiolipin have been observed in both the 

chloroform and the methanol-aqueous phase, and some phospholipids such as lysophospholipids 

are more polar and have lower solubility in chloroform than others and tend to partition into the 

aqueous phase [83]. However, the possibility that differences in phospholipid composition 
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between AA and CC isolates may have contributed to differences in the 1H NMR spectra of the 

aqueous phase obtained by extraction of these isolates is not supported by the 31P NMR spectra 

acquired from the aqueous phase, which show little difference between AA and CC samples 

(Figure 6.16). Additional 31P NMR experiments should be conducted in the future, with different 

relaxation times to ensure that signals from molecules of various sizes and mobilities are observed.  

For the chloroform phase of the extraction, 31P NMR spectra were processed with line 

broadening (5 Hz) as an additional spectral pre-processing step (Figure 6.17). Peaks were 

identified in the CC spectrum at δ = -1.11 ppm and δ = +0.45 ppm. There were no discernible 

peaks in the AA spectrum. Phosphatidylglycerol (PG) was reported to be observed at δ = 0.43-

0.47 ppm in the 31P NMR spectra [84] and thus the peak observed at δ = 0.45 ppm in the 31P NMR 

spectrum from the CC extracted sample, may tentatively be assigned to PG. Proton NMR spectra 

showed little difference between the AA and CC samples (Figure 6.18, only showing regions with 

visible differences in spectra). The CC spectrum had a doublet at δ = 4.75 and δ = 4.76 ppm that 

was not present in the spectrum of the AA sample.  

6.4.2.5.2 MALDI mass spectrometry 

MALDI MS data were acquired from the D2O/ deuterated methanol and deuterated 

chloroform extracted components using an MS imaging system. There were no peaks observed in 

positive and negative modes using 1,5-diaminonaphthalene (DAN) matrix (data not shown), while 

peaks were observed in the D2O/ deuterated methanol phase of both AA (black) and CC (blue) 

samples using 1, 5-dihydroxybenzoic acid (DHB) matrix (Figure 6.19). These peaks did not match 

the profiles of lipids, and therefore are likely derived from small molecules, peptides or sugars that 

are part of the metabolic or structural components of AA and CC VRE. These observed peaks 

could not be identified at the current moment, however, in the future, further analyses using tandem 

MS may allow for identification.  

From the chloroform extracts of AA and CC samples, MALDI MS spectra were also 

acquired in triplicate deposition, using DAN matrix in negative and positive modes. In the positive 

mode, peaks related to phosphatidylcholine and fatty acyl-CoA were identified in both AA and 

CC samples. CC observed higher intensity peaks compared to AA, however, after taking into 

consideration the initial biomass used for extraction, the difference was not statistically significant 

for both PC (Table 6.8) and fatty acyl-CoA (Table 6.9). In the negative mode, MS peaks observed 
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for CC (red) showed overall upregulation of phospholipids, specifically phosphatidylinositol (PI) 

and phosphatidic acid (PA) or phosphatidylglycerol (PG), compared to AA (blue) (Figure 6.20). 

Even after normalization, adjusting for the difference in biomass during extraction, CC had 

statistically significantly higher levels of these phospholipids compared to AA (Table 6.10).  

Figure 6.15 Overlay of 1H NMR spectra in region 0.6-2.8 ppm (top) and 4.2-5.4ppm (bottom) 

acquired from D2O-methanol-D phase of extraction from AA (red) and CC (blue) VRE isolates 
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Figure 6.16 Overlay of 31P NMR spectra acquired from D2O-methanol-D extracted portions of 

AA (red) and CC (blue) VRE isolates 

 

Figure 6.17 Overlay of 31P NMR spectra from chloroform-phase of extraction obtained from AA 

(red) and CC (blue) VRE isolates 

 

Figure 6.18 Overlay of 1H NMR spectra in the region δ = 3.9-5.0ppm for chloroform phase of 

AA (red) and CC (blue) VRE isolates 
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Figure 6.19 MS peaks obtained from aqueous phase extraction from AA (black) and CC (blue) 

VRE samples. Red spectrum represents peaks of the DAN matrix 
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Table 6.8 Statistical Analysis on the peak heights at centroids related to phosphatidylcholine, 

obtained from positive mode analysis on chloroform extraction of AA and CC VRE Isolates 

  AA CC 

Centroid 

[m/z] 

Intensity SD Variance Intensity SD Variance 

756.56 0.472 0.349 0.122 0.736 0.284 0.081 

758.57 2.061 1.451 2.104 3.215 1.190 1.417 

760.59 1.371 0.896 0.803 2.034 0.736 0.542 

780.56 1.006 0.733 0.537 1.460 0.510 0.260 

782.57 0.869 0.612 0.375 1.401 0.502 0.252 

784.59 1.043 0.776 0.602 1.568 0.609 0.371 

786.59 1.782 1.230 1.512 2.475 0.932 0.868 

788.62 0.800 0.513 0.263 1.031 0.363 0.132 

802.54 0.122 0.069 0.005 0.207 0.064 0.004 

804.56 0.135 0.077 0.006 0.203 0.067 0.005 

806.58 0.545 0.410 0.168 0.743 0.287 0.082 

808.61 1.270 0.963 0.927 1.915 0.734 0.538 

810.63 1.119 0.821 0.675 1.540 0.619 0.383 

812.62 0.213 0.146 0.021 0.278 0.112 0.012 

830.61 0.154 0.093 0.009 0.241 0.080 0.006 

832.61 0.191 0.129 0.017 0.265 0.096 0.009 

834.64 0.206 0.152 0.023 0.261 0.110 0.012 

836.66 0.359 0.272 0.074 0.431 0.188 0.035 

              

Sum No 

Norm. 

13.72 2.87 8.24 20.00 2.24 5.01 

mass (g) 0.38 0.6  

Sum Norm. 36.10 7.56   33.34 3.73   

p Value 0.601 

Result Not significant 
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Table 6.9 Statistical Analysis on peak heights at centroids related to fatty acyl-CoAs from positive 

mode analysis on chloroform extractions from AA and CC VRE Isolates 

  AA CC 

Centroid 

[m/z] 

Intensity SD Variance Intensity SD Variance 

940.022 0.219 0.139 0.019 0.426 0.213 0.046 

942.102 0.389 0.259 0.067 0.734 0.362 0.131 

988.423 0.070 0.065 0.004 0.110 0.070 0.005 

              

Sum No 

Norm. 

0.68 0.30 0.09 1.27 0.43 0.18 

mass (g) 0.38 0.6 

Sum Norm. 1.78 0.79   2.12 0.71   

p Value 0.609 

Result Not significant 
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Figure 6.20 Overlaid mass spectra acquired from chloroform extracts from VRE AA and CC 

pulsotypes in region 600-1400 m/z in negative mode 
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Table 6.10 Statistical analysis on centroids related to phospholipids acquired from negative 

mode analysis from chloroform extracts of AA and CC VRE Isolates 

  AA CC 

Centroid 

[m/z] 

Intensity STD Variance Intensity STD Variance 

719.553 2.573 1.767 3.121 9.339 3.678 13.526 

733.513 2.990 1.943 3.777 9.551 3.572 12.762 

747.527 2.525 1.683 2.833 11.979 4.378 19.164 

761.562 3.491 2.215 4.906 15.932 5.575 31.082 

909.513 0.057 0.032 0.001 3.629 1.674 2.804 

1069.584 0.155 0.127 0.016 0.558 0.325 0.105 

1071.544 0.240 0.184 0.034 0.941 0.486 0.236 

              

Sum No 

Norm. 

12.03 3.83 14.69 51.93 8.93 79.68 

mass (g) 0.38     0.6     

Sum Norm. 31.66 10.09   86.55 14.88   

p Value 0.0061 

Result Significant 
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6.5 Discussion 

Whole organism analyses of VRE isolates belonging to three PFGE pulsotypes (denoted 

as AA, B1 and CC) by 1H HR-MAS NMR and FTIR spectroscopy enabled discrimination among 

the pulsotypes, demonstrating the presence of spectrally measurable biochemical differences 

among the pulsotypes. The possibility of identifying the nature of these biochemical differences 

beginning with the discovery of biomarkers was investigated through an examination of the 

spectral differences among the pulsotypes. Choline-containing compounds emerged as candidate 

biomarkers of the CC pulsotype with the observation that spectral features in both the 1H NMR 

and FTIR spectra could be consistent with higher levels of choline in the CC pulsotype isolates. 

However, 31P HR-MAS NMR spectra of the VRE isolates revealed that a distinguishing feature of 

the CC pulsotype was the absence of a peak observed in the spectra of isolates belonging to the 

other pulsotypes at a chemical shift value corresponding to the 31P NMR resonance of 

phosphatidylcholine. Although PC was observed in larger amounts from CC hydrophilic extract, 

the amount was not significant, and corresponding peaks were not observed in the 31P NMR spectra. 

Although glycerophospholipid metabolism in E. faecium has been mapped in KEGG and is shown 

to produce PC, PC has not been reported to be present as a cell-membrane constituent in E. faecium, 

nor in most Gram-positive bacteria [85-88]. Based on the FTIR and 1H HR-MAS NMR spectra, 

choline itself (not bound to any phosphate) remains a potential candidate as a biomarker 

differentiating between AA and CC isolates, but cannot be confirmed with the current results. 

Choline is known to be taken up by many bacteria as a precursor for betaine and glycine betaine, 

which are osmoprotectants, and aids in survival in presence of varying osmotic pressures [89-91].  

Mass spectra obtained from the chloroform extracts of AA and CC pulsotype isolates 

indicated significantly increased levels of PI and PA/PG in CC isolates, which was in concordance 

with the peak observed in the 31P NMR spectra. PA has a peak at δ = 0.23 ppm, which was not 

observed, and therefore, the mass spectra peaks are likely of PG [84]. PG is one of the most 

common phospholipids found in E. faecium along with lysyl-PG (LPG), cardiolipin (CL) and 

glycreophospho-diglycodiacylglycerol [86]. LPG is a modified PG through aminoacylation, which 

makes the phospholipid charge cationic or zwitterionic. In addition to LPG, alanine-PG, arginine-

PG, lysine-CL and alanine-CL have been found in E. faecium [86, 92]. Triple specific aaPGS 

(arginine, alanine, lysine) gene is known to allow for aminoacylation of phospholipids in E. 

faecium, and is known to be important for its adaptation to acidic pH [93]. Modified PGs are related 
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to cellular homeostasis and pathogenicity, through increased bacterial resistance to antibiotics, 

bacteriocins and host defense molecules, resulting in increased virulence [86]. Approximate 

phospholipid composition of E. faecium is 44 % CL, 23 % PG, and 32 % amino-containing 

phospholipid, with a large portion of the amino-containing phospholipid being lysyl-phosphatidyl-

glycerol [94-96]. The peak in the 31P NMR spectrum at δ = -1.1 ppm could not be assigned to a 

compound. PC is reported to have peaks around δ = -0.84 ppm [84], and therefore it is unlikely 

that the peak at δ = -1.1 ppm is from PC. Since the 31P NMR peaks of polar lipids are known to 

shift with variables such as pH, concentration of lipids, and chain length of the fatty acids, 

comparison and peak assignments are generally much more difficult for 31P NMR than 1H NMR 

[97]. Alterations in phospholipids impair cellular envelope structure and function, biofilm 

formation, fitness, susceptibility to environmental stresses that are dependent on phospholipid [98]. 

The sample preparation prior to 31P NMR spectra on the extracted components was a 

critical limitation in this study. Upon extracting the lipid soluble components, chloroform solvent 

was not desiccated for reconstitution at a higher concentration for increased signal. Furthermore, 

addition of chelating agent such as EDTA in CDCl3 should be added for chelation of paramagnetic, 

divalent cations. EDTA reduces line broadening which are caused by the binding of these cations 

to negatively charged phospholipids [97]. Another alternative sample preparation for further 

analyses is to dissolve the phospholipids in aqueous sodium cholate at pH = 7.5 [97]. As for the 

1H NMR spectra from the extracts, it is possible that signals observed in regions that overlap with 

the methanol-D and D2O may have been lost. Additionally, the mixture of D2O and methanol-D 

solvents (likely at different ratios between AA and CC isolates) would have affected the chemical 

shifts of the compounds. Therefore, a more controlled sample preparation is required when 

obtaining NMR spectra from extracted compounds that represent many more samples of both AA 

and CC isolates.  

Furthermore, isolated of cell wall components should be studied in whole-cell and extracted 

components, to determine whether capsular polysaccharide structures of E. faecium isolates vary 

by sequence types. E. faecium possess epa (enterococcal polysaccharide antigen) locus that 

produce capsular polysaccharides and proteins on the cell wall surface, which increase their 

virulence, and adhesion capabilities [99]. Capsular polysaccharide structure of E. faecium is not 

well-studied yet, however, it was reported to consist of a 6-α-D-glucose-1-2-glycerol-3-phosphate 

backbone with a substitution on the C-2 of glucose with an α-2-1-D-glucose residue [99]. 
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Hendrickx et al (2013) suggested that E. faecium isolates are capable of producing distinct types 

of capsular polysaccharides on the cell surface, due to the presence of a novel capsule ‘cps’ like 

region in the genome, that is also involved in the phosphoregularotry system [99]. 

Multidimensional NMR experiments on whole-cell and cell wall components may provide 

additional information on these cell wall and capsular polysaccharide components, all of which 

have phosphate and polysaccharide components [99]. In the present study, analysis of the mass 

spectra acquired from fractionated portions was focused on the identification of phospholipids. 

However, additional analyses and spectral search on small metabolites observed from the 

hydrophilic portion of the cell fractionations may provide insight on whether differences in 

(phosphorylated-)polysaccharide presence exist between the AA and CC isolates. Little is known 

about the pstS-null ST1478, or the effects of the lack of the pstS locus. PstS binds phosphates for 

cellular uptake and is involved in two pathways, ABC transporters and the two-component system. 

According to known pathways described in KEGG, the lack of PstS can be compensated in 

phosphate uptake by utilizing other proteins like SenX3 and PhoA, under a phosphate limited 

condition [87, 88]. Additional metabolomic analyses on CC isolates with and without modification 

for pstS gene insertion could aid in understanding the role that the gene plays in E. faecium, as 

well as its effects on the structural and metabolic characteristics of the cells. Based on the large 

differences observed in the core and pangenome of AA, B1 and CC pulsotypes, further analysis of 

the genomic data would need to focus on correlating specific biomolecular differences that were 

observed and understanding the genes and pathways involved. Long-read whole genome 

sequencing is currently in progress to obtain a better understanding of the VRE genome. The data 

obtained from long-read WGS will enable for higher confidence in the genomic differences that 

can be found between the strain types, and also make it easier to identify the specific SNP locations 

that are related to functions and phenotypic characteristics relating to the differences observed in 

NMR and FTIR spectra. The spectroscopic and genotypic analyses all revealed differences 

between the VRE outbreak strains, but definite correlation between spectroscopic and genotypic 

data could not be achieved at this time.  
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6.6 Conclusion 

In this study, 1H and 31P HR-MAS NMR spectra were acquired from live bacteria for a 

limited number of isolates belonging to different genera and species to demonstrate that there are 

sufficient spectral features that enable for successful spectral discrimination. This was further 

demonstrated with successful discrimination of VRE isolates in concordance with the PFGE 

pulsotypes, AA, B1 and CC. Taking advantage of the higher chemical specificity of NMR 

spectroscopy in comparison to FTIR spectroscopy, identification of biomarkers relating to 

successful spectral discrimination between the VRE strain types was attempted. Potential 

biomarkers were identified from the 1H and 31P HR-MAS NMR spectra. This was analysed in 

combination with WGS data, and NMR and MS data from fractionated hydrophilic and lipophilic 

portions of AA and CC VRE isolates. With the WGS data, differences between pulsotypes were 

identified in the virulence genes and plasmids possessed, as well as in the MLST sequence type. 

In particular, the lack of the pstS gene in CC pulsotype VRE isolates was an interesting discovery. 

Although differences in phosphorous-containing molecules within AA and CC pulsotype isolates 

were observed, it was not clear whether there was a direct correlation between the lack of the pstS 

gene and spectral differences observed by FTIR and NMR spectroscopy. Spectroscopic analyses 

suggested that phosphorous-containing molecules such as phospholipids, specifically PC, PI, and 

PA/PG were present in different proportions in AA and CC pulsotypes. To expand on the 

preliminary work conducted in this study, the identification of biomolecules contributing to 

successful FTIR spectral discrimination at the sub-species level for VRE isolates should be further 

investigated using tandem mass spectrometry and multidimensional NMR experiments on the non-

soluble components, such as the cell wall. 

.



 

231 

 

6.7 References 

1. Bağcıoğlu, M., et al., Detection and identification of Bacillus cereus, Bacillus 

cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis 

via machine learning based FTIR Spectroscopy. Frontiers in microbiology, 2019. 10: p. 

902. 

2. Dieckmann, R., et al., Rapid characterisation of Klebsiella oxytoca isolates from 

contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. 

Faraday discussions, 2016. 187: p. 353-375. 

3. Dziuba, B., Identification of selected Leuconostoc species with the use of FTIR 

spectroscopy and artificial neural networks. Acta Scientiarum Polonorum Technologia 

Alimentaria, 2011. 10(3): p. 275-285. 

4. Essendoubi, M., et al., Epidemiological investigation and typing of Candida glabrata 

clinical isolates by FTIR spectroscopy. Journal of microbiological methods, 2007. 71(3): 

p. 325-331. 

5. Lamprell, H., et al., Discrimination of Staphylococcus aureus strains from different 

species of Staphylococcus using Fourier transform infrared (FTIR) spectroscopy. 

International journal of food microbiology, 2006. 108(1): p. 125-129. 

6. Lecellier, A., et al., Implementation of an FTIR spectral library of 486 filamentous fungi 

strains for rapid identification of molds. Food microbiology, 2015. 45: p. 126-134. 

7. Sousa, C., et al., Development of a FTIR-ATR based model for typing clinically relevant 

Acinetobacter baumannii clones belonging to ST98, ST103, ST208 and ST218. Journal of 

Photochemistry and Photobiology B: Biology, 2014. 133: p. 108-114. 

8. Tsutsumi, T., et al. 2125. Staphylococcus Species Identification by Fourier Transform 

Infrared (FTIR) Spectroscopic Techniques: A Cross-Lab Study. in Open Forum 

Infectious Diseases. 2019. Oxford University Press US. 

9. Vogt, S., et al., Fourier-transform infrared (FTIR) spectroscopy for typing of clinical 

Enterobacter cloacae complex isolates. Frontiers in microbiology, 2019. 10. 

10. Wenning, M., et al., Identification and differentiation of food-related bacteria: a 

comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of 

microbiological methods, 2014. 103: p. 44-52. 

11. Lam, L.M., et al., Reagent-Free Identification of Clinical Yeasts Using Attenuated Total 

Reflectance Fourier Transform Infrared Spectroscopy. Journal of clinical microbiology, 

2019: p. JCM. 01739-18. 

12. Lam, T.M.L., Rapid Identification and Classification of Escherichia Coli and Shigella by 

Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. 2017, McGill 

University Libraries. 

13. Vallieres, E., et al. Attenuated Total Reflectance Fourier Transform Infrared 

Spectroscopy for Rapid Identification of Non-Fermenting Gram-Negative Bacilli Isolated 

from Patients with Cystic Fibrosis. in Open forum infectious diseases. 2017. Oxford 

University Press. 

14. Markley, J.L., et al., The future of NMR-based metabolomics. Current opinion in 

biotechnology, 2017. 43: p. 34-40. 

15. Wong, A., C. Boutin, and P.M. Aguiar, 1H high resolution magic-angle coil spinning 

(HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a 

demonstrative study. Frontiers in chemistry, 2014. 2: p. 38. 



232 

 

16. Chauton, M.S., et al., HR MAS 1H NMR spectroscopy analysis of marine microalgal 

whole cells. Marine Ecology Progress Series, 2003. 256: p. 57-62. 

17. Valentini, M., et al., The HRMAS–NMR tool in foodstuff characterisation. Magnetic 

Resonance in Chemistry, 2011. 49: p. S121-S125. 

18. Wang, Y., et al., Magic Angle Spinning NMR and 1H− 31P Heteronuclear Statistical 

Total Correlation Spectroscopy of Intact Human Gut Biopsies. Analytical chemistry, 

2008. 80(4): p. 1058-1066. 

19. Li, W., et al., Methods for acquisition and assignment of multidimensional high-

resolution magic angle spinning NMR of whole cell bacteria. Analytical chemistry, 2005. 

77(18): p. 5785-5792. 

20. Li, W., Multidimensional HRMAS NMR: a platform for in vivo studies using intact 

bacterial cells. Analyst, 2006. 131(7): p. 777-781. 

21. Klinowski, J., Magic-angle-spinning NMR. Solid State Ionics, 1985. 16: p. 3-14. 

22. Bourne, R., et al., Identification of Enterococcus, Streptococcus, andStaphylococcus by 

Multivariate Analysis of Proton Magnetic Resonance Spectroscopic Data from Plate 

Cultures. Journal of clinical microbiology, 2001. 39(8): p. 2916-2923. 

23. Himmelreich, U., et al., A rapid screening test to distinguish between Candida albicans 

and Candida dubliniensis using NMR spectroscopy. FEMS microbiology letters, 2005. 

251(2): p. 327-332. 

24. Himmelreich, U., et al., Rapid identification of Candida species by using nuclear 

magnetic resonance spectroscopy and a statistical classification strategy. Appl. Environ. 

Microbiol., 2003. 69(8): p. 4566-4574. 

25. Sorrell, T.C., et al., Application of proton nuclear magnetic resonance spectroscopy to 

the study of Cryptococcus and cryptococcosis. FEMS yeast research, 2006. 6(4): p. 558-

566. 

26. Gudlavalleti, S.K., et al., In vivo determination of Neisseria meningitidis serogroup A 

capsular polysaccharide by whole cell high-resolution magic angle spinning NMR 

spectroscopy. Carbohydrate research, 2006. 341(4): p. 557-562. 

27. Jachymek, W., et al., Structures of the O-specific polysaccharides from Yokenella 

regensburgei (Koserella trabulsii) strains PCM 2476, 2477, 2478, and 2494: high-

resolution magic-angle spinning NMR investigation of the O-specific polysaccharides in 

native lipopolysaccharides and directly on the surface of living bacteria. Biochemistry, 

1999. 38(36): p. 11788-11795. 

28. Lee, R.E., et al., Rapid structural characterization of the arabinogalactan and 

lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: 

structural changes in the arabinan due to ethambutol treatment and gene mutation are 

observed. Glycobiology, 2004. 15(2): p. 139-151. 

29. Maes, E., et al., Molecular phenotyping of mannosyltransferases-deficient Candida 

albicans cells by high-resolution magic angle spinning NMR. Journal of biochemistry, 

2009. 145(4): p. 413-419. 

30. Zhou, X. and L. Cegelski, Nutrient-dependent structural changes in S. aureus 

peptidoglycan revealed by solid-state NMR spectroscopy. Biochemistry, 2012. 51(41): p. 

8143-8153. 

31. Romaniuk, J.A. and L. Cegelski, Peptidoglycan and Teichoic Acid Levels and Alterations 

in S. aureus by Cell-Wall and Whole-Cell NMR. Biochemistry, 2018. 



233 

 

32. Romaniuk, J.A. and L. Cegelski, Bacterial cell wall composition and the influence of 

antibiotics by cell-wall and whole-cell NMR. Phil. Trans. R. Soc. B, 2015. 370(1679): p. 

20150024. 

33. Szymanski, C.M., et al., Detection of conserved N-linked glycans and phase variable 

lipo-oligosaccharides and capsules from Campylobacter cells by mass spectrometry and 

high resolution magic angle spinning NMR spectroscopy. Journal of Biological 

Chemistry, 2003. 

34. Bingol, K. and R. Brüschweiler, Two elephants in the room: new hybrid nuclear 

magnetic resonance and mass spectrometry approaches for metabolomics. Current 

opinion in clinical nutrition and metabolic care, 2015. 18(5): p. 471. 

35. Zhou, X., et al., Enterococcus faecium: from microbiological insights to practical 

recommendations for infection control and diagnostics. Antimicrobial Resistance & 

Infection Control, 2020. 9(1): p. 1-13. 

36. AlMasoud, N., et al., Rapid discrimination of Enterococcus faecium strains using 

phenotypic analytical techniques. Analytical Methods, 2016. 8(42): p. 7603-7613. 

37. Bortolaia, V., et al., ResFinder 4.0 for predictions of phenotypes from genotypes. Journal 

of Antimicrobial Chemotherapy, 2020. 75(12): p. 3491-3500. 

38. Joensen, K.G., et al., Real-time whole-genome sequencing for routine typing, 

surveillance, and outbreak detection of verotoxigenic Escherichia coli. Journal of clinical 

microbiology, 2014. 52(5): p. 1501-1510. 

39. Tetzschner, A.M.M., et al., In silico genotyping of Escherichia coli isolates for 

extraintestinal virulence genes by use of whole-genome sequencing data. Journal of 

clinical microbiology, 2020. 58(10). 

40. Carattoli, A., et al., In silico detection and typing of plasmids using PlasmidFinder and 

plasmid multilocus sequence typing. Antimicrobial agents and chemotherapy, 2014. 

58(7): p. 3895-3903. 

41. Carattoli, A., et al., PlasmidFinder and pMLST: in silico detection and typing of 

plasmids. Antimicrobial agents and chemotherapy, 2014. 

42. Larsen, M.V., et al., Multilocus sequence typing of total-genome-sequenced bacteria. 

Journal of clinical microbiology, 2012. 50(4): p. 1355-1361. 

43. Lévesque, S., et al., A side by side comparison of Bruker Biotyper and VITEK MS: utility 

of MALDI-TOF MS technology for microorganism identification in a public health 

reference laboratory. PloS one, 2015. 10(12): p. e0144878. 

44. Himmelreich, U., et al., Rapid etiological classification of meningitis by NMR 

spectroscopy based on metabolite profiles and host response. PloS one, 2009. 4(4): p. 

e5328. 

45. Himmelreich, U., T.C. Sorrell, and H.-M. Daniel, Nuclear magnetic resonance 

spectroscopy-based identification of yeast, in Human Fungal Pathogen Identification. 

2017, Springer. p. 289-304. 

46. García-García, A.B., et al., 1H HR-MAS NMR-based metabolomics analysis for dry-

fermented sausage characterization. Food chemistry, 2018. 240: p. 514-523. 

47. Pagter, M., C.C. Yde, and K.H. Kjær, Metabolic fingerprinting of dormant and active 

flower primordia of ribes nigrum using high-resolution magic angle spinning NMR. 

Journal of agricultural and food chemistry, 2017. 65(46): p. 10123-10130. 



234 

 

48. Bundy, J.G., et al., Discrimination of pathogenic clinical isolates and laboratory strains 

of Bacillus cereus by NMR-based metabolomic profiling. FEMS microbiology letters, 

2005. 242(1): p. 127-136. 

49. Duarte, I.F., et al., Analytical approaches toward successful human cell metabolome 

studies by NMR spectroscopy. Analytical chemistry, 2009. 81(12): p. 5023-5032. 

50. Derenne, A., et al., Infrared Spectroscopy of Membrane Lipids, in Encyclopedia of 

Biophysics, G.C.K. Roberts, Editor. 2013, Springer Berlin Heidelberg: Berlin, 

Heidelberg. p. 1074-1081. 

51. da Cunha, B.R., et al., Fourier-Transform Mid-Infrared Spectroscopy in Biomedicine. 

Essential Techniques for Medical and Life Scientists: A guide to contemporary methods 

and current applications with the protocols: Part 2, 2020: p. 1. 

52. Naumann, D., FT-infrared and FT-Raman spectroscopy in biomedical research. Applied 

spectroscopy reviews, 2001. 36(2-3): p. 239-298. 

53. Lu, X., et al., Application of mid-infrared and Raman spectroscopy to the study of 

bacteria. Food and Bioprocess Technology, 2011. 4(6): p. 919-935. 

54. Ezra, F.S., et al., Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of 

anaerobic glucose metabolism and lactate transport in Staphylococcus aureus cells. 

Biochemistry, 1983. 22(16): p. 3841-3849. 

55. Bychowska, A., et al., Chemical structure of wall teichoic acid isolated from 

Enterococcus faecium strain U0317. Carbohydrate research, 2011. 346(17): p. 2816-

2819. 

56. Carvalho, J., et al., Development of a bioreactor system for cytotoxic evaluation of 

pharmacological compounds in living cells using NMR spectroscopy. Journal of 

pharmacological and toxicological methods, 2019. 95: p. 70-78. 

57. Mandala, V.S., et al., Bacterial Phosphate Granules Contain Cyclic Polyphosphates: 

Evidence from 31P Solid-State NMR. Journal of the American Chemical Society, 2020. 

58. Burt, C.T., S.M. Cohen, and M. Bárány, Analysis of intact tissue with 31P NMR. Annual 

review of biophysics and bioengineering, 1979. 8(1): p. 1-25. 

59. Lipok, J., et al., Prospects of in vivo 31P NMR method in glyphosate degradation studies 

in whole cell system. Enzyme and Microbial Technology, 2009. 44(1): p. 11-16. 

60. Slonczewski, J.L., et al., pH homeostasis in Escherichia coli: measurement by 31P 

nuclear magnetic resonance of methylphosphonate and phosphate. Proceedings of the 

National Academy of Sciences, 1981. 78(10): p. 6271-6275. 

61. Quainoo, S., et al., Whole-genome sequencing of bacterial pathogens: the future of 

nosocomial outbreak analysis. Clinical microbiology reviews, 2017. 30(4): p. 1015-1063. 

62. Arredondo-Alonso, S., et al., Genomes of a major nosocomial pathogen Enterococcus 

faecium are shaped by adaptive evolution of the chromosome and plasmidome. BioRxiv, 

2019: p. 530725. 

63. Lemonidis, K., et al., Missing pstS locus associated with an insertion in tetM in 

vancomycin resistant Enterococcus faecium. bioRxiv, 2017: p. 236786. 

64. McCracken, M., et al., Emergence of pstS-Null Vancomycin-Resistant Enterococcus 

faecium Clone ST1478, Canada, 2013–2018. Emerging Infectious Diseases, 2020. 26(9): 

p. 2247. 

65. Lemonidis, K., et al., Emergence of an Australian-like pstS-null vancomycin resistant 

Enterococcus faecium clone in Scotland. Plos one, 2019. 14(6): p. e0218185. 



235 

 

66. Kim, H.M., et al., Emergence of vancomycin-resistant Enterococcus faecium ST1421 

lacking the pstS gene in Korea. European Journal of Clinical Microbiology & Infectious 

Diseases, 2020. 39(7): p. 1349-1356. 

67. Raven, K.E., et al., A decade of genomic history for healthcare-associated Enterococcus 

faecium in the United Kingdom and Ireland. Genome research, 2016. 26(10): p. 1388-

1396. 

68. Carter, G.P., et al., Emergence of endemic MLST non-typeable vancomycin-resistant 

Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2016. 71(12): p. 3367-

3371. 

69. O'May, G., et al., The high-affinity phosphate transporter Pst in Proteus mirabilis 

HI4320 and its importance in biofilm formation. Microbiology, 2009. 155(Pt 5): p. 1523. 

70. Esteban, A., et al., Expression of the pstS gene of Streptomyces lividans is regulated by 

the carbon source and is partially independent of the PhoP regulator. BMC 

microbiology, 2008. 8(1): p. 1-12. 

71. Allenby, N.E., et al., Post-transcriptional regulation of the Bacillus subtilis pst operon 

encoding a phosphate-specific ABC transporter. Microbiology, 2004. 150(8): p. 2619-

2628. 

72. Chow, J.W., Aminoglycoside resistance in enterococci. Clinical Infectious Diseases, 

2000. 31(2): p. 586-589. 

73. Lee, T., et al., A three-year whole genome sequencing perspective of Enterococcus 

faecium sepsis in Australia. PloS one, 2020. 15(2): p. e0228781. 

74. Hollenbeck, B.L. and L.B. Rice, Intrinsic and acquired resistance mechanisms in 

enterococcus. Virulence, 2012. 3(5): p. 421-569. 

75. Camacho, C., et al., BLAST+: architecture and applications. BMC bioinformatics, 2009. 

10(1): p. 1-9. 

76. Santagati, M., F. Campanile, and S. Stefani, Genomic diversification of enterococci in 

hosts: the role of the mobilome. Frontiers in microbiology, 2012. 3: p. 95. 

77. Gilmore, M.S., et al., Enterococci: From Commensals to Leading Causes of Drug 

Resistant Infection [Internet]. 2014. 

78. Clausen, P.T., F.M. Aarestrup, and O. Lund, Rapid and precise alignment of raw reads 

against redundant databases with KMA. BMC bioinformatics, 2018. 19(1): p. 1-8. 

79. Weber, A., et al., Increase of vancomycin-resistant Enterococcus faecium strain type 

ST117 CT71 at Charité-Universitätsmedizin Berlin, 2008 to 2018. Antimicrobial 

Resistance & Infection Control, 2020. 9(1): p. 1-9. 

80. Freitas, A.R., et al., Multidrug-resistant high-risk Enterococcus faecium clones: can we 

really define them? International Journal of Antimicrobial Agents, 2020: p. 106227. 

81. Soheili, S., et al., Wide distribution of virulence genes among Enterococcus faecium and 

Enterococcus faecalis clinical isolates. The Scientific World Journal, 2014. 2014. 

82. Gao, W., B.P. Howden, and T.P. Stinear, Evolution of virulence in Enterococcus faecium, 

a hospital-adapted opportunistic pathogen. Current opinion in microbiology, 2018. 41: p. 

76-82. 

83. Ahmmed, M.K., et al., Simple and Efficient One-Pot Extraction Method for 

Phospholipidomic Profiling of Total Oil and Lecithin by Phosphorus-31 Nuclear 

Magnetic Resonance Measurements. Journal of Agricultural and Food Chemistry, 2020. 

68(48): p. 14286-14296. 



236 

 

84. Kaffarnik, S., et al., Two-dimensional 31P, 1H NMR spectroscopic profiling of 

phospholipids in cheese and fish. Journal of agricultural and food chemistry, 2013. 

61(29): p. 7061-7069. 

85. Sohlenkamp, C., I.M. López-Lara, and O. Geiger, Biosynthesis of phosphatidylcholine in 

bacteria. Progress in lipid research, 2003. 42(2): p. 115-162. 

86. Mishra, N.N., et al., Daptomycin resistance in enterococci is associated with distinct 

alterations of cell membrane phospholipid content. PLoS One, 2012. 7(8): p. e43958. 

87. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

acids research, 2000. 28(1): p. 27-30. 

88. Kanehisa, M., Toward understanding the origin and evolution of cellular organisms. 

Protein Science, 2019. 28(11): p. 1947-1951. 

89. Heo, S., et al., Genomic Insight into the Salt Tolerance of Enterococcus faecium, 

Enterococcus faecalis and Tetragenococcus halophilus. Journal of microbiology and 

biotechnology, 2019. 29(10): p. 1591-1602. 

90. Boch, J., B. Kempf, and E. Bremer, Osmoregulation in Bacillus subtilis: synthesis of the 

osmoprotectant glycine betaine from exogenously provided choline. Journal of 

Bacteriology, 1994. 176(17): p. 5364-5371. 

91. Boncompagni, E., et al., Occurrence of choline and glycine betaine uptake and 

metabolism in the family Rhizobiaceae and their roles in osmoprotection. Applied and 

environmental microbiology, 1999. 65(5): p. 2072-2077. 

92. Slavetinsky, C., S. Kuhn, and A. Peschel, Bacterial aminoacyl phospholipids–

Biosynthesis and role in basic cellular processes and pathogenicity. Biochimica et 

Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2017. 1862(11): p. 1310-

1318. 

93. Smith, A.M., et al., A conserved hydrolase responsible for the cleavage of 

aminoacylphosphatidylglycerol in the membrane of Enterococcus faecium. Journal of 

Biological Chemistry, 2013. 288(31): p. 22768-22776. 

94. Epand, R.M. and R.F. Epand, Lipid domains in bacterial membranes and the action of 

antimicrobial agents. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009. 

1788(1): p. 289-294. 

95. Sakayori, Y., et al., Characterization of Enterococcus faecium mutants resistant to 

mundticin KS, a class IIa bacteriocin. Microbiology, 2003. 149(10): p. 2901-2908. 

96. Duitschaever, C. and D. Jordan, Development of resistance to heat and sodium chloride 

in Streptococcus faecium recovering from thermal injury. Journal of Milk and Food 

Technology, 1974. 37(7): p. 382-386. 

97. Schiller, J., et al., 31P NMR spectroscopy of phospholipids: From micelles to membranes. 

Current Analytical Chemistry, 2007. 3(4): p. 283-301. 

98. Rowlett, V.W., et al., Impact of membrane phospholipid alterations in Escherichia coli 

on cellular function and bacterial stress adaptation. Journal of bacteriology, 2017. 

199(13). 

99. Hendrickx, A.P., W. Van Schaik, and R.J. Willems, The cell wall architecture of 

Enterococcus faecium: from resistance to pathogenesis. Future Microbiology, 2013. 8(8): 

p. 993-1010. 

 

 

  



237 

 

Chapter 7.  General Discussion 

Current strain type characterization used to supplement epidemiological information for 

outbreak detection relies on the use of PFGE. This long and laborious technique necessitates 

consistent sample preparation, data acquisition, and analyses by laboratory personnel in order to 

achieve accurate results on strain relatedness between samples. Despite its use as a gold standard 

for over two decades, the long turnaround time to results is a limitation that delays informing 

infection control teams for decision making at hospitals. Furthermore, due to the requirement of 

many reagents for sample preparation and data acquisition, it is not realistically applicable as a 

technique to repeatedly collect data from environmental and patient screening samples, to gain a 

bigger picture on prevalence of pathogens like VRE in the hospital setting. FTIR spectroscopy has 

the ability to shorten the turnaround time to results by acquiring spectral data and producing results 

within the same day that isolated colonies are obtained on agar plates. The lack of reagents required 

for spectral acquisition also eases the financial burden that is incurred in running more samples, 

thereby enabling more samples to be screened and analyzed than what is possible with PFGE. 

These two advantages that FTIR spectroscopy holds make it an appropriate high-throughput 

screening tool.  

PFGE determines the degree of relatedness between two isolates based on the number of PFGE 

band differences, where a lower number of band differences between isolates indicates a higher 

degree of similarity between the isolates, although it is known that the strain type similarity of 

highly recombinant species may be poorly reflected by this strain type determination criterion. 

While some genetic mutations and gene transfers can greatly affect the structure or metabolic status 

of the microorganism, which may be observed as altered FTIR spectral features, other genetic 

alterations do not incur any phenotypic change, and thus FTIR spectra remain unchanged. The 

opposite can also occur, where phenotypic changes observable in the FTIR spectra may occur 

despite a lack of change in PFGE band patterns. Like the PFGE method, which relies on a set of 

criteria regarding the PFGE band patterns to determine whether isolates are clonal or not, the 

method that was developed in this thesis for strain typing of VRE using FTIR spectroscopy relied 

on cut-off values that were chosen, in analyses of the spectra of VRE outbreak related isolates that 

discriminated between two pulsotypes, AA and CC. The method utilized squared Mahalanobis 

distance between isolates as a measure of the spectral similarity between two isolates, where <500 
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squared distance indicated that the two isolates were spectrally indistinguishable. At the time this 

method was developed, no other genotypic data, such as MLST and whole genome SNP analyses, 

were available for consideration. Although this method and cut-off values should be further 

evaluated in relation to additional genotypic and possibly phenotypic characteristics, the 

retrospective and prospective studies presented in this thesis indicated that the determination of 

spectral similarity between isolates by transflection FTIR spectroscopy provides a reliable method 

for identifying isolates that are possibly implicated in an outbreak. This works on the basis that 

few to no genetic or phenotypic changes occur when transmission occurs in an outbreak, where 

the pathogen spreads quickly across the environment and among patients. As VRE adapts to its 

environment, changes in its phenotypic characteristics may occur, and hence repeated isolation 

and spectral characterization of samples from a carrier or infected patient may be useful in 

evaluating the stability of the spectral profile. Correlation between whole genome sequencing data 

and FTIR spectral data can also identify which gene mutations, acquisition or deletion through 

horizontal gene transfer have an effect on phenotypic characteristics. 

The use of FTIR spectra for strain type characterization at the subspecies level, as well as for 

species identification, requires standardized sample preparation since spectral differences can 

result from differences in culturing conditions such as media composition, as well as time and 

temperature of incubation. Under standardized conditions, spectral differences observed between 

samples can be attributed to their inherent metabolic and structural differences. These biochemical 

differences which are reflected in the spectral fingerprint enable spectral discrimination among 

various microbial species, for their identification. One of the objectives of the research presented 

in this thesis was to evaluate whether FTIR spectra acquired in the transflection mode are 

satisfactory for purposes of microbial identification. While a much more extensive side-by-side 

comparison against transmission and ATR spectral acquisition modes would be required to fully 

evaluate the advantages and limitations of transflection FTIR spectroscopy for microbial 

identification applications, the spectral distortions often mentioned as a limitation of the 

transflection mode did not have a negative impact on its ability in microbial discrimination at 

species and subspecies level. 

From a practical perspective, a key advantage of transflection FTIR spectroscopy is the 

capability to acquire spectra from microbial samples deposited on a wide variety of disposable or 
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reusable substrates, such as low-E glass and aluminum plates. Using a 96-well plate format, an 

automated transflection-based FTIR system could be produced similarly to the Bruker IR Biotyper, 

which is an automated transmission-based FTIR spectrometer that provides a reusable 96-well 

silicon plate for spectral acquisition. In contrast, automation of spectral acquisition in the ATR 

mode is harder to achieve. 

FTIR spectroscopy observes changes in metabolism or gene expression when microbial 

isolates are cultured on media with different compositions or when culturing condition are changed. 

The FTIR spectra reflect the changes that the microorganisms utilize in order to adapt and survive, 

and therefore can be useful in detecting changes that are implicated in unfavorable conditions, 

such as the presence of antimicrobial agents. Additionally, growth of microorganisms on selective 

or differential media, which microbiologists employ to inhibit growth of certain organisms or 

observe differences among microorganisms based on their capability to metabolise specific 

compounds, may also be taken advantage of to aid FTIR spectroscopic discrimination among 

certain organisms. As an example, the use of MacConkey agar was found to enhance spectral 

differences between Gram-negative isolates, such as E. coli and Shigella species. This general 

principle laid the foundation for the novel FTIR spectroscopy-based MRSA identification method 

presented in this thesis. The addition of the antibiotic cefoxitin in blood agar plates resulted in 

MRSA identification with high sensitivity and specificity, by successfully differentiating MRSA 

from MSSA and CoNS based on the isolate growth and spectral differences respectively. The 

antibiotics colistin and nalidixic acid were also added to the culture plates to inhibit the growth of 

Gram-negative bacteria, for selective isolation of Gram-positive bacteria. The concept of acquiring 

FTIR spectra for identification of isolated colonies cultured on blood agar plates with antimicrobial 

agents may be extended to investigate the use of carbapenem or vancomycin in culture media for 

the identification of carbapenem-resistant Enterobacteriaceae (CRE) or VRE by FTIR 

spectroscopy. 

In clinical labs, visual detection of MRSA and VRE isolates on chromogenic agar provides a 

quick confirmation of their presence in samples. However, when only relying on visual cues, 

without confirmation by techniques like MALDI-TOF MS or biochemical assays, false positive 

results may occur. While such instances were rarely encountered throughout years acquiring FTIR 

spectral data from isolates grown on chromogenic agar, a few violet colored isolates on 
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chromogenic agar were identified as non-E. faecium species by FTIR spectral analysis. MALDI-

TOF MS later identified these isolates that were spectrally not E. faecium as Enterococcus 

gallinarum and Lactobacillus species, confirming the presence of non-target pathogens. FTIR 

spectral acquisition from well-isolated colonies can be useful as a one-step method that can provide 

both species identification and strain type characterization. Development of a FTIR spectral 

database with isolates cultured on chromogenic agar for species identification for the specific 

purpose of MRSA and VRE detection may allow for a smooth integration of FTIR spectroscopy 

for screening and characterization of organisms specifically for surveillance purposes. The use of 

chromogens that change color in the presence of specific enzymes possessed by target pathogens 

increases the cost of culture plates, relative to generic media, such as Columbia agar with sheep 

blood or Mueller Hinton agar. By acquiring FTIR spectra from isolates cultured on antibiotic 

containing media, the need for chromogens to visually differentiate between target pathogens such 

as MRSA from MRS-CoNS, and E. faecium from E. faecalis becomes unnecessary, thereby 

reducing the expense incurred for chromogenic agar plates. Furthermore, as mentioned before, the 

spectra can be used for both identification and strain type characterization, given that the culturing 

conditions used are standardized and consistent between samples. Cefoxitin presence in the agar 

can also provide a presumptive result for resistant strains, which can later be confirmed with 

antimicrobial susceptibility tests for a panel of relevant agents specific to MRSA. Growth in the 

presence of cefoxitin is used to determine whether isolates are resistant against all β-lactam 

antimicrobial agents for S. aureus, and thus used for MRSA detection. The addition of cefoxitin 

in blood agar resulted in subtle changes in the FTIR spectra of MRSA, which can be used to study 

the change related to activation of antimicrobial resistance genes such as mecA. Since FTIR 

spectroscopy provides a rapid and reliable way for microorganisms to be characterized, studies 

involving spectral analyses on the effects of antimicrobial agents at sub-inhibitory levels may be 

useful in understanding the metabolic differences between sensitive and resistant strains, which 

may be correlated to gene expressions or activation. 

Metabolic and structural changes that occur under environmental stress or result from mutation 

in the genome may be observed by FTIR spectroscopy and correlated to observed genotypic 

alterations. Spectroscopic data and genotypic data acquired on VRE pulsotypes confirmed there 

were immense differences in their biochemical makeup and the genome itself. They also proved 

the sensitivity of both FTIR spectroscopy and 1H and 31P HR-MAS NMR spectroscopy to observe 
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differences that discriminate organisms at the subspecies level. FTIR spectroscopy can become 

useful in microbiology laboratories as a high-throughput screening technology, to identify isolates 

and spectrally compare them to other samples for relatedness, in the context of outbreak detection 

and surveillance, for both clinical and food-borne pathogens. Detection of isolates that are 

spectrally indistinguishable, is just as important as identifying isolates with unique spectral 

features; in both cases, selected isolates can be followed up by more laborious phenotypic and 

genotypic methods for further characterization. 

As a final comment, classification based on spectral features does not necessarily follow the 

current taxonomic classification system, which is based on the combination of phylogenetic, 

phenotypic and genotypic characteristics. The microbial taxonomy is ever evolving, and involves 

constant (re-)classification, as more information on microbial organisms is collected. As part of 

this process, FTIR spectral characteristics may provide valuable data in characterizing and 

classifying bacterial species.  
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Chapter 8.  Conclusion 

The objective of the thesis was to evaluate the use of transflection FTIR spectroscopy for 

microbial applications, specifically for identification and discrimination at the species and 

subspecies levels. The results presented in the thesis demonstrated that like other spectral 

acquisition modes (i.e. transmission and ATR) that have been widely employed to acquire FTIR 

spectra of intact microbial cells, the transflection mode provides spectra of sufficient quality to 

serve as “whole-organism” fingerprints of microorganisms, for discrimination at the species and 

strain-type level. A transflection FTIR spectral database and a multi-tired spectral classification 

were developed for microbial identification to the species level. Correct identification of > 98 % 

of E. faecalis, E. faecium and S. aureus isolates (1103 isolates combined between the three species) 

demonstrated that species identification was possible upon sufficient spectral representation of the 

species in the spectral database. While identification with high concordance relative to reference 

methods like MALDI-TOF MS and VITEK 2 was achieved for these isolates, not all genera and 

species could be identified with the same level of concordance. This was particularly the case for 

Gram-negative genera within the Enterobacteriaceae family and for species within the 

Staphylococcus genus, with the exception of S. aureus, and may be attributed to a number of 

factors, including low representation in the spectral database, spectral similarity between certain 

poorly identified genera, as well as the diversity in genotypic and phenotypic characteristics within 

species. Although extensive FTIR spectral analyses and understanding of the characteristics of 

these genera and species are required to fully evaluate whether successful spectral discrimination 

and identification can be achieved, improvements in identification results were observed with 

increased spectral representation in the database, as previously reported by others. The addition of 

antibiotics such as cefoxitin, colistin and nalidixic acid into the Columbia blood agar growth 

medium did not affect the performance achieved for the identification of S. aureus using the 

transflection FTIR spectral database enabling accurate MRSA identification through the combined 

use of antibiotics in the culture medium and transflection FTIR spectroscopy for discrimination of 

S. aureus from CoNS (98 % categorical agreement). Furthermore at the subspecies level, 

development of a strain typing method using transflection FTIR spectroscopy in conjunction with 

multivariate statistical analyses revealed its capability and usefulness as a rapid screening 

technique for identifying isolates that may be part of an outbreak. In a 6-month prospective study, 

VRE isolates obtained from patient and environmental screening samples were spectrally analyzed 
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on a weekly basis and isolates classified as spectrally indistinguishable were later confirmed by 

PFGE analysis. Proton and 31P NMR spectra acquired from microbial isolates by HR-MAS NMR 

spectroscopy demonstrated that discrimination at the species and sub-species levels was achievable, 

similarly to FTIR spectral discrimination. Owing to the higher chemical specificity of NMR 

spectroscopy by comparison to vibrational spectroscopy, potential biomarkers that contributed to 

successful spectral discrimination between two VRE pulsotypes by both NMR and FTIR 

spectroscopy were tentatively identified in the averaged 1H and averaged 31P NMR spectra of VRE 

isolates belonging to each of these pulsotypes, however, analyses by multidientional NMR 

experiments and mass spectrometer would be required for definitive identification of biomarkers. 

Whole genome sequencing data indicated that there are substantial genetic differences between 

the VRE pulsotypes. However, at this time, the spectroscopic differences identified could not be 

correlated to specific genomic differences between the VRE pulsotypes. The preliminary work 

conducted in an attempt to correlate between spectroscopic and genotypic data demonstrates how 

the spectral discriminatory capabilities and observations made at the sub-species level using FTIR 

spectroscopy provides a rapid and consistent method for characterizing microbial isolates in the 

live state, which can be supplemented by various phenotypic and genotypic techniques. 

Overall, the results from the series of experiments presented in this thesis demonstrated the 

capabilities of using transflection FTIR spectroscopy as a rapid and routine technique for microbial 

identification and strain typing applications, in particular for determination of strain relatedness 

among isolates for outbreak surveillance and epidemiological purposes. Future work should be 

directed toward 1. selective, and comprehensive spectral analyses on Gram-negative genera and 

staphylococcal species by transflection-FTIR spectroscopy for evaluation of its capabilities in their 

identification, 2. multi-centre evaluation of the transflection FTIR spectroscopy-based microbial 

identification method, 3. application of the protocol employed for MRSA detection using 

antibiotic-selective agar and FTIR spectroscopy, for detection of other antibiotic resistant 

microorganisms, such as vancomycin-resistant enterococci, and extended-spectrum β-lactamase-

positive Gram-negative microorganisms, 4. continuation of biomarker elucidation research, 

focusing on cell wall constituents, using multidimensional NMR spectroscopy, mass spectrometry 

and whole genome sequencing, 5. combined use of whole-organism fingerprinting techniques 

(FTIR spectroscopy and HR-MAS NMR spectroscopy) for dynamic studies, such as observing the 

interaction and effect of antibiotics and potential drug candidates on live bacteria and yeast cell. 
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APPENDIX 

Supplementary Table 1 Update identification results after the addition of isolates into training set for GP genera 

  Training Validation+  

TEST 

 TOTAL CORRECT 

(n, %) 

NO ID 

(n, %) 

MIS ID 

(n, %) 

TOTAL CORRECT 

(n, %) 

NO ID 

(n, %) 

MIS ID 

(n, %) 

Aerocococcus 
       

2 0 0 1 50 1 50 

Bacillus 15 15 100 
 

0 
 

0 20 10 50 0 0 10 50 

Corynebacterium 9 9 100 
 

0 
 

0 9 8 88.9 1 11.1 0 0 

Dermabacter 
       

3 0 0 0 0 3 100 

Enterococcus 89 89 100 
 

0 
 

0 634 633 99.8 0 0 1 0.2 

Gordonia 
       

1 0 0 0 0 1 100 

Kocuria 
       

3 0 0 1 33.3 2 66.7 

Kytococcus 
       

1 0 0 1 100 0 0 

Lactobacillus 
       

4 0 0 1 25 3 75 

Lactococcus 
       

1 0 0 0 0 1 100 

Listeria 31 31 100 
 

0 
 

0 26 25 96.2 0 0 1 3.8 

Micrococcus 5 5 100 
 

0 
 

0 14 13 92.9 1 7.1 0 0 

Rhodococcus 
       

1 0 0 1 100 0 0 

Rothia 
       

1 0 0 0 0 1 100 

Staphylococcus 332 332 100 
 

0 
 

0 1276 1265 99.1 0 0 11 0.9 

Streptococcus 63 63 100 
 

0 
 

0 92 85 92.4 0 0 7 7.6 

Turicella 
       

2 0 0 0 0 2 100 

Total 544 544 100 0 0 0 0 2090 2039 97.6 7 0.3 44 2.1 

Represented Genera 544 544 100 0 0 0 0 2071 2039 98.5 2 0.1 30 1.4 

Other genera 0 0 
 

0 
 

0 
 

19 5 26.3 
 

0 14 73.7 
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Supplementary Table 2 Updated identification results after addition of isolates into training set for GN genera 
 

Training Validation+TEST  
Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Achromobacter 22 22 100 0 0 0 0 19 18 94.7 1 5.3 0 0 

Acinetobacter 11 11 100 0 0 0 0 11 6 54.5 0 0 5 45.5 

Aeromonas 19 15 78.9 0 0 4 21.1 8 2 25 0 0 6 75 

Brevundimonas 
       

2 0 0 0 0 2 100 

Burkholderia 20 18 90 2 10 0 0 4 1 25 2 50 1 25 

Chryseobacterium 
       

9 0 0 3 33.3 6 66.7 

Citrobacter 26 18 69.2 8 30.8 0 0 7 1 14.3 3 42.9 3 42.9 

Cupriavidus 
       

2 0 0 1 50 1 50 

Delftia 
       

1 0 0 0 0 1 100 

Edwardsiella 
       

1 0 0 1 100 0 0 

Enterobacter 30 24 80 5 16.7 1 3.3 30 14 46.7 12 40 4 13.3 

Escherichia 59 54 91.5 5 8.5 0 0 91 58 63.7 22 24.2 11 12.1 

Kingella 
       

3 0 0 0 0 3 100 

Klebsiella 48 47 97.9 1 2.1 0 0 36 28 77.8 4 11.1 4 11.1 

Moraxella 
       

1 0 0 1 100 0 0 

Morganella 
       

12 0 0 5 41.7 7 58.3 

Ochrobactrum 
       

7 0 0 4 57.1 3 42.9 

Pantoea 
       

10 0 0 4 40 6 60 

Paracoccus 
       

2 0 0 1 50 1 50 

Pasteurella 
       

1 0 0 0 0 1 100 

Plesiomonas 
       

4 0 0 4 100 0 0 

Prevotella 
       

1 0 0 0 0 1 100 

Proteus 11 10 90.9 
 

0 1 9.1 9 6 66.7 1 11.1 2 22.2 

Providencia 
       

3 0 0 3 100 0 0 

Pseudomonas 40 35 87.5 1 2.5 4 10 56 41 73.2 5 8.9 10 17.9 

Raoultella 
       

4 0 0 3 75 1 25 

Salmonella 60 50 83.3 10 16.7 0 0 110 83 75.5 21 19.1 6 5.5 

Serratia 0 0 
     

16 0 0 7 43.8 9 56.3 

Shigella 30 29 96.7 1 3.3 0 0 21 13 61.9 6 28.6 2 9.5 

Sphingomonas 
       

2 0 0 0 0 2 100 

Stenotrophomonas 30 27 90 1 3.3 2 6.7 16 10 62.5 1 6.3 5 31.3 

Vibrio        8 0 0 5 62.5 3 37.5 

Yersinia 
       

4 0 0 2 50 2 50 

TOTAL 406 360 88.7 34 8.4 12 3 511 281 55 122 23.9 108 21.1 

Represented genera 

(w/o Serratia) 

406 360 88.7 34 8.4 12 3 418 281 67.2 78 18.7 59 14.1 

non-represented GN 

genera 

       93 0 0 44 47.3 49 52.7 
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Supplementary Table 3 Identification results after update of spectral database with addition of isolates for CoNS subgroups 

CoNS Cluster groups Training Validation+TEST  
TOTAL CORRECT 

(n, %) 

No ID 

(n, %) 

MIS ID 

(n, %) 

TOTAL CORRECT 

(n, %) 

No ID 

(n, %) 

MIS ID 

(n, %) 

cohnii group 11 10 90.9 1 9.1 0 0 8 6 75 2 25 0 0 

epidermidis group 70 68 97.1 2 2.9 0 0 111 97 87.4 11 9.9 3 2.7 

haemolyticus group 50 47 94 0 0 3 6 43 38 88.4 4 9.3 1 2.3 

lugdunensis group 10 10 100 0 0 0 0 11 7 63.6 3 27.3 1 9.1 

saprophyticus group 10 8 80 2 20 0 0 9 3 33.3 5 55.6 1 11.1 

warneri group 15 11 73.3 4 26.7 0 0 12 2 16.7 5 41.7 5 41.7 

Total 155 144 92.9 8 5.2 3 1.9 186 147 79 28 15.1 11 5.9 
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Supplementary Table 4 Species identification results after spectral database update 
 

Training Validation+TEST  
Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

Total Correct 

(n, %) 

No ID 

(n, %) 

Mis ID 

(n, %) 

E. avium 
       

1 0 0 0 0 1 100 

E. casseliflavis 
       

3 0 0 0 0 3 100 

E. faecalis 40 40 100 
 

0 
 

0 85 85 100 0 0 0 0 

E. faecium 40 40 100 
 

0 
 

0 519 513 98.8 0 0 6 1.2 

E.gallinarum 
       

18 0 0 0 0 18 100 

L. grayi 2 0 0 2 100 0 0 1 0 0 1 100 0 0 

L. monocytogenes 24 24 100 
 

0 0 0 20 18 90 1 5 1 5 

L.ivanovii 
       

1 0 0 1 100 0 0 

L. seeligeri 1 
 

0 1 100 0 0 0 0 
 

0 
 

0 
 

L. welshimeri 2 
 

0 2 100 0 0 2 0 0 0 0 2 100 

L. innocua 2 
 

0 2 100 0 0 2 0 0 2 100 0 0 

S. aureus 166 166 100 
 

0 0 0 1022 1005 98.3 0 0 17 1.7 

S. capitis 30 27 90 1 3.3 2 6.7 22 20 90.9 0 0 2 9.1 

S. caprae        8 0 0 6 75 2 25 

S. carnosus        1 0 0 1 100 0 0 

S. caseolyticus 
       

1 0 0 0 0 1 100 

S. cohnii 11 11 100 
 

0 
 

0 8 6 75 2 25 0 0 

S. epidermidis 40 39 97.5 1 2.5 
 

0 107 96 89.7 6 5.6 5 4.7 

S. equorum 0 
    

0 
 

1 0 0 1 100 0 0 

S. haemolyticus 20 18 90 
 

0 2 10 21 15 71.4 2 9.5 4 19 

S. hominis 30 29 96.7 
 

0 1 3.3 45 42 93.3 2 4.4 1 2.2 

S. lugdunensis 10 10 100 0 0 
 

0 11 7 63.6 3 27.3 1 9.1 

S. pasteuri 
       

4 0 0 2 50 2 50 

S. pseudintermedius 
       

1 0 0 0 0 1 100 

S. saprophyticus 10 8 80 2 20 
 

0 6 3 50 2 33.3 1 16.7 

S. simulans 
       

8 0 0 5 62.5 3 37.5 

S. vitulinus 
       

1 0 0 0 0 1 100 

S. warneri 15 11 73.3 4 26.7 0 0 11 4 36.4 3 27.3 4 36.4 

S. xylosus 0 
    

0 
 

2 0 0 1 50 1 50 

S. boydii 
       

1 0 0 0 0 1 100 

S. dysenteriae 
       

2 0 0 0 0 2 100 

S. flexneri 18 17 94.4 0 0 1 5.6 7 6 85.7 0 0 1 14.3 

S. sonnei 12 12 100 0 0 0 0 10 7 70 0 0 3 30 

Total 473 452 95.6 15 3.2 6 1.3 1952 1827 93.6 41 2.1 84 4.3 
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Supplementary Table 5 List of isolates identified as outliers by transflection-FTIR spectral database indicating potential sample mix-up 

among isolates obtained from same sample source 

Sample ID Original ID Updated Database Original Database 

  Predicted Probability Sample Type Predicted Probability Sample Type 

XVIII291-2 Klebsiella pneumoniae Acinetobacter 97.5 Test Acinetobacter 93.9 Test 

XVIII 291-3 Acinetobacter baumanii complex Klebsiella 99.9 Test Klebsiella 99.9 Test 

TVII779-2 Enterobacter cloacae-complex Stenotrophomonas 75.9 Training GN - no further id 99.9 Training 

TVII779-4 Pseudomonas aeruginosa Enterobacter 99.9 Validation Enterobacter 99.9 Test 

TVIIII112-1 Enterobacter cloacae-complex Staphylococcus aureus 95.4 Test Staphylococcus aureus 94.7 Test 

TVIIII112-2 Staphylococcus aureus Enterobacteriaceae 99.9 Test Enterobacteriaceae 86.3 Test 
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Supplementart Figure 1 Overlay of second derivative spectra of averaged Bacillus cereus-group (blue), Bacillus megaterium (blue), 

Staphylococcus aureus (green) in relation to Bacillus isolate outlier (red ) in spectral range 1350-800 cm-1 
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Supplementary Table 6 Formulation of Columbia agar with 5 % Sheep Blood 

Ingredients Approximate Formula /Litre 

Agar 10.0 g 

Sodium Chloride 5.0 g 

Special Peptone 23.0 g 

Starch 1.0 g 

Sheep Blood 50 ml 

Formula of Columbia agar with 5 % sheep blood from Oxoid. 
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Supplementary Table 7 Table of results for Staphylococcus isolates cultured on modified, 

antibiotic containing media, identified as S. aureus or CoNS using transflection FTIR spectral 

database 

  
BAP CNA_4FOX CNA_8FOX 

Species Sensitivity n Correct (%) n Correct (%) n Correct (%) 

S. aureus MRSA 56 56 100 56 56 100 51 51 100 

S. aureus MSSA 43 43 100 2 2 100 
   

CoNS           

S. capitis MRS 5 5 100 5 5 100 5 5 100 

S. capitis MSS 19 19 100 
      

S. caprae MSS 2 2 100 
      

S. cohnii MRS 1 1 100 1 1 100 1 1 100 

S. epidermidis MRS 27 27 100 27 24 88.9 27 21 77.8 

S. epidermidis MSS 22 22 100 
      

S. haemolyticus MRS 9 9 100 9 9 100 8 8 100 

S. haemolyticus MSS 3 3 100 
      

S. hominis MRS 10 10 100 7 7 100 4 4 100 

S. hominis MSS 15 15 100 1 1 100 
   

S. lugdunensis MRS 3 3 100 1 1 100 
   

S. lugdunensis MSS 7 7 100 1 1 100 
   

S. saprophyticus MSS 
         

S. species MRS 1 1 100 1 1 100 3 3 100 

S. species MSS 2 2 100 
      

S. warneri MSS 4 4 100 
      

Total 
 

229 229 100 111 108 97.3 99 93 93.9 

All staphylococcal species achieved 100 % correct identification as CoNS on all media types with 

the exception of S.epidermidis, which achieved 88.9 % and 77.8 % on CNA_4FOX and 

CNA_8FOX respectively. Empty cells indicate no growth, and therefore no numbers to report on 

correct identification as S. aureus or CoNS. 
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Supplementary Table 8 Isolate and whole genome sequencing information 

SEQID Curator 

Flag 

rMLST 

Result 

MASH 

Reference 

Genome 

MASH 

Num 

Matching 

Hashes 

16S_result N50 Num 

Contigs 

Total 

Length 

Average 

Coverage 

Depth 

Gene 

Seekr 

Profile 

SEQ-161 PASS new Enterococcus sp. 802/1000 Enterococcus faecium 6,878 708 2619057 65.77 IGS 

SEQ-162 PASS new Enterococcus sp. 795/1000 Enterococcus faecium 3,229 1062 2394399 52.16 IGS 

SEQ-163 PASS new Enterococcus faecium 778/1000 Enterococcus faecium 3,266 1035 2319444 92.26 IGS 

SEQ-164 PASS new Enterococcus sp. 794/1000 Enterococcus faecium 17,854 306 2750870 118.56 IGS 

SEQ-165 FAIL new Enterococcus faecium 744/1000 Enterococcus faecium 1,252 1339 1523822 21.18 IGS 

SEQ-166 FAIL new Enterococcus faecium 741/1000 Enterococcus faecium 1,484 1338 1723183 15.47 IGS 

SEQ-167 PASS new Enterococcus faecium 806/1000 Enterococcus faecium 4,046 993 2473755 43.59 IGS 

SEQ-169 PASS new Enterococcus faecium 652/1000 Enterococcus faecium 12,612 410 2637120 179.81 IGS 

SEQ-170 PASS new Enterococcus faecium 660/1000 Enterococcus faecium 6,907 668 2547837 129.14 IGS 

SEQ-171 PASS new Enterococcus faecium 728/1000 Enterococcus faecium 9,066 536 2655477 78.29 IGS 

SEQ-172 PASS 18571 Enterococcus faecium 633/1000 Enterococcus faecium 21,637 315 2754000 159.25 IGS 

SEQ-173 PASS 18440 Enterococcus faecium 703/1000 Enterococcus faecium 14,555 449 2814927 114.97 IGS 

SEQ-174 PASS 18440 Enterococcus faecium 777/1000 Enterococcus faecium 23,231 349 2864784 89.94 IGS 

SEQ-175 PASS 18440 Enterococcus faecium 715/1000 Enterococcus faecium 16,178 436 2849384 128.82 IGS 

SEQ-176 PASS new Enterococcus faecium 749/1000 Enterococcus faecium 8,068 669 2776266 69.75 IGS 

SEQ-177 PASS new Enterococcus faecium 727/1000 Enterococcus faecium 7,670 680 2748111 71.68 IGS 

SEQ-178 PASS 18440 Enterococcus faecium 650/1000 Enterococcus faecium 12,758 485 2820291 191.31 IGS 

SEQ-179 PASS 18440 Enterococcus faecium 648/1000 Enterococcus faecium 5,794 802 2675592 107.34 IGS 

SEQ-180 PASS 18440 Enterococcus faecium 778/1000 Enterococcus faecium 15,758 424 2829692 68.43 IGS 

SEQ-181 PASS 18440 Enterococcus faecium 613/1000 Enterococcus faecium 18,828 365 2861568 260.05 IGS 

SEQ-182 PASS new Enterococcus faecium 755/1000 Enterococcus faecium 4,109 1025 2595528 70.25 IGS 

SEQ-183 FAIL new Enterococcus faecium 723/1000 Enterococcus faecium 1,085 1339 1388195 26.96 IGS 

SEQ-184 PASS new Enterococcus faecium 731/1000 Enterococcus faecium 3,319 1156 2531396 78.42 IGS 

SEQ-190 PASS 18425 Enterococcus faecium 797/1000 Enterococcus faecium 51,756 144 2790758 106.29 IGS 

 

(continued) 
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SEQID Curator 

Flag 

rMLST 

Result 

MASH 

Reference 

Genome 

MASH 

Num 

Matching 

Hashes 

16S_result N50 Num 

Contigs 

Total 

Length 

Average 

Coverage 

Depth 

Gene 

Seekr 

Profile 

SEQ-185 PASS 18567 Enterococcus faecalis 772/1000 Enterococcus faecalis 44,749 217 3278265 201.02 IGS 

SEQ-186 CONT. 18687 Enterococcus faecalis 774/1000 Enterococcus faecalis 15,746 339 2869070 76.15 IGS 

SEQ-188 PASS new Enterococcus sp 868/1000 Enterococcus faecium 74,933 91 2736655 153.23 IGS 

SEQ-189 PASS new Enterococcus faecalis 729/1000 Enterococcus faecium 95,299 60 2816242 217.82 IGS 

 
  



254 

 

Supplementary Table 9 Antimicrobial resistance genes identified from whole genome sequencing 

Strain Gene Allele Resistance % Identity Contig Location Plasmid Incompatibility Sets 

SEQ-0161  aac(6') 1 aminoglycoside 99.64 Contig_458_17.8837 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_791_55.3945 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_661_22.9959 chromosome ND 

erm(B) 9 macrolide 100 Contig_791_55.3945 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_59_34.0246 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_663_12.668 2351 rep_cluster_1018 

tet(M) 10 tetracycline 75.94 Contig_690_53.2235 1866 ND 

VanHAX 2 glycopeptide 99.92 Contig_364_75.2906 1656 ND;rep_cluster_943 

SEQ-0162 ant(6)-Ia 1 aminoglycoside 100 Contig_1246_47.4491 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_1383_7.47338 chromosome ND 

erm(B) 9 macrolide 100 Contig_1246_47.4491 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_260_19.6136 chromosome ND 

VanHAX 2 glycopeptide 99.92 Contig_704_68.7772 1656 ND;rep_cluster_943 

SEQ-0163  aac(6') 1 aminoglycoside 84.34 Contig_832_10.0909 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_1336_39.2574 1642 ND;rep_cluster_889 

erm(B) 9 macrolide 100 Contig_1336_39.2574 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_861_15.9859 chromosome ND 

VanHAX 2 glycopeptide 99.92 Contig_262_79.0954 1656 ND;rep_cluster_943 

SEQ-0164 aac(6') 1 aminoglycoside 99.64 Contig_158_67.4439 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_359_167.969 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_295_75.4794 chromosome ND 

erm(B) 9 macrolide 100 Contig_359_167.969 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_298_91.6916 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_98_55.4671 2351 ND;rep_cluster_1018 

VanHAX 2 glycopeptide 99.92 Contig_314_180.669 1656 ND 

(continued) 
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Strain Gene Allele Resistance % Identity Contig Location Plasmid Incompatibility Sets 

SEQ-0167 aac(6') 1 aminoglycoside 99.64 Contig_1257_19.1972 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_1349_48.6125 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_878_18.4869 chromosome ND 

erm(B) 9 macrolide 100 Contig_1349_48.6125 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.31 Contig_743_19.1642 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_961_13.004 2351 rep_cluster_1018 

VanHAX 2 glycopeptide 99.92 Contig_1326_53.9697 1656 ND;rep_cluster_943 

SEQ-0169 aac(6') 1 aminoglycoside 99.64 Contig_303_55.1766 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_472_149.889 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_381_52.9732 chromosome ND 

erm(B) 9 macrolide 100 Contig_472_149.889 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_390_74.1744 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_295_36.786 2351 rep_cluster_1018 

VanHAX 2 glycopeptide 99.92 Contig_191_264.76 1656 ND;rep_cluster_943 

SEQ-0170 aac(6') 1 aminoglycoside 99.64 Contig_493_34.3291 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_688_64.7384 1642 ND;rep_cluster_889 

dfrG 1 trimethoprim 100 Contig_640_30.8107 chromosome ND 

erm(B) 9 macrolide 100 Contig_688_64.7384 1642 ND;rep_cluster_889 

msr(C) 1 macrolide 98.99 Contig_686_46.8572 chromosome ND 

tet(L) 2 tetracycline 89.32 Contig_150_29.9716 1866 ND 

VanHAX 2 glycopeptide 99.92 Contig_139_97.5167 1656 ND;rep_cluster_943 

SEQ-0171 aac(6') 1 aminoglycoside 99.64 Contig_511_45.9406 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_206_62.2681 1649 ND;rep_cluster_893 

aph(3')-III 1 aminoglycoside 100 Contig_206_62.2681 1649 ND;rep_cluster_893 

dfrG 1 trimethoprim 100 Contig_487_40.8316 chromosome ND 

erm(B) 9 macrolide 100 Contig_567_34.3453 1649 ND;rep_cluster_893 

msr(C) 1 macrolide 98.99 Contig_585_62.5015 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_197_27.9486 2351 ND;rep_cluster_1018 

VanHAX 2 glycopeptide 99.92 Contig_426_77.9289 1656 ND;rep_cluster_889 

(continued) 
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Strain Gene Allele Resistance % Identity Contig Location Plasmid Incompatibility Sets 

SEQ-0172 aac(6') 1 aminoglycoside 99.64 Contig_327_78.422 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_120_127.542 1649 ND;rep_cluster_889;rep_cluster_893 

aph(3')-III 1 aminoglycoside 100 Contig_120_127.542 1649 ND;rep_cluster_889;rep_cluster_893 

dfrG 1 trimethoprim 100 Contig_264_97.1105 chromosome ND 

erm(B) 9 macrolide 100 Contig_280_89.5213 1649 ND;rep_cluster_889;rep_cluster_893 

msr(C) 1 macrolide 98.99 Contig_132_117.721 chromosome ND 

tet(L) 2 tetracycline 97.46 Contig_278_51.6496 2351 ND 

VanHAX 2 glycopeptide 99.92 Contig_226_241.185 1656 ND;rep_cluster_889;rep_cluster_943 

SEQ-0173 aac(6') 1 aminoglycoside 99.64 Contig_51_102.943 chromosome ND 

ant(6)-Ia 1 aminoglycoside 81.08 Contig_158_139.834 chromosome ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_158_139.834 chromosome ND 

dfrG 1 trimethoprim 84.94 Contig_485_16.3974 chromosome ND 

erm(B) 9 macrolide 100 Contig_475_102.53 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_26_82.0792 chromosome ND 

tet(L) 2 tetracycline 100 Contig_412_28.766 2351 ND 

tet(M) 10 tetracycline 96.46 Contig_96_96.7941 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_348_237.365 novel_1 ND;rep_cluster_889 

SEQ-0174 aac(6') 1 aminoglycoside 99.64 Contig_147_60.0504 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_293_92.0368 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_293_92.0368 3050 ND 

dfrG 1 trimethoprim 100 Contig_110_33.3913 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_318_79.0932 chromosome ND 

tet(L) 2 tetracycline 100 Contig_422_30.3259 2351 ND 

tet(M) 10 tetracycline 96.46 Contig_104_90.991 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_315_195.924 1656 ND;rep_cluster_889 

(continued) 
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Strain Gene Allele Resistance % Identity Contig Location Plasmid Incompatibility Sets 

SEQ-0175 aac(6') 1 aminoglycoside 99.64 Contig_470_65.058 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_110_125.419 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_110_125.419 3050 ND 

cat(pC221) 1 phenicol 95.06 Contig_299_66.8309 chromosome ND 

dfrG 1 trimethoprim 100 Contig_94_29.1689 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_32_64.5487 chromosome ND 

tet(L) 2 tetracycline 100 Contig_504_35.0809 1866 ND;rep_cluster_185 

tet(M) 10 tetracycline 96.46 Contig_354_90.6888 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_142_309.565 1649 ND;rep_cluster_889;rep_cluster_893 

SEQ-0176 aac(6') 1 aminoglycoside 99.64 Contig_527_21.2307 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_691_44.1414 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_691_44.1414 3050 ND 

cat(pC221) 1 phenicol 97.69 Contig_535_96.6345 novel_0 ND;rep_cluster_1118 

dfrG 1 trimethoprim 100 Contig_603_11.034 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_44_28.2756 chromosome ND 

tet(L) 2 tetracycline 100 Contig_818_20.3888 2351 ND 

tet(M) 10 tetracycline 96.46 Contig_173_31.7586 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_148_211.69 1656 ND;rep_cluster_889 

SEQ-0177 aac(6') 1 aminoglycoside 99.64 Contig_783_67.5223 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_636_49.3069 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_636_49.3069 3050 ND 

cat(pC221) 1 phenicol 93.21 Contig_335_37.3832 2351 ND 

erm(B) 9 macrolide 100 Contig_623_66.91 3050 ND 

msr(C) 1 macrolide 98.99 Contig_606_40.6414 chromosome ND 

tet(M) 10 tetracycline 95.47 Contig_147_59.9389 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_220_193.495 1649 ND;rep_cluster_889 

(continued) 
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Strain Gene Allele Resistance % Identity Contig Location Plasmid Incompatibility Sets 

SEQ-0178 aac(6') 1 aminoglycoside 99.64 Contig_52_58.2458 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_395_138.768 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_395_138.768 3050 ND 

cat(pC221) 1 phenicol 97.69 Contig_382_239.889 novel_0 rep_cluster_1118 

dfrG 1 trimethoprim 100 Contig_133_27.4537 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_41_76.2842 chromosome ND 

tet(M) 10 tetracycline 96.15 Contig_286_61.6505 chromosome ND 

VanHAX 2 glycopeptide 99.85 Contig_127_506.993 1649 ND;rep_cluster_889 

SEQ-0179 aac(6') 1 aminoglycoside 99.64 Contig_603_25.1776 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_784_46.6268 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_784_46.6268 3050 ND 

dfrG 1 trimethoprim 89.56 Contig_967_6.80392 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_623_29.9375 chromosome ND 

tet(L) 2 tetracycline 99.93 Contig_948_16.7807 chromosome ND 

VanHAX 2 glycopeptide 99.85 Contig_842_308.46 1649 ND;rep_cluster_889 

SEQ-0180 aac(6') 1 aminoglycoside 99.64 Contig_336_29.744 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_61_64.4155 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_61_64.4155 3050 ND 

cat(pC221) 1 phenicol 94.29 Contig_529_42.2446 chromosome ND 

dfrG 1 trimethoprim 100 Contig_146_19.5467 chromosome ND 

erm(B) 12 macrolide 100 Contig_506_95.5414 3050 ND 

msr(C) 1 macrolide 98.99 Contig_384_43.616 chromosome ND 

tet(L) 2 tetracycline 100 Contig_534_20.8178 2351 ND 

tet(M) 10 tetracycline 95.78 Contig_111_46.0329 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_90_141.675 1649 ND;rep_cluster_889;rep_cluster_893 

(continued) 
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SEQ-0181 aac(6') 1 aminoglycoside 99.64 Contig_136_112.691 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_385_219.85 1866 ND;rep_cluster_1118;rep_cluster_185 

aph(3')-III 1 aminoglycoside 99.87 Contig_385_219.85 1866 ND;rep_cluster_1118;rep_cluster_185 

cat(pC221) 1 phenicol 97.69 Contig_385_219.85 1866 ND;rep_cluster_1118;rep_cluster_185 

dfrG 1 trimethoprim 100 Contig_224_63.2335 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_336_149.137 chromosome ND 

tet(L) 2 tetracycline 100 Contig_447_77.2161 1866 ND;rep_cluster_1118;rep_cluster_185 

tet(M) 10 tetracycline 96.46 Contig_16_192.474 1866 ND;rep_cluster_1118;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_69_954.984 1649 ND;rep_cluster_889 

SEQ-0182 aac(6') 1 aminoglycoside 79.96 Contig_993_18.7589 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_1110_73.3041 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_1110_73.3041 3050 ND 

cat(pC221) 1 phenicol 97.69 Contig_883_101.964 novel_0 rep_cluster_1118 

msr(C) 1 macrolide 98.99 Contig_673_20.7323 chromosome ND 

tet(L) 2 tetracycline 100 Contig_1313_17.7267 2351 ND 

tet(M) 10 tetracycline 96.46 Contig_863_35.564 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_232_293.071 1656 ND;rep_cluster_889 

SEQ-0184 aac(6') 1 aminoglycoside 99.64 Contig_142_16.2675 chromosome ND 

ant(6)-Ia 1 aminoglycoside 100 Contig_1283_37.2241 3050 ND 

aph(3')-III 1 aminoglycoside 99.87 Contig_1283_37.2241 3050 ND 

cat(pC221) 1 phenicol 88.89 Contig_1254_33.0841 chromosome ND 

msr(C) 1 macrolide 98.99 Contig_103_16.0565 chromosome ND 

tet(L) 2 tetracycline 100 Contig_1513_12.5701 2351 ND 

tet(M) 10 tetracycline 95.47 Contig_318_27.4978 1866 ND;rep_cluster_185 

VanHAX 2 glycopeptide 99.85 Contig_633_117.347 1656 ND;rep_cluster_1197;rep_cluster_889;rep_c

luster_943 
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Supplementary Table 10 Virulence factors identified from assembled genomes of AA, B1 and CC VRE isolates 

Pulsotype 
Isolate 

Virulence 

Factor 
Identity 

Query/ 

Template length 
Contig 

Position  

in Contig 

Accession 

number 

AA SEQ-0161 acm 100 1588 / 2166 Contig_400_15.9256 703..2290 CP003351.1 

efaAfm 90.94 861 / 879 Contig_97_29.6504 6254..7114 AF042288.1 

SEQ-0163 acm 100 1444 / 2166 Contig_187_11.0509 1..1444 CP003351.1 

efaAfm 90.94 861 / 879 Contig_667_17.1371 17..877 AF042288.1 

SEQ-0167 acm 100 1964 / 2166 Contig_1254_13.8205 1..1964 CP003351.1 

efaAfm 90.94 861 / 879 Contig_916_21.0035 6222..7082 AF042288.1 

SEQ-0169 acm 100 1321 / 2166 Contig_5_32.0753 1..1321 CP003351.1 

efaAfm 90.94 861 / 879 Contig_414_68.8532 24671..25531 AF042288.1 

SEQ-0170 acm 100 1977 / 2166 Contig_669_22.1201 1..1977 CP003351.1 

efaAfm 90.94 861 / 879 Contig_653_44.8403 24663..25523 AF042288.1 

B1 SEQ-0171  acm 100 2166 / 2166 Contig_511_45.9406 252..2417 CP003351.1 

efaAfm 90.94 861 / 879 Contig_272_49.2613 13046..13906 AF042288.1 

hylEfm 100 1662 / 1662 Contig_205_59.0231 11873..13534 HM565216.1 

SEQ-0172  acm 100 2051 / 2166 Contig_258_85.6327 1..2051 CP003351.1 

efaAfm 90.94 861 / 879 Contig_320_90.127 16697..17557 AF042288.1 

hylEfm 100 1662 / 1662 Contig_119_127.847 11873..13534 HM565216.1 

CC SEQ-0173  acm 100 2085 / 2166 Contig_306_49.3024 16..2100 CP003351.1 

efaAfm 90.94 861 / 879 Contig_188_83.783 13455..14315 AF042288.1 

hylEfm 100 1662 / 1662 Contig_177_60.4428 11873..13534 HM565216.1 

SEQ-0174  acm 100 2104 / 2166 Contig_232_43.1915 1..2104 CP003351.1 

efaAfm 90.94 861 / 879 Contig_391_68.6669 1715..2575 AF042288.1 

hylEfm 100 1662 / 1662 Contig_167_63.3282 11873..13534 HM565216.1 

(continued) 
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Factor 
Identity 

Query/ 

Template length 
Contig 

Position  

in Contig 

Accession 

number 

CC SEQ-0175  acm 100 2110 / 2166 Contig_151_49.3155 1..2110 CP003351.1 

efaAfm 90.94 861 / 879 Contig_512_65.2058 24704..25564 AF042288.1 

hylEfm 100 1662 / 1662 Contig_180_66.6324 11873..13534 HM565216.1 

SEQ-0176 acm 100 1395 / 2166 Contig_814_13.0014 815..2209 CP003351.1 

efaAfm 90.94 861 / 879 Contig_799_27.3034 28857..29717 AF042288.1 

hylEfm 100 1662 / 1622 Contig_316_25.6938 11873..13534 HM565216.1 

SEQ-0177  acm 100 2158 / 2166 Contig_416_19.4457 230..2387 CP003351.1 

efaAfm 90.94 861 / 879 Contig_266_40.9696 24694..25554 AF042288.1 

hylEfm 100 1662 / 1622 Contig_645_35.8309 5660..7321 HM565216.1 

SEQ-0178 acm 100 2042 / 2166 Contig_306_42.0905 1..2042 CP003351.1 

efaAfm 90.94 861 / 879 Contig_598_70.7513 24704..25564 AF042288.1 

hylEfm 100 1662 / 1662 Contig_219_92.4115 11873..13534 HM565216.1 

SEQ-0179 efaAfm 90.94 861 / 879 Contig_113_31.4402 1688..2548 AF042288.1 

hylEfm 100 1662 / 1662 Contig_316_65.4705 5304..6965 HM565216.1 

SEQ-0182  acm 100 2036 / 2166 Contig_903_14.9206 1..2036 CP003351.1 

efaAfm 90.94 861 / 879 Contig_941_17.2419 1043..1903 AF042288.1 

hylEfm 100 1662 / 1662 Contig_969_24.8287 9102..10763 HM565216.1 

SEQ-0184  acm 100 2096 / 2166 Contig_1425_9.97832 1..2096 CP003351.1 

efaAfm 90.94 861 / 879 Contig_283_17.7926 1695..2555 AF042288.1 

hylEfm 100 1662 / 1662 Contig_1438_18.0287 766..2427 HM565216.1 
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Supplementary Table 11 Plasmids identified by PlasmidFinder for VRE isolates using WGS 

Isolate Rep Plasmid Identity Query/ 

Template length 

Contig Position 

in contig 

Note Accession 

number 

SEQ-0174 Inc18 rep2 100 1494 / 1494 Contig_387_86.8528 1924..3417 orf1(pRE25) X92945 

SEQ-0175 Inc18 rep2 100 1494 / 1494 Contig_444_134.957 1924..3417 orf1(pRE25) X92945 

SEQ-0176 Inc18 rep2 100 1494 / 1494 Contig_735_108.958 1924..3417 orf1(pRE25) X92945 

SEQ-0177 Inc18 rep2 100 1494 / 1494 Contig_247_70.0747 1810..3303 orf1(pRE25) X92945 

SEQ-0178 Inc18 rep2 100 1494 / 1494 Contig_187_271.645 569..2062 orf1(pRE25) X92945 

SEQ-0179 Inc18 rep2 100 1494 / 1494 Contig_827_137.81 446..1939 orf1(pRE25) X92945 

SEQ-0180 Inc18 rep2 100 1494 / 1494 Contig_298_77.4673 528..2021 orf1(pRE25) X92945 

SEQ-0181 Inc18 rep2 100 1494 / 1494 Contig_126_276.299 596..2089 orf1(pRE25) X92945 

SEQ-0182 Inc18 rep2 100 1494 / 1494 Contig_1183_133.407 1924..3417 orf1(pRE25) X92945 

SEQ-0184 Inc18 rep2 100 1494 / 1494 Contig_901_51.6676 1803..3296 orf1(pRE25) X92945 

SEQ-0162 rep_trans rep14a 100 768 / 768 Contig_517_8285.66 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0164 rep_trans rep14a 100 768 / 768 Contig_150_8147.43 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0167 rep_trans rep14a 100 768 / 768 Contig_495_5980.6 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0169 rep_trans rep14a 100 768 / 768 Contig_176_35346.5 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0170 rep_trans rep14a 100 768 / 768 Contig_290_24510.7 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0171 rep_trans rep14a 100 768 / 768 Contig_493_7510.21 614..1381 CDS2(pEFNP1) AB038522 

SEQ-0184 rep_trans rep14a 100 768 / 768 Contig_590_11487 931..1698 CDS2(pEFNP1) AB038522 

SEQ-0174 rep_trans rep14a 100 871 / 897 Contig_379_277.65 342..1212 EFAU085p500 

(AUS0085p5) 

CP006625 

SEQ-0175 rep_trans rep14a 100 871 / 897 Contig_481_808.561 343..1213 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0176 rep_trans rep14a 100 871 / 897 Contig_28_397.624 279..1149 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0177 rep_trans rep14a 100 871 / 897 Contig_135_195.976 245..1115 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0178 rep_trans rep14a 100 871 / 897 Contig_614_1585.65 354..1224 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0179 rep_trans rep14a 100 871 / 897 Contig_366_523.13 307..1177 EFAU085p5001 

(AUS0085p5) 

CP006625 

(continued) 
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Template length 

Contig Position 

in contig 

Note Accession 

number 

SEQ-0180 rep_trans rep14a 100 871 / 897 Contig_6_253.955 281..1151 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0181 rep_trans rep14a 100 871 / 897 Contig_265_1407.89 348..1218 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0182 rep_trans rep14a 100 555 / 897 Contig_1215_205.321 1..555 EFAU085p5001 

(AUS0085p5) 

CP006625 

SEQ-0161 rep_trans rep14a 99.5 402 / 402 Contig_5_11251_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0162 rep_trans rep14a 99.5 402 / 402 Contig_3_8075.1_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0164 rep_trans rep14a 99.5 402 / 402 Contig_2_8485.46_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0167 rep_trans rep14a 99.5 402 / 402 Contig_4_6214.76_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0169 rep_trans rep14a 99.5 402 / 402 Contig_4_34416.3_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0170 rep_trans rep14a 99.5 402 / 402 Contig_6_24340.8_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0184 rep_trans rep14a 99.5 402 / 402 Contig_5_10767.2_Circ 728..1129 ORF1(pKQ10) EFU01917 

SEQ-0171 rep_trans rep14b 100 966 / 966 Contig_356_8127.15 440..1405 EFAU085p6001 

(AUS0085p6) 

CP006626 

SEQ-0172 rep_trans rep14b 100 966 / 966 Contig_4_17627_Circ 987..1952 EFAU085p6001 

(AUS0085p6) 

CP006626 

SEQ-0174 rep_trans rep7a 100 939 / 939 Contig_116_58.0949 628..1566 ORF11(pRE25) X92945 

SEQ-0175 rep_trans rep7a 100 939 / 939 Contig_318_149.558 489..1427 ORF11(pRE25) X92945 

SEQ-0176 rep_trans rep7a 100 939 / 939 Contig_535_96.6345 489..1427 ORF11(pRE25) X92945 

SEQ-0177 rep_trans rep7a 100 939 / 939 Contig_201_26.1158 122..1060 ORF11(pRE25) X92945 

SEQ-0178 rep_trans rep7a 100 939 / 939 Contig_382_239.889 489..1427 ORF11(pRE25) X92945 

SEQ-0179 rep_trans rep7a 100 939 / 939 Contig_127_129.346 145..1083 ORF11(pRE25) X92945 

SEQ-0180 rep_trans rep7a 100 939 / 939 Contig_333_68.5834 489..1427 ORF11(pRE25) X92945 

SEQ-0181 rep_trans rep7a 100 939 / 939 Contig_385_219.85 1576..2514 ORF11(pRE25) X92945 

SEQ-0182 rep_trans rep7a 100 939 / 939 Contig_883_101.964 489..1427 ORF11(pRE25) X92945 

SEQ-0184 rep_trans rep7a 100 939 / 939 Contig_999_81.1592 489..1427 ORF11(pRE25) X92945 

SEQ-0161 rep_trans repUS43 100 1206 / 1206 Contig_794_43.8738 2437..3642 CDS12738(DOp1) CP003584 

SEQ-0162 rep_trans repUS43 100 1206 / 1206 Contig_111_30.5274 2581..3786 CDS12738(DOp1) CP003584 

SEQ-0164 rep_trans repUS43 100 1206 / 1206 Contig_108_86.6925 63..1268 CDS12738(DOp1) CP003584 

(continued) 
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SEQ-0167 rep_trans repUS43 100 1206 / 1206 Contig_411_21.168 2550..3755 CDS12738(DOp1) CP003584 

SEQ-0169 rep_trans repUS43 100 1206 / 1206 Contig_231_93.0658 2461..3666 CDS12738(DOp1) CP003584 

SEQ-0170 rep_trans repUS43 100 1206 / 1206 Contig_339_53.2034 2430..3635 CDS12738(DOp1) CP003584 

SEQ-0171 rep_trans repUS43 100 1206 / 1206 Contig_383_51.849 10681..11886 CDS12738(DOp1) CP003584 

SEQ-0172 rep_trans repUS43 100 1206 / 1206 Contig_223_106.398 12169..13374 CDS12738(DOp1) CP003584 

SEQ-0174 rep_trans repUS43 100 1206 / 1206 Contig_57_65.8848 2815..4020 CDS12738(DOp1) CP003584 

SEQ-0175 rep_trans repUS43 100 1206 / 1206 Contig_354_90.6888 2816..4021 CDS12738(DOp1) CP003584 

SEQ-0176 rep_trans repUS43 100 1206 / 1206 Contig_96_27.7678 2815..4020 CDS12738(DOp1) CP003584 

SEQ-0177 rep_trans repUS43 100 1206 / 1206 Contig_278_50.1813 2476..3681 CDS12738(DOp1) CP003584 

SEQ-0178 rep_trans repUS43 100 1206 / 1206 Contig_79_65.3966 2815..4020 CDS12738(DOp1) CP003584 

SEQ-0179 rep_trans repUS43 100 1206 / 1206 Contig_487_37.3985 2540..3745 CDS12738(DOp1) CP003584 

SEQ-0180 rep_trans repUS43 100 1206 / 1206 Contig_63_37.9183 2815..4020 CDS12738(DOp1) CP003584 

SEQ-0181 rep_trans repUS43 100 1206 / 1206 Contig_325_148.374 2816..4021 CDS12738(DOp1) CP003584 

SEQ-0182 rep_trans repUS43 100 1206 / 1206 Contig_527_25.6599 2637..3842 CDS12738(DOp1) CP003584 

SEQ-0184 rep_trans repUS43 100 1206 / 1206 Contig_992_22.8785 2447..3652 CDS12738(DOp1) CP003584 

SEQ-0161 rep1 repUS12 99.62 792 / 795 Contig_663_12.668 3413..4204 rep(pUB110) AF181950 

SEQ-0164 rep1 repUS12 99.62 792 / 795 Contig_98_55.4671 3458..4249 rep(pUB110) AF181950 

SEQ-0167 rep1 repUS12 99.62 792 / 795 Contig_961_13.004 3416..4207 rep(pUB110) AF181950 

SEQ-0169 rep1 repUS12 99.62 792 / 795 Contig_295_36.786 3932..4723 rep(pUB110) AF181950 

SEQ-0171 rep1 repUS12 99.62 792 / 795 Contig_197_27.9486 4286..5077 rep(pUB110) AF181950 

SEQ-0162 rep1 repUS12 99.84 610 / 876 Contig_1002_7.50162 29..638 repB(SAP014A) GQ900379 

SEQ-0174 rep1 repUS12 100 531 / 876 Contig_335_22.6174 1011..1541 repB(SAP014A) GQ900379 

SEQ-0175 rep1 repUS12 100 531 / 876 Contig_383_28.2433 1011..1541 repB(SAP014A) GQ900379 

SEQ-0176 rep1 repUS12 100 531 / 876 Contig_640_13.7837 1011..1541 repB(SAP014A) GQ900379 

SEQ-0177 rep1 repUS12 100 534 / 876 Contig_335_37.3832 2302..2835 repB(SAP014A) GQ900379 

SEQ-0178 rep1 repUS12 100 531 / 876 Contig_469_39.6673 1011..1541 repB(SAP014A) GQ900379 

SEQ-0180 rep1 repUS12 100 531 / 876 Contig_409_21.3853 1011..1541 repB(SAP014A) GQ900379 

SEQ-0181 rep1 repUS12 100 531 / 876 Contig_359_66.069 1011..1541 repB(SAP014A) GQ900379 

(continued) 
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SEQ-0161 rep3 rep11a 100 945 / 945 Contig_294_890.191 9109..10053 repA(pB82) AB178871 

SEQ-0162 rep3 rep11a 100 945 / 945 Contig_543_789.022 9109..10053 repA(pB82) AB178871 

SEQ-0164 rep3 rep11a 100 945 / 945 Contig_156_1580.03 9109..10053 repA(pB82) AB178871 

SEQ-0167 rep3 rep11a 100 945 / 945 Contig_529_856.385 9109..10053 repA(pB82) AB178871 

SEQ-0169 rep3 rep11a 100 945 / 945 Contig_187_2902.66 9109..10053 repA(pB82) AB178871 

SEQ-0170 rep3 rep11a 100 945 / 945 Contig_301_2261.3 9109..10053 repA(pB82) AB178871 

SEQ-0174 rep3 rep11a 100 857 / 945 Contig_3_1158.08_Circ 5317..6173 repA(pB82) AB178871 

SEQ-0175 rep3 rep11a 100 945 / 945 Contig_221_3463.4 1979..2923 repA(pB82) AB178871 

SEQ-0176 rep3 rep11a 100 945 / 945 Contig_386_2293.68 1979..2923 repA(pB82) AB178871 

SEQ-0177 rep3 rep11a 100 857 / 945 Contig_4_1920.19_Circ 5317..6173 repA(pB82) AB178871 

SEQ-0178 rep3 rep11a 100 945 / 945 Contig_274_7206.49 1979..2923 repA(pB82) AB178871 

SEQ-0179 rep3 rep11a 100 857 / 945 Contig_5_4567.34_Circ 5317..6173 repA(pB82) AB178871 

SEQ-0180 rep3 rep11a 100 945 / 945 Contig_217_1432.44 1979..2923 repA(pB82) AB178871 

SEQ-0181 rep3 rep11a 100 945 / 945 Contig_196_5961.82 1979..2923 repA(pB82) AB178871 

SEQ-0182 rep3 rep11a 100 945 / 945 Contig_565_2597.49 1979..2923 repA(pB82) AB178871 

SEQ-0183 rep3 rep11a 100 945 / 945 Contig_1511_846.128 741..1685 repA(pB82) AB178871 

SEQ-0184 rep3 rep11a 100 945 / 945 Contig_835_1532.78 1901..2845 repA(pB82) AB178871 

SEQ-0174 rep3 rep18b 100 969 / 969 Contig_310_803.438 4594..5562 BO23315710(pE1p13) CP018068 

SEQ-0175 rep3 rep18b 100 969 / 969 Contig_2_2505.07_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0176 rep3 rep18b 100 969 / 969 Contig_1_1799.76_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0177 rep3 rep18b 100 969 / 969 Contig_2_1073.91_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0178 rep3 rep18b 100 969 / 969 Contig_2_5493.92_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0179 rep3 rep18b 100 969 / 969 Contig_3_2728.08_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0180 rep3 rep18b 100 969 / 969 Contig_2_1044.55_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0181 rep3 rep18b 100 969 / 969 Contig_2_4450.39_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0182 rep3 rep18b 100 969 / 969 Contig_2_2058.43_Circ 2363..3331 BO23315710(pE1p13) CP018068 

SEQ-0183 rep3 rep18b 100 969 / 969 Contig_4_586.881 5120..6088 BO23315710(pE1p13) CP018068 

SEQ-0184 rep3 rep18b 100 969 / 969 Contig_89_1208.55 5350..6318 BO23315710(pE1p13) CP018068 
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SEQ-0161 rep3 rep18b 99.43 527 / 564 Contig_294_890.191 960..1486 repA(pEF418) AF408195 

SEQ-0162 rep3 rep18b 99.43 527 / 564 Contig_543_789.022 960..1486 repA(pEF418) AF408195 

SEQ-0164 rep3 rep18b 99.43 527 / 564 Contig_156_1580.03 960..1486 repA(pEF418) AF408195 

SEQ-0165 rep3 rep18b 99.43 527 / 564 Contig_2491_272.543 872..1398 repA(pEF418) AF408195 

SEQ-0166 rep3 rep18b 99.43 527 / 564 Contig_1951_174.817 872..1398 repA(pEF418) AF408195 

SEQ-0167 rep3 rep18b 99.43 527 / 564 Contig_529_856.385 960..1486 repA(pEF418) AF408195 

SEQ-0169 rep3 rep18b 99.43 527 / 564 Contig_187_2902.66 960..1486 repA(pEF418) AF408195 

SEQ-0170 rep3 rep18b 99.43 527 / 564 Contig_301_2261.3 960..1486 repA(pEF418) AF408195 

SEQ-0171 rep3 rep18b 99.43 527 / 564 Contig_2_2157.45_Circ 2399..2925 repA(pEF418) AF408195 

SEQ-0172 rep3 rep18b 99.43 527 / 564 Contig_2_4772.5_Circ 2399..2925 repA(pEF418) AF408195 

SEQ-0162 repA_N rep17 100 1041 / 1041 Contig_860_35.7661 555..1595 CDS29(pRUM) AF507977 

SEQ-0164 repA_N rep17 100 989 / 1041 Contig_194_119.467 1..989 CDS29(pRUM) AF507977 

SEQ-0165 repA_N rep17 100 698 / 1041 Contig_911_16.6681 1..698 CDS29(pRUM) AF507977 

SEQ-0167 repA_N rep17 100 981 / 1041 Contig_926_42.6844 1..981 CDS29(pRUM) AF507977 

SEQ-0169 repA_N rep17 100 1041 / 1041 Contig_276_119.167 555..1595 CDS29(pRUM) AF507977 

SEQ-0170 repA_N rep17 100 1015 / 1041 Contig_97_56.3339 186..1200 CDS29(pRUM) AF507977 

SEQ-0171 repA_N rep17 100 1041 / 1041 Contig_116_31.6862 310..1350 CDS29(pRUM) AF507977 

SEQ-0172 repA_N rep17 100 1041 / 1041 Contig_144_73.4716 560..1600 CDS29(pRUM) AF507977 

SEQ-0174 repA_N rep17 100 1041 / 1041 Contig_203_58.9854 560..1600 CDS29(pRUM) AF507977 

SEQ-0175 repA_N rep17 100 1041 / 1041 Contig_74_140.162 6873..7913 CDS29(pRUM) AF507977 

SEQ-0176 repA_N rep17 100 1041 / 1041 Contig_624_36.1667 21..1061 CDS29(pRUM) AF507977 

SEQ-0177 repA_N rep17 100 1041 / 1041 Contig_495_31.1539 294..1334 CDS29(pRUM) AF507977 

SEQ-0178 repA_N rep17 100 1041 / 1041 Contig_280_100.539 560..1600 CDS29(pRUM) AF507977 

SEQ-0179 repA_N rep17 100 1041 / 1041 Contig_601_39.5364 178..1218 CDS29(pRUM) AF507977 

SEQ-0180 repA_N rep17 100 1041 / 1041 Contig_223_71.3212 560..1600 CDS29(pRUM) AF507977 

SEQ-0181 repA_N rep17 100 1041 / 1041 Contig_202_239.704 560..1600 CDS29(pRUM) AF507977 

SEQ-0182 repA_N rep17 100 1041 / 1041 Contig_577_77.5506 560..1600 CDS29(pRUM) AF507977 

SEQ-0183 repA_N rep17 100 693 / 1041 Contig_2218_18.214 1..693 CDS29(pRUM) AF507977 

(continued) 



267 

 

Isolate Rep Plasmid Identity Query/ 

Template length 

Contig Position 

in contig 

Note Accession 

number 

SEQ-0184 repA_N rep17 99.9 1041 / 1401 Contig_174_43.8762 6873..7912 CDS29(pRUM) AF507977 

SEQ-0162 repA_N repUS15 100 656 / 1041 Contig_1038_15.3429 1..656 repA(pNB2354p1) CP004064 

SEQ-0164 repA_N repUS15 100 1041 / 1041 Contig_324_44.0575 419..1459 repA(pNB2354p1) CP004064 

SEQ-0167 repA_N repUS15 100 1041 / 1041 Contig_1286_18.7289 67..1107 repA(pNB2354p1) CP004064 

SEQ-0171 repA_N repUS15 100 1041 / 1041 Contig_289_28.5676 129..1169 repA(pNB2354p1) CP004064 

SEQ-0172 repA_N repUS15 100 1041 / 1041 Contig_80_52.1678 325..1365 repA(pNB2354p1) CP004064 

SEQ-0175 repA_N repUS15 99.9 1041 / 1041 Contig_374_41.0507 118..1158 repA(pNB2354p1) CP004064 

SEQ-0176 repA_N repUS15 99.9 1041 / 1041 Contig_775_19.0616 131..1171 repA(pNB2354p1) CP004064 

SEQ-0180 repA_N repUS15 99.9 1041 / 1041 Contig_91_23.6152 343..1383 repA(pNB2354p1) CP004064 

SEQ-0182 repA_N repUS15 99.9 1041 / 1041 Contig_183_14.5922 2..1042 repA(pNB2354p1) CP004064 
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Supplementary Table 12 Tabulation of 1H NMR spectral band assignments reported in the 

literature 

1H δppm Possible biomolecule contributor Reference 

0.72s Angular methyl groups in cholesterol [1] 

0.8 Methyl- (-CH3) lipid – distinctive signals emitted by terminal methyl 

group protons of phospholipids, chloesterol, cholesterol esters, TGs 

(from lipoproteins) 

[2] 

0.88 Fatty acid CH3 [3, 4] 

0.89 Phospholipids CH3 [5] 

0.89-0.96 α-hydroxybutyrate, valine,  

leucine m CH3 

isoleucine t CH3 

[3, 6, 7] 

0.93 Methyl (-CH3) all fatty acids 

Isoleucine t CH3 

[8] 

[9] 

0.99d-1.02 Isoleucine CH3 [3, 9] 

1.00-1.06d Valine CH3 [3, 7] 

1.02s Angular methyl groups in cholesterol [1] 

1.19t ethanol [3, 10] 

1.2 Methylene (-CH2-) lipid [2] 

1.27 Phospholipid CH2 [5] 

1.32 -(CH2)n- all fatty acids (except unsatureated FA) [8] 

1.31-1.34d Lactate CH3 [3, 6, 11] 

1.34d threonine [10] 

1.47-1.48d Alanine CH [9, 11] 

1.61 –CH2–CH2–COOR all fatty acids (except unsaturated FA) 

Citrulline m 

[8] 

[10] 

1.71m Arginine CH2 

Lysine CH2 

[9] 

1.80s acetate [7] 

1.87m Citrulline CH2 [9] 

1.89-1.92 Acetate, glutamine 

Arginine (m, CH2), lysine (mCH2) 

[6, 11] 

[9] 

1.97 Isoleucine 

Proline (m) CH2 

[9] 

2.00 Lipid CH=CHCH2CH=CH [4] 

2.01s N-Acetyl groups in polysaccharides [5] 

2.05 –CH2–CH=CH– unsaturated FA [8] 

2.06 Proline (m) CH2 

Glutamate 

[9] 

(continued) 
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1H δppm Possible biomolecule contributor Reference 

2.08 Ketoleucine, N-Acetyl groups in polysaccharides [5] 

2.11m Glutamine CH2 [9] 

2.12m Glutamate CH2 [9] 

2.26 Valine  

2.25-2.27 glutamine [6] 

2.25-2.31 glutamine [6] 

2.27 –CH2–COOR all FA [8] 

2.30 GABA (γ-aminobutyric acid) [10] 

2.32m Glutamate CH2 [9] 

2.34m Proline CH2 [9] 

2.35 Lipid CH2COO [4] 

2.39 Pyruvate [11] 

2.37dd Malic acid α-CH2 [9] 

2.40s Succinic acid CH2 [9, 11] 

2.43m Glutamine CH2 [9] 

2.53d Citrate α-CH2 [9] 

2.66-2.70 Citrate doublet α’-CH2 

Malic acid dd α’-CH2 

[6, 9, 10] 

2.86 =CH–CH2–CH= polyunsaturated FA 

Asparagine (m, CH) 

[8] 

[9] 

2.95m Asparagine CH [9] 

3.04s Creatine, phosphocreatine N-CH3 [3] 

3.11 Carnosine CH2 [3] 

3.13 phosphorylcholine [7] 

3.14-3.15 Citrulline, Tyrosine [9] 

3.16m PE [1] 

3.18s Choline N(CH3) [3, 9] 

3.20 PI (t), PE (bs) [1] 

3.2-4.34 Inositol of PI [12] 

3.22s PC [1] 

3.21-3.25* Choline/phosphatidylcholine/O-phosphocholine (N+(CH3)3) [3, 5, 9, 11] 

3.23 Arginine CH2 (t) 

Glycinebetaine (s) 

[9] 

[11] 

3.23-3.25 Glucose dd CH [6, 9] 

3.24s phosphorylcholine [13] 

3.24-3.25s Glycerophosphocholine 

phosphoethanoalmine 

[13, 14] 

3.25-3.27 Betaine  [5, 7] 

(continued) 
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1H δppm Possible biomolecule contributor Reference 

3.27s Phosphatidylcholine 

Phosphlipids N(CH3)3 

[5, 14] 

 

3.30s PC [1] 

3.33dt Proline CH2 [9] 

3.48t Glucose CH [9] 

3.51dd Choline CH2 [9] 

3.52dd Glucose CH 

Myo-inositol CH 

[9] 

3.52-3.83 Glycerol of CL [12] 

3.53d leucine [7] 

3.56 Arabinitol -H1, H5 [15] 

3.60 Phosphocholine NCH2 [5] 

3.62-3.72 Arabinitol -H3, Mannitol-H3, H4 

Myo-inositol 

[15] 

[13] 

3.62 phosphocholine [14] 

3.65-3.68m glycerophosphocholine [13, 14] 

3.68 α glycerophosphate [16] 

3.69 Ethanolamine phosphate [16] 

3.70t Glucose CH [9] 

3.74 Citrulline dd CH 

Glutamine dd CH2 

Lysine t CH 

Malic acid t CH 

[9] 

3.75 α glycerophosphate [16] 

3.76t Arginine CH [9] 

3.77q Alanine CH3 [9] 

3.79 phosphatidylcholine [16] 

3.79-3.91 Central glycerol of PG POCH2CH(OH)CH2OP [12] 

3.81 phosphatidylethanolamine [16] 

3.84 Guanosine 5’ monophosphate [16] 

3.88 CH2N+(CH3)3 in PC, LPC 

diphosphate 

[1, 16] 

3.89-3.90 Fructose dd CH 

Betaine s 

Guanosine 5’ monophosphate 

Adenosine 5’ monophosphate 

[9] 

[5, 7] 

3.91-3.93 CH3 in glycerol 

Polyols, carbohydrate residues 

C3H2OP glycerol backbone 

[1, 6, 12] 

(continued) 
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1H δppm Possible biomolecule contributor Reference 

3.93 Arabinitol -H2, H4 

Creatine/glycerophosphocholine 

[15] 

[13, 14] 

3.94 Backbone of PC, diphosphate [1, 16] 

3.96m Glycerol of phospholipids [1] 

3.97 phosphoethanolamine [14] 

4.00dd Asparagine CH [9] 

4.02t Fructose CH2 [9] 

4.05 Glycerol of phospholipids [1] 

4.07 β glycerophosphate [16] 

4.08 Choline phosphate [16] 

4.10ddd Choline CH2 [9] 

4.11 –CH2–OCOR glyceryl backbone [8, 12] 

4.17-4.19t Phosphocholine α-CH2 [3, 5] 

4.23 phosphatidylcholine [16] 

4.25 DAG CH2OCO [4] 

4.28 TAG CH2OCO [4] 

4.31 –CH2–OCOR′ glyceryl [8] 

4.33-4.34t Glycerophosphorylcholine α-CH3 

POC4H inosphitol of PI 

[3] 

[12] 

4.35 Lipid CH2COO glycerol backbone [12] 

4.38 Uridine 3’ monophosphate [16] 

4.43q Plasmenyl PC and/or plasmenyl PE [1] 

4.51 ATR -CH Rib [17] 

4.52s myoinositol [16] 

4.54 Uridine 2’ monophosphate [16] 

4.58 Guanosine 3’ monophosphate [16] 

4.64d Glucose CH 

Maltose CH 

[9] 

4.8 ATP -CH Rib [17] 

4.89 Guanosine 2’ monophosphate [16] 

4.93 Adenosine 2’ 5’ [16] 

5.14 C2HOC lipid glycerol backbones [12] 

5.17d α-glucose [7] 

5.22d Glucose CH 

Maltose CH 

[9] 

5.33-5.38 –CH=CH– unsaturated FA [3, 4, 8] 

5.34 α-D-glucose-1-phosphate [16] 

5.40d Maltose CH [9] 

(continued) 
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5.45d sphingomyelin [1] 

~5.5m UGLcNAc, UGalNAc, UGluA 

Ribose-5-phosphate 

[18] 

[7] 

5.57 ergosterol [4] 

5.69d uridine [7] 

5.71dt sphingomylelin [1] 

5.79d uridine [7] 

5.96d Plasmenyl PC and/or plasmenyl PE [1] 

6.15d ADP/ATP -CH Rib [11, 17] 

6.50s Fumarate CH=CH [9] 

6.52 Fumaric acid [10] 

7.42d uridine [7] 

8.18s NAD [11] 

8.20t NAD [11] 

8.22 GMP [4] 

8.25s AMP CH-8 [3] 

8.26 ATP CH [17] 

8.35s Adenosine [11] 

8.46s formate [11] 

8.49s AMP CH-2 [3] 

8.54s ATP -CH [17] 

8.81-8.84d NAD -CH Nic [11, 17] 

9.12-9.15 NAD -CH Nic [11, 17] 

9.33-9.34 NAD -CH Nic [11, 17] 
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