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Abstract 

We show that the long-standing assumption of "no-communication" between the proyers 

of the two-prover model is not sufficiently precise to guarantee the security of a bit com­

mitment scheme against malicious adversaries. Indeed, we show how a simple correlated 

random variable, which does not allow to communicate, can be used to cheat a sim pli­

fied version (sBGKW) of the bit commit ment scheme of Ben-Or, Goldwasser, Kilian, and 

Wigderson [BGKW88]. Instead we propose a stronger notion of seI?aration between the 

two proyers which takes into account correlated computations. To emphasize the risk that 

entanglement still represents for the security of a commit ment scheme despite the st ronger 

notion of separation, we present two variations of the sBGKW scheme that can be cheated 

by quantum proyers with probability (almost) one. A complete proof of security against 

quantum adversaries is then given for the sBGKW scheme. By reduction we also obtain 

the security of the original BGKW scheme against quantum proyers. For the unfamiliar 

reader, basic notions of quantum processing are provided to facilitate the understanding of 

the proofs presented. 
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Résumé 

Dans ce mémoire, nous montrerons que l'hypothèse traditionnelle d'impossibilité de commu­

nication faite dans le modèle à deux proveurs n'est pas suffisamment précise pour garantir 

la sécurité d'un protocole de mise en gage contre des prouveurs malhonnêtes. Nous mon­

trerons comment une variable aléatoire corrélée, ne permettant pas de communiquer, peut 

être utilisée pour tricher une version simplifiée (sBGKW) du protocole de mise en gage de 

Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]. Pour résoudre ce problème, nous 

proposerons une notion de séparation entre les deux prouveurs beaucoup plus forte que 

l'hypothèse traditionnelle. Afin de mettre en évidence le risque que constitue l'intrication 

pour la sécurité d'un protocole de mise en gage, nous présenterons deux variations du 

protocole sBGKW qui peuvent être triché par des prouveurs quantiques avec probabilité 

(presque) un. Une démonstration détaillée de la sécurité quantique du protocole sBGKW 

sera ensuite donnée. La sécurité quantique du protocole original de BGKW sera ensuite 

obtenue par réduction. Un bref aperçu des notions de bases d'informatique quantique sera 

proposé en introduction pour faciliter la compréhension des démonstrations présentées dans 

ce mémoire. 
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Introduction 

The two-prover model 

The two-prover model, and its generalized version with k proYers, was first introduced by 

Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88] to prove that aU NP languages 

have a two-prover perfect zero-knowledge interactive proof-system, without having to make 

intractability assumptions, such as the existence of one-way functions used in [GMW86] 

which is necessary to prove a similar result in the one-proyer model. At the time, their 

result was of great importance since such a general statement was known to be impossible 

in the one-proyer model, unless the polynomial-time hierarchy collapsed [For87]. 

Loosely speaking, an interactive proof-system (IPS) consists of an aU powerful proyer 

who attempts to convince a probabilistic polynomial-time bounded verifier of the truth of a 

proposition [GMR85]. It is termed perfect zero-knowledge if there exists a proyer such that 

for any verifier there exists a stand-alone polynomial-time simulator, not interacting with 

anybody, whose output has the same probability distribution as the output produced by 

the verifier after interacting with the prover. That is, whatever can be efficiently extracted 

from the interaction with the proyer when input a proposition, can also be efficiently ex­

tracted from the proposition itself. 

Using the formalism of IPS, the setting of the two-prover model consists of two proYers, 

Peggy and Paula, sometime taken to be computationally unbounded, who jointly agree on 

a strategy to convince the verifier, Vic, of the truth of an assertion under the constraint 
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that Peggy and Paula cannot communicate with each other once the interaction with Vic 

has started. This no-communication limitation is the key point which allows Vic to decide 

whether he should accept or not the proposition. We stress that the two-prover model is 

defined as a synchronous model. This means that, although no proyer can get the content 

of the conversations between Vic and the other prover, a proyer can see that messages are 

exchanged between the other two participants. The model may be depicted as in Figure 1. 

Peggy 

Vic separation 

Paula 

Figure 1: The two-prover model 

The authors of [BGKW88] give a particularly enlightening example to illustrate the 

power of the two-prover model, as they note: 

"The main novelty of our model is that the verifier can "check" its interactions 

with the provers "against each other". One may think of this as the process of 

checking the alibi of two suspects of a crime (who have worked long and hard to 

prepare a joint alibi), where the suspects are the provers and the verifier is the 

interrogator. The interrogator's conviction that the alibi is valid stems from his 

conviction that once the interrogation stans, the suspects can not talk to each 

other as they are kept in separate rooms, and since they can not anticipate the 

randomized questions he may ask them, he can trust his findings. " 

From then on, the two-prover model has been extensively studied and numerous fun­

damental results in the theory of computation were found. A few years after BGKW's 
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results, Babai, Fortnow and Lund [BFL90] used the same model to prove that every lan­

guage is in NEXP (the non-deterministic exponential-time complexity class) if and only 

if it has a many-rounds perfect zero-knowledge two-prover IPS. This result was in sharp 

contrast to what was previously expected since Fortnow, Rompel, and Sipser [FRS94] had 

shown that relative to SOrne oracle, even the class coNP did not have a multi-prover IPS. 

Several refinements of [BFL901's result were then made [CCL90, Fei91 , LS91], until Feige 

and Lovasz [FL92] proved that a language is in NEXP if and only if it has a two-prover 

one-round interactive pro of system with perfect completeness (if a word is in the language 

than the verifier always accepts) and exponentially small soundness error (if a word is not 

in the language than the probability of accepting it is exponentially smaU). This last result 

closed the subject on which complexity class may be achieved in the two-prover model with 

classical proyers. 

In the quantum case, the situation is filled with fuzziness. To this day, it is still not 

known which complexity class may be achieved with an IPS in a two-quantum-prover against 

a quantum-verifier situation. One promising way to tackle the problem is by first consid­

ering one-round IPS with a classical verifier. This means that the interaction between the 

verifier and a proyer is limited to one round: a query and an answer. Notice that Feige and 

Lovasz [FL92] used the classical flavor of this setting to prove their result. This special case 

of the two-prover model is particularly interesting to us as it corresponds to the setting of 

the so-called non-local games (see Section 1.3). Naturally, a good understanding of such 

games will help determine what happens when the proyers share entanglement. Recently 

Cleve, H0yer, Toner and Watrous investigated this subject [CHTW04] from the point of 

view of non-locality and made clear connections with multi-prover IPS. They gave various 

examples of one-round multi-prover IPS which are classically sound but where entangle­

ment seriously affects the soundness of the pro of system. They also looked at the amount of 

entanglement required by optimal and nearly optimal quantum strategies for these games. 

More specificaUy, they showed why the known protocol which equates NEXP to the two­

proyer IPS breaks down if the proyers can share entanglement, unless EXP=NEXP. 
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We claimed in the previous paragraph that it is not known which class may be achieved 

in a two-quantum-prover against a quantum-verifier situation. This is not completely true. 

For a restricted case, when the proyers share only a polynomial number of qubits, it has 

been demonstrated by Kobayashi and Matsumoto [KM03] that the class of languages ac­

cepted by a two-prover IPS is included in NEXP. Whether the two classes are equal is 

still an open problem. Recently, Gavinsky [Gav06] gave a partial converse to the result 

of [KM03] using a new approach for bounding entanglement, and the parallel repetition 

theorem of [Raz95] for improving the soundness of a known classical two-prover IPS which 

accepts NEXP. He showed that in order to cheat, the proyers require a number of entangled 

qubits asymptotically close to the number of parallel repetitions. Thus, by bounding the 

amount of shared qubits by sorne a priori fixed polynomial in the input length1 , enough 

repetitions can be introduced to make any cheating impossible. Formally, 

Theorem [Gav06]: Let MIP;oly(n) be the model of two-prover IPS when the provers 

are allowed to share any entangled state over poly(n) qubits, where n is the input length of 

the problem. Then MI P;oly(n) can accept a language L if and only if L E NEXP. 

In other words, the power of MI P;oly(n) and that of the classical two-prover IPS (equiv­

alent to NEXP) are the same. However, more general results with respect to M 1 P~ and 

NEXP are not known yet. The problems of integrating the zero-knowledge aspect in a 

two-prover IPS with quantum players and which complexity class may be reached are even 

less known. 

lIn [KM03] the proyers are allowed a fixed number of shared qubits per protocol. However, in [Gav06] 

the prOyerS are allowed a fixed number of shared qubits for the whole model. This is what makes [Gav06]'s 

converse only partial, since in [KM03] the proyers have more freedom. 
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Bit commit ment scheme 

The cryptographie primitive known as a commitment scheme (often prefixed with bit when 

the committed word is a bit) has been one of the major building blocks of cryptography 

from its advent in the early 80's. Although it seems fair to attribute the concept to M. 

Blum [Blu82], the terminology of commitments, influenced by the legal vocabulary, first 

appeared in the contract signing protocol of S. Even [Eve82]. Commit ment lies at the heart 

of important complex cryptographie applieations such as coin tossing [Blu82], two-party 

computation [Ki188] and zero-knowledge proofs [GMW91, BCC88]. 

The general idea and security of bit commit ment is often best explained from this sim­

ple example: suppose Alice wants to commit to a certain secret bit value b to Bob without 

him learning this value before she decides it. To do so, she writes b down on a piece 

of paper, puts the paper in a box whieh she locks with a keyj she then gives the locked 

box to Bob (who do es not have the ability to piek it). This first stage in the proto col is 

called committing. Whenever Alice consider that Bob is ready to learn her bit, she sends to 

him the key, he opens the box and learns the value of b. This second stage is called unveiling. 

As illustrated in the example, there are two essential aspects to the security of a bit 

commitment scheme: 

1. Once Alice commits to her bit, she cannot change her mind and reveal to Bob a 

different bit value. This is known as the binding property of the commitment. 

2. Until unveiling starts, Bob cannot learn to which value Alice committed. This is 

known as the concealing property of the commitment. 

Of course, these security characteristics naturally extend to the more general form of com­

mit ment scheme known as string commitment. 

It has been known for long that unconditionally secure classical bit commitment is 
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impossible2 • 80 to achieve some security properties, extra assumptions need to be made. 

For instance, computational assumptions can be imposed on the binding or concealing 

properties. Under such restrictions, commitments come in two dual fiavors: binding but 

computationally concealing and concealing but computationally binding. The first type 

may be achieved from any one-way function [Na091, HILL98]. Those of the second type 

may be achieved from any one-way permutation [NOVY93] or any collision-free hash func­

tion [HM96]. The problem of achieving commitments of the second type using only one-way 

functions is still open. 

When Bennett and Brassard [BB84] brought back to life the idea of Wiesner [Wie70] 

to use quantum physies to achieve cryptographie tasks, a lot of hopes and efforts were 

put by cryptographers to revitalize the security of commit ment schemes without any extra 

assumption. The first form of quantum bit commitment came implicitly with the BB84 

coin-fiipping proto col [BB84]. However, problems relating to the physical control of the 

quantum system made it easy to cheat for the receiver in practice. Bennett and Brassard 

also pointed out that it was possible, in theory, for the sender to cheat the binding property 

of the commitment. To solve these two problems, Brassard, Crépeau, Josza and Langlois 

[BCJL93] presented a new proto col, whieh was in fact an extension of the protocol found 

in [BC90], along with a "pro of" of its unconditionai security against quantum adversaries. 

For a while, most people were convinced that quantum bit commit ment couid be performed 

securely. 

Unfortunately, rarely do nice things happen without any surprises. Doubts on the se­

curity of the BCJL's proto col against the sender settled in when, a couple of years after 

their result, Mayers found a subtle fiaw in the proof and gave a specifie attack to the pro-

2The intuition behind the proof is simple. Unconditional security requires an information theoretic 

argument. Let C be the random variable representing the commitment. To satisfy the binding property, 

C must hold a lot of information about the committed bit. However, to satisfy the concealing property, C 

must not hold any information on the committed bit. It is easy to see that C cannot satisfy both properties 

at the same time. 
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tocol. Mayers and the BCJL team then engaged in a battle of attacks and corrections 

of the proto col for about a year, until Mayers finally draw the final strike with its gen­

eral impossibility theorem for quantum bit commit ment [May96a, May96b]. We note that 

a similar result was, around the same time, independently achieved by Lo and Chau [LC97]. 

In their '98 paper [BCMS98], Brassard et al. nicely stated the disappointment: 

"f. .. ] In 1993 a protocol for quantum bit commitment, henceforth referred to as 

BCJL, was thought to be "provably secure". Because of quantum bit commit­

ment, the future of quantum cryptography was very bright, with new applications 

such as the identification protocol of Crépeau and Salvail (CS95] coming up reg­

ularly. The trouble began in October 1995 when Mayers found a subtle fiaw in 

the BCJL protocol. (. .. ) After BCJL was shown not secure, the spontaneous at­

titude was to try alternative quantum bit commitment protocols by making some 

clever use of measurements and classical communication. However, aU of these 

protocols were found not secure against M ayers' attack!" 

Nevertheless, the fate of quantum bit commit ment is not sealed definitely. The general 

impossibility theorem of Mayers and Lo-Chau does not apply in all communication models. 

Indeed, the possibility of unconditionally secure (quantum) bit commit ment has already 

been demonstrated in various models different from the standard noiseless communication 

model with two players, namely: 

• the noisy communication model [CK88, Cré97, DFMS04, DKS99, CMW04], 

• the multi-party computations model [BGW88, CCD88], 

• the multi-prover model under sorne relativistic time constraint [Ken05, Ken99], 

• the (quantum) memory-bounded model [CCM98, DFSS05], 

• the multi-prover model under sorne physical separation constraints [BGKW88]. 

The fifth scenario, where we consider the case of two proYers, is our main focus here. 

In [BGKW88], the authors introduced a bit commit ment scheme for which they gave an 
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unconditional security proof against classical adversaries. Here we wish to provide a similar 

proof against adversaries that have full access to quantum resources. 

Related Works 

The starting point of this research is definitely the bit commitment scheme introduced by 

Ben-Or, Goldwasser, Kilian and Wigderson in [BGKW88] to provide a sufficient toolbox 

for their two-prover interactive pro of-system to be perfect zero-knowledge. The classical 

security of their scheme is proven in [BGKW88]. 

The security of BGKW's scheme against quantum adversaries has been considered in 

the work of Brassard, Crépeau, Mayers and Salvail [BCMS98]. They showed that if such 

a bit commitment is used as a building block in the Quantum Oblivious Transfer protocol 

of [CK88] then the security of the commitment scheme is not sufficient to guarantee the 

security of the resulting QOT if the two proyers can get back together at the end of the pro­

tocol. This result is in accordance with Mayers' suggestion [May97] that his version of the 

no-go theorem should also apply to commit ment schemes based on temporary relativistic 

signaling constraints. However they did not address directly the question whether BGKW's 

bit commit ment scheme is itself secure against quantum adversaries while the proyers are 

not allowed to get back together. In the current work, we consider precisely this situation. 

In a closely related work, Kent [Ken05] showed how impossibility of communication, 

implemented through relativistic assumptions, may be used to obtain a bit commitment 

scheme similar to BGKW's. Although the model he considered is essentially classical, he 

also discussed how his scheme behaves in a quantum setting. Kent proves the classical 

security of his scheme, but he remained elusive about its quantum security. Still, he proves 

the security of one round of his proto col (see [Ken05], Lemma 3, p. 329) against quantum 

adversaries, which is more or less the same as our Lemma 4.1. However, the proof he gave 

is erroneous in its last inequality and is not as tight as he claims. Lemma 4.1 can be viewed 
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as a notable clarification, and a fix for his proof. Among the differenees with the scheme 

we present in this work, we note that his bit commitment scheme needs to be constantly 

updated (there is always new commitments made) to avoid cheating the first commit ment 

made, whereas in ours we only need to maintain the physical separation assumption between 

the two proyers for the commitment to remain secure. This particularity of his proto col 

translates in a constant blowup of the communication complexity proportional to the time 

we want to sustain the commitment, sinee a permanent flow of communications needs to 

be set between the two parties. 

Another related li ne of research by Cleve, H!2!yer, Toner and Watrous [CHTW04], is 

one of the main inspiration of the current research as briefly discussed in the introduction. 

They have established nice relations between non-Iocality games and the two-prover model. 

They developed methods for establishing limits on the nonlocal behavior of such games to 

characterize how the soundness of two-prover IPS is affected. They also investigated the 

amount of entanglement required by (nearly) optimal quantum strategies to achieve these 

limits. However they did not consider how the zero-knowledge aspect of the studied IPS is 

affected by quantum adversaries. 

Organization of the thesis and contributions 

The remainder of the present document is organized as follows. Chapter 1 presents an 

overview of the basic notions of quantum mechanics needed to understand this work. We 

review the security definitions of a bit commit ment scheme against classical and quantum 

adversaries, and briefly discuss a new binding definition recently introduced by Damgaard, 

Fehr, Salvail and Schaffner [DFSS06]. We also present sorne definitions and theorems that 

relate to non-local games. Chapter 2 introduces the original two-prover bit commitments of 

[BGKW88] and exposes the various problems (weakness) of the model's assumption "that 

the two proyers are not allowed to talk to each other"; this chapter conclu des with a re­

finement of BGKW's original assumption. In Chapter 3 we present two bit commit ment 
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schemes in the two-prover model and show how entanglement-based strategies can be used 

to cheat each of them. FinalIy, Chapter 4 presents a variation of the bit commit ment of 

Section 2.2 and prove its security against quantum adversaries. We obtain by reduction 

that the original BGKW' scheme is also secure against quantum adversaries. We conclude 

with sorne open problems. Appendix A treats of the classical and quantum optimal strate­

gies to implement what we calI the "NL-box" (see Section 2.3) and the Magic Square game 

(see Section3.2). 

Parts of Chapter 2 (specifically sections 2.2, 2.3, and 2.4), Chapter 3, and Chapter 

4 are aIl original contributions in which the author of the present work has intensively 

participated, in collaboration with Claude Crépeau, Louis Salvail, and Alain Tapp. 
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Chapter 1 

Preliminaries and background 

This chapter introduces the basic definitions and results that relate to quantum mechanics 

and information processing, to the security of bit commit ment , and to the so-called non­

local games. In no circumstances is this chapter meant to be a comprehensive introduction 

to the three subjects. Its sole purpose is to provide the reader with the specifie tools 

required for the understanding of the present work. The interested reader is invited to 

consult [NeOO] and [Bro04] for more information on these areas. 

1.1 Basic notions of quantum mechanics 

1.1.1 Hilbert space, the bra-ket notation and the qubit 

The basic objects of linear algebra are vector spaces, themselves composed of elements 

called vectors. For instance, en is the space of aIl n-tuples (a.k.a. vectors) of complex 

numbers (VI, ... , vn ). A useful representation for vectors is the column matrix notation 

(1.1) 
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Let <P be such an object. In linear algebra, the standard notation to indicate that <P is a 

vector is to write it toped with an arrow pointing in the right direction 

<p. 

The type of vectors used in quantum mechanics are those of norm one. However, for 

historie al reasons physicists have decided not to use the previous notation. Instead, in 

quantum mechanics the standard way to indicate that the object <P is a vector of norm one 

is to label it as 

The entire object l<p) is sometimes called a ket, and it is part of a set of similar labels known 

as the Dirac notation. In the same manner, we define the bra as the dual vector of l<p) 

where Vi is the complex conjugate of Vi. One can see that a bra is sim ply a ket conjugated 

and transposed. These two transformations are usually represented using a dagger sign t 

Most vector spaces are not interesting unless an inner product function is defined on 

that space. For the vector space en, the inner product between vectors 11/!) = [UI, ... , unV 
and l<p) = [VI, ... ,vn]T is defined as 

Similarly, the outer product between vectors 11/!) and l<p) is defined as 

In quantum mechanics' terminology, the complex vector space of dimension d equipped 

with such an inner product is usually referred to as a Hilbert space, denoted 'H,d. For a 
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finite d, the Hilbert space is exactly the same as the complex inner product space. More­

over, quantum mechanics postulat es that, to any isolated physical system we can associate 

a Hilbert space, known as the state space. The state of the system is completely described 

by a vector of norm one in that Hilbert space, known as the state vector. This first pos­

tulate is particularly important as it makes a connection between the physical world and 

the mathematical formalism of quantum mechanics. To avoid any irrelevant description of 

a system, from now on we assume that all the vectors in 1{d are of norm one. 

We know that a vector space of dimension d is spanned by a set of d vectors l'PO) to 

l'Pd-l), such that any vector l'P) in that space can be written as a linear combination of the 

vectors in that set, that is, 

d-l 
l'P) = L ail'Pi) where ai E C. 

i=O 

This set of vectors is called a basis of the vector space. It is conventional to define the 

computational basis of dimension 2d as the set {Ii) hE{O,l}d where 

[ 

~O 1 { 0 j =1= i li) = : S.t. Zj = .. 
1 J = ~ 

z2d _l 

The simplest quantum mechanical system, and the one with which we will be most 

concerned for quantum computation and information, is called the qubit. A qubit lives is 

a two-dimensional Hilbert space 1{2; that is, it has a two-dimensional state space. Using 

the computational basis {IO), Il)}, we can express an arbitrary state vector l'P) E 1{2 of the 

qubit as a superposition 

l'P) = alO) + ,(11), 

where lal2 + 1,61 2 = 1. Hence, contrary to the classical bit that can take only values zero 

and one, the qubit can take any combinations of those values in 1{2, and in particular 10) 

and Il). 
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1.1.2 The trace function 

The trace of an arbitrary matrix A = {aij} is defined to be the sum of its diagonal elements, 

Tr(A) := Laii. (1.2) 

For A, Band C, arbitrary matrices, and z a complex number, the following important 

properties hold: 

1. Cyclic property of trace 

2. Linearity of trace 

Tr(ABC) = Tr(BCA). 

Tr(A + B) = Tr(A) + Tr(B), 

Tr(zA) = zTr(A). 

Consider the operator A and a unit vector lep), then an extremely useful corollary of the 

cyclic pro pert y of trace is 

(1.3) 

Let A be of dimension d and li) any orthonormal basis of dimension d. Using (1.3) and 

the completeness relation of the basis, I:i li)(il = Id, we can give an alternative definition 

for the trace function, 

'fr(A) 'fr(A· Id) ~ 'fr ( A ~ li)(i l) 
= L Tr (Ali)(il) 

= L(iIAli). 
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1.1.3 Tensor product 

The tensor pro du ct construction is a crucial element to manipulate a multi-particle system. 

lndeed, the fourth postulate of quantum mechanics stipulates that the state space of a 

composite system is the tensor product of the state space of the component systems. 

Let us first give a concrete idea of the tensor product with a matrix representation. Let 

A be an m x n matrix, and B a p x q matrix. The tensor product of A with B is defined 

as the nq x mp matrix 

A0B:= 

The terms like allB denote a submatrix 

[ 

b~1 .:. b~q 1 
aAu' : : : . 

bpl ... bpq 

With that in mind, it is easier to understand the situation for Hilbert spaces, and more 

generally vector spaces. Let V and W be Hilbert spaces of dimension m and n respec­

tively. If li) and Ij) are orthonormal bases for V and W respectively, then li) 0 IJ) is an 

orthonormal basis for the tensor product of V with W, also labelled V 0 W. Note that the 

abbreviated notations li) IJ), li, j) or lij) are often used to write the tensor product li) 01J). 

So V 0 W is a mn dimensional Hilbert space and any of its elements can be represented as 

a combinat ion of the basis elements. 

By definition, for arbitrary IVI), IV2) E V, IWI), IW2) E W and z E C, the tensor product 

satisfies the following properties: 
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( distributivity), 

(associativity), 

Let A and B be linear operators on V and W respectively, then we can define an operator 

A ® B acting on V ® W by the equation 

(A ® B) ( ~ ailvi) ® IWi)) ~f L aiAlvi) ® Blwi). 
t t 

The inner product on V and W can also be used to define the inner product on V ® W. 

Let 1<,0) = 2:i ailvi) ®IWi) and 1'1/1) = 2:j bjlvj) ® Iwj), then 

(rpl'l/1) ~f L aibj(vilvj)(Wilwj). 
ij 

1.1.4 Important matrix properties 

In this section we review the common matrix properties found in the literature of quantum 

mechanics. Let A be an operator on a d-dimensional vector space V. 

A is said to be a Hermitian or self-adjoint operator if it is its own adjoint, 

An important class of Hermitian operators is the projector. An operator P is said to be 

a projector if P = p2. Intuitively, this means that once a projector has been applied on 

a vector space, successive applications of the same projector on the resulting space will 

have no further effect. More interestingly, suppose W is a k-dimensional vector subspace 

of V such that, without 10ss of generality, V's orthonormal basis is Il), ... , Id) and W's 

orthonormal basis is Il), ... , Ik). Then by definition the projector P onto the subspace W 

is 
k 

P ~f L li)(il. 
i=l 
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Another important class of Hermitian operators is the positive operators. A is said to 

be a positive operator if and only if 

v Iv) E V (vIAlv) ~ o. 

If V Iv) E V, (vIAlv) > 0 then we say that A is a positive definite operator. 

A is said to be normal if AA t = At A. By definition, Hermitian operators are also normal. 

An extremely useful representation theorem follows from the normality of an operator. 

Theorem 1.1 (Spectral decomposition) Any operator M on V is normal if and only 

if it is diagonal with respect to some orthonormal basis for V. 

In terms of outer product representation, it means that M can be written as the matrix 

Ei Àili)(il, where Ài are the eigenvalues of M and li) is an orthonormal eigenbasis of V. 

Finally, Ais said to be unitary if AAt = I. Unitary transformations are fundamental to 

quantum mechanics as they describe the evolution of the state of a quantum system. For 

a closed quantum system, the state lep) at time tl is related to the state lep') at time t2 by 

a unitary operator A which depends only on tl and t2, that is, 

liP') = AI<p)· 

Notice that a unitary operator also satisfies At A = I, and so A is normal and has a spectral 

decomposition. Notice also that a unitary operator preserves inner products between states 

(or vectors): 

V lu), Iv) E V (ulAt Alv) = (uIIlv) = (ulv). 

1.1.5 Measurements 

The general way of talking about a quantum measurement is by describing it with a col­

lection {Mm} of measurement operators satisfying the completeness equation 

m 
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These operators act on the state space of the system being measured, and the index m 

refers to the measurement outcomes that may occur from the measurement. Let I~) be the 

state of the quantum system immediately before the measurement takes place, then the 

probability that result m occurs is 

and the state after the measurement evolves to 

Measurement in the computational basis is often given to illustrate how measurement 

works. From the definition we gave in Section 1.1.1, the computational basis on one qubit 

is {IO), Il)}. The measurement of one qubit in the computational basis is hence defined 

using the measurement operators Mo = 10)(01 and Ml = Il)(11. Measuring some state 

I~) = 0:10) + ,811) with Mo and Ml results in a state I~') such that 

I~') = 10) 

I~') = Il) 

with probability Pr[O] = 10:1 2 

with probability Pr[l] = 1,81 2 

Two special cases of the previous general measurement scenario are widely used in the 

quantum literature and are worth seeing as they often greatly simplify the analysis of a 

quantum circuit for quantum computation and information: the projective or von Neu­

mann measurements and the POVM measurements. 

A projective measurement is described by an observable M, a Hermitian operator acting 

on the state space of the system being observed (note the difference with the measurement's 

terminology). Being a Hermitian operator, M has a spectral decomposition 

m 

where Pm is the projector onto the eigenspace of M with eigenvalue m. The set {ml, the 

eigenvalues of the observables, also corresponds to the possible outcomes of the measure-
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ment. As in the general definition, m occurs with probability 

and the state immediately after measurement is 

One of the main reason why projective measurements are so much enjoyed is that, when 

augmented with the ability to perform unitary transformations, they are actually equivalent 

to the previous general description! We refer the reader to [NeOO] for further details. 

Whenever the statistics associated with the different possible measurement outcomes 

are of main interest rather than the post-measurement state, the mathematical tool known 

as POVM, which stands for Positive Operator- Valued Measurement, is particularly weIl 

adapted. We review here the important points of this formalism. 

Let Mm be the measurement operator describing a measurement. We define 

Then, Em is a positive operator such that 

m 

where l<p) is the state on which the measurement is applied. The operators Em are known 

as the POVM elements and are sufficient to determine the probabilities of the different 

measurement outcomes. The set {Em} is known as the POVM. 

The interest for such a tool is best explained with a simple example. Suppose Bob is 

given one of two states, I<pI) and 1<P2), such that these two states cannot be distinguished 

perfectly. Bob wants to determine which of the two states he has received such that when­

ever his technique returns an answer, he never makes an error of mis-identification. It turns 
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out that using the POVM formalism, it is possible for Bob to perform the measurement 

described by the POVM {El, E2' E3} such that El and E2 are cleverly chosen to satisfy 

('PIIEII'PI) = 0 and ('P2IE21'P2) = 0 (and E3 is taken to be 1 - El - E2 for the POVM to 

satisfy the completeness relation). This way, whenever out come El occurs, Bob is sure that 

he received the state 1'P2), when outcome E2 occurs he is sure that he received the state 

l'Pl), and he learns nothing when out come E3 occurs. 

1.1.6 Entanglement 

We finish our review of quantum mechanics with what is probably the most puzzling be­

havior of composite systems: entanglement. Let 'H2m 0'H2n be a composite system of m + n 

qubits. A pure state l'P) E 'H2m 0'H2n is said to be a product state if there exists states 

10-) E 'H2m and 1'1/;) E 'H2n such that l'P) = 10-) 01'1/;); otherwise l'P) is said to be an entangled 

state. 

The most common entangled states present in the quantum literature are the famous 

two qubit Bell states: 

1<1>+) = ~(IOO) + 111)) 

1<1>-) = ~(IOO) - 111)) 

1\11+) = ~(I01) + 110)) 

1\11-) ~(IOl) - 110)) 

The last state, 1\11-), is also known as the Einstein-Podolsky-Rosen (EPR) pair, or as the 

singlet state. 

The best way to get the flavor of the mysterious behavior unique to entangled state is 

certainly with a simple example. To do so consider the entangled state 1<1>+). This is a two 

qubit state, so let Alice have one of the qubit and Bob have the other. Then Alice and Bob 

are separated as far as they can be. Both are instructed to measure their respective qubit 

27 



in the computational basis {10)(01, Il) (II}· If we consider only Alices' system, her qubit is 

in the state with density matrix 

~(IO)(OI + Il)(11), (1.4) 

see [NCOO] page 106 for the details on how to carry such a computation. Notice that this 

is also the state of Bob's qubit alone. 

Therefore, when Alice measures, she obtains 10) with probability 1/2 and Il) with prob­

ability 1/2. Without loss of generality, suppose that she obtains 10), then wh en Bob perform 

his measurement, he will also obtain 10). If instead Alice had obtained Il), then Bob would 

have also obtained Il). The strange thing is that, on one hand, as soon as Alice measures 

her part of 1<1>+) she knows exactly that the result of Bob's measurement will be the same 

as hers, whether he as already measured his part or not. On the other hand, whether Alice 

has measured or not her state, as long as Bob does not perform his measurement, his part 

of 1<1>+) is still, for him, in state (1.4) and from his point of view he still has probability 

1/2 to obtain either 10) or Il), even if Alice has measured! And this is true the other way 

around. No matter who measures first, we know for sure that Alice and Bob's respective 

outcomes will be the same! 

No wonder why Einstein qualified this surprising feature of entanglement as "spooky 

action at a distance" [EPR35]. To get a glimpse why this is possible, we need to consider 

the global state of the two qubits. When one of the participants performs his measurement 

and obtains outcome li) = 10) or Il), the global state 1<1>+) collapses to li)li). Of course, the 

view of the other participant' state is still (1.4), but from the global point of view he his 

sure to obtain outcome li) with certainty. 

1.2 Security definitions 

First let us define the condition on the two proyers. We say that Peggy and Paula are iso­

tated from one another. The intuitive meaning of this term is that Peggy and Paula cannot 
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communicate with each other, since this condition is explicitly imposed by the two-prover 

mode!. However, we introduce this new terminology instead of the traditional "cannot 

communicate with one another" because, as explained in Section 2.3 and 2.4, we noticed 

that the meaning of "no-communication" is too weak and must be very clearly defined to 

produce valid security proofs. This isolation will be formally defined in Section 2.4. For 

now, the reader may follow his intuition and picture Peggy and Paula as being separated1 

and unable to communicate with each other. 

We use the following security definitions for bit commit ment against a classical malicious 

pair Peggy-Paula. Let n be the security parameter. 

Definition 1.1 We call a function J-t : N --t IR negligible if for every polynomials pO and 

all sufficiently large n's, 
1 

J-t(n) < p(n)' 

Henceforth, the function J-t(n) will always refer to a negligible function in n. 

Definition 1.2 A bit commitment scheme is statistically concealing if only a negligible 

amount of information on the committed bit can leak to the verifier before the unveiling 

stage. It is unconditionally concealing if no information leaks. 

Definition 1.3 A bit commitment scheme is statistically binding if the isolated provers 

Peggy and Paula successfully unveil for any other value than the one committed with negli­

gible probability. It is unconditionally binding if the probability is zero. 

In this work, aIl the bit commit ment schemes presented are unconditionally concealing and 

statistically binding. To lighten the lecture, we will sim ply use the term concealing and 

binding. The term secure will be used when both properties hold at the same time. 

lSuch a split can be irnplernented by physically trapping the two proyers in Faraday cages or using sorne 

relativistic effects keeping thern separated by a long enough distance. 
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In the case where the cheating pair Peggy-Paula can manipulate, share, and store quan­

tum information, the binding condition 1.3 is too strong to be satisfied. With its general 

impossibility proof for quantum bit commitment, Mayers [May96a, May96b], and indepen­

dently Lo and Chau [LC97], was the first to point out that the condition where either 

Po :::; f..L(n) or Pl :::; f..L(n) (note that this is only a restatement of Definition 1.3), where Pb is 

the probability of successfully unveiling b, cou Id never be satisfied since it was always possi­

ble to cheat by performing the honest proto col at the quantum level. Note that "quantum 

level" simply means that we perform the honest protocol with a superposition representing 

aIl the possible commitments. Subsequently, Dumais, Mayers and Salvail [DMSOO] proposed 

the following weaker binding condition. 

Definition 1.4 A bit commitment scheme is statistically binding if, fOT b E {0,1}, the 

probability Pb that isolated Peggy and Paula successfully unveil for b satisfies 

(1.5) 

As the authors noted, for classical applications, this binding condition with f..L( n) = 0 is 

as good as if the committer were permitted to honestly commit to a bit, according to the 

probability distribution of his choice, and only had the power to abort in view of the bit 

he is about to unveil. Notice also that using the language of Definition 1.4, the essential 

result of Mayers and Lo and Chau, that unconditionally concealing (or with probability at 

least 1 - q( n)) quantum bit commitment protocols are insecure according to the binding 

property, can be rephrased with the equation 

pO+PI=2-q(n), 

where q(n) is the probability that the concealing property is cheated. These two cases 

clearly define the bounds of equation (1.5) between a secure and (near-) maximally inse­

cure scheme. It follows that the concealing and binding conditions cannot be simultaneously 

satisfied. 

Moreover, as Kent [Ken05] argues, another reason to prefer this definition to define 

the security of a quantum proto col rather than Definition 1.3 is that the classical defi-
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nit ion implies something st ronger he caUs classical certification [Ken04]. A protocol that 

has classical certification guarantees that its quantum inputs belong to a fixed basis, so 

that the inputing parties are effectively required to input dassical information. If such a 

requirement were part of the definition of a quantum bit commit ment , then showing that 

unconditionally secure quantum bit commit ment is impossible would only require showing 

that no quantum proto col can prevent the commit ment of superposed bits. This is a much 

simpler result [Ken04] which does not give any insights on the fundamental reasons2 why 

unconditionally sec ure quantum bit commit ment is impossible. 

Although this work sticks to Definition 1.4 to characterize the security of quantum 

bit commit ment , Damgard, Fehr, Salvail and Schaffner recently [DFSS06] introduced a 

new definition stronger than 1.4, but still weaker than its classical counterpart. This new 

definition is motivated by the following imaginary, but not that hard to construct, quantum 

bit commit ment scheme: with probability 1/2, you can unveil to whatever you want and 

with probability 1/2, you cannot unveil at aU. Of course, this is clearly not what we want, 

and expect, from a bit commit ment scheme, at least intuitively. However, since for this 

example 
1 1 

Po + Pl = "2 + "2 = 1 < 1 + p,(n). 

Existence of such a scheme is not excluded if we only require equation (1.5) to be satisfied 

for the commitment scheme to be binding. Instead they propose to use a st ronger variant 

doser to the dassical binding condition: 

Definition 1.5 [DFSS06} A bit commitment scheme is statistically binding if for every 

possibly dishonest committer there exists a binary random variable D E {O, 1} such that 

PI-D is negligible. 

The crucial point of their definition is that it still allows to commit ta a superposition! 

The reason is that the random variable D is defined to be the out come obtained when the 

2E.g. if the commitment is unconditionally concealing, then we can rotate from the state representing 

the commitment of a zero to the state representing the commitment of a one. 
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superposition of commitments is measured. It then follows by definition of measurements 

that the information to unveil as 1-D is destroyed and so the value of D cannot be changed. 

Alternatively we might say that the dishonest commit ter does not control the probability 

distribution of D. That is, he cannot change with certainty its value from zero to one, or 

from one to zero. Using the same language as its classical counterpart, it boils down to 

saying that in Definition 1.4 the probabilities Po and Pl take values before the superposition 

is measured, whereas in the new Definition 1.5 the probabilities Po and Pl take values after 

the superposition has been measured. Although it has not been proven yet, it wouldn't be 

surprising if this new definition were the strongest possible with respect to what it means 

for a commit ment scheme to be quantum and binding. A st ronger definition would proba­

bly require a classical certification of the quantum system used for the commitment. 

Moreover, as the authors of [DFSS06] point out, it is not hard to prove that committing 

bit by bit on a string with a scheme satisfying Definition 1.5 yields a string commitment 

fulfilling the same definition (adapted for strings). This natural extension was impossible 

using Definition 1.4. 

For our matter, it is still an open problem if the quantum scheme presented in Section 

4.2 is binding with respect to Definition 1.5. 

1.3 Non-local games 

Informally speaking, a two-party non-local game is a scenario where two players, Peggy 

and Paula, who are isolated from each other, cooperate against a verifier, Vic, in order 

to produce a consistent answer to a question that Vic independently asked to both Peggy 

and Paula. Of course, these kind of games can be cast using more than two players. Our 

interest in such games is that the two-prover model is exactly the setting in which these 

games take place. Hence, sorne theoretical results from this field will be quite useful to ease 

the classical security proofs of our protocols. 
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The reader familiar with the subject might already have noticed the similarities with 

the so-called pseudo-telepathy games. It is true that the framework is the same, and that 

when Peggy and Paula are classical players, they have an unavoidable nonzero probability 

of failure. However, following the definition given in [Bro04], when Peggy and Paula are 

quantum players, a pseudo-telepathy game is guaranteed to have a perfect winning quan­

tum strategy. In our case, we do not need to ask so much from a quantum strategy. It is 

why we prefer to use the term "non-local". 

The next definitions and theorems are taken from the work of A. L. Broadbent [Bro04] 

on pseudo-telepathy games. Let W be a predicate (a relation) on the fini te sets S x T x U x V. 

A two-party non-local game G = (W, S, T, U, V) is defined as follows. Peggy and Paula are 

isolated. Vic randomly selects a pair of elements (questions) (s, t) E S x T (he may do so 

according to a specific probability distribution il on S x T). Vic sends s to Peggy and t to 

Paula, who respond with u E U and v E V respectively, according to the pre-agreed strat­

egy of their choice. They win if W evaluates to one on input (s, t, u, v) and lose otherwise. 

Definition 1.6 A deterministic strategy is successful in proportion p if the ratio of number 

of instances of G for which the players win and the total number of instances of G is p. 

Definition 1. 7 A strategy is successful with probability q if it wins any instance of G with 

probability at least q. 

Using the two previous definitions, we define the following bounds reached by optimal 

strategies. 

Definition 1.8 wc(G) is the maximum success proportion, over aU possible deterministic 

strategies, for classical Peggy-Paula that play the game G. 

Definition 1.9 wc(G) is the maximum success probability, over aU possible strategies, for 

classical Peggy-Paula that play the game G. 
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and likewise, 

Definition 1.10 wq(G) is the maximum success probability, over aU possible strategies, for 

quantum Peggy-Paula that play the game G. 

It is a common fact that for a non-local game G, to determine wc(G), one needs only 

to con si der deterministic strategies. Intuitively, a shared random variable Rean always be 

fixed to the randomness of the best strategy, hence transforming the probabilistic strategy 

into a deterministic one; a formaI pro of is given next. 

Lemma 1.2 (Bro04J For any non-local game G, wc(G) is the maximum probability that 

the players win if the questions are asked uniformly at random among the set of possible 

questions. 

Proof: Let s be a probability distribution over a finite set of deterministic strategies 

{SI, S2, ... , Sm}; S represents a probabilistic strategy. Let Pr(sd be the probability that 

strategy Si is chosen, and Pi be the success proportion of strategy Si, then the probability 

that the players win the game is 
m m 

L Pr(si)Pi < L Pr(si)wc(G) 
i=1 i=1 

o 

Theorem 1.3 (Bro04J For any non-local game G, wc(G) ::; wc(G). 

Proof: Consider any strategy s successful with probability wc(G). Let X be the set of 

possible questions for G. By definition, V x E X, the probability of winning on question x is 

Pr(win , x) ~ wc(G). Let the question be chosen uniformly at random, then the probability 

q of winning the game using s is 

q L _,l, . Pr(win' x) 
xEX X 

1 
> L-, ,"Wc(G) 

XEX X 

wc(G) 
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By Lemma 1.2, wc(G) ~ q, and from (1.6), we get that wc(G) ::; wc(G). 

o 

The next lemma will also be useful. 

Lemma 1.4 [Bro04! Let G = (W, S, T, U, V) be agame with wc(G) < 1, then 

_ ISI'ITI-l 
wc( G)::; ISI . ITI . 

Proof: Recall that wc(G) is the ratio of the maximum number of questions onwhich the 

classical players can win, and the total number of questions possible. Since wc(G) < 1, 

and the total number of questions possible is ISI . ITI, the next best alternative is that 

wc(G) = IÎkll~tïl. So we conclude that wc(G) ::; IÎk\~~ll. 

o 
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Chapter 2 

Bit commitment in the two-prover 

model 

As explained in the beginning of this work, the idea of bit commit ment in the two-prover 

model was first introduced by Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88], along 

with the notion of Multi-Prover Interactive proofs, as an efficient way to prove that every 

language L E NP has a two-prover perfect zero-knowledge interactive pro of system. In 

order to present a classically secure bit commitment scheme, which we call the "BGKW" 

scheme, they used the simple assumption that the two proyers could not communicate with 

one other once the proto col had started. We show in this chapter that, stated as above, 

this assumption, on which the security of their scheme depends, is too weak and needs to 

be made more precise to preserve the soundness of their construction. 

2.1 The original scheme 

We now present the BGKW scheme together with sorne intuitive explanations of its security. 

We strongly refer the reader to [BGKW88] for more details. 

Define the functions 0'0,0'1 : {a, 1, 2} ~ {a, 1, 2} such that 

1. \if i, O'o(i) = i, 
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The bit commitment for a bit bis as follows. Note that we are in the setting of BGKW, 

so in this case the term isolation means that Peggy and Paula are separated and cannot 

communicate with each other. 

BGKW 

Peggy and Paula agree on a trit W E {a, 1, 2}. They are then isolated. 

Commit to b: 

- V chooses at random r E {a, 1} and sends it to Peggy. 

- Peggy computes z := E(r, w, b) = O"r(w) + b mod 3 and sends it to 

Vic. 

Unveil b: 

- Paula sends to Vic the trit w. 

- Vic computes O"r(w) and sets b := z - O"r(w) mod 3. 

It is not hard to understand why the BGKW scheme is secure against classical adversaries. 

The key idea is simply that Paula does not know rand has never seen the trit z = E(r, w, b). 

Notice however that the two-prover model allows Paula to detect when messages are trans­

mitted between Vic and Peggy, as defined in the introduction. Therefore, the probability 

that Paula successfully reveals a bit value b is upper bounded by her probability to correctly 

determine r, which is 1/2. More formally, 

Lemma 2.1 [BGKW88} V w E {O,1,2}, b E {O,l}, having that Peggy sent the trit z, if 

Paula sends ta Vic the trit 'ÛJ then 

1 
Pr[w is s.t. b = z - O"r(w) mod 3] :::; 2' 

The BGKW scheme is also secure against Vic since knowing r and the trit z = E(r, w, b) 

gives no advantage in guessing b. It is assume that the value b is selected uniformly. More 

formally, 
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Lemma 2.2 [BGKW88} Let the variable B represents the committed bit, then 'If r E {O, 1} 

1 
Pr[B = 01 E(r, w, 0), r] = Pr[B = 11 E(r, w, 1), r] = 2' 

Observing that independent executions of the above protocol can be performed in parallel 

without affecting the security, we can decrease the probability of successfully cheating to 

2-n by performing n independent commitments and unveils to b. 

2.2 A simpler version 

For a proto col to be considered cryptographically secure, its probability of successfully 

being cheated must be at most negligible in n, the security parameter. Hence, for cryp­

tographie ends, we are looking at n executions of the BGKW scheme. In this context, the 

BGKW scheme turns out to be unnecessarily complieated. With no loss in security, it can 

be replaced by a far simpler and compact version, called "simplified-BGKW" (or sBGKW 

as a short hand), where the a functions are removed and only one execution is needed to 

achieve the same security probability of 2-n . For a n-bit string r and a bit b, we define the 

n-bit string b· r := b 1\ rI ... b 1\ rn. 

sBGKW 

Peggy and Paula agree on an n-bit string w. They are then isolated from one 

another. 

Commit to b: 

- Vic sends a random n-bit string r to Peggy, 

- Peggy replies with x := (b· r) EB w. 

Unveil b: 

- Paula announces b and an n-bit string w, 

- Vic accepts iff w = (b· r) EEl x. 

38 



Note that at the unveiling stage, as in the original scheme it is not required that Paula be 

the one announcing b. It is as good to let Vic deduce b: Vic computes Z := wEB x, if Z = on 
he sets b := 0 and if Z = r he sets b := 1, and otherwise rejects. Indeed, Paula may not 

even know b! 

For obvious simplicity reasons, we use the sBGKW scheme for what follows. The as­

sumption made in [BGKW88] is that Peggy and Paula are not allowed to communicate 

with each other. Based solely on that isolation constraint, the following seems a "correct 

proof" that the sBGKW scheme is secure classically: 

Theorem 2.3 Defining isolation as in [BGKW88j, the sBGKW is secure classically. 

Proof: Vic does not know w, that is, from its point of view w is uniformly distributed 

among aIl possible n-bit strings. It follows that the two strings w and r EB w he can receive 

as commitment are perfectly indistinguishable from one another. Hence, absolutely no 

information on the committed bit is learned by Vic before the unveiling stage. This proves 

that sBGKW is concealing. 

Now suppose that Peggy and Paula would like to be able to unveil a certain instance of b 

both as 0 and as 1. To do so, Paula would like to announce Wb such that wb = (b·r)EBx. We 

note that this models the two possible dishonest behaviors for Peggy and Paula: honestly 

commit to li and try to change to b afterwards, and commit to nothing by sending sorne x 

and decide which b they want to unveil only at the unveiling stage. It follows that in both 

scenarios, a successful cheating strategy would allow to produce the two strings wo and Wl, 

such that wo = x and Wl = r EB x. However, wo EB Wl = (O· r) EB x EB (1 . r) EB x = r is 

completely unknown to Paula by the no-communication assumption. Therefore, even using 

unlimited computational power, her probability of issuing a valid pair wo, Wl is at most 

1/2n. This proves that sBGKW is binding (see Definition 1.3). 

o 

Nevertheless, this result is incomplete! We noticed that the meaning of isolation as "no­

communication" must be very clearly defined for the statement to be correct. Indeed, 
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we show next how a correlated random variable can be used to invalidate the result of 

Theorem 2.3 while not violating the "no-communication" assumption. This suggest that 

the conventional wording "no-communication" is intuitively insufficient as it is not explicit 

enough to coyer any kind of cheating mechanism Peggy and Paula can employ. 

2.3 Cheating sBGKW with a NL-box 

The NL-box, short-hand for "Non-Locality box", is a device with two input bits s and t, 

and two output bits u and v such that u and v are individually uniformly distributed and 

the following relation is satisfied 

s 1\ t = u Et) v. (2.1) 

The pair (s, u) is on Peggy's side and the pair (t, v) is on Paula's side. Equivalently 

v := u Et) s 1\ t. Notice that v is also uniformly distributed and u := v Et) s 1\ t. There­

fore, because u and v are individually uniformly distributed the NL-box does not allow 

Peggy and Paula to communicate. 

Note that here the NL-box is taken as a black box, that is, as a workable device whose 

building is hidden and cannot be influenced or changed. This "non-local primitive" was 

first introduced as a black box by Popescu and Rohrlich [PR94, PR97] as a tool to achieve a 

better understanding of the non-local behavior of quantum mechanics. Appendix A covers 

in details the optimal classical and quantum strategy to implement this type of device, 

usually referred as the CHSH game in this context (which leads to the seminal CHSH Bell 

inequality) . 

s:B: t 
NL 

u v:=uEt)(sl\t) 

Figure 2.1: the cheating NL-box 

This NL-box allows Peggy and Paula to unveil the bits committed through sBGKW in 

either way, at Paula's will. For each position i, 1 ::; i ::; n, Peggy inputs in the NL-box 

the bit s := ri received from Vic and obtains output Xi .- u from the NL-box, which 
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corresponds to the i-th bit of the commit ment string. To unveil bit b, Paula inputs t := b 

in the NL-box and obtains the output Wi := v from the NL-box, which she sends to Vic. If 

b = D then b A ri = D and thus Wi = Xi which is the right value she must disclose. If b = 1 

then b A ri = ri and thus Wi E9 Xi = ri or Wi = Xi E9 ri which is again the right value she 

must disclose. 

2.3.1 The NL-box that breaks the original BGKW scheme 

Similarly, we can define an analogous cheating box for the original BGKW scheme with two 

binary inputs s, t, and two uniformly generated ternary outputs X, y. We first note that the 

G' functions defined in Section 2.1 can be re-written as the single expression 

V r E {D, 1}, W E {D, 1, 2} G'r(w) = (1 + r)w mod 3. (2.2) 

So using (2.2), we want from the cheating NL-box that u := (s + l)v - t mod 3 for each 

s, t, and uniformly chosen v. Because for any binary s, t we can easily define the inverse 

permutation over trits to be v := (t + u)(s + 1) mod 3, the following NL3-box do es not 

allow to communicate sinee individually u and v are uniformly distributed. 

s~t 
u ~ v:= (t+u)(s+ 1) mod 3 

Figure 2.2: A non-local box to cheat BGKW 

It is not hard to verify that the NL3-box that implements this non-local computation 

from s, t is exactly the one needed to cheat the original BGKW scheme. As with the NL­

box, for each round i, Peggy inputs in the box s := Ti and obtains the trit Xi := u, which 

she sends to Vic. If Paula wants to unveil for b, she inputs t := b in the NL3-box, which 
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correctly outputs Wi := v. Clearly, they successfully cheat since 

2.4 Defining isolation 

(1 + ri)(b + xi)(l + ri) - Xi mod 3 

(1 + n)2(b + Xi) - Xi mod 3 

= (b + Xi) - Xi mod 3 

= b. 

The existence of su ch an inputs-correlated1 random variable, which do es not allow commu­

nication but allows cheating of the sBGKW two-prover bit commit ment scheme sheds sorne 

light on the original assumption of Ben-Or, Goldwasser, Kilian and Wigderson: 

"Our construction does not assume that the verifier is polynomial time bounded. 

The assumption that there is no communication between the two provers while 

interacting with the verifier, must be made in order for the verifier to believe 

the validity of the proofs. ft need not be made to show that the interaction is 

perfect zero-knowledge." 

Indeed this assumption is necessary but not sufficient to guarantee the binding property of 

the bit commit ment scheme. Among its weakness, we note that it does not explicitly force 

any cheating strategy to be repeatable. Still, it is not hard to see that this was something 

implicitly assumed in the proof of Theorem 2.3, when we wrote that in both cheating sce­

narios, a successful cheating end up in knowing Wb for both b E {a,l}. The NL-box not 

being a repeatable process2 gives a first understanding why we can still cheat the sBGKW 

IWe emphasize that at least one of the "inputs" to the random variable needs to be obtained once the 

proyers are isolated, otherwise such a random variable can be shared while the proyers are together, and is 

thus useless to cheat the sBGKW scheme. 
20f course, the NL-box can be repeated as often as one wants. For instance, Peggy and Paula can easily 

generate the output pair (xo, wo) from the input pair (r,O), and the output pair (Xl, Wl) from the input 

pair (r, 1), and aIl these outputs are individuaIly uniformly distributed. However, Peggy can send only one 

of Xo and Xl to Vic, and thus only the corresponding W will be valid on Paula's side for unveiling. There 
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des pite the result of Theorem 2.3. 

Clearly, to achieve the binding condition a st ronger assumption must be made. How­

ever, pin-pointing it precisely is not easy. At first sight, one could require the following 

assumption: 

"Once the provers are isolated, there exists no mechanism by which they may 

sample a joint random variable which is dependent on inputs they provide. " 

We note that, among other things, this new condition exclu des communication between the 

two proYers, as desired. However, it excludes a lot more, such as shared entanglement! This 

last observation is somewhat constraining as it forbids to Peggy and Paula the use of sorne 

of the nicest properties of quantum mechanics. In a context where quantum processing is 

used but entanglement is not allowed, sorne results (e.g [BBKM04, KMR05]) showed that 

it is still possible to slightly outperform classical computations. Yet, it would be surprising 

that this small separation from the classical setting is enough to cheat the sBGKW scheme. 

Moreover, such a scenario is far fetch: to get interesting security results we need to consider 

entanglement. This new assumption is simply too strong; we need to be more subtle in the 

way we define this "mechanism to sample a joint random variable". 

It seems reasonable to believe that nature does not allow the existence of an NL-box as 

described in Section 2.3 (that is, as a black-box or an implementation exponentially close 

to a black-box). So why even ask for a st ronger assumption than the no-communication 

assumption of [BGKW88]? Part of the answer is that Vic can play the role of the NL-box, 

or any other joint sampler. In no circumstances can we ignore the fact that both Peggy and 

Paula individually talk to Vic. Definitely, we need to consider this aspect of the proto col 

with great care. For instance, consider the scenario where r is sent to Peggy but commit­

ting and unveiling is not done immediately after, but rather once Vic and the two proyers 

have been involved in other, unrelated, interactive protocols. It is perfectIy conceivable 

is no way for them to force the relation Xo = Xl. This means that, in our context, the NL-box cannot be 

repeated to generate two valid strings Wo and Wl. 
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that within those protocols, for each i, Peggy and Paula succeed in sending Ti and b to Vic, 

and then in a completely different context, or a moment of unawareness, Vic performs the 

required computation and output Xi and Wi, which are then sent to respectively Peggy and 

Paula. It is obvious that if such a computation, or anyalike, can take place with enough 

probability then Peggy and Paula would succeed in cheating the sBGKW protocol! 

More generally, we must not only consider Vic but any other third party, call it Ted, to 

which Peggy and Paula might have access to obtain correlated information. The previous 

situation highlights the fact that there is a whole class of functions with inputs coming 

from Peggy and Paula for which Ted must not send the outputs. Intuitively, each time Ted 

sends a message to either Peggy or Paula, he must ensure that the message does not: 

• allow Peggy and Paula to communicate; 

• allow Peggy and Paula to achieve correlations better than what can be attained by 

local variables if Peggy and Paula are classical players, or shared entanglement if they 

are quantum proyers. 

That is, Ted must not outperform what Peggy and Paula can achieve using local vari­

ables in the sense of quantum mechanics. We wish to formulate that statement as a con­

venient comput able criteria. A natural way to tackle the problem is to look at the entropy 

of the message Ted is about to send conditioned on what was previously sent from and to 

Ted. Suppose Ted is sending a message M to Peggy. Loosely speaking, if the uncertainty 

about M is the same whether Peggy has access to Paula's information or a local variable 

independent of Paula's information, then there is no problem sending M to Peggy because 

she can pro duce M on her own. However, if there is less uncertainty when Paula's infor­

mation is available, then it means that Peggy needs sorne information held by Paula to 

pro duce this M with the same probability distribution. Hence, if Ted sends M, he gives 

to Peggy a string with a probability distribution (correlations) she could not have obtained 

otherwise. In the quantum case, the local variables are replaced by a quantum state, which 

often allows more correlations between Peggy and Paula than local variables do. At this 
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point, we will not consider the quantum case. 

The above gives the flavor of an information theoretic approach to the problem; this 

is suit able as long as we stay at the variable level of a proto col. However, when Ted is 

involved in sorne computations with Peggy and Paula, he his working with instances of 

variables, and he may not know exactly, or have access to, the whole distribution from 

which come the instances he receives from Peggy and Paula. Of course, running the same 

computation multiple times on new instances would allow to re-generate the distribution of 

each variable, but it would be much more practical to have a criteria from which Ted can 

decide directly with the messages he has if he can send a message, or not. To this end, we 

start by introducing the following criteria. 

Let Peggy be represented by Po and Paula by Pl. The variable D E {O, I} is a reference 

to player PD, and T E {0, {a}, {I}, {a, I}} is a tag appended to each message that indicates 

to Ted the player(s) that are eligible for receiving this message, where T = {a, I} means by 

both players and T = 0 means by none of them. The message about to be sent from Ted 

to proyer PD is represented by (m, T)D. We formalize Ted's behavior as follows. 

Definition 2.1 (Practical definition) Ted is said to be a "secure third party" if \:ID E 

{O, I}, Ted follows these points. 

1. A message received from player PD is tagged with T := {D}. 

2. A message generated without involving any of the previous messages, e.g. picking a 

random string, is tagged with T := {a, I}. 

3. A message obtained from a computation involving previous messages is tagged with 

the intersection of the tags of aIl the messages involved in that computation. 

4. A message (m, T)D is sent to player PD only if DE T. 
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We now explain why Ted will not send a message that allows Po and Pl to communicate 

or establish non-local correlations. Let (m, T)D be the message Ted is about to send to 

player PD. From the fourth point of Definition 2.1, Ted will send (m, T)D only if it is 

tagged T = {D} or {a,l}. Looking at the message's tag assignment rule number 3, this 

happens only if there is absolutely no message tagged {1 - D} or 0 used in the compu­

tation of (m, T)D. Using an induction argument, it is not hard to see that this happens 

only when aIl the variables involved in the computation of (m, T)D are independent of the 

information of Pl-D, that is, they have been themselves generated using variables tagged 

{ D} or {O, 1}. Thus, such a message (m, T) D is also independent of the information known 

only to Pl-Do Therefore, the messages sent by Ted do not let the two players communicate. 

The case of non-Iocality is slightly more subtle, yet pretty straightforward. Recall that 

in a general non-local proeess, both players use a message each and reeeive a message 

uniformly distributed, from their point of view, such that the four messages satisfy a cer­

tain relation. The received message does not allow to communicate with the other player. 

Suppose PI-D receives his message first. Since from his point of view, this message is uni­

formly distributed, Ted can in fact generate a uniformly distributed message, tag it with 

T := {a, 1} and send it to Pl-Do At this point, this behavior does not violate anything 

because non-Iocality has not been created yet. Then, Ted computes the message for PD. 

Because this message needs to satisfy the relation that binds together the four messages, 

at least a message tagged with T =1= {D} and one tagged with T =1= {1 - D} are used in 

its computation (it can be the same message), so the resulting message (m, T)D will be 

assigned a tag T := 0 because the intersection does not contain {D} and {1 - D}. This 

message (m,0)D is the one creating the non-local relation. However, from point 4 of Defi­

nition 2.1, sinee D fj. 0, Ted will never send (m,0)D. 

As mentioned before the previous definition, we can alternatively formalize Ted 's be­

havior in terms of entropy. Let the message about to be sent from Ted to proyer PD be 

represented by the variable (M, T)D. The set of variables SD,T represents an the variables 
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(messages) with tag T sent by prover PD to Ted, and the set of variables RD,T aU the 

variables (messages) with tag T sent by Ted to prover PD before (M, T)D. 

Definition 2.2 (Information based definition) Ted is said to be a "secure third party" 

ifVD E {D,1}, Ted follows these points. 

1. An information received from player PD is tagged with T:= {DP. 

2. A variable M to be sent to PD is tagged with the less restrictive tag T E {0, {D}, {D, 1} } 

that satisfies the following relation4 ,5. Note that the calligraphie tag T' stands for the 

tag {D, 1}1 (Tn{D}) and the calligraphie tag Til stands forthe tag {D}U (Tn{1-D}). 

H((M, T)DISD,{D}, RD,{D}, RD,{O,I}, SI-D,T', RI-D,TI, RI-D,{O,l}) 

H((M, T)D ISD,TII , RD,TII, RD,{O,I}, R1-D,{O,I}) (2.3) 

3. A variable (M, T)D is sent to player PD only if DE T. 

We warn the reader that the tags and players' variables D and 1 - D do not play any 

role in the computation of the entropies; they are only present to discriminate the variables 

and determine which ones to include in the conditional part of the entropies. Notice also 

that, contrary to Definition 2.1, a variable's tag is set only when Ted consider sending it.to a 

player, except for incoming variables. This relaxation will turn out to be the key point to ex­

plain why this generalized definition is not st ronger than local variables on the players' side. 

To strengthen the understanding, we first give an example of the application of this 

definition using the relation of the NL-box. Recall that Po has input X, Pl input Y 6, 

3This implies that the sets SD,{O,l} and Sl-D,{O,l} are always empty. Therefore we did not include them 

in equation (2.3), but a formaI expression should include them in the conditional part on both sides of the 

equality. 
4In order to write a clear equation, we had to specify to which player the message is intended. As a 

result, we did not include {l- D} in the set of possible tags. It turns out that the empty set tag is sufficient 

to cover both communication and correlation. 
5Explanations for equation (2.3) will be provided after the example of its application. 

6We are not using Sand T for the variables' name to avoid notation conflicts with the set Sand tag T 

used in Definition 2.2. 

47 



and they want to produee respectively a variable U and V such that the foIlowing relation 

holds, 

XI\Y=UEBV. 

Both players send their input to Ted, who tags them accordingly, i.e. (X, {a})o and 

(Y, {I}h· Suppose U is the first message to be sent. Recall from Section 2.3 that U 

and V are individually uniformly distributed. Renee, Ted can pick U uniformly and send it 

to Po, and U is tagged with {a, I} 7. Then Ted would like to send V = U EB X 1\ Y. 

Let's compute the left- and right-hand sides for the three possible tags. Notiee that 

B1,{l} = {(Y, {l} hl, Bo,{o} = {(X, {a} )o}, RO,{O,l} = {(U, {a, l} )o}, and aIl the other sets 

are empty. 

- If we set T := 0, then T' = {a, I} and T" = {I}. The left-hand side is 

H( (V, 0h IBl,{l}' Rl,{l} , Rl,{O,l}, BO,{O,l}, Ro,{o,l}) 

H((V,0hl(Y, {I}h, (U, {a, I})o) 

The right-hand side is 

H((V, 0hIBl,{l}, Rl,{l} , Rl,{O,l}, RO,{O,l}) = 

H((V, 0hl(Y, {I} h, (U, {a, I} )0) 

= 
1 

= 2' 

I 
-
2 

- If we set T := {I}, then T' = {a} and T" = {I}. The left-hand side is 

H( (V, {I} h IBl,{l}' R1,{l} , Rl,{O,l}, Bo,{o} , Ro,{o}, RO,{O,l}) 

H((V,{I}hl(Y,{I}h,(X,{a})o, (U,{a,I})o) = a. 

The right-hand side is 

H((V, {I} hIBl,{l}' Rl,{l}, Rl,{O,l} , RO,{O,l}) = 

H((V, {1}hl(Y, {I}h, (U, {a, I})o) 
I 

= 2' 
7It is straightforward to verify that this is the less restrictive tag. 
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- If we set T:= {a, I}, then T' = {a} and Til = {a, I}. The left-hand side is 

H( (V, {a, I} h ISl,{l}, Rl,{l} , Rl,{O,l}, SO,{O} , Ro,{o}, Ro,{o,l}) 

H( (V, {a, I} )ll(Y, {I} )1, (X, {a} )0, (U, {a, I} )0) a. 

The right-hand side is 

H((V, {a, I} hISl,{O,I}, Rl,{O,I} , SO,{O,I}, RO,{O,I}) = 

H((V, {O,I}hl(U, {a,I})o) = 1. 

Thus the equation (2.3) holds only when T := 0. It follows from point 3 that Ted won't 

send V to Pl, as expected. 

The pro cess of determining whieh tag to assign can be broken into two steps. We start 

with the empty tag 0. The first step is to decide whether we can add {D} to the tag, or not. 

Notice that the right-hand side of equation (2.3) is the same for T E {0, {D}}. This results 

from the calligraphie tag Til, whieh is equivalent to {D} in this case. On the other hand, 

the calligraphie tag T' introduces the terms Sl-D,{l-D} and Rl-D,{l-D} in the left-hand 

side of equation (2.3) when T = {D}. Thus, if the result of this first step is that the tag 

is at least {D}, then it means that the message to be sent is independent of the private 

information held by Pl-Do However, if we find that the tag is not even {D}, then it means 

that the message to be sent has sorne dependencies with the private information of Pl-D, 

and therefore the message should not be sent. 

If the first step terminates with a tag containing at least {D}, then we can move on to 

determine whether we can add {I - D} to the tag, or not. We note that T' won't change 

for T E {{D}, {a, I}}, so the left-hand si de is invariant. However, the calligraphie tag Til 

will remove the terms SD,{D} and RD,{D} from the right-hand side if we consider the tag 

T = {a, I}. Hence, if equation (2.3) is satisfied with T = {a, I}, it means that the message 

to be sent is not only independent of the private information of PI-D (from first step), but 

also of the private information of PD. It follows naturally that this message be eligible for 
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distribution to both players. 

The interest of Definition 2.2 is that it is more flexible in the tag assignation than 

the practical definition 2.1. Indeed, whenever Ted deliberately randomizes a message with 

new [uniformly distributed] information, the information-based tag assignment rule con­

clude that there is no problem to send to PD a message that would have been tagged with 

T = {1- D} or 0 in the practical definition. We give two examples of these particular cases. 

Let Po send to Ted a message represented by (X, {O})o (the variable X is tagged with 

{a} and cornes from Po). Then Ted generates a uniform random variable (W, T)D (its tag 

and reeeiver have not been set yet) and produees the message M = X EB W for Pl' Checking 

with equation (2.3) we see there is no problem setting M's tag to {1}, as 

H((M, {1}hl(X, {O})o) = H((W, T)D) = H((M, {1}h)· 

This is satisfied sinee (W, T)D is uniform and has never been sent. However, the practical 

definition would have assigned the tag T := {a} sinee W's tag would have been {a, 1} (by . 
the second rule) and {a} = {a} n {a, 1}. Let Ted send (M, {1}h.' We now get that for both 

D = ° and 1, if T = {D} or {a, 1} then the left-hand side of equation (2.3) for W is 

H((W, T)DI(X, {a} )0, (M, {1} h) = 0, 

and the right-hand side is respectively 

H((W, {a} )ol(X, {a} )0) = H((W, {a} )0) 1, 

H((W, {1}hl(M, {1}h) = H((X, {O})o) = 1, 

H((W,{0,1})D) = 1. 

Because equation (2.3) is not satisfied for both T = {D} and {0,1}, W's tag is set to 

T := 0, and Ted should not send (W,0)D to neither of PD, for D = 0,1. 

Similarly, we can send to Pl a message M that would have been tagged 0 by the practical 

definition. We again take the NL-box relation for example. Suppose the variables (X, {O})o 
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and (Y, {I} ) l have already been sent to Ted by the players (and tagged accordingly), and 

(U, {a, I})o 8 has been sent by Ted to Po. Let (W, T)D be a uniformly distributed random 

variable chosen by Ted, with D E {a,I}. Consider the foUowing variable for Pb 

v = U œ (W œ X) 1\ T, 

that is, we randomized the variable tagged {a} (Le. X) in the NL-box relation. In the 

practical definition, because W is chosen uniformly and independently of previous variables, 

the second rule would have assigned a tag {a, I} to it, and so V's tag would have been set 

to 0 = {a, I} n {a, I} n {a} n {I}. However, checking with equation (2.3), because W has 

not been sent yet, we get that there is no problem setting V's tag to {I}, as 

1 
H((V, {I} hl(Y, {I} h, (X, {a} )0, (U, {a, I} )0) = "2 = H((V, {I} hl(Y, {I} h, (U, {a, I} )0). 

80 Ted would send this message (V, {I} h to Pl' ls this a problem? No, because the classical 

limitations of non-Iocality have not be violated yet! The reason is simple: by randomizing 

completely aU the [private] variables related to Po, Ted is reducing the message he sends 

to Pl to what Pl can exactly achieve using local variables. That is to say, Pl already 

has a random view of Po's variables, so there is no problem for Ted to first randomize Po's 

variables and then send this message to Pl. If we make the calculations, we see that indeed, 

for the variable V sent, the relation 

V=UœXI\Y 

holds with probability 75%, just as in the classical scenario, and no W will never let us 

beat that. Of course, as in the previous example, the variable (W, T)D used to randomize 

can never be disclosed to any of the two players, and equation (2.3) agrees with that (W's 

tag will be set to T := 0 for both D). 

Thus, if the message intended to PD is computed in such a way that it is independent of 

SI-D,T and RI-D,T, for T E {{a}, {I}, 0}, Le. it is randomized such that it no longer carries 

8It is straightforward to verify that this is the less restrictive tag. 
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information that is known only to Pl-D, then the criteria of Definition 2.2 does let Ted send 

a message that would have been tagged {1 - D} or 0 in the practical definition. However, 

the variables used to randomize such a message can never be disclosed to any of the players. 

But this is correct since it is now these variables that carry the information dependent on 

Sl-D,T and RI-D,T, for T E {{a}, {1}, 0}. In this sense, Definition 2.2 is more general than 

Definition 2.1 as it does not consider only the tag of a message to determine whether Ted 

should send it, but rather its relevant information content. Moreover, Definition 2.2 does 

let Ted send messages to the players that achieve the classicallimitations of non-Iocality, 

that is, Ted never sends a message that outperforms what the players can achieve with local 

variables! 

Henceforth, the two-prover model's assumption is based on this refined definition of 

isolation. 

Definition 2.3 Peggy and Paula are isolated fram one another if they cannot communicate 

with one another, and for any third party Ted that interacts with Peggy and Paula, Ted is 

a secure third party. 

2.5 Fixing the pro of of Theorem 2.3 

We now prove the security of the sBGKW scheme with respect to this new definition. But 

let's first express the sBGKW scheme with the new terminology, to show that the proto col 

can indeed be completed in the context of the practical definition of isolation. 

sBGKW 

Po and H agree on an n-bit string w. They are then isolated from one another 

according to Definition 2.3. 

Commit to b: 

- Vic sends a random n-bit string (r, {a, 1})0 to Po, 
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- Po computes x := (b· r) Ef7 w and sends it to Vic. Upon reception, Vic 

tags it (x, {O} )0. 

Unveil b: 

- Pl announces b and an n-bit string w to Vic. Upon reception, Vic tags 

them (b, {l}h and (w, {l}h. 

- Let e = ° if "w = (b· r) Ef7 x", and e = 1 otherwise. Vic accepts iff 

e = 0, and tags e with (e, 0)D for both D E {O, 1}. 

Since the only communication from Vic to the proyers is a random n-bit string, it is straight­

forward that the proto col will complete with the new isolation assumption. 

Theorem 2.4 Let Peggy (Po) and Paula (Pl) be isolated as in Definition 2.3, then the 

sBGKW is secure classically. 

Proof: As before, the concealing condition is satisfied since Vic does not know w. 

The previous section explained that in the setting of Definition 2.3, we are now guar­

anteed that any strategy that Peggy and Paula try to perform through a third party can 

be achieved using only local variables on each side. We also know from Theorem 1.3 that 

there's no gain for Peggy and Paula to use a probabilistic strategyj we can thus assume, 

without 10ss of generality, that a deterministic strategy is employed. 

Suppose the two proyers have a deterministic strategy that successfully pro duces Wo 

when they want to unveil as B = 0, and WI when they want to unveil as B = 1. Because 

we are dealing with classical information, the instances of the local variables and the infor­

mation of Peggy and Paula can be copied. From the deterministic behavior of the strategy, 

their classical strategy can be run on each copy of the information to output both Wo and WI, 

something we could not assert from only the no-communication assumption of [BGKW88]. 

Thus, any successful deterministic strategy would let Paula compute the string wOEf7wI = r. 

However r is completely unknown to her by the no-communication assumption. Therefore, 

even using unlimited computational power, her probability of issuing a valid pair wo, WI is 

at most 1/2n, This proves that sBGKW is binding. 

o 

53 



Chapter 3 

Intermediate schemes towards 

quantum secure bit commitment 

We first exhibit two intermediate schemes to emphasize how shared entanglement can be 

used to cheat with probability one (or almost one) a classically sec ure two-proverbit com­

mitment. The first protocol is a weaker version of the sBGKW scheme, called wBGKW, 

where the acceptance criteria of the unveiling stage is loosen to tolerate some errors. The 

second proto col is also a modified version of the sBGKW scheme where the acceptance 

criteria is based on the Magic Square game (see Section 3.2). 

3.1 A weaker acceptance criteria: the wBGKW scheme 

We need the following notion. 

Definition 3.1 The distance d(x, y) of a pair of binary words x, y is the number of bit­

positions where x and y differ. 

In this section we consider a weaker version of sBGKW, called wBGKW, where the 

acceptance criteria of the verifier Vic is to accept band 'ÛJ if d( 'ÛJ, x œ (b . r)) < n / 5. This 

means that the string w sent by Paula differs in at most n/5 positions from what it should 

be. In comparison, in sBGKW the acceptance criteria is d( w, x œ (b . r)) = O. Note that 
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the choice of b is part of the expectation. The interest of such a modification is that now a 

cheating quantum pair Peggy and Paula, isolated as in Definition 2.3, can use the non-local 

property of entanglement to implement an NL-box and successfully cheat wBGKW, while, 

as we show next, the bit commitment is secure classically. To facilitate notation we add an 

index b to the string W, since W is different whether we unveil zero or one. AIso, define as 

B the random variable corresponding to the value they unveil. 

Theorem 3.1 For any classical strategy, the probability that it outputs a string wo when 

B = 0 and Wl when B = 1 such that E[d(Wb, x EB (b . r))] < n/5 for bath values of b, is 

exponentially small in n. 

Proof: Using the same arguments as in the pro of of Theorem 2.4, we can assume the 

proyers use a deterministic strategy that may pro duce such a Wo when B = 0, and Wl wh en 

B = 1, sa they can in fact output bath wo and Wl. Hence, Paula can compute the string 

Wo EB Wl. Recall that when d( Wb, x EB (b· r)) = 0 then WO EB Wl = r. We want ta determine the 

distance between wo EB Wl and r for this situation. From the theorem's assumption, there 

exists a classical strategy that outputs wo and Wl such that E[d(Wb, x EB (b· r))] < n/5, for 

B = 0, 1. We easily obtain that for such a strategy, the expected distance from r is 

E[d(wo EB Wl, r)] = E[d(wo EB Wl, x EB (x EB r))] :S E[d(wo, x)] + E[d(Wl, X EB r)] < 2n/5 

by the triangular inequality. Using a standard Chernoff Bound argument, and since r is 

absolutely unknown to Paula, her probability of outputting a string z = Wo EB Wl such that 

E[d(z, r)] < (1/2 - E) . n is exponentially small in n for any 0 < E ::; 1/4. Rence, because 

2/5 < 1/2, we conclude that such a strategy cannot exist except with exponentially small 

probability, and so unveiling must fail for one of the two possibilities. 

o 

Conversely, this scheme is almost totally insecure against quantum adversaries. 

Theorem 3.2 There exists a quantum strategy that successfully cheats the wBGKW scheme 

with probability 1 - f.L( n). 
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Proof: We saw in Section 2.3 that the NL-box, taken as a black box, correctly produced 

the needed Wb to unveil as b. Using the result of Theorem A.5 of Appendix A, we get 

that through entanglement, Peggy and Paula can optimally simulate the NL-box such 

that for each i taken independently, 1 :::; i :::; n, the NL-box produces correlated outputs 

with probability cos2 (-rr /8) ~ 0.85. Therefore, using the standard Chernoff Bound, this 

independent quantum strategy yields that for both values of b 

E[d(w,x EB (b· r))] = (1- cos2 (7f/8))· n, 

with probability exponentially close to one. Having that 

(1- cos2 (7f/8))· n < 0.15· n < n/5, 

we conclude that a pair of quantum proyers defeat the binding condition of the scheme with 

probability 1 - p,(n). 

o 

3.2 The Magic Square 

The magic square game is a two-player pseudo-telepathy game that was presented by Pad­

manabhan Aravind [Ara02, Ara03], who built on work by Mermin [Mer90]. The most 

interesting feature of this game is that it is extremely easy to show that there cannot be 

a c1assical strategy that wins with probability one (see Section A.2.1). It follows that a 

successful implementation of the quantum winning strategy (see Section A.2.2) would con­

vince any observer that something classically impossible is happening, with no need for the 

observer to understand why the quantum strategy works. 

3.2.1 The game 

A magic square is a 3 x 3 matrix whose entries are in {O, 1}, with the property that the sum 

of each row is even and the sum of each column is odd. Such a square is magic because it 

cannot exist! Indeed, suppose we calculate the parity of the nine entries, that is, the parity 
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of the whole square. This value is equal to the parity of the parities of the three rows and 

equal to the parity of the parities of the three columns. However, according to the rows the 

parity is even, yet according to the columns, the parity is odd! This is obviously impossible. 

The task that the players face while playing the game is the following. Let x, y E 

{O, 1, 2}. Peggy is asked to give the entries of the x-th row, labeled r X := rôrfr~, and Paula 

is asked to give the entries of the y-th column, labeled cY := c~cfc~. To win the game, 

the parity of the row r X must be even, the parity of the column cY must be odd, and the 

intersection of the given row and column must agree, that is r~ = c~. 

Classical and quantum optimal strategies can be found in Section A.2 of Appendix A. 

3.2.2 Magic Square bit commit ment 

The Magic Square bit commit ment scheme, named MSBC, is an original idea due to Claude 

Crépeau. This scheme is particularly relevant in our study of bit commitments in the two­

proyer model as it is perfectly secure c1assically but can easily be cheated with probability 

one using a quantum strategy. First, define the validity of a square. 

Definition 3.2 A (3 x 3) matrix Sx is valid for bit x if all rows of Sx xor to 0 wh en x = 0 

and aU columns of Sx xor to 1 when x = 1. 

For instance the following matrix So is valid for zero while SI is valid for one: 

So = 0 1 1 , SI = 1 1 0 . [
000] [101] 
101 100 

The scheme is as follows. 

MSBC 

Peggy and Paula agree on a random n-bit string w and an identical random 

square sreggy = s[aula for each bit Wi of w such that Si is valid for Wi. They 

are then isolated as in Definition 2.3. 
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Commit to b: 

- Vic chooses a random n-bit string a and sends it to Peggy. Label 

ao := on, the aIl O's n-bit string, and al := a. 

- Peggy computes x := ab EB w and sends x to Vic. 

Unveil b: 

- Peggy sends b to Vic. 

- Vic computes w := ab EB x. 

- Vic challenges Peggy and Paula for each bit Wi of W using a test on 

the squares S[eggy and s{aula. Vic picks a pair of random trits t[eggy 

and tfaula and asks Peggy for row number t[eggy of S[eggy and Paula 

for column number tfaula of s{aula. 

- Vic accepts b if for each i, the row or column that should xor to Wi 

does, and if the intersection of the row and column is identical from 

both Peggy and Paula. Vic rejects otherwise. 

Note that this scheme does not differ much from the sBGKW scheme. Instead of having 

Paula send explicitly w, both Peggy and Paula send information to Vic to allow him to 

reconstruct w. Indeed, we can easily see that the magic squares are just a very redundant 

version of w. If Vic sees an the magic squares of Peggy-Paula at unveiling, it is just repeat­

ing him what w was for each of Peggy and Paula. He can then compare this w to his W 

and decide whether or not he should accept b. 

We now prove that the MSBC is secure classically. It is straightforward to see that the 

concealing property holds for Vic who do es not know w. 

Theorern 3.3 Any classical strategy successfully cheats the binding property of the MSBC 

scheme with probability at most (~) n 16, except with exponentially small probability. 

Proof: In order to cheat the bit commit ment scheme, Peggy and Paula must be able to win 

a weaker form of the Magic Square pseudo-telepathy game given in Section 3.2.1, where 
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for each i Vic verifies only that the row. or column that should xor to Wi does, instead 

of verifying that the row xores to zero and the column xores to one. Using the result of 

Theorem 1.3, we only need to consider deterministic strategies. 

To simplify the proof, assume that Peggy always knows when she is being tested. The 

probability of successfully cheating we will obtain under this assumption will be an upper 

bound on the probability for any other strategy. One of the key point is that we cannot 

make the same assumption regarding Paula: since she doesn't know the random string 

al := a sent by Vic to Peggy, she cannot tell whether she is being tested or not. Hence, 

when she's asked a column that do es not xor to 1, she doesn't know if she has to change 

one of the bit to make it xor to 1. 

However, Paula is using a deterministic strategy and Peggy knows aIl the information 

possessed by Paula, except for the number t[aula asked by Vic. This means that Peggy can 

do the same computations as defined by Paula's strategy to get the three possible columns 

that Paula could output. Note that, put together, these three columns form a square S 

which is the square that holds the most relevant information regarding Paula's choices l . 

Without lost of generality, we can thus assume that Paula always output a column that 

xores to 1, and if needed, modifies the first bit of the column. So Paula always succeeds 

her challenges. To simplify the pro of further, we can assume that the last two rows of aIl 

the squares S{eggy = s{aula they share in the beginning of the protocol always xor to O. 

Con si der a challenge i where Peggy is being tested (otherwise she sim ply outputs the 

row tfeggy asked by Vic and they succeed the challenge). As long as tfeggy = 1 or 2, she 

can simply outputs the required row and succeed without being caught. However, with 

probability 1/3, t[eggy = 0, and from Paula's strategy, this row xores to 1 in the square S 

corresponding to the three possible columns answered by Paula. So Peggy has to modify 

1 Renee, to maximize her probability of cheating, Peggy needs to base her strategy on S when returning 

the row asked by Vic. 
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one bit of the row. With probability 1/3, she will modify the bit corresponding to the 

column number t[aula, and they will get caught. Therefore, for a challenge i, when Peggy 

is being tested, their probability of success is at most 8/9. 

By independence of the challenges, we get that the success probability is at most 8/9 for 

each one where Peggy is being tested. Let x be the string sent by Peggy, prepared according 

to the strategy of her choice. Since Wi = xEBab, the test will toggle between Peggy and Paula 

whenever ab = 1. The problem for Peggy is that whenever the test toggles, she can succeed 

with certainty for at most only one of b E {0,1}. Since a is uniformly distributed, using a 

Chernoff argument, except with exponentially small probability, the string al := a contains 

n/3 l's. Thus, there is at least one of b E {O, 1} for which in at least n/6 challenges Peggy 

will answer correctly with probability at most 8/9 (the sum of the challenges where she 

succeeds with probability at most 8/9 for 0 and those where she succeeds with probability 

at most 8/9 for 1 adds up to n/3). Therefore, their probability of successfully cheating is 

at most 

(~) n/6 

for any classical strategy. 

o 

It follows that for n big enough, the MSBC scheme is binding. Conversely, this scheme is 

totally insecure against quantum adversaries. 

Theorem 3.4 There exists a quantum strategy that successfully cheats the MSBCscheme 

with probability one. 

Proof: Using the quantum strategy presented in Section A.2.2, a quantum pair Peggy­

Paula can always pro duce a row and column that satisfy the winning condition of the Magic 

Square game (Section 3.2.1). Hence they can unveil for both values of b with probability 

one. 

o 
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Chapter 4 

Quantum secure bit commitment 

in the two-prover model 

We now present the modified version of the sBGKW scheme, called the mBGKW scheme, 

and prove its security against quantum adversaries. Although the two schemes are almost 

identical, it turns out the proof against quantum proyers is easier with the latter. The 

security of the sBGKW and BGKW schemes will follow as a corollary of mBGKW's security. 

4.1 The scheme 

mBGKW 

Peggy and Paula agree on an n-bit string w. They are then isolated as in 

Definition 2.3. 

Commit to b: 

- Vic sends two random n-bit strings ra, rI to Peggy. 

- Peggy replies with x := rb EB w. 

Unveil b: 

- Paula announces an n-bit string w to Vic. 
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- Vic computes r := W E9 x. He accepts iff r E {ro, rI} and deduces b 

from r = rb. 

4.2 mBGKW is secure against quantum adversaries 

We want to show that the mBGKW scheme is secure against a quantum adversary. Clearly 

the commit ment is concealing because Vic do es not know w. This means that there exists 

w and w' such that x = ro E9 w = rI E9 w', and Vic cannot determine which of w or w' has 

been used. This is merely an application of the One-Time Pad (Vernam Cipher). We refer 

the reader to [Sti05] for a complete pro of of its security, which provides a nice information 

theoretic argument why Vic cannot learn any information about Tb. 

Before diving into the formaI proof that the binding property holds, let 's first sketch the 

background intuition. We use Definition 1.4 to give the security argument for the binding 

property. As in Definition 1.4, let Po be the probability of successfully unveiling zero and Pl 

be the probability of successfully unveiling one. Imagine Peggy and Paula are able to open 

B = 0 or B = 1 with a good probability of success. This means that Paula can announce 

wo such that ro = wo E9 x or WI such that Tl = WI E9 x, depending upon whether B = 0 

or B = 1 is unveiled. We stress that, unlike in the classical scenario, even if they use a 

deterministic l quantum strategy to get wo or Wl, we cannot assert that Paula is able to 

generate both, since quantum states cannot be copied (see [NCOO], pages 24 and 532 for 

details), so the pro cess cannot be repeated exactly. It follows that with a quantum strategy, 

we can always hope to have Wo and Wl, but not both at the same time, with non-negligible 

probability. We refer the reader to the introductory Section 1.2 for clarifications on this 

important distinction with the classical setting, particularly with Definition 1.3. 

Yet, the crucial observation on which our proof relies is the same as in the classical 

case, namely that if Paula could simultaneously compute (wo, WI), then she would learn 

lThe process (algorithm) can be deterministic, still the final result will be random, by the probabilistic 

nature of quantum mechanics and measurements. 
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ra EEl rI = wa EEl WI. Clearly, this should not be possible with probability higher than 2-n 

since Paula does not have any information about ra and rI 2. However, we will not use this 

bound directly as the security marker, but rather as an optimallimit to upper bound the 

equation Pa + Pl of Definition 1.4. 

Ideally, one expects that for any cheating strategy 

1 
Pa + Pl ::; 1 + 2n ' (4.1) 

the bound achieved when Peggy and Paula are classical. However, it turns out this upper 

bound is not so easy to reach; the analysis needed to produce an upper bound that tight 

needs to be incredibly precise. Fortunately, as long as we get something bounded ab ove by 

1 + /-1 ( n) the binding condition is satisfied. The consequence of the next lemma gives an 

upper bound slightly weaker than (4.1) by about a square root distance to 1. 

Define 

Pœ := Pr[Paula determines ra EEl Tl]. 

The next lemma relates Pœ to Pa + Pl. We show that whenever Pa + Pl is greater than 

1 + c, Paula canguess ra EEl rI with probability at least c2 . Then, exploiting the fact that 

the probability Pœ to determine ra EEl rI is 2-n , the binding condition will naturally follows. 

Lemma 4.1 Assume Peggy and Paula have probability Pb to open b successfully such that 

Pa + Pl ;::: 1 + 6 for 6> O. Then, Paula can guess ra EEl rI with probability Pœ ;::: 6
2/4. 

Proof: Assume without loss of generality that when the unveiling phase of mBGKW starts, 

Paula holds the pure state l.,p) E 1-{N of dimension N ;::: 2n . Note that we do not need to 

consider the whole bipartite state between Peggy and Paula since when the unveiling phase 

starts, Peggy does no longer play an active role in the proto col and no communication is 

allowed between the two; hence her system can be traced-out of the global Hilbert space. 

2Recall that no quantum process can send information from Peggy to Paula without communicating sorne 

classical information. Therefore ro E9 7"l remains uniformly distributed over {D, l}n during the execution of 

the whole proto col. 
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Moreover, by linearity, the pro of also holds if 1'IjJ) is replaced by a mixed state. Notice also 

that, from the new model's assumption (see Section 2.4), Peggy and Paula cannot do better 

using a third party than what they can achieve with entanglementj the state 1'IjJ) can thus 

be seen as her part of the shared entangled state. 

GeneraUy speaking, Paula has two possible strategies depending upon the bit b she 

wants to unveil. When B = 0, she applies a unitary transform Uo to 1'IjJ) in order to get the 

state l'ljJo) := Uol'IjJ) that she measures in the computational basis {lw)(wl}WE{o,l}n applied 

to the first n qubits of l'ljJo). When B = 1, she proceeds similarly with unitary transform 

Ul aUowing to prepare the state l'!/Jl) := Ull'IjJ). She then measures l'ljJl) using the same 

measurement as for B = O. AU general measurement can be realized in this fashion, this 

is thus a general strategy for Paula. Notice that in the proof of Kent [Ken05], the use of 

unitary transformations Uo and Ul is obscured by the fact that he works with projective 

measurements. Notice also that the measurement on the first n qubits of l'ljJb) can alter­

natively be expressed by the measurement operators {Iw)(wl ® lM }WE{o,l}n on the whole 

state l'ljJb), where lM is the identity matrix on the system of dimension M = N/2n, 

From the values ro,TI,X E {O, l}n announced by Vic and Peggy during the committing 

phase, we define Wb := rb E9 x as the string Paula has to announce in order to open b with 

success. We have, 

(4.2) 

which by assumption satisfies 

Po + Pl ~ 1 + é, é > O. (4.3) 

Notice that ('ljJblwb) is a generalized inner product3 since IWb) lives in a subspace of dimension 

2n in fiN. Therefore when wb is obtained, there is sorne state 1eft in fiN of dimension N/2n 

which we label as IVb) (i.e. l'ljJb) has not been completely collapsed by the measurement). 

3If jw) E 'HM and j'IjJ) E 'HN then for j'IjJ)N = L:i O!ijai)M ® jbi)N/M we define (wj'IjJ) = L:i O!i(Wjai)jbi). 
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Thus, using (4.2) we can write l'l/'b) as 

(4.4) 

where Il (iibl(tûbltût) 11 2 = O. Note that the "state" ltût) has not necessarily a physical signi­

fication. It is sim ply a mathematical tool that aUows us to conveniently carry the statistics. 

We want to determine a lower bound for the probability Pœ. One possible way for Paula 

to compute ro EB rI is to obtain tûo and tû l individuaUy. Again, one possible way to do this 

is to use the following strategy: 

1. Paula applies the strategy aUowing to open B = 0 from l'l/'o) = Uol'l/') resulting in 

the state I~o) after the measurement in the computational basis {Iw) (wl}wE{o,l}n has 

been performed on the first n qubits, and 

2. Paula prepares I~I) := UIUdl~o) before applying again the measurement in the com­

putational basis {lw)(wl}WE{o,l}n on the first n qubits. 

Note that when preparing I~I), we applied Ud before UI. This is to put back the state 

I~o) as close as possible as the original state l'l/'). From (4.3) and for N big enough, the 

probability to measure tûo in the first step is not too smaU and so, by applying the inverse 

of aU the unitary transformations generated by Uo, the state I~) we get before applying UI 

is a good enough approximation of the original l'l/'). Similarly we can say that the fidelity 

F(I~), l'l/')) is large enough. By invariance under unitary transformation, it follows that 

I~l) approximates l'l/'l) with the same fidelity F(I~), l'l/')). 

In the strategy described above, the probability to determine ro EB rI is 

Po . PWllwo . 

As we said earlier, this is only one of the possible strategies to determine ro EB rI, thus 

pEB 2:: Po . PÛlllwo . 
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Let us first find a lower bound on the probability PÛlIi'ÛJO to pro duce Wl given that Wo has 

already been produced after step 1. Sinee wo was obtained, the state I~o) is equal to 

Iwo)lvo). We have, 

t -U1Uol'l/lo) 

= U1 UJl wo)lvo) 

U1 (uJ 1'1/10) - UJ J1 -Po Iw~)) (4.5) 
.jPo Po 

= Ul 1'1/1) - UlUt V1 
- Po Iw~) (4.6) 

.jPo 0 Po 

= 1'1/11) _ U1 UJV 1 - pOlw~) (4.7) 
.jPo Po 

= vk (JP1IWl )lvl) + ~Iwh - UlUJJ1- polw~)), (4.8) 

where (4.5) follows from isolating Iwo)lvo) in (4.4), (4.6) and (4.7) are obtained by definition 

of Uo and Ul respectively, and (4.8) also follows from (4.4). At this point, Paula appHes 

the measurement in the computational basis in order to obtain W1. Since we are interested 

only in finding a lower bound, the probability to obtain Wl is minimized wh en Ul UJ Iw~) = 

IWl)lvl). It easily follows that, 

PÛlllÛ10 (~1Iw1) (w11~1) 

> :0 (JP1 - J1 - po) 2 (4.9) 

1 ( 2 (4.10) > - JP1 - VPl - .s) 
Po 
.s2 

(4.11) > - , 
4po 

where (4.9) follows from (4.8), (4.10) is obtained from (4.3), and (4.11) follows from a Taylor 

expansion. Finally, (4.11) gives the desired result sinee 

Theorem 4.2 The binding condition of mBGKW satisfies Po + Pl :S 1 + v'2~-2' 
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Proof: From the isolation assumption, we have 

Using the result from Lemma 4.1, 

1 é 2 
->-2n - 4 

1 
Pœ = 2n . 

1 é< . - V2n - 2 
(4.12) 

It follows that the binding condition is satisfied: plugging (4.12) in (4.3), we get for any 

cheating strategies 

o 

The next corollary summarizes the security of the mBGKW against a cheating pair 

Peggy-Paula with access to quantum resources. 

Corollary 4.3 If there exists an algorithm A that can cheat the mBGKW bit commitment 

scheme with probabilities PO+Pl ~ 1 + l/p(n), for every polynomials p(.) and aU sufficiently 

large n's, then there exists an algorithm A' that can predict an unknown n-bit string (roEEîrl) 

with probabilities 1/ 4p( n?, which is impossible. 

Indeed the following st ronger statement is also true: 

Corollary 4.4 If there exists an algorithm A that can cheat the mBGKW bit commitment 

scheme with probabilities Po + Pl > 1 + (l/J2)n th en there exists an algorithm A' that 

can predict an unknown n-bit string (ro EEî rI) with probabilities better than 1/2n, which is 

impossible. 

Notice the square root gap between the intuitively expected binding condition 1 + 2~ 
and the proven result of Corollary 4.4. This is merely the consequence of the crude lower 

bound we found for Pœ. A more precise analysis covering more strategies to compute roEEîrl 

and results on the maximum information we can extract from optimal measurement on l"p) 

might close the gap. Nevertheless, this small hole is not important enough to compromise 
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the security of the mBGKW scheme because the binding condition is still exponentially close 

to one. 

Notice also that the pro of presented in Lemma 4.1 can easily be generalized to a whole 

class of bit commitment schemes with the properties that information unknown to Paula 

is sent to Peggy to commit, and an exact answer is needed from Paula to unveil success­

fully the committed bit. Corollary 4.4 therefore holds for a whole class of bit commitment 

scheme in the two-prover model. 

Note finally that sBGKW is the same as mBGKW where ra := 000 ... 0 is the alI-zero 

string aIl the time. The statement and pro of of Lemma 4.1 is equally valid for any fixed 

choice of either (but not both) ra or rI because the probability to predict ra œ rI remains 

exponentially small. Hence using only the model's assumption we get 

Corollary 4.5 If there exists an algorithm A that can cheat the sBGKW bit commitment 

scheme with probabilities Pa + Pl > 1 + (1/ J2)n then there exists an algorithm A' that can 

predict an unknown n-bit string r with probabilities better than 1 /2n, which is impossible. 

4.3 Reduction to the original BGKW scheme 

Building on Corollary 4.5, we can easily derive a similar result for the original BGKW 

scheme. Consider the following reduction from the BGKW scheme to the sBGKW scheme. 

First, Peggy and Paula perform their cheating algorithm for the BGKW scheme as usual. 

Suppose they successfully cheat for b; check Section 2.3.1 and Figure 2.2 to get a flavor of 

what a successful strategy is supposed to output. For each bit of the random string rand 

choice of bit b, Peggy receives the trit Xi and Paula receives the trit Yi := (ri + l)(b + Xi) 

mod 3 from their strategy. They then convert these trits into bits to answer the sBGKW 

scheme, as follows: 

1. Peggy sends the bit xi := ((ri + l)Xi mod 3) mod 2. 

2. Paula sends the bit Y~ := (Yi + 2b mod 3) mod 2. 
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It is straightforward to check that x' and y' are indeed the correct outputs to cheat the 

sBGKW scheme. When b = 0 then the suceessful strategy for BGKW outputs Yi := (ri + l)Xi 

mod 3. Setting y~ := Yi mod 2 yields y~ = x~, which is the correct value to unveil as b = 0 

in the sBGKW scheme. When b = 1 then Yi := (ri+1)xi+ri+1 mod 3. Setting y~ := (Yi+2 

mod 3) mod 2 we get 

y~ = (Yi + 2 mod 3) mod 2 

(fi + 1)Xi + fi + 1 + 2 mod 3 mod 2 

((ri + l)Xi mod 3 mod 2 + ri mod 3 mod 2) mod 3 mod 2 

x~ + ri mod 2. 

where we can drop the "mod 3" in the last equality sinee both x~ and ri are bits (their sum 

is always less than three). Again this is the correct value to unveil as b = 1 in the sBGKW 

scheme. In the black-box model, the reduction can be depicted as in Figure 4.1. 

NL 
s -.l--r--,.E-----1-- t 

Y 

x' := (s + l)x mod 3 mod 2 y' := y + 2t mod 3 mod 2 

Figure 4.1: Reduction from the NL-box to the NL3-box. 

Thence, from this reduction it holds that 

Pb ~f Pr[unveil for b in sBGKW] 2: Pr[unveil for b in BGKW], 

and we can conclude that the original BGKW scheme is also secure against quantum proyers 

under the new model's assumption. 

Corollary 4.6 If there exists an algorithm A that can cheat the BGKW bit commitment 

scheme with probabilities Po + Pl > 1 + (l/V2)n then there exists an algorithm A' that can 

predict an unknown n-bit string r with probabilities better than 1/2n, which is impossible. 
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Conclusion and open problems 

In this thesis we have shown that the long-standing assumption of no-communication be­

tween the two proyers was not sufficiently precise to preserve the binding pro pert y of a 

bit commit ment scheme against an possible attacks. An extra assumption concerning the 

verifier, and more generally any third party the two proyers may have access to, needs to 

be made to prevent him to send correlated messages to the proYers, even if those messages 

do not allow to explicitly communicate. This refinement has been formally modeled with 

Definition 2.1. 

The questions whether there exists classically secure commit ment schemes that are 

insecure against quantum proYers, and whether there exists commitment schemes secure 

against quantum proYers, have both found affirmative answers. Once again, this highlights 

the fact that even in the two-prover model, the question as whether a classically secure 

commit ment scheme is also secure against quantum adversaries is non-trivial. Indeed, we 

have presented two schemes, the wBGKW and MSBC schemes, that can be cheated with 

probability one, or exponentially close to one, if the proyers share entanglement. On the 

other hand, we also presented a scheme, the mBGKW scheme, for which a proof that no 

quantum strategy can cheat the commitment was given. The security of the original BGKW 

commit ment scheme has been proved by reduction from the security of the mBGKW scheme. 

A natural question with respect to our new model's assumption is how can it be loos­

ened. Actually, it forbids Peggy an Paula to have access to any kind of non-local boxes 
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(which may be perfectly implemented through a third party); however such a strong re­

striction do es not necessarily need to be imposed. Take for instance the sBGKW scheme in 

the classical setting. Permitting Peggy and Paula to have access to a non-local box for the 

Magic Square game would not give them the ability to cheat the commit ment scheme: if 

instead of the non-local box we let them have the entanglement that implements perfectly 

such a box (see Section A.2.2), something that makes them strictly more powerful, then we 

know from Lemma 4.1 that it does not help them to cheat. Still, our model's assumption 

does not allow such an inconsequential box! So how can the assumption be further refined? 

Which boxes can we allow in the assumption, and which can we not? How can we prove 

that a non-local box is futile without invoking Lemma 4.1? 

The various applications of the sBGKW scheme also need to be studied. A direct conse­

quence of its security against quantum adversaries is probably the possibility to elaborate 

quantum zero-knowledge proofs in the two-prover model. Using simple classical techniques 

from [BGG+89J and [IY87J its seems rather straightforward for the two proyers to prove in 

zero-knowledge any statements in IP=PSPACE. However, as discussed in the introduction, 

up to which complexity class it is possible to do so is not known, unless the amount of 

entanglement shared between the proyers is bounded by sorne a priori fixed polynomial in 

the input length. 

Questions like is it possible to build a quantum oblivious transfer proto col using the 

construction of [CK88, Cré97J, or a quantum mutual identification proto col as in [CS95J 

are also intriguing. Determining if the quantum scheme presented in Section 4.2 is binding 

with respect to the st ronger Definition 1.5 is still an open problem. 
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Appendix A 

Classical and quantum optimal 

implementation of the NL-box and 

the Magic Square game 

Since its discovery by Einstein, Podolsky and Rosen, in the famous "thought experiment" 

of [EPR35], and taking aIl its profound fundamentality with the controversial result of John 

Bell in 1964 [Be164], non-locality and its impact has been one of the major line of research 

in quantum mechanics. As presented in [NCOO], 

li [ ... f substantial experimental evidence together with the large set of inequalities 

generically known as the Bell inequalities showed that non-local correlations are 

a fundamental difference between classical and quantum physics, often referred 

as the non-c1assical propeny of quantum mechanics. " 

On a more practical hand, in quantum computation and information, non-locality is intro­

duced as entanglement shared between two (or more) parties. It is surprising to see how 

non-locality can be exploited as a resource to perform information processing task impos­

sible using c1assical physic, e.g. quantum teleportation [BBC+93] and super dense coding 

[BW92]. 
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A.l The CHSH game 

Non-Iocality is often best explained in the framework of cooperative games, where two (or 

more) players play cooperatively against a verifier. In this section, we are mostly interested 

by the so-called CHSH game, after the initials of its four discovers Clauser, Horne, Shimony, 

and Hold [CHSH69]. The CHSH game, which leads to the well-known CHSH inequality, 

is among the first cooperative game ever studied for which the simple question "can we 

do better using entanglement" found an affirmative answer. The following shows how and 

by which amount we can do better than if we bound ourselves to use a classical strategy. 

Although it would be quite interesting to give a new technique for answering the question, 

elegant solutions already exist in the literature. The rest of the work presented in this 

chapter is heavily inspired from [CHTWD4]. 

The structure of the CHSH game goes as follows. A verifier Vic uniformly chooses at 

random two bits (s, t) E {D,I} x {D,I}, then sends s to Peggy and t to Paula. Peggy 

responds with U E {D, I} and Paula responds with v E {D, I}. To win the game, Peggy and 

Paula must answer (u, v) such that 

u EB v = s 1\ t, (A.I) 

under the constraint that Peggy and Paula are isolated and u, alternatively v, is uniformly 

distributed. 

It is not hard to see that winning this game corresponds exactly to the behavior we 

expect from the NL-box of Section 2.3. Note that using GF(2) terminology, (A.l) can be 

expressed as 

u + v == st (mod 2). (A.2) 

A.1.I Optimal classical strategy for the CHSH game 

Recall from Section 1.3 that Wc is the maximum success probability over aIl possible strate­

gies that the classical pair Peggy-Paula win the game. From Theorem 1.3, we get that to 
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upper bound wc, one needs only to consider deterministic strategies. 

To pro duce U and v with a deterministic strategy, Peggy, respectively Paula, evaluates a 

function depending on s, respectively t. Let u(s) and v(t) be these functions. For instance, 

on input (s, t), a strategy that would output 

u(s) = u and v(t) = v 

would succeed. 

Lemma A.1 WC ~ 3/4. 

Proof: From (A.2) 

u(s) + v(t) == st (mod 2) 

---t v(t) == u(s) + st (mod 2). 

For any strategy, there is two possibilities regarding the value of u(s). 

i. The function u(s) is independent of s, that is u(s) = Uo where Uo is a constant. Thus 

v(t) == Uo + st (mod 2). (A.3) 

ii. The function u(s) is dependent of s, that is u(s) = UO+UlS where Uo, Ul are constants. 

Thus 

v(t) == Uo + S(UI + t) (mod 2). (A.4) 

Peggy and Paula win on every input (s, t) only if there exists a strategy where v(t) is 

independent of s. Clearly, from (A.3) and (A.4), this is not the case; Peggy and Paula 

cannot win every time. Because there are four possible input pairs (s, t), they can win for 

at most three of them. Hence Wc ~ 3/4, which proves the claim. 

o 

In fact it is not hard to show the stronger result: 
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Theorem A.2 WC = 3/4. 

Proof: Consider the truth table. 

The strategy where 

s 

o 
o 
1 

1 

t 

o 
1 

o 
1 

sl\t 

o 

o 
o 
1 

u(s) = 0 and v(t) = 0 

always output u( s) EEl v( s) = O. It is straightforward that this strategy wins the CHSH game 

3/4 of the time. 

o 

Among other things, the result of Theorem A.2 means that the NL-box cannot be simulated 

perfectly using local variables on each side. 

A.1.2 Optimal quantum strategy for the CHSH game 

We now turn to the scenario where Peggy and Paula are allowed to use a quantum strategy. 

We show that sharing entanglement, Peggy and Paula can beat the classical bound of 3/4. 

As in [CHTW04], consider this specifie strategy. Peggy and Paula share the entangled one 

qubit state 

Define 

11/10(0)) .- cos(O)IO) + sin(O)ll), 

11/11(0)) .- sin(O)IO) - cos(O)ll). 
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Given s, Peggy will perform a projective measurement determined by the measurement 

operators {X~ 1 U E {a, l}} and report u to Vic. Likewise, given t, Paula will perform a 

projective measurement determined by the operators {ytv 1 v E {a, l}} and send v to Vic. 

Let the operators be 

X(f = l~u(a))(~u(a)l, 

Xï l~u(7r/4))(~u(7r/4)1, 

Yo
v = l~v(7r/8))(~v(7r/8)1, 

Yt = l~v(-7r/8))(~v(-7r/8)1· 

To prove this quantum strategy outperforms Wc, we need the following litt le identity. 

Lemma A.3 Let Icp) E Cd ® Cd be any maximally entangled state, then for any d x d 

complex matrix X 

Proof: Using the Schmidt decomposition, the maximally entangled state Icp) can be ex­

pressed as 
d-l 

lep) = ~?=IJ)lj). 
J=O 

Similarly, the d x d complex matrix X can be expressed as 

d-l d-l 

X = L L Àktlk) (li Àkl E c. 
k=OI=O 

Using sorne elementary linear algebra, 

d-l d-l d-l 

(X®I)lcp) = ~~t;t;Àktlk)(llj)lj) 
l d-l d-l 

= v'd L L Àktlk)ll). 
k=OI=O 

(A.5) 
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And likewise, 

d-l d-l d-l 

(I®X
T )I<p) ~f;t;EÀkdj}ll}(klj} 

1 d-l d-l 

= yldLLÀkzlk}II}. 
k=OI=O 

(A.6) 

Clearly (A.5) and (A.6) are equal, which conclude the claim. 

o 

Following the line of arguments developed in [CHTW04, Hay], we can lower bound wq • 

Lemma A.4 wq ~ cos2 (1f/8). 

Proof: Define p(u, v 1 s, t) as the probability of measuring u and v given that sand t were 

sent. Peggy and Paula are using the projective measurements described above. Hence, the 

operators for the joint measurement are {X~ ® yt 1 u, v E {O, l}}. Label U the system held 

by Peggy and V the system held by Paula, then we get 

p(u, v 1 s, t) = (<1>+IX~ ® ytvl<1>+) (A.7) 

= (<1>+1 (X~ ® 1) ® (1 ® ytV) 1<1>+} 

= (<1>+I(X~ ® 1) ® (ytv
T 

® 1)1<1>+) (A.8) 

= (<1>+I(X~ytVT ® 1)1<1>+) 

= (<1>+1 (X~ytv ® 1) 1<1>+) (A.9) 

~ ((Olu(Olv + (llu(llv) (X~ytv ® 1) (IO)uIO)v + Il)uI1)v) 

= ~ ((Olux~ytvIO)u(OlvIO)v + (OluX~ytvll}u(Olvll)v 

+(lluX~ytvIO}u(llvIO)v + (lluX~ytvll)u(llvll)v ) 

~ ((OluX~ytvIO)u + (lluX~ytvll)u ) 

~Tr(X~ytV), 
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where (A.7) is by definition of measurement, (A.S) is by applying the identity of Lemma A.3 

and (A.9) is because, given our particular choice of measurement operators for Paula, ytv 

is invariant under transpose. It is now routine to check that for every pair of inputs (s, t), 

Peggy and Paula give the correct answer with probabilitycos2( 7r /S). As an example, we 

do the case where (s, t) = (1,1). Because s A t = 1, Peggy and Paula need (u, v) E 

{(O, 1), (1, O)}. The first pair gives 

1 1 
p(O, 111, 1) 2'Tr(XpYl) = 2'Tr(I'l/Jo(7r/4))('l/Jo(7r/4)II'l/Jl(-7r/S))('l/Jl(-7r/8)1) 

1 
= 2'1('l/JO(7r/4)I'l/Jl(-7r/S))12 by cyclicity of the trace 

= ~1(COS(7r/4)(01 + sin(7r/4)(11)(sin(-7r/S) 10) - cos(-7r/S) Il))12 

~I- cos(7r/4) sin(7r/8) - sin(7r/4) cos(7r/S)12 

1 . 1 
= 2'1- sm(7r/4 + 7r/sW = 21- cos(7r/2 - 7r/4 - 7r/8)12 

1 '2 cos2(7r/S). 

Doing the calculations, (u, v) = (1, 0) also gives p( 1, 0 1 1, 1) = 1/2 cos2 (7r / S). Therefore the 

probability to win when (s, t) = (1,1) is ~ cos2(7r/S) + ~ cos2(7r/S) = cos2(7r/8). The same 

holds for the three other sets of inputs (s, t). 

o 

Theorem A.5 wq = cos2(7r/8). 

Proof: The intuition behind what follows is that a strategy that could do better than 

cos2(7r/S) would require more "power" from entanglement. Our goal is then to show that 

the strategy presented above exploits entanglement's correlations to its maximum. 

First, let us translate the measurement operators X~, ytv into observables with eigen­

values ±1 ([NCOO] p. 87). It is straightforward from its definition that the projector xg 

corresponds exactly to a measurement in the computational basis {10)(01, Il) (II}· Consider 

the observable Z, 

o ) = 10)(01-11)(11. 
-1 

7S 

(A.lO) 



If Peggy applies the observable Z to her part of 1<1>+), if she obtains the eigenvalue 1 it 

means her part of 1<1>+) has been projected in the state 10)(01. On the other hand, if she 

obtains the eigenvalue -1 it means her part of 1<1>+) has been projected in the state Il)(11. 

One easily realizes that this has the same effect as applying the measurement {10)(01, Il)(11}. 

The measurement operator Xf corresponds to a measurement in the diagonal basis 

{HI0)(0IH,HI1)(1IH}. We know from a simple calculation ([NeOO] p. 459) that 

HZH=X. 

Hence, using the expression for Z in (A.lO), 

x = HIO)(OIH - HI1)(1IH. 

As it was the case for the observable Z, the eigenvalue obtained after applying the observable 

X has the same effect on the observed state as a measurement in the diagonal basis. Using 

the same type of reasoning, we get that the observable for a general rotation Re by angle 

o is defined by 

( 
cos(O) Sin(O)) (1 0) (COS(O) sin(O) ) ReZRe = 
sin( 0) - cos( 0) 0 -1 sin( 8) - cos( 0) 

( 

cos2(O) - sin2(O) 2cos(O)sin(O) ) 

2 cos(O) sin(O) -(cos2(O) - sin2(O)) 

= (COS(20) Sin(20)) 

sin(28) - cos(28) 

Thus, the observable Yo associated with the measurement in basis defined by Yov is 

1 (1 1) Z+X Yo = R7r/8ZR7r/8 = ln = v'2 . 
v 2 1 -1 2 

and the observable YI associated with the measurement in basis defined by Yt is 

1 (1 YI = R-7r/8ZR-7r/8 = ln 
v 2 -1 

-1 ) _ Z - X 
-1 - J2 . 
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To summarize, upon reception of (8, t) Peggy and Paula perform their measurement 

using the observables 

Xo=Z, 

Xl=X, 

Yr_ Z + X 
0- v'2 ' 

Z-X 
Yl= v'2 . 

Plugging these observables in the famous Bell inequality known as the CHSH inequality, 

we get 

(A.11) 

where (XiYj) = (4)+IXi 0 YjI4>+) denotes the mean value of Xi and Yj; see [NCOO] p. 116 

for more details. 

But wait! Using Tsirel'son [Cir80, Cir87] upper bound1 for any observable (Xo and Xl 

being applied by Peggy and Yo and YI by Paula) 

we get that our strategy already uses the maximum out of the correlations produced by 

entanglement. This conclude the theorem since no other strategy can do better. 

o 

A.2 The Magic Square game 

A description of the Magic Square game can be found in Section 3.2.1. 

For the interested reader, there are other pseudo-telepathy games that are related to 

the magic square game. Adan Cabello's game [CabOlb, CabOla] do es not resemble the 

magic square game on first approach. However, closer analysis reveals that the two games 

are totally equivalent! A formaI proof of this claim can be found in [Bro04], along with the 

1 Although Tsirel'son proved is bound using the singlet state ~(IOl) -110), a generalization by Wehner 

[Weh06] showed it holds for any bipartite state. 
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definition of equivalence between pseudo-telepathy games. 

Furthermore, Aravind has generalized his own magic square ide a [Ara03] to a two-player 

pseudo-telepathy game in which the players share n Bell states, n being an arbitrary odd 

number larger than one. 

A.2.1 Optimal strategy for classical players 

Theorem A.6 When restricted ta classical strategies, Peggy and Paula can win the Magic 

Square game with probability at mast ~. 

Proof: Using Theorem 1.3, we only have to consider deterministic strategies to establish 

a bound for wc(G), the maximum success probability of winning when the game G is the 

Magic Square game. 

A deterministic classical strategy would have to assign definite binary values to each of 

the nine entries of the magic square. From our set of winning conditions (see Section 3.2.1), 

it implies that the parity of the ni ne entries is even according to the rows and odd according 

the columns. Obviously, no such set of entries can exist, so wc(G) < 1. Using Lemma 1.4, 

we get that wc(G) ::; &. 

Consider the following square and associated deterministic strategy. 

o 
1 

2 

012 

0 0 0 

0 0 0 

1 1 ? 

The parity of rows zero and one is even, and the parity of columns zero and one is odd, so 

Peggy and Paula win every time for these four possible cases without changing anything. If 

Peggy is asked row two, then she changes the? of entry (2,2) to zero to get an even parity, 

and similarly Paula changes it to one to get a odd parity for column two. It is not hard 
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to see that they get caught cheating only when the intersection of the answered row and 

column is the entry (2,2). Therefore wc(G) = g, which conclude the proof together with 

Lemma 1.2. 

D 

A.2.2 Quantum winning strategy 

The quantum winning strategy for the magic square game is not as simple as the classical 

impossibility pro of. We refer the reader to [Ara02, Bro04] for a clear and detailed proof, 

since we will present here only a swift overview. 

Let Peggy and Paula share the entangled state 

11/1) = ~IOOll) - ~IOll0) - ~11001) + ~lll00) . (A.12) 

The first two qubits belong to Peggy and the last two to Paula. Upon receiving their inputs 

x and y from the verifier Vic, Peggy and Paula apply respectively the unitary transformation 

Rx and Cy , according to the following matrices. Note that, as a reminder, we used Rx as 

the transformation associated with the computation for the row, and Cy for the column. 

_ 0 -t 1 0 1 [t 0 0 1] 
Ro- 12 0 t 1 0 , 

v~ 1 0 0 t 

1 [ t -t 1 1] C = _ -t -t 1-1 
o 2 1 1 -t t , 

-t t 1 1 

[ 
t 1 1 t] 1 -t 1 -1 t 

RI = '2 t 1 -1 -t , 
-t 1 I-t 

[

-1 t 1 t] 
_ lIt 1-t 

Cl - '2 1 -t 1 t , 

-1 -t 1-t 

R - 1 1 -1 1 1 [-1 -1 -1 1] 
2 - 2" 1 -1 1 1 , 

1-1-1-1 

1 [ 1 0 0 1] -1 0 0 1 
C2 = . ;;:;2 0 1 1 0 . 

v ~ 0 1 -1 0 

Then, Peggy and Paula measure their qubits in the computational basis. This provides 

two bits to each player, which are the first two bits of their respective output rX and cY • 

Finally, Peggy and Paula determine their third output bit from the first two, so that their 

parity condition is satisfied. The intersection condition is also always satisfied. 

Consider for example inputs x = 1 and y = 2. After Pèggy and Paula apply RI and C2, 
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respectively, the state evolves to 

(RI ® O2)11/1) = 2.h [1 0000) -10010) -10101) + 10111) 

+11001) + 11011) -11100) -11110)] . 

(A.13) 

(A.14) 

Suppose for instance that after measurement, Peggy and Paula obtained 10 and 01. In that 

case, Peggy would complete with bit one so that her output rI = 101 has even parity and 

Paula would complete with bit zero so that her output c2 = 010 has odd parity. Vic will 

be satisfied with the answer since both Peggy and Paula agree that the third entry of the 

second row is indeed the same as the second entry of the third column: cI = r~ = 1. It is 

easy to check that the seven other possible answers that Peggy and Paula could have given 

on this example are aIl appropriate. The verification that this quantum strategy wins also 

on the other eight possible questions is tedious but straightforward. 
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