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FOREWORD

The author, Arvinder Pal Singh, of this dissertation chooses the manuscript-based

thesis option according to the following thesis preparation guideline given by the Faculty

ofGraduate Studies and Research:

Candidates have the option of illcluding, as a part of the thesis, the texl of a
paper(s) submitted or to be submitted for publication, or the clearly duplicated text ofa
published paper(s). These texts must be bound as an Integral part ofthe thesis.

If this option is chosen, connecting texts that provide logical bridges between the
different papers are mandatory. The thesis must be wriuen in such a way that il is more
than mere collection ofmanuscripts; in other words, resu/ts ofa series ofpapers must be
integrated.

The thesis must still conform ta ail otber requirements of the "Guidelines for
Thesis Preparation ". The thesis must include: A table of Contents, an abstract ill
English and French, an introduction which clearly states the rationale and objectives of
the study, a comprehensive review of the literature, a final conclusion and a summal}',
and a thorough bibliography or reference liste

AddUlonal material must be provided where appropriate (e.g. in appendices) and
in sufficient de/ail to allow a clear and precise judgement to be made of the importance
and originality ofthe research reported in the thesis.

In case ofmanuscripts co-authored by the candidate and the others, the candidate
is required to make an exp/icil statement in the thesis as to who contribllted to such work
and ta what extent. Supervisors must aUest to the accuracy of such statements at the
doctoral oral defense. Since the task of the e.x:aminer is made more difficult in these
cases, il is in the candidate 's interests to make perfectly clear respollsibilities ofal! the
allthors of co-authored papers. Under no circumstances can a co-allthor of any
component ofsuch a thesls serve as an examinerfor that thesis.

Contents of chapters 2 to 7 of the present thesis are adopted from the published papers in

scientific joumals under the normal supervision of thesis research supervisor, Professor

Alejandro D. Rey, who is also a co-author.
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l, Alejandro D. Rey, hereby give copyright clearance of the following manuscripts

of which 1am a co-author. The extent ofmy contribution to following manuscripts is that

of a research director. 1provided the research directions, technical consultation on the

subject, and general supervision throughout the duration ofthis Ph.O. thesis.

Cbapter 2

A.P. Singh and A.D. Rey, ~'Microstructure constitutive equation for discotic nematic
liquid crystalline materials. Part 1: Selection procedure and shear flow predictions'\
Rheologica Acta 37(1) p30-45 (1998).

Cbapter 3

A.P. Singh and A.D. Rey, "Microstructure constitutive equation for discotic nematic
liquid crystalline materials. Part II: Rheological predictions", Rhe%gica Acta 37(4)
p374-386 (1998).

Cbapter4

A.P. Singh and A.D. Rey, "Consistency of predicted shear-induced orientation modes
with observed mesophase pitch-based carbon fiber textures", Carbon 36(12) p1855­
1859 (1998).

Chapter 5

A.P. Singh and A.D. Rey, "Theoretical analysis of microstructure dependent
extensional viscosity of mesophase pitches", Liquid Crysta/s 26(7) p999-1 005 (1999).

Chapter 6

A.P. Singh and A.D. Rey, "Effect of long range elasticity and boundary conditions on
microstructural response of sheared discotic mesophases", Journa/ ofNon-New/onian
Fluid Mechanics 94(2-3) p87-111 (2000).

Chapter 7:

A.P. Singh and A.D. Rey, "Modeling shear-induced microstructure in mesophase
pitches", XI/fh Congress ofRheology "Rhe%gy 2000" Cambridge, U.K. Volume 2,
pl17-119 (2000).

Alejandro D. Rey
Professor
Department of Chemical Engineering
McGill University, Montreal, Canada
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AB8TRACT

Carbonaceous mesophase are naturally occurring discotic nematic liquid crystals

that are used as precursor materials ta manufacture high performance mesophase carbon

fibers, which are increasingly being employed in next generation composite materials in

chemical, electronics, and aerospace industries. The superior set of product property

profile of these fibers is due to the preferred microstructure development, during the fiber

spinning process, which is facilitated by anisotropie nature of the carbonaceous

mesophase. The development of microstructure during the fiber formation process is

critical to optimize their properties. However, the flow behavior of carbonaceous

mesophases under such complex extemal fields is largely unknown. Several

experimental studies have been perfonned \vorldwide to explore the flow behavior of

precursor materials. Mathematical modeling, on the other hand, has not only

complemented the experiments but has also emerged as a more economical alternative,

and forms the basis ofthis study.

In this thesis we developed a constitutive equation (CE) for carbonaceous

mesophases by taking into account full microstructure characteristics. The

microstructural and rheologjcal predictions of the constitutive equation are computed by

subjecting it to shear and extensional flows. The steady and dynamical microstructure

features of the various orientation regimes are thoroughly characterized and analyzed.

The predicted relations among the rheological properties (simple shear and uniaxial

extensional), flow-induced microstructure, processing conditions, and material properties

are discussed. The effect of surface anchorings and the long-range elasticity on the bulk

shear-induced microstructure of discotic mesophases is analyzed. The numerical results

are used to put forth the fundamental principles that govern mesophase carbon fiber

texture generation under shear. The simulations reproduce and explain a significant

number of experimental facts and trends. The excellent performance of selected CE

strongly suggests that it is a reliable contribution towards fonnulation of a process model

for carbonaceous mesophase spinning.
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RÉSUMÉ
Les mésophases carboniques, qui apparaissent naturellement dans les cristaux

liquides nématiques distiques, sont utilisées comme matériaux précurseurs pour la

préparation de fibres de carbones mésophasiques à hautes perfonnances. Ces fibres seront

de plus en plus employées dans la nouvelle génération de matériaux composites destiné à

l'industrie chimique, électronique et aérospatiale. La supériorité de l'ensemble des

propriétés de ce produit est due au développement préférentiel de la microstructure,

durant le processus de filage, qui est facilité par la nature anisotropique des mésophases

carboniques. Le développement de la microstructure durant le procédé de fonnation des

fibres est critique pour l'optimisation des propriétés. Cependant, le comportement de

l'écoulement des mésophases carboniques dans de si complexes conditions est très

largement inconnue. Plusieurs études expérimentales ont été réalisées à dans le monde sur

l'écoulement de ces matériaux précurseurs. La modélisation mathématique, d'un autre

coté, n'a pas seulement été un complément des expériences mais s'est aussi avéré une

alternative plus économique, et elle fonne les bases de cette étude.

Dans cette thèse, nous développons une équation constitutive (EC) pour les

mésophases carboniques en prenant en compte l'ensemble des caractéristiques de la

microstructure. Les prédictions micro-structurelles et rhéologiques de l'équation

constitutive sont calculées sujet aux écoulements de cisaillement et extensionnel. Les

caractéristiques de la microstructure statique et dynamique des différents régimes

d'orientations sont complètement caractérisés et analysés. Les relations prédites parmi les

propriétés rhéologiques (cisaillement simple et écoulement uni-axiaux extensionnels), les

microstructures induites par l'écoulement, les conditions de déroulement, et les propriétés

des matériaux sont discutées. Les effets de la .surface fixée et de l'élasticité de longue

porté sur la microstructure du volume intérieur induit par cisaillement des mésophases

discotiques est analysée. Les résultats numériques sont utilisés pour mettre en avant les

principes fondamentaux qui gouvernent la génération de texture de mésophases de fibres

de carbone sous cisaillement. Les simulations reproduisent et expliquent un nombre

signifiant de faits expérimentaux et de tendances. Les excellentes perfonnances de

l'équation constitutive sélectionnée suggèrent fortement que ce soit une contribution

fiable vis à vis de la formulation d'un modèle du procédé d'extrusion de mésophases

carboniques.
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2.7 (a) Steady state uniaxial alignment Sss, and (b) biaxial alignment Pss as a

function of dimensionless shear rate Pe for U = 6, P= -0.8, predicted by

CE-2 for DNs subjected to simple shear flows. The bifurcation phenomena

exhibited by CE-2 is given by two in-plane solution branches, IP-l and IP-2,

and two out-of-plane solution branches, OP-l and OP-2. The summary of
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stability/instability of the solution branches in various intervals along with

the corresponding stable orientation states is given in Table 2.2. A

comprehensive summary of changes in S and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. 56

2.8 Computed steady state components of the tensor order parameter, Qss, as a

function of dimensionless shear rate Pe for U == 6, P== -0.8, as predicted by

CE-3 for DNs subjected to simple shear flows. The bifurcation phenomena

exhibited by CE-3 under simple shear is given by two in-plane solution

branches, IP-l and IP-2, and three out-of-plane solution branches, OP-l,

OP-2 and OP-3. The summary of stability/instability of the solution

branches in various intervals along with the corresponding stable orientation

states is given in Table 2.3. For details see text. 58

2.9 (a) Steady state uniaxial alignment Sss, and (b) biaxial alignment Pss as a

function of dimensionless shear rate Pe for U = 6, P == -0.8, predicted by

CE-l for ONs subjected to simple shear flows. The bifurcation phenomena

exhibited by CE-l is gÏven by two in-plane solution branches, IP-l and IP-2,

and three out-of-plane solution branches, OP-l, OP-2 and OP-3. The

summary of stability/instability of the sol~tion branches in various intervals

along with the corresponding stable orientation states is given in Table 2.3.

A comprehensive summary of changes in S and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. 59

2.10 Computed steady state components of the tensor order parameter, Qss, as a

function of dimensionless shear rate Pe for U == 6, f3 == -0.8, as predicted by

CE-4 for ONs subjected to simple .shear flows. The bifurcation phenomena

exhibited by CE-4 under simple shear is given by two in-plane solution

branches, IP-l and IF-2, and three out-of-plane solution branches, OP-l,

OP-2 and OP-3. The summary of stability/instability of the solution

branches in various intervals along with the corresponding stable orientation

states is given in Table 2.4. For details see text. 61



•

•

•

xx

2.11 (a) Steady state uniaxial alignment Sss, and (h) biaxial alignment Pss as a

function of dimensionless shear rate Pe for U = 6, P = -0.8, predicted by

CE-4 for ONs subjected to simple shear flows. The bifurcation phenomena

exhibited by CE-4 is given by two in-plane solution branches, IP-l and IP-2,

and three out-of-plane solution branches, OP-l, OP-2 and OP-3. The

summary of stability/instability of the solution branches in various intervals

aiong with the corresponding stable orientation states is given in Table 2.4.

A comprehensive summary of changes in 5 and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. 62

3.1 Definition of director orientation of a uniaxial discotic nematic liquid

crystalline material. The director 0 is the average orientation of the unit

normais to the disk-like molecules in a discotic nematic phase 73

3.2 (a) Definition of simple shear flow deformation, and (h) coordinate system.

The x-axis is the flow direction, the y-axis is the velocity gradient direction,

and the z-axis (out of the plane of the paper) is the vorticity axis. (c) Unit

sphere description of director triad (0, m, 1). Unit vector a (a = D, m, 1) is

completely defined by the azimuthai angle Ba (0 ~ Ba ~ 2tr) and the polar

angle f/J. (0 ~ (JI ~ Ir). In tenus of unit vector angles, the equator lies in the

shear plane and is given as (Ba' (A)= ([0,2;rJ ±~), and the north pole and

the south pole are located on the vorticity axis and are given by r/Ja = 0 and

r/Ja = Irrespectively 79

3.3 (a) Tumbling function À. as a function ofuniaxial 5 and biaxial P alignments

for f3 = -0.8. The À. surface monotonically decreases (increases) for P < 3S

(P > 3S), with a discontinuity at P = 35. In discotic nematics planar steady

state exists only if À. < -1. (b) The complete P - S phase plane showing

regions where À. is positive or negative. This study is restricted to the

nonnal discotic nematics for alignments values for which À. is negative. (c)

À. as a function of uniaxial alignment S for P = 0, and for the shape factor

fJ = -0.9 (full line), -0.8 (dash line), and -0.7 (triple dot-dash line). The À.
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curves move upwards and towards left with increasing p, diverge as S ~ 0,

and intersect the Hne À. = -1 at lower ~. 85

3.4 Microstructure-rheology relations for non-aligning discotic mesophases for

the planar microstructure mode. (a) Microstructure features of non-aligning

discotic mesophases for the planar orientation mode: uniaxial alignment S

(full line), biaxial alignment P (dash line) and uniaxial director ft azimuthal

angle Bn (triple dot-dash line) as a function of Pe, for p = -0.8 and U = 6.

Corresponding rheologjcal predictions: (b) scaled dimensionless tirst normal

stress difference N;, (c) scaled dimensionless second normal stress

difference N;, and (d) scaled dimensionless apparent shear viscosity r( as

a function ofPe for C;v = 0.001 (fuIlline), 0.1 (dash line), and 0.2 (triple dot­

dash Hne). For planar mode the tirst normal stress difference is similar to

that of corresponding rod-like nematics. The second transition is not

predicted by the considered form of constitutive equation. The apparent

shear viscosity shows three regions. 91

3.5 Microstructure-rheology relations for non-aligning discotic mesophases for

the non-planar log-rolling mode. (a) Microstructure features for the log­

roHing orientation mode: uniaxial alignment S (full line), biaxial alignment

P (dash line) and biaxial director m azimuthal angle f)m (triple dot-dash

line) as a function of Pe for p = -0.8 and U= 6. Corresponding rheological

predictions: (h) scaled dimensionless tirst normal stress difference N; , (c)

scaled dimensionless second normal stress difference N;, and (d) scaled

dimensionless apparent shear viscosity r( as a function of Pe for qv = 0.001

(full line), 0.1 (dash Hne), and 0.2 (triple dot-dash line). N; (N;) show

three regions: two plateaus at low and high Pe with an intermediate power

law (shear rate dependent) regjon. The high Pe plateau for N; depends

strongly on C;v' ,,- is essentially independent of shear rate. The rheological

properties in this mode are govemed by flow-induced biaxiality 95
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3.6 Microstructure-rheology relations for aligning discotic mesophases. (a)

Microstructure features under simple shear flows: uniaxial alignment S (full

tine), biaxial alignment P (dash line) and ~iaxial director D azimuthal angle

On (triple dot-dash line) of aligning discotic nematics as a function ofPe for

p = -0.8 and U = 3.5. Corresponding rheological predictions: (b) scaled

dimensionless tirst normal stress difference N;, (c) scaled dimensionless

second normal stress diffèrence N;, and (d) scaled dimensionless apparent

shear viscosity ". as a function of Pe for çy = 0.001 (full line), 0.1 (dash

line), and 0.2 (triple dot-dash line)~ N; (N;) is always positive (negative)

which is similar to those of rod-like nematics. The dimensionless apparent

viscosity r( decreases exponentially for low shear rates but for intennediate

and high shear rates is independent of Pee N; and r( (N;) increase

(decreases) with increasing çy...... 96

4.1 Definition of director orientation of a uniaxiai discotic nematic liquid

crystalline material. The director 0 in a discotic nematic phase is the

average orientation of the unit normais to the disk-like molecules 108

4.2 Definition of homogeneous simple shear flow deformation. The x-axis is

the flow direction, the y-axis is the velocity gradient direction, and the z-axis

(out of the plane of the paper) is the vorticity axis or neutral direction 110

4.3 The representative schematics of the stable uniaxial orientation nlodes of

discotic mesophases under homogeneous simple shear flow predicted by

constitutive equation (2). The four stable orientation modes are: (a) ITü or

in-plane tumbling orbit, (b) rws or in-plane wagging state, (c) ISS or in­

plane steady state, (d) LRS or log rolling state. The top row represents the

planar orientation modes and the bottom row non-planar mode. As shear

rate increases there exists transition among planar orientation modes such

that with increasing shear rate: ITa ~ rws ~ ISS. Aiso there exists

multistability among planar and non-planar orientation modes. For more

details see the text and Table 4.1 111
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4.4 Schematics of (a) cylindrical coordinate system, and the observed fiber

microstructures: (h) radial, and (c) onion. In the radial (onion) texture, the

unit nonnals to the disk-like molecules orient along the azimuthal () (radial

r) direction ~ 114

5.1 The uniaxial director orientation 0 of the uniaxial discotic nemalic liquid

crystals. The director n is the average orientation of the unit normals to the

disc-like molecules 121

5.2 Deformation of a unit cylinder of discotic mesophase subjected at time t = a
to a uniaxial extensional flow deformation. The extension direction is along

the z-axis, and the r-(} plane contains the unifonn compression 123

5.3 Steady state uniaxial Sss and biaxial Pss scalar order parameters as a function

of De for U = 6 (full line) and U = 3 (dash-line) for p = -0.8 (upper), and

p = -0.6 (lower). Sss increases monotonically with the dimensionless strain

rate De at an values of U and p. Pss al higher U (U = 6) follo\vs the similar

trend, ho\vever at lower U (U = 3) there is a local minima. Both Sss and Pss

for discotic mesophases consisting of thicker molecules, p = -0.6, are less

than those with the relatively thinner molecules, p= -0.8 129

5.4 Schematics of (a) cylindrical coordinate system, and the two main

representative mesophase pitch-based carbon fiber transverse textures: (h)

radial, and (c) onion. In the radial (onion) texture, the unit nonnals to the

disk-like molecules orient along the azimuthal () (radial r) direction. These

textures are observed in the spinning of carbonaceous mesophases 130

5.5 Dimensionless uniaxial extensional viscosities 1]~ and T/~o (i = r (radial),

i = 0 (onion» of discotic mesophase as a function of De for Çv = 0.001 (full

line), 0.1 (dash !ine), and 0.2 (triple dot-dash line); for p = -0.8 and U = 6

«a), (h», and U = 3 «c), (d». The extensional viscosity T/~r (TJ~o) for the

radial texture T/;r (rKo) is always .less (greater) than for the onion texture
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6.1 Definition of uniaxial director/orientation ft of a uniaxial di5cotic nematic

liquid crystaIIine phase. The director ft is the average orientation of the unit

normals u to the disc-like molecules : 142

6.2 The parametric area in the K - K22 phase plane where the present theory,

equation (6.3), is applicable for rod-like and discotic nematics. Please note

that the theory is applicable for ideal discotic mesophases only in the closed

range K ~ K 22 ~ 4K. In this theory the bend and splay elastic constants are

equal Kil =K 33 =K. As shown, two different values of L; =L2 / LI are

used in the present analysis 146
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6.3 (a) Definition of rectilinear simple shear flow. The discotic mesophase

sample is placed between two infinitely long plates. The lower plate Cv = 0)

is stationary and the top plate (y = fi) moves in the +x-direction with a

known constant velocity V. The velocity gradient V'v is along the y-axis. (b)

Definition of orientation angle (J that the primary eigenvector (uniaxial

director) ft oftensor order parameter Q makes with the x-axis 149

6.4 (a) In-plane director angle 0, (b) uniaxial alignment S, and (c) biaxial

alignment P steady state spatial profiles for U = 6, f3 = -0.9, and L; = -4/3.

The parametric conditions are Er = 50, R == 1000 (solid line); Er == 50,

R == 10 (dash line); and Er = 100, R == 1000 (dot-dash line). The shown

profiles correspond to long-rangeelasticity induced steady state (ESS) for

BCVG, Ds.BCVG = (0, 1, 0) . The orientation profiles are parabolic. The

director angle at the centerline (JI y' =0.5 decreases with increasing Er,

however, remains unaffected by changes in R. A decrease in ratio R, at

constant Er, affects only alignments to compensate for higher long-range

energy. The nematic phase is nearly uniaxial. 154
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6.5 (a) In-plane director angle fJ, (b) uniaxial alignment S, and (c) biaxial

alignment P spatial profiles for BCf, 0S.BCF =(l, 0, 0), and for U = 6,

P= -0.9, and L; = -4/3. The parametric conditions are R = 100, Er = 100

(solid line); R = 100, Er = 50 (dash dot line); R = 1000, Er = 50 (dash line).

The shown data corresponds to long-range elasticity induced steady state

(ESS) for Bef. The orientation extends a larger angle in the bulk as

compared ta that in BCVG, DS.BCVG =(0, l, 0) . The uniaxial profile is

always marked a central core region where uniaxial S alignment is greater

than Seq, and by two troughs near the plates where orientation gradients are

large. The deviation in S increases with increasing Er and decreasing R.

The nematic phase again is nearly uniaxial.. 155

6.6 The temporal-spatial profiles of (a) orientation angle B, (b) uniaxial

alignment S, and (c) biaxial alignment P for BCVG, DS.BCVG =(0, 1,0), at

R = 100, Er = 2000. The stable microstructural features are inhomogeneous

and periodic, and typical of bulk tumbling-boundary wagging state (TWS).

The director orientation is periodic and is marked by three layers: one

central bulk region where the director rotates clockwise continuously, and

two boundary regions where the director oscillates. The spatial-temporal

response of alignments is marked by coinciding sharp changes that appear

near the binding surfaces 158

6.7 Scientific visualization of the spatial-temporal profiles of the tensor order

parameter Q for BCVG, 0S.BCVG = (0, 1, 0), and for R = 1000, Er = 2000,

U = 6, P= -0.9, and L2 / LI = -4/3. The bulk tumbling-boundary wagging

state (TWS) is stable under these parametric conditions. The ellipsoids

rotate clockwise in the central core, and oscillate with space dependent

amplitude near velocity gradient directions in the two boundary layers. A

pair of abnormal nematic states appears periodically at the boundary of

tumbling core and oscillating boundary layers. The average molecular

orientation is along the velocity gradient direction 159
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6.8 The time evolution of (a) orientation angle 8, (b) uniaxial alignment 5, and

(c) biaxial alignment P at y. = 0.5 (solid line), y. = 0.08 (dash line), and

y. =0.04 (dot dash line) for the same parameters as for Figure 6.7. Clearly,

the bulk near the centerline, y. =0.5, exhibits the classical tumbling step­

like time evolution in which the director rotates clockwise in the shear plane

by slowing down near the velocity gradient direction. In the oscillating

boundary regjons the orientation oscillates Dear the velocity gradient

direction with space dependent amplitude that is maximum near the

boundary between the tumbling-wagging layers, and decreases when

approaching the either plate. There is a sharp change in the alignments

when orientation is farthest away from the velocity gradient direction 160

6.9 (a) Boundary layer thickness t5, and (h) dimensionless time period Tp as a

function of Ericksen number Er for surface anchoring, DS.BCVG = (0,1,0), for

five different values of the ratio R. The boundary layer thickness 6

increases with increasing Er and decreasing R. Whereas, the dimensionless

lime period Tp decreases with increasing Er and R 162

6.10 Scientific visualization of the spatial-temporal profiles of the tensor arder

parameter Q for BCF, DS.BCF = (1, 0, 0), al R = 100, Er = 2000, U = 6,

fi = -0.9, and L; = -4/3. The bulk tumbling-boundary wagging state (rWS)

is stable under these conditions. In the central core the ellipsoids rotate

clockwise, and spend most of the time along the velocity gradient direction

as in BCVG, DS,BCVG =(0, l, 0). However, in the oscillating boundary layers

the ellipsoids oscillate with space dependent amplitude along a space

dependent direction, which is along the flow direction near the wall and

along velocity gradient direction near the boundary between boundary layer

and tumbling core 163

6.11 Time evolution of the in-plane director angle B angle al y. = 0.025 (solid

line), y. =0.05 (dot dash line), y. =0.1 (dash line) y. =0.2 (long dash
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line), and y. =0.5 (dotted line) for BCf, 0S.BCF =(1,0,0), and with the

parametric values of Figure (6.11). The director rotates clockwise in the

inner core while spending mast of the time along velocity gradient direction.

In the outer oscillating boundary layers, the director oscillates with space

dependent amplitude and around a space dependent direction. For details

see text. . 164

6.12 The boundary layer thickness t5 as a function of Ericksen number Er, for

BCF, 0S.BCF = (1, 0, 0), for various values of the ratio R. Please note that the

thickness t5 for BCF is higher than that for BCVG, D S,8CVG =(0, 1, 0), for

the same values ofR 165

6.13 Scientific visualization of the spatial-temporal profiles of the tensor order

parameter Q for BCVG, 0S,BCVG =(0, 1, 0), at R = 100, Er = 3000, U = 6,

f3 = -0.9, and L; = -4/3. The visualization is typical of the bulk wagging

state (WS) under BCVG. The ellipsoids oscillate in the entire bulk with

space dependent amplitude, which is the maximum at the center and zero at

the either boundary, along a direction near velocity gradient direction 167

6.14 Scientific visualization of the spatial-temporal profiles of the tensor order

parameter Q for BCF, 0S,BCf =(l, 0, 0), at R = 100, Er = 3000, U == 6,

f3 = -0.9, and L; = -4/3. The visualization is typical of the bulk wagging

state (WS) under BCF. The ellipsoids oscillate in the entire bulk with space

dependent amplitude, which is the maximum at the center and zero at the

either boundary. The ellipsoids oscillate along a direction near the velocity

gradient direction in major part of the bulk, however near the plates the

direction of oscillation changes from being near the flow direction ta the

velocity gradient direction as in the bulk. The average bulk orientation is

along the velocity gradient direction : 168

6.15 (a) In-plane director angle 0, (h) uniaxial alignment S, and (c) biaxial

alignment P spatial profiles for BCVG, 0S.BCVG = (0,1,0), and for U = 6,
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p = -0.9, and L; = -4/3. The parametric conditions are R = 100, Er = 6000

(solid Hne); R = 100, Er = 10000 (dash Hne); and R = 10, Er = 10000 (dot­

dash line). The profiles are typical of viscous flow-induced steady state

(VSS) under BCVG. The orientation B and alignment (S, P) profiles are

characterized by a flat profile within two boundary layers. The difference

between surface orientation and the bulk aligning angle decreases with

increasing Er and decreasing R. The alignments show the similar

dependence with Er and R. The sheared nematic phase is nearly uniaxial. 170

6.16 The steady state spatial profiles of the in-plane director angle B (solid line),

the uniaxial alignment S (dash line), and 'the biaxial alignment P (dot-dash

line) for Er = 60000, R = 100. The shown profiles are typical of the viscous

flow-induced steady state (VSS) occurring under BCF, D S.BCf = (1,0,0).

The bulk orientation profile is flat and nears the velocity gradient direction,

as in BCVG, DS.BCVG = (0,1,0). There are rapid gradients in the orientation

field near the plates at which there are sharp changes in alignment fields .

The uniaxial alignment reaches values greater than Seq, a peculiarity only

observed in BeF. The nematic phase is highly biaxial near the boundary,

however the bulk is mostly uniaxial (P:::: 0) 172

6.17 Microstructure phase diagram in the R-Er phase plane for (a) BCVG

(Ds,BCYG = (0, 1,0) ), and (b) BeF (Ds•BeF = (1,0,0) ) for U = 6, P= -0.9, and

L; = -4/3. The figure shows parametric .regions for the four stable planar

microstructure modes: ESS (0), TWS (0), WS (~), and VSS (0). In BCF

the phase plane is shifted towards right and upwards as compared to BCVG.

The coordinates of the qua-critical points (e) for BCVG and BCF are

(Erqc ' Rqc )BCVG :::: (70,3) and (Erqc ' Rqc: )BCF :::: (450,20) respectively 175

6.18 Microstructure phase diagram for BCVG, DS.BCVG =(0, 1, 0), and for

L; = -1/4 (K22 = 3K), U = 6, and p = -0.9. The figure shows parametric

regions for the four stable planar microstructure modes: ESS (0),
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TWS (0), WS (~), and VSS (0). At higher value of L;, lesser long range

anisotropy, the phase diagram is shifted towards right and upwards as

compared to Figure (6.19a) which is for L; =-3/4 (K12 =8/7 K). The

location 0 f the qua-critical points (.) is (Erqc ' Rqc )::::: (1 80, 8) L77

7.1 Definition of uniaxial director/orientation n of a uniaxial discotic nematic

liquid crystalline phase. The director n is the average orientation of the unit

nonnals u to the disc-like molecules 184

7.2 Definition of flow geometry, co-ordinate system and boundary conditions 186

7.3 Director out-of-plane angle f/J spatial profiles for Er = 100, R = la (solid

line), and Er = 1000, R = 100 (dash line). The inset schematics represent the

corresponding fiber textures 187

7.4 Uniaxial (S) and biaxial (P) scalar order parameter as a function of

dimensionless time (t) and distance (y/fi) for Er =1000 and R = 20. Director

profiles on unit sphere at y/H = 0.7 (kayaking orbit) and ylH = 0.9 (limit

cycle). Abnormal nematics appear aty· ::::: 0.84 189

7.5 Director out-of-plane angle f/J as a function of dimensionless distance (yIfi)

between the plates for Er = 100, and R = 1 (solid line), 0.1 (triple-dot dash

fine), Er = 1000, and R = 1 (dash line) 190
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A
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Q
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Length ofshortest semi axis ofoblate spheroid
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t Time

te Extra stress tensor

t S Symmetric contribution to extra stress tensor t 1
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Azimuthal angle ofvector 3, D, ID, 1respectively
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Tilt angle between molecules in smectic C phase and the normal to

the smectic plane

Viscosity

Elongationalltensile viscosity

Tensile modulus

Ratio of viscous to elastic stress contributions
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CHAPTER 1

Introduction

1.1 Thesis Motivation

One of the most important components in the recent revolution towards new and

more efficient materials has been development and use of polymer-based precursors.

Successful use of polymers for new materials applications involves two essential steps:

first is synthesis of novel materials, and second processing of the polymer into useful

products. Both steps play a critical role in detennining the underlying properties of the

material - the first because 0 f changes in chemical structure, and the second because the

physical structure of the precursors can be altered dramatically by thermomechanical

forces. Manipulation of molecular orientation and micro-phase structure in the

processing steps often plays a dominant raIe in CUITent applications. For example, the

excellent product property profiles of sorne liquid crystal polymer (LCP)-based fibers like

Kevlar and mesophase carbon fibers is due mainly to high degree of alignment imposed at

the molecular level in the processing steps. Although during the past decade sorne

important advances have been made in understanding polymer melt viscoelasticity,

relatively ·less is known if the material systems include more complex processing

materials such as miscible polymers, black copolymers, and liquid crystalline materials.

The present molecular theories of polymer melt rheology need to be extended to include
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liquid crystals to further our understanding of the underlying principles governing

microstructure-viscoelasticity responses, and thus to ultimately improve product­

property-profiles. Modeling and simulation provides economical alternatives ta more

expensive time consuming experimentation, and has been employed in this thesis to

understand the microstructural behavior of carbonaceous mesophase, a liquid crystalline

phase currently being employed to manufacture high performance carbon fibers.

The high performance carbon fibers posses exceptional mechanical and thennal

transport properties (McHugh, 1994); they exhibit ultra high Young's modulus, low

density, extremely large thermal conductivity, and negative coefficient of expansion; and

are increasingly being employed in the next generation composite materials for aerospace,

the electronics and automotive industries. The superior set of product property profile of

mesophase carbon fibers depends on their microstructure that evolves during spinning

process (McHugh, 1994; Fleurot, 1998), and is a strong function of the operating

conditions, geometry, and material properties. There has been a great interest in

understanding the texture evolution during the fiber formation melt spinning process, in

which the carbonaceous mesophases are subjected to non-homogeneous rnixed shear and

extensional flows, to control and optimize their product property profile. Figure 1.1

shows thermal conductivity and electrical resistivity for a number of metals and Amoco

series of mesophase pitch-based (suffix 'P') and PAN-based (polyacrylonitrile) carbon

fibers (Kowalsky, 1987). The thermal conductivity of mesophase carbon fibers is

considerably higher than that of Copper and PAN carbon fibers. These high values of

thermal conductivity are due to the inherent graphitic crystallinity in the weil ordered

textures of the mesophase carbon fibers. PAN carbon fibers can not exhibit these higher

values due to their fibrillar microstructure. The thermal conductivity of mesophase

carbon fibers is due to phonon conduction as opposed to electronic conduction (Kelly,

1967), and is influenced by several factors such as: high degree of crystallinity, large size

of crystallites etc. (Endo, 1988). Moreover, PAN-based carbon fibers, due to the fibrillar

nature, are unable to develop any extended graphitic structure, hence their modulus is

considerably less than the theoretical value, a limit which is nearly achieved by

mesophase carbon fibers, as shown in Figure 1.2 (Bacon, 1989).
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Figure 1.1: Thennal conductivity versus electrical resistivity product property phase plane
for various metals and carbon fibers. The thermal conductivity of mesophase carbon, P-130X,
P-120X etc., is considerably higher than that of the most conductive metals like Copper.
Adapted from KowaIsky (1987).
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Figure 1.2: Tensile strength versus modulus of elasticity (stiffness) product property phase
plane of various carbon fibers. The PAN-based carbon fibers have considerably higher strength
than the mesophase carbon fibers, however the former lack considerably in terms of stiffness.
The stiffness of mesophase carbon fibers reaches the theoreticallimits of pure graphite. Adapted
from Bacon (1989).
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1.2 General Background

Many organic compounds do not undergo a single-phase transition from a solid to

a liquid phase, but assume one or more intennediate states called mesophases, which

possess both liquid-like fluidity and solid-like molecular order (Priestley et al., 1975;

Vertogen and de Jeu, 1988; Chandrasekhar, 1992; deGennes and Proust, 1993). The

centers of masses of molecules eonstituting solids crystals are loeated in a three

dimensional periodic lattice, thereby having both positional as weIl orientational order.

On the other hand in isotropie liquids only short-range order prevails among the

constituent molecules. The extent of ordering in mesophases (mesomorphie or

anisotropie liquids) lies between that of a solid crystal and an isotropie liquid, as shown in

Figure 1.3. Based on this partial ordering two fundarnentally different types of

mesophases have been observed. (Priestley et al., 1975; Vertogen and de Jeu, 1988).

Mesophases which possess the positional order but lack any significant orientational

order, are called disordered crystal mesophases or plastic crystals (Priestley et al., 1975;

Vertogen and de Jeu, 1988). On the other hand mesophases in whieh the positional order

has been redueed or completely disappeared but still exhibit long-range orientational

order (in addition to the isotropie liquid like short-range order), are ealled ordered fluid

mesophases or liquid crystals, see Figure 1.3 for example. A partieular type of liquid

crystal, termed as diseotic liquid crystal, eomposed of polyaromatic dise-like moleeules,

is investigated in this thesis.

SoU. IJqaldCrystal Llquld

•
Figure 1.3: Schematie representation of molecular alignment in a crystalline solid, a liquid
crystal, and an isotropie liquid. It is sometimes diffieult to distinguish weather the material is in
a crystalline or liquid crystal state. Crystalline materials demonstrate long-range periodic order,
whereas isotropie liquids have no orientational order. Liquid crystals are not as ordered as
crystalline solids, yet have sorne degree of alignment. Adapted from PLC, CWRU (2000).
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The shape of the molecule is an important criterion for mesomorphism ta occur.

Since early investigations of liquid crystalline behavior the accepted fact, until recentIy,

was that for thermotropic mesomorphism ta occur the molecules must posses rod-like

shape. It was discovered in the last two decades that compounds, naturally occurring or

synthetic, consisting of disc-like (poly-aromatic) molecules can also exhibit thermotropic

mesomorphism and are termed as discotic liquid crystals, discotic nematics or discotic

mesophases. The tirst discotic liquid crystal was synthesis and identified in 1977

(Chandrasekhar et al., 1977). A number of synthetic (Dubois, 1978; Destrade et al.,

1979; Levelut, 1983) and naturally occurring (Brooks and Taylor, 1965; Destrade et al,

1981; Otani, 1981; Singer, 1985) discotic liquid crystals have since been discovered.

Naturally occurring carbonaceous mesophases display discotic liquid crystalline behavior

and are derived from pyrolysis of low cost coal and petroleum pitches (Otani, 1981;

Singer, 1981, 1985). This low cost mesophase is used as precursor materials to

manufacture high performance mesophase carbon fibers with superior product-property

profile.

1.3 Types of Liquid Crystals

1.3.1 Thermotropic Liquid Crystals

Single component systems, which show mesomorphic behavior in a definite

temperature range, are called thermotropic liquid crystals. Every molecule in the

thennotropic liquid crystalline phase participates in the long-range order. Figure 1.4

shows phase diagram of a typical thermotropic nematic liquid crystal (explained below).

The material exhibits nematic liquid crystalline behavior below transition temperature

TNI. The liquid phase is isotropic above the transition temperature.

1.3.2 Lyotropic Liquid Crystals

These exhibit the mesomorphic behavior in solution, and are usually the solutions

of rigid molecules in strong solvents (Priestley et al., 1975; Vertogen and de Jeu, 1988).

The anisotropic behavior is shown above a particular concentration. Moreover, the
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temperature range in which lyotropic liquid crystals are stable depends mainly on the

phase concentration. The long-order is mainly controlled by the rigid rod-like (solute)

molecules. A renowned example of lyotropic liquid crystals is Kevlar, which is a

solution of Poly(p-phenylene terephthalamide) in sulfuric acid. In general, the lyotropic

liquid crystals are of great interest in biological systems, and appear to play an important

role in living systems.

oL---------.....--~
Temperature

Figure i.4: Schematic representation of phase change brought about by temperature in liquid
crystalline materials. At lower temperatures T < r:VI the material exhibits liquid crystallinity (the
degree of molecular alignment, S > 0.3). However, for T ~ TNt the same material is an isotropie
fluide Aûapted from PLC, CWRU (2000).

1.4 Classification of Liquid Crystals based on Molecular Order

According to the nomenclature proposed originally by Friedel in 1922, the liquid

crystals are classified based on their molecular or orientational order into three major

classes: nematie, eholesteric, and smeetie liquid crystals.

1.4.1 Nematic Liquid Crystals

The schematics given in Figure 1.5 represent nematic order in liquid crystalline

materials. The molecules tend to align parallel to each other and along sorne common

axis called director D, a unit vector (Figure 1.5a). The centers of gravity of the

constituent molecules are distributed randomly in space. Hence, nematic liquid erystals
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posses orientational order like that of erystals but positional disorder like that of isotropie

fluids. Long-range orientational order and eylindrieal symmetry are exhibited by nematie

order.

(a)

n

(b) (c)

•

Figure 1.5: Schematic representation of (a) rod-like nematie liquid erystals, and (e) diseotie
nematie Iiquid crystais. The direetor ft represents the average preferred orientation of the
moleeules for (b) rod-like nematies, whereas in discotie nematics ft is the average preferred
orientation of the unit normais to the disc-like molecules. The moleeular degree of alignment is
given by scalar order parameter S, which is a measure of alignment of individual molecule along
the director o. See text for more details.

In rod-like nematies, the director 0 represents the average preferred direction of

the molecules, as shown in Figure 1.5a. Whereas in case of disk-like nematics, the

director 0 represents the preferred direction of the unit nonnal to the disk-like

constituting molecules as shown in Figure 1.5c. This thesis is geared towards developing

a fundamental understanding of the microstructure features of the discotic nematics.

Based on the different molecular geometries disk-like (rod-like) molecules are

represented by oblate (prolate) ellipsoids.

The degree of alignment of the individual molecules along the director n is given

by a scalar known as scalar order parameter S:

/3 2 1)
S =\ïcOS 8-2" (1.1)

•
where (j is the angle between the director 0 and the long axis of each rod-like molecule in

rod-like nematics (see Figure 1.5b), and that between the director n and unit nonnai of

each disc-like molecule in diseotie nematies. The braekets denote an average over aIl of

the moleeules in the sample. In an isotropie liquid, the average of the cosine tenns is
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zero, and therefore the order parameter S~O, whereas for a perfect crystal S~1. Typical

values for the order parameter of a liquid crystal range between 0.3 and 0.9, with the

exact value a function oftemperature, as a result ofkinetic molecular motion.

1.4.2 Cholesteric Liquid Crystals

The cholesteric liquid crystals are typically composed of nematic mesogenlc

molecules containing a chiral center, which produces intennolecular forces that favor

alignment between molecules at a slight angle to one another. This results in fonnation

of a structure, which can be visualized as a stack ofvery thin 2-D nematic-like layers with

the director in each layer twisted with respect to those above and below. In this structure,

the directors actually fonn a continuous helical pattern about the layer nonnal as

illustrated by the black arrows in Figure 1.6. The molecules shown are merely

representations of the many chiral nematic mesogens lying in the slabs of infinitesimal

thickness with a distribution of orientation around the director. An important

characteristic of the cholesteric mesophase is the pitch, the distance that the cholesteric

director in cholesteric traverses to rotate one full tum (360 degrees) in the helix .

z

- ---- --- ---- --- - --

-0

n",

-0

•

..L....Jl.- x

Figure 1.6: Schematic arrangement of rod-like molecules in a cholesteric liquid crystalline
phase. The Iocalized director n follows a helical trajectory aiong the z-axis. Please note that the
successive planes are drawn for convenience, and do not have any physical meaning. Adapted
from de Gennes and Proust (1993).
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1.4.3 Smectic Liquid Crystals

A smectic phase has, in addition to the orientational order of nematics and

cholesterics, a single degree of translational order (limited preferred arrangement in

space) that results in a layered structure. In the smectic state, the molecules maintain the

general orientational order of nematics, but also tend to align themselves in layers or

planes. Motion is restricted to within these planes, and the separate planes are observed

to flow past each other. The increased order means that the smectic state is more "solid­

like" than the nematic. Since smectic phases are more ordered they always occur at

temperatures below the nematic range. Many compounds are observed to fonn more than

one type of smectic phase. As many as 12 of these variations have been identified,

however only the most distinct phases are discussed here briefly. Figure 1. 7a shows a

schematic of smectic-A mesophase, the director is perpendicular to the smectic plane, and

there is no particular positional order within the layer. Similarly, the smectic-B

mesophase orients with the director perpendicular to the smectic plane, but the molecules

are arranged into a network of hexagons within the layer. In the smectic-C mesophase,

Figure 1.Th, molecules are arranged as in the smectic-A mesophase, but the director is at

a constant tilt angle OJ measured normally to the smectic plane.

1.5 Discotic Phases

The generaJ consensus before the discovery of discotic nematics ln 1977

(Chandrasekhar et al., 1977), was that for thermotropic mesomorphism to occur the

constituting molecules have to be rod-like in shape. However, early studies (Brooks and

Taylor, 1965; Dubois, 1978; Destrade et al., 1979, 1981) have established that many

compounds composed of disc-shaped molecules also exhibit stable thennotropic liquid

crystalline phases. Theoretically the possibility of existence of an assembly of plate-like

particles in the transition from isotropie to nematic phase was established (Alben, 1973)

weB before the experimental discovery of discotics. Sorne typical molecules, which

display the discotic mesomorphism, are given in Figure 1.8 (Chandrasekhar, 1992). A

typical molecule that exhibits discotic liquid crystallinity has flat (or nearly flat) cores

with six to eight long chain substituents, which are essential for formation of discotic
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liquid erystals. Strueturally, diseotie liquid erystals faH into two categories: eolumnar

phase (see Figure 1.8a,c,d,f,g,h); and nematic phase (see Figure 1.8b,e). The eolumnar

phase is observed more often in eompounds exhibiting discotic nematic behavior. In its

simplest fonn the eolumnar phase eonsists of dises staeked one on top of each other

aperiodically to forro liquid like columns, the different eolumns constitute a two

dimensional lattice. However, a number of variants of this structure have been found

(Levelut, 1983). Figures 1.9a,b,e,d,e show, schematical1y, various two dimensional

columnar lattices found in colurnnar diseotic crystals (Levelut, 1983; Chandrasekhar,

1992). The various ellipses represent dises, which are tilted with respect to the column

axis. To summarize, the columnar phase has long-range translational periodicity in two

dimensions and liquid-like disorder in the third dimension. The columnar phase of

discotic liquid crystals is not considered in this thesis, and therefore will not be discussed

further.

'" 1\11 , " 1/11
'1 III \ Il \, 1

" \ 1\\ 11/1\ "
(a)

z

•

11/1111/ /1/111/
1 111/ / ~'i / // l " 1
11111/1//1111/1

(b)

Figure 1.7 Schematic arrangement of rod-like molecules in (a) Smectic A, and (b) Smectic
C liquid crystalline phases. The shown smectic phases have 2-dimensionallayered structure. ln
smectic C phase the constituting molecules are tilted at an angle OJ normal to the smectic
plane. Adapted from de Gennes and Proust (1993).
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Figure 1.8: Examples of disc-like molecules that display discotic mesomorphism: (a) hexa-n­
alkanoates of benzene, (h) hexakis«4-octylphenyl)ethynyl)benzene, (c) hexa-n-alkanoates of
scylloinositol, (d) hexa-n-alkanoates of triphenylene and hexa-n-alkoxytriphenylene, (e) hexa-n­
alkyl and alkoxybenzonates of triphenylene, (0 hexa-n-alkanoates of truxene, (g) bis(3,4­
nonyloxybenzoyl)methanato copper(m, and (h) octasubstituted metallophthalocyanine. Adapted
from Chandrasekhar (1992).



Figure 1.9: (a·e) Schematic top view of columnar phases of disc-like molecules. The
column axis points out of plane of the paper towards the reader. The ellipses represent the disc­
like molecules, which are tilted with respect to the column axis. (0 Schematic side view the
molecular ordering of the disc-like molecules in a typical discotic nematic Iiquid crystalline
material.
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Figure 1.9f, shows a schematic of discotic nematic phase (ND). Nematic arder is

found to he exhibited by relatively lesser number of disc-shaped molecules. The nematic

phase of discotics possess orientational order without any long-range translational order.

(Chandrasekhar, 1992). Discotic nematics in contrast to the conventional rod-like

nematics, are optically negative and the director n represents the preferred orientation 0 f

the short molecular axis (or the normal to the disc-like molecules). Only discotic

nematics of the type shown in Figure 1.9fare investigated in this thesis.
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1.6 Carbooaceous Mesophases (Mesophase Pitches)

The carbonaceous mesophase (CM) or mesophase pitch (MP) is a uniaxial

discotic nematic Iiquid crystalline thennodynamic phase composed of large polynuclear

aromatic hydrocarbon molecules with molecular weights approximately near 2000 (White

et al., 1967; Singer, 1976; Lewis 1978; Hamagushi and Nishizawa 1992; FitzGerald

1994). The CMs or MPs are employed as low cost precursor materials in the manufacture

of high performance mesophase carbon fibers (Zimmer and White, 1982). There are

currently tbree main processes that are used to produce spinnable MPs. The classical way

is the liquid phase pyrolysis of coal tar or petroleum pitches. The second more recent

process is the catalytical polymerization of pure aromatic hydrocarbons, such as

Naphthalene. The third technique, developed recently by Hutchenson et al. (1991), uses a

solvent in its supercritical state to extraet mesophase fractions from isotropic pitches.

Figure 1.10, shows the thermodynamic and structural changes brought about

during the pyrolysis of isotropie pitches. As the temperature rises above 350°C, optically

anisotropie spheres, known as spherules, appear in the isotropie matrix (Singer, 1977,

1985; Gasparoux. 1981; Zimmer and White, 1982). As the hydrogenative polymerization

reactions continue the poly-aromatic molecules get larger, and the anisotropic phase

grows and becomes more viscous. When the molecules reach an average molecular

weight of approximately 2000, they are apparently, sufficiently large and flat to favor the

formation of a liquid crystalline discotic nematic phase called carbonaceous mesophase or

simply mesophase pitch. The fonnation of carbonaceous mesophase follows a nucleation

and growth process, typical of meta-stable thennodynamic systems. The spherules,

droplets of anisotropie phase (see Figure l.11), are easily observed due to their optical

anisotropy. Attractive forces arnong the spherules give rise to droplet coalescence and

overall growth of the mesophase. The structure of the spherules and the molecular

organization of the disc-like poly-aromatic molecules within the spherules have been

described by Brooks and Taylor (1965). The characteristic mechanisms that are involved

in establishing the mesophase morphology are spherule precipitation, spherule

coalescence to fonn a continuous anisotropie phase, and defonnation of mesophase by

external fields. Lewis and Chwastiak (1978) modified the above simplistic heat soaking



process of isotropie pitches by propelling an inert gas into the reaction vessel. Riggs and

Dienfendorf (1980) developed an alternate heat soaking mechanism, whieh used solvents

like Benzene and Toluene to extraet the high molecular components from the isotropie

pitch. The extracted portion was then polymerized for only 10 minutes at relatively lower

temperatures, 230°C to 400°C to yield a 75% to 1000/0 anisotropie phase. The primary

advantage of heat soaking and solvent extraction of natural petroleum pitches is the

inexpensive nature of the feedstock, however, there are inherent disadvantages as weIl.

First, natural pitch contains heavy impurities that accumulate in the high-density

mesophase, which in tum have detrimental effects on the final properties of carbon fibers.

Moreover, the composition of a natural isotropie petroleum pitch varies depending on

crude oil composition, therefore the properties of the resulting MF also tend to be highly

variable. Thirdly, the MPs exhibit broad moleeular weight distribution, which hinders

splnnlng. Due to these problems, altemate methods of production of MPs with fewer

impurities were sought. A typical moleeule of a heat-soaked mesophase piteh is

illustrated in Figure 1.12.

•
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• Figure 1.10: Changes in the non-volatile organic compounds Iike coal or petroleum pitches
brought about by heating in the absence ofair. Adapted from Otani (1991).
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Figure 1.11: Lamellar structure of mesophase spherule before coalescence. The aromatic
planes are nonnal to the spherule surface. The spherule grows as the aromatic molecule fuse
together due to hydrogenative polymerization. Adapted from Brooks and Taylor (1965).

etH= 1.50

Harem' Haliph=1.30

Cinm 1<ilïph =us

Figure 1.12: Typical molecule of a heat soaked mesophase pitch. Adapted from Fitzer et al.
(1986).

Hutchenson et al. (1991) have reported that supercritical fluid extraction, using

supercritical Toluene, can he employed to fractionate pitches. By continuously varying

pressure and/or temperature, thereby changing the solvent strength, selective pitch

fractions of relatively narrow molecular weight distribution can be isolated in a cascading

process. Such a process offers the potential of producing a unifonn product from an ever­

changing raw material. Moreover, the heaviest fraction is not the only one that yjelds a
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bulle mesophase; it may be possible to produce a mesophase fraction largely free of

inherent impurities.

Another way to alleviate the problems associated with the natural petroleum

pitches is ta catalytically convert well-controlled synthetic precursors, such as

Anthracene, Phenanthrene and Naphthalene, ta produce mesophase pitches (Mochida et

al. 1988, 1990; Fujiura 1992). For example, Naphthalene can be polymerized in an

autoclave with the aid ofhsuper catalyst" HFIBFJ , at temperatures ranging from 260°C ta

3000 e and under pressures from 2.1 MPa to 3.1 MPa for approximately 4 hours (Korai et

al., 1991). The contents of the autoclave are heated ta 3400 e and purged with Nitrogen

to distill off the catalyst, the unreacted monomer, and other volatile components (HF and

BF3 have boiling points of 19.9°C and 101°C, respectively), thereby leaving 100%

anisotropie pitch in the autoclave.

1.7 Order in Carbonaceous Mesophases (Mesophase Pitches)

As stated above the carbonaceous mesophase consists of disc-like molecules that

display long-range order, such that the molecules lie approximately parallel to each other

without any point-to-point registry among themselves. The orientation of each molecule

is defined by its unit nonnal. The symmetry elements in mesophase pitches are:

• any translation,

• any rotation about the unit nonnal ta the disc-like molecule, and

• a rotation of trradians about any axis parallel ta the plane of the molecules.

Although the degree of symmetry is the same for a discotic nematie and a

conventional rod-like nematic, yet the molecular geometrical differences, for the discotic

(rod-like) nematics the axis of symmetry is normal (along) to the long dimension, have

important consequences on optieal properties, response to external fields such as

mechanical stresses, electrical and magnetic fields etc. In this dissertation we focus on

the distinguishing features of flow-induced molecular orientation and rheology of discotic

mesophases. Figure 1.13 presents a schematic of molecular stacking of molecules in
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discotic nematics. The model suggests that the stacking, size, and the possible shape of

disc-like molecules which may be quite irregular and have vacant sites.

Figure 1.13: Schematic model representing stacking arrangement of polyaromatic molecules
in carbonaceous mesophases or mesophase pitches. The disc·shaped molecules lie more or less
parallel to each other. Adapted from Zimmer and White (1982).

As mentioned before, the main microstructural features of CMs, the uniaxial

discotic nematic liquid crystals, are captured by a (uniaxial) director D, and by (uniaxial)

scalar orientation order S. The director 0 is a unit vector that describes the direction of

the average molecular alignment of unit normals of the disks, and S is a meaSllre of

average moleclliar alignment along D. The dispersion of the molecular orientation along

o is captured by the magnitude of S (- Y2 5; S:::;; 1): when S :::; 0 the phase is isotropie, and

when S :::; 1 aIl the moleclliar nonnals are perfectly align along D. For nonnal diseotie

nematics the order parameter S is restricted to the range 0 ~ S 5; 1 (Brooks and Taylor,

1965; Destrade et aL, 1981; Singer, 1985). The basic microstructllral and rheologieal

phenomena have to at least include the description of spatial-temporal changes of(S, n).

1.8 Rheology of Mesophase Pitches

Numerous experimental stlldies are reported in the literature to characterize the

rheological features of the mesophase pitches. However, most of the them are either

concemed with changes in viscosity during thermal treatment (Fitzer et aL, 1987; Collet

and Rand, 1987a; Yamada et aL, 1987), or have perfonned classical viseometric studies
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(Turpin et al., 1994; Daji and Rand, 1997). Figure 1.14 shows the extreme temperature

dependency of three different mesophase pitches (prepared from three different

processes) relative to that of Nylon-6 (Fleurot and Edie, 1998). The temperature

dependent viscosity of the mesophase pitches follows Arrhenius-type law. Figure 1.14

illustrates that activation energy of the mesophase pitches is significantly higher than that

of a typical polymer (Nylon-6).
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Figure 1.14: Temperature dependent viscosity of three mesophase pitches and Nylon-6 as a
function of decreasing temperature. The mesophase pitches are prepared from three different
processes. AR mesophase and Me-AR mesophase are synthetic mesophase pitches, and are
obtained by catalytic polymerization of naphthalene (AR mesophase), and methyl naphthalene
(Me-AR mesophase), respectively. SCE mesophase pitch is derived through supercritical fluid
extraction process from a petroleum pitch. The viscosity of mesophase pitches is extremely
dependent on temperature. Adapted from Fleurot and Edie (1998).

A few experimental studies have focused on ongtn and control of the

microstructure in mesophase carbon fibers (Nazem, 1983; Matsumoto, 1985; Edie et al.,

1986, 1993; Hamada et al., 1987, 1988; Mochida et al., 1993). These investigations

showed that the transverse fiber textures are strongly dependent on the spinning

conditions, precursor properties, and geometry. The theoretical predictions by using

theories for monodomain, uniaxial discotic nematics (Singh and Rey, 1995; Rey 1995;

McHugh and Edie, 1995; Wang and Rey, 1997) match sorne of the textures observed in
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the mesophase carbon fibers. Fleurot (1998) studied the viscoelastic behavior of a series

of pitches obtained from different sources, and through various processes. Figure 1.15

shows the apparent shear viscosity of a mesophase pitch obtained from catalytic

polymerization of naphthalene, and is typical of the mesophase pitches (Fleurot, 1998).

The apparent shear viscosity shows two regions, shear thinning at low shear rates and

Newtonian plateau at higher shear rates. The apparent shear viscosity increases with

decreasing temperature. Both regions persist at low and high temperatures. The results

clearly suggested that the rheological behavior of pitches with high mesophase content is

qualitatively similar to that of liquid crystalline pol)'1llers (LCPs). Il has also been

reported that mesophase pitch can exhibit thixotropic behavior (Collect and Rand,

1987b).
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Figure 1.15: Apparent shear viscosity of a mesophase pitch at various temperatures obtained
from catalytic polymerization of naphthalene. The apparent shear viscosity shows two regions,
shear thinning at low shear rates and Newtonian plateau at higher shear rates. The viscosity
increases with decreasing temperature. Both regions persist at higher temperatures. Adapted
from Fleurot and Edie, 1998.
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1.9 Mesophase Pitch-Based Carbon Fiber Processing

Three different processing steps are employed during the manufacturing of

mesophase pitch-based carbon fibers: (1) melt spinning; (2) oxidative stability; and (3)

carbonization. The high cost of the fibers is due to the peculiar difficulties encountered in

melt spinning and subsequent heat treatment process (Edie et al., 1990). Figure 1.16

presents the processing sequence of the 3 involved steps.

1.9.1 Melt Spinning of Mesophase Pitch

Conventional high-speed melt spinning process used for many thermoplastic

polymers is employed to convert palletized mesophase pitch into fibers (McHugh, 1994).

Nonnally, an extruder melts and pressurizes the pitch, and pumps it through the spin

pack. The molten pitch is filtered before being extruded through a multi-holed spinneret.

The pitch is subjected to high extensional and shear stresses as it approaches and flows

through the spinneret capillaries. The associated flow-induced torques tend to align the

liquid crystalline pitch in a particular fashion. The average orientation of the disc-like

molecules depends on the processing conditions, the flow geometry, and the material

properties of the pitch, and has an enormous impact on final properties of the mesophase

carbon fibers. Upon emerging from the spinneret capillaries, the mesophase fibers, called

as-spun or green fibers, are drawn to improve the axial orientation, and are collected on a

windup device.

1.9.2 Mesophase Pitch Fiber Reat Treatment

The as-spun mesophase fibers are extremely weak, and must be heat-treated to

develop their ultimate mechanical and thermal properties. The first step in the heat

treatment involves oxidation or stabilization. The purpose of oxidation is to prevent the

fiber from melting during the subsequent carbonization step, and to lock-in the

microstructure developed earHer during the melt spinning process. Most typically, the

stabilization is achieved by exposing the fibers to flowing air at a temperature near 300°C

for a duration 0 f time ranging from a few minutes to a few hours, depending on the

precursor, the fiber size, and the oxidation temperature (McHugh, 1994).
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Figure 1.16: Processing sequence of mesophase carbon fibers, showing continuous
conventional melt spinning of mesophase pitch, and subsequent batch processes: oxidization
stabilization, and carbonization. See text for details. Adapted from McHugh (1994).

Once the fibers have been sufficiently stabilized, they can be carbonized or

graphitized. During the carbonization the stabilized fibers are heated in an inert

environment to temperatures up to 3000°C, to drive off ail non-carbon elements thereby
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leaving behind only cross-linked carbon. During carbonization, dislocations in the initial

disordered carbon stacks are annealed out, eventually resulting in the formation of a

three-dimensional graphite lattice. The graphitization process primarily involves atomic

diffusion and crystallite growth (Fischbach, 1971).

1.10 Mesophase Pitch based-Carbon Fiber Textures

It tums out that the mesophase carbon fibers exhibit a spectrum of transverse

textures that are assoeiated with various thermal and mechanical transport properties.

The morphological features of the textures are defined by the spatial arrangement of the

constituting flat disc-like polyaromatic molecules in the fibers of different cross sectional

shapes. Sorne most typical examples, reported in literature (Singer, 1971, 1981, 1981 a;

Honda, 1983; Edie, 1990; McHugh, 1994) are presented schematically in Figure 1.17.

The lines represent loei of side view of the disk like molecules. In a radial texture, the

discotic molecules orient with their unit nonnais describing circles concentric with the

fiber axis, while in an onion-like texture, the discotic molecules themselves follow a

circular paths concentric with the fiber axis. The seanning electron micrographs (SEM)

of radial, random, onion, and radial-folded textures are shown in Figure 1.18. In addition

to this, the fiber cores may be isotropie or anisotropie, the latter would give rise to

singular lines running along the fiber core. Although the stiffness and thermal

conduetivity of mesophase carbon fibers are generally high, however, these properties can

vary significantly with fiber textures. For radial textures, the presence of a singular line

along the fiber axis introduces a potential fast failure mode by longitudinal crack

propagation (Singer, 1981a), such failure modes are absent in the onion like outer layer

textures. Commonly, the textures are not perfect and sorne degree of folding of the

crystallites is observed. This appears to improve the resistance of the fiber to crack

propagation, and thereby increasing its tensile strength (McHugh, 1994). Folding may be

an artifact of the disclinations in the mesophase piteh, which are not annihilated by the

strong defonnations. (Buech1er, 1983; Hamada 1987). Creation of a random texture, no

clearly defined morphology, may be due to complete disruption of the flow fields inside

the spinneret (Nazem, 1983), and such fibers also offer the potential of improved

compressive strengths.
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The fiber texture morphology cao be controlled by the pretreatment of mesophase

pitches, the constitution and spinnability of pitches, the spinning conditions, the spinneret

geometry, the processing conditions, the fiber size and shape, and numerous other factors

(Nazem 1984; Matsumoto 1985; Otani and Oya 1986; Rey, 1990; Mochida et al 1993;

Wang and Rey 1997). Otani and Oya (1986) and Mochida et al. (1993) produced fibers at

various spinning temperatures, and showed that radial transverse texture prevails at low

temperatures, whereas onion-skin textures is generated at higher temperatures. Wang and

Rey (1997) also proved theoretically, by minimizing the Frank long-range elasticity of

discotic mesophases, that radial and onion textures could be controlled via a judicious

selection of processing temperature. Many researchers focused on controlling the

transverse structure of the tibers by disturbing the flow of mesophase pitches during

processing (Nazem, 1984; Hamada et al., 1988), or designing spinnerets with peculiar

geometries (Stoner et al., 1990; Yoon et al., 1993). Hamada et al. (1988) controlled the

fiber texture by placing the micro-stirrers just above the spinneret capillaries, and showed

that the resulting texture is highly sensitive to the micro stirring. Nazeem (1984)

employed porous media just above the spinneret capillaries to disrupt the flow of

mesophase, thereby controlling the transverse tiber textures. Matsumoto (1985) managed

ta control the transverse texture by extruding the precursors through capillaries of

different diameters. It was reported that larger diameter capillaries yielded onion-skin

texture, whereas the capillaries with smaller cross section produced radial textures.

1.11 Thesis Objectives

The main objective ofthis thesis is to develop a fundamental understanding of the

microstructural and rheological response of discotic mesophases under shear and

extensional flows, and to use this knowledge to put forth fundamental principles that

govern mesophase carbon fiber texture generation under various flows. At the beginning

of this thesis no theories were available for discotic mesophase. Therefore, as a tirst step

in a systematic scientific study, this thesis wasgeared towards proposing, analyzing and

selecting a most appropriate set of constitutive equations, CEs, (microstructure and

hydrodynamic) for discotic mesophase in general and that for mesophase pitches in

general. Based on this, the particular objective ofthis thesis can be itemized as follows:
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Figure 1.17: Schematics of the observed mesophase carbon fiber textures. The lines represent
the locus of the side view of the disc-like molecules, such that in a radial texture, the dises
orient with their unit nonnais deseribing eircles eoneentrie with the fiber axis, while in an
onion-like texture, the discotic moIeeuies themselves follow a circular paths eoncentric
with the fiber axis. Adapted from Edie (1990).

(a) (h) (c) (d)

•
Figure 1.18: SEM images of mesophase pitch-based carbon fibers with (a) radial texture, (b)
random texture, (c) anion texture, and (d) radial-folded-texture. The fiber diameter range is 5-15
microns. Adapted frOID Otani and Oya (1986), and Peebles (1994).
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1. To develop, from a set of generic CEs, the most suitable CE for discotic mesophases

based on the computed microstructure behavior that reproduces with sufficient

accuracy the experimentally observed behavior of representative discotics, and which

is consistent with thermodYnamic restrictions.

2. To apply the developed CE to isothennal, incompressible shear and extensional flows

and characterize the dYnamic and steady state microstructure response of discotic

mesophases.

3. To analyze and characterize the shear and extensional rheological properties predicted

by the fonnulated theory, and put forth the relations among rheology, microstructure

modes, processing conditions, and material parameters.

4. Based on the fundamental understandings obtained above, provide guidelines and

theoretical feedback to ongoing experimental work being performed in this field, and

ta eiucidate the general principles which govem mesophase carbon fiber texture

generation during spinning ofcarbonaceous mesophases.

1.12 Thesis Organization

This thesis presents a detailed investigation, using theory and simulation, of shear

and extensional microstructure phenomena in discotic mesophases. The numericai results

are used to put forth general principles governing complex mesophase carbon fiber

textures. The structure of this thesis covers three facets of this scientific study:

1. Fonnulation of material constitutive equation for discotic mesophases by taking into

account full microstructure characteristics.

2. Analysis and characterization of shear and extensional microstructural and rheological

phenomena of discotic mesophase.

3. Understanding of fundamental principles, which govem main mesophase carbon fiber

textures.

The detailed organization of this thesis is as follows:
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Chapter 2 focuses on formulation of microstructure constitutive equation (CE) of

discotic mesophases by taking ioto account full microstructure characteristics. WeIl­

established theories for rod-like nematics are adopted and modified for discotic

rnesophases. An iterative selection procedure is employed to select the proposed

microstructure constitutive equations by performing an exhaustive bifurcation analysis.

In Chapter 3, the hydrodynamic constitutive equation or stress tensor equation

complimenting the microstructure governing equation for discotic mesophases was

fonnulated from first principles. The predicted relations among shear-induced

microstructure, shear rheologjcal properties, processing conditions, and material

parameters are characterized and discussed. The predicted numerical results provide

essential theoretical feedhack to on-going experimental work being undertaken elsewhere

to unravel the couplings between microstructure and rheological properties of these

complex fluids.

In chapter 4 the consistency of the numerical results presented in chapters 2 and 3

IS establis~ed with the observed mesophase pitch-based carbon fibers. The present

theoretical model is able to predict the fiber texture transition, radial to onion, with

increasing temperature.

Chapter 5 is solely geared towards analyzing and characterizing the uniaxial

extensional rheologjcal predictions of the selected CE. It is shown that two distinct

uniaxial extensional viscosity parameters are needed to fully characterize extensional

rheological functions of discotic mesophases. The rheological analysis is used to put

forth the relations between extensional viscosities, and the c1assical mesophase fiber

textures.

Chapter 6 presents comprehensive analysis of microstructure response of sheared

discotic mesophases in the presence of curvature elasticity in different planar surface

anchorings. Four different microstructure modes, steady state and periodic, are shown to

be stable. It is shown that the bulk molecular orientation is along the velocity gradient

direction irrespective of the surface anchorings. Novel scaling laws relating the

microstructure mode domains with the Frank elasticity are presented. This chapter puts

forth a systematic study of flow ioduced microstructural behavior ofdiscotic mesophases,
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and provides a usefui fundamental understanding of the flow of discotic mesophases of

use in the processing of carbonaceous mesophases.

In chapter 7 the microstructural response of sheared discotics subjected to rnixed

boundary conditions, equivalent of that in a hybrid aligned nematic (HAN) cell, is

computed. The strong surface anchorings at the bottom and the top plate corresponds to

the stable orientation configuration. A novel model of continuous generation of defect­

like structures in the bulk is discovered, and is due to asynchronous rotational kinematics.

The simulation results are used to put forth the generation of more complex fiber textures,

such as rnixed texture (radial core with onion exterior), and skin-core textures observed

during processing of a carbonaceous mesophase.

Chapter 8 presents the thesis conclusions and original contributions to knowledge.
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lCHAPTER 2

Microstructure Constitutive Equation for

Discotic Nematic Liquid Crystalline

Materials

Part 1: Selection Procedure and Shear Flow Predictions

This chapter focuses on fonnulation and selection of microstructure constitutive

equation (CE) of discotic mesophases. Well-established theories for rod-like nematics

are adopted and modified for model discotic mesophases. The CEs are subjected to

homogeneous simple shear flows, and their steady state, and dynamical microstructural

response are computed. An iterative selection criterion is employed to select the most

appropriate CE for discotic mesophases by performing exhaustive bifurcation analysis

and dynamic simulations. Bifurcation methods are employed to analyze the complex

interactions among various orientation regimes (stable and unstable) as predicted by each

CE. The dynamic simulations are perfonned to characterize the stable microstructure

features of the CEs. The selected CE is able to capture all the experimental features and

is consistent with the theoretical results, and will be used to develop the fundamental

understanding of rheology of discotic mesophases in general and that of carbonaceous

mesophase pitches in particular.

1 This chapter appeared as an original article in Rheo/ogical Acta 37(1) p30-45 (1998).
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2.0 Abstract

Four different microstructure constitutive equations (CEs) for discotic nematic

liquid crystals based on Doi's modified nematodynamics theory are formulated. Their

dynamic and steady state responses under simple shear flows are computed and analyzed

in terms of the tensor order parameter Q, the orientation director triad (0, m, 1), and the

uniaxial S and biaxial P alignments. A unit sphere description of the director triad is used

to characterize and classify the various predicted stable orientation states, and to discuss

and analyze their multi-stabilities as a function of dimensionless shear rate. Various

attractors, steadyand periodic, are also identified and their stability is discussed in detail

for aIl the CEs. A validation procedure based on the predicted microstructural response

along with bifurcation diagrams of the individual CE and representative experimental

observations as weil as theoretical results is implemented, and used to select the most

appropriate CE. The selected CE predicts, under shear, the simultaneous presence of

stable in-plane (steady and periodic) states and out-of-plane steady state, and the c1assical

transition among the in-plane periodic and steady states with increasing shear rate. The

excellent performance of the selected CE in shear flows strongly suggests that it is a

reliable contribution towards the fonnulation of a process model for mesophase pitch

splnnlng.

2.1 Introduction

Carbonaceous mesophases or mesophase pitches are obtained from natural

(petroleum or coal tar pitches) or synthetic feed stock (naphthalene), and are used in the

manufacture of high performance mesophase pitch-based carbon fibers (Zimmer and

White, 1982; Singer, 1985; McHugh and Edie, 1996). The mesophase carbon fibers

show outstanding stiffuess and thermal transport properties due to their ability to develop

extended graphitic structures. The physical properties of high performance fibers are

mainly due to the molecular orientation developed during the spinning process (McHugh,

1994).
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These precursor mesophase pitches consist of flat poly-aromatic molecules that

adopt a uniaxial thennotropic discotic nematic liquid crystalline phase (Chandrasekhar

1981; Destrade et al., 1981). The flat disc-like molecules orient more or less along a

common direction (see Figure 2.1), represented by the (uniaxiaI) director n; in what

follows we use n and uniaxial orientation interchangeably (deGennes, 1975). The

average degree ofalignment of unit nonnais to the discs along the director n is defined by

the (uniaxial) scalar order parameter S; in what follows we use S and uniaxial alignment

interchangeably. The inherent nature of liquid crystalline materials to acquire a preferred

orientation in the presence of flow provides a natural advantage to these materials to be

used as precursors for the manufacturing of high perfonnance fibers (e.g. mesophase

pitch-based carbon fibers, Kevlar). In the spinning of mesophase carbon fibers the

preferred orientation is achieved as the precursor material passes through the spin-pack

where it is subjected to non-homogeneous rnixed shear and extensional flows. The

extensional flows during fiber drawing only accentuates the already attained orientation in

the spinneret in a plane nonnai to the fiber axis (McHugh, 1994).

The preferred orientation and degree of alignment of the disk-like molecules, and

the average crystallite size are expected to have a predominant effect on aIl mechanical

and thennal properties. The optimization and control of preferred orientation hence is of

practical importance. Unfortunately, the fundamentai understanding of the factors that

affect the development of preferred orientation in mesophase carbon fibers is currently

lacking, and is hindering their further development. One cost effective way to develop

this understanding is through the use of modeling and simulation by adopting the weIl

developed theories for liquid crystalline polymers (Leps). The transfer of knowledge by

adopting the theories for conventionai rod-like nematics to discotic nematics is

successfully demonstrated by Farhoudi and Rey (1 993a), Rey (1995a), and Singh and Rey

(1994, 1995a, 1995b).

The classical theories for describing the rheology of LCPs are the Leslie-Ericksen

(L-E) continuum theory and Doi's molecular theory for mono-domain Leps. Doi's

theory has fewer parameters and is shown to predict satisfactorily the steady state shear

and extensional rheology (Ooi and Sridhar, 1994). There exists a lot of theoretical work,
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based on the above mentioned theories, on modeling the flows of conventional rod-like

nematics (Doi and Edwards, 1986; Larson, 1988; Marrucci and Greco, 1993; Beris and

Edwards, 1994). However, these theories have not been used in a significant way to

model discotic nematic flows; and currently there is no appropriate constitutive equation

that cao describe the flow-induced microstructure ofdiscotic nematics in general, and that

of mesophase pitches in particular. In the present work we will adopt weil established

Doi's mesoscopic theory as a starting point and modify it to establish the most suitable

constitutive equation for mesophase pitches. Next we present a summary of the

theoretical work performed in modeling the microstructural response of discotics along

with the essential features that are used to transfer the theoretical knowledge from rod­

like nematics to discotic nematics.

Figure 2.1: Definition of uniaxial director D orientation of a discotic nematic liquid
crystalline material. The uniaxial director D is the average orientation of the unit normals to the
disc-like molecules.

The previous work of Volovik (1980), Carlsson (1982, 1983), Baals and Hess

(1988), and Ho and Rey (1991) on the rheology and flow-induced orientation ofuniaxial

discotic nematics (ONs) assumed that the scalar order parameter S remains unaffected by

the induced flow. The validity of this assumption for low molecular weight materials

justifies the use of Leslie-Ericksen (L-E) theory (Leslie, 1979; deGennes, 1975;

Chandrasekhar, 1992) for uniaxial nematics with the proper values of the materials

parameters. The important difference in sign and magnitude of the material parameters

corresponding to the uniaxial rod-like and discotic nematics arises from the fact that the

rod-like nematics orient their longest molecular dimension along the director whereas
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discotic nematics orient their shortest dimension along the director. The orienting

properties of the uniaxial nematics subjected to shear flows are governed by the sign and

magnitude of the uniaxial tumbling (reactive) parameter Â such that for aligning (non­

aligning) rads Â > 1 (0 < Â < 1), and for aligning (non-aligning) discs Â < -1 (-1 < Â < 0).

The uniaxial tumbling parameter À. is given by the negative ratio of the irrotational torque

coefficient (Y2l and the rotational viscosity (YI), and represents the ratio of strain ta the

vorticity torques acting on the uniaxial director n (deGennes, 1975). Previous works by

Carlsson (1982, 1983) focus on the orienting properties of the aligning uniaxial discotic

nematics in shear, and that of Ho and Rey (1991) on Hamel flows. In these works, it \Vas

found that shear orients the director in the shear plane and at a steady angle Bn, lying in

the 90° :S Bn :S 1350 sector with respect to the flow direction, while extension orients the

director anywhere in a plane nonnal to the flow direction. Farhoudi and Rey (1993a)

focused on the orienting properties of non-aligning uniaxial discotic nematics in steady

simple shear flows in which they showed that the uniaxial director n tumbles, oscillates

or aligns according to the strength of the applied shear; the existence and transition

between the various regimes is shown ta he similar ta that predicted by molecular

theories of the rod-like nematics. In steady uniaxial extensional flows, the orienting

behavior of uniaxial nematics is again determined by the sign of Â: when Â > 0 the

director aligns along the stretching direction, and when À. < 0 the director aligns

somewhere in the compression plane, orthogonal to the stretching direction (Ho and Rey,

1991; Singh and Rey, 1994, 1995a, 1995b). In a previous work (Singh and Rey, 1994)

the authors developed, from variational principles, a model for discotic nematics that

takes into account variable alignment, and applied the model to a series of extensional

flows such as uniaxial, equi-biaxial and planar extensional flows. It was found that the

director aligns anywhere in a plane perpendicular to the extension direction

(i.e., anywhere in the plane of unifonn compression) under uniaxial extensional flows,

along compression direction in biaxial, and planar extensional flows, and the director

trajectories and steady states exhibit strong sensitivity with the initial director orientation

(Singh and Rey, 1994, 1995a).
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The main objective of this work is to develop a constitutive equation for the

idealized uniaxial discotic nematics that is consistent with the existing predictions 0 f

molecular and macroscopic theories for the rod-like nematics, and that is in qualitative

agreement with the experimental observations. The particular objectives of this paper

are:

1. To formulate a set ofgeneric constitutive equations (CEs) for discotic nematics,

2. To characterize the main microstructure features predicted by the various proposed

CEs in terms of uniaxial orientation dynamics,

3. To identify the various multi-stabilities of uniaxial orientation dynamics predicted by

various CEs under shear flows,

4. To select the most suitable CE based on the computed microstructure behavior that

reproduces with sufficient accuracy the experimentally observed behavior of

representative discotics, and that is consistent with previous theoretical predictions.

The organization of this paper is as follows. In the following section we present

the selection criteria for establishing the most suitable CE for mesophase pitches. Then

we define the coordinate system, the state variables, the shear flow, and briefly present

the elements of unit sphere description used to characterize the bifurcation and dynamic

results. In the same section, we present representative schematics of the main

microstructure phenomena in terms of uniaxial director n that are used to characterize the

predicted bifurcational and dynamical phenomena, followed by the various proposed CEs

and a brief description of the solution methods employed to solve them. Next, we present

the computed bifurcation results for each CE and employ the validation and selection

criteria to select the most appropriate microstructure CE. Subsequently, the main features

of dynamic results of orientation and alignment (uniaxial and biaxial) are presented and

summarized. Finally, the conclusions are given.

2.2 Selection Procedure

As mentioned before in the present study we adopt well established theories for

rod-like nematics and modify them for discotic nematics. In this paper we propose and
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select a CE using an iterative selection process that starts with a series of CEs and ends

with the selection of the one that meets a set of criteria. The criteria are based on: (1)

consistency with previous theoretical results; (2) consistency with experimental data; and

(3) simplicity. In this iterative process we propose a CE, investigate the predicted

orientation (microstructure) phenomena under simple shear flows, validate the computed

results with the existing classical theoretical and experimental results available in the

literature, and select the CE that best meets the criteria. If the simulated results of the

proposed CE fail to satisfy the criteria it is then modified and tested again. In this

iterative process we start with the simplest available CE for discotics which is derived

from Ooi's mesoscopic theory and was investigated by Rey (1995a) for extensional flows.

The theoretical results of classical molecular, and macroscopic theories for

conventional rod-like nematics are employed to check the consistency of the CEs. The

simulated results of modified macroscopic theories for ONs (Farhoudi and Rey, 1993a)

are also used to check the validity of the simulated results of the proposed CEs. [t is weil

established that the necessary uniaxial director n orientation features of the non-aligning

nematics under shear are: rotation of n in the shear plane or in-plane tumbling (ITO),

oscillation of n in the shear plane or in-plane wagging (IWO), and stationary orientation

of n in the shear plane or in-plane steady states (ISS); along with the smooth transition

ITO ~ rws ~ ISS with increasing shear rate (Larson and Ottinger, 1991; Farhoudi and

Rey, 1993a, b).

The experimental results for representative discotic nematics and mesophase

pitches are used to test the predicted simulation results of CEs. Hammouda et al. (1995)

showed that the disc-like molecules of discotic nematics, subjected to shear flows, orient

their unit normais along the velocity gradient or the vorticity directions. In a recent study

on the development of microstructure of mesophase pitches in narrow channels, McHugh

and Edie (1996) reported that very close to the channel walls the preferred orientation of

discotic mesophase pitches is along the vorticity axis (see Figure (4, 9) of McHugh and

Edie, 1996).

The mesophase carbon fibers derived from the discotic mesophase pitches show a

spectrum of textures as a function of materials· properties, processing conditions, and/or
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geometry which are consistent with the ISS, LRS (in which D aligns along the

neutral/vorticity direction) and ITO orientation modes. The consistency between fiber

textures and the predicted orientation modes will he explained thoroughly in chapter 4.

Therefore the most suitable microstructure CE for discotic mesophase pitches should

predict, when subjected to shear flows, a1l the essential orientation features (lTO, ISS,

and LRS) over an appropriate range of parameters. Moreover, there exists multiplicity in

textures of mesophase pitch-based carbon fibers for the same set of processing conditions

(see Otani and Dya, 1986). Hence an essential requirement for a CE that can be used to

describe the microstructure features in mesophase pitches is prediction of multi­

stabilities. One way to capture and characterize the multi-stabilities of the simulated

microstructures and their transitions is through bifurcation methods, as is explained and

employed in nematic flows hy Farhoudi and Rey (l993b), Rey (1995a, b) and Maffettone

and Crescitelli (1995). Thus the most appropriate CE equation for mesophase pitches

must show the bifurcation phenomena that are reported in the real spinning process that is

used to manufacture mesophase-based carbon fibers.

2.3 Tbeory and Governing Equations

2.3.1 Definition of Coordinates, Kinematics, Orientation and

Alignment

In this paper we study the spatially uniform microstructural response (dynamic

and steady state) of model uniaxial discotic nematics (DNs) subjected to a steady simple

shear flow, of known and constant shear rate r. The microstructure of the ONs is

characterized by a second order tensor, known generally as tensor order parameter Q:

Q = S(nn -tô)+tP(mm -0)

where the following restrictions apply:

(2.1a)

•
(2.1 b,c,d,e)
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(2.1 f,g)

The uniaxial director n corresponds to the maximum eigenvalue t S , the biaxial

director m corresponds the second largest eigenvalue - t(S - p), and the second biaxial

director 1 (= n x m) corresponds to the smallest eigenvalue - t (S + P). The orientation

is defined completely by the orthogonal director triad (n, ID, 1). The magnitude of the

uniaxial scalar order parameter S is a measure of the moleeular alignment along the

uniaxial director n, and is given as S = f(n· Q.n). The magnitude of the biaxial sealar

order parameter P is a measure of the moleeular alignment in a plane perpendicular to the

direction of uniaxial director n, and is given by P = f(m .Q.m -1· Q ·1). On the

principal axes, the tensor order parameter Q is represented as:

• [

_l(S - p) 0 0 ]

Q = 3 0 -HS+p) 0

o O1.S
3

(2.2)

Details on uniaxial and biaxial scalar order parameters and their interrelations are given

in (Singh and Rey, 1995b). Both S and P are positive for normal dise-like uniaxial

nematie liquid crystals, and this study is restricted to normal discotic nematics.

Figure 2.2(a) is the schematic representation of the steady shear flow. The flow

direction is along the x-axis, the velocity gradient direction is along the y-axis, and the

vorticity axis (neutral axis) is along the z-axis. To visualize and analyze the individual

direetor (n, m, 1) behavior, we parametrize them as follows (see Figure 2.2b):

(2.3a)

•

where a (= n, m, 1) is a unit vector. We use this parametrization ta present the results of

uniaxial (n) and biaxial (m, 1) directors in a simple and direct way. However, the

directors (n, m, 1) form a right hand triad, and equations (2.1 f, g) hold. This

parametrization is shawn in Figure 2.2(b), where 0. (0 ~ O. ~ 21[) is the azimuthal angle
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and tP. (0:5 tP. :5 H) is the polar angle defining the unit vector a. In tenns of angles, the

equator lies in the shear plane and is given as (Ba' tPa) =([0, 2;rJ ±'ii), and the north

pole and the south pole are located on the vorticity axis and are given as rA =0 and tA. = ;r

respectively. In the unit sphere description the tip of each director lies on the surface of

unit sphere, and defines a trajectory in the presence of flow. In what follows ail angles

are reported in degrees.

To characterize the various stable orientation states predicted by the various CEs

(presented below), the dynamics of the uniaxial director D will be employed. Figure 2.3

shows the representative schematics of the stable dynamics (steady as weil as periodic) of

the uniaxial director d, under homogeneous simple shear flow, and gives a complete

classification of ail the relevant states to the four CEs, discussed below. Figure 2.3

consists of two column, the left one contains in-plane states (i. e., nz = 0) and the right

one the out-of-plane states (i. e., nz "* 0). The schematic at the top shows the

representative shear plane and vorticity axis with regard to the unit sphere. The six stable

orientation states are: (a) ITO(!) or in-plane tumbling orbit, (b) IWS(2) or in-plane

wagging state, (c) ISS(2) or in-plane steady state, (d) LRS(2) or log rolling state,

(e) KO(2) or kayaking orbit, and (f) PDO(4) or period doubling orbit. The representative

schematics for the stable biaxial orientations, m and l, are not shown in Figure 2.3. The

number in the parenthesis accompanying the stable state name represents the number of

equivalent states that exist for a particular set of parameters due to the inherent

equivalence of the uniaxial director in spatially homogeneous f1ows: 0 = -o.

The top-Ieft schematic represents the in-plane tumbling orbits (ITO) in which the

uniaxial director D tumbles (rotates) on the equator (shear plane). The middle-le ft

schematic shows the in-plane wagging (oscillatory) states (IWS), in which D oscillates

around a point near y-axis (velocity gradient direction). The uniaxial director D oscillates

inside the regions (-45° < 0.. < -135°) and (45 0 < Bn < 135°). There are two equivalent

IWS for D, one near positive and the other near negative direction of y-axis (ve'.ocity

gradient direction). The bottom-Ieft schematic represents the in-plane steady state (ISS)

in which the stable steady state of D is close to the y-axis (velocity gradient direction). A
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detailed analysis of rro, IWS and ISS, in terms of uniaxial director D and uniaxial scalar

order parameter S, for discotic mesophases under shear flow is given by Farhoudi and

Rey (1993). Biaxiality effects, in terms of (m, 1) and P, are discussed briefly later on in

this paper.

Velocity gradient.. V Y direction

ft L X Flow

-z direction

Vorticity axis

(a)

•
y

Velocity gradient
direction

a : unit vector
a = (n, m, 1)

X Flow
direction

+Vorticity axis
z

•

(b)

Figure 2.2: (a) Definition of rectilinear shear flow deformation, (b) coordinate system.
(a) x-axis is the flow direction, y-axis is the velocity gradient direction, and z-axis (normal
outwards to the plane ofpaper) is the neutral (vorticity) direction. (h) Unit vector angle and unit
sphere description: unit vector a is completely defined by the azimuthal angle (J. (0 ~ 0. ~ 2;r)

and polar angle t/J. (0 ~ t/J. ~ tr). In terms of unit vector angles, the equator lies in the shear

plane and is given as (0.,;.)= ([O,2trJ ±~), and the north pole and the south pole are

located on the vorticity axis and are given as (Ja =0 and (J. =Jrrespectively.
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Figure 2.3: The representative schematics of the stable states of uniaxial orientation n of
DNs under homogeneous simple shear flow predicted by the various CEs. The top schematic
shows the representative shear plane and vorticity axis with regard to the unit sphere. The six
stable orientation states are: (a) rrO(l) or in-plane tumbling orbit, (b) IWS(2) or in-plane
wagging state, (cl ISS(2) or in-plane steady state, (d) LRS(2) or log rolling state, (e) KO(2) or
kayaking orbit, and (f) PDO(4) or period doubling orbit. For details see tcxt.
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The top-right schematic shows the two LRS (Larson and Ottinger, 1991) in which

the uniaxial director n is aligned along the vorticity axis. The middle-right schematic

represents the out-of-plane tumbling orbits named Kayaking Orbits (KO) by Larson and

Ottinger (1991). In this periodic state n rotates around the vorticity axis on the surface of

the unit sphere in a close out-of-plane orbit such that the orbit stretches more towards the

shear plane near the velocity gradient direction than along the flow direction (see

Figure 2.3e). The bottom-right schematic represents the stable out-of-plane period

doubling orbits (POO), in which n traverses trajectories, which are eccentric to the

vorticity axis. In one complete orbit the trajectory crosses itself. These stable POOs

emerge from the shear plane and move away from it with the increase of the flow

strength. More details regarding the LRS, KO and POO are presented in the section

entitled dYDamic simulations.

2.3.2 Governing Equations

The microstructure response of liquid crystalline polymers, as given by Doi's

mesoscopic nematodYnamic theory, is found to he (Doi and Edwards, 1986):

ô= F(Q, Vv) + H(Q) (2.4)

where Vv is the velocity gradient tensor and Q is the JaunmannJcorotational derivative

ofQ and is defined as:

A ôQ
Q=-+(v.V~-W.Q+Q.W

ôl
(2.5)

•

F(Q, Vv) and H(Q) represent the flow contribution (macroscopic flow field) and the

thennodynamic contribution (Brownian motion) respectively. Comprehensive reviews of

many aspects of this equation, and its modifications and generalizations are available

(Larson, 1988; Marrucci and Greco, 1993; Beris and Edwards, 1994).

In this paper we investigate the following four CEs for ONs:

CE-l: In the first CE for DNs, used by Rey (1995), the rotary diffusivity is assumed to be

independent of Q. The flow term, F[(Q, Vv), in CE-l contains ooly a partial
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contribution from Q2 terms, and ail the tenns of higher order than Q2 are

negleeted. The CE-l is given as follows:

where flow and thermodynamic contribution are given as:

F[(Q, Vv) = fpA +p[A'Q +Q. A -t(A:Q)a] -2p(Q:A)Q

H(Q) = -6Dr [(I- Lf)Q - UQ' Q+ U{(Q:Q)Q + t(Q:Q)Ô}]

where

(2.6)

(2.7)

(2.8)

ri.
p=-

~

(2.9a,b)

•
Dr is the preaveraged diffusivity or isotropie rotary diffusivity independent of Q, U is the

nematie potential, and ft is the shape factor. Ta specify the molecular geometry we

approximate the disc-like shape of molecule of discotie mesophases with an oblate

spheroid of aspeet ratio p (p < 1) where ru is the length of the shortest and distinct

semiaxis, and rl- the length of the two longest and equal semiaxes. The ideal flat disc

corresponds to p = 0 (ft = -1), and the sphere corresponds to p = 1 (ft = 0). A and W are

the rate of deformation and vorticity tensor respectively, and for the considered simple

shear flow are given as:

[
0 . 0]

A = t (Vv + VvT) = ~ r ~ 0 ,
000

[
0 . 0]

w =t(vv - VvT) = ~ - r ~ 0 .
000

(2.9c)

(2.9d)

CE-2: The next modification uses a Q dependent rotary diffusivity, Dr' which results in:

•
(2.10)



•
CHAPTER 2. CONSTITUTIVE EQUATION FOR DISCOTIC NEMATICS •••

where

47

(2.11 )

The flow contribution in CE-2 is the same as that in CE-l, and the modified

thennodynamic contribution in CE-2 (eqn. (2.10» is given as:

H(Q, Dr(Q)) = -6Dr[(1- f{)Q - UQ .Q+ U{(Q:Q)Q+t(Q:Q)ô}] (2.12)

CE-3: In CE-3 the flow contribution is modified by including the full contribution of Q2

tenns while in the thennodynamic contribution rotary diffusivity is assumed to be

independent ofQ (same as in CE-l), and is given by:

CE-4: The fourth and final CE is similar to CE-3, however, the rotary diffusivity is

assumed to a function ofQ. The CE-4 comprises of flow tenn as that in CE-3 and

thennodynamic term as that in CE-2, and is given as:

•
where the modified flow contribution is:

F2(Q, Vv) = +pA +p[A.Q + Q' A-f(A:Q)cS]­

~[{A:Q~+A-Q-Q+Q-A-Q+Q-Q-A- «Q-Q)AJo]

(2.13)

(2.14)

(2.15)

•

The flow contribution is not modified further to include higher order terms than

Q2 as the original Doi's theory does not contain tenns which would yield, on quadratic

closure approximation, terms with order higher than Q2. Also, the curvature elastic

effects (i.e., Frank elasticity) are neglected in the present investigation.

The CEs in the non-dimensional fonn along with the dimensionless parameters

are given in Appendix A.

In this paper we analyze and evaluate the CEs using bifurcation analysis as

employed by Farhoudi and Rey (1993b) and Rey (l995a, b). For bifurcation analysis of

the CEs we use AUT094c, a software for continuation and bifurcation analysis for
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ordinary differential equations (Doedel et al., 1996). The equations solved are a set of

five nonlinear coupled algebraic equations given by the right hand side of the ODEs (A.l

to A.4). The long time dynamic response (steady or periodic) was used for the

continuation of stable branch(es), the unstable branches were traced by the subsequent

continuation of the bifurcation points. For continuation the dimensionless shear rate or

Peclet number, Pe, is used as the free parameter. The outputs from AUT094<C are the

cornponents of the steady state tensor order parameter Qss(Pe) which is transfonned to

principal fonn to determine its eigenvalues (to evaluate steady state alignments Sss and

Pss) and eigenvectors or steady state orientations (oss, mss, Is5)' As AUT094© was unable

to confinn the stability and sometimes the existence of sorne branches (periodic or

steady), dYnamic simulations are used ta augment and confirm the bifurcation results

obtained from AUT094©. For dYnamic simulations the set of time dependent

dimensionless equations (presented in the Appendix A) are integrated using an implicit

predictor-corrector first order Euler integratiori method with adaptable time step. The

implicit predictor corrector method transforms the set of coupled nonlinear ordinary

differential equations into a set of coupled nonlinear algebraic equations. The resulting

algebraic equations are solved using the Newton-Raphson iteration scheme; the predictor

step generates a first guess for iteration which fonns the corrector step itself. The

adopted convergence criteria is that the length of the difference vector between the

calculated solution vectors corresponding to t\vo successive iterations is less than 10-8
•

The transient solution vector resulting from the numerical solutions consists of a set of

five independent components of the tensor arder parameter Q(t·) as a function of

dimensionless time t" = 16Drl t. The numerically obtained tensor order parameter Q(t·)

is subsequently transformed into the principal form, given by equation (2.2), to evaluate

its eigenvalues and eigenvectors.

To compute the dYnamic response of CEs, the model discotic nematics are

assumed to be uniaxial (P = 0, and m, 1~ undefined; Singh and Rey, 1995b) prior to the

imposition of the shear f1ow, and the initial conditions in the eigenvalue-eigenvector fonn

are given as:



where Seq(U) is the equilibrium uniaxial alignment of nonnal (S > 0) uniaxial nematic

phase, given by Doi and Edwards (1986):•
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(2.16)

(2.17)

•

•

For U < 8/3 the stable phase is isotropie, for 8/3 ~ U ~ 3 there is biphasic equiIibrium,

and for the higher values of uniaxial nematic potential U the phase is uniaxial nematic.

Higher values of U correspond to stronger uniaxial aIignment. In this paper we use the

following values of the parameters: U = 6.0, and f3 = -0.8. The range of initial uniaxial

director orientation, Do, for the dynamic simulations performed in this work is:

0° ~ 8no ~ 360°, 5° ~ f/Jno ~ 85°.

2.4 Results and Discussion

This section describes and discusses the bifurcation and dynamic simulation

results for the four CEs. This section is divided into two major subsections: bifurcation

phenomena, and dynamic simulations; the former is further subdivided into four parts,

one for each CE. In each part we present the computed bifurcation diagrams of the tensor

order parameter Qss as a function of Pe. To facilitate the discussion the eigenvalues and

eigenvectors of the Qss are computed; the eigenyalues of Qss are used to calculate Sss and

Pss, and the eigenvectors (Dss, mss, 155) are used to distinguish between the various stable

states predicted by the bifurcation computations for each CE. The following conventions

are used to plot the bifurcation results: solid lines for stable steady state branch intervals,

dot-dash lines for stable periodic branch intervals, short-dash lines for unstable (steady or

periodic) branch intervals, empty squares to mark the bifurcation points, and filled

squares for Hopf bifurcation points. While showing the bifurcation diagrams for various

CEs, the maxima/minima corresponding to the periodic (or oscillatory) states are not

plotted as a function of the continuation parameter Pe. At the Hopf bifurcation point, the

steady state branch exchanges stability with the periodic branch. Locally, close to the

Hopf bifurcation point, the stable periodic orbits encircle an unstable steady state solution
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branch, and the unstable periodic orbits encircle a stable steady state solution branch. In

both cases, the stable or unstable steady state part of the branch does not necessarily

represent the mean values of the periodic oscillations. Thus the variable values

represented by dot-dash Iines (for stable oscillatory/periodic states) do not necessarily

correspond to mean values of the oscillatory dynamic response. In the foIIowing

discussion the solution branch means the plotted solution vector (computed components

of Qss, or the calculated Sss or Pss) as a function of Pe. The solution branches are

classified into two main categories: in-plane branches (such as IP-l, IP-2) and out-of­

plane branches (OP-l, OP-2, OP-3), such that the latter always have a non-zero

z-component of n (i. e., nz * 0). The numbers associated with the branch categories

(i.e., l, 2 with IP and l, 2, 3 with OP) are used merely to differentiate the different

branches belonging to the same category. The two intrinsic changes that may occur in

different intervals of the same solution branch are changes in the stability and in the

nature of the attractor. For example if the attractor loses stability in an interval of Pe, the

corresponding solution branch will also become unstable in the same interval; and if the

nature of the attractor changes in an interval "then the corresponding orientation state

represented by the solution branch will also change. The orientation state or simply the

state means the corresponding uniaxial director dynamics, as shown in Figure 2.3,

represented by a particular solution branch. In what follows we discuss only the stable

steady and stable periodic states represented by various solution branches.

2.4.1 Bifurcation Pbenomena

2.4.1.1 Constitutive Equation 1

Figure 2.4 shows the components of the steady state tensor arder parameter Qss as

a function of Pe. The bifurcation phenomena exhibited by CE-I is represented by two in­

plane branches, IP-I and IP-2, and two out-of-plane branches, OP-I and OP-2. The

bifurcation phenomena shown in Figure 2.4 are summarized in Table 2.1. We note that

here and in the rest of the paper the bifurcation phenomena exhibited by each CE is best

explained by simultaneous consideration of the bifurcation diagrams and the tables.
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There are four rows in Table 2.1, one for each branch defming the stability/instability

intervals with respect to the Peclet number Pe, and the corresponding stable states in the

stable intervals. The in-plane branch IP-l is unstable for very low Pe, for intermediate Pe

the IP-l branch is stable in a narrow range and it corresponds to the stable POO state (see

Figure 2.3t). The stable POO states emerge on the shear plane but with a very slight

increase in Pe they move away from the shear plane; disappearance of POOs is through

another Hopf bifurcation, as shown in Figure 2.4, after which IP-l again becornes

unstable. As PDOs evolve from the shear plane, from the in-plane solution branch IP-l,

they are classified based on the solution branch of their birth. For high Pe, the rP-l is

stable and corresponding stable state is ISS (see Figure 2.3a). The out-of-plane branch

OP-l predicts LRS (see Figure 2.3d) for very low Pe, for intermediate Pe the KO

(see Figure 2.3e) states emerge and rernain stable till Pe::::; 3.7 where OP-l loses stability,

folds at Pe ::::: 4, and remains unstable till it extinguishes at Pe = o. The out-of-plane

branch OP-2 persists in a very narrow range of Pe, and is partly stable. The stable KOs,

emerging from OP-l, extinguish on OP-2 through a Hopf bifurcation. The stable OP-2

exchanges stability with the unstable part of lP-l, thereafter IP-l exhibits a stable ISS (see

Figure 2.4). The in-plane branch IP-2 is unstable throughout the range of Pe it persists.

Figure 2.5 shows the steady state (a) uniaxial alignment Sss and (b) biaxial

alignment Pss as a function of Pe. The two stable states on IP-l are the periodic orbit

POO (see Figure 2.3f), and the steady state ISS (see Figure 2.3a). For the POO, Sss and

Pss both represent oscillatory stable states oscillating around values below Seq and above

zero respectively. The stable states on OP-l are LRS (see Figure 2.3d) and Kü (see

Figure 2.3e). In case of KO, Sss and Pss oscillatè around values below Seq and above zero

respectively. In LRS, Sss decreases and remains below Seq while Pss increases.
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Figure 2.4: Computed steady state components of the tensor order parameter. QSSI as a
function of dimensionless shear rate Pe for U = 6, P = -0.8, as predicted by CE-I for ONs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-I under simple
shear are given by two in-plane solution branches, IP-I and 1P-2, and two out-of-plane solution
branches, OP-I and OP-2. The summary of stability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.1. For
details see text.
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simple shear flows. The bifurcation phenomena exhibited by CE-l are given by two in-plane
solution branches, IP-I and IP-2, and two out-of-plane solution branches, OP-l and OP-2. The
summary of stability/instability of the solution branches in various intervals along with the
corresponding stable orientation states is given in Table 2.1. A comprehensive summary of
changes in Sand P with Pe for the various stable orientation states is given in Table 2.5. For
details see text.

TABLE 2.1

SummaryofBifurcation Phenomena for CE-I (equation (2.6))

Branch Stabilitv features

IP-l o<Pe <2 2.0<Pe<2.8 2.8 <Pe < 3.7 Pe > 3.7
Unstable Stable (PDO) Unstable Stable (lSS)

IP-2 Unstable throughout
OP-l o<Pe<O.7 O.7<Pe<3.7

Stable (LRS) Stable (KO)
OP-2 Exists for very narrow range ofPe (see text)

Pe: Peclet number; IP-l: in-plane branch l; IP-2: in-plane branch 2; OP-l: out-of-plane branch 1;
OP-2: out-of-plane branch 2; LRS: log rolling state; KO: kayaking orbit; PDO: period doubling
orbit; ISS: in-plane steady state
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The stable state dynamics of n predicted by CE-l are summarized in Table 2.1,

and can be described as follows: for very low Pe there is only one stable state

corresponding to LRS; for intermediate Pe the main stable state is KO, however, in a

narrow range of Pe POO also becomes stable along with KO; finally for high Pe the only

stable state is ISS. The stable attractors for CE-l are the vorticity axis, the kayaking

orbits, the shear plane and the period doubling orbits.

The CE-l neither predicts ITO and IWS states nor the classical ITO --)0 IWS and

rws --)0 ISS transitions. The orientation predictions by CE-l for shear flows are not

consistent with the predictions of the molecular (Larson and Ottinger, 1991) and

macroscopic theories (Farhoudi and Rey, 1993). Aiso the LRS state is stable for a very

short range of Pe and is not stable together with ISS as has been observed in the shear

experiments of the representajve discotics by Hammouda et al. (1995). Thus CE-l

cannot be employed to govern the microstructure response ofdiscotic mesophases.

2.4.1.2 Constitutive Equation 2

Figure 2.6 shows the components of the tensor order parameter Qss as a function

of Pe. The bifurcation phenomena exhibited by CE-2 are captured by two in-plane

branches, IP-l and IP-2, and two out-of-plane branches, OP-l and OP-2. The bifurcation

phenomena shown in Figure 2.6 are summarized in Table 2.2. There are four ro\vs in

Table 2.2, one for each branch, describing the stability/instability of the various intervals

with respect to Pe, and the corresponding stable orientation states. The in-plane branch

IP-l is unstable for low Pe, for intermediate Pe it exhibits the ITO orientation state

(see Figure 2.3a), which changes to stable rws (see Figure 2.3b) for high Pe. No ISS

(see Figure 2.3a) is encountered in the analyzed range of Pe (Pe < 52). The out-of-plane

branch OP-l is stable and corresponds to LRS .(see Figure 2.3d) till Pe ~ 14.3 where it

loses stability, folds and remains unstable till it extinguishes at Pe = o. The in-plane

branch IP-2 and out-of-plane branch OP-2 are unstable throughout.

Figure 2.7 shows the steady state (a) uniaxial alignment Sss and (b) biaxial

alignment Pss as a function of Pee The stable part of IP-l is periodic in nature and the

corresponding stable states are rro and rws for which Sss and Pss are oscillatory in
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nature. The only stable state represented by OP-I is LRS for which Sss and Pss follow the

same trends as those stated in CE-l .
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Figure 2.6: Computed steady state components of the tensor order parameter, Qss, as a
function of dimensionless shear rate Pe for U = 6, P = -0.8, as predicted by CE-2 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-2 under simple
shear are given by two in-plane solution branches, IP-l and IP-2, and two out-of-plane solution
branches, OP-l and OP-2. The summary of stability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.2. For
details see text.
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Figure 2.7: (a) Steady state uniaxial alignment Sss, and (b) biaxial alignment Pss as a function
of dimensionless shear rate Pe for U = 6, fJ = -0.8, predicted by CE-2 for DNs subjected to
simple shear flows. The bifurcation phenomena exhibited by CE-2 are given by two in-plane
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details see text.
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TABLE 2.2

Summary of Bifurcation Phenomena for CE-2 (equation (2.10»

Branch Stability features
IP-l Pe<7 7 <Pe < 9 Pe>9

Unstable Stable (ITO) Stable (IWS)
IP-2 Unstable throughout

OP-l 0< Pe < 14.3
Stable (LRS)

OP-2 Unstable throughout
Pe: Peclet number; IP-l: in-plane branch 1; IP-2: in-plane branch 2; OP-!: out-of-plane branch l;
OP-2: out-of-plane branch 2; LRS: log rolling state; ITO: in-plane tumbling orbit; IWS: in-plane
wagging state
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The stable state dynamics of n predicted by CE-2 are given by Table 2.2 and are

summarized as follows: for low Pe there is onlyone stable state corresponding to LRS,

for intennediate Pe LRS along with ITO are the stable states, for high Pe LRS and rws
are the stable states, and for very high Pe there is only one stable state corresponding to

rwS. The stable attractors for CE-2 are the vorticity axis and the shear plane.

The CE-2 neither predicts ISS under shear for significant range of Pe nor the

rws ~ ISS transition, which is not in agreement with the theoretical predictions (based

on molecular and macroscopic theories) and experimental data (Hammouda et al., 1995)

for representative discotic under shear flows. Thus this CE-2 cannot be used to represent

the microstructure phenomena in discotic mesophases, and hence is rejected.

2.4.1.3 Constitutive Equation 3

Figure 2.8 shows the components of the steady state tensor order parameter Qss as

a function of Pe. The bifurcation phenomena exhibited by the CE-3 are represented by

two in-plane branches, IP-I and IP-2, and three out-of-plane branches, OP-l, OP-2 and

OP-3. The bifurcation phenomena shown in Figure 2.8 are summarized in Table 2.3.

There are five rows in Table 2.3, one for each branch, defining stability/instability of

various intervals with respect to Pe, and the corresponding stable orientation states. The

in-plane branch IP-I is unstable for very low Pe, for intennediate Pe the IP-l branch is

stable in a narrow range and it corresponds to the stable POO orientation state (see Figure

2.3f). The fonnation and disappearance ofthese POOs follows the same phenomenon as

those stated in case of CE-I. The IP-l is unstable for rest of the intennediate Pe, and for

high Pe it remains stable with ISS (see Figure 2.3c) being the corresponding stable steady

state. The out-of-plane branch OP-I is stable throughout the considered range of Pe and

the stable state corresponds to LRS (see Figure 2.3d). The in-plane branch lP-2 and the

out-of-plane branches OP-2 and OP-3 are unstable throughout.

Figure 2.9 shows the steady state (a) uniaxial alignment Sss and (h) biaxial

alignment Pss as a function of Pe. The two stable state on IP-l are the periodic orbit POO

and the steady state ISS. A Summary of the long time dynamical response of PDO is
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given in Table 2.5. The stable state represented by OP-l corresponds to LRS for which

Sss and Pss follow the same trends as those stated in CE-l .

0.6 r-----------oooor---------~

0.3

0.0

IP-1 OP-2
IP-2 ..... - - - • - . /
-, ,," - • -. - Q,.... L~

~~" OP-1 .~7-~-_-J

~ ... -------... -- ... -ë>~3--------
o

'<
X

0.6

OP-1

0.6

,OP-2•-- ~-
IP-2,IP-1 -

OP-1,OP·3

OP-1

IP-1 _ .- .-. - '1..... ,
,

...
, ... ' OP-2

_..... OP-3
··i------------ __ ~0.0 jp-2 - - - - - - - --

~ 0.3

o

•
0.3

0.0

OP-~ ... _- - .. - - - ~ - - - ... - - -
......... - ... - \

~: 1
, 1

f- 'IP-2 , OP-2
1
1

---- - - - -- ::.~_.-.- e-~----I

P-2.IP-1
-

OP-1.0P-3

OP-?
~

"Il
- .JI.

-0.3
o 1 2 3

Pe

4 5 1 2 3

Pe

4 5

•

Figure 2.8: Computed steady state components of the tensor order parameter, Qss, as a
function of dimensionless shear rate Pe for U = 6, P = -0.8, as predicted by CE-3 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-3 under simple
shear are given by two in-plane solution branches, IP-l and IP-2, and three out-of-plane solution
branches, OP-l, OP-2 and OP-3. The summary ofstability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.3. For
details see text.
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TABLE 2.3
Summary of Bifurcation Phenomena for CE-3 (equation (2.13»

Branch Stability features
IP-l 0< Pe < 1.8 1.8 < Pe < 2.9 2.9 <Pe < 3.4 Pe> 3.4

Unstable Stable (PDO) Unstable Stable (ISS)
IP-2 Unstable throughout
OP-l Pe>O

Stable throughout (LRS)
OP-2 Unstable throughout
OP-3 Unstable throughout

Pe: Peclet number; IP-I: in-plane branch 1; IP-2: in-plane branch 2; OP-l: out-of-plane branch 1;
OP-2: out-of-plane branch 2; OP-3: out-of-plane branch 3; LRS: log rolling state; POO: period
doubling orbit; ISS: in-plane steady state.
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The dynamics of n predicted by CE-3 are given by Table 2.3 and cao be

summarized as follows: for low Pe there is only one stable state corresponding ta LRS,

for intermediate Pe the main stable state is LRS, however, in a small range of Pe POO

also becomes stable state along with LRS, and for high Pe LRS and ISS correspond to the

stable states predicted by CE-3. The stable attractors for CE-3 are the vorticity axis, the

shear plane, and the eccentric period doubling orbits.

The CE-3 neither predicts rro and IWS states nor the classical ITO ~ IWS and

rws ~ ISS transitions, and hence is not consistent with the predictions of the molecular

(Larson and Ottinger, i991) and macroscopic theories (Farhoudi and Rey, 1993). Thus

CE-3 cannot be employed to represent the microstructure phenomena in discotic

mesophases, and hence is rejected.

2.4.1.4 Constitutive Equation 4

Figure 2.10 shows the components of the steady state tensor order parameter Qss

as a function of Pe. The bifurcation phenomena exhibited by CE-4 are captured by two

in-plane branches, IP-l and IP-2, and three out-of-plane branches, OP-l, QP-2 and OP-3.

The bifurcation phenomena shown in Figure 2.10 are summarized in Table 2.4. Table 2.4

contains five rows, one for each branch, describing the stability/instability of the various

intervals with respect to Pe, and the corresponding stable states. The in-plane branch

IP-l is unstable for low Pe, for intermediate Pe the IP-l branch is stable with ITO

(see Figure 2.3a) as the corresponding stable state, which changes ta rws (see

Figure 2.3b) for high Pe. IP-l is stable and predicts ISS (see Figure 2.3c) for very high

Pe. The out-of-plane branch OP-l is stable throughout the considered range of Pe and

the stable state corresponds to LRS (see Figure 2.3d). The in-plane branch IP-2 and the

out-of-plane branches OP-2 and OP-3 are unstable throughout.

Figure 2.11 shows the steady state (a) uniaxial alignment Sss and (b) biaxial

alignment Pss as a function Pe. In IP-I there is a typical in-plane transition from ITQ to

rws and finally to ISS as predicted by many molecular and macroscopic theories. Here

Sss and Pss show oscillatory states for ITO and rws, and steady state for ISS. LRS is the



CHAPTER 2. CONSTITUTIVE EQUATION FOR DISCOTIC NEMATICS.•• 61

•
stable steady state represented by OP-l for which variations in Sss and Pss with increasing

Pe are the same as discussed before, and are summarized in Table 2.5.
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Figure 2.10: Computed steady state components of the tensor arder parameter, Qss, as a
function of dimensionless shear rate Pe for U = 6, f3 = -0.8, as predicted by CE-4 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-4 under simple
shear are given by two in-plane solution branches, IP-I and IP-2, and three out-of-plane solution
branches, OP-l, OP-2 and OP-3. The summary of stabi1ity/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.4.
For details see text.
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Figure 2.11: (a) Steady state uniaxial alignment $ss, and (b) biaxial alignment Pss as a function
of dimensionless shear rate Pe for U = 6, P = -0.8, predicted by CE-4 for DNs subjected ta
simple shear flows. The bifurcation phenomena exhibited by CE-4 are given by two in-plane
solution branches, IP-l and 1P-2, and three out-of-plane solution branches, OP-l, OP-2 and
OP-3. The summary of stability/instability of the solution branches in various intervals along
with the corresponding stable orientation states is given in Table 2.4. A comprehensive summary
of changes in Sand P with Pe for the various stable orientation states is given in Table 2.5. For
details see text.
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TABLE 2.4
Summary of Bifurcation Phenomena for CE-4 (equation (2.15»

Branch Stability features
IP-l Pe<4.5 4.5 <Pe < 5.5 5.5 <Pe < 14 Pe> 14

Unstable Stable (lTO) Stable (IWS) Stable (lSS)
IP-2 Unstable throu2hout
OP-l Pe>O

Stable throughout (LRS)
OP-2 Unstable thrOUWtout
OP-3 Unstable throughout

Pe: Peclet number; IP-l: in-plane branch l; IP-2: in-plane branch 2; OP-l: out-of-plane branch 1;
OP-2: out-of-plane branch 2; OP-3: out-of-plane branch 3; LRS: log rolling state rro: in-plane
tumbling orbit; IWS: in-plane wagging state; ISS: in-plane steady state.
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The dynamics of D predicted by CE-4 are summarized in Table 2.4 and can be

summarized as follows: for low Pe there is only one stable state corresponding to LRS,

for intennediate Pe LRS along with ITO arc the stable states, for high Pe LRS and rws
are the stable states, and for very high Pe there are two stable states corresponding to LRS

and ISS. The stable attractors for CE-4 are the vorticity axis and the shear plane.

The CE-4 predicts the major and essential stable steady and periodic states along

with the classical ITO ~ rws and rws ~ ISS transitions as predicted by macroscopic

(Farhoudi and Rey, 1993) and molecular theories (Larson and Ottinger, 1991). The

multi-stabilities of the various stable states and their phase diagrams are qualitatively the

same as those shown by Larson and Ottinger (1991). Moreover the simulations results of

CE-4 under shear are consistent with the experimental results on representative discotics

under shear (Hammouda et al. 1995). AIso, as mentioned in the introduction, the

preferred orientation of the disc-like molecules (close to the walls of slit) of discotic

mesophase pitches, flowing in a thin rectangular channel, corresponds to LRS. Thus

CE-4 can be considered as the most appropriate choice for describing the microstructural

response of the discotic mesophases. The relevance of the predicted microstructure

response in discotic mesophase pitches in explaining sorne of the observed

microstructural features in mesophase carbon fibers will be established in future work.

2.4.2 Dynamic Simulations

As rnentioned above the dynamic simulations were employed to confinn the

stability of the various branches obtained by bifurcation analysis of the various CEs under

shear flows. The results of the bifurcation analysis are organized and classified in tenns

of the uniaxial director 0 dynamics, given in Figure 2.3, but a more complete

characterization must include the remaining two eigenvectors. Moreover, the

maxima/minima corresponding to the periodic states are not plotted either in tenns 0 f

director triad (0, m, 1) or in terms of alignments S and P. Hence to further understand the

long time dynamic response of periodic states iil terms of either director triad (D, m, 1) or

alignments Sand P, dynamic simulations were performed.
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Summary of long time dynamic response of stable states predicted by four CEs for ONs under shear flows for U = 6, P= -0.8

Stale Long time dynamic response of
type uniaxial director 0 biaxial director m biaxial director 1 uniaxial alignment S Biaxial alignment P

-Pmss = 90° ~ss = 90°
LRS tPnss = 0° 90° ~ Omss::; 135° 0° ~ ~ss ~ 45° o~ Sss ~ Seq o~ Pss ~ 1

Pet:Omss~90° or 270° Pet: ~ss~O° or 180° Pe t: Sss .J.. Pe t: Pss t
,p,. = (0°, 90°) ~;::: (0°, 180°) ~ = (0°,180°) Oscillates Oscillates

KO On = [0°, 360°] Om;::: [135°, 225°] 6\ = [45°, 135°] o~S~ Scq O::;P~l

(out-of-plane orbits) (out-of-plane orbits) (out-of-plane orbits)
Pet: L.J.., <6n~~90° Pet: L.J.. Pet: L.J.. Pet: L .1" A t Pet:L.J..,At

tA. =(0°, 90°) 'Ân = (0°, 90°) ~ = (0°, 90°)
POO On = [45°, 135°] Om :::: [135°, 225°] ~::::[45°, 135°] Oscillates Oscillates

(out-of-plane orbits) (out-of-plane orbits) (out-of-plane orbits) o::; S ::; Scq O::;P::;I
Pet: L'f, A.J.. Pet: Lt, A..1- Pet: Lt, A.J..

tA. = 90° Oscillates around Scq Oscillates around
ITO On = [0°, 360°] same as n ~ss = 0° values above 0

(rotales in shear plane) (since n.lm) Pet: L .J.., A t Pet: L ..1-, A t
Pet: L.J..
tA. = 90° l/Jm = 90° Oscillates Oscillates

IWS On = [45°, 135°] Om;::: [135°, 225°] ~ss = 0° o::; S ::; Scq O::;P::;1
(oscillates in shear plane) Pe t: L..1-, A .1,

Pe t: L .J.., A .J.. Pet: L J.,A t Pet: L .J.., A t
tPnss :::: 90° fÂnss ;::: 90° o~ Sss ~ Scq o::; Pss ::; 1

ISS 90° ::; Onss ::; 135° 0° ::; Bmss ::; 45° ~ss =0°
Pet:Onss~90° or 270° Pet: Omss~O° or 180° Pet: Ssst Pet: Pss J.

L: Period of oscillations; A: Amplitude of oscillations; Pe: Peclet numbcr; f/J. (a ::::: D, m, 1): director polar angle; Ba (a = D, m, 1): director azimuthal
polar angle; LRS: log rolling state; KO: kayaking orbit; POO: period doubling orbit; ITO: in-plane tumbling orbit; IWS: in-plane wagging state;
ISS: in-plane steady state; subscript "ss": stcady statc; subscript "cq": equilibrium value
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Here we present the main features of the director triad (0, m, 1) and alignment

(8, P) computed by dynamic simulations corresponding to aIl the CEs. The main

dynamic fealures of the uniaxial and biaxial orientation and alignments are summarized

in Table 2.5, which contains 6 rows, one for every stable state represented in Figure 2.3,

and five columns to describe the long time dynamics of the director triad (0, m, 1) and

alignment (8, P). AlI the symbols appearing in the table are defined in the captions. The

superscript "ss" indicates that the corresponding long time dynamic solution is a steady

state, and in this case the range of steady state orientation and alignment along with the

asymptotic values are given. For example, LRS is a steady state, the uniaxial director 0

aligns along the vorticity axis (Bnss = 0°), the biaxial director m aligns in the region

(90° ~ Omss ~ 135°) in the shear plane (~s = 90°), and for very high Pe it approaches its

asymptotic orientation (Omss~900). For periodic states (ITO, IWS, Ka and POO) the

range of oscillation along with changes in amplitude, A, and period of oscillations, L, with

increasing Pe is given. For example, IWS the uniaxial director oscillates in the shear

plane (9Jn = 90), the amplitude of oscillations is within the regions (On = [45°, 135°]), and

as Pe increases the amplitude as weIl as period of oscillations decreases;

Pe t: L -1,., A -1,.. In partial summary Table 2.5 gives a comprehensive data base of all the

characteristics of a11 the stable states predicted by aIl the CEs, investigated in this paper,

under for shear flow at any arbitrary shear rate for a nematic discotic phase composed of

molecules ,vith a shape factor of p = -0.8. Although not discussed in the paper, it was

found that as the shape factor fJ increases the tendency of ONs to tumble increases.

2.5 Conclusions

Out of four proposed CEs, an appropriate CE (eqn. (2.15» has been selected for

discotic mesophases by implementing an iterative process that is based on a set of criteria

that consists of theoretical results and experimental data. The selected CE is able to

capture aIl the experimental features and is consistent with the theoretical results, and will

be used to develop the fundamental understanding of rheology of discotic mesophases in

general and that of carbonaceous mesophase pitches, used in the manufacturing of

mesophase carbon fibers, in particular.
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The selected CE (eqn. (2.15» is found to predict, qualitatively, almost all the

necessary orientation features (except KO in case of Larson and Ottinger, 1991) based on

the molecular theories, and therefore the terms with order Q2 are sufficient to construct an

appropriate CE for DNs. A complete summary of aIl stable states (periodic or steady) and

the corresponding stable intervals in terms of Pe is presented in Table 2.6. The last row

of Table 2.6 contains information regarding the absent orientation modes in each CE.

CE-4 does not predict the out-of-plane orientation states KO or PDO (see Figure 2.3e, f).

The former orientation state KO is shown to be stable only in a very narrow range by

Larson and Ottinger (1 991), whereas the latter POO has never been predicted or observed

earlier, and hence this deficiency apparently does not impart a serious flaw on the

predictions of CE-4. Moreover, though no molecular simulation for ONs subjected to

various flows exist, the selected constitutive equation, Le. CE-4, when adopted to rod-like

nematics develops the same phenomenology as shown by Larson and Ottinger (1991),

thus lending strong support to the validity of the CE-4.

The bifurcational analysis reveals that the various proposed CEs predict a great

variety of dynamical microstructural behavior for discotic mesophases, and show multi­

stabilities of various orientation modes through a series of complex bifurcations.

Therefore, the theoretical investigation of rheology of these materials requires advanced

mathematical tools such as bifurcation methods. The present investigation found that the

bifurcation analysis is an effective but not sufficient tool for similar complex problems.

Dynamic simulations must always be performed to check the stability of the various

states.

Table 2.7 contains a complete summary ofaIl the stable attractors for the four CEs

investigated in this paper. AlI the presented CEs when subjected to simple shear flows

predicted the shear plane and the vorticity axis as major stable attractors, whereas

kayaking orbits and period doubling orbits are stable attractors only in those CEs which

are based 00 Q iodependent diffusivity. Moreover, the CEs with the Q independent

diffusivity do not predict the in-plane periodic stable states (such as IrO and IWS), which

is not in agreement with the predictions of molecular theories (Larson and Ottinger,



CHAPTER 2. CONSTITUTIVE EQUATION FOR DISCOTIC NEMATICS ••• 67

•

•

•

1991). Hence the constant (Q independent) diffusivity is not an appropriate assumption

while selecting a CE for nematics.

TABLE 2.6

Summary of the stable states predicted by four CEs

Microstructure Constitutive Equation
State type CE-l CE-2 CE-3 CE-4

LRS O<Pe<0.7 O<Pe< 14.3 Pe>O Pe>O
KO O.7<Pe<3.7 - -

POO 2.0 <Pe<2.8 - 1.8 < Pe < 2.9 -
ITO - 7<Pe<9 - 4.5 <Pe<5.5
IWS - Pe>9 - 5.5 <Pe< 14
ISS Pe> 3.7 - Pe> 3.4 Pe> 14

ITO ISS ITO Kû
Stable states not rws KO IWS POO

predicted POO KO
PDO

Pe: Peclet number; LRS: log rolling state; KO: kayaking orbit; POO: period doubling orbit;
rro: in-plane tumbling orbit; rwS: in-plane wagging state; ISS: in-plane steady state

TABLE 2.7

Summary ofvarious stable attractors for four CEs

Type of main attractors CE-l CE-2 CE-3 CE-4
Shearplane Yes Yes Yes Yes

Vorticity axis Yes Yes Yes Yes
Out-of-plane kayaking Yes No No No

orbit
Out-of-plane period Yes No Yes No

doubling orbit
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lCHAPTER 3

Microstructure Constitutive Equation for

Discotic Nematic Liquid Crystalline

Materials

Part II: Microstructure-Rheology Relations

In the previous chapter a microstIucture constitutive equation (CE) of discotic

mesophases was fonnulated by taking into account the full microstructural characteristics.

In this chapter the hydrodynamic constitutive equation or stress tensor equation

complimenting the microstructure governing equation for discotic mesophases is

formulated from tirst principles. The shear rheological properties predictions are

presented and assessed within the context of nematorheology. The predicted apparent

shear viscosity of discotic mesophases is qualitatively similar to that reported in the

literature (Fleurat, 1998). The present work is the tirst attempt to establish the relations

among rheological material functions, flow-induced microstructure, processing

conditions, and material properties. A sufficiently number of distinguishing features have

been identified that are specifie to the discotic nature of the nematic phase, and augment

the number of quantitative and qualitative differences between discotic and rod-like

nematics that had been noted in the literature (Farhoudi and Rey, 1993c).

1 This chapter appeared as an original article in Rheo/ogical Acta 37(4) p374-386 (1998).
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3.0 Abstract

The rheological material functions predicted by a previously selected constitutive

equation (CE) for discotic mesophases are presented. The predicted relations among

rheological properties, shear-induced microstructure, processing conditions and material

parameters of discotic mesophases are characterized and discussed. The tirst and second

normal stress differences corresponding to planar (i.e., 2-D orientation) microstructure

mode of discotic nematics are found to be qualitatively similar to those for rod-like

nematics despite the existing differences in flow-orientation characteristics. The first

(second) nonnal stress difference for discotic mesophases corresponding to non-planar

(i.e., 3-D orientation) microstructure mode is always positive (positive or negative

depending on viscous effects); and is found to be due to flow-induced biaxiality. The

effect of change in nematic potential (or temperature) on rheological properties ofdiscotic

mesophases is also presented. The apparent shear viscosities for various microstructure

modes and material properties are also presented and shown to agree qualitatively with

the available experimental data. Though only restricted validation of the predicted results

with the actual experimental data of discotics is possible, the present study provides

essential theoretical feedback ta the on-going experimental work being pursued in

understanding the processing behavior ofmesophase pitches.

3.1 Introduction

Carbonaceous mesophases or mesophase pitches are an important class of lo\v

cast precursor materials that are used to manufacture high perfonnance mesophase pitch­

based carbon fibers which posses excellent mechanical and thennal transport properties

(Singer, 1985; Peebles, 1994; Edie et al. 1994). These fibers are used to produce a new

generation of composite materials that are revolutionizing the space, aircraft, electronics

and automotive industries. The superior properties of these mesophase carbon fibers

depend on the textures that evolve during the spinning process of mesophase pitches.

During the spinning process, the mesophase pitches are subjected to various flow

deformations and thermal stresses which result in a variety of fiber textures under

different processing conditions (Oya and Otani, 1986; Mochida et al., 1993; Lafdi et al.
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1993; Fatholahi and White, 1994; MeHugh and Edie 1995, Fleurot, 1998). However,

their flow behavior under sueh eomplex external fields is not known, and that knowledge

is essential for their further development. Though the proeess optimization and texture

selection may be aehieved by trial and error, the variability of mesophase feed stocks and

variations in process equipment geometry requires the use of generalized principles.

Figure 3.1: Definition of director orientation of a uniaxial discotic nematic liquid crystal1ine
material. The director D is the average orientation of the unit normals to the disk-like molecules
in a discotic nematic phase.

Mesophase pitches consist ofpoly-aromatie, flat, disk-like molecules that are rigid

enough to display long range orientation arder or Iiquid crystallinity, and tend to adopt a

uniaxiai discotic nematic phase, ND (Chandrashekhar 1981, 1992; Destrade et al. 1981).

In the discotic nematie phase, the unit nonnais to the flat disk-like molecules orient more

or Iess along a common direction called (uniax~al) director or orientation D, as shown in

Figure 3.1. The average degree of alignment of the unit normais to the disk-Iike

moiecules along the director D is defined by the (uniaxiaI) scalar order parameter or

alignment S. This paper deals with rheology of diseotic nematies that are uniaxiaI at rest

but are biaxial under imposed flow. The effeet of flow induced biaxiality of uniaxial

discotic nematies under shear and extensional flows have been extensively explored

(Singh and Rey, 1995, 1998; Rey, 1995).

It is weil established, through extensive experimental measurements (Baek et al.,

1993, 1994) and theoreticai simulations (Marrucci and Maffetone, 1989; Larson and

Ottinger, 1991; Marrucci and Greco, 1993; Beris and Edwards, 1994; Andrews et al.,

1995) that liquid crystalline materials orient in the presence of magnetic, eleetric or flow
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fields. This inherent property of liquid crystalline materials is exploited to manufacture

highly oriented materials with superior properties that are not possible to achieve from

their isotropie counterparts (Singer, 1985; Peebles 1994; Edie et al., 1994; McHugh and

Edie, 1995). The rheology and flow properties of liquid crystalline materials are crucial

to their end use since it is their flow-induced alignment that provides high strength and

high modulus in the final product. It is weil established that the rheology of liquid

crystalline materials strongly depends on their internaI microstructure along with external

variables such as processing conditions and geometry. Numerous experimental (Baek et

al., 1993, 1994) and theoretical (Marrucci and Maffetone, 1989; Larson and Ottinger,

1991; Marrucci and Greco, 1993; Andrews et al., 1995) studies have been perfonned

relating the rheology of the rod-like nematics with their internaI microstructure.

However, it has been noted that the same is lacking for discotic nematics. In this work

modeling and simulation is used to improve the current understanding of the rheology­

microstructure relations for discotic mesophases.

Next we summarize sorne known important differences and similarities between

rod-like and discotic nematics with regard to rheology-microstructure relations. Volovik

(1980), and Carlsson (1982, 1983) studied the rheology of aligning low molecular weight

uniaxial discotic mesophases and noted the particular material parameters that are

affected in algebraic sign by molecular shape. The important difference in algebraic sign

and magnitude of the material parameters for rod-like and discotic mesophases was found

to be due to the fact that the fonner orient their largest molecular dimension along the

director whereas the latter orient their shortest dimension along the director. The

orienting properties of uniaxial nematies subjected ta shear flows are govemed by the

sign and magnitude of the tumbling function ..1, given by the negative ratio of the

irrotational torque coefficient (n) and the rotational viscosity (rd such that for aligning

disks (rods) Il < -1 (Il> 1) and for non-aligning disks (rods) -1 < Il < 0 (0 < À. < 1).

Farhoudi and Rey (l993e) focused on the orienting properties of non-aligning uniaxial

discotic nematics in simple shear flows and by. using a macroscopic theory showed that

the uniaxial director n tumbles, oscillates or aligns according to the flow strength, and the

transitions among various regimes are sirnilar to that predicted by molecular theories for
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rod-like nematics (Marrucci and Maffetone, 1989; Larson and Ottinger, 1991). In a

previous study, Singh and Rey (1998) presented the complete bifurcation phenomena

along with the flow-induced biaxiality for uniaxial discotic mesophases under shear flows

as predicted by a macroscopic theory. Along with the planar microstructure modes, the

existence of non-planar microstructure mode (log-rolling state), similar to that predicted

by Larson and Ottinger (1991) for rod-like nematics, was shown to be stable for discotics

as weil (Singh and Rey, 1998). The shear-induced microstructure features, both steady

and periodic, are different in rod-like and discotic nematics. For example in discotic

(rod-like) nematics under simple shear flows the director D rotates in the shear plane in

the low shear rate tumbling regime during which it slows down near the velocity gradient

(flow) direction, oscillates around velocity gradient (flow) direction in the intennediate

shear rate wagging regime, and aligns near velocity gradient (flow) direction in the high

shear rate steady state regime.

The relations among the planar microstructure phenomena and the corresponding

rheological properties of rod-like nematics are weil explained and doeumented in the

literature (Marrucci and Maffetone, 1989; Larson, 1990; Marrucci and Greco, 1993;

Farhoudi and Rey, 1993a, 1993b; Baek et al. 1994). However, similar studies are entirely

absent for discotic nematics, and are essential for their continuing development. The

effeet of different orientation features in discotic nematics, from those in rod-like

nematics, on their rheological properties has not been explored 50 far.

Next we present a brief summary of the known rheological properties of rod-like

nematics. The Dai's theory predicts two sign changes in the tirst and second nonnai

differenees (NI and N2) for rod-like nematics 'under simple shear flo\vs (Larson 1990;

Baek et al., 1993, 1994; Marrucei and Greco, 1993). For low shear rates or in the

tumbling regime NI (N2) is positive (negative), for intennediate shear rates or in the

wagging regime NI (N2) is negative (positive) due to the low values of arder parameter,

and finally at high shear rates or in the steady state regime the arder parameter increases

and NI (N2) again becomes positive (negative) (Larson 1990; Baek et al., 1993, 1994;

Marrucci and Greco, 1993). Larson and Ottinger (1991) performed the three dimensional

orientational calculations and predicted the non-planar stable states (kayaking state and
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log rolling state) in which the corresponding nonnai stress differences (NI and N2) were

found to be positive, comparable in magnitude with those for the planar orientation mode,

and increasing with shear rate at low shear rates. Andrews et al. (1995) worked with a

modified Doi's theory (using a quadratic closure approximation) and predicted the first

sign transition in NI, however, their modified theory was unable to predict the second

sign change in NI, and both of the sign transitions in Nz. Farhoudi and Rey (l993b, c) by

using a macroscopic theory for LCP, which is similar in spirit to that used by Andrews et

al. (1995), successfully predicted the two sign changes in NI and N2, for rod-like

nematics, by choosing proper material parameters that resulted in a tumbling function À.

with a local minima (Farhoudi and Rey, 1993a).

In the previous paper (Singh and Rey, 1998), a set of microstructure constitutive

equations (CEs) were fonnulated for discotic mesophases, and their microstructure

response to simple shear flows were simulated. Out of the set, a CE that was consistent

with known experimental data and theoretical predictions was selected. In this paper the

predicted rheological response and properties of the selected CE of discotic mesophases

will be presented. The main objective is to develop fundamental relations among the

rheology and internaI microstructure of discotic mesophases. The emphasis is to present

the shear induced rheological properties of discotic mesophases and their relations with

internaI flow-induced microstructures, processing conditions, and material properties.

The particular objectives ofthis paper are to:

1. Fonnulate an expression for the stress tensor corresponding to the already selected

microstructure constitutive equation (Singh and Rey, 1998) for discotic nematics;

2. Characterize the relations among rheoIogy-microstructure modes;

3. Characterize the relations among rheoIogy-processing conditions;

4. Characterize the relations among rheology-material parameters.

The organization of this paper is as follows. In the following section we present

the governing equations that describe the microstructural response of liquid crystalline

materials and derive the corresponding stress tensor equation. Next, we present a

classification of discotic mesophases based on their microstructure behavior under shear
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flows. Subsequently, the simulated results are used to characterize the relations among

shear rheology and microstructural modes, processing conditions, and material

parameters. Finally, conclusions are presented.

3.2 Governing Equations

The microstructure of discotic mesophases is characterized by a second order

tensor, known generally as the tensor order parameter Q:

Q = S(Dn -ta) + t P(mm -II)

where the following restrictions apply:

(3.la)

tr(Q) = 0 , -t ~ S 5 .l-2 5P5t, (3.1b,c,d,e)

The frrst eigenvector of Q, known as the uniaxial director D, corresponds to the

largest eigenvalue t S , the biaxial director m corresponds to the intermediate eigenvalue

- t (s - p), and the second biaxial director 1 (= D x m) corresponds to the smallest

eigenvalue - tes + p). The orientation is defined completely by the orthogonal director

triad (n, m, 1). The magnitude of the uniaxial alignment S is a measure of the molecular

alignment along the uniaxial director D, and is given as S =t(0 .Q.0). The magnitude

of the biaxial alignment P is a measure of the molecular alignment in a plane

perpendicular to uniaxial director D, and is given by P =t(m .Q . m - 1· Q ·1). Details on

uniaxial (S) and biaxial (P) alignments and their interrelations are given in (Singh and

Rey, 1995). The present work is restricted to normal nematics (0:5 S ~ 1, 0 5 P 5 1).

The order parameter Q is assumed to be spatially uniform.

•
D • 0 = m· m = 1· 1 = 1, DO + mm + Il = a = [~ ~ ~]

001

(3.1 f,g)

•
Figure 3.2(a) shows a schematic of homogeneous steady shear flow. The flow

direction is along the x-axis, the velocity gradient direction is along the y-axis, and the

vorticity axis (neutral axis) is along the z-axis. The shear plane is subdivided into four
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quadrants as shown in Figure 3.2(b). The unit sphere description of the director triad

(0, m, 1), shown in Figure 3.2(c), where:

(3.2)

a (= D, m, 1) is a unit vector given completely by azimuthal angle Ba (0 ~ Ba ~ 2li), and

polar angle (J. (0 ~;. ~ li). In tenns of angles, the equator lies in the shear plane and is

given as (B., (J.) =([0, 2n] ±~), and the ~orth pole and the south pole are located

along the vorticity axis and are given by (jJ. = 0 and tA = li respectively. We use this

parametrization to present the results of uniaxial (0) and biaxial (m, 1) orientations in a

simple and direct way. In the rest of the paper a11 angles are reported in degrees.

3.2.1 Constitutive Equation

The microstructure response of liquid crystalline polymers, as described by Doi's

mesoscopic nematodyoamic theory (Doi and Edwards, 1986), is given as:

• Q=F(Q, Vv)+ H(Q, Dr(Q)) (3.3)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Q and is

defined as:

,. oQ
Q =-+(v.V)Q- W .Q+Q. W

ol
(3.4)

F(Q, Vv) and H(Q, Dr(Q)) represent the flow and the short range elastic contributions

respectively, and are given as (Singh and Rey, 1998):

•

F(Q, Vv) = tPA + p[A.Q +Q. A-t(A:Q)Ô]-

tp[(A:Q)Q + A .Q.Q +Q. A·Q +Q.Q. A - {(Q ·Q)AJô]

H(Q, Dr(Q») =-6Dr [(l-tU)Q-UQ.Q +U{(Q:Q)J+t(Q:Q})}]

(3.5)

(3.6)
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a = (0, ID, 1)
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•

Figure 3.2: (a) Definition of simple shear flow defonnation, and (h) coordinate system. The
x-axis is the flow direction, the y-axis is the velocity gradient direction, and the z-axis (out of the
plane of the paper) is the vorticity axis. (c) Unit sphere description of director triad (0, m, 1).
Unit vector a (a = n, m, 1) is completely defined by the azimuthal angle Ba (0 ~ Ba ~ 2;r) and

the polar angle t/J. (0 ~ t/J. ~ ;r). In terms of unit vector angles, the equator lies in the shear

plane and is given as (B.,t/J.)= ([0,2n] ±~), and the north pole and the south pole are

located on the vorticity axis and are given by ;. =0 and ,p. = Krespectively.
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p 2 -1 rl.
p= 2 l' P=-

P + 'i•
- _ [ 3t. . ) ]-2whereDr - Dr 1 - "2 \Q.Q ,

[
0 . 0]

A =t(Vv+VVT) = ~ r ~ 0,
000

(3.7a,b,c)

[
0 . 0]

w =t(Vv- VVT) = ~ - r ~ o. (3.7d,e)

000

•

Dr is the averaged diffusivity, Dr is the preaveraged diffusivity or isotropie rotary

diffusivity of an hypothetical isotropic fluid under same conditions, U is the nematic

potential, and pis the shape factor. To specify the molecular geometry we approximate

the disk-like shape of molecule of discotic mes~phases with an oblate spheroid of aspect

ratio p (p < 1) where rU is the length of the shortest and distinct semi axis, and r1. the

length of the two longest and equal semi axes. For an ideal flat disc p = 0 (f3 =-1), for a

sphere p = 1 (jJ = 0), and for infinitely long rod p --. 00 (jJ = 1). A and W are the rate of

deformation and vorticity tensor respectively for the considered simple shear flow, and r
is the constant shear rate.

3.2.2 Stress Tensor

The extra stress tensor t l for liquid crystalline materials is given by the SUffi of

symmetric stress tensor t S and anti-symmetric stress tensor ta. The symmetric visco­

elastic stress tensor t S for thermotropic liquid crystals is expressed as a SUffi of viscous

stress contribution t V and elastic stress contribution t C (Doi and Edwards, 1986; Larson

and Doi, 1991; deGennes and Proust, 1993; Larson, 1996) as:

(3.8a,b)

•

In the absence of spatial gradients, the tensor H· Q (H is given by equation(3.6»

is symmetric with the consequence that the antisymmetric stress tensor ta vanishes

(Farhoudi and Rey, 1993a). In this paper we assume that Q is spatially homogeneous,

therefore t l = t S
• The symmetric contribution of the extra stress tensor, t S

, is given by

equation (3.8b) as a sum of elastic t C and viscous t V stress contributions. The

expression for the elastic stress contribution te, derived using the standard equation of
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fluxes (ts, Ô) in tenns of forces (A, H) (deGennes and Proust, 1993), for the presented

CE (equation (3.3» is:

t C = (cKT) [ -f pH - P {H.Q +Q. H -t(H:Q)Ô}] +

(cKT) tp[(H:Q)Q+ H 'Q'Q+Q. H·Q-+Q·Q· H - {(Q'Q)H~]

where

(3.9)

and C is concentration of molecules per unit volume, K the Boltzmann constant and T the

absolute temperature. Equation (3.9) is similar to that proposed by Andrews et al. (1995).

The viscous stress contribution t v is given by:

where VI' v2 and v3 are viscosity coefficients. Mapping the above expression with that

given in Doi and Edwards (1986), Larson and Doi (1991) and Larson (1996), in which the

viscous contribution to stress tensor contains contributions from Q2 terms only, we arrive

at:

•
t v = VI A + v2 {Q .A + A .Q- t(Q: A)Ô} +

v3 [(A:Q)J+A.Q.Q+Q.A.Q+Q'Q'A+ {(Q.Q)A}s]

t
V

= p [(A:Q)Q + A·Q·Q +Q. A'Q +Q.Q. A + {(Q .Q):A}Ô]

(3.11 )

(3.12)

•

where VI = v2 = 0 and v3 = p. Combining equations (3.9) and (3.12), the symmetric

extra stress tensor t S is given by:

(c:T) = qv Pe[(A:Qp+AoQoQ+QoAoQ+QoQoA-!QoQ)A}] +

[-t pH - P {n.Q+Q.H-t(H:Q)3}+ (3.13)

tP [(H:Q)J+H.Q.Q+Q'H .Q+Q.Q. H - {(Q.Q)H}s]

p6D
where C;v = r is a dimensionless constant representing the ratio of the viscous t~'

CKT

to the elastic t C stress contributions, previously introduced by Larson (1996);
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• Pe = -L is Peclet number or the dimensionless shear rate, and Ais dimensionless
6D r

rate ofdefonnation tensor. At low shear rates elastic stress contributions are proportional

to 1/Dr whereas the viscous contributions are proportional to Ji (Larson, 1996).

The first nonnaI stress difference (NI), the second nonnal stress difference (Nz),

and the apparent shear viscosity (,,) are non-dimensionalized as follows:

5 5__ NI _ tv. - tyy
NI ------.....;;..;;...

cKT cKT

_ N, t~ - t:Z
N, =---=.....;...;....--

- cKT cKT

5
1] 6Dr tx.y,,= =-

(cKT) Pe cKT r

(3.14a)

(3.14b)

(3.14c)

•
where the superscript "*,, represents the corresponding dimensionless variable. For

parametric studies three values of C;y (=0.001, 0.1, 0.2) are used. The calculated

numerical values of N; and N; are scaled with their corresponding values at Pe 4 00

and C;y = 0.2, whereas ,,- is scaled with the zero shear viscosity, i.e.. Pe ~ 0 and

C;v = 0.2. The normalized values are given as:

N- = N;
l.narm IN- 1

1. Pe-P~ • .;.. =0.2

N - _ N;
') - 1-. narm N-

I 2. Pe-+<IJ. ~=0.2

-- '1
"narm = 1 - 1

'lPe....O. ~=O.2

(3.15a)

(3.15b)

(3.15c)

•

The values of INI~ Pe-toClO, ~=0.21, IN;. Pe-+II:I. ';"=0.2/ and 117;e-too, ';"=0.21 for the considered cases,

discussed later, are given in Table 3.1. For simplicity, we drop the subscript u nonn" for

the scaled numerical values in the following discussion.
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Table 3.1

• Nonnalized Asymptotic values ofRheological Functions

83

•

N- N: r: _ ~
.

1. Pe-+<C. ';"=0.2 _. Pe-t><c • ..... -0._ '7Pe-t>O. ç" =0.1

U=6,p= -0.8
Planar microstructure mode -0.4563 0.4499 0.05027
Figure 3.4
U= 6, p=-O.8
non-Planar microstructure mode 0.04144 0.06847 0.02182
Figure 3.5
U= 3.5, p= -0.8
Planar microstructure mode 0.0433 -0.0426 0.016
Figure 3.6

3.3 Classification of Discotic Mesophases based on Microstructural

Pbenomena

Depending on the value of the tumbling function À. there are two different

microstructure modes predicted by the presented theory for discotic mesophases in steady

simple shear flows. Similar modes are predicted by macroscopic theories presented by

Farhoudi and Rey (1993a, 1993b) for uniaxial rod-like nematics, but that study was

restricted to the shear plane. The tumbling function À. for the present theory is given by

(Tsuji and Rey, 1997):

(3.16)

Figure 3.3a shows the tumbling function, À., as a function of bath the uniaxial S

and biaxial P alignments for discotic nematics with shape factor fJ = -0.8. The tumbling

function À., is negative (positive) for aIl values ofbiaxial alignment P < 3S (P > 3S) with a

discontinuity at P = 3S. The À. curve intersects the horizontal plane À = -1 at sorne

critical value of uniaxial S(c!) and biaxial [il alignments for a given shape factor {J.

From equation (3.16) we have:

• (3.16a)
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For example for {3= -0.8 and JiI = 0, ~ = 0.66 (see Figure 3.3c).

The (P - S) phase plane for nematics (Singh and Rey, 1995) in terms of S and P

based on the restriction on the eigenvalues of order parameter Q is shown in Figure 3.3b.

As mentioned above this study refers only to normal nematics, the sign of the tumbling

function, Â., for normal discotics is marked in Figure 3.3b. The discontinuity occurs near

the uniaxial nematics line where the largest and the intermediate eigenvalues of Q are

equal. Furthermore, in this study we are restricted to the part of tirst quadrant of

alignment (P - S) phase plane where the tumbling function Â. is negative. In the region of

negative Â., as the shape factor {3 increases the curves move upwards. This is shown in

Figure 3.3c in which Â. is plotted as a function of uniaxial alignment S at a fixed biaxial

alignment (P = 0) for different shape factors p = -0.9 (fullline), -0.8 (dash line) and -0.7

(triple dot-dash line). In the present model the tumbling function Â. monotonically

increases with increasing S in the range [0, 1] for aU values of{3, and has no local maxima

as shown in Figure 3.3c.

Based ')'1 the nematic potential U value, discotic nematics with a given shape

factor fi show different microstructure phenomena, and are classified as aligning (U < if)

or non-aligning (U > if) discotic nematics. As the shape factor f3 increases, the À. curve

moves up and intersects the plane (Â. = -1) at lower ~ (ct), thus decreasing (increasing)

the range of U at which discotic nematics show aligning (non-aligning) characteristics.

3.3.1 Simple Aligning Discotics

Discotic nematics for which the director n reaches a unique stable steady

state orientation within the shear plane (n z = 0) for ail magnitudes of Pe are termed

aligning discotics, and are characterized by Â. (Seq, P = 0, p> < -1. Aligning discotics do

not show any stable non-planar (n z "* Olorientation mode under simple shear flows. The

uniaxial director n aligns close to the velocity gradient direction in the second or fourth

orientation quadrant. The angle between the steady orientation of n and the velocity

gradient direction decreases with increasing Pe, and tends to zero as Pe ~ 00 .
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(a) (b)
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1.00.80.60.40.20.0o r-----r--~--.,.-..,-__.,.--....,

5-(,8=-0.8, P=O)! = 0.66
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..--... -1o
ri---
~ -2

•

(c)

•

Figure 3.3: (a) Tumbling function À. as a function of uniaxial Sand biaxial P alignments for
p = -0.8. The À. surface monotonically decreases (increases) for P < 35 (P > 3S), with a
discontinuity at P = 3S. In discotic nematics planar steady state exists only if À. < -1. (b) The
complete P - S phase plane showing regions where A. is positive or negative. This study is
restricted to the normal discotic nematics for alignntents values for which A. is negative. (c) À. as
a function of uniaxial alignrnent S for P = 0, and for the shape factor f3 = -0.9 (full line), -0.8
(dash line), and -0.7 (triple dot-dash line). The À. curves move upwards and towards left with
increasing 13, diverge as S~ 0, and intersect the line À. = -1 at lower S'.
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3.3.2 Non-Aligning Discotics

Discotic nematics for which all the three stable planar and one stable non-planar

orientation states exist are classified· as non-aligning discotic nematics, and are

characterized by Â. (Seq, P = 0, fJ) > -1. The microstructural phenomena predicted by the

CE for non-aligning discotics under shear flows have been presented previously (Singh

and Rey, 1998), and is summarized in what follows. The predicted stable orientation

modes, in terms of uniaxial director ft dynamics are: (a) ITO or in-plane tumbling orbit,

(b) rws or in-plane wagging state, (c) ISS or in-plane steady state, (d) LRS or log rolling

state. The first two orientation states, ITO and rws, are periodic modes whereas the last

two, ISS and LRS, are stationary modes. AlI orientation states except LRS are in-plane or

planar orientation modes (i. e., nz = 0). In case ofplanar steady state, the director D aligns

close to the velocity gradient direction in the first or third orientation quadrant. The angle

between the steady orientation of ft and the velocity gradient direction decreases with

increasing Pe, and tends to zero as Pe -)0 00.

The effect of biaxial orientation is not considered in the above c1assi fication.

However, sorne differences are apparent, for example in aligning (non-aligning) discotics

in the stationary planar state, the biaxial director m (1) aligns along the vorticity axis and

vIce versa.

3.4 Numerical Results and Discussion

In this section we present the rheological predictions, and the relations

among shear rheological properties, microstructure modes, processing conditions and

material properties ofdiscotic mesophases under simple shear flows.

3.4.1 Microstructure Modes-Rheology Relations

As mentioned above the CE predicts one non-planar steady state mode (log­

roUing), two planar time periodic modes (tumbling and wagging) and one planar steady

state mode. In order to compute average values of the rheological properties for the

tumbling and wagging modes, time averaging is perfonned. In this sub-section first we
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present rheological properties corresponding to planar and non-planar microstructure

modes, which will be followed by their comparison.

3.4.1.1 Planar Mode of Noo-Aligoing Discotic Nematics

Figure 3.4 shows the microstructure-rheology relations for non-aligning discotic

nematics under shear flows corresponding to planar modes (tumbling, wagging and flow­

aligning). Figure 3.4(a) shows the uniaxial alignment S (full line), biaxial alignment P

(dash line) and uniaxial director n azimuthal angle BD (triple dot-dash line) as a function

of dimensionless shear rate Pe, for p= -0.8 and U = 6. The various flow regimes, based

on the uniaxial orientation n dYnamics are also indicated. In this planar orientation mode

the uniaxial director n and biaxiaI director m lie in the shear plane (,pn = tPm =90,

Bn = Bm = [0, 360]) and the biaxial director 1 aligns along the vorticity axis (tPl = 0).

The biaxial directors m and 1 are not represented in Figure 3.4(a) as mJ...n and the

orientation of 1 is independent of shear rate. The full microstructure description in terms

of director triad (0, m, 1) can be given in tenns of the corresponding polar and azimuthal

angles as:

n:

m:

1:

tPD =90 ,

tPm = 90 ,

~ =0 .

BD =[0, 360] ;

Bm =[0, 360] ;

(3.17a,b)

(3.17c,d)

(3.17e)

•

The average uniaxial orientation of discotic nematics is near the velocity gradient

direction for aU planar periodic as weil as steady states. The uniaxial (biaxial) alignments

show three regions: low and high shear rate plateaus with an intennediate power law

region. For the steady state regime, the values ofS, P and Bn are plotted on the same axis

represented by <S>, <P> and <Bn > respectively in Figure 3.4a.

Figure 3.4b shows the scaled dimensionless first nonnal stress difference N; as a

function ofPe corresponding to Figure 3.4a for Çv = 0.001 (fullline), 0.1 (dash line), and

0.2 (triple dot-dash line). The tirst nonnal stress difference N; is positive for low shear

rates, in the tumbling regime, and becomes negative near the transition from tumbling to
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wagging regime. N; remains negative for the bigher values of shear rates in the

oscillatory and steady state regimes. The high Pe plateaus remain negative, and increase

with increasing çv' The phenomenon is qualitatively similar to that presented by

Andrews et al. (1995) for rod-like nematics using a similar CE, however, it was unable to

predict second sign transition in N;. The present model a1so has tbis limitation for both

rod-like as weil as discotic nematics.

Figure 3.4c shows the scaled dimensionless second normal stress difference N;
as a function of Pe corresponding to Figure 3.4a, for ç... = 0.001 (full line), 0.1 (dash

line), and 0.2 (triple dot-dash line). N; is nearly zero for low Pe, in the tumbling regime,

and then increases exponentially with intennediate Pe in the wagging regime before

reaching a high Pe plateau in the steady state regime. The high Pe plateaus and the

exponential increase at intennediate Pe increases with increasing ç.,.. N; corresponding

to the planar mode for discotic nematics does not show any sign transition, and does not
•

resemble that of rod -like nematics. The theory used by Andrew et al. (1995) failed to

predict any sign transition in case of rod-like nematics. However, the present theory

when used for rod-like nematics predicts the first sign transition, but fails to predict the

second at high Pe, reported by Marrucci and Maffetone (1989) and Baek et al. (1993,

1994).

The sign transitions in N; and N; for planar microstructure mode are attributed

due to the coupling between director orientation 0 and alignment S (Marrucci and

Maffettone, 1989; Larson, 1990; Farhoudi and Rey 1993a). AIso, Marrucci and

Mafettone (1989) suggested that alignment S rather than orientation plays a more

dominant role in the sign transition in N; by showing that the negative N; persists

beyond shear rates at which orientation angle becomes positive, and the negative N; is

due to the low alignment. Farhoudi and Rey (1993a) used a macroscopic theory with a

set of material parameters that results in a tumbling function À with a local minima for

rod-like nematics, predicted both sign transitions in N; and N;, and the second sign

change is shown to be due to the increase in the alignment above the equilibrium values
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at high shear rates (Farhoudi and Rey, 1993a) which is attributed due to the 'U' shape of

À. curve for rod-like nematies. In the work of Andrews et al. (1995) and in the present

model there is only one adjustable parameter, the shape factor p, and there is no local

maxima (minima) in Â. for the useful limits (0 ~ S ~ l, 0 ~ p ~ 1) of aIignments for

discotie (rod-like) nematies as shown in figure 3.3c. As is weIl known in ease ofdiscotie

(rod-like) nematies, steady state exists only when Â. < -1 (À. > 1). In the present study, in

steady state regime alignment S is always less than the equilibrium alignment Seq (see

Singh and Rey, 1998). Henee the present theory is unable to predict the second transition

in N; or the positive N; at high shear rates as predieted by other molecular or

mesoseopic theories for rod-like nematies. The results presented here for low and

intennediate Pe suggest that N; is qualitativety similar for both rod-like and discotic

nematies despite the reversaIs in other material funetions.

Figure 3.4d shows the scaled dimensionless apparent shear viscosity ". as a

funetion Pe eorresponding to Figure 3.4a for ~v = 0.001 (full lîne), 0.1 (dash tine), and

0.2 (triple dot-dash line). The seaied apparent viscosity ". has three distinct regions: low

and high shear rate plateaus, and an intermediate power law regime. The difference,

~". =,,; - ,,~, between the low (,,;) and high (1]~) shear rate viscosities increases with

increasing ;v. The low Pe plateau persists till the end of tumbling regime for which the

average values of uniaxial and biaxial alignments «(8), (p) are independent of Pe. For

the intermediate Pe the average value of uniaxial (biaxial) alignment increases

(decreases), and is refleeted in the shear thinning region of ".. High shear rate

independency of ". is qualitative similar to a majority of reported viscosity data for

mesophase pitches (McHugh et al., 1992; Fatholahi and White, 1994; Edie et al., 1994;

Fleurot et al., 1995).

The predieted profiles of ". are qualitatively similar to those for rod-like

nematics shown by Larson (1990) in whieh the low shear rate plateau ends at r< 0.003.

Baek et al. (1994) aiso predicted a low shear rate plateau along with a shear thinning

region for a range of viseous to elastic stress ratios. The shear rate range for the lower
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plateau can he easily evaluated for a known Dr from the relationship i = 6 D, Pe. The

rotational diffusivity Dr for discotic mesophase pitches is unknown, but it can be

evaluated frOID either experimental rheological data using methods employed by Ooi and

Sridhar (1994), and Baek et al. (1993) or by employjng NMR techniques (Janik et al.,

1977; Franklin, 1977; Khabibullaev et al., 1994). The experimental data for rotational

diffusivity Dr is available for a wide range of rod-like low molecular weight liquid

crystals (Janik et al., 1977; Franklin, 1977) and liquid crystalline polymers (Mori et al.,

1982; Ooi and Sridhar, 1994; Baek et aL,' 1993).

3.4.1.2 Noo-Plaoar (Log-Rolling) Mode of Non-Aligoiog Discotic Nematics

The bifurcation analysis of equation (3.3) revealed that the log-rolling steady state

is stable for all shear rates, and thus equation (3.3) predicts multistability at all shear rates

(Singh and Rey, 1998). In this section we present microstructure-rheology relations for

the log-rolling state, shown in Figure 3.5, for non-aligning discotic nematics.

Figure 3.5(a) shows the uniaxial aIignment S (fullline), biaxial alignment P (dash

line), and biaxial director m azimuthal angle (}m (triple dot-dash line) as a function of

dimensionless shear rate Pe, for p = -0.8 and U = 6. In this microstructure mode the

uniaxial director 0 aligns along the vorticity axis (tPu = 0) and the biaxial directors m and

1lie on the shear plane (tPm =rA =90). As shown in the Figure 3.5a at low Pe the biaxial

director m (1) lies in the middle of fourth or third (first or second) quadrant. As Pe

increases the steady state orientation of the uniaxial director 0 remains along vorticity

axis however, that of th~ biaxial director m (1) shifts, exponentially for the intennediate

Pe, towards the velocity gradient (flow) direction. For very high Pe the uniaxial and

biaxial directors (0, m, 1) lie along the vorticity direction, velocity gradient direction and

flow direction respectively. The biaxial director 1 is not represented on Figure 3.5a since

ml..1. The complete microstructure description.in tenns of the director triad (n, m, 1) can

be presented in tenus of the corresponding polar and azimuthal angles as:
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Figure 3.4: Microstructure-rheology relations for non-aligning discotic mesophases for the
planar microstructure mode. (a) Microstructure features of non-aligning discotic mesophases for
the planar orientation mode: uniaxial alignment S (fullline), biaxial alignment P (dash line) and
uniaxial director ft azimuthal angle 0a (triple dot-dash line) as a function of Pe, for p = -0.8 and

U = 6. Corresponding rheological predictions: Ch) scaled dimensionless first nonnal stress

difference N;, (c) scaled dimensionless second normal stress difference N;, and (d) scaled

dimensionless apparent shear viscosity 1]. as a function of Pe for .;" = 0.001 (fullline), 0.1 (dash

line), and 0.2 (triple dot-dash line). For planar mode the first normal stress difference is similar to

that of corresponding rod-like nematics. The apparent shear viscosity r( shows three regions.
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D:

m:

1:

At =0 .'t'a ,

tPm = 90, (}m = [90, 135] or [-45, - 90]

tA =90, 01 =[180, 225] or [0, 45] .

(3.18a)

(3.18b,c)

(3.18d,e)

•

•

The uniaxial (biaxial) S (P) alignment decreases (increases) with increasing Pe,

however, the drop in S is much smaller than the rise in P.

Figure 3.5b shows the scaled dimensionless tirst normal stress difference N; as a

function of Pe corresponding to Figure 3.5a for .~y = 0.001 (full tine), 0.1 (dash fine), and

0.2 (triple dot-dash line). N; is always positive and can be characterized in tenns of

three different regions: two plateaus at low and high Pe and an intennediate power law

region. The low Pe plateau is independent of C;y, while the slope of the power law region

and the magnitude of the high Pe plateau increases with inereasing qy. Larson and

Ottinger (1991) also predieted positive N; corresponding to the non-planar orientation

mode for rod-like nematics.

Figure 3.5e shows the scaled dimensionless second normal stress difference N;
as a function of Pe corresponding to Figure 3.5a, for Çv = 0.001 (full line), 0.1 (dash

line), and 0.2 (triple dot-dash line). N; is also marked by two low and high shear rate

plateaus with one highly dependent intermediate shear rate region. N;, like N;, is

independent of qy at low Pe but exhibits very strong dependence on ~v at intennediate

and high Pee At low C;v (= 0.001), N; has mainly elastic contributions, and decreases

with increasing intennediate Pe before reaching the high Pe plateau. At higher

C;v (= 0.2), the viscous contributions increase and N; reaches a positive high shear rate

plateau. The high Pe plateaus increase, going from negative values to positive, with

increasing qv. The sign of the high Pe plateau in N; mayalso be used as an indication of

the relative contribution of the viscous stresses. For example, the positive high Pe

plateau in N; shows that the viscous contributions dominate the total induced stresses.
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The complex phenomena in N; and N; are due to the coupling among uniaxial

and biaxial alignments, and biaxial orientations. The uniaxial orientation is fixed along

the vorticity axis, and the change in uniaxial alignment, see Figure 3.5a is much smaller

than that in biaxial alignment. Hence, the rheological properties in this microstructure

mode are affected mainly by flow-induced biaxiality.

Figure 3.5d shows the scaled dimensionless apparent shear viscosity ,,0 as a

function ofPe corresponding to Figure 3.5a for çy =0.001 (fullline), 0.1 (dash line), and

0.2 (triple dot-dash line). 1( is independent of shear rates at low Çv' however for higher

values of çy there is a slight shear thinning region at intermediate Pe which increases

with increasing çy. The predicted shear viscosity resembles qualitatively with that

reported in the literature for mesophase pitches (McHugh et al., 1992; Edie et al., 1994;

Fatholahi and White, 1994; Fleurot et al., 1995).

Comparison of Figures 3.4, and 3.5 reveals that the rheological properties depend

strongly on the microstructure modes. As discussed above the rheological properties

corresponding to the log-rolling mode are mainly due to the flow induced biaxiality,

whereas those for planar microstructure mode are a uniaxial phenomena. At low shear

rates N; and N; are comparable in magnitude for both microstructure modes. Hence as

suggested by Larson and Ottinger (1991), the average of rheological properties at low

shear rates will represent the combined effect from both microstructure modes. The

apparent log-rolling shear viscosity ". is roughly half in magnitude than that of planar

mode at low Pe, whereas the high Pe plateaus in both of the microstructure modes are

comparable.

3.4.2 Processing Condition-Rheology Relations

In this subsection rheological predictions for discotic nematics at low U (for

aligning discotics) are presented, and compared with those at high U presented in the

previous section. For thermotropic materials the nematic potential U is inversely

proportional to temperature T. At low U (high 1) the non-planar log-rolling state is

unstable, and there is only one planar stable flow-aligning steady state.
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Figure 3.6a shows the uniaxial alignment S (full line), biaxial alignment P (dash

line) and uniaxial director ft azimuthal angle Ba (triple dot-dash line) as a function of the

dimensionless shear rate Pe, for p = -0.8, and U = 3.5. In this microstructure mode the

uniaxial (biaxial) director D (1) aligns in the shear plane near the velocity gradient (flow)

direction in the second or fourth orientation quadrant, and the biaxial director m lies

along the vorticity axis. The complete microstructure description in terms of director

triad (n, m, 1) can be given in terms ofpolar and azimuthal angles as:

n:

m:

1:

tPa =90, Ba =[90, 135] or [-45, - 90] ;

ri. =0 .Y'm ,

tP. =90, BI =[0, 45] or [180, 225] .

(3.19a,b)

(3.I9c)

(3.I9d,e)

•

•

As shown in Figure 3.6a, for low Pe, uniaxial director ft shifts towards the

velocity gradient direction as Pe increases. The uniaxial (biaxial), S (P), alignment

slightly increases (decreases) with increasing Pe. The flow induced biaxiality P is close

to zero, hence the discotic nematic phase is essentially uniaxial under shear flow.

Figures 3.6b and 3.6c show the scaled dimensionless first nonnal stress

difference N; and the dimensionless second normal stress difference N;, respectively,

as a function of Pe corresponding ta Figure 3.6a for ~v = 0.001 (fuIlline), 0.1 (dash line),

and 0.2 (triple dot-dash !ine). N; (N;) is always positive (negative) for aIl values of Pe,

and increases (decreases) at low and intermediate shear rates before reaching high shear

rate plateau. The phenomena is qualitative similar to that for aligning rod-like nematics

by Farhoudi and Rey (1993b, 1993c). As the ratio qv increases, N; (N;) also increases

(decreases) both at low and high shear rates, however, the difference in values of N; and

N; with increasing qv is more at high Pe is more than that at low Pe, thereby showing

the relative dominance of viscous contribution at high shear rates.
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Figure 3.5: Microstructure-rheology relations for non-aligning discotic mesophases for the
non-planar log-rolling mode. (a) Microstructure features for the log-rolling orientation mode:
uniaxial aIignment S (fullline), biaxial alignment P (dash line) and biaxial director m azimuthal
angle f)m (triple dot-dash line) as a function of Pe for p = -0.8 and U = 6. Corresponding

rheological predictions: (h) scaled dimensionless first normal stress difference N; , (c) scaled

dimensionless second normal stress difference N; ,and (d) scaled dimensionless apparent shear

viscosity r( as a function of Pe for ~v = 0.001 (full tine), 0.1 (dash line), and 0.2 (triple dot­

dash line). N; (N; ) show three regions: two plateaus at low and high Pe with an intermediate

power law (shear rate dependent) region. The high Pe plateau for N; depends strongly on ~\..

7]. is essentially independent of shear rate. The rheological properties in this mode are govemed

by the flow-induced biaxiality.
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Figure 3.6: Microstructure-rheology relations for aligning discotic mesophases. (a)
Microstructure features under simple shear flows: uniaxial alignment S (full line), biaxial
alignrnent P (dash line) and uniaxial director n azimuthal angle Bn (triple dot-dash line) of

aligning discotic nematics as a function of Pe for p = -0.8 and U = 3.5. Corresponding

rheological predictions: (b) scaled dimensionless first normal stress difference N; . (c) scaled

dimensionless second normal stress difference N; .. and (d) scaled dimensionless apparent shear

viscosity ,,- as a function of Pe for C;v = 0.001 (full line), 0.1 (dash line), and 0.2 (triple dot­

dash line). N; (N;) is always positive (negative) which is similar to those of rod-like

nematics. The dimensionless apparent viscosity ,,- decreases exponentially for low shear rates

but for intermediate and high shear rates is independent of Pe. N; and r( (N;) increase

(decreases) with increasing çv .
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Figure 3.6d shows the scaled dimensionless apparent shear viseosity ,( as a

funetion of dimensionless shear rate Pe corresponding to Figure 3.6a for çy = 0.001 (full

Hne), 0.1 (dash line), and 0.2 (triple dot-dash lïne). The apparent shear viseosity r( drops

at low shear rates, but essentially remains independent of shear rates at intennediate and

high shear rates at aIl values of ratio çy. The effeet Çv on 'l. follows the same trend as

mentioned above, however, the relative effeet of Çv at low and high shear rates is roughly

the same. The apparent shear viseosity ". in this case resembles that reported by Fleurot

(1998) for mesophase pitehes.

The comparison of predicted rheological properties of diseoties of same shape

parameter (j3 = -0.8) reveals that as U (U oc 1fT, T : temperature) increases, or

equivalently as T decreases, beyond a critical value the following transitions may oecur

depending on the magnitude of the Pe: tumbling ~ flow alignment, wagging ~ flow

alignment, 10g-roHing ~ flow alignment. Depending on the value of Pe, a decrease in

temperature causes a change in the rheologieal material functions that cao be dedueed

directly from the presented results. For example, if thermal change produces the log-

roHing to flow-alignment transition, then N; ( N;) will show monotonie increase

(decrease) at low Pe and high Pe plateau.

3.4.3 Material Parameter - Rheology Relations

In this subsection the effeet of material parameter or shape factor Pon rheological

properties is discussed. As shown in Figure 3.3c, with inereasing ft the tumbling funetion

À. curve shifts upwards and towards left, and thus interseets the line Â. = -1 at lower

SI (cl). Therefore as f3 increases the range of Seq (Ueq), for which diseotic mesophases

display non-aligning (aligning) microstructural behavior also increases (decreases). In

other words, discotic mesophases with higher f3 have more tendencies to display oon­

aligning behavior than those with the lower p. For a fixed U (= Ueq) and with increasing

[3, the shear induced microstructural features of discotic mesophases will ehange from

non-aligning to aligning at a critical tf. Hence, the corresponding rheological properties
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(N;, N; and r() will also change, as explained in the previous section. For a given

nematic potential Ueq = 3.7S (see Figure 3.3c), the discotic nematics with fJ = -0.7 display

simple aligning microstrucutral features and hence the corresponding rheological

properties are those for aligning discotics (discussed above), whereas the discotic

nematics with fJ = -0.9 display complex non-aligning microstructural features and hence

the corresponding rheological properties are those for non-aligning discotics. Thus for a

fixed U or altematively for fixed T, as shape factor f3 increases, the corresponding

rheological properties change.

3.5 Conclusions

Predictions of rheological properties of discotic mesophases are presented. The

predicted rheological properties of discotic mesophases are discussed and assessed within

the context ofnematorheology.

The predicted tirst nonnal stress difference NI corresponding to the planar

microstructure mode of non-aligning discotics is similar to that corresponding to the rod­

like nematics at low shear rates. At higher shear rates the present theory does not

accurately predict NI corresponding to planar mode of non-aligning rod-like nematics ,

hence no comparison can be drawn between them. NI for non-planar mode is always

positive and increases exponentially for intermediate shear rates before reaching high

shear rate plateau, and is mainly due to flow-induced biaxiality. For non-aligning discotic

nematics, NI corresponding to the planar and the non-planar microstructure modes are

comparable at low shear rates. As the more accurate representation of NI is to take

average of both values corresponding ta planar and non-planar modes (Larson and

Ottinger, 1991) of non-aligning discotics, which may result in the disappearance of

negative NI in discotics in which viscous contribution dominates. Thus sign transition in

NI may not be a correct check for non-aligning discotics. Aiso NI of aligning discotics is

similar to that of rod-like nematics at aIl shear rates. NI is always positive for discotic

mesophase at lower values of U (aligning nematics).

The predicted apparent shear viscosity of discotic mesophases at low U (or high

n is qualitatively similar to that reported in the literature at aIl shear rates (Fleurat 1998);
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whereas that at high U (low 1) is qualitatively similar to that reported in literature for

intennediate and high shear rates (McHugh et al. 1992; White and Fatholahi, 1994;

Fleurot et al. 1995; Fleurot, 1998).

The present work is the tirst attempt to establish the relations between flow­

induced microstructure with rheological material functions. A sufficiently numher of

distinguishing features have been identified that are specific to the discotic nature 0 f the

nematic phase, and augment thenumber of quantitative and qualitative differences

between discotic and rod-like nematics that had been noted in the literature (Farhoudi and

Rey, 1993c). How this distinguishing rheological features operate in the carbon fiber

texture selection during spinning of carbonaceous mesophases is a topic of on going

investigation.
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lCHAPTER 4-

Consistency of Predicted Shear-induced

Orientation Modes with Observed

Mesophase Pitch-Based Carbon Fiber

Textures

ln the previous chapters (chapter 2 and chapter 3) shear flow-induced

microstructure of model discotic mesophases was presented. It was observed that

at low ternperature (high U) three in-plane (ITO, rws, and ISS), and one out-of­

plane (LRS) orientation modes are stable. Apart from the classical transition

between the in-plane modes with increasing shear rate (ITO ~ rws ~ [SS), there

exists multistability among the in-plane and the out-of-plane modes. Moreover, at

high temperature (low U) the complex bifurcations among the various orientation

modes disappear, and the only stable orientation mode is ISS. The main therne of

this chapter is to establish the consistency of the numerical results presented in

chapters 2 and 3 with the observed mesophase pitch-based carbon fibers. [t is

shown that the present theoretical model is able to predict the fiber texture

transition, radial to onion, with increasing temp~rature.

'This chapter appeared as an original article in Carbon 36(12) p1855-1859 (1998).
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Carbon fibers made from mesophase pitches have superior mechanical and

thermal transport properties, and are finding uses in a wide variety ofapplications ranging

from space to electronic industry (Edie et al, 1994; Fleurot et al 1995; Fleurot and Edie,

1997; McHugh and Edie, 1992, 1994). These fibers are manufactured by melt-spinning

discotic liquid crystalline mesophase pitches, and exhibit a spectrum of transverse

textures depending on processing conditions. For example Otani and Oya (Otani and

Oya, 1986) reported a transition from radial to onion texture as the spinning temperature

increases along with multistability between random and mixed radial-onion textures at

intermediate temperatures. Yoon et al. (1993) and Lafdi et al (1993) also reported that

the radial fiber texture is prevalent at low spinning temperatures whereas the onion

texture prevails as the spinning temperature rises. The basic understanding of evolution

of the spectrum of carbon fiber textures during the spinning process is an active field of

research (Edie et al, 1994; Fatholahi and White, 1994, 1995; Fleurot et al 1995; Fleurot

and Edie, 1997; Lafdi et al, 1993; McHugh and Edie, 1992, 1994; Otani and Oya, 1986;

Singh and Rey, 1995, 1998; Wang and Rey 1997; Yoon et al, 1993), and is ofpractical

importance for their further development. Nurnerous experimental studies have been

performed to elucidate the effects of various processing conditions and geometry on the

flow induced microstructure (Edie et al, 1994; Fatholahi and White, 1994 1995; Fleurot

and Edie, 1997; Fleurot et al 1995; Lafdi et al, 1993; McHugh and Edie, 1992, 1994;

Otani and Oya, 1986; Yoon et al, 1993). Mathematical modeling and simulation provides

an economical alternative to the trial and error experimental methodologies and have

been performed by Edie and McHugh (1992, 1994), and Wang and Rey (1997). Edie and

McHugh (1992, 1994) using Leslie-Ericksen theory for liquid crystalline materials

predicted that the radial texture exists inside the spinneret capillary. However, the same

study (McHugh and Edie, 1992, 1994) did not address the stability of the predicted radial

orientation mode, the existence of other equivalent textures, e.g. onion, random etc., and

the observed transition in textures with changing processing conditions. Rey and Wang

(1997) predicted the transition from radial -+ random ~ onion textures with increasing
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temperature by solely considering the effects of long-range orientation elasticity while

neglecting any viscous or short range molecular elastic effects.

Flow is a mechanism that induces molecular orientation in mesophase pitches

while it passes through the spin-pack (Fatholahi and White, 1994, 1995; Fleurot and Edie,

1997; McHugh and Edie, 1992, 1994). During the melt spinning process mesophase

pitches are subjected to strong shear flows in the tilter, inhomogeneous mixed shear and

extensional flows through converging cone and the leading capillary, and strong

extensional flows in the spin-line. Fatholahi and White (1994, 1995), McHugh and Edie

(1992, 1994), and Flourot and Edie (1997) observed and proposed that the fiber texture is

likely to develop inside the spin-pack (converging cone and capillary), and the strong

extensional flow in the spin-line accentuates the already induced orientation in the spin

pack. Mesophases pitches are anisotropic visco-elastic materials (Fleurot et al 1995;

Fleurot and Edie, 1997; McHugh and Edie, 1992, 1994), therefore both viscous as weil as

elastic effects are expected to contribute to the selection and development of fiber

textures. A rigorous visco-elastic flow model that has ail the microstructural features

corresponding to the observed fiber textures has been proposed by Singh and Rey (1998).

The simulated results of the proposed model have been characterized and validated

(Singh and Rey, 1998). In this paper, we present the predicted shear-induced

microstructure in mesophase pitches considering only the viscous and short range

molecular elasticity, and compare the simulated results with the observed molecular

orientation in fiber textures. The consistency of the predicted results with the observed

fiber textures will be discussed, as weH as the role of viscous shear flow on the texture

selection mechanism. This communication is part of an ongoing program to develop a

process simulator for fiber spinning of mesophase pitches.

This is the first modeling effort in this field that puts forth a tensor model for

discotics that is able to predict, under simple shear flow (test flow), aH the essential

orientation features necessary to capture ail the observed fiber textures. To convey this

message is the prime objective of this letter.
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The particular objectives of this manuscript are: (1) to convey the elements of

consistency between the predicted shear-induced orientation modes (Singh and Rey,

1998) by the proposed constitutive equation for mesophase pitches and the experimental

observations (Fatholahi and White, 1994, 1995; Fleurot and Edie, 1997; Fleurot et al

1995; Lafdi et al, 1993; McHugh and Edie, 1992, 1994; Otani and Oya, 1986; Yoon et al,

1993), and (2) based on that compatibility to analyze the predicted multistability and

transitions in orientation modes with varying process conditions within the context of

experimental results (Lafdi et al, 1993; Otani and üya, 1986; y 000 et al, 1993).

4.2 Matbematical Model

Figure 4.1 shows the schematic presentation of mesophase pitches consisting of

poly-aromatic, flat, disk-like molecules that are rigid enough to display long range

orientation order, and that tend to adopt a uniaxial discotic nematic phase, ND. In discotic

nematics, the unit normals to the flat disk-like molecules orient more or less along a

common direction called the director d, see Figure 4.1. The average degree of alignment

of unit normals to the disk-like molecules is defined by the (uniaxial) scalar arder

parameter S. The microstructure of discotic mesophases is characterized by a symmetric,

traceless second order tensor, known generally as tensor order parameter Q:

Q= S(oo -tô)+tP(mm -II)

where the following restrictions apply:

(4.1a)

o ·0 = m· m = 1· 1 = l, 00 + mm + Il = Ô

Q = QT, tr(Q) = 0 -t ~ S ~ 1, -t 5 P 5 t , (4.1 b,c,d,e)

(4.1f,g)

•

Seing a second order tensor Q has three eigenvalues and eigenvectors. The first

eigeovector or uniaxial director n corresponds to the largest eigenvalue +S , the biaxial

director m corresponds the intermediate eigenvalue - t (S - p), and the second biaxial

director 1 (= n x m) corresponds to the smallest eigenvalue - t (S + P) . Details on

uniaxial (S) and biaxial (P) alignments and their interrelations are given in (Singh and

Rey, 1995, 1998).
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Figure 4.1: Definition of director orientation of a uniaxial diseotie nemarie liquid crystalline
material. The direetor n in a discotic nematie phase is the average orientation of the unit normals
to the disk-like molecules.

The microstructure response of liquid crystalline polymers, as described by Doi's

mesoscopic nematodynamic theory (Doi and Edwards, 1986), is given as (Singh and Rey,

1998):

(4.2)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Qand is

defined as:

A ôQ
Q=-+(v.V)Q-W.Q+Q.W

Ôl
(4.3)

F(Q, Vv), and H(Q, Dr(Q)) represent the flow or viscous contributions, and the short

range molecular elasticity respectively, and are given by (Singh and Rey, 1998):

•

F(Q, Vv) = tPA+ p[A'Q +Q. A -t(A:Q)B)-

tP[(A:QR+ A·Q·Q +Q·A·Q+Q·Q·A- {(Q.Q)A]ô]

H(Q, Dr(Q») = -6Dr[(I-tU)Q -UQ'Q +U{(Q:Q)Q+t(Q:Q)s}]

2 p2 -1 r.L
whereDr = Dr [1 - t (Q:Q)r, P=-2-

1
' p=-

P + li

(4.4)

(4.5)

(4.6a,b,c)
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The long-range orientation elasticity, known as Frank elasticity (DeGennes and Proust,

1993), is not considered in this paper. In equations (4.2-4.6), Dr is the averaged

diffusivity, Dr is the preaveraged diffusivity or isotropie rotary diffusivity of an

hypothetical isotropie fluid at the same conditions, U is the nematic potential which is

inversely proportional to temperature T, and fJ is the shape factor respectively. To specify

the moleeular geometry we approximate the dise-lilee shape of molecule of discotic

mesophases with an oblate spheroid ofaspect ratio p (p < 1) where in equation (4.6c) ru is

the length of the shortest and distinct semiaxis, and r1. the length of the two longest and

equal semiaxes. The ideal flat dise corresponds to p = 0 (j3 = -1), and the sphere

corresponds to p = 1 (fJ = 0). A and W are the rate of deformation and vorticity tensor

respectively. Since there are only two processes in the model, we have only one

dimensionless number, Pe, the Peclet number or dimensionless shear rate, which is

defined as (Singh and Rey, 1998):

where r is constant shear rate. Only uniaxial orientation modes are discussed here,

further details on biaxial orientation modes (m, 1) and uniaxial and biaxiaI alignments

(S, P) are documented in (Singh and Rey, 1998). In what follows uniaxial orientation

(i.e., the orientation of the director n) will be referred to simply as orientation.

•
rPe=--

16Drl

(4.7)

•

4.3 Summary of Predicted Orientation Modes and Consistency with

Observed Textures

Below we summarize the microstructure phenomena predicted by the CE,

equation (4.2), for discotie mesophases under simple shear flow. The coordinate system

is shown in Figure 4.2. The flow direction is along the x-axis, the velocity gradient

direction is along the y-axis, and the vorticity axis is along the z-axis.

The predicted orientation modes, in tenns of uniaxial director n dynamics are: (a)

rro or in-plane tumbling orbit, (b) IWS or in-plane wagging state, (c) ISS or in-plane

steady state, (d) LRS or log rolling state. The two dimensional schematic representations
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•
of the orientation modes in terms of uniaxial director D are given in Figure 4.3. Figure

4.3a represents the in-plane tumbling orbit (ITO) in which the uniaxial director D rotates

clockwise in the shear (x-y) plane. Figure 4.3b shows the in-plane wagging state (IWS),

in which D oscillates around a point near the y-axis (velocity gradient direction), and in

the shear (x-y) plane. Figure 4.3c represents the in-plane steady state (I5S) in which the

uniaxial director D aligns near the y-axis (velocity gradient direction) in the shear (x-y)

plane. Figure 4.3d shows the out-of-plane (non-planar) log rolling state (LRS) in which

the uniaxial director D aligns along the vorticity axis (z-axis) perpendicular the shear

plane. The first two orientation states, ITO and IWS, are the time-dependent states

whereas the last two, ISS and LRS, are steady states. AIl orientation states except LRS

are planar orientation modes (i.e., Ilz = 0). A detailed analysis of these orientation states

in tenns of uniaxial D and biaxial (m, 1) directors, and uniaxial Sand biaxial P alignments

are given in (Singh and Rey, 1998).

Velocity gradient
y direction•

---~ v

z
Vorticity axis

x Flow
direction

•

Figure 4.2: Definition of homogeneous simple shear flow deformation. The x-axis
is the flow direction, the y-axis is the velocity gradient direction, and the z-axis (out of the plane
of the paper) is the vorticity axis or neutral direction.



CHAPTER 4. CONSISTENCY OF PREDICTED SHEAR-INDUCED ORIENTATION MODES •••

(a) (b) (c)• ,.",-- .....

~(-\"
,

~
,,

t"
1 \

1 ~J, 1

\~ 'n.... ,
.... _--'

ITO IWS ISS

LRS

(d)

111

•

•

Figure 4.3: The representative schematics of the stable uniaxial orientation modes of
discotic mesophases under homogeneous simple shear flow predicted by constitutive equation
(2). The four stable orientation modes are: (a) ITO or in-plane tumbling orbit, (b) rws or in­
plane wagging state, (c) ISS or in-plane steady state, (d) LRS or log rolling state. The top row
represents the planar orientation modes and the bottom row non-planar mode. As shear rate
inereases there exists transition among planar orientation modes such that with increasing shear
rate: rro -+ rws -) ISS. Aiso there exists multistability among planar and non-planar
orientation modes. For more details see the text and Table 4.1.

Table 4.1

Multistability and Transition among various predicted orientation modes for f3 =-0.8

High U(=6) Low U(=3.5)

Stable LRS LRS LRS LRS -

orientation ITQ rws ISS ISS-
mode/s

Shear rate 0< Pe < 4.5 4.5 ~ Pe < 5.5 5.5 ~ Pe < 14 Pe~14 Pe>O
range

Pe: Peclet number or dimensionless shear rate; p: shape factor; U: nematie potential; LRS: log
roHing state; rro: in-plane tumbling orbit; rws: in-plane wagging state; ISS: in-plane steady
state. U is inversely proportional to temperature T..
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For a given shape factor p, at sufficiently high U (U > U#) or altematively at

sufficiently low T (T < T f1
) ail four orientation modes are stable, and there exists

multistability between planar and non-planar orientation modes as given in Table 4.1, VII

and T# represent critical values of U and T. For example for p= -0.8, at low U (U = 3.5),

there is only one stable orientation mode, ISS, for whole range of dimensionless shear

rate Pe. On the other hand at high U (U = 6) aU four orientation modes are stable, and

there exists multistability among planar and non-planar orientation modes. More details

are given in (Singh and Rey, 1998). The complex multistability phenomena at higher U

is summarized in Table 4.1 and can be described as foUows: for low shear rates there is

only one stable orientation mode corresponding to LRS; for intermediate Pe, LRS along

with ITO are the stable modes; for high Pe, LRS and rws are the stable orientation

modes; and for very high Pe there are two stable modes corresponding to LRS and ISS.

Though not shown here, however, similar multistability exists at higher values of U for

aIl values of shape factor fi, and at lower values of U the complex bifurcations disappear

and there is only one stable orientation mode, ISS, at aIl shear rates. The co-existence of

stable steady planar and non-planar orientation modes at aIl shear rates (at high values of

the nematic potential) is predicted for the first time by the presented model. This

multistability of stable planar and stable non-planar orientation modes at higher shear rate

is an essential feature of the presented model that is absent in the aIl the existing vector

theories and is an essential feature required to capture the reported orientation modes in

fiber textures. Thus the letter is geared to convey to the audience that a highly useful

model for discotics is now available, and its predictions under simple test flow match the

main characteristics of the fiber textures.

Next the consistency among the above mentioned shear-induced microstructure

predictions and the observed fiber microstructures will be shown. This will be achieved

by comparing the shear induced orientational response of the model discotic mesophases

with the localized orientation field in observed carbon fiber textures (Fatholahi and

White, 1994, 1995; Fleurat and Edie, 1997; Fleurot et a11995; Lafdi et al, 1993; McHugh

and Edie, 1992, 1994; Otani and Oya, 1986; Yoan et al, 1993).
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4.4 Thermal Effects

As mentioned above, it has been noted that the microstructure is likely to develop

in the spin-pack (converging cone and the capillary), and the extensional flow in the spin­

line merely accentuates the achieved orientation in the spin-pack (Fatholahi and White,

1994, 1995; Fleurot and Edie, 1997; McHugh and Edie, 1992, 1994). Figure 4.4 shows

the schematics of the main observed fiber textures, which exist in the capillary.

Considering the flow in the circular capillary section. In terms of cylindrical coordinate

system (see Figure 4.4a), the fiber axis cao be assumed ta lie along the z' direction, which

is aiso the flow direction, the radial direction (r) is the velocity gradient direction, and the

azimuthal direction (fi) is the vorticity or neutrai direction. The various lines in

Figure 4.4(b,c) represent the locusof the side view of the disk like molecules. In the

textures, shown in Figure 4.4, the unit normais to the disk like moiecules lie in the plane

perpendicular to the fiber axis (z' direction). Thus the localized director orientation in

the shown fiber textures is gjven by n = (nr , no, n:,) = (Il" no, 0). AIso, in the radial

(onion) texture the normals to the disk-like molecules orient along the azimuthal (radial)

direction. Using this terminology, in the onion texture the unit normals orient along the

radial direction or along the velocity gradient direction, whereas in the radial texture the

unit normals align along the azimuthal direction or the vorticity axis. Thus the observed

radial (onion) texture is consistent with the predicted shear-induced LRS (ISS) orientation

mode. Table 4.2 contains a complete summary of these comparisons. Also, as presented

in Table 4.1, at high U (low 1), bath I55 as well as LRS exist together at high shear rates,

thus under these conditions the model predicts multistability in radial and anion textures.

From the above discussion, it is directly inferred that the predicted shear-induced

microstructure phenomena is consistent with the observed textures, thus the simulated

results are consistent with those found i~ the Iiterature (Fatholahi and White, 1994, 1995;

Fleurot and Edie, 1997; Fleurot et al 1995; Lafdi et al, 1993; McHugh and Edie, 1992,

1994; Otani and Oya, 1986).

As mentioned above as U (1) decreases (increases) the complex transitions among

the planar and non-planar orientation modes, statcd above, disappear and the only stable
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orientation mode is ISS. Therefore following the preceding discussion, we notice that at

low (high) U (1) the only flow-induced stable texture is the onion texture. This transition

from radial texture at low temperature to an onion one at high temperature has been

observed experimentally (Lafdi et al, 1993; Otani and Oya, 1986; Yoon et al, 1993) and

predicted theoretically (Wang and Rey, 1997) based on long-range elasticity without

consideration of flow effects. Thus the proposed visco-elastic flow model for discotic

mesophases under simple shear flows has the features that are consistent with the

experimental observations and theoretical results.

4.5 Conclusions

In summary, we have established the consistency of the flow-induced

microstructure predicted by the presented CE with that observed experimentally. The CE

successfully predicts the transition from radial to onion texture with increasing

temperatures. The validation of the shear-ind~ced microstructure phenomena predicted

by the presented CE suggests that it is a reHable contribution towards the formulation of a

process model for mesophase pitch spinning.

(a)

r

Cb)

Radial

n =(0, l, 0)

Cc)

Onion

n = (l, 0, 0)

n

•
Figure 4.4: Schematics of (a) cylindricai coordinate system, and the observed fiber
microstructures: (b) radial, and (c) onion. In the radial (onion) texture, the unit normals to
the disk-like molecules orient along the azimuthal f} (radial r) direction.
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Consistencies among predicted and observed orientation modes in fiber textures
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Fiber texture Localized uniaxial director field Corresponding predicted
consistent orientation mode

(Singh and Rey, 1998)

Radial texture§ n = (n r , no, n:,) =(0, 1, 0)

n along vorticity direction LRS

(nllvxVv)

Onion textureN n =(n r , no, n:,) =(1,0, 0)

n along velocity gradient direction ISS

(nIIVv)

n: uniaxial director orientation; [SS: in-plane steady state; LRS: out-of-plane log rolling state; v:
velocity direction; Vv: velocity gradient direction

§(Fatholahi and White, 1994, 1995; Fleurot and Edie, 1997; Fleurot et al 1995; Lafdi et al,
1993; McHugh and Edie, 1992, 1994; Otani and Oya, 1986; Yoon et al, 1993)

N (Lafdi et al, 1993; Otani and Oya, 1986; Yoon et al, 1993)



CHAPTER 4. CONSISTENCY OF PREDICTED SHEAR-INDUCED ORIENTATION MODES... 116

•

•

•

Bibliography

P.G. deGennes and J. Proust, The Physics of Liquid Crysta/s. 2nd edition, Oxford

University Press, Oxford, (1993)

M. Doi and S.f. Edwards, The Theory of Polymer Dynamics. Oxford University Press

New York, 358 (1986)

0.0. Edie, K.E. Robinson, O. Fleurot, S.P. Jones and C.C. Fain, "High thennal

conductivity ribbon fibers from Naphthalene-based mesophase." Carbon, 32, 1045

(1994).

B. Fatholahi and J.L. White, "Polarized-light observation of flow-induced microstructures

in mesophase pitch." Journal ofRheology, 38, 1591 (1994)

B. Fatholahi and J.L. White, Carbon '95, 60 (1995)

O. Fleurot and 0.0. Edie, Carbon '97, (1997)

O. Fleurot, 0.0. Edie and 1.J. McHugh, Carbon '95,265 (1995)

K. Lafdi, S. Bonnamy and A. Oberlin, "Textures and structures in heterogeneous pitch­

based carbon fibres (as-spun, oxidized, carbonized, and graphitized)" Carbon, 31, 29

(1993)

J.J. McHugh and 0.0. Edie, Carbon '92, 683, (1992)

J.J. McHugh and D.D. Edie, "Orientation of mesophase pitch in capillary and channel

flows." Liquid Crystals, 18, 327 (1995).

s. Otani and A. Oya, Progress of Pitch-based Carbon Fibers in Japan, in Petroleum

derived carbon, 1.0. Bacha, J.W. Newman and l.L. White, Eds., ACS Symp. Sere No.

303, American Chemical Society, Washigton D.C., 322 (1986)

A.P. Singh and A.D. Rey, "Theory and simulation of extensional flow-induced biaxiality

in discotic mesophases" Journal de Physique II France, S, 1321 (1995)



CHAPTER 4. CONSISTENCY OF PREDICTED SHEAR-INDUCED ORIENTATION MODES... 117

•

•

••

A.P. Singh and A.D. Rey, "Microstructure constitutive equation for discotic nematic

liquid crystalline materials Part 1: Selection procedure and shear flow predictions"

Rheolgica Acta, 37, 30 (1998).

L. Wang and A.D. Rey, "Pattern selection mechanism in mesophase carbon fibres"

Modelling Simul. Mater. Eng., S, 67 (1997)

S.-H. Yoon, Y. Korai and 1. Mochida, "Spinning characteristics of mesophase pitches

derived from naphthalene and methylnaphthalene with HFIBF3." Carbon, 31, 849 (1993)



•

•

•

lCHAPTER 5

Theoretical Analysis of Texture

Dependent Extensional Viscosity of

Discotic Mesophases

In the previous chapters the microstructural and rheological response of the

constitutive equation (CE) for discotic mesophases was explored by subjecting it to

homogeneous shear flows only. The present chapter is solely geared towards analyzing

and characterizing the uniaxial extensional rheological predictions of the CE. It is found

that two distinct uniaxial extensional viscosity parameters are needed to fully characterize

extensional rheological functions of discotic mesophases. The discotic mesophases are

found to be non-Troutonian, and show strain thinning or strain thickening behavior based

on the temperature, and the ratio of viscous ta -elastic effects. It will be shown that the

elastic stresses impart strain-thinning characteristics to the discotic mesophases, whereas

the viscous stresses result in a strain thickening behavior. The rheological analysis is

used to put forth the relations between extensional viscosities, and the classical

mesophase fiber textures.

1 This chapter appeared as an original article in Liquid Crystals 26(7) p999-100S (1999).
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Rheological functions for uniaxial extensional flows predicted by a previously

selected and validated constitutive equation (CE) for discotic mesophases are presented.

The predicted relations among extensional viscosities, flow-induced microstructure,

processing conditions, and material parameters of discotic mesophases are characterized

and discussed. It is found that in contrast to rod-like nematics, two distinct uniaxial

extensional viscosities need to be defined to completely characterize the extensional

rheological fonctions of discoticmesophases. The model predicts non-Troutonian

extensional viscosities of discotic nematics, such as strain thinning and strain thickening,

depending on the process temperature, and the ratio of viscous to elastic stress

contributions. The uniaxial extensional viscosities are aiso found to depend strongly on

the flow-induced microstructure. The rheological analysis is then used to characterize the

relations between extensionai flow viscosities and the classical microstructures that arise

during the industrial fiber spinning ofdiscotic mesophase pitches.

5.1 Introduction

Mesophase pitches are used to manufacture high performance carbon fibers (Edie

et al, 1994; Fatholahi et al, 1992; Fatholahi and White, 1994; Fleurot and Edie, 1997;

McHugh and Edie, 1992, 1995; Peebles, 1994). These fibers possess superior mechanical

and thennal transport properties and find uses in a wide variety of applications ranging

from space to electronics industry (Peebles, 1994). Conventional high speed melt

spinning process is employed in which the mesophase pitch is melted and then extruded

through spinneret capillaries to form fibers which are subsequently drawn in the spin-line

to accentuate the axial orientation (Fatholahi et al, 1992; Fatholahi and White, 1994;

Fleurot and Edie, 1997; McHugh and Edie, 1992, 1995). Since the mesophase pitches

have finite memory, the relative intensity of the various process steps and their sequence

(i.e., conical section ~ capillary ~ die exit ~ spin-line) have a profound effect on the

final microstructure of the carbon fibers. AIso, spinning temperature is reported to have

significant effect on the selection of fiber texture (Peebles, 1994). The spinning process
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inherently involves extensional flows both inside the spin-pack and in the spin-Hne,

therefore it is important to understand the behavior of mesophases pitches under these

flows (Edie et al, 1994; Fatholahi et al., 1992; Fatholahi and White, 1994; Fleurot and

Edie, 1997; McHugh and Edie, 1992, 1995; Peebles, 1994). In addition the molecular

orientation of discotic mesophases in the spin-line gives rise to characteristic textures,

such as radial and onion (Peebles, 1994), see Figure 5.4, and relation between extensional

viscosities and fiber textures bas not been yet characterized. This paper presents for the

first time the theory and simulation of uniaxial extensional viscosities of discotic

mesophases, based on a validated tensorial model, and its relationships with the flow­

induced microstructure, processing conditions, and molecular geometry corresponding to

those of carbonaceous mesophase pitches.

Mesophase pitches consist of flat, disk-like, aromatic molecules that tend to adopt

a uniaxial discotic nematic phase ND, with unit nonnals to the disc-like molecules more

or less aligned along a common direction (see Figure 5.1) represented by the uniaxial

director n; in what follows we use n and uniaxial orientation interchangeably. The degree

of alignment of the unit normals along n is given by the scalar order parameter S; in what

follows we use S and uniaxial alignment interchangeably. The flow-induced biaxiality in

discotic mesophases is characterized in terms ofbiaxial directors/orientation ID and l, and

biaxial scalar order parameter or alignment P, the details are given in (Singh and Rey,

1995a).

It is weIl known that the extensional flows are strong orienting flows (Singh and

Rey, 1994, 1995a, 1995b). The basic tlow orienting pbenomena of nematics in

extensional flows depend on the molecular geometry due to the fact that discotic (rod­

like) nematics orients their shortest (longest) direction along the director o. For discotic

nematics the turnbling function or the reactive parameter is negative À < 0, and uniaxial

extensional flows orient the uniaxial director n anywhere in the compression plane,

normal to the extension axis (Singh and Rey, 1994, 1995a, 1995b). This flow-induced

orientation naturally induces biaxiality (Singh and Rey, 1995a) since the major axis

(extension direction) of the rate of strain tensor ellipsoid is perpendicular to the main axis

(0) of the tensor order parameter ellipsoid. On the other hand for rod-like nematics the
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reactive parameter is positive A. > 0, and ft aligns along the extension direction, and the

tensor order parameter is uniaxial.

Figure 5.1: The uniaxial director orientation D of the uniaxial discotic nematic liquid
crystals. The director D is the average orientation of the unit nonnals to the disc-like molecules.

The main objective of this paper is to present the extensional rheological

properties ofdiscotic mesophases. The particular objectives of the paper are to:

1. Identify the important extensional rheological parameters for discotic mesophases;

2. Characterize the dependence of rheological material properties ofdiscotic mesophases

on their extensional flow-induced microstructure;

3. Establish the relationship among extensional rheological functions, flow-induced

microstructure, processing conditions, and molecular geometry.

Although numerical pledictions of this paper are not directly validated due to the

lack of available experimental data, yet a high degree of confidence can be expected

since: (1) the present model has been shown to capture the distinctive and experimentally

observed shear-induced microstructure modes (McHugh and Edie, 1995), and flow

instability of discotic mesophases (Fatholahi et al, 1992), (2) the model presented in this

paper has shown to capture ail the complex nonlinear rheological phenomena actually

exhibited by discotic as weil as rod-like nematics (Fatholahi et al, 1992; McHugh and

Edie, 1995). This paper is a continuation of our effort to increase the understanding of

rheology of discotic mesophases, and to provide the theoretical guidelines to the

experimental work being pursued to understand the microstructure-processing-product
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property relationships to develop new high performance engineering materials.

The organization of this paper is as follows. The next section presents the theory,

the coordinate system and kinematics along with the microstructure goveming CE and

stress tensor equation. In section 3 we present, discuss, and characterize the uniaxial

extensional viscosity of discotic mesophases. Also, the relations among extensional

viscosity, microstructure, processing conditions, and materials parameters are given.

Finally conclusions are presented. Appendix A contains a brief analysis, based on L-E

theory, of extensional viscosity of rod-like and discotic nematics.

5.2 Theory and Governing Equations

5.2.1 Definition of Microstructure, Kinematics and Coordinates

In tensor theories the complete description of microstructure of liquid crystalline

materials is conveniently given by a symm~tric and traceless second order tensor,

generally known as tensor order parameter Q given in principal form as:

(5.la)

where À.D =fS , À. =_.1(S - p) 1 =_.1(s + p) and _.1 < À. < 1.
m 3 '''1 3 ' 3- .-3 (5.1 b,c,d,e)

•

The eigenvalues À.a (a = D, m, 1) correspond to the unit eigenvectors (0, m, 1) respectively,

the latter fonning a right handed orthogonal triad. The orientation is completely defined

by the director triad (0, m, 1). The magnitude of uniaxial alignment S =t 0 . Q.0 is a

measure of molecular alignment along the uniaxial director 0 and that of the biaxial

alignment P = t m .Q.m - t 1· Q·I is a measure of molecular alignment in a plane

perpendicular to uniaxial director n. Details on uniaxial (S) and biaxial (P) alignments

and their interrelations are given in (Singh and Rey, 1995a). The present work is

restricted to nonnal nematics (0 ~ S ~ l, 0 ~ p.$; 1). The order parameter Q is assumed

to be spatially uniform and Frank elasticity is not considered.
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Figure 5.2 shows the defonnations of an element of discotic mesophase subjected

at time t = 0 to a uniaxial extensional flow of constant extension rate ë. As shown, the

extension direction is along the z-axis and r-fJ is the compression plane. The velocity

field for the considered flow field is given as:

{
o t <0

Vo =0 v: =izH(t) where H~)= 1
t~O

(5.2a,b,c,d)

•

In this paper we use the velocity field given by equation (5.2) and perform only a steady

state analysis, i.e., t~ +00.

.1 Extension
• direction

Same element of
mesophase at t > 0

Element of mesophase
at t = 0

•

1,
Figure S.2: Deformation of a unit cylinder of discotic mesophase subjected at time t = 0 to a
uniaxial extensional flow defonnation~ The extension direction is along the z-axis, and the r-f:J
plane contains the uniform compression.
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5.2.2 Microstructure Constitutive Equation

The microstructure response of liquid crystalline polymers, as described by Doi's

mesoscopic nematodynamic theory (Doi and Edwards, 1986), is given as:

(5.3)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Q and is

defined as:

A oQ
Q =-+(v.V)Q- W .Q+Q. W

ôl
(5.4)

F(Q, Vv) and H(Q, Dr(Q)) represent the flow and the short range elastic contributions

respectively, and are given as (Singh and Rey, 1998a):

•
F(Q, Vv) = tPA +P[A.Q + Q. A-t(A:Q)Ô]-

tp[(A:Q)Q + A·Q·Q +Q. A·Q +Q·Q·A - {(Q.Q)AJô]

H(Q, Dr (Q)) = -6Dr[(1-tU)Q -UQ·Q +U{(~:Q)Q+t(Q:Q)Ô}]

(5.5)

(5.6)

whereDr == Dr [1-f(Q:Q)r2
,

rl.
P=- ,

'i
(5.7a,b,c)

•

Dr is the averaged diffusivity, Dr is the preaveraged diffusivity or rotary diffusivity of an

hypothetical isotropie fluid under the same conditions, U (ex: liT, T temperature) is the

nematic potential, and p is the shape factor. To specify the molecular geometry we

approximate the disk-like shape of molecule of discotic mesophases with an oblate

spheroid of aspect ratio p (p < 1) where rU is the length of the shortest and distinct

semiaxis, and rJ. the length of the two longest and equal semiaxes. For an ideal flat dise

p = 0 (j3 == -1), for a sphere p == 1 CP = 0), and for infinitely long rod p -+ 00 (jJ = 1). For

discotics (-1 < P< 0), as f3 increases the constituting aromatic disk-like molecules tend to

become thicker. A and W are the rate of defonnation and vorticity tensor respectively.

For uniaxial extensional flows the vorticity ten'sor W is zero, and A is calculated using

equations (5.2).
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5.2.3 Symmetric Visco-Elastic Stress Tensor for Nematics

The symmetric extra stress tensor t S for thennotropic liquid crystalline materials

is expressed as a SUffi of viscous t v and elastic te stress contributions (deGenne and

Proust, 1993; Doi and Edwards, 1986; Larson, 1996) as:

(5.8)

The expression for the elastic stress contribution te , derived by using the standard

equation of fluxes (ts, Ô) in tenns of forces (A, H) (deGenne and Proust, 1993; Singh

and Rey, 1998b; Tsuji and Rey, 1997), for the presented CE (equation (5.3» is:

•

te = (cKT)[-fPH-p{HoQ+Q'H-f(H:Q)Ô} +

tPtH:Q)Q+HoQ-Q+Q'HoQ+Q.QoH-(QoQ)H)i} ]

where

H(Q)= ~H(Q,Dr(Q»)= -[(I-tU~ - UQ 0 Q+U«Q:Q~ + t(Q:Q»}]
6D, .

(5_9)

(5.10)

and c is concentration of molecules per unit volume, K the Boltzmann constant and T the

absolute temperatureo The viscous stress contribution t v is given by:

C = E:A = v,A+v2 [Q-A+AoQ-f(Q:A)Ô]+

v3 [(A:Q)Q + A·Q oQ +Q·A·Q +Q oQ. A + (Q.Q)A)i]
(5011)

where E is the fourth order tensor, and VI' v2 and V.3 are viscosity coefficients.

Mapping the above expression to those given in (Doi and Edwards, 1986; Larson, 1996),

in which the viscous contribution to stress tensor contains contributions from Q2 tenns

only, we arrive at:

t V =/J [(A:Q)Q+A.Q.Q+Q-AoQ+Q.Q.A+((QoQ):A)Ô] (5.12)

•
where VI = v2 =0 and v3 = IJ. Combining equations (5.9) and (5.12), the dimensionless

symmetric extra stress tensor t 5 is given by (Singh and Rey, 1998b):
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ï' =C~T=qvDel(A:Qp+A-Q'Q+Q'À'Q+Q'Q'À-(Q'Q)À)r
p[-tH - {o.Q+Q.H-t(H:Q~}+ (5.13)

t tH:Q)Q +8 .Q.Q +Q. H .Q+ Q·Q·H -(Q.Q)H1}]

where ~v = Ji 6Dr is a dimensionless constant representing the ratio of the viscous t \' to
CKT

the elastic te stress contributions, previously introduced by Larson (Larson, 1996);

De =~ is Deborah number or the dimensionless strain rate, and A (À = AIÉ) is
6D r

dimensionless rate of strain tensor, and ê is the extension rate.

5.2.4 Uniaxial Extensional Viscosities of Discotic Nematics

The classieal definition of uniaxial extensional viscosity for isotropie materials,

also referred to as elongational viscosity or tensile viscosity, is given by Dealy (1994):

(5.14)

where (jE = t~ - t~ is the tensile modulus. However, for discotic nematic liquid crystals

the above definition is incomplete because there are two different extensional viscosities,

as explained below and shown in Appendix A. These two extensional viscosities are

defined as follows:

(5.15a,b)

and in dimensionless form as:

rt = '1:, = 6Dr t~ - l,: =T; - T,/ where i = rand (J.
:1 (cKT)De CKT & De

(5.16)

•
For simplieity, in what follows the superscript "*"is dropped. It is important to note that

for rod-like nematics only one extensional viseosity is needed because n orients along the

extension direction (z-axis). On the other hand, in discotie nematics n orients normal to
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the extension direction and anywhere in the compression plane (r-B), so that the

symmetry of the compression plane is broken, and therefore two viscosities are needed.

In what follows we show the relations between the two extensional viscosities (equations

(5.15» and the microstructures that arise in the spinning of carbonaceous mesophases

(McHugh and Edie, 1995).

5.3 Results and Discussion

This section is subdivided into two subsections. The first subsection discusses the

microstructure features (orientation and alignment) of discotic mesophases subjected to

uniaxial extensional flows needed to explain extensional flow rheology. The second

subsection presents the extensional rheological properties ofdiscotic mesophases.

5.3.1 Orientation and Alignment of Discotic Mesophases under

Extensional flows

The detailed dynamic analysis of orientation director triad (0, m, 1) and uniaxial S

and biaxial P alignments of discotic mesophases under extensional flows are given in

(Singh and Rey, 1995a). As mentioned above, here we study only the steady state

rheological features of discotic mesophases under extensional flows. At steady state the

uniaxial Dss, and biaxial mss directors lie in the compression plane (r-Bplane) whereas the

biaxial director Iss lies along the extension direction (z axis). The steady state orientation

of the director triad (05S' mss, Iss) is independent of extensional rate (De), nematic

potential (U), and shape factor (/1). However, the dynamics of the orientation director

triad are functions of these parameters (Singh and Rey, 1994, 1995a, 1995b).

ln this work we have obtained the stable steady state solutions to equations (5.3)

for a velocity field given by equations (5.2). Th~ output consists of the components of the

steady state tensor order parameter Qss(De) which is transformed to principal fonn to

detennine its eigenvalues (to evaluate steady state alignments Sss and Pss) and

eigenvectors or steady state orientation triad (oss, mss, 155). The parametric study is

performed by choosing two values, low and high, of the nematic potential U (U = 3, 6),
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and the shape factor ft (fJ = -0.8, -0.6). In the present case, i.e., in the absence of spatial

gradients, both Sss and Pss are independent of the steady state director triad orientation

(oss, mss, Iss). Figure 5.3 shows the steady state uniaxial Sss and biaxial Pss scalar order

parameters as a function of De for U = 6 (full line) and U = 3 (dash-line) for p = -0.8

(upper), and ft = -0.6 (lower). Sss increases monotonically with the dimensionless strain

rate De at ail values of U and 13. Pss at higher U (U = 6) follows the similar trend and

increases monotonically with De for both values ofp, however at lower U (U =3) there is

a local minima for intermediate values of De thereafter it increases monotonically with

De. For discotic mesophases with a given shape factor 13, Sss at high U is always greater

than that at low U, however, the difference ~ss = SSS,h;ghU - Sss,lowU between values at

high and low U decreases with increasing De. Whereas Pss at high U is less than that at

low U, and the difference ~s = ~s./owu - Pss.h;ghU increases with De. Both Sss and P ss for

discotic mesophases consisting of thicker disks, 13 = -0.6, are less than those with the

relatively thinner disks, 13 = -0.8 for all.U and De. Though not shawn in Figure 5.3, as

De ~ 0, uniaxiality is recovered, i.e. Pss ~ 0, for ail values of nematic potential,

U (U = 6, 3) and shape factor p(j3 = -0.6, -0.8) considered here.

In this paper the spatial variation of order parameter is not considered when

capturing the extensional viscosities corresponding to the characteristic textures of

discotic mesophase fibers. As is weIl known (deGenne and Proust, 1993), the intrinsic

length scale of the model ç, where there are variations in order parameter, is given as:

(5.17)

•

where L is the elastic constant, AH' is the homogeneous free energy density (Rey, 1997),

and SB the bulk order parameter. For liquid crystals systems this correlation length is less

than 10-2 Jlm and thus significantly smaller than the fiber radius (- 1 Jlffi), and to

simplify the analysis we can assume as a tirst approximation that Vl; =0 (i = 0, m, 1).

Therefore in what follows we use the homogeneous scalar order parameter
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(Le., VS =VP =0) results obtained in this section to calculate extensionaI viscosities in

the presence of the orientation gradients (i.e., Vn"# 0, Vm "* 0) that arise in cylindricaI

coordinates (see Figure 5.4).

Figure 5.3: Steady state uniaxial Sss and biaxial Pss scalar order parameters as a function of
De for U = 6 (full line) and U = 3 (dash-line) for p = -0.8 (upper), and p = -0.6 (1ower). Sss
increases monotonically with the dimensionless strain rate De at aIl values of U and p. Pss at
higher U (U = 6) follows the similar trend, however at lower U (U = 3) there is a local minima.
Both Sss and Pss for discotic mesophases consisting of thicker molecules, p = -0.6, are less than
those with the relatively thinner molecules, fJ = -0.8.
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5.3.2 Uniaxial Extensional Viscosity of Discotic Mesophases

This section presents the predicted extensional viscosity and its relations with the

flow-induced internai microstructure (Q), procéssing conditions (U ex: lin, and material

parameters (jJ), of relevance to the industrial fiber spinning of mesophase pitches. It is

weil documented that during this process the fiber cross section may exhibit the anion or

radial textures (peebles, 1994), shown in Figure 5.4. The figure shows schematics of the

radial and onion microstructure mode with respect to the cylindrical coordinate system

with the z-axis (extensional direction) perpendicular to the page. The dotted lines show

the side view of the disk-like molecules, such that for radial (anion) mode, the unit

normals to the disk-like molecules orient along the azimuthal () (radial r) direction. These

two modes also exist as the prevalent transverse fiber textures in mesophase carbon fibers

(Peebles, 1994). To study the effect ofprocessing conditions and material parameters, the

same parametric values for U and p, as stated above, are used.

• (a)

r
(b)

Radial

0=(0, 1,0)

(c)

Onion

0=(1,0,0)

o

•

Figure 5.4: Schematics of (a) cylindrical coordinate system, and the two main representative
mesophase pitch-based carbon fiber transverse textures: (b) radial, and (c) onion. In the radial
(onion) texture, the unit normals to the disk-like molecules orient along the azimuthal ()
(radial r) direction. These textures are observed in the spinning of carbonaceous mesophases
(Peebles, 1994).

As shawn in Appendix A the Leslie-Ericksen (Leslie, 1979) theory for discotic

mesophases indicates that two uniaxial extensional viscosities need ta be defined to
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completely characterize their extensional rheological functions, in contrast to rod-like

nematics, which need ooly one. Thus to characterize the extensional viscosities for

discotic nematics with the two observed microstructures, radial and onion, we use the

following nomenclature:

(5.l8)

•

where i = r, 0 represents the radial and on10n texture respectively, and j = r, ()

representing the two axis in the cylindrical coordinate system, see Figure 5.4a. For

example the two extensional viscosities corresponding to the radial texture are: '7~ and

'lu' the fonner is given as the ratio of the difference of the diagonal components of extra

stress tensor t S along z and r directions to the strain rate, and the latter by the ratio of the

difference of the diagonal components of extra stress tensor t S along z and () directions to

the strain rate. In the present model, the extension viscosity is a function of flow-induced

microstructure (Q), nematic potential (U), strain rate (De) and the shape factor (jJ), and

can be represented as below:

'l;j = \fJ(p, U, De, Q' ) (5.19)

where the microstructure tensor Qi Ci = r (radial), i = 0 (onion» for radial (Qr) and onion

(QO) texture is given as:

(5.20)

(5.21 )

•

.... ....

where 8r , 8u and k are the unit vectors along the three cylindrical coordinates; the

superscript in Q represents the texture: i = r (radial), 0 (onion).

Figure 5.5 shows the computed dimensionless uniaxial extensional viscosities

l1:r and 1J~(J (i = r (radial texture), i = 0 (onion texture» of discotic mesophase as a

function ofDe for qv = 0.001 (full line), 0.1 (dash line), and 0.2 (triple dot-dash line); for
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p = -0.8 and U = 6 «a), (b», and U = 3 «c), (d». The extensional viscosity ,,~ (,,~o) for

the radial mode T};r (T};o) is always less (greater) than for the onion mode Tl; (";0)'

i.e. TJ;r < ,,;,. (";(J > ";0)' at ail De for a11 values U and p. Please also note that ";r = ";0'
and TJ;r =";0' therefore we have ";r =";0 < Tl; = ";(J' The dependence of uniaxial

extensional viscosities, ,,;,. and ,,;,., for the radial and the onion textures on U, Pand De

are summarized in Table 5.1. For high U (U = 6), ,,~ (each ";r and ,,;,.) is independent

of low De, but exhibits slight strain thinning for Çv = 0.001, and strain thickening for

çy = 0.1, and 0.2 at high De. It is found that the strain thinning (thickening) is due to

elastic (viscous) stress contribution, since as the viscous contribution to total stress

increases the discotic mesophases exhibit stronger strain thickening characteristics. This

phenomenon is more apparent at low U (higher n. As shown in Table 5.1, ";r follows

the same trend at low and high U. However, at low U, ,,; exhibits strain thinning at low

De with saturation at high De for ;" = 0.00 l, and strain thinning for low De and strain

thickening at high De with transition from thinning to thickening at intermediate De for

Çv = 0.1, and 0.2. At low De the departure from equilibrium is higher at low U (see

Figure 5.4), thus elastic stress contributes more at low U at low De, thereby showing

strain thinning at low strain rates, with strain thickening at high rates. Also, as elastic

(viscous) stress dominates at low (high) De, therefore strain thinning (thickening) is seen

at low (high) strain rates, with an intermediate De strain thinning ~ thickening transition

(see Figure 5.5d and Table 5.1). Though extensional viscosities at very low De are not

presented here, however, at very low De (De ~ 0) the visco-elastic effects on

microstructure and stress vanish and the viscosities are constant. The terminology for

lowlhigh De is usedjust to expIain the most important results presented in Figure 5.5.

Although not shown, the effect of the shape factor p on both the extensional

viscosities has been characterized. It is found that as p increases the extensional

viscosities ,,~ and 1J~o decrease. For a fixed director triad orientation (radial or onion in

the present case), the extensional viscosities are functions of the steady state eigenvalues
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(Ân, Âm, Â.) or the uniaxial Sss and biaxial Pss alignments; see equations (5.1, 5.19). As

explained above and shown in Figure 5.3, both Sss and Pss decrease with increasing P,

hence 11~ and ,l8 decrease with increasing p. AIl the above-mentioned equalities,

higher p(f3= -0.6).

0.3 r------------~-------___.0.3
.... -- ..........~

~
N.,

Il

~ 0.0

- 0.2
_ _ _ .-. .

---------------------------j---------J
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Figure 5.5: Dimensionless uniaxial extensional viscosities 'l~r and "~8 (i = r (radial), i = 0

(onion» of discotic mesophase as a function of De for ~v = 0.001 (full line), 0.1 (dash line), and

0.2 (triple dot-dash line); for p = -0.8 and U = 6 «a), (b», and U = 3 «c), (d». The extensional

viscosity l1:r (11~8) for the radial texture ";r (7/;8'> is always less (greater) than for the onion

ttur 0(0)' r OCr O)AI ttht r ° d 0 rh&'.ex e l1::r "::e' I.e. 7/::r < llzr '1::8 > '1::8' so no e a llzr = '7ze' an "zr = '7:::8' t erelOre
r 0 0 r t'. d '1'l:r ="::8 < '1:r = '1:8' lor etai s see text.
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TABLE 5.1

Effect of processing conditions on uniaxial extensional viscosities
of discotic mesophases
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U 6 (high) 3 (1ow)

qy 0.001 0.1,0.2 0.001 0.1,0.2

De low High Low high low high low high

r( =rt - J, - 't - J, - t
=r :fJ

Tl; = ";fJ - J, - t J, - J, t

'-': strain rate independent viscosity, '.J,.': strain thinning, L't': strain thickening, U: nematic

potential (ex: lrr, temperature), qy: ratio of viscous to elastic stress contributions,

De: dimensionless strain rate, ,,~, q;fJ' 1];, ":fJ: dimensionless uniaxial extensional viscosities

of discotic mesophases.

The ahove discussed viscosity-microstructure relationships can he summarized as

follows:

Inequalities within a given texture:

Equalities between two different textures:

"

r _,,0.
:0 - :r'

o 0

'7:r > '7:0

r 0

'7:r = 'l:fJ

(5.22,a,b)

(5.23a,b)

To understand the ahove equalities and inequalities we use symmetry. The

extensional viscosities for discotic mesophase depend on the microstructure Q, the

nematic potential U, the strain rate De, and the shape factor p:

and (5.24a,b)

where À,n, À,m, À,I are the eigenvalues of Q; see equation (5.1). Since the eigenvalue, À,n,

along () direction for the radial texture isequa1 to the eigenvalue, .,tn, along r for the onion

texture, and since ÀI is common to both we find:

•
r 0

T/:fJ = T/:r (5.25)
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Similarly

and
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(5.26a,b)

Sïnce the eigenvalue, À-m, along r direction for the radial texture IS equal to the

eigenvalue, À-m, along () for the onion texture, and since Â, is common to both we have:

r 0

'1:r = '1:0 (5.27)

Next, we will establish the origin of the inequalities (equations (S.22» in the uniaxial

extensional viscosities within a given texture. From equations (5.19-5.21), (5.24a) and

(5.26a), since À-n > .,lm' we have the inequality:

Likewise from equations (S.19-5.21), (5.24b) and (S.26b), and À-a > À-m , the second

inequality follows:

We note that even in the uniaxial approximation (À-n '* .lm =À, ), there will be two

distinct extensional viscosities for discotic mesophases, and the inequalities between the

uniaxial extensional viscosities for discotic mesophases presented above will hold.

Appendix 8 shows that the texture dependent equalities and inequalities between the

viscosity coefficients hold in the uniaxiallimits also using L-E theory.

•
o 0

'l:r > '1:0

(5.28)

(5.29)

•

5.4 Conclusions

Predictions of uniaxial extensional rheological functions of discotic mesophases

are presented and classified. The predicted rheological functions are discussed and

assessed within the context of nematorheology.

For discotic mesophases two uniaxial extensional viscosities, termed here as 'l:r

and ":0' are needed to completely characterize their extensional rheological functions.

The extensional viscosities depend strongly on the microstructure such that '1;r < ":r and
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";8 > q:8· The extensional viscosities are different within a giveo texture, for example,

for radial (onion) texture ,,;,. < ";8 (,,; > ":8). The discotic mesophases are found to he

non-Troutonian, and show strain thinning or thickening based 00 ternperature and ratio 0 f

viscous to elastic stress contributions. The elastic (viscous) stresses result in strain

thinning (thickening) characteristics to the discotic mesophases.

The microstructure dependency of the extensional viscosity of discotic

mesophases has direct impact on the selection of experirnental technique to measure the

extensional viscosity. The preferred microstructure (radial, onion, rnixed radial onion, or

folded) develops inside the spinneret capil1aries, and the strong extensional flows

accentuate the axial orientation of the molecules (Fatholahi et al, 1992; Fatholahi and

White, 1994; Fleurot and Edie, 1997; McHugh and Edie, 1992, 1995). Thus if spinning

devices are ernployed to measure the extensional viscosity, then prevailing microstructure

in the thread-line needs to be specified along with the extensional viscosity data.



•
CHAPTER 5. ExTENSIONAL VISCOSITY OF DISCOTle MESOPHASES•.•

Bibliography

137

•

•

J.M. Oealy, "Official nomenclature for material functions describing the response of a

viscoelastie fluid to various shearing and extensional deformationsU 1. Rheol., 38, 179

(1994).

P.G. deGenne and J. Proust, In The Physics of Liquid Crysta/s, 2nd edition, (Oxford

University Press), London (1993).

M. Doi and S.F. Edwards, 1986, In The Theory ofPo/ymer Dynamics (Oxford University

Press), New York, USA.

0.0. Edie, K.E. Robinson, O. Fleurot, S.P. Jones and C.C. Fain, "High thermal

conduetivity ribbon fibers from Naphthalene-based mesophase." Carbon, 32, 1045

(1994).

B. Fatholahi, M.K. Gopalakrishnan and J.L. White, Carbon '92, 36 (1992).

B. Fatholahi and J.L. White, "Polarized-light observation of flow-induced microstructures

in mesophase pitch." Journal ofRhe%gy, 38, 1591 (1994).

O. Fleurot and D.D. Edie, Carbon '97 (1997).

R.G. Larson, "On the relative magnitudes of viscous, elastie and texture stresses in liquid

crystalline PBG solutions" Rheo/. Acta, 35(2), 150 (1996).

F.M. Leslie, Theory offlow phenomena in liquid crysta/s, in Advances in Liquid Crystals,

(Academie Press), New York, USA, (1979).

J.J. McHugh, "The development of orientation ln mesophase pitch during fiber

formation" Ph.D. Dissertation, Clemson University, Clemson, SC, USA (1994).

J.J. MeHugh and D.D. Edie, Carbon '92, 683 (1992).

J.J. McHugh and 0.0. Edie, ~'Orientation of mesophase piteh in capillary and channel

flows." Liquid Crysta/s, 18, 327 (1995).

L.R. Peebles, In Carbon Fibers Formation, Structures and Properties, CRC Press, Boea

Raton, USA (1994).



CHAPTER 5. ExTENSIONAL vlseOSITY OF DlseOTle MESOPHASES••. 138

•

•

•

A.D. Rey, "Fiber stability analysis for in-situ liquid crystalline polymer composites"

Polymer Composites, 18,687 (1997).

A.P. Singh and A.D. Rey, "Extension dYnamics of discotic nematics of variable order:

geodesic flow and viscoelastic relaxation", Journal de Physique II France 4, 645 (1994).

A.P. Singh and A.O. Rey, "Theory and simulation of extensional flow-induced biaxiality

in discotic mesophases", Journal de Physique II France S, 1321 (1995a).

A.P. Singh and A.O. Rey, "Computer simulation of dynamics and microstructure of

discotic mesophases in extensional flows", Liquid Crystals 18(2), 230 (1995b).

A.P. Singh and A.O. Rey, "Microstructure constitutive equation for discotic nematic

liquid crystalline materials Part 1: Selection procedure and shear flow predictions",

Rheologica Acta 37(1), 30 (1998a).

A.P. Singh and A.O. Rey, "Microstructure constitutive equation for discotic nematic

liquid crystalline materials Part II: Rheological predictions", Rheologica Acta 37(4), 374

(1 998b).

T. Tsuji and A.D. Rey, "Effect of long range order on sheared liquid crystalline materials

.1. compatibility between tumbling behavior and fixed anchoring" JNNFM, 73, 127

(1997).

G.E. Volovik, "Relationship between molecule shape and hydrodynamics in a nematic

substance" JETP Lett., 31, 273 (1980).



•

•

•

lCHAPTER 6

Effect of Long Range Elasticity and

Boundary Conditions on

Microstructural Response of

Sheared Discotic Mesophases

In the preVlOUS chapters we explored the flow-induced microstructural and

rheological response of the selected CE under homogeneous flows. This chapter presents

comprehensive analysis of non-homogeneous shear flow-induced microstructure response

of discotic mesophases in the presence of curvature elasticity in different planar surface

anchorings. Four different planar microstructure modes, steady state and periodic, are

shawn to be stable. The microstructure phase diagram reveals that the four stable

microstructure regimes co-exist at one point, called qua-critical point. It is shawn that the

bulk molecular orientation is along the velocity gradient direction irrespective of the

surface anchorings. Novel scaling laws relating the microstructure mode domains with

the Frank elasticity are presented. This chapter puts forth a systematic study of flow

induced microstructural behavior of discotic mesophases, and provides a useful

fundamental understanding of the flow of discotic mesophases of use in the processing of

carbonaceous mesophases.

1 This chapter appeared as an original article in Journal of Non-Newlonian Fluid Mechanics
94(2-3) p87-111 (2000).
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6.0 Abstract

A comprehensive analysis of shear flow-induced microstructure phenomena

exhibited by discotic mesophases is presented using a complete generalized non-linear

theory that takes into account short-range order elasticity, long-range elasticity, and

viscous flow effects. The following four distinct shear-induced stable planar non­

homogeneous microstructure modes are found: (1) long-range elasticity-induced steady

state, (2) bulk tumbling-boundary wagging state, (3) bulk wagging state, and (4) viscous

flow induced steady state. The stability of the microstructure modes is presented in terms

of a rheological phase plane spanned by the Ericksen number Er (ratio of viscous flow to

long-range elasticity), and the ratio of short-range to long-range elasticity (R). The steady

and dynamical features of the various microstructure regimes are thoroughly

characterized and analyzed. Two strong surface anchoring conditions, along the velocity

gradient direction, and along the flow direction, are employed to investigate their effect

on the stability and range ofvarious microstructure regimes on the Er-R phase plane. The

average bulk orientation for ail the modes is found to be close to the velocity gradient

direction. The fixed anchoring along the velocity gradient direction transmits the

anchoring conditions into the bulk more strongly than that by the fixed anchoring along

the flow direction. The effects of long-range elasticity on the flow-induced

microstructure features are characterized. These simulations provide useful information

to process carbonaceous mesophases by identifying the principles that govem shear flow­

induced orientation in discotic mes0phases.

6.1 Introduction

Carbonaceous mesophases or mesophase pitches are being employed as precursor

materials to manufacture high performance mesophase carbon fibers and as matrix

materials in carbon-carbon composites. The excellent end product property profiles are

due to the anisotropie nature of the mesophase pitches. For example mesophase carbon

fibers have been known to possess very high axial thermal conductivity and elastic

modulus, and thus are very suitable for industrial processes requiring high thermal

transport and stiffuess. As is weil known (Chandrasekhar, 1981, 1992; Zirnmer et al.,
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1982; Carlsson, 1983; Singer, 1985; McHugh et aL, 1992; Edie et al., 1994; McHugh and

Edie, 1995, 1994; Peebles, 1994), it is possible to induce and control preferred molecular

alignment in anisotropie carbonaceous mesophases during processing, thereby imparting

superior properties to the end products. Mesophase pitches are discotic liquid crystalline

materials and have been shown (Singer, 1985; Chandrasekhar, 1992; McHugh et al.,

1992; Edie et aL, 1994; McHugh and Edie, 1995; Peebles, 1994) to exhibit symmetry

breaking typical of the nematic phase. Mesophases pitches consist of disc-shaped

aromatic molecules that are flat and large enough to exhibit nematic characteristics, and

are termed discotic nematics, ND. Figure (6.1) shows a schematic of a uniaxial discotic

nematic phase. The unit normais to the disk-like molecules orient along a preferred

direction given by a unit vector D commonly known as director or average orientation,

and the extent of alignment of the unit nonnals along the director n is given by a scalar S

called uniaxial scalar order parameter or uniaxial alignment.

Numerous experimental (Baek et al., 1993, 1994) and theoretical studies

(Marrucci and Maffettone, 1989; Larson and Ottinger, 1991; Andrews et al., 1995;

Marrucci and Greco, 1993; Tsuji and Rey, 1997, 1998, 2000; Rey and Tsuji, 1998) have

been performed to unravel the fundamental. principles governing the flow-induced

microstructural phenomena of rod-like nematics. A similar understanding is not yet

available for discotic nematics, but is required for making further technological advances

in the manufacturing of carbon fiber using carbonaceous mesophase precursors. The

present work is aimed towards developing such scientific database for discotic

mesophases, and extends our previous work (Tsuji and Rey, 1997, 1998, 2000; Rey and

Tsuji, 1998) to discotic nematics.

In industrial processing, precursor materials are subjected to complex flows,

involving various combinations of shear and extensional deformations, in complex

geometries. In order to control the molecular orientation or microstructure a fundamental

understanding of the material behavior subjected to the prevailing complex flow is

required. In this paper we study and characterize the distinct microstructural features

exhibited by discotic mesophases under rectilinear shear flow.
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Figure 6.1: Definition of uniaxial director/orientation ft of a uniaxial discotic nematic liquid
crystalline phase. The director n is the average orientation of the unit normais u to the disc-like
molecules.

In our previous works (Singh and Rey, 1998a, 1998b) a constitutive equation (CE)

for discotic mesophases was fonnulated based ~n Doi's theory of nematodynamics (Doi

and Edwards, 1986) by taking into account full microstructural features (Singh and Rey,

1998a, 1998b). The CE under homogeneous shear flow predicted the c1assical stable

planar 2D (tumbling, wagging and aligning) modes as well as non-planar 3D (log-rolling)

mode. These microstructure modes in sheared discotic mesophases are similar to those

for rod-like nematics, yet possess inherent differences which are attributes of different

molecular shape. For example in the planar stationary high shear rate regime, the director

D aligns near the velocity gradient (velocity) direction for discotic (rod-like) nematics.

Similarly, in the planar periodic, rotational and oscillatory, modes the director D spends

most time along the velocity gradient direction in sheared discotic mesophases (Singh and

Rey, 1998a, 1998b). Our previous work (Singh and Rey, 1998a, 1998b) was restricted to

ideal homogeneous microstructure fields, however actual processing flows have finite

boundaries that affect strongly the microstructure fields through surface forces and

torques. Thus it is necessary to include the geometry effects to complete the current

understanding of flowing discotic mesophases. These surface effects are implemented

using a previously developed model (Singh and Rey, 1998a, 1998b) by incorporating

long-range (Frank) elasticity tenns. Tsuji and Rey (Tsuji and Rey, 1997, 1998; Rey and

Tsuji, 1998) have successfully undertaken the same approach for sheared rod-like

nematics.
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The general aim of this paper is to characterize the effect of long-range order

elasticity on the rectilinear shear-induced microstructure phenomena in discotic

mesophases. The particular objectives are:

1. To present comprehensive characterization of all the planar spatially oon­

homogeneous microstructure modes of discotic mesophases subjected to rectilinear

shear flow,

2. To characterize and expIain the differences in the microstructural response of sheared

discotic nematics under two representative surface anchoring conditions,

3. To summarize the planar microstructure features of the sheared discotic mesophases

in terms of rheological phase diagrams,

4. To analyze the effect of elastic anisotropy on the microstructure features of sheared

discotics.

The organization of the paper is as follows. In the next section we present the

theory, coordinate system, assumptions used in problem formulation, governing

equations, and a brief description of computational methods employed to solve the

goveming equation. Section 6.3 contains the numerical results and their discussion.

Section 6.4 presents the conclusions.

6.2 Problem Formulation

6.2.1 Theory and Governing Equations

The microstructure of discotic mesophases, ND, is described conveniently in tenns

of a second order, symmetric and traceless tensor order parameter Q (deGennes and

Proust, 1993):

Q= (UU-~)fd'U

where u is the unit vector normal to the disk-like molecules (see Figure 6.1), 1 is second

order unit tensor, and f is the orientation distribution function. Alternatively Q can also

be defined in tenns of three eigenvectors (0, m and 1) and three eigenvalues
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The main eigenveetor D of Q represents the uniaxial director. Uniaxial scalar order

parameter or alignment S, is a measure of the molecular alignment along the uniaxial

director D, and is given by S = tQ: DD. Biaxial alignment P is a measure of molecular

alignment along the eigenvector m in a plane perpendicular to D, and is calculated as

p =t(Q: mm -Q: Il).

The evolution of microstructure tensor order parameter Q is given by a combination of

three competitive contributions:

1. Flow contribution F accounts for effect of fluid rate of deformation and fluid vorticity

on molecular field in terms of microstructure Q, molecular shape /3, and flow field Vv

(v is the veloeity vector).

2. Short-range elastic contribution H arises directly from the intennolecular attractive

and repulsive forces such as van der Walls forces and excluded volume effects, and

controls the isotropic-nematic phase transition. H is given in tenns of microstructure

Q, nematic potential U (111), and rotational diffusivity Dr.

3. Long-range elastic contribution B, commonly known as Frank elasticity, arises due to

secondary effeet of the nematic intennolecular forces, and transmits the surface

anchoring effects from the boundaries into the bulk. This effect is necessary to

describe the textures and defects invariably observed in practice (Zimmer et al., 1982;

Larson, 1999).

A linear combination of these three fundamental contributions determines the

microstructure response of discotic nematics under arbitrary flow as follows (Tsuji and

Rey, 1997, 1998,2000; Rey and Tsuji, 1998; Singh and Rey, 1998a, 1998b):

(6.3)

•
where
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F(Q, VV)= t pA +p[A.Q +Q. A-t(A: Q)I]-
t p[(A:Q~ + A·Q·Q + Q. A·Q +Q.Q. A - (Q .Q): A)]

H(Q,Dr(Q))= -6Dr[(I-tU)Q-UQ ·Q+U{(Q :Q)Q+t(Q :Q)I}]

D - D [1 3 ~Q.Q)J-2 P p2 - 1 P = ri .
r - r - 2"\:. l' = p2 + 1 ' fi

" ôQ 1. )n
Q=-+\v·VN-W·Q+Q·W

ôt
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(6.3a)

(6.3b)

(6.3c)

(6.3e, f, g)

(6.3h)

•

where Ô is the Jaunmann derivative of Q, Dr is the microstructure dependent rotational

diffusivity, Dr is the pre averaged rotational diffusivity or isotropie diffusivity

independent of Q, U is the nematic potential, and P the shape factor. The disk-like

molecules of discotic nematics are approximated with oblate spheroids of aspect ratio

p (p < 1), equation (3 f), where ~I is the length of shorter and distinct semiaxis, and ri the

length of the two longer and equal semi-axes such that for an ideal flat disc-like molecule

p = 0 CP = -1), for sphere p = 1 CP = 0), and for infinitely long rod p ~ 00 (ft = 1). For

discotics, the material parameter varies from - 1 < P< 0 . LI and L2 are Landau

coefficients or elastic moduli, and are related to the macroscopic curvature elasticity of

uniaxial nematics as follows:

L = K 22 L =K - K 22 where K = Kil = KJJ ; LI + 2
3

L,_ ~ 0, LI ~ 0
1 2sl' 2 sl

(6.4)

•

KIl, Ku and K3J are Frank elastic constants for splay, twist and bend elasticity

respectiveIy. ft has been observed experimentally, and predicted from moiecular

simulations and theory for representative discotic nematic materials (Stelzer et al., 1997;

de Castro et al., 1999; Singh and Pandey, 1998) that there exists a reversaI in the weil

known ordering of Frank elastic constants as compared to that in rod-like nematics. For

discotics the ordering in Frank constants is K 22 > Kil > K 33 (Stelzer et al., 1997).
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Figure 6.2: The parametric area in the K -K22 phase plane where the present theory, equation
(3), is applicable for rod-like and discotic nematics. Please note that the theory is applicable for
ideal discotic mesophases only in the closed range~ :s; K 22 :s; 4K. In this theory the bend and

splay elastic constants are equal KIl = K3J = K . As shown, two different values of

L; =L 2 / LI are used in the present analysis.

In the present theory the splay and bend elastic constants are equal, Kil = KJ3

(deGennes and Proust, 1993; Beris and Edwards, 1994). Higher order theories are

necessary to account for inequalities between Kil and K 33 • To accomplish this six new

tenns must be added, rendering the computations nearly intractable. Since for discotic

nematics the distinguished constant is K 22 , the KIl = K J3 limitation is not as significant

as for rod-like nematics. Figure (6.3) shows the parametric area in the K - K 22 phase

plane where the present theory (equation 6.3) is applicable for rod-like and discotic

nematics. The present theory is applicable for ideal uniaxial discotic mesophases only in

the following closed range:

• L.,
-1.5 :s; -- :s; O.

LI
(6.5)
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Combining equations set (6.3), we find the following goveming equations for the tensor

order parameter Q:

i =W-Q-Q-W+tPA+p[A-Q+Q-A-HA:Q)]

-tp[(A:Q~+A·Q·Q +Q. A·Q +Q.Q. A- (Q .Q): A}I]

_ ~ 6D, 'j lO-yu)2-uQ-Q+U{Q:Q)l+t(Q:Q)}]
I-tQ:Q

+ 6D, [~V2Q+.!.~~(V'Q)+{v(v'Q)r-ttr{v(v.Q)}ljI
Q-tQ :QJ ckT 2 ckT ~

The dimensionless fonn of the above equation is obtained by scaling as follows:

(6.6)

•

Er ~~ =Er[W' -Q-Q- W' +~ pA' + p[A' -Q+Q-A' - ~ (A' :Q)]

- ~ P~' :QR+A' -Q-Q+Q-A' -Q+Q-Q-A' - {Q-Q): A'}~

-R ~ -t~ :Q'j [(l-~U)Q-UQ-Q+U{(Q :Q)l+~(Q :Q)}]

+ 1 [V·2Q+.!..Le2[ve(ve .Q);- ~e~ •. Q)f -~tr~·(v· .Q»]]
Q-tQ:QY 2 3

(6.7)

The dimensionless quantities are represented by a superscript (*) in equation (6.7), and H

is the characteristic distance between the two plates (see Figure 6.3). As there are three

competing contributions controlling the microstructural response of discotic nematics,

therefore we have two dimensionless numbers Of scaling parameters:

Er =YH2
CKT = VHCKT = VHJ.le ,

LI6D, L t 6D, LI

R = D,H
2

fJ.e =_H_
2

_CK_T
LI 6 L t

CKT
/-le = 6D,

(6.8a, b)

(6.9)
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The Ericksen number Er is the ratio of the viscous flow effects to long-range order

elasticity, wbereas ratio R, introduced previously by Tsuji and Rey (1997), is the ratio of

tbe short-range order elasticity to long-range order elasticity. As reported (Tsuji and Rey,

1997, 1998; Rey and Tsuji, 1998) the above-presented theory, equation (6.3), tills the gap

between classical theories of liquid crystals, Leslie-Ericksen (L-E) theory (Leslie, 1968,

1979), and Doi'5 theory (Doi, 1981; Doi and Edwards, 1986). In summary, the above

generalized theory is completely compatible with the L-E theory in the limit R ~ 00, on

the other band it is compatible with Doi's theory in the limit Er ~ 00, and transversely

isotropie fluid (TIF) theory in the limit R ~ 00 and Er ~ 00 and (Tsuji and Rey, 1997,

1998; Rey and Tsuji, 1998). Il is noted that the L-E theory has no restriction on the

values of elastic constants, however, as mentioned above the present theory is restricted

to K lI = K 33 •

6.2.2 Definition of Coordinate System and Flow Field

The model discotic mesophases are subjected ta the rectilinear simple shear flow,

shown in Figure (6.3a). The lower plate (at y = 0) is stationary and the top plate (v =fi),

at distance H from the bottom plate, moves in the +x-direction with a known constant

velocity V. The velocity gradient is along the y-axis, and vorticity along the z-axis. In

this study we restrict our analysis ta planar orientation such that two of the three

eigenvectors of Q lie in the shear plane, and as a consequence the only non-zero

components of tensor order parameter are Qa, Qxy, Q»" Qz=. The components along the

vorticity direction, Q::c and Qzy, are set to zero. We note that eliminating components Q=.t"

and QZ)' does not restrict the uniaxial director D to the shear plane. The director D is still

able to escape the shear plane and align along the vorticity direction even if Q::c = Q:y = O.

Expressing the components in tenns of eigenvectors and eigenvalues, it is found:

(6.10)

•
(6.11 )

and, it follows that the sufficient condition for both components Q::c and Q=>, to he equal ta



CHAPTER 6. LONG-RANGE ELASTICITY EFFECTS ON MICROSTRUCTURE••• 149

•
zero is a =(0, 0, 1), where a = D, m, 1. In this. work we have never observed a director

escape from the shear plane. The planar director dynamics are given in tenus of one

azimuthal angle 8, measured in degrees, which ° makes with the x-axis as shown in

Figure (6.3b).

•

~ V

H

~_IIIIIIIiIII ~~ X

(a)

n

/. (J
-~-_. __ .. _._-

(b)

..
X

•

Figure 6.3: (a) Definition of rectilinear simple shear flow. The discotic mesophase sample is
placed between two infinitely long plates. The lower plate (y = 0) is stationary and the top plate
(y = H) moves in the +x-direction with a known constant velocity V. The velocity gradient Vv is
along the y·axis. (b) Definition of orientation angle () that the primary eigenvector (uniaxial
director) D of tensor order parameter Q makes with the x·axis.

6.2.3 Initial and Boundary Conditions

One of the objectives of this paper is to analyze the distinct microstructure

features of sheared discotics pertaining to different boundary constraints. Two fixed

anchoring modes are possible under the planar molecular orientation assumption:

BCVG: The director D is fixed along the velocity gradient direction (y-axis), such that:

(6.12)
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BeF: The principal eigenvector D is fixed along the flow direction (x-axis), such

that:

0s.BeF =(n.r' ny,n:)= (1, 0, 0) (6.13)

Furthennore at the surface, it is assumed that the discotics are uniaxial (P = 0) and at

equilibrium (S = Seq). The equilibrium alignment depends on the surface nematic

potential as:

S =~+~~I- 8 (6.14)
eq 4 4 3U

The resulting microstructure tensor order Qat the boundaries is given as:

(6.15)

•
The initial state is assumed to be uniaxial and at equilibrium (P = 0, S = Seq). Initially (at

time 1· S; 0), the orientation of discotic nematic phase °1 (1· = 0, 0 < y. < 1) between the

two plates is assumed to be parallel to the corresponding orientation os. Small thennal

fluctuations are imposed on the initial orientation by introducing infinitesimally small

Gaussian noise in Dl. Thus the initial condition in terms ofQ is given as:

(6.16)

Hence for BCVG:

(6.17)

for BCF:

(6.18)

•
where & = -!!.-10 -3 radians, and ç is Gaussian noise. We have found that the solutions

180

are independent of ç .
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The model equation set (6.7) is solved numerically by using the finite element

method for spatial discretization. The resulting set of non-linear time dependent ordinary

differential, obtained after spatial discretization, is solved using the Newton-Raphson

iteration scheme. The convergence is assmned to occur when the length of the difference

between two successive solutions vectors is less than 10-6. A finite difference method is

used to discretize time, and a first order implicit Euler predictor-corrector method is used

for time integration. To minimize computing time without losing accuracy, an adaptive

time step control scheme is implemented. Standard methods are employed for mesh

refinement, convergence, solution stability and consistency. The computations are

performed for both boundary conditions and the set ofparameters listed in Table 6.1.

Table 6.1

Simulation parameters used for model equation set (6.7)

Er R fJ u L;
4--
3

1~ Er ~ 105 1~ R ~ 105 -0.9 6
(K22 = 3K)

1--
4

(K22 = 8/7 K)

Er: Ericksen nurnber; R: ratio of short n1l1ge elasticity to long range elasticity; p: shape factor; U:

nematic potential; L; =L2 / L2 ' ratio of Landau coefficients; K 22 : twist energy elastic constant;

K =KIl =K 33 where Kil: splay energy elastic constant, K 33 : bend energy elastic constant
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6.3 Numerical Results and Discussion

An extensive numerical analysis of the governing equations (6.7), subjected to

shear flow for both sets of boundary conditions, equations (6.12, 6.13), was performed.

Firstly, the flow-induced microstructure modes are identified, analyzed and characterized.

The effect of different anchoring conditions on the microstructure features are presented

and characterized. Detailed microstructure phase diagrams in R-Er phase plane are also

presented. Finally, the effect of the long-range curvature elastic anisotropy on shear­

induced microstructure are discussed and characterized.

6.3.1 Sbear-induced Microstructure Modes under Strong Ancboring
Conditions

Four distinct stable in-plane (2D) microstructures, two steady and two periodic,

modes were found to be stable in the (Er, R) phase plane. These four planar modes are:

(l) long-range elasticity induced steady state (ESS), (2) bulk tumbling-boundary wagging

state (TWS), (3) bulk wagging state (WS), and (4) viscous flow induced steady state

(VSS). Similar modes have also been reported for planar shear flow of rod-like nematics

(Tsuji and Rey, 1997). The nomenclature used in this paper is adopted from that given by

Tsuji and Rey (1997, 1998). In this sub-section we present, characterize and discuss the

four distinct shear induced microstructure modes for the two considered boundary

conditions.

6.3.1.1 Long-Range Elasticity ioduced Steady State (ESS)

This steady state prevails at sufficiently low Er values and for aH arbitrary values

of R, and arises due to the dominance of long-range elasticity on the vorticity effects of

imposed shear flow. Figure (6.4) shows the (a) in-plane director angle 8, (h) uniaxial

alignment S, and (c) biaxial alignment P profiles for Er = 50, R = 1000 (solid line);

Er =50, R = 10 (dash line); and Er = 100, R = 1000 (dot-dash line). The spatial profiles

are for BCVG, and U = 6, P= -0.9, and L; = 4/3. In ESS, the orientation profiles are

parabolic. The director angle at the centerline 01 • decreases with increasing Er,
y ..0.5
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however, remains unaffected by changes in R. At a constant and low Er (Er = 50), the S

profiles are also parabolic, but the value at the centerline Sly.=o.s decreases with

decreasing R. At low Er, two competing effects come into play: long-range order, which

tries to impose the anchoring orientation·and alignment on the bulk, and short-range order

that keeps the equilibrium alignment Seq everywhere in the system. At higher R, short­

range order dominates and the bulk alignment is close to the equilibrium value (S::::: Seq),

however, as R decreases it is easier for the system to lower the alignment S in order to

compensate for the higher long-range energy. As Er incrcases the flow torques gradually

gain strength over long-range elasticity and thus are able to decrease 01 y. =0.5 as shown in

Figure (6.4). It is found that for R = 1000, Bly.=o.s lies in the first quadrant till Er < 70,

and the S profiles are parabolic. However, there exists ajump in the director angle profile

near Er :::=:: 70 such that for Er > 70, 0ly.=o.s lies in the fourth quadrant which results in

large gradients in both alignments (S, Pl. This weil understood (Tsuji and Rey, 1997)

apparent discontinuity is due to solution multiplicity, and is similar to that exhibited by

L-E theory (Manneville, 1981). As shown in Figure (6.4) for Er = 100, R = 1000,

Bl y•=0.5 ::::: -60 degrees, and the steady state uniaxial alignment S> Seq near the boundaries

and in sorne portion of the central core. The nematic phase is nearly uniaxial (P ~ 0),

however the spatial variations in P increase with decreasing R and increasing Er.

Figure (6.5) shows the (a) in-plane director angle 0 angle, (b) uniaxial alignment

S, and (c) biaxial alignment P profiles as a function of y. =YiH for BCF and U = 6,

P= -0.9, and L;= -4/3. The other parametric ~onditions are: R = 100, Er = 100 (solid

line); R = 100, Er = 50 (dash dot line); R = 1000, Er = 50 (dash Hne). The orientation

profiles are parabolic as for BCVG. However, orientation difference dO = IOly.=o.s -Osl

in the orientation angle at the centerline 01. 5 and at the surface (Js is higher in BCF as
y aO.

compared to BCVG. The dominant long-range elasticity transmits the anchoring

orientation in the bulk; the latter tends to rotate under the prevailing rotational torques.

The net effect of the fixed boundary conditions to transmit the anchoring orientation into
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Figure 6.4: (a) In-plane director angle (}, (h) uniaxial alignment S, and (c) biaxial alignment P

steady state spatial profiles for U = 6, P= -0.9, and L; = -4/3, The parametric conditions are

Er = 50, R = 1000 (solid line); Er = 50, R = 10 (dash line); and Er = 100, R = 1000 (dot-dash
Hne). The shown profiles correspond to long-range elasticity induced steady state (ESS) for
BCVG, Ds.BCVG =(0, 1,0). The orientation profiles are parabolic. The director angle at the

centerline 01 y. =0.5 decreases with increasing Er, however, remains unaffected by changes in R.

A decrease in ratio R, at constant Er, affects only alignrnents ta compensate for higher long-range
energy. The nematic phase is nearly uniaxial.
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Figure 6.S: (a) In-plane director angle 8, (b) uniaxial alignment S, and (c) biaxial alignment P

spatial profiles for BCf, Ds,BCF =(1,0,0), and for U = 6, P = -0.9, and L; = -4/3. The

parametric conditions are R = 100, Er = 100 (solid line); R = 100, Er = 50 (dash dot line);
R = 1000, Er = 50 (dash line). The shown data corresponds to long-range elasticity induced
steady state (ESS) for BCf. The orientation extends a larger angle in the bulk as compared to

that in BCVG, DS,BCVG =(0,1,0). The uniaxial profile is always marked a central core region

where uniaxial S alignment is greater than Seq, and by two troughs near the plates where
orientation gradients are large. The deviation in S increases with increasing Er and decreasing R.
The nematic phase again is nearly uniaxial.
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the bulk is stronger for BCVG as compared to BCF, as (L1t9)SCF > (L10)SCVG under the

same conditions. The uniaxial alignment S profiles, in the ESS mode for BCF, are

characterized by two troughs near the two plates where orientation gradients are large,

and by a bulk region at the center where S> Seq' The alignment S is higher (lower) when

the director is close to the velocity gradient (flow) direction. As R increases, at constant

Er, the orientation profile remains unaltered but the alignments (S, P) tend to their

equilibrium values since as R ~ 00, S = Seq and P = O. The nematic is mostly uniaxial,

however, the extent of flow-induced biaxiality under the same parametric conditions is

higher for BCF than for BCVG. It is also noted from Figure (6.5) that in ESS, R does not

have appreciable influence on orientation profiles, however, Er affects both orientation

and alignment profiles.

The main characteristics of ESS for both BCs are: (a) the microstructure field is

steady state, (b) ESS prevails at low Er and arbitrary R, and arises due to long-range

elasticity which frustrates the shear flow vorticity torques, (c) the orientation profiles are

parabolic, (d) the transients leading to ESS are overdamped and non-oscillatory.

The main differences in the ESS regime due to the two boundary conditions are:

(a) for BeF the uniaxial alignment S profiles are always characterized by a central core

region where S> Seq and by two troughs near the boundaries in which S < Seq, (b) the

orientation gradients are always higher in BCF than in BCVG, (c) the ESS state prevails

till higher values of Er in BeF than in BCVG.

6.3.1.2 Bulk Tumbling - Boundary Wagging State (TWS)

This stable periodic in-plane microstructure mode is stable at appropriate values

of Er and R. This periodic microstructure mode arises as the long-range and short-range

order elastic effects are unable ta contain the strong rotational flow toques. Figure (6)

shows the spatio-temporal profiles of: (a) the in-plane director angle (), (h) the uniaxial

alignment S, and (c) the biaxial alignment P, in 3-D box plots, for BCVG with: R = 100,

Er = 2000, U = 6, ft = -0.9, and L; = -4/3. The director orientation is periodic and is

characterized by the presence of three layers: one central bulk region where the director
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continuously rotates clockwise, and two boundary regions where the director oscillates.

The uniaxial S and biaxial P alignments aIso exhibit space dependent and periodic

behavior, which is marked by coinciding sharp changes appearing near the bounding

surfaces. The complex phenomena presented in Figure (6) can conveniently be expressed

by scientific visualization of the tensor order parameter profiles, presented in Figure (7).

The directions of the main orthogonal axes of the ellipsoid correspond to the directions of

the eigenvectors (n, ml, and the lengths of the semi-axes of the ellipsoid are proportional

to the corresponding eigenvalues (Â.n , Â m ). The less aligned state is represented by an

ellipsoid with a smaller (larger) major (minor) semi-axis. Figure (7) shows that the

ellipsoids rotate with increasing time in the bulk region, and oscillate near the velocity

gradient direction in two boundary layers. The average bulk orientation is along the

velocity gradient direction as the time dependent orientation spends most of the lime

along the y-axis. There is a lowering in the alignment, represented in Figure (7) by nearly

circular ellipsoids, when the orientation is away from the velocity gradient direction. The

smooth and continuos transition between the director rotation in the bulk and the director

oscillations in boundary regions is achieved by emergence of abnormal nematics, where

the two eigenvalues are equal, Â.n = Âm > A" at which ellipsoid becomes a circle. This

periodic emergence of the abnonnal nematic state allows for the director resetting

mechanism (Tsuji and Rey, 1997) that makes it possible to have continuous rotating bulk

orientation in the presence of fixed surface anchoring conditions. The abnormal nematics

emerge in pairs, one near each plate, at a distance Ô from each plate that marks the

boundary between the tumbling bulk and the two oscillating boundary layers. For the

parametric condition used in Figures (6.6, 6.7) the boundary layer thickness 8:::::: 0.09,

and the abnormal nematic states appear periodically with a space independent

dimensionless time period T
p
~ 16. These results are consistent with those for rod-like

nematics (Tsuji and Rey, 1997).

Figure (6.8) shows the time evolution of the (a) in-plane director angle B, (b)

uniaxial alignment S, and (c) biaxial alignment P, at y. =0.5 (solid line), y. =0.08

(dash tine), and y. =0.04 (dot dash line), for the same parameters as for Figure (6.6).
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Figure 6.6: The temporal-spatial profiles of (a) orientation angle e, (b) uniaxial alignment S,
and (c) biaxial alignment P for BCVG, DS,BCVG =CO, 1, 0) , at R = 100, Er = 2000. The stable

microstructural features are inhomogeneous and periodic, and typical of bulk tumbling-boundary
wagging state (TWS). The director orientation is periodic and is marked by three Iayers: one
central bulk region where the director rotates clockwise continuously, and two boundary regions
where the director oscillates. The spatial-temporal response of alignments is marked by
coinciding sharp changes that appear near the binding surfaces.
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Figure 6.7: Scientific visualization of the spatial-temporal profiles of the tensor order parameler Q for BCVG, DS,OCVG = (0,1,0), and for

R = 1000, Er = 2000, U = 6, P= -0.9, and L.]. / LI = -4/3. The bulk tumbling-boundary wagging slate (TWS) is stable under these parametric

conditions. The ellipsoids rolale c10ckwise in the central core, and oscillale with space dependent amplitude near velocity gradient directions in
the two boundary layers. A pair of abnomlal nematic states appears periodically at the boundary of lumbling core and oscillating boundary
layers. The average molecular orientation is along the velocity gradient direction.
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Figure 6.8: The time evolution of (a) orientation angle 8, (b) uniaxial alignment S, and

(c) biaxial alignment P at y. =0.5 (solid line), y. =0.08 (dash line), and y. =0.04 (dot dash

line) for the same parameters as for Figure (6.7). Clearly, the bulk near the centerline, y. =0.5,

exhibits the classical tumbling step-like time evolution in which the director rotates clockwise in
the shear plane by slowing down near the velocity gradient direction. In the oscillating boundary
regions the orientation oscillates near the velocity gradient direction with space dependent
amplitude that is maximum near the boundary between the tumbling-wagging layers, and
decreases when approaching the either plate. There is a sharp change in the alignments when
orientation is farthest away from the velocity gradient direction.
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Clearly, the orientation at the centerline (y. =0.5) exhibits the cIassical tumbling step­

like time evolution in which the director rotates cIockwise in the shear plane and slows

down near the velocity gradient direction (Singh and Rey, 1998a, 1998b). There is a

sharp change in the alignments when the orientation is farthest away from the velocity

gradient direction. The same phenomena are observed throughout in the tumbling bulk

regIon (8 < y. < 1- t5 ). In the two oscillating boundary layer regÏons

(0 < y. < 8, 1- 8 < y. < 1), the orientation oscillates near the velocity gradient direction

with a space dependent amplitude that is maximum near the boundary between the

tumbling-wagging layers, and decreases when approaching the plate as shown in Figure

(6.8). AIso, as we move towards either boundary the alignment amplitude decreases. The

oscillation amplitude is maximum near y. :=:: 5 and y. :=:: 1-5. This tumbling-wagging

transition phenomenon is the same as that observed in the homogeneous shear flow of

discotics by increasing the shear rate. However, in TWS this transition (see Figures 6.6,

6.7, and 6.8) occurs at constant Er.

Figure (6.9) shows (a) the bouodary layer thickness 8 , and (b) dimensionless time

period Tp as a function of Er, for BCVG, and ~t R = 25 (0), R = 50 (~), R = 100('1),

R = 500 (0), R = 1000 (0). The boundary layer thickness 8 increases with increasing

Er and decreasing R. For a given R as Er increases the thickness 5 increases uotil il

approaches the centerline (y. = 0.5). On the other hand for a given flow strength Er, 8

decreases for increasing R and as R ~ co, 8 ~ 0, i.e. the entire bulk rotates, in

accordance with Doi's theory (Doi, 1981; Doi and Edwards, 1986). Two pairs of

abnormal nematic states emerge for every 2n rotation of the bulk. The dimensionless

time period Tp decreases asymptotically with increasing Er, and the limiting value is

independent of R. At the transition ESS ~ TWS transition the period Tp diverges. The

results are consistent with those for rod-like nematics (Tsuji and Rey, 1997).

Figure (6.10) presents the scientific visualizations of computed tensor field

profiles, Q(Y., t) for BCF, Er = 2000, and R = 100. In this case the major semi-axis of

the boundary ellipsoids are held fixed along the flow direction. As in BCVG, the periodic

microstructure phenomena consist of three layers: bulk tumbling region, and two
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oscillatory boundary layers. The director spends more rime along the velocity gradient

direction, as in BCVG, despite of fixed boundary anchoring along the flow direction.

This is facilitated by the underlYing microstructural phenomena in the boundary layer

regions. Figure (6.11) shows the· time evolution of the in-plane director angle () at:

y. =0.025 (solid line), y. =0.05 (dot dash line), y. =0.1 (dash line) y. = 0.2 (long

dash line), and y. = 0.5 (dotted line), for BeF and for the same materials constants as of

Figure (6.10). The director °rotates clockwise in the inner core, y. =0.5 (dotted lîne).
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Figure 6.9: (a) Boundary layer thickness t5, and (b) dimensionless time period Tp as a

function of Ericksen number Er for surface anchoring, DS,BCVG = (0,1,0), for five different

values of the ratio R. The boundary layer thickness t5 increases with increasing Er and
decreasing R; whereas, the dimensionless time period Tp decreases with increasing Er and R.
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Figure 6.10: Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BCF, 0S,OCF = (1,0,0), at R = 100,

Er = 2000, U =6, P= -0.9, and L; = -4/3. The bulk tumbling-boundary wagging state (TWS) is stable under these conditions. In the central core

the ellipsoids rotate clockwise, and spend most of the time along the velocity gradient direction as in BCVG, DS,BCVG =(0,1,0). However, in

the oscillating boundary layers the ellipsoids oscillate with space dependent amplitude along a space depcndent direction, which is along the flow
direction near the wall and along velocity gradient direction near the boundary bctween boundary layer and tumbling core.
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In the outer oscillating boundary layers, the director oscillates with space dependent

amplitude and around a space dependent direction as shown in Figure (6.11). Starting

from the bottom plate the director oscillates around the flow direction, and as y.

increases the oscillation direction moves away from the flow direction towards the

velocity gradient direction, finally as y. ~ ~. the director oscillates very close ta the

velocity gradient direction and the microstructure dynamics are same as for BCVG. For

example, at y. = 0.025 the director oscillates around 1) ~ -48 deg; at y. = 0.1 along

f) ~ -80 deg; and at y. =0.2 along 1) ~ -98 deg. Figure (6.12) presents the boundary

layer thickness ~ as a function of the Ericksen number Er, for BCF for various values of

the ratio R. The thickness t5 for BCF is higher than that for BCVG for the same values

of R. The tumbling core shrinks at the expense of the thicker boundary layer that is

needed ta allow for the director compatibility between the boundary anchoring (along

flow direction) and the bulk director, that is mainly along velocity gradient direction.

--,.....----------------, -180
-50 ::-' .. ' ..• -360

-540
..........

""" ..

. -
~. ~ .-.._'..... --'_._" - ....... .-.~" _.- ....... "._.. _.

--. ' ., ---.... , ------. :.. , ",. - .. -... ... ... ' , ----.
.,.' ' .. ' .... t' ... ,

-.... --'. ~
;-'" { " { ', .... ( ',-720

\JI \ 1 \.1. .
t \; 1 \1 1 \1 1""'--_.........-----1""--_1000.-.. -----' -900

30 40 50 60 70 80

-65

-95

-110
20

tJ)
Q)
-0 -80
~

t

•

Figure 6.11: Time evolution of the in-plane director angle () angle at y. =0.025 (solid line),

y. = 0.05 (dot dash line), y. = 0.1 (dash line) y. = 0.2 (long dash line), and y. = 0.5

(dotted line) for BeF, DS,BeF = (1, 0, 0), and with the parametric values of Figure (6.11). The

director rotates clockwise in the inner core while spending most of the time along velocity
gradient direction. In the outer oscillating boundary layers, the director oscillates with space
dependent amplitude and around a space dependent direction. For details see text.
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Figure 6.12: The boundary layer thickness t5 as a function of Ericksen number Er, for BCf,

0S,BCF = (1, 0, 0), for various values of the ratio R. Please not.: that the thickness a for BCf is

higher than that for BCVG, 0S.BCVG = (0, 1,0), for the same values oÏR.

The main characteristics of TWS for both BCs are: (a) the microstructure field is

periodic, (b) TWS arises as the long-range and short-range order elastic effects are unable

to contain the strong rotational toques due to the imposed shear flow, (c) the orientation

dynamics are rotational in the core region and oscillatory in the two boundary layers, (d) a

pair of abnormal nematic states appear periodically at the two boundaries between these

three layer, (e) the abnonnal states move towards the center-line with increasing Er and

decreasing R, (f) the average orientation is along the velocity gradient direction.

The main microstructural differences between BCF and BCVG cases are: (a) the

director oscillates around a space dependent direction in the oscillating boundary layers in

BCF, (b) the boundary layer thickness 8 is higher in BeF than that in BCVG, (c) the

TWS mode is stable at higher values ofR and Er in BeF than in BCVG.
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As Er is further increased the tumbling core region of TWS is replaced by a new

wagging periodic state called wagging state (WS) in which the orientation and alignments

oscillate throughout the bulk. This stable periodic in-plane mode is stable at sufficiently

high values of Er and R. The strong rotational torques of the shear flow still overpower

the long-range elastic effects, but are increasingly challenged by the extensional torques

of the shear flow. Figure (6.13) shows the computed scientific visualization of the

spatial-temporal profiles of the tensor order parameter Q for BCVG, R = 100, Er = 3000,

U = 6, P= -0.9, and L; = -4/3. The ellipsoids oscillate with a space dependent amplitude

that is a maximum at the centerline and zero at the boundaries. The director n oscillates

near the velocity gradient direction, and the average bulk orientation is close to the

velocity gradient direction. The alignments' (S, P) dynamics are also oscillatory with

maximum amplitude at the centerline and zero at the either boundary. The uniaxial

(biaxial) alignment reaches a minimum (maximum) when the orientation is farthest from

the velocity gradient direction. The amplitude of oscillations decreases with increasing

Er and decreasing R, and finally near WS --) VSS transition the amplitude of oscillations

is negligible. The oscillation amplitude is maximum at the TWS --) WS transition.

Figure (6.14) shows the computed scientific visualization of the spatio-temporal

profiles for BCF of the tensor order parameter"Q for the same parameters as for Figure

(6.13). The ellipsoids oscillate in the entire bulk with space dependent amplitude, which

is the maximum at the center and zero at the boundaries, as in case of BCVG. The

ellipsoids oscillate along a direction near the velocity gradient direction in the central core

of the bulk, however in two boundary layers near the plates the direction of oscillation

changes from being near the flow direction to that near the velocity gradient direction, as

in the bulk.

•

•

6.3.1.3 Bulk Wagging State (WS)

•
A direct comparison ofFigures (6.7) and (6.13) for BCVG, and Figures (6.10) and

(6.14) for BCF reveals the main microstructural differences and similarities between

TWS and WS. In TWS the bulk orientation angle () rotates clockwise continuously and

thus the difference between the orientation angle in the bulk and that in the boundary



&PTER 6. LONG-RANGE ELASTICITY EFFECTS ON MICROSTRUCTURE... • e 167

1.0

(1)
o
c:
CO..en--Cl
en
~ 0.5-c:
o--UJ
c:
Q)

E'--o
o

.
Il 1 1 Il 1111111111111111111 1 Il 11 1 1 l , , l , , l , , 1 l , , 1 t , 1 t l , , 1 1 , 1111111
Il ,

" """""'"''''''
,

" """""''''''''''''''''
, 1 ""'"Il " """"""'"''''

,
" "''''''''''''''''''''''''

,
'"''''''Il " """"""""'"

,
" "''''''''''''''''''''''''

, , "",If " "''''''11'''''11'' ,
" """""///11""1"'" 1 ,

" '"ft " "'"''''III''aI''' 1 " "" """1'1"'00""'" 1 1 ,
'"ft " """'111"'00"\\ 1 f "" "'"''1''''00''''''' 1 1 '",

" """111"'00"'" , 1 1 " ""'1"""00"\"" , ,
"" """"""000"" 1 1 """""'100""" , 1 f "" """""'100 '''' , 1 "'"'/''/11000''''' , 1 ,

" """"""00 "" , , """"""'00""'\ ,
" """"""00 "" , , """""""0""" ,
" ""'1"""00 '''' , ,

""''''''''''0'''''' ,, "'''''''''''''00 "" , 1 """""1"'00""" ,
'''''''''''''''00 '''' "

, """'1"""00""" ,
"'"''""""00 '''''' 1 , """"""'100""" ,
''''''''''''11100 '''''' , """"""1100""" ,
""""""'1100 """ t """"""'110 't'''' ,
"""""""'00 """ ""'""""110 't'''' ,

" """"""'1100 """ "'"11"""110 """Il '''''''''''''1100 """ "'''''''''11110 """ft '''''''''''''1100 ,,,,,, """""111110 t''''''Il '''''''''''''1100 ,,,,,, """"""'110 t'''''' 1
et """"""'1100 """ "''''''''''''10 t,,,,,,If """1""""00 "'''' """'''''''110 "''''''ft , '''''''"''''11100 "'''' ""''''''''1110 t''''''ft '''''''''''''11100 ,,,,,, ""'''''''11100 t,,,,,,ft ''''''''''''''1000 ,,,,,, ""''''''111100 t'''' ,
ft """""""//1000""'" , '''''"1''''''00 '"'' ,
Il , , , , , , , '" Il , " 0 0 0 , , \ , , , , , r ""''''''''''00 \l'" ,
ft """""""//100"""" , ",,,,,,,,,,,,00 "l" , .
Il """"""""00.""", , """"",,',00 '"'' , ,
ft 1 , , , , , , , "II ,11Il 0 0 , , , , \ , , , ,. """""'1100"\'\" , ,
Il ,,,,,,,,," " ,"II 0 0 0 , \ , , , , 1 ,

""'"''''''00''''' " 1 , ,
Il """""""""000""'" , , , , "' , , 1 " l , 0 0 , , , , , , , , , ,
Il """"""""""0""'1'

, "'"'''''11''00''''''' 1 ,
"Il , , , , , , , , , , l '" " , , , , , • 1 l , 1 l , " , , , , " , , , , , 1 1 l , •• 1 l , 11 1 , ,
"Il """"1111"""'''''''''' ''''''"'""'''''''"'''' , ,
"Il """""""""',/""'" , """""'"111'"""'" , ,
"Il

""""""""""""""
,

"'"11'"'''''''''''''''' , ,
"Il , , 1 1 l , t 1 l , 11 1 l , t l , , l , 1 1 l , 1 l , 1 11111111111111111111111111 1 1 ...

o 5 10 15 20
Dimensionless Time

Figure 6.13: Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BCVG, DS.DCVG = (0,1,0), at R = 100,

Er = 3000, U = 6, P= -0.9, and L~ = -4/3. The visualization is typical of the bulk wagging state (WS) under BCVG. The ellipsoids oscillate in

the entire bulk with space dependent amplitude, which is the maximum at the center and zero at the either boundary, along a direction near
velocity brradient direction.
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Figure 6.14: Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BeF, 0S,BeF ;;: (1,0,0), at R = 100,

Er = 3000, U = 6, fi = -0.9, and L; = -4/3. The visualization is typical of the bulk wagging state (WS) under BeF. The ellipsoids oscillate in the

entire bulk with space dependent amplitude, which is the maximum at the center and zero at the either boundary. The ellipsoids oscillate along a
direction near the velocity gradient direction in major part of the bulk, however near the plates the direction of oscillation changes from being
near the flow direction to the velocity gradient direction as in the bulk. The average bulk orientation is along the velocity gradient direction.
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surfaces increases continuously with time, which gives rise to the emergence of a pair of

abnormaI nematics due to the director resetting mechanism. Whereas in the WS the

orientation angle (J oscillates in the bulk within closed bounds ( 0 ~ (J ~" or tr ~ (J :5 2tr )

and thus the difference between the bulk orientation and the boundary surfaces is always

finite and less than 1(. Also, no abnonnal nematics appear in the WS regime.

The main characteristics of WS for both BCs are: (a) the microstructure field is

periodic oscillatory and inhomogeneous, (b) the orientation and alignments oscillate

thorough out the bulk with a space dependent amplitude that is maximum at the

centerline and zero at the boundaries, (c) the period of oscillations decreases with

increasing Er and decreasing R, (d) the average orientation in the bulk is around the

velocity gradient direction.

The main microstructural difference in WS between BCF and BCVG cases is the

presence, in the BCF case, of oscillating boundary layers in which the director oscillates

around a space dependent direction that is along the flow direction near the plates and

along the velocity gradient direction in the bulk.

6.3.1.4 Viscous Flow Induced Steady State (VSS)

This planar steady state is stable at large Er and appropriate R, and arises due to

dominance of strong flow aligning torques over an other competing effects. Figure (6.15)

shows the spatial profiles of the (a) in-plane director angle fJ, (b) uniaxial alignment S,

and (c) biaxial alignment P, under BCVG and for U = 6, P= -0.9, and L; =-4/3. The

shown curves are for Er = 6000, R = 100 (solid line); Er = 10000, R = 100 (dash line);

and Er = 10000, R = 10 (dot-dash Une). The orientation and alignment profiles exhibit

typical boundary layer behavior, in which the aligned core, with a flat and homogeneous

microstructure profile, is sandwiched between the two layers with sharp changes near the

plates. Again the average orientation is near the velocity gradient direction. The

orientation difference ~ (J = 1(0) core - fJsi in the average orientation angle in the flat core

(e)core and at surface Os decreases with increasing Er as stronger flow strength imposes

orientation along the velocity gradient direction. The uniaxial alignment S in the bulk is
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Figure 6.15: (a) In-plane director angle 0, (b) uniaxial alignment S, and (c) biaxial alignment P

spatial profiles for BCVG, DS.BCVG =(0, 1,0), and for U = 6, f3 = -0.9, and L; = -4/3. The

parametric conditions are R = 100, Er = 6000 (solid line); R = 100, Er = 10000 (dash line); and
R = 10, Er = 10000 (dot-dash line). The profiles ar~ typical ofviscous flow-induced steady state
(VSS) under BCVG. The orientation 8 and alignment (S, P) profiles are characterized by a fiat
profile within two boundary layers. The differenee between surface orientation and the bulk­
aligning angle decreases with inereasing Er and deereasing R. The alignments show the similar
dependence with Er and R. The sheared nematie phase is nearly uniaxial.
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always less than Seq. The nematic phase for BCVG is practically uniaxial, however the

biaxial alignment P decreases with increasing E.r and decreasing R. The thickness of the

boundary layers also decreases with increasing Er and decreasing R.

Figure (6.16) shows the steady state spatial profiles of the in-plane director angle

() (solid line), the uniaxial alignment S (dash line), and the biaxial alignment P (dot-dash

line), for Er = 60000, and R = 100. The shown profiles are typical of the VSS occurring

under BeF. The orientation profile is characterized by two boundary layers with large

orientation gradients leading to a flat orientation profile in the bulk. The average

orientation is near the velocity gradient direction. Two local maximas and three local

minimas characterize the alignment profiles. The alignment S (P) drops (jumps) sharply

near the plates where large orientation gradients exist as director goes from the anchoring

orientation, along the flow direction, to the central core bulk orientation along the

velocity gradient direction. The nematie phase is highly biaxial near the plates; however,

the central core remains mostly uniaxial (p::::: 0). The dependence of orientation angle in

core on Er and R follows the same trends as in BCVG, discussed above.

The microstructural differences in ESS and VSS modes are attributed due to the

nature of the stabilizing mechanisms that promotes the steady state. The main dynamical

and steady state microstructural differences are: (a) the orientation profile in ESS is

parabolic whereas that in VSS is characterized by a flat bulle and two boundary layers

with sharp gradients; (h) the dynamics in ESS (VSS) mode are over-damped (under­

damped); (c) the maximum bulk angle (at the centerline) in ESS (VSS) increases with

increasing (decreasing) Er.

The main characteristics of VSS for both BCs are: (a) the microstructure field is

non-homogeneous, steady state and arises due to the flow aligning torques at very high

Er, (b) the orientation profiles are flat in the bulk with rapid gradients in the boundary

layers, (c) the transients leading to VSS are under-damped and oscillatory, (d) the steady

state orientation angle decreases with increélSing Er and decreasing R, (e) the bulk

orientation is near the velocity gradient direction.
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The main differences in VSS mode for the two anchoring conditions are: (a) for

BCVG the uniaxial alignment is always S < Seq, whereas for BCF S > Seq near the

boundary, (b) the nematic phase is highly biaxial near the plates in BeF whereas it is

nearly uniaxial in BCVG, (c) the orientation gradients are always higher in BCf than in

BCVG.
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Figure 6.16: The steady state spatial profiles of the in-plane director angle () (solid Hne), the
uniaxial alignment S (dash line), and the biaxial alignment P (dot-dash line) for Er = 60000,
R = 100. The shown profiles are typicaI of the viscous flow-induced steady state (VSS)

occurring under BCf, 0S.BCF = (1, 0, 0). The bulk orientation profile is flat and nears the

velocity gradient direction, as in BCVG, DS.BCVG = (0, 1, 0). There are rapid gradients in the

orientation field near the plates at which there are sharp changes in alignment fields. The
uniaxial alignment reaches values greater than Seq, a peculiarity only observed in BCf. The
nematic phase is highly biaxial near the boundary, however the bulk is mostly uniaxial (P ~ 0).

6.3.2 Microstructure Phase Diagram

In this section we present the microstructure phase diagrarn, in terms of Er-R, îor

both boundary conditions. The transition lines between the various microstructure

regimes are not computed due to the unavailability of robust procedures to handie the

coupled highly non-lïnear complex system of partial differential equations in hand.

Nonetheless, the large number of computations performed at various values Er and R
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provides the location of the transition boundaries accurately enough.

Figure (6.17) presents the microstructure phase diagram for (a) BCVG and (h)

BeF for U = 6, P= -0.9, and L;:: -4/3. The figure shows parametric regions for the four

stable planar microstructure modes: ESS (0), TWS (0), WS (~), and VSS (0). The

location of the boundaries between the various stable modes is apparent in the figure.

The filled circle (e) represents the qua-critical point from which ail the transition lines,

marking the boundary between the various microstructure modes, emanate. In other

words, ail of the four flow regimes coexist at this point. The locations of the qua-critical

points are:

BCVG: (Erqc ' R qc ) ~ (70, 3)

BCF: (Erqc ' Rqc)~ (450,20)

(6.19a)

(6.19b)

•

•

For R > Rqc the system displays, for both BCs, ail of the four flow regimes with

increasing Er, whereas for R < Rqc only steady state regimes, ESS and VSS, are

encountered. Aiso for Er > Erqc the system displays a11 the four stable modes with

various R. The ESS regime spreads to higher Er with increasing R, because for high R

the short-range order elasticity dominates, the alignments remain close to their

equilibrium values and remain unaffected by the rotational flow torques, thus relatively

higher flow strength (higher Er) values are required to set up the rotational tumbling

dynamics in the bulk of the system.

Moreover, at sufficiently low values ofR, the sufficiently high values of Er induce

a decrease in the uniaxial alignment S thereby giving rise ta VSS. The VSS regjme

spreads to higher values of R with increasing Er, as higher flow strength is required ta

produce the alignment changes that produce VSS. The periodic modes TWS and WS

appear only to the right and above of qua-critical point and prevail for parametric values

(Er, R) > (Erqc ' R qc ) • The parametric space where TWS and WS modes exist begins to

pinch as qua-critical point is approached, and finally extinguishes al qua-critical point.

Both Er and R are inversely proportional to long-range arder curvature elasticity.

Therefore as Er and R decrease the effect of log-range arder begins ta increase, thereby
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dampening any periodic behavior. The various transition lines have positive slopes and

the regions spread with increasing Er and R.

Comparison of Figures (6.17a) and (6.17b) reveals that for BCF the qua-critical

point has shifted upwards and to the right in the phase space such that:

(6.20a)

(6.20b)

•

•

The scaling given by equation (6.20b) states that the qua-critical point shifts along each

parametric axis in the same ratio.

As is observed from Figure (6.17), the periodic regimes start from the qua-critical

point. The TWS and WS modes appear when long-range elasticity is weak, and always

appear in the absence of long-range order elasticity (Singh and Rey, 1998a, 1998b). The

effeet of long-range elasticity is to suppress the inherent periodic behavior of the nematic

phase at 10wer and intermediate shear rates. AIso, Er and R both scale inversely with

long-range elasticity. Thus TWS and WS will appear at lower values of Er and R,

provided the materials and thermodynamic parameters (U, fJ) are kept constant, if long­

range elasticity is stronger and vice versa. Therefore shifting of the qua-critical point is a

manifestation of the fact that the fixed anchoring conditions under BCF are less effective

in transmitting the surface anchorings into the bulk. Moreover, the ESS regime under

BCF extends till higher values of Er than in BCVG, which again is attributed to the

weaker penetration effects offixed boundary anchoring in case ofBCf.

The main characteristics of the phase ~iagrams for both BCs are: (a) the phase

plane presents the regions where various flow-induced modes are stable; (b) the transition

Hnes between various regimes emanate from the qua-critical point; (c) a11 four regimes

co-exist at the qua-critical point; (d) the system displays aIl the four modes for R >

Rqc and Er > Erqc ; and (e) aIl the regimes spread with inereasing Er and R.
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Figure 6.17: Microstructure phase diagram in the R-Er phase plane for (a) BCVG
(Ds,BCVG =(0,1,0) ), and (h) BCF (Ds,BeF = (1, 0, 0» for U = 6, ft = -0.9, and L; = -4/3. The

figure shows parametric regions for the four stable planar microstructure modes: ESS (0), TWS
(0), WS (~), and VSS (0), In BCF the phase plane is shifted towards right and upwards as
compared to BCVG. The coordinates of the qua-critical points (e) for BCVG and BCf are

(Erqc ' Rqc )BOIG ~ (70,3) and (Erqc ' Rqc )BCF ~ (450,20) respectively.
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6.3.3 Effect of Long-Range Elastic Anisotropy

The above numerical results and discussion was based on one value of the long-range

elasticity ratio parameter: L; = L2 / LI = -4/3. To investigate the effect of long-range

elasticity on microstructural phenomena of sheared discotic nematics, two values of

L; =- 4/3, and -l/4 were used, corresponding to Frank elastic constants K22 =3K , and

K n = 8/7 K respectively (see Figure 6.2). The long-range elastic anisotropy is higher for

L; =-4/3 (K22 =3K) than for L; =-1/4 (K22 =8/7 K). Figure (6.18) shows the

microstructure phase diagram, in Er-R parametric phase space for BCVG, L; = -1/4,

U = 6, and p = -0.9. Ali of the four microstructure modes were found to exist in the

clearly marked regions on the phase plane, as shown in Figure (18): ESS (0), TWS (0),

WS (~), and VSS (0). A filled circle represents the qua-critical point (e). The

coordinates of the qua-critical point in Figure (6.18) are (Erqc ' Rqc )::::: (180, 8).

A comparison of Figures (6.17a) and (6.18) reveals that the qua-critical point in

Figure (6.18) has moved upwards and towards the right, such that:

(6.21a)

(6.21b)

•

Based on the discussion in the previous section, the inequality (6.21a) is due to the fact

that the extent of penetration of surface anchoring effects ioto the bulk is higher for

L; = -1/4 than for L; = -4/3, and higher elastic anisotropy induces better penetration

effects from the surface into the bulk. The above scaling law, equation (6.21b), states that

the qua-critical point shifts along each parametric axis in the same ratio, and the shift

ratio is given by the inverse ratio of the Frank elastic constant ratio K 22/K .
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Figure 6.18: Microstructure phase diagram for BCVG, DS.BCVG =(0, 1,0), and for L; = -1/4

(K22 =3K ), U =6, and p = -0.9. The figure shows parametric regions for the four stable planar

microstructure modes: ESS (0), TWS (0), WS (.6), and VSS (0). At higher value of L;.
lesser long range anisotropy, the phase diagram is shifted towards right and upwards as compared

ta Figure (6.19a) which is for L; =-3/4 (K22 = 8/7 K). The location of the qua-critical points

(e) is (Erqc , Rqc)~ (180,8).

6.4 Conclusions

•

A comprehensive analysis of shear-induced microstructure phenomena exhibited

by discotic mesophases is perfonned using a complete generalized theory that takes ioto

account short-range elasticity, long-range elasticity and viscous effects. The theory

predicts four distinct planar microstructure modes: (1) long-range elasticity induced

steady state (ESS), (2) bulk tumbling-boundary waggÏng state (TWS), (3) bulk wagging

state (WS), and (4) viscous flow induced steady state (VSS). In the ESS the

microstructure is stabilized by the curvature elasticity through fixed orientation and

alignments anchoring at the plates. The TWS is a periodic state and comprises of three

spatial distinct regions: a continuously rotating core, and two oscillatory boundary layers.
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At the boundary of the three regions a pair of abnonnal nematic sates appear which

bridges smoothly the winding core with the boundary layers through the director resetting

mechanism. The thickness of the boundary layers increases with increasing Ericksen

number Er and decreasing ratio R. The WS is a periodic state in which the orientation

and alignments oscillate throughout the bulk with space dependent amplitude that is

maximum at the centerline. The maximum amplitude of oscillations decreases with

increasing Ericksen number Er and decreasing ratio R. The VSS is a spatiaIly

inhomogeneous steady state that is brought out by the aligning effects of the flow. In aIl

the microstructure modes the average bulk orientation is along the velocity gradient

direction.

The microstructure phase diagram spanned by Er and R that summarizes the

complete in-plane microstructure phenomena of sheared discotic mesophases reveaIs that

the four regimes coexist at a one point, called qua-critical point, in phase plane.

The effect of different pIanar surface anchoring conditions on flow-induced

microstructural phenomena reveals that: (a) the average bulk orientation is along the

velocity gradient direction irrespective of the surface anchoring, (b) the fixed anchoring

along the velocity gradient direction is able ta transmit the anchoring effects deeper ioto

the bulk than the tangential case.

The effect of Frank elasticity is given in the form of a microstructure phase

diagram. It is found that as strength of long-range anisotropy decreases the qua-critical

point moves upwards and towards the right in the phase plane. A novel scaling law

relating the magnitude of the shift was discovered, and states that the qua-critical point

shifts along each parametric axis in the same ratio, and the shift ratio is given by the

inverse ratio of the Frank elastic constant ratio K 22 / K .

The present systematic study of flow induced microstructural behavior of discotic

mesophases subjected to representative boundary conditions provides a useful

fundamental understanding of the flow behavior of discotic mesophases of use in the

processing ofcarbonaceous mesophases.
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lCHAPTER 7

Microstructure Response of Sheared

Discotic Mesophases in Hybrid Aligned

Nematic (HAN) Cell

Chapter 6 presents detailed account of long-range elasticity effects, and boundary

conditions on the shear-induced microstructural response of model discotic mesophases.

However, same surface anchorings were used, such that the orientation was fixed in the

same direction at the top and the bottom plate. In this chapter the microstructural

response of sheared discotics subjected to mixed boundary conditions, equivalent of that

in a hybrid aligned nematic (HAN) cell, is computed. The strong surface anchorings at

both the plates correspond to the stable orientation configuration of discotic mesophases

when subjected to homogeneous shear flows, such that the director D is anchored along

the vorticity direction at the bottom stationary plate, and along the velocity gradient

direction at the top moving plate. A novel model of continuous generation of defect-like

structures in the bulk is discovered, and is due to asynchronous rotational kinematics.

The simulation results are used to put forth the generation of more complex fiber textures,

such as rnixed texture (radial core with anion exterior), and skin-core textures observed

during processing ofa carbonaceous rnesophase.

1 This chapter appeared as an original article in XIIIth Congress of Rheology "Rhea/ogy 200a',
p117-119t Cambridge, U.K. (2000)
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7.0 Abstract

Flow modeling of model mesophase pitches is performed using a complete

phenomenological theory that takes ioto account short-range order elasticity, long-range

curvature elasticity, and viscous flow effects. The theory is fully compatible with the

well known Leslie-Ericksen and Doi theories, and thus fills the parametric gap where

these classical theories are inapplicable. A novel shear-induced mode of continuous

generation of defect-like structures in the bulk has been discovered. These structures

emerge due to asynchronous rotational orientation kinematics. The numerical results are

characterized mathematicallyas weIl as in terms of the basic physical mechanisms. The

simulations are further used ta put forth the fundamentai principles that govem

mesophase carbon fiber texture generatioo under shear.

7.1 Introduction

Mesophase pitches (MPs) have emerged into an important c1ass of precursor

materials to manufacture high performance mesophase carbon fibers, and as matrix

materials in carbon-carbon composites. The excellent end product property profiles are

due to the anisotropie nature of the MPs. For example, the mesophase carbon fibers have

been known to possess very high axial thermal conductivity and elastic modulus, and thus

are very suitable for industrial processes requiring high thermal transportation and

stiffness. It is possible ta induce and control preferred molecular alignment in anisotropie

carbonaceous mesophases during processing, thereby imparting superior properties ta the

end products. The MPs consist of disc-shaped aromatic molecules that are flat and large

enough to exhibit nematic characteristics, and are termed discotic nematics, ND. Figure

(7.1) shows a schematic of a uniaxiai discotic nematie phase. The unit normais to the

disk-like moiecules orient along a preferred direction given by a unit vector D commonly

known as director or average orientation, and the extent of alignment of the unit normais

along the director n is given by a scalar S called uniaxial scalar order parameter or

uniaxial alignment.

Numerous experimental and theoretical studies have been perfonned to unravel

the fundamental principles goveming the flow-induced microstructural phenomena of
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rod-like nematics. A similar understanding is not yet available for ND, but is required for

making further technological advances in the manufacturing of carbon fibres using MF

precursors. The present work is aimed towards developing such scienti fic database for

MPs, and extends our previous work (Singh and Rey, 1998a, 199bb, 2000; Tsuj i and Rey,

1998) to ND.

Figure 7.1: Definition of uniaxial director/orientation D of a uniaxial discotic nematic liquid
crystalline phase. The director n is the average orientation of the unit normals u to the disc-like
molecules.

In industrial processing, precursor materials are subjected ta complex flows,

involving various combinations of shear and extensional deformations, in complex

geometries. In order to control the molecular orientation or microstructure a fundamental

understanding of the material behavior subjected to the prevailing complex flow is

required. In this paper we study and characterize the distinct microstructural features

exhibited by discotic mesophases under rectilinear shear flow.

In our previous works (Singh and Rey, 1998a) a constitutive equation (CE) for

discotic mesophases was fonnulated based on Doi's theory 0 f nematodynamics by taking

into account full microstructural features. The CE under homogeneous shear flow

predicted the classical stable planar 2D (tumbling, wagging and aligning) modes as weIl

as non-planar 3D (log-rolling) mode. These microstructure modes in sheared discotic

mesophases are similar to those for rod-like nematics; yet possess inherent differences

that are attributes of different molecular shape. In a subsequent work (Singh and Rey,

2000), a comprehensive characterization of aIl the planar spatially non-homogeneous

microstructure modes of sheared ND subjected to different boundary conditions is

presented. The general aim of this paper is to characterize the effect of long-range arder
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elasticity on the rectilinear shear-induced microstructure phenomena in MPs subjected ta

mixed boundary conditions, and to use the results to identify the fundamental principles

goveming various MP-based carbon fiber textures.

7.2 Theory and Governing Equations

The evolution of microstructure, in tenns of the tensor order parameter Q, in ND

subjected to shear flows is governed by the following microstructure constitutive equation

(Singh and Rey, 2000; Tsuji and Rey, 1998):

Er dQ = Er[w 'Q-Q'W+~PA+ f3[A'Q+Q'A-~(A:Q)I]
~ 3 3

- ~ P[(A:Q)Q+AoQoQ+QoAoQ+QoQoA-{(QoQ):A}I]]

-R ( 6 , [(I-.!.U)Q-UQ.Q+U{(Q:Q)Q+-!.(Q:Q)I}] (7.1)
I_+Q:Q~- 3 3

+ ( l r V'2Q+~ L2[V(V .Q)+ {V(V .Q)}T -~tr{V(V .Q)}I]]
I-tQ:Q 2 LI . 3

Here, A, W, Li (i = 1,2), U, fJ are the dimensionless vorticity tensor, the dimensionless

rate of defonnation tensor, the Landau coefficients, the nematic potential and the

molecular shape factor, respectively. For details see (Singh and Rey, 2000; Tsuji and

Rey, 1998). The tirst term on the right hand side of equation (7.1) relates the

microstructure with viscous flow deformations, the second term represents the short­

range order elasticity effects which control the isotropic-nematic phase transition, and the

last term represents the long-range order elasticity effects and transmits the surface

anchoring effects from the boundaries into the bulk. The long-range elastic effect also

known as Frank elasticity is necessary to describe the textures and defects invariably

observed in practice. As there are three competing contributions controlling the

microstructural response of ND, therefore we have two dimensionless numbers or scaling

parameters (Tsuji and Rey, 1998):

•
R= HZ cKT

6 Lt ' (7.2a,b)
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Where His the characteristic distance between the two plates (see Figure 7.2), V is the

constant velocity of the top plate, and Pt! is the viscosity (Singh and Rey, 2000; Tsuji and

Rey, 1998). The Ericksen number Er is the ratio of the viscous flow effects to long-range

order elasticity, whereas ratio R is the ratio of the short-range order elasticity to long­

range order elasticity. As reported (Singh and Rey, 2000; Tsuji and Rey, 1998) the

above-presented theory, equation (7.1), fi1ls the gap between classical theories of liquid

erystals, Leslie-Ericksen (L-E) theory and Doi's theory. In summary, the above

generalized theory is completely compatible with the L-E theory in the limit R ~ 00, on

the other hand it is compatible with Doi's theory in the limit Er ~ 00, and transversely

isotropie fluid (TIF) theory in the limit R ~ 00 and Er ~ 00 (Singh and Rey, 2000; Tsuji

and Rey, 1998).

In this work rnixed fixed boundary conditions are used, such that the director D is

anchored along the vorticity direction (z-axis) at the bottom stationary plate, and along the

velocity gradient direction (y-axis) at the top moving plate, see Figure 7.2. The director

orientation is characterized by an out-of-plane angle (J, and an in-plane angle O. This set

of BCs corresponds to the anchoring conditions in a hybrid aligned nematic (HAN) cclI.

Both SCs are along the stable attractors for model discotic nematics under homogeneous

shear flows (Singh and Rey, 1998a). In the present work the parametric values are set al:

U = 6, fi = -0.9, L2/L, = -4/3, and the simulations are perfonned for the ranges:

1~ R ~ 105 ,and 1::; Er ~ 105
.

H·

•
~

Z
Figure 7.2:

n s Iy=o =(0,0,1)
•~-.....----~---~ X

Definition of flow geometry, co-ordinate system and boundary conditions.
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7.3 Numerical Results and Discussion

An extensive computational investigation of the governing equation (7.1) has

been perfonned. The microstructure features of model MPs are characterised by one lime

dependent periodic state, and two steady states. A brief description of the relevant

features ofthese three regimes is given below:

7.3.1 Elasticity-Driven Steady State (ESS)

•

This steady state prevails at sufficiently low Er and for aIl arbitrary values of R,

and arises due to the dominance of long-range elasticity on the vorticity effects of

imposed shear flow. Figure 7.3 shows the director out-of-plane angle f/J spatial profiles

for Er = 100, R = 10 (solid 1ine), and Er = 1000, R = 100 (dash Une). At low Er the out­

of-plane angle changes monotonically from bottom plate to top plate, however, at high Er

the director aligns near the vorticity axis in most of the domain (0<yIH<0.75), and

decreases sharply near the top plate. The long-range elasticity effects are stronger at

lower Er (Er=IOO) thereby maintaining lower spatial gradients than at higher

Er (Er=1000). In this regime the uniaxial (biaxial) S{P) scalar order parameters are near

their equilibrium values. The inset schematics represenl the corresponding fiber textures

discussed below.

1.0

,,,,,,,,,,,,,,,,,,

,,

0.4 0.6 0.8
ylH

01.--_.-1--_----1.__-.....-_--'-_-----01

0.0 0.2

60

~

30

90

•
Figure 7.3: Director out-of-plane angle tP spatial profiles for Er = 100, R = 10 (solid lïne),
and Er = 1000, R = 100 (dash line). The inset s~hematics represent the corresponding liber
textures.
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The main features of the ESS regime are: (a) the microstructure field reaches

steady state; (b) the steady state arises due to long-range elasticity, (c) the nematic phase

is mostly uniaxial.

7.3.2 Composite Kayaking-Limit Cycle Periodic State (KLS)

This periodic state appears at sufficiently high Er and at appropriate values of R.

Figure 7.4 shows (a) uniaxial alignment (S), and (b) biaxial alignment (P) as a function of

dimensionless time (t) and distance (yIIl) for Er = 1000 and R = 20. The director

dynamics are rotational, and the scalar order parameters (S, P) oscillate with the

nucleation of an abnormal nematic state in the bulk (at y. = ylH -::= 0.84 in this case). As R

decreases the nucleation point moves away from the top plate towards the lower plate.

The director rotates in the kayaking orbits in the region O<yIH<y·, and in a out-of-plane

limit cycles in the rest of the domain y·<yIH<I, as shown in Figure 7.4(c). ln the

kayaking orbit the director rotates clockwise in a closed loop, which extends (shrinks)

towards the velocity gradient (flow) direction, around the vorticity axis in which it slows

down near the velocity gradient direction. For more details please see (Singh and Rey,

1998a). In the limit cycle the director trajectory also makes a closed loop that is eccentric

to the vorticity axis as shown in Figure 7.4(c). The kayaking orbit and the limit cycle

shrink as we move close to the walls. The abnormal nematic states nuc1eate where the

kayaking orbit and the limit cycle merge.

The salient features of this periodic state are: (a) the director dynamics in the bulk

are rotational and correspond to kayaking orbits near the bottom plate and to lirnit cycles

near the top plate, (b) at the boundary between these two regions abnonnal nematic states

nucleate, (c) the abnormal nematic states emerge in the bulk.

7.3.3 Viscous-Driven Steady State (VSS)

This steady state appears at high Er and appropriate R, and anses due to

dominance of the strong aligning viscous torques over a11 other competing effects. Figure

7.5 shows spatial profiles of the out-of-plane director angle t/J for Er = 100, R = 1 (solid

line), R = 0.1 (triple-dot dash line), and for Er = 1000, R = 1 (dash line). The bulk
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orientation in the region yIH<t5c is along the vorticity axis «(J ~ 90), and that in the region

yiH>8c is planar and along the velocity gradient direction «(J::::: 0, f) ~ 90). The sharp

director reorientation in the bulk is compensated bya corresponding sharp dip (spike) in

bulk alignment S (P). 8c increases with decreasing R, and decreasing Er as shown in

Figure 7.5.

The main features of the VSS regime are: (a) the microstructure field is 000­

homogeneous, steady state and arises due to the ilow aligning torques at high Er, (b) there

exists a discontinuity in the orientation field, and (c) the nematic phase is highly biaxial.

-~..----

•
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-------­"! --
Cl
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Figure 7.4: Uniaxial (S) and biaxial (P) scalar arder parameler as a function of
dimensionless lime (t) and distance (y/H) for Er =1000 and R = 20. Director profiles on unit
sphere at y/H = 0.7 (kayaking orbit) and y/H = 0.9 (limil cycle). Abnormal nematics appear at
y.::::: 0.84.
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7.4 Implications of Numerical Results on Fiber Textures

Mesophase carbon fibers exhibit numerous transverse fiber textures (Peebles,

1994). We extend the numerical results, presented above, to explain the existence of

sorne of the prevalent MP-based carbon fiber textures. [t is presented in (Singh and Rey,

1998b) that the pure radial (onion) fiber texture is consistent with director orientation

along vorticity (velocity gradient) direction. Using the same reasoning, we find that the

director orientation in VSS corresponds to a rnixed texture with a radial core and an onion

exterior, shown in Figure 7.5. The size of the radial core ~ is a function of R and Er as

mentioned above. The presented rnodel also predicts the textures with an anion core and

a radial exterior. The orientation field in ESS corresponds to the skin-core textures

(Peebles, 1994). The director orientation in ESS at high Er (Er=1000) corresponds to a

texture with a fairly large radial core and folded outer layers as shown in Figure 7.3. At

lower Er (Er=100) the continuous decrease in out-of-plane director orientation results in a

folded texture morphology or skïn-core texture, in which a small inner radial core is

connected srnoothly with the outermost onion layer.
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CHAPTER B

Conclusions and Original

Contributions ta Knowledge

8.1 Thesis Summary

This thesis presents a detailed account of the development of a constitutive

equation for generic discotic mesophases and for mesophase pitches, by adopting the

well-kno\vn nematodynamics theories for rod-like nematics. The shear and extensional

flow induced microstructural and rheological predictions of the selected constitutive

equation are computed and analyzed. The num.erical results are put forth to characterize

the relations among microstructure modes, rheological parameters, processing conditions,

and material properties. Furthermore, general principles goveming the mesophase carbon

fiber textures are elucidated.

This work is a first attempt to establish the relations between flow-induced

microstructure, rheological material functions, processing conditions, and material

pararneters for discotic mesophases. A sufficiently number of distinguishing features

have been identified that are specifie to the discotic nature of the nematic phase, and

augment the number of quantitative and qualitative differences between discotic and rod­

like nematics that had been noted in the literature. How these distinguishing rheological
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features operate in the carbon fiber texture selection during spinning of carbonaceous

mesophases is a topic ofongoing investigation.

8.2 Thesis Conclusions

As stated earlier this thesis addresses three different facets of scientific study. The

conclusions for each effort are given below:

8.2.1 Conclusions of Shear-induced Microstructure Characterization

A microstructure constitutive equation, CE, has been developed for mesophase

pitches by implementing an iterative process that is based on a set of criteria that consists

of theoretical results and experimental data. Four CEs for discotic nematics were

proposed. A comprehensive bifurcation analysis reveals that the various proposed CEs

predict a great variety of dynamical microstructural behaviors for discotic mesophases,

and show multi-stabilities of various orientation modes through a series of complex

bifurcations. AIl the CEs, when subjected to h~mogeneous simple shear flows, predicted

the shear plane and the vorticity axis as major stable attractors, whereas kayaking orbits

and period doubling orbits are stable attractors only in those CEs which are based on Q

independent diffusivity. Moreover, the CEs with the Q independent diffusivity do not

predict the in-plane periodic stable states (such as in-plane tumbling orbit, ITO, and in­

plane wagging state, rwS), which is not in agreement with the predictions of molecular

theories. Hence the constant (Q independent) diffusivity is not an appropriate assumption

while selecting a CE for non-aligning discotic mesophases. A complete analysis and

characterization of all the stable attractors, and their transition with dimensionless shear

rate Pe for aIl the proposed CEs is presented. The complete summary of dynamical and

steady state microstructure features of aIl the CEs under homogeneous shear rates is given

in Tables 2.5, 2.6, and 2.7.

The selected CE for mesophase pitches predicts the major and essential stable

steady and periodic states: ITO (in-plane tumbling), IWS (in-plane wagging state), ISS

(in-plane steady state), and LRS (log-rolling state); along with the low temperature

classical transitions ITO ~ IWS ~ ISS with shear rate. At high temperature the complex
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bifurcations between the in-plane and out-of-plane orientation modes disappear and the

only stable state is ISS. The CE also predicts the multistability among the in-plane and

out-of-plane orientation modes at aIl shear rates and al low temperature.

The long-range Frank elasticity tenn is coupled with the selected CE to account

for the microstructure gradients. A comprehensive analysis of shear-induced

microstructure phenomena exhibited by discotic mesophases is performed using this

complete generalized theory. Four distinct planar microstructure modes are predicted:

(1) long-range elasticity induced steady state (ESS), (2) bulk tumbling-boundary wagging

state (TWS), (3) bulk wagging state (WS), and (4) viscous flow induced steady state

(VSS). In the ESS the microstructure is stabilized by the curvature elasticity through

fixed orientation and alignments al the plates. The TWS is a periodic state and comprises

of three spatial distinct regions: a continuously rotating core, and two oscillatory

boundary layers. At the boundary of the three regions a pair of abnonnal nematic sates

appear which bridges smoothly the winding core with the boundary layers through the

director resetting mechanism. The thickness of the boundary layers increases with

increasing Ericksen number Er (dimensionless shear rate) and decreasing ratio R (ratio of

short-range elasticity to long-range elasticity). The WS is a periodic state in which the

orientation and alignments oscillate throughout the bulk with space dependent amplitude

that is maximum at the centerline. The maximum amplitude of oscillations decreases

with increasing Ericksen number Er and decreasing ratio R. The VSS is a spatially

inhomogeneous steady state that is brought out by the aligning effects of the flow. ln aIl

the microstructure modes the average bulk orientation is along the velocity gradient

direction. The microstructure phase diagram spanned by Er and R reveals that the four

regirries coexist al a one point, called qua-critical point, in the phase plane.

The effect of Frank elasticity is given in the forrn of a microstructure phase

diagram. Il is found that as the strength of long-range anisotropy decreases the qua­

critical point moves upwards and towards the right in the phase plane. A novel scaling

law relating the magnitude of the shift was discovered, and states that the qua-critical

point shifts along each parametric axis in the sante ratio, and the shift ratio is given by the

inverse ratio of the Frank elastic constant ratio K22 /K .
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Further, the effect of different planar surface anchoring conditions on flow­

induced microstructural phenomena reveals that: (a) the average bulk orientation is along

the velocity gradient direction irrespective of the surface anchoring, (b) the fixed

anchoring along the velocity gradient direction is able to transmit the anchoring effects

deeper into the bulk than the tangential case.

The effect of mixed boundary conditions on sheared discotic mesophases is

analyzed. Mixed surface anchorings along the two stable attractors are imposed, such

that the director is along the velocity gradient at the bottom stationary plate and along the

vorticity axis at the top moving plate. The shear-induced microstructural features under

theses boundary conditions are characterized by three stables states: (1) Elasticity-driven

steady state (ESS), (2) composite kayaking-limit cycle periodic state (KLS), and

(3) viscous-driven steady state (VSS). In ESS, the uniaxial microstructure field reaches

steady state due to long-range elasticity. In KLS, the orientational dynamics in the bulk

are rotational, and correspond to kayaking orbits near the bottom plate, and to eccentric

limit cycles near the top plate; defect like structures emerge, in the bulk, at the boundary

of the two and are due to asYnchronous rotational orientation kinematics. The

discontinuous and highly biaxial microstructure field in VSS is non-homogeneous, steady

and arises due to strong viscous torques.

8.2.2 Conclusions of Shear and Extensional Rheological Functions

Characterization

A complete hydrodynamic constitutive equation or extra stress tensor equation is

developed from first principles. The predicted relations among rheological properties,

shear-induced microstructure, processing conditions, and material parameters of discotic

mesophases are computed, analyzed, and characterized.

Under homogeneous shear flow conditions, the predicted first normal stress

difference NI corresponding to the planar microstructure mode of non-aligning discotics
~

is found to be similar to that corresponding to the rod-like nematics at low shear rates. At

higher shear rates the present theory does not accurately predict l'Il corresponding to

planar mode of non-aligning rod-like nematics, hence no comparison cao be drawn.
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NI for non-planar mode is always positive, and increases exponentially for intennediate

shear rates before reaching high shear rate plateau, and is mainly due ta flow-induced

biaxiality. For non-aligning discotic nematics, NI corresponding to the planar and the

non-planar microstructure modes are comparable al low shear rates. As the more accurate

representation of NI is to take average of both values corresponding to planar and oon­

planar modes ofnon-aligning discotics, which may result in the disappearance of negative

NI in discotics in which viscous contribution dominates. Thus sign transition in NI May

not be a correct check for non-aligning discotics. Also Nt of aligning discotics is similar

to that of rod-like nematics at aIl shear rates. NI is always positive for discotic

mesophase at lower values of nematic potential U (for aligning nematics). The predicted

apparent shear viscosity of discotic mesophases at low U (or high n is qualitatively

similar to that reported in the literature at aIl shear rates; whereas that at high U (Iow 1) is

qualitatively similar to that reported in literature· for intennediate and high shear rates.

It is shown that two unique uniaxial extensional viscosities, termed here as '1:r

and '1:0' are needed for discotic mesophases to completely characterize their extensional

rheological functions. The discotic mesophases are found to be non-Troutonian, and

show strain thinning or thickening ·based on the temperature and the ratio of viscous to

elastic stress contributions. The elastic stresses resuIt in strain thinning characteristics to

the discotic mesophases whereas viscous stresses cause strain thickening. The

extensional viscosities are highly dependent on the fiber microstructures.

8.2.3 Conclusions of Fiber Texture Characterization

The simulation results are further employed ta put forth the fundamental

principles that govern the fonnation ofmain mesophase carbon fiber textures. Il is shown

that the homogeneous shear induced microstructure modes selected by the CE are

consistent with the radial and onion fiber textures, observed experimentally. The

transition from the radial to the onion texture with increasing temperatures is also

successfuIly predicted. The simulated shear-induced microstructural features under

rnixed boundary conditions are used explain the formation of mixed textures (with radial

core and onion exterior), and folded layer or skîn-core textures. The size of the radial
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core in the mixed texture is a function of Er and R, and increases with decreasing R and

Er. The transition from a sIOn-core texture to a mixed texture takes place with decreasing

R or increasing Er.

8.3 Original Contributions to Knowledge

The specifie original contributions of this thesis to present scientitic knowledge

are as follows:

1. A microstructure constitutive equation, for discotic mesophase in general and for

mesophase pitches in particular, is developed.

2. An exhaustive bifurcation analysis of shear-induced predictions of a senes of

constitutive equations is perfonned, and the results are characterized in tenns

orientation modes.

3. A comprehensive analysis of shear-induced microstructure phenomena exhibited by

discotic mesophases is perfonned using a complete generalized theory that takes ioto

account short-range elasticity, long-range elasticity and viscous effects is presented

for the tirst time.

4. A new scaling law relating the strength of long-range anisotropie energy with

magnitude of shi ft of qua-critical point in R-Er phase plane is discovered.

5. Shear rheological predictions for discotic mesophases are presented for the tirst time.

The shear rheological relations among microstructure, processing conditions, and

material properties are presented.

6. ft is shown that two unique extensional viscosity functions need to be detined to fully

characterize the extensional rheology of discotic mesophases, and that the uniaxial

extensional rheological material functions are strong functions of the internaI

microstructure.

7. The fondamental principles goveming the formation of major mesophase carbon tiber

textures are presented for the tirst time.
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•
The dimensionless coupled, nonlinear, ordinary first-order differential equations

governing the microstructural response of a discotic nematics, subjected to simple shear

flows, for the four proposed constitutive equations (CEs) are given below:

CE-l

•

dQ [ -- -- -- {-- -- (-- )} al --) ]dt- = Pe W·Q-Q·W+iPA+p A·Q+Q·A-i A:Qô -2p \Q:AQ -

[(l-lf)Q-UQ.Q +U{(Q:Q)Q +t(Q:Q)Ô}]

CE-2

~~ = Pe [W.Q-Q.W+tfJA+fJ{A'Q+Q.A-+(A:Q)}-2fJ(Q:Ap] ­

~-t(Q:Q)r2 [(1-lf~ -UQ·Q+U {(Q:Q~+t(Q:Q))}]

(A.l)

(A.2)
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CE-3

dQ [w.Q-Q.W+tflA+P{A ..Q+Q.A-f(A:Q)ô}- ]
-=~ -
dt· fl -- - -- -­î!A:QP+AoQoQ+QoAoQ+QoQoA-«QoQ)A) }

[Q- (j~ - UQ·Q +U «Q:Q)Q +t(Q:Q~ }]

CE-4
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(A.3)

•

dQ = pe[w.Q-Q'W+fflA+P{A.Q+Q ..A-t(A:Q)ô}- ] _

dt" ~ {A:QP+AoQoQ+QoAoQ+QoQoA-«QoQ)A)} (A.4)

~-t(Q:Q)r2 [(l-!f~-UQ'Q +U {(Q:Q~+t(Q:Q»}]

where Pe = -1r 1 is the dimensionless number called Peclet number, f = 16Drl / is the
6Dr

dimensionless time, and A and W are dimensionless rate of defonnation tensor and

dimensionless vorticity tensor respectively, and are given as:

•

(A.5)



•
APPENDICES...

ApPENDIX B

200

•

Uniaxial Extensional Viscosity

Predictions trom Leslie-Ericksen Theory

The purpose of this appendix is to show, in eontext of a veetor theory (Leslie­

Erieksen theory (L-E» (Leslie, 1979), that two extensional viseosities need to be defined

to characterize the uniaxial extensional funetions of discotie nernatics, whereas only one

extensional viseosity coefficient is needed for the rods-like nematies. Aiso ordering

equalities and inequalities between uniaxial extensional viscosities with regard to textures

in diseotie nematics are also established using the L-E theory.

For anisotropie fluids, the stress tensor't as given by the L-E theory (Leslie, 1979) is:

where N = ri - n . W

For extensional flows at steady state

W =0, Ji =0, :. N =0

(B.l)

(B.2)

(B.3a,b)

•

and A is given by equations (5.2). Equation (B.I) for extensional flows and at steady

state reduces to:

(B.4)

For rod-like nematies:
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The diagonal components of the stress tensor't are given as

&, =, =--a
" 08 2 4

201

(B.5)

(B.5a,b)

(B.5c)

where Ê is strain rate. As r" = '00' therefore there is only one uniaxial extensional

viscosity for rod-like nematics given as:

(B.6)

(8.7)

•

Similarly for discotic mesophases subjected to uniaxial: extensional flows (Singh and

Rey, 1994, 1995a, 1995b):

oss =(nr,no,n:) =(nr,no'O)

The diagonal components of the stress tensor 't are given as

(B.8a)

(B.8b)

(B.8c)

Clearly 'rr ~ '00' therefore there are two distinct uniaxial extensional viscosities for

discotic mesophases, given by:

(B.9a)

(8.9b)

•
Thus to completely characterize the extensional rheological properties of discotic

mesophases, both need to be specified. As the extensional viscosities of discotic

mesophases are microstructure dependent, see equations (B.9a, 8.9b), they can be

directly related to the transverse fiber textures. For the ideal radial texture
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(055 = (0, l, 0»:

For the ideal onion texture (055 = (1, 0, 0»:

o J
'l:O.uni.disla =Ta4

Comparing equations (B.IOa,b and B.lla,b) we have:

r 0

Tl:r ,uni,disles = 'l:O,uni ,disks

r 0

'l:O.uni.dislu = 'l:r.uni.disks
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(B.IOa)

(S. lOb)

(8.11 a)

(B. Il b)

(B.12)

(8.13)

•
For discotic nematics (McHugh, 1994; Volovik, 1980), a2 > 0, a J > 0 (Volovik, 1980),

a 4 > 0, as < 0, ab > 0 (McHugh, 1994). Aiso from the value of al approximated in

(McHugh, 1994) we have:

(8.14)

Hence we obtain the following ordering among the uniaxial extensional viscosities for

discotic nematics:

•

r r
'l:r ,uni,dislu < 'l:O.uni ,disles

o 0

'l:r.uni,dislcs > 'l:O.uni.dislu

(B.15)

(B.16)
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