INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Aiso, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Theory and Simulation of
Flow-Induced Microstructure and

Rheology of Discotic Mesophases

Arvinder Pal Singh

Department of Chemical Engineering
McGill University, Montreal, Canada

November 2000

A Thesis submitted to the Faculty of Graduate Studies and Research
In partial fulfillment of the requirements for the degree of
Doctor of Philosophy

© Arvinder Pal Singh, 2000



vl

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your file Votre rétdrerce

Our fike Notre référence

L.’ auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-70054-2

Canadi



WA figt & WU &dt &3

FOR MY
PARENTS

39 AQ Y3 &I g fdedlt



FOREWORD

The author, Arvinder Pal Singh, of this dissertation chooses the manuscript-based
thesis option according to the following thesis preparation guideline given by the Faculty

of Graduate Studies and Research:

Candidates have the option of including, as a part of the thesis, the text of a
paper(s) submitted or to be submitted for publication, or the clearly duplicated text of a
published paper(s). These texts must be bound as an integral part of the thesis.

If this option is chosen, connecting texts that provide logical bridges between the
different papers are mandatory. The thesis must be written in such a way that it is more
than mere collection of manuscripts; in other words, results of a series of papers must be
integrated.

The thesis must still conform to all other requirements of the “Guidelines for
Thesis Preparation”. The thesis must include: A table of Contents, an abstract in
English and French, an introduction which clearly states the rationale and objectives of
the study, a comprehensive review of the literature, a final conclusion and a summary,
and a thorough bibliography or reference list.

Additional material must be provided where appropriate (e.g. in appendices) and
in sufficient detail to allow a clear and precise judgement to be made of the importance
and originality of the research reported in the thesis.

In case of manuscripts co-authored by the candidate and the others, the candidate
is required to make an explicit statement in the thesis as to who contributed to such work
and to what extent. Supervisors must attest to the accuracy of such statements at the
doctoral oral defense. Since the task of the examiner is made more difficult in these
cases, it is in the candidate's interests to make perfectly clear responsibilities of all the
authors of co-authored papers. Under no circumstances can a co-author of any
component of such a thesis serve as an examiner for that thesis.

Contents of chapters 2 to 7 of the present thesis are adopted from the published papers in
scientific journals under the normal supervision of thesis research supervisor, Professor

Alejandro D. Rey, who is also a co-author.



I, Alejandro D. Rey, hereby give copyright clearance of the following manuscripts
of which [ am a co-author. The extent of my contribution to following manuscripts is that
of a research director. I provided the research directions, technical consultation on the

subject, and general supervision throughout the duration of this Ph.D. thesis.

Chapter 2

A.P. Singh and A.D. Rey, “Microstructure constitutive equation for discotic nematic
liquid crystalline materials. Part I: Selection procedure and shear flow predictions”,
Rheologica Acta 37(1) p30-45 (1998).

Chapter 3

A.P. Singh and A.D. Rey, “Microstructure constitutive equation for discotic nematic
liquid crystalline materials. Part [I: Rheological predictions”, Rheologica Acta 37(4)
p374-386 (1998).

Chapter 4

A.P. Singh and A.D. Rey, “Consistency of predicted shear-induced orientation modes
with observed mesophase pitch-based carbon fiber textures”, Carbon 36(12) p1855-
1859 (1998).

Chapter 5

AP. Singh and AD. Rey, “Theoretical analysis of microstructure dependent
extensional viscosity of mesophase pitches”, Liquid Crystals 26(7) p999-1005 (1999).

Chapter 6

A.P. Singh and A.D. Rey, “Effect of long range elasticity and boundary conditions on
microstructural response of sheared discotic mesophases”, Journal of Non-Newtonian
Fluid Mechanics 94(2-3) p87-111 (2000).

Chapter 7:

A.P. Singh and A.D. Rey, “Modeling shear-induced microstructure in mesophase
pitches", XIII" Congress of Rheology “Rheology 2000 Cambridge, U.K. Volume 2,
pl17-119 (2000).

L

Alejandro D. Rey

Professor

Department of Chemical Engineering
McGill University, Montreal, Canada



ABSTRACT

Carbonaceous mesophase are naturally occurring discotic nematic liquid crystals
that are used as precursor materials to manufacture high performance mesophase carbon
fibers, which are increasingly being employed in next generation composite materials in
chemical, electronics, and aerospace industries. The superior set of product property
profile of these fibers is due to the preferred microstructure development, during the fiber
spinning process, which is facilitated by anisotropic nature of the carbonaceous
mesophase. The development of microstructure during the fiber formation process is
critical to optimize their properties. However, the flow behavior of carbonaceous
mesophases under such complex external fields is largely unknown.  Several
experimental studies have been performed worldwide to explore the flow behavior of
precursor materials. Mathematical modeling, on the other hand, has not only
complemented the experiments but has also emerged as a more economical alternative,

and forms the basis of this study.

In this thesis we developed a constitutive equation (CE) for carbonaceous
mesophases by taking into account full microstructure -characteristics. The
microstructural and rheological predictions of the constitutive equation are computed by
subjecting it to shear and extensional flows. The steady and dynamical microstructure
features of the various orientation regimes are thoroughly characterized and analyzed.
The predicted relations among the rheological properties (simple shear and uniaxial
extensional), flow-induced microstructure, processing conditions, and material properties
are discussed. The effect of surface anchorings and the long-range elasticity on the bulk
shear-induced microstructure of discotic mesophases is analyzed. The numerical results
are used to put forth the fundamental principles that govern mesophase carbon fiber
texture generation under shear. The simulations reproduce and explain a significant
number of experimental facts and trends. The excellent performance of selected CE
strongly suggests that it is a reliable contribution towards formulation of a process model

for carbonaceous mesophase spinning.
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RESUME

Les mésophases carboniques, qui apparaissent naturellement dans les cristaux
liquides nématiques distiques, sont utilisées comme matériaux précurseurs pour la
préparation de fibres de carbones mésophasiques a hautes performances. Ces fibres seront
de plus en plus employées dans la nouvelle génération de matériaux composites destiné a
’industrie chimique, électronique et aérospatiale. La supériorité de I’ensemble des
propriétés de ce produit est due au développement préférentiel de la microstructure,
durant le processus de filage, qui est facilité par la nature anisotropique des mésophases
carboniques. Le développement de la microstructure durant le procédé de formation des
fibres est critique pour I’optimisation des propriétés. Cependant, le comportement de
I’écoulement des mésophases carboniques dans de si complexes conditions est trés
largement inconnue. Plusieurs études expérimentales ont été réalisées a dans le monde sur
I’écoulement de ces matériaux précurseurs. La modélisation mathématique, d’un autre
coté, n’a pas seulement été un complément des expériences mais s’est aussi avéré une

alternative plus économique, et elle forme les bases de cette étude.

Dans cette thése, nous développons une équation constitutive (EC) pour les
mésophases carboniques en prenant en compte I’ensemble des caractéristiques de la
microstructure. Les prédictions micro-structurelles et rhéologiques de I’équation
constitutive sont calculées sujet aux écoulements de cisaillement et extensionnel. Les
caractéristiques de la microstructure statique et dynamique des différents régimes
d’orientations sont complétement caractérisés et analysés. Les relations prédites parmi les
propriétés rhéologiques (cisaillement simple et écoulement uni-axiaux extensionnels), les
microstructures induites par 1’écoulement, les conditions de déroulement, et les propriétés
des matériaux sont discutées. Les effets de la surface fixée et de I’élasticité de longue
porté sur la microstructure du volume intérieur induit par cisaillement des mésophases
discotiques est analysée. Les résultats numériques sont utilisés pour mettre en avant les
principes fondamentaux qui gouvernent la génération de texture de mésophases de fibres
de carbone sous cisaillement. Les simulations reproduisent et expliquent un nombre
signifiant de faits expérimentaux et de tendances. Les excellentes performances de
I’équation constitutive sélectionnée suggerent fortement que ce soit une contribution
fiable vis a vis de la formulation d’un modeéle du procédé d’extrusion de mésophases

carboniques.
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molecules are tilted at an angle @ normal to the smectic plane. Adapted

from de Gennes and Proust (1993). ......c.ve oot

Examples of disc-like molecules that display discotic mesomorphism: (a)
hexa-n-alkanoates of benzene, (b) hexakis((4-octylphenyl)ethynyl)benzene,
(c) hexa-n-alkanoates of scylloinositol, (d) hexa-n-alkanoates of
triphenylene and hexa-n-alkoxytriphenylene, (e) hexa-n-alkyl and
alkoxybenzonates of triphenylene, (f) hexa-n-alkanoates of truxene, (g)

bis(3,4-nonyloxybenzoyl)methanato copper(Il), and (h) octasubstituted

metallophthalocyanine. Adapted from Chandrasekhar (1992). ........ccccccvevnenn.

(a-e) Schematic top view of columnar phases of disc-like molecules. The
column axis points out of plane of the paper towards the reader. The
ellipses represent the disc-like molecules, which are tilted with respect to the

column axis. (f) Schematic side view the molecular ordering of the disc-like

molecules in a typical discotic nematic liquid crystalline material........................

Changes in the non-volatile organic compounds like coal or petroleum

pitches brought about by heating in the absence of air. Adapted from Otani

(1991). oo eeeemeenseseseseessemmeseesesseeeesesseseessseesesesessesesersessesesessesseseesessees
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1.11

1.12

1.13

1.15

1.16

Lamellar structure of mesophase spherule before coalescence. The aromatic
planes are normal to the spherule surface. The spherule grows as the

aromatic molecule fuse together due to hydrogenative polymerization.

Adapted from Brooks and Taylor (1965)........ccccrmimioieienieeeeeeeeeceeceeee e

Typical molecule of a heat soaked mesophase pitch. Adapted from Fitzer et

BL (1986 ... s

Schematic model representing stacking arrangement of polyaromatic
molecules in carbonaceous mesophases or mesophase pitches. The disc-

shaped molecules lie more or less parallel to each other. Adapted from

Zimmer and White (1982). ......coveerirerieinieeieeieeresiee et e eeetest e sae e seassens

Temperature dependent viscosity of three mesophase pitches and Nylon-6 as
a function of decreasing temperature. The mesophase pitches are prepared
from three different processes. AR mesophase and Me-AR mesophase are
synthetic mesophase pitches, and are obtained by catalytic polymerization of
naphthalene (AR mesophase), and methyl naphthalene (Me-AR mesophase),
respectively. SCE mesophase pitch is derived through supercritical fluid
extraction process from a petroleum pitch. The viscosity of mesophase

pitches is extremely dependent on temperature. Adapted from Fleurot and

EAIE (1998)-v.veveo oo oeeese e eeeseeese s eeeseeesseeessessseesesesess s seseeees s eeessereereseee

Apparent shear viscosity of a mesophase pitch at various temperatures
obtained from catalytic polymerization of naphthalene. The apparent shear
viscosity shows two regions, shear thinning at low shear rates and
Newtonian plateau at higher shear rates. The viscosity increases with

decreasing temperature. Both regions persist at higher temperatures.

Adapted from Fleurot and Edie (1998)........ccccooieimiiiiiieceectecereecee e

Processing sequence of mesophase carbon fibers, showing continuous
conventional melt spinning of mesophase pitch, and subsequent batch

processes: oxidization stabilization, and carbonization. See text for details.

Adapted from McHugh (1994). ...
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1.17 Schematics of observed mesophase carbon fiber textures. The lines

1.18

2.1

2.2

represent the locus of the side view of the disc-like molecules, such that in a
radial texture, the discs orient with their unit normals describing circies
concentric with the fiber axis, while in an onion-like texture, the discotic

molecules themselves follow a circular paths concentric with the fiber axis.

Adapted from Edie (1990). .....coooiriiieeeeeeeeeeceeeee e

SEM images of mesophase pitch-based carbon fibers with (a) radial texture,
(b) random texture, (¢) onion texture, and (d) radial-folded-texture. The

fiber diameter range is 5-15 microns. Adapted from Otani and Oya (1986),

and Peebles (1994). .......o. ettt saaea

Definition of uniaxial director mn orientation of a discotic nematic liquid

crystalline material. The uniaxial director m is the average orientation of the

unit normals to the disc-HKe MOIECUIES. ......cooo oot eeesnaae e

(a) Definition of rectilinear shear flow deformation, (b) coordinate system.
(a) x-axis is the flow direction, y-axis is the velocity gradient direction, and
z-axis (normal outwards to the plane of paper) is the neutral (vorticity)
direction. (b) Unit vector angle and unit sphere description: unit vector a is

completely defined by the azimuthal angle 6,(0 <6, <27) and polar angle

#,(0< ¢, <x). Interms of unit vector angles, the equator lies in the shear
plane and is given as (6,,4,)= ([0,27:] + %) , and the north pole and the

south pole are located on the vorticity axis and are givenas ¢, =0and ¢, = 7

TESPECHIVELY. .eirriiiiiieiiecre ettt ettt e st et e e st e aeeers s eesomnesmtenaeeeenns

The representative schematics of the stable states of uniaxial orientation n of
DNs under homogeneous simple shear flow predicted by the various CEs.
The top schematic shows the representative shear plane and vorticity axis
with regard to the unit sphere. The six stable orientation states are: (a)
ITO(1) or in-plane tumbling orbit, (b) IWS(2) or in-plane wagging state, (c)
ISS(2) or in-plane steady state, (d) LRS(2) or log rolling state, (e) KO(2) or

kayaking orbit, and (f) PDO(4) or period doubling orbit. For details see text.....
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24

2.5

2.6

2.7

Computed steady state components of the tensor order parameter, Qs, as a
function of dimensionless shear rate Pe for U = 6, f = -0.8, as predicted by
CE-1 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-1 under simple shear is given by two in-plane solution
branches, IP-1 and [P-2, and two out-of-plane solution branches, OP-1 and
OP-2. The summary of stability/instability of the solution branches in

various intervals along with the corresponding stable orientation states is

given in Table 2.1. For details SE€ teXt. .....covvemrriiueeereeee et

(a) Steady state uniaxial alignment S, and (b) biaxial alignment Py as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, predicted by
CE-1 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-1 is given by two in-plane solution branches, IP-1 and [P-2,
and two out-of-plane solution branches, OP-1 and OP-2. The summary of
stability/instability of the solution branches in various intervals along with
the corresponding stable orientation states is given in Table 2.1. A

comprehensive summary of changes in § and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. .....................

Computed steady state components of the tensor order parameter, Qs as a
function of dimensionless shear rate Pe for U = 6, = -0.8, as predicted by
CE-2 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-2 under simple shear is given by two in-plane solution
branches, [P-1 and IP-2, and two out-of-plane solution branches, OP-1 and
OP-2. The summary of stability/instab.ility of the solution branches in

various intervals along with the corresponding stable orientation states is

given In Table 2.2. For details S€e text. ......c.ccerriceeceeeeeeiereee e

(a) Steady state uniaxial alignment S, and (b) biaxial alignment P as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, predicted by
CE-2 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-2 is given by two in-plane solution branches, IP-1 and [P-2,
and two out-of-plane solution branches, OP-1 and OP-2. The summary of
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28

2.9

2.10

stability/instability of the solution branches in various intervals along with
the corresponding stable orientation states is given in Table 2.2. A

comprehensive summary of changes in § and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. .....................

Computed steady state components of the tensor order parameter, Q, as a
function of dimensionless shear rate Pe for U = 6, = -0.8, as predicted by
CE-3 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-3 under simple shear is given by two in-plane solution
branches, IP-1 and I[P-2, and three out-of-plane solution branches, OP-1,
OP-2 and OP-3. The summary of stability/instability of the solution

branches in various intervals along with the corresponding stable orientation

states is given in Table 2.3. For details SE€ teXt.......ccoeerrvirreireererienrerecee e

(a) Steady state uniaxial alignment S, and (b) biaxial alignment Py as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, predicted by
CE-1 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-1 is given by two in-plane solution branches, IP-1 and [P-2,
and three out-of-plane solution branches, OP-1, OP-2 and OP-3. The
summary of stability/instability of the solution branches in various intervals
along with the corresponding stable orientation states is given in Table 2.3.

A comprehensive summary of changes in § and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. .....................

Computed steady state components of the tensor order parameter, Q, as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, as predicted by
CE-4 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-4 under simple shear is given by two in-plane solution
branches, I[P-1 and IP-2, and three out-of-plane solution branches, OP-1,
OP-2 and OP-3. The summary of stability/instability of the solution

branches in various intervals along with the corresponding stable orientation

states is given in Table 2.4. For details see texXt............ceooeueeveeeicieeeeeee e,
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2.11 (a) Steady state uniaxial alignment S, and (b) biaxial alignment P as a

3.1

33

function of dimensionless shear rate Pe for U = 6, = -0.8, predicted by
CE-4 for DNs subjected to simple shear flows. The bifurcation phenomena
exhibited by CE-4 is given by two in-plane solution branches, [P-1 and IP-2,
and three out-of-plane solution branches, OP-1, OP-2 and OP-3. The
summary of stability/instability of the solution branches in various intervals
along with the corresponding stable orientation states is given in Table 2.4.

A comprehensive summary of changes in S and P with Pe for the various

stable orientation states is given in Table 2.5. For details see text. .....................

Definition of director orientation of a uniaxial discotic nematic liquid

crystalline material. The director n is the average orientation of the unit

normals to the disk-like molecules in a discotic nematic phase. ........ccccovevveernene

(a) Definition of simple shear flow deformation, and (b) coordinate system.
The x-axis is the flow direction, the y-axis is the velocity gradient direction,
and the z-axis (out of the plane of the paper) is the vorticity axis. (c) Unit
sphere description of director triad (n, m, I). Unit vector a (a =n, m, I) is
completely defined by the azimuthal angle 6,(0<6, <2x) and the polar

angle ¢,(0<¢, < ). In terms of unit vector angles, the equator lies in the
shear plane and is given as (4,,4,)= ([0,274 + %) , and the north pole and

the south pole are located on the vorticity axis and are given by ¢ = 0 and

da = mrespectively.....ocvveevninereecrene, et et ea bttt st ettt et et aeaen

(a) Tumbling function A as a function of uniaxial § and biaxial P alignments
for #=-0.8. The A surface monotonically decreases (increases) for P < 3§
(P > 35), with a discontinuity at P = 3§. In discotic nematics planar steady
state exists only if 4 < -1. (b) The coﬁplcte P - § phase plane showing
regions where A is positive or negative. This study is restricted to the
normal discotic nematics for alignments values for which A is negative. (c)
A as a function of uniaxial alignment § for P = 0, and for the shape factor
B = -0.9 (full line), -0.8 (dash line), and -0.7 (triple dot-dash line). The 4
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34

35

curves move upwards and towards left with increasing /£, diverge as S — 0,

and intersect the line A = -1 At IoWET 5%, . ..veeeeeeeeeeeeeeee e eeeeee e e rererererns

Microstructure-rheology relations for non-aligning discotic mesophases for
the planar microstructure mode. (a) Microstructure features of non-aligning
discotic mesophases for the planar orientation mode: uniaxial alignment S
(full line), biaxial alignment P (dash line) and uniaxial director n azimuthal
angle 4, (triple dot-dash line) as a function of Pe, for f#=-0.8 and U = 6.
Corresponding rheological predictions: (b) scaled dimensionless first normal

stress difference N, (c) scaled dimensionless second normal stress
difference N, , and (d) scaled dimensionless apparent shear viscosity 77 as
a function of Pe for £, =0.001 (full line), 0.1 (dash line), and 0.2 (triple dot-

dash line). For planar mode the first normal stress difference is similar to
that of corresponding rod-like nematics. The second transition is not

predicted by the considered form of constitutive equation. The apparent

shear viscosity Shows three regions. .........cccceveeiinerceiiiienninniiiineceee et

Microstructure-rheology relations for non-aligning discotic mesophases for
the non-planar log-rolling mode. (a) Microstructure features for the log-
rolling orientation mode: uniaxial alignment S (full line), biaxial alignment

P (dash line) and biaxial director m azimuthal angle 6, (triple dot-dash
line) as a function of Pe for #=-0.8 and U = 6. Corresponding rheological
predictions: (b) scaled dimensionless first normal stress difference N, , (c)
scaled dimensionless second normal stress difference N,, and (d) scaled
dimensionless apparent shear viscosity 7 as a function of Pe for & = 0.001
(full line), 0.1 (dash line), and 0.2 (triple dot-dash line). N/ (N;) show
three regions: two plateaus at low and high Pe with an intermediate power
law (shear rate dependent) region. The high Pe plateau for N, depends

strongly on &,. 7’ is essentially independent of shear rate. The rheological

properties in this mode are governed by flow-induced biaxiality.........................

.. 85
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3.6 Microstructure-rheology relations for aligning discotic mesophases. (a)

4.1

4.2

4.3

Microstructure features under simple shear flows: uniaxial alignment S (full
line), biaxial alignment P (dash line) and uniaxial director n azimuthal angle

6, (triple dot-dash line) of aligning discotic nematics as a function of Pe for
p =-0.8 and U = 3.5. Corresponding rheological predictions: (b) scaled
dimensionless first normal stress difference V|, (c) scaled dimensionless
second normal stress difference N, , and (d) scaled dimensionless apparent
shear viscosity 7" as a function of Pe for & = 0.001 (full line), 0.1 (dash
line), and 0.2 (triple dot-dash line). N, (N, ) is always positive (negative)
which is similar to those of rod-like nematics. The dimensionless apparent
viscosity 77° decreases exponentially for low shear rates but for intermediate

and high shear rates is independent of Pe. N;and 7»° (N,) increase

(decreases) with INCreasing &, .......cc.cooioviiviiiiiniiienee e

Definition of director orientation of a uniaxial discotic nematic liquid

crystalline material. The director n in a discotic nematic phase is the

average orientation of the unit normals to the disk-like molecules. .....................

Definition of homogeneous simple shear flow deformation. The x-axis is

the flow direction, the y-axis is the velocity gradient direction, and the z-axis

(out of the plane of the paper) is the vorticity axis or neutral direction................

The representative schematics of the stable uniaxial orientation modes of
discotic mesophases under homogeneous simple shear flow predicted by
constitutive equation (2). The four stable ortentation modes are: (a) ITO or
in-plane tumbling orbit, (b) IWS or in-plane wagging state, (c) ISS or in-
plane steady state, (d) LRS or log rolling state. The top row represents the
planar orientation modes and the bottom row non-planar mode. As shear
rate increases there exists transition among planar orientation modes such
that with increasing shear rate: ITO — -IWS — ISS. Also there exists

multistability among planar and non-planar orientation modes. For more

details see the text and Table 4. 1. .....cooeeeeeeeeeeeeiieeeeeeee ettt e e e e e s eenenes
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5.1

5.2

5.3

54

5.5

Schematics of (a) cylindrical coordinate system, and the observed fiber
microstructures: (b) radial, and (c) onion. In the radial (onion) texture, the

unit normals to the disk-like molecules orient along the azimuthal & (radial

F) QITECLION. ...oeevinreeceereerenienteeteetesieeerseesesnessnrasneessessansesaneesessneeeraoassnensassennnes

The uniaxial director orientation m of the uniaxial discotic nematic liquid

crystals. The director n is the average orientation of the unit normals to the

AISC-UKE IMIOLECULES. ..ot eeeeeerreeereraeeeeaeseaasnnaeeeesassenastassnsnenesnanes

Deformation of a unit cylinder of discotic mesophase subjected at time t = 0

to a uniaxial extensional flow deformation. The extension direction is along

the z-axis, and the »—6 plane contains the uniform compression. .......................

Steady state uniaxial Sgs and biaxial Py scalar order parameters as a function
of De for U = 6 (full line) and U = 3 (dash-line) for = -0.8 (upper), and
B =-0.6 (lower). S, increases monotonically with the dimensionless strain
rate De at all values of U and . P at higher U (U = 6) follows the similar
trend, however at lower U (U = 3) there is a local minima. Both S and P

for discotic mesophases consisting of thicker molecules, § = -0.6, are less

than those with the relatively thinner molecules, f=-0.8.......ccccccecvirvneevnenncn.

Schematics of (a) cylindrical coordinate system, and the two main
representative mesophase pitch-based carbon fiber transverse textures: (b)
radial, and (c) onion. In the radial (onion) texture, the unit normals to the

disk-like molecules orient along the azimuthal € (radial r) direction. These

textures are observed in the spinning of carbonaceous mesophases.....................

Dimensionless uniaxial extensional viscosities 7/,and 7/, (i = r (radial),
i = o (onion)) of discotic mesophase as a function of De for &, = 0.001 (full
line), 0.1 (dash line), and 0.2 (triple dot-dash line); for f#=-0.8 and U =6
((a), (b)), and U = 3 ((c), (d)). The extensional viscosity 7 (7.,) for the

radial texture 7. (7/,) is always less (greater) than for the onion texture

xXiii
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6.1

6.2

6.3

6.4

5 (%), ie. m, <, (7;5>n). Also note that n; =11, and 75 = 11,

therefore n. =nl, < n = n.,, for details see text. ........ccovvvvvrnnrrrnvnricncnnne.

Definition of uniaxial director/orientation m of a uniaxial discotic nematic

liquid crystalline phase. The director n is the average orientation of the unit

normals u to the disc-like molecules. ........ eettereeeereaaaasaeeaeeenensestaerann s sraasreraaasans

The parametric area in the K -K,, phase plane where the present theory,

equation (6.3), is applicable for rod-like and discotic nematics. Please note
that the theory is applicable for ideal discotic mesophases only in the closed

range K < K,, <4K . In this theory the bend and splay elastic constants are

equal K, =K,, =K. As shown, two different values of L, =L,/L, are

used in the present analysis. .........ococeuiiiiiciicinnc e

(a) Definition of rectilinear simple shear flow. The discotic mesophase
sample is placed between two infinitely long plates. The lower plate (v = 0)
is stationary and the top plate (y = H) moves in the +x-direction with a
known constant velocity V. The velocity gradient Vv is along the y-axis. (b)

Definition of orientation angle @ that the primary eigenvector (uniaxial

director) n of tensor order parameter Q makes with the x-axis. .......cc.ccevveerrennne.

(a) In-plane director angle 6, (b) uniaxial alignment S, and (c) biaxial
alignment P steady state spatial profiles for U= 6, #=-0.9, and L, =-4/3.
The parametric conditions are E£r = 50, R = 1000 (solid line); £r = 50,
R = 10 (dash line); and £r = 100, R = 1000 (dot-dash line). The shown
profiles correspond to long-range elasticity induced steady state (ESS) for

BCVG, ngpey =(0,1,0). The orientation profiles are parabolic. The
director angle at the centerline 0|y.=0'5 decreases with increasing Er,

however, remains unaffected by changes in R. A decrease in ratio R, at

constant Er, affects only alignments to compensate for higher long-range

energy. The nematic phase is nearly uniaxial. ..........cocoovvereieiinninccinnccienne
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6.5

6.6

6.7

(a) In-plane director angle &, (b) uniaxial alignment S, and (c) biaxial
alignment P spatial profiles for BCF, ngp =(1,0,0), and for U = 6,
£ =-0.9, and L,=-4/3. The parametric conditions are R = 100, Er = 100
(solid line); R = 100, Er = 50 (dash dot line); R = 1000, Er = 50 (dash line).

The shown data corresponds to long-range elasticity induced steady state

(ESS) for BCF. The orientation extends a larger angle in the bulk as
compared to that in BCVG, mgyo,c =(0,1,0). The uniaxial profile is
always marked a central core region where uniaxial S alignment is greater

than Seq, and by two troughs near the plates where orientation gradients are

large. The deviation in § increases with increasing £r and decreasing R.

The nematic phase again is nearly uniaxial............ccooveereeercoiinneeccnininiiciencens

The temporal-spatial profiles of (a) orientation angle &, (b) uniaxial
alignment S, and (c) biaxial alignment P for BCVG, ngg. =(0,1,0), at

R =100, Er =2000. The stable microstructural features are inhomogeneous
and periodic, and typical of bulk tumbling-boundary wagging state (TWS).
The director orientation is periodic and is marked by three layers: one
central bulk region where the director rotates clockwise continuously, and
two boundary regions where the director oscillates. The spatial-temporal

response of alignments is marked by coinciding sharp changes that appear

near the binding SUIfaCES..........coviririiiiiiiieciccec e

Scientific visualization of the spatial-temporal profiles of the tensor order
parameter Q for BCVG, ngy. g =(0,1,0), and for R = 1000, Er = 2000,
U=6,4=-09,and L,/L =-4/3. The bulk tumbling-boundary wagging
state (TWS) is stable under these parametric conditions. The ellipsoids
rotate clockwise in the central core, and oscillate with space dependent
amplitude near velocity gradient directions in the two boundary layers. A

pair of abnormal nematic states appears periodically at the boundary of

tumbling core and oscillating boundary layers. The average molecular

orientation is along the velocity gradient direction. .............cccccevirinvennincnniinnn.



6.8

6.9

6.10

6.11

The time evolution of (a) orientation angle &, (b) uniaxial alignment §, and
(c) biaxial alignment P at y° = O.S (solid line), y* =0.08 (dash line), and
y" =0.04 (dot dash line) for the same parameters as for Figure 6.7. Clearly,
the bulk near the centerline, y* = 0.5, exhibits the classical tumbling step-
like time evolution in which the director rotates clockwise in the shear plane
by slowing down near the velocity gradient direction. In the oscillating
boundary regions the orientation oscillates near the velocity gradient
direction with space dependent amplitude that is maximum near the

boundary between the tumbling-wagging layers, and decreases when
approaching the either plate. There is a sharp change in the alignments

when orientation is farthest away from the velocity gradient direction................

(a) Boundary layer thickness &, and (b) dimensionless time period T, as a
function of Ericksen number Er for surface anchoring, ng ..., =(0,1,0), for

five different values of the ratio R. The boundary layer thickness &

increases with increasing £r and decreasing R. Whereas, the dimensionless

time period 7, decreases with increasing £rand R.........c..coocveiininnnnns

Scientific visualization of the spatial-temporal profiles of the tensor order

parameter Q for BCF, ngy =(1,0,0), at R = 100, £Er = 2000, U = 6,

£=-0.9, and L, =-4/3. The bulk tumbliﬁg-boundary wagging state (TWS)
is stable under these conditions. In the central core the ellipsoids rotate
clockwise, and spend most of the time along the velocity gradient direction

as in BCVG, ngg. =(0,1,0). However, in the oscillating boundary layers

the ellipsoids oscillate with space dependent amplitude along a space
dependent direction, which is along the flow direction near the wall and

along velocity gradient direction near the boundary between boundary layer

and tuMbIING COTE. ..ottt

Time evolution of the in-plane director angle € angle at y° =0.025 (solid

line), y" =0.05 (dot dash line), y* =0.1 (dash line) y* =0.2 (long dash
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6.12

6.13

6.14

6.15

line), and y* =0.5 (dotted line) for BCF, mg, =(1,0,0), and with the

parametric values of Figure (6.11). The director rotates clockwise in the
inner core while spending most of the time along velocity gradient direction.
In the outer oscillating boundary layers, the director oscillates with space

dependent amplitude and around a space dependent direction. For details

S BT, e e e e e s sesse s an s s s e ans s sesr e s ra s e e e rrar s saesaraas

The boundary layer thickness & as a function of Ericksen number Er, for

BCF, ng g, =(1,0,0), for various values of the ratio R. Please note that the

thickness & for BCF is higher than that for BCVG, ngg., =(0,1,0), for

the SAIME VAIUES OF R. ..ot eeteeeeeeseeeesareeeae e aeeaaaeeeseeene e aaaeasesasaaeaan

Scientific visualization of the spatial-temporal profiles of the tensor order
parameter Q for BCVG, ngg.; =(0,1,0), at R = 100, Er = 3000, U = 6,
p=-0.9, and L, = -4/3. The visualization is typical of the bulk wagging
state (WS) under BCVG. The ellipsoids oscillate in the entire bulk with

space dependent amplitude, which is the maximum at the center and zero at

the either boundary, along a direction near velocity gradient direction................

Scientific visualization of the spatial-temporal profiles of the tensor order

parameter Q for BCF, mg,.. =(1,0,0), at R = 100, Er = 3000, U = 6,

B=-09, and L,= -4/3. The visualization is typical of the bulk wagging
state (WS) under BCF. The ellipsoids oscillate in the entire bulk with space
dependent amplitude, which is the maximum at the center and zero at the
either boundary. The ellipsoids oscillate along a direction near the velocity
gradient direction in major part of the bulk, however near the plates the
direction of oscillation changes from being near the flow direction to the

velocity gradient direction as in the bulk. The average bulk orientation is

along the velocity gradient direction.......... ettt en s eaasenan

(a) In-plane director angle 6, (b) uniaxial alignment S, and (c) biaxial
alignment P spatial profiles for BCVG, ngg.c =(0,1,0), and for U = 6,
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6.16

6.17

6.18

£ =-09, and L'2 = -4/3. The parametric conditions are R = 100, Er = 6000
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CHAPTER 1

Introduction

1.1 Thesis Motivation

One of the most important components in the recent revolution towards new and
more efficient materials has been development and use of polymer-based precursors.
Successful use of polymers for new materials applications involves two essential steps:
first is synthesis of novel materials, and second processing of the polymer into useful
products. Both steps play a critical role in determining the underlying properties of the
material - the first because of changes in chemical structure, and the second because the
physical structure of the precursors can be altered dramatically by thermomechanical
forces. Manipulation of molecular orientation and micro-phase structure in the
processing steps often plays a dominant role in current applications. For example, the
excellent product property profiles of some liquid crystal polymer (LCP)-based fibers like
Kevlar and mesophase carbon fibers is due mainly to high degree of alignment imposed at
the molecular level in the processing steps. Although during the past decade some
important advances have been made in understanding polymer melt viscoelasticity,
relatively ‘less is known if the material systems include more complex processing
materials such as miscible polymers, block copolymers, and liquid crystalline materials.

The present molecular theories of polymer melt rheology need to be extended to include
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liquid crystals to further our understanding of the underlying principles governing
microstructure-viscoelasticity responses, and thus to ultimately improve product-
property-profiles. Modeling and simulation provides economical alternatives to more
expensive time consuming experimentation, and has been employed in this thesis to
understand the microstructural behavior of carbonaceous mesophase, a liquid crystalline

phase currently being employed to manufacture high performance carbon fibers.

The high performance carbon fibers posses exceptional mechanical and thermal
transport properties (McHugh, 1994); they exhibit ultra high Young’s modulus, low
density, extremely large thermal conductivity, and negative coefficient of expansion; and
are increasingly being employed in the next generation composite materials for acrospace,
the electronics and automotive industries. The superior set of product property profile of
mesophase carbon fibers depends on their microstructure that evolves during spinning
process (McHugh, 1994; Fleurot, 1998), and is a strong function of the operating
conditions, geometry, and material properties. There has been a great interest in
understanding the texture evolution during the fiber formation melt spinning process, in
which the carbonaceous mesophases are subjected to non-homogeneous mixed shear and
extensional flows, to control and optimize their product property profile. Figure 1.1
shows thermal conductivity and electrical resistivity for a number of metals and Amoco
series of mesophase pitch-based (suffix ‘P’) and PAN-based (polyacrylonitrile) carbon
fibers (Kowalsky, 1987). The thermal conductivity of mesophase carbon fibers is
considerably higher than that of Copper and PAN carbon fibers. These high values of
thermal conductivity are due to the inherent graphitic crystallinity in the well ordered
textures of the mesophase carbon fibers. PAN carbon fibers can not exhibit these higher
values due to their fibrillar microstructure. The thermal conductivity of mesophase
carbon fibers is due to phonon conduction as opposed to electronic conduction (Kelly,
1967), and is influenced by several factors such as: high degree of crystallinity, large size
of crystallites etc. (Endo, 1988). Moreover, PAN-based carbon fibers, due to the fibrillar
nature, are unable to develop any extended graphitic structure, hence their modulus is
considerably less than the theoretical value, a limit which is nearly achieved by

mesophase carbon fibers, as shown in Figure 1.2 (Bacon, 1989).
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Figure 1.1: Thermal conductivity versus electrical resistivity product property phase plane

for various metals and carbon fibers. The thermal conductivity of mesophase carbon, P-130X,
P-120X etc., is considerably higher than that of the most conductive metals like Copper.

Adapted from Kowalsky (1987).
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Figure 1.2:  Tensile strength versus modulus of elasticity (stiffness) product property phase
plane of various carbon fibers. The PAN-based carbon fibers have considerably higher strength
than the mesophase carbon fibers, however the former lack considerably in terms of stiffness.
The stiffness of mesophase carbon fibers reaches the theoretical limits of pure graphite. Adapted

from Bacon (1989).
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1.2  General Background

Many organic compounds do not undergo a single-phase transition from a solid to
a liquid phase, but assume one or more intermediate states called mesophases, which
possess both liquid-like fluidity and solid-like molecular order (Priestley et al., 1975;
Vertogen and de Jeu, 1988; Chandrasekhar, 1992; deGennes and Proust, 1993). The
centers of masses of molecules constituting solids crystals are located in a three
dimensional periodic lattice, thereby having both positional as well orientational order.
On the other hand in isotropic liquids only short-range order prevails among the
constituent molecules. The extent of ordering in mesophases (mesomorphic or
anisotropic liquids) lies between that of a solid crystal and an isotropic liquid, as shown tn
Figure 1.3. Based on this partial ordering two fundamentally different types of
mesophases have been observed. (Priestley et al., 1975; Vertogen and de Jeu, 1988).
Mesophases which possess the positional order but lack any significant orientational
order, are called disordered crystal mesophases or plastic crystals (Priestley et al., 1975;
Vertogen and de Jeu, 1988). On the other hand mesophases in which the positional order
has been reduced or completely disappeared but still exhibit long-range orientational
order (in addition to the isotropic liquid like short-range order), are called ordered fluid
mesophases or liquid crystals, see Figure 1.3 for example. A particular type of liquid
crystal, termed as discotic liquid crystal, composed of polyaromatic disc-like molecules,

is investigated in this thesis.

Figure 1.3: Schematic representation of molecular alignment in a crystalline solid, a liquid
crystal, and an isotropic liquid. It is sometimes difficult to distinguish weather the material is in
a crystalline or liquid crystal state. Crystalline materials demonstrate long-range periodic order,
whereas isotropic liquids have no orientational order. Liquid crystals are not as ordered as
crystalline solids, yet have some degree of alignment. Adapted from PLC, CWRU (2000).
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The shape of the molecule is an important criterion for mesomorphism to occur.
Since early investigations of liquid crystalline behavior the accepted fact, until recently,
was that for thermotropic mesomorphism to occur the molecules must posses rod-like
shape. It was discovered in the last two decades that compounds, naturally occurring or
synthetic, consisting of disc-like (poly-aromatic) molecules can also exhibit thermotropic
mesomorphism and are termed as discotic liquid crystals, discotic nematics or discotic
mesophases. The first discotic liquid crystal was synthesis and identified in 1977
(Chandrasekhar et al., 1977). A number of synthetic (Dubois, 1978; Destrade et al.,
1979; Levelut, 1983) and naturally occurring (Brooks and Taylor, 1965; Destrade et al,
1981; Otani, 1981; Singer, 1985) discotic liquid crystals have since been discovered.
Naturally occurring carbonaceous mesophases display discotic liquid crystalline behavior
and are derived from pyrolysis of low cost coal and petroleum pitches (Otani, 1981;
Singer, 1981, 1985). This low cost mesophase is used as precursor materials to
manufacture high performance mesophase carbon fibers with superior product-property

profile.

1.3 Types of Liquid Crystals

1.3.1 Thermotropic Liquid Crystals

Single component systems, which show mesomorphic behavior in a definite
temperature range, are called thermotropic liquid crystals. Every molecule in the
thermotropic liquid crystalline phase participates in the long-range order. Figure 1.4
shows phase diagram of a typical thermotropic nematic liquid crystal (explained below).
The material exhibits nematic liquid crystalline behavior below transition temperature

Twni. The liquid phase is isotropic above the transition temperature.

1.3.2 Lyetropic Liquid Crystals

These exhibit the mesomorphic behavior in solution, and are usually the solutions
of ngid molecules in strong solvents (Priestley et al., 1975; Vertogen and de Jeu, 1988).

The anisotropic behavior is shown above a particular concentration. Moreover, the
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temperature range in which lyotropic liquid crystals are stable depends mainly on the
phase concentration. The long-order is mainly controlled by the rigid rod-like (solute)
molecules. A renowned example of lyotropic liquid crystals is Kevlar, which is a
solution of Poly(p-phenylene terephthalamide) in sulfuric acid. In general, the lyotropic
liquid crystals are of great interest in biological systems, and appear to play an important

role in living systems.
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Figure 1.4: Schematic representation of phase change brought about by temperature in liquid

crystalline materials. At lower temperatures T < Ty, the material exhibits liquid crystallinity (the
degree of molecular alignment, S > 0.3). However, for T > T, the same material is an isotropic
fluid. Adapted from PLC, CWRU (2000).

1.4 Classification of Liquid Crystals based on Molecular Order

According to the nomenclature proposed originally by Friedel in 1922, the liquid
crystals are classified based on their molecular or orientational order into three major

classes: nematic, cholesteric, and smectic liquid crystals.

1.4.1 Nematic Liquid Crystals

The schematics given in Figure 1.5 represent nematic order in liquid crystalline
materials. The molecules tend to align parallel to each other and along some common
axis called director m, a unit vector (Figure 1.5a). The centers of gravity of the

constituent molecules are distributed randomly in space. Hence, nematic liquid crystals
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posses orientational order like that of crystals but positional disorder like that of isotropic

fluids. Long-range orientational order and cylindrical symmetry are exhibited by nematic

.
T
<
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Figure 1.5:  Schematic representation of (a) rod-like nematic liquid crystals, and (c) discotic
nematic liquid crystals. The director m represents the average preferred orientation of the
molecules for (b) rod-like nematics, whereas in discotic nematics m is the average preferred
orientation of the unit normals to the disc-like molecules. The molecular degree of alignment is
given by scalar order parameter S, which is a measure of alignment of individual molecule along
the director n. See text for more details.

In rod-like nematics, the director m represents the average preferred direction of
the molecules, as shown in Figure 1.5a. Whereas in case of disk-like nematics, the
director n represents the preferred direction of the unit normal to the disk-like
constituting molecules as shown in Figure 1.5¢. This thesis is geared towards developing
a fundamental understanding of the microstructure features of the discotic nematics.
Based on the different molecular geometries disk-like (rod-like) molecules are

represented by oblate (prolate) ellipsoids.

The degree of alignment of the individual molecules along the director a is given

by a scalar known as scalar order parameter S:
3 5 1

S=(=~cos*0—— 1.1
< 5 2> (1.1)

where fis the angle between the director m and the long axis of each rod-like molecule in
rod-like nematics (see Figure 1.5b), and that between the director n and unit normal of
each disc-like molecule in discotic nematics. The brackets denote an average over all of

the molecules in the sample. In an isotropic liquid, the average of the cosine terms is
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zero, and therefore the order parameter S—0, whereas for a perfect crystal S—1. Typical
values for the order parameter of a liquid crystal range between 0.3 and 0.9, with the

exact value a function of temperature, as a result of kinetic molecular motion.

1.4.2 Cholesteric Liquid Crystals

The cholesteric liquid crystals are typically composed of nematic mesogenic
molecules containing a chiral center, which produces intermolecular forces that favor
alignment between molecules at a slight angle to one another. This results in formation
of a structure, which can be visualized as a stack of very thin 2-D nematic-like layers with
the director in each layer twisted with respect to those above and below. In this structure,
the directors actually form a continuous helical pattern about the layer normal as
illustrated by the black arrows in Figure 1.6. The molecules shown are merely
representations of the many chiral nematic mesogens lying in the slabs of infinitesimal
thickness with a distribution of orientation around the director. An important
charactenstic of the cholesteric mesophase is the pitch, the distance that the cholesteric

director in cholesteric traverses to rotate one full turn (360 degrees) in the helix.

x A A
“| /), 55527
VA ad
y —— — ——
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— X
Figure 1.6: Schematic arrangement of rod-like molecules in a cholesteric liquid crystalline

phase. The localized director n follows a helical trajectory along the z-axis. Please note that the
successive planes are drawn for convenience, and do not have any physical meaning. Adapted
from de Gennes and Proust (1993).
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1.4.3 Smectic Liquid Crystals

A smectic phase has, in addition to the orientational order of nematics and
cholesterics, a single degree of translational order (limited preferred arrangement in
space) that results in a layered structure. In the smectic state, the molecules maintain the
general orientational order of nematics, but also tend to align themselves in layers or
planes. Motion is restricted to within these planes, and the separate planes are observed
to flow past each other. The increased order means that the smectic state is more "solid-
like" than the nematic. Since smectic phases are more ordered they always occur at
temperatures below the nematic range. Many compounds are observed to form more than
one type of smectic phase. As many as 12 of these variations have been identified,
however only the most distinct phases are discussed here briefly. Figure 1.7a shows a
schematic of smectic-A mesophase, the director is perpendicular to the smectic plane, and
there is no particular positional order within the layer. Similarly, the smectic-B
mesophase orients with the director perpendicular to the smectic plane, but the molecules
are arranged into a network of hexagons within the layer. In the smectic-C mesophase,
Figure 1.7b, molecules are arranged as in the smectic-A mesophase, but the director is at

a constant tilt angle @ measured normally to the smectic plane.

1.5 Discotic Phases

The general consensus before the discovery of discotic nematics in 1977
(Chandrasekhar et al., 1977), was that for thermotropic mesomorphism to occur the
constituting molecules have to be rod-like in shape. However, early studies (Brooks and
Taylor, 1965; Dubois, 1978; Destrade et al., 1979, 1981) have established that many
compounds composed of disc-shaped molecules also exhibit stable thermotropic liquid
crystalline phases. Theoretically the possibility of existence of an assembly of plate-like
particles in the transition from isotropic to nematic phase was established (Alben, 1973)
well before the experimental discovery of discotics. Some typical molecules, which
display the discotic mesomorphism, are given in Figure 1.8 (Chandrasekhar, 1992). A
typical molecule that exhibits discotic liquid crystallinity has flat (or nearly flat) cores

with six to eight long chain substituents, which are essential for formation of discotic
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liquid crystals. Structurally, discotic liquid crystals fall into two categories: columnar
phase (see Figure 1.8a,c,d,f,g,h); and nematic phase (see Figure 1.8b,e). The columnar
phase is observed more often in compounds exhibiting discotic nematic behavior. In its
simplest form the columnar phase consists of discs stacked one on top of each other
aperiodically to form liquid like columns, the different columns constitute a two
dimensional lattice. However, a number of variants of this structure have been found
(Levelut, 1983). Figures 1.9a,b,c,d,e show, schematically, various two dimensional
columnar lattices found in columnar discotic crystals (Levelut, 1983; Chandrasekhar,
1992). The various ellipses represent discs, which are tilted with respect to the column
axis. To summarize, the columnar phase has long-range translational periodicity in two
dimensions and liquid-like disorder in the third dimension. The columnar phase of
discotic liquid crystals is not considered in this thesis, and therefore will not be discussed

further.

TN
|\

I
| 17 1\ |

[

l
I
l

[I1L L 1T T
[111] /7¢/7/77111 1
LW/ n//71111071

(b)

Figure 1.7 Schematic arrangement of rod-like molecules in (a) Smectic A, and (b) Smectic
C liquid crystalline phases. The shown smectic phases have 2-dimensional layered structure. In

smectic C phase the constituting molecules are tilted at an angle @ normal to the smectic
plane. Adapted from de Gennes and Proust (1993).
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Figure 1.8: Examples of disc-like molecules that display discotic mesomorphism: (a) hexa-n-
alkanoates of benzene, (b) hexakis((4-octylphenyl)ethynyl)benzene, (c) hexa-n-alkanoates of
scylloinositol, (d) hexa-n-alkanoates of triphenylene and hexa-n-alkoxytriphenylene, (e) hexa-n-
alkyl and alkoxybenzonates of triphenylene, (f) hexa-n-alkanoates of truxene, (g) bis(3,4-
nonyloxybenzoyl)methanato copper(Il), and (h) octasubstituted metallophthalocyanine. Adapted

from Chandrasekhar (1992).



CHAPTER 1. INTRODUCTION 12

R

&
¢/

(@) ®) ©

> P — é;
%® ==

(d) (e (f)

Figure 1.9: (a-¢) Schematic top view of columnar phases of disc-like molecules. The
column axis points out of plane of the paper towards the reader. The ellipses represent the disc-
like molecules, which are tilted with respect to the column axis. (f) Schematic side view the
molecular ordering of the disc-like molecules in a typical discotic nematic liquid crystalline

material.

Figure 1.9f, shows a schematic of discotic nematic phase (Np). Nematic order is
found to be exhibited by relatively lesser number of disc-shaped molecules. The nematic
phase of discotics possess orientational order without any long-range translational order.
(Chandrasekhar, 1992). Discotic nematics in contrast to the conventional rod-like
nematics, are optically negative and the director n represents the preferred orientation of
the short molecular axis (or the normal to the disc-like molecules). Only discotic

nematics of the type shown in Figure 1.9f are investigated in this thesis.
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1.6 Carbonaceous Mesophases (Mesophase Pitches)

The carbonaceous mesophase (CM) or mesophase pitch (MP) is a uniaxial
discotic nematic liquid crystalline thermodynamic phase composed of large polynuclear
aromatic hydrocarbon molecules with molecular weights approximately near 2000 (White
et al., 1967; Singer, 1976; Lewis 1978; Hamagushi and Nishizawa 1992; FitzGerald
1994). The CMs or MPs are employed as low cost precursor materials in the manufacture
of high performance mesophase carbon fibers (Zimmer and White, 1982). There are
currently three main processes that are used to produce spinnable MPs. The classical way
is the liquid phase pyrolysis of coal tar or petroleum pitches. The secend more recent
process is the catalytical polymerization of pure aromatic hydrocarbons, such as
Naphthalene. The third technique, developed recently by Hutchenson et al. (1991), uses a

solvent in its supercritical state to extract mesophase fractions from isotropic pitches.

Figure 1.10, shows the thermodynamic and structural changes brought about
during the pyrolysis of isotropic pitches. As the temperature rises above 350°C, optically
anisotropic spheres, known as spherules, appear in the isotropic matrix (Singer, 1977,
1985; Gasparoux, 1981; Zimmer and White, 1982). As the hydrogenative polymerization
reactions continue the poly-aromatic molecules get larger, and the anisotropic phase
grows and becomes more viscous. When the molecules reach an average molecular
weight of approximately 2000, they are apparently, sufficiently large and flat to favor the
formation of a liquid crystalline discotic nematic phase called carbonaceous mesophase or
simply mesophase pitch. The formation of carbonaceous mesophase follows a nucleation
and growth process, typical of meta-stable thermodynamic systems. The spherules,
droplets of anisotropic phase (see Figure 1.11), are easily observed due to their optical
anisotropy. Attractive forces among the spherules give rise to droplet coalescence and
overall growth of the mesophase. The structure of the spherules and the molecular
organization of the disc-like poly-aromatic molecules within the spherules have been
described by Brooks and Taylor (1965). The characteristic mechanisms that are involved
in establishing the mesophase morphology are spherule precipitation, spherule
coalescence to form a continuous anisotropic phase, and deformation of mesophase by

external fields. Lewis and Chwastiak (1978) modified the above simplistic heat soaking



CHAPTER 1. INTRODUCTION 14

process of isotropic pitches by propelling an inert gas into the reaction vessel. Riggs and
Dienfendorf (1980) developed an alternate heat soaking mechanism, which used solvents
like Benzene and Toluene to extract the high molecular components from the isotropic
pitch. The extracted portion was then polymerized for only 10 minutes at relatively lower
temperatures, 230°C to 400°C to yield a 75% to 100% anisotropic phase. The primary
advantage of heat soaking and solvent extraction of natural petroleum pitches is the
inexpensive nature of the feedstock, however, there are inherent disadvantages as well.
First, natural pitch contains heavy impurities that accumulate in the high-density
mesophase, which in turn have detrimental effects on the final properties of carbon fibers.
Moreover, the composition of a natural isotropic petroleum pitch varies depending on
crude oil composition, therefore the properties of the resulting MP also tend to be highly
variable. Thirdly, the MPs exhibit broad molecular weight distribution, which hinders
spinning. Due to these problems, alternate methods of production of MPs with fewer
impurities were sought. A typical molecule of a heat-soaked mesophase pitch is

illustrated in Figure 1.12.

' State of Compound Temperature
Organic Pitch Room Temperature
Isotropic Pitch 200°C -350°C
Condensation
polymerization
Carbonaceous
Mesophase 300°C - 450°C
[_(Liquid Crystals)
Cokes 500°C - up

Figure 1.10: Changes in the non-volatile organic compounds like coal or petroleum pitches
. brought about by heating in the absence of air. Adapted from Otani (1991).
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Figure 1.11:  Lamellar structure of mesophase spherule before coalescence. The aromatic
planes are normal to the spherule surface. The spherule grows as the aromatic molecule fuse
together due to hydrogenative polymerization. Adapted from Brooks and Taylor (1965).
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Figure 1.12:  Typical molecule of a heat soaked mesophase pitch. Adapted from Fitzer et al.
(1986).

Hutchenson et al. (1991) have reported that supercritical fluid extraction, using
supercritical Toluene, can be employed to fractionate pitches. By continuously varying
pressure and/or temperature, thereby changing the solvent strength, selective pitch
fractions of relatively narrow molecular weight distribution can be isolated in a cascading
process. Such a process offers the potential of producing a uniform product from an ever-

changing raw material. Moreover, the heaviest fraction is not the only one that yields a
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bulk mesophase; it may be possible to produce a mesophase fraction largely free of

inherent impurities.

Another way to alleviate the problems associated with the natural petroleum
pitches is to catalytically convert well-controlled synthetic precursors, such as
Anthracene, Phenanthrene and Naphthalene, to produce mesophase pitches (Mochida et
al. 1988, 1990; Fujiura 1992). For example, Naphthalene can be polymerized in an
autoclave with the aid of “super catalyst” HF/BF;, at temperatures ranging from 260°C to
300°C and under pressures from 2.1 MPa to 3.1 MPa for approximately 4 hours (Korai et
al., 1991). The contents of the autoclave are heated to 340°C and purged with Nitrogen
to distill off the catalyst, the unreacted monomer, and other volatile components (HF and
BF; have boiling points of 19.9°C and 101°C, respectively), thereby leaving 100%

anisotropic pitch in the autoclave.

1.7  Order in Carbonaceous Mesophases (Mesophase Pitches)

As stated above the carbonaceous mesophase consists of disc-like molecules that
display long-range order, such that the molecules lie approximately paraliel to each other
without any point-to-point registry among themselves. The orientation of each molecule

is defined by its unit normal. The symmetry elements in mesophase pitches are:
e any translation,
¢ any rotation about the unit normal to the disc-like molecule, and
e arotation of zradians about any axis parallel to the plane of the molecules.

Although the degree of symmetry is the same for a discotic nematic and a
conventional rod-like nematic, yet the molecular geometrical differences, for the discotic
(rod-like) nematics the axis of symmetry is normal (along) to the long dimension, have
important consequences on optical properties, response to external fields such as
mechanical stresses, electrical and magnetic fields etc. In this dissertation we focus on
the distinguishing features of flow-induced molecular orientation and rheology of discotic

mesophases. Figure 1.13 presents a schematic of molecular stacking of molecules in
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discotic nematics. The model suggests that the stacking, size, and the possible shape of

disc-like molecules which may be quite irregular and have vacant sites.
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Figure 1.13:  Schematic model representing stacking arrangement of polyaromatic molecules
in carbonaceous mesophases or mesophase pitches. The disc-shaped molecules lie more or less
parallel to each other. Adapted from Zimmer and White (1982).

As mentioned before, the main microstructural features of CMs, the uniaxial
discotic nematic liquid crystals, are captured by a (uniaxial) director n, and by (uniaxial)
scalar orientation order S. The director n is a unit vector that describes the direction of
the average molecular alignment of unit normals of the disks, and § is a measure of
average molecular alignment along n. The dispersion of the molecular orientation along
n is captured by the magnitude of § (- %2 < § < 1): when § = 0 the phase is isotropic, and
when S ~ 1 all the molecular normals are perfectly align along n. For normal discotic
nematics the order parameter S is restricted to the range 0 £ § < 1 (Brooks and Taylor,
1965; Destrade et al., 1981; Singer, 1985). The basic microstructural and rheological

phenomena have to at least include the description of spatial-temporal changes of (S, n).

1.8 Rheology of Mesophase Pitches

Numerous experimental studies are reported in the literature to characterize the
rheological features of the mesophase pitches. However, most of the them are either
concerned with changes in viscosity during thermal treatment (Fitzer et al., 1987; Collet

and Rand, 1987a; Yamada et al., 1987), or have performed classical viscometric studies
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(Turpin et al., 1994; Daji and Rand, 1997). Figure 1.14 shows the extreme temperature
dependency of three different mesophase pitches (prepared from three different
processes) relative to that of Nylon-6 (Fleurot and Edie, 1998). The temperature
dependent viscosity of the mesophase pitches follows Arrhenius-type law. Figure 1.14

illustrates that activation energy of the mesophase pitches is significantly higher than that

of a typical polymer (Nylon-6).
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Figure 1.14: Temperature dependent viscosity of three mesophase pitches and Nylon-6 as a
function of decreasing temperature. The mesophase pitches are prepared from three different
processes. AR mesophase and Me-AR mesophase are synthetic mesophase pitches, and are
obtained by catalytic polymerization of naphthalene (AR mesophase), and methyl naphthalene
(Me-AR mesophase), respectively. SCE mesophase pitch is derived through supercritical fluid
extraction process from a petroleum pitch. The viscosity of mesophase pitches is extremely
dependent on temperature. Adapted from Fleurot and Edie (1998).

A few experimental studies have focused on origin and control of the
microstructure in mesophase carbon fibers (Nazem, 1983; Matsumoto, 1985; Edie et al.,
1986, 1993; Hamada et al.,, 1987, 1988; Mochida et al., 1993). These investigations
showed that the transverse fiber textures are strongly dependent on the spinning
conditions, precursor properties, and geometry. The theoretical predictions by using
theories for monodomain, uniaxial discotic nematics (Singh and Rey, 1995; Rey 1995;

McHugh and Edie, 1995; Wang and Rey, 1997) match some of the textures observed in



CHAPTER 1. INTRODUCTION 19

the mesophase carbon fibers. Fleurot (1998) studied the viscoelastic behavior of a series
of pitches obtained from different sources, and through various processes. Figure 1.15
shows the apparent shear viscosity of a mesophase pitch obtained from catalytic
polymerization of naphthalene, and is typical of the mesophase pitches (Fleurot, 1998).
The apparent shear viscosity shows two regions, shear thinning at low shear rates and
Newtonian plateau at higher shear rates. The apparent shear viscosity increases with
decreasing temperature. Both regions persist at low and high temperatures. The results
clearly suggested that the rheological behavior of pitches with high mesophase content is
qualitatively similar to that of liquid crystalline polymers (LCPs). It has also been
reported that mesophase pitch can exhibit thixotropic behavior (Collect and Rand,

1987b).
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Figure 1.15:  Apparent shear viscosity of a mesophase pitch at various temperatures obtained
from catalytic polymerization of naphthalene. The apparent shear viscosity shows two regions,
shear thinning at low shear rates and Newtonian plateau at higher shear rates. The viscosity
increases with decreasing temperature. Both regions persist at higher temperatures. Adapted
from Fleurot and Edie, 1998.
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1.9 Mesophase Pitch-Based Carbon Fiber Processing

Three different processing steps are employed during the manufacturing of
mesophase pitch-based carbon fibers: (1) melt spinning; (2) oxidative stability; and (3)
carbonization. The high cost of the fibers is due to the peculiar difficulties encountered in
melt spinning and subsequent heat treatment process (Edie et al., 1990). Figure 1.16

presents the processing sequence of the 3 involved steps.

1.9.1 Melt Spinning of Mesophase Pitch

Conventional high-speed melt spinning process used for many thermoplastic
polymers is employed to convert palletized mesophase pitch into fibers (McHugh, 1994).
Normally, an extruder melts and pressurizes the pitch, and pumps it through the spin
pack. The molten pitch is filtered before being extruded through a multi-holed spinneret.
The pitch is subjected to high extensional and shear stresses as it approaches and flows
through the spinneret capillaries. The associated flow-induced torques tend to align the
liquid crystalline pitch in a particular fashion. The average orientation of the disc-like
molecules depends on the processing conditions, the flow geometry, and the matenal
properties of the pitch, and has an enormous impact on final properties of the mesophase
carbon fibers. Upon emerging from the spinneret capillaries, the mesophase fibers, called
as-spun or green fibers, are drawn to improve the axial orientation, and are collected on a

windup device.

1.9.2 Mesophase Pitch Fiber Heat Treatment

The as-spun mesophase fibers are extremely weak, and must be heat-treated to
develop their ultimate mechanical and thermal properties. The first step in the heat
treatment involves oxidation or stabilization. The purpose of oxidation is to prevent the
fiber from melting during the subsequent carbonization step, and to lock-in the
microstructure developed earlier during the melt spinning process. Most typically, the
stabilization is achieved by exposing the fibers to flowing air at a temperature near 300°C
for a duration of time ranging from a few minutes to a few hours, depending on the

precursor, the fiber size, and the oxidation temperature (McHugh, 1994).
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Figure 1.16:  Processing sequence of mesophase carbon fibers, showing continuous
conventional melt spinning of mesophase pitch, and subsequent batch processes: oxidization
stabilization, and carbonization. See text for details. Adapted from McHugh (1994).

Once the fibers have been sufficiently stabilized, they can be carbonized or
graphitized. During the carbonization the stabilized fibers are heated in an inert

environment to temperatures up to 3000°C, to drive off all non-carbon elements thereby
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leaving behind only cross-linked carbon. During carbonization, dislocations in the initial
disordered carbon stacks are annealed out, eventually resuiting in the formation of a
three-dimensional graphite lattice. The graphitization process primarily involves atomic

diffusion and crystallite growth (Fischbach, 1971).

1.10 Mesophase Pitch based-Carbon Fiber Textures

It turns out that the mesophase carbon fibers exhibit a spectrum of transverse
textures that are associated with various thermal and mechanical transport properties.
The morphological features of the textures are defined by the spatial arrangement of the
constituting flat disc-like polyaromatic molecules in the fibers of different cross sectional
shapes. Some most typical examples, reported in literature (Singer, 1971, 1981, 1981a;
Honda, 1983; Edie, 1990; McHugh, 1994) are presented schematically in Figure 1.17.
The lines represent loci of side view of the disk like molecules. In a radial texture, the
discotic molecules orient with their unit normals describing circles concentric with the
fiber axis, while in an onion-like texture, the discotic molecules themselves follow a
circular paths concentric with the fiber axis. The scanning electron micrographs (SEM)
of radial, random, onion, and radial-folded textures are shown in Figure 1.18. In addition
to this, the fiber cores may be isotropic or anisotropic, the latter would give rise to
singular lines running along the fiber core. Although the stiffness and thermal
conductivity of mesophase carbon fibers are generally high, however, these properties can
vary significantly with fiber textures. For radial textures, the presence of a singular line
along the fiber axis introduces a potential fast failure mode by longitudinal crack
propagation (Singer, 1981a), such failure modes are absent in the onion like outer layer
textures. Commonly, the textures are not perfect and some degree of folding of the
crystallites is observed. This appears to improve the resistance of the fiber to crack
propagation, and thereby increasing its tensile strength (McHugh, 1994). Folding may be
an artifact of the disclinations in the mesophase pitch, which are not annihilated by the
strong deformations. (Buechler, 1983; Hamada 1987). Creation of a random texture, no
clearly defined morphology, may be due to complete disruption of the flow fields inside
the spinneret (Nazem, 1983), and such fibers also offer the potential of improved

compressive strengths.
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The fiber texture morphology can be controlled by the pretreatment of mesophase
pitches, the constitution and spinnability of pitches, the spinning conditions, the spinneret
geometry, the processing conditions, the fiber size and shape, and numerous other factors
(Nazem 1984; Matsumoto 1985; Otani and Oya 1986; Rey, 1990; Mochida et al 1993;
Wang and Rey 1997). Otani and Oya (1986) and Mochida et al. (1993) produced fibers at
various spinning temperatures, and showed that radial transverse texture prevails at low
temperatures, whereas onion-skin textures is generated at higher temperatures. Wang and
Rey (1997) also proved theoretically, by minimizing the Frank long-range elasticity of
discotic mesophases, that radial and onion textures could be controlled via a judicious
selection of processing temperature. Many researchers focused on controlling the
transverse structure of the fibers by disturbing the flow of mesophase pitches during
processing (Nazem, 1984; Hamada et al., 1988), or designing spinnerets with peculiar
geometries (Stoner et al., 1990; Yoon et al., 1993). Hamada et al. (1988) controlled the
fiber texture by placing the micro-stirrers just above the spinneret capillaries, and showed
that the resulting texture is highly sensitive to the micro stirring. Nazeem (1984)
employed porous media just above the spinneret capillaries to disrupt the flow of
mesophase, thereby controlling the transverse fiber textures. Matsumoto (1985) managed
to control the transverse texture by extruding the precursors through capillaries of
different diameters. It was reported that larger diameter capillaries yielded onion-skin

texture, whereas the capillaries with smaller cross section produced radial textures.

1.11 Thesis Objectives

The main objective of this thesis is to develop a fundamental understanding of the
microstructural and rheological response of discotic mesophases under shear and
extensional flows, and to use this knowledge to put forth fundamental principles that
govern mesophase carbon fiber texture generation under various flows. At the beginning
of this thesis no theories were available for discotic mesophase. Therefore, as a first step
in a systematic scientific study, this thesis was geared towards proposing, analyzing and
selecting a most appropriate set of constitutive equations, CEs, (microstructure and
hydrodynamic) for discotic mesophase in general and that for mesophase pitches in

general. Based on this, the particular objective of this thesis can be itemized as follows:
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Figure 1.17:  Schematics of the observed mesophase carbon fiber textures. The lines represent
the locus of the side view of the disc-like molecules, such that in a radial texture, the discs
orient with their unit normals describing circles concentric with the fiber axis, while in an
onion-like texture, the discotic molecules themselves follow a circular paths concentric
with the fiber axis. Adapted from Edie (1990).

(a) (b) (c) (d)

Figure 1.18: SEM images of mesophase pitch-based carbon fibers with (a) radial texture, (b)
random texture, (c) onion texture, and (d) radial-folded-texture. The fiber diameter range is 5-15
microns. Adapted from Otani and Oya (1986), and Peebles (1994).
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!\)

To develop, from a set of generic CEs, the most suitable CE for discotic mesophases
based on the computed microstructure behavior that reproduces with sufficient
accuracy the experimentally observed behavior of representative discotics, and which

is consistent with thermodynamic restrictions.

To apply the developed CE to isothermal, incompressible shear and extensional flows
and characterize the dynamic and steady state microstructure response of discotic

mesophases.

To analyze and characterize the shear and extensional rheological properties predicted
by the formulated theory, and put forth the relations among rheology, microstructure

modes, processing conditions, and material parameters.

Based on the fundamental understandings obtained above, provide guidelines and
theoretical feedback to ongoing experimental work being performed in this field, and
to elucidate the general principles which govern mesophase carbon fiber texture

generation during spinning of carbonaceous mesophases.

1.12 Thesis Organization

This thesis presents a detailed investigation, using theory and simulation, of shear

and extensional microstructure phenomena in discotic mesophases. The numerical results

are used to put forth general principles governing complex mesophase carbon fiber

textures. The structure of this thesis covers three facets of this scientific study:

1.

Formulation of material constitutive equation for discotic mesophases by taking into

account full microstructure characteristics.

Analysis and characterization of shear and extensional microstructural and rheological

phenomena of discotic mesophase.

Understanding of fundamental principles, which govern main mesophase carbon fiber

textures.

The detailed organization of this thesis is as follows:
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Chapter 2 focuses on formulation of microstructure constitutive equation (CE) of
discotic mesophases by taking into account full microstructure characteristics. Well-
established theories for rod-like nematics are adopted and modified for discotic
mesophases. An iterative selection procedure is employed to select the proposed

microstructure constitutive equations by performing an exhaustive bifurcation analysis.

In Chapter 3, the hydrodynamic constitutive equation or stress tensor equation
complimenting the microstructure governing equation for discotic mesophases was
formulated from first principles. The predicted relations among shear-induced
microstructure, shear rheological properties, processing conditions, and material
parameters are characterized and discussed. The predicted numerical results provide
essential theoretical feedback to on-going experimental work being undertaken elsewhere
to unravel the couplings between microstructure and rheological properties of these

complex fluids.

In chapter 4 the consistency of the numerical results presented in chapters 2 and 3
is established with the observed mesophase pitch-based carbon fibers. The present
theoretical model is able to predict the fiber texture transition, radial to onion, with

increasing temperature.

Chapter 5 is solely geared towards analyzing and characterizing the uniaxial
extensional rheological predictions of the selected CE. It is shown that two distinct
uniaxial extensional viscosity parameters are needed to fully characterize extensional
rheological functions of discotic mesophases. The rheological analysis is used to put
forth the relations between extensional viscosities, and the classical mesophase fiber

textures.

Chapter 6 presents comprehensive analysis of microstructure response of sheared
discotic mesophases in the presence of curvature elasticity in different planar surface
anchorings. Four different microstructure modes, steady state and periodic, are shown to
be stable. It is shown that the bulk molecular orientation is along the velocity gradient
direction irrespective of the surface anchorings. Novel scaling laws relating the
microstructure mode domains with the Frank elasticity are presented. This chapter puts

forth a systematic study of flow induced microstructural behavior of discotic mesophases,
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and provides a useful fundamental understanding of the flow of discotic mesophases of

use in the processing of carbonaceous mesophases.

In chapter 7 the microstructural response of sheared discotics subjected to mixed
boundary conditions, equivalent of that in a hybrid aligned nematic (HAN) cell, is
computed. The strong surface anchorings at the bottom and the top plate corresponds to
the stable orientation configuration. A novel model of continuous generation of defect-
like structures in the bulk is discovered, and is due to asynchronous rotational kinematics.
The simulation results are used to put forth the generation of more complex fiber textures,
such as mixed texture (radial core with onion exterior), and skin-core textures observed

during processing of a carbonaceous mesophase.

Chapter 8 presents the thesis conclusions and original contributions to knowledge.
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Microstructure Constitutive Equation for
Discotic Nematic Liquid Crystalline
Materials

Part I: Selection Procedure and Shear Flow Predictions

This chapter focuses on formulation and selection of microstructure constitutive
equation (CE) of discotic mesophases. Well-established theories for rod-like nematics
are adopted and modified for model discotic mesophases. The CEs are subjected to
homogeneous simple shear flows, and their steady state, and dynamical microstructural
response are computed. An iterative selection criterion is employed to select the most
appropriate CE for discotic mesophases by performing exhaustive bifurcation analysis
and dynamic simulations. Bifurcation methods are employed to analyze the complex
interactions among various orientation regimes (stable and unstable) as predicted by each
CE. The dynamic simulations are performed to characterize the stable microstructure
features of the CEs. The selected CE is able to capture all the experimental features and
is consistent with the theoretical results, and will be used to develop the fundamental
understanding of rheology of discotic mesophases in general and that of carbonaceous

mesophase pitches in particular.

' This chapter appeared as an original article in Rheological Acta 37(1) p30-45 (1998).
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2.0 Abstract

Four different microstructure constitutive equations {CEs) for discotic nematic
liquid crystals based on Doi’s modified nematodynamics theory are formulated. Their
dynamic and steady state responses under simple shear flows are computed and analyzed
in terms of the tensor order parameter Q, the orientation director triad (n, m, 1), and the
uniaxial § and biaxial P alignments. A unit sphere description of the director triad is used
to characterize and classify the various predicted stable orientation states, and to discuss
and analyze their multi-stabilities as a function of dimensionless shear rate. Various
attractors, steady and periodic, are also identified and their stability is discussed in detail
for all the CEs. A validation procedure based on the predicted microstructural response
along with bifurcation diagrams of the individual CE and representative experimental
observations as well as theoretical results is implemented, and used to select the most
appropriate CE. The selected CE predicts, under shear, the simultaneous presence of
stable in-plane (steady and periodic) states and out-of-plane steady state, and the classical
transition among the in-plane periodic and steady states with increasing shear rate. The
excellent performance of the selected CE in shear flows strongly suggests that it is a
reliable contribution towards the formulation of a process model for mesophase pitch

spinning.

2.1 Introduction

Carbonaceous mesophases or mesophase pitches are obtained from natural
(petroleum or coal tar pitches) or synthetic feed stock (naphthalene), and are used in the
manufacture of high performance mesophase pitch-based carbon fibers (Zimmer and
White, 1982; Singer, 1985; McHugh and Edie, 1996). The mesophase carbon fibers
show outstanding stiffness and thermal transport properties due to their ability to develop
extended graphitic structures. The physical properties of high performance fibers are
mainly due to the molecular orientation developed during the spinning process (McHugh,

1994).
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These precursor mesophase pitches consist of flat poly-aromatic molecules that
adopt a uniaxial thermotropic discotic nematic liquid crystalline phase (Chandrasekhar
1981; Destrade et al., 1981). The flat disc-like molecules orient more or less along a
common direction (see Figure 2.1), represented by the (uniaxial) director m; in what
follows we use n and uniaxial orientation interchangeably (deGennes, 1975). The
average degree of alignment of unit normals to the discs along the director n is defined by
the (uniaxial) scalar order parameter S; in what follows we use § and uniaxial alignment
interchangeably. The inherent nature of liquid crystalline materials to acquire a preferred
orientation in the presence of flow provides a natural advantage to these materials to be
used as precursors for the manufacturing of high performance fibers (e.g. mesophase
pitch-based carbon fibers, Kevlar). In the spinning of mesophase carbon fibers the
preferred orientation is achieved as the precursor material passes through the spin-pack
where it is subjected to non-homogeneous mixed shear and extensional flows. The
extensional flows during fiber drawing only accentuates the already attained orientation in

the spinneret in a plane normal to the fiber axis (McHugh, 1994).

The preferred orientation and degree of alignment of the disk-like molecules, and
the average crystallite size are expected to have a predominant effect on all mechanical
and thermal properties. The optimization and control of preferred orientation hence is of
practical importance. Unfortunately, the fundamental understanding of the factors that
affect the development of preferred orientation in mesophase carbon fibers is currently
lacking, and is hindering their further development. One cost effective way to develop
this understanding is through the use of modeling and simulation by adopting the well
developed theories for liquid crystalline polymers (LCPs). The transfer of knowledge by
adopting the theories for conventional rod-like nematics to discotic nematics is
successfully demonstrated by Farhoudi and Rey (1993a), Rey (1995a), and Singh and Rey
(1994, 1995a, 1995b).

The classical theories for describing the rheology of LCPs are the Leslie-Ericksen
(L-E) continuum theory and Doi’s molecular theory for mono-domain LCPs. Doi’s
theory has fewer parameters and is shown to predict satisfactorily the steady state shear

and extensional rheology (Ooi and Sridhar, 1994). There exists a lot of theoretical work,
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based on the above mentioned theories, on modeling the flows of conventional rod-like
nematics (Doi and Edwards, 1986; Larson, 1988; Marrucci and Greco, 1993; Beris and
Edwards, 1994). However, these theories have not been used in a significant way to
model discotic nematic flows; and currently there is no appropriate constitutive equation
that can describe the flow-induced microstructure of discotic nematics in general, and that
of mesophase pitches in particular. In the present work we will adopt well established
Doi’s mesoscopic theory as a starting point and modify it to establish the most suitable
constitutive equation for mesophase pitches. Next we present a summary of the
theoretical work performed in modeling the microstructural response of discotics along
with the essential features that are used to transfer the theoretical knowledge from rod-

like nematics to discotic nematics.

n

S
Sy

Figure 2.1: Definition of uniaxial director m orientation of a discotic nematic liquid
crystalline material. The uniaxial director n is the average orientation of the unit normals to the
disc-like molecules.

The previous work of Volovik (1980), Carlsson (1982, 1983), Baals and Hess
(1988), and Ho and Rey (1991) on the rheology and flow-induced orentation of uniaxial
discotic nematics (DNs) assumed that the scalar order parameter S remains unaffected by
the induced flow. The validity of this assumption for low molecular weight materials
justifies the use of Leslie-Ericksen (L-E) theory (Leslie, 1979; deGennes, 1975;
Chandrasekhar, 1992) for uniaxial nematics with the proper values of the materials
parameters. The important difference in sign and magnitude of the material parameters
corresponding to the uniaxial rod-like and discotic nematics arises from the fact that the

rod-like nematics orient their longest molecular dimension along the director whereas
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discotic nematics orient their shortest dimension along the director. The orienting
properties of the uniaxial nematics subjected to shear flows are governed by the sign and
magnitude of the uniaxial tumbling (reactive) parameter A such that for aligning (non-
aligning) rods 4> 1 (0 < A < 1), and for aligning (non-aligning) discs 4 < -1 (-1 <A <0).
The uniaxial tumbling parameter A is given by the negative ratio of the irrotational torque
coefficient (y2) and the rotational viscosity (y,), and represents the ratio of strain to the
vorticity torques acting on the uniaxial director n (deGennes, 1975). Previous works by
Carlsson (1982, 1983) focus on the orienting properties of the aligning uniaxial discotic
nematics in shear, and that of Ho and Rey (1991) on Hamel flows. In these works, it was
found that shear orients the director in the shear plane and at a steady angle 6,, lying in
the 90° < 6, < 135° sector with respect to the flow direction, while extension orients the
director anywhere in a plane normal to the flow direction. Farhoudi and Rey (1993a)
focused on the orienting properties of non-aligning uniaxial discotic nematics in steady
simple shear flows in which they showed that the uniaxial director n tumbles, oscillates
or aligns according to the strength of the applied shear; the existence and transition
between the various regimes is shown to be similar to that predicted by molecular
theories of the rod-like nematics. In steady uniaxial extensional flows, the orienting
behavior of uniaxial nematics is again determined by the sign of A: when A > 0 the
director aligns along the stretching direction, and when A < 0 the director aligns
somewhere in the compression plane, orthogonal to the stretching direction (Ho and Rey,
1991; Singh and Rey, 1994, 1995a, 1995b). In a previous work (Singh and Rey, 1994)
the authors developed, from variational principles, a model for discotic nematics that
takes into account variable alignment, and applied the model to a series of extensional
flows such as uniaxial, equi-biaxial and planar extensional flows. It was found that the
director aligns anywhere in a plane perpendicular to the extension direction
(i.e., anywhere in the plane of uniform compression) under uniaxial extensional flows,
along compression direction in biaxial, and planar extensional flows, and the director
trajectories and steady states exhibit strong sensitivity with the initial director orientation

(Singh and Rey, 1994, 1995a).
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The main objective of this work is to develop a constitutive equation for the
idealized uniaxial discotic nematics that is consistent with the existing predictions of
molecular and macroscopic theories for the rod-like nematics, and that is in qualitative
agreement with the experimental observations. The particular objectives of this paper

are:
1. To formulate a set of generic constitutive equations (CEs) for discotic nematics,

2. To characterize the main microstructure features predicted by the various proposed

CEs in terms of uniaxial orientation dynamics,

3. To identify the various multi-stabilities of uniaxial orientation dynamics predicted by

various CEs under shear flows,

4. To select the most suitable CE based on the computed microstructure behavior that
reproduces with sufficient accuracy the experimentally observed behavior of

representative discotics, and that is consistent with previous theoretical predictions.

The organization of this paper is as follows. In the following section we present
the selection criteria for establishing the most suitable CE for mesophase pitches. Then
we define the coordinate system, the state variables, the shear flow, and briefly present
the elements of unit sphere description used to characterize the bifurcation and dynamic
results. In the same section, we present representative schematics of the main
microstructure phenomena in terms of uniaxial director n that are used to characterize the
predicted bifurcational and dynamical phenomena, followed by the various proposed CEs
and a brief description of the solution methods employed to solve them. Next, we present
the computed bifurcation results for each CE and employ the validation and selection
criteria to select the most appropriate microstructure CE. Subsequently, the main features
of dynamic results of orientation and alignment (uniaxial and biaxial) are presented and

summarized. Finally, the conclusions are given.

2.2 Selection Procedure

As mentioned before in the present study we adopt well established theories for

rod-like nematics and modify them for discotic nematics. In this paper we propose and
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select a CE using an iterative selection process that starts with a series of CEs and ends
with the selection of the one that meets a set of criteria. The criteria are based on: (1)
consistency with previous theoretical results; (2) consistency with experimental data; and
(3) simplicity. In this iterative process we propose a CE, investigate the predicted
orientation (microstructure) phenomena under simple shear flows, validate the computed
results with the existing classical theoretical and experimental results available in the
literature, and select the CE that best meets the criteria. If the simulated results of the
proposed CE fail to satisfy the criteria it is then modified and tested again. In this
iterative process we start with the simplest available CE for discotics which is derived

from Doi’s mesoscopic theory and was investigated by Rey (1995a) for extensional flows.

The theoretical results of classical molecular, and macroscopic theories for
conventional rod-like nematics are employed to check the consistency of the CEs. The
simulated results of modified macroscopic theories for DNs (Farhoudi and Rey, 1993a)
are also used to check the validity of the simulated results of the proposed CEs. It is well
established that the necessary uniaxial director n orientation features of the non-aligning
nematics under shear are: rotation of m in the shear plane or in-plane tumbling (ITO),
oscillation of n in the shear plane or in-plane wagging (IWO), and stationary orientation
of n in the shear plane or in-plane steady states (ISS); along with the smooth transition
ITO — IWS — ISS with increasing shear rate (Larson and Ottinger, 1991; Farhoudi and
Rey, 1993a, b).

The experimental results for representative discotic nematics and mesophase
pitches are used to test the predicted simulation results of CEs. Hammouda et al. (1995)
showed that the disc-like molecules of discotic nematics, subjected to shear flows, orient
their unit normals along the velocity gradient or the vorticity directions. In a recent study
on the development of microstructure of mesophase pitches in narrow channels, McHugh
and Edie (1996) reported that very close to the channel walls the preferred orientation of
discotic mesophase pitches is along the vorticity axis (see Figure (4, 9) of McHugh and
Edie, 1996).

The mesophase carbon fibers derived from the discotic mesophase pitches show a

spectrum of textures as a function of materials properties, processing conditions, and/or
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geometry which are consistent with the ISS, LRS (in which n aligns along the
neutral/vorticity direction) and ITO orientation modes. The consistency between fiber
textures and the predicted orientation modes will be explained thoroughly in chapter 4.
Therefore the most suitable microstructure CE for discotic mesophase pitches should
predict, when subjected to shear flows, all the essential orientation features (ITO, ISS,
and LRS) over an appropriate range of parameters. Moreover, there exists multiplicity in
textures of mesophase pitch-based carbon fibers for the same set of processing conditions
(see Otani and Oya, 1986). Hence an essential requirement for a CE that can be used to
describe the microstructure features in mesophase pitches is prediction of multi-
stabilities. One way to capture and characterize the multi-stabilities of the simulated
microstructures and their transitions is through bifurcation methods, as is explained and
employed in nematic flows by Farhoudi and Rey (1993b), Rey (1995a, b) and Maffettone
and Crescitelli (1995). Thus the most appropriate CE equation for mesophase pitches
must show the bifurcation phenomena that are reported in the real spinning process that is

used to manufacture mesophase-based carbon fibers.

2.3 Theory and Governing Equations
2.3.1 Definition of Coordinates, Kinematics, Orientation and
Alignment

In this paper we study the spatially uniform microstructural response (dynamic
and steady state) of model uniaxial discotic nematics (DNs) subjected to a steady simple

shear flow, of known and constant shear rate y. The microstructure of the DNs is

characterized by a second order tensor, known generally as tensor order parameter Q:
Q=5(nn-18)+ < P(mm - It) . (2.1a)
where the following restrictions apply:

(2.1b,c,d,e)

[S 1%
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~
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Q=Q"; »@Q)=o0; -lss<1; -
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nn=mm=1l-1=1; an+mm+1l =8 = (2.1f,g)

O O e
O = O
- O ©

The uniaxial director n corresponds to the maximum eigenvalue %S, the biaxial
director m corresponds the second largest eigenvalue —£(S — P), and the second biaxial
director | (=nxm) corresponds to the smallest eigenvalue —1(S + P}. The orientation

is defined completely by the orthogonal director triad (n, m, I). The magnitude of the
uniaxial scalar order parameter S is a measure of the molecular alignment along the
uniaxial director n, and is given as S = %(n-Q . n). The magnitude of the biaxial scalar
order parameter P is a measure of the molecular alignment in a plane perpendicular to the
direction of uniaxial director m, and is given by P=%(m-Q-m—l-Q-l). On the

principal axes, the tensor order parameter Q is represented as:

-3(5-P) 0 0
Q = 0 —;—(S+P) 0 2.2)
0 0 38

Details on uniaxial and biaxial scalar order parameters and their interrelations are given
in (Singh and Rey, 1995b). Both § and P are positive for normal disc-like uniaxial

nematic liquid crystals, and this study is restricted to normal discotic nematics.

Figure 2.2(a) is the schematic representation of the steady shear flow. The flow
direction is along the x-axis, the velocity gradient direction is along the y-axis, and the
vorticity axis (neutral axis) is along the z-axis. To visualize and analyze the individual

director (n, m, 1) behavior, we parametrize them as follows (see Figure 2.2b):
a= (a_t, a,, a:) = (sing, cos 8, ,sin g, sin6,,cos @, ) (2.3a)

where a (= n, m, 1) is a unit vector. We use this parametrization to present the results of
uniaxial (m) and biaxial (m, I) directors in a simple and direct way. However, the
directors (n, m, I) form a right hand triad, and equations (2.1f, g) hold. This

parametrization is shown in Figure 2.2(b), where 6,(0 < 6, < 2rx) is the azimuthal angle
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and ¢,(0<¢, <) is the polar angle defining the unit vector a. In terms of angles, the
equator lies in the shear plane and is given as (9_, ¢,) = ([O, 27:], * %), and the north

pole and the south pole are located on the vorticity axis and are givenas ¢, =0and ¢ = 7
respectively. In the unit sphere description the tip of each director lies on the surface of
unit sphere, and defines a trajectory in the presence of flow. In what follows all angles

are reported in degrees.

To characterize the various stable orientation states predicted by the various CEs
(presented below), the dynamics of the uniaxial director n will be employed. Figure 2.3
shows the representative schematics of the stable dynamics (steady as well as periodic) of
the uniaxial director n, under homogeneous simple shear flow, and gives a complete
classification of all the reievant states to the four CEs, discussed below. Figure 2.3
consists of two column, the left one contains in-plane states (i. e., n, = 0) and the right
one the out-of-plane states (i. e., n, # 0). The schematic at the top shows the
representative shear plane and vorticity axis with regard to the unit sphere. The six stable
orientation states are: (a) ITO(1) or in-plane tumbling orbit, (b) IWS(2) or in-plane
wagging state, (c) ISS(2) or in-plane steady state, (d) LRS(2) or log rolling state,
(e) KO(2) or kayaking orbit, and (f) PDO(4) or period doubling orbit. The representative
schematics for the stable biaxial orientations, m and I, are not shown in Figure 2.3. The
number in the parenthesis accompanying the stable state name represents the number of
equivalent states that exist for a particular set of parameters due to the inherent

equivalence of the uniaxial director in spatially homogeneous flows: n = -n.

The top-left schematic represents the in-plane tumbling orbits (ITO) in which the
uniaxial director m tumbles (rotates) on the equator (shear plane). The middle-left
schematic shows the in-plane wagging (oscillatory) states (IWS), in which n oscillates
around a point near y-axis (velocity gradient direction). The uniaxial director n oscillates
inside the regions (-45° < @, < -135°) and (45° < 6, < 135°). There are two equivalent
IWS for n, one near positive and the other néar negative direction of y-axis (velocity
gradient direction). The bottom-left schematic represents the in-plane steady state (ISS)

in which the stable steady state of m is close to the y-axis (velocity gradient direction). A
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detailed analysis of ITO, IWS and ISS, in terms of uniaxial director n and uniaxial scalar
order parameter S, for discotic mesophases under shear flow is given by Farhoudi and

Rey (1993). Biaxiality effects, in terms of (m, 1) and P, are discussed briefly later on in

this paper.
Velocity gradient
—_— V Y direction
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- X Flow
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Vorticity axis
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Figure 2.2: (a) Definition of rectilinear shear flow deformation, (b) coordinate system.

(a) x-axis is the flow direction, y-axis is the velocity gradient direction, and z-axis (normal
outwards to the plane of paper) is the neutral (vorticity) direction. (b) Unit vector angle and unit
sphere description: unit vector a is completely defined by the azimuthal angle 8,(0< 6, <2x)

and polar angle ¢,(0< @, < 7). In terms of unit vector angles, the equator lies in the shear
plane and is given as (9_,¢‘)= ([0,27:'] i%), and the north pole and the south pole are

located on the vorticity axis and are given as @, = 0 and ¢, = wrespectively.
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Figure 2.3: The representative schematics of the stable states of uniaxial orientation n of
DNs under homogeneous simple shear flow predicted by the various CEs. The top schematic
shows the representative shear plane and vorticity axis with regard to the unit sphere. The six
stable orientation states are: (a) ITO(l) or in-plane tumbling orbit, (b) [WS(2) or in-plane
wagging state, (c) ISS(2) or in-plane steady state, (d) LRS(2) or log rolling state, (e} KO(2) or
kayaking orbit, and (f) PDO(4) or period doubling orbit. For details see icxt.
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The top-right schematic shows the two LRS (Larson and Ottinger, 1991) in which
the uniaxial director m is aligned along the vorticity axis. The middle-right schematic
represents the out-of-plane tumbling orbits named Kayaking Orbits (KO) by Larson and
Ottinger (1991). In this periodic state m rotates around the vorticity axis on the surface of
the unit sphere in a close out-of-plane orbit sucﬁ that the orbit stretches more towards the
shear plane near the velocity gradient direction than along the flow direction (see
Figure 2.3e). The bottom-right schematic represents the stable out-of-plane period
doubling orbits (PDO), in which n traverses trajectories, which are eccentric to the
vorticity axis. In one complete orbit the trajectory crosses itself. These stable PDOs
emerge from the shear plane and move away from it with the increase of the flow
strength. More details regarding the LRS, KO and PDO are presented in the section

entitled dynamic simulations.

2.3.2 Governing Equations

The microstructure response of liquid crystalline polymers, as given by Doi’s

mesoscopic nematodynamic theory, is found to be (Doi and Edwards, 1986):
Q=F(Q,Ww)+H(Q) (2.4)

where Vv is the velocity gradient tensor and Q is the Jaunmann/corotational derivative

of Q and is defined as:
Q:‘;—?+(v-v)Q-w-Q+Q-w (2.5)

F(Q, Vv) and H(Q) represent the flow contribution (macroscopic flow field) and the
thermodynamic contribution (Brownian motion) respectively. Comprehensive reviews of
many aspects of this equation, and its modifications and generalizations are available

(Larson, 1988; Marrucci and Greco, 1993; Beris and Edwards, 1994).
In this paper we investigate the following four CEs for DNs:

CE-1: In the first CE for DNs, used by Rey (1995), the rotary diffusivity is assumed to be
independent of Q. The flow term, F,(Q,Vv), in CE-1 contains only a partial
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contribution from Q’ terms, and all the terms of higher order than Q7 are

neglected. The CE-1 is given as follows:
Q=F,(Q,vv)+H(Q) (2.6)

where flow and thermodynamic contribution are given as:

F(Q.Vv)=215A+5[A-Q+Q-A-3(A:Q)5]|-25(Q:A)Q 2.7)
H(Q) =-6D,[(1-4)Q - UQ-Q + U{(Q:Q)Q +4(Q:Q)3}] 28)
where
2
ﬂ=p,_1, p="t | (2.9a,b)
p-+1 h

D, is the preaveraged diffusivity or isotropic rotary diffusivity independent of Q, U is the
nematic potential, and f is the shape factor. To specify the molecular geometry we
approximate the disc-like shape of molecule of discotic mesophases with an oblate
spheroid of aspect ratio p (p < 1) where rj is the length of the shortest and distinct
semiaxis, and r, the length of the two longest and equal semiaxes. The ideal flat disc
corresponds to p = 0 (f =-1), and the sphere corresponds to p =1 (#=0). A and W are
the rate of deformation and vorticity tensor respectively, and for the considered simple

shear flow are given as:

[o7 o0
A={(Wv+wW)= —|7 0 0 , 2.9
yovew) = Ll @290
000
0 7 0
W=J2~(Vv—VvT)=—;— -y 0 0| . (2.9d)
0 00

CE-2: The next modification uses a Q dependent rotary diffusivity, 1_5, , Which results in:

Q=F,(Q,W)+H(Q, D,(Q)) (2.10)
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where

D, =n[1-3:@Q]" @.11)

The flow contribution in CE-2 is the same as that in CE-1, and the modified

thermodynamic contribution in CE-2 (eqn. (2.10)) is given as:
H(Q. D,(Q))= -65,[(1 -4)Q-UQ-Q+U{(Q:Q)Q+ §(Q:Q)5}] (2.12)

CE-3: In CE-3 the flow contribution is modified by including the full contribution of Q*
terms while in the thermodynamic contribution rotary diffusivity is assumed to be

independent of Q (same as in CE-1), and is given by:
Q=F,(Q,Wv)+H(Q) 2.13)
where the modified flow contribution is:
F,(Q.Vv)=34A+A[A-Q+Q-A-3(A:Qp)-

(2.14)
L[a0R+4-0-0+QA-Q+Q @ A- {Q-Q)A¥]

CE-4: The fourth and final CE is similar to CE-3, however, the rotary diffusivity is
assumed to a function of Q. The CE-4 comprises of flow term as that in CE-3 and

thermodynamic term as that in CE-2, and is given as:
Q=F,(Q,Vv)+H(Q, D,(Q)) (2.15)

The flow contribution is not modified further to include higher order terms than
Q? as the original Doi’s theory does not contain terms which would yield, on quadratic
closure approximation, terms with order higher than Q®. Also, the curvature elastic

effects (i.e., Frank elasticity) are neglected in the present investigation.
The CEs in the non-dimensional form along with the dimensionless parameters
are given in Appendix A.

In this paper we analyze and evaluate the CEs using bifurcation analysis as
employed by Farhoudi and Rey (1993b) and Rey (1995a, b). For bifurcation analysis of

the CEs we use AUTO94%, a software for continuation and bifurcation analysis for
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ordinary differential equations (Doedel et al., 1996). The equations solved are a set of
five nonlinear coupled algebraic equations given by the right hand side of the ODEs (A.1
to A4). The long time dynamic response (steady or periodic) was used for the
continuation of stable branch(es), the unstable branches were traced by the subsequent
continuation of the bifurcation points. For continuation the dimensionless shear rate or
Peclet number, Pe, is used as the free parameter. The outputs from AUTO94° are the
components of the steady state tensor order parameter Qg (Pe) which is transformed to
principal form to determine its eigenvalues (to evaluate steady state alignments S and
Pg) and eigenvectors or steady state orientations (s, Mg, k). As AUTO094° was unable
to confirm the stability and sometimes the existence of some branches (periodic or
steady), dynamic simulations are used to augment and confirm the bifurcation results
obtained from AUT094°. For dynamic simulations the set of time dependent
dimensionless equations (presented in the Appendix A) are integrated using an implicit
predictor-corrector first order Euler integration method with adaptable time step. The
implicit predictor corrector method transforms the set of coupled nonlinear ordinary
differential equations into a set of coupled nonlinear algebraic equations. The resulting
algebraic equations are solved using the Newton-Raphson iteration scheme; the predictor
step generates a first guess for iteration which forms the corrector step itself. The
adopted convergence criteria is that the length of the difference vector between the
calculated solution vectors corresponding to two successive iterations is less than 107°.
The transient solution vector resulting from the numerical solutions consists of a set of
five independent components of the tensor order parameter Q) as a function of

¢. The numerically obtained tensor order parameter Q(¢")

dimensionless time ' =|6D,
is subsequently transformed into the principal form, given by equation (2.2), to evaluate

its eigenvalues and eigenvectors.

To compute the dynamic response of CEs, the model discotic nematics are
assumed to be uniaxial (P =0, and m, 1 — undefined; Singh and Rey, 1995b) prior to the
imposition of the shear flow, and the initial conditions in the eigenvalue-eigenvector form

are given as:
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@t=0 n=n,; S=S§,=5,(0) (2.16)

where Seq(U) is the equilibrium uniaxial alignment of normal (S > 0) uniaxial nematic

phase, given by Doi and Edwards (1986):

S =%+% (1—38—UJ (2.17)
For U < 8/3 the stable phase is isotropic, for 8/3 < U < 3 there is biphasic equilibrium,
and for the higher values of uniaxial nematic potential U the phase is uniaxial nematic.
Higher values of U correspond to stronger uniaxial alignment. In this paper we use the
following values of the parameters: U = 6.0, and # = -0.8. The range of initial uniaxial
director orientation, mg, for the dynamic simulations performed in this work is:

0° < a0 < 360°, 5° < dhyo < 85°.

2.4 Results and Discussion

This section describes and discusses the bifurcation and dynamic simulation
results for the four CEs. This section is divided into two major subsections: bifurcation
phenomena, and dynamic simulations; the former is further subdivided into four parts,
one for each CE. In each part we present the computed bifurcation diagrams of the tensor
order parameter Qg as a function of Pe. To facilitate the discussion the eigenvalues and
eigenvectors of the Qs are computed; the eigenvalues of Qg are used to calculate S;; and
P, and the eigenvectors (ngs, Mg, lis) are used to distinguish between the various stable
states predicted by the bifurcation computations for each CE. The following conventions
are used to plot the bifurcation results: solid lines for stable steady state branch intervals,
dot-dash lines for stable periodic branch intervals, short-dash lines for unstable (steady or
periodic) branch intervals, empty squares to mark the bifurcation points, and filled
squares for Hopf bifurcation points. While showing the bifurcation diagrams for various
CEs, the maxima/minima corresponding to the periodic (or oscillatory) states are not
plotted as a function of the continuation parameter Pe. At the Hopf bifurcation point, the
steady state branch exchanges stability with the periodic branch. Locally, close to the

Hopf bifurcation point, the stable periodic orbits encircle an unstable steady state solution
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branch, and the unstable periodic orbits encircle a stabie steady state solution branch. In
both cases, the stable or unstable steady state part of the branch does not necessarily
represent the mean values of the periodic oscillations. Thus the variable values
represented by dot-dash lines (for stable oscillatory/periodic states) do not necessarily
correspond to mean values of the oscillatory dynamic response. In the following
discussion the solution branch means the plotted solution vector (computed components
of Q, or the calculated S5 or Pg) as a function of Pe. The solution branches are
classified into two main categories: in-plane branches (such as [P-1, I[P-2) and out-of-
plane branches (OP-1, OP-2, OP-3), such that the latter always have a non-zero
z-component of m (i. e., n. # 0). The numbers associated with the branch categories
(1e, 1, 2 with IP and 1, 2, 3 with OP) are used merely to differentiate the different
branches belonging to the same category. The two intrinsic changes that may occur in
different intervals of the same solution branch are changes in the stability and in the
nature of the attractor. For example if the attractor loses stability in an interval of Pe, the
corresponding solution branch will also become unstable in the same interval; and if the
nature of the attractor changes in an interval then the corresponding orientation state
represented by the solution branch will also change. The orientation state or simply the
state means the corresponding uniaxial director dynamics, as shown in Figure 2.3,
represented by a particular solution branch. In what follows we discuss only the stable

steady and stable periodic states represented by various solution branches.

2.4.1 Bifurcation Phenomena

2.4.1.1 Constitutive Equation 1

Figure 2.4 shows the components of the steady state tensor order parameter Q. as
a function of Pe. The bifurcation phenomena exhibited by CE-1 is represented by two in-
plane branches, IP-1 and IP-2, and two out-of-plane branches, OP-1 and OP-2. The
bifurcation phenomena shown in Figure 2.4 are summarized in Table 2.1. We note that
here and in the rest of the paper the bifurcation phenomena exhibited by each CE is best

explained by simultaneous consideration of the bifurcation diagrams and the tables.
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There are four rows in Table 2.1, one for each branch defining the stability/instability
intervals with respect to the Peclet number Pe, and the corresponding stable states in the
stable intervals. The in-plane branch IP-1 is unstable for very low Pe, for intermediate Pe
the [P-1 branch is stable in a narrow range and it corresponds to the stable PDO state (see
Figure 2.3f). The stable PDO states emerge on the shear plane but with a very slight
increase in Pe they move away from the shear plane; disappearance of PDOs is through
another Hopf bifurcation, as shown in Figure 2.4, after which IP-1 again becomes
unstable. As PDOs evolve from the shear plane, from the in-plane solution branch IP-1,
they are classified based on the solution branch of their birth. For high Pe, the IP-1 is
stable and corresponding stable state is ISS (see Figure 2.3a). The out-of-plane branch
OP-1 predicts LRS (see Figure 2.3d) for vel;y low Pe, for intermediate Pe the KO
(see Figure 2.3¢) states emerge and remain stable till Pe =~ 3.7 where OP-1 loses stability,
folds at Pe ~ 4, and remains unstable till it extinguishes at Pe = 0. The out-of-plane
branch OP-2 persists in a very narrow range of Pe, and is partly stable. The stable KOs,
emerging from OP-1, extinguish on OP-2 through a Hopf bifurcation. The stable OP-2
exchanges stability with the unstable part of [P-1, thereafter [P-1 exhibits a stable ISS (see
Figure 2.4). The in-plane branch IP-2 is unstable throughout the range of Pe it persists.

Figure 2.5 shows the steady state (a) uniaxial alignment S, and (b) biaxial
alignment Py as a function of Pe. The two stable states on [P-1 are the periodic orbit
PDO (see Figure 2.3f), and the steady state ISS (see Figure 2.3a). For the PDO, S and
P both represent oscillatory stable states oscillating around values below S.q and above
zero respectively. The stable states on OP-1 are LRS (see Figure 2.3d) and KO (see
Figure 2.3e). In case of KO, S and P oscillate around values below Sq and above zero

respectively. In LRS, S decreases and remains below Seq while Py increases.
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Computed steady state components of the tensor order parameter, Q, as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, as predicted by CE-1 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-1 under simple
shear are given by two in-plane solution branches, [P-1 and IP-2, and two out-of-plane solution
branches, OP-1 and OP-2. The summary of stability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.1. For
details see text.
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Figure 2.5: (a) Steady state uniaxial alignment S, and (b) biaxial alignment P as a function
of dimensionless shear rate Pe for U = 6, § = -0.8, predicted by CE-1 for DNs subjected to
simple shear flows. The bifurcation phenomena exhibited by CE-1 are given by two in-plane
solution branches, IP-1 and IP-2, and two out-of-plane solution branches, OP-1 and OP-2. The
summary of stability/instability of the solution branches in various intervals along with the
corresponding stable orientation states is given in Table 2.1. A comprehensive summary of
changes in S and P with Pe for the various stable orientation states is given in Table 2.5. For
details see text.

TABLE 2.1
Summary of Bifurcation Phenomena for CE-1 (equation (2.6))
Branch Stability features
[P-1 O0<Pe<2 | 20<Pe<28 | 2.8<Pe<3’ Pe>3.7
Unstable Stable (PDO) Unstable Stable (ISS)

IP-2 Unstable throughout
OP-1 0<Pe<0.7 0.7<Pe<3.7

Stable (LRS) Stable (KO)
OP-2 Exists for very narrow range of Pe (see text)

Pe: Peclet number; IP-1: in-plane branch 1; IP-2: in-plane branch 2; OP-1: out-of-plane branch [;
OP-2: out-of-plane branch 2; LRS: log rolling state; KO: kayaking orbit; PDO: period doubling
orbit; ISS: in-plane steady state
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The stable state dynamics of m predicted by CE-1 are summarized in Table 2.1,
and can be described as follows: for very low Pe there is only one stable state
corresponding to LRS; for intermediate Pe the main stable state is KO, however, in a
narrow range of Pe PDO also becomes stable along with KO; finally for high Pe the only
stable state is ISS. The stable attractors for CE-1 are the vorticity axis, the kayaking

orbits, the shear plane and the period doubling orbits.

The CE-1 neither predicts ITO and IWS states nor the classical ITO —» IWS and
IWS — ISS transitions. The orientation predictions by CE-1 for shear flows are not
consistent with the predictions of the molecular (Larson and Ottinger, 1991) and
macroscopic theories (Farhoudi and Rey, 1993). Also the LRS state is stable for a very
short range of Pe and is not stable together with ISS as has been observed in the shear
experiments of the representa:ive discotics by Hammouda et al. (1995). Thus CE-1

cannot be employed to govern the microstructure response of discotic mesophases.

2.4.1.2 Constitutive Equation 2

Figure 2.6 shows the components of the tensor order parameter Q, as a function
of Pe. The bifurcation phenomena exhibited by CE-2 are captured by two in-plane
branches, IP-1 and IP-2, and two out-of-plane branches, OP-1 and OP-2. The bifurcation
phenomena shown in Figure 2.6 are summarized in Table 2.2. There are four rows in
Table 2.2, one for each branch, describing the stability/instability of the various intervals
with respect to Pe, and the corresponding stable orientation states. The in-plane branch
IP-1 is unstable for low Pe, for intermediate Pe it exhibits the ITO orientation state
(see Figure 2.3a), which changes to stable IWS (see Figure 2.3b) for high Pe. No ISS
(see Figure 2.3a) is encountered in the analyzed range of Pe (Pe < 52). The out-of-plane
branch OP-1 is stable and corresponds to LRS (see Figure 2.3d) till Pe ~ 14.3 where it
loses stability, folds and remains unstable till it extinguishes at Pe = 0. The in-plane

branch [P-2 and out-of-plane branch OP-2 are unstable throughout.

Figure 2.7 shows the steady state (a) uniaxial alignment S and (b) biaxial
alignment P as a function of Pe. The stable part of IP-1 is periodic in nature and the

corresponding stable states are ITO and IWS for which S and P are oscillatory in
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nature. The only stable state represented by OP-1 is LRS for which S and P follow the

same trends as those stated in CE-1.
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Figure 2.6:  Computed steady state components of the tensor order parameter, Qs, as a

function of dimensionless shear rate Pe for U = 6, f = -0.8, as predicted by CE-2 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-2 under simple
shear are given by two in-plane solution branches, [P-1 and IP-2, and two out-of-plane solution
branches, OP-1 and OP-2. The summary of stability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.2. For

details see text.
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Figure 2.7; (a) Steady state uniaxial alignment S, and (b) biaxial alignment P as a function
of dimensionless shear rate Pe for U = 6, § = -0.8, predicted by CE-2 for DNs subjected to
simple shear flows. The bifurcation phenomena exhibited by CE-2 are given by two in-plane
solution branches, IP-1 and IP-2, and two out-of-plane solution branches, OP-1 and OP-2. The
summary of stability/instability of the solution branches in various intervals along with the
corresponding stable orientation states is given in Table 2.2. A comprehensive summary of
changes in § and P with Pe for the various stable orientation states is given in Table 2.5. For
details see text.

TABLE 2.2
Summary of Bifurcation Phenomena for CE-2 (equation (2.10))
Branch Stability features
IP-1 Pe<7 7<Pe<9 Pe>9
Unstable Stable (ITO) Stable (IWS)

IP-2 Unstable throughout
OP-1 0<Pe<l143

Stable (LRS)
OP-2 Unstable throughout

Pe: Peclet number; IP-1: in-plane branch 1; IP-2: in-plane branch 2; OP-1: out-of-plane branch 1;
OP-2: out-of-plane branch 2; LRS: log rolling state; ITO: in-plane tumbling orbit; IWS: in-plane
wagging state
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The stable state dynamics of n predicted by CE-2 are given by Table 2.2 and are
summarized as follows: for low Pe there is only one stable state corresponding to LRS,
for intermediate Pe LRS along with ITO are the stable states, for high Pe LRS and [WS
are the stable states, and for very high Pe there is only one stable state corresponding to

IWS. The stable attractors for CE-2 are the vorticity axis and the shear plane.

The CE-2 neither predicts ISS under shear for significant range of Pe nor the
IWS — ISS transition, which is not in agreement with the theoretical predictions (based
on molecular and macroscopic theories) and experimental data (Hammouda et al., 1995)
for representative discotic under shear flows. Thus this CE-2 cannot be used to represent

the microstructure phenomena in discotic mesophases, and hence is rejected.

2.4.1.3 Constitutive Equation 3

Figure 2.8 shows the components of the steady state tensor order parameter Qs as
a function of Pe. The bifurcation phenomena exhibited by the CE-3 are represented by
two in-plane branches, [P-1 and IP-2, and three out-of-plane branches, OP-1, OP-2 and
OP-3. The bifurcation phenomena shown in Figure 2.8 are summarized in Table 2.3.
There are five rows in Table 2.3, one for each branch, defining stability/instability of
various intervals with respect to Pe, and the corresponding stable orientation states. The
in-plane branch [P-1 is unstable for very low Pe, for intermediate Pe the [P-1 branch is
stable in a narrow range and it corresponds to the stable PDO orientation state (see Figure
2.3f). The formation and disappearance of these PDOs follows the same phenomenon as
those stated in case of CE-1. The [P-1 is unstable for rest of the intermediate Pe, and for
high Pe it remains stable with ISS (see Figure 2.3c) being the corresponding stable steady
state. The out-of-plane branch OP-1 is stable throughout the considered range of Pe and
the stable state corresponds to LRS (see Figure 2.3d). The in-plane branch IP-2 and the
out-of-plane branches OP-2 and OP-3 are unstable throughout.

Figure 2.9 shows the steady state (a) uniaxial alignment S, and (b) biaxial
alignment P as a function of Pe. The two stable state on IP-1 are the periodic orbit PDO
and the steady state ISS. A Summary of the long time dynamical response of PDO is
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given in Table 2.5. The stable state represented by OP-1 corresponds to LRS for which

Sss and P follow the same trends as those stated in CE-1.
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Computed steady state components of the tensor order parameter, Q, as a

function of dimensionless shear rate Pe for U = 6, § = -0.8, as predicted by CE-3 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-3 under simple
shear are given by two in-plane solution branches, IP-1 and IP-2, and three out-of-plane solution
branches, OP-1, OP-2 and OP-3. The summary of stability/instability of the sclution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.3. For

details see text.
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(a) Steady state uniaxial alignment S;;, and (b) biaxial alignment Py as a function

of dimensionless shear rate Pe for U = 6, # = -0.8, predicted by CE-3 for DNs subjected to
simple shear flows. The bifurcation phenomena exhibited by CE-3 are given by two in-plane

solution branches, IP-1 and IP-2, and three out-of-plane solution branches, OP-1, OP-2and OP-

3. The summary of stability/instability of the solution branches in various intervals along with
the corresponding stable orientation states is given in Table 2.3. A comprehensive summary of

changes in S and P with Pe for the various stable orientation states is given in Table 2.5. For

details see text.

TABLE 2.3
Summary of Bifurcation Phenomena for CE-3 (equation (2.13))
Branch Stability features
IP-1 0<Pe<1.8 |1.8<Pe<29|29<Pe<34} Pe>34
Unstable Stable (PDO) Unstable Stable (ISS)
IP-2 Unstable throughout
OP-1 Pe>0
Stable throughout (LRS)
OP-2 Unstable throughout
OP-3 Unstable throughout

Pe: Peclet number; IP-1: in-plane branch 1; [P-2: in-plane branch 2; OP-1: out-of-plane branch 1;
OP-2: out-of-plane branch 2; OP-3: out-of-plane branch 3; LRS: log rolling state; PDO: period
doubling orbit; ISS: in-plane steady state.
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The dynamics of m predicted by CE-3 are given by Table 2.3 and can be
summarized as follows: for low Pe there is only one stable state corresponding to LRS,
for intermediate Pe the main stable state is LRS, however, in a small range of Pe PDO
also becomes stable state along with LRS, and for high Pe LRS and ISS correspond to the
stable states predicted by CE-3. The stable attractors for CE-3 are the vorticity axis, the

shear plane, and the eccentric period doubling orbits.

The CE-3 neither predicts ITO and IWS states nor the classical ITO — IWS and
IWS — ISS transitions, and hence is not consistent with the predictions of the molecular
(Larson and Ottinger, i1991) and macroscopic theories (Farhoudi and Rey, 1993). Thus
CE-3 cannot be employed to represent the microstructure phenomena in discotic

mesophases, and hence is rejected.

2.4.1.4 Constitutive Equation 4

Figure 2.10 shows the components of the steady state tensor order parameter Qy,
as a function of Pe. The bifurcation phenomena exhibited by CE-4 are captured by two
in-plane branches, [P-1 and IP-2, and three out-of-plane branches, OP-1, OP-2 and OP-3.
The bifurcation phenomena shown in Figure 2.10 are summarized in Table 2.4. Table 2.4
contains five rows, one for each branch, describing the stability/instability of the various
intervals with respect to Pe, and the corresponding stable states. The in-plane branch
IP-1 is unstable for low Pe, for intermediate Pe the [P-1 branch is stable with ITO
(see Figure 2.3a) as the corresponding stable state, which changes to IWS (see
Figure 2.3b) for high Pe. IP-1 is stable and predicts ISS (see Figure 2.3c) for very high
Pe. The out-of-plane branch OP-1 is stable throughout the considered range of Pe and
the stable state corresponds to LRS (see Figure 2.3d). The in-plane branch IP-2 and the

out-of-plane branches OP-2 and OP-3 are unstable throughout.

Figure 2.11 shows the steady state (a) uniaxial alignment S;; and (b) biaxial
alignment P as a function Pe. In IP-1 there is a typical in-plane transition from ITO to
IWS and finally to ISS as predicted by many molecular and macroscopic theories. Here

Sss and P show oscillatory states for ITO and IWS, and steady state for ISS. LRS is the
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stable steady state represented by OP-1 for which variations in S;s and P, with increasing

Pe are the same as discussed before, and are summarized in Table 2.5.
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Figure 2.10: Computed steady state components of the tensor order parameter, Q,, as a
function of dimensionless shear rate Pe for U = 6, § = -0.8, as predicted by CE-4 for DNs
subjected to simple shear flows. The bifurcation phenomena exhibited by CE-4 under simple
shear are given by two in-plane solution branches, IP-1 and IP-2, and three out-of-plane solution
branches, OP-1, OP-2 and OP-3. The summary of stability/instability of the solution branches in
various intervals along with the corresponding stable orientation states is given in Table 2.4.
For details see text.
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(2) Steady state uniaxial alignment S, and (b) biaxial alignment Py as a function

of dimensionless shear rate Pe for U = 6, f = -0.8, predicted by CE-4 for DNs subjected to
simple shear flows. The bifurcation phenomena exhibited by CE-4 are given by two in-plane
solution branches, IP-1 and IP-2, and three out-of-plane solution branches, OP-1, OP-2 and
OP-3. The summary of stability/instability of the solution branches in various intervals along
with the corresponding stable orientation states is given in Table 2.4. A comprehensive summary
of changes in S and P with Pe for the various stable orientation states is given in Table 2.5. For

details see text.

TABLE 2.4

Summary of Bifurcation Phenomena for CE-4 (equation (2.15))

Branch Stability features
[P-1 Pe<45 45<Pe<55|55<Pe<l14| Pe>14
Unstable Stable (ITO) | Stable (IWS) | Stable (ISS)

IP-2 Unstable throughout

OP-1 Pe>0

Stable throughout (LRS)
OP-2 Unstable throughout
OP-3 Unstable throughout

Pe: Peclet number; IP-1: in-plane branch 1; [P-2: in-plane branch 2; OP-1: out-of-plane branch 1;
OP-2: out-of-plane branch 2; OP-3: out-of-plane branch 3; LRS: log rolling state ITO: in-plane
tumbling orbit; IWS: in-plane wagging state; ISS: in-plane steady state.
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The dynamics of n predicted by CE-4 are summarized in Table 2.4 and can be
summarized as follows: for low Pe there is only one stable state corresponding to LRS,
for intermediate Pe LRS along with ITO are the stable states, for high Pe LRS and IWS
are the stable states, and for very high Pe there are two stable states corresponding to LRS
and ISS. The stable attractors for CE-4 are the vorticity axis and the shear plane.

The CE-4 predicts the major and essential stable steady and periodic states along
with the classical ITO — IWS and IWS — ISS transitions as predicted by macroscopic
(Farhoudi and Rey, 1993) and molecular theories (Larson and Ottinger, 1991). The
multi-stabilities of the various stable states and their phase diagrams are qualitatively the
same as those shown by Larson and Ottinger (1991). Moreover the simulations results of
CE-4 under shear are consistent with the experimental results on representative discotics
under shear (Hammouda et al. 1995). Also, as mentioned in the introduction, the
preferred orientation of the disc-like molecules (close to the walls of slit) of discotic
mesophase pitches, flowing in a thin rectangular channel, corresponds to LRS. Thus
CE-4 can be considered as the most appropriate choice for describing the microstructural
response of the discotic mesophases. The rélevance of the predicted microstructure
response in discotic mesophase pitches in explaining some of the observed

microstructural features in mesophase carbon fibers will be established 1n future work.

2.4.2 Dynamic Simulations

As mentioned above the dynamic simulations were employed to confirm the
stability of the various branches obtained by bifurcation analysis of the various CEs under
shear flows. The results of the bifurcation analysis are organized and classified in terms
of the uniaxial director m dynamics, given in Figure 2.3, but a more complete
characterization must include the remaining two eigenvectors.  Moreover, the
maxima/minima corresponding to the periodic states are not plotted either in terms of
director triad (n, m, I) or in terms of alignments S and P. Hence to further understand the
long time dynamic response of periodic states in terms of either director triad (n, m, 1) or

alignments S and P, dynamic simulations were performed.
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TABLE 2.5
Summary of long time dynamic response of stable states predicted by four CEs for DNs under shear flows for U =6, = -0.8
State Long time dynamic response of
type uniaxial director n biaxial director m biaxial director | | uniaxial alignment S| Biaxial alignment P
Pmss = 90° dss = 90°
LRS thss = 0° 90° < Opss < 135° 0° < Q< 45° 0 < 8 < Seq 0<Ps<1
Pe:Onss—90° or 270° | PeT:8—>0° or 180° Pel: S Pet: P 1T
én = (0°,90°) &m = (0°, 180°) @ = (0°,180°) Oscillates Oscillates
KO 6a = [0°, 360°] Gm = [135°, 225°] 4 = [45°, 135°] 0<S<8q 0<P<i
(out-of-plane orbits) (out-of-plane orbits) | (out-of-plane orbits)
Pel: L1, ¢,—>~90° Pel: LY Pel: L PeT: L1, AT Pet:Li AT
& = (0°, 90°) &m = (0°, 90°) @& =(0° 90°)
PDO 6, = [45°, 135°] O = [135°, 225°) 4 = [45°, 135°] Oscillates Oscillates
(out-of-plane orbits) (out-of-plane orbits) | (out-of-plane orbits) 0<85< 8,4 0<P<1
Pel: LT, 4l Pel: LT, Al Pel: LT, 44
& =90° Oscillates around Seq|  Oscillates around
ITO 6y = [0°, 360°] same as n dss = 0° ' values above 0
(rotates in shear plane) (since n.Lm) pPel:L1,471 pet: 1,471
pel: L
@ = 90° @ = 90° Oscillates Oscillates
IWS 6. = [45°, 135°] Om = [135°, 225°] Ass = 0° 0<8< 8, 0<P<]
(oscillates in shear plane) PeT: LV, 41
Pel:Li,41 Pl 13,47 Pet: L1, 47
fhss = 90° Bmss = 90° 0 < S5 < Sy 0< P <1
ISS 90° < Gpss < 135° 0° < Opes < 45° hss=0°
Pel:6,,—>90° or 270° | Pe’:Gns—>0° or 180° Pel: ST Pel: P {

L: Period of oscillations; 4: Amplitude of oscillations; Pe: Peclet number; ¢, (a = n, m, 1): director polar angle; 6, (a = n, m, l): director azimuthal
polar angle; LRS: log rolling state; KO: kayaking orbit; PDO: period doubling orbit; ITO: in-plane tumbling orbit; IWS: in-plane wagging state;

ISS: in-plane steady state; subscript “ss™: steady slate; subscript “‘eq”: equilibrium value
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Here we present the main features of the director triad (n, m, I) and alignment
(S, P) computed by dynamic simulations corresponding to all the CEs. The main
dynamic features of the uniaxial and biaxial orientation and alignments are summarized
in Table 2.5, which contains 6 rows, one for every stable state represented in Figure 2.3,
and five columns to describe the long time dynamics of the director triad (n, m, 1) and
alignment (S, P). All the symbols appearing in the table are defined in the captions. The
superscript “ss” indicates that the corresponding long time dynamic solution is a steady
state, and in this case the range of steady state orientation and alignment along with the
asymptotic values are given. For example, LRS is a steady state, the uniaxial director n
aligns along the vorticity axis (6, = 0°), the biaxial director m aligns in the region
(90° < Bnss < 135°) in the shear plane (gnss = 90°), and for very high Pe it approaches its
asymptotic orientation (6nss—>90°). For periodic states (ITO, IWS, KO and PDO) the
range of oscillation along with changes in amplitude, 4, and period of oscillations, L, with
increasing Pe is given. For example, [IWS the uniaxial director oscillates in the shear
plane (¢, = 90), the amplitude of oscillations is within the regions (&, = [45°, 135°]), and
as Pe increases the amplitude as well as period of oscillations decreases;
PeT: L1, A . In partial summary Table 2.5 gives a comprehensive data base of all the
characteristics of all the stable states predicted by all the CEs, investigated in this paper,
under for shear flow at any arbitrary shear rate for a nematic discotic phase composed of
molecules with a shape factor of £ = -0.8. Although not discussed in the paper, it was

found that as the shape factor S increases the tendency of DNs to tumble increases.

2.5 Conclusions

Out of four proposed CEs, an appropriate CE (eqn. (2.15)) has been selected for
discotic mesophases by implementing an iterative process that is based on a set of criteria
that consists of theoretical results and experimental data. The selected CE is able to
capture all the experimental features and is consistent with the theoretical results, and will
be used to develop the fundamental understanding of rheology of discotic mesophases in
general and that of carbonaceous mesophase pitches, used in the manufacturing of

mesophase carbon fibers, in particular.
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The selected CE (eqn. (2.15)) is found to predict, qualitatively, almost all the
necessary orientation features (except KO in case of Larson and Ottinger, 1991) based on
the molecular theories, and therefore the terms with order Q? are sufficient to construct an
appropriate CE for DNs. A complete summary of all stable states (periodic or steady) and
the corresponding stable intervals in terms of Pe is presented in Table 2.6. The last row
of Table 2.6 contains information regarding the absent orientation modes in each CE.
CE-4 does not predict the out-of-plane orientation states KO or PDO (see Figure 2.3e, f).
The former orientation state KO is shown to be stable only in a very narrow range by
Larson and Ottinger (1991), whereas the latter PDO has never been predicted or observed
earlier, and hence this deficiency apparently does not impart a serious flaw on the
predictions of CE-4. Moreover, though no molecular simulation for DNs subjected to
various flows exist, the selected constitutive equation, i.e. CE-4, when adopted to rod-like
nematics develops the same phenomenology as shown by Larson and Ottinger (1991),

thus lending strong support to the validity of the CE-4.

The bifurcational analysis reveals that the various proposed CEs predict a great
variety of dynamical microstructural behavior for discotic mesophases, and show muliti-
stabilities of various orientation modes through a series of complex bifurcations.
Therefore, the theoretical investigation of rheology of these materials requires advanced
mathematical tools such as bifurcation methods. The present investigation found that the
bifurcation analysis is an effective but not sufficient tool for similar complex problems.

Dynamic simulations must always be performed to check the stability of the various

states.

Table 2.7 contains a complete summary of all the stable attractors for the four CEs
investigated in this paper. All the presented CEs when subjected to simple shear flows
predicted the shear plane and the vorticity axis as major stable attractors, whereas
kayaking orbits and period doubling orbits are stable attractors only in those CEs which
are based on Q independent diffusivity. Moreover, the CEs with the Q independent
diffusivity do not predict the in-plane periodic stable states (such as ITO and IWS), which

is not in agreement with the predictions of molecular theories (Larson and Ottinger,
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1991). Hence the constant (Q independent) diffusivity is not an appropriate assumption

while selecting a CE for nematics.

TABLE 2.6
Summary of the stable states predicted by four CEs

Microstructure Constitutive Equation
State type CE-1 CE-2 CE-3 CE-4
LRS 0<Pe<0.7 | 0<Pe<l14.3 Pe>0 Pe >0
KO 0.7<Pe<37 — — —
PDO 20<Pe<28 — 1.8<Pe<29 —
ITO o 7<Pe<9 — 4.5<Pe<5.5
IWS —_— Pe>9 — 5.5<Pe<14
ISS Pe>3.7 — Pe>34 Pe> 14
ITO ISS ITO KO
Stable states not IWS KO IWS PDO
predicted PDO KO
PDO

Pe: Peclet number; LRS: log rolling state; KO: kayaking orbit; PDO: period doubling orbit;
ITO: in-plane tumbling orbit; IWS: in-plane wagging state; ISS: in-plane steady state

TABLE 2.7
Summary of various stable attractors for four CEs
Type of main attractors CE-1 CE-2 CE-3 CE-4
Shear plane Yes Yes Yes Yes
Vorticity axis Yes Yes Yes Yes
Out-of-plane kayaking Yes - No No No
orbit
Out-of-plane period Yes No Yes No
doubling orbit
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ICHAPTER <3

Microstructure Constitutive Equation for
Discotic Nematic Liquid Crystalline
Materials

Part II: Microstructure-Rheology Relations

In the previous chapter a microstructure constitutive equation (CE) of discotic
mesophases was formulated by taking into account the full microstructural characteristics.
In this chapter the hydrodynamic constitutive equation or stress tensor equation
complimenting the microstructure governing equation for discotic mesophases is
formulated from first principles. The shear rheological properties predictions are
presented and assessed within the context of nematorheology. The predicted apparent
shear viscosity of discotic mesophases is qualitatively similar to that reported in the
literature (Fleurot, 1998). The present work is the first attempt to establish the relations
among rheological material functions, flow-induced microstructure, processing
conditions, and material properties. A sufficiently number of distinguishing features have
been identified that are specific to the discotic nature of the nematic phase, and augment
the number of quantitative and qualitative differences between discotic and rod-like

nematics that had been noted in the literature (Farhoudi and Rey, 1993c¢).

! This chapter appeared as an original article in Rheological Acta 37(4) p374-386 (1998).
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3.0 Abstract

The rheological material functions predicted by a previously selected constitutive
equation (CE) for discotic mesophases are presented. The predicted relations among
rheological properties, shear-induced microstructure, processing conditions and material
parameters of discotic mesophases are characterized and discussed. The first and second
normal stress differences corresponding to planar (i.e., 2-D orientation) microstructure
mode of discotic nematics are found to be qualitatively similar to those for rod-like
nematics despite the existing differences in flow-orientation characteristics. The first
(second) normal stress difference for discotic mesophases corresponding to non-planar
(i.e., 3-D orentation) microstructure mode is always positive (positive or negative
depending on viscous effects); and is found to be due to flow-induced biaxiality. The
effect of change in nematic potential (or temperature) on rheological properties of discotic
mesophases is also presented. The apparent shear viscosities for various microstructure
modes and material properties are also presented and shown to agree qualitatively with
the available experimental data. Though only restricted validation of the predicted results
with the actual experimental data of discotics is possible, the present study provides
essential theoretical feedback to the on-going experimental work being pursued in

understanding the processing behavior of mesophase pitches.

3.1 Introduction

Carbonaceous mesophases or mesophase pitches are an important class of low
cost precursor materials that are used to manufacture high performance mesophase pitch-
based carbon fibers which posses excellent mechanical and thermal transport properties
(Singer, 1985; Peebles, 1994; Edie et al. 1994). These fibers are used to produce a new
generation of composite materials that are revolutionizing the space, aircraft, electronics
and automotive industries. The superior propérties of these mesophase carbon fibers
depend on the textures that evolve during the spinning process of mesophase pitches.
During the spinning process, the mesophase pitches are subjected to various flow
deformations and thermal stresses which result in a variety of fiber textures under

different processing conditions (Oya and Otani, 1986; Mochida et al., 1993; Lafdi et al.
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1993; Fatholahi and White, 1994; McHugh and Edie 1995, Fleurot, 1998). However,
their flow behavior under such complex external fields is not known, and that knowledge
is essential for their further development. Though the process optimization and texture
selection may be achieved by trial and error, the variability of mesophase feed stocks and

variations in process equipment geometry requires the use of generalized principles.

n
S
S T

Figure 3.1: Definition of director orientation of a uniaxial discotic nematic liquid crystalline
material. The director n is the average orientation of the unit normals to the disk-like molecules
in a discotic nematic phase.

Mesophase pitches consist of poly-aromatic, flat, disk-like molecules that are rigid
enough to display long range orientation order or liquid crystallinity, and tend to adopt a
uniaxial discotic nematic phase, Np (Chandrashekhar 1981, 1992; Destrade et al. 1981).
In the discotic nematic phase, the unit normals to the flat disk-like molecules orient more
or less along a common direction called (uniaxial) director or orientation n, as shown in
Figure 3.1. The average degree of alignment of the unit normals to the disk-like
molecules along the director n is defined by the (uniaxial) scalar order parameter or
alignment S. This paper deals with rheology of discotic nematics that are uniaxial at rest
but are biaxial under imposed flow. The effect of flow induced biaxiality of uniaxial
discotic nematics under shear and extensional flows have been extensively explored

(Singh and Rey, 1995, 1998; Rey, 1995).

It is well established, through extensive experimental measurements (Baek et al.,
1993, 1994) and theoretical simulations (Marrucci and Maffetone, 1989; Larson and
(jninger, 1991; Marrucci and Greco, 1993; Beris and Edwards, 1994; Andrews et al.,

1995) that liquid crystalline materials orient in the presence of magnetic, electric or flow
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fields. This inherent property of liquid crystalline materials is exploited to manufacture
highly oriented materials with superior properties that are not possible to achieve from
their isotropic counterparts (Singer, 1985; Peebles 1994; Edie et al., 1994; McHugh and
Edie, 1995). The rheology and flow properties of liquid crystalline materials are crucial
to their end use since it is their flow-induced alignment that provides high strength and
high modulus in the final product. It is well established that the rheology of liquid
crystalline materials strongly depends on their internal microstructure along with external
variables such as processing conditions and geometry. Numerous experimental (Baek et
al,, 1993, 1994) and theoretical (Marrucci and Maffetone, 1989; Larson and Ottinger,
1991; Marrucci and Greco, 1993; Andrews et al., 1995) studies have been performed
relating the rheology of the rod-like nematics with their internal microstructure.
However, it has been noted that the same is lacking for discotic nematics. In this work
modeling and simulation is used to improve the current understanding of the rheology-

microstructure relations for discotic mesophases.

Next we summarize some known important differences and similarities between
rod-like and discotic nematics with regard to rheology-microstructure relations. Volovik
(1980), and Carlsson (1982, 1983) studied the rheology of aligning low molecular weight
uniaxial discotic mesophases and noted the particular material parameters that are
affected in algebraic sign by molecular shape. The important difference in algebraic sign
and magnitude of the material parameters for rod-like and discotic mesophases was found
to be due to the fact that the former orient their largest molecular dimension along the
director whereas the latter orient their shortest dimension along the director. The
orienting properties of uniaxial nematics subjected to shear flows are governed by the
sign and magnitude of the tumbling function A, given by the negative ratio of the
irrotational torque coefficient (2) and the rotational viscosity () such that for aligning
disks (rods) 4 <—1 (A>1) and for non-aligning disks (rods) -1<A<0 (0<A<l1).
Farhoudi and Rey (1993c) focused on the orienting properties of non-aligning uniaxial
discotic nematics in simple shear flows and by using a macroscopic theory showed that
the uniaxial director m tumbles, oscillates or aligns according to the flow strength, and the

transitions among various regimes are similar to that predicted by molecular theories for
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rod-like nematics (Marrucci and Maffetone, 1989; Larson and Ottinger, 1991). In a
previous study, Singh and Rey (1998) presented the complete bifurcation phenomena
along with the flow-induced biaxiality for uniaxial discotic mesophases under shear flows
as predicted by a macroscopic theory. Along with the planar microstructure modes, the
existence of non-planar microstructure mode (log-rolling state), similar to that predicted
by Larson and Ottinger (1991) for rod-like nematics, was shown to be stable for discotics
as well (Singh and Rey, 1998). The shear-induced microstructure features, both steady
and periodic, are different in rod-like and discotic nematics. For example in discotic
(rod-like) nematics under simple shear flows the director n rotates in the shear plane in
the low shear rate tumbling regime during which it slows down near the velocity gradient
(flow) direction, oscillates around velocity gradient (flow) direction in the intermediate
shear rate wagging regime, and aligns near velocity gradient (flow) direction in the high

shear rate steady state regime.

The relations among the planar microstructure phenomena and the corresponding
rheological properties of rod-like nematics are well explained and documented in the
literature (Marrucci and Maffetone, 1989; Larson, 1990; Marrucci and Greco, 1993;
Farhoudi and Rey, 1993a, 1993b; Baek et al. 1994). However, similar studies are entirely
absent for discotic nematics, and are essential for their continuing development. The
effect of different orientation features in discotic nematics, from those in rod-like

nematics, on their rheological properties has not been explored so far.

Next we present a brief summary of the known rheological properties of rod-like
nematics. The Doi’s theory predicts two sign changes in the first and second normal
differences (N, and N,) for rod-like nematics under simple shear flows (Larson 1990;
Baek et al., 1993, 1994; Marrucci and Greco, 1993). For low shear rates or in the
tumbling regime N; (V) is positive (negative), for intermediate shear rates or in the
wagging regime N, (V,) is negative (positive) due to the low values of order parameter,
and finally at high shear rates or in the steady state regime the order parameter increases
and N; (V) again becomes positive (negative) (Larson 1990; Baek et al., 1993, 1994,
Marrucci and Greco, 1993). Larson and Ottinger (1991) performed the three dimensional

orientational calculations and predicted the non-planar stable states (kayaking state and
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log rolling state) in which the corresponding normal stress differences (N, and N,) were
found to be positive, comparable in magnitude with those for the planar orientation mode,
and increasing with shear rate at low shear rates. Andrews et al. (1995) worked with a
modified Doi’s theory (using a quadratic closure approximation) and predicted the first
sign transition in N, however, their modified theory was unable to predict the second
sign change in N, and both of the sign transitions in Ny. Farhoudi and Rey (1993b, ¢) by
using a macroscopic theory for LCP, which is similar in spirit to that used by Andrews et
al. (1995), successfully predicted the two sign changes in N, and N,, for rod-like
nematics, by choosing proper material parameters that resulted in a tumbling function 4

with a local minima (Farhoudi and Rey, 1993a).

In the previous paper (Singh and Rey, 1998), a set of microstructure constitutive
equations (CEs) were formulated for discotic mesophases, and their microstructure
response to simple shear flows were simulated. Out of the set, a CE that was consistent
with known experimental data and theoretical predictions was selected. In this paper the
predicted rheological response and properties of the selected CE of discotic mesophases
will be presented. The main objective is to develop fundamental relations among the
rheology and internal microstructure of discotic mesophases. The emphasis is to present
the shear induced rheological properties of discotic mesophases and their relations with
internal flow-induced microstructures, processing conditions, and material properties.

The particular objectives of this paper are to:

1. Formulate an expression for the stress tensor corresponding to the already selected

microstructure constitutive equation (Singh and Rey, 1998) for discotic nematics;
2. Characterize the relations among rheology-microstructure modes;
3. Characterize the relations among rheology-processing conditions;
4. Characterize the relations among rheology-material parameters.

The organization of this paper is as follows. In the following section we present
the governing equations that describe the microstructural response of liquid crystalline
materials and derive the corresponding stress tensor equation. Next, we present a

classification of discotic mesophases based on their microstructure behavior under shear
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flows. Subsequently, the simulated results are used to characterize the relations among
shear rheology and microstructural modes, processing conditions, and material

parameters. Finally, conclusions are presented.

3.2 Governing Equations

The microstructure of discotic mesophases is characterized by a second order

tensor, known generally as the tensor order parameter Q:
Q=5(nn-18)+% P(mm-1) (3.1a)

where the following restrictions apply:

Q=Q", mQ)=0, -+t<s=<1, -t<pP< i, (3.1b,c,d.€)
1 00

n-n=mm=1-1=1, sm+mm+U0=6 =|01 0 (3.1f,g)
0 0 1

The first eigenvector of Q, known as the uniaxial director n, corresponds to the

largest eigenvalue 4§, the biaxial director m corresponds to the intermediate eigenvalue
-4(S - P), and the second biaxial director 1 (=nxm) corresponds to the smallest
eigenvalue — %(S + P). The orientation is defined completely by the orthogonal director
triad (n, m, I). The magnitude of the uniaxial alignment S is a measure of the molecular
alignment along the uniaxial director m, and is given as § = %(n Q- n). The magnitude
of the biaxial alignment P is a measure of the molecular alignment in a plane
perpendicular to uniaxial director n, and is givenby P=$(m-Q-m—1-Q-1). Details on

uniaxial (S) and biaxial (P) alignments and their interrelations are given in (Singh and
Rey, 1995). The present work is restricted to normal nematics (0< S <1, 0< P<I1).

The order parameter Q is assumed to be spatially uniform.

Figure 3.2(a) shows a schematic of homogeneous steady shear flow. The flow
direction is along the x-axis, the velocity gradient direction is along the y-axis, and the

vorticity axis (neutral axis) is along the z-axis. The shear plane is subdivided into four
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quadrants as shown in Figure 3.2(b). The unit sphere description of the director triad
(n, m, I), shown in Figure 3.2(c), where:

a= (ax, a, a:) = (sin g, cosd,,sin @, sin 6,,cos ¢, ) (3.2)
a (= n, m, l) is a unit vector given completely by azimuthal angle 6,(0< 6, <2r), and
polar angle ¢,(0<¢, < ). Interms of angles, the equator lies in the shear plane and is
given as (9., ¢,) =([O, 27} i%) and the north pole and the south pole are located

along the vorticity axis and are given by & = 0 and @ = 7 respectively. We use this
parametrization to present the results of uniaxial (n) and biaxial (m, I} orientations in a

simple and direct way. In the rest of the paper all angles are reported in degrees.

3.2.1 Constitutive Equation

The microstructure response of liquid crystalline polymers, as described by Doi’s

mesoscopic nematodynamic theory (Doi and Edwards, 1986), is given as:
Q =F(Q,w)+H(Q, D,(Q)) (33)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Q and is

defined as:
Q:-Z—?-+(VoV).2-W-Q+Q~W ' (3.4)

F(Q,Vv) and H(Q, l-j,(Q)) represent the flow and the short range elastic contributions

respectively, and are given as (Singh and Rey, 1998):

F(Q.Vv)=3pA+B[A-Q+Q-A-3(A:Q)5]-

35
1A[A:QQ+A-Q-Q+Q-A-Q+Q-Q-A- {Q-Q}A )] -

H(Q, D,(Q)=-6D,[(1-4U)Q-UQ-Q +U{(Q:QR +4(Q:Q)}] (3.6)
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Velocity gradient
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‘—b
X FIOW
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Z
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Figure 3.2: (a) Definition of simple shear flow deformation, and (b) coordinate system. The
x-axis is the flow direction, the y-axis is the velocity gradient direction, and the z-axis (out of the
plane of the paper) is the vorticity axis. (c¢) Unit sphere description of director triad (m, m, I).
Unit vector a (a = n, m, l) is completely defined by the azimuthal angle 6,(0< 6, <27) and

the polar angle ¢,(0<¢, < 7). In terms of unit vector angles, the equator lies in the shear
plane and is given as (0,,¢,)=([0,27r] i%) , and the north pole and the south pole are

located on the vorticity axis and are given by ¢, = 0 and ¢, = wrespectively.
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where D, = D,[l -3 (Q:Q)]_Z, ,B=p2—l, p=LL- , (3.7a,b,c)
2 pi+l L
[0 70 [0 7o
A=t(@v+wT) = Iy 0 0], W=3(Fv-wT)= S |-7 0 0].G7de)
000 0 00

D, is the averaged diffusivity, D, is the preaveraged diffusivity or isotropic rotary
diffusivity of an hypothetical isotropic fluid under same conditions, U is the nematic
potential, and £ is the shape factor. To specify the molecular geometry we approximate
the disk-like shape of molecule of discotic mesophases with an oblate spheroid of aspect
ratio p (p < 1) where rj is the length of the shortest and distinct semi axis, and r; the
length of the two longest and equal semi axes. For an ideal flat disc p =0 (f=-1), for a
sphere p = 1 (f=0), and for infinitely long rod p - © (8=1). A and W are the rate of
deformation and vorticity tensor respectively for the considered simple shear flow, and y

is the constant shear rate.

3.2.2 Stress Tensor

The extra stress tensor t’ for liquid crystalline materials is given by the sum of
symmetric stress tensor t° and anti-symmetric stress tensor t°. The symmetric visco-
elastic stress tensor t° for thermotropic liquid crystals is expressed as a sum of viscous

stress contribution t' and elastic stress contribution t° (Doi and Edwards, 1986; Larson

and Doi, 1991; deGennes and Proust, 1993; Larson, 1996) as:
tt =t + ¢ tt =t +t (3.8a,b)
In the absence of spatial gradients, the tensor H-Q (H is given by equation(3.6))

is symmetric with the consequence that the antisymmetric stress tensor t° vanishes
(Farhoudi and Rey, 1993a). In this paper we assume that Q is spatially homogeneous,
therefore t' =t*. The symmetric contribution of the extra stress tensor, t°, is given by
equation (3.8b) as a sum of elastic t° and viscous t* stress contributions. The

expression for the elastic stress contribution t°, derived using the standard equation of
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fluxes (t’, Q) in terms of forces (A, H) (deGennes and Proust, 1993), for the presented
CE (equation (3.3)) is:

= (xT)[ -3 pH - g {H-Q+Q-H-3(H:Q)}] +

(cxT) 1p[(H:Q)Q+H Q-Q+Q H-Q+Q-Q-H- {Q-Q}H}5] (3.9)

where
H(Q)=$ H(Q,B,(Q))=- [(l—-JLUp—UQ-Q+U{(Q:Qp +1(Q:Q) }] (3.10)

and c is concentration of molecules per unit volume, x the Boltzmann constant and 7 the

absolute temperature. Equation (3.9) is similar to that proposed by Andrews et al. (1995).
The viscous stress contribution t* is given by:
t' =vA+1{Q-A+A-Q-%(Q:A)p}+

(3.11)
4 [AQR+A-Q-0+Q-A-Q+Q-Q A+ {Q-Q)A}]

where v;, v, and v, are viscosity coefficients. Mapping the above expression with that

given in Doi and Edwards (1986), Larson and Doi (1991) and Larson (1996), in which the

viscous contribution to stress tensor contains contributions from Q? terms only, we arrive

at:

t" =,u[(A:Q)Q+A-Q-Q+Q-A-Q+Q-Q'A+{(Q-Q):A}S] (3.12)
where vy =v, =0 and v, = 4. Combining equations (3.9) and (3.12), the symmetric
extra stress tensor t° is given by:

= & Pe[(AQR+A-Q-Q+QA-Q+QQ-A- {Q-Q)Ap| +

[F3pH- 5 {#-Q+Q H-3(H:Q)}+ (3.13)
L [(H:Q)Q+H-Q-Q+Q-H-Q+Q-Q-H— {(Q-Q)H}S]]

(crcT )

6D, . . . . : . v
where & = 'u—T’ is a dimensionless constant representing the ratio of the viscous ¢t
cK

to the elastic t° stress contributions, previously introduced by Larson (1996);
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Pe = —6—},—— is Peclet number or the dimensionless shear rate, and A is dimensionless
r

rate of deformation tensor. At low shear rates elastic stress contributions are proportional

to 1/D, whereas the viscous contributions are proportional to x (Larson, 1996).

The first normal stress difference (N)), the second normal stress difference (N-),

and the apparent shear viscosity ( 77 ) are non-dimensionalized as follows:

. P o

N = C’Z'T= o (3.14a)
. £o—t

N2=C’Z;= o (3.14b)
. I

n 1 6D, Ly (3.14c)

- (cxT) Pe CoxT ¥
where the superscript “*”” represents the corresponding dimensionless variable. For
parametric studies three values of &, (=0.001, 0.1, 0.2) are used. The calculated
numerical values of N and N, are scaled with their corresponding values at Pe — «
and & = 0.2, whereas 7" is scaled with the zero shear viscosity, i.e.. Pe — 0 and

£, =0.2. The normalized values are given as:

Ny o = T —— il (3.15a)
Nl. Pe—rw, ,‘,:0.2‘

N3 rom = Ny (3.15b)
Nz. Pe—sm, {;,,:o,zl

Tromn = T | (3.15¢)

Mpe-s0, £,-02

for the considered cases,

NI. Pe—a, §,=0.2| and I”Pe-bo. & =02

The values of IN,_p,_,,,_.;:o_z

discussed later, are given in Table 3.1. For simplicity, we drop the subscript “norm” for

the scaled numerical values in the following discussion.
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Table 3.1
Normalized Asymptotic values of Rheological Functions
N, 1. Pe—res, £,=02 N 2. Pe—sa, £,=0.2 ”;e—.o, £=02
U=6,5=-08
Planar microstructure mode -0.4563 0.4499 0.05027
Figure 3.4
U=6,5=-0.8
non-Planar microstructure mode 0.04144 0.06847 0.02182
Figure 3.5
U=3.5,4=-08
Planar microstructure mode 0.0433 -0.0426 0.016
Figure 3.6

3.3 Classification of Discotic Mesophases based on Microstructural

Phenomena

Depending on the value of the tumbling function A there are two different
microstructure modes predicted by the presented theory for discotic mesophases in steady
simple shear flows. Similar modes are predicted by macroscopic theories presented by
Farhoudi and Rey (1993a, 1993b) for uniaxial rod-like nematics, but that study was
restricted to the shear plane. The tumbling function A for the present theory is given by
(Tsuji and Rey, 1997):

e (2+5-1s*+pP-LpP?) 116
=f (3s-p) ' (3.16)

Figure 3.32 shows the tumbling function, 4, as a function of both the uniaxial §
and biaxial P alignments for discotic nematics with shape factor f=-0.8. The tumbling
function A, is negative (positive) for all values of biaxial alignment P < 3§ (P > 3S) with a
discontinuity at P = 3S. The A curve intersects the horizontal plane 4 =-1 at some
critical value of uniaxial $*(U*) and biaxial P* alignments for a given shape factor 3.

From equation (3.16) we have:

(2+S" 18"+ p* —%P“Z)

s F) (3.16a)

-1=48
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For example for #=-0.8 and P* =0, §* = 0.66 (see Figure 3.3c).

The (P - §) phase plane for nematics (Singh and Rey, 1995) in terms of § and P
based on the restriction on the eigenvalues of order parameter Q is shown in Figure 3.3b.
As mentioned above this study refers only to normal nematics, ilic sign of the tumbling
function, A, for normal discotics is marked in Figure 3.3b. The discontinuity occurs near
the uniaxial nematics line where the largest and the intermediate eigenvalues of Q are
equal. Furthermore, in this study we are restricted to the part of first quadrant of
alignment (P - S) phase plane where the tumbling function A is negative. In the region of
negative A, as the shape factor £ increases the curves move upwards. This is shown in
Figure 3.3c in which A is plotted as a function of uniaxial alignment S at a fixed biaxial
alignment (P = 0) for different shape factors £ = -0.9 (full line), -0.8 (dash line) and -0.7
(triple dot-dash line). In the present model the tumbling function A monotonically
increases with increasing § in the range [0, 1] for all values of £, and has no local maxima

as shown in Figure 3.3c.

Based on the nematic potential U value, discotic nematics with a given shape
factor B show different microstructure phenomena, and are classified as aligning (U < UF)
or non-aligning (U > U*) discotic nematics. As the shape factor J increases, the 4 curve
moves up and intersects the plane (A4 =~1) at lower $* (U"), thus decreasing (increasing)

the range of U at which discotic nematics show aligning (non-aligning) characteristics.

3.3.1 Simple Aligning Discotics

Discotic nematics for which the director n reaches a unique stable steady
state orientation within the shear plane (n, = 0) for all magnitudes of Pe are termed
aligning discotics, and are characterized by A (S¢q, P =0, ) <-1. Aligning discotics do
not show any stable non-planar (n, # 0) orientation mode under simple shear flows. The
uniaxial director m aligns close to the velocity gradient direction in the second or fourth
orientation quadrant. The angle between the steady orientation of m and the velocity

gradient direction decreases with increasing Pe, and tends to zero as Pe — .
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Figure 3.3: (a) Tumbling function A as a function of uniaxial S and biaxial P alignments for
P = -0.8. The A surface monotonically decreases (increases) for P < 3§ (P > 35), with a
discontinuity at P = 3S. In discotic nematics planar steady state exists only if A <-1. (b) The
complete P - S phase plane showing regions where A is positive or negative. This study is
restricted to the normal discotic nematics for alignments values for which A is negative. (c) A as
a function of uniaxial alignment S for P = 0, and for the shape factor £ = -0.9 (full line), -0.8
(dash line), and -0.7 (triple dot-dash line). The A curves move upwards and towards left with
increasing S, diverge as § — 0, and intersect the line 4 = -1 at lower 5"
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3.3.2 Non-Aligning Discotics

Discotic nematics for which all the three stable planar and one stable non-planar
orientation states exist are classified as non-aligning discotic nematics, and are
characterized by A (Seq, P =0, ) > -1. The microstructural phenomena predicted by the
CE for non-aligning discotics under shear flows have been presented previously (Singh
and Rey, 1998), and is summarized in what follows. The predicted stable orientation
modes, in terms of uniaxial director n dynamics are: (a) ITO or in-plane tumbling orbit,
(b) IWS or in-plane wagging state, (c) ISS or in-plane steady state, (d) LRS or log rolling
state. The first two orientation states, ITO and [WS, are periodic modes whereas the last
two, ISS and LRS, are stationary modes. All orientation states except LRS are in-plane or
planar orientation modes (i. €., n; = 0). In case of planar steady state, the director n aligns
close to the velocity gradient direction in the first or third orientation quadrant. The angle
between the steady orientation of m and the velocity gradient direction decreases with
increasing Pe, and tends to zero as Pe — .

The effect of biaxial orientation is not considered in the above classification.
However, some differences are apparent, for example in aligning (non-aligning) discotics
in the stationary planar state, the biaxial director m (1) aligns along the vorticity axis and

vice versa.

3.4 Numerical Results and Discussion

In this section we present the rheological predictions, and the relations
among shear rheological properties, microstructure modes, processing conditions and

material properties of discotic mesophases under simple shear flows.

3.4.1 Microstructure Modes-Rheology Relations

As mentioned above the CE predicts one non-planar steady state mode (log-
rolling), two planar time periodic modes (tumbling and wagging) and one planar steady
state mode. In order to compute average values of the rheological properties for the

tumbling and wagging modes, time averaging is performed. In this sub-section first we
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present rheological properties corresponding to planar and non-planar microstructure

modes, which will be followed by their comparison.

3.4.1.1 Planar Mode of Non-Aligning Discotic Nematics

Figure 3.4 shows the microstructure-rheology relations for non-aligning discotic
nematics under shear flows corresponding to planar modes (tumbling, wagging and flow-
aligning). Figure 3.4(a) shows the uniaxial alignment S (full line), biaxial alignment P
(dash line) and uniaxial director n azimuthal angle 6, (triple dot-dash line) as a function
of dimensionless shear rate Pe, for #=-0.8 and U = 6. The various flow regimes, based
on the uniaxial orientation m dynamics are also indicated. In this planar orientation mode
the uniaxial director n and biaxial director m lie in the shear plane (¢, =4, =90,
6, =8, =[0, 360]) and the biaxial director 1 aligns along the vorticity axis (g, =0).
The biaxial directors m and 1 are not represented in Figure 3.4(a) as mLln and the
orientation of | is independent of shear rate. The full microstructure description in terms

of director triad (m, m, I) can be given in terms of the corresponding polar and azimuthal

angles as:
n: ¢, =90 , 6, =[0, 360] ; | (3.17a,b)
m: 4, =90 , @, =[0, 360] ; (3.17c,d)
I 4 =0 . (3.17e)

The average uniaxial orientation of discotic nematics is near the velocity gradient
direction for all planar periodic as well as steady states. The uniaxial (biaxial) alignments
show three regions: low and high shear rate plateaus with an intermediate power law

region. For the steady state regime, the values of S, P and 6, are plotted on the same axis

represented by <8>, <P> and <6, > respectively in Figure 3.4a.

Figure 3.4b shows the scaled dimensionless first normal stress difference N, as a
function of Pe corresponding to Figure 3.4a for &, = 0.001 (full line), 0.1 (dash line), and
0.2 (triple dot-dash line). The first normal stress difference N| is positive for low shear

rates, in the tumbling regime, and becomes negative near the transition from tumbling to
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wagging regime. N, remains negative for the higher values of shear rates in the
oscillatory and steady state regimes. The high Pe plateaus remain negative, and increase
with increasing &,. The phenomenon is qualitatively similar to that presented by
Andrews et al. (1995) for rod-like nematics using a similar CE, however, it was unable to
predict second sign transition in N, . The present model also has this limitation for both

rod-like as well as discotic nematics.

Figure 3.4c shows the scaled dimensionless second normal stress difference N,
as a function of Pe corresponding to Figure 3.4a, for £ = 0.001 (full line), 0.1 (dash

line), and 0.2 (triple dot-dash line). N, is nearly zero for low Pe, in the tumbling regime,
and then increases exponentially with intermediate Pe in the wagging regime before
reaching a high Pe plateau in the steady state regime. The high Pe plateaus and the
exponential increase at intermediate Pe increases with increasing &£,. N, corresponding
to the planar mode for discotic nematics does not show any sign transition, and does no*
resemble that of rod -like nematics. The theory used by Andrew et al. (1995) failed to
predict any sign transition in case of rod-like nematics. However, the present theory
when used for rod-like nematics predicts the first sign transition, but fails to predict the
second at high Pe, reported by Marrucci and Maffetone (1989) and Baek et al. (1993,
1994).

The sign transitions in N and N, for planar microstructure mode are attributed

due to the coupling between director orientation m and alignment § (Marrucci and
Maffettone, 1989; Larson, 1990; Farhoudi and Rey 1993a). Also, Marrucci and
Mafettone (1989) suggested that alignment § rather than orientation plays a more

dominant role in the sign transition in N; by showing that the negative N, persists
beyond shear rates at which orientation angle becomes positive, and the negative N, is

due to the low alignment. Farhoudi and Rey (1993a) used a macroscopic theory with a

set of material parameters that results in a tumbling function 4 with a local minima for
rod-like nematics, predicted both sign transitions in N, and N, , and the second sign

change is shown to be due to the increase in the alignment above the equilibrium values
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at high shear rates (Farhoudi and Rey, 1993a) which is attributed due to the ‘U’ shape of
A curve for rod-like nematics. In the work of Andrews et al. (1995) and in the present
model there is only one adjustable parameter, the shape factor 5, and there is no local
maxima (minima) in A for the useful limits (0<§ <1, 0< P<1) of alignments for
discotic (rod-like) nematics as shown in figure 3.3c. As is well known in case of discotic
(rod-like) nematics, steady state exists only when 4 <—1 (4 >1). In the present study, in
steady state regime alignment S is always less than the equilibrium alignment S¢q (see

Singh and Rey, 1998). Hence the present theory is unable to predict the second transition
in N, or the positive N, at high shear rates as predicted by other molecular or
mesoscopic theories for rod-like nematics. The results presented here for low and
intermediate Pe suggest that N, is qualitatively similar for both rod-like and discotic

nematics despite the reversals in other material functions.

Figure 3.4d shows the scaled dimensionless apparent shear viscosity 7" as a
function Pe corresponding to Figure 3.4a for £ = 0.001 (full line), 0.1 (dash line), and
0.2 (triple dot-dash line). The scaled apparent viscosity 7" has three distinct regions: low
and high shear rate plateaus, and an intermediate power law regime. The difference,
An’ =1 —n,, between the low (7,) and high (7,) shear rate viscosities increases with
increasing &, . The low Pe plateau persists till the end of tumbling regime for which the
average values of uniaxial and biaxial alignments ((S), (P)) are independent of Pe. For
the intermediate Pe the average value of uniaxial (biaxial) alignment increases
(decreases), and is reflected in the shear thinning region of 7°. High shear rate
independency of #" is qualitative similar to a majority of reported viscosity data for

mesophase pitches (McHugh et al., 1992; Fatholahi and White, 1994; Edie et al., 1994;
Fleurot et al., 1995). '

The predicted profiles of 7" are qualitatively similar to those for rod-like
nematics shown by Larson (1990) in which the low shear rate plateau ends at y < 0.003.

Baek et al. (1994) also predicted a low shear rate plateau along with a shear thinning

region for a range of viscous to elastic stress ratios. The shear rate range for the lower
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plateau can be easily evaluated for a known D, from the relationship y = 6 D Pe. The
rotational diffusivity D, for discotic mesophése pitches is unknown, but it can be
evaluated from either experimental rheological data using methods employed by Ooi and
Sridhar (1994), and Back et al. (1993) or by employing NMR techniques (Janik et al.,
1977, Franklin, 1977; Khabibullaev et al., 1994). The experimental data for rotational
diffusivity D, is available for a wide range of rod-like low molecular weight liquid
crystals (Janik et al., 1977; Franklin, 1977) and liquid crystalline polymers (Mori et al.,
1982; Ooi and Sridhar, 1994; Baek et al., 1993).

3.4.1.2 Non-Planar (Log-Rolling) Mode of Non-Aligning Discotic Nematics

The bifurcation analysis of equation (3.3) revealed that the log-rolling steady state
is stable for all shear rates, and thus equation (3.3) predicts multistability at all shear rates
(Singh and Rey, 1998). In this section we present microstructure-rheology relations for

the log-rolling state, shown in Figure 3.5, for non-aligning discotic nematics.

Figure 3.5(a) shows the uniaxial alignment S (full line), biaxial alignment P (dash

line), and biaxial director m azimuthal angle 6, (triple dot-dash line) as a function of
dimensionless shear rate Pe, for # = -0.8 and U = 6. In this microstructure mode the
uniaxial director n aligns along the vorticity axis (4, = 0) and the biaxial directors m and
1 lie on the shear plane (g, =@ =90). As shown in the Figure 3.5a at low Pe the biaxial

director m (1) lies in the middle of fourth or third (first or second) quadrant. As Pe
increases the steady state orientation of the uniaxial director m remains along vorticity
axis however, that of the biaxial director m (1) shifts, exponentially for the intermediate
Pe, towards the velocity gradient (flow) direction. For very high Pe the uniaxial and
biaxial directors (m, m, l) lie along the vorticity direction, velocity gradient direction and
flow direction respectively. The biaxial director | is not represented on Figure 3.5a since
m.ll. The complete microstructure description.in terms of the director triad (n, m, 1) can

be presented in terms of the corresponding polar and azimuthal angles as:
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Figure 3.4: Microstructure-rheology relations for non-aligning discotic mesophases for the
planar microstructure mode. (a) Microstructure features of non-aligning discotic mesophases for
the planar orientation mode: uniaxial alignment S (full line), biaxial alignment P (dash line) and
uniaxial director m azimuthal angle 8, (triple dot-dash line) as a function of Pe, for § = -0.8 and

U = 6. Corresponding rheological predictions: (b) scaled dimensionless first normal stress
difference N, (c) scaled dimensionless second normal stress difference Nz' , and (d) scaled

dimensionless apparent shear viscosity 7" as a function of Pe for & = 0.001 (full line), 0.1 (dash
line), and 0.2 (triple dot-dash line). For planar mode the first normal stress difference is similar to
that of corresponding rod-like nematics. The apparent shear viscosity 77° shows three regions.
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n: $.=0 (3.18a)
m: . =90 , 6, =[90, 135] or [-45, -90] ; (3.18b,c)
I: 4 =90 , 6 =[180, 225] or [0, 45] . (3.18d,e)

The uniaxial (biaxial) § (P) alignment decreases (increases) with increasing Pe,
however, the drop in S is much smaller than the rise in P.
Figure 3.5b shows the scaled dimensionless first normal stress difference N| as a
function of Pe corresponding to Figure 3.5a for £, =0.001 (full line), 0.1 (dash line), and
0.2 (triple dot-dash line). N, is always positive and can be characterized in terms of

three different regions: two plateaus at low and high Pe and an intermediate power law

region. The low Pe plateau is independent of £, , while the slope of the power law region
and the magnitude of the high Pe plateau increases with increasing £ . Larson and
Ottinger (1991) also predicted positive N, corresponding to the non-planar orientation

mode for rod-like nematics.

Figure 3.5¢ shows the scaled dimensionless second normal stress difference N,
as a function of Pe corresponding to Figure 3.5a, for & = 0.001 (full line), 0.1 (dash
line), and 0.2 (triple dot-dash line). N, is also marked by two low and high shear rate
plateaus with one highly dependent intermediate shear rate region. N, like N, is
independent of &, at low Pe but exhibits very strong dependence on &, at intermediate
and high Pe. Atlow &, (= 0.001), N, has mainly elastic contributions, and decreases
with increasing intermediate Pe before reaching the high Pe plateau. At higher
&, (= 0.2), the viscous contributions increase and N, reaches a positive high shear rate
plateau. The high Pe plateaus increase, going from negative values to positive, with
increasing &, . The sign of the high Pe plateau in N, may also be used as an indication of
the relative contribution of the viscous stresses. For example, the positive high Pe

plateau in N, shows that the viscous contributions dominate the total induced stresses.
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The complex phenomena in N; and N, are due to the coupling among uniaxial

and biaxial alignments, and biaxial orientations. The uniaxial orientation is fixed along
the vorticity axis, and the change in uniaxial alignment, see Figure 3.5a is much smaller
than that in biaxial alignment. Hence, the rheological properties in this microstructure

mode are affected mainly by flow-induced biaxiality.

Figure 3.5d shows the scaled dimensionless apparent shear viscosity 7" as a
function of Pe corresponding to Figure 3.5a for £ = 0.001 (full line), 0.1 (dash line), and
0.2 (triple dot-dash line). 7" is independent of shear rates at low &, , however for higher
values of & there is a slight shear thinning region at intermediate Pe which increases
with increasing & . The predicted shear viscosity resembles qualitatively with that

reported in the literature for mesophase pitches (McHugh et al., 1992; Edie et al., 1994;
Fatholahi and White, 1994; Fleurot et al., 1995).

Comparison of Figures 3.4, and 3.5 reveals that the rheological properties depend
strongly on the microstructure modes. As discussed above the rheological properties
corresponding to the log-rolling mode are mainly due to the flow induced biaxiality,
whereas those for planar microstructure mode are a uniaxial phenomena. At low shear
rates N and N, are comparable in magnitude for both microstructure modes. Hence as
suggested by Larson and Ottinger (1991), the average of rheological properties at low
shear rates will represent the combined effect from both microstructure modes. The
apparent log-rolling shear viscosity 7" is roughly half in magnitude than that of planar
mode at low Pe, whereas the high Pe plateaus in both of the microstructure modes are

comparable.

3.4.2 Processing Condition-Rheology Relations

In this subsection rheological predictions for discotic nematics at low U (for
aligning discotics) are presented, and compared with those at high U presented in the
previous section. For thermotropic materials the nematic potential U is inversely
proportional to temperature 7. At low U (high 7) the non-planar log-rolling state is

unstable, and there is only one planar stable flow-aligning steady state.
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Figure 3.6a shows the uniaxial alignment § (full line), biaxial alignment P (dash
line) and uniaxial director n azimuthal angle 8, (triple dot-dash line) as a function of the
dimensionless shear rate Pe, for §=-0.8, and U = 3.5. In this microstructure mode the
uniaxial (biaxial) director n (l) aligns in the shear plane near the velocity gradient (flow)
direction in the second or fourth orientation quadrant, and the biaxial director m lies
along the vorticity axis. The complete microstructure description in terms of director

triad (m, m, ) can be given in terms of polar and azimuthal angles as:

n: ¢, =90 , @ =[90, 135] or [—45, -90]; (3.19a,b)
m: 4. =0 ; (3.19¢)
I # =90 , 6 =[0,45] or [180, 225] . (3.19d,e)

As shown in Figure 3.6a, for low Pe, uniaxial director n shifts towards the
velocity gradient direction as Pe increases. The uniaxial (biaxial), S (P), alignment
slightly increases (decreases) with increasing Pe. The flow induced biaxiality P is close
to zero, hence the discotic nematic phase is essentially uniaxial under shear flow.

Figures 3.6b and 3.6c show the scaled dimensionless first normal stress
difference N, and the dimensionless second normal stress difference N, , respectively,
as a function of Pe corresponding to Figure 3.6a for £ = 0.001 (full line), 0.1 (dash line),
and 0.2 (triple dot-dash line). N, (N, ) is always positive (negative) for all values of Pe,
and increases (decreases) at low and intermediate shear rates before reaching high shear

rate plateau. The phenomena is qualitative similar to that for aligning rod-like nematics

by Farhoudi and Rey (1993b, 1993c). As the ratio &, increases, N, (N, ) also increases
(decreases) both at low and high shear rates, however, the difference in values of N; and

N, with increasing & is more at high Pe is more than that at low Pe, thereby showing

the relative dominance of viscous contribution at high shear rates.
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Figure 3.5:  Microstructure-rheology relations for non-aligning discotic mesophases for the
non-planar log-rolling mode. (a) Microstructure features for the log-rolling orientation mode:
uniaxial alignment S (full line), biaxial alignment P (dash line) and biaxial director m azimuthal
angle 8, (triple dot-dash line) as a function of Pe for § = -0.8 and U = 6. Corresponding

rheological predictions: (b) scaled dimensionless first normal stress difference N,', (¢) scaled
dimensionless second normal stress difference N, and (d) scaled dimensionless apparent shear
viscosity 7" as a function of Pe for &, = 0.001 (full line), 0.1 (dash line), and 0.2 (triple dot-
dash line). N, (N, ) show three regions: two plateaus at low and high Pe with an intermediate
power law (shear rate dependent) region. The high Pe plateau for N, depends strongly on &, .

n" is essentially independent of shear rate. The rheological properties in this mode are governed
by the flow-induced biaxiality.
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Figure 3.6: Microstructure-rheology relations for aligning discotic mesophases. (a)
Microstructure features under simple shear flows: uniaxial alignment S (full line), biaxial
alignment P (dash line) and uniaxial director m azimuthal angle &, (triple dot-dash line) of

aligning discotic nematics as a function of Pe for # = -0.8 and U = 3.5. Corresponding
rheological predictions: (b) scaled dimensionless first normal stress difference N,' , (c) scaled

dimensionless second normal stress difference N, , and (d) scaled dimensionless apparent shear
viscosity #7° as a function of Pe for & = 0.001 (full line), 0.1 (dash line), and 0.2 (triple dot-
dash line). N, (N,) is always positive (negative) which is similar to those of rod-like
nematics. The dimensionless apparent viscosity 77" decreases exponentially for low shear rates
but for intermediate and high shear rates is independent of Pe. N and 1" (N, ) increase

(decreases) with increasing &, .
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Figure 3.6d shows the scaled dimensionless apparent shear viscosity 7° as a
function of dimensionless shear rate Pe corresponding to Figure 3.6a for & = 0.001 (full
line), 0.1 (dash line), and 0.2 (triple dot-dash line). The apparent shear viscosity 7" drops
at low shear rates, but essentially remains independent of shear rates at intermediate and
high shear rates at all values of ratio &,. The effect £, on 7° follows the same trend as
mentioned above, however, the relative effect of & at low and high shear rates is roughly
the same. The apparent shear viscosity 7’ in this case resembles that reported by Fleurot

(1998) for mesophase pitches.

The comparison of predicted rheological properties of discotics of same shape
parameter (§ = -0.8) reveals that as U (U «<1/T, T : temperature) increases, or
equivalently as T decreases, beyond a critical value the following transitions may occur
depending on the magnitude of the Pe: tumblihg — flow alignment, wagging — flow
alignment, log-rolling — flow alignment. Depending on the value of Pe, a decrease in
temperature causes a change in the rheological material functions that can be deduced
directly from the presented results. For example, if thermal change produces the log-

rolling to flow-alignment transition, then N, (N,) will show monotonic increase

(decrease) at low Pe and high Pe plateau.

3.4.3 Material Parameter - Rheology Relations

In this subsection the effect of material parameter or shape factor £ on rheological
properties is discussed. As shown in Figure 3.3¢, with increasing A the tumbling function
A curve shifts upwards and towards left, and thus intersects the line A =-1 at lower
§* (U*). Therefore as B increases the range of Seq (Ucq), for which discotic mesophases
display non-aligning (aligning) microstructural behavior also increases (decreases). In
other words, discotic mesophases with higher # have more tendencies to display non-
aligning behavior than those with the lower 8. For a fixed U (= U,g) and with increasing
p, the shear induced microstructural features of discotic mesophases will change from

non-aligning to aligning at a critical &*. Hence, the corresponding rheological properties
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(Ny, N; and ) will also change, as explained in the previous section. For a given
nematic potential U,q = 3.75 (see Figure 3.3c), the discotic nematics with = -0.7 display
simple aligning microstrucutral features and hence the corresponding rheological
properties are those for aligning discotics (discussed above), whereas the discotic
nematics with £ = -0.9 display complex non-aligning microstructural features and hence
the corresponding rheological properties are those for non-aligning discotics. Thus for a
fixed U or alternatively for fixed T, as shape factor £ increases, the corresponding

rheological properties change.

3.5 Conclusions

Predictions of rheological properties of discotic mesophases are presented. The
predicted rheological properties of discotic mesophases are discussed and assessed within

the context of nematorheology.

The predicted first normal stress difference N, corresponding to the planar
microstructure mode of non-aligning discotics is similar to that corresponding to the rod-
like nematics at low shear rates. At higher shear rates the present theory does not
accurately predict N; corresponding to planar mode of non-aligning rod-like nematics ,
hence no comparison can be drawn between them. N, for non-planar mode is always
positive and increases exponentially for intermediate shear rates before reaching high
shear rate plateau, and is mainly due to flow-induced biaxiality. For non-aligning discotic
nematics, N; corresponding to the planar and the non-planar microstructure modes are
comparable at low shear rates. As the more accurate representation of N is to take
average of both values corresponding to planar and non-planar modes (Larson and
Ottinger, 1991) of non-aligning discotics, which may result in the disappearance of
negative N; in discotics in which viscous contribution dominates. Thus sign transition in
N; may not be a correct check for non-aligning discotics. Also N, of aligning discotics is
similar to that of rod-like nematics at all shear rates. N, is always positive for discotic

mesophase at lower values of U (aligning nematics).

The predicted apparent shear viscosity of discotic mesophases at low U (or high

T) is qualitatively similar to that reported in the literature at all shear rates (Fleurot 1998);
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whereas that at high U (low 7) is qualitatively similar to that reported in literature for
intermediate and high shear rates (McHugh et al. 1992; White and Fatholahi, 1994;
Fleurot et al. 1995; Fleurot, 1998). '

The present work is the first attempt to establish the relations between flow-
induced microstructure with rheological material functions. A sufficiently number of
distinguishing features have been identified that are specific to the discotic nature of the
nematic phase, and augment the number of quantitative and qualitative differences
between discotic and rod-like nematics that had been noted in the literature (Farhoudi and
Rey, 1993c). How this distinguishing rheological features operate in the carbon fiber
texture selection during spinning of carbonaceous mesophases is a topic of on going

investigation.
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1IGHAPTER ZF

Consistency of Predicted Shear-induced
Orientation Modes with Observed
Mesophase Pitch-Based Carbon Fiber

Textures

In the previous chapters (chapter 2 and chapter 3) shear flow-induced
microstructure of model discotic mesophases was presented. It was observed that
at low temperature (high U) three in-plane (ITO, IWS, and ISS), and one out-of-
plane (LRS) orientation modes are stable. Apart from the classical transition
between the in-plane modes with increasing shear rate (ITO = [WS -> ISS), there
exists multistability among the in-plane and the out-of-plane modes. Moreover, at
high temperature (low U) the complex bifurcations among the various orientation
modes disappear, and the only stable orientation mode is ISS. The main theme of
this chapter is to establish the consistency of the numerical results presented in
chapters 2 and 3 with the observed mesophase pitch-based carbon fibers. It is
shown that the present theoretical model is able to predict the fiber texture

transition, radial to onion, with increasing temperature.

'This chapter appeared as an original article in Carbon 36(12) p1855-1859 (1998).
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4.1 Introduction

Carbon fibers made from mesophase pitches have superior mechanical and
thermal transport properties, and are finding uses in a wide variety of applications ranging
from space to electronic industry (Edie et al, 1994; Fleurot et al 1995; Fleurot and Edie,
1997; McHugh and Edie, 1992, 1994). These fibers are manufactured by melt-spinning
discotic liquid crystalline mesophase pitches, and exhibit a spectrum of transverse
textures depending on processing conditions. For example Otani and Oya (Otani and
Oya, 1986) reported a transition from radial to onion texture as the spinning temperature
increases along with multistability between random and mixed radial-onion textures at
intermediate temperatures. Yoon et al. (1993) and Lafdi et al (1993) also reported that
the radial fiber texture is prevalent at low spinning temperatures whereas the onion
texture prevails as the spinning temperature rises. The basic understanding of evolution
of the spectrum of carbon fiber textures during the spinning process is an active field of
research (Edie et al, 1994; Fatholahi and White, 1994, 1995; Fleurot et al 1995; Fleurot
and Edie, 1997; Lafdi et al, 1993; McHugh and Edie, 1992, 1994; Otani and Oya, 1986;
Singh and Rey, 1995, 1998; Wang and Rey 1997; Yoon et al, 1993), and is of practical
importance for their further development. Numerous experimental studies have been
performed to elucidate the effects of various processing conditions and geometry on the
flow induced microstructure (Edie et al, 1994; Fatholahi and White, 1994 1995; Fleurot
and Edie, 1997; Fleurot et al 1995; Lafdi et al, 1993; McHugh and Edie, 1992, 1994;
Otani and Oya, 1986; Yoon et al, 1993). Mathematical modeling and simulation provides
an economical alternative to the trial and error experimental methodologies and have
been performed by Edie and McHugh (1992, 1994), and Wang and Rey (1997). Edie and
McHugh (1992, 1994) using Leslie-Ericksen theory for liquid crystalline materials
predicted that the radial texture exists inside the spinneret capillary. However, the same
study (McHugh and Edie, 1992, 1994) did not address the stability of the predicted radial
orientation mode, the existence of other equivalent textures, e.g. onion, random etc., and
the observed transition in textures with changing processing conditions. Rey and Wang

(1997) predicted the transition from radial — random — onion textures with increasing
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temperature by solely considering the effects of long-range orientation elasticity while

neglecting any viscous or short range molecular elastic effects.

Flow is a mechanism that induces molecular orientation in mesophase pitches
while it passes through the spin-pack (Fatholahi and White, 1994, 1995; Fleurot and Edie,
1997; McHugh and Edie, 1992, 1994). During the melt spinning process mesophase
pitches are subjected to strong shear flows in the filter, inhomogeneous mixed shear and
extensional flows through converging cone and the leading capillary, and strong
extensional flows in the spin-line. Fatholahi and White (1994, 1995), McHugh and Edie
(1992, 1994), and Flourot and Edie (1997) observed and proposed that the fiber texture is
likely to develop inside the spin-pack (converging cone and capillary), and the strong
extensional flow in the spin-line accentuates the already induced orientation in the spin
pack. Mesophases pitches are anisotropic visco-elastic materials (Fleurot et al 1995;
Fleurot and Edie, 1997; McHugh and Edie, 1992, 1994), therefore both viscous as well as
elastic effects are expected to contribute to the selection and development of fiber
textures. A rigorous visco-elastic flow model that has all the microstructural features
corresponding to the observed fiber textures has been proposed by Singh and Rey (1998).
The simulated results of the proposed model have been characterized and validated
(Singh and Rey, 1998). In this paper, we present the predicted shear-induced
microstructure in mesophase pitches considering only the viscous and short range
molecular elasticity, and compare the simulated results with the observed molecular
orientation in fiber textures. The consistency of the predicted results with the observed
fiber textures will be discussed, as well as the role of viscous shear flow on the texture
selection mechanism. This communication is part of an ongoing program to develop a

process simulator for fiber spinning of mesophase pitches.

This is the first modeling effort in this field that puts forth a tensor model for
discotics that is able to predict, under simple shear flow (test flow), all the essential
orientation features necessary to capture all the observed fiber textures. To convey this

message is the prime objective of this letter.



CHAPTER 4. CONSISTENCY OF PREDICTED SHEAR-INDUCED ORIENTATION MODES... 107

The particular objectives of this manuscript are: (1) to convey the elements of
consistency between the predicted shear-induced orientation modes (Singh and Rey,
1998) by the proposed constitutive equation for mesophase pitches and the experimental
observations (Fatholahi and White, 1994, 1995; Fleurot and Edie, 1997; Fleurot et al
1995; Lafdi et al, 1993; McHugh and Edie, 1992, 1994; Otani and Oya, 1986; Yoon et al,
1993), and (2) based on that compatibility to analyze the predicted multistability and
transitions in orientation modes with varying process conditions within the context of

experimental results (Lafdi et al, 1993; Otani and Oya, 1986; Yoon et al, 1993).

4.2 Mathematical Model

Figure 4.1 shows the schematic presentation of mesophase pitches consisting of
poly-aromatic, flat, disk-like molecules that are rigid enough to display long range
orientation order, and that tend to adopt a uniaxial discotic nematic phase, Np. In discotic
nematics, the unit normals to the flat disk-like molecules orient more or less along a
common direction called the director n, see Figure 4.1. The average degree of alignment
of unit normals to the disk-like molecules is defined by the (uniaxial) scalar order
parameter S. The microstructure of discotic mesophases is characterized by a symmetric,

traceless second order tensor, known generally as tensor order parameter Q:
Q=S(nn-148)+4P(mm-1) (4.1a)
where the following restrictions apply:

Q=Q", w(Q=0, -t<s<1, -3 <P, (4.1b,c.d,e)
n-n=mm=1-1=1, non+mm-+1Il =245 (4.1f,g)

Being a second order tensor Q has three eigenvalues and eigenvectors. The first
eigenvector or uniaxial director n corresponds to the largest eigenvalue 2.5, the biaxial
director m corresponds the intermediate eigenvalue — %(S - P), and the second biaxial
director | (=nxm) corresponds to the smallest eigenvalue —%(S + P). Details on

uniaxial (S) and biaxial (P) alignments and their interrelations are given in (Singh and

Rey, 1995, 1998).
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Figure 4.1: Definition of director orientation of a uniaxial discotic nematic liquid crystalline
material. The director n in a discotic nematic phase is the average orientation of the unit normals
to the disk-like molecules.

The microstructure response of liquid crystalline polymers, as described by Doi’s
mesoscopic nematodynamic theory (Doi and Edwards, 1986), is given as (Singh and Rey,
1998):

Q=F(Q,Vv)+H(Q, D,(Q)) (4.2)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Q and is

defined as:
Q: +(v VIR-W-Q+Q- W (4.3)

F(Q,Vv), and H(Q, E,(Q)) represent the flow or viscous contributions, and the short

range molecular elasticity respectively, and are given by (Singh and Rey, 1998):

F(Q.Vv)=%pA+B[A-Q+Q-A-}(A:Q)5]-

(4.4)
1A[(AQQ+A-Q Q+Q-A-Q+Q-Q-A- {Q-Q)A 5]
H(Q, D,(Q)) = -6D[(1-1U)Q - UQ - Q +U{(Q:Q)Q +(Q:Q)}] (4.5)
2
where D, = D, [1- 2 @Q)|". p=5—, p=2 (4.62,6,)

P+l h
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The long-range orientation elasticity, known as Frank elasticity (DeGennes and Proust,
1993), is not considered in this paper. In equations (4.2-4.6), D, is the averaged
diffusivity, D, is the preaveraged diffusivity or isotropic rotary diffusivity of an
hypothetical isotropic fluid at the same conditions, U is the nematic potential which is
inversely proportional to temperature 7, and £ is the shape factor respectively. To specify
the molecular geometry we approximate the disc-like shape of molecule of discotic
mesophases with an oblate spheroid of aspect ratio p (p < 1) where in equation (4.6¢) ry is
the length of the shortest and distinct semiaxis, and r; the length of the two longest and
equal semiaxes. The ideal flat disc corresponds to p = 0 (8 = -1), and the sphere
corresponds to p =1 (S =0). A and W are the rate of deformation and vorticity tensor
respectively. Since there are only two processes in the model, we have only one
dimensionless number, Pe, the Peclet number or dimensionless shear rate, which is
defined as (Singh and Rey, 1998):

j'
Pe - —_— 4_ ?

where y is constant shear rate. Only uniaxial orientation modes are discussed here,
further details on biaxial orientation modes (m, 1) and uniaxial and biaxial alignments
(S, P) are documented in (Singh and Rey, 1998). In what follows uniaxial orientation

(i.e., the orientation of the director m) will be referred to simply as orientation.

4.3 Summary of Predicted Orientation Modes and Consistency with

Observed Textures

Below we summarize the microstructure phenomena predicted by the CE,
equation (4.2), for discotic mesophases under simple shear flow. The coordinate system
is shown in Figure 4.2. The flow direction is along the x-axis, the velocity gradient

direction is along the y-axis, and the vorticity axis is along the z-axis.

The predicted orientation modes, in terms of uniaxial director mn dynamics are: (a)
ITO or in-plane tumbling orbit, (b) IWS or in-plane wagging state, (c) ISS or in-plane

steady state, (d) LRS or log rolling state. The two dimensional schematic representations
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of the orientation modes in terms of uniaxial director n are given in Figure 4.3. Figure
4.3a represents the in-plane tumbling orbit (ITO) in which the uniaxial director n rotates
clockwise in the shear (x-y) plane. Figure 4.3b shows the in-plane wagging state (IWS),
in which n oscillates around a point near the y-axis (velocity gradient direction), and in
the shear (x-y) plane. Figure 4.3c represents the in-plane steady state (ISS) in which the
uniaxial director m aligns near the y-axis (velocity gradient direction) in the shear (x-y)
plane. Figure 4.3d shows the out-of-plane (non-planar) log rolling state (LRS) in which
the uniaxial director n aligns along the vorticity axis (z-axis) perpendicular the shear
plane. The first two orientation states, ITO and IWS, are the time-dependent states
whereas the last two, ISS and LRS, are steady states. All orientation states except LRS
are planar orientation modes (i.e., n, = 0). A detailed analysis of these orientation states
in terms of uniaxial n and biaxial (m, 1) directors, and uniaxial S and biaxial P alignments

are given in (Singh and Rey, 1998).

Velocity gradient
direction
—_ V
Flow
7 direction
Vorticity axis

Figure 4.2:  Definition of homogeneous simple shear flow deformation. The x-axis
is the flow direction, the y-axis is the velocity gradient direction, and the z-axis (out of the plane
of the paper) is the vorticity axis or neutral direction.
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Figure 4.3:  The representative schematics of the stable uniaxial orientation modes of
discotic mesophases under homogeneous simple shear flow predicted by constitutive equation
(2). The four stable orientation modes are : (a) ITO or in-plane tumbling orbit, (b) IWS or in-
plane wagging state, (c) ISS or in-plane steady state, (d) LRS or log rolling state. The top row
represents the planar orientation modes and the bottom row non-planar mode. As shear rate
increases there exists transition among planar orientation modes such that with increasing shear
rate: JTO — IWS — ISS. Also there exists multistability among planar and non-planar
orientation modes. For more details see the text and Table 4.1.

Table 4.1
Multistability and Transition among various predicted orientation modes for f=-0.8
High U (= 6) Low U(=3.5)
Stable LRS LRS LRS LRS —
mode/s
Shearrate |0<Pe<45|45<Pe<55|55<Pe<ld | Pe=14 Pe>0
range

Pe: Peclet number or dimensionless shear rate; £: shape factor; U: nematic potential; LRS: log
rolling state; ITO: in-plane tumbling orbit; IWS: in-plane wagging state; ISS: in-plane steady
state. U is inversely proportional to temperature T.
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For a given shape factor B, at sufficiently high U (U > U") or alternatively at
sufficiently low T (T <T*) all four orientation modes are stable, and there exists
multistability between planar and non-planar orientation modes as given in Table 4.1, U”
and T” represent critical values of U and T. For example for #=-0.8, at low U (U =3.5),
there is only one stable orientation mode, ISS, for whole range of dimensionless shear
rate Pe. On the other hand at high U (U = 6) all four orientation modes are stable, and
there exists multistability among planar and non-planar orientation modes. More details
are given in (Singh and Rey, 1998). The complex multistability phenomena at higher U
is summarized in Table 4.1 and can be described as follows: for low shear rates there is
only one stable orientation mode corresponding to LRS; for intermediate Pe, LRS along
with ITO are the stable modes; for high Pe, LRS and IWS are the stable orientation
modes; and for very high Pe there are two stable modes corresponding to LRS and ISS.
Though not shown here, however, similar multistability exists at higher values of U for
all values of shape factor £, and at lower values of U the complex bifurcations disappear
and there is only one stable orientation mode, ISS, at all shear rates. The co-existence of
stable steady planar and non-planar orientation modes at all shear rates (at high values of
the nematic potential) is predicted for the first time by the presented model. This
multistability of stable planar and stable non-planar orientation modes at higher shear rate
is an essential feature of the presented model that is absent in the all the existing vector
theories and is an essential feature required to capture the reported orientation modes in
fiber textures. Thus the letter is geared to convey to the audience that a highly useful
model for discotics is now available, and its predictions under simple test flow match the

main characteristics of the fiber textures.

Next the consistency among the above mentioned shear-induced microstructure
predictions and the observed fiber microstructl&es will be shown. This will be achieved
by comparing the shear induced orientational response of the model discotic mesophases
with the localized orientation field in observed carbon fiber textures (Fatholahi and
White, 1994, 1995; Fleurot and Edie, 1997; Fleurot et al 1995; Lafdi et al, 1993; McHugh
and Edie, 1992, 1994; Otani and Oya, 1986; Yoon et al, 1993).
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4.4 Thermal Effects

As mentioned above, it has been noted that the microstructure is likely to develop
in the spin-pack (converging cone and the capillary), and the extensional flow in the spin-
line merely accentuates the achieved orientation in the spin-pack (Fatholahi and White,
1994, 1995; Fleurot and Edie, 1997, McHugh and Edie, 1992, 1994). Figure 4.4 shows
the schematics of the main observed fiber textures, which exist in the capillary.
Considering the flow in the circular capillary section. In terms of cylindrical coordinate
system (see Figure 4.4a), the fiber axis can be assumed to lie along the z’ direction, which
is also the flow direction, the radial direction (r) is the velocity gradient direction, and the
azimuthal direction (6) is the vorticity or neutral direction. The various lines in
Figure 4.4(b,c) represent the locus of the side view of the disk like molecules. In the
textures, shown in Figure 4.4, the unit normals to the disk like molecules lie in the plane

perpendicular to the fiber axis (2’ direction). Thus the localized director orientation in
the shown fiber textures is givenby n = (n,, n,, n.) = (n,, n,, 0). Also, in the radial

(onion) texture the normals to the disk-like molecules orient along the azimuthal (radial)
direction. Using this terminology, in the onion texture the unit normals orient along the
radial direction or along the velocity gradient direction, whereas in the radial texture the
unit normals align along the azimuthal direction or the vorticity axis. Thus the observed
radial (onion) texture is consistent with the predicted shear-induced LRS (ISS) orientation
mode. Table 4.2 contains a compiete summary of these comparisons. Also, as presented
in Table 4.1, at high U (low T), both ISS as well as LRS exist together at high shear rates,
thus under these conditions the model predicts multistability in radial and onion textures.
From the above discussion, it is directly inferred that the predicted shear-induced
microstructure phenomena is consistent with the observed textures, thus the simulated
results are consistent with those found in the literature (Fatholahi and White, 1994, 1995;
Fleurot and Edie, 1997; Fleurot et al 1995; Lafdi et al, 1993; McHugh and Edie, 1992,
1994; Otani and Oya, 1986).

As mentioned above as U (T) decreases (increases) the complex transitions among

the planar and non-planar orientation modes, stated above, disappear and the only stable
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orientation mode is ISS. Therefore following the preceding discussion, we notice that at
low (high) U (T) the only flow-induced stable texture is the onion texture. This transition
from radial texture at low temperature to an onion one at high temperature has been
observed experimentally (Lafdi et al, 1993; Otani and Oya, 1986; Yoon et al, 1993) and
predicted theoretically (Wang and Rey, 1997) based on long-range elasticity without
consideration of flow effects. Thus the proposed visco-elastic flow model for discotic
mesophases under simple shear flows has the features that are consistent with the

experimental observations and theoretical results.

4.5 Conclusions

In summary, we have established the consistency of the flow-induced
microstructure predicted by the presented CE with that observed experimentally. The CE
successfully predicts the transition from radial to onion texture with increasing
temperatures. The validation of the shear-induced microstructure phenomena predicted
by the presented CE suggests that it is a reliable contribution towards the formulaticen of a

process model for mesophase pitch spinning.

Radial Onion
n=(0,1,0) n=(,0,0)

Figure 4.4: Schematics of (a) cylindrical coordinate system, and the observed fiber
microstructures: (b) radial, and (c) onion. In the radial (onion) texture, the unit normals to
the disk-like molecules orient along the azimuthal & (radial r) direction.
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Table 4.2

Consistencies among predicted and observed orientation modes in fiber textures

Fiber texture Localized uniaxial director field Corresponding predicted
consistent orientation mode

(Singh and Rey, 1998)

Radial texture® n=(n,, nyn.)=(0, 1, 0)

n along vorticity direction LRS
(n]|lvxVv)
Onion texture” n= ("r= ng, ”.-') = (l' 0, 0) ISS

n along velocity gradient direction
(n||Vv)

n: uniaxial director orientation; ISS: in-plane steady state; LRS: out-of-plane log rolling state; v:
velocity direction; Vv: velocity gradient direction

S(Fatholahi and White, 1994, 1995; Fleurot and Edie, 1997; Fleurot et al 1995; Lafdi et al,
1993; McHugh and Edie, 1992, 1994, Otani and Oya, 1986; Yoon et al, 1993)

N (Lafdi et al, 1993; Otani and Oya, 1986; Yoon et al, 1993)
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IGHAPTER D

Theoretical Analysis of Texture
Dependent Extensional Viscosity of

Discotic Mesophases

In the previous chapters the microstructural and rheological response of the
constitutive equation (CE) for discotic mesophases was explored by subjecting it to
homogeneous shear flows only. The present chapter is solely geared towards analyzing
and characterizing the uniaxial extensional rheological predictions of the CE. It is found
that two distinct uniaxial extensional viscosity parameters are needed to fully characterize
extensional rheological functions of discotic mesophases. The discotic mesophases are
found to be non-Troutonian, and show strain thinning or strain thickening behavior based
on the temperature, and the ratio of viscous to elastic effects. It will be shown that the
elastic stresses impart strain-thinning characteristics to the discotic mesophases, whereas
the viscous stresses result in a strain thickening behavior. The rheological analysis is
used to put forth the relations between extensional viscosities, and the classical

mesophase fiber textures.

' This chapter appeared as an original article in Liquid Crystals 26(7) p999-1005 (1999).
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5.0 Abstract

Rheological functions for uniaxial extensional flows predicted by a previously
selected and validated constitutive equation (CE) for discotic mesophases are presented.
The predicted relations among extensional \;iscosities, flow-induced microstructure,
processing conditions, and material parameters of discotic mesophases are characterized
and discussed. It is found that in contrast to rod-like nematics, two distinct uniaxial
extensional viscosities need to be defined to completely characterize the extensional
rheological functions of discotic mesophases. The model predicts non-Troutonian
extensional viscosities of discotic nematics, such as strain thinning and strain thickening,
depending on the process temperature, and the ratio of viscous to elastic stress
contributions. The uniaxial extensional viscosities are also found to depend strongly on
the flow-induced microstructure. The rheological analysis is then used to characterize the
relations between extensional flow viscosities and the classical microstructures that arise

during the industrial fiber spinning of discotic mesophase pitches.

5.1 Introduction

Mesophase pitches are used to manufacture high performance carbon fibers (Edie
et al, 1994; Fatholahi et al, 1992; Fatholahi and White, 1994; Fleurot and Edie, 1997;
McHugh and Edie, 1992, 1995; Peebles, 1994). These fibers possess superior mechanical
and thermal transport properties and find uses in a wide variety of applications ranging
from space to electronics industry (Peebles, 1994). Conventional high speed melt
spinning process is employed in which the mesophase pitch is melted and then extruded
through spinneret capillaries to form fibers which are subsequently drawn in the spin-line
to accentuate the axial orientation (Fatholahi et al, 1992; Fatholahi and White, 1994;
Fleurot and Edie, 1997; McHugh and Edie, 1992, 1995). Since the mesophase pitches
have finite memory, the relative intensity of the various process steps and their sequence
(i.e., conical section — capillary —» die exit — spin-line) have a profound effect on the
final microstructure of the carbon fibers. Also, spinning temperature is reported to have

significant effect on the selection of fiber texture (Peebles, 1994). The spinning process
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inherently involves extensional flows both inside the spin-pack and in the spin-line,
therefore it is important to understand the behavior of mesophases pitches under these
flows (Edie et al, 1994; Fatholahi et al., 1992; Fatholahi and White, 1994; Fleurot and
Edie, 1997; McHugh and Edie, 1992, 1995; Peebles, 1994). In addition the molecular
orientation of discotic mesophases in the spin-line gives rise to characteristic textures,
such as radial and onion (Pecbles, 1994), see Figure 5.4, and relation between extensional
viscosities and fiber textures has not been yet characterized. This paper presents for the
first time the theory and simulation of uniaxial extensional viscosities of discotic
mesophases, based on a validated tensorial model, and its relationships with the flow-
induced microstructure, processing conditions, and molecular geometry corresponding to

those of carbonaceous mesophase pitches.

Mesophase pitches consist of flat, disk-like, aromatic molecules that tend to adopt
a uniaxial discotic nematic phase Np, with unit normals to the disc-like molecules more
or less aligned along a common direction (see Figure 5.1) represented by the uniaxial
director m; in what follows we use n and uniaxial orientation interchangeably. The degree
of alignment of the unit normals along n is given by the scalar order parameter S; in what
follows we use S and uniaxial alignfnent interchangeably. The flow-induced biaxiality in
discotic mesophases is characterized in terms of biaxial directors/orientation m and 1, and
biaxial scalar order parameter or alignment P, the details are given in (Singh and Rey,

1995a).

It is well known that the extensional flows are strong orienting flows (Singh and
Rey, 1994, 1995a, 1995b). The basic flow orienting phenomena of nematics in
extensional flows depend on the molecular geometry due to the fact that discotic (rod-
like) nematics orients their shortest (longest) direction along the director n. For discotic
nematics the tumbling function or the reactive parameter is negative A < 0, and uniaxial
extensional flows orient the uniaxial director n anywhere in the compression plane,
normal to the extension axis (Singh and Rey, 1994, 1995a, 1995b). This flow-induced
orientation naturally induces biaxiality (Singh and Rey, 1995a) since the major axis
(extension direction) of the rate of strain tensor ellipsoid is perpendicular to the main axis

(n) of the tensor order parameter ellipsoid. On the other hand for rod-like nematics the
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reactive parameter is positive 4 > 0, and n aligns along the extension direction, and the

tensor order parameter is uniaxial.

Figure 5.1: The uniaxial director orientation m of the uniaxial discotic nematic liquid
crystals. The director n is the average orientation of the unit normals to the disc-like molecules.
The main objective of this paper is to present the extensional rheological

properties of discotic mesophases. The particular objectives of the paper are to:
1. Identify the important extensional rheological parameters for discotic mesophases;

2. Characterize the dependence of rheological material properties of discotic mesophases

on their extensional flow-induced microstructure;

3. Establish the relationship among extensional rheological functions, flow-induced

microstructure, processing conditions, and molecular geometry.

Although numerical piedictions of this paper are not directly validated due to the
lack of available experimental data, yet a high degree of confidence can be expected
since: (1) the present model has been shown to capture the distinctive and experimentally
observed shear-induced microstructure modes (McHugh and Edie, 1995), and flow
instability of discotic mesophases (Fatholahi et al, 1992), (2) the model presented in this
paper has shown to capture all the complex nonlinear rheological phenomena actually
exhibited by discotic as well as rod-like nematics (Fatholahi et al, 1992; McHugh and
Edie, 1995). This paper is a continuation of our effort to increase the understanding of
rheology of discotic mesophases, and to provide the theoretical guidelines to the

experimental work being pursued to understand the microstructure-processing-product
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property relationships to develop new high performance engineering materials.

The organization of this paper is as follows. The next section presents the theory,
the coordinate system and kinematics along with the microstructure governing CE and
stress tensor equation. In section 3 we present, discuss, and characterize the uniaxial
extensional viscosity of discotic mesophases. Also, the relations among extensional
viscosity, microstructure, processing conditions, and materials parameters are given.
Finally conclusions are presented. Appendix A contains a brief analysis, based on L-E

theory, of extensional viscosity of rod-like and discotic nematics.

5.2 Theory and Governing Equations

5.2.1 Definition of Microstructure, Kinematics and Coordinates

In tensor theories the complete description of microstructure of liquid crystalline
materials is conveniently given by a symmetric and traceless second order tensor,

generally known as tensor order parameter Q given in principal form as:
Q=Ann+Ai mm+ Al (5.1a)
where 4, =185, A,=-4(S-P), 4, =-4(S+P),and —-{<1, <2 (5.1b,c,de)

The eigenvalues A, (a = n, m, l) correspond to the unit eigenvectors (n, m, 1) respectively,
the latter forming a right handed orthogonal triad. The orientation is completely defined
by the director triad (m, m, I). The magnitude of uniaxial alignment S=3n-Q-n is a
measure of molecular alignment along the uniaxial director n and that of the biaxial

alignment P=3m-Q-m-31-Q-l is a2 measure of molecular alignment in a plane

perpendicular to uniaxial director n. Details on uniaxial (§) and biaxial (P) alignments
and their interrelations are given in (Singh and Rey, 1995a). The present work is
restricted to normal nematics (0<§ <1, 0< P<1). The order parameter Q is assumed

to be spatially uniform and Frank elasticity is not considered.
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Figure 5.2 shows the deformations of an element of discotic mesophase subjected
at time ¢ = 0 to a uniaxial extensional flow of constant extension rate £. As shown, the
extension direction is along the z-axis and r-8 is the compression plane. The velocity

field for the considered flow field is given as:

0 0
v,==LaH(t) v,=0 v, =&H(t) where H(t)= {1 i jO (5.2a,b,c,d)

In this paper we use the velocity field given by equation (5.2) and perform only a steady

state analysis, i.e., t & +oo0.

Extension

¢ direction
{

e e—
Same element of
mesophase at ¢ >0

: Element of mesophase
ZL atr=0
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Figure5.2:  Deformation of a unit cylinder of discotic mesophase subjected at time t=0to a
uniaxial extensional flow deformation. The extension direction is along the z-axis, and the r-6
plane contains the uniform compression.
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5.2.2 Microstructure Constitutive Equation

The microstructure response of liquid crystalline polymers, as described by Doi’s

mesoscopic nematodynamic theory (Doi and Edwards, 1986), is given as:
Q=F(Q,v)+H(Q, D,(Q)) (5.3)

where Vv is the velocity gradient tensor and Q is the corotational derivative of Q and is

defined as:
Q:%?+(v.v)Q-W.Q+Q-w (5.4)

F(Q,Vv) and H(Q, ﬁ,(Q)) represent the flow and the short range elastic contributions

respectively, and are given as (Singh and Rey, 1998a):

F(Q.Vv)=15A+fA-Q+Q-A-%(A:Q)3]-

(5.5)
1A[(A:QQ+A-QQ+Q-A-Q+Q-Q-A- {Q-Q)A)]
H(Q.D,(Q)) = -6D,[(1-1U)Q - UQ-Q + U{(Q:Q)Q +4(Q:Q)s}] (5.6)
= PR T _ | _n
where D, = D,[1-3(@:Q)]", ,B—f;lﬂ, = (5.7ab,c)

D, is the averaged diffusivity, D, is the preaveraged diffusivity or rotary diffusivity of an
hypothetical isotropic fluid under the same conditions, U (c1/T, T temperature) is the
nematic potential, and # is the shape factor. To specify the molecular geometry we
approximate the disk-like shape of molecule of discotic mesophases with an oblate
spheroid of aspect ratio p (p < 1) where ry is the length of the shortest and distinct
semiaxis, and r; the length of the two longest and equal semiaxes. For an ideal flat disc
p =0(f=-1), for a sphere p =1 (f=0), and for infinitely long rod p — « (f=1). For
discotics (-1 < #< 0), as f increases the constituting aromatic disk-like molecules tend to
become thicker. A and W are the rate of deformation and vorticity tensor respectively.
For uniaxial extensional flows the vorticity tensor W is zero, and A is calculated using

equations (5.2).
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5.2.3 Symmetric Visco-Elastic Stress Tensor for Nematics

The symmetric extra stress tensor t° for thermotropic liquid crystalline materials

is expressed as a sum of viscous t* and elastic t° stress contributions (deGenne and

Proust, 1993; Doi and Edwards, 1986; Larson, 1996) as:
tt = t' + t° (5.8)

The expression for the elastic stress contribution t°, derived by using the standard
equation of fluxes (t‘, Q) in terms of forces (A, H) (deGenne and Proust, 1993; Singh
and Rey, 1998b; Tsuji and Rey, 1997), for the presented CE (equation (5.3)) 1s:
t = (crcT)[—%,BH-,B{H-Q+Q-H—%(H:Q)6} +

%’B{H:Q)Q*“H'Q'Q+Q‘H'Q+Q-Q-H—((Q.Q)H>}] (5.9)

where
H(Q)= g5 H(@ D)= {1 -1U)0- Q- +U feQR+1@Qp]] 19

and c is concentration of molecules per unit volume, x the Boltzmann constant and T the

absolute temperature. The viscous stress contribution t* is given by:

t' = ZA = VlA+V2[Q~A+A'Q—-§-(Q2A)8]+

(5.11)
n[(A:QR+A-Q-Q+Q-A4-Q+Q-Q-A+((Q-Q)}A)¥]

where = is the fourth order tensor, and v;, v, and v, are viscosity coefficients.

Mapping the above expression to those given in (Doi and Edwards, 1986; Larson, 1996),
in which the viscous contribution to stress tensor contains contributions from Q’ terms

only, we arrive at:
t' =4 [(AQ)Q+A-Q-Q+Q-A-Q+Q-Q-A+((Q-Q):A) (5.12)

where v, = v, =0 and v, = 4. Combining equations (5.9) and (5.12), the dimensionless

symmetric extra stress tensor t° is given by (Singh and Rey, 1998b):
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~ t

t* =

£ De[A:QR+A-Q-Q+Q-X-Q+Q-Q-A-(@-Q}AY }
Al-3H-H-Q+Q-H-3(H:QP }+ G-
%{H:Qﬁ+H-Q-Q+Q'H'Q+Q'Q'H‘((Q'Q)H>}]

cxT

6D, . . . . . . ‘
where &, = —‘lf——T—’ is a dimensionless constant representing the ratio of the viscous t* to
CcK

the elastic t° stress contributions, previously introduced by Larson (Larson, 1996);

is Deborah number or the dimensionless strain rate, and A (A= Alg)is

De= £
6D

r

dimensionless rate of strain tensor, and £ is the extension rate.

5.2.4 Uniaxial Extensional Viscosities of Discotic Nematics

The classical definition of uniaxial extensional viscosity for isotropic materials,
also referred to as elongational viscosity or tensile viscosity, is given by Dealy (1994):
lim | o,(t,€)
£)= £ (5.14)
e (¢) t - oo[ é
where o, =t -t is the tensile modulus. However, for discotic nematic liquid crystals
the above definition is incomplete because there are two different extensional viscosities,

as explained below and shown in Appendix A. These two extensional viscosities are

defined as follows:

_ it

1. -,
n.,=-—= sy Mg = (515a,b)

E : £
and in dimensionless form as:

M=t 8D Ll Ll oo rand 6 (5.16)
* (cxT)De cxT & De

For simplicity, in what follows the superscript “*”is dropped. It is important to note that
for rod-like nematics only one extensional viscosity is needed because n orients along the

extension direction (z-axis). On the other hand, in discotic nematics n orients normal to
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the extension direction and anywhere in the compression plane (r-6), so that the
symmetry of the compression plane is broken, and therefore two viscosities are needed.
In what follows we show the relations between the two extensional viscosities (equations
(5.15)) and the microstructures that arise in the spinning of carbonaceous mesophases

(McHugh and Edie, 1995).

5.3 Results and Discussion

This section is subdivided into two subsections. The first subsection discusses the
microstructure features (orientation and alignment) of discotic mesophases subjected to
uniaxial extensional flows needed to explain extensional flow rheology. The second

subsection presents the extensional rheological properties of discotic mesophases.

5.3.1 Orientation and Alignment of Discotic Mesophases under

Extensional flows

The detailed dynamic analysis of orientation director triad (m, m, I) and uniaxial §
and biaxial P alignments of discotic mesophases under extensional flows are given in
(Singh and Rey, 1995a). As mentioned above, here we study only the steady state
rheological features of discotic mesophases under extensional flows. At steady state the
uniaxial ng, and biaxial mg directors lie in the compression plane (-8 plane) whereas the
biaxial director L lies along the extension direction (z axis). The steady state orientation
of the director triad (n, myg, ;) is independent of extensional rate (De), nematic
potential (U), and shape factor (#). However, the dynamics of the orientation director

triad are functions of these parameters (Singh and Rey, 1994, 1995a, 1995b).

In this work we have obtained the stable steady state solutions to equations (5.3)
for a velocity field given by equations (5.2). The output consists of the components of the
steady state tensor order parameter Qgs(De) which is transformed to principal form to
determine its eigenvalues (to evaluate steady state alignments S; and Pg) and
eigenvectors or steady state orientation triad (ng, mg, k). The parametric study is

performed by choosing two values, low and high, of the nematic potential U (U = 3, 6),
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and the shape factor g (8= -0.8, -0..6). In the present case, i.e., in the absence of spatial
gradients, both S and Py are independent of the steady state director triad orientation
(ng, mg, I;s). Figure 5.3 shows the steady state uniaxial S;; and biaxial Py scalar order
parameters as a function of De for U/ = 6 (full line) and U = 3 (dash-line) for § = -0.8
(upper), and S = -0.6 (lower). S;s increases monotonically with the dimensionless strain
rate De at all values of U and . Py at higher U (U = 6) follows the similar trend and
increases monotonically with De for both values of £, however at lower U (U = 3) there is
a local minima for intermediate values of De thereafter it increases monotonically with
De. For discotic mesophases with a given shape factor £, Sss at high U is always greater

than that at low U, however, the difference AS, =S, ;.0 — S, v DEtween values at

high and low U decreases with increasing De. Whereas P at high U is less than that at

low U, and the difference AP, = P, — P, . increases with De. Both S and P;, for

discotic mesophases consisting of thicker disks, f = -0.6, are less than those with the
relatively thinner disks, § = -0.8 for all U and De. Though not shown in Figure 5.3, as
De - 0, uniaxiality is recovered, i.e. P, — 0, for all values of nematic potential,

U (U =6, 3) and shape factor § (£ =-0.6, -0.8) considered here.

In this paper the spatial variation of order parameter is not considered when
capturing the extensional viscosities corresponding to the characteristic textures of
discotic mesophase fibers. As is well known (deGenne and Proust, 1993), the intrinsic

length scale of the model ', where there are variations in order parameter, is given as:

(= L
V(dh/lff/}}sz)

where L is the elastic constant, A, is the homogeneous free energy density (Rey, 1997),

(5.17)

S

and Sp the bulk order parameter. For liquid crystals systems this correlation length is less
than 102 um and thus significantly smaller than the fiber radius (~ 1 pum), and to
simplify the analysis we can assume as a first approximation that V4. =0 ( = n, m, I).

Therefore in what follows we use the homogeneous scalar order parameter
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(i.e., V§ = VP =0) results obtained in this section to calculate extensional viscosities in
the presence of the orientation gradients (i.e., Vo #0,Vm = 0) that arise in cylindrical

coordinates (see Figure 5.4).

(2] 7 -
o 07 [ 0.2,0
;
1 0.1
05 oo
ks, L eed==-
| IS, oes = i 1 1 0 0
0 20 40 60 80 100
De
Figure 5.3: Steady state uniaxial S and biaxial P scalar order parameters as a function of

De for U = 6 (full line) and U = 3 (dash-line) for § = -0.8 (upper), and S = -0.6 (lower). S
increases monotonically with the dimensionless strain rate De at all values of U and f. Py at
higher U (U = 6) follows the similar trend, however at lower U (U = 3) there is a local minima.
Both S and P for discotic mesophases consisting of thicker molecules, S = -0.6, are less than
those with the relatively thinner molecules, g = -0.8.
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5.3.2 Uniaxial Extensional Viscosity of Discotic Mesophases

This section presents the predicted extensional viscosity and its relations with the
flow-induced internal microstructure (Q), processing conditions (U o« 1/7), and matenal
parameters (f), of relevance to the industrial fiber spinning of mesophase pitches. It is
well documented that during this process the fiber cross section may exhibit the onion or
radial textures (Peebles, 1994), shown in Figure 5.4. The figure shows schematics of the
radial and onion microstructure mode with respect to the cylindrical coordinate system
with the z-axis (extensional direction) perpendicular to the page. The dotted lines show
the side view of the disk-like molecules, such that for radial (onion) mode, the unit
normals to the disk-like molecules orient along the azimuthal € (radial r) direction. These
two modes also exist as the prevalent transverse fiber textures in mesophase carbon fibers
(Peebles, 1994). To study the effect of processing conditions and material parameters, the

same parametric values for U and £, as stated above, are used.

(2) (b)

Radial Onion
n=(0,1,0) n=(,0, 0)

Figure 5.4: Schematics of (a) cylindrical coordinate system, and the two main representative
mesophase pitch-based carbon fiber transverse textures: (b) radial, and (c) onion. In the radial
(onion) texture, the unit normals to the disk-like molecules orient along the azimuthal &
(radial r) direction. These textures are observed in the spinning of carbonaceous mesophases
(Peebles, 1994).

As shown in Appendix A the Leslie-Ericksen (Leslie, 1979) theory for discotic

mesophases indicates that two uniaxial extensional viscosities need to be defined to
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completely characterize their extensional rheological functions, in contrast to rod-like
nematics, which need only one. Thus to characterize the extensional viscosities for
discotic nematics with the two observed microstructures, radial and onion, we use the

following nomenclature:

where i = r, o represents the radial and onion texture respectively, and j = r, 6
representing the two axis in the cylindrical coordinate system, see Figure 5.4a. For

example the two extensional viscosities corresponding to the radial texture are: 7; and

1., the former is given as the ratio of the difference of the diagonal components of extra

stress tensor t’ along z and r directions to the strain rate, and the latter by the ratio of the
difference of the diagonal components of extra stress tensor t* along z and & directions to
the strain rate. In the present model, the extension viscosity is a function of flow-induced
microstructure (Q), nematic potential (U), strain rate (De) and the shape factor (), and

can be represented as below:
7, =¥(B.U, De, Q) (5.19)

where the microstructure tensor Q' (i = r (radial), i = o (onion)) for radial (Q") and onion

(Q°) texture is given as:

Q' = 4,8,5, + 4,6,0, + hkk (5.20)
Q° = 4,85, + A,5,0, + Ak : (5.21)

where 5:, 35 and k are the unit vectors along the three cylindrical coordinates; the
superscript in Q represents the texture: { = r (radial), o (onion).

Figure 5.5 shows the computed dimensionless uniaxial extensional viscosities
n.and nl, (i = r (radial texture), i = o (onion texture)) of discotic mesophase as a

function of De for &, = 0.001 (full line), 0.1 (dash line), and 0.2 (triple dot-dash line); for



CHAPTER 5. EXTENSIONAL VISCOSITY OF DISCOTIC MESOPHASES... 132

B=-0.8 and U =6 ((a), (b)), and U= 3 ((c), (d)). The extensional viscosity 7, (r;_f,,) for
the radial mode 7. (7,) is always less (greater) than for the onion mode 7. (75,),
ie. . <no (ni, > n), atall De for all values U and 5. Please also note that 7, = 15,,
and 7 =n.,, therefore we have i, =ni, <n. =nl,. The dependence of uniaxial
extensional viscosities, 77, and 7., for the radial and the onion textures on U, fand De

are summarized in Table 5.1. For high U (U = 6), . (each n/ and 7) is independent
of low De, but exhibits slight strain thinning for & = 0.001, and strain thickening for
& =0.1, and 0.2 at high De. It is found that the strain thinning (thickening) is due to

elastic (viscous) stress contribution, since as the viscous contribution to total stress

increases the discotic mesophases exhibit stronger strain thickening characteristics. This
phenomenon is more apparent at low U (higher 7). As shown in Table 5.1, 7 follows
the same trend at low and high U. However, at low U, 7, exhibits strain thinning at low
De with saturation at high De for & = 0.001, and strain thinning for low De and strain
thickening at high De with transition from thinning to thickening at intermediate De for
& =01, and 0.2. At low De the departure from equilibrium is higher at low U (see
Figure 5.4), thus elastic stress contributes more at low U at low De, thereby showing
strain thinning at low strain rates, with strain thickening at high rates. Also, as elastic
(viscous) stress dominates at low (high) De, therefore strain thinning (thickening) is seen
at low (high) strain rates, with an intermediate De strain thinning — thickening transition
(see Figure 5.5d and Table 5.1). Though extensional viscosities at very low De are not
presented here, however, at very low De (De — 0) the visco-elastic effects on
microstructure and stress vanish and the viscosities are constant. The terminology for

low/high De is used just to explain the most important results presented in Figure 5.5.
Although not shown, the effect of the shape factor # on both the extensional

viscosities has been characterized. It is found that as S increases the extensional

viscosities 7!, and n’, decrease. For a fixed director triad orientation (radial or onion in

the present case), the extensional viscosities are functions of the steady state eigenvalues
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(Aas Am, A1) or the uniaxial S and biaxial P alignments; see equations (5.1, 5.19). As
explained above and shown in Figure 5.3, both S and P, decrease with increasing S,
hence 7, and 7!, decrease with increasing B. All the above-mentioned equalities,

ie n, =n, and 7 = n,, and inequalities, i.e. 77;, <n. and 7, > n,, also follow at

higher B (f=-0.6).

0.3 —10.3
< 02} T 102
& 3
w01 ! 401 ®
=~ R 3
0.0 00
Us6(a)| U=6 (b)
1 1 R ] | . .
2 0.2 B e e ¢t v e s .ot -t i 0.2
S N 3
TR [ (b 3
s 01 - 401 n
& T e \ .
00— 00 °
U=3 (c) U=3 (d)
-0.1 e il — .0.1
109 101 100 101 102
De De

Figure 5.5:  Dimensionless uniaxial extensional viscosities 7/,and 7!, (i = r (radial), i = 0
(onion)) of discotic mesophase as a function of De for £, = 0.001 (full line), 0.1 (dash line), and

0.2 (triple dot-dash line); for #=-0.8 and U = 6 ((a), (b)), and U = 3 ((c), (d)). The extensional
viscosity 77, (7.,) for the radial texture 77 (7),) is always less (greater) than for the onion

texture 7, (%), i.e. i <l (nly > n%). Also note that 7. =n?,, and 1’ = n],, therefore

m.,. =M. < n. = n.,, for details see text.
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TABLE 5.1

Effect of processing conditions on uniaxial extensional viscosities
of discotic mesophases

U 6 (high) 3 (low)
&, 0.001 0.1,0.2 0.001 0.1,02
De low | High | Low | high low high low high
=1 e I = L e R A e
n.=n., — A —_ T \) — ! T

“—’: strain rate independent viscosity, ‘3: strain thinning, *T": strain thickening, U: nematic
potential (e 1/T, temperature), &, : ratio of viscous to elastic stress contributions,
De: dimensionless strain rate, 77, 7.5, 1., 7%, : dimensionless uniaxial extensional viscosities

of discotic mesophases.

The above discussed viscosity-microstructure relationships can be summanzed as

follows:
Inequalities within a given texture: Mo >Mos N0 >05% (5.22,a,b)
Equalities between two different textures: 17, = 77..; Mo = M (5.23a,b)

To understand the above equalities and inequalities we use symmetry. The
extensional viscosities for discotic mesophase depend on the microstructure Q, the

nematic potential U, the strain rate De, and the shape factor S
e =¥(B,U,De,4,,4,), and 7o =Y(B,U,De,A,,4) (5.24a,b)

where A,, Am, 4 are the eigenvalues of Q; see equation (5.1). Since the eigenvalue, A,
along @ direction for the radial texture is equal to the eigenvalue, A, along r for the onion

texture, and since A, is common to both we find:

Mo =15 (5.25)
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Similarly

., =Y(8,U,De,2,,4), and n%s =¥(B,U,De,A,,4) (5.26a,b)

r

Since the eigenvalue, An, along r direction for the radial texture is equal to the

eigenvalue, A, along @ for the onion texture, and since 4, is common to both we have:
M, =Ty (5.27)

Next, we will establish the origin of the inequalities (equations (5.22)) in the uniaxial
extensional viscosities within a given texture. From equations (5.19-5.21), (5.24a) and

(5.26a), since A, > 4, , we have the inequality:
Mg > 1. (5.28)

Likewise from equations (5.19-5.21), (5.24b) and (5.26b), and A, > 4,, the second

inequality follows:
ne. > n, , (5.29)

We note that even in the uniaxial approximation (4, # 4, = 4;), there will be two

distinct extensional viscosities for discotic mesophases, and the inequalities between the
uniaxial extensional viscosities for discotic mesophases presented above will hold.
Appendix B shows that the texture dependent equalities and inequalities between the

viscosity coefficients hold in the uniaxial limits also using L-E theory.

54 Conclusions

Predictions of uniaxial extensional rheological functions of discotic mesophases
are presented and classified. The predicted rheological functions are discussed and

assessed within the context of nematorheology.

For discotic mesophases two uniaxial extensional viscosities, termed here as 7,

and 7.,, are needed to completely characterize their extensional rheological functions.

The extensional viscosities depend strongly on the microstructure such that 7, < and



CHAPTER 5. EXTENSIONAL VISCOSITY OF DISCOTIC MESOPHASES... 136

n.e > n.e- The extensional viscosities are different within a given texture, for example,
for radial (onion) texture 7., <., (7. > n:,). The discotic mesophases are found to be

non-Troutonian, and show strain thinning or thickening based on temperature and ratio of
viscous to elastic stress contributions. The elastic (viscous) stresses result in strain

thinning (thickening) characteristics to the discotic mesophases.

The microstructure dependency of the extensional viscosity of discotic
mesophases has direct impact on the selection of experimental technique to measure the
extensional viscosity. The preferred microstructure (radial, onion, mixed radial onion, or
folded) develops inside the spinneret capillaries, and the strong extensional flows
accentuate the axial orientation of the molecules (Fatholahi et al, 1992; Fatholahi and
White, 1994; Fleurot and Edie, 1997; McHugh and Edie, 1992, 1995). Thus if spinning
devices are employed to measure the extensional viscosity, then prevailing microstructure

in the thread-line needs to be specified along with the extensional viscosity data.
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'CHAPTER ©O

Effect of Long Range Elasticity and
Boundary Conditions on
Microstructural Response of

Sheared Discotic Mesophases

In the previous chapters we explored the flow-induced microstructural and
rheological response of the selected CE under homogeneous flows. This chapter presents
comprehensive analysis of non-homogeneous shear flow-induced microstructure response
of discotic mesophases in the presence of curvature elasticity in different planar surface
anchorings. Four different planar microstructure modes, steady state and periodic, are
shown to be stable. The microstructure phase diagram reveals that the four stable
microstructure regimes co-exist at one point, called qua-critical point. It is shown that the
bulk molecular orientation is along the velocity gradient direction irrespective of the
surface anchorings. Novel scaling laws relating the microstructure mode domains with
the Frank elasticity are presented. This chapter puts forth a systematic study of flow
induced microstructural behavior of discotic mesophases, and provides a useful
fundamental understanding of the flow of discotic mesophases of use in the processing of

carbonaceous mesophases.

! This chapter appeared as an original article in Journal of Non-Newtonian Fluid Mechanics
94(2-3) p87-111 (2000).
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6.0 Abstract

A comprehensive analysis of shear flow-induced microstructure phenomena
exhibited by discotic mesophases is presented using a complete generalized non-linear
theory that takes into account short-range order elasticity, long-range elasticity, and
viscous flow effects. The following four distinct shear-induced stable planar non-
homogeneous microstructure modes are found: (1) long-range elasticity-induced steady
state, (2) bulk tumbling-boundary wagging state, (3) bulk wagging state, and (4) viscous
flow induced steady state. The stability of the microstructure modes is presented in terms
of a rheological phase plane spanned by the Ericksen number Er (ratio of viscous flow to
long-range elasticity), and the ratio of short-rangé to long-range elasticity (R). The steady
and dynamical features of the various microstructure regimes are thoroughly
characterized and analyzed. Two strong surface anchoring conditions, along the velocity
gradient direction, and along the flow direction, are employed to investigate their effect
on the stability and range of various microstructure regimes on the £r-R phase plane. The
average bulk orientation for all the modes is found to be close to the velocity gradient
direction. The fixed anchoring along the velocity gradient direction transmits the
anchoring conditions into the bulk more strongly than that by the fixed anchoring along
the flow direction. The effects of long-range elasticity on the flow-induced
microstructure features are characterized. These simulations provide useful information
to process carbonaceous mesophases by identifying the principles that govern shear flow-

induced orientation in discotic mesophases.

6.1 Introduction

Carbonaceous mesophases or mesophase pitches are being employed as precursor
materials to manufacture high performance mesophase carbon fibers and as matrix
materials in carbon-carbon composites. The excellent end product property profiles are
due to the anisotropic nature of the mesophase pitches. For example mesophase carbon
fibers have been known to possess very high axial thermal conductivity and elastic
modulus, and thus are very suitable for industrial processes requiring high thermal

transport and stiffness. As is well known (Chandrasekhar, 1981, 1992; Zimmer et al.,
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1982; Carlsson, 1983; Singer, 1985; McHugh et al., 1992; Edie et al., 1994; McHugh and
Edie, 1995, 1994; Pecbles, 1994), it is possible to induce and control preferred molecular
alignment in anisotropic carbonaceous mesophases during processing, thereby imparting
superior propetties to the end products. Mesophase pitches are discotic liquid crystalline
materials and have been shown (Singer, 1985; Chandrasekhar, 1992; McHugh et al.,
1992; Edie et al., 1994; McHugh and Edie, 1995; Peebles, 1994) to exhibit symmetry
breaking typical of the nematic phase. Mesophases pitches consist of disc-shaped
aromatic molecules that are flat and large enough to exhibit nematic characteristics, and
are termed discotic nematics, Np. Figure (6.1) shows a schematic of a uniaxial discotic
nematic phase. The unit normals to the disk-like molecules orient along a preferred
direction given by a unit vector n commonly known as director or average orientation,
and the extent of alignment of the unit normals along the director m is given by a scalar §

called uniaxial scalar order parameter or uniaxial alignment.

Numerous experimental (Back et al., 1993, 1994) and theoretical studies
(Marrucci and Maffettone, 1989; Larson and Ottinger, 1991; Andrews et al., 1995;
Marrucci and Greco, 1993; Tsuji and Rey, 1997, 1998, 2000; Rey and Tsuji, 1998) have
been performed to unravel the fundamental. principles governing the flow-induced
microstructural phenomena of rod-like nematics. A similar understanding is not yet
available for discotic nematics, but is required for making further technological advances
in the manufacturing of carbon fiber using carbonaceous mesophase precursors. The
present work is aimed towards developing such scientific database for discotic
mesophases, and extends our previous work (Tsuji and Rey, 1997, 1998, 2000; Rey and

Tsuji, 1998) to discotic nematics.

In industrial processing, precursor materials are subjected to complex flows,
involving various combinations of shear and extensional deformations, in complex
geometries. In order to control the molecular orientation or microstructure a fundamental
understanding of the material behavior subjected to the prevailing complex flow is
required. In this paper we study and characterize the distinct microstructural features

exhibited by discotic mesophases under rectilinear shear flow.
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Figure 6.1: Definition of uniaxial director/orientation n of a uniaxial discotic nematic liquid
crystalline phase. The director n is the average orientation of the unit normals u to the disc-like
molecules.

In our previous works (Singh and Rey, 1998a, 1998b) a constitutive equation (CE)
for discotic mesophases was formulated based on Doi’s theory of nematodynamics (Doi
and Edwards, 1986) by taking into account full microstructural features (Singh and Rey,
1998a, 1998b). The CE under homogeneous shear flow predicted the classical stable
planar 2D (tumbling, wagging and aligning) modes as well as non-planar 3D (log-roiling)
mode. These microstructure modes in sheared discotic mesophases are similar to those
for rod-like nematics, yet possess inherent differences which are attributes of different
molecular shape. For example in the planar stationary high shear rate regime, the director
n aligns near the velocity gradient (velocity) direction for discotic (rod-like) nematics.
Similarly, in the planar periodic, rotational and oscillatory, modes the director n spends
most time along the velocity gradient direction in sheared discotic mesophases (Singh and
Rey, 1998a, 1998b). Our previous work (Singh and Rey, 1998a, 1998b) was restricted to
ideal homogeneous microstructure fields, however actual processing flows have finite
boundaries that affect strongly the microstructure fields through surface forces and
torques. Thus it is necessary to include the geometry effects to complete the current
understanding of flowing discotic mesophases. These surface effects are implemented
using a previously developed model (Singh and Rey, 1998a, 1998b) by incorporating
long-range (Frank) elasticity terms. Tsuji and Rey (Tsuji and Rey, 1997, 1998; Rey and
Tsuji, 1998) have successfully undertaken the same approach for sheared rod-like

nematics.
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The general aim of this paper is to characterize the effect of long-range order
elasticity on the rectilinear shear-induced microstructure phenomena in discotic

mesophases. The particular objectives are:

1. To present comprehensive characterization of all the planar spatially non-
homogeneous microstructure modes of discotic mesophases subjected to rectilinear

shear flow,

2. To characterize and explain the differences in the microstructural response of sheared

discotic nematics under two representative surface anchoring conditions,

3. To summarize the planar microstructure features of the sheared discotic mesophases

in terms of rheological phase diagrams,

4. To analyze the effect of elastic anisotropy on the microstructure features of sheared

discotics.

The organization of the paper is as follows. In the next section we present the
theory, coordinate system, assumptions used in problem formulation, governing
equations, and a brief description of computational methods employed to solve the
governing equation. Section 6.3 contains the numerical results and their discussion.

Section 6.4 presents the conclusions.

6.2 Problem Formulation

6.2.1 Theory and Governing Equations

The microstructure of discotic mesophases, Np, is described conveniently in terms
of a second order, symmetric and traceless tensor order parameter Q (deGennes and

Proust, 1993):
I 2
Q=J.(uu—-§)fd u (6.1)

where u is the unit vector normal to the disk-like molecules (see Figure 6.1), I is second
order unit tensor, and fis the orientation distribution function. Alternatively Q can also

be defined in terms of three eigenvectors (n, m and I) and three eigenvalues
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(4,,4, and 4,):
Q=4,mn+ A, mm + 4,1l | (6.2)

The main eigenvector n of Q represents the uniaxial director. Uniaxial scalar order
parameter or alignment S, is a measure of the molecular alignment along the uniaxial

director n, and is given by S =3Q:nn. Biaxial alignment P is a measure of molecular

alignment along the eigenvector m in a plane perpendicular to n, and is calculated as
P=3(Q:mm-Q:N).

The evolution of microstructure tensor order parameter Q is given by a combination of

three competitive contributions:

1. Flow contribution F accounts for effect of fluid rate of deformation and fluid vorticity
on molecular field in terms of microstructure Q, molecular shape £, and flow field Vv

(v is the velocity vector).

2. Short-range elastic contribution H arises directly from the intermolecular attractive
and repulsive forces such as van der Walls forces and excluded volume effects, and
controls the isotropic-nematic phase transition. H is given in terms of microstructure

Q, nematic potential U (1/7), and rotational diffusivity D,.

3. Long-range elastic contribution B, commonly known as Frank elasticity, arises due to
secondary effect of the nematic intermolecular forces, and transmits the surface
anchoring effects from the boundaries into the bulk. This effect is necessary to
describe the textures and defects invariably observed in practice (Zimmer et al., 1982,

Larson, 1999).

A linear combination of these three fundamental contributions determines the
microstructure response of discotic nematics under arbitrary flow as follows (Tsuji and

Rey, 1997, 1998, 2000; Rey and Tsuji, 1998; Singh and Rey, 1998a, 1998b):
Q = F(Q.w) + H(Q,D,(Q)) + B(VQ) (6.3)

where
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FQ,Vv)=14A+f[A-Q+Q-A-3(A: Q)]

6.3
1AlA:QR+A-Q-Q+Q-A-Q+Q-Q-A-{Q-Q):A}l] (€
H(Q, D,(Q))=-6D,[(1-1U)Q-UQ-Q+U{Q:Q)Q+4(@Q: Q)] (6.3b)
BQ)-= 65{—"‘—'— viQ+1-2[v(@-Q)+ FW-QF -0 fFE -Q)}l]} (6.3c)
cxT ckT

= Y -2 _ p2 -1 _ r
Dr Dr[l Z(QQ)] ? ﬁ pz +1’ p n : (6.3e,f,g)
Q=%+(V-Vp-W-Q+Q~W (6.3h)

where Q is the Jaunmann derivative of Q, D, is the microstructure dependent rotational
diffusivity, D, is the pre averaged rotational diffusivity or isotropic diffusivity
independent of Q, U is the nematic potential, and S the shape factor. The disk-like
molecules of discotic nematics are approximated with oblate spheroids of aspect ratio
p (p <1), equation (3f), where r, is the length of shorter and distinct semiaxis, and r, the
length of the two longer and equal semi-axes such that for an ideal flat disc-like molecule
p =0 (f=-1), for sphere p =1 (f = 0), and for infinitely long rod p - «© (f=1). For
discotics, the material parameter varies from -1< f#<0. L and L, are Landau
coefficients or elastic moduli, and are related to the macroscopic curvature elasticity of
uniaxial nematics as follows:

K, K-
=5t bas

Ky where K=K, =K3;3; L, +§L2 20,L 20 (6.4)

L 3

K;;, K;; and Kj; are Frank elastic constants for splay, twist and bend elasticity
respectively. It has been observed experimentally, and predicted from molecular
simulations and theory for representative discotic nematic materials (Stelzer et al., 1997;
de Castro et al., 1999; Singh and Pandey, 1998) that there exists a reversal in the well
known ordering of Frank elastic constants as compared to that in rod-like nematics. For

discotics the ordering in Frank constants is K,, > K, > K; (Stelzer et al., 1997).
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Figure 6.2: The parametric area in the K - K,, phase plane where the present theory, equation
(3), is applicable for rod-like and discotic nematics. Please note that the theory is applicable for
ideal discotic mesophases only in the closed range K < K,, £4K . In this theory the bend and

splay elastic constants are equal K|, =K;; =K. As shown, two different values of

L, =L, /L, areused in the present analysis.

In the present theory the splay and bend elastic constants are equal, K, =K;;
(deGennes and Proust, 1993; Beris and Edwards, 1994). Higher order theories are
necessary to account for inequalities between K|, and K;;. To accomplish this six new
terms must be added, rendering the computations nearly intractable. Since for discotic
nematics the distinguished constant is K,,, the K, = K,; limitation is not as significant
as for rod-like nematics. Figure (6.3) shows the parametric area in the K-K,, phase
plane where the present theory (equation 6.3) is applicable for rod-like and discotic
nematics. The present theory is applicable for ideal uniaxial discotic mesophases only in

the following closed range:

15%54, ~15<f <o, (6.5)

1
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Combining equations set (6.3), we find the following governing equations for the tensor

order parameter Q:

23:w.Q_Q.W+%ﬁA+p[A-Q+Q-A-§(A:Q)]
~14jA:QR+A-Q-Q+Q-A-Q+Q-Q-A-{Q-Q):A}Yl]

oD, 1-1UR-UQ-Q+ QD +1(0: (6.6)
Ty Q)[( LU -UQ-Q+U§Q:QR+1@: Q)]

o b ot o]

The dimensionless form of the above equation is obtained by scaling as follows:

ErZTQ-Er[W Q-Q-W'+Z ﬂA +ﬁ[A ‘Q+Q-A’ __(4 Q)]
-Eﬂb'iQh*"A"Q-Q+Q-A'-Q+Q-Q-A‘—{Q-Q):A‘}:ﬂ

e 8 Q) Hl 3 )Q ve- Q+U{(Q Q)Q+—(Q Q)H

)[v ‘Q+3 L [v @ -Q:§ Q)}_-—tr‘s7 @ Q)}ﬂ

(6.7)

(1

m|u

t.=7'1’ A= .

The dimensionless quantities are represented by a superscript (*) in equation (6.7), and H
is the characteristic distance between the two plates (see Figure 6.3). As there are three
competing contributions controlling the microstructural response of discotic nematics,

therefore we have two dimensionless numbers or scaling parameters:

£, PH'ekT _ VHckT _ VHp, o =T (6.8a, b)
L,6D,  L,6D, L, 6D,
2 2
R D Hn, H?® T (6.9)

L 6 L
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The Ericksen number Er is the ratio of the viscous flow effects to long-range order
elasticity, whereas ratio R, introduced previously by Tsuji and Rey (1997), is the ratio of
the short-range order elasticity to long-range order elasticity. As reported (Tsuji and Rey,
1997, 1998; Rey and Tsuji, 1998) the above-presented theory, equation (6.3), fills the gap
between classical theories of liquid crystals, Leslie-Ericksen (L-E) theory (Leslie, 1968,
1979), and Doi’s theory (Doi, 1981; Doi and Edwards, 1986). In summary, the above
generalized theory is completely compatible wiﬁ the L-E theory in the limit R — , on
the other hand it is compatible with Doi’s theory in the limit Er — <, and transversely
isotropic fluid (TIF) theory in the limit R — <« and Er — o and (Tsuji and Rey, 1997,
1998; Rey and Tsuji, 1998). It is noted that the L-E theory has no restriction on the
values of elastic constants, however, as mentioned above the present theory is restricted

to K, =K,;.

6.2.2 Definition of Coordinate System and Flow Field

The model discotic mesophases are subjected to the rectilinear simple shear flow,
shown in Figure (6.3a). The lower plate (at y = 0) is stationary and the top plate (y = H),
at distance H from the bottom plate, moves in the +x-direction with a known constant
velocity V. The velocity gradient is along the y-axis, and vorticity along the z-axis. In
this study we restrict our analysis to planar' orientation such that two of the three
eigenvectors of Q lie in the shear plane, and as a consequence the only non-zero
components of tensor order parameter are Oy, Oy, O)y, O--. The components along the
vorticity direction, Q.; and Q.,, are set to zero. We note that eliminating components Q-,
and Q., does not restrict the uniaxial director n to the shear plane. The director n is still
able to escape the shear plane and align along the vorticity direction even if Q-; = Q.. = 0.

Expressing the components in terms of eigenvectors and eigenvalues, it is found:
Qz‘ = ’lnn:nx + Ammzmx + A‘ 1:lI (6'10)

and, it follows that the sufficient condition for both components Q. and 0., to be equal to
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zero is a=(0, 0, 1), where a =n, m, 1. In this work we have never observed a director
escape from the shear plane. The planar director dynamics are given in terms of one
azimuthal angle 6, measured in degrees, which n makes with the x-axis as shown in

Figure (6.3b).

() (b)

Figure 6.3: (a) Definition of rectilinear simple shear flow. The discotic mesophase sample is
placed between two infinitely long plates. The lower plate (y = 0) is stationary and the top plate
(y = H) moves in the +x-direction with a known constant velocity ¥. The velocity gradient Vv is
along the y-axis. (b) Definition of orientation angle & that the primary eigenvector (uniaxial
director) n of tensor order parameter Q makes with the x-axis.

6.2.3 Initial and Boundary Conditions

One of the objectives of this paper is to analyze the distinct microstructure
features of sheared discotics pertaining to different boundary constraints. Two fixed

anchoring modes are possible under the planar molecular orientation assumption:
BCVG: The director n is fixed along the velocity gradient direction (y-axis), such that:

Bscvs = (1,0 1,.1.)=(0,1,0) (6.12)
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BCF: The principal eigenvector n is fixed along the flow direction (x-axis), such
that:
D per =(nx’”y’n:)=(l’ 0,0) (6.13)

Furthermore at the surface, it is assumed that the discotics are uniaxial (P = 0) and at
equilibrium (§ = §,;). The equilibrium alignment depends on the surface nematic

potential as:

I 3 8 .
S =—+—‘/1—— 6.14
“" 4 4\ 3U (6.14)

The resulting microstructure tensor order Q at the boundaries is given as:

Q(" =0)=Q(" =1)= S,,,(nsns —%) 6.15)

The initial state is assumed to be uniaxial and at equilibrium (P =0, § = §,;). Initially (at
time ¢°< 0), the orientation of discotic nematic phase n,(t* =0,0 < y* <1) between the
two plates is assumed to be parallel to the corresponding orientation ng. Small thermal

fluctuations are imposed on the initial orientation by introducing infinitesimally small

Gaussian noise in n, . Thus the initial condition in terms of Q is given as:

QQ' =0,0<y" <1)= Seq(n,n; -%J (6.16)

Hence for BCVG:

n, ={n,,n ,n,)=[sin(e¢), cos(e),0], and (6.17)
for BCF:
n,= (nx, n,n. ) = [cos(e¢), sin(e¢), 0] (6.18)

where ¢ =-1—78£—10'J radians, and ¢ is Gaussian noise. We have found that the solutions

are independent of ¢ .



CHAPTER 6. LONG-RANGE ELASTICITY EFFECTS ON MICROSTRUCTURE... 151

The model equation set (6.7) is solved numerically by using the finite element
method for spatial discretization. The resulting set of non-linear time dependent ordinary
differential, obtained after spatial discretization, is solved using the Newton-Raphson
iteration scheme. The convergence is assumed to occur when the length of the difference
between two successive solutions vectors is less than 10°. A finite difference method is
used to discretize time, and a first order implicit Euler predictor-corrector method is used
for time integration. To minimize computing time without losing accuracy, an adaptive
time step control scheme is implemented. Standard methods are employed for mesh
refinement, convergence, solution stability and consistency. The computations are

performed for both boundary conditions and the set of parameters listed in Table 6.1.

Table 6.1

Simulation parameters used for model equation set (6.7)

Er R Yij U L,
4

3

(Kzz =3K)
1<Er<10®° | 1<R<10° -0.9 - 6

1

T4

(Kzz =8/7 K)

Er: Enricksen number; R: ratio of short range elasticity to long range elasticity; £: shape factor; U:
nematic potential; L, = L, /L, , ratio of Landau coefficients; K, : twist energy elastic constant;

K =K, =K, where K|, : splay energy elastic constant, K, : bend energy elastic constant
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6.3 Numerical Results and Discussion

An extensive numerical analysis of the governing equations (6.7), subjected to
shear flow for both sets of boundary conditions, equations (6.12, 6.13), was performed.
Firstly, the flow-induced microstructure modes are identified, analyzed and characterized.
The effect of different anchoring conditions on the microstructure features are presented
and characterized. Detailed microstructure phase diagrams in R-Er phase plane are also
presented. Finally, the effect of the long-range curvature elastic anisotropy on shear-

induced microstructure are discussed and characterized.

6.3.1 Shear-induced Microstructure Modes under Strong Anchoring

Conditions

Four distinct stable in-plane (2D) microstructures, two steady and two periodic,
modes were found to be stable in the (Er, R) phase plane. These four planar modes are:
(1) long-range elasticity induced steady state (ESS), (2) bulk tumbling-boundary wagging
state (TWS), (3) bulk wagging state (WS), and (4) viscous flow induced steady state
(VSS). Similar modes have also been reported for planar shear flow of rod-like nematics
(Tsuji and Rey, 1997). The nomenclature used in this paper is adopted from that given by
Tsuji and Rey (1997, 1998). In this sub-section we present, characterize and discuss the
four distinct shear induced microstructure modes for the two considered boundary

conditions.

6.3.1.1 Long-Range Elasticity induced Steady State (ESS)

This steady state prevails at sufficiently low Er values and for all arbitrary values
of R, and arises due to the dominance of long-range elasticity on the vorticity effects of
imposed shear flow. Figure (6.4) shows the (a) in-plane director angle 6, (b) uniaxial
alignment S, and (c) biaxial alignment P profiles for Er = 50, R = 1000 (solid line);
Er =50, R = 10 (dash line); and Er = 100, R = 1000 (dot-dash line). The spatial profiles
are for BCVG, and U = 6, f = -0.9, and L,= -4/3. In ESS, the orientation profiles are

parabolic. The director angle at the centerline 6]y.=0 , decreases with increasing Er,
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however, remains unaffected by changes in R. At a constant and low Er (Er = 50), the §

decreases with

profiles are also parabolic, but the value at the centerline S J*e0s

decreasing R. At low Er, two competing effects come into play: long-range order, which
tries to impose the anchoring orientation -and alignment on the bulk, and short-range order
that keeps the equilibrium alignment S, everywhere in the system. At higher R, short-
range order dominates and the bulk alignment is close to the equilibrium value (S = S,;),
however, as R decreases it is easier for the system to lower the alignment S in order to
compensate for the higher long-range energy. As Er increases the flow torques gradually

gain strength over long-range elasticity and thus are able to decrease 0[},. _os S shown in

Figure (6.4). It is found that for R = 1000, 8

o5 lies in the first quadrant till £r < 70,

}"=
and the § profiles are parabolic. However, there exists a jump in the director angle profile

near Er ~ 70 such that for £r > 70, @

J =05 lies in the fourth quadrant which results in

large gradients in both alignments (S, P). This well understood (Tsuji and Rey, 1997)
apparent discontinuity is due to solution multiplicity, and is similar to that exhibited by

L-E theory (Manneville, 1981). As shown in Figure (6.4) for Er = 100, R = 1000,
6

proos -60 degrees, and the steady state uniaxial alignment § > S, near the boundaries

and in some portion of the central core. The nematic phase is nearly uniaxial (P = 0),

however the spatial variations in P increase with decreasing R and increasing Er.
Figure (6.5) shows the (a) in-plane director angle & angle, (b) uniaxial alignment
S, and (c) biaxial alignment P profiles as a function of y° = y/H for BCF and U = 6,

B =-09, and L,=-4/3. The other parametric conditions are: R = 100, Er = 100 (solid
line); R = 100, Er = 50 (dash dot line); R = 1000, Er = 50 (dash line). The orientation

profiles are parabolic as for BCVG. However, orientation difference AQ = lBI}_.m -6

in the orientation angle at the centerline | . . and at the surface 6; is higher in BCF as

¥t
compared to BCVG. The dominant long-range elasticity transmits the anchoring
orientation in the bulk; the latter tends to rotate under the prevailing rotational torques.

The net effect of the fixed boundary conditions to transmit the anchoring orientation into
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Figure 6.4: (a) In-plane director angle &, (b) uniaxial alignment S, and (c) biaxial alignment P
steady state spatial profiles for U =6, #=-0.9, and L), = -4/3. The parametric conditions are
Er =50, R = 1000 (solid line); £r = 50, R = 10 (dash line); and £r = 100, R = 1000 (dot-dash
line). The shown profiles correspond to long-range elasticity induced steady state (ESS) for
BCVG, ngyg =(0,1,0). The orientation profiles are parabolic. The director angle at the

centerline €

V=05 decreases with increasing Er, however, remains unaffected by changes in R.

A decrease in ratio R, at constant Er, affects only alignments to compensate for higher long-range
energy. The nematic phase is nearly uniaxial.
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Figure 6.5: (a) In-plane director angle &, (b) uniaxial alignment S, and (c) biaxial alignment P
spatial profiles for BCF, ng,e =(1,0,0), and for U = 6, f = -0.9, and L= -4/3. The
parametric conditions are R = 100, Er = 100 (solid line); R = 100, Er = 50 (dash dot line);
R = 1000, Er = 50 (dash line). The shown data corresponds to long-range elasticity induced
steady state (ESS) for BCF. The orientation extends a larger angle in the bulk as compared to
that in BCVG, ngg. =(0,1,0). The uniaxial profile is always marked a central core region
where uniaxial S alignment is greater than Seq, and by two troughs near the plates where
orientation gradients are large. The deviation in S increases with increasing Er and decreasing R.
The nematic phase again is nearly uniaxial.
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the bulk is stronger for BCVG as compared to BCF, as (A8),r > (A0),c,c under the

same conditions. The uniaxial alignment S profiles, in the ESS mode for BCF, are
characterized by two troughs near the two plates where orientation gradients are large,

and by a bulk region at the center where § > §, . The alignment S is higher (lower) when

the director is close to the velocity gradient (flow) direction. As R increases, at constant
Er, the orientation profile remains unaltered but the alignments (S, P) tend to their
equilibrium values since as R — «©, § = §,; and P = 0. The nematic is mostly uniaxial,
however, the extent of flow-induced biaxiality under the same parametric conditions is
higher for BCF than for BCVG. It is also noted from Figure (6.5) that in ESS, R does not
have appreciable influence on orientation profiles, however, Er affects both orientation

and alignment profiles.

The main characteristics of ESS for both BCs are: (a) the microstructure field is
steady state, (b) ESS prevails at low Er and arbitrary R, and arises due to long-range
elasticity which frustrates the shear flow vorticity torques, (c) the orientation profiles are

parabolic, (d) the transients leading to ESS are overdamped and non-oscillatory.

The main differences in the ESS regime due to the two boundary conditions are:
(a) for BCF the uniaxial alignment § profiles are always characterized by a central core
region where S > S, and by two troughs near the boundaries in which § < Seq, (b) the
orientation gradients are always higher in BCF than in BCVG, (c) the ESS state prevails
till higher values of Er in BCF than in BCVG.

6.3.1.2 Bulk Tumbling — Boundary Wagging State (TWS)

This stable periodic in-plane microstructure mode is stable at appropriate values
of Er and R. This periodic microstructure mode arises as the long-range and short-range
order elastic effects are unable to contain the strong rotational flow toques. Figure (6)
shows the spatio-temporal profiles of: (a) the in-plane director angle 6, (b) the uniaxial
alignment S, and (c) the biaxial alignment P, in 3-D box plots, for BCVG with: R = 100,
Er=2000, U= 6, f=-09, and L, =-4/3. The director orientation is periodic and is

characterized by the presence of three layers: one central bulk region where the director
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continuously rotates clockwise, and two boundary regions where the director oscillates.
The uniaxial S and biaxial P alignments also exhibit space dependent and periodic
behavior, which is marked by coinciding sharp changes appearing near the bounding
surfaces. The complex phenomena presented in Figure (6) can conveniently be expressed
by scientific visualization of the tensor order parameter profiles, presented in Figure (7).
The directions of the main orthogonal axes of the ellipsoid correspond to the directions of
the eigenvectors (n, m), and the lengths of the semi-axes of the ellipsoid are proportional

to the corresponding eigenvalues (A4,, 4,). The less aligned state is represented by an

ellipsoid with a smaller (larger) major (minor) semi-axis. Figure (7) shows that the
ellipsoids rotate with increasing time in the bulk region, and oscillate near the velocity
gradient direction in two boundary layers. The average bulk orientation is along the
velocity gradient direction as the time dependent orientation spends most of the time
along the y-axis. There is a lowering in the alignment, represented in Figure (7) by nearly
circular ellipsoids, when the orientation is away from the velocity gradient direction. The
smooth and continuos transition between the director rotation in the bulk and the director
oscillations in boundary regions is achieved by emergence of abnormal nematics, where
the two eigenvalues are equal, 4, =4, > 4,, at which ellipsoid becomes a circle. This
periodic emergence of the abnormal nematic state allows for the director resetting
mechanism (Tsuji and Rey, 1997) that makes it possible to have continuous rotating bulk
orientation in the presence of fixed surface anchoring conditions. The abnormal nematics
emerge in pairs, one near each plate, at a distance & from each plate that marks the
boundary between the tumbling bulk and the two oscillating boundary layers. For the
parametric condition used in Figures (6.6, 6.7) the boundary layer thickness & = 0.09,
and the abnormal nematic states appear periodically with a space independent

dimensionless time period 7, ~ 16. These results are consistent with those for rod-like
nematics (Tsuji and Rey, 1997).

Figure (6.8) shows the time evolution of the (a) in-plane director angle &, (b)
uniaxial alignment S, and (c) biaxial alignment P, at " =0.5 (solid line), y" =0.08
(dash line), and y* =0.04 (dot dash line), for the same parameters as for Figure (6.6).
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Figure 6.6: The temporal-spatial profiles of (a) orientation angle 6, (b) uniaxial alignment S,
and (c) biaxial alignment P for BCVG, ngycyq =(0,1,0), at R = 100, Er = 2000. The stable

microstructural features are inhomogeneous and periodic, and typical of bulk tumbling-boundary
wagging state (TWS). The director orientation is periodic and is marked by three layers: one
central bulk region where the director rotates clockwise continuously, and two boundary regions

where the director oscillates. The spatial-temporal response of alignments is marked by
coinciding sharp changes that appear near the binding surfaces.
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R

Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BCVG, Rgpevg =(0,1,0), and for
1000, Er = 2000, U=6, #=-09, and L, / L, = -4/3. The bulk tumbling-boundary wagging state (TWS) is stable under these parametric

conditions. The ellipsoids rotate clockwise in the central core, and oscillate with s

the two boundary layers.

pace dependent amplitude near velocity gradient directions in

periodically at the boundary of tumbling core and oscillating boundary

A pair of abnormal nematic states appears

layers. The average molecular orientation is along the velocity gradient direction.



CHAPTER 6. LONG-RANGE ELASTICITY EFFECTS ON MICROSTRUCTURE. .. 160

90

105 . 5 b
(@) 90 _\\ :-!r M. ':'M“v. -:'h'\t\: -90 N
O R3S T NN NN |
b | \\‘\'J:! \\ \. ‘\ -\., %
v N v 1270 Q

60 @ * E '

1 ] ] 1 -450

<

>

- - -

Figure 6.8: The time evolution of (a) orientation angle 6 (b) uniaxial alignment S, and
(c) biaxial alignment P at y° = 0.5 (solid line), y* = 0.08 (dash line), and y" = 0.04 (dot dash

line) for the same parameters as for Figure (6.7). Clearly, the bulk near the centerline, y° = 0.5,
exhibits the classical tumbling step-like time evolution in which the director rotates clockwise in
the shear plane by slowing down near the velocity gradient direction. In the oscillating boundary
regions the orientation oscillates near the velocity gradient direction with space dependent
amplitude that is maximum near the boundary between the tumbling-wagging layers, and
decreases when approaching the either plate. There is a sharp change in the alignments when
orientation is farthest away from the velocity gradient direction.
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Clearly, the orientation at the centerline (y" = 0.5) exhibits the classical tumbling step-
like time evolution in which the director rotates clockwise in the shear plane and slows
down near the velocity gradient direction (Singh and Rey, 1998a, 1998b). There is a
sharp change in the alignments when the orientation is farthest away from the velocity
gradient direction. The same phenomena are c;bsewed throughout in the tumbling bulk
region (d<y <1-6). In the two oscillating boundary layer regions
(0<y" <4, 1-6 <y" <), the orientation oscillates near the velocity gradient direction
with a space dependent amplitude that is maximum near the boundary between the
tumbling-wagging layers, and decreases when approaching the plate as shown in Figure
(6.8). Also, as we move towards either boundary the alignment amplitude decreases. The
oscillation amplitude is maximum near y' ~§ and y" ~1-&. This tumbling-wagging
transition phenomenon is the same as that observed in the homogeneous shear flow of
discotics by increasing the shear rate. However, in TWS this transition (see Figures 6.6,

6.7, and 6.8) occurs at constant Er.

Figure (6.9) shows (a) the boundary layer thickness &, and (b) dimensionless time
period 7, as a function of Er, for BCVG, and at R = 25 (O), R = 50 (), R = 100(V),
R =500 (0), R = 1000 (). The boundary layer thickness & increases with increasing
Er and decreasing R. For a given R as Er increases the thickness & increases until it
approaches the centerline (y* = 0.5). On the other hand for a given flow strength Er, &
decreases for increasing R and as R —» «, § — 0, i.e. the entire bulk rotates, in
accordance with Doi’s theory (Doi, 1981; Doi and Edwards, 1986). Two pairs of
abnormal nematic states emerge for every 2m rotation of the bulk. The dimensionless

time period 7, decreases asymptotically with increasing Er, and the limiting value is
independent of R. At the transition ESS — TWS transition the period 7, diverges. The
results are consistent with those for rod-like nematics (Tsuji and Rey, 1997).

Figure (6.10) presents the scientific visualizations of computed tensor field
profiles, Q(y’, ¢*) for BCF, Er = 2000, and R = 100. In this case the major semi-axis of
the boundary ellipsoids are held fixed along the flow direction. As in BCVG, the periodic

microstructure phenomena consist of three layers: bulk tumbling region, and two
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oscillatory boundary layers. The director spends more time along the velocity gradient
direction, as in BCVG, despite of fixed boundary anchoring along the flow direction.
This is facilitated by the underlying microstructural phenomena in the boundary layer
regions. Figure (6.11) shows the time evolution of the in-plane director angle 4 at:
y" =0.025 (solid line), y* =0.05 (dot dash line), y* =0.1 (dash line) y" =0.2 (long

dash line), and y° = 0.5 (dotted line), for BCF and for the same materials constants as of

Figure (6.10). The director n rotates clockwise in the inner core, y° =0.5 (dotted line).

0.25
] —o-—- R=25
-5~ R=50
0.20 —— R=100
' -0— R=500
0.15 —— R=1000
) _
v
0.10
0.05r f
25
'\Q
20
15 ’

102 10° 10*
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Figure 6.9: (a) Boundary layer thickness o, and (b) dimensionless time period T, , as a

function of Ericksen number Er for surface anchoring, Bggeyg =(0,1,0), for five different

values of the ratio R. The boundary layer thickness J increases with increasing Er and
decreasing R; whereas, the dimensionless time period 7, ’ decreases with increasing £r and R.
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Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BCF, ng

Figure 6.10

-4/3. The bulk tumbling-boundary wagging state (TWS) is stable under these conditions. In the central core

.
b

Er=2000,U=6,#=-09,and L

the ellipsoids rotate clockwise, and spend most of the time along the velocity gradient direction as in BCVG, Ngpeve = (0,1,0). However, in

¢ a space dependent direction, which is along the flow

direction near the wall and along velocity gradient direction near the boundary between bounda

the oscillating boundary layers the ellipsoids oscillate with space dependent amplitude alon

ry layer and tumbling core.
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In the outer oscillating boundary layers, the director oscillates with space dependent
amplitude and around a space dependent direction as shown in Figure (6.11). Starting
from the bottom plate the director oscillates around the flow direction, and as y°
increases the oscillation direction moves away from the flow direction towards the
velocity gradient direction, finally as y* — & the director oscillates very close to the
velocity gradient direction and the microstructure dynamics are same as for BCVG. For

example, at y* =0.025 the director oscillates around € ~-48deg; at y* =0.1 along

6 ~-80deg; and at y" =0.2 along & ~ —98deg. Figure (6.12) presents the boundary
layer thickness & as a function of the Ericksen number Er, for BCF for various values of
the ratio R. The thickness & for BCF is higher than that for BCVG for the same values
of R. The tumbling core shrinks at the expense of the thicker boundary layer that is
needed to allow for the director compatibility between the boundary anchoring (along

flow direction) and the bulk director, that is mainly along velocity gradient direction.

[ — -180
S50 ...
&5 |-~ P e _—.-1-360
o> | T . D
QO e el e el 1 -540 Q
T 80 7 T “s.. Tt ~ D
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Figure 6.11: Time evolution of the in-plane director angle @ angle at y° =0.025 (solid line),
*=0.05 (dot dash line), y" =0.1 (dash line) y* =0.2 (long dash line), and y" =0.5
(dotted line) for BCF, ng gz =(1,0,0), and with the parametric values of Figure (6.11). The

director rotates clockwise in the inner core while spending most of the time along velocity
gradient direction. In the outer oscillating boundary layers, the director oscillates with space
dependent amplitude and around a space dependent direction. For details see text.
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Figure 6.12: The boundary layer thickness J as a function of Ericksen number Er, for BCF,
D ac =(1,0,0), for various values of the ratio R. Please not. that the thickness & for BCF is

higher than that for BCVG, gy =(0,1,0), for the same values of R.

The main characteristics of TWS for both BCs are: (a) the microstructure field is
periodic, (b) TWS arises as the long-range and short-range order elastic effects are unable
to contain the strong rotational toques due to the imposed shear flow, (c) the orientation
dynamics are rotational in the core region and oscillatory in the two boundary layers, (d) a
pair of abnormal nematic states appear periodically at the two boundaries between these
three layer, (e) the abnormal states move towards the center-line with increasing £r and

decreasing R, (f) the average orientation is along the velocity gradient direction.

The main microstructural differences between BCF and BCVG cases are: (a) the
director oscillates around a space dependent direction in the oscillating boundary layers in
BCF, (b) the boundary layer thickness & is higher in BCF than that in BCVG, (c) the
TWS mode is stable at higher values of R and £r in BCF than in BCVG.
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6.3.1.3 Bulk Wagging State (WS)

As Er is further increased the tumbling core region of TWS is replaced by a new
wagging periodic state called wagging state (WS) in which the orientation and alignments
oscillate throughout the bulk. This stable periodic in-plane mode is stable at sufficiently
high values of Er and R. The strong rotational torques of the shear flow still overpower
the long-range elastic effects, but are increasingly challenged by the extensional torques
of the shear flow. Figure (6.13) shows the computed scientific visualization of the

spatial-temporal profiles of the tensor order parameter Q for BCVG, R = 100, £r = 3000,
U=6, =-09, and L,=-4/3. The ellipsoids oscillate with a space dependent amplitude

that is a maximum at the centerline and zero at the boundaries. The director n oscillates
near the velocity gradient direction, and the average bulk orientation is close to the
velocity gradient direction. The alignments’ (S, P) dynamics are also oscillatory with
maximum amplitude at the centerline and zero at the either boundary. The uniaxial
(biaxial) alignment reaches a minimum (maximum) when the orientation is farthest from
the velocity gradient direction. The amplitude of oscillations decreases with increasing
Er and decreasing R, and finally near WS — VSS transition the amplitude of oscillations

is negligible. The oscillation amplitude is maximum at the TWS — WS transition.

Figure (6.14) shows the computed scientific visualization of the spatio-temporal
profiles for BCF of the tensor order parameter Q for the same parameters as for Figure
(6.13). The ellipsoids oscillate in the entire bulk with space dependent amplitude, which
is the maximum at the center and zero at the boundaries, as in case of BCVG. The
ellipsoids oscillate along a direction near the velocity gradient direction in the central core
of the bulk, however in two boundary layers near the plates the direction of oscillation
changes from being near the flow direction to that near the velocity gradient direction, as

in the bulk.

A direct comparison of Figures (6.7) and (6.13) for BCVG, and Figures (6.10) and
(6.14) for BCF reveals the main microstructural differences and similarities between
TWS and WS. In TWS the bulk orientation angle & rotates clockwise continuously and

thus the difference between the orientation angle in the bulk and that in the boundary
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Scientific visualization of the spatial-temporal profiles of the tensor order parameter Q for BCVG, ngueve = (0,1,0), at R =100,

Figure 6.13

-4/3. The visualization is typical of the bulk wagging state (WS) under BCVG. The ellipsoids oscillate in

.
2

6, /=-09,and L
the entire bulk with space dependent amplitude

velocity gradient direction.

Er=3000, U

» which is the maximum at the center and zero at the either boundary, along a direction near
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Figure 6.14

-4/3. The visualization is typical of the bulk wagging state (WS) under BCF. The ellipsoids oscillate in the

.
2

entire bulk with space dependent amplitude, which is the maximum at the center and zero at the either boundary. The ellipsoids oscillate along a

-0.9,and L

Er=3000, U=6, 8

direction near the velocity gradient direction in major part of the bulk, however near the plates the direction of oscillation changes from being

near the flow direction to the velocity gradient direction as in the bulk. The average bulk orientation is along the velocity gradient direction.
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surfaces increases continuously with time, which gives rise to the emergence of a pair of
abnormal nematics due to the director resetting mechanism. Whereas in the WS the
orientation angle & oscillates in the bulk within closed bounds (0<@ <7 or 7 <8 <2x1)
and thus the difference between the bulk orientation and the boundary surfaces is always

finite and less than 7. Also, no abnormal nematics appear in the WS regime.

The main characteristics of WS for both BCs are: (a) the microstructure field is
periodic oscillatory and inhomogeneous, (b) the orientation and alignments oscillate
thorough out the bulk with a space dependént amplitude that is maximum at the
centerline and zero at the boundaries, (c) the period of oscillations decreases with
increasing Er and decreasing R, (d) the average orientation in the bulk is around the

velocity gradient direction.

The main microstructural difference in WS between BCF and BCVG cases is the
presence, in the BCF case, of oscillating boundary layers in which the director oscillates
around a space dependent direction that is along the flow direction near the plates and

along the velocity gradient direction in the bulk.

6.3.1.4 Viscous Flow Induced Steady State (VSS)

This planar steady state is stable at large Er and appropriate R, and arises due to
dominance of strong flow aligning torques over all other competing effects. Figure (6.15)
shows the spatial profiles of the (a) in-plane director angle 6, (b) uniaxial alignment S,
and (c) biaxial alignment P, under BCVG and for U= 6, #=-09, and L, =-4/3. The
shown curves are for Er = 6000, R = 100 (solid line); Er = 10000, R = 100 (dash line);
and Er = 10000, R = 10 (dot-dash line). The orientation and alignment profiles exhibit
typical boundary layer behavior, in which the aligned core, with a flat and homogeneous
microstructure profile, is sandwiched between the two layers with sharp changes near the

plates. Again the average orientation is near the velocity gradient direction. The

orientation difference Af = Ke)m -HS| in the average orientation angle in the flat core

(6),,,.and at surface 6; decreases with increasing Er as stronger flow strength imposes

orientation along the velocity gradient direction.  The uniaxial alignment S in the bulk is
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Figure 6.15: (a) In-plane director angle &, (b) uniaxial alignment S, and (c) biaxial alignment P
spatial profiles for BCVG, Bggcyg =(0,1,0), and for U= 6, = -0.9, and L= -4/3. The
parametric conditions are R = 100, Er = 6000 (solid line); R = 100, £Er = 10000 (dash line); and
R =10, Er = 10000 (dot-dash line). The profiles are typical of viscous flow-induced steady state
(VSS) under BCVG. The orientation & and alignment (S, P) profiles are characterized by a flat
profile within two boundary layers. The difference between surface orientation and the bulk-
aligning angle decreases with increasing Er and decreasing R. The alignments show the similar
dependence with Er and R. The sheared nematic phase is nearly uniaxial.
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always less than S.,. The nematic phase for BCVG is practically uniaxial, however the
biaxial alignment P decreases with increasing Er and decreasing R. The thickness of the

boundary layers also decreases with increasing Er and decreasing R.

Figure (6.16) shows the steady state spatial profiles of the in-plane director angle
6 (solid line), the uniaxial alignment S (dash line), and the biaxial alignment P (dot-dash
line), for Er = 60000, and R = 100. The shown profiles are typical of the VSS occurring
under BCF. The orientation profile is characterized by two boundary layers with large
orientation gradients leading to a flat orientation profile in the bulk. The average
orientation is near the velocity gradient direction. Two local maximas and three local
minimas characterize the alignment profiles. The alignment S (P) drops (jumps) sharply
near the plates where large orientation gradients exist as director goes from the anchoring
orientation, along the flow direction, to the central core bulk orientation along the
velocity gradient direction. The nematic phase is highly biaxial near the plates; however,
the central core remains mostly uniaxial (P = 0). The dependence of orientation angle in

core on Er and R follows the same trends as in BCVG, discussed above.

The microstructural differences in ESS and VSS modes are attributed due to the
nature of the stabilizing mechanisms that promotes the steady state. The main dynamical
and steady state microstructural differences are: (a) the orientation profile in ESS is
parabolic whereas that in VSS is characterized by a flat bulk and two boundary layers
with sharp gradients; (b) the dynamics in ESS (VSS) mode are over-damped (under-
damped); (c) the maximum bulk angle (at the centerline) in ESS (VSS) increases with

increasing (decreasing) Er.

The main characteristics of VSS for both BCs are: (a) the microstructure field is
non-homogeneous, steady state and arises due to the flow aligning torques at very high
Er, (b) the orientation profiles are flat in the bulk with rapid gradients in the boundary
layers, (c) the transients leading to VSS are under-damped and oscillatory, (d) the steady
state orientation angle decreases with increasing Er and decreasing R, (e) the bulk

orientation is near the velocity gradient direction.
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The main differences in VSS mode for the two anchoring conditions are: (a) for
BCVG the uniaxial alignment is always § < §,,, whereas for BCF § > S, near the
boundary, (b) the nematic phase is highly biaxial near the plates in BCF whereas it is

nearly uniaxial in BCVG, (c) the orientation gradients are always higher in BCF than in

BCVG.

----------------------

00 02 04 06 0.8 1.0
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Figure 6.16: The steady state spatial profiles of the in-plane director angle & (solid line), the
uniaxial alignment S (dash line), and the biaxial alignment P (dot-dash line) for Er = 60000,
R = 100. The shown profiles are typical of the viscous flow-induced steady state (VSS)

occurring under BCF, D¢y =(1,0,0). The bulk orientation profile is flat and nears the

velocity gradient direction, as in BCVG, g4y =(0,1,0). There are rapid gradients in the

orientation field near the plates at which there are sharp changes in alignment fields. The
uniaxial alignment reaches values greater than Seq, a peculiarity only observed in BCF. The
nematic phase is highly biaxial near the boundary, however the bulk is mostly uniaxial (P = 0).

6.3.2 Microstructure Phase Diagram

In this section we present the microstructure phase diagram, in terms of Er-R, for
both boundary conditions. The transition lines between the various microstructure
regimes are not computed due to the unavailability of robust procedures to handle the
coupled highly non-linear complex system of partial differential equations in hand.

Nonetheless, the large number of computations performed at various values E£r and R
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provides the location of the transition boundaries accurately enough.

Figure (6.17) presents the microstructure phase diagram for (a) BCVG and (b)
BCF for U=6, f#=-0.9, and L,=-4/3. The figure shows parametric regions for the four
stable planar microstructure modes: ESS ((J), TWS (O), WS (A), and VSS (). The
location of the boundaries between the various stable modes is apparent in the figure.
The filled circle (@) represents the qua-critical point from which all the transition lines,
marking the boundary between the various microstructure modes, emanate. In other

words, all of the four flow regimes coexist at this point. The locations of the qua-critical

points are:
BCVG: (Er,,R,)=(70,3) (6.19a)
BCF:  (Er., R, )= (450,20) (6.19b)

For R> R, the system displays, for both BCs, all of the four flow regimes with
increasing Er, whereas for R < R only steady state regimes, ESS and VSS, are
encountered. Also for Er > Er, the system displays all the four stable modes with

various R. The ESS regime spreads to higher Er with increasing R, because for high R
the short-range order elasticity dominates, the alignments remain close to their
equilibrium values and remain unaffected by the rotational flow torques, thus relatively
higher flow strength (higher Er) values are required to set up the rotational tumbling

dynamics in the bulk of the system.

Moreover, at sufficiently low values of R, the sufficiently high values of Er induce
a decrease in the uniaxial alignment S thereby giving rise to VSS. The VSS regime
spreads to higher values of R with increasing Er, as higher flow strength is required to
produce the alignment changes that produce VSS. The periodic modes TWS and WS
appear only to the right and above of qua-critical point and prevail for parametric values

(Er,R)> (Er

e ch). The parametric space where TWS and WS modes exist begins to
pinch as qua-critical point is approached, and finally extinguishes at qua-critical point.
Both £r and R are inversely proportional to long-range order curvature elasticity.

Therefore as Er and R decrease the effect of log-range order begins to increase, thereby
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dampening any periodic behavior. The various transition lines have positive slopes and

the regions spread with increasing £r and R.

Comparison of Figures (6.17a) and (6.17b) reveals that for BCF the qua-critical
point has shifted upwards and to the right in the phase space such that:

(Er

gc?

R, )BCF >(Er R, )mc (6.20a)

(Erqc )BCF ~ (R«fc )BCF

(Erqc ) BCVG (R‘IC ) BCVG

=~ 6.5 (6.20b)

The scaling given by equation (6.20b) states that the qua-critical point shifts along each

parametric axis in the same ratio.

As is observed from Figure (6.17), the periodic regimes start from the qua-critical
point. The TWS and WS modes appear when long-range elasticity is weak, and always
appear in the absence of long-range order elasticity (Singh and Rey, 1998a, 1998b). The
effect of long-range elasticity is to suppress the inherent periodic behavior of the nematic
phase at lower and intermediate shear rates. Also, Er and R both scale inversely with
long-range elasticity. Thus TWS and WS will appear at lower values of £r and R,
provided the materials and thermodynamic parameters (U, f) are kept constant, if long-
range elasticity is stronger and vice versa. Therefore shifting of the qua-critical point is a
manifestation of the fact that the fixed anchoring conditions under BCF are less effective
in transmitting the surface anchorings into the bulk. Moreover, the ESS regime under
BCF extends till higher values of Er than in BCVG, which again is attributed to the

weaker penetration effects of fixed boundary anchoring in case of BCF.

The main characteristics of the phase diagrams for both BCs are: (a) the phase
plane presents the regions where various flow-induced modes are stable; (b) the transition
lines between various regimes emanate from the qua-critical point; (c) all four regimes
co-exist at the qua-critical point; (d) the system displays all the four modes for R >

R, and Er> Er,

qe?

and (e) all the regimes spread with increasing £r and R.
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Figure 6.17: Microstructure phase diagram in the R-Er phase plane for (a) BCVG
(Rgpevs =(0,1,0)), and (b) BCF (Bggae =(1,0,0)) for U= 6, f=-0.9, and L, = -4/3. The

figure shows parametric regions for the four stable planar microstructure modes: ESS (O), TWS
(O), WS (A), and VSS (<). In BCF the phase plane is shifted towards right and upwards as
compared to BCVG. The coordinates of the qua-critical points (@) for BCVG and BCF are

(Er ~(70,3) and (Er R, )B o = (450, 20) respectively.

ge? R‘Jf )acyc qc?
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6.3.3 Effect of Long-Range Elastic Anisotropy

The above numerical results and discussion was based on one value of the long-range
elasticity ratio parameter: L, = L,/L, =-4/3. To investigate the effect of long-range
elasticity on microstructural phenomena of sheared discotic nematics, two values of
L, =-4/3,and -1/4 were used, corresponding to Frank elastic constants K,, =3K, and
K,, =8/7 K respectively (see Figure 6.2). The long-range elastic anisotropy is higher for
L,=-4/3 (K,,=3K) than for L, =-1/4 (K,, =8/7K). Figure (6.18) shows the
microstructure phase diagram, in Er-R parametric phase space for BCVG, L, =-1/4,
U=6,and §=-0.9. All of the four microstructure modes were found to exist in the
clearly marked regions on the phase plane, as shown in Figure (18): ESS (J), TWS (O),
WS (A), and VSS (<). A filled circle represents the qua-critical point (@). The
R, )=(180,8).

coordinates of the qua-critical point in Figure (6.18) are (Erqc,

A comparnison of Figures (6.17a) and (6.18) reveals that the qua-critical point in

Figure (6.18) has moved upwards and towards the right, such that:

(Er

ge?

R.): > (Eres Ryc )3, and (6.21a)

= ~ 3 x26. (6.21b)

%)
K jg.L
27T

Based on the discussion in the previous section, the inequality (6.21a) is due to the fact
that the extent of penetration of surface anchoring effects into the bulk is higher for
L, =~1/4 than for L, = -4/3, and higher elastic anisotropy induces better penetration
effects from the surface into the bulk. The above scaling law, equation (6.21b), states that
the qua-critical point shifts along each parametric axis in the same ratio, and the shift

ratio is given by the inverse ratio of the Frank elastic constant ratio K,, /K .
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Figure 6.18: Microstructure phase diagram for BCVG, ng ey =(0,1,0), and for L= -1/4
(K,, =3K ), U=6,and f=-0.9. The figure shows parametric regions for the four stable planar

microstructure modes: ESS (O), TWS (O), WS (A), and VSS (). At higher value of L,
lesser long range anisotropy, the phase diagram is shifted towards right and upwards as compared
to Figure (6.19a) which is for L;=-3/4 (K,, =8/7K’). The location of the qua-critical points
(®)is (Er,., R, )= (180,8).

6.4 Conclusions

A comprehensive analysis of shear-induced microstructure phenomena exhibited
by discotic mesophases is performed using a complete generalized theory that takes into
account short-range elasticity, long-range elasticity and viscous effects. The theory
predicts four distinct planar microstructure modes: (1) long-range elasticity induced
steady state (ESS), (2) bulk tumbling-boundary wagging state (TWS), (3) bulk wagging
state (WS), and (4) viscous flow induced steady state (VSS). In the ESS the
microstructure is stabilized by the curvature elasticity through fixed orientation and
alignments anchoring at the plates. The TWS is a periodic state and comprises of three

spatial distinct regions: a continuously rotating core, and two oscillatory boundary layers.
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At the boundary of the three regions a pair of abnormal nematic sates appear which
bridges smoothly the winding core with the boundary layers through the director resetting
mechanism. The thickness of the bouhdary layers increases with increasing Ericksen
number Er and decreasing ratio R. The WS is a periodic state in which the orientation
and alignments oscillate throughout the bulk with space dependent amplitude that is
maximum at the centerline. The maximum amplitude of oscillations decreases with
increasing Ericksen number Er and decreasing ratio R. The VSS is a spatially
inhomogeneous steady state that is brought out by the aligning effects of the flow. In all
the microstructure modes the average bulk orientation is along the velocity gradient

direction.

The microstructure phase diagram spanned by Er and R that summarizes the
complete in-plane microstructure phenomena of sheared discotic mesophases reveals that

the four regimes coexist at a one point, called qua-critical point, in phase plane.

The effect of different planar surface anchoring conditions on flow-induced
microstructural phenomena reveals that: (a) the average bulk orientation is along the
velocity gradient direction irrespective of the surface anchoring, (b) the fixed anchoring
along the velocity gradient direction is able to transmit the anchoring effects deeper into

the bulk than the tangential case.

The effect of Frank elasticity is given in the form of a microstructure phase
diagram. It is found that as strength of long-range anisotropy decreases the qua-critical
point moves upwards and towards the right in the phase plane. A novel scaling law
relating the magnitude of the shift was discovered, and states that the qua-critical point
shifts along each parametric axis in the same ratio, and the shift ratio is given by the

inverse ratio of the Frank elastic constant ratio K,,/K .

The present systematic study of flow induced microstructural behavior of discotic
mesophases subjected to representative boundary conditions provides a useful
fundamental understanding of the flow behavior of discotic mesophases of use in the

processing of carbonaceous mesophases.
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GHAPTER £

Microstructure Response of Sheared
Discotic Mesophases in Hybrid Aligned
Nematic (HAN) Cell

Chapter 6 presents detailed account of long-range elasticity effects, and boundary
conditions on the shear-induced microstructural response of model discotic mesophases.
However, same surface anchorings were used, such that the orientation was fixed in the
same direction at the top and the bottom plate. In this chapter the microstructural
response of sheared discotics subjected to mixed boundary conditions, equivalent of that
in a hybrid aligned nematic (HAN) cell, is computed. The strong surface anchorings at
both the plates correspond to the stable orientation configuration of discotic mesophases
when subjected to homogeneous shear flows, such that the director n is anchored along
the vorticity direction at the bottom stationary plate, and along the velocity gradient
direction at the top moving plate. A novel model of continuous generation of defect-like
structures in the bulk is discovered, and is due to asynchronous rotational kinematics.
The simulation results are used to put forth the generation of more complex fiber textures,
such as mixed texture (radial core with onion exterior), and skin-core textures observed

during processing of a carbonaceous mesophase.

' This chapter appeared as an original article in XII"™ Congress of Rheology “Rheology 2000",
p117-119, Cambridge, U.K. (2000) .
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7.0 Abstract

Flow modeling of model mesophase pitches is performed using a complete
phenomenological theory that takes into account short-range order elasticity, long-range
curvature elasticity, and viscous flow effects. The theory is fully compatible with the
well known Leslie-Ericksen and Doi theories, and thus fills the parametric gap where
these classical theories are inapplicable. A novel shear-induced mode of continuous
generation of defect-like structures in the bulk has been discovered. These structures
emerge due to asynchronous rotational orientation kinematics. The numerical results are
characterized mathematically as well as in terms of the basic physical mechanisms. The
simulations are further used to put forth the fundamental principles that govern

mesophase carbon fiber texture generation under shear.

7.1 Introduction

Mesophase pitches (MPs) have emerged into an important class of precursor
materials to manufacture high performance mesophase carbon fibers, and as matrix
materials in carbon-carbon composites. The excellent end product property profiles are
due to the anisotropic nature of the MPs. For example, the mesophase carbon fibers have
been known to possess very high axial thermal conductivity and elastic modulus, and thus
are very suitable for industrial processes requiring high thermal transportation and
stiffness. It is possible to induce and control preferred molecular alignment in anisotropic
carbonaceous mesophases during processing, thereby imparting superior properties to the
end products. The MPs consist of disc-shaped aromatic molecules that are flat and large
enough to exhibit nematic characteristics, and are termed discotic nematics, Np. Figure
(7.1) shows a schematic of a uniaxial discotic nematic phase. The unit normals to the
disk-like molecules orient along a preferred direction given by a unit vector n commonly
known as director or average orientation, and the extent of alignment of the unit normals
along the director n is given by a scalar § called uniaxial scalar order parameter or

uniaxial alignment.

Numerous experimental and theoretical studies have been performed to unravel

the fundamental principles governing the flow-induced microstructural phenomena of
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rod-like nematics. A similar understanding is not yet available for Np, but is required for
making further technological advances in the manufacturing of carbon fibres using MP
precursors. The present work is aimed towards developing such scientific database for
MPs, and extends our previous work (Singh and Rey, 1998a, 199bb, 2000; Tsuji and Rey,
1998) to Np.

Tn
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Figure 7.1: Definition of uniaxial director/orientation m of a uniaxial discotic nematic liquid
crystalline phase. The director n is the average orientation of the unit normals u to the disc-like
molecules.

In industrial processing, precursor materials are subjected to complex flows,
involving various combinations of shear and extensional deformations, in complex
geometries. In order to control the molecular orientation or microstructure a fundamental
understanding of the material behavior subjected to the prevailing complex flow is
required. In this paper we study and characterize the distinct microstructural features

exhibited by discotic mesophases under rectilinear shear flow.

In our previous works (Singh and Rey, 1998a) a constitutive equation (CE) for
discotic mesophases was formulated based on Doi’s theory of nematodynamics by taking
into account full microstructural features. The CE under homogeneous shear flow
predicted the classical stable planar 2D (tumbling, wagging and aligning) modes as well
as non-planar 3D (log-rolling) mode. These microstructure modes in sheared discotic
mesophases are similar to those for rod-like nematics; yet possess inherent differences
that are attributes of different molecular shape. In a subsequent work (Singh and Rey,
2000), a comprehensive characterization of all the planar spatially non-homogeneous
microstructure modes of sheared Np subjected to different boundary conditions is

presented. The general aim of this paper is to characterize the effect of long-range order
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elasticity on the rectilinear shear-induced microstructure phenomena in MPs subjected to
mixed boundary conditions, and to use the results to identify the fundamental principles

governing various MP-based carbon fiber textures.

7.2 Theory and Governing Equations
The evolution of microstructure, in terms of the tensor order parameter Q, in Np
subjected to shear flows is governed by the following microstructure constitutive equation
(Singh and Rey, 2000; Tsuji and Rey, 1998):
Er%: Er[w-Q—Q-w+3ﬂA+ﬁ[A-Q+Q-A—3(A:Q)l]
‘—5[(A QQ+AQQ+Q-A-Q+Q-Q-A-{Q-Q): Ali ]

il fomafeonieal] o
+(1__ZZI{B)T VzQ+ 71 [V(V Q)+{V(V Q) _,u{ (v-Q) H

Here, A, W, L; (i = 1,2), U, B are the dimensionless vorticity tensor, the dimensionless
rate of deformation tensor, the Landau coefficients, the nematic potential and the
molecular shape factor, respectively. For details see (Singh and Rey, 2000; Tsuji and
Rey, 1998). The first term on the right hand side of equation (7.1) relates the
microstructure with viscous flow deformations, the second term represents the short-
range order elasticity effects which control the isotropic-nematic phase transition, and the
last term represents the long-range order elasticity effects and transmits the surface
anchoring effects from the boundaries into the bulk. The long-range elastic effect also
known as Frank elasticity is necessary to describe the textures and defects invariably
observed in practice. As there are three competing contributions controlling the
microstructural response of Np, therefore we have two dimensionless numbers or scaling

parameters (Tsuji and Rey, 1998):

VHp, o _ H? cxT

Er= I 6 L] (7.2a,b)
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Where H is the characteristic distance between the two plates (see Figure 7.2), V is the
constant velocity of the top plate, and 4, is the viscosity (Singh and Rey, 2000; Tsuji and
Rey, 1998). The Ericksen number Er is the ratio of the viscous flow effects to long-range
order elasticity, whereas ratio R is the ratio of the short-range order elasticity to long-
range order elasticity. As reported (Singh and Rey, 2000; Tsuji and Rey, 1998) the
above-presented theory, equation (7.1), fills the gap between classical theories of liquid
crystals, Leslie-Ericksen (L-E) theory and Doi’s theory. In summary, the above
generalized theory is completely compatible with the L-E theory in the limit R — oo, on
the other hand it is compatible with Doi’s theory in the limit £r — o, and transversely
isotropic fluid (TIF) theory in the limit R — < and £r — = (Singh and Rey, 2000; Tsuji
and Rey, 1998).

In this work mixed fixed boundary conditions are used, such that the director n is
anchored along the vorticity direction (z-axis) at the bottom stationary plate, and along the
velocity gradient direction (y-axis) at the top moving plate, see Figure 7.2. The director
orientation is characterized by an out-of-plane angle ¢, and an in-plane angle 6. This set
of BCs corresponds to the anchoring conditions in a hybrid aligned nematic (HAN) cell.
Both BCs are along the stable attractors for model discotic nematics under homogeneous
shear flows (Singh and Rey, 1998a). In the present work the parametric values are set at:

U=6, f=-09, L/L, = -4/3, and the simulations are performed for the ranges:

1<R<10°,and 1< Er<10’.

) iz
n
! g
=
S
Y 6 .
-
V4
Figure 7.2: Definition of flow geometry, co-ordinate system and boundary conditions.
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7.3 Numerical Results and Discussion

‘ An extensive computational investigation of the goveming equation (7.1) has
been performed. The microstructure features of model MPs are characterised by one time
dependent periodic state, and two steady states. A brief description of the relevant

features of these three regimes is given below: -

7.3.1 Elasticity-Driven Steady State (ESS)

This steady state prevails at sufficiently low £r and for all arbitrary values of R,
and arises due to the dominance of long-range elasticity on the vorticity effects of
imposed shear flow. Figure 7.3 shows the director out-of-plane angle ¢ spatial profiles
for Er =100, R = 10 (solid line), and £r = 1000, R = 100 (dash line). At low Er the out-
of-plane angle changes monotonically from bottom plate to top plate, however, at high Er
the director aligns near the vorticity axis in most of the domain (0<y/H<0.75), and
decreases sharply near the top plate. The long-range elasticity effects are stronger at
lower Er (Er=100) thereby maintaining lower spatial gradients than at higher

. Er (Er=1000). In this regime the uniaxial (biaxial) S(P) scalar order parameters are near
their equilibrium values. The inset schematics represent the corresponding fiber textures

discussed below.

90

60 |

Figure 7.3: Director out-of-plane angle ¢ spatial profiles for £r = 100, R = 10 (solid line),
and Er = 1000, R = 100 (dash line). The inset schematics represent the corresponding fiber

. textures.
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The main features of the ESS regime are: (a) the microstructure field reaches
steady state; (b) the steady state arises due to long-range elasticity, (c) the nematic phase

is mostly uniaxial.

7.3.2 Composite Kayaking-Limit Cycle Periodic State (KLS)

This periodic state appears at sufficiently high Er and at appropriate values of R.
Figure 7.4 shows (a) uniaxial alignment (S), and (b) biaxial alignment (P) as a function of
dimensionless time (z) and distance (y/H) for Er =1000 and R = 20. The director
dynamics are rotational, and the scalar order parameters (S, P) oscillate with the
nucleation of an abnormal nematic state in the bulk (at y* = y/H ~ 0.84 in this case). As R
decreases the nucleation point moves away from the top plate towards the lower plate.
The director rotates in the kayaking orbits in the region 0<y/H<y', and in a out-of-plane
limit cycles in the rest of the domain y'<y/H<l, as shown in Figure 7.4(c). In the
kayaking orbit the director rotates clockwise in a closed loop, which extends (shrinks)
towards the velocity gradient (flow) direction, around the vorticity axis in which it slows
down near the velocity gradient direction. For more details please see (Singh and Rey,
1998a). In the limit cycle the director trajectory also makes a closed loop that is eccentric
to the vorticity axis as shown in Figure 7.4(c). The kayaking orbit and the limit cycle
shrink as we move close to the walls. The abnormal nematic states nucleate where the

kayaking orbit and the limit cycle merge.

The salient features of this periodic state are: (a) the director dynamics in the bulk
are rotational and correspond to kayaking orbits near the bottom plate and to limit cycles
near the top plate, (b) at the boundary between these two regions abnormal nematic states

nucleate, (c) the abnormal nematic states emerge in the bulk.

7.3.3 Viscous-Driven Steady State (VSS)

This steady state appears at high Er and appropriate R, and arises due to
dominance of the strong aligning viscous torques over all other competing effects. Figure
7.5 shows spatial profiles of the out-of-plane director angle ¢ for Er = 100, R = 1 (solid
line), R = 0.1 (triple-dot dash line), and for £r = 1000, R = 1 (dash line). The bulk
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orientation in the region y/H<J, is along the vorticity axis (¢ = 90), and that in the region
y/H>6; is planar and along the velocity gradient direction (¢= 0, € = 90). The sharp
director reorientation in the bulk is compensated by a corresponding sharp dip (spike) in
bulk alignment S (P). & increases with decreasing R, and decreasing £r as shown in

Figure 7.5.

The main features of the VSS regime are: (a) the microstructure field is non-
homogeneous, steady state and arises due to the flow aligning torques at high Er, (b) there

exists a discontinuity in the orientation field, and (c) the nematic phase is highly biaxial.
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Figure 7.4: Uniaxial (S) and biaxial (P) scalar order parameter as a function of

dimensionless time () and distance (y/H) for Er =1000 and R = 20. Director profiles on unit
sphere at y/H = 0.7 (kayaking orbit) and y/H = 0.9 (limit cycle). Abnormal nematics appear at
y ~0.84.
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Figure 7.5: Director out-of-plane angle ¢ as a function of dimensionless distance (y/H)

between the plates for £r = 100, and R = | (solid line), 0.1 (triple-dot dash line), £r = 1000, and
R =1 (dash line).

7.4 Implications of Numerical Results on Fiber Textures

Mesophase carbon fibers exhibit numerous transverse fiber textures (Peebles,
1994). We extend the numerical results, presented above, to explain the existence of
some of the prevalent MP-based carbon fiber textures. It is presented in (Singh and Rey,
1998b) that the pure radial (onion) fiber texture is consistent with director orientation
along vorticity (velocity gradient) direction. Using the same reasoning, we find that the
director orientation in VSS corresponds to a mixed texture with a radial core and an onion
exterior, shown in Figure 7.5. The size of the radial core &; is a function of R and Er as
mentioned above. The presented model also predicts the textures with an onion core and
a radial exterior. The orientation field in ESS corresponds to the skin-core textures
(Peebles, 1994). The director orientation in ESS at high £r (Er=1000) corresponds to a
texture with a fairly large radial core and folded outer layers as shown in Figure 7.3. At
lower Er (Er=100) the continuous decrease in oht—of-plane director orientation results in a
folded texture morphology or skin-core texture, in which a small inner radial core is

connected smoothly with the outermost onion layer.
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CHAPTER 8

Conclusions and Original

Contributions to Knowledge

8.1 Thesis Summary

This thesis presents a detailed account of the development of a constitutive
equation for generic discotic mesophases and for mesophase pitches, by adopting the
well-known nematodynamics theories for rod-like nematics. The shear and extensional
flow induced microstructural and rheological predictions of the selected constitutive
equation are computed and analyzed. The numerical results are put forth to characterize
the relations among microstructure modes, rheological parameters, processing conditions,
and material properties. Furthermore, general principles governing the mesophase carbon

fiber textures are elucidated.

This work is a first attempt to establish the relations between flow-induced
microstructure, rheological materi>al functions, processing conditions, and material
parameters for discotic mesophases. A sufficiently number of distinguishing features
have been identified that are specific to the discotic nature of the nematic phase, and
augment the number of quantitative and qualitative differences between discotic and rod-

like nematics that had been noted in the literature. How these distinguishing rheological
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features operate in the carbon fiber texture selection during spinning of carbonaceous

mesophases is a topic of ongoing investigation.

8.2 Thesis Conclusions

As stated earlier this thesis addresses three different facets of scientific study. The

conclusions for each effort are given below:

8.2.1 Conclusions of Shear-induced Microstructure Characterization

A microstructure constitutive equation, CE, has been developed for mesophase
pitches by implementing an iterative process that is based on a set of criteria that consists
of theoretical results and experimental data. Four CEs for discotic nematics were
proposed. A comprehensive bifurcation analysis reveals that the various proposed CEs
predict a great variety of dynamical microstructural behaviors for discotic mesophases,
and show multi-stabilities of various orientation modes through a series of complex
bifurcations. All the CEs, when subjected to homogeneous simple shear flows, predicted
the shear plane and the vorticity axis as major stable attractors, whereas kayaking orbits
and period doubling orbits are stable attractors only in those CEs which are based on Q
independent diffusivity. Moreover, the CEs with the Q independent diffusivity do not
predict the in-plane periodic stable states (such as in-plane tumbling orbit, ITO, and in-
plane wagging state, IWS), which is not in agreement with the predictions of molecular
theories. Hence the constant (Q independent) diffusivity is not an appropriate assumption
while selecting a CE for non-aligning discotic mesophases. A complete analysis and
characterization of all the stable attractors, and their transition with dimensionless shear
rate Pe for all the proposed CEs is presented. The complete summary of dynamical and
steady state microstructure features of all the CEs under homogeneous shear rates is given

in Tables 2.5, 2.6, and 2.7.

The selected CE for mesophase pitches predicts the major and essential stable
steady and periodic states: ITO (in-plane tumbling), IWS (in-plane wagging state), ISS
(in-plane steady state), and LRS (log-rolling state); along with the low temperature

classical transitions ITO — IWS — ISS with shear rate. At high temperature the complex
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bifurcations between the in-plane and out-of-plane orientation modes disappear and the
only stable state is ISS. The CE also predicts the multistability among the in-plane and

out-of-plane orientation modes at all shear rates and at low temperature.

The long-range Frank elasticity term is coupled with the selected CE to account
for the microstructure gradients. A comprehensive analysis of shear-induced
microstructure phenomena exhibited by discotic mesophases is performed using this
complete generalized theory. Four distinct planar microstructure modes are predicted:
(1) long-range elasticity induced steady state (ESS), (2) bulk tumbling-boundary wagging
state (TWS), (3) bulk wagging state (WS), and (4) viscous flow induced steady state
(VSS). In the ESS the microstructure is stabi_lized by the curvature elasticity through
fixed orientation and alignments at the plates. The TWS is a periodic state and comprises
of three spatial distinct regions: a continuously rotating core, and two oscillatory
boundary layers. At the boundary of the three regions a pair of abnormal nematic sates
appear which bridges smoothly the winding core with the boundary layers through the
director resetting mechanism. The thickness of the boundary layers increases with
increasing Ericksen number Er (dimensionless shear rate) and decreasing ratio R (ratio of
short-range elasticity to long-range elasticity). The WS is a periodic state in which the
orientation and alignments oscillate throughout the bulk with space dependent amplitude
that is maximum at the centerline. The maximum amplitude of oscillations decreases
with increasing Ericksen number Er and decreasing ratio R. The VSS is a spatially
inhomogeneous steady state that is brought out by the aligning effects of the flow. In all
the microstructure modes the average bulk orientation is along the velocity gradient
direction. The microstructure phase diagram spanned by Er and R reveals that the four

regimes coexist at a one point, called qua-critical point, in the phase plane.

The effect of Frank elasticity is given in the form of a microstructure phase
diagram. It is found that as the strength of long-range anisotropy decreases the qua-
critical point moves upwards and towards the right in the phase plane. A novel scaling
law relating the magnitude of the shift was discovered, and states that the qua-critical
point shifts along each parametric axis in the same ratio, and the shift ratio is given by the

inverse ratio of the Frank elastic constant ratio K,, /K .
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Further, the effect of different planar surface anchoring conditions on flow-
induced microstructural phenomena reveals that: (a) the average bulk orientation is along
the velocity gradient direction irrespective of the surface anchoring, (b) the fixed
anchoring along the velocity gradient direction is able to transmit the anchoring effects

deeper into the bulk than the tangential case.

The effect of mixed boundary conditions on sheared discotic mesophases is
analyzed. Mixed surface anchorings along the two stable attractors are imposed, such
that the director is along the velocity gradient at the bottom stationary plate and along the
vorticity axis at the top moving plate. The shear-induced microstructural features under
theses boundary conditions are characterized by three stables states: (1) Elasticity-driven
steady state (ESS), (2) composite kayaking-limit cycle periodic state (KLS), and
(3) viscous-driven steady state (VSS). In ESS, the uniaxial microstructure field reaches
steady state due to long-range elasticity. In KLS, the orientational dynamics in the bulk
are rotational, and correspond to kayaking orbits near the bottom plate, and to eccentric
limit cycles near the top plate; defect like structures emerge, in the bulk, at the boundary
of the two and are due to asynchronous rotational orientation kinematics. The
discontinuous and highly biaxial microstructure field in VSS is non-homogeneous, steady

and arises due to strong viscous torques.

8.2.2 Conclusions of Shear and Extensional Rheological Functions

Characterization

A complete hydrodynamic constitutive equation or extra stress tensor equation is
developed from first principles. The predicted relations among rheological properties,
shear-induced microstructure, processing conditions, and material parameters of discotic

mesophases are computed, analyzed, and characterized.

Under homogeneous shear flow conditions, the predicted first normal stress
difference N, corresponding to the planar microstructure n}ode of non-aligning discotics
is found to be similar to that corresponding to the rod-like nematics at low shear rates. At
higher shear rates the present theory does not accurately predict N, corresponding to

planar mode of non-aligning rod-like nematics, hence no comparison can be drawn.
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N, for non-planar mode is always positive, and increases exponentially for intermediate
shear rates before reaching high shear rate plateau, and is mainly due to flow-induced
biaxiality. For non-aligning discotic nematics, N corresponding to the planar and the
non-planar microstructure modes are comparable at low shear rates. As the more accurate
representation of &, is to take average of both values corresponding to planar and non-
planar modes of non-aligning discotics, which may result in the disappearance of negative
N, in discotics in which viscous contribution dominates. Thus sign transition in N, may
not be a correct check for non-aligning discotics. Also N, of aligning discotics is similar
to that of rod-like nematics at all shear rates. N, is always positive for discotic
mesophase at lower values of nematic potential U (for aligning nematics). The predicted
apparent shear viscosity of discotic mesophases at low U (or high 7) is qualitatively
similar to that reported in the literature at all shear rates; whereas that at high U (low 7) is

qualitatively similar to that reported in literature for intermediate and high shear rates.

It is shown that two unique uniaxial extensional viscosities, termed here as 7.,
and 7.,, are needed for discotic mesophases to completely characterize their extensional

rheological functions. The discotic mesophases are found to be non-Troutonian, and
show strain thinning or thickening based on the temperature and the ratio of viscous to
elastic stress contributions. The elastic stresses result in strain thinning characteristics to
the discotic mesophases whereas viscous stresses cause strain thickening. The

extensional viscosities are highly dependent on the fiber microstructures.

8.2.3 Conclusions of Fiber Texture Characterization

The simulation results are further employed to put forth the fundamental
principles that govern the formation of main mesophase carbon fiber textures. It is shown
that the homogeneous shear induced microstructure modes selected by the CE are
consistent with the radial and onion fiber textures, observed experimentally. The
transition from the radial to the onion texture with increasing temperatures is also
successfully predicted. The simulated shear-induced microstructural features under
mixed boundary conditions are used explain the formation of mixed textures (with radial

core and onion exterior), and folded layer or skin-core textures. The size of the radial
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core in the mixed texture is a function of Er and R, and increases with decreasing R and

Er. The transition from a skin-core texture to a mixed texture takes place with decreasing

R or increasing Er.

8.3 Original Contributions to Knowledge

The specific original contributions of this thesis to present scientific knowledge

are as follows:

1.

A microstructure constitutive equation, for discotic mesophase in general and for

mesophase pitches in particular, is developed.

An exhaustive bifurcation analysis of shear-induced predictions of a series of
constitutive equations is performed, and the results are characterized in terms

orientation modes.

A comprehensive analysis of shear-induced microstructure phenomena exhibited by
discotic mesophases is performed using a complete generalized theory that takes into
account short-range elasticity, long-range elasticity and viscous effects is presented

for the first time.

A new scaling law relating the strength of long-range anisotropic energy with

magnitude of shift of qua-critical point in R-Er phase plane is discovered.

Shear rheological predictions for discotic mesophases are presented for the first time.
The shear rheological relations among microstructure, processing conditions, and

material properties are presented.

It is shown that two unique extensional viscosity functions need to be defined to fully
characterize the extensional rheology of discotic mesophases, and that the uniaxial
extensional rheological material functions are strong functions of the internal

microstructure.

The fundamental principles goveming the formation of major mesophase carbon fiber

textures are presented for the first time.
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APPENDIX A

Dimensionless Forms of Constitutive

Equations

The dimensionless coupled, nonlinear, ordinary first-order differential equations
governing the microstructural response of a discotic nematics, subjected to simple shear

flows, for the four proposed constitutive equations (CEs) are given below:

CE-1

%: Pe [W-Q_Q.W+-§—,BK+,B{K-Q+Q-K—§(K:Q)8}—2,B(Q:K)Q ] _
[(-4)Q-UQ-Q+U{(Q:Q)Q +(Q:Q)s}]

(A.1)

CE-2

4Q_ p, [W-Q-Q-W+%ﬂx+ﬂ{K~Q+Q-K—%(K:Q)}~2ﬂ(Q:K))] -

dr (A-2)
f-1@Q)} [i-1)e-1Q-Q+U {@Q)+i@Q)k)]
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CE-3

£ \TV-Q—Q-W+§ﬂ?\+,3{K-_Q+Q-K—%(K:Q]5}-
—~ =P -~ -~ - ~ -
dt € g{[\:Q))"’A'Q'Q+Q'A'Q+Q'Q'A"((Q'Q)A>} (A.3)

[(-90-ve-Q+U {@Q)+i(@Q)}]

CE-4
@_, W-Q-Q-W+1fh+p{K-Q+Q:A-3(AQp)- —
dt g{K:Q)}+;-Q-Q+Q.K.Q+Q.Q,K_((Q_Q)K)5} Ad)

§-3@Q)}" [(-90-Ue-Q+U {Q:Q)e +(@Q)}]

where Pe=—_— is the dimensionless number called Peclet number, ¢* =|6D,|¢ is the

6D,

dimensionless time, and A and W are dimensionless rate of deformation tensor and

dimensionless vorticity tensor respectively, and are given as:
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APPENDIX B

Uniaxial Extensional Viscosity
Predictions from Leslie-Ericksen Theory

The purpose of this appendix is to show, in context of a vector theory (Leslie-
Ericksen theory (L-E)) (Leslie, 1979), that two extensional viscosities need to be defined
to characterize the uniaxial extensional functions of discotic nematics, whereas only one
extensional viscosity coefficient is needed for the rods-like nematics. Also ordering
equalities and inequalities between uniaxial extenstonal viscosities with regard to textures

in discotic nematics are also established using the L-E theory.

For anisotropic fluids, the stress tensor t as given by the L-E theory (Leslie, 1979) is:
T=aA:nnnn + A + a,nn- A + a A -nn+a,nN + a;Nn (B.1)
where N=n-n-W ‘ (B.2)
For extensional flows at steady state

W=0, a=0, . N=0 (B.3a,b)

and A is given by equations (5.2). Equation (B.1) for extensional flows and at steady

state reduces to:
T=qA:nnnn +a,A +ann- A+ A-nn (B.4)

For rod-like nematics:
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n, = (n, ,ng,n_.) = (0,0,1) (B.S)

The diagonal components of the stress tensor t are given as

I =1,= —§a4 - (B.5a,b)
7. =(a,+a, +as +a,)é (B.5c)

where £ is strain rate. As 7, =7, therefore there is only one uniaxial extensional

viscosity for rod-like nematics given as:
-3
Munirods = T4y ta tas+ a, (B’6)

Similarly for discotic mesophases subjected to untaxial: extensional flows (Singh and

Rey, 1994, 1995a, 1995b):
o, =(n,,n9,n:)=(n,,ng,0) (B.7)

The diagonal components of the stress tensor t are given as

Ty = _g[a4 +(al +a; '*'as)'rz] ~ (B.8a)
Tpp = —g[m +(a, +a; +a6)1§] (B.8b)
T, = a4é‘ (B.8¢)

Clearly 7, # r,,, therefore there are two distinct uniaxial extensional viscosities for

discotic mesophases, given by:
s = 20+ (e + a5+ agn! (B.9a)
”:r.um.duks 2 %4 2 1 S 6/ .
2
M0 tisks = 3 Cs + %(a, tas+a )”a (B.9b)

Thus to completely characterize the extensional rheological properties of discotic
mesophases, both need to be specified. As the extensional viscosities of discotic
mesophases are microstructure dependent, see equations (B.9a, B.9b), they can be

directly related to the transverse fiber textures. For the ideal radial texture



APPENDICES... ‘ 202

(nss = (0, 1, 0)):

T i disks = 7 Qs (B.10a)
Mopumiaiis =3 + (e, +as +ag) =3 a, + e, + a, + a; +2a) (B.10b)
For the ideal onion texture (nss = (1, 0, 0)):

Ny it = 30 +3(ay + a5 + @) =3, + Ha, +a, + a; +2a) (B.11a)
T ani disks = 3 s (B.11b)
Comparing equations (B.10a,b and B.11a,b) we have:

M. i disks = 120 umi disks (B.12)
1 i isks = Mo i dtisks (B.13)

For discotic nematics (McHugh, 1994; Volovik, 1980), «, >0, a; >0 (Volovik, 1980),
a, >0, a; <0, a, >0 (McHugh, 1994). Also from the value of «, approximated in
(McHugh, 1994) we have:

a +a,+a;+2a,>0 (B.14)
Hence we obtain the following ordering among the uniaxial extensional viscosities for
discotic nematics:

(B.15)

r r
q:r.um'.disks < q:G,uni.disb

(B.16)

o 0
”:r.um' disks > ,’:B.um' disks



APPENDICES... 203

Bibliography
F.M. Leslie, Theory of flow phenomena in liquid crystals, in Advances in Liquid Crystals,

(Academic Press), New York, USA, (1979).

JJ. McHugh, “The development of orientation in mesophase pitch during fiber

formation” Ph.D. Dissertation, Clemson University, Clemson, SC, USA (1994).

A.P. Singh and A.D. Rey, “Extension dynamics of discotic nematics of variable order:

geodesic flow and viscoelastic relaxation”, Journal de Physique Il France 4, 645 (1994).

A.P. Singh and A.D. Rey, “Theory and simulation of extensional flow-induced biaxiality
in discotic mesophases”, Journal de Physique [l France S, 1321 (1995a).

A.P. Singh and A.D. Rey, “Computer simulation of dynamics and microstructure of

discotic mesophases in extensional flows”, Liquid Crystals 18(2), 230 (1995b).

G.E. Volovik, “Relationship between molecule shape and hydrodynamics in a nematic

substance” JETP Lett., 31, 273 (1980).



