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4
In this thesis we have considered various types of genera-
B , . !
lized linear least squares problems. These can be treated by
. ! . . ]
minimizing a sum of squares subjéct to linear equality constraints.

£ . .
Methods for solving these problems which are available in the liter-

ature can often be shown to be numerically unstable or computation-

1

ally inefficient. The main effort of this thesis has been directed “,

towards developing reliable numerically stable algorithms for cer-—
tain such problems.

‘

Since we aljﬁawant the most efficient numeri-

cally stable algorithms, we have made careful use of the structure

. -/
of any particulat sysfem. ‘

‘

.

p .
In this thesis we have/ﬁresented.a numerically stable algorithm
. .

for solving generalized lirnear least squares problems which is based

/’ N \\
on the work carried out by Paige [{18] . : We have developed a very
. . ’

efficient numerically stable algorithm for obtaining the minimum

’

2-norm:solution of a structured underdetermined system.

\

then considered three parameter estimation problems which can be
d

formulated as generalized least squares problems.

We have

They are: a

repeatable experiment with a general linear model, grouping of

in a dynamical system. We have pre-

| N

sented numerically stable algorithms for solving such problems

+

equations, and estimation

and a comparison has been made with the existing numerically ’ ,

-
unstable methods. These algorithms have been developed jointly

. \
with C. Paige following on the original work of Paige [18].
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/ s Dans cette these nous avons @bn51dere une variété de types

' de problémes moindres carres 11neayres generallses Ceux-ci peuvent
8tre traités en minimisant une sozme de carrés sujette d des °

/
contraintes d'égalité linéaire. On peut souvent démontrer que les - :

méthodes ‘de résolution de ces p#ﬁblémes disponibles dans la - '

littérature sont instables numééiquement ou inefiicaces quant aux

calculs 3 effectuer. L'effort/prinpipal de cette thé@se-est dirigé vers ;

le développement d'algorithmeé fiables et numériquement stables'pour

certains problémes de ce genfe. .Puisque nous désirons des algoflthmes

: o qui soient aussi des plus eéflcaces, nous avons utilisé avec ‘ .

précautions la structure propre de chaque systé&me considéré. " :
Dans cette th&se nous avons présenté un algorithme rapide et

numériquement stable pour la ‘Té€solution de problémes moindres carrés

linéaires généralisés, fbasé sur le travail entrepris .par Paige (18).

Nous avons développé un algorithme numériquement stable et trés R .

efficace permettant d'obten1r la solution 2-nor¥he minimale d'un systeme

i - structuré 1ndeterm1ﬁe. Nous avons ensuite considéré trois problémes

g

d'estimation paramgtrlque pouvant &tre exprimés sous la forme de

: . problémes m01ndreg carrés generallses. Les problémes d'estimation ) :
sont: expérience reproductlble avec un modéle lin&aire généralise,

: groupement d'équations, et estimation dans un systéme dynamique. Nous

avons presente des algorithmes numerlquement stables pour la résolution !

de problémes de ce genre et nous avons effectue une comparaison avec

les meth022§ ex1stantes qui sont numériquement instables. Ces -

e © w? e
-

. {
algorithmes ont. ete développés conjointement avec C. Paige, faisant

-

suite au,travail déjia entrepris par celui-ci [18].
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o CHAPTER 1 ’

- INTRODUCTION

i

1.1 OverQiew. .

Estimation is a process of ex£racting inférmation con-
cerning a parameter or a vector of parameters from experimen-
tal data. The concepts of léast squares estimation and curve
.fitting were int;oduced in the early 1800's by Legendre and
Gauss ma;nly for the purpose of reducing physical and astro-
p mical data. However, many major contributions to the field
ha been made in recent years.  Because of the accessibility

4

of computers and the development of numerical technigues, seweral

¢ '

old problems have been reformulated in a setting appropriate for

- aQ
, obtainingtefficient numerical solutions.

o Estimation theory graduélly found its way into many dis- >
ciplines of scieance and engineering. Today, the extent’ to which
N .

it has influenced 3\{ariety of subjects can be felt by enumerating
e ' . .
some of the many éeemingly unrelated areas of applications such as
N
. satellite orbit determination, mathematical modelling of human

operators, optimal and adaptive control, ‘determination of radar
range, and economic models of supply and demand.

: * There is a large ﬁody of iitefaﬁure available on the

applications of estimaé@on theory in different engineering, ' eco-

.

\ . )
\ nometric and other problems. (See for example Grove et al [9],

N
N

q9° Sage and Melsa [ 21], Nah# [14] , Johnston [11], Theil [ 22]).
h \ - .
5 \ A
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A mathematical model representing a physical system con-

Pa .

tains a number of equations and each eguation contains a ‘number

of parameters. The accuracy of the resulting estimate is genexr-

i
ally degraded by the combination of modelling and measurement

errors. It is prattically impossible to include all the af~
fecting parameters in the Tathematical model designed to gepfe—
sent a pﬁysical system accurately, thpugh usually only a few
parameters will have a large effect on the model. Also there

is every likelihood of measurement errors at the time of taking

" observations. All these errors could be grouped together and

the resulting effect called "noise” of the model, which could
then be treated as a random unknown variable.
In many cases, the so called linear model is often used to

express a relationship. A linear model is defined as an eguation

in random variables and parameters which is linear in the random

[y

variables and parameters. In this thesis an attempt will be made
to solve different types‘of linear models efficiently using com--
puteks.

The initial specification of the relationship must include
some assumptions about the probability distribution of thebran—
dom noise vector. Different assumptions will givg rise to dif-
ferent computation;l or statistical problems. We will consider

two main types of linear models viz. ordinary linear model and

v

general linear model, arising out of the assumptions onéd makes

regarding the noise vector. Details will be given in section 1.3.

. ‘ /3

- s o R o
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In this Chapter we will establish fik¥st our notational
conventions. A review of the different types of linear models '
that we will treat will also be given. In assessing tle effec-

. tiveness of the various algorithms, we will be concerned with

~

the following attributes tentatively listed in decreasing order

/
of importance: generality, stability, accuracy, efficiency and

storage requirement. A brief description of these attributes

will also be given here. Most of the numerical methods described
in this thesis are based, in some way, upon the properties of
oftthogonal matrices. Givens plane rotations and Householder
transformations are often used. We will describe the;e trans-
formations briefly in this\Cpapter.

In Chapter 2 we will derive aﬁd discuss theﬂestablished
least squares methods of solving the various types of linear
model problems. We will also consider three problems ogvpara—
meter estimationnand the existing methods usually used to svlve
them. Comm;;gg,on,their\effectiveneSS\will also be m;de.

Chapter 3 contains a fast stable algorithm to solve the
least squares‘problem for general linear models. This algorithm is

based on the work carried out by Paige [18].

In estimating parameters in many general 1linear models .

[

v 4
(Paige [16]; Theil [22], pp. 294-299 ), it is neces#ary‘to(find

1

the minimum 2-norm solution of an underdetermined systeh (e.g.

4

when the number of parameters to be estimated is more than the
@ i
number of equations). An algorithm will be presented in Chapter 4

to solve some such systems. The algorithm is based on the particu-
\

lar structure of certain systems.

™~
c../4
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Chapters 5,6 and 7 contain new numerically stable methods
¢ ¢

of solving the three different problems of parameter estimation

o

introduced in Chapter 2. A _comparison of efficiencies with the

o, -
t

existing methods of solution will also be given. ;

In Chapter 8 we will comment on the methodsgghlch are .
) “

developed in this thesis. We will also comment on the scope of

further developments of these methods.

N

: ‘ . i Se
b
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1.2 Notation.

E(-) will denote the expected value and superscript T

. * '
will denote the transpose of a matrix. Otherwise, capital
g v
*'italic letters will denote matrices, with the symme?ric ca-

4 A
§

pitals A, H, M, U, V, W, X, Y ‘;eserved for symmetric non- : .

negative definite matrices. A symmetric-matrix is said to be
. .

nonnegative definite if all its eigenvalues are greater than
s

)

: ]
or equal to zero and one or more could be zero. We also re-

T e,
I3

iz
serve _R for dengting upper triqggylar matrix and L for '
lower triangular matrix. Letters P and 0 " will be reser-
ved for denoting orthogonal matrices. Lower case jtalics

will denote colunmn vectors, except for indices i, j, k, 1,

m, n, s, t . Lower case Greek letters are used for scalars’

only. : i

-
Also we will use |-} to denote the 2-norm of a matrix

' )
or a vector. . ) ’

1

1.3 Linear mgdels.

A univariate linear model can be represented in matrix

notation ags

y = Cx + u ¢ (1.1)

where y 1is a given m-vector, C is a given mxn matrix, x

o -

is the unknown nonstochastic n-vector of parameters and u 1is

°

a column m-vectoxr of sunobservable random noise variables. This

specification implies that the dependent variable y 1is under-

"

stood to be a random variable which is on the one hand linearly
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related to x and on the other hand determined by chance.

Generallyy in a linear model, the number of observations

3

exceeds the number of parameters to be estimated. Therefore, m
is greatef than n in mest of the cases. We will always con-

sider m 2 n unless otherwise stated.

>

In order to have a meaningful linear model, one must have
some initial assumptions about the random noise vector. It is

generally assumed that the mathematical expectation of the ele-

-

ments of the random vector is zero. That is,

E(u) = 0 . (1.2)

The elements of the noise vector'may be uncorrelated. If
‘ A

[ .
we also assume that all the elements of the noise vector have

. 2 . . . .
the same variance ¢ , Which is unknown, the variance-covari-

ance»matrix‘of,the vector u can be written as 4

\ , \\

E(uuT) = 021 , I is an identity matrix of order m. (1.3)

A lineaflmodgl given in (1.1) with assumptions. (1.2) and

[

(1.3) is known as the ordinary linear model ( Johnston [11]) .

The assumption that the disturbances are uncorrelated is

not always realized, especially when we deal with time series.

If the elements of the random vector are correlated, then the *

variance-covariance matrix of the vector u becomes.

A h

. E(uut) = o°wW (1.4)

2 \ .
where o is an unknown parameter and W is a symmetric

i

e e gt
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nonnegative definite matrix of order m . In certain cases
» N

0

LY
there are some re-

W could be singular, When W is singular,
. .

strictions on the dependent variable vy , /which may be examined
(rRao [ 20), pp.297 ).

A linear model (1.1) together with

ssumptions (1.2) and
{1.4) is known\as the general linear model (Johnston [il] ;.
The assumption (1.4) is codéiaéfﬁﬁiy weaker than assump-
tion (1.3) begause it allows unequal didgonal elements of W’
(heteroscedasticity) as well as for pg; tive and negative cor-
relation; Bf the disturbances (non-zero off diagonal eleménts).

N

In principle, an investigator is complefely free in his
choic; of an*estimator for x . Several estimatipn procedures
are possible,“gor instance, the analogy method, the least squares
method, the maximum likelihood method, the minimal chi square
method etc. Naturally, thg'choice of the solution procedure
depends on: the properties of the respective estimators. Thg
properties a;d the applicability of different methods are deter-
mined by the assumptions one is willing tp make about the vector
of random variables u and it is essentially these assumptions
which determine the estimation_procedure to be used. In this
thesis we are mainly\interested in computing efficiently the
least squares estimates and to some gxtent the maximum 1i¥el%—

\

hood estimates of different types of general linear models.

. ) . ’ .../8
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Statistical properties of the least squares estimates

of ordinary and general linear models have been described in

detail by Rao [ 201, Theil [22], Johnston [[11], Golub & Styan

[8] etc. If.the elements of the noise vector are assumed to

.

be normally distributed, the maximum likelihood estimators \}
AY
el

and the least sgquares estimators are the same. , Partly becaus

©

of this we have given more stress to compufing least équares

z . o

estimates of a general linear model. ~

If we consider the matrix C , given in (1.1), as, a
matrix of observed wvalues, the columns of the matri; c m;y
not be linearly independent because of dependent parameters

considered in the model. Also the covariance matrix W can

be singular when the disturbances are linearly dependent

{
(Theil [ 221, pp.274-275 ). Most of the methods that are des-

cfibed in the literature fail when  the columns of the matrix

C are linearly dependent and W is singular. Golub [ 7],

\

Businger and Golub [ 3], Golub and styan [ 8] obtained the least

sqwares estimate of ordinary linear models for a general JC

\

using orthogonal 'transformations. Rao [ 20] obtained the least
B\ ¢

squares estimate of a general lipear model for general C and

2
[y

W using generalized inverses. Paigej 17] reformulated the gen-

eral linear model differently and obtained the least sguares esti-
mate of the problem for general € and W using orthogonal

transformations.

"../9

e
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1.4 Attributes of an efficient algorithm.

We will determine the effectiveness of an algorithm by

°

considering the folYowing attributes viz. generality, stability,

L]

accuracy, efficiency and sto¥agé requirement.

Generality means that the method is applicable to wide

classes of mdtrices. For‘example, in our case, a method which
-3

v )
works only for nonsing I trices will not be highly rggarded.
prEm oS

hY . . . . C .
A computer performs»basfé opérations viz. addition, sub-

I
£

3 s~ ] : L]
erxor is dependegﬁ on the‘prec1§1on of the computer one is wor-

e

king with. Often, when a problem is solved using a computer, the

result we get can be regarded as the solution of a perturbed prob-
r
lem. An algorithm is stable if &t yields a solution that is near

the exact solution of a slightly perturbed problem, This does

.

not mean that the answers will be accurate. The accuracy of the . 1
B / '

, ,
solution depends on the conditioning of the problem. A problem,can

be well conditioned or ill conditiongd. If a small chanﬁ%

data results in large change in the solution then the problem is
\ ’ ' '

i1l conditioned, otherwise it is well}conditioned. \\\\\

Efficiency is measured by the amount of computer time re-

quired to solve a particular problem._ In estimating the time

required by matrix computations, it is traditional to estimate

o

the time required by the multiplication oxr division and then in-
crease it by some factor to account for other operations. Gen-
erally, we will consider 1 operation as one which involves 1

multiplication or 1 division with 1 addition or 1 subtraction.

\

’

.../10
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Therefore, we can say that the multiplication of two mxm

; . - 3 ;
matrices involves m operations.

i.5 Givens and Householder matrices.

The most common application of orthogonal matrices in
]
numerical analysis is equivalent to the reduction of a given

n—-vector z to a multiple of the first column vector of the

identity matrix, i.e. find an orthogonal nxn matrix Qg such

Z
LY that : o /

, v = Hzl L A(1.5)
. o l by - , /
\, . \ ‘

where e1 is an n-vector of each component zero excepy/for the

QTz =iye

first one which ¥s 1 . The reason for prefer;ing.orfhogonal

° i

transformations over others is that they do not’ch&%@e the

-

condition of the problem. The reduction giVen/}ﬁ (1.5) can be
done by either a sequence of plane rotation (inens) matrices
or ; single elementary orthogonal (Householder) matrif.‘. R
/
Givens matrix is defined as s

@

A (1.6) ,
g -0 // Ioe \

V

‘ \
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Y = £ + 52 ’ .
R B 3
/
@ =.§,/y and B = E,/v. E
When an n-vector 2z 1is reduced by Givens rotation matrices
td a multiple of the first column of the identity matrix, then
(n-1) rotations are needed. Every rotation will zero out one
element and adjust another element such that the updated- 1zl
- ¢ “
N i
is preserved. Thus, Givens plane rotation preserves the size
of the vector. !
o i
To perform the same reduétion in one step using a Eingle
_ Householder matrix, we can form N
1 T
Q = I - x uu L (1-8)
where \
' u =z + Ye, .
2
« a = l-lul ’ (1.9)
. 2
. T
) Y = sign(z el)lal )
{/ ‘.\ [}
.,*;l.im
such that . . .
. . ¥
T N E
,°Q z = -‘yel . \ i
From ,(1.9) it can be seen that the Householder transformation ,
\ s ) '
also preserves the size of 2z . . e N : o~
- |
e /12



TN s et ap e

e

e

I ek S e L

R L )

IS e i iR g S

oS

"
PR L

ap? &

e AR

The choice of using orthogonal Givens rotations or

Householder transformations depends‘on the type of problem
I \’JA{‘F “
one is working with. Therxre are cases when one is better tha
- /;}“

the Householder transformations

the other. In. the ggneral é%@e,
only involve about half the number of multiplications required

for Givens rotations. Gentleman [5] and Hammarling [10 ] have

°
f

shown that it is possible to implemeﬁt square roo¥ free versions

- , i .
of Givens rotation in about half the number of multiplications of

»

the classical met%od.

.../13
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(" : ' CHAPTER 2
( CLASSICAL DERIVATION AND SOLUTION OF

VARIOUS TYPES OF LINEAR MODEL PROBLEMS.

2.1 Introduction. ‘ ®

1

’ In this Chapter we will derive and discuss the established *]
least squares methods of solving two main types‘of linear models

viz. ordinary linear model and general linear model. We will then

.

describe the three parameter estimation problems which we.will con-

—_—

Ty e Sty S S

sider in this thesis. Existing methods of solution of- these prob- A
N lems will also be discussed and comments will be made on their, /
o, ) * L4 ) f
- effectiveness. - . %
. g . /
; 2.2 Ordinary least squares problem, . \ -

We know that eguation (1l.l) in Chapter 1-together with the — :

3

assumptions (1.2)., and (1.3) constitute an ordinary linear model,

i.e. an ordinary linear model can be described as”®

©

s s it

TN
o, E(uuT) = 021 . . {2.1)

. y =Cx +'u ; E(u)

The problem of obtaining least squares estimator-for an ordinary

|
linear model is known as the ordinary least squares problem

(Johnston [11] )&

»

2.2.1 Derivation of the problem.

- Let x be an estimate of (2.1). Then (y - Cx) is the
& vector of m residuals. The ordinary least squares problem is
. to find x that minimjzes .

.../14
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T , : ‘
ly’ - €x) (y - Cx) 2.2
Y ¥ - "\"(,'.x\ /)/
- n/
\ e
or ‘ J
1 ’ . y M #
| . ~ /
X = arg min ly - cx{ ,{2.3) -
x

i
[ ’” . \

N ' 11

where this notation is short for "x is the aréumen;fthat‘mini—

fl

mizes ‘ly - Ccx 0| with respect to x ". For_a given value of vy ,
A

the vector x that solves the problem (2.3) is called the ordi-

nary least squares estimate of x . ) -

-

2.2.2 Method of solution.

In many places in the numerical, engineering, econometric and

- S

‘'statistical literatures, the ordinary least sqguares problem has

>
" °

beeh solved by forming normal equations. Differentiating (2.2)

with respect to x and equating to zero we get

%
T
ccCx=C vy . . (2.4)

3 v
Hence if' € has linearly independent columns, the least squares

eéstimator is given by

2 = (cTey "t Ty : © (2.8)

,

which minimizes (2.2) since CTC is positive definite.

. We know that C can have linearly dependent columns. In that

T
case C C becomes singular and the method fails. Moreover the con-

dition number for the solution of equations in (2.4) is the square of
\

.../15
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the condition number of

C, and !2.4) can have much worse

. v

condition than the original least squares)\problem.
\

Thus the

)

method of estimating x by fqrming nofmai equations is not

__-numerically stable (de Jong [4]).
¥ . ° ,
"7 C has been solved successfully’by Businger .and Golub {3 ] and.

Golub [ 7] using orthogonal transformations, following Householder.

The ordinary least Squares problem for \a general matrix

!

oFirst we can choose an orthogonal matrix © such that

, Qch R . e QT
T’ T
o'¢c = = o9 = (2.6)
T T
9,'¢c o | 95

-

where

‘g

R 4is a full row rank matrix. and

Q

is partitioned so

\ .
that the number of rows in QT is the same as that of R .

Since the 2-norm is unaffected by orthogonal traansfor-

. ) .
mations, (2.3) can be written as

from which it follows that x
|

Rx =

and the residue of the 'solution is given by

. i
, T
IQz Y

4

-0

satisfies

T
Q1Y

<

(2.7)

°©  (2.8)

(2.9)

¥

g
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‘: Since R has full row rank, (2.8) is solvable for x . .
If R 1is sdhare % is unique, otherwise we will have many x

&
satisfying F>\?). We are,generally, concerned with the minimum

1 Y

g . 2-norm of such X . In this case R will be Nn upper trapezoidal
form. So we can find’ an orthogonal matrix P such that
i RP =!(Ori) ’ P = (Pllpz) (2.10)

12

T e
o

A r

where R is a non singular upper trigngular matrix. (2.8) can

thus be transformed to
\

\

- . (6, P7% = 0Ty (2.11)
0 o '
Let » L] + *
z, .
z = =P % . (2.12)
- \
22
- \
We can now solve N s
* - N
\,A«f”) S : Rz = Q°y \ | (2.13)
2 1 .
! ¥ -
for z, and setting z, = 0 , the minimum norm least sqguare

estimator for the model in (ﬁ.fr is given by

f *

X = Pz . : (2.14

JEASE --Twy
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2.2.3%Operation count. . /

e L .
+'In couriting the number of operations required to solve

an ordinary least squares problem we will assume for simplicity

-

that the matrix C .0f dimension mxn has full' column rank.

To compute (2.6) using Householder transformations takes

o

about . ' N !
1 3 \
mn? - 2_ (2.15) \
' 3 ° .
1
[ ‘ N
operations. If w% use 4 multiplication Givens plane rotatibns, . s

Ly

the total number\bf operations reguired to compute (2:6) is

’
v

2mn” - % n- . (2.16)

° \
If we use fast square root free Givens rotation (Gentleman [5 ],

S

‘Hammarling [10]), the total number of operations required to’
, N X

compute (2.6) is°given by . .o

2 n> . ’
¢ i} ‘mn- - &/ . . . (2.17) !
- 3 .
: AN
Thus we see that there is no advantage in choosing one trans-
. .
. formation over the other. But if the matrix ¢, 1is a large
sparse matrix, then the use of Givens plane rotations has a
definite advantage over Householder transformations.
v

p——

2.3 Generalized least squares problem.

3

The system of linear equations (1l.1l) with assumptions

[
(1.2) and (1.4) given in Chapter 1 represents a general linear

model, i.e. a general linear model can be written as
4

v
. s

K’ ¢
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y =QQx + u 3 E{(u)= 0, E(uuT) = 02W . (2.18)

I3}

The problem of obtaining least squares estimator for a general

linear model is known as the gengralized least squares probleﬁ

¢
°

(Johnéton {1121,
. L .

S ‘

’ - i

\
e

2.3.1 Derivation of the problem,

Like the ordin¥ry least squares problem, methods of solving
generalized least squares problems are widely available in the

literaturet ([111, [131). We will first assume that W is a

symmetric poéitive definite matrix. Then we can carry out the

.
o
x

Cholesky decomposition of W such that

LL

)

is-a lower triangular mat¥ix. ) K

P s -
Multiplying both sides of (2.18) by L we get

«

-1

L "y=L Cx+v ;v = L—\lu‘, E(v) &40, E(va) = 021. (2.19)

Thus (2.19) becomes an ordinary lirear model. Theréfore, from

(2.19) we see that the' generalized least squares problem becomes:

find x that minimizes

.
p . ¢

{y - coTwly - cx) .

%

(2.20)

\ .
, This formﬂ#és originally proposed by Aitken [ 1] . The vector
. \

~

X that minimizes (2.20) is called the least squares estimate

of (2.18) .
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2.3.2 Method of solution. . NN '
Often™the generalized least squares“problem has been

solved, like ordinary least squares problem, by forming the \

normal equations '

'

\ cTwlox = cTwly - (2.21)

a
.

and consequently, ,if C has full column rank

]

¥ ~ - - - .
X = (CTW lC) lCTW ly (2.22)
Y, A ®
is the__least sguares gstimate of the general linear model
given in (2.18). l‘

)
Like the ordinary least squares problem, this method of

soluftion fagls when C has linearly dependent columns or W

= !

@

is singular.

From (2.19) we see that the generalized least squares
! . - ¢ -

problem can also be solved by solving the following ordinary

least squares problem: . [ .

X = #rg min IL-ly—L_leI . (2.23) °
X

Now (2.23) can be evaluated by applying the stable method
N '
| 4
used for solving ordinary 1ea‘€“squares problems. But the dif- .

ficulty with the problem (2.23) is that it does not work when
* &

W 1is singular or near singula!? If W is ill conditioned

IL—{H will be large ‘and therefore the method will introduce

\
. - -1,2 . .
unnecessary errors. ©Often since (W R P the situation

o ° N
<

. e ’ ... /20
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A
1

. is much worse for (2.21) and (2.22): Bj8rck [ 2] has designed

S,

A

a method to handle less thlan full rank L . His method does
not work well when L has full rank biut is poorly conditioned
and therefore 1leads to the 'same unnecessary numerical inac-

curacies suffered by the methods directly based on (2.23).
N \ 3 N
To avoid both the difficulty caused by singularity andgpthat

»

caused by ill conditio§, the following formulation was pro-

B

posed by Paige [171] .

/

minimize vTv subject to y=Cx+Bv a (2.24)
v,X

where W = BBT is the Cholesky decomposition. If B 1is
sguare lower triangular then (2.24) is mathematically equiva-
lent to (2.23) with B and L the same. Now the formulation

allows all C and B 1in a compatible system. B is non

y

square when the variance-covariance matrix W of the noise

term is singular. The Cholesky défgomposition is still possible

<

for the symmetric nonnegativewdefinite matrix W (Lawson and

Hanson [13] pp. 124). It can be shown that the approcach (2.24)
{ »

gives the same answers as Rao's unified theory of linear esti-

.

mation [20] and is in a form that leads directly to good com-

»

é

\
~e It is now possible to soclve a generalized least squares

pPpblem given in thé form (2.24) using orthogonal transforma-
\
\ . .
tions ( Paige [17]) . - o
\
! K
\ R . . ) ‘ »

' e e/21
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We can find an orthogonal matrix Q@ such that

R of . )
T T 1 )
QC = ' Q = + (2.25)
’ T
0 0,

where R 1is a full row rank matrix and QT is partitidhed
[
so that Qi has the same number of rows as that of R . Thus
. : {
the constraints in (2.24) become

= ° + . (2.26)

T T
sz 0 QZB

Once Vv 1is known, one can easily solve
& .

sz = Rx + QTBV (2.27)

3
- for x .

Therefore, the problem Jiven in (2.24) reduces to

v

. N » . T
minimize vTv subject to sz = Qng (2.28) |
v

which is nothing but findiﬂg the minimum 2-norm solution of

the underdetermined systém \

\
\

T _ AT
Q,Bv = 0oy . . (2.29)

- 4 ——

We also solve (2.29) by using orthogonal transformations.

/
We can form an orthogonal matrix P such that LN

”

-

cea/f22
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T — —
Q,BP =[o,s], P '[Pl'P2] (2.30)

where S has a full column rank and P 1is partitioned so

that the number of columns of P2 is the same as that of S.
Let

. vy ‘ P.v ,

w = = PTv = . « (2.31)
- .
w2 sz ‘ \ B
. J

Then solving .
T ’ 2.32
J Sw2 = sz (2.32)

. for L) and letting wl==0 , the minimum norm solution of

{2.29) is given by,

v = P_w . (2.33)

-

Since S has full column rank, w is unique if the set

2

~

-

of equatioms is consistent and so v is unique. If S is not

-
~

square, we can find an orthogonal matrix @ such that

R 9
Q'8 = : Q0 = (2.34)
~T
0 Q2 .
where R is a nonsingawlar matrix. \
We, can now solve ) .
~ ~T T
Rw2 = Q1Q2y (2.35)

e e
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full column rank matrix of dimension mxn and B

e e e TR ALEMAN T M P o won o

. We can check the consistency of 'the model b§

F

for w2

~T T
checking |Q2Q2Y| which should be very small for a consistent

model. Thus a check can be proviééd on the correctness of the

model.

-~

Therefore, knowing w given in (2.33), we can obtain x

°

from equation (2.27) which will bg the least squares estimate
of the general linear model given in (2.18).
Kourouklis [12) programmed the algorithmlfor general C
and W developed b; Paige [17]in ALGOLW for the IBM 370 system.
The results, checked against the IMSL subroutine LLSQAR, are
He also compared these resﬁlts

accurate to machine accuracy.

with the resultq\obtained by gsing (2.23). He found that, for
3

+

ill conditior;’éde L , they differ from the first or second sig-

nificant digit.
3

2.3.3 Operation count.

For simplicity, we will assume that the matrix ¢ 1is a

is an mxm’

N : .

non singular lower triangular matrix. We will obtain operation

counts for the case when the problem is solved by Householder
.-

transformations and also by using Givens plane rotations.

!
To reduce C to R using Householder transformations

. /
takes about .

(2.36)"

operations,
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Forming QFB takegs about

2m2n - mn (2.37)

\

. operations and then reducing QQB to lower triangular form

takes

m_ (2.38)

operations.
Since the other operations are relatively smaller, the
total-operations required to solve a generalized least squares

problem using Householder transformations is about

\
; 2m3 2 1 3
+ 2m'n - 3 n . (2.39)

.

When we used Householder transformations at the time of
reducing C to an upper triangular matrix, we let the lower
g triangular form of B be destroyed. This is the disadvantage

of 'using Householder transformations, in this way for solving a

generalized least squares problem. .

We can also reduce € to an upper triangular form using
Givens rotations. We apply the rotations in such a way that
we eliminate the elements below the leading diagonal elements

[ LY

of C while maintaining the lower triangular form of B .

For example with m = 4, n = 3, the initial step will be

R

( . N .../25
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o = w——r o

\ (2.40)

The rotations are ordered 1, 1', 2, 2', 3, 3' and the non-
zero element G ,’introduded by rotation i from the left,
is immediately made zero by rotation’® i' <from the right.

We continue like this until. C is reduced to the upper tri-

" anjular form,Kourouklis [12],programmed this approach.

4
If we use 4 multiplication rotation, total number of

- - : - ’
operations required to reduce C to the upper triangular form

and at the same time ma%ytaining the form of B throughout is

4n’n - % n3,. (2.41)

¥

From (2.39) and (2.41) we see that for an overdetermined

system the method using Givens rotations is more efficient than

. 3

that using Householder transformations because of the term m
.

in (2.39). 1If the square root free rotation is used, Givens

rotations are always economical to 'use. »Therefore, it is pos-

sible to say that in the general case Givens rotations should

be used to solve a generalized least squares problem which is

presented in the form given in {2.24) in preference to the

Householder transformations. N

w0
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2.4 Parameter estimation problem,
In this section we will introduce three problems of para-”
meter estimation which we intend to solve efficiently in this

thesis.

-~

-

2.4.1 A repeatable experiment with a general linear model.

We know that a general linear model can be written as

y = Cx + Bv ; E{v) = 0, E(VVT) = 021 (2.42)

where y 1s a known m-vector, C is a known mxn matrix, v
13 3
is the unknown k-dimensional noise vector and B is a known

mxk matrix with full column»rdék. .

4

In some situationssuch as laboratory experiments, in order

to get a reliable estimate, one can make repeated experiments with
t
Y
the same model under the same set of conditions. Then y and v will

- e e e, 5

be different for different experiments while C and B remain the

same. If we assume that the experiments are independent of each

‘

other, the model given in (2.42) will be of the form

.

. ~ R 2
Yy, = Cx+Bvi, i=1,2,...,t; E(Vi) = 0, E(vivj) = Gijo I (2.43)

1

where Gij is the Kronecker delta. \

- The t différent linear models in (2.43) can be grouped

« together and written as —

.
o
.

y =Cx + Bv ; E(v) =0 , E(vw') = ¢“1 , (2.44) .

] eeo/27
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where
p— ~ F‘C"ﬁ - g pasn o
Y, B Y1
y=|v,|, c=1]c , B = B , vV = v, (2.45)
tmxl .. tmxn . tmxtk ’ tkx1 .
, yt C B vt
For large m and t , the dimensions. of the problem giveﬁ
in (2.44 ) become very large. Hénce the previous method of §olving

a generalized least squares problem, when applied to (2

.44), will

take a lot of storage and unneccesary computatidns giving an in-

efficient algorithm, It is also seen that onl& § . C,

be known inorder to know the entire "system.

)

B need to

If in a’'controlled ejyperiment each set of observations is

taken with a different set of measuring instruments, then it is

possible to have different variance-covariance matrices

noise term. Let Wi be the variance-covariance matrix

noise vector for the i thobservation vector y; - Also
T s e .

wi = BiBi be the Cholesky decomposition, where Bi is

matrix with full column rank. Then B

- Y l [ . ' 1
\‘z = \Bl
tmx 2 k B .
. i 2
i=1 .
]
¢
L \ -

for the

7
of the '

)

let

mxk ,
i

in {(2.45) becomes

(2.46)




¢
In Chapter 5, we present an algorithm for solving such

problems with block diagonal B .

¢

2.4.2 Grouping of Equations. ‘\\\\\\\\\\\\

, . \\\\\\:\\
ob~

Encther abplication of the generalized least squares pr

lem occurs in the estimation of parameters of a g;oub of ordinary
linear models whose noise vectors are correlated (Zellnex [23] ).
The idea is to estimate the parameters of the different sets of
equations jointly by utilizing the relationsgip among the distur-
bances of each set of equations. 3Zellner [23) has shown that when
different sets of "jndependent"™ variables appear 4n equations of
the system and when there exist correlations bet&een the noise
terms, the generalized least squares estimators are asymptotically
more efficient'than those obtained by the application of ordinary

least squares to each set of equations in turn.

Suppose that the 1 thequation in a group of n sets is

y; = Cix.4u. i=1,2,...,n (2.47) .

where Yy is an m-vector, Ci an’ mxki matrix, u, is  an m
dimensional random noise vector. All the sets of equations can ¢

be grouped together and can be written as

y = Cx + u {2.48)
‘ 5
where ' ’
.../29
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e
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Yy i . €
y =1 v, , C = c,
| Yn ¢

" __The random noise vector. u

. cova;;;;;;\ﬁaﬁxif\}s given by

7 T 7] K 7
: *3 Y
|- X = x2 , U = u, .{(2.49)
X u ‘
n n
- . - L. _

has a zero mean and its variance-!

¢

pu—— . —
T) : ' : T
T . ¢
E(ulul E(ulu2 ., . E(ulun) \
= Ty . T T . :
W = E(uu’) E(u2ul ) E(uzu2 ) < E(uzu (2.50)
. ) . . . .
\ o . o - \\
E(unul) E(unUZ) .o E(unun) .
- -
where (E(uiu§) is the variance-covariance matrix for the noise i
¢ vectors of the ith and the j th sets of equations. By assumption
) ' \ “
| E(u,u’) = o, .1 i, = 1,2 n (2.51) i
1%y = ij ' ') rér ey .

a

where I 1is a unit matrix of order m . Therefore,

o111 O12% -+ %4 , ;
W= 0,1 0,1 « . 0, i
- -\ - - '- . ‘
. R
: L onlI .onZI v UnnI_

« a -

i
142}
®
-

-
]

1
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Q
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where ® is the Kronecker product. ' ’
The general linear model, thus, becomes .
' T .
’ y = Cx+u ; E(u) =0 , E(uu’) = W . (2.52)

2.4.2.1 Existing method of solution.

Zellner [ 23] solved this problem by using -Aitken's

A e A
v

Rl
generalized least squares mglhod, ire. by forming the normal

¥

?, - ~

g- equations and therefore the least squares estimate of the model

; is given by )

3 ‘ -
{

/ ~ T -1 -1 T -1
v x = (C'W ~C) 1eTw Y . - (2.53)

. &
:
:ﬁ Let s
é:‘ o ~ '
3 . ¢ »
8 s™t = (ot
s
q
s v
&
£

:

3,  owl=ster . (2.54)

({ \;'._\\“ . :

% Then (2.53) can be written ;E\\\\\\‘ '

, \ ;{ =\A"lb ‘\\\

; ’ » '

4 i

. 1 “ |
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where
- - -——
11T 12T int ] . 1j.T
g-clC c,c, . . . g C.C Z o7 cly..
\ 171 172 1'n 321\ 173 ,
21 7T 22T « 2n_T R 23T, " N
A = o7Tc,cy o%eye, - L ootiee ) j=lo c¥5 1. (2.56)
. o - . ° n » ’
aloTe  gR2:Te | PR Te T oMty
1 n-2 : nn j=1 J
= = 4 ‘ 4 ‘ o

(2.55) can best be evaluated by applying Cholesky decomposition.

A

' n
The matrix A is symmetric positive definite matrix of rank 'Elki'
\ . ' i=
. .
Therefore, A has"a Cholesky factorization of the form
. - [
A =Lnt - . (2.57)
“where L is a loweér triangular matrix. Hence, first solving
l - »
Ly = b . (2.58)

- ) ‘é #

for y . Wwe can estimate x by solving

Y T~
v b X

v

(2.59)

]
]

for x . : '
&

' Zellner's method" makes effectiva use of S-1 to obtain the

. .
generalized linear least squares estimators. As we have-discussed

» earlier, W can be singular or Cif may have linearly dependent

columns. Then Zellner's method does not work. Also wé know that

by squaring a matrix its condition number i$ also squared which re-
sults in unnecessary® errors in the solution. We .also know that
squaring matrices on a computer can resPlt in loosing information
LY
{ 0 i

unnecessarily ( see for example [7]) ., ) . .

<
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2.4.2.2 Operation count.

°

While counting the ntimber of 6perations for solving a

generalized least squafei pr?blem using Zellner's method, we will
~assume that matrices Ci for i =1,2,...,n are of equal dimen-

sion mxk" . . -

To form A takes about

2

‘ % nn 2k 2 (2.60)

°

operations. Number of operations necessary for the Cholesky de-
Cos : 7 o : )
composition of A is , . '

1 .
g n k™ . : (2.61)

o
a

Since the other operations are relatively smaller we can say that

o

Zellner's method of solving the prcoblem (2.52) takes about

: )
~y »

@ .

“,
. . (2.62)
operations. ¢ b

2.4.3 Estimation in a ¥®ynamical system.

e

' M 13 -’ 13 n-“ -. 03
The problem of parameter estimation in a nonlinear dynamical

system occurs in many engineering fields Where it often involves the
prfocessing of large amounts of data guickly and accurately.- Grove
. . .
et al [9 ] have used a maximum likelihood parameter estimation pro-

cedure for estimating the stability and control parameters from the

£

flight test data of aircrafts.

I
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Let us consider a simple form of parameter .estimatisdn prob-

lem in a dynamical system. Let the mathematical model of a dynamic

1
systeﬁ Ye of the form s 3
- * o $
? i
x = f(x,p,t) (2.63) s
o ; P
where' x 1is the state vector of m elements, p is the parametg&
' vector to be estimatedand t represents time. , D°
. A B
Let us observe this dynamical®system at discrete times '
= \
s T : \ :
= < < . < . . '
0 tl t2 .« & tk (2.64) {
s k]
’ 3
. ' il y -
Let x. be the observed state vector of the system at time t,- ' 3
Now  x, is a%éo some function of the vector p which is unkndwn.
S LA Fad )
But the. measurement of the state vector will be polluted with noise.
0 ® R
IS e ~ E
We assume the measured state vector X can be written as v
- " A .
X = x.tv. § E(v.) = 0, E(vw.vT) = §..V, i,3=1,2 k  (2.65)
. i itV P RV = R BAV Yy PSS A : -

| ; ;

- 14
where X, is the true state vector, vy is the noise vector during 3

the observation at time ti ., V 1is the variance-covariance matrix

’

(assumed to beQﬁBgitive definite matrix) of the unknown noise vector
' / .

and Gij is the Kronecker delta.
The maximum likelihood estimates of p ‘égd V are obtained ,

e

by maximizing the likelihood function ¢(p,V) with respect to p

and V ,

. .
We4£i11 assume that the elements of the noise vector are

distributed normally. Then the likelihood function &(p,V) is

given by




-
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b(p,v) L exp --I-IE( (x, - x )Tvll(:g - X )l . (2.66)
! (2n)mk/2det(v)k/2 25 1 i 4 i

i
Saince this is always positive and the logarithm is a monotone /L}'

increasing function for positive real arguments, to mdximize

\
d(p,V) , we may as well maximize
* 2 .
¢ (p,v) = X £n ¢(p,v}) + m &n 27w
k 1 o~ A
g = -fn det(V) - . (x, —x.)TV l(x. - x.)
. k . 1 1 i i
\ v i=1 H
* \ p (2.67)
¢ = -fn det(V) - % trace (ZTV—lZ) ‘
— - -
. = -fn det(V) -~ % trace (V lZ ZT) , Since

\

\

. trace (AB) = trace (BA) for compatible dimensions

~

where

zZ =[z ,...,zk], z, = X, - x, . - (2.68)

1'%2 i i

) . N 4 *
It can be shown that the value of V “which maximizes ¢ (p,V)
- - * '
i.e. which minimizes -0 (p,V) for a fixed p 1is given by (see

Grove et al [9])

A
N
S
I}

T R -
Vip) = FF° , say F = van 2 . (2.69)

It should be noted that k , the number of observations, should

A Y
be more than the number of éﬁements in the vector x, in order
i

to have V non singular.
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l Similarly, for a fixed V , the value of p that mini-

’

* .
mizesp-0 (p,V) is given by

_ P =cargument'tq§t minimizes trace(ZTV—lZ) . (2.70)
. 7
From (2.65) and (Z.QB) we find that this minimization

problem becomes: find p that minimizes . : \{\

(2.71)

H

k -1 2
ZIr “x, - F‘xi(P)ﬂ

- ) «

The problem %ZCen in (2.71) is different than the generalized

least sguares problem because F is also a function of the

parameter p .

. Ji

2.4.3.1 Existing method of solution.

L

¢ ) Some methods of solving this type of estimation problem
have been dilscussed by Paigé [ 16], Grove et al [9]. Their methods
are basically iterative. ‘

/ For a given p+ V in g2.69) is evaluated. Then the
linear gxtrap;lation'qf the vector xi(p) is taken which is

given by

) - axl(p) -
xi(p+6p) - xi(p)+ 5 Sp . (2.72)
< ap

This gives “the approximatibn of (2.71): find 6p that minimizes

~ - _y 9x4(p) 2 : '

{(x, - x,(p))-F —— Sp | \(2.73)
1 i . T

1 - 2\ ap .

s

¢ -

.../36
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\ ) ,
‘p = arg min Jy - CGpF (2.74)
§p
where , i
- ¥ . - dxp (D) !
-1~ -1 1P
y = F "(x, - x,(p)) r C =
1 1 3 T i
. P
PR, - xS () -1 2%a(p)
2 2P T
p I
[_F’lac' -~ x,(p)) p’lw
k k ‘ T
g _ opT
~ i
Thus we find p+8p which optimizes (2.70) with V = v(p)
—

(2.72) . Next we

in (2.69) and the approximation to xi(p) in
find the improved value of VJ(p+dp) in &2.69) and repeat the
process\until convergence. The algorithm of the problem may be

written as (Paige [161] ).

i) guess p

ii) form 2 in (2.69)
iii) transform ZP = [L,0], L 1lower triangular, P orthogonal
dx; (p) ~ ’
iv) form cy f~—5—5~— B PRI P xi(p) ; i=1,2,...,k
P ¢
\v) solve 1.8, = C.
i i
for if1,2,...,k L§i = yi
to give \
¢
: ' ce /37
. ?
4
?
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¢y Yy CL
¢ Y
2 2
cC = , y =
: Cx Yy
2 .

[

vi) find

A . /
§p = arg min Iy - Cépl
\ ) P N

vii) improve p = p + 8p and go to (ii)

It is often the case that steps (v) and (vi) are.the most

time consuming steps. If the number of observations is large,

i

then the size of the problem is disconcerting. Also if the num-
ber of observation k is less thap the number of elements in X
then V is singular and so L'-l does not exist. If Vv is ill \
conditioned then L_l “is large and therefore, the answers will be
inaccurate. Hence the method is not numerically stable for i1l

conditioned V . :

We can combine steps (v) ahd (vi) in the following general

LY

1ined{ model
y = Cép + vi; E(v) =0, E(yw?) =¥ (2.75)
; -

where
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/ g — —
axl(p)
T v
op
% ‘ axz(P)
v
Cc = apT and@ V =
- : “;
2%, (p) \
—_— v
apt . b :
’ | S p = bnguame e

-

V here is a symmetric nonnegative definite matrix.
In Chapter 7, an efficient numerically stable algorithm

has been presented to obtain the least squares estimation of a

¢

general linear model of the form
*‘ .
y = Cx + u; E(u) = 0, E(uuT) = U (2.7€)

where \ B -

The form (2.75) or (2.76) will allow us to obtain the
least squares estimate of (2.76) for a general ¢ and U .
The algorithm is a new and numerically stable one which has

been devised by C. Paige and the author.

.../39
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2.4.3.2 Operation count. %

4
We will give an operation count tg accomplish the

steps (v) and (vi) of the algorithm of Paige [16]. We will
assume, for simplicity, that each Ci in C is of the same
dimension mxn and L is lower triangular.

"To ciompute step (v) takes about

> m nk . , (2.77)

operations. . :

Transformations of C to an upper triangular form by

using Householder transformations takes about

E mnzk - % n3 (2.78)

N

operations.
\
Thus to accomplish steps (v) and (vi), it takes about

A 1 2 2 1 3
2 m " nk + mn k - 3 n

(2.79)

operations. v

e e e e dan + eas cemamd AN e e 0T okt b

W i e

\
.
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CHAPTER 3

FAST STEP BY STEP COMPUTATIONS FOR GENERALIZED .

LEAST SQUARES PROBLEMS.

3.1 Introduction.

We know [l7]lthat a generalized linear least sqguares problem

can be stated as . ; -
e T/ . T, 2
Minimize v v subject to y = Cx+Bv; E(yv) = 0, E{vv") = ¢7I (3.
V,X
where vy is a given m-vector, C is a giveﬁ mXxn matrix, x is

an unknown n-vector of parameters, v 1is an unknown random noise
term and BJis a known métrix with'full coluhn rank.

In this Chapter, we present a fast step by step algorithm
fgpr solving the problems of-type (3.1) . Thié will be based on
the work carried‘out by Paigg[ 18] . We Qill assume for simpli-
city thét C has full column rank and B 1is lower triangular
alEhough the algorithm works for column deficient C and non~
square B . An operation count will also be given on the basf;

of these adssumptions.

3.2 gethod of solution.

We have seen in Chapter 2 that the application of Givens
plane'rotatiéns has definite advantage over Householdet trans-
formations in solving a generglized least squares problem\yhen

‘formulated ligp (3.1). Therefore, we will use Givem;plane‘ro—

tations only in reducing the system.

¢

1)
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A e et e e

By applying orthogonal transformations from left and

right, it is possible to transform the initial data [y,C,B]

(3.1)

as follows:

— L
T .
e ly,c,Bl] 1
I
P
] -’
l nm
where Q and P

pa—
0 0 L
T
-1 0 g
T
z R L
- 21
— e d W—-‘
1 n m-n-1

are orthogonal matrices,

non singular lower triangular matrices.

For general C

and

B

, rotations can be so chosen

R will have full column rank.

Writing

n

L L r R

1’ 2 are

and p are scalars.

that Ll' 5

(3.3)

it is seen from the constraints in (3.1) and transformations in

(3.2) that

A il o

]

0 .

gTvl +pu , and

T
+ +
R x L21v1+ur L

2

v

2

(3.4)
(3.5)

13.6)
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¥
/ from the right to B , whenever necessary, to retain its
form. For example with m = 4 , n = 2 , the injitial step is
1! \

4

x x ?? x"’im 91 ’
1
/
x b'e :? x xl’ﬁqb
x X X x x x {3.9)
X X ® X x x X ’
( N ot e et S pr— ot

4 o ) B

&

-

(3.4) implies vy = 0 since L1 is lower triangular. There-
fore (3.6) can be written as
|
T
z = R x+ur+L2v2 . (3.7)

, T T
Since R has a full row rank, it can always be solved for

X 1irrespective of v, . So the minimum norm least squares

- \
solution x of (3.1) is given by
¥

= (3.8)

For the constraints to be consistent, P has to be nonzero

if n is nohzerb. If P =0 but n % 0 , then the con-

~

straints in (3.1) are incompatible. Thﬁs, we can have a

check on the feasibility of the model with nonsquare B.

*

‘The transfprmations in (3.2) can be performed in two

~

- stages. In the first stage, we apply n(n+1)/2‘ rotations

.

from the left to zero out the above main diagonal part of

[y,c] with corresponding rotations automatically applied

5T - P A
E3

= o At il
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The rotations are ordéred 1, 1', 2, 2°'. The nonzero elemént -

] introduced by ‘ith rotation from left is immediately made

zero by i’ rotation from the right. Using this procedure,

the above main diagonal part of fy,C] is reduced to zero ,

at ghe same time keeping the form of B the same throughout. 4”’
In the second stage of reduction each step has the samé

form, eliminating one diagonal of [y,C] matrix at ; time ané

also maintianing the lower triangular form of B at gPe same

time by applying right rotations. The first step of the second

stage for the above case [m = 4, n = 2] will be as follows:

- ox b3 ? X X xq (,3'10)
1 .

x b4 y
——— [ , EN — i .
Y C [ 1 : -~ ;
where the seguence of rotation is 1, 1', 2, 2', 3, 3'. So )

there will be m-n-1 sEeps for the second stage of the reduction

\

and each step will éontain (n+l1l) rotations to be applied to the
left of [y,Cc,B] and (n+l) rotations to the right of B to main-
tain its form.

It is seen that after the first element of y 1is eliminated,

¥
"there is no need to consider the first column of B any further,

since’ the first column Qf B will -no longer have any effect on

the solution. Therefore the firét column of B can be ignored

.

completely once the first élement of y is eliminated. Thus as

* «../44
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the réduction of the system continues, the size of the system
also decreases. This will save computations in the general case
and also save storage in sparse problems, Therefore, this
algorithm is more efficient than the on; given by ‘Paige [17].
Paige [lBJ hag also given the rounding error analysis of this
algorithm and fougd it to bg numerically stable.

The transformationsgiven in (;.2) can also be achieved by
using stabilize§ nonunitary tranéforma#ions inst?ad of Givens
rotations from the left [181] . The transformation can be shown

¢

as follows:

1 Lu/B o 0

= . ,7 if B 4 0. {3.121)

' ~ i
9 f

To maintain numerical stability we -would first permute the

elements @ and B if B =0 or ja/Bl > 1 . Thus we see
’

that it needs only onel multiplicatioﬁ'to eliminate an element®

b °
instead of 4 multiplicationsin the case of Givens plane ro-

tations. Since (3.1) trequires the minimization of v v and

‘

nonunitary transformations do not preserve the 2-norm, it is
- ! \ 4

~ ' + °

better to, use orthogonal transformations frof the right. Thus ]

we can produce the results of (3.2) by applying nonunitary trans-

formations from the left and fastGivens rotations from the right [18].

o

.../45




‘and the corresponding (n+;) rota#ions to the right of B .

IRy vt e -

. 4

3.3 Operation count.

v

It will be assumed for simplicity that € has full-

column rank and B is sguare. We will consider firs€ that -
the reduction in (3.2) is achieved using 4 multiplication ro-
tations only. | : )
To'éompute the first stage, n(n+l)/2 rotations to the
left of {y,C,B] take about 2n‘3 ‘ope}ations and n(n+l)/2‘ro—~
tations to the right of B 'take about 2mn2~ % n3 operations.
Hence the first stagz\of reductions takes about ;’ ’
o 7
2nn” .+ 4’ (3.12) '

operations.

The second stage of reduction contains (m-n-~1) steps.

Each step consists of (n+l) rotations to the left of [y,C,B]

- L
L

i}

{m~n-1) (n+1) left retations take about 2m2n-2n3 operations

and (m-n-1) (n+l) right rotations to B take Zmzn—Zmnz op-

[y

erations. Therefore, total operations needed for second stage

of the refuction is.about ’ -

7

am’n -~ 2mn? - 2277 . . (3.13)
. . a \
Thus, the complete reductidﬁ takes about - .
: / .
. - - 4
2 3 .
5. 4m2n - 30 . (3.14)

N . /f
opérations. . ¢
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It has been shown that the matrix B can be reduced as

:

the computation progresses. The total number of operations o

thus saved will be about 2n(m-n)2 operations. So the fast
Iy :

algorithm 'takes about

>

+

2

8
‘2m2n + 4mn -3 n3

(3.15)

operations to solve the generalized linear . least squares

problem.
7 The number of operations saved i.e. 2n(m—n)2 will be {
appreciable if m >> n . Thus we can say that the ‘fast step :

by step hethod will be very efficient for a large ggneral linear

A}

W o e

model.

a9

«

If we use stabilized nonunitary transformations from the
&

left instead of Givens rotations, then in the first\ stage,

n{n+l) /2 transformations to the left of [y,b,B] take ‘bout
. S ’ i

n3/2 operations. Hence to accomplish the first stage re-

gquires about

2mn- - % n (3.16)

-«

operations. .

<

In the second stage (m-n-1)(n+l) transformations f£rom
N ;

the left take about (mzn—n3)/2 operations. Therefore, the

second stage of the reduction takes about
3
m’n - 2mn® - - S (3.17)

N

~

operations. ~W’
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. . . \
N Thus, if nonunitary transformations from the left and

Givens 4 muTtiplication rotations from the right are used in

the reduction (3.2), total number of operatidans is about

5 2 2 3 b .
Smon -3 n . ) (%rlB).

}
. ‘ ‘ ‘H
' k

From ,(3.14) and (3.18) we find that using stabililized

nonunitary transformations from the left and Givens 4 multi-

plication rotations from the right will always be faster than
-

using 4 multiplication orthogonal rotations from the left and
the right of the sy{%pm. ! ‘ \

The fast step by step algorithm for solving the generalized

least squarfes proBlem (3.1l) described in this chapter. has been

\ ° j

tested on an IBM/370 .system. The procedure GLSQUARES, writteP

in” ALGOLW, has been presented in Appendix A. We have used 4

multiplication Givens rotations to reduce the system. The i

procedure works for general C and B. The outputs foke the test

o

problems are also given in Appendix A.

o 3
° ‘ N -
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CHAPTER 4+ - T

.

MINIMUM 2-NORM SOLUTION OF A STRUCTURED

UNDERDETERMINED SYSTEM.

4.1 Introduction. .

In many generalized least squares problems (Pai&é”{le],
Theil [#+22] pp.294~299), it is necessary to find the minimum

2-norm solution ofvan underdetermined system of the form
y =F z (4.1)

where F has the followind structure /

ponn . Sy » !
1 th . i
4
2 Ly )
F = . . . (4.2)
G L
. L- n n H
-t .

For each i, i=1,2,...,n, Gi is a matrix of order (mixk and

Li is lower trapezoidal full column_ rank matrix of irank k. .

i
- T
Elsewhere, all elements of F are zero. In Chapter 5 we will ]
'encounter a hmodel where the éfficient solution of an pnderdeter- (\

mined system of the form (4.1) with (4.2) is required.

One way of finding a numerically stable solution to (4.1)

.

is to find an orthogonal matrix ,Q such that

‘ FO =[L, 0] (4.3)

N -

r |

where L is a full column rank matrix. Because of the particular

structure of F , it is not worthwhile to construct Q or L ex-

\
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. also works when F is not a full row rank matrix and each L,

i

Loy - Aty
- eoe e e RO SRy i R Y e

plicitly since this will result in large storage requirementﬁhand
)

unnecessary computations. In this Chapteg we will present an?

apparently new and numerically stable algorithm, designed by

C. Paige and the author, which requires very iittle storage

and also avoids unnecessary computations. We will assume/for

simplicityafﬁ’the description that the matrix F has full row

rank and each matrix Li for i=1,2,...,n 1is lower triangular

of order m. . An operation count will also be given for this

particular case. The procedure MINNORM given in the Appendi¥ B

1

is a fuf& column rank lower trapezoidal matrix. When F is
not a full row rank matrix we can check the consistency of

the system by checking the residue which will be small for
. » . ) -

compatible system.

4.2 Method of solution.

We can write (4.1l) as follows

[G,L] zy =y (4.4).
\
where’ ?
— -
z
1
G
2 .
G = r L = ’ z = (4 5)
mnxk mnxmn » {k+mn)x1 ®
. . 22
G L
n n
° - - -_— _ 3 —

Ry R L TR AT L BALLO TR0 AT Al Wb Ml AT - - PR T

R 1
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[\

Gi¥l et al [ 6] presented an efficient algorithm for

solving an underdetermined system of the form

e
[a,D] v
‘ = b (4.6)
Y \

-

where D 1is a diagonal matrix, a,v and b are column vectors

&

and Vv 1is a scalar. The algorithm for solving the system (4ﬂ4)
which will . be presented here, can be considered as a generaliza-

tion to block form of the algorithm presented by'Gill et al [6].

We add to the bottom of the matrix in” (4.4) a matrix
[1,0] (4.7)

where I is an .identity matrix of rank k so that we will

o

work with the system of the form

e (4.8)
)
The reason for working with the system {(4.8) is to form a part

of the transformation matrix sihultaneously as the reduction of

the system progresses. Its purpose will be evident as we progress.
At' first, we will form an orthogonal matrix Q(l) such that
(1) (1)
- ‘Qll Q12 x
1 = 1
mitey ) o e i o™ - ) e
k m, (m,+k)x(m_ +k) m. k [
m, k

«e./51
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where Ll is a full column rank matri}. If we first multiply
(1)
the system (4.8) by [3 - I] thep (4.8) reduces to
1
Ly
(1) (1)
%11 G212 M2
r * . L
: . : ' . (4.10). =
. .
(1) (1)
Ganl GnQ12 Ln
(1) (1)
Qll /’Q Y 0

12 ‘

If we use Givens plane rotatiogs, then the reduction of [Gl'Ll]

to a full column rank matrix can be performed in such a way that

Qi;) is lower triangular. This can be Shown schematically, in
the case of m, = 3, k = 2, kl = 3, as foiloys:
4 11

G, ! 1, xrm;z

]

B N N LA D
I 0 m
x x | x

x @lep
14 : -
E\ X ||]1
. |
L™ ’ &
L i 0 '1 X \
1 |
- ---4-_-- = x x | (4.11)
|
(4 (1)
/ 2731 912 x ox x|
W e e - ————— — —r — - +
X X x—: b4
- ]
X X X : X X \
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i
The rotations are ordered 1, 2, 3, 4, 5, 6,4 ®

that the element has been made zero in the i th
K

nonzero element f has been introduced by the

from the right.
L4

indicating
rotation. The

i t‘ rotation

Next, we fofm another orthogonal matrix. Q(z) sdch thae‘ ;
¢ Ln
(2) (2) .
[ k
N\ 0 % P
(1) (2) = T (2)
—— e S S (2) (2)
k . o
) m, X 21 T L
b e e —— —
k
i)
where £2 is a full column rank matrix. Thus (4.10) can be
transf&rmed to
— ==y
Ly
(1) - ]
G2Qll L2
(L) (L _(2) (1) . (2)
63911 639215 233 G3912 912 L
. (4.13)
(1) (1) . (2) (1) .(2)
Gnf11 6212 911 €212 912 Ln
() (1) (2) (1) _(2)
9, 22 213 22 912 ° °
l—— &
i
. . . (1) . (2) . .
The rotations are so applied that le le is lower triangular.

Continuing like this, we can find an orthogonal matrix 0 -, which

I S

is the pfoduct of n orthogonal matrices, such that
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'
o g
e &
Q = = (1) _(2) _(i-1) (i)
S, =
¢ = I ! : 1% Q12 9120912 9
< - .
I 0 ) G2 1 L2 .
= ‘ (L) (2] (n)
G3S; G35, Iy 2o+l Q12 %12 - ¢ 912
/
L 0
G Sl GnS2 GnS3 Ln
1 52 53 - Sp n+l )
o L 133
oy -
L 0
= , say (4.14)
Q11 QlZ
Although this is a nonsparse'lowéi triangular matrix, its specldl
form allows us to form and use it with very little storage and
computation. This will be described further in Section 4.3.
Y
The system.given in (4.4) can thus be transformed to the
. : N
following
L 4
T
[z, olg Zy ’ I
. =y ., . (4.15).
z, /
Let
¥
' T
w = LAY = 0 zl R
Y2 . Z2
A T
. ]
.. /54
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Then solving the compatible system
Lw, =y (4.16)

in an efficient way for w and setting w, = 0 , the minimum

1

2-norm solution of (4.1 is given by '

. (4.17)

But it can be seen in (4.14) that we know cnly a part of @

However, (4.14) and (4.17) give

z, = Qllwl , (4.18)

and this can be evaluated.

As we are concerned with the minimum 2~-norm solution of

~

(4.4) and since z, is already evaluated from (4.18)., then %2

is nothing but the solution of the compatible system

1

. Lz, =y - Gz, . (4.19)

This system is square if all Li  1i=1,2,...,n , are square. In
any case (4.19) can easily be solved since the system is com-

patible and L is a block diagonal matrix. *
!

K

’ . \.5 »® - . i é
4.3 Algorithm of the method. ,

-

N>

We will present here the algorithm for evaluating 1

only. The remaining part of #he minimum 2-norm solution can
5 .
easily be obtained from (4.19) once 21 is known. S
¢

’!




, Next we can obtain v,

- 55 =
-t
(4.16) can be written as
p= -1~ "‘F‘
L Y11
< _
681 Ea Y12
G35, G35, Ij Yz o
G_S G S G S . . L w
- n 1 n 2 n 3 nd . ln_ e
where
_ o (1y _(2) (i-1) (i)
5; < Q12 Qo =~ - - Q5 21 '
T T T T T
wl = [wll'wl2" 'wln] and V'

Efom (4.20) we can first find Vg by solving

I

Lovip = ¥y — G4
for LD where
' dl = slwll , say .
Thus w can ge eyaluated by solving

1li

[N

= [ t T T]
Yllyzl---ryn .

(4.20)

N

(4.21)

(4.22)

e er——"
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Liwli =y, - Gidi-l : (4.23)
' /
for w._, where
1li
A1 T 952 * S5 1Yy 41 -

/ye are interested in finding dn since from‘(4.18) we

have

Z, = S.w + S w + . . . + S w . (4.28)

Therefore, we can describe the algorithm as follows:

\
]
v

= , (1) _
l,Ll) to (Ll,o), forming S Z. =

i) reduce (G 1 7 Qll ¢ 2

il1) solve Llwll =¥y
iii) form d1 ;= Slwll
iv) for i := 2,3,...,n do ; {(4.25)

a) reduce (G,Z2.,L,) to (L,,0)
i i : i

i
forming S, := ziéii), 2., = ZiQi;) ‘
b) solve iiwli 1= yijj Gidi—l
c) form di 1= di—l + Siwii . . 7 '

From (4.24) we find that dn is our vector z Each

1 -
system in steps (ii) and (iv-b) of the algorithm must be a com-

patible lower trapezoidal system and can easily&be solved (In

most cases, all Li will be lower triangular).

‘

3

[P
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Thus, we see that the algorithm for evaluating z, is

a

very efficient. The method is basically éequentiai and at no

stage need we store previous Li or S and "’ 2 is overwritten

i

\

by Zi+l . This special form leads to tremendous savings with
respect to computation time and storage reguirements.
. \

A computer program for obtaining 21 writJ;n in ALGOLW,

together with the output gor test problems run on IBM 370, are

given in Appendix B.
We see that when 21 has been found, 52 can be found

by keeping L and G and solving the compatible system (4.19

4.4 Operatiofs count.

We now give an operation count for the adgorithm given

in (4.25) to evaluate 21 . We will assume, for simplicity,

that all Li' i=1,2,...,n, are nonsingular lower triangular

matrices of order m . We will also assume that the matrix

\

F in . (4.1)  has full row rank. We will apply 4 multiplication

Y

Givens rotations for the reduction of the system.
.
We examine the number of operations required in step

(iv) of the algorithm given in (4.25). To form G2, where
Zi is lower triangular takes % mk2 operations. Reduction of

-

[Gizi’Li] to [Li,Ol and at the same time fo%mlng S, and Zi+

as described in (4.11) takes about 2m2k + 2mk2 operations.
r

©

Since the other operations are relatively smaller, we can.say

that the total operations necessary to implement the algorithm

FH»

).

1

e e e
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given in (4-.25) is about’
2m2nk + % mnk2 . (4.26)
~ {
Once %1 is known, 22 can be evaluated by solving (4.19).
L - 2

Total operations required to solve (4.19) is: about l\m n oper-

2

!

ations. Therefore, to solve the #ystem (4.1) completely takes

v
/ . 8y

about ) - )
m’n(2k + %—) + % mnk S (4.27) -

operations.
If we solve (4.1) by reducing it to the form (4.3) by ,
forming Q ‘and L then the total number of operations ne- ' \

cessary is of the order of

2 2
mn k. (4.28)

4 »

We see that if fast 2-multiplication Givens rotations are ap;&ied'
?

for implementing algorithm (4.25), then the algorithm presented

here is about n times faster than the one that reduces (4.1)

s

to the form (4.3). Moreover, for our algorithm, practicaliy no

extra storage is required besides stg&ing Gi and Li ' "
. .
i=1,2,...,n . -
K A \
x
' ! <
1] : i
1
««./59
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CHAPTER 5 L \
¢ -

A REPEATABLE EXPERIMENT WITH A GENERAL LINEAR MODEL.

Q

’

5.1 Introduction. : t

-

In Section 2.4.1 we have seen that if in a controlled

experiment, each set of observations is _.taken with-a different

sét of measuring instruments then it is possible to have dif-

o
)

ferent variance-covariance matrices for the noise terms. Let

Wi be the variance-g¢ovariance maéirm of the noise vector for

the:i&h observation §i . Let Wi = ﬁiﬁ

P e

be the Cholesky de-~

B

composition where Ei Yis lower trapezbidal with full column

. o N ' it
rank. Then for » t sets of observations, we can write the : ‘

“ -
) ” 2

linear modei as followé: s
) T 2
y = Cx + Bv; E(v) = 0, E(vv') = 071 (p-1)

- ’ 4 N

where v N\ ' ' e <

<
[
o
o)
)

~
(e}
Ll

(9]
[+:21

t L . t . t
nmet st e N

% ‘ ~
" where Y, is an m -vector, C 1is an mxn matrix and B is N

° 2

) . v ) : .
a full Solumn rank matrix of dimension mxki . . s
- ":‘n - »
We will develop a numerically stable algorithm to obtain LA

the generalized least squares estimate x for ‘this linear model. bH
- [ A

o

We will also present a very fast algorithm to solve this problem
- - ; .

g

" X .
? " " ddicieckacibini silCkie h““illii et bl
sk,
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when Bi = B for all 1. This algorithm is developed jointly A

! *

with C. Paige.

We can formulate our problem as

min vTv subject to y = Cx + Bv (5.3)
v, X ;

with y,C,B given in (5.2). The vector x solving (5.3) is

the required estimate x .

5.2 Method of 'sclution. \ -

To begin with, we first find an orthogonal matrix Q

such that
. 0
l,
5T¢ = (5.4)
T
R
where RT is a full row rank matrix, We also find an orthogonal-®
matrix Pi such that - )
A
Li \
=T = - .
Q BiPi = B.l = , isl,2,...,t «. (5.5)
F, ' N, .
7 ¢ 1 1 ,
A }
N _ o r
where the forms of B, and B! are the same. yﬂhe matrix B!
. i i i

is partitioned so that the number of rows in [Fi'Ni] is the same -

, . . . L |
as that in RT in (5.4). Then the constraints in (5.3) trans-

B

form to the following: ' ' ’

e T

.../61
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‘ 0 b 4
T
T R
Qy =
0
RT
0
RT
where
— =T
. Q .
5@
T g
Q, =
+ E—
Let
¥y
b4
. . T 2
y' =Qy = .
~
+ %t
e
{il
'yi = »
\ Yi2
f A3
* /

We can split (5.6)

its egquations:

P

e AT SR ETE PO By Y1 B s weemead Xa bt A AT WA 3 0T o A

¢

- 61 -
d -
+] 1 N ,
L2
FZ N2
P R -
Pl
’ P
2
, P =
=T
. R
.
~ ’
¥y
§l2 " {-—/
ygé and v! =P'v =
.
Ye1 -
Ye2
. il L
’ vi = .
§
Via

as

11
V12
Va1
Va2

£1
Vi2

L
v
‘—rPTv
(5.6)

4
\

—

/2
—

(5.2)

*

o
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If any

~

matrix Qi

such that

~
o

Li in (5.9) is nonsﬁ

*

T

A

4
€, 1
- 62 -
1 3
— 7 * _ - 4
y T - r = ‘
12 R x Fl N :11
T 12
Yoo ° R Fy Ny V21
B - . + . 22 (5.8)
Yo, RT Fe Vel Ve
. vt2
— - . - e . o - -
|
and . ’
~ - - T A
0 .
ol Y ! V11 '
v
12 .
Y 0 - 7 - 4 N
21 2 21
_ \ . vy, . (5.9)
- 1 ]
Y : L, © Vel -
v
t2
| — . 4 L. —J 1
' . N T T T T
The system (5.9) can be solved easily for [vll,v21,...,vt1]
and after substituting back in (5.8) we have '
4 v ,
- a4 a1 — 7 - 9 4
- F_.v RT N v
Y32 1711 X 1 12
T .
Yo ~ FaVoyy R Ny Vaal,
N -~
- - L] - !
. . . + . . (5.10)
T
Yeo T FeVaa R J Ne Vea

uare, we can find an orthogonal

(5.11)

RN




P

where

b ow o~ 1 s, hr s

B S

Li is lower triangular. 1In this case we can check

the consistency of the model by observing the residual. For

a consistent model, the compufed residual must be small.

»

. Let us now multiply- both sides of (5.10) by the non-

singular matrix

o

nce

— A —
I
-I I
' (5.12)
. \
- I N
L a
so that (5.10) transforms to
S -
R x Nl V12
0 S ST V22
- . + . : ° (5.13)
. y AN
0 -
» i I‘]1 . R
We can find X by solving -
l”-,\‘ .
Vg T~
, bl = R‘x + N1V12 (5 14)
3 ’
v12 is known. Therefore{ we need to find the minimum

~

2-norm solution of the following underdetermined system

PR
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[+Y
. — — -
b2 i —Nl N2 rhvlz
b, Ny N, Va2 ,
. = . . ) (5.15)
bt -Nl I Nt _-J Vt2
R
or . :
b = Nv , say . (5.16)

The method of sblving an underdetermined system of the
form (5.16) has already been described in Chapter 4. Once Vv
is known, we can soclve (5.14) for x which will¥be the least
équares estimate of the model (5.1). We see that in'order to

estimate X from (5.14) we need to know only We know

V12
that the algorithm presented in Chapter 4 is very efficient in

! !

obtaining ng only.

We can solve the problem (5.3) guickly if the variance-

»

covariance matrices of the noise vectors for all the t dif-

r

ferent experiments are the same. If we follow the same methods

as described bkfore, (5.5) will be of the form ~
L
oTBE = B' = . 5.17)
F N !
x

can then be found by solving

b ‘= RTi + Nv

1 (5.18)

12
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once v12 is known, and the constraints on v are’now,
given by
N b = Nv 5.19
) ™ b NY ( 9
i 7 } ] [ ]
where -N N B b2 V2
N = - . b = v =
N N N R ) b3 . v Voo .(5.20)
-N NJ bt vt2
. e p | -

We can apply a technique similar to Givens plane rotations,
which we will call multidimensional rotations, to transform N to

a lower triangular form. Multidimensional rotation matrix is

defined as

’
-alX BRI
. (5.21)
BI ol
The choice of o and B8 to perform the reduction !
* i ’ . ‘
[ -6N, N] -al RI 4 .
= [y, 0], 8 >0 (5.22)
BI al
-
» o 4 i
is given by }
- 5 1 .
a = and B == (¢5.23)
\-/-1+ 55 Vi+ 62 » )
: ¢

/ | | .../66 k
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and

We can write the system ({(5.19)

where

As we

where I

algorithm

Y = 1 + 6 .

as ‘follows

[N N2] v

1’ 12
= b
v! ‘

R ] . =

N r-N v22

- = [ ] = a

N , N2 N y v v32
_—N . 8 N_ _vtzJ

-
J

worerma

(5.24)

(5.25)

(5.26)

have done in Chapter 4, we will considexr the system

is an identity matrix.
-

we will give at the end of section 5.3.

(5.27)

This may help motivate the

-~

We will reduce the systemnm [Nl, N2] using multidimensional -

rotations.

»

We can find an orthogonal matrix P(l)
—
‘) s —all BlI'
§ P(1) -
B.I ol
1 1
\ L.
¢
; 2

of the form

(5.28)
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A 1Y
such that
[ -n, NI P(l)n = [YlN,Ol . (5.29)
where a,, By, v, are given by a, B, v+ in (5.23) and (5.24)
with & = 1 . Then (5.27) can be transformed to ”W
YlN 0
alN -BlN N §
, ?,
o.N -8, N. N . ’
1 . (5.30) ////"M/”—M.-q
1 AA/
alN —BlN B N
- i
. ]
t?ll BlI 0 0 . . 0 !

Next our &6 = ﬁl . Applying the same technique, (5.30) .

o

can further be reduced to

YN
algw Y2N 0 -
ulN Blu2N —BlﬁzN N

1 12
*
. »
lI Blazl 8182I o . .

(5.31)
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.
C '
where ?ur next 6 = 8182 . bontinuing like this, at the end,
we will have ‘ - ,
— . -
YlN
a N Y, N
o~
N BN YN NS LRI LI
g o
: ; : 2o =81Bo BT
T -
N
alN Bla2 8182a3N . . . Yt—lN 0
' Yo (5.32) |
S, S, S, .- S 2 g
b P -l /
L 0 -
= r Say (5.33) L 4
P11 P12
- |
* |
Thus there exist an orthogonal matrix P such that the' ‘
AN
underdetermined system (5.19) can be transformed to
P11 P12
[£,01Pv=5b, P = { (5.34)
Pa1 P22
~ | -’ ) T, '
. where P 1is éhe productsof (t~1) multidimensional rotation *
o
matrices. s !
Now ’
~T— ~T z &
P v = P, V12 Y, ‘
= , say. (5.35)
( S\ Y2
4
» ! .
+ P . . «.../69
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Then solving the compatible system

(5.36)

the minimum

-

in an efficient way for w and setting w, = o ,

1

2-norm solution of (5.25) is given by

I
LR
il

(5.37)

) L]

easily as Pll is known. Since

‘\ Thus, we can evaluate 312

is. not known, we cannot evaluate v from (5.37). As
LY

‘

3
we are concerned with the minimum 2-norm solution of (5.25)

P

~ * -
‘ 1 and since Vi is already known, we can obtain v', if it
-

is required, by solving the following compétible block dia-

A gonal systeéem [ from (5.25)] .
. A'=—_ An
, . BV b - Nv. ., . (5.38)
! i (5.38) can be solv;a Qery efficiently since N2 and Nl
‘ have special forms (5.26). ’

P Y |
5.3 Aalgorithm of the method.

We will present here the algorithm for the case when the
variance-covariance matrices of the noise terms are all the

o same i.e. when multidimensional rotations are used to reduce

the systex’ﬂw’/
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‘ ;
Our aim will be to\shaluate ;12 first and then the

rest of the solution Veqﬁor can be obtained by solving (5. 38). -
. g A .

VT

We wjill follsw the same approach as we have done in the Chapter

4., We will modify it to take advantage of the special forms of

- N a N o in (5.26)
1 an 2 'gJ.ven in - - . ‘ .

We can write (5.36) as follows

- — - — ¥ — -
YN Y11 A
\ e
SlN 'Y2N PR w12 \b3 e
Y
- -
Lw, = SN S, N Y 3N ' Wig K = b4 (5.39)
f
. a . . b. .
SlN SZN S3N . Yt—lN wl(t—l) t “
{ - -t = - =3 o)
! ‘\s 4'
where N . :
— _\‘
S; = BBy - .+ . By T

From&‘5.39) we first find that

f 1y A
y -~ Nw - L b . (5.40)\

11~ 2

Note at this poi that we do not intend to solve for Vi -
& ’
: Next Nw,, can be obtained as - “ .
i .
' ’ . |
! V.4 1 L |
sx £ = - - \? . P
N ¢ Nw12 Y (b3 dl) (5.41)
i o
- C (
i ’ :
- ' NRA!
A I ’ . '
i - - 3}
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where s v

1 k)

and again we do not solve.

Hence for i th block of equations,we have ) \ “]
R T (5.42)
1i Y3 i+l 1—}
where i o
\ ' H
o~ = + S .
di.1 = 9.2 -1 5o -
T i 4
he purp?se of evaluating Nwli . hot Wi for _

i=1,2,...,t-1, is that we need to know only Nwli in order E
k4

-~ to evaluate éi . We are interested in evaluating di only

a

because from (5.37) we have

ke J
NV, , = NP .w . - ) |
< :;Slell + S2Nw12 + ..+ St“lei,t—l (5.43) | .
- T % , ’ a
-which could be used in (5.18). . ,; : : s

~

Thus we describe the algorithm for estimating x as )

»” ’ .
follows for the case when the variance-covdriance matrices
« . I . )
of the noise terms for -different experiments are all the same.
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L

N T TR

B . ) ,1,,»-»*W’
N - 72 -
. 1y Yool o « o Y 0 L ¢
. - - - = = 11 " 21 tl
i) reduce [yl,yz,:..,yt,C,B]to , -
— } ylz y22 . e ytz R F N
¥ g
ii) solve Lle 2= Y31 ?or Vi1
L4
iii) form bl.’= Yyo & F - Vi1 - s
\ L 4
- iv) for i = 2,3,...,¢% do
a) solve \Lvil =¥, for Vi1 -
i
b) form fi = Y5, - F vy,
c) form bi = —bl + £ ‘
v) f¥nitialize § := 1 .
-
. ¢ LY
vi) evaluate @y Bl, Y as in {(5.23).and (5.24)
&
1 ) 4
vii) form g, == — b Y !
1 Yy 2 {
PR .= .t *“
viii) form d1 : algl, B, Bl
)
»ix) 'for i = 2,3,...,t-1 do
Y
a) set § := By
b) evaluate ay, Bi' Y as in (5.23).and (5.24)
’ l a ’
i c) for? g;:= '7;'(bi+1 -d; 1)
N \
s \ . = ! - !
4a) form di.— d1—1'+ LPC TR PRI S .—fuiBi .
x) solve ‘RT§ -i b, - é for‘ ; .
N : 1 t-1 S ‘ s vea/73
A




If one is interested in obtéining v explicitly then ’

~

Vi2

F e

can be obtained by solving the compatible system (5.43)

N e ,
Vig ¢ The.remainder. of the vector can be obtained by

-

for

LS 2

solving (5.38) where

i

0y - _d 1 ' ' .7 3
vy . o s Tt-1 i 1
) MV12 T | "9 . (5.44) |
; ' .
T . . . N IS
A -4 '
; - : 1 .
%“
:.{ \ kY
B ' . —
2 - 4 i
% 5.4 Operation count. s N
v . ‘ -
b We will first give an operation count required to estimate
£ -
E x for the model (5.1) when the variance-covariance matrices
L3 - B
A v
§ ’ of the noise terms are- all the same. We will assume that ¢C
v is full column rank matrix of dimension mxn.. We will also '
;V._ 4 ]
} - = i . ' -
. assume that B 1is lower triangular matrix of order m and ~,
also it is nonsingular. We will use 4 multiplicétion-Givens .
< ‘ rotations in reducing the system.” ' i ’
Step (i) of the algorithm takes about . ) 1
’ 1 - .
> ' L " ‘ A
2 2 3 ' WZ"A ¢ ;§
4m“n - T A + 4mnt - 2n°t (5.45) |
] ’ !
% - operations. L ' )
: : Ysteps (ii), (iii) and (iv)’ take about .
: ) \ .
~ : 12 1" 2 . .
; . mt-Sont {(5.46)
. . . -
k) ] 1 ]
. operations. ° ‘ -
(, 4 - ¢ . . . ;
. . ‘ - » AL
] ¢ / ¥
...\_,..—"--«-u——--'-—-*-‘-"‘m 0
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Since the other operations of the algorithm are relatively
smaller, the total operati&nsneeded to find X 1is approximately

given by

>

, 5 .
4m2n +A% m2t + 4mnt - % n2t - 3n .- (5.47)

1 . * }

& ’
We will now count the number of operations necessary to

£ IS o 1 ‘

~ ] . . . .
compute x for the case when the variance-covariance matrices
of the noise ﬁerms are different: We will assume.that each

matrix ‘Bi i% (5.2) is lower triangular and nonsingular &f
3

he Y M
oﬁher m . / ;
[

i
To comphte (5.4) and (5.5) for i=1,2,...,t , the.total
l. b @

f ¢r
0perationi;required is of J\i&;rder of

o

¢ .
' am’nt - 2mn%t . Ton, 48)
- '[ * » + {‘

3

Since ?he other operations, are relatively smaller, we can say

that the total’'number of operations‘required to reduce the
.

sysﬁ%m_io the form (5.13) ig given by (5.48).

”

°

/' From Chapter 4 we find that Ehe total number of operations

!
Hecessary to evaluate v
a ¥ e

£y

12 fr?m (5.1?) is about

4

¢ -

. 2m2nt + gfmnzt . (5.49)

-
w e a "

Therefore, the number of operations necessary to find x of v
Yol '

the model {5.1) when the variance-covariance matrices of the

noise vectors are different for different experiments is of the
. ) b 4
ordexr 9f ‘ \» -
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) CHAPTER 6 e
' .
. GROUPING OF EQUATIONS. '
b c

- - ’

6.1 Introductién.

- . «
- s A

We have seen in Section 2.4:2 that a set of different

.

ordinary linear models whose noise terms are correlated can

a

give rise to a general linear model of the form *
T
y =.Cx+u; E(u) =0, E(uu’) = W. (6.1)
The formof y,C,W are . ' .
. T . ¥ 4
r - o — o ) I I —
Y1 1 @1pT @t o oyt
’ I ... I
Y2 2 %51t %22 ®2nt,
- - - .' 3 ~
Yy = . ’ CcC = s - ’ W = Y L - !
Yn L cn Lanl n2I "‘.unnI
— , Jdy o
’ ’ 4 ' (6.2)

%

where ' is an m-vector, Ci is an m x ki matrix and W, the

N )

~
variance-covariance matrix of .the random noise vector u, is of
» LN
dimension mn X mn. ) *

# +

W, given in (6.2), can bg written as

r T e e e B
%11 %123 ®1n 0 ,
. %21 %22 - %2 .
. ' ’. “)
1, - L/ Al
. [ nl ?n2 ee. %nn .
M" . = SQI' say., ' ‘ (éca,)
o, {
* . AL
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. linear modei given in (6:1) can be reformulated as

1

. J

- .
where @ is the Kronecker product and I is a unit matrix of order m.

. T .
Let S = LL be the Cholesky ‘decomposition of S where

.

’ 11 .
T %21 %22
’ L = . . ' (6.4)
; : ) /
.. O

s . nl “nz2 . Bn |

Then (6.3) can be written as 4
T -
W= (L & 1) ( Q@ I)
* \ 4
T : -
* = BB , Msay (6.5)
. / >

wvhere &

K (6.6)
’

o I
{ nl n2 nn " , N
A
Therefore, the problem of least squares estimation of the general -

+ +

{

»
minimige

T ) '
v v subject tJ'y = Cx+Bv .
v, X

£6.7)

B can be nonsquare when the-varian;g—covariance mptrix W is singular.
We will present here an algorithm which Will work for linearly
dependgnt columns of Cioand also of nonsquare B. This algorithm is

developed jointly by C. Paige and the author. ’ ¢

6.2 Method of solution.

(1) l o

. We can find an orthogonal matrix Q such that
- [ ¢ (1) \ ,
T 0] 7]@Q .
(1) (1) 1
Q Ci = L4 Q = ’ i = 1,2,...,11 (6.8)
T (1)f ' '
’ Ry Q;
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- } t
. where R? ig a full row rank matrix and the orthogonal matrix
3
.y T
Q(~l) is partitioned so that the number of rows in Ri and
N .
Qz(l) are the same. ¢
The \constraints given in (6.7) can now be transformed to
-1 T, 1 [ T | 1
v s Rl - & 4
T T
= (2) (2) ¢
Y, O 9219 9529 8 °
. _ R + s
& - - 2 I 4 ’ - ‘
; ] (6.9) "
. . . - i
) T t T ‘
. 3 0 (n) T (n) {n) . !
| - Yn |- R;I‘1 th Un2Q - an i
-~ "‘ L .L - ~ - "
' . ¢
= _ W7 .
T where yi = Q i , .
J Rearranging the equations, we can split (6.9) into the following
* £
two parts . B ¢
) | .. L
- r T (T
( Y12 Ry - x 119 v é
3 - J
T T !
. T i (2) (2)
N .
1¥22 Ra 9219 ‘2£ 9229 ‘
- ¢ { A L |
. : ‘ . . 6.10
‘ - - - ‘- .‘ ( ’. )
. T
. 7 (n)T (n)T (n)
‘ Lynz { \\ ~ Ry fn 2 omZQZ .- anz
. - — » — ‘ . . -
' \’ 2 and \ ‘
. . 0 —_ -
—~ C (1) l
| . Y11 1 ll‘Ql ) ) 1 R4
] * i *
()T ()T ‘
. Y21 o0 % °2{Ql .
Q L - = . . . " (6-&1)
: g(mT o(m 7T s om™ -
gnl ] | nl i n2*1 - =1l
. I ) .
¥ »
LI 2 J 8
‘ ‘l‘ i \ ' 4 /7
C e !
» . .




. A2

o et e IR T TUE S SRR | o s v

v
-~
\ o
1] ¢ )
where
Yi1
7, = , i=1,2,...,n
I REY
Thus we can egtimate x by solving (6.10) for x once Vv
o A
is known. The problem (6.7 )now reduces to
7
i Mo , : .
) min v v with respect to v subject to (6.11) (6.1%)

.

The problem given in (6.12) is nothing but finding the mini-

mum 2-norm solutién of the underdetermined system (6. 1l)which can
“

‘

be written as

y = Gv . (6.13)

i

&

!
§ (6.7) depends largely on

p
The efficiency of the method of solving

how efficiently we can solve (6.13). One'wéy to solve (6.13),1is -
: L]

-
by reducing G to a triangfilar form by applying orthogonal

tran?formation P from the right. For large n and m , G ;
‘ \ ' ’
can be very large and therefore, it is exXpensive to construct

J |

P and solve (6.13)," . = >

*

., According to Peters and Wilkinson [ 19] thé minimum 2-norm

solufgion of (6.13) is gively by
. o r \ ’
: T N a
Vo, vesseT(eeT) v . ‘ . (6.18)
So we '‘could first form éGT which ig a symmetric positive definite
° \

matrix and then solve

" CLL./79

3
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T -
GG 2z =Y (6.15)

for =z . The vector v can then be evaluated from

ST
V=62 (6.16)
]

The system (6.15) can best be solved by using Cholesky de-
t

v

»

composition of GG® . Let - .
T T . ) H
GG = LL : L lower triangular ,
be the Cholesky factorization. Then"solving

L .

Ly = i l'

. ’ .
for y , we obtain =z ik\(ﬁ.IS) by solving
- \ ’

[ LTZ=Y

4 '

’ .
There may be a faster but less obvious way, which we hade
] T

. A ;
not found, to solve (é7‘3)by reducing G to a’ lower triangular
4

matrix of the form [L,0] by applying orthogonal transformations

P €rom the right without forming L or P explicitly. (

. Once v is known, we can estimate x by\§olving {6.10)
¢ 3

for x . >

¥ » »

6.3 Operation count.

L5

For simplicity, we willggssume that all the matrices'ci.

i=1,2,...,n , are of the same dimension mxk and pave full ‘
«

column rank. In this case, we will use Householder trans;orma-

-

tion matrices for the reduction of the system.

[y

’.

A
T

[
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The total number of operations required to reduce Ci
0 ) ,‘ ~ d
to and form Q(l) at the same time is
RT
i
4
2m2k - % k3 . \ (6.17)
‘ | ‘\ o -

\

Hence to reduce all the Ci to lower triangular form and to
(i) )

form the 0 require l ’

anm?k - & nk ‘ (6.18)

% ) 1 -

operations.

Wl

- To form ‘GGT given in (6.15) takes about
, .
% nzm(m -0l ‘ (6.19)
, .

.
[s i .
operations and the Cholesky decomposition of GGT takes about

& 1

1 n3(m ~ k)3 (6:20)
\ ] 6 .
(%

ogerations. "
LN

Once v is known, the total number of operations required

to evaluate x from (6.10)4is of thé‘order of
* ’ A

0 4

: A R y ‘ (6.21)

. gﬂ Hence the total nbmber of operations required to obtain the
¥

solution of the problem given in (6.7) is about

» v ¢
0 +
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: ’ ;
( 2 3,1 2

2nm k- 2n m(m—k)2 + %n:;(m—k)3 + lnzmk: (6.22)

2

We have seen in Section 2.4.2 that Zellner's method [23]

of solving the problem (6.7) takes about 5 7
L s ’ ) |
% n2mk2 + % n3k3 (6.23)

operations.

Thps we see that our method is much slower than that

-

v

of Zellner [23] for’'m >> k. When m = 2k, Zellner's method

is ‘about twice faster than that of ours. But our method is
¥ Ve -

numerically stable whereas Zellner's is not. Our method will

. bé far more competitive’if we could solve (6.13) efficiently.
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[18] for solving a general linear modedl discussed in Chapter 3.
: , "

CHAPTER: 7

-

PARAMETEii ESTIMATION IN A DYNAMICAL SYSTEM.

7.1 Introduction.

We have seen in Section 2.4.3 that in estimatingP™the
]
parameters of a dynamical system one often needs to obtain

the least squares estimate of a linear model of the form

f t
i T 2
y =Cx + Bv; E(v) =0 , E(vv') =01 (7.1)
. .,
where - - B I ~ b r . f
Yy Cy | By V1
ty = Yo lo ¢ c = C2 - B e = 82 " vV = v, (7.2ﬂ
T z z . . .
TSRl IR - A - aEmeE 2k .
R ‘ . . .
. . |
. Vg
Y, Ce By dj ;
L - N A ‘ e L - L

{
Yy is a known m. dimensional vector, Ci is a known matrix of

dimension man and Bijs a full column rank matrixfof rank ki

which is known. , ~—r
The problem given in (7.1) can be reformulated as

.

[4 .
minimize V V¥ subject to y = Cx + Bv ", (7.3)
V,x A P N

# . ,
We will solve (7.3) by using the fast step by step algorithm
! \

1

The advantaq§~of using this alqorfthm lies in the fact that it re- \

duces the system,: step by step, aﬁfecting only a limjited portion

of the sfbxem at a time [18] .. We will also give an operation count
; X bl .

of the algorithm for a partic#l@f cese. v

’

° , -
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7.2 Method of solution?

For simplicitywe will assume that every Bi in the
matrix B is an m,xm, nonsingular¥matrix. The algorithm
that will be presented onﬂthe Section 7.3 will also work even.

*if B 1is non square.

To begin with, let us first write

Lu

4

[yl,cl,Bl] . . (7.4)

fil

v l¥,,C s8]

A
By apply%ng orthogonal rotations from left and right, it is

possible to transform the initial data [§1,El,§1]bto the fol=

B

lowing form: \
-
(1) e
. 1 o 0 Ll 0 m,-n 1
QT [§ & B ] ‘1 = (7.5)
1 1’ 1’ 717 ., ' -
»
Vvl gt (1) (1) (1) (1)
1 n m B RN S N | GRS
1 ' NI I R S N S SRy P
1 n ml—l n+l
v
where Q1 and Pl are products of Givens orthogonal plane
. (1) (1y= . :
rotations and L1 and Bl are lower triangular matrices.

(1) (1
1 % ]

are zero. . )

Also all the elemepts above the main diagohal of [y

The reduction in (7.5) can be carried out in two stages.
- . . -

L
In the first stage n(n+l)/2 rotations are applied from the

‘ '

left to [;1,511 to zero out its upper diagonal part{ We main-

tain the lower triangular form of B throughout the reduction

1

é <>
by applying a rotation from the right ta B whenever riecessary. -

l;

& -
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3

In thé second stage, we eliminate one diagonal of [;l,él]at
each step keeping the‘form of ﬁl the same throughout, and

v

this step is repeated until we arrive at the f?rm given in

(7.5). Therefore, the second stage has (ml—n—l) steps and
[§]
each step consists of (n+l) piirs of rotation, a pair ﬁeing
LY

o

one from the left ta eliminate an element of the\[§l,61] ma-

trix, followed by one from the right to regain the triangular

form of the 51 matrix.

Let h
[, (1) [ (D [, o (1)
1 11 11 V12
(1) (1)
T = - = » say, V.o, - ¢ vV = v
Pl = Y R 1T -
. (1) , (1) b ’
. ’ v ) ’1 le -\
M \f.t * . Vt
| - . .
[4

It is seen from the constraints in (7.3) and the transformations

in (7.5) that , ﬂ o !
T : : (1) _ (1) '
. Ll Vi1 0
‘'which imﬁlies that ¢
[y ]
‘ N 5
‘ viaz =0 ,
sincé Lil) is non~singular. Therefore, the problem’ (7.3) redu
- ' .
minimize v(l) v(l) subject to y(l) = C(l)x+B(1)v(¥)
V(llxo o )
! ” v o-./85
’ <
"~
) ]

. (7.6)

(7.7)

L3
(7.8)

ceé,t?l

(7.9) |
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where ’
- “ a
(1) (1) “
+yl £ 1 ) /
1Y
(1) 3 . (1), 1
y = Y2 4 C = C2 1] B( )=
Ye Ce
- _ R §
Let us, assume that ‘ .
£ . —
y(l) Cil) Bil)
l i
- - - ‘o
[yz. C,» le = .
L g P
’ y c 0 ;
2 2
1 nm, +n +1 A .
L S \‘w—' Nt
1 n \ n+l

The matrix [;2,52] is already in lower trapezoidal form and B

'is also lower triangular.

o
1

g{L)

Bt
Va \
n + 1 ‘
¢ . (7.10)
m2 N

2

. By applying Givens rotations to the data [y2,C2,83/] from

the left and rlght, .as before, wg obta™ the following transfor-

matlon ' //’ ™~
i i
wl - Fb 0 (2)
. 1
To- = -
Q,ly,C,sB,] 1 =
(2) (2) . (2)
] P2l Y2 2 Pa
. ‘ s S~ N
N : i ~n m
Hwhere 'Qz and P2
n{z), B(z) are loweyx trigangular and [y

2

N
elements above its diagonal. .

(2)

2

-

Nt
n+l

are products of Givens plane rotations,

'C(2)]

{4

(7.11)

has all zero
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The transformation in (7.11l) can be carried out by eli-
minating one diagonal of [;2‘,52] at each stei: by applying (n+l})
rotationsfrom its left while keeping the form of -B the same
throughout.' m, s\uchisteps will produce the form given in (7.11).
Let N ' »
o] [v(2 ) [, (2) @
2 - 11 11 12 .
T {1 2 2)
sz( )‘._. v, = , say v; ) o , e$2)_ v, (\7.12‘)|
. (2) (2) .
' -1 v v |
. R | N | }2 _ . i
| ” . ! '/’ .
v v
Vet .. . |t
Then from the constraints in (7.9) and the transformation given
in (7.11) we find, as before, " A
(2) (2)
L1 Vll 0 - (7.13)
which implies N ° !
NI - |
\ vll o . (7.14’)'
Hence the system given in (7.8) is further reduced to the form
- "‘ 1 ,
T U
minimize V(z) v(z) subject to y(z) = C(,z)x-i-B(z)v(z’ \ oF (7.15)
) N ‘ ’
'v lx r Y .
) Q”“ N P .
where - ' - % o
~ (2) c(2) 4 g2 ‘
» 2 . 2 B '
(2) T 2 : : ‘
Y & Y3 o € €3 , and B(z) =
. 6 -
» y fo
Tt “1 e t p \
- J «

e

N

-
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. We next work with the system . ¢
(2)" (2)  _(2) )
o ) ?2 ch B," 0 } n+1 ,
ly;.Cj /B, = . (7.16)
»
; ‘ ¥y C, 0 B, }m3
L S (W | O
1 n n+l m, . ™
" 3

v »
Continuing the process, at the "end,, the problem given-in (7.3)
k4 .-[

reduces to the(following form:

A Lz
T "J—“‘\ ¢
minimize v‘F) 'Jt) éuﬁject to 3ét)= it)x+ait)5;t) (7.17)
(t) )
v ) X
. P ‘
where [yét),cét)] nd Bét) are both 1ow%; triangular matrices

-

of dimension (n+l) by (n+l). Thus the original problem is re-

- N . . .
duced«to a small generalized least squares problem whichscan be
|
solved very easily. ' o

' ‘ . v 4 PR - -
We find that the method is truly sequential in terms of

1 -
! [

, \ ‘ ,
Blocks and we do not need' to store any of the orthogonal ma-

trices; Moreover, at any 'stage, one can ébtimate' xy by
e (’
solving the generalized least squares Prbblem
: - ;r [ J'v v m . ‘; ( ’(7 18)
s s (1 i t . i i i i) (7.
mxnlmxzerv( ) ‘V( ),subject to.yi )= C;‘)xi+B£ )v )
(i) : ts ’
v % T . ) ; ' oA
& - .

©
- »

) % \ (] ’
and thus a check can be provided on whether x is .settling
\ ¢ [ .
- - : ) ‘ < ' o,
down or not. . .
.

Ny

i »

. 4 1 -
7.3 Algorvlithm of the method. . - o o\ }\*.
\ | ‘

‘
rd

. , :

)

[}

s - K . -
,\ "
The ahgo:ithm of- the method just desc;ibed.is as follows:/ -

&
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/ 1
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- . (1
, ‘e ~Jo 4 o L, ) 0 “«
y i) ‘reduce [yl,Clyg%] to, ' . . B
. ‘ . (l)ic(l) L(1) B(l) - :
Y, 1 21 1 , .
R . !
' , ;
ii1) for i := 2,3,...,t do / ‘
- - - t
- (i-1) C{l—l) Fl—l) 0.
_ _ ' i-1 i-1 i-1 P
f .
a) form [yi'ci'Bi] \ ’ ’ ‘
Yy Ci , 0 Bi /
- ‘N J
I o [0 ) 0 L](_l) 0
b) reduce [yi,CiJBi]to . . .' . .
(i) C(l) L(1) BXl
. Yi i 21 i '
¢ 0 o 0 Ll , O 0
iii) reduce [y(t),c(t),B(t)]to n 0 gT U 0,
P t 't t . o ; ‘
1z R L21 r L2
T . .
r R is a ,full row rank matrix.
n 0 v u
iv) solve ) A = - for v and ‘;\.
~ Y E
}' z RT X r i
. .
]
. B ¢
7.4 Operation count.
We will assume for simplicity that each Ci,i=l,...,t in
. A %

the matrix € is of the dimension mxn and eaéh Bi' is lower

-~ »

%riangular. We will consider 4 multiplication Givens rotations |

ohly. N

We find from the algorithm given in Section 7.3 that ?teps

3
(i) and (ii) take most of the time#for computations.
'] 4

Step (i) takes about A




operations.

FPor each

Therefore, the

4

“
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a

2m2n + 4m n? - % n3 — (7.19)

L} 1

¥
-

i 4in step (ii) the operation count is about

2m2n + 6mn2 . (7.20)

v
| - ) .
total operations for step (ii) is given by

<

2(t-1)mn + 6(t-1)mn° = (7.21)

¥

{

Since the other steps of the algorithm need fewer operations

in.comparison to (7.19) and (7.21), we can say that the tdétal

<

number of‘fﬁerations necessary to implement the algorithm is

of the order .of

2.7 (7.22)

2tm2n + 6tmn .

o,

‘5
2 ( -
From Section 2.4.3.2 we see that the number of operations re-

guired to solve the same problem using the algorithm given by

o

Paige [16), is of the order of ,

% tmzn + tmn2 . (7.23)

’
t

i From (7.22) and (7.23) we find that the method presented
in this Chapter is slower than the one described in Section
. N . .
2.4.3. But the present algorithm is very general and it does

not fail when the variandée-covariance matrix of the poise term

14
is esingular, e.g. whfen {the number of observations is less than
~
3

the number of elements in fhe state vector. The algorithm pre-

.
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sented by Paige [16], discussed in the Section'2.4.3,‘ is'not

numerically stable hen ‘the variance-covariance matrix is ill .
e 2 - -
co#iitioned [12] . “The algorithm of Grove et al [9] is also.

‘."‘ M

very p&br numerically [16]. The algorithm presented here re-
guires very little storage. The method is basically sequential

and affects only a limited part of the system at a time. There-

[N

fore, it is capable of solving a very.large system.

1

4
vv‘kcan make the method more competitive b¥ using stabilized
\ Q
nonunitary transformations in placé of Givens plane rotagions

from the szt of the system. This technigque is much faster

A

[18). If we use stabilized nonunitary transformations from the .
i
left and fast 2 multiplication Givens rotations from the right

then the total number of operations needed to ,implement the

algorithm is of the order of

2 . 2 ,
m“nt + 2mn“t . (7.24)
.
/
A}
-
° - - * .
u €
- e /9 1
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"\ CHAPTER 8 .

COMMENTS AND CONCLUSIONS.. -

-
1

In this thesis we have considered various types of ge-

N

neralized linear least sqhares problems. Our main aim has
\

been to develop reliable numeérically stable algorithms which

A
- ¥

are computationally efficient in solving different %ypes of

. )

generalized least squares problems. N )
In Chapter 3 we have presented a fast numerically stable
\ ) ,

east squares problem which
-t

Paige [18]. This algorithm

algorithm to solve a generalized

is based on the work carried out b
I

-, \

maethod reduces the size of the‘systeﬁ\;s the reduction p%?gresses

The speed of the computation can be made faster by considering

stabilized nonunitary transformations firom the left of the system

°

While solving a generalized least sqyares problem, it is

often necessary -to obtain the minimum 2-nqrm solution of a struc=
- , ¢
tured underdetermined sysfem. In Chapter 4 we have presented an

efficient and apparently numerically stable algorithm to solve
- ] " 3 _:{‘" o .
Qhe_ilgorithm is ﬁarticuLa&ly efficient if only a

Ny

such problems.

jon is required. The algorithm is inexpensive
L]

to execute. Thps, it is capable of sol-

part of the sol
and takes littfe st
ving a large structured underdetermined system. The entire mini-
mum 2-norm solution man also be found if required, but a largé

part of the original matrix must be retained in order to do that.

..

K .. /92
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In Chapter 5 we have solved a generalized least sqguares

probleh which ariigs out of a controlled experiment. We have o

. -

used the algorithm described in Chapter 4 to obtain the solution -

S

of the problem efficiently. The algorithm is véry‘fast when the

. variance-covariance matrices of the noise term are the same for

i
’

* different experimeﬁts. : .
. ! . \

. B
Chapter 6 describes a numerically stable method to estimate the '

-
i

?ara@eters'of a set.of different ordinary linear models whose
. s - !
noise terms are correlated. Though the algotithm is general, W

it requires large storage. There may exist a better but less |

i
s a b i
v ‘

In Chapter 7 we have presented an algorithm, based on the T

obvious approach that we have n@t found.

\Sork of Paige [18)which will solve:. a large*generalized least
SQuares problem arising out of the problem of parameter esti-
mation in a dynamlcal\\?stem. The method utlllzes the technlque_

described in Chapter 3. The method i$ basically sequent1al
. . - )

and affects only a limited portion of the system at a time.
The method is‘vefy'fast and needs very little storage to operate. )

. C, '
Therefore, the algorithm is capable of solving large systems very

- efficiently.

[

Thg algorithms developed in Chapters 5,6 and 7 can further
L]
be made computationally faster by using stabilized nonunitary
transfermations and fast square root free Givens rotations, [18]. !

We have .compared our algorithms with the existing methods on thd
basis of 4 multiplicatfon Givens rotations which are used to re- !

a
- -

duce a system. 7
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APPENDIX A

PROCEDURE GLSQUARES

' * ..

v

GLSQdAREs solves least squares

Procedure a generalized

problem of the form !

, T .
min v v subject to y = Cx + By
v,x ‘
where |y is”a/éiven m vector, C is an mxn matrix which
" /

& ’ v
/ 4 + M »
- 'is"known and ‘B is a known full column rank lower trapezoidal

BBT

/
matri¥ of“éx%énsion mxk where V = . The precedee;is
based on/{he algorithm presented in Chapter 3.

Thﬁ/pfocedure has been written in ALGOLW and has been testea
an, an iBM/B?O computer. The results have been checked against
the IMSL subrout}n; LLSQAR which provides the solution of an

,

overdetermineé system 6f linear eguations. LLSQAR solves a —

,, system of the form
o)
w °C r y .
‘ T o x 0

c .

where x is the desired solution Tl2] , r is the r€§idual and

W o= BBT. Our results are based on double precision computations.
/ We have considered tHe following examples:
o I. C with full column rank, B ill conditioned,

II. C:' with less thgn fudl coldmnorank, (B kwelBl conditbonéd;(
III. ;C with less than full columnlrank,;B non square with full

.

column rank, and

IV. a wrong model %?.yhich the brocedure responded with an

appropriate message.
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/ L
/ .
/ Example I
/ .
/
‘ -
n = @, k

3 T L

The estimate, x N
\

lf 2
4 1
L 5 6
; -
J 3 4
/
-
/
"GLSQUARES

4

4

0.314099920054512

-0.334417273202255

ﬂy—Cx;Bvl =

LLSQAR

0.314099920054513

-0.334417273202264

© 0.441690628763596 0.441690628763602
Ivl = 0.102785269022065
-16
4.04365493431965 x 10

4

o -
1
~
2
3
4
.
|
f e :
AR T

. deha

o]




Example II STX

¢

m= 8, n= 5,k = 87 C° of less than full column rank', B well

conditioned.

'h pe — = q
22 10 2 3 7 , -1
. 14 7 10 0 8 ) ; 2
-1 13 . -1 -11 3 , ) 1
-3 -2 .13 -2 4 4 ,
.C = : , B=I, an identity matrix, y=
9 8 1 -2 4 ‘ 0 *
9 1 -7 5 -1 “1 -3
2 -6 6 5 1 1 |
A 5 -0 -2 2 . 0
h— , ,.‘J a b —

. The estimate X

GLSQUARES - LLSQAR .
¢ -0.0833333333338333 -0.0833333333333336 °
’ ~17 ' -16
-1.38777878078145 “x 10 ., 0.264086629167334 x 10
r -
0.25 ) . 0.250000000000001
. ¢
-0.0833333333333332 7 -0.0833333333333336
0.0833333333333333 0.0833333333333336
-17 ,
Ivl = 8.32667268468867 x 10
L) , 9 3
“ ) 15 U
ly-Cx-Bvl = 2.91968996652571 x 10 ) .
» B £
- [ A| '
i4
! ../ 9 ’

q ! T A e, Lt 4 *
B ] A - \ . » " - » R ettt et oL S R )

. M ! I .
)
N .
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\
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¢

”

. - - Y
Y J
m =6, n= 5, k = 3, of less thén full column rank,
square with full column rank. ~ .
\ ‘ i
W t g Vo —
-74 80 18 -11 -4 1
-] 14 -69 21 ', 28 0 2 3
. 66 _ ~72 . ~5 7 1 4 5 6
\C -= \ ,B = (-]
-11% 66  -30- -23 3 7 9 3
3 8 -7 -4 1 1 4 5
4 -12 4 4 0 5 3 6
[+ \ !
.1 3 4 o
The estimate =x ;
P /
GLSQUARES LLSQAR

- . Em ma A LA A TR W S ORRAN S L &

v

- 96 -

Exafmple ILI

-8.45393615810305

~7.97368463534777

5o ‘
~3.56383765775447

A
-3.56383765775711~

-14.92991315025910

-8.45393615810469

77.97368463534988

-14.9299131502655

14.44875439787700

1vl

]

ly-Cx-Bvl =

»,

0.0189702679770842

3.67163024571173 x 10

14-. 4487543978946

13 1

Fl

B

™

o

non-

-61

-56

69 °

1o

-12

>
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Examgle.IV

-
.

.

m=6,n=2,k =86, of full column rank, B, ‘singuldr. .
-’
e 4-—1 B—r —l % -1.
- 4 1, . T2 3 o 2
' 2
5 2 4 5 6 . 3
C = I} B J Y =
¢ 2 7 ?/ 0 0 ] 4
6 10 . o 0 0.0 0 -5
1 3 ’ 0 0 0 0 6
_i p— L—.O 0 p— S —
The residudl is 4.59787397898538
Y It is eugﬁxto verify that y does not lie in the space
spanned by the columns.of [C,B] . . \
\ q' . !
T
’ 7
£} ) .
R’ , |
[y
.
Fid
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eI WP bt i o ool R Wt SRR A i fuliilih




) . q.. P . ‘ J §

Bor A R AT BRI T 6 e A v b s st ar

{
1

( . BEGIN
INTEGER MsNyK3 T \
FROCEDURE GLSRUARES (INTEGER .VALUE MyNsK) 3 _
REGIN . \ ‘
COMMENT ) ‘ . ‘
SOLVING A GENERALIZED LEAST "SOUARES FROBLEM.THE FROBLEM 18
Lo ]
MIN, V U SUBJECT TO Y=CX+RV \
UsX
3 WHERE C IS M BY N MATRIX WHICH MAY NOT RE OF FULL COLUMN RANN»
B IS M X K MATRIX AND Y IS A KNOWN M-VECTOR»X IS AN UNKNOWN N-
VECTOR AND V IS A K-VECTOR.IN FRACTICE B CAN BE N?N—SQUARE.
7 THE DESCRIFTIONS OF THE OTHER UARIARLES ARE GIVEN RELOW?
. D VI ! AN ARKAY CONTAINING THE VECTOR V. ‘
D F & THE ORTHOGONAL MATRIX MULTIFLIED TQ THE MATRIX
, * € FROM THE RIGHT,
TEMFC . ¢ A COFY OF THE INFUT MATKIX C.ORIGINAL C IS USED TO :
. . ~ COMFUTE THE RESIDUE OF THE SYSTEM. {
TEMFE ' ¢ A COFY OF THE INFUT MATRIX E. . !
: ‘ TEMFY “$ A COFY OF THE INFUT ARRAY Y.
TOL. . ! AN ELEMENT OF A MATRIX IS NONZER® IF ITS
: : MAGNITURE 1S GREATER THAN /TOL!. .
STARTCOLUMNS INDICATES THAT COLUMN 1 TO STARTCOLUMN-1 OF
. THE "MATRIX E DO RNOT HAVE ANY EFFECT ON THE SOLUTION q
X07
= LDONG REAL ARRAY C(LIiMs13IND5 o ) ‘ ﬂ
L. LONG REAL ARRAY E(13iMr13iK)5 .
LONG REAL ARRAY Y(1:tM)$ ) v .
LONG KEAL ARKAY X(13:N)3 :
LONG KEAL ARRAY V(131K)$ . )
LONG REAL ARRAY §(133K,133K)3 ) ‘
LONG REAL ARRAY TEMFC(13$iMr1$IND3
. LONG REAL ARRAY TEMFB(1$iMrleiN) i

LONG REAL ARRAY TEMFY(1%iM)# -~ . ;
INTEGER ™~ ROWFLUSONEy COUNTyREDUCTION,ROWy CULvSTARTCULUHNr

LONG REAL CCy5SyTEMFyMEWyTOL 5

LOGICAL CONTINUE:

} —

COMMENT
( o THE FROCEDURE IS TOR AFFLYING GIVENS FLANE ROTATIONS.LEFT AN
i ) RIGHT ROTATIONS ARE INDICATED EBY THE PARAMETER ‘SWITCH’S§

3

1Y)




.
Sl N PO S e BH LN age R Ras SEROBAT VI Tx WSS ——

. ’ - 99 - :
s . : ~ | .
PRUGEIDI) GLYE NSO ONG RIAL VALUE 21225 INTEGER UALUL SWITCH) ‘

‘? L OMMLN ¢ / .

' (7 SWITCH=0 THEN THE GIVENS ROTATION 18 THE LEFT ONE
\ ANU Tt SWITCH=1 THEN THE ROTATION IS AFFLIED FROM RIGHT.
IN THE FIRST CASE Z1 15 ELIMINATED WHEREAS IN THE SECOND
CASE 72 18 FLIMINATEDS

. REGIN , .
LONG RIZAL GAMAS T ;
GAMAS ZIXZ14+22%223 . ) %
_c GAMAYT LONGSQIRT(GAMA) . . ) ) .o |
FEOSWITLH-0 THEN .
IEGLN ) ©,
CCt=22/GAMN} o
- 88I=71/GAMA ‘ )
CEND y
ELSE _
HEGLN , . ~
. CCi=Z1/GAMA; ‘
- 8G1=Z2/GANMA c ‘ - . !
_ ENfi , . :
END' & UE NS S ‘ ' , ’

=COMMIENT

VHE ORTHOGONAL FLANE ROTATION-1S AFFLIED FROM THE LEFT TO C.
THF VAR1ABLES ‘CC’ & ‘S8’ ARE EVALUATED IN THE FROCENURE
. GIVENS \ : . , .

. PROCEDURE UFDATEC (LNTEGER VALUE ROWLyROW2»COL3LONG REAL
: ‘ ARRAY CORaX))i
BEGIN s . . *
LONG REAL TEMFF ]

FOIK It=1 UNTIL COL vo - ,

BEGIN .

JEMF $=—COXC (ROWL y [)+SSXC (KOW2 5 1) § ,
. C(ROW2sI)$=8SKC(ROWL»I)+CCKE (ROWR Y T) 5 - N :
. COROWLyI) t =STEMP
END

| NIt UFLATECS ‘ ﬁﬁf /

CUMMENT - o

UPDATING Y RY MULTIFLYING THE ORTHO®OMAL MATRIX FROM ) ‘
LEFT TO THE VECTOKR Y35 ’ °
ot

o FROCENURE UI'DATLY ( INTEGER VALUF ROW! » ROW23LONG REAL ARRAY Y(X))j

-
~ 4

°

BEGIN . . \

( | ONG REAL TEMF3 . ,
TEME § =~COXY CROWT ) FEHKY (ROWD) §

. Y(ROWZ) ¢ -SE£Y (ROWL )Y +CCXY (ROW2) 5

’ V4

+ iy
' “t I [ LI W e R R AR RN AR " PR T O NSRRI 5:500%
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*

Y(ROW1) ¢ =TENMF . .
FNLC UPDATEY .

COMMENT \ ,

THE ORTHOGONAL ROTATION MATRIX IS MULTIFLIED TO THE-MATRIX E.
FROM THE LEFTy# )

- <
COCETURE LEFTUFHQTEB(INTEGER VALUE ROW1,ROWD2yRANKEBySTARTCOILUMNS
. LONG REAL ARRAY H(*y$))r

¢ N M
REAL TEMF3
STARTCOLUMN = RANKE THEN
GEGIN \ - ‘
FOK I$=STARTCOLUMN UNTLL (TI ROWL RANKE THEN ROW2 ELSE RANKE) ;
' o ;
EEGIN !
TEMF ¢- ~COXR(ROWLy T) +SSKE(ROWRy I) 5 ’ ;
HCROW2y T $=8SKR(ROW! ¢ T) FCOXE(ROWR » 1) 5 i
~ K(ROWLy 1) $=TEMF . ;
. ENIt ‘ . *, N ‘!
CEND . ‘ :
CNU LLF TURTIATLRS . < '
~

COMMENT

THE ORTHOGONAL KROTATIONS ARF APPLIED FROM RIGHT TO THE -

. MATRTX H 10 MAINTAIN THE FOKM OF B WHICH IS LOWER TRAFEZOTDAL
WHEN BROWS TS NOT EQUAL TO RANKR OTHERWIGE TT IS LOWER
TRIANGULARS "

IMROCEDURF RLGHTUFTATERCINTEGER VALUE Cn|1,LnL2yBR0wq, N
P LONG KEAL ARRAY B(*y*) )
BEGIN
LUNG REAL TEMFG , .
INTEGER ROW1% - = ' . o
KOWL$—CUL L, J , ] :
FOR [f=c0WL UNTIL BKOWS 10 . .
BFGIN
Tt - TEMFS=COKE 6Ty COLT)HSSRRILyCOL2Y$ . C
BT COLDY 2= 88XK (1, 00LL) COKRCIYCOLDYS R
BCLyCOLLYE=TEM , \ )
o E..NI" ‘l \’ «
ENG RIGHTURDATERS ¥ -
COMMENT =

KESTORTING THE FORM OF THE MATRIX R WHICH IS GENERALLY LOWER
TRAMEZOIDAL (COLLyCOL2)FLEMENT OF B IS MALE ZERO AND THE .
( WETGHT [S GIVEN TO (COLI»COLLELEMENT OF Ry

T e gy




R

I

W .

FROCEDURE RESTORER(INTEGER VALUE COL1yCOL2?»RROWSyKCOLSS
LONG REAL ARRAY B(Xy%)5LONG KEAL ARRAY F(XyX))j§
. e

BLGIN / .
ILONG REAL. TEMF; °
[F COL2 <= RCOLS THEN . ] . .
TF AB‘(B(COLlyCOL”)) " T0L THEN ) ’
EEGIN . C .
GIvFNS(H(FOLivCOL1);B(COL1;COL“)71); S
RIGHTUFDATER(COL1» COLRg RROWS s ) 5 - -
FOR T3=1 UNTTL RCOLS N0 , ~
HEGIN ) , ’ -
TEMF $=COC¥F (COL1T s T)1SSKF (COL2y )
FCCOLD s I) $=6SXFP(COLLy T)-COXF(COL2 1) 5
MCCOL15I) ¢ =TEMF
END

"ENTI « o ' . \ \ .
ENDI RESTOREES - !

COMMENT .

- T PRDCEDURE WILL LEAVE EBLANRLINE WHILE FRINTING THE
" NUMBER OF LINES I® INDICATEDR RY L . ,
FROPEHURF'RLANKLINF(INTEGER UALH@rl)r ) .
BREGIN s -

" FOR 1i=1 UNTIL L IR WRITE(* &
ENII BLANKL TNE§ 3

———

P

COMMINT

READING THL TNFUT DATA AND FRINTING THEM OQUT.IF THE SYSTEM
IS UNDERDETERMINED 1T STOFS AFTER FRINTING THERAFFROFRIATE
MESSAGE

v

TF M -~ N THEN - .

REGIN
WRITF ("XXXkTHE SYSYTEM 1S UNDERDETERMINELXKX®)5 .
N GD TO STOF . i v

ENID'S . : ~ ) -
FOR T -L UNTIL M DO :

FOR 1 UNTIL-N DO REAUDN(C(I!J)); -

FOR® x:~1 UNTIL R=1 DO
FOR Ji=I41 UNTIL N DO B(I,J)3=03"

FOR Ii=1 UNTLL M DO

FOR Ji=L UNTIL (IF T ™ K THEN K ELSE I) DB READON(EC(I,J))
FOR I$=)] UNTIL M DO READON(Y(I))§ | 3
WRITE("THE NUMEER OF OBSERVATION "yM)i |

WRITE(® ") ,

WRITE(* THE NUMEER OF FARAMETERS TO HE ESTIMATED "sN)j :
WRITEC* ") :
WRITE(*THE DTMENSION OF THE MATRIX B IS *rMs" X "sK}§
BLANKLINE(4)}

WRITE("THE MATRIX C*)# » oo L

. ) . N .:/102




wepn

~ [ .
b ‘
. .
b L - ,\ﬂiu‘-umwmeﬁ-—w"m T a4 6 e i g Pt AT et e TRy A bn o s e e awn e e

RBLANKLTINE(2) ¥

FOR I$=31 UNTIL M 10 :

KRCGIN -
-~ BLANKLINE(2)3 5 .
"FOR Ji=1 UNTIL N DDWNRITEON(SHORT(C(IvJ)))
ENTis- . * )
"BLANKLINE(2)}
WRITE("THE VECTOR Y")5

+

\
BLANRLINE (2) ) Y 4 Co. ,
FOR [$=1 UNTIL M DO WRITECY(I)); 7
RLANKLINE(5) } ”
WRLPEC*THE MATRTX E")5 ,

KLANKLINE(D2)§
CFOR [:=1"UNTIL M DO

REGIN -
¢ o, BLANKLINE(1)3$

FOR J$=1 UNTIL K B0 WRITEON(SHORT(E(I»J)))
ENDy - Y

"COMMENT 5
A s

PINITIALIZING P TO AN ITENTITY MATRIX; N «

FOR I$=] UNTIL K DO
BEGTN .
FOR Ji=1 UNTIL N DO FCIs)i=F(J31)31-0}
F(IsT)i=1
END'

COMMENT.

NEEFTNG A CORY OF THE LNFUT DATAG |

FOR It=1 UNTIL M DO ’

EEGIN :

FOIK Ji=1 UNTIL N DO TEMPCC(IyJ):=C(Isd)s
FOR Ji=1 UNTIL K DO TEMPE(IsJ)i=B(IsJ)5
TEMFY (I3 t=Y(I)

FND's , .,

COMMENT -~ . % B
REDUCING (Y»C) TO LOWER TRAFEZOIDAL FORM ANIE AT THE SAME
TIME KEEFING THE FORM OF B THE SaME THROUGHOUTS

TOL$=1’~14% +
STARTGOLUMN: =135 : . .
FOR ‘COL ¢=N STEF -1 UNTIL (IF M ~ N THEN 1 ELSE 2) DO
oFOR KOW:=1 UNTIL C(IF M : N THCN COL ELSE COL-1) IO
REGIN «
ROWFLUSONE $ =ROW+13 ° : ;
[F AKRS(C(ROWCOL)) * TOL THEN
REGIN )
GIVENS (C(ROWyCOL) yC(ROWFLUSONE s COL) »0) §
UFTIATEY (ROW s ROWFLUSONE »Y) $
UFNMATEC (ROWs ROWFLUSONESCOL ¥ CY5 N
LEFTUFDATEW (ROWy ROWFLUSONE » Ky STARTCOL UMN s E) 5

RESTORER (ROWs ROWFLUSONEsMsNr Ry F)

¢ r
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FN[‘

FND§ . >
[

COMMIONT

THE MATRIX (Y»C) WILL NOW BE REDUCED TO THE FORMCOyE»L)WHERE
(EyL) IS A LDWERS TRIANGULAR MATRIX WE WILL ALSO KEEF THE FORM OF
E THE SAME THROUGHOUT}
4
IF M N+l THEN
REG1IN .
FOR NOf=1 UNTIL M-N-1 DO
REGIN
FOR COL:!=N STEF -1 UNTIL L DO
REGTN & .
ROW: =COL+NO%
ROWFLUSONE ¢ =RKOW +1 5 R
IF ABS(C(ROW,COL)) * JOL THEN
REG1N ‘
GIVENS (C(ROWs COL) » C(ROWFLUSONESCOL) »0) 5 =~
UFDATEY (ROW» ROWFLUSONE»Y) 5
UFTIATEC (ROW» ROWFILUSONE »COL»C)
LEFTUFDATER (ROW s ROWFLUSONE » Ky STARTCOLUMNY R 3
RIESTORER (ROW r ROWFLUSONE s My Ny By F) .
ENI . .
ENDy
TF AES(Y(ND)) . TOL THEN
REGIN
ROWFLUSONE $ =ND+1 3
GIVENS(Y(ND) yY(NO+1) »0) 5
UPTATEY (ND y ROWFLUSONE »y Y) 5
LEFTUPDATER (NO » ROWFLUSONE s h s STARTCOL UMN» F) §
RESTORCR(NO» ROWFLUSONE s My Ky By F) P -
ENDs .
STARTCOLUMN S =STARTCOLUMN+ ) ¢ ~
END . ' «
ENLis ‘ .

COMMENT ' -

(YyC) HAS BEEN REDUCED TO (OsEsL) FORM. ‘E’ 18 A VECTOR AND
L. I8 A LOWER TRIANGULAR MATRIX .NOW-L WILL RE REDUCEIN TO
FULL ROW RANN MATRTX EBY APFLYING ROTATIONS FROM LEFT.

THE RANR OF THE REDUCED MATKIX WILL EE GI%FN BY N-REDUCTION;

REDUCTION:=03
ROWS=Ms ’ . .
COL =N} . '
CONTINUE$=TRUE}
WHILE(CONTINUE) DO e
REGIN ) 4 ,

CONTINUE :=FALSES 5 )

/
WHILECCCOL -0) ANDI(ARS(C(ROQW,COL)) ~ TOL)IIDO

’ . .../104




BEGIN >
ROW =ROW-1 3
CoL :=coL~1
ENI;
IF COL.0 THEN REDUCTION!=REDUCTION+I3
IF COL,-1 THEN
BEGIN N
CONTINUE ¢ =TRUE .
COUNT =13
FOR Ir=COlL-1 STEF ~-{ UNTIL 1 no
REGIN 3
ROWFLUSONE $ =ROW-COUNT+135 .
1F ARS(C(ROW-COUNT»TI)) ° TOL THEN
REGTN
GIVENS (C(ROW-COUNT s I) s CC(ROWFLUSONE s I) 2005
UFDATEY (ROW—COUNT y ROWFLUSONE »Y) $
_UPLATEC(ROW~-COUNT y ROWFLUSONE s I5C)
LEF TUFDATEER (¥OW~COUNT s ROWFL USONE s Ky STARTCOLUMNy R
RESTORER (ROW=COUNT s ROWFLUSONE s MyKs By F) $
CND$ .
COUNT ¢ =COUNT+1 ‘
FNTI -
ENII3 [ 4
1F COL.O THEN
BEGIN
ROWILUSONE $ =M~N+REQUCTIONS
TF ARS(Y (ROWFLUSONE-1)) ¥ TOL THEN

i

REGIN
‘pTVENS(Y(RUUPLUSONE”])rY(RUNPLUSDNE)yO);
UFLUATEY (ROWFLUSONE~-1 s ROWFLUSONE»Y) § : 0

LEFTUFDATER (ROWFLUSONE-1 » ROWFLUSONE » N s STARTCOLUMNR) &
RESTORER(ROWFLUSONE~-1yROWFLUSONE s My Ky EByF) 5
STARTCOLUMN: ~GTARTCOLUMN+1
END
END
CoL:=COL -1
ENDG

13

COMMENT
TESTING THLE CONSISTENCY OF THE MODEL WHEN REDUCTTON.- 0%

IF M .. N THEN

REGIN .
ROW$:=M~N+REDUCTION
IF ROW <= K THEN '

BREGIN
IF ABRS(R(ROWwROW)Y) .. TOL THEN
BEGIN .
IF ABS(Y(EPH)) * TOL. THEN
REGIN

WRITEC"XKXXTHE SYSTEM IS TNCONSISTENTXXX");
BELANRKLINEC(2) § }
WRITEC(" THE RESTDUAL IS5 *»Y(RQW))?¥
G0 TO STOR

ENII

a0 @y et tosbe BRIl kR e s A DR NGS SRR AT
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ELSE MEW:=Y (ROW)/E(ROWsROW)
FOR It=ROW+1  UNTIL M 10
P oY (I) =Y (I ~MEWKE (I s ROW) § .
© FOR It=1 UNTIL R DO VCI)i=F(ROWyI)%XMEW
ENI
ELSE , IF ARS(Y(ROW)) = TOL THEN
HEGTN : ,
WRITE("XXX THE SYSTEM IS INCONSISTENTXXX");
BLANKLINE(3)5 ) -
WRITE (" THE RESTIUAL IS "yY(ROW))3$ :
GO TO STOF
I-ND
ENIS o y ) -

FLSE MEW: =
l .

COMMENT

~
AT THIS STAGE C 1S A LOWER TRAFEZOIDNAL MATRIX OF FULL ROW KANK
IF REDUCTION - 0. C IS NOW REDUCED TO LOWER TRTANGULAR FORM
FROM LLOWER TRAFEZOIDAL FORM RY AFFLYING GTVENS ROTATIONS FROM
RIGHT, THESE ROTATIONS ARLC MULTIFLIED TO ORTAIN THE ORTHOGONAL
MATRLX Q WHICH WHEN MUILTIFLIED TO LOWER TRAPEZOIDAL MATRIX C

FROM RIGHT WILL YIELD THE LOWER TRIANGULAR MATRIX?

REGIN
LONG REAL ARRAY QCLIINeL1IINDS
INTEGFIC STEFSS
FOR L3=1 UNTIL N DO :
FOR J2=1 UNTIL N DO IF  T=J THEN Q(I,J)$=1 ELSE Q(IsJ)$=03
1IF REDUCTLON O THEN
REGIN
STEFS: =03 . ‘
FOR ROW!=M-N+REDUCTION+1 UNTIL M LO
REGIN -
'OR J:=REDUCTION STEF -1 UNTIL 1.DO
BEGIN :
COLt=STEFS+J+14
IF ABS(C(ROW»COL)) > TOL THEN ’
REGTN .
GIVENS(C(ROWsCOL~1)sC(RDWSCOLY v 1) ¥
FOR T:=ROW UNTIL M DO
EEGIN
TEMF $=CCKC(T»COL-1)+88%C(I,COLYS
C(IsCOL):=8SXC(IyCOL~L)-CCXC(T,COL)
C(TyCOL~1) ¢=TEMF :
END3
FOR I$=1 UNTIL N IO
REGIN
TEMF$=CCXQ (I COL~1)+SSXQ(I,COL) S
RQ(1sCOL)Y:=55%Q(I,COL-1)-CCXQ(IyCOL) S .
QCIyCOL~-1) $=TEMF .
END » )
END
ENIDs »
STEFS=STEF'S+1
ENT ‘
ENIty ,
LILANRLTNE(4) 3 . .../106
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WRITE(*THE RANKN OF THE MATRIX € IS *,N-REDUCTION) 3
RLANKLINE(2)5
WRITE(*THE TRANSFORMED C*); :
FOR Ti=1 UNTIL M IO
BEGLN
BLANKLINE (2) §
FOR Ji=1 UNTIL N DO WRITEON(CCIyJd))
END3 -
EL ANKL TNE (2) 5 4 ®
WRLTE(*THE TRANSFORMED VECTOR Y*)3
ELANKLINE (2) 3
FOR It=1 ONTIL M D0 WRITE(* *,Y(T));
BLANKLINE (10) 5 :
WRITE("THE TRANSFORMED B*) S
FOR Ti=l UNTIL M DO .

REGIN j
HLANKLINE(2) 5 : , 1
FOR Jt=1 UNTTL K DO WRITEON(SHORT(R(IsJ))) : i

ENII

COMMENT . v

o

EVALUATING TIE VECTOR X3¢ ‘

X (L) 1=Y (M-N+REDUCTLONF 1) /C (M- NAREDUCTIONA 1+ 1) $ \
FOR [1<2 UNTIL N-REDUCTION D0 :
EEGIN

TEMF =03 ) -

FOR Ji=1 UNTIL I-1 DO

TEMF=TEMF O (M-NAREDUCTION+ L » S RX (42§ TN

XCI) 3= CY (M=-N+RETUCT TON+ L) =TEMI) /C(M=N+RENUCTION+I»T) |
ENT§ ’

COMMENT | , ‘ .
&

OUR X =0%X3

IF REOUCTTION “ O THEN . : hE
BEGIN . :
FOR It-) UNTIL N-REDUCTION DO ~
FOR Ji=1 UNTIL N DO
QCIyT) 2=y TIKXCT) 5 |
FOR Ti=1 UNTTL N IO :
REGTN . !
TEMP =05 :
FOR Ji=] UNTIL N—REDUCTION no
TEMF ! =TEMF+QCIrJ) §
X([)t=TEMF )
END \
ENI
RLANKLINE (2) 3
WRTTE (*THE SOLUTTONS ARE")
FOR Ii=l UNTIL N DO WRITEC® *sX(I));
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COMMENT 7
( COMFUTING THE RESIDUE OF THE SYSTEM AND AL:SO NORM OF THF VECTOR
vs , ,
EEGIN ‘
LONG REAL TEMF1sTEMF2,TEMP3; ° .
TEMFLi= e '
| COMMENT o .
A COMPUTING 11Y-CX~EV!} )3
FOK Li=| UNTIL M DO
KEGIN
TEMF2$=0}
FOR Ji:=1 UNTIL N D0 TEMFQ:~TEMF°+TFMPQ(T;J)*X(J)y
TEMF3 =07
FOR' Ji=1 UNTIL K DO TEMF3: *TEMPS+TFMFB(I;J)*V(J)y'
TEMF] ¢ =TEMF L+ (TEMFY (I) -CTEMPOHTEMP3) ) %%2
END'y / . :
RLANKLINE (373 K .
TEMEL = LONGSART (TEMP 1) 8
. WRIIECT NORM OF THE RES1DUE OF THE SYSTEM [S *sTEMFL)j
. /
COMMENT .
s ' 4 //
COMFUTING 11V / : , s
' e , T/
/ TENF2:-05 / _ . K
FOR JJi=1 UNTIL K DO TEMF2Y{=TEMP 24V (0 Rk
J TEMF2 =L ONGSART ( TEMF2)} ' y
KLANKL [NE(3)3 , /
WRITEC" NORM OF THE VECTOR U TSy "sTEMP2) ;
ENTI , y ' ’
/
ENDS , /
/ STOF{ELANKLINE (40) / . .
END GLSQUARESS  _ / o
COMMENT /// ; J/ !
MAIN FROGRAM STARTS HERE.THE DIMENSIONS DF C AND B HAVE REEN
FASSED TO THE FROCEDURE GLSAUARES AS THE FARAMETERSS
" /s ) /
REATI(Ms Ny RS y ) ) :
GLSQUARES (My Ny I¥) h ‘
END, o
, £
,/
/
// .
// : . « .../ 108
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APPENDIX B.

A

PROCEDURE MINNORM.

[
Procedure MINNORM obtains a part of the minimum 2-norm

solutfbns of a structured underdetermined system based on the

algorithm presented in Chapter 4, Let N

Zl 6’ .
; v - F )

bé the system. We are interested in cbtaining 21 only.
The procedure has been written in ALGOLW and has® been

tested on an IBM/370 computer. The results have been checked
1

against the solution obtained by solving the system without
considering the structure. The results are based on double
precision computations. -

We have considered the following examples:

-4

I. F with full row rank, and -
Y , -
II1. F with less than full row rank. s
- 5 *
\
o ¢
”~ 2

.. /109




e 1is i I ’{_
r— — [~
. b0 1 213 I | 2
| | 1
471 9 -1,2 -3 \ | 1
f 2-1 7'3 -5 1 ! 3
- I 1 [}
3 2 312 -1 21 o 1
0 0 1 2 3! 71 ) €
} t I
L, =} 4 1 2, 123 ; Ly = 7
0 L3 H | 1
5 6 1, 4 5 6 ' 8
3 4 6/ '7 8 9 10 !
1 3 5, . "1 1
[} 1 '
71 2 | 14 5 2
]
2 1 3! ! S5 3 2 3
hv— ' I U - pom—
' The estimate 21
/ .
0.125710961300614
0.0747320776983494 i
0.283670434928731
, .
[ ]
v f
4
\ ' .../ 110
o I

- [P S———) - \ Wl ey e . . [ PP — B R i R e

'




- 110 -
. EXAMPLE II : -
F  has less than full rcﬁ: rank. .
// — l l
4 3 0 -11 -2
1 I
£ 7 8 3' 2 2 Ao
i ]
2 10 -1, 0 1 12
o l '
22 14 -1, 4 5 -12
{
G, L, '0
- F= 1. 10 7 13- 5 3 -10"' .
' 0 L e e e e = e = -
2
\ 1 2 3 1 1
1 1
4 1 2 2 3
] ]
” . 5 6 7 1 ‘4 5 6
1 |
3 4 6 y 7 8 9 10
_— 1 v "‘
’ B o The estimate *;l' - ; —
0.416404256666899
' { \,3 .
0.61317508360191
) .419992141744106
‘ S . 1y
-
B e
N
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\\‘
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INTEGER ROWRLOCKSS

FROCEDURE MINNORM(INTEGER VALUE ROWRLOCKS)YS )/

BEGIN.

*

COMMENT.

MINIMUM P-NORM SOLUTION OF A STRUCTURED UNDERDETERMINED S5YSTEM OF

THE® FORM

WHERE
6=[6

" THE FROGRAM

/
/ ! \
Il

”

/

o le

Y=(G,L)[Z
1
7

g8

N - - -
L - N '

ONLY
I

WILL OETATN THE SOLUTION OF THE VECTOR Z

THE DESCRIPTIdNS‘bF-THE VARIARLES USED ARE GTVEN BEL.OW:
. 14

ROWRL OCKRS ¢
M :
N :
[N :
[d

TOL :
G | :
L :
S :
Y :
I :
W :

[

NUMKER OF BLOCKS OF KOWS IN THE SYSTEM.
AN ARRAY CONTATNTNG THE NUMEER OF ROWS TN “ACH BLOCK.
NUMEER. OF COLUMNS IN THE MATRéX G :
AN ARRAY CONTAINING THE - NUMRER OF COLUMNS IN EACH
MATRIX
L] l .

AN ELEMENT OF A& MATRIX IS NONZER
IS GREATER THAN “TOL’.
THE MATRIX G

- ]' s
THE MATRIX L . ' -

T :

IT IS A MATKIX OF DIMENSION N BY (N+M ).
A T
IN THE BEGINNING IT IS (1,0).AFTER EACH ROW ELOCK

REGUCTTON IT CONTAINS (Z y0) AT THE STAKRT OF NEXT

IF ITS MAGNITUDE

RENUCTLON, I+

THE VECTOR Y., *

IT IS A VECTOR.T =8 W +5 W 4. + o+ +5 W .
I 11 22 1)

A DECTOR WHICH CONTATNS THF SOLUTTON OF THL
TRANSFORMIED SYSTEM. 4

3

oo/ 112
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INTEGER ARRAY. M(1?!IROWELOCKS) §

INTEGER ARRAY K(1:IROWELOCKS) S

INTEGLR Ny NEWN y MAX r SROWNO » ROWNQ 7 \

LONG KEAL T0LsCCy855 .

COMMENT ﬁ
FRINTING L NUMBER OF BLANKLINESS -
"PROCETURE BLANKLINE CINTEGER VALUE L) 3
NEGIN >
FOK J$=1 UNTIL L U0 WRITE¢(* "> .- '
ENIt BLANKLINE§ . ( \
COMMENj R . p
. DATA ARID DEING READSG

\ READ(N) 3 \
‘WRTTE("NUMBER OF CDLUMNSQIN THE MATRIX G T8"»N)$

NEWN t=N5° , .
MAX =0 ,
TOL: 17 ~143 *
FOR DBLOCKS: =1 UNTTL ROWELOCKS, LO
REGIN )
READI (M{ELOCKS) » K {HLOCKS )3
WRITE ("ELOCK NO.*»®LOCKRE)S - . :
WRTTE C'NO DT ROWS, $H=" M (RLOCKS)) § .
WRTTE (*NO OF COLR DF G IN="sNDj B
WRLTE ("ND DF COLUMNS OF L !K"»R(BLOCRS))$ 7 .
. RLANKLINEC(3) 3 '
COMMENT ’ ,

THE MAXIMUM ROW LIMENSTON OF THE BLOCKS I8 ORTAINED 1IN ORDEN Y

N TO DECLARETHE LiMENSION OF THE MATRIX & FROFERLY?

1F MAX - M(RLOCAS) THEN MAX:=M(RLOCKS)S$
TF N+K(ELOCKRS)~M(BLOCKS) THEN .
RECTN .
CWRTTE CTHID RLOCKND "y BLOCKS®  I§ OVERDETERMINELD ") S
Gy 1 ST : . ;

i

ENIt .

CNS .

GEGIN : - o
LONG KLAL ARRAY SC(L1INy 11 INEWNTMAX) ¢
LOND Il AL ARRAY DI(CLIIND G ‘

FOI I3=1 UNTIL N DO
BEGIN
FOR Ji=1 UNTIL NEWN+MAX DO

S(12.)0i=03
GCleXd)i=1

ENIi$ \ S
FQ [i=1 UNTIL N DO D(1)3=0; ,

.4./113
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FOR_BLOCAS:<1 UNTIL ROWKLOCKS 1LO'

HEGIN ; .
LONG REQI ARRAY B(3 3 IM(ELOCKS) 18 1N) 5

., LONG KEAL ARRAY L(1!IM(BLOCRS3y13N(BLOCKSY)S o - CL
LONG REALe ARRAY Y(1 31 IM(BLOCKS) 13 ‘ ‘
LONG REAL ARRAY CC13IM(ELOCRS) 511 INEWNHRC(BLOCKS) )4 - : '
LONG REAL ARRAY W1 $IMAX)$
INTEGER TD?ALRDWrTOTALCOLyHDw:CDLrCOLMINUSlvCUUNTrREUUQTIONr
LOGICAL CONTINUE} ° -

-
1

COMMENT C .

FROCEDURE FOR AFFLYING . GTVENS ROTATIONLLEFT ARND RIGHT ROTATIDN
ARE TNDIIICATED BY THE FARAMETER SWITCH, IF SWITCH=0 THEN IT IS .
THE LEFT ONE AND' TF SWITCH=1 THEN IT 1§ THE RIGHT ONE.IN THE
FIRST CASE Z1 IS ELIMINATED WHEREAS IN SECONI CASE ZD IS
ELIMINATEH? ° ;

FhOCEDUhE GTVENS(LONG REAL VALUE 21,723 INTEGER UhLUh SWITCH)§

BEGIN \

LONG REAL GaMA}
GAMAL =Z 1 ¥Z1+Z0%XZ0 %
GGAMAL- L DNGSOART(BAMA) §
1F SWITEH - O THEN
KFGTN . ‘
CCt=Z2/0AMAG ‘ . \ : -
85471 /GAMA " . ‘
ENT '
LLSE .
LEGIN .
=71/6GAMA : .
=72/GAMA % \
E NI . : . D
ENIl GIVENS}$

COMMENT ¥
DRTHOGONAL ROTATIONS ARE AFFLIED FROM THE RIGHT . THE MATRIX
‘MATRIX‘ T5 UFDATEILL,COL1 AND COL2 AND ROWS FROM FIRST TO LAST
ARE AFFECTED.F | ;

FROCEDURF UFNGFERIGHT (INTEGER VALUE COLLyCOL2,FIRSTyLAST}
\ : LONG REAL ARRAY | MATRIX(XyX) )3}
HEGIN . :
LONG REAL TEMF; .
FOR T$=FIRST UNTIL LAST D0 ‘ . .
KEGIN
TEMF +=COKMATRIX (TyCOLL)Y+ESXMATRIX (11COL 25
MATRIX( Ly COLD) $ =SSXMATRTX (I yCOLL)~COKMATRIX (T COL2) 5
MATRIX(IyCOLL)Y ¢ =TEMF ) .
ENID
ENI' UFDATERTGHT?

I

By

COMMENT

ORTHOGONAL ROTATIONS AKRE AFFLIED FROM LEFT:wal ANDI ROW2 DF
THE MATRTX “MATRIX’ FROM COLUMN 1 TO CDLUMN‘LAST I8 AFFECTED,}

& N .
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:

,:‘j ’ ., FPROCEUURE UFDATELEFT(INTEGER VAL.UE RUUlvRONQvLAST LONG RFAL

5, . ARRAY MATRIX(XyX))7§ < :
REGIN .
LONG REAL TEMFj§
FOR I3=1 UNTIL LAST no
EBEGIN '
TEMF’“"CC*MATRIX(ROWivI)+SS*MﬁTRIX(RDw2vI)7

MATRIX(ROW2yID $ SSXMATRTX(RDU]yT)+CC*MATRIX(RDU2yI)9 -

MATRIX(ROWLI) 2 =TEMF
END | . -
END UFDQTELEFT ¢ ' 0

&

CUMMENT ‘ .
&

4
/

THE VECTOR- Y IS UFDATED FOR LEFT RDTATIDN WHICH AFFECTS ROW1
.0 AND_ ROW2 ONLY.; o

3

FROCEDURE UFDQTEY(INTEFER VALUE ROW1»RONZFLONG REAL ARRAY Y(X))3
REGIN . .
LONG REAL TEMF; ) : o \
TEMF $ ~CL*Y(RON[)+“S*Y(RDN”); - ,
Y (RUW2) $=SSXY (ROW1) $CCKY (ROWD) § .
Y(ROWL) $=TEMF
END UFDATEYS ] Tl

COMMINT — . n
! \ \ . .
, THE MATRIX & OF DIMENSION ROW BY COLUMN IS FRINTED OUT.

& .

FROCEDURE FRINT(LONG RLAL ARRAY A(Xy%)iINTEGER VALUE ROWsCOL.)
BEGIN s
s FOR T3<1 UNTIL ROW L0
HEGLN ‘ :
WRITE(" ") ~
FOR J3=1 UNTIL CoL 1o WKITEON (SHORT(ACT D))
END?
» BLANKL [NE(2) ‘ - N
END PRINT ‘

COMMENT

)

INFUT DATA ARE BEING REAIS

LY €.

FOR Tt=1 UNTIL M(BLOCKS) LO .
FOR Ji=1 UNTIL N DO READON(GC(IyJ))
WRITE (" MATRIX G FOR RLOCK NUMBER" yELOCKS):
DLANKLINE(3)§ . °
FRINT(GyM({BLOCAS) N # . :
FOR I:=1 UNTIL M(BLOEKS) DO

- FOR ':zl'UﬁTIL KN(BRLOCKS) DO READONCL(I» )73

! » . 2
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BLANKLINE ()5

WRITE(* MATRIX L FOR BLOCK NUMEER®»,BL.OCKS)3
RLANKLINE(3)

FRINT(L yM(BLOCKS) yR(ELOCKS) ) $

FOR I$=1 UNTIL M(BLOCKS) DO READONCY(I))S
ELANKLINE(3) 5

. WRITE("VECTOR Y FOR BLOCK"',RBLOCKS)/

BLANKLINE(K);
FOR Ii=1 UNTIL M(BRLOCNS IV NRITEON(Y(I))v £

COMMENT

IF L IS NOT INFUTTED IN LOWER TRAFEZOIUAL FORM THEN IT IS
MALE LOWER TRAFEZOIDAL FORM RY AFFLYING ROTATEONS FROM

. THE RIGHT;

f
FOR ROW!=1 UNTIL K(BLOCKS)-1 DO
FOR COL$=KN(ELOCKS) STEF -1 UNTIL ROW+1 DO
REGIN -
IF ABRB(L(ROWsCOL)) .~ TOL THEN
BEGIN X
COLMINUSY !=COL-1} ’\\

GIVENS(I.(ROWsCOLMINUSL) »L(ROWyCOLL}Yy1) 5
UFDATERTGHT (COLMINUS1yCOL yROWs M(RLOCKS) sL)
END
ENIDy

COMMENT
FORMING GZ.IN THE FIRST ROW ELOCK Z=I»I IS A UNLT MATRIX.j

IF BLOCKS. 1 THEN
REGIN i
LONG , REAL AR AY TEMF (13 INEWN) $
LONG REAL SU
FOR I$=1 UNTIL M(RLOCKS) DO
BEGIN
FOR Ji:=1 UNTIL NEWN IO '
REGIN
SUME=
FOR P (IF JT=NEWN-N+1 THEN 1 ELSE J ) UNTIL N IiD
SUM:=SUMHG(IrFIKS(Fyd)i . .
TEMF (J) $=8SUM .
END#
FOR Ji=1 UNTIL NEWN DO C(IyJ)t=TEMF(J)
END ,
ENg\
ELSE _
FOR I$=1 UNTIL M(RLOCKS) DO
FOR Jt=1 UNTIL NEWN DO C(I+J)$=G(IsJ); .
FOR I$=1 UNTIL M(ELOCKNS) DD
REGIN .
FOR J$=I UNTIL K(BLOCKS) DNO C(Is»J+NEWN):=07¢
FOR Ji=1 UNTIL (IF I»K(BLOCKS) THEN KN(ELOCKS) ELSE I)IO
. CCIyJHNEWN) $=LLIrJ)
END} ’

/116
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COMMENT

REDUCING C TO LOWER TRIANGULAR FORM.THE NUMBER OF ELEMENTS

IN A ROW TD RE ELIMINATED IS NEWN?
4
SROWNO $ =N
COUNT =13
FOR ISTEF!=NEWN STEF - 1 UNTIL 1 IO .
BEGIN . ,
. COL!{=ISTEF+13
FOR ROW:=1 UNTIL (IF K(RLOCKS)+COUNT-1-M(RLOCNS) THEN
K(BLDCKS)+COUNT-1 ELSE M(ELOCKS))DO
EEGIN
COLMINUSL $=COL~1}%
IF ARS(C(ROWsCOL)Y)>"TOL THEN
EEGIN ° .
GIVENS(C (ROW»COLMINUSL) sC(ROWSCOLY 15 .
UFDATERIGHT ¢COLMINUS1 »COLyROWsMCRLOCKS) 2C) §
ROWNO:=IF SROWNO ‘= 0 THEN 1 ELSE SROWNO;
UFDATERIGHT{COLMINUS1 yCOL yROWND» N+ 5)

END3 v - ¢ .
COL :=COL+1 .
END3 i
COUNTS =COUNT 413 )
SROWND } =SROWNO~1 .
ENDG : v o .
COMMENT

REDUCING THE MATRIX C TO,A FULL COLUMN MATRIX}
ROW:=COLt=15% :
REDUCTION:=0% - . .
CONTINUE {=TRUE
WHILE (CONTINUE)LO *
BEGIN )

CONTINUE $=FALSE} . . o
WHILEC(ROW <= M(RLOCKS)) AND (ARS(C(ROWsCOLD) . TOL)) DO
REGIN .

KOW!=ROW+1 $
COL $=COL+1
ENID e -
IF ROW = M(RLOCKS) THEN REDUCTION:=REDUCTION+1$
IF ROW < M(EBLDCKS) ' THEN

BEGIN

CONTINUE :=TRUE}

COUNTY=1}

FOR I:i&ow+a UNTIL MC¢BLOCKS) DO

EBEGIN o

IF ABS(C(IyCOL+COUNT)) > TOL THEN . f

BEGIN . ’
GIVENS(C(IsCOL+COUNT=1)sC(IyCOL+COUNT) 1) 3
UFDATERIGHT(COL+COUNT~1yCOL+COUNT y Iy M(BLOCKSE) ¢ C¥5
UFDATERIGHT(COL+COUNT~1sCOL+COUNT s 1yN»S)

°

P

o ENDj ° R

COUNT$=COUNT+1 Yy
END S
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%,
ENI oo
ROW $ =ROW+1
END
WRITE ( "REDUCED (GsL) IN LOWER TRAFEZOIDAL FULL COLUMN RANK®,
» MATRIX FOR RLOCKN NO "sELOCKS)}
BLANKLINE(2)$ \ \
,PRINT(C:M(BLDCKS)rN+h(BLOChS))r
BLANKL INE(2) .
COMMENT ’ A
THE RANK OF € IS M(ELOCKS)-REDUCTION.NOW IF REDUCTION * 0
THEN SUM OF FIRST REDUCTION EkgMENTS OF (Y~GXD)SHOULD EE
VERY SMALL AFTER C IS MADE LOWER TRIANGULARS$ 8
REGIN .
LONG REAL SUM; . :
FOR 13=1 UNT1L M(KLOCKS)DO &
REGIN. )
SUM$=03
FOR Ji=1 UNTIL N DO SUMS=SUM+G(I,)kDCJ)} %
Y(1)t=Y(I)-SUM
END : |
END'
, , ” - !
COMMENT i
REDUCING THE FULL COLUMN RANK MATRIX RY AFFLYING ROTATIONS N
FROM THE LEFT TO LOWER TRIANGULAR FORM.}
FOR I:=1 UNTIL REDUCTION DO ' ‘
BEGTN ;
FOR ROWS=M(BLOCKS)-1 STEF —1 UNTIL I [0 :
REGIN :

COL =ROW~-I+15

JIF ABS(C(ROW»COL)Y) ™~ TOL THEN

REGIN
GIVENS(C(ROW,COL) »C(ROWH+LsCOLI»O) ¥
UFDARELEFT(ROWROW+1yCOL,C) 5§

UFDATEY(ROWROW+1yY) = ° o
JEND g
END N { »
ENI'S !
: S
COMMENT

i

CHECKING THE RESIDUE WHEN THE UNDERDETE&MINED SYSTEM IS5 NOT
OF FULL ROW RANK.THIS WILL INDICATE THE CONSISTENCY OF THE
* MODEL BEING CONSIDERED.;

IF REDUCTION +# O THEN

REGIN &
LONG REAL SUM¢ .
SUM=0}%

FOR It=1 UN¥IL REDUCTIDN [0 SUMI=SUM+Y(I)XY(I)}
SUM$ =LONGSQRT ¢ SUM) 3

IF sSuM : TOL THEN.

EEGIN ‘

P
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BLANKLINE(2) %
WRITE(*INCONSISTENCY IN THE MODEL IN ROW BLOCKS" »ELOCKS)¢

(‘ ELANKLINE(20)
GO TO STOF
END
END'§

vy

COMMENT

SOLVING THE LOWER TRIANGULAR SYSTEM CX=Y WHERE C IS |
MATRIX OF RANK M(BLOCKS)-REDUCTIONS

W(1)$=Y(REDUCTION+1)/C(REDUCTION+1»1)}
FOR I$=2 UNTIL MC(BLOCKS)~-REDUCTION IO
REGIN ’
LONG REAL SUM7
SUM=07
FOR Ji=1 UNTIL I-1 DO
SUMt=SUM+C(REDUCTION+I» JIXW(J) 3
W(I)$=(Y(REDUCTION+I)~SUM)/C(REOUCTION+I»I)

ENW -

[]

o
°

COMMENT

oy g,
FORMING SW WHICH IS I .
I

-

FOR I:=1 UNTIL N DO
REGIN
LONG REAL SUMS$
SUM$=0%
FOR Ji=1 UNTIL M(RLOCKS)-REDUCTION DD
SUM=8UM+S(Is D KW(JI) 5
DCI) =DM I)4+SUMS -
FOR Ji=1 UNTIL NEWN+REDUCTION DO - ,
S(IsJ)¢=8(IyJ+M(BLOCKRS)-REDUCTION) ,
FOR Ji=NEWN+REDUCTION+1 UNTIL N+MAX DO S(IsJ)i=0
ENIts
NEWN : =NEWN+REDUCTION
ENI$
RLANKLINE(7) # -
WRITE(*THE FIRST®sN,*ELEMENTS OF THE SOLUTION VECTOR")j$ .
FOR I$=1 UNTIL N DO WRITE(® *AICI)) ‘
"END; , . )
STOFSWRITEC(® *) . ;
ENI' MINNORM;S ;

M v e e e

' COMMENT

MAIN FROGRAM STARTS HERE.THE NUMBRER OF ROW ELOCKS IN THE
UNDERDETERMINED SYSTEM IS FASSED ~-INTO THE PROCEDURE MINNORM
\ AS FARAMETER;
( REALl (ROWRLDLCKS)
WRITE(®" NUMBER OF BLOCKS IN THE MATRIX F IS",ROWBLOCKS)j
MINNORM(ROWELOCKS) :
END. .../119 €'
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