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Abstract

In this text, we are interested in studying the distribution of eigenfunctions

on rational polygons, with special attention paid to the equilateral triangle.

We attempt to provide the reader with sufficient context on spectral theory,

semiclassical analysis and ergodic theory. We then prove a result due to

Marklof and Rudnick [MR11] which states that “most” Laplace eigenfunc-

tions, with either Dirichlet or Neumann boundary conditions, on a rational

polygon equidistribute. We also identify exceptional subsequences for an or-

thonormal basis with either Dirichlet or Neumann boundary conditions on

the equilateral triangle. Finally, we discuss the limiting behaviour exhibited

by those same sequences.

Abrégé

Dans ce document, nous étudions la distribution des fonctions propres sur des

polygones rationnels, payant une attention particulière au triangle équilatéral.

Nous tentons d’offrir au lecteur le contexte nécessaire au sujet de la théorie

spectrale, de la théorie semi-classique et de la théorie ergodique. Ensuite,

on établit un résultat de Marklof et Rudnick [MR11] qui stipule que la “ma-

jorité” des fonctions de Laplacien sur un polygone rationnel, avec des condi-

tions aux limites de Dirichlet ou avec des conditions aux limites de Neumann,

vont équidistribuer. De plus, on identifie les sous-suites exceptionnelles pour

une base orthonormale soit avec des conditions aux limites de Dirichlet ou

avec des conditions aux limites de Neumann sur le triangle équilatéral. Fi-

nalement, nous discutons le comportement à l’infini présenté par ces mêmes

séquences.
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1 Introduction and Setup

The behaviour of a microscopic particle can be best described by the (time-

dependent) Schrödinger equation. Solving this equation provides us with the

wave function of this given particle, as well as the energy spectrum. The most

basic setting is possibly the problem of a particle in a box, otherwise known

as the infinite potential well. That is, the problem of a particle that moves

freely in a domain D. In this case, finding the wave functions and energies

given by the Schrödinger equation amounts to solving the Helmholtz equation

∆u+ λu = 0

with appropriate boundary conditions (see [KKS99] and the references therein).

Equivalently, we wish to find the eigenfunctions of the Laplacian on D with

appropriate boundary conditions. There is a great range of applications for

this problem, from physics to electronics and nanodevices (see, once again,

[KKS99]).

Throughout this document, we focus primarily on the classification of

quantum limits of eigenfunctions for the Laplacian on equilateral triangles in

R2. More precisely, given a countable orthonormal L2-basis (ψn)
∞
n=1 consist-

ing of eigenfunctions on a triangle ordered such that their respective eigen-

values are increasing, we ask how the eigenfunctions concentrate as n tends

to infinity. Formally, we study the weak* limits of the probability measures∣∣ψnj

∣∣2 dx as j tends to infinity where (ψnj
) is a subsequence of (ψn). We

henceforth refer to these limits as quantum limits.

Such questions are largely motivated by a recent result of Marklof-Rudnick

(see Theorem 1 in [MR11]) which addresses the concentration of eigenfunc-

tions on rational polygons. Informally, their result states that almost all

quantum limits of this sequence must be the Liouville measure. In other

words, there is a density-one sequence of eigenfunctions which equidistributes

on the polygon. More formally, our work is motivated by the following theo-
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rem, which suggests the plausibility of a complete classification of quantum

limits. In this next statement, we denote by ∂A the topological boundary of

a set A. Equivalently, ∂A is the closure of A minus the interior of A.

Theorem 1.1. [MR11] Let D be a rational polygon and fix an orthonormal

basis (φn)
∞
n=1 of the Dirichlet Laplacian on D. Then, there exists a sequence

of natural numbers (nj) such that

lim
j→∞

∫
A

∣∣φnj
(x)
∣∣2 dx =

area(A)

area(D)
(1.1)

for all measurable sets A ⊆ D with boundary ∂A having Lebesgue measure 0.

Furthermore, we have

lim
N→∞

# {j : nj ≤ N}
N

= 1. (1.2)

The conclusion drawn in (1.2) can be interpreted as saying that the subse-

quence
(
φnj

)
contains almost all eigenfunctions, or, even better, consists of a

density one subfamily of (φn). In particular, we see that almost all quantum

limits are simply a normalized Lebesgue measure. Consequently, a complete

classification of the exceptional subsequences (that is, subsequences that do

not obey (1.1)) would yield a classification of all possible quantum limits

associated to the Dirichlet problem for the Laplacian on D.

In the context of the equilateral triangle, we expect all quantum limits

to be absolutely continuous with respect to the Liouville measure. This

hypothesis is supported by the following result of Jakobson [Jak96].

Theorem 1.2. Fix a dimension d ≥ 1. Every quantum limit of the torus

Td := Rd/Zd is absolutely continuous (with respect to the natural measure on

the torus).

In addition, this story begs the natural question of what can be said

about the quantum limits associated to the same problem, but with Neumann

boundary data. As with the Dirichlet case, this analysis is supported by the
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fact that Theorem 1.1 continues to hold with Neumann boundary conditions

(see [MR11]). Furthermore, Theorem 1.1 extends to translation surfaces,

although we will not discuss this here.

We also point out that the analysis of eigenfunctions (in both the Dirichlet

and Neumann settings) has many applications within the sciences, especially

in physics. Indeed, the study of eigenfunctions of the Laplacian originates

from the study of vibrating membranes and plates (see [Zel17]). Let u be an

eigenfunction of the Laplacian on a domain D satisfying appropriate bound-

ary conditions with eigenvalue λ. Then u satisfies the equation

−∆u = λu in D.

Here, u is interpreted as the profile of vibrations whereas λ can be thought

of as the corresponding energy and
√
λ represents the frequency parameter.

When studying diffusion, Grebenkov and Nguyen explain in [GN12, page 603]

that the first eigenfunction describes the asymptotic spatial distribution, for

long time, of particles in the given domain. However, other eigenfunctions

lack a straightforward physical interpretation (see [GN12] and the references

therein). We should also observe that the authors of this last paper point

out applications to stochastic processes.

The study of eigenfunctions has also proven to be of use in probabilistic

and statistical contexts. In particular, eigenfunctions have applications to

the study of localization properties of disordered metals and carry informa-

tion about atomic spectra. Furthermore, according to Samajdar and Jain in

[SJ18, page 2], the distribution of their amplitudes is linked to the fluctuation

of tunnelling conductance across quantum dots.

Finally, we would like to note that eigenvalues of the Laplacian are of par-

ticular importance in geometry. For instance, the eigenvalues of the Laplace-

Beltrami operator on a compact manifold (M, g) contain enough geometric

information about the manifold (M, g) to completely determine the Euler

characteristic (see [Ros97]). Consequently, eigenvalues and eigenfunctions of
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the Laplacian capture geometric properties of the manifold. This point of

view is partially justified by Selberg’s trace formula which relates geodesic

flows on hyperbolic manifolds to the spectrum of the Laplace-Beltrami oper-

ator (see [Mar04]).

In the subsection below, we take the time to formally recall some basic

properties of eigenfunctions that will be freely relied upon throughout this

text. In §2.1, we briefly discuss the billiard problem in the plane. In par-

ticular, in §2.2, we touch upon the relationship between billiards, geometry,

and spectral theory. Following this, we devote §3 to the proof of Theorem

1.1 following the argument in [MR11].

In §4, we turn our attention to the Dirichlet and Neumann eigenvalue

problems when the domain is an equilateral triangle. Using methods of

reflection and identification and the literature regarding eigenfunctions on

the parallelogram, we find an explicit L2 orthonormal basis consisting of

eigenfunctions. In Theorem 4.3, we fully classify the semiclassical quantum

limits and, in particular, describe the measures associated to exceptional

subsequences. Finally, in §4.4, we briefly discuss the billiard map on the

equilateral triangle and find an operator that commutes with the Laplacian

by identifying symmetries.

1.1 Prerequisites

We devote this section to a rapid overview of results that are well known but

nonetheless essential to the analysis that follows. In §1.1.1, we provide an

overview of results from spectral theory for the Laplacian. Then, in §1.1.2,
we cover miscellaneous results from analysis that will be necessary in later

parts of this document.

As a first step, we recall some elementary arithmetic results regarding

sequences and series of real numbers. Although these are straightforward

results, we provide their proofs since, as far as the author can tell, they have

neither a name nor a common reference.
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Lemma 1.3. Suppose a1, . . . , an and b1, . . . , bn are non-negative real num-

bers. If b1, . . . , bn > 0 then

a1 + · · ·+ an
b1 + · · ·+ bn

≥ min
1≤j≤n

aj
bj
.

Proof. Let j be such that aj/bj is minimized. Then

a1 + · · ·+ an
b1 + · · ·+ bn

=
b1

a1
b1

+ · · ·+ bn
an
bn

b1 + · · ·+ bn
≥
b1

aj
bj
+ · · ·+ bn

aj
bj

b1 + · · ·+ bn
=
aj
bj

as desired.

The next arithmetic lemma is slightly more interesting, and somewhat

harder to establish.

Lemma 1.4. Suppose (an) is a non-negative sequence such that

∞∑
n=1

an = ∞,

then

lim
N→∞

∑N
n=1 2

−nan∑N
n=1 an

= 0.

Proof. Fix ε > 0 and let L ∈ N be such that

2−L <
ε

2
.

Because
∑∞

n=1 an = ∞, there exists M > L such that

2

ε

L∑
n=1

an <

M∑
n=1

an.

Or, equivalently,
L∑

n=1

an <
ε

2

M∑
n=1

an.
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Since the sequence (an) is non-negative, for any N ≥M ,

N∑
n=1

2−nan ≤
L∑

n=1

an +
N∑

n=L+1

2−nan <
ε

2

M∑
n=1

an +
ε

2

N∑
n=L+1

an

≤ ε

2

N∑
n=1

an +
ε

2

N∑
n=1

an

= ε
N∑

n=1

an.

Consequently, for all N ≥M we have∑N
n=1 2

−nan∑N
n=1 an

< ε.

Especially,

lim sup
N→∞

∑N
n=1 2

−nan∑N
n=1 an

≤ ε.

Since ε > 0 was arbitrary, the proof is complete.

1.1.1 Spectral Theory of Laplace Eigenfunctions

Fix a compact Riemannian manifold (M, g) with (possibly empty) boundary

Γ. For the sake of consistency with the literature, we formalize what we mean

by the Dirichlet and Neumann problems. The Dirichlet spectral problem asks

that we find all eigenvalues to the Dirichlet problem−∆gu = λu in M

u = 0 on Γ.
(1.3)

In the above, ∆g is the Laplace-Beltrami operator on M , which is defined

for all u ∈ C∞(M). In a similar vein, the Neumann problem associated to
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the Laplace-Beltrami operator seeks a solution u to−∆gu = λu in M

∇u · γ = 0 on Γ.
(1.4)

where γ denotes the unit inward normal vector field on Γ. In either setting,

we shall denote by E(λ) the eigenspace corresponding to λ. That is, E(λ) is

the collection of all functions u ∈ C∞(M) such that −∆gu = λu in M .

Before proceeding further, let us take a moment to recall a fundamental

result addressing the eigenfunctions of either problem on (M, g). Albeit well

known, this result is essential to the coherency of the results that will follow

shortly.

Theorem 1.5. [Lab15, Theorem 4.3.1] For the compact Riemannian mani-

fold (M, g) with possibly empty boundary Γ, the following assertions hold true

for the Dirichlet and Neumann spectral problems.

1. The collection of eigenvalues are real, non-negative numbers

0 ≤ λ1 ≤ λ2 ≤ . . .

such that λk → ∞ as k → ∞.

2. Each eigenvalue has finite multiplicity and the eigenspaces correspond-

ing to distinct eigenvalues are orthogonal in L2(M).

3. Denoting by E(λk) the eigenspace of each eigenvalue λk, we observe

that the closure in L2(M) of ⊕
k≥1

E(λk)

is the entire space L2(M).

4. Every eigenfunction is smooth.
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The result above remains valid for a mixed problem as well as the Steklov

problem (see, for instance, [Lab15, §4.3] for more information). Item 3 in the

theorem implies the existence of an orthogonal basis (uk) of L
2(M) composed

entirely of Dirichlet (or Neumann) eigenfunctions. We note that by basis, we

mean a Schauder basis. That is, for every f ∈ L2(M) there exists a sequence

of scalars (ak) such that

lim
K→∞

∥∥∥∥∥f −
K∑
k=1

akuk

∥∥∥∥∥
L2(M)

= 0.

We also note that Laplace eigenfunctions in open subsets of Rn are real

analytic. That is, if −∆u = λu in some open set Ω ⊆ Rn, the u is analytic

in Ω.

Let D ⊆ Rn be a bounded domain. By the previous theorem, there exists

a countable orthonormal basis (uk) of Dirichlet (resp. Neumann) eigenfunc-

tions for the Laplacian. Suppose that f is a given Dirichlet (resp. Neumann)

eigenfunction of the Laplacian with eigenvalue λ. Since (uk) is an orthonor-

mal basis of L2(D),

f =
∞∑
k=1

⟨f, uk⟩L2 uk.

Noting that eigenspaces of different eigenvalues are orthogonal, we have

f =
∑
k

−∆uk=λuk

⟨f, uk⟩L2 uk.

Since every eigenvalue has finite multiplicity, this sum is finite. We can

therefore draw the following conclusion:

Proposition 1.6. Given an orthonormal basis of Dirichlet (resp. Neumann)

eigenfunctions on M , every Dirichlet (resp. Neumann) eigenfunction f is a

finite linear combination of functions in this basis.
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1.1.2 Miscellaneous Results in Real Analysis

The next few standard results will be freely invoked throughout the remainder

of this exposition. In particular, these will be greatly relied upon in §3 and

in our discussion of Laplace eigenfunctions on the equilateral triangle.

Theorem 1.7. For any bounded domain D ⊆ Rn, the vector space C∞
c (D)

endowed with the uniform norm is separable.

Proof. It follows from the Stone-Weierstrass Theorem (see [Fol99, Theorem

4.45]) that the collection of polynomials is dense in C(D). Taking only the

polynomials with rational coefficients, we obtain a sequence (ak) ∈ C∞(D)

that is dense with respect to the uniform norm. We may then consider a

collection of cut-off function (ηk) ∈ C∞
c (D) such that

(1) 0 ≤ ηk ≤ 1;

(2) For each k ∈ N, the Lebesgue measure of the setD\{ηk = 1} is bounded
above by 1/k.

Such a sequence can be obtained as follows. For k ∈ N, we pick a set V ⋐ D

such that m(D \ V ) is sufficiently small. Then, mollifying the function 1V

appropriately we obtain a suitable function ηk. Finally, observe that the

countable collection of functions

{ηjak : j, k ∈ N}

is dense in C∞
c (D).

Theorem 1.8 (Identity Theorem). Let D ⊆ Rn be a non-empty domain and

suppose that f, g : D → C are analytic functions. If f ≡ g in a neighbourhood

of D, then f ≡ g in all of D.

The Identity Theorem is well-known for single-variable function, espe-

cially in the context of holomorphy. In order to conclude the result as stated
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above, we note that a given analytic function f must also be analytic with

respect to each variable. Therefore, we obtain the result of this theorem by

treating each variable independently.

Theorem 1.9 (The Riemann-Lebesgue Lemma). [Fol99, Theorem 8.22] If

(ak) and (bk) are two sequences of real numbers such that (a2k + b2k) → ∞ as

k → ∞, then

lim
k→∞

∫
R2

χ(x, y) exp (i [akx+ bky]) dxdy = 0

for every χ ∈ L1(R2).

The Riemann-Lebesgue Lemma is easily proven by first verifying the

claim for step functions then using the density of these functions in L1(R2)

to conclude the result. We also note that the Riemann Lebesgue Lemma

remains valid in Rn for any positive integer n. This result is often stated in

terms of the Fourier transform. That is, the Fourier transform of an inte-

grable functions vanishes at infinity.

2 Background and Fundamentals

For the sake of clarity and completeness, we attempt to provide enough

background for the uninitiated reader. More precisely, in this section, we

state some of the basic results from semiclassical analysis and ergodic theory

that give rise to much of the arguments that will follow. Additionally, we

try to reiterate some of the most important definitions and structures used

within these results. This includes, in no particular order, an overview of

quantization, Egorov’s theorem, Birkhoff’s ergodic theorem, Weyl’s law, and

its local counter part.

Pseudodifferential operators are a natural generalization of differential

operators. These linear operators can be defined using the Fourier transform.
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In the simplest setting, we work with functions on Rn. More specifically, we

begin with the most natural setting for the Fourier transform: the Schwartz

space. Given n ≥ 1, the Schwartz space S (Rn) is defined as the collection

of smooth function u ∈ C∞(Rn;C) such that for every pair of multi-indices

α, β ∥∥xβ∂αu(x)∥∥∞ ≤ Cα,β

for some constant Cα,β. In this expression, ∥·∥∞ denotes the L∞-norm on Rn.

We topologize the Schwartz space S (Rn) by giving it the following countable

family of semi-norms:

∥u∥α,β :=
∥∥xα∂βu(x)∥∥∞ .

Equipped with these semi-norms, the Schwartz space forms a locally convex

topological vector space over the field C of complex numbers. Furthermore,

the space S (Rn) is metrizable, first countable, and normal. Consequently, its

topological properties are completely determined by its convergent sequences.

We now turn to a useful generalization of the classical Fourier transform,

which is also an isomorphism of the Schwartz space S (Rn). It should be

noted that this semi-classical analogue of the Fourier transform is the main

tool by which one can define quantization.

Definition 1. Given h > 0, the semiclassical Fourier transform is a map

Fh : S (Rn) → S (Rn) given by

Fhu(ξ) =

∫
Rn

e−
i
h
⟨x,ξ⟩u(x)dx

for every u ∈ S (Rn) and ξ ∈ Rn. Here, ⟨·, ∗⟩ simply denotes the dot-product.

As for the classical Fourier transform, Fh can be naturally defined on the

dual space S ′(Rn). Indeed, we may define Fh : S ′(Rn) → S ′(Rn) by

(Fhu)φ = u (Fhφ)
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for all u ∈ S ′(Rn) and φ ∈ S (Rn). We accept the obvious abuse in nota-

tion by viewing S ′(Rn) as a function space containing S (Rn). Then, the

definition of Fh on the dual of the Schwartz space is simply an extension of

Definition 1. In order to justify this approach, we note that each function in

v ∈ S (Rn) is entirely described by the values∫
Rn

v(x)φ(x)dx, φ ∈ S (Rn).

We may therefore identify v with the functional u ∈ S ′(Rn) given by

u(φ) =

∫
Rn

v(x)φ(x)dx.

In this sense, S ′(Rn) is a generalized function space. We note that, with

this approach, S ′(Rn) is also seen to contain Lp(Rn) for each 1 ≤ p ≤ ∞.

Therefore, the semiclassical Fourier transform Fh is defined on L2(Rn)

and is, in fact, a Banach isomorphism of this space. Before moving forward,

we provide without proof some properties of the Fourier transform that are

of particular importance for our purposes.

(1) The Fourier transform has an inverse F−1
h . Furthermore, the Fourier

inverse can be represented by the integral expression

F−1
h u(x) =

1

(2πh)n

∫
Rn

e
i
h
⟨x,ξ⟩u(ξ)dξ,

where the above exists in the classical sense for all u ∈ S (Rn).

(2) For every multi-index α and u ∈ S ′(Rn),

Fh ((−x)αu(x)) = (hDξ)
αFhu

Here, Dξ = −i∂ξ.
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(3) In a similar vein

Fh ((hDx)
αu) = ξαFhu.

for every multi-index α and u ∈ S ′(Rn). In this last expression, we

denote Dx = −i∂x.

We refer the interested reader to [Zwo12] for further information on the

semiclassical Fourier transform.

Definition 2. Given a ∈ S (R2n) and h > 0, the quantization of a is the

operator Oph(a) : S (Rn) → S (Rn) defined by

Oph(a)u(x) =
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
⟨x−y,ξ⟩a(x, ξ)u(y)dydξ.

This last expression is an iterated integral and cannot generally be inter-

preted as a double integral. Note that, equivalently,

Oph(a)u(x) = F−1
h (a(x, ·)Fhu(·)) (x).

As a result, we see that our definition of quantization remains valid for all

a ∈ S ′(Rn). Furthermore, if

a(x, ξ) =
∑
|α|≤k

aα(x)ξ
α

then

Oph(a) =
∑
|α|≤k

aα(x) (hDx)
α .

Thus, the class of pseudo-differential operators is indeed “larger” than that

of differential operators and contains the latter as a proper subset.

We now turn our attention to symbols, a class of functions that will be of

particular importance. More specifically, we will be interested in a class of

functions known as Kohn-Nirenberg symbols, as these possess an invariance

property that make it possible to extend their definition to manifolds (see

17



[Zwo12, §9.3]). In fact, this is precisely the space of functions which we will

be interested in quantizing.

Definition 3. Given an integerm, the Kohn-Nirenberg symbol class Sm(R2n)

is the collection of smooth function a ∈ C∞(R2n) such that,∣∣∣∂αx∂βξ a∣∣∣ ≤ Cα,β

(
1 + |ξ|2

)m−|β|
2

for every pair of multi-indices α, β.

More generally, given an arbitrary set V ⊆ Rn, the collection of functions

a ∈ C∞(V × Rn) satisfying this last expression on V × Rn is denoted by

Sm(V × Rn). As briefly explained below, symbol classes can also be defined

on a compact Riemannian manifold (M, g).

Definition 4. If a function a ∈ C∞(T ∗M) is such that for every coordinate

chart γ : U → V , the pullback of a is in Sm(V × Rn), then we say that

a ∈ Sm(T ∗M). We note that if m = 0, then we will simply write S(T ∗M) to

denote the space S0(T ∗M).

Remark 1. The pull back γ∗a of a is a map

V × Rn γ−→ T ∗U
a−→ C.

In order for our definition to be consistent, it must be independent of our

choice of coordinates. This is indeed the case since, for any integer m, the

class of Kohn-Niremberg symbols is invariant under coordinate change (see

[Zwo12, Theorem 9.4]). This is precisely the invariance property that was

referred to in our earlier discussion.

Using partitions of unity (see [Zwo12, Chapter 14]), one can extend the

concept of quantization to compact Riemannian manifolds. In this way, for

a ∈ S (T ∗M) we obtain a linear operator

Oph(a) : C
∞(M) → C∞(M).
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The quantization map Oph satisfies the following properties:

(1) Oph is a linear map on S(T ∗M);

(2) If a ∈ S(T ∗M) then Oph(a) : L2(M) → L2(M) is a bounded linear

operator;

(3) For functions a, b ∈ S(T ∗M) there holds

Oph(a)Oph(b) = Oph(ab) +OL2(h).

(4) Given a ∈ S(T ∗M),

Oph(a)
∗ = Oph(ā) +OL2(h),

where Oph(a)
∗ denotes the formal adjoint of Oph(a) relative to the

L2(M) inner product.

Remark 2. Combining (3) and (4), we see that

Oph(a)
∗Oph(a) = Oph(|a|

2) +OL2(h).

2.1 The Billiard flow

We now discuss the billiard problem in the plane. Motivation for the study of

billiards can be found in multiple fields of physics such as optics, mechanics

and quantum systems. The billiard flow represents the free motion of a

point mass within a given domain. At the boundary, the motion of a particle

behaves according to the law of specular reflection. That is, the rule

the angle of incidence equal the angle of reflection

dictates the change in direction. If the boundary of D is described by the

function γ : [0, 1] → ∂D, then the billiard map can be visualized as follows.
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γ̇(t)

γ̇(t′)

α

α′

α′

Figure 1: Billiard trajectory with base point γ(t).

We now define the billiard flow in more mathematical terms. Given a

closed non-empty connected set D with piece-wise smooth boundary, the

billiard flow Φt is defined on the cotangent bundle

T ∗D = D × R2

and, as we will see, can be described by a dynamical system. We first note

that a point (x, ω) ∈ T ∗D represents the position x of a particle with velocity

vector ω. Since Φt describes free motion, the speed must remain constant.

Consequently, it will suffice to describe the billiard flow on unit cotangent

bundle

S∗D = D × S1.

Then, for any (x, ω) ∈ S∗D and r ∈ R we define

Φt (x, rω) = Φrt(x, ω), t ∈ R.
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Now, given a point (x, ω) ∈ S∗D, it will be convenient to write

(x(t), ω(t)) := Φt(x, ω).

In the interior of D, we are in free motion;

ẋ(t) = ω(t), ω̇(t) = 0.

The Hamiltonian equation above can be more compactly represented by

∂tΦt(x, ω) = JΦt(x, ω) (2.1)

where

J =

(
0 I

0 0

)
.

On the boundary of D, the law of reflection states that ω(t) changes dis-

continuously. Despite this, Φt(x, ω) is defined to be right-continuous with

respect to t for each fixed point (x, ω). Given a direction vector ω, our new

direction upon hitting the boundary will be

ω − 2 ⟨ω, ν⟩ ν

where ν is the inward unit vector at our position on the boundary of D. Note

that we only assumed that the boundary was piece-wise smooth. Therefore,

there are finitely many points where the normal vector is ill defined. At such

points, the billiard flow remains undefined or can be defined arbitrarily.

We can also define the billiard map β : N → N where N is the subset of

∂D × S1 containing only the inward pointing vectors. This map is given by

β(x, ω) = Φt(x,ω)(x, ω)

where t(x, ω) is the smallest positive real number such that Φt(x,ω)(x, ω) ∈ N .
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More precisely,

t(x, ω) = inf {t > 0 : Φt(x, ω) ∈ N} .

2.2 Definitions and Results in Ergodic Theory

We now provide sufficient framework to properly discuss the ergodic prop-

erties of billiard flows on rational polygons. Although we assume that the

reader is familiar with the setting of ergodic theory, we reiterate the more

basic definitions for the sake of completeness.

Definition 5. Let (X,M, µ) be a probability space and fix a measurable

function Φ : X → X. We say that Φ is µ-invariant if

µ
(
Φ−1E

)
= µ(E)

for every measurable set E.

Definition 6. Let (X,M, µ) be a probability space and suppose that we are

given a measurable map Φ : X → X. If Φ is a µ-invariant transformation,

we will call Φ ergodic whenever

Φ−1E = E,

implies µ(E) = 0 or µ(E) = 1. Or, equivalently, a µ-invariant transformation

is said to be ergodic whenever the only invariant sets have either full or zero

measure.

A natural counterpart of this definition is that of unique ergodicity.

Definition 7. Let (X,M) be a measurable space and fix a measurable func-

tion Φ : X → X. We say that Φ is uniquely ergodic if there exists a unique

probability measure µ such that Φ is µ-invariant.

As a sanity check, we ask if a uniquely ergodic function Φ : X → X is

also ergodic with respect to this unique measure µ. To see that this is indeed
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the case, suppose by way of contradiction that we can find a measurable set

E such that Φ−1E = E and 0 < µ(E) < 1. Then consider the measure ν on

X given by

ν(A) =
1

µ(E)
µ (A ∩ E) , ∀A ∈ M.

Clearly, ν is a probability measure on X distinct from µ. Furthermore, to

see that Φ is ν-invariant, observe that for any measurable set A there holds

ν
(
Φ−1(A)

)
=

1

µ(E)
µ
(
Φ−1(A) ∩ E

)
=

1

µ(E)
µ
(
Φ−1(A) ∩ Φ−1(E)

)
=

1

µ(E)
µ
(
Φ−1(A ∩ E)

)
=

1

µ(E)
µ(A ∩ E)

= ν(A).

Thus, we have found another probability measure that makes Φ invariant,

contradicting the assumption of unique ergodicity.

Definition 8. On a probability space (X,M, µ), a family (Φt)t∈R of bijective

µ-invariant functions satisfying

(1) Φt ◦ Φs = Φt+s for all s, t ∈ R;

(2) For any measurable function f : X → C, the map (t, x) 7→ f (Φtx) is

X × R-measurable.

is called a flow.

The next result can be found in [KSF82].

Theorem 2.1 (The Birkhoff-Khinchin Ergodic Theorem). Suppose (X,M, µ)

is a probability space with flow Φt and fix a function f ∈ L1(X). For almost

every x ∈ X the limit

lim
T→∞

1

2T

∫ T

−T

[f ◦ Φt] (x)dt
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exists. Furthermore, if Φt is ergodic for each t ∈ R then

lim
T→∞

1

2T

∫ T

−T

[f ◦ Φt] (x)dt =

∫
X

fdµ

for almost every x ∈ X.

In a later section, we will apply this result to a rational polygon. That is,

a simple planar polygon D such that, at each vertex, the angle between two

edges is a rational multiple of π. We take a moment to illustrate our setting.

We can define the billiard flow

Φt : S
∗D → S∗D

where t ranges in R. One can readily verify that this family of functions is in-

deed a flow. Consider now a fixed direction ω ∈ S1 and observe that, since D

is a rational polygon, the function Φt(x, ω) alternates through finitely many

angles. Indeed, the possible angles are generated by the possible reflections

along the edges of D. More precisely, each edge of the polygon is associated

with a linear map which takes a direction ω and maps it to the new direction

after regular reflection at that edge. Define Γ to be the finite group generated

under composition by these maps. We see that the billiard flow is invariant

with respect to

Dθ := D ×
∪
γ∈Γ

{γθ} .

That is, given t ∈ R and (x, ω) ∈ Dθ we have Φt(x, ω) ∈ Dθ.

Remark 3. The Φt-invariant set Dθ can be visualized as the gluing of #Γ

copies of D, with equivalent sides identified. It is thus seen that Dθ is an

oriented compact surface (see [MT02]). In the case of the equilateral triangle,

this process yields a surface of genus 1.

We denote the restriction of the billiard flow to Dθ by Φθ
t . Furthermore,
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on the set Dθ, the natural probability measure µθ is given by

dµθ =
1

#Γ

1

m(D)
dxdνθ

where νθ is the counting measure on {γθ : γ ∈ Γ}. As seen in [KSF82], for

every t ∈ R there holds that Φθ
t is µθ invariant. On the other hand, by

Theorem 1 in [KMS86], we know that Φθ
t is uniquely ergodic for almost

every θ. Combing these results, we conclude the following lemma.

Lemma 2.2. For almost every θ, Φθ
t is ergodic.

2.2.1 Egorov’s Theorem and Weyl’s Law

In this subsection, we discuss some central tools that will be needed for the

proof of Theorem 1.1. The statement of this theorem involves quantum limits,

which we now properly define.

Let (M, g) be a compact Riemannian manifold (possibly with boundary)

having dimension n ≥ 1. Now, we consider on (M, g) the eigenvalue problem

−∆gu = λ2u in M

where ∆g denotes the Laplace-Beltrami operator.

Definition 9. Let ν be a measure onM . Suppose there exists a sequence (uj)

of L2(M)-normalized eigenfunctions for ∆g whose corresponding eigenvalues

tend to positive infinity. Assume additionally that

lim
j→∞

∫
A

|uj(x)|2 dx =

∫
A

dν (2.2)

for every measurable set A ⊆M such that ∂A has measure 0 with respect to

dx. Then ν is called a quantum limit on M . Furthermore, if ν is absolutely

continuous with respect to the natural Riemann measure dx on M , then one

has dν = fdx for some function f known as the density of ν.
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In this text, we will often be interested in quantum limits associated to

a given sequence of eigenfunctions. Suppose that (uj) is an orthonormal

basis of L2(M) composed entirely of eigenfunctions for ∆g such that their

eigenvalues form an increasing sequence. Put otherwise, we assume that for

each j ∈ N one has

−∆guj = λ2juj in M

where (λj) is a non-negative, increasing sequence. If there exists a subse-

quence (ujk) of (uj) satisfying

lim
k→∞

∫
A

|ujk(x)|
2 dx =

∫
A

dν (2.3)

for every measurable set A ⊆ M with boundary of measure 0, then we say

that ν is a quantum limit associated to (uj).

As mentioned at the beginning of this section, we are interested in two

useful tools that will be central to our analysis of quantum limits. The first

of these is the standard Egorov’s theorem, which establishes an important

approximation relationship between quantum and classical time evolution.

As our exposition of this topic is not meant to be exhaustive, we refer the

reader to Chapters 11 and 15 of [Zwo12] for more information on this sub-

ject. Given a compact Riemannian (M, g), it is known (see [Zwo12, Theorem

C.13]) that for each t ∈ R there exists a unitary operator on L2(M)

U(t) = U(t;h) := eith∆g

such that 
U(t)U(s) = U(t+ s),

U(t)∗ = U(−t)

limt→0 ∥U(t)u− u∥L2(M) = 0 for all u ∈ L2(M).
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Furthermore,

Dt (U(t)u)− hU(t)∆gu = 0.

for all u ∈ C∞(M) such that −∆gu ∈ L2(M). Here, we adopt the convention

Dt = −i∂t. Note that if u is an eigenfunction of −∆g with eigenvalue λ2 then

Dt (U(t)u) + hλ2U(t)u = 0.

It follows that

U(t)u = e−ithλ2

u.

Theorem 2.3 (Egorov’s Theorem [Zwo12]). Let U(t) be as defined above, fix

T > 0 and suppose that Φt solves the Hamiltonian equation (2.1). For any

a ∈ S(T ∗M) there holds

∥U(−t)Oph(a)U(t)−Oph (a ◦ Φt)∥L2(M)→L2(M) = O(h)

uniformly for 0 ≤ t ≤ T .

Since a quantum limit is determined by the asymptotic behaviour of eigen-

functions, it is natural to seek a result that provides us with information

about the eigenvalues and eigenfunctions in the limit. Thankfully, such a

description is provided by Weyl’s law (both global and local versions), for

which we provide a precise formulation below. Although we shall not include

proofs for these now standard results, having them stated formally will aid

the reader in the arguments that follow. We quote these statements directly

from [Dya16, §2.5].
Fix a sequence of eigenfunctions (uj) forming an orthonormal basis of

L2(M) with associated eigenvalues

0 ≤ λ21 ≤ λ22 ≤ . . .
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The Weyl law gives us insight on the asymptotic behaviour of the eigenvalues

listed above.

Theorem 2.4 (Weyl law). As R → ∞, there holds(
2π

R

)n

# {j : λj ≤ R} = ωnVol(M) +O

(
1

R

)
Recall that our sequence of eigenvalues can be recovered from our eigen-

functions by “testing” these against the Laplace-Beltrami operator. In light

of this, we ask if Weyl’s law can therefore be extended in a way that reflects

this phenomenon. Particularly, we can partially describe how the eigenfunc-

tions behave when tested against a larger class of pseudodifferential operators

on L2(M).

Theorem 2.5 (Local Weyl law). For any smooth compactly supported func-

tion χ : (0,∞) → R and a ∈ S(T ∗M),

∞∑
j=1

χ

(
λj
R

)
⟨Oph(a)uj, uj⟩L2(M)

=

(
R

2π

)n
[∫

T ∗M

χ
(
|ξ|g
)
a

(
x,

ξ

|ξ|g

)
dxdξ +O

(
1

R

)]

as R → ∞

3 Eigenfunctions of a Rational Polygon

We dedicate this section to the proof of Theorem 1.1, following the argument

put forth by Marklof and Rudnick in [MR11].

Let D ⊆ R2 be a rational polygon. Here, the polygon D includes its

boundary. Recall that our phase space is the unit cotangent bundle, denoted

S∗D = D × S1.
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The associated Liouville measure is given by

dµ(x, ω) =
1

m(D)
dxdϕ

where ω = e2πiϕ for ϕ ∈ R/Z and m denotes the Lebesgue measure on R2.

A smooth function a : S∗D → C is known as an observable. Furthermore, if

there exists a function a0 : D → C such that

a(x, ω) = a0(x) (3.1)

for all ω ∈ S1, the we say that a is an isotropic observable. In other words, an

isotropic observable is a smooth function depending only in the position, or

equivalently independent of the momentum. For any observable a, we define

the time average by

aT (x, ω) :=
1

2T

∫ T

−T

a ◦ Φt(x, ω)dt.

Given θ ∈ S1, recall that we have defined

Dθ := D ×
∪
γ∈Γ

{γθ} .

as the subset of D × S1 containing all possible directions that can occur

with initial direction θ after repeatedly reflecting on the sides of D. By

Lemma 2.2, the restriction Φθ
t of Φt to Dθ is ergodic with respect to µ. This

crucial result enables us to establish the quantum ergodic theorems that will

be necessary in order to prove Theorem 1.1. In fact, from here on, our

proof follows a now standard method that can be applied to obtain very

general results on manifolds with ergodic flows (see for instance [Zwo12]).

Nevertheless, following notes from Dyatlov [Dya16], we include a proof for

the sake of completeness.
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Returning to our argument, our last assertion was that Φθ
t is ergodic

with respect to µθ for almost every θ. Then, the Birkhoff-Khinchin ergodic

theorem (see Theorem 2.1) implies that for any observable a there holds

lim
T→∞

aT (x, θ) =

∫
Dθ

adµθ

for a.e. x ∈ D. More compactly, we see that for almost every (x, ω) ∈ S∗D

there holds

lim
T→∞

aT (x, ω) =

∫
Dω

adµω =
1

#Γ

∑
γ∈Γ

1

m(D)

∫
D

a(x̃, γω)dx̃.

In particular, when a is isotropic the above reduces to

lim
T→∞

aT (x, ω) =
1

m(D)

∫
D

a0(x̃)dx̃ =: a

where a0 is given in equation (3.1). Finally, by the dominated convergence

theorem

lim
T→∞

∫
S∗D

|aT (x, ω)− a|2 dµ = 0.

We formalize the above result in the form of a lemma.

Lemma 3.1. [MR11, Lemma 2] For any isotropic observable

a(x, ω) = a0(x),

we have

lim
T→∞

∫
S∗D

|aT − a|2 dµ = 0.

where a = 1
m(D)

∫
D
a0(x)dx.

We now fix an orthonormal basis of Dirichlet eigenfunctions

ψ1, ψ2, ψ3, . . .
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with corresponding eigenvalues

0 ≤ λ21 ≤ λ22 ≤ λ23 ≤ . . .

That is, −∆ψn = λ2nψn in D◦

ψn = 0 on ∂D

for each n ∈ N. We also define the sequence

hn =
1

λn

which, as n→ ∞, concentrates near the origin. In Lemma 3.1, it was shown

that the time average aT of an isotropic observable a converges to the position

average of a in L2(S∗D). We now ask if, for fixed T , one can compare the

expectation of a with respect to the probability densities |ψn|2 dx to that of

aT . More specifically, the following asymptotic result provides an accurate

answer to this question.

Lemma 3.2. For any a ∈ S(T ∗D) and T > 0,∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2 − ∣∣∣⟨Ophn
(aT )ψn, ψn

⟩
L2(D)

∣∣∣2 → 0

as n tends to infinity. In particular, if a is isotropic then a(x, ω) = a0(x) for

some function a0 : D → C and∣∣∣∣∫
D

a0(x) |ψn(x)|2 dx
∣∣∣∣2 − ∣∣∣⟨Ophn

(aT )ψn, ψn

⟩
L2(D)

∣∣∣2 → 0

as n→ ∞.

Proof. Consider the propagator

U(t) = U(t;n) = exp (ithn∆) .
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Since

U(t)ψn = e−itλnψn,

we see that

⟨Oph(a)ψn, ψn⟩L2(D) = ⟨Oph(a)U(t)ψn, U(t)ψn⟩L2(D)

= ⟨U(−t)Oph(a)U(t)ψn, ψn⟩L2(D)

where in the last step we have used that U(t)∗ = U(−t). It then follows from

Egorov’s Theorem, that

⟨
Ophn

(a)ψn, ψn

⟩
L2(D)

−
⟨
Ophn

(a ◦ Φt)ψn, ψn

⟩
L2(D)

= O(h) (3.2)

uniformly for 0 ≤ t ≤ T . Therefore, taking the average integral from −T to

T on either side of (3.2), we infer that∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

−
⟨
Ophn

(aT )ψn, ψn

⟩
L2(D)

∣∣∣→ 0.

In order to conclude the result as stated in the lemma, we note that Ophn
(a)

and Ophn
(aT ) are bounded linear operators on L2(D). Furthermore, this

bound is uniform for all hn sufficiently small, or rather for all n large. Hence,

⟨
Ophn

(a)ψn, ψn

⟩
L2(D)

,
⟨
Ophn

(aT )ψn, ψn

⟩
L2(D)

are uniformly bounded in n. Finally, the result follows from the fact that the

mapping x 7→ |x|2 is uniformly continuous on bounded sets.

In these two previous results, we carried out comparisons of a with respect

to its time averages; first with respect to the Liouville measure on the unit

cotangent bundle, and then with respect to the probability densities |ψn|2 dx.
In order to relate these results, we can compare how the function a averages

against both the Liouville measure and the probability densities given by

the eigenfunctions. In more precise terms, we postulate that the expectation
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of a function a ∈ S(T ∗D), taken with respect to the probability densities

|ψn|2 dx, is comparable to the average of a on the unit cotangent bundle

S∗D. Specifically, the expectation of a is eventually almost always bounded

above by a constant multiple of∫
S∗D

|a(x, ω)|2 dµ.

In fact, we assert that there exists a constant C independent of a and R such

that, as R → ∞,

1

R2

∑
λn∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ C

∫
S∗D

|a(x, ω)|2 dµ+O

(
1

R

)
.

However, we first note that by Weyl’s law, # {n : λn ∈ [R, 2R]} ∼ R2. There-

fore, this inequality tells us that, eventually, most terms

⟨
Ophn

(a)ψn, ψn

⟩
L2(D)

are at most a constant multiple of the L2-average of a on S∗D.

Lemma 3.3. For any a ∈ S(T ∗D),

1

R2

∑
λn∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ C

∫
S∗D

|a(x, ω)|2 dµ+O

(
1

R

)

for some constant C independent of a and R.

Proof. By the Cauchy-Schwartz inequality,

∑
λn∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ ∑
λn∈[R,2R]

∥∥Ophn
(a)ψn

∥∥2
L2(D)

(3.3)

≤
∞∑
n=1

χ

(
λn
R

)∥∥Ophn
(a)ψn

∥∥2
L2(D)

. (3.4)
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for any non-negative cut-off function χ ∈ C∞
c ((0,∞)) whose restriction to

the interval [1, 2] is the constant function 1. Now, observe that

∥∥Ophn
(a)ψn

∥∥2
L2(D)

=
⟨
Ophn

(a)ψn,Ophn
(a)ψn

⟩
L2(D)

=
⟨
Ophn

(a)∗Ophn
(a)ψn, ψn

⟩
L2(D)

=
⟨
Ophn

(|a|2)ψn, ψn

⟩
L2(D)

+O(hn).

Using that hn = 1/λn, and the asymptotic expansion above in (3.3)-(3.4), it

follows that∑
λn∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2
≤

∑
λn∈[R,2R]

χ

(
λn
R

)(⟨
Ophn

(|a|2)ψn, ψn

⟩
L2(D)

+O(hn)
)

=
∑

λn∈[R,2R]

χ

(
λn
R

)(⟨
Ophn

(|a|2)ψn, ψn

⟩
L2(D)

+O

(
1

R

))
.

Finally, by Weyl’s law and the local Weyl law (Theorems 2.4 and 2.5)

1

R2

∑
λn∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ C

∫
S∗D

|a(x, ω)|2 dµ+O

(
1

R

)

where C is independent on a and R.

Finally, by combining the conclusions of Lemmas 3.1, 3.2 and 3.3, we can

show that a fixed function a eventually “almost always” equidistributes with

respect to the probability densities |ψn|2 dx. This is, of course, made formal

below.

Lemma 3.4. Let a0 ∈ C∞
c (D) and define a ∈ S(T ∗D) by a(x, ω) = a0(x).

Then

lim
R→∞

1

R2

∑
λj∈[R,2R]

∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

− a
∣∣∣2 = 0
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where

a =

∫
S∗D

a(x, ω)dµ =
1

m(D)

∫
D

a0(x)dx.

Proof. Let T > 0 be given. Note that, by applying Lemma 3.2,∣∣∣⟨Ophn
(a)ψn, ψn

⟩
L2(D)

− a
∣∣∣2 − ∣∣∣⟨Ophn

(aT )ψn, ψn

⟩
L2(D)

− a
∣∣∣2

=
∣∣∣⟨Ophn

(a− a)ψn, ψn

⟩
L2(D)

∣∣∣2 − ∣∣∣⟨Ophn
((a− a)T )ψn, ψn

⟩
L2(D)

∣∣∣2
is o(1) as n → ∞. Subsequently, invoking Weyl’s law (see Theorem 2.4), it

follows that

1

R2

∑
λj∈[R,2R]

(∣∣∣⟨Ophn
(a− a)ψn, ψn

⟩
L2(D)

∣∣∣2 − ∣∣∣⟨Ophn
((a− a)T )ψn, ψn

⟩
L2(D)

∣∣∣2)

tends to 0 as R → ∞. On the other hand, appealing to Lemma 3.3,

1

R2

∑
λj∈[R,2R]

∣∣∣⟨Ophn
((a− a)T )ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ C

∫
S∗D

|aT − a|2 dµ+O

(
1

R

)
.

Combining these last two equations, we see that

lim sup
R→∞

1

R2

∑
λj∈[R,2R]

∣∣∣⟨Ophn
(a− a)ψn, ψn

⟩
L2(D)

∣∣∣2 ≤ C

∫
S∗D

|aT − a|2 dµ.

Our assertion is verified by citing Lemma 3.1 and taking T → ∞.

We are now in a position to prove an analogue of Theorem 1.1. Informally,

this can be thought of as a “cut off” version of the equidistribution theorem

due to Marklof-Rudnick [MR11]. Using this slight analogue, we will later

provide a proof of Theorem 1.1.

Theorem 3.5. [MR11, Theorem 4] There is a density-one sequence nj → ∞
such that

lim
j→∞

∫
D

a0(x)
∣∣ψnj

(x)
∣∣2 dx =

1

m(D)

∫
D

a0(x)dx.
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for any a0 ∈ C∞
c (D◦). Here, by a density-one sequence we mean that

lim
N→∞

# {j : nj ≤ N}
N

= 1.

Proof. By Theorem 1.7, we may pick a sequence of functions (ak)
∞
k=1 in

C∞
c (D◦) that are dense in this space with respect to the uniform norm. We

will use a diagonal argument to construct a density-one sequence (nj) such

that

lim
j→∞

∫
D

ak(x)
∣∣ψnj

(x)
∣∣2 dx =

1

m(D)

∫
D

ak(x)dx. (3.5)

for every k ∈ N. Then, we will show that the more general result follows by

density.

Before moving further, we establish some notation. Given r ∈ N, let

Nr := #
{
j : λj ∈ [2r, 2r+1)

}
.

Then, given s ∈ N we set

εr,s := max
k≤s

 1

Nr

∑
λn∈[2r,2r+1)

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣2
 .

By Weyl’s law and Lemma 3.3, the above tends to 0 as r → ∞. In particular,

we may construct a strictly increasing sequence (rs)s∈N such that for each

s ∈ N
εr,s < 2−4s

for all r ≥ rs. Especially,

22ssεr,s ≤ 23sεr,s < 2−s

for each r ≥ rs. Using this sequence, we partition the natural numbers,

removing unwanted terms from each set in the partition. More precisely, we
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consider the set

Js =

{
n : λn ∈ [2rs , 2rs+1) , max

k≤s

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣ < 2−s

}
.

We claim that for each s ∈ N

#Js
# {n : λn ∈ [2rs , 2rs+1)}

≥ 1− 2−s.

To see this, we further partition our sets;

{n : λn ∈ [2rs , 2rs+1)} =
∪

rs≤r<rs+1

{
n : λn ∈

[
2r, 2r+1

)}
.

Applying a similar rule to Js, it follows from Lemma 1.3 that1

#Js
# {n : λn ∈ [2rs , 2rs+1)}

≥ min
rs≤r<rs+1

#(Js ∩ {n : λn ∈ [2r, 2r+1)})
# {n : λn ∈ [2r, 2r+1)}

= min
rs≤r<rs+1

#(Js ∩ {n : λn ∈ [2r, 2r+1)})
Nr

(3.6)

On the other hand, given r ≥ rs there holds

# (Js ∩ {n : λn ∈ [2r, 2r+1)})
Nr

= 1− #({n : λn ∈ [2r, 2r+1)} \ Js)
Nr

. (3.7)

In order to obtain a bound on the last term above, will use Chebyshev’s

inequality. To this end set

Ω =
{
n : λn ∈

[
2r, 2r+1

)}
and associate the uniform distribution P. We then define the random variable

1Note that if #
{
n : λn ∈

[
2r, 2r+1

)}
= 0, then #

(
Js ∩

{
n : λn ∈

[
2r, 2r+1

)})
= 0.

Hence, both terms may be ignored in this case and Lemma 1.3 applies.
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X : Ω → [0,∞) by

X(n) = max
k≤s

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣ .
Observe that

P
[
X ≥ 2−s

]
=

#({n : λn ∈ [2r, 2r+1)} \ Js)
Nr

.

On the other hand, by Chebyshev’s inequality,

P
[
X ≥ 2−s

]
= P

[
|X|2 ≥ 2−2s

]
≤ 22s

∫
Ω

|X|2 dP

= 22s
1

Nr

∑
λn∈[2r,2r+1)

max
k≤s

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣2
≤ 22s

1

Nr

∑
λn∈[2r,2r+1)

s∑
k=1

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣2

= 22s
s∑

k=1

 1

Nr

∑
λn∈[2r,2r+1)

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣2


≤ 22ssmax
k≤s

 1

Nr

∑
λn∈[2r,2r+1)

∣∣∣⟨Ophn
(ak)ψn, ψn

⟩
L2(D)

− ak

∣∣∣2


= 22ssεs,r < 2−s.

Returning to (3.7),

# (Js ∩ {n : λn ∈ [2r, 2r+1)})
Nr

= 1− #({n : λn ∈ [2r, 2r+1)} \ Js)
Nr

= 1− P
[
X ≥ 2−s

]
≥ 1− 2−s.
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Since this holds for all r ≥ rs, applying this bound to equation (3.6) yields

#Js
# {n : λn ∈ [2rs , 2rs+1)}

≥ min
rs≤r<rs+1

#(Js ∩ {n : λn ∈ [2r, 2r+1)})
Nr

≥ 1− 2−s.

Using this last inequality, we can show that an increasing sequence (nj)

satisfying

{nj : j ∈ N} =
∪
s∈N

Js

must have density-one. Indeed, using Lemma 1.4 we see that

#
{∪S

s=1 Js

}
# {n : λn < 2rS+1}

=

∑S
s=1#Js∑S

s=1 # {n : λn ∈ [2rs , 2rs+1)}

≥
∑S

s=1(1− 2−s)# {n : λn ∈ [2rs , 2rs+1)}∑S
s=1 # {n : λn ∈ [2rs , 2rs+1)}

= 1−
∑S

s=1 2
−s# {n : λn ∈ [2rs , 2rs+1)}∑S

s=1# {n : λn ∈ [2rs , 2rs+1)}
S→∞−−−→ 1.

Consequently, (nj) is a density-one sequence.

We now show that this sequence satisfies equation (3.5). Indeed, one has

by construction that∣∣∣∣⟨Ophnj
(ak)ψnj

, ψnj

⟩
L2(D)

− ak

∣∣∣∣→ 0

for any k ∈ N. Finally, pick an arbitrary function a ∈ C∞
c (D◦) and let ε > 0

be given. We may find k ∈ N such that

sup
x∈D◦

|a(x)− ak(x)| < ε.
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It follows that

lim sup
j→∞

∣∣∣∣∫
D

a(x)
∣∣ψnj

∣∣2 dx− 1

m(D)

∫
D

a(x)dx

∣∣∣∣
≤ lim sup

j→∞

(
2ε+

∣∣∣∣∫
D

ak(x)
∣∣ψnj

∣∣2 dx− 1

m(D)

∫
D

ak(x)dx

∣∣∣∣)
= 2ε.

Since ε > 0 is arbitrary, our result follows.

Theorem 1.1, which we recall below, is now finally within reach.

Theorem 1.1. [MR11] Let D be a rational polygon and fix an orthonormal

basis (φn)
∞
n=1 of the Dirichlet Laplacian on D. Then, there exists a sequence

of natural numbers (nj) such that

lim
j→∞

∫
A

∣∣φnj
(x)
∣∣2 dx =

area(A)

area(D)
(1.1)

for all measurable sets A ⊆ D with boundary ∂A having Lebesgue measure 0.

Furthermore, we have

lim
N→∞

# {j : nj ≤ N}
N

= 1. (1.2)

Given Theorem 3.5, the proof is now a straightforward density argument.

The idea behind the proof is to sharpen the conclusions of Theorem 3.5 by

approximating the indicator function 1A of a set A by a carefully chosen

sequence of functions (aj) ⊆ C∞
c (D◦). Repeating the same argument for

D \A, we thereby obtain two inequalities that, when combined, establish the

theorem.

Proof of Theorem 1.1. We will prove our assertion for the density-one se-

quence (nj) obtained in Theorem 3.5. Consider an arbitrary measurable set

A ⊆ D with boundary of measure 0. Without loss of generality, we may
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suppose that A is closed. We construct a sequence (ak) ⊆ C∞
c (D◦) approxi-

mating 1A in L1(D). Furthermore, we may suppose without loss of generality

0 ≤ ak ≤ 1 and ak ≤ ak+1 ≤ 1A

for each k ∈ N. Note that such a sequence is obtained by multiplying 1A by

a cut-off function then mollifying. For any k ∈ N,

lim inf
j→∞

∫
A

aj(x)
∣∣ψnj

(x)
∣∣2 dx ≥ lim inf

j→∞

∫
A

ak(x)
∣∣ψnj

(x)
∣∣2 dx

= lim
j→∞

∫
A

ak(x)
∣∣ψnj

(x)
∣∣2 dx

=
1

m(D)

∫
D

ak(x)dx.

Letting k ↗ ∞ yields

lim inf
j→∞

∫
A

aj(x)
∣∣ψnj

(x)
∣∣2 dx ≥ m(A)

m(D)
.

Combining our results, we conclude that

lim inf
j→∞

∫
A

|ψnk
(x)|2 dx ≥ lim inf

j→∞

∫
A

aj(x)
∣∣ψnj

(x)
∣∣2 dx ≥ m(A)

m(D)

So far, we have shown that for any measurable set A ⊆ D with boundary of

measure 0, there holds

lim inf
j→∞

∫
A

|ψnk
(x)|2 dx ≥ m(A)

m(D)
.
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Since D \ A is also a measurable subset of D with boundary of measure 0,

lim sup
j→∞

∫
A

∣∣ψnj
(x)
∣∣2 dx = lim sup

j→∞

(∫
D

∣∣ψnj
(x)
∣∣2 dx− ∫

D\A

∣∣ψnj
(x)
∣∣2)

= 1− lim inf
j→∞

∫
D\A

∣∣ψnj
(x)
∣∣2 dx

≤ 1− m(D \ A)
m(D)

=
m(A)

m(D)
.

Thus, we also have the converse inequality which concludes out proof.

Remark 4. Recall that Theorem 1.1 applies only to measurable sets A ⊆ D

having a boundary of measure 0. Our proof actually illustrates why this last

condition is necessary. More precisely, we have shown that

lim inf
j→∞

∫
Ā

|ψnk
(x)|2 dx ≥

m
(
Ā
)

m(D)

By the same argument, the above inequality remains true on the closure of

D \ A. That is,

lim inf
j→∞

∫
D\A

|ψnk
(x)|2 dx ≥

m
(
D \ A

)
m(D)

Finally, using the ∂A has measure 0, we see that A and D \ A differ from

their respective closures by a set of measure 0. Hence, combining these last

two inequalities yields the statement.

4 The Equilateral Triangle

Throughout the remainder of this thesis, we will denote by T an equilateral

triangle having sides of length 1 embedded in the R2-plane (see Figure 2).

We note that, following convention from an earlier section, T includes it’s
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(0,0) (1,0)

(1
2
,
√
3
2
)

Figure 2: Equilateral Triangle T .

boundary. In this section, we ask whether it is possible to find an explicit

countable orthonormal basis of L2(T ) consisting purely of eigenfunctions on

T satisfying either the Dirichlet or Neumann boundary conditions.

We now take a moment to outline the argument we will employ, which

largely follows the approach used in Pinsky [Pin80]. Namely, we roughly

describe how we will obtain an orthonormal basis of L2(T ) consisting of

Dirichlet (or Neumann) eigenfunctions of the Laplacian. Consider an eigen-

function f of the Dirichlet (resp. Neumann) Laplacian on the triangle T . By

a reflection argument, we can extend f to be an eigenfunction of the Dirichlet

Laplacian (resp. Neumann) on a parallelogram P .

(0,0) (3,0)

(3
2
, 3

√
3
2
) (3 + 3

2
, 3

√
3
2
)

Figure 3: Parallelogram P .
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It will be most convenient to also consider a parallelogram that contains

18 copies of the triangle T . In more precise terms, we want to consider a

parallelogram P having end points (0, 0), (3, 0), (3+ 3
2
, 3

√
3
2
) and (3

2
, 3

√
3
2
); see

the Figure 3 for more details.

Then, appealing to a now standard result, see [BGM71, page 148], we can

write f as a series whose terms are of the form

exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
(4.1)

where the indices (µ, ν) range over Z × Z. Indeed, the above collection of

Laplace eigenfunctions is known to be an orthogonal basis of L2(P ). Now,

observing patterns in the coefficients and grouping terms accordingly, we

show that f can in fact be written as a linear combination of functions

satisfying the Dirichlet (resp. Neumann) condition on the original triangle

T . Since f was an arbitrary Dirichlet (resp. Neumann) eigenfunction on T ,

and these form a Schauder basis of L2(T ), the functions obtained through

this process must in turn form a basis L2(T ) as well. However, we still

want an orthonormal basis of L2(T ). Luckily, given our convenient choice of

parallelogram, it will turn out that these functions are already orthogonal.

We now formally state the results that we aim to establish within this

section. They are completely analogous, one applying to Dirichlet boundary

conditions and the other to Neumann conditions.

Theorem 4.1. An orthonormal basis of Dirichlet eigenfunctions for L2(T )

is given by

φm,n(x, y) = 3−1/4

√
2

3


e

2πi
3 ((n−m)x+

√
3(m+n)y) − e

2πi
3 ((n−m)x−

√
3(m+n)y)

+ e
2πi
3 (−(2n+m)x−

√
3my) − e

2πi
3 (−(2n+m)x+

√
3my)

+ e
2πi
3 ((2m+n)x−

√
3ny) − e

2πi
3 ((2m+n)x+

√
3ny)
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where (m,n) range over N× N. The eigenvalue corresponding to φm,n is

16π2

9

(
m2 +mn+ n2

)
.

Next we state the analogous Neumann result:

Theorem 4.2. An orthonormal basis of Neumann eigenfunctions for L2(T )

is given by

ψm,n(x, y) = 3−1/4

√
2

3


e

2πi
3 ((n−m)x+

√
3(m+n)y) + e

2πi
3 ((n−m)x−

√
3(m+n)y)

+ e
2πi
3 (−(2n+m)x−

√
3my) + e

2πi
3 (−(2n+m)x+

√
3my)

+ e
2πi
3 ((2m+n)x−

√
3ny) + e

2πi
3 ((2m+n)x+

√
3ny)


where (m,n) range over N0 × N0. The eigenvalue corresponding to ψm,n is

16π2

9

(
m2 +mn+ n2

)
.

4.1 Dirichlet Eigenfunctions

In this section, we establish the Dirichlet case of the previous two theorems,

i.e. we give the proof of Theorem 4.1. Following the outline above, we begin

with an arbitrary Dirichlet eigenfunction f on T . That is, f ∈ C2(T̊ )∩C0(T )

is a solution to −∆f = λf in T

f = 0 on ∂T

for some λ ≥ 0. We may then reflect f along each side of the triangle T

(see [DL55]). In more precise terms, given a point (x, y) ∈ T , if (x′, y′) is the

reflection of (x, y) along a side of the triangle, then we define

f(x′, y′) = −f(x, y).
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Repeating this reflection process for each side of the triangle, it is easily

verified that f can be extended to a smooth function on the entire plane. By

construction, our function satisfies the equation

−∆f = λf

on all in R2. Moreover,

f ◦Ri = −f on R2 (4.2)

for i = 1, 2, 3 where the reflection operators about each side of the equilateral

triangle T are given by
R1(x, y) = (x,−y)

R2(x, y) =
1
2
(−x+

√
3y,

√
3x+ y)

R3(x, y) =
1
2
(3− x−

√
3y,

√
3−

√
3x+ y).

Since the collection of functions in equation (4.1) form an orthogonal basis

of L2(P ), the restriction of f to the parallelogram P can be expressed as a

series of the form

f =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
. (4.3)

We now make use of equation (4.2) in order to establish a pattern in the

coefficients Cµ,ν . First, taking i = 1, we see that
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f ◦R1(x, y) =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µx− 2ν − µ√

3
y

)]

=
∑
(µ,ν)

Cµ,µ−ν exp

[
2πi

3

(
µx− 2(µ− ν)− µ√

3
y

)]

=
∑
(µ,ν)

Cµ,µ−ν exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
= −f(x, y).

Therefore, we have

Cµ,ν = −Cµ,µ−ν (4.4)

for all pairs (µ, ν). Similarly, for i = 2 we obtain

f ◦R2(x, y) =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µ
−x+

√
3y

2
+

2ν − µ√
3

√
3x+ y

2

)]

=
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
(ν − µ)x+

µ+ ν√
3
y

)]

=
∑
(µ,ν)

Cν−µ,ν exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
= −f(x, y)

whence

Cµ,ν = −Cν−µ,ν (4.5)

for all pairs (µ, ν). Finally, we have

f ◦R3(x, y) =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µ
3− x−

√
3y

2
+

2ν − µ√
3

√
3−

√
3x+ y

2

)]

=
∑
(µ,ν)

C−ν,−µ exp

(
−2πi

3
(µ+ ν)

)
exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
= −f(x, y)
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so

Cµ,ν = −C−ν,−µ exp

(
−2πi

3
(µ+ ν)

)
.

On the other hand, using the information in (4.4) and (4.5) yields

Cµ,ν = −Cµ,µ−ν = C−ν,µ−ν = −C−ν,−µ.

Combining the last two equations we conclude that if Cµ,ν ̸= 0 then

exp

(
−2πi

3
(µ+ ν)

)
= 1. (4.6)

Or, equivalently, µ+ ν ≡ 0 mod 3. Finally, notice that if µ = 2ν then

Cµ,ν = −Cµ,µ−ν = −Cµ,ν

so Cµ,ν = 0. Therefore, if Cµ,ν ̸= 0 then µ ̸= 2ν and, similarly, ν ̸= 2µ. From

our work thus far we conclude that if Cµ,ν ̸= 0 then2

(1) µ+ ν ≡ 0 mod 3,

(2) µ ̸= 2ν,

(3) ν ̸= 2µ,

Since µ+ ν ≡ 0 mod 3, one may write

µ = n−m and ν = 2n+m

2One may observe that if the pair (µ, ν) satisfies conditions (1), (2) and (3) then so do
the pair (µ, µ− ν) and (ν − µ, ν).
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for integers m,n. With this notation, we see that the function f must be a

linear combination of functions

φ̃m,n(x, y) = exp

[
2πi

3

(
(n−m)x+

√
3(m+ n)y

)]
− exp

[
2πi

3

(
(n−m)x−

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
−(2n+m)x−

√
3my

)]
− exp

[
2πi

3

(
−(2n+m)x+

√
3my

)]
+ exp

[
2πi

3

(
(2m+ n)x−

√
3ny

)]
− exp

[
2πi

3

(
(2m+ n)x+

√
3ny

)]
where (m,n) range over Z×Z. Since f was an arbitrary Dirichlet eigenfunc-

tion on T , the above collection of functions consequently forms a (Schauder)

basis of L2(T ).

However, it turns out that this collection contains redundancies. More

precisely, restricting ourselves to (m,n) ∈ N × N, this collection remains a

(Schauder) basis of L2(T ). To see this, we make 3 important observations:

(1) If n = 0 or m = 0 then φ̃m,n = 0,

(2) φ̃m,n = −φ̃−n,−m,

(3) φ̃m,n = −φ̃m+n,−n.

From the above we see that all pairs (m,n) ̸∈ N × N may be discarded.

Indeed, if m = 0 or n = 0 then by (1) we have φ̃m,n = 0 and there is nothing

to show. If m,n are both negative then we may apply (2) to conclude that

φ̃m,n is redundant given φ̃−n,−m. Suppose now that m is positive but n is

negative. If m+ n ≥ 0 then (3) shows that φ̃m,n is redundant. On the other

hand, if m+n < 0 then (2) and (3) show that φ̃m,n = −φ̃−n,−m = φ̃−(m+n),m

so once again φ̃m,n is seen to be redundant. Finally, we can handle the case

where m is negative but n is positive with a similar argument.

Recalling that our goal was to find an orthonormal basis of Dirichlet

eigenfunctions for L2(T ), we ask whether φ̃m,n is a Dirichlet eigenfunction

for each index (m,n) ∈ N×N. We first check that the φ̃m,n indeed solve the
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Helmholtz equation. Indeed, by a straightforward computation, we see that

−∆φ̃m,n =
16π2

9

(
m2 +mn+ n2

)
φ̃m,n.

Furthermore, along the lines y = 0, y =
√
3x and y =

√
3 −

√
3x, one can

readily verify that φ̃m,n(x, y) = 0. In particular, we have φ̃m,n |∂T≡ 0 as

desired.

In order to establish that φ̃m,n are indeed eigenfunctions, it remains to

check that they are non-trivial. It is easily established that cancellation

occurs if and only if n = 0, m = 0 or m = −n. Therefore, these are the only

cases where φ̃m,n ≡ 0. Since in all three cases, we cannot have that n and m

are positive integers, the functions φ̃n,m for (n,m) ∈ N×N are non-vanishing

and thus eigenfunctions.

Remark 5. Notice that µ = 2ν if and only if n = −m and ν = 2µ if and only

if m = 0. In these cases, we have that φ̃m,n is trivial.

We now show that the collection of functions φ̃m,n is orthogonal with

respect to the L2-inner product on T . First, we make one more observation.

Our expression for φ̃m,n is valid on all of R2. On the entire plane, φ̃m,n is

a Laplace eigenfunction and, in particular, analytic. As mentioned previ-

ously, repeated reflection also allows us to extend φ̃m,n to an eigenfunction

on the entire plane. By the Identity Theorem (Theorem 1.8), this extension

coincides with our expression for φ̃m,n. In particular, φ̃m,n satisfies equation

(4.2). That is,

φ̃m,n ◦Ri = −φ̃m,n

for each i = 1, 2, 3 and every (m,n) ∈ N × N. It follows that for any two

pairs (m,n), (m′, n′) ∈ N× N,

∫
T

φ̃m,nφ̃m′,n′dxdy =
1

2

∫ √
3/2

0

∫ 1

0

φ̃m,nφ̃m′,n′dxdy (4.7)

50



Now, the product

φ̃m,nφ̃m′,n′ .

is a linear combination of functions of the form

exp

(
2πi

3
(3ax+

√
3by)

)
where a, b ∈ Z. Furthermore, if the pair (m,n) is distinct from (m′, n′) then

it cannot be the case that both a and b are zero. Finally, observe that if

a = 0 then b must be even. Therefore,

∫ √
3/2

0

∫ 1

0

exp

(
2πi

3
(3ax+

√
3by)

)
dxdy

=


−
√
3

4π2ab

(
e2πia+πib − e2πia − eπib + 1

)
if a, b ̸= 0

√
3

2πib

(
eπib − 1

)
if a = 0

√
3

4πi
(e2πia − 1) if b = 0

= 0

(4.8)

and we conclude from equation (4.7) that the eigenfunctions are indeed or-

thogonal in L2(T ).

It remains only to normalize our orthogonal eigenfunctions. We therefore

compute the L2 norm of φ̃m,n. That is, we repeat our last computation but

for (m,n) = (m′, n′). In this case, the product

|φ̃m,n|2 = φ̃m,nφ̃m,n.

is precisely equal to 6 plus a linear combination of functions of the form

exp

(
2πi

3
(3ax+

√
3by)

)
where a, b ∈ Z where
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(1) at most one of a and b can be zero;

(2) if a = 0 then b must be even.

We refer the interested reader to the appendix for an explicit computation

of |φ̃m,n|2. By equation (4.8), the integral of |φ̃m,n|2 is entirely determined

by the constant term. That is,

∫
T

|φ̃m,n|2 =
1

2

∫ √
3/2

0

∫ 1

0

6 dxdy =
3

2

√
3.

Or, rather, ∥φ̃m,n∥L2(T ) = 31/4
√

3/2 and we see that

φm,n := 3−1/4

√
2

3
φ̃m,n.

is the desired orthonormal basis of L2(T ) as described in Theorem 4.1.

4.2 Neumann Eigenfunctions

We now treat the Neumann analogue of Theorem 4.1. In particular, we prove

Theorem 4.2. Consider an eigenfunction f satisfying Neumann boundary

conditions, i.e. f ∈ C2(T̊ ) ∩ C1(T ) and ∂νf ≡ 0 on ∂T where ν denotes the

outward normal vector field on ∂T .

As in the previous section, we want to write f as a linear combination of

“well understood” functions. This is also done by way of a reflection-type

argument. However, we will now be using positive reflections to achieve this.

More precisely, we can extend f to a Laplace eigenfunction on all of R2 in a

way that satisfies (see [DL55])

f ◦Ri = f on R2 (4.9)

for i = 1, 2, 3. Here, we are once again Ri to denote the reflection operations
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about each side of the equilateral triangle. More specifically, we have
R1(x, y) = (x,−y)

R2(x, y) =
1
2
(−x+

√
3y,

√
3x+ y)

R3(x, y) =
1
2
(3− x−

√
3y,

√
3−

√
3x+ y).

Then, since the functions in (4.1) form an orthogonal basis of L2(P ), the

restriction of f to the parallelogram P may be expressed as a series

f =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]

Now, taking i = 1 in (4.9) we obtain

f ◦R1(x, y) =
∑
(µ,ν)

Cµ,ν exp

[
2πi

3

(
µx− 2ν − µ√

3
y

)]

=
∑
(µ,ν)

Cµ,µ−ν exp

[
2πi

3

(
µx+

2ν − µ√
3

y

)]
= f(x, y).

Therefore,

Cµ,ν = Cµ,µ−ν (4.10)

for all pairs (µ, ν). Similarly, using (4.9) with i = 2 we see that

Cµ,ν = Cν−µ,ν (4.11)

for all pairs (µ, ν). Finally, considering i = 3, we can derive the equation

Cµ,ν = C−ν,−µ exp

(
−2πi

3
(µ+ ν)

)
.
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On the other hand, combining equations (4.10) and (4.11), we also have

Cµ,ν = Cµ,µ−ν = C−ν,µ−ν = C−ν,−µ.

Therefore, we conclude that if Cµ,ν ̸= 0 then

exp

(
−2πi

3
(µ+ ν)

)
= 1. (4.12)

Or, equivalently, µ+ ν ≡ 0 mod 3. Hence, one may write

µ = n−m and ν = 2n+m

for integers m,n. It follows that f can be represented as a linear combination

of functions taking the form

ψ̃m,n(x, y) = exp

[
2πi

3

(
(n−m)x+

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
(n−m)x−

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
−(2n+m)x−

√
3my

)]
+ exp

[
2πi

3

(
−(2n+m)x+

√
3my

)]
+ exp

[
2πi

3

(
(2m+ n)x−

√
3ny

)]
+ exp

[
2πi

3

(
(2m+ n)x+

√
3ny

)]
where (m,n) range over Z×Z. As f was taken to be an arbitrary eigenfunc-

tion of the Laplacian on T with Neumann boundary conditions, it follows

that every Neumann eigenfunction is a linear combination of the functions

above.

We now assert that it is enough to consider ψ̃m,n where (m,n) range over

N0 × N0. As in the previous section, this fact follows from the following

observations;

(1) ψ̃m,n = ψ̃−n,−m,

(2) ψ̃m,n = ψ̃m+n,−n.
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To summarize, we have obtained a Schauder basis of L2(T ). It remains to

verify that these are orthogonal Neumann eigenfunctions of the Laplacian on

T . A straightforward calculation gives

−∆ψ̃m,n =
16π2

9

(
m2 +mn+ n2

)
ψ̃m,n in R2.

Therefore, the functions ψ̃n,m solve the Helmholtz equation in R2. It is

also clear that ψ̃n,m ̸≡ 0 for each n,m ∈ N0. Hence, ψ̃n,m is indeed an

eigenfunction for the Laplacian for each n,m ∈ N0. Along the line y = 0, we

see that

∂νψ̃m,n(x, 0)

=− 2πi

3

(√
3(m+ n) exp

[
2πi

3
(n−m)x

]
−

√
3(m+ n) exp

[
2πi

3
(n−m)x

]
−

√
3m exp

[
−2πi

3
(2n+m)x

]
+
√
3m exp

[
−2πi

3
(2n+m)x

]
−
√
3n exp

[
2πi

3
(2m+ n)x

]
+
√
3n exp

[
2πi

3
(2m+ n)x

])
= 0.

Similarly, we see that ∂νψ̃m,n = 0 along the line y =
√
3x and y =

√
3−

√
3x.

In particular, we have

∂νψ̃m,n |∂T≡ 0

so the eigenfunctions satisfy the Neumann boundary condition.

Finally, carrying out the same computations as in the previous section

shows that the collection ψ̃n,m over (m,n) ∈ N0 × N0 is orthogonal with

respect to the L2(T ) inner product. Normalizing this functions, we infer

that

ψm,n := 3−1/4

√
2

3
ψ̃m,n,

for (m,n) ∈ N0 × N0, is the desired orthonormal basis of Neumann eigen-

functions as in Theorem 4.2.
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4.3 Quantum Limits

Having obtained an orthonormal sequence of Dirichlet (resp. Neumann)

eigenfunctions, we now describe their asymptotic behaviour. That is, we ask

how these concentrate as the eigenvalues tend to infinity. By Theorem 1.1,

we know that “most” subsequences of eigenfunctions will equidistribute. In

this section, we explicitly find all quantum limits associated to our sequences

of eigenfunctions. As far as the author can tell, this result was not previously

available in the literature.

Theorem 4.3. For the orthonormal basis of Dirichlet (resp. Neumann)

eigenfunctions on T given by Theorem 4.1 (resp. Theorem 4.2) the possi-

ble quantum limits are precisely the weighted Lebesgue measures on T with

density given by

fn :=
2

3
√
3

6∑
j=1

fn,j,

where n ∈ N0 and

fn,1(x, y) = 1− exp

(
2πi

3
n
(
3x+

√
3y
))

,

fn,2(x, y) = 1− exp

(
2πi

3
n
(
3x−

√
3y
))

,

fn,3(x, y) = 1− exp

(
2πi

3
n
(
−3x+

√
3y
))

,

fn,4(x, y) = 1− exp

(
2πi

3
n
(
−3x−

√
3y
))

,

fn,5(x, y) = 1− exp

(
2πi

3
n
(
2
√
3y
))

,

fn,6(x, y) = 1− exp

(
2πi

3
n
(
−2

√
3y
))

.

Note that for n = 0, this is simply the Liouville measure for the triangle T .

Proof. We first handle the Dirichlet case. In order to identify all the possi-
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ble quantum limits associated to (φm,n), let us fix an arbitrary subsequence(
φmj ,nj

)
j∈N whose associated eigenvalues are increasing, such that

lim
j→∞

∫
A

∣∣φmj ,nj
(x, y)

∣∣2 → ∫
A

dν

for all A ⊆ T with negligible boundary. We must show that there exists

n0 ∈ N0 such that

dν = fn0dxdy

where fn0 is as in the statement of this theorem. We begin with a simple

observation: note that the corresponding sequence of eigenvalues is given by

16π2

9

(
m2

j +mjnj + n2
j

)
.

Since the above must tend to infinity as j → ∞, one of (mj) or (nj) must

also diverge to infinity. More precisely, we must be in one of the following

three cases as j → ∞;

(1) Both nj and mj tend to infinity;

(2) nj tends to infinity but mj does not;

(3) mj tends to infinity but nj does not.

In the first case, we claim that dν = f0dxdy. That is, we show that∫
A

∣∣φmj ,nj
(x, y)

∣∣2 dxdy → 4√
3

∫
A

dxdy

for all A ⊆ T such that the boundary of A has measure 0. In fact, we are

able to show that∫
T

χ(x, y)
∣∣φmj ,nj

(x, y)
∣∣2 dxdy → 4√

3

∫
T

χ(x, y)dxdy
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for all χ ∈ L1(T ). After inspecting our expression (†) for |φm,n|2 (see Ap-

pendix), we see that the above follows at once from the Riemann-Lebesgue

Lemma 1.9.

Suppose now that mj → ∞ but nj does not tend to infinity. Then, taking

a subsequence if necessary, we may suppose without loss of generality that

nj = n0 is constant. Once again, after inspecting our expression (†) for

|φm,n|2 and applying the Riemann-Lebesgue Lemma 1.9, we conclude that∫
T

χ(x, y)
∣∣φmj ,nj

(x, y)
∣∣2 dxdy →

∫
T

χ(x, y)fn0dxdy

Similarly, if m→ m0 and n→ ∞ then∫
T

χ(x, y)
∣∣φmj ,nj

(x, y)
∣∣2 dxdy →

∫
T

χ(x, y)fm0dxdy

In the Neumann case, we proceed in an identical manner. That is, we be-

gin with arbitrary subsequence
(
ψmj ,nj

)
j∈N whose associated eigenvalues are

increasing, such that

lim
j→∞

∫
T

χ(x, y)
∣∣ψmj ,nj

(x, y)
∣∣2 → ∫

T

χdν

for all A ⊆ T such that the boundary of A is negligible. Once again, we

consider the cases (1), (2) and (3). After inspecting our expression (‡) for

|ψm,n|2 (see Appendix), an application of the Riemann-Lebesgue Lemma 1.9

yields the desired results.

4.3.1 Frequencies

Having found quantum limits associated to given sequences of eigenvalues, we

ask what is known about other quantum limits on T . A Theorem by Jakobson

[Jak96, Theorem 1.2] gives us information about the quantum limits on the

torus. More specifically, we have the following result.
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Theorem 4.4. [Jak96, Theorem 1.3] The density of every quantum limit on

the torus T2 := R2/Z2 is a trigonometric polynomial whose frequencies all

lie on at most two circles centered at the origin.

Let us take a moment to recall some definitions and explain the meaning

of this result. Suppose we are given an L2(T)-normalized sequence composed

of Laplace eigenfunctions with corresponding eigenvalues

0 ≤ λ21 ≤ λ22 ≤ . . .

such that λj → ∞. Recall that if∫
A

|uj(x)|2 dx→
∫
A

dν

for every subset A ⊆ T2 with boundary of measure 0, then ν is a quantum

limit on T2. Then, Theorem 4.4 states that ν is absolutely continuous with

respect to the natural measure on T2 and the density of ν is given by∑
τ∈Z2

cτe
i⟨τ,x⟩,

where the above is a finite sum. Furthermore, there exist two positive num-

bers r1, r2 such that

|τ | = r1 or |τ | = r2

whenever cτ ̸= 0 and τ ̸= 0. These vectors τ are known as the frequencies.

On the equilateral triangle, we observe that all the quantum limits we

have obtained in Theorem 4.3 satisfy the result of Theorem 4.4. Even more

so, for every quantum limit we have found, the frequencies lied on a single

circle centered at the origin. We expect the argument put forth by Jakobson

in [Jak96] to extend to the equilateral triangle. In fact given that the fre-

quencies of every quantum limit that we have found lied on a single circle,

we formulate the following conjecture.
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Conjecture. For every quantum limit on the equilateral triangle associated

to an orthonormal basis of Dirichlet (resp. Neumann) eigenfunctions, the

frequencies lie on a single circle centered at the origin.

4.4 The Billiard Map

We seek a function p which is β-invariant where β is the billiard map on the

triangle T . That is, such that

p ◦ β = p.

Denote by M the collection of inward pointing unit vectors based on ∂T .

That is, every point in M can be described with coordinates ((x1, x2), α),

where (x1, x2) ∈ ∂T denotes the base position of the vector and α ∈ (0, π)

denotes the angle between ∂T and our unit vector. Now, suppose

β((x1, x2), α) = ((x′1, x
′
2), α

′)

and observe that either

α + α′ =
2π

3
or (π − α) + (π − α′) =

2π

3
.

α

α′

α

α′

In either case,

6α′ ≡ 6α mod 2π. (4.13)
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We therefore consider the function p :M → C given by

((x1, x2), α) 7→ cos(6α).

It is clear from equation (4.13) that

p ◦ β = p,

as desired. A point in M can also be represented by pair ((x1, x2), (ξ1, ξ2))

where ξ1 = cosα and ξ2 = sinα. We therefore re-define

p : R2 × R2 → C, ((x1, x2), (ξ1, ξ2)) 7→ cos (6 arctan(ξ2/ξ1)) .

Since p only depends on it’s second variable, we will simply write p(ξ) from

here on. Furthermore, if ξ1 = 0 then we define

arctan(ξ2/ξ1) = sign(ξ2)
π

2

We now consider the pseudodifferential operator Ph : L2(R2) → L2(R2) given

by

Phu := pW (hD)u = F−1
h (p(·)(Fhu)(·))

=
1

(2πh)2

∫
R2

(∫
Rn

e
i
h
⟨x−y,ξ⟩p(ξ)u(y)dy

)
dξ

4.4.1 Joint Eigenfunctions

Recall that we have obtained two distinct orthonormal bases for L2(T ) com-

posed of Laplace eigenfunctions. More specifically, we have the orthonor-

mal basis (φm,n)m,n∈N of Dirichlet eigenfunctions and the orthonormal basis

(ψm,n)m,n∈N0
of Neumann eigenfunctions. We ask if these same eigenfunctions

also solve the eigenproblem

Phu = λu.
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In order to answer this question, we simply fix m,n ∈ N and compute

Phφm,n.

Since φm,n is a linear combination of functions of the form u = ei(ax1+bx2), we

first evaluate Phu. This yields

Phu = F−1
h (p(·)(Fhu)(·)) = F−1

h

(
p(·)(2πh)2δ(a,b)(·)

)
= F−1

h

(
p(a, b)(2πh)2δ(a,b)(·)

)
= p(a, b)u.

(4.14)

It then follows from linearity that Phφm,n is precisely the function

p

(
2π

3
(n−m),

2π

3

√
3(m+ n)

)
exp

[
2πi

3

(
(n−m)x+

√
3(m+ n)y

)]
− p

(
2π

3
(n−m),−2π

3

√
3(m+ n)

)
exp

[
2πi

3

(
(n−m)x−

√
3(m+ n)y

)]
+ p

(
−2π

3
(2n+m),−2π

3

√
3m

)
exp

[
2πi

3

(
−(2n+m)x−

√
3my

)]
− p

(
−2π

3
(2n+m),

2π

3

√
3m

)
exp

[
2πi

3

(
−(2n+m)x+

√
3my

)]
+ p

(
2π

3
(2m+ n),−2π

3

√
3n

)
exp

[
2πi

3

(
(2m+ n)x−

√
3ny

)]
− p

(
2π

3
(2m+ n),

2π

3

√
3n

)
exp

[
2πi

3

(
(2m+ n)x+

√
3ny

)]
We claim that the above expression can be reduced to

Phφm,n(x, y) = λφm,n(x, y) (4.15)

where

λ := p

(
2π

3
(n−m),

2π

3

√
3(m+ n)

)
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It suffices to show that

p

(
2π

3
a,

2π

3

√
3b

)
= λ ∀(a, b) ∈ Λ (4.16)

where

Λ = {(n−m,m+ n), (n−m,−m− n), (−2n−m,−m),

(−2n−m,m), (2m+ n,−n), (2m+ n, n)} .

To see that this is indeed the case, we consider first the case m = n. Then,

by inspection, we readily conclude that equation (4.15) holds with λ = −1.

We may therefore move on to the more difficult setting where m ̸= n. In

order to simplify our computations, we make a simple observation; for every

ξ1, ξ2 ∈ R2 there holds

p(ξ1, ξ2) = cos (6 arctan(ξ2/ξ1)) = cos (−6 arctan(ξ2/ξ1))

= cos (6 arctan(−ξ2/ξ1))

= p(ξ1,−ξ2).

It therefore only remains to establish (4.16) for three different terms in Λ.

Since the computations are not particularly informative, we only include one

as an example.

p

(
2π

3
(n−m),

2π

3

√
3(m+ n)

)
= cos

(
6

[
arctan

(√
3(m+ n)

n−m

)
+ arctan(

√
3)

])

= cos

(
6

[
arctan

( √
3(m+n)
n−m

+
√
3

1−
√
3
√
3(m+n)
n−m

)])

= cos

(
6

[
arctan

(
−

√
3n

2m+ n

)])

= p

(
2π

3
(2m+ n),−2π

3

√
3n

)
.
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Having established (4.16), we conclude that φm,n solves the eigenproblem

(4.15) for every n,m ∈ N. That is, the collection (φm,n) is composed of joint

eigenfunctions for both the Laplacian and the operator Ph. Similarly we see

that for all m,n ∈ N0, the collection (ψm,n) consists of joint eigenfunctions

for both the Laplacian and the operator Ph.

Remark 6. Not all Laplace eigenfunctions solve the eigenproblem (4.15). In

particular, linear combinations of functions in the collection (φm,n) or (ψm,n)

are not guaranteed guaranteed to solve this equation.

Having seen that Ph and −∆ share a basis of eigenfunctions, we also

note that these operators commute. To see this, we first note that −∆ is a

pseudodifferential operator. More specifically, we have

−∆u(x) = F−1
h

(
|ξ|2Fhu(ξ)

)
(x).

We note that the above formula is valid for all u ∈ L2(D). Therefore, given

u ∈ L2(D), we see that

[Ph ◦ (−∆)]u = F−1
h

(
p(ξ) |ξ|2Fhu(ξ)

)
(x) = [(−∆) ◦ Ph]u.

Hence, these operators indeed commute. In general, quantizations of symbols

depending only on the momentum commute.

5 Conclusion

Thus far, we have provided an L2-complete collection of Laplace eigenfunc-

tions (with either Dirichlet or Neumann boundary conditions) on the equilat-

eral triangle and have also completely determined their associated quantum

limits. Similar results are known to hold on the rectangle, but such questions

remain open when working in more general classes of rational polygons (or,

in domains with less symmetries). However, we expect the problem of finding
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an explicit form for a collection of Laplace eigenfunctions (in both Dirichlet

and Neumann settings) to become difficult in these cases.

The classification theorem (see [McC08]) states that the only polygonal

domains for which there exists an L2-complete family consisting of trigono-

metric eigenfunctions are the rectangle, the square, the isosceles right trian-

gle, the equilateral triangle, and the hemiequilateral triangle. A complete

set of eigenfunctions is well known on the rectangle and, in this document,

we have provided such a family for the equilateral triangle. As mentioned in

[McC08], the eigenfunctions of the isosceles right triangle and the hemiequi-

lateral triangle are a subset of those obtained for the square and the equilat-

eral triangle, respectively. We therefore expect new methods to be needed if

one is to extend our result to polygonal domains other than the ones we have

listed. In light of this and the arguments used in Theorem 4.3, it reasons

that the problem of fully classifying the quantum limits will also present new

challenges when working outside of these “nice” domains.

Finally, let us consider once more Conjecture where we hypothesize that

all frequencies of a quantum limit (on the equilateral triangle) lie on a single

circle centered at the origin. As mentioned previously, a similar result lim-

iting the frequencies to two circles centered at the origin is known to hold

on the torus T . It is our hope that in future works we can sharpen this

conclusion in the setting of an equilateral triangle.

6 Appendix

The proof of Theorem 4.3 relied on inspecting the expressions for the squares

of the Dirichlet eigenfunctions φm,n and the Neumann eigenfunctions ψm,n.

For the reader’s convenience, we have included these expressions here.

The Dirichlet eigenfunctions are given by

φm,n = 3−1/4

√
2

3
φ̃m,n.
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where φ̃m,n are as in §4.1. Therefore,

|φm,n|2 =
2

3

√
3 |φ̃m,n|2

and we explicitly compute

|φ̃m,n(x, y)|2 = φ̃m,n(x, y)φ̃m,n(x, y) (†)

= 6− exp

[
2πi

3

(
2
√
3(m+ n)y

)]
+ exp

[
2πi

3

(
3nx+

√
3(2m+ n)y

)]
− exp

[
2πi

3

(
3nx+

√
3ny

)]
+ exp

[
2πi

3

(
−3mx+

√
3(2n+m)y

)]
− exp

[
2πi

3

(
−3mx+

√
3my

)]
− exp

[
2πi

3

(
−2

√
3(m+ n)y

)]
− exp

[
2πi

3

(
3nx−

√
3ny

)]
+ exp

[
2πi

3

(
3nx−

√
3(2m+ n)y

)]
− exp

[
2πi

3

(
−3mx−

√
3my

)]
+ exp

[
2πi

3

(
−3mx−

√
3(2n+m)y

)]
+ exp

[
2πi

3

(
−3nx−

√
3(2m+ n)y

)]
− exp

[
2πi

3

(
−3nx+

√
3ny

)]
− exp

[
−2πi

3
2
√
3my

]
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+ exp

[
2πi

3

(
−3(m+ n)x+

√
3(n−m)y

)]
− exp

[
2πi

3

(
−3(m+ n)x−

√
3(m+ n)y

)]
− exp

[
2πi

3

(
−3nx−

√
3ny

)]
+ exp

[
2πi

3

(
−3nx+

√
3(2m+ n)y

)]
− exp

[
2πi

3
2
√
3my

]
− exp

[
2πi

3

(
−3(m+ n)x+

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
−3(m+ n)x+

√
3(m− n)y

)]
+ exp

[
2πi

3

(
3mx−

√
3(2n+m)y

)]
− exp

[
2πi

3

(
3mx+

√
3my

)]
+ exp

[
2πi

3

(
3(m+ n)x−

√
3(n−m)y

)]
− exp

[
2πi

3

(
3(m+ n)x−

√
3(m+ n)y

)]
− exp

[
−2πi

3
2
√
3ny

]
− exp

[
2πi

3

(
3mx−

√
3my

)]
+ exp

[
2πi

3

(
3mx+

√
3(2n+m)y

)]
− exp

[
2πi

3

(
3(m+ n)x+

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
3(m+ n)x−

√
3(m− n)y

)]
− exp

[
2πi

3
2
√
3ny

]
.
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Similarly, the Neumann eigenfunctions are

ψm,n = 3−1/4

√
2

3
ψ̃m,n.

where the functions ψ̃m,n are as in §4.2. Hence,

|ψm,n|2 =
2

3

√
3
∣∣∣ψ̃m,n

∣∣∣2
and we explicitly compute∣∣∣ψ̃m,n(x, y)

∣∣∣2 = ψ̃m,n(x, y)ψ̃m,n(x, y) (‡)

= 6 + exp

[
2πi

3

(
2
√
3(m+ n)y

)]
+ exp

[
2πi

3

(
3nx+

√
3(2m+ n)y

)]
+ exp

[
2πi

3

(
3nx+

√
3ny

)]
+ exp

[
2πi

3

(
−3mx+

√
3(2n+m)y

)]
+ exp

[
2πi

3

(
−3mx+

√
3my

)]
+ exp

[
2πi

3

(
−2

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
3nx−

√
3ny

)]
+ exp

[
2πi

3

(
3nx−

√
3(2m+ n)y

)]
+ exp

[
2πi

3

(
−3mx−

√
3my

)]
+ exp

[
2πi

3

(
−3mx−

√
3(2n+m)y

)]
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+ exp

[
2πi

3

(
−3nx−

√
3(2m+ n)y

)]
+ exp

[
2πi

3

(
−3nx+

√
3ny

)]
+ exp

[
−2πi

3
2
√
3my

]
+ exp

[
2πi

3

(
−3(m+ n)x+

√
3(n−m)y

)]
+ exp

[
2πi

3

(
−3(m+ n)x−

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
−3nx−

√
3ny

)]
+ exp

[
2πi

3

(
−3nx+

√
3(2m+ n)y

)]
+ exp

[
2πi

3
2
√
3my

]
+ exp

[
2πi

3

(
−3(m+ n)x+

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
−3(m+ n)x+

√
3(m− n)y

)]
+ exp

[
2πi

3

(
3mx−

√
3(2n+m)y

)]
+ exp

[
2πi

3

(
3mx+

√
3my

)]
+ exp

[
2πi

3

(
3(m+ n)x−

√
3(n−m)y

)]
+ exp

[
2πi

3

(
3(m+ n)x−

√
3(m+ n)y

)]
+ exp

[
−2πi

3
2
√
3ny

]
+ exp

[
2πi

3

(
3mx−

√
3my

)]
+ exp

[
2πi

3

(
3mx+

√
3(2n+m)y

)]
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+ exp

[
2πi

3

(
3(m+ n)x+

√
3(m+ n)y

)]
+ exp

[
2πi

3

(
3(m+ n)x−

√
3(m− n)y

)]
+ exp

[
2πi

3
2
√
3ny

]
.
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