ERGODIC THEORY OF RATIONAL BILLIARDS
AND APPLICATIONS TO THE EQUILATERAL
TRIANGLE

Dana Berman
Department of Mathematics and Statistics,
McGill University, Montréal, Québec,
April 2020.

A thesis submitted to McGill University in partial fulfillment

of the requirements of the degree of Master of Science.

Under the supervision of Professor John A. Toth.

(©Dana Berman 2020



Abstract

In this text, we are interested in studying the distribution of eigenfunctions
on rational polygons, with special attention paid to the equilateral triangle.
We attempt to provide the reader with sufficient context on spectral theory,
semiclassical analysis and ergodic theory. We then prove a result due to
Marklof and Rudnick [MR11] which states that “most” Laplace eigenfunc-
tions, with either Dirichlet or Neumann boundary conditions, on a rational
polygon equidistribute. We also identify exceptional subsequences for an or-
thonormal basis with either Dirichlet or Neumann boundary conditions on
the equilateral triangle. Finally, we discuss the limiting behaviour exhibited

by those same sequences.

Abrégé

Dans ce document, nous étudions la distribution des fonctions propres sur des
polygones rationnels, payant une attention particuliere au triangle équilatéral.
Nous tentons d’offrir au lecteur le contexte nécessaire au sujet de la théorie
spectrale, de la théorie semi-classique et de la théorie ergodique. Ensuite,
on établit un résultat de Marklof et Rudnick [MR11] qui stipule que la “ma-
jorité” des fonctions de Laplacien sur un polygone rationnel, avec des condi-
tions aux limites de Dirichlet ou avec des conditions aux limites de Neumann,
vont équidistribuer. De plus, on identifie les sous-suites exceptionnelles pour
une base orthonormale soit avec des conditions aux limites de Dirichlet ou
avec des conditions aux limites de Neumann sur le triangle équilatéral. Fi-
nalement, nous discutons le comportement a l'infini présenté par ces mémes

séquences.
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1 Introduction and Setup

The behaviour of a microscopic particle can be best described by the (time-
dependent) Schrodinger equation. Solving this equation provides us with the
wave function of this given particle, as well as the energy spectrum. The most
basic setting is possibly the problem of a particle in a box, otherwise known
as the infinite potential well. That is, the problem of a particle that moves
freely in a domain D. In this case, finding the wave functions and energies

given by the Schrodinger equation amounts to solving the Helmholtz equation
Au+ du =0

with appropriate boundary conditions (see [[KIXS99] and the references therein).
Equivalently, we wish to find the eigenfunctions of the Laplacian on D with
appropriate boundary conditions. There is a great range of applications for
this problem, from physics to electronics and nanodevices (see, once again,
[KKS99)).

Throughout this document, we focus primarily on the classification of
quantum limits of eigenfunctions for the Laplacian on equilateral triangles in
R?. More precisely, given a countable orthonormal L*-basis (¢,,),-, consist-
ing of eigenfunctions on a triangle ordered such that their respective eigen-
values are increasing, we ask how the eigenfunctions concentrate as n tends
to infinity. Formally, we study the weak™ limits of the probability measures
‘@Z)njfdx as j tends to infinity where (¢,;) is a subsequence of (¢,). We
henceforth refer to these limits as quantum limits.

Such questions are largely motivated by a recent result of Marklof-Rudnick
(see Theorem 1 in [MR11]) which addresses the concentration of eigenfunc-
tions on rational polygons. Informally, their result states that almost all
quantum limits of this sequence must be the Liouville measure. In other
words, there is a density-one sequence of eigenfunctions which equidistributes

on the polygon. More formally, our work is motivated by the following theo-



rem, which suggests the plausibility of a complete classification of quantum
limits. In this next statement, we denote by 0A the topological boundary of

a set A. Equivalently, 0A is the closure of A minus the interior of A.

Theorem 1.1. [MR11] Let D be a rational polygon and fix an orthonormal
basis (pn)o, of the Dirichlet Laplacian on D. Then, there exists a sequence

of natural numbers (n;) such that

, 2 . area(A)
leIgoA|wnj(x)| d$_—area(D) (1.1)

for all measurable sets A C D with boundary OA having Lebesgue measure 0.

Furthermore, we have

. #{j:in; <N}
. N B

1. (1.2)

The conclusion drawn in (1.2) can be interpreted as saying that the subse-
quence (gpnj) contains almost all eigenfunctions, or, even better, consists of a
density one subfamily of (¢,). In particular, we see that almost all quantum
limits are simply a normalized Lebesgue measure. Consequently, a complete
classification of the exceptional subsequences (that is, subsequences that do
not obey (1.1)) would yield a classification of all possible quantum limits
associated to the Dirichlet problem for the Laplacian on D.

In the context of the equilateral triangle, we expect all quantum limits
to be absolutely continuous with respect to the Liouville measure. This

hypothesis is supported by the following result of Jakobson [Jak96].

Theorem 1.2. Fix a dimension d > 1. Every quantum limit of the torus
T := R4/7Z4 is absolutely continuous (with respect to the natural measure on
the torus).

In addition, this story begs the natural question of what can be said
about the quantum limits associated to the same problem, but with Neumann

boundary data. As with the Dirichlet case, this analysis is supported by the
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fact that Theorem 1.1 continues to hold with Neumann boundary conditions
(see [MR11]). Furthermore, Theorem 1.1 extends to translation surfaces,
although we will not discuss this here.

We also point out that the analysis of eigenfunctions (in both the Dirichlet
and Neumann settings) has many applications within the sciences, especially
in physics. Indeed, the study of eigenfunctions of the Laplacian originates
from the study of vibrating membranes and plates (see [Zell7]). Let u be an
eigenfunction of the Laplacian on a domain D satisfying appropriate bound-

ary conditions with eigenvalue A\. Then u satisfies the equation
—Au=Au in D.

Here, u is interpreted as the profile of vibrations whereas \ can be thought
of as the corresponding energy and v/A represents the frequency parameter.
When studying diffusion, Grebenkov and Nguyen explain in [GN12, page 603]
that the first eigenfunction describes the asymptotic spatial distribution, for
long time, of particles in the given domain. However, other eigenfunctions
lack a straightforward physical interpretation (see [GN12] and the references
therein). We should also observe that the authors of this last paper point
out applications to stochastic processes.

The study of eigenfunctions has also proven to be of use in probabilistic
and statistical contexts. In particular, eigenfunctions have applications to
the study of localization properties of disordered metals and carry informa-
tion about atomic spectra. Furthermore, according to Samajdar and Jain in
[SJ18, page 2], the distribution of their amplitudes is linked to the fluctuation
of tunnelling conductance across quantum dots.

Finally, we would like to note that eigenvalues of the Laplacian are of par-
ticular importance in geometry. For instance, the eigenvalues of the Laplace-
Beltrami operator on a compact manifold (M, g) contain enough geometric
information about the manifold (M, g) to completely determine the Euler

characteristic (see [R0s97]). Consequently, eigenvalues and eigenfunctions of



the Laplacian capture geometric properties of the manifold. This point of
view is partially justified by Selberg’s trace formula which relates geodesic
flows on hyperbolic manifolds to the spectrum of the Laplace-Beltrami oper-
ator (see [Mar(4]).

In the subsection below, we take the time to formally recall some basic
properties of eigenfunctions that will be freely relied upon throughout this
text. In §2.1, we briefly discuss the billiard problem in the plane. In par-
ticular, in §2.2, we touch upon the relationship between billiards, geometry,
and spectral theory. Following this, we devote §3 to the proof of Theorem
1.1 following the argument in [MR11].

In §4, we turn our attention to the Dirichlet and Neumann eigenvalue
problems when the domain is an equilateral triangle. Using methods of
reflection and identification and the literature regarding eigenfunctions on
the parallelogram, we find an explicit L? orthonormal basis consisting of
eigenfunctions. In Theorem 4.3, we fully classify the semiclassical quantum
limits and, in particular, describe the measures associated to exceptional
subsequences. Finally, in §4.4, we briefly discuss the billiard map on the
equilateral triangle and find an operator that commutes with the Laplacian

by identifying symmetries.

1.1 Prerequisites

We devote this section to a rapid overview of results that are well known but
nonetheless essential to the analysis that follows. In §1.1.1, we provide an
overview of results from spectral theory for the Laplacian. Then, in §1.1.2,
we cover miscellaneous results from analysis that will be necessary in later
parts of this document.

As a first step, we recall some elementary arithmetic results regarding
sequences and series of real numbers. Although these are straightforward
results, we provide their proofs since, as far as the author can tell, they have

neither a name nor a common reference.



Lemma 1.3. Suppose aq,...,a, and by,...,b, are non-negative real num-
bers. If by,...,b, > 0 then

ay+---+ap .Gy
————— > min —.
by + -+ b, — 1<j<n b,

Proof. Let j be such that a;/b; is minimized. Then

a:

a1+---+an:b1§—;+~-+bng—:>61§—j+---+bnb—; “
by + -+ by bi+--+b, — bi+--+b, b;

as desired. O

The next arithmetic lemma is slightly more interesting, and somewhat
harder to establish.

Lemma 1.4. Suppose (a,) is a non-negative sequence such that

00
E a, = 0Q,
n=1

then N
: Zn:l 2_na”
lim e
N—o0 anl an

Proof. Fix ¢ > 0 and let L € N be such that

= 0.
€
27F < -
2
Because ) | a, = 0o, there exists M > L such that
5 L M
S o o
< n=1 n=1

Or, equivalently,

L M
Y an <) an.

n=1 n=1

DO ™



Since the sequence (a,) is non-negative, for any N > M,

N L N M N
22’ Z Z "an<§Zan+g Z an
n=1 n=1 n= n=1 n=L+1
c N N
S §;an+§n:1an
N
—Yan
n=1

Especially,
N o
27 "a,
lim sup Z”:]\l, <e
N—o0 n=1 Qp,
Since € > 0 was arbitrary, the proof is complete. Il

1.1.1 Spectral Theory of Laplace Eigenfunctions

Fix a compact Riemannian manifold (M, g) with (possibly empty) boundary
I'. For the sake of consistency with the literature, we formalize what we mean
by the Dirichlet and Neumann problems. The Dirichlet spectral problem asks
that we find all eigenvalues to the Dirichlet problem

—Aju=Au inM
(1.3)
u=20 on I

In the above, A, is the Laplace-Beltrami operator on M, which is defined

for all w € C*°(M). In a similar vein, the Neumann problem associated to
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the Laplace-Beltrami operator seeks a solution u to

—Aju=Au in M
Vu-v=0 onl.

(1.4)

where v denotes the unit inward normal vector field on I'. In either setting,
we shall denote by E()) the eigenspace corresponding to A\. That is, E()) is
the collection of all functions u € C°°(M) such that —Aju = Au in M.
Before proceeding further, let us take a moment to recall a fundamental
result addressing the eigenfunctions of either problem on (M, g). Albeit well
known, this result is essential to the coherency of the results that will follow

shortly.

Theorem 1.5. [Lab15, Theorem 4.3.1] For the compact Riemannian mani-
fold (M, g) with possibly empty boundary I, the following assertions hold true

for the Dirichlet and Neumann spectral problems.

1. The collection of eigenvalues are real, non-negative numbers
0< << ...

such that A\, — oo as k — oo.

2. Fach eigenvalue has finite multiplicity and the eigenspaces correspond-

ing to distinct eigenvalues are orthogonal in L*(M).

3. Denoting by E(\;) the eigenspace of each eigenvalue A, we observe
that the closure in L*(M) of

P e

is the entire space L*(M).

4. Fvery eigenfunction is smooth.
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The result above remains valid for a mixed problem as well as the Steklov
problem (see, for instance, [Lab15, §4.3] for more information). Item 3 in the
theorem implies the existence of an orthogonal basis (u) of L?(M) composed
entirely of Dirichlet (or Neumann) eigenfunctions. We note that by basis, we
mean a Schauder basis. That is, for every f € L?(M) there exists a sequence

of scalars (ax) such that

=0.
L2 (M)

lim
K—oo

K
f = awu,
k=1

We also note that Laplace eigenfunctions in open subsets of R™ are real
analytic. That is, if —Au = Au in some open set {2 C R", the u is analytic
in Q.

Let D C R" be a bounded domain. By the previous theorem, there exists
a countable orthonormal basis (uy) of Dirichlet (resp. Neumann) eigenfunc-
tions for the Laplacian. Suppose that f is a given Dirichlet (resp. Neumann)
eigenfunction of the Laplacian with eigenvalue A. Since (uy) is an orthonor-
mal basis of L?(D),

f=

<f7 Uk),;g Uk,

)
k=1

Noting that eigenspaces of different eigenvalues are orthogonal, we have
f: Z <fauk’>L2 Uk

k

Since every eigenvalue has finite multiplicity, this sum is finite. We can

therefore draw the following conclusion:

Proposition 1.6. Given an orthonormal basis of Dirichlet (resp. Neumann)
eigenfunctions on M, every Dirichlet (resp. Neumann) eigenfunction f is a

finite linear combination of functions in this basis.
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1.1.2 Miscellaneous Results in Real Analysis

The next few standard results will be freely invoked throughout the remainder
of this exposition. In particular, these will be greatly relied upon in §3 and

in our discussion of Laplace eigenfunctions on the equilateral triangle.

Theorem 1.7. For any bounded domain D C R", the vector space C°(D)

endowed with the uniform norm is separable.

Proof. 1t follows from the Stone-Weierstrass Theorem (see [Fol99, Theorem
4.45]) that the collection of polynomials is dense in C'(D). Taking only the
polynomials with rational coefficients, we obtain a sequence (a) € C=(D)
that is dense with respect to the uniform norm. We may then consider a
collection of cut-off function () € C°(D) such that

(1) 0<n <1;

(2) Foreach k € N, the Lebesgue measure of the set D\{n, = 1} is bounded
above by 1/k.

Such a sequence can be obtained as follows. For £ € N, we pick aset V &€ D
such that m(D \ V) is sufficiently small. Then, mollifying the function 1y
appropriately we obtain a suitable function 7. Finally, observe that the

countable collection of functions

{njar : j,k € N}
is dense in C2°(D). O

Theorem 1.8 (Identity Theorem). Let D C R" be a non-empty domain and
suppose that f, g : D — C are analytic functions. If f = g in a neighbourhood
of D, then f = g in all of D.

The Identity Theorem is well-known for single-variable function, espe-

cially in the context of holomorphy. In order to conclude the result as stated

13



above, we note that a given analytic function f must also be analytic with
respect to each variable. Therefore, we obtain the result of this theorem by

treating each variable independently.

Theorem 1.9 (The Riemann-Lebesgue Lemma). [Fol99, Theorem 8.22] If
(ar) and (by) are two sequences of real numbers such that (ai + bi) — 0o as

k — oo, then

lim [ x(z,y)exp (i [axz + bry]) dady = 0

k—oo R2
for every x € L'(R?).

The Riemann-Lebesgue Lemma is easily proven by first verifying the
claim for step functions then using the density of these functions in L'(R?)
to conclude the result. We also note that the Riemann Lebesgue Lemma
remains valid in R™ for any positive integer n. This result is often stated in
terms of the Fourier transform. That is, the Fourier transform of an inte-

grable functions vanishes at infinity.

2 Background and Fundamentals

For the sake of clarity and completeness, we attempt to provide enough
background for the uninitiated reader. More precisely, in this section, we
state some of the basic results from semiclassical analysis and ergodic theory
that give rise to much of the arguments that will follow. Additionally, we
try to reiterate some of the most important definitions and structures used
within these results. This includes, in no particular order, an overview of
quantization, Egorov’s theorem, Birkhoft’s ergodic theorem, Weyl’s law, and
its local counter part.

Pseudodifferential operators are a natural generalization of differential

operators. These linear operators can be defined using the Fourier transform.
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In the simplest setting, we work with functions on R™. More specifically, we
begin with the most natural setting for the Fourier transform: the Schwartz
space. Given n > 1, the Schwartz space . (R") is defined as the collection
of smooth function u € C*°(R"; C) such that for every pair of multi-indices

a, B
Hxﬁaau(:c) Hoo < Cup

for some constant C,, g. In this expression, ||-|| , denotes the L>*-norm on R".
We topologize the Schwartz space .(R") by giving it the following countable
family of semi-norms:
lullo g = [|z°0"u(@)] -
Equipped with these semi-norms, the Schwartz space forms a locally convex
topological vector space over the field C of complex numbers. Furthermore,
the space .(R™) is metrizable, first countable, and normal. Consequently, its
topological properties are completely determined by its convergent sequences.
We now turn to a useful generalization of the classical Fourier transform,
which is also an isomorphism of the Schwartz space .#(R™). It should be
noted that this semi-classical analogue of the Fourier transform is the main

tool by which one can define quantization.

Definition 1. Given h > 0, the semiclassical Fourier transform is a map

Fr L (R") — Z(R™) given by

Fru(€) = /n e_%@’au(x)dx

for every u € .Z(R") and £ € R". Here, (-, %) simply denotes the dot-product.

As for the classical Fourier transform, Fj, can be naturally defined on the

dual space .#’(R™). Indeed, we may define F, : .&'(R") — /'(R") by

(Fnu) o = u (Frep)

15



for all u € ' (R™) and ¢ € #(R™). We accept the obvious abuse in nota-
tion by viewing ./(R") as a function space containing .#(R"). Then, the
definition of F;, on the dual of the Schwartz space is simply an extension of
Definition 1. In order to justify this approach, we note that each function in
v € Z(R") is entirely described by the values

/n v(x)p(x)dz, e L(R").

We may therefore identify v with the functional u € .#”/(R") given by

ulp) = / o(a)pla)ds.

In this sense, ./(R") is a generalized function space. We note that, with
this approach, .#’(R") is also seen to contain LP(R™) for each 1 < p < oo.
Therefore, the semiclassical Fourier transform Fj, is defined on L*(R")
and is, in fact, a Banach isomorphism of this space. Before moving forward,
we provide without proof some properties of the Fourier transform that are

of particular importance for our purposes.

(1) The Fourier transform has an inverse JF, '. Furthermore, the Fourier

inverse can be represented by the integral expression

1

T tu(x) = @rh)" /Rn et @8y () de,

where the above exists in the classical sense for all u € Z(R").

(2) For every multi-index a and u € .'(R"),
Fu ((=2)"u(z)) = (hDe)" Fru

Here, D¢ = —i0k.
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(3) In a similar vein

,Fh ((th)au) = §a.7:hu.

for every multi-index a and v € %/(R"). In this last expression, we
denote D, = —i0,.

We refer the interested reader to [Zwol2| for further information on the

semiclassical Fourier transform.

Definition 2. Given a € ¥(R?") and h > 0, the quantization of a is the
operator Op,(a) : ' (R") — . (R") defined by

Opy(@yu(e) = g [ [ et ata ulu)anae

This last expression is an iterated integral and cannot generally be inter-

preted as a double integral. Note that, equivalently,

Opy(a)u(x) = F,* (a(x, ) Fpu(")) (z).

As a result, we see that our definition of quantization remains valid for all
a € &'(R™). Furthermore, if

a(z,€) = ) an(x)E"

o<k

then

Opy(a) = Y aa(z) (hD,)".

|| <k
Thus, the class of pseudo-differential operators is indeed “larger” than that
of differential operators and contains the latter as a proper subset.
We now turn our attention to symbols, a class of functions that will be of
particular importance. More specifically, we will be interested in a class of
functions known as Kohn-Nirenberg symbols, as these possess an invariance

property that make it possible to extend their definition to manifolds (see
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[Zwo12, §9.3]). In fact, this is precisely the space of functions which we will

be interested in quantizing.

Definition 3. Given an integer m, the Kohn-Nirenberg symbol class S™(R*")

is the collection of smooth function a € C*°(R?*") such that,

m—|B]

oe0fa) < Cap (1+1¢P) 7

for every pair of multi-indices «, 3.

More generally, given an arbitrary set V' C R", the collection of functions
a € C®(V x R") satisfying this last expression on V' x R™ is denoted by
S™(V x R™). As briefly explained below, symbol classes can also be defined

on a compact Riemannian manifold (M, g).

Definition 4. If a function a € C*(T*M) is such that for every coordinate
chart v : U — V, the pullback of a is in S™(V x R™), then we say that
a € S™(T*M). We note that if m = 0, then we will simply write S(7*M) to
denote the space S°(T*M).

Remark 1. The pull back v*a of a is a map
VxR" L T°U % C.

In order for our definition to be consistent, it must be independent of our
choice of coordinates. This is indeed the case since, for any integer m, the
class of Kohn-Niremberg symbols is invariant under coordinate change (see
[Zwo12, Theorem 9.4]). This is precisely the invariance property that was

referred to in our earlier discussion.

Using partitions of unity (see [Zwol2, Chapter 14]), one can extend the
concept of quantization to compact Riemannian manifolds. In this way, for

a € S(T*M) we obtain a linear operator
Op,(a): C*(M) — C*(M).

18



The quantization map Op,, satisfies the following properties:
(1) Op,, is a linear map on S(T*M);

(2) If a € S(T*M) then Op,(a) : L*(M) — L*(M) is a bounded linear

operator;

(3) For functions a,b € S(T*M) there holds

Opy(a) Op,(b) = Opy(ab) + Opz(h).

(4) Given a € S(T*M),
Opy(a)” = Opy(a) + Orz(h),

where Op,(a)* denotes the formal adjoint of Op,(a) relative to the
L?(M) inner product.

Remark 2. Combining (3) and (4), we see that

Opy(a)” Opy(a) = Opy(|af’) + Opz(h).

2.1 The Billiard flow

We now discuss the billiard problem in the plane. Motivation for the study of
billiards can be found in multiple fields of physics such as optics, mechanics
and quantum systems. The billiard flow represents the free motion of a
point mass within a given domain. At the boundary, the motion of a particle

behaves according to the law of specular reflection. That is, the rule
the angle of incidence equal the angle of reflection
dictates the change in direction. If the boundary of D is described by the

function « : [0, 1] — 9D, then the billiard map can be visualized as follows.
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Y(t)
Figure 1: Billiard trajectory with base point ~y(¢).
We now define the billiard flow in more mathematical terms. Given a

closed non-empty connected set D with piece-wise smooth boundary, the

billiard flow ®; is defined on the cotangent bundle
T*D = D x R?

and, as we will see, can be described by a dynamical system. We first note
that a point (z,w) € T*D represents the position x of a particle with velocity
vector w. Since ®; describes free motion, the speed must remain constant.
Consequently, it will suffice to describe the billiard flow on unit cotangent
bundle

S*D =D x S,

Then, for any (z,w) € S*D and r € R we define

O, (z,7w) = Opy(z,w), teR.

20



Now, given a point (z,w) € S*D, it will be convenient to write

The Hamiltonian equation above can be more compactly represented by

0Py (z,w) = JP(z,w) (2.1)

()

On the boundary of D, the law of reflection states that w(t) changes dis-

where

continuously. Despite this, ®;(z,w) is defined to be right-continuous with
respect to t for each fixed point (x,w). Given a direction vector w, our new

direction upon hitting the boundary will be
w—2(w,v)v

where v is the inward unit vector at our position on the boundary of D. Note
that we only assumed that the boundary was piece-wise smooth. Therefore,
there are finitely many points where the normal vector is ill defined. At such
points, the billiard flow remains undefined or can be defined arbitrarily.

We can also define the billiard map 8 : N' — N where N is the subset of

0D x St containing only the inward pointing vectors. This map is given by

ﬁ(xu w) = q)t(x,w) (I, (.U)

where t(z,w) is the smallest positive real number such that ®;, .\ (2, w) € N.

21



More precisely,
t(x,w) =inf{t > 0: P, (z,w) e N}.

2.2 Definitions and Results in Ergodic Theory

We now provide sufficient framework to properly discuss the ergodic prop-
erties of billiard flows on rational polygons. Although we assume that the
reader is familiar with the setting of ergodic theory, we reiterate the more

basic definitions for the sake of completeness.

Definition 5. Let (X,90, 1) be a probability space and fix a measurable
function ® : X — X. We say that ® is u-invariant if

u (47E) = u(E)

for every measurable set F.

Definition 6. Let (X, 91, 1) be a probability space and suppose that we are
given a measurable map ® : X — X. If ® is a p-invariant transformation,

we will call ® ergodic whenever
O E=F,

implies pu(F) = 0 or pu(E) = 1. Or, equivalently, a p-invariant transformation
is said to be ergodic whenever the only invariant sets have either full or zero

measure.
A natural counterpart of this definition is that of unique ergodicity.

Definition 7. Let (X, 91) be a measurable space and fix a measurable func-
tion ® : X — X. We say that ® is uniquely ergodic if there exists a unique

probability measure p such that ® is p-invariant.

As a sanity check, we ask if a uniquely ergodic function ® : X — X is

also ergodic with respect to this unique measure p. To see that this is indeed
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the case, suppose by way of contradiction that we can find a measurable set
E such that ®'E = F and 0 < u(E) < 1. Then consider the measure v on
X given by
1
V(A) = —=un(ANE), VAeM
pu(E)
Clearly, v is a probability measure on X distinct from p. Furthermore, to

see that ® is v-invariant, observe that for any measurable set A there holds

v (07(4)) = e (07 ()N ) = ﬁu (071(4) N & (B))
= (07 AN E))
1
= HHAn®
=v(A).

Thus, we have found another probability measure that makes ® invariant,

contradicting the assumption of unique ergodicity.

Definition 8. On a probability space (X, 0, i), a family (®;);cr of bijective

p-invariant functions satistying
(1) &, 0P, = Oy for all s,t € R;
(2) For any measurable function f : X — C, the map (¢t,z) — f (Pz) is
X x R-measurable.
is called a flow.
The next result can be found in [KSF82].

Theorem 2.1 (The Birkhoff-Khinchin Ergodic Theorem). Suppose (X, 9, )
is a probability space with flow ®; and fix a function f € L'(X). For almost
every x € X the limit

T

) 1
Am o . [f o @] (x)dt
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exists. Furthermore, if ®; is ergodic for each t € R then

1 T
Tlggoﬁ/T[fo@] (w)dtz/deu

for almost every x € X.

In a later section, we will apply this result to a rational polygon. That is,
a simple planar polygon D such that, at each vertex, the angle between two
edges is a rational multiple of 7. We take a moment to illustrate our setting.
We can define the billiard flow

b, : 5D — S*D

where ¢ ranges in R. One can readily verify that this family of functions is in-
deed a flow. Consider now a fixed direction w € S and observe that, since D
is a rational polygon, the function ®,(x,w) alternates through finitely many
angles. Indeed, the possible angles are generated by the possible reflections
along the edges of D. More precisely, each edge of the polygon is associated
with a linear map which takes a direction w and maps it to the new direction
after regular reflection at that edge. Define I" to be the finite group generated
under composition by these maps. We see that the billiard flow is invariant

with respect to

Dg::DXU{ye}.

yel’
That is, given ¢ € R and (z,w) € Dy we have ®;(z,w) € Dy.
Remark 3. The ®;-invariant set Dy can be visualized as the gluing of #I'
copies of D, with equivalent sides identified. It is thus seen that Dy is an

oriented compact surface (see [MT02]). In the case of the equilateral triangle,

this process yields a surface of genus 1.

We denote the restriction of the billiard flow to Dy by ®Y. Furthermore,
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on the set Dy, the natural probability measure py is given by

1

dpy = ————=dad
Heo #T m(D) rdvg

where 1y is the counting measure on {76 : v € I'}. As seen in [KSF82], for
every t € R there holds that ®Y is yp invariant. On the other hand, by
Theorem 1 in [KMS86], we know that ®¢ is uniquely ergodic for almost

every . Combing these results, we conclude the following lemma.

Lemma 2.2. For almost every 0, ®Y is ergodic.

2.2.1 Egorov’s Theorem and Weyl’s Law

In this subsection, we discuss some central tools that will be needed for the
proof of Theorem 1.1. The statement of this theorem involves quantum limits,
which we now properly define.

Let (M, g) be a compact Riemannian manifold (possibly with boundary)

having dimension n > 1. Now, we consider on (M, g) the eigenvalue problem
—Agu = MNu in M

where A, denotes the Laplace-Beltrami operator.

Definition 9. Let v be a measure on M. Suppose there exists a sequence (u;)
of L?(M)-normalized eigenfunctions for A, whose corresponding eigenvalues

tend to positive infinity. Assume additionally that

lin1/|uj(x)\2d:c:/du (2.2)

for every measurable set A C M such that 0A has measure 0 with respect to
dx. Then v is called a quantum limit on M. Furthermore, if v is absolutely
continuous with respect to the natural Riemann measure dx on M, then one

has dv = fdx for some function f known as the density of v.
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In this text, we will often be interested in quantum limits associated to
a given sequence of eigenfunctions. Suppose that (u;) is an orthonormal
basis of L*(M) composed entirely of eigenfunctions for A, such that their
eigenvalues form an increasing sequence. Put otherwise, we assume that for
each j € N one has
—Aguj = /\?uj in M

where (});) is a non-negative, increasing sequence. If there exists a subse-

quence (u;, ) of (u;) satisfying

]}LIEO/A|UM($)|2C1£E:/AdI/ (2.3)

for every measurable set A C M with boundary of measure 0, then we say

that v is a quantum limit associated to (u;).

As mentioned at the beginning of this section, we are interested in two
useful tools that will be central to our analysis of quantum limits. The first
of these is the standard Egorov’s theorem, which establishes an important
approximation relationship between quantum and classical time evolution.
As our exposition of this topic is not meant to be exhaustive, we refer the
reader to Chapters 11 and 15 of [Zwol2] for more information on this sub-
ject. Given a compact Riemannian (M, g), it is known (see [Zwo12, Theorem
C.13]) that for each ¢ € R there exists a unitary operator on L?(M)

U(t) = U(t; h) = e'thao
such that

Ut)U(s) =U(t+ s),
Ut) =U(—t)
limg o [|U(t)u — ull 2y = 0 for all u € L*(M).
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Furthermore,
D, (U(t)u) — hU(t)Ayu = 0.

for all uw € C*(M) such that —A,u € L*(M). Here, we adopt the convention

D, = —id,. Note that if u is an eigenfunction of —A, with eigenvalue A\? then
Dy (U(t)u) + hA?U(t)u = 0.

It follows that

U(t)u = eV y,

Theorem 2.3 (Egorov’s Theorem [Zwol12]). Let U(t) be as defined above, fix
T > 0 and suppose that ®; solves the Hamiltonian equation (2.1). For any
a € S(T*M) there holds

||U<_t) Oph<a>U(t) - Oph ((l © (I)t)||L2(M)—>L2(M) = O(h)
uniformly for 0 <t <T.

Since a quantum limit is determined by the asymptotic behaviour of eigen-
functions, it is natural to seek a result that provides us with information
about the eigenvalues and eigenfunctions in the limit. Thankfully, such a
description is provided by Weyl’s law (both global and local versions), for
which we provide a precise formulation below. Although we shall not include
proofs for these now standard results, having them stated formally will aid
the reader in the arguments that follow. We quote these statements directly
from [Dyal6, §2.5].

Fix a sequence of eigenfunctions (u;) forming an orthonormal basis of

L?(M) with associated eigenvalues

0< A

— N

<A<
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The Weyl law gives us insight on the asymptotic behaviour of the eigenvalues

listed above.

Theorem 2.4 (Weyl law). As R — oo, there holds

(%T)n#{j A < R} =wn Vol(M) + 0 (é)

Recall that our sequence of eigenvalues can be recovered from our eigen-
functions by “testing” these against the Laplace-Beltrami operator. In light
of this, we ask if Weyl’s law can therefore be extended in a way that reflects
this phenomenon. Particularly, we can partially describe how the eigenfunc-
tions behave when tested against a larger class of pseudodifferential operators
on L*(M).

Theorem 2.5 (Local Weyl law). For any smooth compactly supported func-
tion x : (0,00) = R and a € S(T*M),

ZX( > (Opp(a)us, uz) 2

(YL el o[ e o (3)

as R — oo

3 Eigenfunctions of a Rational Polygon

We dedicate this section to the proof of Theorem 1.1, following the argument
put forth by Marklof and Rudnick in [MR11].
Let D C R? be a rational polygon. Here, the polygon D includes its

boundary. Recall that our phase space is the unit cotangent bundle, denoted
S*D =D x S".
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The associated Liouville measure is given by

1
m(D)

dp(z,w) = dzde
where w = 2™ for ¢ € R/Z and m denotes the Lebesgue measure on R2.
A smooth function a : S*D — C is known as an observable. Furthermore, if

there exists a function ag : D — C such that
a(zr,w) = ag(x) (3.1)

for all w € S, the we say that a is an isotropic observable. In other words, an
isotropic observable is a smooth function depending only in the position, or
equivalently independent of the momentum. For any observable a, we define

the time average by

1 T
ar(r,w) = T /Ta o & (x,w)dt.

Given 0 € S', recall that we have defined

Dy:=D x| J{~6}.

yell

as the subset of D x S' containing all possible directions that can occur
with initial direction 6 after repeatedly reflecting on the sides of D. By
Lemma 2.2, the restriction ®¢ of ®, to Dy is ergodic with respect to . This
crucial result enables us to establish the quantum ergodic theorems that will
be necessary in order to prove Theorem 1.1. In fact, from here on, our
proof follows a now standard method that can be applied to obtain very
general results on manifolds with ergodic flows (see for instance [Zwol2]).
Nevertheless, following notes from Dyatlov [Dyal6], we include a proof for

the sake of completeness.
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Returning to our argument, our last assertion was that ® is ergodic
with respect to g for almost every 6. Then, the Birkhoff-Khinchin ergodic

theorem (see Theorem 2.1) implies that for any observable a there holds

lim ar(z,0) :/ adyug
T—o0 D

0

for a.e. € D. More compactly, we see that for almost every (x,w) € S*D
there holds

. | 1 ) )
Tlgrolo ar(z,w) :/ ady,, = 7T % W/Da(x,’yw)dx.

In particular, when a is isotropic the above reduces to

. 1 .
7151;10 ar(zr,w) = W/Dao(x)dx =a

where aq is given in equation (3.1). Finally, by the dominated convergence
theorem

lim lag(z,w) —al* du = 0.
T—00 S*D
We formalize the above result in the form of a lemma.

Lemma 3.1. [MR11, Lemma 2] For any isotropic observable
a(r,w) = ag(x),

we have
lim lar —a)* dp = 0.
T—o0 S*D

where @ = ﬁ [ ao(z)dz.

We now fix an orthonormal basis of Dirichlet eigenfunctions

¢17¢2a¢3» s
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with corresponding eigenvalues

0<A

=N

<A <A<

That is,
— A, = A2, in D°
UYp, =0 on 0D

for each n € N. We also define the sequence

which, as n — oo, concentrates near the origin. In Lemma 3.1, it was shown
that the time average ar of an isotropic observable a converges to the position
average of a in L?(S*D). We now ask if, for fixed T, one can compare the
expectation of a with respect to the probability densities |wn|2 dx to that of
ar. More specifically, the following asymptotic result provides an accurate

answer to this question.

Lemma 3.2. For any a € S(T*D) and T > 0,

)<Ophn(a)¢m ¢n>L2(D)‘2 - ’<Ophn(aT)¢n7¢n>L2(D)’2 —0

as n tends to infinity. In particular, if a is isotropic then a(x,w) = ag(zx) for

some function ag : D — C and

2

2
- ‘<Ophn (aT)wna wn>L2(D)‘ —0

[ anlo) (o)l da

as n — Q.

Proof. Consider the propagator
U(t) = U(t;n) = exp (ith,A).
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Since
U(t)% = ¢ it Y,

we see that

(Opp(a)¥n, ¢n>L2(D) = (Opu(@)U (t)hn, U(t)¢n>L2(D)
= (U(~t) Opu (@)U (£)n, ¥ 2 )

where in the last step we have used that U(t)* = U(—t). It then follows from

Egorov’s Theorem, that

<Ophn (a>¢n7 7vbn>L2(D) - <Ophn (a © cbt)wm w">L2(D) = O(h> (32>

uniformly for 0 < ¢ < T. Therefore, taking the average integral from —T' to
T on either side of (3.2), we infer that

‘<Ophn(a>d}m¢n>L2(D) - <Ophn(aT)¢na¢n>L2(D)’ — 0.

In order to conclude the result as stated in the lemma, we note that Op, (a)
and Opy, (ar) are bounded linear operators on L?*(D). Furthermore, this

bound is uniform for all h,, sufficiently small, or rather for all n large. Hence,

<Ophn (a)¢n7¢n>L2(D) ) <Ophn(aT)¢na 77ZJn>L2(D)

are uniformly bounded in n. Finally, the result follows from the fact that the

mapping x — |x\2 is uniformly continuous on bounded sets. [

In these two previous results, we carried out comparisons of a with respect
to its time averages; first with respect to the Liouville measure on the unit
cotangent bundle, and then with respect to the probability densities [¢),,|* dz.
In order to relate these results, we can compare how the function a averages
against both the Liouville measure and the probability densities given by

the eigenfunctions. In more precise terms, we postulate that the expectation
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of a function a € S(T*D), taken with respect to the probability densities
|ih,|* dz, is comparable to the average of a on the unit cotangent bundle
S*D. Specifically, the expectation of a is eventually almost always bounded

above by a constant multiple of

/ lalz, ) du.
S*D

In fact, we assert that there exists a constant C' independent of @ and R such
that, as R — oo,

I3 > \<0phn(a)wmwn>pw)\ < O/S*D la(z,w)[>du+ O (E) _

An€[R,2R]

However, we first note that by Weyl’s law, # {n : A, € [R,2R]} ~ R?. There-

fore, this inequality tells us that, eventually, most terms

<Ophn (a)¢n, wn>L2(D)
are at most a constant multiple of the L-average of a on S*D

Lemma 3.3. For any a € S(T*D),

ﬁ Z ‘<Ophn(a)wmwn>L2(D)‘ < C b ‘a(l’,w)|2 d,u + O <§)

An€[R,2R]
for some constant C' independent of a and R.

Proof. By the Cauchy-Schwartz inequality,

Z ‘<Ophn((1)¢m¢n>L2(D)‘2 < Z HOphn (a)wnHiz(D) (33>

An€[R,2R] 2E[R,2R)]

Z:: ( >\Ophn |12y - (34)
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for any non-negative cut-off function x € C2°((0,00)) whose restriction to

the interval [1,2] is the constant function 1. Now, observe that

”Ophn(a)wn”iz(D) = <Ophn(a)¢n, Ophn (a)¢n>L2(D)
- <Ophn (a)* Ophn (a)iﬂ,-“ ¢”>L2(D)
- <Ophn(|a|2)wm 7vbn>Lz(D) + O(hn)

Using that h, = 1/)\,, and the asymptotic expansion above in (3.3)-(3.4), it
follows that
2
Z ’<Ophn <a>¢m¢n>L2(D)‘

An€[R,2R]

< 3 (%) ((OmGa )ty + O

= 2 X (%) (<Ophn<|a|2>wn,wn>L2(D) +0 (%)) |

An€[R2R
Finally, by Weyl’s law and the local Weyl law (Theorems 2.4 and 2.5)

7 2 [On @i, <0 [

An€[R,2R)] D

la(z, )P dy+ O (%)

where C' is independent on a and R. O

Finally, by combining the conclusions of Lemmas 3.1, 3.2 and 3.3, we can
show that a fixed function a eventually “almost always” equidistributes with
respect to the probability densities W,f dx. This is, of course, made formal

below.

Lemma 3.4. Let ag € C°(D) and define a € S(T*D) by a(z,w) = ag(x).
Then

1 _|?
1%1—{20@ Z } ‘<Ophn(0)¢m¢n>y(p) - (I’ =0

N€[R2R
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where

E:/S*Da(a:,w)du:ﬁ/[)ao(x)dx.

Proof. Let T' > 0 be given. Note that, by applying Lemma 3.2,

2 2
‘<Ophn(a)¢"7¢">L2(D) —al — ‘<Ophn(aT)wnawn>L2(D) —a

2
= ‘<Ophn (CL - a)wna wn>L2(D)} - ‘<Ophn((a B E)T)wm wn>L2(D)

2

is o(1) as n — oo. Subsequently, invoking Weyl’s law (see Theorem 2.4), it
follows that
1 _ 2 _ 2
ﬁ Z <‘<Ophn (a o a)q/Jm ¢">L2(D)‘ - ‘<Ophn((a - G)T)f/ﬁn, w">L2(D)‘ )
X €[R.2R]

tends to 0 as R — oo. On the other hand, appealing to Lemma 3.3,

1 . 2 . 1
ﬁ Z ‘<Ophn((a’ - a)T)wn7wn>L2(D)‘ S C/S*D |aT - CL|2 dﬂ, + O (E) .

\;€[R,2R]

Combining these last two equations, we see that

. 1 _ 2 2
lim sup 72 E ‘<Ophn(a — @)y, ¢n>L2(D)‘ <C lar —al” dp.
R—o0 S*D
\j€[R,2R]

Our assertion is verified by citing Lemma 3.1 and taking T" — oo. m

We are now in a position to prove an analogue of Theorem 1.1. Informally,
this can be thought of as a “cut oftf” version of the equidistribution theorem
due to Marklof-Rudnick [MR11]. Using this slight analogue, we will later

provide a proof of Theorem 1.1.

Theorem 3.5. [MR11, Theorem 4] There is a density-one sequence n; — 0o

such that )
jli_)nOL/Dao(:c) |wnj(:c)‘2dx = W/Dao(x)dx.
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for any ag € CX(D°). Here, by a density-one sequence we mean that

s <
lim #{J nJ—N}:
N—o0 N

1.

Proof. By Theorem 1.7, we may pick a sequence of functions (aj)g2; in
C°(D°) that are dense in this space with respect to the uniform norm. We
will use a diagonal argument to construct a density-one sequence (n;) such
that

. 2 1
]lir(r)lo Dak(x) |1, ()| da = W/Dak(x)da:. (3.5)

for every £ € N. Then, we will show that the more general result follows by
density.

Before moving further, we establish some notation. Given r € N let
N, =#{j: N e2,27)}.

Then, given s € N we set

1 2
Ers 1= I}Elgg( N Z ‘<Ophn(ak)¢m¢n>m([)) — Ok

" An€ [27,2r+1)

By Weyl’s law and Lemma 3.3, the above tends to 0 as » — oo. In particular,
we may construct a strictly increasing sequence (7s)sen such that for each

seN
Ers < 274

for all r > r,. Especially,
223587«,3 < 2336“5 <27°

for each » > r;. Using this sequence, we partition the natural numbers,

removing unwanted terms from each set in the partition. More precisely, we
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consider the set

= {n D An € 27,2741 Iilgf ‘<Ophn(ak)¢na¢n>L2(D) N ak‘ < 23} '

We claim that for each s € N

##Js _
>1-27"
#{n: A\, € [2rs,2ms41)} T

To see this, we further partition our sets;

{n: A, €2,2")} = U {n:x, €[27,271)}.

rs<r<rsii
Applying a similar rule to J;, it follows from Lemma 1.3 that!

#Js min #(J,N{n: N\, €27,27TH})

>
# {n t A\ € [2“, 2“'*‘1)} T re<r<reqi # {n t A € [QT, 2T+1)}
. r or+1
L #(n{n A e o))

rs<r<rsii Nr

On the other hand, given r > r¢ there holds

# (I N{n:r, €[27,27h)}) 1 #{n: X\ € 2r,27TH 1\ Js)'

N, N

(3.6)

(3.7)

In order to obtain a bound on the last term above, will use Chebyshev’s

inequality. To this end set

Q= {n t A € [2r,2T+1)}

and associate the uniform distribution P. We then define the random variable

'Note that if # {n:\, € [27,2"T1)} = 0, then # (J;N{n:\, € [27,27T1)}) = 0.

Hence, both terms may be ignored in this case and Lemma 1.3 applies.
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X :Q —[0,00) by
X (n) = max | (Opy, (@ s ) oy = .

Observe that

P[X>2"] = # ({12 An 6][3’“,2”1)} \ )

On the other hand, by Chebyshev’s inequality,
P[X >27] =P [|X|* > 27%]

§228/ | X[? dP
Q
1

2
=28 7 max|(Opy, (@), ) o — |

T An€[2T72T+1)

S 228]\/,i Z Z ‘<Ophn(ak)wna wn>L2(D) — Qg

‘2
r An6[2T12T+1) k=1

S

=22} Ni ) ‘<Ophn(@kwmwn>mw>_a’“

k=1 " An€l2r2rtl)

2

1 2
<2emax [ Y ‘<ophn<ak)wn,wn>m)—ak

k<s r
Ane[2r72r+1)

= 22555“ < 278,

Returning to (3.7),

# (s {n: A €227} #{n: A €[22} )
NT- NT
=1-P[X>2"°]>1-2""
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Since this holds for all » > r,, applying this bound to equation (3.6) yields

. r or+l
#J; > min #(JsN{n: N\, €[2,2)})
#Hn: A, € [205,27s+1)} T re<r<ron N,
>1-2"°

Using this last inequality, we can show that an increasing sequence (n;)
satisfying

{n;:jeN}=JJ

seN

must have density-one. Indeed, using Lemma 1.4 we see that

FUD AL S #,
#{n: A\, < 2rse1} Zle #{n: A\, €[20s,2rs+1)}
> Zf:1<1 — 2—3)# {n )\, € [27397 27’s+1)}
- S #{n A, €205, 2001))
Zsszl 275#{n: N\, € [27,2"+11)}
S # A, € 20, 2m))
1.

—1—

S—o00

Consequently, (n;) is a density-one sequence.
We now show that this sequence satisfies equation (3.5). Indeed, one has

by construction that

—0

‘<Ophnj (ak)tn,; ¢nj> — Qg

L2(D)

for any k£ € N. Finally, pick an arbitrary function a € C°(D°) and let € > 0
be given. We may find £ € N such that

sup |a(x) — ag(z)| < e.
reDe°
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It follows that

2 1
lim sup x) Y| dr — —— / a(x)dx
j—o0 ‘ ‘ m(D) Jp @)

1
< limsup | 2¢ + / n —/a xr)dz
ﬁoop( o len e iy [ oo

= 2e.

)

Since € > 0 is arbitrary, our result follows. O

Theorem 1.1, which we recall below, is now finally within reach.

Theorem 1.1. [MR11] Let D be a rational polygon and fix an orthonormal
basis (¢n),—, of the Dirichlet Laplacian on D. Then, there exists a sequence

of natural numbers (n;) such that

area A)
li s dz = 1.1
Jggo/ |90 | T area D) (1.1)

for all measurable sets A C D with boundary OA having Lebesque measure 0.

Furthermore, we have

lim #1{j:n; <N}

lim + =1. (1.2)

Given Theorem 3.5, the proof is now a straightforward density argument.
The idea behind the proof is to sharpen the conclusions of Theorem 3.5 by
approximating the indicator function 1,4 of a set A by a carefully chosen
sequence of functions (a;) € C°(D°). Repeating the same argument for
D\ A, we thereby obtain two inequalities that, when combined, establish the

theorem.

Proof of Theorem 1.1. We will prove our assertion for the density-one se-
quence (n;) obtained in Theorem 3.5. Consider an arbitrary measurable set

A C D with boundary of measure 0. Without loss of generality, we may
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suppose that A is closed. We construct a sequence (ay) C C2°(D°) approxi-

mating 14 in L'(D). Furthermore, we may suppose without loss of generality
0<a, <1 and a <ap <1y

for each k € N. Note that such a sequence is obtained by multiplying 1 4 by
a cut-off function then mollifying. For any k € N,

lim inf/ aj(x) an (ZL‘)|2 dz > lim inf/ (@) |Un, (x)‘Q dz
A A

J—00 j—oo

= lim [ ay(2) v, (x)|2 dz

J—00 A

Letting k£ 7 oo yields

liminf [ a;(x) |t (2)|” dz >
A

Jj—o0
Combining our results, we conclude that

hjrgiogf/A |¢nk(g;)]2dx > li?iglflaj(x) an(x)fdx = :ég;

So far, we have shown that for any measurable set A C D with boundary of

measure 0, there holds
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Since D \ A is also a measurable subset of D with boundary of measure 0,

linlsup/Alwnj(x)|2dx:lirisup (/D‘wnj(x)|2dx—/D\A‘wnj(x)’2>
| fiminf ()2
1 —limin /D\A‘wnj(x)‘ dz

m(D\ A)  m(A)
=TTy T mdy

Thus, we also have the converse inequality which concludes out proof. O]

Remark 4. Recall that Theorem 1.1 applies only to measurable sets A C D
having a boundary of measure 0. Our proof actually illustrates why this last

condition is necessary. More precisely, we have shown that

liminf/ b, (2)]* dz >
A

J]—00

By the same argument, the above inequality remains true on the closure of

D\ A. That is,

liminf/ o, () dae > m(P14)

i~ JDva m(D)

Finally, using the JA has measure 0, we see that A and D \ A differ from
their respective closures by a set of measure 0. Hence, combining these last

two inequalities yields the statement.

4 The Equilateral Triangle

Throughout the remainder of this thesis, we will denote by T an equilateral
triangle having sides of length 1 embedded in the R?-plane (see Figure 2).

We note that, following convention from an earlier section, T includes it’s
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Figure 2: Equilateral Triangle T'.

boundary. In this section, we ask whether it is possible to find an ezplicit
countable orthonormal basis of L*(T') consisting purely of eigenfunctions on
T satisfying either the Dirichlet or Neumann boundary conditions.

We now take a moment to outline the argument we will employ, which
largely follows the approach used in Pinsky [Pin80]. Namely, we roughly
describe how we will obtain an orthonormal basis of L*(T) consisting of
Dirichlet (or Neumann) eigenfunctions of the Laplacian. Consider an eigen-
function f of the Dirichlet (resp. Neumann) Laplacian on the triangle T'. By
a reflection argument, we can extend f to be an eigenfunction of the Dirichlet

Laplacian (resp. Neumann) on a parallelogram P.

Figure 3: Parallelogram P.
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It will be most convenient to also consider a parallelogram that contains
18 copies of the triangle 7. In more precise terms, we want to consider a
parallelogram P having end points (0,0), (3,0), (3+ 2, 3‘?) and (3, 3‘/75); see
the Figure 3 for more details.

Then, appealing to a now standard result, see [BGMT71, page 148], we can

write f as a series whose terms are of the form

exp [? (,uzr; + 2”\/_3’”‘ y)] (4.1)

where the indices (u, ) range over Z x Z. Indeed, the above collection of

Laplace eigenfunctions is known to be an orthogonal basis of L?(P). Now,
observing patterns in the coefficients and grouping terms accordingly, we
show that f can in fact be written as a linear combination of functions
satisfying the Dirichlet (resp. Neumann) condition on the original triangle
T. Since f was an arbitrary Dirichlet (resp. Neumann) eigenfunction on 7',
and these form a Schauder basis of L*(T), the functions obtained through
this process must in turn form a basis L?(T) as well. However, we still
want an orthonormal basis of L*(T'). Luckily, given our convenient choice of
parallelogram, it will turn out that these functions are already orthogonal.
We now formally state the results that we aim to establish within this
section. They are completely analogous, one applying to Dirichlet boundary

conditions and the other to Neumann conditions.

Theorem 4.1. An orthonormal basis of Dirichlet eigenfunctions for L*(T)
s given by
e%((nfm)er\/g(ern)y) i 6%((n7m)xf\/§(m+n)y)
Oman(T,y) = 3_1/4\/2 + 6%<7(2n+m)x7\/§my) — 6%(*(2n+m)x+\/§my)
) ) 3

+ 6%((2m+n)x—\/§ny) _ 6%((2m+n)x+\/§ny)
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where (m,n) range over N x N. The eigenvalue corresponding to ¢, , is

2
16T7T(77’L2+7’rm+n2).

Next we state the analogous Neumann result:

Theorem 4.2. An orthonormal basis of Neumann eigenfunctions for L*(T)

s gien by
6%((nfm)z+\/§(m+n)y) _’_6%((n7m)z—\/§(m+n)y)
¢m,n($, y) = 3-1/4 % + e%(—(Zn—&-m)x—\/?:my) + e%(—@n-{-m)z-&-ﬁmy)

1 5 (Cmam)a—Eny) | B (@man)z+Eny)

where (m,n) range over Ny x Ny. The eigenvalue corresponding to V¥, n is

1672

9 (m2+mn+n2).

4.1 Dirichlet Eigenfunctions

In this section, we establish the Dirichlet case of the previous two theorems,
i.e. we give the proof of Theorem 4.1. Following the outline above, we begin
with an arbitrary Dirichlet eigenfunction f on 7. That is, f € C? (T) NCO(T)
is a solution to

—Af=\f inT

f=0 on 9T

for some A > 0. We may then reflect f along each side of the triangle T’
(see [DL55]). In more precise terms, given a point (z,y) € T, if (2/,y') is the

reflection of (x,y) along a side of the triangle, then we define

f(xlvy/) = _f(l',y»
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Repeating this reflection process for each side of the triangle, it is easily
verified that f can be extended to a smooth function on the entire plane. By

construction, our function satisfies the equation
—Af=\f

on all in R?. Moreover,
foR,=—f onR? (4.2)

for ¢ = 1,2, 3 where the reflection operators about each side of the equilateral

triangle T are given by

H—2+V3y,V3z +y)
Rs(z,y) = 3(3 — 2 — V3y, V3 — V3z +y).

Since the collection of functions in equation (4.1) form an orthogonal basis
of L?(P), the restriction of f to the parallelogram P can be expressed as a

series of the form

_ 2mi v —p
[ = (MZV:)CM,V@XP{ 3 (/m+ 7 y)} . (4.3)

We now make use of equation (4.2) in order to establish a pattern in the

coefficients C), ,,. First, taking ¢« = 1, we see that
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Therefore, we have
C,u,u = _Cu,u—u (44)

for all pairs (i, v). Similarly, for i = 2 we obtain

2mi [ —x+V3y 2w —p3
o) = X Cpuesp |2 (Y0 2o )

3 2 V3 2
(1,v)
2mi %
= C,. — — +
N )
(psv)
27 2v—
= Cuf v 5 + = —J\Z,
> Cop exp{ 3 <ux N y)} f(x,y)
(1)
whence
C,u,zx = _Cuf,u,u (45>

for all pairs (u,v). Finally, we have

2 —x— 2 — /3
N R

) ’ i v 2
_ Z C e exp <—2?(M + y)) exp {% (ux+ 2y\/—§uy)}
—f(x,y)
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271

C,u,,u = —C_,/7_“ exp <—T(M + V)) .

On the other hand, using the information in (4.4) and (4.5) yields
Cov=-Chu=0_,,=-C_,_,.

Combining the last two equations we conclude that if C),, # 0 then

271

exp (-T(,U + V)) =1. (46)
Or, equivalently, ¢+ + v = 0 mod 3. Finally, notice that if u = 2v then
Cﬂ,v = _Cu,u—v = _CAW

so Cy,,, = 0. Therefore, if C,, # 0 then p # 2v and, similarly, v # 2. From

our work thus far we conclude that if C),, # 0 then®
(1) p+ v =0mod 3,
(2) p#2v,
(3) v #2p,

Since i 4+ v = 0 mod 3, one may write

p=n—m and v=2n+m

20One may observe that if the pair (u,v) satisfies conditions (1), (2) and (3) then so do
the pair (u, u —v) and (v — p,v).
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for integers m,n. With this notation, we see that the function f must be a

linear combination of functions

o) =exp | 5 (0 = a4 VBm +)9) | = exp |57 ((n = e = VBm )
+ exp {? (—(Qn +m)z — ﬁmy)} — exp [? (—(2n +m)z + \/gmyﬂ

+ exp {? ((zm + )z — ﬁny)] — exp l? <(2m + )T+ \/§ny>}

where (m, n) range over Z x Z. Since f was an arbitrary Dirichlet eigenfunc-
tion on 7', the above collection of functions consequently forms a (Schauder)
basis of L*(T).

However, it turns out that this collection contains redundancies. More
precisely, restricting ourselves to (m,n) € N x N, this collection remains a

(Schauder) basis of L?(T'). To see this, we make 3 important observations:
(1) If n =0 or m = 0 then @,,, =0,
(2) Pmn = =P-n—m,
(3) @mn = —@mm,fn-

From the above we see that all pairs (m,n) ¢ N x N may be discarded.
Indeed, if m = 0 or n = 0 then by (1) we have ¢,,,, = 0 and there is nothing
to show. If m,n are both negative then we may apply (2) to conclude that
©m.n is redundant given ¢_, _,,. Suppose now that m is positive but n is
negative. If m +n > 0 then (3) shows that ¢y, ,, is redundant. On the other
hand, if m +n < 0 then (2) and (3) show that @ = =@ —n—m = P—(min)m
SO once again ¢, ,, is seen to be redundant. Finally, we can handle the case
where m is negative but n is positive with a similar argument.

Recalling that our goal was to find an orthonormal basis of Dirichlet
eigenfunctions for L*(T), we ask whether @, is a Dirichlet eigenfunction

for each index (m,n) € N x N. We first check that the ¢,,, indeed solve the
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Helmholtz equation. Indeed, by a straightforward computation, we see that

1672

—APmn = (m2 +mn + n2) Omon-

Furthermore, along the lines y = 0,y = v3z and y = v/3 — v/3z, one can
readily verify that @,,,(z,y) = 0. In particular, we have @,,, |sr= 0 as
desired.

In order to establish that ¢,,, are indeed eigenfunctions, it remains to
check that they are non-trivial. It is easily established that cancellation
occurs if and only if n = 0, m = 0 or m = —n. Therefore, these are the only
cases where ¢, , = 0. Since in all three cases, we cannot have that n and m
are positive integers, the functions ¢, ,,, for (n, m) € N x N are non-vanishing

and thus eigenfunctions.

Remark 5. Notice that p = 2v if and only if n = —m and v = 2 if and only

if m = 0. In these cases, we have that @, , is trivial.

We now show that the collection of functions ¢, , is orthogonal with
respect to the L2-inner product on 7. First, we make one more observation.
Our expression for @,,, is valid on all of R?. On the entire plane, &,,,, is
a Laplace eigenfunction and, in particular, analytic. As mentioned previ-
ously, repeated reflection also allows us to extend ¢,,, to an eigenfunction
on the entire plane. By the Identity Theorem (Theorem 1.8), this extension
coincides with our expression for ¢, ,. In particular, ¢, , satisfies equation
(4.2). That is,

Pmn © Ri = —Qmn

for each ¢ = 1,2,3 and every (m,n) € N x N. It follows that for any two
pairs (m,n), (m/,n') € N x N,

1 NEYPA
/ gb{m,n(ﬁm’,n/dxdy == _/ / &m,n@m/’n/dl'dy (47)
T 2 0 0
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Now, the product

CmnPm’ n-

is a linear combination of functions of the form
271
exp (7(3(13: + \/gby))

where a,b € Z. Furthermore, if the pair (m,n) is distinct from (m’,n’) then
it cannot be the case that both a and b are zero. Finally, observe that if

a = 0 then b must be even. Therefore,

/ e / exp ( (3az + /3 by)) dzdy

(62ma+7rzb 62Tria _ 6m’b + 1) if a, b 7& 0

47r ab
. 4.8
= F‘/i(e”’b—l) ifa=0 (4.8)
V3 (g2mia 1) if b=0

=0

and we conclude from equation (4.7) that the eigenfunctions are indeed or-
thogonal in L*(T).

It remains only to normalize our orthogonal eigenfunctions. We therefore
compute the L? norm of $,,,,. That is, we repeat our last computation but

for (m,n) = (m/,n’). In this case, the product

= PmnPmn-

is precisely equal to 6 plus a linear combination of functions of the form

exp (?(3% + \/§by)>

where a,b € Z where
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(1) at most one of a and b can be zero;
(2) if a = 0 then b must be even.

We refer the interested reader to the appendix for an explicit computation
of |Zmnl’. By equation (4.8), the integral of |@,,|” is entirely determined
by the constant term. That is,

V32 pl

_ 1 3
/Wmf——/ ./6M®__%;
T 2 0 0 2

Or, rather, |Gm,nll L2 = 31/4,/3/2 and we see that

2
mn 3_1/4\/ij n-
SO 9 3¢ 9

is the desired orthonormal basis of L*(T') as described in Theorem 4.1.

4.2 Neumann Eigenfunctions

We now treat the Neumann analogue of Theorem 4.1. In particular, we prove
Theorem 4.2. Consider an eigenfunction f satisfying Neumann boundary
conditions, i.e. f € C%(T)NCYT) and 8, f =0 on AT where v denotes the
outward normal vector field on 0T

As in the previous section, we want to write f as a linear combination of
“well understood” functions. This is also done by way of a reflection-type
argument. However, we will now be using positive reflections to achieve this.
More precisely, we can extend f to a Laplace eigenfunction on all of R? in a
way that satisfies (see [DL55])

foR;=f onR? (4.9)

for i = 1,2, 3. Here, we are once again R; to denote the reflection operations
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about each side of the equilateral triangle. More specifically, we have

(=2 + 3y, V32 +)
(83— —V3y,V3—V3z+y).
Then, since the functions in (4.1) form an orthogonal basis of L*(P), the

restriction of f to the parallelogram P may be expressed as a series
2mi 2v—p
f= Z Clvexp {— (,ux + —y)}
3 V3
(:v)
Now, taking i = 1 in (4.9) we obtain

foRi(z,y) = Z C.p exp {? (Mw _ 21/\/_3#3/)1

(psv)

= Z Cip—v €Xp [? (/M + QV\/%MZJ)} = f(z,y).

(psv)

Therefore,
C,u,l/ = O,u,,ufu (410)

for all pairs (u,v). Similarly, using (4.9) with ¢ = 2 we see that
Cu,l/ = Cy—u,y (411)

for all pairs (u,v). Finally, considering i = 3, we can derive the equation

271

C,u,u = Cfu,fu €xp (_?OL + V)) :
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On the other hand, combining equations (4.10) and (4.11), we also have
Cov=0Cuu=0_,,=C_,_,.

Therefore, we conclude that if C,, # 0 then

271

exp <_T(’“‘ + u)) = 1. (4.12)

Or, equivalently, ¢+ + v = 0 mod 3. Hence, one may write
u=n—m and v=2n+m

for integers m, n. It follows that f can be represented as a linear combination

of functions taking the form

2m 2m

Dron(,1) = exp [? <(n —m)z + V3(m + n)y)] + exp [7 <(n —m)z — V3(m + n)y)]
+ exp [@ <—(2n +m)x — \/gmyﬂ + exp [@ (—(Qn +m)x + \/gmyﬂ

3 3
+ exp [% ((zm +n)z — ﬁny)} + exp [% ((2m +n)z+ ﬁny)]

where (m,n) range over Z x Z. As f was taken to be an arbitrary eigenfunc-
tion of the Laplacian on T with Neumann boundary conditions, it follows
that every Neumann eigenfunction is a linear combination of the functions
above.

We now assert that it is enough to consider Jmn where (m,n) range over
Ny x Ng. As in the previous section, this fact follows from the following

observations;
(1) wm,n = ¢—n,—ma
(2) wm,n = mern,fn-
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To summarize, we have obtained a Schauder basis of L?(T). It remains to
verify that these are orthogonal Neumann eigenfunctions of the Laplacian on
T. A straightforward calculation gives

- 16w N
~ Ay = 97T (m* +mn+n?) Y, in R

Therefore, the functions {/;nm solve the Helmholtz equation in R2. It is
also clear that Jnm % 0 for each n,m € Nj. Hence, Jnm is indeed an
eigenfunction for the Laplacian for each n,m € Ny. Along the line y = 0, we
see that

Oy Um,n(2,0)
271 211 211

== 20 (VB ) exp | 252 = | = VB e |22 = e

— V3mexp [—?(Qn + m):c} +V3mexp [—?(271 + m)x]

—V3nexp [?(Zm + n)x} +V3nexp [?(Qm + n)xD = 0.

Similarly, we see that aV{&m,n = 0 along the line y = v/3z and y = v/3—v/3z.
In particular, we have
auwm,n |8TE 0

so the eigenfunctions satisfy the Neumann boundary condition.
Finally, carrying out the same computations as in the previous section
shows that the collection @Zn,m over (m,n) € Ny x Ny is orthogonal with

respect to the L?(T) inner product. Normalizing this functions, we infer

that
2 ~
m,n 3_1/4\/j m,ns
¢ ) 3,¢} 3

for (m,n) € Ny x Ny, is the desired orthonormal basis of Neumann eigen-

functions as in Theorem 4.2.
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4.3 Quantum Limits

Having obtained an orthonormal sequence of Dirichlet (resp. Neumann)
eigenfunctions, we now describe their asymptotic behaviour. That is, we ask
how these concentrate as the eigenvalues tend to infinity. By Theorem 1.1,
we know that “most” subsequences of eigenfunctions will equidistribute. In
this section, we explicitly find all quantum limits associated to our sequences
of eigenfunctions. As far as the author can tell, this result was not previously

available in the literature.

Theorem 4.3. For the orthonormal basis of Dirichlet (resp. Neumann)
eigenfunctions on T given by Theorem /.1 (resp. Theorem 4.2) the possi-
ble quantum limits are precisely the weighted Lebesque measures on T' with

density given by

where n € Ny and

(5
Fao(z,y) =1 —exp (?n (30— V3y) ).
fus(@y) =1 — exp (?n (~30+ \/§y)> ,
Faa(z,y) =1 — exp (?n (30— \/§y>) ,
fas(z,y) = 1 — exp (?n (Nﬁy)) |
fus(t,y) = 1 — exp (?n <—2\/§y>) |

Note that for n =0, this is simply the Liouville measure for the triangle T.

Proof. We first handle the Dirichlet case. In order to identify all the possi-
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ble quantum limits associated to (¢,,,), let us fix an arbitrary subsequence

(gpmj,nj)jeN whose associated eigenvalues are increasing, such that

. 2
.hm / ‘Som] nj ('T7 y) | — / dv
j=oo f 4 A

for all A C T with negligible boundary. We must show that there exists
ng € Ny such that
dv = f,,dzdy

where f,, is as in the statement of this theorem. We begin with a simple

observation: note that the corresponding sequence of eigenvalues is given by

1672

Since the above must tend to infinity as j — oo, one of (m;) or (n;) must
also diverge to infinity. More precisely, we must be in one of the following

three cases as j — o0;
(1) Both n; and m; tend to infinity;
(2) n; tends to infinity but m; does not;
(3) m; tends to infinity but n; does not.

In the first case, we claim that dv = fydaxdy. That is, we show that

2 4
Om;m; (T, )| dedy — —/dxdy
/A| ( )} V3 Ja

for all A C T such that the boundary of A has measure 0. In fact, we are
able to show that

5 4
X(T,Y) |Pmym, (T, Y dxdy%—/xx,y dzdy
/T< ) [ Gy (2, 9)] 7 | xew
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for all x € LY(T). After inspecting our expression (1) for [@mn|* (see Ap-
pendix), we see that the above follows at once from the Riemann-Lebesgue
Lemma 1.9.

Suppose now that m; — oo but n; does not tend to infinity. Then, taking
a subsequence if necessary, we may suppose without loss of generality that
nj = ng is constant. Once again, after inspecting our expression (f) for

]gpmynﬁ and applying the Riemann-Lebesgue Lemma 1.9, we conclude that

/x(w,y)|s0mj,nj(x,y)\2dxdy—>/X(x7y)fn0dxdy
T T

Similarly, if m — mg and n — oo then

/x(x,y)|90mj,nj(w,y)}2dwdy%/X(x,y)fmodwdy
T T

In the Neumann case, we proceed in an identical manner. That is, we be-

gin with arbitrary subsequence (¢mj,nj) whose associated eigenvalues are

jEN
increasing, such that

) 2
hm/x(w,y) [Ymym; (2 9)] —>/Xd”

for all A C T such that the boundary of A is negligible. Once again, we
consider the cases (1), (2) and (3). After inspecting our expression (i) for
Wm,nIQ (see Appendix), an application of the Riemann-Lebesgue Lemma 1.9
yields the desired results. O

4.3.1 Frequencies

Having found quantum limits associated to given sequences of eigenvalues, we
ask what is known about other quantum limits on 7. A Theorem by Jakobson
[Jak96, Theorem 1.2] gives us information about the quantum limits on the

torus. More specifically, we have the following result.
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Theorem 4.4. [Jak90, Theorem 1.3] The density of every quantum limit on
the torus T? := R?/Z? is a trigonometric polynomial whose frequencies all

lre on at most two circles centered at the origin.

Let us take a moment to recall some definitions and explain the meaning
of this result. Suppose we are given an L?(T)-normalized sequence composed

of Laplace eigenfunctions with corresponding eigenvalues
2 2
0< A <A< ...

such that A\; — oo. Recall that if

/A|uj($)|2dx—>/AdV

for every subset A C T? with boundary of measure 0, then v is a quantum
limit on T?. Then, Theorem 4.4 states that v is absolutely continuous with

respect to the natural measure on T? and the density of v is given by

where the above is a finite sum. Furthermore, there exist two positive num-
bers rq,ry such that

T/ =m or || =1

whenever ¢, # 0 and 7 # 0. These vectors 7 are known as the frequencies.
On the equilateral triangle, we observe that all the quantum limits we
have obtained in Theorem 4.3 satisfy the result of Theorem 4.4. Even more
so, for every quantum limit we have found, the frequencies lied on a single
circle centered at the origin. We expect the argument put forth by Jakobson
in [Jak96] to extend to the equilateral triangle. In fact given that the fre-
quencies of every quantum limit that we have found lied on a single circle,

we formulate the following conjecture.
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Conjecture. For every quantum limit on the equilateral triangle associated
to an orthonormal basis of Dirichlet (resp. Neumann) eigenfunctions, the

frequencies lie on a single circle centered at the origin.

4.4 The Billiard Map

We seek a function p which is g-invariant where (3 is the billiard map on the
triangle 7. That is, such that

pof=p.

Denote by M the collection of inward pointing unit vectors based on 0T
That is, every point in M can be described with coordinates ((z1,x2), @),
where (x1,x9) € 0T denotes the base position of the vector and a € (0, 7)

denotes the angle between 0T and our unit vector. Now, suppose

ﬁ((xlv Ig), Oé) = ((x/h xé)v CY/)

and observe that either

2 2
at+ao =2 or (7r—a)+(7r—o/):—ﬂ.
3 3
CY/
Q
4 Q
In either case,

6a’ = 6a mod 27. (4.13)
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We therefore consider the function p : M — C given by
((x1, 22), @) — cos(6a).
It is clear from equation (4.13) that
pof=np,

as desired. A point in M can also be represented by pair ((z1,x2), ({1,&2))

where & = cosa and & = sin . We therefore re-define

p:R*xR* = C, ((x1,22),(€1,&)) — cos (6arctan(&/€1)) -

Since p only depends on it’s second variable, we will simply write p(§) from

here on. Furthermore, if & = 0 then we define

arctan(§y /&) = sign({z)g

We now consider the pseudodifferential operator P, : L*(R?) — L?(R?) given
by

Pyu = p" (hD)u = F " (p(-)(Fau)(-))

4.4.1 Joint Eigenfunctions

Recall that we have obtained two distinct orthonormal bases for L?(T') com-
posed of Laplace eigenfunctions. More specifically, we have the orthonor-
mal basis (¢m,n),, nen Of Dirichlet eigenfunctions and the orthonormal basis
(wm,n)mm N, of Neumann eigenfunctions. We ask if these same eigenfunctions
also solve the eigenproblem

Pou = \u.
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In order to answer this question, we simply fix m,n € N and compute

Phgom,rp

i(ax1+bra)

Since ¢, 5 is a linear combination of functions of the form u = e’ , we

first evaluate P,u. This yields

Pou=Ft (p()(Fnu) () = Fi (p(-)(27h) 80 ()
= 'Fh 1 (p a b 27Th 25(,11) ( )) (4'14>
= p(a, b)u.

It then follows from linearity that Py, is precisely the function

» (%”(n _m), %Wﬁ(m + n)) exp [? (tn = m)z+ V3(m + n)y)}

(2—” n—m), =2\ + n)) exp {? ((n—mye - ﬁ(m+n)y)]
( 2§<zn+m) ——\/_m> exp [27; (~(20 4+ m)z - \/_myﬂ

( 2T (9 +m), > \/_m> exp {23 ( (2n+m)x+\/_my>]
( (2m + n), ——\/_n) exp [23 ((2m+n)x—\fny)]

3
—p(%(?mﬂLn) \/_n) exp{ : ((2m+n)x+\/_ny>]

We claim that the above expression can be reduced to

Ph@m,n<x7 y) = )‘Spm,n(ma y) (415>

where
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It suffices to show that
2 2w
P <?a, ?\/§b> =\ VY(a,D) €A (4.16)
where

A={(n—m,m+n),(n—m,—m —n),(—2n —m, —m),

(—2n —m,m),(2m +n,—n),(2m +n,n)}.

To see that this is indeed the case, we consider first the case m = n. Then,
by inspection, we readily conclude that equation (4.15) holds with A = —1.
We may therefore move on to the more difficult setting where m # n. In
order to simplify our computations, we make a simple observation; for every
&1, & € R? there holds

p(&1, &) = cos (6arctan(§>/&1)) = cos (—6arctan(&/&1))
= cos (6 arctan(—&,/&1))
= p(fla _52)

It therefore only remains to establish (4.16) for three different terms in A.
Since the computations are not particularly informative, we only include one

as an example.

3 3 n—m

T VB
=cos | 6 |arctan
1 — /3t

)

P (2—7r(n —m), 2—7T\/§(Tn + n)) = cos | 6 |arctan m) + arctan(\/g)] )

[ 3
=cos | 6 |arctan \/_n )

_2m—i—n

—p (2%(2771 +n), —2%\/%) .
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Having established (4.16), we conclude that ¢,,, solves the eigenproblem
(4.15) for every n,m € N. That is, the collection (¢, ) is composed of joint
eigenfunctions for both the Laplacian and the operator P,. Similarly we see
that for all m,n € Ny, the collection (t,,,) consists of joint eigenfunctions

for both the Laplacian and the operator P,.

Remark 6. Not all Laplace eigenfunctions solve the eigenproblem (4.15). In
particular, linear combinations of functions in the collection (¢,n) or (¢.n)

are not guaranteed guaranteed to solve this equation.

Having seen that P, and —A share a basis of eigenfunctions, we also
note that these operators commute. To see this, we first note that —A is a

pseudodifferential operator. More specifically, we have

—Au(z) = Ft (1€ Fau(€)) (2).

We note that the above formula is valid for all u € L?(D). Therefore, given
u € L*(D), we see that

[Po (=A)u=F," (p(&) 1€ Faul(§)) (z) = [(—A) o Py u.

Hence, these operators indeed commute. In general, quantizations of symbols

depending only on the momentum commute.

5 Conclusion

Thus far, we have provided an L2-complete collection of Laplace eigenfunc-
tions (with either Dirichlet or Neumann boundary conditions) on the equilat-
eral triangle and have also completely determined their associated quantum
limits. Similar results are known to hold on the rectangle, but such questions
remain open when working in more general classes of rational polygons (or,

in domains with less symmetries). However, we expect the problem of finding
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an explicit form for a collection of Laplace eigenfunctions (in both Dirichlet
and Neumann settings) to become difficult in these cases.

The classification theorem (see [McCO08]) states that the only polygonal
domains for which there exists an L2-complete family consisting of trigono-
metric eigenfunctions are the rectangle, the square, the isosceles right trian-
gle, the equilateral triangle, and the hemiequilateral triangle. A complete
set of eigenfunctions is well known on the rectangle and, in this document,
we have provided such a family for the equilateral triangle. As mentioned in
[McC08], the eigenfunctions of the isosceles right triangle and the hemiequi-
lateral triangle are a subset of those obtained for the square and the equilat-
eral triangle, respectively. We therefore expect new methods to be needed if
one is to extend our result to polygonal domains other than the ones we have
listed. In light of this and the arguments used in Theorem 4.3, it reasons
that the problem of fully classifying the quantum limits will also present new
challenges when working outside of these “nice” domains.

Finally, let us consider once more Conjecture where we hypothesize that
all frequencies of a quantum limit (on the equilateral triangle) lie on a single
circle centered at the origin. As mentioned previously, a similar result lim-
iting the frequencies to two circles centered at the origin is known to hold
on the torus T . It is our hope that in future works we can sharpen this

conclusion in the setting of an equilateral triangle.

6 Appendix

The proof of Theorem 4.3 relied on inspecting the expressions for the squares
of the Dirichlet eigenfunctions ¢,,,, and the Neumann eigenfunctions v, .
For the reader’s convenience, we have included these expressions here.

The Dirichlet eigenfunctions are given by

2
m,n :371/4 _~mn-
Pm, 3S0 ,
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where ¢, ,, are as in §4.1. Therefore,

2 -
|90m,n|2 = g\/g |90m,n|2

and we explicitly compute

|(,5m’n(l', y)|2 = SZm,n(x’ y)@m,n(x, y)

— 6 exp {% (2v3(m + n>y)}

— exp

+ exp

— exp

— exp

— exp

+ exp

— exp

+ exp

+ exp

— exp

— exp

? <3m: +V3(2m + n)y)}
22 (3ne -+ V)|

? (—3ma + V3(2n + m)y)]
? (~3ma + \/gmy>]

= (i)

2 (0~ V)|

? <3m: —V3@2m + n)y)}
5 (e i)

? (~3ma —V3(2n + m)y)]
? (~3nz —V3(2m + n)y)]
2 (<3 + Vi)
__%Zﬁmy]



+ exp

— exp

— exp

+ exp

— exp

— exp

+ exp

+ exp

— exp

+ exp

— exp

— exp

— exp

+ exp

— exp

+ exp

— exp

1
[\

1
[\

| 3
27
| 3

Foi
%22\/3714 .

%( 3(m + n)z + v3(n — m)y)]
?( 3(m +n)z m—l—n)y)}
2 (~sna - fny)]

%2 (—3nx +/3(2m + n)y)]
o]

% (=3 +n)z+ v/30m + n)y)}
? (=3(m + )+ v/3(m - n)y)]
% (3mz — v3(2n + m)y)]

? (3ma + ﬁmy)]

? (30m +n)z — V3(n - m)y)]
% (30m +m)z — V3(m + n)y)]
_—?2\/%4

@ <3mx - \/_myﬂ

[ 274

3 (Bmx +V3(2n + m)y)]

[ 273

— (3(m +n)x 4+ V3(m + n)y)}
2 (30m -+ m)e = V3(om — )|
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Similarly, the Neumann eigenfunctions are

2~
m,n — 3_1/4\/j m,n-
ll/) 9 3¢ k)

where the functions Jmn are as in §4.2. Hence,

9 ~ 2
|¢m,n|2 = g\/g‘d]m,n

and we explicitly compute

G 0)|| = Gl 9) T, )
—6+exp{ (2\/_(m+n) )]

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

3nz 4+ V3(2m + n)y)}
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+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

+ exp

? (—an —V32m+ n)y>]

? (—3m~ n \/gny)]
——?Zﬁmy}

? (=3(m +n)a + V3(n - m)y)]
? (~30m + )z — V3(m + n)y)}
22 (<ane Vi)

? (~3nz + v/3(2m + n)y)]
e

? (=30m + n) + VB(m + n)y)}
? (=3(m +n)a + V3(m — n)y)]
? (3mz — v3(2n + m)y)]
v

? (30m +n)z — V3(n - m)y)]
? (36m + )z —v/3(m + n)y)}
e

e )

? (3ma +v3(2n + m)y)]
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+ exp ? (3(m +n)x 4+ V3(m + n)y)}
+ exp _? (B(m +n)x —V3(m — n)y)]

Fos
+ exp %2\/5713;}.
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