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Abstract 

Food production using sustainable practices to maintain or increase crop yields while 

limiting negative anthropogenic influences on the environment is an important global research 

activity. Biophysical agricultural models can be effective science-based management tools for 

assessing sustainability providing they are frequently updated with new knowledge and are 

expanded to encompasses the necessary interacting environmental processes. The DeNitrification 

DeComposition (DNDC) model is one of the most widely used process-based models for 

estimating GHG emissions and soil C and N cycling yet its ability to simulate soil hydrology and 

water quality requires improvement before it can reliably be used to track the trade-offs between 

water and nutrient losses from agricultural activities. In this thesis alternative soil hydrology 

formulations are investigated and implemented in DNDC to enable more precise and informative 

explorations of agricultural management and climate impacts on cropping systems.   

The performance of the default DNDC model, which utilizes simplified water processes 

was compared to the more hydrologically complex Root Zone Water Quality Model (RZWQM2) 

to determine which processes were sufficient for simulating water and nitrogen dynamics and 

improvements were recommended. Both models performed adequately across a wide range of 

metrics including crop yields, biomass, annual and monthly water and N loss to tile drains. 

However, RZWQM2 performed better for simulating soil water content, and the dynamics of 

daily water flow to tile drains (DNDC: NSE -0.32 to 0.24; RZWQM2: NSE 0.35 to 0.69), where 

NSE is the Nash‐Sutcliffe model efficiency. DNDC overestimated soil water content near the 

soil surface and underestimated it in the deeper profile. We recommended that developments be 

carried out for DNDC to include improved root density and penetration functions, a 

heterogeneous and deeper soil profile, a fluctuating water table and a new tile drainage sub-

model.  

Based on these findings another study was performed to enhance the hydrological 

framework in DNDC. A new quasi-2D sub-model for tile drainage, improved water flux, root 

growth dynamics, and a deeper and heterogeneous soil profile was included. Comparisons were 

conducted against RZWQM2, using measurements of soil water storage, runoff and drainage in 

eastern Canada and the US Midwest. Simulation of soil water storage (DNDC 0.81≤ d ≤0.90; 

RZWQM2 0.76≤ d ≤0.84), daily water flow (DNDC 0.76≤ d ≤0.88; RZWQM2 0.77≤ d ≤0.90) 
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and nitrogen loading to tile drains was greatly improved post-development, where d is the 

Wilmott index of agreement. DNDC was able to capture the observed differences in water and N 

losses between conventional drainage and controlled drainage management with sub-irrigation. 

Thus a widely used agroecosystem model was expanded to simulate impacts of tile drainage 

depth and spacing, controlled drainage and sub-irrigation on crop growth and sustainability.   

The validated DNDC model was then used to investigate 18 fertilizer management options 

to examine N losses over a multi-decadal horizon at locations in eastern Canada and the US 

Midwest. Management scenarios included variable formulation (organic versus inorganic), 

timing (spring, fall, split, side-dress) and method of application (injected, incorporated, and 

broadcast). Reactive N losses (NO3
- from drainage and runoff, N2O and NH3) were greatest from 

broadcast applications, followed by incorporated and then injected. Amongst the fertilizer timing 

scenarios, fall manure application resulted in the greatest N loss, primarily due to increased N 

leaching in non-growing season periods, with 58% more N loss per ton silage than spring 

application. Split application mitigated losses more so than side-dress by reducing the soil pH 

shift due to urea hydrolysis and NH3 volatilization during the warmer June period. This 

assessment helps to distinguish which fertilizer practices are more effective in reducing N loss 

over a long-term time horizon which could assist farmers in weighing the trade-offs between 

field trafficability, manure storage capacity and expected N loss. 

The revised DNDC model was used to compare and evaluate modelling approaches 

commonly used for predicting climate change impacts on cropping systems. These included the 

use of a minimum set of weather variables, re-initializing soil status annually, fixed fertilizer 

application rates, fixed planting dates, and ignoring changes in crop cultivars and rotational 

impacts. Case studies were performed at three locations that varied greatly in precipitation. In 

comparison to our recommended approach, whereby we simulated long-term feedbacks in C&N 

and water over time and employed detailed climate and agronomic drivers, we found significant 

differences for each  approach, either in crop yields, N2O emissions, N leaching, or N runoff. We 

conclude that there are often large differences between approaches and we recommend that 

modellers improve their capabilities of simulating biophysical processes and expected changes in 

agronomic practices over time.  
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Résumé 

La production alimentaire utilisant des pratiques durables pour maintenir ou augmenter les 

rendements agricoles tout en limitant les influences anthropiques négatives sur l'environnement 

est une activité de recherche mondiale importante. Les modèles biophysiques peuvent constituer 

des outils de gestion scientifiques efficaces pour évaluer si l’agriculture est viable, à condition 

qu'ils soient fréquemment mis à jour avec de nouvelles connaissances qui  englobent les 

processus environnementaux et les interactions nécessaires. Le modèle de DeNitrification 

DeComposition (DNDC) est l’un des modèles le plus largement utilisés pour estimer les 

émissions de GES et le cycle de C & N du sol, mais sa capacité à simuler l’hydrologie du sol et 

la qualité de l’eau doit être améliorée avant de pouvoir être utilisée de manière fiable pour 

estimer les pertes en eau et en éléments nutriments des activités agricoles. Dans cette thèse, des 

formulations alternatives d'hydrologie des sols sont étudiées et mises en œuvre dans DNDC pour 

permettre des explorations plus précises et informatives de la gestion agricole et des impacts du 

climat sur les systèmes de culture.  

Les performances du modèle DNDC, qui utilise des processus d’eau simplifiés par défaut, 

ont été comparées au modèle de qualité de l’eau de la zone des racines (RZWQM2), plus 

complexe sur le plan hydrologique, afin de déterminer les processus suffisants pour simuler la 

dynamique de l’eau et de l’azote et de recommander des améliorations. Les deux modèles ont 

donné de bons résultats sur un large groupe de paramètres, notamment le rendement des cultures, 

la biomasse, les pertes annuelles et mensuelles en eau et en azote dans les drains souterrains. 

Cependant, RZWQM2 s’est mieux performé pour simuler la teneur en eau du sol et la 

dynamique du débit quotidien d'eau vers les drains souterrains (DNDC: NSE -0,32 à 0,24; 

RZWQM2: NSE 0,35 à 0,69). Le modèle DNDC a surestimé la teneur en eau du sol près de la 

surface et l'a sous-estimée en profondeur. Nous avons recommandé que des développements 

soient entrepris pour que DNDC inclue des fonctions améliorées de la densité et de la pénétration 

des racines, un profil de sol hétérogène et plus profond, une nappe phréatique fluctuante et un 

nouveau sous-modèle de drainage souterrain. 

Sur la base de ces résultats, une autre étude a été réalisée pour améliorer le cadre 

hydrologique de DNDC. Un nouveau sous-modèle quasi 2D pour le drainage souterrain, 

l'amélioration du flux d'eau, la dynamique de croissance des racines et un profil de sol plus 

profond et hétérogène a été inclus. Des comparaisons ont été effectuées avec RZWQM2 à l’aide 
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de mesures du stockage de l’eau du sol, du ruissellement et du drainage dans l’est du Canada et 

du Midwest américain. Simulation du stockage de l’eau du sol DNDC 0,76≤ d ≤0,88; RZWQM2 

0,77≤ d ≤0,90) et la charge en azote dans les drains souterrains a été grandement améliorée après 

le développement. Le modèle DNDC a été en mesure de saisir les différences observées dans les 

pertes en eau et en azote entre le drainage conventionnel et la gestion du drainage contrôlé avec 

irrigation sous la surface. Ainsi, un modèle d’agroécosystème largement utilisé a été amélioré 

pour simuler les effets, de la profondeur et de l’espacement du drainage sous la surface, du 

drainage contrôlé et de l’irrigation sous la surface, sur la croissance et la viabilité des cultures. 

Le modèle DNDC validé a ensuite été utilisé pour étudier 18 options de gestion des engrais 

afin d’examiner les pertes en azote sur un horizon pluriannuel dans des régions de l’est du 

Canada et du Midwest américain. Les scénarios de gestion comprenaient la formulation 

(organique par rapport à inorganique), le moment choisi (printemps, automne, split, bandes 

latérales) et méthode d'application (par injection, incorporation et à la volée). Les pertes en N 

réactif (NO3- provenant du drainage et du ruissellement, N2O et NH3) ont été les plus 

importantes après à la volée, suivies de l'incorporation puis de l'injection. Parmi les scénarios 

d'épandage d'engrais, l'épandage d'automne de fumier a entraîné la plus grande perte d'azote, 

principalement en raison de la lessivage accrue de l'azote en dehors de la saison de croissance, 

avec une perte d'azote supérieure de 58% par tonne ensilage de maïspar rapport  à l'application 

au printemps. L'application fractionnée a permis d'atténuer les pertes en réduisant le pH du sol en 

raison de l'hydrolyse de l'urée, ce qui a entraîné une volatilisation réduite de NH3 pendant la 

période plus chaude de juin. Cette évaluation a permis de distinguer les pratiques d'engrais les 

plus efficaces pour réduire les pertes d'azote sur un horizon à long terme, ce qui pourrait aider les 

agriculteurs à choisir entre la capacité de stockage du fumier et les pertes prévues d'azote. 

Le modèle DNDC révisé a été utilisé pour comparer et évaluer les approches de 

modélisation couramment utilisées pour prévoir les impacts des changements climatiques sur les 

systèmes de culture. Celles-ci comprenaient l’utilisation d’un ensemble minimal de variables 

météorologiques, la réinitialisation annuelle de l’état du sol, des taux d’application d’engrais 

fixes, des dates de semis fixes, et l’ignorance des changements de cultivars et des effets de 

rotation. Des études de cas ont été effectuées à trois endroits où les précipitations variaient 

considérablement. En comparaison avec notre approche recommandée, qui consistait à simuler 

les rétroactions à long terme de C & N et de l'eau au fil du temps et à utiliser des facteurs 
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climatiques et agronomiques détaillés, nous avons constaté des différences significatives pour 

chaque approche, en termes de rendement des cultures, d'émissions de N2O, de lessivage ou de 

ruissellement d'azote. Nous concluons qu'il existe souvent de grandes différences entre les 

approches et nous recommandons aux modélisateurs d'améliorer leurs capacités de simulation 

des processus biophysiques et des changements attendus dans les pratiques agronomiques au fil 

du temps. 
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Chapter 1 

Introduction 

1.1 Background 

Effective agricultural management of cropping systems is required to enhance the 

profitability for producers and to reduce the environmental impact of pollutants, such as GHG 

emissions, which cause global warming (IPCC, 2018), nutrient losses which can cause 

eutrophication within water bodies (Chislock et al., 2013), and ammonia loss which can increase 

fine particulate matter in the atmosphere (Behera et al., 2013). In Canada, ammonia losses were 

estimated to be 306 kT N in 2011 (Sheppard and Bittman, 2016) whereas annual losses of N2O 

from Canadian agriculture was estimated to be 74 kt N (Worth et al., 2016). Average annual N 

losses to groundwater in Canada are estimated to be ~161 kt N based on annual losses of 3.7 kg N 

ha-1 across the country (De Jong et al., 2009). Nutrient loss is reported to be very low for western 

Canada which constitutes about 80% of the agricultural land area but can range up to 45 kg ha-1 in 

some eastern provinces.  Using base calculations from Sheppard and Bittman (2016) the total 

combined N losses from ammonia volatilization, N2O emissions and drainage represents ~27% of 

the value of fertilizer shipped to farms or a cost of $707 million. A much larger cost could be 

expected in response to environmental damage and harm to human health. 

From years of experimental research, Canadian scientists have helped to quantify the long-

term sustainability of these agricultural systems by studying the interactions between climate-

plant-soil, and management (Tenuta et al., 2019: Woodley et al., 2018). The challenge has been to 

how best incorporate this knowledge into a platform that can facilitate the investigation of 

integrated management solutions for a diverse agricultural landscape. Ideally, these solutions must 

be ones that promote the resiliency of agricultural systems while minimizing nutrient losses and 

improving soil health and productivity. Agroecosystems contain tightly coupled nutrient and 

energy flows, therefore assessment of these systems is challenging as they are composed of a 

complex array of dynamically linked processes that need to be considered concurrently in order to 

properly assess management impacts. Because process-based agricultural models dynamically 

simulate many of the interdependent process over space and time while maintaining the mass 

balance of nutrients and water, they are needed for predicting nutrient losses in the environment 

and assisting in the selection of BMPs (De Jong et al., 2009). However, these models do have 
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recognized knowledge gaps and thus the analysis of new targeted measurements and the 

development of new algorithms for models are essential to ensure that the iterative process of 

model development continues. It is important that models consider the interactions within the soil-

plant-atmospheric water cycle and the current state of knowledge regarding nutrient 

transformations, transport and losses.  

A number of process-based (biophysical) agricultural models have been developed which 

consider crop growth and phenology, hydrological processes, nutrient transformations, cycling 

and transport. Each of these models has their advantages and disadvantages. Empirical or 

statistical models can also be useful but generally can’t be employed beyond the range of 

information used in their development and parameterisation. Most models are developed to 

specialize in one outcome such as crop biomass, GHG emissions, soil carbon change, or water 

quality but all of these outcomes are linked and a model needs to consider them concurrently in 

order to assess trade-offs in climate and management impacts.  In doing so there is risk of 

process interactions becoming very complex reducing transparency to the scientific and 

agricultural community and a risk of limiting the applicability of the model. Thus there is a 

balancing act required and developers often choose simplified processes to keep the user 

expertise, input requirements, transparency and computation time manageable. Some of the more 

frequently used models in North America include The Environmental Policy Integrated Climate 

Model (EPIC; Izaurralde et al., 2012), The Decision Support System for Agrotechnology 

Transfer (DSSAT; Hogenboom et al., 2017), DayCent (del Grosso et al., 2011) which is a daily 

version of the CENTURY soil carbon model expanded to simulate crop biomass and trace gas 

emissions, the Root Zone Water Quality Model (RZWQM2; Ma et al., 2012) and the 

DeNitrification DeComposition model (DNDC; Li et al., 1992, 2012).   

The DNDC model is widely used, includes a very wide range of biogeochemical processes 

(Brilli et al., 2017; Gilespy et al., 2014; Giltrap et al., 2010) and is arguably the most sophisticated 

for estimating GHG emissions, however, the model demonstrates weaknesses in simulating soil 

hydrology and the overall water budget and does not include mechanistic tile drainage (He et al., 

2018a; Brilli et al, 2017; Dutta et al., 2016b; Uzoma et al., 2015; Congreves et al., 2015b; Cui et 

al., 2014; Abdalla et al., 2011; Deng et al., 2011; Smith et al., 2008).  Previous versions of  DNDC 

employed a simplistic empirical relationship or “recession curve” to delay drainage by soil layer 

(Li et al., 2006), but this recession curve required parameterization of coefficients for each soil 
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type, and is no longer active in the current release version. Li et al. (2006) also included a “deep 

water pool” to increase the default 50 cm soil profile depth to that of a tile drain; however, the 

deep water pool cannot be adjusted in depth and N transformations are not included. There are 

ongoing efforts to develop a Canadian version of the model (DNDCv.Can) which includes 

improved biogeochemical processes and growth characteristics for crop cultivars grown in 

Canada. However, the simple representation of water dynamics in the model still adversely 

impacts performance and the model cannot simulate drainage design impacts. Since the model is 

needed for performing agri-environmental assessments within Canada and its now being used by 

several research institutions globally it is crucial that it be updated for simulating soil hydrology. 

This will expand the model’s capabilities for assessing agricultural management impacts on 

cropping systems across a wider range of soils, climates and sustainability metrics. It is also 

important that modeller expertise be expanded and that plausible modeling approaches be 

developed to lower uncertainty in estimates. This is especially critical when considering potential 

impacts of agricultural practices on cropping systems under climate change which adds an 

additional level of complexity.  

 

1.2 Objectives  

The primary goal of this research was to improve a well-known biogeochemical model, 

DNDC, for simulating soil hydrology and tile drainage to enable a more robust and complete 

exploration of beneficial agricultural management practices that may mitigate adverse 

environmental impacts, both currently and under future climate change. Specific objectives 

corresponding to four journal articles are as follows; 

 

i. To compare the performance of the default DNDC model, which utilizes simplified 

expressions for water dynamics to the more hydrologically complex RZWQM2 using a 

detailed dataset of crop biomass and N uptake, soil water content, drainage, and N 

loading to tiles. Recommend improvements to DNDC.  

 

ii. To revise hydrologic processes in the DNDC model by including a new tile drainage sub-

model, ability to simulate controlled drainage and sub-irrigation, improved soil water 

flow, a heterogeneous soil profile, revised root penetration and density functions, and a 
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deeper soil profile. Compare the performance of the revised DNDC model to RZWQM2 

using detailed datasets of runoff and drainage in eastern Canada and the US Midwest. 

 

iii. To use the revised DNDC model to investigate inorganic and organic fertilizer 

management practices over a 30 year time horizon to determine practices which may 

reduce reactive N loss from corn silage production in cool climatic zones of eastern 

Canada and the US Midwest and to examine trade-offs and synergies between N loss to 

tile drains, N loss to runoff, NH3 volatilization and N2O emissions. Recommend 

beneficial management. 

 

iv. To investigate the implications of using simpler versus more advanced modelling 

approaches for simulating the impacts of climate change on crop production, SOC 

change, N2O emissions and N leaching and runoff and recommend an approach under 

cool weather climates. Assess the effect of climate change on crop production and 

sustainability for common cropping systems in Canada. 

 

1.3 Thesis structure 

The thesis is presented in a “manuscript based” style whereby the general introduction is 

provided in Chapter 1 which includes the research background and gaps in knowledge,  the 

objectives and thesis outline. Chapter 2 provides a literature review of the development and 

application history, strengths and weaknesses and processes simulated in the DNDC model as 

well as a summary of hydrologic processes included in RZWQM2 and an overview of alternative 

soil hydrologic processes that could be employed to improve DNDC.  Chapters 3, 4, 5, and 6 

present the research in accordance with objective 1, 2, 3 and 4, respectively, with each chapter 

consisting of a research paper. Connecting text is provided to link the research. The papers are 

formatted according to the requirements of Library and Archives Canada. Supplementary tables 

and figures are provided at the end of each paper since they appear with the papers online and are 

referred to often. All references are located at the end of the thesis. 
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Chapter 2 

Literature review 

2.1 Overview of the DeNtrification DeComposition model (DNDC) 

The DNDC (Li et al., 1992, 2012) model is a widely used process-based model 

developed originally to simulate N2O emissions and quickly gained attention due to its 

detailed biogeochemical equations for describing nitrification and denitrification processes. 

The most recent release version is DNDC95  (http://www.dndc.sr.unh.edu/). It includes several 

sub-models for predicting crop growth, soil climate, decomposition, nitrification, 

denitrification, and fermentation. The model was first developed to estimate trace gas 

emissions (Li et al., 1992), but was later expanded to estimate soil C&N cycling (Li et al.,  

1994), water drainage and nitrogen movement (Li et al., 2006), phenological-based crop 

growth (Li, 2000) and finally to include full farm facility and livestock systems (Li et al., 

2012). The model has been tested and validated extensively for simulating crop growth, GHG 

emissions, soil carbon change, and ammonia volatilization worldwide (Ehrhardt et al., 2018; 

Brilli et al., 2017; Zhang and Niu, 2016; Gilhespy et al., 2014) but it has seldom been tested 

for simulating water flow and nutrient losses to tile drains. Giltrap et al. (2010) provides a 

general overview of DNDC mainly in relation to simulating GHG emissions, while Zhang and 

Niu (2016) document the progression of the crop sub-model development in DNDC and 

reviews applications for simulating C&N cycling and GHG emissions (Zhang and Niu, 2016). 

Further, a review of nine C&N models that simulate trace gas fluxes found that DNDC was 

the only model which estimated all C&N related GHG emissions considered (Brilli et al ., 

2017). The most common problem contributing to poor accuracy in these models was reported 

to be poorly defined pedo-climatic conditions. The models employed simplified soil 

hydrology and the soil profile was often not well characterized.  

The DNDC model framework is composed of several major components characterizing 

the soil climate, crop growth and development, organic matter decomposition, denitrification, 

nitrification, and fermentation (Fig. 2.1). A core strength of the modelling framework is in its 

ability to characterize a wide array of crop management activities while enforcing a mass 

balance of nutrient and water budgets. The model is a full farm system model, being able to 

simulate not only plant processes, including competition from crops grown simultaneously, 
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but also enteric fermentation and other digestive processes in livestock, and C&N&P cycling 

in barns, manure lagoons, composters, and digesters (Li et al., 2012; Guest et al., 2017b). In a 

survey of 98 users Gilhespy et al. (2014) found strengths to be its ease of use, the availability 

of default parameters for 60+ crop types, and a large number of outputs. Main weakness were 

that soil-crop-atmospheric processes were not well documented in the user’s manual and the 

lack of availability of the source code. Gilhespy et al. (2014) also provides a history of the last 

20 years of DNDC developments including an overview of the “family” of DNDC models for 

simulating cropping systems in various regions worldwide. The DNDC model was originally 

developed in the U.S, but several modelling teams later created specific versions to better 

enable the simulation of regional soils, climate events, crop cultivars and management 

practices in the UK (Brown et al., 2002), New Zealand (Giltrap et al. , 2008), Germany (Haas 

et al., 2013), Europe in general (Leip et al., 2008), China (Jiang et al., 2018c) and Canada 

(Kröbel et al., 2011). There is recent effort in the U.S. to develop an open source version of 

DNDC whereby developments from the other model versions which simulate cropping system 

dynamics can be merged (Salas, W., 2019; personal communication). Also,  DNDC has been 

coupled with several other models for simulating detailed physiological responses in crops 

(Crop-DNDC; Zhang et al., 2002) forest systems (Forest-DNDC; Li et al., 2005), wetland 

systems (Wetland-DNDC; Sun et al., 1998), and economic assessments of farm systems 

(EFEM-DNDC; Neufeldt et al., 2005).  



7 
 

 

Figure 2.1 DNDC model structure showing main sub-models and processes bridging 

ecological and soil environmental drivers. The model features shown remain intact in the 

model today but have in some cases been expanded to include more robust description of 

processes and C&N&P cycling in livestock and farm facilities. Adapted from Li et al. (2006) 

and Gilhespy et al. (2014). 

 

2.1.1 Canada DNDC (DNDCv.CAN); implications of past developments and future 

requirements  

The Canadian version of the model (DNDCv.CAN) which is used as the starting point 

for development in this thesis has been under development since 2011, originally to improve 

the simulation of crop cultivars and agricultural management in cool weather climates 

(Kroebel et al., 2011) but more recently to expand the model’s functionality for simulating 

additional management interactions and to integrate more robust mechanisms. The 

developments since 2011 along with several applications for simulating GHG mitigation, soil 
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carbon change, and nutrient losses from cropping systems are documented in 25 peer reviewed 

journal articles (https://www.globaldndc.net/information/publications-i-3.html). Focus has 

recently been placed on improving the simulation of crop growth and development, soil 

physical processes and reactive N losses with little focus on hydrology. It is now necessary 

that the simulation of soil hydrology be improved before the more complex microbial and 

chemical processes affecting nitrification, denitrification and decomposition can be addressed 

(Uzoma et al., 2015; He et al., 2018a).  

 

Table 2.1 Canada DNDC model developments that contribute towards improved estimates of 

C&N cycling and trace gas emissions. 

 

Soil Physical Processes Biochemical Processes Crop Processes 

Soil Temperature (snow 

cover, biomass, residue, soil 

texture) 

Improved NH3 Volatilization  

for manure slurry and urea 

 

Evapotranspiration (KCrop ET 

calculations, crop specific 

growth curves) 

Dynamic soil physical 

characteristics  

 

Included soil pH buffering Root Dynamics (Root 

Density & Depth Functions) 

Improved deep profile 

storage of water and N  

 

Added Fert-N Inhibitor 

dynamics 

Improved Nitrogen Fixation 

(Apsim adaptation) 

 Soil C&N cycling (manure 

decomposition f of C:N ratios) 

 

Added Winterkill and 

Perennial Growth functions 

  Improved CO2 effects, 

revised temperature crop 

stress 

 

Several developments are summarized in Table 2.1 which were implemented into 

Canada DNDC and had notable impacts on soil C&N cycling and trace gas emissions. These 

included i) crop growth was improved by including crop-specific growth curves to regulate N and 

water demand for cool weather cultivars including regrowth of perennials and winterkill impacts 

https://www.globaldndc.net/information/publications-i-3.html
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(Kroebel et al., 2011; Grant et al., 2016; He et al., 2019a), ii) temperature stress on crops was 

reformulated to be based on cardinal temperatures, the effect of exposure to high temperature 

during anthesis on harvest index and the effects of CO2 fertilization on C assimilation, water and 

N use efficiency were included (Smith et al., 2013), iii) transpiration algorithms were 

reformulated to be based on daily water demand requirements of crop production and a crop 

coefficient approach was adopted to adjust the reference evapotranspiration estimated through the 

Penman–Montieth equation to potential evapotranspiration (PET) as denoted in DNDC (Dutta et 

al., 2016b), iv) a new sub-model was developed for predicting NH3 volatilization from slurry 

(Congreves et al., 2016b) and urea accompanied by soil pH buffering (Dutta et al., 2016a), v) the 

ability of the model to characterize effects of management practices, snow cover, and soil texture 

on soil temperature was improved (Dutta et al., 2018). In undergoing these developments some of 

the more sensitive N2O, NH3, an soil N related parameters (i.e. growth and death rate of nitrifiers 

and denitrifiers, nitrification rate, and spring thaw microbial activity) are now located in the model 

input interface to allow for adjustment during calibration phases.  Previously in DNDC95 these 

could only be modified within the code which resulted in different versions of DNDC with 

markedly different results. All developments for Canada DNDC noted in Table 2.1 were 

incorporated into the U.S. release version thus creating an up to date model version which 

included both the U.S. and Canadian developments (Smith et al., 2019c). This is the model 

version we further develop in this thesis to include improved soil hydrology and tile drainage.  

 

2.1.2 Soil hydrologic processes in DNDC 

At the time of the initiation of this thesis DNDCv.CAN used virtually the same below 

ground water processes as DNDC95. Efforts are made by the model developers to minimize the 

amount of input data and process time required thus some of the processes in DNDC were 

purposefully kept simple. DNDC employs a cascade flow water model simulating bulk water 

flux and N transport through the profile (Table 2.2; Fig. 2.2).  In the sub-model for thermal-

hydraulic flow, all soil water dynamics  are calculated on an hourly time step using a layered 

water budget approach. The soil profile is divided into horizontal layers with thicknesses ranging 

from 1.5-3 cm, with lower layer thickness at higher clay content. Precipitation and irrigation are 

added at midnight at constant intensity, and therefore of variable duration (Li et al., 1992). 

Canopy interception and runoff (SCS curve number approach) are also calculated on an hourly 
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basis. Infiltration occurs at a max rate of KS, layer by layer, with field capacity being the upper 

limit of water holding capacity. Precipitation is assumed to be snow when air temperatures drop 

below 0°C and it accumulates on the soil surface. Ponding of water can occur if soil is frozen or 

if the rate of infiltration exceeds KS. This water is susceptible to runoff. Evapotranspiration is 

calculated using a Penman–Montieth approach with a coefficient for each specific crop type to 

adjust reference evapotranspiration to PET (Dutta et al., 2016b). The water demand of the crop is 

based on the “crop water use” parameter, the growth curve,  and the crop coefficient (Dutta et al., 

2016b).  Transpiration is based on the crop water demand but is limited by soil water status. 

Transpiration is determined first, with a minimum of 10% potential evapotranspiration reserved 

for evaporation.  Evaporation from the soil, leaves, and stem are then calculated as a function of 

the remaining PET. 

 

Table 2.2 Hydrological processes used in DNDC95 and DNDCv.CAN 

Hydrology 

component  

Process description 

Soil profile Homogeneous soil properties to 50 cm depth, layers ~2 cm thickness, 

underlying deep water pool form 50 to 100 cm depth. 

Soil water 

transport 

Water drains between soil layers if above field capacity (cascade “tipping 

bucket” flow) 

Infiltration and 

runoff 

Runoff is removed based on the SCS curve number method, followed by 

Canopy interception, then infiltration is limited by surface saturated 

hydraulic conductivity (KSAT).  

Potential 

Evapotranspiration 

Penman-Monteith FAO approach where reference evapotranspiration is 

adjusted with coefficients for each crop type, Transpiration is a function of 

PET and crop water uptake demand determined by biomass 

Tile drainage Bulk gravity drainage with no deep seepage considered  

Water table None simulated 

 

 

Li et al. (2006) included a “deep water pool” in DNDC to increase the default 50 cm soil 

profile depth to that of a tile drain; however, the deep water pool cannot be adjusted in depth 
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without recoding the model and N adsorption and transformations are not included in this 

additional profile. Grant et al. (2016) expanded the functionality of the deep water pool by 

allowing for the water holding capacity to be adjusted based on bulk density. Adsorption and 

desorption of NH4
+ based on the Langmuir equation was also incorporated in his study as well as 

a simplistic empirical relationship or “recession curve” to delay drainage by soil layer. This 

recession curve required parameterization of coefficients for each soil type (Toniito et al., 

2007a), and is no longer active in the current release version (Smith et al., 2019c). Tonitto et al. 

(2007a,b) found that after calibration of the recession equation in DNDC the model performance 

was satisfactory for simulating annual water flow and nitrate loss to tile drains when aggregated 

across a watershed; however, DNDC consistently under-predicted peak monthly drainage events 

and the model was not tested using daily data.  

 

 

Figure 2.2 Schematic of hydrological processes in DNDC and DNDCv.CAN 
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In a study by David et al. (2009) 6 models (SWAT, DayCent, EPIC, Drainmod-N II and 

two versions of DNDC, 82a and 82h) were compared for simulating aggregated water and nitrate 

flux to tile drains. It was found that all models except DNDC82h performed well in simulating 

monthly water flux, but the models which were designed to simulate tile drainage (SWAT, EPIC 

and Drainmod-N) demonstrated better performance. All of the models investigated included a 

cascade flow approach to simulating drainage. At this time the DNDC model versions tested 

included a Thornthwaite method for estimating evapotranspiration which could sometimes 

overestimate losses, thus it is not surprising that DNDC underestimated water loss to drains.  The 

current DNDC95 and DNDCv.CAN models includes the Penman-Monteith approach for 

evapotranspiration with crop specific coefficients, added in a joint US-Canada effort (Dutta et 

al., 2016b).  It is very important to simulate an appropriate level of ET, since it is often the 

largest component of water loss, especially in semi-arid climates. Recent studies in Canada have 

shown that DNDCv.CAN performed better than some water budget models (Guest et al., 2018) 

for simulating soil water content, evapotranspiration and water loss to tiles and performed 

similarly to other cascade models (Guest et al., 2017a) for simulating soil water content, but all 

models demonstrated flaws.  

 

2.1.3 Nitrogen processes in DNDC 

2.1.3.1 Nitrogen leaching and runoff  

Nitrogen in DNDC can be supplied through fertilizers, mineralization, deposition, and 

biological N2 fixation. The original nitrate movement in DNDC was conceived as a function of the 

water flux per layer (Li et al., 2006).  Soil NO3
- was considered to be mobilized by positive water 

flux (90% mobilized) and transferred to the layer below as a one-dimensional vertical N flux 

towards the bottom soil profile. The movement of NO3
- is an iterative step through each of the 

saturated layers per hour. Ammonium adsorption to clay (based on the Langmuir adsorption 

isotherm) also restricts N mobility since there is less nitrification with less NO3
- available in 

solution. Additionally, another fraction (10% of the NO3
-
 in each layer) was considered to be lost 

through preferential water flow via macropores directly out of the soil profile. Nitrate fertilizers 

are added directly to the soil NO3
- pool thus they may be more subject to more initial leaching. 

Urea is moderately mobile in the model whereas NH4
+ is not mobile. Ammonium-based fertilizers 
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undergo nitrification to NO3
- before movement can occur and urea undergoes hydrolysis to NH4

+ 

followed by nitrification to NO3
- (Dutta et al., 2016a). In the default U.S. release version of DNDC 

NO3
- travels through the profile in solution, and is leached from the 50 cm depth.  

To estimate runoff DNDC uses the SCS runoff curve number method developed by the 

USDA Natural Resources Conservation Service (Table 2.2). Nitrogen loss to runoff in DNDC is 

calculated as a fraction of rainfall that goes to runoff (based on SCS method) multiplied by the 

nitrate found in the top surface layer (~0.5 - 2 cm), simulated on a daily time step (based on 

inspection of DNDC code). An option could be to incorporate the Green-Ampt infiltration equation 

(Green and Ampt, 1911) which may improve the estimation of water and N runoff. The accurate 

simulation of runoff is, however, complex particularly when surface crusting, clay cracking, 

preferential flow through insect and root channels, snow dynamics, and soil freeze-thaw are 

prevalent. 

The DNDC95 model has been employed to estimate drainage and N loading to tiles in the 

US (Li et al., 2006; Tonitto et al., 2007a, 2007b, 2010; Gopalakrishnan et al., 2012) and China 

(Li et al., 2014; Zhao et al., 2014) and once calibrated the model generally performed well, 

however, the model was not tested systematically for simulating crop biomass, soil water 

content, and daily water flow in these studies. Neither DNDC95 or DNDCv.CAN have been 

tested for simulating N loading to tiles in Canada.  

 

2.1.3.2 Nitrous oxide emissions 

In DNDC nitrification and denitrification processes are characterized in the “anaerobic 

balloon” sub-model (Li et al., 2012). The algorithms in DNDC.vCAN remain identical to those in 

DNDC95. The “anaerobic balloon” concept uses the Nernst equation to estimate redox potential 

(Eh) which regulates the size of the anaerobic (denitrifier) and aerobic (nitrifier) microbial 

fractions. The anaerobic portion is considered to be inside the balloon and the aerobic outside. The 

nitrification rate is determined as a function of nitrifier bacteria biomass, NH4
+ concentration, a 

temperature reduction factor, a moisture reduction factor and pH.  The N2O from nitrification is 

regulated by water filled pore space, quantity of N nitrified, and temperature. In addition to 

determining when nitrification and denitrification occurs the Nersnt equation determines when 

specific biologically mediated reductive identification reactions occur, from 

NO3→NO2→NO→N2O→N2. The rate of the reactions (microbial growth) is then determined 



14 
 

using the Michaelis–Menten equation, a multi-nutrient dependent growth function dependent on 

temperature, dissolved organic carbon, soil water, Eh, and pH. N2O from denitrification is 

calculated as stepwise transformation process as a function of microbial growth and pH. 

 

The redox potential is estimated as follows: 

𝐸ℎ =  𝐸𝑜 +  
𝑅𝑇

𝑛𝐹
∗ ln (

[𝑂𝑋]

[𝑅𝐸]
)                                                          (2.1) 

where Eh is the redox potential (volts), Eo is the standard half-cell reduction potential (volts), R is 

the is the universal gas constant, T is the temperature in kelvins, F is the Faraday constant, n is 

the number of electrons transferred in the redox reaction, and OX and RE are concentration of 

oxidant  and concentration of reductant (mol/L), respectively.   

In the denitrificiation submodel, the quantity of denitrifier-bacteria is estimated using a 

multi-nutrient dependent (Michaelis–Menten) growth function dependent, kinetically 

determining the growth rate as follows: 

𝑅 = 𝑅𝑚𝑎𝑥 ∗  
𝐷𝑂𝐶

𝐾𝑎+𝐷𝑂𝐶
∗

𝑂𝑋

𝐾𝑏+𝑂𝑋
                                                       (2.2) 

where R is the growth rate, Rmax is the maximum growth rate, DOC is concentration of dissolved 

organic carbon, and Ka and Kb are half-saturation for substrates DOC and OX, respectively.  The 

constants and Rmax were taken from a laboratory study by Leffelaar and Wessel (1998). More 

information on the growth and death rate of nitrifiers and denitrifiers can be found in Li et al. 

(2012). 

DNDC was primarily developed to estimate N2O emissions and the model is currently used 

worldwide for this purpose. It has recently performed well for simulating seasonal emissions. For 

instance in a blind global study to estimate crop yields and N2O emissions using 24 models, 

DNDC performed within the top three models for each of the three annual crops simulated 

(Ehrhardt et al., 2018). However, in this study comparisons were made using only cumulative 

seasonal emissions and the timing of emission events were generally not well simulated. This was 

also the case for several recently published studies using DNDCvCAN, whereby the seasonal sum 

of N2O emissions was generally well simulated in comparison to measurements (He et al., 2018a, 

2019b; Grant et al., 2016; Uzoma et al., 2015; Smith et al., 2008), however, the timing of daily 



15 
 

emissions was more difficult to replicate. It should be noted that the experimental variability when 

measuring N2O emissions using chambers can sometimes be high and gap filling is required to 

estimate daily emission levels based on a 30-45 minute sample. However, there remain several 

limitations in the modeling framework that need to be resolved to reduce uncertainties. For 

instance, it was found that DNDC underestimated N2O emissions during long periods of episodic 

rainfall due to the inability of a cascade flow model to simulate water content above field capacity 

(Uzoma et al., 2015) which strongly influences oxygen diffusion into the soil and the type of 

denitrification reactions that occurs (Butterbach-bahl et al., 2013).  

To partially compensate for this deficiency, the reactions from nitrate to N2 in DNDC are 

currently set to occur in the range from wilting point to field capacity, but Butterbach-Bahl et al. 

(2013) indicate that N2O production should occur above field capacity, usually at about 80% 

WFPS. Improvement of the water model will allow for adjustment of the reduction reaction to 

occur at the proper redox potential (N2O typically occurs above field capacity). This will in turn 

allow for removal of a rainfall multiplier in DNDC which was assumedly applied to increase 

N2O emissions during times of high soil water content.   

Also, DNDC does not separately characterize N2O production and consumption (Wen et al., 

2016) processes and diffusion is only handled in a simplistic empirical manner. These processes 

are also impacted by soil water content and soil N availability. Thus a main weakness in the 

model for simulating N2O emissions and other trace gases remains its simplistic and often 

inaccurate simulation of soil hydrology and the overall water budget (Brilli et al, 2017; He et al., 

2018a; Dutta et al., 2016b; Uzoma et al., 2015; Congreves et al., 2016b; Cui et al., 2014; Abdalla 

et al., 2011; Deng et al., 2011; Smith et al., 2008).  

 

2.1.3.3 NH3 volatilization 

The U.S. release version of DNDC originally included a NH3 volatilization sub-model (Li et 

al., 2012) based on acid–base equilibrium principles (Petersen et al., 2014), however, this sub-

model was improved in DNDCv.CAN whereby it operates on an hourly time step, includes more 

manure inputs, and includes revised expressions for NH3 volatilization from the soil surface 

(Congreves et al., 2016b).  This sub-model is based on chemical equilibria principles whereby the 

acid–base equilibrium between  NH4
+ and NH3 is determined in aqueous solution with the reaction 

rates being determined by the pH of the mixed soil solution and the dissociation constants 
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influenced by soil temperature (Petersen et al., 2014). NH4
+ adsorption by clay in the model also 

restricts mobility and limits availability for the acid-base equilibrium. The aqueous-gas 

equilibrium is then calculated using Henry’s law with NH3 volatilization being limited by a soil 

depth function.  The utility of this development was further improved by Dutta et al. (2016a) who 

improved the simulation of urea hydrolysis and included the impact of buffer capacity on soil pH.  

Urea hydrolysis is determined as a function of N-urea concentration, volumetric moisture content, 

and a kinetic rate constant for hydrolysis. The pH buffering was derived from Tripathi et al. (2000) 

and is primarily a function of the cation exchange capacity of the soil. 

 

2.1.4 Biomass growth and partitioning 

In DNDCv.CAN, biomass growth is simulated using either a generalized crop growth 

curve based solely on GDD (Growing Degree Days - non-crop specific) or the recently 

integrated crop-specific growth (Kroebel et al., 2011; Grant et al., 2016; He et al., 2019a) 

whereby the phenological stages of plant growth for a specific cultivar are characterized by 

empirical growth curves specifying N requirements for C biomass accumulation and are driven 

by the accumulation of GDD.  The current DNDC95 release version only includes the growth 

model that is based solely on GDD. There is a version of DNDC which includes a detailed 

phenological-based crop growth model (Zhang et al., 2002). Zhang and Niu (2016) provide 

details on the history of the crop model development in DNDC.  In both DNDC95 and 

DNDC.vCAN the model tracks crop development using a plant growth index (PGI) that 

represents the ratio of the current GDD accumulated per total GDD required to reach plant 

maturity. This index is similar in scale to the BBCH phenology charts (Meier, 2001). The growth 

curves determine the daily N demand required for optimal daily biomass C accumulation and are 

a function of the overall plant C:N.  

The plant biomass is divided into four crop fractions; grain, leaf, stem and roots.  The 

relative fractions for leaf, stem and roots are constant during the vegetative portion of crop 

growth (crop specific period).  Flowering and grain filling occurs at a predetermined PGI (crop 

specific) and the grain fraction increases linearly until it reaches the maturity target fraction for 

grain.   The effects of CO2 fertilization on biomass accumulation, water use efficiency and N use 

efficiency are included for C3 and C4 crops (Smith et al., 2013). Root, leaf, stem and grain 

respiration as well as LAI are calculated using the estimated net primary productivity (NPP). 
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GPP is the summation of the estimated NPP and total plant respiration. Ecosystem respiration is 

a sum of total plant and soil respiration.  

The biomass C growth curves in DNDC are scaled based on the specified maximum 

potential grain yield input by the user. NPP is calculated based on this demand but is regulated 

by water, nitrogen and temperature stresses. The actual daily N demand and actual C growth is 

regulated by the available N in the soil profile, available soil water and further reduced by 

temperature stress. General temperature stress for crops is based on an equation that uses 

cardinal temperatures (minimum, maximum and optimum temperature for growth of each crop 

(Yan and Hunt, 1999). The effect of exposure to high temperature during anthesis on harvest 

index is also included for both wheat and maize (Ferris et al., 1998; Carberry et al., 1989). 

Evapotranspiration is estimated using the Penman Monteith equation, modified to include the 

FAO crop coefficient for four general crops types (small grain cereals, forages, legumes and 

oilseeds) (Dutta et al., 2016b). Crop water requirement (mm water per kg biomass) is crop 

specific. 

Crop water stress is determined by estimating the actual transpiration (limited by available 

water)/potential transpiration (crop specific). A simple linear root growth function which can 

only extend to 50 cm depth determines the available soil profile that the crop can access for 

nutrient and water uptake during the season. Thus when the maximum rooting depth of 50 cm is 

reached the water and nutrient demand is partitioned evenly across the soil profile. The soil 

profile is modelled comprehensively for C&N dynamics to 50 cm depth but because it is not 

simulated below 50 cm DNDC sometimes simulates low mineralization which can impose 

excessive crop N stress (Grant et al., 2016; Smith et al., 2008). 

 

2.1.5 Modelling studies to investigate BMPs for reducing N losses from cropping systems  

Process based agricultural models can dynamically simulate many of the interdependent 

soil-plant-atmospheric processes over space and time while maintaining the mass balance of 

nutrients and water. Thus they are well positioned for the assessment of beneficial management 

practices (BMPs) that promote resilient, efficient and sustainable cropping systems (Brill et al., 

2017; Ma et al., 2007a; De Jong et al., 2009). It is; however, crucial for modellers to work closely 

with crop agronomists to incorporate new knowledge and in some cases additional processes 



18 
 

(Vereecken et al., 2015) in order to be able to estimate trade-offs in environmental outcomes and 

ecosystem services.  

A well calibrated model can be employed to simulate the long-term impacts of climate 

variability and management on N losses from cropping systems (Abalos et al., 2016b; Congreves 

et al., 2016a; Qi et al., 2011b). Although many agricultural models were originally developed to 

simulate a single output such as crop growth, soil carbon change, water quality, or GHG 

emissions, there has been increased effort to enhance models to include a larger scope of 

agricultural processes (Ma et al., 2007a). In many agricultural models, especially those focusing 

on crop growth, soil C dynamics and GHG emissions, soil hydrology is often handled in a 

rudimentary manner and tile drainage is not explicitly simulated (i.e. DNDC, DayCent, EPIC, 

DSSAT). Also, only a few models can mechanistically simulate certain processes such as NH3 

volatilization (Vereecken et al., 2015). Three models are predominantly used in the cooler 

regions of North America as they all characterize overwinter snow dynamics and soil freeze-

thaw events. The DNDC model was originally developed to estimate N2O emissions, whereas 

DayCent (del Grosso et al., 2001, 2011) focused more on soil carbon and RZWQM2 on water 

quality and crop growth. However all three models have been expanded to simulate all four 

outcomes.   

The DNDC model  has recently been employed worldwide to assess the impacts of BMPs 

on N2O emissions (Chen et al., 2019; Deng et al., 2018; He et al., 2018b; Sándor et al., 2018; 

Molina-Herrera et al., 2016; Congreves et al., 2016a; Abalos et al., 2016b; Uzoma et al., 2015), 

however, few studies examine the trade-offs between reactive N losses (i.e. N2O emissions, NH3 

volatilization, N leaching, N runoff).  Molina-Herrera et al. (2016) performed a study using 

Landscape-DNDC to assess mitigation opportunities of N2O emissions and N leaching for 

various agricultural sites across Europe. Congreves et al. (2016a) used DNDC.vCAN to examine 

the impacts of climate variability on N2O emissions, NH3 volatilization and N leaching losses in 

a conventional and best management cropping system at a site in eastern Ontario. However, N 

losses to tile drains was not explicitly simulated, although tile drainage was present at the 

research site. It is important that DNDC be improved for simulating water and N loading to tile 

drains since this is a principal practice in many regions of the world. The ability to simulate 

controlled drainage and sub-irrigation is also needed to enable the assessment of new 
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technologies. Such improvements could further expand the ability to assess trade-offs in N losses 

for cropping systems. 

 

2.1.6 Modelling climate change impacts on cropping systems 

In most regions of the world it is likely that climate change will strongly influence crop 

growth and development, soil health, greenhouse gas (GHG) emissions and nutrient losses. In 

northern latitudes such as in northeast China and the UK some studies have found positive 

impacts on crop yields (Supit et al., 2010; Chen et al., 2010). A strong influence of climate 

change is expected in Canada where temperatures are increasing at a rate faster than the global 

average (Qian et al., 2019; Bush and Lemmen, 2019) and the estimated frost free period for crop 

growth has increased by approximately 3 weeks since the early twentieth century (Qian et al., 

2012). However, in warmer regions globally crop growth may suffer under warmer temperatures. 

For instance, it was estimated that wheat and maize yields may already be declining, especially 

in tropical regions, with an estimated global average reduction of 5.5 and 3.8%, respectively 

(Lobell et al., 2011).  

Food production using sustainable practices to maintain or increase crop yields while 

limiting negative anthropogenic influences on the environment is an important global research 

activity. It is becoming critical that we find ways to mitigate GHG emissions to limit global 

warming (IPCC, 2018). An increase in atmospheric concentrations of N2O is primarily attributed 

to agriculture due to higher fertilizer use (IPCC, 2013: Tian et al., 2016) to meet food needs for a 

growing world population. Nitrous oxide concentration in the atmosphere has risen from 270 ppb 

in 1750 (IPCC, 2013) to approximately 330 ppb in 2017 (WMO, 2018). Higher N2O contributes 

towards both increased global warming potential and stratospheric ozone layer depletion 

(Chipperfield, 2009; Denman et al., 2004). Since 1990 the radiative forcing of all GHGs has 

increased by about 41% (WMO, 2018).  It is also important to account for changes in other 

adverse impacts such as nutrient losses that can cause eutrophication within water bodies, 

ammonia loss which increases fine particulate matter in the atmosphere and changes in soil 

carbon which impact soil health. Nitrogen losses from currently established cropping systems are 

generally projected to increase under future warmer climates, including N2O emissions (Abalos 

et al., 2016a; Smith et al., 2013; Tian et al., 2012), NO3
- leaching and runoff (Wang et al., 2015) 

and NH3 volatilization (Suddick et al., 2012). To reach the increasing demands for food and fibre 
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there will likely be increased N inputs in the future (Snyder et al., 2014) through expansion of 

agricultural areas and increased intensity, potentially further increasing N losses.  

Statistical models are useful for estimating changes in yields and sometimes nutrient losses 

under current climate and management, however, they are not well suited for estimating the 

feedbacks from soil C&N cycling nor the complex physiological climate impacts on crop growth 

and development (Basso et al., 2015). The physiological effects of climate on crop growth need 

to be considered including the impacts of CO2 fertilization on photosynthesis, water and N use 

efficiency, temperature and water stress during critical growth phases such as anthesis, and in the 

case of cool climates frost damage and winterkill (Smith et al., 2013). In order to simulate the 

impacts of changing stresses on crop production and nutrient losses it is important to include 

system feedbacks from water, C and N cycling thus a model needs to include robust hydrological 

and biogeochemical processes and be capable of simulating a wide range of agricultural 

management.  When cool weather cropping systems are considered the impacts of snow cover 

and soil freeze-thaw dynamics are crucial (Cui and Wang., 2019; Dutta et al., 2018) for 

determining losses of water and nutrient to runoff and drainage, mechanisms which several 

prominent crop models currently do not consider. This may be partially why it is common 

practice in most climate change studies to re-initialize the soil status (water, soil organic carbon, 

nutrients) in models each year prior to the growing season (Basso et al., 2015) to avoid the issue. 

However, the soil status can greatly change over time resulting in significant feedbacks on crop 

growth (Basso et al., 2015) and environmental outcomes. Higher rates of N leaching and runoff 

often occur in the non-growing season when there is no crop water and N uptake (Smith et al., 

2019a; Gamble et al., 2018; Schwager et al., 2015, 2016). Likewise, N2O emissions are highly 

influenced by soil water status and can be strongly driven by off-season soil freeze-thaw activity 

in cool weather systems (Wagner-Riddle et al., 2008). Certain agroecosystem models such as 

DayCent, RZWQM2 and DNDC are capable of dynamically simulating many interdependent 

soil-plant processes under current and future climate and include over-winter soil freeze-thaw 

and snow dynamics.  

Numerous Global Climate Models (GCMs) have been developed for simulating the 

circulation of earth’s atmosphere. Many of these models have been used to project future climate 

in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) and this 

data is available for download but a bias correction and downscaling procedure needs to be 
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employed (Kirchmeier-Young et al., 2017; Cannon 2018) to enable its use in specific locations to 

drive agricultural models.  The CMIP5 project projected climate change under several emissions 

scenarios consistent with the Representative Concentration Pathways (RCPs) released by IPPC 

(2014).  The 4.5 and 8.5 Wm-2 RCP radiative forcing scenarios are commonly used in crop model 

assessment whereby the 8.5 Wm-2 scenario represents a future with relatively high GHG 

emissions (Van Vuuren et al., 2011; IPCC, 2014) and the 4.5 Wm-2 scenario which assumes 

some mitigation and social measures were employed to reduce GHG emissions. 

Several modelling studies have been performed to assess the impacts of climate change on 

crop growth in Canada (Qian et al., 2019; Jarecki et al., 2018; He et al., 2018a,b; Smith et al., 

2013) but few have attempted to understand changes in N losses such as N2O emissions (He et 

al., 2018a; Smith et al., 2013), NO3
- leaching, or NH3 volatilization. This is partly because it is 

difficult to understand and develop robust soil C&N and hydrological processes required for 

tracking feedbacks between the plants, soil and the atmosphere, but also because there are 

inherent difficulties in understanding possible changes in agronomic practices which may occur 

and how to simulate them. For instance, in climate change studies it is crucial to modify fertilizer 

application rates over time in response to changes in crop N uptake requirements thus an 

algorithm needs to be developed which can be applied automatically in models.  

 

2.2 Overview of hydrological processes in the Root Zone Water Quality Model (RZWQM2) 

The RZWQM2 (version 3.0.2015; Ma et al., 2012) is a computational-based hydrology 

model which uses numerical solutions for determining water redistribution in the soil profile. 

RZWQM2 was developed to simulate detailed biogeochemical processes in cropping systems 

with a major focus on simulating water quality in the plant root zone, below the root zone, and 

also in runoff and tile drains. The model simulates a wide array of agricultural management and 

has recently been expanded and improved for simulating N2O emissions (Fang et al., 2015; Jiang 

et al., 2019) and phosphorous dynamics (Sadhukhan et al., 2019). RZWQM2 includes DSSAT 

4.0 crop models with CERES and CROPGRO components (Hoogenboom et al., 2017; Ma et al., 

2005, 2006) which is a very well established framework for simulating crop growth and 

development worldwide. RZWQM2 uses a numerical solution to determine water fluxes and 

includes the Green-Ampt equation for infiltration, the Richards equation with an option for 

lateral hydraulic gradient for lateral water loss, and the Hooghoudt’s equation for simulating 
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quasi-2D tile drainage (Table 2.3; Fig 2.3). Thus the model input requirements, modeller 

expertise and computation time are greater than for DNDC. The model has been validated for 

simulating drainage and N loading to tiles at many locations in North America (Malone et al., 

2017; Xian et al., 2017; Qi et al., 2011b; Li et al., 2008; Thorp et al., 2007; Akhand et al., 2003) 

and has been employed to investigate BMPs for reducing N losses.  

Since RZWQM2 is a well-recognized model for simulating soil hydrology it offers an 

excellent opportunity for benchmarking DNDC developments. It has been employed previously 

to benchmark the performance of the HERMES model, which like DNDC uses a cascade water 

flow approach (Malone et al., 2017). It was found that HERMES did not simulate the year to 

year variability in nitrate concentration nor the monthly drainage as well as did RZWQM2. Refer 

to Jiang et al. (2018a,b) for detailed descriptions of processes simulated in RZWQM2, modes of 

operation and suggested parameterization, calibration and validation techniques.  

 

Table 2.3  Description of hydrologic processes in RZWQM2 

Hydrology 

component  

Description 

Soil profile Heterogeneous soil properties, customizable soil profile to several 

meters depth  

Soil water 

transport 

Water redistribution simulated by Richards Equation, Brooks Corey 

soil-water characteristics curve, macropore flow option 

Infiltration and 

runoff 

Modified Green‐Ampt approach to estimate infiltration rate, water 

excess goes first to macropores and then to runoff. 

Potential 

Evapotranspiration 

Modified Shuttleworth-Wallace model, constrained by water 

availability, multiple crop water stress options, reduces evaporation 

under residue-covered soil 

Tile drainage Hooghoudt’s equation, adjustable tile drainage depth, tile diameter, and 

drain spacing 

Water table Fluctuating water table 
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Figure 2.3 Schematic of hydrological processes in RZWQM2 

 

2.3 Investigation of alternative soil hydrologic processes for improving the performance of 

DNDC  

In this section focus is placed on researching alternative soil hydrologic processes for 

improving the simulation of subsurface soil hydrology in DNDC, the main weaknesses being the 

simulation of water movement and storage, water uptake by roots and tile drainage.  In past 

studies focus was placed on improving the simulation of evapotranspiration (Dutta et al., 2016b), 

and snow accumulation and snow melt (Dutta et al., 2018).  
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2.3.1 Water redistribution in unsaturated soils 

2.3.1.1 The Richards equation  

Coupled hydrological models which include overland flow, unsaturated porous media, and  

groundwater flow have been researched for more than 50 years. In 1969 a blueprint was 

published providing an overview of numerical solutions and a guide for model development 

(Freeze and Harlan, 1969). Since this time increases in numerical and computational capabilities 

have enabled the development of integrated hydrological models for simulating surface and 

subsurface flow within catchments, sometimes developed in 1-D, 2-D or 3-D (Maxwell et al., 

2015).  Most of these models now include a solution which uses the Richards equation (Richard, 

1931) which is a differential equation describing water movement in unsaturated porous media.  

Much research has gone into developing partial analytical solutions to Richards equation or into 

solving the equation using finite element and finite difference methods (Farthing and Ogden, 

2017; Beven and Germann, 2013; Barari et al., 2009). The Richards equation is used in the 

majority of unsaturated flow studies and the equation can be expressed in 3 basic forms, based 

on soil water content (θ-based), pressure head (h-based) or mixed form (Hillel et al., 1980).  

 

Head-based: 

𝐶(ℎ)
𝜕ℎ

𝜕𝑡
= 𝛻 • (𝐾(ℎ)𝛻ℎ) + 

𝜕𝐾

𝜕𝑧
                                                                  (2.3) 

 

where C(h)[1/L] = 
𝜕𝜃

𝜕ℎ
 is a function which describes the rate of change in moisture content in 

relation to the pressure head. Several curve fitting methods have been developed to describe the 

water content to pressure head relationships including van Genuchten (1980) which is described 

below.  K[L/T] is the unsaturated hydraulic conductivity. 

 

Saturation-based: 

𝜕𝜃

𝜕𝑡
=  𝛻 • 𝐷(𝜃)𝛻𝜃 +  

𝜕𝐾

𝜕𝑧
                                                                         (2.4) 

 

where D(θ)[L2/T) = 
𝐾(𝜃)

𝐶(𝜃)
 = K(θ) 

𝜕ℎ

𝜕𝜃
  is the soil unsaturated diffusivity.                      

 

Mixed form: 
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𝜕𝜃

𝜕𝑡
=  𝛻 • 𝐾(ℎ)𝛻ℎ +  

𝜕𝐾

𝜕𝑧
                                                                         (2.5) 

 

2.3.1.2 Limitations of the Richards Equation for agricultural soils 

Complex numerical schemes, such as finite difference and finite element solutions of 

Richards equation, can generally produce reasonably accurate results; however, such approaches 

can be computationally expensive (Farthing and Ogden, 2017; Short et al., 1995), partly because 

fine spatial discretization is required to simulate infiltration into dry soils (Downer and Ogden, 

2004) but also because a small time step is required to simulate soils at high water contents and 

flow rates (Yang et al., 2009).  

Intensive and accurate input data is also needed for fitting variables to represent a viable 

water retention curve (soil moisture characteristic) via the van Genuchten model or other curve 

fitting equation. The pressure plate method is commonly used for estimating water contents at a 

set pressure to determine the water retention curve.  It can take weeks for the system to stabilize 

under high pressures but the results are generally accurate.  However, at low water potentials this 

method is often inaccurate due to soil dispersion and lack of soil-plate contact (Bittelli and Flury, 

2009) and the method can lead to substantial errors in flow calculations in models. There are 

other options such as the dew point measurement method whereby Kirstea et al. (2019) recently 

developed a method shown to provide accurate soil water retention data over the entire moisture 

range. Another issue is that it can be very difficult to get a good measure of in situ saturated 

conductivity particularly at deeper soil depths. Laboratory measurements of KS using soil cores 

and the traditional saturated flow-desorption method can in fact be over an order of magnitude 

greater than in situ measured KS (Smith et al., 1995). It is possible to use pedotransfer functions 

to estimate water retention curves and other hydrological parameters but in doing so it can 

undermine much of the improved accuracy that is achieved through using a computational-based 

water redistribution approach.  

Further, there is some uncertainty regarding the applicably of Richards equation for 

agricultural soils.  In a review of water flow approaches, Beven and Germann (2013) commented 

that in unsaturated heterogeneous soils there is rarely a consistent hydraulic gradient, which 

Richards equation assumes. In heterogeneous soils capillary potentials are not in equilibrium. In 

another review of numerical solutions for Richards’ equation it was concluded that in certain 

conditions numerical solutions are still unreliable and that no robust approach exists across soils 
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and boundary conditions (Farthing and Ogden, 2017). There are issues with convergence in more 

complex systems and they suggest additional research into alternative procedures.  

 

2.3.1.3 Approximating Richards flow with simpler algorithms 

To reduce the computation time needed to solve complex numerical schemes over spatial 

and temporal domains several researchers have worked on simplifying the Richards approach,  

but with attempts to maintain accuracy. A large number of researchers have developed analytical 

solutions but these can only be employed for simplified cases (Farthing and Ogden, 2017) thus 

are not functional for a wide range of transient conditions that occur in heterogeneous 

agricultural soils. For instance the quasi analytical method developed by Philip (1957) was one 

of the first approaches but it assumes a homogeneous soil and is employed to simulate ponded 

infiltration at the upper boundary. This method has since been integrated into other approaches 

such as recent differential equations developed by Ogden et al. (2015) which can simulate water 

flow through a heterogeneous profile. This approach conserves mass and has no convergence 

limitations but one drawback was that the computational requirement was  similar to the 

Richards equation as employed in the Hydrus-1D model.   

When developing the DayCent model Del Grosso et al. (2001) used a simple finite 

difference approximation whereby unsaturated water flow was estimated between layers 

discretized down the soil profile using the Darcy's equation with a damping flux rate to slow 

water flow. The damping flux rate, which could be determined based on calibrations using 

observed data, is set high to allow for larger time steps thus facilitating faster model 

performance. Matric potential is estimated for each time step using the Campbell method and 

water flux is simulated downward or upward. Water flow above field capacity is determined 

using a tipping bucket approach thus only unsaturated flow is estimated using the Darcy-

damping flux approach. This approach is relatively simple and DayCent performed satisfactorily 

and marginally better than the DNDC and STICS models for simulating soil water at three sites 

in Eastern Canada (Guest et al., 2017a), however, the model was not tested against a 

comprehensive hydrology model.  

Lee and Abriola (1999) used a derivation of the water-content-based Richards flow 

equation whereby it was assumed water content and pressure head were influenced only by the 

layer above and the layer below with discretization down the soil profile at a sufficiently low 
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time step. This produced acceptable results for a homogeneous soil, however, was not applicable 

for flow between layers with varying soil properties (Yang et al., 2009).  Yang et al. (2009) 

expanded on this approach using a mixed form of the Richards equation expressed in terms of 

soil water content and pressure head in a 1-D form as follows: 

 

𝜕𝜃

𝜕𝑡
=  

𝜕

𝜕𝑧
[𝐾(𝜃)( 

𝜕ℎ

𝜕𝑧
+ 1)                                                                        (2.6) 

 

Integrating this form of the equation vertically over a soil layer Yang et al. (2009) derived the 

following; 

𝛥𝜃𝑖

𝛥𝑡
=

1

𝛥𝑧
[𝐾𝑖+1(𝛥ℎ𝑖+1,𝑖

𝛥𝑧
+ 1) − 𝐾𝑖(

𝛥ℎ𝑖,𝑖−1

𝛥𝑧
+ 1)]                                          (2.7)                                      

 

where Δ�̅�i (L
3L-3) = the average soil water content in the layer i for the time step Δt and soil layer 

thickness Δz, K (LT-1) is the hydraulic conductivity of the layer (i) and the above layer (i+1), and 

Δh (L) is the change in pressure head between the layers, i+1 being the layer above and i-1 the 

layer below. To estimate soil water retention characteristics for the integrated Richards equation 

Yang et al. (2009) employed the van Genuchten model (van Genuchten, 1980) but several other 

options which are explored below can be employed in hydrology models.  

 

2.3.1.4 Estimates of soil water retention 

The van Genuchten function is one of the more comprehensive soil water retention 

functions for estimating soil water content with respect to pressure head. The method is 

particularly useful for defining the shape of the curve near saturation and can be expressed 

relative to water content, pressure head (h; L), and unsaturated hydraulic conductivity (K; LT-1): 

 

𝛩 =
𝜃(ℎ)−𝜃𝑟

𝜃𝑠−𝜃𝑟
= [

1

1+|𝛼ℎ|𝑛
]

𝑚

                                                            (2.8)                                                                   

 

ℎ(𝜃) =
1

𝛼
(𝛩−1/𝑚 − 1)

1/𝑛
                                                           (2.9)                                                                          

                                         

𝐾(𝜃) = 𝐾𝑠𝛩0.5[1 − (1 − 𝛩1/𝑚)𝑚]
2
                                                  (2.10) 
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where 𝚯 is the relative saturation, θr and θs (L3L-3) are the residual and saturated soil water 

contents, α (L-1) is a shape parameter related to the inverse of the air entry suction, n is a shape 

parameter related to the pore size distribution, m=1-1/n, and Ks (LT-1) is the saturated hydraulic 

conductivity. 

Several other options are available for estimating soil water retention curves including 

those proposed by Brooks and Corey (1964) and Campbell (1974) and more recently by Karup et 

al. (2017).  The simplest model among these in its original form is the Campbell function 

(Pittaki-Chrysodonta et al., 2018) which only requires a pore size distribution curve-shape 

parameter (b) and the water content at the air entry value (bubbling pressure). The base principle 

for this function has been widely used in process-based hydrology models such as in the SHAW 

model (Flerchinger et al., 2000) but it has in some cases been expanded to include more detail. 

Hutson and Cass (1987) modified the equation to include two shape fitting parameters, one for a 

parabolic function at the wet end and a power function for drier conditions. This allowed for a 

better representation of soil water retention at near saturation and this was employed in the 

LEACHM model (Wagenet and Hutson, 1989).  RZWQM2 uses a modified form of Brooks and 

Corey (Ma et al., 2012) to describe water retention and unsaturated hydraulic conductivity-matric 

suction relationships.   

 

2.3.1.5 Cascade flow or tipping bucket approaches for estimating water movement 

Many agricultural models such as DNDC, DayCent, STICS (Brisson et al., 2002), DSSAT 

(Hoogenboom et al., 2015), APSIM (Keating et al., 2003) and DRAINMOD (Skagg et al., 2012) 

employ a simple cascade water flow approach whereby water per layer “tips” to field capacity on 

a daily or hourly basis. It is recognized that this can result in erroneous predictions of soil water 

contents and flow events, however, the simple approach is often purposefully implemented to 

keep the computation time, soil data input requirements and level of required expertise low 

(Guest et al., 2018). However, without accurate soils data, especially to define the water 

retention curve, there is no guarantee that soil water content can be more accurately simulated 

using a more complex approach (such as by solving Richards equation numerically).  

With a cascade approach there are clear issues in being able to simulate water contents that 

occur above field capacity which are typical during spring snow melt or long periods of episodic 
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rainfall under cool climate (Uzoma et al., 2015). An option could be to limit water movement 

above field capacity based on some of the simpler equations which describe the unsaturated 

conductivity to pressure head relationship such those proposed by Brook and Corey (1964) or 

Campbell et al. (1974). Vereecken et al. (1990) tested these two models along with the three 

parameter Gardiner model (Gardiner et al., 1958) using 182 measured K(h) relationships and 

found the Gardiner model to be the best performer.  They established regression equations 

whereby the parameters for Gardiner’s model could be estimated based on simple soil properties 

such as KS, soil texture, bulk density and carbon content. If the soil water status is known then 

unsaturated conductivity can be estimated based on soil water status and KS as derived by both 

Averkjanov (1950) and Irmay (1954).   

𝐾 = 𝐾𝑆 (
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
)

𝑛
                                                                     (2.11)                                   

 

where K is hydraulic conductivity, KS is saturated hydraulic conductivity, θ is actual, θr residual, 

and θs saturated soil water content (L3 L-3). The equation differs in power (n) where Irmay used a 

value of 3 and Averkjanov 3.5. This simple equation may be less accurate than algorithms which 

describe K to h relationships, however, it may provide a simple means of limiting water 

movement to improve soil water content estimates in cascade models. Pressure head is 

sometimes not estimated in cascade models. Another option could be to use a pedo-transfer 

function such as employed in the SPAW soil water characteristics sub-model (Saxton and Rawls, 

2006) to estimate soil water retention characteristics including unsaturated hydraulic 

conductivity as a function of soil water content and potential.   

 

2.3.2 Modelling tile drainage 

2.3.2.1 Steady state Hooghoudt equation  

The steady state Hooghoudt equation is used in RZWQM2 and DRAINMOD to simulate 

tile drainage. The drawdown of water table height is not fully steady state, however, the rate of 

change usually proceeds slow enough that the Hooghoudt equation can be used effectively 

(Skaggs et al., 2012). The Hooghoudt equation as written in Skaggs et al. (2012) is;  

 

𝑞 =
4𝐾𝑒𝑚(2𝑑𝑒+𝑚)

𝐿2
                                                               (2.12)                                                                                                                  
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where q (LT-1) is the drainage discharge rate, Ke (LT-1) is the effective lateral hydraulic 

conductivity,  m is the water table level above the drain at midpoint between the drains, de is the 

equivalent depth of the impermeable (or restrictive) layer below the drain, and L is the drain 

spacing (Fig. 2.4a).  

 

 

Figure 2.4 Drainage systems for a) steady state and b) transient conditions.  L is the drain 

spacing, d is the depth from drains to the impermeable layer, r is the drain radius, and m, m0, m1 

are the water table levels above the drain at midpoint between the drains for steady state (m), and 

before (m0) and after drainage (m1) for transient drainage. 
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Equations to estimate Ke and de below were outlined in Xian et al. (2017).  

𝐾𝑒 =  
∫ 𝐷𝑖𝐾𝑖

𝑖=𝑛
𝑖=1

∫ 𝐷𝑖
𝑖=𝑛

𝑖=1

                                                                   (2.13) 

 

where n is the number of soil layers, Di is the thickness of layer i (L), and Ki is the lateral 

hydraulic conductivity of layer i (L T-1). 

 

The calculation of de depends on the actual depth (d; L) of the soil profile: 

 

if    
𝑑

𝐿
 < 0.3      𝑑𝑒 =  

𝑑

1+
𝑑

𝐿
[(

8

𝜋
𝑙𝑛

𝑑

𝑟
)−𝐶𝑂𝑁]

                                                       (2.14) 

 

where 𝐶𝑂𝑁 = 3.55 − 1.6
𝑑

𝐿
+ 2 (

𝑑

𝐿
)

2

                                                            (2.15) 

 

                                 if    
𝑑

𝐿
 ≥ 0.3     𝑑𝑒 =  

𝐿

(
8

𝜋
𝑙𝑛

𝐿

𝑟
)−1.15

                                                               (2.16) 

where r is the radius of the drain (L). 

 

2.3.2.2 Tile drainage under transient conditions  

It is also feasible to calculate drainage based on a transient state approach whereby the 

water table height before and after drainage is taken into account (Fig. 2.4b). A recent study by 

Xian et al. (2017), when assessing the performance of RZWQM2 compared the steady state 

Hooghoudt equation and two transient equations including the Schilfgaarde equation (van 

Schilfgaarde, 1963; Bouwer and van Schilfgaarde,1963) and an alternative solution which 

allowed for use of the equation under larger time increments (van Schilfgaarde, 1964). The first 

equation proposed  by van Schilfgaarde is written as; 

𝐿 = 3𝐴√[
𝐾𝑒(𝑑𝑒+𝑚1)(𝑑𝑒+ 𝑚0)𝑡

2𝑓(𝑚0− 𝑚1)
]                                                (2.17) 

 where  

𝐴 =  √[1 − (
𝑑𝑒

𝑑𝑒+ 𝑚0
)2]                                                     (2.18) 
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where m0 and m1 (L) are the water table levels above the drain at midpoint between the drains 

before and after drainage, respectively. T is the time period (T) and 𝑓 is the drainable porosity 

(L3 L-3) which can be calculated as (Ma et al., 2007b):  𝑓 = water content at saturation minus 

water content at field capacity.   

The “integrated Hooghoudt equation” which allows for calculation at a larger time 

increment was derived by combining the Hooghoudt equation with mass balance equations (van 

Schilfgaarde, 1964) and it can be written as follows: 

 

𝐿 =  √
9𝐾𝑒𝑡𝑑𝑒

𝑓𝑙𝑛[
𝑚0(2𝑑𝑒+𝑚1)

𝑚1(2𝑑𝑒+𝑚0)
]
                                                                (2.19) 

 

The final water table height and the resulting change in water table height (∆h = m0 – m1) can be 

estimated as: 

𝑚 =  
2𝑑𝑒𝑚0

2𝑑𝑒𝑒𝑍+ 𝑚0𝑒𝑍+ 𝑚0
                                                              (2.20) 

 

where 𝑍 =  
9𝐾𝑡𝑑𝑒

𝑓𝐿2                                                                   (2.21) 

 

The drainage coefficient or drain out flow can then be estimated by: 

𝐷𝐶 =  𝑓 ∗ ∆ℎ                                                                  (2.22) 

 

2.3.3 Water uptake via roots 

Temperature is considered to be the main driver for root growth (Kage et al., 2000; Thorup-

Kristensen, 2006; Kirkegaard and Lilley, 2007) which is often calculated based on cumulative 

day-degrees (CDD) defined as follows:    

 

𝐶𝐷𝐷 =  {
                       0                       

𝑇𝑎𝑖𝑟 −  𝑇𝑚𝑖𝑛

        𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛          

; 𝑇𝑚𝑖𝑛 ≥ 𝑇𝑚𝑎𝑥

; 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎𝑖𝑟 <   𝑇𝑚𝑎𝑥

; 𝑇𝑎𝑖𝑟 ≥ 𝑇𝑚𝑎𝑥

                               (2.23) 

 

Pedersen et al. (2010) suggested the following equation for estimating root penetration depth (Rz) 

expressed in terms of CDD;   
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𝑅𝑧 =  {

𝑅𝑧𝑚𝑖𝑛                                    

∑ ((𝐶𝐷𝐷 − 𝐶𝐷𝐷𝑙𝑎𝑔)𝑘𝑟𝑧) + 𝑅𝑧𝑚𝑖𝑛 

𝑅𝑧𝑚𝑎𝑥                                  

; 𝐶𝐷𝐷 ≤ 𝐶𝐷𝐷𝑙𝑎𝑔                                        

; 𝐶𝐷𝐷 > 𝐶𝐷𝐷𝑙𝑎𝑔                                        

; 𝐶𝐷𝐷 − 𝐶𝐷𝐷𝑙𝑎𝑔𝑘𝑟𝑧 + 𝑅𝑧𝑚𝑖𝑛 > 𝑅𝑧𝑚𝑎𝑥

    (2.24) 

 

where Rz is the depth of root penetration; Rzmin is the planting depth; CDDlag accounts for the 

time period between planting and start of root penetration (germination); krz is the root depth 

penetration rate with values provided for some crops in Pedersen et al. (2010); Rzmax is the 

maximum root penetration depth which can be determined based on several published studies 

(Fan et al., 2016; Benjamin et al., 2013).  Note that equation 2.24 does not consider the impact of 

soil properties on root growth and development thus the maximum rooting depth set for a crop 

should take this into account.  

A simple algorithm for root distribution, which was primarily based on a study by Gerwitz 

and Page (1974) was modified by Yang et al. (2009) to extend the rooting depth of fine roots by 

an additional 30%. This can account for very fine root biomass which is difficult to measure, but  

can also perhaps partially emulate capillary rise in models which are limited to cascade (tipping 

bucket) water flow. In equation 2.25 the root density declines logarithmically to the root 

penetration depth (Rz) followed by a linear decrease to zero at 1.3Rz. The relative root length 

distribution is as follows; 

𝐿𝑅(𝑧) =  {
 𝑒−𝑎𝑧𝑧                            ;  𝑧 < 𝑅𝑧                  

𝑒−𝑎𝑧𝑧 (1 −
𝑧−𝑅𝑧

0.3𝑅𝑧
)      ;  𝑅𝑧 ≤ 𝑧 ≤ 1.3𝑅𝑧

                                (2.25) 

                          

where az is the shape parameter describing root distribution with increasing soil depth. Pedersen 

et al. (2010) used values of az = 2 for wheat and winter wheat and 1.5 for brassicas. The shape 

parameter and rooting depth can be defined based on field studies or from sources such as Fan et 

al. (2016) and Benjamin et al. (2013). Also, Pedersen et al. (2010) compared the exponential-

based root distributions determined by equation 2.25 to observed data and found that it did well 

for monocots, but not always for dicot crop species. In general, Pedersen et al. (2010) found that 

equations 2.24 and 2.25 improved the simulation of both soil water and N in the profile.  
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Connecting text to Chapter 3 

Chapter 2 provides a review of the DNDC model including a brief history of model 

developments and weaknesses of the soil hydrology algorithms. An overview of the hydrologic 

routines used in RZWQM and a general review of soil hydrologic processes, ranging in 

complexity, are also included. This sets the background for Chapter 3 where detailed 

comparisons of DNDC and RZWQM were made to determine which soil hydrologic processes in 

DNDC should be targeted for improvement. Both models were similarly calibrated and validated 

using observed measurements of crop yield, biomass, crop N uptake, soil water content, daily tile 

drainage and N loading from a 5 year maize-soybean rotation with and without a cover crop. It 

was deemed important to assess the entire water balance and impacts on N losses and crop 

growth since imperfections in water simulation cascades throughout the entire agroecosystem.  

 

The following manuscript was published in Journal of Hydrology X: 

Smith, W., Z. Qi, B. Grant, A. VanderZaag, and R. Desjardins. 2019. Comparing hydrological 

frameworks for simulating crop biomass, water and nitrogen dynamics in a tile drained soybean-

corn system: Cascade vs computational approach. Journal of Hydrology X. 2: 100015. 

https://doi.org/10.1016/j.hydroa.2018.100015  
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Chapter 3 

Comparing hydrological frameworks for simulating crop biomass, water and nitrogen 

dynamics in a tile drained soybean-corn system: Cascade vs computational approach 

Ward Smith, Zhiming Qi, Brian Grant, Andrew VanderZaag, and Ray Desjardins 

 

Abstract     

Biophysical agricultural models are needed for assessing science-based mitigation options 

to improve the efficiency and sustainability of agricultural cropping systems. It is crucial that 

they can accurately simulate soil hydrology and nutrient flows which strongly influence crop 

growth, biogeochemical processes and water quality. The purpose of this study was to compare 

the performance of the DeNitrification DeComposition model (DNDC), which utilizes simplified 

hydrologic processes, to a more comprehensive water flow model, the Root Zone Water Quality 

Model (RZWQM2), to determine which processes are sufficient for simulating water and 

nitrogen dynamics and recommend improvements. Both models were calibrated and validated 

for simulating soil hydrology, nitrogen loss to tile drains and crop biomass using detailed 

observations from a corn (Zea mays L.) -soybean (Glycine max (L.) Merr.) rotation in Iowa, with 

and without cover crops.  DNDC performed adequately across a wide range of metrics in 

comparison to a more hydrologically complex model.  Soybean and corn yield, and corn biomass 

over the growing season were well simulated by both models (NRMSE<25%). Soybean yields 

were also very well simulated by both models (NRMSE<20%); however, soybean biomass was 

over-predicted by RZWQM2 in the validation treatments.  The magnitude of winter rye biomass 

and N uptake was well simulated but the timing of growth initiation in the spring was inaccurate 

at times.  The annual and monthly estimation of tile flow and nitrogen loss to tiles drains were 

well simulated by both models; however, RZWQM2 performed better for simulating soil water 

content, and the dynamics of daily water flow to tile drains (DNDC: NSE -0.32 to 0.24; 

RZWQM2: NSE 0.35 to 0.69). DNDC overestimated soil water content near the soil surface and 

underestimated it in the deeper profile. We recommend that developments be carried out for 

DNDC to include improved root density and penetration functions, a heterogeneous and deeper 

soil profile, a fluctuating water table and mechanistic tile drainage. However, the inclusion of 
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computationally intensive process needs to be assessed in the context of improved accuracy 

weighed against the model’s broad applicability. 

 

3.1 Introduction 

The performance of beneficial management practices for reducing nutrient losses from 

agricultural systems can vary both temporally and spatially in response to climate variations and 

soil diversity in the landscape. Process-based agricultural models can be valuable tools for 

extrapolating impacts of management over space and time. It is well known that many of the 

connected crop-soil-atmospheric processes are strongly influenced by water, and thus the 

performance of these models is highly correlated with how these hydrological processes are 

defined. Most models are developed to quantify a specific outcome such as crop biomass, 

greenhouse gas emissions, soil carbon change, or water quality and as a result the ability of the 

model to simulate hydrology is often simplified. The design philosophy that developers often 

choose is one which leans towards utilizing more simplified processes in order to keep the user 

expertise, input requirements, model transparency and computation time manageable. It is 

important for modellers to understand the limitations imposed by the hydrological modelling 

framework such that informed decisions can be made regarding the range of applicability and 

outcome quality.  

The DNDC model is one of the most widely used process-based models for agriculture, and 

is arguably the most sophisticated for estimating greenhouse gas emissions; however, the model 

simulates simple cascade water flow and does not include a mechanistic drainage sub-model. In 

a recent review of C&N models, DNDC was found to be the only model which estimated all 

C&N related GHG emissions considered (Brilli et al., 2017), however, the model demonstrated 

weaknesses in simulating soil hydrology and the overall water budget and requires improvement 

(He et al., 2018b; Brilli et al., 2017; Congreves et al., 2016b; Dutta et al., 2016b; Uzoma et al., 

2015; Smith et al., 2008; Cui et al., 2014; Abdalla et al., 2011; Deng et al., 2011). DNDC has 

been employed to estimate water drainage and NO3-N loading in the U.S (Gopalakrishnan et al., 

2012; David et al., 2009; Tonitto et al., 2007a, 2007b, 2010; Li et al., 2006) and China (Li et al., 

2014; Zhao et al., 2014) and once calibrated the model generally performed well, however, the 

model was not tested systematically for simulating crop biomass, soil water content, and daily 

water flow in these studies. Recent studies have shown that DNDC outperformed other water 
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budget models (Guest et al., 2018) largely because it includes a crop growth sub-model which 

integrates daily crop growth, water, nitrogen and heat stresses. DNDC performed similarly to 

cascade models DayCent and STICS for simulating soil water content but performed better for 

simulating soil N, particularly over STICS, which at the time did not include a soil freeze-thaw 

sub-model. STICS overestimated N loss in the late fall but snow insulation and freeze-thaw have 

now been incorporated (summer 2018).  DNDC has not been benchmarked against a 

computational-based water quality model for assessing full system water and N dynamics.   

The USDA-ARS Root Zone Water Quality Model (RZWQM2; Ma et al., 2012) is a 

detailed hydrologic model for simulating biogeochemical processes in the root zone. The model, 

released in 1992, includes design features and concepts from several other root zone models. The 

Decision Support System for Agrotechnology Transfer (DSSAT; Hogenboom et al., 2017) crop 

model is also embedded in its code. The benefit of using DSSAT is that it is widely used for 

simulating crop growth and phenology worldwide.   The RZWQM2 model simulates a wide 

range of soil-plant-atmospheric processes and includes much more detailed hydrologic processes 

than DNDC including the Green-Ampt equation for infiltration, Richards equation for water 

flow, and Hooghoudt’s equation for tile drainage. Several studies have shown that RZWQM2 

can be employed successfully for simulating water flow to tile drains (Xian et al., 2017; Ma et 

al., 2012; Qi et al., 2011b; Akhand et al., 2003; Kanwar et al., 1997).     

There have previously been successful comparisons of crop models which use simpler 

hydrology to computational models (Malone et al., 2017) but such assessments are rare, 

particularly across a wide range of metrics at high temporal resolution. In order to properly 

understand and quantify model performance, detailed input data and a wide array of observations 

for benchmarking water, soil and crop related processes are crucial. In this paper we use a 

comprehensive dataset that includes measurements of corn and soybean yields (common crops 

grown in the Midwestern U.S), corn, soybean and winter-rye biomass, crop N uptake, continuous 

soil water content at multiple depths, and near continuous estimates of water flow and N loading 

to tile drains across multiple years (Qi et al., 2011a, b; Ma et al., 2012). The objectives of this 

study were to i) calibrate and validate the DNDC and RZWQM2 models for simulating crop 

growth, soil water flow and nitrogen loading to tile drains in cropping systems with and without 

cover crops; ii) compare the performance of the models for simulating crop growth, soil 

hydrology and water quality and iii) document the strengths and weaknesses of the models for 
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simulating water flow and N loss to tile drains and recommend future developments. In doing so 

we compare the performance of simpler water processes in DNDC, which are in fact common in 

many agricultural models, to the more detailed hydrology-based model, RZWQM2, in an effort 

to discern what level of process complexity is necessary for simulating water quality at daily, 

monthly and annual scales.   

 

3.2 Materials and methods 

3.2.1 Field studies  

The model comparison was performed using measurements of water flow, N loss to tile 

drains, and biomass data from a corn-soybean study with and without cover crops at the 

Agricultural Drainage Water Quality ‐ Research and Demonstration Site near Gilmore City in 

Pocahontas County, north central Iowa (42°42'N 104°00’W) (Lawlor et al., 2008; Qi et al., 

2011a,b). The general soil texture classification of the site is a fine-loamy or fine clay loam and 

included 4 soil classifications; Nicollet, Webster, Canisteo, and Okoboji (USDA, 1985). The 

average particle size distribution near the soil surface across the 16 plots used in our analysis was 

32% sand, 34% silt and 32% clay and the bulk density was 1.37 g cm-3. The average annual (Jan 

1st to Dec 31st) temperature was 8 oC and annual precipitation was 821 mm.  

As part of a larger study 16 hydrologically distinct plots (15 x 38 m long) of completely 

randomized block design were established in the fall of 2004 and lasted 5 years until 2009. The 

study consisted of two treatments with cover crops and two controls, each with 4 reps. Treatment 

1 (TRT1) consisted of winter rye prior to corn in odd years and prior to soybean in even years 

whereas treatment 2 (TRT2) was the reverse phase with winter rye prior to soybean in odd years 

and prior to corn in even years (Table 3.1). The controls (CTRL1 and CTRL2) included the same 

cropping system, but with no winter rye cover crop.  Rye (Secale cereale; brand name: Rymin'; 

3,638,000 seed ha‐1; 19 cm row spacing), Glyphosate‐resistant corn (Dekalb 50‐45; 77,000 seed 

ha‐1; 76 cm row spacing) and soybean (Pioneer 92M40 Group 2 middle season; 439,750 seed ha‐

1; 76 cm row spacing) were planted using a drill seeder with dates determined by field conditions 

but at the same dates for control and no-control treatments.  The agronomic practices for tillage 

and fertilizer application were consistent with those usually employed in Iowa and the 

scheduling of events is shown in Table 3.1.  Aqueous ammonia fertilizer at a rate of 140 kg N ha-
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1 was applied on corn shortly after emergence and no fertilizer was applied to the soybean or 

winter rye. Tile drains were 106 cm deep, 7.6 cm diameter, and drain spacing was 7.6 m.  

The Gilmore City site included a large complement of measurements such as water content 

at 4 depths, biomass and crop N uptake and daily time step measurements of water flow and N 

concentration to tile drains. From 2006 to 2009 corn and soybean biomass were sampled once 

every 3 weeks at 4 random locations in each plot until October and rye roots were sampled 

weekly. The combustion method was used for analyzing total nitrogen content of tissue samples. 

Corn and soybean yields were determined by combining 12 of 20 rows and grain seed was 

weighed for each combine pass.  

Soil water content was determined using calibrated permittivity measurements from a 

Theta probe (Delta‐T Devices) and a PR2 profile probe. Equations from Kaleita et al. (2005) 

were used to convert the permittivity values from the Theta probe to volumetric soil water 

content and water contents determined from in-situ soil measurements were used to calibrate the 

PR2 probe. In each plot permittivity was measured at 2 locations using the Theta probe for the 0-

5 cm depth. The PR2 probe was used to measure permittivity at 0–10, 10–20, 20–30, 30–40, 50–

60 and 90–100 cm profile depths via a fiberglass access tube. Measurements were taken on a 

weekly basis from March through October, 2006–2008.  

The water loss from the subsurface tile drains was measured using a flow meter and prior 

to 2006 the volume was manually recorded on a weekly or bi-weekly basis.  After April 2006 a 

magnetic recorder was used allowing for measurements at 0.005 cm water depth intervals 

(increments of 14 L).  Samples of drainage flow were collected approximately every 1.3 cm of 

drainage flow and stored at 4oC for analysis. The second‐derivative spectroscopy technique was 

used to analyze NO3-N concentration which was multiplied by the drainage volume to calculate 

NO3‐N loss from the tile drains. For details regarding sampling techniques see Qi et al. (2011a, 

c) and Lawlor et al. (2008). 
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Table 3.1 Cropping systems and agronomic practices at the Gilmore City site, Iowa from 2005 to 

2009 

 

 2005 2006 2007 2008 2009 

Treatment      

TRT1, Calibration rye-corn rye-soy. rye-corn rye-soy. rye-corn 

CTRL1, Validation corn soybean corn soybean corn 

TRT2, Validation rye-soy. rye-corn rye-soy. rye-corn rye-soy. 

CTRL2, Validation soybean corn soybean corn soybean 

Management activity      

Termination of rye prior to corn April 30 April 24 April 30 May 6 May 8 

Cultivation(a) and corn planting  May 10 May 4 May 14 May 15 May 19 

Cultivation(a) and soybean planting(b) May 18 May 10 May 17 May 23 May 20 

Termination of rye  May 20 May 16 May 23 May 26 May 31 

Fertilize corn (140 kg N ha-1) May 25 May 18 June 5 June 4 June 30 

Corn and soybean harvest Oct. 10 Oct. 7 Oct. 22 Oct. 20 Nov. 3 

Chisel plow (CTRL1, 2) Oct. 10 Oct. 10 Oct. 24 Oct. 20 no-till (wet) 

Disk plow and cultivation (TRT1, 2) Oct. 10 Oct. 10 Oct. 24 Oct. 20 no-till (wet) 

Plant rye Oct. 11 Oct. 12 Oct. 25 Oct. 21 Nov. 20 

a) Only CTRL1 and CLTRL2 were cultivated 

b) DNDC handles intercropping but not RZQWM2, thus for RTWQM2 soybean was planted 

after rye termination  

 

3.2.2 Model overview 

As discussed in the following sections the DNDC model employs simple equations and 

methods for soil hydrology whereas RZWQM2 which was primarily developed for simulating 

water quality thus includes much more mechanistic and computation intensive equations (Table 

3.2, Fig. 3.1).  An earlier version (2.0 2010) of the RZWQM2 was previously calibrated and 

validated for the Gilmore City site (Qi et al., 2011b) but in this study a newer version (3.0 2015) 

was employed in a similar manner using calibration and validation procedures described in Ma et 

al. (2012). Once calibrated the newer version performed similarly with marginally improved 

results.  

 

3.2.2.1 DNDC 

The DeNitrification DeComposition (DNDC) model (Li et al., 2012) is a widely used 

process-based model for simulating the effects of climate and agricultural management on crop 

growth, soil C&N cycling, trace gas emissions, and nutrient loss from runoff and drainage.  It 

includes several sub-models for predicting crop growth, soil climate, decomposition, 
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nitrification, denitrification, and fermentation. The model was first developed to estimate nitrous 

oxide emissions, but was later expanded to estimate soil C&N cycling, water drainage and 

nitrogen loss to tile drains (Li et al., 2006) and finally to include full farm facility and livestock 

systems (Li et al., 2012). The model has been tested and validated extensively for simulating 

crop growth, GHG emissions, soil carbon change, and ammonia volatilization worldwide 

(Ehrhardt et al., 2018; Brilli et al., 2017; Zhang and Niu, 2016; Gilhespy et al., 2014) but it has 

seldom been tested for simulating water flow and nutrient losses to tile drains.   

Efforts are made by the model developers to minimize the amount of input data and process 

time required thus some of the processes in DNDC are purposefully kept simple. The current 

release version of DNDC employs a cascade flow water model simulating bulk water flux and N 

transport through the profile (Table 3.2, Fig. 3.1). Nitrate movement in DNDC was conceived as 

a function of the water flux per layer.  Soil NO3
- is considered to be mobilized by positive water 

flux (90% mobilized) and transferred to the layer below as a one-dimensional vertical N flux 

towards the bottom soil profile. The movement of NO3
- is an iterative step through each of the 

saturated layers per hour. Additionally, another fraction (10% of the NO3
- in each layer) is 

considered to be lost through preferential water flow via macropores directly out of the soil 

profile. Nitrate fertilizers are added directly to the soil NO3
- pool thus they may be more subject 

to more initial leaching. Urea is moderately mobile in the model whereas NH4
+ is not mobile. 

Ammonium-based fertilizers undergo nitrification to NO3
- before movement can occur and urea 

undergoes hydrolysis to NH4
+ followed by nitrification to NO3

- (Dutta et al., 2016a). Nitrate 

travels through the profile in solution, and is leached from the 50 cm depth. This is the value that 

is considered to be lost to tile drains, regardless of the depth of the actual drains.  

 Li et al. (2006) included a “deep water pool” to increase the default 50 cm soil profile 

depth to that of a tile drain; however, the deep water pool depth (default 50 cm) can’t be adjusted 

without recompiling the model, N adsorption and transformations are not included in the 

additional profile, and a fluctuating water table is not simulated. Water which leaches from the 

50 cm depth moves into the deep water pool. Water which leaches from this pool is considered to 

be lost to tile drains. Adsorption and desorption of NH4
+ based on the Langmuir equation was 

also incorporated in his study (top 50 cm of soil profile) as well as a simplistic empirical 

relationship or “recession curve” to delay drainage by soil layer. This recession curve required 

parameterization of coefficients for each soil type (Tonitto et al., 2007a), and is no longer active 
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in the current release version. Tonitto et al. (2007a,b) found that after calibration of the recession 

equation in DNDC the model performance was satisfactory for simulating annual water flow and 

nitrate loss to tile drains when aggregated across a watershed; however, DNDC consistently 

under-predicted monthly drainage and the model was not tested using daily data. 

  Several modelling teams have developed specific versions of the model to better enable the 

simulation of regional soils, climate events, crop cultivars and management practices. In our 

study, a Canadian version of DNDC (DNDCv.CAN) was employed which is well suited for 

over-winter conditions that occur in Iowa.  This version was developed over the last several 

years by introducing crop specific growth curves for wheat, corn and soybean (Grant et al., 2016) 

and by improving the prediction of evapotranspiration (ET) (Dutta et al., 2016b). Transpiration is 

based on the crop water demand but is limited by soil water status. In the model transpiration is 

determined first, with a minimum of 10% potential evapotranspiration reserved for evaporation.  

Evaporation from the soil, leaves, and stem are then calculated as a function of the remaining 

PET. A new ammonia sub-model for simulating manure slurry and urea additions was 

incorporated (Congreves et al., 2015b; Dutta et al., 2016a). The model was also revised for 

simulating the effects of biomass, crop residue, snow cover, and soil texture on soil temperature 

(Dutta et al., 2018).  At the beginning of this study all developments for Canada DNDC were 

added to the U.S. release version thus creating an up to date model version which includes both 

the U.S. and Canadian developments (available at 

https://github.com/BrianBGrant/DNDCv.CAN).    

 

3.2.2.2 RZWQM2 

The Root Zone Water Quality Model (version 3.0.2015; Ma et al., 2012) was developed to 

simulate major biogeochemical processes in agricultural systems that affect water quality in the 

plant root zone and below the root zone, runoff and to tile drains.  The model is largely one-

dimensional but includes quasi-two-dimensional lateral flow to tile drains.   Similar to DNDC, 

the model simulates a wide range of agricultural management practices but it includes more 

detailed processes for simulating water and nutrient transport including mechanistic tile drainage 

(Table 3.2, Fig. 3.1). RZWQM2 includes DSSAT 4.0 Cropping System Models (Jones et al., 

2003) with CERES and CROPGRO components (Ma et al., 2005, 2006) and thus can simulate 

crop growth and development for a wide range of crops using an established and verified 
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framework.  RZWQM2 is more data intensive than DNDC requiring a more detailed physical 

representation of the soil profile.  It requires parameters for describing soil water retention and 

other hydraulic properties. It also requires more intensive computer processing time since it 

simulates a heterogeneous soil profile and includes mechanistic equations such as numerical 

procedures for solving the Richards equation and Green-Ampt infiltration (Table 3.2, Fig. 3.1).  

Our hypothesis is that RZWQM2 should be more accurate than DNDC in predicting water flow 

and nutrient loading but will require more data to initialize and calibrate.  

 

 
 

Figure 3.1 Schematic of hydrological processes in DNDC and RZWQM2  
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Table 3.2 Comparison of hydrological processes used in DNDC and RZWQM2 

 

Hydrology 

component  

DNDC RZWQM2 

Soil profile Homogeneous soil properties to 50 cm depth, 

layers ~2 cm thickness, underlying deep water 

pool to 100 cm depth. 

Heterogeneous soil properties, customizable 

soil profile to several meters depth  

Soil water transport Water drains between soil layers if above 

field capacity (cascade “tipping bucket” flow) 

Water redistribution simulated by Richards 

Equation, Brooks Corey soil-water 

characteristics curve, macropore flow option 

Infiltration and 

runoff 

Runoff is removed based on the SCS curve 

number method, followed by canopy 

interception, then infiltration is limited by 

surface saturated hydraulic conductivity 

(KSAT)  

Modified Green‐Ampt approach to estimate 

infiltration rate, water excess goes first to 

macropores and then to runoff 

Potential 

Evapotranspiration 

Penman-Monteith FAO approach with 

coefficients for each crop type, transpiration 

is a function of PET and crop water uptake 

demand determined by biomass 

Modified Shuttleworth-Wallace model, 

constrained by water availability, multiple 

crop water stress options, reduces 

evaporation under residue-covered soil 

Tile drainage Bulk gravity drainage with no deep seepage 

considered 

Hooghoudt’s equation, adjustable tile 

drainage depth, tile diameter, and drain 

spacing 

Water table None simulated Fluctuating water table 

 

 

3.2.3 Model initialization, calibration and validation 

For each research location, treatment 1 (includes a winter rye cover crop) was used to 

calibrate the models whereas treatment 2 and the controls were used to validate the models.  

Calibration was conducted by trial and error, in a stepwise manner by minimizing RMSE for 

yield, biomass, drainage and N loss to tiles. Model simulations were run for a ten year spin-up 

period prior to the beginning of the experiment to stabilize water and N pools in the models.  Soil 

inputs including percent sand, silt and clay, bulk density, soil C content, field capacity and 

wilting point were available from measurements taken at the site across several depths (Table 

3.S1). Soil properties were not measured below 120 cm, thus the values from the 90-120 cm 

depth were assumed to apply below 120 cm. Soil properties were similar between plots and 

initial tests with both models indicated little influence on modelled water dynamics, thus the 

same properties were used for all treatments and controls, similar to Qi et al. (2011b).   

 

3.2.3.1 RZWQM2 calibration 

Detailed soil properties were input for each measured depth increment (Table 3.S1). The 

initial carbon and nitrogen residues in the soil profile were determined from Thorp et al. (2007), 
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including crop residue and microbial pools. Initial soil moisture was set based on sampling in 

November 2005 with saturation occurring below 60 cm depth to initiate the simulation of a water 

table in the model.  

The soil depth above the impermeable layer was set to 390 cm and a KSAT rate of 0.01 cm 

h-1 was set in the bottom layer to limit flow and maintain the water table. The lateral saturated 

conductivity used in the Hooghoudt equation, for each soil layer, was set to 2KSAT. The modified 

Brooks-Corey equation is a four parameter nonlinear curve fitting model for fitting water 

retention data (Ma et al., 2012). Two of these parameters, saturated and residual water contents, 

were based on one-third bar measurements. The other two parameters are used for curve fitting. 

The 2nd exponent of k-curve (N2) was calculated as 3λ + 2, and the 2nd intercept (C2) was 

estimated as Ksat × Pb
N2 where λ is the pore size distribution index and Pb is the bubbling 

pressure (cm). The background N in precipitation was set to 0.5 and 1.3 mg N L-1 for NH4, and 

NO3 respectively (Qi et al., 2011b).   

Agriculture management practices including planting and harvest dates, tillage type and 

scheduling, fertilizer rates and scheduling were also used as inputs (Table 3.1).  Most of the 

DSSAT crop parameters for the corn (IB 1068 Dekalb 521) and soybean (990002 M Group 2) 

were left as default (Table 3.S2); however, a few were modified to minimize NRMSE of yield in 

the calibration treatment (TRT1). For corn, three crop parameters were adjusted. The maximum 

possible number of kernels per plant (G2) and the kernel filling rate during linear grain filling 

stage (G3; mg d-1) were decreased to 722 and 6.55, respectively. The phylochron interval 

between successive leaf tip appearance (PHINT: oC days) was increased to 46. For soybean only 

maximum leaf photosynthesis rate (at 30 C, 350vpm, and high light; LFMAX; umol CO2 m
-2 s-1) 

was modified, lowering it from 1.03 to 0.80. The parameters of the winter rye crop were  based 

on a U.S. winter wheat crop cultivar (990003 winter-US) since a winter rye cultivar was not 

available in the DSSAT database.  Significant calibration was required with most of the 

calibration performed in Qi et al. (2011b).  In this study we further adjusted four parameters to 

minimize NRMSE for biomass in TRT1 (Table 3.S2). Phylochron interval, time between 

successive leaf appearance (PHINT) was increased to 100, conversion rate from 

photosynthetically active radiation to dry mater before the end of leaf growth (PARUV; g MJ-1) 

was increased to 3.3, lamina area to weight ratio of standard first leaf (LARWS; cm2 g-1) was 

increased to 300, and finally lamina area to weight ratio, phase 2 (LAWR2; cm2 g-1) was 
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increased to 280. PHINT was adjusted to delay growth in the spring and the remaining three 

parameters were adjusted to increase growth rate.   

Before calibration RZWQM2 simulated average annual mineralization rates that were 

lower than expected (~100 kg N ha-1y-1) which resulted in low rates of N loss to tile drains. 

Carpenter-Boggs et al. (2000) found that average mineralization rates were 142 kg N ha-1 for a 

189 day growing season for a corn-soybean rotation in eastern South Dakota (clay loam soil at 

1.8% soil C). RZWQM2 was calibrated by increasing the decay rates of the organic matter pools 

by ~38% which in turn resulted in an acceptable rate of N loss to tile drains (NARE -3.5%; NSE 

0.92) and level of crop N uptake (NARE 6.4%; NRMSE 17%). Total organic N in the soil profile 

remained stable within 0.5% of the starting value over the five year study.  

        

3.2.3.2 DNDC calibration 

The DNDC model was less time consuming to calibrate largely because it employs less 

intensive hydrologic processes and equations with fewer parameters. The processing time for a 

simulation was 12 times faster. Only the soil physical and chemical properties for the top soil 

layer are required as input (Table 3.S1). These properties include bulk density, soil texture, clay 

fraction, field capacity at 0.33 bar, wilting point at 15 bar, pH, KSAT, porosity, soil organic 

carbon. The model employs a pedo-transfer function to estimate a decline in soil carbon and an 

increase in bulk density down the soil profile. This may result in an erroneous approximation of 

the soil profile. The N concentration in precipitation was set to be 1.8 mg N L-1 to be equivalent 

to the total value used in RZWQM2. This resulted in an average annual atmospheric N input of 

14.1 kg N ha-1y-1.  DNDC uses the SCS runoff curve number method developed by the USDA 

Natural Resources Conservation Service and also the Modified Universal Soil Loss Equation 

(MUSLE) which includes the Manning’s coefficient for overland flow. For runoff, the SCS 

curve number was set to 64 for a well-drained row crop with residue and clay loam soil and the 

Manning’s roughness coefficient was set to 0.19 for conventional tillage with residue. The option 

was employed to use all climate drivers on a daily time step (maximum and minimum 

temperature, precipitation, wind speed, radiation and relative humidity).    

DNDC requires similar agricultural management inputs as RZWQM2 (Table 3.1). The crop 

parameters in DNDC are simpler and less varied; however, they often require substantial 

modification since values are generalized for specific crop types and are not provided for 
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cultivars.  The user inputs are easily understood and include inputs such as “max biomass 

production of grain”, biomass fractions of plant organs, C:N ratios of plant organs, thermal 

degree days to maturity, water demand (g water/g dry matter), and optimum temperature for 

growth.  Other crop parameters are internal per crop type and cannot be modified without 

recompiling the model, such as minimum and maximum temperature for growth, effect of 

atmospheric CO2 on assimilation, effect of CO2 on water and N use efficiency, and temperature 

stress during anthesis.   In this study we modified the default parameters for corn, soybean and 

winter wheat to minimize NRMSE for yield.  The thermal degree days to maturity (TDD) for 

soybean was set to 2500, the crop water demand was increased from 350 to 420 g water/g dry 

matter and max (potential) biomass of grain was set to 2550 kg C ha-1y-1.  For corn the max 

biomass of grain was set to 4500 kg C ha-1y-1 and the C:N ratios of grain, leaf and root were 

modified from 50, 80, 80 to 35, 70, 70, respectively,  to increase and improve N uptake relative 

to average measured values, and resulting N stress affecting corn yields/biomass.  The default 

rye crop in DNDC was adjusted to improve the simulation of winter rye biomass relative to the 

control by lowering the TDD from 2000 to 1400, and lowering the optimum temperature for 

growth from 25 to 18 oC. 

Similar to RZWQM2 the default SOC partitioning, SOM pool sizes, and decay rates 

resulted in too little N mineralization and under prediction of N in tile drains. The humus fraction 

was lowered from 0.8 to 0.7. After calibration the average annual mineralization over the five 

year study was simulated to be 169 kg N ha-1y-1 in RZWQM2 whereas it was 170 in DNDC. 

 

3.2.4 Statistical measures for testing model performance 

The following statistical measures were used to evaluate model accuracy in predicting crop 

yields, biomass and crop N: Pearson’s r correlation coefficient (r), normalized average relative 

error (NARE; %) and normalized root mean square error (NRMSE; %). The NARE value 

represents the percent over- or under-prediction of a model relative to measurements. It is similar 

to precedent bias (PBIAS) but of opposite sign.   

𝑟2 = (
∑ (𝑂𝑖−�̅�)×(𝑃𝑖−𝑛

𝑖=1 �̅�)

√∑ (𝑃𝑖−�̅�)2𝑛
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2

                                                                (3.1) 
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where Pi is a predicted or simulated value, Oi is the observed value.   

The Nash‐Sutcliffe model efficiency coefficient (NSE) was applied for evaluating model 

performance in simulating soil hydrology and nitrate fluxes to tile drains. A value of greater than 

0 for NSE (maximum possible value is 1) indicates the model estimates are more accurate than 

the average of observations.  

Ahuja et al. (2000) considered model performance was satisfactory for yields and biomass 

if NARE<15% and Jamieson et al. (1991) considered excellent performance if RSME%<10; 

good<20; fair<30; and poor>30. Moriasi et al. (2007) suggested that model performance for 

simulating water and N flow was satisfactory if NSE>0.5, water flow if NARE<25% and N loss 

if NARE<70%.  

 

3.3 Results and discussion 

The Gilmore City dataset offers a large range of biomass, soil water storage, N and water 

flow measurements from daily to annual scales, which was systematically used to assess model 

performance and potential areas for improving hydrological processes in the following sections.  

 

3.3.1 Crop yield and growth  

Accurate simulation of crop growth including the impacts of temperature, water and 

nutrient stresses on production, is crucial for simulating water and N dynamics in agricultural 

models.  Recently, Guest et al. (2018) reported that DNDCv.CAN outperformed two water 

budget models that do not simulate crop growth. In this study both DNDC and RZWQM2 

performed well in simulating corn and soybean yields (Table 3.3; Fig. 3.S3a). RZWQM2 

performed a little better than DNDC for corn across the three validation treatments but for both 

models NARE was <4% and NRMSE was < 11%. Soybean yields were slightly overestimated 
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by both models (<8% NARE) and the NRMSE was higher than for corn but simulations were 

still considered to be “good”. Higher relative NRMSE may be expected when simulating lower 

yields. RZWQM2 tested in this study performed marginally better (lower NARE and NRMSE) 

for both corn and soybean yields than did the 2010 version which was previously used to 

simulate the same cropping system (Qi et al., 2011b). The RMSE values for both DNDC and 

RZWQM2 in this study were lower for corn than in Jarecki et al. (2018) who estimated RMSE’s 

of over 1100 kg DM ha-1 using DNDCv.CAN.  The NRMSE for both models was, however, 

higher than estimated by He et al. (2018a) using DNDCv.CAN who calculated values from 4.0-

6.1% for corn and 6.4-11.8% for soybean, but in each case the validation simulations were 

performed over only 2 years of data. 

 

Table 3.3 Observed and simulated corn and soybean yields across the three validation treatments 

from 2005 to 2009 (kg DM ha-1)   
            Corn      Soybean 

 
 

 Obs. DNDC RZWQM  Obs. DNDC RZWQM  

Avg.   8800 8517 8723  2750 2914 2963  

r2   
 

0.48 0.58   0.53 0.66  

NARE   
 

-3.2 -0.9   5.9 7.7  

RMSE     892 831   477 403  

NRMSE   
 

10.1 9.4   17.3 14.7  

 

Corn and soybean biomass over the growing season for the calibration treatment was 

predicted with “good” model performance by both RZWQM2 and DNDC (Table 3.4, Fig. 3.2).  

Note, however, that DNDC does not simulate soybean senescence which is a model weakness, 

likely resulting in an overestimation of the last biomass observation in 2008 (Fig. 3.2).  DNDC 

also does not simulate water excess on crop growth as was pointed out in Sansoulet et al. (2014) 

but since this was a well-drained site there was likely little influence. Corn biomass was 

predicted with good performance by both models across all validation treatments with a little 

better performance by DNDC in TRT2 and CTRL2 (corn in 2006 and 2008).  

Soybean biomass was predicted with “good” performance by both models for CTRL1. 

Observed soybean biomass was low in TRT2 and CTRL2 in 2007 and 2009 and DNDC captured 

this reasonably well (Fig. 3.2), however, RZWQM2 over-predicted biomass throughout most of 

the season. Note that simulated biomass decreased in RZWQM2 at the end of the season during 

senescence and the prediction of soybean yield for the validation treatments was “good” (Table 
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3.3). The models over-predicted biomass more so in TRT2 (Fig. 3.2) when observed soybean 

growth appeared to be supressed by low seasonal growing degree days (GDD) (Fig. 3.S1). The 

models were calibrated for soybean growth only in 2006 and 2008 when GDD was higher.  

 

Table 3.4  Statistical performance of DNDC and RZWQM2 for simulating corn and soybean 

biomass.  The study consisted of two treatments with cover crops and two controls. Treatment 1 

(TRT1) consisted of winter rye prior to corn in odd years and prior to soybean in even years 

whereas treatment 2 (TRT2) was the reverse phase (Table 1). The controls (CTRL1 and CTRL2) 

included the same cropping system, but with no cover crop.  

  

  ------ Calibration -------  ---------------------------------- Validation ------------------------------------- 

  Treatment 1  Control 1  Treatment 2  Control 2  
 Obs. DNDC RZWQM  Obs. DNDC RZWQM  Obs. DNDC RZWQM  Obs. DNDC RZWQM 

Corn biomass (kg DM ha-1) 

Avg.  7251 7613 7360  7252 7340 7869  14060 12634 12819  13558 12864 12758 

r2  
 

0.96 0.96   0.96 0.96   0.99 0.97   1.00 0.96 

NARE  
 

1.5 5.0   1.2 8.5   -8.8 -10.1   -5.9 -5.1 

RMSE  
 

1401 1356   1504 1357   1853 2824   1332 2264 

NRMSE   19.3 18.7   20.7 18.7   13.2 20.1   9.8 16.7 

Soybean biomass (kg DM ha-1) 

Avg.  3601 3806 3852  3741 3768 3856  1777 2101 2728  2185 2098 2737 

r2   0.95 0.90   0.90 0.93   0.96 0.96   0.88 0.95 

NARE   5.7 7.0   0.7 3.1   18.3 53.6   -4.0 25.3 

RMSE   665 689   800 540   751 1308   796 963 

NRMSE   18.5 19.1   21.4 14.8   42.2 73.6   36.4 44.1 

 



51 
 

 
Figure 3.2 Observed and modelled corn and soybean dry biomass from 2006 to 2009 for 

calibration plot TRT1 (a-d) and validation plots CTRL1 (e-h), TRT2 (i-l), and CTRL2 (m-p) 

 

 

The cumulative seasonal winter rye biomass and N uptake was predicted quite well by both 

models, with ARE always being less than 20%, however, the timing of growth and N uptake was 

sometimes off resulting in high NRMSE (Table 3.5, Fig. 3.S2). The high NRMSE was in part 

due to the low biomass and N uptake but there was also difficulty in simulating the correct 

timing of emergence in spring. In RZWQM2 a winter wheat cultivar was adjusted to simulate 

winter rye as no existing cultivar was available and in DNDC a “generalized” rye crop was 

adjusted to simulate winter rye.  This suggests room for future improvement.  
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Table 3.5 Statistical performance of DNDC and RZWQM2 for simulating winter rye biomass 

and N uptake 

 

  Treatment 1 - Calibration  Treatment 2 - validation  
 Obs. DNDC RZWQM  Obs. DNDC RZWQM2 

Biomass (kg DM ha-1) 

Avg.  399 397 415  446 391 503 

r2   0.96 0.92   0.80 0.82 

NARE   -.5 4.1   -12.4 12.9 

RMSE   195 175   434 267 

NRMSE   49.0 43.8   97.3 59.8  

N uptake (kg N ha-1) 

Avg.  13.3 12.9 12.9  13.6 14.7 16.2 

r2   0.91 0.76   0.51 0.86 

NARE   -2.8 -3.0   8.3 18.9 

RMSE   4.9 7.5   13.7 9.3 

NRMSE   36.6 56.7   100.8 68.5 

 

 

3.3.2 Soil Hydrology  

An analysis of water partitioning (Fig. 3.3) indicated that both models predicted similar 

levels of annual drainage, runoff and ET, with greater transpiration occurring in the years with 

cover crop, particularly for RZWQM2 which simulated on average 29.2 mm transpiration from 

winter rye in comparison to 19.2 mm for DNDC.  It is interesting that the DNDC model which 

employs a simple cascade water flow approach predicted similar water balances as RZWQM2, 

particularly for treatments with no cover crop. There has, however, been considerable efforts 

recently to improve estimates of ET and adjust crop coefficients using the Penman-Monteith 

approach (Dutta et al., 2016b). ET is the largest component of water loss from the agroecosystem 

in this study and likely has a large influence on how much water is transported down the soil 

profile.  
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Figure 3.3 Simulated annual water budget (5 year average) using DNDC and RZWQM2 

 

RZWQM2 performed much better than did DNDC for simulating soil water storage in the 

0-60 cm soil profile (Fig. 3.4; Table 3.S3) and soil water content by layer (Fig. 3.S4). Since 

DNDC only simulates water to effectively 100 cm depth, and plant roots don’t have access to the 

water table, soil water content during the warmer summer months were greatly underestimated in 

an attempt to meet crop demands. The inclusion of mechanistic tile drainage, allowing for 

simulation of a water table, would likely greatly improve water content simulation during the 

warmer periods. Soil water content was generally overestimated by DNDC near the soil surface 

and underestimated deeper in the profile which was presumably caused by the lack of root 

distribution algorithms, the inability to simulate a heterogeneous soil profile and no water table. 

The DNDC model currently does not estimate changes in root density in the soil profile and 

plants uptake water equally across the top 50 cm. It is expected that the inclusion of simple root 

density functions by crop type, such as those described by Pedersen et al. (2010), could further 

improve water uptake and the distribution of water down the profile. Note that DNDC currently 
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only outputs soil water that is not frozen so the winter period is not shown. As reported in a 

recent review of C&N models (Brilli et al., 2017) and from other sources (He et al., 2018a; Dutta 

et al., 2016b; Uzoma et al., 2015; Abdalla et al., 2011; Deng et al., 2011; Smith et al., 2008; 

Saggar et al., 2004) DNDC was found to have weaknesses in simulating soil water content and in 

many of these studies the lack of the ability to simulate a heterogeneous soil profile was noted. 

 

Figure 3.4 Observed and simulated soil water storage (0-60 cm). 

 

3.3.3 Water flow and N loss to tile drains 

The success of a model in simulating soil water and N dynamics is relevant to different 

time scales, determined by the criteria set forth in a study.  Time scales of interest may include 

those over the growing season to estimate water and N dynamics for overall crop requirements or 

a shorter time frame may need to be considered to assess water and N during critical phases of 

growth. Further, it may be important to estimate N and P loss to drains and to runoff on a 

monthly basis in order to assess the risk of eutrophication in water bodies. On a daily basis soil 

water and N status is important for estimating several processes including N2O emissions from 

denitrification which can be driven by individual rainfall events. Vergé et a l. (2017) found that 

the grey water footprint (volume of water required to dilute leached N concentration to 10 mg N 

L−1) of corn production varied greatly across time scales, with the greatest footprint of 2700 mm 

water daily to zero annually.  Thus in this study we assess water flow to tile drains at three 

different time steps, daily, monthly and annually. Nitrogen loss to tile drains is assessed monthly 
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and annually since N concentration in bulk water samples was measured only when water 

attained a certain depth in the collecting reservoir (generally 1 to 2 weeks).  

 

3.3.3.1 Water flow to tile drains 

The DNDC model performed well for simulating water loss to tile drains on an annual 

basis from 2005 to 2009 with similar statistics to RZWQM2 (Table 3.6; Fig. 3.S3b). On average 

across the three validation treatments NSE (~0.76) was very similar between the models. 

RZWQM2 performed better for CTRL1 and TRT2, however, DNDC performed better for 

CTRL2. Likewise, both models performed well for simulating monthly water flow to tiles with 

remarkably similar statistics. In all cases NSE was greater than 0.5. However, both models 

under-predicted water flow for TRT2 and over-predicted it for CTRL2. This could be attributed 

to variability in measurements since the standard error calculated from the 4 plot replicates was 

sometimes high, particularly in 2007 and 2008 when flow to drains was highest (Fig. 3.S5).  

Measurement variability was not accounted for in the statistics and the observations showed 

more overall water to tile drains in TRT2 (with cover crop) than in CTRL2 (without cover crop) 

which is unlikely.  Both models predicted slightly more water loss to tile drains due to less 

transpiration when there was no cover crop. There was a simulated trade-off between 

evaporation and transpiration, but the cover crop was still predicted to reduce subsurface 

drainage volume which is consistent with some experimental studies (Strock et al., 2004; Qi and 

Helmers, 2010). A number of studies showed no effect of cover crop on subsurface water 

drainage volume (Drury et al., 2014b; Qi et al., 2011a; Qi et al., 2008; Kaspar et al., 2007). This 

could be due to the trade-off between reduced evaporation and increased transpiration when a 

cover crop was added in rotation and/or measurement variability masking a small influence.   
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Table 3.6 Statistical performance of DNDC and RZWQM2 for simulating water flow to tile 

drains from 2005-2009 

 

 

 

In a study by David et al. (2009) 6 models (SWAT, DayCent, EPIC, Drainmod-N II and two 

versions of DNDC, 82a and 82h) were compared for simulating aggregated water and nitrate flux 

to tile drains. It was found that all models except DNDC82h performed well in simulating 

monthly water flux (NSE>0.5), but the models which were designed to simulate tile drainage 

(SWAT, EPIC and Drainmod-N) demonstrated better performance (NSE>0.68). All of the 

models investigated included a cascade flow approach to simulating drainage. At this time the 

DNDC model versions tested included a Thornwaite approach, which sometimes greatly 

overestimates ET, thus it is not surprising that DNDC82h underestimated water loss to drains by 

33%.  In our current study, DNDC includes the Penman-Monteith approach with crop specific 

coefficients for ET (Dutta et al., 2016b) and the NSE for monthly flow to tiles was above 0.6 for 

all treatments.  It is very important to simulate an appropriate level of ET, since it is usually the 

largest component of water loss. 

The HERMES model, which includes cascade water flow, was previously used to simulate 

water and N loss to tile drains in a similar cropping system as used in our current study and it 

was found that once calibrated the model could simulate the lower N loss that occurred when 

cover crops were included in a corn-soybean cropping system with a reasonable degree of 

accuracy. The HERMES model was compared to RZWQM2, which was used to simulate the 

same cropping system in a previous study (Li et al., 2008). It was found that HERMES did not 

simulate the year to year variability in nitrate concentration nor the monthly drainage as well as 

did RZWQM2. Drainage was over-predicted in the September through December 2003-2005 

  ----- Calibration ----  ---------------------------------- Validation ----------------------------------- 

  Treatment 1  Control 1  Treatment 2  Control 2 
 

 DNDC RZWQM  DNDC RZWQM  DNDC RZWQM  DNDC RZWQM 

Annual (cm) 

NARE  1.6 6.0  -5.3 -1.4  -16.1 -13.3  17.5 24.5 

r2  0.98 0.93  0.85 0.93  0.96 0.97  0.88 0.80 

NSE  0.97 0.92  0.83 0.90  0.78 0.83  0.73 0.47 

Monthly (cm) 

r2  0.73 0.67  0.70 0.76  0.68 0.66  0.68 0.69 

NSE  0.73 0.67  0.71 0.76  0.65 0.65  0.62 0.60 

Daily (cm) 

r2  0.27 0.41  0.29 0.51  0.33 0.54  0.23 0.70 

NSE  -0.32 0.35  0.08 0.50  0.24 0.50  -0.11 0.69 
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period likely because HERMES did not include the reduced evaporation from residue cover.  In 

our current study DNDC does include this impact and simulations of monthly water and N loss 

to drains were similar to RZWQM2. Both RZWQM2 and DNDC also include snow dynamics, 

which HERMES did not, and soil freeze-thaw processes. Late season drainage can be greatly 

overestimated without these processes which was the case for STICS in comparison to DNDC 

and DayCent in Guest et al. (2017a). 

 

RZWQM2 performed substantially better than DNDC for simulating daily water flow (Table 

3.6).  The DNDC model tended to capture the start time of flow events but flow occurred too 

rapidly with over-prediction near the start of the event and under-prediction near the end. An 

example of this trend is shown in Fig. 3.5 for CTRL2 and the full comparison for 2007 and 2008, 

the years in which daily water flow was available (Qi et al., 2011b), is shown in Fig. 3.S6. This 

phenomenon can be expected from a cascade flow model which employs a bulk flux method for 

N and water movement and does not consider delays in drainage. It is important that the timing 

of these events are simulated correctly since soil water and oxygen content are critical drivers for 

denitrification and even short term erroneous predictions can greatly influence nitrous oxide 

emissions (Uzoma et al., 2015).  A previous version of DNDC (DNDC87) included a recession 

curve to retain water in each layer, slowing drainage based on an empirical equation driven by 

clay content. This algorithm was developed by Li et al. (2006) and employed by Tonitto et al. 

(2007a, 2007b, 2010). We investigated re-enabling this routine in DNDC, on a test basis, and 

found that after parameterizing the recession curve for the calibration treatment the daily water 

flow was similar to RZWQM2 and statistics for the validation treatments were greatly improved 

to be as good as RZWQM2. However, soil water content was greatly over-predicted (NARE 21.8 

%) resulting in exaggerated rates of denitrification and N2O emissions were increased by 26%.  

Thus we do not recommend using this approach and it is not employed in the current U.S. 

DNDC release version.  
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Figure 3.5 Observed and simulated daily water flow under soybean growth in 2007 for validation 

treatment CTRL2  

 

3.3.3.2 Nitrogen loading to tile drains  

Both models performed satisfactorily in estimating N loss to tiles on an annual basis (Table 

3.7; Fig. 3.S3c), with similar average statistics across the validation treatments (NSE 0.72 and 

0.65 for DNDC and RZWQM2, respectively). The models generally performed satisfactorily in 

simulating NO3-N loss to tile drains on a monthly basis; however, DNDC performed a little 

better with acceptable statistics for CTRL2 (Table 3.7; Figure 3.6). David et al. (2009), when 

comparing the performance of 6 models, found that two different versions of DNDC predicted N 

loss to tiles within 10% but the monthly timing of N loss was relatively poorly simulated with 

NSE<0.4, which is considerably less than in our current study (Table 3.7). For all six models 

investigated David et al. (2009) indicated that inaccuracy in predicting the variation in monthly 

water flux resulted in inaccuracies in predicting N losses. Two of the three models which 

included tile drainage simulation performed better (SWAT and Drainmod-N II) with NSE>0.5. 

In our study both DNDC and RZWQM2 agreed in estimating the magnitude of N loss to 

tile drains; however, similar to water flow to tile drains, both models underestimated loss in 

TRT2 and overestimated loss in CTRL2 (Table 3.7; Figure 3.S7). The observed and simulated 

cumulative water flow and N loss to tile drains on average across the 4 treatments was indeed 

very similar between the models and observations (Fig. 3.S8). The over and under predictions 

may be due to measurement variability amongst plots, especially when one considers that 



59 
 

observations had greater average annual N loss in TRT2 (39.9 kg ha-1 y-1) than in CTRL2 (33.7 

kg ha-1 y-1). This result seems unlikely considering that we generally expect less N loss to drains 

when a cover crop is included, which was the case for TRT1 (34.4 kg ha-1 y-1) and CTRL1 (41.0 

kg ha-1 y-1).  Both models consistently estimated less N loss to tile drains when a cover crop was 

included in rotation, which is a common finding in a number of experimental studies (Malone et 

al., 2017; Drury et al, 2014b; Li et al., 2008; Kaspar et al., 2007; Parkin et al., 2006; Strock et al., 

2004; Logsdon et al., 2002).  Qi et al. (2008, 2011c) did not find any difference in N loading 

when a cover crop was included in the study we simulated.  This was likely because the winter 

during the 5 year experimental period was colder than usual leading to low winter rye biomass. 

In long term simulations over 40 years an 11% reduction of N loading was reported (Qi et al., 

2011b).  

 

 

Figure 3.6 Observed and simulated monthly N loss to tile drains for the validation plot CTRL2 

(2005-2009) 

 

The observed rates of loss were generally high with an annual average loss of 37.3 kg NO3-

N ha-1 y-1 across all treatments. It may be expected that NO3-N leaching is high in a well-drained 

soil with subsurface drainage but runoff of phosphorous, sediment, NH4-N and NO3-N is 

generally low (Lawlor et al., 2008). In this study there were no observations available for runoff 

but both models predicted minimal NO3-N runoff (<1 kg N ha-1 y-1) for all years and treatments 

which was expected for this site.  



60 
 

Table 3.7 Statistical performance of DNDC and RZWQM2 for simulating nitrogen loss to tile 

drains from 2005-2009 

 

 

 

3.4 Conclusions  

It is important to continue to scrutinize and compare agriculture models against high 

quality datasets to identify differences in model structure that result in improved performance.  

Sometimes during model development there are options to include more complex processes and 

model structure, however, a developer may purposefully keep the inputs and complexity 

manageable in order to minimize input requirements and reduce the level of required modeler 

expertise. In this study we compare the performance of two widely used process-based models 

for simulating crop growth and soil water dynamics and NO3-N loss to tile drains. The 

conceptual design of each of these models was focused on different objectives. The DNDC 

model was mostly developed and employed for simulating GHG emissions and soil carbon 

change whereas RZWQM2 focused primarily on crop growth and water quality.  

It was informative to discover that a simple cascade water sub-model (DNDC) performed 

adequately in comparison to measurements and similarly with respect to RZWQM2 across a 

wide range of metrics including crop yield, biomass, N uptake of winter rye, annual and monthly 

water flow and NO3-N loss to tile drains. The Penman-Monteith method for estimating ET in 

DNDC, recently improved by Dutta et al. (2016b), was a strong factor in estimating the 

appropriate water balance, particularly since ET was estimated to be a large percent of the water 

budget. It was interesting to find that bulk gravity drainage regulated by cascade water flow 

through a homogeneous soil profile was effective in simulating water flow on an annual and 

monthly basis, but not on a daily basis. If this scale of resolution is deemed appropriate for the 

study objective, then no further detail in hydrologic processes may be needed.  

  ----- Calibration ----  ---------------------------------- Validation ----------------------------------- 

  Treatment 1  Control 1  Treatment 2  Control 2 
 

 DNDC RZWQ2  DNDC RZWQ2  DNDC RZWQ2  DNDC RZWQ2 

Annual (kg ha-1) 

NARE  7.4 0.2  -3.0 -1.4  -10.7 -17.8  14.1 13.7 

r2  0.89 0.93  0.91 0.70  0.65 0.98  0.87 0.78 

NSE  0.85 0.92  0.86 0.68  0.56 0.73  0.73 0.53 

Monthly (kg ha-1) 

r2  0.54 0.68  0.65 0.68  0.63 0.52  0.59 0.56 

NSE  0.53 0.67  0.65 0.67  0.59 0.51  0.58 0.44 
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Estimates from DNDC did reveal shortcomings in simulating soil water storage, soil water 

contents down the profile and daily water flow events whereas RZWQM2 generally performed 

adequately for these metrics. Fine scale temporal simulation of water and N dynamics can 

greatly impact soil water and nutrient levels, thereby influencing several biogeochemical 

processes such as decomposition, denitrification, nitrification and methanogenisis.  These 

processes are largely dependent on soil water content.  Since DNDC is primarily used to simulate 

GHG emissions we recommend that developments be carried out for DNDC to further improve 

its hydrological processes.  Such changes may include a deeper and heterogeneous soil profile, 

inclusion of root distribution functions, inclusion of improved water flow, a fluctuating water 

table, and/or a mechanistic drainage sub-model. A mechanistic tile drainage sub-model could 

also enable the simulation of the impacts of drainage depth and spacing, controlled drainage and 

irrigation on nutrient cycling and GHG emissions, which would greatly increase the usefulness 

of an already widely used model. Considerations should, however, be taken when contemplating 

model developments. More complex processes can increase model input requirements, inputs 

which may not be available, especially in regional large scale studies. Pedo-transfer functions are 

sometimes used to estimating soil-water inputs for models, but they also come with a degree of 

uncertainty. Most of the suggested additions for DNDC likely would not greatly increase model 

input requirements or simulation time, however, it remains questionable whether or not to 

include a computationally intensive water flow approach (i.e. the Richards Equation).  
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3.5 Supplementary Tables and Figures 

Table 3.S1 Measured soil physical and hydraulic properties (adapted from Qi et al., 2011b) 

Depth  

(cm) 

 Sand 

(%) 

Clay 

(%) 

BD 

(g cm-3) 

SOM 

(%) 

Ksat 

(cm h-1) 

Porosity Θ10 

(cm3 cm-3) 

Θ33 

(cm3 cm-3) 

Θ1500 

(cm3 cm-3) 

0-10  0.32 0.32 1.37 4.3 4.8 0.482 0.383 0.376 0.189 

10-20  0.32 0.32 1.38 3.8 3.3 0.476 0.384 0.376 0.230 

20-30  0.33 0.14 1.39 3.3 5.1 0.473 0.384 0.376 0.201 

30-40  0.4 0.30 1.39 1.3 4.1 0.474 0.384 0.399 0.212 

40-60  0.46 0.24 1.39 1.3 4.1 0.474 0.408 0.368 0.218 

60-90  0.44 0.20 1.45 0.6 2.6 0.450 0.38 0.368 0.204 

90-120  0.44 0.20 1.46 0.5 2.6 0.450 0.312 0.299 0.184 

120-200  0.44 0.20 1.46 0.5 2.6 0.450 0.31 0.299 0.168 

200-300  0.44 0.20 1.50 0.5 2.6 0.450 0.31 0.299 0.168 

300-390  0.44 0.20 1.50 0.5 0.01 0.450 0.31 0.299 0.168 

BD = bulk density; SOM = soil organic matter; Ksat = saturated hydraulic conductivity; θ10, θ33, θ1500  =  soil 
water content at pressure 10, 33 and 1500 Kpa, respectively 

 

 

Table 3.S2 Calibrated crop parameters used in RZWQM2 for corn, soybean and winter rye 
Crop Parameter Parameter description Value 

Corna G2 Maximum possible number of kernals per plant 722 

 G3 Kernel filling rate during linear grain filling stage under optimum 

conditions (mg d-1) 

6.55 

 PHINT Phylochron interval between successive leaf tip appearance 46 

Soybeanb LFMAX Max leaf photosynthesis rate (μmol CO2 m-2 s-1) 0.8 

Winter ryec PEG Germination phase duration (oC d cm cm-1) 75 

 PECM Emergence phase duration (oC d cm cm-1) 25 

 P1V Relative amount that development is slowed for each day of unfulfilled 

vernalization, assuming 50 d is sufficient 

5 

 P1D Relative amount that development is slowed when plants are grown in 

photoperiod 1 hour shorter than optimim (d) 

12 

 PARUV Conversion rate for photosynthetically active radiation to dry matter 

before the end of leaf growth (g MJ-1) 

3.3 

 LAVS Area of standard vegetative stage leaf (cm2) 15 

 LARS Area of standard reproductive phase leaf (cm2) 25 

 LARWS Lamina area to weight ratio of standard first leaf (cm2 g-1) 300 

 LAWR2 Lamina area to weight ratio, phase 2 (cm2 g-1) 280 

 P5 Relative grain filling duration based on thermal time (d) 400 

 PHINT Phylochron interval between successive leaf appearance (PD) 100 
a Cultivar IB1 068 Dekalb 521  
b Cultivar   990002 M Group 2 
c Cultivar 990003 Winter-US 
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Table 3.S3 Statistical performance of DNDC and RZWQM2 for simulating soil water storage 

(cm3 cm-3) from 2005-2009 
 

 

 

 

 

 

 

Figure 3.S1 Cumulative precipitation vs. cumulative GDD during the growing seasons from 

2005 to 2009. 
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  ----- Calibration ----  ---------------------------------- Validation ----------------------------------- 

  Treatment 1  Control 1  Treatment 2  Control 2  
 DNDC RZWQ2  DNDC RZWQ2  DNDC RZWQ2  DNDC RZWQ2 

NARE  1.9 1.1  4.6 4.3  0.81 1.88  2.8 4.5 
NRMSE  9.2 4.7  11.5 6.0  10.5 4.7  10.7 6.4 
r2  0.51 0.61  0.51 0.63  0.56 0.66  0.59 0.55 
RSR  1.43 0.73  2.34 1.23  2.15 0.95  1.67 1.02 
NSE  -1.05 0.46  -4.52 -0.52  -3.61 0.08  -1.18 -0.03 
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Figure 3.S2 Measured and modelled rye dry biomass from 2006 to 2009 for a) calibration plot 

TRT1 (a-d) and validation plot TRT2 (e-h). 
 

 

Figure 3.S3 Annual a) corn and soybean crop yield, b) water flow to tile drains and c) N loss to 

tile drains from 2005 to 2009 



65 
 

 
 

Figure 3.S4 Example of soil water content by profile layer, validation TRT2 in 2007  
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Figure 3.S5 Observed and simulated monthly water flow to tile drains for the calibration plot 

TRT1 (a), and the validation plots b) CTRL1, c) TRT2, and d) CTRL2 (2005-2009). 
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Figure 3.S6 Observed and simulated daily water flow to tile drains for the calibration plot TRT1 

(a), and the validation plots b) CTRL1, c) TRT2, and d) CTRL2 (2007-2008). 
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Figure 3.S7 Observed and simulated monthly N loss to tile drains for the calibration plot TRT1 

(a), and the validation plots b) CTRL1, c) TRT2, and d) CTRL2 (2005-2009). 
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Figure 3.S8 Observed and simulated cumulative a) water flow and b) N loss to tile drains as an 

average across the 4 treatments (2005-2009). 
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Connecting text to Chapter 4 

The first step in understanding which hydrologic processes in DNDC required 

improvements was largely accomplished in Chapter 3 whereby the model outcomes were 

compared to detailed observed data and to results from RZWQM2. Additionally, in Chapter 2,  

numerous recent studies are documented which acknowledge flaws in the simulation of soil 

water and the adverse impacts this can have on the simulation of biogeochemical processes in 

DNDC. In Chapter 4 restructuring and improvement of the hydrological framework in DNDC 

was undertaken to increase the simulation depth and include a heterogeneous soil profile, 

fluctuating water table, root density functions, and tile drainage sub-model. In doing so, 

alternative hydrologic processes were investigated with considerations for not only accuracy,  

but also for the level of computational, input data and expertise required to employ the model.  

The DNDC model was again compared to RZWQM2 using the same observed data as in Chapter 

3, but also, additional site data was included with observed impacts of controlled drainage and 

sub-irrigation on water and N losses.  

 

The following manuscript was published in the Environmental Modelling and Software journal: 

Smith, W., B. Grant, Z. Qi, W. He, A. VanderZaag, C.F. Drury, and M. Helmers. 2019. 

Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile 

drainage: A comparative analysis with RZWQM2. Environmental Modelling and Software. 

123:104577.  https://doi.org/10.1016/j.envsoft.2019.104577 
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Chapter 4 

Development of the DNDC model to improve soil hydrology and incorporate mechanistic 

tile drainage: A comparative analysis with RZWQM2 

Ward Smith, Brian Grant, Zhiming Qi, Wentian He, Andrew VanderZaag, Craig F. 

Drury, and Matthew Helmers 

 

 

Abstract  

The Denitrification Decomposition model (DNDC) has known limitations for simulating 

soil hydrology which can strongly influence biogeochemical processes. For this study, DNDC’s 

soil hydrological framework was enhanced by including a new sub-model for mechanistic tile 

drainage, improved water flux, root growth dynamics, and a deeper and heterogeneous soil 

profile.  Comparisons were then conducted against the Root Zone Water Quality model 

(RZWQM2), using measurements of soil water storage, runoff and drainage in eastern Canada 

and the US Midwest. Simulation of soil water storage (DNDC 0.81≤ d ≤0.90; RZWQM2 0.76≤ d 

≤0.84), daily water flow (DNDC 0.76≤ d ≤0.88; RZWQM2 0.77≤ d ≤0.90) and nitrogen loading 

to tile drains was greatly improved post-development, where d is the Wilmott index of 

agreement. DNDC was able to capture the observed differences in water and N losses between 

conventional drainage and controlled drainage management with sub-irrigation. The 

enhancements to DNDC’s hydrological framework should increase its performance for 

simulating several biogeochemical processes.    
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4.1 Introduction 

Efficient management of water and nutrients in agricultural systems is essential to further 

improve profitability for producers and to reduce greenhouse gases (GHG), losses of excess 

nitrogen (N), phosphorus and ammonia, which can contribute to global warming, eutrophication 

of water bodies and increases in atmospheric fine particulate matter.  When considering the long-

term sustainability of agriculture, it is of great importance to examine the interrelationships and 

trade-offs between crop productivity and all environmental outcomes.  

There are numerous field and laboratory studies worldwide which focus on mitigating 

losses of nutrients, reducing GHG emissions and sequestering soil carbon in agricultural systems. 

However, due to extreme spatial and temporal variability in soils and climate, tools are required 

for extrapolating the knowledge gained from these studies over space and time. Because process 

based models, such as DayCent (del Grosso et al., 2001), the DeNitrification DeComposition 

model (DNDC; Li et al., 2012), the Root Zone Water Quality Model (RZWQM2; Ma et al., 

2012) and APSIM (Thorburn et al., 2018), can dynamically simulate many of the interdependent 

process while maintaining a strict mass balance of nutrients and water, they are valuable for 

predicting N losses in the environment and assisting in the selection of best management 

practices (BMPs) (De Jong et al., 2009). While they offer valuable opportunities for expanding 

the scope of existing assessments, such models still have recognized knowledge gaps and thus 

require new targeted measurements for the development of improved mechanisms to ensure that 

the iterative process for model development continues. For instance, model structure is often 

limited by the oversimplified representation of soil and hydrological processes. In a review of 

nine GHG models, Brilli et al. (2017) found that 46% of the deficiencies in models were due to 

issues with the simulation of pedo-climatic conditions including soil-water simulation. In the 

same review DNDC was found to be the only model which simulated all C&N related GHG 

emissions considered. The DNDC model is the most prominent  process-based model used for 

simulating GHG emissions worldwide, however, it has known issues in simulating soil 

hydrology (Smith et al., 2019c; He et al., 2019a, 2018; Brill et al., 2017; Congreves et al., 2016b; 

Dutta et al., 2016b; Cui et al., 2014; Abdalla et al., 2011; Deng et al., 2011). These deficiencies 

impact the performance of the model for simulating C&N cycling and the timing of N2O 

emissions (He et al., 2018a; Uzoma et al., 2015; Smith et al., 2008). As a result, it has been 
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suggested in many of these studies that DNDC development should be focused on improving the 

simulation of soil hydrology.  

Several iterations of the DNDC model have been developed for different regions globally 

including New Zealand DNDC (Saggar et al., 2007), Landscape DNDC (Hass et al., 2013), 

China DNDC (Li et al., 2017) and Canada DNDC (Smith et al., 2013). Each one of these models 

can still be applied globally but they were developed to include additional processes and 

management options relevant to the locations where they were developed. In the case of the 

Canada DNDC model (DNDC.vCAN), it was designed to better simulate soil-plant–climate 

interactions in cool weather climate and has recently been improved for simulating 

evapotranspiration (Dutta et al., 2016b), ammonia volatilization (Dutta et al., 2016a; Congreves 

et al., 2016b), impacts of snow cover and residue on soil temperature (Dutta et al., 2018), and 

improved growth of cool weather crops (He et al., 2019a; Grant et al., 2016; Kroebel et al., 

2011). Further, model developments from Canada DNDC were integrated back into the primary 

U.S. release version (Smith et al., 2019c). However, as with any model, there remain 

shortcomings in the current model framework. Grant et al. (2016) identified that mineralization 

rates were too low in DNDC, sometimes resulting in excessive crop N stress. This can largely be 

attributed to the limitation that DNDC only simulates soil C&N processes over a 50 cm soil 

horizon. Also, in a detailed assessment of water processes in Canada DNDC, Smith et al. (2019c) 

found that DNDC predicted crop biomass and monthly water and N flow to tile drains well but 

did poorly in predicting soil water content and daily tile flow events. In the same study, another 

model, RZWQM2, using more computational intensive hydrological processes, predicted good 

results but RZWQM2 requires more expertise to employ, greater simulation time, and is not well 

validated for simulating some biogeochemical processes. Since soil biogeochemical processes 

including chemical equilibria, nitrification, denitrification and fermentation are highly dependent 

on soil water content Smith et al. (2019c) recommended the inclusion of a heterogeneous profile 

that exceeds crop rooting depths, root density functions, improved water flow and mechanistic 

tile drainage.   

There is considerable complexity in developing improved soil structure, hydrology and tile 

drainage in DNDCv.CAN, while ensuring that the reliant biogeochemical mechanisms still 

function appropriately, but research has indicated that these improvements are critical and long 

overdue towards the evolution of the model. An accurate estimate of soil hydrology is important 
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for predicting the timing of N2O emissions and N leaching events. Therefore, the objectives of 

this study were i) to improve DNDC for simulating soil hydrology, including the addition of a 

heterogeneous and deeper soil profile, root density functions, and improved water flow, ii) to 

incorporate a mechanistic tile drainage sub-model and include the ability to simulate a 

fluctuating water table, controlled drainage and sub-irrigation, and iii) to compare the 

performance of DNDC to the computationally intensive RZWQM2 using detailed datasets of 

runoff and drainage in eastern Canada and the US Midwest. It was deemed important that model 

developments be implemented at the minimum level of complexity and computation time 

necessary for improving accuracy, while keeping the user expertise at a manageable level.  

    

4.2 Materials and methods 

4.2.1 Description of Experimental sites 

4.2.1.1 Gilmore City, Iowa, USA experimental site 

A five-year field experiment was established in the fall of 2004 and lasted until the end of 

2009 at the Agicultural Drainage and Water Quality – Research and Demonstration Site close to 

Gilmore City in north central Iowa, USA. The site soils are predominantly characterized as 

Nicollet (fine-loamy, mixed, superactive Aquic Hapludoll), Webster (fine-loamy, mesic Typic 

Endoaquolls), Canisteo (fine-loamy, mesic Typic Endoaquolls), and Okoboji (Fine, smectitic, 

mesic Cumulic Vertic Endoaquolls). General site characteristic are shown in Table 4.1 and detailed 

soils data by horizon are presented in Table 4.S1. Four land cover treatments were initiated with 

the first two consisting of alternating phases of winter rye cover crop prior to maize or prior to 

soybean (first phase of the rotation TileDrain-CoverCrop-MaizeSoybean [TD-CC-MS] and second 

phase of the rotation TileDrain-CoverCrop-SoybeanMaize [TD-CC-SM]). The next two 

treatments were alternating phases of maize and soybean with no cover crop (first phase of rotation 

TileDrain-NoCoverCrop-MaizeSoybean [TD-NCC-MS] and second phase of rotation TileDrain-

NoCoverCrop-SoybeanMaize [TD-NCC-SM]) (Table 4.2). Aqueous ammonium nitrogen was 

applied to maize at a rate of 140 kg N ha-1 in the spring near emergence time. The site includes a 

large compliment of measurements including water content across 4 depths, crop yields, biomass 

and daily measurement of water flow and N concentration to tile drains. See Qi et al. (2011a, b) 

for a more detailed description of soil, management and experimental setup.  
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Table 4.1 Site characteristics at Gilmore City and Woodslee research plots 
 

Location and data 

collection period 

Soil 

classification*  

Average 

annual    

temp. 

Average 

annual 

precip. 

Average 

growing 

season 

precip. 

Soil characteristics  

Soil surface 

texture 

Soil 

Organic 

Carbon 

pH 

 

Bulk 

density 

(oC) (mm) (mm) (%)    (g kg-1) (g cm-3) 

Woodslee, Ontario, 

Canada 

42°13’N, 82°44’W 

(1999-2005)  

Poorly 
drained, fine, 
loamy, mixed, 
mesic, Typic 
Argiaquoll 

9.8  816 
491 

28 sand 

35 silt 

37 clay 

25.0 7.0 1.42 

Gilmore City, Iowa, 

United States 

42°42'N 104°00’W 

(2005-2009) 

Nicollet (fine‐

loamy, mixed, 

superactive, 

mesic Aquic 

Hapludoll) 

 

 

8.7 

 

 

824 578 

32 sand 

34 silt 

32 clay 

 

 

23.2 

 

 

7.1 

 

 

1.37 

* Other soil series are also present at the Gilmore City site.  

 

 

 

Table 4.2 Cropping systems and agronomic practices at the Gilmore City site, Iowa from 2005 to 

2009 (adapted from Smith et al., 2019c) 
 

 2005 2006 2007 2008 2009 

Treatment      

TD-CC-MS, Calibration rye-maize rye-soy. rye-maize rye-soy. rye-maize 

TD-NCC-MS, Validation maize soybean maize Soybean maize 

TD-CC-SM, Validation rye-soy. rye-maize rye-soy. rye-maize rye-soy. 

TD-NCC-SM, Validation soybean maize soybean maize soybean 

Management activity      

Termination of rye prior to maize April 30 April 24 April 30 May 6 May 8 

Cultivation(a) and maize planting  May 10 May 4 May 14 May 15 May 19 

Cultivation(a) and soybean planting(b) May 18 May 10 May 17 May 23 May 20 

Termination of rye  May 20 May 16 May 23 May 26 May 31 

Maize fertilizer (@140 kg N ha-1) May 25 May 18 June 5 June 4 June 30 

Maize and soybean harvest Oct. 10 Oct. 7 Oct. 22 Oct. 20 Nov. 3 

Chisel plow (NCC rotations) Oct. 10 Oct. 10 Oct. 24 Oct. 20 no-till (wet) 

Disk and cultivation (CC rotations) Oct. 10 Oct. 10 Oct. 24 Oct. 20 no-till (wet) 

Plant rye Oct. 11 Oct. 12 Oct. 25 Oct. 21 Nov. 20 

a) Only TD-NCC-MS and TD-NCC-SM were cultivated 
b) DNDC handles intercropping but not RZQWM2, thus for RTWQM2 soybean was planted after rye 
termination  
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4.2.1.2 Woodslee, Ontario, Canada experimental site 

A study was conducted at the Honorable Eugene F. Whalen Experimental Farm, Woodslee, 

Ontario Canada (42°13’N, 82°44’W) to monitor surface runoff and tile drainage (Drury et al., 

2014b). The Brookston clay-loam soil at the site is classified as an Orthic Humic Gleysol 

(Canadian Classification system) or a poorly drained, fine, loamy, mixed, mesic, Typic Argiaquoll 

in the USDA system (Table 4.1, 4.S1). The study was of 5 years duration starting in late 1999 and 

ending in early 2005 (Table 4.3). Treatments included a maize-soybean rotation and unrestricted 

tile drainage with (TD-CC-MS) and without (TD-NCC-MS) a winter wheat cover crop and also 

controlled drainage and sub-irrigation with (CDS-CC-MS) and without (CDS-NCC-MS) a cover 

crop. This data helped to facilitate testing the new controlled drainage/sub-irrigation feature in 

DNDC. Both a starter (18-46-0) and sidedress application of UAN (150 kg N ha-1) was applied to 

maize for a combined nitrogen rate of 175 kg N ha-1. Maize grain was harvested in early November 

and tillage generally consisted of fall disking except when excessive residue required a more 

substantial cultivated heavy plough. Two flow meters were used in each plot to measure cumulate 

surface runoff and drainage flow. Samples of surface water and runoff were collected using an 

autosampler every 500 to 3000 L of flow and analysed for NO3
- concentration. In the plots with 

controlled drainage and sub-irrigation treatments, controlled drainage was initiated at 0.3 m below 

the soil surface in the spring or early summer of each year and was maintained during the entire 

growing season. Sub-irrigation was applied by pumping water from an adjacent irrigation pond 

into control structures which flowed up the tile drains. This was applied in the dryer years from 

from 9 July to 17 August in 2001 (148 mm for CDS-NCC-MS and 106 mm for CDS-CC-MS) and 

from 16 July to 22 August in 2002 (85 mm for CDS-NCC-MS and 106 mm for CDS-CC-MS). 

From June to July 2001 intact soil cores were collected for determination of bulk density, 

saturated hydraulic conductivity and soil water retention at 9 matric potentials. See Drury et al. 

(2014b) for a more detailed description of soil, management and experimental setup. 
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Table 4.3 Cropping systems and agronomic practices at the Woodslee site, from 2000 to 2005 
 

 2000 2001 2002 2003 2004 2005 

Treatment       

TD-CC, Calibration ww-maize ww-soy. ww-maize ww-soy. ww-maize ww-soy. 

TD-NCC, Validation maize soybean maize soybean maize soybean 

CDS-CC, Validation ww-maize ww-soy. ww-maize ww-soy. ww-maize ww-soy. 

CDS-NCC, Validation maize soybean maize soybean maize soybean 

Management activity       

Termination of ww*  May 8 May23 May 21 May 27  June 3 May 19 

Plant soybeans   June 8  June 17  May 31 

Plant maize and starter (25 kg N 

ha-1) 

May 17  May 22  June 4  

Sidedress (UAN 150 kg N ha-1) June 22  June 18  June 22  

Soybean harvest  Nov 6  Oct 6  Oct 26 

Maize harvest Nov 8  Nov 4  Nov 10  

Fall disking Nov 8 Nov 6 Nov 6 Nov 6 Nov 22  

Plant winter wheat Nov 8 Nov 7 Nov 7 Nov 7 Nov 23  

ww – winter wheat 

* Roundup (1.4 kg ha-1 a.i.) was used to terminate ww in 2000, 2003, and 2004 whereas Vantage (1.4 kg 

ha-1 a.i.) was used in 2001 and 2002.  All plots were sprayed.   

 

4.2.2 Model description 

4.2.2.1 DNDC model 

The DNDC model was developed originally to simulate N2O emissions (Li et al., 1992) 

and gained popularity due to its detailed biochemical equations describing nitrification and 

denitrification processes.  It was later expanded to simulate soil C&N cycling, water and N 

movement (Li et al., 2006) and full farm nutrient cycling (Li et al., 2012) and now contains sub-

models for simulating crop biomass, decomposition, nitrification denitrification, fermentation 

and ammonia volatilization. The model simulates a very wide array of agricultural management 

and crop types, the input requirements are reasonable and it can be applied with relative ease. As 

a result, DNDC has been used extensively worldwide (Ehrhardt et al., 2018; Brilli et al., 2017; 

Zhang and Niu, 2016; Gilhespy et al., 2014; Giltrap et al., 2010). Many users have, however, 

reported that the model had issues in simulating soil water content (Smith et al., 2019c; He et al., 

2018a; Brilli et al, 2017; Congreves et al., 2016b; Dutta et al., 2016b; Uzoma et al., 2015; Smith 

et al., 2008; Cui et al., 2014; Abdalla et al., 2011; Deng et al., 2011) which is correlated with soil 

oxygen content, a driver for the growth and death of nitrifier and denitrifier bacteria in DNDC. 

Since soil water content impacts the type and rate of microbial reactions in DNDC it can greatly 
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impact N2O emissions. Furthermore, since DNDC only simulates soil C&N cycling to a 50 cm 

depth, processes such as nitrification, denitrification, nitrate leaching, fermentation, ammonium 

fixation, and mineralization may be represented inaccurately to account for the limited depth of 

simulation. 

DNDC employs a simple layered cascade approach for simulating bulk water flux and N 

transport down the soil profile. Water drains to field capacity in each layer (~2cm thickness) at 

the rate of KSAT (Fig. 4.1). Both water flow and C&N cycling are simulated to 50 cm depth 

through a homogeneous soil profile. A deep water pool, with a water holding capacity based its 

bulk density, is situated below the 50 cm soil profile to provide water for crop transpiration (50 

cm soil profile + 50 cm deep water pool=100 cm total water pool). The model rooting depth is 

fixed with transpiration being drawn equally across all soil layers, followed by extraction from 

the deep water pool when plants are under water stress. To improve the simulation of water and 

N loss to tiles Li et al. (2006) incorporated a simple “recession curve” to delay drainage by soil 

layer but this is not active in the current U.S. DNDC release version. Smith et al. (2019c) tested 

this approach and although the simulated drainage was improved soil water content was then 

overestimated by 22% and N2O emissions increased by 26%.  

Since 2011 a Canadian version of DNDC (now referred to as DNDCv.CAN) has been 

under development to improve the simulation of agricultural management and crop cultivars in 

cool weather climate. The model version can still be employed worldwide since the default crop 

growth sub-model is available as an option. In 2017, developments from Canada DNDC were 

merged into the U.S. DNDC release version and thus developments from both model versions 

became available (Smith et al., 2019c). In addition to improving the model for simulating crop 

growth (Kroebel et al., 2011; Grant et al., 2016; He et al., 2019a) the simulation of several 

processes were also improved including evapotranspiration (Dutta et al., 2016b), ammonia 

volatilization (Congreves et al., 2016b; Dutta et al., 2016a), crop temperature stress and effects 

of CO2 fertilization (Smith et al., 2013), impacts of snow and residue dynamics on soil 

temperature (Dutta et al., 2018) and inclusion of a winterkill sub-model (He et al., 2019a). Smith 

et al. (2019c), who compared Canada DNDC to RZWQM2 found limitations in simulating soil 

hydrology in DNDC and suggested several improvements including a deeper and heterogeneous 

soil profile, improved water flow down the profile, root density functions, a fluctuating water 

table and mechanistic tile drainage. In this study we incorporate these developments while 
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attempting to minimize extra model inputs, complexity for users and computation time. In this 

study Canada DNDC prior to development is referred to as “default DNDC” and Canada DNDC 

post development is referred to as “revised DNDC”.   

 

4.2.2.2 RZWQM2 

RZWQM2 (version 3.0.2015; Ma et al., 2012) was developed to simulate detailed 

biogeochemical processes in cropping systems with a major focus on simulating water quality. 

The model simulates a wide array of agricultural management and has recently been expanded 

and improved for simulating N2O emissions (Fang et al., 2012; Jiang et al., 2019) and 

phosphorous dynamics (Sadhukhan et al., 2019). RZWQM2 includes DSSAT 4.0 crop models 

with CERES and CROPGRO components (Hoogenboom et al., 2017; Ma et al., 2005, 2006) 

which is a very well established framework for simulating crop growth and development 

worldwide. RZWQM2 uses a numerical solution to determine water fluxes and includes the 

Green-Ampt equation for infiltration, the Richards equation with an option for lateral hydraulic 

gradient for lateral water loss, and the Hooghoudt’s equation for simulating quasi-2D tile 

drainage. Thus the model input requirements, modeller expertise and computation time are 

greater than for DNDC. The model has been validated for simulating drainage and N loading to 

tiles at many locations in North America (Malone et al., 2017; Xian et al., 2017; Qi et al., 2011b; 

Li et al., 2008; Thorp et al., 2007; Akhand et al., 2003) and has been employed to investigate 

BMPs for reducing N losses. Since RZWQM2 is a well-recognized model for simulating soil 

hydrology it offers an excellent opportunity for benchmarking DNDC developments.   
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Figure 4.1 Schematic of Canada DNDC before and after development of improved hydrological 

processes. Shaded areas show which algorithms were modified. Revised model version available 

at https://github.com/BrianBGrant/DNDCv.CAN. 

 

4.2.3 Development of DNDC to improve the simulation of soil hydrology and to include 

mechanistic tile drainage  

4.2.3.1 Heterogeneous and deeper soil profile  

The default DNDC model only characterizes the top soil horizon and assumes a 

homogeneous profile throughout. Often this is not a good representation of agricultural soils 

which can have striking differences across depths as a result of changing textures and organic 

carbon contents. Therefore, the model interface was restructured to allow for the user input of 

soil properties by definable layer depths. Soil properties that are now defined by depth include 

bulk density, soil organic carbon, pH, soil texture, field capacity, wilting point, porosity and 

saturated hydraulic conductivity. The user can specify the depth of the soil profile up to 200 cm 

and define properties for up to 10 user defined depths. The soil profile information can be saved 

such that it can be used for other simulations.  

The modifications to the model interface were conducted in parallel with the model 

simulation depth being adjusted from 50 cm to 200 cm (Fig. 4.1). The total number of simulated 

layers were increased to ensure that the calculated layer thickness remained in the same range 
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(~0.5-2.5 cm) as it was previously for the 50 cm version of the model. This was important since 

many processes are formulated to calculate the mass and energy flows based on this conceptual 

range of layer thickness. It was decided that 200 cm would provide a sufficient depth to 

accommodate the effective root penetration of most commonly used crops and allow for the 

simulation of a fluctuating water table and tile drainage. Modifications to internal variables were 

conducted to ensure that soil properties, water, carbon, nutrients, and temperature could be 

tracked over the entire depth and these variables could be applied for estimating decomposition, 

denitrification, nitrification, fermentation, adsorption onto clay, chemical equilibria and N 

movement functions.  As a result, DNDC was not only enhanced for simulating soil hydrology 

but also for the simulation of all biogeochemical processes up to a 200 cm depth.  

 

4.2.3.2 Root penetration and density function 

The default DNDC model calculates a linear estimate of root penetration to a maximum 

depth of only 50 cm, without considering root density.  Since water uptake for transpiration is 

partitioned equally across the profile, this can result in the model underestimating water and N 

uptake near the surface and overestimating these components in the deeper profile. Further, crops 

only have access to 100 cm of soil water when the deep water pool is included (Fig. 4.1), thus 

deeper rooted crops can sometimes become water limited. As a result of these limitations in the 

default model, a root penetration equation based on growing degree days (GDD) (Pedersen et al., 

2010) was incorporated into DNDC. Temperature or GDD are considered to be the main drivers 

for root growth and penetration (Kage et al., 2000; Thorup-Kristensen, 2006; Kirkegaard and 

Lilley, 2007).  The equation, expressed in terms of PGI (Plant Growth Index) which is the 

fraction of accumulated degree days required for a plant to reach maturity in DNDC is as 

follows;   

 

𝑅𝑧 =  {

𝑅𝑧𝑚𝑖𝑛                                    

∑ ((𝑃𝐺𝐼 − 𝑃𝐺𝐼𝑙𝑎𝑔)𝑘𝑟𝑧) + 𝑅𝑧𝑚𝑖𝑛 

𝑅𝑧𝑚𝑎𝑥                                  

; 𝑃𝐺𝐼 ≤ 𝑃𝐺𝐼𝑙𝑎𝑔                                        

; 𝑃𝐺𝐼 > 𝑃𝐺𝐼𝑙𝑎𝑔                                        

; 𝑃𝐺𝐼 − 𝑃𝐺𝐼𝑙𝑎𝑔𝑘𝑟𝑧 + 𝑅𝑧𝑚𝑖𝑛 > 𝑅𝑧𝑚𝑎𝑥

      (4.1) 

 

where Rz is the depth of root penetration; Rzmin is the planting depth; PGIlag accounts for the time 

period between planting and start of root penetration (germination); krz is the root depth 

penetration rate with values provided for some crops in Pedersen et al. (2010); Rzmax is the 

maximum root penetration depth. The Rzmax value is user defined in the DNDC input interface.  
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An algorithm for root distribution, based on a study by Gerwitz and Page (1974), and 

further modified by Yang et al. (2009) to extend the rooting depth of fine roots by an additional 

30% was also employed in DNDC. The root density declines logarithmically to the root 

penetration depth (Rz) followed by a linear decrease to zero at 1.3Rz. The relative root length 

distribution is as follows; 

 

𝐿𝑅(𝑧) =  {
 𝑒−𝑎𝑧𝑧                            ;  𝑧 < 𝑅𝑧                  

𝑒−𝑎𝑧𝑧 (1 −
𝑧−𝑅𝑧

0.3𝑅𝑧
)      ;  𝑅𝑧 ≤ 𝑧 ≤ 1.3𝑅𝑧

                                                 (4.2) 

                          

where az is the shape parameter describing root distribution with increasing soil depth. Pedersen 

et al. (2010) used values of az = 2 for wheat and winter wheat and 1.5 for brassicas and we 

currently use a default value of 2 but the user can define the shape parameter and rooting depth 

based on field studies or from sources such as Fan et al. (2016) and Benjamin et al. (2013).  

 

4.2.3.3 Simulating water flow   

The default cascade flow algorithm, whereby water content per layer tips to field capacity 

on an hourly basis can result in an erroneously low prediction of soil water contents. Complex 

numerical schemes, such as finite difference and finite element solutions of Richards equation, 

can generally produce more accurate result; however, they are data and computation intensive.  It 

is possible to use pedotransfer functions to estimate water retention curves and other 

hydrological parameters for use in these equations but in doing so it can undermine much of the 

improved accuracy that is achieved using this approach. Further, there is some uncertainty 

regarding the applicably of Richards equation for highly heterogeneous agricultural soils.  In a 

review of water flow approaches, Beven and Germann (2013) commented that in unsaturated 

heterogeneous soils there is rarely a consistent hydraulic gradient, which Richards equation 

assumes, since capillary potentials are not in equilibrium.  

Initially, we investigated including an integrated-Richards-equation approach with the van 

Genuchten equation (van Genuchten, 1980) for estimating soil water retention characteristics in 

DNDC, as presented in Yang et al. (2009) but once implemented, the hydrology sub-model time 

step needed to be reduced to such an extent that the computational time of DNDC was greatly 

increased and we also found it difficult to obtain data to properly fit the van Genuchten or other 
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water retention equations. During the course of development, after the inclusion of a 

heterogeneous soil profile, root density function and mechanistic tile drainage, we found that the 

cascade approach could provide sufficient accuracy in estimating water contents/flux. We 

decided to keep the cascade flow approach intact but limited water movement above field 

capacity based on soil water status using the following simple approach derived by both 

Averkjanov (1950) and Irmay (1954) for estimating unsaturated conductivity.   

 

𝐾 = 𝐾𝑆𝐴𝑇 (
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
)

𝑛
                                                                                              (4.3) 

 

where K is hydraulic conductivity, KSAT is saturated hydraulic conductivity, θ is actual, θr 

residual, and θs saturated soil water content (cm3 cm-3). This equation differs in power (n) where 

Irmay used a value of 3 and Averkjanov 3.5. Our tests indicate that a value of 3.5 worked well in 

the range of soil water contents from field capacity to saturation, the only incidence when K is 

calculated in revised DNDC.  

 

4.2.3.4 Fluctuating water table   

DNDC was modified to simulate a fluctuating water table by adjusting the hydraulic 

conductivity of the deepest profile to near impermeable (user defined value). A water table 

slowly builds up from the bottom soil layer with deep seepage at the lower boundary.  The water 

table is maintained as a mass balance of incoming water from precipitation and irrigation and 

outgoing water from runoff, evapotranspiration, tile drainage, deep seepage and change in soil 

water content in unsaturated layers. For the purposes of estimating tile flow rate, the water table 

height was calculated at the top of the saturated soil layer closest to the soil surface.  

 

4.2.3.5 Incorporate a tile drainage sub-model  

Similar to RZWQM2 and DRAINMOD (Skaggs et al., 2012), the steady state Hooghoudt 

equation was also included in DNDC. The drawdown of water table height is not fully steady 

state, however, the rate of change usually proceeds slow enough that the Hooghoudt equation can 

be used effectively (Skaggs et al., 2012). A recent study by Xian et al. (2017), when assessing 

the performance of RZWQM2 using the original steady state equation and two transient 

equations, found that there was no significant difference in model performance for hourly 

drainage simulation. The Hooghoudt equation as written in Skaggs et al. (2012) is;  
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𝑞 =
4𝐾𝑒𝑚(2𝑑𝑒+𝑚)

𝐿2                                                                                                  (4.4) 

 

where q (cm h-1) is the drainage discharge rate, Ke (cm h-1) is the effective lateral hydraulic 

conductivity,  m is the water table level above the drain at midpoint between the drains, de is the 

equivalent depth to the impermeable (or restrictive) layer below the drain, and L is the drain 

spacing. Equations to estimate Ke and de below were outlined in Xian et al. (2017).  

 

𝐾𝑒 =  
∫ 𝐷𝑖𝐾𝑖

𝑖=𝑛

𝑖=1

∫ 𝐷𝑖
𝑖=𝑛

𝑖=1

                                                                                                       (4.5) 

 

where n is the number of soil layers, Di is the thickness of layer i (cm), and Ki is the lateral 

hydraulic conductivity of layer i (cm h-1). 

The calculation of de depends on the actual depth (d) of the soil profile: 

 

if    
𝑑

𝐿
 < 0.3      𝑑𝑒 =  

𝑑

1+
𝑑

𝐿
[(

8

𝜋
𝑙𝑛

𝑑

𝑟
)−𝐶𝑂𝑁]

                                                                     (4.6) 

 

where 𝐶𝑂𝑁 = 3.55 − 1.6
𝑑

𝐿
+ 2 (

𝑑

𝐿
)

2
                                                                               (4.7) 

 

 

                                 if    
𝑑

𝐿
 ≥ 0.3     𝑑𝑒 =  

𝐿

(
8

𝜋
𝑙𝑛

𝐿

𝑟
)−1.15

                                                                     (4.8) 

 

where r is the radius of the drain (m). 

The ability to simulate controlled drainage was implemented in the model by allowing the 

user to set an effective depth of drainage below the soil surface. An unlimited number of sub-

irrigation and controlled drainage events can be set, with starting and end days for each event, in 

the “irrigation” tab of the model interface. For each sub-irrigation event the quantity of water  

applied and number of irrigation days can be set.  

 

4.2.3.6 Movement of nitrogen to runoff, tile drains and through the soil profile  

The primary development aim of this study was to improve estimation of soil hydrology 

and thus the existing N movement mechanisms in DNDC were not extensively modified. The 

default nitrate movement in DNDC is described simply as a function of the water flux and nitrate 

concentration per layer.  Soil nitrate was considered to be mobilized by a positive water flux 

(90% mobilized) and transferred to the layer below as a one-dimensional vertical N flux towards 
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the bottom soil profile. Additionally, another fraction (10% of the NO3
- in a layer) was 

considered to be lost through preferential water flow via macropores directly out of the soil 

profile. This preferential loss was calculated regardless of whether the soil layer directly below 

also met the condition of having a positive water flux.  

For simulations now with tile drainage, the movement of nitrate is an iterative step through 

each of the saturated layers per hour that are drained to tiles.  In DNDCv.CAN this preferential N 

loss function was modified to ensure correlation with water movement. It was previously found 

that DNDC sometimes simulated N losses when there was no water flux out of the bottom of the 

soil profile.  In DNDCv.CAN the fraction of NO3
- available to be transferred to the layer below 

at an hourly time step can now be parameterized through the user interface with a default value 

of 0.9. The fraction per layer that is preferentially lost directly to drains (i.e. it bypasses the 

iterative layer loop) is set to a default fraction of 0.02. Nitrate losses to tile drains are calculated 

starting from the layer situated at the top of the saturated water table down to the layer at the 

bottom of the tile drains.  

Additionally, we found that default DNDC nitrate losses to runoff were always very low, 

irrespective of the crop management system that was employed. To address this issue we first 

fixed a water mass balance error in the SCS runoff curve number method. Second, the model was 

modified to simulate a fluctuating water table and when the water table reaches the soil surface 

runoff and additional loss of N could then occur. Further, N loss to runoff was originally 

calculated as a fraction of rainfall that goes to runoff (based on SCS method) multiplied by the 

nitrate found in only the top surface layer (~0.5 - 2 cm). We extended this calculation to the top 2 

layers and included a user defined parameter where the fraction can be adjusted. 

 

4.2.4 Initialization, calibration and validation 

At both the Gilmore City and Woodslee research locations the TD-CC-MS treatment was 

used for model calibration and the remaining 3 treatments were used for validation. A similar 

trial and error method for calibration as conducted in Smith et al. (2019c) was used where the 

RMSE for simulated yield, drainage and N loss to tiles was minimized. This was conducted for 

default DNDC, revised DNDC and RZWQM2. In all simulations, a 10 year spin-up was included 

prior to the experimental periods to stabilize soil C, N and water.  
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Experimental data from the sites was used to initialize the models. This data included soil 

properties, such as soil texture, bulk density, field capacity, wilting point, porosity, saturated 

hydraulic conductivity and soil organic carbon content (Table 4.S1). Note that soils data was 

only available at two depths at the Woodslee site, thus the properties from the 10-20 cm depth 

were extrapolated down to 200 cm. Daily weather data, including min and max temperature, 

precipitation, wind speed, solar radiation and relative humidity, were available at both sites for 

all years of the studies. Management data, including tillage scheduling and implements and 

fertilizer scheduling and application rates, was also available.  

For the Gilmore City site, default DNDC and RZWQM2 have previously been calibrated 

and validated (Smith et al., 2019c). In this study we compare the performance of the revised 

DNDC model to those results. After the hydrology developments had been implemented, the 

revised model was calibrated using the same approach as the other two models. Crop, soil and 

tile drainage parameters used in the study for default and revised DNDC are shown in Table 4.S2 

and crop parameters used in RZWQM2 are shown in Table 4.S3.  Note that a winter rye cultivar 

was not available in RZWQM2, thus Qi et al. (2011b) developed parameters based on a winter 

wheat cultivar and these were further modified for a more recent version of RZWQM2 by Smith 

et al. (2019c).  

 

4.2.4.1 Calibration of crop parameters in DNDC 

For revised DNDC, several crop parameters were calibrated however parameters remained 

close to those used by default DNDC. The thermal degree days to maturity (TDD) was increased 

marginally for both maize and soybean (Table 4.S2). Water requirement for maize and soybean 

were reduced. At Gilmore City, soybean was set to 340 which is very close to the default 350 

value for the U.S. release version.  In default DNDC plant roots only had access to the top 100 

cm of the profile and had no access to a water table. The crop water requirement was increased 

in order to simulate an appropriate level of crop water uptake, evapotranspiration and drainage 

which often resulted in soil water content that was too low in the growing season (Smith et al., 

2019c). In the revised DNDC model, these crop water requirements were calibrated to be on 

average 15% lower for maize and 23% lower for soybean.   

At the Woodslee location the average soybean yields were only 60% of that at Gilmore 

City. We believe this was partly due to different varieties being used than at Gilmore City (a 
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different variety was planted every year at Woodlsee as the soybean variety A2553 was no 

longer available in 2005 and a shorter-season variety was planted in 2003 as a result of a late 

plant date: Drury et al., 2014b). We used a lower maximum grain C parameter (optimum yield) 

at Woodslee for soybean (Table 4.2).  However, the main contributing factor was likely that 

more crop water stress occurred at Woodslee. This was attributed to greater runoff due to a lower 

permeability soil and more precipitation occurring in the off-season months. Also, Woodslee 

receives less average precipitation, during the growing season than at Gilmore City (Fig. 4.S1). 

In default DNDC, rooting depth is always constant at 50 cm. In revised DNDC we set a 

lower max root depth at Woodslee site since there is higher clay content and lower root 

penetration (Table 4.S2). This helped minimize RMSE for yields and drainage. Rooting depth in 

DNDC was set considerably lower than in RZWQM2 which has max possible root depth of 1.8m 

for both maize and soybean.  

For the winter-rye cover crop at Gilmore City, the parameters used in Smith et al., (2019c) 

for default DNDC were employed for revised DNDC.  Default parameters for both default and 

revised DNDC were used for the winter wheat cover crop grown at the Woodslee site. The 

winter rye and winter wheat cover crop never reached the grain filling stage before being 

terminated in any of the treatments simulated. A similar magnitude of winter wheat biomass was 

simulated for DNDC and RZWQM2 at Woodslee but no measured data was available for 

validation.  

 

4.2.4.2 Calibration of soil and drainage parameters in DNDC 

The drainage development required the integration of additional input parameters to the 

DNDC interface including drain depth, spacing and radius, depth to bedrock, and KSAT at each 

depth. Lateral KSAT is estimated as 2*KSAT (Qi et al., 2011b) which is needed to calculate Ke for 

use in the Hooghoudt equation. In general, it is very difficult to get a good measure of in situ 

KSAT, particularly at deeper soil depths. Laboratory measurements of KSAT using soil cores and 

the traditional saturated flow-desorption method can in fact be over an order of magnitude 

greater than in situ measured KSAT (Smith et al., 1995).  In this this study we used the KSAT 

values from Qi et al. (2011b) for the Gilmore City site and adjusted KSAT with depth for the 

Woodslee site to values that would provide a good estimate of tile drainage using both DNDC 

and RZWQM2 (Table 4.S1)  
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During the calibration process for default DNDC, it was necessary to reduce the size of the 

slow humus soil organic carbon (SOC) pool from a default value of 0.95 to 0.7 to provide 

sufficient N mineralization when simulating the observed levels of N losses at the Gilmore City 

site (Smith et al., 2019c). Using revised DNDC it was only necessary to reduce this parameter to 

0.90. The revised DNDC model simulates decomposition to 200 cm and thus it estimates a more 

plausible rate of mineralization, which was previously noted to be a model weakness in some 

studies (Grant et al., 2016; Smith et al., 2008). Similar to the Gilmore City location, for default 

DNDC it was necessary to reduce the size of the slow humus SOC pool in default DNDC from 

0.95 to 0.75 to simulate the correct magnitude of N losses in the calibration treatment at 

Woodslee. Using revised DNDC this value was decreased only to 0.91. The SCS curves number 

for estimating runoff in revised DNDC at Gilmore City was set to 64, the same value as used for 

default DNDC (Smith et al., 2019c). A value of 87 was used at Woodslee for both model 

versions to account for a lower permeability soil and thus simulate the correct level of runoff for 

the calibration treatment. Preferential movement of N was set to 2% in revised DNDC to allow 

rapid movement of a small portion of N to drains, without moving through the soil matrix. This 

improved the model performance at both sites.  

The N concentration in precipitation was set to 1.8 mg N L-1, the same value as used at the 

Gilmore City site (Qi et al., 2011b). The microbial parameters related to nitrification and 

denitrification rates were left as default, however, during the course of development we added 

several new parameters into the DNDC input interface such that they could potentially be 

adjusted. The rate of microbial activity can vary greatly between soil types and locations.    

 

4.2.4.3 Calibration of RZWQM2 at Woodslee site 

A similar procedure employed in Smith et al. (2019c) and Qi et al. (2011b) at the Gilmore 

City site was used for calibrating RZWQM2 at the Woodslee site. Measured soil properties were 

input into the model according to Table 4.S1. Initial soil moisture was set to saturation below the 

60 cm depth at the beginning of the 10 year spin-up to initiate the simulation of a water table. 

The magnitude of the initial soil carbon was based on site measurements, however, the 

partitioning of the SOC pools was determined by using a built in tool for equilibrating SOC 

based on total SOC at the soil surface, global position and regional temperatures. Similar to 

Smith et al. (2019c) at the Gilmore City site it was necessary to increase the decomposition rate 
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of the SOC pools by about 30% at the Woodslee site in order to simulate the appropriate level of 

N mineralization and subsequent N losses to tile drainage and runoff. The simulated organic N 

levels in the soil profile remained stable over the five year study. The N concentration in 

precipitation was set to the same total N input rate as for DNDC with values of 0.5 mg N L-1 and 

1.3 mg N L-1 for NH4
+, and NO3

- respectively.   

The impermeable layer was set at 390 cm with a KSAT rate of 0.01 cm h-1 in the bottom 

layer which limited flow and maintained a water table. The Brookes-Corey soil water retention 

model was used with curve fitting parameters being estimated internally in RZWQM2 based on 

measured water contents at saturation, 1/10 bar, 1/3 bar and 15 bar (wilting point).   

  Similar to DNDC, the crop parameters in RZWQM2 needed to be lowered to simulate the 

appropriate level of crop yields at the Woodslee location, particularly for soybean. A number of 

the DSSAT crop parameters for maize (IB 1068 Dekalb 521) and soybean (990002 M Group 2) 

were left as default, particularly the ones controlling phenology, however, to optimize RMSE for 

biomass for the calibration treatment at Woodslee we reduced three crop parameters for maize 

and five parameters for soybean (Table 4.S3). Default parameters for winter wheat (990003 

winter-US) were used at Woodslee. 

 

4.2.5 Statistical measures for testing model performance 

Model performance of default DNDC, revised DNDC and RZWQM2 were evaluated using 

several statistical measures including normalized average relative error (NARE; %), normalized 

root mean square error (NRMSE; %), Nash‐Sutcliffe model efficiency coefficient (NSE; Nash 

and Sutcliffe, 1970) and the d index (Wilmott and Matsuura, 2005).  

𝑁𝐴𝑅𝐸 = 100 (
1

𝑛
∑ (𝑃𝑖−𝑂𝑖)𝑛

𝑖=1

�̅�
)                                                                                      (4.9) 

𝑁𝑅𝑀𝑆𝐸 = 100 (
√

1

𝑛
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1  

�̅� 
)                                                                             (4.10) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

                                                                                              (4.11) 

 

d = 1 −
∑ (Pi−Oi)2n

i=1

∑ (|Pi−O|+|Oi−O|)2n
i=1

                                                            (4.12) 

where Pi is the predicted or simulated value and Oi is the observed value.   



90 
 

NARE is the average percent over- or under-prediction of a model relative to 

measurements. Both NRMSE and NARE are commonly used to evaluate model performance for 

estimating yield and biomass. Jamieson et al. (1991) indicated that a model had excellent 

performance if NRSME < 10; good < 20; fair < 30; and poor > 30 whereas Ahuja et al. (2000) 

indicated satisfactory performance if NARE < 15% for estimating yield and biomass.  

NSE and d statistics are commonly employed for estimating water and N leaching and 

runoff. An NSE value of greater than 0 for NSE indicates the model estimates are more accurate 

than the average of observations. NSE has a maximum value of 1 and a negative NSE indicates 

poor model performance. However, NSE is more sensitive to values that have higher deviation 

(Kraus et al., 2005) and may in certain instances be close to zero or negative even when model 

results are very close to measurements (but the measurements show little deviation), thus it is 

important to also assess NARE and NRMSE. The d index provides a qualitative assessment of 

model accuracy with d ≥ 0.9 showing an “excellent” agreement between model and observed 

values, 0.8 ≤ d ≤ 0.9 indicates a “good” agreement, 0.7 ≤ d ≤ 0.8 a “fair” agreement and d < 0.7 a 

“poor” agreement.  For water drainage and N flow to tiles Moriasi et al. (2007) considered model 

performance to be satisfactory if NSE > 0.5. Drainage was satisfactory if NARE < 25% and N 

loss to tiles if NARE < 70%.  

 

4.3 Results and discussion 

It was previously demonstrated that the default version of Canada DNDC performed well 

for simulating crop yields, monthly water and N loss to tile drains at the Gilmore City (Smith et 

al., 2019c). In this study we verified that the revised model performed well for these 

components, however, most of the emphasis was placed on testing the model for simulating soil 

water storage and daily N and water loss to tile drains at Gilmore City, for which it did not 

previously perform well and also for simulating drainage and runoff at the Woodslee site. In 

addition we tested the new functionality of the model for simulating controlled drainage and sub-

irrigation.  

 

4.3.1 Simulation of crop yields  

The revised DNDC model performed well in simulating crop yields at the Gilmore City site 

giving similar results as both the previously tested models, default DNDC and RZWQM2,  as 
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reported by Smith et al. (2019c). All three models demonstrated good to excellent performance 

(NRMSE < 20%) for yield estimates except for soybeans in the TD-CC-SM treatment which 

were over-predicted in 2007 and 2009 (Table 4.4). These were years which had lower seasonal 

GDD, perhaps supressing observed yields. Data from only 2006 and 2008 (Table 4.2) were used 

to calibrate both models thus the temperature stresses imposed by a shorter growing season may 

not have been well characterized.  It was interesting that the improvements to hydrology 

simulation, as will be demonstrated in subsequent sections, did not improve yield prediction for 

this site with average statistic being similarly good between models. The RMSE levels in this 

study were generally lower than those in Jerecki et al. (2018) where the estimates for maize were 

over 1100 kg DM ha-1 using DNDC.vCan.  

At the Woodslee location, all models demonstrated good to excellent performance 

(NRMSE’s < 20%) for simulating maize and soybean yields under the unrestricted tile drainage 

calibration and validation treatments. Note that revised DNDC performed better than default 

DNDC for maize and large improvements were observed for soybean likely as a result of the 

improved hydrology simulation. Crops are generally more water limited at Woodslee due to 

more off-season runoff and less growing season precipitation. Maize yields were also well 

simulated by both revised DNDC and RZWQM2 for both the CC and NCC treatments under 

CDS. Of course, default DNDC was not capable of simulating controlled drainage or sub-

irrigation. Both DNDC and RZWQM2 showed fair performance in simulating soybean yield 

under CDS-CC but interestingly their performance was poor for CDS-NCC with about a 40% 

overestimation of yields. Revised DNDC produced similar NRMSE values as RZWQM2, 

demonstrating the value of running more than one model for a study. Both models simulated less 

crop water stress in this system with controlled drainage and sub-irrigation. In investigating 

measurements, the observed drainage volumes are reduced for the controlled drainage systems 

relative to the unrestricted drainage for both CC and NCC treatments. This difference may have 

been greater if sub-irrigation was not applied.  The CDS-NCC system appears to have behaved 

counterintuitive to what might have been expected since observed overall runoff + drainage to 

tiles was about 10% less than the other 3 treatments (Table 4.S4), yet crop yields (and assumedly 

evapotranspiration) were similar. One explanation is that there may have been more deep 

seepage for this plot which is further discussed in subsequent sections.   

 



92 
 

Table 4.4 Statistical performance of models for simulation crop yields at Gilmore City and 

Woodslee

 
*Simulations for default Canada DNDC and RZWQM2 at Gilmore City site were performed by Smith et 

al. (2019) 
#Calibration treatment 

 

4.3.2 Soil water storage at Gilmore City 

As demonstrated by Smith et al. (2019c) soil water storage was poorly simulated by default 

DNDC and reasonably simulated by RZWQM2.  This was the case across all four treatments.  

Some of the main issues were that DNDC did not include root density functions, a heterogeneous 

profile or unsaturated flow. During this development, we found that characterizing these aspects 

improved the model, particularly the addition of root density functions. Higher root density near 

the soil surface resulted in more water uptake near the soil surface (Fig. 4.2; 0-6 cm depth) 

thereby improving the water content simulation. However, the largest improvement for 

simulating soil water content resulted from the inclusion of a fluctuating water table and 

mechanistic tile drainage. Default DNDC greatly under predicted soil water storage at deeper 

depths in the summer months primarily because crop roots had no access to the water table. Post-

development, the roots could now penetrate beyond 50 cm to a depth defined by the user, with 

fine roots penetrating 30% further, and potentially allowing plant roots to access the water table.  

This greatly improved the model fit for simulating soil water content at deeper depths (Fig. 4.2) 

  

Default* 

DNDCv.CAN 

 Revised 

DNDCv.CAN 

 

RZWQM2* 

 

Treatment Crop NARE RMSE NRMSE  NARE RMSE NRMSE 

 

NARE RMSE NRMSE 

  (kg DM ha-1)  (kg DM ha-1)  (kg DM ha-1) 

------------------------------------------------------- Gilmore City ------------------------------------------------------ 

TD-CC-MS# Maize 7.3 1028 12.8  4.8 1284 16.0  0.4 1337 16.7 

TD-NCC-MS Maize 1.7 962 11.4  0.6 1133 13.4  -4.0 1184 14.0 

TD-CC-SM Maize -4.6 852 9.6  2.3 679 7.7  0.9 236 2.7 

TD-NCC-SM Maize -8.7 818 8.9  -5.7 559 6.1  1.7 509 5.5 

             

TD-CC-MS# Soybean 0.2 171 5.9  -0.9 215 7.4  2.2 63 2.2 

TD-NCC-MS Soybean -8.9 377 12.0  -8.8 382 12.1  -5.5 181 5.8 

TD-CC-SM Soybean 13.7 575 22.3  13.4 586 22.8  14.0 538 20.9 

TD-NCC-SM Soybean 10.1 425 16.0  8.8 376 14.2  12.1 348 12.1 

---------------------------------------------------------------- Woodslee ----------------------------------------------------------- 
TD-CC-MS# Maize 2.6 1152 15.9  -6.7 694 9.6 

 

0.8 978 13.5 

TD-NCC-MS Maize 2.0 798 10.8  -7.2 778 10.5 

 

-4.8 735 10.0 

CDS-CC-MS Maize NA NA NA  11.4 834 11.6 

 

5.5 597 8.3 

CDS-NCC-MS Maize NA NA NA  13.4 974 13.8 

 

7.5 781 11.1 

  

    

       TD-CC-MS# Soybean -2.0 328 17.3  -4.9 156 8.2 

 

-1.1 330 17.4 

TD-NCC-MS Soybean 1.0 280 15.9  3.1 127 7.2 

 

7.1 339 19.3 

CDS-CC-MS Soybean NA NA NA  17.0 421 21.8 

 

4.9 420 21.7 

CDS-NCC-MS Soybean NA NA NA  38.5 675 40.1 

 

41.7 767 45.6 
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and soil water storage to 60 cm depth (Fig. 4.3). As demonstrated by the statistical performance 

(NSE and d) of default and revised DNDC (Table 4.5) soil water storage was improved for all 

treatments from fair/poor (0.69 ≤ d ≤ 0.79) performance to good/excellent  (0.81 ≤ d ≤ 0.90) 

performance. All three models predicted the average magnitude of soil water content well during 

the 5 year study (-1.3 ≤ NARE ≤ 4.6), however, revised DNDC and RZWQM2 performed much 

better in predicting the trends over time. Revised DNDC had similar performance as RZWQM2 

for the CC treatments and had improved performance for the NCC treatments. Interestingly, the 

soil water storage as predicted by RZWQM2 indicated that drainage from the profile was 

sometimes more delayed in relation to observations. This may be related to an issue with using 

Richards equation since it assumes a consistent hydraulic gradient which often does not exist in 

heterogeneous agricultural soils (Beven and Germann, 2013). This limitation is partly overcome 

in RZWQM2 by discretizing the heterogeneous soil profile into layers. Note that Berninger et al. 

(2015) derived a method for multidomain discretization and found that the approach was 

reasonably robust but it sometimes suffered from lack of discrete local mass-conservation.    
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Figure 4.2 Observed and simulated soil water content by depth in 2008 for validation treatment 

TD-CC-SM at Gilmore City 

 
 



95 
 

 
Figure 4.3 Observed and simulated soil water storage to 60 cm depth for validation treatment TD-CC-SM 

at Gilmore City 
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Table 4.5 Statistical performance of models for simulating drainage and N loss to tile drains at the 

Gilmore City research site

 
* TD – unrestricted tile drainage; CDS – controlled drainage and subsurface irrigation; CC – cover crop; NCC – No 

cover crop; MS - Maize-soybean rotation phase; SM – Soybean-maize rotation phase 

 

4.3.3 Tile drainage at Gilmore City 

The implementation of a water table, mechanistic tile drainage and root penetration functions 

in DNDC resulted in the simulation of a fluctuating water table that was distinctly similar to 

RZWQM2 (Fig. 4.S2). A similar level of water table draw down during the growing season 

occurred each year, due to crop water uptake (transpiration) and also the rise in water table after 

rainfall events and the time required for drainage to the tile depth were similar. As a result the 

simulated daily water flow to tile drains was often remarkably similar as is demonstrated in 

validation treatment TD-CC-SM (Fig. 4.4). The daily predicted drainage flows for revised DNDC 

and RZWQM2 often overlapped. We found that the inclusion of Hooghoudt’s equation was 

particularly crucial for simulating the correct timing of events, which gave DNDC the same 

functionality of commonly used water quality models such as RZWQM2 and DRAINMOD 

(Skaggs et al., 2012). Default DNDC, which simulates bulk flux of water down the profile via the 

cascade approach, simulated peak flow events that were too high and diminished too quickly, 

however, monthly flow was well simulated (Table 4.5).  

Revised DNDC demonstrated excellent performance (d ≥ 0.90; NSE ≥ 0.69) for simulating 

monthly water flow to tile drains for the three validation treatments, with marginal improvements 

over default DNDC, which was previously found to perform well for monthly flow (Smith et al., 

2019c) (Table 4.5). All three models predicted the correct average magnitude of drainage from 

TD-CC-MS and TD-NCC-MS treatments but under-predicted the drainage from treatment TD-

CC-SM and over-predicted it from TD-NCC-SM. Observations indicated that more loss occurred 

 

   --------- Calibration ---------  ------------------------------------------- Validation -------------------------------------------- 
   TD-CC-MS*  TD-NCC-MS  TD-CC-SM  TD-NCC-SM 

Water/N 

component 

Statistic  Default 

DNDC 

Revised

DNDC 

RZWQM  Default

DNDC 

Revised

DNDC 

RZWQM  Default

DNDC 

Revised

DNDC 

RZWQM  Default 

DNDC 

Revised

DNDC 

RZWQM 

Soil water 

storage  

(0-60 cm depth) 

NARE  1.9 -1.3 1.1  4.6 1.7 4.3  0.8 -0.6 1.9  2.8 1.1 4.5 

NSE  -1.05 0.41 0.46  -4.52 0.11 -0.52  -3.61 0.35 0.08  -1.18 0.46 -0.03 

d  0.79 0.88 0.87  0.69 0.81 0.76  0.72 0.84 0.84  0.74 0.90 0.77 

Tile drainage 

(monthly, 2005-

2009) 

NARE  1.6 3.9 6.0  -5.3 -0.8 -1.4  -16.1 -15.2 -13.3  17.5 16.0 24.5 

NSE  0.73 0.69 0.67  0.71 0.74 0.76  0.65 0.72 0.65  0.62 0.72 0.60 

d  0.92 0.90 0.90  0.91 0.92 0.92  0.87 0.90 0.87  0.90 0.93 0.90 

 

Tile drainage 
(daily, 2007-2008)  

NARE  -2.6 -6.9 3.2  -10.3 -13.7 -9.2  -22.9 -20.2 -18.5  8.2 3.1 14.5 

NSE  -0.32 0.55 0.35  0.08 0.51 0.50  0.24 0.60 0.50  -0.11 0.70 0.69 

d  0.68 0.80 0.76  0.71 0.76 0.79  0.74 0.81 0.77  0.67 0.88 0.90 

N loss to tiles 

(monthly, 2005-

2009) 

NARE  7.4 8.9 0.2  -3.0 -4.6 -1.4  -10.7 -3.1 -17.8  14.1 11.7 13.7 

NSE  0.53 0.69 0.67  0.65 0.77 0.67  0.59 0.75 0.51  0.58 0.64 0.44 

d  0.85 0.92 0.89  0.89 0.93 0.91  0.83 0.93 0.82  0.86 0.92 0.86 
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to tile drains from TD-CC-SM (with cover crop; 347 mm over 5 years) than TD-NCC-SM (without 

cover crop; 252 mm over 5 years) which is unexpected. This disparity may be attributed to 

measurement variability during peak flow events in 2007 and 2008 which were high (Smith et al., 

2019c). This variability was not taken into account in the model performance statistics. All three 

models predicted more transpiration and less water loss to tile drains in treatments with cover crops 

than without. Experimental studies generally report no difference in subsurface drainage (Drury et 

al., 2014b; Qi et al., 2011a; Qi et al., 2011c; Kaspar et al., 2007) or reduced drainage (Qi and 

Helmers, 2010; Strock et al., 2004) when a cover crop was present. The performance of revised 

DNDC for simulating daily drainage was improved in all treatments, particularly for TD-CC-MS 

and TD-NCC-SM where NSE values went from negative (worse than the average of 

measurements) to > 0.5 (Table 4.5). Note that daily measurements were only available in 2007 and 

2008 (Qi et al., 2011b). The d statistic indicated that simulations changed from being characterized 

as poor to fair (i.e. d from 0.68 to 0.74) to fair to good (i.e. 0.76 to 0.88). Average statistics across 

treatments were similar between revised DNDC and RZWQM2 indicating that developments were 

successfully implemented. In particular, we found that the inclusion of mechanistic tile drainage 

improved the performance of revised DNDC, which is consistent with David et al. (2009) who 

found that models designed to simulate tile drainage (SWAT, EPIC and Drainmod-N), performed 

better for simulating bulk water flux than those which did not (DayCent, DNDCv.82a and 

DNDCv.82h). Malone et al. (2017) compared the performance of the HERMES model to 

RZWQM2 for simulating water and N loss to tile drains. The HERMES model, which did not 

include mechanistic drainage, performed reasonably well but RZWQM2 performed better in 

simulating monthly drainage. Guest et al. (2017a) found that Canada DNDC performed similarly 

to DayCent and STICS models for simulating soil water dynamics, but the three models all 

included cascade water flux approaches at the time.  In a cross-Canada assessment Guest et al. 

(2018) found that Canada DNDC performed a little better than the water budget models VSMB 

and HOLOS, but the water budget models did not explicitly simulate crop water stress and the 

feedbacks from crop growth and development.  

The revised DNDC improved the simulation of monthly N loss to tile drains, demonstrating 

excellent performance across all treatments, with better NSE and d statistics than both default 

DNDC and RZWQM2. Note that N concentrations in tile drainage were measured less frequently 

than water volumes (Qi et al., 2011b). Similar to water flow, all 3 models under-predicted N loss 
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for the TD-CC-SM treatment and over-predicted for the TD-NCC-SM treatment.  However, 

similar to the models, most studies show reduced N loss to tiles when a cover crop was included 

(Malone et al., 2017; Drury et al, 2014b; Li et al., 2008; Kaspar et al., 2007; Parkin et al., 2006; 

Strock et al., 2004). At the Gilmore City site the difference in N loss between the treatments, based 

on observations, was not found to be significant (Qi et al., 2011a) and thus the higher average 

annual loss from TD-CC-SM (39.9 kg ha-1 y-1) relative to TD-NCC-SM (33.7 kg ha-1 y-1) may be 

related to measurement variability.  

Most of the development in this study focused on improving soil hydrology and drainage, 

however, we still found it necessary to adjust the way N moved and was simulated in DNDC (both 

U.S. DNDC and DNDCv.CAN). The model was adjusted to simulate N loss to tiles at the depth 

of the drains, but also to only allow preferential N movement to occur when there was water 

movement. This improved the timing of simulated N loss events, as is demonstrated for validation 

treatment TD-NCC-MS in Fig. 4.5.  Although the simulated upper soil profile was frozen and there 

was no water movement in the fall and winter of 2005, N loss to tiles was still simulated using 

default DNDC. Note that the magnitude of cumulative N loss to tiles was initially underestimated 

by the revised model, but the timing of events was better simulated. Simulating preferential N 

movement as a function of water flow, the implementation of N loss to drains at the specified 

depth, and improved simulation of hydrology were responsible for the improved statistics noted in 

Table 4.5.  

 

  

 
Figure 4.4 Observed and simulated daily water flow to tile drains for validation treatment TD-

CC-SM at Gilmore City from 2007 to 2008 
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Figure 4.5 Comparison of monthly simulated N loading to tiles using default and revised DNDC 

for the TD-NCC-MS validation treatment at Gilmore City 

 

4.3.4 Runoff and tile drainage at Woodslee  

Although soil water contents were not available at the Woodslee site, there was an 

opportunity to benchmark the simulation of water and N loss to runoff along with the 

implementation of controlled drainage and sub-irrigation for DNDC. In general, the revised DNDC 

model demonstrated “good” to “excellent” performance (0.83 ≤ d ≤ 0.96; Table 4.6; Fig. 4.6) for 

simulating tile drainage for the validation treatments, with notable improvement over default 

DNDC (d ≤ 0.68; “poor” performance) for the unrestricted tile drainage treatments. Default DNDC 

does not have the capability of simulating controlled drainage or sub-irrigation and thus could not 

be evaluated for these aspects. RZWQM2 showed “good” performance across all treatments, 

which was certainly satisfactory but could perhaps have been improved if additional measured soil 

hydraulic properties were available below 20 cm depth at the site. RZWQM2 uses the Brooks-

Corey four parameter nonlinear curve fitting model for fitting water retention data and a better fit 

can be provided if measured saturated and residual soil water contents, pore size distribution and 

bubbling pressure are available. Even though revised DNDC and RZWQM2 demonstrated “good” 

performance in simulating drainage events, according to the d statistic, the overall magnitude of 

drainage was well simulated for only 3 of the treatments. For the CDS-NCC-MS treatment, 
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observed water losses from runoff + tile drainage were considerably lower (Table 4.S4) than for 

the other three treatments. Evapotranspiration was not measured but it’s unlikely that there was 

more water loss due to ET since observed yields were similar between treatments. It is possible 

that there was more deep seepage, but we did not have available soil physical and hydraulic 

properties at deeper depths and deep seepage was assumed to be minimal (which resulted in good 

results for 3 of 4 treatments).  

The magnitude of runoff was very well predicted over the 5 year study for all but the CDS-

NCC-MS treatment, however, the statistics for simulating runoff events were “poor”.  Unlike 

default DNDC or RZWQM, the NSE was ≥ 0 for revised DNDC for all validation treatments, 

however, the d statistic was low. Interestingly the statistics for cumulative runoff, often being the 

only statistics provided by some studies (Guest et al., 2018), were “good” to “excellent”, with d ≥ 

0.82 for both revised DNDC and RZWQM2 across all treatments. RZWQM2 overestimated runoff 

in the CDS-CC-MS treatment (Fig. 4.6), however as mentioned previously, the hydraulic 

parameters employed in the Brooks-Corey soil-water retention model are very sensitive. Below 20 

cm depth these parameters were estimated using an internal curve fitting routine rather than being 

supplied from measured data. Note that total runoff + tile drainage were simulated with “good” 

model performance by RZWQM2 and “excellent” performance by revised DNDC across all 

treatments.  

Similar to the Gilmore City location, the simulation of nitrogen loss to tiles by revised DNDC 

was improved over default DNDC at Woodslee and revised DNDC produced similar average 

statistics relative to RZWQM across the two CDS treatments with “fair” model performance 

(Table 4.6).  Both models over-predicted N loss during the early stages of the study, then predicted 

less loss during 2002, with similar losses for the remainder of the study (Fig. 4.6). N movement to 

tiles in DNDC was strongly correlated with water movement (Fig. 4.6 a, b) and overall the 

cumulative losses were well simulated (d ≥ 0.76). The timing of N loss to runoff was not well 

simulated by either model but the cumulative loss was simulated with “fair” to “excellent” 

performance. Revised DNDC predicted a large N runoff event on June 21, 2002 at the time of 66.4 

mm of precipitation which was not observed nor predicted by RZWQM2. It is likely that DNDC 

under-predicted the rate of N movement down the profile with too much N remaining in the top 2 

layers (~3 cm depth). Note that default DNDC predicted nearly zero N in runoff as the fraction of 

N lost to runoff was set internally at a very low value and was only based on the top soil layer. 
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Revised DNDC simulated the appropriate reduction in N losses to tiles under controlled 

drainage relative to unrestricted drainage (Fig. 4.6, Table 4.S4). The reduction in N loss to drains 

from CDS for the CC treatments was -39.1%, -40.8% and -24.3% for observed, revised DNDC 

and RZWQM2, respectively (Fig. 4.6, Table 4.S4), whereas CDS reduced nitrate loss by -37.5%, 

-39.1%, and -20.2% for the NCC treatments compared to unrestricted tile drainage (Table 4.S4). 

Reduced N loss to tiles for controlled drainage relative to unrestricted drainage is a common 

finding in many studies (Drury et al., 2009, 2014b; Tan et al., 1993, 2007). Since soil N is a crucial 

driver for several biogeochemical processes, the successful simulation by revised DNDC expands 

the models accuracy and capabilities. 

 

 

Table 4.6 Statistical performance of models for simulating water and N loss to runoff and tile 

drains at the Woodslee research site (n=28 over 5 years) 

 

 
* TD – unrestricted tile drainage; CDS – controlled drainage and subsurface irrigation; CC – cover crop; NCC – No 

cover crop; MS - Maize-soybean rotation phase; SM – Soybean-maize rotation phase 

 

 

 

 

 

 

 

 

   --------- Calibration ---------  ------------------------------------------- Validation -------------------------------------------- 
   TD-CC-MS*  TD-NCC-MS  CDS-CC-MS  CDS-NCC-MS 

Water/N 

component 

Statistic  Default 

DNDC 

Revised

DNDC 

RZWQM  Default

DNDC 

Revised

DNDC 

RZWQM  Default

DNDC 

Revised

DNDC 

RZWQM  Default 

DNDC 

Revised

DNDC 

RZWQM 

 

Tile drainage  

NARE  -5.8 -0.5 -5.3  7.0 11.7 1.3  NA 5.3 -7.9  NA 59.1 25.6 

NSE  0.08 0.88 0.59  -0.06 0.85 0.59  NA 0.75 0.64  NA 0.05 0.35 

d  0.67 0.96 0.88  0.68 0.96 0.89  NA 0.94 0.89  NA 0.83 0.82 

 

Runoff 

 

NARE  1.5 11.3 18.9  -10.2 -5.1 0.1  NA -0.06 57.1  NA -26.4 12.2 

NSE  -1.85 -0.18 -0.58  -0.58 0.13 -0.26  NA 0.11 -1.62  NA 0.16 -0.37 

d  0.65 0.66 0.62  -0.71 0.64 0.55  NA 0.68 0.60  NA 0.60 0.63 

 

Runoff + tile 

drainage 

 

NARE  -4.1 1.3 0.4  2.1 6.9 1.0  NA 3.6 10.3  NA 22.7 19.9 

NSE  0.53 0.90 0.48  0.48 0.89 0.40  NA 0.90 0.39  NA 0.77 0.14 

d  0.84 0.97 0.86  0.84 0.97 0.85  NA 0.97 0.86  NA 0.95 0.82 

 

N loss to tiles 

 

 

NARE  0.9 1.2 -4.4  -1.0 14.0 4.4  NA -1.7 18.9  NA 11.0 33.0 

NSE  0.51 0.57 0.21  0.52 0.60 0.01  NA 0.46 0.56  NA 0.20 -0.30 

d  0.79 0.82 0.70  0.81 0.88 0.77  NA 0.78 0.84  NA 0.76 0.68 

 

N to runoff 

 

NARE  -97.7 -5.4 -29.0  -98.0 -23.6 -42.9  NA -13.8 -27.8  NA -2.6 -19.6 

NSE  -0.53 -3.57 0.02  -0.77 -3.83 -0.23  NA -3.2 -0.48  NA -5.15 -1.20 

d  0.39 0.51 0.57  0.41 0.45 0.52  NA 0.51 0.50  NA 0.47 0.34 

 

N to runoff + 

tile drains 

 

NARE  -12.4 0.3 -7.8  -15.0 8.6 -2.5  NA -4.8 6.8  NA 8.2 22.0 

NSE  0.49 0.55 0.21  0.50 0.66 0.06  NA 0.29 0.54  NA 0.24 -0.20 

d  0.77 0.81 0.70  0.79 0.89 0.76  NA 0.70 0.82  NA 0.76 0.69 
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Figure 4.6 Observed and simulated cumulative water and N losses to runoff and tile drains at the 

Woodslee research site for a) water losses using unrestricted tile drainage, b) nitrogen losses using 

unrestricted tile drainage, c) water losses using controlled drainage with sub-irrigation and d) 

nitrogen losses using controlled drainage with sub-irrigation.  

 

4.4 Conclusions  

Inaccuracies in the simulation of water and N dynamics in the DNDC model have strongly 

impacted and impeded the further development of several related biogeochemical processes, 

particularly in the case of trace gas emission estimates. Prior to the developments implemented 

in this study, DNDC (Canada & U.S. versions) only simulated cascade water flux vertically 

down the soil profile without a mechanistic tile drainage algorithm. We implemented a deeper 

and heterogeneous soil profile, root penetration and density functions, a fluctuating water table, 

unsaturated flow above field capacity, and the Hooghoudt equation to simulate mechanistic tile 

drainage based on drain spacing, depth and tile diameter. After development, simulations of soil 

water storage, daily drainage, N loss to runoff and N loss to tile drains were improved, 

comparing well to measurements at two research sites and showing at least as good of 

performance as RZWQM2. This demonstrated that DNDC development was successful 

considering RZWQM2 is a well-validated water quality model which includes detailed 

computational hydrology. The soil-water input requirements for DNDC were kept relatively low 



103 
 

and the model simulation time remains 4 times faster than RZWQM2. Model computation time 

is becoming less important in some regions of the world, however, the DNDC model has a wide 

array of users which sometimes still do not have easy access to supercomputers or related 

computation capacities. Likewise, readily available and easily understandable model inputs can 

expand the use of a model. The revised DNDC model did not simulate the timing of water or N 

losses to runoff well but performed satisfactory in simulating the cumulative magnitudes. The 

simulation of runoff is complex particularly when surface crusting, clay cracking, preferential 

flow through insect and root channels, snow dynamics, and soil freeze-thaw are prevalent and 

further research is recommended. Through these developments we have expanded the ability of 

DNDC to simulate the impacts of tile drainage management on several biogeochemical 

processes.  Future studies can now investigate optimum tile drain depth and spacing, and explore 

possible benefits of controlled drainage or sub-irrigation. 

   

  



104 
 

4.5 Supplementary Tables and Figures 

 

Table 4.S1 Measured soil physical and hydraulic properties at the Gilmore City (adapted from Qi 

et al., 2011b) and Woodslee sites  

 
Depth  

(cm) 

Sand 

(%) 

Clay 

(%) 

BD 

(g cm-3) 

SOM 

(%) 

Ksat 

(cm h-1) 

Porosity Θ10 

(cm3 cm-3) 

Θ33 

(cm3 cm-3) 

Θ1500 

(cm3 cm-3) 

Gilmore City        

0-10 0.32 0.32 1.37 4.3 4.8* 0.482 0.383 0.376 0.189 

10-20 0.32 0.32 1.38 3.8 3.3 0.476 0.384 0.376 0.230 

20-30 0.33 0.14 1.39 3.3 5.1 0.473 0.384 0.376 0.201 

30-40 0.4 0.30 1.39 1.3 4.1 0.474 0.384 0.399 0.212 

40-60 0.46 0.24 1.39 1.3 4.1 0.474 0.408 0.368 0.218 

60-90 0.44 0.20 1.45 0.6 2.6 0.450 0.380 0.368 0.204 

90-120 0.44 0.20 1.46 0.5 2.6 0.450 0.312 0.299 0.184 

120-200 0.44 0.20 1.46 0.5 0.01 0.450 0.310 0.299 0.168 

Woodslee        

0-10 0.28 0.37 1.39 2.6 1.15* 0.474 0.374 0.338 0.243 

10-20 0.28 0.37 1.45 2.4 1.05 0.453 0.376 0.346 0.256 

20-60 0.28 0.37 1.45 0.9 0.95 0.453 0.376 0.346 0.256 

60-100 0.28 0.37 1.45 0.3 0.91 0.453 0.376 0.346 0.256 

100-150 0.28 0.37 1.45 0.1 0.91 0.453 0.376 0.346 0.256 

150-200 0.28 0.37 1.45 0.1 0.01 0.453 0.376 0.346 0.256 

BD = bulk density; SOM = soil organic matter; Ksat = saturated hydraulic conductivity; θ10, θ33, θ1500  =  soil 

water content at pressure 10, 33 and 1500 Kpa, respectively 

* KSAT was calibrated 
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Table 4.S2 Model parameters used in the default and revised DNDC model for Gilmore City and 

Woodslee research sites  
 

 
 

  

Sites 

 

 Gilmour City 

 

  Woodslee 

 

 Default 

DNDC 

   Revised 

DNDC 

   Default 

DNDC 

   Revised 

DNDC 
 

Crop Parameters Maize Soybean Winter 

Rye 

 Maize Soybean Winter 

rye 

 Maize Soybean Winter 

wheat 

 Maize Soybean Winter 

wheat 

Max grain (kg C ha-1 y-1) 

Grain fraction 

Stem+leaf fraction 

Root fraction 

Grain C:N 

Stem+leaf C:N 

Root C:N 

Water demand (gH2O gDM-1) 

GDD (0oC base) 

Optimum temperature (oC) 

Max root depth (m) 

4500 

0.4 

0.44 

0.16 

35 

70 

70 

135 

2550 

30 

NA 

2550 

0.35 

0.44 

0.21 

10 

30 

15 

420 

2500 

25 

NA 

900 

0.28 

0.46 

0.25 

20 

50 

50 

150 

1400 

18 

NA 

 4500 

0.4 

0.44 

0.16 

35 

70 

70 

120 

2650 

30 

1.35 

2400 

0.35 

0.44 

0.20 

10 

35 

20 

340 

2650 

25 

1.35 

900 

0.28 

0.46 

0.25 

20 

50 

50 

150 

1400 

18 

1.5 

 4900 

0.45 

0.43 

0.12 

35 

70 

70 

136 

2200 

30 

NA 

1950 

0.30 

0.44 

0.26 

10 

30 

15 

420 

2200 

25 

NA 

2500 

0.41 

0.42 

0.17 

35 

85 

85 

150 

1400 

14 

NA 

 4600 

0.45 

0.43 

0.12 

30 

50 

60 

110 

2300 

30 

0.8 

1800 

0.34 

0.44 

0.22 

10 

30 

15 

300 

2300 

25 

1.1 

2500 

0.41 

0.42 

0.17 

35 

85 

85 

150 

1400 

14 

NA 

Initial Soil Parameters                

Litter fraction 

Humads fraction 

Humus fraction 

Humads C:N ratio 

Humus C:N ratio 

 0.01 

0.29 

0.70 

10 

10 

   0.01 

0.09 

0.90 

10 

10 

   0.01 

0.24 

0.75 

11 

11 

   0.01 

0.082 

0.908 

11 

11 

 

Runoff and Tile Drainage 

Tile spacing (m) 

Drain radius (m) 

Tile depth (m) 

Preferential N movement 

Runoff curve number 

Manning’s coefficient 

  

NA 

NA 

NA 

NA 

64 

0.19 

    

7.6 

0.0768 

1.06 

2% 

64 

0.19 

    

NA 

NA 

NA 

NA 

87 

0.19 

    

7.5 

0.1 

0.65 

2% 

87 

0.19 
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Table 4.S3 Calibrated crop parameters used in RZWQM2 for corn, soybean and winter rye at the Gilmore  

City and Woodslee locations (Gilmore City adapted from Smith et al., 2019c) 

 

 
a Cultivar IB1 068 Dekalb 521  
b Cultivar   990002 M Group 2 
c Cultivar 990003 Winter-US, Winter wheat crop parameters were adjusted to simulate winter rye at 

Gilmore City site, but default parameters were used for the winter wheat grown at Woodslee  

 

 

 

 

Crop Parameter Parameter description Glimour 

City 

Woodslee  

Corna G2 Maximum possible number of kernels per plant 722 650   

 G3 Kernel filling rate during linear grain filling 

stage under optimum conditions (mg d-1) 

6.55 6.0   

 PHINT Phyllochron interval between successive leaf tip 

appearance 

46 48   

Soybeanb LFMAX Max leaf photosynthesis rate (μmol CO2 m-2 s-1) 0.8 0.63   

 SLAVR Specific leaf area of cultivar under standard 

growth conditions (cm2 g-1) 

 280   

 SIZLF Maximum size of full leaf (three leaflets) (cm2)  122   

 XFRT Maximum fraction of daily growth that is that is 

portioned to seed + shell 

 0.77   

 WTPSD  Maximum weight per seed (g)  0.17   

Winter 

ryec 

PEG Germination phase duration (oC d cm cm-1) 75   

 PECM Emergence phase duration (oC d cm cm-1) 25   

 P1V Relative amount that development is slowed for 

each day of unfulfilled vernalization, assuming 

50 d is sufficient 

5   

 P1D Relative amount that development is slowed 

when plants are grown in photoperiod 1 hour 

shorter than optimum (d) 

12   

 PARUV Conversion rate for photosynthetically active 

radiation to dry matter before the end of leaf 

growth (g MJ-1) 

3.3   

 LAVS Area of standard vegetative stage leaf (cm2) 15   

 LARS Area of standard reproductive phase leaf (cm2) 25   

 LARWS Lamina area to weight ratio of standard first 

leaf (cm2 g-1) 

300   

 LAWR2 Lamina area to weight ratio, phase 2 (cm2 g-1) 280   

 P5 Relative grain filling duration based on thermal 

time (d) 

400   

 PHINT Phyllochron interval between successive leaf 

appearance (PD) 

100   
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Table 4.S4 Observed and simulated total water and N loss to runoff and tiles at the Woodslee site from 

winter of 1999 to early 2005 

 

 

RUNOFF 

 

DRAINAGE 

 

RUNOFF + DRAINAGE 

Treatment 

 

Default Revised 

   

Default Revised 

   

Default Revised 

 

 

Observed DNDC DNDC RZWQM 

 

Observed DNDC DNDC RZWQM2 

 

Observed DNDC DNDC RZWQM2 

Water losses (mm) 

TD-CC-MS 365 371 407 434 

 

1179 1111 1158 1116 

 

1545 1482 1565 1551 

TD-NCC-MS 438 393 415 438 

 

1097 1173 1225 1111 

 

1535 1567 1641 1550 

CDS-CC-MS 422 NA 420 663 

 

1086 NA 1143 1000 

 

1508 NA 1563 1664 

CDS-NCC-

MS 590 NA 434 662 

 

795 NA 1265 999 

 

1386 NA 1700 1661 

Nitrogen losses (kg N ha-1) 

TD-CC-MS 13.8 0.3 13.1 9.8 

 

88 88.8 89.1 84.1 

 

101.8 89.2 102.1 93.9 

TD-NCC-MS 17.2 0.3 13.2 9.8 

 

102 100.9 116.3 106.4 

 

119.2 101.1 129.5 116.3 

CDS-CC-MS 18.8 NA 16.2 13.5 

 

53.6 NA 52.7 63.7 

 

72.3 NA 68.8 77.2 

CDS-NCC-

MS 16.9 NA 16.4 13.6 

 

63.7 NA 70.8 84.8 

 

80.6 NA 87.2 98.3 
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Figure 4.S1 Average temperature and precipitation at the Gilmore City and Woodslee sites.  

 

 

 

Figure 4.S2 Simulation of water table depth below the soil surface for a maize-soybean rotation 

with cover crop at Gilmore City research site in Iowa 
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Connecting text to Chapter 5 

In Chapter 4 several developments were implemented in DNDC which improved its performance 

for simulating soil hydrology and N losses to tile drains. The inclusion of the drainage sub-model 

was of particular importance since it allowed for the consideration of drainage design impacts on 

water and nutrient cycling, extending the functionality of the model. After developments, the 

DNDC model could be used as a more accurate and comprehensive tool for assessing trade-offs 

in reactive N losses (NO3
- loss to drains and runoff, N2O emissions, NH3 volatilization) which 

was a primary purpose for the research. In Chapter 5 the revised model was employed to explore 

reactive N losses for 18 fertilizer management sceneries across 30 years of climate variability at 

locations in eastern Ontario and the US Midwest. A wide range of fertilizer management 

recommendations were made and the trade-offs in losses were documented.  Simulations were 

performed at the two locations where the model was evaluated in Chapter 4 but also at a location 

near Ottawa, Ontario (Alfred) where a colleague, in cooperation with Ward Smith and Dr. 

Zhiming Qi, successfully evaluated the revised model for simulating N2O emissions, drainage, 

and N losses to tile drains (He et al., 2019b).  

 

The following manuscript was published in the Journal of Environmental Quality: 

Smith, W., B. Grant, Z. Qi, W. He, A. VanderZaag, C.F. Drury, X. Verge, H. Balde, R. Gordon, 

and M. Helmers. 2019. Assessing the impacts of climate variability on fertilizer management 

decisions for reducing nitrogen losses from corn silage production. Journal of Environmental 

Quality. 48(4):1006-1015.  doi:10.2134/jeq2018.12.0433 
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Chapter 5 

Assessing the impacts of climate variability on fertilizer management decisions for 

reducing nitrogen losses from corn silage production 

 

Ward Smith, Brian Grant, Zhiming Qi, Wentian He, Andrew VanderZaag, Craig Drury, 

Xavier Vergѐ, Hambaliou Balde, Robert Gordon, Matthew J. Helmers 

 

Abstract 

There is an incentive for dairy farmers to maximize crop production while minimizing costs 

and environmental impacts. In cold climates, farmers have limited opportunity to balance field 

activities and manure storage requirements while limiting nutrient losses. A revised 

DeNitrification DeComposition (DNDC) model for simulating tile drainage was used to 

investigate fertilizer scenarios when applying dairy slurry or urea on silage corn (Zea mays L.) to 

examine N losses over a multidecadal horizon at locations in eastern Canada and the US Midwest. 

Management scenarios included timing (spring, fall, split, and sidedress) and method of 

application (injected [10 cm], incorporated [5 cm], and broadcast). Reactive N losses (NO3
− from 

drainage and runoff, N2O, and NH3) were 2.6, 1.8 and 3.0 times greater per metric ton of silage 

biomass from the sandy loam soils than from the finer textured clay or clay loam soils at Alfred, 

Woodslee and Gilmore City, respectively.  Regarding fertilizer placement, N losses were greatest 

from broadcast, followed by incorporated and then injected applications. Among the fertilizer 

timing scenarios, fall manure application resulted in the greatest N loss, primarily due to increased 

N leaching in non-growing-season periods, with 58% more N loss per metric ton of silage than 

spring application. Split and sidedress mineral fertilizer had the lowest N losses, with average 

reductions of 9.5 and 4.9%, respectively, relative to a single application. Split application mitigated 

losses more so than sidedress by reducing the soil pH shift due to urea hydrolysis and NH3 

volatilization during the warmer June period. This assessment helps to distinguish which fertilizer 

practices are more effective in reducing N loss over a long-term time horizon. Reactive N loss is 

ranked across 18 fertilizer management practices, which could assist farmers in weighing the 

tradeoffs between field trafficability, manure storage capacity, and expected N loss.  
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5.1 Introduction  

Dairy farming is one of the largest agricultural sectors within the cooler climatic zones of 

eastern Canada (AAFC, 2017) and the US Midwest (USDA, 2018). It is important that 

opportunities be identified for managing on-farm nutrient cycling in an efficient and cost effective 

manner (Holly et al., 2018). Using base calculations from Sheppard and Bittman (2016) the total 

combined N losses from cropping systems in Canada represent ~27% of the value of fertilizer 

shipped to farms. A much larger cost could be expected in response to environmental damage and 

harm to human health. In order to establish beneficial management practices (BMPs) a sound 

understanding of the impacts on nutrient losses is required. In cold climates, snow dynamics, 

freeze-thaw actions and stresses on crops complicate the biophysical processes which need to be 

considered when accessing nutrient loss. As well, farmers must manage their field operations with 

consideration of a shorter growing season along with manure storage implications.  

Field studies are critical for assessing impacts of management on reactive N loss, however, 

they are limited in their ability to simultaneously characterize multiple N loss pathways and long-

term impacts of climate variability. Process based models are well suited for assessing 

management impacts in cropping systems (Brilli et al., 2017; Ma et al., 2007a; DeJong et al., 2009) 

since they can dynamically simulate many of the interdependent soil-plant-atmospheric processes 

over space and time. A well calibrated model can be employed to simulate the long-term impacts 

of climate variability and management on N losses from cropping systems (Congreves et al., 

2016a; Qi et al., 2011b).  

Although many agricultural models were originally developed to simulate a single output 

such as crop growth, soil carbon change, water quality, or greenhouse gas emissions, there has 

been increased effort to enhance models to include a larger scope of agricultural processes (Ma et 

al., 2007). Three models are predominantly used in the cooler regions of North America, as they 

all characterize overwinter snow dynamics and soil freeze–thaw events. The DeNitrification 

DeComposition model (DNDC; Li et al., 1992) was originally developed to estimate N2O 

emissions, whereas DayCent (Parton et al., 2001) focused more on soil C, and the Root Zone Water 
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Quality Model (RZWQM2; Flerchinger et al., 2000; Ma et al., 2012) focused on water quality and 

crop growth. However all three models have been expanded to simulate all four outcomes. 

A Canadian version of the DNDC model was developed to improve the simulation of crop 

growth, snow dynamics, NH3 volatilization, impacts of winterkill, and mechanistic tile drainage 

in cool weather conditions (Kroebel et al., 2011; Smith et al., 2013; Congreves et al., 2016b; Dutta 

et al., 2016a, 2016b, 2018; Jarecki et al., 2018). The model has been validated for simulating N2O 

emissions (Uzoma et al., 2015; Abalos et al., 2016; Congreves et al., 2016a; He et al., 2018) and 

NH3 volatilization (Congreves et al., 2016b; Dutta et al., 2016a) for numerous cool climate 

locations. It has been applied by Abalos et al. (2016) to examine the effectiveness of various types 

of 4R fertilizer management (right source, right rate, right time, and right place) toward reducing 

N2O emissions from corn (Zea mays L.) production in eastern Canada. Congreves et al. (2016a) 

expanded on this concept to examine the impacts of climate variability on reactive N loss in a 

conventional and best management cropping system at a site in eastern Ontario. There has, 

however, been limited effort to date in investigating fertilizer management that may reduce overall 

reactive N loss from cropping systems relevant to dairy production, particularly in considering the 

resiliency under climate variability. Furthermore, recent model developments now allow for the 

estimation of N loading to tile drains. 

The objectives of this study were (i) to use the revised DNDC model to investigate inorganic 

and organic fertilizer management practices over a 30-yr time horizon to determine practices that 

may reduce reactive N loss from corn silage production in cool climatic zones of eastern Canada 

and the US Midwest, and (ii) to examine tradeoffs and synergies between N loss to tile drains, N 

loss to runoff, NH3 volatilization, and N2O emissions and recommend beneficial management. 

 

5.2 Materials and methods 

Climate and soils data from the experimental sites at Alfred, Ontario; Woodslee, Ontario and 

Gilmore City, Iowa were used to explore the impacts of 18 fertilizer management scenarios with 

the DNDC model. A general description of the sites are included in supplementary material 

(Supplemental Section 5.S1, table 5.S1) but note that the corn silage cultivar and farming practices 

employed in our modelling assessment were the same for each site. These were based on 

management at Alfred, the only site where a field experiment was conducted with corn silage.   
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5.2.1 DNDCv.CAN model: Description and Development 

The DNDC model is a well-known process-based model (Li et al., 1992, 2012) for simulating 

trace gas emissions and C&N cycling in agri-ecosystems. The model framework is composed of 

four major components characterizing crop growth, soil temperature and water dynamics, 

denitrification and nitrification pathways and decomposition. A core strength of the modelling 

framework is in its ability to characterize a wide array of crop management activities while 

enforcing a mass balance of nutrient and water budgets. Pertinent N model outputs to this study 

include daily N losses to tile flow and leaching, runoff, trace gas emissions, and crop N uptake. A 

brief description of these processes are provided in Supplemental Section 5.S2.   

Over the past seven years, the Canadian version of DNDC (DNDCv.CAN) was developed, 

first to include improved crop growth (Kroebel et al., 2011; Smith et al., 2013) including 

temperature stresses for cultivars grown in Canada (Yan and Hunt., 1999). More recently, alfalfa 

(Medicago sativa L.) growth was improved and a winter kill sub-model was incorporated (He et 

al., 2019a). Additionally, the simulation of evapotranspiration (Dutta et al., 2016b) and the impact 

of snow dynamics, crop biomass and residue management on soil temperature were improved 

(Dutta et al., 2018). In cool climates more than half of annual N2O emissions may be related to 

freeze-thaw processes (Wagner-Riddle et al., 2017). The DNDC model previously did not include 

textural dependent soil heat transfer and had a very simple approximation of snow insulation. The 

inclusion of these processes improved the simulation of soil temperature resulting in an improved 

model for estimating N2O emissions after thaw events (Dutta et al., 2018). Furthermore, a new 

NH3 volatilization sub-model was included for manures (Congreves et al., 2016b) and urea (Dutta 

et al., 2016a) using cool climate datasets from Quebec. A model inter-comparison demonstrated 

that DNDCv.CAN performed as well as the computationally intensive RZWQM2 for simulating 

crop biomass, and monthly water flow and N loss to tile drains but daily simulation of drainage 

and soil water storage was not as well simulated (Smith et al., 2019c). Based on these findings we 

developed DNDCv.CAN to include both a heterogeneous and deeper soil profile (2m), root 

penetration and density functions, improved water flow, a fluctuating water table, and mechanistic 

tile drainage (Smith, unpublished data , 2019). The model version used in this study is available 

for download at (https://github.com/BrianBGrant/DNDCv.CAN). 

 

https://github.com/BrianBGrant/DNDCv.CAN
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5.2.2 Model Calibration and Validation at Experimental Sites 

The DNDCv.CAN model has undergone extensive improvement and validation for 

simulating losses of reactive N from agriculture in cool climates. In this study we leverage previous 

developments for simulating N2O emissions (He et al., 2018a; Uzoma et al., 2015) and NH3 

volatilization (Dutta et al., 2016a Congreves et al., 2016b), which remain unchanged in the model. 

We also summarize the performance of the model for i) simulating drainage and N loss to drains 

using the more recently incorporated mechanistic drainage algorithms at Alfred, Woodslee and 

Gilmore City (Supplemental Section 5.S3; Tables 5.S2, 5.S3) and ii) simulating corn silage 

biomass, corn silage N uptake, N2O emissions, and soil NO3
- at the Alfred site (Supplemental 

Section 5.S4, Table 5.S4). We used the model parameterization from this previous work in our 

modelling assessment, simulating the same silage cultivar (Table 5.S5) and management practices 

across the three locations. The soils and drainage parameterization for the fine textured soils was 

employed at each respective location. This data was, however, not available for coarser textured 

soils thus we derived appropriate properties and drainage characteristics for a sandy loam and used 

these across all three locations (Table 5.S5). The soil hydraulic properties for the sandy loam were 

determined using the pedotransfer functions in the Soil–Plant–Atmosphere–Water model (SPAW) 

(Saxton and Willey, 2006). Since the sandy loam was of higher permeability we set the tile drain 

depth to 1.4 m and spacing to 30 m, which is the minimum recommended spacing for this soil type 

(ASAE, 2015). Although the inclusion of a sandy loam texture allows us to explore N losses that 

may occur from a high permeability soil the model has not been validated for this soil type thus 

we expect higher uncertainty in results. 

 

5.2.3 Modelling approach for simulating climate variability and management impacts on N 

losses 

The DNDC model was used to explore 18 fertilizer management scenarios (Table 5.1) across 

30 years of climate variability at the three locations for their impacts and trade-offs on N2O 

emissions, NH3 volatilization, N leaching and runoff. Two soil textures were simulated at each 

location, a fine textured soil for which the model was previously validated for simulating water 

and N losses and a sandy loam texture (see section 5.2.2 for soil and drainage characteristics). To 

represent a cropping system used by dairy farmers we simulated a 5-year alfalfa-alfalfa-alfalfa-

corn silage-corn silage rotation, repeating 3 times over 15 years.  Climate data was interchanged 
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according to the flowchart (Fig. 5.1) with each of the 30 years of weather being simulated for each 

of the 18 fertilizer scenarios, whereby each specific weather year covered a two year period to 

ensure that we compared the same weather year in the fall to fall or spring to spring simulations. 

The results were analysed either from the timing of fall to fall or from spring to spring fertilizer 

application thus the same total annual precipitation was applied for each year of analysis. A 16th 

year was simulated to assess N loss from spring to spring fertilizer application.  

 

 

 
 

Figure 5.1. Schematic of climate substitution approach for investigating climate variability 

impacts on fertilizer management 

 

 

To assess climate variability, a 30-yr climate normal (1986–2015) was constructed from a 

combination of onsite multi-environment trial data collected at each location and climate data 

obtained from the Nasa Prediction of Worldwide Energy Resources (POWER) Project datasets 

(https://power.larc.nasa.gov/).  It is important to emphasize that each one of the climate years from 

the 30 year climate normal was simulated independently for each fertilizer management to quantify 

each year of climate variability. This was coupled to a standardized 13-year spin-up simulation to 

stabilize C, N, and water cycling that remained consistent across all fertilizer management 

scenarios. 



116 
 

The fertilizer scenarios consisted of 3 methods of application (surface broadcast, broadcast 

and incorporated to 5cm, and injected to 10cm). For each method of application the following 

fertilizer scenario was employed; spring mineral fertilizer (urea), spring mineral side-dress (urea), 

spring mineral split (urea), spring organic (manure-slurry), spring split organic (manure-slurry), 

and fall organic (manure-slurry) (Table 5.1). The fertilizer rate on corn silage was set to 100 kg N 

ha-1 for the first year after alfalfa and 140 kg N ha-1 (rate used at local Alfred site) for the second 

year. In the broadcast scenarios an additional 40 kg N ha-1 was applied to account for higher NH3 

losses and ensure production levels remained reasonably consistent across treatments (Drury et al., 

2017). The dairy manure slurry composition was based on the slurry applied at Alfred (He et al., 

2019b). In this study we simulated soils which are well drained increasing the chance of field 

trafficability limiting excess crop water stress, and allowing for more consistent planting dates. 

For all simulations the silage corn planting date was set to May 10th, the spring and pre-plant 

fertilizer was applied on May 10th,  the sidedress and split on June 8th, and tillage events were May 

9th (disk plow) and October 30th (mouldboard plow). Fall manure was applied on November 1st.  

The DNDC model inputs were constructed using R statistical software (R Core Team, 

2013) to build the 3240 iterative permutations of climate and management and soil type. The N 

losses associated with each fertilizer practice were computed over a single annum, from spring to 

spring or fall to fall, depending on how the management was applied. 

 

Table 5.1 Description of Fertilizer Management Scenarios employed across 3 study locations on 

a silage corn cropping system 

 

 

Fertilizer Application 

Type 

Spring 

Mineral 

Spring Split 

Mineral 

Spring 

SideDress 

Mineral 

Spring Organic Spring Split 

Organic 

Fall Organic 

Description Applied at 

seeding 

50% applied 

@ seeding 

50% applied 

at V6 stage 

Starter 30 kg 

ha-1 applied 

@ seeding 

110 kg ha-1 

applied at V6  

Manure applied 

at seeding 

50% of 

manure 

applied @ 

seeding: 50% 

at V6 stage 

Manure 

Applied in Fall 

Rate of N Applied* 

(kg N ha-1) 
140 140 140 organic 108 

inorganic 104# 

 

organic 108 

inorganic 104 

organic 108 

inorganic 104 

Type of Fertilizer Urea Urea Urea Manure-Slurry Manure-

Slurry 

Manure-

Slurry 
Fertilizer Acronym       

Injected (10cm) 

Incorporated (5cm) 

Broadcast 

iSM 

ISM 

BSM 

iSpM 

ISpM 

BSpM 

iSdM 

ISdM 

BSdM 

iSO 

ISO 

BSO 

iSpO 

ISpO 

BSpO 

iFO 

IFO 

BFO 
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* Broadcast N rates were +40 kg N ha-1 higher than other treatments for urea and manure slurry. For 

slurry, the organic and inorganic components were increased proportionately.  
# inorganic component ~ 98% NH4

+ and 2% NO3
- 

 

 

5.2.4 Statistical Analysis 

Statistical analysis was conducted using one-way ANOVA in the SPSS 20.0 package (IBM 

Corp., 2011). Duncan’s test at the 0.05 level (p  <  0.05) was used to determine whether there are 

any statistically significant differences between treatments within the same soil texture. 

 

5.3 Results and Discussion  

The revised DNDC model, which includes the capacity to simulate mechanistic tile drainage, 

was successfully calibrated and validated using hydrology and N loss data from Alfred (He at al., 

2019b), Woodslee and Gilmore City (Smith, unpublished data , 2019). The validation, as described 

in supplementary material (Supplemental Section 5.S3, Tables 5.S2, 5.S3), demonstrates that the 

model can accurately simulate drainage and N loading to tiles, which expands the model’s ability 

to assess multiple interactions and trade-offs in reactive N losses. Our study is the first time the 

newly revised and validated model is used to examine multiple N loss pathways across multiple 

sites and the premise of this validation work was conceived in part to facilitate this study. The 

model also performed well in simulating crop corn silage biomass, crop N uptake for corn silage, 

soil N, and N2O emissions at the Alfred location (Supplemental Section 5.S4, Table 5.S4).   

 

5.3.1 Differences in climate between locations 

The Alfred site has a considerably cooler climate than Woodslee or Gilmore City, lower wind 

speed,  higher relative humidity (Fig. 5.S1, 5.S2) and thus lower evaporative losses. The annual 

average temperature at Woodslee is warmer than the Gilmore City site in Iowa with a similar 

growing season temperature but a warmer winter.  As a consequence, winter snow cover is much 

greater at Alfred, followed by Gilmore City and then Woodslee. This influences both runoff and 

drainage volumes with, for instance, a larger amount of runoff occurring during spring snowmelt 

at Alfred. This helps emphasize the need for a model to be able to well characterize snow dynamics 

and soil freeze-thaw. Annual precipitation is greater at Alfred (1021 mm) and the overall annual 

magnitude is similar between Woodslee (816 mm) and Gilmore City (821 mm), but the seasonal 

trend is noticeably different (Fig. 5.S1). The Woodslee site has more over-winter precipitation and 
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less growing season precipitation which results in more runoff at Woodslee, further supported by 

observations at Woodslee (Drury et al., 2014b) and water-balance simulations at Gilmore City (Qi 

et al., 2011b). In the DNDC model, N losses to runoff, drainage and N2O emissions are strongly 

impacted by precipitation, which is the most variable weather driver at all three locations (Fig. 

5.S2).  

 

5.3.2 Understanding impacts of climate variability and fertilizer management on N losses 

from cropping systems  

Variability in weather from year to year can make it difficult to determine the overall impact 

of management on N losses using field studies conducted over a short time horizon. In their 

assessment of combined BMPs for reducing N losses, Congreves et al. (2016a) found that 

management was more important than climate; however, climate variability can certainly be the 

more important factor, depending on which management is considered. In our study, we simulated 

the impacts of climate variability over 30 yr for 18 management scenarios across two soil types 

and at three locations. Our methodology allows for the direct assessment of climate impacts, since 

the cropping history was kept constant for each simulation.   

Results were often highly variable across climate as is demonstrated in Figs. 5.2, S3 and S4. 

The results demonstrate the simulated variability associated with each site for harvestable silage 

biomass, N leaching to tiles, N2O emissions, NH3 volatilization and N loss to runoff, for 8 selected 

fertilizer managements. At Woodslee (Fig. 5.2), biomass, N leaching and N2O emissions are 

generally highly variable across climate, both for the clay loam and sandy loam. Ammonia 

emissions are higher for the broadcast treatments and N runoff is notably higher only under fall 

applied manure, but again these are highly variable across the 30 years of climate.  This is to be 

expected considering environmental drivers are known to have a strong impact on each of these 

outcomes (Congreves et al., 2016a; Holly et al., 2018). Across the three locations we see some 

common trends. For instance, N leaching, N runoff and N2O emissions are higher and NH3 

volatilization is lower under fall applied manure than under spring applied manure. This is 

consistent with observations at Alfred (Schwager et al., 2016; Supplemental Section 5.S5). 

Broadcast fertilizer results in greater overall N losses. Biomass was ~23% lower in the sandy loam 

across the three locations due to both increased water and N stress. This is particularly true for 

Gilmore City and Woodslee which show more crop water stress, more-so at Woodslee which 
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experiences more off-season runoff and has less growing season rainfall than at Gilmore City (Fig. 

5.S1). Across the clay soils, the highest average and most variable N leaching occurred at Gilmore 

City. This high variability is consistent with site measurements where N loss to tiles under injected 

mineral fertilizer varied from 12.8 to 60.2 kg N ha-1y-1 across 5 years of measurements from corn 

(Smith et al., 2019c; Qi et al., 2011a, b). Our results from the 30 year simulations produced a range 

of 5.6 to 47.3 kg N ha-1y-1 under injected spring mineral fertilization on corn silage but 20 kg N 

ha-1 less fertilizer was applied in our study. The highest average N2O emissions were simulated for 

the Woodslee clay loam versus the other sites, due to higher temperatures than at Alfred and lower 

soil permeability than at Gilmore City.  Drury et al. (2014a) measured 7.36 kg N2O-N ha-1y-1 from 

fertilized corn at Woodlsee and this is consistent with our average results for corn silage. As 

reported in many studies, these emissions are highly variable, as they are strongly affected by 

interannual variability of weather drivers (Uzoma et al., 2015; Smith et al., 2004) and they are 

usually higher from finer textured soils (Rochette et al., 2018). 

Due to high variability it becomes difficult to discern difference among many fertilizer 

treatments, but these differences will be clarified using numerical and statistical methods in the 

following sections. Our results suggest that climate variability impacts may in some cases be 

greater than fertilizer management impacts and thus it could be challenging to discern differences 

when analysing only a few years of experimental measurements. Certainly though, experimental 

studies are essential for discerning shorter term impacts of weather events on processes which 

influence reactive N losses and trade-offs. This will lead toward having better characterized 

processes and algorithms which are crucial for developing improved models. 
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Figure 5.2. Boxplots showing simulated impacts of selected fertilizer management across 30 

years of climate variability at the Woodslee location on a) dry silage biomass b) N leaching to 

tiles, c) N2O emissions, d) NH3 volatilization, and e) N runoff.  The black and red lines, lower 

and upper edges of the boxes, and bars and dots in outside the boxes represent median and mean 

values, 25th and 75th, 5th and 95th, and <5th and >95th percentiles of all data, respectively. 
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5.3.3 Management impacts which are commonly studied experimentally  

5.3.3.1 Fall versus spring applied organic fertilizer 

To further demonstrate the variability that can occur across 30 years of climate, an example 

model output which highlights the differences over the time series in simulated N2O emissions, 

NO3
- leaching and NH3 volatilization between spring and fall applied manure slurry is shown in 

Fig. 5.3. For this example using a clay soil at Alfred, the DNDC model predicted greater average 

N2O emissions, N leaching and N runoff but less NH3 volatilization in the fall than in the spring. 

This result was consistent across locations (Fig. 5.S5). The greater N2O emission from fall applied 

manure were primarily caused by more substrates (i.e. soil N and dissolved organic C (DOC)) 

being available during the off-season freeze-thaw period, which enhances denitrification in 

DNDC. This is consistent with observations for the raw manure at Alfred (He et al., 2019b; 

Schwager et al., 2016). Thorman et al. (2008) found greater N2O emissions when slurry was 

applied in late fall or winter than when applied in the spring. Non-growing season periods, when 

plant N uptake does not occur, are often favourable for denitrification (Rochette et al., 2004; 

Wagner-Riddle et al. 2008). Greater N leaching and runoff losses are generally expected from fall 

applied organic or inorganic fertilizer when soil moisture is high and due to losses during snow 

melt and freeze-thaw dynamics (Gamble et al., 2018; Schwager et al., 2015, 2016; Drury et al., 

2016; Thorman et al., 2008; van Es et al., 2006; Randall et al., 2003; Di et al., 1999). Ammonia 

volatilization is lower simply due to lower average temperatures in the fall.  For injected (Fig. 

5.3a) and incorporated (Fig. 5.3b) scenarios, average N2O emissions are less under spring than 

under fall applied slurry but in certain years more emissions occur under spring application 

depending on weather conditions. For instance, rainfall was exceptionally low in the 4 week period 

after slurry application in the fall of 1993 (66% of normal) resulting in lower than average N2O 

emissions whereas an average level of rainfall in 1993 after spring slurry application resulted in a 

moderate level of emissions. Nitrogen loss due to leaching was generally higher for fall-applied 

manure than for spring-applied manure, but this was not always the case. This demonstrates the 

importance of taking measurements over a long timeframe or using well-validated models to 

extrapolate across climate variability.    
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Figure 5.3. Differences in simulated reactive N loss between spring and fall applied manure 

(spring minus fall) for the clay soil at Alfred for N2O emissions a) iSO-iFO, b) ISO-IFO, c) 

BSO-BFO; N Leaching d) iSO-iFO, e) ISO-IFO, f) BSO-BFO; and NH3 volatilization g) iSO-

iFO, h) ISO-IFO, i) BSO-BFO. The red-dashed line shows the average difference across 30 

years.  

 

To describe the simulated changes in N loss for selected changes in management six tables 

are presented, one for each site and soil type (Tables 5.2, 5.S6-5.S10). Management impacts which 

are commonly studied experimentally are presented. As shown in Table 5.2, when changing 

management from iFO to iSO, NO3
- leaching on average across 30 years was reduced by 13.4 kg 

N ha-1, with reductions ranging from -28.3 to -2.5 kg N ha-1.  Reduced N leaching occurred across 

all 30 climate years. Total reactive N was reduced under injected and incorporated slurry 

application, but often not under broadcast. This was also the case at Woodslee (Table 5.S8, 5.S9) 

but not for Alfred (Table 5.S6, 5.S7) where reactive N loss was reduced for all three methods of 

slurry application. At the warmer Gilmore City and Woodslee sites NH3 volatilization was greater 

than at Alfred and the benefit of reducing N leaching, runoff and N2O emissions in broadcast 

spring organic fertilization was offset by the greater NH3 losses.  

To further quantify differences among management practices, additional tables are provided 

that show the significant difference among management practices at each location (Tables 5.S11, 
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5.S12, 5.S13). Average N leaching, N runoff, N2O emission, NH3 volatilization, dry silage yield, 

and reactive N are also provided across the 30 yr of climate variability. Regarding fall versus 

spring organic fertilization, N leaching was found to be the only reactive N component that was 

significantly different across all sites and soil textures. Nitrous oxide was significantly different 

across all application methods and soils at Gilmore City and under the sandy loam at Alfred. 

Ammonia was always significantly different for broadcast fertilizer application across all sites and 

soil textures, and also for injected and incorporated sandy loam at Gilmore City and incorporated 

sandy loam at Woodslee. 

 

Table 5.2 Simulated average change in N loss, maximum and minimum change in any given 

year, and number of years losses are reduced or increased between selected management 

scenarios over 30 years of climate variability for clay loam soil at Gilmore City (kg N ha-1) 

 

 
 i-injected; I-incorporated; B-broadcast; M-mineral; O-organic; S-spring; F-fall; Sd-sidedress; Sp-split 
*Number of years that each N component is lower or higher out of the 30 years of weather simulated for the 

respective change in fertilizer management.  

 

  Injected  Incorporated  Broadcast 

  Leach 

N 

Runoff 

N 

NH3 N2O Reactive 

     N 

Leach 

N 

Runoff 

N 

NH3 N2O Reactive 

     N 

Leach 

N 

Runoff 

N 

NH3 N2O Reactive 

     N 

FO to SO Average -13.40 -0.01 0.61 -1.41 -14.21  -12.00 -2.31 1.41 -2.85 -15.75  -20.78 -4.03 34.62 -3.87 5.94 

 Minimum -28.31 -0.12 0.11 -3.42 -27.74  -26.00 -4.61 -3.95 -5.40 -31.30  -45.00 -7.69 8.83 -8.13 -26.23 

 Maximum -2.50 0.03 1.26 -0.36 -2.89  1.92 -1.24 7.11 -1.27 -1.88  -4.98 -1.80 58.88 -1.82 34.25 

 Lower loss* 30 10 0 30 30  29 30 3 30 30  30 30 0 30 12 

 Higher loss* 0 16 30 0 0  1 0 27 0 0  0 0 30 0 18 

                   SO to SM Average 0.43 -0.02 -0.61 -0.25 -0.45  0.33 -0.04 2.05 0.25 2.59  -1.73 -0.02 -4.11 -0.05 -5.91 

 Minimum -0.74 -0.06 -1.10 -1.06 -1.86  -1.42 -0.07 -6.78 -0.25 -5.89  -4.62 -0.12 -46.08 -0.78 -49.55 

 Maximum 4.37 0.02 -0.30 0.17 3.84  4.64 0.05 10.94 0.62 10.69  1.80 0.04 19.81 0.33 17.31 

 Lower loss 14 21 30 22 24  13 28 11 5 8  28 21 20 15 22 

 Higher loss 15 2 0 7 6  17 1 18 25 22  2 2 10 15 8 

                   SM to SdM Average -2.49 0.00 -0.01 0.31 -2.19  -2.29 0.00 -0.97 0.18 -3.07  -1.51 -0.03 -9.77 -0.05 -11.36 

 Minimum -5.86 -0.01 -0.24 -0.27 -6.35  -5.43 -0.01 -9.56 -0.27 -14.55  -5.68 -0.16 -60.84 -0.68 -61.88 

 Maximum -0.29 0.04 0.23 0.88 0.19  1.13 0.05 7.75 0.68 6.71  1.88 0.01 34.12 0.22 30.05 

 Lower loss 30 1 12 5 29  29 3 17 4 22  27 28 18 15 18 

 Higher loss 0 4 11 25 1  1 5 12 26 8  3 1 12 15 12 

                   SM to SpM Average -1.56 0.00 -0.12 0.20 -1.48  -1.15 0.00 -3.71 0.15 -4.71  1.21 -0.02 -16.99 -0.02 -15.81 

 Minimum -3.70 -0.01 -0.37 -0.19 -4.25  -3.22 -0.01 -12.70 -0.16 -15.12  -1.49 -0.11 -45.39 -0.52 -45.45 

 Maximum -0.18 0.03 0.00 0.56 -0.08  1.73 0.07 2.19 0.42 1.77  7.93 0.04 10.07 0.42 10.92 

 Lower loss 30 2 20 5 30  28 1 21 5 29  8 23 27 13 29 

 Higher loss 0 4 0 25 0  2 6 1 25 1  22 3 3 17 1 

                   SO to SpO Average -1.57 0.00 1.30 0.13 -0.13  -2.03 -0.01 3.01 0.19 1.16  3.84 0.01 8.08 0.34 12.26 

 Minimum -3.41 -0.02 0.62 -0.61 -2.49  -5.66 -0.03 -2.89 -0.06 -5.05  0.71 -0.01 -10.55 0.07 -7.15 

 Maximum -0.42 0.01 1.93 0.54 1.91  -0.28 0.00 13.65 0.62 10.44  8.02 0.06 22.20 0.74 26.63 

 Lower loss 30 4 0 6 16  30 23 3 4 12  0 5 5 0 3 

 Higher loss 0 5 30 23 14  0 0 27 26 18  30 15 25 30 27 

                   
Application 

method 

 ISM to iSM  BSM to iSM  BSM to ISM 

Average 0.26 0.00 -4.12 0.14 -3.71  7.84 -0.02 -52.54 0.67 -44.05  7.58 -0.03 -48.42 0.53 -40.34 

 Minimum -0.43 -0.01 -12.33 -0.12 -10.88  0.87 -0.09 -90.13 -0.01 -80.22  0.86 -0.09 -81.35 -0.01 -71.80 

 Maximum 2.10 0.03 0.00 0.46 0.03  19.95 0.25 -16.16 1.75 -11.40  18.81 0.24 -5.11 1.70 -0.52 

 Lower loss 13 1 21 5 28  0 23 30 1 30  0 24 30 2 30 

 Higher loss 16 6 0 24 2  30 5 0 29 0  30 5 0 28 0 
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5.3.3.2 Organic versus mineral fertilizer  

The overall impact of changing from organic to mineral fertilizer was found to differ across 

sites, soils and application method. At Alfred, predicted total reactive N loss generally increased 

when changing management from spring organic to spring mineral fertilization in the clay soil, but 

the difference was small (Supplemental Table S6). On the other hand, reactive N loss decreased 

when changing from spring organic to spring mineral fertilization in the sandy loam, with less N 

leaching and lower NH3 emissions from spring mineral fertilization, particularly under broadcast 

(Table 5.S7). A sandy soil is more aerated and DNDC simulates greater rates of decomposition of 

manure resulting in more NH4+ formation with higher potential for NH3 volatilization. A similar, 

yet more pronounced result was seen at Woodslee (Table 5.S8, 5.S9) and Gilmore City (Table 5.2, 

5.S10). At the Gilmore City location NH3 volatilization from the sandy loam was significantly 

higher from organic than from mineral fertilizer in 4 out of 6 cases (Table 5.S13). Average N2O 

emissions were higher from organic amendments across all locations and soil types with significant 

differences for a few practices at each location (Tables 5.S11, 5.S12, 5.S13), which is consistent 

with some experimental studies (Schwager et al., 2016; Kramer et al., 2006). In the DNDC model 

denitrification is driven by availability of both soil N and DOC and DOC is higher under manure 

application after mineralization of organic matter. Note, however, that across the 30 years DNDC 

sometimes predicts more N2O from mineral than organic fertilizer, depending on yearly weather 

patterns. Interestingly, N leaching or runoff was never found to be significantly different between 

organic and mineral fertilizer. Varying result have been found from experimental studies where, 

for example, Svoboda et al. (2013) found higher N leaching losses from mineral than organic 

fertilizer whereas Kramer et al. (2006) found greater N leaching for organic applications, likely 

due to enhanced denitrification from higher C inputs. 

 

5.3.3.3 Spring mineral versus side dress mineral 

Research has found that sidedress mineral fertilization can improve crop N uptake and yields 

in comparison with spring application; however, this may only occur if the crop is under N stress 

(Zebarth et al., 2001). With sidedress mineral fertilization, N application timing corresponds better 

with crop N demand, being at about the sixth-leaf stage for corn silage. Overall, model simulations 

indicate that sidedress mineral fertilization reduced N loss and slightly increased biomass. In 

situations where crop N stress was high such as at Gilmore City, (Table 5.2, S10) , difference in 
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silage yield response was more pronounced (~3% greater).  The higher crop N stress at Gilmore 

City was due to higher NH3 volatilization losses as a result of higher temperatures than at Alfred 

and higher soil water availability during the growing season (Fig. 5.S1) than at Woodslee, both of 

which are drivers that increase volatilization in DNDC (Dutta et al., 2016a). 

 

5.3.3.4 Spring mineral versus split mineral 

Interestingly, split mineral fertilization reduced N loss more than sidedress mineral 

fertilization (Tables 5.2, 5.S6-5.S10). This was primarily because NH3 emissions at the sixth leaf 

stage application were usually lower than under sidedress mineral fertilization. Urea hydrolysis 

increases OH− concentration in the soil, enhancing NH3 volatilization (Dutta et al., 2016a). In the 

case of sidedress mineral fertilization, relative to split mineral fertilization, more urea is applied in 

the warmer portion of the year. This alone enhances NH3 loss, but also the soil pH shift is larger 

due to more urea undergoing hydrolysis at this higher temperature. As an average across sites, split 

fertilizer reduced reactive N per metric ton of dry silage by 6.4, 8.8, and 12.0% in the sandy loam 

for injected, incorporated, and broadcast applications, respectively, whereas it was reduced by 1.9, 

6.0 and 21.5% in the clay loam.  At all locations and in all soils, except for the Alfred clay, silage 

yields were marginally higher for split mineral fertilization than under spring mineral fertilization 

(Tables 5.S11, 5.S12 and 5.S13). Average yield over 30 yr was, in fact, 8.9% higher for split 

mineral fertilization for the sandy loam broadcast treatment at Gilmore City; however, this was 

still not significant at the 0.05 level.  

 

5.3.3.5 Spring organic versus split organic 

For all locations and soil textures, split organic fertilization reduced N leaching under the 

injected and incorporated treatments but increased N leaching when broadcast (Tables 5.2, 5.S6-

5.S10).  In the model this is caused by a higher rate of decomposition, and nitrification near the 

soil surface for broadcast manure at higher temperatures resulting in more N available for leaching. 

Because of increased decomposition rates of the manure applied at sixth-leaf stage, split organic 

fertilization usually produced greater N2O and NH3 volatilization than spring organic fertilization. 

This resulted in a tradeoff in losses between N leaching and N2O or NH3 when fertilizer was 

injected or incorporated.  
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5.3.3.6 Application method 

We examined the differences in reactive N losses between injected, incorporated and 

broadcast application methods for spring applied urea across all sites and soils and the outcome 

was clear (Tables 5.2, 5.S6-5.S10).  In at least 28 of 30 yr, more reactive N loss occurred under 

incorporated than under injected application. When comparing broadcast with injected or 

incorporated applications, more losses occurred in all 30 yr for broadcast treatments.  

 

5.3.4 Comparative analysis of simulated reactive N losses between locations and soil types  

Reactive N as a sum of N leaching, N runoff, N2O-N and NH3-N is analysed per ton of dry 

harvested silage in Fig. 5.4. Although this summation may undervalue the importance of specific 

reactive N components (i.e. N2O which has a large global warming capacity) it provides a good 

metric of the overall performance of the system to retain N which is of economic consequence to 

farmers.  This figure provides an aggregated synopsis of the outcomes from the entire study. There 

are several clear trends demonstrated which align with results from experimental studies. There is 

more reactive N loss from the coarser texture sandy loam, more N losses occur for broadcast, 

followed by incorporated in comparison to injected fertilizer application, and a little more overall 

average N loss occurs from organic than mineral fertilizer. The sandy loam soil texture resulted in 

2.6, 1.8 and 3.0 times more reactive N loss per metric ton of silage biomass than did the finer 

textured soils at Alfred, Woodslee and Gilmore City, respectively. Silage biomass was reduced on 

average by 18, 35, and 16% for the sandy loam soils in comparison to clay soils at Alfred, 

Woodslee, and Gilmore City, respectively (Table 5.S11, 5.S12, 5.S13). This was due to increased 

crop water and N stress for the sandy loam soils relative to the clay soils. Although annual 

precipitation was similar between Woodslee and Gilmore City sites more crop water stress was 

predicted to occur under the sandy loam soil at Woodslee due to less precipitation during the 

growing season (Fig. 5.S1) and greater runoff in the non-growing season. Overall, the sandy loam 

soils showed more consistency in the ranking of fertilizer managements across sites than did the 

clay textured soils. This is because coarser textured soils are more susceptible to N loss and related 

crop N stress thus management that is beneficial for reducing N loss has more influence.  

Regarding the timing of fertilizer application, sidedress and split application are 

recommended for reducing reactive N loss, and fall application should be avoided. On average 

across the sites, fall-applied manure in comparison with spring-applied manure increased reactive 
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N loss per metric ton of silage by 109, 109, and 27% for injected, incorporated, and broadcast 

application, respectively, on sandy loam soils. Likewise reactive N per metric ton of silage for fall-

applied manure in comparison with spring-applied manure was increased by 43, 44, and 14%, for 

injected, incorporated, and broadcast application on clay soils. Silage biomass was not 

significantly affected by the increased N losses during the fall in the clay soils; however, biomass 

under fall organic relative to spring organic in the sandy loam soils was reduced by 26 and 29% 

for the Alfred and Woodslee sites, respectively (Table 5.S11, 5.S12). Interestingly, there was no 

change in simulated biomass after fall manure application at Gilmore City, but it has been 

suggested that N mineralization is high at this site at ~140.4 kg N ha-1 y-1 for a corn-soybean 

[Glycine max (L.) Merr.] rotation (Qi et al., 2011b). The DNDC model simulated, on average, 79, 

114, and 139 kg N ha−1 yr−1 of mineralization at Alfred, Woodslee, and Gilmore City, respectively. 

 

 
 

Figure 5.4. Average reactive N (sum of N leaching, N runoff, N2O-N and NH3-N) per ton of dry 

harvested silage over 30 years for each location, soil type and fertilizer management practice. i-

injected; I-incorporated; B-broadcast; M-mineral; O-organic; S-spring; F-fall; Sd-sidedress; Sp-

split. The number at each data point signifies the ranking of the fertilizer management practice 

for each site and soil type.  
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5.4 Conclusions  

In this study a well-tested DNDC model version, with recently integrated mechanistic tile 

drainage, was used to investigate the impacts of N loss from 9 organic and 9 inorganic fertilizer 

management practices across 3 locations and 30 years of climate variability. Similar impacts of 

fertilizer management were often determined between locations and these were highly variable 

across climate but usually agreed with observations. Reactive N losses were much greater from 

coarser than the finer textured soils and in many cases climate variability had more influence on 

reactive N loss than did changes in fertilizer management. There was much greater reactive N loss 

from fall-applied than from spring-applied manure slurry, and the most beneficial managements 

were shown to be injected split and sidedress mineral fertilizer. Several on farm management 

decisions come into play when considering fertilizer application method. These can include 

fertilizer source and type of equipment available for application, manure storage considerations, 

and on farm time management between multiple tasks. The results presented in this study can be 

used to guide producers in planning fertilizer management in an effort to reduce N loss, and 

minimize the environmental footprint. 

 

5.5 Supplementary Sections, Tables and Figures 

Section 5.S1 Description of experimental sites 

Alfred, Ontario, Canada 

A 2.5 year experimental study (years 2011-2014) was initiated in October 2011 at Alfred, 

Ontario (45.34° N, 74.55° W) on a tile-drained Bearbrook clay (47% clay, 18% silt) and is 

classified as an Orthic Humic Gleysol. Fertilizer treatments included raw and digested manure 

applied in either the fall or spring, as well as an inorganic fertilizer (urea) applied in the spring, 

along with control plots (no fertilizer). All treatments were initially broadcast and then shortly 

incorporated with a targeted application rate of 140 kg N ha-1. The manure application N rate was 

determined by using factors for total ammoniacal N (TAN) retention and organic N mineralization. 

All treatments were seeded to silage-corn. Direct N2O emissions, NO3 in tiles, soil N, and crop 

measurements were conducted over the study period.  Please see Schwager et al. (2016) for a more 

detailed description of soil, management and experimental setup. 
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Woodslee, Ontario, Canada 

The initial field study was conducted on a field that was previously established in 1991 to 

monitor surface runoff and tile drainage.  It is located on a farm at Woodlsee, Ontario (42°13’N, 

82°44’W) on a Brookston clay-loam, and is classified as an Orthic Humic Gleysol. The research 

study focused on was of 5 years duration (years 2000-2005) for a corn-soybean rotation with and 

without a winter wheat cover crop, with measurements of water volume and N concentrations to 

tile drains and to runoff. Both a starter (18-46-0) and sidedress application of UAN (150 kg N ha-

1) was applied to corn for a combined nitrogen rate of 175 kg N ha-1. Corn grain was harvested in 

early November and tillage generally consisted of fall disking except when excessive residue 

required a more substantial cultivated heavy plough. Measurements include water and NO3 to tiles, 

soil mineral N, crop biomass and yield measurements.  Please see Drury et al. (2014b) for a more 

detailed description of soil, management and experimental setup. 

  

Gilmore City, Iowa, USA 

A five year field experiment was established in the fall of 2004 at the Agicultural Drainage and 

Water Quality – Research and Demonstration Site close to Gilmore City in north central Iowa, 

USA (42_420N 104_000W). The region is predominantly made up of the following soils; Nicollet 

(fine-loamy, mixed, superactive Aquic Hapludoll), Webster (fine-loamy, mesic Typic 

Endoaquolls), Canisteo (fine-loamy, mesic Typic Endoaquolls), and Okoboji(Fine, smectitic, 

mesic Cumulic Vertic Endoaquolls). Four land cover treatments were initiated consisting of winter 

rye growth prior to corn and prior to soybean – first phase of the rotation (TRT1), winter rye cover 

crop growth prior to soybean and prior to corn – second phase of the rotation (TRT2), corn and 

soybean without cover crop –first phase of rotation (CTRL1) and corn and soybean without cover 

crop –second phase of rotation (CTRL2). Aqueous ammonium nitrogen was applied to corn at a 

rate of 140 kg N ha-1 in the spring near emergence time. The site includes a larger compliment of 

measurements including water content at 4 depths, biomass and crop N uptake and daily 

measurement of water flow and N concentration to tile drains. Please see Qi et al. (2011a) for a 

more detailed description of soil, management and experimental setup.  
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Section 5.S2 Description of N loss processes in Canada DNDC 

Nitrous oxide emissions 

In DNDC nitrification and denitrification processes are characterized in the “anaerobic balloon” 

sub-model. The “anaerobic balloon” concept uses the Nernst equation to estimate redox potential 

(Eh) which regulates the size of the anaerobic (denitrifier) and aerobic (nitrifier) microbial 

fractions. The anaerobic portion is considered to be inside the balloon and the aerobic outside. The 

nitrification rate is determined as a function of nitrifier bacteria biomass, NH4
+ concentration, a 

temperature reduction factor, a moisture reduction factor and pH.  The N2O from nitrification is 

regulated by water filled pore space, quantity of N nitrified, and temperature. In addition to 

determining when nitrification and denitrification occurs the Nersnt equation determines when 

specific biologically mediated reductive identification reactions occur, from 

NO3→NO2→NO→N2O→N2. The rate of the reactions (microbial growth) is then determined 

using the Michaelis–Menten equation, a multi-nutrient dependent growth function dependent on 

temperature, dissolved organic carbon, soil water, Eh, and pH.  N2O from denitrification is 

calculated as stepwise transformation process as a function of microbial growth and pH. 

 

NH3 volatilization 

In DNDCv.Can a new sub-model which operates on an hourly time step was included by 

Congreves et al. (2016b) to improve the simulation of NH3 volatilization.  This sub-model is based 

on chemical equilibria principles whereby the acid–base equilibrium between  NH4
+ and NH3 is 

determined in aqueous solution with the reaction rates being determined by the pH of the mixed 

soil solution and the dissociation constants influenced by soil temperature. NH4
+ adsorption by 

clay in the model also restricts mobility and limits availability for the acid-base equilibrium. The 

aqueous-gas equilibrium is then calculated using Henry’s law with NH3 volatilization being 

limited by a soil depth function.  The utility of this development was further improved by Dutta et 

al. (2016a) who improved the simulation of urea hydrolysis and included the impact of buffer 

capacity on soil pH.  Urea hydrolysis is determined as a function of N-urea concentration, 

volumetric moisture content, and a kinetic rate constant for hydrolysis. The pH buffering was 

derived from Tripathi et al. (2000) and is primarily a function of the cation exchange capacity of 

the soil. 
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N leaching  

The hydrological framework in DNDCv.Can was recently enhanced (Chapter 4) by including a 

new mechanistic tile drainage sub-model and root growth dynamics. The water flux mechanisms 

were also improved and a deeper and heterogeneous soil profile was included. These developments 

improved the simulation of available N in the profile since mineralization, clay adsorption, 

denitrification and nitrification were simulate over 200 cm depth rather than only 50 cm in the 

default model version. The original nitrate movement in DNDC was conceived as firstly a function 

of the water flux per layer.  Soil nitrate was considered to be mobilized by a positive water flux 

(90% mobilized) and transferred to the layer below as a one-dimensional vertical N flux towards 

the bottom soil profile.  The movement of N is an iterative step through each of the saturated layers 

per hour that are drained to tiles. Note that nitrification followed by NH4
+ adsorption to clay also 

restricts N mobility since there is less NO3
- available in solution. Additionally,  another fraction 

(10% of the NO3
-
 in each layer) was considered to be lost through preferential water flow via 

macropores directly out of the soil profile. In DNDCv.Can this preferential N loss function was 

modified to ensure correlation with water movement. It was  found that DNDC sometimes 

simulated N movement when there was no water flow.  In DNDCv.Can the fraction of NO3
- 

available to be transferred to the layer below at an hourly time step can now be parameterized 

through the user interface with a default value of 0.9. The fraction per layer that is preferentially 

lost directly to drains is set to a default fraction of 0.02. Nitrate tile losses to tiles are calculated 

starting from the layer situated at the top of the water table down to the layer at the bottom of the 

tile drains.  

 

N runoff 

For estimating runoff DNDC uses the SCS runoff curve number method developed by the USDA 

Natural Resources Conservation Service. Smith et al. (2019c) found that for default DNDC nitrate 

losses to runoff were very low for all cropping systems. To address this issue we first fixed a water 

mass balance error in the SCS runoff curve number method. Second, the model was greatly 

modified to simulate a fluctuating water table and when the water table reaches the soil surface 

runoff and additional loss of N could then occur. Further, N loss to runoff was originally calculated 

as a fraction of rainfall that goes to runoff (based on SCS method) multiplied by the nitrate found 
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in only the top surface layer (~0.5 - 2 cm). We extended this calculation to the top 2 layers and 

included a user defined parameter where the fraction can be adjusted.  

 

  

Section 5.S3 Model validation for simulating drainage and N loading to tiles at Alfred, 

Woodslee and Gilmore City 

To evaluate model performance, several statistics were employed to compare simulations 

against measurements including normalized average relative error (NARE), Nash-Sutcliffe 

efficiency (NSE), and index of agreement (d) (Nash and Sutcliffe, 1970; Willmott, 1985). Based 

on the recommendations in previous studies (Moriasi et al., 2007; He et al., 2018b), a NSE (–∞ to 

1) value=1.0 indicates “perfect” agreement, NSE>0.5 indicates “good” agreement, NSE>0.0 

indicates “fair” agreement, and a NSE<0.0 indicates “poor” agreement between simulated and 

measured data. A value of d≥0.9 illustrates “excellent” match, 0.8≤d<0.9 illustrates “good” match, 

0.7≤d<0.8 illustrates “fair” match, and d<0.7 illustrates “poor” match when comparing the 

simulated and measured values. 

At the Alfred site cumulative drainage and N loading was very well simulated by the revised 

model (He et al., 2019b), but capturing the timing of daily water flow and monthly N loss to tile 

drains was more problematic (Tables S2, S3). In all cases the model produced a “fair” simulation. 

At this site the snow cover dynamics and freeze-thaw events during the winter, particularly in the 

2013-2014 year were complex.  DNDC is a 1-D model thus for instances where there was 

significant blowing snow the effect of snow insulation may not be well simulated.   This resulted 

in a fair simulation of daily water and N dynamics, however, the simulation of water flow was 

improved over Guest et al. (2018) who compared DNDC to the water budget models HOLOS and 

VSMB. In Guest et al. (2018) DNDC performed better than HOLOS and VSMB but under-

predicted drainage by 33% with an RMSE of 76 mm whereas the revised model in this study under-

predicted by 3-11% (Table S2) with an RMSE of 35.7 mm. 

In general, the revised model performed very well at both the Woodslee and Glimore City 

sites where predicted water loss to tiles was simulated with NSE>0.5, except at for the control 

drained, no-cover crop treatment at Woodslee where observations were much lower than the cover 

crop treatment. In all cases simulations were improved over default DNDC (Table S2).  This is not 

surprising since the model previously only simulated bulk flow of water with no tile drainage 

algorithm. Note that the pre-developed model was not capable of simulating controlled drainage 
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or sub-irrigation. At the Woodslee site N loss to tiles was well simulated  for the cover crop and 

no-cover crop treatments with conventional tile drainage but the timing of N loss was not as well 

simulated for the control drained, sub-irrigated treatments (Table S3).  Note the cumulative N 

losses to drains was well simulated with the appropriate reduction in losses under controlled 

drainage (Observed 38.3%; DNDC 37.4%). N loss to tiles was predicted with “excellent” accuracy 

for all treatments at Gilmore City.  Note that N concentrations in tile drainage were measured less 

frequently that water volumes.  

Additionally, it was found that revised DNDC model performed similarly to RZWQM2 for 

simulating average daily drainage across the validation treatments (NSE~0.6), and better for 

simulating N loading to drains (NSE, DNDC: 0.72, RZWQM2: 0.54) and soil water storage (NSE, 

DNDC: 0.34, RZWQM2: -0.19). Simulation of drainage and N loading were on average better 

simulated at the Woodslee site. This demonstrated that DNDC development was successful 

considering RZWQM2 is a well-validated water quality model which includes detailed 

computational hydrology.  

 

Section 5.S4 Model validation for simulating corn silage biomass and N uptake, soil N and 

N2O emissions at Alfred 

At the Alfred site the model indicated excellent performance based on the average statistical 

values of d index (d>0.90), Nash-Sutcliffe efficiency (NSE>0.5) and normalized average relative 

error (NARE<20%) for biomass, N uptake, and annual N2O emissions (Table S4). Soil N was also 

well simulated with good to excellent performance based on  d>0.80. See He et al. (2019b) for 

further details. 

 

Section 5.S5 Comparison of simulated 30 year average model outcomes to measurements at 

Alfred  

Most of our model inputs and parametrization for manure, urea and corn silage were based 

on the Alfred site, thus it is useful to compare the general simulation results across our 30 year 

analysis to site observations. Note that there were differences between site-specific and modelled 

management history. At Alfred, N2O emissions from corn silage, treated with raw manure slurry 

in the spring and fall and urea in the spring, were measured from the fall of 2011 until the spring 

of 2014. Simulated N2O emissions over 30 years from incorporated raw manure, averaged across 

fall and spring applications (4.3 kg N ha-1y-1), were relatively similar to observed average annual 
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emissions  (4.9 kg N ha-1 y-1) (Schwager et al., 2016). The simulated annual emissions ranged from 

3.0 to 10.5 kg N ha-1y-1 for IFO and 2.8 to 9.8 kg N ha-1y-1 for ISO indicating that there may be 

large inter-annual variability depending on weather patterns.  The trends in simulated N2O 

emissions, and also NO3
- leaching, agreed well with observations with greater losses occurring in 

the fall relative to spring. Measurements showed that spring applied organic and mineral fertilizer 

produced similar emissions across the 2 study years, however, the model showed more average 

emissions across the 30 years from the manure (Table S11, S12 and S13). This was true for all 

methods of application, soil types, and study locations. Similar to Schwager et al. (2016) greater 

water and N loss to drains was simulated in the non-growing season as compared to the growing 

season. Schwager et al. (2016) found that the 6-7 kg ha-1 more N leaching occurred for manure 

applied in fall compared to spring. Over the same years we simulated 5 kg ha-1 more N leaching 

in the fall. Non-growing season N2O emissions from the manure slurry were simulated to be 17% 

of annual emissions when spring applied and 51% when fall applied, as an average over 30 years, 

versus 29% and 68%, respectively determined from observations over 2 years (Schwager et al., 

2016).  A detailed comparison, employing identical site management, of modelled and simulated 

drainage and N loading to tiles is provided in supplementary material. 

The observed biomass for ISM, ISO and IFO for the years 2012-2013 were 17055, 13454 and 

14138 kg ha-1, respectively whereas the modelled estimates over the same two years were 13551, 

13595, and 13563, respectively, with reduced yields driven by water stress for each treatment, 

rather than N stress. It was a particularly dry year in 2012 and 2013 was dryer than average. There 

is a known issue in the clay field where water table level was significantly higher in northern plots 

which may have reduced crop water stress and impacted yields under ISM management 

(Schwager, 2015). The modelled averages over the 30 years were 15747, 15239, and 14937 for 

ISM, ISO and IFO, respectively.  
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Table 5.S1 Soil characteristics at Alfred, Gilmore City and Woodslee research plots 

 
Location and data 

collection period 

Soil 

classification*  

Average 

annual    

temp. 

Average 

annual 

Precip. 

Soil characteristics  

Soil surface 

texture 
SOC pH 

 

Bulk 

density 

(oC) (mm)       (%)    (g kg-1) (g cm-3) 

Alfred, Ontario, 

Canada 

45.34° N, 74.55° W 

(2011-2014) 

 

Orthic Humic 

Gleysol 

 

4.5 

 

1021 

35 sand 

18 silt 

47 clay 

 

 

23.2 

 

 

7.1 

 

 

 

1.34 

Woodslee, Ontario, 

Canada 

42°13’N, 82°44’W 

(1999-2005)  

Orthic Humic 

Gleysol 
9.8  816 

28 sand 

35 silt 

37 clay 

25.0 7.0 1.42 

Gilmore City, Iowa, 

United States 

42°42'N 104°00’W 

(2005-2009) 

Nicollet (fine‐

loamy, mixed, 

superactive, 

mesic Aquic 

Hapludoll) 

 

 

8.7 

 

 

824 

32 sand 

34 silt 

32 clay 

 

 

23.2 

 

 

7.1 

 

 

1.37 

* Other soil series are also present at the Gilmore City site.  

 

 

Table 5.S2 Statistical performance of DNDC for simulating water flow to tile drains in cool 

weather climates 

 

*Alfred statistics are summarized from He et al. (2019), Woodslee and Gilmore City from unpublished data. 

CC – cover crop; NCC – No cover crop; CD-SI – controlled drainage and subsurface irrigation; Corn-Soy – Corn-

soybean rotation beginning with corn 

 

  

Site               Calibration                                                Validation   
 Default 

DNDC 

Revised 

DNDC 

 Default 

DNDC 

Revised 

DNDC 

 Default 

DNDC 

Revised 

DNDC 

 Default 

DNDC 

Revised 

DNDC 

Alfred Ontario (daily) 

    Control       Urea          Spring manure         Fall manure 

NARE  NA -3.12  NA -11.4  NA -6.86  NA -6.24 

NSE  NA 0.14  NA 0.27  NA 0.09  NA 0.13 

d  NA 0.74  NA 0.77  NA 0.73  NA 0.70 

Woodslee, Ontario (n=28 over 5 years)  

      CC         NCC         CC, CD-SI          NCC, CD-SI 

NARE  9.5 -0.5  -0.5 12.7  NA -1.9  NA 39.8 

NSE  -0.13 0.87  -0.06 0.83  NA 0.77  NA 0.20 

d  0.67 0.96  0.82 0.96  NA 0.95  NA 0.84 

Gilmore City, Iowa (daily)  

        CC, Corn-Soy      NCC, Corn-Soy       CC, Soy-Corn       NCC, Soy-Corn 

NARE  1.6 3.8  -5.3 -4.7  -16.1 -17.0  17.5 16.6 

NSE   -0.32 0.55  0.08 0.51  0.24 0.59  -0.11 0.70 

d  0.68 0.82  0.72 0.76  0.74 0.81  0.67 0.88 
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Table 5.S3 Statistical performance of DNDC for N loss to tile drains in cool weather climates 

 

*Alfred statistics are summarized from He et al. (2019), Woodslee and Gilmore City from unpublished data. 

CC – cover crop; NCC – No cover crop; CD-SI – controlled drainage and subsurface irrigation; Corn-Soy – Corn-

soybean rotation beginning with corn 

 

 

 

 

 

Table 5.S4 Model validation for simulating corn silage biomass, corn silage N uptake, soil N and 

annual N2O emissions from manure slurry and urea at Alfred. 

 

 
The statistics are summarized from He et al. (2019b). 

  

Item Calibration   Validation 

  Control                 Urea        Spring manure          Fall manure 

  NARE NSE d   NARE NSE   d NARE NSE   d NARE NSE   d 

Above-ground biomass -1.2 0.89 0.98   -9.0 0.91 0.98 10.2 0.71 0.93 16.7 0.79 0.96 

Crop N uptake 9.8 0.74 0.96   -7.4 0.95 0.98 12.7 0.98 0.98 17.0 0.87 0.97 

Soil NO3
- (0-15 cm) -19.9 0.48 0.83   24.3 0.84 0.97 -38.4 0.41 0.89 -48.2 0.38 0.82 

Annual N2O emissions -12.7 0.81 0.96   12.7 0.74 0.94 -19.8 0.63 0.91 -5.6 0.98 0.99 

 

Site         Calibration                                                  Validation  
 Default 

DNDC 

Revised 

DNDC 
 Default 

DNDC 

Revised 

DNDC 

 Default 

DNDC 

Revised 

DNDC 

 Default 

DNDC 

Revised 

DNDC 

Alfred Ontario (monthly) 

    Control       Urea           Spring manure         Fall manure 

NARE  NA 36.0  NA 4.4  NA 21.8  NA 34.7 

NSE  NA 0.17  NA 0.26  NA 0.06  NA 0.16 

d  NA 0.79  NA 0.73  NA 0.75  NA 0.74 

Woodslee, Ontario (n=28 over 5 years) 

   CC      NCC         CC, CD-SI       NCC, CD-SI 

NARE  23.6 -0.3  14.7 10.8  NA 10.3  NA 3.6 

NSE  0.35 0.55  0.56 0.63  NA 0.11  NA -0.20 

d  0.79 0.80  0.83 0.88  NA 0.66  NA 0.60 

Gilmore City, Iowa (monthly)  

        CC, Corn-Soy           NCC, Corn-Soy         CC, Soy-Corn         NCC, Soy-Corn 

NARE  7.4 8.9  -3.0 -0.5  -10.7 -3.1  14.1 11.7 

NSE   0.53 0.69  0.65 0.77  0.59 0.75  0.58 0.64 

d  0.85 0.92  0.89 0.93  0.82 0.93  0.86 0.92 
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Table 5.S5 DNDC model parameters, observed from local studies, default and calibrated   

Sites 

 

 Alfred 

Clay 

Alfred 

Sandy 

Loam 

Iowa 

Clay 

Loam 

Iowa 

Sandy 

Lam 

Woodslee 

Clay Loam 

Woodslee 

Sandy 

Loam 

  

Crop Parameters        

Grain fraction 

Stem+leaf fraction 

Root fraction 

Grain C:N 

Stem+leaf C:N 

Root C:N 

Water requirement 

GDD (0oC base) 

 0.40*^ 

0.48* 

0.12* 

35* 

55* 

60* 

70* 

2300* 

0.40 

0.48 

0.12 

35 

55 

60 

70 

2300 

0.40 

0.48 

0.12 

35 

55 

60 

70 

2300 

0.40 

0.48 

0.12 

35 

55 

60 

70 

2300 

0.40 

0.48 

0.12 

35 

55 

60 

70 

2300 

0.40 

0.48 

0.12 

35 

55 

60 

70 

2300 

Soil Parameters#        

Litter fraction 

Humads fraction 

Humus fraction 

Organic C (%) 

 0.01+ 

0.025+ 

0.965+ 

2.6 

0.01+ 

0.025+ 

0.965+ 

1.5 

0.01+ 

0.09* 

0.90* 

2.5 

0.01+ 

0.025+ 

0.965+ 

1.5 

0.01+ 

0.095* 

0.895* 

2.5 

0.01+ 

0.025+ 

0.965+ 

1.5 

Field capacity (WFPS) 

Wilting point (WFPS) 

KSat (m/hr) 

 0.72 

0.49 

0.015 

0.40 

0.185 

0.1248 

0.80 

0.44 

0.0382 

0.40 

0.185 

0.1248 

0.815 

0.562 

0.020 

0.40 

0.185 

0.1248 

Tile Drainage Factors# 

Tile spacing (m) 

Drain radius (m) 

Tile depth (m) 

Lateral Ksat to drains 

(multiplier of vertical 

Ksat) 

  

15.0 

0.01 

0.9 

1.8* 

 

30.0 

0.01 

1.4 

1.8 

 

7.6 

0.0768 

1.06 

1.8* 

 

30.0 

0.01 

1.4 

1.8 

 

7.5 

0.01 

0.65 

1.8* 

 

30.0 

0.01 

1.4 

1.8 

*calibrated parameters 
^The same silage cultivar that was calibrated to simulate appropriate biomass and N uptake at Alfred 
was employed in DNDC across all sites and soils 
+default parameters 
#values for sandy loam are estimated (not based on local site values)  
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Table 5.S6 Simulated average change in N loss, maximum and minimum change in any given year, and 

number of years losses are reduced or increased between selected management scenarios over 30 years of 

climate variability for the clay soil at Alfred (all results in kg N ha-1) 
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Table 5.S7 Simulated average change in N loss, maximum and minimum change in any given year, and 

number of years losses are reduced or increased between selected management scenarios over 30 years of 

climate variability for the sandy loam soil at Alfred (all results in kg N ha-1) 
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Table 5.S8 Simulated average change in N loss, maximum and minimum change in any given year, and 

number of years losses are reduced or increased between selected management scenarios over 30 years of 

climate variability for the clay loam soil at Woodslee (all results in kg N ha-1) 
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Table 5.S9 Simulated average change in N loss, maximum and minimum change in any given year, and 

number of years losses are reduced or increased between selected management scenarios over 30 years of 

climate variability for the sandy loam soil at Woodslee (all results in kg N ha-1) 
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Table 5.S10 Simulated average change in N loss, maximum and minimum change in any given year, and 

number of years losses are reduced or increased between selected management scenarios over 30 years of 

climate variability for the sandy loam soil at Gilmore City (results in kg N ha-1) 
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Table 5.S11  Average predicted reactive N loss over 30 years at the Alfred location 
 

 
i-injected; I-incorporated; B-broadcast; M-mineral; O-organic; S-spring; F-fall; Sd-sidedress; Sp-split 
*Significant difference between management practices if there are no intersected letter between treatments 

(p<0.05). Analysis of Variance with Duncan test within the same soil type (C or SL). 

  

Treat-

ment 

Soil N2O 
(kg N ha-1) 

NH3 
(kg N ha-1) 

  N Leach 
  (kg N ha-1) 

N Runoff 
(kg N ha-1) 

   Silage 
(kg DM ha-1) 

Reactive N 

loss 

(kg N ha-1) 

Reactive N 

(kg)  per ton 

dry silage 

iSM C 2.9 e * 0.0 e 13.7 cde 0.3 de 15769 a 16.9 1.07 

iSpM C 3.2 de 0.0 e 13.5 cde 0.3 de 15776 a 17.0 1.08 

iSdM C 3.3 cde 0.0 e 13.4 cde 0.3 de 15777 a 17.1 1.08 

iSO C 3.3 de 0.2 e 12.7 de 0.3 de 15386 a 16.5 1.07 

iSpO C 3.6 cde 0.5 e 12.3 de 0.3 de 15293 a 16.7 1.09 

iFO C 3.5 cde 0.1 e 18.0 ab 0.3 e 15209 a 21.9 1.44 

ISM C 3.4 cde 1.3 e 13.6 cde 0.3 de 15706 a 18.6 1.19 

ISpM C 3.3 cde 0.0 e 13.4 cde 0.3 de 15747 a 17.0 1.08 

ISdM C 3.5 cde 0.2 e 13.3 cde 0.3 de 15735 a 17.3 1.10 

ISO C 4.0 bc 0.4 e 13.1 de 0.6 cde 15239 a 18.1 1.18 

ISpO C 4.3 ab 0.9 e 12.4 de 0.5 cde 15108 a 18.2 1.20 

IFO C 4.5 ab 0.4 e 17.5 b 3.3 b 14937 a 25.7 1.72 

BSM C 3.9 bcd 25.4 b 13.5 cde 1.0 cde 15805 a 43.7 2.77 

BSpM C 4.3 ab 19.3 c 14.1 bc 1.0 cde 15963 a 38.7 2.43 

BSdM C 4.3 ab 30.6 a 12.8 de 0.9 cde 15819 a 48.7 3.08 

BSO C 3.8 bcd 24.2 b 11.9 e 1.1 cd 14965 a 41.0 2.74 

BSpO C 5.0 a 28.3 a 15.2 c 1.2 c 15933 a 49.7 3.12 

BFO C 4.9 a 15.1 d 19.6 a 10.5 a 15377 a 50.2 3.26 

              

iSM SL 2.2 ef 0.0 e 31.8 c 0.4 c 13413 a 34.4 2.56 

iSpM SL 2.3 ef 0.0 e 31.5 c 0.4 c 13435 a 34.2 2.55 

iSdM SL 2.3 ef 0.1 e 31.3 c 0.4 c 13436 a 34.1 2.54 

iSO SL 2.6 cdef 0.9 e 34.7 c 0.6 c 13437 a 38.8 2.89 

iSpO SL 2.8 bcde 2.5 e 34.1 c 0.6 c 13412 a 40.0 2.98 

iFO SL 3.2 b 0.2 e 67.6 a 0.4 c 9172 b 71.4 7.79 

ISM SL 2.3 ef 1.5 e 32.4 c 0.5 c 13347 a 36.6 2.74 

ISpM SL 2.3 ef 0.1 e 31.7 c 0.4 c 13429 a 34.6 2.57 

ISdM SL 2.4 def 0.7 e 31.4 c 0.4 c 13424 a 35.0 2.60 

ISO SL 2.7 bcdef 2.1 e 33.5 c 0.5 c 13260 a 38.8 2.93 

ISpO SL 3.0 bc 4.1 e 33.0 c 0.5 c 13256 a 40.6 3.06 

IFO SL 3.7 a 1.3 e 61.1 b 4.7 b 9842 b 70.8 7.19 

BSM SL 2.4 def 31.9 c 33.1 c 0.5 c 13347 a 67.9 5.09 

BSpM SL 2.5 edef 26.2 d 32.8 c 0.6 c 13387 a 62.1 4.64 

BSdM SL 2.5 cdef 41.9 b 31.6 c 0.5 c 13248 a 76.5 5.77 

BSO SL 2.6 cdef 44.8 b 33.3 c 0.6 c 12733 a 81.2 6.38 

BSpO SL 2.9 bcd 51.4 a 35.2 c 0.6 c 13527 a 90.2 6.67 

BFO SL 4.0 a 28.0 d 60.2 b 9.4 a 10193 b 101.7 9.97 

 



144 
 

Table 5.S12  Average predicted reactive N loss over 30 years at the Woodslee location 

 

 
i-injected; I-incorporated; B-broadcast; M-mineral; O-organic; S-spring; F-fall; Sd-sidedress; Sp-split 
*Significant difference between management practices if there are no intersected letter between treatments 

(p<0.05). Analysis of Variance with Duncan test within the same soil type (CL or SL). 
       

Treat-

ment 

Soil N2O 
(kg N ha-1) 

NH3 
(kg N ha-1) 

  N Leach 
  (kg N ha-1) 

N Runoff 
(kg N ha-1) 

   Silage 
(kg DM ha-1) 

Reactive N 

loss 

(kg N ha-1) 

Reactive N 

(kg)  per ton 

dry silage 

iSM CL 7.0 f * 0.0 f 16.8 cde 0.5 c 17532 a 24.2 1.38 

iSpM CL 7.1 ef 0.0 f 16.8 cde 0.5 c 17546 a 24.4 1.39 

iSdM CL 7.2 ef 0.0 f 16.8 cde 0.5 c 17537 a 24.5 1.40 

iSO CL 7.8 cdef 0.4 f 16.6 cde 0.6 c 17584 a 25.4 1.45 

iSpO CL 7.8 def 1.4 f 15.2 de 0.6 c 17638 a 24.9 1.41 

iFO CL 7.5 ef 0.1 f 29.2 a 0.5 c 17555 a 37.3 2.13 

ISM CL 7.5 ef 2.6 f 16.3 cde 0.5 c 17541 a 26.9 1.53 

ISpM CL 7.8 def 0.3 f 16.4 cde 0.5 c 17533 a 25.0 1.42 

ISdM CL 7.9 cdef 2.6 f 15.9 de 0.5 c 17525 a 26.8 1.53 

ISO CL 8.8 abc 1.4 f 17.1 cd 1.3 c 17558 a 28.5 1.62 

ISpO CL 9.1 a 2.6 f 15.0 def 1.1 c 17648 a 27.9 1.58 

IFO CL 8.7 abcd 0.4 f 22.9 b 6.0 b 17217 a 37.9 2.20 

BSM CL 7.5 ef 42.7 b 13.8 def 1.6 c 17334 a 65.6 3.78 

BSpM CL 7.5 ef 26.2 d 13.3 def 1.4 c 17320 a 48.4 2.79 

BSdM CL 7.3 ef 31.3 c 11.4 f 1.2 c 16983 a 51.2 3.02 

BSO CL 8.0 bcde 44.4 b 13.0 ef 1.9 c 17215 a 67.4 3.91 

BSpO CL 9.4 a 52.1 a 16.3 cde 1.9 c 18021 a 79.7 4.42 

BFO CL 8.8 ab 21.4 e 19.9 bc 13.2 a 16851 a 63.3 3.76 

              

iSM SL 3.4 e 0.2 h 42.3 b 0.6 c 12017 ab 46.5 3.87 

iSpM SL 3.5 de 0.0 h 40.7 b 0.6 c 12576 ab 44.7 3.56 

iSdM SL 3.5 de 0.1 h 39.9 b 0.6 c 12837 a 44.1 3.44 

iSO SL 3.8 cde 2.3 fgh 46.8 b 1.0 c 12162 ab 54.0 4.44 

iSpO SL 4.0 cde 4.1 efgh 44.6 b 1.0 c 12438 ab 53.7 4.32 

iFO SL 4.5 bc 0.4 h 74.5 a 0.6 c 8096 d 80.0 9.88 

ISM SL 3.5 de 5.4 efgh 42.7 b 0.9 c 11726 ab 52.5 4.48 

ISpM SL 3.6 de 2.8 efgh 40.9 b 0.9 c 12430 ab 48.2 3.88 

ISdM SL 3.6 de 6.2 efg 39.7 b 0.9 c 12659 ab 50.4 3.98 

ISO SL 3.9 cde 7.7 ef 45.8 b 1.2 c 11519 b 58.6 5.08 

ISpO SL 4.2 cd 8.0 e 42.9 b 1.1 c 11973 ab 56.2 4.69 

IFO SL 5.0 ab 1.2 gh 68.5 a 5.1 b 7968 d 79.8 10.02 

BSM SL 3.5 de 49.9 c 42.3 b 1.3 c 11547 b 97.0 8.40 

BSpM SL 3.6 de 46.8 c 40.2 b 1.2 c 12099 ab 91.8 7.59 

BSdM SL 3.6 de 59.0 b 38.1 b 1.1 c 12039 ab 101.8 8.46 

BSO SL 3.7 de 71.7 a 44.1 b 1.3 c 10095 c 120.9 11.98 

BSpO SL 4.1 cde 76.2 a 44.9 b 1.4 c 11736 ab 126.6 10.79 

BFO SL 5.1 a 34.9 d 67.4 a 8.6 a 7898 d 116.1 14.70 
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Table 5.S13  Average predicted reactive N loss over 30 years at the Gilmore City location 

 

 
i-injected; I-incorporated; B-broadcast; M-mineral; O-organic; S-spring; F-fall; Sd-sidedress; Sp-split 
*Significant difference between management practices if there are no intersected letter between treatments 

(p<0.05). Analysis of Variance with Duncan test within the same soil type (CL or SL). 

  

Treat-

ment 

Soil N2O 
(kg N ha-1) 

NH3 
(kg N ha-1) 

  N Leach 
  (kg N ha-1) 

N Runoff 
(kg N ha-1) 

   Silage 
(kg DM ha-1) 

Reactive N 

loss 

(kg N ha-1) 

Reactive N 

(kg)  per ton 

dry silage 

iSM CL 4.2 def * 0.1 f 26.3 b 0.1 c 16963 a 30.7 1.81 

iSpM CL 4.4 def 0.0 f 24.7 bcd 0.1 c 16988 a 29.2 1.72 

iSdM CL 4.5 de 0.1 f 23.8 bcde 0.1 c 16996 a 28.5 1.68 

iSO CL 4.5 de 0.7 f 25.9 bc 0.1 c 16917 a 31.2 1.84 

iSpO CL 4.6 d 2.0 f 24.3 bcd 0.1 c 16912 a 31.0 1.83 

iFO CL 5.9 c 0.1 f 39.3 a 0.1 c 16658 ab 45.4 2.72 

ISM CL 4.1 defg 4.2 f 26.0 bc 0.1 c 16952 a 34.4 2.03 

ISpM CL 4.2 def 0.5 f 24.9 bcd 0.1 c 16988 a 29.7 1.75 

ISdM CL 4.3 def 3.3 f 23.7 bcde 0.1 c 16978 a 31.3 1.85 

ISO CL 3.8 fg 2.2 f 25.7 bc 0.1 c 16818 a 31.8 1.89 

ISpO CL 4.0 defg 5.2 f 23.7 bcde 0.1 c 16833 a 33.0 1.96 

IFO CL 6.7 b 0.8 f 37.7 a 2.4 b 16410 ab 47.6 2.90 

BSM CL 3.5 g 52.7 b 18.4 ef 0.1 c 15247 b 74.7 4.90 

BSpM CL 3.5 g 35.7 d 19.7 def 0.1 c 16227 ab 58.9 3.63 

BSdM CL 3.5 g 42.9 c 16.9 f 0.1 c 15554 ab 63.4 4.08 

BSO CL 3.6 g 56.8 b 20.2 cdef 0.1 c 15232 b 80.7 5.30 

BSpO CL 3.9 efg 64.8 a 24.0 bcde 0.1 c 16935 a 92.9 5.49 

BFO CL 7.5 a 22.2 e 41.0 a 4.2 a 16549 ab 74.7 4.52 

              

iSM SL 2.1  e 0.4 h 43.1 b 0.1 c 14482 ab 45.7 3.16 

iSpM SL 2.2  e 0.2 h 41.3 b 0.1 c 14571 a 43.8 3.00 

iSdM SL 2.2 de 0.3 h 40.2 b 0.1 c 14606 a 42.9 2.94 

iSO SL 2.6 de 4.8 efg 44.0 b 0.2 c 14549 a 51.6 3.55 

iSpO SL 2.8  d 6.5 fg 42.2 b 0.2 c 14544 a 51.7 3.55 

iFO SL 5.2  c 0.5 h 60.7 a 0.2 c 13911 abc 66.5 4.78 

ISM SL 2.2  e 7.8 f 43.5 b 0.1 c 14338 abc 53.6 3.74 

ISpM SL 2.3 de 3.4 efg 41.5 b 0.1 c 14530 a 47.3 3.25 

ISdM SL 2.3 de 6.4 fg 40.2 b 0.1 c 14550 a 48.9 3.36 

ISO SL 2.4 de 13.3 e 43.7 b 0.2 c 13868 abc 59.5 4.29 

ISpO SL 2.6 de 15.3 e 41.4 b 0.1 c 13969 abc 59.3 4.25 

IFO SL 5.9  b 1.8 fg 59.8 a 2.4 b 13385 abc 70.0 5.23 

BSM SL 2.2  e 62.4 b 40.0 b 0.1 c 13082 c 104.7 8.00 

BSpM SL 2.2  e 51.7 c 39.9 b 0.1 c 14245 abc 93.9 6.59 

BSdM SL 2.2  e 61.5 b 38.3 b 0.1 c 14029 abc 102.1 7.28 

BSO SL 2.2  e 79.8 a 38.6 b 0.1 c 11077 d 120.8 10.90 

BSpO SL 2.5 de 84.3 a 41.9 b 0.2 c 13403 abc 128.8 9.61 

BFO SL 6.6  a 33.2 d 61.7 a 3.7 a 13220 bc 105.2 7.96 
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Figure 5.S1. Average daily temperature and cumulative precipitation for the 30 weather years 

simulated at Alfred, Woodslee and Gilmore City locations 
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Figure 5.S2 Boxplots showing 30 year range of average annual  minimum and maximum 

temperature (T), precipitation, radiation, wind speed and relative Humidity at Alfred, Woodslee 

and Gilmore City. The black and red lines, lower and upper edges of the boxes, and bars and dots 

in outside the boxes represent median and mean values, 25th and 75th, 5th and 95th, and <5th 

and >95th percentiles of all data, respectively. 
  



148 
 

Clay

D
ry

 s
to

v
er

 (
k
g 

h
a-1

)

0

5000

10000

15000

20000

25000

(a)

iSM iSdM iSO iFO BSM BSdM BSO BFO

N
 l

ea
ch

in
g 

(k
g 

N
 h

a-1
)

0

20

40

60

80

100

120

(b)

N
2O

 e
m

is
si

o
n 

(k
g 

N
 h

a-1
)

0

2

4

6

8

10

12

(c)

N
H

3 
em

is
si

o
n 

(k
g 

N
 h

a-1
)

0

20

40

60

80

(d)

N
 r

un
o

ff
 (

kg
 N

 h
a-1

)

0

5

10

15

20

25

30

iSM iSdM iSO iFO BSM BSdM BSO BFO

Sand  loam

(e)

 
Figure 5.S3. Boxplots showing impacts of selected fertilizer management across 30 years of 

climate variability at the Alfred location on a) dry silage biomass b) N leaching to tiles, c) N2O 

emissions, d) NH3 volatilization, and e) N runoff. The black and red lines, lower and upper edges 

of the boxes, and bars and dots in outside the boxes represent median and mean values, 25th and 

75th, 5th and 95th, and <5th and >95th percentiles of all data, respectively. 
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Figure 5.S4. Boxplots showing impacts of selected fertilizer management across 30 years of 

climate variability at the Gilmore City location on a) dry silage biomass b) N leaching to tiles, c) 

N2O emissions, d) NH3 volatilization, and e) N runoff.  The black and red lines, lower and upper 

edges of the boxes, and bars and dots in outside the boxes represent median and mean values, 

25th and 75th, 5th and 95th, and <5th and >95th percentiles of all data, respectively.
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Figure 5.S5. Reactive N loss (N2O emissions, NH3 volatilization, N leaching, N runoff) for 

broadcast spring and fall applied dairy manure slurry for a) clay at Alfred, b) sandy loam at 

Alfred, c) clay loam at Gilmore City, d) sandy loam at Gilmore City, e) clay loam at Woodslee, 

and f) sandy loam at Woodslee. BSO refers to broadcast spring applied dairy slurry (organic) and 

BFO refers to broadcast fall applied dairy slurry (organic).  
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Connecting text to Chapter 6 

In Chapter 5 an assessment of fertilizer management impacts on N losses from cropping systems 

under long-term climate variability was explored, however, the impacts of possible changes in 

future climate were not considered. Well developed and calibrated biophysical models can be 

particularly valuable for simulating climate change impacts, however, there are many alternative 

modelling approaches used in literature for simulating such impacts which can produce greatly 

different results. Some of these studies employ simple methods due to limitations in models or 

due to complications in simulating changes in agronomic practices over time. Thus in Chapter 6 

focus is placed on using the revised model presented in Chapter 4, which was enhanced for 

simulating more accurate hydrology and a larger array of possible management interactions, to 

explore approaches for simulating climate change impacts on cropping systems and to 

recommend a plausible approach. The assessments were performed at locations where the model 

had previously been validated in Chapters 4 and 5, but also at a semi-arid location, Swift 

Current, to assess modelling approaches in a cool dry region.  Additional model validation was 

performed at this location using long-term crops yields, soil carbon and soil water observations.  

 

The following manuscript is under internal review and will be submitted to Environmental 

Research Letters: 

Chapter 6. Smith, W., B. Grant, Z. Qi, W. He, B. Qian, A. VanderZaag, C. Drury, and M. St 

Luce. 2019. Towards an approach for modelling the impacts of climate change on cropping 

systems. Environmental Research Letters. Under review by co-authors. 
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Chapter 6 

Towards an approach for modelling the impacts of climate change on cropping systems 

 

Ward Smith, Brian Grant, Zhiming Qi, Wentian He, Budong Qian, Andrew VanderZaag, 

Craig F. Drury, and Mervin St Luce 

 

 

Abstract 

Climate change is expected to impact crop growth, reactive nitrogen losses, and soil carbon 

dynamics in cropping systems worldwide. It is important to develop plausible modelling 

approaches for predicting the feedbacks of water and nutrient cycling on these outcomes, while 

incorporating likely changes in agricultural management under a changing climate. We 

performed case studies at three locations in Canada to explore the impact of modelling 

approaches that are commonly employed in literature which may adversely impact the simulation 

of crop yields, soil organic carbon change and N losses. These include the use of a minimum set 

of weather variables, re-initializing soil status annually, fixed fertilizer application rates, fixed 

planting dates, and ignoring changes in crop cultivars and rotational impacts. The approaches 

were compared to a comprehensive base approach where detailed climate drivers, adjustment of 

planting dates, fertilizer rates based on crop needs, and continuous simulation of soil C&N and 

water feedbacks were considered. We found that there were significant impacts of all approaches 

under certain conditions. At the semi-arid location the simulation of crop yields was significantly 

impacted through changes in evapotranspiration, differences in feedbacks from C&N cycling and 

under fertilization in the case of the fixed fertilizer approach. Crop yields were strongly impacted 

by rotational effects at the humid locations. Every modeling approach considered resulted in 

significant differences in N losses relative to the base approach, either N2O, N leaching, N runoff 

or a combination. We conclude that there are often large differences between approaches used 

for modeling climate change impacts and we recommend that modellers improve their 

capabilities of simulating expected changes in agronomy and biophysical processes that enable 

long-term simulation of soil-plant C&N cycling and hydrological feedbacks. This is needed to 

enable plausible projections of climate change impacts on cropping systems.   
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6.1 Introduction 

Food production using sustainable practices to maintain or increase crop yields while 

limiting  negative anthropogenic influences on the environment is an important global research 

activity. In most regions of the world it is likely that climate change will strongly influence crop 

growth and development, soil health, greenhouse gas (GHG) emissions and nutrient losses. In 

northern latitudes such as in northeast China and the UK some studies have found positive 

impacts on crop yields (Supit et al., 2010; Chen et al., 2010). A strong influence of climate 

change is expected in Canada where temperatures are increasing at a rate faster than the global 

average (Qian et al., 2019: Bush and Lemmen, 2019) and the estimated frost free period for crop 

growth has increased by approximately 3 weeks since the early twentieth century (Qian et al., 

2012). However, in warmer regions globally crop growth may suffer under warmer temperatures. 

For instance, it was estimated that wheat and maize yields may already be declining, especially 

in tropical regions, with an estimated global average reduction of 5.5 and 3.8%, respectively 

(Lobell et al., 2011).  

Reactive N losses from currently established cropping systems are generally projected to 

increase under future warmer climates, including nitrous oxide (N2O) emissions (Abalos et al., 

2016a: Smith et al., 2013: Tian et al., 2012), NO3
- leaching and runoff (Wang et al., 2015) and 

ammonia (NH3) volatilization (Suddick et al., 2012). To reach the increasing demands for food 

and fibre there will likely be increased N inputs in the future (Snyder et al., 2014) through 

expansion of agricultural areas and increased intensity, potentially further increasing N losses. 

Statistical models are useful for estimating changes in yields and sometimes nutrient losses under 

current climate and management, however, they are not well suited for estimating the feedbacks 

from soil C&N cycling nor the complex physiological climate impacts on crop growth and 

development (Basso et al., 2015). The physiological effects of climate on crop growth need to be 

considered including the impacts of CO2 fertilization on photosynthesis, water and N use 

efficiency, temperature and water stress during critical growth phases such as anthesis, and in the 

case of cool climates frost damage and winterkill (Smith et al., 2013). In order to simulate the 

impacts of changing stresses on crop production and nutrient losses it is important to include 

system feedbacks from water, C and N cycling thus a model needs to include robust hydrological 

and biogeochemical processes and be capable of simulating a wide range of agricultural 

management.  When cool weather cropping systems are considered the impacts of snow cover 
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and soil freeze-thaw dynamics are crucial (Cui and Wang, 2019; Dutta et al., 2018) for 

determining losses of water and nutrient to runoff and drainage, mechanisms which several 

prominent crop models currently do not consider. This may be partially why it is common 

practice in most climate change studies to re-initialize the soil status (water, soil organic carbon 

[SOC], nutrients) in models each year prior to the growing season (Basso et al., 2015) to avoid 

the issue. However, the soil status can greatly change over time resulting in significant feedbacks 

on crop growth (Basso et al., 2015) and environmental outcomes. Higher rates of N leaching and 

runoff often occur in the non-growing season when there is no crop water and N uptake (Smith et 

al., 2019c: Gamble et al., 2018: Schwager et al., 2016). Likewise, N2O emissions are highly 

influenced by soil water status and can be strongly driven by off-season soil freeze-thaw activity 

in cool weather systems (Wagner-Riddle et al., 2008). Certain agroecosystem models such as 

DayCent (del Grosso et al., 2001), the Root Zone Water Quality Model (RZWQM2; Ma et al., 

2012) which has DSSAT imbedded and the DeNitrification DeComposition model (DNDC; Li et 

al., 2012) are capable of dynamically simulating many interdependent soil-plant processes and 

include over-winter soil freeze-thaw and snow dynamics. The DNDC model is well known for 

simulating GHG emissions, but over the years it has been expanded for simulating plant growth 

(Zhang and Niu, 2016), soil C&N cycling, ammonia volatilization and methanogenisis. A 

Canadian version (DNDCv.CAN) was developed originally to simulate plant-soil-management 

interactions in cool weather climates (Kroebel et al., 2011) but more recently it was expanded to 

improve the simulation of several processes (Dutta et al., 2018, 2016a,b; Congreves et al., 

2016b; Smith et al., 2013) and to incorporate quasi-2D tile drainage (Smith et al., 2019b).  

In addition to the practice of re-initializing models annually there are several other common 

modelling approaches which need to be investigated for their reliability in representing changes 

in agricultural systems 1) fixed planting date versus adjustment to accommodate future weather; 

2) use of limited weather variables (temperature and precipitation) versus a fuller range or 

weather inputs; 3) constant fertilizer rates versus changes over time based on crop needs and soil 

status; 4) monoculture versus crop rotations; and 5) constant crop cultivar versus alternative 

cultivars to better match changes in seasonal requirements. Simple approaches for modelling 

management impacts are often employed in many climate change impact studies but it is our 

hypothesis that these approaches will not successfully account for the changes in soil water and 

nutrient status under future conditions thus will strongly bias results. The objectives of this study 
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were to i) investigate the implications of using simpler versus more advanced modelling 

approaches for simulating the impacts of climate change on crop production, SOC change, N2O 

emissions and N leaching and runoff; ii) to recommend a viable approach under cool weather 

climates; and iii) to assess the effect of climate change on crop production and sustainability for 

common cropping systems in Canada. In doing so we employ the DNDCv.CAN model which 

was validated using detailed data at three locations, one under a semi-arid climate in western 

Canada and two under humid conditions in eastern Canada.  

 

6.2 Methodology 

6.2.1 Experimental sites 

Cropping system datasets from three sites in Canada were used to calibrate and validate 

DNDC for simulating crop yields, soil carbon, N2O emissions, nitrate leaching and runoff. 

Before implementing approaches for modelling climate change impacts it is important to ensure 

that the model responds reasonably to inter-annual climatic drivers at each location. We 

purposefully chose sites that differed greatly in precipitation to study a larger range of possible 

impacts on N loss and SOC change. For instance, at the semi-arid Swift Current site we expected 

much less N loss through leaching (Campbell et al., 2006) and minimal N2O emissions (Grant et 

al., 2016) in comparison to the more humid sites in western Canada. General data availability at 

each site is noted in Table 6.1 and further site details follow.  

 

 

Table 6.1 Soil and climate characteristics at Alfred, Woodslee and Swift Current research plots 
 

 
+ Average potential evapotranspiration as estimated by the Penman Montieth method from 1981-2010 

 

Location and data Soil  Average  Average  PET+ Soil characteristics (20 cm)   Data availability 

 collection period classification annual  annual    Soil  SOC Bulk    Crop SOC N2O NO3
- 

    temp. precip.   texture   density   yields  

 

leach 

    (℃) (mm) (mm) (%) (Mg C ha-1) (g cm-3)   

    Alfred, Ontario  Orthic        35 sand               

45.34° N, 74.55° W Humic 4.5 1021 944 18 silt 69.6 1.34   √ x √ √ 

(2011-2014) Gleysol       47 clay       

                      

    Woodslee, Ontario Orthic        28 sand       

    42°13’N, 82°44’W Humic 8.9 831 1046 34 silt 56.7 1.42   √ √ √ √ 

(1959-2015)  Gleysol       38 clay       

                      

    Swift Current,  Orthic       33 sand       

    Saskatchewan  Brown  4.8 359 1153 35 silt 40.7 1.34   √ √ x x 

50°17’N, 107°48’W Chernozem       32 clay       

    (1967-2009)             
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6.2.1.1 Swift Current site   

A long-term rotation trial was established at the Swift Current Research Station, 

Saskatchewan (lat. 50°17’ N, long. 107°48’W) in 1966 to study differences in cropping systems 

with various levels of fallow, with and without fertilizer N and P in semiarid conditions. Annual 

precipitation was 359 mm with 212 mm falling in the growing season. In addition to the lowest 

rainfall at this site it also has high potential evapotranspiration (PET) due to higher wind speeds 

(Table 6.1). Prior to the study the field had been cropped with fallow-wheat since 1922. In our 

current study, for model validation, we used the fertilized wheat and wheat-lentil rotations over a 

long time frame from 1967-2009. The soil is characterized as a Swinton Loam (Ayres et al., 

1985) in the Brown Chernozem (Aridic Haploboroll) Great Group (Table 6.1).  Fertilizer N was 

applied each year for wheat as NH4NO3 based on soil N testing. A recommended total N rate of 

65 kg ha-1 (soil N test + fertilizer) was applied on spring wheat from 1967 to 1989 (soil-testing 

laboratory of the University of Saskatchewan). From 1990 onward a total rate of 90 kg ha-1 for 

spring wheat on fallow and 73 kg ha-1 for wheat on stubble was applied (Campbell et al., 2005). 

Phosphorous was applied as ammonium phosphate at seeding at a rate of 10 kg P ha-1.  The 

timing of seeding and harvest varied from year to year based on weather conditions but seeding 

was typically in May and harvest in late August. Tillage was minimal in wheat years with a 

single cultivator pass in the spring. In fallow years multiple passes were made to control weeds. 

A wide array of measurements were taken at this research station including annual grain yields 

and periodic measurements of straw yields, grain N, straw N, soil C, soil N, soil moisture and 

N2O emissions from 2001 to 2003 and more detailed description sof the site design and 

management is available in Grant et al. (2016), Campbell et al. (1983, 2005, 2007) and Campbell 

and Zentner (1993). 

 

6.2.1.2 Woodslee site 

A field study was established in 1959 at the Hon. Eugene F. Whelan Experimental Farm, 

Woodslee, Ontario (lat. 42.28N, long. 83.08W) to determine the long-term impacts of fertilizer 

and crop rotation on crop yields, soil health, and N losses.  The study was setup on a tile drained 

Brookston clay loam and the site was relatively warm for Canada with a moderate level of 

831mm annual average precipitation (Table 6.1). The cropping systems used for model setup and 

validation in this study included fertilized continuous corn and a fertilized 4 yr rotation of corn-
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oats-alfalfa-alfalfa with each phase present each year.  Planting typically occurred during May 

but occasionally extended into late April or early June, depending on weather conditions. 

Continuous corn, rotational corn and oats were fertilized with starter fertilizer (8-32-16) 16.8 kg 

N ha-1 incorporated into the top 10 cm of soil near the time of planting. Sidedress urea 

ammonium nitrate (UAN) fertilizer at the rate of  112 kg N ha-1 was banded between the corn 

rows near mid June at the six-leaf stage. Further details regarding the site setup and management 

is available in Drury et al. (1998) and Reynolds et al. (2014). To initialize and validate the 

DNDC model we used measured yield data from 1959-2015, SOC data at various soil depths 

from 2004-2007, and N2O was measured using a chamber approach from continuous corn and 

each phase of the corn-oat-alfalfa-alfalfa rotation. Nitrous oxide was measured 79 times, with 12 

replicate, from spring 2010 until fall 2013.  

 

6.2.1.3 Alfred site 

A field study was conducted from 2011 to 2014 in Alfred, Ontario (lat. 45.34° N, long. 

74.55° W) to study the impacts of organic and inorganic fertilizer type and timing on silage corn 

growth, N loss to drains and N2O emissions. The soil was a Bearbrook clay and tile drainage was 

present with hydrologically distinct plots.  The average annual temperature at Alfred is 4.5 oC 

with 1021 mm average precipitation and 944 mm estimated PET making it by far the wettest of 

the three sites investigated. Other site properties are available in Table 6.1.  The field study 

included six treatments and we chose the urea fertilized continuous corn silage treatment for our 

modelling approach assessments. Our current model version was recently setup for this site and 

the calibration and validation is documented in He et al. (2019b).  Urea at the rate of 140 kg N 

ha-1 was surface applied then incorporated to 15 cm using a cultivator. Tile drains were installed 

at 90 cm depth and the plots were hydraulically isolated. Water flow and NO3
- concentration to 

tile drains were monitored and daily values were recorded over a 2.5 year period.  Composite soil 

samples were collected one to three times per month which were analysed for NO3
− and NH4

+. 

Silage dry matter yield and plant N content were measured at plant maturity. Nitrous oxide 

emissions were measured two to five times per month using non-steady-state chambers. Soil 

temperature and water contents were also measured frequently during the study. Further details 

of the site design, management and measurements are described by Schwager et al. (2016). 
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6.2.2 DNDC model description 

The DNDC model was originally developed to simulate nitrous oxide emissions from 

agricultural systems (Li et al., 1992) and gained attention due to its detailed biochemical 

processes used for estimating the impacts of microbial activity on nitrification and 

denitrification. It was later expanded to simulate soil C&N processes, N movement, ammonia 

volatilization and methanogenisis. The crop growth sub-model in DNDC has evolved over the 

last 20 years (Zhang and Niu, 2016) but it is still relatively simple. It primarily uses a GDD 

growth model with crop stress limitations due to water, nitrogen and temperature.  The model 

simulates the impact of CO2 fertilization on crop growth including the impacts of C assimilation 

in C3 and C4 crops, water and N use efficiency.  DNDC uses the Penman Montieth approach for 

estimating evapotranspiration and includes a relatively simple cascade water flow approach for 

simulating water movement. DNDC can currently simulate a very large array of crops and 

management practices and several groups have worked on merging DNDC with other models or 

developing versions which demonstrate improved performance for regional conditions or 

specific processes (Gilhespy et al., 2014).    

In this study we employ a DNDC model version (DNDCv.CAN) which was originally 

developed to improve the simulation of crop cultivars and management in cool weather 

conditions (Kroebel et al., 2011: Grant et al., 2016), however, the model can still be applied in 

warmer agro-ecosystems (Ehrhardt et al., 2018: Brilli et al., 2017) since it includes an option to 

use default crop growth or crop parameters can be adjusted. Regarding impacts of climate 

change, Smith et al. (2013) lowered the effect of CO2 fertilization on C assimilation, crop water 

and N use efficiency based on free-air CO2 enrichment studies. Temperature stress on crop 

growth was revised based on an empirical equation derived in Canada (Yan and Hunt, 1999) and 

temperature stress during anthesis was included for maize, wheat, winter wheat (Smith et al., 

2013) and for legumes and perennials (He et al., 2019a). Further developments focused on 

improving the simulation of evapotranspiration (ET; Dutta et al., 2016b), ammonia volatilization 

(Congreves et al., 2016), the effects of snow cover, crop residue and soil texture on soil 

temperature (Dutta et al., 2018), and perennial growth and winterkill (He et al., 2019a). The 

most recent developments involved a major restructuring of the model with a heterogeneous and 

deeper soil profile (0.5m to 2m), inclusion of root penetration and density functions, unsaturated 
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flow and a new tile drainage sub-model (Smith et al., 2019b). The model is available at 

https://github.com/BrianBGrant/DNDCv.CAN. 

 

6.2.3 Model initialization, calibration and evaluation 

Before attempting to simulate climate change impacts it is important to ensure that a model 

is well calibrated (Wallach et al., 2019) and able to reasonable capture the impacts of inter-

annual changes in weather on crop growth, soil carbon and reactive N losses.  We chose research 

sites where a range of data was available for model calibration and validation. DNDC 

simulations were previously performed for the same cropping systems at each of the three 

research sites thus the necessary soil, climate and management inputs were readily available 

(Swift Current - Grant et al., 2016, Woodslee - Jarecki et al., 2018, Alfred – He et al., 2019b) but 

in the case of Swift Current and Woodslee sites an older model version was employed thus we 

recalibrated our more recent version by using the similar approach of optimizing RMSE for 

outcomes using R language in a stepwise manner where parameters were adjusted. The details of 

each parameter are provided below. Climate data used for model calibration and validation 

during the experimental periods were available from on site weather stations. These variables 

included min and max temperature, precipitation, wind speed, solar radiation and relative 

humidity. The latest DNDC version including our hydrology developments was employed at 

Alfred thus we used the same inputs and parameterization as in He et al. (2019b) for all case 

study simulations.  

At Woodslee a previous model version was used by Jarecki et al. (2018) thus we re-

evaluated the latest version of DNDC for simulating long-term crop yields using the first 10 

years of data for calibration (1959-1968) and the remainder for validation (1969-2105) in a 

similar manner as Jarecki et al. (2018). The RMSE of maize yields was minimized by adjusting 

the growing degree days from 2570 to 2800. The version of DNDC used in Jarecki et al. (2018) 

did not allow time for germination. Other maize parameters did not require modification and also 

the same parameterization as employed in Jarecki et al. (2018) was used for oats and (no 

observed yields available) and SOC. Alfalfa parameters were based on He et al. (2019a) since 

development for regrowth after cutting and in subsequent years was included in DNDC.  Nitrous 

oxide emissions were calibrated slightly using data from  rotational corn and the model was 

validated using data from monoculture corn (monoculture corn was included in 6 of 8 modelling 
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approaches). The denitrifier bacteria growth rate was increased by 20% with no other 

adjustment. Parameterizations for the tile drainage sub-model were used from Smith et al. 

(2019b) who simulated water and N loss to runoff and tile drains at a nearby site with the same 

Brookston clay soil properties (Drury et al., 2014b, long. 42°13’N, lat. 82°44’W).   

At the Swift Current site the 50 cm version of DNDC was previously setup for simulating 

crop yields and SOC for the long term wheat and wheat-fallow rotations starting in 1967 (Grant 

et al., 2016).  In this study the same input data was used and the model was again calibrated for 

simulated crop yields using the wheat-fallow rotation and validated for monoculture. Note that N 

losses are very low for this semi-arid site, perhaps zero for N leaching below the root zone 

(Campbell et al., 2006). To minimize RMSE for wheat yield the following changes to parameters 

were made. A rooting depth of 1.5 m was set for wheat as part of the new parameterization 

inputs and water demand was parameterized to be 325 g water/g DM. Thermal Degree Days was 

set to a value of 1600 and the C:N ratios for grain, leaf, stem and roots were set to 14, 80, 80 and 

65 respectively.  

 

6.2.4 Statistical measures for testing model performance and analysing differences between 

approaches 

Model performance relative to observations for DNDC was evaluated using several 

statistical measures including root mean square error (RMSE), normalized RMSE (NRMSE) and 

the d index (Wilmott and Matsuura 2005). 

 

𝑁𝑅𝑀𝑆𝐸 = 100 (
√

1

𝑛
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1  

�̅� 
)                                                    (6.1) 

 

d = 1 −
∑ (Pi−Oi)2n

i=1

∑ (|Pi−O|+|Oi−O|)2n
i=1

                                                          (6.2) 

 

where Pi is the predicted or simulated value and Oi is the observed value.   

RMSE is commonly used to evaluate model performance for estimating yield and biomass. 

Jamieson et al. (1991) indicated that a model had excellent performance if NRSME < 10; good < 
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20; fair < 30; and poor > 30. The d index provides a qualitative assessment of model accuracy 

with d ≥ 0.9 showing an “excellent” agreement between model and observed values, 0.8 ≤ d ≤ 

0.9 indicates a “good” agreement, 0.7 ≤ d ≤ 0.8 a “fair” agreement and d < 0.7 a “poor” 

agreement.   

 

Statistical analysis to  determine whether there were any statistically significant differences 

between time periods and between management practices was conducted using one-way 

ANOVA analysis in the SPSS 25.0 package followed by the Duncan's test at the 0.05 level (p < 

0.05). 

 

6.2.5 Modelling approaches for simulating impacts of climate change on cropping systems 

Several modelling approaches were simulated to compare common procedures used by the 

community and the relative impacts this methods may have on crop yields, N2O emissions, N 

leaching and runoff, evaporation, transpiration and soil carbon change (Table 6.2). The impacts 

on NH3 volatilization were not reported in this study since UAN fertilizer was injected at 10 cm 

depth and losses were near zero. The approaches are defined in Table 6.2 and are further 

described below.  

 

Table 6.2 Modelling approaches simulated at the Swift Current, Woodslee and Alfred locations. 

 

Approach  

 

Approach description Considerations 

Base 

simulation 

Detailed climate drivers; change 

planting and harvest schedule to 

optimize seasons; adjust fertilizer 

under climate change; no cultivar 

change; monoculture  

 

Changes in cultivar and the impacts of 

rotation diversification were not 

included in our base simulation. There 

are almost unlimited options. 

Minimum 

climate 

variables 

Simple climate drivers (min/max 

temp and precipitation) versus fuller 

range of climate drivers (+solar 

radiation, wind speed, humidity) 

 

A common approach in studies for 

assessing soil carbon and nitrogen 

cycling in cropping systems under 

climate change 

Fixed 

fertilizer 

Fixed fertilizer application rate over 

time based on current farming 

practices in a region  

 

A common approach in many 

published climate change studies  
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Re-initialize 

soil 

Re-initialization of soil C&N and 

water status after each simulation year  

Re-initialization is often employed in 

model ensemble studies for assessing 

crop growth. Soil C&N feedbacks over 

time are not considered. 

 

Fixed 

planting 

Fixed planting and harvest schedule 

over time 

A common approach in most large 

model inter-comparison studies.   

 

Simple 

approach 

Simple climate drivers, fixed planting 

and harvest and fixed fertilizer 

application rate 

Represents a simple yet common 

approach for modelling climate change 

impacts  on cropping systems 

 

Alternative 

cultivar 

Change crop cultivar to be better 

suited to changes in climate  

 

Cultivars that currently require warmer 

regions with longer growing seasons 

for optimum growth were chosen 

 

Crop 

rotation 

Include the base crop in rotation with 

other crops 

 

A rotation was chosen based on 

agronomy trials available at the 

research site.  

Cultivar + 

crop rotation 

Change crop cultivar to be better 

suited to changes in climate and 

include the base crop in rotation  

An approach which includes adaptation 

to model climate change impacts  on 

cropping systems  

 

   

 

6.2.5.1 Base approach 

The base simulation to which we then implement changes for each modelling approach 

includes detailed climate variables, adjusted planting dates to account for yearly changes in 

weather, and automated fertilize applictaion. This represents an approach which we have used in 

past studies (Jerecki et al., 2018: Smith et al., 2013) which includes important considerations for 

adjusting the simulation over time to account for changes in climate.   

 

6.2.5.2 Adjustment of fertilizer rate 

Under climate change modelling assessments or in any study whereby changes in 

management are investigated its important to adjust fertilizer application rates accordingly. For 

instance, if crop growth becomes subjected to more water and temperature stress over time then 

biomass will likely decrease and fertilizer rates should be adjusted downwards, similar to what a 

smart farmer would ensure. Otherwise additional N may be lost needlessly.  We implemented a 

method in DNDC to adjust fertilizer rate over time to maintain similar crop N stress under 
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changing management, soil conditions or climate. This is accomplished by calculating N rate 

based on spring inorganic soil N status and expected soil organic matter mineralization that will 

maintain a constant and small level of crop N stress derived over the previous 10-year running 

average. This method adjusts fertilizer N rate in a manner which would be reasonably consistent 

producer-based guidelines who use soil N testing. 

 

6.2.5.3 Adjustment of planting date 

Earlier planting dates for most crops are expected under climate change in Canada to avoid 

heat stress in critical growth stages such as during flowering and grain filling (Qian et al., 2019).   

In this study planting date was adjusted using daily Tmax, Tmin and precipitation based on 

methodologies described in Bootsma and De Jong (1988) for spring wheat and on Bootsma and 

Brown (1995) for grain corn and corn silage.  Harvest date was determined by the DNDC model 

whereby the crop was harvested shortly after maturity was reached.  

 

6.2.5.4 Alternative cultivar selection 

Potential changes in crop cultivars that may occur in the future are difficult to determine 

considering options for breeding and genetic modification. In our case we chose cultivars with 

qualities that exist in warmer regions of the US. Generally we chose cultivars with increased 

growing season length and optimum temperature in future periods, which would not perform 

well in todays climate. For instance, for spring wheat a typical cultivar grown in Canada 

currently has an optimum temperature of about 18 ℃ and requires 1600 growing degree days at 

base 0 degrees (GDD0). We set the future cultivar characteristics in the 2070-2100 period to 

2200 GDD0 and optimum temperature of 22 ℃. These values were ramped up over time within 

each 30-year climate period. Spring wheat cultivars can range greatly in growing season length 

and optimum temperatures (Acevedo et al., 2009). Our final cultivar in the 2070-2100 period has 

an average duration to maturity of 138.5 days which is consistent with the example provided in 

Acevedo et al. (2009) sown in May at 34°S, a considerable warmer  location than Swift Current. 

Over the entire time period simulated (1981-2100) the characteristics of the corn cultivar at 

Woodslee were modified from 2750 to 3150 for GDD0 and 5000 to 6000 for optimum grain C 

whereas silage corn at Alfred was modified from 2300 to 2600 for GDD0 and 4950 to 5950 for 

optimum grain C production.  
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6.2.5.5 Impacts of crop rotation 

To explore rotational impacts, including the feedbacks from residues of different crop types 

and changes in crop water use dynamics over time, the crop that was simulated under 

monoculture at each location (Swift Current: spring wheat, Woodslee: grain corn, and Alfred: 

silage corn) was included in a crop rotation relevant to the location. The rotations included 1) 

Swift Current: spring wheat-lentil, 2) Woodslee: corn-oats-alfalfa-alfalfa, and 3) Alfred: silage 

corn-silage corn-alfalfa-alfalfa. Note that the performance of DNDC for simulating crop yields 

and SOC for these rotations relative to measurements at Swift current and Woodslee is shown in 

Figs. 6.S1-6.S4. The rotation at Alfred was simulated by He et al. (2019b). Each phase of the 

rotations were simulated under climate change to enable reporting of yields, N losses and SOC 

for every year.      

  

6.2.6 Climate data and climate change scenario 

Climate data used for model calibration and validation during the experimental periods 

were available from on site weather stations. These variables included min and max temperature, 

precipitation, wind speed, solar radiation and relative humidity. 

Downscaled climate projections from 1971 to 2100 were based on the CanRCM4 Global 

Circulation Model using the IPCC 8.5 watt m-2 radiative forcing representative concentration 

pathway (RCP) by the end of the 21st century (Fig. 6.S5). The historical weather data from each 

site was used for bias correcting the GCM simulations using a multivariate form of quantile 

mapping (Kirchmeier-Young et al., 2017; Cannon 2018). The RCP8.5 represents a future with 

relatively high GHG emissions (Van Vuuren et al., 2011: IPCC 2014).  In Canada, Jarecki et al. 

(2018) and He et al. (2018) found similar yet strong impacts of both the RCP8.5 and the more 

moderate RCP4.5 pathways on crop yields.  

 

6.3 Results and Discussion 

6.3.1 Evaluation of the DNDC model for simulating crop growth, SOC, N2O, and N 

leaching 

Before attempting to simulate the impacts of climate changes on cropping systems it is 

important to first ensure  an agroecosystem model is responding reasonably in simulating the 

inter-annual impacts of climate drivers on crop growth, C&N cycling and N losses. In this study 
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the three case study research sites were chosen because there was substantial data available for 

model calibration and evaluation and all three studies have previously been used to evaluate the 

DNDC model (Grant et al., 2016: Jarecki et al., 2018: He et al., 2019b).  

In this study the recent DNDC model version (Smith et al., 2019b) performed reasonably in 

simulating crop yields, N leaching and N2O at the 3 research sites. At the Swift current location 

spring wheat yields were well simulated with a d value of 0.95 indicating excellent performance 

(Table 6.3). Similar to previous evaluation (Grant et al., 2016) the model responded well to inter-

annual variations in precipitation for both monoculture and rotational wheat (Fig. 6.S1) and SOC 

was reasonably simulated (Fig. 6.S2) with an increase in SOC due to higher C inputs during a 

favorable climate period in the late 1990’s when higher rainfall occurred. Very little if any N loss 

currently occurs below the root zone at Swift Current (Campbell et al., 2006) in which DNDC 

was in agreement with no N leaching below 2m in the historical 1967-2009 period. Also, N2O 

emissions at semi-arid locations such as Swift Current are typically small, usually being less than 

1 kg N2O-N ha-1 (Rochette et al., 2018). Emission events are driven primarily by nitrification 

rather than denitrification since soil water content is low. In the historical period at Swift Current 

DNDC simulated average emissions of 0.45 kg N2O-N ha-1. 
 

Table 6.3 Statistical evaluation of the DNDC model for simulating crop yields, N2O emissions 

and N losses to tile drains at Swift Current, Woodslee, and Alfred Canada 

Item Site Stage Observed DNDC n RMSE NRMSE d 

             (%)   

Crop yields (spring wheat Swift Current Calibration 2312 2581 43 678 29.3 0.95 

and corn) or dry biomass  Validation 1630 1653 43 491 30.2 0.95 

(silage corn) Woodslee Calibration 6106 5699 10 1220 20.0 0.81 

 (kg ha-1)  Validation 5947 6323 47 1343 22.6 0.78 

 Alfred1 Calibration 13264 13111 4 194 4.70 0.98 

  Validation 16510 15848 4 2274 13.7 0.98 

Daily N2O emissions  Woodslee Calibration 0.055 0.052 79 0.092 168 0.77 

(kg N ha-1)  Validation 0.049 0.042 79 0.085 174 0.81 

  Alfred1 Calibration 0.005 0.005 114 0.010 192 0.88 

  Validation 0.010 0.009 114 0.023 223 0.78 

NO3
- loss to tiles2  Woodslee  Calibration 3.14 3.18 28 2.70 85.9 0.82 

(kg N ha-1) (n=28) Validation 3.64 4.15 28 2.70 72.9 0.88 

  Alfred1    Calibration 0.009 0.010 738 0.022 257 0.77 

 (daily) Validation 0.047 0.040 738 0.084 180 0.78 
1 Model performance results for Alfred were adapted from He et al. (2019b) 
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2 Model performance results for N loss to tiles at Woodslee were adapted from the unrestricted tile 

drainage treatments in Smith et al. (2019c) 

 

The model performed “fair” to “good” in simulating corn yields under monoculture at 

Woodslee (Table 6.3; Fig. 6.S3a).  The RMSE value of 1343 kg ha-1 was slightly lower than that 

achieved by Jarecki et al. (2018) using an earlier DNDCv.CAN model version and also the 

Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource 

Synthesis (CERES)-Maize model which produced an RMSE of 1391 kg ha-1 (Liu et al., 2011). 

At this site rotational corn yields (corn-oats-alfalfa-alfalfa) were found to be higher than yields 

under monoculture (Jarecki et al., 2018). Jarecki et al. (2018) found that the DNDC model could 

not originally simulate the differences in yields between the treatments but performed reasonably 

after a pedo-transfer function was incorporated to adjust water holding capacity based on 

changes in soil properties over time. This function is still active in the model employed in our 

study and the relative differences in yields between the treatments was again well simulated (Fig. 

6.S3b). The difficulties in simulating the sometimes large year to year variability in yields may 

be due to high variability in weather and incidence of pests and disease which DNDC nor 

DSSAT includes. The DNDC model demonstrated “excellent” performance in simulating corn 

silage biomass at Alfred (He et al., 2019b), albeit only 4 observations were available (Table 6.3).  

DNDC showed similar performance at Woodslee and Alfred for simulating daily N2O 

emissions with “fair” to “good” d values (Table 6.3). The performance was reasonable 

considering daily emissions can be sporadic due to heterogeneous variability in soil properties 

and differences in soil microbial populations. The current version of DNDC used in this study 

showed “good” performance in simulating N loss to tile drains at Woodslee (Smith et al., 2019b) 

and “fair” performance at Alfred (He et al., 2019b). The poorer performance at Alfred was 

attributed to difficulties in simulating complex snow accumulation and melt dynamics (He et al., 

2019b).   

No observations of SOC were available at Alfred other than the initial values which were 

input into DNDC. At the Woodslee site observations were limited but DNDC performed well in 

predicting the differences in SOC levels between the monoculture corn (Fig. 6.S4a) and 

rotational corn-oat-alfalfa-alfalfa system (Fig. 6.S4b) in the 2004-2007 time period. For both 

cropping systems SOC at depth was within error bars of measurements except at the 20 cm depth 
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where DNDC overestimated SOC concentration, which was an improvement over the 

simulations in Jarecki et al. (2018).   

 

6.3.2 Overview of the simulated impacts of climate change on projected yields and N losses 

at the research sites 

In Canada warming is occurring at about two times the rate of the global increase (Bush 

and Lemmen, 2019) thus it is not surprising that under the 8.5 Watt m-2 scenario we see large 

projected increases in temperature by the end of the twenty first century (Table 6.4, Fig. 6.S5). 

This higher temperature can adversely impact crop yields through temperature stress, especially 

during critical growth phases, however, this can be offset by changing planting time (Qian et al., 

2019). Also, a projected increase in rainfall (Table 6.4, Fig. 6.S5) and higher crop water use 

efficiency under elevated CO2 can offset increased potential evapotranspiration. In many cases 

crop yields are projected to increase under future in Canada (Qian et al., 2019: He et al., 2018a: 

Smith et al., 2013) and our current model assessments are consistent with this finding at the 

Swift Current and Alfred locations. At each of the three study locations increased seasonal GDD 

is projected to occur in the future with crops reaching maturity more quickly. For our base 

modelling approach planting time was adjusted to an earlier date to reduce temperature stress 

during critical phases and fertilizer rates were automatically increased at Swift Current and 

Alfred to account for higher crop growth under the projected favourable future climate.  
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Table 6.4 Projected weather for 8.5 W m-2 IPCC scenario, estimated changes in management and 

impact on crop yields for the base simulation at Alfred, Woodslee and Swift Current, Canada 
 

*Potential GDD during the growing season calculated at base 5oC for spring wheat and 10oC for grain corn and 

silage corn. 
 

#Potential Evapotranspiration, simulated actual Transpiration and simulation actual Evaporation 
^ Corn silage is shown in units of dry matter.  

 

In Figs. 6.1-6.3 boxplots are provided to show the impacts of selected modelling 

approaches during four 30-year time periods at the three research sites. Each boxplot shows the 

model result across 30 years of climate variability simulated continuously. It is apparent that 

many of the modelling approaches strongly impacted projected yields and N losses. Average 

yields for the base approach at Swift Current were projected to increase over time and they were 

strongly influenced by inter-annual variability in precipitation which is consistent with 

simulation results from several studies (Qian et al., 2019: He et al., 2018b: Smith et al., 2013) 

(Fig. 6.1).  Yields at the upper 95th confidence interval in the 1981-2010 historical period were 

almost double of the average yields. The largest variability occurred in the 2071-2100 time 

period, which was also true for projected N losses at Swift Current.  Note that all modelling 

approaches, except for fixed fertilizer and the simple approach, showed at increase in spring 

wheat yields under climate change, but yields differed in magnitude. The decline in yield 

variability when fertilizer rate was fixed (also included in simple approach) was caused by crop 

N stress due to limited N availability (see section 3.3.2 for more detail). Though N losses at this 

semi-arid location were low, greater and more variable N2O emissions, N leaching and N runoff 

were generally predicted to occur in future periods. This was mainly caused by increased 

microbial activity under a warmer climate impacting the mineralization, nitrification, and 

denitrification processes in DNDC.   

Location Period Precip. Avg.  PET# Trans# Evap# Total  Average Average Time to Fertilizer Crop yield  

      annual        available planting  harvest  reach  application or dry  

      temp.       seasonal  date date maturity  rate biomass 

    (mm) (mm) (mm) (mm) (mm) GDD* (M/D) (M/D) (days) (kg N ha-1) (Mg ha-1)^ 

Swift Current 1981-2010 349 4 1131 105 228 2430 01-May 01-Sep 123 45 1.63 

(spring wheat) 2011-2040 361 6.3 1243 117 225 3018 13-Apr 12-Aug 121 55 1.78 

  2041-2070 398 7.9 1301 141 234 3387 10-Apr 04-Aug 115 74 2.51 

  2071-2100 423 10.5 1431 171 222 3992 06-Apr 25-Jul 110 105 3.1 

Woodslee 1981-2010 845 9.3 1046 181 268 3146 02-May 07-Oct 158 119 6.02 

 (corn) 2011-2040 854 11.3 1144 170 298 3676 15-Apr 12-Sep 150 114 6.13 

  2041-2070 980 12.7 1192 155 318 4027 12-Apr 31-Aug 142 119 6.14 

  2071-2100 941 15 1277 134 332 4592 10-Apr 18-Aug 130 112 5.78 

Alfred 1981-2010 923 6.7 944 291 234 2713 07-May 21-Sep 136 106 14.6 

(corn silage) 2011-2040 917 8.4 1012 277 253 3103 01-May 06-Sep 128 118 14.8 

  2041-2070 1011 10.2 1080 286 262 3574 27-Apr 24-Aug 119 138 16.8 

  2071-2100 1096 12.7 1162 269 291 4153 21-Apr 11-Aug 111 148 17.5 
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Figure 6.1 Boxplots showing impacts of selected modelling approaches across 30 years of 

climate variability at the Swift Current location on a) spring wheat yield, b) N2O emissions, c) N 

runoff, and d) N leaching to tile drains.  The black and red lines, lower and upper edges of the 

boxes, bars and dots represent median and mean values, 25th and 75th, 5th and 95th, and <5th 

and >95th percentiles of all data, respectively. T1, T2, T3 and T4 represent the time periods 

1981-2010, 2011-2040, 2041-2070, and 2071-2100, respectively.
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Figure 6.2 Boxplots showing impacts of selected modelling approaches across 30 years of 

climate variability at the Woodslee location on a) grain corn yield, b) N2O emissions, c) N 

runoff, and d) N leaching to tile drains.  The black and red lines, lower and upper edges of the 

boxes, bars and dots represent median and mean values, 25th and 75th, 5th and 95th, and <5th 

and >95th percentiles of all data, respectively. T1, T2, T3 and T4 represent the time periods 

1981-2010, 2011-2040, 2041-2070, and 2071-2100, respectively. 
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Figure 6.3 Boxplots showing impacts of selected modelling approaches across 30 years of 

climate variability at the Alfred location on a) corn silage above ground dry biomass, b) N2O 

emissions, c) N runoff, and d) N leaching to tile drains.  The black and red lines, lower and upper 

edges of the boxes, bars and dots represent median and mean values, 25th and 75th, 5th and 95th, 

and <5th and >95th percentiles of all data, respectively. T1, T2, T3 and T4 represent the time 

periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100, respectively.  

 

For the base approach at Woodslee, as well as other approaches which employed 

monoculture cropping, no significant changes in corn yields were projected under climate change 

but increases in yields were projected for rotational corn (Fig. 6.2). The variability in yields 

remained relatively constant from 1981-2100. At this location average temperature is highest 

resulting in more heat stress during growth  in the future. Also, more water stress occurred than 

at the Alfred site, due to less precipitation and higher PET.  Using DNDC, Jarecki et al. (2018) 

similarly predicted that corn in monoculture did not increase in yields under future climate but 

when corn was grown in rotation water stress was mitigated resulting in trends in higher yields. 
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Similar to Swift Current the predicted magnitude and variability in N losses at Woodslee tended 

to increase under future climate change with N2O increasing by about 50% by the 2071-2100 

period for the base approach. The projected increase in N2O emissions under climate change is 

consistent with other model assessments in Canada (Smith et al., 2013), the United States (Tian 

et al., 2012) and South West England (Abalos et al., 2016a).  

At Alfred higher corn silage biomass was predicted in the future (Fig. 6.3). The location 

has cooler climate and 155 mm more average precipitation in the 2071-2100 period than at 

Woodslee (Table 6.4). The relative increase in silage biomass was not as dramatic as the 

increases for spring wheat yields at Swift Current but corn is a C4 crop for which CO2 

fertilization only has a minor impact on C assimilation, which is included in DNDC (Smith et al., 

2013) based on free-air CO2 enrichment studies (Long et al., 2006: Leakey et al., 2009). At 

Alfred N2O emissions also increased under climate change for all approaches, but the magnitude 

differed between approaches. Nitrogen leaching increased for the base approach but when fixed 

fertilizer was employed leaching was high in the 1981-2010 period followed by a decline in 

future periods.  Interestingly, unlike the other locations N runoff was predicted to decline in 

future periods and this was caused by reduced snow cover in the future thus reduced N runoff 

during snowmelt (Fig. 6.S6).  Average N runoff in the spring (Jan 1 to April 30) declined from 

0.53 kg N ha-1 in the 1981-2010 time period to 0.20 kg N ha-1 in the 2071-2100 period, yet 

growing season runoff (May 1 to Oct 31) did not change (0.39 to 0.41 kg N ha-1 in the respective 

time periods).  Currently, much greater snow cover occurs at Alfred than at the other locations 

due to higher winter precipitation and cooler winter temperatures than at Woodslee.  

 

6.3.3 Comparison of approaches for modelling the impact of climate change on cropping 

systems 

6.3.3.1 Minimum climate variables  

Average differences between each approach and the base approach for each respective time 

period, 1981-2010, 2011-2040, 2041-2070 and 2071-2100, are shown in Figs. 6.4-6.6 for each 

location. At Swift Current the approach whereby we used only minimum and maximum 

temperature and precipitation as climate variables resulted in significantly higher yields (Table 

6.S1) than the “base approach” from 1981-2070. This was because the predicted evaporation 

(Fig. 6.S7) was much lower resulting in less crop water stress. The DNDC model uses an FAO 
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approach to estimate radiation when it is not available which usually results in good seasonal 

estimates of ET but poor daily correlation. However, DNDC uses a constant wind speed of 2 m s-

1, which is reasonable for some eastern locations, but evaporation is underestimated at Swift 

Current since the average wind speed is 7.4 m s-1. It is likely that other crop models also use 

simplified approaches when a fuller range of weather inputs are not available. The DNDC model 

previously used a Thornthwaite approach to estimate ET which did not use wind speed, but ET 

was poorly estimated and the algorithm was replaced with a Penman Montieth approach using 

crop specific coefficients (Dutta et al., 2016b).  In the 2071-2100 time period evaporation was 

still predicted to be low but yields were only slightly higher than the base approach, being 

limited by biomass potential.  A similar impact of using only temperature and precipitation as 

inputs was apparent for corn production at the Woodslee location where yields were projected to 

be 14 % higher on average from 2011 to 2100 than the base approach (Fig. 6.5, Table 6.S2) and 

evaporation was lower (Fig. 6.S7). At Alfred (Fig. 6.6, Table 6.S3) evaporation was also lower 

but there was very little change in yields, generally because the crop experienced less water 

stress at this location. The simple climate approach resulted in significantly greater N leaching at 

Swift Current where leaching was increased from near zero for the base approach to 3.5 kg ha-1 

in the 2071-2100 period (Fig. 6.4, Table 6.S1). This may have been caused by higher residue 

inputs to the soil resulting in higher SOC (Fig. 6.7) and greater mineralization. Nitrogen losses 

were not significantly impacted at Woodslee and Alfred (Table 6.S2, 6.S3) though the model did 

appear to simulate a small and consistent reduction in N2O emissions between time periods 

which was caused by higher soil water contents (less evaporation) pushing the denitrification 

reaction to N2, rather than N2O.  
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Figure 6.4 Difference in a) yield, b) N2O emissions, c) N loss to tile drains, and d) N runoff 

between the exploratory modelling approaches and the base approach at the Swift Current 

location. T1, T2, T3 and T4 represent the time periods 1981-2010, 2011-2040, 2041-2070, and 

2071-2100, respectively.
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Figure 6.5 Difference in a) yield, b) N2O emissions, c) N loss to tile drains, and d) N runoff 

between the exploratory modelling approaches and the base approach at the Woodslee location. 

T1, T2, T3 and T4 represent the time periods 1981-2010, 2011-2040, 2041-2070, and 2071-

2100, respectively.
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Figure 6.6 Difference in a) yield, b) N2O emissions, c) N loss to tile drains, and d) N runoff 

between the exploratory modelling approaches and the base approach at the Alfred location. T1, 

T2, T3 and T4 represent the time periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100, 

respectively. 
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Figure 6.7 Simulated total soil organic carbon to 2 m depth for each modelling approach at the a) 

Swift Current, b) Woodslee and c) Alfred locations from 1981 to 2100.
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6.3.3.2 Fixed fertilizer  

Simulation of fixed fertilizers rates over time is common in many published climate change 

modelling studies (He et al., 2018a: Abalos et al., 2016b) but there is concern regarding the 

results. If adverse conditions for crop growth occur in the future then there will be excess soil N 

and higher N losses than plausible. It is likely that farmers would adjusted fertilizer rate to a 

reasonable amount. On the other hand, if the climate becomes more favorable then growth will 

be limited and grain quality may decrease due to N stress. In this case future N losses may be 

underestimated. For sensitivity analysis, such as assessment of crop interactions for ranges of 

atmospheric CO2 concentration, Temperature, and Water (CTW) performed in the Agricultural 

Model Intercomparison and Improvement Project (AgMIP; Mcdermid et al., 2015), the use of 

fixed fertilizer rates can impose an issue. The response of a model to improved weather including 

the impacts of CO2 fertilization can be greatly restrained when fertilizer is limited.  

At Swift Current climate is projected to become more favorable for wheat production in the 

future but to accomplish this increased growth considerably more fertilizer is needed. An 

example showing the high simulated variability in spring wheat yields, increased yields over 

time and the automated adjustment of fertilizer application rates from 1981 to 2100 is shown in 

Fig. 6.8.  High inter-annual variability in yields is typical in the semi-arid prairies where crop 

water stress is prevalent in some years (Grant et al., 2016). In the period from 1981 to 2020 the 

fixed rate of 45 kg N ha-1 generally provided sufficient N for the crop growth, however, as 

climate became more favorable over time more N was required to meet the higher crop N 

demands thus yields were greatly reduced under the fixed application scenario. There was little 

change in N losses since N losses were already very low at Swift Current under the base scenario 

(Fig. 6.4). However, SOC was greatly reduced in comparison to the base approach due to less C 

inputs from crop residues (Fig. 6.7). It becomes apparent that its crucial for climate change 

assessment studies to adjust fertilizer rates over time, especially when there is either a large 

positive or negative feedback of climate drivers.  
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Figure 6.8 Simulation of fixed versus automatic fertilization (base approach) for spring wheat 

under the 8.5 W m-2 IPCC climate change scenario at Swift Current, Saskatchewan 

 

Interestingly, corn yields/biomass did not change much at the Woodslee or Alfred locations 

(Figs. 6.5, 6.6). At Woodslee the climate was not more favorable for monoculture corn 

production in the future periods thus similar fertilizer rates were required.  At Alfred more crop 

N demand was apparent over time, however, the soil initially had a very large store of organic 

C&N due to a long history of manure slurry application.    

Fixed fertilizer resulted in much higher N2O emissions and Woodslee and Alfred (Figs. 6.5, 

6.6), particularly at Woodslee where emissions were projected to significantly increase by 

approximately 40% across all future periods (Table 6.S2).  This was because the application rate 

was not adjusting according to soil N status each year, thus in certain years there was excess N 

and high emissions. Likewise there was significantly greater N leaching and N runoff in most 

time periods at Woodslee. A contributing factor is that DNDC includes the impacts of elevated 

CO2 on the reduction in leaf N due to Rubisco acclimation (Leakey et al., 2009), thus less N is 

required to produce the same quantity of biomass. The fixed fertilizer approach at Alfred resulted 

in significantly increased N2O emissions and N leaching from 1981-2040 (Table 6.S3), but in 

later time periods not enough N was applied to meet the increased biomass potential thus N 

losses were no longer increased over the base approach.  
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6.3.3.3 Re-initialization of soil status each year 

Re-initialization of soil status each year is a common practice employed in crop modelling 

(Basso et al., 2015) but it is less common in studies which simulate reactive N losses and is not 

feasible for assessing long-term SOC dynamics. The method is likely used to overcome model 

limitations whereby long-term soil C&N dynamics and over-wintering processes are not 

effectively simulated. Our current study demonstrates that uncertainty is introduced when using 

this method. Re-initialization of the soil status each year results in no inter-annual feedbacks of 

crop residue inputs on SOC (Fig. 6.7) or soil N and water status. Thus when using this approach 

there is reduced impacts of climate change on crop production in subsequent years. At Swift 

Current re-initializing soils each year had a very strong impact on crop yields. Model simulations 

indicated that crop growth was adversely impacted over time with a significant 25% reduction in 

yields by the 2071-2100 period (Fig. 6.4, Table 6.S1).  Note that in DNDC changes in soil water 

holding capacity are estimated over time based primarily on soil organic matter content (Jarecki 

et al., 2018) which is driven by C inputs. Thus when the soil is reset reducing the feedbacks from 

potentially increased residue C inputs the model predicts more crop water stress and less growth. 

At the Woodslee and Alfred locations crop yields and biomass are only weakly impact by 

resetting soil status each year (Figs. 6.5, 6.6). This is partly because crop growth is not as 

severely water stressed at these sites, but also, auto-fertilization compensates for the lack of 

feedbacks from soil C&N cycling. At Woodslee SOC increases under the base approach 

providing more inputs from mineralized N than when the soil is reset each year whereas at 

Alfred the opposite is the case (Fig. 6.7). Thus when the soil is reset the auto-fertilization 

algorithm in DNDC compensates by applying on average 22% more fertilizer at Woodslee 

(because the N from mineralization is lacking relative to the base approach) and 16% less at 

Alfred. A fixed fertilizer rate coupled with resetting the soil status results in a decline in yields at 

Woodslee (data not shown). 

Decreased decomposition of residues when the soil is reset each year at the Woodslee site 

results in significantly less annual N leaching and N runoff in all time periods (Fig. 6.5, Table 

6.S2). Although the auto-fertilization routine alleviates crop N stress there is still less N in the 

soil profile for most of the year relative to the base approach, particularly in the non-growing 

season period when N is known to be subject to leaching and runoff in cool weather conditions 

(Smith et al., 2019a: Gamble et al., 2018: Schwager et al., 2016). At Alfred we see the expected 
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opposite impact with more N leaching and runoff under the soil re-initialization approach (Fig. 

6.6). This is because SOC levels are higher and more N mineralization occurred than under the 

base approach.  The differences were again significant across all time periods and also N2O 

emissions were significantly higher in the 2170-2100 period (Table 6.S3).   

   

6.3.3.4 Fixed planting 

Obviously, the adjustment of planting time to an earlier period when heat stress is less 

likely to be incurred can reduce adverse impacts of climate change and improve crop growth.  At 

Swift Current there was a 20.9 and 29.2 % projected average reduction in crop yields when 

planting date remained fixed relative to adjusting planting dates in the 2041-2070 and 2071-2100 

periods, respectively (Fig. 6.4, Table 6.S1).  The reduced yields with less crop N uptake resulted 

in slightly increased N2O emissions, N leaching and N runoff. These losses would have been 

much higher if auto-fertilisation (reduced fertilizer rates) was not employed to compensate for 

the lower crop N requirements in the fixed planting date scenario.  Due to lower C inputs, SOC 

was lower than the base approach (Fig. 6.7).  

At Woodslee there was little discernable differences in yields when planting time was 

adjusted (Fig. 6.5). There was a small simulated reduction at Alfred for each time period (Fig. 

6.6) but the change was not significant (Table 6.S3). Less crop water stress occurs at the humid 

locations than at Swift Current and corn has a much higher optimum temperature than spring 

wheat thus the adjustment in planting date does not strongly impact corn growth. It is, however, 

expected that planting date adjustment would strongly influence growth of small grains at these 

humid locations, since they have lower optimum temperatures and would be subject to increased 

heat stress during anthesis. No significant change in N runoff or leaching occurred at Woodslee 

or Alfred, however, N2O emissions were sometimes significantly higher under the fixed planting 

approach at both sites in the 2041-2070 period and also at Alfred in the 2071-2100 period 

(Tables 6.S2, 6.S3). This was because fertilizer was applied at the time of planting and soil 

temperature was warmer under the fixed planting scenario. Temperature is a strong driver of 

nitrification and denitrification activity.  
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6.3.3.5 Simple approach 

At Swift Current the simple approach resulted in very low simulated yields in the future 

periods, -58% relative to the base approach in the 2071-2100 period (Fig. 6.4, Table 6.S1). This 

was compounded due to employing both fixed planting and fixed fertilizer rates in the 

simulations, approaches which both lowered yields, offsetting the increased yields from using 

simple climate variables that produced lower ET (Fig. 6.S7).  We also found significantly greater 

N leaching in all four time periods (Table 6.S1) which was primarily due to the use of simple 

climate where we had less evaporation and more water movement to the deeper profile.  

At Woodslee and Alfred there was a similar response in yields and biomass as the simple 

climate approach (Figs. 6.5 and 6.6), with higher yields at Woodslee than the base approach due 

to less ET and crop water stress (Fig. 6.S7).  At Woodless nitrous oxide emissions were 

significantly higher in all time periods than the base approach, being on average 35% higher 

(Table 6.S2).  At Alfred N leaching was significantly higher from 1981-2070 (Table 6.S3) due 

primarily to the application of fixed fertilizer rates. Auto-fertilization applies N based on crop 

needs annually.  

 

6.3.3.6 Impact of including an alternative cultivar 

In Canada it is expected that longer growing season length will be realized under climate 

change (Qian et al., 2013) and 2-3 weeks greater length has already been realized (Qian et al., 

2012). The simulation results indicate that in the future it may be possible to grow crop cultivars 

which require greater heat units. As expected, yields increase from 2011 to 2100 at all three 

locations (Figs. 6.4-6.6) with significantly increased spring wheat yields (26%) at Swift Current 

(Table 6.S1).  Even though soil carbon increased greatly, especially in the 2071-2100 period 

(Fig. 6.7), nitrogen losses at Swift Current remained small and relatively similar to the base 

approach. At Woodslee and Alfred significantly greater N leaching occurred in the latter time 

periods being caused by higher fertilizer application rates to meet the crop N demands of the 

alternative cultivar (Tables 6.S2, 6.S3). In our case we only employed cultivars that currently 

exist. The extent to which crop water requirements, resistance to heat stress and resistance to 

disease could be modified through breeding and genetic modification in the future is unknown.  
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6.3.3.7 Impact of crop rotation 

The growth of a crop can be impacted by rotational effects such as changes in soil 

properties soil nutrient and water status due to differences in crop root structure and C&N 

feedbacks over time (St Luce et al., 2019: Jarecki et al., 2019). The DNDC model simulates 

changes in soil water holding capacity over time based on changes in soil properties (Jarecki et 

al., 2018). At Woodslee and Alfred we simulated an expected increase in SOC when alfalfa was 

included in rotation (Fig. 6.7) and this had an impact on reducing water stress on corn 

production. This was apparent in the historical model validation period at Woodslee (Fig. 6.S3) 

and at other locations in Canada (Lychuk et al., 2019: Jarecki et al., 2018).  Corn yields at 

Woodslee were highly impacted when a diverse rotation was considered with yields increasing 

by up to 31.6% in the 2071-2100 time period (Fig. 6.5) with significant increases in all four time 

periods (Table 6.S2). At Alfred where less water stress was apparent the rotational impacts were 

smaller with silage biomass increasing by only a few percent (Fig. 6.6). At Swift Current there 

was a small decline in SOC (Fig. 6.7) as time progressed with no significant change in wheat 

yields (Table 6.S1) for the wheat-lentil rotation relative to the base approach (with monoculture 

spring wheat). In this case DNDC simulated similar C inputs from lentil as spring wheat, but a 

slightly accelerated loss of SOC due to higher N content of the lentil residues. This is also a 

finding of St Luce et al. (2018) when lentil green manure was incorporated in a study performed 

at Swift Current.  DNDC also does not include the impact of high temperature stress on grain 

production for the lentil crop whereas it does for the other crops simulated in this study, thus the 

model may be underestimating the amount of residue returned to the soil as harvest index is not 

reduced for lentil under the higher temperatures.   

At Swift current little change in N2O emissions or N leaching occurred under rotational 

wheat-lentil. A small amount more N runoff occurred, being significant in the 2071-2100 period 

(Table 6.S1).  At Woodslee and Alfred there was significantly greater N2O emissions in all time 

periods for rotational corn and rotational corn silage than under monoculture (Figs. 6.5, 6.6). 

Higher emissions are known to sometimes occur in the year following  plow down of alfalfa 

(Uzoma et al., 2015) but note that the average simulated annual emissions during the entire 

rotation (including alfalfa) was lower than under monoculture. At the Woodslee location 

observed N2O emissions from rotational corn were 12% higher on average than under 

monoculture (Table 6.3; rotational corn was used for model calibration). Nitrogen runoff was 
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found to be significantly lower under rotational corn than monoculture at Woodslee which was 

consistent with site observations (Woodley et al., 2018). This was mainly because the model 

simulated higher soil water holding capacity at higher SOC contents (Fig. 6.7) for rotational corn 

and greater infiltration occurred due to higher surface hydraulic conductivity based on values 

taken from Woodley et al. (2018).  At Alfred N runoff increased by a small amount relative to 

monoculture but SOC and the related soil water holding capacity did not increase as drastically 

as at Woodslee and the alfalfa at Woodslee reduced the soil water status more so than did the 

lentils at Swift Current.  

When the combined impacts of crop rotation with an alternative cultivar were simulated the 

results mostly emulated the crop rotation approach indicating that the rotational impacts on soil 

C&N cycling and water storage are of importance (Figs. 6.4-6.6). The impacts on crop growth 

and N losses were mostly cumulative in effect which is particularly evident at Alfred (Fig. 6.6).   

The highest SOC storage occurred under this scenario for Woodslee and Alfred, which is not 

surprising since alfalfa with its dense and deep rooting structure was included in rotation (Fig. 

6.7). 

 

6.4 Conclusions and recommendations 

In this study we found numerous differences in simulated crop growth and nutrient losses 

when differing modelling approaches were employed. The differences were generally expected 

and could be explained based on agronomic principles. Results indicate that every modelling 

approach considered sometimes influenced model outcomes, depending on the climate, soil, and 

agronomic system in question. We found at the semi-arid Swift Current location that crop yields 

were significantly impacted for all approaches except crop rotation. The impact of crop rotation 

on corn yields and corn silage biomass was, however, strong at the two humid locations. There 

are observed impacts at Swift Current for other crop rotations such as wheat-canola-wheat-pea 

which we did not consider in our study (St Luce et al., 2019). Nitrogen losses were generally 

very low at Swift Current and not strongly impacted by the modelling approaches. An exception 

was in the case where only min and max temperature and precipitation were used resulting in 

lower simulated evaporation and greater N leaching below the root zone. The use of fixed 

fertilizer resulted in greatly increased crop N stress and lower yields in the future under a more 
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favorable climate, however, N loss was only slightly reduced since it was already at minimum 

levels historically.   

At the two humid locations every modeling approach considered resulted in significant 

impacts on N losses relative to the base approach, either N2O, N leaching, N runoff or a 

combination. Fixed fertilizer application showed significant impacts on all three N loss 

components at the Woodslee location. Reinitialising soils each year and the rotational approach 

strongly affected soil C&N cycling with clear impacts on N losses. The fixed planting date 

approach demonstrated low impacts at the humid locations but reduced crop yields by more than 

20% in the 2041-2100 time period at Swift Current.  

To simulate plausible impacts of climate change on cropping systems we recommend that 

modellers improve their capabilities of simulating expected changes in agronomy over time and 

employ tools which consider robust soil-plant-atmospheric processes. We recommend 

continuous simulation of soil C&N and water cycling over multiple years, use of detailed climate 

drivers, adjustment of planting dates as climate changes and adjustment of fertilizer rate based on 

changing SOC mineralization and crop needs. In certain cases crop rotation impacts and 

influences of possible alternative cultivars should be considered, but there are unlimited 

possibilities. A model needs to be capable of assessing these impacts but such explorations may 

be considered adaptation strategies rather than routine modelling methodologies. Note that many 

of the approaches investigated in this study are commonly employed based on literature. The 

simple approach with fixed fertilizer, simple climate drivers, and fixed planting is often used in 

sustainability studies to assess SOC change and N2O emissions over time. Modelling studies to 

assess crop growth and development are generally performed using a fuller range of climate 

drivers but the practice of re-initializing soil status at the start of the growing season is common.   

In this study we assessed the impacts of modelling approaches on cropping systems in cool 

weather conditions. Its expected that the impacts could be large in warmer climates where high 

heat and water stress are apparent. For instance, if crop yields are negatively impacted under 

climate change and fixed fertilizer rates are applied then high N losses would be expected.  If 

soils are re-initialized each year the negative influence of reduced C&N and water feedbacks will 

be ignored and crop growth may be over-estimated. It would be useful to expand and assess 

modelling approaches under a wider range of climatic conditions globally. 
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6.5 Supplemental tables and figures 

 

Table 6.S1 Average predicted spring wheat yield, N2O emissions, N runoff or N leaching for 

each modelling approach and 30 year time period at the Swift Current location. 

 

 
1The uppercase letters represent significant differences between different time periods for the same approach, 

and lowercase letters represent significant differences between different approaches for the same time period. 

There are significant differences if letters do not intersect (p<0.05). 

 

 

Table 6.S2 Average predicted corn yield, N2O emissions, N runoff or N leaching for each 

modelling approach and 30 year time period at the Woodslee location. 

 

 

1The uppercase letters represent significant differences between different time periods for the same approach, 

and lowercase letters represent significant differences between different approaches for the same time period. 

There are significant differences if letters do not intersect (p<0.05). 

Item Period Base Minimum Fixed Re-initialize Fixed Simple  Alternative Crop Cultivar+ 

    approach climate 

variables 

fertilizer soil planting approach cultivar rotation crop 

rotation 

Yield  1981-2010 1635Cb1 2421Ca 1596Ab 1702BCb 1607Bb 1825Ab 1718Cb 1529Cb 1628Cb 

(kg ha-1) 2011-2040 1777Cb 2762BCa 1671Ab 1572Cb 1798ABb 1800Ab 2017Cb 1607Cb 1770Cb 

  2041-2070 2506Bbc 3276Aa 1968Acd 2110ABcd 1982ABcd 1600Ad 2840Bab 2434Bbc 2520Bbc 

  2071-2100 3102Ac 3194ABc 1876Ade 2325Ad 2196Ad 1289Be 3892Aab 3336Abc 4051Aa 

N2O 1981-2010 0.74Bab 0.55Dc 0.82ABa 0.59Cbc 0.74Bab 0.51Cc 0.72Bab 0.66Babc 0.65Bbc 

(kg N ha-1) 2011-2040 0.69Bab 0.67Cab 0.58Cb 0.77Ba 0.74Ba 0.59Cb 0.72Ba 0.65Bab 0.69Bab 

  2041-2070 0.74Babc 0.80Babc 0.68BCc 0.84Ba 0.80Babc 0.70Bbc 0.75Babc 0.76Babc 0.83ABab 

  2071-2100 1.05Aabc 1.08Aab 0.86Ac 1.00Aabc 1.14Aa 0.90Abc 1.01Aabc 1.08Aab 0.93Abc 

N leaching  1981-2010 0.00Bb 0.99Ba 0.00Bb 0.00Ab 0.00Bb 0.91Ba 0.00Ab 0.00Bb 0.00Bb 

(kg N ha-1) 2011-2040 0.02Bb 0.91Ba 0.01Bb 0.00Ab 0.01Bb 0.93Ba 0.00Ab 0.00Bb 0.00Bb 

  2041-2070 0.19ABb 2.11ABa 0.10ABb 0.01Ab 0.33ABb 1.66ABa 0.00Ab 0.00Bb 0.00Bb 

  2071-2100 0.46Ac 3.54Aa 0.26Ac 0.05Ac 0.89Ac 2.53Ab 0.00Ac 0.01Ac 0.00Ac 

N runoff  1981-2010 1.57Babc 1.45Bc 1.50Bc 1.46Bc 1.48Bc 1.48Cc 1.54Abc 2.07Ba 2.03Aab 

(kg N ha-1) 2011-2040 1.74ABab 1.77Bab 1.73ABab 1.57Bb 1.74Bab 1.65BCab 1.46Ab 2.22Ba 1.81Aab 

  2041-2070 1.81ABabc 1.94Babc 1.74ABabc 1.85ABabc 1.96Babc 2.07Bab 1.40Ac 2.35Ba 1.56Abc 

  2071-2100 2.26Abcd 2.51Abcd 2.13Abc 2.03Ad 2.88Ab 2.84Abc 1.91Ad 3.65Aa 1.88Ad 

 

Item Period Base Minimum Fixed Re-initialize Fixed Simple  Alternative Crop Cultivar+ 

    approach climate 

variables 

fertilizer soil planting approach cultivar rotation crop 

rotation 

Yield  1981-2010 6023Ab1 6548Ab 6053Ab 6049Ab 6023Ab 6480Ab 6023Ab 7272Ba 7275Ca 

(kg ha-1) 2011-2040 6134Acd 6861Ab 6222Acd 6172Acd 5785Ad 6544Abc 6397Abcd 7800ABa 8153Ba 

  2041-2070 6139Ac 6858Ac 6250Ac 6235Ac 6230Ac 6829Ac 6730Ac 7909ABb 8696ABa 

  2071-2100 5783Ae 6901Ac 5854Ade 5940Ade 5765Ae 6488Acde 6533Ade 8220Ab 9012Aa 

N2O 1981-2010 7.60Bc 6.99Bc 10.80Ba 7.86Bc 7.88Cc 10.03Cab 7.60Cc 9.02Db 9.04Db 

(kg N ha-1) 2011-2040 8.53Bbc 7.82Bc 12.02Ba 7.94Bc 9.75Bb 11.90Ba 8.69Bbc 11.04Ca 11.44Ca 

  2041-2070 10.40Ad 9.67Ad 14.24Aa 9.77Ad 12.31Ac 14.00Aab 10.63Ad 13.01Bbc 13.69Bab 

  2071-2100 11.14Abc 10.32Ac 15.64Aa 10.48Ac 12.34Ab 14.69Aa 11.43Abc 14.67Aa 15.87Aa 

N leaching  1981-2010 7.23Babc 8.04ABab 9.10Ba 1.30ABd 6.65Bbc 5.26Bc 7.23Babc 7.44Bab 7.46Bab 

(kg N ha-1) 2011-2040 6.97Bc 6.26Bc 14.82Aa 1.05Bd 7.69Bc 11.23Ab 7.75Bc 7.11Bc 7.55Bc 

  2041-2070 9.48Abc 8.50Ac 13.36Aa 1.78Ad 7.94Bc 7.92Bc 11.34Aab 9.97Abc 11.93Aab 

  2071-2100 9.60Acde 7.56ABe 16.45Aa 1.48ABf 11.07Abcd 11.93Abc 13.18Ab 8.56ABde 11.30Abc 

N runoff  1981-2010 2.49Cbc 2.39Ccd 3.08Ca 2.19Ad 2.40Ccd 2.68Cb 2.49Cbc 0.76Ae 0.76Ae 

(kg N ha-1) 2011-2040 2.99Bb 2.95Bb 3.59Ba 2.14Ac 2.85Bb 3.04Bb 2.96Bb 0.77Ad 0.77Ad 

  2041-2070 3.41Ab 3.32Ab 4.00Aa 2.37Ac 3.33Ab 3.33Ab 3.45Ab 0.80Ad 0.80Ad 

  2071-2100 3.31Ab 3.30Ab 3.98Ab 2.11Ac 3.18Ab 3.30ABb 3.31Ab 0.82Ad 0.82Ad 
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Table 6.S3 Average predicted silage corn dry biomass, N2O emissions, N runoff or N leaching 

for each modelling approach and 30 year time period at the Alfred location. 

 

 
1The uppercase letters represent significant differences between different time periods for the same approach, and 

lowercase letters represent significant differences between different approaches for the same time period. There 

are significant differences if letters do not intersect (p<0.05). 

 

Table 6.S4 Percent difference in spring wheat yield, soil organic carbon, 

evapotranspiration, N2O emissions, NO3
- losses to drains, and NO3

- runoff between each 

modelling approach and the base approach at the Swift Current location. 

  

 
 
 
 
 

Item Period Base Minimum Fixed Re-initialize Fixed Simple  Alternative Crop Cultivar+ 

    approach climate 

variables 

fertilizer soil planting approach cultivar rotation crop 

rotation 

Biomass  1981-2010 14457Babcd1 14128Cd 15213Ba 14082Bd 14304Cbcd 14187Dcd 14466Cabcd 15110Bab 15025Cabc 

(kg ha-1) 2011-2040 14800Bb 14720Cb 15704Bab 14697Bb 14651Cb 15019Cab 15194Cab 15610Bab 15942Ca 

  2041-2070 16777Abc 16344Bbc 16841Abc 16582Abc 16236Bc 16208Bc 17517Bab 17394Aabc 18138Ba 

  2071-2100 17469Ac 17256Ac 17039Ac 17258Ac 17258Ac 17000Ac 18987Aab 18238Abc 19588Aa 

N2O 1981-2010 3.55Ccd 3.19Cd 4.54Cab 3.57Ccd 3.71Ccd 4.06Cbc 3.53Ccd 5.11Ca 5.08Ca 

(kg N ha-1) 2011-2040 3.64Ccd 3.25Cd 4.49Cb 4.07Cbc 4.18Cbc 4.12Cbc 3.71Ccd 5.71Ca 5.78Ca 

  2041-2070 4.96Bbc 4.37Bc 5.69Bb 5.67Bb 5.81Bb 5.38Bb 5.10Bbc 7.42Ba 7.73Ba 

  2071-2100 6.05Ade 5.49Ad 6.58Acd 7.11Abc 7.58Ab 6.64Abcd 6.30Acde 8.97Aa 9.55Aa 

N leaching  1981-2010 11.33Bd 11.93Bd 34.42Ab 20.71Bc 10.90Cd 43.48Aa 11.24Cd 14.48Cd 14.33Cd 

(kg N ha-1) 2011-2040 14.47Bde 12.72Be 28.23Bb 21.85Bc 15.41ABde 34.28Ba 15.94Bde 17.37BCd 17.82BCd 

  2041-2070 14.48Bde 13.24Be 17.24Ccde 23.51Ba 15.12Bde 22.04Cab 17.79Bcd 18.46Bbcd 20.13Babc 

  2071-2100 22.30Ac 19.54Ac 18.10Cc 30.52Aab 18.88Ac 18.20Cc 27.99Ab 27.92Ab 32.67Aa 

N runoff  1981-2010 1.08Aa 1.06Aa 1.05Aa 1.20Aa 1.09Aa 1.09Aa 1.08Aa 1.14Aa 1.15Aa 

(kg N ha-1) 2011-2040 0.91Bb 0.91Bb 0.94Ab 1.07ABa 0.92Bb 0.90Bb 0.90Bb 1.14Aa 1.14Aa 

  2041-2070 0.80BCe 0.80BCe 0.81Be 1.06Ba 0.78Ce 0.78Ce 0.82BCcd 0.94Bb 0.93Bbc 

  2071-2100 0.71Cb 0.69Cb 0.72Bb 0.84Ca 0.67Cb 0.67Cb 0.72Cb 0.92Ba 0.92Ba 

 

Scenario 
1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100 

  Yield 

 

Soil organic carbon 

 

Evapotranspiration 

Minimum climate variables 48.1 55.4 30.7 3   2.5 5 6.5 5.3   -5.1 -3.9 -9.2 -14.1 

Fixed fertilizer -2.4 -5.9 -21.5 -39.5   0.1 -1.9 -5.5 -12.8   -0.1 -0.2 -0.3 -1.6 

Re-initialize soil 4.1 -11.5 -15.8 -25   -0.1 -3.6 -5.9 -10.9   2.8 -1.2 -2 -5.4 

Fixed planting -1.7 1.2 -20.9 -29.2   0.3 1.4 1.9 3.1   0 0.3 0 -0.8 

Simple approach 11.6 1.3 -36.2 -58.4   -0.5 -4.5 -8.3 -14.8   -8 -8.5 -14.1 -19.8 

Alternative cultivar 5.1 13.5 13.3 25.5   -0.1 0.3 2.9 6.7   1 0.7 1.6 2.5 

Crop rotation -6.5 -9.5 -2.9 7.5   -1.2 -3.2 -5 -6.9   -0.5 -0.7 2.5 7.9 

Cultivar + crop rotation -0.4 -0.4 0.6 30.6   -1 -2.6 -3.1 -2.3   0.7 -1 1.9 8.4 

                              

  N2O 

 

N leaching 

 

N Runoff 

Minimum climate variables -25.5 -3.1 9 3.6   >100 >100 >100 >100   -7.9 2 7.1 11 

Fixed fertilizer 11.4 -15.9 -8.1 -17.8   >100 -20.4 -44.5 -42.9   -4.6 -0.6 -3.6 -5.6 

Re-initialize soil -20.7 11.2 14 -4.4   >100 -100 -94.8 -88.4   -7.2 -9.5 2.2 -10 

Fixed planting -0.6 7.4 8.4 9.5   >100 -70.4 74 95.4   -5.6 0 8.4 27.3 

Simple approach -31.5 -14.3 -5.5 -14   >100 >100 >100 >100   -6.1 -5.1 14.7 25.7 

Alternative cultivar -2.5 4 2 -3   >100 -100 -100 -99.6   -2.1 -15.7 -22.8 -15.5 

Crop rotation -10.6 -5.5 3.3 3   >100 -100 -100 -100   31.5 27.7 29.9 61.5 

Cultivar + crop rotation -11.9 0.3 12.6 -10.6   >100 -100 -100 -100   29 4.2 -13.9 -16.6 
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Table 6 S5 Percent difference in grain corn yield, soil organic carbon, evapotranspiration, N2O 

emissions, NO3
- losses to drains, and NO3

- runoff between each modelling approach and the 

base approach at the Woodslee location. 

 

 
 

Table 6.S6 Percent difference in silage corn biomass, soil organic carbon, evapotranspiration, 

N2O emissions, NO3
- losses to drains, and NO3

- runoff between each modelling approach and 

the base approach at the Alfred location.  

 

Scenario 
1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100 

  Yield 

 

Soil organic carbon 

 

Evapotranspiration 

Minimum climate variables 8.7 11.8 11.7 19.3   1.1 2.7 3.5 4.4   -11.3 -12.5 -13.3 -11.7 

Fixed fertilizer 0.5 1.4 1.8 1.2   0.2 0.8 1.6 1.5   0.1 0.1 0.1 0.1 

Re-initialize soil 0.4 0.6 1.6 2.7   -3.7 -6.6 -7.5 -8.3   0.3 -0.7 -1.4 -1.7 

Fixed planting 0 -5.7 1.5 -0.3   1.1 0.2 0.6 0.1   -0.2 -0.2 1.8 1.7 

Simple approach 7.6 6.7 11.2 12.2   1.6 2.4 3.1 3.2   -11.3 -12.1 -11.6 -10.8 

Alternative cultivar 0 4.3 9.6 13   0 0.8 2.3 3.4   0 0.9 1.6 2.1 

Crop rotation 20.6 27.2 29.2 42.3   3.8 11.8 18.3 24.8   7.4 8.3 7.8 8.6 

Cultivar + crop rotation 20.7 32.9 42.2 56.1   3.9 12.3 19.9 27.6   7.4 9.8 10.3 10.9 

                              

  N2O 

 

N leaching 

 

N Runoff 

Minimum climate variables -8 -8.3 -7 -7.3   11.3 -10.3 -10.3 -21.2   -3.7 -1.5 -2.8 -0.5 

Fixed fertilizer 42 40.9 36.9 40.4   25.8 112.6 41 71.4   23.7 19.9 17 20.1 

Re-initialize soil 3.4 -6.9 -6.1 -5.9   -82 -84.9 -81.2 -84.5   -12.1 -28.4 -30.7 -36.3 

Fixed planting 3.6 14.3 18.4 10.8   -8 10.4 -16.2 15.3   -3.4 -4.9 -2.5 -4 

Simple approach 31.9 39.5 34.7 31.9   -27.2 61.2 -16.4 18.7   7.7 1.6 -2.4 -0.3 

Alternative cultivar 0 1.9 2.2 2.6   0 11.2 19.7 37.4   0 -1.3 1.2 -0.1 

Crop rotation 18.5 29 25.6 31.6   2.4 2 5.1 -11.4   -69 -74.4 -76.3 -75 

Cultivar + crop rotation 18.7 33.8 32 42.4   2.7 8.4 25.6 16.8   -69 -74.5 -76.5 -75.1 

 

Scenario 
1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100   

1981-

2010 

2011-

2040 

2041-

2070 

2071-

2100 

  Yield   Soil organic carbon   Evapotranspiration 

Minimum climate variables -2.9 -0.5 -2.6 -1.2   -0.1 0.4 0.6 0.9   -12.5 -12.1 -12.9 -12.7 

Fixed fertilizer 4.5 6.1 0.4 -2.5   1.3 2.5 1.9 0.8   0.8 0.9 0 0 

Re-initialize soil -3.3 -0.7 -1.2 -1.2   1.5 3.5 3.8 4.8   -1.1 -0.8 -0.9 -1.5 

Fixed planting -1.7 -1 -3.2 -0.7   0 -0.1 -0.3 0.1   -0.2 0.5 -0.6 0.3 

Simple approach -2.5 1.5 -3.4 -2.7   0.6 1.7 1.9 2   -12.3 -11.7 -12.9 -12.3 

Alternative cultivar -0.6 2.7 4.4 8.7   -0.1 0.3 0.9 2.3   -0.1 0.9 1.3 2.2 

Crop rotation 3.9 5.6 3.5 4.6   2.7 6.7 8.7 11.4   2 1.8 1.3 1.3 

Cultivar + crop rotation 3.3 7.8 7.9 12.4   2.7 6.8 9.2 12.6   1.8 2.6 2.8 3.7 

                              

  N2O   N leaching   N Runoff 

Minimum climate variables -10 -10.6 -11.9 -9.3   5.4 -12.1 -8.6 -12.4   -1.9 0.7 0.1 -2.5 

Fixed fertilizer 28 23.4 14.7 8.8   203.9 95.1 19.1 -18.8   -3.1 3.8 0.5 1.7 

Re-initialize soil 0.6 12 13.7 17.6   82.9 51 62.3 36.9   11.2 18.3 32.5 18.4 

Fixed planting 4.5 14.9 17.1 25.3   -3.7 6.5 4.4 -15.3   0.8 1.1 -2.4 -5 

Simple approach 14.5 13.3 8.4 9.9   283.9 136.9 52.2 -18.4   0.8 -0.4 -2.8 -5.9 

Alternative cultivar -0.4 2.1 2.9 4.3   -0.8 10.2 22.8 25.5   -0.2 -1.2 1.9 0.9 

Crop rotation 44.3 56.8 50.5 48.1   28 19.1 28.3 24.6   5.5 25.1 16.8 28.9 

Cultivar + crop rotation 43.4 58.9 56.6 57.6   26.7 22.3 40 45.8   5.4 26.6 15.8 29.1 
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Figure 6.S1 Comparison of observed and simulated grain yields for a) monoculture spring wheat 

and b) rotational spring wheat in a spring wheat-lentil rotation at the Swift Current location.
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Figure 6.S2 Observed and simulated soil organic carbon from 0-15 cm depth for a) monoculture 

spring wheat and b) rotational spring wheat-lentil at the Swift Current location 
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Figure 6.S3 Comparison of observed and simulated grain yields for a) monoculture corn and b) 

rotational corn in a corn-oats-alflalfa-alfalfa rotation at the Woodslee location.  
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Figure 6.S4 Observed and simulated SOC in the soil profile at Woodslee for a) the continuous 

corn rotation and b) the corn-oats-alflalfa-alfalfa rotation. SOC is averaged from 2004-2007, 46 

years after the implementation of the long-term trial.  
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Figure 6.S5 Growing season average temperature and precipitation under the 8.5 Watt m-2 

climate change scenario.  The growing season is calculated from May 1st to August 31st for 

spring wheat  (Swift Current) and from May 1st to September 30th for corn (Harrow) and silage 

corn (Alfred). T1, T2, T3 and T4 represent the time periods 1981-2010, 2011-2040, 2041-2070, 

and 2071-2100, respectively 
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Figure 6.S6 Simulated NO3
- runoff for the base modelling approach in the early, mid and late 

season at Alfred. 
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Figure 6.S7 Average simulated evaporation and transpiration for each modelling approach at the 

a) Swift Current, b) Woodslee and c) Alfred locations across each 30 year time period. T1, T2, 

T3 and T4 represent the time periods 1981-2010, 2011-2040, 2041-2070. 
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Chapter 7 

Summary and conclusions 

7.1 General overview 

The main goal set out in this thesis was to improve the ability of the DNDC model for 

simulating soil hydrology, partly by incorporating a new drainage sub-model, to advance its 

capacity for assessing the sustainability of cropping systems, both under current and future 

climate. The model was successfully expanded to simulate soil hydrology and N losses with 

similar accuracy as the RZWQM2, while minimizing the computation time, input requirements, 

and the level of expertise required to operate the model.  The revised model can now simulate the 

impacts of tile drainage depth and spacing, controlled drainage and sub-irrigation on crop growth 

and development and soil C&N and water cycling. Application of the revised model, which 

could better simulate interactions between environmental outcomes, was then demonstrated by 

exploring reactive N losses for 18 fertilizer management scenarios at three research sites and by 

formulating a recommended modelling approach for simulating the impacts of climate change on 

cropping systems.  

 

7.2 Conclusions 

Objective 1: To compare the performance of the default DNDC model, which utilizes simplified 

expressions for water dynamics to the more hydrologically complex RZWQM2 using a detailed dataset 

of crop biomass and N uptake, soil water content, drainage, and N loading to tiles. Recommend 

improvements to DNDC. 

 A study was implemented to compare the performance of two widely used process-based 

models for simulating crop growth and soil water dynamics and N loss to tile drains. It was 

informative to discover that a simple cascade water sub-model (DNDC) performed adequately in 

comparison to measurements and similarly with respect to RZWQM2 across certain metrics 

including crop yield, biomass, N uptake of winter rye, annual and monthly water flow and N loss 

to tile drains. There were, however, shortcomings in simulating soil water storage, soil water 

contents down the profile and daily water flow events whereas RZWQM2 generally performed 

adequately for these metrics. Fine scale temporal simulation of water and N dynamics can 

greatly impact soil water and nutrient levels, thereby influencing several biogeochemical 

processes such as decomposition, denitrification, nitrification and methanogenisis.  These 
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processes are largely dependent on soil water content.  Since DNDC is primarily used to simulate 

GHG emissions we recommended that developments be carried out for DNDC to further 

improve its hydrological processes.   

Suggested improvements for DNDC included a deeper and heterogeneous soil profile, 

inclusion of root distribution functions, inclusion of improved water flow, a fluctuating water 

table, and a new tile drainage sub-model. Considerations should, however, be taken when 

contemplating model developments. More complex processes can increase model input 

requirements, computation time and the required level of modeller expertise.  

 

Objective 2: To revise hydrologic processes in the DNDC model by including a new tile drainage sub-

model, ability to simulate controlled drainage and sub-irrigation, improved soil water flow, a 

heterogeneous soil profile, revised root penetration and density functions, and a deeper soil profile. 

Compare the performance of the revised DNDC model to RZWQM2 using detailed datasets of runoff 

and drainage in eastern Canada and the US Midwest. 

To improve the performance of the DNDC model for simulating soil hydrology we 

implemented a deeper and heterogeneous soil profile, root penetration and density functions, a 

fluctuating water table, unsaturated flow above field capacity, and the Hooghoudt equation to 

simulate mechanistic tile drainage based on drain spacing, depth and tile diameter. After 

development, simulations of soil water storage, daily drainage, N loss to runoff and N loss to tile 

drains were improved, comparing well to measurements at two research sites and showing at 

least as good of performance as RZWQM2. This demonstrated that DNDC development was 

successful considering RZWQM2 is a well-validated water quality model which includes 

detailed computational hydrology. The soil-water input requirements for DNDC were kept 

relatively low and the model simulation time remained four times faster than RZWQM2, which 

are important factors for larger scale assessments. Neither the revised DNDC model or 

RZWQM2 well simulated the timing of water or N losses to runoff but performed satisfactory in 

simulating the cumulative magnitudes. The simulation of runoff is complex particularly when 

surface crusting, clay cracking, preferential flow through insect and root channels, snow 

dynamics, and soil freeze-thaw are prevalent and further research is recommended. DNDC was 

able to capture the observed differences in water and N losses between conventional drainage 

and controlled drainage management with sub-irrigation.  
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Through these developments we expanded the ability of DNDC to simulate the impacts of 

tile drainage management on several biogeochemical processes.  Future studies can now 

investigate optimum tile drain depth and spacing, and explore possible benefits of controlled 

drainage or sub-irrigation on crop growth, soil C&N cycling and reactive N losses. 

 
Objective 3: To use the revised DNDC model to investigate inorganic and organic fertilizer 

management practices over a 30 year time horizon to determine practices which may reduce reactive N 

loss from corn silage production in cool climatic zones of eastern Canada and the US Midwest. and to 

examine trade-offs and synergies between N loss to tile drains, N loss to runoff, NH3 volatilization and 

N2O emissions. Recommend beneficial management. 

The revised and well-tested DNDC model was used to investigate the impacts of N loss from 

18 fertilizer management practices across 3 locations, fine and coarse soil textures at each location, 

and 30 years of climate variability. Management scenarios included fertilizer type (manure slurry 

and urea fertilizer), timing (spring, fall, split, side-dress) and method of application (injected, 

incorporated, broadcast). Reactive N losses (N to drainage and runoff, N2O and NH3) were greatest 

from broadcast, followed by incorporated and then injected. The inputs for the DNDC model were 

constructed using R statistical software (R Core Team, 2013) to build 3240 iterative permutations 

of climate and management and soil type.  

Similar impacts of fertilizer management were often determined between locations and these 

were highly variable across climate but usually agreed with observations. Reactive N losses were 

much greater from coarser than the finer textured soils and in many cases climate variability had 

more influence on reactive N loss than did changes in fertilizer management. More NH3 

volatilization and N2O losses occurred from organic fertilizer but N leaching was similar. There 

was, however, much greater N leaching and runoff from fall applied than spring applied manure 

slurry. The most beneficial managements were shown to be split and side-dress mineral fertilizer. 

Ranking of reactive N losses across the 18 fertilizer management practices were provided in the 

manuscript for each location and soil type.  

Several on farm management decisions come into play when considering fertilizer 

application method. These can include fertilizer source and type of equipment available for 

application, manure storage considerations, and on farm time management between multiple tasks. 

The results presented in this study can be used to guide producers in planning fertilizer 

management in an effort to reduce N loss, and minimize the environmental footprint. 
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Objective 4: To investigate the implications of using simpler versus more advanced modelling 

approaches for simulating the impacts of climate change on crop production, SOC change, N2O 

emissions and N leaching and runoff and recommend an approach under cool weather climates. 

Assess the effect of climate change on crop production and sustainability for common cropping 

systems in Canada. 

Well developed and calibrated biophysical models can be particularly valuable for 

simulating climate change impacts, however, there are many alternative modelling approaches 

used in literature for simulating such impacts. These approaches usually employ simplified 

methods to avoid complexities that some crop-focused models cannot handle, such as long-term 

feedbacks in soil C&N and water cycling over time.  We performed case studies at three 

locations in Canada to explore the impact of modelling approaches that are commonly employed 

in literature which may adversely impact the simulation of crop yields, soil organic carbon 

change and N losses. These included the use of a minimum set of weather variables, re-

initializing soil status annually, fixed fertilizer application rates, fixed planting dates, and 

ignoring changes in crop cultivars and rotational impacts. The approaches were compared to a 

comprehensive base approach where detailed climate drivers, adjustment of planting dates, 

fertilizer rates based on crop needs, and continuous simulation of soil C&N and water feedbacks 

were considered. 

We found numerous differences in simulated crop growth and nutrient losses when 

differing modelling approaches were employed. The differences were generally expected and 

could be explained based on agronomic principles. Results indicated that every modelling 

approach considered, with respect to the base approach, sometimes influenced model outcomes, 

depending on the climate, soil, and agronomic system in question. We found at the semi-arid 

Swift Current location that crop yields were significantly impacted for all approaches except 

crop rotation. At the two humid locations every modeling approach considered resulted in 

significant impacts on N losses relative to the base approach, either N2O, N leaching, N runoff or 

a combination. Fixed fertilizer application showed significant impacts on all three N loss 

components at the Woodslee location. Reinitialising soils each year and the rotational approach 

strongly affected soil C&N cycling with clear impacts on N losses. The fixed planting date 

approach demonstrated low impacts at the humid locations but reduced crop yields by more than 

20% in the 2041-2100 time period at Swift Current. 
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To simulate plausible impacts of climate change on cropping systems we recommend that 

modellers improve their capabilities of simulating expected changes in agronomy over time and 

employ tools which consider robust soil-plant-atmospheric processes. We recommend 

continuous simulation of soil C&N and water cycling over multiple years, use of detailed climate 

drivers, adjustment of planting dates as climate changes and adjustment of fertilizer rate based on 

changing SOC mineralization and crop needs. In certain cases crop rotation impacts and 

influences of possible alternative cultivars should be considered as adaptation measures.  

 

7.3 Contributions to knowledge 

The research performed in this thesis resulted in several contributions which fill gaps in 

knowledge within the international modelling community.  The study which compared 

hydrological model frameworks was not only useful for understanding issues that occur in the 

DNDC model but it has implications for many well-known agricultural models that use a cascade 

flow approach. To accurately estimate daily water and N losses to tile drains and soil water 

storage in cropping systems the simulation of soil hydrology requires improvement in many of 

these models.   

The development of a revised DNDC model for simulating soil hydrology and the inclusion 

of a new tile drainage sub-model is a significant contribution to the agricultural modelling 

community, especially since the reasons for implementing specific components are well 

documented. The model can for the first time simulate the impacts of drainage depth and 

spacing, controlled drainage and sub-irrigation thus it can now estimate drainage design impacts 

on GHG emissions, NH3 volatilization, N losses to tiles and runoff, and SOC dynamics. The 

DNDC.vCAN model is currently being used by at least a dozen modelling groups worldwide 

with an increasing user base trend. There is considerable interest in using the revised hydrology 

version. Now that hydrology has been improved, the model can be further improved for 

simulating several biogeochemical processes and can be used as a science-based research tool to 

investigate BMPs and climate change impacts on cropping systems. The revised model, being 

able to simulate a wider range of sustainability metrics, will be integrated into a number of 

research programs within Agriculture and Agri-Food Canada. 
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The investigation of fertilizer management decisions across a long-term climate horizon in 

this thesis serves as a guide for producers in planning fertilizer management in an effort to 

reduce N loss, maintain crop productivity and minimize the overall environmental footprint of 

farming activities. This study serves as an example of how a well evaluated process-based model 

can be applied to assess the trade-offs in a number of environmental outcomes, rather than 

focusing on only one metric (such as crop yield, GHG emissions, or water quality). The model 

automation procedure developed in this study is currently being employed for several other 

projects.  

The manuscript on assessing modelling approaches for simulating climate change impacts 

on cropping systems should serve as a valuable guide and reference for many future modelling 

studies. Many of the simpler modelling methods investigated are shown to produce results that 

are not plausible, however, such methods are commonly employed by modellers worldwide. The 

simulations using our revised DNDC model clearly document deficiencies in many of these 

approaches and its likely that the recommendations we put forth will help guide the modelling 

community to use improved methodologies.   

 

7.4 Recommendations for future research 

The poor simulation of soil hydrology in the DNDC model adversely impacted the 

simulation of several processes. Now that the model has been improved several processes can be 

re-evaluated as follows:  

1. Focus can now be placed on improving biochemical processes that impact N2O 

emissions. In several studies it was found that DNDC underestimated N2O emissions 

during periods of high rainfall or spring snow melt due to the inability of a cascade flow 

model to simulate water contents above field capacity. Soil water strongly influences 

oxygen diffusion into the soil and the type of denitrification reactions that occurs. 

Datasets can now be used to properly update this process by setting the range of N2O 

production in the model to occur an appropriate soil water and oxygen content range. 

Further, the DNDC model does not separately characterize N2O production and 

consumption processes, and diffusion is only handled in a simplistic empirical manner. 

Soil water content and substrate availability (N in solution) are important drivers of these 



202 
 

processes thus advancements may be made now that soil water and N simulation have 

been improved.   

2. DNDC simulates the impact of urease and nitrification inhibitors on N cycling, relevant 

to NH3 volatilization, N2O emissions, and N leaching and runoff. However, the 

implementation of inhibitor simulation requires improvement to allow for non-linear 

efficiencies of the inhibitors. Also the leaching characteristics of urea should be 

improved, since this strongly impacts the function of the inhibitors.  

3. The simulation of runoff including N and P lost via runoff is complex particularly when 

surface crusting, clay cracking, preferential flow through insect and root channels, snow 

dynamics, and soil freeze-thaw are prevalent and further research to improve DNDC is 

recommended. Very good data sets are required which characterize not only runoff but 

also the extent and depth of clay cracking and crusting, in situ measured hydraulic 

conductivities, soil water tension and snow depth and density. 

4. The capability to simulate phosphorous dynamics is available in DNDC, however, the 

functions are rarely applied or tested against measured data. Phosphorous losses through 

runoff from agroecosystems are of course very important contributions to eutrophication 

of water bodies thus this warrants testing and possible developments.  

5. The model has been extended to 2m simulation and a fluctuating water table with quasi-

2D tile drainage has been incorporated. This has positive implications on the simulation 

of  SOC dynamics. The simulated impacts of tile drainage design on SOC storage, 

including subsurface drainage and sub-irrigation, can now be evaluated and the model 

can be applied to identify BMPs. Further, buried SOC occurs particularly in eastern 

North America and Europe, in more humid regions where mouldboard ploughing is used. 

Over time, a portion of the crop residues is turned over and buried below the plough layer 

where it remains more stable. This is seldom simulated in agricultural models but is 

deemed important since models do not simulate the correct total balance of SOC in the 

profile. The simulation of a buried SOC should now be implemented in DNDC. 

6. Most agricultural models including DNDC do not include the impacts of plant disease 

and pests. However, many stand-alone empirical models are available which include 

these impacts and they could be incorporated into DNDC. The drivers of plant disease 

such as relative humidity, soil water content, canopy temperature, and radiation are 
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already included in the model thus the incorporation of these empirical-based models is a 

good opportunity, particularly since the simulation of certain drivers has been improved.  

 

In this thesis the revised DNDC model has been successfully calibrated and validated and 

used to investigate management impacts on several metrics under climate variability and climate 

change.  Simulations can now be extended for more extensive applications as follows:  

  

7. It’s important that the DNDC model be evaluated for additional cropping systems in 

Canada and worldwide. Much can be learned regarding the simulation of crop growth and 

development, hydrologic systems modelling, and soil C&N cycling under the scope of 

the Agricultural Model Intercomparison and Improvement Project (AgMIP) and the 

Global Research Alliance (GRA) Integrative Research Group.  

8. The model automation infrastructure developed in Chapter 5 could be employed to 

estimate trade-offs in nutrient losses for a wider range of crop types, management 

activities and locations. The model can now generate more reliable and a wider range of 

sustainability metrics which could be useful for improving the Canadian GHG and soil 

carbon inventories and the National Agri-environmental Indictors.  

9. Now that we have defined an approach for simulating climate change impacts (Chapter 6) 

studies can be implemented which model the resilience and sustainability of a wide range 

of agricultural management practices under future climates. It is generally expected that 

N losses will increase in the future but diversified crop rotations, improved drainage and 

irrigation, tillage or residue management may mitigate these losses.  There is interest in 

determining how climate change will impact crop water use and nitrogen fertilizer 

application rates in the future and how cropping patterns might change in existing 

agricultural regions, or which regions may open up for annual cropping (such as the 

northern clay belt in Ontario).  

10. There are opportunities to link the DNDC model with a Life Cycle Analysis (LCA) tool 

to estimate the global warming potential, acidification or eutrophication of agricultural 

products at the farm gate. A well evaluated biogeochemical model can provide improved 

estimates of GHG emissions, NH3 volatilization and water quality that are needed for a 

quality analysis. An LCA tool such as the one developed by Goglio et al. (2018) could be 
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coupled within the DNDC interface to enable the estimation of emissions and energy 

from farm machinery, as well as upstream processes of fertilizer and pesticide 

production, etc.  Likewise, an economic assessment of cropping systems could be linked 

using current crop sales data, machinery and labour costs. For Canada, this data is 

available from within the Canadian Regional Agricultural Model (CRAM) developed and 

used by Strategic Policy Branch of Agriculture and Agri-Food Canada.       
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