
r" .. 

A Novel Deformable Phantom 
for 4D Radiotherapy Verification 

Monica Margeanu 

Master of Science 

Medical Physics Unit 

McGill University 

Montreal, Quebec 

July 2007 

A thesis submitted to McGill University in partial fulfilment of the requirements of 
the degree of Master of Science in Medical Radiation Physics 

@Monica Margeanu 2007 



1+1 Libraryand 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-38420-6 
Our file Notre référence 
ISBN: 978-0-494-38420-6 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ACKNOWLEDGEMENTS 

First, l would like to express my gratitude to my thesis supervisors, Dr. Jan 

Seuntjens and Dr. Gabriela Stroian. Thank you for your guidance, support, patience 

and encouragement during the preparation of this thesis, for always being willing to 

help me with whatever problcm l had. 

l also wish to thank Emily Heath for her great help with deformable image registra­

tion and many discussions on phantom construction. 

l would like to acknowledge Robin Van Gils for helping with the construction of 

the phantom and for teaching me the basics and operation rules of the mechanical 

workshop. 

l am grateful to Joe Larkin, Bavan Sivagnanam and Pierre Léger for helping with 

the automation and making the phantom "breathe" . 

My sincere appreciation goes to aIl staff of the McGill Medical Physics Unit. In par­

ticular l would like to thank Dr. Ervin Podgorsak, the head of the department, for 

developing such an excellent program and aIlowing me to study in the department 

of Medical Physics. Also a special thanks goes to Margery K newstubb for her kind 

assistance and advice in dealing with administrative issues. 

l also thank aIl of my classmates and friends for aIl of the good times that we have 

shared during our studies in Montréal. 

Finally, l would like to express my deepest gratitude to my parents for their love and 

support, both moral and financial, without which this thesis would not be. 

ii 



ABSTRACT 

The goal of conformaI radiation techniques is to improve local tumour control 

through dose escalation to target volumes while at the same time sparing surround­

ing healthy tissue. Respiratory motion is known to be the largest intra-fractional 

organ motion and the most significant source of uncertainty in treatment planning 

for chest lesions. A method to account for the effects of respiratory motion is to 

use four-dimension al radiotherapy. While analytieal models are useful, it is essen­

tial that the motion problem in radiotherapy is addressed by both modeling as weIl 

as experimentally studies so that different obstacles can be overeome before clinical 

implementation of a motion compensation method. Validation of techniques aimed 

at measuring and minimizing the effects of respiratory motion require a realistic 

dynamic deformable phantom for use as a gold standard. In this work we present 

the design, construction, performance and deformable image registration of a novel 

breathing, tissue equivalent phantom with a deformable lung that can reproducibly 

emulate 3D non-isotropie lung deformations aeeording to any reallung-like breathing 

pattern. The phantom consists of aLucite cylinder filled with water containing a 

latex balloon stuffed with dampened natural sponges. The balloon is attached to a 

piston that mimics the human diaphragm. Nylon wires and Lucite beads, emulat­

ing vascular and bronchial bifurcations, were glued at various locations, uniformly 

throughout the sponges. The phantom is capable of simulating programmed irreg­

ular breathing patterns with varying periods and amplitudes. A deformable, tissue 

equivalent tumour, suit able for holding radiochromic film for dose measurements 
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was embedded in the sponge. Experiments for 3D motion assessment, motion re­

producibility as weIl as deformable image registration and validation are presented 

using the deformable phantom. 

iv 



.~. 

ABRÉGÉ 

Le but des techniques de radiation conformationnelle est d'améliorer le contrôle 

de la tumeur locale par escalade de dose aux volumes cibles tout en préservant 

les tissus sains environnants. Le mouvement respiratoire est connu pour être le 

mouvement intra-fractionnel d'organe le plus important et la source d'incertitude 

la plus élevée pour les plans de traitement des lésions de poitrine. Une méthode 

pour prendre en compte les effets du mouvement respiratoire est d'utiliser la ra­

diothérapie quatre dimensions. Bien que les modles analytiques soient utiles, il est 

essentiel de traiter les problmes de mouvement en radiothérapie par la fois des études 

numériques et expérimentales afin que les différents obstacles puissent être dépassés 

avant l'implémentation clinique d'une méthode de compensation du mouvement. La 

validation des techniques dont le but est de mesurer et de minimiser les effets du mou­

vement respiratoire nécessite un fantôme réaliste dynamique déformable pour une 

utilisation en tant que" gold standard". Dans ce travail, nous présentons le concept, 

la construction, la performance et l'enregistrement d'image déformable d'un nouveau 

fantôme respiratoire équivalent tissu avec un poumon déformable qui peut imiter de 

manire reproductible les déformations 3D non-isotropiques du poumon selon le com­

portement respiratoire d'un poumon réel. Le fantôme consiste en un cylindre de 

Lucite rempli d'eau contenant un ballon en latex, lui-même rempli d'éponges hu­

mides naturelles. Le ballon est attaché un piston qui simule le diaphragme humain. 

Des fils de Nylon et des perles de Lucites, simulant les bifurcations vasculaires et 

bronchiales, étaient collés différentes positions, uniformément travers les éponges. 
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Le fantôme est capable de simuler des comportements respiratoires irréguliers pro­

grammés avec des périodes et des amplitudes différentes. U ne tumeur déformable 

équivalent tissu, appropriée pour les films radio chromiques utilisés pour la mesure de 

dose, a été insérée dans l'éponge. Les expériences pour les tests de mouvement 3D, la 

reproductibilité du mouvement, l'enregistrement d'image déformable et la validation 

sont présentées en utilisant le fantôme déformable du poumon. 
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CHAPTER 1 
Introduction 

1.1 Modern approaches to radiation therapy 

Radiation therapy is the medical use of ionizing radiation, most commonly con-

sisting of photons and electrons, as part of cancer treatment to control malignant 

cells. Radiotherapy may be used as the primary therapy and can also be combined 

with surgery, chemotherapy, hormone therapy or sorne mixture of the three. The 

damage to cancerous cells is related to the absorbed dose (i.e., energy absorbed from 

ionizing radiation per unit mass) and therefore by increasing the dose to the tumour, 

the number of killed cancer cells increases and so does the probability of cure. 

Despite promising molecular work on radiation sensitivity, patients with primary 

tumour confined to its loco-regional site are currently treated with three-dimensional 

conformal radiotherapy (3D CRT) where a high dose region is adjusted around the 

target volume while delivering as low as possible a dose outside. This technique 

relies on accurate target definitions, dose planning and delivery in order to increase 

local tumor control probability (TCP) and/or decrease normal tissue complication 

probability (NTCP). The impact of 3D CRT may be a 10-20 increase in 5-year survival 

rate [105, 118] but its success may be compromised by errors in target location 

as well as discrepancies between planned and delivered dose distributions. Major 

contributors to these errors are the limitations of anatomical image modalities for 
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complete target characterization and localization, the clinical use of inadequate dose 

calculation algorithms and the disregard of respiratory motion. 

The development of the intensity-modulated radiation therapy (IMRT) tech­

niques allows for planning and delivering radiation treatments with higher dose gra­

dients and tighter treatment margins than possible with convention al irradiation 

techniques [119, 14,82,21]. With the IMRT technique, using multiple intensity mod­

ulated beams, one can deliver a high dose of radiation to the target and a low dose to 

the surrounding normal structures. IMRT planning provides improved tumor target 

conformity when compared to 3D CRT treatment planning. There is significant spar­

ing of critical structures and other normal tissues. However, reducing the treatment 

margins without an associated improvement in patient setup, immobilization, and 

localization may result in an unintentional underdosing of the target volume, and 

therefore increase the risk of local tumor recurrence. Therefore, there is concern that 

highly conformaI therapy, such as IMRT, designed based on a single computed tomog­

raphy (CT) dataset acquired for planning purposes may lead to marginal misses of 

target volumes [36, 56]. In addition, the locations, shapes, and sizes of the tumor(s) 

and normal anatomy have been found to change significantly due to daily positioning 

uncertainties and physiological and/or clinical factors during the course of radiation 

treatments. The latter includes inter-fraction motionjdeformation that occurs on 

a fraction-to-fraction level such as tumor shrinkage, weight loss, variations in rectal 

and bladder contents or intra-fraction motionjdeformation that occurs while the pa­

tient is being irradiated and which are caused by the respiratory, skeletal, muscular, 

cardiac and gastrointestinal systems. 

2 



A new approach that accounts for the intra- and inter-fraction motionjdeformation 

is the use of the image-guided radiotherapy (IGRT). IGRT is an application of dy­

namie feedback control in radiation treatment that utilizes the image feedback of 

patient-specific anatomical and biological variations to frequently evaluate treatment 

quality and to optimize the treatment plan if necessary by including the variations in 

the design of dose distribution. Practitioners are using new image-guided techniques 

to verify the tumor location each day. Ultrasound systems have begun to find their 

way into the clinic, but they only work weIl in the abdomen where there are no air 

cavities or significant amounts of bone. An alternative approach is electronic portal 

imaging, whieh requires the placement of small, inert marker seeds in the soft-tissue 

tumor as an aid to visualization. Yet another technique is to produce a CT image of 

the patient using the "cone beam" technique. The linear accelerator's larger conical 

beam is used, and the entire 3D volume can be imaged with just one linac rotation. 

The cone-beam approach works for either kV or MV X-ray beams, but a kV beam 

pro duces the highest image quality using the least amount of dose. 

1.2 EfIects of respiratory motion in conventional radiation therapy 

The newest challenge in modern, 3D CRT and IMRT is to deliver the prescribed 

dose distribution to a moving, deformable target. If the respiratory motion is not 

accounted for, du ring convention al radiotherapy for thoracic and abdominal sites, 

imaging, planning and delivery errors can be introduced. 

For instance, a conventional CT scan represents anatomie information acquired 

from various phases of the respiration cycle and can include severe motion artifacts. 
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Figure 1-1: Isosurface renderings of a spherical object CT scanned while periodically 
moving on a sliding table. Top row: different artifacts obtained by axial CT scanning. 
Bottom row: left shows a CT scan of the statie object. Other images show three 
positions of the sphere while moving as imaged with four-dimensional computed 
tomography (4D CT) whieh is described in Section 1.3. Reproduced from [86]. 

This makes target delineation inaccurate on planning CT images, which results in 

incorrect anatomieal position, volume and shape of the tumour (Fig. 1-1). 

Also, the conventional treatment planning for mobile lung tumours based on a 

single CT scan acquired under quiet free breathing, leads to suboptimal dose calcu-

lation. During treatment planning the margins around the tumour need to be large 

enough to ensure coverage of the target at full extents of motion. Generally, for CT­

planned lung cancer treatments, the gross tumour volume (GTV) is outlined and a 

margin is added to include the suspect microscopie spread (whieh when added to the 

GTV creates the clinical target volume (CTV)). To obtain the planning target volume 

(PTV) from the CTV involves adding margins to account for intra-fraction motion, 

inter-fraction motion and setup error. Nevertheless, the volume actually treated is 
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Figure 1-2: Motion during static dose delivery leads to a blurred dose distribution: 
solid water phantom, irradiated with 10 photon beams, shifted along a line parallel to 
the phantom surface according to a Gaussian distribution with a standard deviation 
cr = 10 mm. Reproduced from [9]. 

usually larger and there is an even larger volume of tissue irradiated to a dose con-

sidered significant in relation to normal tissue tolerance. Because of the artifacts 

observed in CT images in which respiratory motion has not been accounted for, the 

magnitude of margin to allow for respiratory motion is difficult to quantify. Adding 

treatment margins increases the volume of healthy tissue exposed to significant doses 

and hence increases the likelihood of treatment-related complications. 

Radiation delivery in the presence of intra-fraction organ motion causes an av-

eraging or blurring effect of the static dose distribution over the path of the motion 

while inter-fraction motion causes a shift of the dose distribution. The amount of 

blurring depends on the amplitude and the characteristics of the motion and on the 
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Figure 1-3: The leaves move from left to right. The star symbolizes a point in an 
organ that moves up and down and the two different types of stars represent two 
different phases of the motion. Depending on the phase relative to the leaf motion, 
the point can receive very different dose values. Reproduced from [68]. 

sharpness of the static dose distribution but it does not depend on the specifie de­

livery technique. The blurring leads to an enlarged penumbra at the field edge and 

thus to a less conformaI dose distribution (Fig. 1-2). During dynamic delivery (i. e., 

beam-shaping aperture moves during dose delivery) there is a blurring effect (due to 

organ motion) but aiso the so-called interplay effect. The interplay effect is caused 

by the combination of the intra-fraction target motion and the beam motion which 

generates variations of the dose in each voxel. An illustration of the interplay effect 

in the case of multiIeaf collimator (MLC) delivery is shown in Fig. 1-3. The two 

previous effects assume that the dose distribution is invariant to displacements of the 

internaI structure of the patient. This assumption wouid be valid only if the density 

of the organs were uniform. However, at interfaces between structures of different 

densities and/or atomic numbers, there are interface phenomena that affect the dose 

distribution locally. This interface effects move with moving interfaces and can lead 

to distortions in the dose distributions. 
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1.3 Overview of methods to account for respiratory motion 

Because intra-fraction organ motion can be substantial, with resultant alter­

ations in organ volume definition and dosimetry, interventions to reduce it are re­

quired for many patients if dose escalation and reduction of dose to normal tissue 

are the treatment goals. 

The simplest approach to reduce dose margins and dose targeting error associ­

ated with breathing is by using methods that minimize the breathing motion itself, 

and an easy way to do this is by educating the patient to breath in a shallow breathing 

pattern (voluntary shallow breathing). Jet ventilation, abdominal belts and stereo­

tactic frames that pro duce firm abdominal pressure have also been used to reduce the 

respiratory motion of upper abdominal organs (Jorced shallow breathing) [7, 53, 54] . 

Another simple way to minimize the breathing motion is via breath holding 

and this can be done passively (voluntary breath hold) [4] or actively (Jorced breath 

hold or active breathing control (ABC)) [83, 115] and has been shown to reduce 

lung tumour position uncertainties to a few milimiters. Breath holding involves 

administration of radiation (during both imaging and treatment delivery) within a 

particular, reproducible portion of the patient breathing cycle, usually chosen as 

deep-inspiration. The applicability of this method is limited by patient ability to 

hold breath comfortably for at least 20 seconds and requires longer simulation and 

treatment times. 

If the patient breathing cannot be regulated, the imaging and the external beam 

exposure can be synchronized with part of the breathing cycle where tumour mo­

tion is minimal (respiratory gating), commonly referred to as the "gate" [98, 100]. 
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The position and gate within a respiratory cycle are determined by monitoring the 

patient's respiratory motion, using either an external respiration signal or internaI 

fiducial markers. As the beam is not continuously delivered, gated procedures are 

longer than non-gated procedures. 

A different strategy for managing respiration in radiation treatments is by using 

methods that incorporate the breathing motion into radiotherapy treatment planning. 

One solution is acquiring slow CT scans that capture the full extent of movement by 

using long scan times which are of the order of the period of the breathing motion [52, 

109]. Another approach to obtaining a tumour-encompassing volume is to acquire 

both inhalation and exhalation gated or breath-hold CT scans of the patient. Taking 

both inhalation and exhalation CT sc ans will more than double the CT scanning time 

and relies on the patient 's ability to hold his or her breath reproducibly. The two 

scans require image fusion and extra contouring. The advantage of this approach 

over the slow scanning method is that the blurring caused by the motion present 

during free breathing is significantly reduced. 

A more complex approach to incorporate the breathing motion into radiotherapy 

is the four-dimensional radiotherapy (4D RT), where temporal changes in anatomy 

are taken into account during the imaging, planning and delivery steps of radiother­

apy. The four-dimensional computed tomography (4D CT) technology made possible 

the generation of sequential image datasets for multiple phases of the breathing cy­

cle. The four-dimensional treatment planning (4D TP) designs different treatment 

plans on each available CT dataset and the accumulation of doses on the planning 

CT dataset is accomplished by using deformable image registration (DIR). DIR is 
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an essential tool in the calculation of dose distributions in the presence of motion, 

where different respiratory states must be registered to a reference volume to track 

dose delivered to individu al voxels. In a full 4D RT approach, such a treatment plan 

strategy is followed by an adaptive four-dimensional treatment delivery (4D TD) or 

real-time tumour tracking, in which each plan is delivered when the patient is at the 

corresponding breathing phase. The 4D approach to radiotherapy method will be 

detailed in Chapter 2. 

1.4 Objectives and structure of this thesis 

The motivation of this thesis stems from the need to investigate and minimize 

the impact of organ motion and patient positioning errors in radiation therapy. The 

use of patient studies for the purpose of dynamic imaging and targeting techniques 

verification is not always well suited since ground truth in patient studies is not 

known. While analytical models are useful, it is essential that the motion problem in 

radiotherapy is addressed by both modeling as well as experimental studies so that 

different obstacles can be overcome before clinical implementation of a motion com­

pensation method. Therefore, a reproducible, tissue-equivalent deformable phantom 

is critical to proper commissioning and use of new systems for physiological motion 

management in radiation therapy. These difficulties result in the following problem 

statement: 

Problem: Design and evaluate the feasibility of a dynamic deformable , tissue 

equivalent lung phantom with the initial goal of developing a reliable tool suit able 

for quality assurance of respiratory gating technique and all aspects of 4D radiation 

therapy that includes imaging, treatment planning and treatment delivery. 
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In this thesis we have addressed the following specific aims: 

Specifie Aims: 

1. Develop and construct a deformable, tissue equivalent lung phantom that can 

emulate the 3D non-isotropic motionjdeformation of a reallung. 

2. Assess the 3D motion of the phantom, emphasizing differential motion of vari-

ous points under compression as well as reproducible configuration at the same 

amount of compression (breathing state). 

3. Perform deformable image registration (DIR) between different breathing states 

of the phantom (e.g., deep inhalation and deep exhalation). 

4. Assess the accuracy of the deformable image registration using both qualitative 

and quantitative methods. 

This work is structured in two main parts. The first part consists of an extensive 

review of 4D RT (Chapter 2), image registration techniques (Chapter 3) as well as a 

summary of existing phantoms used in motion management in radiotherapy ( Chapter 

4). The second part describes the design, performance and image registration of the 

proposed deformable lung phantom (Chapter 5). 

Chapter 2 describes how respiratory motion is accounted for by using 4D RT. 

The 4D approach to accounting for temporal anatomical changes during imaging, 

planning and delivery of the radiation is detailed in Sections 2.1 to 2.3. 

A new element introduced by 4D TP is the deformable image registration. An 

overview of image registration techniques as well as an extensive description of the 

image registration algorithm (ANIMAL) we have used for the deformable image 

registration of the developed lung phantom are given in Chapter 3. 

10 



.~ .. 

Chapter 4 summarizes existing rigid and deformable phantoms used in motion 

mitigation techniques and their limitations. The mechanics of breathing and magni­

tude of the respiratory motion, used as a starting point in the design of an "ideal" 

deformable lung phantom, are also presented as a comparison. 

Chapter 5 describes the design, construction, performance and image registra­

tion of the developed deformable lung phantom. The design is presented in Sections 

5.1 and 5.2, CT data acquisition and 3D motion assessment in Sections 5.3 to 5.5 

and deformable image registration and validation in Sections 5.6 and 5.7. 

The thesis ends with conclusions and suggestions for further work that are offered 

in Chapter 6. 
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CHAPTER 2 
Concepts and Implementation of Four-Dimensional Radiation Therapy 

In the past few years, the development of the 4D CT scanning technology allowed 

the generation of sequential image datasets for multiple phases of the breathing 

cycle [110]. Integration of similar concepts and tools into radiation therapy has led 

to the concept of four-dimensional radiotherapy (4D RT), defined as the "explicit 

inclusion of the temporal changes of anatomy during the imaging, planning and 

delivery of radiotherapy" [40]. Within such a regimen, tumour motion could be 

accommodated, for example, by tracking tumours in real time and adjusting the 

beam delivery accordingly, based on plans individually designed for each available 

instance of the patient anatomy encountered during a respiratory cycle. The purpose 

of this chapter is to present the concepts and implementation of 4D RT throughout 

its three stages: four-dimensional computed tomography (4D CT), four-dimensional 

treatment planning (4D TP) and four-dimensional treatment delivery (4D TD). 

2.1 4D Computed tomography 

Generally speaking, CT datasets with minimal motion artifacts can be acquired 

in three ways: (1) using techniques that shorten the scanner rotation times during 

image acquisition (i.e., fast scanning)j (2) using prospective gating to obtain CT 

image data sets at only those breathing phases chosen prior to scanning the patient 

(i.e., respiratory gating)j (3) using retrospective gating to obtain CT image data sets 

for multiple respiratory phases (i. e., 4D CT). 
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In order to obtain a 4D CT dataset, as the patient is scanned, a respiration 

signal is simultaneously acquired and at the end of the scan the images are post­

processed into individu al 3D image datasets according to the respiratory phase at 

the time each image was acquired. 

The respiration signal can be acquired by tracking a surrogate of respiration­

related organ and tumor motion: tidal volume (internallung air content) measured 

with a spirometer; chest expansion monitored by a pneumatic bellows; motion of a 

refiecting external marker placed on the abdomen and tracked with a video camera, 

e.g., Varian's Real-time Position Management (RPM) Respiratory Gating System. 

Acquisition Methods: 4D CT dataset acquisition can be conducted using either 

serial (ciné) or helical scanning. 

Ciné scanning consists of acquiring a series of CT scans while keeping the couch 

stationary [58]. Wh en the necessary number of images is acquired, the couch is 

moved to an abutting position and another set of images is acquired. During the 

process, a breathing surrogate is being monitored and recorded. Fig. 2-1 shows 

an example of the reconstruction technique used by Low et al. [58]. The process 

associates a tidal volume with each scan. If the investigator wants to reconstruct 

a CT image at a specifie tidal volume, they query the CT dataset at each couch 

position and select the CT slices acquired at the tidal volume closest to the desired 

volume. The accuracy of this method (the difference between the desired and actual 

tidal volumes) will depend on the reproducibility of the patient's breathing pattern. 
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Figure 2-1: Process for breathing amplitude sorting 4D CT scans. The scans are 
acquired using ciné acquisition while the patient undergoes quantitative spirometry­
based breathing monitoring. When a 3D CT scan is required at a particular breathing 
phase, the breathing trace is queried to determine which scans were acquired at the 
closest phase to the desired phase and those images are used in subsequent 3D 
reconstruction. Reproduced from [58]. 
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CT 
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Figure 2-2: The 4D CT phase-sorting process: the CT images, breathing tracking 
signal and 'X-Ray ON' signal form the input data stream. The breathing cycle is 
divided into distinct bins (for example, peak exhale, mid inhale, peak inhale, mid 
exhale). Images are sorted into these image bins depending on the phase of the 
breathing cycle in which they were acquired, yielding a 4D CT dataset. Reproduced 
from [110J. 

Most manufacturer-defined pro cesses use helical CT acquisition for 4D CT 

[23, 47, 62J. This is, in part, due to the fact that they have modified existing car-

diac gating software for pulmonary gating, and in part because it is tried to use 

every available acquired CT projection through the patient. Similar to 4D CT ciné 

acquisition, a breathing surrogate is simultaneously monitored during the helical 

CT scanning procedure. When the scan is completed, the user selects one or more 

breathing phases at which the 3D anatomy needs to be reconstructed. The system 

will then select aU projections acquired at these specified phases and reconstruct a 

3D volume for each of them (Fig. 2-2). 
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Figure 2-3: Phase labeling in 4D: (a) by time - breathing period is divided into 
equal intervals and a phase that represents a percentage of the breathing period is 
assigned to each time interval; (b) by amplitude - breathing excursion is divided into 
equal intervals and a phase that represents a percentage of the breathing amplitude 
is assigned to each amplitude interval. Reproduced from [92]. 

Reconstruction Methods: After CT image acquisition completion, CT slices are 

typically sorted into different respiratory phases based on either the amplitude or the 

phase angle of a respiratory trace (Fig. 2-3). 

Because much of the commercial respiratory gating software was adopted from 

cardiac software, breathing cycles have been defined as though they are reproducible 

from breath to breath. Phase angles are assigned to the breathing cycle, and a 

specific and easily identifiable phase is used to define what is meant by 0 degree 

(e.g., Peak Exhale, see Fig. 2-4) [98, 111]. For example, at a selected point in 

time, the phase angle is the ratio of the time to the previous O-degree phase to the 

time between successive O-degree phases, normalized to 360 degrees or 27r. However, 

unlike cardiac motion, breathing is irregular, so each breath can have a different 
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Figure 2-4: Phase-based gating uses a circular description of the breathing cycle. 
This can be represented by equating each phase of breathing with an angle range. 
Here, each phase is divided into 45 bins. Reproduced from [111]. 

depth, residual tidal volume, and frequency. When the breathing frequency is not 

stable, the phase-based gating approach can still be used because the length of each 

breath is scaled by the fact that the gating is done as a function of the relative time 

between the O-degree phase and the phase of interest. However, amplitude variation 

is not taken into account and therefore residual motion artifacts can still be present in 

the reconstructed 4D CT images. Fig. 2-2 shows an example of 4D CT phase-sorting 

process. 

Another approach for gating CT sc ans is to use amplitude-based gating (Fig. 

2-1). The amplitude in this case refers to the magnitude of the respiratory trace. 

For example, if the Varian's RPM Respiratory Gating System is used, the amplitude 

would be the relative height of the reffective marker block while for spirometry-based 

systems, the amplitude is defined by the magnitude of the tidal volume. The CT 
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slices are segregated according to the depth of breathing and therefore, amplitude 

variations can be explicitly considered when selecting the appropriate CT scans or 

projections to reconstruct 3D CT slices at the user-specified breathing phase. 

Fig. 2-5 illustrates a comparison between amplitude and phase-angle sorting 

for a CT acquisition where the peak to peak tidal volume varies appreciably among 

breaths. Data points from shallow breaths are excluded by amplitude sorting for 

End Inhale (El) (Fig. 2-5(c)) but are classified as El by phase-angle sorting (Fig. 

2-5(d)). Basically, phase-angle sorting regards a shallow breath (300 ml) the same 

as a normal (700 ml) and a deep breath (1000 ml). Clearly, the variation in tidal 

volume for either respiratory phase is smaller with amplitude sorting than with phase­

angle sorting. The amplitude sorting is better than phase angle sorting because the 

amplitude is more accurately related to target position resulting in reduced residual 

motion artifacts in a 4D CT dataset. An advantage of phase-angle sorting is that 

a complete phase angle range (0°-360°) is completely covered with each respiratory 

cycle; therefore the time for data acquisition is reduced to only one respiratory 

cycle at each couch position. Breathing coaching is usually considered an important 

component for 4D CT techniques when phase-angle sorting is used. 

To summarize, there are two main goals of 4D CT imaging. First is the ac­

curate imaging of the tumour and normal organ shapes. The interaction of the 

conventional CT image acquisition sequence and breathing motion causes objects 

to be imaged with distorted shapes. 4D CT significantly reduces motion artifacts 

and provides multiple temporally coherent CT volumes during normal respiration 

(Fig. 2-6). Residual motion artifacts may remain due ta partial projection effects. 
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Figure 2-5: Variation in tidal volume with amplitude sorting (a) and phase-angle 
sorting (b) for the end inhale phase (El). Thicker segments indicate aggregated data 
points falling into each respiratory phase. Reproduced from [60]-

Temporal coherence within resorted 4D CT volumes is dominated by the number of 

reconstructed images per slice: the more images are reconstructed, the smaller phase 

tolerances can be imposed on retrospective sorting. 

The second goal of 4D CT imaging is to quantify the motion of the tumour and 

normal organs. 4D CT data provide the primary image data needed to explicitly 

include patient-specifie respiratory motion into treatment planning in order to ensure 

dose coverage of the target throughout the breathing cycle and to calculate the dose 

distributions for the targets and organs at risk when respiratory motion is present 

during beam delivery. 

2.2 4D Treatment planning 

The philosophy of designing 4D treatment plans is similar to the one employed 

in 3D planning in the sense that the overall goal is to maximize the therapeutic ratio 
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Figure 2-6: Coronal views of CT scans of the same patient taken (a) during free 
breathing (FB) and (b) with respiratory gated scanning at peak exhale. Reproduced 
from [45]. 

by delivering as much dose as possible to the tumour, while sparing normal tissues 

and organs at risk [26]. However, while the assessment of the dose to be delivered 

in 4D is still performed on a single dataset, often called the Planning Dataset (PD), 

the dose reported now represents an accumulation of the doses received during the 

various phases of the breathing cycle. 

The question then is how one could make best use of the abundance of time-

dependent anatomical information gathered during imaging when designing the treat-

ment plans. The answer depends on whether the same treatment plan or different 

plans will be delivered at various phases of the breathing cycle. The term "non­

adaptive delivery" will be used for the former approach, whereas the latter one will 

be referred to as "adaptive delivery". The flow of the events during the treatment 

planning is schematically shown in Fig. 2-7 for both strategies. 

In the case of non-adaptive delivery, first the target and other structures of 

interest are defined on the chosen PD. Then a plan is designed on the PD and dose 

distributions are re-computed on several datasets at various phases in the breathing 

cycle using this plan. The last step is the accumulation of these doses and scoring 
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Figure 2-7: The fiow of the events during the planning segment of a radiation therapy 
treatment when 4D imaging data are available (OR = organs at risk). Reproduced 
from [93]. 
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them back on the PD [35,46,96,84]. The dose accumulation is accomplished by using 

image registration techniques (discussed in Chapter 3) that provide non-rigid body 

voxel mapping between datasets acquired over various segments of the respiratory 

cycle [48, 94]. The beam number, weights, and directions are then manipulated until 

the cumulative dose provides the desired target coverage and normal tissue sparing. 

This approach is technicaUy 4D only during the imaging segment. However, it is 

superior to a purely 3D planning because it estimates with increased accuracy the 

doses that will actuaUy be received by tumor and normal tissues during free breathing 

delivery. 

In a more sophisticated approach, separate plans can be designed on each avail­

able dataset with the intent of achieving the desired target coverage at each breath­

ing phase. This implies that the target and other structures of interest have to be 

first segmented on all datasets. This can be done either manually or automatically 

i.e., the structures of interest are first segmented on the PD and then mapped on 

aU other datasets using the transformation provided by the registration technique 

[2, 49, 67, 108]. The treatment beams are added first on the PD and while their di­

rections are kept the same for aIl datasets, the weights are adjusted and the apertures 

are modified so that they conform ta the target from the beam's eye view for each 

dataset [42]. Such a treatment planning strategy is followed by an adaptive delivery, 

in which each plan is delivered when the patient is at the corresponding breathing 

phase, thus making the entire pro cess (i. e., imaging, planning, and delivery) 4D. Of 

course, the who le process is subject to the constraints imposed by the ability of the 

treatment machine to deliver a continually adapting plan. Regardless of the strategy 
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adopted, the accumulation of the doses on the PD is one common segment achieved 

using the image registration technique (see Chapter 3). 

2.3 4D Treatment delivery 

A method to allow margin reduction without compromising tumour dose is to 

allow the patient to breath freely while a tracking-and-control system monitors the 

tumour's position and continuously adapts the alignment of the radiation field to 

follow the moving target. The goal is to adapt treatment planning and delivery to 

the changes caused by respiration in the entire anatomy. 4D treatment delivery has 

the advantage of allowing the beam to be 'ON' continuously. Thus there is virtually 

no increase in delivery time as opposed to beam gating or breath hold techniques. 

In essence, the 4D motion adaptive delivery is a superposition of the target 

motion upon the original beam planned for delivery (Fig. 2-8). While in motion 

adaptive delivery beam-view, the target is static, in the conventional beam-view, the 

target appears smeared out, and thus a larger field is needed to coyer the target (Fig. 

2-9). 

There are presently two real-time beam-positioning methods. The first one is 

MLC repositioning [73, 76, 77, 104, 113, 114]. The second method uses a robotic 

manipulator to move the entire linear accelerator with six degrees of freedom. In 

this approach, the robot (CyberKnife image-guided radiosurgery system) is coupled 

through a real-time control loop to an imaging system that monitors the tumour 

position and directs the repositioning of the linear accelerator [10, 70, 75, 97] and 

has the advantage of adapting to the full 3D motion of the tumour. 
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Figure 2-8: A schematic diagram of the superposition of the target motion upon the 
beam planned for treatment. Reproduced from [44]. 
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Figure 2-9: Diagram showing the moving target remaining static in the adaptive 
delivery. The convention al plan with a static beam and increased margins is shown 
for comparison. Reproduced from [44]. 
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CHAPTER 3 
Image Registration Techniques 

Radiological images are increasingly being used in healthcare and medical re-

search. There is, consequently, widespread interest in accurately relating information 

in the different images for diagnosis, treatment and basic science. Applications of im-

age registration include combining images of the same subject from different modal-

ities, aligning temporal sequences of images to compensate for motion of the subject 

between scans, image guidance during interventions and aligning images from mul-

tiple subjects in cohort studies. Current registration algorithms can, in many cases, 

automatically register images that are related by a rigid body transformation (i. e., 

where tissue deformation can be ignored). There has also been substantial progress 

in non-rigid registration algorithms that can compensate for tissue deformation, or 

align images from different subjects. Nevertheless many registration problems re-

main unsolved, and this is likely to continue to be an active field of research in the 

future. 

This chapter reviews registration techniques used to solve this problem, and 

describes the Automated Nonlinear Image Matching and Anatomical Labeling (AN-

IMAL) non-linear registration algorithm used for the image registration of the de-

formable lung phantom and presented in Chapter 5. 
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3.1 Classification of registration methods 

Image registration is a process for determining the correspondence of features 

between images collected at different times or using different imaging modalities. 

The correspondences can be used to change the appearance - by rotating, translating, 

stretching, etc - of one image so it more closely resembles another so the pair can be 

directly compared, combined or analysed (Fig. 3-1). 

Since information gained from two imaging modalities is usually of a comple­

mentary nature, proper integration of useful data obtained from the separate images 

is often desired. A first step in this integration process is to bring the modalities 

involved into spatial alignment, a procedure referred to as registmtion. After reg­

istration, a fusion step is required for the integrated display of the data involved 

[63, 107, 78]. 

Image registration methods can be classified based on the following criteria: (1) 

modalities involved; (2) subject; (3) type of transformation; and (4) interaction. 

1. Modalities involved: monomodal and multimodal 

Medical imaging modalities can be divided into two major categories: anatomical 

and functional modalities. Anatomical modalities, i.e., depicting primarily morphol­

ogy, include X-ray, computed tomography (CT), magnetic resonance imaging (MRI), 

ultrasound (US), portal images, and (video) sequences obtained by various catheter 

"scopes", e.g., by laparoscopy or laryngoscopy. Functional modalities, i.e., depicting 

primarily information on the metabolism of the underlying anatomy, include (pla­

nar) scintigraphy, single photon emission computed tomography (SPECT), positron 
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Figure 3-1: Schematic showing rigid and non-rigid registration. The source image 
is rotated, of a different size and contains different internaI structure to the target. 
These differences are corrected by a series of steps with the global changes generally 
being determined before the local changes. Reproduced from [107] 

emission tomography (PET), which together make up the nuclear medicine imaging 

modalities, and functional MRI (fMRI). 

In monomodal applications, the images to be registered belong to the same 

modality, and therefore images showing different aspects of tissue morphology are 

combined. In multimodal registration tasks, where the images to be registered stem 

from two different modalities, tissue metabolism and its spatial location relative to 

anatomical structures are related. 

2. Subject: intrasubject, intersubject and atlas. 

When aIl of the images involved in a registration task are acquired on a single 

patient, we refer to it as intrasubject registration. If the registration is accomplished 
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using two images of difIerent patients (or a patient and a model), this is referred to 

as intersubject registration. If one image is acquired from a single patient, and the 

other image is somehow constructed from an image information database obtained 

using imaging of many subjects, we name it atlas registration. 

3. Type of transformation: rigid, affine and non-rigid 

The rigid methods can be used to cope with rotation and translation difIerences 

between the registered images. Today rigid registration is often extended to include 

affine registration, which includes scale factors and shears, and can partially cor­

rect for calibration difIerences across scanners or gross difIerences in scale between 

subjects. Specific problems arise due to differences in patient posture for different 

studies, possible differences in organ shape and volume (e.g., stomach and bladder 

content), so non-rigid methods are required to cope with local differences between 

the images. Rigid and affine transformations are commonly used as a first estimate 

before determining a non-rigid transformation. 

4. Interaction: interactive, semi-automatic and automatic. 

Concerning registration algorithms, three levels of interaction can be recognized. 

Automatic, where the user only supplies the algorithm with the image data and pos­

sibly information on the image acquisition. Interactive, where the user does the 

registration himself, assisted by software supplying a visual or numerical impression 

of the current transformation, and possibly an initial transformation guess. Se mi­

automatic, where the interaction required can be of two different natures: the user 
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needs to initialize the algorithm, (e. g., by segmenting the data), or steer the algo­

rithm, (e.g., by selecting homologous landmarks in both images). The points selected 

to create homologous sets are those that serve as anatomicallandmarks and usually 

have biologically meaningful labels. These landmarks must be defined with respect 

to their local neighbourhood, i.e., the point of contact between two structures, a 

point of extreme curvature of a surface or the center of a structure. The anatomi­

cal landmark and segmentation-based methods are commonly semi-automatic (user 

initializing), and the voxel property based methods are usually automated. 

3.2 Applications of image registration 

An eminent example of the use of registering different modalities can be found 

in the area of radiotherapy treatment, where both CT and MR can be employed. 

The former is needed to accurately compute the radiation dose, while the latter is 

usually better suited for delineation of tumour tissue. 

Besides multimodality registration, important applications exist in monomodal­

ity registration. Examples inc1ude treatment verification by comparison of pre- and 

post-intervention images, comparison of ictal and inter-ictal (during and between 

seizures) SPECT images, and growth monitoring (e.g., using time series of MR scans 

on tumors, or X-ray time series on specific bones). 

There is growing interest in applying registration to organs subject to motion 

and non-rigid deformation often with a view to tracking their position and shape 

during breathing to allow delivery of targeted treatments for cancer such as external 

beam radiotherapy or thermaljcryo ablation [6, 103]. This often involves registration 

of planning images acquired pre-treatment, possibly on a different day at a different 
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site, with images acquired during treatment. For sorne organs there will be gross 

deformations owing to patient positioning as weIl as differences owing to different 

stomach, bowel and bladder contents, and owing to breathing. Lung deformation 

during the breathing cycle is also of interest, especially for external beam radiother­

apy applications [27, 66J. 

Central to the use of registration in radiotherapy is to calculate effective dose 

distributions in the presence of motion, where different respiratory states must be 

deformably registered to a reference volume to track dose delivered to individual 

voxels. Moreover, the non-linear registration between 4D CT image datasets can be 

used to map contours from the reference state to each phase, allowing for automatic 

contouringj segmentation. 

3.3 Image registration in theory 

3.3.1 Components of an image registration algorithm 

Registration is the determination of a one-to-one transformation between two 

image spaces which maps each point of an image onto corresponding points of another 

image. The registration algorithm can be decomposed into three components: 

1. The similarity metric de fines features to match between source and target 

images and quantifies image matching. 

2. The transformation model specifies the way in which the source image can be 

changed to match the target. A number of numerical parameters specify a 

particular instance of the transformation. 

3. The optimization method varies the parameters of the transformation model to 

maximize the similarity metric. 
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1. Similarity measures 

There are two approaches to registration based on patient image content: the 

geometric approach and the intensity approach [88] 

Geometrie approaches build explicit models of identifiable anatomical elements 

in each image. They minimize the distance between features such as points (land­

marks), curves or surfaces of corresponding anatomical structures and require the 

identification and matching of these features on both reference and test images. This 

pro cess usually needs a certain amount of human interaction. After point matching, 

the remaining procedure of registration is only interpolation or approximation. 

Intensity approaches match intensity patterns in each image using mathemati­

cal or statistical criteria. They define a measure of intensity similarity between the 

source and the target and adjust the transformation until the similarity measure is 

maximized. Measures of similarity include squared differences in intensities, correla­

tion coefficient, measures based on optical fiow and information-theoretic measures 

such as mutual information [61, 81, 103]. AIl these measures are defined formally in 

Table 3-1. 

The simplest similarity measure is the sum of squared differences, which assumes 

that the images are identical at registration except for (Gaussian) noise. The corre­

lation coefficient assumes that corresponding intensities in the images have a linear 

relationship. These two similarity measures are suitable for monomodal registration 

where the intensity characteristics are very similar in the images. For multimodal 

registration, similarity measures have been developed, which define weaker relation­

ships between intensities to refLect the different intensity characteristics of different 
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Table 3-1: Common image similarity measures used in registration. T is the target 
image, S the source image, T the transformation that maps both position and inten­
sity (i. e., takes account of interpolation and sampling), ST the image S transformed 
into the coordinate space of image T, x a point in T image. Reproduced from [107] 

Voxel similarity measures 

Sum of Squared Differences 

BBD = j, L (T(x) - ST(x)f 
x 

Correlation coefficient 
L (T(x) - T) . (ST (x) - S) 

CC= x 
{L(T(x) - T)2 . L (ST (x) - S)2}lj2 

x 

Correlation ratio 

'I]=1-~LNWi2 
Nu i 

Mutual information 
MI = HT + Hs - HTS 

Normalized mutual information 
NMI= HlI+Hs 

TS 

Comment 

Registered images differ only by Gaussian noise. Sensitive to 
small number of voxels that have very large intensities differ­
ences. Only for monomodal image registration. 

Registered images have linear intensity relationship and ob­
jects of interest are in the field of view of both images. Only 
for monomodal image registration. 

The correlation ratio assumes a functional relationship be­
tween intensities. It can be defined in terms of sums of squares 
of source voxels that correspond to a number Ni of iso-intense 
voxels in the target image. 

u2 = j, L B(x)2 - m2
, 

overlapx 

Ui
2 

= * L B(X)2 - mi
2

, 

x:T(x}=i 

m-J.. _N 

overlap x 

mi= Ji L 

B(x) , 

B(x). 
x:T(x}=i 

Defined in terms of entropies of the intensity distribu­
tion HT = -LPilogPi , Hs = -LQjlogQj, and 

j 

HTS = - L Pij IOgpij where P(Q)=probabiiity of intensity 
ij 

l (J) occuring in target (source) and Pij = joint probability of 
both occuring at the same place. 

Proposed to minimize the overlap problem seen occasionally 
with mutual information 
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imaging modalities. The correlation ratio [87] assumes that corresponding intensi­

ties are functionally related at registration and information-theoretic measures like 

mutual information assume only that a probabilistic relationship between voxel in­

tensities is maximized at registration. 

Intensity-based registration match intensity patterns over the whole image but 

do not use anatomieal knowledge. Geometrie registration uses anatomical informa­

tion but usually sparsely distributed throughout the images. Combining geometric 

features and intensity features in registration should result in more robust methods. 

Hybrid algorithms are therefore of partieular current interest, combining intensity­

based and model-based criteria to establish more accurate correspondences in difficult 

registration problems. 

2. Transformation models 

The transformation model defines how one image can be deformed to match 

another image and therefore characterizes the type and number of possible deforma­

tions. 

The most well known examples are the rigid and affine transformations that 

can be described very compactly by 6 (3 translations and 3 rotations) to 12 (3 

translations + 3 rotations + 3 scalings + 3 shears) parameters for a whole image. 

These parameters are applied to a vector locating a point in an image to find its 

location in another image. The transformation model serves two purposes: first, it 

controls how image features can be moved relative to one another to improve the 

image similarity and, second, it interpolates between those features where there is 

no useable information. 
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As for the transformations used in non-rigid registration one of the most impor­

tant is the family of splines. Spline-based registration algorithms use corresponding 

"control" points, in the source and target image and a spline function to define corre­

spondences away from these points. The "thin-plate" spline [8] has been used exten­

sively to investigate subtle morphometric variation in schizophrenia [15,16,30]. Each 

control point belonging to a thin-plate spline has a global influence on the transfor­

mation in that, if its position is perturbed, an other points in the transformed image 

change. This can be a disadvantage because it limits the ability to model complex 

and localized deformations and because, as the number of control points increases, 

the computational co st associated with moving a single point rises steeply. By con­

trast, B-splines are only defined in the vicinity of each control point and therefore 

perturbing the position of one control point only affects the transformation in the 

neighbourhood of the point. Because of this property, B-splines are often referred 

to as having "local support". B-spline based non-rigid registration techniques are 

popular due to their general applicability, transparency and computational efficiency. 

Their main disadvantage is that special measures are sometimes required to prevent 

folding of the deformation field and these measures become more difficult to enforce 

at finer resolutions. 

Elastie models treat the source image as a linear, elastic solid [3] and deform 

it using forces derived from an image similarity measure. The elastic model results 

in an internaI force that opposes the external image mat ching force. The image is 

deformed until the forces reach equilibrium. Since the linear elasticity assumption 

is only valid for small deformations it is hard to recover large image differences 
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with these techniques. Replacing the elastic model by a viscous fiuid model [12J 

allows large and highly localized deformations. The higher flexibility increases the 

opportunity for misregistration, generally involving the growth of one region instead 

of shifting or distorting another [55J. 

Finite element (FE) models allow more control of localized deformations and 

have been applied particularly to the head surgery [22, 32J. These models divide the 

image into cells and assign to these cells a local physical description of the anatomical 

structure. For instance, soft tissue can be labeled as elastic, bone as rigid and 

cerebrospinal fluid (CSF) as fluid. External forces such as landmark correspondences 

or voxel similarity measures are applied to the model, which deforms according to the 

material behaviour in each cell. Such approaches tend to be used where there are 

strong biomechanical constraints in operation, i. e., they are appropriate for seriaI 

registration of images of brains undergoing sorne mechanical intervention but not 

appropriate for intersubject registration. 

3. Optimization method 

Optimization refers to the manner in which the transformation is adjusted to 

improve the image similarity. A good optimizer is one that reliably and quickly 

finds the best possible transformation. Most of the registration algorithms require 

an iterative approach, in which an initial estimate of the transformation is gradually 

refined by trial and error. In each iteration, the current estimate of the transfor­

mation is used to calculate a similarity measure. The optimization algorithm then 

makes another (hopefully better) estimate of the transformation, evaluates the simi­

larity measure again, and continues until the algorithm converges, at which point no 
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transformation can be found that results in a better value of the similarity measure, 

to within a preset tolerance. 

3.3.2 Validation of image registration 

Validation usuaIly means showing that a registration algorithm applied to typical 

data in a given application consistently succeeds with a maximum (or average) error 

acceptable for the application. 

Quantification of the accuracy of DIR is chaIlenging, because the ground truth 

is difficult to establish for patient data and phantoms, which exhibit that the com­

plex deformations of the human body are difficult to manufacture. The accuracy of 

DIR has been reported using both qualitative and quantitative metrics. Qualitative 

assessment of DIR accuracy includes visual examination of difference images and 

image overlays [65J. In most applications, careful visual inspection rernains the first 

and most important validation check. 

Quantitative metrics include a comparison of the predicted and actual displace­

ment of landmarks identified on two images, comparison with a known deforma­

tion field, consistency testing, similarity metrics of image intensity and distance-to­

agreement (DTA) of 3D surfaces derived from contoured planning structures. 

One common approach is to identify corresponding landmarks or regions inde­

pendently of the registration pro cess and establish how weIl the registration brings 

them into alignment [13, 34, 65, 85, 116J. Readily identifiable anatomical features 

such as vessel and bronchial bifurcations and intersections, bony anatomy may be 

used to evaluate a distance metric of the accuracy of the registration. This method 

is limited by the accuracy with which corresponding landmarks can be identified. 
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Another method to evaluate the registration accuracy is by comparison with a 

known deformation field [112]. The image is deformed with a known deformation field 

(mathematical or derived from registration with another model) and the estimated 

deformation is subsequently compared with the" true" deformation. To make this a 

realistic test, deformations that simulate most closely the type of deformations that 

occur in the anatomy to register should be used. 

Various kinds of consistency tests are also used in validation; the most common 

are establishing that registration of source to target produces the same alignment as 

from target to source (this is commonly not the case for non-rigid registration) or 

that for three images, A, B, C, registration of C -t A gives the same result as C -t 

B compounded with B -t A [11, 37, 117]. 

Similarity metrics of image intensity are also used, by comparing the corre­

lation of image intensities between the transformed source image by the recovered 

deformation field and the target image [34]. 

For the distance-to-agreement (DTA) of 3D surfaces method, a 3D average DTA 

is calculated by averaging the minimum distances between the deformed source and 

target 3D surfaces for each triangle of the deformed surface along its normal [34]. 

3.4 The ANIMAL non-linear registration algorithm 

This section describes a completely automatic method to register a given volu­

metrie dataset to another, based on a linear-elastic model of tissue deformation, an 

intensity based similarity function equal to a correlation coefficient and a non-linear 

simplex optimizer. The ANIMAL algorithm is applicable to both intra- and inter­

subject intra-modality registration and uses automatic feature-matching, obviating 
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the need for user intervention (landmark tagging) as in the case of semi-automatic 

registration methods. Registration of the model with the source volume is accom­

plished in two optimization steps: the first accounts for the linear component of the 

transformation function, and the second for the non-linear component. Once found, 

the transformation can be used to resample the first dataset in the coordinate space 

of the second, thus aligning them geometrically so that corresponding morphological 

features of both data sets are assigned to the same spatial location. 

3.4.1 Feature detection 

Both linear and non-linear registration procedures begin by extracting salient 

features from the image data that will be used in the evaluation of the matching 

process. For this purpose the blurred image intensity and image gradient magnitude 

are used, so that the value of a feature corresponding to a particular anatomical 

landmark is the same, regardless of its position or orientation within the image 

volume. These features are calculated by convolution of the original data with zeroth 

and first order 3D isotropie Gaussian derivatives (Fig. 3-2). Convolution with 

such an operator maintains linearity, shift-invariance and rotational-invariance in 

the detection of features [13]. The Gaussian kernel has a scalable property since it is 

dependent on the standard deviation, 0'. The full-width-half-max (FWHM = 2.350') 

of this kernel is used as parameter to measure the spatial scale. This parameter must 

be chosen carefully in relation to the scale of the estimated deformation function. 

A very large value will introduce too much blurring, possibly removing important 

structural detail. Too small a value will extract a lot of structures and consequently 

increase the probability of local mis-matches. The size of the Gaussian blurring 
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FWHM: 16 x pixel slze FWHM: 8 x pixel size FWHM: 4 x pixel slze 

Figure 3-2: Computed tomography sagittal cuts through the volumetrie features of 
four data states at sc ales of FWHM=16, 8,4 mm. The top row shows a sagittal eut 
through the original data. The middle row shows the same slice blurred with a 3D 
Gaussian kernel with FWHM=16, 8, 4 mm. The last row shows the corresponding 
gradient magnitude data at the same scale. 

kernel applied to the volumetrie data was chosen to be equal to the resolution of the 

deformation field estimated at the current scale step. 

3.4.2 Transformation model 

Linear registration: Linear transformations for volumetrie registration are either 

rigid or affine, where the former is a subset of the latter. A rigid transformation can 

be decomposed into a translation component to center one data set on the other and 
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a rotation component to align their orientations. The affine transformation can be 

decomposed into translation and rotation as before, with the addition of scaling and 

shearing. 

Using matrix formulation and homogeneous coordinates, a point (x, y, z, 1) is 

mapped to the point (x', yi, Z', 1) using a homogeneous coordinate transformation: 

(x', yi, Z', 1) = [A](x, y, Z, 1)/, (3.1) 

where A is a 4x4 affine transformation matrix containing 12 independent elements 

and results from the concatenation of 4 matrices, representing translation, rotation, 

scaling and shear: 

A = [Sh][Sc][R][T]. 

The matrices T, R, Sc, Sh are defined as follows: 

1 0 0 tx 

o 1 0 ty 
T= 

o 0 1 tz 

o 0 0 1 

(3.2) 

(3.3) 

where tx, ty and tz are the translations in x, y and z between the centroid of the 

two volumes. 

R = [e][<I>][w], (3.4) 

where 
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1 0 0 0 

0 case sine 0 
8= (3.5) 

0 -sine case 0 

0 0 0 1 

cascp 0 -sincp 0 

0 1 0 0 
<P= (3.6) 

sincp 0 cas cp 0 

0 0 0 1 

cas'l/J sin'ljJ 0 0 

-sin'ljJ cas'ljJ 0 0 
'lr= (3.7) 

0 0 1 0 
/~. 

0 0 0 1 

The angles e, cp and 'l/J are clockwise rotations around the x, y and z axes, 

respectively. 

sx 0 0 0 

0 sy 0 0 
Sc= (3.8) 

0 0 sz 0 

0 0 0 1 

where sx, sy and sz are scaling factors along each of the axes. 
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Sh= 

100 0 

a 1 0 0 

bel 0 

000 1 

(3.9) 

where a, band c are the three free parameters left to define the shear matrix Sh. 

The shear parameters eonvert a reetangular parallelepiped into an oblique one. 

Non-linear registration: The goal of the ANIMAL algorithm is to recover the 

nonlinear transformation N required to register the source and target volumes. In 

the implementation of the algorithm, N is represented by a deformation field that 

is defined on an isotropie 3D eubie lattiee, [" with a 3D displacement vector stored 

for each node position in the lattice (Fig. 3-3). In practice, three scalar values are 

stored (dx, dy, dz), representing the x, y and z components of the 3D displacement 

vectors. For a given arbitrary (x, y, z) position in the domain of the deformation 

function, the value of the eorresponding 3D displacement is given by interpolation 

in each component volume, yielding the three necessary values for the 3D vector. If 

the FWHM of the current scale step is used to measure resolution, then the voxel 

spacing of the deformation field lattice must be no greater than FWHM/2 to recover 

the fun ct ion without aliasing, i.e., the usual Nyquist sampling limit (Fig. 3-4). 

3.4.3 Similarity measures 

Linear Registration. Correlation is used as a measure of goodness-of-fit between 

the transformed volume and the target volume. At a given scale step, the correlation 

value is evaluated on a set of voxel positions, [" organized on a 3D cubic lattice, with 
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Figure 3-3: Deformation field N defined on an isotropie cubie lattice, with a 3D 
displacement vector stored for each position in the lattiee. 

Deformation lattic:e grid 

" 

FWHM: a x pixel size 
-- . . . 

Figure 3-4: 3D isotropie deformation lattiee grid overlaid on the blurred image 
intensity data. The FWHM of the isotropie Gaussian kernel is used to measure 
the image resolution. The lattice spacing equals half of the FWHM distance of the 
eurrent seale. 
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spacing between each lattice point equal to half of the FWHM distance of the current 

scale. Let x be an element of C. The points used to calculate the cross-correlation 

are those within the source volume (S) and that map through A into unmasked 

voxels in the target volume (T); i.e., 

C = {x 1 Vx, x E S A A· x E T} (3.10) 

The normalized cross-correlation value, RO, between the two volumes, Sand T 

for a given transformation A is defined as: 

L J (S, x) J (T, A . x) 
xE/:' 

R (S, T; A) = 1/2 1/2 

(~f2(S,X)) (~f2(T,A.X)) 
(3.11) 

where JO is the interpolated feature value from the volume SorT at the voxel po-

sition x, and the summation is do ne over aH elements x E C. R takes on a maximum 

value of 1.0 when the two volumes are in perfect registration. In the registration algo-

rithm, this fun ct ion is evaluated at each step of the optimization procedure described 

in the foHowing section. 

Non-linear Registration. The deformation is recovered by estimating the neces­

sary local deformation at each node of C that minimizes an objective Junction (Eq. 

3.12) consisting of an image local similarity Junction R(S, T; N, x) (i.e., local corre­

lation coefficient) and a cost function C(N, x) (linear-elastic) properly weighted to 

obtain the desired level of deformation smoothness. 
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8(8, T; N) = ~ L [aR (8, T; N, x) + (1- a)C(N, x)], (3.12) 
xEc' 

where 8 and T are the source and target volumes; N is the non-linear transformation 

represented by the deformation field that maps points from 8 to T; RO is the local 

similarity measure; CO is the cost function and a is the similarity to cost ratio, 

o ::; a ::; 1.0. The summation is evaluated over an nodes, x, in the 3D lattice, C, of 

the deformation field, and is normalized by the number of nodes, n. 

The image similarity function is based on maximizing the correlation coefficient 

given by Eq. 3.13. The correlation coefficient is estimated at each of the lattice nodes 

using the same principle as the linear registration; however, the correlation is based 

on a summation over a set of voxels in the local neighbourhood of the particular node. 

Renee, RO is the normalized correlation value between the local neighbourhood of x 
in the source volume 8 and the corresponding neighbourhood of N (x) in the target 

volume T. 

L f(8,v)f(T,N(v)) 
vEN:;; 

R(8,T;N,x)=----------~1/~------------~1/= 

C~/2 (8, V)) 2 C~/2 (7, N (V))) 2 
(3.13) 

where N is the nonlinear transformation represented by the deformation field that 

maps points from 8 to T; Nx is the local neighbourhood of x with diameter 1.5 

FWRM, fOis the volumetrie interpolation function, and the summation is per­

formed over an voxel elements v E Nx. The local neighbourhood of x, Nx, is defined 
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by a sublattice of nodes v. The sublattice parameter defines the number of nodes 

within the lattice diameter at which image similarity is measured (Le. sublattice = 3 

specifies that image similarity is measured on a 3 x 3 x 3 grid) and should be chosen 

such that the node spacing is larger than the image resolution. 

The co st function CO penalizes deformations on the order of dmax which is the 

spacing of the deformation lattice nodes (Eq. 3.14). 

{ 

O.2d3/2 
3 3/2' 

C(N, i) = dmax - d 

00, 

(3.14) 

otherwise 

3.4.4 Optimization method 

Linear Registration: The 3D image registration task is set up as an optimization 

problem to identify the required transformation while minimizing the computational 

complexity usually associated with an exhaustive grid search approach. The opti-

mization is performed at different spatial resolutions to minimize the problems as-

sociated with local minima in the solution hyper-surface, starting with very blurred 

data and increasing detail at each step by using less blurred images. 

Non-linear Registration: The non-linear registration pro cess can be represented 

as two nested loops. The outer loop iterates over different deformation lattice spac-

ings in a coarse-to-fine manner, while the inner loop recovers the optimized defor-

mations at a given deformation lattice spacing. 

The first iteration of the outer loop begins with very blurred data (FWHM=16 

mm) so that gross image features drive the fit at first. When the optimal solution 

is obtained for the FWHM=16 mm scale, it is used as a starting point for the same 
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process calculated with the blurred intensity feature volumes at FWHM=8 mm scale. 

Image blurring and lattice grid spacing are reduced after each iteration, with each 

successive step refining the estimation of the previous step. Data blurred to have 

isotropic resolution of 16, 8, 4, and 2 were used sequantelly to calculate the multi­

scale registration. The use of the global multi-resolution strategy provides a smoother 

objective function and a shorter execution time. 

At each scale step of the outer loop, the inner loop recovers the deformation 

vector at each node in an iterative manner by minimizing an objective function 

which maximizes the correlation coefficient in a local neighbourhood of that node 

whilst penalizing deformation on the order of the deformation lattice spacing. The 

local optimization at each node will result in the global optimization of the whole 

field. 

Eq. 3.12 is maximized when each of the terms in the summation are at a 

maximum. Sinee the transformation N is stored such that there is one deformation 

vector for each node X, Eq. 3.12 is maximized by optimization at each node of L. 

The optimization is similar to that performed for the linear registration proce­

dure; however, only three parameters are optimized instead of nine, since only three 

are required to define the local deformation vector J that maximizes the correlation 

of the local neighbourhood of x with its homologue in the target volume. Henee, the 

goal is to find J that maximizes R(S, T; (N + dl, x). 
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Target Image 

local neighbourhood 

Figure 3-5: Local node deformation strategy. These images show a part of the 3D 
lattice overlaid on the gradient magnitude data. Under the current transformation, 
the node fi is mapped to N (fi) on the target image. A small displacement J (indicated 
by the arrow) toward the inner edge of the lung boundary is necessary to maximize 
the neighbourhood correlation for this node. This is found through optimization of 
the three translational parameters (dx, dy and dz). 

The local neighbourhood of fi is specified by the ensemble of interpolated fea-

ture values from each sub-lattice node defined above. Before optimization, the cor-

responding neighbourhood in the target volume is defined by transforming each sub­

lattice node by the current non-linear transformation N and interpolating the feature 

value on the target volume. The vector J is found using a three-dimensional Sim­

plex optimization procedure, maximizing the correlation between the two sub-Iattices 

(Fig. 3-5). At each step of the optimization procedure, the coordinat es of the tar­

get sub-lattice are modified, the feature values re-interpolated, and the correlation 

between the two sub-lattices calculated. The optimization procedure stops when 

the normalized difference between the maximum and minimum correlation values, 

evaluated at the simplex vertices, is smaller than a preset tolerance. 
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Smoothing constraints. Since a continuous deformation field is required, the 

estimation process must be constrained so that it cannot corn press two distinct points 

together or allow an overlap, nor can it induce a tearing of the field. This is achieved 

by tempering the deformation vector above with the average of the deformation 

vectors of the neighbouring nodes. If M (x) is the mean deformation vector calculated 

from the immediate neighborhood of x, then the resulting deformation is given by: 

J = j1M (x) + (1 - j1) d; with o '5:. j1 '5:. 1.0. (3.15) 

A large value of beta ensures a very smooth deformation field at the expense of 

possibly missing sorne smalliocai variations, while a small value of beta gives more 

importance to the estimated deformation vector, with the risk of permitting local 

discontinuities to pass into the global deformation field. It was found that j1=0.5 

yields an acceptable balance between local matching and global smoothness. 

Iterative refinement. Since the deformation at a single node is part of a contin­

uous global warp, it affects not only that node, but all neighboring nodes as weIl. 

The correlation values for those neighbouring nodes will also change as a result. 

Consequently, an iterative approach is used, where a fractional value of the esti­

mated deformation is stored for each node at each iteration until the deformation 

vector reaches convergence when a pre-defined number of iterations is reached. This 

approach dampens the tendency for artifactually large local shifts to introduce irre­

versible distortion in the deformation field. A value of 0.6 was found to be a good 

compromise between robustness and speed of convergence. 
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CHAPTER 4 
Phantom-based Verification Methods for Motion Management 

The purpose of this chapter is threefold: (1) to describe the mechanics and mag­

nitude of the respiratory motion in a reallungj (2) to review commercially available 

lung phantoms and those described in the literaturej (3) to summarize the features 

and applications of an "ideal" deformable lung phantom. 

4.1 Ideal lung phantom: the human lung 

The mechanics of breathing. Respiration is an "involuntary" action, i.e., a 

person would continue to breathe despite being unconscious. Unlike cardiac motion, 

the respiratory motion is not rhythmic. The periodic cycle of respiration is regulated 

through chemoreceptors by the levels of CO2 , O2 and pH in the arterial blood. 

Anatomically, the lungs are held within the thoracic cavity, encased by the 

liquid-filled intrapleural space. Inhalation requires active participation of respiration 

muscles. During the inhalation part of quiet breathing, the increasing volume of the 

thoracic cavity draws air into the cavity. The most important muscle of inhalation 

is the diaphragm. As the diaphragm is contracted, it descends and the abdomen 

is forced inferiorly and anteriorly, increasing the superior-inferior (SI) dimension of 

the chest cavity. The intercostal muscles connect adjacent ribs and also participate 

in normal inhalation. They contract during inhalation, pulling the ribs superiorly 

and anteriorly, thereby increasing both the left-right (LR) and anterior-posterior 

(AP) dimensions of the thorax. Exhalation is passive for quiet breathing. The lung 
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and chest walls are elastic and return passively to their pre-inhalation positions at 

exhalation. Other ventilation muscles are involved only during active exhalation. 

Transpulmonary pressure, the pressure difference between respired gas at the 

mouth and the pleural pressure around the lungs, is reduced during inhalation and is 

recovered during exhalation. During normal breathing, the defiating lung volume is 

larger than the infiating volume at the same transpulmonary pressure. This is called 

"hysteresis", attribut able to the complex respiratory pressure-volume relationship of 

the lung and chest wall. 

During normal respiration, the lung volume typically changes by 20% (from 3.31 

to 4.11 on average, as determined in a 10-patient study [5]); at deep inhalation, the 

increase in lung volume is approximately three to four times that of normal breathing 

[79]. 

Measurement of respiratory motion. Patients' breathing patterns can vary in 

magnitude, period and regularity during imaging and treatment sessions [28, 29, 98, 

111], as shown in Fig. 4-1. Systematie changes in the respiratory baseline may also 

occur. Motion also varies markedly between patients, indieating that an individual 

approach to respiratory management is advised. 

Respiratory motion studies have tracked the movement of the tumour [4, 19, 

31, 33, 91, 101, 102], the host organ, radiographie fiducial markers embedded at the 

tumour site [98, 10, 64, 75, 51] and surrogate organs, such as diaphragm, which are 

assumed to correlate with the tumour [25, 69]. This data is summarized in Table 4-l. 

The amount a lung tumor moves during breathing varies widely. Stevens et 

al. [102] found that out of 22 lung tumor patients, 10 subjects showed no tumor 
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Figure 4-1: Variations in respiratory patterns from the same patient taken a few 
minutes apart. The three curves in each plot correspond to infra-red reflector mea­
sured patient surface motion in the SI, AP, and RL directions, with each component 
arbitrarily normalized. In (a), the motion pattern is relatively reproducible in shape, 
displacement magnitude, and pattern. In (b), the trace is so irregular that it is 
difficult to distinguish any respiratory pattern. Reproduced from [45]. 
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Table 4-1: SI, AP and LR lung tumour-motion data. The mean range of motion 
and the (minimum-maximum) ranges in milimiters for each cohort of subjects. Re-
produced from [45]. 

Direction 
Observer SI AP LR 
Barnes et al. [4] Lower lobe 18.5 (9-32) 

Middle, upper lobe 7.5 (2-11) 
Chen et al. [10] (0-50) 
Ekberg et al. [18] 3.9 (0-12) 2.4 (0-5) 2.4 (0-5) 
Engelsman et al. [19] 

Middle/upper lobe (2-6) 
Lower lobe (2-9) 

Erridge et al. [20] 12.5 (6-34) 9.4 (5-22) 7.3 (3-12) 
/' Ross et al. [91] Upper lobe 1 (0-5) 1 (0-3) 

Middle lob 1.2(0.6) 9 (0-16) 
Lower lobe 1 (0-4) 10.5 (0-13) 

Grills et al. [31] (2-30) (0-10) (0-6) 
Hanley et al. [33] 12 (1-20) 5 (0-13) 1 (0-1) 
Murphy et al. [71] 7 (2-15) 
Plathow et al. [80] Lower lobe 9.5 (4.5-16.4) 6.1 (2.5-9.8) 6.0 (2.9-9.8) 

Middle lobe 7.2 (4.3-10.2) 4.3 (1.9-7.5) 4.3 (1.5-7.1) 
Upper lobe 4.3 (2.6-7.1) 2.8 (1.2-5.1) 3.4 (1.3-5.3) 

Seppenwoolde et al. [98] 5.8 (0-23) 2.5 (0-8) 1.5 (0-3) 
Shimizu et al. [99] 6.4 (2-24) 
Sixel et al. [101] (0-13) (0-5) (0-4) 
Stevens et al. [102] 4.5 (0-22) 
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motion in the SI direction. Of the remaining 12 subjects, the average SI displace­

ment was anywhere from 3 to 22 mm (mean 84 mm). They found no correlation 

between the occurrence or magnitude of tumor motion and tumor size, location, or 

pulmonary function, suggesting that tumor motion should be assessed individually. 

Seppenwoolde et al. [98] measured 3D trajectories for 20 patients via dual real-time 

fluoroscopic imaging of a fiducial marker implanted in or near the tumor. They 

observed hysteresis in the trajectories of half of the patients, amounting to alto 

5 mm separation of the trajectories during inhalation and exhalation, with 4 out of 

20 patients exceeding a 2 mm separation. This indicates that in cases where high ac­

curacy is required in treatment delivery, a real-time tracking or gating pro cess based 

on surrogate breathing signaIs should not only correlate with the tumor's motion 

along each axis, but should also have knowledge of the respiratory phase, because 

the phase difference is what leads to the hysteresis effect. In Fig. 4-2, motion trajec­

tories during radiotherapy of lung tumors, measured using implanted go Id markers, 

are depicted. 

The review of the respiratory motion literature leads to the following conclu­

sion: There are no general patterns of respiratory behaviour that can be assumed 

for a particular patient prior to observation and treatment. The many individual 

characteristics of breathing - quiet versus deep, chest versus abdominal, healthy ver­

sus compromised - and many motion variations associated with tumour location and 

pathology lead to distinct individu al patterns in displacement, direction and phase 

of tumour motion. However, as a general observation, the tumour trajectory length 
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Figure 4-2: Tumour trajectories (not to scale) in 23 lung patients, measured using 
implanted markers and real-time stereoscopie ftuoroscopy. Reproduced from [98]. 

in the SI direction is higher in the lower and middle lobs of the lung (see Table 4-1 

and Figure 4-2) 

4.2 Literature review on existing phantoms 

The problem of motion in radiotherapy has been approached in the literature 

with the aid of experiments with numerous incentives . 

Rietzel et al. [86] used a set of spherical and triangular objects placed on a 

one-dimensional moving platform to analyze, validate and improve the performance 

of the 4D CT protocol. Ford et al. [24] performed validation measurements of 

a 4D CT dataset using a phantom with an elliptieal moving sphere designed to 

simulate respiratory-induced tumor motion. 

Li et al. [57] developed a method to perform 4D CT scans at a relatively low 

current, in order to reduce the radiation exposure of the patients and tested their 
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phantom 

spirOlneter 

Figure 4-3: Experimental setup of the simulated respiratory phantom. An air cylin­
der is used to simultaneously drive air in and out of the balloon and the input port 
of the ABC system. Reproduced from [17]. 

method using a rigid anthropomorphic thorax phantom placed on a platform capable 

of sinusoidal motion in the SI direction. 

D'Souza et al. [17] used the active-breathing control (ABC) system to implement 

gated CT acquisition using flow-volume spirometry and tested their prototype by 

designing two motion phantoms: the first phantom simulated a tumour attached 

to an inflatable balloon, which changed position as a function of air-flow in the 

simulated lung (Fig. 4-3). The second phantom consisted of an anthropomorphic 

rigid phantom (Rando) placed on a ID sinusoidally moving platform (Fig. 4-4). 

Lu et al. [59] tested the accuracy of the deformable registration algorithm by 

using a gel-balloon deformable phantom. In this phantom, a balloon and 320 plastic 

beads implanted around the balloon in a regular cube grid were imersed in gel, 

and could be infiated and defiated with insertion or removal of heavy oil. The 
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spirometer 

Air 
cylinder 

Figure 4-4: Experimental setup of the anthropomorphic phantom (Rando phantom) 
on the moving platform. The platform drives the phantom in a sinusoidal manner. 
The platform is connected to a piston that drives air in and out of a cylinder whose 
output port is connected to the receiving port of the ABC system. Reproduced from 
[17]. 

deformable image registration of the phantom corresponding to a displacement of 

the plastic beads of 3-4 mm between the infiation-defiation stages was reported with 

an accuracy of less than 1 mm (Fig. 4-5). 

A number of authors used rigid motion phantoms to investigate intra-fractional 

organ motion effects in IMRT treatments. Jiang et al. [38] investigated how the 

intra-fractional organ motion effects in lung IMRT treatments delivered by multi­

leaf collimator infiuenced the prescribed dose by using solid water placed on a ID 

sinusoidally moving platform. Keall et al. [44] has developed and demonstrated the 

feasibility of a motion adaptive radiation therapy delivery on a sinusoidally moving 

target (i. e., a diode detector), for both uniform field and IMRT field treatments. 

Alasi et al. [1] used a rigid ID moving phantom to assess the dynamic delivery 
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Figure 4-5: The registered version of the gel-balloon deformable phantom designed 
by Lu et al .. The red component is the reference stage and the green component is 
the registered test stage. Reproduced from [59]. 

method where the MLC motion is synchronized with the phantom motion. Schaefer 

et al. [95] used a cylindrical phantom mounted on a ID moving platform to study 

the contribution of interplay effects in IMRT to the thorax. 

Nioutsikou et al. [74] studied the effects of 3D organ and tumour motion to 

the degradation of 3D CRT and IMRT planned dose distributions using an anthro-

pomorphic, tissue-equivalent, deformable phantom. The phantom consisted of two 

accordion-type flexible bottles filled with dampened sponges and an inserted solid 

tumour, holding Gafchromic EBT film, that could be driven in any arbitrary 3D 

trajectory (Fig. 4-6). Whereas the phantom allowed the authors to experimentally 

verify the effect of tumour motion on the dose distribution, their phantom design 

could not be used for deformable registration necessary in the application of 4D 

treatment planning. 
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Figure 4-6: Deformable breathing phantom, standing on the treatment couch. The 
inset shows one of the Perspex tumours, with three film inserts pointed by the arrows, 
that was placed in the right lung. Reproduced from [74]. 
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Figure 4-7: The diagnostic phantom with the abdominal insert removed (left), and 
the high density foam insert (right) that extended the existing lung insert. Repro­
duced from [39]. 

Kashani et al. [39] developed a deformable lung phantom by removing the 

abdominal insert from a diagnostic thoracic phantom and extending the existing lung 

insert with high density foam infused with iodine, in order to mimic lung attenuation 

properties at diagnostic imaging energies (Fig. 4-7). The foam was compressed and 

decompressed by an actuator-driven diaphragm. Rigid tumour-simulating inserts 

were embedded in the foam and their lD motion characteristics and reproducibility 

were studied. 

One commercially rigid phantom, designed to investigate and minimize the im-

pact of organ motion and patient positioning errors in radiation therapy, is that 

constructed by CIRS, Model 008 Dynamic Thorax Phantom (Fig. 4-8). Major com-

ponents of the system include a tissue equivalent thorax phantom, a precision motion 

actuator and controller with pre-set motion profiles. Three-dimensional motion of 

the tumors in the phantom are achieved by the actuator applying synchronized linear 
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Figure 4-8: CIRS Model 008 Dynamic Thorax Phantom. 

and rotational motion to a moving rod. Sinusoidal and other complex motions can 

be achieved with sub-millimeter accuracy and reproducibility. 

4.3 Features and applications of a designed, ideal lung phantom 

As presented in Section 4.2, the commerciaIly available lung phantoms and most 

of those described in the literature are rigid objects or phantoms with an imposed 

ID or 2D motion. The existing deformable lung phantoms are limited in their ca­

pability of reproducing a reallung 3D non-isotropic lung deformation/motion or the 

differential motion at different locations in the phantom as described in Section 4.1. 

Moreover none of the presently constructed deformable phantoms can be used in 

quality assurance of aIl aspects of 4D radiotherapy, namely, the 4D computed to­

mography, the 4D treatment planning and the 4D treatment delivery. 
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The properties of an ideal lung phantom would include complex geometry, 

anisotropie inflation and composition, lobar structure and internaI airway architec-

ture similar to that of human lung. Applications of such a phantom would be as 

follows: 

1. Evaluation of respiratory motion effects during CT image acquisition as well 

as validation of 4D CT procedures for irregular breathing patterns. 

2. Evaluation of the accuracy of the deformable image registration. 

3. Testing and calibration of various real-time tumor localization and tracking 

devices. 

4. Measurement of the delivered dose taking into account the change in lung 

volume during the breathing cycle and the distortions of the dose distribution 

due to the deforming lung. 

5. Evaluation of a 4D-optimized treatment plans that incorporate the effects of 

breathing motion. 

6. Validation of 4D dose calculation algorithms in deformablejmoving targets. 

7. Dosimetric and positional verification of individual patient treatment plans 

before treatment with motion mitigation techniques. 

The proposed deformable lung phantom described in Chapter 5 attempts to 

complement the existing phantoms by adding new features, that makes it suit able 

for use in the 4D IGRT validation process. 
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CHAPTER 5 
Design, Construction and Performance of a Novel Deformable Lung 

Phantom 

This chapter presents the design, construction and performance of the deformable 

lung phantom we developed. The experiments in this chapter are divided into four 

parts: (1) evaluation of the mean mass density of the simulated lung material and the 

relative mass density change between the PI and PE breathing states; (2) 3D motion 

assessment at different locations in the phantom; (3) 3D motion reproducibility; (4) 

deformable image registration of PI and PE breathing phases of the phantom and 

validation of the deformable image registration. 

5.1 Phantom construction 

The prototype design for the deformable phantom is presented in Fig. 5-1. The 

phantom is operated horizontally with its axis coinciding with the CT z-axis. The 

lung is simulated as a natural rubber latex balloon filled with slightly dampened nat-

ural yellow sponges. The balloon is mounted inside aLucite cylinder that simulates 

the thoracic cavity. The space around the lung is filled with water which replicates 

the chest mass. At the superior end the lung is left open for air communication 

through a perforated lid (vent ho les ), which keeps the sponge in place inside the 

balloon. At the inferior end, the lung is attached to a lÜ-cm thick Lucite piston, 

made to fit the cylinder. The piston, simulating the diaphragm, is fastened to a 

programmable motor via a met al rod, which compresses and decompresses the lung 
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Figure 5-1: Prototype of the deformable phantom. The inset shows the top view of 
the phan tom. 

aecording to an arbitrary, programmable breathing profile. This assembly simulates 

the respiratory motion of the diaphragm in the superior-inferior direction while lung 

tissues have a 3D non-isotropie motionjdeformation (Fig. 5-2). Various motion 

profiles can be programmed so that the phantom is capable of simulating measured, 

irregular breathing patterns with varying periods and amplitudes. 

5.2 Simulation of lung tissue 

The natural sponges (Fig. 5-3(b)) are slightly dampened in order to simulate the 

density of lung tissue and henee the desired Hounsfield (CT) numbers in eomputed 

tomography. A deformable, elliptical, tissue equivalent tumour made of Dermasol, 
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Figure 5-2: Principle of deformable lung inflation as realized with the lung phantom. 
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density of 0.818 g/cm3 , is embedded in the sponge (Fig. 5-3(c)). Dermasol is a 

new medical device material made from Thermoplastic Elastomer (TPE) (California 

Medical Innovation, Pomona, California). The tumour has several incisions to hold 

radiochromic film (Gafchromic, EBT). The film can be positioned before imaging of 

the phantom and remains in place for the delivery of the treatment plan. In this 

way, the location of the measuring point or area can be accurately determined for 

the purpose of comparison with alternative dose measurement methods or with dose 

calculations. 

Nylon wires and Lucite beads (Fig. 5-3(c)), emulating vascular and bronchial bi­

furcations, were uniformly glued at various locations throughout the natural sponges. 

The beads and bifurcations act as unique features which assist the deformable reg­

istration procedure and also serve as landmarks for quantifying the accuracy of the 

deformable registration of the phantom images. The tumour, the Nylon wires and 

Lucite beads can be visualized in a 3D volume rendering of the phantom sectioned 

along a longitudinal plane in Fig. 5-3(a). 

5.3 CT data acquisition 

CT data was acquired on both a General Electric (GE) 64-slice LightSpeed VCT 

scanner and a Philips AcQSim CT scanner, following a helical scanning protocol, at 

an image resolution of O. 7xO. 7x1.25 mm3 and O. 7xO. 7x3 mm3 , respectively. For the 3D 

motion assessment, eight 3D image datasets of the static phantom (corresponding 

to PE - Peak Exhale; El - Early Inhale; MI - Mid Inhale; LI - Late Inhale; PI -

Peak Inhale; EE - Early Exhale; ME - Mid Exhale; LE - Late Exhale), at an image 

resolution of O.7xO.7x1.25 mm3 , were obtained for eight equally spaced diaphragm 
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(a) 

Figure 5-3: (a) Simulation of the vascular and bronchial bifurcation in a 3D volume 
rendering of the phantom, sectioned along a longitudinal planej (b) natural spongej 
(c) Dermasol tumours of different sizes (1), Nylon wires in form of bifurcations (2), 
Lucite beads (3). 
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positions. The amplitude of piston motion was 1 cm, or 2 cm peak-to-peak. To 

evaluate motion reproducibility of the lung, seven repeat CT scans, at an image 

resolution of O. 7xO. 7x1.25 mm3 , were obtained for a given state of compression. Three 

different states of compression (corresponding to PE, MI, and PI) were checked. 

Deformable image registration was performed to register PI to PE breathing phases. 

For this purpose, the two extreme breathing datasets were acquired at two image 

resolutions, of O. 7xO. 7x1.25 mm3 and o. 7xO. 7x3 mm3 . 

5.4 Performance of the deformable lung phantom 

Expansion of the simulated lung is achieved by piston retraction whieh provokes 

a volume increase (elongation) of the "thoracic cavity". As a result, the layer of 

water of constant volume surrounding the deformable structure (balloon) becomes 

thinner. The additional volume created this way in the simulated lung is filled 

by air entering through the vent holes and results in sponge decompression. This 

arrangement results in a true, 3D non-isotropie deformation of the balloon, similar 

to a reallung. The initial tests on the phantom were performed for a 20-mm piston 

excursion and resulted in deformations of the balloon of 20 mm superior-inferior (SI), 

4 mm anterior-posterior (AP) and 5 mm left-right (LR). Fig. 5-4 shows a comparison 

between the CT number histograms in a real lung and the lung phantom. The 

resulting average and spread in CT numbers for the phantom lung are comparable 

to those for a reallung . 

Table 5-1 shows mean lung mass densities at PE and PI as well as mean lung 

density changes, lung volume changes and diaphragm dis placements between PE and 

PI for four lung patients and the lung phantom, based on CT number analysis over 
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SD: 144 

CTnumber 
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Mean: -776 
SD: 125 

CTnumber 

Figure 5-4: Axial CT images of: (a) reallung (free breathing) and (b) phantom lung 
(early inhale). CT number histograms within the whole lung region for: (c) reallung 
and (d) phantom lung. 
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Table 5-1: Mean lung mass densities at PE and PI, lung density changes, lung volume 
changes and diaphragm displaccmcnts between PE and PI for four lung patients and 
the lung phantom (one SD is given in brackets). 

Density PE Density PI Density change Volume change Diaphr. Displ. 
(PE - PI)/PI (PI - PE)/PE PI - PE 

(g/cm3) (g/cm3) (%) (%) (mm) 
Patient 1 0.23 (0.19) 0.21 (0.18) 6.47 7.48 11 
Patient 2 0.23 (0.14) 0.21 (0.13) 8.77 10.65 13 
Patient 3 0.29 (0.16) 0.25 (0.16) 11.53 21.40 23 
Patient 4 0.33 (0.20) 0.28 (0.16) 18.18 28.19 25 
Phantom 0.24 (0.12) 0.19 (0.19) 18.18 40.00 20 

the fulliung volume. From Table 5-1 it can be noticed that there is a large variability 

in lung mass densities from patient to patient and the mean lung density of the 

phantom is comparable to density changes observed in patient 4D CT data. Changes 

in the phantom lung density can be achieved by controlling the level of dampening of 

the sponges inside the balloon. Table 5-1 also shows that for a 20-mm displacement 

of the diaphragm, the phantom's lung volume increases by 40%, which is superior 

to real lung expansion. This could be overcome by using a Plexiglas cylinder of a 

smaller diameter, which will decrease the lateral expansion of the balloon, and hence 

reduce the volume change of the balloon for the same diaphragm displacement. 

5.5 Assessment of 3D motion and motion reproducibility 

To perform a quantitative 3D motion analysis at different points in the phantom, 

the locations of 12 anatomical point landmarks uniformly spread within the lung 

volume were manually identified on the eight CT datasets acquired throughout the 

respiratory cycle. The position of each landmark was plotted as a function of the 

respiratory phase in order to generate 3D landmark trajectories. Image intensity 
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(b) 

Figure 5-5: Example of manually chosen point landmarks. 

thresholds were used to automatically outline the tumour on the eight respiratory 

phases and the center of mass (COM) of the tumour, determined on each image set, 

was used to quantify tumour motion. To evaluate the reproducibility of the phantom 

motion seven point landmarks were identified in each CT dataset. The positions of 

the corresponding landmarks through the seven repeats of the same breathing phase 

were compared. Examples of manually selected landmarks are shown in Fig. 5-5. 

The tumour COM LR, AP, and SI trajectories inside the lung phantom , during 

a complete simulated breathing cycle, are shown in Fig. 5-6(a). Fig. 5-6(b) shows 

the SI trajectories of the twelve selected landmarks and tumour's COM during a 

complete breathing cycle, highlighting differential motion at different locations in 

the phantom. The maximum SI motion magnitude at different landmark positions 

(Table 5-2) for a given excursion of the piston is related to the initial distance of the 

landmark to the piston and varies between 94% and 3% of the 20-mm diaphragm 

excursion for positions closer and farther away from the diaphragm, respectively. 
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As expected, landmarks doser to the diaphragm moved farther than those more su­

periorly positioned (Fig. 5-6(c)), similar to the situation in a real lung. Radially, 

the larger the distance of the selected landmark from the central axis of the phan­

tom, the larger is their radial dis placement upon deformation. As can be se en from 

Fig. 5-6(d) this trend holds for alllandmarks except from landmarks no. 1,2,4 and 

9. Landmarks no. 1 and 2 are located in the superior part of the phantom where 

the radial motion is constrained by the Lucite sleeve holding the upper portion of 

the balloon. Landmarks no. 4 and 9 are on the posterior part of the lung where the 

displacement of the landmarks is less than on the anterior part due to Archimedes 

force exerted on the balloon. Repeat imaging of the phantom at different piston po­

sitions, corresponding to different breathing phases, demonstrated excellent motion 

reproducibility of the selected features inside the phantom, within the image resolu­

tion (O.7xO.7x1.25 mm3 ), which was the limiting factor in accurate identification of 

the point landmarks. 

5.6 Deformable image registration 

Deformable image registration was performed using the Automated Nonlinear 

Image Matching and Anatomical Labeling (ANIMAL) non-linear registration al­

gorithm developed by Collins et al. [13] and applied to the registration of lung 

anatomies by Heath et al. [34]. The ANIMAL code determines the 3D nonlinear de­

formation field required to register the two volumes by sequentially stepping through 

the source volume on a 3D cubic lattice, and estimating at each node the displace­

ment vector required to maximize the correlation coefficient of image intensities in 

the neighborhood of the node. The algorithm was applied iteratively in a multi-scale 
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Figure 5-6: (a) Tumour COM LR, AP, and SI trajectories during a complete breath­
ing cycle; (b) SI trajectories for the 12 point landmarks (LMs) and tumour COM 
during a complete breathing cycle; (c) SI maximum displacements of the landmarks 
as a function of their initial distance to the piston for a 20-mm excursion of the 
piston; (d) radial maximum displacement of the landmarks as a function of their 
initial radial distance to the central axis of the balloon for a 20-mm excursion of the 
piston. 
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Table 5-2: Landmark (LM) maximum SI displacements for a 20 mm excursion of 
the diaphragm, given in millimeters and as percentagc of the diaphragm excursion. 

LM Distance ta diaphragm Maximum LM displacement 
no. (mm) (mm) % 
1 135.6 0.6 3.0 
2 110.6 2.4 12.1 
3 96.9 5.0 24.8 
4 81.8 6.4 31.8 
5 63.1 7.4 36.8 
6 52.1 8.8 43.8 

Tumour COM 47.6 9.3 46.3 
7 30.8 12.5 62.4 
8 22.1 13.8 69.0 
9 15.3 15.0 75.1 
10 12.1 16.3 81.4 
11 10.8 17.5 87.7 
12 7.7 18.9 94.3 

hierarchy on data at different resolutions, beginning with very blurred data so that 

gross image features drive the fit at first. The resulting deformation field was then 

used as a starting point for the next scale step, where less blurred data allow smaller 

details to be included in processing, thus refining the fit. 

The PE and PI images were chosen as the target and source volumes, respec-

tively. An initiallinear registration of these two volumes was performed. The recov-

ered linear transformation was applied to the source image and the image intensities 

were re-sampled on the original voxel grid by tri-linear interpolation. This trans-

formed source image and the initial target image were consequently used as input 

images for the non-linear registration. The non-linear registration was performed 

only on the portions of the images containing the balloon and diaphragm. Voxels 

outside these masked regions have no influence on the image similarity evaluation 
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during the non-linear registration and were not considered by the registration algo­

rithm when evaluating the image similarity. 

The first iteration of the outer loop employed input images blurred using an 

isotropie Gaussian kernel with FWHM equal to 16 times the image resolution. At 

this current scale step the deformation field lattice spacing must be no greater then 

FWHM/2 (8 times the image resolution) to recover the function without aliasing, 

according to the Nyquist sampling limit. Image blurring and lattiee grid spacing 

were reduced after each iteration, with each successive step refining the estimation 

of the previous step. 

At each scale step of the outer loop, the inner loop recovers the deformation 

vector at each node in an iterative manner by minimizing an objective function which 

maximizes the correlation coefficient in a local neighbourhood of that node whilst 

penalizing deformation on the or der of the deformation lattice spacing. To ensure a 

continuous deformation field, a fraction of the deformation recovered on each iteration 

is added to the sum of previous estimates. After each iteration, a global smoothing 

is performed whereby the deformation at each node is replaced by a weighted sum 

of the current estimate with the mean displacement of the neighbouring nodes. 

Each of these pro cesses was controlled by a number of user-specified registration 

parameters whose values needed to be optimized on each scale step. The combination 

of parameters whieh resulted in a stable, lowest minimum of the global objective 

function were used for registration. 
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5.7 Accuracy of deformable image registration 

Quantitative assessment of deformable registration algorithm accuracy in medi­

cal imaging is challenging because it is very difficult to quantify and track temporal 

anatomy variations in patients or phantoms. The validation of deformable registra­

tion may be based on a comparison with a known deformation field [112]; the distance 

to agreement (DTA) oflandmarks [34, 65, 85]; consistency testing [37,116,117]; im­

age similarity metrics [34] ; 2D /3D contour distance to agreement [34]; and visu al 

inspection (image, contours) [65]. 

Image registration performance can be limited by residual image artifacts in 

4D CT datasets, as well as by spatial resolution. In this work a true retrospectively 

sorted 4D CT dataset of the breathing phantom was replaced by an artifact-free 4D 

dataset where each image dataset was obtained for a different compression state of 

the static phantom. The registration was performed between the extreme breath­

ing phases corresponding to the largest deformations and hence where the largest 

registration error is expected. 

In this study, we evaluated the accuracy of the deformable image registration 

using both quantitative and qualitative metrics. 

Two metrics were used to assess the accuracy of deformable registration after 

each resolution step: the distance-to-agreement (DTA) of both manually identified 

point landmarks and triangulated surfaces obtained from 3D structure surfaces. 

The DTA of manually identified point landmarks includes a comparison of the 

predicted and actual displacement of the landmarks on the two images. For this 

purpose, 37 homologous point landmarks, uniformly distributed within the lung, 
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were manually identified on the source (PI) and target (PE) images, independent of 

the registration process. The predicted target landmarks positions were determined 

by transforming the source landmarks positions using the recovered deformation field 

by interpolation at the source landmark's location. The accuracy of how weIl the 

registration pro cess brings these landmarks into alignment was evaluated by the mean 

value and the standard deviation of the differences between the actual and predicted 

target positions along SI, AP and RL directions and also summed in quadrature as 

a 3D error vector. 

The registration accuracy based on the comparison of the predicted and ac­

tuaI displacement of landmarks on the two image datasets is given in Table 5-3. A 

limiting factor in the registration accuracy evaluation is the accuracy with which 

homo logo us landmarks can be identified. Therefore landmark selection was repeated 

by three independent observers. Mean landmark positions of those landmarks repro­

ducibly identified within 1 slice (1.25 mm) and 2 pixels (1.4 mm), were further used 

for registration accuracy evaluation. The final vector average registration accuracy, 

evaluated on the deformation vectors recovered on the 2.1 mm deformation lattice 

spacing, was 0.55 (0.41 SD) mm, with 0.32 (0.29 SD) mm AP accuracy, 0.27 (0.30 

SD) mm LR accuracy and 0.36 (0.25 SD) mm SI accuracy. Further refinement of the 

registration by going to sm aller lattice spacing would only result in a small accuracy 

improvement at the expense of drastically more CPU time. The computation time 

for the 2.1 mm lattice spacing was about 1.15 h on a PC Pentium 4 (2.5 GHz, 4 

GiB RAM). It can be noticed that the 2.1 mm lattice spacing brings the registration 

accuracy to the image resolution level. 
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Table 5-3: Accuracy of the deformable image registration of PI and PE CT datasets 
for an image resolution of O.7xO.7x1.25 mm3 (one SD is given in brackets). 

Lattice spacing AP LR SI 3D Vector 
(mm) (mm) (mm) (mm) (mm) 

5.6 x 5.6 x 5.6 1.12 (1.20) 0.88 (0.77) 1.14 (1.34) 1.82 (1.96) 
2.8 x 2.8 x 2.8 0045 (DAO) 0042 (DAO) 0.59 (0.89) 0.85 (1.06) 
2.1 x 2.1 x 2.1 0.32 (0.29) 0.27 (0.30) 0.36 (0.25) 0.55 (DAI) 

Figure 5-7: Overlap of 3D triangulated surfaces of the tumour at PI (black), PE 
(orange) and deformed PI (green). 
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For the DTA analysis of triangulated surfaces, the tumour and lung were auto­

matically contoured using image intensity thresholds on an Eclipse Treatment Plan­

ning Station (Varian Medical Systems, Palo Alto). 3D triangulated surfaces were 

subsequently created from these contours by connecting contour points on adjacent 

CT slices according to the procedure developed by Heath et al. [34], also illustrated 

in Fig. 5-7. The triangulated surfaces of the contoured objects in source image 

are deformed using the recovered deformations for both the tumour and lung. The 

centre of mass (COM) of the triangulated surfaces of the outlined volumes in the 

deformed source and target images were determined after each registration step. A 

3D mean DTA was calculated by averaging the minimum distances between the de­

formed source surface and the target surface, evaluated along the normal to each 

triangle of the deformed surface. The distribution of the 3D mean DTA could be 

visualized by assigning a colour map to the triangles of the deformed surface based 

on the closest distance for each triangle [34]. 

The registration accuracy based on tumour and lung 3D mean DTA and COM 

shifts between the deformed source and target images, are given in Table 5-4. The 

tumour and lung mean 3D DTA, evaluated on the finest, 2.1 mm, lattice spacing 

were 0.44 (0.07 SD) mm and 0.99 (0.81 SD) mm, respectively. The corresponding 

colour maps of the 3D mean DTA for tumour and lung are shown in Fig. 5-8. The 

tumour and lung residual COM shift after registration were 0.83 mm and 1.55 mm, 

respectively. 

In order to study the effect of spatial image resolution on registration accuracy 

an additional deformable image registration and accuracy evaluation was performed 

79 



Table 5-4: Thmour and lung 3D mean DTA and COM shifts between the deformed 
source image and target image (one SD is given in brackets). 

Lattice Tumour 
spacing COM shift 3D avg. DTA 
(mm) (mm) (mm) 

Pre-registration 10.05 6.33 (3.70) 
5.6 x 5.6 x 5.6 1.10 0.59 (0.01) 
2.8 x 2.8 x 2.8 0.92 0.47 (0.41) 
2.1 x 2.1 x 2.1 0.83 0.44 (0.07) 

Lung 
COM shift 3D avg. DTA 

(mm) (mm) 
11.83 10.40 (10.84) 
1.76 1.81 (0.78) 
1.61 1.35 (0.56) 
1.55 0.99 (0.81) 

1I<1mm 

• 1·2 mm 

2-3 mm 

3·4 mm 

• 4-5 mm 

.>5mm 

Figure 5-8: Thmour colour-coded representation of DTA. Pink regions of the colour 
map indicate distance-to-agreement between surfaces greater than 5 mm. 
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Table 5-5: Accuracy of the deformable image registration of PI and PE CT datasets 
for an image resolution of 0.7xO.7x3 mm3 (one SD is given in brackets). 

Lattice spacing AP LR SI 3D Vector 
(mm) (mm) (mm) (mm) (mm) 

5.6 x 5.6 x 5.6 1.04 (1.44) 1.17 (1.52) 1.88 (2.76) 2.44 (3.46) 
2.8 x 2.8 x 2.8 0.42 (0.96) 0.64 (1.33) 1.13 (1.52) 1.36 (2.23) 
2.1 x 2.1 x 2.1 0.33 (0.62) 0.66 (1.58) 1.07 (1.65) 1.30 (2.37) 

on images acquired at the same extreme breathing phases on a Philips AcQ Sim CT 

simulator with an image resolution of o. 7xO. 7x3mm3 . This resolution is the usual 

acquisition resolution for 4D treatment planning and 4D dose calculations. The ob-

tained image registration accuracy is important due to its influence on the 4D dose 

calculation accuracy. Again, landmark selection was repeated by three indepen­

dent observers. Mean landmark positions of those landmarks reproducibly identified 

within 1 slice (3 mm) and 2 pixels (1.4 mm), were further used for registration accu­

racy evaluation. The registration accuracy based on the comparison of the predicted 

and actual displacement of landmarks on the two images is given in Table 5-5. Fi-

nal vector average registration accuracy evaluated on deformation vectors recovered 

at the 2.1 mm deformation lattice spacing was 1.30 (2.37 SD) mm, with 0.33 (0.62 

SD) mm AP accuracy, 0.66 (1.58 SD) mm LR accuracy and 1.07 (1.65 SD) mm SI 

accuracy. 

Since DTA quantification is limited to the neighborhood of the selected land-

marks, a qualitative, overall assessment of deformable registration accuracy was per-

formed by visual examination of image overlays. Visual inspection of the overlaid 

inhale registered to exhale and exhale images showed a good performance of the AN­

IMAL registration algorithm (Fig. 5-9). Using red/green image fusion, deviations 
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Figure 5-9: Deformable registration of the phantom shown on a coronal cut: (a) 
Peak Inhale (PI); (b) Peak Exhale (PE); (c) PI deformed to PE (d) PI and PE 
shown together before registration; (e) PE and deformed PI shown together after 
registration. 

can be clearly identified by red and green areas while matched regions appear in 

yellow. 
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CHAPTER 6 
Conclusions 

An aspiration of radiotherapy has always been to improve geometric as well as 

dosimetric accuracy. Yet the newest challenge in modern, high-precision IMRT is 

to deliver the prescribed intensity profile to a moving target. Intra-fractional organ 

motion is mostly an issue for organs situated in the chest and abdomen, with the lung 

being of most con cern due to respiratory motion. Indeed, in the case of early-stage 

lung disease, radiotherapy aims to improve outcome beyond the currently preferred 

option of tumour resection. In conventional practice the margin of the treatment 

beam is extended to cover most of the range of motion of the tumour, leading to 

a greater volume of normal tissue being treated unnecessarily. Consequently, the 

motion problem has been studied extensively in recent years and solutions have been 

suggested, subject to the assumptions made in each approach. Validation of tech-

niques aimed at measuring and minimizing the effects of respiratory motion require 

a realistic deformable phantom for use as a gold standard since patient studies for 

the purpose of dynamic imaging and targeting technique verification is not always 

suitable, due to the fact that ground truth in patient studies is not known. Therefore, 

a reproducible, tissue-equivalent deformable phantom is critical to proper commis-

sioning and use of new systems for physiological motion management in radiation 

therapy. 
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In this work we present the design, construction, performance and deformable 

image registration of a novel breathing, tissue equivalent phantom with a deformable 

lung that can reproducibly emulate 3D non-isotropie lung deformations according to 

any reallung-like breathing pattern. 

6.1 Summary of the work performed 

The deformable lung phantom proposed in this study brings new features and 

a larger potential range of applications compared to other commercially available 

phantoms or to those described in the literature. 

The phantom consists of aLucite cylinder filled with water containing a latex 

balloon stuffed with dampened natural sponges. The balloon is attached to a piston 

that mimics the human diaphragm. Nylon wires and Lucite beads, emulating vascu­

lar and bronchial bifurcations, were glued at various locations, uniformly throughout 

the sponges. The phantom is capable of simulating programmed irregular breathing 

patterns with varying periods and amplitudes. 

The main feature of this deformable, tissue-equivalent phantom is that it is 

capable of simulating 3D, reproducible, non-isotropic deformations and differential 

motion at different locations similar to the situation in a reallung. The maximum SI 

motion magnitude at different landmark positions for a given excursion of the piston 

is related to the initial distance of the landmark to the piston and varies between 

94% and 3% of the 20-mm diaphragm excursion for positions closer and farther away 

from the diaphragm, respectively. As expected, landmarks closer to the diaphragm 

moved farther than those more superiorly positioned. The mean density for the lung 

phantom varies from 0.19 (0.12 SD) gJcm3 to 0.24 (0.12 SD) gJcm3 for a diaphragm 
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excursion of 20 mm, which is comparable to density changes observed in patient 4D 

CT data. The reproducible lung deformation is achieved by piston-provoked volume 

displacement of water surrounding the deforming balloon. Motion reproducibility 

was found to be within the image resolution (0.7xO.7x1.25 mm3). 

A second new feature of this deformable lung phantom is that the tumour itself 

is deformable and has a complex but reproducible 3D trajectory induced by the 

motion/ deformation of the surrounding sponge. 

A third important and new feature of the phantom is the emulation of the 

vascular and bronchial bifurcations in the reallung, by using Lucite beads and Nylon 

wires. These unique features assist deformable image registration and also serve as 

landmarks for verification of the accuracy of the registration. DIR was performed 

between the extreme breathing phases and the accuracy of the DIR was evaluated. 

The final vector average registration accuracy using point landmarks as evaluation 

metric was found to be 0.55 (0.41 SD) mm on images acquired at a resolution of 

0.7xO.7x1.25 mm3 . The tumour and lung COM shift post-registration was 0.83 mm 

and 1.55 mm, respectively. The 3D mean DTA, post-registration was 0.44 (0.07 SD) 

mm and 0.99 (0.81 SD) mm, respectively. 

A comparison between the registration accuracy for the 0.7xO.7x1.25 mm3 and 

O. 7xO. 7x3 mm3 image resolutions showed that the vector average accuracy error de­

creases From 0.55 (0.41 SD) mm to 1.30 (2.37 SD) mm for registrations performed 

at the same deformation lattice spacing. This is due to a decrease in the accuracy 

with which homologous landmarks could be identified (limited by image resolution) 

and more blurring in the CT data caused by a larger slice thickness. 
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6.2 Future work 

The studies carried out so far used a synthesized, artifact-free 4D CT dataset, 

where each image dataset was obtained for a different compression state of the static 

phantom. Future work will include programming of various motion profiles of the 

phantom so that it can simulate irregular breathing patterns with different ampli­

tudes and periods. Therefore a true retrospectively sorted 4D CT dataset for irregular 

breathing patterns can be acquired and the validation of the 4D CT procedure can 

be performed. AIso, simulation of hysteresis trajectories that have been found for 

some human lung tumours could be envisaged by regulating the fiow of air in and 

out of the perforated lid using valves or by sim ply blocking and unblocking a number 

of holes in the lid in a dynamic fashion. 

Thus far, the most accurate estimate of the dose in a deforming anatomy was 

determined by the use of a 4D Monte Carlo dose calculation algorithm [35], which has 

not yet been directly validated by comparison with measurements. The deformable 

lung phantom allows radiation dose measurements using radiochromic films in several 

planes within the tumour and 4D radiation dose calculations in a movingj deformable 

tumor. Therefore, the phantom will provide a means of a quantitative verification and 

comparison between a convention al treatment plan, a 4D cumulative dose treatment 

plan and the actual measured radiation dose received by the target. 

To summarize, the proposed deformable lung phantom can be used for the eval­

uation of respiratory motion effects during CT image acquisition and validation of 

4D CT procedures. The phantom lung texture contains unique features facilitating 
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DIR of different CT datasets acquired at various breathing phases. The transfor­

mations provided by the DIR allow calculation of the cumulative 4D dose received 

by the tumour during the breathing cycle so that 4D-optimized treatment plans in­

corporating the effects of breathing motion can be designed. Moreover, validation 

of any 4D dose calculation algorithm in a movingj deformable target is possible by 

a direct comparison to the actual dose delivered to a detector (e.g., radiochromic 

film) inserted into a deformable tumour. Therefore, the lung phantom we propose is 

suit able for quality assurance of 4D IGRT. 

By injecting a radioactive substance in the tumor, the phantom can be used 

for the evaluation of respiratory motion effects during Positron Emission Tomogra­

phy (PET) image acquisitions and validation of 4D PET procedures for irregular 

breathing patterns. 

We envisage that the phantom can also be miniaturized to form an insert in a 

larger anthropomorphic phantom used for the QA in radiotherapy. This opens up a 

large number of possible commercial applications. 
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