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ABSTRACT

Fueled by the advancements in multimedia and networking technologies,

recent years have witnessed the explosive growth and proliferation of online

multimedia data hosting and sharing services (e.g., Facebook, YouTube, In-

stagram, Snapchat). Online multimedia data (e.g., photos, video clips) have

become the biggest big data. Compared with other types of data, they are

opaque to machines, thus less manageable, searchable, or reusable. There-

fore, social networking platforms such as Flickr attach keywords or tags that

describe the visual content to corresponding multimedia data for further man-

agement or retrieval tasks. However, the correspondence between the low-level

visual features and high-level semantic meanings of multimedia data is com-

plicated. Also, constructing high-quality training sets for learning this corre-

spondence is challenging. In this thesis, based on Conditional Random Field,

we propose an automatic approach to estimate the relevance of the visual con-

tent of multimedia data with candidate keywords or tags. This estimation is

the foundation of a variety of real-world applications, for example, automatic

annotation, multimedia data retrieval, spamming or polluted tags detection.

First, we focus the problem of intra-modal similarity or near-duplicate

detection on the visual modality of online videos. To both fast and accu-

rately conduct the detection, we represent a video with a bag of relatively

simple feature vectors instead of a composite feature vector and propose a

more parallelable feature extraction algorithm. By defining the concept of

informativeness, we prove that the fusion of multiple feature vectors preserves

more information about videos; thus it is more discriminative in the detec-

tion/retrieval task than the composite feature vectors.

With the system developed for the detection of near-duplicate videos,
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we survey the textual modality (i.e., titles, tags, description) of a real-world

web video dataset. Besides the statistical properties, we empirically verify the

homophily assumption, which refers to the tendency that similar items bond

together, on this dataset. Particularly, we validate the assumption from two

perspectives: visually similar multimedia items are associated with semanti-

cally similar descriptions and vice versa.

Finally, based on the homophily assumption, we devise a mid-level multi-

view multi-label relevance estimation approach to assess the cross-modal rel-

evance between visual content and potential keywords. In this thesis, a view

refers to the similarity relations between the multimedia items. Under each

visual feature, the similarity relations between the items can be different. The

differences and consistency between the views of multimedia data are incor-

porated into the approach to enhance the accuracy of estimation.
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ABRÉGÉ

Alimentes par les progrs des technologies multimdia et de mise en rseau,

ces dernires annes ont vu la croissance explosive et la prolifration des ser-

vices d’hbergement et de partage de donnes multimdia en ligne (par exemple,

Facebook, YouTube, Instagram, Snapchat). Les donnes multimdia en ligne

(par exemple, les photos, les clips vido) sont devenues les plus grosses donnes.

Compars d’autres types de donnes, ils sont opaques pour les machines, donc

moins faciles grer, interrogeables ou rutilisables. Par consquent, les plates-

formes de rseautage social telles que Flickr associent des mots-cls ou des balises

qui dcrivent le contenu visuel des donnes multimdia correspondantes pour

d’autres tches de gestion ou de rcupration. Cependant, la correspondance en-

tre les caractristiques visuelles de bas niveau et les significations smantiques

de haut niveau des donnes multimdias est complique. De plus, la construc-

tion d’ensembles d’entranement de haute qualit pour l’apprentissage de cette

correspondance est difficile. Dans cette thse, base sur un champ alatoire condi-

tionnel, nous proposons une approche automatique pour estimer la pertinence

du contenu visuel de donnes multimdia avec des mots-cls ou des tags candi-

dats. Cette estimation est le fondement d’une varit d’applications du monde

rel, par exemple, l’annotation automatique, la rcupration de donnes multim-

dia, le spam ou la dtection de tags pollus.

indent Tout d’abord, nous focalisons le problme de la similarit intra-modale ou

de la dtection quasi-duplique sur la modalit visuelle des vidos en ligne. Pour

mener la fois rapidement et avec prcision la dtection, nous reprsentons une

vido avec un sac de vecteurs caractristiques relativement simples au lieu d’un

vecteur de caractristiques composites et proposons un algorithme d’extraction

de caractristiques plus parallle. En dfinissant le concept d’informativit, nous
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prouvons que la fusion de plusieurs vecteurs de caractristiques prserve plus

d’informations sur les vidos; il est donc plus discriminant dans la tche de dtec-

tion / rcupration que les vecteurs de caractristiques composites.

indent Avec le systme dvelopp pour la dtection de vidos quasi-dupliques, nous

tudions la modalit textuelle (c’est--dire, les titres, les tiquettes, la description)

d’un ensemble de donnes vido web du monde rel. Outre les proprits statis-

tiques, nous vrifions empiriquement l’hypothse d’homophilie, qui fait rfrence

la tendance la liaison entre des lments similaires, sur cet ensemble de donnes.

En particulier, nous validons l’hypothse partir de deux perspectives: des

lments multimdia visuellement similaires sont associs des descriptions sman-

tiquement similaires et vice versa. indent Enfin, sur la base de l’hypothse

de l’homophilie, nous concevons une approche d’estimation de la pertinence

multi-tiquettes multi-vues de niveau intermdiaire pour valuer la pertinence

trans-modale entre le contenu visuel et les mots-cls potentiels. Dans cette

thse, une vue fait rfrence aux relations de similarit entre les lments multim-

dias. Sous chaque caractristique visuelle, les relations de similarit entre les

lments peuvent tre diffrentes. Les diffrences et la cohrence entre les vues de

donnes multimdias sont incorpores dans l’approche pour amliorer la prcision

de l’estimation.
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CHAPTER 1
Introduction

The focus of the work in this thesis is developing a method for the auto-

matic annotation of web multimedia content (e.g., photos, video clips). Specif-

ically, we intend to assign keywords or tags that correctly interpret the visual

content to an image or a video. A roadmap toward this objective consists

of three steps: (1) devising a method which facilitates the discovery of the

similar or near-duplicate images/videos of a given image/video; (2) investigat-

ing the relationships between the visual and textual modalities of a real-world

multimedia dataset; (3) developing a method that quantitatively gauges the

relevance between these modalities of multimedia data. The last step predi-

cates on the first two steps because of the following reasons: first, the proposed

cross-modal relevance estimation method is based on the intra-modal similar-

ity relationships, which are detected in step 1; second, the validity of the

homophily assumption [34] of the method in step 3 is empirically verified in

step 2.

1.1 Motivation

Since the era of Web 2.0, the dominant form of online data has evolved

beyond the restraints of text and hyperlinks. Multimedia data (e.g., images,

videos) have been deeply involved in the communications of the Internet users.

Additionally, statistics [92] shows that visual content is more engaging, influ-

ential, and illustrative in marketing or social media. For example, colored

visuals increase people’s willingness to read a piece of material by 80%; 51.9%

of marketing professionals worldwide name video as the type of content with

the best ROI (Return on Investment); visual content is more than 40X more
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likely to get shared on social media than other types of contents[92]. It was the

technical issues rather than marketing strategies that prevent the propagation

of multimedia data on the Internet.

Fueled by the advancements of multimedia and networking technologies,

recent years have witnessed the explosive growth and proliferation of the online

multimedia contents hosting and sharing services (e.g., Facebook, YouTube,

Instagram, Snapchat). For instance, by 2015, Instagram users had shared over

30 billion photos, which had grown at the speed of 70 million per day [80]. In

2016, the rate had risen to more than 95 million per day [62]. Videos have

been exhibiting a similar trend. According to Cisco Systems, Internet videos

accounted for 78% of all U.S. Internet traffic in 2014 and is expected to rise

to 84% in 2018 [88]. In the world’s most popular online video sharing and

hosting system, YouTube, the number of users has exceeded a billion [136],

and it has been estimated that there are over 300 hours of video clips uploaded

per minute [136]. Multimedia data are increasingly important to social media

networks. Four of five top-tier social media brands are related to photos, which

are Facebook, Instagram, Pinterest, Snapchat, and Twitter [8]. In the era of

big data, multimedia data has been called the “biggest big data” [50].

Converting light signals to ideas is “a complex task far beyond the abilities

of the world’s most powerful computers” [12]. In human bodies, it involves

numerous photoreceptor cells, ganglion cells, neurons in optical nerve and

visual cortex. Therefore, compared with other types of data, multimedia data

is opaque to machines, thus less manageable, searchable, or reusable.

Due to the opaqueness and sheer volume, it becomes more difficult to

automatically detect and curb the diffusion of visually redundant multime-

dia data on the Internet, which lessens the effectiveness of the retrieval and
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management optimization measures. For example, removing or marking re-

dundant images or videos can prevent the search engine from returning pages

of duplicated items, thus allowing the users to more rapidly obtain the results

that they expect.

The notion of redundancy in this context is more subjective than ob-

jective. The classifiers for the detection task are trained to learn how many

editions of the visual content will make users regard the item as a different

image or video. The items garnered by the redundancy detection methods

manifest semantic similarities, so semantic concepts might emerge in this pro-

cess. Therefore, the identification of similarities between images or videos lays

out the foundation for automatic annotation.

Most of the online multimedia services and social networks support the

annotation of the multimedia data because this functionality is useful for re-

trieving the data that satisfy the intent of users. The volume of this annotated

multimedia data is appealing to the annotation algorithms that demand large

training data, for instance, the deep neural networks. However, the qual-

ity of these user-provided annotations is not satisfactory as the training set.

Kennedy et al. [74] showed that only 50% of the tags are visually relevant to

image contents. It also has been reported [36] that in collecting image from the

Internet to construct ImageNet datasets, the average accuracy of each synset

is 26%. Moreover, as happened on social network platforms such as YouTube,

these tags or descriptions might be polluted by spamming [10].

For the sake of capitalizing on the abundant tagged multimedia data from

the social networks and avoiding the problems mentioned above, an automatic

cross-modal relevance estimation method is in demand. The identification of

irrelevant textual or visual content is beneficial to improving the performance
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of information retrieval and content recommendation. Meanwhile, the candi-

date images or videos verified by this method can be used in building a more

extensive training set for deep neural networks. Furthermore, this estimation

is an essential step towards the automatic comprehension of multimedia data.

1.2 Contributions

As mentioned above, the work of this thesis is comprised of three intercon-

nected projects, which corresponds to the three steps of our roadmap. Thus

the contributions of the thesis can be summarized as follows:

• Fast and accurate similarity relation detection of online videos:

the detection and retrieval of duplicate or near-duplicate images is a well-

established field. Currently, academic communities are more engaged in

the partial-duplicated image detection/retrieval problem. However, the

problem of identifying redundancy becomes much more complicated for

videos, despite the fact that videos are essentially a collection of images

and the techniques in the two fields are transferable. The dilemma be-

tween the effectiveness and efficiency of the detection/retrieval methods

is more challenging to deal with. On the one hand, accurate detec-

tion/retrieval requires complex and high-dimensional feature vectors to

embody a video; on the other hand, the complexity and dimensional-

ity of the feature vectors make the processing of videos time-consuming,

which can be exhaustive considering the scale of online videos. In order

to design a similar or near-duplicate video detection/retrieval system, we

represent a video with a bag of relatively simple feature vectors instead of

a composite feature vector and adapt the feature extraction algorithms

to be more parallelable. By defining the concept of informativeness, we

prove that the fusion of multiple feature vectors is more informative,
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thus more discriminative in the detection/retrieval than the composite

feature vectors.

• Empirical study of the statistical properties of an online video

dataset. Allowing users to describe or comment on the content of im-

ages or videos is prevalent in web multimedia services or social networks.

From these descriptions, keywords are extracted and associated with

the corresponding multimedia items to facilitate the retrieval or content

management. These keywords form the textual modality of the online

multimedia data. With the near-duplicate video detection/retrieval sys-

tem developed, we survey the textual modality of a real-world web video

dataset. Besides the statistical properties, we empirically verify the ho-

mophily assumption, which refers to the tendency that similar items

bond together, on this dataset. Specifically, we validate the assumption

from two perspectives: visually similar multimedia items are associated

with semantically similar descriptions and vice versa.

• Multi-view and multi-label relevance estimation between the

visual and textual modalities. Having validated the homophily as-

sumption on a real-world video dataset, we propose a cross-modal rel-

evance estimation method, which depends on the similarity detection

methods on both of the modalities. To enhance the accuracy of the

method, we utilize multiple visual feature extraction and representation

algorithms on the visual modality. Under each feature, the similarity

relations between the items vary thus form a distinct view. Based on a

graphical learning model, Conditional Random Field, we design a mid-

level multi-view relevance estimation approach. On the one hand, the

fusion of multiple views is not conducted at the feature-level, where the

objective is to construct a latent common subspace underlying these
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views. Each of the views remains independent in our approach so that

various visual features, including the ones produced by deep learning

networks, can be applied directly. On the other hand, the fusion is not

postponed to the point where the labels (i.e., keywords or tags) have been

assigned to each multimedia item, so the diversity of each view can be

more preserved in this way. Additionally, the graphical approaches are

more suitable for the circumstances where an instance (i.e., image/video)

can be described with more than one labels.

1.3 Outline

In Chapter 2, we briefly review the related work in the fields of near-

duplicate detection/retrieval of multimedia data, the collaborative tagging sys-

tems or folksonomies that are deployed for the management of the online multi-

media content, and the cross-modal relevance estimation methods. In Chapter

3, we introduce the design of our near-duplicate video detection/retrieval sys-

tem, CompoundEyes. The focus is shifted to the statistical properties of the

visual and textual modalities of the online video data in Chapter 4. Follow-

ing the design of CompoundEyes and the statistical properties of online video

datasets, we propose a multi-view and multi-label method to assess the rele-

vance of the visual and textual modalities of the online multimedia data. In

Chapter 6, we summarize our contribution and discuss future work.
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CHAPTER 2
Related Work

2.1 Near-duplicate Multimedia Detection/Retrieval

In this section, we survey the approaches and techniques that have been

applied in multimedia duplicate detection/retrieval. These methods can be

divided into two categories: representing a multimedia item (i.e., an image

or a video clip) as a processable data type (e.g., vectors), and enhancing the

speed efficiency.

2.1.1 Feature Representation

Representing a multimedia item as a machine-processable data type is

the foundation of multimedia duplicate detection/retrieval. Various methods

have been developed in the literature. Despite the difference between the two

multimedia objects (i.e., image and video), the representation techniques are

transferable, since a video is composed of frames, which are images in essence.

Converting an image into a computer processable data type consists of ex-

tracting low-level features from the visual content, and describing the features

with data types such as vectors. Generally speaking, based on the granularity,

the features can be categorized into global or local features; so are the feature

representations.

As implied by the name, global features capture the global properties of

the image. Such examples include color distribution [48], color moment [140],

texture [5], DCT (Discrete Cosine Transform) coefficients [112], etc. In con-

trast, local features, also known as local interest regions, are localized and

salient regions of the image. These regions are covariant with the transforma-

tions (e.g., affine transformation) on the original image. A variety of region
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detectors have been developed, which is summarized by Mikolajczyk et al. [93]

Among these detectors, Lowe’s Difference of Gaussian (DoG) detector [89] is

frequently used.

Evidently, global features can only be described with global representa-

tions (e.g., fingerprints, signatures). For example, the color distribution of an

image can be naturally represented as a multi-dimensional histogram [125].

The distance (e.g., L1, L2 norm, cosine distance) between the global represen-

tations of images indicates whether the two images are near-duplicate or not.

This type of approaches are rapid and straightforward, but not robust to light

changes, viewpoint changes, scale changes, occlusions, and so forth.

These drawbacks can be overcome by utilizing local feature-based ap-

proaches because local features are covariant with the transformations on the

image thus capable of differentiating true near-duplicate pictures from false

ones. There are two ways of representing local features. First, each local

interest region of an image can be described with the information of the re-

gion, by using descriptors such as SIFT [89] or PCA-SIFT [73]. In this way,

hundreds or thousands of local feature descriptors are generated for an image.

With these descriptors, the problem of duplicate detection/retrieval can be

solved by employing set matching [125]. However, since the matching between

descriptors is not exclusive, other visual contextual information, such as spa-

tial coherency [145, 129, 26], or geometric constraints [129, 86], are included

to eliminate false matchings of images. In partial-duplicate image matching,

this additional information is crucial to matching accuracy. Despite the ef-

fectiveness gain, the computational cost of these approaches is expensive, and

this efficiency issue becomes worse in the context of extensive image data.

Second, the information of local interest regions of an image can also be

summarized into a global representation. One representative method is known
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as the BoWs (Bag-of-Words) method [108]. In this manner, the descriptors

of all local interest regions are garnered, then clustering such as K-Means is

performed on this set. Each center of the clusters is designated as a visual

word and indexed. When the construction of the visual word vocabulary

completes, every local region descriptor can be quantized and assigned to

the index of the closest cluster center. After the quantization, an image is

represented as a high-dimensional vector, each entry of which corresponds to

the frequency of appearances of a visual word in the image. The BoWs method

is robust to the transformations that fail the global features and avoids the high

complexity of the set matching methods. However, this global representation

is ineffective to spatial transformations, and the visual words are not expressive

as text words. Additionally, the high-dimensional vector is sparse because the

count of local interest regions in an image is limited. When the size of the

vocabulary grows, the performance of this method will be saturated, and the

discriminative ability of visual words drops.

There are research endeavors to improve the effectiveness of the BoWs

method further. Hu et al. [56] group visual words into visual phrases, and

enforce spatial coherence to eliminate false matches and reduce the quanti-

zation errors. Zhang et al. [144] filter visual words by descriptiveness with

PageRank-like algorithms and construct visual phrases by co-occurrence. This

co-occurring contextual information is also applied by Wei et al. [120] to

correct typos in visual words. Chu et al. [26] propose a novel Combined-

Orientation-Position (COP) consistency to refine visual words. The enforce-

ment of coherence improve the effectiveness of the BoWs method but incurs

more overhead to its already high computational cost.

Compared with images, videos have an additional temporal dimension.

The most straightforward approach is neglecting this temporal information
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thoroughly, and taking the average of the global representations of all the

frames [27, 125]. On the other end of the spectrum is the sequence matching

techniques, in which a video is regarded as a sequence of frames. Chiu et

al. [22] formulate the matching problem as a shortest-path problem in the

matching graph. Law-To et al. [79] track and label the trajectories of local

interest points in videos. Huang et al. [58] track the changes of the content

of frames from that of keyframes, and measures the sequence similarity with

weighted edit similarity (WES). Zhou et al. [148] propose a 3-D tensor model

to describe the changes of local interest region descriptors. Chiu et al. [23]

transform the subsequence matching problem into 2D Hough space projection

of pairwise frame similarities between two subsequences. Chou et al. [24]

use a dynamic programming-like algorithm to match the symbolized video

sequences. The computational cost of these sequence matching techniques is

massive thus not favorable for web videos.

2.1.2 Speed Efficiency

Speed efficiency is a paramount concern for any practical multimedia near-

duplicate detection/retrieval system, especially when the volume of data grows

explosively. In the literature, there are two commonly applied approaches to

accelerate the processing speed: filtering, and indexing.

With the filtering approach, the detection/retrieval system appears as a

hierarchical system. The upper layer rapidly processes images/videos with

light-weight feature extraction and representation methods and leaves the so-

phisticated instances to the lower layer with more complicated approaches.

Zhao et al. [145] filter candidate near-duplicate images by comparing the

BoWs representations of them, before entering the stage of local interest re-

gions matching. In [125], Wu et al. build a hierarchical system with the global

color histogram representation and local interest region representation based,
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sliding window approaches. To further increase the processing speed, they

[126] utilize the contextual information (e.g., thumbnail images, tags, titles,

time durations, views, comments). The hierarchical design is also employed

to accelerate the speed of the systems that apply sequence matching methods.

Chiu et al. [23] select candidate near-duplicate video files by estimating the

time-decay hit frequency. Chou et al. [24] utilize spatial-temporal index pat-

terns to filter out non-duplicate videos. In the hierarchical design, it is difficult

to determine when to switch from light-weight methods to more complicated

ones, to keep the balance between speed and accuracy.

Indexing structures are used to expedite the retrieval of near-duplicate

images or videos, after them being projected into feature space. Hash table is

one of the most popular indexing structures. Other examples include LIP-IS

[146, 149], LSH (Locality Sensitive Hashing) [27, 147], or inverted indexing

[104].

Moreover, there are attempts to parallelize the processing of detection/retrieval.

For example, Xie et al. [129] leverage the computational ability of GPU

to hasten the time-consuming matrix calculations of the Harris-Hessian lo-

cal feature detector. Hefeeda et al. [52] developed a distributed matching

engine to find the K-nearest neighbors of high-dimensional multimedia rep-

resentations. These efforts are essential to deploy near-duplicate multimedia

detection/retrieval system in the cloud.

2.1.3 Feature Fusion

The academic community has investigated various feature fusion strate-

gies to overcome the limitations of global and local feature representations.

The combined features contain more information than the original features;

thus they are more discriminative in detecting near-duplicate images or videos.
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Shang et al. [104] propose two spatial-temporal features, one is based

on Conditional Entropy (CE), the other is based on Local Binary Pattern

(LBP). The CE and LBP methods are utilized to capture the spatial in-

formation within frames, whereas the temporal information is preserved by

applying the w-shingling method. The resultant feature representations are

high-dimensional and sparse, even after compression.

In [109, 110], by making use of the information of manifold, Song et al.

translate key-frames into binary hash codes. The affinity relations of videos

in HSV color distribution and LBP texture feature spaces are preserved in the

training of the hash functions. A similar approach called kernelized multiple

feature hashing (KMFH) was proposed by Zou et al. [155] for near-duplicate

image detection. They embed the features of an image into kernel spaces. The

resultant hash codes are discriminative and compact. However, the training

process of these approaches employs optimization techniques, and the overhead

of matrix computations is high.

Alternative fusion strategies include multiple instance learning [19] and

ensemble fusion [5]. We employ both of these strategies in the field of near-

duplicate video detection/retrieval. Zhang et al. [142] applied the Multiple

Instance Learning approach into content-based image retrieval. The main

concern of this work is to increase the retrieval accuracy rather than speed;

thus the performance of this system in large dataset stays unknown. Amir [5]

developed a feature fusion pipeline for visual concept detection. They extract

various feature representations from videos, conduct unimodal training on each

one of them, and combine the decisions via an ensemble fusion approach. The

training algorithm is Support Vector Machine (SVM), which is not favorable

for large dataset.
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Figure 2–1: The Tripartite Graph Representation of Folksonomy

2.2 Folksonomy

In the Internet, images and videos are commonly accompanied with tex-

tual data, which not only illustrates the high-level semantic meanings of visual

content to human beings but also is used by machines to locate videos in the

database. The system that utilizes textual data to pinpoint resources has been

known as folksonomy (i.e., collaborative tagging, social tagging).

Formally, folksonomy is defined as a set of 3-tuples F = {< r, t, u > |r ∈

R, t ∈ T, u ∈ U}, where R, T , and U are the collections of resources (i.e., visual

content), textual data (e.g., tags), and users respectively. The relationships

among these collections are commonly represented as a tripartite graph [87],

as in Figure 2–1. From another perspective, this figure describes a process in

which users add descriptions in the form of keywords to the shared content.

The annotations or tags of folksonomies reflect the collective “wisdom of

the crowd”. This semantically rich source of information is widely employed

for the management of a variety of online services, such as Delicious or Flickr.

The first and foremost concern of folksonomy is about the effectiveness of

folksonomies. Through experiments on the social bookmarking site del.icio.us,

Heymann et al. [54] concluded that the role that tags play in the websites could

not be replaced by another source of information. By exploiting the structures

of folksonomies, Hotho et al. [55] proposed an information retrieval model,
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which ranks items based on the relevance to the search queries. Bragg et al.

[11] designed a crowdsourcing taxonomy creation workflow that approaches

the level of human experts, at the expense of more labor.

In the core of folksonomy construction is the learning of taxonomy from

the tags or annotations of resources. This learning is challenging due to the

imprecision and incompleteness of the tags. In [7], by comparing the per-

formance of decentralized search that employs the hierarchical structures of

learned folksonomies, Helic et al. evaluated four state-of-the-arts folksonomy

algorithms, and concluded that DegCen/Cooc and CloCen/Cos algorithms are

more superior. For the visual concept learning of image sharing websites such

as Flickr, Zhu et al. [150] introduced semantic field and ontology-based se-

mantic pooling to increase the relevancy of images to the target concepts, and

the coverage of the concepts respectively. Aurnhammer et al. [7] proposed

to incorporate visual features into the discovery of the relationships between

data, for the retrieval of image sharing websites. The fusion of visual and se-

mantic features is also employed in applications such as cross-modal retrieval,

clustering, and recommendation.

One of the most prominent statistical properties of folksonomies is that

the tag frequency distribution follows the power law, or Zipf’s law distribution,

which is an indicator of complex systems. Therefore, academic communities

[40, 47, 17, 103, 78, 121] investigate the properties, structures, and dynamics

of folksonomies as complex systems. The stabilization of tag distribution is

also related to the emergence of vocabularies, or semantics, which is crucial

to the effectiveness of folksonomies in organizing resources. Robu et al. [103]

showed that the vocabularies extracted from folksonomies are considerably

richer than those extracted from general search engine logs. Korner et al. [78]

divided users into “categorizers” and “describers”, and empirically examined
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their impacts on the semantics of folksonomies. The results show that verbose

taggers contribute more to the emergent semantics. Wetzker et al. [121] cat-

egorized folksonomies into narrow and broad folksonomies, by the annotation

privilege. The former one restricts the tagging of resources to a limited num-

ber of users, whereas the latter one does not. They observe that individual

tagging habits remain relatively stable, but the choice of tags still varies even

for conceptually similar resources.

From another point of view, the appearance of a stable tag frequency

distribution implies that the users of the folksonomy have reached a consensus

about the vocabulary. Thus it is essential to ensure that this consensus can be

achieved and to evaluate the effectiveness of the words in the vocabulary at

isolating resources. Recent research concluded that the tagging choices tend

to converge [21]. Besides, although according to the information theory, the

effectiveness of tags in locating resources decreases as the growth of vocabulary,

folksonomy systems work well in practice. It is believed that the semantic

coherence between the tagging choices ensures this effectiveness.

The emergent semantics of tags in folksonomies is a high-level, rich source

of information for the comprehension of the content of resources (e.g., multi-

media data). The first step to exploit this form of information is to define a

valid and pragmatic similarity measure. Cattuto et al. [16] evaluated five mea-

sures of tag relatedness: the co-occurrence count, three distributional measures

that apply the cosine similarity, and a graph based measure. The semantic

relations between the tags under these measures are compared against those

of WordNet. The results indicate that the distributional measures establish

paradigmatic relations between tags, and the combination of co-occurrence

with popular tags achieve comparable performance to the most semantically

accurate measures. Markines et al. [91] also grounded the collectively defined
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semantics based on WordNet, and concluded that mutual information with

distributional micro-aggregation yields the highest accuracy.

2.3 Cross-modal Relevance Estimation

From the era of Web 2.0, folksonomies (i.e., collaborative tagging systems)

have been broadly applied in the retrieval, organization, and management

of online multimedia data. The examples include Flickr, Picassa, YouTube.

However, the tags or keywords contributed by users are too personalized thus

lack coherence in semantics. To overcome these deficiencies of folksonomies,

and sufficiently exploits the collective wisdom of users, academic communities

attempt to automatically predict the tags that describe the visual content of

corresponding multimedia data, which relies on the relevance estimation of the

visual and textual modalities of multimedia items.

2.3.1 Cross-modal Learning and Multi-view Learning

Content-based automatic tagging is challenging due to the semantic gap

in multimedia data, at the ends of which are the visual and textual modalities.

The semantic gap can be illustrated as “the lack of coincidence between the

information that one can extract from the visual data and the interpretation

that the same data have for a user in a given situation” [82]. Additionally,

it has also been argued that automatically annotating multimedia data (e.g.,

images) in a general way is impossible, even if all the objects in the images

or videos are detected and recognized. This argument is established on the

assumption that multimedia items do not have intrinsic meaning, which only

emerges from the interaction with users or another items [7].

Conventionally, the cross-modal relevance estimation problem is inter-

preted as a classification problem, where the features are extracted from the

visual content, and the tags are treated as classes. In [35], Farhadi et al. pre-

dicted the attributes (i.e., classes) of the visual objects by feeding the visual
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features of them into a linear SVM and logistic regression classifier. They

noticed the effectiveness difference of visual features in predicting different at-

tributes and selected the features accordingly in the classification. In [133],

Yang et al. discovered that videos of the same class might have a substantial

variation in visual content. They assumed the existence of latent classes and

refined the tags with a bootstrapping ensemble scheme. To deal with the un-

certainty and noise of the tags collected from users, Vahdat et al. [114] enabled

the flip of training tags and penalized the number of flips in the training of

SVM. This idea was also employed in the scenario of clustering [115].

In tasks such as clustering and retrieval, integrating the visual and textual

features not only reduces semantically irrelevant images or videos but also is

helpful for tag filtering or cleansing. Besides these the two modalities, the

mid-level properties such as the social attributes of users [28] can also be

exploited.

The integration of multiple modalities can be achieved by maximizing

the correlated subspace (CCA), learning the common space or coding (Cross-

modal Hashing), and extending the semantic topic models of words (e.g., LSA,

pLSA, LDA), for instance. These approaches can be briefly described as fol-

lows:

1. The co-occurrence information of the visual and textual words can be

used for estimating the correlations between the visual and textual fea-

tures [123]. However, the CCA (Canonical Correlation Analysis) algo-

rithm is more widely adopted because the visual and textual features

belong to different spaces. The CCA-based algorithms can be kernelized

(KCCA) to tackle the dimensionality issues [99, 44].

2. The cross-modal hashing methods belong to the manifold learning ap-

proaches, which can be used as both unsupervised [43] and supervised
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[13, 151, 139] algorithms. The unsupervised algorithms are based on

CCA, while the supervised algorithms exploit the semantic meanings of

tags to train the hashing functions.

3. LSA (Latent Semantic Analysis), pLSA (probabilistic Latent Semantic

Analysis), and LDA (Latent Dirichlet Allocation) are originally applied

to extracting topics from textual documents. Academic communities

have proposed various ways to extend them into the multi-modal sce-

narios. In [122], Wu et al. applied the LDA modalities to extract topics

from time-sync video tags. Jia et al. [66] built an MRF (Markov Ran-

dom Field) model over the LDA model, in which the similarities between

multimedia items in the same modality or across different modalities are

incorporated to boost the performance of cross-modal tasks. Lienhart

et al. [83] developed a multi-layer pLSA model to merge the topics

extracted from the visual and textual pLSA models.

Compared with the classification approaches, the CCA algorithms assume

strong correlations between modalities, and the multi-modal LSA or LDA

models restrain the relationships between modalities. On account of these

limitations, and to cope with the large variations of the visual content of images

or videos that belong to the same class, Zhuang et al. [154] extended the

DL (dictionary learning) methods to the multi-modal settings. The method

jointly learns dictionaries for each modality along with a cross-modal mapping

function and discovered the shared structures between modalities.

The definitions of multi-view learning and multi-modal (or cross-modal)

learning on multimedia data are quite similar. The meaning of view in this

context does not refer to a viewpoint of a camera, but a perception of data

under a feature. Multimedia data consists of modalities more than visual and

textual modalities, for instance, RGB color distribution, the audio stream,
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depth. Each of these modalities can be described by a feature or a set of

features. Consequently, the techniques and methods that are adopted in these

two class of learning algorithms are akin as well.

In a survey [130] of the multi-view learning algorithms, Xu et al. catego-

rized the algorithms into three classes: co-training, multiple kernel learning,

and sub-space based learning algorithms. The co-training algorithms are fur-

ther compared in [94], and Christoudias et al. [25] devised a co-clustering style

bootstrapping algorithm to resolve the disagreement between views. Multiple

kernel learning algorithms are related to semi-supervised, especially graphical

learning models. In [134], it is utilized to transfer the knowledge learned from

images to the domain of videos. The sub-space based learning algorithms,

including CCA [42], metric learning [116, 53], and latent space models [143],

are also broadly used in cross-modal learning. Additionally, the multi-view

learning algorithms can be extended into the domain of deep learning. Wang

et al. [118] combined DNN-based approaches with linear and kernel CCA, and

compared their performance.

2.3.2 Multi-label Learning

The semantic meanings of real-world images or videos are complicated.

Therefore, assuming that each multimedia item belongs to only one semantic

concept, which is fundamental for the supervised learning, is not sensible in

this context. Multiple tags or labels can be associated with the visual content

of an image or a video.

In [141], Zhang et al. reviewed representative algorithms for multi-label

learning. These algorithms are divided into two categories; the first one trans-

forms the multi-label learning problem into other well-studied learning prob-

lems, and the second one adapts different learning algorithms to fit the multi-

label learning scenario. In the first category, the multi-label learning problem
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can be transformed into multiple independent binary classification problems,

a chain of binary classification problems, the label ranking problem, or an

ensemble of multi-classification problems. In the second category, the candi-

date learning algorithms for the multi-label learning problems include kNN (k

Nearest Neighbor), Decision Tree, maximum margin strategies such as SVM,

optimization methods that are entropy-based. One of the most discernible

differences between these multi-label learning algorithms is whether and how

the correlations between labels are incorporated.

Among the learning techniques mentioned above, the maximum margin

strategies (e.g., SVM) combined with graphical or kernel learning methods

have attracted lots of attention from academic communities. In [105], Shen et

al. employed multi-task SVM to model the inter-object relationships between

objects in loosely-tagged images, while in [32], Fan et al. combined multi-

task learning techniques with max-margin strategies to address the issues of

inter-concept similarity and diversity. In these works, the task relatedness is

utilized to embody the correlations between tags or labels.

The label propagation algorithm is a frequently used graphical algorithm

for cross-modal, multi-view, and semi-supervised learning problems. It needs

to be modified to account for the correlations between labels. In [68], Kang

et al. co-propagated multiple labels simultaneously instead of one at a time.

Kong et al. [77] propagated label sets rather than labels. Chen et al. [18]

propagated labels on the `1 graph based on the Kullback-Leibler divergence

which measures the similarity between labels. Wang et al. [119] developed an-

other label set propagation algorithm that employs the social context features

to capture the correlations between labels. Moreover, in the case of incom-

plete label assignment, which is typical for real-world application, a group
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lasso technique is utilized to compensate for the errors in ranking the assigned

labels against the unassigned labels [14].

Fusion techniques have also been applied to enhance the performance of

multi-label learning algorithm. Wang et al. [117] fused the transition kernel

and label kernel to incorporate label correlations and instance (i.e., multimedia

items) similarities. Kong et al. [76] constructed a heterogeneous information

network, which is capable of providing abundant information concerning the

relationships among instances or label, for propagation. Xu et al. [131] con-

structed an affinity graph of labels based on the co-occurrence information,

which is further fused with other visual affinity graphs induced from multiple

features.

2.3.3 Semi-supervised Learning and Graphical Models

In the semi-supervised learning algorithms, the unlabeled multimedia in-

stances are involved in the computations because of the assumption that the

labeled and unlabeled data share common underlying similarity structures,

both visual and semantical. Because the amount of unlabeled data is consid-

erably more massive than that of the labeled data, the semi-supervised learn-

ing algorithms are preferable than supervised learning algorithms in plenty of

scenarios. They are integrated with multi-view or multi-label learning tech-

niques in the field of automatic annotation, such as Bayesian inference [15],

co-training [132], or curriculum learning [41]. The purpose of the integration

is the enhancement of accuracy, whereas the speed issues have rarely been

the focus, except for the research conducted by Ravi et al. [101], where the

streaming and distributed computing techniques have been applied to in the

label propagation.
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Graphical models are a subcategory of the semi-supervised learning algo-

rithms. They are capable of naturally representing various relationships be-

tween or among multimedia items. Representative examples include the label

propagation algorithm [152, 84, 106, 81, 59, 135, 38, 69, 138, 102, 127, 37, 9, 31]

and the random-field-based models (e.g., Gaussian random field [153], condi-

tional random field [63]).

A simple type of label propagation algorithms is neighbor voting [81, 135],

in which the label of an instance is determined by the distribution of the labels

of the instance’s neighbors. When the neighbors of the neighbors are taken into

account [152, 84, 106, 135], the label propagation algorithms can be regarded

as random walk algorithms.

There have been attempts to integrate multi-view learning techniques

into the label propagation algorithms. Academic communities developed the

propagation learning algorithms around two ideas about graph construction:

1. Constructing a graph that is comprised of vertices and edges coming

from different views. In literature, the choices for graph construction

includes hyper-graph [38, 138], heterogeneous graph [59, 102, 31], and

K-partite [29] (e.g., bi-partite [51]) graph.

2. Fuse multiple similarity graphs into one graph. The fusion can be as

simple as a linear combination of similarity graphs [127] or formulated

as an optimization problem [69, 37, 9].
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CHAPTER 3
CompoundEyes: Near-duplicate Detection in Large Scale Online

Video Systems in the Cloud

3.1 Overview

In recent years we have witnessed the proliferation of video content on

the Internet. This growth was fueled by rapid advances in multimedia tech-

nologies, and the popularity of online video hosting and sharing services (e.g.,

YouTube, Yahoo! video).

The expansion of video content is accompanied by ubiquitous duplication.

Wu et al. [125] showed that among Internet 13,129 videos, around 27% are

near-duplicate. Therefore, efficiently identifying near-duplicate videos (NDVs)

on a large-scale is a fundamental research goal, which can benefit the perfor-

mance of video sharing and hosting services from many aspects. For example,

by identifying the NDV copies, bandwidth utilization and storage management

in video content distribution systems can be further optimized; by comparing

the tags associated with NDVs, the spamming videos can be detected as well;

furthermore, the detection of NDVs allows pirated copies to be identified (e.g.,

YouTube Content ID).

Presently, a standard way in practice to detect NDVs is based on key-

words, tags, or associated descriptions. However, these textual data are less

reliable in detecting NDVs than visual content. It is very common that iden-

tical video clips have different sets of associated tags, while clips with an iden-

tical set of tags can be significantly different in visual content. Therefore, a

content-based NDVD (Near-Duplicate Video Detection) system [125, 109, 52]
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is more desirable than the one based on texts. These NDVD systems, how-

ever, tend to use high-dimensional feature representations and complicated

algorithms to seek good detection accuracy, thereby sacrificing efficiency for

accuracy. This approach is not practical for large-scale NDVD applications.

As reported in YouTube statistics [136], 300 hours of video clips are uploaded

every minute. If an NDVD system is not efficient enough, the detection speed

cannot catch up to the video uploading speed. However, building a practical

NDVD system is challenging, due to the following two reasons:

• The Complexity of Data: Compared with other forms of big data

such as records or logs, videos are more information-abundant and com-

plicated. Therefore, using features to profile a video is not as effective

as it does in content-based duplicate document detection. In the cloud,

there are numerous modifications of video content to produce NDVs,

for example, variations in encoding format or parameters, photometric

variations, or frame insertion or deletion. Every feature discovered hith-

erto has its own drawbacks because a particular part of the information

about video content has been discarded by this feature.

• Detection Speed Requirement: In order to cope with the sheer vol-

ume and increasing speed, a fast video detection system is necessary.

However, this requirement is contradictory to the practice of using high-

dimensional and composite feature representations to embody videos

[109, 104] because the construction of these representations is exhaus-

tive [109]. Consequently, it is generally conducted offline [109, 104].

Intuitively, high-dimensional and composite visual feature representations are

more informative, thus more discriminative in near-duplicate video detection

or retrieval, in spite of the time-consuming constructions. This is why recent

research focuses on using high-dimensional feature design and feature fusion
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[109, 104] to detect NDVs. However, in this thesis, using the information

entropy concept, we demonstrate that composite feature representations are

not necessarily more informative than a collection of simple representations.

In addition, the dimensional growth may further reduce the informativeness.

Accordingly, we shift the focus away from the design of an advanced represen-

tation into the design of the whole detection system. We design and implement

an efficient yet accurate NDVD system, called CompoundEyes [20]. Our idea

was inspired by the compound eyes of insects, which are made up of numerous

small optical systems. Although an individual small optical system is weak by

itself, they together form a comprehensible eyesight, allowing for an incredibly

wide viewing angle and the detection of fast movement.

The design of CompoundEyes seamlessly integrates the ideas of multi-

ple instance learning and the principles of the systems approach. In Com-

poundEyes, every video is represented as a bag of feature vectors of different

types. Each type of feature vectors is generated by an independent com-

ponent that applies a feature extraction and representation algorithm. Al-

though individual components are relatively weak in terms of accuracy, to-

gether as a system, they could achieve satisfactory accuracy improvement.

Meanwhile, the system efficiency is ensured because the algorithms utilized by

these components are simple, fast, and adapted for parallelism exploitation.

We adopted the CC WEB VIDEO [128] dataset to evaluate the performance

of CompoundEyes. Compared with a similar work [147], the accuracy has been

improved from 80% to 89%, with only 1.45 seconds average temporal cost for

videos less than 10 minutes in length. In addition, we evaluate CompoundEyes

against two BoWs (Bag of Words) -based and two CNN (Convolutional Neural

Network) -based near-duplicate video detection systems in terms of accuracy.

The experiment results show that the detection accuracy of CompoundEyes
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is on par with the 19-layer VGGNet [107], and higher than those of the other

three systems.

The contributions of our system can be further explained by the following

aspects:

• A Shifting of Detection Paradigm: We apply a new philosophy for

the design of NDVD systems, which employs multi-feature information

fusion with well-coordinated classifiers instead of multi-feature fusion

with a simple classifier. Based on the definition of the informativeness

of video representation, we prove that theoretically, a sophisticated rep-

resentation combining multiple features does not provide more informa-

tion than a collection of simple features. Thus the latter approach does

not guarantee higher accuracy than the former one.

• Efficiency Improvement: We use low-dimensional representations to

achieve efficiency and scalability. Though the accuracy of using indi-

vidual features with reduced dimensionality is affected, we apply the

Multiple Instance Learning approach for information fusion and make

the final detection result more accurate than state-of-the-art approaches.

Moreover, we exploit the parallelism in our system to further accelerate

the detection speed.

• Implementation: Our implementation of CompoundEyes along with

the simplicity of input representations and native support of parallelism

exhibits satisfactory performance in terms of both accuracy and detec-

tion efficiency.

3.2 Preliminaries

There is no standard definition of Near-duplicate Video (NDV) in liter-

ature. In this thesis, we adopt the most stringent and least subjective [85]

definition proposed by Wu et al. [125], in which NDVs are videos of similar

26



visual content but have undergone various modifications such as illumination

changes or caption insertion. Therefore the NDV detection is based on visual

content rather than semantics.

3.2.1 Two-stage NDVD/NDVR

Near-duplicate Video Detection (NDVD) and Near-duplicate Video Re-

trieval (NDVR) are different in their objectives, but the underlying techniques

are communal. In detection, the goal is to identify all duplicate pairs from

the video dataset, whereas in retrieval, the aim is to locate the videos that

are near-duplicate to the query video and position them appropriately. The

typical process of content-based NDVD/NDVR systems is comprised of two

stages: (1) feature extraction and description, (2) neighborhood construction.

Feature extraction and description

A video feature is a summary of information in visual content, which

should preferably be stable and sufficiently distinguishable. The range where

a feature is extracted may span globally across the whole video, such as the

color distribution, or be localized to a region, such as interest regions.

Extracting features from a video is conducted on a frame-by-frame basis.

For instance, to calculate the color distribution of a video, the color distribu-

tion of each frame is calculated first, then the average of them is taken as the

color distribution of the video.

Descriptors are constructed to represent the extracted features quanti-

tatively. Among numerous descriptors, histograms are widely adopted, to

represent both global features (e.g., color distribution), or local features (e.g.,

SIFT, and BoWs).

Neighborhood construction

Owing to speed efficiency concerns, in NDVD/NDVR systems, videos are

generally described with global representations (e.g., signatures) instead of a
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sequence of pattern symbols. When the first stage ends, videos are summarized

as a point in a multi-dimensional feature space. Ideally, NDVs should be

adjacent, whereas different videos should be distant in this feature space. With

a distance measurement, we are able to identify the near-duplicate videos to a

video by constructing its neighborhood in the feature space. In other words,

this neighborhood is a decision boundary. Those videos reside within the

boundary are regarded as duplicated videos to the given video, and others are

non-duplicate.

As the size of dataset grows, the construction of neighborhood of videos

is critical for detection speed improvement. As mentioned in Chapter 2, to

accelerate this construction, storage, and retrieval assistance schemes such as

hash tables, inverted indexing file, or LSH (Locality Sensitive Hashing) [61],

are introduced. Converting video representations into hash codes expedites

the similarity comparison between them; thus it is particularly helpful to the

retrieval of K-nearest neighboring videos.

3.2.2 Feature-centered detection paradigm

Conventionally, the feature representation construction in the first stage

is the core of NDVD system design, and it has been deeply studied by aca-

demic communities. In this part, we commence our discussion about this

feature-centered detection paradigm with a theoretical model, upon which the

drawbacks of this paradigm are investigated, to introduce and justify the de-

sign philosophy of CompoundEyes.

Mathematical Model

First, we define four relevant concepts in NDVD systems as follows.

Definition 1. The neighborhood of a video v ∈ V is U(v) = {v′ ∈ V |v′ ∈

duplicate(v)}.

Definition 1 is independent of feature representations.
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Figure 3–1: Transformation of Feature Space

Definition 2. The representation of a video v ∈ V under feature f ∈ F is

defined as Xf (v) ∈ Rn (i.e., Euclidean space). Defining the feature represen-

tation space as an Euclidean space is not mandatory.

Definition 3. The hypersphere neighborhood of a video v ∈ V under feature

f ∈ F is defined as S(Xf (v), τ) = {Xf (v
′)|v′ ∈ V, |Xf (v

′) − Xf (v)| ≤ τ},

where |.| is a distance measurement in the feature space.

Definition 4. The error set of S(Xf (v), τ) is defined as Ef (v) = {v′ ∈ V |v′ ∈

U(v), Xf (v
′) /∈ S((Xf (v), τ ∗)} ∪ {v′ ∈ V |v′ /∈ U(v), Xf (v

′) ∈ S((Xf (v), τ ∗)},

where τ ∗ is the optimal value for S(Xf (v), τ).

With these definitions, after establishing the feature f , the classification

task (e.g., NDVD/NDVR) in this paradigm is as simple as testing whether

v′ ∈ S(xf (v), τ ∗), v, v′ ∈ V . Its accuracy can be measured by the volume of

Ef = {Ef (v)|v ∈ V }. The smaller it is, the better f is to embody videos.

As shown in the left part of Figure 3–1, the hypersphere neighborhood in

a simple, low-dimensional feature space under f1 may not be a satisfactory ap-

proximation, as |Ef | = 4. To increase the discriminative ability, in the feature-

centered paradigm, a higher-dimensional feature representation Xf , f ∈ F is

created by combining feature representationsXf1 , Xf2 , . . . , Xfn , f1, f2, . . . , fn ∈
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F in various ways [104, 109, 110]. The hypersphere neighborhood in the fea-

ture space under f should be more accurate as shown in the right part of

Figure 3–1, where |Ef | = 0. However, this paradigm may encounter issues

from the following perspectives of dimensionality and informativeness.

Dimensionality

The first potential issue of the feature-centered paradigm is the high di-

mensionality of representations. Typically, there are two manners of dimen-

sionality growth: more feature representations being integrated, or the vocab-

ulary of visual words expanding. They can be illustrated with examples.

The LBP-based spatiotemporal feature [104] is an example of feature fu-

sion. First, each frame is represented by a binary vector of 16 dimensions.

Thus there are 216 = 65536 possible distinctive vectors, or patterns. Then the

video representation, a histogram, is constructed by counting frames that fall

into each pattern. In this way, the dimensionality of representations is 65536.

In BoWs methods, the dimensionality of representations is the number of

visual words in the vocabulary, or O(
√
n) according to a rule of thumb, where

n is the number of interest regions extracted from all videos. Given that there

are 107 videos in a database, each of them has 102 frames and the average

number of extracted regions is 103, the dimensionality of this representation,

is 10
7+2+3

2 = 106.

Either the combinatorial explosion or sublinear growth could lead to the

high-dimensionality of representations, which imposes heavy processing cost,

thus reducing the detection speed of NDVD/NDVR systems. On the other

hand, the accuracy could also be negatively affected. When dimensionality in-

creases, the maximum distance between two random representations becomes
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indiscernible compared to the minimum distance, as

lim
d→∞

E(
distmax(d)− distmin(d)

distmin(d)
) = 0. (3.1)

Thus the neighborhood becomes less meaningful. In addition, when more

irrelevant or noisy dimensions are involved, the accuracy of neighboring video

retrieval will also drop.

Informativeness

The second potential issue of the paradigm comes from the reduction of

informativeness, which is critical to the detection accuracy. We assume that

the feature representations emerge in the form histogram because it is widely

adopted in describing both global features (e.g., color distribution) and local

features (e.g. SIFT, PCA-SIFT, BoW). The informativeness of representation

is defined as entropy.

Definition 5. Suppose f1, f2, . . . , fk, . . . ∈ F are visual features. Under each

one of them, a video v can be represented as Xf1(v), Xf2(v), . . . , Xfk(v), . . ..

The informativeness of a video representationX(v) ∈ {Xf1(v), Xf2(v), . . . , Xfk(v), . . .}

is Hv(X) = −
∑

i pv(xi) log pv(xi).

The term pv(xi) in this equation is defined as pv(xi) = gv(xi)wi, where

gv : range(X) → [0, 1] is the probability density function of X(v), and wi is

the width of the i-th bin in this discrete probability density function. In other

words, the range of X(v) is divided into non-overlapping bins, and the value

of X(v) stays the same within a bin.

Formally, the definitions of these variables are: wi = ui − li, xi ∈ [li, ui],

ui−1 = li, ∪ni=1[li, ui] = range(X), i = 2 . . . n, where n is the dimensionality

(i.e., number of bins) of X(v).

The following properties regarding information lost could be revealed with

Definition 5.
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Property 1. Hv(X) = 0, if n = 1; Hv(X)→ 0, if n→∞.

Proof. By Definition 5, the proof of the first part is straightforward.

For the second part, as n → ∞, wi → 0, thus pv(xi) = gv(xi)wi → 0.

Additionally, according to the definition of entropy, p(x) log p(x) = 0, when

p(x) = 0. Therefore, Hv(X) = −
∑

i pv(xi) log pv(xi)v → 0, as n→∞.

According to Property 1, increasing the dimensionality of representation

does not necessarily make it more informative. On the contrary, as it becomes

sparse, its informativeness is closer to 0. The attempt to construct more com-

pact BoWs representation [64] buttresses this corollary. In essence, it reveals

the curse of dimensionality as Equation 3.1 does, from another perspective.

Property 2. H(Xf1(v), Xf2(v), . . . , Xfk(v)) ≥ H(Xfi(v)), i = 1, . . . , k, . . ..

Property 3. H(Xf1(v), Xf2(v), . . . , Xfk(v)) ≤ H(Xf1(v))+H(Xf2(v))+ . . .+

H(Xfk(v));

Proof. H(Xf1(v), Xf2(v), . . . , Xfk(v)) is mathematically sound, becauseXfk(v)

can be viewed as a random variable. By Defintion 5, P{Xf (v) = xi} =

gv(xi), f ∈ {f1, f2, . . . , fk . . .}, xi ∈ range(Xf (v)). In this proof, we will regard

Xf (v) as a random variable instead of a feature representation in the form of

histogram, and the definition of informativeness remains the same.

According to the chain rule,

H(Xf1(v), Xf2(v), . . . , Xfk(v)) =
k∑
i=1

H(Xfi(v)|H(Xf1(v), . . . , H(Xfi−1
(v)).

(3.2)
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Equation 3.2 can also be written as,

k∑
i=1

H(Xfi(v)|H(Xf1(v), . . . , H(Xfi−1
(v)) =

k−1∑
i=1

H(Xfi(v)|H(Xf1(v), . . . , H(Xfi−1
(v)) +H(Xfk(v)). (3.3)

Due to the non-negativity of entropy and Equation 3.3, the following

inequality holds,

H(Xf1(v), Xf2(v), . . . , Xfk(v)) ≥ H(Xfk(v)). (3.4)

Based on Inequality 3.4 and the symmetry of joint entropy, Property 2

can be proved.

To prove Property 3, we use the monotonicity property that conditioning

reduces entropy,

H(Xfi(v)|H(Xf1(v), . . . , H(Xfi−1
(v)) ≤ H(Xfi(v)), i = 1, . . . , k. (3.5)

By plugging Equation 3.5 into Equation 3.2, Property 3 can be proved.

In Property 2 and 3, the joint distribution of random variablesXf1 , Xf2 , . . . , Xfk

describes the essence of the approaches that combine these feature representa-

tions. From Property 2, constructing a sophisticated representation via feature

fusion does increase its informativeness compared with every single feature

representation. However, according to Property 3, the informativeness of this

fused representation is upper bounded by the sum of the informativeness of

the simpler representations. Therefore, building a sophisticated classifier, and

feeding it with multiple feature representations could achieve higher accuracy

than the combination of a fused representation and a simple classifier (i.e., the

hypersphere neighborhood).
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3.3 System Design

According to Property 1 and 3, we can realize the gains in accuracy by

shifting the focus away from building an advanced feature representation to-

wards an advanced classifier. In order to achieve fast detection speed, our

system is designed according to the principles of the systems approach. Com-

ponents are simple, efficient, and independent of each other. Parallelism gen-

erated from this autonomy is also exploited to increase speed further. In addi-

tion, efforts have been made to organize the feature extractors and classifiers

to ensure satisfactory performance both in accuracy and speed.

3.3.1 Architecture

CompoundEyes is designed by using an abstraction layer model. In this

model, frames are sampled at the Frame layer, in which features are extracted

and represented at the Feature layer. From these representations, patterns of

NDVs rest at the Knowledge layer, which finally emerge at the Decision layer

and are used to make predictions about videos being duplicated or not.

The system is divided into three subsystems: Feature Vector Builder,

Vector Repository, and Ensemble Learner. These subsystems are located on

the Feature, Knowledge and Decision layers, as shown in Figure 3–2.

In all the related systems, most of the computational overhead is origi-

nated from the Feature Vector Builder subsystem. The subsystem is intrinsi-

cally complicated due to the complexity of the visual content of multimedia

objects. By following the principles of systems approach, we divide the Fea-

ture Vector Builder subsystem into various Vector Builders, each of which

uses a unique feature extraction and representation algorithm. For each Vec-

tor Builder, there is a weak Learner which uses its representations to make

predictions. These predictions are collected by the Ensemble Learner, to make
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Figure 3–2: The Architecture and Parallel Organization of CompoundEyes

final predictions. This design also conforms to the ideas of multiple instance

learning.

The division of the functionalities of the system ensures the exploitation of

the hidden parallelism. The parallel organization of CompoundEyes is hierar-

chical, as illustrated inside the dashed rectangles and circle of Figure 3–2. The

first level is the function parallelism among components, i.e., Vector Builders

and weak Learners. They compete for parallel sections to perform their com-

putations. The second level is the data parallelism within the computations

of Vector Builders. Upon obtaining a parallel section, one or more parallel

tasks are spawned, among which the computations of the Vector Builder are

divided.

3.3.2 Data flow

Feature layer

In the Feature layer, we utilize seven broadly used feature extraction

algorithms: color coherence, color distribution, LBP (Local Binary Pattern),

edge orientation, ordinal pattern, motion orientation, and bounding boxes

of objects, as explained in Figure 3–3. All of these algorithms are simple
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Figure 3–3: The Seven Features in CompoundEyes

and efficient. Furthermore, feature diversity is positively correlated with the

accuracy of the final prediction [30].

All the Vector Builders work on a frame-by-frame basis. Given the j-th

Vector Builder deals with feature fj, j = 1, . . . , 7, it first extracts fj from the i-

th key-frame of video v and represents it as a histogram x
fj
i (v), i = 1, . . . , N(v),

where N(v) is the number of key-frames in v. Then the video representation of

v built by this Vector Builder is calculated as Xfj(v) = 1
N(v)

∑N(v)
i=1 x

fj
i (v). The

frame-level data parallelism in this calculation is exploited by distributing the

computations of x
fj
i (v), i = 1, . . . , N(v) onto the tasks belonging to a parallel

section obtained by this Vector Builder, as shown in Figure 3–2. Although the

sequential order of frames is ignored in computing the average of the feature

representations of frames, its negative impact on the discriminative capability

of the system can be offset by the employing of the motion feature.

Knowledge layer

To explain the neighborhood construction or neighboring video retrieval

procedure in Vector Repository, we need the following definition.
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Definition 6. The neighborhood of a video v ∈ V under feature f ∈ F :

Uf (v, τ) = {Xf (v
′)|v′ ∈ V, |Xf (v

′)−Xf (v)| ≤ τ}.

After videos are represented as bags of vectorial representations {Xfj(v)|j =

1, . . . , 7}, v ∈ V , the representations of the videos in the training set Vt are

stored and indexed in Vector Repository along with their ground-truth labels,

separated by the features fj, j = 1, . . . , 7 into seven subspaces. This Vector

Repository grants CompoundEyes the capability to act both as an NDVD or

NDVR system.

When the representations of a query video vq from the testing set Vq,

Xfj(vq), j = 1, . . . , 7 are issued to the Vector Repository, its neighborhoods

under feature fj, Ufj(vq, τ), j = 1, . . . , 7, are computed and returned to Learn-

ers in the Decision layer respectively. These videos are stored in the Vector

Repository during the pre-processing and are attached with the ground-truth

labels. The primary objective of the Video Repository is to make this neigh-

boring video retrieval procedure more efficient.

The Vector Repository is organized as a NEST structure [57, 96], as shown

in Figure 3–4(a), which is an LSH structure in essence. The advantages of

our design are twofold. First, LSH is sensitive to locality thereby having the

capability of providing the neighboring video retrieval with more accurate

results. Second, the temporal cost of retrieval is O(1). In addition, the LSH

structure is combined with Cuckoo Hashing [97]. As a result, the problems

of unbalanced load among hash tables and of local similar sets are mitigated,

further enhancing its retrieval performance.

The blue and green buckets are potential neighbors to the vector in a

Nearest Neighbor query. The blue ones are hit in an LSH computation, and

their adjacent green ones also exhibit a correlation to the query. For example,

in Figure 3–4(b), LSH1(a), LSH2(a) and LSH3(a) have been occupied by b, d
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Figure 3–4: The Indexing Structure of NEST[57]

and e, a is placed into an empty green bucket. Otherwise, if all the candidate

positions are occupied, the “kicking out” operation in cuckoo hashing needs

to be carried out to make room for the item.

The efficiency of the structure for a Nearest Neighbor query mainly de-

pends on whether the inserted items are well-organized. When the load of

hash tables is unbalanced, or items in the searching path form a local similar

set, the performance of query would be deteriorated. To further enhance the

performance of NEST, we modify the algorithm of insertion operations.

Denote MaxLoop as the maximum kicking-out count, initialized to 0.

At first, when the kicking-out count is under MaxLoop/2, we use the ran-

dom selection to select an insertion position and record the count of position

occurrences. Next, when the kicking-out count is between MaxLoop/2 and

MaxLoop, the potential position with the minimum frequency is picked out

for the next “kicking out”. Afterward, random cuckoo hashing starts to make

room for the item to be inserted.

The second step is to address the unbalanced load problem. For example,

assume there are 3 hash tables, I, II and III, of size 10, and MaxLoop is 5.

The occurrence of a position becoming candidate along a kicking-out path is

counted. Suppose item t will be inserted into the indexing structure, and its

candidate positions are all occupied. The kick-out operation has experienced
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Figure 3–5: The Random Cuckoo Hashing in the Last Step.

the path e → c → a, whose candidate positions are [(I, 4)(II, 5)(III, 7)],

[(I, 3), (II, 5), (III, 7)], and [(I, 3), (II, 4), (III, 7)] respectively, where (II, 7)

is used to represent the 7th position in table II. When the kicking count

reach to 3, greater than MaxLoop/2, the candidate positions of item a with

the minimum occurrence, (II, 4) is chosen to be the next position to kick out.

The third step is introduced to jump out the local similar sets. As shown

in Figure 3–5, assume item x will be inserted, and all the items marked are

similar. Since the candidate and adjacent positions of x are all occupied, the

position where item f stations are selected to start the kicking-out process.

Let P1, P2, ..., P6 mark the kicking-out operations along the kicking path.

We observe that two kicking circles are formed because LSH calculations form

similar items into a similar set. In kicking circles, items kick each other, which

eventually fails the insertion operation. Thus, we need to use the random

cuckoo hashing to jump out the similar sets.

Decision layer

We model the NDVD task as a classification problem. A video v ∈ V

can belong to n possible classes ci, i = 1, . . . , n. For example, when n = 2,

the classes are duplication and non-duplication. In CompoundEyes, n = 7,
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because the dataset we adopt divides videos into seven categories: Exactly

Duplicate, Similar, Different Version, Major Change, Long Version, Dissimilar,

and Do not Exist. Dissimilar and Do not Exist are treated as the same.

As in Figure 3–2, the learners (or classifiers) in the Decision layer are

organized in a hierarchical manner. The prediction of a video being duplicate

is made upon the hypotheses of the seven weak Learners.

The weak Learners are denoted as Lj, j = 1, . . . , N , where N = 7 is

equal to the number of features we adopt. The videos from both the training

set Vt and test set Vq are summarized as bags of representations {Xfj(v)|v ∈

Vt ∪ Vq, j = 1, . . . , 7} in the Feature layer. {Xfj(v)|v ∈ Vt, j = 1, . . . , 7} are

stored in the Vector Repository along with their ground-truth labels {v =

ci|v ∈ Vt, i = 1, . . . , 7}, while {Xfj(v)|v ∈ Vq, j = 1, . . . , 7} are directed to

Learners Lj, j = 1, . . . , N , respectively, as shown in Figure 3–2. On Lj, the

probabilities p(vq = ci|Lj), i = 1, . . . , 7 are approximated with frequencies,

Fn(vq = ci|Lj) =
|{v = ci|v ∈ Vt, v ∈ Ufj(vq, τ)}|
|{v|v ∈ Vt, v ∈ Ufj(vq, τ)}|

, i = 1, . . . , 7.

The computation of Ufj(vq, τ) is performed by the Vector Repository, as

mentioned above.

These frequencies are taken as input to the Ensemble Learner, which cal-

culates the posterior probabilities p(vq = ci|L1, . . . , L7), i = 1, . . . , 7, utilizing

the BKS (Behavior-Knowledge Space) method [113] as follows,

p(vq = ci|L1, . . . , L7) ∼= p̂(vq = ci|L1, . . . , L7),

p̂(vq = ci|L1, . . . , L7) =
Fn(vq = ci|L1, . . . , L7)∑
j Fn(vq = cj|L1, . . . , L7)

.

To make estimating Fn(vq = ci|L1, . . . , L7), i = 1, . . . , 7 easier, , we assume

Lj, j = 1, . . . , 7 are conditionally independent, which is sensible because of
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the diversity of features. With the approximation p(vq = ci|Lj) ∼= Fn(vq =

ci|Lj), i = 1, . . . , 7, we have,

p(vq = ci|L1, . . . , L7) ∝ p(L1, . . . , L7|vq = ci)

=
7∏
j=1

p(Lj|vq = ci) ∝
7∏
i=1

p(vq = ci|Lj)

∼=
7∏
j=1

Fn(vq = ci|Lj), i = 1, . . . , 7.

Therefore, with appropriate normalization, the probabilities are estimated as

p(vq = ci|L1, . . . , L7) =

∏7
j=1 Fn(vq = ci|Lj)∑7

k=1

∏7
j=1 Fn(vq = ck|Lj)

, i = 1, . . . , 7.

The class with the largest posterior probability would be the final predic-

tion of the class of vq.

The combination of the Nearest Neighbor algorithm applied on the weak

Learners, and the BKS method on the Ensemble Learner appears satisfactory

to the design of CompoundEyes. First, the Vector Repository directly provides

an interface to efficiently compute Ufj(vq, τ), whose cost is O(1). Second, the

Nearest Neighbor algorithm is non-parametric, which is helpful to reduce the

training cost to O(1), fulfilling the in-situ requirement. Third, the Nearest

Neighbor algorithm is sensitive to the variations of feature types [30], thus

making it suitable for the scenario of multiple feature subspaces. Fourth, the

BKS method is sufficiently accurate to be applied to the Ensemble Learner

[113].

3.3.3 Advantages

CompoundEyes can be used as both an NDVD and NDVR system because

it not only determines whether a video is visually similar to another video

but also calculate the similarity score (i.e., the posterior probabilities). The

advantages of CompoundEyes can be illustrated by the following aspects:
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Accuracy. The accuracy improvement is primarily achieved via the col-

lective efforts of learners. First, the coverage of feature space is broader. Not

only are spatial and temporal information used, but also color, edge orienta-

tion, texture, and object sizes information is also included in learning. Second,

the diversity of representations enhances the accuracy of learning.

Detection Speed. Primarily, two factors contribute to the improve-

ment of the detection speed. The first one is the compactness of representa-

tions, which shortens the temporal cost of extracting feature vectors in the

pre-processing stage and of neighboring vectorial representation retrieval in

the processing stage. The second one is the exploitation of the function par-

allelism among the Vector Builders and Learners, and the frame-level data

parallelism within the Vector Builders.

In-situ Updating. CompoundEyes has the capacity of continually up-

dating its classifiers when incorporates new knowledge (i.e., videos and corre-

sponding ground-truth labels), because the cost of training classifiers is O(1),

and the changes in classifiers do not affect the construction of representations

in the Feature Layer.

Modularity. The components in CompoundEyes are independent, and

so can be changed without affecting others. For example, a new Vector Builder

detecting a new type of features can be admitted if necessary, so is the case

with weak learners implementing other algorithms, and the Vector Repository

utilizing alternative indexing schemes. Therefore, the system could be easily

upgraded.

3.4 Evaluation

3.4.1 Experimental setup

We implement CompoundEyes in C++, C, and Matlab. Specifically, Vec-

tor Builders are coded in C++, with the assistance of the OpenCV libraries.
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Weak Learners and NEST are implemented in C, and the Ensemble Learner is

programmed in Matlab. The parallel parts of CompoundEyes are implemented

by using OpenMP libraries.

Experiments about CompoundEyes are conducted on a 64-core Intel Xeon

E5-4640 machine (2.4GHz, 12.5GB memory) with Ubuntu system. The cores

are distributed equally into 4 NUMA nodes. This multi-core machine is fa-

vorable for the parallel computing of CompoundEyes, which boosts the speed

efficiency substantially.

CompoundEyes is evaluated against other NDVD/NDVR systems that

adopt the CC WEB VIDEO dataset. The source code of these systems is

not available, except MFH [109]. However, the demand for memory of the

matrix computations in this system is too large to be satisfied by our machines.

Therefore, in the comparisons of accuracy and response time, we adopt the

values reported in the papers and compare them with those of CompoundEyes.

With respect to the preprocessing time, the comparisons are conducted in a

theoretical analysis manner. The reason is twofold. First, the time cost of

the preprocessing of other systems is not provided in the papers. Second,

the parallelization of the preprocessing of CompoundEyes would make the

comparisons of experimental results unfair.

The Bag-of-Words (BoWs) feature representation is widely used by the

vision community. Recently, the feature representations generated by deep

neural networks have shown promising results in complicated tasks such as

automatic image annotation. We implement two NDVD systems based on

these two classic features and compare these systems with CompounEyes in

terms of accuracy. The two systems are coded in Python, with the assistance

of OpenCV and TensorFlow libraries. The BoWs-based system is deployed on

a 4-core Intel i3-3220 machine (3.3GHz, 16GB memory), and the deep neural
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network-based system is deployed on a 4-core Intel i5-4460 machine (3.2GHz,

12GB memory), whose GPU is GeForce GT-720. The reason for the change

of machines is that we did not have access to the 64-core machine anymore

when these experiments were conducted.

3.4.2 Dataset description

We evaluate CompoundEyes on the CC WEB VIDEO dataset. There are

four reasons for this selection.

• First, it was constructed from real online videos. All the videos were

downloaded from YouTube, Google Video, and Yahoo! Video.

• Second, various formats and editorial modifications are included.

• Third, it has been widely adopted, which facilitates us to compare the

performance.

• Fourth, ground-truth labels are provided. These labels are obtained

manually, which is laborious and makes the dataset precious for NDVD/NDVR

research.

The CC WEB VIDEO dataset is comprised of 24 independent groups. In each

group, a video is designated as the seed and others are compared with it and

labeled accordingly. For instance, if a video has the same visual content as

that of the seed video, it is labeled as “E”; if their contents are different, it is

labeled as “X”.

3.4.3 NDVD/NDVR systems in the literature

To evaluate the performance of CompoundEyes, we compare it with ex-

isting state-of-the-art NDVD/NDVR systems that have been evaluated on the

CC WEB VIDEO dataset or on extended datasets. They are described as

follows.

Hierarchical detection system (HIER): Wu et al. [125] proposed a

hierarchical NDVD system, which uses a global signature-based method to
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filter out duplicates with minor changes first, leaving more sophisticated ones

to the local feature-based method.

Video Cuboid based detection system (VC): Zhou et al. [147]

introduced the Video Cuboid signature, an n-gram based representation, to

integrate the temporal and spatial information. Further optimizations include

the use of the EMD distance, the incremental signature construction, and an

LSH based matching scheme.

Spatial-temporal feature based detection system (ST): Shang et

al. [104] explored alternative approaches to combining the temporal and spa-

tial information into signatures. Two approaches are proposed: Conditional

Entropy (ST-CE) and Local Binary Pattern (ST-LBP). The retrieval process

is accelerated by applying a fast intersection kernel and inverted file.

Multiple feature hashing based detection system (MFH): Song

et al. [109] provided another combination of a global and a local feature of

videos. A series of hash functions are learned from feature representations.

The neighboring video searching is conducted in Hamming space of the hash

codes.

In these systems, VC provides us with the results of accuracy, while others

are more concerned with mean average precision and average response time.

Hence, we will compare CompoundEyes with VC in terms of accuracy, and

with others in terms of mean average precision and average response time.

3.4.4 NDVD Systems based on classical visual features

These NDVD systems are designed in a quintessential feature-centered

manner. The feature extraction and representation algorithms are advanced,

through which the videos are represented as discriminative, high-dimensional

vectors in the Euclidean space. The distances between the representations,

along with corresponding ground-truth labels of videos in the training set are

45



fed into a one-vs-the-rest SVM (Support Vector Machine) classifier. When the

training phase completes, this classifier is able to predict whether a video is du-

plicate or not based on vector distance. Because we compare CompoundEyes

with these NDVD systems only in terms of accuracy, efficiency-boosting tech-

niques such as LSH are not involved in the design.

Bag-of-Words (BoWs): As aforementioned, in the BoWs approaches,

local features of an image are extracted first, then summarized into a global

representation (i.e., a histogram of the frequencies of the occurrence of visual

words). Converting a video into a BoWs representation consists of two phases:

the construction of visual word vocabulary, and the interpretation of videos

based on this vocabulary.

In the first phase, we extract two types of local features from frames and

build vocabularies accordingly. The first type is SIFT (Scale-Invariant Fea-

ture Transform), and the second one is SURF (Speeded Up Robust Features).

Both of them are effective for a variety of computer vision applications. We

randomly select 10% of the local features of all the keyframes of the videos in

the training set and perform K-Means clustering on them. By rule of thumb,

the number of clustering centers is set to be the squared root of the count of

selected local features.

Converting the videos in the test set into BoWs representations com-

mences when the vocabulary has been built. Since the dimensionality of the

BoWs representation equals to the size of the visual word vocabulary, the com-

putation of the representation of a video can be conducted by merely adding

the representations of each frame of the video.

Deep convolutional neural network (CNN): With large training

sets, deep convolutional neural networks are capable of outperforming humans

in visual recognition tasks. The trained networks with good generalizability
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can be used as a base network in transfer learning. The feature represen-

tations generated by these networks are more effective in vision tasks than

simpler descriptions such as color histograms or BoWs representations, even

on a different image set.

By detaching the last softmax layer, a standard deep convolutional neural

network converts a frame into a high-dimensional feature vector. The feature

representation of a video can be computed by averaging the feature vectors of

its keyframes. Generally speaking, the feature representations of the videos

generated in this way are effective if the pre-trained neural network performs

well in annotating the frames of the videos. From preliminary experiments,

we discovered that in terms of the annotation performance, VGGNet [107] is

superior to Inception-v3 [111] on the frames of the CC WEB VIDEO dataset.

Therefore, we use the implementation of the 16-layer, and 19-layer VGGNet

implemented in TensorFlow for the NDVD task. The dimensionality of the

feature representations of both networks is 1000.

3.4.5 Experimental results

In this subsection, extensive experiments are conducted to evaluate the

performance of CompoundEyes. Datasets of various sizes are constructed by

randomly selecting videos from the CC WEB VIDEO dataset. Unless stated

otherwise, in each one of them, 50% are used as the training set and the other

50% as the test set.

Accuracy

Evaluation metrics.

• Accuracy: It is computed as AC = n
N

, the portion of correct predictions

in total results.

• Mean Average Precision: The Mean Average Precision (MAP) is

computed by averaging the Average Precision (AP) of each group g,
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Table 3–1: The Comparisons of Performance with other NDVD/NDVR Sys-
tems in Literature

SYSTEM VC HIER ST-CE ST-LBP MFH Ours

AC(%) 80 N/A N/A N/A N/A 89.2
MAP(%) N/A 95.20 95.30 95.00 95.40 99.75
RT (ms) N/A 9600 3.7 3.6 N/A 0.2051

PMU N/A O(k) O(n) O(n) O(k3n3) O(k)
TC N/A O(kn2) O(kn) O(kn) O(k3n3) O(kn)

as MAP = 1
24

∑24
g=1APg, APg = 1

n

∑n
i=1

i
ri

, where n is the number of

correct predictions , ri is the rank of i-th correct prediction.

Results. CompoundEyes shows an improvement in the detection accu-

racy. It achieves a higher Accuracy than the VC system, 89.28% vs. 80%,

and outperforms other NDVD/NDVR systems in Mean Average Precision, as

shown in Table 3–1.

In order to evaluate CompoundEyes against the two NDVD systems based

on the BoWs and CNN feature representations, a subset of the CC WEB VIDEO

dataset with 10% randomly selected video clips is constructed. The construc-

tion of a smaller dataset is because of performance considerations. The con-

struction of the BoWs visual word vocabularies will fail due to the shortage

of memory if more portions of videos or local features are involved in the

computations of vocabulary construction. In addition, the time cost of the

computations of the CNN feature representations for the videos is high, espe-

cially when these computations are conducted on the outdated machines.

Table 3–2 shows the comparisons of Accuracy and Mean Average Preci-

sion between CompoundEyes with the two classical feature-centered NDVD

systems. Depending on what type of local features are extracted, or the num-

ber of layers in the convolutional neural network, the two systems can be
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Table 3–2: Accuracy Comparison with Classical Feature-based NDVD Systems
(Implemented)

SYSTEM BoWs-SIFT BoWs-SURF CNN-16 CNN-19 Ours

AC (%) 79.27 78.66 76.93 78.80 80.91
MAP (%) 98.26 98.18 92.53 97.66 99.21
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Figure 3–6: The Comparison of Accuracy with Classical Feature-based NDVD
Systems on the 24 Groups of Videos

further divided into four systems (i.e., BoWs-SIFT, BoWs-SURF, CNN-16,

CNN-19).

From Table 3–2, we can see that CompoundEyes is more effective than

other NDVD systems based on BoWs and CNN features in terms of both

Accuracy and Mean Average Precision, despite the simplicity and low dimen-

sionality of the features that it applies, and the low cost of training. To further

investigate the reason behind these counter-intuitive comparison results, we

decompose the comparisons of average Accuracy and Mean Average Precision

for all the videos in the subset into the comparisons of Accuracy and Average

Precision over the 24 groups of videos. The results of the comparisons are

shown in Figure 3–6 and Figure 3–7

Based on Figure 3–6, we count how many times that each of the five

NDVD systems achieves the highest and lowest Accuracy in the comparisons
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Figure 3–7: The Comparison of Average Precision with Classical Feature-
based NDVD Systems on the 24 Groups of Videos

for each group. The results are summarized in Table 3–3. From this table, we

notice that compared with the 19-layer VGGNet, CompoundEyes has fewer

championships in the contest of the highest Accuracy. However, the Accuracy

of the 19-layer VGGNet is less stable than CompoundEyes for the 24 video

groups. For group 20, the Accuracy of VGGNet is as low as 20%, but Com-

poundEyes achieves 70%. Therefore CompoundEyes outperforms VGGNet in

terms of average Accuracy.

The comparisons in Figure 3–7 are slightly different than the ones in

Figure 3–6. Both the 19-layer VGGNet and CompoundEyes reach the 100%

Average Precision for almost the 24 video groups, whereas other three systems

fail for certain groups. In conclusion, from the comparisons of Accuracy and

Mean Average Precision, CompoundEyes built on simple visual features sur-

passes or is on par with the sophisticated 19-layer VGGNet. The main reason

that the deep neural network approach does not outperform CompoundEyes is

that these networks are not fine-tuned, or trained to fit the CC WEB VIDEO

dataset. However, it is not feasible to fine-tune a deep neural network for

every task and every dataset.
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Table 3–3: The Number of Times that the Five NDVD Systems Achieve the
Best and Worst Performance in Terms of Accuracy

SYSTEM BoWs-SIFT BoWs-SURF CNN-16 CNN-19 Ours

Highest 7 6 12 13 9
Lowest 11 11 9 7 7

Detection speed

The definition of temporal cost. The detection speed of CompoundEyes

is measured by the temporal cost, which is the sum of the preprocessing time

and response time.

Temporal Cost = Pre− processing T ime+Response T ime.

Analysis of preprocessing time. In literature, preprocessing is per-

formed offline thus its temporal cost is not measured. The burden of prepro-

cessing can be estimated from the fact that feature extraction of HIER, ST-CE

or ST-LBP on a dataset of 132647 videos is practically impossible [109].

Suppose the number of videos is n, and the average number of keyframes

in a video is k. The peak memory usage and worst case time complexity of

the pre-processing of various systems are estimated in Table 3–1.

According to Table 3–1, CompoundEyes has advantages in both the peak

memory usage and time complexity. It neither involves the computations and

pairwise comparisons of SIFT descriptors as HIER, nor the computations of

global variables, for example, the entropy of ordinal relations in ST-CE, the

correlation between LBP patterns in ST-LBP, and the transformation and

bias matrices in MFH, which are both spatially and temporally exhaustive.

In contrast, the two major operations of CompoundEyes in preprocessing, the

construction of representations, and inserting them into the hash tables which
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can also be regarded as the training process, are both spatially and temporally

efficient. The average temporal cost of preprocessing in experiments is 1.4537s,

99% of which is the cost of building feature vectors.

Experimental results of response time. The advantage of Com-

poundEyes in detection speed can also be manifested from response time, as

shown in Table 3–1. The average response time of CompoundEyes only ac-

counts for 5.70% of ST-LBP’s.

Implementing the main part of CompoundEyes in C++, rather than Mat-

lab may contribute to the reduction of response time. However, such a sub-

stantial reduction could not be explained merely by the efficiency of C++. In

CompoundEyes, the dimensionality of representations could be 16, 32, or 64,

all of which are much lower 65536 of ST-CE and ST-LBP [104]. This reduction

in dimensionality is the main reason for the improvement on response time.

Parallel speedup

Experiments in this subsection are also performed on a 10% subset of

CC WEB VIDEO. To evaluate the parallel speedup, the temporal costs of

sequential version and parallel version are compared.

The average temporal cost of each Vector Builder for computing the fea-

ture vector of a video is estimated in Figure 3–8 first, and used as a reference

for workload distribution. On the horizontal axis are the abbreviations of the

features they extract, which are color histogram (HSV), color coherence (CC),

ordinal pattern (SP), edge orientation (EO), bounding boxes of objects (BB),

local binary pattern (LBP), and motion orientation (OPT FLOW).

Thread Allocation Strategies. Both of the parallel sections and tasks

in Figure 3–2 are abstractions of threads. Under different thread allocation

strategies, the overall parallel speedup would be different. Therefore, we design
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Figure 3–8: The Sequential Pre-processing Time of All the Vector Builders.
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Figure 3–9: The Speedup of CompoundEyes Under 3 Thread Allocation
Strategies
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and compare three allocation strategies as follows, to sensibly provision the

computing resources:

• SECTION: What varies in this strategy is the number of parallel sec-

tions competed by Vector Builders, from 1 to 7. Once a parallel section

obtained, a number of parallel tasks will be allocated for computing.

This number is proportional to the Vector Builder’s sequential running

time.

• TASK-EQ: In this strategy, every Vector Builder acquires a parallel

section. What varies is the number of tasks spawned by a section, which

is same for all the Vector Builders.

• TASK-PROP: In this strategy, not only does every Vector Builder

obtain a parallel section, but also the number of tasks allocated to a

Vector Builder is proportional to its sequential running time.

Results. As expected, from Figure 3–9, TASK-PROP achieves the best

speedup, because it efficiently utilizes allocated threads. Moreover, we notice

that when the thread number exceeds 60, the increase of speedup ceases. This

value coincides with the number of cores in the machine. This phenomenon is

a hint of resource contention.

We also notice that even under the best thread allocation strategy, the

speedup is far from linear speedup. This is determined by the fact that in

CompoundEyes, videos are processed sequentially, which limits the throughput

of the system.

Feature information fusion

In this part, we assess the impact of feature information fusion, mainly

on the detection accuracy. The experiments are conducted on a 10% subset.

For the sake of fairness, the number of parallel sections is equal to the number
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(b) On Temporal Cost

Figure 3–10: The Effect of Feature Information Fusion

of features to be used, and the number of tasks that a section can spawn is

equal for all the Vector Builders.

As shown in Figure 3–10(a), on average, the fusion increases the detection

accuracy, both in terms of Accuracy and Mean Average Precision. This ad-

vantage becomes smaller when measured by the best accuracy of fusion. For

example, the accuracy difference between the optimal combination of three

features and four is negligible. This suggests the importance of the selection

of feature information to be fused.

For the optimal combinations except all-included, corresponding average

temporal costs are shown in Figure 3–10(b). They are helpful when choosing

the number of features. For example, fusing three is better than four, because

it costs less time but achieves comparable detection accuracy.

Relevant parameters

The Scale of the Dataset. The first relevant parameter is the scale of

the dataset. According to Figure 3–11(a), the Accuracy is above 80% when the

size is 1279, which is satisfactory. It also increases as the size of dataset grows.

Therefore, CompoundEyes is accurate when sufficient knowledge has been

learned, and its discriminative capability develops as knowledge accumulates.

On the other hand, the MAP fluctuates after the size grows beyond 6395. This
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Figure 3–11: The Effect of the Dataset Scale
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Figure 3–12: The Effect of the Portion of the Training Set on AC and MAP

phenomenon shows that it becomes more difficult to rank the videos as the

size of the database increases.

Figure 3–11(b) affirms that the total temporal cost increases linearly

rather than exponentially with the growth of dataset. This linearity confirms

that Vector Repository is capable of maintaining decent performance even if

the size of dataset becomes large.

The Portion of the Training Set. Because a system well-tuned on the

training set could behave poorly on the test set, it is necessary to evaluate the

detection accuracy of CompoundEyes under different portions of the training

set.
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Figure 3–13: The Effect of r

The effect of this portion on Accuracy and Mean Average Precision is

recorded in Figure 3–12. The value of MAP stays stable, and the value of AC

increases as the ratio increases. Both of them peak around 5 : 5. Afterward,

more training videos do not enhance the detection accuracy the classifiers.

NEST-related Parameters. Two NEST-related parameters, r and k,

are of importance. Parameter r is used as τ in the definition of the neighbor-

hood in feature space. Parameter k is the number of hash tables. Generally

speaking, a larger value of k increases the detection accuracy, at the expense

of longer response time.

Because the value of r is different for each type of feature representations,

we set them by experience first, then change them with the same offset. The

effect of r on Accuracy and Mean Average Precision is shown in Figure 3–13(a),

and the effect on average temporal cost is shown in Figure 3–13(b).

Since k is same for all feature spaces, we vary its value directly. From

Figure 3–14(a), we observe that Accuracy and Mean Average Precision exhibit

different trends, the former one goes down, and the latter one goes up and

stays around 100%. This is because as k increases, the recall of neighboring

feature representation retrieval grows, but the precision goes down. These

changes reflect on Accuracy but not Mean Average Precision, for the number

of correct results, and their ranks are barely affected.
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(b) On Temporal Cost

Figure 3–14: The Effect of k

The effect of k on average temporal cost is shown in Figure 3–14(b), from

which we know that 12 is the optimal value for the detection speed.
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CHAPTER 4
An Empirical Study of the Textual Content of Web Videos

4.1 Overview

In the era of big data, both scientific and industrial communities benefit

from the mining and analysis of the data that they process, for example, In-

ternet search logs, meteorology, genomics, or financial records. In contrast to

these numerical or textual data, multimedia data has been staying relatively

low-key in the high-profile and incentive data business, which is not propor-

tional to its volume. This phenomenon does not imply that multimedia data

is petite or has been overlooked. In fact, there have been attempts to change

this situation. For example, Prism Skylabs, a video analytics company, helps

retailers to predict the preference of customers from camera recordings [49].

Instead, it is the complexity of the data itself that keeps it away from the

center of the stage. Generally, online multimedia data consists of at least

two significant aspects, visual and textual content, each of which requires

high-dimensional vectors to describe. Meanwhile, these contents are not inde-

pendent, their relationships make them more challenging to analyze.

Of the two contents, textual content plays a more important role than

visual content does in industrial communities because textual words are a

primary form of human knowledge, and it is relatively more efficient to pro-

cess text than visual content. Therefore, despite the progress that has been

made in recent years, the searching of photos or videos in real-world search

engines are reliant on textual content, e.g. titles, tags, time-sync tags, descrip-

tions, or comments. Although the ranking algorithms of search engines such
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as YouTube remain covert to the public, plenty of users have inferred the sig-

nificance of textual content and summarized tips to manipulate the rankings

by modifying it [1].

Academic communities went further in exploring the relationships be-

tween visual and textual content. Their goals are automatic recognition and

annotation of multimedia data. By feeding large neural networks with mil-

lions of photos, computers can be trained to recognize the visual content of

photos [2]. In order to accomplish such a great task, photos in the training

set should be accompanied by verified descriptive pieces of text. In real-world

applications, this textual content is acquired in a decentralized rather than

centralized style. Users across the world collectively contribute to the inter-

pretations of visual content from their own perspectives. The absence of a

quality control authority raises the following issues:

• Sparsity: The length of the accompanying text of a multimedia item

(e.g., photo, video) is generally short. It is difficult to comprehensively

present visual content in such a short piece of text.

• Inaccuracy: Textual content can be inaccurate, because of the intrin-

sic complexity of natural languages (e.g., synonymity, polysemy), the

disparity in views and habits, or malicious spamming behaviors [3].

Besides the quality issues of textual content, the semantic gap between the

low-level visual features (e.g., color, shape, texture), and the high-level human

understanding expressed in text poses a huge challenge to every researcher

in this field. A variety of methods, for instance, optimization [115], seman-

tic latent models [133], or generative probabilistic models [33, 98], have been

developed to narrow down the gap and improve the performance of applica-

tions such as video clustering [115], automatic video annotation [98, 133], and

cross-modal tag cleansing [33]. In these methods, textual content is generally
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summarized into latent topics or categories, which is then connected with the

topics or categories extracted from the visual content. The inaccuracy in tex-

tual content is treated as noises that make the topic model stray. However,

due to the absence of an empirical, preliminary study on the textual content

of online multimedia data, the validity of these methods is in question. In this

paper, we conduct such a study on the CC WEB VIDEO dataset by using

CompoundEyes developed in Chapter 3. Our contributions in this Chapter

could be summarized as follows.

• Properties of Textual Content: We studied the composition of the

textual content of online videos, and the statistical distribution of the

English words in it. We observe that even under the influences of numer-

ous factors (e.g., user preferences), the frequency distribution of words

follows Zipf’s Law distribution, which is a signature of complex systems

and social nature. In addition, we confirm the properties of sparsity

quantitatively.

• Hypotheses Validation: The CC WEB VIDEO dataset is public dataset

for the research of NDVD/NDVR (Near-Duplicate Video Detection/Retrieval).

Conventionally, these tasks are performed on the visual content, but in

this thesis, we conducted similar experiments on textual content as well.

Through these two parallel experiments, the hypotheses about the rela-

tionships (or coherence) between them can be revealed. Moreover, we

test whether the occurrence of URLs implies video spamming.

4.2 Similarity Measures of the Visual and Textual Contents

4.2.1 Visual similarity measure

Visual content-based NDVD is relatively slow and prone to inaccuracy.

To increase the detection speed, while preserving decent detection accuracy,

we designed an open architecture of NDVD/NDVR system, CompoundEyes,
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as shown in Figure 3–2. Various types of visual features are extracted from the

shared frame repository and represented as relatively low-dimensional vectors

by the Vector Builders. These vectors are further inserted into the hash tables

in the Vector Repository, where each table collects a type of feature vectors.

Weak learners in the decision layer learn patterns from the corresponding hash

tables and pass this knowledge on to the Ensemble Learner, to make the final

decision about the similarity of a video vi to vj, which can be denoted as

simv(vi, vj).

4.2.2 Textual similarity measures

As aforementioned, the length of the accompanying text of online videos is

short. Thus the methods for paragraphs similarity estimation is not suitable.

In this thesis, we use three typical sentence similarity measures [4] to estimate

the textual similarity.

Jaccard similarity coefficient

The Jaccard similarity coefficient belongs to word overlap similarity mea-

sures. The similarity score is computed based on the number of words shared

by the two sentences:

simjaccard(s1, s2) =
|{s1} ∩ {s2}|
|{s1} ∪ {s2}|

,

where {si}, i = 1, 2 is the set of words in the sentence si.

TF-IDF vector similarity

The TF-IDF (Term Frequency-Inverse Document Frequency) similarity is

a member of vector space based methods, which is a numerical statistic that

is intended to reflect how important a word is to a document in a collection

or corpus. The similarity score is defined as the cosine similarity between the

vector representations of the sentences. For the sake of reducing the degree of

the sparseness of representation, words appear in the sentences rather than the
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whole text collection are indexed and used as the feature set. The calculation

is as follows:

simtfidf (s1, s2) =
vector(s1) · vector(s2)

||vector(s1)|| · ||vector(s2)||
.

Semantic similarity

The sentence semantic similarity measure belongs to the family of linguis-

tic measures. It combines semantic and syntactic information and is calculated

as follows:

simsem+wo(s1, s2) = αsimsem(s1, s2) + (1− α)simwo(s1, s2),

simsem(s1, s2) =
1

2
(

∑
w∈{s1}

(argmax
w′∈{s2}

Sim(w,w′)× idf(w))∑
w∈{s1}

idf(w)

+

∑
w∈{s2}

(argmax
w′∈{s1}

Sim(w,w′)× idf(w))∑
w∈{s2}

idf(w)
),

simwo(s1, s2) = 1− ||r1 − r2||
||r1 + r2||

.

Sim(w,w′) is the Lin similarity, idf(w) is the TF-IDF value of w. Lin

similarity calculated on the information content of the least common subsumer

and that of the two input synsets. The term simwo(s1, s2) is the word order

similarity of sentences, taking word composition into account, where ri, i = 1, 2

is the word order vector of sentence si. The details about representing a sen-

tence into a word order vector can be found in [4]. In this thesis, this semantic

similarity measure is used as a proxy to gauge the semantic similarities between

sentences or paragraphs.
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Figure 4–1: The Amount of English and Non-English Words

4.3 Statistical Properties of Textual Content

4.3.1 Composition

In the textual content of the dataset, there are special characters, URLs,

and text. The special characters have been removed in the pre-processing

because they are too deformed to decipher.

We divide the words into two categories: English and non-English, and

count the quantities of words in each category, before and after the exclusion

of duplication. The results are shown in Figure 4–1, from which we notice

that on average, an English word has a higher probability of being used than

that of a non-English word. This phenomenon suggests that English is the

universal language of this dataset. Hence, we mainly focus on English words

in this study.

4.3.2 Word frequency distribution: the Zipf’s law

We plot the frequency (or occurrences) of words against the count of the

words of that frequency in the log-log scale. As other large linguistic corpora,

the frequencies of the words in CC WEB VIDEO exhibits a quintessential

Zipf’s Law distribution, regardless of whether they are from the “Title” (Fig-

ure 4–2(a)), “Tags” (Figure 4–2(b)), or “Description” (Figure 4–2(c)) field. It

is surprised to see that the distribution of words in titles follows Zipf’s Law
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because the search keywords are specific thus the choices for titles are lim-

ited. The phenomenon suggests that the textual content of CC WEB VIDEO

is sufficiently large and complicated to be treated as a complex system. The

Zipf’s Law distribution in such a system indicates the existence of hierarchy

in words or the social nature of the textual content.

By comparing Figure 4–2(a), 4–2(b), and 4–2(c), we find that they follow

a similar decaying trend, except that the tail portion of the distribution be-

comes denser as the average text length increases. Considering that the tail

corresponds to frequently used words, this fact indicates that a longer piece of

text such as description has a higher probability of containing these words.

The words used in the dataset can be divided into function words (i.e.

words that have little lexical meaning or have ambiguous meaning, but instead,

serve to express grammatical relationships with other words within a sentence,

or specify the attitude or mood of the speaker, such as “the” or “he”), and

content words (i.e., nouns, verbs, adjectives, and most adverbs). As shown in

Figure 4–3(a), and 4–3(b), it is the content words, whose distribution is akin

to the one in Figure 4–2(c). In contrast, the distribution of function words

resembles the tail of Zipf’s Law distribution, because the major portion of

them are high-frequency words.

4.3.3 Sparsity

In literature, sparsity is a constantly mentioned property of multimedia

annotation. Thus we want to observe whether it appears in the textual con-

tent of CC WEB VIDEO. The distributions of the length of titles, tags, and

descriptions, in terms of word count, are drawn in Fig. 4–4, as a cumulative

distribution function figure.
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(b) Word Occurrences of Tags
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(c) Word Occurrences of Descriptions

Figure 4–2: The Distribution of Word Occurrences of Textual Data. The X-
axis Records the Frequencies of Appearance of Words in the Dataset, While the
Y-axis Indicates How Many Words Have the Same Frequency of Appearance

From this figure, we find that the length of the textual content is indeed

short. For titles and tags, at least 80% is less than 10 words. As for de-

scriptions, 90% of them have less than 40 words. In such a short length, it

is not feasible to elaborate the meaning of the visual content. Consequently,

the vocabulary becomes more personal, which can negatively influence the

correlation between visual and textual content.

4.3.4 Aggregating videos uploaded by the same user

According to the tripartite graph of folksonomy and its social nature,

the preferences and habits of users may have an influence on textual content.

Therefore it is necessary to aggregate the content on users and analyze the

results.

In Figure 4–5, the distribution of the quantity of video clips uploaded by

each user is depicted, which manifests the social aspect of online video sharing

66



�

���

�

���

�

���

�

���

� ���� ���� ���� 	��� ����� �����

�
�
��
��
�
�
�
	

���������

���������	��
�����	
��������

(a) Function Words
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(b) Content Words

Figure 4–3: The Distribution of Word Occurrences of Function and Content
Words. The X-axis Records the Frequencies of Appearance of Words in the
Dataset, While the Y-axis Indicates How Many Words Have the Same Fre-
quency of Appearance

and hosting websites. Like other social networks, we observe the existence of

“super” users, who upload far more video clips than others, yet constitutes

only a small portion of users. It is reasonable to highlight the influences of

the “super” users in a model of textual content, but the problem is, are these

“super” users trustworthy?

We traced the uploading records of the users whose names appear at least

twice. The visual content, titles, tags, and descriptions of their uploaded videos

are compared with those of the corresponding seed video. The comparison

results of visual content are predominantly dissimilar, and those of the textual

content show interesting features, which are shown in Figure 4–6.

In Figure 4–6, as the number of uploaded videos by one user increases, the

similarity scores of titles and tags decrease, whereas the scores of descriptions

grow to a high level (above 60%). In other words, as the number of videos

uploaded by a user grows, the titles and tags of these videos become diverse,

but the descriptions of them tend to be alike.

This phenomenon is strange, so we analyzed the textual content pro-

vided by the user who uploaded most videos, “rrichy92”. Its characteristics

fit exactly with what we describe above. The titles and tags are disparate,
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Figure 4–5: The Distribution of the Amount of Video Uploaded per User
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Figure 4–6: The Distribution of the Similarity Scores of the Videos Uploaded
by the Same User over the Amount of the Videos

but every video description contains a sentence “MORE TAGS: Sex girl hot

teens porn webcam xxx funny crazy yes genesis beatles daily show john jon

stewart stephen steven colbert report tom green cruise”. Evidently, this user

was attempting to draw more attention from search engines, by adding the

most searched keywords to all the descriptions. This extreme case shows the

existence of video spammers.

4.4 The Quality of Information Retrieval

The quality of textual content has a considerable impact on the retrieval

performance of search engines, thus measuring the quality of video retrieval

results gives us an understanding of the quality of the textual part of the

dataset.

The duplicate rate, or the percentage of near-duplicate videos in the

dataset, on one hand, indicates the ubiquity of redundancy of visual con-

tent on the Internet; but on the other hand, is a measure of the relevance of

search results to the query keywords. According to Wu et al. [125], around

27% videos in the dataset are duplicate or near-duplicate, in other words, 27%

search results are relevant. More detailed statistics are shown in Figure 4–7,
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Figure 4–7: The Distribution of Ground-truth Labels over 7 Categories

from which we see that most of the videos are labeled with “X” or “-1” (i.e.,

”Dissimilar”).

Various factors can lead to the less satisfactory performance of information

retrieval. From the perspective of textual content, for example, the ambiguity

of search keywords can widen the scope of the search. On account of this,

we explored the impact of the generality of search keywords, by measuring

the N-gram value with Google Ngram Viewer [45], the results are depicted in

Figure 4–8. Contrary to expectation, from this figure, there is no significant

relevance between the duplicate rate of videos and the N-gram value (or the

generality of keywords).
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Figure 4–8: The N-gram Values of Keywords

Another case has also been studied. With more appearance of search

keywords in titles, tags, or descriptions, corresponding videos should be more
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relevant and ranked higher in the search results. From Figure 4–9(a), 4–9(b),

and 4–9(c), we notice that as the number of matches increases, the relevance

rate of videos does increase as well, but not significantly. In addition, it rarely

exceeds 50%.
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Figure 4–9: The Matches of Keywords over the Categories of Search Results

4.5 URL: indicator of Video Spam?

The appearance of URL has been used as a heuristic feature of video spam

[10] because one of the intentions of positioning URLs in the textual content

field such as “Description” is to attract more traffic to the sites to which they

point. In this dataset, the distribution of the frequency of URLs in the fields
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Figure 4–10: The Distribution of URL Occurrences in All Fields

Table 4–1: The Correlation between URL’s Appearance and Visual Content
Relevance

Similar Changes Dissimilar

In Title 0.154412 0.036765 0.808824
In Tags 0.222222 0 0.777778

In Description 0.199528 0.042503 0.757969

”Title”, “Tags”, and “Description” of video clips is shown in Figure 4–10.

From this figure, we discover that URLs rarely appear in the textual content

of this dataset.

We also use Jaccard Coefficient to assess the frequency of URL’s appear-

ances in two textual content fields. For “Title” and “Tags”, the coefficient is

0.058127, for “Title” and “Description”, the value is 0.087432, and for “Tags”

and “Description”, it is 0.02941. All of them are quite small, which implies

the rarity of the occurrences of the same URL in two fields of a video.

The scarcity of URL’s occurrences and co-occurrences in textual content

fields is not desirable for high recall rate to a heuristic feature of spamming. At

least the spammer identified by aggregating videos on users mentioned above

does not put URL in his/her description of videos.
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On the other hand, the occurrence of URL may not be an accurate spam-

mer indicator either. From Table 4–1, we see that the emergence of URL,

whether in titles, tags, or descriptions, does increase the irrelevance rate of

videos compared with average rate (73%), but the disparity is not significant.

4.6 Correlation between Visual and Textual Content

In this section, the similarity scores computed on visual content by Com-

poundEyes, constitute the visual content view. This view is compared to the

textual content view, or the similarity scores calculated on titles, tags, and de-

scriptions respectively. The experiments in this section use 50% of the dataset

as the training set, the other half as the test set.

All the comparisons in the section are used to validate two following

hypotheses, which are the two aspects of the homophily assumption:

• Hypothesis 1: similar visual content is accompanied with similar tex-

tual content;

• Hypothesis 2: similar textual content is accompanied with similar vi-

sual content.

4.6.1 Hypothesis 1

To validate this hypothesis, we divide the instances in the test set into

three categories (i.e., “Similar”, “Changes”, and “Dissimilar”) according to

their NDVD detection results. The similarity scores of the textual content

of these videos are computed field by field, under the three different textual

similarity measures. The results are summarized in Table 4–2, 4–3, and 4–4.

In order to make the comparisons of absolute similarity scores meaningful,

we conduct Wilcoxon signed-rank test along the rows and columns of these

tables, on each pair of items. In Table 4–2, along the columns, when the

Jaccard Coefficient or semantic similarity measure is applied, the values of

category “Changes” and category “Dissimilar” are not significantly different;
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Table 4–2: The Textual Similarity Scores on the Title Field

Jaccard TF-IDF Semantic

Similar 0.571 0.668 0.449
Changes 0.308 0.357 0.331

Dissimilar 0.284 0.304 0.350

Table 4–3: The Textual Similarity Scores on the Tags Field

Jaccard TF-IDF Semantic

Similar 0.332 0.414 0.360
Changes 0.217 0.272 0.280

Dissimilar 0.211 0.239 0.287

along the rows, for category “Dissimilar”, the values of the Jaccard Coefficient

and TF-IDF measures do not have a statistical significant difference. In Ta-

ble 4–3, along the columns, the values of all the three measures for category

“Changes” and “Dissimilar” do not have a statistically significant difference;

along the rows, for category “Similar”, the scores of the Jaccard Coefficient

and semantic similarity measures are not significantly different; for category

“Changes”, the scores of all the three measures are not significantly different.

In Table 4–4, along the columns, for category “Changes” and “Dissimilar”, the

values of all the three measures are not significantly different; along the rows,

for category “Changes”, the scores of the Jaccard Coefficient and TF-IDF

measures do not have a statistically significant difference.

The similarity scores overall are lower than we expected, so we break down

them according to which group (from 1 to 24) the videos belong. The results

Table 4–4: The Textual Similarity Scores on the Description Field

Jaccard TF-IDF Semantic

Similar 0.228 0.306 0.351
Changes 0.128 0.188 0.266

Dissimilar 0.120 0.163 0.299
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are shown in the following nine figures: Figure 4–11(a), 4–11(b), and 4–11(c)

are computed using the Jaccard Coefficient score; Figure 4–12(a), 4–12(b),

and 4–12(c) are computed using the TF-IDF similarity score; Figure 4–13(a),

4–13(b), and 4–13(c) are calculated using the semantic similarity score. The

three figures in each set depict the similarity scores on “Title”, “Tags”, and

“Description” fields respectively.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Category

Similar Changes Dissimilar

(a) Jaccard Coefficient

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Category

Similar Changes Dissimilar

(b) TF-IDF

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Category

Similar Changes Dissimilar

(c) Semantic

Figure 4–11: Similarity Scores of the
“Title” Field of Videos of 24 Groups
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(c) Semantic

Figure 4–12: Similarity Scores of the
“Tags” Field of Videos of 24 Groups

Generally speaking, the similarity scores of the videos belong to the “Sim-

ilar” category are higher than those of the videos in the “Dissimilar” category.
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Figure 4–13: Similarity Scores of the “Description” Field of Videos of 24
Groups

Thus Hypothesis 1 holds. However, there are outliers in these figures, for

example, videos from group 22 in Figure 4–11(a), from group 20 in Figure 4–

12(c) and 4–13(c), from group 16 in Figure 4–13(a), 4–13(b), and 4–13(c),

from group 14 in Figure 4–13(c), from group 15 in Figure 4–13(c). The tex-

tual content of the videos in these groups is more stray and noisy. Meanwhile,

the adoption of the semantic similarity score on the “Description” field has

the largest probability of violating Hypothesis 1.
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In all 9 figures, videos from group 18 are outliers. All the similarities

scores are 0. This is because there are a lot of Chinese characters in the

textual content of the videos. They are removed during the pre-processing.

4.6.2 Hypothesis 2

To validate Hypothesis 2, we divide the range of textual similarity scores,

under different measures and for different fields, into 10 bins. For the videos

in each bin, we depict the proportions of them in the three categories. The

results are also presented in nine figures, which are organized in the same way

as the above nine figures.

As Figure 4–14(a), 4–15(a), 4–16(a), 4–14(b), 4–15(b), and 4–16(b) show,

the increase of textual similarity scores is positively correlated with the in-

crease of the proportions of videos of “Similar” and “Changes”. In these

cases, Hypothesis 2 is valid. However, this trend becomes less distinguishable

in Figure 4–14(c), 4–15(c), and 4–16(c).

4.6.3 Relevant factors

The effect of textual similarity measures

Along the rows of Table 4–2, 4–3, and 4–4 respectively, we can see that:

• TF-IDF vector similarity scores are the highest for the videos in the

category “Similar”.

• The Jaccard Coefficient scores are the lowest for those in the category

“Dissimilar”.

• For those in the category “Changes”, the highest can be the TF-IDF vec-

tor similarity or the semantic similarity, the lowest are also the Jaccard

Coefficient scores.

• When the ratio between the average scores of “Similar” and “Dissimilar”

videos is considered (higher ratio implies higher discriminative ability of
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Figure 4–14: The Distribution of Vi-
sual Content Categories over the Sim-
ilarity Scores of Titles
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Figure 4–15: The Distribution of Vi-
sual Content Categories over the Sim-
ilarity Scores of Tags

similarity measure), the ranking is the TF-IDF vector similarity, Jaccard

coefficient, and semantic meaning, in descendant order.

Based on these observations, TF-IDF vector similarity is the best textual sim-

ilarity measure out of the three. It correctly assigns high values for the videos

in “Similar”, low values to those in “Dissimilar”, keeps a more discernible

difference between them.

These textual similarity measures are evaluated and compared with others

in paper [4]. Their performance depends on the complexity of dataset. In a
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Figure 4–16: The Distribution of Visual Content Categories over the Similarity
Scores of Descriptions

low-complexity dataset, linguist measures such as semantic similarity score

are superior, but in a high-complexity one, TF-IDF and Jaccard Coefficient

similarity scores are better. This conclusion is confirmed by the observations

in this part. In addition, it proves the high complexity of the textual content

of the dataset.

The effect of textual similarity measures

By rearranging Table 4–2, 4–3, and 4–4, highlighting the effect of the

fields, we observe that:
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• For almost every video category and every textual similarity measure,

the score of the “Title” field is the highest and the lowest is that of the

“Description” field.

• There is only one exception, which is the semantic similarity score for

the descriptions of videos in category “Dissimilar”.

From these points, the ”Title” field is the most suitable field for the similarity

computations on textual content, and the “Description” field is the least ideal

field. The scores computed in this field are low and less distinctive.
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CHAPTER 5
Cross-Modal Relevance Learning of Online Multimedia Data

5.1 Overview

Multimedia data has been regarded as the “biggest big data” nowadays

[50]. Despite its widely acknowledged importance, multimedia data content

remains less manageable, searchable, or reusable compared with other types

of data. A potential solution to understanding the complex multimedia data

is to annotate the data with the textual description, and the visual content of

them can be referenced and managed on the level of semantic meanings.

Recently, deep neural networks, such as CNN (Convolutional Neural Net-

work) or RNN (Recurrent Neural Network), have made startling progress in

multimedia data understanding, and have been successfully applied in tasks

such as image retrieval [124], automatic annotation of images [95, 71, 75, 90,

70]. The recent success of deep neural networks depends on the large quantity

of high-quality labeled training data. However, the construction of these train-

ing data is both labor-intensive and error-prone. For example, photos in the

ImageNet dataset [60] were labeled manually by the workers of Amazon Me-

chanical Turk [36]. These workers need to be trained to follow the pre-defined

taxonomy of WordNet, because many of the concepts are unfamiliar to non-

experts. Additionally, a well-trained network by a specific dataset may not be

an effective model for other datasets or other problems. For instance, as shown

in Figure 5–1, given extracted frames from a web video, the state-of-the-art

pre-trained deep neural networks of the Google Cloud Platform [46] generate

correct labels, but they are either too general or too specific , thus less useful

in the annotation. Generating high-quality labeled training set for every task
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Figure 5–1: Annotating a Keyframe from a Web Video on the Google Cloud
Platform

or problem could be costly. Moreover, as of now, deep neural networks are

more favorable for image data than for video data, because the video data

is much more complicated. The 3-dimensional convolutional neural network

(3D CNN) has been applied to video classification [72] and the human action

recognition [65]. A fixed number of frames is feed into the 3D network in

each training iteration. The training is less robust in capturing the temporal

correlations among frames than it does in capturing the spatial correlations

within an image.

Multimedia social networking platforms such as Flickr or YouTube allow

users to attach description or tags to images/videos. Thus the descriptions and

tags can be used as the training labels. However, the dataset obtained from

these multimedia social networks are usually sparsely and casually labeled.

Besides, lots of users tend to use attractive but irrelevant tags or descriptions

with their images/videos to gain a higher popularity. Hence, even with the

rich resources of social networks, it is highly difficult to obtain a large training

set (especially videos) with high-quality labels for deep neural networks.

There exists a “chicken or the egg” dilemma in this context. The gen-

eration of labeled video training set and sanity check of labels rely on the
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learning-based models, while the performance of learning relies on the quality

and quantity of labeled videos in training sets. To address the dilemma, we

develop a graphical model to study the relevance between visual content of

multimedia data and their labels, which is capable of starting from a small

amount of labeled data and tolerating misleading labels. Next, we explore the

similarity relations among multimedia items to expand the graphical model.

This design is inspired by the way that humans process unfamiliar observations

(i.e., unlabeled data), where people relate the unfamiliar to those that they are

familiar with (i.e., labeled data). The use of a graphical model downplays the

dependency on high-quality labels by exploiting the joint distribution between

labeled and unlabeled data. However, achieving decent estimation accuracy

with a graphical model on real-world video data is challenging, mainly due to

the following reasons:

• Limitations of visual features: For decades, researchers have devel-

oped visual features that are handcrafted or learned by neural networks.

Every feature captures certain characteristics of multimedia data and

loses others. A universal feature set is yet to be discovered, and may not

exist at all.

• Unauthenticated nature of textual content: Compared with the

taxonomy of WordNet used in the ImageNet datasets, the vocabulary

of the associated text of online multimedia content is not validated or

authenticated by any authority, thus tends to be more personal, ambigu-

ous, noisy, and vulnerable to spamming.

To address these challenges, we devise the graphical model as a multi-view

multi-label model. In this model, each view applies a specific similarity metric

that quantifies either the visual-visual or label-label distance. To exploit the

complementariness and consistency among these views, which is referred to as
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learning the ”similarity of similarities”, we represent these relations as observa-

tion functions in Condition Random Field (CRF). Conventionally, CRF is used

to encode the known relationships between observations and construct consis-

tent interpretations. One of its advantages is the convenience of representing

the higher order relations among the observations. Thus it is powerful to cap-

ture the subtle consistency and complementariness between views. Meanwhile,

as CRF is complicated in general, we apply the Markov property, which only

considers the influence from the neighbors of an item to reduce the computa-

tional complexity. Compared with other belief propagation or neighbor voting

graphical models [81, 51, 66], ours is capable of describing multiple, higher-

order relations (e.g., the visual-visual-label or label-label-visual relations).

The key contributions of this chapter are highlighted as follows:

• We design a graphical model to estimate the relevance of the visual

content of multimedia data with associated labels, whose semi-supervised

nature reduces its dependency on high-quality labels which are difficult

to obtain.

• Based on CRF, we design a multi-view graphical model, which learns

the similarity of different similarity metrics defined in different feature

spaces (i.e., views), and achieves a decent accuracy of estimation with

less advanced visual features.

• Compared with other multi-view or multi-label feature fusion models,

our model is a mid-level model. The similarity relations computed with

different features remain independent, and the combination weights vary

with the change of views or labels.

5.2 Pre-processing: construction of similarity graphs

The cross-modal automatic annotation models are primarily based on the

homophily assumption, which implies that visually similar multimedia items
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Figure 5–2: Graphs of Similarity Relations. Nodes v1 to v4 are videos, and
nodes l1 to l4 are corresponding labels. Under different visual feature, the
similarity relation is different.

can be described by keywords or tags that are semantically similar, and vice

versa. Therefore, the relevance estimation commences with the construction of

similarity relations on the visual and textual content of the multimedia data.

The similarity relations can be expressed as a graph. As depicted in the

left part of Figure 5–2, there is an edge between two images/videos (i.e., v1 to

v4) if their visual content is similar. In the label propagation approaches, the

labels of the images/videos propagate along these edges to other similar items

in a weighted way. When the propagation converges, for each image/video,

the labels with the highest weights will be regarded as relevant.

Under different visual features, the similarity relations between the im-

ages/videos can be different, as shown in the right part of Figure 5–2. The

consistency and differences among these relations are helpful information in

improving the estimation. Hence a natural extension of the conventional label

propagation methods is to construct a composite graph that integrates the

similarity relations from various views of the visual features. The examples

include hypergraph [38, 138], heterogeneous graph [59, 102, 31], and K-partite

[29] (e.g., bipartite [51]) graph. The objective of these approaches is to fuse
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the multiple types of similarity graphs into a general similarity graph, upon

which the probability of propagating the labels to relevant videos increases.

In this thesis, we postulate that the labels are connected to the visual

content of multimedia data in a variety of manners, depending on which visual

feature is extracted. Therefore, we maintain the similarity graphs constructed

under different features to be independent to incorporate the diversity about

how the visual and textual modalities are related to each other.

Besides, the semantic similarities between the labels are absent in the

model shown in the left part of Figure 5–2. In fact, each multimedia item

has multiple labels, and the probability of co-occurrence of specific labels is

significantly higher than with other combinations. Depicting the connections

between the visual similarity graphs, and their relationships with the semantic

correlations of the labels would generate a highly convoluted graph. There-

fore, in this thesis, the semantic correlations among the labels are regarded as

another similarity relations view.

Calculating the similarities between every pair of multimedia items is ex-

haustive when the volume of multimedia data grows to the web scale. More-

over, according to the homophily assumption, visually different multimedia

items tend to have semantically different labels. Therefore, in the construc-

tion of the similarity graph, we add an edge between items only if they are

adjacent to each other in particular visual feature space. Specifically, we ap-

ply the LSH (Locality Sensitive Hashing) technique [6] to determine whether

a pair of multimedia items are neighbors. In this way, not only the cost of

both the similarity graph constructions is reduced, but also the calculations

of the CRF model are accelerated.

When the pre-processing phase completes, for each multimedia item v, its

nearest neighboring items v′s in the space of each visual feature f , along with
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the distances between the items in the feature spaces dv(v, v
′, f) obtained. In

addition, for each label l, the most semantically correlated labels l′ in the

vocabulary are also retrieved, and their distances dl(l, l
′) are calculated.

5.3 The multi-view multi-label graphical model

The estimation of the cross-modal relevance, or the relevance between

the visual content and the labels, can be formally defined as the estimation of

the conditional probability p(li = val|v), where v refers to a multimedia item,

li, i = 0, · · · , n is the i-th candidate label for annotation, and val = 0, 1 is the

value that indicates whether li is a proper label for v.

In this section, we propose a probabilistic graphical model to predict

this probability. This model is based on CRF and exploits the consistency

and differences between multiple similarity relations on both the visual and

textual modalities.

5.3.1 Graphical structure design

According to the homophily assumption, visually similar items share se-

mantically correlated textual descriptions. Therefore, the similarity relations

obtained at the preprocessing phase on both the visual and textual modalities

can be incorporated in the cross-modal relevance estimation.

Similarity relations as observation functions

In this thesis, we divide the cross-modal connections between the visual

content and the presence/absence of a label into three categories:

1. A label is present or absent in the textual description of an image/video

provided by Internet users;

2. Suppose the labels of multimedia data are known, and the visual content

of multimedia data is hidden except for the similarity relations on this

modality. According to the homophily assumption, we postulate that

the presence/absence of a label in the description of a multimedia item
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Figure 5–3: Three Types of Observation Functions

can be inferred from the presence/absence of the label in the description

of the neighboring items;

3. By switching the observability of the labels and visual content, the other

perspective of the homophily assumption can be applied. More specifi-

cally, suppose the visual content is observable, and the labels are hidden

except for their semantic correlations. For a given image/video, we as-

sume that if a label is present or absent in its description, the probabil-

ities of the occurrence/absence of the semantically correlated labels are

significantly higher.

Through the three cross-modal connections, the similarity relations ob-

tained by applying the LSH technique can be incorporated in the relevance

estimation. To integrate these connections into a CRF model, we design three

types of observation functions. For a given v, if l is present in the description,

val = 1; otherwise, val = 0.

1. The first type of observation function bv(v, l, val) is defined as:

bv(v, l, val) = p(l = val|v) (5.1)

.
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2. Suppose an image/video in the visual neighborhood of v is denoted as

v′, and the presence/absence of a label l′ in the description of v′ is es-

tablished. This type of function can be defined as:

bv(v, v′, l′, val) = exp{−αd2v(v, v′)} · p(l = val|v′), v′ ∈ U(v) (5.2)

where α is a parameter that controls the influence of distance between

v and v′ in the model.

3. The third type of observation function indicates that if label l′ is seman-

tically similar to l, then l′ is probably a suitable label for interpreting v.

It is defined as:

bl(l, l
′, v, val) = exp{−βd2l (l, l′)} · p(l′ = val|v), l′ ∈ U(l) (5.3)

where β is a parameter that has a similar function as α.

The first and second type of observation functions can be merged because

an image/video itself is in its visual neighborhood. Thus both of them are

represented by the bv observation functions. The second and third kinds of

relations are more complicated, high-order relations than the first kind. Fur-

thermore, to the right side of Eq. 5.1, 5.2, and 5.3, the term p(l = val|v)

appears in different forms. This term is the objective of our model. Con-

sequently, our model is an iterative model. In the beginning, the value of

p(l = val|v) is determined by the original label assignments from users. More

specifically, if users assign a label l to a multimedia item v, then p(l = 1|v) = 1.

Otherwise, p(l = 0|v) = 1.

The mid-level fusion of multiple views

Representing the three kinds of relations as observation functions makes

the incorporation of multiple views (i.e., similarity relations) smooth because

these functions are treated as factors in the CRF model coherently.
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For the representation vfi of v under each feature fi, i = 1, . . . , n, the first

and second observation functions, or the functions on the visual modality, can

be extended to bv(v, v
′, l′, val, fi), which is defined as,

bv(v, v′, l′, val, fi) = exp{−αd2v(v, v′, fi)} · p(l = val|v′), v′ ∈ Ufi(v). (5.4)

Integrating multiple features and extending the CRF model to be a multi-

view model substantially increase the number of all the three types of obser-

vation functions, as shown in Figure 5–4:

1. For the representation vfi of v under each feature fi, i = 1, . . . , n, the

corresponding functions bv(v, v, l, val, fi) will be added to the model;

2. In the view induced from a visual feature fi, if v′ is in the neighborhood

of v, Ufi(v), observation functions bv(v, v
′, l′, val, fi) that describe the

high-order relations among v, v′, and l′, are introduced to the model.

Under different features, the neighboring relations of the same pair of

multimedia items can be different. For example, we may both have

v′ ∈ Ufi(v) and v′ /∈ Ufj(v), j 6= i;

3. Akin to the first point, when a label l is connected to v′ through l′, for

each vfi , i = 1, . . . , n, the corresponding bl(l, l
′, v, val) functions will be

added.

With these observation functions, the multi-view CRF model is defined

as,

p(l = val|v) =
1

Z(v, l)
exp{

∑
v′

λv(v
′, l′, val, fi) · bv(v, v′, l′, val, fi)

+
∑
l′

λl(l
′, val) · bl(l, l′, v, val)}, (5.5)

90



Figure 5–4: The Structure of the Multi-View Graphical Model.

where λv and λl are parameters to be learned, and Z(v, l) is the normal-

izing factor over the possible values of the labels,

Z(v, l) =
1∑

val=0

exp{
∑
v′

λv(v
′, l′, val, fi) · bv(v, v′, l′, val, fi)

+
∑
l′

λl(l
′, val) · bl(l, l′, v, val)}. (5.6)

In contrast to the feature-level fusion model where a new feature space

is learned from various feature spaces or the decision-level model which polls

multiple independent learners, the fusion of the multiple visual and semantic

similarity relations by a CRF model is a mid-level integration. The similarity

relations computed with different visual features remain independent in our

model, yet their combination can be varied by adjusting λv and λl.

The combination of views of our model is fine-grained, as the weights λv

and λl are different for each image/video and each label. Concretely, λvs are

indexed by (v, l, val, fi), which implies that from the perspective of the visual

modality, the association of a label to a multimedia item is distinctive in each

visual feature space. Additionally, λls are by (l, val), which suggests that the
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correlation of one label to another label varies with the presence/absence of

the latter one.

5.3.2 Learning

The input to the model in the learning process is the feature represen-

tations of the images/videos in the training set, and the relevance score (i.e.,

0 or 1) of these images/videos to the pre-defined semantic labels. For the

images/videos in the test set, the values of the bv and bl functions can be

calculated similarly, except that the neighborhood of a test image/video is

comprised of the images/videos in the training set.

The estimation of model parameters

The parameters of the model are calculated by using maximum likelihood

estimation. Given the training set

D = {(v1, l1, val(v1, l1)), (v1, l2, val(v1, l2)), . . . ,

(v1, ln, val(v1, ln)), (v2, y2, val(v2, y2)), . . . ,

(vm, yn, val(vm, yn))},

the log likelihood function is,

L(Λ|D) = log(

|D|∏
d=1

p(ld = vald|vd))−
∑

v,l,val,fi

λ2v(v, l, val, fi)

2σ2
−

∑
l,val

λ2l (l, val)

2σ2

=

|D|∑
d=1

{
∑
v′

λv(v
′, ld, vald, fi)bv(vd, v

′, ld, vald, fi)+
∑
l′

λl(l
′, vald)bl(ld, l

′, vd, vald)−logZ(vd, ld)}

−
∑

v,l,val,fi

λ2v(v, l, val, fi)

2σ2
−
∑
l,val

λ2l (l, val)

2σ2
, (5.7)

where the last three terms are Gaussian prior used to reduce over-fitting.
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The partial derivatives of L(Λ|D) with respect to parameters λv are,

∂L(Λ|D)

∂λv(v′, ld, vald, fi)
=

|D|∑
d=1

{bv(vd, v′, ld, vald, fi)−
1

Z(vd, ld)

∂Z(vd, ld)

∂λv(v′, ld, vald, fi)
}

−
∑

v,l,val,fi

λv(v, ld, vald, fi)

σ2
, (5.8)

and ∂
∂λv(v′,ld,vald,fi)

Z(vd, ld) can be calculated as,

∂Z(vd, ld)

∂λv(v′, ld, vald, fi)
=

∂

∂λv(v′, ld, vald, fi)

1∑
val=0

exp{
∑
v′

λv(v
′, ld, vald, fi)bv(vd, v

′, ld, vald, fi)

+
∑
l′

λl(l
′, vald)bl(ld, l

′, vd, vald)}

=
1∑

vald=0

∂

∂λv(v′, ld, vald, fi)
exp{

∑
v′

λv(v
′, ld, vald, fi)bv(vd, v

′, ld, vald, fi)

+
∑
l′

λl(l
′, vald)bl(ld, l

′, vd, vald)}

= exp{
∑
v′

λv(v
′, ld, vald, fi)bv(vd, v

′, ld, vald, fi)+
∑
l′

λl(l
′, vald)bl(ld, l

′, vd, vald)}

· bv(vd, v′, ld, vald, fi). (5.9)

Thus 1
Z(vd,ld)

∂
∂λv(v′,ld,vald,fi)

Z(vd, ld) is,

1

Z(vd, ld)

∂Z(vd, ld)

∂λv(v′, ld, vald, fi)
= bv(vd, v

′, ld, vald, fi)
1

Z(vd, ld)
exp{

∑
v′

λv(v
′, ld, vald, fi)

bv(vd, v
′, ld, vald, fi) +

∑
l′

λl(l
′, vald)bl(ld, l

′, vd, vald)}

= p(ld = vald|vd)bv(vd, v′, ld, vald, fi). (5.10)

Plug Eq. 5.10 into Eq. 5.8 we get,

∂L(Λ|D)

∂λv(v′, ld, vald, fi)
=

|D|∑
d=1

{bv(vd, v′, ld, vald, fi)(1−p(ld = vald|vd))}−
∑

v,l,val,fi

λv(v
′, ld, vald, fi)

σ2
.

(5.11)
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Similarly, we have,

∂L(Λ|D)

∂λl(l′, vald)
=

|D|∑
d=1

{bl(ld, l′, vd, vald)(1− p(ld = vald|vd))}−
∑
l,val

λl(l
′, vald)

σ2
.

(5.12)

Since these equations cannot be solved in a closed form, we use a fast con-

vex optimization method, the L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno)

algorithm to find the global maximum of the likelihood function L(Λ|D).

5.4 Evaluation

In this section, we evaluate our cross-modal relevance estimation model

against other quintessential feature fusion models from the literature, Multiple

Kernel Learning (MKL) and Ensemble Learning (EL). The MKL model also

belongs to the category of mid-level feature fusion models, and the EL model

is a decision-level fusion model. The feature-level models, such as deep neural

networks, can be naturally integrated into the mid-level and decision-level

models. Hence they are excluded from the benchmark models.

5.4.1 Experiment settings

All the experiments are conducted on a commodity computer, which is

equipped with an 8-core Intel i7-3632 CPU, 8GB memory, and Ubuntu 16.04

system. The programs are coded in Python, with the support of the libraries

of Numpy, SciPy 0.18, and scikit-learn 0.18.2.

Dataset. We adopt the Columbia Consumer Video (CCV) database

[67] instead of the CC WEB VIDEO dataset to evaluate our feature fusion

model against other benchmark models because the ground-truth about the

relevance between videos and semantic concepts are provided along with this

dataset. The CCV database contains 9317 web videos and is manually an-

notated through Amazon MTurk with 20 semantic concepts. In these videos,

4659 are used for training and 4658 for evaluations.

94



Three types of features are extracted and represented as multi-dimensional

vectors from the videos in the CCV database. The textual concepts are rep-

resented as vectors as well. These feature vectors can be briefly described as

follows:

• MFCC: The MFCC (Mel-frequency Cepstral Coefficients) is a widely

used audio feature. Through the audio processing, the short-term power

spectrum of the sound of the videos is represented as 5000-dimensional

vectors.

• SIFT: The SIFT (Scale-invariant feature transform) has been employed

in a wide range of visual recognition and categorization applications.

The interested points in the frames of videos are located and clustered

into visual words. The dimension of this type of representation is 5000.

• STIP: The STIP (Spatial-temporal interest points) captures not only

the spatial distribution of the visual words as the SIFT feature but also

the temporal flow of these points. The dimension of this type of feature

vectors is also 5000.

• Word Representation: The semantic concepts are represented as vectors

of 300 dimensions in the database of GloVe [100]. The GloVe word

representation captures the co-occurrence information of words.

With these vectors, different views (i.e., similarity relations) can be es-

tablished rapidly with approximate hashing methods (e.g., LSH). To overcome

the curse-of-dimensionality issue, we adopt the FALCONN library which has

solid performance for the high-dimensional vectors. When the identification

of neighboring videos or semantic concepts completes, the Euclidean distances

between a video/concept and its neighbors are calculated.

Benchmark models. The following feature fusion models only com-

bine the visual and audio features and neglect the similarity relations of the
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semantic concepts. Both models are kernel-based. For each concept, the kernel

is trained to fit the relevance/irrelevance of this concept to the videos in the

training set. The weights for the combination of the kernels or the predictions

from the kernels are regarded as hyperparameters. Through grid search, the

weights that achieve the highest Average Precision score on the test set are

designated for the combination.

• Multiple Kernel Learning (MKL): The essence of the MKL algorithm

that appears in literature is the same as [39]. Following the descriptions,

we construct multiple linear kernels and combine them with the weights

obtained as mentioned above. The combined kernel is trained to fit each

concept by using the SVM model.

• Ensemble Learning (EL): In this fusion model, we train multiple SVM

models for each concept. The predictions of these models are combined

with the weights obtained from the grid search.

Evaluation metric. In this thesis, the performance of the cross-modal

relevance estimation is evaluated by the Mean Average Precision (MAP) of the

classification task. The Mean Average Precision is the average of the Average

Precision (AP) of the classification of the videos over the 20 semantic concepts,

which is calculated as:

AP (l) =
1

R

n∑
i=1

ri
i
δ(vi, l), (5.13)

where R is the number of relevant videos for a given concept l and ri is the

number of relevant videos in the top i ranked videos. The function δ(·) is an

indicator function, which equals to 1 if vi and l are relevant, and 0 otherwise.

5.4.2 Experimental results

We implemented our CRF-based feature fusion model, along with the

MKL and EL models. All of these models are trained and tested on the same
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Table 5–1: Mean Average Precision Comparison

MODEL MAP (%)

MKL 45.60
EL 37.83

Ours 51.53

training and test sets. For all the experiments in this section, we empirically

set the parameters of our model as α = 5, and β = 5. Before the training,

all the λs are initialized to 1.0, to ensure that the effect of every observation

function is taken into account.

Average precision

The optimal parameters for the three models are set by running the mod-

els on the test set and tracking the variation of the average precision values.

The highest MAP scores of the three models are reported in Table 5–1. As

shown in this table, these results imply that in the prediction of the three most

probable concepts for a video, the three models make at least one correct an-

swer. Also, our CRF-based model outperforms the MKL and EL feature fusion

models.

The comparison can be conducted over the 20 semantic labels. From

Figure 5–5, the mid-level models (i.e., MKL, CRF) consistently outperform

the decision-level model (i.e., EL), which demonstrates the advantage of con-

ducting the feature fusion before predictions. Additionally, compared with

the MKL model, the weight parameters for feature fusion of our model are

distinctive not only for different types of features but also for different labels.

In another word, we assume that the relevancy between a label and a video

represented by a visual feature varies with both the label and the visual fea-

ture. Consequently, our model surpasses the MKL model on more semantic

concepts.
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Figure 5–5: The Comparison of the Average Precision of the three Strategies

Relevant factors

The performance of our model can be affected by a variety of factors.

Among these factors, whether the model is trained separately for each label,

the number of neighboring videos, and the regularization terms of Eq. 5.7 are

most relevant. Their effects on the Average Precision of our model for each

label are investigated in this part.

Label-wise training. According to Eq. 5.5, our model can be trained

and tested for a specific label, or all the labels in the database. The for-

mer training style is referred to as the label-wise training, and the latter one

is called all-labels training in this thesis. In Figure 5–6, all-labels training

outperforms label-wise training for each label. It follows that there are con-

nections between labels that can only be captured by the all-labels training

rather than the label-wise training.

The number of neighbors. Intuitively, the more powerful a feature

is, the more neighboring videos should be included in the computations of our

model. However, since we have no prior knowledge about the effectiveness

of the visual and audio features, the quantity of the neighbors (including the
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Figure 5–6: The Comparison of the Average Precision of the Label-wise Train-
ing and All-labels Training

video itself) of a video is set to the same value for the three types of features

in the pre-processing stage. In the experiments, the number of neighbors

varies from 3 to 11. As for the GloVe word representations, the quantity of

the neighbors is set to 3 because there are only 20 semantic concepts in the

database.

From Table 5–2 (σ = 2.0), we observe that:

• More neighbors do not guarantee higher average precision score.

• The optimal value for the number of neighboring videos is distinctive for

each label.

• Generally speaking, if the model is more effective for the predictions of a

label than another label, its optimal setting for the number of neighbors

is higher.

Regularization. In this thesis, we adopt the Gaussian prior to regu-

larize the training of λs. For the experiments in this part, we set the quantity

of the neighbors to 5, and vary σ from 2.0 to 5.0. The scores of the average

precision of the model are reported in Figure 5–3.
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Table 5–2: The Effect of the Quantity of Neighbors on AP

LABEL 3Nhs (%) 5Nhs (%) 7Nhs (%) 9Nhs (%) 11Nhs (%)

Basketball 61.48 57.50 49.92 66.17 42.82
Baseball 25.27 33.64 24.46 13.43 16.36
Soccer 34.85 32.17 32.99 33.42 41.70

IceSkating 63.51 44.59 45.53 45.50 35.01
Skiing 53.90 54.48 53.41 51.88 24.93

Swimming 50.27 49.97 48.10 48.73 16.89
Biking 19.55 27.18 18.40 51.47 1.47

Cat 24.55 21.41 25.42 14.83 7.41
Dog 25.58 26.57 22.47 17.50 16.66
Bird 21.76 14.37 17.63 7.63 8.22

Graduation 24.13 18.02 14.95 12.28 13.52
Birthday 12.49 13.20 19.23 18.69 1.72

WeddingReception 11.97 12.89 22.33 11.23 11.77
WeddingCeremony 45.24 51.11 24.03 40.01 27.59

WeddingDance 29.88 26.75 32.14 24.87 30.10
MusicPerformance 49.67 50.54 41.05 44.02 41.49

NonMusicPerformance 37.24 38.56 39.87 29.82 26.70
Parade 44.22 45.60 44.26 33.43 37.01
Beach 41.60 39.58 27.51 40.66 40.97

Playground 27.41 29.99 33.90 54.39 12.38
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Table 5–3: The Effect of the Regularization on AP

LABEL σ = 2.0 (%) σ = 3.0 (%) σ = 4.0 (%) σ = 5.0 (%)

Basketball 57.50 64.11 63.78 64.83
Baseball 33.64 25.24 22.17 25.05
Soccer 32.17 42.67 43.19 39.29

IceSkating 44.59 58.22 59.67 62.17
Skiing 54.48 56.40 56.81 57.13

Swimming 49.97 53.02 52.65 51.29
Biking 27.18 18.85 13.29 10.16

Cat 21.41 36.40 28.81 23.56
Dog 26.57 25.38 25.33 20.87
Bird 14.37 12.73 15.73 13.85

Graduation 18.02 17.80 18.20 15.09
Birthday 13.20 18.62 23.21 26.35

WeddingReception 12.89 12.99 10.46 11.05
WeddingCeremony 51.11 49.06 45.63 46.95

WeddingDance 26.75 34.58 31.50 32.62
MusicPerformance 50.54 56.00 50.15 52.86

NonMusicPerformance 38.56 37.86 36.60 35.76
Parade 45.60 44.75 47.13 47.86
Beach 39.58 40.38 45.75 42.33

Playground 29.99 27.32 27.56 27.29
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Akin to the impacts of the number of neighbors, the optimal value of σ

is also different from label to label. For specific labels such as “IceSkating”,

applying regularization enhances the score of average precision (to 62.17),

which is normally around 40. This impact reminds us that choosing a proper

regularization prior can be vital to the accuracy of our model.
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CHAPTER 6
Conclusions and Future Work

In this chapter, we conclude the thesis. The contributions presented in the

thesis are summarized in Section 6.1. The challenges and potential research

directions are outlined in Section 6.2

6.1 Conclusions

Due to the intrinsic complexity and the unprecedentedly vast volume, the

automatic annotation of the online multimedia data is much more challenging

than other types of data. In this thesis, we attempted to approach this prob-

lem by the homophily assumption, through which the intra-modal similarity

relations of the visual and textual modalities of the multimedia data are uti-

lized to estimate the relevance of the two modalities. This assumption implies

the roadmap that we can follow to resolve the annotation problem. The first

step of the roadmap is to identify the similarity relations between the multi-

media items under visual and textual feature, which corresponds to the first

and a part of the second project in this thesis. The second step is to infer

the cross-modal relevance with these similarity relations, which corresponds

to the third project and a part of the second project.

Similarity detection of the online videos

In the first project, we proposed and developed an efficient NDVD cloud

system, called CompoundEyes, by using a new detection paradigm. Instead

of designing a sophisticated video representation, the focus has been shifted

to the design of a well-organized system. Rather than feature design, we in-

troduced improvements in accuracy through classifiers. Because of reduced

dimensionality and parallelism, we reduced the duration required for precise
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duplicate detection. Moreover, experiments and analysis corroborated that

CompoundEyes not only outperforms contemporary NDVD and NDVR sys-

tems, but also the feature-centered systems based on BoWs and CNN features

regarding accuracy. At the same time, CompoundEyes bested or matched its

peers in both peak memory usage and time complexity. In conclusion, Com-

poundEyes is feasible and practical to perform large-scale NDVD tasks in the

cloud. As other NDVD/NDVR systems, CompoundEyes needs a training set

and ground-truth labels, the acquisition of which is beyond the scope of this

thesis.

Empirical Study of the cross-modal relevance of the online videos

In the second project, with CompoundEyes, we conducted an empiri-

cal study of the properties of textual content on a popular real-world online

video dataset, CC WEB VIDEO. The following insights can be drawn from

the analysis of this dataset:

• Textual Content as Complex System: After the removal of non-

word parts and function words, the word count distribution displays a

typical Zipf’s Law feature, which implies that this dataset is sufficiently

large and complex, and there may exist a hierarchy in the vocabulary,

and social structures of users.

• The Sparsity of the Textual Content: Other than titles, the num-

ber of words used to describe the visual content is less than 40 for most

of the videos in the dataset. With descriptions of this length, it is not

expected that the visual content can be semantically illustrated. Per-

forming similarity comparison on the textual content would be unstable

and less satisfactory compared with using the visual content.

• The Poor Quality of the Textual Content: Though affected by

various factors, the poor quality of the textual content is one of them
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which reduces the relevance rate of search results. More keyword matches

do not guarantee more reliable results.

• URL’s Occurrence is not a Satisfactory Heuristic Spamming

Indicator: By data analysis, we showed that the occurrence of URL is

not tightly related to video spamming.

• The Coherence between the Visual and Textual Content: Similar

visual content does accompany similar textual content and vice versa.

Although with more degree of freedom of word choice, this similarity is

less stable than using visual content.

In the CC WEB VIDEO dataset, the 24 search keywords are also the 24 topic

names. If all the videos that are searched with the same keyword perfectly

matched the topic, both the visual and textual similarity experiments would

be dominated by values close to 1. In contrast, the low values of similarity

scores suggest that 24 topics are not sufficient.

With latent models and sub-category approaches, we can keep refining the

topics. However, the experiment results in the coherence between visual and

textual contents entail that the complexity of their relationships is beyond the

capacity of these approaches. We found that the textual similarity scores can

be affected by various factors, such as the length of the piece of text, textual

content field, and textual similarity measures themselves. Textual content is

not merely noisy, but logically ambiguous and misguided. Two videos that

have similar titles may be entirely different in tags and descriptions, and the

opposite can also be true. When all of these factors are taken into account,

the relationships between them, and with the visual content, become chaotic.

These insights about the textual content of online videos suggest that

combining the visual and textual content directly, as tempting as it appears

to bridge the semantic gap between low-level visual features and high-level
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semantic meanings, is problematic. The sparsity, poor quality, and the high

degree of freedom of expressiveness of textual content are impediments for any

model to achieve satisfactory performance.

Cross-modal relevance estimation

In this project, based on CRF, we developed a probabilistic, multi-view

multi-label graphical model to estimate the relevance of the visual and textual

modalities of online videos. This model takes the original video-label associa-

tions, linguistic label similarities, and visual similarities into account to deal

with the complicated relationships between the two modalities of videos. It

is designed as a multi-view model to overcome the limitations of individual

visual features in identifying visually adjacent videos. Meanwhile, the archi-

tecture of this model is open, which means that whenever a more effective

new feature (visual or texture) is discovered, it can be incorporated into the

model seamlessly. We implemented this model and compared it with two other

feature fusion models. Through the experiments, we demonstrated that our

model consistently outperforms the benchmark models.

6.2 Future Work

The automatic annotation of the multimedia data is an important and

challenging research topic. It is also an essential step towards the understand-

ing of the content of the multimedia data. There are numerous attractive and

influential problems in this area. By following the roadmap planned in this

thesis, we mainly focus on the issues that belong to the following categories:

Visual features for videos. In the simple features combined by Com-

poundEyes, only the motion orientation feature captures the temporal infor-

mation between consecutive frames. Hence CompoundEyes is ineffective for

the more complicated temporal variations of videos. However, due to the

sequential nature of the temporal dimension, the fusion of the spatial and
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temporal information makes the processing of videos less parallelable. We

intend to investigate the temporal variations of videos, dissect the temporal

dimension into multiple independent segments, and integrate these temporal

segments with corresponding spatial areas.

Automatic annotation of the multimedia data. The graphical

model developed in this thesis can also be applied to image datasets, as long

as the visual features for images are available. Employing powerful features,

such as the ones discovered by deep neural networks, is expected to enhance

the accuracy of cross-model relevance estimation considerably. Also, the labels

provided by the users of social networks tend to be subjective and might be

semantically distant from the predictions of the current object/scenery classi-

fication models. It is challenging to connect the subjective labels and objective

classification results.

Distributed computing. Currently, distributed computing techniques

and platforms such as Spark have been becoming an integral part of the pro-

cessing techniques of the online multimedia data, due to their sheer volume

and unprecedentedly growing speed. In the first project, the feature extraction

algorithms and the architecture of CompoundEyes are designed to be intrin-

sically distributable, thus migrating the system to the state-of-the-art dis-

tributed computing platforms is smooth. Compared with the shared-memory

architecture applied in the project, a real distributed computing platform

can further boost the throughput of the similarity detection/retrieval system.

Moreover, the multi-view multi-label graphical model proposed in the third

project can also be parallelized on Spark, because the computations of λs can

be interpreted as map-reduce style key/value aggregations.
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