INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smail overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

PRACTICAL TECHNIQUES FOR VIRTUAL CALL
RESOLUTION IN JAVA

by
Vijay Sundaresan

School of Computer Science
McGill University, Montreal

June 1999

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Copyright © 1999 by Vijay Sundaresan

(Ld |

National Library
of Canada du Canada
Acquisitions and

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Bibliotheque nationale

services bibliographiques

Your file Votre refarenca

Our file Notra reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-55090-7

Canada

Abstract

Virtual method calls are a fundamental feature offered by Java, an object-oriented
programming language. However, they are also a source of degradation of performance
at run time and imprecision in interprocedural analyses. There are several well known,
inexpensive analyses that have been developed for virtual call resolution. However,
they have been observed to be effective in resolving method calls in library code. while
not being very effective in the benchmark code excluding libraries.

We present a new flow insensitive and context insensitive analysis called reach-
ing type analysis in this thesis. We present the analysis rules for two variations of
this analysis, variable type analysis and a coarser grained version declared type anal-
ysts. Reaching type analysis is based on an analysis that builds a type propagation
graph where nodes represent variables and edges represent the flow of types due to
assignments.

We have implemented variable type analysis and declared type analysis, and two
existing analyses, class hierarchy analysis and rapid type analysis, in the Soot frame-
work and compared their relative success at building accurate call graphs for complete
applications. We present static empirical results for call graph improvement for the
whole application as well as for the benchmark code alone. We have also made dv-
namic measurements focusing on the benchmark code excluding libraries.

Method inlining is a compiler optimization in which the method call is replaced by
the body of the method being called. Method inlining is very effective in improving
performance of benchmarks that have many small methods and in which a large
proportion of instructions executed are virtual calls. We have implemented method
inlining (automatic and profile guided) at the Java bytecode level using the Soot
framework. We demonstrate the effectiveness of our analyses and method inlining on
a set of 15 benchmarks whose bytecodes were generated from Java, ML, Ada, Eiffel
and Pizza compilers.

i

Résumé

Les appels de methodes virtuelles sont une des caractéristiques tres utile et appréciée
offerte par le langage de programmation Java. Cependant, ils sont non seulement
la source d'une dégradation des performances lors de l'exécution mais aussi une
source d'imprécision lors d’analyses inter-procédurales. Il existe un certain nom-
bre d’analyses peu couteuses développées pour la résolution d’appels de methodes
virtuelles. Cependant, on observe qu’elles sont efficaces pour résoudre les appels qui
se trouvent dans les librairies mais qu’elles le sont beaucoup moins pour ceux situés
hors des librairies.

Dans cette thése, on présente une nouvelle analyse indépendante du flux et du
contexte appelée reaching-type analysis. Nous décrivons les regles d'analyse pour
deux variantes de l'analyse, wvariable type analysis et declared type analysis. cette
derniére étant une version dont la précision est moindre. Reaching-type analysis est
basé sur une analyse qui construit un graphe de propagation de types dont les noeuds
représentent des variables et les arcs des flux de type dis aux assignations.

Dans le cadre du projet Soot, nous avons developpé variable type analysis et
declared type analysis ainsi que deux autres analyses déja présentes dans la littérature,
class hierarchy aenalysis et rapid type analysis et nous avons comparé leur succes relatif
a la construction du graphe d’appel pour des applications complétes, c’est-a-dire des
applications analysées en tenant compte du code des librairies. Nous présentons des
résultats expérimentaux sur 'amélioration de la précision du graphe d’appel d'une
part pour des applications complétes et d’autre part pour ces mémes applications
sans tenir compte des librairies.

L'inclusion de methode est une optimisation de compilateur qui consite a sub-
stituer un appel de méthode par la méthode appelée. L'inclusion de methode est tres
efficace pour améliorer les performances de programmes composés de méthodes de pe-
tite taille et dans lesquels une grande partie des instructions exécutées sont des appels

iii

virtuels. Nous avons réalisé l'inclusion de methode (automatique ou guidée par col-
lecte d’information) au niveau du bytecode Java dans le cadre du projet Soot. Nous
montrons son efficacité sur un ensemble de 15 programmes test dont les bytecodes
ont été générés depuis des compilateurs Java, ML, Ada, Eiffel et Pizza.

iv

Acknowledgments

Sincere thanks to:

My advisor Laurie Hendren, for her encouragement and support during my studies
at McGill. She has been instrumental in sparking my interest in compiler research
and I shall remain grateful to her for providing the much needed focus to my career.
Her cheerful nature and enthusiasm have always rubbed off on the group, and it has
been a joy interacting with her. Laurie’s genuine concern and kind help in easing my
financial situation have enabled me to concentrate my mind solely on research. I look
up to her as my mentor, and will always have the highest amount of respect for her.

My colleagues at the Sable Research Group interacting with whom [have learnt
so much about Java and compilers. Etienne Gagnon, whose views [have tried to
seek out during the course of my thesis. His in depth knowledge of the Java Virtual
Machine specifications, and his advice on other career related matters have been
invaluable. Raja Vallee-Rai, whose dedication and attention to detail ensured that
the Soot framework was both easy to use and understand. I have learnt about the
importance of object oriented software design by observing his programming style.
Chrislain Razafimahefa, for being a good friend, and helping me along during my
earlier days at McGill when I was still learning Java. The many discussions that
[had with him regarding our analyses and optimizations. our constant interaction
during the coding process, and the soccer and dinner sessions are all memories [will
cherish. Laleh Tajrobehkar for providing many a light moment, and Patrick Lam for
helping with problems cheerfully on several occasions.

The friends with whom I had many good times during my stay in Montreal, and
who helped me adjust to life here. Prasad Kakulavarapu for being a trusted and ever
helpful friend. The long and heated discussions on all manner of topics were always
enjovable. Tallman Nkgau, Ian Garton. Mike Soss and Charles Abety for all the get
togethers and friendly banter that were a source of relaxation. Rakesh Ghiva for

introducing me to Laurie and for the encouragement when [was still finding my feet
at McGill.

The staff in the administrative office: Vicki Kierl, Franca Cianci and Lise Minogue
for being very helpful throughout my studies at McGill.

My mother who is the dearest person in my life for her constant affection and
support at all times. My father who has been my guiding spirit; I miss him deeply
and wish he was alive to see me now as I finish studies and start working. My brothers
Subash and Prakash, for helping me in more ways than I can ever hope to repay. My
uncle Giri, who has always been a pillar of support.

vi

Dedicated to my late father Mahalingem Sundaresan

vii

Contents

Abstract
Résumé
Acknowledgments

1 Introduction
1.1 Virtual Method CallsinJava
1.2 The Soot Framework
1.3 Related Work
1.4 Thesis Contributions

1.5 Thesis Organization.

2 Analyses

2.1 Hierarchy Analysis and the Conservative Call Graph
2.1.1 Class Hierarchy Analysis
21.2 CallGraphs
2.1.3 Building the Conservative Call Graph
Rapid Type Analysis (RTA)
Reaching Type Analysis

1o
X

o
o

2.3.1 \Variable-typeanalysis

2.3.2 Declared Type Analysis

viil

ii

iii

o

10
17
20

2.4 Assumptions and Limitations 39

2.5 Comparison with Dynamic Results 41
3 Method Inlining 44
3.1 Method Inlining 45
3.1.1 Applications of Method Inlining 45
3.1.2 Disadvantages of Method Inlining 47
3.1.3 Structural issues in method inlining 48
3.1.4 Safety Criteria for Method Inlining 36
3.1.5 Inlining Criteria 65
3.16 InliningOrders 68
3.1.7 Our Static Inlining Strategy 70
3.1.8 Profile Guided Inlining 73

4 Experimental Results 75
4.1 Benchmark Characteristics 75
411 Java ... 73
4.1.2 Eiffel 76
413 Ada e 76
414 ML .. 76
415 Pizza. o 76

4.2 Conservative Call Graph Characteristics 78
4.2.1 Conservative Call Graph for Whole Application 78
4.2.2 Conservative Call Graph for Benchmark Only 79

4.3 Improvements over the Conservative Call Graph 79
4.3.1 Call Graph Improvement for Whole Application 79
4.3.2 Call Graph Improvement for Benchmark Only 81

4.4 Comparison with Dynamic Results 81

ix

4.5 Time and Space Complexity of Analyses 86

4.6 Method Inlining Results 87
4.6.1 Automatic Method Inlining 87

4.6.2 Profile Guided Method Inlining 92

5 Conclusions and Future Work 94
5.1 Analyses for virtual call resolution 94
5.2 Method inlining 96

A Analysis rules for VTA 98
B Analysis rules for DTA 102

List of Figures

An example of a polymorphiccallsite.
Virtual Table layout for subclasses and interfaces

Example of JVM only needing to compute the index once for invoke-
virtuals L

Example of JVM needing to compute the index every time for invokein-
terfaces L L e e e

Different representations offered by Soot for Javacode
The Soot Framework
Establishing direct parent child relationships
Including all the subclasses transitively into the SubClassList of a parent
Establishing (interface) directly implemented-by relationships

An example of the Call Graph built for the program.
Method to perform method lookup
Building the call graph for invokespecial
Building the call graph for invokevirtual
Building the call graph for invokeinterface
Building the call graph for invokeinterface (continued)
An example of the type propagation graph for Variable Type Analysis.
An example of the type propagation graph in Declared Type Analysis.
Example of class instantiation without a call to a constructor

Example of class with profiling code inserted

xi

39

3.1
3.2

3.3

3.4
3.5
3.6
3.7
Al
A2
A3
B.1
B.2
B.3

An example of method inlining in Javacode

Jimple representation of the class in which inlining is being performed
(before inlining)

Jimple representation of the class in which inlining is being performed
(afterinlining) L.

An example of a call site violatingRule4
An example of a method violatingRule5
Locating important call sites to attempt inlining
Our static inlining algorithm
Rules for Variable Type Analysis
Rules for Variable Type Analysis (continued)
Rules for Variable Type Analysis (continued)
Rules for Declared Type Analysis
Rules for Declared Type Analysis (continued)

Rules for Declared Type Analysis { continued)

xil

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
1.8

Benchmark Characteristics 77
Conservative Call Graph Characteristics 78
Improvement of Call Graph over Conservative Call Graph 82
Comparison of calls resolved by each analysis with the profile result . 84
Size of Data Structures 86
Measurements for automatic inlining using the JIT 88
Measurements for automatic inlining using the interpreter 88
Comparison between automatic inlining and profile guided inlining us-

ingthe JIT 92

xiii

Chapter 1

Introduction

Java is a general-purpose concurrent class-based object-oriented programming lan-
guage, that allows application developers to write a program once and then be able
to run it everywhere on the Internet. The extensive functionality offered by the Java
library API. the platform independence of Java bytecode, and the applicability of
objected oriented software design in large projects have all contributed to the growth
of Java.

However the features that have contributed to the growth of Java come with a
certain performance penalty that makes Java suffer in comparison to other popular
languages like C/C++. Platform independence is achieved through an interpreter
that interprets the Java bytecodes before executing them. But interpreting the byte-
codes at execution time is much slower than executing native code that has been
compiled using a traditional compiler, as the overhead of the interpreter’s execution
must be paid at run time. Just In Time (JIT) compilers are becoming increasingly
popular for this reason though theyv are not yet available for all of the common plat-
forms in use. The highly object oriented features that make software maintenance
and debugging easier for Java applications also mean that the run time penalty must
be paid in the form of virtual method calls and type inclusion checks that are quite
expensive as compared to other instructions. Thus it is clear that although the design
of the source language itself and the bytecode are quite clean, there is a significant
amount of work that needs to be done before Java can exhibit the same run time
performance as its competing languages.

The problem of improving performance can be solved in two ways. It is possible

to perform static analyses on Java bytecode and apply traditional program transfor-
mations like method inlining, common subexpression elimination, and loop invariant
removal. This approach requires no interaction with the java Virtual Machine that
is being used to execute the bytecodes. Another possibility is to use the results from
static analyses to annotate the class file that is being executed. This requires a Java
Virtual Machine that would be able to understand the annotations that are part of
the class file, and perform run time optimizations like register allocation, and elim-
inating array bounds checks as it is executing the bytecodes. We have adopted the
first approach in our attempt to improve performance, and we present the analyses,
optimizations and the benefits that we observed. The focus of this thesis is on im-
proving performance of Java bytecode by trying to reduce the overhead associated
with virtual method calls. The rest of this chapter is organized as follows. Section
1.1 introduces the problem we are addressing. Section 1.2 describes the framework
that we have used to perform our analyses/optimization and Section 1.3 discusses the
related work in this area. In Section 1.4, we briefly describe the contributions of this
thesis in addressing this problem, and Section 1.5 outlines the organization of this
thesis.

1.1 Virtual Method Calls in Java

In this section we discuss some of the issues pertaining to virtual method calls in Java
and how they impact performance. Java is an object oriented language and applica-
tions written in Java typically contain many classes, methods, and fields. Every class
in Java (except the cosmic superclass java.lang.Object) must extend some unique
superclass. Subclasses inherit all the features of parent classes and might also contain
additional methods/fields that are used to perform specific functions of the subclass.
A form of multiple inheritance is achieved through the use of interfaces that classes
are allowed to implement. Thus every class in Java is part of a inheritance hierarchy
with java.lang.Object at the root of the hierarchy. This follows the standard object
oriented design model in which classes that are more general are near the top of the
hierarchy and subclasses have more specialized functionality. Subclasses are allowed
to declare methods whose implementation overrides that of a method in a superclass.
The method invoked at run time depends on the actual class of the receiver object
and not on the Java declared type of the variable referring to the object. Call sites
for which the compiler producing bytecode from the source language cannot fix the

target of the call statically are the source of virtual method calls.

class A {
public static void main (String(] args) {
for (int i=0;i<2;i++)
{
A a = null;
if (i==0)
a = new A();
else
a = new B();

a.a(}; // €S (polymerphic zall site)

}
}

public void m() { System.out.println (‘‘In A’’); }
}

class B extends A {
public void m() { System.out.println (‘‘In B’’); }
}

Figure 1.1: An example of a polymorphic call site

Consider the call site CS shown in Figure 1.1. The class A is extended by class
B and both classes have different implementations of the method m(). It is possible
that a variable declared to be of type A can point to an object the run time type of
which is either A or B. Thus the variable a shown in the example refers to an object
of class A in the first iteration while it refers to an object of class B in subsequent
iterations. Since the method invoked depends only on the actual type of the object
referred to by the variable, the method m() declared in class A is invoked in the first
iteration, and the method m() declared in class B is invoked in successive iterations.

Call sites that can invoke more than one target method at run time depending on
the class of the receiver are termed polymorphic call sites. Call sites that can only
invoke a single target method at run time are termed monomorphic call sites. If the
target method invoked from a particular call site can be fixed statically, then the call
site is said to have been resolved.

The method to be invoked at run time is determined by the Java Virtual Machine
by examining the virtual method tables of the class of the receiver object. There are
entries in the virtual method table of a class for each non-private method that might

be invoked on an object belonging to that class. There are two possible bytecodes
that might be generated for virtual calls. The first is the invokevirtual bytecode
instruction which is generated when the declared type of the receiver in the source
code was a class. If the declared type of the receiver was an interface then the bytecode
that would be generated is the invokeinterface bytecode instruction. Both kinds of
virtual calls are expensive but the calls made using the interfaceinvoke bytecode
are more so because of reasons that we explain now.

A B C
ah Pl omi | 1 om0 om
2 m2 2 m2 2 m2
extends extends ; - 3 - 3 -
4 m4 4 md 4{ md
5 m$ 5 m6
6 m7
Inheritance Hierarchy
(A, B. C are all classes) Virtual Tables of classes A, B,and C.
(a). Virtual Table Layout for subclasses
| Al BI
0 1 m] 1 md 1 m2
implement implement 2 m2 5 ml 2 ml
3 m3 3 m2 3 m3
o ° 4 md 4 m3 4 md

Inheritance Hierarchy

Virtual Tables of classes Aland BI that
(Classes Al and BI implement .
implement [

Interface 1)
(b). Virtual Table Layout for classes implementing an interface

Figure 1.2: Virtual Table layout for subclasses and interfaces

class A {
public static void main (Stringl] args) {
for (int i=0;i<2;i++)
{
A a = null;
if (i==0)
a = new B();
else
a = new C(Q);
a.mi(); // Index into Virtual Tables can be reused after first execution
}
}

public void mi() { System.out.println (‘‘In A’’); }
}

class B extends A {
public void m1() { System.out.println (‘‘In B’’); }
}

class C extends A {
public void m1() { System.out.println (‘‘In C’’); }
}

Figure 1.3: Example of JVM only needing to compute the index once
for invokevirtuals

In order to understand the reason for the virtual calls being expensive, it is nec-
essary to understand the actions taken by the Java Virtual Machine when it executes
a virtual method call. We first explain the actions to be performed for executing the
invokevirtual bytecode instruction. In this case, the virtual method table of the
class referred to in the invokevirtual instruction is examined and the index of the
method matching the method signature is obtained. For subclasses it is guaranteed
by the Java Virtual Machine Specification that the index of a particular method in
the virtual method table is the same in the subclass as it was in the parent class. In
Figurel.2(a), we observe that classes A, B and C have different number of methods,
but the methods that they have in common (m1, m2, m3, m4) have the same offsets
in the virtual tables of all three classes. Thus once the index of the method in the
class referred to in the signature has been found, the same index can be used to access
the entry in the virtual method table of the class of the receiver object. The entry
in the virtual method table would tell the Java Virtual Machine the exact method
that is to be invoked. Note that the index needs to be computed only the first time

class Al implements I {
public static void main (String[] args) {
for (int i=0;i<2;i++)
{
I a = null:;
if (i==0)
a = new AIQ);
else
a2 = new BI();
a.m1(); // Index into Virtual Tables cannot be reused

}
}

public void m1() { System.out.println (‘‘In A’’); }
}

class BI implements I {
public void m1(} { System.out.println (‘‘In B’’); }
}

interface I {
public void m1();
}

Figure 1.4: Example of JVM needing to compute the index every time
for invokeinterfaces

the invokevirtual instruction is executed, and on all subsequent executions of the
instruction the index computed the first time can be used, as it guaranteed to be the
same no matter what the class the receiver object (it must be the class referred to
in the invokevirtual instruction or a subclass). Refer to the example in Figure 1.3
in which a call site is shown for which the index into the virtual tables needs to be
calculated only the first time it is executed.

In the case of an invokeinterface bytecode instruction, the actions to be taken
are slightly different. There is no relationship between the index corresponding to a
particular method entry in the virtual method table of an interface, and the index of
the same method entry in the virtual method table of any class that implements that
interface. Thus, in Figure 1.2(b), we observe that even though classes AI and BI both
implement the interface I and have four methods each (names identical for methods
in both classes), there is no correlation between the offsets into the virtual tables
for the methods in the two classes. Note the difference in this case as compared

to the case shown in Figure 1.2(a). Thus the virtual method table of the class of
the receiver object must be searched each time the invokeinterface instruction is
executed. The index computed the previous time it was executed may not be the
same as the index of the method in the virtual method table of the receiver object
this time as the class of the receiver might be different on different executions of
the invokeinterface instruction. The class of the receiver on different executions
must of course be some class that implements the interface but the index of the
method entries in the virtual method table of the class need not be the same. So the
invokeinterface bytecode instruction is expensive as compared to invokevirtual
bytecode instruction, and even more so than a static method call that requires no
method lookup. An example is shown in Figurel.4 where the index into the virtual
method table must be recalculated each time the call site is executed.

Hence, it should be clear that virtual method calls are expensive at run time and
replacing them wherever possible them might improve performance. Possible ways
of avoiding the overhead associated with virtual method calls are either eliminating
them completely or by replacing them by less expensive instructions. Eliminating a
method call completely is possible if the target of the method call is known statically
and we are allowed to inline the code of the called method into the caller and remove
the call instruction. There are other bytecode instructions (namely invokestatic
and invokespecial) for method invocations at call sites where the target method
is known statically. These are less expensive to execute and can be used instead
of the virtual call instructions if the virtual call has been resolved. Note that if
the conversion is to the invokestatic bytecode, then a new static method might
have to be created and added to the class. This static method would be similar in
functionality to the method being invoked by the virtual call instruction, but would
differ from it in that it would have one extra explicit parameter corresponding to the
implicit this parameter.

1.2 The Soot Framework

We have used the Soot framework [1] to perform our analyses and optimizations.
Soot is a framework for analyzing, optimizing and annotating Java bytecode. More
concretely Soot offers three alternative representations for Java bytecode that are
designed to be easier to work with as compared to using the bytecode directly.

The Baf representation: The first representation is Bef which is a compact
and simpler bytecode representation that is useful when it is necessary to deal with
bytecode as stack code. The Baf intermediate representation hides some of the en-
coding issues in bytecode, such as the constant pool and multiple variants of virtually
the same instruction. Baf is currently in use for performing peephole transformations
and for a final re-ordering phase. Refer to Figure 1.5(b) for a simple example of Baf
code.

The Jimple representation: The second representation is Jimple which is a
compact three-address code representation of Java bytecode that is unstructured. It
is much simpler to develop analyses and optimizations on the Jimple representation
than on Java bytecode for the following reasons :

e Resembles simple Java: instructions are in three-address code form.

e Typed: Like Java, Jimple’s local variables are typed (the types are inferred
from the bytecode).

In Figure 1.5(c) we show an example of Jimple code that would be produced for
the Java code shown in Figure 1.5(a).

The Grimp representation: The third representation is Grimp (aggregated
Jimple) which is similar to Jimple except that it represents statements as trees. This
is extremely useful where Jimple's fractured nature is inappropriate. Grimp is used
in the framework for decompilation and generation of bytecode. Figure 1.5(d) shows
an example of Grimp code. Note that the Grimp code is very similar to the original
Java code.

The fact that all three intermediate representations in Soot are constructed di-
rectly from the Java bytecode in the class files, and not from the high level Java
programs allows us to analyze Java bytecode that has been produced by any com-
piler, optimizer, or other tool. There are front ends available for languages such as
Ada, ML, Eiffel and Pizza that produce Java bytecode.

We analyze complete applications, so our implementation starts by reading all
the classes required by a particular application, starting with the main class and
recursively loading all the classes used in each new class. As each class is read it
is converted into the Jimple intermediate representation. After this conversion each
class is stored in an instance of a SootClass which contains information like its

if (x+y!=2) t=x+7y;
return; if t == z goto labelO;
else return;
System.out.println (‘‘foo’’);
labelO :
ref = System.out;
ref.println (‘‘foo’’);

(a). Original Java code (c). Jimple code
iload x if { x + 7 ==2) gotc labsll;
iload y return;
iadd
iload z labelQ :
icmpge labelO System.out.println (‘‘foo’’);
return
labelO:
getfield System.out
push foo

invokevirtual println

(b). Baf code (d). Grimp code
Figure 1.5: Different representations offered by Soot for Java code

name, superclass, list of interfaces that it implements, and a collection of SootFields
and SootMethods. Each SootMethod in turn contains information such as its name.
modifiers, locals, parameters, and a list of Jimple three-address code instructions.
At the beginning of the Jimple instructions list for each method there are special
identity statements that provide explicit assignments from the parameters (including
the implicit this parameter) to locals within the SootMethod.

The Soot framework includes some basic intraprocedural optimizations like copy
propagation, constant propagation, and dead code elimination that are very useful in
cleaning up the Jimple code produced from a naive bytecode to Jimple translation.
Since the operand stack that is present at the stack code (bytecode) level is completely
eliminated in the Jimple representation, the stack locations must be represented in
Jimple as local variables. Types for locals are inferred {26] using the explicit references
to types present in method and field signatures, and instantiations. To avoid having
too many locals in the Jimple representation, a local packing pass is made over the
code that tries to pack as many locals as possible into one local.

9

In terms of our analyses, the fact that in the Jimple representation, each statement
has a relatively simple format means that the rules are not as complex as they would
have been if the statements could contain large expressions. Also there is a fixed
set of different kinds of statements in Jimple, and the set of analysis rules can be
assumed to be complete once rules have been specified for each statement. Further
all the operands in Jimple are either variable references or constants. Since there is a
declared type (that is inferred) for each local and constant, our analyses can use this
information in a straightforward manner.

Figure 1.6 provides an overview of all the components of Scot and some of the

applications that Soot is being used for.

1.3 Related Work

The problem of virtual call resolution has been studied before for other languages. In
this section we discuss some of the work we found that was relevant to our research.
We first discuss work related to call graph improvement and receiver class prediction,
and later in this section we discuss the research into method inlining.

The study of analyses to improve the call graph and elimination of virtual calls is
discussed in some detail in the work by Grove et al [13]. They conduct an empirical
study of the effectiveness of many of the commonly known algorithms for call graph
construction. The suite of benchmarks that they used for conducting their experi-
ments was composed of medium sized programs written in Cecil and Java which is
of particular interest to us. The results that they obtained give an indication about
the time and space complexity of some of the well known algorithms for call graph
construction. They discuss the different strategies for call graph improvement in a
generalized manner, and give the possibilities for the choice of the initial call graph.
They also formally introduce some interesting properties of a call graph lattice do-
main, and discuss the conditions when a call graph is sound. The ideas set forth in
this discussion were used by us in formulating our analyses as call graph improve-
ment techniques. This ensures that our call graph is always in some part of the call
graph lattice where it is guaranteed to be sound (conservatively correct). Alterna-
tive approaches are possible in which the call graph might be unsound (incorrect) at
certain points during the analyses, but we have not chosen those techniques in our
implementation.

We have focused on the study of fast analyses for call graph improvement in our

10

Soot Framework and Applications Overview

Legend
Soot Transformation
Jjava .ada .ml eiffel ---- Application
A - ¥ L L4
L Tt~ay ' .
P Tt~ ‘ ,?
r \ 1 Il - 7
,; v ’ R N
' v javac \ 4 , Te-l
! N ~ \ /, 4 T~o
! ~ \ ’ e ~ e
] N Vi - S . .
1 - ~
! h N
L . ~
1 decompiler N
\\
v s
N

!
1
)
1
1
1
i
)
\ Baf
t optimizer
1
1
1
)
i
|
1

.baf)

Jjimple

Jimple optimizer / annotator

Figure 1.6: The Soot Framework

11

work while some of their analyses for call graph construction are context sensitive or
flow sensitive and are consequently more expensive. Their experiments demonstrated
that scalability becomes a crucial issue when context sensitive algorithms for call
graph improvement are applied to medium to large sized programs. Grove et al.
conclude that a scalable and effective call graph construction algorithm for programs
that make extensive use of polymorphism and dynamic dispatching is still an open
problem. Our work focuses on scalable call graph construction algorithms for Java
applications, and intends to provide a detailed set of measurements that compare
the effectiveness of the relativelv cheaper analyses that we have considered. They
discovered that for both the languages they considered, the additional precision of
the call graphs constructed by the interprocedurally flow-sensitive algorithms had
a significant impact on the effectiveness of the client interprocedural analyses and
resulting optimizations. Their speedups are about 5 to 10 percent on average for
Java benchmarks (achieved through a combination of aggressive intraprocedural and
limited interprocedural optimizations). They also managed to reduce the size of their
executables for Java benchmarks by about 10 to 20 percent performing dead member
elimination.

Diwan (24] describes results for simple and effective analysis of statically-typed
object-oriented languages, and provides experimental results for Modula III programs.
Their analysis is similar to ours in the sense that they also propagate types from
allocation sites to uses. Their intraprocedural type propagation improves the results
obtained by type (class) hierarchy analysis by using data flow analysis to propagate
types from type events to method invocations within a procedure. Type events create
or change type information (e.g. new() statements, or assignment statements). Since
the analysis is flow sensitive, type information is merged at control flow points. Type
propagation only propagates types to scalars, and assumes the conservative worst
case (the declared type) for the allocated types of record and object fields, and array
and pointer references. They also present an interprocedural version of the type
propagation analysis which uses a conservative call graph built by their less precise
analysis. The algorithm operates by maintaining a work list of procedures that need
to be analyzed. A procedure needs to be reanalvzed if new information becomes
available about its parameters or about the return value of one of its callees. Some
call graph edges may be removed if the analysis refines the type of a method receiver.
The interprocedural strategy used by them is context insensitive.

Their other analysis called aggregate analysis is aimed towards finding monomor-
phic use of a general data structure. It circumvents the difficulty of analyzing records

12

and heap allocated objects by merging all instances of an object or record type. As
an example, the statements

v: T;
v.f := <rhs>

propagate the types of <rhs> to the field f of all possible types of v. The possible
types of v can be determined by another analysis (such as type propagation) or may
be conservatively approximated as T and its subtypes.

These analyses developed by them for Modula III bear the closest resemblance
to our reaching type analysis. However, there are significant differences between
their approach and our reaching-type analyses. First, we analyze Java bytecode, and
experimented with a wide variety of benchmarks, including some very object oriented
ones. Second, we believe that our approach is more efficient since we build a complete
constraint graph, and solve it once. Their approach requires iterating a flow-sensitive
intraprocedural phase since their interprocedural strategy re-analyzes methods when
information about parameters or return values change due to the intraprocedural
phase. Third, their interprocedural approach uses the declared type of object fields
which can introduce imprecision, whereas we use the reaching types for fields.

Their results showed that they could resolve almost 92% of the method invocation
sites on average, and in some cases improve the performance of these programs by up
to 19%. Their cause analysis approach aimed at discovering the reasons for impreci-
sion of their analyses. It found that polymorphism, insufficiently powerful aggregate
analysis, and context insensitivity were the main factors that prevented them from
resolving all the call sites at compile time.

Also closely related to our work is the work by Bacon and Sweeney [12] on fast
static analysis of C++ virtual function calls. Their study considers three relatively
simple analysis techniques unique name, class hierarchy analysis (CHA), and rapid
type analysis (RTA).

They observed that in some cases there is only one implementation of a particular
virtual function anywhere in the program, and this can be detected by comparing the
mangled names of C++ functions in the object filess. When a function has a unique
name, the virtual call is replaced by a direct call. This is called unique name analysis
and has the advantage that it does not require access to source code and can optimize
virtual calls in library code; however working with object code means that it is not
possible to implement optimizations like inlining.

13

Class hierarchy analysis (CHA) uses the statically declared type of an object with
the class hierarchy of the program to determine the set of possible targets of virtual
calls. We have implemented class hierarchy analysis (CHA) in our framework as the
simplest analysis for building the call graph.

The third analysis studied in the paper is rapid type analysis (RTA). Rapid type
analysis starts with a call graph generated by performing class hierarchy analysis,
and uses information about instantiated types to further reduce the set of executable
virtual functions. The analyses that we have considered are slightly more expensive
and complex, but we have also implemented RTA and studied the results for Java
applications. Their results for RTA show that it is actually most effective when
analyzing library code as it is more likely that there would be classes that are not
instantiated in the library. They also measure the further potential for improvement
by considering the dynamic information for calls in a program trace.

They also give the analysis time for each of their analysis, that show that the
overhead for these analyses is not very significant when compared to the overall time
to compile. They have dynamically measured the results for resolution of user virtual
calls, and also try to produce an estimate for the number of dead call sites. They
conclude that Rapid Type Analysis is extremely effective in resolving function calls,
and reducing code size and it is also proven to be very fast.

Calder and Grunwald [13] examined characteristics of C++ programs and ob-
served that at a given call site the class of the receiver tends to belong to a set con-
taining a small number of classes. Thus they concluded that profile-guided receiver
class prediction would be beneficial though they did not have an implementation in
a compiler to prove this hypothesis. Holzle and Ungar [29] describe transformations
to convert method invocations to direct calls (profile-guided) for Self programs.

Aigner and Holzle [9] in their work in evaluating techniques for resolving method
invocations in C++ found that type feedback and type hierarchy analysis are both
effective at resolving method invocations in C++.

Plevyak and Chien’s iterative algorithm [33] tries to improve a safe call graph to
begin with and tries to refine it to the desired extent by creating new contours.

There has also been work in the area of applying more expensive analyses of vary-
ing complexity for call graph construction, especially for languages like C++. Modula
[1I. and Cecil. Some of the algorithms that are context insensitive are 0-CFA[36. 37].
Palsberg and Schwartzbach's algorithm [32], Hall and Kennedy's call graph construc-
tion algorithm for Fortran [27], and Lakhotia’s algorithm [30] for building a call graph

14

in languages with higher order functions. Other related work includes Shiver’s k-CFA
family of algorithms [36, 37] for selecting the target contour based on k-enclosing
calling contours at each call site, Agesen’s Cartesian Product Algorithm (CPA) [8],
and Ryder’s [35] call graph construction algorithm for Fortran 77. Agesen[7] describes
constraint-graph-based instantiations of k-CFA, and Plevyak’s algorithm.

We have not been able to find any published work done on method inlining in
Java, which takes as input classfiles and produces optimized classfiles. There has been
some research into the benefits of method inlining for other programming languages:
in general inlining is traditionally considered to be a source code level optimization.

Carini [14] suggested some useful heuristics to perform automatic inlining in For-
tran and their work shows that they could almost attain the performance levels of
profile guided inlining in most cases. Their improvements in performance are about
2% on average and about 6% in the best case. Their heuristics are based on two cost
functions. The first cost function attempts to accurately estimate the cost of inlining
a certain function. Their function heuristics take into account the size of a function,
and the the number of loops, number of call sites and the number of I/O calls within
the function. While these are the parameters in calculating the cost associated with
inlining a certain method, there are also several (user specified) constants in their
formula that allow them to tune the automatic inlining strategy. Their second cost
function tries to estimate the benefits of inlining at a particular call site. based on
the level of nesting inside loops, and the size of the control flow block that the call
site resides in. They then traverse the call graph in a bottom-up manner selecting
call sites to be inlined based on the cost functions for the call sites and the methods
they call. This is very similar to our strategy for automatic inlining, which is also
based on selecting potentially important call sites, and inlining at only these call sites
provided the method being inlined is not very large.

Our work on inlining differs from theirs in two important ways. There are many
complex inlining safety issues involved when inlining is performed at the Java bytecode
level. Access restrictions have to be kept in mind, and there are also many Java
Virtual Machine specification dependent issues. The fact that we only inline call sites
within the benchmark and do not alter the Java class libraries in any manner also
impedes our efforts to inline at every possible call site. Inlining library methods might
not be allowed if the method accesses some library field/method that is inaccessible
from the benchmark class (note that we are not allowed to change access restrictions
of class members in the library). Also all calls are statically resolved in Fortran, while
in Java it might be that many of the important call sites cannot be statically resolved

15

because of polymorphic virtual calls.

The other important difference is that we try to inline methods at the Java byte-
code level (which is almost equivalent to inlining on an executable), whereas they
inline at the source code level. Consequently, they are concerned about the size of
their source files as compilation time can increase significantly with increase in the
size of their source files. In our case larger classfiles mean an increase in class loading
time but we have in fact observed that this is not a significant factor in the total
execution time of a benchmark (when the class files are available locally).

The work by Ayers {L1] on aggressive inlining strategies at the intermediate rep-
resentation level showed that they could get significant speedup (in some cases a
factor of 2) for some well known SPEC benchmarks. Their inliner performs possi-
bly multiple passes over the code to inline at the important call sites and also uses
profile feedback. It should be noted that their speedup also included the gains as
a result of many other global optimizations that became more effective as a result
of inlining. Their inliner identifies the important call sites and inlines at these call
sites greedily until it exceeds a precomputed budget. The budget is an estimate of
how much compilation time would increase because of inlining (taking into account
the fact that several optimization phases have non linear complexity). They try to
limit compile-time increases to 100% over no inlining. Since they are compiling down
to native code, they also measure the I-cache and D-cache miss rates, and register
pressure. One of their conclusions is that profile feedback while inlining is crucial in
achieving good performance. They also attack the widely held notion that inlining is
only effective if the methods that get inlined are small in size.

Their work is similar to ours in that they perform inlining at the intermediate
representation level, and their strategy for inlining involves changing the scopes for
program entities wherever required (similar to changing access modifiers of class mem-
bers in our case). There are also some differences compared to our work; their front
end can build the intermediate representation for Fortran, C, and C++ programs.
whereas we try to optimize Java bytecode. Also their inlining strategy is dictated to
a large extent, by architecture related issues (caches, register allocation) which might
not be applicable for Java in the presence of interpreters. They are able to include
the cumulative effects of inlining itself and all the other compiler optimizations that
become more effective in the presence of inlining in their performance results. We
only report the raw improvement that method inlining has on performance as the rest
of our framework is not developed enough to perform some of the global optimizations
that they perform.

16

The work by Hwu et al.[31] focuses on the effectiveness of inlining in reducing
the number of dynamic function calls for C programs on their IMPACT system. In
related work on the same system Chang et al.[16] report a mean speedup of 11%
with a maximum speedup of 46%. Their benchmarks are largely under 5000 lines
of C code, whereas we try to analyze larger sized benchmarks. They use profiling
information to assign weights to different call sites in their call graph, and use these
weights while making inlining decisions. The other factor that they consider while
deciding whether to inline at a call site is their cost function value at that call site.
The cost function tries to estimate the effect on code size and cache performance if
inlining is allowed at a particular call site. The cost function for methods are updated
after each inline expansion.

Their experiments show that a large percentage of function calls/returns (about
59%) can be eliminated with a modest code expansion cost (17%). They suggest that
the reduction in function call frequency would result in larger basic blocks that could
be exploited effectively by instruction scheduling. The main source of the function
calls remaining after inline expansion are system calls to the operating system and
they express the need for further research in that area.

Davidson and Holler [20] described INLINER, an implementation of a C source to
source automatic inliner and achieve a mean speedup of 12% with a maximum speedup
of about 35%. Their main observation was that the increased register pressure as a
result of inlining can have detrimental effects on performance. They do not compare
their results with a profile feedback, whereas we provide experimental data for profile
guided inlining.

Dean and Chambers [21] describe a novel approach that essentially involves train-
ing the compiler to make good inlining decisions. The compiler uses a database to
record the results of inlining experiments conducted in the past. The potential benefit
of an inline is estimated by consulting the database.

More research into inlining and related issues can be found in the work by Cooper
et al. [18, 19, 17], Richardson et al. [34], Holler 28], and Allen et al. [10].

1.4 Thesis Contributions

We have focused on reducing the overhead associated with virtual method calls in
Java bytecode in this thesis. We have adopted two distinct approaches to address

this problem. First, we have tried to improve the precision of existing and future
interprocedural analyses in our compiler framework by developing and implementing
analyses that build a reasonably accurate call graph for the program. Second, we
have implemented a compiler optimization that eliminates virtual calls and improve
the performance of programs compiled to Java bytecode. We now briefly describe our
work in both these approaches.

Simple techniques for call graph construction in the presence of virtual calls can
be inaccurate especially in the case of highly object oriented programs, as they would
have to assume that a particular call site might invoke many different methods at run
time. Since the call graph is the basis of all interprocedural analyses, an inaccurate
call graph can severely limit the effectiveness of interprocedural analyses. We imple-
mented two well known and relatively inexpensive techniques for building call graphs,
class hierarchy analysis|23, 25, 12| and rapid type analysis{12]. These two analyses
serve as a baseline for comparison with the new techniques we propose.

Our original contribution is a new group of analyses, called reaching-type analyses,
which are based on a type propagation graph where nodes represent variables and
edges represent the flow of types due to assignments. The variations of reaching-type
analyses that we have implemented are both flow-insensitive and contezt-insensitive
and are consequently not expected to be very expensive if implemented in an actual
compiler.

The first variation is called declared type analysis, where nodes represent the de-
clared type of a variable. This is designed to be a coarse grained analysis that tries
to limit the number of nodes in the constraint graph, so that the cost of solving the
constraints is not high.

The second variation is more fine grained and is called variable type analysis.
In variable type analysis, nodes represent variable names. It is more expensive to
solve the constraints in this case as there are more nodes and edges in the constraint
graph, but our empirical results show that this analysis does build a call graph that
is significantly more accurate than any of the other analyses.

We have implemented declared type analysis and variable type analysis using the
Soot framework(1], that provides several intermediate representations and APIs for
analysis and transformation of Java bytecode.

We statically measured the precision of the call graphs built by each of the four
analyses we implemented in our experiments using a set of 13 benchmarks generated

18

from Java, Ada, ML, Eiffel and Pizza. These benchmarks are meant to be represen-
tative of real applications and vary in size from 1,000 to 42,000 Jimple statements
without library code. As our analysis requires the whole application (including Java
class libraries), the size of the program under analysis is actually about 70,000 Jimple
statements for our largest benchmark.

In addition to the static analyses, we also produced a dynamic profile that is
used to determine which methods are actually called at run time, and to obtain the
frequency of execution of each call site. We then used these resulits to give us a bound
on what can be achieved statically, and to compare the dvnamic results of the haseline
analyses with our reaching-type analyses.

We have implemented an optimization called method inlining aimed at improving
performance of bytecode. Method inlining involves replacing a method invocation
instruction by the code of the method that it invokes (if it can be determined at
compile time). We provide a detailed and clear specification of the safety issues that
are specific to performing method inlining at the Java bytecode level. We also discuss
some important inlining criteria and our own static inlining strategy. We have added
an option in our inliner that would allow for profile guided inlining. We have measured
the run time improvement in performance for the set of benchmarks we mentioned
earlier, and also compared our inlining strategies.

In summary, the main contributions of this thesis are :

e Design of reaching-type analyses used to estimate the set of run time types for
the receiver of virtual method calls. Development of a coarse grained variation
called declared type analysis, and a more accurate variation called variable type
analysis, both of which are flow insensitive and context insensitive.

o Implementation of these analyses along with two well known analyses using
Soot, which is a Java bytecode analysis and transformation framework. Study
of the effectiveness of these analyses on a set of real, large sized benchmarks.
Comparison with profiling results to estimate the bound for the best that can
be achieved by any analysis.

e Implementation of method inlining with automatic and profile guided options
and comparison of the two strategies. Measurement of the run time performance
impact of this optimization on our set of benchmarks.

19

1.5 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2 we introduce the well
known analyses, class hierarchy analysis and rapid type analysis that we have imple-
mented, and we provide detailed rules for our new analyses. In chapter 3 we discuss
issues related to the optimization we have implemented. We present empirical data
demonstrating the effectiveness of our analyses and optimization on real benchmarks
derived from different languages in chapter 4. Finally, we state our conclusions and
discuss the scope for future work in chapter 5.

20

Chapter 2

Analyses

In this chapter we introduce the analyses we have implemented that provide more
precise information at virtual call sites. We also present the rules associated with
each analysis and use examples to illustrate the differences between the analyses.

Our study is directed toward relatively cheap analysis techniques as we want to
apply these techniques to large programs. Thus, it is essential that the techniques
scale well with program size. Also the fact that we are doing whole application
analysis means that we have to analyze classes that belong to the Java class library,
and this can have a significant effect on the memory/time requirements of the analysis.

The analyses we have studied can be grouped into two categories. The first cat-
egory consists of baseline analyses, which are known techniques that are among the
cheapest for the problem of virtual method call resolution. The two analyses in
this category are class hierarchy analysis (CHA)(23, 25, 12| and rapid type analysis
(RTA)[12]. These techniques have been studied for other object oriented languages
like Cecil[15] , Modula III{24}, and C++[12] and hence form a baseline for comparison
with our other analyses. The second group of analyses called reaching-type analyses
is proposed by us and is based on an analysis that builds a type propagation graph
where nodes represent program variables and edges represent the flow of types as a
result of assignments. There are two analyses that fall in this category, declared type
analysis (DTA) and variable type analysis (VTA). In declared type analysis, nodes
represent declared types of program variables, whereas in variable type analysis the
nodes represent program variables.

Our aim in performing each of the analyses is to determine the methods that
can be invoked at virtual method call sites. The results of such analyses have many

21

uses. We have used the results to perform a compiler optimization known as method
inlining that aims to improve program performance. We discuss method inlining in
greater detail in Chapter 3. Another consequence of improving the call graph of the
program at virtual call sites is that it improves the precision of subsequent analyses
like side effect analyses.

We now present details of our implementation of the analyses. In section 2.1 we
explain how we build the class hierarchy, followed by a description of the structure
of the call graph built using class hierarchy analysis. We then explain our implemen-
tations of rapid tvpe analysis, reaching-tvpe analvsis and diseuss some limitations in
sections 2.2, 2.3 and 2.4 respectively. We discuss the comparison of our results with
dynamic results in section 2.5.

2.1 Hierarchy Analysis and the Conservative Call
Graph

The objective of all of our analyses is to determine, at compile-time, a call graph with
as few nodes and edges as possible. All of our analyses start with a conservative call
graph that is built using class hierarchy analysis.

2.1.1 Class Hierarchy Analysis

Class hierarchy analysis is a standard method for conservatively estimating the run-
time types of receivers. Given a receiver o of with a declared typed, hierarchy._types(o.d)
for Java is defined as follows:

o If receiver o has a declared class type C, the possible run-time types of o,
hierarchy_types(o,C), includes C plus all subclasses of C.

o If receiver o with a declared interface type I, the possible run-time types of
0, hierarchy-types(o,I), includes: (1) the set of all classes that implement I or
implement a subinterface of I, call this set implements(I), plus (2) all subclasses
of implements(I).

To implement this analysis, we simply build an internal representation of the
inheritance hierarchy, and then we use this hierarchy to compute the appropriate
hierarchy_types sets.

22

We now present details specific to our implementation of the inheritance hierarchy
using the Soot framework.

Step 1 : Include all the classes that might be accessed starting from the main
class. Note that in this step we are actually including all the classes in the set that is
the transitive closure of all the classes that can be accessed. This is achieved through
the use of a SootClassManager that automatically builds SootClass representations
for all classes that belong to the transitive closure. We will refer to this set as
SootClassList.

Step 2 : Establish all the direct superciass-subciass relationships between the
classes included in Step 1. Each class maintains a list of its immediate subclasses in
SubClassList at this stage. Note that the superclass of a particular class may be ob-
tained directly from its SootClass representation. See method EstablishDirectRelations
in Figure 2.1

Step 3 : Each class maintains a list of all its subclasses (all the classes in that
subgraph of the inheritance graph of which the class is the root). Note that the
subclasses are included in a transitive manner. See method includeAllSubClasses
in Figure 2.2.

Step 4 : Each interface maintains a list of the SootClasses that implement the
interface. See method setImplementors in Figure 2.3.

void EstablishDirectRelations() {

while (SootClassList.hasNext())
{
nextclass = next(SootClassList);
superclass = SuperClass(nextclass);
add the SootClass corresponding to nextclass to superclass.SubClassList;

}
}

Figure 2.1: Establishing direct parent child relationships
To implement this analysis, we simply build an internal representation of the the

inheritance hierarchy, and then we use this hierarchy to compute the appropriate
hierarchy_types sets.

23

void includeAllSubClasses() {

while (SootClassList.hasNext())
{

nextclass = next(SootClassList);

subclass(Q = nextclass.SubClassList;

while { ! subclassQ.isEmpty())
{

nextsubclass = head(subclassQ);

if (! nextclass.SubClassList.contains(nextsubclass))
add nextsubclass to nextclass.SubClassList;

subsubclasslist = nextsubclass.SubClassList;

while (subsubclasslist.hasNext())

{
nextsubsubclass = mnext(subsubclasslist);
if (nextsubsubclass does not belong to nextclass.SubClassList)
add nextsubsubclass to subclass(Q;

}

}
}
}

Figure 2.2: Including all the subclasses transitively into the Sub-
ClassList of a parent

2.1.2 Call Graphs

For our purposes a call graph consists of nodes and directed edges. The call graph
must include one node for each method that can be reached by a computation starting
from the main method (or if the program has threads, then the call graph must also
include all methods that can be reached starting at any start or run method in
a class that implements java.lang.Runnable). An example call graph is given in
Figure 2.4(b).

Each node in the call graph contains a collection of call sites. Consider a method
M from class C' with n method calls in its body. Method M is represented in the
call graph by a node labeled C.M, and this node will contain entries for each call
site, which we denote C.M[c;] to C.M[c,]. In our example, the call graph node for
method B.main contains two call sites, B.main[1] which is a.m(), and B.main[2]

24

void setImplementors() {

while (SootClassList.hasNext())
{
nextclass = next(SootClassList);
interfacelist = nextclass.getInterfaces();
/* returns the list of SootClasses corresponding
to the interfaces implemented by nextclass */

while (interfacelist.hasNext())
{
implementedinterface = interfacelist.next();
add nextclass to implementedinterface.ImplementorList;
}
}
}

Figure 2.3: Establishing (interface) directly implemented-by relation-
ships

which is b.m().

| __Bmain ___
toString() /9-@& b.m()
| ____Am___ | |Bm | | Cm
this.tpString()
!
m() m() | _Object.toString |
main()
Class Hierarchy Call Graph

Figure 2.4: An example of the Call Graph built for the program.

Edges in the call graph go from call sites within a call graph node,. to call graph
nodes. The call graph must contain an edge for each possible calling relationship
between call sites and nodes. If it is possible that call site C.M.c[i] calls method

25

C'.M’, then there must be an edge between C.M.c[i] and C'.M' in the call graph. In
the example call graph there are three edges from the call site a.m() corresponding
the fact that the virtual call a.m() might resolve to calls to A.m, B.m or C.m.

Special attention is required when adding calling edges from a virtual method or
interface call and this is done using an approximation of the run-time types of the
receiver. Given a virtual call site C.M[i] of the form o.m(ay,...,a,), and a set of
possible runtime types for receiver o, call this runtime_types(o), we find all possible
targets of the call as follows. For each type C; in runtime(o), look up the class
hierarchy starting at Cj until a class Ciarger is found that includes a method Cigrger.m
that matches the signature of m. An edge from C.M[i] to Cigrges-m is added to the
call graph.

Consider the the call a.m() in the example in Figure 2.4. If the possible runtime
types for receiver a includes {4, B,C}, then in each case a matching method m is
found in the class itself (without looking further up the hierarchy), and thus the call
edges to A.m, B.m, and C.m are added. However, sometimes the target method is
found further up the hierarchy. Consider the call this.toString(). If the possible
runtime types the receiver this are {4, B, C}, then looking up the hierarchy in each
case will result in the target Object.toString().

Note that a call graph may contain spurious nodes and edges. Spurious edges may
be included for virtual method calls. When adding call edges from a virtual method
call site C.M[i] of the form o.m{a,,...,a,), an edge must be placed between this
call site and every method C’.m corresponding to the possible run-time types of the
receiver o. If we use a conservative approximation of the run-time types for o, then
we may include spurious types in our approximation, and this may lead to spurious
edges. In our example, if the type of the receiver a in the call a.m() can only have a
runtime type of A, then the edges to B.m and C.m are spurious.

Spurious nodes are included when all incoming edges to the node are spurious. In
the example, if the edge from a.m() to C.m is spurious, then the node C.m would also
become spurious.

The analyses presented in this paper are designed to reduce the number of spurious
edges and nodes by providing better approximations of the runtime types of receivers.

26

2.1.3 Building the Conservative Call Graph

In our implementation, call graphs are built iteratively using a worklist strategy.
The worklist starts with nodes for all possible entry points (i.e. main, start, run).
As each node (method) is added to the call graph, edges from the call sites in the
node are also added. If the target of an edge is not already in the call graph, then
it is added to the call graph and to the worklist. Conservative call graphs are built
using hierarchy_types as the estimate for runtime_types for determining the edges from
virtual method call sites.

Consider the example in Figure 2.4. The conservative call graph starts with the
entry method C.main which includes two call sites a.m() and b.m(). Next, edges are
added from a.m(). The type of receiver a is estimated using hierarchy analysis on the
declared type of a, Hierarchy.types(A)={A,B,C}. For each element of this set, the
appropriate method m is located, leading to three call edges to A.m, B.m and C.m. The
edges from call site b.m() ¢re added similarly, leading to one edge to B.m. There is
one remaining call site, this.toString() which is inside method A.m. The declared
type of this is A, and hierarchy_types(A)= {A,B,C}. However, in this case all three
types lead to the same call edge to the method Object.toString(). This illustrates
the point that a tighter estimate of run-time types may not necessarily lead to fewer
edges. Thus, our experimental measurements concentrate on measuring the number
of call edges, and not the accuracy of the type resolution.

We now explain our implementation of the call graph by performing Class Hier-
archy Analysis using the Soot framework.

In Java bytecode, there are four different kinds of invoke expressions, and we
explain the algorithm to build the call graph for each kind of invoke expression :

e invokestatic: This invoke expression is generated when the method call in the
source language from which the bytecode was produced was to a method de-
clared to be static. These method calls are already resolved statically and the
the target method of the call is known before run time. The method in the
invoke expression is the target of the call.

e invokespecial: This invoke expression is generated for calls to constructors, pri-
vate methods, or methods in some parent class of the class in which the invoke
expression occurs. The first two cases are simple as the method invoked at run
time is the method referred to in the invoke expression. However there is some

27

lookup performed in the case of calls to methods in a parent class of the current
class. See Figure 2.6 for the algorithm.

o invokevirtual: This invoke expression is generated when the method call cannot
be resolved at compile time and the target of the call is dependent on the run
time type of the object that is the receiver of the call. In this case, we obtain
the Jimple type of the local corresponding to the receiver of the method call,
and use this type to build the call graph.

e invokeinterface: This invoke instruction is generated when the rece of the
call is of interface type in the Java source code. In this case too, we use the
type of the local corresponding to the receiver in Jimple. See Figures 2.8 and

2.9 for the algorithm.

public SootMethod performMethodLookup (searchingclass, invoke expression)
searching = true;

while (searching)
{
if (searchingclass declares a method m which has the same name,
parameter types, and return type as the method in the invoke expression)
{
searching = false;
declaredmethod = searchingclass.getMethod(m);
return declaredmethod;
}
else
searchingclass = SuperClass(searchingclass);
}
}

Figure 2.5: Method to perform method lookup

2.2 Rapid Type Analysis (RTA)

Rapid type analysis [12] is a very simple way of improving the estimate of the types of
receivers. The observation is that a receiver can only have a type of a object that has
been instantiated via a new. Thus, one can collect the set of object types instantiated
in the program P, call this instantiated_types(P). Given a receiver with declared type

28

public void buildCallGraphForInvokeSpecials (invoke expression) {

if ((the name of the method in the invoke expression is <init>)
|| (method in invoke expression is private))

add an edge between the callsite and the MethodNode corresponding

to the method in the invoke expression;

else

{

if (the declaring class of method in invoke expression is
a superclass of the currentmethod)

{

/* Method lookup is performed as it is a call to superclass’s method */
targetmethod = performMethodLookup (currentclass, invoke expression };
add an edge between the callsite and the MethodNode corresponding

to targetmethod;

}

else add an edge between the callsite and the MethodNode corresponding
to the method in the invoke expression;

Figure 2.6: Building the call graph for invokespecial

C with respect to program P, we define rapid_types(C,P) = hierarchy_types(C) N
instantiated_types(P).

As an example, consider the program P given in Figure 2.4(a), and assume that
the program contains instantiations of objects of type A and B. Now consider the call
site a.m(), where a has declared type A. In this case we would use rapid_types(4.P)
= {A,B} to find the runtime types for receiver a. This leads to only two call edges,
to A.m and B.m. So, using rapid type analysis the call graph would not include the
call edge to C.m, nor would it include the node for C.m.

We have implemented rapid type analysis in our framework in order to give us
a baseline for comparison with our other methods. Note that our implementation
of rapid type analysis is based on a pessimistic approach, as it starts with a call
graph that is correct (built using class hierarchy analysis) and does not alter it in
any manner during the analysis (detection of instantiations). After the analysis is
complete. the call graph is pruned in one pass over the original call graph.

The alternate approach to performing rapid type analysis is termed the optimistic
approach. In this approach it is initially assumed that no methods except main are
called and no objects are instantiated, and therefore no virtual call sites call any target

29

public void BuildCallGraphForInvokeVirtuals (invoke expression) {

declaredclass = type of the Jimple local corresponding to the receiver of the
method call;

/* if base of the call is of ArrayType, call reaches method in java.lang.Object =/
if (declaredclass is an ARRAY type)

add an edge between the callsite and the MethodNode corresponding to the

method in the invoke expression;

else

{
targetmathod = perfcrmMethodLookup { daclarsedclass, invoxe expression J,;
add an edge between the callsite and the MethodNode corresponding to
targetmethod;

subclasslist = declaredclass.SubClassList;
wvhile (subclasslist.hasNext())
{
subclass = subclasslist.next();
if (subclass declares a method m which has the same name, parameter types,
and return type as the method in the invoke expression)
{
submethod = subclass.getMethod(m);
add an edge between the callsite and the MethodNode
corresponding to submethod;
}
}
}
}

Figure 2.7: Building the call graph for invokevirtual

methods. The call graph created by class hierarchy analysis is traversed starting at
main. Virtual call sites are initially ignored. When an object is created, any of
the virtual methods of the corresponding class that were left out are then traversed
as well. The live portion of the call graph and the set of instantiated classes grow
iteratively in an interdependent manner as the algorithm proceeds.

The pessimistic approach has the advantage that the call graph is always correct
during the analysis, and hence the analysis can be terminated at any point, and the
call graph can be safely used for performing subsequent analyses or optimizations.
Also this approach is relatively efficient as compared to the optimistic approach as the
algorithm is not iterative and statements are examined only once, and the complexity
of pruning the call graph is linear in the number of edges in the call graph. The

30

public void BuildCallGraphForInvokeInterfaces (invoke expression) {
' /% if base of the call is of ArrayType, call reaches method in java.lang.Object */
if (declared type of the receiver is an ARRAY type)

add an edge between the callsite and the MethodNode corresponding to the

method in the invoke expression;

else

declaringinterface = (INTERFACE) declared type of the receiver;
implementorlist = declaringinterface.ImplementorlList;

implementorclass = implementorlist.next();

targetmethod = performMethodLookup (implementorclass, invoke
expression);

add an edge between the callsite and MethodNode corresponding
to targetmethod;

implementorsubclasslist = implementorclass.SubClasslList;
vhile (implementorsubclasslist.hasNext())

{

implementorsubclass = implementorsubclasslist.next();

. if (implementorsubclass declares a method m which has the same name,
parameter types, and return type as the method in the invoke expression)

{
implementorsubmethod = implementorsubclass.getMethod(m);
add an edge between the callsite and MethodNode corresponding
to implementorsubmethod;

}

}
}
}

Figure 2.8: Building the call graph for invokeinterface

optimistic approach arrives at an answer that corresponds to the least fixed point
in the call graph lattice domain whereas the pessimistic approach would terminate
at the greatest fixed point. In other words, the optimistic approach is guaranteed
to produce a call graph at least as precise as the one produced by the pessimistic
approach. However, the algorithm must terminate to ensure that the resultant call
graph is correct, as the call graph might be incomplete at intermediate steps. Also as

31

interfacesubclasslist = declaringinterface.SubClassList;
while (interfacesubclasslist.hasNext())

{

subinterface = interfacesubclasslist.next();

implementorlist = subinterface.ImplementorList;
while (implementorlist.hasNext())
{

subintimplementorclass = implementorlist.next();

implementedmethod = performMethodLookup (subintimplementorclass,
invoke expression);

add an edge between the callsite and the MethodNode corresponding
to implementedmethod;

subintimplementorsubclasslist = subintimplementorclass.SubClassList;

while (subintimplementorsubclasslist.hasNext())

{

subintimplementorsubclass = subintimplementorsubclasslist.next();

if (subintimplementorsubclass declares a method m which has the same name,

parameter types, and return type as the method in the invoke expression)

{
subintimplementorsubmethod = subintimplementorsubclass.getMethod(m);
add an edge between the callsite and the MethodNode corresponding to
subintimplementorsubmethod;

Figure 2.9: Building the call graph for invokeinterface (continued)

the algorithm is iterative it might need to examine a particular call site several times.

Typically in benchmark code, methods are rarely created without being called;
hence we expect both approaches of rapid type analysis to produce similar results. In
library code, the optimistic approach might perform better as there are often methods
created for use by developers (that are not actually called within the library itself).
We have chosen to implement the pessimistic approach as we are using rapid type
analysis as a baseline for comparison purposes only, and as we are interested more in
analyzing and optimizing the benchmark alone and not the libraries.

32

Rapid type analysis says that a type A reaches a receiver o if there is an instan-
tiation of an object of type A (i.e. an expression new A() anywhere in the program,
and A is a plausible type for o using hierarchy analysis. RTA is expected to perform
well on applications that contain many abstract classes (which are never instantiated
in Java). Abstract classes are expected to be present in library code that is created
to be used by other applications.

A detail about RTA that needs to be explained is what happens when an array
is instantiated : A[] a = new A[10]; In this case RTA would consider it simply
as if an instance of the class A had been created. A method call with an arrav
element as the receiver e.g. afi]l.m() would be recognized as possibly reaching
A.m() by RTA. Method calls with a as the receiver (e.g. a.toString()) actu-
ally reach java.lang.Object's methods at runtime. If the base of the method call
is is an array, we recognize the fact that the call graph edge to the method in class
java.lang.Object must be retained. Thus call sites with the array variable a or an
array element a[i] as the receiver are both handled correctly.

2.3 Reaching Type Analysis

Assuming an intermediate form like Jimple, where all computations are broken down
into simple assignments, and assuming no aliasing between variables, we can state the
following property. For a type A to reach a receiver o there must be some execution
path through the program which starts with a a call of a constructor of the form v =
newA() followed by some chain of assignments of the form r; = v, 20 = 1y,...2,_, =
Zn,0 = Z,. The individual assignments may be regular assignment statements, or the
implicit assignments performed at method invocations and method returns.

We propose two flow-insensitive approximations of this reaching-types property.
Both analyses proceed by: (1) building a type propagation graph, (2) initializing the
graph with type information generated by new() statements, and, (3) propagating
type informaticn along directed edges.

For a program P, each receiver o is associated with some node in the type prop-
agation graph, called representative(o). Further, after propagating the types. each
node n in the type propagation graph is associated with a set of types, called reach-
ing-types(n). Given a receiver o, the types reaching o is the set
reaching_types(representative(o)).

33

In the following subsections we describe the analysis in more detail. We first
present the more accurate analysis, called variable-type analysis, where the represen-
tative for a receiver o is the name of o, and then explain a coarser-grain variant called
declared-type analysis where the representative for o is the declared type of o.

2.3.1 Variable-type analysis

sis uses the “name” of a variable as its representative. In Jimple

| S
iee

ACAT b Ao

Variable type anal
t iinds of variable references, and we assign representative names as

y
com A haven 1
WwE Call idve N

follows:

Ordinary references: are of the form a, and refer to locals or parameters. The
name C.m.a is used as our representative, where C is the enclosing class and m
is the enclosing method.

Field references: are of the form a.f where a could be a local, a parameter, or
the special identifier this. We use as the representative the name of the field
only (i.e. C.f) where C is the name of the class in which f is declared. This
means that we are approximating all instances of objects with field C.f by one
representative node in the type propagation graph.

Array references: are of the form a[x], where a is a local or parameter, and x is
a local, parameter, or constant. We treat arrays as one large aggregate, so the
name C.m.a is used, similar to the ordinary reference case.

Constructing the type propagation graph

Given a program P, where P consists of all classes that are referred to in the conser-
vative call graph, nodes are created as follows:

o for every class C that is included in P
© for every field f in C, where f has an object type
create a node labeled with C. f

e for every method C.m that is included in the conservative call graph of P
® for every formal parameter p; of C.m, where p; has an object type
create a node labeled C.m.p;

34

@ for every local variable [; of C.m, where /; has an object type

create a node labeled C.m.[;
©® create a node labeled C.m.this to represent the implicit first parameter
@ create a node labeled C.m.return to represent the return value C.m

Note that the last two rules could be optimized to add the C.m.this node only
when the method refers to this, and to add C.m.return only when the method
returns an object type. Our current implementation does not perform this
optimization.

Once all of the nodes have been created, we add edges for all assignments that
involve assigning to a variable with an object type. These may be either direct as-
signments via assignment statements, and indirect assignments via method invocation
and returns. Edges are added as follows:

Assignment Statements: are all in the form (hs = rhs;, where the (hs and rhs
must be an ordinary, field or array reference. For each statement of this form,
we add a directed edge from the representative node for rhs to the representative
node of lhs.

Method Calls: are in the form of (hs = 0.m(a,,a,,....a,); or o.m(a;.aa,....a,):.

The receiver o must be a local, a parameter, or the special identifier this. The
arguments must be a constant, a local, or parameter name.

The method call corresponds to some call site, call it C.mfi/, in the conservative
call graph. Assignment edges are added as follows:

for each C'.m’ that is the target of C.m[i] in the conservative call graph
® add an edge from the representative of o to C'.m'.this
@ if the return type is not void
add an edge from C’.m’.return to the representative for lhs
@ for each argument a; that has object type
add an edge from the representative of a; to the representative of
the matching parameter of C'.m/.

In Figure 2.10(a) we give the important parts of an example program. Note that
since our analysis is flow-insensitive, the order of assignments is not important, nor is
control flow. Thus, this list of assignments represents a program that contains those

35

assignments. This program has only ordinary variables of the form ai, a2, a3, bi,
b2, b3, c. Figure 2.10(b) shows the initial graph. There is one node per variable, and
one edge per assignment. For example, the assignment a3 = b3; corresponds to the
edge from b3 to a3.

A al, a2, a3;
() (&)
cey {A} } (
a1 AO N\ N\ N N

s oaw ’ bl b2 b3 bl b2 b3
a2 = new A{); K\~‘) B L\—/)
bl = naw B(): (8} {8}
b2 = new B(};
c = naw C();

{C}
al = a2;
al = a1; (b) Nodes and Edges {c) Initial Types
al = b3;
bl = (B) al;
bl = b2;
bl = ¢;

R b

(a) Program

A} {A}

{8.C}

O AR L
o @- i
ToRERCD

C]

.
O
&
I
"\.’i—r‘ —'

< <)

(¢) Strongly-connected components (e) final solution

Figure 2.10: An example of the type propagation graph for Variable
Type Analysis.

Aliases

All of the assignment rules assume that a variable reference, and all of its aliases.
are represented by exactly one node in the type propagation graph. That is, if a
and b are aliases, then they should correspond to the same node in the graph. This
is true for ordinary references because locals and parameters cannot be aliased in
Java.! It is also true for field references because we represent all instances of objects

1That is, two locals a and b must represent different locations, and there is no mechanism for
getting a pointer to those locations.

36

with that field as one node in the graph. So, if two field references a.f and b.f are
aliased (a and b refer to the same object) it is fine because we are representing them
both with a field called £. However, it is not true for array references because several
different variable names may refer to the same array. Further, references to arrays can
be stored in variables with type java.lang.Object.? Thus, when adding edges for
assignments of the form (ks = rhs, where both sides are of type java.lang.0Object, or
when at least one side has an array type, edges are added in both directions between
the representatives of rhs and lhs. This encodes the aliasing relationship, and both
nodes are guaranteed to be assigned the same solution.

Size of the propagation graph

Note that the type propagation graph includes at most 2M + P + L + F nodes, where
M is the number of methods, P is the total number of parameters, L is the total
number of locals, and F is the number of fields in the program under analysis. Thus,
it seems reasonable to conclude that the number of nodes grows linearly with the size
of the program.

The number of edges is slightly more difficult to estimate. There is at most one
edge for each assignment statement in the program. However, the number of edges
due to method calls depends on the number of targets for call sites. In the worst case
a method call may have C targets, where C is the number of classes in the program
under analysis. Thus, each method call could result in C x (2 + num.params) edges
being added to the type propagation graph. So, it is possible to have O{C x M.}
edges, where C is the number of classes and M, is the number of method calls in
the program under analysis. In practice we do not find this behavior, and in fact the
graphs are quite sparse.

Initializing and propagating types

In the initialization phase, we visit each statement of the form lhs = new A(); or
lhs = new A[nj;. For each such statement we add the type A to the ReachingTypes
set of representative node for lhs. Figure 2.10(c) shows the type initialization for the
example program.

2For example, consider A[] a = new A[10]; Object ol = a; Object 02 = o1; A[]l b =
02; In this case a, o, o1, 02 and b are all referring to the same array.

37

After initialization, we propagate types. This is accomplished in two phases. The
first phase finds strongly-connected components in the type propagation graph. Each
strongly-connected component is then collapsed into one supernode, with Reaching-
Types of this collapsed node initialized to the union of all ReachingTypes of its con-
stituent nodes. Figure 2.10(d) shows two nodes collapsed. In this case neither node
had an initial type assignment, so the collapsed node has no type assignment either.

After collapsing the strongly-connected components, the remaining graph is a
DAG, and types are propagated in a single pass starting from the roots in a breadth-
first manner. Note that both the strongly-connected component detection and prop-
agation on the DAG has complexity O(maz(JV, £')) operations, where the most ex-
pensive operation is a union of two ReachingType sets.

Figure 2.10(e) shows the final solution for our small example. From this solution
we can infer that variables a1, a2, a3 and b3 have a reaching type A(i.e. they can only
refer to objects of type A). Variable b2 has a reaching type type B, ¢ has a reaching
type of C, and b3 has a reaching type of A,B.

We have present the rules showing the effect of each Jimple statement on the
constraint graph constructed by variable type analysis in Appendix A.

2.3.2 Declared Type Analysis

Declared-type analysis proceeds exactly as variable-type analysis, except for the way
in which we allocate representative nodes for variables. In declared-type analysis we
use the declared type of the variable as the representative, instead of the variable
name. Basically, this is just putting all variables with the same declared type into
the same equivalence class. Figure 2.11 shows the declared-type analysis for same
program for which we previously computed the variable-type analysis. Note that the
size of the graph is considerably smaller, but also the final answer is not as precise.
The declared-type analysis concluded that all variables with declared type of C must
point to C objects. However, it conservatively concludes that variables with a declared
type of A or B might point to A, B or C objects. In Chapter 4 we present empirical
results to evaluate these two analyses with respect to accuracy and the size of the
graph problem to be solved.

We present the rules showing the effect of each Jimple statement on the constraint
graph constructed by declared type analysis in Appendix B.

38

A al, a2, a3;

RS -0 || do-C
Ccy

{A} {8} <}

al = new A();
a2 = new A();

bl = new B(); (b) Nodes and Edges (c) Initial Types
b2 new B();
c = new C();

al = a2;
al = al;
a3 = b3;
b3 = (B) a3;
bl = ba;
bl = ¢;

(d) Strongly-connected components (e) final solution

(a) Program

Figure 2.11: An example of the type propagation graph in Declared
Type Analysis.

2.4 Assumptions and Limitations

In this section we discuss some issues that limit the precision of our analyses and how
we have attempted to reduce their impact.

Native Methods

It is not possible to jimplify native methods and so our analyses are unable to analyze
the statements in these methods. We have therefore summarized the effect of native
methods by manually going over the source code for native methods (available with
the open source JVM Kaffe [2]), and checking for class instantiations and writes to
fields. Since native methods are typically encountered in library code only and not
in benchmark applications, we can use the results that we obtained for library native
methods repeatedly when we are analyzing different benchmarks. In the presence of
native methods in the benchmark application itself, the results of the analysis might
be incorrect if the native methods have significant side effects.

To give a better feel of the summarizing that we have done for native methods
we present the following example. An example of a native method that is commonly
invoked is the clone() method in java.lang.Object. This method has no impact

39

on rapid type analysis, as objects are only being duplicated and the set of instantiated
classes does not change as a result of cloning. For the reaching type analyses, we need
to recognize the fact that the object that is the receiver of the call is being duplicated
and returned by the method. Thus all the runtime types that were associated with
the receiver must also be associated with the object returned by the method and
there is no need to be any more conservative.

The task of summarizing native methods is simplified to an extent by the obser-
vation that native methods rarely write to fields. In fact there are not very many
library classes that declare fields of reference type {most of the fields in libraries are
of primitive types). Thus we found that in practice, apart from detecting instanti-
ated objects that are returned by native methods, the summarizing was not a very
involved process.

The Closed Application Assumption

The basis for all the analyses that we have implemented apart from CHA is that
classes can be instantiated oniy by new statements. However this is not strictly true
in Java because of the native library method java.lang.Class.newInstance(). It
is possible to use this method to instantiate any class as shown in Figure 2.12

class Arbitrarylnstantiation {
public static void main (Stringl] args) throws
java.lang.InstantiationException, java.lang.IllegalAccessException,
java.lang.ClassNotFoundException
{
String arbitraryclass = args(0];
java.lang.Class ¢ = java.lang.Class.forName (arbitraryclass };
Object o = c.newlnstance();
System.out.println (o.toString());
}
}

class ArbitraryClass {
public String toString() { return "Arbitrary"; }

}

Figure 2.12: Example of class instantiation without a call to a con-
structor

When the ArbitraryInstantiation class is run with the argument args([0]
equal to ArbitraryClass, the output is the string ¢ ‘Arbitrary’’ produced by the

40

toString() method of ArbitraryClass. In general depending on the argument,
any class that is accessible to the Java Virtual Machine might be instantiated in the
above manner.

It is impossible to detect class instantiations that occur in this manner through
static analyses, and we make the assumption that applications we are analyzing must
be closed, i.e. all the classes that are accessed from the class must be referred to in
the code explicitly. We compensate for calls to java.lang.Class.newInstance()
in Java library code by manually checking the methods in which there are calls to
this method, and observing the actual class that is being instantiated by looking at
the source code. This task was also not very hard in practice, as at all places where
there are calls to this method, it is followed in the source code by explicit casts that
allow us to detect the actual class of the object. If the benchmark itself loads some
classes dynamically, then a possible solution might be to specify the names of these
classes in a file. At the time of building the inheritance hierarchy this file could be
examined and intermediate representations for the classes referred to in the file could
be built to be used by subsequent analyses and optimizations.

2.5 Comparison with Dynamic Results

The focus of the analyses presented in this chapter is in obtaining a precise set of
methods called from each method call site. One possible measure that could be used
to evaluate different analyses being compared is the number of edges that get removed
from the call graph in each case. This comparison is based entirely on the static results
that are obtained by measuring the effect of the analyses, and is enough to establish
the extent of improvement that is to be expected by increasing the complexity of
analysis. However it does not offer any insight about the extent of improvement that
is still possible after performing the analysis. A measure of the gap between the “best
possible answer” and the answer obtained by performing an analysis is very important
for a variety of reasons.

If it can be shown that the scope for improvement of the analysis results is very
little, that information might save the extra time and effort that might otherwise
have been invested in implementing increasingly complex and expensive analyses that
would not lead to any significant gain in precision. Another application of knowing
the “best possible answer” for each call site is that we can fix the exact cause of
imprecision in the results obtained through the analysis. This can offer significant

41

indications about the features that a more complex analysis should have in order to
be more effective. For example if it is observed that the imprecision in the analysis
results is a result of context insensitivity of the analysis then subsequent analysis
can be designed with the knowledge that including information about calling context
would be beneficial. This is similar to the cause analysis used by Diwan et al. [24].

We now briefly explain the approach we have taken to arrive at the estimate for
the “best possible answer” of interest in our case. We are interested in fixing the
methods that can be called from a particular call site in our analysis and we insert
profiling code into the bytecode that keeps track of the metheds actually inveked
during some sample execution of the program, and generate a trace. The trace of
execution produced contains data grouped into pairs, a callsite (identified by a unique
ID) and the method that was called from the callsite each time it was executed.
We generate the traces by injecting Jimple code into the benchmark classes being
profiled, and using classes produced by Soot (with profiling code in them) to run the
benchmark. We show a small class that has the profiling code inserted in it in Figure
2.13

We have inserted a call to a static method printMethodCalled(} (in a class
Profiler that we have defined) preceding each virtual call site. The parameters to
the static method are the ID of the call site (parameters 1 and 2), the signature of the
method being invoked (parameters 3 and 4), and the object that is the receiver of the
call. Note that the call site ID consists of the caller method signature and a number
i representing the fact that it is the ith call site. The parameter tvpes of the method
being invoked are passed as a string to the static method. The static method we have
defined uses the library classes java.lang.Class, and java.lang.reflect.Method
to obtain the actual class of the receiver object during execution and then perform
method lookup using the method signature to arrive at the actual method being
invoked. In order to reduce the size of the traces we generate in this way, we only
print out a method reached from a particular call site the first time it is invoked from
that call site. This involves keeping track of the methods that were invoked from
the call site on previous executions, and comparing the method invoked currently
to the methods that have been invoked previously. This makes the trace generation
process slower but it has the significant benefit of generating much smaller traces.
Smaller traces mean that the comparison with results from different analyses takes
much lesser time.

We use the profiled results for each call site to examine the need for better anal-
vses, as well as to perform cause analysis on our own analyses to examine their

42

class toy extends java.lang.Object
@ {
public static void main(java.lang.String(])
{

java.lang.O0bject r0;
toy ri;

r0 := Q@parameter(;
rl = new toy;
specialinvoke rl.[toy.<init>():void]();

// STATIC CALL INSERTED TO Profiler.printMethodCalled

staticinvoke [Profiler.printMethodCalled
(java.lang.String,long, java.lang.String, java.lang.String, java.lang.0Object) :void]
("toy.main(java.lang.String[]):veid", 2L, "m", "/int/toy/", rl);

virtualinvoke ril.[toy.m(int,toy):void] (3, rl);
return;

}

void m(int, toy)
{

int i0;

toy ri, r0;

‘ rl := Qthis;
i0 :

Oparameter(;
t0 := Qparameterl;
return;

Figure 2.13: Example of class with profiling code inserted

shortcomings. We present these dynamic results in Chapter 4.

43

Chapter 3

Method Inlining

In this chapter we introduce the optimization known as method inlining and discuss
the issues involved in our implementation. This optimization is based on the analyses
that we discussed in Chapter 2. As has been mentioned before, the invokevirtual and
invokeinterface bytecode instructions are expected to be expensive at run time. There
are several optimizations that can be implemented to reduce this overhead once it is
definitely known that the call site can only call a particular method. For each call
site, our static analyses determine the set of methods that are potential run time
targets with varving degrees of accuracy. The opportunity for our optimization arise
only at those call sites for which the set of target methods is a singleton. There are
some possibilities for other optimizations when this set is not a singleton, and we will
briefly discuss them at the end of this chapter.

In Java, method inlining is a complex optimization that is only safe to apply
if certain safety criteria are satisfied. Also the precise algorithm used to perform
method inlining is critical in achieving performance improvement. We explain these
issues involved in performing method inlining in detail in this chapter and also present
empirical results for the actual run-time improvement in performance as a result of
performing our optimization on a set of benchmarks in Chapter 4. This optimiza-
tion has been implemented on the Jimple intermediate representation and the Soot
framework is used to produce optimized classfiles.

44

3.1 Method Inlining

Method inlining [14, 11, 31, 16, 20, 21, 18, 19, 17, 34, 28, 10] is an optimization tech-
nique that has been used by optimizing compilers traditionally for both procedural
and object oriented languages. The basic idea in method inlining is to statically
replace a method invocation instruction by the code representing the body of the
method that is the target of the call. By performing this transformation, the over-
head associated with executing the method invocation instruction can be avoided.
We illustrate this optimization by a simple example in Figure 3.1.

class Example { class A {
public static void main (String{] args) { int £;
A a = new AQ); public m (int i) {
a.m(5); this.f = i;
} }
} }
(a). Example method before inlining (b). Callee method

class Example {

public static void main (String(] args) {
A a = nev AQ);
a.f = 5; // Method inlining done here

}

}

(c). Example class after method inlining

Figure 3.1: An example of method inlining in Java code

In this simple program, the method call a.m(5); in the original program was
statically determined to be invoking the method A.m(). In this case it is possible for
inlining to be done and as is shown in Figure 3.1(c), the call to the method has been
replaced by the actual code from the method m.

3.1.1 Applications of Method Inlining

Method inlining is expected to lead to greater improvement in performance for ob-
ject oriented languages like Java/C++ as compared to procedural languages like C.
In programs developed in an object oriented manner, the frequency of invocation

instructions is expected to be considerably greater. Further, in object oriented lan-
guages the overhead of method lookup associated with these instructions make them
expensive at run time.

Another factor that makes method inlining a useful optimization is that it elim-
inates the control flow edges because of the invocation instruction from the Control
Flow Graph (CFG). Frequent branches in the code mean that some of the techniques
used for optimization at the architecture level, like pipelining, cannot be performed
optimally. Instruction scheduling and pipelining are techniques that are very effective
if the program has a relatively simple fow of contrcl. In the presence of complex con-
trol flow, the CPU will be idle during some cycles even if pipelining is being done, thus
degrading performance. Architecture issues are not as important in the case of inter-
preters as they are if a Just-In-Time (JIT) compiler is used (which produces native
machine code). This effect on performance is even more significant in object oriented
languages because typically programs have methods with small bodies. These small
methods are expected to contain mostly instructions to manipulate fields within the
declaring class of the method, and not very many method invocation instructions.
In such cases inlining calls to these small methods could be beneficial in increasing
the size of basic blocks (or extended basic blocks) and make the instruction pipeline
proceed without stalling to account for branches in control flow. Thus replacing the
invocation instruction by the body of the method is expected to lead to better overall
performance.

Another possible area of application for method inlining is in its interaction with
other static analyses. Interprocedural static analysis is more complex and more ex-
pensive than intraprocedural analysis. Intraprocedural analysis has better scalability
but is more imprecise as compared to interprocedural analysis as it only considers
one method body at a time for its analysis. Method inlining can be used to inline
code from other methods into the method being analyzed. If method inlining is per-
formed on a method before performing intraprocedural analyses, this would improve
the precision of the results obtained while at the same time, avoid having to do
interprocedural analysis.

An area unrelated to compiler optimizations in which method inlining could be of
use is in model checking (verifying the correctness of a program). It is more suitable
for model checkers if they are provided with a program with a few large methods
(with inlining done in them to the maximum extent possible) to analyze, rather than
one in which there are many small methods.

46

3.1.2 Disadvantages of Method Inlining

There are also some possible disadvantages of doing method inlining that need to be
mentioned.

The size of the program can increase substantially if method inlining is performed
aggressively. This is an undesirable feature in general, and particularly so in the case
of Java. Larger classfiles mean that the time required to fetch them from a remote host

would be greater than the case when no inlining is done. This may be unacceptable
in terms of performance as the time to download applets over the network hefore
executing them is a serious concern in applications such as web browsers. Larger
classes mean an increase in the class loading time, as well as an increase in the
amount of memory utilized when the class is being used. In extreme cases, the size
of a method with inlining performed in it might exceed the maximum allowed size
(65535 locals and 65536 bytes in size) of a method in Java bytecode as specified by

the Java Virtual Machine Specification.

Method inlining introduces binary compatibility issues. Once inlining has been
performed, the method that was inlined can no longer be changed, as otherwise, the
behavior of the program would be different as compared to what was intended (as
the original code would have been inlined at several call sites). Thus. in case the
method has to be changed, then the whole program has to be reanalyzed and the
optimization must be performed taking the changes into account. Clearly this could
be quite expensive, and therefore, undesirable.

Another disadvantage is that inlining aggressively could lead to a program that
is extremely difficult to understand. In the case of Java, decompilers attempt to
reconstruct the original Java source files from the classfiles, and this is often used to
understand the behavior of the program in the absence of the original source files.
If the classfile used has one large method with very few method calls as a result of
inlining, then the Java source file produced by the inliner would be bereft of some
programmer friendly features like method calls to library methods (for I/O, Math,
and String operations etc.) or to other user defined methods. Also the source file
produced by the decompiler would bear little resemblance to the original source file
and is of limited use in program understanding.

There are some methods in classes (e.g. java.lang.SecurityManager) belonging
to the Java library that return values dependent on the contents of the execution
stack. Since the execution stack is dependent on the actual call chain executed at

47

run time, altering the call chain (by inlining, we get rid of caller/callee relationship
between methods) might result in a change in the run time behaviour of the program.
This is clearly a drawback and should be avoided. We have adopted a conservative
strategy that is based on the fact that calls to these library methods typically occur
infrequently. We have observed that for our set of benchmarks, these methods never
get called. We have chosen to disable method inlining in case calls to these methods
are detected in the call graph, in order to ensure the behaviour of the program is
unchanged. An alternate strategy would have been to allow inlining in any case, but
not make any guarantees regarding the behaviour of the program after inlining.

Therefore it should be clear that the criteria for inlining a method need to be
chosen with some care. We have studied the impact of some inlining strategies on the
size and performance of the resulting classfiles, and we discuss them in Chapter 4.

We now discuss, in detail, some of the structural issues that are of interest in
our implementation of method inlining, as well as our approach to detecting which
invocation instructions are safe to inline.

3.1.3 Structural issues in method inlining

We discuss some of the issues in the actual inlining of code from the method that
is being invoked into the caller method. These are the issues involved once the
application has been analyzed and the method invocation instruction is found to
satisfy all the inlining safety rules/criteria. We shall discuss them with reference to
the Jimple representation of the example program we have shown in Figure 3.2 and
the Jimple representation of the same program with inlining performed as shown in
Figure 3.3.

The following are the steps involved in the inlining process :

1. Duplicate and Add Locals : Create a new local in the caller method for
each of the locals declared in the callee method that is being inlined. This essentially
involves cloning each local in the callee method, adding the cloned local (which has
the same type as the local in the callee method) to the method body of the caller
method, and storing the mapping from the locals in the callee method to the cor-
responding locals that have been created in the caller method. This mapping for
locals is implemented using a hash table (LocalHashMap) which takes a local in the
callee method as the key, and returns the new local created for inlining purposes in
the caller method as the value. The mapping is used when statements are to be

48

1 <class Example extends java.lang.Object

2 {

3 public java.lang.String s;

4

5 public static void main(java.lang.String(])

8 {

7T Example r2, ril:

8 int i0, i1;

9 java.lang.0Object rQ;

10

11 r0 := Gparameter(;

12 rl = pev Example;

13 specialinvoke ri.(Example.<init>():void]();
14 il = virtualinvoke ri.(Example.m1():void]();
15 i0 = 0;

18 goto labell;

17

18 label0:

19 r2 = nev Example;

20 specizlinvoke r2.[Example.<init>():void]();
21 il = virtualinvoke r2.{Example.m1():void](); // CALL THAT IS BEING INLINED
22 i0 = i0 + 1;

23

24 labell:

25 it i0 < 2 goto labelO;

26

27 return;

28 }

29

30 public int m1{)

3t {

32 Example r0;

33 rd := Qthis;

34 r0. [Example.s:java.lang.String] = "EXAMPLE";
35 goto labelO;

36 label(:

37 return 1;

38 }

39

40 void <init>()

41 {

42 Example r0;

43 ¢ := Qthis;

44 specialinvoke r0.(java.lang.Object.<init>():void]();
46 retum;

46 }

47 }

Figure 3.2: Jimple representation of the class in which inlining is being
performed (before inlining)

49

1 class Example extends java.lang.Object

2 {

3 public java.lang.String s;

4 public static veid main(java.lang.String(])

§ {

8 Example ri, r2;

7 Example inline$0;

8 int i0, i1, inlinereturn$0;

9 java.lang.Bbject r0;

10 java.lang.NullPointerException inlineanull$0;
11

12 r0 :3 Cparametex(;

13 rl = nev Example;

14 specialinvoke ri.[Example.<init>{):void]();
15 virtualinvoke ri.[Example.mi():void]();

16 10 = 0;

17 goto label4;

18

19 labelO:

20 r2 = new Example;

21 specialinvoke r2.(Example.<init>():void]();
22 i r2 != null goto labell;

23 inlinenull$0 = nev java.lang.NullPointerException;
24 specialinvoke inlinenull$0.(java.lang.NullPointerException.<init>{):void]();
25 throv inlinenull$Q;

26

27 labell:

28 inline$0 = r2;

29 inline$0. [Example.a:java.lang.String] = "EXAMPLE";
30 goto label2;

31 label2:

32 inlinereturn$0 = 1;

33 goto label3;

34 labell:

35 il = inlinereturn$0;

36 i0 = 10 + 1;

a7 labeld:

38 if i0 < 2 goto labelO;

39

40 return;

41 }

42

43 public int mi()

4 {

46 Example r0;

46 r0 := Qthis;

47 r0. [Example.s:java.lang.String] = “EXAMPLE";
48 goto labelQ;

49 labelO:

50 return 1;

61 }

62

53 void <init>()

54 {

56 Example 10;

56 r0 := Othis;

57 specialinvoke r0.[java.lang.Object.<init>():veid]():
58 return;

59 }

60 }

Figure 3.3: Jimple representation of the class in which inlining is being

performed (after inlining) -
)

duplicated for inlining. Name conflicts must be avoided between locals present in the
method originally and the cloned locals that are added to the method. Note that the
local names of cloned locals in the example program do not conflict with any of the
original locals.

2. New local for method return : For callee methods that return a value
(return type is not void), we create a new local called inlinereturn$N in the caller
method before we inline the method invocation instruction. The type of this new local
is the return type (obtained from the signature) of the callee method. This variable
is used to temporarily hold the value returned by the callee method {it is possible
that there is more than one return statement in the method) along different control
flow paths. We will soon discuss the exact manner in which the inlining process
gets simplified because of this new local. In Java bytecode locals cannot be of type
boolean, byte, char, or short. All variables declared to be of any of these four
types in the source code are actually of type int in bytecode. However the return
type of a method could be one of these four types, and it is the actual return type that
is present in the signature of the method. Thus we need to be careful while creating
the new local corresponding to the return value, so that the type of the new local is
int in case the return type of the method that is being inlined is any of the four types
we have mentioned. Note that we have introduced the new local inlinereturn$0
(of type int at line 8 which is the return type of method m1 that is being inlined) in
our example program.

3. Explicit Null Check : Inlining a method call involves replacing the invo-
cation instruction in the method body of the caller method. A method invocation of
a non-static method can result in a java.lang.NullPointerException object be-
ing thrown if the receiver of the method call is null. Since this check is implicitly
performed by the Java Virtual Machine at runtime when it is executing the method
invocation instruction, simply replacing the invocation instruction by the method
body of the callee would not capture the effect of the instruction accurately. This
inaccuracy might be significant as the java.lang.NullPointerException might
be caught somewhere in the benchmark code and a series of instructions might
be executed in the exception handler code. Hence in order to ensure that all the
java.lang.NullPointerException objects that were being thrown in the original
program are also thrown in the transformed program, we introduce code before the
beginning of the inlined code that performs the null checks explicitly. In the example
program the local inlinenull$0 (of type java.lang.NullPointerException) has
been introduced and is being used to perform the null check (lines 22 to 25 in the

31

example program in Figure 3.3). Note that it should be possible to reduce the num-
ber of explicit null checks to be inserted based on the results of a static analysis that
determines nullness.

At this stage all the new locals that are needed to start inlining have been intro-
duced and the null pointer check for the receiver has also been added. We can begin
duplicating the statements from the callee method to the caller method.

4. Duplicate and Add statements : Assignment statements are inserted
to copy each parameter. In the Jimple representation this involves creating a new
AssignStmt in the caller method corresponding to each IdentityStmt involving pa-
rameters in the callee method. The copying of the implicit parameter this is slightly
more complex. The type inference algorithm in the Java Virtual Machine infers a
type for the receiver of the method call based on an intraprocedural dataflow anal-
ysis. The type inferred by the Java Virtual Machine might be a superclass of the
declaring class of the method that is the run time target of the call. In the presence
of interfaces, the Java Virtual Machine might infer the type of the receiver to be an
interface, whereas the run time target of the call would be some method declared in
a class implementing the interface. If we naively inline the target method at a call
site where the inferred type of the receiver is higher in the inheritance hierarchy than
the declaring class of the method, the Java Virtual Machine would raise a verification
error. This is because the local representing this in the method being inlined would
be inferred to be of the same type as the receiver of the call if a simple assignment
statement is used to copy the this parameter.

We can inline at this call site without violating verification constraints by intro-
ducing an explicit cast while copying the this parameter (casting the receiver to
the declaring class of the method being inlined). The explicit cast would enable the
Java Virtual Machine to infer that the type of the local in the inlined code represent-
ing this (in the inlined method) is the declaring class of the inlined method, thus
avoiding the verification error. We do not introduce the casts at each call site where
inlining is performed; we introduce the casts only at those call sites where the Jimple
type of the receiver (inferred by the type inference algorithm in Jimple) is neither the
declaring class of the method being inlined, nor a subclass of the declaring class of
the inlined method.

Each statement in the method body of the callee method is cloned and the locals
accessed in the statement are adjusted using LocalHashMap that contains the mapping
between locals in the callee method and the new locals created for inliningin the

32

caller method. Refer to the example where the cloned local inline$0 in method
main() corresponds to the local r0 in method m(). Also observe how the cloned
statements introduced into the method main() as a result of inlining (for statements
that use r0 in m()) use the cloned local inline$0. While cloning each statement,
the mapping between each statement in the callee method (that is being inlined) and
the corresponding cloned statement introduced into the caller method is stored in a
hashtable StmtHashMap for use in the following steps. Note that in the example class
in Figure 3.3, we have replaced the statement return 1; in the callee method by two
statements inlinereturn$0 = 1; goto label3; in the caller method (lines 32 and
33). We employ this technique in order to mimic the actual flow of control in the callee
method. The value being returned is assigned to the special local inlinereturn$0
and control passes to the last statement in the inlined code (i1 = inlinereturn$0;
at line 35 in Figure 3.3) that mimics the return from the callee method to the caller
method.

Although statements are cloned and added to the method body of the caller
method, certain relationships between statements in the callee method like flow of
control, and exception ranges have not yet been captured in the case of the cloned
statements in the caller. The flow of control is adjusted using StmtHashMap to es-
tablish the targets of branch statements correctly in the inlined code. In the example
in Figure 3.3, the target of the cloned GotoStmt goto label2; at line 30 is deter-
mined to be the statement inlinereturn$0 = 1; at line 32 at this stage. Note that
StmtHashMap is used to get the cloned statement corresponding to the original tar-
get in the callee method. Another pass over the inlined code adjusts the trap table
of the caller method such that exceptions in the callee method are included in the
caller method and the range of statements in which exceptions might be raised is also
entered in the trap table (after referring to StmtHashMap).

With this fixup step, the inlining process is complete for the method invocation
instruction under consideration. These are the exact steps followed for inlining the
callee methods at each call site that is determined to satisfy the inlining criteria/rules.
Once all the inlining in a particular method has been completed, the method can
be used to produce correct bytecode that has the same semantic behaviour as the
original method in the original class. However the code that we have produced after
inlining suffers as a result of some clear inefficiencies. Therefore we choose to make
two more passes over the method (containing inlined code) at this stage to clean up
the code created as a result of inlining. Note that these passes can be omitted and
the program would still behave in exactly the same manner as the original uninlined

23

program (except that execution might take longer).

Cleanup Passes

Our procedure for inlining a method call, though reasonably simple, is not as efficient
as possible for the following reasons. In the inlining process, new locals are created in
large numbers, and the method that is the target of inlining could have the number
of its locals increased by several factors. In fact the more the number of call sites
at which inlining is done, the more the number of locals in the method in the caller
method. So while the benefits from inlining increase with more call sites being inlined,
the overhead associated with the resultant increase in locals (increase in the size of
the class, as well as the performance penalty explained in Section 3.1.4) must also
be paid. Another example of inefficiencies introduced as a result of our inlining
procedure are the explicit assignments in the inlined code that are used to mimic the
implicit assignments as a result of parameter passing. The use of the buffer local
inlinereturn$N (the assignment statements involving this local) to hold the return
value is also inefficient as compared to return statements that were present in the
original program. In addition, the replacement of the return statements by goto
statements might be redundant in some cases.

We now explain the 2 cleanup passes and the effect they have on the inlined code
in detail.

Local Packing : The first cleanup pass performs local packing which is one of
the standard transformations present in the Soot framework. This pass has the effect
of packing sets of two or more locals that are found to satisfy certain properties into
one local. The locals that are packed into one local should satisfy the property that
they should be in disjoint def/use chains and they should have compatible types.
This ensures that they can be packed into the same local without any conflicts. One
of the big advantages of doing local packing at this stage is that the many locals
of type java.lang.NullPointerException that we introduced for the null checks
while inlining, now get packed into considerably fewer locals. This pass also results
in the reduction of extra locals introduced as a result of cloning the locals in the
callee method that was inlined. A conceptually simple case in which benefits of local
packing might be significant is the packing of locals of type int, or java.lang.String
in inlined code obtained as a result of inlining at more than one call site. Most
methods declare locals of these basic types, and it is possible to pack many such
locals introduced into the caller method because of inlining at different call sites in

o4

the caller method (if they satisfy the packing criteria mentioned earlier).

Redundant Statements Cleanup : The second cleanup pass is used to remove
redundant statements that have been introduced into the code as a result of inlining.
Some standard optimizations available in the Soot framework are copy propagation,
constant propagation and dead code elimination. Note that these optimizations are
performed in an intraprocedural manner. These transformations are extremely useful
in removing the copy statements (for parameters) at the beginning of the inlined code.

Redundant Goto Elimination : Another optimization that reduces the num-
ber of statements in the method is redundant goto elimination. This is a peepliole
optimization that is useful in the case of inlined code in particular. Our procedure
for inlining mimics control flow in the case of return statements by replacing them
by goto statements. In practice, it is quite common for methods to have just one
return statement as the last statement in the code. In such cases our naive inlining
procedure would insert a goto statement whose target is the very next statement in
control low. This optimization is aimed at detecting and eliminating such redundant
goto’s.

It needs to be stressed that these transformations are crucial to obtaining maximal
benefits from inlining, and omitting them might lead to insignificant speedup of the
program (or even a slight slowdown in some cases). Their effectiveness is heightened
when the methods that have been inlined are relatively small in size. The reason
for this is that in the case of small methods, the extra statements introduced while
inlining are almost as many as the number of statements in the method itself. In such
a situation the inlining penalty is significant in the absence of redundant statements
cleanup.

The final stage in the inlining process is the generation of optimized classes with
method inlining performed in them. We have inlined method calls in the Jimple
representation and used the Soot API for SootClass to produce classes containing the
inlined method calls.

Additional Structural issues for inlining synchronized methods

Invoking a synchronized method makes the current thread acquire a monitor on the
receiver of the method call. The monitor is released by the current thread when the
method has finished executing or if an exception (that is not caught anywhere in the
body of the synchronized method) is raised. Note that these actions are performed

(&1
(1)

internally by the Java Virtual Machine at the time of invoking a synchronized method.
While inlining synchronized methods, we mimic these implicit actions performed by
the Java Virtual Machine by explicitly introducing code that has the same effect. A
method that is declared to be synchronized has exactly the same functionality as a
method (that is not declared synchronized) having its entire body enclosed within a
synchronized block. We use this fact while generating the inlined Jimple code when
we inline synchronized methods.

3.1.4 Safety Criteria for Method Inlining

We now introduce the criteria that we check for before we decide to inline the target
method of the invocation instruction. Note that in order to be able to inline, all of the
criteria we specify must be satisfied. The method in which the invocation instruction
occurs is referred to as the current method in this discussion, and the method that is
the target of the invocation instruction is referred to as the target method.

We now explain our reasons for choosing each of these criteria one by one.

Rule 1 : There must be exactly one target method for the invocation instruction
in the call graph.

This test can be made using a call graph built using any of the analyses in Chap-
ter 2 since they all result in a call graph that is conservative and correct.

Rule 2 : The target method must not be the same as the current method.

This is to avoid inlining recursive calls to the current method as there would be
little performance benefit in doing so. Note that inlining might occur at other call
sites in the recursive method.

Rule 3 : The target method must not be a native method.

The code for native methods is not available in the form of Java bytecode, therefore
it is not possible to inline calls to these native methods.

Rule 4 : The invocation instruction must not result in an illegal access error in
the original program.

We do not inline invocation instructions that might result in an illegal access error
in the original program, as inlining may result in the error no longer being thrown.
This is because the access modifiers are checked by the run time system when the
invocation instruction is executed, and by replacing the invocation instruction we are

36

eliminating those checks. To preserve the same semantic behaviour as the original
program, we need to detect all the invocation instructions in the original program
that might result in an illegal access error being thrown, so that we can avoid inlining
at these call sites. We show an example of a program where inlining is not allowed at
a particular call site for this reason in Figure 3.4. Note that method m() was being
accessed illegally in the original program, but after inlining the access to m() has been
eliminated and replaced by an access to the field £ which is public.

class A { class B {
public static void main { String{] args) { public int f = 5;
try { private void m() {
B b = new B(); System.out.print(f);
b.m(); // Call site raises IllegalAccessError }
} catch (java.lang.IllegalAccessError e) { }
System.out.println (*‘ILLEGAL ACCESS’’);
}
}
}
(a). Caller method before inlining (b). Callee method (private)
class A {
public static void main (Stringl] args) {
try {

B b= new BQ;
System.out.print (b.f);
} catch (java.lang.IllegalAccessError e) {
System.out.println (‘‘ILLEGAL ACCESS’’);
}
}
}

(c). Caller method after inlining

Figure 3.4: An example of a call site violating Rule 4

In this example we can see that a java.lang.IllegalAccesserror would be
raised when B.m() is invoked from the call site b.m() ; in method main in class A (as
the method m() declared in class B is private). The method m() in class B accesses the
public field £. After inlining is performed in method main as shown in Figure 3.4(c)
the call to method m() (which was the source of the java.lang.IllegalAccessError
in the original program) has been eliminated. Furthermore the access to the field £
has been shifted to class A, but as the field f is public, the access to field f is not
illegal. Thus the java.lang.IllegalAccessError is no longer raised in the inlined

a7

program whereas it was being raised in the original program, and this alters the
semantic behaviour of the program as the error was being caught and there is a call
to System.out.println() that is in the error handler code.

Most of the implementations of the Java Virtual Machine (e.g. Sun Microsystem'’s
implementation) follow a “lazy” linking model. The Java Virtual Machine can check
for errors (illegal access errors or others) using one of two possible schemes. In the
first scheme, the JVM would check all the accesses in the method that is being linked
before successfully linking the method. If there were any errors detected by the Java
Virtual Machine at the linking stage, then an error would be raised, and linking would
not succeed. This is the “early” linking model. The other linking scheme that could be
used by the JVM is to perform the checks for errors as a result of an instruction only
at the time of executing it. Thus a method that contains an instruction that might
result in an error, would be successfully linked in. However before the instruction
that results in the error is executed, the check would be performed and an error
would be raised. It must be understood that the instruction that results in an error
might never get executed if it is not along a control flow path that gets executed. If
it is not executed, then the error would not be raised and therein lies the difference
between the two schemes. The checks for errors are done at a later stage and only
when required (at the time of execution) in the second scheme, and hence the name
lazy model. The lazy scheme imposes less stringent restrictions as some programs
that might raise an error using the early scheme might not do so if the lazy scheme
is used. We will try to detect the illegal access errors that might be raised in the
program statically; thus we would detect those illegal access errors that would be
raised if the Java Virtual Machine followed an early linking model (which being more
strict than the lazy model, means that we would detect all possible errors that might
be detected by a Java Virtual Machine that follows either linking model).

Checks for Illegal Access Errors for method accesses: We referred to
the Java Virtual Machine Specifications in order to check the exact conditions in
which an illegal access error might be raised. It can be determined statically whether
a particular method invocation instruction could result in an illegal access error.
The checks to detect an illegal access are performed on the method whose signature
appears in the invocation instruction. Note that the method referred to in the method
signature may not be the method that is actually invoked at run time, but still it is
the method whose access flags are checked.

Given an invocation instruction of the form invokeinstruction{ m } occurring in a
class Ccarrer, an illegal access error can be raised in each of the following 3 cases :

a8

1. If the method m is declared to be private, and if it is invoked from any class
other than the one in which the method m is declared.

2. If the method m has default access (not private, protected, or public), and
if it is accessed from any package other than the package containing the declaring
class.

3. If the method m is protected, an illegal access error would be raised if either
or both of the following conditions is violated :

(a). The method m must be either a member of Ccarrpr or a member of a
superclass of Ccarrer-

(b). The class of the receiver object must be Ccrrer or a subclass of Coarrer.

The checks specified in condition 3(b) are slightly different from those in the other
other conditions because they involve the class of the receiver object. The class of
the receiver object is inferred by the Java Virtual Machine by performing a simple
dataflow analysis. According to the Java Virtual Machine specification it obtains the
class for an object at control flow merge points by using the class hierarchy to obtain
the least common superclass of the classes associated with the object along different
control flow paths. We perform the checks in condition 3(b) using the type for the
receiver object that is inferred by the type inference algorithm in Jimple. The type
inference algorithm in Jimple assigns types to each local in the Jimple representation
of a method. We can use the type assigned to a local as a good estimate of the class
of the object (as would be inferred by the Java Virtual Machine).

The type inference algorithm in Jimple does not necessarily produce the best
solution for the class of the object represented by a local, but instead attempts to
assign a type that satisfies all the constraints imposed by the statements using the
local. Note that the type assigned to the local by the type inference algorithm in
Jimple might therefore be higher up in the class hierarchy than the class of the object
(represented by the local) inferred by the Java Virtual Machine. This is because the
inference algorithm used by the Java Virtual Machine is guaranteed to produce the
most precise estimate for the class of the object (it must use the least superclass at
control flow points where it has to merge classes).

Since the typing algorithm in Jimple always infers a type that is either a superclass
of, or the same as the class obtained by the inference algorithm in the Java Virtual
Machine, any illegal error arising because of condition 3(b) that would be detected
by the Java Virtual Machine would also be detected by us if we use the Jimple type

39

of the receiver. This is because if the class of the receiver object inferred by the
Java Virtual Machine was neither the current class, nor any subclass of the current
class, then it must be either a strict superclass of the current class or be completely
unrelated in the class hierarchy to the current class. If it is completely unrelated to
the current class in the class hierarchy then the type obtained through the typing
algorithm in Jimple would also be completely unrelated to the current class as the
class hierarchy used by both inference algorithms is identical. If the class inferred
by the Java Virtual Machine is a strict superclass of the current class, then the type
inferred by the Jimple type inference algorithm would also be a strict superclass of
the current class, as the type inferred by the Jimple type inference algorithm must
be at the same level or higher up in the class hierarchy as the class obtained by the
inference algorithm in the Java Virtual Machine.

Thus, we have shown that if an illegal access error would be detected by the Java
Virtual Machine, then we would also detect such an error using our scheme. Note
that our scheme might regard a legal access as an illegal access; in such cases we are
being conservative but correct. We have observed that such cases occur extremely
rarely in practice in the benchmarks that we have tested.

Rule 5 : If the target method contains any accesses to classes, methods, or fields
that result in illegal access errors, then the errors must still be raised
as a result of inlining the target method into the current method.

We refer to the Java Virtual Machine specifications to detect if a class, method
or field access from the target method is illegal. The checks for determining whether
a field or class access is illegal are nearly identical to the checks we have explained
for method access in the discussion of the previous rule. If we find an illegal access
from the callee method mr,gerniined, We check if that access would result in an illegal
access error if it was made from the caller method mninedrneo (into which inlining is
being done). If the access would no longer be illegal after inlining then the method is
not inlined. We show a simple example of a method which cannot be inlined because
it violates Rule 5 in Figure 3.5. The access to method m2() declared in class B is
illegal when made from class C (which is in a different package). But after inlining is
performed, the access to method m2() is moved to class A, and the access is no longer
illegal as classes A and B belong to the same package.

Rule 6 : It must be legal to access all the classes or class members (fields
and methods) that are accessed from the method that is the target
of the invocation instruction, from the current method. Modifiers

60

package Packagel;

public class A {
public static void main (String[] args) {

package Packagel;

public class B {
public int f = 5;

C c = new CQ); void m2() { }
c.m1(); }
}
}
}
(a). Class A before inlining (b). Class B

package Package2; package Packagel;

publis clasz € £ public claszs A {
public void m1() { public static veid main (String(] args)} {
try { C ¢ = nev C(};
B b = new B(); try {
b.m2(); // Raises Illegal Access B b = new B():
} b.m2(); // No Illegal Access
catch (java.lang.lllegalAccessError e) { }
System.out.print (‘' ‘ILLEGAL ACCESS'’); catch (java.lang.IllegalAccessError e } {
} System.out.print(‘‘ILLEGAL ACCESS’’');
} }
¥ }
}

(c). Callee method ml() in class C (d). Class A after inlining

Figure 3.5: An example of a method violating Rule 5

of class members can be changed in order to ensure that no illegal
access errors occur, but this is subject to the restriction that any
illegal access errors that were being thrown in the original program
must still be throun.

Just as it is required to preserve accesses that resulted in illegal access errors in
the original program it is also necessary to ensure that accesses that were legal in
the original program do not become illegal as a result of the code duplication/motion
that occurs during inlining. This is a real concern while inlining because there are
many accessor (get()) and mutator (put()) methods in object oriented programs
that access private fields. Inlining these small methods would not be allowed if the
class into which inlining is being done is not the same as the class in which the private
fields are declared. We adopt an aggressive inlining strategy that includes changing
the modifiers of classes, methods, and fields in order to allow us to perform inlining if
possible. One of the options that might seem feasible is to change all the modifiers to
public so that we are free to inline wherever we can. But changing modifiers in this
way, though simple, might result in some illegal access errors (that were being raised

61

in the original program) no longer being raised. Moreover it is preferable to optimize
the original program without changing it any more than is really required. We now
explain how we achieve these goals while inlining.

In order to ensure that all the illegal access errors in the original program are still
preserved in the optimized program after we have changed modifiers and performed
inlining, we make one pass over each method in the call graph even before we begin
examining methods to perform inlining. The purpose of this pass is to check each
access in each method and fix the maximum extent to which we are allowed to change
modifiers of eachr class, method, and field subject to the constraint that all iilegal
access errors in the original program are still raised. For example, if a private field
was being accessed from some class other than its declaring class, then we would note
that we should not change the modifier of the field to anything less restrictive. In the
absence of any constraints (arising out of illegal accesses) attached with a particular
class, method, or field we note that we can change the modifier to public if required.
In this manner this pass fixes the extent of freedom we are allowed while changing
modifiers.

When we are considering a method for inlining we check each access in the target
method, and find out the extent to which we need to change modifiers in order to
inline without introducing any new illegal accesses. Thus for each class, method
and field accessed from the target method, we fix the modifier required in order to
successfully inline the method. Note that this required modifier is fixed keeping in
mind that we should only modify the original program to the extent that is necessary
in order to inline. Thus a field that is private, would only have its modifiers changed
to default if an access to it was being inlined into a class in the same package (other
than the declaring class of the field). There is no need to make the field public in
this case and we do not attempt to do so. If however we are not allowed to change the
modifier to the extent that is required to inline, then we cannot inline the method at
this call site. We have fixed the maximum extent to which we can change modifiers
in the pass we explained before.

Before changing the modifier of a method m() in class C, it is necessarv to ensure
that any method that overrides the method in subclasses of class C can also have its
modifiers changed to the same extent (or less restrictive) as method m(). The Java
Virtual Machine imposes the restriction that methods cannot be overridden to be
more private in subclasses than they are in the superclass. This means that before
inlining a callee method into the caller method, if any method m()’s modifiers need to
be changed, then the extent of freedom that we are allowed in changing the modifiers

62

of the method m() and all overriding methods must be considered (instead of just
method m()). If even one overriding method of m() cannot have its modifiers changed
to the extent required, then the modifiers of method m() would not be changed. If
the modifiers of method m() and all its overriding methods can be changed to the
required extent, then they are changed simultaneously to enable inlining to occur.

Note that changing modifiers within a class can result in problems if the pro-
gram used serialization (the calculated SUID could change). This could be handled
by adding an explicit SUID field into the classfile. In our implementation, we do
not change the modifiers of classes (or their class members) that can be serialized
(implement java.io.Serializable or java.io.Externalizable).

Rule 7 : It must be safe to move all of the invokespecial instructions in the
target method to the callee method without changing the behavicur of
the program.

We also need to check if the invokespecial bytecode instructions in the target
method can be safely inlined into the current method without changing the semantic
behaviour of the program. In order to understand why we need to be careful about
duplicating/moving invokespecial instructions, we refer to the following portion of
the Java Virtual Machine specification for the invokespecial bytecode :

After resolving the invokespecial instruction, the Java Virtual Machine determines
if all the following conditions are true for the method m() whose signature appears in
the instruction :

- The name of the method m() is not <init>, an instance initialization method.
- The method m() is not a private method.

- The class of the method m() is a superclass of the class containing the method
in which the invokespecial instruction is present.

- The ACC_SUPER flag is set for the class containing the method in which the
invokespecial instruction is present.

If all four conditions are true, the Jave Virtual Machine selects the method (to
invoke) with the identical descriptor in the closest superclass, possibly selecting the
method just resolved. If even one of these four conditions is not true, then the Java
Virtual Machine selects the method that it has just resolved as the one that is to be
invoked.

63

Thus the invokespecial instruction might result in the Java Virtual Machine per-
forming a method lookup in case all the four conditions mentioned above are satisfied.
Note that this method lookup is entirely dependent on the class where the invokespe-
cial instruction occurs, rather than the class of the receiver (as in the case of virtual
method calls). This makes the actual location of the invokespecial instruction in the
code critical in how it behaves at run time. This also implies that we have to be
careful while moving invokespecial instructions while inlining, to avoid altering the
behavior of the program.

We adcpt a simple strategy that is based on the assumption that the Java Vir-
tual Machine rarely needs to perform method lookup while executing invokespecial
instructions. The method lookup is only required when a method is invoked using
a statement like super.m(); in the source code. In practice, programmers seldom
invoke methods using the super keyword, and so most invokespecials are usually for
constructors or private methods. We have chosen not to inline methods that con-
tain an invokespecial instruction that might require method lookup either originally
or after inlining. We have made this choice because we feel that it does not impact
the number of methods inlined significantly, but simplifies the checks required to be
done. We consider a particular invokespecial instruction capable of requiring method
lookup at run time if it satisfies all four of the conditions that we have mentioned
earlier.

We then perform two checks for each invokespecial instruction :

(a). If the invokespecial instruction might require method lookup in the original
program.

(b). If the invokespecial instruction might require method lookup in the program
once the instruction is (possibly) duplicated and moved as part of inlining.

If either or both of the above two conditions is true then we decide not to inline the
method containing the invokespecial instruction. If exactly one of the two conditions
is true, then the invokespecial instruction required method lookup originally/after
inlining, but not after inlining/originally. If both the above conditions are satisfied,
then method lookup was required both originally and after inlining but since the
location of the invokespecial instruction has changed, the result of the method lookup
might be different in the two cases. Note that it is possible to check if the result of
the method lookups are the same, but we have chosen to avoid this overhead. We
only inline methods in which none of the invokespecial instructions require method
lookup both before and after inlining.

64

Note that it is illegal (according to the Java Virtual Machine specifications) for
an invokespecial instruction to be used to invoke a method that is not private, or a
constructor, or a method declared in a superclass of the class where the invokespecial
bytecode occurs. Thus an invokespecial instruction that was originally invoking a
private method m() might result in a verification error after inlining, if the modifier of
method m() was changed during inlining. We do not attempt to change the modifiers
of a private method if we detect an invokespecial instruction invoking it.

3.1.5 Inlining Criteria

Once it has been determined that a method invocation instruction can be inlined
based on the inlining safety rules, the next step is to check if it would be useful
to inline it. If the invocation instruction is not an important factor in the overall
execution time of the application, then the potential benefit of inlining it might not
be worth the cost of actually inlining it. Therefore we have attempted to come up
with some heuristics relying on static, compile-time characteristics of the application
that would help us in deciding whether we should inline a particular method call
or not. Our sole aim while making this decision is to improve performance to the
maximum extent possible. It should be obvious that the criteria we mention here may
not be the same if the aims of performing inlining are different (see section 3.1.1 for
different uses of inlining). The complexity of inlining a large method is not a factor
as our implementation can successfully inline methods that are relatively large.

We now specify the characteristics of the application that our heuristics are based
on :

Number of statements in the callee method.
Number of statements in the caller method.

Number of locals in the callee method.

Ll

Number of locals in the caller method.

Number of invocation instructions in the caltee method.

o o

Number of loops in the caller method.
. Whether the caller method is recursive or not.

We now explain the impact of each of these factors.

1. Number of statements in the callee method : If the callee method is
very small then it is expected to be beneficial to inline calls to it. This is because the
time to execute the method invocation instruction would be a significant overhead in
the overall time required to execute the method call. Thus eliminating the invocation
instruction is likely to lead to significant benefits if the method call was executed
frequently. Conversely, if the callee method had a large number of statements, then
it is expected to be relatively complex and the invocation instruction itself is unlikely
to be the main overhead in the method call.

2. Number of statements in the caller method : Our intent in chousing
this program characteristic is to arrive at some measure of the complexity of the
caller method and how this complexity is being affected by inlining. There are some
overheads associated with increasing the size of a method beyond certain limits, like
the cost of the extra locals (soon to be explained). If the method was a simple one
to start with, then we need to be careful that inlining is not responsible for making
it very complex. To this end we might decide to stop inlining in a particular caller
method if the number of Jimple statements has crossed a certain threshold number.
Another possibility is to stop inlining when the size of the caller method after inlining
has crossed a certain multiple of the size of the original uninlined method. even if
there are further inlining candidates.

3. Number of locals in the callee method : If the number of locals in the
callee method is more than a certain threshold number, then we should not inline the
method. It is expected that a method having many locals in the Jimple representation
is reasonably complex since redundant locals are removed by the standard analyses
in Jimple. Apart from the fact that eliminating the method invocation instruction
might not lead to that much improvement if it is complex method, there is also
another interesting issue specific to Java bytecode that needs to be kept in mind.

In Java bytecode, there are different instructions to load/store objects and inte-
gers to and from the execution stack. Some of these instructions aload.0, aload._i,
aload 2, aload_3, iload 0, iload.l, iload_2, iload.3, astore.0, astore.l,
astore.2, astore.3, istore 0, istore.l, istore_2, istore.3arel bytein length.
There are also other kinds of the load/store instructions that take 2 or more bytes
(more than 2 bytes if used in conjunction with the wide bytecode). The rationale
behind having the 1 byte load/store instructions is to provide fast access to the locals
occupying the first few local slots of the method. It is beneficial to put the most
accessed locals in the first few local slots so that the JVM can load/store these im-
portant locals with minimal overhead. Fast access to these locals might be achieved

66

in different ways depending on whether the JVM is an interpreter, or a Just In Time
(JIT) compiler. An interpreter might have precomputed indices for the important
locals into the data structure in which the locals are stored. This might enable it
to access these locals faster than the other locals for which it may have to do some
computation to arrive at the index. Also in the case of the 1 byte loads/stores there
are fewer bytecodes to interpret than the longer instructions. A JIT might be stor-
ing these important locals in machine registers to enable faster access over the other
locals that might be in memory. In that case the difference in access times between
the “fast” locals and the other locals is likely to be considerable.

Inlining a method introduces more locals into the caller method; the locals in
the callee method get cloned and invariably occupy local slots in the caller method
that have to be accessed by the 2 byte load/store instructions. This is true whether
the callee method is a relatively simple method (few locals) or a complex one {many
locals). However the reason why we do not want to inline large methods is the
following. In the case of inlining small methods the overhead incurred by the cloned
locals getting assigned to the “slow” local slots in the caller method (whereas they
were in the “fast” local slots in the callee method) is offset by the benefit of elimirating
the method invocation instruction. In the execution cost of the method call the
loads/stores are an insignificant proportion compared to the invocation instruction.
In the case of large callee methods, this might not be the case. It is very likely
that the large method does some computation intensive task and the execution time
of the eliminated invocation instruction is not a significant factor in the execution
time of the method call. Moreover in a complex method, the time spent in accessing
locals might be significant, and the overhead of having some cloned locals in “slow”
local slots as a result of inlining might be enough to offset the relatively little gain of
eliminating the invocation instruction.

In summary we are making the following points. Method inlining has a harmful
side effect in that locals that were in “fast” local slots get assigned to “slow” local slots
when they are cloned and added to the caller method. However this harmful effect
is expected to be insignificant compared to the benefit of eliminating the invocation
instruction for small methods, whereas it might be enough to offset the benefits of
inlining in the case of larger methods.

4. Number of locals in the caller method : We might decide to stop
inlining into a particular method if the number of locals becomes greater than a
certain threshold value. One possibility for such a threshold value might be 236, as
some locals would have to be accessed using the wide bytecode instruction as the

67

number of locals becomes greater than what can be captured in 1 byte. It needs to
be mentioned that the number of locals in the method in the Jimple representation
while we are inlining is not the same as the number of local slots that would be there
in the bytecode produced by Jimple for the inlined method. This is because before
we emit bytecodes for the inlined method we perform passes over the Jimple code
that do local packing and code cleanup, which might reduce the number of locals
considerably.

5. Number of invocation instructions in the callee method : This is a
characteristic that offers clies about the nature of the callee method. If the number
of invocation instructions is large, then it is unlikely that inlining the method would
be beneficial because in all likelihood, the method is quite complex, and performs
significant computation.

6. Number of loops in the caller method : The number of loops in a methods
is in general a very good indication of where the program might be spending most of
the time in computations. By identifying the methods that have the most number of
loops we might be able to perform optimizations at the places in the program that
really matter. This might be especially useful for an optimization like inlining which
is effective only when it is performed selectively. Thus we might choose to inline only
at call sites within loops, and in order to try to maximize the gains. we can relax the
other restrictions on callee method size etc. so that maximal inlining can be done at
the important sites. We use a simple algorithm for detecting loops in the Jimple code
which is based on detecting IfStmt’s that branch backwards. We present results for
the case when inlining is done only in caller methods that have at least one loop.

7. Whether the caller method is recursive or not : This is also a charac-
teristic that can be used to determine if a particular method is a “hot spot” in the
program, and holds the key to better performance. We might choose to relax some
of the other inlining restrictions in order to inline maximally in a recursive method.
Note that we can only determine if a method is possibly recursive at compile-time as
we use the conservative call graph, which is not precise at some virtual method call
sites.

3.1.6 Inlining Orders

We have discussed the criteria that can be used to make decisions on whether or not
to inline a particular method call. However in order for inlining to be effective we

68

need to fix some criteria that would determine the order in which methods should
be considered for inlining. Inlining method calls within certain methods first, could
be extremely crucial in improving performance. In this section we discuss some of
the inlining orders we have experimented with. Each order is described in terms of
assigning inlining priorities to methods. The higher the priority of a method, the
earlier it should be inlined.

1. Bottom Up Order : In this order methods that are at the bottom of the
call chain (leaves in the call graph) are assigned maximum priority, and the priorities
decrease as we move up the call chain. This order is expected to be extremely effec-
tive in applications that have many small methods or in applications with relatively
short call chains. This order is not likely to be useful in applications with many large
methods or long call chains. Performing inlining in bottom up order without any
restrictions on the size of the callee/caller methods gave us valuable insight into its
limitations/effectiveness. In applications with many small methods, inlining maxi-
mally could be quite beneficial, as the invocation instructions eliminated were the
main overhead in the original program. The harmful effects of introducing more lo-
cals as a result of inlining are not as pronounced because the methods being inlined
are small in size. The effects are also not very harmful in applications with short
call chains as the increase in locals in caller methods is not expected to be very high
because inlining is done at fewer levels in the call chain. The overhead due to the
cloned locals is high in the case of applications with predominantly large methods.
and this may result in degraded performance. The bottom up order is most useful
when used in conjunction with the restrictions on callee/caller method size and the
locals limit. In such cases, inlining would be performed extensively in methods at
the end of the call chain. Methods near the top of the call chain would have little
or no inlining done in them as most of the callee methods would have grown large
enough (as a result of inlining earlier) that they no longer satisfy the restrictions on
size and locals limit that would permit inlining. Still since every control flow path
must terminate in a method at the end of some call chain, bottom up order is a good
scheme.

2. Top Down Order : This order of inlining is the exact opposite of bottom
up order. Methods near the top of the call chain are assigned maximum inlining
priority, and the priorities decrease as we go down the call chain. This order is likely
to be quite beneficial even in the complete absence of any restrictions on the size of
the callee methods being inlined. It must be noted that in this scheme, a particular
callee method’s code never gets inlined into any method other than the caller method.

69

Methods near the top of the call chain never get code from methods near the bottom
of the call chain because inlining is done first for methods at the higher levels in the
call graph. Clearly this order leads to lesser code explosion than bottom up order, and
is therefore quite effective when inlining is done maximally even in applications that
have many large methods or long call chains. It may not be as effective as bottom
up order for applications with many small methods or short call chains.

3.1.7 Our Static Inlining Strategy

We have attempted to come up with one static inlining strategy that we apply on
every input application. The main requirement of this strategy is that it should be
adaptive enough to be equally effective for completely different classes of applications.
The strategy we present combines many of the ideas we have discussed earlier. The
most important point in our strategy is that we only inline at the call sites that are
determined to be important. We chose not to inline in bottom up order because of
the high rate of increase of the number of locals in this case. As a result of most
locals being in slow local slots in the class file, all the benefits from inlining were lost
and there was a significant slowdown (almost 40 percent) in some cases. Top down
order was felt to be too restrictive in that we really wanted a strategy that would be
aggressive at important call sites and not try to increase the code size too much on
account of inlining at unimportant call sites. It is imaginable though, that one might
still want to inline following these orders if the aim of performing method inlining was
not performance improvement. We have presented our algorithm to detect important
call sites in Figure 3.6 and our inlining strategy in algorithmic form in Figure 3.7.

Our inlining strategy starts by identifying call sites in recursive methods and call
sites that are inside loops. These call sites would clearly be executed frequently but
it also needs to be realized that all the methods that could be called from these call
sites might also be executed many times. Thus we recursively include all the methods
attached to the important call sites, and add all the call sites within these methods
into our list of important call sites. While adding an important call site and sites
along some call chain beginning at the call site, it is worth pointing out that the call
sites deeper down in the call chain are added first to the list of important call sites
and the call sites higher up in the chain are added afterwards. Thus call sites lower
down in the call chain would be considered for inlining first. This is equivalent to
inlining in bottom up order but only at the important call sites.

70

void getImportantCallSitesAccessedFrom (method m) {
List impSitesAccessedFromMethod = mnew ArrayList();
List impSitesAccessedDirectlyFromMethod = new ArrayList();

if (m is a recursive method)

add all the call sites in m to the list impSitesAccessedDirectlyFromMethod;
else if (m contains loops)

add the call sites inside loops to the list impSitesAccessedDirectlyFromMethod;

List impSitesAccessedIndirectlyFromMethod = new ArrayList();

for (each call site cs in impSitesAccessedDirectlyFromMethod)
{
List reachablemethods = getReachableMethodsInReverseTopologicalOrder(cs);

/* getReachableMethodsInReverseTopologicalOrder() returns the list of
methods that could be called along all call chains starting at cs.
Note that it returns the methods that are lower down in the call
chain at the head of the list and methods are higher up in the
call chain at the end of the list. x/

for (each method meth in reachablemethods)

add all the call sites ir meth to the list impSitesAccessedIndirectlyFromMethod;

}

add all the call sites in the list impSitesAccessedIndirectlyFromMethod to the
list impSitesAccessedFromMethod;

add all the call sites in the list impSitesAccessedDirectlyFromMethod to the
list impSitesAccessedFromMethod;

return impSitesAccessedFromMethod;

Figure 3.6: Locating important call sites to attempt inlining

There need to be limitations though, on the amount of code explosion allowed,
even at the important call sites. Thus we prevent any further inlining in a particular
method if the number of statements in the method has increased by a certain factor
as compared to the original untransformed method. The code increase factor can be
specified by the user in our implementation. The default value for the code increase
factor is eight (fixed after experiments), if the user does not specify a particular value.
There is also a strict bound on the allowable size of a method after inlining (10000

71

void performInlining (List methods) {
Set importantCallSites = new HashSet();

for (each method m in methods)

{
List importantSitesAccessedFromMethod = getImportantCallSitesAccessedFrom(m);
add all the call sites in importantSitesAccessedFromMethod
to the set importantCallSites;

/* Note that if a call site is determined to be important because
of accesses to it from more than one method, then it is not
considered twice as importantCallSites is a set. =/

}

for (each call site cs in importantCallSites)
{
if (cs has exactly 1 callee method)
{
Method declaringmethod = cs.getDeclaringMethod();
Method calleemethod = cs.getCalleeMethod() ;

' if (satisfiesSafetyCriteria(cs))
{

if ((declaringmethod.size() < (declaringmethod.originalsize())=*EXPANSION_FACTOR)
&% (declaringmethod.size() < MAX_ALLOWED_SIZE))
{

if (calleemethod.size() < AVG_MTHD_SIZE)
{

InlineMethod(cs, calleemethod);

Figure 3.7: Our static inlining algorithm

72

Jimple statements) so that the method does not grow beyond the limit imposed by
the Java Virtual Machine specification. Thus, inlining into a particular method is
stopped if it has grown to a size greater than the limit imposed by the code increase
factor or 10000 Jimple statements.

Since we are preventing any further inlining after the code size has reached a
certain limit, it is important that the increase in code is a result of inlining as many
call sites as possible. For example, if one of the call sites was a call to a large method
then the code explosion in the caller as a result of inlining at that one call site might
have increased the size of the caller past the threshold. This would result in none of
the remaining call sites being inlined; this might be significant if there are many call
sites that call small methods, as many such calls could have been eliminated if we
had not inlined at the call site that resulted in code explosion. Thus we inline only at
those call sites where the callee method is sufficiently small in size; the size we choose
as a threshold is the measured average value for the number of Jimple statements in
methods in the application being optimized.

3.1.8 Profile Guided Inlining

We have also implemented an option to enable profile guided inlining in our imple-
mentation. Profile guided inlining only considers the call sites that were executed
frequently in a profile run for inlining. The input to the profile guided inliner is a
file which contains the unique IDs for call sites that were executed during the profile
run, along with the frequency of execution of each call site. The inliner considers the
call sites for inlining in decreasing order of frequency of execution, thus inlining at
the most important call sites first. By only inlining at the call sites that are known
to have a performance impact, we reduce the amount of code explosion that typically
occurs when inlining is performed based on static criteria. Also most of the program
characteristics we mentioned earlier (like number of locals in a method after inlining
etc.) are not altered significantly. In some sense, the improvement in performance
as a result of inlining based on the profile is the maximum that can be achieved as
a result of this optimization. The comparison of the effect of profile guided inlining
with inlining based on static criteria indicates the effectiveness of our static criteria
in identifying the important call sites to inline.

In Chapter 2, we explained our profiling strategy when the aim was to identifv the
run time targets of each call site. Qur profiling strategy in identifving the call sites

that are executed frequently is similar. We insert profiling code into each method at
the Jimple level and then use the Soot framework to generate classes with profiling
code in them. The code that is inserted before each call site is a call to a static method
in a special profiler class created by us. The static method takes as parameters the
unique ID of the call site and keeps track of the number of times each call site was
executed. This static method also writes the call site ID and the frequency count for
each call site periodically into a results file. When the program being profiled has
executed for a significant amount of time, we can assume that the frequency counts
in the results file mirror the actual behavior of the program (i.e. “hot spots” in the
program can now be easily identified).

74

Chapter 4

Experimental Results

In this chapter we present and discuss the experimental results that we have obtained.
Our results can be grouped into two distinct categories :

1. The impact of the static analyses presented in Chapter 2 in improving the
precision of the call graph for an application.

2. The effectiveness of method inlining, the optimization we presented in Chap-
ter 3, in improving run time performance.

We have performed our experiments on a set of 15 benchmark programs drawn
from five different source languages, namely, Java, ML, Ada, Eiffel and Pizza, all
of which have compilers that produce bytecode. The benchmark characteristics of
particular interest are shown in Table 4.1.

4.1 Benchmark Characteristics

The 15 benchmarks are grouped based on the source language and brief description
of each benchmark’s functionality is also given.

4.1.1 Java

There are seven Java benchmarks, two of which are from the Sable benchmark set
while the rest are from the SPECjvm benchmark suite. The sablecc benchmark is a
compiler front end generator written in Java[3], and soot is an earlier version of our

75

compiler framework[l]. The five SPECjvm benchmarks include raytrace which is
a graphics raytracer, jess which is an expert shell system based on NASA’s CLIPS
expert system, compress which is a compression program based on a modified Lempel-
Ziv method, db which is a database application, mpegaudio which is an obfuscated
commercial application that decompresses audio files conforming to the ISO MPEG
Layer-3 audio specification, jack which is a Java parser generator based on the Purdue
Compiler Construction Tool Set (PCCTS), and javac which is the Java compiler from
Sun’'s JDK 1.0.2.

4.1.2 Eiffel

The illness benchmark, which simulates the spread of disease among a popula-
tion was compiled with the SmallEiffel compiler(4] and the benchmark comes from
the SmallEiffel benchmark programs distributed with the compiler. The SmallEiffel
compiler does some whole program analysis and produces relatively optimized code.

4.1.3 Ada

The rudstone benchmark is a large Ada floating-point intensive benchmark that was
derived from a satellite ground control system, and it was compiled using Appletmagic(tm)[38].

4.1.4 ML

There are three ML benchmarks which come from the Standard ML of New Jersey
benchmark set. The benchmark lexgen reads a specification of a lexer for SML, and
generates the SML code for the lexer, ray is a graphics ray tracing program. and
nucleic solves an anticodon problem. All three benchmarks were compiled using the
MLJ compiler(5], which actually performs whole program analysis.

4.1.5 Pizza

The pizza benchmark is the Pizza compiler[6] written in the Pizza programming
language, compiled with the Pizza compiler.

The statistics in Table 4.1 provide an insight into the nature (the extent of object
orientedness of) the benchmarks for which we have conducted experiments. In the

76

column labeled # Stmts, we show the number of Jimple statements in the whole ap-
plication (benchmark plus Java libraries accessed by the application), and the number
of Jimple statements in only the benchmark (without libraries). In the column labeled
Hierarchy we give the average and maximum depth of the inheritance hierarchy for
the whole application and benchmark only. These numbers not only measure the ex-
tent of object orientedness of the whole application, but are also useful in discovering
whether it is the benchmark itself that has been written in an object oriented man-
ner, or if the Java libraries are the source of object orientedness. The column labeled
Classes and Interfaces gives the number of classes and interfaces that come from
the library, the benchmark code only, and the overall total. Note that the Ada, Eiffel
and ML benchmarks all appear to be very non object-oriented since the maximum
depth of their hierarchies is 2, and none of them have any interfaces in the benchmark
part of the code.

Benchmark # Stmts Hierarchy Classes and Interfaces
avg. depth |max. depth|| library | bench. |whole

whole bench. || whole bench.|whole bench. only app.

lang. name app. only || app. only | app. only |[class int.|class int.]|(total)
java sablecc 68575 24621|| 3.2 23 | 6 5 308 44| 299 13| 664
java soot 63506 33396(3.3 2.1] 4 186 11| 498 34 729
java _205.raytrace |[49239 5347| 3.0 1.3 6 3 307 44| 35 1 387
java _202_jess 56163 11137| 2.8 1.3 6 3 316 44| 157 4 821
java _201_compress |[46619 2727| 3.0 1.1 6 2 307 44| 22 1 RYE)
java 228_jack 55107 11215|| 3.0 1.6 6 3 307 44| 63 35 419
java _209.db 49876 3002} 3.0 1.0 6 1 309 44| 14 1 368
java 222 _mpegaudio ||56744 10923|| 3.0 1.4 6 4 307 44] 54 9 414
java _213_javac 69585 25304 3.5 3.2 8 T 310 44} 178 3 537
eiffel illpess 29568 13720 3.2 1.8 6 2 174 10} 11 O 195
ml nucleic 33096 4900¢| 3.1 1.6 6 2 174 10| 47 0 231
ml lexgen 33397 5201 3.1 14 6 2 174 10| 67 O 251
ml ray 34186 3721 3.1 1.6 6 2 178 10| 8 0 271
ada rudstone 75250 31413} 2.9 1.2 7 2 312 44] 141 0 497
pizza pizza compiler| 73130 42805| 3.0 1.7 6 3 188 11] 207 11 417

Table 4.1: Benchmark Characteristics

~]
=1

4.2 Conservative Call Graph Characteristics

Table 4.2 gives a summary of the conservative call graph built for each benchmark
using class hierarchy analysis (CHA). We have measured the conservative call graph
characteristics for the whole application (including the library) as well as the portions
of the call graph related to the benchmark alone. Accordingly, Table 4.2 is divided into
two distinct parts. We present conservative call graph and call graph improvement
statistics for all our benchmarks in this section.

Name Whole Application Benchmark Only

Call Sites Edges Call Sites Edges

|| pot. pat. IN| pot. pot.
mono. poly. | total | mono. poly.| total mono. poly. | total | mono. poly. | total
sablecc 3737 | 11151 1332112483 | 11140 24553 | 35693 || 1955 5920 889 | 6809 | 5920 20736 | 26656
soot 2828 | 11653 1738 | 13391 | 11653 25331 | 36984 || 2001 9070 1545 | 10615 9070 22620 | 31630
raytrace 1729 | 6582 377 6956 6576 2591 | 9167 207 2037 12| 2049 2037 46 | 2083
jess 2230 8871 467 | 9338 8865 3804 | 12669 627 4209 89 | 4298 4209 994 [5203
compress 1583 5430 369 | 5819 5444 2556 [8000 76 927 6 933 927 30 957
jack 1857 7191 7791 7970 7185 3619 | 10804 337 2672 396 | 3068 | 2672 992 | 3664
db 1615| 5688 393 | 6081 5682 27_1_3_ 8395 80 1090 26| 1116 1090 110 | 1200
mpegaudio |[1828 | 6127 404 | 6531 6121 3072 | 9193 311 1602 38| 1640 1602 179 | 1781
javac 2821 | 10570 1276 | 11846 | 10564 13707 | 24271 [{ 1188 | 5933 848 | 6781 5933 10306 | 16239
illness 746] 2494 164 | 2658 2494 1318 3812 56 144 1 145 144 9 153
nucleic 800(3500 172] 3672 3500 1353] 4833 103 1149 6| 1155 1149 32| 1181
lexgen 916 | 3633 200] 3833 | 3633 1438 5071 196 1250 22| 1272 1250 67 1317
ray 973] 3203 195] 3398 3203 1505| 4708 206 713 19 732 713 94 807
rudstone 1707 | 6014 358 | 6372 6004 2311| 8315 207 1637 1| 1638 1633 71 1640
pizza 2660 | 13729 799 | 14528 | 13729 6024 | 19753 || 1756 | 11115 577 [11692 [11115 4069 | 15184

Table 4.2: Conservative Call Graph Characteristics

4.2.1 Conservative Call Graph for Whole Application

First consider the characteristics of the whole application, including libraries. Column
1 shows the number of methods that are in the call graph. Note that this number mea-
sures the number of methods that might be called starting at all possible entry points,
based on CHA, and does not include methods that can not be called. Column 2 shows
the number of monomorphic call sites in methods in the call graph. The monomor-
phic sites include call sites for invokestatic and invokespecial instructions as well
as call sites for invokevirtual and invokeinterface instructions that have been
resolved to exactly one method by CHA. Column 3 shows the number of potentially-
polymorphic sites i.e. invokevirtual and invokeinterface instructions that have

78

more than 1 target after performing CHA. Column 4 shows the total number of call
sites in the whole application. Column 5 shows the number of monomorphic edges
(edges from monomorphic call sites), while column 6 shows the number of potentially-
polymorphic edges (edges from potentially-polymorphic call sites). Column 7 shows
the total number of edges in the whole application.

4.2.2 Conservative Call Graph for Benchmark Only

Now consider the second part of Table 4.2, which shows the characteristics of the
benchmark only, not including any library methods. This part of the table includes
all methods from the call graph that do not belong to the Java library, call sites inside
these methods, and the edges attached to these call sites. These figures give a clear
idea about the performance of CHA on the benchmark classes. For example, it is clear
that there is hardly any scope for improvement of the benchmark portion of the call
graph in benchmarks like rudstone, illness, and raytrace, whereas in benchmarks
like javac, soot, or pizza there are many unresolved (potentially polymorphic) call
sites.

4.3 Improvements over the Conservative Call Graph

We have obtained the results shown in Table 4.3 from our analyses. For each bench-
mark we show the result of applying rapid type analysis (RTA), declared-type analysis
(DTA), and two variations of variable-type analysis VTA(1) and VTA(2). VTA(1) is
the analysis as presented in Chapter 2. VTA(2) uses the result of VTA(1) to prune
the conservative call graph, and then uses this pruned call graph to run the VTA algo-
rithm again. One could imagine repeating this process until no further improvement
is gained, but in practice we have found that 2 iterations works quite well.

4.3.1 Call Graph Improvement for Whole Application

Rapid type analysis (RTA) has previously been shown to give good results on complete
C++ applications [12], and our study shows that this is the case for many of our
Java benchmarks as well. The number of dead method nodes (whole application)
removed by RTA varies between 7% of the total number of methods in the conservative
call graph (for soot, pizza) to about 51% (for compress). We expect most of the

79

improvement to come from removing dead methods in library classes. This is because
CHA builds the call graph based on the class hierarchy. If a certain library class O
and its subclasses all implemented method m() and if all these classes are part of the
class hierarchy for the application, CHA would add edges from o.m() (o is of declared
type O) to each of the m()’s in the class O and its subclasses. It is extremely likely
that the benchmark application would only instantiate a few of the subclasses of O
and so most of the edges that are present in the CHA call graph are not actually
needed. This is exactly the sort of information that RTA can find. This expected
behavior is observed in practice as there are a greater proportion of methods removed
in applications like raytrace and compress that involve many library classes as
compared to the number of classes in the benchmark itself.

The next important question is to see if our new analyses, declared-type analysis
(DTA) and variable-type analysis (VTA) can do even better than RTA for complete
applications. The number of methods removed by DTA varied between 9% (soot)
and 58% (compress), whereas the number of edges removed varied between 10%
(compress) and 54% (soot). Thus DTA does shows some improvement over RTA
both in terms of nodes removed (at best 7%) and edges removed (at best 9%). VTA
shows a clearer improvement over RTA. The number of nodes removed by VTA(2)
varied between 10% and 65% of the total number of nodes in the conservative graph.
The number of edges removed as compared to RTA is greater on average by about
15% (best case improvement 19%).

We have also shown the number of call sites resolved by each analysis, and VTA
does considerably better than any of the other analyses in this respect. Before dis-
cussing the improvement, we would like to clarify that the percentages given (along-
side the raw data for the number of resolved call sites) are calculated on the number of
potentially-polymorphic call sites (as shown in Table 4.2) that are left unresolved by
CHA. As an example, for the benchmark jack, RTA resolved 308 of the 774 call sites
(39%) that are unresolved by CHA, whereas VTA(2) resolved 730 call sites (94%).
Note that the number of call sites resolved by each analysis includes call sites that
are determined to have no targets (in other words, they cannot be executed as they
occur in an unreachable method), as well as call sites that have precisely one target.
The improvement in resolved call sites in most benchmarks is at least 15%, and in
some cases (jack, soot) it is higher than 40%. DTA shows some improvement over
RTA in some cases, but performs almost as badly as RTA for some of the more object
oriented benchmarks (javac, jack, soot, pizza). Thus we observe that for highly
object oriented applications, VTA is more effective than the other analyses.

80

4.3.2 Call Graph Improvement for Benchmark Only

We now discuss the results for methods/edges removed, and call sites resolved only
within the benchmark methods (excluding the Java libraries). Compared to complete
applications, fewer benchmark methods are removed, and this can be explained by
the fact that there are fewer redundant methods in general in benchmark classes, as
compared to a library (where there might be many methods that have been created
for use by users of the library). The differences between the analyses are more clearly
observable in the numbers for the benchmark only. It can be observed that for
the benchmark only, RTA has almost the same effectiveness as CHA in most of
the benchmarks that are not very object oriented. On the more object oriented
benchmarks, RTA does better than CHA on the benchmark code but there is still
substantial scope for improvement. DTA has roughly the same effect as RTA on
the benchmark code, but VTA performs considerably better than any of the other
analyses. The improvement over RTA in terms of methods removed is about 4%
on average, and 10% in the best case. VTA removes about 6% more edges than
RTA on average, and 18% more edges in the best case (soot). The differences in
call sites resolved is more marked and RTA does not perform as well on the highly
object oriented benchmarks as it does on the non object oriented benchmarks. VTA
resolves a substantial number of call sites in the highly object oriented benchmarks
(as high as 96% of virtual call sites for jack and 44% for soot). In some of the non
object oriented benchmarks like raytrace, rudstone, and compress there are not
very many virtual call sites in the benchmark that can be resolved, and so none of
the analyses do particularly well on them. Note that the number of call sites resolved
includes call sites with one target and call sites with no targets.

4.4 Comparison with Dynamic Results

We have used profiling to estimate the possible run time-impact of the analyses. We
instrumented the bytecode produced by our compiler to produce a summary of which
methods were actually called at each invokevirtual and invokeinterface call, and to
collect the execution frequency for each call site. We have concentrated on the run
time behavior of call sites in the benchmark classes (excluding the Java libraries).
One common scenario is that one would want to perform compiler optimizations on
the benchmark code alone, and leave the Java library classes unchanged. This was
the main reasoning behind our decision to profile the benchmark classes only, as this

81

Whole Application Benchmark Only

Nodes Edges Callsites odes Edges Callsites

Remaved Removed Raesolved Removed | Removed Rasolved

sablecc rapid-type 657 (175%) | 4145 (L1%)|407 (30%) || 42 (2%) 11077 (3%) 164 (18%)
declared-type 773 {20%)| S67C (15%) | 456 (34%) 75 (3%} 11854 (6%) | 192 (21%)

variable-type(1} || 867 (23%)[10723 (30%) | 6358 (47%R) 91 (4%} {5943 (22%) [311 (34%)
variable-type(2} || 1016 (27%) | 11141 (31%) | 680 (51%) 92 (4%} 16005 (22%) [317 (35%)

soot Tapid-type 212 (T%) | 2635 (7%) | 137 (TR || 60 (256y(1362 (3%®)| 38 (2R
declared-type 282 (9%) | 4061 (10%) 172 (9%) || 68 (3®}[2168 (6%)| 60 (3%)

variable-type(l) || 328 (11%)| 7447 (20%)|657 (37%R) 89 (4%} 5027 (15%) (510 (33%)
variable-type(2) || 348 (12%) | 8380 (22%) (829 (47%) |[109 (5%)|5960 (18%)|682 (44%)

raytrace rapid-tvpe AOR [460%Y | 3588 (30541202 (775 1S (75RY B (2% % (ALY]
declared-type 925 (53%) | 4375 (47%) | 304 (80%) 20 (9%} 5 (2%) 5 (41%)

variable-type(l) || 1026 (59%) | s200 (s6%)|342 (90%) || 18 (8%)| 68 (3| 5 (41%)
variable-type(2) || 1026 (59%) | 5200 (56%)[342 (90%) || 18 (3%)!| &8 (3%)]| 5 (41%)
Jeus rapid-type 974 {13 3671 (37%) | 346 %74%) 148 (23%) | 1112 (21%) | 49 (35%)
declared-type {| 10896 (49%) | 5823 (46%) [356 (77%) || 157 (25%) | 1458 (27%)| 50 (56%)
variable-type(1) || 1191 (53%) [6826 (53%)|[404 (86%) || 162 (25%) 1552 (29%)| sS4 (80%)
variable-type(2) I] 1191 (53%) | 6828 (53%) | 404 (86%) || 162 (25%) | 1552 (29%) [S4 (80%)

coupress rapid-type 8141 (51%%) | 3664 (15%) | 293 (799%) IT (14R)| 40 (4%) 3 (50%) |
declared-type 926 (58%) | 4418 (55%) 303 (82%) 18 (21%) 42 (6%) 1 (66%)

variable-type(1) || 1033 (85%) | 35214 (65%) 344 (93%) 18 (21%) 0 (TR) 1 (86%)
variable-type(2) |) 1033 (65%) | 5214 (85%) | 344 (93%) 18 (21%) 70 (%) 4 (66%)

Jack rapid-type 820 (44%) | 3763 (34%) | 313 (40%) || 17 (5%)| 121 (3%)| 21 (5%)
declared-type 924 (50%) | 4475 (41%)[323 (NRK) || 20 (5%R)| 184 (5%)[21 (5%)

variable-type(t) i| 1027 (55%) | 38719 (52%)|734 (94%) 21 (6%)| 565 (15%)|382 (96%)
variable-type(2) || 1027 (55%) | 35719 (52%)| 734 (94%) 21 (6%)] s565 (15%)|382 (96%)

db rapid-type BIZ (50%%) | 3649 (43%) 291 (74%) || 12 (18%)| 57 (3%)| 3 (11%)
declared-type 920 (56%) | 4428 (52%))302 (76%) (| 15 (18%)| 84 (7R)| 3 (11%)

variable-type(1) || 1002 (82%)| 5168 (61%)[360 (91%) || 15 (18%)| 118 (9%)| 23 (88%)
variable-type(2) || 1002 (62%) | 5168 (81%)[360 (91%)]| 15 (18%)[119 (9%)| 23 (38%)
apegaudio rapid-type B39 (45%%) | 3908 (42%) 303 (75%) || 36 (11%)| 88 (4%)] 12 (31%)]
declared-type 930 (50%) | 4560 (42%) 325 (80%) || 46 (14%)| 157 (8%)| 13 (34%)
variable-type(1) || 1043 (57%) | 3549 (60%) 354 (87%) || 46 (14%)| 180 (10%)| 13 (34%)
variable-type(2) || 1043 (S7%) | 5549 (60%)[354 (87%) || 46 (t14%)| 180 (10%)| 13 (34%)

Javac rapid-type 823 (29%%6) | 4516 (18%)]319 (25%) || 30 (2R)| 713 (3R)] 30 (3R)
declared-type 931 (33%) | 5460 (22%) {337 (26%) 33 (2%)(8585 (3%)| 30 (3%)

variable-type(1} || 1001 (35%) [6639 (27%)|489 (38%) 35 (2%)|1136 (6%)[135 (15%)
variable-type{2} 4, 1001 (35%) | 6639 (27%)|489 (38%) 35 (2%)[1136 (6%) 135 (15%)

variable-type(t} || 300 (37%)| 2062 (42%) | 150 (87%)

——

illness rapid-type 180 (25%%) | 1380 (36%)]104 (63%) 0 (0%) 5 (3%) 0 (0% |
declared-type 234 (31%) | 1743 (45%)[110 (67%){| O (OK)| 5 (3% (0%)
variable-type(1} || 290 (38%)| 2080 (54%)|143 (87%) S (8%)| 16 (10%) (100%)
variable-type(2) il 290 (38%)| 2060 (54%)]143 (87%) 5 (8%)| 16 (10%) (100%)
mucleic rapid-type 194 (24%%) | 1300 (28%) 107 (62%%) T (1%) T {0.1%) 0% |
declared-type 244 (30%) | 1757 (36%)| 113 (65%) 7 (6%)| 6 (0.6%) (16%)

9

2

T

0
1
1
0
1
(11%) i %) 5 (83%)
5
[}]
1
1
1

variable-type(2) || 300 (37%)| 2062 (42%)]150 (87%) (11%)] 11 (%) (83%)
Tezgen rapid-type 02 (22%) | 1421 (28%)| 112 (569%) (19%) T (0.15%) | 0
declared-type 261 (28%)| 1804 (35%)[121 (BOR) || 14 (TH)| 13 (%) (4%)
variable-type(1} || 314 (34%) | 2129 (41%)|172 (86%) || 18 (9%®)| 45 (3%)| 21 (95%)
variable-type(2) || 314 (34%) | 2120 (a1%) 172 8em) |l 18 (9%)] 45 (3%)| 21 (95%
ray rapid-type 197 (20%)] 1415 (30%)| 111 (56%) T (1%:| 1 (0.1%)] O (o%;
declared-type 259 (26%) | 1817 (38%)[119 (B1®) || 15 (7H)| 18 (%) L (5%)

variable-type(l) || 320 (32%){ 2176 (46%)[185 (34%) 55 (6%R)| 15 (78%)
variable-type(2) || 320 (32%)| 2176 (46%; 165 (84%) 25 (12%) 55 (6%)| 1S (78%)
3680 (44

"
b
.
=
3
R
<

rudstone rapid-type 830 (48%) 293 (81%%) 0 (0%%) 3 (0.2%)| 0 (0%)|
declared-type 936 (54%)| 4364 (52%)|302 (84%) 0 (0%) 4 (04%)| 0 (0%)

variable-type(1) || 1014 (59%) | 4903 (58%)[337 (94%) 9 (0.6%) 1 (100%)

variable-type(2) || 1014 {39%) | 4903 (58%)|337 (94%) 9 (0.6%)| 1 (100%)
plaza rapid-type 13 (8%) | 2097 (10%)|123 643 (4%)| 3 (0.3%) |

declared-type 233 (9%)| 2566 (12%)| 155
variable-type(1) 270 (10%) | 3431 (17%)| 259
variable-type(2) 270 (10%)| 3462 (17%)|270

830 (5%)| 23 (3%)
1388 (8%)| 99 (17%)
1418 (9%) | 109 (18%)

Table 4.3: Improvement of Call Graph over Conservative Call Graph

82

would give us a good indication of the possible performance impact of optimizing the
benchmark. Also we felt that it would be interesting to measure the difference in
performance of the analyses on the benchmark classes dynamically, given that the
static results indicate that our VTA analysis does substantially better than CHA and
RTA in the benchmark code.

We observed that for the non object oriented benchmarks raytrace, compress,
db, mpegaudio, illness, ray and rudstone, almost 100% of the benchmark call sites
are resolved by CHA. Thus, there is no point in considering these any further. The
results for the remaining 7 benchmarks are much more interesting, and are presented
in Table 4.4. For each benchmark, we provide one row for each of the analyses
(CHA,RTA,DTA,VTA(1) and VTA(2)), plus one row for the result obtained by the
profile. In each case we give the percentage of calls (dynamic number) in three
categories. The first column gives the percentage of calls that were monomorphic.
For the analyses rows this means that these calls were determined to be monomorphic
by the analysis. For the profile row this means that only one method was resolved
for this call site over the entire run. Note that monomorphic calls in the profile may
be monomorphic for this particular run, but polymorphic for different input data.
Column 2 shows the percentage of calls that have 2 or 3 targets according to the
analyses and the profile. This is of interest as it is possible to optimize polymorphic
calls that have only a few possible targets by introducing a switch into the code
that would call the appropriate method (statically resolved) based on the class of
the receiver(22]. Column 3 shows the percentage of calls that are unresolved by the
analyses and have more than 3 possible targets, along with the profile number for such
polymorphic calls. The final column shows the average number of methods that could
be called from each call site according to each analysis, and the same measurement
for calls made in the profile.

Table 4.4 shows several interesting trends. First, consider the percentage of
monomorphic calls. It appears that RTA gives very little or no improvement on all
benchmarks. Thus, as expected, RTA is not effective for benchmark code. Our DTA
analysis also does not perform very well on the benchmark code, giving no significant
improvement over RTA. However, our VTA analysis does give some improvement on
all benchmarks, with significant improvement on several of them. In some cases (jack
and pizza), we cbserve that the number of call sites resolved by VTA is almost the
same as the number of monomorphic calls obtained with the profile, and in these
cases there is no need for any more sophisticated analyses. We also observe that for
the ML benchmarks nucleic and lexgen, RTA and DTA cannot resolve all calls, but

83

Benchmark Only
Virtual Callsites | Virtual Callsites | Virtual Callsites Average

with 1 target with 2 or 3 targets | with > 3 targets | per Callsite

sablecc class-hierarchy 86% 5.5% 8.5% 1.69
rapid-type 86.5% 5% 8.5% 1.60
declared-type 86.5% 5% 8.5% 1.60
variable-type(1) 88.7% 5.2% 6.1% 1.42
variable-type(2) 89.7% 6.2% 14.1% 1.30

profle 95.5%% 8.7% 3.8% .13

soot class-hierarchy 29% 16% 55% 11.03
rapid-type 29% 20.5% 50.5% 9.31
declared-type 29% 20.5% 50.5% 8.49
variable-type(1) 39% 14.9% 16.1% 6.45
variable-type(2) 1% 18.6% 40.4% 6.2

profile 66.6% 16% 17.1% 1.58

jack class-hierarchy 86.3% 1.1% 12.6% T.444
rapid-type 87% 11.6% 1.4% 1.298
declared-type 87% 11.6% 1.4% 1.158
variable-type(1) 98.5% 1.5% 0% 1.017
variable-type(2) 98.5% 1.5% 0% 1.017

profile 98.5% 1.5% 0% 1.017

javac class-hierarchy 65.9% 7.1% 7% 3441
rapid-type 65.9% 7.1% 27% 3.078
declared-type 65.9% 12.5 21.6% 2.607
variable-type(1) 72.2% 6.5% 21.3% 2.597
variable-type(2) 72.2% 6.5% 21.3% 2.597

profile 90.1% 3.6% 6.3% 1.446

nucleic class-hierarchy 0% 99.1% 0.9% 2.138
rapid-type 0% 99.1% 0.9% 2.138
declared-type 0% 99.1% 0.9% 2.138
variable-type(1) 99.1% 0% 0.9% 1.138
variable-type(2) 99.1% 0% 0.9% 1.138

profile 99.1% 0% 0.9% 1.138

lexgen class-hierarchy 81.8% 18.2% 0% 1.182
rapid-type 81.8% 18.2% 0% 1.182
declared-type 81.8% 18.2% 0% 1.182
variable-type(1) 100% 0% 0% 1.000
variable-type(2) 100% 0% 0% 1.000

profile 100% 0% 0% 1.000

pizza class-hierarchy 75.5% 9.5% 15% 2.289
rapid-type 75.5% 20% 4.5% 1.853
declared-type 75.5% 20% 4.5% 1.798
variable-type(1) 89% 8.8% 2.2% 1.509
variable-type(2) 89% 8.8% 2.2% 1.509

profile 94% 6% 0% 1.074

Table 4.4: Comparison of calls resolved by each analysis with the profile
result

84

VTA resolves almost all the calls. This is because the inheritance hierarchy in the
case of these benchmarks consists of an abstract class that contains default definitions
for many methods (that raise an exception if called). Many classes directly extend
this abstract class but contain redefinitions for only certain methods, and so there
are 2 possible targets for a call in many cases. VTA resolves these call sites while the
coarser grained analyses do not.

For 2 benchmarks, soot and javac, we observe that while VTA did resolve sub-
stantially more call sites than any of the other analyses, it is not able to perform
well enough to approach the results obtained in the profile. We studied the reasons
for this gap on soot as the difference is greater for this benchmark, and as it is an
analysis framework developed by us, we had the source code with which we were
familiar. We illustrate the reason for VTA's inability to find all monomorphic calls
with an example. The soot framework has an abstract class AbstractValueBox
that is a container class that declares a field holding an object of class Value.
Value is also an abstract class that is overridden by specific classes like Local,
InstanceField, InvokeExpr. AbstractValueBox is extended by specific container
classes like LocalBox, InstanceFieldBox and InvokeExprBox. These specific con-
tainer classes do not declare any fields and the values that are held in these boxes
are stored in the Value field of AbstractValueBox. Thus objects belonging to many
classes that override Value reach the Value field declared in AbstractValueBox. The
accessor method to get the Value stored in a box is defined only in AbstractValueBox
and it returns the Value field. Thus whenever a specific kind of Value object is put
into a box and retrieved. all the classes that reached the Value field are in the set
of possible types (computed by VTA) for the object retrieved. We believe that this
would be a problem for even more sophisticated analyvses because the statements that
put values in the boxes are often very far from statements taking the values out, and
it would be difficult to pair the definitions and uses up correctly.

Another explanation for the gap is is the presence of several run time flags in this
benchmark. For a particular option, there is usually an abstract class performing the
basic functionality associated with the option, and it is extended by different classes
that perform a specific function. Depending on the particular choice for the runtime
flag one of the possible classes is instantiated. Thus, this is an example where the call
site is monomorphic for a particular run of the program, but polymorphic over many
different runs. This sort of monomorphism cannot be determined by a static analysis.
but would be a good candidate for runtime optimizations such as specialization.

4.5 Time and Space Complexity of Analyses

Call Graph Declared Type Variable Type Time
Name |Jimple before SCC after SCC || before SCC | after SCC {seconds)

Stmts | || (EL TNT TET] INT 1ETIL INT TET] TNT JET|]DTA VTA
sablecc 68575 {| 3737 35693 (| 7722 8273|6104 3927 | 25482 7528020298 43618 13 128
soot 63506 || 2828 36981 {| 6333 6699|5178 3784 (| 24190 6828919620 43416 15 207
raytrace 49239 || 1729 9167|3540 3139|2989 1931 (| 12496 1812510700 13329 8 54
jess 56163 [| 2230 12669 || 4320 3943 (3634 2453 || 15563 23695 (13232 17059 9 87
compress 46619 (11583 8000 || 3235 283212741 1745|| 11010 15734 9471 11461 8 44
jack 55107 |{ 1857 10801 || 3828 3474|3284 2274 {| 14293 2136112320 16131 11 68
db 49876 |1 1615 8395 [3356 2954 (2801 1812(| LI878 16742 978U 1tY24] 16
mpegaudio 56744 (/1828 9193 {| 3696 3371|3115 2182} 13416 20200{12101 15665 11 62
javac 69585 (| 2821 24271 || 5872 6061 }4741 3374 (| 22220 54930117019 26417 12 113
illness 29568 || 746 3812|1650 1386|1409 868} 5625 8355{ 4851 6041 4 50
nucleic 33096 || 800 4853 |[1796 1538)1536 986 7815 12130(6403 8714 4 41
lexgen 33397 916 507112044 16861746 1049} 7798 11687 6717 8762 5 41
ray 34186 || 973 4708 || 2178 1849|1854 1164 7227 10547 6101 7575 3 52
rudstone 75250 || 1707 8315 ({3609 2758|3122 1690 || 11956 15764 | 10440 11504 8 89
pizza 73130 |}2660 19753 || 7177 7445|6023 3856 || 28007 50242 | 17216 23390 11 102

Table 4.5: Size of Data Structures

Qur implementation is not yet tuned for speed, so in order to give an estimate
of the time required for each analysis, we gathered information about the size of
the data structures built for each algorithm, plus some execution numbers for our
untuned implementation. In Table 4.5, we show our measurements. Note that for
DTA and VTA, the time required to obtain the solution is proportional to the number
of edges in the constraint graph after the graph has been transformed such that each
strongly connected component in the original constraint graph is replaced by special
SCC nodes. The number of edges in the constraint graph is observed to grow linearly
with the size of the application for both DTA and VTA. In comparing DTA and VTA,
we observe that VTA has about 3 times the number of nodes, and about 7 times the
number of edges as in DTA. This gives a good indication about the relative costs of
these 2 analyses. The last column of Table 4.5 gives the time, in seconds, for solving
the constraint graph. The interesting point is not so much the absolute time !, but
the fact that the analysis scales well, and behaves linearly in practice.

I'This implementation is built in Java using very high-level data structures based on collections,
and it was run using a relatively slow Java interpreter (linux jdk1.1) on a 333Mhz pentium. Thus
one can safely assume that a tuned implementation will run faster by a large constant factor.

86

4.6 Method Inlining Results

We now explain the impact of performing method inlining on the run time perfor-
mance of our set of benchmarks. We have measured the impact of method inlining
on only those benchmarks (out of our set of 15 benchmarks) that execute for long
enough for timing measurements to be accurate. We have shown the measurements
using the JIT compiler that is part of the linux jdk1.2 release, and also using the
linux jdk1.2 interpreter on a 400Mhz pentium.

Before discussing the results, we would like to briefly describe the methodology we
followed for obtaining these results. All execution times in the tables are the minimum
values obtained over five separate execution runs. We feel that using the minimum
value is less likely to include inaccuracies induced by fluctuations in system load
due to other processes. We have also observed that the timings are only accurate if
measured at high CPU utilization (97% to 99%) when using the Unix ¢me command.

We present results in each table for method inlining performed using the call graph
obtained through class hierarchy analysis, and using variable type analysis. We have
not presented results for method inlining using the call graph built by rapid type
analysis or declared type analysis as we have observed that the performance impact
in these cases is identical to that observed when inlining is performed after class
hierarchy analysis. This is a result to be expected as the call graph characteristics
(for benchmark code) built using class hierarchy analysis, rapid type analysis, and
declared type analysis are very similar (see Table 4.3).

4.6.1 Automatic Method Inlining

In Table 4.6 we have shown our run time measurements using the linux JIT before
and after performing automatic method inlining, while in Table 4.7 we have shown
similar results for the interpreter. In columns 1 and 2 we have shown the execution
times before and after inlining respectively. In column 3 we have shown the calculated
speedup, and in column 4 we have shown the factor by which code size increased as
a result of performing our optimization.

We observe an average speedup of 1.05 on our set of benchmarks, with a maximum
speedup of 1.21 for the benchmark compress using the JIT. Using the interpreter,
we observe an average speedup of 1.02 on our set of benchmarks, with a maximum
speedup of 1.08 for the benchmark raytrace. Method inlining is observed to be a

87

JIT results for automatic inlining
Execution Time |{ Analysis Used xecution Time || Speedup Code

Before Inlining || For Call Graph After Inlining Increase

compress 66.88 s || class-hierarchy 55.14 s 1.21 1.23
variable-type 55.14 s 1.21 1.23

jess 48.17 s || class-hierarchy 45.55 s 1.05 2.01
variable-type 45.55 s 1.05 2.01

raytrace 53.97 s || class-hierarchy 48.81 s 1.10 2.22
variable-type 48.26 s 1.11 2.22

db 131.01 s [| class-hierarchy 127.11 s 1.03 1.29
variable-type 127.11 s 1.03 1.29

mpegaudic 33.93 5 || class-hieracchy 50,006 = 1.06 .34
variable-type 50.61 s 1.06 1.34

Jack 60.91 s || class-hierarchy 61.81 s 0.98 1.87
variable-type 61.61s 0.98 1.87

javac 68.40 s || class-hierarchy 68.33 s 1.00 2.14
variable-type 67.00 s 1.02 2.14

sablecc 38.34 s || class-hierarchy 36.76 s 1.04 1.50
variable-type 36.70 s 1.04 1.50

soot 126.67 s || class-hierarchy 124.81 s 1.0t 2.29
variable-type 122.01 s 1.03 2.29

Table 4.6: Measurements for automatic inlining using the JIT

Interpreter results for automatic inlining
Execution Time || Analysis Used xecution Time || Speedup Code

Before Inlining || For Call Graph After Inlining Increase

compress 441 s || class-hierarchy 450 s 0.98 1.23
variable-type 450 s 0.98 1.23

jess 109 s || class-hierarchy 106 s 1.03 2.01
variable-type 106 s 1.03 2.01

raytrace 1255 || class-hierarchy 34's 1.08 2.22
variable-type 54 s 1.08 2.22

db 229 s || class-hierarchy 229 s 1.00 1.29
variable-type 229 s 1.00 1.29

mpegaudio 374 s || class-hierarchy 390 s 0.96 1.34
variable-type 375 s 1.00 1.34

jack 144 s |[class-hierarchy 144 s 1.00 1.87
variable-type 144 s 1.00 1.87

javac 135 s || class-hierarchy 135 s 1.00 2.14
variable-type 135 s 1.00 2.4

sablecc 458 || class-hierarchy 45s 1.00 1.50
variable-type 45s 1.00 1.50

soot 184 s || class-hierarchy 179 s 1.02 2.29
class-hierarchy 178 s 1.03 2.29

Table 4.7: Measurements for automatic inlining using the interpreter

88

more effective optimization on the JIT than on the interpreter and we feel that this
is the case for two reasons.

The first reason is that the JIT might be performing some simple analyses and
optimizations that become more effective on the inlined bytecode. Since we replace a
method call instruction by code from the method, any intraprocedural analyses that
the JIT performs would be more precise. Method calls are a serious impediment for
performing simple analyses/optimizations as the analyses would have to conserva-
tively assume that any field could be written as a result of the call. Also the greater
the size of basic blocks (straight line code), the greater the possibilities for effective
instruction scheduling.

The second reason for the difference in speedups between the JIT and the inter-
preter is the relative cost of different bytecode instructions in the two cases. Simpler
bytecode instructions like aload, or astore can easily be converted into register op-
erations on a RISC architecture by a JIT. More complex bytecode instructions like
invokevirtual, or invokeinterface are compiled into a sequence of machine in-
structions as they do not have direct counterparts in machine instructions. Thus
in the case of a JIT, simpler bytecode instructions are extremely cheap at run time
whereas complex bytecode instructions are relatively more expensive. Moreover with
effective register allocation resulting in minimal register spills, the cost of the sim-
pler instructions can be further reduced. In the interpreter though, the relative costs
of these instructions are not expected to differ as much. The basic cost of inter-
preting each bytecode must be paid for even the simple bytecode instructions, and
this means that the simple instructions are no longer as cheap as in the case of the
JIT. In fact the reduction in cost of the simple bytecode instructions in the case of
the JIT is significant as observed in the reduction in execution time for programs
(by several factors in some cases) as compared to the interpreter. Therefore in the
case of a JIT, eliminating expensive bytecode instructions like invokevirtual and
invokeinterface leads to considerable improvement in performance at run time.

We feel it is a combination of both these factors that makes method inlining
such an effective optimization when using the JIT. In the benchmark compress, that
shows the highest speedup in the case of the JIT, almost all the improvement can
be attributed to inlining a few calls within tight loops, where the program spends
most of its time. As we have shown the speedup obtained did not result in significant
increase in code size. This benchmark demonstrates the effectiveness of our static
inlining strategy. Since our static inlining strategy focuses on optimizing potential
“hot spots” in the program by detecting loops and recursion, inlining was in fact not

89

performed in many non-critical parts of the program limiting code explosion while at
the same time succeeding in speeding up the program. In fact there are several other
benchmarks (raytrace, mpegaudio, sablecc) where there are significant speedups
using the JIT without excessive code explosion. The slight slowdown in the case of
the benchmark jack could be attributed to factors such as register pressure, which
might degrade performance in this benchmark after inlining. Note that there was a
slight slowdown for jack even when profile guided inlining was performed indicating
that it was very sensitive to changes in the machine code being produced by the JIT.

Speedups cbtained using the interpreter are a rough measure of the performance
impact of just eliminating the method invocation instruction. Unlike the JIT, there
are no analyses that might benefit from the effect of having larger basic blocks and
reduced number of method calls. The interpreter can only gain as a result of having
fewer bytecode instructions to interpret after inlining. Thus the benchmark raytrace
that has a large number of method calls (mostly to small methods) shows the maxi-
mum speedup (1.08) using the interpreter as most of the calls were eliminated.

[t is also interesting to observe that compress which showed a speedup of 1.21 with
the JIT shows no improvement at all with the interpreter. This benchmark was not
observed to be very object-oriented (refer to Table 4.1) and had many field accesses
and relatively few virtual calls in the code. The lack of any impact in the case of the
interpreter confirms that simply eliminating the virtual call instructions alone was
not enough to improve performance. We believe that the substantial improvement in
performance with the JIT is because of the analyses/optimizations performed by the
JIT on the inlined code.

Automatic inlining inevitably leads to some code increase as a static inlining
strategy must estimate the calls that might get executed frequently using some static
heuristic. In our case, all the call sites that could be reached from call sites within
loops or in recursive methods are identified as important. If there are many call
sites inside loops in a method m() that is earlier in the call chain, then all the call
sites in methods in the call chain starting at method m() would be identified as
being important. In such cases the amount of code increase could be significant. The
maximum code increase is in the case of the benchmark soot where the code increases
by 129%. On average we can see that the amount of code increase with automatic
inlining is about 76% over all the benchmarks.

There are also some other important points that we observed while fine tuning our
static inlining strategy. While experimenting with different thresholds for allowable

90

method size for the caller method (into which inlining is being done) and the callee
method, we discovered that choosing these thresholds properly was crucial. If the
thresholds were too low (restricting the number of call sites where inlining occurred),
we observed that inlining did not have any impact as most of the calls that could be
eliminated were actually still present. If the thresholds were too high (allowing more
code growth while inlining more call sites), then we observed significant slowdowns
(up to 40% in some cases). These slowdowns were observed with much lesser code
growth in the case of the JIT than in the interpreter. The effects of slow local slots
(with the interpreter) in the bytecode were only observed in cases with high code
explosion. But in the case of the JIT, the slowdowns were observed even when the
allowed size of the callee method (for it to be inlined) was twice the average size of
methods in the application. This observation shows us the harmful effects of high
register pressure and cache misses, that become significant when basic blocks grow in
size. It is quite possible that not choosing these thresholds correctly would lead to a
reduction in speedup or even a slowdown in most benchmarks. These issues are very
significant when developing a static inlining strategy.

We now discuss the impact of performing variable type analysis and using the call
graph produced as a result to perform method inlining. As we see in the case of both
the interpreter and the JIT, variable type analysis has minimal effect in improving
performance in most of the benchmarks. This was a result to be expected as the
call graph built using variable type analysis for the benchmark alone was not very
different from that built using class hierarchy analysis for many of the benchmarks.
We observe an improvement in performance as a result of performing method inlining
using variable type analysis for the benchmarks soot (2%), and javac (2%) with the
JIT. From the benchmark characteristics we have presented in Tables 4.1 and 4.2, it
can be observed that soot and javac are the two benchmarks that have a complex
inheritance hierarchy and many virtual calls unresolved by class hierarchy analysis.
Thus variable type analysis does not directly improve the performance in the case
of most of the benchmarks we experimented with, though in the case of more object
oriented benchmarks, it does have some effect. We feel that the extra precision of the
call graph as a result of performing variable type analysis can only be exploited to a
certain degree by method inlining (there are other factors to be considered too while
inlining). In general, interprocedural analyses/optimizations would benefit from the
extra precision and method inlining is just one of these optimizations.

91

4.6.2 Profile Guided Method Inlining

Measurements using the JIT
Automatic inlining || Profile guided inlining
Execution Time || Speedup Code Speedup Code
Before Inlining Increase Increase
compress 66.88 s 1.21 1.23 1.21 1.06
jess 48.17 s 1.05 2.01 1.05 1.16
ravtrace 53.97 s 1.10 2.22 1.12 1.79
db 131.01 s 1.03 1.29 1.05 1.09
mpegaudio 53.95 s 1.06 1.77 1.07 1.10
jack 60.91 s 0.98 1.87 0.99 1.09
javac 68.40 s 1.00 2.14 1.02 1.42
sablecc 38.34 s 1.04 1.50 1.05 [.17
soot 126.67 s 1.01 2.29 1.03 1.60

Table 4.8: Comparison between automatic inlining and profile guided
inlining using the JIT

In Table 4.8 we have shown our run time measurements using the JIT before and
after performing profile guided method inlining, and for comparison, we also show the
same measurements before and after automatic inlining. In column 1 we have shown
the execution time of the benchmark originally, In columns 2 and 3 we have shown the
calculated speedup and factor by which code size increased when automatic inlining
was performed. In column 4 we have shown the speedup with profile guided inlining,
and in column 5 we have shown the factor by which code size increased as a result of
performing profile guided inlining.

The results from profile guided inlining show that we have an average speedup of
around 1.06 and a maximum speedup of 1.21 for the benchmark compress in the case
of the JIT. We have not presented the results with the interpreter as the performance
improvements were not substantial in that case (for reasons we have discussed in the
previous section) and the differences between profile guided inlining and automatic
inlining were insignificant.

We notice that the speedups obtained by profile guided inlining are approximately
the same as the speedups obtained through automatic inlining for all the benchmarks.
The speedups obtained by profile guided inlining differ most from those obtained using

92

automatic inlining for the benchmarks raytrace(2%), and soot(2%). These results
highlight the effectiveness of our static inlining strategy in finding the calls that were
important to optimize. In general it is more elegant to optimize the program without
profile feedback, as profiling usually requires some user interaction (to collect the
profile).

The amount of code increase in the case of profile guided inlining is expected
to be minimal as only the calls that got executed frequently in the profile run get

optimized. We see this behavior in practice and the maximum code increase is in the
case of the benchmark raytrace where the code increases by 79%. When automatic
inlining is used, the maximum code increase was by 129% for the benchmark soot.
On average we can see the amount of code increase is greater for automatic inlining
by about 25% over all the benchmarks as compared to the average code increase with

profile guided inlining.

93

Chapter 5

Conclusions and Future Work

In this thesis, we have focused on reducing the overhead associated with virtual
method calls in Java bytecode. The first main contribution of this thesis was the de-
sign and implementation of reaching type analysis. Two variations of reaching type
analysis, declared type analysis and variable type analysis, were implemented and
studied in detail. The second main contribution of this thesis was the implementa-
tion of the compiler optimization, method inlining, and the study of its impact in
improving the performance of programs compiled to Java bytecode. We now discuss
our conclusions and scope for future work in both these areas of study.

5.1 Analyses for virtual call resolution

We have developed and implemented a new flow-insensitive analysis, called reaching-
type analysis that can be used to estimate the possible types of receivers in virtual and
interface method calls in Java. Reaching-type analysis is based on a type propagation
graph where nodes represent variables and edges represent the flow of types due to
assignments. Two variations of the analysis were presented, variable type analysis
that uses the name of the receiver as its representative, and declared type analysis
that uses the declared type of a receiver as the representative.

We presented the analysis rules with examples for the two variations of reaching-
type analysis. We have implemented both variations of reaching-type analysis in
the Soot framework, that translates bytecode into typed three-address code. We
have also implemented two analyses that are well known as effective and inexpensive

94

techniques for call graph construction, namely class hierarchy analysis and rapid type
analysis. We have studied the effectiveness of these four analyses on a set of real
world applications compiled to Java bytecode from Java, ML, Ada, Eiffel and Pizza.

All four analyses implemented by us require complete applications; so they require
all the bytecodes in a benchmark to be available. Therefore they do not handle
applications where classes can be dynamically loaded, but we feel that optimizing
complete applications is reasonably important for several classes of applications like
editors, compilers, and server side applications.

For each benchmark, ciass hierarchy analysis was used to build an initial conser-
vative call graph. Measurement of these graphs indicated that though class hierarchy
analysis led to a call graph that is reasonably sparse with a majority of call sites re-
solving to a single method, there was still scope for further improvement. We applied
rapid type analysis, variable type analysis and declared type analysis starting from
the initial call graph built by class hierarchy analysis, and found that a significant
number of nodes and edges could be removed. Variable type analysis gave the best
results removing 12% to 35% edges and 10% to 65% nodes from the conservative call
graph. Further variable type analysis also resolved 33% to 94% of the potentially
polymorphic calls sites (after CHA) to one method (or discovered that they target no
method as it is statically known that they are cannot be executed). We concluded
that the results achieved by variable type analysis are better than those achieved by
rapid type analysis in the benchmark code.

In order to further investigate the effectiveness of these analyses, we studied the
dynamic behavior of the benchmark code alone. In this case, rapid type analysis
and declared type analysis did not have much effect at all, though variable type
analysis did show improvement, in some cases approaching the best possible resuit.
We concluded that the extra granularity of variable type analysis over the other
analyses was crucial. In some other cases, variable type analysis performed well as
compared to the other analyses but there was still a substantial gap between the
dynamic profile and static result of the analysis. We have presented some reasons for
this gap, and we do not feel that a simple refinement of our analyses will be able to
bridge the remaining gap.

We pian to study the effectiveness of pessimistic call graph construction schemes
and compare them to the optimistic call graph construction schemes in depth in
the future. Our implementation of rapid type analysis is a pessimistic version of
the algorithm where edges are removed from a conservative call graph constructed

95

by class hierarchy analysis. We are currently implementing an optimistic version of
rapid type analysis in order to compare it with variable type analysis. Preliminary
results show that there is very little effect between the optimistic and pessimistic
approaches in terms of call graph improvement in the benchmark code. In the library
code, optimistic rapid type analysis seemed to perform better than the pessimistic
scheme. We are also planning an implementation of optimistic variable type analysis
and we feel that such an analysis would be harder to implement and more expensive
in practice as compared to our current implementation of variable type analysis which
scales linearly with the size of the program. We would want to study a local type
propagation algorithm that would be intraprocedural and would approximate the
effect of method calls and use this analysis for virtual call resolution.

We would also be interested in studying the effect of applying variable type analy-
sis to prune the call graph before other interprocedural analyses use it. The increased
precision might lead to other optimizations like loop invariant removal and common
subexpression elimination being enabled leading to a more tangible impact on per-
formance.

5.2 Method inlining

We implemented method inlining, an optimization aimed at improving performance
of bytecode. Method inlining involves replacing a method invocation instruction by
the code of the method that it invokes (if it can be determined at compile time). We
provided a detailed and clear specification of the safety issues that are specific to per-
forming method inlining at the Java bytecode level. We also discussed some important
inlining criteria and our own static inlining strategy. Our automatic inlining strategy
is based on detecting potentially important call sites to inline by examining methods
for calls within loops and recursive methods. This approach aims to only perform
inlining selectively at potentially important call sites, and thus avoids unnecessary
code increase. We observed an average speedup of 5% over our set of benchmarks,
and a maximum speedup of 21% using the JIT. Using the interpreter we observed
a speedup of about 2% on average and about 10% in the best case. We concluded
that the JIT performs some analyses/optimizations while executing the bytecodes,
and inlining improves their effectiveness. The performance improvement with the
interpreter is roughly the effect of simply eliminating the virtual call instruction as
the interpreter does not perform any optimizations.

96

In the future, we are planning to study the effect of other optimizations similar to
inlining like conversion of the virtual call to a static call. As the safety restrictions for
such an optimization would be fewer, we might be able to optimize more calls without
excessive code increase. Another optimization we are interested in is receiver class
prediction, where a call is statically determined to potentially invoke a small number
of methods at run-time. Run time type inclusion tests and conversion of virtual calls
to static calls could be used to optimize these virtual calls.

97

Appendix A

Analysis rules for VTA

98

(The enclosing method and class in vhich the statements shown below appear
are assumed to be m() and C respectively. The variables p, q and r
represent locals or formal parameters in the method m, the variables
pa and qa are array variables. f is a reference to an instance field,
fa is an instance field variable that is of array type, ¢ is a constant
of a reftyps (e.g. string conatants), i and j are integers.

Rules involving arrays are shown here for only one dimensional arrays
but they can be generalized to be applicable for multi dimensional arrays
in exactly the same manner.)

Jimple Statement Effect on Comnstraint Graph

1. P = nevw P; add the type P to the set InstanceTypes of signature(m)$p;
2. palil = new P; add the type P to the set InstanceTypes of signature(m)$pa;
3. pa = new P[10]; add the type P to the set InstanceTypes of signature(m)$pa;
4. p.f = nev P; add the type P to the set InstanceTypes of f;
5. p.fa = new P[10]; add the type P to the set InstanceTypes of fa;
6. P=q; add an edge from rightnode to signature(m)$p;

p=(P)aq; add an edge from signature(m)$p to rightmode if

((qor p is of array type) ||
(p and q are declared to be of type java.lang.Object));
(rightnode = C$this if gq this

rightnode = signature(m)$q othervise)

7. p = palil; add an edge from signature(m)$pa to signature(m)$p;
(P) palil; add an edge from signature(m)$p to signature(m)$pa if
(¢ pa(i] or p is of array type) ||
(p and pa(i] are declared to be of type java.lang.Object));

o
L]

8. pali] = p; add an edge from rightnode to signature(m)$pa;
palil = (P) p; add an edge from signature(m)$pa to rightnode if
(¢ p or pali] is of array type) ||
(p and pa(i] are declared to be of type java.lang.Object));
(rightnode = C$this if p == this
rightnode = signature(m)$p othervise)

9. palil = qa(jl: add an edge from signature(m)$qa to signature(m)$pa;
palil = (P) qaljl; add an edge from signature(m)$pa to signature(m)$qa if
((qalj] or pa(i]l is of array type) ||
(pa(i] and qalj] are declared to be of type java.lang.Object));

10. p=c; add the type of the constant c, say C to the
p=(P) e set InstanceTypes of signature(m)$p;

Figure A.1: Rules for Variable Type Analysis

99

Jimple Statement Effect on Constraint Graph

11, pal[i] = ¢; add the type of the comstant ¢, say C to the
pali]l] = (P) ¢; set InstanceTypes of signature(m)$pa;

12, p.f =c; add the type of the constant c, say C to the
pft=(P)c; set InstanceTypes of f;

13. p.f = q; add an edge from rightnode to f;
p-f=(P)gq: add an edge from f to rightnode if

((qoxr p.f is of array type) [|
(p.t and q are declared to be of type java.lang.Object));
(rightnode = C$this if q == this

rightnode = signature(m)$q othervise)

14. p =gq.%; add an edge from f to signature(m)$p;
p=(P)q.t; add an edge from signature(m)$p to f if
((q.f or p is of array type) ||
(q.f and p are declared to be of type java.lang.Object));

L; add an edge from f to signature(m)$pa;
P) p.t; add an edge from signature(m)$pa to f if
((p.t or pa(i]l is of array type) ||
(p.f and pa[i] are declared to be of type java.lang.Objecz));

16. pa(i] = p.
= (

16. = pa(il; add an edge from signature(m)$pa to f;
= (P) pali); add an edge from f to signature(m)$pa if
((p.tf or pa[i] is of array type) ||

(p.f and pa(i] are declared to be of type java.lang.Object) };

17. return p; add an edge from rightnode to signature(m)$return;
add an edge from signature(m)$return to rightnode if
((p is of array type) ||
(p is declared to be of type java.lang.(bject);
(rightnode = C$this if p == this
rightnode = signature(m)$p othervise)

18. returnm ¢; add the type of the constant c, say C to the
set InstanceTypes of signature(m)$return;

19. q.method(r); for (i = 1; i < N+1; ie+)

{
an edge from rightbasenode to Ci$this;
an edge from rightparamnede to signature(methodi)$pl;
an edge from signature(methodi)$pl to rightparamnode if
r or pl is of array type) ||
and pl are declared to be of type java.lang.Object));

BER

falal
o~

}

(rightbasenode = C$this if q this
= signature(m)$q otherwvise)
(rightparamnode = C$this if r == this
= signature(m}$r othervise)

(Ci is the class in which the ith method attached to this callsite (methodi)
in the conservative call graph is declared.

There are N methods in all attached to this callsite in the conservative call graph.
pl is the first formal parameter in the definition of methodi)

Figure A.2: Rules for Variable Type Analysis (continued)
100

Jimple Statement Effect on Constraint Graph

20. q.method(c); for (i =1; i < N+1; i++)
{
add an edge from rightbasenode to CiSthis;
add the type of c, say C to the set
InstanceTypes of signature(methodi)$pl;
}

~

rightbasenode = C$this if q == this
= signature(m)$q othervise)

~

Ci is the class in which the ith method attached to this callsite (methodi)
in the conservative call graph is declared.
Thera azs ¥ sethcds iz all attacked T this callsita.

pl is the first formal parameter in the definition of methodi)

21. p = q.method(r); for (i =1; i < N+1; i++)
{
add an edge from rightbasenode to Ci$this;
add an edge from signature(methodi)$return to signature(m)$p;
add an edge from signature(mi)}$p to signature(methodi)$return if
((p is of array type) Il
(p is declared to be of type java.lang.Object));
add an edge from rightparammode to signature(methodi)$pil;
add an edge from signature(methodi)$pl to rightparamncde
((r or pi1 is of array type) I!
(r and pl are declared to be of type java.lang.Object));
}

(rightbasenode = C$this if q == this

= signature(m)$q othervise)
(rightparamnode = C$this if r == this

= signature(m)$r othervise)

(Ci is the class in vhich the ith method attached to this callsite (methodi)
in the conservative call graph is declared.

There are N methods in all attached to this callsite.

pl is the first formal parameter in the definition of methodi)

22. p = q.method(c); for (i = 1; i < N+L; i+)
{
add an edge from rightbasenode to Ci$this;
add an edge from signature(methodi)$return to signature(m)$p;
add an edge from signature(mi)$p to signature(methodi)$return it
((p is of array type) ||
(p is declared to be of type java.lang.Object));

add the type of c, say C to the set InstanceTypes of signature(methodi)$pi;
}

(rightbasenode = C3this if q == this
= signature(m)$q othervise)

(Ci is the class in vhich the ith method attached to this callsite (methodi)
in the conservative call graph is declared.

There are N methods in all attached to this callsite.
pl is the first formal parameter in the definition of methodi)

Figure A.3: Rules for Variable Type Analysis (continued)

101

A/

Appendix B

Analysis rules for DTA

102

(The enclosing method and class in which the statements shoun below appear
are assumed to be m() and C respectively. The variables p, q and r represent
locals or formal parameters in the method m, the variables pa and qa are
array variables, f is a reference to an instance field, fa is an instance field variable
that is of array type, ¢ is a constant of a reftype (e.g. string constants)

, i and j are integers. Rules involving arrays are shown here for only one dimensional
arrays but they can be generalized to be applicable for multi dimensional arrays in exactly the same manner.

Jimple Statement Effsct on Comstraint Graph
1. p = nev P; add the type P to the set InstanceTypes of
DeclaredTyva(p);
2. pali] = new P; add the type P to the set InstanceTypes of
DeclaredType(palil);
3. pa = new P[10]; add the type P to the set InstanceTypes of
DeclaredType(pa);
4. p-1 = new P; add the type P to the set InstanceTypes of ;
DeclaredType(p.2);
5. p-fa = nev P(10]; add the type P to the set InstanceTypes of
DeclaredType(p.fa);
6. P=4q; add an edge from rightnode to DaclaredType(p):
p=(P)q; add an edge from DeclaredType(p) to rightnode

it (q or p is of arTay type);

(rightnode = C$this if q this
rightnode = DeclaredType(q) othervise)

7. p = pal(il; add an edge from DeclaredType(pa(i]) to DeclaredType(p);
p=(P) palil; add an edge from DeclaredType(p) to DeclaredType(palil)
it (pa[i] or p is of array type);
8. palil = p; add an edge from rightnode to DeclaredType(palil);
palil = (P) p; add an edge from DeclaredType(pa(i)) to rightnode
it (p or pa{i] is of array type);
(rightnode = C$this if p == this
rightnode = DeclaredType(p) othervise)
9. palil = qal(jl; add an edge from DeclaredType(qal[j]) to DeclaredType(pa(il);
pa{il = (P) qaljl; add an edge from DeclaredType(pa(i]) to DeclaredType(qa(jl):
it (qalj] or pa(il is of array type);
10. p=c; add the type of the constant c, say C to the
p=(P)c; set InstanceTypes of DeclaredType(p);

Figure B.1: Rules for Declared Type Analysis

103

11.

12.

13.

14.

15.

16.

17.

18.

19.

Jimple Statement

pali] = ¢c;
palil = (P) ¢;

(P)oc;

‘o
"
[]

(P)gq;

o
-
]

return c;

q.method(r);

add
set

add
set

add
add

Effect on Constraint Graph
the type of the constant ¢, say C to the

InstanceTypes of DeclaredType{palil);

the type of the constant ¢, say C to the
InstanceTypes of DeclaredType(p.f);

an edge from rightnode to DeclaredType(p.f):
an edge from DeclaredType(p.f) to rightnode if

(qor p.f is of array type);

(rightnode = CYthis if q w= this
rightnods = DeclaredType(q) othervise)

add an edge from DeclaredType(q.f) to DeclaredType(p):

add an edge from DeclaredType(p) to DeclaredType(q.f) if

(q.f or p is of array type);

add an edge from DeclaredType(p.f) to DeclaradType(palil);
add an edge from DeclaredType(pa(i)) to DeclaredType(p.f) if
(p.t or paii] is of array type);

add an edge from DeclaredType(pa(il)} to DeclaredType(p.f);
add an edge from DeclaredType(p.f) to DeclaredType(pa{i]) if
(p.t or pali] is of array type);

add an edge from rightnode to

signature(m)$return;

add an edge from signature(m)$return torightnode

it ((p is of array type) ||

(p

is declared to be of type java.lang.Object));

(rightnode = C3this if p == this
rightnode = DeclaredType(p) othervise)

add
set

for

{

the type of the constant ¢, say C to the
InstanceTypes of signature(m)$return;

(i=1; i< N+L; iv+)

add an edge from rightbasenode to Ci$this;
add an edge from rightparamnode to
DeclaredType(pl);

add an edge from DeclaredType(pl) to
rightparamnode if

(r or pl is of array type };

}

(Ci is the class in vhich the ith method attached to this callsite (methodi)

in the conservative call graph is declared.

There are N methods in all attached to this callsite.
pl is the first formal parameter in the definition of methedi)

(
(

rightbasenode = C$this if g this

rightbasenode = DeclaredType(q) othervise)

rightparamnode = C$this if r == this

rightparamnode = DeclaredType(r) otheruvise)

Figure B.2: Rules for Declared Type Analysis (continued)

104

20. q.method(c); for (i =1; i ¢ N+1; i+)
{
add an edge from rightbasenode to Ci$this;
add the type of c, say C to the set InstanceTypes of
DeclaredType(pl);
¥

(rightbasenode = C$this if q == this
rightbasenode = DeclaredType(q) othervise)
(Ci is the class in which the ith method attached to this callsite { methodi)
in the conservative call graph is declared.
There are N methods in all attached to this callsite.
pl is the first formal parameter in the definition of methodi)

a. P = q.method(r); for (i =1; i < N+l i++)
{
add an edge from rightbasenode to Ci$this;

add an edge from signature(methodi)$return to

DeclaredType(p);

add an edge from DeclaredType(p) to

signature(methodi)$return if

((pis of array type) || (p is declared to be of type
java.lang.Object));

add an edge from rightparamnode to
DeclaredType(pl);

add an edge from DeclaredType(pl) to
rightparamnode if

(r or pl is of array type);

}

(Ci is the class in which the ith method attached to this callsite { methodi)
in the conservative call graph is declared.
There are N methods in all attached to this callsite.
pl is the first formal parameter in the definition of methodi)
(rightbasenode = C$this if q == this
rightbasenode = DeclaredType(q) otherwise)
(rightparamnode = C$this if r == this
rightparamnode = DeclaredType(r) otherwise)

22. p = q.method(c); for (i = 1; i < N+l; iv+)
{

add an edge from rightbasenode to Ci$this;

add an edge from signature(methodi)$return to
DaclaredType(p):

add an edge from DeclaredType(p) to
signature(methodi)$return if

(p is of array type);

add the type of ¢, say C to the set InstanceTypes of
DeclaredType(pl):
}

(Ci is the class in which the ith method attached to this callsite (methodi)
in the conservative call graph is declared.
There are N mathcds in all attached to this callsite.
pl is the first formal parameter in the definition of methodi)
(rightbasenode = C$this if q == this
rightbasenode = DeclaredType(q) otherwvise)

Figure B.3: Rules for Declared Type Analysis (continued)
105

Bibliography

[1] URL: http://www.sable.mcgill.ca/soot/.

[2) URL: http://www.transvirtual.com/kaffe.html.
[3] URL: http://www.sable.mcgill.ca/sablecc/.

[4] URL: http://SmallEiffel.loria.fr/.

[5] URL: http://research.persimmon.co.uk/mlj/.
[6] URL: http://wwwipd.ira.uka.de/~pizza/.

[7] Ole Agesen. Constraint-based type inference and parametric polymorphism. In
Baudouin Le Charlier, editor, SAS’94{— Proceedings of the First International
Static Analysis Symposium, volume 864 of Lecture Notes in Computer Science,
pages 78-100. Springer, 28-30 September 1994.

(8] Ole Agesen. The Cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Walter G. Olthoff, editor, ECOOP’95— QObject-
Oriented Programming, 9th European Conference, volume 952 of Lecture Notes in
Computer Science, pages 2-26, Aarhus, Denmark, 7-11 August 1995. Springer.

[9] Gerald Aigner and Urs Holzle. Eliminating virtual function calls in C++ pro-
grams. In Pierre Cointe, editor, ECOQOP’96—Object-Oriented Programming,
10th European Conference, volume 1098 of Lecture Notes in Computer Science,
pages 142-166, Linz, Austria, 8-12 July 1996. Springer.

{10] R. Allen and S. Johnson. Compiling C for vectorization, parallelization, and
inline expansion. In David S. Wise, editor, Proceedings of the SIGPLAN 88
Conference on Programming Lanugage Design and Implementation (SIGPLAN
'88), pages 241-249, Atlanta, GE, USA, June 1988. ACM Press.

106

[11] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlining. In
Proceedings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI-97), volume 32, 5 of ACM SIGPLAN Notices,
pages 134-145, New York, June 15-18 1997. ACM Press.

[12] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function calls. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, volume 31, 10 of ACM SIGPLAN Notices,
pages 324-341, New York, October 6-10 1996. ACM Press.

[13] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in
C++ programs. In 21st Symposium on Principles of Programming Languages,
pages 397-408, January 1994.

[14] Paul R. Carini. Automatic inlining. Technical Report RC 20286, IBM T.J.
Watson Research Centre, IBM Research Division, November 1995.

[15] Craig Chambers, David Grove, Greg DeFouw, and Jeffrey Dean. Call graph
construction in object-oriented languages. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applice-
tions (OOPSLA-97), volume 32, 10 of ACM SIGPLAN Notices, pages 108-124,
New York, October 5-9 1997. ACM Press.

[16] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu.
Profile-guided automatic inline expansion for C programs. Software Practice
and Ezperience, 22(5):349-369, May 1992.

[17] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105-117, April 1993.

(18] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline
substitution. Software Practice and Ezperience, 21(6):581-601, June 1991.

[19] Keith D. Cooper, Mary W. Hall, and Linda Torczon. Unexpected side effects of
inline substitution: a case study. ACM Letters on Programming Languages and
Systems, 1(1):22-32, March 1992.

[20] Jack W. Davidson and Anne M. Holler. A study of a C function inliner. Software
Practice and Ezperience, 18(8):775-790, August 1988.

107

[21] J. Dean and C. Chambers. Training compilers to make better inlining decisions.

[22]

23]

[24]

[25]

[26]

27]

(28]

[29]

Technical Report TR 93-05-05, University of Washington, 1993.

Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers.
VORTEX: An optimizing compiler for object-oriented languages. In Proceedings
OOPSLA ’96 Conference on Object-Oriented Programming Systems, Languages,
and Applications, volume 31 of ACM SIGPLAN Notices, pages 83-100. ACM,
October 1996.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP’95—Object-Oriented Programming, 9th European Conference, volume
952 of Lecture Notes in Computer Science, pages 77-101, Aarhus, Denmark,
7-11 August 1995. Springer.

Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley. Simple and effective
analysis cf statically-typed object-oriented programs. In Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
volume 31, 10 of ACM SIGPLAN Notices, pages 292-305, New York, October 6-
10 1996. ACM Press.

Mary F. Ferniandez. Simple and effective link-time optimization of Modula-3
programs. In Proceedings of the ACM SIGPLAN '95 Conference on Programming
Language Design and Implementation, pages 103-115, La Jolla, California, June
18-21, 1995. SIGPLAN Notices, 30(6), June 1995.

Etienne Gagnon and Laurie J. Hendren. Intra-procedural inference of static
types for java bytecode. Technical Report 1999-1, Sable Research Group, School
of Computer Science, McGill University, March 1999.

Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters on
Programming Languages and Systems, 1(3):227-242, September 1992.

Anne M. Holler. A Study of the Effects on Subprogram Inlining. PhD thesis,
University of Virginia, Charlottesville, Virginia, USA, March 1991. Computer
Science Report No. TR-91-06.

Urs Holzle and David Ungar. Optimizing dynamically-dispatched calls with run-
time type feedback. In Proceedings of the Conference on Programming Language

108

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

Design and Implementation, pages 326-336, New York, NY, USA, June 1994.
ACM Press.

Arun Lakhotia. Constructing call multigraphs using dependence graphs. In Con-
ference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 273-284, Charleston, South Car-
olina, January 10-13, 1993.

Wen mei W. Hwu and Pohua P. Chang. Inline function expansion for compiling C
programs. In Bruce Knobe, editor, Proceedings of the SIGPLAN ‘89 Conference
on Programming Language Design and Implementation (SIGPLAN '89). pages
246-257, Portland, OR, USA, June 1989. ACM Press.

Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Inference.
In Proceedings of the OOPSLA '91 Conference on Object-oriented Programming
Systems, Languages and Applications, pages 146-161, November 1991. Published
as ACM SIGPLAN Notices, volume 26, number 11.

J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented
languages. ACM SIGPLAN Notices, 29(10):324-324, October 1994.

Stephen Richardson and Mahadevan Ganapathi. Interprocedural analysis vs.
procedure integration. Information Processing Letters, 32(3):137-142, August
1989.

Barbara G. Ryder. Constructing the call graph of a program. IEEFE Transactions
on Software Engineering, 5(3):216-226, May 1979.

Olin Shivers. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN
'88 Conference on Programming Language Design and Implementation, pages
164-174, Atlanta, Georgia, June 22-24, 1988. SIGPLAN Notices, 23(7). July
1988.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie-Mellon University, May 1991.

Tucker Taft. Programming the Internet in Ada 95. In Alfred Strohmeier, editor,
Reliable software technologies, Ada-Europe '96: 1996 Ada-Europe International
Conference on Reliable Software Technologies, Montreuz, Switzerland, June 10~
14, 1996: proceedings, volume 1088, pages 1-16, 1996.

109

