
INFORMATION TO USERS

This manuseript has been reproduced trom the microfilm master. UMI films

the text directly trom the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuseript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

trom left to right in equal sections with small overfaps.

Photographs incJuded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6D x 9" blaek and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly ta order.

Bell &Howell Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

PRACTICAL TECHNIQUES FOR VIRTUAL CALL
RESOLUTION IN JAVA

by
Vijay Sundaresan

School of Computer Science
NIcGill 17niversity, NIontreal

June 1999

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

tvIASTER OF SCIENCE

Copyright © 1999 by Vijay Sundaresan

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
Canada

Your file Vorre rsfsrsnCiJ

Our file Norrs rsfèrencs

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
pernusslon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-55090-7

Canada

•

•

•

Abstract

Virtual method calls are a fundamental feature offered by Java, an object-oriented
programming language. However, they are also a source of degradation of performance
at run time and imprecision in interprocedural analyses. There are several weIl known,
inexpensive analyses that have been developed for virtual calI resolution. However,
they have been observed to be effective in resolving method caUs in library code, while
not being very effective in the benchmark code excluding libraries.

"'le present a ne\v flow insensitive and context insensitive analysis called reach
ing type analysis in this thesis. "'le present the analysis rules for two variations of
this analysis, variable type analysis and a coarser grained version declared type anal
ysis. Reaching type analysis is based on an analysis that builds a type propagation
graph where nodes represent variables and edges represent the flow of types due to
assignments.

"'le have implemented variable type analysis and declared type analysis, and two
existing analyses, class hierarchy analysis and rapid type analysis. in the Soot frame
work and compared their relative success at building accurate caU graphs for complete
applications. vVe present static empirical results for call graph improvement for the
whole application as weIl as for the benchmark code alone. We have also made dy
namic measurements focusing on the benchmark code exc1uding libraries.

Nfethod inlining is a compiler optimization in which the method calI is replaced by
the body of the method being called. NIethod inlining is very effective in improving
performance of benchmarks that have many small methods and in which a large
proportion of instructions executed are virtual calls. vVe have implemented method
inlining (automatic and profile guided) at the Java bytecode level using the Soot
framework. We demonstrate the effectiveness of our analyses and method inlining on
a set of 15 benchmarks whose bytecodes were generated from Java, ~lL, Ada, Eiffel
and Pizza compilers.

ii

•

•

•

Résumé

Les appels de methodes virtuelles sont une des caractéristiques très utile et appréciée
offerte par le langage de programmation Java. Cependant, ils sont non seulement
la source d'une dégradation des performances lors de rexécution mais aussi une
source d'imprécision lors d'analyses inter-procédurales. Il existe un certain nom
bre d'analyses peu coûteuses développées pour la résolution d'appels de methodes
virtuelles. Cependant, on observe qu'elles sont efficaces pour résoudre les appels qui
se trouvent dans les librairies mais qu'elles le sont beaucoup moins pour ceux situés
hors des librairies.

Dans cette thèse, on présente une nouvelle analyse indépendante du flux et du
contexte appelée reaching-type analysis. Nous décrivons les règles d'analyse pour
deux variantes de l'analyse, variable type analysis et declared type analysis. cette
dernière étant une version dont la précision est moindre. Reaching-type analysis est
basé sur une analyse qui construit un graphe de propagation de types dont les noeuds
représentent des variables et les arcs des flux de type dûs aux assignations.

Dans le cadre du projet Soot, nous avons developpé variable type analysis et
dec1ared type analysis ainsi que deux autres analyses déjà présentes dans la littérature,
class hierarchy analysis et rapid type analysis et nous avons comparé leur succès relatif
à la construction du graphe d'appel pour des applications complètes, c'est-à-dire des
applications analysées en tenant compte du code des librairies. Nous présentons des
résultats expérimentaux sur l'amélioration de la précision du graphe d'appel d'une
part pour des applications complètes et d'autre part pour ces mêmes applications
sans tenir compte des librairies.

L'inclusion de methode est une optimisation de compilateur qui consite à sub
stituer un appel de méthode par la méthode appelée. L'inclusion de methode est très
efficace pour améliorer les performances de programmes composés de méthodes de pe
tite taille et dans lesquels une grande partie des instructions exécutées sont des appels

iii

•

•

•

virtuels. Nous avons réalisé l'inclusion de methode (automatique ou guidée par col
lecte d'information) au niveau du bytecode Java dans le cadre du projet Soot. Nous
montrons son efficacité sur un ensemble de 15 programmes test dont les bytecodes
ont été générés depuis des compilateurs Java, NIL, Ada, Eiffel et Pizza.

iv

•

•

•

Acknowledgments

Sincere thanks to:

Nly advisor Laurie Hendren~ for her encouragement and support during my studies
at NIcGill. She has been instrumental in sparking my interest in compiler research
and 1 shall remain grateful to her for providing the much needed focus to my career.
Her cheerful nature and enthusiasm have always rubbed off on the group~ and it has
been a joy interacting with her. Laurie's genuine concern and kind help in easing my
financial situation have enabled me to concentrate my mind solely on research. 1 look
up ta her as my mentor, and will always have the highest amount of respect for her.

~fy colleagues at the Sable Research Group interacting with whom 1 have learnt
sa much about Java and compilers. Etienne Gagnon, whose views 1 have tried to
seek out during the course of my thesis. His in depth knowledge of the Java Virtual
Nfachine specifications, and his advice on other career related matters have been
invaluahle. Raja Vallee-Rai, whose dedication and attention ta detail ensured that
the SooL framework was bath easy to use and understand. 1 have learnt about the
importance of abject oriented software design by observing his programming style.
Chrislain Razafimahefa, for being a good friend, and helping me along during my
earlier days at wlcGill when 1 was still learning Java. The many discussions that
1 had with him regarding our analyses and optimizations, our constant interaction
during the coding process, and the soccer and dinner sessions are aIl memories 1 will
cherish. Laleh Tajrobehkar for providing many a light moment, and Patrick Larn for
helping with problems cheerfully on several occasions.

The friends with whom l had many good tirnes during my stay in Nlontreal. and
who helped me adjust to life here. Prasad Kakulavarapu for being a trusted and ever
helpful friend. The long and heated discussions on aIl manner of topics \vere always
enjoyable. Tallman Nkgau~ Ian Garton, wIike Soss and Charles .-\bety for aIl the get
togethers and friendly hanter that were a source of rela'Xation. Rakesh Ghiya for

v

•

•

•

introducing me to Laurie and for the encouragement when 1 was still finding my feet
at NIcGill.

The staff in the administrative office: Vicki Kierl, Franca Cianci and Lise NIinogue
for being very helpful throughout my studies at NlcGill.

NIy mother who is the dearest person in my life for her constant affection and
support at all times. rvly father who has been my guiding spirit; 1 miss him deeply
and wish he was alive to see me now as 1 finish studies and start working. Nly brothers
Subash and Prakash, for helping me in more ways than 1 can ever hope ta repay. ~Iy

uncle GirL who has always been a pillar of support.

vi

•

•

•

Dedicated ta my tate father l'Ifahalingam Sundaresan

vii

•

•

•

Contents

Abstract

Résumé

Acknowledgments

1 Introduction

1.1 Virtual ~Iethod CaUs in Java

1.2 The Soot Framework

1.3 Related vVork

1..1 Thesis Contributions

1.5 Thesis Organization .

2 Analyses

2.1 Hierarchy Analysis and the Conservative CalI Graph

2.1.1 Class Hierarchy Analysis

2.1.2 CalI Graphs .

2.1.3 Building the Conservative CalI Graph .

2.2 Rapid Type Analysis (RT.A)

2.3 Reaching Type Analysis ...

2.3.1 Variable-type analysis

2.3.2 Declared Type Analysis

viii

ii

Hi

v

1

2

10

li

20

21

22

22

2-1

'Y'.-,
28

33

3-1

38

2.4 Assumptions and Limitations 39• 2.5 Comparison with Dynamic Results 41

3 Method Inlining 44

3.1 i\tIethod Inlining 45

3.1.1 Applications of J\llethod Inlining 45

3.1.2 Disadvantages of J\iIethod Inlining 47

3.1.3 Structural issues in method inlining . 48

3.1.4 Safety Criteria for ~Iethod Inlining 56

3.1.5 Inlining Criteria 65

3.1.6 Inlining Orders .. 68

3.1.7 Our Static Inlining Strateg)-o 70

3.1.8 Profile Guided Inlining 73

4 Experimental Results 75

• 4.1 Benchmark Characteristics . 75

4.1.1 Java 75

4.1.2 Eiffel .. 76

4.1.3 Ada 76

·1.1,4 ;:VIL . 76

4.1.5 Pizza. 76

4.2 Conservative CalI Graph Characteristics 78

4.2.1 Conservative Call Graph for Whole Application 78

4.2.2 Conservative Cal! Graph for Benchmark Only 79

4.3 Improvements over the Conservative Cal! Graph 79

4.3.1 Call Graph Improvement for "Vhole Application 79

4.3.2 Call Graph Improvement for Benchmark Gnly 81

4,4 Comparison with Dynamic Results 81

Lx

•

•

•

•

4.5 Time and Space Complexity of Analyses

4.6 Nlethod Inlining Results .

4.6.1 Automatic Nlethod Inlining

4.6.2 Profile Guided ivlethod Inlining

5 Conclusions and Future Work

5.1 Analyses for virtual caU resolution .

5.2 Nlethod inlining .

A Analysis rules for VTA

B Analysis rules for DTA

x

86

87

87

92

94

94

96

98

102

•

•

•

List of Figures

1.1 An example of a polymorphie caU site. 3

1.2 Virtual Table layout for subclasses and interfaces 4

1.3 Example of JV1tI only needing to compute the index once for invoke-

virtuals 5

1.4 Example of JV1tI needing to compute the index every time for invokein-

terfaces 6

1.5 Different representations offered by Soot for Java code 9

1.6 The Soot Framework Il

2.1 Establishing direct parent child relationships 23

2.2 Inc1uding aIl the subclasses transitively ioto the SubClassList of a parent 24

2.3 Establishing (interface) directly implemented-by relationships 25

2.4 An exarnple of the CalI Graph built far the program. 25

2.5 Nlethad to perform method lookup . . . 28

2.6 Building the caU graph for invokespecial 29

2. ï Building the calI graph for invakevirtual 30

2.8 Building the calI graph far invokeinterface 31

2.9 Building the call graph for invokeinterface (continued) 32

2.10 An example of the type propagation graph for Variable Type Analysis. 36

2.11 An example of the type propagation graph in Dec1ared Type Analysis. 39

2.12 Example of c1ass instantiation without a caU to a constructor . 40

2.13 Example of c1ass with profiling code inserted 43

xi

• 3.1 An example of method inlining in Java code 45

3.2 Jimple representation of the class in which inlining is being performed
(before inlining) 49

3.3 Jimple representation of the class in which inlining is being performed
(after inlining) 50

•

•

3.4 An example of a caU site violating Rule 4 .

3.5 An example of a method violating Rule 5 .

3.0 Locating important caU sites to attempt inlining .

3.7 Our static inlining algorithm . . .

A.1 Rules for Variable Type Analysis

:\.2 Rules for Variable Type Analysis (continued)

:\.3 Rules for Variable Type Analysis (continued)

B.1 Rules for Declared Type Analysis

B.2 Rules for Declared Type Analysis (continued)

B.3 Rules for Declared Type Analysis (continued)

xii

57

61

71

99

100

101

103

104

105

•
List of Tables

4.1 Benchmark Characteristics 77

4.2 Conservative CalI Graph Characteristics 78

4.3 Irnprovement of CalI Graph over Conservative Call Graph 82

4.4 Comparison of caUs resolved by each analysis \Vith the profile result 84

·tB Comparison between automatic inlining and profile guided inlining us-

ing the JIT 92•
4.5 Size of Data Structures

4.6 :\tleasurements for automatic inlining using the JIT

4.7)'-leasurernents for automatic inlining using the interpreter

86

88

88

•
xiii

•

•

•

Chapter 1

Introduction

Java is a general-purpose concurrent c1ass-based object-oriented programming lan
guage, that allows application developers to write a program once and then be able
to run it everywhere on the Internet. The extensive functionality offered by the Java
library API. the platform independence of Java bytecode, and the applicability of
objected oriented software design in large projects have aIl contributed to the growth
of Java.

However the features that have contributed to the growth of Java come with a
certain performance penalty that makes Java suffer in comparison to other popular
languages like C/C++. Platfonn independence is achieved through an interpreter
that interprets the Java bytecodes before executing them. But interpreting the byte
codes at execution time is much slower than executing native code that has been
compiled using a traditional compiler, as the overhead of the interpreter's execution
must be paid at run time. Just In Time (JIT) compilers are becoming increasingly
popular for this reason though they are not yet available for aIl of the cornInon plat
forms in use. The highly object oriented features that make software maintenance
and debugging easier for Java applications also mean that the run time penalty must
be paid in the form of virtual method caUs and type inclusion checks that are quite
expensive as compared to other instructions. Thus it is clear that although the design
of the source language itself and the bytecode are quite c1ean, there is a significant
amount of work that needs ta be done before Java can exhibit the same run time
performance as its competing languages.

The problem of improving performance can be solved in t\va ways. It is possible

1

• ta perform static analyses on Java bytecode and apply traditional program transfor
mations like method inlining, common subexpression elimination, and loop invariant
removal. This approach requîres no interaction with the Java Virtual Nlachine that
is being used ta execute the bytecodes. Another possibility is to use the results from
static analyses ta annotate the class file that is being executed. This requires a Java
Virtual Nlachine that wouId be able to understand the annotations that are part of
the class file, and perform run time optimizations like register allocation, and elim
inating array bounds checks as it is executing the bytecodes. We have adopted the
first approach in our attempt ta improve performance, and we present the analyses,
optimizations and the benefits that we observed. The focus of this thesis is on im
proving performance of Java bytecode by trying to reduce the overhead associated
with virtual method caBs. The rest of this chapter is urganized as follows. Section
1.1 introduces the problem we are addressing. Section 1.2 describes the framework
that we have used to perform our analysesjoptimization and Section 1.3 discusses the
related work in this area. In Section lA, we briefly describe the contributions of this
thesis in addressing this problem, and Section 1.5 outlines the organization of this
thesis.

• 1.1 Virtual Method Calls in Java

•

In this section we discuss sorne of the issues pertaining ta virtual method caUs in Java
and how they impact performance. Java is an object oriented language and applica
tions written in Java typically contain many classes, methods, and fields. Every class
in Java (except the cosmic superclass java.lang. Object) must extend sorne unique
superclass. Subclasses inherit alI the features of parent classes and might also contain
additional methodsjfieIds that are used to perform specifie functions of the subclass.
A form of multiple inheritance is achieved through the use of interfaces that classes
are allowed to impIement. Thus every c1ass in Java is part of a inheritance hierarchy
\Vith java .lang . Obj ect at the root of the hierarchy. This follows the standard abject
oriented design modeI in which classes that are more general are near the top of the
hierarchy and subclasses have more specialized functionality. Subc1asses are allowed
to declare methods whose implementation overrides that of a method in a superc1ass.
The method invoked at run time depends on the actual c1ass of the receiver object
and not on the Java declared type of the variable referring to the abject. Call sites
for which the compiler producing bytecode from the source language cannat fix the

2

•

•

•

target of the calI statically are the source of virtual method calIs.

class A {
public static void main (StringO args) {

for (int i=O;i<2;i++)
{

A a =null;
if C i = 0)

a =nev AC);
else

a = nev BC);
a.:(); Il CS (poly:crphi: :all si~e)

}
}

public void me) { System.out.println ("In A"); }

}

class B extends A {
public void me) {System.out.println ("In B"); }

}

Figure 1.1: An example of a polymorphie eaU site

Consider the call site CS shown in Figure 1.1. The class A is extended by class
Band both classes have different implementations of the method mo. It is possible
that a variable declared to be of type A can point to an object the run time type of
which is either Aor B. Thus the variable a shown in the example refers ta an object
of class A in the first iteration while it refers to an object of class B in subsequent
iterations. Since the method invoked depends only on the actual type of the abject
referred to by the variable, the method m() declared in class A is invoked in the first
iteration, and the method m() declared in class B is invoked in successive iterations.

CalI sites that can invoke more than one target method at run time depending on
the class of the receiver are termed polymorphie call sites. Call sites that can only
invoke a single target method at run time are termed monomorphic calI sites. If the
target method invoked from a particular call site can be fLxed statically, then the calI
site is said ta have been resolved.

The method to be invoked at mn time is determined by the Java Virtual :Ylachine
by examining the virtual method tables of the class of the receiver object. There are
entries in the virtual method table of a class for each non-private method that might

3

• be invoked on an abject belonging ta that class. There are two possible bytecodes
that might be generated for virtual calls. The first is the invokevirtual bytecode
instruction which is generated when the declared type of the receiver in the source
code was a class. If the declared type of the receiver was an interface then the bytecode
that would be generated is the invokeinterface bytecode instruction. Both kinds of
virtual calls are expensive but the caUs made using the interfaceinvoke bytecode
are more 50 because of reasons that we explain now.

c

mt

m2

m3

m4

m6

m7

t 1

4

3

2

A B

.....--... ma ml

2 m2 2 :n2

3 m3 3 m3

4 m4 4 m4

5 mS 5

6
Inheritance Hierarchy

•
(A. B. C are all classes) Vinual Tables of classes A. B. and C.

(a). Virtual Table Layout for subclasses

imp,emei

0)

AI BI

ml m4 ml

2 m2 2
ml

2 ml

3 m3 3
m2 m33

4 m4 4 m3 4 m4

Inheritance Hierarchy

(Classes AI and BI implement

Interface 1)

Virtual Tables of classes AI and BI that

implement 1

(b). ViltUal Table Layout for classes implementing an interface

•
Figure 1.2: Virtual Table layaut for subclasses and interfaces

4

•

•

•

class A {
public static void main (String 0 args) {

for (int i=O;i<2;i++)
{

A a = null;
if (i == 0)

a = new B();
else

a = new CC);
a.ml(); Il Index into Virtual Tables can be reused after first execution

},.
public void ml() { System.out.println (reIn A"); }

}

class B extends A {
public void ml() { System.out.println (reIn B"); }

}

class C extends A {
public void ml() { System.out.println (reIn C"); }

}

Figure 1.3: Example of JVM only needing ta compute the index once
for invokevirtuals

In arder ta understand the reason for the virtual caUs being expensive. it is nec
essary to understand the actions taken by the Java Virtual ~lachine when it executes
a virtual method caIl. We first explain the actions to be performed for executing the
invokevirtual bytecode instruction. In this case, the virtual method table of the
class referred ta in the invokevirtual instruction is examined and the index of the
method matching the rnethod signature is obtained. For subclasses it is guaranteed
by the Java Virtuai Nlachine Specification that the index of a particular method in
the virtual method table is the same in the subclass as it \Vas in the parent class. In
Figure1.2(a), we observe that classes A, Band C have different number of methods~

but the methods that they have in cornmon (mi, m2, m3, m4) have the same offsets
in the virtual tables of aIl three classes. Thus once the index of the method in the
class referred to in the signature has been round, the same index can be used to access
the entry in the virtual method table of the class of the receiver object. The entry
in the virtual method table would tell the Java Virtual ~Iachine the exact method
that is ta be invoked. Note that the index needs ta he computed only the tirs! time

5

•

•

•

class AI implements l {
public static void main (String 0 args) {

for (int i=Oii<2ii++)
{

l a = null;
if (i = 0)

a = new AI();
else

a = new BIO;
a.ml(); Il Index into Virtual Tables cannot be reused

}
}

public void mie) { System.out.println (cCln A"); }
}

class BI implements l {
public void ml() { System.out.println (crIn B"); }

}

interface l {
public void ml();

}

Figure 1.4: Example of JVM needing ta compute the index every time
for invokeinterfaces

the invokevirtual instruction is executed, and on aIl subsequent executions of the
instruction the index camputed the first time can be used, as it guaranteed ta be the
same no matter what the class the receiver abject (it must be the class referred to
in the invokevirtual instruction or a subclass). Refer to the example in Figure 1.3
in which a call site is sho\vn for which the index into the virtual tables needs to be
calculated only the first time it is executed.

In the case of an invokeinterface bytecode instruction, the actions to be taken
are slightly different. There is no relationship between the index corresponding to a
particular method entry in the virtual method table of an interface, and the index of
the same method entry in the virtual method table of any class that implements that
interface. Thus, in Figure 1.2(b), we observe that even though classes AI and BI both
implement the interface l and have four methods each (names identical for methads
in bath classes), there is no correlation between the offsets inta the virtual tables
for the methods in the two classes. :'iote the difference in this case as compared

6

•

•

•

ta the case shawn in Figure 1.2(a). Thus the virtual method table of the class of
the receiver object must be searched each time the invokeinterface instruction is
executed. The index computed the previous time it was executed may not be the
same as the index of the method in the virtual method table of the receiver abject
this time as the class of the receiver might be different on different executions of
the invokeinterface instruction. The class of the receiver on ditferent executions
must of course be sorne class that implernents the interface but the index of the
method entries in the virtual method table of the class need not be the same. 50 the
invokeinterface bytecode instruction is expensive as compared to invokevirtual
bytecode instruction, and even more so than a static method calI that requires no
method lookup. An example is shown in Figure1.4 where the index into the virtual
method table must be recalculated each time the call site is executed.

Rence, it should be clear that virtual method calls are expensive at run time and
replacing them wherever possible them might improve performance. Possible ways
of avoiding the overhead associated with virtual method caBs are either eliminating
them completely or by replacing them by less expensive instructions. Eliminating a
method caU completely is possible if the target of the method caU is known statically
and we are allowed to inline the code of the called method into the caller and remove
the calI instruction. There are other bytecode instructions (namely invokestatic
and invokespecial) for method invocations at caU sites where the target method
is known statically. These are less expensive to execute and can be used instead
of the virtual caU instructions if the virtual caU has been resolved. Note that if
the conversion is to the invokestatic bytecode, then a new static method might
have to be created and added to the class. This static method would be similar in
functionality to the method being invoked by the virtual caU instruction, but would
differ from it in that it would have one extra explicit parameter corresponding ta the
implicit this parameter.

1.2 The Soot Framework

vVe have used the Soot framework [Il to perform our analyses and optimizations.
Soot is a framework for analyzing, optimizing and annotating Java bytecode. :vIore
concretely Soot offers three alternative representations for Java bytecode that are
designed to be easier ta work \Vith as compared ta using the bytecode directIy.

7

•

•

•

The Baf representation: The first representatioo is Bal which is a compact
and simpler bytecode representation that is useful when it is necessary to deal with
bytecode as stack code. The Baf interrnediate representation hides sorne of the en
coding issues in bytecode, such as the constant pool and multiple variants of virtually
the same instruction. Baf is currently in use for performing peephole transformations
and for a final re-ordering phase. Refer to Figure 1.5(b) for a simple example of Baf
code.

The Jimple representation: The second representation is Jimple which is a
compact three-address cod'? representation of Java bytecode that is unstructured. It
is much simpler to develop analyses and optimizations on the Jimple representation
than on Java bytecode for the following reasons :

• Resembles simple Java: instructions are in three-address code form .

• Typed: Like Java, Jimple's local variables are typed (the types are inferred
from the bytecode).

In Figure 1.5(c) we show an example of Jimple code that would be produced for
the Java code shawn in Figure 1.5(a) .

The Grimp representation: The third representation is Grimp (aggregated
Jirnple) which is sirnilar to Jimple except that it represents statements as trees. This
is extrernely useful where Jirnple's fractured nature is inappropriate. Grimp is used
in the framework for decompilation and generation of bytecode. Figure 1.5(d) shows
an example of Grimp code. Note that the Grimp code is very similar to the original
Java code.

The fact that aIl three intermediate representations in Soot are constructed di
rectly from the Java bytecode in the class files, and not from the high level Java
pregrams allows us to analyze Java bytecode that has been produced by any com
piler, optimizer, or ether too!. There are front ends available for languages such as
Ada, NIL, Eiffel and Pizza that produce Java bytecode.

vVe analyze complete applications, sa our implementation starts by readiog aU
the classes required by a particular application, starting with the main class and
recursively loading aIl the classes used in each new class. As each class is read it
is converted iota the Jimple iotermediate representation. After this conversion each
class is stored in an instance of a SootClass which contains information like its

8

Figure 1.5: Different representations offered by Soot for Java code

•

•

if (x + y != z)
return;
aIse
System.out.println ("foo");

(a). Original Java code

iload ::t

iload y
iadd
iload z
icmpge labelO
return

labelO:
getfield System. out
push foo
invokevirtual println

Cb). Bat code

t = x + y;
if t == z goto labelOj
return;

labelO :
ref = System.out;
ref.println ("foo");

Cc). Jimple code

if (x + 1 == z) goto labelO;
return;

labelO :
System.out.println ("foo")j

(d). Grimp code

•

name, superclass, list of interfaces that it irnplernents, and a collection of SootFields
and SootMethods. Each SootMethod in turn contains information such as its name.
modifiers, locals, parameters, and a list of Jirnple three-address code instructions.
At the beginning of the Jimple instructions list for each method there are special
identity statements that provide explicit assignments from the parameters (including
the implicit this parameter) to loeals wîthin the SootMethod.

The Soot framework includes sorne basic intraprocedural optimizations like copy
propagation, constant propagation, and dead code elimination that are very useful in
cleaning up the Jimple code produeed frorn a naïve bytecode to Jirnple translation.
Since the operand stack that is present at the stack code (bytecode) level is completely
eliminated in the Jimple representation, the stack locations must be represented in
Jimple as local variables. Types for locals are inferred [26] using the explicit references
to types present in method and field signatures, and instantiations. To avoid having
too many locals in the Jimple representation, a local packing pass is made over the
code that tries ta pack as many Ioeals as possible into one local.

9

•

•

•

In terms of our analyses, the fact that in the Jimple representation, each statement

has a relatively simple format means that the rules are not as complex as they wouid

have been if the statements could contain large expressions. Aiso there is a fixed

set of different kinds of statements in Jimple, and the set of analysis rules can be

assumed to he complete once rules have been specified for each statement. Further

all the operands in Jimple are either variable references or constants. Since there is a

declared type (that is inferred) for each local and constant, our analyses can use this

information in a straightforward manner.

Figure 1.6 provides an overvie'.y of all the components of Soot and seme of the

applications that Soot is being used for.

1.3 Related Work

The problem of virtual caU resolution has been studied before for other languages. In

this section we discuss sorne of the work we found that was relevant ta our research.

"Ve first discuss work related ta caU graph improvement and receiver class prediction,
and later in this section we discuss the research into method inlining.

The study of analyses ta improve the caIl graph and elirnination of virtual caBs is
discussed in sorne detail in the work by Grove et al [15]. They conduet an empirical

study of the effectiveness of many of the commonly known algorithms for caB graph
construction. The suite of benchmarks that they used for conducting their experi

ments was composed of medium sized programs written in Cecil and Java which is
of particular interest ta us. The results that they obtained give an indication about

the time and space cornplexity of sorne of the weIl known algorithms for caB graph

construction. They discuss the different strategies for caU graph improvernent in a
generalized manner, and give the possibilities for the choice of the initial calI graph.

They aisa formally introduce sorne interesting properties of a caU graph lattice do
main, and discuss the conditions when a caU graph is sound. The ideas set forth in
this discussion were used by us in formulating our analyses as caU graph improve

ment techniques. This ensures that our calI graph is always in sorne part of the calI

graph lattice where it is guaranteed to he sound (conservatively correct). Alterna

tive approaches are possible in which the caU graph might he unsound (incorrect) at

certain points during the analyses, but we have not chosen those techniques in our

implementation.

vVe have focused on the study of fast analyses for cail graph improvement in our

10

•
Soot Framework and Applications Overview

G-[:J~G
1 \ ---,J 1 '

1 \ 1---__ 1 "
1 \ 1 --.L.__ ~

, , -- ,

Legend
Som Transformaùon

Application

...
" ""

"
\ jje

\
\

1
1
1,,

1
1

1

1,,
1,,

1,
1

1

1

1,
1

.baf

r
,'

.jimple
1- _

-,..,,,,
1
1
\

\

\ .
, -.Javac

" ...

Baf

,,,
1

1
1
1
\
,_ "

1

1

1,,
1,

" decompiler
1
1
1
1

1

1

1,
1
1
1
1
1

1

1
1
1
1•

limple optimizer 1annotator

Figure 1.6: The Soot Framework

•
Il

•

•

•

work while sorne of their analyses for call graph construction are context sensitive or
flow sensitive and are consequently more expensive. Their experiments demonstrated
that scalability becomes a crucial issue when context sensitive algorithms for call
graph improvement are applied to medium to large sized programs. Grove et al.
conclude that a scalable and effective calI graph construction algorithm for programs
that make extensive use of polymorphism and dynamic dispatching is still an open
problem. Our work focuses on scaiable caU graph construction algorithms for Java
applications, and intends to provide a detailed set of measurements that compare
the effectiveness of the relatively rhpappr analy~ps thôt. WP h::\v~ t'onsider~d. They
discovered that for both the languages they considered, the additional precision of
the caU graphs constructed by the interprocedurally flow-sensitive algorithms had
a significant impact on the effectiveness of the client interprocedural analyses and
resulting optimizations. Their speedups are about 5 to 10 percent on average for
Java benchmarks (achieved through a combination of aggressive intraprocedural and
limited interprocedural optimizations). They also managed to reduce the size of their
executables for Java benchmarks by about 10 to 20 percent performing dead rnember
elimination.

Diwan [24] describes results for simple and effective analysis of statically-typed
object-oriented languages~ and provides experimental results for :\Iodula III programs.
Their analysis is similar to ours in the sense that they also propagate types from
allocation sites to uses. Their intraprocedural type propagation improves the results
obtained by type (class) hierarchy analysis by using data flow analysis to propagate
types from type events to method invocations within a procedure. Type events create
or change type information (e.g. new() statements. or assignment staternents). Since
the analysis is flow sensitive, type information is merged at control flow points. Type
propagation only propagates types to scalars~ and assumes the conservative \Vorst
case (the declared type) for the allocated types of record and object fields, and array
and pointer references. They aIso present an interprocedural version of the type
propagation analysis which uses a conservative caU graph built by their less precise
analysis. The algorithm operates hy maintaining a work list of procedures that need
ta he analyzed. A procedure needs to be reanalyzed if new information becornes
available about its parameters or about the return value of one of its callees. Sorne
caU graph edges may be removed if the analysis refines the type of a method receiver.
The interpracedural strategy used by them is context insensitive.

Their other analysis called aggregate analysis is aimed towards finding monomor
phic use of a general data structure. It circumvents the difficulty of analyzing records

12

•

•

•

and heap allocated objects by merging aIl instances of an object or record type. As
an example, the statements

v: T;

v.f := <rhs>

propagate the types of <rhs> to the field f of all possible types of v. The possible
types of v can he determined by another analysis (such as type propagation) or may
be conservatively approximated as T and its subtypes.

These analyses developed by thern for NIodula III bear the closest resemblance
ta our reaching type analysis. However, there are significant differences between
their approach and our reaching-type analyses. First, we analyze Java bytecode, and
experimented with a wide variety of benchmarks, including sorne very object oriented
ones. Second, we believe that our approach is more efficient since \ve build a complete
constraint graph, and solve it once. Their approach requires iterating a flow-sensitive
intraprocedural phase since their interprocedural strateg)' re-analyzes methods when
information about pararneters or retum values change due ta the intraprocedural
phase. Third, their interprocedural approach uses the declared type of abject fields
which can introduce imprecision, \vhereas we use the reaching types far fields.

Their results showed that they coulci resalve almost 92% of the method invocation
sites ùn average, and in sorne cases improve the performance of these programs by up
ta 19%. Their cause analysis approach airned at discovering the reasons for impreci
sion of their analyses. It found that polyrnorphism. insufficiently powerful aggregate
analysis, and context insensitivity were the main factors that prevented them from
resolving aIl the calI sites at compile time.

Also closely related to our work is the work by Bacon and Sweeney [12] on fast
static analysis of C++ virtual function caIls. Their study considers three relatively
simple analysis techniques unique name, class hierarchy analysis (CHA), and rapid

type analysis (RTA).

They observed that in sorne cases there is only one implernentation of a particular
virtual function anywhere in the program, and this can be detected by comparing the
mangled names of C++ functions in the object files. "Vhen a function has a unique
name, the virtual caIl is replaced by a direct caH. This is caIled unique name analysis
and has the advantage that it does not require access to source code and can optimize
virtual caIls in library code; however working with object code means that it is not
possible to implement optimizations like inlining.

13

•

•

•

Class hierarchy analysis (CHA) uses the statically declared type of an abject with
the class hierarchy of the program ta determine the set of possible targets of virtuai
caUs. We have implemented class hierarchy analysis (CHA.) in our framework as the
simplest analysis for building the caU graph.

The third analysis studied in the paper is rapid type analysis (RTA). Rapid type
analysis starts with a caU graph generated by performing class hierarchy analysis,
and uses information about instantiated types to further reduce the set of executable
virtual functions. The analyses that we have cansidered are slightly more expensive
and complex, but we have also implemented RTA and stüdied the resülts for Java
applications. Their results for RTA show that it is actually most effective when
analyzing library code as it is more likely that there would be classes that are not
instantiated in the library. They aiso measure the further potential for improvement
by considering the dynamic information for caUs in a prograrn trace.

They aiso give the analysis time far each of their analysis, that show that the
overhead for these analyses is not very significant when compared ta the overall time
ta compile. They have dynamically measured the results for resalution of user virtual
caUs, and also try to produce an estimate for the number of dead call sites. They
conclude that Rapid Type Analysis is extremely effective in resolving function calls,
and reducing code size and it is also proven ta be very fast .

Calder and Grunwald [13] examined characteristics of C++ programs and ob
served that at a given call site the class of the receiver tends ta belong to a set con
taining a small number of classes. Thus they concluded that profile-guided receiver
class prediction wauld be beneficial though they did not have an implementation in
a compiler ta prove this hypothesis. Holzle and Ungar [29] describe transformations
to convert method invocations to direct calIs (profile-guided) for Self programs.

Aigner and Holzle [9] in their work in evaluating techniques for resolving method
invocations in C++ found that type feedback and type hierarchy analysis are bath
effective at resolving method invocations in C++.

Plevyak and Chien's iterative algorithm [33] tries to improve a safe calI graph ta
begin with and tries to refine it to the desired extent by creating new contours.

There has aIso been work in the area of applying more expensive analyses of vary
ing camplexity for caU graph construction! especially for languages like C++. :\[odula
IlL and Cecil. Sorne of the algorithms that are context insensitive are O-CFA[36, 37].
Palsberg and Schwartzbach's algorithm [32], Hall and Kennedy!s calI graph construc
tion algorithm for Fortran [27], and Lakhotia's algorithm [3D} for building a caU graph

14

•

•

•

in languages with higher order functions. Other related work includes Shiver's k-CFA
family of algorithms [36, 37] for selecting the target contour based on k-enclosing
calling contours at each calI site, Agesen's Cartesian Product Aigorithm (CPA) [8],
and Ryder's [35] caU graph construction algorithm for Fortran 77. Agesen[7] describes
constraint-graph-based instantiations of k-CFA, and Plevyak's algorithm.

vVe have not been able ta find any published work done on rnethod inlining in
Java, which takes as input classfiles and produces optimized classfiles. There has been
sorne research into the benefits of method inlining for other programming languages:
in general inlining is traditionally considered to be a source code level optimization.

Carini [14] suggested sorne useful heuristics to perform automatic inlining in For
tran and their work shows that they couId almost attain the performance levels of
profile guided inlining in most cases. Their improvements in performance are about
2% on average and about 6% in the best case. Their heuristics are based on two cast
functions. The first cast function attempts ta accurately estimate the cost of inlining
a certain function. Their function heuristics take into account the size of a function,
and the the number of loops, number of caU sites and the number of lia caUs within
the function. \Vhile these are the parameters in calculating the cost associated with
inlining a certain method, there are also several (user specified) constants in their
formula that allow them ta tune the automatic inlining strategy. Their second cast
function tries ta estimate the benefits of inlining at a particular caU site. based on
the level of nesting inside laaps, and the size of the control flow block that the caU
site resides in. They then traverse the caU graph in a bottom-up manner selecting
calI sites ta be inlined based on the cost functions for the caU sites and the methods
they caU. This is very similar to our strategy for automatic inlining, which is also
based on selecting potentially important caU sites, and inlining at only these caU sites
provided the method being inlined is not very large.

Our work on inlining differs from theirs in two important ways. There are many
complex inlining safety issues involved when inlining is performed at the Java bytecode
level. Access restrictions have to be kept in mind, and there are also many Java
Virtual Nlachine specification dependent issues. The fact that we only inline caU sites
within the benchmark and do not alter the Java c1ass libraries in any manner aisu
impedes our efforts to inline at every possible caU site. Inlining library methods might
not be allowed if the method accesses sorne library field/method that is inaccessible
from the benchmark class (note that we are not aUowed to change access restrictions
of cIass members in the library). Aiso aIl caUs are statically resoived in Fortran, while
in Java it might be that many of the important calI sites cannat be statically resolved

15

•

•

•

because of polymorphie virtual caUs.

The other important difference is that we try ta inline methods at the Java byte
code level (whieh is almost equivalent ta inlining on an executable), whereas they
inline at the source code level. Consequently, they are concerned about the size of
their source files as compilation time cao increase significantly with increase in the
size of their source files. In our case Iarger c1assfiles mean an increase in class loading
time but we have in fact observed that this is not a significant factor in the total
execution time of a benchmark (when the class files are available 10calIy).

The work by Ayers [11 j on aggressive inlining strategies at the intermediate rep
resentation levei showed that they could get significant speedup (in sorne cases a
factor of 2) for sorne weIl known SPEC henchmarks. Their inliner performs passi
bly multiple passes over the code ta inline at the important caU sites and aiso uses
profile feedhack. It shouid be noted that their speedup also included the gains as
a result of many other global optimizations that became more effective as a result
of inlining. Their inliner identifies the important caU sites and inlines at these calI
sites greedily until it exceeds a precomputed budget. The budget is an estimate of
how rnuch compilation time would increase because of inlining (taking inta account
the fact that several optimization phases have non linear complexity). They try ta
limit cornpile-time increases ta 100% over no inlining. Since they are compiling down
ta native code, they aisa rneasure the I-cache and D-cache miss rates, and register
pressure. One of their conclusions is that profile feedback while inlining is crucial in
achieving good performance. They aiso attack the widely heId notion that inlining is
only effective if the rnethods that get inlined are smalI in size.

Their work is similar to ours in that they perform inlining at the intermediate
representation level, and their strategy for inlining involves changing the scopes for
program entities wherever required (similar ta changing access modifiers of class mem
bers in our case). There are aIso sorne differences compared to our work; their front
end can build the intermediate representation for Fortran, C, and C++ programs~

whereas we try ta optimize Java bytecode. Aiso their inlining strategy is dictated to
a large extent, by architecture related issues (caches, register allocation) which might
not he applicable for Java in the presence of interpreters. They are able to inc1ude
the cumulative effects of inlining itself and aU the other compiler optimizations that
become more effective in the presence of inlining in their performance results. \Ve
only report the raw improvement that method inlining has on performance as the rest
of our framework is not developed enough to perform sorne of the global optimizations
that they perform.

16

•

•

•

The work by Hwu et al.[31] foeuses on the effectiveness of inlining in reducing
the number of dynamic function caUs for C programs on their IMPACT system. In
related work on the same system Chang et al.[16} report a mean speedup of Il%
with a ma.ximum speedup of 46%. Their benchmarks are largely under 5000 lines
of C code, whereas we try ta analyze larger sized benchmarks. They use profiling
information te assign weights to different calI sites in their calI graph, and use these
weights while making inlining decisions. The other factor that they consider while
deciding whether to inline at a caU site is their cost function value at that calI site.
The cast function tries to estimate the effect on code size and cache performance if
inlining is allowed at a particular caB site. The cost function for methods are updated
after each inline expansion.

Their experiments show that a large percentage of function calls/returns (about
59%) can be eliminated \Vith a modest code expansion cast (17%). They suggest that
the reduction in functian call frequency would result in larger basic blocks that could
be exploited effectively by instruction scheduling. The main source of the function
caUs remaining after inline expansion are system caUs to the operating system and
they express the need for further research in that area.

Davidson and Holler [20] deseribed INLINER. an implementation of a C source ta
source automatic inliner and achieve a mean speedup of 12% with a ma..ximum speedup
of about 35%. Their main observation was that the increased register pressure as a
result of inlining can have detrimental effects on performance. They do not compare
their results \Vith a profile feedhack, whereas we provide experimental data for profile
guided inlining.

Dean and Chambers [2l} describe a novel approach that essentially involves train
ing the compiler to make good inlining decisions. The compiler uses a database ta
record the results of inlining experiments conducted in the pasto The potential benefit
of an inline is estimated by consulting the database.

~Iore research into inlining and related issues can be found in the work by Cooper
et al. [18, 19, 17], Richardson et al. [34], Haller [28J, and Allen et al. [la].

1.4 Thesis Contributions

vVe have focused on reducing the overhead associated with virtual method caUs in
Java bytecode in this thesis. vVe have adopted two distinct approaches to address

17

•

•

•

this problem. First, we have tried to improve the precision of existing and future
interprocedural analyses in our compiler framework by developing and implementing
analyses that build a reasonably accurate caU graph for the program. Second, we

have implemented a compiler optimization that eliminates virtual calls and improve
the performance of programs compiled to Java bytecode. vVe now briefly describe our

work in both these approaches.

Simple techniques for cali graph construction in the presence of virtual caUs can
be inaccurate especially in the case of highly object oriented programs, as they would
hav~ to assum~ that a particular calI site might invoke many different methods at run

time. Since the calI graph is the basis of aIl interprocedural analyses, an inaccurate
calI graph can severely limit the effectiveness of interprocedural analyses. vVe imple

mented two weIl known and relatively inexpensive techniques for building calI graphs,
class hierarchy analysis[23, 25, 12} and rapid type analysis[12]. These two analyses
serve as a baseline for comparison with the new techniques we propose.

Our original contribution is a new group of analyses, calIed reaching-type analyses,
which are based on a type propagation graph where nodes represent variables and

edges represent the fiow of types due to assignments. The variations of reaching-type
analyses that we have implemented are both ftow-insensitive and context-insensitive
and are consequently not expected ta be very expensive if implemented in an actual
compiler.

The first variation is called declared type analysis, where nodes represent the de
clared type of a variable. This is designed to be a coarse grained analysis that tries
to limit the number of nodes in the constraint graph, 50 that the cost of solving the
constraints is not high.

The second variation is more fine grained and is called variable type analysis.
In variable type analysis, nodes represent variable names. It is more expensive to
solve the constraints in this case as there are more nodes and edges in the constraint

graph, but our empirical results show that this analysis does build a call graph that
is significantly more accurate than any of the other analyses.

"'le have implemented declared type analysis and variable type analysis using the
Soot framework(l], that provides several intermediate representations and APIs for

analysis and transformation of Java bytecode.

"'le statically measured the precision of the calI graphs built by each of the four
analyses we implemented in our experiments using a set of 13 benchmarks generated

18

•

•

•

from Java, Ada, rvIL, Eiffel and Pizza. These benchmarks are meant to be represen
tative of real applications and vary in size from 1,000 ta 42,000 Jimple statements
without library code. As our analysis requires the whole application (including Java
class libraries), the size of the program under analysis is actually about 70,000 Jimple
statements for our largest benchmark.

In addition ta the static analyses, we also produced a dynamic profile that is
used to determine which methods are actually called at run time, and to obtain the
frequency of execution of each calI site. We then used these results to give us a bound
on what can he achievp.rl ~tatkally~ and t.o C"omparp t.hp. oynamic rf~s111t.s of t.hp hAsplinp

analyses with our reaching-type analyses.

vVe have implemented an optimization called method inlining aimed at improving
performance of bytecode. Method inlining involves replacing a method invocation
instruction by the code of the method that it invokes (if it can be determined at
compile time). vVe provide a detailed and clear specification of the safet}" issues that
are specifie to performing method inlining at the Java bytecode level. 'vVe also discuss
sorne important inlining criteria and our own static inlining strategy. 'vVe have added
an option in our inliner that would allow for profile guided inlining. vVe have measured
the run time improvement in performance for the set of benchmarks we mentioned
earlier, and also compared our inlining strategÏes.

In summary, the main contributions of this thesis are:

• Design of reaching-type analyses used ta estimate the set of run time types for
the receiver of virtual method caUs. Development of a coarse grained variation
called declared type analysis, and a more accurate variation called variable type
analysis, both of which are fiow insensitive and context insensitive.

• Implementation of these analyses along with two well known analyses using
Soot, which is a Java bytecode analysis and transformation framework. Study
of the effectiveness of these analyses on a set of real, large sized benchmarks.
Comparison with profiling results ta estimate the bound for the best that cao
be achieved by any analysis.

• Implementation of method inlining with automatic and profile guided options
and comparison of the two strategies. ~Ieasurementof the run time performan~e

impact of this optimization on our set of benchmarks.

19

The rest of this thesis is organized as follows. In chapter 2 we introduce the weIl
known analyses, class hierarchy analysis and rapid type analysis that we have impIe
mented, and we provide detailed rules for our new analyses. In chapter 3 we discuss
issues related to the optimization we have implemented. We present empirical data
demonstrating the effectiveness of our analyses and optimization on real benchmarks
derived from different languages in chapter 4. Finally, we state our conclusions and
discuss the scope for future work in chapter 5.

•

•

1.5 Thesis Organization

•
20

•

•

•

Chapter 2

Analyses

In this chapter we introduce the analyses we have implemented that provide more
precise information at virtual caU sites. vVe aiso present the rules associated with
each analysis and use examples to illustrate the differences between the analyses.

Our study is directed taward relatively cheap analysis techniques as we want ta
apply these techniques to large programs. Thus, it is essential that the techniques
scale well with program size. Aiso the fact that we are doing whole application
analysis means that we have to analyze classes that belong ta the Java class library,
and this can have a significant effect on the memory/ time requirements of the analysis.

The analyses we have studied can be grouped into twa categories. The first cat
egory consists of baseline analyses, which are known techniques that are among the
cheapest for the problem of virtual method calI resolution. The two analyses in
this category are class hierarchy analysis (CHA)[23, 25, 12) and rapid type analysis
(RTA)[12]. These techniques have been studied for other abject oriented languages
like Cecil[15] , Nlodula III[24], and C++[12] and hence form a baseline for comparison
with our other analyses. The second group of analyses called reaching-type analyses
is proposed by us and is based on an analysis that builds a type propagation graph
where nodes represent program variables and edges represent the flow of types as a
result of assignments. There are two analyses that faU in this category, declared type
analysis (DTA) and variable type analysis (\lTA). In dec1ared type analysis, nodes
represent declared types of program variables, whereas in variable type analysis the

nodes represent prograIll variables.

Our aim in performing each of the analyses is ta determine the methods that
can be invoked at "irtual method caU sites. The results of such analyses have many

21

•

•

•

uses. We have used the results ta perform a compiler optirnization known as method

inlining that airns to improve program performance. We discuss method inlining in
greater detail in Chapter 3. Another consequence of improving the caU graph of the

program at virtual caU sites is that it improves the precision of subsequent analyses

like side effect analyses.

vVe now present details of our implementation of the analyses. In section 2.1 we

explain how we build the class hierarchy, folIowed by a description of the structure
of the calI graph built using class hierarchy analysis. vVe then explain our implemen
tations of rapid type analysis: rf'aching-t.ypp analysi~ ~nd discuss som~ limitati0ns in

sections 2.2, 2.3 and 2.4 respectively. "vVe discuss the comparison of our results with

dynamic results in section 2.5.

2.1 Hierarchy Analysis and the Conserv~.tiveCalI
Graph

The objective of aIl of our analyses is to determine, at compile-time, a caU graph \Vith
as few nodes and edges as possible. AlI of our analyses start with a conservative caU
graph that is built using class hierarchy analysis.

2.1.1 Class Hierarchy Analysis

Class hierarchy analysis is a standard method for conservatively estimating the run
time types of receivers. Given a receiver 0 of with a declared typed, hierarchy_types(o~ d)
for Java is defined as follows:

• If receiver 0 has a dec1ared class type C, the possible run-tirne types of 0,

hierarchy_types(o,C), includes C plus aIl subclasses of C.

• If receiver 0 with a declared interface type l, the possible run-time types of

0, hierarchy_types(o,1), includes: (1) the set of all classes that implement Ior
implement a subinterface of l, calI this set implements(I), plus (2) aU subclasses

of implements(1).

Ta irnplement this analysis, we simply build an internaI representation of the
inheritance hierarchy, and then we use this hierarchy to compute the appropriate

hierarchy_types sets.

22

•

•

•

'vVe now present details specifie ta our implementation of the inheritanee hierarehy
using the 800t framework.

Step 1 : Include all the classes that might be aceessed starting from the main
class. Note that in this step we are aetually including all the classes in the set that is
the transitive closure of aIl the classes that ean be aeeessed. This is aehieved through
the use of a SootClassManager that automatically builds SootClass representations
for all classes that belong to the transitive closure. We will refer to this set as
SootClassList.

Step 2 : Establish aH the àirect superc1ass-subclass relationships between the
classes included in Step 1. Eaeh class maintains a list of its immediate subclasses in
SubClassList at this stage. Note that the superclass of a particular class may be ob
tained directly from its SootClass representation. See method EstablishDirectRelations
in Figure 2.1

Step 3 : Eaeh c1ass maintains a List of aIl its subclasses (aIl the classes in that
subgraph of the inheritance graph of which the class is the root). ~ote that the
subclasses are included in a transitive manner. See method includeAllSubClasses
in Figure 2.2.

Step 4 : Each interface maintains a list of the SootClasses that implement the
interface. 8ee method setlmplementors in Figure 2.3.

void EstablishDirectRelatiens() {

while (SootClassList.hasNext())
{

nextclass = next(SootClassList)j
superclass = SuperClass(nextclass);
add the SoetClass corresponding te nextclass te superclass.SubClassList;

}
}

Figure 2.1: Establishing direct parent child relationships

Ta implement this analysis t we simply build an internaI representation of the the
inheritance hierarchy, and then we use this hierarchy ta compute the appropriate
hierarchy_types sets.

23

•

•

•

void includeAllSubClasses() {

vhile C SootClassList.hasNext())
{

nextclass = next(SootClassList);

subclassQ = nextclass.SubClassList;

while (! subclassQ.isEmpty())
{

nextsubclass = head(subclassQ);

if C ! nextclass.SubClassList.containsCnextsubclass))
add nextsubclass to nextclass.SubClassList;

subsubclasslist = nextsubclass.SubClassList;
while (subsubclasslist.hasNext())
{

nextsubsubclass = next(subsubclasslist);
if (nextsubsubclass does not belong to nextclass.SubClassList)
add nextsubsubclass ta subclassQ;

}
}

}
}

Figure 2.2: Including aH the subclasses transitively into the Sub
ClassList of a parent

2.1.2 CalI Graphs

For our purposes a cali graph consists of nodes and directed edges. The call graph
must include one node for each method that can be reached by a computation starting
from the main method (or if the program has threads, then the call graph must also
include aU methods that can be reached starting at any start or run method in
a class that implements java.lang.Runnable). An example calI graph is given in
Figure 2.4(b).

Each node in the caU graph contains a collection of calI sites. Consider a method
AI from class C with n method caUs in its body. ~Iethod AJ is represented in the
caU graph by a Dode labeled G.AI, and this node will contain entries for each call
site! which we denote C.AI[cd to G.Af[en]. In our example, the caU graph node for
method B.main contains two calI sites, B.main[l] which is a.mO, and B.main[2]

24

•
void setImplementors() {

vhile (SootClassList.hasNext())
{

nextclass = next(SootClassList);
interfacelist =nextclass.getlnterfaces();
/* returns the list of SootClasses corresponding

to the interfaces implemented by nextclass */

vhile (interfacelist.hasNext())
{

implementedinterface = interfacelist.next();
add nextclass to implementedinterface.ImplementorList;

}
}

}

Figure 2.3: Establishing (interface) directly implemented-by relation
ships

which is b .m().

A.m C.mB.rn

B.main

this.t String()

•

Class Hierarchy Cali Graph

Figure 2.4: An example of the CalI Graph built for the program.

•

Edges in the calI graph go from caU sites within a call graph node~ ta call graph
nodes. The caU graph must cantain an edge for each possible calling relationship
between call sites and nodes. If it is possible that caU site C.A/.c[i] caUs method

25

•

•

•

C'.M', then there must be an edge between C.AtI.c[i] and C'.~vI' in the caU graph. In
the example caU graph there are three edges from the caB site a. m0 corresponding
the fact that the virtual caU a. m() might resolve to caUs ta A. m, B. m or C. m.

Special attention is required when adding calIing edges from a virtual method or
interface calI and this is done using an approximation of the run- time types of the
receiver. Given a virtual caB site C.At/[il of the form o.m(al, ... ,an), and a set of
possible runtime types for receiver 0, call this runtime_types(o) , we find aIl possible
targets of the cali as follows. For each type Ci in runtime(0), look up the class

hierarchy starting at Ci until a dass Ctarget 1:5 fÙUllÙ that iudude::; a Iuethoà Ctarget.m

that matches the signature of m. An edge from C.lvJ[i] to Ctarget.m is added to the
calI graph.

Consider the the cali a.mO in the example in Figure 2.4. If the possible runtime
types for receiver a includes {A, B, Cl, then in each case a matching method m is
found in the class itself (without looking further up the hierarchy), and thus the call
edges to A. m, B. m, and C. m are added. However, sometirnes the target method is
found further up the hierarchy. Consider the cali this . toString(). If the possible

runtime types the receiver this are {A, B, Cl, then looking up the hierarchy in each
case will result in the target Object. tOString().

~ote that a calI graph may contain spurious nodes and edges. Spurious edges may

be inc1uded for virtual method calls. "Vhen adding caU edges from a virtual method
calI site C..,rvJ{i) of the form o.m(al, .. " an), an edge must be placed between this
caU site and every method C'.m corresponding to the possible run-time types of the
receiver o. If we use a conservative approximation of the run-tirne types for 0, then
we may include spurious types in our approximation, and this may lead to spurious
edges. In our example, if the type of the receiver a in the calI a. m0 can only have a
runtime type of A, then the edges to B.m and C. mare spurious.

Spurious nodes are inc1uded when aU incoming edges to the node are spurious. In
the example, if the edge from a.mO to C.m is spurious! then the node C.m would also

become spurious.

The analyses presented in this paper are designed to reduce the number of spurious
edges and nodes by providing better approximations of the runtime types of receivers.

26

•

•

•

2.1.3 Building the Conservative CalI Graph

In our implementation, calI graphs are built iteratively using a worklist strategy.
The worklist starts with nodes for all possible entry points (Le. main, start , run).
As each node (method) is added ta the caU graph, edges from the caU sites in the
Dode are also added. If the target of an edge is not already in the caU graph, then
it is added ta the call graph and to the worklist. Conservative caU graphs are built
using hierarchy_types as the estimate for runtime_types for determining the edges from
virtual method caB sites.

Consider the example in Figure 2.4. The conservative calI graph starts with the
entry method C.main which includes two calI sites a.me) and b.mO. ~ext, edges are
added from a. m(). The type of receiver a is estimated using hierarchy analysis on the
declared type of a, Hierarchy_types(A)={A,B,C}. For each element of this set, the
appropriate method mis Iocated. leading to three calI edges to A.m, B.m and C.m. The
edges from call site b. m() é re added similarly, leading ta one edge to B. m. There is
one remaining call site, this. toString() which is inside method A. m. The declared
type ofthis is A, and hierarchy_types(A)= {A,B,C}. However. in this case aIl three
types lead to the same caU edge to the method Dbject. toStringO. This illustrates
the point that a tighter estimate of run-time types may not necessarily lead ta fewer
edges. Thus, our experimental measurements concentrate on measuring the number
of call edges, and not the accuracy of the type resolution.

vVe now explain our implementation of the caU graph by performing Class Hier
archy Analysis using the Soot framework.

In Java bytecode, there are four different kinds of invoke expressions, and we
explain the algorithm to build the caB graph for each kind of invoke expression:

• invokestatic: This invoke expression is generated when the method caU in the
source language from which the bytecode "las produced was to a method de
clared to be static. These method caBs are already resolved statically and the
the target method of the caU is known before run time. The method in the
invoke expression is the target of the calI.

• invokespecial: This invoke expression is generated for caUs to constructors, pri
vate methods, or methods in sorne parent class of the class in which the invoke
expression occurs. The first two cases are simple as the method invoked at run
time is the method referred to in the invoke expression. However there is sorne

27

•

•

•

loakup performed in the case of caUs ta methods in a parent class of the current
class. See Figure 2.6 for the algorithm.

• invokevirtual: This invoke expression is generated when the method caU cannot
be resolved at compile time and the target of the caU is dependent on the run
time type of the abject that is the receiver of the caU. In this case, we obtain
the Jimple type of the local corresponding to the receiver of the method caU,
and use this type to build the call graph.

• in'vokeinterface: This invoke instruction is generated when the re~eiver of the
caU is of interface type in the Java source code. In this case too, we use the
type of the local corresponding ta the receiver in Jimple. See Figures 2.8 and
2.9 for the algorithm.

public SootMethod performMethodLookup (searchingclass, invoke expression)

searching = true;

while (searching)
{

if (searchingclass declares a method m which has the same name,
parameter types, and return type as the method in the invoke expression)

{

searching = false;
declaredmethod = searchingclass.getHethod(m);
return declaredmethod;

}

else
searchingclass = SuperCIass(searchingclass);

}

}

Figure 2.5: Method ta perform method lookup

2.2 Rapid Type Analysis (RTA)

Rapid type analysis (12] is a very simple way of improving the estimate of the types of
receivers. The observation is that a receiver can only have a type of a abject that has
been instantiated via a new. Thus, one cao collect the set of object types instantiated
in the program P, caU this instantiated_types(P). Given a receiver with declared type

28

•

•

•

public void buildCallGraphForlnvokeSpecials (invoke expression) {

if ((the name of the method in the invoke expression is <init>)
11 (method in invoke expression is private))

add an edge between the callsite and the MethodNode corresponding
to the method in the invoke expression;
else
{

if (the declaring class of method in invoke expression is
a superclass of the currentmethod)

{

/* Method lookup is performed as it is a call to superclass's method */
targetmethod = performMethodLookup (currentclass, invoke expression);
add an edge between the callsite and the MethodNode corresponding
to targetmethod;

}

else add an edge between the callsite and the MethodNode corresponding
to the method in the invoke expression;

}

}

Figure 2.6: Building the caU graph for invokespecial

C \Vith respect to program P, we define rapid_types(C,P) == hierarchy_types(C) n
instantiated_types(P).

:\s an example, consider the progranl P given in Figure 2.-!(a), and assume that
the program contains instantiations of objects of type A and B. No\v consider the caU
site a.m(), where a has declared type A. In this case we would use rapid_types(A.P)
= {A,B} to find the runtime types for receiver a. This leads to only two caB edges,
ta A. mand B. m. 50, using rapid type analysis the caU graph would not include the
caU edge to C.m, nor would it include the node for C.m.

vVe have implemented rapid type analysis in our framework in order to give us
a baseline for comparison with our other methods. Note that our implementation
of rapid type analysis is based 00 a pessimistic approach, as it starts \Vith a caU
graph that is correct (built using class hierarchy analysis) and does Dot alter it in
any manner during the analysis (detection of instantiations). After the analysis is
complete, the caU graph is pruned in one pass over the original caU graph.

The alternate approach ta performing rapid type analysis is termed the optim'istic
approach. In this approach it is ioitially assumed that no methods except main are
called and no objects are instantiated, and therefore no virtual caU sites caU any target

29

•

•

•

public void BuildCallGraphForlnvokeVirtuals (invoke expression) {

declaredclass = type of the Jimple local corresponding to the receiver of the
method call;

/* if base of the call is of ArrayType, call reaches method in java.lang.Object */
if (declaredclass is an ARRAY type)
add an edge betveen the callsite and the MethodNode corresponding to the
method in the invoke expression;
else
{

targat~athod =parfc~~athodLcokup (daclaradclass, invoke expression);
add an edge betveen the callsite and the MethodNode corresponding to
targetmethod;

subclasslist =declaredclass.SubClassList;
vhile (subclasslist.hasNext())
{

subclass = subclasslist.next():
if (subclass declares a method m which has the same name, parameter types,

and return type as the method in the invoke expression)
{

submethod = subclass.getMethod(m);
add an edge betveen the callsite and the MethodNode
corresponding to submethod;

}
}

}
}

Figure 2.7: Building the caU graph for invokevirtual

methods. The calI graph created by class hierarchy analysis is traversed starting at
main. Virtual caU sites are initially ignored. \Vhen an object is created, any of
the virtual methods of the corresponding class that were left out are then traversed
as weIl. The live portion of the caIl graph and the set of instantiated classes grow
iteratively in an interdependent manner as the algorithm proceeds.

The pessimistic approach has the advantagE' that the caH graph is always correct
during the analysis! and hence the analysis can be terminated at any point! and the
caH graph can be safely used for performing subsequent analyses or optimizations.
Aiso this approach is relatively efficient as compared to the optimistic approach as the
algorithm is not iterative and statements are examined only once! and the complexity
of pruning the caH graph is linear in the number of edges in the caH graph. The

30

•

•

•

public void BuildCallGraphForInvokeInterfaces (invoke expression) {

1* if base of the call is of ArrayType. call reaches method in java.1ang.Object *!
if (declared type of the receiver is an ARRAY type)
add an edge between the callsite and the HethodNode corresponding to the
method in the invoke expression;
e1se
{

dec1aringinterface = (INTERFACE) declared type of the receiverj
imp1ementorlist = declaringinterface.ImplementorList;

~hile (~~pl~entcrlist.hasMe:t())
{

implementorclass = implementorlist.next()j

targetmethod = performMethodLookup (implementorc1ass. invoke
expression);
add an edge betveen the ca11site and HethodNode corresponding
to targetmethod;

implementorsubclasslist = implementorclass.5ubC1assList;
vhile (implementorsubclasslist.hasNext())
{

implementorsubclass = implementorsubclasslist.next()j

if (implementorsubclass declares a method m yhich has the same name •
parameter types. and return type as the method in the invoke expression
{

implementorsubmethod = implementorsubclass.getHethod(m);
add an edge between the callsite and HethodNode corresponding
to implementorsubmethod;

}

}
}

}

Figure 2.8: Building the caU graph for invokeinterface

aptimistic approach arrives at an answer that corresponds ta the least fixed point
in the caB graph lattice domain whereas the pessimistic approach would terminate
at the greatest fixed point. In other words, the optimistic approach is guaranteed
to produce a calI graph at least as precise as the one produced by the pessimistic
approach. However, the aigorithm must terminate to ensure that the resultant calI
graph is correct, as the caB graph IDight be incomplete at intermediate steps. :\Iso as

31

•

•

•

interfacesubclasslist = declaringinterface.SubClassList;
while (interfacesubclasslist.hasNext())
{

subinterface = interfacesubclasslist.next();

implementorlist = subinterface.lmplementorList;
while (implementorlist.hasNext())
{

subintimplementorclass = implementorlist.next();

implementedmethod = performMethodLookup (subintimplementorclass,
invoke expression);
add an edge between the callsite and the MethodNode corresponding
to implementedmethod;

subintimplementorsubclasslist = subintimplementorclass.SubClassList;

while (subintimplementorsubclasslist.hasNext())
{

subintimplementorsubclass = subintimplementorsubclasslist.next();

if (subintimplementorsubclass declares a method m which has the same name,
parameter types, and return type as the method in the invoke expression)
{

subintimplementorsubmethod = subintimplementorsubclass.getMethod(m);
add an edge betqeen the callsite and the MethodNode corresponding to
subintimplementorsubmethod;

}
}

}
}

}

Figure 2.9: Building the caU graph for invokeinterface (continued)

the algorithm is iterative it might need to examine a particular call site several times.

Typically in benchmark code, methods are rarely created without being called;
hence we expect both approaches of rapid type analysis to produce similar results. In
library code, the optirnistic approach might perform better as there are often methods
created for use by developers (that are not actually called within the library itself).
We have chosen to implement the pessimistic approach as we are using rapid type
analysis as a baseline for comparison purposes only~ and as we are interested more in
analyzing and optimizing the benchmark alone and not the libraries.

32

•

•

•

Rapid type analysis says that a type A reaches a receiver 0 if there is an instan
tiation of an object of type A (i.e. an expression new AO anywhere in the program,
and A is a plausible type for 0 using hierarchy analysis. RTA is expected to perform
weIl on applications that contain many abstract classes (which are never instantiated
in Java). Abstract classes are expected to be present in library code that is created
to be used by other applications.

A detail about RTA that needs to he explained is what happens when an array
is instantiated : A[] a = new A[10]; In this case RTA would consider it simply
~~ if an instance of the dass A han been created. A method call with an array
element as the receiver e.g. a [i] .m() would he recognized as possibly reaching
A.mO by RT.~. wIethod caUs with a as the receiver (e.g. a. toStringO) actu
ally reach java.lang.Object's methods at runtime. If the base of the method caB
is is an array, we recognize the fact that the caU graph edge ta the rnethod in class
java.lang.Object must be retained. Thus caU sites with the array variable a or an
array element a Ci] as the receiver are both handled correctly.

2.3 Reaching Type Analysis

Assuming an intermediate form like Jimple, where aIl computations are broken clown
inta simple assignments, and assuming no aliasing between variables, we can state the
following property. For a type A to reach a receiver 0 there must be sorne execution
path through the program which starts with a a caB of a constructor of the forrn v =
newAO followed by sorne chain of assignments of the form Xl = V, X2 = Xl, . .. Xn-L =
In,O = In. The indiviclual assignments may be regular assignment staternents, or the
implicit assignments performed at method invocations and rnethod returns.

vVe propose two flow-insensitive approximations of this reaching-types property.
Both analyses proceed by: (1) building a type propagation graph, (2) initializing the
graph with type information generated by new() statements, and, (3) propagating
type information along directed edges.

For a program P, each receiver 0 is associated with sorne node in the type prop
agation graph, called representative(oJ. Further, after propagating the types. each
node n in the type propagation graph is associated with a set of types, called reach
ing_types(n). Given a receiver 0, the types reaching 0 is the set
reaching_types(representative(0)J.

33

•

•

•

In the following subsections we describe the analysis in more detail. vVe first
present the more accurate analysis, called variable-type analysis, where the represen
tative for a receiver 0 is the name of 0, and then explain a coarser-grain variant called
declared-type analysis where the representative for 0 is the declared type of o.

2.3.1 Variable-type analysis

Variable type analysis uses the "name" of a variable as its representative. In Jimple
w€ can have thre€ kinds ûf ,,-ariable references! and we assign representative names a.5

follows:

Ordinary references: are of the form a, and refer to Iocals or parameters. The
name C.m.a is used as our representative, where C is the enclosing class and m

is the enclosing method.

Field references: are of the form a. f where a could be a local, a pararneter, or
the special identifier this. We use as the representative the name of the field
only (Le. C. f) where C is the name of the class in which f is dec1ared. This
means that we are approximating all instances of objects with field C. f by one
representative node in the type propagation graph.

Array references: are of the form a[x], where a is a local or parameter. and x is
a local, parameter, or constant. We treat arrays as one large aggregate, so the
name C.m. a is used, similar to the ordinary reference case.

Constructing the type propagation graph

Given a program P, where P consists of all classes that are referred to in the conser
vative caIl graph, nodes are created as follows:

• for every class C that is included in P
o for every field f in C, where f has an object type

create anode labeled with C.!

• for every method C.rn that is included in the conservative caU graph of P
o for every formaI parameter Pi of C.rn, where Pi has an abject type

create anode labeled C.rn.Pi

34

•

•

•

o for every local variable li of C.m, where li has an abject type
create anode labeled C.m.li

o create anode labeled C.m.this to represent the implicit first parameter
o create anode labeied C.m.return to represent the retum value C.m

Note that the last two roles could be optimized to add the C.m.this node only
when the method refers to this, and to add C.m.return only when the method
returns an object type. Our current implementation does not perforrn this
optimization.

Once all of the nodes have been created, we add edges for all assignments that
involve assigning to a variable with an object type. These may be either direct as
signments via assignment statements, and indirect assignments via rnethod invocation
and returns. Edges are added as follows:

Assignment Statements: are all in the form lhs = rhs:, where the lhs and rhs
must be an ordinary, field or array reference. For each statement of this form,
we add a directed edge from the representative node for rhs to the representative
node of lhs.

Method CaBs: are in the form of lhs = o.m(al, a2,' ... an); or o.m(al! a2!' .. ,an): .
The receiver a must be a local, a parameter, or the special identifier this. The
arguments must be a constant, a local, or parameter name.

The method calI corresponds ta sorne calI site, calI it C. m[ij, in the conservative
caU graph. Assignment edges are added as fol1ows:

for each C'.m' that is the target of C.m[i] in the conservative calI graph
o add an edge from the representative of 0 to C'.m' .this
o if the return type is not void

add an edge from C'.m' .return to the representative for Ihs
o for each argument ai that has object type

add an edge from the representative of ai ta the representative of
the matching parameter of C'.m'.

In Figure 2.10(a) we give the important parts of an example program. ~ote that
since our analysis is flow-insensitive, the arder of assignments is not important, nor is
control flow. Thus, this list of assignments represents a program that contains those

35

• assignments. This program has only ordinary variables of the form ai, a2, a3, bl,

b2, b3, c. Figure 2.10(b) shows the initial graphe There is one node per variable, and
one edge per assignment. For example, the assignment a3 = b3; corresponds to the
edge from b3 to a3.

•

A &1. &2. &JI
Il bl. b2, bll

C CI

&1 • Dew A() 1

&2 • Dew AO 1

bl • Dew 1101

b2 • Dew 1101

C.Dewcn,

&1 • &21

aJ • &1,
aJ • bJI

bJ • (II) &3,
bl • b21

bl • CI

(a) Program

(b) Nodas and Edges

{Cl

(d) Strongty-connected components

{Cl

(c) Initial Types

(e) final solution

•

Figure 2.10: An example of the type propagation graph for Variable
Type Analysis.

Aliases

AIl of the assignment rules assume that a variable reference! and an of its aliases.
are represented by exactly one node in the type propagation graphe That is! if a
and b are aliases, then they shauld correspond ta the same node in the graphe This
is true for ordinary references because lacals and parameters cannat be aliased in
Java. l It is also true for field references because we represent aIl instances of abjects

IThat is, two locals a and b must represent different locations, and there is no mechanism for
getting a pointer to those locations.

36

•

•

•

with that field as one node in the graph. Sa, if two field references a. f and b. f are
aliased (a and b refer ta the same abject) it is fine because we are representing them
both with a field called f. However, it is not true for array references because several
different variable names may refer ta the same array. Further, references ta arrays can
be stored in variables with type java.lang.Object.2 Thus, when adding edges for
assignments of the form lhs = rhs, where both sides are of type java .lang. abject, or
when at least one side has an array type, edges are added in both directions between
the representatives of rhs and lhs. This encodes the aliasing relationship, and both
nodes are guaranteed to be assigned the same solution.

Size of the propagation graph

Note that the type propagation graph includes at most 21\-1 + P + L + F nodes, where
AI is the number of methods, P is the total number of parameters, L is the total
number of locals, and F is the number of fields in the program under analysis. Thus,
it seems reasonable to conclude that the number of nodes grows linearly \Vith the size
of the program.

The number of edges is slightly more difficult to estimate. There is at most one
edge for each assignment statement in the program. However, the number of edges
due to method caUs depends on the number of targets for caU sites. In the worst case
a method caU may have C targets, where C is the number of classes in the program
under analysis. Thus, each method caU could result in C x (2 + num_params) edges
being added ta the type propagation graph. Sa, it is possible ta have O(C x ..\Je)

edges, where C is the number of classes and Ale is the number of method caUs in
the program under analysis. In practice we do not find this behavior, and in fact the
graphs are quite sparse.

Initializing and propagating types

In the initialization phase, we visit each statement of the farm lhs = new A (),. or
lhs == new A{n];. For each such statement we add the type A ta the ReachingTypes

set of representative node for lhs. Figure 2.10(c) shows the type initialization for the
example program.

2For example, consider AO a = new A[10]; Object 01 = a; abject 02 = 01; A[] b =
02; In this case a, 0, 01, 02 and b are al! referring to the same array.

37

•

•

•

After initialization, we propagate types. This is accomplished in two phases. The
first phase finds strongly-connected components in the type propagation graph. Each
strongly-connected camponent is then collapsed ioto one supernode, with Reaching

Types of this collapsed node initialized ta the union of aIl ReachingTypes of its con
stituent nodes. Figure 2.10(d) shows two nodes collapsed. In this case neither node
had an initial type assignment, 50 the collapsed node has no type assignment either.

After collapsing the strongly-connected components, the remaining graph is a
DAG, and types are propagated in a single pass starting from the roots in a breadth
first manne!. Note that bath the strongly-connectcd componcnt dctcction and prop
agation on the DAG has camplexity O(max(lV, E)) operations, where the most ex
pensive operation is a union of two ReachingType sets.

Figure 2.10(e) shows the final solution for our small example. From this solution
we can infer that variables al, a2, a3 and b3 have a reaching type A(i.e. they can only
refer ta abjects of type A). Variable b2 has a reaching type type B, c has a reaching
type of C, and b3 has a reaching type of A,S.

vVe have present the rules showing the effect of each Jimple statement on the
constraint graph constructed by variable type analysis in Appendix A.

2.3.2 Declared Type Analysis

Declared-type analysis proceeds exactly as variable-type analysis, except far the \Vay
in which we aIlocate representative nodes for variables. In declared-type analysis we
use the declared type of the variable as the representative, instead of the variable
name. Basically, this is just putting all variables with the same declared type iota
the same equivalence class. Figure 2.11 shows the declared-type analysis for same
program Ïor which we previously computed the variable-type analysis. Note that the
size of the graph is considerably smaller, but also the final answer is not as precise.
The declared-type analysis concluded that aIl variables with declared type of C must
point to C objects. Hawever, it conservatively concludes that variables with a declared
type of A or B might point to A, B or C abjects. In Chapter 4 we present empirical
results to evaluate these two analyses with respect ta accuracy and the size of the
graph problem to be solved.

We present the rules showing the effect of each Jimple statement on the constraint
graph constructed by declared type analysis in Appendix B.

38

• A al, &2, a3;

B hl, b2, b3;

C c; ~
{A} {B} {Cl

(a) final solution

(c) Initial Types(b) Nades and Edges

1 1
{A,B,C}

0.....-- __

(d) Strongly-connected componants

al • &2;

a3 • b3;

b3 • (B) a3;

hl • b2;

hl • CI

al • n." A();

a2 • n." A () ;

bl • n•• B();

b2 • n." B() ;

c • n." CO;

(a) Program

Figure 2.11: An example of the type propagation graph ln Declared
Type Analysis.

•
2.4 Assumptions and Limitations

In tbis section we discuss sorne issues that lirnit the precision of our analyses and how
we have atternpted ta reduce their impact.

Native Methods

•

It is not possible ta jimplify native methods and so our analyses are unable ta analyze
the statements in these methods. "Ve have therefore summarized the effect of native
methods by manually going over the source code for native methods (available with
the open source JVwl K affe [2J), and checking for class instantiations and writes ta
fields. Since native methods are typically encountered in library code only and not
in benchmark applications, we can use the results that we obtained for library native
methods repeatedly when we are analyzing clifferent benchmarks. In the presence of
native methods in the benchmark application itself, the results of the analysis might
be incorrect if the native methods have significant sicle effects.

Ta give a better feel of the summarizing that we have done for native rnethods
we present the following example. An example of a native method that is cornmonly
invoked is the clonee) method in java.lang.Object. This method has no impact

39

•

•

•

on rapid type analysis, as objects are only being duplicated and the set of instantiated
classes does not change as a result of cloning. For the reaching type analyses, we need
to recognize the fact that the object that is the receiver of the caU is being duplicated
and returned by the method. Thus all the runtime types that were associated with
the receiver must also be associated with the object returned by the method and
there is no need ta be any more conservative.

The task of summarizing native methods is simplified ta an extent by the obser
vation that native methods rarely write ta fields. In fact there are not very many
I:b...a..... · classes +-ha+- dec'a"'e ~e'ds ,....~ ...nre"'e"'cn•..... e (mo"'· ,,~·l..e ~eld'" :- 1:l.._... _: ...~ ... _...
1,1 L LJ! . t.1" .& J. U l UL L~li lU"" Il) P \U ,:, ... Ul l.oU U ,:, lU UUldL1t:~ dlt:

of primitive types). Thus we round that in practice, apart from detecting instanti
ated objects that are returned by native methods, the summarizing was not a very
involved process.

The Closed Application Assumption

The basis for aU the analyses that we have implemented apart from CHA is that
classes can be instantiated oniy by new statements. However this is not strictly true
in Java because of the native library method java .lang . Class .newlnstance (). It
is possible to use this method ta instantiate any class as shawn in Figure 2.12

class ArbitraryInstantiation {
public static void main (String[] args) throws
java. lang.InstantiationException,java. lang. IllegalAccessException.
java.lang.ClassNotFoundException
{

String arbitraryclass = args[O] ;
java.lang.Class c = java.lang.Class.forName (arbitraryclass);
abject 0 = c.nevlnstance();
System.out.println (o.toString());

}
}

class ArbitraryClass {
public String toStringO { return "Arbitrary"; }

}

Figure 2.12: Example of class instantiation without a caU to a con
structor

\Vhen the Arbitrarylnstantiation class is run with the argument args [0]
equal to ArbitraryClass, the output is the string C CArbitrary» produced by the

40

•

•

•

toString() method of ArbitraryClass. In general depending on the argument,
any class that is accessible ta the Java Virtual Machine might be instantiated in the
above manner.

It is impossible to detect class instantiations that occur in this manner through
static analyses, and we make the assumption that applications we are analyzing must
be closed, Le. aIl the classes that are accessed from the class must he referred ta in
the code explicitly. We compensate for caUs to java .lang. Class .newInstance ()
in Java library code by manually checking the methods in which there are calls to
t.his mpthorl~ anrl ohRPrving the actllal da.c;s that is heing instantiated by looking at
the source code. This task was also not very hard in practice, as at all places where
there are caUs ta this method, it is followed in the source code by explicit casts that
aUow us ta detect the actual class of the abject. If the benchmark itself loads some
classes dynamically, then a possible solution might be ta specify the names of these
classes in a file. At the time of building the inheritance hierarchy this file could be
examined and intermediate representations for the classes referred ta in the file could
be built to be used by subsequent analyses and optimizations.

2.5 Comparison with Dynamic Results

The focus of the analyses presented in this chapter is in obtaining a precise set of
methods called from each method caU site. One possible measure that could be used
to evaluate different analyses being compared is the number of edges that get removed
from the calI graph in each case. This comparison is based entirely on the static results
that are obtained by measuring the effect of the analyses, and is enough to establish
the extent of improvement that is to be expected by increasing the complexity of
analysis. However it does not offer an)" insight about the extent of improvement that
is still possible after performing the analysis. A measure of the gap between the "best
possible answer" and the answer obtained by performing an analysis is very important
for a variety of reasons.

If it can he shown that the scope for improvement of the analysis results is very
little, that information might save the extra time and effort that rnight othenvise
have been invested in implementing increasingly complex and expensive analyses that
would not lead to any significant gain in precision. Another application of knowing
the "best possible answer" for each calI site is that we can fix the exact cause of
imprecision in the results obtained through the analysis. This can offer significant

41

•

•

•

indications about the features that a more complex analysis should have in order to

be more effective. For example if it is observed that the imprecision in the analysis
results is a result of context insensitivity of the analysis then subsequent analysis

can be designed with the knowledge that inc1uding information about calling context

would be heneficial. This is similar to the cause analysis used by Diwan et al. [24].

We now briefiy explain the approach we have taken to arrive at the estimate for

the "best possible answer" of interest in our case. vVe are interested in fixing the

methods that can be called from a particular caU site in our analysis and we insert

profiling ~ode into the bytecode that keeps track of the methcds actually in"'oked
during sorne sample execution of the program, and generate a trace. The trace of

execution produced contains data grouped into pairs, a callsite (identified by a unique

ID) and the method that \Vas called from the callsite each time it was executed.

vVe generate the traces by injecting Jirnple code into the benchmark classes being

profiled, and using classes produced by Soot (with profiling code in them) to run the

benchmark. We show a small class that has the profiling code inserted in it in Figure
2.13

vVe have inserted a caU to a static method printMethodCalled() (in a class

Profiler that we have defined) preceding each virtual caU site. The parameters ta

the static method are the ID of the caU site (parameters 1 and 2), the signature of the

method being invoked (parameters 3 and 4), and the object that is the receiver of the
call. Note that the calI site ID consists of the caller method signature and a number

i representing the fact that it is the ith caIl site. The parameter types of the method

being invoked are passed as a string to the static method. The static method we have

defined uses the library classes java.lang.Class, and java.lang.reflect.Method

to obtain the actuaI class of the receiver object during execution and then perform

method lookup using the method signature to arrive at the actual method being

invoked. In order to reduce the size of the traces we generate in this way~ we only

print out a method reached from a particular call site the first time it is invoked from

that caU site. This involves keeping track of the methods that were invoked from

the caIl site on previous executions, and comparing the method invoked currently

to the methods that have been invoked previously. This makes the trace generation

process slower but it has the significant benefit of generating much smaller traces.

Smaller traces mean that the comparison with results from different analyses takes

much lesser time.

vVe use the profiled results for each call site ta examine the need for better anal

yses~ as weIl as ta perform cause analysis on our own analyses to examine their

42

•

•

•

class toy extends java.lang.Object
{

public static void main(java.lang.StringO)
{

java.lang.Object rOi
toy r1;

rO := CparameterO;
ri = nev toy;
specialinvoke r1.[toy.<init>():void]();

Il STATIe CALL INSERTED TD Profiler.printMethodCalled

staticinvoke [Profiler.printMethodCalled
(java. lang.String,long,java. lang. String, java. lang.String, java.lang.Object):void]
("toy.main(java.lang.StringO) :void", 2L, "mil, "/int/toy/", ri) j

virtualinvoke ri. [toy.m(int,toy):void] (3, ri);
return;

}

void m(int, toy)
{

int iOj
toy ri, rOi

ri := Cthisi
iO := CparameterOj
rO := Cparameterl;
returnj

}
}

Figure 2.13: Example of class with profiling code inserted

shortcomings. vVe present these dynamic results in Chapter 4.

43

•

•

•

Chapter 3

Method Inlining

In this chapter we introduce the optimization known as method inlining and discuss
the issues involved in our implementation. This optimization is based on the analyses
that we discussed in Chapter 2. As has been mentioned before, the invokevirtual and
invokeinterface bytecode instructions are expected to be expensive at run time. There
are several optimizations that can be implemented to reduce this overhead once it is
definitely known that the calI site can only calI a particular method. For each calI
site, our static analyses determine the set of methods that are potential run time
targets with varying degrees of accuracy. The opportunity for our optimization arise
only at those caU sites for which the set of target methods is a singleton. There are
sorne possibilities for other optimizations when this set is oot a singletoo~ and we will
briefly discuss them at the end of this chapter.

In Java~ method inlining is a complex optirnization that is ooly safe ta apply
if certain safety criteria are satisfied. Also the precise algorithm used ta perform
method inlining is critical in achieving performance improvement. We explain these
issues involved in performing method inlining in detail in this chapter and also present
empirical results for the actual run-time improvement in performance as a result of
performing our optimization on a set of benchmarks in Chapter 4. This optimiza
tion has been implemented on the Jimple intermediate representation and the Soot
framework is used ta produce optimized classfiles.

44

Method inlining [14, Il, 31, 16, 20, 21, 18, 19, 17, 34, 28, 10] is an optimization tech
nique that has been used by optimizing compilers traditionally for bath procedural
and object oriented languages. The basic idea in method inlining is to statically
replace a method invocation instruction by the code representing the body of the
method that is the target of the calI. By performing this transformation, the over
head associated with executing the method invocation instruction can be avoided.
We illustrate this optimization by a simple example in Figure 3.1.

• 3.1 Method Inlining

•

class Example {
public static void main (String[] args) {

A a = nev A(};
a.m(S};

}
}

(a). Example method before inlining

class Example {
public static void main (String 0 args) {

A a = nev A(};
a.f = 5; Il Method inlining dona here

}
}

class A {
int f;
public m (int i) {
this.f = i;

}
}

(b). Callee method

•

(c). Example class after method inlining

Figure 3.1: An example of method inlining in Java code

In this simple program, the method caU a.m(S); in the original program was
statically determined to be invoking the method A. mo. In this case it is possible for
inlining to he done and as is shown in Figure 3.1 (c), the caU to the method has been
replaced by the actual code from the method m.

3.1.1 Applications of Method Inlining

~Iethod inlining is expected to lead to greater improvement in performance for ob
ject oriented languages like Java/C++ as compared to procedural languages like C.
In programs developed in an object oriented manuer, the frequency of invocation

45

•

•

•

instructions is expected to be considerably greater. Further, in object oriented lan
guages the overhead of method lookup associated with these instructions make them
expensive at run time.

Another factor that makes method inlining a useful optimization is that it elim
inates the control flow edges because of the invocation instruction from the Control
Flow Graph (CFG). Frequent branches in the code mean that sorne of the techniques
used for optimization at the architecture level, like pipelining, cannot be performed
optimally. Instruction scheduling and pipelining are techniques that are very effective
if the progranl has a rclativcly simple fiow of control. In the presence of cûmplex con
trol fiow, the CPU will be idle during sorne cycles even if pipelining is being done, thus
degrading performance. Architecture issues are not as important in the case of inter
preters as they are if a Just-In-Time (JIT) compiler is used (which produces native
machine code). This effect on performance is even more significant in abject oriented
languages because typically programs have methods with small bodies. These small
methods are expected to contain mastly instructions to manipulate fields within the
declaring class of the method, and not very many method invocation instructions.
In such cases inlining caUs to these small methods could be beneficial in increasing
the size of basic blocks (or extended basic blocks) and make the instruction pipeline
proceed without stalling to account for branches in control flow. Thus replacing the
invocation instruction by the body of the method is expected to lead to better overall
performance.

Another possible area of application for method inlining is in its interaction with
other static analyses. Interprocedural stadc analysis is more complex and more ex
pensive than intraprocedural analysis. Intraprocedural analysis has better scalability
but is more imprecise as compared to interprocedural analysis as it only considers
one method body at a time for its analysis. i\lIethod inlining can be used to inline
code from other methods into the method being analyzed. If method inlining is per
formed on a method before performing intraprocedural analyses, this would improve
the precision of the results obtained while at the same time, avoid having to do
interprocedural analysis.

An area unrelated to compiler optimizations in which method inlining could be of
use is in model checking (verifying the correctness of a program). 1t is more suitable
for model checkers if they are provided with a program with a few large methods
(with inlining done in them to the maximum extent possible) to analyze, rather than
one in which there are many small methods.

46

•

•

•

3.1.2 Disadvantages of Method Inlining

There are also sorne possible disadvantages of doing method inlining that need ta he
mentioned.

The size of the program can increase substantially if method inlining is performed
aggressively. This is an undesirable feature in general, and particularly sa in the case
of Java. Larger classfiles mean that the time required ta fetch them from a remote host
would be greater than the case when no inlining is done. This may he unacceptable
in terms of performance as the time to download applets over the network before
executing them is a serious concern in applications such as web browsers. Larger
classes mean an increase in the class loading time, as weIl as an increase in the
amount of memory utilized when the class is heing used. In extreme cases, the size
of a method with inlining performed in it might exceed the maximum allowed size
(65535 locals and 65536 bytes in size) of a method in Java bytecode as specified by
the Java Virtual Nlachine Specification.

~Iethod inlining introduces binary compatibility issues. Once inlining has been
performed, the method that was inlined can no longer be changed, as otherwise, the
behavior of the program would he different as compared ta what was intended (as
the original code would have been inlined at several caB sites). Thus. in case the
method has to be changed, then the whole program has ta he reanalyzed and the
optimization must be performed taking the changes into account. Clearly this could
be quite expensive, and therefore, undesirable.

Another disadvantage is that inlining aggressively couId lead to a program that
is extremely difficult to understand. In the case of Java, decompilers attempt to
reconstruct the original Java source files from the classfiles, and this is often used ta
understand the behavior of the program in the absence of the original source files.
If the classfile used has one large method with very few method caUs as a result of
inlining, then the Java source file produced by the inliner would be bereft of sorne
programmer friendly features like method caUs to library methods (for riO, Nlath,
and String operations etc.) or to other user defined methods. Also the source file
produced hy the decompiler would bear little resemblance to the original source file
and is of limited use in program understanding.

There are sorne methods in classes (e.g. java .1ang .SecurityManager) belonging
to the Java library that return values dependent on the contents of the execution
stack. Since the execution stack is dependent on the actual cali chain executed at

47

•

•

run time, altering the caB chain (by inlining, we get rid of caller/ callee relationship
between methods) might result in a change in the run time behaviour of the program.
This is clearly a drawback and should be avoided. vVe have adopted a conservative

strategy that is based on the fact that caUs to these library methods typically occur
infrequently. We have observed that for our ~et of benchmarks, these methods never
get called. We have chosen to disable method inlining in case caBs to these methods

are detected in the calI graph, in order to ensure the behaviour of the pragram is
unchanged. An alternate strategy would have been to alla,v inlining in any case, but
not make any guarantees regarding the hehavionr of the program after inlining.

Therefore it should be clear that the criteria far inlining a method need to be
chosen with sorne care. vVe have studied the impact of sorne inlining strategies on the
size and performance of the resuiting classfiles, and we discuss them in Chapter 4.

vVe now discuss, in detail, some of the structural issues that are of interest in
our implementation of method inlining, as weIl as our approach to detecting which
invocation instructions are safe to inline.

3.1.3 Structural issues in method inlining

vVe discuss sorne of the issues in the actual inlining of code from the method that
is being invoked into the caller method. These are the issues involved once the
application has been analyzed and the method invocation instruction is found to
satisfy aIl the inlining safety rules/criteria. vVe shaH discuss them with reference to

the Jimple representation of the exarnple pragram we have shown in Figure 3.2 and
the Jimple representation of the same program with inlining performed as shawn in
Figure 3.3.

The following are the steps involved in the inlining process :

1. Duplicate and Add Locals : Create a new local in the caller method for
each of the locals declared in the callee rnethod that is being inlined. This essentially
involves cloning each local in the callee method, adding the cloned local (which has
the same type as the local in the callee method) to the method body af the caller
method, and storing the mapping from the locals in the callee rnethod to the cor
responding Ioeals that have been created in the caller method. This mapping for

Iocals is implemented using a hash table (LocaIHashMap) which takes a local in the
callee method as the key, and returns the new local created for inlining purposes in

the caller method as the value. The mapping is used when statements are ta be

48

•
public static void main(java.laug.StriDgO)
{

void <init>O
{

public java.lang.String Si

public int ml ()
{

Il CALL THAT IS SEING INLINED

:1 "EXAMPLE";

return;

return 1 i

labelO:
r2 =nev Examplei
speci&1invoke r2.[Example.<iDit>():void]();
il =virtualinvok. r2.[Example.m1():void]()i
iO = iO + 1;

Example rOi
rO :- Othis:
speci&1invoke rO. [java.lang.Object.<init>():void] ();
return;

rO := OparameterOi
rl = nev Example;
speci&1iDvoke r1.[Example.<iDit>():void]()i
il =virtualinvoke r1.(Example.ml():void]()i
10 ,. 0;
goto label1;

Example r2. r1;
int iO. ili
java.lang.Object rOi

Example rOi
rO := Othis;
rO.(Example.s:java.lang.String]
goto lab.lO;

labelO:

label1:
if iO < 2 goto labelO;

}

}

}

1 class Example extends java.lang.Object
2 {
3
4
5
6
1
8
9
10
11
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
46
41 }

•

Figure 3.2: Jimple representation of the class in which inlining is being
performed (before inlining)

•
49

public java.lang.String '.
public static void main(java.lang.StringO)
{

labelO:
r2 • nev Example:
specialinvoke r2.(Example.<init>():void]();
if r2 !- null goto label1:
inlinenullSO = nev java.lang.NullPointerException;
specialinvoke inlinenullSO.[java.lang.HullPointerException.<init>():void] ()i
throv inlinenullSO;

labell:
inlindO la r2:
inlineSO.[Example.s:java.lang.String]
goto label2:

label2:
iDlinereturnSO = 1:
goto labe13;

label3:
il = inlinereturnSO;
iO a iO + 1:

label4:
if iO < 2 goto labelO;

• "EXAHPLE";

inlinenulllO;

Example rOi
rO := Othis;
specialinvoke rO.(java.lang.Object.<init>():void]();
return:

return;

Example rl, r2;
Example inline$O;
int iO, il, inlinereturnSO;
java.lang.Object rO;
java.lang.HullPointerException

rO :. OparameterO;
rI =nev Example;
sp8cialinvoke r1.(Example.<ini't)():void]();
virtualinvoke r1. [Example.ml():void]();
10 = 0;
goto label4:

Example rO;
rO :- Othis;
rO.[Example.s:java.lang.String)
goto labelO:

labelO:
return 1:

}

}

void <ini't)O
{

}

public int mlO
{

1 clau Example e%'tends java.lang.Objec't
2 {
3
4
6
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
46
47
48
49
50
61
62
53
54
56
56
51
58
59
60 }

•

•

50

•
Figure 3.3: Jimple representation of the class in which inlining is being
performed (after inlining)

•

•

•

duplicated for inlining. Name confiicts must he avoided between Iocals present in the
method originally and the cloned Ioeals that are added to the method. Note that the
local names of cloned locals in the example program do not confiict with any of the
original locals.

2. New local for method return: For callee methods that return a value
(return type is not void), we create a new local called inlinereturn$N in the caller
method before we inline the method invocation instruction. The type of this new local
is the return type (obtained from the signature) of the callee method. This variable
is uscd ta tcmporarily hoId the value returned by the callee method (it is possible
that there is more than one return statement in the method) along different control
flow paths. We will saon discuss the exact manner in which the inlining process
gets simplified because of this new local. In Java bytecode IDeals cannat be of type
boolean 1 byte, char, or short. AlI variables declared ta be of any of these four
types in the source code are actually of type int in bytecode. However the return
type of a method could be one of these four types. and it is the actual return type that
is present in the signature of the method. Thus we need ta be careful while creating
the new local corresponding to the return value~ 50 that the type of the new local is
int in case the return type of the method that is being inlined is any of the four types
we have mentioned. Note that we have introduced the new local inlinereturn$O
(of type int at line 8 which is the return type of method ml that is being inlined) in
our example program.

3. Explicit Null Check: Inlining a method caU involves replacing the invo
cation instruction in the method body of the caller method. A method invocation of
a non-static method can result in a java.lang. tlullPointerException abject be
ing thrown if the receiver of the method caU is nul!. Since this check is implicitly
performed by the Java Virtual Nlachine at runtime when it is executing the method
invocation instruction, simply replacing the invocation instruction by the method
body of the callee would not capture the effect of the instruction accurately. This
inaccuracy might be significant as the java .lang. Nul1PointerException might
be caught somewhere in the benchmark code and a series of instructions might
be executed in the exception handler code. Hence in order to ensure that aIl the
java .1ang. NullPo interException abjects that \Vere being thrown in the original
program are also thrown in the transformed program, we introduce code before the
beginning of the inlined code that performs the null checks explicitly. In the example
program the local inlinenull$O (of type java.lang.NullPointerException) has
been introduced and is being used to perform the null check (lines 22 ta 25 in the

51

•

•

•

example program in Figure 3.3). Note that it should be possible to reduce the num
ber of explicit null checks to he inserted based on the results of a static analysis that
determines nullness.

At this stage all the new Iocals that are needed ta start inlining have been intro
duced and the Dull pointer check for the receiver has also been added. We can begin
duplicating the statements from the callee method ta the caller method.

4. Duplicate and Add statements: Assignment statements are inserted
to copy each parameter. In the Jimple representation this involves creating a new
AssignStmt in the caller method corresponding ta each IdentityStmt involving pa
rameters in the callee method. The copying of the implicit parameter this is slightly
more compIex. The type inference algorithm in the Java Virtual !\,Iachine infers a
type for the receiver of the method caU based on an intraprocedural dataflow anal
ysis. The type inferred by the Java Virtual Nlachine might he a superclass of the
declaring class of the method that is the run time target of the call. In the presence
of interfaces, the Java Virtual NIachine might infer the type of the receiver to be an
interface, whereas the run time target of the caU would be sorne method declared in
a class implementing the interface. If we naively inline the target method at a call
site where the inferred type of the receiver is higher in the inheritance hierarchy than
the declaring class of the method, the Java Virtual ~'1achine would raise a verification
error. This is because the local representing this in the method being inlined would
be inferred ta be of the same type as the receiver of the calI if a simple assignment
statement is used to copy the this parameter.

vVe can inline at this calI site without violating verification constraints by intro
ducing an explicit cast while copying the this parameter (casting the receiver to
the declaring class of the method being inlined). The explicit cast would enable the
Java Virtual ~'!achine to infer that the type of the local in the inlined code represent
ing this (in the inlined method) is the dec1aring class of the inlined method, thus
avoiding the verification error. We do not introduce the casts at each call site where
inlining is performed; we introduce the casts only at those call sites where the Jimple
type of the receiver (inferred by the type inference algorithm in Jimple) is neither the
declaring class of the method being inlined, nor a subclass of the declaring class of
the inlined method.

Each statement in the method body of the calIee method is cloned and the locals
accessed in the statement are adjusted using LocalHashMap that contains the mapping
between Iocals in the callee method and the new locals created for inliningin the

52

•

•

•

caller method. Refer to the example where the cloned local inline$O in method
main() corresponds to the local rO in method m(). Also observe how the cloned
statements introduced into the method main() as a result of inlining (for statements
that use rO in mO) use the cloned local inline$O. \Vhile cloning each statement,
the mapping between each statement in the callee method (that is being inlined) and
the corresponding cloned statement introduced into the caller method is stored in a
hashtable StmtHashMap for use in the following steps. Note that in the example class
in Figure 3.3, we have replaced the statement return 1; in the callee method by two
statements inlinereturn$O = 1; goto labe13; in the caller method (Hnes 32 and
33). "Ve employ this technique in order to mimic the actual flow of control in the callee
method. The value being returned is assigned to the special local inlinereturn$O

and control passes to the last statement in the inlined code (il = inlinereturn$O;

at Hne 35 in Figure 3.3) that mimics the return from the callee method to the caller
method.

Although statements are cloned and added to the method body of the caller
method, certain relationships between statements in the callee method like flow of
control, and exception ranges have not yet been captured in the case of the cloned
statements in the caller. The flow of control is adjusted using StmtHashlv/ap to es
tablish the targets of branch statements correctly in the inlined code. In the example
in Figure 3.3, the target of the cloned GotoStmt goto labe12; at line 30 is deter
mined to be the statement inlinereturn$O = 1; at Hne 32 at this stage. :'iote that
StmtHashMap is used to get the cloned statement corresponding to the original tar
get in the callee method. Another pass over the inlined code adjusts the trap table
of the caller rnethod such that exceptions in the callee method are included in the
caller method and the range of statements in which exceptions might be raised is aiso
entered in the trap table (after referring ta StmtHashk/ap).

"Vith this fixup step, the inlining process is complete for the method invocation
instruction under consideration. These are the exact steps followed for inlining the
callee methods at each calI site that is determined to satisfy the inlining criteria/rules.
Once aIl the inlining in a partkular method has been completed, the method can
he used to produce correct bytecode that has the same semantic behaviour as the
original method in the original cIass. However the code that we have produced after
inlining suffers as a result of sorne clear inefficiencies. Therefore we choose to make
two more passes over the method (containing inlined code) at this stage to clean up
the code created as a result of inlilling. Note that these passes can be offiitted and
the program would still behave in exactly the sarne manner as the original uninlined

53

•

•

•

program (except that execution might take longer) .

Cleanup Passes

Our procedure for inlining a method caU, though reasonably simple, is not as efficient
as possible for the following reasons. In the inlining process, new locals are ereated in
large numbers, and the method that is the target of inlining could have the number
of its Ioeals increased by severai factors. In fact the more the number of calI sites
at whkh inHning is rlonp; t.hp morp the number of locals in the method in the caller

method. 50 while the henefits from inlining increase with more calI sites being inlined,
the overhead associated with the resultant increase in loeals (increase in the size of
the class, as weIl as the performance penalty explained in Section 3.1.4) must also
be paid. Another example of inefficiencies introdueed as a result of our inlining
procedure are the explieit assignments in the inlined code that are used to mimic the
implicit assignments as a result of parameter passing. The use of the buffer local
inlinereturn$N (the assignment statements involving this local) to hold the return
value is also inefficient as compared to return statements that were present in the
original program. In addition, the replacement of the return statements by goto
statements might be redundant in sorne cases.

'vVe now explain the 2 cleanup passes and the effect they have on the inlined code
in detail.

Local Packing : The tirst cleanup pass performs local paeking which is one of
the standard transformations present in the Soot framework. This pass has the effeet
of paeking sets of two or more loeals that are found to satisfy certain properties into
one local. The Ioeals that are packed into one local should satisfy the property that
they should be in disjoint def/use chains and they should have compatible types.
This ensures that they can be paeked into the same local without any conflicts. One
of the big advantages of doing local paeking at this stage is that the many locals
of type java .1ang. NullPointerException that we introduced for the null checks
while inlining, now get packed inta considerably fewer Ioeals. This pass also results
in the reduetion of extra Ioeals introdueed as a result of cloning the loeals in the
eallee method that was inlined. A eonceptually simple case in which benefits of local
packing might be significant is the packing of Iocals of type int~ or java .1ang .String
in inlined eode obtained as a result of inlining at more than one calI site. ~[ost

methods declare Ioeals of these basic types, and it is possible to pack many such
Ioeals introduced into the caller method because of inlining at different caU sites in

54

•

•

•

the caller method (if they satisfy the packing criteria mentioned earlier).

Redundant Statements Cleanup : The second cleanup pass is used to remove
redundant statements that have been introduced into the code as a result of inlining.
Sorne standard optimizations available in the Soot framework are copy propagation,
constant propagation and dead code elimination. Note that these optimizations are
performed in an intraprocedural manner. These transformations are extremely useful
in removing the copy statements (for parameters) at the beginning of the inlined code.

Redundant Goto Elimination: Another optimization that reduces the num
ber oi statements in the methoà is redunùant goto elicuiuatiuu. Thi~ is a IJ~elJhul~

optimization that is usefuI in the case of inlined code in particular. Our procedure
for inlining mimics control fiow in the case of return statements by replacing them
by goto statements. In practice, it is quite common for methods to have just one
return statement as the last statement in the code. In such cases our naive inlining
procedure would insert a goto statement whose target is the very next statement in
control fiow. This optirnization is aimed at detecting and eliminating such redundant
goto's.

It needs to be stressed that these transformations are crucial to obtaining maximal
benefits from inlining, and ornitting them might lead te insignificant speedup of the
program (or even a slight slowdown in sorne cases). Their effectiveness is heightened
when the methods that have been inlined are relatively small in size. The reason
for this is that in the case of small methods, the extra statements introduced while
inlining are almost as many as the number of statements in the method itself. In such
a situation the inlining penalty is significant in the absence of redundant statements
cleanup.

The final stage in the inlining process is the generation of optimized classes \Vith
method inlining performed in them. vVe have inlined method caUs in the Jimple
representation and used the Soot API for SootClass to produce classes containing the
inlined method calls.

Additional Structural issues for inlining synchronized methods

Invoking a synchronized method makes the CUITent thread acquire a monitor on the
receiver of the method caU. The monitor is released by the CUITent thread when the
method has finished executing or if an exception (that is not caught anywhere in the
body of the synchronized method) is raised. Note that these actions are performed

55

•

•

•

intemally by the Java Virtual Machine at the time ofinvoking a synchronized method.
While inlining synchronized methods. we mimic these implicit actions performed by
the Java Virtuall'lIachine by explicitly introducing code that has the same effect. A
method that is dec1ared to be synchronized has exactly the same functionality as a
method (that is not dec1ared synchronized) having its entire body enc10sed within a
synchronized black. We use this fact while generating the inlined Jimple code when
we inline synchronized methods.

3.1.4 Safety Criteria for rv1ethod Inlining

vVe now introduce the criteria that we check for before we decide to inline the target
method of the invocation instruction. Note that in order to be able to inline. all of the
criteria we specify must be satisfied. The method in which the invocation instruction
occurs is referred to as the current method in this discussion, and the method that is
the target of the invocation instruction is referred ta as the target method.

vVe now explain our reasons for choosing each of these criteria one byone.

Rule 1 : There must be exactly one target method for the invocation instruction
in the caU graph.

This test can be made using a calI graph built using any of the analyses in Chap
ter 2 since they aIl result in a caU graph that is conservative and correct.

Rule 2 : The target method must not be the same as the current method.

This is to avoid inlining recursive caBs ta the current method as there would be
little performance benefit in doing so. Note that inlining might occur at other calI
sites in the recursive method.

Rule 3 : The target method must not be a native method.

The code for native methods is not available in the form of Java bytecode, therefore
it is not possible to inline calls to these native methods.

Rule 4: The invocation instruction must not result in an illegal access error in
the original program.

vVe do not inline invocation instructions that might result in an illegai access error
in the original program, as inlining may result in the error no longer being thrown.
This is because the access modifiers are checked by the run time system when the
invocation instruction is executed, and by replacing the invocation instruction we are

56

• eliminating those checks. To preserve the same semantic behaviour as the original
program, we need ta detect all the invocation instructions in the original prograrn
that might result in an illegal access errar being thrown, 50 that we can avoid inlining
at these call sites. We show an example of a program where inlining is not allowed at
a particular caU site for this reason in Figure 3.4. Note that methad me) was being
accessed illegally in the original program, but after inlining the access to m() has been
eliminated and replaced by an access to the field f which is public.

•

class A {
public static void mai~ (String[J args {
try {

B b = new BC);
b.m(); Il CalI site raises IllegalAccessError

} catch (java.lang.IllegalAccessError e) {
System.out.println ("ILLEGAL ACCESS");

}

}
}

(a). Caller method before inlining
class A {
public static void main (String[] args) {
try {

B b =: new BO;
System.out.print (b.f);

} catch (java.lang.IllegalAccessError e) {
System.out.println ("ILLEGAL ACCESS");

}
}

}

class B {
public int l = 5i
private void me) {
System.out.print(f);

}
}

(b). Callee method (private)

•

(c). Caller method after inlining

Figure 3.4: An example of a calI site violating Rule 4

In this example we can see that a java .lang. IllegalAccesserror would be
raised when B.m() is invoked from the call site b .mO ; in method main in class A (as
the method m0 declared in class B is private). The method m0 in class B accesses the
public field f. After inlining is performed in method main as shawn in Figure 3.4(c)
the caU to rnethod me) (which was the source of the java.lang. IllegalAccessError
in the original program) has been eliminated. Furthermore the access to the field f

has been shifted ta class A, but as the field f is public, the access to field f is not
illegal. Thus the java.lang. IllegalAccessError is no longer raised in the inlined

57

•

•

•

program whereas it was heing raised in the original program, and this alters the
semantic hehaviour of the program as the errar was being caught and there is a calI
ta System. out. println () that is in the errar handler code.

Most of the implementations of the Java Virtual Machine (e.g. Sun wIicrosystem's
implementation) follaw a "lazy" linking mode!. The Java Virtual wlachine can check
far errars (illegal access errars or others) using one of two possible schemes. In the
first scheme, the JV~I would check all the accesses in the method that is being linked
before successfully linking the method. If there were any errors detected by the Java
Virtual ~,'Iachine at the linking stage, then an error ·......ould be raised, and linking ;voüld
not succeed. This is the "early" linking mode!. The other linking scheme that could be
used by the JVwI is to perform the checks for errors as a result of an instruction only
at the time of executing it. Thus a method that contains an instruction that might
result in an errar, would be successfully linked in. However before the instruction
that results in the error is executed, the check would be performed and an error
would be raised. It must be understood that the instruction that results in an error
might never get executed if it is not along a control ftow path that gets executed. If
it is not executed, then the error would not he raised and therein lies the difference
between the two schemes. The checks for errors are done at a later stage and only
when required (at the time of execution) in the second scheme, and hence the name
lazy mode!. The lazy scheme imposes less stringent restrictions as sorne programs
that might raise an error using the early scheme might not do so if the lazy scheme
is used. vVe will try to detect the illegal access errors that might be raised in the
program statically; thus we would detect those illegai access errors that would be
raised if the Java Virtual i\tlachine followed an early linking model (which being more
strict than the lazy model, means that we would detect aIl possible errors that might
be detected by a Java Virtual i\tlachine that follows either linking mode!).

Checks for Illegal Access Errors for method accesses: "Ve referred to
the Java Virtual NIachine Specifications in order to check the exact conditions in
which an illegal access error might be raised. It can be determined statically whether
a particular method invocation instruction cauld result in an illegal access error.
The checks to detect an illegal access are performed on the method whos€ signature
appears in the invocation instruction. Note that the method referred to in the method
signature may not be the method that is actually invoked at run time. but still it is
the method whose access flags are checked.

Given an invocation instruction of the farm invokeinstruction(m) occurring in a
class CCALLER, an illegal access error can be raised in each of the following 3 cases:

58

•

•

•

1. If the method m is declared to be private, and if it is invoked frOID any class
other than the one in which the method m is declared.

2. If the method mhas default access (not private, protected, or public), and
if it is accessed from any package other than the package containing the declari:lg
class.

3. If the method m is protected, an illegal access error would be raised if either
or bath of the following conditions is violated :

(a). The method m must be either a member of CC.4.LLER or a member of a

superclass of CCALLER.

(b). The class of the receiver abject must be CCALLER or a subclass of CCALLER.

The checks specified in condition 3(b) are slightly different from those in the other
other conditions because they involve the class of the receiver object. The class of
the receiver abject is inferred by the Java Virtual wlachine by performing a simple
dataflow analysis. A.ccording to the Java Virtual J\Iachine specification it obtains the
class for an object at control flow merge points by using the class hierarchy to obtain
the least cornmon superclass of the classes associated with the abject along different
control flow paths. We perform the checks in condition 3(b) using the type for the
receiver object that is inferred by the type inference algorithm in Jimple. The type
inference algorithm in Jimple assigns types ta each local in the Jimple representation
of a method. vVe can use the type assigned ta a local as a good estimate of the class
of the abject (as would be inferred by the Java Virtual NIachine).

The type inference algorithm in Jimple does not necessarily produce the best
solution for the class of the abject represented by a local, but instead attempts to
assign a type that satisfies aIl the constraints imposed by the statements using the
local. Note that the type assigned ta the local by the type inference algorithm in
Jimple might therefore he higher up in the class hierarchy than the class of the abject
(represented by the local) inferred by the Java Virtual NIachine. This is because the
inference algorithm used by the Java Virtual ~'1achine is guaranteed ta produce the
most precise estimate for the class of the object (it must use the least superclass at
control flow points where it has to merge classes).

Since the typing algorithm in Jimple always infers a type that is either a superclass
of, or the same as the class abtained by the inference algorithm in the Java Virtual
Nlachine, any illegal error arising because of condition 3(b) that would be detected
by the Java Virtual Nlachine wauld also be detected by us if we use the Jimple type

59

•

•

•

of the receiver. This is because if the class of the receiver object inferred by the
Java Virtual Machine was neither the eurrent cIass, nor any subcIass of the CUITent
cIass, then it must be either a strict superclass of the current class or be completely
unrelated in the cIass hierarchy to the eurrent cIass. If it is campletely unrelated ta
the current cIass in the class hierarehy then the type obtained through the typing
algorithm in Jimple would also he eornpletely unrelated to the eurrent class as the
cIass hierarchy used by bath inference algorithms is identical. If the cIass ioferred
by the Java Virtual Machine is a strict superclass of the current cIass, then the type
inferred by the Jimple type ioference algorithm would also be a strict superclass of
the current cIass, as the type inferred by the Jimple type inference algorithm must
be at the sarne level or higher up in the class hierarchy as the class obtained by the
inference algorithm in the Java Virtual Nlachine.

Thus, we have shown that if an illegal aceess error would be detected by the Java
Virtual Nlachine, then we would also detect such an error using our scherne. Note
that our scherne might regard a legal aecess as an illegal access; in such cases we are
being conservative but correct. We have observed that such cases occur extremely
rarely in practice in the benchmarks that we have tested.

Rule 5 : If the target method contains any accesses to classes, methods, or fields
that result in illegal access errors, then the errors must still be raised
as a result of inlining the target method into the current method.

vVe refer to the Java Virtual ~Iachine specifications ta detect if a class, method
or field access from the target method is iUegal. The checks for determining whether
a field or class access is illegal are nearly identical to the checks we have explained
for method access in the discussion of the previous rule. If we find an illegal access
from the callee method mToBelnlined, we check if that access would result in an illegal
access error if it was made from the caller method mlnlinedlnto (into which inlining is
being done). If the access wauld no longer be illegal after inlining then the method is
oot inlined. We show a simple example of a method which cannot be inlined because
it violates Rule 5 in Figure 3.5. The access to method m2 () declared in class 8 is
illegal when made from class C (which is in a different package). But arter inlining is
performed, the access to method m2 0 is moved to class A, and the access is no longer
illegal as classes A and 8 belong ta the same package.

Rule 6 : It rnust he Legal to access aU the classes or class members (fields
and methods) that are accessed /rom the method that is the target
of the invocation instruction, /rom the current method. Modifiers

60

• package Pac:kagel;

public cla.. A {
public atadc void main (StringO arga) {
Cc. Dev CO;
c.m10;

}
}

}

(a). Class A before inlining

package Package2;

p~=li: :l~: C {
public void ml() {
try {

B b = DeV BO;
b.m2C); 1/ Raiaes Illegal Access

}

catch C java.lang.IllegalAccessError e) {
System.out.printC"ILLEGAL ACCESS");

}
}

}

(c). Callee method mIO in class C

package Packagel;

public clus B {
public int f = 5;
void m20 { }

}

(b). Class B

package Packagel;

p~=li: ~l~~~ 1 (
public: static void main C StringD args) {

C c =nev CO;
try {

B b = Dev 80:
b.m2C); Il No Illegal Accell

}

catch C java.lang.IllegalAcceIIError e) {
System.out.printC"ILLEGAL ACCESS");

}
}

}

(d). Class A after inlining

•

•

Figure 3.5: An example of a method violating Rule 5

of class members can be changed in order to ensure that no illegal

access errors occur, but this is subject to the restriction that any
illegal access errors that were being thrown in the original program

must still be thrown.

Just as it is required to preserve accesses that resulted in illegal access errors in
the original program it is also necessary to ensure that accesses that were legal in
the original prograrn do not become illegal as a result of the code duplication/motion
that occurs during inlining. This is a real concern while inlining because there are
many accessor (get ()) and mutator (put ()) methods in object oriented programs
that access private fields. Inlining these small methods would not be allowed if the
class into which inlining is being done is not the same as the class in which the private
fields are declared. We adopt an aggressive inlining strategy that includes changing
the modifiers of classes, methods, and fields in arder ta allow us ta perform inlining if
possible. One of the options that might seem feasible is to change aIl the modifiers to
public 50 that we are free to inline wherever we cano But changing modifiers in this
way, though simple, might result in sorne illegai access errors (that were being raised

61

•

•

•

in the original program) no longer being raised. NIoreover it is preferable ta optimize
the original program without changing it any more than is really required. vVe now
explain how we achieve these goals while inlining.

In order to ensure that all the illegal access errors in the original program are still
preserved in the optimized program after we have changed modifiers and performed
inlining, we make one pass over each method in the caU graph even before we begin
examining methods ta perform inlining. The purpose of this pass is to check each
access in each method and fix the ma.ximum extent ta which we are allowed ta change
nlOdlfien; of eaCll class, rnethoà, anà fieià subject ta the constraint that aH iilegal
access errors in the original program are still raised. For example, if a private field
was being accessed from sorne c1ass other than its dec1aring c1ass, then we would note
that we should not change the modifier of the field to anything less restrictive. In the
absence of any constraints (arising out of illegal accesses) attached with a particular
c1ass, method, or field we note that we can change the modifier to public if required.
In this manner this pass fixes the extent of freedom we are allowed while changing
modifiers.

\Vhen we are considering a method for inlining we check each access in the target
method, and find out the extent to which we need ta change modifiers in order to
inline without introducing any new illegal accesses. Thus for each c1ass, method
and field accessed from the target method, we fix the modifier required in order to
successfully inline the method. Note that this required modifier is fixed keeping in
mind that we should only modify the original program ta the extent that is necessary
in order to inline. Thus a field that is private, would only have its modifiers changed
to default if an access ta it \Vas being inlined into a class in the same package (other
than the declaring c1ass of the field). There is no need to make the field public in
this case and we do not attempt ta do sa. If however we are not allowed to change the
modifier to the extent that is required to inline, then we cannat inline the method at
this call site. We have fixed the ma.~mum extent ta which we can change modifiers
in the pass we explained before.

Before changing the modifier of a method mO in class C, it is necessary to ensure
that any method that overrides the method in subclasses of class C can also have its
modifiers changed to the same extent (or less restrictive) as method mO. The Java
Virtual NIachine imposes the restriction that methods cannot be overridden ta be
more private in subclasses than they are in the superc1ass. This means that before
inlining a callee method into the caller method, if any method m() ~s modifiers need ta
be changed, then the extent of freedom that we are allowed in changing the modifiers

62

•

•

•

of the method me) and aU overriding methods must be considered (instead of just
method m(»). If even one overriding method ofm() cannot have its modifiers changed
ta the extent required. then the modifiers of method m() would not be changed. If
the modifiers of method mO and all its overriding methads can he changed to the
required extent, then they are changed simultaneously to enahle inlining to accur.

Note that changing modifiers within a class can result in problems if the pro
gram used serialization (the calculated SUID could change). This could be handled
by adding an explicit SUID field into the classfile. In our irnplementation, we do
not change the modifiers of classes (or thcir class members) that can be serialized
(implement java. io .Serializable or java. io .Externalizable).

Rule 7 : It must be safe to move ail of the invokespecial instructions in the

target method to the callee method without changing the behavio11.r of
the program.

\Ve also need to check if the invokespecial bytecode instructions in the target

method can be safely inlined into the current method without changing the semantic
behaviour of the program. In order to understand why we need to be careful about
duplicating/moving invokespecial instructions, we refer to the following portion of
the Java Virtual ~'lachine specification for the invokespecial bytecode :

After resolving the invokespecial instruction, the Java Virtual Machine determines

if aU the following conditions are true for the method m() whose signature appears in

the instruction :

- The name of the method m() is not <init>, an instance initialization method.

- The method m() is not a private method.

- The class of the method m() is a superclass of the class containing the method

in which the invokespecial instruction is present.

• The ACe_SUPER ftag is set for the class containing the method in which the

invokespecial instruction is present.

If ail four conditions are true, the Java Virtual lv/achîne selects the method (to

invoke) with the identical descriptor in the closest superclass, possibly selecting the

method just resolved. If even one of these four conditions is not true, then the Java

Virtual lvlachine selects the method that it has just resolved as the one that is to be

invoked.

63

•

•

•

Thus the invokespecial instruction might result in the Java Virtual Machine per
forming a method lookup in case all the four conditions mentioned above are satisfied.
Note that this method lookup is entirely dependent on the class where the invokespe
cial instruction occurs, rather than the c1ass of the receiver (as in the case of virtual
method caBs). This makes the actual location of the invokespecial instruction in the
code critical in how it behaves at run time. This also implies that we have to be
careful while moving invokespecial instructions while inlining, to avoid altering the
behavior of the program.

\Ve adûpt a simple strategy that is based ûn the assümption that the Java \rir_
tuaI ~lachine rarely needs to perform method lookup while executing invokespecial
instructions. The method lookup is only required when a method is invoked using
a statement like super .me); in the source code. In practice, programmers seldom
invoke methods using the super keyword, and so most invokespecials are usually for
constructors or private methods. \Ve have chosen not to inline methods that can
tain an invokespecial instruction that might require method lookup either originally
or after inlining. vVe have made this choice because we feel that it does not impact
the number of methods inlined significantly, but simplifies the checks required to be
done. We consider a particular invokespecial instruction capable of requiring method
lookup at run time if it satisfies aIl four of the conditions that we have mentioned
earlier.

'vVe then perform two checks for each invokespecial instruction:

(a). If the invokespecial instruction might require method lookup in the original
program.

(b). If the invokespecial instruction nlight require method lookup in the program
once the instruction is (possibly) duplicated and moved as part of inlining.

If either or both of the above two conditions is true then we decide not to inline the
method containlng the invokespecial instruction. If exactly one of the two conditions
is true, then the invokespecial instruction required method lookup originally1after
inlining, but not after inlining/originally. If both the above conditions are satisfied,
then method lookup was required both originally and after inlining but since the
location of the invokespecial instruction has changed, the result of the method lookup
might be different in the two cases. Note that it is possible ta check if the result of
the method lookups are the same, but we have chosen to avoid this overhead. We
only inline methods in which none of the invokespecial instructions require method
lookup both before and after inlining.

64

•

•

•

Note that it is illegal (according to the Java Virtual Nlachine specifications) for

an invokespecial instruction to be used ta invoke a method that is oot private, or a

constructor, or a method declared in a superclass of the class where the invokespecial

bytecode occurs. Thus an invokespecial instruction that was originally invoking a
private method m() might result in a veri.fication error after inlining, if the modifier of

method m() was changed during inlining. We do not attempt ta change the modifiers

of a private method if we detect an invokespecial instruction invoking it.

3.1.5 Inlining Criteria

Once it has been determined that a method invocation instruction cao he inlined

hased on the inlining safety rules, the next step is to check if it would be useful

to inline it. If the invocation instruction is not an important factor in the overaIl

execution time of the application, then the potential henefit of inlining it might not

he worth the cost of actually inlining it. Therefore we have attempted to come up

with sorne heuristics relying on static, compile-tirne characteristics of the application

that would help us in deciding whether we should inline a particular method caU

or not. Our sole aim while making this decision is to improve performance to the

maximum extent possible. It should be obvious that the criteria we mention here may

not be the same if the aims of performing inlining are different (see section 3.1.1 for
different uses of inlining). The cornplexity of inlining a large method is not a factor

as our implementation can successfully inline methods that are relatively large.

vVe DOW specify the characteristics of the application that our heuristics are based
on :

1. Number of statements in the callee method.

2. Number of statements in the caller method.

3. Number of locals in the callee method.

4. Number of locals in the caller method.

5. Number of invocation instructions in the cal1ee method.

6. Number of loops in the caller method.

7. vVhether the caller method is recursive or Dot.

vVe DOW explain the impact of each of these factors.

65

•

•

•

1. Number of statements in the callee method : If the callee method is
very small then it is expected to be beneficial to inline caUs to it. This is because the
time to execute the method invocation instruction would be a significant overhead in
the overall time required to execute the method caU. Thus eliminating the invocation
instruction is likely to lead to significant benefits if the method caU was executed
frequently. Conversely, if the callee method had a large number of statements, then
it is expected to be relatively complex and the invocation instruction itself is unlikely
to be the main overhead in the method calI.

2. Number of statements in the caller method : Our lutent in chuu~iug

this program characteristic is to arrive at sorne measure of the complexity of the
caller method and how this complexity is being affected by inlining. There are sorne
overheads associated with increasing the size of a method beyond certain limits, like
the cost of the extra locals (saon to be explained). If the method was a simple one
to start with, then we need to be careful that inlining is not responsible for making
it very complex. Ta this end we might decide ta stop inlining in a particular caller
method if the number of Jimple statements has crossed a certain threshold number.
Another possibility is ta stop inlining when the size of the caller method after inlining
has crossed a certain multiple of the size of the original uninlined method. even if
there are further inlining candidates.

3. Number of locals in the callee method : If the number of locals in the
callee method is more than a certain threshold number, then we should not inline the
methad. It is expected that a rnethod having many locals in the .Jimple representatian
is reasonably complex since redundant loeals are removed by the standard analyses
in Jimple. Apart from the fact that elirninating the method invocation instruction
might not Iead ta that much improvement if it is complex method, there is also
another interesting issue specifie to Java bytecode that needs to be kept in minci.

In Java bytecode, there are different instructions to load/store objects and inte
gers to and from the execution stack. Sorne of these instructions aload_O, aload_l.
aload-2, aload_3, iload_O, iload_l, iload_2. iload_3, astore_O. astore_l,
astore_2. astore_3 J istore_O, istore_l. istore_2, istore_3 are 1 byte in length.
There are also other kinds of the load/store instructions that take 2 or more bytes
(more than 2 bytes if used in conjunction with the wide bytecode). The rationale
behind having the 1 byte load/store instructions is to provide fast access ta the locals
occupying the first few local slots of the method. It is beneficial ta put the most
accessed locals in the first few local slots sa that the J\lj\.l can Ioad/store these im
portant Ioeals with minimal overhead. Fast aecess to these Ioeals might be achieved

66

•

•

•

in different ways depending on whether the JVM is an interpreter, or a Just In Time
(JIT) compiler. An interpreter might have preeomputed indices for the important
Ioeals ioto the data structure in which the Ioeals are stored. This might enable it
to aeeess these Ioeals faster than the other Ioeals for which it may have to do sorne
computation to arrive at the index. Aiso in the case of the 1 byte loads/stores there
are fewer byteeodes to interpret than the longer instructions. A JIT might be stor
ing these important Ioeals in machine registers to enable faster aecess over the other
Ioeals that rnight be in memory. In that case the differenee in aceess times between
the "'fast" Iocals and the other locals is likely to be considerable.

Inlining a method introduces more Ioeals into the caller method; the Iocals in
the callee method get cloned and invariably oeeupy local slots in the caller rnethod
that have to be accessed by the 2 byte load/store instructions. This is true whether
the eallee method is a relatively simple method (few locals) or a complex one (many
loeals). However the reason why we do not waut to inline large methods is the
following. In the case of inlining small methods the overhead incurred by the cloned
Iocals getting assigned to the "slow" local slots in the caller method (whereas they
were in the "fast" local slots in the callee method) is offset by the benefit of eliminating
the method invocation instruction. In the execution cost of the method caU the
loads/stores are an insignificant proportion eompared to the invocation instruction.
In the case of large callee methods, this rnight not be the case. It is very likely
that the large method does sorne computation intensive task and the execution time
of the eliminated invocation instruction is not a significant factor in the execution
tirne of the method caU. wIoreover in a complex method, the time spent in aceessing
locals rnight be significant, and the overheacl of having sorne clonecl locals in "slow"
local slots as a result of inlining might be enough to offset the relatively little gain of
eliminating the invocation instruction.

In summary we are making the following points. NIethod inlining has a harmful
sicle effeet in that loeals that were in "fast" local slots get assigned to "slow" local slots
when they are cloned and added to the caller method. However this harmful effect
is expected to be insignifieant compared ta the benefit of eliminating the invocation
instruction for small methods, whereas it might be enough to offset the benefits of
inlining in the case of larger methods.

4. Number of locals in the caller method: vVe might decide to stop
inlining into a particular method if the number of Iocals becomes greater than a
certain threshold value. One possibility for such a threshold value might be 256. as
sorne Ioeals would have to be accessed using the wide bytecode instruction as the

67

•

•

•

number of locals becomes greater than what can be captured in 1 byte. It needs ta
be mentioned that the number of locals in the method in the Jimple representation
while we are inlining is not the same as the number of local slots that would he there
in the bytecode produced by Jimple for the inlined method. This is because before
we emit bytecodes for the inlined method we perform passes over the Jimple code
that do local packing and code cleanup, which IDight reduce the number of locaIs
considerably.

5. Number of invocation instructions in the callee method : This is a
characteristic that ûffers clü€s aboüt the nature ùf the callee inethûd. If the HUluLer

of invocation instructions is large, then it is unlikely that inlining the method would
be beneficial because in aIl likelihood, the method is quite complex, and performs
significant computation.

6. Number of loops in the caller method: The number of loaps in a methods
is in general a very good indication of where the program might be spending most of
the time in computations. By identifying the methods that have the most number of
loops we might be able to perform optimizations at the places in the program that
really matter. This might be especially useful for an optimization like inlining which
is effective only when it is performed selectively. Thus ,ve might choose to inline only
at caU sites within loops, and in order to try to ma.ximize the gains. we can relax the
other restrictions on callee method size etc. so that maximal inlining can be done at
the important sites. vVe use a simple algorithm for detecting loops in the Jimple code
which is based on detecting IfStmt's that branch backwards. We present results for
the case when inlining is done only in caller methods that have at least one loop.

1. Whether the caller method is recursive or not : This is also a charac
teristic that can be used to determine if a particular method is a "hot spot" in the
program, and holds the key to better performance. We might choose to relax sorne
of the other inlining restrictions in arder ta inline rna'Cirnally in a recursive method.
Note that we can only determine if a method is possibly recursive at compile-time as
we use the conservative caU graph, which is not precise at sorne virtual method caB
sites.

3.1.6 Inlining Orders

vVe have discussed the criteria that can be used ta make decisions on whether or not
to inline a particular method call. However in order for inlining to be effective we

68

•

•

•

need to fix sorne criteria that would determine the order in which methods should
be considered for inlining. Inlining method caUs within certain methods first, could
be extremely crucial in improving performance. In this section we discuss sorne of
the inlining orders we have experimented with. Each arder is described in terms of
assigning inlining priorities to methods. The higher the priority of a method, the
earlier it should be inlined.

1. Bottam Up Order : In this order rnethods that are at the bottom of the
caU chain (leaves in the call graph) are assigned maximum priority, and the priorities
decrease as ,ve movc up the caU chain. This order is expected te be extremely effec-
tive in applications that have many small methods or in applications with relatively
short calI chains. This arder is not likely to be useful in applications with rnany large
methods or long caU chains. Performing inlining in bottom up order without any
restrictions on the size of the callee/caller methods gave us valuable inslght into its
limitations/effectiveness. In applications with many smaIl methods~ inlining maxi
mally could be quite beneficial, as the invocation instructions eliminated were the
main overhead in the original program. The harmful effects of introducing more 10
cals as a result of inlining are not as pronounced because the methods being inlined
are small in size. The effects are also not very harmful in applications with short
caU chains as the increase in locals in caller rnethods is not expected to be very high
because inlining is done at fewer Ievels in the caU chain. The overhead due to the
cloned locals is high in the case of applications \Vith predominantly large methods.
and this may result in degraded performance. The bottom up order is most useful
when used in conjunction \Vith the restrictions on callee/caller method size and the
Iocals limit. In such cases, inlining would be performed extensively in methods at
the end of the caU chain. Nlethods near the top of the caU chain would have little
or no inlining done in them as most of the callee methods wouid have grown large
enough (as a result of inlining earlier) that they no longer satisfy the restrictions on
size and locals limit that would permit inlining. Still since every control flow path
must terminate in a method at the end of sorne caU chain, bottom up order is a good
scheme.

2. Top Dawn Order : This order of inlining is the exact opposite of bottom
up order. Nlethods near the top of the caU chain are assigned maximum inlining
priority, and the priorities decrease as we go clown the caU chain. This order is likely
to be quite beneficial even in the complete absence of any restrictions on the size of
the callee methods being inlined. It must be noted that in this scheme, a particular

callee method's code never gets inlined ioto any method other than the caller method.

69

•

•

•

Methods near the top of the calI chain never get code from methods near the bottom
of the calI chain because inlining is done first for methods at the higher levels in the
caU graph. CIearIy this order leads to lesser code explosion than bottom up order, and
is therefore quite effective when inlining is done maximally even in applications that
have many large rnethods or long caU chains. It may not he as effective as bottom
up order for applications with nlany small methods or short call chains.

3.1.7 Our Static Inlining Strategy

vVe have attempted to come up with one static inlining strategy that we apply on
every input application. The main requirement of this strategy is that it should he
adaptive enough to be equally effective for cornpietely different classes of applications.
The strategy we present combines many of the ideas we have discussed earlier. The
most important point in our strategy is that we only inline at the caU sites that are
determined to he important. vVe chose not to inline in bottom up order because of
the high rate of increase of the number of Iocals in this case. As a result of most
locals being in slow local slots in the class file, aIl the benefits from inlining were lost
and there was a significant slowdown (almost 40 percent) in sorne cases. Top clown
arder was felt to be too restrictive in that we really wanted a strategy that would be
aggressive at important call sites and not try to increase the code size too much on
account of inlining at unimportant caU sites. It is imaginable though, that one rnight
still want to inline following these orders if the aim of performing method inlining \Vas
not performance improvement. \Ve have presented our algorithm to detect important
caIl sites in Figure 3.6 and our inlining strategy in algorithmic form in Figure 3.7.

Our inlining strategy starts by identifying caIl sites in recursive methods and caU
sites that are inside loops. These caU sites would clearly be executed frequently but
it also needs to be realized that aIl the methads that could be called from these caU
sites might also be executed many times. Thus we recursively include aIl the methocls
attached to the important caU sites, and add all the calI sites within these methocls
into our list of important caIl sites. vVhile adding an important call site and sites
along sorne calI chain beginning at the caU site! it is worth pointing out that the caU
sites deeper clown in the caU chain are added first to the list of important call sites
and the caU sites higher up in the chain are added afterwards. Thus caU sites lower
clown in the caU chain wouid he considered for inlining first. This is equivalent to
inlining in bottom up order but only at the important calI sites.

70

•

•

•

void getImportantCallSitesAccessedFrom (method m) {

List impSitesAccessedFromMethod =new ArrayList();

List impSitesAccessedDirectlyFromMethod = new ArrayList();

if (m is a recursive method)
add all the calI sites in m to the list impSitesAccessedDirectlyFromMethod;
else if (m contains loops)
add the calI sites inside loops to the list impSitesAccessedDirectlyFromMethod;

List impSitesAccessedlndirectlyFromMethod =new ArrayList();

for (each calI site cs in impSitesAccessedDirectlyFromMethod)
{

List reachablemethods =getReachableMethodslnReverseTopologicaIOrder(cs);

/* getReachableMethodslnReverseTopologicalOrder() returns the list of
methods that could be called along all calI chains starting at cs.
Note that it returns the methods that are lower down in the calI
chain at the head of the list and methods are higher up in the
calI chain at the end of the list. *1

for (each method meth in reachablemethods)
add all the calI sites in meth to the list impSitesAccessedIndirectlyFromMethod;

}

add all the calI sites in the list impSitesAccessedlndirectlyFromMethod to the
list impSitesAccessedFromMethod;
add all the calI sites in the list impSitesAccessedDirectlyFromMethod to the
list impSitesAccessedFromMethod;

return impSitesAccessedFromMethod;
}

Figure 3.6: Locating important caU sites to attempt inlining

There need ta he limitations though, on the amount of code explosion allowed,
even at the important caU sites. Thus we prevent any further inlining in a particular
method if the number of statements in the methad has increased by a certain factor
as compared ta the original untransformed method. The code increase factor can be
specified by the user in our implementation. The default value for the code increase
factor is eight (fi"{ed after experiments), if the user daes not specify a particular value.
There is also a strict bound on the allowable size of a method after inIining (10000

71

•

•

•

void performlnlining (List methods) {

Set importantCallSites = new HashSet()j

for (each method m in methods)
{

List importantSitesAccessedFromMethod =getlmportantCallSitesAccessedFrom(m)j
add all the calI sites in importantSitesAccessedFromMethod
to the set importantCallSitesi

/* Note that if a calI site is determined to be important because
of accesses to it from more than one method, then it is not
considered twice as importantCallSites is a set. */

}

for (each call site cs in importantCallSites)
{

if (cs has exactIy 1 callee method)
{

Hethod declaringmethod = cs.getDeclaringMethod();
Hethod calleemethod =cs.getCalleeMethod() i

if (satisfiesSafetyCriteria(cs))
{

if «declaringmethod.size() < (declaringmethod.originalsize(»*EXPANSION_FACTDR)
t&: (decIaringmethod.sizeO < MAX_ALLDWED_SlZE »

{

if (calleemethod.size() < AVG_MTHO_SIZE)
{

InlineHethod(cs, calleemethod)i

}

}

}

}
}

}

Figure 3.7: Our static inlining algorithm

72

•

•

•

Jimple statements) sa that the method does not grow beyond the limit imposed by
the Java Virtual Machine specification. Thus, inlining into a particular method is
stopped if it has grown to a size greater than the limit imposed by the code increase
factor or 10000 Jimple statements.

Since we are preventing any further inlining after the code size has reached a
certain limit, it is important that the increase in code is a result of inlining as many
calI sites as possible. For example, if one of the caU sites was a caB ta a large method
then the code explosion in the caller as a result of inlining at that one calI site might
have increa,..c;eo the size of the caller past the threshold. This wOllld result in none of
the remaining calI sites being inlined; this might be significant if there are many caU
sites that caB smaB methods, as many such caUs could have been eliminated if we
had not inlined at the caU site that resulted in code explosion. Thus we inline only at
those caU sites where the caUee method is sufficiently smaU in size; the size we choose
as a threshold is the measured average value for the number of Jimple statements in
methods in the application being optimized.

3.1.8 Profile Guided Inlining

'vVe have also implemented an option ta enable profile guided inlining in our imple
mentation. Profile guided inlining only considers the caU sites that were executed
frequently in a profile mn for inlining. The input to the profile guided inliner is a
file which contains the unique IDs for calI sites that were executed during the profile
run, along with the frequency of execution of each calI site. The inliner considers the
caU sites for inlining in decreasing order of frequency of execution, thus inlining at
the most important caU sites first. By only inlining at the caU sites that are known
to have a performance impact, we reduce the amount of code explosion that typically
occurs when inlining is performed based on static criteria. Aiso most of the program
characteristics we mentioned earlier (like number of locals in a method after inlining
etc.) are not altered significantly. In sorne sense, the improvement in performance
as a result of inlining based on the profile is the ma.:<imum that can be achieved as
a result of this optimization. The comparison of the effect of profile guided inlining
with inlining based on static criteria indicates the effectiveness of our static criteria
in identifying the important caB sites ta inline.

In Chapter 2, we explained our profiling strategy when the aim was to identify the
run time targets of each caU site. Our profiling strategy in identifying the caU sites

73

•

•

•

that are executed frequently is similar. We insert profiling code iota each method at
the Jimple level and then use the Soot framework to generate classes with profiling
code in them. The code that is inserted befare each calI site is a caU ta a static method
in a special profiler class created by us. The static method takes as parameters the
unique ID of the caB site and keeps track of the number of times each calI site was
executed. This static method also writes the call site ID and the frequency count for
each caU site periodically inta a results file. When the program being profiled has
executed far a significant amount of time, we can assume that the frequency counts
in the results file mirror the actual behavior of the program (i.e. "hot spots" in the
program can DOW be easily identified).

74

•

•

•

Chapter 4

Experimental Results

In this chapter we present and discuss the experimental results that we have obtained.
Our results can be grouped into two distinct categories:

1. The impact of the static analyses presented in Chapter 2 in improving the
precision of the caU graph for an application.

2. The effectiveness of method inlining, the optimization we presented in Chap
ter 3, in improving run time perfol'mance.

We have performed our experiments on a set of 15 benchmark programs drawn
from five different source languages, namely, Java, NIL, Ada, Eiffel and Pizza. all
of which have compilers that produce bytecode. The benchmark characteristics of
particular interest are shown in Table 4.1.

4.1 Benchmark Characteristics

The 15 benchmarks are grouped based on the source language and brief description
of each benchmark's functionality is also gîven.

4.1.1 Java

There are seven Java benchmarks, two of which are from the Sable benchmark set
while the rest are from the SPECjvm benchmark suite. The sablecc benchmark is a
compiler front end generator written in Java[3], and soot is an earlier version of our

75

•

•

•

compiler framework[l]. The five. SPECjvm benchmarks include raytrace whieh is
a graphies raytracer, jess which is an expert shell system based on NASA's CLIPS
expert system, compress which is a compression program based on a modified Lempel
Ziv method, db which is a database application, mpegaudio whieh is an obfuscated
commercial application that decompresses audio files conforming to the ISO wIPEG
Layer-3 audio specification, jack whieh is a Java parser generator based on the Purdue
Compiler Construction Tooi Set (PCCTS), and javac whieh is the Java compiler from
Sun's JDK 1.0.2.

4.1.2 Eiffel

The illness benchmark, which simulates the spread of disease among a popula
tion was compiled with the SmallEiffel compiler[4] and the benchmark cornes from
the SmallEiffel benchmark programs distributed with the compiler. The SmallEiffel
compiler does sorne whole program analysis and produces relatively optirnized code.

4.1.3 Ada

The rudstone benchmark is a large Ada floating-point intensive benchrnark that was
derived from a satellite ground control system, and it was cornpiled using Appletrnagic(tm)[38].

4.1.4 ML

There are three NIL benchmarks which come from the Standard NIL of New Jersey
benchmark set. The benchmark lexgen reads a specification of a lexer for SNIL. and
generates the SNIL code for the lexer, ray is a graphies ray tracing program. and
nucleic salves an anticodon problem. AIl three benchmarks were compiled using the
wlLJ compiler[5], which actually performs whole program analysis.

4.1.5 Pizza

The pizza benchmark is the Pizza compiler[6] written in the Pizza programming
language, compiIed with the Pizza compiler.

The statistics in Table 4.1 provide an insight ioto the nature (the extent of abject
orientedness of) the benchmarks for which we have conducted experiments. In the

76

•

•

•

column labeled # Stmts, we show the number of Jimple statements in the whole ap
plication (benchmark plus Java libraries accessed by the application), and the number
of Jimple statements in only the benchmark (without libraries). In the column labeled
Hierarchy we give the average and ma'cimum depth of the inheritance hierarchy for
the whole application and benchmark only. These numbers not only measure the ex
tent of object orientedness of the whole application, but are also useful in discovering
whether it is the benehmark itself that has been written in an object oriented man
ner, or if the Java libraries are the source of object orientedness. The column labeled
Classes and Interfaces gives the number of classes and interfaces that come from
the library, the benchmark code ooly, and the overall total. Note that the Ada, Eiffel
and NIL benchmarks aIl appear ta be very non object-oriented sinee the ma..ximum
depth of their hierarehies is 2, and none of them have any interfaces in the benchmark
part of the code.

Benchmark # Stmts Hierarchy Classes and Interfaces
avg. depth max. depth library bench. whole

whole bench. whole bench. whole bench. only app.
lang. Dame app. only app. only app. only class int. class int. (total)
java sablecc 68575 24621 3.2 2.3 6 5 308 44 299 13 664
java soot 63506 33396 3.3 2.1 6 4 186 11 498 34 729
java ..205..raytrace 49239 5347 3.0 1.3 6 3 307 44 35 1 387
java -202_jess 56163 11137 2.8 1.3 6 3 316 44 157 4 521
java -201_compress 46619 2727 3.0 1.1 6 2 307 44 22 1 374
java -228_jack 55107 11215 3.0 1.6 6 3 307 44 63 5 ..H9
java -209_db 49876 3002 3.0 1.0 6 1 309 44 14 1 368
java -222..mpegaudio 56744 10923 3.0 lA 6 4 307 44 54 9 414
java -213_javac 69585 25304 3.5 3.2 8 7 310 44 178 5 537
eifrel illness 29568 1372 3.2 1.8 6 2 174 10 11 0 195
ml nucleic 33096 4900 3.1 1.6 6 2 174 10 47 0 231
ml lexgen 33397 5201 3.1 1.4 6 2 174 10 67 0 251
ml ray 34186 3721 3.1 1.6 6 2 178 10 83 0 271
ada rudstone 75250 31413 2.9 1.2 7 2 312 44 141 0 497
pizza pizza compiler 73130 42805 3.0 1.7 6 5 188 11 207 11 ·Uï

Table 4.1: Benchmark Characteristics

i7

• 4.2 Conservative CalI Graph Characteristics

•

Table 4.2 gives a summary of the conservative caU graph built for each benchmark
using c1ass hierarchy analysis (CHA). We have measured the conservative calI graph
characteristics for the whole application (including the library) as weIl as the portions
of the cali graph related to the benchmark alone. Accordingly, Table 4.2 is divided into
two distinct parts. We present conservative caB graph and caU graph improvenlent
statistics for all our benchmarks in this section.

Name Whole Application Benchmark Only
CaU Sites Edges Cali :Sltes Edges

INI pot. pot. INI pot. pot.
mono. poly. total mono. poly. total mono. poly. total mono. poly. total

aablec:c: 3737 11151 1332 12483 11140 24553 35693 1955 5920 889 6809 5920 20736 26656
loot 2828 11653 1738 13391 11653 25331 36984 2001 9070 1545 10615 9070 22620 31690
raytrac:e 1729 6582 377 6956 6576 2591 9167 207 2037 12 2049 2037 46 2083
jeu 2230 8871 467 9338 8865 3804 12669 627 4209 89 4298 4209 994 5203
c:ompress 1583 5450 369 5819 5444 2556 8000 76 927 6 933 927 30 957
jac:k 1857 7191 779 7970 7185 3619 10804 337 2672 396 3068 2672 992 3664
db 1615 5688 393 6081 5682 2713 8395 80 1090 26 1116 1090 llO 1200
mpegaudio 1828 6127 404 6531 6121 3072 9193 311 1602 38 1640 1602 179 li81
Jayac: 2821 10570 1276 Ll846 10564 13707 24271 1188 5933 848 6781 5933 10306 16239
illnus 746 2494 164 2658 2494 1318 3812 56 144 1 145 144 9 153
nuc:leic: 800 3500 172 3672 3500 1353 48~3 103 1149 6 Ll55 1149 32 1181
lexgen 916 3633 200 3833 3633 1438 5071 196 1250 22 1272 1250 67 13lï
ray 973 3203 195 3398 3203 1505 4708 206 il3 19 732 713 94 80i
rudl~on. 1707 6014 358 6372 6004 2311 8315 207 1637 1 1638 1633 7 1640
pizza 2660 13729 799 14528 13729 6024 19753 1756 11115 577 11692 11115 4069 1518-1

Table 4.2: Conservative CalI Graph Characteristics

4.2.1 Conservative CalI Graph for Whole Application

•

First consider the characteristics of the whole application, including libraries. Column
1 shows the number of methods that are in the caU graph. Note that this number mea
sures the number of methods that might be called starting at all possible entry points,
based on CHA, and does not include methods that can not be called. Column 2 shows
the number of monomorphic caU sites in methods in the caU graph. The monomor
phic sites include caU sites for invokestatic and invokespecial instructions as weIl
as calI sites for invokevirtual and invokeinterface instructions that have been
resolved to exactly one method by CHA. Column 3 shows the number of potentially

polymorphie sites i.e. invokevirtual and invokeinterface instructions that have

i8

•

•

•

more than 1 target after performing CHA. Column 4 shows the total number of calI
sites in the whole application. Column 5 shows the number of monomorphie edges
(edges from monomorphic caU sites), while column 6 shows the number of potentially
polymorphie edges (edges from potentially-polymorphic caU sites). Column 7 shows
the total number of edges in the whole application.

4.2.2 Conservative CalI Graph for Benchmark Only

No"t consider the second part of Table 4.2, whkh sho~,rs the characteristics of the
benchmark only, not including any library methods. This part of the table includes
aIl methods from the caU graph that do not belong to the Java library, calI sites inside
these methods, and the edges attached ta these caU sites. These figures give a clear
idea about the performance of CHA. on the benchmark classes. For example, it is clear
that there is hardly any scope for improvement of the benchmark portion of the call
graph in benchmarks like rudstone, illness, and raytrace, whereas in benchmarks
like javac, soot, or pizza there are many unresolved (potentially polymorphie) caU
sites.

4.3 Improvements over the Conservative CalI Graph

vVe have obtained the results shawn in Table 4.3 from our analyses. For each bench
mark we show the result of applying rapid type analysis (RTA), declared-type analysis
(DTA), and two variations of variable-type analysis \lTA(l) and VTA(2). VTA(l) is
the analysis as presented in Chapter 2. V'T:\(2) uses the result of VTA(l) to prune
the conservative calI graph, and then uses this pruned call graph ta run the VTA algo
rithm again. One could imagine repeating this process until no further improvernent
is gained, but in practice we have found that 2 iterations works quite weIl.

4.3.1 CalI Graph Improvement for Whole Application

Rapid type analysis (RTA) has previously been shown to give good results on complete
C++ applications [12], and our study shows that this is the case for many of our
Java benchmarks as welle The number of dead method nodes (whole application)
removed by RT..I\ varies between 7% of the total number of methods in the conservative
caU graph (for soot, pizza) to about 51% (for compress). vVe expect most of the

79

•

•

•

improvement ta come from removing dead methods in library classes. This is because
CHA builds the caU graph based on the class hierarchy. If a certain library class 0
and its subclasses all implemented method m() and if all these classes are part of the
class hierarchy for the application, CHA would add edges from o. m() (0 is of declared
type 0) to each of the m()'s in the class 0 and its subclasses. It is extremely likely
that the benchmark application would only instantiate a few of the subclasses of 0
and so most of the edges that are present in the CHA calI graph are not actually
needed. This is exactly the sort of information that RTA can find. This expected
behavior is observed in practice as there are a greater proportion of methods removed
in applications like raytrace and compress that involve many library classes as
compared to the number of classes in the benchmark itself.

The next important question is to see if our new analyses, declared-type analysis
(DTA) and variable-type analysis (VTA) can do even better than RTA. for complete
applications. The number of methods removed by OTA varied between 9% (soot)
and 58% (compress), whereas the number of edges removed varied between 10%
(compress) and 54% (soot). Thus DTA does shows sorne improvement over RTA
bath in terms of nodes removed (at best 7%) and edges removed (at best 9%). VTA
shows a clearer improvement over RTA. The number of nodes removed by VTA(2)
varied between 10% and 65% of the total number of nodes in the conservative graph.
The number of edges removed as compared to RTA is greater on average by about
15% (best case improvement 19%).

We have also shawn the number of calI sites resolved by each analysis, and VTA
does considerably better than any of the other analyses in this respect. Before dis
cussing the irnprovement, we would like ta clarify that the percentages given (along
side the raw data for the nurnber of resolved caU sites) are calculated on the number of
patentially-polymorphic caU sites (as shown in Table 4.2) that are left unresolved by
CHA. As an example, for the benchmark jack, RTA resolved 308 of the 774 caU sites
(39%) that are unresolved by CHA, whereas VTA(2) resolved 730 caU sites (94%).
Note that the llumber of call sites resolved by each analysis includes caU sites that
are determined ta have no targets (in other words, they cannat be executed as they
occur in an unreachable method), as weIl as call sites that bave precisely one target.
The improvement in resolved calI sites in most benchmarks is at least 15%, and in
sorne cases (jack, soot) it is higher than 40%. DTA shows sorne improvement over
RTA in sorne cases! but performs almost as badly as RTA. far sorne of the more object
oriented benchrnarks (javac, jack, soot, pizza). Thus we observe that for highly
abject oriented applications, VTA is more effective than the other analyses.

80

•

•

•

4.3.2 CalI Graph Improvement for Benchmark Only

We now discuss the results for methodsjedges removed, and caU sites resolved only
within the benchmark methods (excluding the Java libraries). Compared to complete
applications, fewer benchmark methods are removed, and this can be explained by
the fact that there are fewer redundant methods in general in benchmark classes, as
compared to a library (where there might be many methods that have been created
for use by users of the library). The differences between the analyses are more cleariy
observable in the numbers for the benchmark only. It can be observed that for
the bencbmark only, RTA has almost the same effectiveness as CHA in most of
the benchmarks that are not very object oriented. On the more abject oriented
benchmarks, RTA does better than CHA on the benchmark code but there is still
substantial scope for improvement. DTA has roughly the same effect as RTA on
the bencbmark code, but VTA performs considerably better than any of the other
analyses. The improvement over RTA in terms of methods removed is about 4%
on average, and 10% in the best case. VTA removes about 6% more edges than
RTA on average, and 18% more edges in the best case (soot). The differences in
caU sites resolved is more marked and RTA does not perform as well on the highly
abject oriented benchmarks as it does on the non abject oriented benchmarks. VTA
resolves a substantial nurnber of caU sites in the highly abject oriented benchmarks
(as high as 96% of virtual caU sites for jack and 44% for soot). In sorne of the non
abject oriented benchmarks like raytrace, rudstone, and compress there are not
very many virtual call sites in the benchmark that can be resolved, and so none of
the analyses do particularly weU on them. Note that the number of calI sites resolved
inc1udes caB sites with one target and calI sites with no targets.

4.4 Comparison with Dynamic Results

We have used profiling ta estimate the possible run time-impact of the analyses. vVe
instrumented the bytecode produced by our compiler ta produce a summary of which
methods were actually called at each invokevirtual and invokeinterface call, and to
collect the execution frequency for each caU site. vVe have concentrated on the run
time behavior of caU sites in the benchmark classes (excluding the Java libraries).
One common scenario is that one would want to perform compiler optimizations on
the benchmark code alane, and leave the Java library classes unchanged. This was
the main reasoning behind our decisioil ta profile the benchmark classes only! as this

81

•

•

•

Wl ole Application B.ncbmark only
Nod•• l:'aS·· ""aua.ce. Noa•• 1:'(21" ""&I~lte.

Removed R.moved Re.olved RAmoved Removed Ruolved
.abhe.: rapid-type 6~7 (17~) 414~ (1I'j\) 407 (30~) 42 (2~) 1077 (4%) 164 (18~)

decl&red-type 773 (20%) ~670 (1~%) 456 (34%) 75 (3%) 18~4 (6%) 192 (21%)
variabIe.-type(1) 867 (23%) 10723 (30CJ\) 635 (4'Mfl) 91 (4%) 5943 (22%) 311 (34%)
variable-cype(2) 1016 (27%) 11141 (31%) 680 (51%) 92 (4%) 6oo~ (22%) 317 (35%)

.oot rapid-type 212 (7~) 2635 (7~) 137 (7~) 60 (2'io~ 1362
~:~~

38
g~~declared-type 282 (9%) 4061 (10CJ\) 172 (9%) 68 (3%) 2168 60

variable-cype(1) 328 (11%) 1447 (20%) 651 (3'Mii) 89 (4%) 5027 (15%) .510 (33%)
variable.-type(2) 348 (12%) 8380 (22CJ\) 829 (47%) 109 (.5%) 5960 (18%) 682 (44%)

r.~r.c. "'piel-type ROS (46'jf,) 35R1\ f3G"ftl 292 f77'jf,l 11\ (';'';f,1 "fi (2'lJl1 ~ (4t~1

declared-type 925 (53%) 4375 (47%) 304 (80%) 20 (9%) 55 (2%) 5 (41%)
variable.-cype(1) 1026 (59%) 5200 (56CJ\) 342 (90%) 18 (8%) 68 (3%) .5 (41%)
variable-cype(2) 1026 (59%) 5200 (~6%) 342 (90%) 18 (8%) 68 (3%) 5 (,.1%)

Je.. rapid-cype 974 (43~) 4671 (37~) 346 (N%) 145 (23%) 1112 (21'1&) 49 (55'}{,)
declared-eype 1096 (49%) 5823 (46%) 3.56 (77%) 157 (2.5%) 1455 (27%) 50 (56%)
variable-Cype{ 1) 1191 (53%) 6826 (53%) 404 (86%) 162 (25%) 1552 (29%) 5,. (60%)
variable.-type{ 2) 1191 (53%) 6826 (53%) 404 (86%) 162 (25%) 1552 (29%) 54 (60%)

cOIIpre.. rapid-cype 8101 (51~) 366,. (45~) 293 (79~) 11 {14~) ..0 (4%) 3 (50%)
declared-type 926 (58%) 4418 (55%) 303 (82%) 16 (21%) 62 (6%) 4 (66%)
variable-cype{ 1) 1033 (65%) 5214 (65%) 344 (93%) 16 (21%) 70 (7%) .. (66%)
variable-cype(2) 1033 (6.5%) 5214 (65%) 344 (93%) 16 (21%) 70 (7%) 4 (669'0)

Jac:& rapid-cype 820 ("4~) 3763 (34%) 313 (40~) 17 (5%) 121 (3'J&) 21 (5~)

declared-cype 924 (.50%) 4475 (41%) 323 (41%) 20 (5%) 184 (5%) 21 (5%)
variable-Cype{ 1) 1027 (55%) 5719 (52%) 734 (94%) 21 (6%) 565 (15%) 382 (96%)
variable-Cype{2} 1027 (55%) 5719 (52%) 734 (94%) 21 (6%) 565 (15%) 382 (96%)

db rapid-cype 811 (50~) 3649 (43~) 291 (N%) 12 (15~) 5i (4'J&) 3 (l1~J

declared.cype 920 (56%) 4426 (52%) 302 (76%) ll5 (18%) 84 (7%) 3 (11%)
variable-type(1) 1002 (62%) 5168 (61%) 360 (91%) 15 (l8%) 119 (9%) 23 (88%)
variable.cype(2) 1002 (62%) :H68 (61%) 360 (91%) 15 (18%) 119 (9%) 23 (88%)

.,.SaucUo rapid-cype 839 (45~) 3908 (42"") 303 (75'J&) 36 (11~) 89 (4%) 12 (JI~)

declared-Cype 930 (50%) 4560 (42%) 325 (80%) 46 (l4%) 157 (8%) 13 (34%)
variable.-cype(1) 1043 (57%) 5549 (60%) 354 (87%) 46 (14%) 180 (10%) 13 (34%)
variable-cype{2} 1043 (57%) 515019 (60%) 3.54 (87%) 46 (14%) 180 (10%) 13 (34%)

jauc rapid-cype 823 (29~) 41516 (18~) 319 (25"") 30 (2~) 713 (4%) 30 13%)
declared-type 931 (33%) 5460 (22%) 337 (26%) 33 (2%) 855 (5%) 30 (3%)
variable-type(1} 1001 (35%) 6639 (27%) 0189 (38%) 35 (2%) 1136 (6%) 135 (15%)
variable-type(2} 1001 (35%) 6639 (27%) 489 (38%) 35 (2%) 1136 (6%) 135 (15%)

111.11... rapid-cype 189 (25~) 1380 (36~) 104 (63~) 0 (0%) ~ (3%) 0 (0%)
declared-type 234 (31%) 1743 (4.5%) 110 (61%) 0 (0%) 5 (3%) a (O%)
variable-cype{ 1} 290 (38%) 2060 (54%) 143 (87%) 15 (8%) 16 (l0%) 1 (100%)
variable-cype(2) 290 (38%) 2060 (541Ji6) 143 (87%) 5 (8%) 16 (10%) 1 (100%)

Ilucldc rapld-cype 194 {:Z4~} 1390 (28%) 107 (62~) 1 (1~) 1 (0.1%) 0 (0%)
declared.cype 24.. (3D") 17:17 (36%) 113 (65%) 7 (6%) 6 (0.6%) 1 (16%)
variable.-type{ 1) 300 (37%) 2062 (42%) 1.50 (87%) 12 (11%) Il (1 'lID) 5 (83%)
variable.-cype(2) 300 (37%) 2062 (,.2%) 150 (87%) 1'2 (11%) Il (1%) 5 (83%)

lezteD rapid-cype 202 (22~) 1421 (28~) 112 (56~~ 1 (1'J&) 1 (0.1'1&) 0 (O'J&)
declared.type 261 {28%} 1804 (35%) 121 (60%) 14 (7%) 13 (1%) 1 (4%)
variable-cype{ 1} 31,. {3"%} 2129 (41%) 172 (86%) 18 (91Ji6) 45 (3%) 21 (95%)
variable.-type(2) 314 (34%) 2129 (41%) 112 (86%) 18 (9%) "5 (3%) 21 (95%)

ra,. rapid-cype 197 (20~) 1415 (30'1fl) 111 (56%) 1 (l~) 1 (Q.l%) 0 (O%)
dec:lared-type 259 (:l6%) 1817 (38%) 119 (61%) 15 (796) 16 (l%) 1 (5%)
variable--cype{ 1) 320 (3:l%) 2176 (46%) 165 (84%) 2.5 (12%) 55 (6%) 15 (78%)
variable.-type(2} 320 (32%) 2176 (461Ji6) 165 (84%) 25 (12%) 55 (6%) 15 (78%)

ndat_ rapid-type 830 (48~) 3680 (44"li) 293 (81~) 0 (O~) 3 (0.2%) 0 (O%)
declared-type 936 (54%) 4364 (52%) 302 (84%) 0 (0%) 4 (O."") 0 (O%)
variable.-type{l) 1014 (59%) 4903 (58%) 337 (94%) 0 (0%) 9 (0.6%) 1 (100%)
variable--cype(2} 1014 (59%) 4903 (58%) 337 (94%) 0 (0%) 9 (0.6%) 1 (100%)

p!ua rapid-type 213 (8~) 2097 (10'Ji) 123 (15%) 17 (1%) 643
~~:~

3 (0.3"")
declared.type 233 (9~) 2566 (12%) 155 (19%) 20 (1%) 830 23 (3%)
variable-cype{ 1) 270 {IO%} 3431 (17%) 259 (32%) 32 (1%) 1388 (9%) 99 {17%}
variable-cype(2) 270 (l0%) 3462 (17%) 270 (33CJG) 32 (1%) 1418 (9") 109 (18")

Table 4.3: Improvement of Call Graph over Conservative CalI Graph

82

•

•

•

would give us a good inàication of the possible performance impact of optimizing the
benchmark. Also we felt that it would be interesting ta measure the difference in
performance of the analyses on the benchmark classes dynamically, given that the
static results indicate that our VTA analysis does substantially better than CHA and
RTA in the benchmark code.

We observed that for the non object oriented benchmarks raytrace, compress,
db, mpegaudio, illness, ray and rudstone, almost 100% of the benchmark caU sites
are resolved by CHA. Thus, there is no point in considering these any further. The
results for the rcmaining 7 benchmarks arc much more interesting, and arc prcscntcd
in Table 4.4. For each benchmark, we provide one row for each of the analyses
(CHA,RTA,DTA,VTA(l) and VTA(2)), plus one row for the result obtained by the
profile. In each case we give the percentage of caUs (dynanlic number) in three
categories. The first column gives the percentage of caUs that were monomorphic.
For the analyses rows this means that these caUs were determined to be monomorphie
by the analysis. For the profile row this means that only one method was resolved
for this caU site over the entire run. Note that monomorphic caBs in the profile may
be monomorphie for this particular run, but polymorphie for different input data.
Column 2 shows the percentage of caUs that have 2 or 3 targets according to the
analyses and the profile. This is of interest as it is possible to optimize polymorphie
caUs that have only a few possible targets by introducing a switch into the code
that would caU the appropriate method (statically resolved) based on the class of
the receiver[22]. Column 3 shows the percentage of caUs that are unresolved by the
analyses and have more than 3 possible targets, along with the profile nurnber for such
polymorphie caUs. The final column shows the average number of methods that could
be called from each caU site according ta each analysis, and the same rneasurement
for caUs made in the profile.

Table 4.4 shows several interesting trends. First, consider the percentage of
monomorphic caUs. It appears that RTA gives very little or no improvement on aIl
benchmarks. Thus, as expected, RTA is not effective for benchmark code. Our DTA
analysis also does not perform very weIl on the benchmark code, giving no significant
improvement over RTA. However, our VTA analysis does give sorne improvement on
all benchmarks, with significant improvement on several of them. In sorne cases (j ack
and pizza), we observe that the number of caU sites resolved by VTA is almost the
same as the number of monornorphic calls obtained with the profile, and in these
cases there is no need for any more sophisticated analyses. "vVe also observe that for
the ~IL benchmarks nucleic and lexgen, RTA and DTA cannot resolve aIl caUs. but

83

•

•

•

Benchmark Only
Vlrtual Callsltes VlrtuaJ Callsltes VlftUal callsites Average

with 1 target with 2 or 3 targets with > 3 targets per Callsite
sablecc cla.iS-hierarchy 86% 5.5% 8.5% 1.69

rapid-type 86.5% 5% 8.5% 1.60
dedared-type 86.5% 5% 8.5% 1.60
variable-type(l} 88.7% 5.2% 6.1% 1.42
variable-type(2} 89.7% 6.2% 4.1% 1.30
priJfile ~S.S% " 3.8% 1.13u .• .10

soot class-hierarchy 29% 16% 55% 11.03
rapid-type 29% 20.5% 50.5% 9.31
declared-type 29% 20.5% 50.5% 8,49
variable-type(1) 39% 14.9% 46.1% 6.45
variable-type(2) 41% 18.6% 40.4% 6.2
profile 66.6% 16% 17.4% 1.58

jack class-hierarchy 86.3% 1.1% 12.61fo 1.444
rapid-type 87% 11.6% 1..t% 1.298
declared-type 87% 11.6% 1.4% 1.158
variable- type(1) 98.5% 1.5% 0% 1.017
variable-type(2) 98.5% 1.5% 0% 1.017
profile 98.5% 1.5% 0% 1.017

javac: class-hierarchy 65.9% 7.1'70 27\.70 3.441
rapid-type 65.9% 7.1% 27% 3.078
declared-type 65.9% 12.5 21.6% 2.607
variable-type(1) 72.2% 6.5% 21.3% 2.597
variable- f,ype(2) 72.2% 6.5% 21.3% 2.597
profile 90.1% 3.6% 6.3% 1..146

Ducleic: class-hierarchy 0% 99.1% 0.9% 2.138
rapid-type 0% 99.1% 0.9% 2.138
declared-type 0% 99.1% 0.9% 2.138
...-a.riable-type(1) 99.1% 0% 0.9% 1.138
variable-type(2) 99.1% 0% 0.9% 1.138
profile 99.1% 0% 0.9% 1.138

1lxgen class-hierarchy 81.8% 18.2% 0% 1.1.82
rapid-type 81.8% 18.2% 0% 1.182
declared-type 81.8% 18.2% 0% 1.182
variable-type(1) 100% 0% 0% 1.000
variable-type(2) 100% 0% 0% 1.000
profile 100% 0% 0% 1.000

pizza class-hierarchy 75.5% 9.5% 15% 2.289
rapid-type 75.5% 20% 4.5% 1.853
declared-type 75.5% 20% 4.5% L.798
variable- type(1) 89% 8.8% 2.2% 1.509
va.riable-type(2) 89% 8.8% 2.2% 1.509
profile 94% 6% 0% 1.074

Table 4.4: Comparison of caUs resolved by each analysis with the profile
result

84

•

•

•

VTA resolves almost all the caUs. This is because the inheritance hierarchy in the
case of these benchmarks consists of an abstract cIass that contains defauit definitions
for many methods (that raise an exception if called). Many classes directly extend
this abstract cIass but contain redefinitions for only certain methods, and 50 there
are 2 possible targets for a caU in many cases. VTA resolves these caU sites while the
coarser grained analyses do not.

For 2 benchmarks, soot and javac, we observe that while VTA did resolve sub
stantially more caU sites than any of the other analyses t it is not able to perform
'.vell enough ta approach the results obtained in the profile. "Ve studied the reasons
for this gap on soot as the difference is greater for this benchmark, and as it is an
analysis framework developed by us, we had the source code with which we were
familiar. vVe illustrate the reason for VTA's inability to find ail monomorphic caBs
with an example. The soot framework has an abstract cIass AbstractValueBox
that is a container cIass that declares a field holding an object of class Value.
Value is also an abstract cIass that is overridden by specific classes like Local,
InstanceField, InvokeExpr. AbstractValueBox is extended by specifie container
classes like LocalBox, InstanceFieldBox and InvokeExprBox. These specifie con
tainer classes do not declare any fields and the values that are held in these boxes
are stared in the Value field of AbstractValueBox. Thus objects belonging to many
classes that override Value reaeh the Value field declared in AbstractValueBox. The
accessor method to get the Value stored in a box is defined only in AbstractValueBox
and it returns the Value field. Thus whenever a specifie kind of Value abject is put
into a box and retrieved. aIl the classes that reached the Value field are in the set
of possible types (computed by VTA) for the abject retrieved. We believe that this
would be a problem for even more sophisticated analyses because the statements that
put values in the boxes are often very far from statements taking the values out, and
it would be difficult to pair the definitions and uses up eorrectly.

Another explanation for the gap is is the presence of several run time flags in this
benchmark. For a particular option, there is usually an abstract class performing the
basic functionality associated with the option, and it is extended by different classes

that perform a specifie function. Depending on the particular choice for the runtime
flag one of the possible classes is instantiated. Thus, this is an example where the caB
site is monomorphic for a particular run of the program, but polymorphie over many
different runs. This sort of monomorphism cannot be determined by a static analysis.
but would be a good candidate for runtime optimizations such as specialization.

85

• 4.5 Time and Space Complexity of Analyses

•

•

CalI Grapb Declared Type Variable Type Time
Name Jimple before see after sec before sec after sec (seconds)

Stmts INI lEI INI lEI INI lEI INI lEI INI lEI DTA VTA
sablee:e: 68515 3737 35693 1722 8273 6104 3927 25482 75280 20298 43618 13 128
soot 63506 2828 36981 6333 6699 5178 3784 24190 68289 19620 43416 15 207
raytrae:e 49239 1729 9167 3540 3139 2989 1931 12496 18125 10700 13329 8 54
jeu 56163 2230 12669 4320 3943 3634 2453 15563 23695 13232 17059 9 87
campress 46619 1583 8000 3235 2832 2741 1745 11010 15734 9471 11461 8 44
jae:k 55107 1857 10801 3828 3474 3284 2274 14293 21361 12320 16131 Il 68
db 4!;fij16 1615 ijJ95 3356 ~~M ~~O1 1lS1~ l1lS7~ 1614~ ~H~O 11~~4 lS 46
mpegaudio 56744 1828 9193 3696 3371 3115 2182 13416 20200 12101 15665 11 62
javae: 69585 2821 24271 5872 6061 4741 3374 22220 54930 17019 26417 12 113
illDess 29568 746 3812 1650 1386 1409 868 5625 8355 4851 6041 4 50
nuc:leic: 33096 800 4853 1796 1538 1536 986 7815 12130 6403 8714 4 41
lexgen 33397 916 5071 2044 1686 1746 1049 7798 11687 6717 8762 5 41
ray 34186 973 4708 2178 1849 1854 1164 7227 10547 6101 7575 5 52
rudstone 75250 1707 8315 3609 2758 3122 1690 11956 15764 10440 11504 8 89
pizza 73130 2660 19753 7177 7445 6023 3856 28007 50242 17216 23390 11 102

Table 4.5: Size of Data Structures

Our implementation is not yet tuned for speed, 50 in order to give an estimate
of the time required for each analysis, we gathered information about the size of
the data structures built for each algorithrn, plus sorne execution numbers for our
untuned implementation. In Table 4.5, we show our measurements. Note that for
OTA and VTA, the time required to obtain the solution is proportional to the number
of edges in the constraint graph after the graph has been transformed such that each
strongly connected component in the original constraint graph is replaced by special
sec nodes. The number of edges in the constraint graph is observed ta grow linearly
\Vith the size of the application for both DTA and VTA. In comparing OTA and VTA,
we observe that VTA has about 3 times the number of nodes, and about 7 times the
number of edges as in DTA.. This gives a good indication about the relative costs of
these 2 analyses. The last column of Table 4.5 gives the time, in seconds, for solving
the constraint graphe The interesting point is nat so much the absolute time 1, but
the fact that the analysis scales weIl, and behaves linearly in practice.

IThis implementation is built in Java using very high-Ievel data structures based on collections,
and it was run using a relatively slow Java interpreter (Hnux jdk1.1) on a 333~lhz pentium. Thus
one can safely assume that a tuned implementation will ron faster by a large constant factor.

86

We now expIain the impact of performing rnethod inlining on the run time perfor
mance of our set of benchmarks. We have measured the impact of method inlining
on only those benchmarks (out of our set of 15 benchmarks) that execute for long
enough for timing measurements to be accurate. vVe have shown the measurements
using the JIT compiler that is part of the Hnux jdk1.2 release, and also using the
Linu.", jdk1.2 interpreter on a 400rvlhz pentium.

• 4.6 Method Inlining Results

•

•

Befùre disèussing the results, we wûuld like tû briefly Jescribe the illethüJûlûgy we

followed for obtaining these results. AlI execution times in the tables are the minimum
values obtained over five separate execution runs. 'vVe feel that using the minimum
value is less likely ta incIude inaccuracies induced by fluctuations in system load
due to other processes. vVe have aiso observed that the timings are only accurate if
measured at high CPU utilization (97% to 99%) when using the Unix time commando

'vVe present results in each table for rnethod inlining performed using the caH graph
obtained through c1ass hierarchy analysis, and using variable type analysis. "Ve have
not presented results for method inlining using the caIl graph built by rapid type
analysis or dec1ared type analysis as we have observed that the performance impact
in these cases is identical to that observed when inlining is performed after c1ass
hierarchy analysis. This is a result ta be expected as the calI graph characteristics
(for benchmark code) built using class hierarchy analysis, rapid type analysis, and
declared type analysis are very similar (see Table 4.3).

4.6.1 Automatic Method Inlining

In Table 4.6 we have shown our run time measurements using the linux JIT before
and after performing automatic method inlining, while in Table 4.7 we have shawn
similar results for the interpreter. In columns 1 and 2 we have shawn the execution
times before and after inlining respectively. In column 3 we have shown the calculated
speedup, and in column 4 we have shown the factor by which code size increased as
a result of performing our optimization.

"vVe observe an average speedup of 1.05 on our set of benchmarks, with a maximum
speedup of 1.21 for the benchmark compress using the JIT. Using the interpreter~

we observe an average speedup of 1.02 on our set of benchmarks, with a maximum
speedup of 1.08 for the benchmark raytrace. :Ylethod inlining is observed to be a

87

•

•

•

JIT results for automatic inlining
Execution Time AnalyslS Usoo ExecutIon Tlme Speedup Code
Before Inlining For CalI Graph Alter Inlining Increase

compress 66.88 s class-hierarchy 55.14 s 1.21 l.23
variable-type 55.14 s 1.21 l.23

jess 48.17 s class-bierarchy 45.55 s 1.05 2.01
variable-type 45.55 5 1.05 2.01

raytrace 53.97 s c1ass-hierarchy 48.81 5 l.10 2.22
variable-type 48.26 5 l.11 2.22

db 131.015 class-bierarchy 127.11 s l.03 1.29
variable-type 127.11 s 1.03 1.29

mp€gaudio :iJ.S;j :i dd:Xt-ltj~rMchy
1

5û.Ôô ~ i.ûci 1..3-1
variable-type 50.61 5 l.06 1.34

jack 60.91 s class-hierarchy 61.81 s 0.98 1.87
variable-type 61.61 s 0.98 1.87

javac 68.40 s class-hierarchy 68.335 1.00 2.14
variable-type 67.00 s 1.02 2.14

sablecc 38.34 s class-hierarchy 36.76 s 1.04 1.50
variable-type 36.70 s 1.04 1.50

soot 126.67 s class-hierarchy 124.81 s l.01 2.29
variable-type 122.01 s l.03 2.29

Table 4.6: Measurements for automatic inlining using the JIT

Interpreter results for automatic inlining
Execution Time AnaJysls Used Execution Tlme Speedup Code
Before Inlining For Cali Graph After Inlining Increase

compress 441 s c1ass-hierarchy 450 s 0.98 1.23
variable-type 450 s 0.98 1.23

jess 109 s c1ass-hierarchy 106 s l.03 2.01
variable-type 106 s 1.03 2.01

raytrace 125 s class-hierarchy 54 s 1.08 2.22
variable-type 54 s 1.08 2.22

db 229 s class-hierarchy 2295 1.00 l.29
variable-type 229 s 1.00 1.29

mpegaudio 374 s c1ass-hierarchy 3905 0.96 1.34
variable-type 375 s l.00 1.34

jack 144 s c1ass-hierarchy 144 s 1.00 l.87
variable-type 144 s 1.00 1.87

javac 135 s c1ass-hierarchy 135 s 1.00 2.14
variable-type 1355 1.00 2.14

sablecc 45 s class-hierarchy 455 1.00 1.50
variable-type 455 1.00 1.50

soot 184 s class-hierarchy 1795 1.02 2.29
class-bierarchy 178 s 1.03 2.29

Table 4.7: Nleasurements for automatic inlining using the interpreter

88

•

•

•

more effective optimization on the JIT than on the interpreter and we feel that this
is the case for two reasons.

The first reason is that the JIT might be performing sorne simple analyses and
optimizations that become more effective on the inlined bytecode. Since we replace a
method caU instruction by code from the method, any intraprocedural analyses that
the JIT performs would be more precise. Nlethod caUs are a serious impediment for
performing simple analysesjoptimizations as the analyses would have to conserva
tively assume that any field could be written as a result of the calI. Also the greater
the size of basic blo~ks (straight line code), the greater the possibilities for efft:'ctive
instruction scheduling.

The second reason for the difference in speedups between the JIT and the inter
preter is the relative cost of different bytecode instructions in the two cases. Simpler
bytecode instructions like aload, or astore can easily be converted into register op
erations on a RISC architecture by a JIT. wlore complex bytecode instructions like
invokevirtual, or invokeinterface are compiled into a sequence of machine in
structions as they do not have direct counterparts in machine instructions. Thus
in the case of a JIT, simpler bytecode instructions are extremely cheap at ron time
whereas complex bytecode instructions are relatively more expensive. Nloreover \Vith
effective register allocation resulting in minimal register spiIIs, the cast of the sim
pler instructions can be further reduced. In the interpreter though, the relative costs
of these instructions are not expected to differ as much. The basic cost of inter
preting each bytecode must be paid for even the simple bytecode instructions, and
this means that the simple instructions are no longer as cheap as in the case of the
JIT. In fact the reduction in cost of the simple bytecode instructions in the case of
the JIT is significant as observed in the reduction in execution time for programs
(by severa! factors in sorne cases) as compared to the interpreter. Therefore in the
case of a JIT, eliminating expensive bytecode instructions like invokevirtual and
invokeinterface leads to considerable irnprovement in performance at run time.

We feel it is a combination of bath these factors that makes method inlining
such an effective optirnization when using the JIT. In the benchmark compress, that
shows the highest speedup in the case of the JIT, almost aIl the improvement cao
be attributed to inlining a few caIls within tight loops, where the program spends
most of its time. As we have shown the speedup obtained did not result in significant
increase in code size. This benchmark dernonstrates the effectiveness of our static
inlining strategy. Since our static inlining strategy focuses on optirnizing potential
"hot spots" in the program by detecting loops and recursion, inlining was in fact not

89

•

•

•

performed in many non-critical parts of the program limiting code explosion while at

the same time succeeding in speeding up the program. In fact there are severa! other
benchmarks (raytrace, mpegaudio, sablecc) where there are significant speedups

using the JIT without excessive code explosion. The slight slowdown in the case of

the benchmark jack couid be attributed to factors such as register pressure, which
might degrade performance in this benchmark after inlining. Note that there was a

slight slowdown for jack even when profile guided inlining was performed indicating
that it \Vas very sensitive to changes in the machine code being produced by the JIT.

Speedups obtained using the interprcter are a rough mcasure of the performance

impact of just eliminating the method invocation instruction. Unlike the JIT, there

are no analyses that might benefit from the effect of having larger basic blocks and

reduced number of method caUs. The interpreter can only gain as a result of having

fewer bytecode instructions ta interpret after inlining. Thus the benchmark raytrace
that has a large number of method caUs (mostly to srnall methods) shows the ma..'CÏ
mum speedup (1.08) using the interpreter as most of the calls were eliminated.

It is aiso interesting to observe that compress which showed a speedup of 1.21 \Vith

the JIT shows no improvement at aIl with the interpreter. This benchmark \Vas not

observed to be very object-oriented (refer to Table 4.1) and had many field accesses
and reiatively few virtuai caUs in the code. The lack of any impact in the case of the

interpreter confirms that simply eliminating the virtual call instructions alone \Vas

not enough to improve perfurmance. "'vVe believe that the substantial improvement in
performance with the JIT is because of the analysesjoptimizations performed by the

JIT on the inlined code.

Automatic inlining inevitably leads to sorne code increase as a static inlining

strategy must estimate the caUs that might get executed frequently using sorne static
heuristic. In our case~ aU the caU sites that could be reached from calI sites within

loops or in recursive methods are identified as important. If there are many call

sites inside loops in a method me) that is earlier in the caU chain, then aIl the call
sites in methods in the calI chain starting at method m() would be identified as

being important. In such cases the amount of code increase could be significant. The

maximum code increase is in the case of the benchmark soot where the code increases

by 129%. On average we can see that the amount of code increase with automatic

inlining is about 76% over all the benchmarks.

There are also sorne other important points that we observed while fine tuning our

static inlining strategy. \Vhile experimenting with different thresholds for allowable

90

•

•

•

method size for the caller method (into which inlining is being done) and the callee
method, we discovered that choosing these thresholds properly was crucial. If the
thresholds were too low (restricting the number of caU sites where inlining occurred),
we observed that inlining did not have any impact as most of the caUs that could be
eliminated were actually still present. If the thresholds were too high (allowing nlore
code growth while inlining more calI sites), then we observed significant slowdowns
(up ta 40% in sorne cases). These slowdowns were observed with much lesser code
growth in the case of the JIT than in the interpreter. The effects of slow local slots
(with the interpreter) in the bytecode were ooly observed in cases with high code
explosion. But in the case of the JIT, the slowdowns were observed even when the
allowed size of the callee method (for it to be inlined) was twice the average size of
methods in the application. This observation shows us the harmful effects of high
register pressure and cache misses, that become significant when basic blacks grow in
size. 1t is quite possible that not choosing these threshalds correctly would lead to a
reduction in speedup or even a slawdown in most benchmarks. These issues are very
significant when developing a static inlining strategy.

\Ve now discuss the impact of performing variable type analysis and using the call
graph praduced as a result to perform method inlining. As we see in the case of both
the interpreter and the JIT, variable type analysis has minimal effect in improving
performance in most of the benchmarks. This was a result to be expected as the
caU graph built using variable type analysis for the benchmark alone was not very
different from that built using class hierarchy analysis far many of the benchmarks.
"Ve observe an improvement in performance as a result of performing method inlining
using variable type analysis for the benchmarks soot (2%), and javac (2%) with the
JIT. From the benchmark characteristics we have presented in Tables 4.1 and 4.2, it

can be observed that soot and javac are the twa benchmarks that have a complex
inheritance hierarchy and many virtual caUs unresolved by class hierarchy analysis.
Thus variable type analysis does not directly improve the performance in the case
of most of the benchmarks we experimented with, though in the case of more object
oriented benchmarks, it does have sorne effect. We feel that the extra precision of the
call graph as a result of performing variable type analysis can only be exploited ta a
certain degree by method inlining (there are other factors ta be considered too while
inlining). In general, interprocedural analysesjoptimizations would benefit from the
extra precision and method inlining is just one of these optimizations.

91

•

•

•

4.6.2 Profile Guided l\IIethod Inlining

Measurements using the JIT
Automatic inlining Profile guided inlining

Execution Time Speedup Code Speedup Code
Before Inlining Increase Increase

compress 66.88 s 1.21 1.23 1.21 1.06
jess 48.17 s 1.05 2.01 1.05 1.16
raytrace 53.97 s l.10 2.22 1.12 1.79
db 131.01 s 1.03 1.29 1.05 1.09
mpegaudio 53.95 s 1.06 1.77 1.07 1.10
jack 60.91 s 0.98 1.87 0.99 1.09
javac 68.40 s 1.00 2.14 1.02 1.42
sablecc 38.34 s 1.04 1.50 1.05 1.17
soot 126.67 s 1.01 2.29 1.03 1.60

Table 4.8: Comparison between automatic inlining and profile guided
inlining using the JIT

In Table 4.8 we have shown our run time measurements using the JIT before and
after performing profile guided method inlining, and for comparison, we also show the
same measurements before and after automatic inlining. In column 1 we have shawn
the execution time of the benchmark originally, In columns 2 and 3 we have shown the
calculated speedup and factor by which code size increased when automatic inlining
was performed. In column 4 we have shown the speedup with profile guided inlining,
and in column 5 we have shown the factor by which code size increased as a result of
performing profile guided inlining.

The results from profile guided inlining show that we have an average speedup of
around 1.06 and a maximum speedup of 1.21 for the benchmark compress in the case
of the JIT. We have not presented the results with the interpreter as the performance

improvements were not substantial in that case (for reasons we have discussed in the

previous section) and the differences between profile guided inlining and automatic
inlining were insignificant.

vVe notice that the speedups obtained by profile guided inlining are approximately

the same as the speedups obtained through automatic inlining for all the benchmarks.

The speedups obtained by profile guided inlining differ most Crom those obtained using

92

•

•

•

automatic inlining for the benchmarks raytrace(2%), and soot(2%). These results
highlight the effectiveness of our static inlining strategy in finding the calls that were
important to optimize. In general it is more elegant to optimize the program without
profile feedhack, as profiling usually requires sorne user interaction (to collect the
profile).

The amount of code increase in the case of profile guided inlining is expected
to he minimal as only the calls that got executed frequently in the profile run get
optimized. 'VVe see this hehavior in practice and the ma..ximum code increase is in the
case of the benchmark raytrace where the code increases by 79%. \Vhen automatic
inlining is used, the maximum code increase was by 129% for the benchmark scot.
On average we can see the amount of code increase is greater for automatic inlining
by about 25% over all the benchmarks as compared to the average code increase with
profile guided inlining.

93

•

•

•

Chapter 5

Conclusions and Future Work

In this thesis, we have focused on reducing the overhead associated with virtual
method caUs in Java bytecode. The first main contribution of this thesis was the de
sign and implementation of reaching type analysis. Two variations of reaching type
analysis, declared type analysis and variable type analysis, were implernented and
studied in detail. The second main contribution of this thesis was the implementa
tian of the compiler optimization, method inlining, and the study of its impact in
improving the performance of programs compiled ta Java bytecode. vVe now discuss
our conclusions and scope for future work in bath these areas of study.

5.1 Analyses for virtual calI resolution

"vVe have developed and implemented a new flow-insensitive analysis, called reaching
type analysis that can be used ta estimate the possible types of receivers in virtual and
interface method caUs in Java. Reaching-type analysis is based on a type propagation
graph where nodes represent variables and edges represent the flo\v of types due to
assignments. Two variations of the analysis were presented, variable type analysis
that uses the name of the receiver as its representative, and declared type analysis
that uses the declared type of a receiver as the representative.

vVe presented the analysis rules with examples for the two variations of reaching
type analysis. vVe have implemented both variations of reaching-type analysis in
the Soot framework, that translates bytecade into typed three-address code. vVe
have also implemented two analyses that are weIl known as effective and inexpensive

94

•

•

•

techniques for calI graph construction, namely class hierarchy analysis and rapid type
analysis. We have studied the effectiveness of these four analyses on a set of real
world applications compiled ta Java bytecode from Java, ~IL, Ada, Eiffel and Pizza.

AlI four analyses implemented by us require complete applications; so they require
all the bytecodes in a benchmark to be available. Therefore they do not handle
applications where classes can be dynamically loaded, but we feel that optimizing
complete applications is reasonably important for several classes of applications like
editors, compilers, and server side applications.

For each benchmark, class hierarchy analysis was used ta build an initial conser
vative calI graphe NIeasurement of these graphs indicated that though class hierarchy
analysis led to a call graph that is reasonably sparse \Vith a majority of calI sites re
solving to a single method, there was still scope for further improvement. vVe applied
rapid type analysis, variable type analysis and decIared type analysis starting from
the initial call graph built by class hierarchy analysis, and found that a significant
number of nodes and edges could be rernoved. Variable type analysis gave the best
results removing 12% to 35% edges and 10% ta 65% nodes from the conservative caB
graphe Further variable type analysis also resolved 33% to 94% of the potentially
polymorphie caUs sites (after CHA) to one method (or discovered that they target no
method as it is statically known that they are cannot be executed). vVe concluded
that the results achieved by variable type analysis are better than those achieved by
rapid type analysis in the benchmark code.

In order ta further investigate the effectiveness of these analyses. we studied the
dynamic behavior of the benchmark code alone. In this case, rapid type analysis
and declared type analysis did not have much effect at aU, though variable type
analysis did show improvement, in sorne cases approaching the best possible result.
vVe concluded that the extra granularity of variable type analysis over the other
analyses was crucial. In some other cases, variable type analysis performed weIl as
compared to the other analyses but there was still a substantial gap between the
dynamic profile and static result of the analysis. vVe have presented sorne reasons for
this gap, and we do not feel that a simple refinement of our analyses will be able ta
bridge the remaining gap.

"Ve pian to study the effectiveness of pessimistic caU graph construction schemes
and compare them to the optimistic calI graph construction schemes in depth in
the future. Our implementation of rapid type analysis is a pessimistic version of
the algorithrn where edges are removed from a conservative call graph constructed

95

•

•

•

by class hierarchy analysis. We are currently implementing an optimistic version of
rapid type analysis in order to compare it with variable type analysis. Preliminary
results show that there is very little effect between the optimistic and pessimistic
approaches in terms of caU graph improvement in the benchmark code. In the library
code, optimistic rapid type analysis seemed to perform better than the pessimistic
scheme. We are also planning an implementation of optimistic variable type analysis
and we feel that such an analysis would be harder to implement and more expensive
in practice as compared ta our CUITent implementation of variable type analysis which
scales linearly with the size of the program. We would \Vant to stnrly a lo~al t.ypP

propagation algorithm that would be intraprocedural and wouid approxirnate the
effect of method caUs and use this analysis for virtual calI resolution.

vVe would also be interested in studying the effect of applying variable type analy
sis to prune the call graph before other interprocedural analyses use it. The increased
precision might lead ta other optirnizations like loop invariant rernoval and cornrnon
subexpression elimination being enabled leading to a more tangible impact on per
formance.

5.2 Method inlining

vVe implemented method inlining, an optimization airned at improving performance
of bytecode. ~'1ethod inlining involves replacing a method invocation instruction by
the code of the method that it invokes (if it can be determined at compile time). We
provided a detailed and clear specification of the safety issues that are specifie ta per
forming method inlining at the Java bytecode level. vVe also discussed sorne important
inlining criteria and our own static inlining strategy. Our automatic inlining strategy
is based on detecting potentially important caU sites to inline by examining methods
for caUs within loops and recursive methods. This approach aims to only perform
inlining selectively at potentially important caU sites, and thus avoids unnecessary
code increase. We observed an average speedup of 5% over our set of benchmarks,
and a maximum speedup of 21% using the JIT. Using the interpreter we observed
a speedup of about 2% on average and about 10% in the best case. vVe concluded
that the JIT performs sorne analyses/optimizations while executing the bytecodes,
and inlining improves their effectiveness. The performance improvement with the
interpreter is roughly the effect of simply eliminating the virtual caU instruction as
the interpreter does not perform any optimizations.

96

•

•

•

In the future, we are planning to study the effect of other optimizations similar to
inlining like conversion of the virtual calI to a static call. As the safety restrictions for
sucb an optimization would be fewer, we might be able to optimize more caBs without
excessive code increase. Another optimization we are interested in is receiver class
prediction, where a call is statically determined ta potentially invoke a smaIl number
of methods at run-time. Run time type inclusion tests and conversion of virtual caUs
to static caUs could he used to optimize these virtual caBs.

97

•

•

•

Appendix A

Analysis rules for VTA

98

•
The enclosing me~hod and clasa in vhich the s~atemen~s shovn belov appear
are assumed ta be mO and C respectively. The variables p, q and r
represent locals or forma! parametera in the method m, the variables
pa and qa are array variables. f is a reference to aD instance field,
fa is an instance field variable that ia of array type, c is a constant
of a reftype (e.g. string conatants), i and j are integers.
Rules involviDg arrays are shawn here for only one dimensiona! arrays
but they can be generalized to be applicable for multi dimensional arraya
in exactly the same manner.)

Jimple Statement

1- p =nev P;
2. pari] =nev P;

3. pa =nev PC10]:

4. p.f =nev P;

5. p.h. =Dev P(10);

6. p =q;
p =(P) q;

• 7.

8.

P =pa(i):
p • (P) pa (i] ;

pa(i] • Pi
pa [il • (p) p;

Effect on Constraint Graph

add the type P to the set InstanceTypes of signature (m)Sp;
add the type P to the set InstanceTypes of signature (m)Spa;

add the type P to the set InstanceTypes of signature (m)Spa:

add the type P to the let InstanceTypes of f:

add the type P to the set InstanceTypes of fa:

add an edge from rightnode to signature(m)Sp;
add an edge from signature(m)Sp ta rightnode if
((q or p ia of array type) Il
(p and q are declared to be of type java.lang.Object))i
(rightnode =CSthis if q ES this

rightnode • signature(m)Sq othervise)

add an edge from signature(m)Spa to signature(m)'pi
add an edge from lignature(m)Sp ta signature(m)'pa if
((paCi] or p is of array type) Il
(p and paCi] are declared to be of type java.lang.Object))i

add an edge from rightnode ta lignature(m)Spa;
add an edge from signature(m)'pa to rightnode if
((p or pari] is of array type) 11
(p and paCi] are declared to be of type java.lang.Object));

(rightnode • CSthis if P =- this
rightnode • signature(m)Sp othervise

9. pari] =qaCj):
pa[i) = (P) qa(j];

10. p • c',
p • (p) c;

add an edge from signature(m)'qa to signature(m)Spa;
add an edge from signature(m)'pa ta signature(m)Sqa if
((qa[j] or pari] is of array type) Il
(pari] and qa(j] are deelared to be of type java.lang.Object));

add the type of the constant c, lay C to the
set InstaneeTypes of signature(m)'p;

•

Figure A.l: Rules for Variable Type Analysis

99

• Jimple Statement

11. pari] .. c:;
paU] . (P) c;

12. p.f .. c;
p.f .. (P) c;

13. p.f .. q;
p.f .. (p) q;

14. P" q.f;
P :: (P) q.f;

15. pa[i]· p.f:
pari] .. (P) p.t;

Effect on Constraint Graph

add the type of the constant Ct say C to the
set InstanceTypes of signature(m)lpa;

add the type of the constant c:, say C to the
set rnstanceTypes of f;

add an edge from rightnode to f;
add an edge from f to rightnode if
((q or p. f ia of array type) [1
(p.f and q are declared to he of type java.lang.Object));
(rightnode .. CSthis if q -= this

rlghtnode • signature(IIl)lq otbervise

add an edge trom f to signature(m)lp;
add an edge trom signatureCm)Sp to f if
C C q.f or p is of array type) Il

C q.f and p are declared to be of type java.lang.Object));

add an edge from t to signature(m)Spa;
add an edge from signature (m)'pa to f if
(C p.f or pari] is of array type) Il

(p.f and pari] are declared to be of type java.lang.Object));

•

16. p.f" pari];
p.f" (P) pari];

17. return p;

18. return c:;

19. q.method(r);

add an edge from signature Cm) 'pa to f;
add an edge trom f to signatureCm}tpa if
((p.f or pari] is of array type) Il

(p.f and pari] are declared to be ot type java.lang.Object ,;

add an edge trom rigbtnode to signature Cm) treturn;
add an edge trom signature(m)'return to rightnode if
((p la of array type) Il

(p is declared to be of type java.lang.Object);
(rightnode • Ctthis if P .. this

rightnode • signature(IIl)Sp othervise)

add the type of the constant c:, say C to the
set InstanceTypes of signature (m)lreturn;

tor (i .. 1; i < N+t; i++)
{

add an edge trom rightbasenode to Ci'thi.:
add an edge trom rightparamnode to signature(methodi)lpl;
add an edg. from .ignature(lIlethodi)'pl to rightparamnode if
((r or pl is of array type) Il

(r and pl are declared to he of type java.lang.Object));
}

•

rightbasenode • Clthis if q .. thi•
.. signature(m)tq otbervis.

rightparamnode • Ctthis if r .. this
.. signatureCm)tr othervi.e)

Ci ia the class in whicb the ith lIlethod attached to thil callsite (lIlethodi)
in the conservative calI graph il declared.
There are N lIlethods in all attached to this callsite in the conservative calI graphe
pl ia the first forma! parameter in the definition of methodi)

Figure A.2: Rules for Variable Type Analysis (continued)

100

• Jimple Statement

20. q.me~hod(c);

Etfec~ on Constraint Graph

for (i • 1; i < 5+1; i++)
{

add an edge from rightbasenode to Ci'this;
add the type of c, say C to the set
InstanceTypes of signature(methodi)Spl;

}

{ rightbasenode • CSthis if q .. this
• signature{m)'q othervise

Ci is the class in vhich the ith method attached ta this c&llsite (methodi)
in the conservative c&ll graph ia declared.
~a.a a:a ~ :a:~c~~ iM ~ a::~~had :~ :~i3 ~allsit•.
pl is the first forma! parameter in the definition of methodi

21. p. q.method(r); for (i = 1; i < 5+1; i++)
{

add an edge from rightbasenode to CiSthis:
add an edge from signature(methodi)Sreturn to signaeure(m)'p;
add an edge from signature(mi)'p to signature(methodi)'return if
((P il ot array type) Il
(p i. declared to be of type java.lang.Object));
add an edge from rightparamnode to aignature(methodi)'p1;
add an edge from signature(methodi)Spl to rightparamnode
((r or pl is of array type) Il
(r and pl are declared to be ot type java.lang.Object) };

•
}

rightbasenode • CSthia if q -= thia
= ,ignature(m)Sq othervise

rightparamnode =CSthis if r za this
• lignature(m)Sr othervise

(Ci i. the claa. in vhich the ith method attached ta this c&llsite (methodi)
in the conservative call graph is declared.
There are 5 methods iD all attached to this callsite.
pl is the tirst tormal parameter in the definition of methodi

22. P =q.method(c); for (i = 1: i < H+l: i++)
{

add an edge from rightb.senode to CiSthis:
.dd an edge from signature(methodi)Sreturu to signature(m}Sp:
add an edge trom signature(mi)'p ta .ignature(methodi)'return if
{ (p ia of array type) Il
(p is declared to be of type java.lang.Object)):
add the type of c, say C to the set InstanceType. of signature(methodi)Spl;

}

•

(rightbasenode • CSthis if q .. th!s
• aignature(m)Sq othervise

(Ci ia the clas. in vhich the ith method attached to this callsite (methodi)
in the conservative calI graph i. declar.d.
There are H m.thods iD all attach.d to this callsite.
pl i. the first formal parameeer in the definition of methodi

Figure A.3: Rules for Variable Type Analysis (continued)

101

./

•

•

•

Appendix B

Analysis rules for DTA

102

• C The enclosing method and elus in vhieh the atatqenta show belov appear
are assumed to be mC) and C respectively. The variables p. q and r repreaent
locals or tormal parameters in the method m. the variables pa and qa are
array variables. t is a reference to an tn.tance field, fa is an instance field variable
that ia of array type, c is a constant of a reftype (e.g. string constants)

, i and j are iDtegers. Rules involving arrays are shovn here for only one dimenaiol1&1
arrays but they cau be generalized to be applicable for multi dimensiona! arrays in ezactly the same manDer.)

Jimple Statment

1. p :1 nev p.

2. paU] Il nev Pi

3. pa .. nev P(lO].

4. p.! .. nev P;

5. p.fa .. nev P(lO].

6. P .. q.
P .. (P) q;

•
7. P .. pa(i];

p .. (P) pa[i];

8. pari] .. p;
pari] .. (P) p;

Effect on ConstraiDt Graph

add the type P to the set InltanceTypes of
OeclaredType(p);

add the type P to the set InltaDceTypes of
DeclaredType(pa(i]);

add the type P to the set InstaDceTypes ot
DeclaredType(pa);

add the type P to the set Inlt&DceTypes of
DeclaredType(p.f);

add the type P to the set InltaDceTypes of
DeclaredType(p.fa);

add an edge trom rightnode to OeclaredTypeCp);
add an edge trom DeclaredTypeCp) to rightnode
if C q or p is of array type);

rightnode :1 Ctthis if q == this
rightnode :1 OeclaredTypeCq) othervise

add an edge trom OeclaredType(pa(i]) to DeclaredType(p);
add an edge from DeclaredTypeCp) to OeclaredType(pa(i])
if C pari] or p is of array type);

add an edge from rightnode to OeclaredType(pa(i]);
add an edge trom OeclaredType(pa(i]) to rightnode
if (P or paCi] is of array type);

rightnode :1 Ctthis if P ~ this
rightnode :1 DeclaredTypeCp) othervise

9.

10.

paU] • qa(j];
pa(i] .. (P) qa(j];

p • c;
P :1 (P) c.

add an edge from OeclaredType(qa(j]) to DeclaredType(pa(i]);
add an edge from OeclaredType(pa(i]) to DeclaredTypeCqa(j]);
if C qa(j] or pari] ia of array type);

add the type of the constant c, say C to the
set InstanceTypes of Dec:laredType(p);

•
Figure B.l: Rules for Declared Type Analysis

103

• Jimple Stateent

lI. pari] ,. c;
pari] • (p) C',

12. p.t = c;
p.t =(p) c',

13. p.t ,. q;
p.t = Cp) q;

Eftect on Conatraint Graph

add the type ot the constant c, say C ta the
set InstaneeTypes ot OeclaredType{pa[i]);

add the type of the constant c, say C ta the
set InstaneeTypes ot OeelaredType{p.t);

add an edge tram rightnode ta OeelaredType(p.f);
add an edge tram OeelaredTypeCp.f) to rightnode it
(q or p.t is of array type);

~igh~n~d~ • ~tthi~ if 1 .. thi~

rightnode ,. OeclaredType{q) othorvile

•

14.

15.

16.

17.

18.

19.

p :z q.f;
p :z CP) q.t;

pari] >2 p.f;
pari] ,. CP} p.t;

p.f ,. paCi];
p.f :z CP) pari];

return pj

return Cj

q.methodCr);

add an odge trom OeclaredTypeCq.f) to OeclaredType(p);
add an odge trom OeclaredTypeCp) to OeclaredType(q.t) if
C q.f or p is ot array type)i

add an edge from OeclaredTypeCp.f) to OeclaredTypeCpa[i]);
add an edge from OeelaredTypeCpa[i]) ta OeelaredType(p.f} if
C p.f or paCiJ is of array type);

add an edgo from OeclaredTypeCpa(i]) ta OeclaredTypeCp.f);
add an odgo from DeelaredTypeCp.f) to OoclaredTypeCpa(iJ} if
C p.f or pari] il of array type)i

add an odge from rightnode to
lignature(m)Sreturn;
add an edge from signatureCm)Sreturn torightnode
if ((P il of array type) Il
Cp is declartd ta be of type java.lang.Objeet);

rightnode ,. CSthis if P == this
rightnode • OeelaredType(p) othervise

add the type of the constant c, say C ta the
let InstaneeTypes ot signature (m)Sreturn;

for (i ,. 1; i < N+l; i++)
{

add an edge from rightbaaenode to CiSthil;
add an edge from rightparamnode ta
OeclaredTypeCpl);
add an edge from OeclaredType(pl) to
rightparamuode if
(r or pl is of array type)i

}

•

C Ci ia the claas in vhich the ith method .ttached ta thil eallsite C methodi)
in the consorvative cali graph ia declared.
There are Mmethodl in all attached to this callsite.
pl il the firlt formai parameter in the definition of methodi
(rightbaaenode ,. CSthis if Cl == this

rightbasenode ,. DeclaredType(q) othervise)
rightparamnode = CSthil if r == this
rightparamnode =OeclaredTypeCr) othervise)

Figure B.2: Rules for Declared Type Analysis (continued)

104

•
20. q.lDe~hodCc) i for C i ~ 1: i < K+l: i++)

{

add an edge from rightbasenode to CiSthis:
add the type of c, say C to the set InstanceTypes of
OeclaredTypeCpl):

}

rightbaaenode • C$thia if q .. this
rightbasenode =Dec1aredTypeCq) othervile)

C Ci is the class in vhich the ith method attached to this callsite C methodi)
in the conservative caU graph ia dec1ared.
There are N methods in all attached to thi. callsite.
pl il the firs~ forma! parameter in the definition of methodi

21. p ~ q.methodCr): for C i ~ li i < N+l: i++
'\.

add an edge frOID rightbasenode to CiSthis;

add an edge frOID signatureCmethodi)$return to
OeclaredTypeCp);
add an Idge from OeclaredTypeCp) to
signatureCmethodi)$return if
((p ia of array type) Il Cp i. declared ta be of type

java.lang.Object)):

•

add an edge from rightparamnode to
OeclaredTypeCpl)j
add an edge from OeclaredType(pl) to
rightparamnode if
(r or pl il of array type);

}

(Ci is the class in vhich the ith method attached to this callsite (methodi)
in the con.ervative call graph ia declared.
There are N methoda in al1 attached to this callaite.
pl is the first forma! parameter in the definition of methodi)

C rightbasenode • CSthis if q == this
rightbaslnode • Oec1aredTypeCq) otherviae)
rightparamnode • C$~his if r ~ this
rightparamnode • DeclaredTypeCr) otbervise)

22. p • q.method(c): for Ci. li i < N+l; i++)
{

add an Idge from rightbasenode ta CiSthis;

add an Idge from signaturICmethodi)$return ta
OeclaredType(p);
add an edge from OeclaredTypeCp) ta
lignatureCmethodi)Sreturn if
(P is of array type);

add the type of c, say C ta the aet InstaneeTypes of
OeclaredType(pl);

}

•

C Ci ia the class iD vhich the ith method attached to this callsite C methodi)
in the conservative call graph ia dec1ared.
There are N me~hCids iD al1 attached to this callaite.
pl ia the first forma! parameter in the definition of methadi

C rightbasenode =CSthis if q == this
rightbasenode =Dec1aredType(q) othervile)

Figure B.3: Rules for Declared Type Analysis (continued)
105

•

•

•

Bibliography

[1] URL: http://Mvw.sable.mcgill.ca/soot/.

[2] URL: http://mvw.transvirtual.com/kaffe.html.

[3] URL: http://www.sable.mcgill.ca/sablecc/ .

[4] URL: http://SmallEiffel.loria.fr/.

[5] URL: http://research.persimmon.co.uk/mlj/.

[6] URL: http://wwwipd.ira.uka.de/-pizza/ .

[7] Ole Agesen. Constraint-based type inference and parametric polymorphism. In
Baudouin Le Charlier, editor, SAS'94-Proceedings of the First International
Static Analysis Symposium, volume 864 of Lecture Notes in Computer Science.
pages 78-100. Springer, 28-30 September 1994.

[8] Ole Agesen. The Cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Walter G. Olthoff, editor, ECOOP 195-0bject
Oriented Programming, 9th European Conference, volume 952 of Lecture Notes in
Computer Science, pages 2-26, Aarhus, Denmark, 7-11 August 1995. Springer.

[9] Gerald Aigner and Urs Bolzle. Eliminating virtual function caBs in C++ pro
grams. In Pierre Cointe, editor, ECOOP'96-0bject-Oriented ProgramTTLing,
10th European Conference, volume 1098 of Lecture Notes in Computer Science,
pages 142-166, Linz, Austria, 8-12 July 1996. Springer.

[10] R. Allen and S. Johnson. Compiling C for vectorization, parallelization, and
inline expansion. In David S. Wise, editor, Proceedings of the SIGPLAN 188
Conference on Programming Lanugage Design and Implementation (SIGPLAN
'88), pages 241-249, .-\tlanta, GE, US.>\., June 1988. AC~I Press.

106

•

•

•

[11] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlining. In
Proceedings of the ACM SIGPLAN Conference on Programming Language De
sign and Implementation (PLDI-97), volume 32, 5 of AGM SIGPLAN Notices,
pages 134-145, New York, June 15-18 1997. ACrvI Press.

[12] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function caUs. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, volume 31,10 of AGM SIGPLAN Notices,
pages 324-341, New York, October 6-10 1996. AC~I Press.

[13] Brad Calder and Dirk Grunwald. Reducing indirect function calI overhead in
C++ programs. In 21st Symposium on Principles of Programming Languages,
pages 397-408, January 1994.

[14] Paul R. Carini. Automatic inlining. Technical Report Re 20286, IBN! T.J.
\Vatson Research Centre, IBrvI Research Division, November 1995.

[15] Craig Chambers, David Grove, Greg DeFouw, and Jeffrey Dean. CalI graph
construction in object-oriented languages. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applica
tions (OO?SLA-97), volume 32, 10 of ACM SIGPLAN Notices. pages 108-124,
New York, October 5-9 1997. ACNI Press.

[16] Pohua P. Chang, Scott A. NIahlke, \Villiam Y. Chen, and \Ven-lvIei VV. Hwu.
Profile-guided automatic inline expansion for C programs. Software Practice
and Experience, 22(5):349-369, ivIay 1992.

[17] Keith D. Cooper, rvIary \V. Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105-117, April 1993.

[18] Keith D. Cooper, i\tIary "YV. Hall, and Linda Torczon. An experiment \Vith inline
substitution. Software Practice and Experience, 21(6):581-601, June 1991.

[19] Keith D. Cooper, Nlary W. Hall, and Linda Torczon. Unexpected side effects of
inline substitution: a case study. ACM Letters on Programming Languages and
Systems, 1(1):22-32, Nlarch 1992.

[20] Jack "V. Davidson and Anne NI. Holler. A study of a C function inliner. Software
Practice and Experience, 18(8):775-790, August 1988.

107

•

•

•

[21] J. Dean and C. Chambers. Training compilers to make better inlining decisions.
Technical Report TR 93-05-05, University of Washington, 1993.

[22] Jeffrey Dean, Greg DeFouw, David Grave, Vassily Litvinov, and Craig Chambers.
VORTEX: An optimizing compiler for object-oriented languages. In Proceedings
OOPSLA '96 Conference on Object-Oriented Programming Systems, Languages,
and Applications, volume 31 of ACM SIGPLAN Notices, pages 83-100..ACNI,
October 1996.

[23J Jeffrey Dean, David Grave, and Craig Chambers. Optimization of obj~ct-ori~nt.~rl
programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP'95-0bject-Oriented Programming, 9th European Conference, volume
952 of Lecture Notes in Computer Science, pages 77-101, Aarhus, Denmark,
7-11 August 1995. Springer.

[24] Amer Diwan, J. Eliot B. lvloss, and Kathryn S. McKinley. Simple and effective
analysis cf statically-typed object-oriented programs. In Proceedings of the Con
ference on Object-Oriented Programming Systems, Languages, and Applications,
voLume 31, 10 of ACM SIGPLAN Notices, pages 292-305, New York, October 6
10 1996. ACNI Press.

(25) wlary F. Fernandez. Simple and effective link-time optimization of wlodula-3
programs. In Proceedings of the ACM SIGPLAN '95 Conference on Programming
Language Design and Implementation, pages 103-115, La Jalla, California~ June
18-21, 1995. SIGPLAN Notices, 30(6), June 1995.

[26] Etienne Gagnon and Laurie J. Hendren. Intra-procedural inference of static
types for java bytecode. Technical Report 1999-1, Sable Research Group, School
of Computer Science, McGill University, ~Iarch 1999.

[27] ~Iary 'vV. Hall and Ken Kennedy. Efficient caU graph analysis. ACM Letters on
Programming Languages and Systems, 1(3):227-242, September 1992.

[28] Anne NI. Holler. A Study of the EfJects on Subprogram Inlining. PhD thesis,
University of Virginia, Charlottesville, Virginia, USA, Nlarch 1991. Computer
Science Report No. TR-91-06.

[29] Urs H6lz1e and David Ungar. Optimizing dynamically-dispatched caUs with run
time type feedback. In Proceedings of the Conference on Programming Language

108

•

•

•

Design and Implementation, pages 326-336, New York, NY, USA, June 1994.

ACM Press.

[30] Arun Lakhotia. Constructing caU multigraphs using dependence graphs. In Con
ference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 273-284, Charleston, South Car

olina, January 10-13, 1993.

[31] Wen mei W. Hwu and Pohua P. Chang. lnline function expansion for compiling C

programs. In Bruce Knobe, editor, Proceedings of the SIGPLA1V '89 Conference
on Programming Language Design and Implementation (SIGPLAN '89). pages

246-257, Portland, OR, USA, June 1989. ACNI Press.

[32] Jens Palsberg and Michael 1. Schwartzbach. Object-Oriented Type Inference.
In Proceedings of the OOPSLA '91 Conference on Object-oriented Programming
Systems, Languages and Applications, pages 146-161, November 1991. Published

as AC~I SIGPLAN Notices, volume 26, number 11.

[33] J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented
languages. ACM SIGPLAN Notices, 29(10):324-324, October 1994.

[34] Stephen Richarqson and Nlahadevan Ganapathi. Interprocedural analysis vs .
procedure integration. Information Processing Letters, 32(3):137-142. August
1989.

[35] Barbara G. Ryder. Constructing the caU graph of a program. IEEE Transactions
on Software Engineering, 5(3):216-226, Nlay 1979.

[36] Olïn Shivers. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN
'88 Conference on Programming Language Design and Implementation. pages

164-174, Atlanta, Georgia, June 22-24, 1988. SIGPLAN Notices, 23(7). July

1988.

[37] Olîn Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie-wIellon University, J\tIay 1991.

[38] Tucker Taft. Programming the Internet in Ada 95. In Alfred Strohmeier! editor,

Reliable software technologies, Ada-Europe '96: 1996 Ada-Europe International
Conference on Reliable Software Technologies, Montreux, Switzerland. June 10
1..1., 1996: proceedings, volume 1088, pages 1-16, 1996.

109

