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Abstract

Mathematical models and numerical solution methods for the computer simulation

of solid particle trajectories in flows of molten aluminum subjected to steady, uniform,

electric and magnetic fields are presented in this thesis. The underlying subject is

electromagnetic (EM) filtration ofmolten metals.

Attention is focused on steady, laminar, fully developed flows of molten

aluminum inside a straight separation chamber ofuniform rectangular cross-section. The

walls of this chamber are assumed to be electrically non-conducting. The investigation is

limited to solid inclusions (particles) that are electrically non-conducting and have an

effective diameter in the range 5 lJ.In to 100 lJ.In. Steady, uniform, electric and magnetic

fields are prescribed, and the induced currents are assumed to be negligible.

Mathematical models of three-dimensional parabolic (developing) and fully

developed flows of molten aluminum in the separation chamber are provided,

nondimensionalized, and discussed. A rudimentary model of the magnetohydrodynamic

(MHD) flow is proposed, in which Maxwell's equations are decoupled from the Navier­

Stokes equations. The particle momentum equation is presented, nondimensionalized,

and discussed in detail.

The fluid flow problem is solved using a control-volume finite element method

(CVFEM). The particle momentum equation is solved using a fourth-order Runge-Kutta

(RK) method. An efficient method is proposed for locating the particle in the finite

element mesh during the RK integration ofthe particle momentum equation.

The proposed methods are applied to four test problems, and the results are

compared to those obtained using analytical and numerical solutions available in the

literature. FinaUy, the scope of the proposed methods and sorne of the possibilities they

offer are explored by applying them to a simple electromagnetic system for the separation

ofsolid inclusions from molten aluminum.
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Résumé

Ce travail de thèse présente la fonnulation mathématique et les méthodes

numériques utilisées dans la simulation des trajectoires de particules dans les écoulements

d'Aluminium en fusion"soumis à des champs électriques et magnétiques stationnaires et

uniformes. Ce sujet entre.dans le cadre des études menées dàns.le .domaine de la filtration

électromagnétique (EM) des métaux en fusion.
. .

Une attention particulière est accordée aux écoulements stationnaires laminaires

pleinement développés d'Aluminium en fusion dans une chambre de séparation droite à

section rectangulaire constante. Les parois de la chambre sont électriquement non­

conductrices. L'investigation se limite aux inclusions solides 'non conductrices

d'électricité et de diamètre effectif variant entre 5 J.1ffi .et 100 Jlrn. Deschamps

électromagnétiques stationnaires et uniformes sont imposés et les courants induits sont

supposés négligeables.

Les modèles mathématiques des équations tridimensionnelles adimensionalisées

des écoulements paraboliques (non-établis) et pleinement développés d'Aluminium en

fusion dans la chambre de séparation sont présentés et commentés. Un modèle

rudimentaire d'écoulement magnétohydrodynamique (MHD) est proposé, dans lequel les

équations de Maxwell et de Navier-Stokes sont découplées. L'équation de quantité de

mouvement des particules est présentée et discutée en détail.

Le problème d'écoulement fluide est résolu en utilisant une méthode au éléments

finis/volumes de contrôle (CVFEM). L'équation de quantité de mouvement des particules

est résolue au moyen de la méthode de Runge-Kutta (RK) du quatrième ordre.

Une méthode efficace de localisation de la particule dans le maillage aux éléments finis,

en cours de l'intégration RK de l'équation de quantité de mouvement de la particule, est

de même présentée.

Les méthodes proposées sont appliquées à quatre cas tests et les résultats sont

comparés à ceux obtenus par des méthodes analytique et numérique rencontrées en

littérature. Finalement, le but des méthodes proposées et les possibilités qu'elles offrent

sont explorés à travers leur application à un système électromagnétique de séparation

d'inclusions solides dans de l'Aluminium en fusion.
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Chapter 1

Introduction

1.1 Objectives

The main aim of this thesis is the formulation, implementation, and testing of·

sorne eomputational techniques for numericalstudies of particletrajeetories in molten

aluminum subjeeted to applied electric and magnetic fields. .The underlying subjeet is

eleetromagnetic (EM) filtration of molten metals for the purpose of produeing ultra-clean

materials. Attention in this work is focusedon computer simulations of fully developed .

flows inside a separation ehamber and the modeling of particle trajeetoriesjn the molten

aluminum.

First, an available control-volume finite element method (CVFEM) for the

solution of two-dimensional, steady-state, diffusion problems was modified toenable the

calculation of laminar, fully developed flows of Newtonian fluids in straight duets of

constant eross-section. Then, a rudimentary magnetohydrodynamies model was

formulated and ineorporated into the aforementioned CVFEM, and then used to study the

effeets of applied eleetrie and magnetic fields on fully developed flows of molten

aluminum. In this model, steady, uniform field strengths were preseribed, and it was

assumed that the induced fields are negligible. This assumption allowed the formulation

of a simplified magnetohydrodynamie model, in whieh Maxwell's equations are

decoupled from the Navier-Stokes equations, and the electromagnetic force is

incorporated into the Navier-Stokes equations as a volumetrie source term.

Next, a particle momentum equation was formulated and examined to determine

which forces have a signifieant impact on the particle trajectories. In the final

simulations, the following forces were included: drag, buoyancy, virtual mass, Basset,

lift, and eleetromagnetic (EM) forces. The trajectories of particles in the flow of molten

aluminum were obtained by solving the particle momentum equation, using a fourth-order

Runge-Kutta scheme. In the numerical implementation of this scheme, an algorithm

suggested by Ren et al. (1995) was modified and adapted to locate the particle in a three-
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dimensional finite element mesh, check whether the particle has reached a domain

boundary, and determine local tluid velocities during the integration sequence.

1.2 Background and Motivation

The presence of solid impurities such as oxides and other non-metallic inclusions

in metals can negatively impact the reliability and·performance of processing operations

and their products. Such impurities are particularly detrimental on fatigue strength and

creep life of materials that are used at high temperatures (El-Kaddah et al., 1995).

Inclusions of only a few microns in size can also be detrimental to surface finish and to

the strength of materials subjected to high deformation rates and exhtbiting small cross­

sections (Shivkumar et al., 1991). Thus, progress in modern metals-processing technology

is critically intluenced by the ability to remove such harmful inclusions from the molten

meta1.

A key role of refining metallurgy is the removal of impurities and inclusions from

molten metals. The impurities may include bits of the raw materials (ores) used in the

metal extraction process, and materials picked up during the refining process itself - from

the refractory walls, the atmosphere, or the slag. Sorne of the common particulate

impurities (or inclusions) found in unfiltered molten aluminum are listed in Table 1.1.

Table 1.1: Some inclusions found in molten aluminum (Engh, 1992)

Particle Typical Size
Typical

Source ConcentrationType (Microns)
(p.p.m)

Carbides A4C3 1-20 5

Borides
TiB2

1-3 10-50
YB 0.5

Ah03 10-20 0.01-2

Oxides
Oxides ofMg, Al 1-100 0.01

Other alloy additions 100 0.01
Refractories 100-500 0.01

Salts Mg-Al, Na-K 10-20 0.01

Removal of inclusions has traditionally been carried out using methods such as

sedimentation, tlotation, and filtration (Eckert et al., 1984; Gauckler et al., 1985;

Shivkumar et al., 1991; Frisvold et al., 1992). Gravity sedimentation is effective for cases
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where the density differential between the particles and the fluid is sufficient, and it is

practically limited to the separation of inclusions with effective diameter greater than 90­

100J.lm (Eckert et al., 1984; Shivkumar et al., 1991). Flotation involves attaching the

inclusions to gas bubbles that are passed through the melt, and is generaUy limited to

particle sizes of30-40J,1m effective diameter (Eckert et al., 1984; Shivkumar et al., 1991).

Filtration techniques utilize mediums such as packed beds made of refractory

materials (for example, in deep-bed filtration), and ceramic foam, among others, and can

be useful for particles even smaller than 30J,1m in effective diameter. The mechanism for

inclusion removal when using filters is believed to vary with particle size. Mechanical

entrapment appears to be the primary mechanism for particles greater than 30 J,1m, while

surface adsorption appears to be dominant for particles that are smaller than 30 J,1m

(Shivkumar et al., 1991). The large pressure drops associated with this methodology,

however, can place a significant burden on the equipment used to pump or move the

molten metal (Marty and Alemany, 1982). This methodology also requires the periodic

replacement offilters.

Each of the aforementioned methods can find a place in a melt treatment system,

depending on its suitability to remove a specifie type and size range of inclusions. The

commercial attractiveness of any particular method depends on the speed of inclusion

removal, capital and energy costs, and the absence of significant technical problems

during implementation and operation.

Electromagnetic (EM) filtration IS a powerful technique for removmg non­

metallic particles from molten metal, because the particle migration velocity can be

orders of magnitude higher than that of gravitational sedimentation, without exerting a

significant additional burden vis-à-vis pumping requirements (EI-Kaddah, 1996). EM

filtration belongs to the category of inclusion removal techniques that exploit the

differences in density, electrical conductivity, dielectric constant, and magnetic

permeability between the particles and the molten metal. Using these property

differences, it is possible to produce a relative velocity between the particle and the

molten metal, by exposing the melt to gravitational and electromagnetic force fields.

Under such conditions, given enough time, the particles may take on a stratified

3



arrangement adjacent to a free surface and/or be adsorbed onto solid surfaces at the edges

ofthe separation chamber.

The EM force is generated by crossing electric and magnetic fields, and its impact

on electrically non-conducting particles is independent of the particle composition, state

(liquid or solid), and density (patel and El-Kaddah, 1997). The effectoftheEM force on

the molten metal flow and the particle trajectories can be controlled with simple changes

to the strengths and orientations ofthe electric and magnetic fields.

Several significant analytical and numerical studieshave been reportedon the '

: topie ofEM separation of inclusions from molten metaL They have geÎlerally invoked

the assumption of fully developed flow (Patel and El-Kaddah, 1997; El.;.Kaddah, 1988;

. EI-Kaddah, '1996). Furthermore, in the calcùlationof' terminal migration' velocity,

consideration has been given to drag, buoyancy,andEMforces only. It appears that the

effects of lift (associated with large velocity gradients encountered in the vicinity of

walls), virtuat mass, and Basset forces have been neglected.

In this work, fully developed flows ofmolten aluminum in the separation chamber

are considered. A rudimentary magnetohydrodynamics model is then proposed to enable

a study of the effects of applied uniform and steady electric and magnetic fields.

Following that, the particle momentum equation 'is presented and discussed in detail. The

lift, virtual mass, and Basset forces are included in the analyses, in addition to the drag,

buoyancy, and EM forces.

1.3 Literature Review

There are numerous books that comprehensively coyer the basic subjects of

thermodynamics, fluid mechanics, and heat transfer. Examples include the works ofBird

et al. (1960), Batchelor (1967), Schlichting (1968), Eckert and Drake (1972), Currie

(1974), Tritton (1988), Incropera and DeWitt (1990), White (1991), Moran and Shapiro

(2000), and Kreith and Bohn (2001). Authoritative overviews ofparticular topics in these

subjects are available in the works ofJohnson (1998), Rohsenow and Rartnett (1973), and

Ramett et al. (1961-2001).

In the published literature, there are innumerable papers that deal with

electromagnetism, electrostatics, electrostatic precipitation, electrohydrodynamics (the
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coupling of electric and velocity fields in a dielectric tluid continuum), and

magnetohydrodynamics (the phenomena that arise when electromagnetic fields are

applied to an electrically conducting fluid). Excellent presentations, overviews, and

discussions of these subjects can be found in the works of Panofsky and Phillips (1956),

Cowling (1957), Romig (1964, 1973), Kalikhman (1967), Moore (1972), Branover

(1978), Davidson et al. (1987), and Hoole and Hoole (1995).

There have alSO been a tremendous number of contributions to the subjects of

numerical analysis and computational fluid dynamics (finite difference, finite volume,

and finite element methods for fluid flow and heat transfer). Excellent coverage of these

subjects has been provided, for example, by Segerlind (1976), Patankar (1980), Roache

(1982), Baker (1983), Reddy (1993), Anderson (1995), Zienkiewicz (1977), Minkowycz

and Sparrow (1997), Burden and Faires (1997), and Ferziger and Peric (1999).

The subject of single-phase, laminar, forced convection in ducts has been covered

comprehensively in the work of Shah and London (1978). The subjects of gas-particle

and liquid-particle tlows have been covered in detail in books by Crowe et al. (1998), and

Fan and Zhu (1998). Detailed coverage of the subject of filtration of metals is available

in the works of Anders (1976), Eckert et al. (1984), Frisvold et al. (1992), and Engh

(1992).

The literature review in the remainder of this section is limited to topics that are

directly relevant to this thesis. In particular, the following topics are reviewed briefly:

electromagnetic filtration; control-volume finite element methods; fully developed flows

in ducts; three-dimensional parabolic flows in ducts; motion of a particle in a tluid

continuum; particle tracking algorithms; and computer simulation of electromagnetic

separation.

1.3.1 Electromagnetic Filtration

EM filtration technology relies on the forces generated in the molten metal by

external electric and magnetic fields. For particles modelled as rigid, uncharged, smooth

spheres, the magnitude of the applied fields and the difference in electrical conductivity

between the particle and the melt are the main variables that influence the effectiveness of
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the filtration process, in addition to those tbot govem traditional (non-electromagnetic)

filtration.

lnitially, the mam application for EM filtration (also referred to as

magnetohydrodynamic and magnetohydrostatic separation) was the segregation of

electrically conducting minerals in an electrolyte. The tirst patent for such a device

appears to be that of Gates (1900), whose invention consisted of deflecting particles of

differing electrical conductivity into separate col1ectors as they descended through an

electrolyte. His design was later improved upon by Stroble (1942), who developed the

first continuous EM separator. The application of EM filtration to non-metallic particles

in molten metals was introduced by Verte (1961) and was based on applied DC electric

and magnetic fields. It became evident through subsequent research (summarized by

Andres, 1976), that the stirring effect in the melt due to EM forces had to be minimized

by careful separator design. This problem was the main reason why promising laboratory

experiments could not be successful1y implemented in large-scale industrial applications.

Since the late 1980s, proposaIs for the use of induced EM fields, generated by the

application of time-periodic magnetic fields (Hobson et al., 1988; Conti et al., 1989; EI­

Kaddah, 1990), have prompted a renewed interest in the field ofEM filtration ofmolten

metals.

1.3.2 Control-Volume Finite Element Methods

The control-volume finite element method (CVFEM) is a powerful technique in

computational fluid dynamics (CFD). It takes advantage of the grid-independent, local

and global, conservation properties of the finite volume method (FVM) while providing

the capability to address complex geometries, using the fleXJ.ole meshing aspects of the

finite element method (FEM). The steps involved in the formulation of CVFEMs are the

fol1owing:

1. Discretization ofthe calculation domain into elements.

2. Construction of non-overlapping control volumes around each node, such that

the resultant control-volume occupies a portion of each of the elements that

share a common node, and collectively, these control volumes fill the

calculation domain completely.
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3. Prescription of functions that are used to interpolate the nodal values of the

dependent variables and the thermo-physical properties of the fluid over each

element.

4. Assembly of algebraic approximations to the governing integral conservation

equations applied to individual control-volumes.

5. Solution ofthe algebraic (or discretized) sets ofequations

The seminal works on CVFEMs for fluid flow and heat transfer are those of

Baliga (1978) and Baliga and Patankar (1980). They proposed a planar, two-dimensional,

CVFEM that incorporated a flow-oriented upwind (FLO) scheme as the interpolation

function for deriving an algebraic approximation to convective transport of dependent

variables across control-volume boundaries. To preclude unrealistic pressure oscillations

in the computed pressure field, they also proposed an unequal-order discretization of the

domain into two sets of elements and corresponding control-volumes: one finite element

mesh was used to discretize the pressure field; and the other, finer, finite element mesh

was used to discretize the velocity components and aIl other dependent variables.

Subsequent extensions ofthis CVFEM include the foUowing developments:

1. More robust interpolation functions for approximating convective transport of

dependent variables, such as the donor-cell method of Prakash (1986) and the

mass-weighted (MAW) skew upwind scheme (Hassan et al., 1983; Schneider

and Raw, 1986; Saabas, 1991; Baliga and Saabas, 1992; Masson et al., 1994).

These techniques are good at preventing negative coefficients in the

discretized equations, which can lead to nonphysical solution oscillations and

possible divergence of the iterative solution methods (patankar, 1980), but

they are less accurate than the FLO scheme (Masson et al., 1994).

2. Introduction of a co-Iocated equal-order formulation based on a novel

momentum interpolation scheme (prakash and Patankar, 1985). This

approach allows the discretization of the calculation domain with just one set

of elements and control volumes, while avoiding physicaIly untenable pressure

oscillations.

3. Formulations that work with structured and unstructured two-dimensional

axisymmetric meshes (Masson et al., 1994), three-dimensional structured

7



meshes (Saabas, 1991; Saabas and Baliga, 1994), and two-dimensional

unstructured, adaptive meshes based on error estimation and minimization

(Venditti, 1998; Venditti and Baliga, 1998).

Comprehensive reviews of the development of the CVFEM for the prediction of

two- and three-dimensional fluid flow and heat transfer phenomena can be found in the

works of Hookey (1989), Saabas (1991), Baliga and Saabas (1992), Baliga (1997), and

Venditti (1998).

1.3.3 FuUy Developed Flows in Straight Ducts Subjected to Uniform, Steady,

Electrical and Magnetic Fields

In this work, attention is limited to steady, laminar, electrically conducting,

Newtonian fluid flows in straight ducts of uniform cross-section, subjected to uniform,

steady, electrical and magnetic fields. The walls of the ducts of interest are electrical

nonconductors. If the flows in such ducts remain isotherma1, or if the fluid properties can

be assumed constant, then after a sufficient distance downstream from the inIet plane of

the duct, the cross-stream velocity components vanish, the axial velocity component

ceases to change with axial distance, the pressure distribution in any cross-section adapts

to balance the imposed volumetrie EM force, and the pressure gradient in the axial

direction takes on a constant value. When these conditions are achieved, the flow is

termed fully developed (Shah and London, 1978; Patankar, 1980).

The equation that governs the cross-sectional distribution of the axial velocity

component in the fully developed regime is akin to that which governs heat conduction or

diffusion problems (patankar, 1980). For such fully developed flows in straight ducts of

uniform rectangular and circular cross-sections, the governing equation can be solved

analytically (Shah and London, 1978). This equation can a1so be readily solved

numerically, using finite difference, finite volume, or finite element methods, in ducts of

rectangular, circular, or arbitrary cross-sections (Shah and London, 1978; Patankar, 1980;

Raithby and Schneider, 1988; Reddy, 1993). In this work, a control-volume finite

element method (CVFEM) for two-dimensional conduction-type problems (Baliga and

Patankar, 1988; Baliga, 1997) was adapted to predict the fully developed flows of

interest.
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1.3.4 Three-dimensional Parabolic Flows in Ducts

As was stated earlier, attention in this thesis is devoted mainly to the fully

developed flow regime. An interesting and useful extension of this work would be an

examination of the influence of the three-dimensional parabolic, or developing flow,

regime on the performance ofthe EM filtration process. With this point in mind, as a part

ofthis work, availablemethods for the prediction ofthree-dimensional parabolic flows in

ducts were reviewed: the findings are reported in this section.

Steady subsonic flows in ductscan becategorized aselliptic, parabolic, or

pàrtially-parabolic (patankar and Spalding, 1972; Pratap and Spalding, 1976; Patankar,

1980). In elliptic flows, the conditions at any point can be influenced by conditions at

any.other point in the flow. The mechanisms that cause thi~ interaction are convection,

diffusion,' and pressuré transmission (Patankar, 1980). On theother hand, parabolic flows

in ducts are characterized by the following features: there exists a predominant flow

direction along the duct, and no flow reversai is encountered in that direction; diffusive

transport in the direction of the main flow is negligiblecompared ta the corresponding

convective transport and the cross-stream diffusive transport; and the downstream

pressure field has relatively very little influence on upstream conditions (patankar and

Spalding, 1972; Patankar, 1980). When these conditions are satisfied, the main flow

direction can be regarded as a one-way coordinate, in the sense that upstream conditions

can influence the downstream conditions, but not vice-versa (patankar, 1980). The term

partially-parabolic is used to describe a class of flows that is intermediate to the parabolic

and elliptic categories. They are similar to parabolic flows in that they have a

predominant flow direction along which there is no flow reversai, and diffusive transport

in that direction is negligible. However, the pressure transmission in partially-parabolic

flows is similar to that in elliptic flows, and it is the dominant transmitter of influences in

the upstream direction (Pratap and Spalding, 1976). Steady, laminar, developing,

Newtonian fluid flows in straight ducts of uniform cross-section can be regarded as

parabolic in the main-flow direction (patankar and Spalding, 1972; Patankar, 1980).

The equations that govem three-dimensional parabolic flows in ducts are

intrinsically nonlinear and coupled to each other. In analytical and semi-analytical

approaches to the solution of these equations, the inertia terms are linearized and cross-
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stream pressure gradients are neglected (Sparrow et al., 1964; Fleming and Sparrow,

1969). Thus, such approaches are limited to problems in which the cross-stream velocity

components are negligible, and even then, they cannot handle non-linearities introduced,

for example, by non-constant tluid properties. Numerical methods, on the other hand,

enjoy a considerably greater degree of versatility, and are better suited for the solution of

practical problems (patankar, 1980).

The pioneering efforts in the development of numerical methods for the prediction

of three-dimensional parabolic tlows in ducts are the works of Caretto et al. (1972), CUIT

et al. (1972), and Patankar and Spalding (1972). These methods fully take into account

the fluid stresses, diffusive fluxes, and pressure variations in the cross-stream planes. The

method proposed by Patankar and Spalding (1972) is one of the most widely referenced

of the finite volume methods for the prediction of three-dimensional parabolic flows in

ducts. It is based on a pressure-velocity (primitive variables) formulation, and uses a non­

iterative marching integration technique to advance the solution in the downstream

direction, cross-section by cross-section, starting from the inlet plane where the values of

the dependent variables are specified. The non-iterative nature of this method is achieved

by using the upstream values of the dependent variables at each axial step to calculate the

coefficients in the discretized governing equations. In each cross-sectional plane,

Patankar and Spalding (1972) used staggered Cartesian grids for the storage of the

velocity components and pressure, in order to avoid pressure-velocity decoupling, and

they proposed a scheme called the .s.emi-Implicit-Method-for-~ressure-Linked-Equations

(SIMPLE) for the solution of the coupled, non-linear, discretized equations. SIMPLE and

its many variants are now used in most finite volume methods for the prediction of

complex two- and three-dimensional fluid flows (Van Doormaal and Raithby, 1984;

Raithby and Schneider, 1988). In subsequent papers, Carlson and Hombeck (1973), and

Briley (1974) have proposed methods that are variations of the Patankar-Spalding

method. The methods proposed by Caretto et al. (1972), CUIT et al. (1972), Patankar and

Spalding (1972), Carlson and Hombeck (1973), and Briley (1974) have been quite

successful in the prediction of three-dimensional parabolic fluid flows, but they ail suffer

from the following short comings: (i) they are limited to ducts in which the boundaries of

the cross-section lie along the axes of commonly used orthogonal coordinate systems
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(often referred to as regular-shaped cross-sections); (ii) the non-iterative marching

integration schemes used in these methods necessitate the use of relatively small axial

step sizes; and (iii) in fluid flow problems that involve a large number of dependent

variables (for example, flows with heat and mass transfer, and turbulent flows), the

overall solution schemes, due to their non-iterative nature, tend to be sensitive to the

sequence in which the dependent variables are solved.

Three-dimensional parabolic flow and heat transfer in ducts of irregular-shaped

cross-sections can be solved using finite difference or finite volume methods which

employ coordinate transformation techniques, or formulations based on curvilinear

orthogonal and non-orthogonal coordinates (Roberts and Forester, 1979; Shyy, 1994).

Such approaches usually complicate the governing equations, making physical

interpretations of the overall numerical formulation quite difficult, and they are not very

well suited for handling highly irregular and/or multiply-connected domains. Fluid flows

in ducts of irregular-shaped cross-section are best handled by methods that employ finite

elements to discretize the calculation domain (Baliga, 1997).

Most currently available finite-element methods for three-dimensional parabolic

flows are based on the Galerkin method (Zienkiewicz, 1977; Baker, 1983; Reddy, 1993).

One of the earliest attempts to develop such methods is that ofBaker (1974). His method

is formulated for the solution of three-dimensional compressible and reacting boundary­

layer flows (Schlichting, 1968), and ail of the discretized governing equations are solved

simultaneously. Thus, it cannot be easily adapted to solve duct flow problems, and the

computer storage requirements in this method could become disproportionately large,

especially in complex problems involving several coupled dependent variables. Del

Giudice et al. (1981) have proposed a finite element method that overcomes these

limitations. However, their method is based on a non-iterative formulation akin to that

used in the finite difference method of Briley (1974), and thus suffers from the limitations

mentioned earlier in this subsection.

Pham (1983) has proposed a control-volume finite element method (CVFEM) for

three-dimensional parabolic flows in ducts. His method overcomes most of the

aforementioned limitations. However, it is an extension of the original two-dimensional

elliptic CVFEM of Baliga and Patankar (1983), which is based on an unequal-order
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fonnulation, that uses six-node triangular macroelements, each subdivided into four three­

node triangular subelements: pressure is stored at the three vertices of the

macroelements; and velocity components are stored at the three vertices of the finer

subelements. In the 1970s and the early 1980s, such unequal-order finite-element

fonnulations were used to avoid pressure-velocity decoupling, and the consequent

checkerboard pressure distributions, in the solution of incompressible fluid flow problems

(patankar, 1980; Baliga, 1997). However, in unequal-order methods, the topological

(grid-related) book:keeping and associated coding is tedious. Furthermore, the unequal­

order fonnulation becomes quite inaccurate, and hence unnecessarily expensive, in

simulations of flows with high Reynolds and/or Peclet numbers, and its extension to

three-dimensional elliptic flows is not straightforward (Baliga, 1997). Unequal-order

methods have since been replaced by equal-order, co-Iocated, methods that employ the

so-called momentum interpolation technique (Rhie and Chow, 1983; Prakash and

Patankar, 1985; Rice and Schnipke, 1986) to avoid pressure-velocity decoupling in the

solution of incompressible flow problems. Examples of equal-order co-Iocated CVFEMs

based on the momentum interpolation technique can be found in the works ofPrakash and

Patankar (1985), Schneider and Raw (1986), Saabas and Baliga (1994), and Masson et al.

(1994). A detailed review ofthese methods is available in an article by Baliga (1997).

It would be useful to moditY and extend the two-dimensional, equal-order, co­

located CVFEM of Masson et al. (1994) so that it could be used to predict three­

dimensional parabolic flows in ducts. Some of the ideas proposed in the work of Pham

(1983) could be incorporated in such a CVFEM: for example, at each axial step, a fully

implicit scheme could be used to discretize the governing equations, and the resulting

coupled, nonlinear, discretized equations could be solved iteratively. In Chapter 6, the

concluding chapter of this thesis, the fonnulation, implementation, and application of

such a three-dimensional parabolic CVFEM is recommended as one of the possible

extensions ofthis work.

1.3.5 Motion of a Particle in a Fluid Continuum

The classical fonnulation of the motion of a particle in a fluid continuum is based

on perturbation theory, whereby the individual tenns in the governing momentum
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equation are derived using a localized analysis of the disturbance flow field associated

with the presence of a sphere. The forces on the spherical particle are then expressed in

terms of the local velocity in an undisturbed flow, thus facilitating calculations of

momentum transfer between the two phases.

In sorne of the earliest works in this area, the particle momentum equation was

derived for rigid spheres settling out under gravity in a stationary fluid..Examples of such

efforts include the combined works of Basset (1888), Boussinesq (1903), and Oseen

(1927). In more CUITent versions of the Basset-Boussinesq-Oseen (BBO) -equation,. the

product of the particle mass and its acceleration is equated to the following forces on. the

particle: (1) steady-state drag force; (2) buoyancy force; (3) virtual mass force; (4) Basset

force; and (5) lift force (Rubinow and Keller, 1961; Saffman, .1965; Maxey and Riley,

1983; Crowe et al. 1998).

Saffman (1965) analyzed the translation of arigid, smootb; sphere in a linear

unbounded shear flow, using matched asymptotic expansions. He obtainedan expression

for the lift force that is valid for low Reynolds numbers based on shear, relative velocity,

and angular velocity. The works of Cherukat. and McLaughlin (1990), McLaughlin

(1991), Asmolov (1993), Cherukat et al. (1994, 1999), and Naumov (1995, 1997) have

gone further to develop an expression for the inertial lift that allows for higher Reynolds

numbers and accounts for the effects ofproximity to walls.

Additional considerations which have been reported in thepublished literature

include the incorporation ofReynolds number effects, turbulence effects, blowing effects

due to particle evaporation, particle-particle interactions, and other body forces such as

the magnetohydrodynamic (MHD) force employed in this study (Leenov and KoHn,

1954; Vives and Ricou, 1982; Crowe et al. 1998). Leenov and KoHn (1954) used

perturbation theory to derive the electromagnetic (EM) separation force on spherical and

cylindrical particles due to the local disturbance ofthe electric field. Their expression is a

function of electric and magnetic field strengths and the difference in electrical

conductivities of the particle and fluid. The Leenov-Kolin model for the EM separation

force is based on the assumption that there are no particle-particle interactions, and the

undisturbed electric current density and magnetic fields are uniform. Subsequent

experimental works by Marty and Alemany (1982), and Marty et al. (1982) have
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confirmed the theoretical results of Leenov and Kolin, which have served as the basis of

most subsequent computational studies ofEM filtration (Andres 1976, El-Kaddah 1988).

1.3.6 Particle Tracking Aigorithms

In numerical simulations of dispersed particles moving in a continuous fluid, it is

common to employ a Eulerian-Lagrangian formulation. In such a formulation, the fluid

flow is predicted by solving a suitable mathematical model in an Eulerian frame of

reference, and the particle trajectories are predicted by solving an appropriate Lagrangian

mathematical model. For sufficiently small particles and dilute'fluid-particLeflows, the.

momentum coupling is assumed to be one-way, such that the solution to the·fluid· flow .

can be obtained Independently prior to running a particle-tracking algorithm (Croweetal.

1998).

Patankar and Karki (1999) have suggested that the two main considerations in the

,solution of particle trajectories of this sort are (1) the particle locating methodology,and .

(2) the selection of a suitable time step in order to optimize the trajectory solution in

terms ofspeed and accuracy.

Ren et al. (I995) have proposed a relatively simple and efficient method for

locating a particle in a finite element mesh, based on barycentric coordinates (in three

dimensions) or area coordinates (in two dimensions). It works in planar two-dimensional

meshes consisting of triangular elements by calculating the area coordinates of the latest

particle position with respect to the coordinates of the three vertices of the previously

occupied element. When ail three area coordinates are greater than zero but less thanone,

then the particle is still within the same element. If not, then there exists a set of mies,

which determines the most likely adjacent element to which the particle has moved.

Once the oceupied element is determined, the area coordinates can be directly used to

compute the local continuous phase velocity. The time step selection is based on the

particle relaxation time (Crowe et al., 1998).

The work presented in this thesis required particle tracking in fully developed

flows, on three-dimensional finite element meshes that were used to discretized the space

within straight ducts of uniform cross-section. The particle locating methodology

employed in this work consists of identifying the location of the particle in the
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longitudinal, or main flow, direction using linear interpolation, and then averaging the

cross-sectional coordinates of the particle in the upstream and downstream planes,

obtained using a two-dimensionallocating algorithm akin to that ofRen et al. (1995).

1.3.7 Computer Simulation of Electromagnetic Separation

Numerical simulations of MHD flows have been used extensively in the metals

industry to study flow patterns during EM stirring of the melt prior to casting (EI-Kaddah

et al., 1984; EI-Kaddah et al., 1986; Antille et al., 1992). These studies allowed the

development of a capability to analytically design processes that provide a high level of

homogeneity in the cast ingots and ensure that molten metal is pushed into a11 parts of the

mold, even during the casting ofcomplex-shaped objects.

The research carried out by EI-Kaddah (1988) was one of the first applications of

computer simulations for calculating particle trajectories in an EM separation process.

Their model was applied to an EM separator, developed by the Oak Ridge National

Laboratory (Hobson et al. 1988), that uses an alternating magnetic field and an induced

electric field in the melt. Subsequent investigations (EI-Kaddah et al., 1995; EI-Kaddah,

1996) were aimed at analyzing more efficient separator configurations and validating the

numerical model by comparing the predictions to the results ofEM :filtration experiments.

The goal in the aforementioned simulations was to compute the terminal

migration velocity of the inclusions and to determine the length of chamber needed for

effective filtration. The models are characterized by simplifications in the EM field

equations, in order to make the continuity and Navier-Stokes equations the only

governing equations for the fluid flow problem, with a Lorentz force added to the

volumetrie source terms. Thus, the complex task of solving the complete set of

Maxwell's equations is omitted. The problem is further simplified by assuming fully

developed flow. As these models are based on the assumption of non-interacting

particles, and balance the EM force only against viscous drag on the particle, there are

limitations associated with cases where the influence of adjacent particles and the

magnitude of other forces on the particle become significant. Furthermore, the impact of

the developing flow regime on the overall separator efficiency has not been studied.
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1.4 Overview of the Thesis

In the present chapter, the objectives of this thesis and its motivation have been

summarized, and an overview ofthe relevant literature has been presented.

In Chapter 2, the physical problem of interest is introduced, and mathematical

models for fluid flow and partic1e tracking are presented and discussed.

In Chapter 3, the numerical methods formulated and used for the solution of the

mathematical models are described.

In Chapter 4, validations of the proposed numerical methods are presented. The

proposed methods are used to solve the mathematical models of test problems, and their

results are checked against those available·in the published literature.

In Chapter 5, the results of a numerical study of several specifie EM separation

problems are presented and discussed, in order to demonstrate the applieability and scope

ofthe proposed numerical solution methods.

In Chapter 6, the main contributions of this researeh effort are reviewed, and

sorne recommendations for extensions of this work are presented.
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Chapter 2

Mathematical Models

2.1 Overview of the Physical Problem

The problem of interest involves the prediction of inclusion (particle) trajectories

in molten aluminum subjected to electromagnetic fields. This problem is schematically

illustrated in Figure 2.1. The separation chamber is a straight duct of constant

rectangular cross-section. The molten aluminum is fed to the duct from a large upstream

plenum, and it is assumed to enter with a uniform velocity normal to the inlet plane. At

that point, the relative velocity between the inclusions and the molten aluminum is

assumed to be zero. Within the separation chamber, the inclusions migrate laterally under

the action of surface and body forces that they experience. After a sufficiently large

distance downstream of the inlet, the fluid flow becomes fully developed, as was

discussed in Section 1.3.3.

The longitudinal axis of the separation chamber is oriented along the z-direction of

the Cartesian coordinate system. Immersed electrodes, upstream and dOWDstream of the

chamber, generate an electric field so that the CUITent flows in the positive z-direction,

parallel to the main fluid flow. The applied magnetic field is generated by a suitable

electromagnet, such that the field strength is uniform throughout the separation chamber

and is oriented in the x-direction, parallel to the wider side of the duct, as illustrated in

Figure 2.1. These electric and magnetic fields create a resultant electromagnetic (EM)

body force on the electrically conducting molten aluminum (similar to the manner in

which a CUITent carrying wire experiences a force in the presence of a transverse magnetic

field).

In order to predict the inclusion trajectory in the molten aluminum within the

separation chamber, it is necessary to solve its momentum equation, which contains

surface and body force terms. The most significant of these forces can be interpreted as

the drag, buoyancy, virtual (or apparent) mass, Basset (or history), lift, and EM forces.

Details are presented later in this chapter, in Section 2.5.
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Figure2.1- Schematic illustration ofthe separation chiunber

2.2 Summary of Assumptions

This section provides a summary ofthe assumptions used in the formulation of the

electromagnetic filtration model. Further discussions of sorne of these assumptions are

provided in subsequent sections ofthis chapter.

F/uidF/ow

• Steady-state conditions prevail throughout

• Larninar flow

• Newtonian fluid

• Constant fluid mass density, p, and dynamic viscosity, 11

• The entire fluid domain is isotherrnal

• There is no flow reversai in the z direction. The fluid flow can he modeled

either as a three-dirnensional developing paraholic flow, or, after a sufficient

distance downstream of the inlet plane, as a two-dimensional fully developed

flow.
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• The concentration of the inclusions (particles) is low enough that they have no

noticeable influence on the fluid flow, though the fluid flow has a significant

influence on the inclusion trajectories. In other words, there is only one-way

coupling in the transfer of momentum between the molten aluminum and the

inclusions (Crowe et ai., 1998).

Particle Trajectory

• The particles are ail rigid, smooth spheres

• Particle-particle interactions are negligible

• The particle Reynolds number is within the Stokes flow regime (Crowe et al.,

1998)

E/ectromagnetic Effects

• The particles move at non-relativistic speeds

• The particles are neutrally charged

• The applied electric and magnetic fields are uniform and constant

• The applied electric field is along the mainstream, or z coordinate, direction:

• The applied magnetic field is orthogonal to the electric field: Jj = (Bx , By , 0)

• The walls ofthe separation chamber are electrically non-conducting

• The induced electric field in the liquid is negligible

2.3 Governing Equations for Three-Dimensional Parabolic
Flow in a Duct

As was stated in Chapter 1, attention in this thesis is focused on fully developed

flows in the separation chamber. Nevertheless, it is instructive, useful, and convenient to

examine the mathematicaI model for three-dimensionaI parabolic flow in a duct, before
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presenting the mathematical model for the fully developed tlows ofinterest. The

governing equations and discussions in this section are presented in this spirit.

For the horizontal duct depicted in Figure 2.1, a reduced pressure, p, is defined as

follows:

p=P+pgy (2.1)

where P is the static pressure, p is the tluid density, and g is the gravitational acceleration.

Following Patankar and Spalding (1972), the reduced pressure field in the duct is now

expressed as follows:

p(x,y,z) = p(z) + p(x,y,z) (2.2)

where p(z) is the cross-sectional area-averaged reduced pressure at any given stream­

wise location, z, and is given by:

JI p(x,y,z)dxdy

p(z) = A JI tfuJy

A

(2.3)

For three-dimensional parabolic tlow in a duct, as discussed by Patankar and

Spalding (1972), there is no tlow reversai in the z direction, and the diffusion transport in

the mainstream direction is negligible compared to the corresponding advection transport

and the diffusion transport in the cross-sectional plane. Furthermore, dp / dz » op /az ,
and the spatial derivatives of the reduced pressure can be approximated by:

Op=op
ôx ôx

Op=op
Gy Gy

Op=dfi
az-dz

(2.4)

With respect to the Cartesian coordinate system shown in Figure 2.1 and the

assumptions listed in Section 2.2, the governing equations for three-dimensional

parabolic tluid tlow in the separation chamber are the following:
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x-momentum equation

o 0 0 ôjJ 0 ( au) 0 ( auJ- u +- +- u ---+- - +- - +FOx (PU) Gy (PVU) OZ (,ow )- Ox Ox 11 Ox ay 11 Gy KM,UnitVol,JC

y-momentum equation

o 0 0 ôjJ 0 ( av) à ( avJ- v +- +- v ---+- - +- - +FOx (PU) Gy (pvv) Oz (pw )- ay Ox 11 Ox ôy 11 Gy KM,UnitVol,y

z-momentum equation

o 0 0 djj 0 ( 8w) 0 ( 8wJ-(nuw)+-(pvw)+-(pww)=--+- n- +- n- +F. .Ox ,.,_.. ay Oz dz Ox'f Ox Gy'f Gy KM.UmtVol,z

Continuity equation

~(pu)+~(pv)+~(~)=0
Ox Gy fJz

(2.5)

(2.6)

(2.7)

(2.8)

The following section describes the derivation of the electromagnetic body force

per unit volume, ftKM,UnitVol' the components of which are inserted in Equations (2.5) to

(2.7) as volumetrie source terms.

2.4 Governing Equations for FuUy Developed Flow Subjected
to Steady, Uniform, Electric and Magnetic Fields

In this section, the governing magnetohydrodynamic (MHD) equations are

presented, starting with the general forms of these equations for steady problems and then

incorporating the simplifYing assumptions for the particular problem being studied in this

thesis.

The formulation of the MHD problem for isothermal, constant-property, liquid

metal flows subjected to arbitrary, but steady, electromagnetic fields requires the

simultaneous solution of 13 coupled equations (Romig, 1964; Branover, 1978; Davidson

et al., 1987):

21



Navier-Stokes equations

( - -) - 1 - 2 - 1 (- -)U·V U=--Vp+!;V U+- jxB
P P

Continuity equation

V·O=O

Maxwell's equations

VxÊ=O

VxB=J.lJ

V·B=O

V·(eÊ)=eV·Ê=O

Ohm'slaw

where,

B= Magnetic Flux Density [T]

Ê = Electric Field Strength [V 1m]

] = Current Density [A 1m2
]

p = Reduced Pressure [N1m2
]

O=FluidVelocity [mIs]

e = Dielectric Constant [C1m - V]

ç = Fluid Kinematic Viscosity [m2 1s]

J.l = Magnetic Permeability of Fluid [H 1m]

p = Fluid Density [kg 1m3
]

(T = Electrical Conductivity [mho 1m]

(2.9)

(2.10)

(2.11)

(2.12)

Here, it is implicitly assumed that the dielectric constant, &, and the magnetic

permeability, J.l, of the molten metal in the separation chamber are constants, and the

walls ofthis chamber are electrically non-conducting.

The following dimensionless variables and parameters will now be used to

express the governing MHD equations in nondimensional form:
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V* =aV . U* =_U . p* =_p_---:pref_=._
, U' ,JT2

a JJu a

B* =.!!..- ..• =_J_. E*=~
Ba ,J Ba/' UaBa1pa

Re= Uaa . N = aB;a
ç' pUa

Re = IIUU a . M=JN.Re=Ba~m r 0 , 0

Tl

(2.13)

In these equations, a is a characteristic length of the duct~ Uo is the mean velocity

of the molten aluminum inside the separation chamber; Bo is the applied magnetic flux

density~ and Re is the conventional Reynolds number based on Uo and a. The magnetic

interaction parameter (also known as the Stuart number), N, is the ratio of EM (or

ponderomotive) force to inertia force~ and the square of the Hartman number, M, is the

ratio of EM force to viscous force. The magnetic Reynolds number, Rem, characterizes

the interaction between the applied magnetic field and the induced currents. When Rem

«l, the induced electric field is negligible, and this allows the decoupling of the

Maxwell's equations from the Navier-Stokes equations.

Substituting the dimensionless variables and parameters into the governing

equations and dropping the star superscripts the following nondimensional forms of the

governing MHD equations were obtained:

Navier-Stokes equations (nondimensiona/form)

(Û. V)Û =_Vp+_1V 2Û +N(ÊxB+ÛxBxB)
Re

Continuity equation (nondimensiona/form)

V·Û=O

Maxwell's equations (nondimensiona/ form)

VxÊ=O

VxË=Rem(Ê+ÛxË)
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(2.15)

(2.16)

(2.17)



V·Ê=O

(2.18)

(2.19)

(2.20)

Equation (2.17) shows that induced fields can be neglected for Rem «1. For

liquid metal filtration, it is reasonable to assume the following orders ofmagnitude for

reference quantities (Cramer and Pai, 1973; Branover, 1978; EI-Kaddah, 1988):

a Rl O[1O-2]-··[m]; Bo ~0[10-1] ... [T]; Eo RlO[I]···[Vlm]

U o RI O[lO-I]-··[ml s] ; ç ~O[10-6
] ••• [m21s] ; ,u ~ O[10-6}··[H lm]

p ~O[103] ... [kglm31 ; u ~0[106} .. [mholm]

Hence, the nondimensional parameters for the EM filtration problem have the

following orders ofmagnitude:

M ~0[102]

N RI 0[1]

Re RI 0[103
]

Rem ~ 0[10-3
]

(2.21)

It is observed that the value of magnetic Reynolds number is of the order of O[10-3],

which implies that the assumption of negligible induced fields is reasonable. This allows

the EM field equations to be decoupled from the tluid tlow equations, except for the EM

force, which is treated as a source term in the Navier-Stokes equations.

When expanded for a Cartesian coordinate system, the components of the EM

force per unit volume become:

FEM,unitVol,x =u[-EzBy+EyBz-u(B; +B~)+Bx(wBz+vBy)J

FEM.UnitVol,y = u[-ExBz+EzBx-v(B; +B;)+By(uBx+wBz)] (2.22)

FEMPnitVol.Z = u[-EyBx+Efiy -w(B~+B;)+Bz(vBy+uBx)]

The EM fields used in this study were defined in Section 2.2 as,

Ê =(O,O,Ez)

B=(Bx,By,O)

Therefore, Equations (2.22) can be simplified as follows:
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FEM,UnitVol,x = U(vBxBy - EzBy)-(uB:)u

FEM,UnitVol,y = u(uBxBy+EzBx)-(uB;)v

FEM,UnitVol,z = -U (B; +B:)w

(2.24)

Having made the necessary simplifications, it is now possible to summarize the

complete set of governing equations valid for steady, laminar, three-dimensional

parabolic (developing) flows of molten metals in ducts of constant cross-section and

electrically non-conducting walls, subjected to steady, uniform, electric and magnetic

fields oriented as shown in Figure 2.1. They can be expressed, in dimensional forms, as

follows:

x-momentum

y-momentum

z-momentum

a a a--(puw)+--(pvw)+--(pww) =ex ay az

dp a( Bw) a(BwJ (2 2)- dz +ex 11 ex + ay 11 ay -u Bx +By W

(2.26)

(2.27)

Continuity

a a a--(pu)+--(pv)+--(pW) =0ex ay az
(2.28)

In the fully developed tlow regime, the following conditions prevail: the

mainstream (z or axial direction) gradients ofall dependent variables, except pressure, are
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essentially zero; the axial gradient ofpressure is a constant; the velocity components in

the x and y directions vanish (u = v = 0); and the cross-sectional distribution ofpressure

adjusts to balance the electromagnetic force on the molten aluminum. With these

conditions, the continuity equation, Equation (2.28), is automatically satisfied (or May be

considered irrelevant), and the x- and y-momentum equations reduce to the following

forms, respectively:

-Bp
O=---uEBax z y

-Bp
O=--+aEBBy z x

(2.29)

(2.30)

In the problems ofinterest, lI, Bx, and By are specified constants. Thus, Equations (2.29)

and (2.30) can be readily integrated to obtain the following cross-sectional distribution of

the reduced pressure:

- -p =u(EzBxY- EzByx)+ Pre! (2.31)

where prefis a reference value pat x = y = O. Here, as the fluid is assumed to be

incompressible, the absolute value of Pis irrelevant; rather, only the gradients oftms

variable matter (patankar, 1980). Thus, the value of Pre! was arbitrarily set to the

convenient value ofzero. With these conditions, the axial (z direction) gradient ofthe

reduced pressure, dp/dz, becomes a constant, and the z-momentum equation reduces to

the following form:

dp B ( Bw) B (BwJ (2 2)0=--+- 77- +- 77- -(J B +B wdzax ax By By Je Y
(2.32)

In tms equation, the reduced pressure gradient, dp/dz, can be specified (and the resulting

mass flow rate can be calculated) or it can be adjusted to achieve a desired mass flow rate.

The latter approach was adopted in tms work. Details of the numerical implementation of

this approach are given in Chapter 3.
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2.5 Particle Momentum Equation

The equation that govems the momentum of a partic1e moving in a fluid can be

cast in the following general form (Crowe et al, 1998):

dÛ L- L- L-m -_P = F= F + F
P dt body surface

(2:33)

In the problerns of interest, the particle (inclusion) moyes in molten aluminum

subjected to electric, magnetic, and gravitational fields. The body forces are the

gravitational force and the electromagnetic (EM) force:

~ - (1fD;) - J ~ - ..4..J F"ody = -6- ppg + . (Jin partick X B)dV
Volume of portJc/e .

(2.34)

where ~n ptutic1e is thecurrent density within the partic1e (lIld B is the appliedunifotm

magnetic field (see Figure 2.1). As was mentioned earlier, in the problems of interest,

the particles (inclusion's) are assumed to be electrically non-conooèting.. Thus, strietly,

the current density within the particle is zero. At this stage. of the presentation, however;

for the sake of generality, the electromagnetic body force on the particle is retained,

though it will he discarded later on in this section.

In the absence of the partie/e, the velocity of the molten aluminum is given by

Ûf and the current density is given by }. The presence of the partie/e and ifs motion

through the f1uid modifies the velocity and the current density in the fluid local/y: these

modified fields are denoted here by Vand }injluid, respectively. The modified flow

satisfies the following forms of the Navier-Stokes and continuity equations in the vicinity

ofthe partic1e:

v.V=o

(2.35)

(2.36)

where P is the static pressure in the fluid. The boundary conditions on V are the no-slip

condition on the surface of the sphere (fluid velocity matches the translational and
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angular velocities of the particle at its the surface) and asymptotic approach to Û> far

from the sphere. Let U ij denote the fluid stress tensor:

_ (a~ aVjJu .. --P8.. +'I1 -+-
') lJ'f Ox. ax.

} J

(2.37)

where ôij is the Kronecker delta function. Then, the surface forces on the particle are

given by the following equation:

~FSllI/ace,i = ~ uijnjds
surface

(2.38)

where the surface integral is performed over the entire surface ofthe spherical particle,

and fi is the unit outward normal to the surface ofthe particle.

The problem now is to evaluate the current densities inside the spherical particle

and in the fluid, ~nparticle and ~nflllid' respectively, and then evaluate the fluid stress tensor

on the surface of the particle. The solution to this problem can be obtained by combining

the analyses and solutions proposed by Leenov and Kolin (1954), Saffinan (1965), Maxey

and Riley (1983), and Crowe et al. (1998). Their analyses and solutions could be used

here because the problems ofinterest satisfY the following restrictions:

Rep=luf-UpIDp ~1; (DpUo
/Çf)(Dp/a)«I; (Dp/a)«l; (U

o
B

o
/E

o
)«1 (2.39)

Çf

The final result can be expressed as follows:

dÛ DÛf - - - - - -
mp d/ = mflli+FDRAG +FBUOYANCY +FVJRTUALMASS +FBASSET +FUFT +FFM,p (2.40)

In this equation, mp=(7rD; / 6)Pp , mf =(7rD; /6)Pf' and DÛt / Dt is the total

derivative of the undisturbed fluid velocity field, evaluated at the position where the

particle is located. For steady fully developed flows, akin to those considered in this

work, DÛf / Dt = O. In the remainder ofthis section, each of the forces mentioned on

the right-hand side ofEquation (2.40) will be discussed briefly, and then an appropriately

simplified particle momentum equation will be cast in a convenient (rearranged) form.

Then, the simplified particle momentum equation will be non-dimensionalized in order to
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assess the relative magnitudes of the aforementioned forces in the EM filtration prohlem.

Finally, the restriction required for the validity ofthe one-way coupling in the momentum

transfer hetween the fluid and the particles will he discussed. For clarity in the

presentation, the suhscriptsfandp will he used, when deemed necessary, to distinguish

quantities associated with the fluid and the particles, respectively.

2.5.1. Drag Force

This is the so-called "steady-state" drag force which acts on the particle or

inclusion in a uniform pressure field when there is no time rate of change of the relative

velocity hetween the particle and the conveying fluid (Crowe et al., 1998). This drag

force can he conveniently expressed as follows:

(2.41)

In Equation (2.41), CD is the drag coefficient. The particle Reynolds number, Re" is

defined as follows:

(2.42)

When this particle Reynolds numher is of order O[1], the flow around the sphere is said

to he in the Stokes regime. For uniform free stream velocity, and Stokes flow around the

particle, the drag coefficient is given hy:

lu -u ID
Re == f p p <1

P t;f
(2.43)

Suhstituting these expressions for CD and Re, in Equation (2.41), and rearranging, the

following expression is ohtained for the drag force:

(2.44)

The Stokes drag force given hy Equation (2.44) is hased on a uniform free stream

velocity. To account for the effect of a non-uniform flow field, the so-called Faxen force

must he added to the Stokes drag force (Maxey and Riley, 1983; Crowe et al., 1998):
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(2.45)

where V2Ûf is evaluated atthe position of the particle. For a unifonn flow field, the

Faxen force reduces to zero. Crowe et al. (1998) have shown that the ratio of the Faxen

force to the Stokes drag varies as follows:

(2.46)

In this work, Dp ~ 100 JDIl and a - 0.01 m. Thus, Equation (2.46) shows that

(FFaun / Fstolces ) - (Dp / a)2 ~ 10-4. Therefore, Equation (2.44) gives the drag force quite

adequately, and it was adopted in all the test and demonstration problems. Furthennore,

in the problems considered here, Rep < 1, so the CD expression given in Equation (2.43)

was used. For the interested readers, expressions for CD at Rep > 1 are available in the

work ofCrowe et al. (1998).

2.5.2 Buoyancy Force

The buoyancy force acting on the particle is given by,

(2.47)

(2.48)

2.5.3 Apparent Mass Force

The apparent (or virtual) mass force is associated with relative acceleration

between the particle and the fluid. When the particle accelerates, it also induces

acceleration in the surrounding fluid, and the surrounding tluid resists this acceleration.

Using the analysis of Maxey and Riley (1983), for a small, rigid, smooth, sphere, moving

in a nonunifonn fluid flow, the virtual mass force is given by:

ft. =-!. (nD;J(dÛf _ dÛp + d(D~V2Û /40)J
VIRTUALMASS 2 Pf 6 dt dt dt

Here again, using reasoning akin to that ofCrowe et al. (1998), and noting the

(Dp / a)2 « 1, the tenn involving V2(Ûf) was neglected, and the expression for the

virtual mass force was reduced to the following:
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3 (- - J- 1 1fDp dUf dUp
FVJRTUALMASS = 2 Pf(-6-) di-di (2.49)

(2.50)

(2.51)

It should be noted that in Equation (2.49), the term dOf / dt denotes the time

derivative ofthe fluid velocity following the movingparticle, so that:

dOf aOf - -­
--=--+Up-VUfdt àt

2.5.4 Basset Force

The Basset force, or the "history" term, as it is often called, accounts for the

temporal boundary layer development on the particle, as the relative velocity changes

with time (Odar and Hamilton, 1964; Odar, 1966; Crowe et al., 1998). For the general

case where there is a non-zero initial relative velocity between the particle and fluid, and

nonuniform undisturbed flow, following the analyses of Maxey and Riley (1983), Reeks

and McKee (1984), and Crowe et al. (1998), the Basset force is given by:

_ 3 [t dÛ! _dÛ, +d{D;V
1
ÛJ I24) (0 -0) ]

F. =-D \j1fPl1 J{ dt dt dt ) dt'+ f p initial

BASSET 2 p 0 .Jt-t' .Jï

Again, using reasoning akin to that of Crowe et al. (1998) and noting the (Dp / a)2 -1, the

term involving V2 (Of) was neglected. Furthermore, in the problems ofinterest,

(Of - Op )initial = o. Thus, the expression for the Basset force could be reduced to the

following:

(2.52)

As is clear from this equation, the importance of the Basset force terms depends

on the time rate of change in relative velocity and the time period over which tms relative

acceleration takes place.
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2.5.5 Lift Force

A spherical particle experiences a lift force when there is fluid circulation around

il. One situation under which such a lift force arises is that of flow past a spinning

particle (Magnus lift force). A lift force may also be felt by particles moving in regions

of shear flow. In this work, the Magnus lift force was assumed to be negligible, which is

a reas(mable assumptionfor smaUparticle Reynolds,p~b~rs (Naumov,.199~). However,

the lift force due toshear flow was included in the analyses.

Using matched asymptotic series for the inner and outer flow regions around a

sphere in unbounded shear flow, Saffman (1965) derivedan expression for the lift force

based On the following assumptions:

(2.53)

Where n is a coordinate in the direction of the velocity gradient, Reo is a "shear"

Reynolds number based on the velocity gradient, and Rep is the particle Reynolds

number.

The general form of the Saffman lift force term is given by (Saffman, 1965;

Crowe et al., 1998):

- CD/ ( )112 1- -'-1/2[( - -) (- -)JFUJiT =-4- T/Pf VxUf Uf -Up x VxUf (2.54)

By carrying out the matched asymptotic series solutions to the first order in the

particle Reynolds number, it can be shown the appropriate value of C is 6.46. In the EM

filtration problems considered here, with fully developed flow of molten aluminum in the

separation chamber. the lift force can be broken down into its three components in the

Cartesian coordinate system as follows:
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2 ( )
1/2 1- - 1-

1/2
[( )(àwf J]FUFTx = 1.615Dp l1Pf VxUf W f -Wp ÔX

2( )1/2 1- - 1-112 [( )(àwf J]FUFTy =1.615Dp l1Pf VXUf W f -Wp ôy

2( )1/2 1- - 1-112[ (àwfJ (àwfJ]FUFTz = 1.615Dp l1Pf VxUf Up ÔX +Vp ôy

where,

2.5.6 Electromagnetic Force on the Particle

(2.55)

(2.56)

(2.57)

The expression for the electromagnetic force on the particle was obtained from the

analysis ofLeenov and Kolin (1954). It can be cast in the following form:

- 3(trD3 J(Uf -U J-F. --- --p p F.
EM,p- 2 6 2u

f
+u

P
EM.UnitVol

where ftEM.UnitVol is the undisturbed EM force per unit volume in the molten aluminum. It

is given by:

(2.58)

It is to be noted here that in the analysis ofLeenov and Kolin (1954), the Üf xB term is

assumed to be negligible compared to Ê. This assumption is valid in the problems

considered here. However, in the analyses presented in this thesis, the full form of

ftEM,UnitVol' as given in Equation (2.58), was retained, for completeness and for consistency

with the mathematical model of the flow of molteo aluminum, given in Section 2.4.

Dnly electrically non-conducting inclusions were considered in this work. Thus,

a p =0, and Equation (2.58) simplifies to the following:
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- 3(7iD
3

J-F. --- --p F.
EM.p - 4 6 EM.UnitVol

Furthermore, for fully developed flow ofmolten aluminum in the separation

chamber shown in Figure 2.1, using the equations in Section 2.4, the expression for

FEM.unitVoi is the following:

FEM.UnitVOI = FEM.UnitVol.xT +FEM.umtVol.yJ +FEM.umtVol./ê

FEM,unitVol.x =-aEzBy

FEM.UnitVOl.y =aEzBx

FEM.UnitVol.z =-a(B; +B;)

where T, J, f are unit vectors in the x, y, and z directions, respectively.

2.5.7 Simplified Form of the Particle Momentum Equation

(2.59)

(2.60)

Using the discussions and the expressions for the various force terms given in the

previous subsections, the particle momentum equation can be simplified and rewritten as

follows:

- ( 3JdUp - - 7iDp _
mp--=37iD/7(Uf -Up)+ -- (Pp-Pf)g

dt 6

1 (7iD
3
)(dOf dOpJ 3D 2~[Jt (~-~)..J ,]+-P -- ----- +- 7iPT/ ut

2 f 6 dt dt 2 P o~

CD 2( )1/2 1- -1-112 [(- -) (- -)J+-f- T/Pf VxUf Uf -Up x VxUf

3 (7iD
3

J--- --p F.4 6 EM.UnitVol

(2.61)

In this equation, the general expression for the EM force per unit volume is given by:

(2.62)

Noting that mp = Pp (7iD; /6), Equation(2.61) can be rewritten in the following foon,

which is convenient in the implementation ofthe numerical solution methods presented in

Chapter 3:
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(
1 PfJdOp (- -) (1&D;J -mp 1+-- --=31&D/7 Uf-Up + -- (Pp-Pf)g
2 Pp dt 6

1 (1&D
3
J(dO J 3 [t(dûl dû,) ]+-Pf - _f +-D/~1&P77 JE dt'

2 6 dt 2 0 t-t'

CD 2 ( )1/21- - '-112 [( - -) (- -)J+--;f- 77Pf VxUf Uf-Up X VxUf

3 (1&D;J --- - F.4 6 EM,UniIVol

(2.63)

2.5.8 Nondimensional Form of the Particle Momentum Equation and Order-of­
Magnitude Analysis

In this section, the particle momentum equation is non-dimensionalized, and then

an order-of-magnitude analysis is presented.

The non-dimensional variables and parameters used ID this discussion are

summarized in the equation given below.

V*=aV

U*=!!-
Uo

B*=!!.-
Bo

E*=~
UoBo

* P- PrefP =---:"-

PfU;

*=~
g U;{

D
ô=-P

a

Â= Pp
Pf

PfUoa
Re=----"---

77

Pf IUf -UplDpRe = --'--'--'----'--'---'-
p 77

_ppD;
T ---
v 1877

St = TvUo

a

l= t
(a/Uo )

N = aB;a
pfUo

fjJ = Up

Uf

U;(I-fjJ) = (Uf-Up)
Uo
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In the above equations, a is the duct width, Dp is the particle diameter, Uo is the average

velocity of the molten aluminum (fluid) in the z direction, Bo is the magnitude of the

applied magnetic flux density, Pf is the fluid density, 17 is the fluid dynamic viscosity,

Pp is the particle density, and t is the elapsed time. The responsiveness of the particle to

changes in fluid velocity is indicated by its ve/ocity response time, Tv, as discussed by

Crowe et al. (1998). The ratio of the particle velocity response time to the characteristic

time associated with the carrier fluid flow (TF = a / Uo ) is defined as the Stokes number,

St. Other quantities which relate the particle and the fluid flow dynamics are the ratio of

particle diameter to duct width, Ù, the particle-fluid density ratio, Â, and the particle-fluid

velocity ratio, cjl. Crowe et al. (1998) provide the following approximate relationship

between cjl and St:

(2.65)

Equation (2.65) is useful in assessing the relative magnitudes of the terms in the

nondimensionalized particle momentum equation. The remaining parameters, which

include the duct Reynolds number, Re, particle Reynolds number, Rep, and the interaction

parameter, N, have been defined and discussed earlier in this chapter.

The nondimensional variables and parameters in Equation (2.64) were inserted

into Equations (2.61) and (2.62). The resulting equation was rearranged, and the star

superscripts used earlier to indicate dimensionless variables were dropped, to obtain the

following nondimensional form ofthe particle momentum equation:

dOp (1 )(. - -) ( 1) _ (1 )(dOf dOp )-= - U -U + 1-- g+ - ----
dt St f p Â 2Â dt dt

(
9 )[1 (dÛ

f
dÛ') ]+ dt dt dt'

n.l/2Â8Rel / 2 [~

( 3e )1- -1-1
/

2
[(- -) (- -)J+ 1/2 VxUf Uf -Up x VxUf27fRe Â8

-(~~)(ÊXË+ÛfxËxË)
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The following orders of magnitude are relevant to the problem of electromagnetic

filtration ofmolten aluminum (patel and EI-Kaddah, 1997):

a ~ 0[1O-2 ]-·.[m]

D
p
~ O[lO-4]- .. [m]

Uo ~ 0[10-1
]. .. [m/ s]

TJ ~ 0[10-3
] •• •[kg lm -s]

Pf ~ 0[103
]- •• [kglm3

]

Pp ~ 0[103
]· .. [kg 1m3

]

Çf ~0[1O-6]-.. [m2 Is]

When these values, which are appropriate in the physical problem ofinterest, are

incorporated into Equation (2.64), the following magnitudes of the corresponding

nondimensional parameters are obtained:

Re~0[103]

Rep ~ 0[10-1
]

St ~ 0[10-2
]

U; (1-,) ~ 0[10-2
]

Ô ~0[1O-2]

Â ~0[1]

Tv ~ 0[10-3
]

(2.67)

(2.68)

The values ofeach of the nondimensional groups, (~), that appear in the expressions for

the dimensionless forces in Equation (2.66) were calculated using exact values ofthe

properties and dimensions used in the electromagnetic filtration problems: the

corresponding orders of magnitude are summarized in Table 2.1.
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Table 2.1: Orders ofmagnitude ofthe dimensionless groups tOOt multiply the various
force terms in the nondimensionalizedpartide momentum equation

Dimensionless Order of
Group Ma2nitude

(;t) 10 2

(1- ~) 1

(2~) 1

Crl/2Â:Rel/2)
1

(2;r :e~2 Âô ) 1

(~~) 1

For the prohlems under consideration, the foUowing deductions can he made hased on the

orders ofmagnitude given in Equation (2.68) and in Table 2.1:

1. The particle velocity response time is two orders of magnitude lower than the

characteristic time associated with the flow ofmolten aluminum.

2. The particle Reynolds number is quite small, so the assumption that the Stokes

flow condition prevails is valid.

3. The dimensionless group that appears in the nondimensional drag force is of

order 0[102
], whereas the dimensionless groups associated with the other

nondimensional force terms are of order O(1]. Thus, the magnitude of the

relative velocity between the molten aluminum and the inclusions (particles) can

be expected to be small compared to 1Of 1.

4. The dimensionless groups associated with the nondimensional buoyancy, virtual

mass, Basset, lift, and EM forces are aU of the same order of magnitude, 0(1].

Thus, it would be wise to retain ail of these terms in the particle momentum

equation.
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2.6 Restriction Necessary for One-Way Momentum Coupling
Between the Molten Aluminum and the Inclusions

In order to justify the assumption of one-way momentum coupling hetween the

molten aluminum and the inclusions (particles), the average distance hetween particles

should he at least ten times the average particle diameter (Crowe et al., 1998).

Consider the molten aluminum to he divided into cuhic control volumes of size

ë, with each of these control volumes containing a single spherical particle of diameter

Dp. Then the volume fraction ofthe particulate phase, ap, is the foUowing:

(2.69)

(2.70)

The ratio of the average spacing hetween adjacent particles to the diameter ofa

single particle can he estimated by the following equation:

~p ~(~J'
In practice, it is customary to express this ratio in terms ofhulk material properties

such as mass concentration of the particulate phase, Cm, particle density, Pp, and

continuous phase (or fluid) density, PI' which are all easily measured. First, a constant,

1(, is defined hy:

(2.71)

For Cm « 1,

Then, noting that a p = 1-al' it can he shown that

K
a =-­

p l+K

Using this equation, Equation (2.70) can then be recast as follows:
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(2.74)~ = ('f )(1 + 1C »)1/3
Dp 6 1C

For typical concentrations and densities of aluminum oxides, as reported in Table

1.1, and conditions representative of molten aluminum filtration (patel and El-Kaddah,

1997), it can be shown that the requirement for one-way momentum coupling between the

fluid and the inclusions (namely, (f.I Dp ) ~ 10) is met when the mass concentration of the

particulate phase satisfies the following restriction:

C ~O[10-3]
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Chapter 3

Numerical Solution Methods

The numerical methods that were formulated, implemented, and used to solve the

mathematical models described in Chapter 2 are presented in this chapter. First, the

method that was used to predict fully developed flows of molten aluminum in the

separation chamber is described. Following that, an algorithm that was used to predict

the trajectories ofthe inclusions in the molten aluminum is presented.

3.1 FuUy Developed Flow of Molten Aluminum

3.1.1 Review of the Problem of Interest

The problem of interest is the flow of molten aluminum in the separation chamber

depicted schematically in Figure 2.1. The separation chamber is a straight duct of

rectangular cross-section, and its walls are assumed to be electrically non-conducting.

The molten aluminum is assumed to remain essentially isothermal as it flows through this

separation chamber. The duct and the molten aluminum tlowing through it are subjected

to uniform electric and magnetic fields, as shown in Figure 2.1. Ali other assumptions

invoked in this analysis have already been presented and discussed in Chapter 2, so they

will not be repeated here. Attention in this work is focused on the fully developed

regime, where, as was discussed in Chapter 2, the following conditions prevail: the

mainstream (z or axial direction) gradients of all dependent variables, except the reduced

pressure, are essentially zero; the axial gradient of the reduced pressure (dp/dz) is a

constant; the velocity components in the x and y directions vanish (u = v = 0); and the

cross-sectional distribution of the reduced pressure, ft, adjusts to balance the

electromagnetic force on the rnolten aluminurn.

3.1.2 Review of the Goveming Equations and Generalization

The assumptions and differential equations that govern the problem of interest

were presented in Chapter 2. In the fully developed regime, the distribution of the w
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(3.1)

velocity component in any cross-section of the separation chamber is obtained by solving

the z-momentum equation, which reduces to the following form:

- dp +~(11 fJw) +~(11 fJwJ -u (B2 +B2
) W = 0

dzàx àx ôy ôy x y

The no-slip boundary condition (w = 0) applies on the walls of the separation chamber.

In the problems of interest, (1, 11, Bx, and By are specified. The reduced pressure gradient,

dpldz, can either be prescribed a priori (and the corresponding mass tlow rate can be

calculated after the distribution of w in the cross-section is computed) or it can be

adjusted iteratively to achieve a desired mass tlow rate (or Reynolds number). The latter

approach was used in this work. !ts implementation details are presented in Section

3.1.6.

Equation (3.1) is akin to the following general steady-state diffusion equation

(patankar, 1980):

(3.2)

where t/J is a general specifie scalar dependent variable, r ~ is the corresponding diffusion

coefficient, and S; is the corresponding volumetrie source term (patankar, 1980). In the

formulation of the numerical solution method, the volumetrie source term was linearized,

when required, and cast in the following form (patankar, 1980):

S; = st +stt/J (3.3)

Equation (3.1) can be obtained from Equation (3.2) by the following settings:

'" =w . r =n . S; =- dp . S; =-u(B2 +B2
) (3.4)'Y ,;"', c dz' p x y

3.1.3 Control-Volume Finite Element Method

A control-volume finite element method (CVFEM) for two-dimensional planar

diffusion problems was used to solve the equation that govems the fully developed tlow

of molten aluminum in the separation chamber. This CVFEM is weIl established, and it
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is described in detail in the works of Baliga and Patankar (1978) and Baliga (1997). A

concise description of this method is provided in this section.

Domain Discretization

The calculation domain is first divided into three-node triangular elements. Then

the centroids of the elements are joined to the midpoints of the corresponding sides, to

create polygonal control volumes around each node (vertices of the triangular elements)

in the finite element mesh. A sample unstructured grid is shown in Figure 3.1: the solid

lines denote the domain and element boundaries; the dashed lines represent the control­

volume faces; and the shaded areas show the control volumes associated with one internal

node and two boundary nodes. In this discretization scheme, curved boundaries are

approximated by piecewise-linear curves.

Figure 3.1: Discretization ofa calculation domain into three-node triangular elements
andpolygonal control volumes.

The rationale behind the choice of triangular elements over quadrilateral elements

and the aforementioned procedure for generating polygonal control volumes is discussed

in Baliga (1997).

Integral Conservation Equation for a Control Volume

Consider a typical node i in the calculation domain: it could be an internaI node,

like the one shown in Figure 3.2a, or a boundary node, similar to the ones shown in

Figures 3.2b and 3.2c.
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Figure 3.2: Details of the domain discretization and related nomenclature: (a) an
internaI node; (b) a boundary node with three associated elements; and (c)
a boundary node with one associated element.

An integral formulation corresponding to Equation (3.2) can be obtained by

applying the conservation principle for (J to a control volume, Y, that is fixed in space.

The resulting integral conservation equation, when applied to the polygonal control

volume that surrounds node i in Figure 3.2, can be cast in the following fonn:

[JO J.ïids +Je J.iids - r. S;dV] +a 0 J,aoc
[similar contributions from other elements associated with node i] + (3.5)

[boundary contributions, if applicable] = 0

where li is a unit normal to the differential area element ds, pointing outwards with

respect to the control volume associated with node i, and J is the diffusion flux of (J :

(3.6)

The fonn of Equation (3.5) emphasizes that it can be assembled using an element-by­

element procedure. The two-dimensional domains being considered in this description

are assumed to have unit depth nonnal to the plane (or cross-section) of interest; thus,

volume and area integrals reduce to surface and line integrals, respectively.

Interpolation Functions

The derivation of algebraic approximations to the integrals and derivatives in

Equation (3.5) requires the specification of functions for the interpolation of the
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dependent variable, (J, the diffusion coefficient, r;, and the source term, S;, in each of

the three-node triangular elements.

Interpolation functions for r; and S;: In each three-node triangular element,

the centroidal value of r; is stored and assumed to prevail over the corresponding

element. The source term is linearized, as in Equation (3.3). In each element, the three

nodal values of st and st [{St}i=1,2,3 and {St};=1,2,3] are stored and assumed to prevail

over the corresponding portions of the three associated polygonal control volumes

contained within the element.

Interpolation function for (J: The specifie scalar function, (J, is interpolated

linearly in each three-node triangular element. Thus, with respect to a local Cartesian

coordinate system with its origin at the centroid ofthe element, as shown in Fig. 3.3, (J is

expressed as follows:

(J=Ax+By+C (3.7)

The constants, A, B, and C, in this interpolation can be uniquely determined in terms of

the x and y coordinates of the three nodes, and the corresponding values of (J .

•••••••••

Figure 3.3: A typical three-node triangular element, related nomenclature, and a local
Cartesian coordinate system.

With reference to the element 123 and the local Cartesian coordinate system

shown in Figure 3.3, the expressions for the constants A, B, and C are the following:
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A = [(Y2 - Y3)iA +(Y3 - Yt)(A +(Yt - Y2);3]/ DET

B=[(x3-X2)t/Jt +(X; -X3);2 +(X2-Xt );3]/ DET (3.8)

C = [(X2Y3 - X3Y2)t/Jt +(x3Yt - X;Y3);2 +(X;Y2 - X2Yt);3]/ DET

where the term DET is given by:

(3.9)

Discretized Equations

The discretized equations are algebraic approximations to the integral

conservation equations applied to each polygonal control volume in the calculation

domain. First, algebraic approximations to the element contributions to the integral

conservation equations are derived. Then, the algebraic approximations to the element

contributions are assembled appropriately to obtain the discretized equations (Baliga,

1997). Algebraic approximations to the boundary contributions, if applicable, are also

derived and added to the assembled element contributions. The following derivations

pertain to node 1 ofthe element 123 shown in Figure 3.3.

In each element, the diffusion flux, J, can be expressed ln terms of its

components in the x and y directions as follows:

(3.10)

where 7 and J are unit vectors in the x and y directions, respectively. The interpolation

function given in Equation (3.7) is used to approximate Jx and J y :

(3.11)

where A and B are given by the expressions in Eq. (3.8).

Using Equation (3.11), with reference to node 1 of element 123 and the local

Cartesian coordinate system in Figure 3.3, the integrals in Equation (3.5) that represent

the diffusion transport of ; cam now be approximated as follows:

J: J.nds=(Ar')YQ -(Br,)xQ

J:J.nds = -(Ar,)Yc +(Br,)xc

The integral involving the source term is approximated as follows:
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(3.13)

where Ae is the area of the triangular element 123:

(3.14)

withDETgiven byEq. (3.9).

Substituting the expressions in Equation (3.8) into those in Equation (3.12), and

then adding up Equations (3.12) and (3.13), the total contribution of element 123 to the

integral conservation equation for the control volume associated with node 1 is obtained.

This total element contribution can be expressed compactly in the following form (Baliga,

1997):

(3.15)

where

(3.16)

Discretized equations for internai nodes: Expressions sunilar to Equation

(3.15) can be derived for the contributions of al1 elements associated with the internai

node i shown in Figure 3.2a. Such expressions, when substituted into Equation (3.5),

yield the complete (assembled) discretized equation for node i. This discretized equation

Can be cast in the following general form (Baliga, 1997):

a:fJi = 'LdmfJm +b
i

(3.17)
nb

where the summation is taken over al1 the iInmediate neighbors of node i. Equations

similar to Equation (3.17) can be derived for all internai nodes in the calculation domain.

Element-by-element procedures for the compilation, storage, and assembly of the

element contributions, such as those in Equation (3.15), to obtain the complete discretized
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equations, such as Equation (3.17), are described in Baliga (1978) for structured Cartesian

grids and in Venditti (1999) for unstructured grids.

Discretized equations for boundary nodes: For the nodes that lie on the

boundaries of the calculation domain, the assembly of element contributions, such as that

in Equation (3.15), is insufficient to complete Equation (3.5). The surfaces of control

volumes associated with boundary nodes have segments that lie along the domain

boundaries. In order to obtain the complete integral conservation equations for such

control volumes, the rates of transport of ,p crossing the boundary segments must be

added appropriately to the assembled element contributions. Information regarding such

boundary transport rates can be obtained from the prescribed boundary conditions

pertaining to the problem of interest.

When the value of ,p at a boundary node i is specified, the corresponding

discretized equation is replaced by the following equation (Baliga, 1997):

({ = ,pSPecified (3.18)

After all the unknown values of ,p have been computed, the discretized equation

associated with any specified-value boundary node i can be used to compute the

corresponding boundary flux of ,p (Baliga, 1978; Baliga, 1997).

Solution of the Discretized Equations

The discretized equations derived m the previous subsection form a set of

simultaneous algebraic equations that, in general, could be nonlinear. The following

iterative process was used to solve these equations:

1. Guess all unknown values of ,p in the calculation domain.

2. Caleulate the coefficients in the linearized forms ofthe discretized equations,

using the latest available values of the dependent variables.

3. Solve the resulting set oflinear, or linearized, simultaneous algebraic

equations.

4. Repeat steps 2 and 3 until convergence.

Step 3 of this iterative procedure involves the solution of a set of linear algebraic

equations. Any suitable method may be used to solve these equations. Information on

48



such methods, including their advantages and disadvantages, is available in Patankar

(1980) and Ferziger and Perie (1996). If the domain discretization scheme is such that the

nodes in the finite element mesh lie along definite and easily identifiable line patterns,

then a simple line-by-line tridiagonal matrix algorithm (patankar, 1980) may he used to

solve the set of linear, or Iinearized, discretized equations, and was done to obtain the

solutions to the test and demonstration problems presented later in Chapters 4 and 5.

Convergence Criterion

For any given finite element mesh (grid), the aforementioned iterative algorithm

for the solution of the discretized equations was considered to have converged when the

maximum value of the absolute normalized residues was less than 10- 12.

At any node, j, in the finite element mesh, the residue of the discretized equation

is defined as follows:

(Residue)j = {a:;i - La:"';"" +bi}j
ni>

(3.19)

With respect to the physical problem of fully developed flow of molten aluminum in the

separation chamber, this residue represents an imbalance in the rate of transport of

momentum in the axial direction, due to lack of convergence of the iterative solution

procedure. In this work, this residue was normalized with reference to an average rate of

transport of axial momentum across each control volume, calculated as follows at the end

ofeach ofthe iterations:

(3.20)

where (LI x MI) is the total number ofnodes in the finite element mesh, 4ab is the total

cross-sectional area of the separation chamber (see Figure 2.1), and Pi and W av are the

density of the molten aluminum and its average velocity, respectively. The value of Wav

was computed as follows:

W av = {LWjAf,CV,j } /(4ab)
j

Thus, the convergence criterion used in the work can be expressed as follows:

{I Residue lmax /(RMT)av} :$; 10-12
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Calculation of dp/dz

In each run of the CVFEM code, the value of dp/dz was adjusted iteratively to

obtain a desired Reynolds number, (ReD. )dl18ired :

(3.23)

Thus,

(3.24)

For steady, laminar, fully developed flows of molten aluminum in the separation

chamber, and fixed values of the electric field strength, Eo, and magnetic flux density, Bo,

the product of ReD" and a friction factor based on dp/dz would be a constant (White,

1991):

(3.25)

The information contained in this equation was used to design an efficient iterative

scheme to obtain a dp/dz value that produces the desired value of Reynolds number,

(ReD)dl18ired' or the corresponding value of (Wav)desired calculated using Equation (3.24).

At the start of each run, a guess value ofdp/dz was provided as an input, and the iterations

were initiated. Following that, at the end of any iteration, n, the value of dp/dz for the

next iteration was calculated as follows:

(3.26)

The value of Wav at the end of each of the iterations was calculated using Equation (3.21).

This iterative scheme was considered to have converged when the following criterion was

met:

(3.27)
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3.2 Particle Tracking Aigorithm

The algorithm that was used to calculate the trajectories of the inclusions

(particles) in the molten aluminum flowing inside the separation chamber is described in

this section. This algorithm requires as inputs the velocity distribution of the molten

aluminum, which was calculated using the CVFEM described in the previous section.

The algorithm is executed independently from the fluid flow calculation described in

Section 3.1.

The calculation domain is the three-dimensional space within the separation

chamber. This calculation domain was discretized using a structured three-dimensional

finite element mesh. In the mainstream, or z, direction, this mesh had a plane-by-plane

structure; each of these cross-sectional planes was discretized into rectangles using a line­

by-line structured grid; and each of the rectangles was further divided into two triangular

elements. The resulting three-dimensional finite element mesh consisted of elements that

resembled extruded triangular prisms in the z-direction. An example of such a three­

dimensional finite element mesh is shown in Figure 3.4.

Figure 3.4: Discretization ofthe calculation domain

Only fully developed flows and one-way momentum coupling were considered in

this work. However, it should be noted that the proposed particle-tracking algorithm

could be readily extended to elliptic or partially-parabolic flows with two-way

momentum coupling between the fluid flow and the particles. In this algorithm, particle­

particle interactions are assumed to be nonexistent (or negligible) and particle-wall

collisions are assumed to be inelastic.
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The computer program that was prepared for the prediction of the particle

trajectories was called MAIN_PARTICLE. Its structure and operation is succinctly

illustrated by the flowchart given in Figure 3.5. For a given set of problem parameters,

this prograrn first reads in information about the discretization of the calculation domain

and the corresponding flow field data at the nodes of the finite element mesh, using a

subroutine called READ.;...FLQW. The mesh andflow field data are obtainedby running

the CVFEM code, Then, the particle-tracking prograrn invokes a subroutinecalled

RUNGE_KUTTA, which incorporates a fourth'-orderRunge-Kutta solution scheme.

Details ofthis scheme are given later inthis section.·

MAIN PARTICLE

Read in problem parameters

READ FLOW-
~ Obtain fmite element mesh and

flow field data from the output of
the CVFEM code

--+
RUNGE KUTTA

Compute particle trajectory

FIND_3DVELOCITY
1......+

Interpolate ta fmd local f10w field data
required for particle tracking

1......+
LOCATE2D

IdentifY element occupied by particle

Figure 3.5: F/owchart ofcomputer program for ca/cu/atingpartide trajectories

Once the program MAIN_PARTICLE is initialized, and the starting particle

position and velocity, and a suitable time step, are specified, the subroutine

RUNGE_KUTTA carries out the particle trajectory calculations by repeating the fourth­

order Runge-Kutta scheme for each time step, until the specified maximum number of

time steps is reached, or the particle reaches a domain boundary. During the

computations needed to advance the solution by one time step, the RUNGE_KUTTA
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subroutine caUs the subroutine FIND 3DVELOCITY, which is a subroutine that

interpolates for the local fluid velocity, and calculates aH required velocity gradients,

based on the particle position at the last time step. In order to compute these quantities,

the subroutine LOCATE2D is called from within FIND 3DVELOCITY, to identifY the

three vertices of the triangular cross-section of the element within which the particle is

currently located. The required velocity components and their gradients are first obtained

using interpolation over the two triangular cross-sections corresponding to the upstream

and downstream K-planes of the prismatic element, and then linear interpolation is used

to determine the required values at the precise current particle position (Xp. Yp. zp).

During each calI to FIND_3DVELOCITY, the code checks whether the particle

has been pushed into a non-existent element outside the calculation domain. If this is the

case, then the marching Runge-Kutta integration sequence is stopped, the particle is

brought back to its previous time step, and then traversed using its latest velocity and a

customized time step chosen to ensure that the particIe stops exactly at a wall or an

outflow boundary.

In the remaining parts of this section, sorne of the ingredients of the

aforementioned particle-tracking algorithm are discussed in more detail.

3.2.1 Fourth-Order Runge-Kutta Scheme

The particle trajectory calculations in this work were done using a fourth-order

Runge-Kutta (RK) scheme (Dahlquist and Bjorck, 1974). To facilitate the

implementation of the RK scheme, the particle momentum equation is first cast into the

fol1owing form:

aOp -
--=C1Up +C2at
Bip=O
8t p

Op(t = 0) = 0 po

xp(t =0) =xpo
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(3.29)

The particie trajectory was computed independently along each coordinate

direction, by calculating the corresponding components of the relevant forces and

including them in the expressions for Cl and C2,

The RK. scheme for advancing the x coordinate ofthe particle trajectory one time

step, from t to t +At , is summarized below.

kl = AtU~ II = At(CIU~ +C2 )

k2 =At(U~ +}) 12 =At(cl [U~ +i-]+c2 )

k3 =At(U;+i) 13 =At(CI[U~+f]+C2)

k4 =At(U~ +13 ) 14 =At(cl [U~ +13 ]+c2 )

(3.30)

The full particle trajectory is obtained by repeating the RK. integration time-step-by-time­

step until the particle exits the separation chamber at its outlet plane, or hits one of its

walls along one of the transverse (x-coordinate or y-coordinate) directions. The RK.

integration is simultaneously carried out in all three directions using the same time step.

3.2.2 Interpolation to Obtain the Local Fluid Velocity and Its Spatial Gradients

During the RK. integration for each time step, it is necessary to update the

coefficients Cl and C2, which are functions of the forces experienced by the particle along

each coordinate direction. Thus, the calculation of these coefficients requires values of

the velocity components and their spatial gradients, the electric field strength, and the

magnetic flux density at the current location of the particle. It is, therefore, necessary to

determine the particular prismatic element that contains the particle, and use suitable

interpolation functions to compute the required quantities at the precise position of the

particle. For the problems addressed in this thesis, it was necessary to obtain the three
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components of the local fluid velocity, Ul' vI' Wl' and the gradients of W1 along the x and

y directions (Owl , Owl ).
ôx ôy

-=----J

1+1

--+~~--::IF--J+l

1-1

(I,J) = (1CUR,JCUR)
IQUAD(ICUR,JCUR)=O
ITRI = 1

KUS KDS

k~

y--+--

~-r--z

Figure 3. 6: The prismatic element that contains the partie/e, and related notation

Figure 3.6 shows a particle at a specifie time, t. The procedure for obtaining the local

fluid velocity components and their gradients is summarized below, using the wf velocity

component as an example.

1. Using the LOCATE2D subroutine, described in Section 3.2.3, and the current

particle coordinates, obtain the (1,1) indices of the three vertices, 0-1-2, of the

triangular cross-section ofthe element that contains the particle.

2. Using the z coordinate of the particle, determine the K indices, KUS and KDS,

of the upstream and downstream planes ofthe element that contains the particle.

3. Compute the local wfvelocity at the correct xp andyp coordinates in the upstream

K-plane, using the following interpolation function:

w/,us =Ax+By+C (3.31)

The coefficients, A, B, and C in this equation are obtained by solving:
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{W}us = (X]{A}us

{A}us = (xt {W}us

(3.32)

4. Compute the local wfvelocity at the downstream K-plane in the same manner.

5. Compute the local wf velocity at the correct zp value, by using one-dimensional

linear interpolation between the upstream and downstream K-planes:

W/(xp,Yp,zp) = w/(xp,Yp)us +( zp -zus )(w/(Xp'YP)DS -w(x,Y)us) (3.33)
ZDS -zus

aw aw
6. Obtain the local velocity gradients, -_/ =A, and _/- =B in the same manner:

ex Gy

(3.34)

7. Repeat steps 1-5 for the u and v velocity components.

3.2.3 Method for Locating the Particle in the Triangular Finite Element Mesh

In the cross-sectional planes of the finite element mesh, to find the specifie

triangular element that contains the particle at the end of a time step, the subroutine

LOCATE2D starts with the triangular element that contained the particle at the end ofthe

previous time step and then determines whether the particle is still within tOOt element or

has traversed to an adjacent element.

56



Figure 3. 7: Triangular element occupied by the particle

Consider the triangular element in Figure 3.7, which represents the previously

occupied position of the particle. Once the updated particle coordinates are obtained from

the RI( integration scheme, they can be expressed in terms of the area coordinates

(Zienkiewicz, 1977) ofthe previous element,

(3.35)

In this formulation, it is necessary that

Therefore, the complete set of equations can be expressed in matrix form as follows:

(3.36)

[

XO

Yo
1

(3.37)

The solution for 80, al, and a2 can be obtained using any suitable matrix method, for

example, Cramer's mIe (DaWquist and Bjorck, 1974). The values of these area

coordinates are used to determine if the particle occupies the same element, or indicate

the most likely new element if it has moved out of the old one. As examples, consider

three special cases shown in Figure 3.8:
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Ir 0 0 >1 ~ a..~<0

If ao =O ~ a..~~0

Figure 3.8: Special cases to i/lustrate the rules used to locate the partic/e

For locating the particle, the general mIes that apply to triangular elements are the

following (Ren et al., 1995):

1. If 0 ~ aj)aj,ak ~ 1, then the particle occupies the current element.

2. If ai < 0 and aj,ak ~ 0, then the particle has traversed to an element that is

adjacent to the side j-k, opposite node i.

3. If aj,ak < 0, then the particle has traversed to one of the elements associated

with node i, opposite side j-k.

Based on these mIes, the subroutine LOCATE2D solves for the area coordinates, and

returns the value of a variable denoted as ILOC, ranging from 1 to 7 and corresponding to

each ofthe possibilities depicted in Figure 3.9.

58



Figure 3.9: Partide location possibilities evaluated in subroutine LOCATE2D

The element that is occupied by the particle is found by calling the subroutine

LOCATE2D, using the value ofn..OC to determine the search direction, and updating the

trial element until n..OC=l is retumed. For the structured finite element meshes used in

this work, there are four types of elements that must be considered when executing the

particle-Iocating algorithm, as illustrated in Figure 3.10.

(1,1+1)
2

(I,J)

lQUAD=O
(1+1)+1)

(1+1»

(1,1+1
lQUAD=l

1+1 +1)

(1+1»

Figure 3.10: Possible configurations ofthe triangular elements in the structured mesh
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Table 3.1: Possibilities that must be consideredfor the determination ofthe next search
elementfor a returned value offLOC

ILOC IQUAD ITRI 1new Jnew ITRI new
0 1 1 J-1 2

2 0 2 1 J 1
1 1 1 J-1 2
1 2 1+1 J 1or2

[] 0 1 1+1 J-1 1or2
0 2 1+1 J+1 1or2
1 1 1+1 J-1 1or2
1 2 1+1 J+1 1or2

[] 0 1 1+1 J 1or2
0 2 1 J+1 1
1 1 1 J 2
1 2 1 J+1 1
0 1 1+1 J+1 1or2

5 0 2 1-1 J+1 1or2
1 1 1-1 J+1 1 or 2
1 2 1-1 J+1 1
0 1 1 J 2

6 0 2 1-1 J 1or2
1 1 1-1 J 1or2
1 2 1 J 1
0 1 1-1 J-1 1or2

7 0 2 1-1 J-1 1or2
1 1 1-1 J-1 1or2
1 2 1+1 J-1 1or2

The value of ILOC has to be applied differently for each of the four types of triangular

elements depicted schematically in Figure 3.10: a summary of the possibilities is

provided in Table 3.1.

An example of how the new values of 1, J, and ITRI are detennined is shown in

Fig. 3.11 for IQUAD(I,J)=O, and ITRI=l. It can be observed that for ILOC=3, 4, 5, and

7, the ITRI in the new quadrilateral cannot he ohtained with certainty. For such cases. the

algorithm simply toggles the ITRI value between 1 and 2 whenever it traverses to a new

element. If the proposed new element still does not retum a value of ILOC=l, then an

additionallocator step is carried out.
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- - - - -1;- - - -.. 1.1+1 J)® 1'·

.1 CD
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Figure 3.11: .Example used to illustrate updatingofthe elementfor IQUAD=O,. [TRI=;]

The possibilities summarized in Table 3.1 were incorporated into the computer

program using statements akin to the following pseudo-code:

IF (aOC=2) mEN

1=1+IQUAD{I,J)*(ITRI-l)

J = J + (ITRI-2)

IF (aOC=3) TUEN

1=1+1

J = J + (2*ITRI-3)

IF (aOC=4) mEN

1= 1+ (l,·IQUAD(I,J))*(2-ITRI)

J = J + (ITRI-l)

IF (ILOC=S) mEN

1= 1- 1 + 2*(l-IQUAD{I,J)*(2-ITRI)

J=J+l

IF (aOC=6) THEN

1 = 1 - (l-IQUAD(I,J»*(ITRI-l) - (IQUAD(I,J)*(2-ITRI)

J=J

IF (ILOC=7) mEN

1= 1- 1 + 2*(IQUAD(I,J)*(ITRI-l)

J= J-l
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3.2.4 Method for Checking When Particle Reaches a Domain Boundary

While computing the particle trajectories, the overall particle-tracking program

may encounter the following three possible scenarios:

• The specified maximum number of time steps is reached before the particle

reaches a domain boundary

• The particle reaches a domain boundary corresponding to one of the duct walls,

before the number of time steps exceeds the specified maximum value

• The particle reaches the outtlow boundary at the end of the separation chamber,

before the number of time steps exceeds the specified maximum value

For the first case, the computer program stops execution without the need for any

special treatment. For the second case, in which the particle reaches a domain boundary,

it is necessary in subroutine FIND_3DVELOCITY to recognize this scenario before any

interpolations are attempted, in order to prevent the code from trying to interpolate for

dependent variables on fictitious elements, that are not a part of the finite element mesh.

Consider the example in Figure 3.12, which illustrates a case where the particle

reaches the separator chamber wall at x = a (corresponding to the grid tine 1 = LI).

(lCUR,JCUR~+.:.:I~ -:::71

(lCUR,JCUR)
-";'-'--~---=--J (LI,lCUR)

Figure 3.12: Example o/particle exitingdomain at x=a (/=LI)

At time t, the particle is within the calculation domain, but during the following

time step, which advances the time to t +At , it has moved to a point outside the domain

boundary. Since interpolation of the dependent variables is based on the particle position
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at the beginning of the time step, the code recognizes a boundary violation only after the

particle has exited the calculation domain. In such cases, the algorithm is set-up to back­

calculate the particle position in aU three coordinate directions using the final

instantaneous velocity, in order to bring it back to the location where it crossed the wall

boundary.

y

fbx
Figure 3.13: Back-calculation offinalpartide position at sidewall boundary

Consider the particle in Figure 3.13, as it approaches the domain boundary, which

is given an arbitrary orientation. The first step in the back-calculation procedure involves

determining the two boundary nodes between which the particle crossed the domain

boundary. This can be conveniently achieved by using the indices (ICUR,JCUR) that

represent the latest occupied element. The code is set up so that a boundary violation is

identified when ICUR changes to 0 or LI, or when leUR changes to 0 or Ml.

Next, the distance, d, between the latest particle position (outside the domain

boundary) and the nearest point on the domain boundary is computed using the cosine

law (please see notation given in Figure 3.13):

(3.38)

The distance, d, is then given by:
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(3.39)

d=-~ sin(8)

[ (P+L2_PJ]d = -~ sin arccos 1 2Ll
1

2

The negative sign has been deliberately inserted in the equations in order to

emphasize that the particle has exited the domain and it needs to be moved backwards to

a location on the domain boundary. The velocity of the particle, in a direction normal to

the boundary is also needed for back-calculating the particle position. First, the

orientation ofthe boundary edge is expressed as an angle relative to the x-coordinate

direction:

Then, the velocity normal to the boundary is calculated using:

VI =up COS(lf 12-4)+vp cos (4)

(3.40)

(3.41)

Finally, the time step required to move the particle backwards is obtained by dividing the

normal distance by the normal velocity:

(3.42)

The boundary treatment for the case where the particle exits the calculation

domain at the outflow boundary of the separation chamber is carried out in a similar

fashion. For ducts of constant cross-section, such as the separation chamber considered

in this work, the outflow boundary is oriented normal to the z-coordinate direction.

Therefore, the previous calculation procedure can be simplified by using the final z

position and w velocity of the particle to calculate the final time step required for the back

calculation.
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(4.2)

Chapter 4

Test Problems

The numerical solution methods presented in Chapter 3 are validated in this

chapter by applying them to four different test problems and checking their solutions

against analytical and/or numerical solutions available in the published literature.

4.1 FuUy Developed Flow in a Rectangular Duct

4.1.1 Problem Statement

The problem considered here involves steady, laminar, fully developed flow of a

constant-property Newtonian fluid in a straight duct of uniform rectangular cross-section,

akin to that shown schematically in Figure 2.1, but without the imposed FM fields.

In the fully developed regime, the velocity component in the axial, or z, direction,

w, is govemed by the following equation (Shah and London, 1978):

-:+~(q:)+~(q:)=o (4.1)

Noting that the properties of the fluid are assumed to be constant in this test problem,

Equation (4.1) can be rewritten as follows:

a2
w a2

w (dp) A

ax2 + 0'2 = dz 111 =Cw

In this equation, p is the reduced pressure, as defined earlier in Equation (2.1). With

respect to the schematic illustration of the rectangular duct and the Cartesian coordinate

system shown in Figure 2.1, the boundary conditions on w are the fol1owing:

w =Oatx=O x=2a y=O and y = 2b, , , (4.3)

The exact solution to this problem is the following (Lundgren et al., 1964; Shah and

London, 1978):

w= 16cwa
2 i ~(_lyn-I)I2[I_ COSh(mr(Y-b)/2a)]cos(mr(x-a») (4.4)

1l"3 n=1.3•... n3 cosh(111l"b12a) 2a
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The average value ofw over the cross-section ofthe duct is given by:

W = _ cwa2

[1- 192 (a) ~ _1 tanh (m'Cb)]
av 3 1'{5 b ~ n5 2a

n=1,3,...

(4.5)

(4.6)

The hydraulic diameter, Reynolds number, and the Fanning Friction for this problem are

defined as fol1ows (Shah and London, 1978):

D
h
= 4ab ; Re PW,JJh; 1 = 1"w,av

(a+b) 11 O.5pw:V

where 1"w,av is the average wall shear stress. The product of 1 and Re is given by the

fol1owing equation (Shah and London, 1978):

IRe=- 8cwa
2

wav[l +(alb)t
(4.7)

For any given aspect ratio, AR = b1a, the exact values of 1 Re can be computed using

Eqs. (4.6) and (4.7). Shah and London (1978) have proposed the fol1owing equation for

1Re that approximates its exact values with an accuracy of 0.05% or better, for aU

values ofAR:

IRe= 24(1-1.3553AR+1.9467AR2 -1.7012AR3 +0.9564AR4 -0.2537AR5
) (4.8)

The control-volume finite element method (CVFEM) presented in Section 2.1 was used

to solve this test problem. The validity of this CVFEM, and its computer implementation,

was established by comparing the results with those obtained from the aforementioned

exact and approximate solutions provided by Lundgren et al. (1964) and Shah and

London (1978).

4.1.2 Results for wma.Jwavand 1Re

The CVFEM results were obtained using line-by-line structured grids of LlxMl

nodes. A power-law distribution of the grid tines was used to generate grids that packed

more nodes in the vicinity of the walls than in the central regions of the duct. In the

lower-left quadrant of the duct cross-section (0 ~ x ~ a and 0 ~ y ~ b), this power-Iaw

grid was generated as fol1ows:

X(I)=a[(I -1)/{O.5(Ll-l)rf'OW ; Y(J)=b[(J-l)/{0.5(Ml-1)}f'°W (4.9)
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Only odd values ofLI and Ml were used, in order to ensure that there would be grid lines

along the centerlines of the duct cross-section (x = a and y = b). The grid lines in the

remaining three quadrants of the duct cross-section were obtained by suitably reflecting

those in the lower-Ieft quadrant.

VaIues of wmax / W av and f Re for seven different values ofAR, obtained using the

CVFEM presented in Section 2.1, the corresponding exact solutions (Equations (4.4) and

(4.5» of Lundgren et al. (1964), and the approximate solution (Equation (4.8» of Shah

and London (1978) are presented in Table 4.1 and Figure 4.1. The CVFEM results in

this table and figure were obtained using LI = 61, Ml = 61, XPOW = 1.1, and YPOW =

1.1.

Table 4.1: Wmax / Wavg and f Re values for Jully developedflow in a reetangular duet ­

eomparison of CVFEM results with those of Lundgren et al. (1964) and
Shah andLondon (1978)

Aspect Ratio
wm/Œ /wavg

Wm/Œ/wavg
fRe

fRe
Lundgren et al. Shah and

AR CVFEM CVFEM
(1964) London (1978)

1.000 2.0962 2.0991 14.2296 14.2332

0.750 2.0774 2.0804 14.4782 14.4822

0.500 1.9918 1.9953 15.5573 15.5560

0.400 1.9236 1.9275 16.3767 16.3775

0.250 1.7737 1.7789 18.2340 18.2468

0.125 1.6283 1.6363 20.5898 20.6105

0.100 1.6009 1.6101 21.1759 21.2002

The data presented in Table 4.1 show that, for all values of the aspect ratio, AR, the

CVFEM results differ from those ofLundgren et al (1964) and Shah and London (1978)

by less than ±0.6%. These differences are hardly perceptible in the graphicaI presentation

of the results in Figure 4.1
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Figure 4.1: Variation of wmar / Wavg and }Re and with aspect ratio, AR, for Jully

developed f1aw in a rectangular duct - comparison of CVFFM results with
published data (Lundgren et al., 1964; Shah andLondon, 1978)

4.1.3 Grid Independence Checks

AlI numerical solution methods must satisfy the following consistency

requirement: as the computational grid is refined, the numerical solution must

asymptotically approach the exact solution. Furthermore, the differences between

numerical solutions obtained on successively finer grids should become progressively

smalIer, and, eventually, essentially negligible, to within the Umit imposed by machine

round-off characteristics. The CVFEM simulations were run on successively finer grids,

and the solutions were examined to ensure that they met the aforementioned

requirements. Five different power-law grids, similar to that represented by Equation

(4.9), were used in these tests: L1xM1 = 21x21, 41x41, 61x61, 81x81, and 101x101, with

XPOW = YPOW = 1.2, 1.2, 1.1, 1.1, and 1.05, respectively. The results are presented in

Figure 4.2.
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1.8200 ,-------------------,

1.8100

1.8000

Wmax 1.7900
Wave
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•
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\CVFEM
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• • • •
1.7700 Lundgren et al.
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21x21 41x41 61x61 81x81 101x101

Grid Size

18.3400...--.---------------,
....

18.3000

fRe

.....
\CVFEM..

•

18.2600

Eq. (4.8)

•

-. .
'­ ". -... --.- -..

• • •
18.2200 +---r-------.------,-----r-------l

21x21 41x41 61xS1 81x81 101x101

GridSize

Figure 4.2: Variation ofthe CVFEM results with grid refinement

The results presented in Figure 4.2 show that the CVFEM results do satisfy the

consistency and grid-independence requirements.
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4.2 Particle Settling in a Stationary Fluid Subjected to
Gravity and Electromagnetic Forces

4.2.1 Problem Statement

In this test problem, a smooth, rigid. electrically non-conducting. spherical particle

is allowed to settle in an electrically conducting· fluid. The fluid is Newtonian. its

properties are assumed to be constant. andit is stationary far from the particle (U,= 0);

It is also assumed here that the virtual mass and Basset forces are negligible. Under these

conditions. the particIe momentum equation. Equation (2.40)•. reduces to the following

form:

dÛ - - -
mp dtP

=FDRAG +F'auorANCY +FFM,p

In this equation, the force terms are given by the following equations:

FDRAG =3JrDil(Or -Ûp )

_ JrD; _
FauOYANCr = (-6-)(Pp - Pr)g

- 3(JrD;)-F. --- - F.
EM,p - 4 6 EM,UnitVoi

(4.10)

(4.11)

(4.12)

With respect to the finite element mesh and Cartesian coordinate system depicted in

Figure 3.4, the following were imposed: g =gk • Ë =-ET, jj =BQ]' where J, ], and

k are unit vectors in the x, Y. and z directions. respectively. In addition, the particle

Reynolds number is assumed to be less than or equal to one (Stokes regime): Rep $; 1.

Then, noting that Ûr =O. and with Ûp= Upk. the particle momentum in the z direction

is governed by the following equation:

dU ?rD
3

3 (JrD
3

)
mp d/ =-3JrD/1Up+(-fXPp-Pr)g+ 4 -f ŒrEBo

The terminal velocity of the particle can be obtained from Equation (4.12) by setting the

acceleration term to zero: dUp / dt = O. Using tbis approach, the following expressions

are obtained for the terminal velocity of the particle under the fol1owing three
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(4.14)

(4.15)

Only EMForce and Zero Gravity:

combinations of the gravity and EM force: only gravity and zero EM force; only EM force

and zero gravity; and both gravity and EM force:

D 2

Only Gravity and Zero EM Force: (Up)Terminal = (pp - Pf)g 18~ (4.13)

3 D2

(Up)Terminal =- U fERo-p
4 1817

[ 3] D
2

(Up)Terminal = (pp - Pf )g+ 4 ufEBo 18~Both Gravity andEMForce:

The transient solution for the particle velocity and its complete trajectory can be obtained

by integrating Equation (4.10) with respect to time. The analytical results are the

following:

(4.16)

(4.17)

In these equations, the constants Cl and c2 are given by:

(4.18)

Numerical solutions to this problem were obtained using the particle-tracking

algorithm described in Section 3.2, with a finite element mesh akin to that depicted in

Figure 3.4 and a uniform distribution of the grid lines in the x, y, and z directions (with

LI = 21, Ml = 21, and NI = 21). The following physical properties and problem

parameters, which apply to the electromagnetic filtration ofmolten aluminum, were used:
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Density offluid) PI =2)374 kg/m3

Dynamic viscosity of fluid) Tl =2.998 x 10-3 kg/m-s

Conductivity of fluid) u1 =2.95 x 106 mho/m

Mass density ofparticle) Pp =3)990 kg/m3

Particle diameter) Dp = 2.5 x lO-s m

Electric field strength, E = 1.0 V/m

Magnetic flux density) Bo = 0.050 T

(4.19)

4.2.2 Particle Terminal Velocity

Analytical and numerical solutions corresponding to the thtee comhinationsof

conditions depicted in Equations (4.13) to (4.15) are given in Table 4.2.

Table 4.2: Comparison ofnumerical and analytical solutionsfor the terminal

velocity ofa partic/e settling in a stationaryfluid

Analytical Numerical
Conditions

Solution Solution

Only gravity, no EM force 0.1836 mm/s 0.1836 mm/s

Only EM force, no gravity 1.2812 mm/s 1.2812 mm/s

Both gravity and EM force 1.4648 mm/s 1.4648 mm/s

The results in Table 4.2 show that for each of the three cases considered) the

numerical results match the analytical results exactly. These results also demonstrate

that) for the physical properties and problem parameters given in Equation (4.19» the

electromagnetic field produces an order of magnitude increase in the terminal velocity of

the particle over that obtained with gravity alone.

This problem was also run with the finite element mesh at several different

orientations with respect to the Cartesian coordinate system (1)]) k unit vectors). In all

cases) the numerical and analytical results for the particle terminal velocity matched

exactly) as in Table 4.2.
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(4.20)

4.2.3 Particle Velocity Distribution and Particle Trajectory

For the properties and problem parameters given in Equation (4.19), and for the

initial conditions Xp=O and Up=O, the partic1e-tracking algorithm was used to compute the

variation of partic1e velocity with time, as weil as the corresponding partic1e trajectory.

The finite element mesh was the Same as that described in the previous subsection. The

numerical results and the corresponding analytical solutions (obtained using Equations

(4.16) to (4.18» are plotted in Figure 4.3. The time step in the computer simulation was

set equal to one-tenth the partic1e velocity relaxation time:

lit = 'Cv =(PpD; J/10
10 1817

Smaller time steps were also tried, and it was established that the numerica1 solutions

become essentially insensitive to time-step refinements below lit = 'Cv /10 .
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Figure 4.3: Partide settling in a stationaryfluid under the influence ofgravity andEM

force: Particle velocity distribution and frajectory

The results plotted in Figure 4.3 show that the agreement between the numerical

and analytical results is uniformly excellent.
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4.3 Motion of a Particle in a Couette Flow Layer Adjacent to
a Solid, Impermeable, Plane Wall

4.3.1 Problem Statement

This test problem is schematically illustrated in Figure 4.4.

Figure 4.4: Particle motion in a Couette flow layer adjacent to a solid, impermeable,
plane wall.

The fluid is Newtonian, and its properties are assumed to be constant. The fluid

flows steadily past a solid, impermeable, plane walliocated at y = O. The fluid velocity in

a direction normal to the wall is zero, and its velocity parallel to the wall is invariant with

x and varies linearly with y:

(4.21)

The height ofthe Couette layer is H, and the fluid velocity at y = H is u", .

The particles are small, rigid, smooth spheres. In this test problem, it is assumed

that the particle trajectories are influenced by the drag and lift forces only. The

buoyancy, virtual mass, Basset, and EM forces on the particle are assumed to be

nonexistent or negligibly small. The particle Reynolds number is assumed to be less than

or equal to one (Stokes regime): Rep ~ 1. It is also assumed that the equation proposed

by Saffinan (1965) for the lift force applies in this problem. Under these conditions, the

components of the particle momentum equation in the x and y directions can be simplified

and expressed as follows:
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dup = .-!..-(u -u )
dt T 1 pv

( J
1/2

dvp = _.-!..-v +3e PI _1_çI/2 (u -u ) dUI
dt T p 21ip D 1 p dyv p p

The following nondimensional variables and parameters are introduced at this stage:

• H • Y • u • ul Dpt =t-· Y =_. u =-L. u =-' 8 =-, H' p '1 'H H
U'" u'" u'"

(4.22)

(4.23)

Then, the components of the nondimensional particle momentum can he expressed as

follows, dropping the asterisk (*) superscript associatedwith the dimensionless

variables:

The corresponding nondimensional initial conditions for this prohlem are:

Yo =1

(4.24)

Att=O (4.25)

Naumov (1995) presents the following analytical solution to the equations that

govern this problem (it has been established in this work that these expressions do indeed

satisfy Equation (4.24):

y =2[exp(1jt)-1J+ S2 [exp(r2t)-IJ+ 1
1j r2
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if 'P =_1_
St2

where

St[ (-2t)]y=sl4" l-exp St +sl+l

r. = -~-.J\P . r; = -~+.J\P
1 St '2 St

SI =~[Vo -(l-Uo)J'P] ; S2 =~[Vo +(l-Uo)J'P]

(4.27)

(4.28)

(4.29)

Attention is now focused on cases for which 'P < 11 St2
• For these cases, the

analytical solution, Equation (4.26), permits the deduction of a criterion which the initial

conditions must satisfy for the particle to reach the wall at y = 0, despite the action of the

lift force which opposes the movement of the particle towards the wall. When the initial

conditions violate this criterion, then the lift force is able to prevent the particie from

reaching the wall. This criterion on the initial conditions is determined by setting y=0 as

t ~ 00. The result can be expressed in the following form:

v ~'Pu St-~OOSt

4.3.2 Particle Trajectories

The particle trajectories corresponding to the conditions St=1.0, Uo=1.0, 8 = 0.05,

and 'P = 0.1 were obtained using the analytical solution (given in Equation (4.26)) and

also the particle-tracking algorithm described in Section 3.2.

For these conditions, the criterion expressed in Equation (2.29) yields a critical

value of Vo= -0.9: for Va > -0.9, the analytical solution shows that the lift force prevents

the particle from reaching the wall; for Va < -0.9, however, the particle reaches the wall

despite the lift force that opposes its movement towards the wall.

Particle trajectories obtained from the analytical and numerical solutions, for Vo =

-1.0, -0.9, and -0.7 are plotted in Figure 4.5. The numerical results were obtained with a

time step of .1t = rv Il000, where rv =PpD; 11811 . The problem was run in terms of

dimensional variables: the value of the height of the Couette layer, H, was arbitrarily set

at 0.01 m, and the values of U00 , Pp, and other properties and variables were adjusted

appropriately to achieve the aforementioned values of the nondimensional parameters.
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As can be see from the results plotted in Figure 4.5, the agreement between the analytical

and numerical solutions is excellent.

53 4

- NUMERICAL Solution

~ ANALYTICAL Solution
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Figure 4.5: Particle trajectories in a Couette f/ow layer adjacent ta a solid,
impenneable, plane wall

4.4 Motion of a Particle in a Forced Vortex Flow Field, With
and Without the Inclusion of Basset Force

4.4.1 Problem Statement

This test problem is schematically illustrated in Figure 4.6. A constant-property

Newtonian fluid is assumed. The angular velocity vector that characterizes the forced

vortex flow is directed in the positive z direction: âJ = (l)f. The fluid velocity field is

entirely constrained to the x-y plane, and is given by Üf = âJ xf. The partic1e is a small,

rigid, smooth, sphere, and it is assumed that the particle Reynolds number is less than or

equal to one throughout the calculation domain (Stokes regime).

This test problem was used to validate the formulation and implementation of the

Basset force term in the particle-tracking algorithm. This validation was done by
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checking the numerical predictions against the analytical solutions to this problem

proposed by Druzhinin and Ostrovsky (1994).

......

Uj=mxf!
---:-I-~

Figure 4.6: Particle motion il:' aforced vortexflow

In the particle momentum equation, the drag; virtual mass, and Basset forces are

retained. The buoyancy, Saffman lift, and EM forces are -not considered in this test

problem. Thus, the particle momentum equation is the following:

dÛp _ (PfJ(DÛf J 18
77 (- -)--- - -- +--u -u +

dt P Dt P D 2 f ,p . p p

~(PfJ(dÛf - dÛpJ + 9 ~Î~-~ dt l

2 Pp dt dt J;i p,Dp 0 .Jt-t'

(4.30)

Using previously defined dimensionless variables and parameters, the particle momentum

equation can be rewritten in non-dimensional form as follows:

78



dÛp=! DÛt +l-(Û -Û ) +
dt Â Dt St t p

1 (dÛ dÛ) 9 1 t dÛ! _ dÛ,t p + dt dt dt'
2Â di-di Âo~[~

(4.31)

(4.32)

Druzhinin and Ostrovsky integrated Equation (4.31) using a senes function for the

velocity. Their analytical solution for the two-dimensional vortex problem, with and

without the Basset force, is given in the following form:

D2

u =-OJY-_P(p - P )w2x +Aup 1811 t p p

D; ( ) 2Vp=OJX-- Pt-Pp OJ y+Avp
1811

where Aup and Avp are the velocity corrections associated with the Basset force, and are

given by:

Au =_1(D;Pt)(I_ Pp)OJ312rsin(OJt- 1f
)

p 36 11 Pt 4

A 1 (D;Pt)( pp) 3/2 ( 1f)uV =-- -- 1-- OJ rcos OJt--
p 36 11 ~ 4

(4.33)

Transforming Eqs. (4.32) and (4.33) to cylindrical coordinates, Druzhinin and Ostrovsky

obtained the following expressions for the radial and tangential velocity components:

(4.34)

These expressiOns demonstrate that the particle migrates across the flow streamlines

when its density is different than that of the fluid. This will occur whether or not the

Basset force correction, given by the second term in parentheses, is applied. When
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Pp > Pf' the particle moves away from the center, and when Pp < Pf' the particle

migrates toward the center ofthe vortex.

4.4.2 Particle Trajectories

- .. -., No Basset Force - With Basset Force

2.0

1.0

y 0.0

-1.0

2.01.0-1.0
-2.0

-2.0 0.0

X
Figure 4. 7: Particle frajeetory in aforeedvortexfor.Â. = 0.5, St = 0.022, and OJ =2

This problem was solved with a forced vortex velocity field in a two-dimensional

square domain of dimensions 4 x 4 units, as shown in Figure 4.7. This calculation

domain was discretized using a two-dimensional finite element mesh, similar to the cross­

section mesh shown in Figure 3.4. A uniform structured line-line-line grid was used,
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with LI = 51 and Ml = 51. The z direction is irrelevant here, because the flow field is

two-dimensional, and the particle starts and remains in the chosen x-y plane. The

nondimensional time step used in the simulations was At l 'ïv = 0.1.

The Basset correction reduces the radial drift velocity for all density ratios, and

enhances or diminishes the angular velocity for particles that are lighter or heavier than

the fluid, respectively. These characteristics were faithfully reproduced by the results

obtained using the proposed particle-tracking algorithm and its computer implementation.

Figure 4.7 shows the particle trajectory for the case where the density ratio is

Pp 1Pf=0.5, the angular velocity is (0 = 2, and the Stokes number is St=0.022. When

compared to the particle trajectory produced by the analytical solution, given by Equation

(4.32), the results produced by the proposed particle-tracking code differ from the

analytical results by less than ±O.04 units.
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Chapter 5

Demonstration Problem

5.1 Overview

The scope and possibilities offered by the proposed numerical solution methods

vis-à-vis the design of electromagnetic systems for the separation of solid inclusions from

molten aluminum are explored in this chapter in the context of a demonstration problem.

The demonstration problem is illustrated schematically in Figure 2.1. It involves steady,

laminar, fully developed flow of molten aluminum in a separation chamber, which is a

straight duct of rectangular cross-section. The walls of this duct are assumed to be

electrically non-conducting. The molten aluminum is fed to the duct from a large

upstream plenum, and it is assumed to enter with a uniform velocity normal to the inlet

plane. At that point, the relative velocity between the inclusions and the molten

aluminum is assumed to be zero. Within the separation chamber, the inclusions migrate

laterally under the action of surface and body forces that they experience. After a

sufficiently large distance downstream of the inlet, the fluid flow becomes fully

developed, as was discussed in Section 1.3.3. Only the fully developed regime is

investigated in this demonstration problem.

The longitudinal axis of the separation chamber is oriented along the z direction

of the Cartesian coordinate system. Immersed electrodes, upstream and downstream of

the chamber, generate an electric field so that the current flows in the positive z direction,

parallel to the main fluid flow. The applied magnetic field is generated by a suitable

electromagnet, such that the field strength is uniform throughout the separation chamber

and is oriented in the x-direction, parallel to the wider side of the duct, as illustrated in

Figure 2.1. These electric and magnetic fields create a resultant electromagnetic (EM)

body force on the electrically conducting molten aluminum.

The fully developed flow of aluminum in this demonstration problem was

predicted using the CVFEM described in Section 3.1. In order to predict the inclusion
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trajectories in the molten aluminum within the separation chamber, it is necessary to

solve the particle momentum equation, which was discussed in detail in Section 2.5. The

particle-tracking algorithm presented in Section 3.2 was used to solve the particle

momentum equation and obtain inclusion trajectories.

In this chapter, first, representative calculations will be used to assess the orders

of magnitude of the forces experienced by the inclusions, and characterizethe· relative.

importance these forces in the determination ofthe particle trajectories. Next, the results

ofa parametric study will be presented for the demonstration problem. Finally, a method

for quantifying the effectiveness of the electromagnetic separation system will be

proposed.

In this demonstration problem, the density, dynamic viscosity, and electrical

conductivity of the molten aluminum, and the mass density of the-solid inclusions

(particles), were kept fixed throughout at the following values: PI = 2,374 kg/ml~ 11 =

2.998 xlO-l kg/m-s~ al = 2.95 x 106 mho/m~ and Pp = 3,990 kg/ml. The electric field

strength was also maintained fixed at the following value: E = 1.0 V/m. The length ofthe

longer side of the duct cross-section was fixed at 2a = 0.02 m; thus, a = 0.01 m. For the

other relevant nondimensional and dimensional parameters of this problem, the ranges of

values given in Table 5.1 were investigated.

Table 5.1: Values ofsome ofthe nondimensional and dimensional parameters that
characterize the demonstration prob/em

Parameter Range

Duct Aspect Ratio, AR 1,0.5,0.2

Reynolds Number, Rel4. 1, 10, 100, 1000

Magnetic Field Strength, Bo DT, O.OOIT, O.OIT, O.IT

Particle Diameter, Dp 5~m, 151lm, 30Ilm, 90llm

These values of the dimensional and nondimensional parameters are

representative of sorne prototype electromagnetic systems for the separation of inclusions

from molten aluminum (Patel and EI-Kaddah, 1997). Another point to he noted here is

83



that in the presentation of the results in subsequent sections of this chapter, reference will

be made to sorne of the nondimensional parameters that were introduced and discussed in

Chapter 2. In particular, reference will be made to the Hartman number, M, defined as

follows:

M=.JN'Re=BoDH~

Ali computer simulations of the demonstration problem were done with power­

law type of finite element meshes in the duct cross-section (designed in accordance with

Equation (4.9) and related discussions) and a uniform grid in the z direction. The cross­

sectional grid was characterized by Ll = Ml = 61, and XPOW = YPOW = 1.25. The

number of nodes and size of the axial grid can be arbitrary, because the flows considered

here were all fully developed (thus, w is invariant in the z direction); in this wode, 21

uniformly spaced cross-sectional plane were used to discretize the length of the

separation chamber (fixed at 1 m in this work). In each run, the particle trajectory was

computed with a uniform time step of At = Tv /10 .

5.2 Forces Experienced by the Particle Along its Trajectory

The magnitudes of the drag, buoyancy, virtual mass, Basset, lift, and EM forces

experienced by the particle over the course of its trajectory force were investigated for

one particular combination of parameters: AR = 1.0, Re = 100, Bo = 0.01T, and Dp =

90f.1m.

First, the values of each of the nondimensional groups, (~), that appear in the

expressions for the dimensionless forces in Equation (2.66) were calculated using exact

values of the properties and dimensions used in this demonstration problem. The

corresponding orders ofmagnitude are summarized in Table 5.2.
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Table 5.2: Orders of magnitude of the dimensionless groups in the non-dimensional
partide momentum equationfor AR = 1.0; Re = 100, Bo = 0.01T, and Dp =

90pm
Dimensionless Order of

Group Magnitude

(;t) 10 3

(1- ~) 1

(2~) 1

(1r1/2;.;Re1l2 )
10

(21r :e~2 Âb ) 10

(~~) 10-1

Then, the time varying magnitudes of the actual y-direction and z-direction

components of the aforementioned forces were obtained from the corresponding particle

trajectory calculations. The results are plotted in Figures 5.1(a) and 5.1(b). These plots

reveal several interesting characteristics for the electromagnetic filtration problem.

Along the y-direction, the particle trajectory is influenced by a large value of the relative

velocity, caused by the drag force balancing against the combined buoyancy and FM

forces. Consequently, the lift force along the negative z-direction becomes significant,

and the unsteady Basset and virtual mass forces are large initially. Once the particle

relative acceleration starts to drop from its high initial value, the virtual mass force also

drops off significantly. However, the Basset force continues to remain relatively high as

a result ofits "history" effect.
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Figure 5.1: Time-varying forces experienced by the particle for AR = 1, Re = 10, Bx =

0.01 T, and Dp = 90Jlffl: (a) a/ong the y direction; (b) a/ong the z direction
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Figure 5.2: Particle trajectory calculations with and without Basset and lift forces for
the caseswhere Re = 10, Bx = 0.01 T, Dp =90J.lln: (a) AR = 1; (b) AR = 0.5.

Along the y-direction, the lift force is negligible as a result ofthe small relative

velocity in the z direction, and its upward trend is a result ofthe increased w-velocity

gradient, dw / dy , as the particle migrates toward the wall. The Basset and virtual mass

forces exhibit an opposite trend in the z direction than was observed in the y direction.
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This is due to the fact that the particle is given the same initial w-velocity as that of the

fluid, but begins to slow down as it traverses toward the wall.

The particle trajectory calculation is shown in Fig. S.2a, along with the cases

where the lift and Basset forces are individually turned off. Based on the orders of

magnitude observed in Fig. S.I, it can be concluded that the discrepancy caused by

turning off the Basset force is a result of inadequ~temodeling ofthe particle momentum

along the y-direction. Similarly, the discrepancy associated with removing the lift force·

is due to the inadequate modelling of the particle momentum along thez-direction. The

results in Fig. S.2b illustratethe same findings for a low aspect ratio ductcase, where the <

velocity profile is flatter due to a higher magnetic interaction. parameter.

5.3 Parametric Study ofParticle Trajectories

This section provides a summary of particle trajectory calculations for the full

range ofparameters defined in Section 5.1. A total of 192 cases were considered, and the

results are presented in Figures 5.3 to 5.14. The presentation of these results is grouped

into twelve sets of plots, each set corresponding to a particular combination of AR and

Dp . Each set is comprised of four graphs, one for each Reynolds number. Each graph

then has four trajectory calculations (plotted in terms of non-dimensional quantities, y/a

and zia), each corresponding to a different value of the Hartman number, M. The

trajectory calculations were carried out with the initial particle position at the center of

the duct, until 2,000,000 time steps based on I!J = Tv /10 were reached, or until the

particle moved a distance of SOa (=1.Om) in the z-direction.

Two main observations can be made concerning the trajectories shown in Figures

5.3 to 5.14:

1. For fixed AR, Dp, and M, the length required for separation approximately scales

withRe.

2. For fixed AR, Dp, and Re, the length required for separation approximately scales

with I/M.
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5.4 Evaluation of the Effectiveness of an Electromagnetic
Separation System

In this section, a method to evaluate the effectiveness of an electromagnetic

separation system is proposed. The aim here is also to demonstrate the usefulness of the

proposed numerical solution methods in assessing the relative merits of specifie EM

separator designs.

5.4.1 Problem Statement

The particular EM separation system being evaluated here is illustrated in Fig.

5.15.

+e_--t-'

De Power Supply

Electromagnet

Figure 5.15: Schematic illustration ofelectromagnetic separation system

In the evaluation of an electromagnetic separation system, the following

performance measures are useful:

• Smallest size ofparticle that can be separated at the desired tluid tlow rates

• Power consumption required for separation

• Mass of aluminum processed per unit ofpower consumption
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The total power required for separation of the particles from the molten aluminum is the

sum ofthe powers expended to pump the molten aluminum, create the desired electric

field, and generate the desired magnetic flux density.

5.4.2 Pumping Power

In the fully developed regime of a horizontal separation chamber, the pumping

power input is needed to overcome the wall shear stress and the braking effect of the

applied EM fields on the molten aluminum. It can be calculated using the computed

pressure gradient in the z direction, the minimum length of the separation chamber that is

necessary to separate the particles from the molten aluminum, the area of the flow

passage cross-section, and the average fluid velocity. In this analysis, for a given value

of the particle effective diameter, Dp, the minimum length of the separation chamber was

assumed to be the z-direction distance from the intet plane that is required to separate a

particle (make it reach one of the duct walls) entering the duct at the center of the inlet

plane. It was also assumed here that the velocities of the molten aluminum and the

particles are essentially the same at the inlet plane. In the context of these assumptions

and conditions, the minimum pumping power requirements are given by the following

equations:

Only gravity, no EM force: Pp"mping = ( - : ) LgrAcsW av

Gravity and EM force: Pp"mping = ( - : ) LemACOfW av

(5.1)

(5.2)

5.4.3 Power Required to Generate the Electric Field

The minimum power input required for generating the uniform electric field via

immersed electrodes is given by:

(5.3)

Here, it is assumed that the ohmic electrical power losses in the supply wires are

negligible, compared to the other power inputs.
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(5.4)

5.4.4 Power Required to Generate the Magnetic Flux Density

The minimum power input required to generate the desired unifonn magnetic flux density

using an electromagnet is given by.

p. =I2R=(DcoiIBo J2 RI. =( 1iR JI! B2
--o

B N WlTe N 2 entO

tumsll tumsll

where, Ntums is the number of tums in the solenoid, R is the resistance of the wire per

unit length. The electromagnet is assumed to produce a unifonn magnetic flux density

within the molten aluminum over the whole required distance for particle separation

(distance from inlet plane needed for the particle to strike one of the walls). Renee, as

the separation length increases, so will the size of solenoid coils. The approximate

orders ofmagnitude for these parameters are shown below:

R ~ 0[10-2
]

N tums ~ 0[102
]

Il ~ 0[10-6]

r=( 1iR 2J~O[108]
Ntumsll

5.5.5 Total Minimum Power Input

(5.5)

Renee, the total minimum power input required for combined gravity and EM assisted

separation is the following:

When gravity alone is used for filtration, the power required is:

(ljotal)gr = (-dp / dz)WavLgrAC$
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5.5.6 EtTectiveness of EM Separation System

The EM system effectiveness will be defined as the ratio of minimum power input

required to separate the inclusions using only gravity to that which is needed when the

separation is EM-assisted:

(5.8)

where & = 1 represents the situation where the EM field is tumed off

Equation (5.8) can be used to gain insight into how the overall power

consumption can be reduced using an EM separation system. When gravity alone is used

for separation, the value of Lgr can become significant. An effectiveness that is greater

than one is achieved when:

(5.9)

Fig. 5.16(a) and 5.16(b) show the EM separation effectiveness as a function of

magnetic interaction parameter and Reynolds number, for particles that are 5~m and

90~m, respectively. In general, the results of this study suggest that EM separation can

be made very effective as long as the selected interaction parameter is high enough to

ensure inclusion separation for the desired duct Reynolds number. When the Reynolds

number exceeds a certain threshold (which depends on the particle size, duct aspect ratio,

and interaction parameter), the separation distance and the cost of the electromagnet

could become excessively large. An example of this phenomenon can be seen in Fig.

5.16(a) for Reynolds numbers of 100 and 1000. The results further suggest that ifN is

increased beyond the maximum value used in this study, then effective EM separation

can take place at a higher Re as weil.
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Chapter 6

Conclusion
A brief review of the thesis and its main contributions are presented fi.rst in this

chapter. After that, several suggestions for extensions of this work are discussed

6.1 Review orthe Thesis and its Main Contributions

In Chapter 1, the aims and motivation of the thesis were stated, and a brief

overview was given of the techniques that are used for the removal of impurities and

inclusions from molten metals. A review of the pertinent published literature was also

presented. This included electromagnetic filtration principles, control-volume finite­

element methods, fully developed and three-dimensional parabolic flows in straight ducts

subjected to electromagnetic fields, motion of a particle in a fluid continuum, particle

tracking algorithms, and computer simulations ofelectromagnetic separation.

In Chapter 2, the mathematical models required for the analysis of

electromagnetic separation processes were presented. The physical problem of interest

was described first along with a summary of assumptions regarding the fluid flow,

particle trajectory, and electromagnetic aspects. Next, specialized versions of the Navier­

Stokes equations for modeling three-dimensional parabolic flows in ducts were presented

and discussed, assuming that the electromagnetic fields are decoupled from the fluid

motion. Then, an order ofmagnitude analysis was carried out on the nondimensional

magnetohydrodynamic equations, which confirmed that the induced electric field was

negligible in the problems of interest. It was analytically shown that in the Jully

developedflow regime, the z-momentum equation is sufficient to Jully describe this class

ofmagnetohydrodynamic flows, and this problem can be viewed as a partieular case ofa

general, steady, two-dimensional diffusion-type problem.

Next, the governing particle momentum equation was presented in Lagrangian

form, and each of the forces experienced by the particle was discussed concisely. These

forces included the Stokes drag, buoyancy, virtual or apparent mass, Basset, Saffinan lift,
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and electromagnetic forces. The particle momentum equation was cast in a

nondimensional form, and an order of magnitude analysis was performed using typical

values of the relevant physical quantities. This analysis showed tOOt it is important to

retain ail ofthe aforementionedforces in computer simulations ofFM separation systems

akin to those considered here. Lastly, the assumption of one-way coupling in the

momentum transfer between fluid and particle was shown to be adequate for typical mass

concentrations ofinclusions found in molten aluminum.

Chapter 3 described the numerical methods that were formulated and used to solve

the mathematical models presented in Chapter 2. A concise description of a control­

volume finite-element method (CVFEM) for the solution of steady diffusion-type

problems was presented. This CVFEM was then supplemented with a proposed iterative

scheme to determine the value ofthe axialpressure gradient tOOt yields a desired value of

Reynolds number. A particle-tracking algorithm based on the fourth-order Runge-Kutta

scheme was also proposed. The design of this algorithm required the adaptation of a

particle-Iocating algorithm proposed by Ren et al. (1995), in order to efficiently locate

the particle in structured computational meshes composed of two-dimensional triangular

and three-dimensional triangular prismatic finite elements. A method was also proposed

for computing the time andposition ofthe particle when it reaches a wall.

In Chapter 4, several test problems were solved using the proposed numerical

methods, and the results were compared with those found in the published literature. The

test problems involved calculations of fully developed fluid flow in straight ducts of

rectangular cross-section, computer predictions of particle settling in a stationary fluid,

particle trajectory calculations inside a Couette layer to validate the implementation of the

Saffinan lift, and particle trajectory calculations inside a forced vortex flow to validate the

implementation ofthe Basset force or "history" term.

In Chapter 5, the proposed mathematical models and numerical solution methods

were applied to a simple electromagnetic separation system. This exercise was

undertaken to highlight the scope and explore the possibilities offered by the proposed

methods, vis-à-vis their use in the design and optimization of EM separation systems for

molten aluminum. The influences of the various forces on the trajectory of non­

conducting particles inside molten metals subjected to electromagnetic forces were
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characterized and discussed, and the importance ofincluding the Basset and Saffman lift

forces in the particle momentum equation wasfurther i//ustrated

Another original contribution of this thesis was a proposai for quantifying the

effectiveness ofan EM seParation system, via a suitably defined effectiveness parameter.

This effectiveness parameter was used to i//ustrate haw an EM-assisted seParation system

can reduce the overa// power consumption compared to a system that relies purely on

gravity assisted sedimentation ofthe inclusions.

6.1 Recommendations for Extensions of This Work

The main contributions of this thesis were the formulation, testing, and application

of methods for numerical investigations of EM separation systems applicable to the

filtration of molten metals. The scope of this study was limited to the EM separation of

solid inclusions in steady, laminar, fully developed tlows of molten aluminum in straight

ducts ofuniform rectangular cross-section.

The fust extension to this work could include the study of developing flows of the

molten metals subjected to uniform EM fields, and the prediction of particle dynamics

therein. A literature review of numerical methods for the prediction of three-dimensional

parabolic flows in ducts has been provided in this thesis, and it could serve a starting

point for this suggested extension.

Another, relatively simple, extension of this work would be to analyze other duct

cross-sections and compute trajectories of particle with finite electrical conductivity.

Such a study could provide useful insights into approaches for designing EM systems

with optimized shapes ofthe separation chamber.

The problem of interest should he extended to include non-uniform and time­

periodic electric and magnetic fields, and duct walls of finite electrical conductivity. This

would be particular interest when considering the commercial implementation of EM

separation processes, since the electric field can be induced inside the melt using a single

alternating magnetic field, without the need for immersed electrodes (EI-Kaddah, 1995).

The mathematical model would need to be extended to include the complete set of

magnetohydrodynamic governing equations, and a numerical method for the prediction of

the electric and magnetic fields would have to be fonnulated and implemented.
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Final1y, the author would like to recommend that the theoretical aspects of this

work be complemented with systematic experimental work, in order to confirm the

predicted trajectories of single particles in the melt, and to develop a prototype EM

separation system that could be scaled up for commercial applications.
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