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Abstract

Mathematical models and numerical solution methods for the computer simulation
of solid particle trajectories in flows of molten aluminum subjected to steady, uniform,
electric and magnetic fields are presented in this thesis. The underlying subject is
electromagnetic (EM) filtration of molten metals.

Attention is focused on steady, laminar, fully developed flows of molten
aluminum inside a straight separation chamber of uniform rectangular cross-section. The
walls of this chamber are assumed to be electrically non-conducting. The investigation is
limited to solid inclusions (particles) that are electrically non-conducting and have an
effective diameter in the range 5 um to 100 um. Steady, uniform, electric and magnetic
fields are prescribed, and the induced currents are assumed to be negligible.

Mathematical models of three-dimensional parabolic (developing) and fully
developed flows of molten aluminum in the separation chamber are provided,
nondimensionalized, and discussed. A rudimentary model of the magnetohydrodynamic
(MHD) flow is proposed, in which Maxwell’s equations are decoupled from the Navier-
Stokes equations. The particle momentum equation is presented, nondimensionalized,
and discussed in detail.

The fluid flow problem is solved using a control-volume finite element method
(CVFEM). The particle momentum equation is solved using a fourth-order Runge-Kutta
(RK) method. An efficient method is proposed for locating the particle in the finite
element mesh during the RK integration of the particle momentum equation.

The proposed methods are applied to four test problems, and the results are
compared to those obtained using analytical and numerical solutions available in the
literature. Finally, the scope of the proposed methods and some of the possibilities they
offer are explored by applying them to a simple electromagnetic system for the separation

of solid inclusions from molten aluminum.

ii



Résumé

Ce travail de thése présente la formulation mathématique et les méthodes
numériques utilisées dans la simulation des trajectoires de particules dans les écoulements
d'Aluminium en fusion soumis & des champs électriques et magnétiques stationnaires et
uniformes. Ce sujet entre dans le cadre des études menées ddns I_e domaine de la filtration
électromagnétique (EM) des métaux en fusion. '

Une attention particuliére est accordée aux écoulements stationnaires laminaires
pleinement développés d'Aluminium en fusion dans une chambre de séparation droite 3
section rectangulaire constante. Les parois de la chambre sont électriquement non-
conductrices. L'investigation se limite aux inclusions solides ‘non conductrices
d'électricité et de diamétre effectif variant entre 5 pm et 100 pm. Des champs
électromagnétiques stationnaires et uniformes sont imposés et les courants induits sont
supposés négligeables. _

Les modéles fnathématiques des équations tridimensionnelles adimensionalisées
des écoulements paraboliques (non-établis) et pleinement développés d'Aluminium en
fusion dans la chambre de séparation sont présentés et commentés. Un modéle
rudimentaire d'écoulement magnétohydrodynamique (MHD) est proposé, dans lequel les
équations de Maxwell et de Navier-Stokes sont découplées. L'équation de quantité de
mouvement des particules est présentée et discutée en détail.

Le probléme d'écoulement fluide est résolu en utilisant une méthode au éléments
finis/volumes de contrdle (CVFEM). L'équation de quantité de mouvement des particules
est résolue au moyen de la méthode de Runge-Kutta (RK) du quatriéme ordre.

Une méthode efficace de localisation de la particule dans le maillage aux ¢léments finis,
en cours de l'intégration RK de 1'équation de quantité de mouvement de la particule, est
de méme présentée.

Les méthodes proposées sont appliquées a quatre cas tests et les résultats sont
comparés a ceux obtenus par des méthodes analytique et numérique rencontrées en
littérature. Finalement, le but des méthodes proposées et les possibilités qu'elles offrent
sont explorés a travers leur application a un systéme électromagnétique de séparation

d'inclusions solides dans de I'Aluminium en fusion.
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Chapter 1
Introduction

1.1 Objectives

The main aim of this thesis is the formulation, implementation, and testing of
some computational techniques for numerical studies of particle trajectories in molten -
- aluminum subjected to applied electric and magnetic fields. - The underlying subject is =
electromagnetic (EM) filtration of molten metals for the purpose of producing ultra-clean
- -materials. Attention in this work is focused on computer simulations of fully developed :
flows inside a separation chamber and the modeling of particle trajectories-in the molten
aluminum.

First, an available control—volunie finite element method (CVFEM) for the
solution of two-dimensional, steady-state, diffusion problems was modified to enable the
calculation of laminar, fully developed flows of Newtonian fluids in straight ducts.of
constant cross-section. Then, a rudimentary magnetohydrodynamics model was
formulated and incorporated into the aforementioned CVFEM, and then used to study the
effects of applied electric and magnetic fields on fully developed flows of molten
aluminum. In this model, steady, uniform field strengths were prescribed, and it was
assumed that the induced fields are negligible. This assumption allowed the formulation
of a simplified magnetohydrodynamic model, in which Maxwell's equations are
decoupled from the Navier-Stokes equations, and the electromagnetic force is
incorporated into the Navier-Stokes equations as a volumetric source term.

Next, a particle momentum equation was formulated and examined to determine
which forces have a significant impact on the particle trajectories. In the final
simulations, the following forces were included: drag, buoyancy, virtual mass, Basset,
lift, and electromagnetic (EM) forces. The trajectories of particles in the flow of molten
aluminum were obtained by solving the particle momentum equation, using a fourth-order
Runge-Kutta scheme. In the numerical implementation of this scheme, an algorithm

suggested by Ren et al. (1995) was modified and adapted to locate the particle in a three-



dimensional finite element mesh, check whether the particle has reached a domain

boundary, and determine local fluid velocities during the integration sequence.

1.2 Background and Motivation

The presence of solid impurities such as oxides and other non-metallic inclusions
in metals can negatively impact the reliability and performance of processing operations
and their products. Such impurities are particularly detrimental on fatigue strength and
creep life of materials that are used at high temperatures (El-Kaddah et al., 1995).
Inclusions of only a few microns in size can also be detrimental to surface finish and to
the strength of materials subjected to high deformation rates and exhibiting small cross-
sections (Shivkumar et al., 1991). Thus, progress in moderh metals-processing technology
is critically influenced by the ability to remove such harmful inclusions from the molten
metal.

A key role of refining metallurgy is the removal of impurities and inclusions from
molten metals. The impurities may include bits of the raw materials (ores) used in the
metal extraction process, and materials picked up during the refining process itself - from
the refractory walls, the atmosphere, or the slag. Some of the common particulate

impurities (or inclusions) found in unfiltered molten aluminum are listed in Table 1.1.

Table 1.1: Some inclusions found in molten aluminum (Engh, 1992)

Particle S Typical Size Typical .
Type ource (Microns) Concentration
(p-p-m)
Carbides ALC; 1-20 5
. TiB2 10-50
Borides VB 1-3 05
ALO; 10-20 0.01-2
Onides Oxides of Mg, Al 1-100 0.01
Other alloy additions 100 0.01
Refractories 100-500 0.01
Salts Mg-Al Na-K 10-20 0.01

Removal of inclusions has traditionally been carried out using methods such as
sedimentation, flotation, and filtration (Eckert et al., 1984; Gauckler et al, 198S;
Shivkumar et al., 1991; Frisvold et al., 1992). Gravity sedimentation is effective for cases



where the density differential between the particles and the fluid is sufficient, and it is
practically limited to the separation of inclusions with effective diameter greater than 90-
100pum (Eckert et al., 1984; Shivkumar et al,, 1991). Flotation involves attaching the
inclusions to gas bubbles that are passed through the melt, and is generally limited to
particle sizes of 30-40um effective diameter (Eckert et al., 1984; Shivkumar et al., 1991).

Filtration techniques utilize mediums such as packed beds made of refractory
materials (for example, in deep-bed filtration), and ceramic foam, among others, and can
be useful for particles even smaller than 30um in effective diameter. The mechanism for
inclusion removal when using filters is believed to vary with particle size. Mechanical
entrapment appears to be the primary mechanism for particles greater than 30 um, while
surface adsorption appears to be dominant for particles that are smaller than 30 pum
(Shivkumar et al.,, 1991). The large pressure drops associated with this methodology,
however, can place a significant burden on the equipment used to pump or move the
molten metal (Marty and Alemany, 1982). This methodology also requires the periodic
replacement of filters.

Each of the aforementioned methods can find a place in a melt treatment system,
depending on its suitability to remove a specific type and size range of inclusions. The
commercial attractiveness of any particular method depends on the speed of inclusion
removal, capital and energy costs, and the absence of significant technical problems
during implementation and operation.

Electromagnetic (EM) filtration is a powerful technique for removing non-
metallic particles from molten metal, because the particle migration velocity can be
orders of magnitude higher than that of gravitational sedimentation, without exerting a
significant additional burden vis-a-vis pumping requirements (El-Kaddah, 1996). EM
filtration belongs to the category of inclusion removal techniques that exploit the
differences in density, electrical conductivity, dielectric constant, and magnetic
permeability between the particles and the molten metal. Using these property
differences, it is possible to produce a relative velocity between the particle and the
molten metal, by exposing the melt to gravitational and electromagnetic force fields.

Under such conditions, given enough time, the particles may take on a stratified



arrangement adjacent to a free surface and/or be adsorbed onto solid surfaces at the edges
of the separation chamber.

The EM force is generated by crossing electric and magnetic fields, and its impact
on electrically non-conducting particles is independent of the particle composition, state
(liquid or solid), and density (Patel and El-Kaddah, 1997). The effect of the EM force on
the molten metal flow and the particle trajectories can be controlled with simple changes
to the strehgths and orientations of the electric and magnefic fields. .

Several significanf analytical and numerical studies have been reported on the - -

" topic of EM separation of inclusions from molten metal. They have generally invoked
“the assumption of fully developed flow (Patel and El-Kaddah, 1997; El-Kaddah, 1988; .
 El-Kaddah, 1996). Furthermore, in the calculation of terminal migration  velocity,
‘Gonsideration has been given to dfag, buoyanéy,i and EM forces only. It appears that the
effects of lift (associated with large velocity gradients encountered in the vicinity of
* walls), virtual mass, and Basset forces have been neglected.

In this work, fully developed flows of molten aluminum in the separation chamber
are considered. A rudimentary magnetohydrodynamics model is then proposed to enable
~a study of the effects of ‘applied uniform and steady electric and magnetic fields.
Following that, the particle momentum equation is presented and discussed in detail. The
lift, virtual mass, and Basset forces are included in the analyses, in addition to the drag,

buoyancy, and EM forces.

1.3 Literature Review

There are numerous books that comprehensively cover the basic subjects of
thermodynamics, fluid mechanics, and heat transfer. Examples include the works of Bird
et al. (1960), Batchelor (1967), Schlichting (1968), Eckert and Drake (1972), Currie
(1974), Tritton (1988), Incropera and DeWitt (1990), White (1991), Moran and Shapiro
(2000), and Kreith and Bohn (2001). Authoritative overviews of particular topics in these
subjects are available in the works of Johnson (1998), Rohsenow and Hartnett (1973), and
Harnett et al. (1961-2001). ‘

In the published literature, there are innumerable papers that deal with

electromagnetism, electrostatics, electrostatic precipitation, electrohydrodynamics (the



coupling of electric and velocity fields in a dielectric fluid continuum), and
magnetohydrodynamics (the phenomena that arise when electromagnetic fields are
applied to an electrically conducting fluid). Excellent presentations, overviews, and
discussions of these subjects can be found in the works of Panofsky and Phillips (1956),
Cowling (1957), Romig (1964, 1973), Kalikhman (1967), Moore (1972), Branover
(1978), Davidson et al. (1987), and Hoole and Hoole (1995).

There have also been a tremendous number of contributions to the subjects of
numerical analysis and computational fluid dynamics (finite difference, finite volume,
and finite element methods for fluid flow and heat transfer). Excellent coverage of these
subjects has been provided, for example, by Segerlind (1976), Patankar (1980), Roache
(1982), Baker (1983), Reddy (1993), Anderson (1995), Zienkiewicz (1977), Minkowycz
and Sparrow (1997), Burden and Faires (1997), and Ferziger and Peric (1999).

The subject of single-phase, laminar, forced convection in ducts has been covered
comprehensively in the work of Shah and London (1978). The subjects of gas-particle
and liquid-particle flows have been covered in detail in books by Crowe et al. (1998), and
Fan and Zhu (1998). Detailed coverage of the subject of filtration of metals is available
in the works of Anders (1976), Eckert et al. (1984), Frisvold et al. (1992), and Engh
(1992).

The literature review in the remainder of this section is limited to topics that are
directly relevant to this thesis. In particular, the following topics are reviewed briefly:
electromagnetic filtration, control-volume finite element methods; fully developed flows
in ducts; three-dimensional parabolic flows in ducts, motion of a particle in a fluid
continuum; particle tracking algorithms; and computer simulation of electromagnetic

separation.

1.3.1 Electromagnetic Filtration

EM filtration technology relies on the forces generated in the molten metal by
external electric and magnetic fields. For particles modelled as rigid, uncharged, smooth
spheres, the magnitude of the applied fields and the difference in electrical conductivity

between the particle and the melt are the main variables that influence the effectiveness of



the filtration process, in addition to those that govern traditional (non-electromagnetic)
filtration.

Initially, the main application for EM filtration (also referred to as
magnetohydrodynamic and magnetohydrostatic separation) was the segregation of
electrically conducting minerals in an electrolyte. The first patent for such a device
appears to be that of Gates (1900), whose invention consisted of deflecting particles of
differing electrical conductivity into separate collectors as they descended through an
electrolyte. His design was later improved upon by Stroble (1942), who developed the
first continuous EM separator. The application of EM filtration to non-metallic particles
in molten metals was introduced by Verte (1961) and was based on applied DC electric
and magnetic fields. It became evident through subsequent research (summarized by
Andres, 1976), that the stirring effect in the melt due to EM forces had to be minimized
by careful separator design. This problem was the main reason why promising laboratory
experiments could not be successfully implemented in large-scale industrial applications.

Since the late 1980s, proposals for the use of induced EM fields, generated by the
application of time-periodic magnetic fields (Hobson et al., 1988; Conti et al., 1989; El-
Kaddah, 1990), have prompted a renewed interest in the field of EM filtration of molten

metals.

1.3.2 Control-Volume Finite Element Methods
The control-volume finite element method (CVFEM) is a powerful technique in
computational fluid dynamics (CFD). It takes advantage of the grid-independent, local
and global, cbnservation properties of the finite volume method (FVM) while providing
the capability to address complex geometries, using the flexible meshing aspects of the
finite element method (FEM). The steps involved in the formulation of CVFEMs are the
following:
1. Discretization of the calculation domain into elements.
2. Construction of non-overlapping control volumes around each node, such that
the resultant control-volume occupies a portion of each of the elements that
share a common node, and collectively, these control volumes fill the

calculation domain completely.



3. Prescription of functions that are used to interpolate the nodal values of the
dependent variables and the thermo-physical properties of the fluid over each
element.

4. Assembly of algebraic approximations to the governing integral conservation
equations applied to individual control-volumes.

5. Solution of the algebraic (or discretized) sets of equations

The seminal works on CVFEMs for fluid flow and heat transfer are those of

Baliga (1978) and Baliga and Patankar (1980). They proposed a planar, two-dimensional,
CVFEM that incorporated a flow-oriented upwind (FLO) scheme as the interpolation
function for deriving an algebraic approximation to convective transport of dependent
variables across control-volume boundaries. To preclude unrealistic pressure oscillations
in the computed pressure field, they also proposed an unequal-order discretization of the
domain into two sets of elements and corresponding control-volumes: one finite element
mesh was used to discretize the pressure field; and the other, finer, finite element mesh
was used to discretize the velocity components and all other dependent variables.
Subsequent extensions of this CVFEM include the following developments:

1. More robust interpolation functions for approximating convective transport of
dependent variables, such as the donor-cell method of Prakash (1986) and the
mass-weighted (MAW) skew upwind scheme (Hassan et al., 1983; Schneider
and Raw, 1986; Saabas, 1991; Baliga and Saabas, 1992; Masson et al., 1994).
These techniques are good at preventing negative coefficients in the
discretized equations, which can lead to nonphysical solution oscillations and
possible divergence of the iterative solution methods (Patankar, 1980), but
they are less accurate than the FLO scheme (Masson et al., 1994).

2. Introduction of a co-located equal-order formulation based on a novel
momentum interpolation scheme (Prakash and Patankar, 1985). This
approach allows the discretization of the calculation domain with just one set
of elements and control volumes, while avoiding physically untenable pressure
oscillations.

3. Formulations that work with structured and unstructured two-dimensional

axisymmetric meshes (Masson et al., 1994), three-dimensional structured



meshes (Saabas, 1991; Saabas and Baliga, 1994), and two-dimensional
unstructured, adaptive meshes based on error estimation and minimization
(Venditti, 1998; Venditti and Baliga, 1998).

Comprehensive reviews of the development of the CVFEM for the prediction of
two- and three-dimensional fluid flow and heat transfer phenomena can be found in the
works of Hookey (1989), Saabas (1991), Baliga and Saabas (1992), Baliga (1997), and
Venditti (1998).

1.3.3 Fully Developed Flows in Straight Ducts Subjected to Uniform, Steady,

Electrical and Magnetic Fields

In this work, attention is limited to steady, laminar, electrically conducting,
Newtonian fluid flows in straight ducts of uniform cross-section, subjected to uniform,
steady, electrical and magnetic fields. The walls of the ducts of interest are electrical
nonconductors. If the flows in such ducts remain isothermal, or if the fluid properties can
be assumed constant, then after a sufficient distance downstream from the inlet plane of
the duct, the cross-stream velocity components vanish, the axial velocity component
ceases to change with axial distance, the pressure distribution in any cross-section adapts
to balance the imposed volumetric EM force, and the pressure gradient in the axial
direction takes on a constant value. When these conditions are achieved, the flow is
termed fully developed (Shah and London, 1978; Patankar, 1980).

The equation that governs the cross-sectional distribution of the axial velocity
component in the fully developed regime is akin to that which governs heat conduction or
diffusion problems (Patankar, 1980). For such fully developed flows in straight ducts of
uniform rectangular and circular cross-sections, the governing equation can be solved
analytically (Shah and London, 1978). This equation can also be readily solved
numerically, using finite difference, finite volume, or finite element methods, in ducts of
rectangular, circular, or arbitrary cross-sections (Shah and London, 1978; Patankar, 1980,
Raithby and Schneider, 1988; Reddy, 1993). In this work, a control-volume finite
element method (CVFEM) for two-dimensional conduction-type problems (Baliga and
Patankar, 1988; Baliga, 1997) was adapted to predict the fully developed flows of

interest.



1.3.4 Three-dimensional Parabolic Flows in Ducts

As was stated earlier, attention in this thesis is devoted mainly to the fully
developed flow regime. An interesting and useful extension of this work would be an
examination of the influence of the three-dimensional parabolic, or developing flow,
regime on the performance of the EM filtration process. With this point in mind, as a part
“of this work, available methods for the prediction of three-dimensional parabolic flows in
ducts were reviewed: the findings are reported in this section.

- .- 'Steady subsonic flows in ducts can be categorized as -elliptic, parabolic, or.

. partially-parabolic (Patankar and Spalding, 1972; Pratap and Spalding, 1976; Patankar,
- 1980). ' In elliptic flows, the conditions at any point can be influenced by conditions at
.- any other point in the flow. The mechanisms that cause this interaction are convection,’
-diffusion, and pressure transmission (Patankar, 1980).. On the other hand, parabolic flows
in ducts are characterized by the following features: there exists a predominant flow
direction along the duct; and no flow reversal is encountered in that direction; diffusive
transport in the direction of the main flow is negligible compared to the corresponding
convective transport and the cross-stream diffusive transport, and the downstream
pressure field has relatively very little influence on upstream conditions (Patankar and
Spalding, 1972; Patankar, 1980). When these conditions are satisfied, the main flow
direction can be regarded as a one-way coordinate, in the sense that upstream conditions
can influence the downstream conditions, but not vice-versa (Patankar, 1980). The term
partially-parabolic is uSed to describe a class of flows that is intermediate to the parabolic
and elliptic categories. They are similar to parabolic flows in that they have a
predominant flow direction along which there is no flow reversal, and diffusive transport
in that direction is negligible. However, the pressure transmission in partially-parabolic
flows is similar to that in elliptic flows, and it is the dominant transmitter of influences in
the upstream direction (Pratap and Spalding, 1976). Steady, laminar, developing,
Newtonian fluid flows in straight ducts of uniform cross-section can be regarded as
parabolic in the main-flow direction (Patankar and Spalding, 1972; Patankar, 1980).

The equations that govern three-dimensional parabolic flows in ducts are
intrinsically nonlinear and coupled to each other. In analytical and semi-analytical

approaches to the solution of these equations, the inertia terms are linearized and cross-



stream pressure gradients are neglected (Sparrow et al., 1964; Fleming and Sparrow,
1969). Thus, such approaches are limited to problems in which the cross-stream velocity
components are negligible, and even then, they cannot handle non-linearities introduced,
for example, by non-constant fluid properties. Numerical methods, on the other hand,
enjoy a considerably greater degree of versatility, and are better suited for the solution of
practical problems (Patankar, 1980).

The pioneering efforts in the development of numerical methods for the prediction
of three-dimensional parabolic flows in ducts are the works of Caretto et al. (1972), Curr
et al. (1972), and Patankar and Spalding (1972). These methods fully take into account
the fluid stresses, diffusive fluxes, and pressure variations in the cross-stream planes. The
method proposed by Patankar and Spalding (1972) is one of the most widely referenced
of the finite volume methods for the prediction of three-dimensional parabolic flows in
ducts. It is based on a pressure-velocity (primitive variables) formulation, and uses a non-
iterative marching integration technique to advance the solution in the downstream
direction, cross-section by cross-section, starting from the inlet plane where the values of
the dependent variables are specified. The non-iterative nature of this method is achieved
by using the upstream values of the dependent variables at each axial step to calculate the
coefficients in the discretized governing equations. In each cross-sectional plane,
Patankar and Spalding (1972) used staggered Cartesian grids for the storage of the
velocity components and pressure, in order to avoid pressure-velocity decoupling, and
they proposed a scheme called the Semi-Implicit-Method-for-Pressure-Linked-Equations
(SIMPLE) for the solution of the coupled, non-linear, discretized equations. SIMPLE and
its many variants are now used in most finite volume methods for the prediction of
complex two- and three-dimensional fluid flows (Van Doormaal and Raithby, 1984,
Raithby and Schneider, 1988). In subsequent papers, Carlson and Hombeck (1973), and
Briley (1974) have proposed methods that are variations of the Patankar-Spalding
method. The methods proposed by Caretto et al. (1972), Curr et al. (1972), Patankar and
Spalding (1972), Carlson and Hornbeck (1973), and Briley (1974) have been quite
successful in the prediction of three-dimensional parabolic fluid flows, but they all suffer
from the following short comings: (i) they are limited to ducts in which the boundaries of

the cross-section lie along the axes of commonly used orthogonal coordinate systems
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(often referred to as regular-shaped cross-sections); (ii) the non-iterative marching
integration schemes used in these methods necessitate the use of relatively small axial
step sizes; and (iii) in fluid flow problems that involve a large number of dependent
variables (for example, flows with heat and mass transfer, and turbulent flows), the
overall solution schemes, due to their non-iterative nature, tend to be sensitive to the
sequence in which the dependent variables are solved.

Three-dimensional parabolic flow and heat transfer in ducts of irregular-shaped
cross-sections can be solved using finite difference or finite volume methods which
employ coordinate transformation techniques, or formulations based on curvilinear
orthogonal and non-orthogonal coordinates (Roberts and Forester, 1979; Shyy, 1994).
Such approaches usually complicate the governing equations, making physical
interpretations of the overall numerical formulation quite difficult, and they are not very
well suited for handling highly irregular and/or multiply-connected domains. Fluid flows
in ducts of irregular-shaped cross-section are best handled by methods that employ finite
elements to discretize the calculation domain (Baliga, 1997).

Most currently available finite-element methods for three-dimensional parabolic
flows are based on the Galerkin method (Zienkiewicz, 1977; Baker, 1983; Reddy, 1993).
One of the earliest attempts to develop such methods is that of Baker (1974). His method
is formulated for the solution of three-dimensional compressible and reacting boundary-
layer flows (Schlichting, 1968), and all of the discretized governing equations are solved
simultaneously. Thus, it cannot be easily adapted to solve duct flow problems, and the
computer storage requirements in this method could become disproportionately large,
especially in complex problems involving several coupled dependent variables. Del
Giudice et al. (1981) have proposed a finite element method that overcomes these
limitations. However, their method is based on a non-iterative formulation akin to that
used in the finite difference method of Briley (1974), and thus suffers from the limitations
mentioned earlier in this subsection.

Pham (1983) has proposed a control-volume finite element method (CVFEM) for
three-dimensional parabolic flows in ducts. His method overcomes most of the
aforementioned limitations. However, it is an extension of the original two-dimensional

elliptic CVFEM of Baliga and Patankar (1983), which is based on an unequal-order
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formulation, that uses six-node triangular macroelements, each subdivided into four three-
node triangular subelements: pressure is stored at the three vertices of the
macroelements; and velocity components are stored at the three vertices of the finer
subelements. In the 1970s and the early 1980s, such unequal-order finite-element
formulations were used to avoid pressure-velocity decoupling, and the consequent
checkerboard pressure distributions, in the solution of incompressible fluid flow problems
(Patankar, 1980; Baliga, 1997). However, in unequal-order methods, the topological
(grid-related) bookkeeping and associated coding is tedious. Furthermore, the unequal-
order formulation becomes quite inaccurate, and hence unnecessarily expensive, in
simulations of flows with high Reynolds and/or Peclet numbers, and its extension to
three-dimensional elliptic flows is not straightforward (Baliga, 1997). Unequal-order
methods have since been replaced by equal-order, co-located, methods that employ the
so-called momentum interpolation technique (Rhie and Chow, 1983; Prakash and
Patankar, 1985; Rice and Schnipke, 1986) to avoid pressure-velocity decoupling in the
solution of incompressible flow problems. Examples of equal-order co-located CVFEMs
based on the momentum interpolation technique can be found in the works of Prakash and
Patankar (1985), Schneider and Raw (1986), Saabas and Baliga (1994), and Masson et al.
(1994). A detailed review of these methods is available in an article by Baliga (1997).

It would be useful to modify and extend the two-dimensional, equal-order, co-
located CVFEM of Masson et al. (1994) so that it could be used to predict three-
dimensional parabolic flows in ducts. Some of the ideas proposed in the work of Pham
(1983) could be incorporated in such a CVFEM: for example, at each axial step, a fully
implicit scheme could be used to discretize the governing equations, and the resulting
coupled, nonlinear, discretized equations could be solved iteratively. In Chapter 6, the
concluding chapter of this thesis, the formulation, implementation, and application of
such a three-dimensional parabolic CVFEM is recommended as one of the possible

extensions of this work.
1.3.5 Motion of a Particle in a Fluid Continuum

The classical formulation of the motion of a particle in a fluid continuum is based

on perturbation theory, whereby the individual terms in the governing momentum
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equation are derived using a localized analysis of the disturbance flow field associated
with the presence of a sphere. The forces on the spherical particle are then expressed in
terms of the local velocity in an undisturbed flow, thus facilitating calculations of
momentum transfer between the two phases.

In some of the earliest works in this area, the particle momentum equation was
derived for rigid spheres settling out under gravity in a stationary fluid. Examples of such
efforts include the combined works of Basset (1888), Boussinesq (1903), and Oseen
(1927). In more current versions of the Basset-Boussinesq-Oseen (BBO) -e'(juation,, the
product of the particle mass and its acceleration is equated to the following forces on the
‘ pzirticle' ¢} steady-state drag force; (2) buoyzihcy force; (3) virtual mass force; (4) Basset,
force; and (5) lift force (Rubinow and Keller, 1961 Saffman, 1965; Maxey and Rlley,

1983 Crowe et al. 1998). o v

Saffman (1965) analyzed the translation of a rigid, smooth, sphere in a linear
unbounded shear flow, using matched asymptotic expansions. He obtained an expression
for the lift ‘force that is valid for low Reynolds _numbers based on shear, relative velocity,
and angular velocity. The works of Cherukat and McLaughlin (1990), McLaughlin
(1991), Asmolov (1993), Cherukat et al. (1994, 1999), and Naumov (1995, 1997) have
gone further to develop an expression for the inertial lift that allows for higher Reynolds
numbers and accounts for the effects of proximity to walls.

Additional considerations which have been reported in the published literature
include the incorporation of Reynolds number effects, turbulence effects, blowing effects
due to particle evaporation, particle-particle interactions, and other body forces such as
the magnetohydrodynamic (MHD) force employed in this study (Leenov and Kolin,
1954; Vives and Ricou, 1982; Crowe et al. 1998). Leenov and Kolin (1954) used
perturbation theory to derive the electromagnetic (EM) separation force on spherical and
cylindrical particles due to the local disturbance of the electric field. Their expression is a
function of electric and magnetic field strengths and the difference in electrical
conductivities of the particle and fluid. The Leenov-Kolin model for the EM separation
force is based on the assumption that there are no particle-particle interactions, and the
undisturbed electric current density and magnetic fields are uniform. Subsequent

experimental works by Marty and Alemany (1982), and Marty et al. (1982) have
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confirmed the theoretical results of Leenov and Kolin, which have served as the basis of

most subsequent computational studies of EM filtration (Andres 1976, El-Kaddah 1988).

1.3.6 Particle Tracking Algorithms

In numerical simulations of dispersed particles moving in a continuous fluid, it is
common to employ a Eulerian-Lagrangian formulé.tion. In such a formulation, the fluid
flow is pfedictéd by solving a suitable mathematicél model in an Eulerian frame of"
reference, and the paftiéle trajectories are predicted by solving an apprdpriate Lagrangian
mathematical model. For sufficiently small particles and dilute fluid-particle flows, the.
momentum coupliﬁg is assiiméd to be one-way,'such: that the solution.to. the‘fluid flow -
can be obtained ihdependehtliz prior to running a paxticle-tfacking algorithm (Crowe et al.
1998). . |

‘ Pafénkaf and Karki (1999) have suggested that thé two main considerations in the. .-

" solution of paﬂiclé trajectories of this sort are (1) the particle locéting methodology, and . -

(2) the selection of a suitable time step in order to optimize the trajectory solution in
terms of speed and accuracy.

Ren et al. (1995) have proposed a relatively simple and efficient method for
locating a particle in a finite element mesh, based on barycentric coordinates (in three
dimensions) or area coordinates (in two dimensions). It works in planar two-dimensional
meshes cdnsisting of triangular elements by calculating the area coordinates of the latest
particle position with respect to the coordinates of the three vertices of the previously
occupied element. When all three area coordinates are greater than zero but less than one,
then the particle is still within the same element. If not, then there exists a set of rules,
which determines the most likely adjacent element to which the particle has moved.
Once the occupied element is determined, the area coordinates can be directly used to
compute the local continuous phase velocity. The time step selection is based on the
particle relaxation time (Crowe et al., 1998).

The work presented in this thesis required particle tracking in fully developed
flows, on three-dimensional finite element meshes that were used to discretized the space
within straight ducts of uniform cross-section. The particle locating methodology

employed in this work consists of identifying the location of the particle in the
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longitudinal, or main flow, direction using linear interpolation, and then averaging the
cross-sectional coordinates of the particle in the upstream and downstream planes,

obtained using a two-dimensional locating algorithm akin to that of Ren et al. (1995).

1.3.7 Computer Simulation of Electromagnetic Separation

Numerical simulations of MHD flows have been used extensively in the metals
industry to study flow patterns during EM stirring of the melt prior to casting (El-Kaddah
et al, 1984; El-Kaddah et al., 1986; Antille et al., 1992). These studies allowed the
development of a capability to analytically design processes that provide a high level of
homogeneity in the cast ingots and ensure that molten metal is pushed into all parts of the
mold, even during the casting of complex-shaped objects.

The research carried out by El-Kaddah (1988) was one of the first applications of
computer simulations for calculating particle trajectories in an EM separation process.
Their model was applied to an EM separator, developed by the Oak Ridge National
Laboratory (Hobson et al. 1988), that uses an alternating magnetic field and an induced
electric field in the melt. Subsequent investigations (El-Kaddah et al., 1995; El-Kaddah,
1996) were aimed at analyzing more efficient separator configurations and validating the
numerical model by comparing the predictions to the results of EM filtration experiments.

The goal in the aforementioned simulations was to compute the terminal
migration velocity of the inclusions and to determine the length of chamber needed for
effective filtration. The models are characterized by simplifications in the EM field
equations, in order to make the continuity and Navier-Stokes equations the only
governing equations for the fluid flow problem, with a Lorentz force added to the
volumetric source terms. Thus, the complex task of solving the complete set of
Maxwell's equations is omitted. The problem is further simplified by assuming fully
developed flow. As these models are based on the assumption of non-interacting
particles, and balance the EM force only against viscous drag on the particle, there are
limitations associated with cases where the influence of adjacent particles and the
magnitude of other forces on the particle become significant. Furthermore, the impact of

the developing flow regime on the overall separator efficiency has not been studied.
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1.4 Overview of the Thesis

In the present chapter, the objectives of this thesis and its motivation have been
summarized, and an overview of the relevant literature has been presented.

In Chapter 2, the physical problem of interest is introduced, and mathematical
models for fluid flow and particle tracking are presented and discussed.

In Chapter 3, the numerical methods formulated and used for the solution of the
mathematical models are described.

In Chapter 4, validations of the proposed numerical methods are presented. The
proposed methods are used to solve the mathematical models of test problems, and their
results are checked against those available in the published literature.

In Chapter 5, the results of a numerical study of several specific EM separation
problems are presented and discussed, in order to demonstrate the applicability and scope
of the proposed numerical solution methods.

In Chapter 6, the main contributions of this research effort are reviewed, and

some recommendations for extensions of this work are presented.
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Chapter 2

Mathematical Models

2.1 Overview of the Physical Problem

The problem of interest involves the prediction of inclusion (particle) trajectories
in molten aluminum subjected to electromagnetic fields. This problem is schematically
illustrated in Figure 2.1.  The separation chamber is a straight duct of constant
rectangular cross-section. The molten aluminum is fed to the duct from a large upstream
plenum, and it is assumed to enter with a uniform velocity normal to the inlet plane. At
that point, the relative velocity between the inclusions and the molten aluminum is
assumed to be zero. Within the separation chamber, the inclusions migrate laterally under
the action of surface and body forces that they experience. After a sufficiently large
distance downstream of the inlet, the fluid flow becomes fully developed, as was
discussed in Section 1.3.3.

The longitudinal axis of the separation chamber is oriented along the z-direction of
the Cartesian coordinate system. Immersed electrodes, upstream and downstream of the
chamber, generate an electric field so that the current flows in the positive z-direction,
parallel to the main fluid flow. The applied magnetic field is generated by a suitable
electromagnet, such that the field strength is uniform throughout the separation chamber
and is oriented in the x-direction, parallel to the wider side of the duct, as illustrated in
Figure 2.1. These electric and magnetic fields create a resultant electromagnetic (EM)
body force on the electrically conducting molten aluminum (similar to the manner in
which a current carrying wire experiences a force in the presence of a transverse magnetic
field).

In order to predict the inclusion trajectory in the molten aluminum within the
separation chamber, it is necessary to solve its momentum equation, which contains
surface and body force terms. The most significant of these forces can be interpreted as
the drag, buoyancy, virtual (or apparent) mass, Basset (or history), lift, and EM forces.

Details are presented later in this chapter, in Section 2.5.
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* Figure 2.1 - Schematic illustration of the separation chamber

2.2 Summary of Assumptions

This section provides a summary of the assumptions used in the formulation of the

electromagnetic filtration model. Further discussions of some of these assumptions are

provided in subsequent sections of this chapter.

Fluid F low

Steady-state conditions prevail throughout

Laminar flow

Newtonian fluid

Constant fluid mass density, p, and dynamic viscosity, 1
The entire fluid domain is isothermal

There is no flow reversal in the z direction. The fluid flow can be modeled
either as a three-dimensional developing parabolic flow, or, after a sufficient
distance downstream of the inlet plane, as a two-dimensional fully developed

flow.
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e The concentration of the inclusions (particles) is low enough that they have no
noticeable influence on the fluid flow, though the fluid flow has a significant
influence on the inclusion trajectories. In other words, there is only one-way
coupling in the transfer of momentum between the molten aluminum and the

inclusions (Crowe et al., 1998).

Particle Trajectory
® The particles are all rigid, smooth spheres
® Particle-particle interactions are negligible

e The particle Reynolds number is within the Stokes flow regime (Crowe et al.,
1998)

Electromagnetic Effects
e The particles move at non-relativistic speeds
® The particles are neutrally charged
® The applied electric and magnetic fields are uniform and constant
® The applied electric field is along the mainstream, or z coordinate, direction:
E=(0,0,E,)
® The applied magnetic field is orthogonal to the electric field: B = (Bx,By, 0)

® The walls of the separation chamber are electrically non-conducting

® The induced electric field in the liquid is negligible

2.3 Governing Equations for Three-Dimensional Parabolic
Flow in a Duct

As was stated in Chapter 1, attention in this thesis is focused on fully developed
flows in the separation chamber. Nevertheless, it is instructive, useful, and convenient to

examine the mathematical model for three-dimensional parabolic flow in a duct, before
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presenting the mathematical model for the fully developed flows of interest. The
governing equations and discussions in this section are presented in this spirit.
For the horizontal duct depicted in Figure 2.1, a reduced pressure, p, is defined as

follows:
p=P+pgy 2.1)
where P is the static pressure, p is the fluid density, and g is the gravitational acceleration.

Following Patankar and Spalding (1972), the reduced pressure field in the duct is now

expressed as follows:

p(x,y,2) = p(2) + p(x, ,7) (2.2)
where p(z) is the cross-sectional area-averaged reduced pressure at any given stream-
wise location, z, and is given by:

[[ pCx,y, 2yaxdy
S0 = 4
p(2) = J;f ™y

(2.3)

For three-dimensional parabolic flow in a duct, as discussed by Patankar and
Spalding (1972), there is no flow reversal in the z direction, and the diffusion transport in
the mainstream direction is negligible compared to the corresponding advection transport

and the diffusion transport in the cross-sectional plane. Furthermore, dp/dz >>dp/ oz,

and the spatial derivatives of the reduced pressure can be approximated by:

(2.4)

SASECIN AN

mn
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With respect to the Cartesian coordinate system shown in Figure 2.1 and the
assumptions listed in Section 2.2, the governing equations for three-dimensional

parabolic fluid flow in the separation chamber are the following:
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X-momentum equation
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y-momentum equation
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z-momentum equation

-—gx—(puw) +%(pvw)+§(pww) = —%+§;(ﬂ%)+%(ﬂ%}+ Fon tmirvo.« 2.7

Continuity equation
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The following section describes the derivation of the electromagnetic body force

per unit volume, Fy, ..., the components of which are inserted in Equations (2.5) to

(2.7) as volumetric source terms.

2.4 Governing Equations for Fully Developed Flow Subjected
to Steady, Uniform, Electric and Magnetic Fields

In this section, the governing magnetohydrodynamic (MHD) equations are
presented, starting with the general forms of these equations for steady problems and then
incorporating the simplifying assumptions for the particular problem being studied in this
thesis.

The formulation of the MHD problem for isothermal, constant-property, liquid
metal flows subjected to arbitrary, but steady, electromagnetic fields requires the
simultaneous solution of 13 coupled equations (Romig, 1964; Branover, 1978; Davidson
et al., 1987):

21



Navier-Stokes equations

(0-9)0 =-L9p+¢v?0 +=(jxB) 29
p
Continuity equation
V.U=0 (2.10)
Maxwell’s equations
VxE=0
OB ui
VxB=pj @.11)
V-B=0
V-(E)=6V-E=0
Ohm's law
j=o(E+UxB) (2.12)
where,

= Magnetic Flux Density [T]

= Electric Field Strength [V /m]

J =Current Density [4/m”]

p =Reduced Pressure [N /m?]

U = Fluid Velocity [m/s]

¢ =Dielectric Constant [C/m-V]

¢ =Fluid Kinematic Viscosity [m’ /s]

M = Magnetic Permeability of Fluid [H /m]
p =Fluid Density [kg/m’]

o = Electrical Conductivity [mho/m)]

Here, it is implicitly assumed that the dielectric constant, €, and the magnetic
permeability, 1, of the molten metal in the separation chamber are constants, and the
walls of this chamber are electrically non-conducting.

The following dimensionless variables and parameters will now be used to

express the governing MHD equations in nondimensional form:
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V' =aV U‘=g— : p.zl"l’zrqf
U, pU,
. B . J . E
B = — = E =
Ba b .] B/ b UoBo
Ha (2.13)
2
Re:U”a : N___O'Baa
§ PU,
Re,=uoUa ; M=~N-Re=Ba g
n

In these equations, a is a characteristic length of the duct; U, is the mean velocity
of the molten aluminum inside the separation chamber; B, is the applied magnetic flux
density; and Re is the conventional Reynolds number based on U, and a. The magnetic
interaction parameter (also known as the Stuart number), ¥, is the ratio of EM (or
ponderomotive) force to inertia force; and the square of the Hartman number, M, is the
ratio of EM force to viscous force. The magnetic Reynolds number, Ren, characterizes
the interaction between the applied magnetic field and the induced currents. When Rep,
<<1, the induced electric field is negligible, and this allows the decoupling of the
Maxwell's equations from the Navier-Stokes equations.

Substituting the dimensionless variables and parameters into the governing

equations and dropping the star_superscripts the following nondimensional forms of the

governing MHD equations were obtained:

Navier-Stokes equations (nondimensional form)
(0-9)0 =-Vp+--v*0 + N(ExB+UxBxB) 2.14)
Re
Continuity equation (nondimensional form)
VU=0 (2.15)

Maxwell's equations (nondimensional form)

VxE=0 (2.16)

vxngem(E+(7xB) (2.17)
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V.-B=0 (2.18)
V-E=0 (2.19)

Equation (2.17) shows that induced fields can be neglected for Re,, <<1. For
liquid metal filtration, it is reasonable to assume the following orders of magnitude for
reference quantities (Cramer and Pai, 1973; Branover, 1978; El-Kaddah, 1988):

a~O0[107]--:[m] ; B, ~O[10"'}-+[T]; E, ~O[1]---[V'/ m]
U, ~O[107")---[m/s]; ¢=O[10°]--.[m* /5] ; p=O[0°)---[H/m] (2.20)
p~O[10°]---[kg/m’] ; o ~O[10°]---[mho/m]

Hence, the nondimensional parameters for the EM filtration problem have the
following orders of magnitude:
M ~0[10%]
N ~O[1]
Re~0[10°]
Re, ~O[10°]

2.21)

It is observed that the value of magnetic Reynolds number is of the order of O[107],
which implies that the assumption of negligible induced fields is reasonable. This allows
the EM field equations to be decoupled from the fluid flow equations, except for the EM
force, which is treated as a source term in the Navier-Stokes equations.

When expanded for a Cartesian coordinate system, the components of the EM

force per unit volume become:
Fasymva: = | ~E.B, +E,B,~u(B? +B})+B,(wB, +vB,) |
Fon s,y = 0| ~E.B, +E,B,~v(B + B)+ B, (uB, +wB,)| (2.22)
s —d [—EyBx +E,B,—~w(B}+B?)+B,(vB, +uB, )]

The EM fields used in this study were defined in Section 2.2 as,
E=(0,0,E))
B=(B,,B,,0)

X3y

(2.23)

Therefore, Equations (2.22) can be simplified as follows:
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Fsgumore =0 (vB.B, —E,B,) (B2 Ju
Fogumivoiy =0 (uB.B, + E,B,)~ (0B )v (2.24)

2 2
Fat pmiver,: =—C (Bx + By ) w

Having made the necessary simplifications, it is now possible to summarize the
complete set of governing equations valid for steady, laminar, three-dimensional
parabolic (developing) flows of molten metals in ducts of constant cross-section and
electrically non-conducting walls, subjected to steady, uniform, electric and magnetic
fields oriented as shown in Figure 2.1. They can be expressed, in dimensional forms, as

follows:

X-momentum

S (o) 2 (o) + 2 (pwu)=

_%+§(q%)+%[n%J+J(VBxBy—Esz)—(aBj)u 2
y-momentum
(o) + 2 (om) 2 (pw)=
_QE+E("@)+£("@)+G(”BB P (2.26)
oy ax\ox) o\ x Dy T 50, x
Z-momentum
o)+ () +2 ()=
_1£+3(,,_6_w_)+3(,,@)_,,(32+32)w (2.27)
&z &\ o) y\ T
Continuity
2 (o) +2(p0)+ () =0 @29)

In the fully developed flow regime, the following conditions prevail: the

mainstream (z or axial direction) gradients of all dependent variables, except pressure, are
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essentially zero; the axial gradient of pressure is a constant; the velocity components in
the x and y directions vanish (u = v = 0); and the cross-sectional distribution of pressure
adjusts to balance the electromagnetic force on the molten aluminum. With these
conditions, the continuity equation, Equation (2.28), is automatically satisfied (or may be
considered irrelevant), and the x- and y-momentum equations reduce to the following

forms, respectively:

o

0= _Ep ~oE,B, (2.29)
ap

0=-22 ,GEB, (2.30)
54

In the problems of interest, o, By, and B, are specified constants. Thus, Equations (2.29)
and (2.30) can be readily integrated to obtain the following cross-sectional distribution of

the reduced pressure:

p=0(EBy-EBxX)+p,, (2.31)

where P, is a reference value pat x=y=0. Here, as the fluid is assumed to be
incompressible, the absolute value of p is irrelevant; rather, only the gradients of this
variable matter (Patankar, 1980). Thus, the value of p, , was arbitrarily set to the
convenient value of zero. With these conditions, the axial (z direction) gradient of the

reduced pressure, dp/dz, becomes a constant, and the z-momentum equation reduces to

the following form:

O=—%+—§;(n%§-}+§;(n%}—a(3§ +B;)w (2.32)

In this equation, the reduced pressure gradient, dp/dz, can be specified (and the resulting
mass flow rate can be calculated) or it can be adjusted to achieve a desired mass flow rate.
The latter approach was adopted in this work. Details of the numerical implementation of

this approach are given in Chapter 3.

26



2.5 Particle Momentum Equation
The equation that governs the momentum of a particle moving in a fluid can be
cast in the following general form (Crowe et al, 1998):
dUu _ _ _ .
P _ - 33
dt ,‘ZF-ZFW-‘*—ZFJme (2 - )

In the problems of interest, the particle (inclusion) moves in molten aluminum

m,

subjected to electric, magnetic, and gravitational fields. The body forces are the
gravitational force and the electromagnetic (EM) force:

zD?

ZF;’“')’ =( GPJPP§+

G partce xB)yav (239
Volume of particle . )

where ],,, particle is tﬁe current density within the particle and B is the applied uniform
magnetic field (see Figure 2.1). As was mentioned earlier, in the problems of interest,
the particles (inclusions) are assumed to be electrically non-conduicting. . Thus, strictly,
the current density within the particle is zero. At this stage of the presentation, however;
for the sake of generality, the electromagnetic body force on the particle is retained,

though it will be discarded later on in this section.

In the absence of the particle, the velocity of the molten aluminum is given by
U rand the current density is given by j. The presence of the particle and its motion
through the fluid modifies the velocity and the current density in the fluid /locally: these
modified fields are denoted here by ¥ and j, mia» tespectively. The modified flow

satisfies the following forms of the Navier-Stokes and continuity equations in the vicinity

of the particle:

p,(a” +x7.\7;7] =P+ p, 8+ Ty pu BV 235)

V=0 (2.36)

where P is the static pressure in the fluid. The boundary conditions on ¥ are the no-slip

condition on the surface of the sphere (fluid velocity matches the translational and
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angular velocities of the particle at its the surface) and asymptotic approach to U far

from the sphere. Let o, denote the fluid stress tensor:

oV, oV,
o, =-Pd; H{_a;t"l—?&?]) (2.37)
J i

where J; is the Kronecker delta function. Then, the surface forces on the particle are

given by the following equation:

Y Frperi = § oyn,ds (238)
surface
where the surface integral is performed over the entire surface of the spherical particle,
and 72 is the unit outward normal to the surface of the particle.
The problem now is to evaluate the current densities inside the spherical particle

and in the fluid, j, e a0d J,, s » TEspectively, and then evaluate the fluid stress tensor

on the surface of the particle. The solution to this problem can be obtained by combining
the analyses and solutions proposed by Leenov and Kolin (1954), Saffinan (1965), Maxey
and Riley (1983), and Crowe et al. (1998). Their analyses and solutions could be used

here because the problems of interest satisfy the following restrictions:

Re ='Ef:—l—]”'&q ; (DU, ¢ XD, /ay<1;, (D,/a)y<1; (UB,/E)<1 (2.39)
r gf - p-o gf P » ? > oo 0 .

The final result can be expressed as follows:

a0, DU, _

=m, Dt + Forac + Frvoraver + Fomrvar suss + Fpasser + Frer + Fana p

(2.40)

In this equation, m, =(zD./6)p,, m, =(xD3/6)p,, and DU,/ Dtis the total
derivative of the undisturbed fluid velocity field, evaluated at the position where the
particle is located. For steady fully developed flows, akin to those considered in this

work, DU /Dt =0. In the remainder of this section, each of the forces mentioned on

the right-hand side of Equation (2.40) will be discussed briefly, and then an appropriately
simplified particle momentum equation will be cast in a convenient (rearranged) form.

Then, the simplified particle momentum equation will be non-dimensionalized in order to
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assess the relative magnitudes of the aforementioned forces in the EM filtration problem.
Finally, the restriction required for the validity of the one-way coupling in the momentum
transfer between the fluid and the particles will be discussed. For clarity in the
presentation, the subscripts f and p will be used, when deemed necessary, to distinguish

quantities associated with the fluid and the particles, respectively.

2.5.1. Drag Force

This is the so-called “steady-state” drag force which acts on the particle or
inclusion in a uniform pressure field when there is no time rate of change of the relative
velocity between the particle and the conveying fluid (Crowe et al., 1998). This drag

force can be conveniently expressed as follows:

. D? . - -
Fonio =33 Py 2-Co (0, =T, )0, - T @.41)

In Equation (2.41), Cp is the drag coefficient. The particle Reynolds number, Re,, is

defined as follows:

IUf - Up I D P
Sr

Re, = (2.42)
When this particle Reynolds number is of order O[1], the flow around the sphere is said

to be in the Stokes regime. For uniform free stream velocity, and Stokes flow around the
particle, the drag coefficient is given by:

_ 24 RepE|U,—UPlDP “

=— (2.43)
b Rep Sr

Substituting these expressions for Cp and Re, in Equation (2.41), and rearranging, the

following expression is obtained for the drag force:

Fppys =32D,n(U,-U,) (2.44)

The Stokes drag force given by Equation (2.44) is based on a uniform free stream
velocity. To account for the effect of a non-uniform flow field, the so-called Faxen force

must be added to the Stokes drag force (Maxey and Riley, 1983; Crowe et al., 1998):
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—

Fronao =370 (U, -U, )+ @qeD}V°U,)/8 (2.45)

where VU s evaluated at the position of the particle. For a uniform flow field, the

Faxen force reduces to zero. Crowe et al. (1998) have shown that the ratio of the Faxen

force to the Stokes drag varies as follows:

(FF'axen /Egtokas) - (Dp /a)2 (246)

In this work, D, <100 um and a~ 0.01m. Thus, Equation (2.46) shows that

Frasen ! Fstores) ~ (D, 1 @) < 10 . Therefore, Equation (2.44) gives the drag force quite

adequately, and it was adopted in all the test and demonstration problems. Furthermore,
in the problems considered here, Re, < 1, so the Cp expression given in Equation (2.43)
was used. For the interested readers, expressions for Cp at Re, > 1 are available in the
work of Crowe et al. (1998).

2.5.2 Buoyancy Force
The buoyancy force acting on the particle is given by,

N =D’ R
Fyvoraner = (“"6—P] (o >~ Py )g (2.47)

2.5.3 Apparent Mass Force

The apparent (or virtual) mass force is associated with relative acceleration
between the particle and the fluid.  When the particle accelerates, it also induces
acceleration in the surrounding fluid, and the surrounding fluid resists this acceleration.
Using the analysis of Maxey and Riley (1983), for a small, rigid, smooth, sphere, moving

in a nonuniform fluid flow, the virtual mass force is given by:

~ D*\(dU, dU. d(D*V*U/40
: (” ’]( 1 2, 4D )} (2.48)

Forruarsuass =§Pf 6 at P i

Here again, using reasoning akin to that of Crowe et al. (1998), and noting the

D,/ a)* < 1, the term involving V(U r)was neglected, and the expression for the

virtual mass force was reduced to the following:
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40, dﬁp) (2.49)

. 1 7rD3
Foprvasass = Pf( ar - dt

It should be noted that in Equation (2.49), the term dU /dt denotes the time

derivative of the fluid velocity following the moving particle, so that:

i, oUu, .. . .
—L=—1L47,VU, (2.50)
d o

2.5.4 Basset Force

The Basset force, or the "history" term, as it is often called, accounts for the
temporal boundary layer development on the particle, as the relative velocity changes
with time (Odar and Hamilton, 1964; Odar, 1966, Crowe et al., 1998). For the general
case where there is a non-zero initial relative velocity between the particle and fluid, and
nonuniform undisturbed flow, following the analyses of Maxey and Riley (1983), Reeks
and McKee (1984), and Crowe et al. (1998), the Basset force is given by:

du, dj, d(D’V‘u,/u) U‘ __(j
7 3 2 & gt ( S P)im‘ al
Fryser = D) D, \[”pﬂ [I S PRPT dt +—:/'t_ﬁ'_ (2.51)

Again, using reasoning akin to that of Crowe et al. (1998) and noting the (D, /a)” ~1, the
term involving V(U s)was neglected. Furthermore, in the problems of interest,

(9 P U »)misa = 0. Thus, the expression for the Basset force could be reduced to the

following:

3 t (mf dlj?)
Foser ==D 7, d__di Jf 2.52)
BasseT = p\/p77|:_! \/t——T } (
As is clear from this equation, the importance of the Basset force terms depends

on the time rate of change in relative velocity and the time period over which this relative

acceleration takes place.
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2.5.5 Lift Force

A spherical particle experiences a lift force when there is fluid circulation around
it. One situation under which such a lift force arises is that of flow past a spinning
particle (Magnus lift force). A lift force may also be felt by particles moving in regions
of shear flow. In this work, the Magnus lift force was assumed to be negligible, which is
a reasonable assumption for small particle Reynolds numbers (Naumov, 1995). However,
the lift force due to shear flow was included in the analyses.

Using matched asymptotic series for the inner and outer flow regions around a
sphere in unbounded shear flow, Saffman (1965) derived an expression for the lift force

based on the following assumptions:

du \D,*
Rees(———f—)——!;<<l

u,-u,lp, 253
Rep—z—————-—--———| 4 p| F «<1 , {2.53)
R _
A= Cr <<1

Where n is a coordinate in the direction of the velocity gradient, Reg is a “shear”
Reynolds number based on the velocity gradient, and Re, is the particie Reynolds
number. . : (

The general form of the Saffman lift force term is given by (Saffman, 1965;
Crowe et al., 1998):

) X e e |
o= % (npf)mlv"Ufl m[(Uf—Up)X(VXUf)] (2.54)

By carrying out the matched asymptotic series solutions to the first order in the
particle Reynolds number, it can be shown the appropriate value of C is 6.46. In the EM
filtration problems considered here, with fully developed flow of molten aluminum in the
separation chamber, the lift force can be broken down into its three components in the

Cartesian coordinate system as follows:
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R R
Fyym, =1615D,” (Tlpf N |Vx(7f|_”2 (wf—wp)(%) (2.55)
Fum, =1615D,’ (ne, ) " [VxT, [ "»[?’wa‘f“ v, (%JJ
where,
ow. .\ (ow , V4
o vz _|[ Oy w,
V%7, | —[( 6),) +( . ) } (2.56)

2.5.6 Electromagnetic Force on the Particle

The expression for the electromagnetic force on the particle was obtained from the

analysis of Leenov and Kolin (1954). It can be cast in the following form:

- 3(xD*\ o, -0 )
F, =-= 4 I "2 |F_ 2.57
EM,p 2( 6 }[20}4_0_’,} EM ,UnitVol ( )

where F, ma.uninvar 1S the undisturbed EM force per unit volume in the molten aluminum. It

is given by:
Fot vmwa = J¥B={0,(E+U, xB)}xB (2.58)

It is to be noted here that in the analysis of Leenov and Kolin (1954), the U, x B term is

assumed to be negligible compared to £. This assumption is valid in the problems
considered here. However, in the analyses presented in this thesis, the full form of

Fot umivar » 38 given in Equation (2.58), was retained, for completeness and for consistency

with the mathematical model of the flow of molten aluminum, given in Section 2.4.
Only electrically non-conducting inclusions were considered in this work. Thus,

o, =0, and Equation (2.58) simplifies to the following:
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N 3 D’ .
F, EM.p — —Z(T‘—pJF EM UnitVol (2.59)

Furthermore, for fully developed flow of molten aluminum in the separation

chamber shown in Figure 2.1, using the equations in Section 2.4, the expression for

Favt tmizvas 1S the following:

vt vnivor = Fang mivvr 3+ Fi ‘B Unitvol,yJ +F, W,Um'tVal,zk

b

Fons tmitvor x = _O'Esz (2.60)
F, EM UnitVol,y ™ oE.B,

~q

2 2
BM UnitVol,z — -o (B, +By)
where 7,7,k are unit vectors in the x, y, and z directions, respectively.

2.5.7 Simplified Form of the Particle Momentum Equation

Using the discussions and the expressions for the various force terms given in the
previous subsections, the particle momentum equation can be simplified and rewritten as

follows:

dU o =D’ R
m,—* =37[Dp77(Uf—Up)+(———6pj(pp—- p;)E

1 (=D*\(dU, dU,) 3 _, £ Dy
+—-pf[ ){ - J+—D \/frpn{j — dt
2 6 da da ) 27 o Vt—t @.61)
CDP2 V2 = = U2 g o o
+ 2 (qpf) IVfol [(U,—Up)x(Vfo)]
D3\ _
—%(”6 £ }FW,UnitVol

In this equation, the general expression for the EM force per unit volume is given by:

Fatywor =6, (ExB+U, x BxB) (2.62)

Noting that m, = p,(#D; /6), Equation (2.61) can be rewritten in the following form,

which is convenient in the implementation of the numerical solution methods presented in

Chapter 3:
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1p, )40 ;
p(l+—- f}—-———"=37ern(Uf Up)+( P (pp—pf)g
p, ) dt
- &, au,
L1 (D) dY, +3D2‘/ﬂpﬂ j(‘”, 2 g
2776 a2 s Ni-t' 2.63)
CD’ V2= o~ [-1/2
+———4" (npf) IVfo|

2.5.8 Nondimensional Form of the Particle Momentum Equation and Order-of-
Magnitude Analysis

In this section, the particle momentum equation is non-dimensionalized, and then
an order-of-magnitude analysis is presented

The non-dimensional variables and parameters used in this discussion are
summarized in the equation given below

V' =av Re=2rUA
n
U= U,-U|D
U, Re _Pf‘ 5 pl »
,=
- B 7’
B =
B, P05
E AT
E—UB .
oo St:ig.g_
»* p—-pref a
P = 2.64
prz S 264
. g (@/U,)
& A NZO'Bfa
a pro
§=—2 U
a ¢=—+
U,
2=t
Py

U (1-9)= (U -U,)

0
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In the above equations, a is the duct width, D, is the particle diameter, U, is the average
velocity of the molten aluminum (fluid) in the z direction, B, is the magnitude of the
applied magnetic flux density, p,is the fluid density, 77 is the fluid dynamic viscosity,

p,is the particle density, and 7 is the elapsed time. The responsiveness of the particle to

changes in fluid velocity is indicated by its velocity response time, 7, , as discussed by
Crowe et al. (1998). The ratio of the particle velocity response time to the characteristic

time associated with the carrier fluid flow (v, =a/U,) is defined as the Stokes number,

St. Other quantities which relate the particle and the fluid flow dynamics are the ratio of
particle diameter to duct width, d, the particle-fluid density ratio, A, and the particle-fluid
velocity ratio, . Crowe et al. (1998) provide the following approximate relationship

between ¢ and St:

1
—— 2.65
¢ 1+.5¢ ( )

Equation (2.65) is useful in assessing the relative magnitudes of the terms in the
nondimensionalized particle momentum equation. The remaining parameters, which
include the duct Reynolds number, Re, particle Reynolds number, Rep, and the interaction
parameter, N, have been defined and discussed earlier in this chapter.

The nondimensional variables and parameters in Equation (2.64) were inserted
into Equations (2.61) and (2.62). The resulting equation was rearranged, and the star

superscripts used earlier to indicate dimensionless variables were dropped, to obtain the

following nondimensional form of the particle momentum equation:

(2.66)
—(—ZJ(E"XB+(7I x B x B)
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The following orders of magnitude are relevant to the problem of electromagnetic

filtration of molten aluminum (Patel and El-Kaddah, 1997):

a~O0[107]---[m]

D, ~O[10™*]--:[m]

U, ~O0[107"]...[m/s]

n=O[107]---[kg /m~s] (2.67)
Py ~O[10°]---[kg/m’]

p, ~O0’]---[kg/m’]

¢p ~ON0°)-[m* /5]

When these values, which are appropriate in the physical problem of interest, are
incorporated into Equation (2.64), the following magnitudes of the corresponding

nondimensional parameters are obtained:

Re~ O[10°]

Re, ~O[107']

St ~0[107%]

U, (1-¢)~0[107*] (2.68)
o = 0[107?]

A=O0[1]

7, ~O[107]

The values of each of the nondimensional groups, (——) , that appear in the expressions for

the dimensionless forces in Equation (2.66) were calculated using exact values of the
properties and dimensions used in the electromagnetic filtration problems: the

corresponding orders of magnitude are summarized in Table 2.1.
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Table 2.1: Orders of magnitude of the dimensionless groups that multiply the various
Jorce terms in the nondimensionalized particle momentum equation

Dimensionless Order of
Group Magnitude

1
(EJ 102

O
@) |

22

9
( 3C J .

27 Re? A6

& !

For the problems under consideration, the following deductions can be made based on the

orders of magnitude given in Equation (2.68) and in Table 2.1:

1. The particle velocity response time is two orders of magnitude lower than the
characteristic time associated with the flow of molten aluminum.

2. The particle Reynolds number is quite small, so the assumption that the Stokes
flow condition prevails is valid. |

3. The dimensionless group that appears in the nondimensional drag force is of
order O[10%], whereas the dimensionless groups associated with the other
nondimensional force terms are of order O[1]. Thus, the magnitude of the

relative velocity between the molten aluminum and the inclusions (particles) can
be expected to be small compared to | U 7l

4. The dimensionless groups associated with the nondimensional buoyancy, virtual
mass, Basset, lift, and EM forces are all of the same order of magnitude, O[1).

Thus, it would be wise to retain all of these terms in the particle momentum

equation.
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2.6 Restriction Necessary for One-Way Momentum Coupling
Between the Molten Aluminum and the Inclusions

In order to justify the assumption of one-way momentum coupling between the
molten aluminum and the inclusions (particles), the average distance between particles
should be at least ten times the average particle diameter (Crowe et al., 1998).

Consider the molten aluminum to be divided into cubic control volumes of size
£', with each of these control volumes containing a single spherical particle of diameter
D,. Then the volume fraction of the particulate phase, a,, is the following:

nD}
7% ) 25
£3

a =-——-=

The ratio of the average spacing between adjacent particles to the diameter of a
single particle can be estimated by the following equation:

£ 1/3
/1
el 2.70
D (Gapj ( )

P

In practice, it is customary to express this ratio in terms of bulk material properties

such as mass concentration of the particulate phase, Cm, particle density, p,, and

continuous phase (or fluid) density, p,, which are all easily measured. First, a constant,

K, is defined by:
x=C, 2L @71)
Py
For C, «1,
a,=a,C,’L 2.72)
Py
Then, noting that a, =1-a,, it can be shown that
K
a =—— 2.73
Fl+x @73)

Using this equation, Equation (2.70) can then be recast as follows:
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£ z 1+x )"
D—f((z)(_x‘)) @74)

For typical concentrations and densities of aluminum oxides, as reported in Table
1.1, and conditions representative of molten aluminum filtration (Patel and El-Kaddah,
1997), it can be shown that the requirement for one-way momentum coupling between the
fluid and the inclusions (namely, (£/D,)210) is met when the mass concentration of the
particulate phase satisfies the following restriction:

C <0[107*] (2.75)
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Chapter 3

Numerical Solution Methods

The numerical methods that were formulated, implemented, and used to solve the
mathematical models described in Chapter 2 are presented in this chapter. First, the
method that was used to predict fully developed flows of molten aluminum in the
separation chamber is described. Following that, an algorithm that was used to predict

the trajectories of the inclusions in the molten aluminum is presented.

3.1 Fully Developed Flow of Molten Aluminum

3.1.1 Review of the Problem of Interest

The problem of interest is the flow of molten aluminum in the separation chamber
depicted schematically in Figure 2.1. The separation chamber is a straight duct of
rectangular cross-section, and its walls are assumed to be electrically non-conducting.
The molten aluminum is assumed to remain essentially isothermal as it flows through this
separation chamber. The duct and the molten aluminum flowing through it are subjected
to uniform electric and magnetic fields, as shown in Figure 2.1. All other assumptions
invoked in this analysis have already been presented and discussed in Chapter 2, so they
will not be repeated here.  Attention in this work is focused on the fully developed
regime, where, as was discussed in Chapter 2, the following conditions prevail: the
mainstream (z or axial direction) gradients of all dependent variables, except the reduced
pressure, are essentially zero; the axial gradient of the reduced pressure (dp/dz) is a
constant; the velocity components in the x and y directions vanish (¥ = v = 0); and the

cross-sectional distribution of the reduced pressure, p, adjusts to balance the

electromagnetic force on the molten aluminum.
3.1.2 Review of the Governing Equations and Generalization

The assumptions and differential equations that govern the problem of interest

were presented in Chapter 2. In the fully developed regime, the distribution of the w
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velocity component in any cross-section of the separation chamber is obtained by solving
the z-momentum equation, which reduces to the following form:
_%+%(n%)+%[n%—)—o@f+B§)w=0 3.1

The no-slip boundary condition (w = 0) applies on the walls of the separation chamber.
In the problems of interest, g, #, By, and By, are specified. The reduced pressure gradient,
dp/dz, can either be prescribed a priori (and the corresponding mass flow rate can be
calculated after the distribution of w in the cross-section is computed) or it can be
adjusted iteratively to achieve a desired mass flow rate (or Reynolds number). The latter
approach was used in this work. Its implementation details are presented in Section
3.1.6.

Equation (3.1) is akin to the following general steady-state diffusion equation
(Patankar, 1980):

Ofr,9),9(r 9%),s -
ax(r‘ax)+ay(r‘ayJ+S‘ 0 (32)

where ¢ is a general specific scalar dependent variable, I, is the corresponding diffusion
coefficient, and S, is the corresponding volumetric source term (Patankar, 1980). In the

formulation of the numerical solution method, the volumetric source term was linearized,

when required, and cast in the following form (Patankar, 1980):

S, =8¢ +8k¢ (3.3)
Equation (3.1) can be obtained from Equation (3.2) by the following settings:
g=w;T,=n; ng—% ; S}ﬁ:—a(Bf+Bf,) (3.9)

3.1.3 Control-Volume Finite Element Method
A control-volume finite element method (CVFEM) for two-dimensional planar
diffusion problems was used to solve the equation that governs the fully developed flow

of molten aluminum in the separation chamber. This CVFEM is well established, and it
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is described in detail in the works of Baliga and Patankar (1978) and Baliga (1997). A
concise description of this method is provided in this section.
Domain Discretization
The calculation domain is first divided into three-node triangular elements. Then
the centroids of the elements are joined to the midpoints of the corresponding sides, to
create polygonal control volumes around each node (vertices of the triangular elements)
in the finite element mesh. A sample unstructured grid is shown in Figure 3.1: the solid
lines denote the domain and element boundaries; the dashed lines represent the control-
volume faces; and the shaded areas show the control volumes associated with one internal
node and two boundary nodes. In this discretization scheme, curved boundaries are

approximated by piecewise-linear curves.

Figure 3.1: Discretization of a calculation domain into three-node triangular elements
and polygonal control volumes.

The rationale behind the choice of triangular elements over quadrilateral elements
and the aforementioned procedure for generating polygonal control volumes is discussed

in Baliga (1997).

Integral Conservation Equation for a Control Volume
Consider a typical node 7 in the calculation domain: it could be an internal node,
like the one shown in Figure 3.2a, or a boundary node, similar to the ones shown in

Figures 3.2b and 3.2c.
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Figure 3.2: Details of the domain discretization and related nomenclature: (a) an
internal node; (b) a boundary node with three associated elements; and (c)
a boundary node with one associated element.

An integral formulation corresponding to Equation (3.2) can be obtained by
applying the conservation principle for ¢ to a control volume, "V, that is fixed in space.

The resulting integral conservation equation, when applied to the polygonal control

volume that surrounds node 7 in Figure 3.2, can be cast in the following form:

[_[:j.ﬁdw j:].ﬁds- j

laoc

S,av]+
[similar contributions from other elements associated with node i] + (3.5
[boundary contributions, if applicable]=0

where 7 is a unit normal to the differential area element ds, pointing outwards with

respect to the control volume associated with node i, and J is the diffusion flux of ¢:

J=-T,V¢ (3.6)

The form of Equation (3.5) emphasizes that it can be assembled using an element-by-
element procedure. The two-dimensional domains being considered in this description
are assumed to have unit depth normal to the plane (or cross-section) of interest; thus,

volume and area integrals reduce to surface and line integrals, respectively.

Interpolation Functions

The derivation of algebraic approximations to the integrals and derivatives in

Equation (3.5) requires the specification of functions for the interpolation of the
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dependent variable, ¢, the diffusion coefficient, I', and the source term, S, in each of

the three-node triangular elements.

Interpolation functions for I', and S,: In each three-node triangular element,
the centroidal value of I', is stored and assumed to prevail over the corresponding

element. The source term is linearized, as in Equation (3.3). In each element, the three
nodal values of S and S? [{S¢},..,and {Sf},,,,] are stored and assumed to prevail
over the corresponding portions of the three associated polygonal control volumes.

contained within the element.

Interpolation function for ¢: The specific scalar function, ¢, is interpolated
linearly in each three-node triangular element. Thus, with respect to a local Cartesian
coordinate system with its origin at the centroid of the element, as shown in Fig. 3.3, ¢ is
expressed as follows:

¢=Ax+By+C 3.7
The constants, A, B, and C, in this interpolation can be uniquely determined in terms of

the x and y coordinates of the three nodes, and the corresponding values of ¢ .

Figure 3.3: A typical three-node triangular element, related nomenclature, and a local
Cartesian coordinate system.

With reference to the element 123 and the local Cartesian coordinate system

shown in Figure 3.3, the expressions for the constants A, B, and C are the following:
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A=[0, —y:)b + (s — ), + O —12)8s) DET
B =[(x; - x,)¢ +(x, —x;)¢, + (x, — x,)$;)/ DET (3.8)
C= [(xzys - x3y2)¢1 + (x3y1 _xly3)¢2 +(x1y2 - x2y1)¢3]/DET

where the term DET is given by:
DET = (x,y, + X,y; + X, ), = Y,X, — V%5 — Y3X,) (3.9

Discretized Equations

The discretized equations are algebraic approximations to the integral
conservation equations applied to each polygonal control volume in the calculation
domain. First, algebraic approximations to the element contributions to the integral
conservation equations are derived. Then, the algebraic approximations to the element
contributions are assembled appropriately to obtain the discretized equations (Baliga,
1997). Algebraic approximations to the boundary contributions, if applicable, are also
derived and added to the assembled element contributions. The following derivations

pertain to node 1 of the element 123 shown in Figure 3.3.

In each element, the diffusion flux, J , can be expressed in terms of its

components in the x and y directions as follows:
I 09, 09,
J=J, +Jy]=(—1“¢5x-)1 +(—I’¢B)—/)] (3.10)

where 7 and j are unit vectors in the x and y directions, respectively. The interpolation

function given in Equation (3.7) is used to approximate J, and J:

J,=-AT, ; J,=-BT, (3.11)

y
where 4 and B are given by the expressions in Eq. (3.8).
Using Equation (3.11), with reference to node 1 of element 123 and the local
Cartesian coordinate system in Figure 3.3, the integrals in Equation (3.5) that represent
the diffusion transport of ¢ cam now be approximated as follows:
[*J7ids=(4r,)y, - (BT,)x,

(.12)
[ J Fids =~(4T )y, + (BT ,)x,

The integral involving the source term is approximated as follows:
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.[lawSo»dV:%“{Sé’}x +%{S3}1¢| (3.13)

where 4, is the area of the triangular element 123:
A, =|DET|/2 (3.14)
with DET given by Eq. (3.9).

Substituting the expressions in Equation (3.8) into those in Equation (3.12), and
then adding up Equations (3.12) and (3.13), the total contribution of element 123 to the
integral conservation equation for the control volume associated with node 1 is obtained.
This total element contribution can be expressed compactly in the following form (Baliga,
1997):

[ Jsds+ [ Jads—| S,av1=Cl¢+Cig,+Cigy +B (3.15)

where

r
G = [ = 2.)0n = 1) + (5~ ), "xs)]‘i;i (S2h

' DET
r
C; z_!—[(ya _yc)(.Y3 —yl)+(xa—xc)(x3_xl)]
DI{ET (3.16)

1 _ ¢ . - _ —
G ‘_DE—_T [V, =y, = »,)+(x —x,)(x, — x,)]

1_ Ao
B = 3 {S¢

Discretized equations for internal nodes: Expressions similar to Equation
(3.15) can be derived for the contributions of all elements associated with the internal
node i shown in Figure 3.2a. Such expressions, when substituted into Equation (3.5),
yield the complete (assembled) discretized equation for node i. This discretized equation

can be cast in the following general form (Baliga, 1997):
ag, =Y af,+b (3.17)
nb

where the summation is taken over all the immediate neighbors of node i. Equations
similar to Equation (3.17) can be derived for all internal nodes in the calculation domain.
Element-by-element procedures for the compilation, storage, and assembly of the

element contributions, such as those in Equation (3.15), to obtain the complete discretized
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equations, such as Equation (3.17), are described in Baliga (1978) for structured Cartesian
grids and in Venditti (1999) for unstructured grids.

Discretized equations for boundary nodes: For the nodes that lie on the
boundaries of the calculation domain, the assembly of element contributions, such as that
in Equation (3.15), is insufficient to complete Equation (3.5). The surfaces of control
volumes associated with boundary nodes have segments that lie along the domain
boundaries. In order to obtain the complete integral conservation equations for such
control volumes, the rates of transport of ¢ crossing the boundary segments must be
added appropriately to the assembled element contributions. Information regarding such
boundary transport rates can be obtained from the prescribed boundary conditions
pertaining to the problem of interest.

When the value of ¢ at a boundary node i is specified, the corresponding
discretized equation is replaced by the following equation (Baliga, 1997):

¢ = Boecipea (3.18)

After all the unknown values of ¢ have been computed, the discretized equation

associated with any specified-value boundary node i can be used to compute the
corresponding boundary flux of ¢ (Baliga, 1978; Baliga, 1997).

Solution of the Discretized Equations

The discretized equations derived in the previous subsection form a set of
simultaneous algebraic equations that, in general, could be nonlinear. The following
iterative process was used to solve these equations:

1. Guess all unknown values of ¢ in the calculation domain.

2. Calculate the coefficients in the linearized forms of the discretized equations,
using the latest available values of the dependent variables.

3. Solve the resulting set of linear, or linearized, simultaneous algebraic
equations.

4. Repeat steps 2 and 3 until convergence.

Step 3 of this iterative procedure involves the solution of a set of linear algebraic

equations. Any suitable method may be used to solve these equations. Information on
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such methods, including their advantages and disadvantages, is available in Patankar
(1980) and Ferziger and Peric (1996). If the domain discretization scheme is such that the
nodes in the finite element mesh lie along definite and easily identifiable line patterns,
then a simple line-by-line tridiagonal matrix algorithm (Patankar, 1980) may be used to
solve the set of linear, or linearized, discretized equations, and was done to obtain the

solutions to the test and demonstration problems presented later in Chapters 4 and S.

Convergence Criterion

For any given finite element mesh (grid), the aforementioned iterative algorithm
for the solution of the discretized equations was considered to have converged when the
maximum value of the absolute normalized residues was less than 10~ '2.

At any node, j, in the finite element mesh, the residue of the discretized equation

is defined as follows:

(Residue), ={a,$,—> a,p,, +b'}, (3.19)

With respect to the physical problem of fully developed flow of moiten aluminum in the
separation chamber, this residue represents an imbalance in the rate of transport of
momentum in the axial direction, due to lack of convergence of the iterative solution
procedure. In this work, this residue was normalized with reference to an average rate of
transport of axial momentum across each control volume, calculated as follows at the end
of each of the iterations:

{RMT},, =[p/w,{4ab/(L1xM1)}w,, (3.20)

where (L1 x M1) is the total number of nodes in the finite element mesh, 4ab is the total
cross-sectional area of the separation chamber (see Figure 2.1), and pr and w,, are the
density of the molten aluminum and its average velocity, respectively. The value of w,

was computed as follows:

w, ={3 w4, }/4ab) (3.21)

Thus, the convergence criterion used in the work can be expressed as follows:

{| Residue |_, /(RMT),}<10™" (3.22)
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Calculation of dp/dz
In each run of the CVFEM code, the value of dp/dz was adjusted iteratively to

obtain a desired Reynolds number, (Re, ) uires :

(Reo,, Vacsired = PrWerDn I 1) desirea (3.23)

Thus,
(Wa)assirea = (RE, )sesirea (P D5,) (.29
For steady, laminar, fully developed flows of molten aluminum in the separation
chamber, and fixed values of the electric field strength, E,, and magnetic flux density, B,,
the product of Re, and a friction factor based on dp/dz would be a constant (White,

1991):
dp
(D, D
dz . Pr¥s | _ Constant (3.25)
0.5p0,w,, n

The information contained in this equation was used to design an efficient iterative
scheme to obtain a dp/dz value that produces the desired value of Reynolds number,
(Rep, )esirea » OF the corresponding value of (W, )., calculated using Equation (3.24).
At the start of each run, a guess value of dp/dz was provided as an input, and the iterations
were initiated. Following that, at the end of any iteration, n, the value of dp/dz for the

next iteration was calculated as follows:

dp\" (Ao [ W) s
(};;] ‘(dz)( w,) J (3:26)

The value of w_,at the end of each of the iterations was calculated using Equation (3.21).
This iterative scheme was considered to have converged when the following criterion was
met:

(Wit —wr Y wi <1071 (3.27)

av
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3.2 Particle Tracking Algorithm

The algorithm that was used to calculate the trajectories of the inclusions
(particles) in the molten aluminum flowing inside the separation chamber is described in
this section. This algorithm requires as inputs the velocity distribution of the molten
aluminum, which was calculated using the CVFEM described in the previous section.
The algorithm is executed independently from the fluid flow calculation described in
Section 3.1.

The calculation domain is the three-dimensional space within the separation
chamber. This calculation domain was discretized using a structured three-dimensional
finite element mesh. In the mainstream, or z, direction, this mesh had a plane-by-plane
structure; each of these cross-sectional planes was discretized into rectangles using a line-
by-line structured grid; and each of the rectangles was further divided into two triangular
elements. The resulting three-dimensional finite element mesh consisted of elements that
resembled extruded triangular prisms in the z-direction. An example of such a three-

dimensional finite element mesh is shown in Figure 3.4.

7

Figure 3.4: Discretization of the calculation domain

Only fully developed flows and one-way momentum coupling were considered in
this work. However, it should be noted that the proposed particle-tracking algorithm
could be readily extended to elliptic or partially-parabolic flows with two-way
momentum coupling between the fluid flow and the particles. In this algorithm, particle-
particle interactions are assumed to be nonexistent (or negligible) and particle-wall

collisions are assumed to be inelastic.
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The computer program that was prepared for the prediction of the particle
trajectories was called MAIN PARTICLE. Its structure and operation is succinctly
illustrated by the flowchart given in Figure 3.5. For a given set of problem parameters,
this program first reads in information about the discretization of the calculation domain
and the corresponding flow field data at the nodes of the finite element mesh, using a

.. subroutine called READ_FLOW. The mesh and flow field data are obtained by running-

‘the CVFEM code. Then, the particle-tracking program invokes a subroutine called
. RUNGE_KUTTA, which incorporates a fourth-order Runge-Kutta solution scheme. -~ . . -

- Details of this scheme are given later in this section. -

MAIN_PARTICLE

Read in problem parameters

READ FLOW

| QObtain finite element mesh and
flow field data from the output of
the CVFEM code

RUNGE_KUTTA

Compute particle trajectory

FIND_3DVELOCITY

A 4

Interpolate to find local flow field data
required for particle tracking

LOCATE2D

Y

Identify element occupied by particle

Figure 3.5: Flowchart of computer program for calculating particle trajectories

Once the program MAIN PARTICLE is initialized, and the starting particle
position and velocity, and a suitable time step, are specified, the subroutine
RUNGE_KUTTA carries out the particle trajectory calculations by repeating the fourth-
order Runge-Kutta scheme for each time step, until the specified maximum number of
time steps is reached, or the particle reaches a domain boundary. During the

computations needed to advance the solution by one time step, the RUNGE_KUTTA
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subroutine calls the subroutine FIND 3DVELOCITY, which is a subroutine that
interpolates for the local fluid velocity, and calculates all required velocity gradients,
based on the particle position at the last time step. In order to compute these quantities,
the subroutine LOCATE?2D is called from within FIND 3DVELOCITY, to identify the
three vertices of the triangular cross-section of the element within which the particle is
currently located. The required velocity components and their gradients are first obtained
using interpolation over the two triangular cross-sections corresponding to the upstream
and downstream K-planes of the prismatic element, and then linear interpolation is used
to determine the required values at the precise current particle position (x,, yp 25).

During each call to FIND 3DVELOCITY, the code checks whether the particle
has been pushed into a non-existent element outside the calculation domain. If this is the
case, then the marching Runge-Kutta integration sequence is stopped, the particle is
brought back to its previous time step, and then traversed using its latest velocity and a
customized time step chosen to ensure that the particle stops exactly at a wall or an
outflow boundary.

In the remaining parts of this section, some of the ingredients of the

aforementioned particle-tracking algorithm are discussed in more detail.

3.2.1 Fourth-Order Runge-Kutta Scheme
The particle trajectory calculations in this work were done using a fourth-order
Runge-Kutta (RK) scheme (Dahlquist and Bjorck, 1974). To facilitate the

implementation of the RK scheme, the particle momentum equation is first cast into the

following form:
oU .
at" =qU, +c,
0%, -
T 0
= =U, (3.28)
U,e=0=0,
X,(t=0)=%,
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The particle trajectory was computed independently along each coordinate
direction, by calculating the corresponding components of the relevant forces and
including them in the expressions for c; and c,.

The RK scheme for advancing the x coordinate of the particle trajectory one time

step, from ¢ to ¢+ Az, is summarized below.

k = AtU" = At(c,U' +c,)
k= 0i(U, +3) =81(a[U; +4]+e,) (3.29)
by =At(U} +2) L=t [UL+%]+e,)
k= Mt(U, +1,) =2t [U +1]+¢c,)

x;+A,:x;+(k, +2k222k3+k4)

(3.30)
et _ e +(I, +21, +2, +I4)
p I 4 6

The full particle trajectory is obtained by repeating the RK integration time-step-by-time-
step until the particle exits the separation chamber at its outlet plane, or hits one of its
walls along one of the transverse (x-coordinate or y-coordinate) directions. The RK

integration is simultaneously carried out in all three directions using the same time step.

3.2.2 Interpolation to Obtain the Local Fluid Velocity and Its Spatial Gradients
During the RK integration for each time step, it is necessary to update the
coefficients ¢; and c;, which are functions of the forces experienced by the particle along
each coordinate direction. Thus, the calculation of these coefficients requires values of
the velocity components and their spatial gradients, the electric field strength, and the
magnetic flux density at the current location of the particle. It is, therefore, necessary to
determine the particular prismatic element that contains the particle, and use suitable
interpolation functions to compute the required quantities at the precise position of the

particle. For the problems addressed in this thesis, it was necessary to obtain the three
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components of the local fluid velocity, u,,v,,w,, and the gradients of w, along the x and

ow
directi L 1y,
y directions ( P )

oy

rLocal Prismatic Elemmt

\ | 2 J+1
ﬁ-_-:)_ 0 1 |
| | I

/i

| |
KUS  KDS 11

11
(L1)=(ICUR,JCUR)
IQUAD(ICUR,JCUR)=0

y ITRI =1

s

Figure 3.6: The prismatic element that contains the particle, and related notation

Figure 3.6 shows a particle at a specific time, . The procedure for obtaining the local
fluid velocity components and their gradients is summarized below, using the wy velocity
component as an example.

1. Using the LOCATE2D subroutine, described in Section 3.2.3, and the current
particle coordinates, obtain the (LJ) indices of the three vertices, 0-1-2, of the
triangular cross-section of the element that contains the particle.

2. Using the z coordinate of the particle, determine the K indices, KUS and KDS,
of the upstream and downstream planes of the element that contains the particle.

3. Compute the local wyvelocity at the correct x,, and y, coordinates in the upstream
K-plane, using the following interpolation function:

W,ys =Ax+By+C (3.31)

The coefficients, A, B, and C in this equation are obtained by solving:
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W, X Yo 1|4
w, =l » 1iB
Walus X Y1 ¢ us
{W}US = [X]{A}US (3'32)

{4}, =[XT" (7},

4. Compute the local wrvelocity at the downstream K-plane in the same manner.
5. Compute the local wr velocity at the correct z, value, by using one-dimensional

linear interpolation between the upstream and downstream K-planes:

Ds us

zZ -z
wf(xp,yp,zp) = wf(xp,yp)us +(_Jl__‘i‘?.}(wf(xp,yp)m —w(x,y)us) (3.33)

. . . awf awf .
6. Obtain the local velocity gradients, Y =4, and ?y— = B in the same manner:

ps ~ Zus

ow z —z
—axi(xp’yp’zp) = A(xp’yp)US +(_p_—qs_)(A(xpayp)DS _A(xpiyp)US)

o (3.39)
zZ —2Z
_—f(xp’yp’zp) :B(xp’yp)US +(—i_—w_](‘3(xp’yp)05 —B(xp’yP)US)
oy ps ~ Zus

7. Repeat steps 1-5 for the # and v velocity components.

3.2.3 Method for Locating the Particle in the Triangular Finite Element Mesh

In the cross-sectional planes of the finite element mesh, to find the specific
triangular element that contains the particle at the end of a time step, the subroutine
LOCATEZ2D starts with the triangular element that contained the particle at the end of the
previous time step and then determines whether the particle is still within that element or

has traversed to an adjacent element.
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Figure 3.7: Triangular element occupied by the particle

Consider the triangular element in Figure 3.7, which represents the previously
occupied position of the particle. Once the updated particle coordinates are obtained from
the RK integration scheme, they can be expressed in terms of the area coordinates

(Zienkiewicz, 1977) of the previous element,
Rt S
Vn Yo Y V2

In this formulation, it is necessary that

a,+a+a, =1 (3.36)

Therefore, the complete set of equations can be expressed in matrix form as follows:
X, X% x|la, X,

Yo N V2 |3a p=4V, (3.37)
1 1 1{lag 1

The solution for ag, a;, and a; can be obtained using any suitable matrix method, for
example, Cramer's rule (Dahlquist and Bjorck, 1974). The values of these area
coordinates are used to determine if the particle occupies the same element, or indicate
the most likely new element if it has moved out of the old one. As examples, consider

three special cases shown in Figure 3.8:
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Ifa,=1 > a,4,=0 T

fag>1 > a,a,<0 °

=

Ifg =0 - a,a,20 n

Figure 3.8: Special cases to illustrate the rules used to locate the particle

For locating the particle, the general rules that apply to triangular elements are the
following (Ren et al., 1995):

1. If 0<aq,a,,a, <1, then the particle occupies the current element.

127
2. If ;<0 and a,,a, 20, then the particle has traversed to an element that is

adjacent to the side j-k, opposite node i.
3. If a;,a, <0, then the particle has traversed to one of the elements associated
with node i, opposite side j-k.
Based on these rules, the subroutine LOCATE2D solves for the area coordinates, and
returns the value of a variable denoted as ILOC, ranging from 1 to 7 and corresponding to

each of the possibilities depicted in Figure 3.9.
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Figure 3.9: Particle location possibilities evaluated in subroutine LOCATE2D

The element that is occupied by the particle is found by calling the subroutine
LOCATE2D, using the value of ILOC to determine the search direction, and updating the

trial element until ILOC=1 is returned. For the structured finite element meshes used in

this work, there are four types of elements that must be considered when executing the

particle-locating algorithm, as illustrated in Figure 3.10.

(852))

IQUAD=0

(H1 J+)

()

ITRI=2

ITRI=1

(I+1))

IQUAD=1
(R:3V) (i+H)
2
ITRI=2
ITRI=1
0 1
(&) (H+1,))

Figure 3.10: Possible configurations of the triangular elements in the structured mesh
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Table 3.1: Possibilities that must be considered for the determination of the next search
element for a returned value of ILOC

iLoc| IQUAD ITRI Inew [ Jnew [ITRI new]
[ o 1 ] J-1 2
A ) 2 ] J 1
t 1 1 ] J-1 2
1 2 1+1 J 10r2
o 1 I+1 J-1 1or2
3 | o 2 I+1 J+1 1 0r2
1 1 1+1 J-1 10r2
1 2 1+1 J+1 10r2
I o 1 X J 10r2
4 0 2 i J+1 1
“ 1 1 ] J 2
1 2 | g+ 1
I o 1 1 9+ 1 0r2
5 [ o 2 -1 J+1 1or2
il 1 1 I-1 J+1 1or 2
L1 2 I-1 JHl 1
o 1 1 J 2
6 [ O 2 I-1 J 10r2
1 1 I-1 J 1o0r2
L 1 2 I J 1
o T 17 T = T 31 [ 1or2
701 o 2 -1 J-1 10r2
K 1 I-1 J-1 10r2
1 2 I+1 J-1 1or2

The value of ILOC has to be applied differently for each of the four types of triangular
elements depicted schematically in Figure 3.10: a summary of the possibilities is
provided in Table 3.1.

An example of how the new values of I, J, and ITRI are determined is shown in
Fig. 3.11 for IQUAD(L,J)=0, and ITRI=1. It can be observed that for ILOC=3, 4, 5, and
7, the ITRI in the new quadrilateral cannot be obtained with certainty. For such cases, the
algorithm simply toggles the ITRI value between 1 and 2 whenever it traverses to a new
element. If the proposed new element still does not return a value of ILOC=1, then an

additional locator step is carried out.
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____(_1-,.1)‘{___' Nk
1 & @D T
@2/ > 0
Rl PN €))
| [
. L

- Figure 3.11: Example used to illustrate updating of the element for IQUAD=0; ITRI=1

The possibilities summarized in Table 3.1 were incorporated into the computer -

program using statements akin to the following pseudo-code:

IF (ILOC=2) THEN
1=1+IQUAD(,J)*(ITRI-1)
J=J+(ITRI-2)

IF (ILOC=3) THEN
I=I+1
=T+ (2¥ITRI-3)

IF (ILOC=4) THEN
1=+ (1-IQUAD(J))*(2-ITRI)
J=J+ ([TRI-1)

IF (ILOC=5) THEN
I=1I- 1+2%1-IQUAD(,J))*(2-ITRI)
I=J+1

IF (ILOC=6) THEN
I=1I - (1-IQUAD(I, J))*(ITRI-1) - IQUAD(LJ))*(2-ITRI)
=]

IF (ILOC=7) THEN
1=1I- 1+2*IQUAD(,J)*(TRI-1)
J=J3-1
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3.2.4 Method for Checking When Particle Reaches a Domain Boundary
While computing the particle trajectories, the overall particle-tracking program
may encounter the following three possible scenarios:
e The specified maximum number of time steps is reached before the particle
reaches a domain boundary
e The particle reaches a domain boundary corresponding to one of the duct walls,
before the number of time steps exceeds the specified maximum value
e The particle reaches the outflow boundary at the end of the separation chamber,

before the number of time steps exceeds the specified maximum value

For the first case, the computer program stops execution without the need for any
special treatment. For the second case, in which the particle reaches a domain boundary,
it is necessary in subroutine FIND 3DVELOCITY to recognize this scenario before any
interpolations are attempted, in order to prevent the code from trying to interpolate for
dependent variables on fictitious elements, that are not a part of the finite element mesh.

Consider the example in Figure 3.12, which illustrates a case where the particle

reaches the separator chamber wall at x = a (corresponding to the grid line / = L1).

(ICUR,JCUR+1 (L1,JCUR+1)

(ICUR,JCUR) T ®

(L1,JCUR)

Figure 3.12: Example of particle exiting domain at x=a (I=L1)
At time ¢, the particle is within the calculation domain, but during the following

time step, which advances the time to 7+ Az, it has moved to a point outside the domain

boundary. Since interpolation of the dependent variables is based on the particle position
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at the beginning of the time step, the code recognizes a boundary violation only after the
particle has exited the calculation domain. In such cases, the algorithm is set-up to back-
calculate the particle position in all three coordinate directions using the final
instantaneous velocity, in order to bring it back to the location where it crossed the wall

boundary.

Figure 3.13: Back-calculation of final particle position at sidewall boundary

Consider the particle in Figure 3.13, as it approaches the domain boundary, which
is given an arbitrary orientation. The first step in the back-calculation procedure involves
determining the two boundary nodes between which the particle crossed the domain
boundary. This can be conveniently achieved by using the indices (ICUR,JCUR) that
represent the latest occupied element. The code is set up so that a boundary violation is
identified when ICUR changes to 0 or L1, or when JCUR changes to 0 or M1.

Next, the distance, d, between the latest particle position (outside the domain
boundary) and the nearest point on the domain boundary is computed using the cosine
law (please see notation given in Figure 3.13):

12 =2+ 1 2L cos(6) (3.38)

The distance, d, is then given by:
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d =— sin(6)
d=-] Sin[arc'cos(___l12 +.2 IL‘Z l]— L ﬂ (3.39)
The negative sign has been deliberately inserted in the equations in order to

emphasize that the particle has exited the domain and it needs to be moved backwards to
a location on the domain boundary. The velocity of the particle, in a direction normal to
the boundary is also needed for back-calculating the particle position. First, the
orientation of the boundary edge is expressed as an angle relative to the x-coordinate
direction:
£= atan(—yii‘—) (3.40)
X, =%

Then, the velocity normal to the boundary is calculated using:

V. =u,cos(w/2-&)+v,cos(¢) (3.41)
Finally, the time step required to move the particle backwards is obtained by dividing the

normal distance by the normal velocity:

AL, =dIV, (3.42)

The boundary treatment for the case where the particle exits the calculation
domain at the outflow boundary of the separation chamber is carried out in a similar
fashion. For ducts of constant cross-section, such as the separation chamber considered
in this work, the outflow boundary is oriented normal to the z-coordinate direction.
Therefore, the previous calculation procedure can be simplified by using the final z
position and w velocity of the particle to calculate the final time step required for the back

calculation.
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Chapter 4

Test Problems

The numerical solution methods presented in Chapter 3 are validated in this
chapter by applying them to four different test problems and checking their solutions

against analytical and/or numerical solutions available in the published literature.

4.1 Fully Developed Flow in a Rectangular Duct

4.1.1 Problem Statement

The problem considered here involves steady, laminar, fully developed flow of a
constant-property Newtonian fluid in a straight duct of uniform rectangular cross-section,
akin to that shown schematically in Figure 2.1, but without the imposed EM fields.

In the fully developed regime, the velocity component in the axial, or z, direction,
w, is governed by the following equation (Shah and London, 1978):

_d_ 0 of ow|_
dz ax( ax}'ay("ay) ° @D

Noting that the properties of the fluid are assumed to be constant in this test problem,

Equation (4.1) can be rewritten as follows:

ow o*w (dp
6x2+6y2 (dz)/n c, 4.2)

In this equation, p is the reduced pressure, as defined earlier in Equation (2.1). With

respect to the schematic illustration of the rectangular duct and the Cartesian coordinate
system shown in Figure 2.1, the boundary conditions on w are the following;:
w=0atx=0,x=2a,y=0,andy=2b 4.3)
The exact solution to this problem is the following (Lundgren et al., 1964; Shah and
London, 1978):
16c i ‘IT (1) {l _ cosh(nz(y-b)/ 2a):|cos(n”(;a— a)) @.4)

n=13,. 1 cosh(nzb/2a)
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The average value of w over the cross-section of the duct is given by:

ww=—c“’:2 [l 17?2(b)ﬂ23: . Lo (n;bﬂ .5)

The hydraulic diameter, Reynolds number, and the Fanning Friction for this problem are
defined as follows (Shah and London, 1978):

4ab w
= R =P nth f._
(a+b)’ n 05pw

(4.6)

where 7, is the average wall shear stress. The product of f and Re is given by the

following equation (Shah and London, 1978):

_ 8
SR i+ @/ DT @7

For any given aspect ratio, AR=>5b/a, the exact values of fRe can be computed using

Eqgs. (4.6) and (4.7). Shah and London (1978) have proposed the following equation for

JRe that approximates its exact values with an accuracy of 0.05% or better, for all

values of AR:
fRe=24 (1 —1.35534AR+1.9467AR* —1.7012 AR’ +0.9564AR* —-O.2537AR5) (4.8)

The control-volume finite element method (CVFEM) presented in Section 2.1 was used
to solve this test problem. The validity of this CVFEM, and its computer implementation,
was established by comparing the results with those obtained from the aforementioned
exact and approximate solutions provided by Lundgren et al. (1964) and Shah and
London (1978).

4.1.2 Resultsfor w, /w_and fRe
The CVFEM results were obtained using line-by-line structured grids of LIxMI

nodes. A power-law distribution of the grid lines was used to generate grids that packed
more nodes in the vicinity of the walls than in the central regions of the duct. In the
lower-left quadrant of the duct cross-section (0<x<a and 0< y<b), this power-law

grid was generated as follows:

X(D)=al(I -)/H0.5L1-D}F ; Y(J)=b[(J -D/{0.5M1-1)}]7% (4.9
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Only odd values of LI and M1 were used, in order to ensure that there would be grid lines
along the centerlines of the duct cross-section (x = a and y = b). The grid lines in the
remaining three quadrants of the duct cross-section were obtained by suitably reflecting
those in the lower-left quadrant.

Values of w__ /w,, and fRe for seven different values of AR, obtained using the

CVFEM presented in Section 2.1, the corresponding exact solutions (Equations (4.4) and
(4.5)) of Lundgren et al. (1964), and the approximate solution (Equation (4.8)) of Shah
and London (1978) are presented in Table 4.1 and Figure 4.1. The CVFEM results in
this table and figure were obtained using LI = 61, M1 = 61, XPOW = 1.1, and YPOW =
1.1.

Table4.1: w,,/w,, and fRe values for fully developed flow in a rectangular duct -
comparison of CVFEM results with those of Lundgren et al. (1964) and

Shah and London (1978)
Aspect Ratio o[ Ve Wonze | Wae SRe fRe
AR Lundgren et al. CVFEM Shah and CVFEM
(1964) London (1978)

1.000 2.0962 2.0991 14.2296 14.2332
0.750 2.0774 2.0804 14.4782 14.4822
0.500 1.9918 1.9953 15.5573 15.5560
0.400 1.9236 1.9275 16.3767 16.3775
0.250 1.7737 1.7789 18.2340 18.2468
0.125 1.6283 1.6363 20.5898 20.6105
0.100 1.6009 1.6101 21.1759 21.2002

The data presented in Table 4.1 show that, for all values of the aspect ratio, AR, the
CVFEM results differ from those of Lundgren et al (1964) and Shah and London (1978)
by less than +£0.6%. These differences are hardly perceptible in the graphical presentation

of the results in Figure 4.1
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Figure 4.1: Variation of w,, /w, and fRe and with aspect ratio, AR, for fully

developed flow in a rectangular duct - comparison of CVFEM results with
published data (Lundgren et al., 1964; Shah and London, 1978)

4.1.3 Grid Independence Checks

All numerical solution methods must satisfy the following consistency
requirement: as the computational grid is refined, the numerical solution must
asymptotically approach the exact solution. Furthermore, the differences between
numerical solutions obtained on successively finer grids should become progressively
smaller, and, eventually, essentially negligible, to within the limit imposed by machine
round-off characteristics. The CVFEM simulations were run on successively finer grids,
and the solutions were examined to ensure that they met the aforementioned
requirements. Five different power-law grids, similar to that represented by Equation
(4.9), were used in these tests: LIxM1 = 21x21, 41x41, 61x61, 81x81, and 101x101, with
XPOW =YPOW=12,1.2, 1.1, 1.1, and 1.05, respectively. The results are presented in
Figure 4.2.
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Figure 4.2: Variation of the CVFEM results with grid refinement

The results presented in Figure 4.2 show that the CVFEM results do satisfy the

consistency and grid-independence requirements.
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4.2 Particle Settling in a Stationary Fluid Subjected to
Gravity and Electromagnetic Forces

4.2.1 Problem Statement
In this test problem, a smooth, rigid, electrically non-conducting, spherical particle

is allowed to settle in an electrically conducting fluid. The fluid is Newtonian, its

properties are assumed to be constant, and it is stationary far from the particle (U, =0).

It is also assumed here that the virtual mass and Basset forces are negligible. Under these -

“conditions, the particle momentum equation, Equation (2.40), reduces to the following

form:
as, . _ -
m, dtp = Fppac + Favoraver + Faup - (4.10)
In this equaﬁon, the force terms are given by the following equations:
Fronue = 37chn(L7f —(7p)
N 7[D3 R .
Fvoraer =(—NP, ~P1)8 @.11).
-, 3(zD2 ) .
Fay, = _Z( 6}’ JFW,Um'tVoI

With respect to the finite element mesh and Cartesian coordinate system depicted in
Figure 3.4, the following were imposed: §=gk, £E=-Ei, B=B,j, where i, j, and

k are unit vectors in the x, y, and z directions, respectively. In addition, the particle

Reynolds number is assumed to be less than or equal to one (Stokes regime): Re, <1.
Then, noting that U/ =0, and with U ,=U pI-E , the particle momentum in the z direction

is governed by the following equation:

dUu »D? 3(zD?
m, dt”:—37rDP17UP+( GPXPP—pf)g+:1{ 6”)afEBo “4.12)

The terminal velocity of the particle can be obtained from Equation (4.12) by setting the

acceleration term to zero: dU,/dt =0. Using this approach, the following expressions

are obtained for the terminal velocity of the particle under the following three
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combinations of the gravity and EM force: only gravity and zero EM force; only EM force
and zero gravity; and both gravity and EM force:

D2
Only Gravity and Zero EM Force: (U, );pmina = ( Py pf)g IEL (4.13)
n
3 D;
Only EM Force and Zero Gravity: (U, Yrmina = 1° +EB, Is—”- 4.149)
n
3 D;
Both Gravity and EM Force: U, Yoerminat = [(pp - pf) g +ZafEB° ]# (4.15)
n

The transient solution for the particle velocity and its complete trajectory can be obtained
by integrating Equation (4.10) with respect to time. The analytical results are the

following:

U, =%j—[exp(c,t)—l] (4.16)

X, = Z—?{EIT [exp(at)-1]- t} 4.17)

In these equations, the constants ¢, and c2 are given by:

_ 189
1 2
pD
al - (4.18)
c, lsanf+36 2+ -—ﬁf-g
prp Py Py

Numerical solutions to this problem were obtained using the particle-tracking
algorithm described in Section 3.2, with a finite element mesh akin to that depicted in
Figure 3.4 and a uniform distribution of the grid lines in the x, y, and z directions (with
Ll = 21, M1 = 21, and NI = 21). The following physical properties and problem

parameters, which apply to the electromagnetic filtration of molten aluminum, were used:
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Density of fluid, p, = 2,374 kg/m’

Dynamic viscosity of fluid, 7 =2.998 x 10? kg/m-s

Conductivity of fluid, o, =2.95x 10 mhp/m

Mass density of particle, p, =3,990 kg/m’ , - (4.19)
Particle diameter, D, =2.5 x 10° m

Electric field strength, E=1.0 V/m
Magnetic flux density, B, = 0.050 T

4.2.2 Particle Terminal Velocity
Analytical' and numerical solutions corresponding to the three combinations of

conditions depicted in Equations (4.13) to (4.15) are given in Table 4.2.

Table 4.2: Comparison of numerical and analytical solutions for the terminal

velocity of a particle settling in a stationary fluid

Analytical Numerical
Conditions '
Solution Solutien
Only gravity, no EM force 0.1836 mm/s 0.1836 mm/s
Only EM force, no gravity 1.2812 mm/s 1.2812 mm/s
Both gravity and EM force 1.4648 mm/s 1.4648 mm/s

The results in Table 4.2 show that for each of the three cases considered, the
numerical results match the analytical results exactly. These results also demonstrate
that, for the physical properties and problem parameters given in Equation (4.19), the
electromagnetic field produces an order of magnitude increase in the terminal velocity of
the particle over that obtained with gravity alone.

This problem was also run with the finite element mesh at several different

orientations with respect to the Cartesian coordinate system (7, j, k unit vectors). In all

cases, the numerical and analytical results for the particle terminal velocity matched

exactly, as in Table 4.2.
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4.2.3 Particle Velocity Distribution and Particle Trajectory

For the properties and problem parameters given in Equation (4.19), and for the
initial conditions x,=0 and U,=0, the particle-tracking algorithm was used to compute the
variation of particle velocity with time, as well as the corresponding particle trajectory.
The finite element mesh was the same as that described in the previous subsection. The
numerical results and the corresponding analytical solutions (obtained using Equations
(4.16) to (4.18)) are plotted in Figure 4.3. The time step in the computer simulation was
set equal to one-tenth the particle velocity relaxation time:

D2
=5 [P |10 (4.20)
10 | 187

Smaller time steps were also tried, and it was established that the numerical solutions

become essentially insensitive to time-step refinements below Af =7,/10.

1.6E-03 — NUMERICAL RESULT A ANALYTICAL RESULT  § 0OE-07
.......... A ——A— A

1.48-03 i "} 50007

1.2E-03 / Velocity
7 1.0E-03 T 400E07
E. 8.0E-04 3.00E-07 -E-;
> 6 0E“04 177 Gs‘tm" 1 2 00E"07 x

4.0E-04 |

0 OE.04 // + 1.00E-07

0.0E+00 0.00E+00

) U3
R~ S~ SN~ SN~ o g P
t[s]

Figure 4.3:  Particle settling in a stationary fluid under the influence of gravity and EM
Jorce: Particle velocity distribution and trajectory

The results plotted in Figure 4.3 show that the agreement between the numerical

and analytical results is uniformly excellent.
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4.3 Motion of a Particle in a Couette Flow Layer Adjacent to
a Solid, Impermeable, Plane Wall

4.3.1 Problem Statement

This test problem is schematically illustrated in Figure 4.4.

VP
“f = uoo 4
. u

{hx

Figure 4.4:  Particle motion in a Couette flow layer adjacent to a solid, impermeable,
plane wall.

u=>0

The fluid is Newtonian, and its properties are assumed to be constant. The fluid
flows steadily past a solid, impermeable, plane wall located at y = 0. The fluid velocity in
a direction normal to the wall is zero, and its velocity parallel to the wall is invariant with
x and varies linearly with y:

u,=(y/H)u, (4.21)
The height of the Couette layer is H, and the fluid velocity at y = H is u_ .

The particles are small, rigid, smooth spheres. In this test problem, it is assumed
that the particle trajectories are influenced by the drag and lift forces only. The
buoyancy, virtual mass, Basset, and EM forces on the particle are assumed to be

nonexistent or negligibly small. The particle Reynolds number is assumed to be less than

or equal to one (Stokes regime): Re, <1. It is also assumed that the equation proposed

by Saffman (1965) for the lift force applies in this problem. Under these conditions, the
components of the particle momentum equation in the x and y directions can be simplified

and expressed as follows:
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du 1
TIP: ;.:(uf —up)

& L 3co 1 JU N\ (4.22)
—r= TV +_£f_—gll2 (uf —up) —L
dt T, 2z p, D,
The following nondimensional variables and parameters are introduced at this stage:

e H o ey o Wy . U D,
t=t—;;y=—u, =" u =—">;6, =—

u, Y= u,” T u, " H

, (4.23)

lz_[)_l’. t pPDPuw . 3C 1 1

R e
Pr 18nH 27 64 \JRe

Then, the components of the nondimensional particle momentum can be expressed as

follows, dropping the asterisk (*) superscript associated with the dimensionless

variables:
du
dtp = Tgl_;(uf - ul’)
(4.29)
ﬂ1’-: ——l—v +‘i’(u - U )
a st £
The corresponding nondimensional initial conditions for this problem are:
Yo =1
Att=0 u,20 (4.25)
v, <0

Naumov (1995) presents the following analytical solution to the equations that
govern this problem (it has been established in this work that these expressions do indeed

satisfy Equation (4.24):

if ¥ ¢S—lt2- y= S—‘[exp(rlt)—l]+f2-[exp(r2t)—1]+1 (4.26)
K n
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. St t
if ‘I’.—_E— J’:sn““—[l‘e"p(ﬁ‘)]"'sz“'l 4.27)
where
1 1
=———¥ ; r,=——+J¥Y
- V¥in St ¥

s, =%[vo —(l—uo)\/‘?] ) S, =%|:va +(l—uo)ﬁ]

(4.28)

Attention is now focused on cases for which ¥ <1/S5f*. For these cases, the
analytical solution, Equation (4.26), permits the deduction of a criterion which the initial
conditions must satisfy for the particle to reach the wall at y = 0, despite the action of the
lift force which opposes the movement of the particle towards the wall. When the initial
conditions violate this criterion, then the lift force is able to prevent the particle from
reaching the wall. This criterion on the initial conditions is determined by setting y=0 as
t —> . The result can be expressed in the following form:

v, < Wu St—— (4.29)
St

4.3.2 Particle Trajectories

The particle trajectories corresponding to the conditions St=1.0, u,=1.0, § =0.05,
and ¥ =0.1 were obtained using the analytical solution (given in Equation (4.26)) and
also the particle-tracking algorithm described in Section 3.2.

For these conditions, the criterion expressed in Equation (2.29) yields a critical
value of v,= -0.9: for v, > -0.9, the analytical solution shows that the lift force prevents
the parﬁcle from reaching the wall; for v, < -0.9, however, the particle reaches the wall
despite the lift force that opposes its movement towards the wall.

Particle trajectories obtained from the analytical and numerical solutions, for vo =
-1.0, -0.9, and —0.7 are plotted in Figure 4.5. The numerical results were obtained with a

time step of Af=17,/1000, where 7, = p,D>/18n. The problem was run in terms of

dimensional variables: the value of the height of the Couette layer, H, was arbitrarily set

at 0.01 m, and the values of U,, p,, and other properties and variables were adjusted

appropriately to achieve the aforementioned values of the nondimensional parameters.
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As can be see from the results plotted in Figure 4.5, the agreement between the analytical

and numerical solutions is excellent.

0.9 - » ~—NUMERICAL Solution
A ANALYTICAL Solution| |

Figure 4.5:  Particle trajectories in a Couette flow layer adjacent to a solid,
impermeable, plane wall

4.4 Motion of a Particle in a Forced Vortex Flow Field, With
and Without the Inclusion of Basset Force

4.4.1 Problem Statement
This test problem is schematically illustrated in Figure 4.6. A constant-property
Newtonian fluid is assumed. The angular velocity vector that characterizes the forced

vortex flow is directed in the positive z direction: @ =wk. The fluid velocity field is
entirely constrained to the x-y plane, and is given by U ;,=®xF. The particle is a small,
rigid, smooth, sphere, and it is assumed that the particle Reynolds number is less than or
equal to one throughout the calculation domain (Stokes regime).

This test problem was used to validate the formulation and implementation of the

Basset force term in the particle-tracking algorithm. This validation was done by
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checking the numerical predictions against the analytical solutions to this problem

proposed by Druzhinin and Ostrovsky (1994).

l

Ufa)

Figure 4.6: Particle motion in a forced vortex flow

In the particle momentum equation, the drag; virtual mass, and Basset forces are
retained. The buoyancy, Saffman lift, and EM forceés are.not considered in this test

problem. Thus, the particle momentum equation is the following:

40, (p, )\ DU, L 187 (0,-0)) +

dt p, \ Dt pp s :

1[&J(dﬁf au, J L 9 NPT IT’ %dt'
Py

2 dt \/—P,,,

(4.30)

Using previously defined dimensionless variables and parameters, the particle momentum

equation can be rewritten in non-dimensional form as follows:
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d0. 1DU, 1,. -
L-——JL,+_(U,-U,) +
dt A Dt St( =0,

dU dU 0 ) ¢ U, ad, (4.31)
+ = _[‘" & dr'
2/1 d dt A6 JrnRe

Druzhinin and Ostrovsky integrated Equation (4.31) using a series function for the
velocity. Their analytical solution for the two-dimensional vortex problem, with and

without the Basset force, is given in the following form:

D2
u, :—-a)y—-I—s——(pf pp)w x+Au,
g (4.32)

2

D 2
v, =wx—178—‘;-’7—(pf —-pp)a) y+A4v,

where Au, and Av, are the velocity corrections associated with the Basset force, and are

D2
Au, = ZPrif_fe @*'*rsin (wt - f)
36 n Pr 4
D2
Av, =—— ZePr 1- br »’ rcos( t—z)
36| 7 P, 4

Transforming Eqgs. (4.32) and (4.33) to cylindrical coordinates, Druzhinin and Ostrovsky

given by:

(4.33)

obtained the following expressions for the radial and tangential velocity components:

— D: Dipf N 2

(Vr)p_ (pf pP)lsnlil ( 87] @ or
DZ szf 172

7o), { +(py ”»)ls,,( » w} or

These expressions demonstrate that the particle migrates across the flow streamlines

(4.34)

when its density is different than that of the fluid. This will occur whether or not the

Basset force correction, given by the second term in parentheses, is applied. When
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P, > p;, the particle moves away from the center, and when p, < p,, the particle

migrates toward the center of the vortex.

4.4.2 Particle Trajectories

------ No Basset Force - \Nith Basset Force

2.0

1.0

Y 00

-1.0

-2.0 -1.0 0.0 1.0 2.0
X

Figure 4.7: Particle trajectory in a forced vortex for A = 0.5, St = 0.022, and w =2

This problem was solved with a forced vortex velocity field in a two-dimensional
square domain of dimensions 4 x 4 units, as shown in Figure 4.7. This calculation
domain was discretized using a two-dimensional finite element mesh, similar to the cross-

section mesh shown in Figure 3.4. A uniform structured line-line-line grid was used,
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with L1 = 51 and MI = 51. The z direction is irrelevant here, because the flow field is
two-dimensional, and the particle starts and remains in the chosen x-y plane. The
nondimensional time step used in the simulations was At/ 7,=0.1.

The Basset correction reduces the radial drift velocity for all density ratios, and
enhances or diminishes the angular velocity for particles that are lighter or heavier than
the fluid, respectively. These characteristics were faithfully reproduced by the results
obtained using the proposed particle-tracking algorithm and its computer implementation.

Figure 4.7 shows the particle trajectory for the case where the density ratio is

P,/ p;=0.5, the angular velocity is @ = 2, and the Stokes number is St=0.022. When

compared to the particle trajectory produced by the analytical solution, given by Equation
(4.32), the results produced by the proposed particle-tracking code differ from the
analytical results by less than +0.04 units.
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Chapter 5

Demonstration Problem

5.1 Overview

The scope and possibilities offered by the proposed numerical solution methods
vis-a-vis the design of electromagnetic systems for the separation of solid inclusions from
molten aluminum are explored in this chapter in the context of a demonstration problem.
The demonstration problem is illustrated schematically in Figure 2.1. It involves steady,
laminar, fully developed flow of molten aluminum in a separation chamber, which is a
straight duct of rectangular cross-section. The walls of this duct are assumed to be
electrically non-conducting. The molten aluminum is fed to the duct from a large
upstream plenum, and it is assumed to enter with a uniform velocity normal to the inlet
plane. At that point, the relative velocity between the inclusions and the molten
aluminum is assumed to be zero. Within the separation chamber, the inclusions migrate
laterally under the action of surface and body forces that they experience. After a
sufficiently large distance downstream of the inlet, the fluid flow becomes fully
developed, as was discussed in Section 1.3.3. Only the fully developed regime is
investigated in this demonstration problem.

The longitudinal axis of the separation chamber is oriented along the z direction
of the Cartesian coordinate system. Immersed electrodes, upstream and downstream of
the chamber, generate an electric field so that the current flows in the positive z direction,
parallel to the main fluid flow. The applied magnetic field is generated by a suitable
electromagnet, such that the field strength is uniform throughout the separation chamber
and is oriented in the x-direction, parallel to the wider side of the duct, as illustrated in
Figure 2.1. These electric and magnetic fields create a resultant electromagnetic (EM)
body force on the electrically conducting molten aluminum.

The fully developed flow of aluminum in this demonstration problem was

predicted using the CVFEM described in Section 3.1. In order to predict the inclusion
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trajectories in the molten aluminum within the separation chamber, it is necessary to
solve the particle momentum equation, which was discussed in detail in Section 2.5. The
particle-tracking algorithm presented in Section 3.2 was used to solve the particle
momentum equation and obtain inclusion trajectories.

In this chapter, first, representative calculations will be used to assess the orders
of magnitude of the forces experienced by the inclusions, and characterize the relative
importance these forces in the determination of the particle trajectories. Next, the results
of a parametric study will be presented for the demonstration problem. Finally, a method
for quantifyihg the effectiveness of the electromagnetic separation system will be
proposed.

In this demonstration problem, the density, dynamic viscosity, and electrical
conductivity of the molten aluminum, and the mass density of the -solid inclusions

(particles), were kept fixed throughout at the following values: p, = 2,374 kg/m®, 7 =
2.998 x 10 kg/m-s; o, =2.95 x 10° mho/m; and p, = 3,990 kg/m’. The electric field

strength was also maintained fixed at the following value: £=1.0 V/m. The length of the
longer side of the duct cross-section was fixed at 2a = 0.02 m,; thus, @ = 0.01 m. For the
other relevant nondimensional and dimensional parameters of this problem, the ranges of

values given in Table 5.1 were investigated.

Table 5.1: Values of some of the nondimensional and dimensional parameters that
characterize the demonstration problem :

Parameter Range
Duct Aspect Ratio, AR 1,05,02
Reynolds Number, Rep, 1, 10, 100, 1000

Magnetic Field Strength, B, 0T, 0.001T, 0.01T, 0.1T

Particle Diameter, D, Spum, 15pum, 30pm, 90pm

These values of the dimensional and nondimensional parameters are
representative of some prototype electromagnetic systems for the separation of inclusions

from molten aluminum (Patel and El-Kaddah, 1997). Another point to be noted here is
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that in the presentation of the results in subsequent sections of this chapter, reference will
be made to some of the nondimensional parameters that were introduced and discussed in
Chapter 2. In particular, reference will be made to the Hartman number, M, defined as

follows:
M =JN-Re =B0D,,\IE
n

All computer simulations of the demonstration problem were done with power-
law type of finite element meshes in the duct cross-section (designed in accordance with
Equation (4.9) and related discussions) and a uniform grid in the z direction. The cross-
sectional grid was characterized by LI = M1 = 61, and XPOW = YPOW = 1.25. The
number of nodes and size of the axial grid can be arbitrary, because the flows considered
here were all fully developed (thus, w is invariant in the z direction); in this work, 21
uniformly spaced cross-sectional plane were used to discretize the length of the
separation chamber (fixed at 1 m in this work). In each run, the particle trajectory was

computed with a uniform time step of At=17,/10.

5.2 Forces Experienced by the Particle Along its Trajectory
The magnitudes of the drag, buoyancy, virtual mass, Basset, lift, and EM forces

experienced by the particle over the course of its trajectory force were investigated for
one particular combination of parameters: AR = 1.0, Re = 100, B, = 0.01T, and D, =
90um.

First, the values of each of the nondimensional groups, (:), that appear in the

expressions for the dimensionless forces in Equation (2.66) were calculated using exact
values of the properties and dimensions used in this demonstration problem. The

corresponding orders of magnitude are summarized in Table 5.2.
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Table 5.2: Orders of magnitude of the dimensionless groups in the non-dimensional
particle momentum equation for AR = 1.0; Re = 100, B, = 0.01T, and D, =

90um

Dimensionless Order of
Group Magnitude

O
(- ]
Nl

9% 10
”1/2}'6 Rel/Z
(__39___) 10
2z7Re"? A6
(?E] 107!
Y

Then, the time varying magnitudes of the actual y-direction and z-direction
components of the aforementioned forces were obtained from the corresponding particle
trajectory calculations. The results are plotted in Figures 5.1(a) and 5.1(b). These plots
reveal several interesting characteristics for the electromagnetic filtration problem.
Along the y-direction, the particle trajectory is influenced by a large value of the relative
velocity, caused by the drag force balancing against the combined buoyancy and FA
forces. Consequently, the lift force along the negative z-direction becomes significant,
and the unsteady Basset and virtual mass forces are large initially. Once the particle
relative acceleration starts to drop from its high initial value, the virtual mass force also
drops off significantly. However, the Basset force continues to remain relatively high as

a result of its "history" effect.
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Figure 5.1: Time-varying forces experienced by the particle for AR = 1, Re = 10, B, =
0.01 T, and D, = 90um: (a) along the y direction; (b) along the z direction
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Figure 5.2: Particle trajectory calculations with and without Basset and lift forces for
the cases where Re = 10, B, = 0.01 T, D, =90um: (a) AR = 1; (b) AR = 0.5.

Along the y-direction, the lift force is negligible as a result of the small relative
velocity in the z direction, and its upward trend is a result of the increased w-velocity

gradient, dw/dy , as the particle migrates toward the wall. The Basset and virtual mass

forces exhibit an opposite trend in the z direction than was observed in the y direction.

87



This is due to the fact that the particle is given the same initial w-velocity as that of the
fluid, but begins to slow down as it traverses toward the wall.

The particle trajectory calculation is shown in Fig. 5.2a, along with the cases
where the lift and Basset forces are individually turned off. Based on the orders of
magnitude observed in Fig. 5.1, it can be concluded that the discrepancy caused by
turning off the Basset force is a result of inadequate modeling of the particle momentum
along the y-direction. Similarly, the discrepancy associated with removing the lift force:

is due to the inadequate modelling of the particle momentum along the z-direction. The ..

- results in Fig. 5.2b illustrate the same findings for a low aspect ratio duct case, where the .

velocity profile is flatter due to a higher magnetic interaction parameter.

- 5.3 Parametric Study of Parti’clé Trajectories

This section provides a summary 6f particle trajectory calculations for the full
range of parameters defined in Section 5.1. A total of 192 cases were considered, and the
results are presented in Figures 5.3 to 5.14. The presentation of these results is grouped
into twelve sets of plots, each set corresponding to a particular combination of AR and
D,. Each set is comprised of four graphs, one for each Reynolds number. Each graph
then has four trajectory calculations (plotted in terms of non-dimensional quantities, y/a
and z/a), each corresponding to a different value of the Hartman number, M. = The
trajectory calculations were carried out with the initial particle position at the center of

the duct, until 2,000,000 time steps based on At=7,/10 were reached, or until the

particle moved a distance of 50a (=1.0m) in the z-direction.
Two main observations can be made concerning the trajectories shown in Figures
5.3 to 5.14:
1. For fixed AR, Dy, and M, the length required for separation approximately scales
with Re.
2. For fixed AR, Dy, and Re, the length required for separation approximately scales
with 1/M .
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Figure 5.3: Particle trajectory calculations for AR=1and D, =5 pm
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Figure 5.5: Particle trajectory calculations for AR =1 and D, =30 um
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Figure 5.6: Particle trajectory calculations for AR =1 and D, =90 um
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Figure 5.8: Particle trajectory calculations for AR = 0.5 and D, = 15 um
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5.4 Evaluation of the Effectiveness of an Electromagnetic
Separation System

In this section, a method to evaluate the effectiveness of an electromagnetic
separation system is proposed. The aim here is also to demonstrate the usefulness of the
proposed numerical solution methods in assessing the relative merits of specific EM

separator designs.

5.4.1 Problem Statement
The particular EM separation system being evaluated here is illustrated in Fig.

5.15.

C)KIDC Power Supply
E

b

E
+ lectromagnet

>
Lem

< —>
LE"

Figure 5.15: Schematic illustration of electromagnetic separation system

In the evaluation of an electromagnetic separation system, the following
performance measures are useful:

¢ Smallest size of particle that can be separated at the desired fluid flow rates

e Power consumption required for separation

e Mass of aluminum processed per unit of power consumption
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The total power required for separation of the particles from the molten aluminum is the
sum of the powers expended to pump the molten aluminum, create the desired electric

field, and generate the desired magnetic flux density.

5.4.2 Pumping Power

In the fully developed regime of a horizontal separation chamber, the pumping
power input is needed to overcome the wall shear stress and the braking effect of the
applied EM fields on the molten aluminum. It can be calculated using the computed
pressure gradient in the z direction, the minimum length of the separation chamber that is
necessary to separate the particles from the molten aluminum, the area of the flow
passage cross-section, and the average fluid velocity. In this analysis, for a given value
of the particle effective diameter, Dy, the minimum length of the separation chamber was
assumed to be the z-direction distance from the inlet plane that is required to separate a
particle (make it reach one of the duct walls) entering the duct at the center of the inlet
plane. It was also assumed here that the velocities of the molten aluminum and the
particles are essentially the same at the inlet plane. In the context of these assumptions

and conditions, the minimum pumping power requirements are given by the following

equations:
Only gravity, no EM force: P,,,.... = (— %)LFAGSWW CR)Y
Gravity and EM force: P, .. = (— %) L,Aw, (5.2)

5.4.3 Power Required to Generate the Electric Field
The minimum power input required for generating the uniform electric field via

immersed electrodes is given by:

P.=IV=(AXEL,)=0E?A(L),, (5.3)

z""em

Here, it is assumed that the ohmic electrical power losses in the supply wires are

negligible, compared to the other power inputs.
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5.4.4 Power Required to Generate the Magnetic Flux Density

The minimum power input required to generate the desired uniform magnetic flux density
using an electromagnet is given by.

2
P,=I’R= (QGLB"-J RI,. =(——@—2JLimBj —o (5.4)
Nturm'# Nturmﬂ

where, Nums is the number of turns in the solenoid, R is the resistance of the wire per
unit length. The electromagnet is assumed to produce a uniform magnetic flux density
within the molten aluminum over the whole required distance for particle separation
(distance from inlet plane needed for the particle to strike one of the walls). Hence, as
the separation length increases, so will the size of solenoid coils. = The approximate
orders of magnitude for these parameters are shown below:

L,~D,,

R ~0[107%]

N s = O[10%] (5.5)

4~ 0[107%]

r=(N”R 2}50[10“]

turns

5.5.5 Total Minimum Power Input

Hence, the fotal minimum power input required for combined gravity and EM assisted
separation is the following:

Proa)os =(-dp/dz)w,L,,A, +0EL, A, +TL, B (5.6)

av-—"em- cs

When gravity alone is used for filtration, the power required is:

(I)Total )gr = (—@/dz)wavLyAm (57)
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5.5.6 Effectiveness of EM Separation System
The EM system effectiveness will be defined as the ratio of minimum power input
required to separate the inclusions using only gravity to that which is needed when the

separation is EM-assisted:

gh [&J (cdp!dz)w., = (5.8)
Lo )| (-ap1d)w,, +oE? + Ll

em— o

where € = 1 represents the situation where the EM field is turned off.
Equation (5.8) can be used to gain insight into how the overall power
consumption can be reduced using an EM separation system. When gravity alone is used

for separation, the value of L can become significant. An effectiveness that is greater

than one is achieved when:

L,  (-dpldz)w, +ok; +TL, B}/ A (5,§)
Lem (_@/ dz)wav

Fig. 5.16(a) and 5.16(b) show the EM separation effectiveness as a function of
magnetic interaction parameter and Reynolds number, for particles that are Sum and
90um, respectively. In general, the results of this study suggest that EM separation can
be made very effective as long as the selected interaction parameter is high enough to
ensure inclusion separation for the desired duct Reynolds number. When the Reynolds
number exceeds a certain threshold (which depends on the particle size, duct aspect ratio,
and interaction parameter), the separation distance and the cost of the electromagnet
could become excessively large. An example of this phenomenon can be seen in Fig.
5.16(a) for Reynolds numbers of 100 and 1000. The results further suggest that if N is
increased beyond the maximum value used in this study, then effective EM separation

can take place at a higher Re as well.
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Figure 5.16: Effectiveness of the EM separation vs. interaction parameter and
Reynolds Number at AR = 1: (a) D, = 5um, and (b) Dp = 90 um
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Chapter 6

Conclusion

A brief review of the thesis and its main contributions are presented first in this

chapter. After that, several suggestions for extensions of this work are discussed

6.1 Review of the Thesis and its Main Contributions

In Chapter 1, the aims and motivation of the thesis were stated, and a brief
overview was given of the techniques that are used for the removal of impurities and
inclusions from molten metals. A review of the pertinent published literature was also
presented. This included electromagnetic filtration principles, control-volume finite-
element methods, fully developed and three-dimensional parabolic flows in straight ducts
subjected to electromagnetic fields, motion of a particle in a fluid continuum, particle
tracking algorithms, and computer simulations of electromagnetic separation.

In Chapter 2, the mathematical models required for the analysis of
electromagnetic separation processes were presented. The physical problem of interest
was described first along with a summary of assumptions regarding the fluid flow,
particle trajectory, and electromagnetic aspects. Next, specialized versions of the Navier-
Stokes equations for modeling three-dimensional parabolic flows in ducts were presented
and discussed, assuming that the electromagnetic fields are decoupled from the fluid
motion. Then, an order of magnitude analysis was carried out on the nondimensional
magnetohydrodynamic equations, which confirmed that the induced electric field was
negligible in the problems of interest. It was analytically shown that in the fully
developed flow regime, the z-momentum equation is sufficient to fully describe this class
of magnetohydrodynamic flows, and this problem can be viewed as a particular case of a
general, steady, two-dimensional diffusion-type problem.

Next, the governing particle momentum equation was presented in Lagrangian
form, and each of the forces experienced by the particle was discussed concisely. These

forces included the Stokes drag, buoyancy, virtual or apparent mass, Basset, Saffman lift,
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and electromagnetic forces.  The particle momentum equation was cast in a
nondimensional form, and an order of magnitude analysis was performed using typical
values of the relevant physical quantities. This analysis showed that it is important to
retain all of the aforementioned forces in computer simulations of EM separation systems
akin to those considered here. Lastly, the assumption of one-way coupling in the
momentum transfer between fluid and particle was shown to be adequate for typical mass
concentrations of inclusions found in molten aluminum.

Chapter 3 described the numerical methods that were formulated and used to solve
the mathematical models presented in Chapter 2. A concise description of a control-
volume finite-element method (CVFEM) for the solution of steady diffusion-type
problems was presented. This CVFEM was then supplemented with a proposed iterative
scheme to determine the value of the axial pressure gradient that yields a desired value of
Reynolds number. A particle-tracking algorithm based on the fourth-order Runge-Kutta
scheme was also proposed. The design of this algorithm required the adaptation of a
particle-locating algorithm proposed by Ren et al. (1995), in order to efficiently locate
the particle in structured computational meshes composed of two-dimensional triangular
and three-dimensional triangular prismatic finite elements. A method was also proposed
Jfor computing the time and position of the particle when it reaches a wall.

In Chapter 4, several test problems were solved using the proposed numerical
methods, and the results were compared with those found in the published literature. The
test problems involved calculations of fully developed fluid flow in straight ducts of
rectangular cross-section, computer predictions of particle settling in a stationary fluid,
particle trajectory calculations inside a Couette layer to validate the implementation of the
Saffiman lift, and particle trajectory calculations inside a forced vortex flow to validate the
implementation of the Basset force or "history" term.

In Chapter 5, the proposed mathematical models and numerical solution methods
were applied to a simple electromagnetic separation system. This exercise was
undertaken to highlight the scope and explore the possibilities offered by the proposed
methods, vis-a-vis their use in the design and optimization of EM separation systems for
molten aluminum. The influences of the various forces on the trajectory of non-

conducting particles inside molten metals subjected to electromagnetic forces were
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characterized and discussed, and the importance of including the Basset and Saffman lift
Jorces in the particle momentum equation was further illustrated.

Another original contribution of this thesis was a proposal for quantifying the
effectiveness of an EM separation system, via a suitably defined effectiveness parameter.
This effectiveness parameter was used to illustrate how an EM-assisted separation system
can reduce the overall power consumption compared to a system that relies purely on

gravity assisted sedimentation of the inclusions.

6.1 Recommendations for Extensions of This Work

The main contributions of this thesis were the formulation, testing, and application
of methods for numerical investigations of EM separation systems applicable to the
filtration of molten metals. The scope of this study was limited to the EM separation of
solid inclusions in steady, laminar, fully developed flows of molten aluminum in straight
ducts of uniform rectangular cross-section.

The first extension to this work could include the study of developing flows of the
molten metals subjected to uniform EM fields, and the prediction of particle dynamics
therein. A literature review of numerical methods for the prediction of three-dimensional
parabolic flows in ducts has been provided in this thesis, and it could serve a starting
point for this suggested extension.

Another, relatively simple, extension of this work would be to analyze other duct
cross-sections and compute trajectories of particle with finite electrical conductivity.
Such a study could provide useful insights into approaches for designing EM systems
with optimized shapes of the separation chamber.

The problem of interest should be extended to include non-uniform and time-
periodic electric and magnetic fields, and duct walls of finite electrical conductivity. This
would be particular interest when considering the commercial implementation of EM
separation processes, since the electric field can be induced inside the melt using a single
alternating magnetic field, without the need for immersed electrodes (El-Kaddah, 1995).
The mathematical model would need to be extended to include the complete set of
magnetohydrodynamic governing equations, and a numerical method for the prediction of

the electric and magnetic fields would have to be formulated and implemented.
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Finally, the author would like to recommend that the theoretical aspects of this
work be complemented with systematic experimental work, in order to confirm the
predicted trajectories of single particles in the melt, and to develop a prototype EM

separation system that could be scaled up for commercial applications.
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