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Abstract

In our Master thesis the notions of recognition by semigroups and by pro-
grams over semigroups were extended to groupoids. As a consequence of this
transformation, we obtained context-free languages instead of regular with
recognition by groupoids, and we obtained SAC' instead of NC* with recogni-
tion by prograrus over groupoids. In this thesis, we continue the investigation
of the computational power of finite groupoids.

We consider different restrictions on the original model. We examine the
effect of restricting the kind of groupoids used, the way parentheses are placed,
and we distinguish between the case where parenthesis are explicitly given and
the case where they are guessed nondeterministically.

We introduce the notions of linear recognition by groupoids and by pro-
grams over groupoids. This leads to new characterizations of linear context-
free languages and NL. We also prove that the algebraic structure of finite
groupoids induces a strict hierarchy on the classes of languages they linearly
recognized.

We investigate the classes obtained when the groupoids are restricted to
be quasigroups (i.e. the multiplication table forms 2 latin square). We prove
that languages recognized by quasigroups are regular and that programs over
quasigroups characterize NC*. '

We also consider the problem of evaluating 2 well-parenthesized expression
over a finite loop (a quasigroup with an identity). This problem is in NC
for any finite loop, and we give algebraic conditions for its completeness. In
particular, we prove that it is sufficient that the loop be nonsolvable, extending

2 well-known theorem of Barrington.



Finally, we consider programs where the groupoids are allowed to grow with
the input length. We study the relationship between these programs and more
classical models of computation like Turing machines, pushdown automata,
and owner-read owner-write PRAM. As a consequence, we find a restriction on
Boolean circuits that has some interesting properties. In particular, circuits
that characterize NP and NL arc shown to correspond, in presence of our

restriction, to P and L respectively.
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Résumé

Cette these est la continuation des travaux entrepris au cours de nos études
de maitrise. Les notions de reconnaissance par un semigroupe et par un pro-
gramme sur un semigroupe avaient alors été généralisées aux groupoides. Ici
nous poursuivons les recherches sur la puissance de calcul des groupoides finis.

Nous considérons différentes restrictions du modéle original. Nous exami-
nons les conséquences de restreindre la classe de groupoides utilisés et la fagon
de disposer les parenthéses. Nous distinguons le cas ou les parenthéses sont
données explicitement avec le programme de celui ol clles sont placées de fagon
non déterministe.

Nous introduisons les notions de reconnaissance linéaire par un groupoide
et par un programme sur un groupside. Nous montrons que cela permet
de donner une nouvelle caractérisation des langages hors-contextes linéaires
ainsi que de la classe de complexité NL. Nous prouvons aussi que la structure
algébrique des groupoides finis induit une hiérarchie stricte parmis les langages
linéaires.

Nous étudions les classes de langages obtenues lorsque les groupoides sont
restreints & &ire des quasigroupes (c’est-2-dire que leur table de multiplication
forme un carré latin). Nous prouvons que les langages reconnus par un quasi-
groupe sont réguliers et que les programmes sur quasigroupes reconnaissent
précisément la classe NCL.

Nous considérons aussi le probleme d’évaluer une expression avec paren-
theses sur une boucle finie (une boucle est un quasigroupe avec un élément
neutre). Ce probléme est dans NC! quelle que soit la boucle et nous donnons

des conditions algébriques pour qu’il soit complet. En particulier, nous mon-



trons qu’il est suffisant que la boucle soit non résoluble, géndralisant ainsi un
théoréme bien connu de Barrington

Finalement nous considérons les programmies ot le groupoide utilisé peut
croitre avee la longueur de 'entrée. Nous étudions les relations existant entre
ces programmes ct des modeles de calcul plus classiques comme les machines de
Turing, les automates 4 pile et des modeles paralleles de type PRAM. Cela nous
permet de définir une restriction sur les circuits booléens ayant d'intéressantes
propriétés. En particulier, nous montrons que les circuits caractérisant les

classes NP et NL reconnaissent respectivement P et L en présence de cette

restriction.
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Chapter 1

Introduction

The theory of complexity is concerned with the classification of problems in
terms of their computational difficulty. In particular, we are interested in prov-
ing that specific problems cannot be solved by a computer using some bounded
amount of resources. This aspect of complexity theory is well illustrated by
the P vs NP question.

NP is the class of languages that can be recognized by a nondeterministic
Turing machine in polynomial time. P is defined similarly by restricting the
Turing machines to be deterministic.

The problem of determining if P and NP are equal appeared soon in the
development of computer science (see [38]). Bowever, it remains unsolved in
spite of thirty years of intensive research. Since this question seems too diffi-
cult to be attacked directly, people have turned to simpler problems, following
two opposite directions. The first one consists in separating P from a com-
plexity class that would be larger than NP: for example PSPACE, the class of
problems solvable by a Turing machine using polynomial space. In the other
direction, people try to separate a subclass of P from NP: for example, the
subclass NL of problems solvable on 2 nondeterministic Turing machine using
logarithmic space (observe thai none of these examples has been settled yet).

This research has resulted in the definition of a large number of complexity
classes, and complexity theory has evolved into an investigation of the lattice
structure of these classes.

Two complexity classes can be cqmpa.red more easily if they are defined

1



with the same model of computation. However, there is no single type of
machine that can be used to define all classes. For that reason, it is important
to characterize each complexity class using various computational models.

Programs over semigroups, introduced in [5], are models of computation
that rely on finite semigroups, i.e. finite sets with an associative binary oper-
ation. Using these programs, Barrington and Thérien characterized different
complexity classes simply by varying the type of semigroups involved (see {8]).
Their results not only give new characterizations of complexity classes, they
establish a close relationship between the algebraic theory of semigroups and
complexity theory.

At the heart of this research there was a well known result due to Kleene
(e.g. see [56]) relating finite semigroups to regular languages. In [12] (see
also [48]) we investigated the effect of replacing semigroups by their nonas-
sociative analogues, called groupoids. We proved a generalization of Kleene’s
theorem giving a natural correspondence between finite groupoids and context-
free languages. We also showed that using programs over groupoids yields a
characterization of many complexity classes that could not be captured with
semigroups. -

These results suggest that the relationship between finite groupoids and
complexity theory deserves to be investigated further. This is the subject of
this thesis.

Essential definitions and background are given in the rest of this chapter
whose last section expose the contributions made by this thesis. In Chapter 2,
we define groupoids and discuss some of their algebraic properties. Then, we
introduce recognition by groupoids and by programs over groupoids. We ex-
amine two important parameters: the algebraic structure of groupoids and
the domain of parenthesization. In Chapter 3, we study a natural restriction
of the domain of parenthesization and we show that this is equivalent, from
a computational point of view, to considering only those groupoids satisfy-
ing certain algebraic conditions. We show how these restricted groupoids are
related with rational transducers and we give a strict hierarchy of linear lan-

2



guages using a method that relies on finite groupoids. Chapter 4 is devoted to
quasigroups which are those finite groupoids whose multiplication table forms
a latin square. In Chapter 5, we generalize the above ideas by considering
families of groupoids. Instead of using a fixed groupoid we allow groupoids to
grow with the input length. We study how this growth influences the kind of

languages that can be captured. Finally, we conclude in Chapter 6 with some

questions raised by this thesis.

1.1 Languages and Reductions

With any language L C A" we associate a decision problem. This is the
problem of determining, given a word z € A”, if = belongs to L or not. We
say that L is recognized by an algorithm M whenever M correctly solves the
above problem.

Let A and B be finite alphabets, and let Ly € A* and Lg C B* be two
languages. L, is said to be reducible to Lg, denoted L, < L, whenever there
exists a reduction function f : A~ — B" such that for any z € A*, z € L, if
and only if f(z) € Lg.

Reductions have a fundamental role in complexity theory (e.g. see [33]).
For example, suppose that the above reduction function f is recursive. Then,
given an algorithm M for Lp, one can construct an algorithm M’ for L,
working as follows. First, on input z € A*, M' computes y = f(z). Then,
M’ simulates algorithm M on input y and accepts if and only if M accepts.
Suppose moreover that the complexity of computing j is negligible compared
to the difficulty of recognizing Lg. Then, this implies that recognizing L, is
no more difficult than recognizing Lp (justifyicg the notation).

Observe that it is very important to put a restriction on the complexity
of computing f. Otherwise, nothing could be said on the relative complexity
of recognizing L, and Lg. In this thesis we will use two kinds of reduc-
tions. When the reduction function f is computable by a deterministic Turing
machine using logarithmic space, then f is said to be a logspace reduction.



Logspace reductions are too powerful for dealing with very small complexity
classes. Thus, we will also use a weaker type of reduction called dlogtime-
uniform projection.

Given any alphabet A, we denote the length of a word w € A" with |w|.
A function f: A* — B" is called a projection (see [79, 42]) if for any z € A",
f satisfics the following two conditions. First, the length of f(z) depends
only on the length of z. Moreover, for any i € {1,...,|f(z)|} there exists
i € {1,...,|z|} such that the ith symbol in f(z) depends only of the jth
symbol in z. The first condition makes possible the definition of the length of
a projection f as the function mapping the length of its input to the length of
its image. In the following we will consider only polynomial length projections.

Projections are still too powerful and we must restrict them further. This
is because one can see a projection f as a family of functions f, : A® — B*®,
one for each input length, and if no uniformity condition is imposed on the
Ji’s, then nothing guarantees that f will be computable at all.

First, we define a direct-access Turing machine as a Turing machine with a
read-only input tape, a constant number of working tapes and a special tape
called the address tape. The content of the address tape denotes a posttion
in the input. At any step, the machine moves its input head to the position
written on the address tape (we assume that the machine can determine if
this position is larger than the length of the input). Since direct-access Turing
machines can check any bit of the input in logarithmic time, then it makes
sense to speak of languages recognized in logarithmic time by such machines
(see [6] for more details).

A projection is dlogtime-uniform (see [6]) if there exists a direct-access
deterministic Turing machine M such that for any = € A, ¢ > 1 and any
b € B, M determines in logarithmic time, on input (z,t,5), whether the sth
symbol of f(z) is &.



1.2 Models of Computation

Models of computation can be divided in two categories. First, there are those
models that, like Turing machines, can be described with a finite number of
symbols. They are said to be intrinsically uniform. The other eategory consists
of those models defined as an infinite family {M,, M,,. ..} of machines, the
2t machine M, dealing with inputs of length n.

Nonuniform models are very powerful and can compute even nonrecursive
function, which is sometime undesirable. For this rcason we must impose some
uniformity conditions on machines in a given family. For example, we can ask
for the existence of a Turing machine that, on input n, constructs the ath
machine of the family.

In the following, we will introduce three models of computation that, like
Turing machines, are standard in complexity theory. The first two models are
nonuniform: the oldest one is the Boolean circuit introduced by Shannon in
(67, 68], and the other model is the branching program of Lec [47]. Finall;,

we also examine the auxiliary pushdown automaton of Cook [23].

1.2.1 Boolean circuits

A Boolean circuit is a finite directed acyclic graph that contains three different
types of vertices: the input gates are those vertices having indegree 0; the
output gates are those vertices having outdegree 0; other vertices are called
inner gates. Inner gates and output gates are labeled with the name of a
function from {0,1}" to {0,1}.

Unless otherwise specified, we use AND and OR for labeling inner gates
and output gates, and each input gate is labeled with the name of an input
variable or its complement. We say that a gate ¢’ is an input to a gate g if
there is an edge from ¢’ to g. We suppose that gates are ordered in some way
such that it makes sense to talk, for example, of the first input gate, the fifth
output gate or the second input of an inner gate.

A Boolean dircuit C with n inputs and m outputs computes 2 function



é: {0,1}* — {0,1}™ as follows. Given w = a;---a, € {0, 1}*, we will
recursively assign a value to the gates of C, and the value of the jth bit of
$(w) will be the value of the jt'h output gate. An input gate g labeled with
the Boolean variable z; has value a;. If it is labeled with Z;, then it has value
1 — a;. Suppose now that ¢ is not an input gate, let the indegree of g be k and
let g1,...,9% be the inputs of g. Then, the value of g is f(v;---vx) where f is
the label function of g and v; is the valueof g;, 1 <: < k.

In order to compute a function f : {0,1}* — {0,1} we need a family of
circuits, C = {Co,C1,C2.. .}, where C,, is 2 Boolean circuit with n inputs and
1 output.

The size of a Boolean circuit is the number of gates in it, and the depth
is the maximum length over the paths from an input gate to an output gate.
Size and depth can be viewed as function of n, the input size. Thus, we can
talk about families of polynomial-size circuits or logarithmic-depth circuits,
for example. A circuit is said to have bounded (unbounded) fan-in whenever
the indegree of the gates is bounded by a constant (unbounded). If only OR
gates have unbounded indegree then circuits are said to have semibounded!
fan-in.

Uniformity is not an issue in this thesis. However, we need to talk about
it if we want to compare the power of the different models of computation. In
particular, it is necessary to define uniformity in the case of Boolean circuits.

Let C = (Cn)n>o be a family of Boolean circuits and consider any num-
bering of the gates in the circuits. The direct connection language of C (see’
[63, 6]) is the set of tuples {i,a,b,y), where ¢ is the number of a gate in C,,
y is any string of length n, and ¢ either indicates that a is an input gate, in
which case b corresponds to the input index labeling a, or ¢ corresponds to the
function labeling a and & is the number of a child of a.

Let D be any complexity class. The family C = (Cp)apo is said to be
D-uniform if there exists a gate numbering for each circuit in C such that the
direct connection language belongs to D. We simply say that C is uniform

10Other authors have called this semixnboxnded.
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if its direct connection language can be recognized by a determiristic Turing

machine in time O(log s{n)), where s(n) is the size of C,,.

1.2.2 Branching programs

Let us fix a finite alphabet A and a nonnegative integer n. A branching
program B, for inputs of length n is a finite acyclic directed graph with two
distinguished vertices: one is called the root and the other is called the sink.
All vertices are labeled with an index in {1,...,n}. Each edge is labeled with
an element of A. A branching program is called deterministic if for any gate
g, no two edges going out of g are labeled with the same element of A.

A word w € A" is accepted by B, whenever starting {from the root and
iterating the following procedure one can reach the sink. The procedure is: let
i be the label of the current vertex; follow an edge labeled with the ith symbol
of w.

A language L C A" is accepted by a family M = {B,, B:....} of branching
programs if for any n > 0 and any w € A™, w belongs to L if and only if w is
accepted by B..

The size of a branching program B, is a function mapping n to the number
of vertices in B,. In this work, we will only cousider polynomial-size branching
programs.

We define a bounded-width branching program (see [5]) as a branching
program B that forms a rectangular array of nodes with k rows and { columns,
for some positive k and l. Every edge in B is directed from left to right, i.e.
the descendants of any vertex appears on its right. Hence, the root and the

sink Lie respectively in the first and the last column. The integer k is the width
of B and 1 is its length.

1.2.3 Auxiliary pushdown autormata

We call quziliary pushdown eutomaton a Turing machine with a special tape
that is used as a stack. We will suppose that : ach a machine accepts its input



whenever it reaches a final state, but other conditions can also be applied (such
as emptying its stack) without loss of generality.

We define the space used by an auxiliary pushdown automaton as the
number of cells used on the working tape only, not the input tape nor the

special tape.

1.3 Complexity Classes

Various complexity classes can be defined using the different models of com-
putations introduced in the previous section. In this section, we will examine
some of those that are of particular interest for this work.

First, we observe that a complexity class can be a class of functions IN — IN
or a class of languages (or Boolean functions). In this thesis we use no special
notation to distinguish these two kinds of complexity classes: the context
will exclude any ambiguity. For example, any complexity class defined from
branching programs or pushdown automata is a class of languages. It is a class
of functions if it is defined from multiple-output Boolean circuits.

We write DTIME(2(r)), DSPACE(s(n)), and DTIME-SPACE(t(n), s(r))
to denote the classes of languages recognized by deterministic Turing machines
using respectively time O(t(n)), space O(s(n)), and both time O(t(r)) and
space O(s(r)). NTIME(t(n)), NSPACE(s(r)), and NTIME-SPACE(%(r), s(n))
are defined similarly using nondeterministic Turing machines. We use the same
notation to describe the classes of functions computed by these models.

1.3.1 Polynomial time and logarithmic space

Among the most important topics in complexity theory are the questions con-
cerning the relationship between time and space, and between determinism and
nondeterminism (see [33, 41]). Here, we define four basic complexity classes
that are very good examples to illustrate these questions.

The class P is defined as the set of all languages that can be recognized by
a deterministic Turing machine running in polynbmial time. The class NP is



defined similarly except that Turing machines are allowed to be nondetermin-
istic.

P has many cquivalent definitions. In particular, it can be defined as the
class of languages recognized by a uniform family of polynomial-size Boolean
circuits [45, 14]). Moreover, it is also equal to the class of languages recog-
nized by an auxiliary pushdown automaton using only logarithmic space [23].
Observe that in the last definition, time is unbounded and the model can be
deterministic or not without changing the class of languages defined.

NP also has a characterization in terms of Boolean circuits (see [81]). It is
the class of languages recognized by a uniform family of semibounded fan-in
exponential-size logarithmic-depth Boolean circuits.

Turning our attention to space complexity, we define ihe class L as the set
of languages recognized by a deterministic Turing machine using only logarith-
mic space. The class NL is defined similarly, using nondeterministic Turing
machines.

L can be defined in terms of branching programs. Spedfically, it is the class
of languages recognized by 2 uniform family of polynomial-size deterministic
branching programs. In Section 5.5, we will also give a definition of L in terms
of Boolean circuits.

NL is equivalent to the class of languages recognized by a polynomial-
size family of nondeterministic branching programs. It has also been proved
that NL corresponds to those languages that are recognized by a family of
polynomial-size skew circuits —a skew circuit is a Boolean circuits whose AND
gates bave at most one input that is not an input gate (see [81] for more
details).

Clearly we have P C NP and L € NL. Furthermore, it not difficult to see
that the problem of determining if the sink is accessible in a nondeterministic
branching program can be solved with a deterministic Turing machine in a
polynomial number of steps (e.g. see [4]). This implies that NL C P. Even if
all these inclusions are conjectured to be strict nothing has been proved yet.



1.3.2 Subclasses of L

Boolean circuits are sometime referred to as a parallel model of computation.
This comes from results relating the depth in Boolean circuits to the time
in models of computation such as alternating Turing machines [20, 63] and
parallel random access machines [74]. The fact is that bounded-depth Boolean
circuits appear to be very useful for characterizing subclasses of L.

We define NC? as the set of languages recognized by a family of bounded
fan-in logarithmic-depth polynomial-size Boolcan circuits. The class AC? is
defined as the class of languages recognized by a family of unbounded fan-in
constant-depth polynomial-size Boolean circuits.

NC! circuits can be evaluated via a depth first search using only logarith-
mic space. This implies that NC' C L. Also, since any AND/OR gate of
unbounded fan-in can be expanded into a NC! circuit, we have AC® C NC.

We give for NC! two other characterizations. First, it corresponds to those
languages recognized by a family of polynomial-size Boolean formulae — a
formula is a circuit that is also a tree (see [70, 17]). Moreover, NC! has
been proved to be equal to the class of languages recognized by a family of
polynomial-size constant-width branching programs [5]. Observe that non-
deterministic and deterministic constant-width branching programs have the
same power.

We introduce two other classes between AC® and NC. Both of them are
defined similarly to AC® except that we allow gates in the circuits to be labeled
with other functions than AND and OR.

The class ACCP® (see [8]) corresponds to those languages recognized by
a family of polynomial-size constant-depth Boolean circuits where gates are
labeled with AND, OR and MOD, (¢ > 1) which output 1 if and only if the
number of 1’s in the input is congruent to 0 modulo g. The class TC? ( see
[39)) is defined similarly except that MOD, gates are replaced by MAJ gates
which output 1 whenever at least half of their input bits are 1.

The relations AC° € ACC® and AC® C TC® are immediate. Moreover, it
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has been proved that the function MAJ can be computed with NC? circuits
(e.g. scz [64]), implying that TC® € NC'. It is not difficult to show that
MOD, functions are in TC®, and thus ACC® € TC® (see [31)).

In defining these small complexity classes, researchers were hoping to prove
strict inclusions and get more intuition to deal with larger classes. Actually,
there have been some remarkable results. In particular, it has been proved
that MOD; and MAJORITY are not in AC%(see [31]). As a consequence, AC?
is strictly included in ACC® (see also [1]). It still remains to determine the
nature of the relations between ACC®, TC® and NC.

1.3.3 Subclasses of P

The last two classes that we want to introduce are subclasses of P. The class
LOGCFL is the set of languages logspace reducible to a context-free language,
and LOGDCEFL is the class of languages logspace reducible to a deterministic
context-free language.

LOGCFL (LOGDCFL) is also equal to the set of languages recognized by
a nondeterministic (deterministic) auxiliary pushdown automaton running in
polynomial time and using logarithmic space (see [75]). Recall that we have
mentioned above that determinism has no influence on the class of languages
recognized by an auxiliary pushdown machine when time is not limited. But
this does not apply here, since the number of steps is bounded by a polynomial.

Another characterization of LOGCFL is given in [81] using Boolean cir-
cuits. That is, LOGCFL is equal to SAC, the class of languages recognized
by a family of semibounded fan-in polynomial-size logarithmic-depth Boolean
circuits. This result is particularly interesting in view of the characteriza-
tion of NP in terms of semibounded fan-in exponential-size logarithmic-depth
Boolean circuits.

By definition, we have LOGDCFL € LOGCFL. The characterizations
of LOGDCFL, LOGCFL and P in terms of logspace auxiliary pushdown au-
tomata give L € LOGDCFL, NL C LOGCFL and LOGCFL C P.

We summarize in the following diagram the known relations between the
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different complexity classes that we have introduced in this section.

nNL

0 1
ACCCACCOCTC°CNC'CLC LOGDCFL

CSAC'CPCNP

1.4 Owur contributions

In our Master thesis [48], we introduced groupoids as language recognizers.
Our objective was to generalize the notions of recognition by semigroups and
by programs over semigroups and study the associated class of languages. This
was done by replacing the semigroups by their nonassociative counterpart. Let
us explain informally what is meant by recognition by a groupoid. A more
formal definition is given in Chapter 2.

A language L C A" is recognized by programs over a groupoid G if there
exist an accepting set F C G and a projection® ¢ : A* — G*, such that a word
w € A* belongs to L if and only if there exist a way of evaluating ¢(w) such
that the result belongs to F. Whenever ¢ is an homomorphism, L is simply
said to be recognized by G.

We showed that the class of languages recognized by finite groupoids corre-
sponds precisely to the context-free languages. Moreover, when ¢ is restricted
to bave polynomial length (in function of the input length) and satisfies some
uniformity conditions, the class of languages recognized by programs over a
groupoid corresponds to SACL.

Here, we investigate the computational power of finite groupoids following
many directions. We now detail the contzibutions made in this thesis.

We define three variations of the recognition by programs over groupoids.
In the first one we allow the programs to use a different groupoid for each
input length. These programs over growing groupoids, introduced in [12],
are no more powerful than standard programs whenever the growth of the
groupoids does not exceed some polynomial (as a function of the input size).

2By projection we mean a mapping, where for any i > 1 there exist 7 > 1 such that the
it® symbol in ¢(w) is determined by the jtB symbol of w.
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In the definition of recognition by programs we have to choose how we
evaluate ¢(w) in order to get an element in F, and this choice is taken among
all well-formed parenthesizations. In the second variation that we introduce in
Chapter 2, we restrict the parenthesization to be of some particular form. We
then talk of restricted recognition by programs. For example, we may want
that the depth of a parenthesization be logarithmic in terms of the length of
the programs.

In the third variation (introduced in {12]), we explicitly give the parenthe-
sization with the programs which are then called parenthesized programs.

These three variations can be combined in various ways. For example,
we can talk of restricted recognition by parenthesized programs over growing
groupoids.

An important question is how the algebraic structure of finite groupoids
influence the kind of larguages they can recognize (by programs or by homo-
morphism). In this thesis we will thus examine different kinds of groupoids.
Some of them have already been studied. This is the case of loops, quasigroups
(e-g. see [16]), and weakly linear groupoids (called linear in [53]). We also in-
troduce other types of groupoids: weakly associative, one-sided, Lie groupoids,
weakly cancellative, and linear groupoids. The computational power of weakly
associative, one-sided, and Lie groupoids is examined in Chapter 2. Weakly
linear and linear groupoids are studied in Chapter 3 while loops, quasigroups,
and weakly-associative groupoids are treated in detail in Chapter 4.

In Chapter 2, we simplify the proof of [48] (see also [12]), showing that a
language belongs to SAC! if and only if it is recognized by polynomial-length
programs over a fixed groupoid. We also construct groupoids such that the
class of languages recognized by programs over them corresponds respectively
to TC? and NC . Indeed it was already known that NC* corresponds to the
laaguages recognized by polynomial-length programs over the symmetric group
Ss (see [5]) but Ss has order 60 while our groupoid contains only 9 elements.

We introduce in this thesis different forms of restricted recogrition. For
example, we discuss in Chapter 2 the left-to-right recognition by programs,
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where the evaluation is restricted to be from left to right. We also define
constant right-depth recognition that restrict the evaluation trees® to be such
that any path from the root to a leaf contains a number of right edges that is
bounded by some constant. We show that with these notions we can recognize
only (and all) languages in NC'. In Chapter 3, we discuss in detail linear
recognition, where the evaluation trees are such that each node has at most
one child that is not a leaf (they are called linear trees).

We also investigate parenthesized programs {called structured programs
in {12]). In Chapter 2 we show that they recognize precisely the languages
in NC!'. We prove that any parenthesized programs over any groupoid can
be simulated by parenthesized programs over some commutative groupoid.
Moreover, if G; and G2 are two isotopic groupoids (i.c. one can be obtained
by permuting the rows and the columns of the multiplication table of the
other) and if G, possesses an identity, then parenthesized programs over G,
can be simulated by parenthesized programs over G;. We also show that
programs over a monoid M can be simulated by parenthesized programs over
any groupoid G, whenever the mappings G — G induced by the rows and
the columns of G generate a monoid (called the multiplication monoid) that
contains M.

Up to now, we used the word linear in three different ways. We used it
twice to qualify some special kind of groupoids and also to specify a form of
restricted recognition. A groupoid is called weakly linear if it possesses an
absorbing element 0, and if it satisfies (ab)(cd) = 0 for any a,b,6,d € G. A
groupoid is linear if for any nonempty word w € G*, any element that results
for the evaluation of w using any parenthesization can also be obtained using
an evaluation tree that is linear. In Chapter 3, we show that linear recognition
by a finite groupoid, recognition by a linear groupoid, and recognition by a
weakly linear groupoid are all equivalent notions of recognition. We also prove
that linear groupoids recognize precisely the linear context-free languages, and

3Given an alphabet A and a word over A, any parenthesization of w can be represented
in the obvious way by some binary tree that we call an evaluation tree.
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that programs over lincar groupoids recognize all and only those languages in
NL.

Linear context-free languages are well known to correspond to those lan-
guages that can be expressed as L = {uv | (&,v) € R.}, where & represent the
mirror image of u and Ry, is a relation recognized by a rational transducer (sce
[13]). We study in Chapter 3, the relationship between the algebraic structure
of the transducers that recognize Ry and the groupoids that recognize L. In
particular we define the transformation monoid of a transducer (given in some
normal form) recognizing Ry, and we show that it closely corresponds to the
multiplication monoid of a groupoid linearly recognizing L.

We show that the multiplication monoid of a groupoid G is an important
parameter for determining what languages can be linearly recognized by G.
In particular we prove in Chapter 3 that the language L = {¢"t"w | n 2
0,w € Lo}, where Ly is a regular language satisfying some algebraic conditions,
cannot be recognized by G if the syntactic monoid of Ly is not contained in
the multiplication monoid of G.

When the multiplication monoid of a groupoid is a group, the groupoid
itself is a quasigroup (or a loop when it possesses an identity). We prove in
Chapter 4 that quasigroups can recognize or linearly recogrize only regular
languages. More precisely, we show that any language recognized by a quasi-
group is the finite union of languages of the form I, L, --- L,,, where each L;
is a language recognized by a finite group. We also show that any cofinite
language is recognized by some finite quasigroup but that no finite language
mbesomcognized; As a consequence, we show that the class of languages
recognized by a finite quasigroup is not closed under complementation.

As an important tool for obtaining the above results we define the weakly
cancellative groupoids which are those groupoids G with an absorbing element
0 such that, for any ¢,z,y € G,far =ay #0orza=ya# 0 thenz = y.
We show that any language recognized by a weakly cancellative groupoid with
0 in the accepting set is also recognized by some finite quasigroup. This result
is very useful since weakly cancellative groupoids are much easier to construct

15



than quasigroups.

We investigate parenthesized programs over quasigroups in Chapter 4. In
particular, we study the restricted case of the well-parenthesized expressions
with variables over loops. We prove a loop analogue of the Maurer-Rhodes
Theorem [51) saying that any function L" — L can be represented by a well-
parenthesized expression over a simple nonabelian loop L. This leads to a
generalization of the Barrington Theorem saying that any language in NC
is recognized by parenthesized programs over any nonsolvable! loop. Solvable
loops are shown to be as powerful as those that are nonsolvable whenever the
multiplication monoid is itself nonsolvable.

Programs over growing groupoids are investigated in Chapter 5. We begin
by giving several simulations between machines and programs. Deterministic
machines are related to parenthesized programs while nondeterministic ma-
chines correspond more closely to general programs. In particular, we charac-
terize SAC! and NP as those languages recognized by programs over groupoids
growing polynomially and exponentially, respectively (the last result was first
proved in [53]). On the other hand, we characterize NL and NP as those lan-
guages linearly recogrized by programs over groupoids growing polynomially
and exponentially, respectively. The classes L and P are proved to correspond
to the languages linearly recognized by parenthesized programs over groupoids
growing polynomially and exponentially, respectively. All these results assume
some proper uniformity conditions on the programs.

We define a normal form for semibounded circuits that we call tree-like.
It is shown that any semibounded circuit can be transformed into a tree-like
arcuit without modifying too much its parameters (for example polynomial
size is preserved). This is used to construct a family of groupoids G; C G2 €
-+« growing polynomially and having some nice properties. In particular they
are very simple to define, and they can be used to capture complexity clam
such as SACY, NL, L, and NC*. These results can be used to restate some

“The notions of simple and solvable loops are natural generalizations of simple and solv-
able groups. Formal definitions are given in Chapter 4.

16



open questions in complexity theory. For example, we show that NC! # SAC!
if and only if recognition by programs over {Gn)npo is strictly more powerful
than left-to-right recognition by programs over Gg.

Tree-like circuits are built up from blocks of input gates and blocks of
depth-two semi-bounded circuits connected together in the manner of a tree.
A tree-like circuit having the property that on any input at most onc gate
in each block evaluates to 1 is called a clean circuit. We show in Chapter 5
that clean circuits are closely related to parenthesized programs over growing
groupoids. This leads to a characterization of L and P in terms of clean circuits.
More precisely, P corresponds to the languages recognized by 2 uniform family
of clean circuits of exponential size and polynomial degree, where the degree
corresponds roughly to the number of blocks in the circuits. Similarly, L is
the class of languages recognized by polynomial size clean circuits that are
skew, i.e. AND-gates have at most one child that is not an input gate. These
results are interesting because they give a characterization of deterministic
complexity classes using a restriction on the class of circuits that recognize their
nondeterministic version. For example, NP corresponds to uniform families of
tree-like circuits of exponential size and polynomial degree.

Finally, we show at the end of Chapter 5 that parenthesized programs over
groupoids growing polynomially can be simulated by QOwner-Read, Owner-
Write PRAMSs using a polynomial number of processors and running in time
proportional to the depth of the pareathesization.
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Chapter 2

Groupoids and Languages

2.1 Introduction to groupoids

A groupoid is a pair (G,-), where G is a set and - is binary operation called
product and defined over G. Whenever there is no confusion on the opera-
tion, we simply denote (G,-) by G and the multiplication is denoted using
concatenation. A groupoid G is commutative if ab = ba for any ¢,b € G, it is
associative if (ab)c = a(be) for all a,b,c € G. When the product is associative,
G is called a semigroup.

An element 1 of a groupoid G is called an identity if for any ¢ € G,
lg = g1 = g. An element 0 of G is said to be absorbing if for avy ¢ € G,
O0g = g0 = 0. A semigroup with identity is called a monoid. We denote by
G* the smallest groupoid that contains G and possesses an identity element.
Moreover, we denote by G° the smallest groupoid that contains G and that
possesses an absorbing element.

Example 2.1.1 Let A be a finite set and define the set A®) as follows: Any
a € Aisin AF; ifu,v € AM then (uv) € AW); nothing else is in A An
element of A1) can be viewed as a binary tree having its leaves labeled with
elements in A.

A product can be defined on this set such that for all a,b € A™) we have
a-b = (ab) (observe that this product is not associative). Then, AtY) is e
groupoid and A®) = AN U {¢}, where ¢ is the empty word, is called the free
groupoid over A.
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Example 2.1.2 The hypercomplez numbers of rank n are the expressions of
the form a = ag + a1ty + -+ - + @nin, where a; is a real number and i; an
abstract symbol. The conjugale of & is the expression @ = ag — @111 — + - - Apin.
Hypercomplez numbers of renk 0 correspond to real numbers. Furthermore,
given a system U of rank n, we can define the doubling of U as the set {a+be:
a,b € U} together with the addition (a+be)+(c+de) = (a+c)+(b+d)e and the
product (a+be)(c+de) = (ac—db) + (ad +6c)e. Hence, hypercompler numbers
of rank 1 correspond to complez numbers, those of rank 2 to quaternions, and
those of rank 4 are called Cayley numbers. One can observe that the product

on Cayley numbers is neither commutative nor associative.

Example 2.1.3 Let R be any associative ring. Then, by preserving the addi-
tion and by redefining the product of x and y as xy — yz, we get a Lie ring,

whose product is in general nonassociative.

All these groupoids contains an infinite number of elements. However, in
this work, we will be mainly concerned with finite groupoids. The number of
elements in a finite groupoid G is called the orderof G.

2.1.1 Subgroupoids and homomorphisms

Given a groupoid G and a subset S C G, we denote by (S) the subgroupoid
generated by S. We say that a groupoid H divides G (denoted H < G)
whenever there exists 2 homomorphism from a subgroupoid of G onto H.

‘We now mention some remarkable subgroupoids contained in any groupoid
G. The left, middle and right nucleus of a groupoid, respectively denoted Nj,
N, and N, are defined as followed.

Ny = {9 € G| Vz,y g(zy) = (g9=)y}
N, = {9 € G | Vz,y z(gy) = (zg)y}
N, ={g € G| Vz,y z(yg) = (zy)g}

The nucleus of G is defined as N = Ny N N, N N,. It is easily seen that N,
N,, N, and N are associative subgroupoids of G.
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The center Z of G is the subset of elements n of IV satisfying nz = xn, for
all x € G. It is a subgroupeid of G that is both associative and commutative.
A subgroupoid I of a finite groupoid G is called a left (resp. righ!) ideal
of G if IGC I (resp. GI CI). lf Iis both a left and a right ideal, then it is
simply called an ideal. There is also a notion of ideal for transfinite groupoids

(see [15] p.253). For a discussion of the Green’s relations on groupoids sce {44].

2.1.2 The multiplication semigroup and monoid

In this subsection and the next one, we define two concepts that play an
important role in the theory of groupoids.

With any element g € G we associate two functions R(g),L(g) : G — G
called respectively the left and right multiplication functions and defined as
aR{g) = ag and aL(g) = ga, for any ¢ € G. The multiplication semigroup
of G is defined to be the semigroup S(G) generated by {R(a), L{e) | ¢ € G},
where the operation is composition. For ¢ € G and U € §(G), we denote by
al the element of G obtained by applying the function U to a. Moreover,
if V € S(G), then a(UV) = (aU)V, and we simply denote it by aUV. The
multiplication monoid of G is the multiplication semigroup of G*. It is denoted
with M(G). One can check that L(1) = R(1) is then the identity of M(G).

The following lemmas are straightforward generalization of similar results
in loop theory (see {16]).

Lemma 2.1.1 A groupoid G is associative if and only if for all a,b € G,
R(a)R(b)=R(ab).

Proof. If G is associative then zR(a)R(b) = (za)b = z(ab) = zR(ab)
showing that R(a)R(b) = R(ab). On the other hand, if R{a}R(b) = R(ab) for
all a,b € G then {za)b = zR(a)R(}b) = zR(ab) = z(ab) and G is associative. O

Lemma 2.1.2 A groupoid G is commutative and associative if end only if
M(G) is commautative.
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Proof. If G is commutative and associative thea for any a,b,z € G we have
zh = bz implying that z R(b) = zL(b) and that L(b) = R(b). Furthermore since
a(zb) = (az)b then zR(b)L(a) = zL{a)R(b) and R(b)L(a) = L(a)R(b). Hence,
we find that R(a)R(b) = R(b)R(a) and, by symmetry, L{a)L(b) = L(b)L(a)},
proving M(G) is commutative. Suppose now that M(G) is commutative.
Then we have a(zb) = zR(b)L(a) = zL(a)R(b) = (az)b showing that G is
associative. Furthermore since ab = 1R(a)R(b) = 1R(b)R(a) = ba then G is

also commutative. (m]

Lemma 2.1.3 A groupoid is commulative and associative if and only if S(G)

is isomorphic to G.

Proof. Let G be commutative and associative. Then, §(G) is generated
by {R(a) : a« € G}. We have zR(a)R(b) = (za)b = z(ab) = zR(ab) proving
that S(G) = {R(a) : a € G} and that S(G) is isomorphic to G. Now if G is
isomorphic to S$(G) then G is associative. It remains to show that G is also
commutative. Since G is a semigroup then by Lemma 2.1.1 it is isomorphic to
{R(a) : a € G}. This means that for all b € G we have L(b) € {R(a) : ¢ € G}.
Hence there exists a € G such that L{b) = R(e). Hence bb = bL(b) = bR(e) =
ba and therefore @ = b, by the cancellation laws, and L{a) = R(a) for all
@ € G. This shows that G is commutative and concludes the proof. ui

Lemma 2.1.4 Let G be e groupoid. If S is a subgroupoid of G, then M(S) <
M(G).

Proof. Let N = (R(a}), L(a) : @ € S) and deiine wne homomorphism h : N —
M(S) such that for all X € N, k(X) is the unique U € M(S) such that
aX = al for every a € S*. 0

Lemma 2.1.5 Let G and Q be groupoids. Ifk : G — Q is a homomorphism,
then there exists @ Romomorphism ¢ : M(G) = M(Q).



Proof. We nhave that A induces a congruence = on G such that G/ = is
isomorphic to @. Then, ¢ : M(G) — M(G/ =), the morphism induced by
¢(R(a)) = R(k(a)) and ¢(L(a)) = L(k(a)), is the desired homomorphism. O

Proposition 2.1.6 If Q < G then M(Q) < M(G).

Proof. If Q < G, then there exist a subgroupoid H € & and a homomorphism
k: H — Q such that M(Q) < M(H) (by Lemma 2.1.5) and M(H) < M(G)
(by Lemma 2.1.4). Hence, M(Q) < M(G). a

Proposition 2.1.7 Let G and H be two groupoids. Then M(G x H) C
M(G) x M(H).

Proof. Simply observe that M(G x H) is isomorphic to the submonoid

of M(G) x M(H) generated by the set {(R(g), R(k)),(L(g),L(k)) | g €
G! and h € H'}. O

2.1.3 Isotopy

Two groupoids (G,-) and (H,*) are said to be isotopic if there exist three
bijections @, 8,7 : G — H such that e(z) * 8(y) = (> - y). Then, (a, 5,7)
is called an isotopy of G onto H. Considering the Cay.ey table of G, one can
construct the Cayley table of H by permuting the lines of G with a, permuting
the columns of G with £ and then renaming elements inside the table with -.
So, an isomorphism is just a particular isotopy where a = f =.

If ¢ is the identity mapping, then (e, 8, ¢) is called a prineipal isotopy of G
onto H. In general it is sufficient to consider only principai isotopies. This is
justified by the following theorem.

Theorem 2.1.8 ([3]) IfG and H are isotopic groupoids then H is isomorphic
to a principal isotope of G.



Proof. Let (o, 3,7) be an isotopy of G onto H,let é§ = ay~!, and let n = By,
We have (e, 8,7) = (67,77,7). Hence, there exists a groupoid K such that
(8,7m,¢) is a principal isotopy of G onto K and + is an isomorphism of K onto
H. O

For groupoids that possess an identity clement, we can give a stronger

result.

Theorem 2.1.9 ([3]) Let (G,-) and (G,*) be isotopic groupoids, and sup-
pose that (G, *) possesses an identily 1. Then, there ezist f,g € G such that
(RUT), L(g), ) is @ principal isotopy of (G,") onto (G, ¥).

Proof. Assume that z -y = §(z) * 5(y) for some permutations é,7: G — G.
Let ¢ = 6"1(1) and f = n~1(1). We have

y=1xy=46"1)-77"(y) =17 (v)L(9)
z=zx1=§Yz)-57Y1) = 6~ (=) R(S)

Then 7 = L(g), § = R(f) 2ud

zxy =zR(f)-yL™(g)

This shows that (R{g), L(f),+) is a principal isotopy of (G,-) onto (G, *).
0

Theorem 2.1.10 (see [54]) Let Q and G be two groupoids with identity. If
@ is isotopic to G, then M(Q) is isomorphic to M(G).

Proof. Without loss of generality we can suppose that G = (G,-) and Q@ =
(G,*). For any element z of the set G, denote by R(z) and L(z) the right and
left multiplication functions of (G,-), and by R.(z) and L.(z) those of (G, *).

Since (G,-) is isotopic to (G,*) which contains an identity, there exist
R(g), L(f) € M(G) such that zxy = zR™(f) - yL-(9g)-
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Hence, we can write
R.(y) = RTY(f)R(L™'(9)}
L.(z) = L7 (g)L(zR7'(f))

Observe that since L(g) and R(f) are permutations, there exists an integer

k such that L*(g) = L~'(g) and R*(f) = R™'(f). Thus L~'(g) and R"!(f)
belong to M(G).

This shows that M(Q) € M(G). The other direction is proved similarly.
(]

The proof of the next theorem can be found in [15] pp.250-253.

Theorem 2.1.11 Let (G,-) and (G,x) be two isotopic groupoids both with
an identity. Then, (G,-) and (G,*) have isomorphic left, middle and right
nucleus, and they have tsomorphic centers. Moreover, their ideals are isolopic
in pairs.

As a corollary we have

Corollary 2.1.12 Let G be a groupoid with identity isotopic lo a monoid M.
Then, G and M are isomorphic.

Observe that the above corollary is false if G does not possess an identity.
A counterexample of order 2 can easily be constructed. Indeed, the semigroup
AND = {0,1}, defined as 00 = 01 = 10 = 0 and 11 = 1 is isotopic to the
groupoid NAND = {0, 1}, defined as 00 =01 =10 =1 and 11 =0, but AND
and NAND are not isomorphic. We conclude this subsection with a theorem
stating some limits of what can be preserved by isotopy.
Theorem 2.1.13 (see [16] p.58) There exist isotopic groupoids with iden-
tity that satisfy any of the following conditions.

e Only one of them is commutative.
o They have a different number of generators.

o Their nuclei are not isomorphic.
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2.2 Recognition by finite groupoids

Let A and B be two finite sets, and let ¢ : A — B* be a monoid homomor-
phism. Then, ¢ is said to be strictly alphabeticel if o(A) C B.

Given a groupoid G and a word w € G°, we denote by G{w) the set of all
elementsin G that can be obtained by evaluating w using any parenthesization.

A groupoid G is a semigroup if and only if for all w € G*, G(w) is a singleton.

Definition 2.2.1 A language L C A" is recognized by a groupoid G, if there
exist a strictly alphabetical homomorphism ¢ : A — G* and an accepting set
F C G such that

L={z € A | Glp(w)) N F #08}.

The following theorem is fundamental to this thesis.

Theorem 2.2.2 ([12]) A language is context-free if and only if it is recognized
by e finite groupord.

Proof. (<=) Let G be a groupoid with set of elements [k] = {1,2,...,&}.
Let F be a subset of G, A a finiteset, ¥ C A™ a language and §: A* = G a
monoid morphism such that Y = {z € A" | G(6(z)) N F # 0}. We construct
a grammar D = (V,T, P, S} for Y as follows:

V = {g:05i<k}
T = A={a1,.--,8m}
P = {gg—ea:a€ A, 8a)=i}U
{go—q:ieF}uU
{g = ga:ijle[kand j- 1=}
S =

K eeY, then we add the rule gop — .
An induction on the length of = proves :

(Vz € A7)[G(6()) N F # 0) iff (g0 = 7))
1This terminology comes from [13]
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(=) Let Y C A* be a context-free language produced by a grammar D =
(V, A, P,qo) where A = {ay,...,an} and V = {go,...,qx}. We can assume
that D is in Chomsky normal {orm with the only rules involving ¢o of the form
go — ¢ or of the {form ¢o — ¢ for ¢ € V. Morcover, we can assume that D is
invertible, i.e. if two productions have the form ¢; — qrqr and g; — qiq then
gi = g; (see {40]).

We define the groupoid G = (V' \ {go}) U {c, $} such that ¢ is the identity,
$-a=a-3=8%8foreverye € G,and a-b = ¢iff ¢ — abisin P, for every
a,b,c € V. In all other cases,a-b=8.

Now define X = {¢g€ V\{g}|(9o—¢) € Pland F=XU{e} ifceY
and F = X otherwise, Define also the monoid morphism @ : A* — G* induced
by 8(a) = q iff ¢ — e is in P, for each ¢ € A. As above we can show:

(Vz € A7) (Vg € V\ {o}) [(¢ = 2) iff (g € G(6(=)))]

This concludes the proof. o

The fact that homomorphisms are restricted to be strictly alphabetical in
the above definition, implies that the complexity of a context-free language
L C A" depends only on the structure of those groupoids G’ that can recognize
it. In particular, we will often assume that A C G and that ¢ mapseache € A
to itself. We denote by W{G, A, F) the language consisting of all w € A¥ that
can be evaluated to some element in F C G. The problem of determining
what words belongs to W(G, 4, F) is called a word problem over G.

We now give some examples of groupoids and the languages they recognize.

2.2.1 Finite semigroups

We observe that when G is a finite semigroup, Definition 2.2.1 corresponds
precisely to the notion of recognition used in algebraic theory of automata (see
[56]). Hence, Theorem 2.2.2 can be seen as a generalization of the following
result.
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Theorem: 2.2.3 (see [56, 28]) A language is reqular if and only it is recog-

nized by ¢ finite semigroup.

The very close relationship between subclasses of regular languages and
subclasses of finite semigroups is best expressed using two concepts: syntactic
semigroups and varicties.

Given a language L C A®, the syntactic congruence ~, is the equivalence

on A* Lhat satisfies: u ~p v iff
(Vz,y € A")fzuy € L & zvy € L}

The syntactic semigroup of L is the quotient semigroup S = A%/ ~, and
the syntactic monoid of L is the quotient monoid S = A~/ ~L.

The following two propositions indicate the importance of the syntactic
semigroup. Observe that these results remain true if we replace the semigroups
by monoids. The proof can be found in {56, 28).

Proposition 2.2.4 Let L be a language end St, its syntactic semigroup. Then,
a semigroup S recognizes L if and only if Sy < S.

In other words, Sy, is the smallest semigroup recognizing L, i.e. any semigroup
that recognizes L must ‘contain’ Sz. As a corollary of Theorem 2.2.3 we have
the following result.

Proposition 2.2.5 A language is regular if and only if its syntactic semigroup
is finite.

Thus, the syntactic congruence induces a mapping from regular languages
to finite semigroups. However, this mapping is not bijective. In particular, not
every semigroup is the syntactic semigroup of some language. This is where
the notion of varieties is required.

A class of semigroups or monoids V forms a variety if it is closed under
finite direct product and division?

*The standard definition of variety (see {28, 46]) allows infinite direct product and our

definition corresponds to pseudo-variety. Since we are only interested in finite groupoids,
we prefer to use the term variety even if only finite direct products are considered.
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A class of languages £ forms a x-variety (resp. +-variety) if it is closed un-
der the Boolean operations, inverse homomorphism (resp. inverse non-crasing
homomorphism), and right and left division by a letter, where the right divi-
sionof L C A" bya € Ais theset {v& A* | va € L} (left division is defined
similarly). Observe that this distinction between »~variety and +-variety is
necessary since %-varieties correspond to varieties of monoids and +-varicties
correspond to varieties of semigroups. Morcover, a +-varicty is not necessarily
a *variety. An example is given by the +-varicty of all finite and cofinite
languages.

The following proposition is known as the Eilenberg Theorem for pscudo-

varieties. We state it only for +-varicties and scmigroups but it can also be

formulated for x~varieties and monoids.

Proposition 2.2.6 ([28]) There is e bijection between +~varieties of lan-
guages and varieties of finite semigroups. More precisely, let 'V be a class
of semigroups, let ATV be the set of subsels of At recognized by a semigroup
tn V, let V = U ATV, and let U be the varicty gencrated by the syniac-
tic semigroups of the langueges in V. Then, V is e variety only if V is a

+-variety, and in this case we have V = U.

Indeed the set of all semigroups forms a variety corresponding to the variety
of all regular languages. We now give some other examples.

Example 2.2.1 The variety of nilpotent semigroups consists of those semi-
groups S that satisfies the identity es = e = se, for all s,6 € S where ee =e.

A language is recognized by a nilpotent semigroup if and only if it is finite
or co-finite.

Example 2.2.2 ([65]) The variety of aperiodic semigroups consists of those
semigroups S for which there exist k > 0 such that a* = a**1, for alla € S.
A regular language L C A" is star-freeif it is in the closure of {{a} | a € A}
under Boolean operations and concatenation.
A language is recognized by an aperiodic semigroup iff it is star-free.
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Example 2.2.3 ([66]) A semigroup M is J-trivial if for every m € M, the
set M'mM?! is a singleton. The class of all J-trivial monoids forms a variety
denoted J.

We say that u € A® is a subword of w € A* whenever u = aye;--- ay,
g; € A, and w = woa Wy -+ - Wn_1@aWa. Let L, € A" be the set of words that
contain the subword u. A language L C A" is piccewise-testable if it belongs
to the Boolean closure of languages of the form L,.

Then, a language is piecewise-testable if and only if its syntactic monoid

is J-trivial.

Example 2.2.4 ([77]) The variety of nilpotent groups can be defined recur-
sively as follows. Any abelian group is nilpotent. Let G be a nontrivial group
and let Z be the center of G. Then, G is nilpotent iff Z is nontrivial and G/Z
is nilpotent.

Let (‘3) denote the number of occurrences of the subword v in w € A™.
Foranyu € A*, 120,92 1and 0 £k < ¢, let [u,t,q,k] be the set of all
words w € A® such that (‘:) >t and (':) =k (mod ¢).

A language L C A” is in the Boolean closure of languages of the form
[w,0, ¢, k] iff it is recognized by a nilpotent group.

Example 2.2.5 Commutative semigroups also form a variety. A language
L € A% is recognized by a commutative semigroup iff it is in the Boolean
closure of languages of the form [e, ,¢, k], where a € A.

Example 2.2.6 ([76]) The variety of solvable semigroups consists of those
semigroups that contains no nonsolvable groups.

For any w € A", a;,...,@, € A, and Lo, Iy,...,Lx © A", we denote by
[0]{Zoa; 21 ~euLa)> the number of factorizations of w of the form ugayu, -+ - aqty,
where u; € L;. Define the language [Loay Ly - - - apLu]eqx 2s ‘he set of words
w € A' such that [0lizoas y—eaLy = ¢ and |wlILo¢:Iu--¢-Lu] = k (mod g).
Finally, let So be the Boolean closure of languages of the form A¥, 9, and

3Solvability is defined in Section 1 of Chapter 4 in the more general context of loops.
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let S, be the Boolean closure of languages of the form [LoaiLy -+ anLaligts
where L; € Spi_1. Then § = UpmpoSm forms a variety of languages.
A language is in S if and only if it is recognized by a finite solvable semi-

group.

2.2.2 Weakly associative groupoids

A groupoid G is weakly associative if for all a,b,¢c € G°,
a(dc) # 0 and (ab)c # 0 = a(bc) = (ab)e.

In particular, any semigroup is a weakly associative groupoid. The com-
plexity of the languages recognized by weakly associative groupoids may de-
pend on whether or not 0 belongs to the accepting sct.

Lemma 2.2.7 Let G be a weakly associative groupoid with an absorbing ele-
ment 0. Let F be a subset of G that contains 0. Then, L = W(G,G,F) is
regular.

Proof. For all ¢ € G, define L, € G* as the set of words that left-to-right
evaluate to a. Clearly L, is a regular language , and L = {J,¢r La U L', where
L' is the set of words over G that can be evaluated to 0 in some way.

Let w € G*. If G(w) does not contain 0 then there is a unique element
a € G(w). In this case, w can be evaluated in any way and will always yield
the same result. Thus, the problem reduces to determine if 0 € G(w).

Let s be a shortest segment of w that evaluates to 0. Observe that for
any proper decomposition s = uv, G(u) and G(v) are singletons. There exist
u,v € Gt such that s = uv and ab = 0 where {a} = G(x) and {b} = G(v).

Hence, we can write
L'= | GLLG UGG,
ab=0

proving that L is regular. u}

It seems that when 0 does not belong to the accepting set, the word problem
of G could be more difficult. Actually, we know little, even for weakly com-
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mulative and associative groupoids, i.e. those weakly associative groupoids G

with the property that for any ¢,b € G,
ab # 0 and ba # 0 = ab = ba.

At least, we can easily show that the word problem for weakly associative
and cven weakly commutative and associative groupoids is hard for NC' when
0 does not belong to the accepting set. To see this, we will define a special kind
of weakly commutative and associative groupoids. An element a of a groupoid
G is called lefi-sided (resp. right-sided) if for all ¢ € G, we have ag = 0 (resp.
ga = 0). A groupoid G is called one-sided if it contains only left-sided and
right-sided clements.

If G is a one-sided groupoid and a,b,¢ € G, then it must satisfy eb = 0
or ba = 0, as well as a(bc) = 0 or (ad)e = 0. Hence, we have the following
observation.

Lemma 2.2.8 Any one-sided groupoid is weakly commutative and associative.

o

It is not known if one-sided groupoids are strictly less powerful than other
weakly associative groupoids, but it can be shown that they recognize fewer
languages than general groupoids.

Lemma 2.2.9 Any language recognized by e one-sided groupoid is determin-
tstic conlext-free.

Proof. Let G be a one-sided groupoid. We will show how to evaluate a
word w € G™ to its unique possible solution different from 0 using a deter-
ministic pushdown automaton. In the following algorithm, the impossibility
of moving must be interpreted as if we were returning 0. Initially, the stack is
empty.



b« read the first symbol
While there is an unread symbol or the stack is not empty do
If b is left-sided then
pop the top of the stack a
If ¢ is right-sided then &« ab
Else return 0
Else push b

b — read next symbol
Return b

G

An intercsting question concerns the complexity of the word problem for
one-sided groupoids. In view of the preceding lemma, it is natural to ask if
this problem is complete for LOGDCFL. We will see in Section 2.3 that it is
as hard as any problem in NC'.

2.2.3 Lie groupoids

Let G be a finite group and let a and & be two elements of G. The commutator
of @ and b is denoted [a, 8] and defined as [a, b] = a~1b~1ab.

The Lie groupoid of G is the groupoid C defined over the same underlying
set G with product e¢b = [a,3]. In general, C is not associative.

Observe how the identity in G becomes an absorbing element in C. In
particular, if G is a commutative group, then C is a 0-simple semigroup, i.e. it
contains an absorbing element and any product ab is equal to that absorbing
element.

Proposition 2.2.10 If G is nilpotent then C can recognize only finite and
cofinite languages.

Proof. Define G; = {[a,b] | 2,6 € G}, and for k > 1 let G = {[e,8] | e €
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G;, b € G;, i+j = k}. Since G is nilpotent, we must have G, = {1} for some
n > 1 (see [36]).

Thercfore, for all words w € C* of length at lcast n, we have C(w) = {1}.
This means that if L is recognized by C with accepting set £ C C, then L
contains all words of length at least n whenever 1 € F, and is finite otherwise.

O

The commutators of a group G generate a subgroup called the commuta-
tor subgroup of G. We define a solvable group of depth 2 as a group whose
commutator subgroup is commutative. An example of such a group is Sa, the
group of permutations on 3 points. We will see in Chapter 3 that any language
recognized by the Lie groupoid of a solvable group of depth 2 is in NL.

2.3 Recognition by programs

Mckenzie ([50]) suggested the idea of extending the notion of programs over
semigroups (sce [5, 8]) by using groupoids instead of semigroups. This leads
to generalizing Definition 2.2.1 by allowing ¢ to be any projection from A* to
G-.

Definition 2.3.1 Let G be a groupoid and let F C G. We define a program
P, over G as a scquence of instructions [ Iz++- Iy of the form I; = (35, f;),
where1 <i; <n and f; : A— G is a function. Given an input z € A®, each
instruction I; outputs the element k; = f;(z;;} € G. The program P, accepts
w if and only if G(R1ky---h)NF # 8.

A language L C A" is said to be recognized dy programs over G if there
exists a family of programs (P.)n>o such that, for every n > 0 and every
w € A", program F, accepts w if and only if w belongs to L. The length of
(Pa)npo is 2 function mapping n to the number of instructiors in P,.

Hence, a projection from any language to a word problem over any groupoid
G, forms a family of programs over G. Unless explicitely mentioned, we will
always assume that programs bave polynomial length. If G is a2 class of

34



groupoids, we denote by P(G) the class of languages recognized by polynomial-
length programs over a groupoid in G. In particular, when G contains a single

groupoid G, then we write P(G) instead of P(G).

Definition 2.3.2 Given o complexity class C, a polynomial length family P
of programs is said to be C-uniform if, given (w, k), the problem of computing
the length of P, and its kR instruction belongs to C. We stmply say that P
ts uniform whenever C = DTIME(log |w]).

The power of programs over finite groupoid is given by the next theorem

that will be proved in subsection 2.3.2.

Theorem 2.3.3 ([12]) A language is in SAC! if and only if it is recognized
by programs over a finile groupoid.

2.3.1 Programs over semigroups

When G is a semigroup (monoid) in Definition 2.3.3, the model is called pro-
gram over a semigroup (monoid). In [5], Barrington observed that programs
over finite semigroups is 2 model of computation equivalent to bounded-width

branching programs. Theorem 2.3.3 is thus the generalization of the following
result.

Theorem 2.3.4 A language is in NC* iff it is recognized by programs over a
[finite semigroup.

In fact, Barringtcn’s theorem is more precise. It says that if S is any
nonsolvable semigroup (i.e. there is 2 nonsolvable group that divides S), then
P(S) =NC.

Results analogous to Theorem 2.3.4 exist for subclasses of NCL.

Theorem 2.3.5 ([8]) IfV is the variely of solvable semigroups, then P(V) =
ACC°.



Let CCP be the class of languages recognized by unbounded fan-in constant-
depth Boolean circuits using only MOD, gates, where ¢ > 1. We thus have
CC® C ACC°.

Theorem 2.3.6 ([8]) If V is the variety of solvable groups, then P(V) =
CC®.

Theorem 2.3.7 ([8]) IfV is the varicty of aperiodic semigroups, then P(V) =
AC

We observe that a crucial point in determining the power of a semigroup
S concerns the kind of groups it contains. If S contains no nontrivial groups
then it can recognize only languages in AC®. If it contains a nonsolvable
group, then the word problem on S is complete for NC!. Furthermore, if S
contains nontrivial groups but these are all solvable, then S can recognize only
languages in ACC®. However, in this last case, S recognizes languages that
are provably not in AC?. This is because, by standard results in group theory
(see [36]), there must exists a cyclic group of prime order that divides S, and
it is proved in [69] that the word problem on this kind of groups is not in AC®.

We conclude this subsection with a proof that any family of programs
over a semigroup can be simulated by a family of programs over a one-sided
groupoid having the same length.

Proposition 2.3.8 For any semigroup S, there ezists ¢ one-sided groupoid
G such that any language recognized by a family of programs over S is also
recognized by a family of programs over G.

Proof. Let G = SU S'U {0}, where S’ is a copy of S and 0 is a new
element. Let a,b,¢c € S and define the product on G by

e a'b= ¢, where a’ and ¢ are copies of a and ¢

e All other products yield 0.



This groupoid is one-sided since all elements in S are left-sided, all clements
in §' are right-sided, and 0 is both left-sided and right-sided.

Moreover, given any word a'w € §'S", the only way to evaluate a'w to an
element different {from 0 is to use a left-to-right parenthesization, In this case,
a'w yields an element s’ € § that is the copy of the element s € § resulting
from the evaluation of a’w in §. A program over S can thus be transformed

into an equivalent program over G by only changing the first instruction. 0O

2.3.2 Groupoids and SAC!

In this subsection we show that SAC! corresponds to the languages recognized
by programs over a groupoid.

First, observe that programs over finite groupoids recognize only language
in SAC!. This is because programs over groupoids are projection-reducibic to
sets recognized by groupoids, and by Theorem 2.2.2 all such set are CFL's.

In order to show that any language in SAC' is recognized by uniform pro-
grams over a groupoid, we simply observe that Sudburough’s logspace reduc-
tion from a language recognized by an AuxNPDA to a context-free language
is 2 uniform projection. Recall the main steps of the proof.

Step 1 ([37]): We know that if L € LOGCFL, then it is recognized by
an AuxNPDA M in space clogn and polynomial time. This machine can
be simulated by a multiple-head PDA M; (i.e. constant working space): the
working tape of M is divided into ¢ blocks of size logn; the content of each
block is represented in M; by tke position of a head. Some extra heads are
used to manage the process.

Step 2 ([32]): If L is recognized by a NPDA M with k heads, thea L
is reducible to a language L’ which is recognized by 2 NPDA M’ with [£/2]
heads. The reduction is the projection ¢ : w +— (cwd)™9l. Two heads ki, h;
in M are simulated by one head &’ in M": if A, is at position ¢ and k2 is at
position 7 in w, then &' will be at position i of the jtB block cwd.

Step 3 ([75]): Any L recognized by 2 (2-way) NPDA M can be reduced
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to a language L' recognized by a 1-way NPDA M‘. The reduction is the
uniform projection 3 : w — (cwd)P“l), where p is a polynomial bounding the
time taken by M. The NPDA M’ simulates M without moving its head left:
whenever M moves left, M’ simply moves to the next block cwd using its stack
to find the proper position.

Step 4 {[75]): By applying Step 1, iterating Step 2, and finally applying
Step 3, we can reduce any language L € SAC! to a context-frec language L.
The reduction is a compositions of projections, and thus, it can be transformed
into polynomial-length programs over any groupoid G that recognizes L'.

This shows that LOGCFL corresponds to the languages reducible to a
context-free language via a polynomial-length projection. This projection can
be made DLOGTIME-uniform by modifying the above four steps such that the
length of each projection is a power of two. This is done by padding each word
obtained at each step with the appropriate number of blank symbols using the
technique of [6] (see also [12]). Since projections to context-free languages are
also programs over groupoid, this yields Theorem 2.3.3.

However, we can give a stronger result. It is shown in [35] that there exists
a context-free language Lg such that any context-free language is reducible to
Ly via a nonerasing homomorphism. This immediately yields the following

result.

Theorem 2.3.9 [12] Let Gy be any finite groupoid recognizing Lo. Then
SAC! = P(G,).

2.3.3 Groupoids and TC?

The complexity class TC} is the class of languages recognized by uniform
unbounded circuits (Cn)npe of depth k constructed with MAJORITY gates.
Without loss of generality, we can assume that all paths in C, have the same
length and that all negations are at the input gates. By definition, we have
TC® = Ukso TCS.

We will show that there exists a sequence of groupoids (Gi)i>: such that
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TCY € P(Gi) € TC". Observe that there exists no characterization of TC®
in terms of finite semigroups (unless TC® = NC' or TC® = ACC®).

Let 77 be a depth k circuit of MAJORITY gates. For cach gate g of C
we denote by g{z) the value output by ¢ when z is input to C. If ¢ is on
level 7 of the circuit we recursively construct a well-parenthestzed expression
fo(z) € {0,1,(,}}" of nesting depth ¢ — 1, as follows. In the case where i = 1,
fo{z) is simply the sequence of bits used as input to g. 1f¢ > | we define
Fo(x) = (o, (@)} - - - (fom(z)) where g1,...,gm are the input gates to g. It is
clear that g(z) = 1 iff fy(z) evaluates to 1 when we recursively apply the
MAJORITY function to the list of operands at a given level. For cach &k we
will construct groupoid Gi from a grammar D, generating any such depth
k — 1 expression that evaluates to 1.

For k > 1, define the grammar Dy =(V;,T\y7«,S) where T = {0,1,(,)},
W ={SIu {M,R,Q1,ALB:} and Vi =Vio,U{ My, Pe,Qi, Ak, B, Ev, Fi, L, R}
for k > 1. In order to describe 7; we first define for all1 > 1 and all 7 > 1 the

following set of rules:

U = {Mi— ABiBA, 7 = CA; = M;A;|A;M;|LE;,

. PlAA. Bj —_ Mij'BijILF},
g‘e:%ﬁﬁ;}g}} E; = M; R|P;L RlAj R,
Wi = {A — MiA|AM, f’: (QJ'-IRIB:‘-IR,
By, = M B,|B, M; |0} R —) ]t

Then we define 7 = {S — Mi|PilAr} U Urgici(Ui U Wi). To see what
language is generated by D; note that starting from M; we can produce any
string w € {Ag, B}t such that |w|s, = |wis, (jw]. denotes the number of
occurrences of the symbol ¢ in w). Starting from Aj (resp. Bi) we produce
exactly all w € {Ax, Bi}" such that |wl|,, = jw|s, +1 (resp. |w|s, = vl +1)
and starting from Py (resp. Qi) we produce exactly all w € {A, Bi}" such
that jwla, > lwls, +2 (resp. |wis, 2 |wla, +2).

Hence grammar D; generates exactly the set of well-pa.rentﬁesized expres-
sions of nesting depth k — 1 which evaluate to I when MAJORITY is taken
recursively at each level. Now construct groupoid G from grammar Dj as

39



groupoid G was constructed from grammar M in the proof of Theorem 2.2.2.

To prove TC} € P(Gk), let Y € TCY, let z € {0,1}" and let g denote the
output gate of a TC) circuit C,, determining whether z € Y. We can take C,
to be a full depth-k 2n-ary trec of MAJORITY gates. Then z € Y iff fy(z)
is generated by grammar Dy, that is, iff Gi(fy(z)) O { My, Ax, Pc} # 0. Hence
a program II of length |f;(z)] over Gk accepts all strings of length || in Y.
This program can be made uniform exactly as the “generalized expressions”
obtained from an FO formula are made DLOGTIME-uniform [6, Proof of
Theorem 9.1 {“1 = 4”)], with the role of the “space character” played here by
the constant instruction e, for e the groupoid identity.

We now turn to the proof that P(Gi) € TC?, that is, Gi{w) can be
computed in TC® for any word w € Gj. First note that ziven a word w € G},
we have that, for all £ > 0, if there is a symbol E; or F; that is not immediately
preceded by an L then the only possible evaluation for w is the zero of Gy $
(sce grammar D). Otherwise we just have to replace each occurrence of LE;
by A; and each LF; by B; and this does not change Gi{w). So in the following
we will not consider symbols E; and F;. We will proceed by proving the two

following claims :
Claim 1. Every evaluation cf a word over G; can be done in TCP.

Claim II. Every word w can be transformed in TC® into a word v such that
Xis1 € Gra(w) iff X; € Gi(v) (where X is a place holder for any non-
terminal).

Let u,v € {4, Bi}", £ = {M,P,Q1,A1, B} and X € E. It is a simple
exercise to show the following facts about the grammar D, (where we have
suppressed the subscripts for clarity):

1. For luv] > 1, X = uMv if X = uv.
2. Forus#e P=>uPiff P uA.
3. Foru#¢ Q= u@ iff Q = uB.
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4. f X =>uPvthen X =Pandv=c.
5. fX=>uQuthen X =Qandv=c¢.

To evaluate a word w over Gy we do the following:

(1) Verify that there is at most one P; (resp. @) in w: using facts 4 and 5
the P, (resp. Q1) must be at the end in which case the only possible evaluation
different from $ is P, (resp. @1). Then replace P, (resp. Qi) by Ay (resp. By)
using fact 2 (resp. 3).

(i1) Replace each M; by the identity e of G, (fact 1).

(ili) We now have a word v € {A,, B1,e}" that can be easily evaluated in
TC®. To see this let v’ be obtained from v by interchanging the A;’s and the
By’s, let MAJ(v) be true iff v has at least as many A;’s as By’s, and define
EQUAL(v) = MAJ(v) AMAJ(Y').

We have the following observations.

o M, € G(v) iff EQUAL(v)

o A € G(v) iff EQUAL(vB,)

o B, € G(v) iff EQUAL(vA,;)

o P, € G(v) if MAJ(v) A~EQUAL(vB,) A ~EQUAL(v)
o Q1 € G(v) if MAJ(v') A~EQUAL(vA;) A~EQUAL(v)

This proves our Claim L
We now describe the TC® transformation from w € Gj,, to v € G} which
will prove Claim II. Recall that there is no E; or F; symbol in w.

1. Check whether there is a symbol 2 € Gy that is not inside a substring

of the form (v} for v € (G1)". In such a case the only possible result is
$ and we can determine this in AC’.

2. Look for any substring of the form (v) for » € (G;)" and replace it
(including the brackets) with
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L Ag lf G,(v)ﬂ {M],P;,A:} ?E 0
] Bg if Gl(v) n {Q:,Bl} ?f_. 0

e 3§ otherwise
This step is feasible in TC® by Claim L

3. Replace every symbol X; by X, for each 2 < ¢ < {+1 and for each
“nonterminal™ X (this does not affect parentheses). We are left with
a new word v which evaluates to some X; € G, iff w evaluates to the

corresponding Xi41 € Gis1. This step is easily performed in AC°.

2.3.4 Groupoids and NC!

We have seen that if G is any nonsolvable semigroup then any language in
NC! is recognized by programs over G. The smallest semigroup having this
property is the alternating group As and has order 60. In this section, we
will see that there exists a groupoid of order 9 that recognizes, via uniform
programs, any language in NC.

Let ¢ = (1,2) and b = (1,2,3,4,5) be the cycle representation of two
permutations on five points.

Lemma 2.3.10 The symmetric group Ss is generated by a and b.

Proof. Define a transposition as a permutation of the form (3,7), where
1 <1< 7<5 Let(3,7) be called an adjacent transposition whenever j =
t + 1. It is well known that any permutation is the product of transpositions.
Moreover, any transposition (t,;) can be written as the product of adjacent
transpositions since (£,§) = (§,i+1)---(§ = 1,7)F =2, = 1)--- (3, +1). So,
it suffices to show that any adjacent transposition can be expressed with a and
b. This is done with (2,¢+ 1) = &~1abS-. o

Consider now the groupoid G = {0,1,2,3,4,5,¢,b,1}, where the product

42



is defined as follows.

01 2345 a3d:
0{0 0 OO0OODO0OOOD
1j10 00000 221
20 0 0 0O OO 1 3 2
3|0 00000343
4]0 0 0 0 OO0 45 4
5/0 00 0005135
al0 0000013 a
5{0 0 0 0 0 0O 1 3
il01 2345 ad:

Let w € {q, b}" and let p be the resulting permutation when w is evaluated
in Ss. When w is evaluated in G, we obtain a nonzero element ¢ only if the
evaluation is done from left to right. Moreover, by construction, ¢ is equal to
the image of 1 under the permutation p.

Now, we know from Barrington’s theorem that any language L in NC' is
recognized by programs over Ss such that the programs map any word in the
lauguage to the identity permutation, all other words being mapped on b.

Consider a program on Ss accepting a language L. Since ¢ and b are
generators of Sy, we can suppose without loss of generality that the instructions
of this program only yield a,b or the identity i. So, this program can be viewed
as a program on G: A word is accepted whenever the program left-to-right
evaluates to 1, it is rejected if it left-to-right evaluates to 2.

2.4 Tree languages

Let A be a finite alphabet and let A®) be the free groupoid over A (see Ex-
ample 2.1.1). A subset T € A™ is called a (binary) tree language over A.4
The yield of a tree ¢ € A(*) is defined recursively as follows. The yield of
a € Ais a. If u and v are the respective yields of £ € A®) and y € A,
then the yield of (zy) is uv. The yield of a tree language T' C A®) is the set
yield(T) = {we A~ IVw is the yield of some t € T}.
AIn this work we will only consider this restricted kind of tree languages.




2.4.1 Regular tree languages

Let A be an alphabet and let T be a tree language over A. For any a € A and
t,t' € T, we denote by ¢ -# ¢/ the tree in T obtained when every occurrence of
a in t is replaced by ¢!, This operation can be generalized to tree languages T
and 7" by defining T2 7' = {t-°¢' |t € T,t' € T'}. The iterative product * is
defined by T° = {a}UTUT*TU....

A regular cxpression over A is a finite expression defined as follows.
o Finite subscts of A} are regular expressions.

e If a € A and s, are regular expressions, then sUz, A =5, s ¢, and

s® are regular expressions.
o Nothing clse is a regular expression over A.

Hence, regular expressions for tree languages are defined similarly to regular
expressions for word languages. They differ only by the interpretation we give
to the concatenation and the iterative product.

A regular tree language is a tree language defined, in the obvious way, from
a regular expression. A regular expression is called star-free if it contains no
iterative product.

The relationship between context-free languages and regular tree languages
is given by the following proposition.

Proposition 2.4.1 ([34]) A word lenguage is context-free if and only if it is
the yield of some regular tree lansuage.

2.4.2 Tree automata

There exist two ways of recognizing a tree language depending if we use a
bottom-up or a top down method. Each case has its deterministic and nonde-
terministic versions.

A (nondeterministic) top-down tree automaton (NTDTA) is a S-tuple M =
(Q, 4, 90,9, @), where Q is a finite set of states, gp is the initial state, A is a
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finite alphabet, § : Q — QF is the transition function, and a : A4 — 29 is the
final assignment. A NTDTA is called deterministic (and referred as DTDTA)
if for all @ € A, a(a) is a singleton.

Given a NTDTA M and a tree T' € A, we mark each node of T with a
state in @ as follows. We first, mark the root with the initiai state go. Given
any internal node marked with some state g, we mark the left child with ¢,
and the right child with ¢, where §(¢) = (q1,92).

A tree is said to be accepted by M if cach leaf labeled with a lettera € A

is marked with a state ¢ such that ¢ € a{a). A tree language is recognized by
a NTDTA M if and only if M accepts precisely those trees in T

A (nondeterministic) bottom-up tree automaton {NBUTA) is a 5-tuple
M = {Q, A, 8¢, F), where Q is a finite sct of states, A is a finite alphabet,
§ : @* — 29 is the transition function, and « : @ — 29 is the initial assignment.
When &(p,¢q) and afa) are singletons, for any p,¢ € Q and a € A, M is said
to be deterministic and is denoted DBUTA.

Given any tree T € A, and any NBUTA M, we can assign to the root of
T a subset § C Q using functions « and . Then, T is said to be accepted by

MifSNF #0. A tree language is recognized by a NBUTA M if and only if
M accepts precisely those treesin T'.

Proposition 2.4.2 NTDTA, NBUTA, and DBUTA recognize the same class
of tree languages which is the class of regular tree languages.

Provably, DTDTA are weaker than the other tree automata. For example
the tree language {(1,0),(0,1)} cannot be recognized by any DTDTA (see
[43).

In our restricted context, recognition by DBUTA can be expressed in terms
of finite groupoids.

Definition 2.4.3 A tree language T € A is seid to be recognized by a
groupoid G if there exist @ groupoid morphism ¢ : A®*) = G and an accepting
set F C G such that T = {t € A® | p(2) € F}.
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Conscquently, we have the following result.

Theorem 2.4.4 A trec language is regular if and only if it is recognized by a
Jinite groupotd.

2.4.3 Syntactic groupoids

Let A be a finite alphabet and let z be a symbol not in A. A treec over AU {z}
is called a special® tree if it contains only one occurrence of z.

The syntactic congruenceof a subset L C A" is denoted by ~; and defined
by u ~r, v il and only if for any special tree ¢ over AU {2} we havet-*u € L
iff ¢-=v. Clearly ~ is an equivalence relation on A). To sce that it is a
congruence, let uy ~z vy and uz ~f v2. Then , t-F(wiu2) € L iff t-= (v u2) € L,
and ¢ {vyup) € L iff ¢ (vyv2) € L. Hence t-= (uyup) € Liff t-= (vyvp) € L
and therefore (x1%2) ~1 (v1v2). Now for any tree language L C AL} we define
the syntactic groupoid of L as the quotient groupoid A®)/~;. Mary results in
the algebraic study of recognizable languages in A* (see [56]) can be directly
translated for subsets of A*). In particular we have:

Proposition 2.4.5 Let T be a tree languege and St its syntactic groupoid.
Then, a groupoid G recognizes T if and only if ST < G.

Proof. Suppose that T' C G'* is recognized by G. Let #; and t; be two
trees in G(*)such that both of them evaluate to the same element in G. Then,
for any special tree £, t - §; =1 -, in G. This means that ¢{; ~¢ t; and that
all trees evaluating to the same element in G belong to the same syntactic
congruence class in G, This proves that the syntactic groupoid Sz of T
divides G. o

As a corollary, we have the following result.
Theorem 2.4.6 A tree language T C A™) is regular if and only if its syntactic

groupoid is finite.
®This terminology comes from [78]




2.4.4 Varieties of tree languages

Let A be a finite alphabet and let = be a symbol not in A. For any special
trec w over AU {z} and for any tree language T', we define the quotient of T
by w as the set {t € A |w.Tt € T}

A class V of tree languages forms a variety if it is closed under Boolean

operations, inverse homomorphism, and quotient.
Proposition 2.4.7 ([T1]) The cless of regular tree languages forms a variety.

Varieties of groupoids are defined in the same way as varieties of semi-
groups: they are the classes of groupoids closed under finite direct product
and division.

The theorem of varieties still bold in the tree language context.

Theorem 2.4.8 ([71]) There is a bijection between varicties of reqular trec
languages and varieties of finite groupoids.

In particular any variety of finite groupoids is generated by a set of syntactic
groupoids. More information on syntactic algebras and varieties of general tree
languages can be found in [71].

2.5 Restricted parenthesization

The relationship between word languages and tree languages discussed in Sec-
tion 2.4 provides an interesting way of restricting the power of programs over
groupoids. First, we generalize Definition 2.2.1 as follows.

Definition 2.5.1 Given T € A®), a language L € A* is said to be T-
recognized dy a groupoid G if there exist @ morphism ¢ : A®) — G and
an accepting set F C G, such that L = {yidld(t) | (¢ € T) A (o(2) € F)}.
T-recognition by programs over a groupoid is defined in the obvious way.

Clearly, Definition 2.2.1 is equivalent to Definition 2.5.1 when T = A,
This is however not the case for arbitrary T. Observe first that T may be
regular or not.
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Fact 2.5.2 In Definition 2.5.1, if T is reqular, then L is context-free.

However, the converse is not true: L can be context-free while T is even
not computable. For cxample, let G be a semigroup and let T € A(*) be any
set of trees such that A® = yield(T). Then, any language L € A" that is
G*)-recognized by G is also T-recognized by G, because G is associative.

When T is regular, the class of languages T-recognized by a finite groupoid

G can form a strict subsct of the context-free languages.

Example 2.5.1 Let G be a finite groupoid and let LTR € G{*) be the set of
trees defined recursively as follows. Any ¢ € G is also in LTR; if t € LTR
and g € G then (tg) € LTR; nothing else is in LTR. Thus, LTR correspoands
exactly to the lcft-to-right parenthesizations of words over G.

It is a simple exercise to verify that a language is LTR-recognized by G if

and only if it is regular.

Example 2.5.2 Let G be a finite groupoid and, for any k > 1, let RD; € G
be defined as follows: RD, = LTR; RDy; = RDy U T}, where T} consists of
those trees that can be decomposed as (--- ((31t2)3)---{n) Where ¢),...,t, €
RD;.

We say that a language L is recognized in constant right-depth by a groupoid
G if there exists k > 1 such that L is RDs-recognized by G.

Lemma 2.5.3 If a language L is recognized in constant righi-depth by a finite
groupoid G then it is regular.

Proof. Observe that we can determine if a word w € G evaluates to
some element in F with a nondeterministic pushdown automaton working as

follows,



Read the first input; Set it as the current value;
‘While there is a nonread input or the stack is not empty do
Choose aondeterministically between
(1) Push the current value in the stack,
read next input, and
set it as the new current value;
(2) Pop the top of the stack,
multiply it with the current value, and
set the result as the new current value;
If the current value is in F then accept

Else reject

We observe that the program’s nondeterministic choices, on input w, induce
a tree T whose yield is w and that evaluates to an element in F if and only if the
program accepts w. By assumption, there exists a sequence of choices such that
the right-depth of T is constant. Given that sequence of choices, the execution
of the program on w consists essentially of a depth-first search evaluation of
T by the left: an element is pushed in the stack precisely when a right edge
is taken in direction of the leaves, and the same element is popped only when
the same edge is used in the reverse direction. Thus, the stack never needs to
be of height larger than the right-depth of T, which is constant. Hence L is
regular, since a nondeterministic automaton with a stack of constant height

can be simulated by a finite automaton. =]

In the above examples we have used a regular set of trees. However, it is
also interesting to remove this restriction and to chose a nonregular set T,

Example 2.5.8 Let G be a finite groupoid and let 7. € G} be the set of
trees of depth smaller than clogn where n is the number of leaves. Using
the pigeon-hole Principle we easily see that T is not regular. However, any

language L that is Ti-recognized by G is also recognized by a nondeterministic
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pushdown automaton using a stack of height at most clogn, on input of length

n. Thus, L belongs to NL.

Next chapter is devoted to an important kind of regular restriction that we
call lincar.

2.6 Parenthesized programs

The previous discussion on tree languages motivates the investigation of pro-
grams over groupoids that are deterministic in the sense that parenthesis ap-

pear explicitly and so do not need to be guessed.

Definition 2.6.1 Let A be e finite alphabet, let G be a groupoid and let F
be a subset of G. For any integer n, let I, be the set of all instructions of
the form (i, f) wherel i< nand f: A — G is a function. We define a
parenthesized program P, over G as a tree T, over Z,. On inpul w of length
n, the instructions of P, yield elemenis of G that can be multiplied according
to the structure of T,. Then, P, is said lo accepl w if the resulling element
belongs to F.

Another way of seeing parenthesized programs is to consider the existence
of constant instructions that produce open or closed parenthesis. On a given
input, the program yields a well parenthesized expression over elements of G.

A language I C A" is said to be recognized by 2 family of parenthesized
programs (FPy)n>0 over a groupoid G if P, accepts precisely those words in
LnA~

Definition 2.6.2 A polynomial length family of parenthesized programs is said
to be uniform if, given (w, k), we can compute in time O(log w]|) the length of
P and its k™ instruction (which can be a parenthesis).

Theorem 2.6.3 ([12]) A language is in NC! if and only if it is recognized by
e uniform parenthesized program over a finite groupoid.
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Proof. To prove that any language recognized by a uniform family of
parenthesized programs isin NC?, it suffices to show that any well-parenthesized
expression over a finite groupoid can be evaluated in NC'. This follows from
Buss’ result [17] that any parenthesis context-free language belongs to NC'.
Recall that a parenthesis context-frec language is a language generated by a
grammar whose productions have the form A — («a), where A is a variable
and « contains no parenthesis. Given a groupoid G, we can define a grammar
D¢ whose set of variables is G and which contains a production a — (b¢) for
any product bc = a in G. Then, a well-parenthesized expression w evaluates
to @ € G if and only if w is generated by ¢ in Dg.

It remains to show that any language in NC! is recognized by a uniform
family of parenthesized programs over some groupoid.

Let NAND = {0,1} be the groupoid with product 1-1 =0and 0-0 =
0-1=1.0=1. It is not difficult to see that polynomial-length parenthesized
programs over NAND recognized precisely those languages in NC' Observe
first that the negation NOT of a bit z can be expressed over NAND by (zz),
and the AND and the OR of two bits z and y can be expressed over NAND
by ((zy)(zy)) and ((z=)(vy)), respectively.

Hence, any Boolean formula f can be expressed as a well-parenthesized
expression w over NAND. Uniformity can be obtained by adding extra paren-
thesis to control the growth of w as a function of the depth of f (see {12}).

0

An interesting observation concerning parenthesized programs is that, in
this setting, any two isotopic groupoids have the same computationai power.

Theorem 2.6.4 Let (G,-) and (G,*) be two isotopic groupoids such that
(G,*) possesses en identity 1. Then any programs over (G, =) of length l(n)
can be simuloted by a program over (G,.) having length O(I(n)).

Proof. By Theorem 2.1.9, there exist elements f,¢ € G such that for
any z,y € G, zxy = zR{f) - yL(g). Observe that both R~(f) and
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L~!(g) are permutations. Hence, there exists a positive integer k& such that
L-Y(g) = L¥(g) and R-'(f) = R*(f). We thus have z »y = zR¥(f) - yL*(g),
and so a well-parenthesized expressioa over (G, *) can be expressed with an

expression over (G, -+-) with the length increased by a factor of & + 1. a

In the above theorem, it is essential that (G, -) has an identity. For example,
let U; = {0,1} be the semigroup with product -0 =0and0-1 =1 0=1.1=1.
Then U is isotopic to NAND since the product of zy in U; can be expressed by
(z-1)(y-1) in NAND. However, there are programs over NAND that cannot
be simulated by programs over U;.

For example, the expression P = (z(y1))((z1)y) evaluates to 0 (when the
product is taken over NAND) only when zy € {00,11}.

Suppose that there exists a program P, over U; that recognizes {00,11}.
Since U, is commutative, we can assume without loss of generality that P, has
only 2 instructions: the instruction I; looks for z and the instruction J» iooks
for y.

Let ap, a; be the elements produced by I; when z has value 0 and 1, respec-
tively. Similarly, let by, b; be the elements produced by I when y is respectively
Oorl.

On input 01, P, yields agb;, and on input 10, it yields a; 8. If the accepting
element of P; is 0, then, we must have ¢y = a; = by = b = 0, and P, accepts
any input. Thus, the accepting element must be 1.

Since P, accepts 00, there must be one of ag or & which is 1. Suppose that
ao = 1 (the other case is treated similarly). Then, or ingput 01, P, produces
aghy = 1b; = 1. This contradicts the assuinption that 01 is not accepted by
P,, proving that no program over [/} can recognize {00,11}.

As a corollary of Theorem 2.6.4, we observe that restricting groupoids to
be commutative does not remove the power of parenthesized programs.

Theorem 2.6.5 Anylanguage L recognized by a parenthesized program over a
groupoid G is also recognized by a parenthesized program Q over a commutative
groupoid H.
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Proof. Let k be the order of G! and let G’ = {a’ | a € G'}.

Define the commutative groupoid H = G U G’ as follows.
e 1 is the ideniity of

e l'a=qal'=d,foralla e G!

e ab =ba=1,1orall e,be G- {1}

¢ ab="b'a’ = ¢, where ab=cin G*

Define the isotopy (e, ¢, ¢), where a(a) = ¢/, a(a’) = ¢, and ¢ is the identity
mappicg. On can verify that using this isotopy, we obtain from H a groupoid
H' that is commutative.

Since G is a subgroupoid of H, L is recognized by parenthesized programs
over H. Moreover, by Theorem 2.6.4, L is also recognized by parenthesized

programs over H'. a

Another important criterion determining the computational power of paren-

thesized programs over a groupoid concerns the multiplication monoid.

Theorem 2.6.6 Let S be a finite semigroup and let ¢ and b be two elements
of S. Let P, be a program over S such that P, evaluates to a whenever it
accepts its input, and P, evaluates to b otherwise. Then P, can be simulated
by a parenthesized program over G, for any groupoid G with identity I such
that S is isomorphic to e subsemigroup of M(G). Moreover, the length of P,

is increased only by e constant factor.

Proof. Let M be a subsemigroup of M(G), and let ¢ : S —+ M be an
isomorphism. Let U = ¢(a), V = ¢(b) and ¢ € G be such that gU # gV.
Since M(G) is generated by the set {R(z),L(z) : z € G} and contains the
identity R(1) = L(1), we can transform this program in such a way that =ach
instruction is of the form (z, R(z), R(y)) or (i, L(z), L{y)}. The length of the
resulting program will be increased only by a constant factor.

53



‘This new program over M{G) can be transformed into a pareathesized pro-
gram over G. This can be done recursively as follows. A program consisting of
a single instruction of the form {z, R(z), R(y)) or (i, L(z), L(y)} is transformed
into ({1,9,9)(,a,b)) or ({i,a,8){1,q,4)), respectively. Let W be any sequence
of instructions over M(G) and let w be its transformation over G. Then,
the scquences W (i, R(z), R(y)) and W (¢, L(z), L(y)) are transformed into
(w (3,a,b)) and ({1, ¢, b} w) respectively. The resulting parenthesized program

accepts if it evaluates to gl and rejects if it evaluates to gV.
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Chapter 3

Linearity

3.1 Linear recognition

Let A be a finite alphabet. The linear subset of A™) is the set ALY defined as
follows: any a € Ais in AMN; if u ¢ AMN and a € A then (au) and (ua) are
in AXIN A tree T € AU is called a linear tree over 4, and a subset L € AUN
is called a lincar tree language. In other words a tree is lincar if at least one
child of every internal node is a leaf.

We denote by Gpin(w) the set of all evaluations of w following all possible
linear parenthesizations. If ¢ € GLin(w), then we say that w lincarly evaluates
to g.

A context-free language is called linear if it is generated by a context-free
grammar such that every production is of the foorm A — w, where A is a
variable and w contains at most 1 variable. In the following, we call a context-
free language that is linear a linear language.

Linear languages can also be characterized using groupoids. In order to do
this we need to restrict the notion of recogrition by groupoid.

Definition 3.1.1 We say that a language L C A" is linearly recognized by a
groupoid G if there exist a subset F C G and a morphism ¢ : A~ — G* such
that L = {w € A* | GLin(d(w)) N F = 8}.

In other words, linear recognition corresponds precisely to AX™-recognition.
Observe that when the groupoid G is a semigroup then linear and general
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recognitions are equivalent due to the associativity of G.

Theorem 3.1.2 A language ts linear if and only if ii is linearly recognized by
a finite groupoid.

Proof. Let D be an invertible linear context-free grammar in Chomsky normal
form generating a language L. We saw in the proof of Theorem 2.2.2 how to
construct a finite groupeid G from D such that L is recognized by G. One
can check that any non.linear tree over G evaluates to the absorbing element
which does not belong to the accepting sct. Hence, L is linearly recognized by
G.

Supposc now that A is some alphabet and L € A* is a language linearly
recognized by a finite groupoid G. More specificallylet F C Gandlet ¢: A —
G" be an alphabetic morpiism such that L = {w € A* | GLin(¢(w))NF # 8}.
Then, we can construct a linear grammar M for L as follows. Let GU {S} be
the set of variables where S is not in G. Let A be the set of terminals of M,
and let 5 be the start variable. For each X,Y,Z € G such that Z = XY we
define the productions Z — Xb, Z — oY and Z — ab for all ¢ € ¢~1(X) and
b € ¢~(Y). Finally, we define the production S — Z for all Z € F. Clearly,
M is a linear grammar generating the language L. a

Definition 3.1.3 We say that a language is linearly recognized by a family of
programs P over a groupoid G if it is G"®-recognized by P.

Proposition 3.1.4 ([Su75]) There ezist a linear language L, such that L,
is complete for NL. Moreover, the reduction is ¢ DTIME(logn }-uniform pro-
jection.

Theorem 3.1.5 A language is in NL if and only if it is linearly recognized by
uniform polynomial-length programs over g finite groupoid.

Proof. Observe that any liear language belongs to NL since we only need
two pointers to parse a word. The other direction is given by Theorem 3.1.2
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and Proposition 3.i.4. O

Another consequence of Theorem 3.1.2 and Proposition 3.1.4 is the follow-

ing observation.

Theorem 3.1.6 There ezxists a groupoid Gy such that a language is in NL if

and only if it is linearly recognized by a uniform family of pregrams over Gy.

3.2 Linear and weakly linear groupoids

Definition 3.2.1 A groupoid G is called weakly lincar if it possesses an ab-
sorbing element 0 and (ab)(cd) = 0, for any a,b,c,d € G.

Theorem 3.2.2 {[53]) A language is linear if and only if it is recognized by
a weakly linear groupoid.

Proof. Let L be a language linearly recognized by a finite groupoid G,
and let G’ be a copy of the set G. Let a,b,¢ € G be such that ab = ¢in G, and
let @', ¥, ¢ € G' be the respective copies of a,b and ¢. We define the following
product on H = GUG' U {0}.

ea-b=¢
ea-b=aqab=<¢
e All other products yield 0

Groupoid H is weakly linear, and any word w € G of length two or more
linearly evaluates to an element a € G if and only if w can be evaluated to o'
in H. Thus, if the accepting set of G is F C G, then H recognized L with the
accepting set FU{f'€ G'| f € F}. o

The construction of groupoid H in the proof of the above theorem preserves
some algebraic properties of G. For example, G is commutative if and oniy if
H is commutative. The next theorem shows that the multiplication monoids

of G and H have isomorphic subgroups.
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Theorem 3.2.3 Let G and H be as in Theorem §.2.2. A group is isomorphic
to a subgroup of M(G) if and oaly if it is isomorphic to a subgroup of M(H).

Proof. For any z € G, let Dg(z) € {Rs(z),Le(z)} € M(G) and let
Du(z) € {Ru(z), Lu(z)} € M{H). Let U be an clement of M(G). There
exist ay,...,a; € Gsuchthat U = Dg(a;) -+ Dg(axr). We observe that for any
a,b € G, a = o if and only if aDy(ay)--- Dy(ax) = a’'Dylay)--- Dylar) =
. ‘This shows that the homomorphism ¢ : M(G) — M(H) defined by
#(Re(z)) — Ru(z) and ¢(Lg(z)) — Ly(z) is injective. Hence any group in
M(G) is isomorphic to a group in M(H).

To prove the other direction, we just observe that no element Dy(z), for
z € H—G, can be used to generate an element of a subgroup of M(H). Indeed,
if W € M(H) can be expressed as W = X Dy(z)Y, where X,Y € M(H)",
then WW maps any element of H to 0. o

Corollary 3.2.4 Let G and H be as in Theorem 3.2.8. Then, M(G) is ape-
riodic (resp. solvable) if and only if M(H) is aperiodic (resp. solvable). O

Recall that a solvable group has depth k if its composition series has length
k. In particular, a soivable group has depth 2 if and only if its commutator
subgroup is commutative. Theorem 3.1.5 and Theorem 3.2.2 have the following
interesting consequences.

Preposition 8.2.5 Any language recognized by the Lie groupoid of e solvable
group of depth 2 is in NL.

Proof. Let C be the Lie groupoid of a solvable group G of depth 2. Let 0
be the identity of G. For any a,b,c,d € G, we have [[a,b][c,d]] = 0. This is
reflected in C by the fact that (ab)(ed) = 0, where 0 is the absorbing element
of C.

Thus C is a weakly linear groupoid that can only recognize languages in
NL. 0

The definition of weakly linear groupoids is not satisfactory on one point.
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That is, semigroups are not weakly linear in spite of the fact that linear and
general recognition by semigroups arc equivalent. For this reason, we define a

stronger notion of linearity.

Definition 3.2.6 A groupoid G is called lincar if for any word w € G*, we

have Gun(w) = G(w).

Theorem 3.2.7 A language is recognized by a lincar groupoid if and only if

it is recognized by a weakly linear groupoid.

Proof. If L is recognized by a lincar groupoid B, then L is also lin-
early recognized by B. By Theorem 3.2.2, L is recognized by a weakly linear
groupoid.

The other direction is not iinmediate because there is no guaranty that a

word over a weakly linear groupoid can be linearly evaluated to the absorbing

element.
Suppose that L is recognized by a weakly linear groupoid G with accepting
set F. Define H = {(a,t) | a,b € G} U {|a,}] | a,b € G} UG U {0}, where 0

is a new element. For any a,b,¢c,d € G, we define a product on H as follows.
e a-b=|qa,b|
o le.b] e = ((ab)e,a(bc)
e c-labl=0
e ¢-{a,b) = {ca,ch)
e {a,b}-c={ac,bc)
e All other products yield 0.

‘We observe that any word w € G* of length at least three linearly evaluates,
in H, to 0 and to some elements of the form {z, y). Any non-linear evaluation of
w yields 0. Thus, L is recognized by H using the accepting set FU{|a,b||ab €
Flu{{a,b}}a€ Forbe F}. 0
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Corollary 3.2.8 A language is lincar if and only if 1t is recognized by a linear

groupoid. o

3.3 Transducers and Groupoids

Let M be a semigroup (possibly infinite). The family of rational subscts of M
denoted RAT(M) is defined as

(=)

. 0,{m} € RAT(M) for all m & M

3]

. If X,Y € RAT(M) then X U Y, XY € RAT(M)

(]

. If X € RAT(M) then X" € RAT(M)

=Y

. Nothing else is in RAT(M).

Given alphabets A and B, rational subscts of the semigroup A* x B* are called
rational relations over X and Y.

A rational transduceris a 6-tuple T = (X,Y,Q, qo, F,6) where X and ¥V
are finite alphabets, Q is a finite set of states, go € Q is called the initial state,
F C Qis aset of final states, and § C @x{X*xY")x@Q is a finite set of labeled
edges. We represent T as a finite graph where the vertices are the elements of
Q, and the edges are labeled with elements of X* x Y*. An element (u,v) €
X* x Y* is said to be accepted by the above transducer if and only if there
exist an element gr € F and a sequence of edges (go, i, )(i1s 3ia) * * - (€inr F)
such that the product of the labels is (u,v). Otherwise (u,v) is rejected. The
relation By € X* x Y* accepted by T is the set of pairs (u,v) € X* xY*
accepted by T'.

Let A be a finite alphabet. For any integer n and any word w =23 --- x5 €
A", we define the mirror image of w as the word w = z, ---z;. The proof of

the following theorems can be found in [13].

Theorem 3.3.1 A relation R C X* xY* is rational if and only if it is accepted
by some rational transducer. a
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Theorem 3.3.2 ([60]) A language L is linear if and only if there is a rational
relation R such that L = {uv | (g,v) € R}. 0

In [13] it is shown that any rational relation R can be accepted by a trans-
ducer T = (X, Y, @, qo, F, &) such that § is restricted to @ x (X U {e}) x (Y U
{e}) x Q. It is is not difficult, given a transducer with the above property, to
find an equivalent transducer T (i.¢. a transducer accepting the same relation)
such that § is further restricted to Q@ x ((X x {e})U ({¢} x ¥)) x @. We then
say that T is in normal form.

The interest of this normal form is that it allows us to see any normal
transducer T = (X, Y, Q, o, F, §) as a finite automaton accepting some lan-
guage L+ C {(X x {e}) U ({e} x Y}}*. We can thus see T as both a relation
and a language recognizer. We define the transformation monoid of a normal
transducer as the transformation monoid of the induced automaton (e.g. sce
[56] for a discussion of the transformation monoid of finite automata).

Let G be a finite groupoid, let A € G, and let L € A* be a language linearly
recognized by G with accepting set F C G. Moreover, let M4 = {R(a), L(a) |
a € A}. We define two monoid morphisms «, § : M3 — A" as follows. For all
e € A, a(R(a)) = ¢, a(L(a)) = a, B(R(a)) = a, and f(L(a)) = ¢.

Definition 3.8.3 The dertved lenguage of L according to G is defined as the
st D ={WeM;|1WeF}.

Definition 8.3.4 The derived relation of L according to G is defined as the
set By = {(o(W), 8(W)) | W € D(L)}.

We will often assume that a word W € Dy, represents, in the natural way,
a linear tree T € ALY with the yield of T being o W)B(W).

Proposition 3.3.5 The language Dy, is recognized by M(G).

Proof. It suffices to use the accepting set {U € M(G) | 1U € F} 0
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Proposition 3.3.6 I, is a rational relation such that L = {uv | (#,v) € R.}.

Proof. To prove that Ry is rational, define K = A x {e} U {¢} x A
and consider the morphism ¥ : M3 — K* defined by ¥(R(a)) = (¢, a) and
¥(L(a)} = (a,¢). Since Dy is regular then there exists a regular expression
for ¥(D.). Now this regular expression over K* can be viewed as a rational
relation over A” x A”, that is easily seen to be Fp.

A simple induction shows that L = {uv | (&,v) € RL}. O

In the rest of this section, we will compare the groupoids that linearly rec-
ognize a language L with the transducers that recognize a relation R such that
L = {uv | (&,v) € R}. This comparison will be done via the multiplication

monoid of the groupoids and the transformation monoid of the transducers.

Theorem 3.3.7 Let L C A" be a language linearly recognized by e groupoid
G. There exists a normal transducer T for Ry such that the transformation
monoid of T divides M(G).

Proof. Let M = (G',M,,6,1,F) be a finite automaton, where M, =
{L(a),R(e) | @ € A}, F C G is the accepting set, and & is defined by
8(g, R(a)) = ga and (g, L(a)) = ag, ¢ € G* and a € A. Then, the trans-
formation monoid of M is generated by M, and thus divides M(G).

Define the rational transducer T = (G, A x {€}, {e} X 4, p, 1, F) from M by
substituting the edge label (¢, @) for R(¢) and (g, €) for L(c), a € A. Then, T'is
a transducer recognizing Ry and having a transformation monoid isomorphic
to that of M. o

The converse of the above result needs more work to be proved. Before
doing so, we need to discuss some technicalities. We saw that for any linear
language I linearly recognized by a groupoid G, there exists a finite automaton
recognizing the derived language of L according to G. However, a language D
recognized by an arbitrary (normal) transducer is not necessarily the derived
language Dy, of some language L recognized by a groupoid G. More precisely,
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necessary coanditions for a language D € ({A x {e}) U ({¢} x A)) recognized

by a transducer T to be the derived language of some lincar language are:

1. for any e € A, both or none of (a.¢) and (¢, a) arc in D.

2. for any a,b € A and any m € (A x {¢} U {e} x A)", all or none of

(a, )¢, b, (€, a)(¢, b)m, (b, €}(a,c)n and (¢, b)(a,¢)m are in D.

The above conditions are justified by the fact thut a word W € Dj belongs
to Dy, if and only if a(W)8(W) belongs to L.

A normal transducer recognizing a language that satisfies the above con-
ditions will be called a special transducer.

The next proposition is given for groupoids with aperiodic and solvable
multiplication monoids but also applies to any groupoid whose multiplication

monoid belongs to a group variety.!

Proposition 3.3.8 Let R be a relation recognized by a special transducer T
with aperiodic (solvable) transformation monoid. Then the language L = {uv |

(&,v) € R} is linearly recognized by a finite groupoid with aperiodic (solvable)

multiplication monoid.

Proof. Let B = (A x {€}U{¢} x A) and let K C B" be the language recog-
nized by T viewed as an automaton. Let M = (S, B, 1,6, F) be the minimal
automaton recognizing K. It should be clear that M is also a transducer recog-
nizing R. Also, it is well known from automata theory that the transformation
monoid of M is still aperiodic (solvable).

Remark that because M is mirimal and because both or none of (¢,a)V
and (e, €)V belong to K, for any V, then starting from the initial state of M,
both (a,€) and (¢, ) go to the same state.

We define 2 groupoid G on the set AU SU {0}, where 0 is a new element.
The product in G is defined as follows. Let s, € S and a,b € A.

1. ab=s, where s = §(8(3, (¢, a)), (¢, b))

1Given any variety of groups V, the class of all rnonoids containing only subgroups in 'V
forms a variety of monoids called a group variety (see [56]).
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2. as = ¢, where ¢ = 6(s,{a,¢))
3. sa =1, where t = 8(s, (¢, 2))
4. All other product yicld 0.

To see that this groupoid linearly recognizes L, we just have to show that
the multiplication monoid M(G) of G recognizes K with the accepting set
(U € M(G) | WU & F}. This follows from the observation that the transfor-
mation monoid of M is isomorphic to the submonoid D € M(G) generated
by L{a) and R(«) for all a € A. Indeed, the action of L(e) (resp. R(a)) and
(a,¢) (zesp. (¢, a)) are identical on S. Furthermore, by the above remark, we
have that for any b € A there exists s € S such that L(a) and R(a) map b and
s to the same clement in S, for all a € A. In other words, all transformations
in D act identically on b and on s.

To complete the proof it suffices to show that all groups contained in M(G)
are isomorphic to a subgroup of the transformation monoid of M. This follows
from the fact that any element not in D evaluates to the absorbing element of
M(G) when muitiplied by itself. m]

Lemma 3.3.9 Let R be a relati~ recognized by @ normal transducer T with
aperiodic (solvable) transformation monoid. There ezists a special transducer
T with aperiodic (solvable) transformation monoid that recognizes a relation
R’ such that {uv | (&,v) € R} = {uv | (#,v) € R’}

Proof. Let B = (A x {€} U {¢} x A), and let K C B" be the language

recognized by T viewed as an automaton. The language K is recognized by a
finite monoid M with accepting set F C M. For any (a,bd),(c,d) € B, let

K(e,b,¢,d) = {w € B* | (,8)(c, d)w € K}

It is well known (see [56]) that K(a,b,¢,d) is also recognized by M.
For any @, b € A define the sets

Q(a) = {(a, ¢}, (6, 0)}
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L(a,b) = {{a,¢)(c,b), (€, a){e,a), (b, €){(a,€), (¢, ) (a,e)}

Let Lg = {uv | (%,v) € R} and let K* € B* be defined as follows.
K'=P U L] U L: U La U L.;, where

P= 1 Qa)

aElp

Li= | L(a,b)K(a,e,¢,b)

a bEA

Ly= | L(a,b)K(¢e,a,¢,b)

a,beA

Ly= {J L(a,b)K{b,¢,a,¢)
abEA

Li= |J L(a,b}K(e,b,a,¢)
abeA

Since L(a, b) is finite for every a,b € A, and since languages recognized by
aperiodic (resp. solvable) monoids are closed under finite union and concate-
nation with finite sets, the language K’ is recognized by some aperiodic (resp.
solvable) monoid. This automaton can be seen as a special transducer recogniz-
ing a relation R'. One easily check that {uv | (&,v) € R} = {wv | (%,v) € R'}.

O

Proposition 3.3.8 and Lemma 3.3.9 together yield the following theorem.

Theorem 3.8.10 Let R be a relation recognized by a normal rational trans-
ducer with aperiodic (solvable) transformation monoid. Then L = {zy |

(Z,y) € R} is linearly recognized by a finite groupoid with aperiodic (solvable)
multiplication monoid. ]

3.4 Hierarchy of linear languages

Let L be a regular language over the alphabet {0,1}, and let T be a linear
tree language over A = {0,1,q,b} such that the yield of T is {¢*}"w : n >
0, we L}

We wiil show that the multiplication monoid of any finite groupoid that
recognizes ' must be as ‘complicated’ as the syntactic monoid of L. As a
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censequence, we get a hierarchy of linear languages and linear tree languages
corresponding to the hierarchy of regular languages. For example, no groupoid
with aperiodic multiplication monoid can linearly recognize the yield of T if L
is the set of words that contain an even number of 1's.

Let T be recognized by a groupoid G 2 {a,5,0,1} with accepting set F
and suppose that the multiplication monoid of G has order k. Let v be a tree
in T such that the yield of v is a™b"w, where n > &, |w| > 0, and w € L.

Let E = {R(z),L(z) | z € {0,1,a,b}} and defire T = {a € E | la € F}
to be the set of words over E representing a tree in T. Observe that T is
recognized by M(G) with the accepting set {U € M(G) | 1U € F}, where F
is the accepting set of G.

Let v be represented by a word V € T, and for any z € A, let D(z) denote
any clement in {R{z), L(z)}. Define X as the longest suffix of V' that contains
no symbol of the form D(z) for z € {0,1} (i.e., no D(w;)}, where w; is a symbol
of w). Then, there exists 1 £ e € n such that

V = XD(w.)Y (3.1)
Let § = {R(a), L{a), R(b), L(})} and B = {R(0), R(1)}.
Lemma 8.4.1 Y € (B"L(b))'(B"L(e))’B*, wheret < k and j < k.

Proof. Having an occurrence of R{e) or R(b) after an occurrence of D(w;)
or having an occurrence of L(b) after an occurrence of L(a) would contradict
the fact that the yield of v belongs to ¢*4"{0,1}*. This shows that ¥ belongs
to (B"L())'(B*L(a))’ B*, for some integers  and j.

Let Y = 11Y2Y3, where Y; € (B*L(b)), Y2 € (B~L(a)), and Y3 € B".

Suppose that 7 > k. Then, by the Pigeon-hole Principle, there must be a
decompeosition Y = Z; L(a)Z; L(e)Zs such that Z; L{a) = Z1L(e)Z:L{a). This
meaas that V = XD(w.)Y1Y2Ys = XD(w,.)Y1Z, L(e)Z5Ys. Thus, there exists
atreein T chose yield is a®"~w’, where ¢ > 0 and v’ € {0,1}", contradicting
the deﬁniﬁon of T.

We p:zove that ;7 < k in the same way. O
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Lemma 3.4.2 In Equation 3.1, we have D(w.) = R{w, ).

Proof. Since n > k and since, by the above lemma, there are at most &
occurences of D(a) and at most k occurences of D(b) at the right of D(xw.),
then there must be at least one occurrence of D(a) and D(b) before D).
Thus, D{w.) = R(w.), otherwise the yield of v would not be of the form

a*b*{0,1}*. Morcover, w. = w; since no L(w,) can appear after a D{a) or a

D(d). O

Foralae M(G),let Z, ={ue€ B~ |u=aland X, ={u€ S* |u=aqa}.

Using Lemma 3.4.1 and Lemma 3.4.2, we can write

T= U L] XTZ&: L(b) teT ZaeL(b)Zain L(“) et zﬂi+jL(a)zu-‘+x+j ’ (3-2)

i<k

where the second union is taken over all 4, ay,. .. &iyj41 € M(G) such that
lyay L(b) - -- a: L(b)eaiq1 L(a) - - - iy : L(a) iy 541 € F

Let ¢ : {0,1}" — M(G)" be the morphism that maps 0 into R(0) and 1
into R(1). Trivially, any monoid recognizing L' = ¢(L), alsn recognizes L. We
can express L' as follows.

= UUZa Zagayy (3.3)
i<k

where the second union is taken over the same domain as in Equation 3.2.

Theorem 3.4.3 Let L C {0,1}" be a regular language, let T be any linear tree
language whose yield is Lo = {a"b"w | n 2 0, w € L}, and let G be any finite
groupoid linearly recognizing T. Then, M(G) is aeperiodic (resp. solvable) only
if the syntactic monoid of L is aperiodic (resp. solvable).

Proof. The class of languages recognized by aperiodic (resp. solvable)
monoid is closed under finite union and concatenation (see [56]). Hence, if
M(G) is aperiodic (resp. solvable), then Equation 3.3 shows that L can ve
recognized by an aperiodic (resp. solvable) monoid. o
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Corollary 3.4.4 In the previous theorem, if the linear language Lg is recog-
nized by a finite groupoid G such that M(G) is eperiodic (resp. solvable), then

the syntactic monoid of L is aperiodic (resp. solvable).

Proof. H such a groupoid exists, then this groupoid recognizes a linear tree
language whose yield is L. By the previous Theorem, the syntactic groupoid

of L must he aperiodic (resp. solvable). o

Observe that Theorem 3.4.3 and Corollary 3.4.4 can be generalized to any
groupoid whose multiplication monoid belongs to a variety that is closed under

concatenation.



Chapter 4

Loops and Quasigroups

In this chapter, we will study the case of finite quasigroups which are those
groupoids whose multiplication table forms a latin square, i.e. no row and no
column of the multiplication table contains two identical elements.

The study of quasigroups has a long history (see [26]). The combinatorial
properties of latin squares were investigated as early as the eightcenth cen-
tury, and quasigroups were intensively studied between 1930 and 1950. In
particular, a theory of loops has been developed which closely follows that
of groups. Quasigroups have also been considered from the point of view of
computational complexity. In [52] some subproblems of the graph isomor-
phism problem were investigated and graphs constructed from combinatorial
structures were considered. In particular, the isomorphism problem for latin
square graphs was proved to be in DTIME(n!°s™}. Miller also showed that the
isomorphism problem for quasigroups is in DTIME(n'¥¢*) and, receatly, Wolf
[82] proved that these problems are in DSPACE(log*(r)).

4.1 Basic theory of loops

The purpose of this section is to present a short introdnction to the algebraic
theory of loops. This is motivated by the fact that the number of textbooks
on this topic is really limited and that loop theory is little known. A large
part of the material that appears here comes from papers written in the forties
by A.A. Albert and R.H. Bruck. Their work contains an impressive amount
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of information but is not easily accessible. Furthermore, there exists no single
source cxposing comprehensively the theorems on normality, loop decompo-
sitions, and loop extensions, along the lines of the analogous results in the
theory of groups. This survey does not intend to be complete but at least it
gives many theorems that we believe are fundamental for an understanding of
the algebraic structure of loops.

A quasigroup @ is a groupoid satisfying right and left cancellation laws (i.e.
for all ,b € Q, az = b and ya = b have one and only ore solution). Thus the
Cayley table of a finite quasigroup forms a latin square.

We note that if a finite quasigroup is associative then it is a group. This

is proved in the foliowing theorem.

Theorem 4.1.1 If G is a finile associative quasigroup then G is a group.
Proof. It suffices to show that G possesses an identity element. Let a,l € G
be such that la = a. Since G is associative, for any £ € G' we have that
l(az) = (la)z = az showing that ! is a left identity of G. Similarly, we show
that G possesses a right identity r € G. Finally, since r = Ir = [ then, l is an
identity for G. m]

A loop is a quasigroup with an identity. We define subloops and homomor-
phisms between loops in the same manner as for groups. One observes that
‘because any closed subset of a finite loop that contains the identity satisfies
both cancellation laws (the associated sub-Cayley table is still a latin square),
then it must be a subloop. In the sequel we will consider only finite loops.

4.1.1 Normality and homomorphisms
A subloop N of a loop L is called normal if it satisfies

zN = Nz , (Nz)y = N(zy) , y(zN) = (yz)N (41)

for every z,y € L. Equation 4.1 implies that (zN)y = (Nz)y = N(zy) =
(zy)N = z(yN) = z{Ny). Then we have

z(Ny) = (zM)y (42)
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Since N contains the identity, z € Nz for every z, and y € Nz implies
y = nz for some n € N, Thus, Ny = N(nz) = (Nn)x = Nz, showing that
any normal subloop partitions a loop into disjoint cosets. Furthermore, by the
cancellation laws, each coset has cardinality |N|. Indeed, these cosets form a

loop, under the operation (Nz)(Ny) = N(zy), that is denoted by L/N. This
is formalized in the following theorem.

Theorem 4.1.2 ([16]) If N is a normal subloop of the loop L, then N defines
a natural homomorphism x — Nz of L onto the quotient loop L/N.

Procf. By Equations 4.1 and 4.2, we have (Nz)(Ny) = ((Nz)N))y =
(N(Nz))y = (NN)z)y = (Nz)y = N(zy) and so (Nz)(Ny) = N(zy) for
every =,y € L. It can be verified that L/N satisfies both cancellation laws,
and the identity is N. a

Clearly, the cardinality of L/N is [L{/|N|. A loop L baving no proper
normal subloop except {1} is called simple. Since the order of a normal subloop
always divides the order of the loop, every loop of prime order is simple.
The above theorem is also true in the reverse direction. That is, any loop

homomeorphism induces a normal subloop.

Theorem 4.1.3 ([16]) The kernel K of a ho:nomorphism ¢ : L — M, where
L and M are two loops, is a normal subloop of L.

Proof. Since K is closed under multiplication, it is a subloop of L. If k is
an element of K, then for any = in L there is~a unique element a in L such
that zk = az. Hence zp = (ap)(z¢) and ap = 1 by the cancellation laws.
Therefore ¢ must be in K. Similarly we show that if kz = zb for k in K then
b is also in K. This shows that for any =z in L, 2K = Kz. Now if z,y, 2z are
in L then by the cancellation laws there exist unique elements p,q,r,s of L
such that z = (pz)y = ¢(zy) = =(yr) = (zy)s. But if one of p,q,r,sisin K
then z¢ = (z)(yy) and thus, each of p, ¢, 7, s is in K (still by the cancellation
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laws). This proves that K satisfies Equation 4.1 and then is a normal subloop

of L. 0

The center Z of a loop L satisfies Equation 4.1, so Z is an abelian normal
subloop of L. In fact any subloop of the center of a loop L is an abelian normal
subloop of L. We will come back to the center of a loop in subsection 4.1.4
when we will talk about nilpotency.

In the rest of this subsection we will give some properties of normal subloops

and loop homomorphisms.

Theorem 4.1.4 Let N, K be subloops of a loop L with N normal. Let h :
L — L[N be the natural homomorphism. Then the inverse image of h(K) is
KN,

Proof. The inverse of h(K) is the union of all cosets kN such that k € K,
that is K N. Q

Corollary 4.1.5 Let N and K be subloops of a loop L with N normal in L.
Then N is a normal subloop of KN. 0

Corollary 4.1.6 If N is a normal subloop of a loop L and K is a subloop of
L such that N C K C L then N is normal in K. n|

Theorem 4.1.7 Let ¢ : L — H be a loop homomorphism, and Iet NCULbe
the kernel of . Then H and L{N are isomorphic.

Proof. Observe first that all elements in a given coset of N have the same
image in H. Moreover, if ¢ = bz and ¢(a) = 4(b), then ¢(z) =1 and a € bN.
This shows that H and L/N have the same cardinality.

Let § : H — L/N be the bijection defined by 8(¢(e)) = aN. Then, since
ab € abN, we have 8($(ad)) = (ab)N = (aN)(3N) = 6(¢(a))6((b)), proving
that & is an isomorphism. ju|
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Theorem 4.1.8 Let L be a loop and H, N normal subloops of I, with H C N.
Then, (L/H)/(N/H) is isomorphic to L/N. o

Proof. Let «: L — L/N, 6 : L — L{H and ¢ : Lf{H — (L/H)/(N/H)
be the natural homomorphisms. Furthermore let 3 = ¢8. Since ¢=1(1) =
6-1¢~1(1) = 0-1(N/H) = N then the kernel of 8 and the kernel of ¢ are
identical. But thiz implies that the image of & and ¥ are isomorphic. m}

Let L be a loop and N, K be subloops of L. Then the subloop gencrated
by N UK is called the union of K and N, and is denoted by (K U N).

Theorem 4.1.9 If N, K are subloops of a loop L with N normal, then
(KUN)=NK =KN.

Proof. We use here the proof of [16}. Let B = (KUN). By corollary 4.1.6,
N is a normal subloop of B. Let § : B — BN be the natural homoimorphism.
Then, by Theorem 4.1.4 the inverse image of 8(K) is KN, a subloop of B
containing both K and N. This implies that B = KN. ]

In subsection 4.1.2 we will also prove that the union and the intersection

of two normal subloops are normal subloops.

4.1.2 Multiplication group and inner mapping group

In this subsection we will see that with any finite loop we can associate two
finite groups. These groups are very important in loop theory. They are used
as a tool for proving many theorems, and also form a link between loop theory
and group theory.

In [2], Albert consider the muitiplication monoid of a quasigroup Q. In this
case, the functions R{e) and L(a) are permutations on @, and M(Q)is a group
called the multiplication group of Q. On the other hand, if the multiplication
monoid M of a groupoid G is a group, then G must be a quasigroup.

Theorem 4.1.10 A finite groupoid G is ¢ quasigroup if end only if M(G) is
a group.
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Proof. We only need to show the if direction. Let M(G) be a group such
that J is the identity permutation. Since G is finite, it suffices to show that for
any a,b € G there exist ¢,d € G such that ac = band da = b. Let ¢ = bL~1(a)
and d = bR~'(a) where L='(a) and R~!(a) are the respective inverses of L(a)
and R(a). Then ac = bL~(a)L(a) = b] = b and da = bR™'(e}R(e) = bI = b,
concluding the proof. m

In particular, if G contains an identity and M(G) is a group then G is a
loop.

Theorem 4.1.11 ([2]) Let L be a loop with center Z and M be its multipli-
cation group with center Z. Then Z is isomorphicto Z and Z =12,

Proof. First we prove that Z C 1Z. If ¢ € Z then R(c) = L(c). Furthermore,
for all z and y in L we have z(yc) = (zy)c and c(zy) = (cz)y. Equivalently,
R(c)L(z) = L(z)R(c) and L(c)R(y) = R(y)L(c). Hence if c € Z then R(c) =
Lic) € 2.

Next we prove that 12 C Z. Suppose that C € Z and let ¢ = 1C. We
will show that c is in the center of L. First we have z¢ = el(z) = 1CL(z) =
1L(z)C = zC showing that C = R(c). Similarly cz = cR(z) = 1CE(z) =
1R(z)C = zC showing that C = L(c). Hence R(c) = L{c) and so, we have
zc¢ = cz. Furthermore R(c)L(z) = L(z)R(c) implies that z(yc) = (zy)ec while
L(c)R(y) = R(y)L(c) implies ¢(zy) = (cz)y. We thus have zc = cz, c(zy) =
(ex)y and (zc)y = z(cy) from what it is easy to show that (zc)y = z(cy)
proving that ¢ € Z.
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We have shown that Z = 12. It remains to prove that Z and Z are
isomorphic. First, by the above discussion, we know that if C € Zand e = 1C
then C = R{c) = L(c). This proves that Z and Z have the same cardinality.
Now, let 8 : Z — Z be defined by 6(c) = R(c). Clearly & is one-to-one since,
given C € Z, ¢ = 1C is uniquely defined. Thus & is a one-to-one function
between two sets of same cardinality, that is a bijection. Furthermore @ is an
isomorphism since for any C,D € Z we have (1C)(1D) = 1CR(1D) = 1CD.

ju|

In [15], Bruck used a subgroup of the multiplication group called the inner
mapping group as a very useful tool to decide, among other things, if a subloop
is normal. Recall that a subloop N of 2 loop L is normal if it satisfies

zN = Nz , (Nz)y = N(zy) , y(zN) = (y=)N
This condition can be rewritten as
N = NR(z)L™(z) = NR(@)R(y)R (zy) = NL(z)L(y)L™(y=)
for all z,y € L. Let J = J(L) be the subgroup of M(L)} generated by all
T(z) = R(@)L™(z),

R(z,y) = R(z)R(y)R™ (zy),
and

L(z,y) = L(z)L(y)L™*(yz)-

We call J the inner mapping group of L. The above discussion makes the
next theorem clear.

Theorem 4.1.12 ([15]) A subloop N of a loop L is normal iff N7 =N. O

The next lemma will be useful to give another characterization of the inner
mapping group and to prove the normality of curtain subloops of a loop.

Lemma 4.1.13 ([15]) Let L be a loop, M its multiplication group and J ifs

inner mapping group. Then for any element X € M there exists U € J such
thet X = UR(1X).
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Proof. Let K = {a € M | a € JR(la}}. We will proceed by proving that
aP € Kforanya € Kand P € G = {R(z),L(z) | z € L}. Since ,G is a
generator of M, this will imply that KM = K and that K = M.

Observe first that JR(z)} = JT(z)L(z)=TL(x). Hence K = {a¢ € M |
a € JL(la)}. Let @ € JR(t) where la =¢. We have

aR(z) € TR()R(z) = TR(t, z)R(tz) = T R(t,z)R(1aR(z)) C K,

alL(z) € TR(t)L(z) = TT (&)L, z)L(zt) = TT()L{E, z)L(1eL(z)) C K.

m]

Using the above lemma we can give another characterization of the inner

mapping group.

Theorem 4.1.14 The inner mapping group of e loop L is the subgroup of
M(L) generated by all « € M such that la =1 where 1 is the identity of L.

Proof. Clearly 1U =1 for all U € J. Hence it suffices only to show that if
1X =1 for some X € M then X € J. Let o € M be such that la = 1. Then
by the preceding lemma a € JR(la) = JA(1) = J, proving the theorem. O

Lemma 4.1.13 can also be used to prove the normality of certain subloops
of a loop. A nonempty subset S of a loop L is called self-conjugate if SJ = S.

Theorem 4.1.15 [16] Let H be a subloop of a loop L, and define K = {k €
H :kJ C H}. Then, K is the largest normal subloop of L contained in H.

Proof. Since (KJ)J € H, K is a self-conjugate subset of L. Let k € K and
U € J. Then, by Lemma 4.1.13, R(k)U € JR(kU) so (Vk)U = KR(k)U C
KJR(kU) € H(kU) C HH = H This proves that KK = K and that Kis a
subloop of L. Furthermore, since K7 = K then, K is also normal. To show
that K is maximal, observe that if N is 2 normal subloop of L contained in
H then, by Theorem 4.1.12, N7 C N C H znd thus, NC K. =}



Corollary 4.1.16 [16] Every self-conjugate subset of a loop L generates a

normal subloop of L.

Proof. Let S be a self-conjugate subset of L generating a subloop H C L.
Defining K as in Theorem 4.1.15, we have SF7 € § € H. This shows that

S C K and that K = H. Hence, by Theorem 4.1.15, H is a normal subloop
of L. 0

Theorem 4.1.17 Let S be any subset of a loop L. Then, (ST} is the smallest
normal subloop of L that contains S.

Proof. First, observe that S.7 is self-conjugate. Hence, by the above corollary,
(ST} is 2 normal subloop of L. Now, suppose that N is a normal subloop of
L that contains S. Then, SJ C N and so, {SJ) C N. Q

Given a loop L and a subset S of L, we call {(S7) the normal subloop of L
generated by S. The next two theorems establisk a relationship between the
normal subloops of a loop L and the normal subgroups of M(L).

Theorem 4.1.18 Let L be a loop and M its mulliplication group. If N is a
normal subgroup of M then LN is e normal subloop of L.

Proof. Letting N = 1N wehave N = INJ = 1JN = 1N = N. Heance, N
is normal by theorem 4.1.12. o

Let N be any normal subloop of a loop L and define the following sets:
My={UeM|Vz€LzU € zN} and Iy = T N Mn. So My is
the set of mappings of M fixing the cosets generated by N. Observe that if
z € L and U € My then, by definition of My we have that zU € zN, and
so, My C zN. Furthermore, if n € N, then, R(r) is an element of My,
and zn = zR(n) € zMy implies that zN C zMy. Hence, we have that
N = zMy for any = € L and in particular N = 1My.

Theorem 4.1.19 ([8, 15]) Let N be a normal subloop of @ loop L then
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(i) My is a normal subloop of M(L) and M(L/N) is isomorphic to
ML)/ My.

(it) T n is a normal subloop of 7 (L) and J(L/N) is isomorphic to J{L)/ T n.

Proof. (i) Let 0 : L — L/N be the natural homomorphism. Then it could be
verified that ¢ : M(L) — M(L/N), the function induced by R(z)¢ = R(z0)
and L{z)¢ = L(z8), is 2 homomorphism such that (za)f = (z0)(a¢) for all
r € L and o € M{L). The kernel K of ¢ is the set of all @« € M(L) such that
al = 0. Then x € K iff (xx)8 = 28 for every z € L or equivalently zx € zN.
But this implies that K = My. Hence My is normal in M and M(L/N) is
isomorphic to M/ My.

(i1) Simply observe that ¢~1(1)NJ = Jn. 0

We close this subsection with two theorems on the properties of normal

subloops where the proofs make use of the multiplication group and the inner

mapping group.

Theorem 4.1.20 Let K, N be normal subloops of a loop L. Then KN N ts
e normal subloop of L. a

Proof. Let a € NN K and let J be the inner mapping group of L. Then
aJ € N and a7 € K by Theorem 4.1.12. Hence (NNK)J € NN K, proving
the normality of N N K again by Theorem 4.1.12. o

Theorem 4.1.21 Let K, N be normal subloops of @ loop L. Then (K UN) is
e normal subloop of L. a

Proof. We know from group theory that the union of two normal subgroups
of a group is still a normal subgroup. Hence Mg My is a normal subgroup
of M. By Theorem 4.1.13 it is sufficient to show that KN = ILMxMp. In
the observation preceding Theorem 4.1.19, we have seen that N = 1My and
K = 1Mg. Thus, IMgMy = KMy C KN where the last inequality holds
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by definition of My. Morcover, we have AN = (KUN) by Theorem 4.1.9, and
R(1) € MxNMy. Thus, K = IMgR(1) C IMxgMy and N = 1R My C
1M My, concluding the proof. O

4.1.3 Commutators and associators

For any elements z,y and = of a loop L we define the commutator [z, y] and
the associator [z,y, z] as the unique solution to the equations zy = (yz)[z, y]
and (zy)z = (z(y=z))[z, ¥, 2]- If N is a normal subloop of L then we denote by
Siv.z) the subloop generated by all commutators and associators of the form

[n, 2z}, [z,7], In, 2, 9], [z, ¥] and [z,y,n] where n € N and z,y € L.

Theorem 4.1.22 For eny normal subloop N of a loop L, Sn,1) is a subloop
of N.

Proof. Let n € N and z,y € L. Then (nz)y = (n(zy))[n,z,y]. Since N is
normal there exists ny,n2 € N such that (nz)y = (zy)n, and (nlzy))[n,z,y] =
(zy)(n2[n, z,¥]). Hence n; = nafn, z,y] and [n,z,y] € N. A similar argument
shows that [z,n,y], [z,v,n], [»,2], [z,n] € N. u}

We define (N, L) to be the normal subloop generated by Sivz). More
specifically, (N, L) = {Sv.zyJ) where J is the inner mapping group of L.
When L is a group, it is not difficult to show that Sgvry = (IV, L). However,
no proof is known (at least from the author) when L is a loop, with the notable
exception where N = L. Let Sz z) be denoted by L'.

Theorem 4.1.23 ([16]) If L is a loop then L' is a normal subloop.

Proof. We begin the proof by showing the following three properties of L":
l.zyeffyzel’
2. (zy)ze U'iff z(yz) € I
3. (zy)z € L' iff (ab)e € L', for any permutation (a,,¢) of (z,y, 2).

79



The two first properties follow from the fact that L’ contains all commutators
and associators. Let z,y,z be elements of L. Thus (zy)s € L' = z2(yz) €
L'« (y=)r. € L', so

(zy)z € L' = (yz)z e L' {4.3)
Now let k& = [z,y]. Then (zy)z € L' & ((yz)k)z € L' & {z(yx))k € L' &
Hyz) e L' & (yz)z € L', so

(zy)z: € L'~ (yz)z e L' (4.4)

The third property is just a consequence of equations 4.3 and 4.4.

Now, in order to prove that L’ is normal, we must show first that zL' =
L'z. If z is a given element of L the equation xa = bz induces a bijection
a — b from L to itself. Choose any z' such that 2’z € L’. Then using the
above properties we get z'(za) € L' — (z'z)e € L' «» a € L' and, similarly,
z'(bz) € L' « b € L'. Since za = bz, we see that a and b arec both or neither
in L'. Thus zL! = L'z for every z € L.

It remains to show that L'(zy) = (L'z)y and that (zy)L’' = z(yL'). We
will only prove the former equation, the proof of the last one being similar.
Fix z,y in L and write p = a{zy) = (bz)y. ¥ we choose any w such that
w(zy) € L' then, using the above properties we have pw € L' + (a(zy))w €
J (w(zy))e € L' + a € L'. Similarly we deduce that pw € L' =+ be L'.
Thus e(zy) = (bx)y if and only if a,b are both in L', i.e. L'(zy) = (L'z)y. O

The next theorem plays an important role in the central nilpotency theory

of loops.

Theorem 4.1.24 Let N be a normel subloop of a loop L. Then N/(N,L) is
in the center of L{(N,L).

Proof. Let 2 : L — L/(N,L) be the patural homomorphism of L onto
L{(N,L). We want to prove that k(N) is in the center of L/(N,L). Let
n € N, z,y € L, and let m = k(r), a = k{z) and b = k(y). We have
k{(nz)y) = (me)b = (m(ab))k([r,z,y]) = m(ab). Similarly we find that
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(am))b = a(mb), (ab)m = a(bm), and ma = am. Hence k(n) is in the center

" Tof LJ(N, L). o

Theorem 4.1.25 For any loop L, L{(L, L) is an abelian group. Furthermore,
if K is @ normal subloop of L such that L{K is abelian then (L,L) C K.

Proof. The first statement is a direct consequence of Theorem 4.1.24. Suppose
that K is a normal subloop of L and that L/K is abelian. Let ¢: L — L/K
be the natural homomorphism. Then, for any z,y,z € L we have ¢{[z,y]) =
#{{z,y, z]) = 1, where 1 is the identity of L/K. Henceforth, (L,L) € ¢~}(1) =
K. 0

The subloop (L, L) is called the commutetor-associator subloop of L. It
will play a major role when we will discuss solvable loops.

In [15] Bruck defines (N, L) in a different manner. Let J be the inner
mapping group of L and let N(J) be the subloop of L generated by all elements
of the form nUL!(n) withn e Nand U € J. Letn € N, U € J and
m = nUL"Y(n). Then nU = mL(n) = nm and so, m € N. Therefore, N(J)
is a subloop of N. In the rest of this subsection, we will prove that N{J)is a
normal subgroup of L and that N(J) = (N, L).

Lemma 4.1.26 ([15]) Let H be a subloop of a loop L. If K is any subloop
of L such that H(J) C K C H then K is a normal subloop of L

Proof. Let z be any element of K C H, U any element of J. Then
zULYn) =y € H(J) € K by bypothesis. Hence zU = yL{z) = zy is
in K. Hence J maps K into itself. But this means that K is normal. o

Theorem 4.1.27 If N is subloop of L then N(J) is a normal subloop of L. D

Theorem 4.1.28 Let N be a normal subloop of L. Then (N,L) C N(J)-
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Proof. We must show that [r,z],[z,n},[n,z,¥],{z,n,y] and {z,y,n] belong
to N(J) for any n € N and z,y € L. We will only do the proof for (z,n,y],
the other cases being similar. First, observe that if n € N and z,y € L
then (nz)y = (na)(zy) where a = nR(z,y)L71(n) € N(J), z(yn) = (zy)(nb)
where b = nL(y,z)L~(n) € N(J) and nz = z{nc) where ¢ = nT'(z) L' (n) €
N(J). Hence, since N(J) is normal, there exists ay,...,as € N(J) such that
z(ny) = z(y(na1)) = (z(yn))az = ((zy)n)as = (z(yn))as = (z(ny))as. But
z(ny) = ((zn)y)(z, n,y] implies that [z,n,y] = as € N(T).

Lemma 4.1.29 ([15] p-272) Let N be e normal subloop of a loop L and Let

G be any sel of generators of J. Then N(J) is generated by all elements
nUL"l(n) withne N end U €G. O

Theorem 4.1.30 If N is @ normal subloop of a loop L then (N,L) = N(J).

Proof. In view of the previous lemma and Theorem 4.1.28 it is sufficient to
show that nT.L~(n), nR(z,y)L~1(r) and nL(z,y)L'(n) belong to (N, L).
The proof is similar to that of Theorem 4.1.28. o

4.1.4 Solvable and nilpotent loops

Among the most important normal subloops of a loop L, we have seen that
there are the subloops (N, L) defined for any normal subloop N. As a particu-
lar case there is also the commutator-associator subloop of L. Finally, we have
also introduced the center, an abelian normal subloop of L. These subloops
play the same role in the theory of loops as their analogues in group theory.
In particular they are used to define nilpotent and solvable loops.

Let L be a finite loop. We call a normal series a sequence

L=Lo2LD--2Li={1} (4.5)

where for all ¢ such that 0 < ¢ < k, L; is 2 normal subloop of L. Recall that
by corollary 4.1.6, L;.; is also normal in L;. Furthermore when L;/L;_, is
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simple for all 2 then (4.5) is called a composition series. It has been shown
(see {3, 16]) that any two normal series of a loop have isomorphic refinements
{Schreier Refinement Theorem). Hence, as a consequence, we have that all
composition serics of a loop are isomorphic (Jordan-Holder Theorem).

A finite loop L is said to be solvable if the sequence
L=L®DLMD>...00>...
where for each ¢ we have L+1) = (L0, L)), terminates in the identity.

Theorem 4.1.31 Every subloop and quotient loop of e solvable loop is solv-
able.

Proof. Observe first that if N is a subloop of a loop L then (N, N) is a
subloop of (L, L). Thus, if L is solvable then N®) C L) for all i, proving that
N is solvable, Suppose now that K = L/N where L is a solvable loop and N
is 2 normal subloop of L. Let ¢ : L — K be the natural morphism. Then
any commutator (resp. associator) of K is the homomorphic image of some
commutator {resp. associator) in L. This means that (K, K) C ¢((L, L)).
Hence for any ¢ we have K C (L{), proving that K is solvable. o

Theorem 4.1.32 A loop L is solvable if and only if it has a normal series
L=Lo2L[2---2 L= {1}

in whick L;_y/L; is abelian for all 1.

Proof. By Theorem 4.1.25 L/(L, L) is an abelian group. Thus, any solvable

loop possesses a normal series of the above form. For the other direction,

observe that for any i, since L:/L;; is abelian then, by Theorem 4.1.25,

(Liy Li) € Lisa. Bence for any i if LC) C L; then L6H) = (LM, L0) C

(Lsy L) € Liyz. But L = L® = Ly implies that L® C L; for all . In
particular L(9) C 1, proving that L is solvable. . a

Corollary 4.1.33 4 loop L is solvable if for some normal subloop N of L
both N and L{N are solvable.



Proof. M L/NDL/ND.--DL_,/N2N/N,and NDN, D...D
N,—1 2 1 are series satisfying the property of thcorem 4.1.32 then L 2 L, 2
v 2 N D Np D--- D1 is a series satisfving the same property. a

We define a loop to be nilpotent if it has a normal series (4.5) such that
L;/L;y is ir the center of L/L;_; for all 1 < ¢ < k. Such a series is called
a central series. One can observe that since L;/L;.; is abelian, any nilpotent

loop is also solvable. For any nilpotent loop we define two canonical central

series: The lower central series is the normal series
L=H,2H:2---2H,={1} (4.6)

where for all 1 <« m, Hyyy = (H;, L). The upper central series is the central

series
MNY=Z2CZ C---CZi=1L (4.7

where for all £ > 0, Z;/Z;_, is the center of L/Z;_,.

Theorem 4.1.34 Let L be a loop having lower and upper central series as in

(4.6) and (4.7). If ({.5) is any central series of L then, H; C Ly and
L; C Z; for all i.

Proof. The proof is identical to the case of groups (see [36] p.151). o

Hence the upper and the lower central series of a nilpotent loop have the
same length. We call this length the class of the loop. Note that a loop of
class 1 is an abelian group.

Next theorem relates the nature of a loop with that of its multiplication
semigroup. The proofs can be found in [15] pp.280-282.

Theorem 4.1.35 Let L be a loop, M its multiplication semigroup, and J iis

inner mapping group.

1. If M is nilpotent of class ¢ then L is nilpotent of class not greater than
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2. If L is nilpoteni and has order g then M and J are solvable and their

order divides some power of g.

The above theorem cannot be extended by stating that L is nonsolvable
whenever M is nonsolvable. In Subsection 4.9, we will construct a loop of
order 10 that is solvable and whose¢ multiplication group is nonsolvable. It
remains to determine if L nonsolvable implies that M(G) is also nonsolvable.

Theorem 4.1.35 can however be improved in.the case where the order of L
is a power of some prime number. This kind of loop is called a p-loop. Bruck
first mentions these loops in [15]. His first motivation was to show that any
nilpotent loop can be decomposed into a direct product a finite p-loops. This
result is well known to be true for groups, but he proved it to be false for
general loops by giving explicit counter example of order 6. He observes also
that since there exist loops of prime order having a non trivial subloop then,
one cannot expect to develop a theory of p-loops comparable to what exists in
the associative case. However, from the above results, we obtain the following
corollary. ([15] p. 282).

Corollary 4.1.36 If L is a nilpotent p-loop then M(L) end J(L) are nilpo-
tent p-groups. o

4.1.5 Isotopy

We have already introduced the notion of isotopy in Chapter 2. Most of the

results stated here are simple restatements, in terms of loop, of previous ones.

Theorem 4.1.37 ([3] Thm. 2) A loop L is isotopic to ¢ group G if and only
if L and G are isomorphic.

Theorem 4.1.38 ([3]) If L and H are isotopic loops then H is isomorphic
to a principal isotope of L.

Theorem 4.1.39 ([8]) If(5,7,¢) is a principal isotopy of a loop (L,-) onto o
loop (L, *) then there ezist elements f,g € L such that (6,7,:) = (R(f), L(g), ).
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. Isotopy preserves some important properties of loops. We just state some

of them without proof.

Theorem 4.1.40 ([3]) 1. Every loop isotopic to a loop (L,-) is isomorphic

to a loop (L, *) having precisely the seme normal subloops as (L,-).

e

Any loop isotopic to a simple loop is simple.

o

Isotopic loops have isomorphic multiplication groups.

A,

. Isotopic loops have isomorphic inner mapping groups.

5. Isotopic loops havc isomorphic center.

As Albert mentions, the first part of the above theorem only says that if
"(N,-) is a normal subloop of (L,-) then (N, *) is a normal subloop of (L, *).
But, it does not say that (N,-) and (IV, %) are isotopic at all.

4.1.6 Conjugated loops

With any loop (L,-) we associate five loops: (L, /), (L,\), (L,0)}, (L, #) and
(L, R). These six loops are said to be conjugated. The products of the conju-
gates of (L,-) are defined as followed. For 2ll ¢,b,c € L,

1. a/b=ciff c-b=c (Right division)

2. a\b=ciffa-c=b (Left division)

3. aob=ciff b-a=c (Dual product)

4. apb=ciff b-c=a (Dual right division)
5. ajb=ciff c-a =5 (Dual left division)

Some authors define a loop as a set L together with three binary operations
-, / and \ such that for all z,y € L, the following conditions are satisfied.

. G) 2\(z-y)=z-(z\y) =y
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(1) (z-y)fy=(zfy)-y=x
(1) z/z = y\y

Without condition (iii) we only get a quasigroup and it is not difficult to see
that the two first conditions are equivalent to the definition of the conjugates
\ and /.

It is a simple exercisc to prove that conjugation is an equivalence relation.
Naturally it is possible for two of the above conjugates to be the same (e.g. if
one of the conjugates is commutative). But this situation is subordinated to

the following theorem.

Theorem 4.1.41 ([26]) The number of distinct conjugates of a loop (L,-) is
1,23 or 6.

Proof. Let Ry, R; and R; be the functions mapping (L,-) in (L, /), (L\)
and (L,0) respectively. Then, one can verify that {R, Rz, Ra} generates a
group G isomorphic to the symmetric group S;. Hence the number of distinct
conjugates must be equal to some subgroup of 5. ' u!

Recall that the ezponent of a group G is the smallest integer ¢ such that
a? =1 for all a € G. The following lemma will be usafull later.

Theorem 4.1.42 Let L be ¢ loop and M its multiplication group. Then for
any a,b € L we have afb = aR*"(b) and a\b = bL9(a) where q is the
ezponent of M.

Proof. The proof is immediate using the fact that a/b = aR-1(5) and, since
q is the exponent of M, R1(b) = R*-1(}) (the case a\b is similar). o

4.1.7 Loop extensions

In this last subsection, we will see how, given two loops K and N, we can
construct a loop L such that N is a normal subloop of L and K is isomorphic
to L/N.
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Let L be a loop, N a normal subloop of L, and L/N the quotient loop.
We would like to define a product such that its application on N and L/N
produces a loop isomorphicts L. Define the set K = {k, kq,.... %} such that
all k; € L, by =1, m = |L/N{, and [k],[k2],...,[~wm] are the coscts generated
by N. Then, any element z € L can be uniquely written as the product of
an element &; with an element n; € N. So, there is a bijection between the
elements of L and those of K x N.

I ki, k; € K and n;,n; € N then there is a unique k; € K such that [&] =
[kil{k;]. Furthermore (kin;)}(k;n;) = kiz, where z = ((kni)(k;n;)) L (k).
Hence for any k;, k; € K we define the function ¢z, : N x N — N by

i k; (miy ny) = (meL(k:))(ms LS D)L (ki)

where k; € K is such that [k} = [A]{k;]. Then, the loop (L/N x N, x), defined
by ([k], ni) * ([k;], 75) = ([&]{ks], deik, (miy m5)), is isomorphic to L.

This idea can be used Lo construct an extension of two arbitrary loops.
Iet K and N be two loops. For each pair ky,k; € K we associate a function
@k ke t N XN — N such that the three following conditions are satisfied: First
¢11 = N, second ¢z, is a loop with identity 1 for all k € K, and finally 11s a
left identity of ¢, for all k € K. With this setting we define the extension of
K and N (called crossed extension by Albert [3]) as the the loop (K x N, *)
define by

(k1. m1) * (K2, ma) = (krk2, Sk, k(1, 22))

Theorem 4.1.43 ([3]) A loop L is isomorphkic to an extension of two loops
K and N if and only if N is tsomorpkic to @ normeal subloop of L and K is
isomorphic to L/N. a

It seems that there is no loop analogue of the wreath product (see [36).
However, the direct product of two loops bas been studied. We refer the
interested reader to [16]. For more results on loops extension see [22].



4.2 Notation and definitions

In this section, we present the basic notation and definitions that will be used
in the following. At the end of the section, we prove a lemma that will be
uscful thereafter.

If r is the root of a tree T, and if ry and ra are respectively the left and
right child of », then the subtiees of T rooted at ry and at r; are respectively
zalled the left and the right subirees of T'.

We need to generalize the notion of special trees introduced in Chayter 2.
Let Q be an alphabet and S a set of variables. A special tree T over AU S is
a tree where each element of S appears exactly once as a label of a leaf.

As an example of application of the special trees, let T° be a tree over an
alphabet @ and let 77 be any subtree of T'. If we replace the subtree T} in T
by a leaf labeled with X, then we obtain a special tree T over QU {X}. Se,
we have decomposed T into two trees, T and T, and we have T = T X 7}.

We denote by (T T3) the tree T with left subtree 7 and right subtree
T>. As an example, for variables ¥ =V, (X Y) represents the special tree
whose yield is XY, and T ca- ~ represented by (X Y)-X 7)) Y T3.

In this thesis we will mostly use the single variable X. Thus, to simplify
the notation we will write - instead of -X when the context clearly indicates
that only X is used. Observe that -X, for a fixed variable X, is an associative
operation. Hence, for any special trees T3,. .., T; over QU{X}, the expression
Iy-T3- -+ - T} defines the same special tree no matter which parenthesization
is used. This will be denoted by IT%,, T:.

For any tree T, we define the value of T, denoted v(T'), to be the element
of Q resulting from the evaluation of the yield of T' using the induced paren-
thesization. If T is a special tree over Q U {X} and T, T: are two trees over
Q, then

o(Ty) = o(T3) = o(T - T) = o(T - v(T2)) = o(T - T3) - (4.8)



On the other hand, a recnrsive application of the cancellation laws shows that
(T - T]) = U(T . Tg) = U(Tl) = U(T:) . (19)

Two special trees are said to be yield-equivelent if they have the same yicld.

In the rest of this section, we describe a way of modifying a tree without
changing its yield or its value. This will be used many times in the following.

Let w € @, and let T = ([T, T}) - R be a tree with yicld w, where & > |Q).
For all i such that 1 < ¢ < k, pick any special tree T} yield-equiva.lcnt. to T;. For
any z,ysuchthat 1 Sz Sy <k let S(z,y) =[5 T - . T2 - N T - R,
ignoring the first term (the next to last term) whenever z = 1 (y = k). Observe
that S(z,y) is always yield-equivalent to T'.

The following result is due to Hervé Caussinus.

Lemma 4.2.1 ([19]) There ezist two integers a,b such that 1 S a <b< k
and such that v(T) = v(S(a, b)).

Proof. Define $(1,0) = T. Since |Q| £ k, there exist, by the pigeon-hole
principle, two integers a, b such that 1 < a < b < k and such that

o(S(l,a—1)) = v(ffT - f[r.-- f[ T; - R)

=1 i=a |‘_6+1

- (HT : HT - R)
=t i=b41

= U(S(]., b))

From (4.9), we have that

L) k
(i oo

=a 1

Finally, from (4.8), we have that

o) = v (ff:r 1‘[3" f[lr.--n)

a=1

= (HT HT f[z:--n)
v(S(a, b))
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4.2 Languages recognized by quasigroups

In this section, we will define a restricted notion of recognition by finite
groupoids, and we wili show that any language recognized in this way is reg-
ular. Then, we will show that any language recognized by a finite quasigroup
is also recognized in the restricted way, proving that it is regular.

Given a tree T and 2 path = in T, we define the right-length of = as its
number of right edges. The right-depth of T is the maximum right-length of
its paths. Then, for any integer k, the set of trees of right-depth < & over a
groupoid G corrvsponds precisely to the set RD). of Section 2.5. Recall that
any language recognized by a finite groupoid of constant right-depth is regular.

We will use this result to prove the following theorem.
Theorem 4.3.1 Any language recognized by a finite quasigroup is regular.

Proof. We will show that any language recognized by a finite quasigroup Q
is also recognized in constant right-depth by @ and hence is regular

Let Q be a quasigroup of order g, n a positive integer, and w € Q™. Let T'
be a tree with yield w and d the right-depth of . Furthermore, for any set
A, define the function Nj : A®) — IN such that Ni(S) is the number of paths
of right-length greater or equal to kin S.

We will show that if d > 2¢, then there exists a tree 7", yield equivalent
to T, such that v(T') = v(T) and Na(T") < Nu(T). The conclusion will follow
from an iterated application of this fact.

Suppose that = is a path of right-length d in T. Without loss of gener-
ality, we can suppose that the first edge of x is a right edge. Otherwise, we
Just have to consider the maximal subtree of T having this property. Let
(no,mo), (71, m1),. .., (2, m2,) be the first 2¢ + 1 right edges in =, and let
Q: be the subtree of T rooted at ;. For all 0 < i < g—1, define T;: to be
the special tree over Q U {X} obtained from Q,; when Q42 is replaced by
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X, and let R = Qq,. Clearly, we have Qa = T; « Q42 for every i < ¢, and

T=Q=T0-Q:=To-T1-Qu=---=T1{T: - @2¢- Hence, we have
q-1
T=JIT. - R.
i=0

Our construction is such that the path to X in T} contains preciscly two right
edges: (nai,ma) and (naig1,™M2i4)- Thus, X is a leaf contained in the right
subtree R; of T;, but it cannot be the leftmost leaf in R; (sce Fig. 1).

Let L; be the left subtree of T}, let f be the leftmost leaf in R;, and let
P; be the special tree over Q U {X,Y} obtained from R; by substituting the
variable Y for the leaf f. Thus, we have

Ti=(L R)=(L:(PY f)) .

T
ny;
e N2i41
.
7\ —_ N

m:.‘qy\
X

m .\A 4 )
2i41
£
£ X /
Figure 1 : T; Figure 2: T;

Now, let T} (see Fig. 2) be the special tree defined by

Ti=(RY (L) -

It should be clear that 7; is yield-equivalent to 7:. Thus, by Lemma 4.2.1,
there are two integers 0 < ¢ £ b < ¢ —1 such that v(T") = v(T) where T" is
defined by

a—1 3 =1
r-lz-N%- 0% 2.



Moreover, if d; is the right-depth of T} then Ny (T;) < Ny (T:). To see this,
observe that the right-length of any path from the root to a leaf in L; is
unchanged. Also, the right-length of any path {rom the root to a leaf in R;
is decreased by one except for the path to f whose right-length remains the
same.

Any path p, from the root of T = [[5; T:- R to a leaf w;, has a corre-
sponding path in T’ that goes to the same leaf w;. Only the segment of p
passing through T; will be modified if we replace T; by T, and, as we just ob-
served, the right-length of this segment will not increase. On the contrary, the
corresponding path of = in 7" will have a strictly smaller right-length. Hence
Ng(T") < Ng(T), and this concludes the proof. u]

4.4 Linear recognition

In this section, we will prove that any language linearly recognized by a finite
quasigroup is regular. This result cannot be inferred from Theorem 4.3.1
because the transformation used in the proof does not preserve the “linearity”
of the trees. Nevertheless, we will proceed in a similar manner: we will first
define a restricted notion of linear recognition, and we will prove that any
language recognized in this way by a finite groupoid is regular. Then, we will
show the equivalence between linear recognitior and its restricted version, in
the context of finite quasigroups.

Let T be a linear tree and let m be a vertexin I'. We say that an alternation
occurs at m whenever m is a right (left) child and has a left (right) child that
is not a leaf. The number of aliernations in T is the number of vertices where
an alternation occurs.

Let A be a finite alphabet. A language L C A" s said to be recognized in
constant alternations by a groupoid G if there exist an alphabetic morphism
h: A* — G, a subset F C G, and a constant k such that z € L if and only if
there is a linear tree T with yield h(x) and with at most k alternations such
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that v(T) € F.

Lemma 4.4.1 If a languege L C A" is recognized in constant alternations by

a finite groupoid G, then L ts regular.

Proof. Suppose that L is recognized in ¢t > 0 alternations by G .with the
accepting subset FF C G. Without lost of generality we can suppose that
A C G. The proof is by induction on {.

Ift =0 then L = L, U L, where

Ly = {z € A" | z left-to-right evaluates to some g € F}

Ly = {z € A" | = right-to-left evaluates to some g € F}

Since L; and L, are regular, L is also regular.

Suppose now that ¢ > 0 and assume that the theorem is true for any
0 < s < t. For any a € G define the language L, as the set of z € A* for
which there exists a linear tree with yield z such that T evaluatestoaint—1
alternations. Moreover, we define the languages N, and M, as follows.

N, = {z € A" | az left-to-right evaluates to some g € F}

M, = {z € A* | za right-to-left evaluates to some g € F}

Clearly, N, and M, are regular. Furthermore, L, is recognized by Gin ¢t —1
alternations. Hence, by the inductive hypothesis, L, is regular, Moreover, L
can be expressed as

L= U LgNQU U MaLg
acG a€G

This shows that L is regular and concludes the proof. (@]

Theorem 4.4.2 Any language linearly recognized by a finite quasigroup is
regular.

Proof.



The proof is similar to that of Theorem 4.3.1. Let Q be a quasigroup of
order g, and let L be linearly recognized by Q. By Lemma 4.4.1, it suffices to
show that L is recognized in constant alternations by Q.

Let n be a positive integer, let = € Q", and let T be a linear tree with yield
z. For any set A define Alt : AL™N — IN such that Alt(S) is the number of
alternations in S.

It is sufficient to show that if Alt(T) > 3¢, then there exists a linear tree
T yield equivalent to T such that Alt(7”) < Alt(T) and v(T") = v(T).

Suppose that Alt(T) > 3¢. Let ng be the root of T, n,,...,n3; be the
first 3g vertices where an alternation occurs, and define Q; to be the subtree
of T rooted at n;, for ¢ < 3¢. For 0 £ i £ ¢ — 1, define T} to be the linear
special tree obtained from @Qu; by substituting the variable X for Qai41), and
let B = Q3,. It should be clear that

g=1
T=]IT:-R
i=0
The above construction is such that each T; has exactly 2 alternations (see
Fig. 3). So, we can write

T;=h-P-B,
where the special trees P,, P2, P; have no alternation.
Let T'; be the special tree (see Fig. 4) defined by

T"=P1‘P3'Pg.

e %
ﬂa:-e-‘.& %‘&'ﬂ

A A
X X
T:

Figure 3 : Figure 4 : T;
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By lemma 4.2.1, there exist two positive integers, 0 < a < b < ¢ — 1, such
that v(T") = v(T") where T" is defined by

a=1 b q-—-1

=% -I[T- II % R

=0 i=a i=bt1

Furthermore, for 0 < ¢ < ¢ — 1, we have AlY(T;) < Alt(T}) (compare Fig. 3
and Fig. 4). This implies that Alt(TY) < Alt(T), proving the theorem. m

4.5 Parenthesization of logarithmic depth

As another application of Lemma 4.2.1, we can show that it is only necessary
to consider parenthesizations of logarithmic depth in order to evaluate a2 word
over 2 finite quasigroup. (In general this is not true since no word over a
weakly linear groupoid can be evaluated to a nonzero element unless a linear
evaluation tree be used.) This is formalized in the following theorem. The

following proof is a simplification of a result from Hervé Caussinus.

Theorem 4.5.1 ([19]) Let @ be a quasigroup of order g. For anyn > 0, any
w € Q™ and any T with yield w, there ezists a yield equivalent tree S of depth
smaller than 3¢ + log, n suck that v(T') = v(8S).

Proof. Let ng be the root of T and suppose that T has a path of length
d 2> 3¢+ logy n. It is possible to find ¢ nodes n;,...,n, along that path such
that, for each 0 <z < g, the portion from n; to niy; has length exactly 3.

Let R be the subtree of T rooted at ng. For 0 <i< g, define the special
tree T; as the subtree of T' rooted at n; where the subtree rooted at n;y; is
replaced by the variable X. Hence, we have that T = [[{=3 T;: - R.

Suppose that the yield of T; is of the form uXv. Pick two arbitrary trees
U and V of minimal depth (i.e. smaller than log, n) such that yield(U) =
and yield(V) = v. Then, T; = (U X) V) is a special tree yield-equivalent to
T:. Observe that this transformation decreases the length of the path from n;
to X by one, while the depth of T; is bounded above by log, n + 2.
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By Lemma 4.2.1, there exist two positive integers, 0 < ¢ € b < ¢—1, such
that v(T') = v(T) where T” is defined by
a=1 b g=-1
T=JI% -IIT- [I T: - R
=0 i=a re=bgl
One can verify that the number of paths of length d is strictly less in T; than
in T:. The conclusion follows from an iterated application of this argument.

0

4.6 Regular languages recognized by quasi-
groups

We have shown in Section 4.3 that finite quasigroups only recognize regular
languages. In this section we refine this result by showing that only open
regular languages can be recognized by finite quasigroups.

A regular language over an alphabet A is said to be open (see [58]) if it is
a finite union of languages of the form Loay Ly -~ - ap Ly, where k 2> 1, a; € A,
and L; C A" is a language recognized by a finite group.

Lemma 4.6.1 Any language L C A® of the form Ly -- Ly, where L; is recog-
nized by a finite group, is open.

Proof. Forany a € A, let L;ja~! = {w | we € L;}. Now, if L; is recognized by
a group G with the accepting set F C G, then L;a~! is recognized by G using
the same morphism and the accepting set F' = {g € F | ga € F}. Hence, L
is a finite union of languages of the form L; a3} 6, -+« Li a7} a;,, L, where
m20,1<i# <---<ip <kandg; €A o

The proof of Lemma 4.4.1 shows that any language linearly recognized in
constant alternation by a finite quasigroup Q is a finite union of languages
of the form Lg--- Ly, where L; is left-to-right or right-to-left recognized by
Q. So, each L; is recognized by M(Q), which is a finite group, and by the
previous lemma we have the following result.
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Theorem 4.6.2 Any language linearly recognized by a finile quasigroup is

open. a
This observation can be extended to general recognition.
Theorem 4.6.3 Finite quasigroups recognize only open regular languages.

Proof. We will use again the technique of Section 4.3.

Let @ be a finite quasigroup. We define a comb over @ recursively as
follows. Anya € @ isa comb. If a € Q and u € Q) is a comb ther w = (au)
is also a comb. No other element of Q*) is a comb.

Any tree ¢ € Q*) can be decomposed into

TR | (4.10)

where n 2 1, #1,..., %, are variables, s is a special tree over QU {z,,...,z,}
such that each leaf is labeled with a variable, and ¢; is a comb over Q. Let
comb(t) be the smallest n for which such a decomposition exists.

We will show that, for any tree t € Q(*) | there axists a yield-equivalent
tree s € Q(*) such that comb(s) is bounded by a constant. By Lemma 4.6.1,
this will prove the theorem because the set of combs in Q(*) that evaluates to
a given element forms a language recognized by the multiplication group of Q.
More precisely, we will show that for any tree ¢ € Q(*) such that comb(t) > 89,
where ¢ is the order of Q, we can find a yield equivalent tree ¢ € Q) such
that v(t) = v(¢') and comb(t’) < comb(%).

Suppose that ¢t € Q) is such that comb(t) = n > 87, and let ¢ be decom-
posed as in Equation 4.10.

Since, s has more than 87 leaves, it must possesses a path of length k& > 3q.
Let the nodes of this paths be dy,ds,...,dr-1, where dg i the root of s and
d;+1 is the child of d;.

For 0 <1 < g, let s; be the tree rooted at ds;. Moreover, for 0 <i < g, let
v; be the special tree constructed from s; by substituting the variable X for

S;+1. Hence we have
g=-1

s=Jlv-s,
=6
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Let zi,,...,Tig+j, be the leaves of s,. Moreover, let z;,,---,z;+; be the
leaves at the left of X in v;, and let z,,,---, 2,4, be the leaves at the right
of X in v; (one of these sequences can be empty but at least one of them has

length > 2). We can thus write

g=1
t=Jz-2
=0
where
z; = v; -5 Gy oo Fati Loy i iz t;‘: see Fiath tl':+ln < q
and
:‘ :n .
2= sq Tig t.-q eee Sighlg tt'q-i-jq

Let w; = yield(t;) and define u;, to be the comb whose yield is w;, - - - wi, 44,4
and u;, the comb whose yield is w, - - - wi45. Then & = (121 X)y2) ¥ i, Rug,
is yield equivalent to z;.

By Lemma 4.2.1, there exist two integers ¢ and b such that v(2) = v(t"),

where
a=1 b ¢-1

¢=Jl=JI% II =-=
=0 iZa izt
We observe that comb(z;) > 3 while comb(%) < 2. This implies that
comb(#’) < comb(t), proving the theorem.

The above theorem has the following corollaries.

Corollary 4.6.4 Let L be e language recognized by a finite quasigroup. Then,
L is recognized by a quasigroup if and only if L is recognized by a finite group.

Proof. The if part of the proof follows from the fact that the class of lan-
guages recognized by a finite group is closed under complementation. More-
over, it is shown in [57] that if both L and L are open, then they are recognized
by a finite group. The conclusion follows from this result and Theorem 4.6.3.
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Corollary 4.6.5 The class of languages recognized by finile quasigroups is not

closed under complementaticn.

Proof. In the next section we will show that any cofinite language is
recognized by a finite quasigroup. Such a language cannot be recognized by

a group. Hence, by Theorem 4.6.4, no finite language can be recognized by a
finite quasigroup. !

4.7 Weakly cancellative groupoids

A groupoid G is called weakly cancellative if for any a,z,y € G?, the two
following propecties are satisfied.

(ez=ay#0)=>(z=y)

(za=ya#0)=>(z=y)

The Cayley table of a weakly cancellative groupoid is such that in each row
and each column no nonzero element appears twice. Hence, the nonzero ele-
ments of such a groupoid forms a partially defined groupoid called incomplete
quasigroup. This terminology is justified by the following lemma.

Lemma 4.7.1 ([29]) A= incomplete loop (quasigroup) conlaining n elements
can be embedded in ¢ loop (quasigroup) containing t elements, for anyt 2 2n.
a

We will also need the following result.

Lemma 4.7.2 Let Q be a quasigroup and let u,v,w € Q. Then, the cardi-
nality of Q(uwv) is at least as large as that of Q(w).

Proof. This is a direct consequence of the cancellation law. ]

Weakly cancellative groupoids will be useful to prove that a language can
be recognized by a quasigroup. This is a consequence of the following lemma.
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Lemma 4.7.3 Any language recognizea by a weakly cancellative groupoid, with
0 in the accepting sel, is also recognized by a quasigroup.

Proof. iet G be a wezkly cancellative groupoid, and let L C G* be a
language recognized by G. Assume that 0 belongs to the accepting set. Let
B = G - {0}, let B®) be the free groupoid over the set B, and let 8 be the
order of B. We also denote by B the incomplete loop induced by the elements
of Bin G.

We will define a sequence of incomplete loops B;, for 1 > 0. Let By = B
and define B;y; from B; as follows. All defined products in B; are defined
identically in B;;. Moreover, for any undefined product a - b in B;, we define
a-b=(ab) in Biyy

Remark. Observe that (ab) € B is a new element. Observe also that
if c is an element of B;y, that does not belong to B;, then for eny x,y € B,
{z(y¢)) and ((zy)c) are two distinct elements of Biya. Similarly, ((ex)y) and
(c(zy)) are two distinct elements of Biys. This end Lemma 4.7.2 imply that
Jor any u,v € B” such that k = |u| + |v|, Brs1((u(ab)v)) contains at least k
elements.

Let k = 842 and let B; be embedded in a finite loop H. We will argue that
L is recognized by H with the accepting set containing all nonzero elements
of the accepting set of G plus all elements not in B.

If w € B can be evaluated to a nonzero element in G, then w can be
evaluated to the same element in H using the same parenthesization. This
shows that if w € B* is not accepted by B then it is not accepted by H. This
also proves that if w is accepted by G but does not evaluate to 0, then it is
accepted by H.

Suppose that w can be evaluated io 0 in G. Then, there exists a segment
u of w of minimal length that can be evaluated to 0, i.e. w = sut, 0 € G(u)
and for any strict segment v of u, 0 € G(v). So, there exist u;,u2 € B+ and
¢,b € B such that « = wyuz, @ € G(uy), b € G(uz) and ab=0in G, but ¢ £ 0
and b # 0. This implies that w can be partially evaluated to sabt both in G
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and in H. Now, there are two possibilities. First, if s and ¢ are small cnough,
then s(ab)t can only be evaluated, in H, to an element in B(*) — B: in this
case H accepts w. Otherwise, by tke above remark, H(w) contains at least
B + 1 different elements, and so, at least one of them is not in B. Thus, #

accepts w if and only if G accepts w. o

Theorem 4.7.4 Any cofinite language is recognized by a finite loop.

Proof. Let A be a finite alphabet and let L € A* be cofinite. Let & be
the smallest integer such that all w0 € A" of length larger or equal to k are in
L. Let B=U% A and G = BU {0}.

We define a product on G as follows. The absorbing element is 0, and for
any 2,b € B, a-b = abif ab € B, otherwise a- b = 0. Clearly, G is a weakly
cancellative groupoid.

The partially defined loop G recognizes L by taking the accepting set to
be 0 plus all elements in B N L. Finally, by Lemma 4.7.3, we can construct a
finite loop, from G, that recognizes L. 0o

Observe that loops can recognize languages that are not cofinite and are not
recognized by a group. A simple example is the set OR C {0,1}", composed
of all words that contain at least one 1. This language is recognized by Uh, the
monoid defired by 0-0=0and 0-1=1-0=1.1=1. Here, 0 is an identity
and 1 is absorbing. Since U is a weakly cancellative groupoid, the language
OR can be recognized by a finite loop.

On the other hand, some very simple languages cannot be recognized by
a loop (or even a quasigroup). This is the case for any finite set. To see this,
let L be a finite language recognized by a loop B. Without loss of generality,
we can suppose that L C B*. Since B satisfies the cancellation laws, for any
w € B* not in L there exist v € B such that wv will be accepted by B. But,
this contradicts the fact that L is finite.

Theorem 4.7.5 No finite language can be recognized by a finite loop. (8]
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In Theorem 4.7.3, it is necessary that 0 belongs to the accepting set. In-
deed, as the proof of Theorem 4.7.4 shows, any finite language can be rec-
ognized by a weakly associative groupoid. Moreover, nonregular languages
can be recognized by such groupoids. For example, the 2-sided Dyck lan-
guage D with two scts of parenthesis {a,a} and {b,b} can be recognized by
the groupoid defined over the set {1,a,&,b,5,0}, where 1 is the identity, 0 is
absorbing, a-@ = a@-a = b-% = b-b = 1, and all other products yield 0.
It suffices to take 1 as unique accepting element. Observe that D belongs to
DSPACE(logn) but it is not known if it belongs to NC(see [49]).

4.8 Representing functions with expressions

Let G be a finite groupoid and X, = {z1,%2,...,2Zn} 2 finite set of variables.
An element w = w(zy,...,Ta) € (GU X)) is called an ezpression over
G with n variables. If w € (G U X,.))*) and vy,...va € (GU X)), then
w(vy,...,Un) € (GU X)) is the expression obtained from w by replacing
each variable z; by the expression v;. We associate expressions over G with
elements of G and expressions ever (G U X,,)*) with functions G* — G in the
obvious way. A function f : A" — A is said to be representable over G if there
exist an embedding § : A — G and an expression w(z,,...,2n) over G such
that, for every ay,...,an € A, 8(f(ay,...,a,)) = w(0(ay),...,0(az))-

In [51] Maurer and Rhodes proved that if G is a simple nonabelian group
then any function G* — G can be represented by an expression over G. In
this section, we extend this theorem to the case of loops. As a corollary, we
define a class of loops for which the problem of evaluating an expression is
complete for NC*. Just before, we give some basic results.

Lemma 4.8.1 Let (Q,-) be ¢ quasigrovp. If a function can be represented
over (@, /) or (@,\), then it can be represented over (Q,-).

Proof. This is a direct corollary of Lemma 4.1.42. a

As a special case of Lemma 2.6.4 we have the following result.
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Lemma 4.8.2 If L and H are isotopic loops then any funclion that can be

represented over H can also be represented over L.

The above lemma cannot be generalized to quasigroups. To see this, con-
sider Zy, the cyclic group of order four. It is well know that the AN D function
of two bits cannot be represented over any abelian group (e.g. see [72]). But we
can find a quasigroup, isotopic to Z4, on which the AND can be represented.
Let $ ={0,1,2,3}, let a: S — S be the permutation (0,1,3,2), and consider
the quasigroup Q = (S, -) obtained from Z, usiag the isotopy z -y = alz +y).
It is a simple exercise to verify that AND(z,y) = (z - y) - (z - ), for any
z,y € {0,1}.

Lemma 4.8.3 Let L be a loop. The functions A : L? — L defined by
Az, y,2) = [z,y,2] end C : [? = L defined by C(z,y) = [z,y] can be repre-

sented over L.

Proof. Observe that [z,¥,2] = ((zy)=)\(z(yz)) and [z,y] = (zy)\(yz). The
conclusion follows from iemma 4.8.1. 0

We can now prove our generalization of the Maurer-Rhodes theorem. The
proof is a straightforward adaptation for loops of a version for groups due to
Howard Straubing [72].

Theorem 4.8.4 If L is a finite simple loop that is not an abelian group then
every function f: I* — L can be represented over L.

Proof. Let g; € L\{1}, where 1 is the identity of L, and let g2 € L. Since L is
simple, then by Theorem 4.1.17 {¢:.J) = L where J is the inner mapping group
of L. In particular, there exists ug, o(z) € (zJ)™) such that uy o (01) = g2
and ug, (1) = 1. Observe that any U € J is the product of elements in
{R(a),L(a) : ¢ € L}. Thus, zU is representable on L, and 50 is uy, 4,(z). |
Because it is simple and not an abelian group, L is equal to its commutator-
associator subloop. Thus, each element k € L can be written (assuming an
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implicit parenthesization) as h = [1}., &;, where §; is a commutator [g;, ;] or

an associator [f;, ¢i, k] of L. By Lemma 4.8.3, the function

. _ =] if &; is 2 commutator
Ailz,y) = { [fi»z,y] if & is an associator

can be represented over L, for all 1 £i < r. Then
wah = ]| Ai(ung (), uan(y))
i=1
can also be represented over L with wau(k, k) = k and woi(g,1) = wan(l,9) =
1, for all ¢ € L (w2 can be seen as representing the OR function of two bits).
For all m > 2, define the representable function

Wmelh = W2,n(Wm, hy Tma)

such that wmu(k,...,k) = h and Wma(g1,.--,9m) = 1 if g; =1 for some i.
Let k,k € L, with h # 1, let k* be the unique element of L such that
k*k =1 and let L\{k*} = {k1,...,k:}. We can represent

2eh = Wea(uealhiz), - - -t n(kez))
such that z;5(k) =k and za(g) =1, for g # k.
Finally, let v = (e1,-..,¢a) € L™ and let
Vh = wM(zQ»h(zl), ~evy 2cm;.(:l:n)) -

Then, v,u(¥} = h and v,,(1) = 1, for g # v. Hence, we can represent any
function f: L* — L using the expression
II v
J()#

(Any parenthesization can be used since at most one term in the product is
different from the identity.) o

We observe in the above proof that the presence of commutativity is not
as dramatic for loops as it is for groups. This is because in the Maurer-
Rhodes theorem the crucial point is that the OR function of two bits can be

105



represented over any simple nonabelian group, and to achieve this we needed
commutators. But in theorem 4.8.4 we can use associators when there is no

commutator other than 1.

We define a family of expressions over a loop L as a set § = {W;, Wa....}
where, for all n > 0, W, is an expression over L with n variables. We say that
a function f: A* — A can be represented by S if, for all n, the restriction of
f to A™ can be represented by W,. The length of S is a function mapping n

to the number of non-parenthesis symbols in W,.

Corollary 4.8.5 Let L be any simple loop that s not an abelian group. Then
any function in NC'can be represented by a family of polynomial length cz-

pressions over L.

Proof. This is a direct consequence of Theorem 4.8.4, since the OR of two
bits and the negation of one bit can be represented over L. More explicitly, let
k be any element of L different from the identity 1. Assume that k represent
the boolean value 0 while the identity represent the value 1. Then, for any
z,y € {1,k} we have

OR(z,y) = w2(z,y)

Now, let A* be the unique element of L such that A*k = 1. Then we also have
NOT(z) = uppa(z) - b

Let ¢ be the maximum between the lengths of the expressions OR and NOT.
Then, any boolean formula of depth klogn can be represented by an expression
over L of length at most 3*¥&*, which is polynomial. 0

We now state a generalization of a theorem of Barrington [5] saying that
the word problem over any nonsolvable group is complete for NC*.

Theorem 4.8.6 If G is ¢ groupoid that conteins ¢ nonsolvable loop, then the

problem of evaluating an expression over G is complete for NC! under AC°-
reductions.
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Proof. The problem of evaluating an expression over any fixed finite groupoid
G is in NC. This is because the set of expressions over any finite groupoid that
evaluate to some given element forms a parenthesis language, and therefore,
belongs to NC! (see [17]). It remains to show that any function in NC* can
be reduced to this problem when G contains a nonsolvable loop.

If L is a nonsolvable loop of G, then there exists a morphism ¢ : L — §,
where S is a nonabelian simple loop.

By Corollary 4.8.5, any function f : {0,1}* — {0,1} in NC! is rep-
resentable by a family of polynomial-length expressions over S. Let w =
w(zy,...,2Zn) be such an expression for inputs of length n. Since we are deal-
ing with Boolean functions, each variable z; can only take two possible values
a,b & S. Suppose that a represents the value 0 and b the value 1. Choose any
s € ¢~ a), t € ©~1(d), and define the mapping 8 : {0,1} — L by 6(0) = s
and 6(1) =1t.

Finally, let v(z,, - ..,2,) be an expression over L defined from w by replac-
ing each constant ¢ in w by any element in ¢~1(¢c). Then, for any z;---z, €
{0,1}*, we have that f{z;,...,2,) = 1 if and only if v(8(z1),...,0(zs)) €
©"1(b). Clearly, the reduction from f to v is a simple projection. o

4.9 Solvable loops

It is conjectured in [7] that the problem of evaluating a word over a solvable
group is not complete for NC'. However, we can construct a solvable loop
of order 10 for which the problem of evaluating an expression is complete for
NCt.

Let Zs be the cyclic group of order five, and let G be the loop of order five
defined by the following multiplication table.
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-1

w o~y Ln
W o -1 O njn
-] WO O Lt 3|
oGt h PO~
¢« Oy O ~1 0|
Sy =1 G OH D)0

Since 8:9#9-8and (6-7)-8 # 6-(7-8), G is neither commutative
nor associative. Moreover, G is simple since it is of prime order. Hence, by
Corollary 4.8.5, the problem of evaluating an expression over G is complete
for NC!. Now, define the loop B = (B,-) over the set {0,...,9} using the

multiplication table

0---415---9
0

2| Zs G
4
5
| G Zs
9

where a region labeled Zs (resp. G) corresponds to the multiplication table of
Zs (resp. G). It should be clear that Zs is a normal subloop of B and that
B/Zg is isomorphic to Z,. Heace, B is a solvable loop.

Let B’ = (B,*) be the loop isotopic to B whose product is defired by
a*b = a-afb), where « is the permutation (0,5)(1,6)(2, 7)(3,8)(4,9). The
multiplication table of B’ can be represented as follows (the identity is 5).

0..-4]5...9
0
G Zs
4
S
2l Zs G
9
. Clearly, G is a subloop of B'. Thus, by Theorem 4.8.6, the problem of eval-

uating an expression over B’ is complete for NC!. Moreover, by Lemma 4.8.2,
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any language that can be represented over B’ can also be represented over B.
We conclude that the problem of evaluating an expression over the solvable
loop B is complete for NC!.

Observe that the multiplication semigroup of B contains a nonsolvable sim-
ple subgroup. This is because L(1)!* = (5,6) and L{3)2R(1)** = (6,7,8,9,5)
generate a group isomorphic to Ss. Thus, a solvable loop can have a nonsolv-
able multiplication group. Moreover, the problem of evaluating an expression

over any such loop is complete for NC?.

Theorem 4.9.1 Let G be any finite groupoid with identity. If the multiplica-
tion semigroup M(G) contains e nonabelian simple group, then the problem of

evaluating an ezpression over G is complete for NC' under AC’-reductions.

Proof. In [5] it is shown that the problem of evaluating a program over any
nonabelian simple group D is complete for NC*. Furthermore, we can suppose
without loss of generality that on any input the program yields either the
identity (and accepts) or some other fixed element (and rejects).

The proof follows from Theorem 2.6.6 o
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Chapter 5

Growing Groupoids

5.1 Programs over growing groupoids

In this section, we generalize further the definition of recognition by programs.
We will allow our model to use a different groupoid for each iaput length.

Definition 5.1.1 Let p : IN — IN Je ¢ function and let F = (Gi)ixo be a
Jamily of groupoids such that G, has order bounded above by p(n), for each
n 2 0. A language L € A* is said to be recognized by programs over F if for
each n > 0 there exists a program P, over G, such that P, accepts precisely
those words in L N A®. We also say that L is recognized by programs over
groupoids of order p. Parenthesis programs over F are defined in the obvious

way.

In particular, if p is polynomial (resp. constant, exponential) then L is said
to be recognized by polynomial (resp. constant, exponential) order programs
over groupoids. Constant order programs are equivalent to programs over fixed
groupoids as defined in Chapter 2.

Proposition 5.1.2 Let k be any integer and £ : IN — IN be any function. If
L C A" is a language recognized by a family P = (Po)n30 of programs of length
t over groupoids of order k, then L is recognized by e fomily @ = (Qu)uso of
programs of length ¢ over @ finite groupoid.

Proof. Let M be the set of all pairs (G, F) such that G is a groupoid of
order k+1 with an identity denoted 1, and F is a subset of G not containing
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1. Let (G1, F1),(G2, F2)...,(Gm, Fn) be an enumeration of the elements of
M and define H = Gy x+++ X Gp.

A program P, over G, with accepting set F, can be simulated by a program
Qn over H as follows. The length of Qn is the same as that of P,. If the cth
instruction of P, is (i, f.), where 1 <i. < n and f.: A — G,, then the ¢
instruction of Q,, is (i, @.), where ¢, = (¢5,-..,9%), 95 = fe, and for all j # s,
g5 is the constant function mapping each element of @ to the identity 1. The

accepting set of Q contains all elements of {(a1, ..,an) | ¢; € G;} such that
some a; belongs to F;. 0

Unless otherwise specified, we will assume that all programs have polyno-
mial length.

Program uniformity must be adapted when groupoids are growing. In
particular the product of two elements must be computable and it must be
decidable if a given element belongs to the accepting set.

Definition 5.1.3 Let C be a complexity cless. A family of programs (Py)n>o

over (Gu)n>o is said to be C-uniform whenever the three following conditions
are satisfied.

1. On input (w, a, b) the problem of computing the product ab in G| belongs
toC.

2. Moreover, on input (w,a), the problem of determining if a is in the
accepting set of P, is in C.

S. On input (w,k), the problem of computing the KR symbol of By is in
C, ¢ symbol being either a parenthesis or en instruction. Moreover, on
input w, the exact length of Plu) is computable in C.

Remark. The last condition in the above definition implies that comput-
ing the element of G}, produced by the k2 instruction can be done in C since
the input alphabet is finite.

112



A first observation deals with L-uniform polynomial-order programs: they
are no more powerful then constant order programs. Indeed, if each element
of a groupcid G\, is represented with O(log n) symbols, then the word problem
over G, can be solved with a nondeterministic pushdown automaton using
O(log n) cells on its auxiliary tape and working in polynomial time.

Non-uniform exponential-order programs are all powerful: any language
whatsoever can be recognized by non-urniform exponential-order programs over
cyclic groups. To see this let L € A* and let G, be the additive cyclic group
of order |A}". For each n 2 0 let P, be a program over G, such that P, has
length n and the ith instruction looks at the iR symbol w; of the input and
yields the number w;]A|*~1. So, L can be recognized by programs over (Gn )30
by taking the accepting set of G, to be all those numbers for which a word in
L is the |A]-ary representation.

However, if we restrict the programs to be uniform and if we use a finite
accepting set, then programs over exponential-order groupoids become a non-
trivial and interesting model of computation as we will see later. This situation
can be compared with exponential-size semi-bounded Boolean circuits of log-
arithmic depth. As a non-uniform model of computation they can recognize
any language, but if we restrict the direct connection language to be in P, then
they recognize precisely those languages in NP (see [81]).

5.2 Machines versus programs

We examine in this section the relationship between uniform programs over
family of groupoids and Turing machines. It is not surprising that programs
over groupoids can be related with nondeterministic auxiliary pushdown au-
tomata. Interestingly, it also appears that linear recognition naturally corre-
sponds with recognition by Turing machines. We now make these statement
more precise.

For any function f : IN — IN and any complexity class C, we write f € C
whenever the problem of computing f belongs to C.
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5.2.1 Turing machines

In order to simulate Turing machines with programs, we use an approach
similar to that of [59] by asking the machines to be oblivious, i.e. the head
moves depend only on the length of the input, not on the input itself. Actually
we will only need that Turing machines be read-oblivious, i.c. the behavior of
the input head only is required to be oblivious.

The following lemma can be improved easily, but this version will be suffi-

cient for our purpoese.

Lemma 5.2.1 Let t(r) € Q(r), t(n) € DTIME-SPACE(t(n),logt(n)). Any
TM M working in time t(r) and space s(n) can be simulated by an oblivious
TM working in space O(s(n) +logt(n)) and time O(nt(n)log nlogt(n)).

Proof. We construct 2 TM NN that simulates M and stops after exactly
p(n) steps, for some p(n) € O(t(n) log ¢(r)). On input w of length n, N com-
putes ¢(n) onr a special iape. This can be done in time O(t(n)) and space
O(logt(r)). Then, N starts the simulation, decrementing the number on
its special tape after each move of M. The decrement can be done in time
2[log ¢(n)]. The machine stops when the special tape contains 0, and accepts
if and only if M has already accepted. The total time is O(t(n) log t(r)) and
the space is O(s(r) + logt(n)). After this step, we have a machine that takes
the same time on any inputs of the same length.

A read-oblivious TM N’ can simulates N as follows. The machine N’
simulates N using an extra tape to move read-obliviously. To do this, N” suc-
cessively scans its input from left to right and then from right to left using the
extra tape to memorize the position of the input head of N. N’ simulates each
step of N in 2nlogn steps by scanning obliviously the input and modifying
the extra tape which uses at most logn cells. Thus, the total space needed for
this remains O{s(r) +logt(r)) and the total time is O(nlog nt(n) logt(n)). O
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Proposition 5.2.2 Let t(n) be a function in DTIME-SPACE(t'(n),s'(n)).
Any language L C A" recognized by a read-oblivious nondeterministic Tur-
ing machine M running in time t(n) and space s(r) is linearly recognized by
a DTIME-SPACE(#'(n) + s(n}, s'(n) + s(r) + log t(n))-uniform femily of pro-
grams of length O(t(n)) over groupoids of order 2004(nY),

Proof. We adapt herc an idea of {12]. We will assurne that M scans its
input from left to right and then from right to left p(r) times, where p(n) is
a power of two such that {(n) = 2np(n). (If M does not satisfy this property,
we can use a Turing machine that simulates M and stopped after exactly
2np(n) > t(n) steps.) Assume furthermore that, from any state, M has at
most two choices. Since the space is bounded by s(n), the nuraber of possible
configurations is at most d*(*}, for some d > 0.

Let X,.,Y, and Z, be three distinct copies of the set of configurations of
M for inputs of length n. Define the set B, = X, UY, U Z, U AU {0,t}. Let
a €A, z,2y,22 € Xy, y €Y, and = € Z,, where 2,27 are the configurations
reached by M from r whenever M uses respectively the first and the second
choices for a move after reading character a. Moreover, y is the copy of z; and
z is the copy of 3. We define a product on B, as follows.

l.iz=y
2 ya=1=x,
3. za=z
4. lz=2x,
5. all other products yield 0

The first two lines in the above definition imply that (tr)e = z; while lines
3 azd 4 imply that #(za) = z2. Hence, nondeterminism can be simulated by
nopassociativity. More precisely, we have that the oblivious machine starts at
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configuration rp and scans its input w = a; + - - @, from left to right (and from

right to left) p(n} times before stopping. Then, the string
#(w) = t"'“”(“)xo(wtb)"(“) ,

where t denotes the mirror image of w, evaluates to an accepting configuration
in X,, if and only if M accepts w. Observe that the parenthesization must be
linear.

¢ is a projection that can be performed in the obvious way by a program
P, over B,. To see that it is uniform, we must show that the three condi-
tions in Definition 5.1.3 are satisfied. Using 2 reasonable encoding for the
clements of B, it should be clear that taking the product of two elements and
determining if a given element represents an accepting configuration can be
done in time O(s(n)). The length of the program is 4np(n) + 1 = 2i(n) + 1
which is computable, by assumpvtion, in time O(t’'(n)) ard space O(s'(n)).
Now, suppose that given (w0, k) we want to compute the k! instruction in
Bui- Determining if & < 2np(n) and if k£ = 2np(n) + 1, in which case
the instruction yields respectively t and z,, can be done in time O(t'(n))
and space O(s'(n)). Otherwise, we must determine the position of the in-
put considered by the k*h instruction. This position t; can be computed as
follows. First compute m = 1 + (k — 2np(n) — 2) mod 2p(n). Since p(n) is
a power of 2, both the subtraction and the modulus can be done in linear
time (i.e. in time logt(r) < #(n)) and in space O(logt(n)). Then, we have
ir = mif m < n, and iy = n — m otherwise. This shows that (P.)uo is
DTIME-SPACE(t'(r) + s(r), '(n) + s(r) + logt(r))-uniform. 0

When the machine is deterministic, there is no need for the symbol t in
the above proof, and the groupoids can be redefined so that the programs are

left-to-right.

Proposition 5.2.3 Let t(n) be ¢ function in DTIME-SPACE(t(n),s'(n)).
Any language L C A" recognized by ar oblivious deterministic Turing ma-
chine M running in time t(n) and spaece s(n) is lefi-to-right recognized by ¢
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DTIME-SPACE(#'(n)+s(r), s'(n)+s(n)+log t(n))-uniform family of programs
of length O(t(n)) over groupoids of order 20(+{n))

Proof. Redefine B, = X,, UA U {0}. For any a € A and any z,2' € X,
such that z’ is the configuration reached by M from z after reading symbol a,
we define xa = 2’; all other products yield 0.

Letting ¢(w) = zo(ww)?("), we get 2 program that left-to-right evaluates
to an accepting configuration if and only if M accepts w. The uniformity is

shown as in the proof of Proposition 5.2.2 wi

Proposition 5.2.4 Anylenguage linearly recognized by a DTIME-SPACE (t(n),
s(n))-uniform family of programs of length l(n) over groupoids of order z(n)
is also recognized by a nondeterministic Turing machine in time O(I(n)t(r))
and space O(log z(n) + s(n)).

Proof. Let (Fr)az0 be such a family of programs over groupoids (Ga)n>o0.
We will construct a Turing machine M that simulates these programs. Let
Y (i) be the element of G, generated by the it instruction of P,. On input w
of length n, M does the following computation.

1. Compute I{r) and guess a number k between 1 and I(r).
2. In.itia.lizet‘wopointersa-t—k and b« k.

3. g« Y(§)

4. Iterate l(n) — 1 times the following step

5. .Choom nondeterministically between

i) e+—ec-1
& +—Y(a)
g+ kg
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(i) be—b+1
h— Y(b)
g —gh

6. Accept iff g belongs to the accepting sct of P,.
The space used is O(log =(n) + s(n)) and the time is O(I(n)t(n)). Q

As a consequence of [.emma 5.2.1 and Propositions 5.2.2 and 5.2.4 we have

the following theorems.

Theorem 5.2.5 ([53]) NP is equal to the class of languages linearly recog-
nized by P-uniform programs over groupoids of exponential order.

Theorem 5.2.6 NL is equal to the class of languages linearly recognized by
L-uniform programs over groupoids of polynomial order.

Proposition 5.2.7 Anylanguage linearly recognized by a DTIME-SPACE(t(n),
s(n))-uniform family of parenthesized programs of length I(r) over groupoids
of order z(n) is also recognized by a deterministic Turing machine in time

O(l(n)t(n)) and space O(s(n) + logz(n)). Moreover the machine is read-
oblivious.

Proof. We just have to adapt the proof of Proposition 5.2.4 for the case
where Y(i) can be an open or a closed parenthesis.

1. Compute I(n).

2. Compute Y'(3) until a & is found such that both Y (k) and Y (k+1) belong
to Gy.

. g+« Y(K)Y(k+1)
4. Initialize two pointers@a +— k—2and b+ k+2.

5. Iterate I(r) — 1 times the following step
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6. Compute Y (a) and Y (): exactly one of two following cases must happen
If Y(a) is an open parenthesis then
ge—gY(b)ia—a—1;b«b+2
If Y(b) is a closed parenthesis then
g—Y(@e)ha—a—-2b—b+1

7. Accept iff ¢ belongs to the acepting set of P,.

The machine is oblivious because the parenthesization of each program is fixed.
(m}

From Proposition 5.2.3 and Proposition 5.2.7 we immediately have the

following theorems.

Theorem 5.2.8 P is equal to the class of lenguages linearly (LTR) recognized
by P-uniform perenthesized programs over groupoids of exponential order.

Theorem 5.2.9 L is equal to the class of languages linearly (LTR) recognized
by L-uniform parenthesized programs over groupoids of polynomicl-order.

Theorem 5.2.8 can be improved in one direction.

Theorem 5.2.10 P is equal to the class of languages recognized by P-uniform
parenthesized progreams over groupoids of exponential order.

Proof. It suffices to show how P-uniform programs (F, )0 over groupoid
(Gr)a>o can be simulated by a deterministic Turing machine M. On input
w of length n, M begins by computing the length ol P,. Then, M computes
the element of G, generated by each instruction and writes this sequence on
its tape. Finally M evaluates in a straightforward way this well-parenthesized
expression. The time needed is polynomial since the expression has polynomial
length, each product can be computed in polynomial time, and the machine
can determine in polynomial time if the result belongs to the accepting set of
P,. s ]
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5.2.2 Pushdown automata

Proposition 5.2.11 Anylanguage recognized by a DTIME—SPACE(!ﬁn), s(n))-
uniform family of programs of length l(n) over groupoids of order z(n) is
also recognized by an AuzNPDA in time O(I(n)i(n) + I(n)log z(n)) and space
O(log z(n) + log I(n) + s(n)). '

Proof. On inputs of length n the AuxNPDA M simulates the program
P, as follows. First M computes {(n), the length of P,. Then, it makes {(n)
iterations of the following procedure. At iteration ¢, M computes the element
g € G, produced by the ith instruction of P,, and decides nondeterministically
whether it pushes g on the stack or multiplies it with the element on the top of
the stack. The machine accepts if after the I(n) iterations the stack is empty
and the element computed belongs to the accepting set of P,.

Observe that pushing and popping an element takes time O(log =(n)). Each
iteration takes time O(i(n) + log =(n)) and space O(s(n) + log =(n)). Hence,
the total time is O(I(n)t(r) + I(n) log =(n)) and the space used is O(log =(n) +
log I(n) + s(n)). o

Proposition 5.2.12 Any language recognized by a DTIME-SPACE(2(n), s(n))-
uniform family of parenthesized programs of length I(n) over groupoids of order
z(n) is also recognized by an AuzDPDA in time O(I(r)t(n) +!(r)log 2(n)) and
space O(log z(n) + s(n)).

Proof. The proof is similar to that of Proposition 5.2.11. The only differ-
ence is that at each iteration, the program symbol computed by the machine
M is not necessarily an instruction, it can be an open or a closed parenthe-
sis. Hence, M does not have to make apy nondeterministic decision, it merely
pushes an element whenever the next program’s symbol is an instruction, and
takes the product with the top element if it is a closed parenthesis. Observe
that open parenthesis can be ignored sin.e a program always yields a well-
parenthesized expression. =]
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Proposition 5.2.13 Let t(n) be a function in DTIME-SPACE(t(r), s(r)),
where s{n) 2 logn. Any language recognized by a read-oblivious AuzNPDA
in time t(n) and space s(n) is also recognized by DTIME-SPACE(2(n), s(n))-
uniform programs of length O(2°0(")i(n)) over groupoids of order 20(:(™)),

Proof. We will see the AuxNPDA M as a uniform family of 2-way oblivi-
ous NPDA M, = (Qh, A, 5,64, ¢0, S0) where Q,, is a set of states (corresponding
to the state, the head positions and the content of the work tape of M), A is
the input alphabet of M, S is the stack alphabet of M, ¢ is the initial state,
3o is the initial stack symbol of M, and §,: Qu X Sx A —= Q. x (SUS2U{A})
is the transition function. Observe that the cardinality of Q, is 20((m)},

We can assume that initially M, has so on the top of its stack, it never
pushes sy thereafter, its first move is a push move, and it accepts whenever
it finds so on the top of its stack. Assume also that there are three kinds of
moves M, can do: a pop move, a push move, or a null move (where the stack
height remains unchanged).

The proposition will be proved in three steps.

Step 1. Let us fix the input length n and denote &, by é. For each letter
a of the input alphabet A, we define the following three sets.

PUSH. = {{p,s,¢,%) | (¢, st) € 6(p, s, )}

POP. = {{p,s,9,4} | (¢,A) € §(p, s,0)}
NULL; = {[p,s,¢,%] | (¢,¢) € 6(p, s,0)}

Let P, = PUSH,UPOP,UNULL,, let R = {{p, s, ¢, t), (D, 3,9, A}, [P, 8, ¢, 1] |

P,q € Qu,s,t € S}, and let P = RU {0} be 2 groupoid with the following
product.

® 0 is absorbing
b (P: s 4, t)(Qit:rs A} = [P’sa 7’3]
b [P’ S, ¢, t](q,t’r,k) = (P: 5,7y A)
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¢ all other products yield 0.

The second product is motivated by the fact that a push move followed by
a pop move is equivalent to a null move. The third product corresponds to
the fact that a null move followed by a pop move is equivalent to a pop move.

Let w € A® be an input of length n and consider a fixed computation of
M., on w. Suppose that at time 7, M, is at some state p, the top of the stack
is s, and the input head scans the symbol a € A. We define the function
f:{,...,t(n)} — P as follows.

[ {p,s,q,t) if at step 7, M,, pushes symbol ¢ on the stack and
moves to state q.

) = {p,s,q,2) if at step z, M, pops symbol s off the stack and
= moves to state q.

[p,s,q,2] if at step i, M, replaces symbol s on the stack by ¢
L and moves to state q.

By assumption, we have f(1) € PUSH, with p = g and s = so, and we have
f(t(n)) € POP,.

Then, it is easy to verify that the given computation of M, on w leads
to an accepting configuration if and only if the string f(1)--- f{t(n)) can be
evaluated to an element of the form [go, s0, P, o).

Step 2. This idea can be used to reduce the language recognized by M
to a word problem over a groupoid that contains S. One difficulty is that if w
is not fixed and if the computation path is not given, then the function f is
not well defined. This can be solved by defining a groupoid Q = 2F, where the
product of two sets S, T € Q corresponds to the set of all elements resulting
from the multiplication of one element in S and one element in T'.

Define the function g : A = 2P by g(a) = P, for all ¢ € A. Now, define
the program D,, for inputs of length n, as vyv2--- vy where, for j > 1,
the instructions are v; = (i;,9), i; being the position of the input bead of
M at time j. Moreover, we set v; = (1,a), where &(a) = {qo,S0,p,3) and
(g0, 0,a) = (p,s). On input w = a; -+ @n, Dy yields a string u = uy -+ %y
and accepts its input if and only if there exists a parenthesization of u resulting
into a set in Q that contains an element in P of the form [go, S0, P, S0)- Hence,
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w is accepted by D, if and only if there exists 2 symbol f;,; in each set u;

such that fi, &, *-* fiqnyaqn, c20t be evaluated to (g0, S0, P, S0). This happens if
and only if w is accepted by M.

Step 3. We must decrease the order of @, which is 920" We have
defined elements of Q to be sets because we don’t know at priori what element
should be chosen in each u; of the above programs. However, the nondetermin-
istic selection of an element in a set u € @ can be done using nonassociativity
in a smaller groupoid.

Let P’ be a copy of P and define the following product on G = PU P'U
{0,1,¢}, where ¢,0 and 1 are new elements. There is an identity, which is 1,
and 0 is an absorbing element. The product on P is defined as previously. We
have @'t = ¥, d'¢ = a, &'b = a, for all &’,& € P’ such that &' is the copy of
a € P. All other products yield 0.

Consider any ordering of the elements of P’ and let « C P'. Let y, =
Y1+~ yjp|c, where C is a new symbol and such that y; is the ith element of P
if this element belongs to u, otherwise y; = 1.

Obviously, u contains some element s’ € P’ if and only if y, can be evalu-
ated to s.

It is also straightforward to check that yu, - - - Ju,,, evaluates to an element
of the form [gq, o, P, So] if and only if w is accepted by M.

The length of the program is |Pli(n) = 290(™}¢(n) and the order of the
groupoid is 2|P| 4 3 = 200(»)),

It remains to show that the program is DTIME-SPACE(%(n), s(r))-uniform.
The only difficulty resides in determining what is the 7B instruction, given
any j.

Let each element v € P’ be encoded~in binary with a string w’ of the
form w' = psqtk, where p, g are states of M, s is a stack symbol, ¢ is a stack
symbol or A, and k says if v is a pop, a push, or a null move. Suppose that the
respective length of p,s,q and ¢ is the same for any element of P'. Suppose
also that I = [w’| and that 1/ represents no element of P'. Then, given w’, one
can compute in linear time p, s, q,t and k, plus the kind of move represented
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by k (push, pop, null). Given any a € A, it is also possible, in linear time, to
determine if w’ represents an element which is the copy of an element w € F,,
since M, has a constant number of possible moves from state p and top symbol
s.

We can slightly modify the definition of y,, for any u € P, such that its
length be 2 let y, = z¢---za,.1, where zu_, represents the element ¢, z;
represents s € P’ if the binary representation of ¢ corresponds to an element
s € u, otherwise z; represents 1. Observe that the length of the program is
still 200(")}¢(n) and the order of the groupoid is still 200(:(n)),

Our program consists of x sequence of t(n) blocks Y5, ---Y,,,, where each
block contains 2 instructions. Given j one can determine the number ;) of
the block containing the ;! instruction and the position p(;) of this instruction
inside this block. Clearly, this can be done in linear time, i.e. in time O(s(r)).

We observe that for any i < t(n), each instruction in a block looks at the
same input position. Thus, in order to determine the position of the input
considered by the jth instruction, it only suffices to simulate M on any input
of length n, using any nondeterministic choices and ignoring the stack. The
desired position k corresponds to the location of the input head after b(j)
steps. This can be done in less than #(n) steps, using at most s(n) memory
cells.

At this point we know that the jt2 instruction has the form {k,g) and it
remains to find what is the function g : A — P. If the binary representation
of p(7) is 1!, then g is the constant function g(a) = ¢. Otherwise, as we explain
above, we can determine in linear time if the element v’ represented by p(5) is
an element of P'. If v' does not represent such an element, ther g(a) =1 for

all e € A4, otherwise wehave g(a) =v'ifvE P,,and g(e) =1ifvgPF,. O
Propositions 5.2.11 and 5.2.13 have the following immediate consequence.

Theorem 5.2.14 ([12]) SAC is equal o the the class of languages recognized
by L-uniform programs over polynomial-order groupoids.
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Theorem 5.2.15 ([53]) NP is equal to the the class of languages recognized
by P-uniform programs over exponential-order groupoids.

5.3 Tree-like circuits

Define a subcircuit S of a Boolean circuit C to be a subgraph of C that satisfies
the following propertics. The output gate of C is in S. Each AND gatein S
has exactly the same children it has in C. Each OR gate in S has exactly one
child chosen among those it has in C. Nothing else is in S.

A subtree of a Boolean circuit C is a tree obtained by expanding, in the
obvious way, a subcircuit of C. Given some input for C, a subtree T is said
to be accepting if it outputs 1, i.e. every input gate in T has value 1.

The degree of a gate in a Boolean circuit is defined recursively as follows.
The degree of 2 constant is 0, the degree of a variable is 1, the degree of an OR
gate is the maximal degree of its children, and the degree of an AND gate is
the sum of the degrees of its children. The degree of a single-output Boolean
circuit is defined as the degree of its output gate.

In [81] it is proved that NP (resp. LOGCFL) is equivalent to the class of
languages recognized by P-uniform (resp. L-uniform) families of exponential
(resp. polynomial) size circuit with polynomial degree.

It is useful to consider a further restriction on the Boolean circuits. A skew
circuit is a circuit where among all the children of any AND gate, at most one
of them is not an input gate. It is easy to verify that polynomial-depth skew
circuits have polynomial degree.

It can be proved (see {81]) that L-uniform polynomial-size skew circuits
recognize precisely the class of languages NL, while P-uniform exponential-
size polynomial-depth skew-circuits correspond to NP.

Hence, we see that by restricting polynomial tree-size circuits to be skew,
we make the related classes of complexity go from LOGCFL to NL, when the
size is polynomial, while we still get NP, when the size is exponential.

Definition 5.3.1 A bduilding-block ts ¢ multiple-output depth-2 circuit with
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unbounded fan-in OR gates on the output level, each of which takes fan-in 2
AND gates as inputs. An input-block is a sequence of input gates. Input-blocks
and building-blocks are gencrically referred to as blocks.

Definition 5.3.2 A tree-like circuit is a semi-bounded Boolean circuit consist-
ing of blocks connected together in the following manner. With each building-
block B we exclusively associate two blocks B, and B,, respectively called the
left and right child of B. Each AND gate in B receives one input from ¢ gate
in B, and one input from a gate in Ba. There is a unique distingutshed block,
called the outpul-block, that feeds in no other block. In this way, the blocks
have the structure of a binary irce where the root is the output-block, the lcaves

are the input-blocks, and the inner nodes are the building-blocks.

We observe that any subtree in a tree-like circuit contains exactly one OR
gate and one AND gate from each building-block, and one input gate from
each input-block. The degree D of a tree-like circuit corresponds precisely to
the number of input-blocks it contains, and so the total number of blocks is
2D -1.

The largest number of gates in a block of a tree-like circuit is called the
block-size of the circuit. Observe that the number of gates in such a circuit is
bounded above by the product of its degree and its block-size multiplied by 2.
In particular, the languages recognized by L-uniform tree-like circuits of poly-
nomial size are in SAC!. The converse is given by the following proposition.

Proposition 5.3.3 Ary language recognized by a family of semi-bounded cir-
cuits with size s and depth d, is also recognized by a family of tree-like circuits
Raving depth 2d, block-size 2(s + sd)? and degree 2°.

Proof. We exhibit a way of doing the transformation. The proof results
from a three-step transformation of the circuit.

1. ‘All paths must have the same length. This step is only needed to
facilitate the construction. It suffices to insert before each input gate as
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many OR gates as nccessary to make the distance between this input
gate to the root equal to d. This yields a circuit C; with at most s + sd

gates.

2. The gates must alternate. Starting from C}, we want to construct a
circuit C; such that the output is an OR gate and all gates on the first
level (those fed by input gates) are AND gates. This can be done by
adding at most s+ sd gates. Furthermore, we want that the type of the
gates alternates between two consecutive levels. This is done by adding
an OR gate (resp. AND gate) between two consecutive AND gates (resp.
OR gates) The number of gates added in this way is bounded above by
the number of pairs of gates. So, the total number of gates in C, is
bounded by 2(s + sd)?, and the depth is at most 2d.

3. Transform the proofs into trees. Consider the lowest level I of AND
gates in C; (i.e. the level near the output). Duplicate the part of the
arcuit that is above { into two copies P, and P, and let each AND
gate on level [ have one input from P; and one from P;. We repeat this
process iteratively both in P, and in P; to get a tree-like circuit Cs. The
degree of Cs is at most 29, each block has no more than 2(s+ sd)? gates,
and the depth is still 2d.

=]

Constructing a uniform tree-like circuit from a semi-bounded one, can be
done by observing how the properties defining tree-like circuits can be trans-
lated for alternating Turing machines. Recall that in a semi-bounded ATM
there are no two consecutive universal configurations along any computation
path (see [81]).

Definition $.8.4 We define a tree-like ATM M to be ¢ semi-bounded ATM
satisfying the following properties.



1. There arc three kind of states: universal, eristential and reading. At a
reading state, the machine reads a bit of the input and halts. A reading

state can only be accessed from a universal state.

to

Any untversal configuration of the machine has eractly two successors

called the left and right successors. These two configurations are eris-

tential or reading.

3. The machine M has a special tepe and starts by writing I on it. When
M is at g universal state, it moves the head of ils special tape one cell

to the right and writes 0 or 1 depending only if it makes e left or a right

move.

4. Let A and B be two universal configurations describing the same content
on the special tape. Then, the left (resp. right) successor of A is reading
if and only if the lefl (resp. right) successor of B ts reading.

If we construct a family of circuits from a tree-like ATM using the method
of Ruzzo [63], then we naturally obtain a family of tree-like circuits. Indeed,
all configurations with the same special tape content correspond to a gate in
the same block of the circuit.

Proposition 5.8.5 Let t(r),s(n) and =(n) be functions such that z(n) belongs
to DTIME-SPACE(z(r),logz(n)}. A semi-bounded ATM M running in time
{r), space s(n), and using z(n) alternations can be simulated by a tree-like
ATM running in time O(t(n)+22(n)), space O(s(n)+z(n)), and uwsing O(z(n))
alternations.

Proof. We must satisfy the four conditions of Definition 5.3.4.

The first two conditions are standard. The time and the space increase
only by a multiplicative constant (see [62]). The number of alternations also
increases by 2 multiplicative constant, becanse M is semi-bounded (this would
not be the case otherwise).



The third condition has no influence on the time and the number of alter-
nations. The space however can be influenced since the number of tape cells
used is now bounded by the number of alternations.

These two transformations give us an ATM M; using time O(t(n)), space
O(s(n) + z(n)) and alternations O{z(r))

A simple way of satisfying the last condition is to force the machine to have
the same number of alternations on any computation path. We construct an
ATM Mj; that simulates M; as folluws. First My marks & = |logz(n)] + 1
cells on a special tape. By assumption, this can be done in time O(z(n)) and
space O(log =(n)) This tape will be used to count the number of alternations.
Then, M3 begins the simulation, incrementing its counter each time it enters a
universal state. The increment can be done in exactly 2k € O(z(n)) steps by
starting at the left end of the counter, moving to the right end and returning
to the initial position. Since M; will have to do =(n) such increments during
the whole process, the total time spent on this task is O{=3(r)). At the time
the counter reaches 2*, My halts and rejects. Qtherwise, before simulating 2
reading state, M alternates between universal and existential states until the
counter reaches its maximal value. Then, My can simulate the reading state
of M;. The time needed is O(t(n) + z%(r)), the space is O(s(n) + z(n)), and
the number of alternations remains O(z(n)). a

Theorem 5.3.6 A language is in NP if and only if it is recognized by o P-
uniform family of tree-like circuits unth ezponential block-size and polynomial
degree.

Proof. In [81], it is proved that any language in NP can be recognized by a
semi-bounded ATM M, working in polynomial time and making a logarithmic
number of alternations. Proposition 5.3.5 shows that M; can be simulated by a
tree-like ATM M: working in polynomial time and using O(log ) alternations.
As we already mentioned, Ruzzo’s simulation of ATM with Boolean circuits
preserves the tree-like property. So, Mz can be simulated by 2 P-uniform
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family C of tree-like circuits with exponcntial block-size and O(logn) depth.
Indeed, any logarithmic depth semi-bounded circuit have polynomial degree.
The other direction is a consequence of a result from [81] saying that any

language recognized by P-uniform semi-bounded circuits of exponential size

and polynomial degree is in NP. (]

Theorem 5.3.7 A language is in LOGCFL if and only if it is recognized by a
L-uniform family of tree-like circuits with polynomial block-size and polynomial
degree.

Proof. The proof is essentially identical to the previous one. It is based
on the equivalence between LOGCFL and the class of languages recognized
by polynomial-size polynomial-degree semi-bounded circuits. w

Observe that a skew circuit does not remain skew after we apply the trans-
formation of Proposition 5.3.3. However, the proof can be adapted. To do
this, we need to introduce the notion of skew alternating Turing machine.

Definition 5.3.8 A skew alternating Turing mackine (skew ATM) is an ATM
satisfying condition ! and 2 of Definition 5.8.4, and such that from any uni-
versal configuration all moves, except possibly one, lead to a reading state.

Without loss of generality, we will assume that from any universal state
" of a skew ATM, a left move always leads to a reading state. We call right
computation path, a computation path such that all moves originating from a
universal state are right moves.

One can verify that Ruzzo’s proof [63], concerning the simulation of ATM
by uniform circuits, preserves the skew property. Unfortunately, the simulation
of uniform circuits by ATM given in [63] does not preserve the skew property.
Nevertheless, we can bypass this difficulty by using the following observation.

Lemma 5.3.9 NTIME-SPACE(t(r), s(r)) = skewATIME-SPACE(t(r), s(r))
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Proof. (C) Let A be a nondeterministic Turing machine working in time
O(1(n)) and space O(s(n)). Suppose without loss of generality that the states
of M are partitioned between existential states and reading states. An alter-
nating TM N can simulate M as follows. On existential states, N does the
same thing as M. On reading states which are final, N simply branches uni-
versally to two identical reading states. On nonfinal reading states, N guesses
the correct input symbol b. Then, it branches universally to both a reading
state, to verify its guess, and to the state corresponding to a move made by
M when reading symbol b.

(2) Let us see how a nondeterministic machine M can simulate a skew
alternating TM N. M behaves differently from N only at universal states. In
this case, M simulates sequentially the two possible moves. It first begins with
a move leading to a reading state and rejects if this computation is rejecting.
Since NV always halts after being in a reading state, this part of the simulation
can be done in constant time using only deterministic states. If M has not
rejected, it continues its computation by simulating the second move. If M
concludes the simulation of N without rejecting, then it accepts. o

Proposition 5.3.10 Let s(r) € Q(logn), i(n) € Q(n), and s(n) < t(r). A
language is recognized by a skew ATM in time t°0X(n) and space s(n) if and
only if it is recognized by ¢ DTIME(logt(n))-uniform femily of skew circuils
of size O(2'™) and depth t°0)(n).

Proof. It is proved in [81} that for s(r) € Q(logn), ¢(n) € Q(n), and
s(n) < i(n), NTIME-SPACE(£°()(n), s(n)} is equal to the class of languages
recognized by DTIME(s(n))-uniform skew circuits of size O(2"™) and depth
t°Q)(n). The proof follows from this and Lemma 5.3.9. u]

We must modify slightly the definition of tree-like ATM in the context of
skew ATM. Actually, only the third condition needs to be changed. This is
because, in order to access all its inputs, a skew circuit must have at least

131



linear depth. Hence, applying Proposition 5.3.5 on a skew ATM using logn

space would result in a tree-like ATM using at least lincar space.

Definition 5.3.11 A skew ATM M is trec-like if it satisfies conditions 1,2
and 4 of Definilion 5.8.4, and if il satisfies the following condition.

8’. The machine M has a special tape used as a counter initialized to 0.

Each time M moves lo a universal stale, il increments ils counter.
The motivation of this definition is given by the following proposition.

Proposition 5.3.12 Letz(n) be in DTIME-SPACE(z(n), log z(n)). Any skew
ATM M using time t(n), space s(n), and alternation z(n) can be simulated by a
tree-like skew ATM N using time O(t(n)log z(n)) end space O(s(n)+log z(n))

Proof. The first two conditions of Definition 5.3.4 are alrcady satisfied
and the third one causes no problem. It is only necessary to show how we can
satisfy the last condition while preserving the skewness of the ATM.

The idea is similar to that used in Proposition 5.3.5. We construct N
such that any right computation path has the same number of alternations.
This is simply done by using the special tape to count in binary the number
of alternations. This takes space O(log=z(n)). Each increcent takes time
O(log z(n)). The total space is thus O(s(rn)+log z(n)) and the timeis increased
by a factor of O(log z(n)). :

The other difference with Proposition 5.3.5 is that the added universal
o ions branch to an accepting configuration and to an existential con-
figuration. a

Proposition 5.3.13 Any DTIME(log s(n))-uniform femily C of skew circuits
of size s(n) and depth d(r) can be simulated by ¢ DTIME(log s(r))-uniform
Jamily of tree-like skew circuits C., of size (s(n)d(n))°®) end depth d°C)(r).

Proof. From Proposition 5.3.10, we have that C can be simulated by a
skew ATM M running in time O(d°®)(r)) and space O(log s(n)).
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M can itself be simulated by a tree-like skew ATM M’ using time O(d°®)(n))
and space O(log s(n) + log d(n)), by Proposition 5.3.12.
Finally, we can simulate M’ with 2 uniform family C’ of circuits of size

(s(n)d(n))°) and depth d°()(r), using the construction of Ruzzo [63]. O

In [81), it is shown that NL (resp. NP) corresponds to the class of languages
recognized by uniform skew circuits of polynomial depth and polynomial (resp.

exponential) size. This and Proposition 5.3.13 give the following theorems.

Theorem 5.3.14 A language ts in NL if and only tf it recognized by a family
of uniform iree-like skew circuits with polynomial block-size and polynomial
degree.

Theorem 5.3.15 A language is in NP if and only if it is recognized by a family
of uniform tree-like skew circuits with ezponential block-size and polynomial
degree.

5.4 Construction of a family of groupoids

5.4.1 Groupoids G,

We observe that a proof in a tree-like circuit consists in a consistent selection
of one OR-gate and one AND-gate in each block. Let us examine what is
meant by consistent selection.

Consider any numbering of the gates of C. With any AND-gate g we
associate triples of the form (g,¢,5), where ¢ is the number assigned to an
OR-gate using g as input. If the left child of ¢ is an input gate labeled with
the variable z; then, ¢ = z;, otherwise a is the number assigned to the left
child of g. The number b is defined similarly using the right child. Let B be
a block with left child B; and right child B,. Then, a consistent selection of
gates implies that if an AND-gate of the form (g, ¢, b) has been selected in B,
then we must choose a gate of the form (s, q,?) in B; and a gate of the form
(u,b,v) in B;.
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Let Cp be a tree-like circuit whose gates are numbered such that (1) any
two distinct gates have distinct numbers, (2) the output gate has number
m, (3) no gate has number 0, and (4) if a gate in C,, has number & then
the number assigned to any of its children is strictly smaller than k. Such a
numbering will be called a normal numbering bounded by m. Furthermore, we
will represent the input bits by 0 and m instead of 0 and 1. So, an input z to
the circuit is accepted if the circuit outputs m and it is rejected if the circuit
outputs 0.

We now describe the construction of a family of groupoids (Gn)np1 such
that the problem of evaluating C,, is reducible to the word problem over G,,.
The above setting indicates that G, can be defined over the set

Gnm = {(a,6,0): 0 £ a,b,c < m}.

We will define a complete order relation between the triples in G,,. For any
two triples (a,¢,b) and (e,d, f) we write {a,¢,d) < (e,d,f) if and only if
am? + bm 4+ ¢ < em? + fm 4 d. The product in Gy, is defined as follows.

1. (m,a,m)(a,c,b) = (m,c,b)

2. (a,¢,8)(m,b,m) = (a,c,m)

s eenean={ (25 L=

for all cases not covered by 1. and 2.

5.4.2 Characterization of LOGCFL

Suppose that circuit C, has n inputs z;,...,z,. We will describe a way to
encode C, into a string w = w(21,..-,Z.) € (GmU{(z:,c,2:) : i S n,c S m})”
such that for any v = a1 ---a, € {0,m}", v is accepted by C,, if and only if
w(ay,...,qn) cak be evaluated to (m, m,m). We will associate the AND-gates
of Cr, with triples in G, as explained above.

Each block B; in C, can be represented by a sequence of triples correspond-
ing to the set of AND-gates contained in Bi. The sequences corresponding
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to an input block that is a left child will be in decreasing order. All other
sequences are in increasing order.

Let the blocks of C,, be By,... B, with B; the output block. With each
block By we associate a sequence of blocks denoted Si. If By, is an input-block
then B = B,. If B; and B; are respectively the left and right child of By then
B = BiBiB;. Our string w will simply be the sequence §; where each By is
represented by 2 sequence of triples as explained above.

We must now prove our claim that for any y = a1---a, € {0,m}", y is
accepted by Cr, if and only if (m,m,m) € Gn(w) where w = w(a,...,a,).

We first show by induction on the depth of a gate ¢ that if w can be
partially evaluated to a word u(m, ¢, m)v, then the subcircuit rooted at gate
¢ evaluates to 1.

Recall that w is not any word in GJ,: it is the result of a reduction and
has the structure discussed above.

Suppose first that ¢ belongs to an input-block. Then, it should be clear
that the first two rules in the definition of the product do not need to be used.
In other words, (m,c,m) is a symbol in w, and gate c is an input-gate that
evaluates to 1.

Suppose that ¢ belongs to a block B which is not an input-block. There are
two possibilities depending on whether both children of B are building-blocks
or not (by assumption we know that at least one of them is a building-block).
Suppose that the first possibility occurs (the second one is treated similarly).
In this case, the only way to get element (m, ¢, m) is to use at some step Prod-
uct 1 on (m,a,m)(a,c,d) and then Product 2 on (m, ¢, b)(m,b,m). Then, w
can be partially evaluated to w;(m, a, m)ws(a, ¢, b)ws(m, b, m)w, where a and
b belong respectively to the left and right child of B. By inductive assumption
both gates a and b evaluate to 1. Consequently, the AND-gate associated with
(a,c, b) evaluates to 1 and so does the OR-gate c. This proves one direction.

_ Suppose now that C,, contains an accepting subtree, i.e. there exists a
consistent selection of one AND-gate and one OR-gate in each building-block
and a consistent selection of one accepting input-gate per input-block. We
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will prove by induction on the depth of the block-tree that w can be evaluated
to (m, ¢, m), where ¢ is the number of an OR-gate in the output-block that
evaluates to 1.

Suppose firsi -hat the ‘block-depth’ of C, is 2. Then, w = usv where s
is the encoding of the output-block, u is the encoding of its left child, and
v is the encoding of its right child. Observe that both u and v arc input
blocks. Suppose that the correct triples to choose in u, s and v are respectively
(m,a,m), (e,c,b) and (m, b, m). Sinceuis alist of triples in reversc order then,
multiplying (m, a,m) to the right in u yields (m, a,m). Similarly, multiplying
(a,c,b) to the left in s yields (a,¢,b). After this partial evaluation of w we
get a string of the form u'(m,a,m)(e,c, b)s'v that can be reduced f{urther to
u'(m, ¢, b)s'v. Observe that because we use a normal numbering for nodes of
Cm, (m,c,b) is larger than any triples in s’, and thus the last string can be
reduced to u'(m,c, bjv. We continue the evaluation by multiplying (m, b,m)
to the left in v, and we obtain the string u'(m,¢, b)(m, b, m)v’ that can be
reduced to u'(m,c,m)v’. Observing that (m,c,m) is larger than any element
in v’ and v’ we obtain the single triple (m, ¢, m). This proves the basis of our
induction.

For the induction step, let w = usv where s is the output-block, u and
v the left and right block-subtrees of s. Let (a,c,b) be the correct triple to
choose in s. This means that the gate numbered a (resp. ) in u (resp. v) is the
root of an accepting subtree in u (resp. v). Suppose inductively that u (resp.
v) can be evaluated to (m,a,m) (resp. (m,b,m)). Thus, w can be partially
evaluated to (m,a,m)s(m,b,m). Muitiplying (a,c,d) to the left in s gives
(m, a,m)(e, ¢, b)s'(m, b,m) that can be reduced to (m, ¢, b)s'(m, b, m). Finally,
(m, ¢, b) being larger than any triple in ', we can continue the evaluation to
obtain (m,c,d)(m,b,m) = (m,c,m).

We have proved the following theorem.

Theorem 5.4.1 Any language recognized by e family of tree-like circuits with
block-size s and degree d is also recognized by a femily of programs of length
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3(2d — 1) over groupoids of order s°.

Corollary 5.4.2 Let (Gu)ayo be the family of groupoids constructed above.
Any language in (non-uniform) SAC' is recognized by a family of programs

over (Gp(n))np0, where p(n) is polynomial.

5.4.3 Nondeterministic logarithmic space

In this subsection we will show that there exists a family of groupoids (Dn)n>1
whose linear word problem is complete for NL. This family will have the
property that for every n, D, is isomorphic to a subgroupoid of G, defined in
the previous section.

Define D,, as the set
D ={(a,d): 0 < a,b < m}.
The product of Dy, is defined by

1. (m,a)(a,c) = (m,c)

2 afed={ (13 Slagid <o

for all cases not covered by 1.

It is easy to verify that the mapping (a,c} — (a, c,m) is an isomorphism from
Dy, to a subgroupoid of Gp.

We will show how to reduce the accessibility problem over a directed graph
with m nodes to the linear word problem over D,,. Let P be a directed graph
of size rr. Suppose that the vertices of P are labeled with 2 number lower or
equal to m. Suppose fucthermore that any edge (a,d) in P is such that a < b.
The problem is to determine if there is a path from 1 to m. It is well known
that this problem is complete for NL under a logspace reduction (see [25]).

Let w = (m,1)w; -+ - wm—y Where w; is a list of the edges emerging from
vertex ¢. All lists are in increasing order.

A simple argument similar to that used in the previous section shows that
w can be evaluated to (m, m) if an only if there is a path in P from m to itself.
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Moreover, we can restrict the parenthesization to be of right-depth 2 without

loss of generality.

The proof of Lemma 2.5.3 shows that any language recognized in con-
stant right-depth by a L-uniform family of programs over polynomial-order
groupoids belongs to NL. Since the above program is clearly L-uniform, we

have the following result.

Theorem 5.4.3 NL is equal to the cless of languages RDa-recognized by L-
uniform programs over (Dym))n30, for some polynomial p(n).

'5.4.4 Deterministic logarithmic space

The family of groupoid (Dy)n»1 defined in the previous subsection can be
used to capture L. In order to do this, we will reduce the 1GAP problem (i.e.
the accessibility problem on directed graph of outdegree 1) to the problem of
evaluating a string w € D, from left to right.

Let P be a directed graph with outdegree 1. The conditions on P and
the reduction to a word w are identical to what was defined in the previous
subsection. The resulting string w is such that each w; contains at most one
vertex. One can verify that there is a path from m to itself if and only if
(m,m) is the element obtained by evaluating w from left to right.

Theorem 5.4.4 L s equal to the class of languages lefi-to-right recognized by
L-uniform programs over (Dp(n))npo, for some polynomial p(r).

5.4.5 Bounded circuits of logarithmic depth

We will show that any problem in NC! is reducible to the problem of evaluating
from left to right a word over D;1.
Let z = z; - - - z,, be a word over the permutation group S5. We know that
the problem of determining if z maps 5 on itself is complete for NC™.
Assume that the length of z is even. Fix ¢, and for, 1 < 7 < 5, let y;
be the image of 7 under the permutation z;. Represent z; as the sequence
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(L,5+wy)---(5,5+ys), if i is odd, and (6,31)-- (10,ys), if ¢ is even, and let
w = (11,5)z(5,11) € D1".

One can verify that z maps 11 on itself if and only if w left-to-right evaluates
to (11,11).

This and Barrington’s theorem [5] yield the following result.

Theorem 5.4.5 NC! is equal to the class of languages lefi-to-right recognized
by DLOGTIME-uniform programs over D;1. a

5.5 Clean circuits

Definition 5.5.1 A clean circuit is a tree-like circuit that, on any input z; - - - Zy,
has at most one AND-gate and one OR-gate that evaluates to 1 in each build-
ing block. Moreover, every input-block contains ezactly two input gates looking
al the same input position i. One of the gate is said to be positive and outputs

z;, the other is said to be negative and oulputs I;.

Lemma 5.5.2 For any AND-gate g in e clean circuil, either the fan-out of g
is I or this gate never evaluales to 1. Moreover, for any two OR-gates g, and
g2, there is at most one AND-gate that takes its inputs from both g, and g¢,.

Proof. For the first part, simply observe that if two OR-gates in a block
receive input from the same AND-gate which evaluates to 1 on some input,
then both OR-gates evaluate to 1, and the circuit is not clean. The second
part is a direct consequence of the definition. a

It it known from {81] that P-uniform circuits of exponential size and poly-
nomial degree, and in particular tree-like circuits of exponential block-size
and polynomial degree, can be simulated by nondeterministic Turing machine
running in polynomial time. Later in this section, we will show that when
wefurthermtriétthedmﬁtstobedean,thedassofhnguag&rmgnimd :
corresponds precisely to P. However, to achieve this we must use a stronger
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notion of uniformity. This is because, given any gate number a, a nondeter-
ministic machine can, in polynomial time, guess a gate number & and verify
that a is effectively a child of b. Nondeterminism seems to be essential here
because the number of gates in the circuit is exponential.

Let (Cn)npo be a family of clean circuits. Consider any numbering of the

blocks of Cy, for any integer n. For each circuit C,,, we define the following

functions.
1. root(z) is true iff 7 is the number of the output-block of C..
2. leaf{3) is true iff { is the number of an input-block in Ch.
3. left(z) is the number of the left child of the block number :.
4. right(i) is the number of the right child of the block number :.
5. parent(?) is the number of the parent of the block number i.
6. pos(’) is the number of the positive input gate in input block .
7. neg(i) is the number of the negative input gate in input block :.

Given a complexity class C, We define a family (Cy)ns0 of clean circuits to
be C-uniform if the following conditions are satisfied.

o The direct connection language is in C.

¢ For any integer n, the problem of computing any of the functions root,
leaf, left, right, parent, neg, and posisin C.

Clean circuits are closely related with parenthesized programs over families
of groupoids. We begin by showing this in the nonuniform setting.

Proposition 5.5.3 Anylanguage over the alphabet {0,1} (linearly) recognized
by parenthesized programs of length h(n) over groupoids of order f(n) is also
recognized by clean (skew) circuits of degree k(n) and block-size f2(n) + f(n).
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Proof. Let P, be a parenthesized program over a groupoid G,, where
n is the length of the input considered by P,. We associate with each well-
parenthesized sub-program of P, a block in a tree-like circuit. With each single
instruction, we associate an input block. More precisely, a single instruction
{t,a), where 1 < i < nand a: {0,1} — G, corresponds to an input block
consisting of 2 input gates testing if the element generated by the instruction
is a(0) or a(1), respectively. Clearly only one input-gate can be evaluated to
1 in each input block.

Let D, = (A.B.) be a subprogram of F,, where A, and B, are parenthe-
sized programs over G,. We associate with D, a building block that contains
f(n) OR-gates. Each OR-gate tests whether D, evaluates to some element of
Ga. Such a gate, testing for example if D, evaluates to g € G, has children
which are AND-gates testing if A, evaluates to g, and B, evaluates to ga, for
all 192 = g. The input of these AND-gates are the appropriate gates of the
blocks respectively associated with A, and B,.

Since each block in the circuit is uniquely associated with a parenthesized
subprogram, and since each subprogram evaluates to a unique element, only
one OR-gate and one AND-gate can evaluate to 1 in each building-block

Observe that this construction yields skew circuits whenever the programs
are linearly parenthesized. ]

Proposition 5.5.4 Any language recognized by a family of clean circuits of

~ degree d(n) and block-size s(n) is also recognized by a family of parenthesized

programs of length 6d(n) — 2 over groupoids of order s(n) + 2.

Proof. Let C, be such a circuit. By Lemma 5.5.2, there is at most one
AND-gate g that receives its input from any two OR-gates a and 5. Moreover,
the fan-out of any AND-gate being 1, there is at most one QR-gate ¢ that has
g as input. This motivates the definition of a product on B, = {1,...,s(n)}U
{0, I}, where O is absorbing and I is the identity, and such that a-b=¢, i ¢
exists, otherwise a - b= O. (e, b, c defined as above).
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For cach input gate g in C,, define the instruction V,, = (iy, f,), where i, is
the position of the bit being considered by ¢ and f; is the function that yields
g whenever gate g evaluates to 1, and I otherwise,

For each input block B with g1, ¢: as input gates, define the parcnthesized
subprogram Pg = (V,V},).

The block structure of C, induces a well parenthesized represcntation of
the input blocks B,..., By in 2 natural way. This leads to the definition
of a parenthesized program P, whose yield (recall that ¥, can be seen as a
tree) is Pp, --- Ppg,,, and that evaluates to the number of an AND-gate in the
output block of C, if and only if C, accepts its input. 0

Theorem 5.5.5 P is equal to the class of languages recognized by a P-uniform
family of clean (skew) circuits with exponential block-size and polynomial de-
gree.

The proof of the above theorem follows from Theorem 5.2.8, Theorem 5.2.10,
and the two following propositions.

Proposition 5.5.6 Any language (linearly) recognized by P-uniform paren-
thesized polynomial-length programs over groupotds of exponential-order is also
recognized by P-uniform clean (skew) circuits of polynomial degree end expo-
nential block-size.

Proof. We must show that if the programs are P-uniform, the construction
of Proposition 5.5.3 yields a family of P-uniform circuits. Let A(r) be the
length of the programs.

In order to prove this, we must set 2 numberning of the block of the circuita.
First we label each block with a pair of integers (£, 7) saying that this block
considers the subprogram lying between positions ¢ and j. Then, we choose a
numbering that encodes efficiently those labels. An input block is thus labeled
with a pair of the form (i,1), and it can be verified if such a pair actually
corresponds to an input block by checking if the it symbol of the program
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is an instruction: this can be done in polynomial time. Moreover, the output
block is labeled with the pair (1, k(r)). Hence, verifying that a pair labels the
output block can be done in polynomial time.

Given a pair (,7), one can determine if there is a well parenthesized sub-
program starting at position f and finishing at position j simply by counting
and comparing the number of closed an open parenthesis. This can be done in
polynomial time. To find the left child of a block labeled (3, 5) it suffices to com-
pute the unique & < j such that (i+ 1, %) corresponds to a well-parenthesized
subprogram. This can be done by trying all the possible values for & between
i+1 and j — 1. We proceed similarly to find the right child of a block. To find
the parent of a block labeled (i, 7), it suffices to compute the unique integer
k such that either (k,7 + 1) or (i — 1, %) corresponds to a well-parenthesized
subprogram. All these computations can be done in polynomial time.

We must also find a numbering of the gates of the circuits. First we label
each OR gate with a tuple (a, b, g, OR) meaning that this gate checks if the
subprogram located between position a and b yields g. An AND gate is labeled
with a tuple (a, 3, g1, g2, AND), meaning that this gate checks if the subprogram
D, = (AnBn), located between positions ¢ and b, evaluates to ¢ = g1g» and
recetves input from OR gates checking if A, evaluates to g; and B,, evaluates to
g2- A positive (resp. negative) input gate is labeled with a pair ({, ), meaning
that the iR gymbol of the programs is an instruction (f,v), and v(l) = ¢
(resp. v(0) = g). Choosing a numbering that encodes these labels, the direct
connection can be recognized in polynomial time. One difficulty occurs when
we need to verify that ¢ and b actually bound a well-parenthesized subprogram,
but as we already mentioned, this can be determined in polynomial time.

Finally, given the number m of an input block, one can compute its negative
and positive gates in polynomial time. Indeed, if m encodes the pair (i, 1), then
it suffices to compute the iR symbol which is an instruction {,v). The positive
gate has the number that encodes the pair (i,(1)) and the negative gate has
the number that encodes (z, »(0)). o
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Proposition 5.5.7 Any languag= recognized by a P-uniform family of clean
circuits of polynomial degree and ezponential block-size is also recognized by a
Jamily of polynomial-length parenthestzed programs over groupoids of exponen-
tial order.

Proof. As in Proposition 5.5.6, it suffices to show that the construction
yields a P-uniform family of programs.

We will hewever make a small modification in the construction. Recall
that each subprogram Fp,; contains exactly four symbols. We modify P, into
a program Q, by replacing each parenthesis by four identical parenthesis. We
do this because given a position i in Q,, the fact that the ith symbol is in
some Pp; will be independent of the two weaker bits of ¢, it will depend only
on the number j = |i{/4]. In other words, all positions beginning by j are in
the same subprogram Ppg,, are open parenthesis, or are closed parenthesis.

This can be checked in polynomial time using the following algorithm.
Consider a numbering of the block of the circuit and let m be the number
associated with the output block.

T+—m
Repeat
If leaf(z) then
write ‘subprogram’
y + parent(z)
While z = right(y) do
write ‘closed parenthesis’
If root(y) then stop
Ty
y + parent(z)
Else
write ‘open parenthesis’
z + left(z)
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The above algorithm makes a depth-first search in the tree composed of all
blocks of the circuits. It writes a sequence of messages, where the yth message
indicates if the y'® batch of four symbols in the program are open parenthesis,
closed parenthesis, or a subprogram Pg,. Since the degree of the circuits is
polynomial and since all calls to any of the functions root, leaf, right, left,
and parent take polynomial time, the total time taken by the algorithm is
polynomial.

Now, computing the i symbol can be done in polynomial time simply
by computing 7 = |i/4] and by checking what is the 7*2 message written by
the algorithm: if the message is ‘open parenthesis’ or ‘close parenthesis’ then
the itb symbol is the appropriate parenthesis, if the message is ‘subprogram’
then we only have to look at the 2 weaker bits of { to determine if the symbol
is an instruction or not. If the symbol is an instruction, then we can find it
in polynomial time by computing first the block number associated with the
subprogram using the above algorithm. Then, we car compute the number
m, of the negative gate and the number m; of the positive gate in this input
block. If the labels of m; and m; are respectively (i,41) and (3, g2), then the
instruction is (i,v), where v(1) = g, and v(0) = g,. This concludes the proof.

(m]

Theorem 5.5.8 L is equal o the class of languages recognized by a L-uniform
Jamily of clean skew circuits with polynom:al block-size and polynomial degree.

Proof. Observe that the proof of Proposition 5.5.7 and that of Propasi-
tion 5.5.6 remains valid in the context of L-uniformity. This is a consequence
of the fact that the depth-first search in a rooted undirected tree can be done
in logarithmic space in terms of the number of nodes (see [25]). Thus, the
result follows form these two propositions and Proposition 5.2.9. a
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5.6 The missing class

Clean circuits can thus be viewed as a deterministic version of tree-like (and
thus semi-bounded) circuits.

Table 5.1 describes the equivalence between different types of tree-like cir-
cuits of polynomial degree and programs of polynomial length, and gives the

relation with some important complexity classes.

Class Circuits _Block—size Prog Order
NC! “ = clean ot T det cst
L “ = || clean skew poly H det lin poly
NL | = treelikeskew | poly lin poly
LOGDCFL “ 2 ” clean poly det poly
LOGCFL " = tree-like poly gen cst or poly
P “ = l clean exp ordgztligen exp
NP “ = IL tree-like exp lin or gen exp

Table 5.1: Relationship between different complexity classes, polynomial-
length programs and polynomial-degree tree-like circuits

It is remarkable that only LOGDCEFL is not exactly characterized. One
would be tempted to conjecture that the only inequality in Table 5.1 can be
replaced by an equality. However, things are not so clear, as the following
discussion shows.

Let P, be a program (for input of length n) over a groupoid G,. For any
input w of length n accepted by F,, let the depth of w be the depth of the
smallest evaluation tree that can be used to accept w. Define the depth of P,
as the maximum between the depth of all w accepted by P,. We also define
the depth of a family of programs (F,}a>0 2s a function mapping n to the
depth of P,.

In Section 5.4, we have constructed a family of groupoids over which
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polynomial-length programs recognize precisely those languages in SAC'. We
observe that we only need to use trees of logarithmic depth. Hence logarithmic-
depth programs over polynomial-order groupoids are as powerful as general
programs.

It is not known if this situation remains true for parenthesized programs.
As a starting point for an answer, we have the following result.

A PRAM is said to satisfy the OROW condition if for any register there
is at most one processor that writes in it and at most one processor that can
read in it (see [61]). We denote by OROW-PRAM(d(n)) the class of languages
recognized in O(d(n)) steps by a PRAM satisfying the OROW condition.

Proposition 5.6.1 Any language L C A" recognized by L-uniform paren-
thesized programs of depth d(n) over polynomial-order groupoids belongs to
OROW-PRAM(d(n)).

Proof. et n be any integer, let P, be the program recognizing L N A,
Suppose that P, is defined over a groupoid G, of order p(r). We will construct
an OROW-PRAM that works in time O(d(n)), uses a polynomial number of
processors, and recognizes L.

Observe first that the content of a register can be propagated into a poly-
nomial number of registers in logarithmic time and in a way that satisfies the
OROW propefty. It suifices to use a polynomial number of processors con-
nected together in the manner of a binary tree. We will implicitly use this
idea in what follows.

Let us see P, as a tree. With each node of P,, we associate a distinct
register.

A register associated with a leaf, i.e. an instruction, will hold the ele-
ment of G, generated by this instruction. Since this element can be found in
logspace and since . € OROW-PRAM(logn) (see [61]), this can also be done
by a polynomial number of processors using their own registers, satisfying the
OROW condition, and using O(logn) steps.
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Let N be an internal node of F,, and let Ny and N, be the children of
. N. The register R associated with N will hold the result of the product of
the two elements contained in the registers associated with N, and Na. This
is done as follows. We exclusively associate with R a processor P and p*(n)
special registers that hold the multiplication table of G,. To do so, each
special register is assigned with a distinct pair (a,b), where a,b < p(n). By
assumption the product ab can be done in logspace. This means that p*(n) sets
of polynomial number of processors can be used, while satisfying the OROW
condition, to write into these p*(n) registers the multiplication table of P,
(observe that this can be done in parallel for each node N). Then, processor
P simply reads the content of the registers associated with Ny and Na, say a
and &, and copies the content of the register associated with the pair (a,b) in
register R
At this point, the register associated with the root of P, contains the
element ¢ € G, to which P, evaluates on input w. It remains to determine if
g belongs to the accepting set. By assumption, this can be done in logspace
and so by a polynomnial number of processors working in logarithmic time and
satisfying the OROW condition.
The time used by the machine is O(logn) + O(d(r)) which is equal to
O(d(r)). o

Results from [30] and [27] suggest that LOGDCFL could be more power-
ful than OROW-PRAM(logn).(Recall that Dymond and Ruzzo proved that
LOGDCFYL corresponds precisely to CROW-PRAM(logn).) Hence, if LOGDCFL
is effectively equal to the class of languages recognized by L-uniform parenthe-
sized programs over polynomial groupoids, then it would be possible that this
last class could not be restricted further to logarithmic-depth programs. On
the other hand, if any parenthesized programs can be restricted to have loga-
rithmic depth, then the class of languages recognized by this model could be
strictly contained in LOGDCFL. We leave this question as an open problem.
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Chapter 6

Conclusion

There are many reasons for continuing investigation of finite groupoids. For
example, algebra has become one of the most useful mathematical tool in com-
putational complexity (e.g. the polynomial method for proving circuit lower
bounds [11] or the algebraic approach for understanding the inner structure
of NC! [8]). So, it is just natural to try to understand such a fundamental
algebraic structure from a complexity point of view. Also, finite groupoids
correspond to pushdown automata, as finite semigroups are related to finite
automata. Using groupoids for the study of context-free languages could be
fruitful. This approach is particularly attractive when we consider the impor-
tance of semigroup theory in the study of regular languages (see [28, 56, 46]).
Another reason is the very close connection between cellular automata and
finite groupoids that has been observed recently. In {55] it is shown how any
finite groupoid can be seen as an infinite one-dimensional cellular automaton
where each cell changes its state according to its current state and that of its
left neighbour. Then, cellular automata having periodic behavior are shown to
correspond to particular varieties of finite groupoids. Let us also mention that
programs over groupoids are useful computational models that can be used to
capture many important complexity classes.

Semigroup theory has been so important for understanding the structure of
finite automata that it would be interesting to define a notion of transforma-
tion groupoids of pushdown automata that would extend the transformation
monoids of finite automata. Observe that a finite groupoid G recognizing a

149



ranguage L can be minimized, in a unigue way, by using the synta«tic groupoid
of the trec language recognized by G with the same accepting subset.

We have seen that the algebraic structure of finite groupoids is significant.
It v-as known that the syntactic groupoid Gt of a tree language T is unique
and divides any groupoid that rccognizes T. This has many consequences.
For example, a cemmutative groupoid cannot recegnize a tree language whose
syntactic groupoid is not itself commutative. As an other example, if the
multiplication monoid of Gz is nonsolvable, then no groupoid with a solvable
multiplication monoid can recognize T, by Proposition 2.1.6. Morcover, we
showed that the structure of the multiplication monoid influences the kind
of languages that can be linearly recognized. It appears however that the
situation could be different in the context of recognition by l;rograxns, where
groupoids having aperiodic multiplication monoid seem able to recognize SAC!
and, in particular, any countext-free language [18, 10]

Some classes of groupoids would deserve to be investigated further. This is
the case of the Lie groupoids and the one-sided groupoids introduced in chap-
ter 2. In particular, it would be interesting to determine the exact complexity
of the word problem over one-sided groupoids. Is it complete for LOGDCFL?
It would be useful to find algebraic properties that would permit to recognize
only the deterministic context-free languages.

Ore of the most important contribution of this thesis concerns finite quasi-
groups and the fact that they are no more powerful than finite semigroups.
We have seen that any language recognized or linearly recognized by a finite
quasigroup is open. It remains to determine if the converse is also true. In-
deed, this depends on whether or not langnages recognized by quasigroups are
closed under concatenation. Another interesting question is if recognition and
linear recognition by finite quasigroups are equivalent.

We said nothing about families of quasigroups. We would very much like
to know what class of languages is recognized by polynomial length programs
over polynomial order quasigroups. This question, restricted to groups, has
pot been settled yet. One easily shows that polynomial length programs over
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polynomial order groups recognize only languages in L, but we do not know if
all languages in L can be recognized by such programs.

It would be important to find many simple examples of finite groupoids
whose word probl‘ems are complete for complexity classes like L, NL, SAC!,
and LOGDCFL: many, because comparing them together could give some
hint towards understanding their structure; simple, because in order to be
useful they must be easily analyzable. In chapter 5, we gave a simple family of
groupoids (Gn)no with which we can capture many complexity classes. This
can be used to reformulate some problems in computational complexity. For
example, proving that no polynomial length left-to-right programs over G;1
can simulate some polynomial length programs over (Gp)n>o would imply that
NC! £ SAC.

We hope that the definition of clean circuits introduced in this thesis will be
useful for future research. In [81], it is shown how circuits of polynomial degree
are related to nondeterministic complexity classes. In this sense, clean circuits
correspond to deterministic classes. At least, this is true for P and L. However,
these results are not completely satisfactory since we have not been able to
characterize LOGDCFL in this way. Actually, it seems that clean circuits
of polynomial size and polynomiai degreec would correspond more closely to
OROW-PRAM’s using a polynomial number of processors and running in
polynomial time.
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