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Abstract

ln our Master thcsis the notions of :'ecognition by semigroups and by pro

grams ovcr semigroups were extended 1,0 groupoids. As a consequence of this

transformation, wc obtained context-frec languages instead of regular with

recognition by groupoids, and we obtained SAC I instead of NCI with recogni

tion by programs over groupoids. In this thesis, we continue the investigation

of the computational power of Enite groupoids.

Wc consider different restrictions on the original mode!. We examine the

cffect of rcstricting the kind of groupoids used, the way parentheses are placed,

and we distinguish between the case where parenthesis are explicitly given and

the case where they are guessed nondeterministically.

We introduce the notions of linear recognition by groupoids and by pro

grams over groupoids. This leads to new characterizations of linear context

free langlll\ges and NL. We also prove that the aJgebraic structure of finite

groupoir:s induces a strict hierarchy on the classes of languages they linearly

recognized.

We investigate the classes obtained when the groupoids are restricted to

he quasigroups (i.e. the multiplication table forms a latin square). We prove

that languages recognized by quasigroups are regular and that programs over

quasigroups characterize NCl
.

We also consider the problem of evaluating a well-parenthesized expression

over a finite loop (a quasigroup with an identity). This problem is in NCl

for any finite loop, and we give aJgebraic conditions for its completeness. In

particular, we prove that it is sufficient that the loop he nonsolvable, extending

a well-known theorem of Barrington.
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Final!y, we consider programs when: the groupoids are allowed to grow with

the inputlength. We study the rc1ationship bclwecn these progrJ.l1lS and more

classical rnodcls of computation like Turing machines, pushdown automata,

and owner-read owner-write PRAl\1. As a consequence, we find a "l'striction on

Boo!ean circuits that has sorne intercsting properties. In particu!ar. circuits

that characterize NP and NL are shown to correspond, in presence of our

restriction, to P and L respecti\"cly.

Il
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Résumé

Cette thèse est la continuation des travaux entrepris au cours de nos études

de maîtrise. Les notions de reconnaissance par un semigroupe et par un pro

gramme sur un semigroupe avaient alors été généralisées aux groupoïdes. Ici

nous poursuivons les recherches sur la puissance de calcul des groupoïdes finis.

Nous considérons différentes restrictions du modèle original. Nous exami

nons les conséquences de restreindre la classe de groupoïdes utilisés et la façon

de disposer les parenthèses. Nous distinguons le cas où les parenthèses sont

données explicitement avec le programme de celui où elles sont placées de façon

non déterministe.

Nous introduisons les notions de reconnaissance linéaire par un groupoïde

et par un programme sur un groupoïde. Nous montrons que cela permet

de donner une nouvelle caractérisation des langages hors-contextes linéaires

ainsi que de la classe de complexité NL. Nous prouvons aussi que la structure

algébrique des groupoïdes finis induit une hiérarchie stricte parmis les langages

linéaires.

Nous étudions les classes de langages obtenues lorsque les groupoïdes sont

restreints à. être des quasigroupes (c'est-à-dire que leur table de multiplication

forme un carré latin). Nous prouvons que les langages reconnus par un quasi

groupe sont réguliers et que les programmes sur quasigroupes reconnaissent

précisément la classe NC1
•

Nous considérons aussi le problème d'évaluer une expression avec paren

thèses sur une boucle finie (une boucle est un quasigroupe avec un élément

neutre). Ce problème est dans NC1 quelle que soit la boucle et nous donnons

des conditions algébriques pour qu'il soit complet. En particulier, nous mon-
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trons qu'il est suffisant que la boucle soit non r':'Soluble, g':'n':'ralis:l.nt ainsi un

théorème bien connu de ihrrington

Finalement nous consid(,rons les programmes où le groupoïde utilisl, peut

croître avec la longueur .le l'entn.;". Nous étudions les rc1ations existant cntr,'

ces programmes et des modèles de calcul plus classiques comme les machilll'S d,'

Turing, les automates à pile et des modèles parallèles de type PHAM. Cdilnllns

permet de définir une restriction sur les circuits bool':'Cns ayant d'intércssilntcs

propriétés. En particulier, nous montron~ que les circuits caractérisant les

classes NP et NL reconnaissent respectivement P et L en présence de ceUe

restriction.
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Chapter 1

Introduction

The theory of complexity is concerned with the classification of problems in

terms of their computational difliculty. ln particular, we are interested in provo

ing that specifie problems cannot be solved by a computer using sorne bounded

amount of resources. This aspect of complexity theory is weIl illustrated by

the P vs NP question.

NP is the class of languages that caIl be recognized by a nondeterministic

Turing machine in polynomial time. P is defined similarly by restricting the

Turing machines to be deterministic.

The problem of determining if P and NP are equal appeared saon in the

development of computer science (sec [38)). However, it remains unsolved in

spite of thirty years of intensive research. Since this question seems tao difli

cult to be attacked directly, people have turned to simpler problems, following

two opposite directions. The first one consists in separating P !rom a com

plexity class that would he larger than NP: for example P8PACE, the class of

problems solvable by a Turing machine using polynomial spa.ce. In the other

direction, people try to separate a subclass of P !rom NP: for example, the

subclass NL of problems solvable on a nondeterministic Turing macbine using

logarithmic spa.ce (observe that none of these examples has been settled yet).

This research has resulted in the definition of a large number of complexity

classes, and complexity theory ha.s evolved into an investigation of the la.ttice

structure of these classes.

Two complexity classes cao he compared more ea.sily if they are defined

1
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with the same model of computation. However, there is no single type of

machine that cao be used to define ail classes. For that reason, it is important

to characterize each complexity class using various computational models.

Programs ove! semigroups, introduœd in [5J, are models of computation

that rely on finite semigroups, i.e. fini te sets with an associative binary oper

ation. Using these programs, Barrington and Thérien characterized different

complexity classes simply by varying the type of semigroups involved (sec [8]).

Their results not only give new characterizations of complexity classes, they

establish a close relationship between the algebraic theory of semigroups and

complexity theory.

At the heart of this research there was a well known result due to Kleene

(e.g. sec [56]) relating finite semigroups to regular languages. In [12] (sec

also [48]) we invcstigated the e!fect of replacing sernigroups by their nonas

sociative analogues, called groupoids. We proved a generalization of Kleene's

theorem giving a natural correspond\lllcc between finite groupoids and context

free languages. We also showed that using programs over groupoids yields a

characterization of many complexity classes that could not be captured with

semigroups.

These results suggest that the relationship hetween finite groupoids and

complexity theory deserves to be investigated further. This is the subject of

this thesis.

Essential definitions and background are giveo in the rest of this chapter

whose last section expose the contributions made by this thesis. In Chapter 2,

we define groupoids and discuss some of their algebraic properties. Theo, we

introducc recognition by groupoids and by programs oyer groupoids. We ex

amine two important parameters: the algebraic structure of groupoids and

the domain of parenthesization. In Chapter 3, we study a natura! restriction

of the domain of parenthesization and we show that this is equivalent, from

a computationa! point of view, to considering oo1y those groupoids satisfy

ing certain algebraic conditions. We show how these restricted groupoids are

re1ated with rational transducers and we give a strict hierarchy of linear lan-

2
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guages using a method that relies on fini te groupoids. Chapter 4 is devote<! to

quasigroups which arc those finite groupoids whose multiplication table forms

a latin square. In Chapter 5, we generalize the above ideas by considering

families of groupoids. Instead of using a fixed groupoid wc allow groupoids to

grow with the input length. Wc study how this growth influences the kin<l of

languages that can be captured. Finally, wc conclude in Chapter 6 with some

questions raised by this thesis.

1.1 Languages and Reductions

With any language L ç A" we associate a dccision problem. This is the

problem of determining, given a word x E A", if x belongs to Lor not. Wc

say that L is recogni::ed by an algorithm M whenever M corrcctly solves the

above problem.

Let A and B be finite alphabets, and let LA ç A" and LB ç B" be two

languages. LA is said to be reducible to LB, denoted LA ~ LB, whenever there

exists a reduetion function 1: A" -+ B" such that for any x E A", x E L,l if

and only if I(x) E LB,

Reductions have a funda.mental role in complexity theory (e.g. sec [33]).

For exa.mple, suppose that the above reduction function 1 is recursive. Then,

given an algorithm M for LB, one can construct an algorithm M' for LA

working as follows. First, on input x E A", M' computes y = I(x). Then,

M' simula.tes algorithm M on input y and a.cœpts if and only if M accepts.

Suppose moreover that the complexity of computing j is negligible compared

to the difli.culty of recognizing LB. Then, this implies that recognizing LA is

no more difli.cult than recognizing LB (justifyù:g the notation).

Observe that it is very important to put a restriction on the complexity

of computing f. Otherwise, nothing could he said on the rela.tive complexity

of recognizing LA and LB, In this thesis we will use two kinds of reduc

tions. When the reduction function 1 is computable by a deterministic Turing

machine using logarithmic spa.ce, then 1 is said to he a logspace i-eduction.

3
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Logspace reductions arc too powerful for dcaling with very small complexity

classes. Thus, wc will also use a weaker type of reduction called dlogtime

uniJorm projection.

Given any alphabet A, wc denote the length of a word w E A" with Iwl.
A function J : A" -> B" is called a projection (sec fig, 42]) iffor any x E An,

J satisfics the following two conditions. First, the length of f(x) depends

only on the length of x. Moreover, for any i E {l, ... , 1ftx)J} there exists

j E {l, ... , Ixl} such that the i th symbol in f(x) depends only of the jth

symbol in x. The first condition makes possible the definition of the length of

a projection f as the function mapping the length of its input to the length of

its image. In the fol1owing we will eonsider ooly polynomiallength projections.

Projections arc still too powerful and we must restriet them further. This

is because one can sec a projection f as a family of funetions fn : An ..... B",

one for each input length, and if no uniformity condition is imposed on the

fi'S, then nothing guarantees that f will be computable at all.

First, we define a direct-aecess Turing machine as a Turing machine with a

read-only input tape, a constant number of working tapes and a special tape

called the address tape. The content of the address tape denot.... a position

in the input. At any step, the machine moves its input head to the position

written on the address tape (we assume that the machine can determine if

this position is larger than the length of the input). Since direct-a.ccess Turing

machines can check any bit of the input in logarithmie time, then it makes

sense to spea.k of languages recognized in logarithmic time by such machines

(sec [6] for more details).

A projection is dlogtime-uniform (sec [6]) if there exists a direct-access

deterministic Turing machine M such that for a.ny x e A", i > 1 and any

b E B, M determines in logarithmic time, on input (x, i, b), whether the ith

symbol of f(x) is b•

4
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1.2 Models of Computation

Models of computation can be divided in two categories. First, there are those

models that, like Turing machines, can be described with a finite number of

symbols. They are said to be intrinsically uniform. The other category consists

of those models defined as an infinite family {M" M 2 , ••• } of machines, the

nth machine Mn dealing with inputs of length n.

Nonuniform models are very powerful and cao compute even nonrecursive

function, which is sometime undesirable. For this rcason we must impose some

uniformity conditions on machines in a given family. For cxample, we ca.n ask

for the existence of a Turing machine that, on input n, constructs the nth

machine of the family.

In the foliowing, we will introduce three models of computation that, like

Turing machines, are standard in complexity theory. The first two modc1s are

nonuniform: the oldest one is the Boolean circuit introduced by Shannon in

[67, 68], and the other mode! is the branching program of Lee [47]. Finall~,

we aise examine the auxiliary pushdown automaton of Cook [23].

1.2.1 Boolean circuits

A Boolean circuit is a finite directed acyclic graph that contains three differcnt

types of vertices: the input gates are those vertices having indegree Oi the

output gates are those vertioes having outdegree Oi other vertioes are called

inner gates. lnner gates and output gates are labeled with the name of a

function from {O,I}" te {O,I}.

Unless otherwise specified, we use AND and OR for labeling inner gates

and output gates, and each input gate is labeled with the name of an input

variable or its complement. We say that a gate g' is an input te a gate 9 if

there is an edge from g' te g. We suppose that gates are ordered in some way

such that it makes sense te talk, for example, of the fust input gate, the fifth

output gate or the second input of an inner gate.

A Boolean circuit C with n inputs and m outputs computes a function

5
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if> : {D,I}n -+ {D,I}m as follows. Givcn w = al" ·an E {D,I}n, we will

rccursively ass:gn a value to the gates of C, and the value of the jth bit of

if>(w) will be the value of the jth output gate. An input gate 9 labeled with

the Boolean variable Xi has value ai. If it is labeled with Xi, then it has value

1- ai. Suppose now that 9 is not an input gate, let the indegrcc of 9 be k and

let 9" ... ,9k be the inputs of 9. Then, the value of 9 is f( VI ••• Vk) where f is

the label function of 9 and Vi is the value of 9i, 1 ~ i ~ k.

ln order to compute a function f : {D,I}" -+ {D,I} we need a family of

circuits, C = {Co, Ch C2 •• •}, where Cn is a Boolean circuit with n inputs and

1 output.

The size of a Boolean circuit is the number of gates in it, and the depth

is the maximum length over the paths from an input gate to an output gate.

Size and depth can be viewed as function of n, the input size. Thus, we can

talk about families of polynomial-size circuits or logarithmic-depth circuits,

for example. A circuit is said to have bounàed (unbounded) fan-in whenever

the indcgree of the gates is bounded by a constant (unbounded). If only OR

gates have unbounded indegree then circuits are said to have semibounded!

fan-in.

Uniformity is not an issue in this thesis. However, we need to taIk about

it if we want to compare the power of the different models of computation. In

particular, it is necessary to define uniformity in the case of Boolean circuits.

Let C = (C..)~ he a family of Boolean circuits andconsider any num

bering of the gates in the circuits. The direct conneetion language of C (sec·

[63, 6]) is the set of tuples (t, a, b, y), where a is the number of a gate in C..,

y is any string of length n, and t either indicates that a is an input gale, in

which case b corresponds to the input index labeling a; or t corresponds to the

function labeling a and b is the number of a child of a.

Let 'D he any complexity elass. The family C = (C..)~ is said to he

'D-uniform if there exists a gate numbering for each circuit in C such that the

dire..:t connection language belongs to 'D. We simply say that C is uniform

10ther authors have ca1led this aemiull6o....c!d.

6
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if its direct connection language can be recognizcd by a dctermir.istic Turing

machine in time O(log s(n)), where s(n) is the size of en-

1.2.2 Branching programs

Let us fix a fini te alphabet A and a nonnegative integer n. A branching

program Bn for inputs of length n is a finite acyclic directed graph with two

distinguished verticcs: one is called the root and the other is called the sink.

Ail vertices are labcled with an index in {l, ... , n}. Each edge is labe1ed with

an clement of A. A branching prograrn is called deterministic if for any gate

g, no two edges going out of gare labeled with the sarne element of A.

A word w E An is accepted by Bn whenever starting from the root and

iterating the following procedure one cao reach the sink. The procedure is: let

i be the label of the current vertex; follow an edge labeled with the i th symbol

ofw.

A language L ÇA' is accepted by a farnily M = {Bo, BI, ...} of branching

prograrns if for any n ~ 0 and any w E An, w belongs to L if and only if w is

accepted by Bn •

The size of a branching prograrn Bn is a fœtction mapping n to the number

of vertices in Bn • In this work, we will only cousider polynoDÙal-size branching

prograrns.

We define a bounded-toidth branching program (sec [5]) as a branching

program B that forrns a rectangular array of nodes with k rows and 1oolumns,

for some positive k and 1. Every edge in B is directed from 1eft ta right, i.e.

the descendants of any vertex appears on its right. Renee, the ooot and the

sink lie respectively in the first and the 1ast oo1umn. The integer k is the toidth

of B and 1is its length.

1.2.3 Auxiliary pushdown automata

We call au:l:i1iary pushdoum automaton a Turing machine with a special tape

tha.t is used as a stack. We will suppose that ~ ~ch a machine accepts its input

7
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whenever it rcachcs a final state, but other conditions can also be applied (such

as emptying its stack) without loss of generality.

Wc define the space used by an auxiliary pllshdown automaton as the

number of cells used on the working tape only, not the input tape nor the

special tape.

1.3 Complexity Classes

Various complexity classes cao be defined using the different models of com

putations introduced in the previous section. In this section, we will examine

sorne of those that are of particu1ar intercst for this work.

First, we observe that a complexity class cao be a class of functions IN -> IN

or a class of languages (or Boolean functions). In this thcsis we use no special

notation to distinguish these two kinds of complexity classes: the contcxt

will exclude any ambiguity. For example, any complexity class defined from

branching programs or pushdown automata is a class of languages. It is a class

of functions if it is defined from multiple-output Boolean circuits.

We write DTIME(t(n», DSPACE(s(n», and DTIME-SPACE(t(n),s(n»

to denote the classes of languages recognized by àeterministic Turing machines

using respectively time O(t(n», space O(s(n», and both time O(t(n» and

space O(s(n». NTIME(t(n», NSPACE(s(n», and NTIME-SPACE(t(n), s(n»

are defined similarly using nondeterministic Turing machines. We use the same

notation to describe the classes of functions computed by these models.

1.3.1 Polynomial time and logarithmic space

Among the most important topics in complexity theory are the questions con

cerning the re!ationship between time and space, and between determinism and

nondeterminism (see [33, 41]). Here, we define four basic complexity classes

that are very good examples to illustra.te these questions.

The class P is defined as the set of aIl languages that cao be recognized by

a deterministic Turing machine rl1nning in polynomial lime. The class NP is

8
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defined similarly except that Turing machines arc allowcd to b,' nontl,'lt'rmin

istic.

P has many equivalent definitions. ln particular, it can h,' tldin,'d ;~< th,'

class of languages recognized by a uniform fanlily of polynomial.size 13001ean

circuits [45, 14]. Morcover, it is also cqual to the cl:\.<5 of langu;w'S r,'Cog·

nizcd by an auxiliary pushdown automaton using only logarithmic span' [231.

Observe that in the last definition, time is unboulldcd and tht' motlt'! C;UI b,'

detcrministic or not without changing the class of languagt'S defillcd.

NP also has a characterization in terms of Boolean circuits (SLOC [SI]). It is

the class of languages recognizcd by a uniform family of semiboundcd fan·in

exponential.size logarithmic-depth Boolean circuits.

Turning our attention to spacc complexity, wc definc \.he cl:\.<5 L as the set

of languages recognizcd by a deterministic Turing machine using only logarith.

mie space.. The class NL is defincd similarly, using nondetcrministie Turing

machines.

L can he defincd in tcrms of branching programs. Specifically, it is the clallS

of languages recognizcd by a uniform family of polynomial-size detcrministie

branching progra.ms, In Section 5.5, we will also give a. definition of L in terms

of Boolean circuits.

NL is equivalent to the class of languages recognized by a. polynomial·

size family of nondeterministie branching programs. It has also been proved

that NL corresponds te those languages that are recognized by a. family of

polynomial-size sketo circuits-a. skew circuit is a. Boolean circuits whose AND

ga.tes have at most one input that is not an input ga.te (sec (81) for more

deta.iIs).

Clearly wc have P C NP and L ç NL. Furthermore, it not diflicult te sec

tha.t the problem of delermining if the sink is accessible in a nondeterministie

branching program can he solved with a deterministie Turing machine in a

polynomial number of steps (e.g. sec [4]). This implies tha.t NL ç P. Even if

ail these inclusions are conjectured te he strict nothing bas been proved yet.
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1.3.2 Subclasses of L

Boolean circuits arc sometime referred to as a paralle! mode! of computation.

This com<..,; from results re!ating the depth in Boolcan circuits to the time

in mode!s of computation such as alternating Turing machines [20, 63] and

paralle! random access machines [i4]. The fad is that bounded-depth Boolean

circuits appcar to be very useful for characterizing subclasses of L.

Wc define NC' as the set of languages recognizcd by a family of bounded

fan-in logarithmic-depth polynomial.size Boolean circuits. The class A(fi is

defincd as the class of languages rccognizcd by a family of unboundcd fan·in

constant-depth polynomial.size Boolcan circuits.

NC' circuits cao be evaluatcd via a depth first search using only logarith

mic space. This implies that NC' ç L. Also, since any AND/OR gate of

unboundcd fan·in cao be cxpandcd into a NC! circuit, we have A(fi ç NC!.

We give for NC! two other c1laracterizations. First, it corresponds to those

languages rccognizcd by a fa.mily of polynomial.size Boolean formula.e - a

formula is a circuit that is also a tree (sec [iD, li)). Moreover, NC! has

been provcd to be equal to the class of languages rccognizcd by a fa.rnily of

polynomial-size constant-width branc1ling programs [5]. Observe that non

deterministic and deterministic constant-width branching programs have thp.

sa.me power.

We introduce two other classes between A(fi and NC' . Both of them are

defincd similarly to A(fi except that we allow gates in the circuits to he labeled

with other functions than AND and OR.

The class ACC)' (sec [8)) corresponds to those languages recognized by

a fa.rnily of polynomial-size constant-depth Boolean circuits where gates are

la.beled with AND, OR and MODq (q> 1) which output 1 if and ooly if the

number of 1's in the input is congruent to 0 modulo q. The cla.ss TCO ( sec

[39)) is defined similarly except that MODq gates are replaced by MAJ gates

which output 1 whenever at lea.st half of their input bits are l.

The relations ACO ç AC(fi and AC)' c TCo are immedia.te. Moreover, it
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has been proved that the function MAJ cao be computed with NC' circuits

(e.g. s('e [64]), imp1ying that TCo ç NC'. 1t is not difficu1t to show that

MOD. functions are in TCo, and thus ACCO ç TCo (sec [31]).

In defining these smal1 comp1exity classes, researchers were hoping to prove

strict inclusions and get more intuition to dea.l with 1arger classes. Actua.l1y,

there have been sorne remarkab1e resu1ts. In particu1ar, it has becn proved

that MOD2 and MAJORITY are not in ACO(sec [31]). As a consequence, ACO

is strict1y included in ACCO (see also [1]). It still remains to ddermine the

nature of the relations between ACCO, TCo and NC'.

1.3.3 Subclasses of P

The last two classes that we want to introduce are subclasses of P. The class

LOGCFL is the set of languages logspace reducible to a contcxt-frec language,

and LOGDCFL is the class of languages logspace reducible to a dctcrministic

context·free language.

LOGCFL (LOGDCFL) is also equal to the set of languages recognized by

a nondeterministic (detf'rministic) auxiliary pushdown automaton running in

polynomial time and using logarithmic space (sec [75)). R,ec;ùl that we have

mentioned above that determinism has no influence on the class of languages

reeognized by an auxiliary pushdown machine when time is not limited. But

this does not apply here, since the number of steps is bounded by a polynomial.

Anotber characteriza.tion of LOGCFL is given in [81] using Boolean ciro

cuits. That is, LOGCFL is equal ta SAC', the class of languages reeognized

by a farnily of sernibounded fan-in polynomial-size 10garithmic·depth Boolean

circuits. This result is particularly interesting in view of the characteriza.

tion of NP in terms of sernibounded fan-in exponential·size logarithmie-depth

Boolean circuits.

By definition, we have LOGDCFL ~ LOGCFL. The characterizations

of LOGDCFL, LOGCFL and P in terms of logspace auxiliary pushdown au

tomata give L ç LOGDCFL, NL ç LOGCFL aD.!!. LOGCFL ç P.

We summarize in the fol1owing diagram the known relations between the

11
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diffcrcnt complcxity classes that we have introduced in this section.

1.4 Our contributions

In our Master thesis [48], we introduced groupoids as language recognizers.

Our objective was to generalize the notions of recognition by semigroups and

by programs ovec scmigroups and study the associated class of languages. This

was done by replacing the semigroups by their nonassociative counterpart. Let

us explain infonnally what is meant by recognition by a groupoid. A more

fonnal definition is given in Chapter 2.

A language L ç; A" is recognized by programs over a groupoid Gif there

exist an accepting set F ç; G and a projection2 t/J: A" -+ G", such that a. word

w E A" bclongs to L if and only if there exist a way of evaIuating t/J(w) such

that the result beIongs to F. Whenever t/J is an homomorphism, L is simply

said to be recognized by G.

We showed that the class of languages recognized by finite groupoids corre

sponds preciscly to the context-free languages. Moreover, when if> is restricted

to have polynomial length (in function of the input length) and satisfies some

uniformity conditions, the cIass of languages recognized by programs over a.

groupoid corresponds to SAC1
•

Berc, we investigate the computational power of finite groupoids following

many directions. We now detaiI the cont.-ibutions made in this thesis.

We define three variations of the recognition by programs over groupoids.

In the first one we allow the programs to use a. clifferent groupoid for each

input length. These programs over growing groapoids, introduced in [12],

are no more powerful than st4ndard programs whenever the growth of the

groupoids does not exceed some polynomial (as a. function of the input size).

2By projection we mean a mapping. where for &DY i ~ l there exist j ~ l sueb that the
ïth symbol in .p("') is determined by the jth symbol of "'.
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In the definition of recognition by progra.ms we have to choose how we

evaluate 4>(w) in order to get an element in F, and this choice is taken arnong

all well-formcd parenthesizations. In the second variation that we introduce in

Chapter 2, we restrict the parenthesization to be of sorne particular form. We

then talk of restricted recognition by programs. For example, we may want

that the depth of a parenthesization be logarithmic in terms of the Icngth of

the prograrns.

In the third variation (introduccd in [12]), wc explicitly give the parenthe

sization with the programs which are then callcd parenthesi:ed programs.

These three variations cao be combincd in various ways. For example,

we cao talk of restrictcd recognition by parenthesizcd prograrns over growing

groupoids.

An important question is how the a1gebraic structure of finite groupoids

influence the kind of languages they cao recognize (by programs or by homo

morphism). In this thesis we will thus examine different kinds of groupoids.

Sorne of them have a1ready been studicd. This is the case of loops, quasigroups

(e.g. sec [16]), and weakly linear groupoids (callcd linearin [53]). Wc also in

troduœ other types of groupoids: weakly associative, one-sidcd, Lie groupoids,

weakly cancellative, and linear groupoids. The computational power of weakly

associative, one-sided, and Lie groupoids is examined in Chapter 2. Weakly

linear and linear groupoids are studied in Chapter 3 while loops, quasigroups,

and weakly-associative groupoids are treated in detail in Chapter 4.

In Chapter 2, we simplify the proof of [48] (sec also [12]), showing that &

language belongs to SAC1 if and only if it is recognized by polynomial-length

programs over & fixed groupoid. We also construct groupoids sncb that the

class of languages recognized by programs over them corresponds respectively

to TCo and NC1
• Indeed it was already known that NCl corresponds to the

Ia..1guages recogni:red by polynomial-Iength programsover the symmetricgroup

55 (sec [5]) but 55 bas order 60 while our groupoid contains only 9 elements.

We introduce in this thesis dürerent forms of restricted recognition. For

example, we discuss in Chapter 2 the left-to-right recognition by programs,

13



•

•

where the evaluation is restricted to be from left to right. Wc also define

constant right-depth recognition that restrict the evaluation trees3 to be such

that any path from the root to a leaf contains a number of right edges that is

bounded by sorne constant. Wc show that with these notions wc cao recognize

only (and all) languages in NCt • ln Chapter 3, we discuss in detail linear

recognition, where the evaluation trees are such that each node has at most

one child that is not a leaf (they are called linear trees).

We also investigate parenthesized programs (called structured programs

in [12]). In Chaptcr 2 wc show that they recognize precisely the languages

in NCl . We prove that any parenthesized prograrns over any groupoid cao

he simulated by parenthesized programs over sorne commutative groupoid.

Moreover, if Gl and G2 are two isotopie groupoids (i..._ one cao he obtained

by permuting the rows and the columns of the multiplication table of the

other) and if Gl possesses an identity, then parenthesized programs over Gl

cao he simulated by parenthesized prograrns over~. We also show that

programs ovec a monoid M cao he simulated by parenthesized programs over

a.ny groupoid G, whenever the mappings G _ G induced by the rows and

the columns of G generate a monoid (called the multiplication monoid) that

contains M.

Up to now, we used the word linear in three difrerent ways. We used it

twice to qua.lify some special kind of groupoids and also to specify a. form of

restricted recognition. A groupoid is called wea.kly linear if it possesses an

absorbing element 0, and if it sa.tisfies (ab)(ed) = 0 for any a,b,c,d e G. A

groupoid is linea.r if for any nonempty word 10 e ce, any element tha.t Ïesu1ts

for the evaluation of 10 using any parentbesization cao also he obtained using

an evaluation Uee tha.t is linea.r. In Chapter 3, wc show tha.t linear recognition

by a finite groupoid, recognition by a linear groupoid, and recognition by a.

wea.kly linea.r groupoid are all equivalent notions of recognition. We also prove

that linea.r groupoids recognize precisely the linear context-free languages, and

3GiveD an alphabet A and a word over A, aDY pazeu.thesization or '" can he represetlted
in the obvioua wa:r by lIOIIle binazy tzee that we call an evaluation tzee.
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that programs over linear groupoids rccognize all and only thosc languages in

NL.

Linear context-frcc languages are weil known to correspond to those lan

guages that cao be expressed as L = {uv 1(ii, v) E Rd, where ii reprcsentthe

mirror image of u and RL is a relation recognizcd by a rational transducer (sec

[13]). We study in Chapter 3, the relationship betwecn the algebraic structure

of the transducers that recognize RL and the groupoids that rccognize L. In

particular we define the transformation monoid of a transducer (givcn in some

normal form) recognizing RL, and we show that it closcly corresponds to the

multiplication monoid of a groupoid linearly recognizing L.

We show that the multiplication monoid of a groupoid G is an important

parameter for determining what languages cao be linearly recognizcd by G.

In particular we prove in Chapter 3 that the language L = {a"b"w 1 n ;::

0, w e 1o}, where 10 is a reguIar language satisfying some a.lgebraic conditions,

cannot he recognizcd by G if the syntactic monoid of 10 is not contained in

the multiplication monoid of G.

When the multiplication monoid of a groupoid is a group, the groupoid

itself is a quasigroup (or a loop when it possesses an identity). We prove in

Chapter 4 that quasigroups cao recognize or linearly recognize ooly regular

languages. More precisely, wc show that any language recognizcd by a quasi

group is the finite union of languages of the form 1qLz ••• Lm., where ea.ch 1-;

is a language recognizcd by a finite group. We also show that any cofinite

language is recognizcd by some finite quasigroup but that no finite language

cao he so recogniored. Ar. a consequence, we show that the class of languages

recognized by a finite quasigroup is not closed under complementation.

Ar. an important tocl for obtaining the above results wc define the weakly

caocellativegroupoids whicb. are those groupoids G with an absorbing e!ement

o sucb. that, for any a,:,y e G, ü az = ay :f: 0 or :a = ya :f: 0 then : = y.
We show that any language recognized by a weakly caocellative groupoid with

oin the acœpting set is also recogniored by some finite quasigroup. This result

is very usefu1 Binee weakly caocellative groupoids are much casier to coDStruct
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than quasigroups.

Wc invcstigatc parcnthesizcd programs over quasigroups in Chapter 4. In

particular, wc study the restrictcd case of the well-parenthesizcd expressions

with variables over loops. We prove a loop analogue of the Maurer-Rhodes

Thcorem [51) saying that any function Ln -> L cao be represented by a well

parcnthesized expression over a simple nonabelian loop L. This leads to a

gcncralization of the Barrington Thcorem saying that any language in NC l

is recognizcd by parcnthesizcd programs over any nonsolvable4 locp. Solvable

loops are shown to be as powerful as those that are nonsolvable whcnever the

multiplication monoid is itself nonsolvable.

Programs over growing groupoids are investigatcd in Chapter 5. We begin

by giving several simulations hetween machines and programs. Deterministic

machines are relatcd to parenthesizcd programs while nondeterministic ma

chines correspond more closely to general programs. In particu1ar, we chara,l;

terize SACl and NP as those languages recognizcd by programs over groupoids

growing polynomially and exponentially, respectively (the last result was fust

provcd in [53]). On the other hand, we chara.l:terize NL and NP as those lan

guages linearly recognizcd by programs over groupoids growing polynomially

and exponentially, respectively. The classes L and P are provcd to correspond

to the languages linearly recognizcd by parenthesizcd prograrns over groupoids

growing polynomially and exponentially, respectively. AlI these results assume

some proper uniformity conditions on the programs.

We define a normal form for semiboundcd circuits that we call tree-like.

It is shown that any semibounded circuit cao he transformed into a tree-like

circuit without modifying toc much its parameters (for example polynomial

size is preservcd). This is used to construct a family of groupoids Ch C (h C

••• growing polynomially and having some niec properties. In particular they

are very simple to define, and they cao he used to capture complexity classes

sueb as SAC!, NL, L, and Nel
• These results cao he used to resta.te some

4The llOtioDsorsimple lIll.d aolvab1e loops are natural genaalizatioas orsimple lIll.d aolv
able poap8. FormaI delùùtioœ are gi_ in Cbapter 4.
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open questions in complexity theory. For example, wc show that NCt # SACt

if and only if recognition by programs over (Gn)n>O is strictly more powerful

than left.to-right recognition by programs over GG'

Tree-like circuits are built up from blocks of input gates and blocks of

depth·two semi·bounded circuits connected together in the manner of a tree.

A tree-like circuit having the property that on any input at most one gate

in each block evaluates to 1 is called a c1ean circuit. We show in Chapter 5

that clean circuits are closely related to parenthesized programs over growing

groupoids. This lea.ds to a characterization of L and P in terms of c1ean circuits.

More precisely, P corresponds to the languages recognized by a uniform family

of c1ean circuits of exponential size and polynomial degree, where the degree

corresponds roughly to the number of blocks in the circuits. Similarly, L is

the class of languages recognized by polynomial size clean circuits that are

skew, i.e. AND-gates have at most one child that is not an input gate. These

results are interest;ug because they give a characterization of deterministic

complexity classes usiug a restriction on the class of circuits that recognize thcir

nondeterministic version. For example, NP corresponds to uniform familles of

tree-like circuits of exponential size and polynomial degree.

Finally, we show at the end of Chapter 5 that parenthesized programs over

groupoids growing polynomially cau he simulated by OWner-Read, Owner

Write PRAMs using a polynomial number of proœssors and l'1!DDjng in time

proportional to the depth of the parenthesization•
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Chapter 2

Groupoids and Languages

2.1 Introduction to groupoids

A groupoid is a pair (G,·), where G is a set and . is binary operation calle<!

product and define<! over G. Whenever there is no confusion on the opera.·

tion, we simply denote (G,·) by G and the multiplication is denote<! using

concatenation. A groupoid G is commutative if ab = ba for any a, b E G, it is

associative if (ab)e = a(bc) for ail a, b, cEG. When the product is associative,

G is calle<! a semigroup.

An e1ement 1 of a groupoid G is calle<! an identity if for any 9 E G,

Ig = gl = g. An e1ement 0 of Gis said to he absorbing if for any 9 E G,

Og = gO = O. A semigroup with identity is calle<! a monoid. We denote by

et the smallest groupoid that contains G and possesses an identity e1ement.

Moreover, we denote by (JJ the smallest groupoid that contains G and that

possesses an absorbing e1ement.

Example 2.1.1 Let A be a finite set and define the set A(+) as follolDS: Any

a E A is in A(+); ifu,v E A(+) then (uv) E A(+); nothing else is in A(+). An

clement ofA(+) can Ile vïewed as a lIinary tree having ils leaves labcled UIith

clements in A.

A procluct can Ile defined on th.is set such th.at for aU 11,11 E A(+) VIC have

a· Il = (ab) (0bsen7e th.at th.is product is not associative). Then, A(+) is a

groupoül and A(-) =A(+) U {f}, where fis the empty -ni, is called the free

groupoid over A.
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Exarnple 2.1.2 The hypercompla numbers of rank n are the expressions of

the form Q = ao + a,i, + ... + anin, where a; is a real number and ij an

abstract symbol. The conjugate of Q is the expression a = ao - a,i, -'" anin.

lIypercompla numbers of rank 0 correspond to real numbers. Furthermore,

given a system U ofrankn, we can define the doubling ofU as the set {a+be:

a, b EU} together with the addition (a+be)+(c+de) = (a+c)+(b+d)e and the

product (a+be)(c+de) = (ac-db) +(ad+bë)e. Hence, hypercompla numbers

of rank 1 correspond to compla numbers, those of rank 2 to quaternions, and

those of rank -1 are called Cayley numbers. One can observe that the product

on Cayley numbers is neither commutative nor associatil'e.

Exarnple 2.1.3 Let R be any associative ring. Then, by preserving the addi

tion and by redefining the product ofz and y as zy - yz, we get a Lie ring,

whose product is in general nonassociative.

Ail thcse groupoids contains an infinite number of elements. However, in

this work, we will he mainly concerned with finite groupoids. The number of

elements in a finite groupoid Gis ca.lled the orderof G.

2.1.1 Subgroupoids and homomorphisms

Given a groupoid G and a subset S ç G, we denote by (S) the subgroupoid

genera.ted by S. We say that a groupoid H divides G (denoted H -< G)

whenever there exists a homomorphism from a subgroupoid of G onto H.

We now mention some remarka.ble subgroupoids contained in any groupoid

G. The left, middle and right nucleus of a groupoid, respectively denoted N).,

NI' and Np, are defined as followed.

N). = {g e G 1Vz,y g(zy) = (gz)y}

NI' ={g e G 1Vz,y :I:(gy) =(:z:g)y}

Np ={g e G 1V:z:,y :I:(yg) =(zy)g}

The nucleus of G is defined as N = N). nNI' nNp. It is ea.sily seen tha.t N).,

NI" Np and N are associative subgroupoids of G.
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The center Z of G is the subset of elements n of N satisfying nx = xn, for

all x E G. It is a subgroupoid of G that is both associative and commutative.

A subgroupoid l of a fini te groupoid G is callcd a left (rcsp. righ!) ideal

of G if IG ç l (rcsp. GI ç 1). If l is both a left and a right idcal. then it is

simply callcd an ideal. There is also a notion of ideal for transfinite groupoids

(sec [15] p.253). For a discussion of the Grcen's relations on groupoids sec [44].

2.1.2 The multiplication semigroup and monoid

In this subsection and the next one, we define two concepts that play an

important role in the theory of groupoids.

With any e1ement 9 E G we associate two functions R(g),L(g) : G -> G

called respective1y the left and right multiplication functions and defincd as

aR(g) = ag and aL(g) = ga, for any a E G. The multiplication semigroup

of Gis defincd to be the semigroup S(G) generatcd by {R(a),L(a) 1a E G},

where the operation is composition. For a E G and U E S(G), we denote by

aU the e1ement of G obtained by applying the function U to a. Moreovcr,

if V E S(G), then a(UV) = (aU)V, and wc simply denote it br aUV. The

multiplication monoidof G is the multiplication semigroup of Gl. It is denotcd

with M(G). One can check that L(l) = R(l) is then the identity of M(G).

The following lemmas are straightforward generalization of similar results

in loap theory (sec [16]).

Lernma 2.1.1 A groupoid G is associative if and on/y if for ail a, b E G,

R(a)R(b)-R(ab).

ProOL If G is associative then :R(a)R(b) = (:a)b = :(ab) = :R(ab)

showing that R(a)R(b) =R(ab). On the other band, if R(a)R(b) =R(ab) for

all a,b E G then (:a)b =:R(a)R(b) =:R(ab) =:(ab) and Gis associative. 0

Lemma 2.1.2 A groupoid G is commutative and associative if and on/y if

M(G) is commutative.
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Proof. If G is commutative and associative then for any a, b, x E G we have

xb = bx implyingthat xR(b) = xL(b) and that L(b) = R(b). Furthermoresince

a(xb) = (ax)b then xR(b)L(a) = xL(a)R(b) and R(b)L(a) = L(a)R(b). Hence,

we find that R(a)R(b) = R(b)R(a) and, by symmetry, L(a)L(b) = L(b)L(a),

proving M(G) is commutative. Suppose now that M(G) is commutative.

Then we have a(xb) = xR(b)L(a) = xL(a)R(b) = (ax)b showing that G is

associative. Furthermore since ab = lR(a)R(b) = lR(b)R(a) = ba then G is

aIso commutative. 0

Lemma 2.1.3 A groupoid is commutative and associative if and only ifS(G)

is isomorphic to G.

Proof. Let G be commutative and associative. Then, S(G) is generated

by {R(a) : a E G}. We have xR(a)R(b) = (xa)b = x(ab) = xR(ab) proving

that S(G) = {R(a) : a E G} and that S(G) is isomorphic to G. Now if Gis

isomorphic to S(G) then Gis associative. It remains to show that G is aIso

commutative. Since G is a semigroup then by Lemma 2.1.1 it is isomorphic to

{R(a) : a E G}. This means that for aIl b E G we have L(b) E {R(a) : a E G}.

Hence there exists a E G sncb that L(b) =R(a). Bence bb = bL(h) = hR(a) =

ba and therefore a = h, by the canœl1ation laws, and L(a) = R(a) for aIl

a E G. This shows that G is commutative and conciudes the proof. 0

Lemma 2.1.4 Let G he a groupoid. IfS is a suhgroupoid ofG, then M(S) ~

M(G).

Proof. Let N = (R(a),L(a) : a E S) and deiino: Lue homomorphism h: N

M(S) sncb that for aIl X E N, h(X) is the unique U E M(S) sncb that

aX = aU for every a E SI. 0

Lemma 2.1.5 Let G and Q he groupoids. Ifh : G _ Q is a homomorphism,

then there exists a homomorphism tP: M(G) - M(Q)•
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Proof. We have that h induces a congruence == Oll G such that GJ == is

isomorphic to Q. Then, </J : M(G) - M(GJ ==), the morphism illdllc~-d by

</J(R(a)) = R(h(a)) and </J(L(a)) = L(h(a)), is the dcsircd homomorphism. 0

Proposition 2.1.6 IfQ -< G then M(Q) -< M(G).

Proof. IfQ -< G, then there CÀ;st a. subgroupoid H ç G and a homomorphislll

h : H - Q such that M(Q) -< M(H) (by Lemma 2.1.5) and M(lI) -< M(G)

(by Lemma 2.1.4). Hcnce, M(Q) -< M(G). 0

Proposition 2.1.7 Let Gand H he two groupoids. Then M(G x H) ç

M(G) x M(H).

Proof. Simply observe tha.t M(G x H) is isomorphic to the submonoid

of M(G) x M(H) gcneratcd by the set {(R(g),R(h»,(L(g),L(h)) 1 9 E

GI and h E Hl}. 0

2.1.3 Isotopy

Tw.o groupoids (G,·) and (H,_) are said to he isotopie if there exist three

bijections a,,8,7 : G -+ H such that a(z) - ,8(y) = 7(';' y). Then, (0,,8,7)

is called an isotopyof G onto H. Considering the Cayley table of G, one cau

construct the Cayley table of H by perm.uting the lines of G with a, perm.uting

the columns of G with ,8 and then renaming elements inside the table with 7.

So, an isomorphism is just a particular isotopy where a = ,8 = 7.

If t is the identity mapping, then (a,,8,t) is called a. principal isotopyof G

onto H. In general it is sufiicient to consider only principai isotopies. This is

justified by the following theorem..

Theorem 2.1.8 ([3]) IfG and H are isotopie groupoids then H is isomorphic

to a principal isotope ofG•

23



• Proof. Let (0', (3, 7) he an isotopy of G onto Ji, let a= O'ï- I , and let 1/ = (37-1 •

Wc have (0',(3,7) = (07,Tn,7). Hcncc, thcre cxists a groupoid K such that

(0,1/, L) is a principal isotopy of G onto K and 7 is an isomorphism of K onto

li. o

•

For groupoids that posscss an identity clement, wc cao give a strongcr

rcsult.

Theorem 2.1.9 ([3)) Let (G,·) and (G,*) be isotopie groupoids, and sup

pose that (G,*) possesses an identity 1. Then, therc exist f,g E G such that

(R(J),L(g),L) is a principal isotopy of(G,·) onto (G,*).

Proof. Assume that x· y = o(x) *1/(Y) for sorne permutations 0,1/: G ..... G.

Let 9 =0-1(1) and f =1/-1(1). We have

x = x * 1 = 0-1(X). 1/-1(1) = o-l(x)R(J)

Theo 1/ = L(g), 0 = R(J) and

This shows that (R(g),L(J),L) is a principal isotopy of (G,.) onto (G,*).

o

Theorem 2.1.10 (see [54]) Let Q and G oe tIDO groupoids tDith identity. If

Q is isotopie to G, thm M(Q) is isomorphie to M(C).

Proof. Without 1055 of generality we cao suppose that G = (G,.) and Q =

(G,.). Forany e1ementz of the set G, denote by R(z) and L(z) the right and

left multiplication functions of(G,·), and by Ro(z) and L.(z) those of(G,*).

Since (G,·) is isotopie to (G,*) which contains an identity, there exist

R(g), L(!) E M(C) such that z * y = zIrl(!) . yL-l(g).
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Hence, we cao write

R.(y) = R-1(f)R(yL-1(g))

L.(x) =L-1(g)L(xR-1(f))

Observe that since L(g) and R(f) are permutations, there e.xists an intcgcr

k such that Lk(g) = L-I(g) and Rk(f) = R-I(J). Thus L-I(g) and R-I(J)

belong to M(G).

This shows that M(Q) ç M(G). The other direction is proved similarly.

o

The proof of the next theorem cao be found in (15) pp.250-253.

Theorem 2.1.11 Let (G,·) and (G, *) be tIDO isotopic groupoids both with

an identity. Then, (G,·) and (G,*) have isomorphie lcft, middle and right

nucleus, and they have isomorphic centers. Moreover, their ideals are isotopie

in pairs.

As a corollary we have

Corollary 2.1.12 Let G be a groupoid with identity isotopie to a monoid M.

Then, Gand M are isomorphic.

Observe that the above corollary is false if G does not possess an identity.

A counterexample of order 2 cao easily be constructed. Indeed, the semigroup

AND = {O,l}, defined as 00 = 01 = 10 = 0 and 11 = 1 is isotopie to the

groupoid NAND ={O, Il, defined as 00 =01 =10 =1 and 11 =0, but AND

and NAND are not isomorphic. We conclude this subsection with a theorem

stating some limits of what cao he preserved by isotopy.

Theorem 2.1.13 (see [16] p.S8) There exist isotopie groupoids with iden

tity that satisfy any of the following conditions.

• QnIy one ofthem is commutative.

• They have a different number ofgenerators•

• Their nuclei are not isomorphic.
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2_2 Recognition by finite groupoids

Lel A and B be lwo fini Le sels, and let cp : A- --+ B- be a. monoid homomor

phism. Then, cp is said to be strictiy alphabeticaP if cp(A) ç; B.

Given a groupoid G and a word w E G-, we denote by G(w) the sel of ail

c1emenls in G thal cao be obtaincd by evaluating w using aoy parenlhcsization.

A groupoid G is a semigroup if and only if for ail W E G-, G(w) is a singlelon.

Definition 2.2.1 A language L ç; A- is recognizcd by a groupoid G, if tl,ere

exist a strictiy alphabetical homomorphism cp : A- --+ G- and an accepling set

F ç; G such that

L = {x E A- 1G('f'(w)) n F,p 0}.

The following theorem is fundamental to this thesis.

Theorem 2.2.2 ([12]) A language is context-fre~ ifand only if it is recogni::ed

by a finite groupoid.

Proof. (<=) Let G be a groupoid with set of e1ements [k] = {1,2, .•• ,k}.

Let F be a subset of C, A a finite set, Y ç; A- a language and 8: A- --+ C- a

monoid morphism such that Y = {x E AO 1G(8(x» n F,p 0}. We construct

a grammar D =(V, T, P, S) for Y as follows:

v - {q,:O:5i:5k}

T - A ={aI, ... ,am}

P - {q, a:a E A, 8(a) =i}U

{qo q,: i E F} U

{q, CJjq/: i,j,1 E [k] and j·1 =i}

S = qo

If e E Y, then we add the rule qo ..... e.

AIl induction on the length of :r: proves :

cv: E AO)[G(8(:r:)) n F,p 0) iff (qo ~ :r:)]•
--:=-:---:--:----:---:-~

lThis termiDology comes !rom [13]
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• (=» Let Y ç AO be a context-frcc language produced by a grammar D =

(V,A,P,qa) where A = {at> ... ,am } and V = {qa, ... ,qk}. Wc c.."Ul assume

that D is in Chomsky normal form with the only rules involving qa of the form

qa -+ ( or of the form qa -+ q for q EV. Morco\'cr, we c.."U1 assume that D is

invertible, i.e. if two productions have the form qi -+ qkq/ and qj -+ qkq, then

qi =qj (sec [40)).

Wc definc the groupoid G = (V \ {qa} ) U {c, S} such that c is the idcntity,

S . a =a . S = S for every a E G, and a . b = c iff c -+ ab is in P, for cvcry

a, b, cE V. In ail other cases, a· b =S.

Now define X = {q eV \ {qa} 1(qa -+ q) e P} and F =X U {el if (e y
and F = X otherwise. Define also the monoid morphism 0: AO -+ G" induced

by Ota) = q iff q -+ a is in P, for each a e A. As abovc wc can show:

\'Ix e AO) \'Iq eV \ {qa}) [(q ~ x) iff (1 e G(O(x)))]

This concludes the praof. o

•

The fact that homomorphisms are restricted to be strictly alphahetical in

the abave definition, implies that the complexity of a context·free language

L ç A° depends ooly on the structure of those groupoids G that cao recognize

it. In particular, we will often assume that A ç;; Gand that '(J maps each a e A

to itself. Wedenote by W(G,A,F) the language consistingof aIl ID E A+ that

cao he evaluated to some e1ement in F ç;; G. The problem of determining

what words belongs to W(G,A,F) is called a lOOn! problemover G.

We now give some examples of groupoids and the languages they recognize.

2.201 Finite semigroups

We observe that when G is a finite semigroup, Definition 2.2.1 corresponds

precisely to the notion of recognition used in algebraic theory ofantomata (see

[56]). Renee, Theorem 2.2.2 cao he seen as a generalixa.tion of the following

result•
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Theorem 2.2.3 (see [56, 28]) A language is regular if and only it is recog

nized by " jinitc semigroup.

The very close rc1ationship bclween subclasses of regular languages and

subclasses of fillite semigroups is best exprcsscd usillg two concepts: syntadic

semigroups and varieties.

Given a language L ç A', the synta.ctic congruence -z. is the cquivalence

on A' lhat satisfics: u -LV iff

(Vx,y E A')[xuy E L ~ xvy E L]

The syntadic scmigroup of L is the quotient semigroup SL = A+/ -L, and

the synta.ctic monoid of L is the quotient monoid SL = A'/ - L.

The following two propositions indicate the importance of the syntadic

semigroup. Observe that these results remain true if we replace the semigroups

by monoids. The proof cao he found in [56, 28].

Proposition 2.2.4 Let L be a language and SL ils syntactic scmigroup. Then,

a scmigroup S recogni::es L if and on/y if SL -< S.

In other words, SL is the smallest semigroup recognizing L, i.e. any semigroup

that recognizes L must 'contain' SL' As a corollary of Theorem 2.2.3 we have

the following result.

Proposition 2.2.5 A language is regular ifand on/y ifils syntactic scmigroup

is finite.

Thus, the syntactic congruence induces a. mapping &om regular languages

ta finite semigroups. However, this mapping is not bijective. In pa.rticular, not

every seTDigroup is the syntactic seTDigroup of some language. This is where

the notion of varieties is required.

A class of semigroups or monoids V forms a. variety if it is closed under

finite direct product and division2

2The ataDd&zd ddiDitiOll or variety (_ [28. 46D aIlowa ÏIlfiDite direct ptoduct llZld our
defiDitiou correspouds ta peeude>-variety. Since 1re aze ouly iDterested iD fiuite gtOupoids,
1re prefet ta use the tenD variety eveu ifouly fiuite direct ptoducts aze cousidered.
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A c1ass of languages r. forms a .....varicty (resp. +-variety) if it is close<! un·

der the Boolean operations, inverse homomorphism (rcsp. im'erse non-erasing

homomorphism), and right and left division by a letter, where the right divi·

sion of L ~ A- bya E A is the set {v E A" 1va EL} (left division is define<!

similarly). Observe that this distinction betwccn .....varicty and +-variety is

necessary since *,"varieties correspond to varietics of monoids and +.varietics

correspond to varieties of semigroups. Morcover, a +-variety is not nccessarily

a *,"variety. An exarnple is given by the +-variety of all finite and cofinite

languages.

The following proposition is known as the Eilenberg Thcorem for pseudo

varieties. We state it only for +-varicties and semigroups but it cau also be

formulated for *'"varieties and monoids.

Proposition 2.2.6 ([28]) There is a bijection between +-varieties of lan

guages and varieties of finite semigroups. More precisely, let V be a class

of semigroups, let A+V be the set of subsets of A+ recogni:ed by a semigroup

in V, let V = UAA+V, and let U be the varidy generated by the syntae

tic semigroups of the languages in V. Then, V is a variety on/y if V is a

+-variety, and in this case we have V = U.

Indeed the set ofail semigroups forms a variety corresponding to the variety

of ail regular languages. We now give some other examples.

Example 2.2.1 The variety of nilpotent semigroups consists of those semï

groups S that satisfies the identity C8 =e =se, for ail s, e E S where ce =c

A language is recogniud by a nilpotent semigroup if and only if it is finite

or co-finite.

Example 2.2.2 ([65]) The variety of aperiodic semigroups consists of those

semigroups S for which there exist 1: > 0 sncb that ale = alc+l, for ail a E S.

A regular language L C A- is star-free if it is in the closureof {{a} 1a e A}

under Boolea.n operations and concatenation.

A language is recogniud byan aperiodic semigroup if[ it is star-free..
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Example 2.2.3 ([66)) A semigroup M is J-trivial if for every m E M, the

set M'mM' is a singleton. The class of al! J-trivial monoids forms a variety

denoted J.

Wc say that u E A" is a subword of w E A" whenever u = a,a2'" an,

a; E A, and w = u:oa,w,··· wn_,anwn. Let Lu E A" be the set of words that

contain the subword u. A language L ÇA" is piecewise-testable if it bclongs

to the Boolean closure of languages of the form Lu.

Then, a language is piecewise-testable if and only if its syntactic monoid

is J·trivial.

Example 2.2.4 ([77)) The variety of nilpotent groups cau be defined recur·

sivcly as follows. Any abelian group is nilpotent. Let G be a nontrivial group

and let Z be the center of G. Then, Gis nilpotent ifF Z is nontrivial and G/Z

is nilpotent.

Let (~) denote the number of occurrences of the subword u in w E A".

For any u E A", t ~ 0, q ~ 1 and 0 < k < q, let [u,t,q,k] he the set of all

words w E A" such that (~) > t and (~) == k (mod q).

A language L ç A" is in the Boolean closure of languages of the form

ru, 0, q, k] iff it is recognized by a. nilpotent group.

Example 2.2.5 Co=utative semigroups a.lso form a. varlety. A language

L E A+ is recognized by a. co=uta.tive semigroup iff it is in the Boolea.n

clOllUl:e of languages of the form [a, t, q, k], where a E A.

Example 2.2.6 ([76]) The varlety of solV<Ùlle semigroups consists of those

semigroups tha.t contains no nonsolvable groups.

For any w E A", al,· .. ,a,. E A, and Lo,k,. .. ,L... C A-, we denote by

Iwl[Loa.l.>-.L.l' the num~of factoriza.tions of w of the form uealUl ••• a,.u,.,

where !li E 1.;. Define the language [Loalk· ..a,.L...]t,v,k as .'.he set of words

w E A+ such tha.t IW\[Loa.l.>-.L.l > t and Iwl[Loa.l.>-.L.l = k (mod q).

F"mally, let 50 he the Boolea.n clOllUl:e of la.nguages of the form A+, 0, and

SSoIvabiJity is deIiDed in Sectiozt 1 oC Chapter 4 in the more general context oC loops.
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• let Sm be the Boolean closure of languages of the form [LOalL l ... an LnJr..,k,

where Lj E Sm_l' Then S = Um2:0Sm forms a varicty of languages.

A language is in S if and only if it is r<.'Cognizcd by a finite solvable semi·

group.

2.2.2 Weakly associative groupoids

A groupoid G is weakly associative if for all a, b, c EGO,

a(bc) 1= 0 and (ab)e 1= 0 => a(bc) = (ab)c.

In particular, any semigroup is a weakly associative groupoid. The corn·

plcxity of the languages recognized by weakly associative groupoids may de

pend on whether or not 0 belongs to the accepting set.

Lemma 2.2.7 Let G be a weakly associative groupoid with an absorbing de

ment O. Let F be a subset of G that cantains O. Then, L = W(G, G, F) is

regular.

Proof. For all a E G, define Lœ ç a- as the set of words that left-to-right

evaluate to a. Clea.rly Lœis a regular language, and L = U,eF LœU L', where

L' is the set of words over G that ca.n he evaluated to 0 in some way.

Let w E G". If G(w) does not contain 0 then there is a unique e1ement

a E G(w). In this case, w ca.n he evaluated in any way and will a.lways yield

the same result. Thus, the problem reduces to determine ü 0 E G(w).

Let s he a shortest segment of w that evaluates to O. Observe that for

any proper decomposition s = uv, G(u) and G(v) are singletons. There exist

u,v E c;+ sueb that s =uv and ab =0 where {a} =G(u) and {b} =G(v).

Renee, we ca.n write

L' = UG"LœL,G" U G"OG",-
It seems that when 0 does Dot belong to the acœpting set, the word problem

of G could he more difticult. Actually, we mow little, even for tDeGkly corn-•
proving that L is regular. o
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mutative and associative groupoids, i.e. those weakly associative groupoids G

with the property that for any a, b E QG,

ab -# 0 and 00 -# 0 => ab = 00.

At least, we cao easily show that the word problem for weakly associativc

and cvcn weakly commutative and associative groupoids is hard for Net whcn

odocs not belong to the accepting set. To sce this, wc will define a special kind

of wcakly commutative and associative groupoids. An elcment a of a groupoid

Gis called left-sided (resp. right-sideti) if for ail 9 E G, we have ag =0 (resp.

ga = 0). A groupoid G is called one-sided if it contains only left·sided and

right.sided elcments.

If Gis a one-sided groupoid and a,b,e E G, then it must satisfy ab = 0

or 00 = 0, as weil as a(bc) = 0 or (ab)e = O. Henee, we ha.ve thc following

observation.

Lemma 2.2.8 Any one-sided groupoid is weakly commutative and associative.

o

lt is not known if one-sided groupoids are strictly less powerfu1 than other

weak1y associative groupoids, but it cao he shown that they recognize fewer

languages than genera.l groupoids.

Lemma 2.2.9 Any language recogni:ed by a one-sided groupoid is determin

istic conte:d-free.

Proof. Let G he a. one-sided groupoid. We will show how to evalua.te a.

word to e C- to its unique possible solution dift'erent from 0 using a. deter

ministic pushdown antomaton. In the following a.lgorithm, the impossibility

of moving must he interpreted as ifwe were retuming O. Initially, the stack is

empty•
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b +- read the first symbol

While there is an unread symbol or the stack is not empty do

If b is left-sided then

pop the top of the stack a

If a is right-sided then b +- ab

Else return 0

Else push b

b +- read next symbol

Return b

o

An intercsting question conccrns the complexity of the word problcm for

one-sided groupoids. In view of the preceding lemrna., it is natura! to ask if

this problem is complete for LOGDCFL. We will sce in Section 2.3 that it is

as hard as any problem in NC!.

2.2.3 Lie groupoids

Let G he a. finite group and let a and bhe two elements of G. The commutator

of a and b is denoted [a, b) and defined as [a, b) = a-Ib-Iab.

The Lie groupoid of G is the groupoid C defined over the same underlying

set G with product ab = [a, b). In general, C is not associative.

Observe how the identity in G becomes an a.bsorbing element in C. In

pa.rticula.r, ifG is & commutativegroup, then C is & O-simple semigroup, i.e. it

contains an a.bsorbing element and any product ab is equal te that a.bsorbing

element.

Proposition 2.2.10 If G is nilpotent then C can recognize only ji.nite and

coji.nite l=guages.

ProoL Define Gt = ([a,b) 1a,b e G}, and for k > 1 let Gle = ([4,b) 14 e
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G;, b E Gi> i +j = k}. Since G is nilpotent, we must have Gn = {I} for sorne

Tl ;?: 1 (scc [36]).

Therefore, for ail words w E C' of length at least n, we have C(w) = {1}.

This mcans that if L is recognized by C with accepting set F ç C, then L

contains ail words of length at least n whenever 1 E F, and is finite otherwise.

o

The commutators of a group G generate a subgroup called the commuta

/or subgroup of G. We define a solvable group of depth 2 as a group whose

commutator subgroup is commutative. An example of such a group is 53, the

group of permutations on 3 points. We will sec in Chapter 3 that any language

rccognized by the Lie groupoid of a solvable group of depth 2 is in NL.

2.3 Recognition by programs

Mckenzie ([50)) suggested the idea of extending the notion of programs over

scmigroups (sec [5, 8)) by using groupoids instead of semigroups. This leads

to generalizing Definition 2.2.1 by allowing rp to he any projection from A" to

G".

Definition 2.3.1 Let G be a groupoid and let F CG. We define a progmm

PlO ouer G as a sequence of instructions /112", lm of the form Ii = (ii,Ii),

mue 1 $ ii < n and li: A -+ G is a function. Gil1en an input 2: E A", each

instruction Ii outputs the e1ement hi = 1i(2:ii ) E G. The progmm PlO acœpts

tu ifand only ifG(h1h2 ···hm)nFf=0.

A language L C A" is said ta he recognized by progmms ouer G if there

exists a. family of programs (P..)~ such that, for every n > 0 and every

tu E A", program PlO acœpts tu if and only if tu belongs ta L. The length of

(P..)~ is a function mapping n ta the number of instructions in PlO'

Henee. a projection from any language ta a ward problem over any groupoid

G, forms a family of programs over G. Unless explicite1y mentioned, we will

always assume that programs have polynomial length. If G is a class of
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groupoids, wc dcnotc by 'P(G) thc class of languages recognized by polynomial

length programs ovcr a groupoid in G. In particu!ar, whcn G contain$ a $ingl.,

groupoid G, then we writc 'P(G) instead of 'P(G).

Definition 2.3.2 Givcn a complc:rity class C, a polynomiallengtli family P

of programs is said ta be C.uniform if, given (w, k), tlie problem of compuling

the length of P,wl and ils kth instruction belongs to C. Wc simply say Ihal P

is uniform whenever C = DTIME(log Iw\).

The power of programs over finite groupoid is given by the ncxt theorem

tha.t will be proved in subsection 2.3.2.

Theorem 2.3.3 ([12]) A language i.. in SACl if and on/y if it i.. recogni::ed

by progroms over a finite groupoid.

2.3.1 Programs over semigroups

When G is a. semigroup (monoid) in Definition 2.3.3, the model is called pro

gram over a. semigroup (monoid). In (5), Barrington observed tha.t programs

over finite semigroups is a. mode! of computation equivalent to bounded-width

branching programs. Theorem 2.3.3 is thus the generalization of the following

result.

Theorem 2.3.4 A language is in NCl iff iL is recognized bl' programs aller a

finite semigroup.

In fad, Ba.rringk'n's theorem is more precise. It says tha.t if S is any

nonsolvable semigroup (i.e. there is a nonsolvable group that divides S), then

'P(S) = NCl
•

R.esults anaJogous to Theorem 2.3.4 exist for subclasses of NCl
.

Theorem 2.3.5 ([8]) [fV is the varidy ofsoltl4ble semigroups, then 'P(V) =

AC(fl•
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Let eeO be the class of languages rccognized by unbounded fan-in constant

depth Boolean circuits using only MOD. gates, where q > 1. We thus have

eeo ç AeCO.

Theorem 2.3.6 ([8]) If V is IlIC varicty of solvablc groups, thcn P(V) 

eeO.

Theorem 2.3.7 ([8]) IfV is thc varicty ofapcriodic scmigroups, thcn P(V) =

ACO.

Wc observe that a crucial point in determining the power of a semigroup

S concerns the kind of groups it contains. If S contains no nontrivial groups

thcn it can recognize only languages in ACO. If it contains a nonsolvable

group, then the W-lrd problem on S is complete for NC1
• Furthermore, if S

contains nontrivial groups but these are all solvable, then S ca.n recognize only

langua5::'> in AC(fl. Howevcr, in this last case, S recognizes languages that

are provably not in A(fl. This is beca.use, by standard results in group theory

(sec (36)), thcre must exists a cyclic group of prime order that divides S, and

it is proved in [69] that the word problem on this kind of groups is not in A(fl.

We conclude this subsection with a proof that any family of programs

ovcr a semigroup ca.n he simulated by a family of programs over a one-sided

~upoid having the same length.

Proposition 2.3.8 For any semigroup S, there e:tists a one-sided groupoid

G such that any language recognized by a family of programs over S is also

recognized by a family of programs over G.

Prooc. Let G = SuS' u {O}, whcre S' is a capyof S and 0 is a new

element. Let a, b, cES and define the product on G by

• a'l> =é, whcre a' and é are copies of a and Co

• AU other products yield O.
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This groupoid is one-sided since all elements in 5 are Icft-sidcd, all c1cllwnts

in S' are right-sided, and 0 is both Icft-sidcd and right-sided.

Moreover, given any word a'w E S'S', the only way to cvaluate a'.... to ail

clement dilferent from 0 is to use a Icft-to-right parenthcsization. III this case.

a'w yiclds an e1ement .<' E S' that is the copy of the e1cment .< E S rcsulting

from the evaluation of a'w in S. A program ovcr S cau thus bc transform<."<\

into an equivalent program over G by only changing the first instruction. 0

2.3.2 Groupoids and SAC l

In this subscction we show that SACl corresponds to the languages rccognizcd

by programs over a groupoid.

First, observe that prograrns ovcr finite groupoids rccognize only language

in SACl
. This is bccause prograrns over groupoids are projcction-reducible to

sets rccognized by groupoids, and by Theorem 2.2.2 all such set are CFL's.

In order to show that any language in SACl is rccognized by uniform pro

grarns over a groupoid, we simply observe that Sudburough's logspace reduc

tion from a language rccognized by an AuxNPDA to a context-frcc language

is a uniform projcction. Recall the main steps of the proof.

Step 1 ([37)): We know that if L E LOGCFL, then it is rccognized by

an AuxNPDA M in space clog n and polynomial time. This machine cau

he simulated by a m'ùtiple-head PDA Ml (i.e. constant working space): the

working tape of Mis divided into C' blocks of size logn; the content of each

block is representcd in Ml by th.. position of a head. Some extra. heads are

used to manage the proœ:.s.

Step!! ([32]): If L is rccognized by a NPDA M with k heads, then L

is reducible to a language L' which is recognized by a NPDA M' with rk/21

heads. The reduction is the projection ~: tD .... (aod)IC1OlI\. Two heads hhh2

in M are simuIated by one head h' in M': if hl is at position i and h2 is at

position j in tD, then h' will he at position i of the jth block cwd.

Step 3 ([75]): Any L rccognized by à. (2-way) NPDA M cau he reduced
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to il. language L' recognized by a 1-way NPDA M'. The reduction is the

uniform projection ..p : w ...... (cwd)p(Jwl), where p is a polynomial bounding the

time taken by M. The NPDA M' simulates M without moving its head left:

whenever M moves lcft, M' simply moves to the next block cwd using its stack

to find the proper position.

Step..( ([ï5]): By applying Step 1, iterating Step 2, and finally applying

Step 3, we cao reduce any language L E SACI to a context-free language L'.

The reduction is a compositions of projections, and thus, it cao be transformed

into polynomial-length programs over any groupoid G that recognizes L'.

This shows that LOGCFL corresponds to the languages reducible to a

context·frce language via a polynomial-length projection. This projection cao

be made DLOGTIME-uniform by modifying the above four steps such t~.at the

lcngth of each projection is a power of ~wo. This is done by padding cach word

obtained at each step with the appropriate number of blank symbols using the

technique of [6] (sec also [12]). Since projections to context·free languages are

also prograrns over groupoid, this yie1ds Thcorem 2.3.3.

However, we cao give a stronger result. It is shown in [35] that there exists

a context·free language Lo such that any COIitext-free language is reducible to

Lo via a nonerasing homomorphism. This immediate1y yields the fol1owing

re.-ult.

Theorem 2.3.9 [12) Let Go be any finite gr&upoid recognizing Lo. Then

SAC1 =P(Go).

2.3.3 Groupoids and TCO

The complexity cla.'lS T~ is the class of languages recognized by uniform

unbounded circuits (C,,)~ of depth k constructed with MAJORITY gates.

Without loss of generality, we cao assume that all paths in e" have the same

length and that all negations are al the input gates. By definition, we have

TCO = Uk~ TC~•

We will sh?w that there exists a sequence of groupoids (Gk)k~l such that
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• TC~ ç P(Gk ) ç TCo. Observe that there cxists no characlerizalion of l'Co

in terms of fini te semigroups (unless TCo = NC' or TCo = ACC").

ut r be a depth k circuit of MAJORITY gates. For each gale 9 of C

wc denote by g(x) the value output by 9 when x is inpul to C. If 9 is on

level i of the circuit wc recursivcly conslrucl a well-parenthesizL-d expression

fg(x) E {D,l, (,}}" of nesting depth i -1, as follows. In the ca.<e where i = 1,

fg(x) is simply the sequence of bits uscd as input to g. If i > 1 wc define

fg(x) = Ug,(x))"'Ugm(x)} where g" ... ,gm arc the inpul gates to g. It is

clea.r that g(x) = 1 iff fg(x) evaluates to 1 whcn wc recursivcly apply the

MAJORITY funclion to the list of operands at a given level. For eacl, k wc

will construcl groupoid Gk from a grammar Dk generating any such depth

k - 1 expression that evaluates to 1.

For k ~ 1, dcfine the grammar Dk =(Vk,T,'Il"k,S) where T = {D,l, (,)},

v,. ={S}U {M"F"QI,A"B,} and Vk =Vk_lU{Mk,Pk,Qk,Ak,Bk,Ek,Fk,L,R}

for k > 1. In order to describe 'Il"k wc first define for all i ~ 1 and all i > 1 the

following set of rules:

Ui - {Mi -> AiBilBiAi,
Pi -> AiPi!AiAi,
Qi -> BiQilBiBi}

W, - {A, -> M ,A, \A,M, ll,
B, -> M,B,IB,M,IO}

Wj - {Aj -> MjAjIAjMj\LEj,
Bj -> MjBjIBjMj\LFj,
Ej -> Mj_IRIPj_1RIAj_1R,
Fj -> Qj-IRIBj_,R,
L -> (,

R-+)}

•

Then we define 'Il"k = {S -+ MklPklAk} U U,:::;i:::;k(Ui U Wi). 1'0 sce what

language is generatcd by Dk note that starting from Mk we cau produce any

string we {Ak,Bk}+ such that IwIA. = Iwls. (\wl. denotes the number of

occurrences of the symbol c in w). Starting from Ak (resp. Bk) we produce

exactlyall w e {Ak, Bk}" such that IwIA. = Iwls.+1 (relp. Iwls. = IwIA.+1)

and starting from Pk (resp. Qk) we produce exactly all w e {Ak, Bk}" such

that IwlAo > Iwls. +2 (resp. Iwls. ~ IwlAo +2).

Bence grammar Dk generates exactly the set of well-parenthesized expres

sions of nesting depth k - 1 which evaluate te 1 when MAJORITY is taken

recursively at each level. Now construct groupoid Gk from grammar Dk as
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groupoid G was constructed from grammar M in the proof of Theorem 2.2.2.

To prove Tc2 ç 'P(Gk), let Y E TC2, let xE {O, l}n and let 9 denote the

output gate of a TC2 circuit Cn determining whether xE Y. Wc cao take Cn

to be a full depth-k 2n-ary trcc of MAJORITY gates. Then x E Y iff fg(x)

is generatcd by grammar Dk, that is, iff Gk(Jg(x)) n {Mk' Ak, Pk} :f: 0. Hence

aprogram II of length Ifg(x)1 over Gk accepts ail strings of length Ixl in Y.

This program cao be made uniform exactly as the ugcneralizcd expressions"

obtaincd from an FO formula are made DLOGTIME-uniform [6, Proof of

Thcorern 9.1 {Ul :::} 4")], with the role of the "space character" playcd here by

the constant instruction e, for e the groupoid idcntity.

We now turn to the proof that 'l'{Gk) ç TCo, that is, Gk{W) cao be

computcd in TCo for any word W E Gk. First note that givcn a word W E Gk
wc have that, for ail i ~ 0, if there is a symbol Ei or Fi that is not immediately

prcccdcd by an L thcn the only possible evaluation for w is the zero of Gk S

(sce grammar Dk). Otherwise we just have to replace each occurrence of LEi

by Ai and each LFi by Bi and this does not change Gk(W), So in thefollowing

we will not consider symbols Et and Fi. We will proœcd by proving the two

following daims :

Claim I. Every evaluation cf a word over GI cao he done in TCo.

Claim IT. Every word '.D cao he transformed in TCo into a word v such that

X'+l E G'+I(W) iff X, E G,(v) (where X is a place holder for any non

terminal).

Let u,V E {AI,BI }", E = {MI,PhQhAhBI} and XE E. It is a simple

exercise to show the followïng faets &bout the grammar Dl (where we have

suppressed the subscripts for darity):

1. For luvl > l, X '* uMv iff X '* uv.

3. For u :f: f, Q '* uQ iff Q '* uB.
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4. If X '* uPv then X = P and v = f •

5. If X '* uQv then X = Q and v = {.

To evaluate a word W over GI wc do the following:

(i) Verify that there is at most one Pl (rcsp. QI) in w: using faets 4 and 5

the Pl (rcsp. QI) must be at the end in which case the only possible evaluation

different from Sis Pl (rcsp. Qd. Thcn replace Pl (rcsp. QI) by Al (rcsp. BI)

using fact 2 (resp. 3).

(ii) Replace each Ml by the idcntity e of GI (fact 1).

(iii) We now have a word v E {AhBhe}" that cao be casily evaluatcd in

TCo. To sec this let v' be obtained from v by interchanging the AI's and the

BI 's, let M AJ(v) be true iff v has at lcast as many Al 's as BI 's, and dcfine

EQUAL(v) = MAJ(v) 1\ MAJ(v').

We have the following observations.

• Ml E G(v) iff EQUAL(v)

• Al E G(v) iff EQUAL(vBI )

• BI E G(v) iff EQUAL(vAI )

• Pl E G(v) iff MAJ(v) A -.EQUAL(vBI ) 1\ -.EQUAL(v)

• QI e G(v) iff MAJ(v') A -.EQUAL(vAI ) A -.EQUAL(v)

This provcs our Claim 1.

We now describe the TCO transformation from w E Gi+l to v e Gj which

will prove Claim II. Recall that there is no E; or .fi symbol in w.

1. Check whether there is a. symbol :z: E Gt that is not inside a. substring

of the form {v} for v E (Gt)". In such a. case the only possible result is

$ and we cao determine this in ACO.

2. Look for any substring of the form {v} for v e (Gt)" and replace it

(including the bra.ckets) with
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• A2ifGI(v)n{M"p"Ad~0

• B2 if G1(v) n {Q"Bd ~ 0

• $ otherwise

This step is feasible in TCo by Clairn I.

3. Replace every symbol Xi by Xi_1 for each 2 ~ i ~ 1+ l and for each

"nonterrninaln X (this docs not affect parentheses). We are lcft with

a new word v which evaluates to sorne X, E CI iff w evaluates to the

corresponding XI+! E C,+!. This step is easily performed in ACJ.

2.3.4 Groupoids and NC1

We have seen that if C is any nonsolvable semigroup then any language in

NCI is recognized by programs over C. The smal1est semigroup having this

property is the alternating group A.os and has order 60. In this section, we

will sec that there exists a groupoid of order 9 that recognizes, via uniform

programs, any language in NCI
.

Let a = (1,2) and b = (1,2,3,4,5) he the cYcle representation of two

permutations on five points.

Lemma 2.3.10 The symmetric group S5 is generated by a and b.

Proof. Define a transposition as a permutation of the fonn (i,j), where

1 ~ i < j < 5. Let (i,j) he called an adjacent transposition whenever j =
i +1. It is well known tha.t any permutation is the product of transpositions.

Moreover, a.n.y transposition (i,;) ca.n he written as the product of adjacent

transpositions since (i,j) = (i,i+ 1) ••• (; -1,;)(; -2,; -1) ••• (&,i+ 1). So,

it suf5.ces to show tha.t any adjacent transposition ca.n he expressed with a and

b. This is done with (i,i+ 1) = 1I-1ab6-<. 0

Consider now the groupoid C ={O, 1,2,3,4,5,a, b, il, where the product
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• is defined as follows.

0 l 2 3 4 5 a b t

0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 0 0 2 2 l
2 0 0 0 0 0 0 l 3 2
3 0 0 0 0 0 0 3 4 3
4 0 0 0 0 0 0 4 5 4
5 0 0 0 0 0 0 5 1 5
a 0 0 0 0 0 0 1 3 a
b 0 0 0 0 0 0 1 3 b
t 0 1 2 3 4 5 a b t

Let w E {a, b}· and let p be the resulting permutation when w is evaluated

in 55, When w is evaluated in G, we obtain a nonzero clement e only if the

evaluation is done from left to right. Moreover, by construction, e is cqual to

the image of 1 under the permutation p.

Now, we know from Ba.rrington's theorem that any language L in Ne! is

recognized by progra.ms over 55 such that the progra.ms map any wùrd in the

language to the identity permutation, a.ll other words being mapped on b.

Consider a progra.m on 55 a.cœpting a language L. Since a and b arc

generators of 55, we ca.n suppose without loss ofgenerality that the instructions

of this progra.m only yicld a,b or the identity i. 50, this progra.m ca.n he viewed

as a. progra.m on G: A word is a.cœpted whenever the progra.m left-to-right

evaluates to l, it is rejected if it lert-to-right evaluates to 2.

2.4 Tree languages

•

Let A he a. linite alphabet and let AC·) he the free groupoid over A (see Ex

a.mple 2.1.1). A subset T C AC-) is ca.lled a. (binary) tree language over A:t

The yield of a. tree t e AC·) is defined recursivelyas follows. The yield of

a e A is a. If u and v are the respective yields of :z: e AC·) and y e AC-),

then the yicld of (:z:y) is uv. The yield of a. tree language T CAC·) is the set

yield(T) = {w e A- 1w is the yield of sorne t eT}.

4In tbis work _ will cmly COIIlIider thia restzic:ted JàDd or tree 1azlguap.
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2.4.1 Regular tree languages

Let A be an alphabet and let T be a trcc language over A. For any a E A and

L, L' ET, wc dcnotc by L.a L' the trcc in T obtaincd when cvery occurrence of

a in L is replacL-d by L'. This operation can be generalizcd to trcc languages T

and T' by defining T·a T' = {L·a L' 1LET, L' E T'}. The iterative product a is

defincd by Ta = {a} U TuT·a TU ....

A regular expression ovcr A is a finite expression dcfincd as follows.

• Finite subsets of A(') are rcgular expressions.

• If a E A and s, t are rcgular expressions, then sUt, AH - s, s·a t, and

sa are rcgular expressions.

• Nothing clsc is a rcgular e.,-pression over A.

Renee, rcguIar o.-pressions for trce languages are defined similarly to regular

expressions for word languages. They dilfer only by the interpretation we give

to the concatenation and the iterative product.

A regular tree language is a trce language defined, in the obvious way, from

a rcguIar expression. A rcguIar expression is called star-Cree if it contains no

itera.tive product.

The rela.tionship bet\veen context-Cree languages and regular tree languages

is given by the following proposition.

Proposition 2.4.1 ([34]) A mord language is conte:r:t-free if and only if il is

the yield ofsome regular tree Ùln5l&age.

2.4.2 Tree automata

There exist two ways of recognizing a trce language depending if we use a

bottom-up or a, top down method. &ch case bas its deterministic and nond~

terministic versions.

A (nondeterministic) top-down trce automaton (NTDTA) is a,5-tuple M =

(Q,A,qo,.5,a), where Q is a, finite set of states, qo is the initia.! state, A is a,
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fini te alphabet, S : Q _ Q2 is the transition function, and 0 : .-\ - 2Q is the

final assignment. A NTDTA is called dcterministic (:Uld refem.-d as DTDTA)

if for all a E A, o(a) is a singleton.

Given a NTDTA !of and a trœ T E AH. we mark each node of T with a

state in Q as follows. We first, mark the root with the initi~: state qo. Given

an~' internal node markcd with sorne state q, we mark the lcft child with q,

and the right child with q2, where S(q) = (q"q2)'

A tree is said to be accepted by !of if cach leaf lahclcd with a letter a E A

is marked with astate q sucb that q E o(a). A trce language is n:cognizcd hy

a NTDTA M if and only if M accepts precîsely thase trecs in T.

A (nondeterministic) bettom-up trce automaton (NBUTA) is a 5-tuple

!of = (Q,A,e5,o,F), where Q is a finite set of states, A is a finite alphabet,

e5 : Q2 --+ 'fl is the transition function, and Q : a --+ 2Q is the initial assignmcnt.

When e5(p,q) and Q(a) are singletons, for any P,q E Q and a E A, M is said

to he deterministic and is denoted DBUTA.

Given any tree T E A(o), and any NBUTA M, we cao assign to the root of

T a. subset S C Q using functions Q and S. Then, T is said to he a.cœpted hy

M if S n F .;. 0. A tree language is recognized by a. NBUTA M if and only if

M a.cœpts precisely those trees in T.

Proposition 2.4.2 NTDTA, NBUTA, and DBUTA recogni=e the same class

of tTee languages VJhich is the class of regular tTee languages.

Prova.bly, DTDTA are wea.ker than the other tree automata. For example

the tree language {(l,O),(O,l)} cannot he recognized byany DTDTA (sec

[43]).

In our restricted c::ontext, recognition by DBUTA cao he expressed in terms

of finite groupoids.

Definition 2.4.3 A tTee language T e A(o) is said to he recognized by a

groupoid G if there e:ist a groupoid morphism 'P : A(-) --+ G and an accepting

set F C G such that T = {t e A(-) l 'P(t) e F}.
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Conscquently, we have the following result.

Theorem 2.4.4 A trce language is regular if and only if it is rccogni:ed by a

finite groupoid.

2.4.3 Syntactic groupoids

Let A be a finite alphabet and let :r be a symbol not in A. A tree over AU {:r}

is cal1cd a specials trec if it contains only one occurrence of :r.

The syntactic congruence of a subset L S;; A (al is denotcd by -Land defined

by u - L Il if and only if for any special tree t over A U {:r} we have t .r u E L

iff t .r Il. Clearly -L is an equivalenee relation on A(o). To sec that it is a

congruence, let Ul -L lit and U2 -L 112. Then, t.r (UIU2) E L ifft·r(1I1U2) E L,

and t·r (1'lU2) E L iff t·r (lItll2) E L. Renee t·r (UIU2) E L iff t·r (111112) E L

and therefore (UIU2) -L (lItll2). Now for any tree language L S; A(o) we define

the syntactic groupoid of L as the quotient groupoid A(o)/-L' Many results in

the algebraic study of recognizable languages in Ao (see [56]) cau he direcUy

translated for subsets of A(o). In particular we have:

Proposition 2.4.5 Let T be a tree language and Sr its syntactic groupoid.

Then, a groupoid G recogni..-es T if and on/y ifSr -< G.

Proof. Suppose that T S; a<0) is recognized by G. Let tl and t2 he two

trees in a<°)such that both of them evaluate to the same element in G. Then,

for any special tree t, t·r tl =t .r t2 in G. This me!lJlll that tl -r t2 and that

aU trees evaluating to the same clement in G belong to the same syntactic

congruence class in a(0). This PIOves that the syntactic groupoid Sr of T

~~~ 0

As a corollary, we have the following resu1t.

Theorem 2.4.6 A tree language T C A(o) is ngularifand on/y ifits syntactic

groupoid is finiU.
lThia termino1ogy COUles frOID [78J
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2.4.4 Varieties of tree languages

Let A be a fini te alphabet and let x be a symbol not in A. For an)" spL'Cial

trcc W over A U {x} and for any trcc language T, we define the quotiellt of T

by W as the set {t E A (0) 1w .r t E T}.

A class V of trec languages forms a variety if it is c\OSL-d undcr Boolcall

op,~ations, inverse homomorphism, and quotient.

Proposition 2.4.7 ([71]) The class of regular tree languages fonn.< a variety.

Varieties of groupoids are defined in the same way as varicties of scmi

groups: they are the classes of groupoids closcd under fini te direct product

and division.

The theorem of varieties still hold in the trcc language conte.'"t.

Theorem 2.4.8 ([71]) There is a bijection betlDCC7l varieties of regular me

languages and varieties of finite groupoids.

In particular any varlety offinite groupoids is generated by a set ofsyntactic

groupoids. More information on syntactic a.lgebras and varleties of general trcc

languages can be found in [71].

2.5 Restricted parenthesization

The relationship between ward languages and tree languages discussed in Sce

tion 2.4 provides an interesting way of restricting the power of programs over

groupoids. First, we generalize Definition 2.2.1 as follows.

Definition 2.5.1 Given T ç AC'), Il language L C A- is BaU to he T

recognized by Il groupoid G if there e:ist Il morphism rp : AC-) ..... G and

an acœpting set F C G, such that L = {yield(t) 1(t E 'l') 1\ (rp(t) E Fn.

'l'-recognition by progl WIl$ over Il groupoid is definetl. in the omous 1I14Y.

Clearly, Definition 2.2.1 is equivalent ta Definition 2.5.1 when T = AC-).

This is however Dot the case for arbitrary T. Observe fust that T may he

regular or DOt.
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Fact 2.5.2 ln Definition !!.5.1, ifT is regular, then L is eontut-free.

However, lhe converse is nol lrue: L can be conlext·frcc while T is even

not computable. For example, let G be a semigroup and let T ç; AH be any

set of trccs such that A- = yield(T). Then, any language L ç; A- that is

GC-l.rccognizcd by G is also T-recognizcd by G, because G is associative.

When T is regular, the class of languages T ·rccognizcd by a finite groupoid

G cao form a strict subsct of the context·frec languages.

Exnmple 2.5.1 Let G he a fini te groupoid and let LTR ç; G(-) be the set of

trccs dcfincd rccursivcly as follows. Any 9 E G is also in LTR; if t E LTR

and g E G then (tg) E LTR; nothing clse is in LTR. Thus, LTR corresponds

exactly to the lcft-to-right parenthesizations of words over G.

It is a simple cxercise ta verîfy that a language is LTR-recognized by G if

and only if it is rcgular.

Example 2.5.2 Let G he a finite groupoid and, for any k > 1, let RDk ç; GC-)

he dcfined as follows: RD1 =LTR; RDk+1 =RDk U Tk, where Tk consists of

those trees that cao he decomposed as (••. ((t1h)t3)'" tn) where th"" tn E

RDk'

We say that a language L is recognized in constant righi-depth by a groupoid

G ü there exists k ~ 1 such that Lis RDk-recognized by G.

Lemma 2.5_3 If a language L is recogni:ed in constant right-àepth by a finite

groupoid G then it is regular.

Proof. Observe that we an determine ü a word tD E c+ evaluates to

some e1ement in F with a nondeterministic pushdown automaton working as

follows.
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Read the first input; Set it as the current value;

While there is a nonread input or the stack is not empty do

Choose ~ondeterministically betveen

(1) Push the current value in the stack.

read next input. and

set it as the nev current value;

(2) Pop the top of the stack.

multiply it vith the current value. and

set the result as the nev current value;

If the current value is in F then accept

Eise reject

We observe that the program's nondeterministic choices, on input w, inducc

a tree T whose yicld is w and that evaluates to an clement in F if and only if the

program accepts w. Byassumption, there exists a sequence of choices such thal

the right-depth of T is constant. Given th3.t sequence of choices, the execution

of the program on w consists essential1y of a depth-first search evaluation of

T by the left: an clement is pushed in the stack preciscly when a right edge

is taken in direction of the leaves, and the saIne clement is popped only when

the sa.me edge is used in the reverse direction. Thus, the stack never needs to

he of height larger than the right-depth of T, which is constant. Hence L is

regu1ar, since a. nondeterministic automaton with a stack of constant height

cau he simula.ted by a finite automaton. 0

In the above examples we have used a regu1ar set of trees. However, it is

also interesting to remove this restriction and to chose a nonregular set T.

Example 2.5.3 Let G he a. finite groupoid and let Tc C 0<0) he the set of

trees of depth smaIler than clogn where n is the number of leaves. Using

the pigeon-hole Principle we easily see that Tc is not regular. However, any

language L that is Tc-recognized by G is also recognized by a. nondeterministic
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pushdown automaton using a stack of height at most c log n, on input of length

n. Thus, L bclongs to NL.

Next chapter is devoted to an important kind of regular restriction that we

ca.lllinear.

2.6 Parenthesized programs

The previous discussion on tree laI'guages motivates the investigation of pro

grams over groupoids that are deterministic in the sense that parenthesis ap

pear explicitly and 50 do not nced to be guessed.

Definition 2.6.1 Let A be a finite alphabet, let G be a groupoid and let F

bc a subset of G. For any integer n, let I.. be the set of all instructions of

the form (i, f) where 1 $ i $ n and f : A .... G is a funetion. We define a

parenthesi..--ed program P" olier G as a tree T" olier 1;.. On input w of length

n, the instructions of P" yicld clements of G that can be multiplied aecording

to the structure of T". Then, P" is said to aeeept w if the resulting clement

bclongs to F.

Another way of seeing parenthesized programs is to consider the existence

of constant instructions that produce open or closed parenthesis. On a. given

input, the program yields a. weil parenthesized expression over elements of G.

A langua.ge L ç; A· is said to he recognized by a family of parenthesized

programs (P,,),,~ over a. groupoid G if P" accepts precisely those words in

Ln A".

Definition 2.6.2 A polynomiallength fami1y ofparenthesized programs is said

ta be uniform if, gillen (w, k), toC am compute in Lime O(1og ltol) the length of

PM and its kth instruction (VJhich am be a parenthesis).

Theorem 2.6.3 ([12]) A language is in NC1 if and only if il is recognized by

a uniform parenthesized program olier a finite groupoid.
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Proof. To prove that any language recognized by a uniform family of

parenthesized programs is i:l NC', it suffices to show that any we11.parenth~'Siz~·d

expression over a finite groupoid can be evaluated in NC'. This fo11ows from

Buss' result [1 il that any parenthesis context-frcc language bclongs to NCl.

Reca11 that a parenthesis context-frcc language is a language generated by a

grammar whase productions have the form A -+ (a), where A is a variable

and a contains no parenthesis. Given a groupoid G, we cau define a grammar

DG whose set of variables is G and which contains a production a -+ (be) for

any product be = a in G. Then, a well-parenthesized expression w evaluates

to a E G if and only if w is generated by a in DG.

n rernains to show that any language in NC' is recognized by a uniform

family of parenthesized programs over sorne groupoid.

Let NAND = {O,I} be the groupoid with product 1·1 = 0 and 0 ·0 =

0·1 =1 . 0 =1. It is not difficult to sec that polynomial-length parcnthesized

programs over NAND recognized pn..cisely those languages in NC' Observe

first that the negation NOT of a bit x r.an be expressed over NAND by (xx),

and the AND and the OR of two bits x and y cau he expressed over NAND

by «:r:y)(:r:ynand «xx)(yyn, respectively.

Renee, any Boolean formula f cau be expressed as a well-parenthesized

expression W over NAND. Uniformity tan he obtained by adding extra paren

thesis to control the growth of w as a function of the depth of f (sec [12]).

o

AI!. interesting observation conœrning pa.renthesized pl'OgraD1S is that, in

this setting, any two isotopie groupoids have the same computational power.

Theorem 2.6.4 Let (G,.) and (G,.) 6e tvIo isotopie groupoids such that

(G,.) possesses an identity 1. Then any progiCUllS over (G,.) oflength.l(n)

can 6e simulated 6y a progmm Olier (G,.) haTling length O(l(n».

Proof. By Theorem 2.1.9, there exist elements f,g E G sncb that for

any x,y E G, :1:. Y = :l:R-l(f) . yL-l(g). Observe that both R-l(f) and

51



•

•

L -1 (g) are permutations. Bence, there exists a positive integer k such that

L-I(g) = Lk(g) and R-I(f) = Rk(f). We thus have x * y = xRk(f). yLk(g),

and so a well-parenthesized expressio;l over (G, *) cao be expressed with an

cxpression over (G,···) with the length increased by a factor of k + 1. 0

ln the above theorem, it is esscnti,1that (G,·) has an identity. For example,

let VI = {O,I} bethescmigroupwith product 0·0 = OandO·l = 1·0 = 1·1 = 1.

Then VI is isotopic to NAND since the product of xy in VI cao be expressed by

(x· l)(y· 1) in NAND. However, there are programs over NAND that cannot

be simulated by programs over VI'

For example, the expression P2 = (x(yl))«xl)y) evaluates to 0 (when the

product is takcn over NAND) onl)' when xy E {OO, Il}.

Suppose that there exists a program P2 over UI that recognizes {OO, Il}.

Since UI is commutative, we can assume without loss of generality that P2 has

only 2 instructions: the instruction Il looks for x and the instruction 12 iooks

for y.

Let ao, al be the clements produced by Il when x has value a and 1, respec

tivcly. Similarly, let bo, b,. be the clements produced by 12 when y is respectivcly

aor 1.

On input 01, P2 yiclds aob,., and on input la, it yiclds albo. If the accepting

clement of P2 is 0, then, we must have ao =al =bo =b,. =0, and P2 acœpts

any input. Thus, the accepting clement must he 1.

Since P2 accepts 00, there must he one of ao or bo which is 1. Suppose that

ao =1 (the other case is treated similarly). Then, on inf/ut 01, P2 produces

aob,. = lb,. = 1. This contradicts the assumption that 01 is not acœpted by

P2 , proving that no program over Ul can recognize {OO, Il}.

As a corollary of Theorem 2.6.4, we observe that restricting groupoids ta

he co=utative does not remove the power of parenthesized programs.

Theorem 2.6.5 Any language L recognized by a parenthesized program over a

groupoid G is also recognized by a parenthesized program Q over a commutative

groupoidH.
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Proof. Let k be the order of G l and let G' = {a' 1a E Gl} .

Define the commutative groupoid H = Gl U G' as follows.

• 1 is the identity of H

• l'a:= al' =a', for all a E Gl

• ab' = b'a = 1', for all a,b E G - {l}

• ab = b'a' = c, where ab =c in Gl

Deflne the isotopy (a, L, L), where a(a) =a', a(a') =a, and t is the identi ty

mappir:g. On cau vcrify that using this isotopy, we obtain from JI a groupoid

H' that is commutative.

Since G is a subgroupoid of H, L is recognized by parcnthcsizcd programs

over H. Moreover, by Theorem 2.6.4, L is also recognized by parenthcsizcd

programs over H'. 0

Another important criterion determining the computational power of paren

thesized programs over a groupoid concerns the multiplication monoid.

Theorem 2.6.6 Let S be a finite semigroup and let a and b be two elements

of S. Let P" be a program ouer S such that P" evaluates to a wheneuer it

accepts its input, and P" evaluates to b otherwise. Then P" can be simulated

by a parenthesized program ouer G, for any groupoid G tDith identity 1 such

that Sis isomorphic to a subsemigroup ofM(C). Moreover, the length of POl

is increased only by a constant factor.

Proof. Let M be a subsemigroup of M(G), and let 4> : S ..... M he an

isomorphism. Let U = q1(a), V = q1(b) and g E G he such that gU :1 gV.

Since M(G) is generated by the set {R(x),L(x) : x E G} and contains the

identity R(l) = L(l), we can transform this program in such a way that ...ach

instruction is of the form (i,R(x),R(y)) or (i,L(x),L(y)}. The length of the

resulting program will he increased only by a constant factor.
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This neW program over M (G) can be transformed into a parenthcsized pro

gram over G. This can be donc recursively as follows. A program consisting of

a single instruction of the form (i, R(x), R(y)) or (i, L(x), L(y)) is transformed

into (l,g,g)(i,a,b)) or (i,a,b)(l,g,g)), respectivcly. Let IV be any sequence

of instructions over M (G) and let w be its transformation over G. Then,

the sequences IV (i,R(x),R(y)) and Hl (i,L(x),L(y)) are transformed into

(w (i, a, b)) and «i, a, b) w) rcspectivcly. The resulting parenthesized program

acccpts if it evaluates to gU and rejeds if it evaluates to gV.

o
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Chapter 3

Linearity

3.1 Linear recognition

Let A be a finite a.!phabet. The linear subset of Al') is the set AL1N defincd as

follows: anya E A is in ALlN; if u E ALlN and a E A then (au) and (ua) arc

in ALIN. A trce T E ALIN is ca.llcd a linear trce over A, and a subset L ç; ALIN

is called a linear tree language. ln other words a tree is linca.r if at least one

child of every interna.! node is a lea.f.

We denote by GLlN(W) the set of a.!l eva.1uations of Wfollowing a.!l possible

linea.r parenthesizations. If g E GLIN(w), then we say that W linearly eva.!uates

to g.

A context-free language is ca.llcd linear if it is generated by a contcxt-free

grammar such that every production is of the forro A -+ w, wherc A is a

variable and w contains at most 1 variable. ln the following, we ca.ll a context·

Cree language that is linea.r a linear language.

Linea.r languages cau a.lso be characterized using groupoids. ln order to do

this we need to restrict the notion of recognition by groupoid.

Definition 3.1.1 We say that a language L ç A" is linearly rccognized by a

groupoid G if there ezist a subset F ç; G and a morphism ~ : A" -- G- suck

that L ={w E A" 1GLIN(~(W» n F =0}.

ln other words, linear recognition corresponds precisely to ALIN.recognition.

Observe that when the groupoid G is a semigroup then linear and genera.l
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recognitions are equivalent due to the associativity of G.

Theorem 3.1.2 A language is linear if and only if ii is linearly recogni::ed by

a finite groupoid.

Proof. Let D be an invcrtible linear context-frce gra.mmar in Chomsky normal

form generating a language L. Wc saw in the proof of Theorem 2.2.2 how to

construcl a finite groupcid G from D such that L is recognized by G. One

ca.n check that any non·linear trce over G evaluates to the absorbing element

which docs not belong to the accepting set. Hence, L is linearly recognized by

G.

Suppose now that A is sorne alphabet and L ç; A" is a language linearly

rccognized by a finitcgroupoid G. Morespecificaily let F ç; G and let,p: A" .....

G" be an alphabetic morp:':':smsuch that L = {w E A"I GLlN(,p(w))nF oF 0}.

Theo, we cau construct a linear grammar M for L as follows. Let Gu {S} be

the set of variables whcre S is not in G. Let A be the set of terminais of M,

and let S he th~ start variable. For cacb X, y, Z E G sucb that Z = XY we

dcfine the productions Z ..... Xb, Z ..... aY and Z ab for ail a E ,p-l(X) and

b E ,p-l(Y). Finally, we define the production S Z for all ZEF. Clearly,

M is a linear grammar generating the language L. CI

Definition 3.1.3 We say that a language is linearly recognized by a family of

programs P over a groapoid G if it is GIJN -recognized by P.

Proposition 3.1.4 ([Su75]) Thae aist a linear language L" such that L"

is complete for NL. Moreover, the reduetion is a DTIME(l.ogn)-uniform pro

jection.

Theorem 3.1.5 A language is in NL ifand on/y ifil is linearly recognized by

uniform polynomial-length programs over a jinile groupoid.

Proof. Observe that any liDea.r language belongs to NL sinœ we only need

two pointers to parse a word. The other din;ctiOIl is given by Theorem 3.1.2
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Another consequence of Theorem 3.1.2 a.nd Proposition 3.1.4 is tl\l' folio\\"·

ing observa.tion.

Theorem 3.1.6 Thcrc cxisL< a groupoid Co such tllat n lnllgungc i.< ill NI, if

alld only if it is lincarly rccogni:cd by a unifoMu family of pr"gmms orc,· Co.

3.2 Linear and weakly linear groupoids

Definition 3.2.1 A groupoid C is caIlcd wcakly linear if it posscs.<cs a', ab.

sorbing elcment 0 and (ab)(cd) =- 0, for any a,b,c,d E C.

Theore:n 3.2.2 ([53]) A language is linear if and only if it is rccogni:cà by

a wea'cly linear groupoid.

Proof. Let L he a language linearly rccognizcd by a finite groupoid C,

and let C' he a copy of the set G. Let a, b, cEG be such that ab = c in C, and

let a', br, é E G' be the respective copies of a, b and Co We define the following

product on H =Gu G' u {O}.

• a·b=é

• a· hl =- (lIb =é

• AU other products yield 0

Groupoid H is weakly linear, anà any word w E G· of length two or more

linearly evaluates to an element a E G if and only if w cao be evaluated to a'

in H. Thus, if the accepting set of Gis F ç; G, then H recognized L with the

accepting set FU {f' E G' 1f E F}. 0

The construction ofgroupoid H in the proof of the above theorem preserves

some algebraic properties of G. For example, G is co=uta.tive if and only if

H is co=utative. The next theorem shows that the multiplication monoids

of G and H have isomorphic subgroups.
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Theorem 3.2.3 Lei C and H be as in Theorem 9.2.2. A group is isomorphic

10 a subgroup ofM(C) if and O:l/Y if il is isomorphic 10 a subgroup of M(H).

Proof. For any x E C, let DG(x) E {Ra(x), LG(x)} ç; M(C) and let

DII(x) E {RII(X), LII(x)} ç; M(li). Let U be an clement of M(C). Th~re

cxist ah .•• , ak E G sucb that U = DG(ad· .. DG(ak)' We observe that for any

a,b E C, aU =;, if and only if aDII(al)···DII(ak) = a'DI/(al)···Du(ak) =

b'. This shows that the homomorphism 4> : M(C) -> M(H) defincd by

4>(Ra(x)) -> RI/(x) and 4>(LG(x)) -> LI/(x) is injective. Hence any group in

M(C) is isomorphic to a group in M(H).

To prove the other direction, we just observe that no clement DI/(x), for

xE H-C, cao beused to generatean elementof asubgroup of M(H). Indeed,

if W E M(H) cao be expressed as W = XDI/(x)Y, where X,Y E M(H)",

then WW maps any clement ai H to O. 0

Corollary 3.2.4 Lei C and H be as in Theorem 9.2.2. Then, M(C) is ape

riodic (resp. solvable) if and only ifM(H) is aperiodic (resp. solvable). 0

R.ecall that a. solvable group has depth k if its compositioll series has length

k. In particular, a soivable group has depth 2 Ü a.nd only if its commutator

subgroup is commutative. Theorem 3.1.5 a.nd Theorem 3.2.2 have the followillg

illterestillg consequences.

Proposition 3.2.5 Any language recognized by the Lie groupoid ofa solvable

group of depth 2 is in NL.

Proof. Let C be the Lie groupoid of a solvable group G of depth 2. Let 0

be the identity of C. For Il.IlY a,b,c,d E C, we have [[a,bJ[c,dJ] =O. This is

reflected iD. C by the fa.ct that (ab)(cd) =0, where 0 is the absorbillg clement

ofC.

Thus C is a. wealdy linear groupoid that can only recognize languages iD.

NL. 0

The definitioll of wealdy linear groupoids is Ilot satisfa.ctory 011 Olle poiD.t.
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That is, semigroups are not weakly linear in spitc of the fact that lincar and

gencral recognition by semigroups arc ...-quivalenl. For lhis reason, we definl' (\

stronger nolion of linearily.

Definition 3.2.6 A groupoid G Ï,.< callcd lincar if for any word 10 E G-. "'''

have GLIN(VJ) =G(w).

Theorem 3.2.7 A language is recogni.:ed by a linear groupoid if and only if

it is recogni.:ed by a weakly linear groupoid.

Proof. If L is recognized by a lincar groupoid B, lhen L is also lin

early recognized by B. By Thcorem 3.2.2, L is rccognized by Il. weakly lincar

groupoid.

The other direction is not immediate bccause thcrc is no guaranly lhal a

worli over a weakly linea.r groupoid ca.n he linea.rly cvaluated to the absorbing

e\ement.

Suppose that Lis recognized by a weakly linea.r groupoid G wilh a.cccpling

set F. Define H = {(a,b) 1a,b E G} U Ha,bJ 1a,b E G} U G U {O}, whcrc 0

is a new e\ement. For any a, b, e, dE G, we define a product on H as follows.

• a.b=La,bJ

• La,bJ ·c= {(ab)e,a(bc)}

• c· La,bJ = 0

• c· (a,b) = (ca,eb)

• (a, b) •c = (ae, bc)

• AIl other produets yield O.

We observe that any word tD E G" of length at least three linea.rly eva\ua.tes,

in H, ta 0 and ta some clementsof theform (:, y). Any non-linea.r eva\uation of

tD yiclds O. Thus, L is recognized by H using the acœpting set FU Ha, bJ lab E

F} U {(a, b) 1a E F or b E F}. 0
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3.3 Transducers and Groupoids
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Lel M be a semigroup (possibly infini le). The family of rational subscls of M

denolcd RAT(M) is defincd as

1. 0, {ml E RAT(M) for al! m E M

2. If X, Y E RAT(M) then X UY,XY E RAT(M)

3. If XE RAT(M) thcn X· E RAT(M)

4. Nothing clse is in RAT(M).

Givcn alphabets A and S, rational subscts of the semigroup A' x S' are called

rational relations ovcr X and Y.

A rational transduccr is a 6·tuple T = (X, Y, Q, qa, F,6') whcre X and Y

arC finite alphabets, Q is a finite set of states, qa E Q is called the initial state,

F ç Q is a set of final states, and 6' ç Qx (X- x Y-) xQ is a finite set orIabcled

edges. We represent T as a finite graph where the vertices are the clements of

Q, and the edges are Iabcled with clements of X- x Y-. An clement (u, v) E

X- x y- is said to he a.ccepted by the above transducer if and only if thcre

exist an clement qF E F and a sequence of edges (qa, q., )(q.u q;,) ••. (q..., qF)

sueb that the product of the labels is (u, v). Otherwise (u, v) is rejected. The

relation RT C X- X y- a.ccepted by T is the set of pairs (u, v) E X- x y

a.ccepted by T.

Let A he a finite alphabet. For any integer n and any word ta = :1:1 •• ':1:,. E

A", we define the mirror image of ta as the word üi =:1:,. ••• :1:1. The proof of

the following theorems can he found in [13].

Theorem 3.3.1 A relation R ç X- X y- is rational ifand only ifil is accepted

by some rational transducer. CI
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•• Theorem 3.3.2 ([60]) A language L is linear if and only ifthere i., a rational

relation R such tha! L = {ut> 1(ü, t,) E R}. 0

In [13] it is shown that any rational relation R c..'Ul bc accepte<! by a tralls

ducer T = (X,Y,Q,qo,F,a) such that li is rcstricte<! to Q x (XU {t}) x (YU

{f}) X Q. It is is not difficult, given a transducer with the above propcrty, to

lind an equivalcnt transducer T (i.e. a transduccr acccpting the same relation)

such that ais further restriete<! to Q x (X X {f})U({f} X Y)) xQ. 'Nc thcn

say that T is in normal form.

The interest of this normal form is that it allows us to sec any normal

transduccr T = (X, Y, Q, qo, F, a) as a linitc automaton accepting sorne lan

guage LT ç {(X X {f}) U ({f} X Y)}". We can thus sec T as both a relation

and a language recognizcr. We define the transformation monoid of a normal

transduccr as the transformation monoid of the induce<! automaton (e.g. sec

[56J for a discussion of the transformation monoid of licite automata).

Let G be a fmitegroupoid, let A ç G, and let L ç A" bea language linearly

recognized by G with acœpting set F ç G. Morcovcr, let MA ={R(a), L(a) 1

a E A}. We define two monoid morphisms Q, P : MA ..... A" as follows. For ail

a E A, Q(R(a)) = f, Q(L(a» = a, p(R(a)) = a, and p(L(a» = f.

Definition 3.3.3 The derived language of L according to G is defined as the

set DL ={W E MA !lW EF}.

Definition 3.3.4 Thederived relation of L according to G is defined as the

set RL =((Q(W),P(W» 1W E D(L)}.

We will oÏten assume that a word W E DL represents, in the natural way,

a Iinear tree T E ALIN with the yield of T being Q(W)P(W).

•
Proposition 3.3.5 The la~age DL is recognized by .M(G).

Proof. It suflices ta use the a.cœpting set {U E .M(C) 11U E F}
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• Proposition 3.3.6 RI. is a rational relation such that L = {uv 1(ü, v) E Rd.

Proof. To prove that RL is rational, define K = .4 x {(} U {(} x A

'Uld consider the morphism t/J : MA -+ K" defincd hy ""(R(a)) = (c, a) and

.p(L(a)) = (a, c). Since DL is regular then there exists a regular expression

for t/J(DL ). Now this regular expression over K" ca.n he viewed as a rational

relation over A" x .4", that is casily sccn to he RL.

A simple induction shows that L = {uv 1(ü, v) E Rd. 0

ln the rest of this section, we will compare the groupoids that lincarly ree

ognize a language L with the transducers that recognize a relation R such that

L = {uv 1 (ii,v) ER}. This comparison will he done via the multiplication

monoid of the groupoids and the transformation monoid of the transducers.

Theorem 3.3.7 Let L ç A" be a language linearly recogni:ed by a groupoid

G. There e:rists a nonnal transducer T for RL such that the transfonnation

monoid ofT divides M(G).

Proof. Let M = (GI, MA, e5, l, F) be a finite automaton, where MA =

{L(a),R(a) 1 a E A}, F ç G is the a.cœpting set, and e5 is defined by

e5(g,R(a)) = ga and e5(g,L(a)) = ag, 9 E CI and a E A. Then, the trans

formation monoid of M is generated by MA and thus divides M(G).

Define the rational transclucer T = (Gl,Ax{4, {l!}xA,p, 1,F) from M by

substituting theedge label (l!, a) for R(a) and (a,l!) for L(a), a E A. Then, T is

& tr&nsducer recognizing RL and having a transformation monoid isomorphic

to that of M. o

•

The converse of the above result needs more work to be proved. Before

doing so, we need to discuss some technicalities. We s&w that for any linea.r

language L linea.rly recognired by a. groupoid G, there exists a. finite automaton

recognizing the derived language of L a.ccording to G. However, a language D

recognized by an arbitrary (normal) transclucer is not neœssa.rily the derived

language DL of some language L recognired by a. groupoid G. More precisely,
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nec(:5sary conditions for a language D ç «A x {f}) U ( {f} x A)) r<'Cognized

by a transducer T to be the derived language of sorne linear language art':

1. for any a E A., both or none 0: (a. <) and (t, a) are in D.

2. for any a,b E A and any m E (.-\ x {t} U {f} x .·1)', ail or nonc of

(a,f)«,b)m, (f,a)(f,b)m, {b,t)(a,<)l/I and (f,b)(a,f)m are in D.

The above conditions arc justificd by the raet thiLt a word W E DL bclongs

to DL if and only if a(W}p(W) bclongs to L.

A normal transduccr rccognizing a language that satisfics the above con·

ditions will be called a special transduccr.

The next proposition is givcn for groupoids with apcriodic and solvable

multiplication monoids but also applies to any groupoid whose multiplication

monoid belongs to a group variety.l

Proposition 3.3.8 Let R be a rc1ation rccogni::ed by a special transduecr T

with aperiodic (solvable) transformation monoid. Then the language L = {uv 1

(ii, v) E R} is linearly recogni::ed by a finite groupoid with apcriodic (solvable)

multiplication monoid.

Proof. Let B = (A x {e} U {<} x A) and let K ç B" he the language rccog·

nized by T viewed as an automaton. Let M = (S, B,i, ô,.F') he the minimal

automaton rccognizing K. It should he clear that M is aIso a transducer rccog·

nizing R. Also, it is well known from automata theory that the transformation

monoid of M is still aperiodic (solvable).

Remark that beca.use M is minimal and because bath or none of «(,a)V

and (a,e)V belong to K, for any V, then starting from the initial state of M,

bath (a,e) and «(,a) go to the same state.

We define a groupoid G on the set AU Su {O}, where 0 is a new clement.

The product in G is defined as follows. Let s, tES and a, b E A.

1. ab = s, where s = ô(ô(i, «(,c»,«(, b»

IGiVeI1 ....y variety of groupe V. the cIass of ail mODoids CODtaining ouIy subgroupe iD V
forma Il. variety of mouoids calIed Il. group variety (see (56]).
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2. as = t, where t = é(.•, (a, c))

3. sa = t, where t = 6(.<, (c,a))

4. Ali other ;>roduct yield O.

To sec that this groupoid linearly recognizes L, we just have to show that

the multiplication monoid M(G) of G recognizes K with the accepting set

{U E M (G) 1 lU E F}. This follows from the observation that the transfor

mation monoid of M is isomorphic to the submonoid D ç M(G) generated

by L(a) and R(a) for all a E A. Indeed, the action of L(a) (rcsp. R(a)) and

(n,c) (resp. (c,a)) arc identical on S. Furthermore, by the above remark, we

have that for any b E A tbere e:-::isLs.s E S such that L(a) and R(a) map band

s to the saIne clement in S. for ail a E A. In other words, all transformations

in D act identica.lly on b and on s.

To complete the praof it suffices to show that all groups contained in M(G)

are isomorphic to a subgroup of the transformation monoid of M. This follows

from the fact that any clement not in 1J evaluates to the absorbing clement of

M(G) when multiplied by itsclf. 0

Lemma 3.3.9 Let R be a relati-. recognized by a normal tTansducer T tDith

aperiodic (solvable) transformation monoid. There ezists a special tTansducer

Tt tDith aperiodic (solvable) tTansformation monoid that recognizes a relation

~ such that {uv 1(ü,v) E R} ={uv 1(ü,v) E~}

Proof. Let B = (A X {e} U {e} x A), and let K c BO he the language

recognized by T viewed as an automaton. The language K is recognized by a

finite monoid M with accepting set F C M. For any (a, b), (c, d) E B, let

It is well known (sec [56]) that K(a,b,c,d) is aJso recognized by M.

For any a, b E A define the sets

Q(a) = {(a,e),(e,a)}
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L(a, b) = {(a, {)({, b), ({,a)(t,a), (b, {)(a,{), ({, b)(a,t)}

Let Ln = {uv 1 (ü, v) E R} and let K' ç B" be ddlnt'cl as follow".

K' =PULl U L~ U L3 U L., where

P = U Q(a)
aELR

LI = U L(a,b)K(a,{,{,b)
4,bEA

L~ = U L(a,b)K({,a,{,b)
G,bEA

L3 = U L(a, b)K(b, (, a, ()
o..bEA

L. = U L(a,b)K({,b,a,{)
a..bEA

Since L(a, b) is finite for every a, b E A, and since languages rccognizcd by

aperiodic (resp, solvable) rnonoids arc closcd under finite union and concate

nation with finite sets, the language K' is rccognized by sorne aperiodic (rcsp.

solvable) rnonoid. This autornaton cao be seen as a special transducer rcco~iz.

ing a relation R'. One easily check that {uv 1(ü, v) E R} = {uv 1(ü, v) E R'}.

o

Proposition 3.3.8 and Lemma 3.3.9 together yieid the following theorem.

Theorem 3.3.10 Let R be a relation recognized by a nonnal nmonal trans

ducer toith aperiodic (solvable) transfonnation monoid. Then L = {:l:Y 1

(i,y) E R} is linearly recognized by afinite groupoid toith aperiodic (solvable)

multiplication monoid. 0

3.4 Hierarchy of linear languages

Let L he a regular language over the alphabet {O,l}, and let T he a linear

tree language over A = {O,l,a,b} such that the yieid of T is {a"b"w : n >
0, w EL}.

We will show that the multiplication monoid of any finite groupoid that

recognizes T must he as 'complicated' as the syntactic monoid of L. As a
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'. consequence, wc get a hierarchy of linear languages and !inear trec languages

corresponding to the hierarchy of regular languages. For example, no groupoid

with aperiodic multiplication monoid can linearly rccognize the yicld of T if L

is the set of words that contain an even number of l's.

Let T be recognized by a groupoid C :2 {a, b, 0, 1} with accepting set F

and suppose that the multiplication monoid of C has order k. Let v be a trec

in T such that the yicld of v is anbnw, where n > k, Iwl > 0, and w E L.

Let E = {R(x), L(x) 1 x E {O, I,a,b}} and define T = {a E ElIa E F}

to be the set of words over E representing a trec in T. Observe that T is

rccognized by M(C) with the accepting set {U E M(C) JW E F}, where F

is the accepting set of C.

Let v be rcpreseoted by a word V E T, and for any x E A, let D(x) denote

any clement in {R(x), L(xn. Define X as the longest suffix of V that contains

no symbol of the form D(x) for x E {O, I} (i.e., no D(wi), whcre Wi is a symbol

of w). Theo, therc cxïsts 1 ::; e ::; n such that

o

(3.1)

We prove that j ::; k in the same way.

V=XD(w.)Y

Let. S = {R(a),L(a),R(b),L(b)} and B = {R(O),R(I)}.

Lemma 3.4.1 Y E (B"L(b))i(B"L(a))jB", where i::; k and j ::; k.

Proof. Having an occurrence of R(a) or R(b) after an occurrence of D(wi)

or having an occurrence of L(b) after an occurrence of L(a) would contradiet

the fa.ct that the yield of v belongs to a·b·{O, 1}·. This shows that Y belongs

ta (B"L(b))ô(B"L(a))jB·, for some integers i and j.

Let Y =Yi1'21'3, where Yi E (B·L(b));, 1'2 E (B·L(a))j, and 1'3 E B·.

Suppose that j > k. Then, by the Pigeon-hole Principle, there must be a

decomposition 1'2 = z"L(a)Z:zL(a)Z:s such that z"L(a) = z"L(a)Z:zL(a). This

means that V = XD(w.)Yi1'2l'3 = XD(w.)Yiz"L(a)Z:sl'3. Thus, there exists

a. trce in T ;Ô.ose yield is aftbft-<w', where c > 0 and w' E {O, 1}·, contradieting

the definition of T .

•
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• Lemma 3.4.2 /n Equation S.l, wc have D(we ) = R(w,) .

Proof. Since n > k and sicce, by the above lemma, therc arc at most k

occurenccs of D(a) and at most k occurenccs of D(b) at the right of D(we ),

then there must be at least one occurrence of D(a) and D(b) before D(we ).

Thus, D(we ) = R(we ), otherwise the yielJ of v would not be of the fonn

a·b·{D,I}·. Morcover, W e = Wl since no L(WI) can appcar after a D(a) or :>.

D(~. 0

For a1l a E M(G), let Z'" ={u E B·I u =a} and X", ={u E S·I u =a}.

Using Lemma 3.4.1 and Lemma 3.4.2, we can write

T = U UX.,Z""L(b) ... Z""L(b)Z"';+lL(a)",Z"';+iL(a)Z"';+l+i' (3.2)
i";~k

where the second union is taken over ail ï, al, ... ai+j+t E M (G) such that

lïaIL(b) ... aiL(b)ai+IL(a) .•. ai+.;L(a)ai+j+t E F

Let q, : {D,I}· --> M(G)" be the morphism that maps D into R(D) and 1

into R(l). Trivially, any monoid recognizing L' = q,(L), alst) recognizcs L. Wc

cao express L' as fo1lows.

(3.3)

•

where the second union is taken over the same domain as in EquatioD 3.2.

Theorem 3.4.3 Let L ç {D, l}· be a regularlanguage, 'et T be any linear tree

language whose yield is 10 = {anbnw 1n ~ 0, 10 EL}, and let G be any finite

groupoid linearly recognizing T. Then, M(G) is aperiodic (resp. solvable) only

if the syntactic monoid of L is aperiodic (re...op. solvable).

Proof. The c1ass of languages recognized by aperiodic (resp. solvable)

monoid is c10sed under finite union and concatenation (see [56]). Renee, if

M(G) is aperiodic (resp. solvable), then Equation 3.3 shows that L cao 'i>e

recognized by an aperiodic (resp. solvable) monoid. 0
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Corollary 3.4.4 In the previous theorcm, if the linear language Lo is recog

nized by a finite groupoid G such /hat M(G) is aperiodic (rcsp. solvable), then

the syntaetic monoid of L is aperiodic (resp. solvable).

Proof. If such a groupoid exists, then this groupoid recognizcs a lincar trcc

language whose yicld is Lo• By the previous Thcorem, the syntactic groupoid

of L must he aperiodic (rcsp. solvable). 0

Observe that Thcorem 3.4.3 and Corollary 3.4.4 cao be generalized to any

groupoid whosc multiplication monoid belongs to a variety that is closed under

concatenation.
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Chapter 4

Loops and Quasigroups

In this chapter, we will study the case of finite quasigroups which are those

groupoids whose multiplication table forms a latin square, i.e. no row and no

column of the multiplication table contains two identical clements.

The study of quasigroups has a long history (sec [26]). The combinatorial

properties of latin squares were investigated as carly as the eightccnth ccn

tury, and quasigroups were intensively studied between 1930 and 1950. In

particular, a theory of loops has been devcloped which closcly follows that

of gI'Oups. Quasigroups have also been considered from the point of view of

computational complexity. In [52] some subproblems of the graph isomor

phism problem were investigated and graphs constructed from cornbinatorial

structures were considered. In particular, the isomorphism problem for latin

square graphs was proved to be in DTIME(nlosn). Miller also showed that the

isomorphism problem for quasigroups is in DTIME(n"'En) and, recently, Wolf

[82] proved that these problems are in D5PACE(log2(n».

4.1 Basic theory of loops

The purpose of this section is to present a short introdl~ction to the algebraic

theory of loops. This is motivated by the fact that the number of textbooks

on this topie is really limited and that loop theory is little known. A large

part of the ma.terial that appears here comes from papers written in the forties

by A.A. Albert and R.H. Bruck. Their work contains an impressive amount
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of information but is not casily accessible. Furthermore, there exists no single

source exposing comprehensive1y the theorems on normality, loop decompo

sitions, and loop extensions, along the !ines of the analogous results in the

theory of groups. This survey docs not intend to be complete but at lcast it

gives many theorems that we bclieve are fundamcntal for an understanding of

the algebraic structure of loops.

A quasigroup Q is a groupoid satisfying right and left cancel1ation laws (i.e.

for ail a, b E Q, ax = b and ya = b ha~e one and only one solution). Thus the

Cayley table of a fini te quasigroup forms a latin square.

We note that if a finite quasigroup is associative then it is a group. This

is proved in the following theorem.

Theorem 4.1.1 liG is a finite associative quasigroup then G is a group.

Proof. It suflices to show that G posscsses an identity clement. Let a,1 E G

be such that la = a. Since G is associative, for any x E G we have that

l(ax) = (la)x = ax showing that 1 is aleft iàentity oÏ G. Similarly, we show

that G possesses a right identity rEG. Final1y, since r =Ir =1 then, 1 is an

identity for G. [J

A loop is a quasigroup with an identity. We define subloops and homomor

phisms between loops in the same manner as for groups. One observes that

·beca.use any closed subset of a finite loop that contains the identity sa.tisfies

bath cancella.tion la.ws (the a.ssociated sub-Cayley table is still ala.tin square),

then it must be a. subloop. In the sequel we will consider only finite loops.

4.1.1 NormaUty and homomorphisms

A subloop N or a. loop L is ca.lled nonnal if it satisfies

:r:N =N:r: , (N:r:)y = N(xy) , y(:r:N) = (yx)N (4.1)

for every :r:,y e L.
o

Equation 4.1 implies that (:r:N)y = (N:r:)y = N(:r:y) =

(xy)N = :r:(yN) =:r:(Ny). Then we have

x(Ny) = (:r:N)y

ïO

(1.2)
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Since N contains the identity, x E N::; for every x, and y E Nx implies

y = nx for sorne n E N. Thus, Ny = N(nx) = (Nn)x = Nx, showing that

any normal subloop partitions a loop into disjoint cosets. Furthermore, by the

cancellation laws, each coset has cardinality INI. Inàeed, these cosets form a

loop, under the operation (Nx)(Ny) = N(xy), that is denoted by L/N. This

is formalized in the following theorem.

Theorem 4.1.2 ([16]) IfN is a nonnaI sub/oop of the loop L, then N define..<

a natural homomorphism x -> Nx of L onto the quotient loop L/N.

Procf. By Equations 4.1 and 4.2, we have (Nx)(Ny) = «Nx)N»y _

(N(Nx))y = «NN)x)y = (Nx)y = N(xy) and so (Nx)(Ny) = N(xy) for

every x, y E L. It can be verified that L/N satisfies both cancellation laws,

and the identity is N. 0

Clearly, the cardinalityof L/N is ILI/INI. A loop L having no proper

normal subloop except {1} is called simple.. Since the order of a normal subloop

always divides the order of the loop, every loop of prime order is simple.

The above theorem is also true in the reverse direction. That is, any loop

homomorphism induces a normal subloop.

Theorem 4.1.3 ([16]) The kernel K ofa hO'30morphism rp : L -> M, TDhere

Land M are tTDo loops, is a nonnaI subloop of L.

Proof. Sinee K is closed under multiplication, it is a subloop of L. li k is

an element of K, then for any:z: in L there is" unique element a in L sucb

that :z:k = 4:1:. Henee:I:'fJ = (arp)(:z:rp) and arp - 1 by the ca.neellation laws.

Therefore a must he in K. Simïlarly we show that if k:z: = :z:b for k in K then

bis also in K. This shows that for any:z: in L, :z:K = K:z:. Now if :z:,y,% are

in L then by the caneellation laws there exist unique elements p, q, r, s of L

sucb that %= (p:z:)y =q(xy) =:z:(yr) = (:z:y)s. But if one of p,q,r,s is in K

then %rp = (:z:rp)(yrp) and thus, eachof p,q, r,s is in K (still by the cancellation
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laws). This proves that K satisfies Equation 4.1 and then is a normal subloop

ciL. CI

The center Z of a loop L satisfies Equation 4.1, so Z is an abelian normal

subloop of 1. In fact any subloop of the center of a loop L is an abelian normal

subloop of L. Wc will come back to the center of a loop in subscction 4.1.4

when wc will talk about nilpotency.

In the rest of this subscction we will give sorne properties of normal subloops

and loop homomorphisms.

Theorem 4.1.4 Let N, K be subloops of a loop L toith N normal. Let h :

L -+ LIN be the natural Îlomomorphism. Then the inverse image of h(K) is

KN.

Proof. The inverse of h(K) is the union of ail cosets kN such that k E K,

that is KN. CI

Corollary 4.1.5 Let N and K be subloops of a loop L toith N normal in L.

Then N is a normal suoloop of K N. CI

Corollary 4.1.6 If N is a normal subloop of a loop Land K is a suoloop of

L such that N S; K S; L then"N is normal in K. CI

Theorem 4.1.7 Let tP : L -+ H oe a loop homomorphism, and let N C L oe
the kernel of 4>. Then H and LIN are isomorphic.

Proof. Observe fust that ail e1ements in a given coset of N have the same

image in H. Moreover, if a =Oz and 4>(a) =4>(0), then 4>(%) =1 and a EoN.

This shows that H and LIN have the same ca.rdinaIity.

Let 8 : H -+ LIN be the bijection defined by 8(4)(a)) = aN. Then, sinee

ao E aoN, we ha.ve 8(4)(ab)) = (ab)N = (aN)(bN) = 8(4)(a))8(4>(b)), proving

that 8 is an isomorphism. CI
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Theorem 4.1.8 Let L be a /oop and H, N nonna/ sub/oops of L with H ç; N .

Then, (L/H)/(N/H) is isomorphie to L/N. 0

Proof. Let Ct : L -+ L/N, 0 : L -+ L/H and ,p : L/H -+ (L/H)/(N/H)

he the natural homomorphisms. Furthermore let t/J = ,pO. Since t/J-1(1) =
0-14>-1(1) = 0-1(NfH) = N then the kernel of 0 and the kerncl of t/J arc

identical. But th;~ i:nplies that the image of Ct and t/J are isomorphic. 0

Let L he a loop and N, K be subloops of L. Then the subloop generated

by NU K is called the union of K and N, and is denoted by (K UN).

Theorem 4.1.9 If N, K are sub/oops of a loop L with N norm.al, then

(KUN)=NK=KN.

Proof. We use here the proof of [16]. Let B = (KUN). By corollary 4.1.6,

N is a. normal subloop of B. Let 0 : B -+ B/ N he the natural homomorphism.

Then, by Theorem 4.1.4 the inverse image of O(K) is K N, a. subloop of B

containing both K and N. This implies that B = K N. 0

In subsection 4.1.2 we will also prove that the union and the intersection

of two normal subloops are normal subloops.

4.1.2 Multiplication group and inner mapping group

In this subsection we will see that with any finite loop we cao associate two

finite groups. These groups are very important in loop theory. They are used

as a. tocl for proving many theorems, and also forro a.link between loop theory

and group theory.

In [2], Albert consider the multiplication monoid of a quasigroup Q. In this

case, the functions R(a) and L(a) are permutations on Q, and M(Q) is a group

called the multiplication group of Q. On the other hand, if the multiplication

monoid M of a groupoid G is a group, then G must be a quasigroup.

Theorem 4.1.10 A finite groupoid G is a quasigroup if and only ifM(G) is

a group.
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• Proof. Wc only nccd to show the if direction. Let M(G) he a group such

that 1 is the identity permutation. Since G is finite, it suffices to show that for

any a, b E G there exist c, dE G such that ac =b and da =b. Let c =bL-'(a)

and d = bR-'(a) where L-I(a) and R-I(a) are the respective inverses of L(a)

and R(a). Then ac =bL-I(a)L(a) =bI =b and da =bR-'(a)R(a) =bI = b,

concluding the proof. o

•

ln particular, if G contains an identity and M(G) is a group then Gis a

loap.

Theorem 4.1.11 ([2]) Let L be a loop with center Z and M be its multipli

cation group with center Z. Then Z is isomorphic to Z and Z =IZ.

Proof. First we prove that Z ç IZ. If c E Z then R(c) =L(cl. Furtherrnore,

for al! x and y in L we have x(yc) = (xy)c and c(xy) = (ex)y. Equivalently,

R(c)L(x) = L(x)R(c) and L(c)R(y) = R(y)L(c). Bence if c E Z then R(e) =

L(c) E Z.

Next we prave that IZ ç Z. Suppose that C E Z and let c = lC. We

will show that c is in the center of L. First we have xc =cL(x) = ICL(x) =
IL(x)C = xC showing that C = R(c). Similarlyex = cR(x) = lC.P.(x) =
IR(x)C = xC showing that C = L(e). Bence R(c) =L(e) and 50, we have

xc =ex. Furthermore R(c)L(x) =L(x)R(c) implies that x(yc) = (xy)c while

L(c)R(y) =R(y)L(c) implies c(xy) = (ex)y. We thus have zc =ex, c(xy) =

(ex)y and (zc)y = x(ey) from what it is e:MY ta show that (xc)y = z(ey)

proving that cE Z.
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We have shown that Z = IZ. 1t remains to prove that Z and Z are

isomorphic. First, by the above discussion, we know that if C E Z and c = l C

then C = R(c) = L(e). This proves that Z and Z have the same cardinality.

Now, let 0: Z -> Z be defined by Ole) = R(c). Clcarly 0 is onc-to-one sinee,

given C E Z, e = IC is uniquely defined. Thus 0 is a onc-to-one function

betwcen two sets of sarDe cardinaiity, that is a bijection. Furthermore 0 is an

isomorphism sinee for any C,D E Z we have (IC)(ID) = ICR(ID) = ICD.

o

In [15], Bruck used a subgroup of the multiplication group called the inner

mapping group as a very useful tool to decide, among other things, if a subloop

is normal. Recall that a subloop N of a loop L is normal if it satisfics

xN = Nx , (Nx)y =N(xy) , y(xN) = (yx)N

This condition cao be rewritten as

N =NR(x)L-1(x) =NR(x)R(y)lt1(xy) =NL(x)L(y)L-1(yx)

for all x,y E L. Let:J = :J(L) he the subgroup of M(L) generated by aU

T(x) = R(x)L-1(x),

R(x,y) = R(x)R(y)lt1(xy),

and

L(x,y) =L(x)L(y)L-1(yx).

We call :J the inner mapping group of L. The ahove discussion makes the

next theorem cIear.

Theorem 4.1.12 ([15]) A subl.'lOp N ofc loop L is nonncl if!N:J = N. 0

The next lemma will be useful te give another chara.cterization of the inner

mapping group and te prove the normality of arlain subloops of a loop.

Lemma 4.1.13 ([15]) Let L be cloop, M ils multiplicction group cnd :J ils

inner mapping group. Then for cny e1ement X E M there exists U E :J such

thct X = UR(lX).
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Proof. Let K = {a E M 1 a E .JR(la)}. We will procccd by proving that

a? E K for any a E K and ? E 9 = {R(z),L(x) 1 x EL}. Since,9 is a

gcnerator of M, this will imply that KM = K and that K = M.

Observe first that .JR(x) = .JT(x)L(x)=.JL(x). Hence K = {a E M 1

a E .JL(la)}. Let a E .JR(t) where la = t. We have

aR(x) E.JR(t)R(x) =.JR(t,x)R(tx) =.JR(t,x)R(laR(x)) ç K,

aL(x) E.JR(t)L(x) = .JT(t)L(t,x)L(xt) =.JT(t)L(t,x)L(laL(x)) ç K.

o

Using the above lemma we cao give another chara.cteriza.tion of the inner

mapping group.

Theorem 4.1.14 The inner mapping group of a loop L is the subgroup of

M(L) generated by ail Ct E M such that la = 1 where 1 is the identity of L.

Praof. Clea.rly lU = 1 for all U E .J. Hence it suffices only to show that if

IX =1 for sorne XE M then XE.J. Let a E M he such that la =1. Theo

by the preceding lemma a E .JR(la) =.JR(l) =.J, proving the theorem. 0

Lemma 4.1.13 cao also bè used to prove the norma.lity of certain subloops

of aloop. A nonempty subset 5 of aloop L is ca.lled self-conjugate if 5.J = 5.

Theorem 4.1.15 [16J Let H be a subloop of a loop L, and define K = {k E

H: k.J CH}. Then, K is the largest normal subloop ofL contained in H.

Praof. Since (K.J).J ç H, K is a self-conjugate subset of L. Let k E K and

U E.J. Then, by Lemma 4.1.13, R(k)U E .JR(kU) so (T.'k)U = KR(k)U ç
K.JR(kU) ç H(kU) C HH = H This proves that KK = K and that K is a

subloop of L. Furthermore, since K.J =K then, K is a.lso normal. To show

that K is ma.xima.l, observe that if N is a normal subloop of L contained in

H then, by Theorem 4.1.12, N.J ç N ç H l'.Ild thus, N ç K. 0
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Corollary 4.1.16 {16} Every self-conjugate subset of a loop L generates a

normal subloop of L.

Proof. Let S be a self-conjugate subset of L generating a subloop li ç L.

Defining K as in Thcorem 4.1.15, we have S.1 ç S ç II. This shows that

S ç J( and that K = II. Hence, by Thcorem 4.1.15. H is a normal subloop

~L. 0

Theorem 4.1.17 Let S be any subset of a loop L. Then, (S.1) is UIC smallcst

normal subloop of L that contains S.

Proof. First, observe that S.1 is self-conjugate. Hence, by the above corol1ary,

(S.1) is a normal subloop of L. Now, suppose that N is a normal subloop of

L that contains S. Then, S.1 ç N and 50, (S.1) ç N. 0

Given aloop L and a subset S of L, we ca.ll (S.1) the normal subloop of L

generated by S. The next two theorems establish a re1ationship bctween the

normal subloops of aloop L and the normal subgroups of M(L).

Theorem 4.1.18 Let L be 4 loop and M ifs multiplication group. IfN is 4

normal subgroup ofM then lN is 4 normal subloop of L.

Proof. Letting N = lN we have N.1 = lN.1 =1.1N = lN =N. Renee, N

is normal by theorem 4.1.12. 0

Let N bc any normal subloop of a loop L and define the following sets:

MN = {U E M 1Vz E L,zU E zN} and .1N = .1 n MN. 50 MN is

the set of mappings of M fixing the cosets genera.ted by N. Observe tha.t if

z ELand U E MN then., by definition of MN we have that zU E zN, and

50, ZMN C zN. Furthermore, if ne N, then, R(n) is an e1ement of MN,

and zn = zR(n) E ZMN impliesthat zN ç ZMN. Renee, we have that

zN =ZMN for any z ELand in particula.r N =!MN•

Theorem 4.1.19 ([3, 15]) Let N be 4 normal subloop :>f 4 loop L then
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• (i) MN is a normal subloop of M(L) and M(L/N) is isomorpilic to

M(L)/MN.

(ii) :IN is a normal sublo"p o.f.; (L) and :I(L/N) is isomorphieto :I(L)/:IN.

Proof. (i) Let 0 : L ..... L/N be the natural homomorphism. Then it could be

vcrificd that t/J : M(L) ..... M(L/N), the function induced by R(x)t/J = R(xO)

and L(x)t/J = L(xO), is a homomorphism such that (xa)O = (xO)(at/J) for ail

xE L and a E M(L). The kernel K of t/J is the set of ail a E M(L) such that

0'0 = O. Then IC E K iff (XIC)O = xO for every x E L or equivalently XIC E xN.

But this implies that K = MN. Hcnce MN is normal in M and M(LIN) is

isomorphic to MIMN.

(ii) Simply observe that t/J-I(l) n:l = :IN. 0

We close this subsection with two theorems on the properties of normal

subloops whcre the proofs make use of the multiplication group and the ioner

mapping group.

Theorem 4.1.20 Let K, N be normal subloops of a loop L.

a normal subloop of L.

Then K nN is

o

•

Proof. Let a E N n K and let :1 he the inner mapping group of L. Then

a.J E N and a.J E K byTheorem4.1.12. Hence (NnK):I ç; NnK, proving

the normality of N n K again by Theorem 4.1.12. 0

Theorem 4.1.21 Let K, N be normal subloops ofa loop L. Then (K UN) is

a normal subloop of L. 0

Proof. We know from group theory that the union of two normal subgroups

of a group is still a normal subgroup. Hence MKMN is a normal subgroup

of M. By Theorem 4.1.1& it is sufficient to show that KN = lMKMN. In

the observation preœding Theorem 4.1.19, we have seen that N = IMN and

K =IMK. Thus, IMKMN =KMN ç; KN where the la.st inequality holds
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• by ddinition of MN. Morco"cr, we ha"e K 1'1 = (KUN) by Thcorcm ·1.1.9, and

R(l) E MKnMN. Thus,K = IMKR(I) ç IMKMN and 1'1 = IR(I)MN ç

IMKMN, concluding the proof.

4.1.3 Commutators and associators

o

•

For any e1emcnts x,y and ::: of a Joop L wc define the commutator [x,y] and

the associator [x, y,:::] as the unique solution to the equations xy = (yx)[x,y]

and (xy).: = (x(y:::))[x, y,:::]. If 1'1 is a normal subloop of L then wc denole by

S(N.L) the subloop generated by ail commutators and associators of the form

[n,x], [x,n], [n,x,y], [x,n,y] and [x,y,n] where nE 1'1 and x,y E L.

Theorem 4.1.22 For any normal subloop 1'1 of a 100p L, S(N.L) is a $ubloop

ofN.

Proof. Let nE N and x,y E L. Then (nx)y = (n(xy»[n,x,y]. Since 1'1 is

normal there exists nt, n2 E N such that (nx)y =(xy)nt and (n(xy»[n,x,y] =

(xy)(n2[n,x,y]). Henee nt =ndn, x, y] and [n,x, y] E N. A similar argument

shows that [x,n, y], [x,y,n], [n,x], [x,n] E N. 0

We define (N,L) to be the normal subloop generated by S(N.L)' More

specifically, (N,L) = (S(N,L):J) where :J is the inner mapping group of L.

When L is a group, it is not diflicult to show that S(N,L) = (N,L). However,

no proof is known (at least from the author) when L is aloap, with the notable

exception where N = L. Let S(L,L) be denoted by L'.

Theorem 4.1.23 ([16]) If Lisa 100p then L' is a normal subloop.

Proof. We begin the proof by showing the following three properties of L':

1. xyEL/iffyxEL'

2. (xy)z E L' iff x(yz) E L'

3. (xy)z E L' iff (ab)cE L', for any permutation (a, b, c) of (x,y,z).
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• The two first properties follow from the fact that L' contains all commutators

and associators. Let x,y,:: be elements of L. Thus (xy):: E L' - X(lI::) E

L' - (y::)x. EL', so

(xy):: ( L' - (y::)x E L' (4.3)

Now let k = [x,y]. Then (xy):: E L' - «yx)k):: E L' - (::(yx))k E L"_

::(yx) E L' - (yx):: EL', 50

(xy):: EL' - (yx):: E L' (4.4)

•

The third property is just a consequence of equatiùns 4.3 and 4.4.

Now, in order to prove that L' is normal, we must show first that xL' =

L'x. If x is a given element of L the equation xa = bx induces a bijection

a -> b from L to itself. ehoose any x' such that x'x EL'. Then using the

above properties we get x'(xa) E L' .... (x'x)a E L' .... a E L'and, similarly,

x'(bx) E L' .... bEL'. Since xa =bx, we sec that a and b are both or ncithcr

in L'. Thus xL' = L'x for every x E L.

It remains to show that L'(xy) = (L'x)y and that (xy)L' = x(yL'). We

will oo1y prove the former equation, the proof of the last one bcing similar.

Fix x,y in L and write p = a(xy) = (bx)y. If we choose any w such that

w(xy) EL' then, using the above properties we have pw E L' .... (a(xy»w E

L' .... (w(xy»a E L' +-l a eL'. Similarly we deduce that pw e L' .... beL'.

Thus a(xy) = (bx)y ü and oo1y ü a, b are both in L', i.e. L'(xy) = (L'x)y. 0

The next theorem plays an important role in the central nilpotency theory

of loops.

Theorem 4.1.24 Let N be a no~al subloop of a loop L. Then NI(N,L) is

in the center ofLI(N,L).

Proof. Let h : L -+ LI(N,L) he the natural homomorphism of L onto

LI(N,L). We want to prove that h(N) is in the center ~f LI(N,L). Let

n e N, x,y E L, and let m = h(n), a = h(x) and b = h(y). We bave

h«nx)y) = (ma)b = (m(ab»h([n,x,yJ) = m(ab). Similarly we find that

80



•

•

(am»b = a(mb), (ab)m = a(bm), and ma = am. Hence h(n) is in the center

of LI(N, L). 0

Theorem 4.1.25 For any loop L, LI(L, L) is an abclian group. Furthennore,

if K is a nonnal subloop of L such that LIK is abclian then (L,L) ç K.

Proof. The first statement is a direct consequence of Theorem 4.1.24. Suppose

that K is a normal subloop of L and that LIK is abelian. Let 4> : L -+ LIK

bE. the natural homomorphism. Then, for any x, y, z EL'!'", have 4>([x, yJ) =

4>([x, y, zJ) = 1, where l is the identity of LIK. Henceforth, (L, L) E 4>-1(1) =

K. 0

The subloop (L, L) is ca1led the commutatoT-as5ociatoT subloop of L. It

will play a major role when we will discuss solvable loops.

In [15) Bruck defines (N,L) in a different manner. Let:J he the inner

mapping group of L and let N(:J) be the subloop of L generated by all e1ements

of the form nUL-l(n) with n E N and U E:J. Let n E N, U E :J and

m =nUL-l(n). Then nU =mL(n) =nm and so, mEN. Therefore, N(:J)

is a subloop of N. In the rest of this subsection, we will prove that N(:J) is a

normal: subgroup of Land that N(:J) =(N, L).

Lemma 4.1.26 ([15]) Let H he a suhloop of a loop L. If K is any suhloop

ofL such thct H(:J) ç K ç H then K is a normal subloop ofL

Proof. Let x he any e1ement of K ç H, U any e1ement of:J. Then

xUL-l(n) = y E H(:J) ç K by hypothesis. Henee xU = yL(x) = XV is

in K. Henee:J maps K into itself. But this means that K is normal. 0

Theorem 4.1.21 IfN is suhloop ofL then N(:J) is a normal subloop ofL. 0

Theorem 4.1.28 Let N he a normal subloop ofL. Then (N,L) C N(:J) .
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Proof. We must show that [n,x], [x,n], [n,x,y], [x, n,y] and [x,y,n] bclong

to N(.J) for any n E N and x, y E 1. We will only do the proof for [x, n, y],

the other cases being similar. First, observe that if n E N and x, y E L

then (nx)y = (na)(xy) where a = nR(x,y)L-I(n) E N(.J), x(yn) = (xy)(nb)

where b = nL(y,x)L-I(n) E N(.J) and nx = x(nc) where c =nT(x)L-I(n) E

N(.J). Hence, since N(.J) is normal, there exists al,,'" as E N(.J) such that

x(ny) = x(y(nal)) = (x(yn))a2 = «xy)n)a3 = (x(yn))a4 = (x(ny))as. But

x(ny) = «xn)y)[x,n,y] implies that [x,n,y] = as E N(.J).

o

Lemma 4.1.29 ([15] p.272) Let N be a nonnal subloop of a loop L and Let

Q be any set of generators of .J. Then N(.J) is generated by ail e/cments

nUL-l(n) toith n E N and U E Q. 0

Theorem 4.1.30 If N is a nonnal subloop of a loop L then (N,L) = N(.J).

Proor. In view of the previous lemma and Theorem 4.1.28 it is sufficient to

show that nT"L-l(n), nR(x,y)L-l(n) and nL(x,y)L-l(n) belong to (N,L).

The praof is similar to that of Theorem 4.1.28. 0

4.1.4 Solvable and nilpotent loops

Among the most important normal subloops of a loop L, we have seen that

there are the subloops (N, L) defined for any normal subloop N. As a particu

lar case there is also the commutator-associator subloop of L. Finally, we have

also introduced the center, an abelian normal subloop of L. These subloops

play the same IOle in the theory of loops as their analogues in group theory.

In particular they are used to define nilpotent and solvable ~oops.

Let L he a finite.loop. We call a normal series a sequence

(4.5)

where for all i such that 0 $ i $ le, Li is a normal subloop of L. R.ecall that

by coIOl1ary 4.1.6, Li_l is also normal in Li. Furthermore when LilLi_1 is
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simple for ail i then (4.5) is called a composition series. It has bccn shown

(s<.'C [3, 16]) that any two normal series of a loop have isomorphic refinements

(Schreier R.cfinement Thcorem). Hence, as a consequence, we have that ail

composition series of a loop are isomorphic (Jordan-Holder Thcorem).

A finite Joop L is said to be solvable if the sequence

L = L(O) ;2 L(l) ;2 ... ;2 L(i) ;2 ...

where for each i we have L(i+l) = (L(i), L(i»), terminates in the identity.

Theorem 4.1.31 Every subloop and quotient loop of a solvable loop is solv

able.

Proof. Observe first that if N is a subloop of a lvap L then (N, N) is a

subloop of (L,L). Thus, if Lis solvable then N(i) ~ L(i) for aIl i, proving that

N is l'Olvable. Suppose now that K = LIN where L is a solvable loop and N

is a normal subloop of L. Let <p : L .... K he the natura! morphism. Then

any commutator (resp. associator) of K is the homomorphie image of some

commutator (resp. associator) in L. This means that (K,K) ~ <p«L,L)).

Bence for any i we have K(i) ~ <p(L('1), proving that K is solvable. 0

Theorem 4.1.32 A loop L is solvable if and only if:t has a nonnal series

in which Li-IIL; is abelian for ail i.

Proof. By Theorem 4.1.25 LI(L,L) is an abelian group. Thus, any solvable

loop possesses a. normal series of the a.bove form. F::Ir the other direction,

observe that for any i, since L;IL;H is abelian then, by Theorem 4.1.25,

(L;,L;) ~ L;H' Bence for any i if L{i) ~ L; then L{;H) = (L{i),L{i») c
(L;,L;) ~ LHI' But L = L{O) = La implies that L{i) C Li for aIl i: In

particular L{e) ~ 1, proving that L is solvable. 0

Corollary 4.1.33 A loop L is solvable if for sorne nonnal subloop N of L

60th N and LIN are solvable.
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• Proof. If LIN ;2 LtiN ;2 ... ;2 L,_JiN ;2 NIN, anJ N ;2 N, ;2 ... ;2

N._I ;2 1 are series satisfying the properly of thcorem 4.1.32 lhen L ;2 L, ;2

... ;2 N ;2 N, ;2 ... ;2 1 is a series satisfying the same properly. 0

We define a loop to be nilpotent if il has a normal series (4.5) sueh lhal

LdLi_1 is i~ the center of LILi_1 for ail J < i :5 k. Such a series is called

a central series. One can observe that sinee Ld Li_1 is abclian, any nilpolent

locp is also solvable. For any nilpotent loop we define two canonical central

series: The lower central series is the normal series

(4.6)

where for ail i < m, Hi+1 = (Hi, L). The upper centrai series is the central

series

(4.7)

•

where for ail i > 0, Z;fZi-1 is the center of LIZi_l.

Theorem 4.1.34 Let L be a loop having lower and upper central series as in

(4.6) and (4.7). If (4.5) is any centrai series of L then, Hi ~ Lm+l_i and

Li ~ Zi for ail i.

Praof. The proof is identical to the case()f groups (see [30J p.lSl). 0

Bence the upper and the lower central series of a nilpotent loop have the

same length. We call this length the class of the loop. Note that a loop of

class 1 is an abe1ian group.

Next theorem relates the nature of a loop with that of its multiplication

semigroup. The proofs cm be found in [15J pp.28O-282.

The<lrem 4.1.35 Let L be a loop, M ils multiplication semigroup, and :J ils

inner mapping group.

1. If M is nilpotent ofclass c then L is nilpotent of class not greater !han

c.
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2. If L is nilpoteni and has order 9 then M and :r are solvable and their

order dividcs sorne power of g.

The above thcorem cannot be extendcd by stating that L is nonsolvable

whenever M is nonsolvable. In Sub~ection 4.9, we will construct a loop of

order 10 that is solvable and whost; multiplication group is non$olvable. I~

remains to determine if L nonsolvable implies that M(G) is also nonsolvable.

Thcvrem 4.1.35 cao however be improved in.the case where the order of L

is a power of sorne prime number. This kind of loop is cal1ed a p-Ioop. R-uck

first mentions these loops in [15]. His first motivation \Vas to show that aoy

nilpotent loop cao be decomposcd into a direct product a finite p-loops. This

result is weil known to he true for groups, but he proved it to be false for

general loops by giving explicit counter example of order 6. He observes also

that sinee there exist loops of prime order having a non trivial subloop then,

one cannot expect to develop a theory of p-loops comparable to what exists in

the associative case. However, from t.he above results, we obtain the following

corollary. ([15] p. 282).

Corollary 4.1.36 If Lisa nilpotent p-Ioop then M(L) and :rel) are nilpo

tent p-groups. 0

4.1.5 Isotopy

We have alrea.dy introduccd the notion of isotopy in Chapter 2. Most of the

results stated here are simple restatements, in terms of loop, of previous ones.

Theorem 4.1.37 ([3] ThIn. 2) A loop L is isotopie to a group G ifand only

ifLand G are isomorphie.

Theorem 4.1.38 ([3]) If Land H are isotopie loops then H is isomorphie

to a principal isotope of L.

Theorem 4.1.39 ([3]) If(S,'11,t) is a principal isotopy ola loop (L,.) onto a

loop (L, *) then there e:ist clements I,g E L such that (S,'11,t) = (R(!), L(g),t).
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Isotopy preserves sorne important properties of loops. We just state sorne

of thcm without proof.

Theorem 4.1.40 ([3]) 1. Every loop isotopie to a loop (L,·) is i.<omory,hie

to a loop (L, *) having preeisely the sa71le normal subloops as (L, .).

2. Any loop isotopie to a simple loop is simple.

:J. Isotopie loops have isomorphie multiplication groups.

./. Isotopie loops have isomorphie inner mapping groups.

5. Isotopie loops have isomorphie center.

As Albert mentions, the first part of the above thcorem only says that if

·(N,·) is a normal subloop of (L,.) then (N,*) is a normal subloop of (L,*).

But, it does not say that (N,.) and (N, *) are isotopie at all.

4.1.6 Conjugated loops

With any loop (L,·) we a.ssociate five loops: (L, f), (L, \), (L, 0), (L, p) and

(L, ~). These six loops a.re sa.id to be conjugated. The produets of the conju

ga.tes of (L,·) a.re defined a.s foUowed. For a.ll a, b, cEL,

1. a/b = c ifF c· b= a (Right division)

2. a\b = c iff a . c = b (Left division)

3. a 0 b=c ifF b· a =c (Dual product)

4. apb =c ifF b· c =a (Dual right division)

5. a~b =c ifF c· a =b (Dualleft division)

Some authors define aloop a.s a set L together wil.h three binary operations

" / and \ such that for a.ll :z:, y E L, the foUowing conditions a.re satisfied.

(i) :z:\(:z:. y) =:z:. (:z:\y) = y
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(ii) (x· y)ly = (xly)' y = x

(iii) xIx = y\y

Without condition (iii) we only get a quasigroup and it is not difficult to see

that the two first conditions are equivalent to the definition of the conjugates

\ and 1.
It is a simple exercise to prove that conjugation is an equivalence relation.

Naturally it is possible for two of the above conjugates to he the same (e.g. if

one of the conjugates is commutative). But this situation is subordinated to

the following theorem.

Theorem 4.1.41 ([26]) The number of distinct conjugates of a loop (L,·) is

1,2,3 or 6.

Proof. Let RI,R2 and ~ be the functions mapping (L,·) in (L,f),(L\)

and (L,o) respectively. Then, one cao verify that {Rl,R2'~} generates a

group G isomorphic to the symmetric group 83• Renee the number of distinct

conjugates must be equal to sorne subgroup of 83• 0

RecaIl that the exponent of a group G is the smallest integer q sucb that

aq = 1 for all a E G. The following lemma will be USo·.fulllater.

Theorem 4.1.42 Let L be a loop and M ils multiplication group. Then for

any a,b E L toe have alb = a.R'-l(b) and a\b = bLq-l(a) tohere q is the

exponent ofM.

Proof. The proof is immediate using the fact that alb = a,R-l(b) and, sinee

q is the exponent of M, ,R-l(b) = .R'-l(b) (the case a\b is similar). 0

4.1.7 Loop extensions

In this last subsection, we will see how, given two loops K and N, we cao

a>nstruct aloop L sucb that N is a normal subloop of L and K is isomorphic

to LIN.
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Let L be a loop, N a normal subloop of L, and LIN the quotient loop.

We would like to define a produet such that its application on N and LIN

produces a loop isomorphic to L. Define the,;et K = {kt, kz, •••• k.,,} such that

al! ki E L, kt = 1, m = \LINI, and [kt], [kz], ••• , [kml are the cosets generat<'d

by N. Then, any element x E L can be unique1y writlen as the product of

an element ki with an element ni E N. 50, there is a bijection betwccn the

e1ements of Land those of K x N.

If k;, kj E K and ni, nj E N then there is a unique k, E K such that [kil =
[k;][kj]. Furthermore (k;n;)(kjnj) = k,x, where x = «k;n;)(kjnj))L-t(k,).

Hence for any k;, kj E K we define the funetion q.k;,k, : N x N -> N by

where k, E K is sucb that [k,j = [k;][kj]. Then, the loop (LIN x N,.), dcfincd

by ([k;), no) .. ([kj), nj) = ([k;][kj), <Pki.k, (n;, nj)), is isomorphic to L.

This idea ca.n be used to construct an extension of two arbitrary loops.

Let K and N be two loops. For each pair kt,k2 E K we associate a function

<Pk, ,k, : N x N -> N sucb thaL the three following conditions are satisfied: Fi1'llt

th.1 = N, second <Pk,1 is a loop with identity 1 for ail k E K, and finally 1 is a

left identity of th,le for ail k E K. With this setting we define the ut~nsionof

K and N (called crossed extension by Albert [3]) as the the loop (K x N,.)

define by

Theorem 4.1.43 ([3]) A loop L is isomorphic to an eztension of two loops

K and N if and only if N is isomorphic to a normal subloop ofLand K is

isomorphic to LIN. 0

It seems that there is no loop analogue of the wreath ptoduct (see [36]).

However, the .iirect product of two loops bas been studied. We mer the

interested reader to [16). For more results on loops extension see [22)•

88



•

•

4.2 Notation and definitions

In this section, we present the basic not:.tion and definitions that will be used

in the foIIowing. At the end of the section, we prove a lemma that will be

usefuI therea.fter.

If r is the root of a trce T, and if rI and r2 are respectivcly the left and

righl child of r, then the subtrees of T rooted at rI and at r2 are respectivcly

::alled the lcft and the right subtrecs of T.

We need to generaIize the notion of special trees introduced in Char·ter 2.

Let Q be an alphabet and S a set of variables. A special tree T over .1'. US is

a trec where ea.ch clement of S appea.rs exa.ctly once as a label of a le.lf.

As an exa.mple of application of the special trees, let T be a. tree over an

alphabet Q and let Tl be any subtree of T. If we replace the subtree Tl in T

bya lea.f labcled with X, then we obta.in a special tree T2 over QU {X}. So,

wc have decomposed Tinte two trees, Tl and T2 , and we have T =T2 ·x :LI,

We denote by (Tl T2 ) the tree T with left subtree Tl and right subtree

T2• As an exa.mple, for variables )( Y, (X Y) represents the special tree

whose yicld is XY, and T ca"· represented by «X y).x TI)·Y T2•

In tbis thesis we will mostly l:se the single va...iable X. Thus, te simplify

the notation wc will write . ins~ of .x when the context clea.rly indicates

tha.t only X is used. Observe that .x, for a. fixed variable X, is an associative

operation. Renee, for any special trees Tl, ... ,TA: ovcr QU{X}, the expression

Tl'T2 • •••• TA: defines the sa.me special tree no matter which pa.renthesiza.tion

is used. This will be denoted by rr~ 71.
For any tree T, we define the tIIllue of T, denoted v(T), te he the clement

of Q resulting from the eva.!uation of the yicld of T using the induced pa.ren

thesiza.tion. If Tisa. special t:ee over QU{X} and TI ,T2 are two trees over

Q, then
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On the other hand, a reolrsive application of the cancellation laws shows that• viT· TI) =v(T. T,) => v(T,) = v(T,) . (4.9)

•

Two speci>ù trees are said to b.:: yield-cquivalcnt if they h'l.ve the same yicld.

In the rest of this section, wc describe a way of modifying a tree without

changing its yield or its v.Jue. This will be used many times in the following.

Let w E Q+, and let T = (II~=1 Ti) . R be a trce with yield w, where k ~ IQI.
For all i such that l '5 i ::; k, pick any special tree Ti yield-equivalent to Ti. For

any x,y sucb that 1 ::; x ::; y::; k, let S(x, y) =m;ll Ti' m= :li· m=>+l Ti' R,

ignoring the tirst term (the next to la3t ter:"l) whenever x =1 (y = k). Observe

that S(x,y) is always yield-equivalent to T.

The following result is due to Hervé Caussinus.

Lemma 4.2.1 ([19]) There exist tIDO integers a, b such tha! 1 ::; a ::; b ::; k

and such that v(T) = v(S(a, b)).

Proof. Define 5(1,0) = T. Since IQI ::; k, there exist, by the pigeon-hole

principle, two integers a, b sncb that 1 ::; a ::; b ::; k and sncb that

v(S(1,a-1)) = v(gTi.gTi·iA/i'R)

- v(gTi' gTi. iAITi' R)

- v(S(l,b))

From (4.9), we ha.ve that

v (rr.
b

T; ..IT Ti . R) =v (frl'i' il Tt •
>=4 i=b+l >=4 i=b+l

Finally, !rom (4.8), we have that

v(T) = v (nTt • nTt • .IT Tt • R)
-=1 ,=0. ï=6+1

- t1 (nT; .nTi ..IT Tt • R)
-=1 '=cl \=6+1

- v(S(a,b))
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4.3 Languages recognized by quasigroups

ln this section, we will define a rcstricted notion of recognition by finite

groupoids, and we wili show that any language recognized in this way is reg

ular. Then, we will show that any language recognized by a finite quasigroup

is also recognized in the restricted way, proving that it is regular.

Given a tree T and a path 7r in T, we define the right-Iength of 7r as its

number of right edges. The right-depth of T is the maximum right-Iength of

its paths. Then, for any integer k, the set of trees of right-depth ::; k over a

groupoid G com.<;ponds precisely to the set RDk of Section 2.5. RecalI that

any language recognized by a finite groupoid of constant right-depth is regular.

We will use this result to prave the following theorem.

Theorem 4.3.1 Any language recognized by a finite quasigroup is regular.

Proof. We will show that any language recognized by a finite quasigroup Q

is also recognized in constant right-depth by Q and hence is reguiar

Let Qhe a quasigroup of order q, n a positive integer, and tD E Q". Let T

he a tree with yield tD and d the right-depth of T. Furthermore, for any set

A, define the function Nk : A(·) - IN such that Nk(S) is the number of paths

of right-Iength grea.ter or equal ta 1: in S.

We will show that if d > 2q, then there exists a tree T, yield equivalent

ta T, such tha.t v(T') = v(T) and Ntl(T' < Ntl(T). The conclusion will follow

from an itera.ted application of this facto

Suppose that ?f is a path of right-Iength d in T. Without loss of gener

ality, wc ca.n suppose tha.t the first edge of ?f is a right edge. Otherwise, wc

just have ta consider the maxima! subtree of T having this praperty. Let

(no,mo),(nhml), .•• ,(~,7n2q) he the first 2q + 1 right edges in?f, and let

Qi he the subtree of T IOOted at n;. For a.ll 0 < i < q - 1, define Ii ta he

the special tree over Q U {X} obtained from Q2i when Q2i+2 is repla.ced by
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• X, and let R = Q2.. Clearly, we have Q2i ::: Ti . Q2i+2 for evcry i < q. and

T =Qo =To ' Q2 =To •Tl . Q~ =... =n1;~ Ti . Q2.' Hcncc, wc ha.ve

.-1
T=IITi • R .

•=0

Our construction is such that the path to X in Ti contains preciscly two right

edges: (n2i, m2i) and (n2i+h m2i+l)' Thus, X is a leaf containcd in the right

subtree R; of Ti, but it cannot be the It"ftmost leaf in R; (sec Fig. 1).

Let Li be the left subtree of Ti, let f he the leftmost leaf in R;, and let

Pi he the special tree over Q U {X, Y} obta.ined from R; by substituting the

variable Y for the lea.f f. Thus, we ha.ve

Ti = (L, R;) = (Li (Pi'Y f)) •

f X

Figure 1: n Figure 2 : Ti

•

Now, let'T; (see Fig. 2) he the special Uee defined by

It should he cleu that 'T; is yield-equivalent te n. Thus, by kmma 4.2.1,

thete are two integers 0 < a < b< q -1 sueh that v(7") = v(T) whete T is

defined by
..-1 • t-1

T = II T; • II'T;· II T; • R .
i=O ..... =+1
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Moreover, if di is the right-depth of Ti then Nd,(Ti) ~ Nd,(Ti). To sec this,

observe that the right-length of any path from the root to a lea.f in Li is

unchanged. Also, the right-length of any path from the root to a leaf in R;

is decrea.sed by one except for the path to f whose right-length remains the

sa.me.

Any path p, from the root of T = m~: Ti . R to a lea.f Wi, has a corre

sponding path in T' that goes to the sa.me lea.f Wi. Only the segment of p

passing through Ti will he modified if we replace Ti by Ti, and, as we just ob

served, the right-length of this segment will not increa.se. On the contrary, the

corresponding path of li" in T' will have a strictly smaller right-length. Hence

Nd(T') < Nd(T), and this concludes the proof. 0

4.4 Linear recognition

In this section, we will prove that any language linearly recognized by a finite

quasigroup is regular. This result cannot be inferred from Theorem 4.3.1

beea.use the transformation used in the proof does not preserve the "linearity"

of the trees. Nevertheless, we will proceed in a similar manner: we will first

define a restricted notion of linear recognition, and we will prove that any

language recognized in this way by a finite groupoid is regular. Then, we will

show the equivalence hetween linear recognition and its restricted version, in

the context of finite quasigroups.

Let T he a linear tree and let m he a vertex inT. We say that an a1temction

occurs At m whenever misa right (left) child and bas a left (right) child tha.t

is not a.leaf. The number ofcltemations in T is the number of vertices where

an altemation occurs..

Let A he a. finite alphabet. A language L CA-la said ta he recognized in

constant clternations by a groupoid G if there exist an alpha.hetic morphism

h: A" - G', a. subset F C G, and a constant k such that % E L if and only if

there is a linea.r tree T with yield h(%) and with a.t most k alterna.tions such
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• that v(T) E F.

Lemma 4.4.1 If a language L ç; A- is reeogni=ed in eonstant alternations by

a finite groupoid G, then L is regular.

Proof. Suppose that L is recognizcd in t ;::: 0 a.1tcrnations by G .with the

a.ccepting subset F ç; G. Without lost of gencra.1ity wc can suppose that

A ç; G. The proof is by induction on t.

If t = 0 then L = Li U L2 where

Li = {x E A- 1x left-to-right eva.1uates to sorne 9 E F}

~ = {x E A-\ x right-to-left eva.1uates to sorne 9 E F}

Since LI and ~ are regular, L is a.1so regular.

Suppose now that t > 0 and assume that the theorcm is truc for any

o< s < t. For any a E G define the language L. as the set of x E A- for

whicb there exists a linear tree with yie1d x sucb that T eva.1uates to a in t - 1

a1ternations. Moreover, we define the languages N. and M. as follows.

N. = {x E A-\ ax left-to-right eva.1uates to sorne 9 E F}

M. = {x E A- 1xa right-to-left eva.1uates to some 9 e F}

Clearly, N. and M. are regular. Furthermore, L. is recognized by G in t - 1

a1ternations. Henee, by the inductive hypothesis, L. is regular. Moreover, L

can he expressed as

L= U L.N.U U M.L•
• eG .eG

Thif. shows that L is regular and concludes the proof. a

•
Theorem 4.4.2 Any language linearly recognized by a finite quasigroup is

regular•

Proof.
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• The proof is similar to that of Theorem 4.3.1. Let Q he a quasigroup of

order q, and let L be linearly recognized by Q. By Lemma 4.4.1, it suffices to

show that L is recognized in constant alternations by Q.

Let n be a positive inleger, let xE Qn, and let T he a linear tree with yield

x. For any set A define Ail: ALIN -+ lN such that Alt(S) is the number of

alternalions in S.

It is sufficient to show lhal if Alt(T) > 3q, then there exists a linear tree

T' yield equivalent to T such that Alt(T') < Alt(T) and v(T') = v(T).

Suppose that Alt(T) > 3q. Let no be the root of T, nt, ••• , n3q he the

first 3q vertices where an altemation occurs, and define Qi to be the subtree

of T rooted at ni, for i =:; 3q. For 0 =:; i =:; q - 1, define Ti to be the linear

special tree obtained !rom Q3i by substituting the variable X for Q3(i+1)' and

let R = Q3q. It should be clear that

q-1

T= IIn·R.,=0
The above construction is sucb that each Ti has exactly 2 alternations (sec

Fig. 3). So, we can write

where the special trees Pl, P2, P3 have no alternation.

Let Ti he the special tree (sec Fig. 4) defined by

•

~
~~+1

n~+~

J\,
X

Figure 3 : n
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By lemma 4.2.1, there exist two positive integers, 0 :::; a :::; b:::; q - 1, such

that v(T') = v(T) where T' is defined by

G-1 & q-l

T'= TITi' TITi· TI Ti . R.
,=0 i=o i=b+1

Furthermore, for 0 :::; i :::; q - 1, we have Alt(Ti ) < Alt(Ti) (compare Fig. 3

and Fig. 4). This implies that Alt(T') < Alt(T), proving the thcorem. 0

4.5 Parenthesization of logarithmic depth

As another application of Lemma 4.2.1, we cao show that it is only necessary

to consider parenthesizations of logarithmic depth in order to evaluate a word

over a finite quasigroup. (In general this is not true since no word over a

weakly linear groupoid cao be evaluated to a nonzere e1ement unless a linear

evaluation tree he used.) This is formalized in the fol1owing thcorem. The

fol1owing proof is a. simplification of a result from Hervé Caussinus.

Theorem 4.5.1 ([19]) Let Q be a quasigroup oforderq. For any n > 0, any

w e Q" and any T with yie1d w, there e:rists a yie1d equivalent me S of depth

smaller than 3q +log2 n such that v(T) =v(S).

Proof. Let no he the root of T and suppose that T has a. path of length

d > 3q + log2 n. It is possible ta find q nodes ni," . , n, along tha.t path such

that, for each 0 <i < q, the portion from!li ta !li+1 has length exactly 3.

Let R he the subtree of T rooted a.t n,. For 0 <i < q, deflne the special

tree Ti as the subtree of T rooted a.t !li where the subtree rooted a.t !li+l is

replaced by the variable X. Henee, we ha.ve that T = rr~ Ti' R.

Suppose tha.t the yield of T; is of the form uXv. Pick two arbitrary trees

U and V of minimal depth (i.e. smaller tha.n log2 n) such that yield(U) =u

and yie1d(V) =v. Theo, Ti =«U X) V) is a. special tree yield-equivalent ta

T;. Observe tha.t this transforma.tion decrea.ses the length of the pa.th from !li

ta X by one, while the depth ofTi is bounded above by log2 n +2.
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By Lemma 4.2.1, there exist two positive integers, 0 $ a $ b $ q - 1, such

that v(T') =v(T) where T' is defined by

0-1 b q-l

T'=IIT;·IIT;· II Ti·R.
•=0 Î=a i=b+l

One cao venfy that the number of paths of length d is strictly less in Ti than

in Ti. The conclusion follows from an iterated application of this argument.

o

4.6 Regular languages recognized by quasi
groups

We have shown in Section 4.3 that finite quasigroups only recognize regular

languages. In this section we refine this result by showing that only open

regular languages cao he recognized by finite quasigroups.

A regular language over an alphabet A is said to be open (sec [58]) if it is

a finite union of languages of the fonn Loa1L1••• aleLIe, where k > l, Cli E A,

and Li ç; A" is a. language recognized by a. finite group.

Lemma 4.6.1 Any language L ç; A" of the form La··· Lie, 'lDhere Li is recog

nized by a finite group, is open.

Proof. For any a E A, let LiU-1 = {'ID l 'IDa EL;}. Now, if Li is recognized by

a. group G with the acœpting set F ç; G, then Lia-1 is recognized by G using

the same morphism· and the acœpting set F' = {g E F 1g4 E F}. Bence, L

is a finite union of languages of the fonn Li,ar,1 Cli, •••Li",~ a;.. Lie, where

m>O,1<i1 <···<i".<kandClij EA. 0

The proof of I.emma 4.4.1 shows that any language linearly recx>gnized in

constant alternation by a. finite quasigroup Q is a finite union of languages

of the fonn La··· L", where Li is left-to-right or right-to-Ieft recognized by

Q. So, each L; is recognized by M(Q), which is a finite group, and by the

previous lemma we ·have the following result.
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Theorem 4.6.2 Any language linearly recogni::ed by a finite quasigroup i...• open.

This observation cao be extended ta general recognition.

Theorem 4.6.3 Finite quasigroups recogni::e only open regular language....

o

Proof. We will use again the technique of Section 4.3.

Let Q be a finite quasigroup. We define a comb over Q rccursively as

follows. Any a E Q is a comb. If a E Q and u E Q(o) is a comb then w = (au)

is a1so a comb. No other element of Q(o) is a comb.

Any tree t E Q(o) cao be decomposed into

(4.10)

•

where n ;:: 1, :"1>"" x" are variables, s is a special tree over Q U {Xl,"" x,,}

such that each leaf is labeled with a variable, and ti is a comb over Q. Let

comb(t) he the smallest n for which such a decomposition exists.

We will show that, for any tree t E Q(o) , there exists a yield-equivalent

tree sE Q(o) such that comb(s) is bounded by a constant. By Lemma 4.6.1,

this will praye the theorem because the set of combs in Q(o) that evaluates ta

a given element forms alangnage recognized by the multiplication group of Q.

More precise1y, we will show that for any tree te Q(o) such that comb(t) > 8q ,

where q is the arder of Q, we cao find a yield equivalent tree t' e Q(o) such

tha.t v(t) =v(t') and comb(t') < comb(t).

Suppose that t e Q(o) is such that comb(t) =n > 89, and let t he decom·

posed as in Equation 4.10.

Sinœ, s has more than 89 lea.ves, it must possesses a path of length k > 3q.

Let the nodes of this pa.ths he do, db ••• , dk_b where do i:: the root of s and

d;+1 is the child of do.
For 0 < i < q, let Si he the tree rooted at 4. Moreover, for 0 < i < q, let

Vi he the special tree constructed from Si by substituting the variable X for

Si+1' Henee we have
q-1

8 = IIV;'8q
i=O
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Let Xi., ••. , Xi.+j. be the leaves of sO' Moreover, let Xi,,"', Xi,+j, be the

leaves at the left of X in Vi, and let Xi,," " Xi,+l; be the leaves at the right

of X in Vi (one of thesc sequences cao be empty but at least one of them has

length ~ 2). We cao thus write

0-1

t=IIzi'zo
i=O

where

and

Let Wi = yield(ti) and define Ui, to be the comb whose yield is Wi, ••• Wi,+j"

and U,2 the comb whose yield is Wi2 ••• Wi2+iz' Then:!; =«y1X)Y2)'VI u" .n Ui2

is yield equivalent to Zi.

By 1emma 4.2.1, there exist two integers a and b sucb that v(t) = v(t'),

where
u-1 b .-1

t'= IIz,· II:!;· II z,·z.
i=O i=4 i=b+1

We observe that comb(z,) ~ 3 while comb(:!;) < 2. This implies that

comb(t') < comb(t), proving the theorem.

o

The above theorem has t~e following corollaries.

Corollary 4.6.4 Let L be a language recognized by a finite quasigroup. Then,

L is recognized by a quasigroup if and only ifL is recognized by a finite group.

Proof. The if part of the proof follows from the fa.ct that the cla.ss of lan

guages recognized by a finite group is closed under complementation. More

over, it is shown in [57] that ifboth L and L are open, then they are recognized

by a finite group. The conclusion follows from this result and Theorem 4.6.3•

o
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• Corollary 4.6.5 The class of languages recogni::ed by finite quasigroups is not

closed under complementaticn.

Proof. In the next section we will show that any cofinite langu:>gc is

recognized by a finite quasigroup. Such a language cannot be rccognized by

a group. Hence, by Theorem 4.6.4, no fini te language can be recognized by a

finite quasigroup. 0

4.7 Weakly cancellative groupoids

A groupoid G is called toeakly cancel/ative if for any a, x, y E (JJ, the two

foUowing prope."1.ies are satisfied.

(a:!: =ay #- 0) => (x =y)

(xa = ya #- 0) => (x = y)

The Cayley table of a weakly cancellative groupoid is sueb that in each row

and each column no nonzero clement appears twice. Bence, the nonzero cle

ments of sueb a groupoid forms a partially defined groupoid called incomplctc

quasigroup. This terminology is justified by the foUowing lemma.

Lemma 4.7.1 ([29]) An incomplctc loop (quasigroup) containingn clements

can lie embedded in Cl loop (quasigroup) containing t clements, for any t > 2n.

o

We will also need the following result.

I,emma 4.7.2 Let Q lie Cl quasigroup and let U,U,to E Q+. Theo, tJr.e canli

nality ofQ(UtDU) is at lcast as large as tJr.at ofQ(to).

Weakly ca.nœlla.tive groupoids will he usefu1 to prove tha.t a. language can

he recognized by a. quasigroup. This is a. consequence of the following lemma.•
Proor. This is a. direct consequence of the cancella.tion la.w. o
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Lemma 4.7.3 Any language reeognizeo. by a weakly cancellative groupoid. with

oin the accepting set, is also reeognized by a quasigroup.

Proof. Let C be a we.-..kly cancellative groupoid, and let L ç; C- be a

language recognizcd by C. Assume that 0 belongs to the accepting set. Let

B =C - {O}, let BH be the free groupoid over the set B, and let Pbe the

order of B. We a1so denote by B the incomplete loop induced by the clements

of B in C.

We will define a sequence of incomplete loops Bi, for i ~ O. Let Ba = B

and define Bi+t from Bi as follows. Ail defined products in Bi are defincd

identicaJly in Bi+l' Moreover, for any undefined product a· b in Bi, we define

a·o= (ab) in Bi+t

Remark. Observe that (ab) E Bl-) is a new clement. Observe also that

if c is an clement of Bi+t that docs not bclong to Bi, then for any :1:, y E B,

(:r:(yc» and «xy)c) are two distinct clements of Bi+3' SimiIarly, «a)y) and

(c(xy» are two distinct elements of Bi+3' This and Lemma 4.7.!! imply that

for any u,v E B" such that k = lui + Ivl, Bl:+l«u(ab)v» contains at least k

clements.

Let k = 13+2 and let Bl: he embedded in a finite loop H. We will argue that

L is recognized by H with the accepting set containing ail nonzero clements

of the accepting set of G plus ail clements not in B.

If tD e B" can he evaluated to a nonzero clement in G, then tD can he

evaluated to the same clement in H using the same pa.rentbesization. This

shows that if tD e B" is not accepted by B then it is Dot acœpted by H. This

&Iso proves that if tD is accepted by G but does Dot evaluate to 0, then it is

acœpted by H.

Suppose that tD can he evaluated i.o 0 mG. Then., there exista a segment

u of tD of minimallength that can he evaluated to 0, i.e. tD = sut, 0 e G(u)

and for any strict segment tI of u, 0 ri. G(v). So, there exist ut,U2 e B+ and

a,6 e B SUQ that u =UIU2, a e G(Ul)' Il e G(U2) and <lb =0 in G, but a.fi 0

and Il .fi O. This implies that tD can he partiaIly evaluated to salit both in G
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• and in H. Now, there are two possibilities. First, if sand t are small enough,

then s(ab)t can on!y be evaluated, in H, to an element in B(o) - B: in this

case H accepts w. Otherwise, by tl:e above remark, H(w) contains at least

f3 + 1 different elements, and 50, at lcast one of them is not in B. Thus, H

accepts w if and only if G accepts w. 0

Theorem 4.7.4 Any cofinite language is recogni::ed by a finite loop.

Proof. Let A he a finite alphabet and let L ç; A" be cofinite. Let k he

the smallest integer sucb that all w E A' of length larger or equal to k are in

L. Let B = Ur=oAi and G = BU {O}.

We define a product on G as follows. The absorbing e1ement is 0, and for

any a, b E B, a . b = ab if ab E B, otherwise a· b = O. Clearly, G is a weakly

cancel1ative groupoid.

The partially defined loop G recognizes L by taking the accepting set to

he 0 plus ail e1ements in B n L. Finally, by Lemma. 4.7.3, we can construct a.

finite loop, from G, that recognizes L. 0

Observe that loops can recognize languages tha.t are not ::ofini~and are not

recognized by a group. A simple exam.plc is the set OR ç; {O, 1}", composed

of ail words that contain at least one 1. This language is recognized by Uh the

monoid defined by 0 • 0 =0 and 0 •1 =1 • 0 =1 ·1 =1. Berc, 0 is an identity

and 1 is ahsorbing. Since U1 is a weakly cancel1a.tive groupoid, the language

OR can he recognized by a finite loop.

On the other band, some very simple languages cannot he recognized by

a loop (or even a quasigroup). This is the case for any finite set. To Bee this,

let L he a finite language recognized by a loop B. Without 1058 of generality,

we can suppose tha.t L C B-. Since B satisfies the cancellation laws, for any

weB- not in L there exist tI e JJ+ sucb tha.t WtI will he accepte<! by B. But,

this contradicts the fact tha.t L is finite.• Theorem 4.7.5 No finite ùmgu4ge am be reœgnized by afinite loop.
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• In Theorem 4.7.3, it is neœssary that 0 belongs to the accepting set. In

deed, as the proof of Theorem 4.7.4 shows, any finite language cao be rec

ognized by a weakly associative groupoid. Moreover, nonregular languages

cao be recognized by such groupoids. For example, the 2·sided Dyck lan

guage D with two sets of parenthesis {a, li} and {b, b} cao he recognized hy

the groupoid defined over the set {1,a,li,b,b,O}, where 1 is the identity, 0 is

absorbing, a· Ii = li . a = b· b = ii . b = 1, and ail other products yield O.

It suflices to take 1 as unique accepting element. Observe that D belongs to

D5PACE(logn) but it is not known if it belongs to NC1(see [49]).

4.8 Representing functions with expressions

Let G he a finite groupoid and Xn = {Xh X2, ••• , Xn} a finite set of variables.

An element W = W(Xh ..... Xn) E (G U X n )(') is called an expression over

G with n variables. Ifw E (GUXn)(') and vt,."Vn E (GUX",)('), then

W(Vh""Vn ) E (G U X",)(') is the expression obtained !rom W by replacing

each variable Xi by the expression Vi. We associate expressions over G(') with

elements of G and expressions over (G UXn)(o) with functions en -+ G in the

obvious way. A function f : An -+ A is said to he represent4ble over G ü there

exist an embedding 8: A -+ G and an expression W(Xh""x,,) over G such

that, for every ah ••• ,an E A, 8(f(ah ••• ,an» = W(8(al), ••• ,8(an)).

In [51] Maurer and Rhodes proved that ü G is a simple nonabelian group

then any function en -+ G cao he represented by an expression over G. In

this section, wc extend this theorem to the case of loops. AB a corollary, wc

define a. class of loops for which the problem of eva1ua.ting ll.Il expression is

complete for NCl
• Just before, wc give some basic results.

:temma 4.8.1 Let (Q,.) lie a quasignn:p. If a ftmctùm œn lie Iepresented

over (Q, f) or (Q, \), then if œn lie represented over (Q,.).

•
Proor. This is a direct coroUary of lMnma 4.1.42.

AB a special case of lMnma 2.6.4 wc have the following result.
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• Lemma 4.8.2 If Land H are isotopie loops then any funetion that ean be

represented over H ean aIso be represented over L.

The above lemma. cannot be generaliz...-d to quasigroups. To sec this, con

sider Z4, the cyc1ie group of order four. It is weB know that the AND function

of two bits cannot be represented over any abe1ian group (e.g. sce (72]). But wc

can find a quasigroup, isotopie to Z4, on which the AND can be representcd.

Let S = {D, 1,2, 3}, let cr : S -+ S be the permutation (0,1,3,2), and consider

the quasigroup Q = (S, .) obta.ined from Z4 using the isotopy x •y = cr(x + y).

It is a simple exercise to verïfy that AND(x,y) = (x. y) • (x· y), for any

x,y E {O,l}.

Lemma 4.8.3 Let L be a loop. The funetions A : L3 -+ L defined by

A(x,y,z) = (x,y,zj and C : L2 -+ L defined by C(x,y) = (x,y) ean be rq.1"C

sented over L.

Proof. Observe that [x,y,z) = «:y)z)\(x(yz» and [x,y] = (xy)\(yx). The

conclusion rouows from Lemma 4.8.1. o

•
.- -

We can now prove our generalization of the Maurer-Rhodes theorem. The

proof is a straightforward adaptation for loops of a version for groups due to

Howard Straubing [72].

Theorem 4.8.4 IfLisa finite simple Zoop that is not an abe/ian group then

every function f : L"" -+ L can be represented OVCl' L.

Proof. Letg1 E L\{l}, where 1 is theidentityof L, and let 92 E L. Since L is

simple, then by Theorem 4.1.17 <BI.1) = L where:J is the inner mappinggroup

of L. In particula.r, there exists Uftoft(:) e (:.1)(0) such tha.t uftoft C9I) = 92

and uftoft(l) = 1. Observe tha.t any U e :J is the product of clements in

{R(a),L(a): CI e L}_ Thus,:U is representableon L, and 50 is uftoft(:)•

Beca.use it is simpleand not an a.belian group, L is equal to its commutator

a.ssociator subloop. Thus, ea.ch clement he L can he written (assuming an
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implicit parenthesization) as h = ni=, 0" where Oi is a commutator [gi, hi] or

an associator [/i,gi, hi] of L. By Lemma 4.8.3, the function

fl.( ) _ { [x, y] if 0; is a commutator
• x,y - [fi, x, y] ifoi is an associator

can be represented over L, for all 1 ::; i ::; r. Then

r

W2.h = II fli(Uh09'(X), Uh,h,(y»
i=l

can also be representedover L with w2.h(h, h) =h and W2.h(g, 1) =w2.h(1,g) =
l, for all gEL (W2.h can he seen as representing the OR function of two bits).

For all m ~ 2, define the representable function

sucb that wm.h(h,.:., h) = h and Wm,h(g" ... ,gm) = 1 if gi = 1 for some i.

Let h, k E L, with h ::fi l, let P. he the unique clement of L sucb that

k~k = 1 and let L\{P} = {k" ••• ,ktl. We can represent

sucb that %l:.h(k) = h and %l:,h(g) = l, for 9 ::fi k.

Finally, let Il =(ct, ... , c,,) E Ln and let

Then, V",h(II) = h and V",h(Il) =l, for Il ::fi Il. Renee, we can represent any

function f : Ln -. L using the expression

II v"J{")
!{,,)i'!1

(Any pa.renthesization can he used since at most one term in the product is

di1Ferent from the identity.) [J

We observe in the above proof that the presence of commutativity is not

as dramatic for loops as it is for groups. This is because in the Mamer

Rhodes theorem the crucial point is that the OR function of two bits can he
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representcd over any simple nonabelian group, and to achievc this wc n~'e(k'<!

commutators. But in theorem 4.8.4 we can us.. associators when thcre is no

commutator other than l.

We define a family of expressions over a loop L as a set S = {Wh W~,. ..}

where, for ail n ~ 0, Wn is an expression over L with n variables. Wc So'\Y that

a funetion f: A" -+ A ca.n be represented by S if, for ail n, the restriction of

f to An ca.n be represented by Wn. The length of S is a function mapping Il

to the number of non-parenthesis symbols in Wn •

Corollary 4.8.5 Let L be any simple loop that is not an abclian group. 7'hen

any funetion in Nel can be reprcsented by a family of polynomial length a·

pressions over L.

Proof. This is a direct consequence of Theorern 4.8.4, since the OR of two

bits and the negation of one bit ca.n he represented over L. More c.-q>licitly, let

h be any element of L different !rom the identity 1. Assume that h represent

the boolean value 0 while the identity represent the value 1. Then, for any

:c,y E {l, h} we have

OR(:c,y) =tD2,h(:C,Y)

Now, let h~ he the unique element of L sucb that h~h =1. Then we also have

NOT(:c) =uh,h~(:c) •h

Let t he the maximum hetween the lengths of the expressions OR and NOT.

Then, any boolean formula ofdepth k logn cm he represented byan expression

over L of length at most t»1ott.., whicb is polynomial 0

We now state a generalization of a theorem of Barrington [5) saying that

the word problem over any nonsolvable group is complete for Ne"•

Theorem 4.8.6 IfG is 4 groupoid that contains 4 ncmsoll:lCl6le loop, thea the

pral/lem of evaltuzting an =pression over G is complete for Ne1 uader Aé'

reductions.
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Proof. The problem of evaluating an expression over any fixed finite groupoid

G is in NCl. This is beca.use the set of expressions over any finite groupoid that

evaluate to sorne given clement forms a parenthesis language, and therefore,

bclongs to NC I (sec [i7]). It remains to show that any function in NCI ca.n

be reduced to this problem when G contains a nonsolvable loop.

If L is a nonsolvable loop of G, then there exists a morphism cp : L -> 5,

where 5 is a nonabclian simple loop.

By Corollary 4.8.5, any function 1 : {O,I}" -> {O,I} in NCI is rep

resentable by a family of polynomial.length expressions over 5. Let w =

w(Xl, ... ,X,,) he such an expression for inputs of length n. Since we are deal

ing with Boolean functions, each variable Xi ca.n only take two possible values

a, b E 5. Suppose that a represents the value 0 and b the value 1. Choose any

s E cp-l(a), t E cp-l(b), and define the mapping fJ : {O,I} -> L by fJ(O) = s

and fJ(I) = t.

Finally, let V(:l:h ••. ,:1:,,) be an expression over L defined from w by replac

ing each constant c in w by any clement in cp-l(cl. Then, for any :1:1 "':1:" E

{O,l}", we have that 1(:1:1, ••• ,:1:,,) = 1 if and only if V(fJ(:l:l), ••• ,fJ(:I:,,)) E

cp-l(b). Clearly, the reduction from f to v is a simple projection. 0

4.9 Solvable loops

It is conjectured in [7] that the problem of evaluating a word over a solvable

group is not complete for NC1 • However, wc can construct a solvable loop

of order 10 for which the problem of evalua.ting an expression is complete for

NCI.

Let Zs he the cyclic group of order five, and let G he the loop of order five

defined by the followïng multiplication table.
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• 5 6 ï 8 9
5 5 6 ï 8 9
6 6 5 9 ï 8
ï ï 8 6 9 5
8 8 9 5 6 ï
9 9 ï 8 5 6

Since 8·9 =F 9 . 8 and (6 . 7) ·8 =F 6 . (7·8), G is neither commutative

nor associative. Moreover, G is simple since it is of prime order. Hcnce, by

Corollary 4.8.5, the problem of evaluating an expression over G is complete

for NCl
• Now, define the loop B = (B,.) over the set {O, ... , 9} using the

multiplication table

0···4 5···9
o

Zs G
4
5

G Zs
9

where a region labeled Zs (resp. G) corresponds to the multiplication table of

Zs (resp. G). It should he clea.r tÎlat Zs is a normal subloop of B and that

B/Zs is isomorphie to ~. Hence, B is a solvable loop.

Let B' = (B,.) he the loop isotopie to B whose product is defined by

a.6 = a· a(6), where a is the permutation (0,5)(1,6)(2,7)(3,8)(4,9). The

multiplication table of B' ca.n he represented as follows (the identity is 5).

•

O,· ·4 5···9
0

. G Zs
4
5

. Zs G
9

Clea.rly, Gis a subloop of B'. Thus, by Theorem 4.8.6, the problemofeval

uating an expression over B' is complete for NCl
• Moreover, by IA-rnma 4.8.2,
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any language that cao be represented over B' cao also be represented over B .

We conclude that the problem of evaluating an expression over the solvable

loop B is complete for NC1•

Observe that the multiplication semigroup of B contains a nonsolvable sim

ple subgroup. This is because L(I)IS = (5,6) and L(3J2R(1)24 = (6,7,8,9,5)

generate a group isomorphic to 5s. Thus, a solvable loop cao have a nonsolv

able multiplication group. Moreover, the problem of evaluating an expression

over any such loop is complete for NC1
•

Theorem 4.9.1 Let G be any finite groupoid with identity. If the multiplica

tion semigroup .M. (G) contains a nonabelian simple group, then the problem of

evaluating an czpression over G is complete for NC1 under ACfl-reductions.

Proof. In [5) it is shown that the problem of evaiuating a program over any

nonabelian simple group D is complete for NCl • Furthermore, we cao suppose

without loss of generality that on any input the program yie1ds either the

identity (and acœpts) or some other fixed e1ement (and rejects).

The proof follows from Theorem 2.6.6 0
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Chapter 5

Growing Groupoids

5.1 Programs over growing groupoids

ln this section, we generalize further the definition of recognition by programs.

We will allow our model to use a difi'erent groupoid for each input length.

Definition 5.1.1 Let p : lN - lN oe a function and let :F = (Gi)~ oe a

family 9f groupoids such that G" kas order oounded aoove oy pen), for each

n ~ o. A language L E A· is said to be reeognized by programs over:F if for

each n ~ 0 there C%ists a program P" over G" such that P" accepts precisely

those tDords in Ln A". We also say that L is recognized oy programs over

groupoids of order p. Parenthesis programs over:F are defined in the oovious

way.

In particular, üp is polynomial (resp. constant, exponential) then L is said

to he recognized by polynomial (resp. constant, exponential) order programs

overgroupoids. Constant arder programs are equivalent ta programs overfixed

groupoids as defined in Chapter 2.

Proposition 5.1.2 Let 1: he any integer and t : lN - lN he any fundùm. If
L C A" is a language recognized by afamilyP = (p.)~ ofprogialllSoflength

t over groupoids oforder 1:, then L is reœgnized by a family Q=(Q.~ of

progl alllS oflength t over a finite groupoid.

Proor. Let M be the set of all pairs (G,F) sueb that Gis a groupoid of

arder 1:+1 with an identity denoted l, and F is a subset of G not containing
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1. Let (GhFt),(G2,F2) ... ,(Gm,Fm) be an enumeration of the elements of

M and define H = Gt X ••• x Gm •

A program Pn over G. with accepting set F. cao be simulated by a program

Qn over H as follows. The length of Qn is the same as that of Pn. If the cth

instruction of Pn is (ie,!e), where 1 ::; ie ::; n and fe : A ..... G., then the cth

instruction of Qn is (ie, Qle), where Qle = (g~, .. . ,g~), g~ = fe, and for ail j :f:. s,

gi is the constant function mapping each e1ement of a to the identity 1. The

accepting set of Q contains ail e1ements of {(ah .. ,am ) 1aj E Gj} such that

sorne aj be10ngs to Fj. 0

Unless otherwise specified, we will assume that ail programs have polyno

miallength.

Program uniformity must be adapted when groupoids are growing. In

particular the product of two e1ements must be computable and it must he

decidable if a given e1ement be10ngs to the accepting set.

Definition 5.1.3 Let C be a compluity class. A family of programs (P,,)~o

over (G,,)~ is said to èe C-uniform whenever the three following conditions

are satisfied.

1. On input (w, a, b) the problem ofcomputing the produet ab in G(",( belongs

to C.

!. Moreover, on input (w,a), the problem of determining if a is in the

accepting set of~wl is in C.

9. On input (w,k), the problem of computing the kth symbol of~I is in

C, a symbol being either a parenthesis or an instnu:tion. Moreover, on

input w, the emct length of~"'I is computable in C.

RemarIe. The last condition in the above definition implies that comput

mg the element of GIwI produœd by the kth instruction cm he done in C Binee

the input alphabet is finite.

112



•

•

A first observation deals with L-uniform polynomial-order programs: they

are no more powerful then constant order programs. Indeed, if each e!ement

of a group<"id Gn is represented with O(log n) symbols, then the word problem

over Gn cao be solved with a nondeterministic pushdown automaton using

O(log n) ce!ls on its auxiliary tape and working in polynomial time.

Non-uniform exponential-order programs are ail powerful: any language

whatsoever cao be recognized by non-uniform exponential-order programs over

cyclic groups. To see this let L E A- and let Gn he the additive cyclic group

of order IAin. For each n ~ 0 let Pnhe a program over Gnsuch that Pnhas

length n and the i th instruction looks at the i th symbol Wi of the input and

yie!ds the number w;\Al i - l • So, L cao be recognized by programs over (Gn)~

by taking the accepting set of Gn to be all those numbers for which a word in

L is the IAI-ary representation.

However, if we restrict the programs to he uniform and if we use a finite

accepting set, then programs over exponential-order groupoids become a non

trivial and interesting mode! of computation as we will see later. This situation

cao he compared with exponential-size semi-bounded Boolean circuits of log

arithmic depth. As a non-uniform mode! of computation they cao recognize

any language, but ifwe restrict the direct connection language to he in P, then

they recognize precisely those languages in NP (see [81]).

5.2 Machines versus programs

We examine in this section the relationship between uniform programs over

family of groupoids and Turing macbines. It is not surptising tha.t programs

over groupoids CllD he re1ated with nondeterministic anxiliary pushdown an

tomata Interesting1y, it also appears tha.t linear Iecognition na.turally COIIe

sponds with recognition by Turing machines. We now make these statem'.!l1t

more precise.

FOI any function f : lN - lN and any complexity class C, we WIite f e C

whenever the problem of computing f belongs to C.
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5.2.1 Turing machines

In order to simulate Turing machines with programs, we use an approach

similar to that of [59] by asking the machines to be oblivious, i.e. the head

moves depend only on the length of the input, not on the input itse1f. Actually

we will only need that Turing machines be read-obliviou..<, i.e. the behavior of

the input head only is required to be oblivious.

The following lemma can he improved easily, but this version will he suffi·

cient for our purpose.

Lemma 5.2.1 Let t(n) E n(n), t(n) E DTIME-SPACE(t(n),logt(n». Any

TM M tDorking in time t(n) and space sen) can be simulated by an oblivious

TM tDorking in space O(s(n) +logt(n» and time O(nt(n) lognlogt(n».

Proof. We coustruct a TM N that simulates M and stops after exac:tly

pen) steps, for sorne pen) E O(t(n) log t(n». On input 10 of length n, N com

putes t(n) on a special i,.lpe. This can he done in time O(t(n)) and spa.ce

O(logt(n». Then, N starts the simulation, decrementing the number on

its special tape after each move of M. The decrement can he done in time

2[logt(n)l. The machine stops when the special tape contains 0, and accepta

if and only if M has already aceepted. The total time is O(t(n) logt(n» and

the space is O(s(n) + logt(n)). After this step, we have a machine that takes

the same time on any inputs of the same length.

A read-oblivious TM N' cu simulates N as follows. The machine Nt

simulates N using an extra tape to move read-obliviously. To do this, N' suc

cessive1y scans ita input from left to right and then from right to left using the

extra tape to memorize the position of the input head ofN. N' simulateseach

step of N in 2n log n steps by SCllDDing obliviously the input and modifying

the extra. tape whieh uses at most Iogn ceIls. Thus, the total space Ile elied for

this remains O(s(n)+logt(n» and the total time is O(nlog nt(n) logt(n)). 0
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Proposition 5.2.2 Let t(n) be a funetion in DTIME-SPACE(t'(n),s'(n» .

Any language L ç; A· recogni:ed by a read-oblivious nondeterministic Tur

ing machine M running in time t(n) and space sen) is linearly recogni:ed by

a DTIME-SPACE(t'(n) +sen), s'(n) +s(n) +lo~t(n))-uniform family of pro

grams of length O(t(n» over groupoids of order 2°('(").

Proof. We adapt herc an idea of [12]. We will assume that M scaos its

input from left to right and then from right to left p(n) times, where p(n) is

a power of two such that t(n) =2np(n). (If M does not satisfy this property,

we cao use a Turing machine that simu1ates M and stopp..-d after exactly

2np(n) ~ t(n) steps.) Assume furthermore that, from AnY state, M has at

most two choices. Since the space is bounded by s(n), the nUL'lber of !,ossible

configurations is at most d·(n), for some d > O.

Let X.., y.. and Z.. he three distinct copies of the set of confi:;<1I'ations of

M for inputs of length n. Define the set B.. = X.. u1';. u z,. U A U {O, t}. Let

a E A, :r:,:r:h:r:2 E X.., y E y.. and =E z,., where :I:).,:r:2 are the configurations

reached by M from :r: whenever M uses respectively the first and the second

choices for a mOlle after reading character Il. Moreover, y is the copy Of:r:l and

=is the copy of :r:2. We define a product on Bft as follows.

1. t:r: = Y

2. ya = :1:).

3. :r:a = =

5. all other products yield 0

Thefirst twoliDes in theahovedefinitionimplythat (t:r:)a =:r:l whilelines

3 a:;d 4 imply that t(=) = :r:2- Renee, nondeterminisrn <:an he simulated by

JlO!!,"""';ativity. More precisely, __ have that the oblivions machjne starts At
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configuration Xo and scaos its input w = al ... an from lcft to right (and from

right to left) p(n) times before stopping. Thcll, thc string

where ü> denotes thc mirror imagc of w, cvaluatcs to an acccpting configuration

in Xn if and only if M accepts w. Observc that thc parentbesization must bc

linear.

t/> is a projection that cao he performed in the obvious way by a prograrn

Pn over Bn • To see that it is uniform, we must show that thc three condi·

tions in Definition 5.1.3 are satisfied. Using a reasonable encoding for the

e!ements of Bn , it should he c1ear that taking the product of two e!ements and

determining if a given e!ement represents an accepting configuration cao he

done in time O(s(n)). The length of the prograrn is 4np(n) + 1 =2t(n) + 1

which is computable, by assumption, in time O(t'(n)) and space O(s'(n)).

Now, suppose that given (w,k) we want to compute the kth instruction in

~"'I' Determining if k $ 2np(n) and if k = 2np(n) + 1, in which case

the instruction yie!ds respectively t and Xo, cao he done in time O(t'(n»

and space O(s'(n)). Otherwise, wc must determine the position of the in·

put considered by the kth instruction. This position il: cao he computed as

follows. First compute m = 1 + (k - 2np(n) - 2) mod 2p(n). Since p(n) is

a. power of 2, both the subtra.etion and the modulus cao he done in linear

time (i.e. in time logt(n) < t'(n)) and in spaœ O(logt(n)). Then, wc have

il: = m if m < n, and il: = n - m otherwise. This shows tha.t (p.)~ is

DT~PACE(t'(n) +s(n),s'(n) + s(n) +logt(n»-unifonn. a

When the machine is deterministic, there is no need for the symbol t in

the a.bove proof., and the groupoids cao he redefined 50 tha.t the progra.ms are

left-to-right.

Proposition S.2.3 Let t(n) lie Cl jrmdiDa ia D~ACE(t'(n),s'(n».

Aay lagtuzge L C A-r~ by cm o6liviou cleteimilliatic 7ia'iag 1114

c:hiae M 1" IQing ia Lime t(n) cmd sp4fZ s(n) is left-to-right recograùed by Cl
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DTIMFrSPACE( t'(n )+s(n), s'(n )+s(n)+log t(n))-unifonn family ofprograms

of length O(t(n)) over qroupoids of order20(.(n».

Proof. R.edefine Bn = Xn uA u {O}. For any a E A and any x, x' E Xn

such that x' is the configuration reached by M from x after reading symbol a,

we define xa = x'; all other products yie1d O.

Letting .p(w) = xo(WtO)Plnl, we get a prograrn that left-to-right eva1uates

to an accepting configuration if and only if M accepts w. The uniformity is

shown as in the proof of Proposition 5.2.2 0

Proposition 5.2.4 Any language linearly recogni::ed by a DTIME-SPACE(t(n),

s(n»)-unifonn family of programs of length l(n) over groupoids of order z(n)

is also recogni::ed by a nondeterministic Turing machine in time O(l(n )t(n»

and space O(1ogz(n) +s(n)).

Praof. Let (P,,)~ be sucb a family of programs over groupoids (G,,)~.

We will construct a Turing machine M that simu1ates these programs. Let

Y(i) be the e1ement of G" generated by the i th instruction of P". On input w

of length n, M does the following computation.

1. Compute l(n) and guess a number k between 1 and l(n).

2. Initialize two pointers a _ k and Il _ k.

3. g_ Y{k)

4. Iterate l(n) -1 times the following step

5. Choœe nondetenninistically between

(i) 4_4-1

1&+- Y{a)

g-hg
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(ii) b<-- b+ 1

h _ Y(b)

g -gh

6. Accept iff g belongs to the accepting set of Pn •

The space used is O(logz(n) + s(n)) and the time is O(l(n)t(n)). 0

As a consequence of I.emma 5.2.1 and Propositions 5.2.2 and 5.2.4 we have

the following theorems.

Theorem 5.2.5 ([53]) NP is equal to the class of languages linearly recog

ni::ed by P-uniform programs over groupoids of exponential order.

Theorem 5.2.6 Nt is equal to the class of languages linearly recogni::ed by

L-uniform programs over groupoids of polynomial order.

Proposition 5.2.7 Any language linearly recogni::ed by a DTIME-5PACE(t(n).

s(n) )-uniform family of parenthesi::ed programs of length l(n) over groupoids

of order z(n) is also recogni::ed by a deterministic Turing machine in time

O(l(n)t(n» and space O(s(n) + logz(n»). Moreover the machine is read

oblivious.

Proof. We just have to adapt the proof of Proposition 5.2.4 for the case

where Y(i) an be an open or a closed parenthesis.

1. Compute l(n).

2. ComputeY(i) untila. k is found sueb that both Y(k) and Y(k+l) belong

to G".

3. 9 .... Y(k)Y(k +1)

4. Initialize two pointers a - k - 2 and b - k +2.

5. Iterate l(n) -1 times the followïng step
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6. Compute Y(a) and Y(b): exactly one of two fol1owing cases must happen

If y (a) is an open parenthesis then

9 _ gY(b); a _ a-l; b- b+2

If Y(b) is a c10sed parenthesis then

9 _ Y(a)b; a _ a -2; b- b+ 1

7. Accept ilf 9 belongs to the acepting set of P".

The machine is oblivious because the parenthesization of each prograrn is fueed.

o

From Proposition 5.2.3 and Proposition 5.2.7 we i=ediately have the

foIIowing theorerns.

Theorem 5.2.8 P is equal to the class oflanguages linearly (LTR) recognized

by P-uniform parenthesized programs over groupoids of exponential order.

Theorem 5.2.9 L is equal to the class oflanguages linearly (LTR) recognized

by L-uniform parenthesized programs over groupoids of polynomial-order.

Theorern 5.2.8 can be improved in one direction.

Theorem 5.2.10 P is equal to the class oflanguages recognized by P-uniform

parenthesized programs over groupoids of exponential order.

Proof. It sufliœs ta show how P-uniform programs (P,,)~ over groupoid

(G..)~ can he simulated by a. deterministic Turing machjne M. On input

w of length n, M begins by computing the length 0; P". Then, M computes

the clement of G" generated by each instruction and mites this sequence on

its tape. Fina.lly M evalua.tes in a. straightforwa.rd way this well-pa.renthesized

expression. The time needed is polynomial since the expression has polynomial

length, each product can he computed in polynomial time, and the machine

can determine in polynomial time if the result belongs ta the a.cœpting set of

~. 0
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5.2.2 Pushdown automata

Proposition 5.2.11 Any language recognized by a DTIME-SPACE(I(n)••• (n))-
1

uniform family of programs of length I(n) over groupoids of order zen) i...

also recogni:ed by an Au:r:NPDA in lime O(I(n)l(n) + I(n)log:(n» and space

O(logz(n) + logl(n) + sen»).

Proof. On inputs of length n the AuxNPDA M simula.tes the progra.rn

Pn as fol1ows. First M computes I(n), the length of Pn • Then, it ma.kes I(n)

itera.tions of the following procedure. At itera.tion i, M computes the clement

9 e Gn produced by the ith instruction of Pn , and decides nondeterministica1ly

whether it pushes 9 on the sta.ck or multiplies it with the clement on the top of

the sta.ck. The ma.chine a.ccepts if after the I(n) itera.tions the sta.ck is empty

and the clement computed belongs to the a.ccepting set of Pn •

Observe tha.t pushîng and popping an clement takes time O(log z(n». Ea.ch

itera.tion takes time O(t(n) + logz(n» and spa.œ O(s(n) + logz(n». Rence,

the total time is O(/(n)t(n)+ I(n) logz(n» and the spa.œ used is O(logz(n)+

log/(n) + s(n». 0

Proposition 5.2.12 Any language recogni:ed by a DTIME-SPACE(t(n), .,(n»

uniform family ofparenthesized programs oflength I(n) over groupoids oforder

zen) is also recognized by an Aw:DPDA in time O(I(n)t(n)+/(n) logz(n» and

space O(logz(n) +s(n».

Proof. The proof is similar to tha.t of Proposition 5.2.11. The ollly diffcr

ence is tha.t at ea.ch iteration, the progra.m symbol computed by the macbine

M is not neœssa.rily an instruction, it ca.n he an open or a. closed parenthe

sis. Bence, M does not have to ma.ke any nondeterministic decision, it merely

pusbes an clement whenever the next program's symbol is an instruction, and

takes the product with the top element ü it is a. closed parenthesis. Observe

tha.t open pa.renthesis ca.n he ignored sin.;e a. program alwa.ys yields & well

pa.renthesized expression. 0
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Proposition 5.2.13 Lel t(n) be a function in DTIME-SPACE(t(n), sen)~,

where sen) ;:: logn. Any language recognized by a read-oblivious Au:xNPDA

in time t(n) and space sen) is also recognized by DTIME-SPACE(t(n),s(n)

uniform programs of length O(20 (.(n))t(n)) over groupoids of order 20 (.(n)).

ProoC. We will sec the AuxNPDA M as a uniform family of 2-way oblivi

ous NPDA Mn = (Qn' A, 5, Sn, qo, Sa) whcre Qn is a set of states (corresponding

to the state, the hcad positions and the content <!f the work tape of M), A is

the input alphabet of M, 5 is the stack alphabet of M, qo is the initial state,

sa is the initial stack symbol of M, and Sn : Qn X 5 X A -+ Qn X (5uS2U {.>.})

is the transition function. Observe that the cardinality of Qn is 20 (.(n)).

We can assume that initially Mn bas sa on the top of its stack, it nevcr

pushes sa thcreaftcr, its first move is a push moYe, and it accepts whenevcr

it finds So on the top of its stack. Assume also that there are three kinds of

movcs Mn can do: a pop move, a push move, or a nuIl move (where the stack

height remains unchanged).

The proposition will be proved in three steps.

Step 1. Let us fix the input length n and denote Sn by S. For each lettcr

a of the input alphabet A, we define the following three sets.

PUSH., ={(p,s,q,t) 1(q,st) E o(p,s,a)}

POP.. ={(p,s,q,>') 1(q,>') E o(p,s,a)}

NULL,. = {[P,s,q,tJ 1(q,t) E o(p,s,a)}

Let p.. =PUSH.,uPOP..uNULL.., let R ={(p,s,q,t), (P,s,q,>'), [P,s,q, tJ 1

p,q E Q",s,t E 5}, and let P = RU {O} he a. groupoid with the following

product.

• 0 is absorbing

• (P,s,q,t)(q,t,r,>') =[p,s,r,sJ

• [P,s,q,t]{q,t,r,>'} = (p,s,r,>')
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• ail other products yield O•

The second product is motivated by the fact that a push move followed by

a pop move is equivalent to a null move. The third product corresponds to

the fact that a nul! move fel!owed by a pop move is equivalent to a pop move.

Let w E AO be an input of length n and consider a fixed computation of

Mn on w. Suppose that at time i, Mn is at sorne state p, the top of the stack

is s, and the input head scaos the symbol a E A. Wc dcfine the function

/ : {l, ... , t(n)} ..... P as fol!ows.

(p, s, q, t) if at step i, Mn pushes symbol t on the stack and
moves te state q.

(p, s, q, À) if at step i, Mn pops symbol s off the stack and
moves te state q.

[p, s, q, t] if at step i, Mn replaces symbol s on the stack by t
and moves to state q.

By assumption, we have /(1) E PUSH4 with p = qo and s = sa, and we have

/(t(n)) E POP4 •

Then, it is casy to verify that the given computation of Mn on w leads

to an accepting configuration if and only if the string /(1)··· /(t(n)) cao be

evaluated to an e1ement of the form [qo,SO,p,so].

Step 2. This idea cao he used te reduce the language recognized by M

to a word problem over a groupoid that contains S. One difficulty is that if w

is not fixed and if the computation path is not given, then the function / is

not well defined. This cao he solved by defining a groupoid Q = ~, where the

product of two sets S,T E Q corresponds to the set of all e1ements resulting

from the multiplication of one e1ement in S and one e1ement in T.

Define the function g: A -+ 2P by g(a) = P4 , for all a E A. Now, define

the program D", for inputs of length n, as VJ.V2'" VIC") where, for j > 1,

the instructions are Vj = (ij,g), ij being the position of the input head of

M at time j. Moreover, we set VI = (l,a), where a(a) = (qo,SQ,P,s) and

c5{qo,SQ,a) = (P,s). On input w = al ••• 4,., D" yie1ds a striDg U= Ul" -utc,,)

and accepts its input ifand ooly if there exista a parenthesization ofU resulting

into a set in Q that contains an e1ement in P of the form [qO'SQ,p,SQ]. Renee,
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w is accepted by Dn if and only if there exists a symbol fi .•, in each set Ui

such that fi"., , .. fi.(nl •••(n) can be evaluated to [qo,so,p,so]. This happens if

and only if w is accepted by M.

Step 3. We must decrease the order of Qn which is 220(0(n». We have

defined elements of Q to be sets because we don't know at priori what e1ement

should be chosen in each Ui of the abovc programs. However, the nondetermin

istic se1ection of an element in a. set U E Q can be done using nonassociativity

in a smaller groupoid.

Let pt be a copy of P and define the following product on G = P U P' U

{O,l,c}, where c,O and 1 are new e1ements. There is an identity, which is l,

'l.Ild 0 is an absorbing e1ement. The product on P is defined as previously. We

have a'/l = /l, a'e = a, a'b = a, for all a', /1 E P' such that a' is the copy of

a E P. AlI other products yie1d O.

Consider any ordering of the e1ements of P' and let U ~ P'. Let Yu =
Yl ••• YIPIC, where C is a new symbol and such that Yi is the i th e1ement of P'

if this e1ement be10ngs to u, otherwise Yi = 1.

Obviously, U contains some e1ement S' E pt if and only if Yu can he evalu

ated to s.

It is also straightforward to check that Yu, ••• YUl(n) evaluates to an e1ement

of the form [qO,sO,p,so] if and only if w is acœpted by M.

The length of the program is IPlt(n) = ~(.(n»t(n) and the order of the

groupoid is 21PI +3 = ~(.(n».

It remains to show that theprogram is DTIME-SPACE(t(n),s(n»-uniform.

The only difliculty resides in detennining what is the ;th instruction, given

any;.

Let each e1ement v E pt he encodeù"in binary with a string vi of the

form vi = psqtk, where p, q are states of Mn, a is a stack symbol, tisa stack

symbolor >., and k says ifv is a pop, a push, or a null move. Suppose that the

respective length of p,a,q and t is the same for any e1ement of P. Suppose

aJso that 1= Ivll and that l' represents no e1ement ofP. Then, given vi, one

can compute in linear time p, a, q, t and k, plus the kind of move represented
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by k (push, pop, null). Given any a E A, it is also possible, in linear time, to

determine if w' represents an clement which is the copy of an element w E Pa,

sinee Mn has a constant number of possible moves from state p and top symbol

s.

We can slightly modify the definition of Yu, for any u ç P', such that its

length be 2' : let Yu = Xo'" X2,_h where X2'_1 represents the e1ement c, Xi

represents sEP' if the biIlary representation of i corresponds to an e1ement

s E u, otherwise Xi represents 1. Observe that the length of the prograrn is

still 20 (.(nllt(n) and the order of the groupoid is still ~(.(nll.

Our prograrn consists oi:.. sequenee of t(n) blocks Yu, ••• YU.(o) where each

block contains 2
'

instructions. Given j one can determine the number b(j) of

the block containing the jth instruction and the position p(j) of this instruction

inside this block. Clearly, this can be done in linear time, i.e. in time O(s(n)).

We observe that for any i $ t(n), each instruction in a block looks at the

same input position. Thus, in order to determine the position of the input

considered by the jth instruction, it only suflices to simu1ate M on any input

of length n, using any nondeterministic choices and ignoring the stack. The

desired position k corresponds to the location of the input head after b(j)

steps. This cau he done in less than t(n) steps, using at most sen) memory

cells.

At this point we know that the jth instruction bas the fonn (k,g) and it

remains to find what is the funetion 9 : A -> P. If the binary representation

ofPU) is l', then 9 is the constant function g(<<) = c. Otherwise, as we explain

above, we cau determine in linear time if the e!ement .,,' represented by p(j) is

an e!ement of pt. If.,,' does not represent sncb an e!ement, then g(<<) =1 for

all «E A, otherwise we ha.ve g(<<) =.,,' if." E Pa, and g(<<) = 1 if." rt Pa. a

Propositions 5.2.11 and 5.2.13 have the following immedia.te consequence.

Theorem 5.2.14 ([12]) SAC! is eqtUZ1 to the the class oflanguages recognized

by L-uniform programs over polynomial-onler groupow.
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Theorem 5.2.15 ([53]) NP is equaI to the the class of languages recognized

by P-unifonn programs ovcr cxponential-order groupoids.

5.3 Tree-like circuits

Define a subcircuit S of a Boolean circuit C to he a suhgraph of C that satisfies

the following propertics. The output gate of C is in S. Bach AND gate in S

has exactly the sarne children it has in C. Bach OR gate in S has exactly one

child chosen among those it has in C. Nothing else is in S.

A subtree of a Boolean circuit C is a tree obtained hy expanding, in the

obvious way, a suhcircuit of C. Given some input for C, a subtree T is said

to be accepting if it outputs 1, i.e. every input gate in T has value 1.

The degree of a gate in a Boolean circuit is defined recursively as follows.

The degree of a constant is 0, the degree of a variable is 1, the degree of an OR

gate is the maximal degree of its children, and the degree of an AND gate is

the sum of the degrees of its children. The degree of a. single-output Boolean

circuit is defined as the degree of its output gate.

In [81] it is proved that NP (resp. LOGCFL) is equivalent to the class of

languages recognized by P-uniform (resp. L-uniform) familles of exponential

(resp. polynomial) size circuit with polynomial degree.

It is useful ta consider a. further restriction on the Boolean circuits. A sketo

circuit is a circuit where among all the children of any AND ga.te, a.t most one

of them is not an input gate. It is easy ta verify that polynomial-depth skew

circuits have polynomial degree.

It cao be proved (sec (81)) tha.t L-uniform polynomial-size skew circuits

recognize precisely the class of languages Nt, while P-uniform exponential

size polynomial-depth skew-circuits correspond ta NP.

Renee, we sec that by restricting polynomial tIee-size circuits ta be skew,

we malte the re1ated classes of complexity go fIOm LOGCFL ta Nt, when the

size is polynomial, while we still get NP, when the size is exponentiaL

Definition 5.3.1 A building-block is (1 multiple-output depth-! cin:uit tDith
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unbounded fan-in OR gate... on the output level, each of which takc... fan-in !!

AND gates as input.... An input-block is a ...equcnce of input gates. Input-blocks

and building-blocks are gcncrically rcferred to as blocks.

Definition 5.3.2 A trcc-like circuit is a semi-boundcd Boolcan circuit consist

ing of blocks conncctcd togcther in the following manner. With cach building

block B tue e:cc1usively associate two blocks BI and B2 , respecti'l'c1y ca!!ed the

left and right ehild of B. Each AND gate in B receives one input from agate

in BI and one input from a gate in B2 • There is a unique distinguishcd block,

called the output-block, that feeds in no other block. In this way, the blocks

have the structure ofa binary tree where the root is the output-block, the leaves

are the input-blocks, and the inner nodes are the building-blocks.

We observe that any subtree in a tree-like circuit contains cxactly one OR

gate and one AND gate from each building-block, and one input gate from

each input-block. The degree D of a tree-like circuit corresponds prcciscly to

the number of input.blocks it contains, and 50 the total number of blocks is

2D-l.

The largest number of gates in a block of a tree-like circuit is called the

block-size of the circuit. Observe that the number of gates in such a circuit is

bounded above by the product of its degree and its block-size multiplied by 2.

In particular, the languages recognized by L-uniform tIee-like circuits of poly

nomial size are in SAC1• The converse is given by the following proposition.

Proposition 5.3.3 Any language recogni:ed by CI fa.miIy ofsemi-bounded ci,..

cuits toith Bize s and depth d, is also recogni:ed by CI fa.miIy of iTee-like circuits

ha1lÏng depth 2d, block-si..--e 2{s +s4)2 and dC!Jf'= 2<1.

Prooc. We ex1u"bit a way of doing the transformation. The proof resu!ts

from a. three-step transformation of the circuit.

1. AlI paths must have the same length. This step is only needed to

facilitate the construction. It sufiices to insert before each input gate as
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many OR gates as m.-..:cssary to make the distance between this input

gate to the root equal to d. This yields a circuit Cl with at most s + sd

gates.

2. The gates must alternate. Starting from Ch we want to construct a

circuit C2 such that the output is an OR gate and ail gates on the first

level (thosc fed by input gates) are AND gates. This cau bc donc by

adding at most s + sd gates. Furthermore, we want that the type of the

gates alternates between two consecutive levels. This is done by adding

an OR gate (resp. AND gate) between two consecutive AND gates (resp.

OR gates) The number of gates added in this way is bounded above by

the number of pairs of gates. So, the total number of gates in C2 is

bounded by 2(s + sd)2, and the depth is at most 2d.

3. Transform the proofs into trees. Consider the lowest levell of AND

gates in C:: (i.e. the level near the output). Duplicate the part of the

circuit that is above 1 into two copies Pl and P2 , and let ea.ch AND

gate on levell have one input from Pl and one from P2• We repeat this

proœss itera.tively both in Pl and in P2 to get a tree-like circuit~. The

degree of~ is at most ~, ea.ch black has no more than 2(s +sd)2 ga.tes,

and the depth is still 2d.

o

Constructing & uniform tree-like circuit from & semi-bounded one, C&D. he

done by observing ho\\"' the properties defining tree-like circuits C&D. he trans

la.ted. for alternating Turing machines. Recall tha.t in a &emÏ-bounded ATM

there are no two COD:leCUtive universal configurations along any computation

path (see [81]).

Definition 5.3.4 We defiae C fi ee like ATM M to 6e C semi-6cnmJed ATM

SGtisfymg the fol1mDing pi opel lies.
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1. There are three kind of states: universal, exi..<tential and reading. At a

reading state, the machine reads a bit of the input and halts. A reading

state can only be acce.<..<ed from a universal state.

e. Any universal configuration of th~ machine ha.< aactly tUJO succe.<..<ors

called the left and right succe.<sors. The.<e two configuration.< are exi..<.

tential or reading.

3. The machine M ha.< a special tape and starls by writing 1 on it. lt'hen

M is at a universal state, it molleS the head of ils ''l'ecial tape one cell

to the right and writes 0 or 1 depending only if it makes a left or a right

move.

,/. Let A and B be two universal configurations describing the same content

on the special tape. Then, the left (resp. right) suc:eessor 01 A is reading

il and only il the left (resp. right) suc:eessor 01 B is reading.

If we construct a family of àrcuits from a. tree-like ATM using the method

of Ruzzo [63], then we natura.l\y obtain a. fa.mily of tree-like àrcuits. Indeed,

all configurations with the same speàal tape content correspond to a. gate in

the same block of the àrcuit.

Proposition 5.3.5 Lett(n),s(n) and=(n) bejimctionssuch tlult=(n) beloRgs

to DTIME-SPACE(=(n),log=(n». A semi-bounded ATM M nmrùng in mne
t(n), space sen), cmd using zen) alternations am lie simulated by a tree-like

ATMnmning in mne O(t(n)+.r(n», space O(s(n)+=(n», cmd 1ISÙ&g O(=(n»

alternations.

Proor. We mnst satisfy the four conditions of DelùIition 5.3.4-

The first two conditions are standard. The time and the space increase

0IÙy by a multiplicative constant (aee [62}). The nnmber of altemations also

inaeases by a multiplicative constant, because M is semï-bounded (this would

DOt he the case othawise).
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The third condition has no influence OD the time and the numher of alter

nations. The space howcver cao be influence<! since the numher of tape ceUs

lise<! is now bounde<! by the numher of alternations.

These two transformations give us an ATM M: using time O(/(n», space

O(s(n) +~(n)) and alternations O(:(n))

A simple way of satisfying the last condition is to force the machine to have

the same number of alternations on any computation path. We construct an

ATM M;s that simulates M: as foll<iws. First M;s marks k = llog:(n)J + 1

cells on a special tape. By assumption, this cao he done in time O(:(n» and

space O(log:(n)) This tape will he use<! to count the number of alterna.tions.

Theo, M;s begins the simulation, incrementing its counter each time it enters a

universal state. The illcrement cao he done in exa.cUy 2k e O(:(n)) steps by

starting at the left end of the counter, moving to the right end and returning

to the initial position. Since M;s will ha.ve to do :(n) sueb increments during

the whole process, the total time spent on this task is O(:2(n)). At the time

the counter reaches 2k, M;s halts and rejects. Otherwise, hefore simulating a

reading state,~ alternates between universal and existential states until the

counter reaches its maximal value. Theo,~ cao simula.te the r.eading state

of M2• The time needed is O(t(n) +:2(n)), the spa.œ is O(s(n) +zen)), and

the number of alterna.tions remains O(z(n)). 0

Theorem 5.3.6 A lagac&ge is in NP if cmd cmly if if is reeognized by Cl p

unifonn ftmùl11 of tree-like cin:uits tDith~ blocNize cmd polpomiGl

degree.

Proo!. In [81], it is proved that any laDguage in NP cao he leeogniPd by a.

seIni-bounded ATM Ml wodàng in polynomial. time and making a.logarlthmic

numberoCalterna.tions. Proposition 5..3.5 shows that Ml cao he simnlatedby a.

tree-likeATMM2 workinginpolynomia1timeand usiDgO(logn) alternations.

As we already mentioned, Ruzzo's simulation of ATM with Boolean è:ùcuits

preserves the tIee-like propeIty. So, M2 cao he simula.ted by a. P-unifoan
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family C of tree-like circuits with exponential block·size and O(log n) depth.

Indeed, any logarithmic depth semi-boundcd circuit have polynomial degree.

The other direction is a consequence of a rcsult from (81] saying that an)'

language recognized by P-uniform semi-boundcd circuits of exponential size

and polynomial degree is in NP. 0

Theorem 5.3.7 A language is in LOGCFL if a'id only if it i.. recogni:ed by a

L-uniform family of tree·like circuits toith polynomial block·..i:c and polynomial

degree.

Proof. The proof is essentially identical to the previous one. It is ba.sed

on the equivalenee hetween LOGCFL and the class of languages recognized

by polynomial·size polynomial-degree semi-bounded circuits. 0

Observe that a skew circuit does not remain skew after we apply the trans

formation of Proposition 5.3.3. Howcver, the proof cao he adapted. To do

this, wc necd to introcluee the notion of skew alternating Turing machine.

Definition 5.3.8 A sketo altemating Turing machine (sketo ATM) is an ATM

satisfying condition 1 and ! of Definition 5.3../, and such that /rom any uni

vasal configuration all molleS, ezcept possï6iy one, lead ta Cl mzding state.

Without loss of g-..nerality, wc will assume that from any universal state

of & skew ATM, & left move always leads to & reading state. We call right

computation path, & computation path sueb that all moves originating from &

universal state are rlght moves.

One cao verify that Ruzzo's proof [63], conœming the simulation of ATM

byunifoancilœits,preservestheskewproperty. Unfortunate1y, thesimulation

of unifoan cilœits by ATM given in [63] does not preserve the skew property.

Nevertheless, wc cao bypass this difliculty by using the foUowing observation.

I,emma 5.3.9 NTIME-SPACE(t(n),&(n» = &ketoAT~ACE(t(n),&(n»
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Proof. (Ç;) Let M be a nondetcrministic Turing machine working in time

O(t(n» and space O(s(n». Suppose without 1055 of generality that the states

of M are partition<.'<! betwccn existential states and rea.ding states. An alter

nating TM N <'an simulate M as follows. On existential stat<:5, N docs the

same thing as M. On reading states which are final, N simply branches uni

versally to two idcnti.:al reading states. On nonfinal reading states, N gucsscs

the correct input symbol b. Then, it branches universally to both a rea.ding

state, to verîfy its gucss, and to the state corresponding to a move made by

M when rea.ding symbol b.

(2) Let us sec how a nondeterministic ma.chine M can simulate a skew

alternating TM N. M behaves differently from N only at universal states. In

this case, M simulates scquentially the two possible moves. It first begins with

a move leading 10 a reading state and rejects ü this computation is rejecting.

Since N always halts after being in a reading state, this part of the simulation

can he donc! in constant time using only deterministic states. If M has not

rejected, it continues its computation by simulating the second move. If M

concludes the simula.tion of N without rejecting, then it a.ccepts. [J

Proposition 5.3.10 Let sen) e n(logn), t(n) e n(n), and sen) < t(n). A

lcmgucge is recognized 6y a sketo ATM in time to(1)(n) end spcce sen) if and

oRly if if is recognized 6y a DTIME{1ogt(n»-unifonn family ofsketo eircuits

ofM 0(2"<"» and depth tO(l)(n).

Proor. It is proved in [81] tha.t for sen) e n(Iogn), t(n) e n(n), and

.s(n) < t(n), NTIME-SPACE(tD{1)(n),.s(n» is equal to the class of languages

recogni'U'd by DTIME(s(n»-uniform skew circuits of size 0(2"<"» and depth

tD(1)(n). The proof follows from this and kmma 5.3.9. [J

We must modify slïghtly the definition of tree-like ATM in the context of

skew ATM. Actually, only the third condition needs 10 he changed. This is

becausc. in order to a.ccess all its inputs, a. skew circuit must have a.t least
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linear depth. Hence, applying Proposition 5.3.5 on a skcw ATM using logn

space would result in a tree-like ATM using at lcast lincar spacc.

Definition 5.3.11 A skew ATM M is tree-like if it sati..<fies condition.. J,!!

and 4 of Definition 5.S.4, and if it sati..<jies the following condition.

S'. The machine M has a special tape used as a counter initialized to O.

Each time M moves to a universal state, it increments its counter.

The motivation of this definition is given by the fol1owing proposition.

Proposition 5.3.12 Letz(n) bein DTIME-SPACE(z(n), logz(n)). Any skew

ATM M using time t(n), spaces(n), and aiternation zen) can be simulated by a

tree-like skew ATM N using time O(t(n) log z(n» and space O(s(n) +logz(n»

Proor. The first two conditions of Definition 5.3.4 are already satisfied

and the third one causes no problem. lt is only necessary to show how wc cao

satisfy the last condition while preserving the skewness of the ATM.

The idea is similar to that used in Proposition 5.3.5. We construct N

sucb that any right computation path has the same number of alternations.

This is simply done by using the special tape to COllOt in binary the number

of alternations. This takes spaœ O(logz(n». Each increcent takes time

O(log z(n». The total spaœ is thus O(s(n)+log z(n» and the timeis increased

by a factor of O(logz(n».

The other dift"erence with Proposition 5.3.5 is that the added universal

configurations brancb to an acœpting configuration and to an existential con

figuration. C

Proposition 5.3.13 Any DTIM.E.{logs(n»-unîfonn family C ofske1D cin;uits

of Bize sen) and depth den) <:an be sîmulcted by Cl DTIM.E.{logs(n»-unîfonn

family oftree-like ske1D cin;uits C~ ofme (s(n)d(n»O(1) and depth cfO(1)(n)•

Proof. From Proposition 5.3.10, we have that C cao he simulated by a

skew ATM M l''Ilnning in time O(cfO(l)(n» and spaœ O(logs(n».

132



•

•

M can itsclfbe simulated bya tree-likeskew ATM M' using time O(,f)(1)(n))

and space O(logs(n) + logd(n)), by Proposition 5.3.12.

Finally, we can simulate M' with a uniform family C' of circuits of size

(s(n)d(n))O(I) and depth ,f)(l)(n), using the construction of Ruzzo [63]. 0

In [81], it is shown that NL (resp. NP) corresponds to the c1ass of languages

recognized by uniform skew circuits of polynomial depth and polynomial (resp.

exponential) size. This and Proposition 5.3.13 give the following theorems.

Theorem 5.3.14 A language is in NL if and only if it recognized by a family

of unifoTm tree-like skew circuits with polynomial block-5ÏZe and polynomial

degree.

Theorem 5.S.15 A language is in NP ifand only ifit is recognizedby afamily

of unifoTm tree-like skew circuits with uponential block-sî:e and polynomial

degree.

5.4 Construction of a family of groupoids

5.4.1 Groupoids Gm

We observe that a praof in a tree-like circuit consists in a consistent selection

of one OR-gale and one AND-gate in each black. Let us examine what is

meant by consistent selection.

Consider any numbering of the gates of C. With any AND-gate 9 we

associate triples of the form (a,c,b), where c is the number assigned to an

OR-gale using 9 as input. If the left child of 9 is an input gate labeled with

the variable:l:1 then, a = :1:1> otherwise a is the number assigned to the left

child of g. The number b is defined simDarly using the right child. Let B be

a black with left child BI and right child~. Theo, a. consistent selection of

gales implies that if an AND-gale of the form (a, c, b) bas been selected in B,

then we must choose a. gale of the form (s, a, t) in BI and a. gate of the form

(u,b,v) in~.
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• Let Cm be a tree-like circuit whose gates arc numbere<! such that (1) any

two distinct gates have distinct numbers, (2) the output gate has numbl'r

m, (3) no gate has number 0, and (4) if a gate in Cm ha.~ numbcr k thcn

the number assigne<! to any of its children is strictly smaller than k. Such a

numbering will be called a normal numbering bounded by m. Furthermorc, we

will reprcsent the input bit~ by 0 and m instead of 0 and 1. So, an input x to

the circuit is accepte<! if the circuit outputs m and it is rejected if the circuit

outputs O.

We now describe the construction of a family of groupoids (Gn)n>t such

that the problem of evaluating Cm is re<!ucible to the word problem over Gm•

The above setting indicates that Gm cau be define<! over the set

Gm = {(a, C, b) : 0 S a,b,c Sm}.

We will define a complete order relation between the triples in Gm • For any

two triples (a,c,b) and (c,d,f) wc write (a,c,b) S (c,d,f) if and only if

am2 +bm + c::; em2 + fm + d. The product in Gm is define<! as follows.

1. (m, a, m)(a, C, b) = (m, C, b)

2. (a,c,b)(m,b,m) =(a,c,m)

{
(a,c,b)

3. (a,c,b)(c,d,f) = (c,d,f)
if (c,d,f) ::; (a, C, b)
otherwise

•

for all cases not covç;~ by 1. and 2.

5.4.2 Characterization of LOGCFL

Suppose that circuit Cn has n inputs :h""z,.. We will describe a way to

encode C" into a. string to =to(:l" .. ,:,,) E (GmU{(:.,c,:.) : i ::; n,c < ml)·

sncb tha.t for any v = Il! ••• 4,. E {a,m}", v is accepted by Cm if and only if

to(al" •• ,4,.) cau be evaluated to (m, m, m). We will associate the AND·gates

of Cm with triples in Gmas explained above.

Ea.ch block BI: in Cm cau be represented by a. sequenceof triples correspond

mg to the set of AND-gates contained in BI:, The sequences corresponding
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to an input block that is a left child will be in decreasing order. Ail other

sequences are in increasing order.

Let the blocks of Cm be B" . .. B. with B, the output block. With each

block Bk we associatc a sequence of blocks denoted {h. If Bk is an input-block

then rh = Bk. If B. and Bj are respectively the left and right child of Bk then

f3k = f3.Bkf3j. Our string w will simply be the sequence f3. where each Bk is

represented by a sequence of triples as explained above.

We must now prove our claim that for any y = aI···an E {O,m}n, y is

accepted by Cm if and only if (m, m, m) E Gm(w) where w = w(a" ... , an).

We first show by induction on the depth of agate c that if w cao be

partially evaluated to a word u(m, c, m)v, then the subcircuit rooted at gate

c eva1uates to l.

Recall that w is not any word in G;': it is the result of a reduction and

has the structure discussed above.

Suppose first that c be10ngs to an input-block. Then, it should be clear

that the first two rules in the definition of the product do not need to he used.

In other words, (m,c,m) is a symbol in w, and gate c is an input-gate that

eva1uates to 1.

Suppose that c be10ngs ta a black B which is not an input-black. There are

two possibilities depending on whether both children of B are building-blacks

or not (by assumption we know that at least one of them is a building-black).

Suppose that the first possibilityoccurs (the second one is treated similarly).

In this case, the only way ta get element (m, C, m) is ta use at 50me step Prod

uct 1 on (m,a,m)(a,c,b) and then Product 2 on (m,c,b)(m,b,m). Theo, w

cao he partially evahlated ta Wl(m, a, m)U12(a, C, b)UI3(m, b, m )W4 where a and

bbe10ng respectively ta theleft and right child of B. By inductive assumption

both ga;tes a and b evaluate ta 1. Consequently, the AND-gate associated with

(a, c, b) evaluates ta 1 and 50 does the OR-gate Co This proves one direction.

Suppose now that Cm contains an acœpting subtree, i.e. there exists a

consistent selection of one AND-gate and one OR-gate in each building-black

and a consistent selection of one acœpting input-gate per input-block. We
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.. will prove by induction on the depth of the block-tree that w ca.n be evaluatcd

to (m,e, ml, where c is the number of an OR-gate in the output-block that

evaluates to l.

Suppose firs\ ,.hat the 'block-depth' of Cn is 2. Then, w = usv where s

is the encoding of the output-block, u is the encoding of its left child, and

v is the encoding of its right child. Observe that both u and v are input

blocks. Suppose that the correct triples to choose in u, s and v are respectively

(m,a,m), (a,e, b) and (m, b, ml. Sinceu is alist of triples in reverseorder then,

multiplying (m,a,m) to the right in u yields (m,a,m). Sirnilarly, multiplying

(a,c,b) to the left in s yields (a,e,b). After this partial eva.1uation of w wc

get a string of the form u'(m, a, m)(a, C, b)s'v that can be reduced further to

u'(m,c, b)s'v. Observe that because we use a normal numbering for nodcs of

Cm, (m, C, b) is larger than any triples in s', and thus the last string can be

reduced to u'(m, C, b)v. We continue the eva.1uation by multiplying (m, b, m)

to the left in v, and we obtain the string u'(m,c,b)(m,b,m)v' that can be

reduced to u'(m, C, m)v'. Observing that (m, c, m) is larger than any clement

in u' and v' we obtain the single triple (m, C, m). This proves the basis of our

induction.

For the induction step, let w = usv where s is the output-block, u and

v the left and right block-subtrees of s. Let (a,c,b) he the correct triple to

choose in s. This means that the gate numbered a (resp. b) in u (resp. v) is the

root of an accepting subtree in u (resp. v). Suppose inductively that u (resp.

v) can he eva.1uated to (m,a,m) (resp. (m,b,m». Thus, VI can he partially

eva.1uated te (m,a,m)s(m,b,m). Multiplying (a,c,b) te the left in s gives

(m,a, m)(a,c,b)s'(m,b,m) that can be reduced te (m,c,b)s'(m,b,m). Finally,

(m, C, b) being la.rger than any triple in s', we can continue the eva.1uation te

obtain (m,c,b)(m,b,m) = (m,c,m).

We have proved the following theorem.

Theorem 5.4.1 Any language recognized by a family of tTee-like circuits VJith

block-size s and degree d is also recognized by a family of programs of length
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s(2d - 1) over groupoids of order 33 •

Corollary 5.4.2 Let (Gn)n<;O be the family of groupoids constructed above.

Any language in (non-uniform) SACl is recogni::ed by a family of programs

over (Gp(n»n<;O' where p(n) is polynomial.

5.4.3 Nondeterministic logarithmic space

In lhis subseclion we will show that there exists a family of groupoids (Dn)n>l

whose linear word problem is complete for NL. This family will have the

property that for every n, Dn is isomorphic to a subgroupoid 'of Gn defined in

the previous section.

Define Dm as the set

Dm = {(a,b): O:S a,b:s ml·

The product of Dm is defined by

1. (m, a)(a, c) =(m,c)

{
(a,c)

2. (a, c)(e, d) = (e,d)
if (e, d, m) :s (a,c,m)
otherwise

•

for all cases not covered by 1.

It is easy to verify that the mapping (a, c) -. (a, C, m) is an isomorphism from

Dm te a. subgroupoid of Gm •

We will show how te reduce the accessibility problem over a. directed graph

with m nodes te the linear word problem over Dm. Let P be a directed graph

of size tn. Suppose tha.t the vertices of P are labeIed with a. number lower or

equal te m. Suppose fut.-thermore tha.t anyedge (a,b) in P is sucb tha.t a < b.

The problem is te determine if there is a. pa.th from 1 te m. It is well known

that this problem is complete for NL under a.logspa.ce reduction (see [25]).

Let to = (m, l)tDt ••• tom _l where toi is a. list of the edges emerging from

vertex i. Alllists are in inaeasing order.

A simple argument similar te tha.t used in the previous section shows tha.t

to cao he evalua.ted te (m, m) ifan only if there is a. pa.th in P from m to itself.
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Moreover, we can restrict the parcnthesization to be of right-dcpth 2 without

loss of generality.

The proof of Lemma 2.5.3 shows that any language recognizcd in con

stant right-depth by a L-uni~orm family of programs ovcr polynomial-order

groupoids belongs to NL. Since the above program is clcarly L-uniform, we

have the following result.

Theorem 5.4.3 NL is equal to the class of languages RD2-recogni::ed by L

uniform programs over (Dp(n)n2:0• for some polynomial pen).

5.4.4 Deterministic logarithmic space

The family of groupoid (Dn)n>1 defined in the previous subsection can be

used to capture L. In order to do this, we will reduce the IGAP problem (i.e.

the accessibility problem on directed graph of outdegree 1) to the problem of

evaluating a string tD E D:.. from left to right;

Let P he a directed graph with outdegree 1. The conditions on P and

the reduction to a word tD are identical to what was defined in the previous

subsection. The resulting string w is such that ea.ch tu; contains at most one

vertex. One ca.n verify that there is a path from m to itself if and ooly if

(m, m) is the e1ement obtained by evaluating tD from 1eR ta right.

Theorem 5.4.4 L is equal to the class of languages left-w..right recognized by

L-uniform programs over (Dp(n»~1 for some polynomial p(n).

5.4.5 Bounded circuits of logarithmic depth

We will show that any problem in NCI is reducible ta the problem of evaluating

from 1eR ta right a word over Dll.

Let :1: = :1:1 •• ':1:" he a word over the permutation group Sr.. We know that

the problem of determining if :1: maps 5 on itself is complete for NCI
•

Assume that the length of :1: is even. Fix i, and for, 1 < j < 5, let Yi

he the image of j under the permutation :l:j. Represent:l:j as the sequence
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(1,5 + yiJ ... (5,5 + ys), if i is odd, and (G,YI)'" (lG,ys), if i is even, and let

w = (11,5)x(5,11) E DIl·.

Onecan verifythat x maps 11 on itself if and only ifw left-to-rightevaluates

to (11,11).

This and Barrington's theorem [5] yield the following result.

Theorem 5.4.5 Nel is equal to the class of languages left-to-right recogni:ed

by DLOGTIME-uniform programs over DI!. Cl

5.5 Clean circuits

Definition 5.5.1 A clean circuit is a tree-like circuit that, on any input Xl ••• X,,,
has at most one AND-gate and one OR-gate that evaluates to 1 in each build

ing block. Moreover, evcry input-block contains e:z:actly boo input gates looking

at the same input position i. One of the gate is said to be positive and outputs

Xi, the othcr is said to be negative and outputs Zi.

Lemma 5.5.2 For any AND-gate 9 in a clean circuit, either the fan-out of9

is 1 or this gate nevcr et/aluates to 1. Moreovcr, for any boo OR-gates 91 and

92, there is at most one AND-gate that takes its inputs from both 91 and 92.

Proof. For the first part, simply observe that if two OR-gates in a block

receive input !rom the same AND-gate which evalua.tes to 1 on some input,

then both OR-gates evaluate to 1, and the circuit is not clea.n. The second

part is a direct consequence of the definition. Cl

It it known!rom [81] tha.t P-uniform circuits of exponential size and poly

nomial degree, and in particular tree-Iike circuits of exponential block-size

and polynomial degree, can be simu1ated by nondeterministic Turing machine

running in polynomial time. Later in this section, we will show tha.t when

we further restrict the circuits to be clean, the c1ass of languages reoogniœd

COO'eSponds precisely to P. However, to achieve this we must use a. stronger
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notion of uniformity. This is because, given any gate number a, a nondeter

ministic machine can, in polynomial time, guess agate number b and verif)'

that a is effectively a child of b. NondeterminisM sccms to be cssential here

because the number of gatcs in the circuit is exponential.

Let (Cn)n~o be a family of clean circuits. Consider a11Y numbcring of the

blocks of Cn , for any integer n. For each circuit Cn , wc define the fol1owing

functions.

1. root(i) is true iff i is the number of the output-block of Cn •

2. leaf(i) is true iff i is the number of an input.block in Cn •

3. left(i) is the number of the left child of the block number i.

4. right(i) is the number of the right child of the block number i.

5. parentei) is the number of the parent of the block number i.

6. pos(i) is the number of the positive input gate in input block i.

7. neg(i) is the number of the negative input gate in input block i.

Given a. complexity class C, We define a. family (Cn)..:>o of clea.n circuits to

he C-uniform if the following conditions are satisfied.

• The direct connection language is in C.

• For any integer n, the problem of computing any of the functions root,

leaf, left, right, parent, neg, and pos is in C.

Clea.n circuits are closely rela.ted with parenthesized programs over fa.milies

of groupoids. We begin by showing this in the nonuniform setting.

Proposition 5.5.3 Any language Oller the alphabet {O, 1} (linetU'ly) recognizd

br parenthesized programs of length ken) Oller groupoitIs oforder /(n) is also

recogni:ed br clean (skevJ) circuits ofdegree ken) and block-si:e pen) + /(n)•
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Proof. Let Pn be a pa.renthesized program over a groupoid Gn , where

n is the length of the input considered by Pn • We associate with each weil·

parenthesized sub-program of Pn a block in a tree-Iike circuit. With each single

instruction, we associate an input block. More precisely, a single instruction

(i,o), where 1 =:; i =:; n and 0 : {0,1} -+ Gn , corresponds to an input block

consisting of 2 input gates testing if the element generated by the instruction

is 0(0) or 0(1), respective1y. Clearly only one input·gate cao he evaluated to

1 in each input block.

Let Dn =(AnBn) he a subprogram of Pn, where An and Bn are parenthe

sized programs over Gn • We associate with Dn a building block that contains

f(n) OR-gates. Bach OR-gate tests whether Dn evaluates to some e1ement of

Gn • Such agate, testing for example if Dn evaluates to 9 E G.., has children

which are AND-gates testing if A.. evaluates to 91 and B.. evaluates to 92, for

ail 9192 = 9. The input of these AND-gates are the appropriate gates of the

blocks respectively associated with A.. and B...

Since each block in the circuit is uniquely associated with a parenthesized

subprogram, and since each subprogram evaluates to a unique e1ement, only

one OR-gate and one AND-gate cao evaluate to 1 in each building-block

Observe that this construction yie1ds skew circuits whenever the programs

are linearly parenthesized.. C

Proposition 5.5.4 Any language recogni.."ed by a family of clean circuits of

cc degree den} and block-8ize sen} is also recognized by a family of~

proglCiI&8 of length 6d(n} - 2 Olier groupoids oforders(n} +2.

Proor. Let C.. he such a. circuit. By Ienma 5.5.2, there is at most one

AND-gate 9 that Ieœives its input fro:n any two OR-gates Il and b. Moreover,

the fan-out of any AND-gate being 1, there is at most one OR-gate c that bas

9 as input. This motivatesthe de6nitionof a product on B.. = {1, ••• ,s(n}}U

{O,!}, where 0 is absorbing and 1 is the identity, and such tbt 4·b= c, ifC

exists, otherwise Il' 11 = O. (a,II,c defined as above).
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For each input gate gin Cn , define the instruction Yg = (ig• fg), whcre ig is

the position of the bit being considered by 9 and fg is the function that yields

9 whenever gate 9 eva!uates to l, and Iotherwise.

For each input block B with gb g2 as input gates, dcfine the p.venthesized

subprogram PB = (Yg,vn)'

The block structure of Cn induces a well parenthesized rcpres;:ntation of

the input blocks B b ••• , Bd(n) in a natura! way. This leads to the definition

of a parenthesized program Pn whose yield (recall that }Jn can he seen as a

tree) is PB, ••• PB<I(n) and that eva!uates to the number of an AND.gate in the

output block of Cn if and only if Cft accepts its input. 0

Theorem 5.5.5 P is equal to the class oflanguages recogni::ed by a P -uniform

family of clean (skev1) circuits tDith uponential block-si::e and polynomial de

gree.

The proof of the above theorem follows from Theorem 5.2.8, Theorem 5.2.10,

and the two following propositions.

Proposition 5.5.6 Any language (linea.rly) recogni::ed by P-uniform paren

thesized polynomial-length programs over groupoids ofuponential-order is cùso

recogni::ed by P-uniform clan (sketo) circuits of polynomial degree and ezpo

nential block-si::e.

Proo!. We must show that if the programs are P-uniform, the construction

of Proposition 5.5.3 yields a family of P-uniform circuits. Let h(n) he the

length of the programs.

In order to prove this, we must set a. numbering of the block of the circuits.

First wc label each block with a pair of integers (i,;) saying that this block

considers the subprogram lying between positions i and;. Theo, we choose a.

numbering tha.t encodes efficiently those labels. An input block is thus labeled

with a pair of the fonn (i,i), and it cao he verified if such a pair ac:tually

corresponds to an input block by cbecking if the jth symbol of the program
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is an instruction: this ca.n be done in polynomial time. Moreover, the output

block is labeled with the pair (1, h(n)). Hence, verifying that a pair labels the

output block ca.n be done in polynomial time.

Given a pair (i,j), one ca.n determine if there is a well parenthesized sub

program starting at position i and finishing at position j simply by counting

and comparing the number of closed an open parenthesis. This ca.n be done in

polynomial time. To find the left childof a block labeled (i,j) it suffices to com

pute the unique i: < j such that (i +1, k) corresponds ta a wel1-parenthesized

subprogram. This ca.n he done by trying ?JI the possible values for k hetween

i +1 and j -1. We proceed similarly to find the right child of a black. To find

the parent of a. black labeled (i,j), it suffices to compute the unique integer

k such that either (k,j + 1) or (i - 1, k) corresponds to a. wel1-parenthesized

subprogram. Ail these computations cao be done in polynomial time.

We must also find a. numbering of the gates of the circuits. First we label

ea.ch OR gate with a tuple (a, b,g, OR) mea.ning that this gate checks if the

subprogram loca.ted between position a a.nd byields g. An AND gate is labeled

with a. tuple (a, b,91, 92, AND), mea.ning that this gate checks if the subprogram

D" = (A"B,,), loca.ted hetween positions a and b, evaluates ta 9 = gl!/2 and

receives input from ORgates checking ifA,. eva1uates to 91 and B" eva1uates ta

92. A positive (resp. negative) input gate is labeled with a. pair (i,g), meaning

that the i th symbol of the programs is an instruction (i,v), and v(l) = 9

(resp. v(O) = g). Choosing a. numbering that encodes these labels, the direct

connection cao he recognized in polynomial time. One difliculty OCCUIS when

we need ta verify that a and ba.ctually bound a. we11-pa.tenthesized.subprogram,

but as we aheady mentioned, this cao he determined in polynomial time.

Finally, given the numberm of an input black, one cao compute its negative

and positivegates in polynomial time. Indeed, ifm encodes the pair (i, il, thèn

it suffices ta compute the ïth symbol which is an instruction (i,v). The positive

gate bas the number that encodes the pair (i,v(I}) and the nega.tive gate bas

the number that encodes (i, v(O)}. CI
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Proposition 5.5.7 Any languag~ IT.coglli=ed by a P-unifoMn family of clean

circuits of polynomial dcgree and e:rponcntial block-si=e is aL<o recogni=ed by a

family of polynomial-Iength parenthesi=ed programs over groupoids of e:rponen

tial order.

Proof. As in Proposition 5.5.6, it suffices to show that the construction

yields a P-u.'liform family of programs.

We will however make a small modification in the construction. Recall

that each subprogram Ps, contains exactly four symbols. We modify P" into

a program Q" by replacing each parenthesis by four identical parenthesis. We

do this beeause given a position i in Q", the fact that the i th symbol is in

sorne Ps, will be independent of the two weaker bits of i, it will depend only

on the number j = Li/4J. In other words, all positions beginning by j are in

the same subprogram Ps" are open parenthesis, or are closed parenthesis.

This cm be checlœd in polynomial time using the following a.lgorithm.

Consider a numbering of the block of the circuit and let m be the number

associated with the'output block.

x+-m

Repeat

If leaf(x) then

vrite 'subprogram'

y+- parent(x)

While x = right(y) do

vrite 'c:losed parenthesis'

If root(y) then stop

x+-y

y +- parent(x)

Else

vrite 'open parenthesis'

x+-lait(x)
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The above algorithm makes a depth.lirst search in the trce composed of ail

blocks of the circuits. It writes a sequence of messages, where the Yth message

indicates if the Yth batch of four symbols in the prograrn are open parenthesis,

closed parenthesis, or a subprograrn PB.. Since the degree of the circuits is

polynomial and since ail caBs to any of the functions root, leaf, right, left,

and parent take polynomial time, the total time taken by the algorithm is

polynomial.

Now, computing the i th symbol cao be done in polynomial time simply

by computing j = Li/4J and by checking what is the jth message written by

the algorithm: if the message is 'open parenthesis' or 'close parenthesis' then

the i th symbol is the appropriate parenthesis, if the message is 'subprogram'

then we only have to look at the 2 weaker bits of i te determine if the symbol

is an instruction or not. If the symbol is an instruction, then we cau find it

in polynomial time by computing first the block number associated with the

subprogram using the above algorithm. Then, we cau compute the number

ml of the negative gate and the number m2 of the positive gate in this input

block. If the labels of ml and m2 are respectively (i,gl) and (i,92), then the

instruction is (i, v), where v(l) =gl and v(O) =g2. This concludes the proof.

Cl

Theorem 5.5.8 L is eqtUÙ to the class oflanguages reœgnized by a L-uniform

family ofclean sketo circuw UIith polynomial block-size and polynomial degree.

Proof. Observe that the proof of Proposition 5.5.7 and that of Proposi

tion 5.5.6 rerD 8 ;ns valid in the context of L-uniformity. This is a consequence

of the fact that the depth-first search in a. rooted undirected tree can he done

in logarithmic space in terms of the numher of nodes (see [25]). Thus, the

IeS1Ùt follows fonn these two propositions and Proposition 5.2.9. Cl
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5.6 The missing class

Clean circuits cao thus be viewcd as a deterministic version of trec-Iike (and

thus semi-bounded) circuits.

Table 5.1 describes the equivalence between different types of trec-like cir

cuits of polynomial degree and programs of polynomial length, and gives the

relation with sorne important complexity classes.

Class D Circuits 1Block-size ~ Prog Order

NCt - c1ean est det est

L - c1ean skew poly det lin poly

NL - tree-like skew poly lin poly

LOGDCFL 2 c1ean poly det poly

LOGCFL - tree-Iike poly gen est or poly

P c1ean
d~t lin

- exp or det gen exp

NP - tree-Iike exp lin or gen exp

Table 5.1: Relationship between different complexity classes, polynomial
length progra.ms and polynomial-degree tree-Iike circuits

•

It is remarkable that ooly LOGDCFL is not exactly chara.c:terized. One

would be tempted to conjecture that the ooly ineqllality in Table 5.1 cao he

repla.ced by an equality. However, things are not 50 c1ea.r, as the following

discussion shows.

Let P.. he a program (for input of length n) over a groupoid G... For any

input tD of length n a.ccepted by p.., let the depth of tD he the depth of the

smallest evaluation tree that cao he used to a.ccept tD. Define the depth of P..

as the maximum hetween the depth of all tD a.ccepted by p... We also define

the depth of a family of progra.ms (p..)>a>o as a function mapping n to the

depthof P...

In Section 5.4, we have constructed a family of grollpoids over which
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polynomial-lenglh programs recognize precisely lhose languages in SACl
. We

observe lhal wc only need lo use lrees of logarilhmic depth. Hence logarithmic

depth programs over polynomial-order groupoids are as powerful as general

programs.

It is not known if this situation remains true for parenthesized programs.

As a starting point for an answer, we have the fol1owing result.

A PRAM is said to satisfy the OROW condition if for any register there

is at most one proeessor that writes in it and at most one proeessor that cao

read in it (sec [61]). Wedenote by OROW-PRAM(d(n» the elass of languages

recognized in O(d(n)) steps by a PRAM satisfying the OROW condition.

Proposition 5.6.1 Any language L ç; AO recogni..:ed by L-ùnifonn paren

thesi::ed programs of depth d(n) ouer polynomial-oroer groupoids belongs to

OROW-PRAM(d(n».

Proof. r..et n be any integer, let P" be the program recognizing Ln A".

Suppose that P" is defined over a groupoid G" of order p(n). We will construct

an OROW-PRAM that works in time O(d(n», uses a polynomial number of

processors, and recognizes L.

Observe first that the content of a register cao be propagated into a poly

nomial number of registers in Iogarithmic time and in a way that satisfies the

OROW property. It suflices to use a polynomial number of processors con

nected together in the manner of a binary tree. We will impliât1y use this

idea in what follows.

Let us see P" as a tree. With each node of P", we associate a distinct

register.

A register associated with a Ica!, i.e. an instruction, will hold the~

ment of G" generated by this instruction. Sinee this e1ement cao he found in

logspaœ and sinee L C OROW-PRAM(1ogn) (see [61]), this cao also he done

by & polynomial number of processors using their own registers, satisfying the

OROW condition, and using O(1ogn) steps.
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Let N be an internal node of P", and let Nt and N2 be the children of

N. The register R a.-.sociated with N will hold the result of the product of

the two clements contained in the registers associatcd with Nt and N,. This

is done as follows. We exclusively associate with Ra processor P and p'(n)

special registers that hold the multiplication table of G". To do SO, each

special register is assigned with a distinct pair (a,b), where a,b $ p(n). By

assumption the product ab can be done in logspace. This means that p' (n) sets

of polynomial number of processors can be used, while satisfying the OROW

condition, to write into these p2(n) registers the multiplication table of Pn

(observe that this can be done in parallcl for each node N). Then, processor

P simply reads the content of the registers associatcd with Nt and N2 , say a

and b, and copies the content of the register associated with the pair (a, b) in

register R

At this point, the register associatcd with the root of Pn contains the

clement 9 e G" to which Pn evaiuatcs on input w. It remains to determine if

9 belongs to the accepting set. By assumption, this ca.n he done in logspace

and 50 by a polynomial number of processors working in loga.rithmic time and

satisfying the OROW condition.

The time used by the ma.chine is O(logn) +O(d(n)) which is equal to

O(d(n)). 0

Results from [30] and [27] suggest that LOGDCFL could he more power

fui than OROW-PRAM(logn).(Recall that Dymond and Ruzzo proved that

LOGDCFL corresponds preciselyto CROW-PRAM(1ogn).) Bence, if LOGDCFL

is efFectivcly equal to the class of languages recognized by L-uniform parenthe

sized programs over polynomial groupoids, then it would he possible tha.t this

la.st class could not he restricted further to logarithmic-depth programs. On

the other band, ü any pa.renthesized programs ca.n he restricted to have loga

rithmic depth, then the class of languages recognized by this mode! could he

strictly contained in LOGDCFL. We leave this question as an open problem.
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Chapter 6

Conclusion

There are many reasons for continuing investigation of finite groupoids. For

exa.mple, algebra has become one of the most useful mathematicaJ 0001 in com

putational complexity (e.g. the polynomial method for proving circuit lower

bounds [11] or the algebraic approa.ch for understanding the inner structure

of Ne! [8]). So, it is just natural to try to understand such a fundamental

aJgebraic structure from a complexity point of view. Also, finite groupoids

correspond to pushdown automata., as finite semigroups are related to finite

automata.. Using groupoids for the study of context-free languages could be

fruitful. This approa.ch is particularly attractive when we consider the impor

tance of semigroup theory in the study of regular languages (see [28, 56, 46]).

Another reason is the very close connection between cellular automata. and

finite groupoids that has been observed recently. In [55] it is shown how any

finite groupoid ClUI be seen as an infinite onlHiimensional cellular automaton

where ea.ch cell changes its state a.ccording to its current state and that of its

left neighbour. Then, cellular automata. having periodic behavior are shown to

correspond to particular varieties of finite groupoids. Let us also mention that

programs over groupoids are useful computationa1 models tha.t ca.n be used to

capture many important complexity classes.

Semigroup theory has been 50 important for understanding the structure of

finite automa.ta. tha.t it would be interesting to define a notion of transfonna.

tion groupoids of pushdown automa.ta. that would extend the transformation

monoids of finite automa.ta.. Observe tha.t a finite groupoid G recognizing a
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ianguage L can be minimized, in a unique way, by using the syntar.tic groupoid

of the trec language recognized by G with the saIne accepting subset.

We have seen that the a1gebraic structure of fini te groupoids is significallt.

It v··ag known that the sj'ntactic groupoid GT of a trce language T is unique

and divides any groupoid that recognizcs T. This hM many consequences.

For example, a commutative groupoid cannot recognize a trce language whose

syntactic groupoid is not itself commutative. As an other example, if the

multiplication monoid of GT is nonsolvable, then no groupoid with a solvable

multiplication monoid can recognize T, by Proposition 2.1.6. Morcover, we

showed that the structure of the multiplication monoid influences the kind

of languages that can be linearly recognized. It appears however that the

situation could be different in the context of recognition by programs, where

groupoids having aperiodic multiplication monoid seem able to recognizc SACl

and, in particu1ar, any context-free language [18, 10]

Some classes of groupoids would deserve to be investigated furthl'.r. This is

the case of the Lie groupoids and the one-sided groupoids introduced in chap

ter 2. In particu1ar, it would be interesting to determine the exact complexity

of the word problem over one-sided groupoids. Is it complete for LOGDCFL?

It would be useful to find algebraic properties that would permit to recognize

only the deterministic context-free languages.

One of the most important contribution of this thesis concerns finite quasi

groups and the fad that they are no more powerful than finite semigroups.

We have seen that any language recognized or linearly recognized by a finite

quasigroup is open. It remains to determine if the converse is a1so truc. In

deed, this depends on whether or not languages recognired by quasigroups are

closed under concatenation. Another interesting question is if recognition and

linear recognition by finite quasigroups are equivalent.

We said nothing about familles of quasigroups. We would very much like

to know wha.t class of languages is recognized by polynomiallength programs

over polynomial order quasigroups. This question, restricted to groups, bas

not been settled yet. One easily shows that polynomiallength programs over
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polynomial order groups recognize only languages in L, but wc do not kr.ow if

al! languages in L can be recognized by such programs.

It would be important to find many simple examples of finite groupoids
~

whose word problems arc complete for complexity classes likc L, NL, SACl ,

and LOGDCFL: many, because comparing them together could give sorne

hint towards understanding their structure; simple, bccause in order to be

UScf1ll they must be easily analyzable. In chapter 5, we gave a simple family of

groupoids (Gn)n>O with which we can capture many complexity classes. This

can be used to reformulate sorne problems in computational complexity. For

cxample, proving that no polynomial lcngth left-to-right programs over G1 l

can simulate sorne polynomiallcngth programs over (Gn)n>o would imply that

NCl ~ SACl.

We hope that the definition of clean circuits introduced in this thesis will be

useful for future research. In [81], it is shown how circuits of polynomial degree

are related to nondeterministic complexity classes. In this sen~, clean circuits

correspond to deterministic classes. At least, this is true for P and L. However,

these results are not completely satisfactory since we have not been able to

characterize LOGDCFL in this way. Actually, it seems that clean circuits

of polynomial size and polynomiai degree would correspond more closely to

OROW-PRAM's using a polynomial number of processors and rnnning in

polynomial time.
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