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Abstract

Statistical and machine learning models are useful tools that can be used to extract valuable
information from raw data and make accurate predictions and can be applied in the optimization
of mining related systems through various means. This thesis aims to further contribute to the
applications of such techniques in mining engineering by providing 4 different cases where
statistical and machine learning models could facilitate design and decision making. Principal
component analysis (PCA) was used to reduce the dimensions of the problem and simplify the
design of stockpiles in bed-blending operations, generalized linear models (GLM) were introduced
to model non-linear relationships among variables in quality control and safety related problems,
factor analysis methods including structural equation models (SEM) were presented to be used in
conjunction with cognitive work analysis to better analyze the underlying structures or latent
variables in operational health and safety in mining operations, and finally clustering, which is a
family of unsupervised learning methods, was applied to a mine planning problem to integrate

mining and mineral processing and maximize recovery.



Résumé

Les modéles statistiques et d'apprentissage automatique sont des outils utiles qui peuvent étre
utilisés pour extraire des informations précieuses a partir de données brutes et faire des prévisions
précises et peuvent étre appliqués dans 'optimisation des systémes liés a 1'exploitation miniére par
divers moyens. Cette thése vise a contribuer davantage aux applications de ces techniques en génie
minier en fournissant 4 cas différents ou les modeles statistiques et d'apprentissage automatique
pourraient faciliter la conception et la prise de décision. L'analyse en composantes principales
(ACP) a ét¢ utilisée pour réduire les dimensions du probléme et simplifier la conception des stocks
dans les opérations de mélange de lit. Des modeles linéaires généralisés (GLM) ont ét¢ introduits
pour modéliser les relations non linéaires entre les variables dans le contrdle de la qualité et les
problémes liés a la sécurité, des méthodes d'analyse factorielle, y compris des modeles d'équations
structurelles (SEM), ont été présentées pour Etre utilisées conjointement avec une analyse du
travail cognitif afin de mieux analyser les structures sous-jacentes ou les variables latentes de la
santé et de la sécurité opérationnelles dans les opérations minieres, et enfin le clustering, qui est
une famille de non supervisés méthodes d'apprentissage, a été appliquée a un probléme de
planification miniére pour intégrer l'exploitation mini¢re et le traitement des minéraux et

maximiser la récupération.
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Chapter 1  Introduction

1.1 Preliminaries

Over the past decades, a significant amount of research has been dedicated towards the
optimization of mining systems including production scheduling, block sequencing, reliability
analysis of assets and equipment, sustainability etc., which was partly driven by the rapid depletion
of high grade deposits, the increasingly high operational costs as well as tightening environmental
regulations. Hence it is imperative that mining systems become more efficient, safer and more
environmentally friendly. Indeed, decision making and planning based on statistical and machine
learning models could aid to the further optimization of mining systems, and the implementation
of these methods could have significant impacts on the overall performance of the mining industry,
as even small improvements in production and efficiency can lead to greater profitability due to
the size and scale of the industry. There exists tremendous potential of applications of statistical
and machine learning models in mining engineering. Statistical models could facilitate decision
making under uncertainty by quantifying risks, and by identifying influential variables via rigorous
inference, which can be particularly helpful in reliability analysis of systems in the presence of
censored and truncated data. On the other hand, machine learning methods have become more
prevalent in recent years due to the affordability of high-performance computers, and their
applications can be very versatile. For instance, supervised and deep learning methods, such as
support vector machines and neural networks could be used to make accurately predictions based
on large numbers of input data. Unsupervised learning methods on the other hand, could be utilized
to find patterns in data or conduct dimension reduction without pre-existing labels. While machine
learning models such as naive Bayes, recurrent neural networks and convolutional neural networks
have been widely utilized in fields including natural language processing and computer vision, so
far there have been relatively limited applications of machine learning in mining engineering
related problems. This work aims to introduce innovative ways of applying statistical and machine

learning models to optimize mining and related systems.

1.2 Research Objectives

The primary objective of this work is to optimize mining related problems via the introduction of

statistical and machine learning methods. In particular:
1



e A principal component analysis (PCA) based solution was presented to aid to the design
of stockpiles that could achieve high variance reduction ratio of polymetallic inputs in bed-
blending operations,

e Generalized linear models (GLM) were introduced in order to conduct regression analysis
on response variables with non-normal distributions. Two case studies were presented
regarding applications of GLMs in mining related problems

e A factor analysis based statistical model was used to quantitively analyze safety and
accident related data and extract underlying latent variables to facilitate in-depth
understanding and improvement of operational health and safety of workers. Moreover, a
proposition was made to combine the statistical model with cognitive work analysis
(CWA) to enhance work safety in the mining industry.

e Clustering, which is a family of unsupervised machine learning techniques, was used to
partition block data into different groups each for one unique mineral processing
destination. This method has been shown to perform better than traditional cut-off-based
methods when taking into considerations loss of recovery due to fluctuations in input

grades.

1.3 Originality and Success

Mineral processing plants generally have narrow tolerances for the grades of their input raw
materials, so stockpiles are often maintained to reduce material variance and ensure consistency.
However, designing stockpiles has often proven difficult when the input material consists of
multiple sub-materials that have different levels of variances in their grades. In this thesis, this
issue was addressed by applying principal component analysis (PCA) to reduce the dimensions of
the input data. The study was conducted in three steps. First, PCA was applied to the input data to
transform them into a lower-dimension space while retaining 80% of the original variance. Next,
a simulated a stockpile operation was simulated with various geometric stockpile configurations
using a stockpile simulator in MATLAB. The variance reduction ratio was used as the primary
criterion for evaluating the efficiency of the stockpiles. Finally, multiple regression was used to
identify the relationships between stockpile efficiency and various design parameters and analyzed
the regression results based on the original input variables and principal components. The results

showed that PCA is indeed useful in solving a stockpile design problem that involves multiple
2



correlated input-material grades. Statistical methods including regression analysis has been widely
utilized in the modelling of quality characteristics, systems reliability and safety engineering data.
However, due to the many restrictive assumptions of the traditional regression models, including
normality and homoscedasticity of the error term, such models could be rendered inappropriate
when dealing with non-normal, binary or count data. In chapter 3 and 4, this study presents an
overview of the intuition and mathematical foundations of the extension from linear models to
generalized linear models (GLM), as well as factor analysis techniques including Structural
Equation Models (SEM). Case studies incorporating Gamma regression, binomial/multinomial
regression are used to demonstrate the potential applications of GLMs in quality, reliability and
safety engineering, as well as the possibility of combining cognitive work analysis and structural
equation modelling to investigate underlying structures and reasons behind work safety and
operational health. Traditional ore-waste discrimination schemes often cause the loss in recovery
because applying a cut-off grade has no control the average grade of ore, resulting in grade
fluctuations of input grades in mineral processing. Chapter 5 introduces target grades instead of
cut-off grades for different processing streams and models the losses due to deviation from targets
via the Taguchi loss function. Three unsupervised learning algorithms, k-means clustering,
CLARA and k-means based approximate spectral clustering (KASP), were presented to group
mine planning blocks into clusters of similar grades with different processing destinations. Also, a
technique considering uncertainties associated with block grades was proposed to generate new
sequences that reduce variation in processing capacities across mine life. The case study in this
chapter involved the treatment of a realistically large mining dataset. The results showed that
clustering methods outperform cut-off grade-based method when divergence from target grades is
penalized and that reclassification of blocks based on data from geostatistical simulations could

achieve smoother capacities for processing streams across the life of mine.

1.4 Thesis Organization

This thesis consists of 6 chapters:
Chapter 1 lists the topics covered in this thesis, its main objectives as well as original
contributions.

Chapter 2 provides the literature review on relevant statistical and machine learning methods



Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

introduces and explains in detail how PCA can be used to facilitate the design of
stockpiles in bed-blending operations.

provides the intuition and mathematical foundations of linear and generalized linear
models and presents case studies regarding utilization of GLMs in modelling
nonlinear relationships in quality control and safety related problems.

discusses the utilization of latent variable modeling related to occupational health
and safety in the mining industry using SEMs.

presents the methodology of three clustering algorithms and explains how
clustering-based solutions manage to minimize deviation from target grades in
mineral processing.

concludes by summarizing the works done in this thesis and discusses potential

improvements and future works.



Chapter 2  Literature Review

2.1 Introduction

The primary objective of this literature review is to provide an overview of how statistical models
and machine learning methods have been used to model and ameliorate the design of engineering

systems, as well as the basic backgrounds of the relevant algorithms utilized.
2.2 Key Methods

2.2.1 Regression models

Regression has remained one of the most important tools in statistics for the past 30 years [1].
Given a vector of inputs (or predictors/features) X = [Xq, X, ..., X, | with X € R™P and X; €
R™1vi € {1,2,...,p}, as well as a vector of outputs (or responses/independent variables) y =
[V1, V2, «-0» Yn |7, the aim is to predict the output via the model

y = XB 2.2.1)
Where B € RP*! is the estimated parameter coefficients.

The standard way to obtain an estimate for the regression coefficients 8 is via the least squares

method, by minimizing
lly =915 = Z(yi —9)? (2.2.2)
i
It could be shown that when normality assumption is added to the model i.e. y ~ N(u, o21), the

least squares solution becomes the maximum likelihood solution. As

- _1 (yl - ﬂi)z _ 1
log u:l[ (\/ﬁa exp {— T})] = Constant — ﬁz(yi _ Mi)z 2.2.3)

It then becomes clear that the objective function for maximum likelihood and least squares are
essentially equivalent. The estimator has form B = (X"X)"1XTy, with B ~ N (8,02 (X"X)™1).
Generalized linear models (GLMs) extend the standard linear regression models to allow for non-
Gaussian distributions of the response and also possibly nonlinear relationships between its mean
and variance. One additional component in a GLM is the link function which maps the expectation
of the response to the linear predictor [2]. GLMs are widely used in the modelling of categorical
data, for instance logistic regression and multinomial regression, as well as count data with Poisson

log-linear model. More details of GLMs are given in Chapter 4.



2.2.2 Regularization methods
Suppose the true relationship between the response y and the covariates of interest X can be
denotedas y = f(X) + &, and some regression techniques were used such that at a sample point

x, the model estimate is f(x), then the integrated squared prediction error (EPE) can be written as

EPE(x) =E[(y - f(x))’] ) )
= (E[f () = f)D? + E[(f (x) — E[f ()])?] + 02 (2.2.4)
= Bias[f(x)]? + Var[f(x)] + Error

Also known as the bias-variance tradeoff, where Bias = E[f(x) — f(x)] and Variance =

E[(f (x) — E[f (x)])?]. This signifies that when the regression model is too simple compared to
the true model, then the model would be underfitting and the model prediction would deviation
too much from the mean. Whereas when the true relationship is simpler than the regression model,
for instance when an abundance of higher order polynomial terms is added, then the model would
be overfitting and a small perturbation in the input would lead to much larger variations in the
output. Regularization is one way that can be adopted to avoid overfitting at the cost of some
additional bias in the model. The most commonly used regularization methods in regression is the
ridge regression and lasso regression, which apply L-2 and L-1 norm penalization respectively, as

shown in Equation (2.2.5).

n
Briage = argmin ) (yi = B7X)* + AlIBIl3
i1 (2.2.5)
Buasso = argmin ) (y;— B7X)* + AlIBll;
i=1

Figure 2.1. lllustrations of lasso (left) and ridge (right).
Source: Hastie et al. [1]
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The effects of ridge and lasso regression are illustrated Figure 2.1, where the red ellipses signify
contours of equal likelihood, and the area in cyan represent the contours for the constraint function.
Solutions are found where the likelihood and constraint contour intersect. Combining ridge and
lasso penalization is termed elastic net regression, and has been shown to be particularly useful in
high-dimensional problems [3]. Regression analyses have been used to model a wide range of data
in mining engineering. Sauvageau and Kumral used various robust regression methods including
least absolute regression, M-estimation, MM-estimation etc. to model mineral processing data in
the presence of outliers [4], Wang et al. used logistic and Poisson GLMs to identify the primary
factors that contribute to unsafe behavior of coal miners [5], Rezania et al. proposed using
evolutionary polynomial regression to assess complex civil engineering systems [6]. Detailed
explanation regarding multiple regression, generalized linear models, factor analysis and relevant

literature reviews are given in Chapters 4 and 5.

2.2.3 Ensemble Learning

Ensemble learning approaches combine multiple base supervised learning algorithms (regressors
and classifiers) in order to obtain superior predictive performance. Bagging (bootstrap
aggregation), boosting and stacking are the three most common methods in ensemble learning.
Bagging refers to the training of a series of models on multiple bootstrapped samples (randomly
sampled uniformly with replacement) of the original data set, then making a majority vote for
classification or taking average for regression. Empirically, bagging has been known to be able to
reduce variance at the cost of increasing bias. Random forest, which is a bagging technique, has
been widely used in modelling mining engineering related problems. Mishra et al. used random
forest decision based approaches for blast design, Tingxin et al. used similar methods to accurately
predict slope stability in open-pit coal mines [7, 8]. Another ensemble learning method, boosting,
incrementally constructs a series of different weak models with high bias and low variance, and
re-weights the mis-classified data points in each iteration. Stacking is a third ensemble method that
trains a meta-model to combine the predictions of an arbitrary set of base learning models.

2.2.4  Support Vector Machines (SVMs) and Neural Networks

SVMs and neural networks are among some of the most powerful supervised machine learning
algorithms, and have seen greatly increased number of applications in various fields of engineering
in recent years. The theory behind some of the more complicated machine learning algorithms

such as SVM and various types of neural networks will not be detailed in this thesis, as they cannot

7



be easily summarized in a very small number of paragraphs. In recent years, there have been plenty
of research on the applications of SVM in mining engineering related problems. For instance, Li
et al. utilized SVM to train a regression model that could predict outcomes in mechanized mining
faces using a set of conditions that incorporate geological factors, technical factors and
management factors [9], Chatterjee used an ensemble of SVMs to estimate reliability of mining
equipment, and performed hyperparameter tuning using genetic algorithms [10], Chen et al.
proposed a new form of probabilistic back-analysis that combines Bayesian priors for geo-
mechanical parameters and least-squares SVM for prediction of displacements [11]. Although this
thesis does not include case studies related to SVM, there is tremendous potential for it to be
applied to various mining related problems that concerns prediction.

Neural networks, on the other hand, could refer to a series of methods including multi-layer
perceptron, convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative
adversarial neural networks (GANSs) etc., and can be supervised or unsupervised. Neural networks
have very vast applications in natural language processing, image analysis, time series analysis
and many other different areas. Neural networks have also been proven to be useful in prediction
related tasks in mining engineering, Lv et al. trained an improved back-propagated neural network
for the prediction of surface subsidence coefficient in backfilled coal mining areas [12], Rakhshani
et al. used an artificial neural network to detect and predict faults in boilers of power plants,
Gonzalo et al. utilized nonlinear autoregressive exogenous neural networks to model the
availabilities of heavy duty mining equipment [ 13]. Although not a major topic of this thesis, neural
networks have tremendous potentials to be applied particularly in image analysis related tasks in
mining engineering, as well as through the modelling of subsurface geological data with generative

adversarial neural networks.

2.2.5 Unsupervised Learning

The primary task of a supervised learning algorithm is to construct a model from a training data
set with associated labels for each entry, and to maximize the out-of-sample prediction accuracy.
In unsupervised machine learning however, the objective is to identify patterns in data sets without
knowing the labels. There are three tasks that are commonly associated with unsupervised learning,
namely dimensionality reduction, cluster analysis and anomaly detection. Principal component
analysis (PCA) is one very popular method for dimensionality reduction and is often based on the

eigen/spectral decomposition of the variance-covariance matrix or correlation matrix of the data



set, or the singular value decomposition of the data set. The mechanism of PCA is detailed in
Chapter 3. Understandably dimensionality reduction techniques are extremely popular,
particularly in high-dimensional problems, and are often used in conjunction with supervised
learning methods. Shao et al. used PCA together with support vector regression to predict pressure
in natural gas desulfurization process [14], Xu et al. used PCA and a back-propagated neural
network to accurately model coal and gas outburst [15]. Clustering is another unsupervised
learning method that is heavily involved in this thesis. Some of the most common clustering
algorithms, including the k-means algorithm, partitioning around medoids (PAM), clustering large
applications (CLARA) and spectral clustering are introduced in detail in Chapter 6, with relevant

literature reviews.



Chapter 3
Dimensioning a Stockpile Operation Using Principal
Component Analysis (PCA)
3.1 Bed-blending Operations

Bed-blending operations are applied across a variety of industries, including the mining industry,
which uses stockpiles to homogenize and reduce the variability of the raw materials before delivery
to mineral processing plants. The reason being that unfavourable residual variations always persist
even in materials from the same source, due to the discontinuous, cyclic, random, and
autocorrelated nature of ore [16]. Optimization of processing efficiency relies heavily on
homogenizing input materials [17]. A bed-blending system has two phases. In the first phase, a
stacker traverses the ground with constant velocity along the stockpile, during which process
materials are laid down on the same level as the stacker. As the stacker gradually reaches the end
of the stockpile, it decelerates until it entirely stops, before starting again traveling back in the
opposite direction. In the reclaiming phase, a reclaimer (either a bucket-wheel or a harrow-type
scraper, etc.) cuts slices of the stockpile that is perpendicular to the direction of stacking [18]. In
the past, many years researchers have constantly been working towards optimizing the design of
blending operations and various theories and methods have been put forward [19-21]. Gy 1992
introduced the concepts of using the variance reduction ratio (VRR) to evaluate the effectiveness
of blending [22], Dowd [23] presented the use of geostatistical approaches to improve stockpile
design by predicting the output characteristics of given stockpile parameters, Kumral [24]
incorporated multiple regression and genetic algorithms into optimization of stockpile design. In
particular, there have been increasingly many applications of statistical methods and mathematical
models in the optimization of metallurgical and minerals engineering operations [25-28]. The
designing of a bed-blending operation could be relatively straightforward when there exists but
one mineral grade that is of concern to the processing plant; however, this is rarely the case as raw
material grades have a multivariate nature, for instance, certain types of iron ores might have more
than six different chemical compositions that need to be homogenized [29, 30]. Therefore,
challenges arise in situations where there are different levels of variations across the material

grades that together make up the stockpile input. Consequently, this research proposes the
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utilization of PCA, which is a dimension reduction technique that has been widely applied in many
fields including image and signal processing, statistical mechanics and multivariate quality control
etc. By introducing principal component analysis (PCA) to this problem, it is possible to reduce
the number of varying materials to a much smaller value, while preserving most of the information
contained from the original data, and thereby facilitate designing of the stockpile with minimum
loss of information. This research is conducted in three primary steps:

1. The principal component analysis is performed on the input data, projecting it to lower
dimension space while retaining most of the information. The input data used in this chapter is a
serially correlated dataset with realistic statistical properties that could well occur in a real-world
problem.

il. A computer algorithm is built to simulate the process of bed-blending, where stacking and
reclaiming are mimicked by laying down discrete blocks of unit weight and volume to form a
cuboid and then slicing across its lengths. The stockpile simulator computes the input and output
variances of all the material grades, including those of the principal components’.

iii.  Multiple regression is used to find the relationships between the response and the predictors,
with the response being the variance reduction ratio, and the predictors being stockpile design

parameters. This step is repeated for all the input materials including the principal components.

3.2 Methodology of PCA and Stockpile Simulator

3.2.1 Principle Component Analysis

Principal component analysis (PCA) is a multivariate statistical/machine learning technique that
seeks to reduce p-dimensional correlated variables to a set of ordered and uncorrelated k-
dimensional linear projections. Mathematically it is related to finding the spectral/eigen
decomposition of the positive-semidefinite variance-covariance matrix or the singular value
decomposition (SVD) of the rectangular data matrix.

3.2.2  Spectral Decomposition of the Variance-Covariance Matrix

Let X € R™®P be a data matrix where n represents the number of observations and p the number of
variables with n > p. X, is the mean-centred data matrix with X, = X -1, #", with 1, being a nx1
column vector of 1’s and u” being the 1 X p row vector denoting the variable means. Let x, be

the row vector representing the variables x. = [x; x, ... x,]. The variance-covariance matrix can
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then be found by:

Ir012 O12 " Oyp]

1 2.

I= EXCTXC = i“g % "%pi (3.2.1)
|.0p1 Op2 ™ UgJ

The variance-covariance matrix is symmetric and positive semidefinite with the diagonal entries
being the variances of each variable and the rest being covariances between variables. The
variance-covariance matrix can then be used to solve for its eigenvectors (v) and their
corresponding eigenvalues (1) by finding its spectral decomposition, i.e.

X = VEVT (3.2.2)
By definition of the spectral decomposition, the columns of the orthogonal matrix V are the

eigenvalues of 2 and E is a diagonal matrix with its diagonal entries being the corresponding
eigenvalues in descending order. This could be seen by multiplying V to the right on equation
(3.2.2), which results to £V = VEVTV = VE, and by looking at the columns of } and diagonal
entries of E, 2v;=M\v;. The p eigenvectors resulting from the spectral decomposition are
orthogonal and thereby linearly independent and forms a p dimensional space. Let the reduced k

linear projections be &, with & =[&, &, -+ & ].

$k = ViXe = Vi Xy + VjpXp + o F VipXp (3.2.3)
The variance-covariance matrix of the transformed data & is a diagonal matrix of eigenvalues.
var(§) = var(V'x,) = V'var(x. )V = VIVEV'V = E (3.2.4)

Therefore, it 1s evident that the k-components of & are uncorrelated, and their variances are the
eigenvalues. The proportion of variance explained by the reduced k-dimensional principal

o TEA
components is given by Var,,, = E; ALL_.
14

3.2.3 Singular Value Decomposition
A unique singular value decomposition exists for any real matrix X € R™ *P,

X = UDvT (3.2.5)
Where U € R™™ and V € RP*P are orthogonal matrices. The columns of U are called the left

singular vectors and those of ¥ right singular vectors. D € R™*P? has positive singular values only
for its diagonal entries, and the number of diagonal entries is equal to rank(X). It is generally
assumed in this thesis that n > p holds for the data matrix X. Finding the SVD of X is associated
with spectral decompositions of the matrices X’ X and XX7.

The right singular vectors V are the eigenvectors of the matrix X7 X as shown in equation (3.2.6).
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X'Xx = vDTUTUDVT = V(DTD)VT
X"XV = V(D"D),yxy
The left singular vectors U are the eigenvectors of the matrix XX as shown in equation (3.2.7).
XX = upv'vDpTUT = U(DDMUT
XX"U = UD"D)xn
Equation (8) displays the SVD of the data matrix X when it has full column rank with n > p, where

(3.2.6)

(3.2.7)

u;, i € {1,2,...,n} is the i" column of the matrix of left singular vectors U and va, je{1,2,....p}is
the j' row of the matrix of right singular vectors V. The upper partition of matrix D is a p by p
diagonal matrix of singular values in descending order and the lower patriation is a (n-p) by p

matrix of zeros.

s, 0 0 0
0 6, 0 0 -
0 0 o5 0 |
: : T
X=UDV'=[u, u, - u, | 0 : - |v2 I=a,u,v,T+02u2v2T~~+apupv;=Z'i)aiuiv,«r (3.2.8)
ol
0 0 lv;J
L) - 0

The result is p rank-1 matri(':.es w1th 'line'(;rly dependent rows and columns, which represents the
principal components in descending importance.

Computationally, SVD and spectral decomposition are similar. SVD can be computed via the QR-
SVD algorithm whereas the spectral decomposition can be found by the symmetric QR-algorithm.
Both algorithms are based on orthogonal similarity transformations which preserve eigenvalues.
The algorithms are iterative as for eigenvalue problems with p greater or equal to five, no general
formula exists for the roots of the characteristic polynomial. In this case, the symmetric QR
algorithm converges faster. However, SVD is more numerically stable as explicitly forming the

variance-covariance matrix unnecessarily enlarges the condition number of the problem.

3.2.4 Stockpile Simulator

This chapter of the research looks into the effects of chevron and windrow stacking methods across
a variety of different stockpile configurations. Simply put, chevron stacking method is done by
stacking materials horizontally in one direction followed by stacking another layer of material on
top in the opposite direction. Windrow stacking method puts down the materials in parallel rows
with triangular cross-sections and then stacks more rows on top between the gaps using the
multiple peaks. Chevron stacking tends to lead to particle segregation, whereas the windrow
method does not bring about such concerns as it reduces fluctuations in particle size distribution

by traversing the stacker much more frequently [24]. Due to the complexity of blending operations
13



in real life, it is very difficult, if not impossible, to build a model that perfectly replicates their
effects. Hence relatively simple linear block models are built, in MATLAB, to simulate the effects
of chevron and windrow blending methods. Similar to the simulator developed by Marques 2013,
the stockpile simulator in this research is essentially a homogenization simulator for linear cuboid
stockpile [31]. The input to the simulator is a series of predefined mining sequences, and the output
is the blocks re-arranged by the algorithm. The simulated stockpiles are defined by three
parameters, namely the stockpile height (h), length (1) and width (w). The stockpile capacity can
be found as Capacity = h X 1 X w. Chevron stockpiles are simulated by laying down blocks along
the direction of the stockpile length until the predefined stockpile length (1) is reached, then laying
more blocks on the next height level in the opposite direction. Stockpile widths are the simulated
chevron stockpiles are set to 1. In the case of the windrow stockpiles, blocks are laid down in the
direction of the stockpile length, when the row is filled (stockpile length is reached), another row
is added in the stockpile width direction, but blocks in the row are laid down in a direction opposite
to the previous row. This process is repeated until the stockpile width is reached, after which more
rows of blocks are put down on top but with rows and blocks in a row laid down in opposite
directions. In other words, the direction of laying down blocks reverse with each increment of
stockpile width, and direction of putting down rows of blocks reverse with each increment of
stockpile height. This process is repeated until the stockpile height is reached. The reclaiming
process is simulated by taking the average grades of all blocks in the same reclaiming slice, i.e.,
all blocks with the same stockpile length (1) value. In other terms, each reclaiming slice has h X w
number of blocks, and the stockpile has a total of h layers with each layer having 1 X w blocks.
Effect of the blending process is evaluated primarily using the Variance Reduction Ratio (VRR).
VRR is given by [22]

VRR—Ug”t 3.2.9
= (3.2.9)

Where 62,; and 67, are, respectively, the Outll)’ilt and input variances. It is of paramount importance
that the VRR is calculated based on the same weight or volume, and in the case of this chapter, the
number of blocks of material. Since the output of the simulation finds takes the average grade of
all blocks within the same reclaiming slice, mean of the same number of blocks is calculated while

finding the input variance.
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The multiple numbers of different stockpile configurations are tested for the two stacking methods,
and VRR value is calculated for each variable in each configuration scenario. Illustration of

chevron and windrow stockpiles are shown in Figure 3.1 and Figure 3.2 respectively.

Input sequence —-[ 1

\J
Qutput variance = var

Figure 3.1. Chevron stockpile illustration
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Figure 3.2. Windrow stockpile illustration

3.3 Bed Blending Case Study

3.3.1 Input Data and PCA Results
The case study has a data input of 15,000 blocks containing grade information for iron, silica,

alumina, and lime. The input data was briefly analysed and run through the PCA algorithm in R.
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Figure 3.3. Scatterplot matrix of case study input data

Figure 3.3 shows the scatterplot matrix for the input data, with the lower left panels being
scatterplots, diagonal panels being histograms of each variable and upper right panels being
correlations between variables. It could be observed that the input variables, i.e., mineral grades
have very complex relationships with each other and are highly correlated, except for lime.

PCA is conducted on the dataset using the prcomp() function in R, the data matrix is centred and
scaled and PCA is done via the Singular Value Decomposition (SVD) method. Table 3.1 shows the
proportion of variance explained by each of the principal components. Since PC1 along only
accounts for 54.3% of the original variation in the dataset, the first two principal components are

used so that approximately 80% of the variation is preserved.

Table 3.1. Importance of principal components

Principal Principal Principal Principal
component 1 component 2 component 3 component 4
Standard deviation 1.474 0.990 0.807 0.443
Proportion of Variance 0.543 0.245 0.163 0.049
Cumulative Proportion 0.543 0.788 0.951 1.000

Table 3.2 displays the principal component loadings which are essentially sorted eigenvectors
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based on their corresponding eigenvalue in descending order. The principal components are linear
combinations of the original variables and the loadings represent the relative coefficients. In other
words, variables that have large loadings contribute more to a certain principal component. In the

case of this dataset, iron and alumina are the primary contributors to PC1 while lime contributes

overwhelmingly to PC2.
Table 3.2. Principal component loadings
Principal Principal Principal Principal
component 1 component 2 component 3 component 4
Iron 0.576 0.200 0.506 0.610
Alumina -0.631 -0.090 -0.156 0.755
Silica -0.496 0.036 0.835 -0.237
Lime -0.158 0.975 -0.149 -0.046

Fundamentally Table 3.2 means the two principal components used to reconstruct the data have
forms as follows:

PC1=0.576 x Iron - 0.631 x Alumina - 0.496 X Silica - 0.158 x Lime
PC2=0.2 x Iron - 0.09 X Alumina + 0.036 x Silica+ 0.975 x Lime
Figure 3.4 is a biplot of the principal component scores i.e. the transformed/reduced data. The x

(3.3.1)

and y-axis represent standardized PC1 and PC2 scores respectively. The four vectors are the
transformed variables, which are essentially original variables rebuilt with the chosen principal
components. Quality of representation of each vector by the chosen two PCs is displayed in
different colours based on their respective squared cosine values. For any given variable, the sum
of the squared cosines from all PCs should be equal to one. Since the reduced data only consists
of two PCs, the better a variable is represented by these two PCs, the closer is it to the
circumference of the circle [32]. For this dataset, the first two principal components represent fairly
well lime, alumina, and iron, but some of the information from silica is lost from the transformation.
The correlations between variables are largely preserved as can be told from the angles between

vectors.
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Figure 3.4. Principal component biplot

3.3.2  Output Data Analysis

45 stockpile scenarios in total were generated, 15 of them being chevron and the rest windrow,
half of the windrow scenarios were created by switching the values of stockpile height and width.
For all scenarios, the stockpile capacity is kept at a constant of 15,000 blocks. The input data and
the principal components are run through the stockpile simulator and the resulting VRR values are

shown in Table 3.3 and Table 3.4.
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Table 3.3. Chevron stockpile output

Height Length  Width VRRiron VRRsiic VRRaAw  VRRiim  VRRpci VRRpe

5 3000 1 0.0575  0.0574  0.1134  0.1517 0.0719  0.1403
6 2500 1 0.1480  0.1565  0.0425 0.2959  0.1126  0.3209
8 1875 1 0.1960  0.0813  0.0970  0.0555 0.1486  0.0580
10 1500 1 0.0192  0.0231  0.0098  0.0874  0.0152  0.0858
12 1250 1 0.0636  0.1281  0.0189  0.0239  0.0759  0.0263
15 1000 1 0.0200  0.0205  0.0091  0.0080 0.0122  0.0079
20 750 1 0.0060  0.0090  0.0037 0.0085 0.0049  0.0098
24 625 1 0.0169 0.0142  0.0088 0.0183  0.0088  0.0216
25 600 1 0.0101  0.0074  0.0127  0.0230  0.0072  0.0228
30 500 1 0.0047  0.0073  0.0015 0.0037 0.0049  0.0020
40 375 1 0.0018  0.0010  0.0014 0.0041  0.0009  0.0048
50 300 1 0.0074  0.0054 0.0015 0.0045 0.0048  0.0073
60 250 1 0.0008  0.0008  0.0003  0.0005 0.0008  0.0004
75 200 1 0.0011  0.0013  0.0006 0.0006 0.0012  0.0005
100 150 1 0.0020  0.0018 0.0010 0.0003 0.0020  0.0006
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Table 3.4. Windrow stockpile output
Height  Length  Width VRRiron  VRRsilic  VRRaw  VRRiim  VRRpc1  VRRpe2

1 3000 5 0.0575  0.0574 0.1134  0.1517  0.0719  0.1403
5 3000 1 0.0575  0.0574 0.1134  0.1517  0.0719  0.1403
2 2500 3 0.1480  0.1565  0.0425 0.2959 0.1126  0.3209
3 2500 2 0.1480  0.1565  0.0425 0.2959 0.1126  0.3209
2 1875 4 0.1960  0.0813  0.0970  0.0555 0.1486  0.0580
4 1875 2 0.1960  0.0813  0.0970  0.0555 0.1486  0.0580
2 1500 5 0.0192  0.0231  0.0098  0.0874  0.0152  0.0858
5 1500 2 0.0192  0.0231  0.0098  0.0874  0.0152  0.0858
2 1250 6 0.0636  0.1281  0.0189  0.0239  0.0759  0.0263
6 1250 2 0.0636  0.1281  0.0189  0.0239  0.0759  0.0263
3 1000 5 0.0200  0.0205  0.0091  0.0080  0.0122  0.0079
5 1000 3 0.0200  0.0205  0.0091  0.0080 0.0122  0.0079
4 750 5 0.0060  0.0090  0.0037 0.0085 0.0049  0.0098
5 750 4 0.0060  0.0090 0.0037  0.0085 0.0049  0.0098
3 625 8 0.0169  0.0142 0.0088 0.0183 0.0088  0.0216
8 625 3 0.0169  0.0142 0.0088 0.0183 0.0088  0.0216
5 600 5 0.0101  0.0074  0.0127  0.0230  0.0072  0.0228
5 600 5 0.0101  0.0074 0.0127  0.0230  0.0072  0.0228
3 500 10 0.0047  0.0073  0.0015  0.0037  0.0049  0.0020
10 500 3 0.0047  0.0073  0.0015 0.0037 0.0049  0.0020
4 375 10 0.0018 0.0010 0.0014 0.0041 0.0009  0.0048
10 375 4 0.0018 0.0010 0.0014 0.0041 0.0009  0.0048
2 300 25 0.0074  0.0054 0.0015 0.0045 0.0048 0.0073
25 300 2 0.0074  0.0054 0.0015 0.0045 0.0048 0.0073
3 250 20 0.0008  0.0008  0.0003  0.0005 0.0008  0.0004
20 250 3 0.0008  0.0008  0.0003 0.0005 0.0008  0.0004
3 200 25 0.0011  0.0013  0.0006 0.0006 0.0012  0.0005
25 200 3 0.0011  0.0013  0.0006 0.0006 0.0012  0.0005
5 150 20 0.0020  0.0018  0.0010  0.0003  0.0020  0.0006
20 150 5 0.0020  0.0018  0.0010  0.0003  0.0020  0.0006

For the windrow scenarios, it could be seen just by switching the values for width and height does
not change the VRR values at all. Moreover, for both windrow and chevron stacking, VRR is
generally minimized by reducing the stockpile length, which is equivalent to increasing the number

of blocks in each reclaiming slice.
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3.3.3 Autocorrelation and the Effectiveness of Blending

The effectiveness of blending operations regarding this particular dataset is very high with
generally very low VRR values as the data is strongly autocorrelated, as shown in Figure 3.5. The
number of lags was chosen to be one-tenth the size of the dataset which is 1500. It could be seen
that there exists significant autocorrelation for all 4 variables, far exceeding the 95% quantile for

noise.

Autocorrelation Plot
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Figure 3.5. Autocorrelation plot for original dataset

An alternative simulated dataset was generated through Monte-Carlo simulation in R, removing
autocorrelation while preserving the correlation between variables. The scatterplot matrix
depicting the simulated data is shown in Figure 3.6. Figure 3.7 shows the autocorrelation of the

variables in the simulated data.
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Figure 3.6. Scatterplot matrix of simulated data
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Figure 3.7. Autocorrelation plot of simulated data

Variables of the simulated data exhibit no autocorrelation as the plot follows no obvious pattern
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and lies almost entirely within the 95% noise region. The simulated data were run through the

same stockpile simulator with identical stockpile configurations. The results are shown in Table

3.5 and Table 3.6.

Table 3.5. Chevron stockpile output — simulated data
Height Length  Width  VRRion  VRRAmina VRRsilica VRRLime VRRpci  VRRpc2

5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970
6 2500 1 0.995 1.013 1.052 0.950 1.020 0.961
8 1875 1 1.028 1.014 1.052 0913 1.011 0.931
10 1500 1 0.982 0.979 1.121 0.909 1.020 0.914
12 1250 1 0.996 1.034 1.086 0.924 1.032 0.923
15 1000 1 1.067 0.986 1.140 0.907 1.058 0.913
20 750 1 1.026 0.972 1.103 0.851 1.017 0.877
24 625 1 1.071 1.120 1.169 0.915 1.110 0.953
25 600 1 1.265 1.115 1.148 0.849 1.186 0.847
30 500 1 1.076 0.956 1.130 0.813 1.013 0.836
40 375 1 1.176 1.003 1.144 0.865 1.088 0.919
50 300 1 1.225 1.123 0.962 0.818 1.103 0.841
60 250 1 1.216 1.004 0.994 0.851 1.016 0.932
75 200 1 1.679 1.188 1.092 0.864 1.317 0.871
100 150 1 1.561 1.443 1.003 0.741 1.375 0.809

24



Table 3.6. Windrow stockpile output — simulated data
Height  Length  Width VRRiron  VRRaw  VRRsilie  VRRLim  VRRpci  VRRpe2

1 3000 5 1.015 1.028 1.093 0.965 1.052 0.970
5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970
2 2500 3 0.995 1.013 1.052 0.950 1.020 0.961
3 2500 2 0.995 1.013 1.052 0.950 1.020 0.961
2 1875 4 1.028 1.014 1.052 0913 1.011 0.931
4 1875 2 1.028 1.014 1.052 0913 1.011 0.931
2 1500 5 0.982 0.979 1.121 0.909 1.020 0914
5 1500 2 0.982 0.979 1.121 0.909 1.020 0.914
2 1250 6 0.996 1.034 1.086 0.924 1.032 0.923
6 1250 2 0.996 1.034 1.086 0.924 1.032 0.923
3 1000 5 1.067 0.986 1.140 0.907 1.058 0.913
5 1000 3 1.067 0.986 1.140 0.907 1.058 0.913
4 750 5 1.026 0.972 1.103 0.851 1.017 0.877
5 750 4 1.026 0.972 1.103 0.851 1.017 0.877
3 625 8 1.071 1.120 1.169 0.915 1.110 0.953
8 625 3 1.071 1.120 1.169 0.915 1.110 0.953
5 600 5 1.265 1.115 1.148 0.849 1.186 0.847
5 600 5 1.265 1.115 1.148 0.849 1.186 0.847
3 500 10 1.076 0.956 1.130 0.813 1.013 0.836
10 500 3 1.076 0.956 1.130 0.813 1.013 0.836
4 375 10 1.176 1.003 1.144 0.865 1.088 0.919
10 375 4 1.176 1.003 1.144 0.865 1.088 0.919
2 300 25 1.225 1.123 0.962 0.818 1.103 0.841
25 300 2 1.225 1.123 0.962 0.818 1.103 0.841
3 250 20 1.216 1.004 0.994 0.851 1.016 0.932
20 250 3 1.216 1.004 0.994 0.851 1.016 0.932
3 200 25 1.679 1.188 1.092 0.864 1.317 0.871
25 200 3 1.679 1.188 1.092 0.864 1.317 0.871
5 150 20 1.561 1.443 1.003 0.741 1.375 0.809
20 150 5 1.561 1.443 1.003 0.741 1.375 0.809

VRR values for the simulated scenarios all approximate 1, which means that for a dataset without

autocorrelation, the effects of blending operations are insignificant.

3.3.4 Regression Analysis

We used multiple regression to identify the relationships between the VRRs of the input materials
and the design parameters of the stockpile and used stepwise regression to choose regressors that
best describe the models. The possible predictor variables are the stockpile length, width, and
height, is windrow (a binary factor variable that equals 0 if the chevron stockpile is used, 1

otherwise), as well as all their first-order interactions and the second-order terms of stockpile
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length, width and height. For each response variable, a model was forwardly selected from an
initial model with intercepts only, backwardly eliminated another model from an initial model with
all possible predictors, and selected a third and final model stepwise that initially consists of only
the four main effects. The variable selection criterion is based on Akaike's information criterion
(AIC), which measures the closeness between the sample fit and true model fit, where the relative
closeness is defined as the Kullback—Leibler divergence from the true model [18]. The AIC can be
calculated as follows: AIC = —-2(Maximum loglikelihood — Number of parameters), and models
with lower AIC values are generally preferred. We performed this process using R software with
the stepAIC() function. Table 3.7 shows an illustration of the process of finding the best model for
VRRIron.
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Table 3.8 shows the final results for all the response variables.

Table 3.7. Stepwise VRRiron model selection

VRR iron stepl$anova

Initial Model: vrr iron ~ 1

Final Model: vir_iron ~ length + I(length”2)

Step name Df Deviance Resid. Df Resid. Dev AlIC

1 — — — 44 0.145221 —256.13
+ length 1 0.07402 43 0.071201 —286.20

3 + I(length”2) 1 0.008424 42 0.062777 —289.87

VRR iron_step2$anova

Initial Model: vir_iron ~ height + length + width + iswindrow

Final Model: vrr_iron ~ height + length + width + I(length”2) + height:width

Step name Df Deviance Resid. Df Resid. Dev AIC

1 — — — 40 0.071188 —280.21
2 + I(length”2) 1 0.012905 39 0.058283 —287.21
3 + height:width 1 0.006292 38 0.051991 —290.35
4 — iswindrow 1 1.03 x 1075 39 0.052002 —292.34

VRR iron step3$anova

Initial Model: vir_iron ~ (height + length + width + iswindrow)"2 + I(height"2) + I(length”2) + I(width"2)

Final Model:
vrr_iron ~ height + length + width + iswindrow + I(length”2) + height:length + height:iswindrow + length:width
+ length:iswindrow

Step name Df Deviance Resid. Df Resid. Dev AIC

1 — — — 32 0.039573 —290.63
2 — width:iswindrow 0 0 32 0.039573 —290.63
3 — I(width"2) 1 0.000717 33 0.040291 —291.82
4 — height:width 1 0.001334 34 0.041625 -292.36
5 — I(height"2) 1 0.001859 35 0.043484 —292.39
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Table 3.8. Regression results

Adjusted

Models R-squared

AIC

VRR,,,,=1.294 x10~ x height +2.384 x107* x length +5.875 x 10~ x width —3.319 x

107" x IsWindrow — 4.835 x 10°® x length®~ 1.913 x 10~ x (height x length) +4.681 x 0.623 2924
107 x (height x IsWindrow) + 6.723 x 10~ x (length x IsWindrow) — 1.913 x 107 x

(length x width) +1.412 x10™!

VRR pjumina = 1.651 % 1074 x height + 9.612 x 107 % length 0.57 -357.0
—1.811 x10°® x length®~3.269 x 10~

VRRgjjica = 1.171 10 x length? — 1.571x10° 0.75 —3614

VRRjpe=—6.454 x 107 x height + 1.187 x10~* x length +4.283 x

107 x width —3.319 x 10™" x IsWindrow — 2.693 x 10~ x (height x length) +3.638 x 10~ x 0.73 —287.1
(height x IsWindrow) + 9.391 x 10~ x (length x IsWindrow) —2.693 x 10~ x

(length x width) +3.338 x 10”!

VRRp;=1.166 x 10 *x height + 1.585 x 10 * x length +4.187 x 10~* x width — 3.229 x 0.67 23215
107 x length® + 8.414 x 10~ x (height x width) — 1.015 x10~!

VRRpe; = 6.338 x 107 x height + 1.240 x 107 x length+ 4.601 x 107> x width — 3.840 x

10" x IsWindrow— 3.122 x 10 x (height x length) +3.967 x 10~ x 0.69 2771
(height x IsWindrow)+ 1.090 x 10~* x (length x IsWindrow) —3.122 x 10~ x (length x width)

+3.986 x 10"

The resulting model for the principal components is similar to but differs from those for the rest
of the variables. Optimizing the principal components rather than the original variables will lead
to different stockpile design parameters. However, as PCA retains as much information as possible
during the transformation, the design that minimizes the VRR of the PCs is clearly the
mathematically optimal design that aims to minimize the variances for all input variables. This
effectively addresses the issue of having to assign a weight or importance to each variable.

We note that the interaction term for the stockpile height and width is unique for the VRRp¢
model but otherwise, minimizing VRRpc| and VRRp; is equivalent to minimizing > w.VRR;,,
where w; refers to the weight of each variable and should be set to equal to the sum of the factor

loadings of the principal components.
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3.4 Chapter Summary

Principal component analysis (PCA) can be used in conjunction with multiple regression to design
and optimize stockpiles when there are multiple types of materials whose output grades must be
controlled. The performance and benefit of applying PCA may potentially increase with the
number of material-grade variables studied. Input data that are autocorrelated have a significant
impact on the performance of the stockpiles, with reduced variance reduction ratios (VRRs) for
increased levels of autocorrelation. The multiple regression results of Table 5.2 have relatively low
adjusted R-squared values, which may be due to some of the variance being uniquely determined
by the degree of autocorrelation in the block input. Nevertheless, it was found that the VRR is
generally reduced with an increasing number of reclamation slices (length) and that the
performances of the windrow and chevron methods do not differ significantly. However, additional
scenarios and data input are needed to better determine the effects of the design parameters on the

VRR.
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Chapter 4
Linear and Generalized Models in Quality Control,
Reliability and Safety in Mining Engineering
4.1 Modelling of Non-linear Relationships

4.1.1 Applications of Regression Analysis in Mining Engineering

The optimization of mining systems including reliability of mining equipment, safety of assets and
personnel has become an increasingly important topic. The costliness of some large mining
equipment means that downtimes or failures tend to be associated with high costs. Other issues
such as improving occupational safety by studying accidents in workplace and optimizing product
quality characteristics are also imperative in augmenting the overall profitability of a mining
operation [33, 34]. In these regards, statistical techniques including regression analysis are helpful
both in predicting future values and in helping researchers understand the underlying causal
relationships among variables. Indeed, in recent years numerous advanced regression and machine
learning techniques are put forward to better analyze data in engineering quality control, personnel
safety and equipment reliability analysis [35-37]. However, nonlinear relationships among
variables i1s a very commonly encountered phenomenon when modelling these kinds of
engineering systems. While nonparametric machine learning techniques tend to have fairly
accurate prediction results, parametric models such as the generalized linear models are a lot more
interpretable and therefore could also be used to study the interactions between variables [38]. This
study aims to show that generalized linear models are suitable tools in modelling engineering
problems in many cases, including many potential problems in the mining industry, such as safety
related issues, optimization of quality characteristics of systems or products and equipment
reliability.

4.1.2 The Challenger Example

Nonlinear relationships among variables is a very common phenomenon in many disciplines of
engineering. A classic example is the O-ring data which came from experiments conducted on the
O-rings that eventually led to the Challenger space shuttle disaster. As shown in Figure 4.1,
generalized linear could successfully capture the discreteness within the data, when the

assumptions of linear model do no hold.
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Challenger O-ring Data
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Figure 4.1. Hlustration of linear model and generalized linear model for the O-ring data
(Linear model in black and logistic GLM in red)

This study aims to show that generalized linear models are suitable tools in modelling engineering
problems in many cases, including many potential problems in the mining industry, such as safety

related issues and equipment reliability.

4.2 Methodology and Mathematical Intuitions

421 The Ordinary Linear Model
The most commonly used linear model, i.e. the ordinary linear model, has the following form:
y=Xp+e¢ 4.2.1)

Where y = (Y1, Y2, ..., Vn)" is the n X 1 vector of independent observations, with u = E(y) =
(ty, ..., tn)T, X € R™P is the design matrix, B € RP is the vector of predictors and € € R™ is the
error term which represents both the measurement errors and random fluctuations. Generally, it is
assumed that the model has homoscedastic error with mean 0, i.e. E(g) = 0 with var(g) = ¢°1.
We are interested in obtaining the best fitting # and fi = X8 with respect to the ordinary linear

model. Intuitively this could be achieved by minimizing the residual, i.e. B = argmll;n |ly —
~2
XB|l, = argmll;n llé|l3. Consider the QR-decomposition of the design matrix, given by X =

where = € 1S orthogonal an € 1S upper triangular. It follows
Q[§]. where @ = [@, @, ] € R™™ is orthogonal and R € RP*? is upper triangular. It foll
p n-p

that:
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ly-xBl; =|e"o-xB)|:=|e'y-[K|3|

Qly—RB
Qly—-0

(4.2.2)

2
= |ty - &, + || @by],
2

12
It is obvious that the terms in Equation (4.2.2) is minimized when ”QIy—RB”Z =0 and

consequently ny = RB. 1t follows that the optimal residual is within the range of Q,. and
therefore the orthogonal complement of the design matrix, as shown in Equation (4.2.3).
¢ =y-XB=y-Q,RP
=y-Q,Qly=0U-0Q,QDy (4.2.3)
=Q,Q,y ER(X)
It follows that an explicit solution for 8 could be found in Equation (4.2.4). This way of solving

for B is called the normal equation method.

X"e =X"y—-X"XB=0
XX =X"y
B =X X)'X"y=Xx'y
i =XB=XX'y=Hy

(4.2.4)

Where H = X(XTX)~1X"is the hat matrix, and X T is the Moore-Penrose generalized inverse of X.
The predicted value has form: fi = X(XTX)_lXTy = XXy = Proj,R(X) *y, 1.e. The least squares

normal equations make predictions by projecting of the response onto the column space of the

design matrix. A geometric illustration is displayed in Figure 4.2.

X’R(X)

Figure 4.2. lllustration of data projection by least squares normal equations

By taking the squared two norms of the orthogonally decomposed vectors, using Pythagorean
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theorem and some algebraic manipulation, one can arrive at the sum-of-squares decomposition as

shown in Equation (4.2.5).

y =XB+e=n+e
y-y-1, =y-y-1,+¢€
1y =5 Lll3 =115 13 + lIel}3
n " n (4.2.5)
D= =) G-P+ ) (v
i=1 i=1 i=1

SST = SSReg + SSRes

Where the Total Sum of Squares (SST) is the variation in the data explained by the intercept only
model, Regression Sum of Squares (SSReg) is the variation in the data explained by the full model
and Residual Sum of Squares (SSR) is the variation in the data the is left unexplained. The

predictive power of a linear model could be summarized by the well-known R-squared metric,

SSReg

. 2 _
with R® = 5T

signifying the percentage of variation in the data that is explained by the
regression coefficients.

4.2.2 Generalized Linear Models

4.2.2.1 Components of a GLM

A generalized linear model has three components, a random component of response Y, with

independent observations, that follows the exponential-dispersion family:

-0 —b(0
fr(y;0,9) = exp {}’Tqb)()

Where 0 is termed the canonical parameter and ¢ the dispersion parameter. A systematic

+c(y,¢)} (4.2.6)

component made up of the n X p design matrix X and p-dimensional regression coefficients S,
with 7 = X, and a monotone, differentiable link function g(-) that maps the mean of the response

to the linear predictor. In summary, a GLM has form as follows:

glE(Y)] = XB (4.2.7)
The link function that maps the mean to the canonical parameter is called the canonical link and
has many unique mathematical qualities.
4.2.2.2 Maximum likelihood estimation
Under the assumption that the distribution of ¥ is within the exponential-dispersion family, its
mean and variance could be conveniently expressed with the corresponding canonical and
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dispersion parameters

EY) =b'(6)
Var(Y) =b"(0)a(¢p) (4.2.8)
The log-likelihood, as the sum of log-likelihoods of individual observations, is:
n n
_ _\(\Yibi — b(6))
lB.)= ) Li(B.¢) = @) + (i éi) (4.2.9)
i=1 i=1 )

In order to maximize the log-likelihood, one must first take the partial derivate with respect to £5.

By the chain rule:

ol = 31, 08, du; I

9B; 4206, 0, 01, 0P,

n
yi—u 1 1

= C— C— X (4.2.10)
Li7a(@) V@) g Y
n

_ Z yi—k 1
Livar (%) g ()Y

Therefore, the score equations, also known as likelihood equations, are:
< 1
NN A =0, j=12..,p @2.11)

R —X..

0p;  Lvar(Y) g'(u)
The score equations are functions of § through the fitted means. There exist no closed form
solution hence iterative methods must be used to solve these equations. A very commonly used

iterative method to solve non-linear equations is the Newton-Raphson method.

The Newton-Raphson method functions as follows:

e Generate some initial solutions g(®
e At the neighbourhood of & with i being the iteration number, use a second-order
multivariate Taylor series expansion to approximate the likelihood function. As shown in

Equation (4.2.12), where u is the vector of score equations (first order derivatives) and H
921

is the Hessian matrix of second order derivatives, with H;;, = YT
9Pk
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ol

. u . 1 . . .

I(B) = LBD) +—— (B = BD) +5;(B - B)THO(B - BV) (42.12)
The term is then maximized with respect to B by taking derivative and setting to zero, arriving at:

it = pO — [HO] 1y4® (4.2.13)
This process is repeated until per-iteration adjustment is smaller than a prespecified tolerance
factor.
Another way for estimation is to use the expected value of the hessian matrix. The method is called
Fisher-scoring. The expected hessian is named the Fisher information matrix. Its properties are

shown in Equation (4.2.14).

n 921, - 9l;
I (B) =;E(_ aﬁjaﬁk) =Z (aﬁ] B

c Yi —
=ZIE G- GEDXiKud

n

o, — W
ZX”( var(Y)} W

B = XWX

(4.2.14)

Fisher scoring is the default method used to estimate parameters in GLMs because the hessian
matrix isn’t always negative definite, while the Fisher information matrix is always symmetric
positive definite. In fisher scoring, the adjustment per iteration uses a negative version of the Fisher
information matrix. i.e. B*Y = B®O + [9O]71u® The inverse Fisher information matrix also

coincide with the asymptotic variance-covariance matrix of the linear predictors.

4.3 GLM Case Studies

4.3.1 Gamma Regression in a Quality-Improving Experiment
4.3.1.1 Problem statement and interpretation via linear models
Suppose that a company is investigating the effect of the concentration of a certain chemical and
two different mechanical treatments on the UCS of its product, in order to optimize design. A data
set with 90 observations was collected, with UCS as the response, CON (Chemical concentration)

as a continuous predictor and TRE (Mechanical treatment) as a factor predictor of two levels. A
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scatter plot of the data is shown in Figure 4.3.

4000 1

UCS in kPa
3
8

g
P

01 L] ® 3 L L

Treatment
» A
e B

0 5
Concentration in %

(a)

Figure 4.3. Scatter plot UCS vs Chemical concentration

A main-effect only model showed that the mechanical treatment, TRE, in fact isn’t a significant

predictor of UCS, with a large p-value of 0.45.

Table 4.1. Regression summary (LM identity)

Model: UCS ~ CON + TRE

AIC = 1430.895

R-squared = 0.3033

Estimate Std. Error t value Pr(>t))
(Intercept) -642.051 190.0251 -3.37877 0.001091
CON 141.9753 23.30625 6.091728 2.96E-08
TRE -121.461 161.2538 -0.75323 0.453346

A subsequent model with only CON as predictor had smaller AIC of 1429, with R? of 0.30 The

regression line and residual plot of this linear regression model are shown in Figure 4.4. It could

be seen that the relationship between the response and the predictor is clearly not linear, and the

residuals do not center around zero, nor is the variance constant across the mean.

LM (Identity)

Residual plot (Identity)
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Figure 4.4. Regression results of LM (identity) (a) Regression line (b) Residual plot
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Yet another model could be fitted by log-transforming both the response and the continuous
predictor. By the log-transformed model had a R? of 0.92. As shown in Figure 4.5, the residuals
plot showed significant improvement, with the mean generally centered around 0, but the constant
variance assumption is not impeccable but holds approximately.

Table 4.2. Regression summary (LM log-transform)

Model: log(UCS) ~ CON
AIC =199.86 R-squared = 0.91

Estimate  Std. Error t value Pr(>|t))
(Intercept) -1.67617 0.198954 -8.42489 6.25E-13

CON 0.788545 0.025094 31.42377 1.30E-49
LM (Log-Transform) Residual plot (Log-Transform)
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Figure 4.5. Regression results of LM (log-transform) (a) Regression line (b) Residual plot

4.3.1.2 A GLM approach
Since the data is skewed continuous and positive, it is reasonable to consider using a Gamma GLM.

The gamma pdf has form as follows:

a

fr;aB) = Fﬁ( a)y“‘lexzv{—ﬁy} (4.3.1)

A reparameterization of a = % and b = «a allows it to be rewritten as a member of the exponential

dispersion family:
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‘a. b - b? b—1 b.y

b .
= exp{b log(b) — b log(a) — log[I'(b)] + (b — Dlog(y) — Ty} (4.3.2)

1
(=) vy —log(a)
= expf T +b log(b) — log[I'(b)] + (b — Dlog ()}

b

The mean and variance of the re-parameterized gamma pdf are:

E(Y) =b'(0)=a
a? (4.3.3)
var(Y) =b"(0)a(¢) = >

It could be observed that the variance is a quadratic function of the mean, as opposed to the normal
pdf who’s mean and variance are independent. Therefore, the Gamma GLM could be used to model

continuous, positive data whose variance increases with mean, which is applicable for this dataset.

Table 4.3. Regression summary (GLM with inverse and log link functions)

Model: UCS ~ CON Family = Gamma(link = ‘inverse’)
AIC=1108.8

Null deviance: 324 on 89 degrees of freedom

Residual deviance: 211.13 on 88 degrees of freedom

Estimate Std. Error t value Pr(>|t))
(Intercept) 0.012474 0.001487 8.38676 7.49E-13
CON -0.0009 0.000108 -8.29207 1.17E-12
Model: UCS ~ CON Family = Gamma(link = ‘log”)

AIC =973.99
Null deviance: 324 on 89 degrees of freedom
Residual deviance: 60.17 on 88 degrees of freedom

Estimate Std. Error t value Pr(>|t))
(Intercept) -1.05598 0.431234 -2.44875 0.016318
CON 0.749549 0.054391 13.78074 1.08E-23
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GLM (log-link and inverse-link)
vs.LM (log-transform)
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Figure 4.6. Regression results of Gamma GLM compared to LM (log-transform)

Table 4.4. Interpretation of regression models

Regression Model Interpretation
1
Gamma GLM with inverse link E(Capacity) = 0.012 — 0.0009 - CON

Gamma GLM with log link log{E(Capacity)} = —1.06 + 0.75 - CON
E{log(Capacity)} = —1.68 + 0.79 - CON

LM with log-transformed response

It should be noted that log{E(UCS)} # E{log(UCS)} since the expectation is an integral, i.e.

log [ fy oV &) dy] * fy oy L0g(¥) - fy(¥)dy. In cases like this, gamma regression is the only

way though which one may get direct estimate on the response. Hence the use of gamma regression

in treating similar datasets in mining related problems should be promoted.

4.3.2 Logistic Regression in an Occupational Safety Study

4.3.2.1 Problem statement and the analysis of binary responses

The second case study of this chapter is based on safety related data from a certain manufacturing
facility. The study involves performing a voluntary safety intervention on a portion of the 151
employees. After the safety intervention employees were monitored by their respective supervisors
for 2 months, performance was evaluated by a binary variable, taking value 1 if an employee
performed safety-breaching activities within the period, and 0 otherwise. The covariates used in

this study are: INT: a 2-level factor representing if an employee undertook safety intervention;
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SUP: a 2-level factor representing if an employee is a worker or a supervisor, and EXP, which
represents the amount of working experience of the employee measured in months. The aim of the
study is to investigate the relationship between an employee’s working experience and their safety
behaviours, as well as if the designed safety intervention worked as intended. Since the responses
are binary, binomial regression could be used to formulate the model.

The probability mass function of Binomial distribution with probability of success m and size m
is: fy(y; m,m) = (7;) Y (1 — m)™™Y, which could be reparametrized to an exponential-dispersion

family form given that y in this case represents not the number of success, but the proportion of

success. The reparametrized form is:

fr(y;mm) = (;lr;) MY (1 — g)m-my

yloglfn+log 1-m m (4.3.4)
= exp { T + log (my>}
m

As could be seen from Equation (4.3.4), the canonical parameter of the binomial distribution is
log i When the canonical link is used in binomial GLMs, the linear predictors conveniently
represent the log-odds ratio.

4.3.2.2 Logistic regression analysis
A histogram depicting the working experience distribution of the studied employees are shown in
Figure 4.7. As part of the exploratory analysis, the proportion of safety breach are plotted against

different groups of employees and quantile values of experience, as shown Figure 4.7.
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Figure 4.7. Histogram of the safety intervention study data

40



It could be seen in the plot of observed means that there does indeed appear to be an effect of the

safety intervention on the safety behavior of the employees, with the group of employees who

participated in the safety intervention generally having a lowered proportion of committing safety

breaches. As well as that, the group of employees that are supervisors also tend to breach safety

regulations less often.
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Figure 4.8. Observed mean for each group

A backward model selection was carried out, starting from the most complicated model with three-

way interactions, within each iteration the difference in residual deviance between models were

used to selection between nested models and eventually the final model was selected to be the

model y ~ EXP + SUP + INT + EXP:SUP, at a 10% significant level.

Table 4.5. Analysis of deviance table

Model 1: y ~ EXP + SUP + INT + EXP:SUP + EXP:INT + SUP:INT

Model 2: y ~EXP * SUP * INT

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
144 101.3479

143 100.1706 1 1.177322 0.277902
Model 1: y ~ EXP + SUP + INT + EXP:SUP + SUP:INT

Model 2: y ~EXP + SUP + INT + EXP:SUP + EXP:INT + SUP:INT

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
145 101.3532
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144 101.3479 1 0.005285 0.942049
Model 1: y ~ EXP + SUP + INT + EXP:SUP
Model 2:y ~ EXP + SUP + INT + EXP:SUP + SUP:INT

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
146 102.1354
145 101.3532 1 0.782225 0.376462

Model 1:y ~ EXP + SUP + INT
Model 2: y ~ EXP + SUP + INT + EXP:SUP

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
147 104.8461
146 102.1354 1 2.710695 0.099678

Again, due to the responses being binary, the deviance of the saturated model has certain qualities
that prevents the utilization of residual deviance to evaluate the model goodness of fit. In this case,
the only option was to plot the regression lines against the means of different groups, as shown in
Figure 4.9. Unfortunately, however, the optimal model didn’t seem to agree very much with the
mean of each group, especially the group of supervisors who participated in the safety intervention
(in blue) and the group of normal employees (in green) who did not participate. Interestingly, it
turned out that there are a few observations in the study that were particularly influential. i.e. a few
new employees with zero amount of experience who weren’t supervisors. After dropping those
observations, a new quantile histogram was plotted in Figure 4.10 and the analysis was rerun with
the new optimal model being y ~ EXP + TEN, the model with only two of the main effects. The
new diagnostic plot was shown in Figure 4.11, and the trend of the regression curves agreed a lot
better with the means of each group.
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Figure 4.9. Diagnostic plot of the model with full observations
42



Quantile number

Count

20 30 40 50 60
Experience in months
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Figure 4.11. Diagnostic plot of the model with reduced observations

The ROC curve of the models is plotted in Figure 4.12. The final optimal model had the most area

between itself and the diagonal line and therefore has the most prediction power.
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Figure 4.12. ROC plot for model comparison

Table 4.6. Logistic regression output

Call: glm(formula =y ~ LMI + TEN, family = binomial)

Coefficients:
(Intercept) Exp INT
3.403 -0.117 -2.131

Degrees of Freedom: 147 Total (i.e. Null); 145 Residual

Null Deviance: 127.9
Residual Deviance: 94.15 AIC: 100.2

The regression coefficients are shown in Table 4.6, and the model could be interpreted

mathematically as such:

log{ E(Safety breach) } = 3.403 — 0.117 - Experience — 2.131 - INT (4.3.5)
1 — E(Safety breach)
With the left-hand side of the equation representing the log-odds of committing a safety breach.
After transforming, it could be interpreted verbally as:
e A month’s increase in experience decrease the odds of breaching safety codes by a factor

of 1.12
e Employees who took part in the safety intervention has lowered odds to commit a safety

breach by a factor of 8.4.
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4.4 Chapter Summary

This chapter uses two case to showcase the potential of GLMs being used in the optimization of
product quality characteristics and in the analysis of safety engineering data. GLMs are very
capable of modelling data that are discrete in nature, including binary, multinomial, and count data.
Moreover, for continuous skewed datasets GLMs provide a way to estimate responses directly,
which is unachievable via a linear model, even if the variance stabilizing transformation manages

to achieve constant variance.
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Chapter 5
Analysis of Latent Variables in Occupational Health and
Safety in Mining Operations

5.1 Latent Variables in Mining Operations

5.1.1 Preliminaries
Occupational health & safety is a primary concern in the mining industry. Underground mining
operations in particular, involve exposing workers to detrimental working environments including
airborne respirable dust, excessive amount of potentially deafening noise, narrow openings with
considerable heat and humidity as well as the possibility of rock falls and cave-ins. There has been
a sizable amount of experience and research works on the technical and socio-technical aspects of
mine safety. However, the complex mechanisms that underlie the causal relationships of safety
behaviours and occupational injuries are still not fully understood. One way to quantitatively
describe these relationships is through the analysis of the unobserved, hidden constructs, or latent
variables.
This chapter aims to contribute to the application of quantitative methods such as latent variable
analysis and modelling in topics related to mine safety as well as safety science in mining. The
chapter is organized as follows. First, a latent variable is defined, followed by a review of the
multivariate statistical modelling techniques including the exploratory factor analysis (EFA), the
confirmatory factor analysis (CFA) and the structural equation model along with latent variables
(SEM). A critical comparison of the three techniques is provided in reference to mine safety. Then,
relevant literature in mine safety and safety science that utilizes the techniques mentioned above
is discussed. A new approach to cognitive work analysis using (CWA) latent variables analysis is
proposed. This approach combines the theoretical advancements in CWA with latent variables
analysis to model and measures the effects. Finally, two latent variable models are presented that
can be used in cognitive work analysis.
5.1.2 Modelling of Latent Variables

There have been many cases where variables are not directly present in the data, including
unmeasured variables, unobserved variables, hidden constructs [39]. In a way, latent variables can

be informally defined as variables that are not directly observed in a dataset, but whose existence
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can be identified or inferred by the variables that did get directly observed. One possible formal

definition of latent variables is the local/conditional independence definition [39]:

n
POV Yo Vo) = | [P O (5.1.1)
i=1
where Y1, Yo, ..., Y, are observed variables; and 7 is the vector of latent variables. The local

independence definition states that the observed variables become independent if the latent
variables that constitute the association between them are held constant. Another intuitive
definition is the sample realization definition, which states that a latent variable is a variable for
which some subset of a given sample is missing realization and therefore only observable through
values of other observed variables.

Latent variables are typically represented as linear combinations of observed variables via factor
analysis. Three of the most common techniques are summarized in this chapter, including the EFA,
the CFA and the SEM with latent variables.

Exploratory factor analysis is a multivariate statistical technique that studies the underlying
relationships between variables by conceptually grouping them, from an examination of
appropriate statistics such as covariance or correlation [40]. The procedures of EFA are
summarized in Figure 5.1 and detailed in this section.

The orthogonal factor model is the most basic form of factor models. For an observed random
vector X € RP*! with mean denoted by # € RP*! and variance-covariance matrix denoted by X,
the factor model attempts to explain the total data variance by postulating that it essentially is made
up of two parts, i.e., the common variance or communalities from m common factors, FT =
[Fy, F,, -, E,] and specific variances from p error terms or specific factors, €T = [gq, &5, -+, &,].
The factor model can be written as:

X—u=LF+e¢ (5.1.2)
L € RP™™ is the matrix of factor loadings where the entry [;; represents loading of the i variable

on the j” factor. F and € are independent; both have zero expectation with Cov(F) = I and
Cov(g) = @, @ being a diagonal matrix. The formulated model then implies a variance-
covariance matrix with the form: £ = LLT + ¢. The implied covariance structure has properties
as follows:

Var(X)) = off = hi + ¢; = + 5+ + 15, + o
COU(Xi,Fj) = ll]
where A7 is called the i commonality, or common variance, which represents the amount of

(5.1.3)
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variance of the /" measured variable explained by all m factors. ¢; is known as the uniqueness, or
specific variance of the i measured variable, representing the residual variance left unexplained.
The i, jM entry of the loading matrix L represents the covariance between the i measured variable

and ;" factor [41].

Matrix of association for
analysis

=\ariance covariance matrix
«Correlation matrix

Number of factors

=Kaiser's rule

=5cree test Estimation of factor scores

»Residual correlation matrix
= Parallel analysis

\ » \ »
- - ™\ 4 - ™\
Factor estimation Factor rotation
= Principal component method * Orthogonal rotation
* Principal axes factor analysis = Obligue rotation

« Maximum likelihood

Figure 5.1. Procedure for EFA

The matrix of associations of the dataset could be taken either as the variance-covariance matrix
X ,xp or the standardized correlation matrix Rp. This choice could be made by observing the
comparability of the measured variables. If the measured variables have the same unit and are of
similar scales, then X, , could be used; otherwise, Ry, is generally preferred as the standardized
values are much more comfortable for interpretation.

5.1.3 Number of factors and methods of estimation

The most commonly used approaches for determining the number of factors are shown as follows:
(1). Kaiser’s rule states that a noteworthy factor should have an eigenvalue of greater than 1. As in
factor analysis, the eigenvalues of all possible factors sum to the number of measured variables
(p), therefore the importance of a factor can be represented by its eigenvalue divided by p. Also, if
the product of the division is greater than 1, then that particular factor could be considered as
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significant.

(2). A screen test is a bar plot that shows the percentage variance explained per factor in descending
order. Important factors are those that precede the “elbow” of the plot, where factors exhibit sudden
drops of significance.

(3). Residual correlation matrix could be found by subtracting from the original correlation matrix
with that reconstructed with selected factors. Scenarios with fewer factors with sufficiently small
residual correlation entries are preferred.

Most statistical analysis programs use the principal component method as the default method for
factor estimation. Also, commonly used methods include the principal axes factor analysis and
maximum likelihood estimation.

(1). Principal component method

When the specific variances are set to zero, the implied covariance matrix of the common factor

model is similar to the spectral decomposition of the variance-covariance matrix.

Lpxp = prerTnXp + 0psp

N

(5.1.4)
N

=[\/A—1v1 Vv, .. \//Tpvp]

p
= Z Aivivl = AvAT
=1
The final form is obtained by dropping the last p-m terms:

prp = prmLanp t Ppxp

N
:[\//1_1171 \//1—2172 mvm] \/’1—277;

mv;l (5.1.5)
%

[y

0o ... 0
o, ... 0
+ . 0

0
0 O
0 O POm

(2). Principal axes factor analysis

Principal axes factor analysis starts from a principal component analysis (PCA) but with the

diagonal entries of the analyzed correlation matrix replaced with respective communalities of each
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variable. The altered correlation matrix will then have PCA performed on it iteratively until it the
communalities converge, or a certain maximum iteration has been reached.

(3). Maximum likelihood

A maximum likelihood estimate could be found by maximizing a likelihood function as shown in

Equation (5.1.6).

LwE) = @n PR R 22 () (y ~ D)0y — D)

] (5.1.6)

+n(x —p)(x — )]

5.14 Factor Rotation

Directly estimated factor loadings might not be interpretable. Consequently, rotations are
performed, which redistributes the location of variance within the loadings facilitating the
interpretation. Rotation is often performed with the aim of reaching a simple structure, which, in
a column perspective, have an approximately equal number of observed variables represented by
each factor; or in a row perspective, have most observed variables primarily correlated with only
one factor. Factors can be rotated either orthogonally or obliquely. Oblique rotation occurs when
the transformation matrix is non-orthogonal and is often performed in order to render factors
correlated to account for broad factor generalization and overlapping. In an oblique model, the
structure coefficient matrix S is found as the product of factor loadings and inter-factor correlation
R, with 85, = LpsxmBRimxm- When Ry # Iy, both S and L matrices need to be examined
during interpretation. Moreover, higher-order factors could be extracted from R, and they need to

be interpreted as well [42].

5.1.5 Factor Score Estimation

Factor score estimation is usually carried out using the weighted least squares and regression
methods.

(1). Weighted least squares

Specific factors are treated as residuals, the residuals sum of squares is minimized weighted by
their respective reciprocal variances. The formulation of the problem and the solution while taking

the estimated values as true values are shown as follows:

P 2
Z%=£T(p'1e= X-—p-Lf) o' (X—p—Lf) (5.1.7)

i=1
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fi=(1T97L) 1797 (x; - %)
(2). Regression method

For a factor model specified in Equation (5.1.2), the joint distribution of (X — ) and F is

Zoxp = LL" + ¢ Lyxm

Np4+m (0, 27), where 20, 4y (pm) = . From the joint distribution, it

T
mep I'sm

is possible to find the conditional expectation [43]:

E(F|x) = LT(LLT + @) *(x — p) (5.1.8)
Bibliography The term LT (LLT + ¢)~! in Equation (5.1.8) is analogous to a regression coefficient,

consequently given vector of observation x; and taking the estimated values as actual values, the

estimated factor score can be found as f; = LT(LLT + (’ﬁ)_l(xj — x).

5.1.6 Confirmatory Factor Analysis (CFA)

EFA is a data-driven technique, with the latent variables being a posteriori whereas in confirmatory
factor analysis the factors and their corresponding loading matrix are determined before analysis,
therefore a prior method [39]. A sufficient level of an empirical or theoretical foundation is needed
for model specification and evaluation in CFA. Consequently, CFA is often applied when there has
already been a level of development in research, where the tentative underlying structure has been
identified with analytical techniques such as EFA [44]. EFA and CFA are similar in the sense that
they are both built on the common factor model. However, certain differences between the two
methods exist and will be summarized later in this chapter.

Test statistics for evaluating the fitness of a CFA model is similar to that of structural equation

models and are detailed in the next sections of this chapter.
5.1.7 Structural Equation Models (SEM) with Latent Variables

5.1.7.1 General structural equation model

The general structural equation model can be considered as some combination of multiple
regression, which concerns the relationships between observed variables with errors being latent
variables, and factor analysis, which finds the link between latent and observed variables but with
limited emphasis on the relationships between latent variables. It inherently consists of a
measurement model that specifies the relationship between observed and latent variables and a
latent variable model that delineates links among latent variables [43]. The general decision

sequences for SEM is shown in Figure 5.2.
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Figure 5.2. Decision sequences for SEM

SEM is a confirmatory technique and not well suited for exploratory identification of relationships
in research. Like CFA, the prerequisite for the use of SEM is a prior specification of a model, often
from previous research or theory [45]. Both the measurement and the latent variable model need

to be specified.

n=Bn+I{+¢
y=4mn+e (5.1.9)
x=A,¢+6
Equation (5.1.9) shows the SEM measurement model, followed by the latent variable models for

endogenous and exogenous latent variables. Assuming 1, &, {, €, 8 (all latent terms) have zero
expectation, (I — B) is non-singular, & and ¢ uncorrelated, € and 1, { and § are uncorrelated as
well as & and &,  and € are uncorrelated. Table 5.1 shows the dimensions and definitions of the

parameters in the general structural model [43].

52



Table 5.1. SEM parameters

Parameter Dimension Definition
Latent endogenous
n mx1 )
variables
Latent exogenous
§ nx1 variables
7 mx 1 Error term in the latent
variable model
Coefficient model for
B mxm latent endogenous
variables
Coefficient model for
r mxn latent exogenous
variables
. px 1 Observed variables that
indicates i
x gx1 Obser\‘/ed‘variables that
indicates &
Measurement errors for
€ pXx1 y
Measurement errors for
o qx1 x
A, pXm Coefficients relating y
ton
Coefficients relating x
A, gXxXn t0 &

z
r=2(0) = [zg

|

Equation (5.1.10) is the covariance structure hypothesis for the general structural model, where X
represents the population variance-covariance matrix, X(0) is the model implied variance-
covariance matrix with 8 representing the vector of free model parameters. ¢p and ¥ represent the
variance-covariance matrix of § and {. One key requirement for model identification is that the
number of unknown parameters in @ must be smaller or equal to the number of nonredundant terms
in the implied variance-covariance matrix, known as the t-Rule [43]. The ideal situation in model
identification is to have more equations than unknowns, i.e., an overidentified model. An
overidentified model has multiple possible solutions, but the one with the best fit to the data could

be selected. In contrast, an under-identified model has no unique solution while a just-identified

Iy
Zxx

(I-B)'T¢r’' +Y)U-B)~" (I-B)'I'¢p
oI’ —B)"
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model has exactly one solution but with large measurement and sampling error. Overidentification

could be achieved by constraining some of the parameters to predetermined values [45].

5.1.7.2 Parameters estimation and model fit
The general structural equation parameters are estimated by finding the closest estimate of the
implied variance-covariance matrix (2) to the estimated population variance-covariance matrix
(S), with respect to some minimization criterion F[S, 2(0)], which is a function of § and X(8).
The most commonly used criterions include maximum likelihood (ML), unweighted least squares
(ULS) and generalized least squares (GLS).
Fyy, = log|2(8)] + trl{SE‘l(B)} —loglS| — (» + @)
Fyps =§t7’{[5—3(9)]2} (5.1.11)
Faus = 5 tr{ll ~ ZO)5'T?)
Among the three estimators given in Equation (5.1.11) the maximum likelihood estimator is
considered to be most consistent when the sample size is large, and the observed variables can be
considered as jointly normal. Conversely, when the sample size is large but multivariate normality
is in question, the generalized least squares estimator is the most reasonable choice [45].
Evaluating the fitness of a structural equation model could be potentially tricky as any mis-
specified model may be obtained to fit the data by adding free parameters. Moreover, a perfect fit
could occur when the model degrees of freedom equal to zero (i.e., model is just-identified, and
all possible free parameters are estimated), but there is little scientific value in such a model [46].
Besides, some degree of misfit between the observed and implied variance-covariance matrix is
expected due to sampling fluctuations; nevertheless, the misfit might just as likely originate from
model misspecification. Hence, it is reasonable to assume that a model that fits the sample
variance-covariance matrix is just one among many potentially causally different models that are
consistent with the data; therefore, it is necessary to evaluate the equivalent or close-to-equivalent
models and differentiate between them [47].
In general, three different types of fit indices exist for SEM:
(1). Absolute fit indices evaluate the model’s ability to reproduce a variance-covariance matrix
close to that of the observed data. The most commonly used absolute fit index being the y? index,
with xZoqe1 = (N — 1)Fy;, where N is the sample size and Fy; is the type of estimator used
(could also be Fg; g or Fyy;5). The model fits the data perfectly when y2,,4.; = O.

(2). Comparative fit indices are often used to compare the level of fit between that of a theoretically
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derived model relative to some baseline model, which is often called a null model that specifies

no causal relationships between the variables. One of the comparative fit indices is the normed fit

2 .2
index (NFI), with NF] = fmull_Xmodel 54 ap NF] value of greater than 0.9 is considered to be a

Xnull

good fit [45].
(3). Parsimonious fit indices assess the trade-off between model fit and degrees of freedom. For

2 2
dfmodel X Xnull”Xmodel
> .

afnunl Xnull

instance, the parsimonious normed fit index is defined as PNFI =

While reporting fit indices for a structural equation model, there is no need for researchers to report
the values of all fit indices, practices such as only reporting indices that indicate good fits should
also be avoided. Notwithstanding, reporting different kinds of test statistics is advised as they

evaluate various aspects of model fit [48].

5.1.7.3 Sample size considerations and comparisons among modelling techniques

Structural equation modeling is a large sample technique that requires at least 200 samples for a
model of moderate complexity, or 10 samples per estimated parameter [45]. While studying
underlying structures in the data, it is important that the researcher can identify the merits and
demerits of various methods.

L While EFA more commonly analyzes the correlation matrix of the data, CFA can be used
to study both the correlation and the variance-covariance matrix of the data. The resulting output
from CFA could include an unstandardized solution, a standardized solution, and a completely
standardized solution.

II. CFA models are considered to be more parsimonious than EFA models. In EFA all observed
variables are free to load/covary with all factors after which the factors are rotated in row/column
perspective, whereas in CFA simple structure is achieved by specifying linking of observed
variables to factors before analysis, eliminating the need for factor rotation. There are often fewer
parameters that need to be estimated in CFA than in EFA.

III.  Errors (specific variances) can be allowed to covary in CFA and SEM models, which
violates basic assumptions of standard linear regression models. Covariance between errors can be
justified as additional covariance in observed variables due to assessment methods, which is
reasonably common in measurement models based on surveys and questionnaires.

IV. CFA and SEM allow for the direct comparisons between rival near-equivalent models via

model fit, which facilitates theory testing.
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V. While traditional regression analysis assumes perfect measurement, SEM explicitly
accounts for measurement errors and thereby reducing regression dilution bias, which is more
desirable for questionnaire-based datasets. The multiple indicators used by SEM correct for
unreliability and provide more accurate estimations of parameters.

VI SEM allows for the study of indirect, mediational effects in statistical models, where a

single variable can be both the “cause”, and the “effect” [49].

5.2 Review of Latent Variable Analysis in Mine and Safety Sciences

Cooper and Phillips studied the relationship between safety climate and safety behavior. Surveys
were conducted before and after a safety intervention, which improved the safety behavior of the
employees [50]. A 50-item questionnaire was used to measure 7 variables that act as the observed
variables for EFA, the factors were estimated with PCA and varimax rotation (orthogonal) that was
performed for two prominent factors to occur. Based on the EFA results, Cooper and Philips argued
that workers could very well discriminate between factors that directly related to safe operations
and those that do so in an indirect manner (two factors formed in EFA) [51]. Moreover, as the
structure coefficients remain largely the same before and after safety intervention, the test results
suggest that the unobserved structures of the safety climate measure are reliable and consistent
with the relevant previous literature [51]. The research also proved that the changes in safety
behavior and that in the safety climate do not necessarily reflect on one another. Zhang analyzed
the causality between coal miners’ errors and life events using SEM and found an influential effect
value of 0.7945 [52]. Paul used SEM to study the role of personal factors on work injury in
underground mines. The study has found rebelliousness, negative affectivity and job boredom as
three key personal factors increasing work injuries [53].

Seo et al. investigated constructing a reliable factor structure for safety climate measures in order
to overcome the limitations of traditional safety measures [54]. Over six hundred valid samples
were collected from workers in the grain industry, after which EFA and CFA were performed on
the data. Eventually, a good fit was achieved with the finalized CFA model based on multiple test-
statistics. Having developed a model that is consistent with the data, Seo et al. concluded that it is
important to consider the influence of management commitment and supervisor support on other
variables studied, as they loaded onto observed variables meant to measure other factors.
Additionally, their paper managed to develop a reliable factor structure for safety climate measure,
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and therefore the same construct might be used to measure safety climate of workers in the same
industry. The developed safety climate measures might also give insight into other industries, due
to the inherent nature of the safety climate itself [54].

Liu and Li analyzed the latent structures of Firm Safety Management Capability (FSMC) based on
data collected from coal mines in northern China [55]. The model they proposed was relatively
complex and involved 20 latent variables, including five latent endogenous variables and 15 latent
exogenous variables. The latent variables are factors of 76 observed variables, which were based
on 999 valid questionnaire surveys answered by miners. Latent variables analyzed in the study by
Liu and Li concerns factors that pertain to five main groups related to FSMC, namely relevant
safety aspects of the workers, the teams, the firm, and the environment [55].

Their proposed model was based on complex a prior hypothesis on interactions between workers,
teams, the firm and working environments. The model proposes some of the worker attributes as
endogenous latent variables that are influenced by exogenous latent variables concerning teams,
the firm, and working environments. Among the endogenous latent variables, a worker’s
knowledge and skills have a directional effect on his or her working habits while working habits
were also set to covary with responsibility and psychological qualities. Both psychological
qualities and working responsibility have a covariational effect on workers knowledge and skill.
There also exist various constraints on the directional effects between the endogenous variables
and exogenous variables so that the exogenous variables only have an impact on those endogenous
variables that are backed up by theories. The model had adequate fitness based on multiple test

statistics and theories based on FSMC was found to match the sample data.

5.3 Analysis of Latent Variables in Cognitive Work Analysis

In recent years, researchers have been trying to comprehend the hidden structures, including
environmental, organizational and socio-technical factors, that potentially lead to accidents and
fatalities in mining complexes [56-58]. In this chapter, it has been proposed that latent variable
analysis methods could be used in combination with cognitive work analysis (CWA) in order to
better understand the complex and dynamic relationship among the human, environmental and
technological factors in sociotechnical systems.

Cognitive work analysis aims to analyze all vital elements of human-work interaction via the
application of concepts from various disciplines including engineering, cognitive science, social
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science, and psychology. As mining is often deemed as a dynamic, hazardous, automated system
that is full of uncertainties, coupled and mediating subsystems and potential disturbances, which
agrees with the definition of a complex sociotechnical system by Vicente, it is ideal for the
application of cognitive work analysis [59]. It has been stated that understanding the constraints
and capabilities of personal, social, organizational, technological elements of a system are
generally helpful for finding means to reduce human error factors, reduce the frequency of
occurrence of safety-related incidents and increase the overall system performance. CWA typically
involves five phases of analyses, i.e., work domain analysis, control task analysis, strategies
analysis, social organizational analysis and worker competencies analysis. Demir et al. proposed
11 factors to quantify the overall cognitive quality of a mining operation [57]. Structural equation
modeling could be used to analyze the interactions and mediating effects among the factors, to
facilitate researchers’ understandings of human-work interactions in mining operations. In this
chapter, a similar approach is proposed to model the factors in the five levels of cognitive work
analysis as latent variables. A list of variables and their descriptions are shown in Table 5.2. The
list is partly based on the proposed factors by Demir et al., with several safety-related variables
added [57]. Each observed variable in the list could be one singleton as well as several closely
related observed variables. Variables generally should have ratings from 0 to 5. Variables related
to the work domain should be rated by relevant professionals evaluating the mine, while other
variables could be obtained from questionnaires.

As some of the observed variables might be moderately correlated and it is not immediately clear
how some of them interact with each other, it might be more helpful to extract factors from them
via EFA instead of assigning factors to them a priori. The extracted factors, after interpretation,

could be fitted to many probable rival structural equation models to compare relative fitness.

58



Worker competence factors

lorker’s leve
of education

(m1) i
E:
Worker’s working 3
experience
(m2) 3
§s
Worker’s
physical fitness £
(n3) z,
orker’s &
psychological
well-being i)
{ID
Worker's job §1
satisfaction
s) £
{l!

Worker's attitude
towards safety

(16)

UG

Lyl

Work domain factors

System
functionality

ns)

Mine design
characteristics

[UEY

Safety designs
(nq)

Operation system
(m10)

Figure 5.3. SEM path diagram of cognitive work factors

59

L] L] L]

L]



Table 5.2. List of latent and observed variables in cognitive work analysis

Levels of factors of CWA Latent variables Notation Description
o Having a clear idea of the purpose of each subsystem of the
System functionality N7 L .
mining operation
Ratings for the technical aspects of the mine design.
Mine design characteristics Ng Including but not limited to ventilation, rock mechanics,
Work domain factors . . . .
mineral processing, mine planning, etc.
Safety designs No The mine has safety structures for emergencies
Operation system N0 Design rating for ventilation system of the mine
o Having a clear guideline or standard operating procedures for
Task guideline E 1 .
a particular task
o Having a clear method of evaluation for the performance of a
Performance criteria E 2 )
job
) o The compatibility and efficiency of current equipment for
Control task factors Equipment compatibility f 3 . )
completing the desired task
. o If the equipment is readily available and easily accessible for
Equipment availability f 4 o
utilization
) . If the tasks to be performed are subject to potential hazardous
Risk potential f 5
outcomes
. o Level of preparedness for unintended events, precautions
Preparation for uncertainties f 6
taken
Strategy factors . . .
. . Alternative plans or methods in the case of disturbances or
Strategical planning E 7 .
emergencies
) The supervisor’s attitude towards safety, holdings of safety
Supervisor support f 8 )
meetings
Time management f 9 Deadlines set for tasks to ensure completion in time
) o Effectiveness of communication between supervisor and
. s Supervisor communication {T 10
Social and organizational supervisees
factors o o
Roles and responsibilities {T 11 Clearly defined roles and responsibilities for workers
Co-worker support {T 12 Level of mutual aid between workers
The presence of safety department, management of safety-
Aspects of safety culture {T 13 )
related issues
Level of education 1 The highest education level of a worker
Working experience N2 Number of years of experience working in a related position
) Level of physical fitness and health of the worker, presence
Physical fitness K I
Worker competency of past injuries
factors Aspects of psychological Worker’s ability to handle stress and general state of mental
well-being Na health
Job satisfaction Ns How satisfied the worker is with job position, salary, etc.
Attitude towards safety Ne Worker's willingness to follow safety-related regulations

One probable model depicting interactions between the five factors studied in cognitive work

60



analysis is shown in Figure 5.3. The model hypothesis is a priori and proposes that the factors in
the work domain and worker’s competence domain are endogenous factors while factors in the
other three layers of cognitive work analysis generally function as exogenous factors. The reason
being factors related to the qualities of the mine employees and technical aspects of the mine
should cause the other latent variables, for instance, the social and organizational factors should
depend on the competencies of the workers, and to some extent the technical aspects of the mine
design.

The proposed SEM model effectively models mediating effects among variables, which is superior
to standard regression models. One example is that although the exogenous variable named “risk
potential (¢5)” does not directly depend on the endogenous variable “Worker’s level of education
(n1)”, it receives a mediating effect as 7, is correlated with “Worker’s attitude towards safety (15)”,
which has a direct regression effect on &5, as it is assumed that better-educated employees
generally focuses more on safety-related issues. The explicit modeling of many instances of these
indirect effects among variables ought to make the model more theoretically sound. Each factor,
no matter exogenous or endogenous should be measured by a few observed variables that could
be gathered from questionnaire responses. In path analysis notations, an ellipse characterizes an
endogenous variable whereas a circle represents an exogenous variable. Squares are observed
variables and arrows, and double-sided arrows represent directional effect and covariance
respectively.

Studying the interactions among the cognitive work factors could provide new insights into the
human-machine-environment interactions in complex mining operations and facilitate the
utilization of cognitive work analysis as well. However, questionnaire design, data collection, and
modeling of such complex causal relationships could prove challenging. It is often more
convenient to start from relatively simple questionnaires with EFA and CFA models. Figure 5.4 is
a proposed CFA model on the Social-Organizational factors, which is a subset of the cognitive

work analysis factors.
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My immediate supervisor believes safety is highly important (x,) |

Supervisor

support
(%) My immediate supervisor values my inputs on safety related issues (x,) |

My immediate supervisor and | jointly set up appropriate deadlines for various tasks (x3) |

Supervisor
communication My immediate supervisor and | jointly meet regularly to discuss safety related matters |

(§10) (x4}

Among coworkers tasks and guidelines are clearly defined and distinguished (x5) |

Management, roles
and responsibilities

Coworkers understand well the big picture of the function of the group, as well as the |
(§11) duty of each individual (xg)

Among coworkers safety of the group is deemed one of the top priorities (x7) |

Co-worker
support
(§12)

Among coworkers safety ideas are routinely shared (xg) |

People are aware of and respect safety regulations, violations are punished (xg) |

Aspects of safety

culture
(£13) Discussions among my immediate supervisor and myself are frank and open (x;4) |

Figure 5.4. CFA path diagram of socio-organizational factors

The proposed model contains only exogenous latent variables and observed variables. The
observed variables, i.e., questionnaire items, are designed to measure a latent variable, and a certain
degree of overlapping is allowed. While only ten observed variables are shown in Figure 5.4, often
a lot more is needed to represent a latent variable accurately. Depending on the fitness of the model,
latent variables could be removed or even dropped, as despite being based on theory, the proposed
model might not be entirely consistent with all data. Adjacent CFA models with different proposed
relationships among the exogenous latent variables could also be tested to improve people’s
understanding of the socio-organizational factors. If decent fitness could be achieved, it could be
implied that the proposed model is consistent with data collected from a certain mining facility.
Therefore, an inference could be made on certain variables so that the mine manager could identify
which observed variables to work on in order to improve the overall safety or management of the
mine. Similar techniques could be applied to other subsets of CWA factors before a comprehensive
SEM model is evaluated so that each sub-branch of the complex interactions among human,

machine and the environment could be analyzed and understood.
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5.4 Chapter Summary

This chapter overviews the basic concepts and applications of causal modeling of theories
regarding mine safety and safety science in the mining industry using techniques that involve latent
variables. So far there has been a rather limited amount of research that analyzes latent constructs
in occupational safety climate and behaviors in mining operations. Nevertheless, latent variable
analysis techniques including SEM, CFA, and EFA have been proven in numerous past researches
as effective and promising approaches for testing of causal theories in these areas with clear
advantages over other quantitative methods including regression. In order to facilitate the
adaptation of SEM, CFA and EFA in mine safety analysis, the concepts and their applications,
result evaluations and interpretations are explained thoroughly as well as providing critical
comparison and including examples of possible usage. In future studies, researchers could
incorporate the methods detailed in this chapter in combination with CWA for real life mining

applications to better understand and enhance occupational health and safety in the mining industry.
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Chapter 6
Optimization of Mining-Mineral Processing Integration
Using Unsupervised Machine Learning Algorithms

6.1 Mining-Mineral Processing Integration and Target Grades

Block classification is one of the aspects of mine design that has a direct impact on the profitability
of the operation. Many critical reviews on ore-waste classification based on estimation and
simulation have been presented [60-63]. However, one important factor that is often ignored in
open pit mine planning is the impact on the performance of processing facilities while having
inputs with significant fluctuations in grades. Maintaining a consistent input for processing
facilities is imperative as deviations from the target grades of a processing stream lead to
unintended losses in recovery, which can be modeled via the Taguchi loss function [64], a quadratic
function that penalizes deviation from a certain target [65]. It has been proposed that every
processing stream maintains a target grade where blocks with the same grade receive no loss from
processing, but those with grades different from the target get penalized based on their deviations.
An illustration of this idea is shown in Figure 6.1. Hence, minimizing deviations from target grades
would lead to a reduced loss in recovery and throughput and, in turn, the increased value of profits
from the operation. A more consistent input for processing will also lead to a more uniform
recovery and throughput, which tend to be more desirable.

Consequently, unsupervised machine learning algorithms such as k-means clustering or
partitioning around medoids (PAM) could be used to group blocks into different clusters, with each
cluster signifying a processing stream with pre-defined target grades. In doing so, the within cluster
dissimilarities could be minimized, while target grades of each processing stream could then be
set to the grade values of each cluster centroid. In recent years many machine learning methods
have been introduced to optimizing mining and mineral processing systems [66-73], but few have
taken into full consideration the penalties that come with deviation from targets in input grade and
processing capacity. Performance of the introduced clustering technique will be evaluated with the
overall profitability of the operation, while taking into account the high costs of constructing
additional processing facilities, so that new processing streams are built if and only if the cost more

than balances out for the losses in recovery due to deviation from target grades. A group of related
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research topics has also highlighted the potential applications of clustering techniques in

addressing similar research problems [74-76].
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Figure 6.1. Relationship between input grade and recovery modelled by Taguchi loss function

After deciding the optimal number of processing streams through clustering, capacities of
processing streams could be found by counting the number of data points in each cluster.
Nevertheless, planning of a processing stream’s capacity during the life of mine (LoM) is also
important and challenging, as generally the companies seek to maximize NPV in mine planning
and hence blocks of higher values tend to be extracted at the earliest possible period, leaving the
overall processing capacity skewed. However, producing below the processing capacity or
deviating from the process target grade may also lower the NPV. In this research, the traditional
block sequencing is improved by identifying blocks whose processing destination according to a
portion of its simulated grades differs from that determined by the average expected grades.
Switching the processing destination of such blocks reduces variation in processing capacities
across the LoM at minimum cost and risk.

The original contribution of this research roots from the introduction of target grades in mineral
processing streams and the utilization of the Taguchi loss function for modelling penalized
recovery. Moreover, CLARA, which is a robust clustering algorithm for large datasets are used
and total revenues from different scenarios are compared and optimized. In addition, block

destinations are tweaked according to sequential Gaussian simulations and capacities of processing
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streams can be further smoothed across the LoM.

6.2 Methodology of Clustering Algorithms and Economic Evaluations

6.2.1 Clustering algorithms for optimal process design

6.2.1.1 The k-means clustering algorithm

The k-means algorithm is one of the most commonly used clustering algorithms that scales
relatively well with large datasets. It partitions a given dataset into k prespecified number of
clusters in such a way that minimizes the within cluster dissimilarity and maximizes the inter-
cluster dissimilarity. Various distance measures exist for defining dissimilarity among data points,
including the Euclidean distance, the Manhattan distance and many other correlation-based
distances. Euclidean distance is chosen in this case as it considers exactly the spatial distance

between points. A brief summary of the k-means algorithm is shown in Algorithm 1 [77].

Algorithm 1 K-means Clustering
Input:
Data matrix with n observations: X = [xq, X>, ...,xn]T, x; € RP
Number of clusters k
Maximum number of iterations N
Output:
k clusters
1: Randomly initiate cluster centroids pq, Uz, ..., U € RP
Until convergence or iterations = N do
2: Assign each observation (i) to the closest centroid
Ciy < arg Tnjin”xi —uill3

3: Update each centroid (j) by taking average
Zi ﬂ{xiECj}xi

Hj <
! |G

One common metric used to evaluate the goodness of a k-means clustering is the total within

cluster sum-of-squares (TWSS); its formula is shown in Equation (6.2.1).

k

TWSS = Zk: Ws@ = > > [la - (6.2.1)

i=1 jECi
Where x; refers to the jh data point, p; is the cluster center of the i cluster and C; is the set of all

points in the i cluster. Results of the k-means algorithm are known to be sensitive to the selection

of k initial cluster centers; hence it is a common practice to start with many different initial
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allocations and choose the one that performs best. As the number of clusters, £, has to be specified
before the algorithm could be run, the optimal number of clusters could be determined by plotting
the TWSS against the number of clusters [78]. Ideally the TWSS value should be minimized, but
as the value will always tend to zero when the number of clusters tend to the number of
observations in the dataset, it is important to select the optimal number of clusters (Kyptim) such
that a further increase in the number of clusters would lead to significant diminishing benefit in
the reduction of TWSS, identifying the optimal number of clusters in this manner is also more

commonly known as the elbow method.

6.2.1.2 Partitioning Around Medoids (PAM) and CLARA

The k-means clustering algorithm has numerous drawbacks, including:

e The number of clusters must be chosen manually
e The final output is dependent on the initial random assignment of cluster numbers
e The algorithm shows sensitivity to noise and outliers due to the use of means

The first and second problem could be addressed, respectively, by running the algorithm for a set
of plausible values of &, and different initial random cluster assignments (usually from 25 to 50)
and selecting the solution with the best performance. While trying to find a better clustering
algorithm, it is natural to consider other methods such as hierarchical agglomerative clustering or
graph-based spectral clustering, which do not require the prior specification of the number of
clusters. Unfortunately, however, such clustering techniques, despite being powerful, do not scale
well with large data. When clustering a dataset with n observations into k clusters, the
computational complexity of the k-means algorithm per iteration is approximately O (nk), whereas
hierarchical and spectral clustering could cost as much as 0 (n®), making them almost impossible
to be applied in clustering large-scale mining data. Partitioning around medoids (PAM) could be
considered similar to a robust-form of k-means clustering. At the cost of O(k(n — k)?), PAM is
still too cumbersome to be applied to truly large datasets. Hence of a modified version of PAM
based on resampling named CLARA (Clustering LARge Applications) was selected to optimize
processing options.

While in k-means each cluster is represented by the mean of all data that belongs to it, in PAM a
cluster is represented by its most central element, named its medoid. The general PAM algorithm

is described in Algorithm 2 [77].
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Algorithm 2 Partition Around Medoids (PAM)

Input:
Data matrix with n observations: X = [xq, X3, ..., X,]7, x; € RP
Number of clusters k
Maximum number of iterations N

Output:
k clusters

1: Randomly initiate cluster centroids g4, Uz, ..., Uy € RP

Until convergence or iterations = N do

2:  Assign each observation (i) to the closest centroid

3:  Within each cluster, for each pair of medoid and non-medoid, compute the change in TWSS
if a switch is made.

4. Make the optimal switch then go to 2, converge otherwise

The CLARA algorithm is a modified version PAM designed for large datasets, its general idea is
to draw multiple samples from the dataset and apply PAM to them. The basic steps of CLARA are
displayed in Algorithm 3 [79].

Algorithm 3 CLARA
Input:
Data matrix with n observations: X = [xq, X3, ..., X,]7, x; € RP;
Number of clusters k;
Maximum number of iterations N;
Sample size m;
Output:
k clusters;
Until convergence or iterations = N do
1: Randomly draw a sample § € R"™*? from X
2:  Identify k representative medoids via PAM (S, k, N)
3:  Assign each observation (i) in X to the closest centroid, then calculate TWSS
4.  Go back to 1, keep clustering result if TWSS decreases

The computational complexity of CLARA is O(km? + k(n —k)), which is a significant
improvement from PAM. The downside of CLARA is that if the best £ medoids are not selected in
the sampling process, then CLARA would produce a sub-optimal solution. When applying
CLARA, the algorithm is run with a large m value for multiple times in order to adjust for sampling

bias.
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6.2.1.3 K-means based Approximate Spectral Clustering (KASP)

Spectral clustering is one of the most powerful modern clustering algorithms and is based on the
spectral decomposition of the graph Laplacian matrix of the data matrix. As a graph-based method,
each observation in the data matrix is viewed as a vertex in the graph, and the dissimilarities
between data are viewed as edges between vertices. Spectral clustering functions by identifying
the optimal cut to partition the graph such that the sum of the weights of the edges cut in the process

is minimized. The basic form of a spectral clustering algorithm is described in Algorithm 4 [80].

Algorithm 4 Spectral Clustering
Input:
Data matrix with n observations: X = [x4, X>, ...,xn]T, x; € RP
Number of clusters k
Output:
k clusters
1:  Form adjacency matrix (W € R™ ™) according to pre-defined dissimilarity measure
Form diagonal degree matrix (D € R™ ™) such that the diagonal entries of D corresponds
to the row sums of W
Form graph Laplacian matrix L =D — W
4:  Compute the spectral decomposition of L, L = VAVT, then find the k eigenvectors (Z€

(O8]

R™¥) corresponding to the k smallest eigenvalues of L
5:  Use k-means to cluster Z into k clusters, assign the rows of X to the same clusters as rows

of Z

Unfortunately, the spectral clustering algorithm is computationally expensive at a complexity of
0(n®), largely due to the need to explicitly construct the adjacency matrix W and the spectral
decomposition of L. With a large dataset, one of the alternatives is to use the k-means based
approximate spectral clustering algorithm (KASP) proposed by Yan et al., which functions by first

compressing the data into [ representative observations, then applying spectral clustering to the
1. : . :
compressed data [81]. The ratio Pt referred to as the compression ratio, a brief summary of the

KASP algorithm is shown in Algorithm 5.
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Algorithm 5 KASP

Input:
Data matrix with n observations: X = [xq, X3, ..., X, |7, x; € RP
Number of clusters k
Number of representations [

Output:
k clusters

1:  Use k-means to partition X into [ clusters, record the cluster centroids as landmarks L €
Rlxp

2: Use spectral clustering to partition L into k clusters. Assign the rows of X to the

corresponding clusters of their representations

6.2.2 Economic Evaluations of Processing Scenarios

After using the k-means algorithm to group the data points into & different clusters, the clusters are
sorted in ascending order of average grades. A k& number of different processing streams are then
sampled from » number of total available processing streams without replacement, also in
ascending order of recovery, to match the & clusters. Ordering the clusters as well as the processing
streams ensures that clusters with higher average grades get sent to processing streams designed
to have higher recovery. Therefore, for a given number of k and n, there are in total C}' different
scenarios for processing. Let the maximum number of clusters be m, then the total number of

possible scenarios is given by Equation (6.2.2).

m
Number of scenarios = z Cr
k=1

(6.2.2)

The idea of ‘target grade' is applied in this chapter, such that grade deviation from the mean will

receive a penalized recovery during processing can be modeled with the Taguchi loss function [64].
2
L(x}/) = C(X}/ - :“Z/) Vx; € C; (6.2.3)

Where x}/ is the value of attribute ¥ (in the polymetallic case) of the j' block in the i cluster,

which is denoted by C;, with ,u]i/l, being the value of attribute y of its center. L(x}/) represents the

loss in the recovery of attribute y and c is a constant that magnifies the penalization.
Revenue and cost calculations are performed on each scenario and the one that maximizes profit
is deemed as optimal. Formulas for calculations of revenue and cost are shown in Equation (6.2.4).

The representations of the parameters are shown in Table 6.1.
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Table 6.1. List of parameters for revenue and cost calculations

Parameter Representation Unit
a Vector of attributes
p Block bulk density ton/m3
1% Block volume m3
x; j" block grade of y M attribute %
N Total number of blocks
P, Price of y Mattribute $
rY Recovery from i processing stream of y " attribute %
L(X}/) Loss of recovery from i processing stream of y " attribute %
Yii Binary variable (1 if j block sent to i processing, 0 otherwise)
p; The processing cost of i processing stream $/ton
M Cost of constructing a processing stream $
m Total number of clusters/processing streams
m, Mining cost $/ton

N N
Total revenue = Z R(xj) = Zijy XpxVxP,x[r—L(x)]
=1

j=1vy€a
Total cost = Total construction cost for processing streams + Total mining cost
. (6.2.4)
+ Total processing cost

m N m
Total cost = ZMi+NXmC><p><V+ZZyﬁ><p><V><pi
i=1

j=11i=1

6.2.3 Processing Capacity Tuning Based on Simulation

In the previous step, an optimal processing scheme was selected via a clustering algorithm such
that for every mineral processing stream, deviation from target grade is minimized. Having found
the most suitable processing options, block sequencing and scheduling were completed in a
commercial mine production scheduling software with the mean of the simulated block grades as
input, the corresponding sequence output was exported and the number of processed blocks for
each processing stream in each period was found. In order to have the processing capacities of the
streams as uniform as possible, the blocks were analyzed based on their grades in the 15 different
simulations, so that different probable grade scenarios of blocks could be studied, and a subset of
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blocks could be sent to alternative destinations if their grades correspond to different destinations
in different scenarios. Such blocks are named ‘marginal' blocks and are defined as blocks whose
most likely destination according to a subset of the simulated grades differs from the one computed
from the average expected case. After identifying the marginal blocks, in each period, depending
on the situation, marginal blocks are sent to their most likely destination to reduce variation in
processing capacities. When the high-grade processing is over the mean capacity and low-grade
processing is under the mean capacity, marginal low-grade blocks currently sent to high-grade
processing are switched to low-grade processing to fill the gap, and if there are not sufficient blocks,
then marginal low blocks currently sent to waste will also be switched to low processing. When
low-grade processing is over the mean capacity and high-grade processing is under, then marginal
low-grade blocks will be sent from waste to low grade processing and marginal high-grade blocks

from low grade processing to high grade processing as well. Similarly, if both processing streams

are over or under the mean capacity, then the marginal waste blocks currently in low and high
processing are sent to waste or marginal low and high blocks are sent respectively to low and high
processing. While switching destinations, marginal blocks are ranked according to the descending
order of likelihood, hence blocks with highest likelihoods are switched first. A schematic of the
process is shown in Figure 6.2. By switching the destination of the marginal blocks to their
corresponding most likely destinations, variation in processing capacities across the mine life can

be effectively reduced at a minimum level of risk.
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Figure 6.2. Identification and changing destination of marginal blocks

6.3 Mining-Mineral Processing Integration Case Study

6.3.1 Determination of Optimal Processing Scenario

A relatively large data set related to a copper deposit was used in this study. The data set contains
145,800 blocks with 15 equally likely geostatistical simulations generated with sequential
Gaussian simulations [82, 83]. The simulations are realized on the nodes or locations of a random
grid. In this simulation, conditioning data are converted to equivalent normal values, and the
variography of the converted values is computed. Using conditioning and previously simulated
values, the value is then estimated (kriged) at the simulation location of the grid. A random sample
is finally taken from the distribution characterized by the estimated kriged value and its variance
at the simulation location on the grid. This process is repeated for all locations on the grid. In

addition to generating multiple realizations of grade uncertainty, Sequential Gaussian simulation
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were also used to reproduce variability in various engineering phenomena such as soil water
content [84], the standard penetration tests to characterize soil exploration [85], nickel
contamination [86] and appraising geochemical anomaly [87]. As expressed by Dowd [88],
geostatistical simulation must meet the following criteria: (i). Simulation and actual values agree
with each other at all sample locations, (ii). Each simulation must exhibit the same spatial
dispersion, (iii) Each simulation and the true values must exhibit the same distribution, (iv) If there
are multiple attributes, their simulations must co-regionalize each other in the same manner as the
true values. These criteria were tested for the simulations and verified that the criteria are satisfied.
Thus, a series of simulations complying the criteria given above was reproduced. An important
speculative aspect is the number of simulations required in mine planning works. Goovaerts [89]
discussed the effect of the number of simulations on transfer functions and concluded that
sequential Gaussian simulation produced more accurate outcomes. He also emphasized that having
more than 20 simulations has not much effect on accuracy.

In order to compensate for computational complexities, a relatively small number of possible
processing stream options are considered. Detailed information regarding those processing options
is shown in Table 6.4. A list of profitability parameters used in this case study is detailed in Table

6.3. A histogram depicting the expected average of the 15 simulations are shown in Figure 6.3.

Table 6.2. List of processing stream options

Processing Processing cost Recovery Construction cost

stream ($/ton) (%) ($M)
1 20 40 10

2 35 65 10

3 45.5 80 12.5
4 57.25 95 15

Table 6.3. List of profitability parameters

Parameter Representation Unit
Peopper Price of copper per ton $5939.1
m. Mining cost per ton $1.75
c Magnitude of penalization 30
\% Block volume (Block size 5m X 5m X 10m) 250 m3
p Block bulk density 4 ton/m?3
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Figure 6.3. Simulated average block grades

In this case study, blocks with grades lower than the lowest possible cut-off grade (in this case
0.84%) determined from the processing stream option with the lowest processing cost and recovery
were not included in the clustering algorithm, such that only blocks classified as ore were
partitioned into clusters. The optimal number of clusters were decided by plotting the TWSS
against the number of clusters and selecting the cluster number where the next increment in the
number of clusters results from a significantly lower decrease in TWSS than the previous number.
The results from the clustering methods are shown in Figure 6.4. Due to limited computational
power available, the maximum compression ratio of KASP used was 2%, KASP with 1%
compression ratio was also performed to identify the impact of compression ratio on the overall
performance of the clustering algorithm. The optimal number of clusters from both clustering
methods was found to be 3. It could be observed that k-means has only marginally better TWSS
when compared with CLARA, even when medoids are used as cluster centres instead of means in
CLARA, while KASP performed similarly to K-means before 3 clusters, but fluctuated with more

clusters, possibly due to the small compression ratio used.
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Figure 6.4. TWSS plot for CLARA and k-means clustering

The total number of processing scenarios was calculated to be 14. Economic evaluations were
performed on all scenarios, according to k-means clustering, CLARA, KASP with 1% and 2%
compression ratio and marginal cut-off grade, respectively. Table 6.4 details the possible
processing scenarios, where in each scenario the clusters are mapped with different corresponding
processing destinations. For instance, in processing scenario 7, the data set was partitioned into 2
clusters ranked by average grade values, with cluster 1 mapped with processing 1 and cluster 2
with processing 4. The profits for different processing scenarios and clustering methods are

computed exhaustively and shown in Figure 6.5.
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Table 6.4. List of processing scenarios

Scenario Number Cluster 1 Cluster 2 Cluster 3
1 1

2 2

3 3

4 4

5 1 2

6 1 3

7 1 4

8 2 3

9 2 4

10 3 4

11 1 2 3
12 1 2 4
13 1 3 4
14 2 3 4

Single processing Two processings Three processings

[} I
1 1
1 1
I 1
o 0y s
(:o“ ! * Method
o 1 y
CLARA
. 60- : !
g : { ! —+—  Cut-off
% : : : -#~ K-means
= : i : —— KASP(1%)
1 ] 1
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Figure 6.5. Comparison of profits for different clustering results at various scenarios

As can be seen from Figure 6.5, for this particular dataset and parameters, the maximum profit was
generated by the KASP with 2% compression ratio at processing scenario 9 with a value of
$87.25M. In general, when the deviations from target grades are penalized in mineral processing,
determining block destinations via clustering algorithms generate higher profits when compared
to using marginal cut-off grade. In this particular case, CLARA generated higher profits than

results from other clustering algorithms in most scenarios, but KASP with 2% compression ratio
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performed marginally better than CLARA at its scenario with maximum profit, while CLARA at
processing scenario 9 resulted in a profit of $86.47M. It could also be seen that KASP performed
better in all scenarios when the compression ratio was increased. If higher computational power

were available KASP could be projected to yield even better results.

6.3.2 Capacity Tuning of Processing Streams Based on Geostatistical Simulations

From the previous section, the processing scenario with the highest profit was identified to be
scenario 9 with processing streams 2 and 4 selected for low-grade and high-grade processing,
respectively. At a mining capacity of 15,000 blocks per period, Whittle output a total mine life of
10 periods (years). After identifying the borderline blocks, in each period, depending on the
situation, borderline blocks are sent to their most likely destination to reduce variation in
processing capacities. When the high-grade processing is over mean capacity and low-grade
processing is under mean capacity, borderline low-grade blocks currently sent to high-grade
processing are switched to low-grade processing to fill the gap, and if there are not sufficient blocks,
then borderline low blocks currently sent to waste will also be switched to low processing. Vice
versa when low-grade processing is over mean capacity and high-grade processing is under.
Similarly, if both processing streams are over or under mean capacity, then the borderline waste
blocks currently in low and high processing are sent to waste or borderline low and high blocks
are sent respectively to low and high processing. While switching destinations, borderline blocks
are ranked according to the descending order of likelihood, hence blocks with highest likelihoods
are switched first. The processing capacities of processing streams across the mine life before and
after the switching are shown in Table 6.5. The final year of mine life was intentionally left out as
most of the valuable ores have been mined out and there is not sufficient among out material left
to be mined. The details of mean and variances of processing capacities across the mine life are
shown in Figure 6.6. The mean for both processing streams was lowered to a small extent due to
switching blocks from low and high-grade processing to waste. The new sequencing generated by
the switching of borderline blocks managed to lower the variance in low-grade processing capacity
by 31% and that of high-grade processing by 17%. As a result of the re-classification of blocks, a

smoothing effect on the processing volumes throughout the periods can be observed.
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Table 6.5. Processing capacities for old and new sequencing

Low processing Mean  Variance
Old sequencing

(before switching) 7948 420622
New sequencing

(after switching) 7904 289407
High processing Mean  Variance
Old sequencing

(before switching) 2891 1442632
New sequencing 779 187500

(after switching)

Comparison of processing capacities
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Figure 6.6. Processing capacity across mine life for old and new sequencing

Figure 7 shows in-situ grades and the outcomes of CLARA and KASP for three destinations. In
this figure, the blocks shown in navy blue, green and claret red are routed to waste dump, low-
grade and high-grade processing, respectively. The consistency between the grades and block

destinations can be seen easily in the figure. As also seen from the figure, the number of blocks to

be sent to high grade processing is slightly more in CLARA’s results compared to KASP’s.
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6.4 Chapter Conclusions

This chapter introduces the use of clustering algorithms to generate clusters of selective mining
units with similar grades that correspond to different processing destinations while minimizing the
within cluster dissimilarities in mineral grades. Realistic concerns including deviation from target
grades and capacities in processing facilities are also taken into consideration, via the penalization
of recovery via the Taguchi loss function and calculating the number of data points in each grouped
cluster. One of the important factors in the determination of the profit from the clustering
algorithms is the magnitude of penalization of the Taguchi loss function, with better results
expected from the clustering methods when a high degree of penalization is present. Another
influential factor is the overall scale and profitability of the mining operation, with smaller
operations being unlikely to balance out the high amount of additional costs of constructing extra
processing facilities. A more sophisticated clustering algorithm than k-means, CLARA, is based
on performing PAM on random samples of the original dataset and is considered to be more robust
than k-means. In this particular setting of the study, clustering with respect to CLARA generated
more profit than k-means in almost all scenarios, despite k-means performing slightly better in
scenario 9, the scenario with the highest profit. KASP, which provides a computationally efficient
solution approximate to spectral clustering, was the top performing clustering algorithm and
generated higher profit than k-means in the optimal scenario. Increasing the compression ratio of
KASP also had an impact on generating better results. In future studies, when the dataset is large,
both clustering methods should be considered in grouping blocks with similar grades. Furthermore,
by identifying borderline blocks judging from the simulated block grades, it is possible to tune the
processing capacities by changing their destinations. In doing so, variation in processing capacities
across the mine life can be reduced at minimum risk and cost. Although the simulated grades may
differ than the actual grades and this may result in potential economic loss, the aim of the proposed
methodology is to provide an efficient capacity installation approach in which the mine production
schedule is considered. After the settling of the processing capacities, the mine schedule can be
generated with the new parameters. The other extension will be incorporation of rock and

metallurgical characteristics affecting processing performance into the process design.
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Chapter 7 Final Conclusions and Future Works

Various concepts from other fields such as statistics, mathematics, computer science and machine
learning could be used to further optimize mining related problems. In particular, as more and
more data are collected and stored about mining operations, it is increasingly important that people
are able to take advantage of the heightened amount of information and make more informed, data-
driven decisions. Machine learning has significant potential to carry additional value to mining
operations.

In Chapter 3, it was shown that PCA based solution helped reducing the problem while maintaining
most information in the original data. The PCA based design for stockpiles could be especially
useful in polymetallic cases, and benefit of applying PCA could increase with the number of
material-grade variables involved in the design. Also determined from the simulation was that
Chevron and Windrow stockpiles with same dimensions had very similar effectiveness in terms of
VRR. For future analyses, more advanced modelling techniques could used to simulate the
blending process, as opposed to the linear model used in this thesis.

The abilities of GLMs to model data that are discrete in nature were shown in chapter 4, possible
future works regarding GLMs include more advanced methods such as mixed models, it could be
demonstrated that using statistical techniques could adequately model data related to mining,
quality control and reliability engineering, and quantitative models such as GLMs could give
researchers a more nuanced understanding of the relationships among variables. possible future
works regarding GLMs include more advanced methods such as mixed models, quasi-likelihood
methods and Bayesian inference.

Chapter 5 showed that factor analysis techniques such as EFA, CFA and SEM could be used as
quantitative tools in cognitive work analysis of mine safety, the benefits of factor analysis
techniques over standard multiple regression methods were discussed but carefully designed
questionnaires and data collection are still required in order for it to be applied in real-life mining
scenarios. Nevertheless, factor analysis techniques have very well-established theoretical
backgrounds and are ideal tools to model organizational, psychological data in similar scenarios.
Chapter 6 takes into consideration realistic concerns such as deviation from target grades and
capacities in processing facilities and penalize recovery of blocks via the Taguchi loss function. It
was shown that clustering-based destination policies in general performed better than marginal

cut-off-grade based methods. And in terms of clustering methods, KASP generated the optimal
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scenario while CLARA also performed better than k-means in all except the optimal scenario.
Future works regarding material from this chapter include conducting case studies on polymetallic,
multivariate datasets, using more advanced clustering methods. It was shown that KASP with just
2% compression ratio already outperformed k-means in most scenarios, a parallelizable spectral
clustering algorithm can almost certainly be expected to have better performance. It is also worth
mentioning that the determination of the type of loss function, as well as the magnitude of
penalization in recovery for blocks that deviate from target grades are of great practical
significance in future works.

There are also various other potential applications of machine learning techniques in mining
engineering that are yet to be explored. For instance, with the inclusion of large amount of relevant
data on equipment reliability, neural networks and support vector machines could be used to
accurately predict failures and optimize maintenance schedules. Also worth further investigations
are the possible utilization of long short-term memory neural networks in the prediction of
commodity prices in mineral economics, or using reinforcement learning and graph representation

learning in the better optimization of mining complexes and decision making.
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