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I 

 

Abstract 

Statistical and machine learning models are useful tools that can be used to extract valuable 

information from raw data and make accurate predictions and can be applied in the optimization 

of mining related systems through various means. This thesis aims to further contribute to the 

applications of such techniques in mining engineering by providing 4 different cases where 

statistical and machine learning models could facilitate design and decision making. Principal 

component analysis (PCA) was used to reduce the dimensions of the problem and simplify the 

design of stockpiles in bed-blending operations, generalized linear models (GLM) were introduced 

to model non-linear relationships among variables in quality control and safety related problems, 

factor analysis methods including structural equation models (SEM) were presented to be used in 

conjunction with cognitive work analysis to better analyze the underlying structures or latent 

variables in operational health and safety in mining operations, and finally clustering, which is a 

family of unsupervised learning methods, was applied to a mine planning problem to integrate 

mining and mineral processing and maximize recovery. 
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Résumé 

Les modèles statistiques et d'apprentissage automatique sont des outils utiles qui peuvent être 

utilisés pour extraire des informations précieuses à partir de données brutes et faire des prévisions 

précises et peuvent être appliqués dans l'optimisation des systèmes liés à l'exploitation minière par 

divers moyens. Cette thèse vise à contribuer davantage aux applications de ces techniques en génie 

minier en fournissant 4 cas différents où les modèles statistiques et d'apprentissage automatique 

pourraient faciliter la conception et la prise de décision. L'analyse en composantes principales 

(ACP) a été utilisée pour réduire les dimensions du problème et simplifier la conception des stocks 

dans les opérations de mélange de lit. Des modèles linéaires généralisés (GLM) ont été introduits 

pour modéliser les relations non linéaires entre les variables dans le contrôle de la qualité et les 

problèmes liés à la sécurité, des méthodes d'analyse factorielle, y compris des modèles d'équations 

structurelles (SEM), ont été présentées pour être utilisées conjointement avec une analyse du 

travail cognitif afin de mieux analyser les structures sous-jacentes ou les variables latentes de la 

santé et de la sécurité opérationnelles dans les opérations minières, et enfin le clustering, qui est 

une famille de non supervisés méthodes d'apprentissage, a été appliquée à un problème de 

planification minière pour intégrer l'exploitation minière et le traitement des minéraux et 

maximiser la récupération. 
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Chapter 1 Introduction 

1.1 Preliminaries 

Over the past decades, a significant amount of research has been dedicated towards the 

optimization of mining systems including production scheduling, block sequencing, reliability 

analysis of assets and equipment, sustainability etc., which was partly driven by the rapid depletion 

of high grade deposits, the increasingly high operational costs as well as tightening environmental 

regulations. Hence it is imperative that mining systems become more efficient, safer and more 

environmentally friendly. Indeed, decision making and planning based on statistical and machine 

learning models could aid to the further optimization of mining systems, and the implementation 

of these methods could have significant impacts on the overall performance of the mining industry, 

as even small improvements in production and efficiency can lead to greater profitability due to 

the size and scale of the industry. There exists tremendous potential of applications of statistical 

and machine learning models in mining engineering. Statistical models could facilitate decision 

making under uncertainty by quantifying risks, and by identifying influential variables via rigorous 

inference, which can be particularly helpful in reliability analysis of systems in the presence of 

censored and truncated data. On the other hand, machine learning methods have become more 

prevalent in recent years due to the affordability of high-performance computers, and their 

applications can be very versatile. For instance, supervised and deep learning methods, such as 

support vector machines and neural networks could be used to make accurately predictions based 

on large numbers of input data. Unsupervised learning methods on the other hand, could be utilized 

to find patterns in data or conduct dimension reduction without pre-existing labels. While machine 

learning models such as naïve Bayes, recurrent neural networks and convolutional neural networks 

have been widely utilized in fields including natural language processing and computer vision, so 

far there have been relatively limited applications of machine learning in mining engineering 

related problems. This work aims to introduce innovative ways of applying statistical and machine 

learning models to optimize mining and related systems. 

 

1.2 Research Objectives 

The primary objective of this work is to optimize mining related problems via the introduction of 

statistical and machine learning methods. In particular: 
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• A principal component analysis (PCA) based solution was presented to aid to the design 

of stockpiles that could achieve high variance reduction ratio of polymetallic inputs in bed-

blending operations,  

• Generalized linear models (GLM) were introduced in order to conduct regression analysis 

on response variables with non-normal distributions. Two case studies were presented 

regarding applications of GLMs in mining related problems 

• A factor analysis based statistical model was used to quantitively analyze safety and 

accident related data and extract underlying latent variables to facilitate in-depth 

understanding and improvement of operational health and safety of workers. Moreover, a 

proposition was made to combine the statistical model with cognitive work analysis 

(CWA) to enhance work safety in the mining industry.  

• Clustering, which is a family of unsupervised machine learning techniques, was used to 

partition block data into different groups each for one unique mineral processing 

destination. This method has been shown to perform better than traditional cut-off-based 

methods when taking into considerations loss of recovery due to fluctuations in input 

grades. 

 

1.3 Originality and Success 

Mineral processing plants generally have narrow tolerances for the grades of their input raw 

materials, so stockpiles are often maintained to reduce material variance and ensure consistency. 

However, designing stockpiles has often proven difficult when the input material consists of 

multiple sub-materials that have different levels of variances in their grades. In this thesis, this 

issue was addressed by applying principal component analysis (PCA) to reduce the dimensions of 

the input data. The study was conducted in three steps. First, PCA was applied to the input data to 

transform them into a lower-dimension space while retaining 80% of the original variance. Next, 

a simulated a stockpile operation was simulated with various geometric stockpile configurations 

using a stockpile simulator in MATLAB. The variance reduction ratio was used as the primary 

criterion for evaluating the efficiency of the stockpiles. Finally, multiple regression was used to 

identify the relationships between stockpile efficiency and various design parameters and analyzed 

the regression results based on the original input variables and principal components. The results 

showed that PCA is indeed useful in solving a stockpile design problem that involves multiple 
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correlated input-material grades. Statistical methods including regression analysis has been widely 

utilized in the modelling of quality characteristics, systems reliability and safety engineering data. 

However, due to the many restrictive assumptions of the traditional regression models, including 

normality and homoscedasticity of the error term, such models could be rendered inappropriate 

when dealing with non-normal, binary or count data. In chapter 3 and 4, this study presents an 

overview of the intuition and mathematical foundations of the extension from linear models to 

generalized linear models (GLM), as well as factor analysis techniques including Structural 

Equation Models (SEM). Case studies incorporating Gamma regression, binomial/multinomial 

regression are used to demonstrate the potential applications of GLMs in quality, reliability and 

safety engineering, as well as the possibility of combining cognitive work analysis and structural 

equation modelling to investigate underlying structures and reasons behind work safety and 

operational health. Traditional ore-waste discrimination schemes often cause the loss in recovery 

because applying a cut-off grade has no control the average grade of ore, resulting in grade 

fluctuations of input grades in mineral processing. Chapter 5 introduces target grades instead of 

cut-off grades for different processing streams and models the losses due to deviation from targets 

via the Taguchi loss function. Three unsupervised learning algorithms, k-means clustering, 

CLARA and k-means based approximate spectral clustering (KASP), were presented to group 

mine planning blocks into clusters of similar grades with different processing destinations. Also, a 

technique considering uncertainties associated with block grades was proposed to generate new 

sequences that reduce variation in processing capacities across mine life. The case study in this 

chapter involved the treatment of a realistically large mining dataset. The results showed that 

clustering methods outperform cut-off grade-based method when divergence from target grades is 

penalized and that reclassification of blocks based on data from geostatistical simulations could 

achieve smoother capacities for processing streams across the life of mine. 

 

1.4 Thesis Organization 

This thesis consists of 6 chapters: 

Chapter 1 lists the topics covered in this thesis, its main objectives as well as original 

contributions.  

Chapter 2 provides the literature review on relevant statistical and machine learning methods  
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Chapter 3 introduces and explains in detail how PCA can be used to facilitate the design of 

stockpiles in bed-blending operations. 

Chapter 4 provides the intuition and mathematical foundations of linear and generalized linear 

models and presents case studies regarding utilization of GLMs in modelling 

nonlinear relationships in quality control and safety related problems. 

Chapter 5 discusses the utilization of latent variable modeling related to occupational health 

and safety in the mining industry using SEMs. 

Chapter 6 presents the methodology of three clustering algorithms and explains how 

clustering-based solutions manage to minimize deviation from target grades in 

mineral processing. 

Chapter 7 concludes by summarizing the works done in this thesis and discusses potential 

improvements and future works. 
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Chapter 2 Literature Review 

2.1 Introduction 

The primary objective of this literature review is to provide an overview of how statistical models 

and machine learning methods have been used to model and ameliorate the design of engineering 

systems, as well as the basic backgrounds of the relevant algorithms utilized. 

2.2 Key Methods 

2.2.1 Regression models 

Regression has remained one of the most important tools in statistics for the past 30 years [1]. 

Given a vector of inputs (or predictors/features) 𝑿 = [𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑 ] with 𝑿 ∈  ℝ n×p and 𝑿𝒊 ∈

 ℝ n×1 ∀𝑖 ∈ {1,2, … , 𝑝}, as well as a vector of outputs (or responses/independent variables) 𝒚 =

[𝑦1, 𝑦2, … , 𝑦𝑛 ]𝑇, the aim is to predict the output via the model 

𝒚̂  =  𝑿𝜷̂  (2.2.1) 

Where 𝜷̂ ∈  ℝ p×1 is the estimated parameter coefficients. 

The standard way to obtain an estimate for the regression coefficients 𝜷 is via the least squares 

method, by minimizing 

||𝑦 − 𝑦̂||𝟐
𝟐  =  ∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑖

  (2.2.2) 

It could be shown that when normality assumption is added to the model i.e. 𝒚 ~ 𝑁(𝝁, 𝜎𝟐𝑰), the 

least squares solution becomes the maximum likelihood solution. As 

log [∏(
1

√2𝜋𝜎
exp {−

(𝑦𝑖 − 𝜇𝑖)
2

2𝜎2
})

𝑛

𝑖=1

] = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 
1

2𝜎2
∑(𝑦𝑖 − 𝜇𝑖)

2

𝑖

 (2.2.3) 

It then becomes clear that the objective function for maximum likelihood and least squares are 

essentially equivalent. The estimator has form 𝜷̂ = (𝑿𝑇𝑿)−𝟏𝑿𝑇𝒚, with 𝜷̂ ~ 𝒩(𝜷, 𝜎𝟐(𝑿𝑇𝑿)−1). 

Generalized linear models (GLMs) extend the standard linear regression models to allow for non-

Gaussian distributions of the response and also possibly nonlinear relationships between its mean 

and variance. One additional component in a GLM is the link function which maps the expectation 

of the response to the linear predictor [2]. GLMs are widely used in the modelling of categorical 

data, for instance logistic regression and multinomial regression, as well as count data with Poisson 

log-linear model. More details of GLMs are given in Chapter 4.  
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2.2.2 Regularization methods 

Suppose the true relationship between the response 𝒚  and the covariates of interest 𝑿  can be 

denoted as 𝒚 =  𝑓(𝑿) +  𝜺, and some regression techniques were used such that at a sample point 

𝑥, the model estimate is 𝑓(𝑥), then the integrated squared prediction error (EPE) can be written as 

𝐸𝑃𝐸(𝑥) = 𝔼[(𝑦 − 𝑓(𝑥))2]

= (𝔼[𝑓(𝑥) − 𝑓(𝑥)])2 + 𝔼[(𝑓(𝑥) − 𝔼[𝑓(𝑥)])2] + 𝜎2

= 𝐵𝑖𝑎𝑠[𝑓(𝑥)]2 + 𝑉𝑎𝑟[𝑓(𝑥)] + 𝐸𝑟𝑟𝑜𝑟

 (2.2.4) 

Also known as the bias-variance tradeoff, where 𝐵𝑖𝑎𝑠 = 𝔼[𝑓(𝑥) − 𝑓(𝑥)]   and 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

 𝔼[(𝑓(𝑥) − 𝔼[𝑓(𝑥)])2]. This signifies that when the regression model is too simple compared to 

the true model, then the model would be underfitting and the model prediction would deviation 

too much from the mean. Whereas when the true relationship is simpler than the regression model, 

for instance when an abundance of higher order polynomial terms is added, then the model would 

be overfitting and a small perturbation in the input would lead to much larger variations in the 

output. Regularization is one way that can be adopted to avoid overfitting at the cost of some 

additional bias in the model. The most commonly used regularization methods in regression is the 

ridge regression and lasso regression, which apply L-2 and L-1 norm penalization respectively, as 

shown in Equation (2.2.5). 

𝜷̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

∑(

𝑛

𝑖=1

𝒚𝑖 − 𝜷𝑇𝑿𝑖)
2 + 𝜆||𝜷||2

2 

(2.2.5) 

𝜷̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

∑(

𝑛

𝑖=1

𝒚𝑖 − 𝜷𝑇𝑿𝑖)
2 + 𝜆||𝜷||1 

 

Figure 2.1. Illustrations of lasso (left) and ridge (right). 

 Source: Hastie et al. [1] 
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The effects of ridge and lasso regression are illustrated Figure 2.1, where the red ellipses signify 

contours of equal likelihood, and the area in cyan represent the contours for the constraint function. 

Solutions are found where the likelihood and constraint contour intersect. Combining ridge and 

lasso penalization is termed elastic net regression, and has been shown to be particularly useful in 

high-dimensional problems [3]. Regression analyses have been used to model a wide range of data 

in mining engineering. Sauvageau and Kumral used various robust regression methods including 

least absolute regression, M-estimation, MM-estimation etc. to model mineral processing data in 

the presence of outliers [4], Wang et al. used logistic and Poisson GLMs to identify the primary 

factors that contribute to unsafe behavior of coal miners [5], Rezania et al. proposed using 

evolutionary polynomial regression to assess complex civil engineering systems [6]. Detailed 

explanation regarding multiple regression, generalized linear models, factor analysis and relevant 

literature reviews are given in Chapters 4 and 5. 

2.2.3 Ensemble Learning 

Ensemble learning approaches combine multiple base supervised learning algorithms (regressors 

and classifiers) in order to obtain superior predictive performance. Bagging (bootstrap 

aggregation), boosting and stacking are the three most common methods in ensemble learning. 

Bagging refers to the training of a series of models on multiple bootstrapped samples (randomly 

sampled uniformly with replacement) of the original data set, then making a majority vote for 

classification or taking average for regression. Empirically, bagging has been known to be able to 

reduce variance at the cost of increasing bias. Random forest, which is a bagging technique, has 

been widely used in modelling mining engineering related problems. Mishra et al. used random 

forest decision based approaches for blast design, Tingxin et al. used similar methods to accurately 

predict slope stability in open-pit coal mines [7, 8]. Another ensemble learning method, boosting, 

incrementally constructs a series of different weak models with high bias and low variance, and 

re-weights the mis-classified data points in each iteration. Stacking is a third ensemble method that 

trains a meta-model to combine the predictions of an arbitrary set of base learning models.  

2.2.4 Support Vector Machines (SVMs) and Neural Networks 

SVMs and neural networks are among some of the most powerful supervised machine learning 

algorithms, and have seen greatly increased number of applications in various fields of engineering 

in recent years. The theory behind some of the more complicated machine learning algorithms 

such as SVM and various types of neural networks will not be detailed in this thesis, as they cannot 
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be easily summarized in a very small number of paragraphs. In recent years, there have been plenty 

of research on the applications of SVM in mining engineering related problems. For instance, Li 

et al. utilized SVM to train a regression model that could predict outcomes in mechanized mining 

faces using a set of conditions that incorporate geological factors, technical factors and 

management factors [9], Chatterjee used an ensemble of SVMs to estimate reliability of mining 

equipment, and performed hyperparameter tuning using genetic algorithms [10], Chen et al. 

proposed a new form of probabilistic back-analysis that combines Bayesian priors for geo-

mechanical parameters and least-squares SVM for prediction of displacements [11]. Although this 

thesis does not include case studies related to SVM, there is tremendous potential for it to be 

applied to various mining related problems that concerns prediction.  

Neural networks, on the other hand, could refer to a series of methods including multi-layer 

perceptron, convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative 

adversarial neural networks (GANs) etc., and can be supervised or unsupervised. Neural networks 

have very vast applications in natural language processing, image analysis, time series analysis 

and many other different areas. Neural networks have also been proven to be useful in prediction 

related tasks in mining engineering, Lv et al. trained an improved back-propagated neural network 

for the prediction of surface subsidence coefficient in backfilled coal mining areas [12], Rakhshani 

et al. used an artificial neural network to detect and predict faults in boilers of power plants,  

Gonzalo et al. utilized nonlinear autoregressive exogenous neural networks to model the 

availabilities of heavy duty mining equipment [13]. Although not a major topic of this thesis, neural 

networks have tremendous potentials to be applied particularly in image analysis related tasks in 

mining engineering, as well as through the modelling of subsurface geological data with generative 

adversarial neural networks.  

2.2.5 Unsupervised Learning 

The primary task of a supervised learning algorithm is to construct a model from a training data 

set with associated labels for each entry, and to maximize the out-of-sample prediction accuracy. 

In unsupervised machine learning however, the objective is to identify patterns in data sets without 

knowing the labels. There are three tasks that are commonly associated with unsupervised learning, 

namely dimensionality reduction, cluster analysis and anomaly detection. Principal component 

analysis (PCA) is one very popular method for dimensionality reduction and is often based on the 

eigen/spectral decomposition of the variance-covariance matrix or correlation matrix of the data 
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set, or the singular value decomposition of the data set. The mechanism of PCA is detailed in 

Chapter 3. Understandably dimensionality reduction techniques are extremely popular, 

particularly in high-dimensional problems, and are often used in conjunction with supervised 

learning methods. Shao et al. used PCA together with support vector regression to predict pressure 

in natural gas desulfurization process [14], Xu et al. used PCA and a back-propagated neural 

network to accurately model coal and gas outburst [15]. Clustering is another unsupervised 

learning method that is heavily involved in this thesis. Some of the most common clustering 

algorithms, including the k-means algorithm, partitioning around medoids (PAM), clustering large 

applications (CLARA) and spectral clustering are introduced in detail in Chapter 6, with relevant 

literature reviews. 
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Chapter 3                                                                     

Dimensioning a Stockpile Operation Using Principal 

Component Analysis (PCA) 

3.1 Bed-blending Operations 

Bed-blending operations are applied across a variety of industries, including the mining industry, 

which uses stockpiles to homogenize and reduce the variability of the raw materials before delivery 

to mineral processing plants. The reason being that unfavourable residual variations always persist 

even in materials from the same source, due to the discontinuous, cyclic, random, and 

autocorrelated nature of ore [16]. Optimization of processing efficiency relies heavily on 

homogenizing input materials [17]. A bed-blending system has two phases. In the first phase, a 

stacker traverses the ground with constant velocity along the stockpile, during which process 

materials are laid down on the same level as the stacker. As the stacker gradually reaches the end 

of the stockpile, it decelerates until it entirely stops, before starting again traveling back in the 

opposite direction. In the reclaiming phase, a reclaimer (either a bucket-wheel or a harrow-type 

scraper, etc.) cuts slices of the stockpile that is perpendicular to the direction of stacking [18]. In 

the past, many years researchers have constantly been working towards optimizing the design of 

blending operations and various theories and methods have been put forward [19-21]. Gy 1992 

introduced the concepts of using the variance reduction ratio (VRR) to evaluate the effectiveness 

of blending [22], Dowd [23] presented the use of geostatistical approaches to improve stockpile 

design by predicting the output characteristics of given stockpile parameters, Kumral [24] 

incorporated multiple regression and genetic algorithms into optimization of stockpile design. In 

particular, there have been increasingly many applications of statistical methods and mathematical 

models in the optimization of metallurgical and minerals engineering operations [25-28]. The 

designing of a bed-blending operation could be relatively straightforward when there exists but 

one mineral grade that is of concern to the processing plant; however, this is rarely the case as raw 

material grades have a multivariate nature, for instance, certain types of iron ores might have more 

than six different chemical compositions that need to be homogenized [29, 30]. Therefore, 

challenges arise in situations where there are different levels of variations across the material 

grades that together make up the stockpile input. Consequently, this research proposes the 
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utilization of PCA, which is a dimension reduction technique that has been widely applied in many 

fields including image and signal processing, statistical mechanics and multivariate quality control 

etc. By introducing principal component analysis (PCA) to this problem, it is possible to reduce 

the number of varying materials to a much smaller value, while preserving most of the information 

contained from the original data, and thereby facilitate designing of the stockpile with minimum 

loss of information. This research is conducted in three primary steps: 

i. The principal component analysis is performed on the input data, projecting it to lower 

dimension space while retaining most of the information. The input data used in this chapter is a 

serially correlated dataset with realistic statistical properties that could well occur in a real-world 

problem. 

ii. A computer algorithm is built to simulate the process of bed-blending, where stacking and 

reclaiming are mimicked by laying down discrete blocks of unit weight and volume to form a 

cuboid and then slicing across its lengths. The stockpile simulator computes the input and output 

variances of all the material grades, including those of the principal components’. 

iii. Multiple regression is used to find the relationships between the response and the predictors, 

with the response being the variance reduction ratio, and the predictors being stockpile design 

parameters. This step is repeated for all the input materials including the principal components. 

 

3.2 Methodology of PCA and Stockpile Simulator 

3.2.1 Principle Component Analysis  

Principal component analysis (PCA) is a multivariate statistical/machine learning technique that 

seeks to reduce p-dimensional correlated variables to a set of ordered and uncorrelated k-

dimensional linear projections. Mathematically it is related to finding the spectral/eigen 

decomposition of the positive-semidefinite variance-covariance matrix or the singular value 

decomposition (SVD) of the rectangular data matrix. 

3.2.2 Spectral Decomposition of the Variance-Covariance Matrix 

Let X ∈ ℝ n×p be a data matrix where n represents the number of observations and p the number of 

variables with n > p. 𝑿c is the mean-centred data matrix with Xc = 𝑿 -1n μ
T, with 1n being a n×1 

column vector of 1’s and 𝝁𝑇 being the 1 × 𝑝 row vector denoting the variable means. Let xc be 

the row vector representing the variables xc = [x1 x2 …  xp]. The variance-covariance matrix can 
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then be found by: 

 𝜮 =  
1

𝑛
𝑿𝑐

𝑇𝑿𝒄  =  

[
 
 
 
 
𝜎1

2 𝜎12 ⋯ 𝜎1𝑝

𝜎21 𝜎2
2 ⋯ 𝜎2𝑝

⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝

2
]
 
 
 
 

 (3.2.1) 

The variance-covariance matrix is symmetric and positive semidefinite with the diagonal entries 

being the variances of each variable and the rest being covariances between variables. The 

variance-covariance matrix can then be used to solve for its eigenvectors (v) and their 

corresponding eigenvalues (λ) by finding its spectral decomposition, i.e. 

𝜮 =  𝑽𝑬𝑽𝑇 (3.2.2) 

By definition of the spectral decomposition, the columns of the orthogonal matrix V are the 

eigenvalues of Σ  and E  is a diagonal matrix with its diagonal entries being the corresponding 

eigenvalues in descending order. This could be seen by multiplying V to the right on equation 

(3.2.2), which results to 𝜮𝑽 = 𝑽𝑬𝑽𝑇𝑽 = 𝑽𝑬, and by looking at the columns of V and diagonal 

entries of E, Σvi = λivi . The p eigenvectors resulting from the spectral decomposition are 

orthogonal and thereby linearly independent and forms a p dimensional space. Let the reduced k 

linear projections be ξ, with ξ = [ξ
1
 ξ

2
 ⋯ ξ

k
].   

𝝃𝑘 =  𝒗𝑘
𝑇𝒙𝑐 =  𝒗𝑘1𝒙1 + 𝒗𝑘2𝒙2 + ⋯+ 𝒗𝑘𝑝𝒙𝑝 (3.2.3) 

The variance-covariance matrix of the transformed data ξ is a diagonal matrix of eigenvalues. 

𝑣𝑎𝑟(𝝃)  =  𝑣𝑎𝑟(𝑽𝑇𝒙𝑐)  =  𝑽𝑇𝑣𝑎𝑟(𝒙𝑐)𝑽 =  𝑽𝑇𝑽𝑬𝑽𝑇𝑽 =  𝑬 (3.2.4) 

Therefore, it is evident that the k-components of ξ are uncorrelated, and their variances are the 

eigenvalues. The proportion of variance explained by the reduced k-dimensional principal 

components is given by 𝑉𝑎𝑟𝑒𝑥𝑝 =
∑ 𝜆𝑖

𝑘
𝑖

∑ 𝜆𝑖
𝑛
𝑖

. 

3.2.3 Singular Value Decomposition 

A unique singular value decomposition exists for any real matrix X ∈ ℝn ×p. 

𝑿 =  𝑼𝑫𝑽𝑇 (3.2.5) 

Where 𝑼 ∈  ℝ𝑛×𝑛 and 𝑽 ∈  ℝ𝑝×𝑝 are orthogonal matrices. The columns of U are called the left 

singular vectors and those of V right singular vectors. 𝑫 ∈  ℝ𝑛×𝑝 has positive singular values only 

for its diagonal entries, and the number of diagonal entries is equal to rank(X) . It is generally 

assumed in this thesis that n > p holds for the data matrix X. Finding the SVD of X is associated 

with spectral decompositions of the matrices 𝑿𝑇𝑿 and 𝑿𝑿𝑇. 

The right singular vectors V are the eigenvectors of the matrix 𝑿𝑇𝑿 as shown in equation (3.2.6). 
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𝑿𝑇𝑿 =  𝑽𝑫𝑇𝑼𝑇𝑼𝑫𝑽𝑇 =  𝑽(𝑫𝑇𝑫)𝑽𝑇 
(3.2.6) 

𝑿𝑇𝑿𝑽 =  𝑽(𝑫𝑇𝑫)𝑝×𝑝 

The left singular vectors 𝑼 are the eigenvectors of the matrix 𝑿𝑿𝑇 as shown in equation (3.2.7). 

𝑿𝑿𝑇 =  𝑼𝑫𝑽𝑇𝑽𝑫𝑇𝑼𝑇 =  𝑼(𝑫𝑫𝑇)𝑼𝑇 
(3.2.7) 

𝑿𝑿𝑇𝑼 =  𝑼(𝑫𝑇𝑫)𝑛×𝑛 

Equation (8) displays the SVD of the data matrix 𝑿 when it has full column rank with n > p, where 

ui,  i ∈ {1,2,…,n} is the ith column of the matrix of left singular vectors U and 𝒗𝑗
𝑇, j ∈ {1,2,…,p} is 

the jth row of the matrix of right singular vectors V. The upper partition of matrix D is a p by p 

diagonal matrix of singular values in descending order and the lower patriation is a (n-p) by p 

matrix of zeros. 

 X =UDVT=[u1 u2 ⋯ un ]

[
 
 
 
 
 
 
 
σ1 0 0 0 ⋯
0 σ2 0 0 ⋯
0 0 σ3 0 ⋯
⋮ ⋮ ⋮ ⋱ ⋯
0 ⋮ ⋮ ⋮ σp

0 ⋮ ⋮ ⋮ 0

⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ ⋯ ⋯ 0 ]

 
 
 
 
 
 
 

[
 
 
 
v1

T

v2
T

⋮
vp

T
]
 
 
 

=σ1u1v1
T+σ2u2v2

T⋯+σpupvp
T= ∑ σiuivi

Tp

i   (3.2.8) 

The result is p rank-1 matrices with linearly dependent rows and columns, which represents the 

principal components in descending importance. 

Computationally, SVD and spectral decomposition are similar. SVD can be computed via the QR-

SVD algorithm whereas the spectral decomposition can be found by the symmetric QR-algorithm. 

Both algorithms are based on orthogonal similarity transformations which preserve eigenvalues. 

The algorithms are iterative as for eigenvalue problems with p greater or equal to five, no general 

formula exists for the roots of the characteristic polynomial. In this case, the symmetric QR 

algorithm converges faster. However, SVD is more numerically stable as explicitly forming the 

variance-covariance matrix unnecessarily enlarges the condition number of the problem.  

3.2.4 Stockpile Simulator 

This chapter of the research looks into the effects of chevron and windrow stacking methods across 

a variety of different stockpile configurations. Simply put, chevron stacking method is done by 

stacking materials horizontally in one direction followed by stacking another layer of material on 

top in the opposite direction. Windrow stacking method puts down the materials in parallel rows 

with triangular cross-sections and then stacks more rows on top between the gaps using the 

multiple peaks. Chevron stacking tends to lead to particle segregation, whereas the windrow 

method does not bring about such concerns as it reduces fluctuations in particle size distribution 

by traversing the stacker much more frequently [24]. Due to the complexity of blending operations 
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in real life, it is very difficult, if not impossible, to build a model that perfectly replicates their 

effects. Hence relatively simple linear block models are built, in MATLAB, to simulate the effects 

of chevron and windrow blending methods. Similar to the simulator developed by Marques 2013, 

the stockpile simulator in this research is essentially a homogenization simulator for linear cuboid 

stockpile [31]. The input to the simulator is a series of predefined mining sequences, and the output 

is the blocks re-arranged by the algorithm. The simulated stockpiles are defined by three 

parameters, namely the stockpile height (h), length (l) and width (w). The stockpile capacity can 

be found as Capacity = h × l × w. Chevron stockpiles are simulated by laying down blocks along 

the direction of the stockpile length until the predefined stockpile length (l) is reached, then laying 

more blocks on the next height level in the opposite direction. Stockpile widths are the simulated 

chevron stockpiles are set to 1. In the case of the windrow stockpiles, blocks are laid down in the 

direction of the stockpile length, when the row is filled (stockpile length is reached), another row 

is added in the stockpile width direction, but blocks in the row are laid down in a direction opposite 

to the previous row. This process is repeated until the stockpile width is reached, after which more 

rows of blocks are put down on top but with rows and blocks in a row laid down in opposite 

directions. In other words, the direction of laying down blocks reverse with each increment of 

stockpile width, and direction of putting down rows of blocks reverse with each increment of 

stockpile height. This process is repeated until the stockpile height is reached. The reclaiming 

process is simulated by taking the average grades of all blocks in the same reclaiming slice, i.e., 

all blocks with the same stockpile length (l) value. In other terms, each reclaiming slice has h × w 

number of blocks, and the stockpile has a total of h layers with each layer having l × w blocks. 

Effect of the blending process is evaluated primarily using the Variance Reduction Ratio (VRR). 

VRR is given by [22] 

VRR = 
σout

2

σin
2

 (3.2.9) 

Where 𝜎𝑜𝑢𝑡
2  and 𝜎𝑖𝑛

2  are, respectively, the output and input variances. It is of paramount importance 

that the VRR is calculated based on the same weight or volume, and in the case of this chapter, the 

number of blocks of material. Since the output of the simulation finds takes the average grade of 

all blocks within the same reclaiming slice, mean of the same number of blocks is calculated while 

finding the input variance.  
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The multiple numbers of different stockpile configurations are tested for the two stacking methods, 

and VRR value is calculated for each variable in each configuration scenario. Illustration of 

chevron and windrow stockpiles are shown in Figure 3.1 and Figure 3.2 respectively. 

 

 

Figure 3.1. Chevron stockpile illustration 
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Figure 3.2. Windrow stockpile illustration 

 

3.3 Bed Blending Case Study 

3.3.1 Input Data and PCA Results 

The case study has a data input of 15,000 blocks containing grade information for iron, silica, 

alumina, and lime. The input data was briefly analysed and run through the PCA algorithm in R. 
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Figure 3.3. Scatterplot matrix of case study input data 

 

Figure 3.3 shows the scatterplot matrix for the input data, with the lower left panels being 

scatterplots, diagonal panels being histograms of each variable and upper right panels being 

correlations between variables. It could be observed that the input variables, i.e., mineral grades 

have very complex relationships with each other and are highly correlated, except for lime.  

PCA is conducted on the dataset using the prcomp() function in R, the data matrix is centred and 

scaled and PCA is done via the Singular Value Decomposition (SVD) method. Table 3.1 shows the 

proportion of variance explained by each of the principal components. Since PC1 along only 

accounts for 54.3% of the original variation in the dataset, the first two principal components are 

used so that approximately 80% of the variation is preserved. 

Table 3.1. Importance of principal components 

 Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Principal 

component 4 

Standard deviation 1.474 0.990 0.807 0.443 

Proportion of Variance 0.543 0.245 0.163 0.049 

Cumulative Proportion 0.543 0.788 0.951 1.000 

 

Table 3.2 displays the principal component loadings which are essentially sorted eigenvectors 
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based on their corresponding eigenvalue in descending order. The principal components are linear 

combinations of the original variables and the loadings represent the relative coefficients. In other 

words, variables that have large loadings contribute more to a certain principal component. In the 

case of this dataset, iron and alumina are the primary contributors to PC1 while lime contributes 

overwhelmingly to PC2. 

Table 3.2. Principal component loadings 

 Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Principal 

component 4 

Iron 0.576 0.200 0.506 0.610 

Alumina -0.631 -0.090 -0.156 0.755 

Silica -0.496 0.036 0.835 -0.237 

Lime -0.158 0.975 -0.149 -0.046 

 

Fundamentally Table 3.2 means the two principal components used to reconstruct the data have 

forms as follows: 

PC1 = 0.576 × Iron - 0.631 × Alumina - 0.496 × Silica - 0.158 × Lime 
(3.3.1) 

PC2 = 0.2 × Iron - 0.09 × Alumina + 0.036 × Silica + 0.975 × Lime 

Figure 3.4 is a biplot of the principal component scores i.e. the transformed/reduced data. The x 

and y-axis represent standardized PC1 and PC2 scores respectively. The four vectors are the 

transformed variables, which are essentially original variables rebuilt with the chosen principal 

components. Quality of representation of each vector by the chosen two PCs is displayed in 

different colours based on their respective squared cosine values. For any given variable, the sum 

of the squared cosines from all PCs should be equal to one. Since the reduced data only consists 

of two PCs, the better a variable is represented by these two PCs, the closer is it to the 

circumference of the circle [32]. For this dataset, the first two principal components represent fairly 

well lime, alumina, and iron, but some of the information from silica is lost from the transformation. 

The correlations between variables are largely preserved as can be told from the angles between 

vectors. 
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Figure 3.4. Principal component biplot 

 

3.3.2 Output Data Analysis 

45 stockpile scenarios in total were generated, 15 of them being chevron and the rest windrow, 

half of the windrow scenarios were created by switching the values of stockpile height and width. 

For all scenarios, the stockpile capacity is kept at a constant of 15,000 blocks. The input data and 

the principal components are run through the stockpile simulator and the resulting VRR values are 

shown in Table 3.3 and Table 3.4. 
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Table 3.3. Chevron stockpile output 

Height Length Width VRRIron VRRSilic

a 

VRRAlu

mina 

VRRLim

e 

VRRPC1 VRRPC2 
5 3000 1 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 
6 2500 1 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

8 1875 1 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

10 1500 1 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

12 1250 1 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

15 1000 1 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

20 750 1 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

24 625 1 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

25 600 1 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

30 500 1 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

40 375 1 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

50 300 1 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

60 250 1 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

75 200 1 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

100 150 1 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 
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Table 3.4. Windrow stockpile output 

Height Length Width VRRIron VRRSilic

a 

VRRAlu

mina 

VRRLim

e 

VRRPC1 VRRPC2 
1 3000 5 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 
5 3000 1 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 

2 2500 3 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

3 2500 2 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

2 1875 4 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

4 1875 2 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

2 1500 5 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

5 1500 2 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

2 1250 6 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

6 1250 2 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

3 1000 5 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

5 1000 3 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

4 750 5 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

5 750 4 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

3 625 8 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

8 625 3 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

5 600 5 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

5 600 5 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

3 500 10 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

10 500 3 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

4 375 10 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

10 375 4 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

2 300 25 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

25 300 2 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

3 250 20 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

20 250 3 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

3 200 25 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

25 200 3 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

5 150 20 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 

20 150 5 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 

 

For the windrow scenarios, it could be seen just by switching the values for width and height does 

not change the VRR values at all. Moreover, for both windrow and chevron stacking, VRR is 

generally minimized by reducing the stockpile length, which is equivalent to increasing the number 

of blocks in each reclaiming slice.  
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3.3.3 Autocorrelation and the Effectiveness of Blending 

The effectiveness of blending operations regarding this particular dataset is very high with 

generally very low VRR values as the data is strongly autocorrelated, as shown in Figure 3.5. The 

number of lags was chosen to be one-tenth the size of the dataset which is 1500. It could be seen 

that there exists significant autocorrelation for all 4 variables, far exceeding the 95% quantile for 

noise. 

 

Figure 3.5. Autocorrelation plot for original dataset 

 

An alternative simulated dataset was generated through Monte-Carlo simulation in R, removing 

autocorrelation while preserving the correlation between variables. The scatterplot matrix 

depicting the simulated data is shown in Figure 3.6. Figure 3.7 shows the autocorrelation of the 

variables in the simulated data.  
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Figure 3.6. Scatterplot matrix of simulated data 

 

 

Figure 3.7. Autocorrelation plot of simulated data 

 

Variables of the simulated data exhibit no autocorrelation as the plot follows no obvious pattern 



24 

 

and lies almost entirely within the 95% noise region. The simulated data were run through the 

same stockpile simulator with identical stockpile configurations. The results are shown in Table 

3.5 and Table 3.6. 

 

Table 3.5. Chevron stockpile output – simulated data 

Height Length Width VRRIron VRRAlumina VRRSilica VRRLime VRRPC1 VRRPC2 
5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970 
6 2500 1 0.995 1.013 1.052 0.950 1.020 0.961 

8 1875 1 1.028 1.014 1.052 0.913 1.011 0.931 

10 1500 1 0.982 0.979 1.121 0.909 1.020 0.914 

12 1250 1 0.996 1.034 1.086 0.924 1.032 0.923 

15 1000 1 1.067 0.986 1.140 0.907 1.058 0.913 

20 750 1 1.026 0.972 1.103 0.851 1.017 0.877 

24 625 1 1.071 1.120 1.169 0.915 1.110 0.953 

25 600 1 1.265 1.115 1.148 0.849 1.186 0.847 

30 500 1 1.076 0.956 1.130 0.813 1.013 0.836 

40 375 1 1.176 1.003 1.144 0.865 1.088 0.919 

50 300 1 1.225 1.123 0.962 0.818 1.103 0.841 

60 250 1 1.216 1.004 0.994 0.851 1.016 0.932 

75 200 1 1.679 1.188 1.092 0.864 1.317 0.871 

100 150 1 1.561 1.443 1.003 0.741 1.375 0.809 
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Table 3.6. Windrow stockpile output – simulated data 

Height Length Width VRRIron VRRAlu

mina 

VRRSilic

a 

VRRLim

e 

VRRPC1 VRRPC2 
1 3000 5 1.015 1.028 1.093 0.965 1.052 0.970 
5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970 

2 2500 3 0.995 1.013 1.052 0.950 1.020 0.961 

3 2500 2 0.995 1.013 1.052 0.950 1.020 0.961 

2 1875 4 1.028 1.014 1.052 0.913 1.011 0.931 

4 1875 2 1.028 1.014 1.052 0.913 1.011 0.931 

2 1500 5 0.982 0.979 1.121 0.909 1.020 0.914 

5 1500 2 0.982 0.979 1.121 0.909 1.020 0.914 

2 1250 6 0.996 1.034 1.086 0.924 1.032 0.923 

6 1250 2 0.996 1.034 1.086 0.924 1.032 0.923 

3 1000 5 1.067 0.986 1.140 0.907 1.058 0.913 

5 1000 3 1.067 0.986 1.140 0.907 1.058 0.913 

4 750 5 1.026 0.972 1.103 0.851 1.017 0.877 

5 750 4 1.026 0.972 1.103 0.851 1.017 0.877 

3 625 8 1.071 1.120 1.169 0.915 1.110 0.953 

8 625 3 1.071 1.120 1.169 0.915 1.110 0.953 

5 600 5 1.265 1.115 1.148 0.849 1.186 0.847 

5 600 5 1.265 1.115 1.148 0.849 1.186 0.847 

3 500 10 1.076 0.956 1.130 0.813 1.013 0.836 

10 500 3 1.076 0.956 1.130 0.813 1.013 0.836 

4 375 10 1.176 1.003 1.144 0.865 1.088 0.919 

10 375 4 1.176 1.003 1.144 0.865 1.088 0.919 

2 300 25 1.225 1.123 0.962 0.818 1.103 0.841 

25 300 2 1.225 1.123 0.962 0.818 1.103 0.841 

3 250 20 1.216 1.004 0.994 0.851 1.016 0.932 

20 250 3 1.216 1.004 0.994 0.851 1.016 0.932 

3 200 25 1.679 1.188 1.092 0.864 1.317 0.871 

25 200 3 1.679 1.188 1.092 0.864 1.317 0.871 

5 150 20 1.561 1.443 1.003 0.741 1.375 0.809 

20 150 5 1.561 1.443 1.003 0.741 1.375 0.809 

 

VRR values for the simulated scenarios all approximate 1, which means that for a dataset without 

autocorrelation, the effects of blending operations are insignificant. 

3.3.4 Regression Analysis 

We used multiple regression to identify the relationships between the VRRs of the input materials 

and the design parameters of the stockpile and used stepwise regression to choose regressors that 

best describe the models. The possible predictor variables are the stockpile length, width, and 

height, is windrow (a binary factor variable that equals 0 if the chevron stockpile is used, 1 

otherwise), as well as all their first-order interactions and the second-order terms of stockpile 
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length, width and height. For each response variable, a model was forwardly selected from an 

initial model with intercepts only, backwardly eliminated another model from an initial model with 

all possible predictors, and selected a third and final model stepwise that initially consists of only 

the four main effects. The variable selection criterion is based on Akaike's information criterion 

(AIC), which measures the closeness between the sample fit and true model fit, where the relative 

closeness is defined as the Kullback–Leibler divergence from the true model [18]. The AIC can be 

calculated as follows: AIC = −2(Maximum loglikelihood − Number of parameters) , and models 

with lower AIC values are generally preferred. We performed this process using R software with 

the stepAIC() function. Table 3.7 shows an illustration of the process of finding the best model for 

VRRIron.   
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Table 3.8 shows the final results for all the response variables. 

Table 3.7. Stepwise VRRIron model selection  

VRR_iron_step1$anova 

Initial Model: vrr_iron ~ 1 

Final Model: vrr_iron ~ length + I(length^2) 

Step name Df Deviance Resid. Df Resid. Dev AIC 

1 — — — 44 0.145221 −256.13 

2 + length 1 0.07402 43 0.071201 −286.20 

3 + I(length^2) 1 0.008424 42 0.062777 −289.87 

 

VRR_iron_step2$anova 

Initial Model: vrr_iron ~ height + length + width + iswindrow 

Final Model: vrr_iron ~ height + length + width + I(length^2) + height:width 

Step name Df Deviance Resid. Df Resid. Dev AIC 

1 — — — 40 0.071188 −280.21 

2 + I(length^2) 1 0.012905 39 0.058283 −287.21 

3 + height:width 1 0.006292 38 0.051991 −290.35 

4 – iswindrow 1 1.03  10–5 39 0.052002 −292.34 

 

VRR_iron_step3$anova 

Initial Model: vrr_iron ~ (height + length + width + iswindrow)^2 + I(height^2) + I(length^2) + I(width^2) 

Final Model: 

vrr_iron ~ height + length + width + iswindrow + I(length^2) + height:length + height:iswindrow + length:width 

+ length:iswindrow 

Step name Df Deviance Resid. Df Resid. Dev AIC 

1 — — — 32 0.039573 −290.63 

2 – width:iswindrow 0 0 32 0.039573 −290.63 

3 – I(width^2) 1 0.000717 33 0.040291 −291.82 

4 – height:width 1 0.001334 34 0.041625 −292.36 

5 – I(height^2) 1 0.001859 35 0.043484 −292.39 

  



28 

 

Table 3.8. Regression results 

Models 
Adjusted 

R-squared 
AIC 

VRRIron=1.294 ×10–3 × height + 2.384 ×10–4 × length  + 5.875 × 10–3 × width – 3.319 × 

10–1 × IsWindrow  – 4.835 × 10–8 × length
2
– 1.913 × 10–5 × (height × length)  + 4.681 × 

10–3 × (height × IsWindrow) + 6.723 × 10–5 × (length × IsWindrow) – 1.913 × 10–5 × 

(length × width) + 1.412 ×10–1 

 

0.623 −292.4 

VRRAlumina = 1.651 × 10–4 × height + 9.612 × 10–5 × length 

– 1.811 ×10–8 × length
2
–3.269 × 10–2 

0.57 −357.0 

VRRSilica = 1.171 ×10–8 × length
2 – 1.571×10–3 0.75 −361.4 

VRRLime= –6.454 × 10–4 × height + 1.187 ×10–4 × length + 4.283 × 

10
–3 × width – 3.319 × 10

–1 × IsWindrow – 2.693 × 10
–5 × (height × length) + 3.638 × 10

–3 × 

(height × IsWindrow) + 9.391 × 10–5 × (length × IsWindrow) – 2.693 × 10–5 × 

(length × width) + 3.338 × 10–1 

0.73 −287.1 

VRRPC1=1.166 × 10–4× height + 1.585 × 10–4 × length + 4.187 × 10–4 × width – 3.229 × 

10–8 × length
2
 + 8.414 × 10–4 × (height × width) – 1.015 ×10–1 

0.67 −321.5 

VRRPC2 =– 6.338 × 10–4 × height + 1.240 × 10–4 × length+ 4.601 × 10–3 × width – 3.840 × 

10–1 × IsWindrow– 3.122 × 10–5 × (height × length) + 3.967 × 10–3 × 

(height × IsWindrow)+ 1.090 × 10–4 × (length × IsWindrow) – 3.122 × 10–5 × (length × width) 

+ 3.986 × 10–1 

0.69 −277.1 

 

The resulting model for the principal components is similar to but differs from those for the rest 

of the variables. Optimizing the principal components rather than the original variables will lead 

to different stockpile design parameters. However, as PCA retains as much information as possible 

during the transformation, the design that minimizes the VRR of the PCs is clearly the 

mathematically optimal design that aims to minimize the variances for all input variables. This 

effectively addresses the issue of having to assign a weight or importance to each variable. 

We note that the interaction term for the stockpile height and width is unique for the VRRPC1 

model but otherwise, minimizing VRRPC1  and VRRPC2  is equivalent to minimizing ∑w
i
VRRi ,, 

where 𝑤𝑖 refers to the weight of each variable and should be set to equal to the sum of the factor 

loadings of the principal components.  
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3.4 Chapter Summary 

Principal component analysis (PCA) can be used in conjunction with multiple regression to design 

and optimize stockpiles when there are multiple types of materials whose output grades must be 

controlled. The performance and benefit of applying PCA may potentially increase with the 

number of material-grade variables studied. Input data that are autocorrelated have a significant 

impact on the performance of the stockpiles, with reduced variance reduction ratios (VRRs) for 

increased levels of autocorrelation. The multiple regression results of Table 5.2 have relatively low 

adjusted R-squared values, which may be due to some of the variance being uniquely determined 

by the degree of autocorrelation in the block input. Nevertheless, it was found that the VRR is 

generally reduced with an increasing number of reclamation slices (length) and that the 

performances of the windrow and chevron methods do not differ significantly. However, additional 

scenarios and data input are needed to better determine the effects of the design parameters on the 

VRR. 
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Chapter 4                                                                                

Linear and Generalized Models in Quality Control, 

Reliability and Safety in Mining Engineering 

4.1 Modelling of Non-linear Relationships 

4.1.1 Applications of Regression Analysis in Mining Engineering 

The optimization of mining systems including reliability of mining equipment, safety of assets and 

personnel has become an increasingly important topic. The costliness of some large mining 

equipment means that downtimes or failures tend to be associated with high costs. Other issues 

such as improving occupational safety by studying accidents in workplace and optimizing product 

quality characteristics are also imperative in augmenting the overall profitability of a mining 

operation [33, 34]. In these regards, statistical techniques including regression analysis are helpful 

both in predicting future values and in helping researchers understand the underlying causal 

relationships among variables. Indeed, in recent years numerous advanced regression and machine 

learning techniques are put forward to better analyze data in engineering quality control, personnel 

safety and equipment reliability analysis [35-37]. However, nonlinear relationships among 

variables is a very commonly encountered phenomenon when modelling these kinds of 

engineering systems. While nonparametric machine learning techniques tend to have fairly 

accurate prediction results, parametric models such as the generalized linear models are a lot more 

interpretable and therefore could also be used to study the interactions between variables [38]. This 

study aims to show that generalized linear models are suitable tools in modelling engineering 

problems in many cases, including many potential problems in the mining industry, such as safety 

related issues, optimization of quality characteristics of systems or products and equipment 

reliability. 

4.1.2 The Challenger Example  

Nonlinear relationships among variables is a very common phenomenon in many disciplines of 

engineering. A classic example is the O-ring data which came from experiments conducted on the 

O-rings that eventually led to the Challenger space shuttle disaster. As shown in Figure 4.1, 

generalized linear could successfully capture the discreteness within the data, when the 

assumptions of linear model do no hold. 
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Figure 4.1. Illustration of linear model and generalized linear model for the O-ring data  

(Linear model in black and logistic GLM in red) 

 

This study aims to show that generalized linear models are suitable tools in modelling engineering 

problems in many cases, including many potential problems in the mining industry, such as safety 

related issues and equipment reliability. 

 

4.2 Methodology and Mathematical Intuitions 

4.2.1 The Ordinary Linear Model 

The most commonly used linear model, i.e. the ordinary linear model, has the following form: 

𝒚 = 𝑿𝜷 + 𝜺 (4.2.1) 

Where 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇  is the 𝑛 × 1  vector of independent observations, with 𝝁 = 𝔼(𝒚) =

(𝜇1, . . . , 𝜇𝑛)𝑇, 𝑿 ∈ ℝ𝑛×𝑝 is the design matrix, 𝜷 ∈ ℝ𝑝 is the vector of predictors and 𝜺 ∈ ℝ𝑛 is the 

error term which represents both the measurement errors and random fluctuations. Generally, it is 

assumed that the model has homoscedastic error with mean 0, i.e. 𝔼(𝜺) = 𝟎 with 𝑣𝑎𝑟(𝜺) = 𝜎2𝑰. 

We are interested in obtaining the best fitting 𝜷̂ and 𝝁̂ = 𝑿𝜷̂ with respect to the ordinary linear 

model. Intuitively this could be achieved by minimizing the residual, i.e. 𝜷̂  = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜷

 ‖𝒚 −

𝑿𝜷̂‖
𝟐

𝟐
 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝜷
 ‖𝝐̂‖𝟐

𝟐 . Consider the QR-decomposition of the design matrix, given by 𝑿 =

𝑸 [
𝑹
𝟎
] , where 𝑸 = [𝑸1

𝑝
 𝑸2
𝑛−𝑝

] ∈ ℝ𝑛×𝑛  is orthogonal and 𝑹 ∈ ℝ𝑝×𝑝  is upper triangular. It follows 

that: 
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‖𝒚 − 𝑿𝜷̂‖
𝟐

𝟐
= ‖𝑸𝑇(𝒚 − 𝑿𝜷̂)‖

𝟐

𝟐
= ‖𝑸𝑇𝒚 − [

𝑹
𝟎

] 𝜷̂‖
𝟐

𝟐

= ‖
𝑸1

𝑇𝒚 − 𝑹𝜷̂

𝑸2
𝑇𝒚 − 𝟎

‖

2

2

= ‖𝑸1
𝑇𝒚 − 𝑹𝜷̂‖

𝟐

𝟐
+ ‖𝑸2

𝑇𝒚‖
2

2
 (4.2.2) 

It is obvious that the terms in Equation (4.2.2) is minimized when ‖𝑸1
𝑇𝒚 − 𝑹𝜷̂‖

𝟐

𝟐
= 0  and 

consequently 𝑸1
𝑇𝒚 = 𝑹𝜷̂ . It follows that the optimal residual is within the range of 𝑸2 , and 

therefore the orthogonal complement of the design matrix, as shown in Equation (4.2.3).  

𝝐̂ = 𝒚 − 𝑿𝜷̂ = 𝒚 − 𝑸1𝑹𝜷̂

= 𝒚 − 𝑸1𝑸𝟏
𝑇𝒚 = (𝑰 − 𝑸1𝑸1

𝑇)𝒚

= 𝑸2𝑸2
𝑇𝒚 ∈ ℛ⊥(𝑿)

 (4.2.3) 

It follows that an explicit solution for 𝜷̂ could be found in Equation (4.2.4). This way of solving 

for 𝜷̂ is called the normal equation method. 

𝑿𝑇𝝐̂ = 𝑿𝑇𝒚 − 𝑿𝑇𝑿𝜷̂ = 𝟎

𝑿𝑇𝑿𝜷̂ = 𝑿𝑇𝒚

𝜷̂ = (𝑿𝑇𝑿)−𝟏𝑿𝑇𝒚 = 𝑿†𝒚

𝝁̂ = 𝑿𝜷̂ = 𝑿𝑿†𝒚 = 𝑯𝒀

 (4.2.4) 

Where 𝑯 = 𝑿(𝑿𝑇𝑿)−1𝑿𝑇is the hat matrix, and 𝑿†
 is the Moore-Penrose generalized inverse of 𝑿. 

The predicted value has form: 𝝁̂ = 𝑿(𝑿𝑇𝑿)−1𝑿𝑇𝒚 = 𝑿𝑿†𝒚 = 𝑃𝑟𝑜𝑗
ℛ(𝑿)

∙ 𝒚, i.e. The least squares 

normal equations make predictions by projecting of the response onto the column space of the 

design matrix. A geometric illustration is displayed in Figure 4.2. 

 

Figure 4.2. Illustration of data projection by least squares normal equations 

 

By taking the squared two norms of the orthogonally decomposed vectors, using Pythagorean 
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theorem and some algebraic manipulation, one can arrive at the sum-of-squares decomposition as 

shown in Equation (4.2.5). 

𝒚 = 𝑿𝜷̂ + 𝝐̂ = 𝝁̂ + 𝝐̂

𝒚 − 𝒚 ⋅ 𝟙𝑛 = 𝒚̂ − 𝒚 ⋅ 𝟙𝑛 + 𝝐̂  

||𝒚 − 𝒚 ⋅ 𝟙𝑛||2
2 = ||𝒚̂ − 𝒚 ⋅ 𝟙𝑛||2

2 + ||𝝐̂||2
2  

∑(

𝑛

𝑖=1

𝒚𝒊 − 𝒚)2 = ∑(

𝑛

𝑖=1

𝒚̂ − 𝒚)2 + ∑(

𝑛

𝑖=1

𝒚 − 𝒚̂)2

𝑆𝑆𝑇 = 𝑆𝑆𝑅𝑒𝑔 + 𝑆𝑆𝑅𝑒𝑠

 (4.2.5) 

Where the Total Sum of Squares (SST) is the variation in the data explained by the intercept only 

model, Regression Sum of Squares (SSReg) is the variation in the data explained by the full model 

and Residual Sum of Squares (SSR) is the variation in the data the is left unexplained. The 

predictive power of a linear model could be summarized by the well-known R-squared metric, 

with 𝑅2 = 
𝑆𝑆𝑅𝑒𝑔

𝑆𝑆𝑇
 , signifying the percentage of variation in the data that is explained by the 

regression coefficients. 

4.2.2 Generalized Linear Models 

4.2.2.1 Components of a GLM 

A generalized linear model has three components, a random component of response 𝒀 , with 

independent observations, that follows the exponential-dispersion family: 

𝑓𝒀(𝒚; 𝜃, 𝜙) = exp {
𝒚 ⋅ 𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝒚,𝜙)} (4.2.6) 

Where  𝜃  is termed the canonical parameter and 𝜙  the dispersion parameter. A systematic 

component made up of the 𝑛 × 𝑝  design matrix 𝑿  and 𝑝 -dimensional regression coefficients 𝜷 , 

with 𝜼 = 𝑿𝜷, and a monotone, differentiable link function 𝑔(∙) that maps the mean of the response 

to the linear predictor. In summary, a GLM has form as follows: 

𝑔[𝔼(𝒀)] = 𝑿𝜷 (4.2.7) 

The link function that maps the mean to the canonical parameter is called the canonical link and 

has many unique mathematical qualities. 

4.2.2.2 Maximum likelihood estimation 

Under the assumption that the distribution of 𝒀 is within the exponential-dispersion family, its 

mean and variance could be conveniently expressed with the corresponding canonical and 
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dispersion parameters 

𝔼(𝒀) = 𝑏′(𝜃)

𝑉𝑎𝑟(𝒀) = 𝑏″(𝜃)𝑎(𝜙)
 (4.2.8) 

The log-likelihood, as the sum of log-likelihoods of individual observations, is: 

𝑙(𝜷, 𝜙) = ∑𝑙𝑖

𝑛

𝑖=1

(𝜷,𝜙) = ∑
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎(𝜙)

𝑛

𝑖=1

+ 𝑐(𝑦𝑖, 𝜙𝑖) (4.2.9) 

In order to maximize the log-likelihood, one must first take the partial derivate with respect to 𝛽. 

By the chain rule: 

𝜕𝑙

𝜕𝛽𝑗
= ∑

𝜕𝑙𝑖
𝜕𝜃𝑖

𝑛

𝑖=1

𝜕𝜃𝑖

𝜕𝜇𝑖

𝜕𝜇𝑖

𝜕𝜂𝑖

𝜕𝜂𝑖

𝜕𝛽𝑗

= ∑
𝑦𝑖 − 𝜇𝑖

𝑎(𝜙)

𝑛

𝑖=1

⋅
1

𝑏″(𝜃𝑖)
⋅

1

𝑔′(𝜇𝑖)
⋅ 𝑿𝑖𝑗

= ∑
𝑦𝑖 − 𝜇𝑖

𝑣𝑎𝑟(𝑌𝑖)

𝑛

𝑖=1

1

𝑔′(𝜇𝑖)
𝑿𝑖𝑗

 (4.2.10) 

Therefore, the score equations, also known as likelihood equations, are: 

𝜕𝑙

𝜕𝛽𝑗
= ∑

𝑦𝑖 − 𝜇𝑖

𝑣𝑎𝑟(𝑌𝑖)

𝑛

𝑖=1

1

𝑔′(𝜇𝑖)
𝑿𝑖𝑗 = 0, 𝑗 = 1,2, … , 𝑝 (4.2.11) 

The score equations are functions of 𝛽  through the fitted means. There exist no closed form 

solution hence iterative methods must be used to solve these equations. A very commonly used 

iterative method to solve non-linear equations is the Newton-Raphson method.  

The Newton-Raphson method functions as follows: 

• Generate some initial solutions 𝛽(0) 

• At the neighbourhood of 𝛽(𝑖) , with i being the iteration number, use a second-order 

multivariate Taylor series expansion to approximate the likelihood function. As shown in 

Equation (4.2.12), where 𝒖 is the vector of score equations (first order derivatives) and 𝑯 

is the Hessian matrix of second order derivatives, with 𝑯𝑗𝑘 =
𝜕2𝑙

𝜕𝛽𝑗𝜕𝛽𝑘
. 
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𝑙(𝜷) = 𝑙(𝜷(𝑖)) +
𝒖(𝑖)𝑇

1!
(𝜷 − 𝜷(𝑖)) +

1

2!
(𝜷 − 𝜷(𝑖))𝑇𝑯(𝑖)(𝜷 − 𝜷(𝑖)) (4.2.12) 

The term is then maximized with respect to 𝜷 by taking derivative and setting to zero, arriving at: 

𝜷(𝑖+1) = 𝜷(𝑖) − [𝑯(𝑖)]−1𝒖(𝑖) (4.2.13) 

This process is repeated until per-iteration adjustment is smaller than a prespecified tolerance 

factor. 

Another way for estimation is to use the expected value of the hessian matrix. The method is called 

Fisher-scoring. The expected hessian is named the Fisher information matrix. Its properties are 

shown in Equation (4.2.14). 

𝓘𝑗𝑘(𝜷) = ∑𝔼

𝑛

𝑖=1

(−
𝜕2𝑙𝑖

𝜕𝛽𝑗𝜕𝛽𝑘
) = ∑𝔼

𝑛

𝑖=1

(
𝜕𝑙𝑖
𝜕𝛽𝑗

⋅
𝜕𝑙𝑖
𝜕𝛽𝑘

)

= ∑𝔼

𝑛

𝑖=1

[{
𝑌𝑖 − 𝜇𝑖

𝑣𝑎𝑟(𝑌𝑖)
}2 ⋅ (

𝜕𝜇𝑖

𝜕𝜂𝑖
)2𝑋𝑖𝑗𝑋𝑖𝑘]

= ∑𝑋𝑖𝑗

𝑛

𝑖=1

(
𝜕𝜇𝑖

𝜕𝜂𝑖
)2𝔼[{

𝑌𝑖 − 𝜇𝑖

𝑣𝑎𝑟(𝑌𝑖)
}2]𝑋𝑖𝑘

𝓘(𝜷) = 𝑿𝑇𝑾𝑿

 (4.2.14) 

Fisher scoring is the default method used to estimate parameters in GLMs because the hessian 

matrix isn’t always negative definite, while the Fisher information matrix is always symmetric 

positive definite. In fisher scoring, the adjustment per iteration uses a negative version of the Fisher 

information matrix. i.e. 𝜷(𝑖+1) = 𝜷(𝑖) + [𝓘(𝑖)]−1𝒖(𝑖) The inverse Fisher information matrix also 

coincide with the asymptotic variance-covariance matrix of the linear predictors. 

 

4.3 GLM Case Studies 

4.3.1 Gamma Regression in a Quality-Improving Experiment 

4.3.1.1 Problem statement and interpretation via linear models 

Suppose that a company is investigating the effect of the concentration of a certain chemical and 

two different mechanical treatments on the UCS of its product, in order to optimize design. A data 

set with 90 observations was collected, with UCS as the response, CON (Chemical concentration) 

as a continuous predictor and TRE (Mechanical treatment) as a factor predictor of two levels. A 
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scatter plot of the data is shown in Figure 4.3. 

 

Figure 4.3. Scatter plot UCS vs Chemical concentration 

A main-effect only model showed that the mechanical treatment, TRE, in fact isn’t a significant 

predictor of UCS, with a large p-value of 0.45. 

Table 4.1. Regression summary (LM identity) 

Model: UCS ~ CON + TRE 

AIC = 1430.895 R-squared = 0.3033 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -642.051 190.0251 -3.37877 0.001091 

CON 141.9753 23.30625 6.091728 2.96E-08 

TRE -121.461 161.2538 -0.75323 0.453346 

 

A subsequent model with only CON as predictor had smaller AIC of 1429, with R2 of 0.30 The 

regression line and residual plot of this linear regression model are shown in Figure 4.4. It could 

be seen that the relationship between the response and the predictor is clearly not linear, and the 

residuals do not center around zero, nor is the variance constant across the mean. 

 

 

Figure 4.4. Regression results of LM (identity) (a) Regression line (b) Residual plot 
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Yet another model could be fitted by log-transforming both the response and the continuous 

predictor. By the log-transformed model had a R2 of 0.92. As shown in Figure 4.5, the residuals 

plot showed significant improvement, with the mean generally centered around 0, but the constant 

variance assumption is not impeccable but holds approximately. 

Table 4.2. Regression summary (LM log-transform) 

Model: log(UCS) ~ CON 

AIC = 199.86 R-squared = 0.91 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.67617 0.198954 -8.42489 6.25E-13 

CON 0.788545 0.025094 31.42377 1.30E-49 

 

 

Figure 4.5. Regression results of LM (log-transform) (a) Regression line (b) Residual plot 

 

4.3.1.2 A GLM approach 

Since the data is skewed continuous and positive, it is reasonable to consider using a Gamma GLM. 

The gamma pdf has form as follows: 

𝑓𝒀(𝑦; 𝛼, 𝛽) =
𝛽𝛼

𝛤(𝛼)
𝑦𝛼−1𝑒𝑥𝑝{−𝛽𝑦} (4.3.1) 

A reparameterization of 𝑎 =
𝛼

𝛽
 and 𝑏 = 𝛼 allows it to be rewritten as a member of the exponential 

dispersion family: 
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𝑓𝒀(𝑦; 𝑎, 𝑏) =
𝑏𝑏

𝑎𝑏𝛤(𝑏)
𝑦𝑏−1𝑒𝑥𝑝{−

𝑏 ⋅ 𝑦

𝑎
}

= 𝑒𝑥𝑝{𝑏 𝑙𝑜𝑔(𝑏) − 𝑏 𝑙𝑜𝑔(𝑎) − 𝑙𝑜𝑔[𝛤(𝑏)] + (𝑏 − 1)𝑙𝑜𝑔(𝑦) −
𝑏 ⋅ 𝑦

𝑎
}

= 𝑒𝑥𝑝{
(−

1
𝑎) ⋅ 𝑦 − 𝑙𝑜𝑔(𝑎)

1
𝑏

+ 𝑏 𝑙𝑜𝑔(𝑏) − 𝑙𝑜𝑔[𝛤(𝑏)] + (𝑏 − 1)𝑙𝑜𝑔(𝑦)}

 (4.3.2) 

The mean and variance of the re-parameterized gamma pdf are: 

𝔼(𝒀) = 𝑏′(𝜃) = 𝑎

𝑣𝑎𝑟(𝒀) = 𝑏″(𝜃)𝑎(𝜙) =
𝑎2

𝑏

 (4.3.3) 

It could be observed that the variance is a quadratic function of the mean, as opposed to the normal 

pdf who’s mean and variance are independent. Therefore, the Gamma GLM could be used to model 

continuous, positive data whose variance increases with mean, which is applicable for this dataset. 

Table 4.3. Regression summary (GLM with inverse and log link functions) 

Model: UCS ~ CON Family = Gamma(link = ‘inverse’) 

AIC = 1108.8 

Null deviance: 324 on 89 degrees of freedom 

Residual deviance: 211.13 on 88 degrees of freedom 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.012474 0.001487 8.38676 7.49E-13 

CON -0.0009 0.000108 -8.29207 1.17E-12 

Model: UCS ~ CON Family = Gamma(link = ‘log’) 

AIC = 973.99 

Null deviance: 324 on 89 degrees of freedom 

Residual deviance: 60.17 on 88 degrees of freedom 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.05598 0.431234 -2.44875 0.016318 

CON 0.749549 0.054391 13.78074 1.08E-23 
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Figure 4.6. Regression results of Gamma GLM compared to LM (log-transform)  

 
Table 4.4. Interpretation of regression models 

Regression Model Interpretation 

Gamma GLM with inverse link 

1

𝔼(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
= 0.012 − 0.0009 ⋅ 𝐶𝑂𝑁 

Gamma GLM with log link 𝑙𝑜𝑔{𝔼(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)} = −1.06 + 0.75 ⋅ 𝐶𝑂𝑁 

LM with log-transformed response 𝔼{𝑙𝑜𝑔(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)} = −1.68 + 0.79 ⋅ 𝐶𝑂𝑁 

 

It should be noted that 𝑙𝑜𝑔{𝔼(𝑈𝐶𝑆)} ≠ 𝔼{𝑙𝑜𝑔(𝑈𝐶𝑆)} since the expectation is an integral, i.e.  

𝑙𝑜𝑔 [∫ 𝑦
𝑦∈𝑌

⋅ 𝑓𝑌(𝑦)𝑑𝑦]   ≠ ∫ 𝑙
𝑦∈𝑌

𝑜𝑔(𝑦) ⋅ 𝑓𝑌(𝑦)𝑑𝑦. In cases like this, gamma regression is the only 

way though which one may get direct estimate on the response. Hence the use of gamma regression 

in treating similar datasets in mining related problems should be promoted. 

 

4.3.2 Logistic Regression in an Occupational Safety Study 

4.3.2.1 Problem statement and the analysis of binary responses 

The second case study of this chapter is based on safety related data from a certain manufacturing 

facility. The study involves performing a voluntary safety intervention on a portion of the 151 

employees. After the safety intervention employees were monitored by their respective supervisors 

for 2 months, performance was evaluated by a binary variable, taking value 1 if an employee 

performed safety-breaching activities within the period, and 0 otherwise. The covariates used in 

this study are: INT: a 2-level factor representing if an employee undertook safety intervention; 
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SUP: a 2-level factor representing if an employee is a worker or a supervisor, and EXP, which 

represents the amount of working experience of the employee measured in months. The aim of the 

study is to investigate the relationship between an employee’s working experience and their safety 

behaviours, as well as if the designed safety intervention worked as intended. Since the responses 

are binary, binomial regression could be used to formulate the model. 

The probability mass function of Binomial distribution with probability of success 𝜋 and size 𝑚 

is: 𝑓𝑌(𝑦; 𝜋,𝑚) = (𝑚
𝑦
) 𝜋𝑦(1 − 𝜋)𝑚−𝑦, which could be reparametrized to an exponential-dispersion 

family form given that 𝑦 in this case represents not the number of success, but the proportion of 

success. The reparametrized form is: 

𝑓𝑌(𝑦; 𝜋,𝑚) = (
𝑚

𝑚𝑦
)𝜋𝑚𝑦(1 − 𝜋)𝑚−𝑚𝑦

= exp {
𝑦 𝑙𝑜𝑔

𝜋
1 − 𝜋 + log (1 − 𝜋)

1
𝑚

+ 𝑙𝑜𝑔 (
𝑚

𝑚𝑦
)} 

(4.3.4) 

As could be seen from Equation (4.3.4), the canonical parameter of the binomial distribution is 

 𝑙𝑜𝑔
𝜋

1−𝜋
. When the canonical link is used in binomial GLMs, the linear predictors conveniently 

represent the log-odds ratio. 

4.3.2.2 Logistic regression analysis 

A histogram depicting the working experience distribution of the studied employees are shown in 

Figure 4.7. As part of the exploratory analysis, the proportion of safety breach are plotted against 

different groups of employees and quantile values of experience, as shown Figure 4.7. 

 

Figure 4.7. Histogram of the safety intervention study data  
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It could be seen in the plot of observed means that there does indeed appear to be an effect of the 

safety intervention on the safety behavior of the employees, with the group of employees who 

participated in the safety intervention generally having a lowered proportion of committing safety 

breaches. As well as that, the group of employees that are supervisors also tend to breach safety 

regulations less often.  

 

 

Figure 4.8. Observed mean for each group 

 

A backward model selection was carried out, starting from the most complicated model with three-

way interactions, within each iteration the difference in residual deviance between models were 

used to selection between nested models and eventually the final model was selected to be the 

model y ~ EXP + SUP + INT + EXP:SUP, at a 10% significant level. 

 

Table 4.5. Analysis of deviance table 

Model 1: y ~ EXP + SUP + INT + EXP:SUP + EXP:INT + SUP:INT 

Model 2: y ~ EXP * SUP * INT  

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

144 101.3479       

143 100.1706 1 1.177322 0.277902 

Model 1: y ~ EXP + SUP + INT + EXP:SUP + SUP:INT 

Model 2: y ~ EXP + SUP + INT + EXP:SUP + EXP:INT + SUP:INT 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

145 101.3532       
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144 101.3479 1 0.005285 0.942049 

Model 1: y ~ EXP + SUP + INT + EXP:SUP 

Model 2: y ~ EXP + SUP + INT + EXP:SUP + SUP:INT 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

146 102.1354       

145 101.3532 1 0.782225 0.376462 

Model 1: y ~ EXP + SUP + INT   

Model 2: y ~ EXP + SUP + INT + EXP:SUP 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

147 104.8461       

146 102.1354 1 2.710695 0.099678 

 

Again, due to the responses being binary, the deviance of the saturated model has certain qualities 

that prevents the utilization of residual deviance to evaluate the model goodness of fit. In this case, 

the only option was to plot the regression lines against the means of different groups, as shown in 

Figure 4.9. Unfortunately, however, the optimal model didn’t seem to agree very much with the 

mean of each group, especially the group of supervisors who participated in the safety intervention 

(in blue) and the group of normal employees (in green) who did not participate. Interestingly, it 

turned out that there are a few observations in the study that were particularly influential. i.e. a few 

new employees with zero amount of experience who weren’t supervisors. After dropping those 

observations, a new quantile histogram was plotted in Figure 4.10 and the analysis was rerun with 

the new optimal model being y ~ EXP + TEN, the model with only two of the main effects. The 

new diagnostic plot was shown in Figure 4.11, and the trend of the regression curves agreed a lot 

better with the means of each group. 

 

Figure 4.9. Diagnostic plot of the model with full observations 



43 

 

 

Figure 4.10. Quantile histogram with reduced observations 

 

 

Figure 4.11. Diagnostic plot of the model with reduced observations 

 

The ROC curve of the models is plotted in Figure 4.12. The final optimal model had the most area 

between itself and the diagonal line and therefore has the most prediction power. 
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Figure 4.12. ROC plot for model comparison 

 

Table 4.6. Logistic regression output 

Call:  glm(formula = y ~ LMI + TEN, family = binomial) 

Coefficients:   

(Intercept)  Exp INT 

3.403 -0.117 -2.131 

Degrees of Freedom: 147 Total (i.e. Null);  145 Residual 

Null Deviance:      127.9  

Residual Deviance: 94.15  AIC: 100.2 

 

The regression coefficients are shown in Table 4.6, and the model could be interpreted 

mathematically as such: 

𝑙𝑜𝑔 {
𝔼(𝑆𝑎𝑓𝑒𝑡𝑦 𝑏𝑟𝑒𝑎𝑐ℎ)

1 − 𝔼(𝑆𝑎𝑓𝑒𝑡𝑦 𝑏𝑟𝑒𝑎𝑐ℎ)
} = 3.403 − 0.117 ∙ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 − 2.131 ∙ 𝐼𝑁𝑇 (4.3.5) 

With the left-hand side of the equation representing the log-odds of committing a safety breach. 

After transforming, it could be interpreted verbally as: 

• A month’s increase in experience decrease the odds of breaching safety codes by a factor 

of 1.12 

• Employees who took part in the safety intervention has lowered odds to commit a safety 

breach by a factor of 8.4. 
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4.4 Chapter Summary  

This chapter uses two case to showcase the potential of GLMs being used in the optimization of 

product quality characteristics and in the analysis of safety engineering data. GLMs are very 

capable of modelling data that are discrete in nature, including binary, multinomial, and count data. 

Moreover, for continuous skewed datasets GLMs provide a way to estimate responses directly, 

which is unachievable via a linear model, even if the variance stabilizing transformation manages 

to achieve constant variance. 
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Chapter 5                                                                                   

Analysis of Latent Variables in Occupational Health and 

Safety in Mining Operations 

5.1 Latent Variables in Mining Operations 

5.1.1 Preliminaries  

Occupational health & safety is a primary concern in the mining industry. Underground mining 

operations in particular, involve exposing workers to detrimental working environments including 

airborne respirable dust, excessive amount of potentially deafening noise, narrow openings with 

considerable heat and humidity as well as the possibility of rock falls and cave-ins. There has been 

a sizable amount of experience and research works on the technical and socio-technical aspects of 

mine safety. However, the complex mechanisms that underlie the causal relationships of safety 

behaviours and occupational injuries are still not fully understood. One way to quantitatively 

describe these relationships is through the analysis of the unobserved, hidden constructs, or latent 

variables.  

This chapter aims to contribute to the application of quantitative methods such as latent variable 

analysis and modelling in topics related to mine safety as well as safety science in mining. The 

chapter is organized as follows. First, a latent variable is defined, followed by a review of the 

multivariate statistical modelling techniques including the exploratory factor analysis (EFA), the 

confirmatory factor analysis (CFA) and the structural equation model along with latent variables 

(SEM). A critical comparison of the three techniques is provided in reference to mine safety. Then, 

relevant literature in mine safety and safety science that utilizes the techniques mentioned above 

is discussed. A new approach to cognitive work analysis using (CWA) latent variables analysis is 

proposed. This approach combines the theoretical advancements in CWA with latent variables 

analysis to model and measures the effects. Finally, two latent variable models are presented that 

can be used in cognitive work analysis. 

5.1.2 Modelling of Latent Variables 

There have been many cases where variables are not directly present in the data, including 

unmeasured variables, unobserved variables, hidden constructs [39]. In a way, latent variables can 

be informally defined as variables that are not directly observed in a dataset, but whose existence 
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can be identified or inferred by the variables that did get directly observed. One possible formal 

definition of latent variables is the local/conditional independence definition [39]: 

ℙ(Y1, Y2, . . . , Yn) = ∏ℙ

𝑛

𝑖=1

(Yi|𝜂) (5.1.1) 

where Y1, Y2, …, Yn  are observed variables; and 𝜂  is the vector of latent variables. The local 

independence definition states that the observed variables become independent if the latent 

variables that constitute the association between them are held constant. Another intuitive 

definition is the sample realization definition, which states that a latent variable is a variable for 

which some subset of a given sample is missing realization and therefore only observable through 

values of other observed variables. 

Latent variables are typically represented as linear combinations of observed variables via factor 

analysis. Three of the most common techniques are summarized in this chapter, including the EFA, 

the CFA and the SEM with latent variables. 

Exploratory factor analysis is a multivariate statistical technique that studies the underlying 

relationships between variables by conceptually grouping them, from an examination of 

appropriate statistics such as covariance or correlation [40]. The procedures of EFA are 

summarized in Figure 5.1 and detailed in this section. 

The orthogonal factor model is the most basic form of factor models. For an observed random 

vector X ∈ ℝ p×1  with mean denoted by μ ∈ ℝ p×1  and variance-covariance matrix denoted by Σ, 

the factor model attempts to explain the total data variance by postulating that it essentially is made 

up of two parts, i.e., the common variance or communalities from m common factors, 𝑭T =

[𝐹1, 𝐹2, ⋯ , 𝐹𝑚] and specific variances from p error terms or specific factors, 𝜺T = [𝜀1, 𝜀2, ⋯ , 𝜀𝑛]. 

The factor model can be written as: 

X − μ = 𝑳𝑭 + 𝜺 (5.1.2) 

𝑳 ∈ ℝ p×m is the matrix of factor loadings where the entry 𝑙𝑖𝑗 represents loading of the ith variable 

on the jth factor. 𝑭  and 𝜺  are independent; both have zero expectation with 𝐶𝑜𝑣(𝑭) = 𝑰  and 

𝐶𝑜𝑣(𝜺) = 𝝋 , 𝝋  being a diagonal matrix. The formulated model then implies a variance-

covariance matrix with the form: 𝜮 = 𝑳𝑳T + 𝝋. The implied covariance structure has properties 

as follows: 

𝑉𝑎𝑟(𝑿𝑖) = 𝜎𝑖𝑖
2 =  ℎ𝑖

2 +  𝜑𝑖 = 𝑙𝑖1
2 +  𝑙𝑖2

2 + ⋯+ 𝑙𝑖𝑚
2 +  𝜑𝑖 (5.1.3) 

𝐶𝑜𝑣(𝑿𝑖, 𝑭𝑗) = 𝑙𝑖𝑗 

where ℎ𝑖
2
  is called the ith commonality, or common variance, which represents the amount of 
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variance of the ith measured variable explained by all m factors. 𝜑𝑖 is known as the uniqueness, or 

specific variance of the ith measured variable, representing the residual variance left unexplained. 

The i, jth entry of the loading matrix 𝑳 represents the covariance between the ith measured variable 

and jth factor [41]. 

 

 

Figure 5.1. Procedure for EFA 

 

The matrix of associations of the dataset could be taken either as the variance-covariance matrix 

𝜮p×p or the standardized correlation matrix 𝑹p×p. This choice could be made by observing the 

comparability of the measured variables. If the measured variables have the same unit and are of 

similar scales, then 𝜮p×p could be used; otherwise, 𝑹p×p is generally preferred as the standardized 

values are much more comfortable for interpretation. 

5.1.3 Number of factors and methods of estimation 

The most commonly used approaches for determining the number of factors are shown as follows: 

(1). Kaiser’s rule states that a noteworthy factor should have an eigenvalue of greater than 1. As in 

factor analysis, the eigenvalues of all possible factors sum to the number of measured variables 

(p), therefore the importance of a factor can be represented by its eigenvalue divided by p. Also, if 

the product of the division is greater than 1, then that particular factor could be considered as 
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significant. 

(2). A screen test is a bar plot that shows the percentage variance explained per factor in descending 

order. Important factors are those that precede the “elbow” of the plot, where factors exhibit sudden 

drops of significance. 

(3). Residual correlation matrix could be found by subtracting from the original correlation matrix 

with that reconstructed with selected factors. Scenarios with fewer factors with sufficiently small 

residual correlation entries are preferred. 

Most statistical analysis programs use the principal component method as the default method for 

factor estimation. Also, commonly used methods include the principal axes factor analysis and 

maximum likelihood estimation. 

(1). Principal component method 

When the specific variances are set to zero, the implied covariance matrix of the common factor 

model is similar to the spectral decomposition of the variance-covariance matrix. 

𝜮𝑝×𝑝 = 𝑳𝑝×𝑚𝑳𝑚×𝑝
𝑇 + 𝟘𝑝×𝑝

= [√𝜆1𝑣1 √𝜆2𝑣2 . . . √𝜆𝑝𝑣𝑝]

[
 
 
 
 
 √𝜆1𝑣1

𝑇

√𝜆2𝑣2
𝑇

⋮

√𝜆𝑝𝑣𝑝
𝑇

]
 
 
 
 
 

= ∑ 𝜆𝑖

𝑝

𝑖=1

𝑣𝑖𝑣𝑖
𝑇 = 𝜦𝑽𝜦T

 (5.1.4) 

The final form is obtained by dropping the last p-m terms: 

𝜮𝑝×𝑝 = 𝑳𝑝×𝑚𝑳𝑚×𝑝
𝑇 + 𝝋𝑝×𝑝

= [√𝜆1𝑣1 √𝜆2𝑣2 . . . √𝜆𝑚𝑣𝑚]

[
 
 
 
 √𝜆1𝑣1

𝑇

√𝜆2𝑣2
𝑇

⋮

√𝜆𝑚𝑣𝑚
𝑇 ]
 
 
 
 

+ [

𝜑1 0 . . . 0
0 𝜑2 . . . 0
0 0 ⋱ 0
0 0 . . . 𝜑𝑚

]

 (5.1.5) 

(2). Principal axes factor analysis 

Principal axes factor analysis starts from a principal component analysis (PCA) but with the 

diagonal entries of the analyzed correlation matrix replaced with respective communalities of each 
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variable. The altered correlation matrix will then have PCA performed on it iteratively until it the 

communalities converge, or a certain maximum iteration has been reached.  

(3). Maximum likelihood  

A maximum likelihood estimate could be found by maximizing a likelihood function as shown in 

Equation (5.1.6). 

ℒ(𝝁, 𝜮) = (2𝜋)−
𝑛𝑝
2 |𝚺|−

𝑛
2𝑒−

1
2𝑡𝑟[𝜮−1(∑(

𝑛

𝑗=1

𝑥𝑗 − 𝑥)(𝑥𝑗 − 𝑥)𝑇

+𝑛(𝒙 − 𝝁)(𝒙 − 𝝁)𝑇)]

 (5.1.6) 

5.1.4 Factor Rotation  

Directly estimated factor loadings might not be interpretable. Consequently, rotations are 

performed, which redistributes the location of variance within the loadings facilitating the 

interpretation. Rotation is often performed with the aim of reaching a simple structure, which, in 

a column perspective, have an approximately equal number of observed variables represented by 

each factor; or in a row perspective, have most observed variables primarily correlated with only 

one factor. Factors can be rotated either orthogonally or obliquely. Oblique rotation occurs when 

the transformation matrix is non-orthogonal and is often performed in order to render factors 

correlated to account for broad factor generalization and overlapping. In an oblique model, the 

structure coefficient matrix 𝑆 is found as the product of factor loadings and inter-factor correlation 

𝑹, with 𝑺𝑝×𝑚 = 𝑳𝑝×𝑚𝑹𝑚×𝑚. When 𝑹𝑚×𝑚 ≠ 𝑰𝑚×𝑚, both S and L matrices need to be examined 

during interpretation. Moreover, higher-order factors could be extracted from R, and they need to 

be interpreted as well [42]. 

5.1.5 Factor Score Estimation 

Factor score estimation is usually carried out using the weighted least squares and regression 

methods. 

(1). Weighted least squares 

Specific factors are treated as residuals, the residuals sum of squares is minimized weighted by 

their respective reciprocal variances. The formulation of the problem and the solution while taking 

the estimated values as true values are shown as follows: 

∑
𝜀𝑖

2

𝜑𝑖

𝑝

𝑖=1

= 𝜺𝑇𝝋−1𝜺 = (𝑿 − 𝝁 − 𝑳𝒇)𝑇𝝋−1(𝑿 − 𝝁 − 𝑳𝒇) (5.1.7) 
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𝒇̂𝑗 = (𝑳̂𝑇𝝋̂−1𝑳̂)
−1

𝑳̂𝑇𝝋̂−1(𝑥𝑗 − 𝑥̄) 

(2). Regression method 

For a factor model specified in Equation (5.1.2), the joint distribution of (𝑿 − 𝝁)  and 𝑭  is 

𝒩𝑝+𝑚(0, 𝜮∗), where 𝜮(𝑝+𝑚)×(𝑝+𝑚)
∗ = [

𝜮𝑝×𝑝 = 𝑳𝑳𝑇 + 𝝋 𝑳𝑝×𝑚

𝑳𝑚×𝑝
𝑇 𝑰𝑚×𝑚

]. From the joint distribution, it 

is possible to find the conditional expectation [43]: 

𝔼(𝑭|𝒙) = 𝑳𝑇(𝑳𝑳𝑇 + 𝝋)−1(𝒙 − 𝝁) (5.1.8) 

Bibliography The term 𝑳𝑇(𝑳𝑳𝑇 + 𝝋)−1 in Equation (5.1.8) is analogous to a regression coefficient, 

consequently given vector of observation 𝑥𝑗 and taking the estimated values as actual values, the 

estimated factor score can be found as 𝒇̂𝑗 = 𝑳̂𝑇(𝑳̂𝑳̂𝑇 + 𝝋̂)
−1

(𝑥𝑗 − 𝑥̄). 

5.1.6 Confirmatory Factor Analysis (CFA) 

EFA is a data-driven technique, with the latent variables being a posteriori whereas in confirmatory 

factor analysis the factors and their corresponding loading matrix are determined before analysis, 

therefore a prior method [39]. A sufficient level of an empirical or theoretical foundation is needed 

for model specification and evaluation in CFA. Consequently, CFA is often applied when there has 

already been a level of development in research, where the tentative underlying structure has been 

identified with analytical techniques such as EFA [44]. EFA and CFA are similar in the sense that 

they are both built on the common factor model. However, certain differences between the two 

methods exist and will be summarized later in this chapter. 

Test statistics for evaluating the fitness of a CFA model is similar to that of structural equation 

models and are detailed in the next sections of this chapter. 

5.1.7 Structural Equation Models (SEM) with Latent Variables  

5.1.7.1 General structural equation model 

The general structural equation model can be considered as some combination of multiple 

regression, which concerns the relationships between observed variables with errors being latent 

variables, and factor analysis, which finds the link between latent and observed variables but with 

limited emphasis on the relationships between latent variables. It inherently consists of a 

measurement model that specifies the relationship between observed and latent variables and a 

latent variable model that delineates links among latent variables [43]. The general decision 

sequences for SEM is shown in Figure 5.2. 
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Figure 5.2. Decision sequences for SEM 

SEM is a confirmatory technique and not well suited for exploratory identification of relationships 

in research. Like CFA, the prerequisite for the use of SEM is a prior specification of a model, often 

from previous research or theory [45]. Both the measurement and the latent variable model need 

to be specified.  

𝜼 = 𝑩𝜼 + 𝜞𝝃 + 𝜻 
(5.1.9) 𝒚 = 𝜦𝑦𝜼 + 𝝐  

𝒙 = 𝜦𝑥𝝃 + 𝜹  

Equation (5.1.9) shows the SEM measurement model, followed by the latent variable models for 

endogenous and exogenous latent variables. Assuming 𝜼, 𝝃, 𝜻, 𝝐, 𝜹  (all latent terms) have zero 

expectation, (𝑰 − 𝑩)  is non-singular, 𝝃  and 𝜻  uncorrelated, 𝝐  and 𝜼, 𝝃  and 𝜹  are uncorrelated as 

well as 𝜹 and 𝝃, 𝜼 and 𝝐 are uncorrelated. Table 5.1 shows the dimensions and definitions of the 

parameters in the general structural model [43]. 
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Table 5.1. SEM parameters 

Parameter Dimension Definition 

𝜼 𝑚 × 1 
Latent endogenous 

variables 

𝝃 𝑛 × 1 
Latent exogenous 

variables 

𝜻 𝑚 × 1 
Error term in the latent 

variable model 

𝑩 𝑚 × 𝑚 

Coefficient model for 

latent endogenous 

variables 

𝜞 𝑚 × 𝑛 

Coefficient model for 

latent exogenous 

variables 

𝒚 𝑝 × 1 
Observed variables that 

indicates 𝜼 

𝒙 𝑞 × 1 
Observed variables that 

indicates 𝝃 

𝝐 𝑝 × 1 
Measurement errors for 

𝒚 

𝜹 𝑞 × 1 
Measurement errors for 

𝒙 

𝜦𝒚 𝑝 × 𝑚 
Coefficients relating 𝒚 

to 𝜼 

𝜦𝒙 𝑞 × 𝑛 
Coefficients relating 𝒙 

to 𝝃 

 

𝜮 = 𝜮(𝜽) = [
𝜮𝑦𝑦 𝜮𝑦𝑥

𝜮𝑥𝑦 𝜮𝑥𝑥
]

= [
(𝑰 − 𝑩)−1(𝜞𝝓𝜞𝑇 + 𝝍)(𝑰 − 𝑩)−𝑇 (𝑰 − 𝑩)−1𝜞𝝓

𝝓𝜞𝑇(𝑰 − 𝑩)−𝑇
𝝓

] 
(5.1.10) 

Equation (5.1.10) is the covariance structure hypothesis for the general structural model, where 𝜮 

represents the population variance-covariance matrix, 𝜮(𝜽)  is the model implied variance-

covariance matrix with 𝜃 representing the vector of free model parameters. 𝝓 and 𝝍 represent the 

variance-covariance matrix of 𝝃 and 𝜻. One key requirement for model identification is that the 

number of unknown parameters in 𝜽 must be smaller or equal to the number of nonredundant terms 

in the implied variance-covariance matrix, known as the t-Rule [43]. The ideal situation in model 

identification is to have more equations than unknowns, i.e., an overidentified model. An 

overidentified model has multiple possible solutions, but the one with the best fit to the data could 

be selected. In contrast, an under-identified model has no unique solution while a just-identified 
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model has exactly one solution but with large measurement and sampling error. Overidentification 

could be achieved by constraining some of the parameters to predetermined values [45]. 

5.1.7.2 Parameters estimation and model fit 

The general structural equation parameters are estimated by finding the closest estimate of the 

implied variance-covariance matrix (𝜮̂) to the estimated population variance-covariance matrix 

(S), with respect to some minimization criterion 𝐹[𝑺, 𝜮(𝜽)], which is a function of S and 𝜮(𝜽). 

The most commonly used criterions include maximum likelihood (ML), unweighted least squares 

(ULS) and generalized least squares (GLS). 

𝐹𝑀𝐿 = 𝑙𝑜𝑔|𝜮(𝜽)| + 𝑡𝑟{𝑺𝜮−1(𝜽)} − 𝑙𝑜𝑔|𝑺| − (𝑝 + 𝑞) 

(5.1.11) 𝐹𝑈𝐿𝑆 =
1

2
𝑡𝑟{[𝑺 − 𝜮(𝜽)]2} 

𝐹𝐺𝐿𝑆 =
1

2
𝑡𝑟{[𝑰 − 𝜮(𝜽)𝑺−1]2} 

Among the three estimators given in Equation (5.1.11) the maximum likelihood estimator is 

considered to be most consistent when the sample size is large, and the observed variables can be 

considered as jointly normal. Conversely, when the sample size is large but multivariate normality 

is in question, the generalized least squares estimator is the most reasonable choice [45]. 

Evaluating the fitness of a structural equation model could be potentially tricky as any mis-

specified model may be obtained to fit the data by adding free parameters. Moreover, a perfect fit 

could occur when the model degrees of freedom equal to zero (i.e., model is just-identified, and 

all possible free parameters are estimated), but there is little scientific value in such a model [46]. 

Besides, some degree of misfit between the observed and implied variance-covariance matrix is 

expected due to sampling fluctuations; nevertheless, the misfit might just as likely originate from 

model misspecification. Hence, it is reasonable to assume that a model that fits the sample 

variance-covariance matrix is just one among many potentially causally different models that are 

consistent with the data; therefore, it is necessary to evaluate the equivalent or close-to-equivalent 

models and differentiate between them [47]. 

In general, three different types of fit indices exist for SEM: 

(1). Absolute fit indices evaluate the model’s ability to reproduce a variance-covariance matrix 

close to that of the observed data. The most commonly used absolute fit index being the 𝜒2 index, 

with 𝜒𝑚𝑜𝑑𝑒𝑙
2 = (𝑁 − 1)𝐹𝑀𝐿  where N is the sample size and 𝐹𝑀𝐿  is the type of estimator used 

(could also be 𝐹𝐺𝐿𝑆 or 𝐹𝑈𝐿𝑆). The model fits the data perfectly when 𝜒𝑚𝑜𝑑𝑒𝑙
2 = 0. 

(2). Comparative fit indices are often used to compare the level of fit between that of a theoretically 
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derived model relative to some baseline model, which is often called a null model that specifies 

no causal relationships between the variables. One of the comparative fit indices is the normed fit 

index (NFI), with 𝑁𝐹𝐼 =
𝜒𝑛𝑢𝑙𝑙

2 −𝜒𝑚𝑜𝑑𝑒𝑙
2

𝜒𝑛𝑢𝑙𝑙
2  and an NFI value of greater than 0.9 is considered to be a 

good fit [45]. 

(3). Parsimonious fit indices assess the trade-off between model fit and degrees of freedom. For 

instance, the parsimonious normed fit index is defined as 𝑃𝑁𝐹𝐼 =
𝑑𝑓𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑛𝑢𝑙𝑙
×

𝜒𝑛𝑢𝑙𝑙
2 −𝜒𝑚𝑜𝑑𝑒𝑙

2

𝜒𝑛𝑢𝑙𝑙
2 . 

While reporting fit indices for a structural equation model, there is no need for researchers to report 

the values of all fit indices, practices such as only reporting indices that indicate good fits should 

also be avoided. Notwithstanding, reporting different kinds of test statistics is advised as they 

evaluate various aspects of model fit [48]. 

5.1.7.3 Sample size considerations and comparisons among modelling techniques 

Structural equation modeling is a large sample technique that requires at least 200 samples for a 

model of moderate complexity, or 10 samples per estimated parameter [45]. While studying 

underlying structures in the data, it is important that the researcher can identify the merits and 

demerits of various methods. 

I. While EFA more commonly analyzes the correlation matrix of the data, CFA can be used 

to study both the correlation and the variance-covariance matrix of the data. The resulting output 

from CFA could include an unstandardized solution, a standardized solution, and a completely 

standardized solution. 

II. CFA models are considered to be more parsimonious than EFA models. In EFA all observed 

variables are free to load/covary with all factors after which the factors are rotated in row/column 

perspective, whereas in CFA simple structure is achieved by specifying linking of observed 

variables to factors before analysis, eliminating the need for factor rotation. There are often fewer 

parameters that need to be estimated in CFA than in EFA. 

III. Errors (specific variances) can be allowed to covary in CFA and SEM models, which 

violates basic assumptions of standard linear regression models. Covariance between errors can be 

justified as additional covariance in observed variables due to assessment methods, which is 

reasonably common in measurement models based on surveys and questionnaires. 

IV. CFA and SEM allow for the direct comparisons between rival near-equivalent models via 

model fit, which facilitates theory testing. 
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V. While traditional regression analysis assumes perfect measurement, SEM explicitly 

accounts for measurement errors and thereby reducing regression dilution bias, which is more 

desirable for questionnaire-based datasets. The multiple indicators used by SEM correct for 

unreliability and provide more accurate estimations of parameters. 

VI. SEM allows for the study of indirect, mediational effects in statistical models, where a 

single variable can be both the “cause”, and the “effect” [49]. 

 

5.2 Review of Latent Variable Analysis in Mine and Safety Sciences 

Cooper and Phillips studied the relationship between safety climate and safety behavior. Surveys 

were conducted before and after a safety intervention, which improved the safety behavior of the 

employees [50]. A 50-item questionnaire was used to measure 7 variables that act as the observed 

variables for EFA, the factors were estimated with PCA and varimax rotation (orthogonal) that was 

performed for two prominent factors to occur. Based on the EFA results, Cooper and Philips argued 

that workers could very well discriminate between factors that directly related to safe operations 

and those that do so in an indirect manner (two factors formed in EFA) [51]. Moreover, as the 

structure coefficients remain largely the same before and after safety intervention, the test results 

suggest that the unobserved structures of the safety climate measure are reliable and consistent 

with the relevant previous literature [51]. The research also proved that the changes in safety 

behavior and that in the safety climate do not necessarily reflect on one another. Zhang analyzed 

the causality between coal miners’ errors and life events using SEM and found an influential effect 

value of 0.7945 [52]. Paul used SEM to study the role of personal factors on work injury in 

underground mines. The study has found rebelliousness, negative affectivity and job boredom as 

three key personal factors increasing work injuries [53]. 

Seo et al. investigated constructing a reliable factor structure for safety climate measures in order 

to overcome the limitations of traditional safety measures [54]. Over six hundred valid samples 

were collected from workers in the grain industry, after which EFA and CFA were performed on 

the data. Eventually, a good fit was achieved with the finalized CFA model based on multiple test-

statistics. Having developed a model that is consistent with the data, Seo et al. concluded that it is 

important to consider the influence of management commitment and supervisor support on other 

variables studied, as they loaded onto observed variables meant to measure other factors. 

Additionally, their paper managed to develop a reliable factor structure for safety climate measure, 
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and therefore the same construct might be used to measure safety climate of workers in the same 

industry. The developed safety climate measures might also give insight into other industries, due 

to the inherent nature of the safety climate itself [54]. 

Liu and Li analyzed the latent structures of Firm Safety Management Capability (FSMC) based on 

data collected from coal mines in northern China [55]. The model they proposed was relatively 

complex and involved 20 latent variables, including five latent endogenous variables and 15 latent 

exogenous variables. The latent variables are factors of 76 observed variables, which were based 

on 999 valid questionnaire surveys answered by miners. Latent variables analyzed in the study by 

Liu and Li concerns factors that pertain to five main groups related to FSMC, namely relevant 

safety aspects of the workers, the teams, the firm, and the environment [55].  

Their proposed model was based on complex a prior hypothesis on interactions between workers, 

teams, the firm and working environments. The model proposes some of the worker attributes as 

endogenous latent variables that are influenced by exogenous latent variables concerning teams, 

the firm, and working environments. Among the endogenous latent variables, a worker’s 

knowledge and skills have a directional effect on his or her working habits while working habits 

were also set to covary with responsibility and psychological qualities. Both psychological 

qualities and working responsibility have a covariational effect on workers knowledge and skill. 

There also exist various constraints on the directional effects between the endogenous variables 

and exogenous variables so that the exogenous variables only have an impact on those endogenous 

variables that are backed up by theories. The model had adequate fitness based on multiple test 

statistics and theories based on FSMC was found to match the sample data. 

 

5.3 Analysis of Latent Variables in Cognitive Work Analysis 

In recent years, researchers have been trying to comprehend the hidden structures, including 

environmental, organizational and socio-technical factors, that potentially lead to accidents and 

fatalities in mining complexes [56-58]. In this chapter, it has been proposed that latent variable 

analysis methods could be used in combination with cognitive work analysis (CWA) in order to 

better understand the complex and dynamic relationship among the human, environmental and 

technological factors in sociotechnical systems. 

Cognitive work analysis aims to analyze all vital elements of human-work interaction via the 

application of concepts from various disciplines including engineering, cognitive science, social 
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science, and psychology. As mining is often deemed as a dynamic, hazardous, automated system 

that is full of uncertainties, coupled and mediating subsystems and potential disturbances, which 

agrees with the definition of a complex sociotechnical system by Vicente, it is ideal for the 

application of cognitive work analysis [59]. It has been stated that understanding the constraints 

and capabilities of personal, social, organizational, technological elements of a system are 

generally helpful for finding means to reduce human error factors, reduce the frequency of 

occurrence of safety-related incidents and increase the overall system performance. CWA typically 

involves five phases of analyses, i.e., work domain analysis, control task analysis, strategies 

analysis, social organizational analysis and worker competencies analysis. Demir et al. proposed 

11 factors to quantify the overall cognitive quality of a mining operation [57]. Structural equation 

modeling could be used to analyze the interactions and mediating effects among the factors, to 

facilitate researchers’ understandings of human-work interactions in mining operations. In this 

chapter, a similar approach is proposed to model the factors in the five levels of cognitive work 

analysis as latent variables. A list of variables and their descriptions are shown in Table 5.2. The 

list is partly based on the proposed factors by Demir et al., with several safety-related variables 

added [57]. Each observed variable in the list could be one singleton as well as several closely 

related observed variables. Variables generally should have ratings from 0 to 5. Variables related 

to the work domain should be rated by relevant professionals evaluating the mine, while other 

variables could be obtained from questionnaires. 

As some of the observed variables might be moderately correlated and it is not immediately clear 

how some of them interact with each other, it might be more helpful to extract factors from them 

via EFA instead of assigning factors to them a priori. The extracted factors, after interpretation, 

could be fitted to many probable rival structural equation models to compare relative fitness. 
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Figure 5.3. SEM path diagram of cognitive work factors 
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Table 5.2. List of latent and observed variables in cognitive work analysis 

Levels of factors of CWA Latent variables Notation Description 

Work domain factors 

System functionality 𝜂7  
Having a clear idea of the purpose of each subsystem of the 

mining operation 

Mine design characteristics 𝜂8  

Ratings for the technical aspects of the mine design. 

Including but not limited to ventilation, rock mechanics, 

mineral processing, mine planning, etc. 

Safety designs 𝜂9  The mine has safety structures for emergencies 

Operation system 𝜂10 Design rating for ventilation system of the mine 

Control task factors 

Task guideline 𝜉1 
Having a clear guideline or standard operating procedures for 

a particular task 

Performance criteria 𝜉2 
Having a clear method of evaluation for the performance of a 

job 

Equipment compatibility 𝜉3 
The compatibility and efficiency of current equipment for 

completing the desired task 

Equipment availability 𝜉4 
If the equipment is readily available and easily accessible for 

utilization 

Risk potential 𝜉5 
If the tasks to be performed are subject to potential hazardous 

outcomes 

Strategy factors 

Preparation for uncertainties 𝜉6 
Level of preparedness for unintended events, precautions 

taken 

Strategical planning 𝜉7 
Alternative plans or methods in the case of disturbances or 

emergencies 

Social and organizational 

factors 

Supervisor support 𝜉8 
The supervisor’s attitude towards safety, holdings of safety 

meetings 

Time management 𝜉9 Deadlines set for tasks to ensure completion in time 

Supervisor communication 𝜉10 
Effectiveness of communication between supervisor and 

supervisees 

Roles and responsibilities 𝜉11 Clearly defined roles and responsibilities for workers 

Co-worker support 𝜉12 Level of mutual aid between workers 

Aspects of safety culture 𝜉13 
The presence of safety department, management of safety-

related issues 

Worker competency 

factors 

Level of education 𝜂1 The highest education level of a worker 

Working experience 𝜂2  Number of years of experience working in a related position 

Physical fitness 𝜂3  
Level of physical fitness and health of the worker, presence 

of past injuries 

Aspects of psychological 

well-being 
𝜂4  

Worker’s ability to handle stress and general state of mental 

health 

Job satisfaction 𝜂5  How satisfied the worker is with job position, salary, etc. 

Attitude towards safety 𝜂6  Worker's willingness to follow safety-related regulations 

 

One probable model depicting interactions between the five factors studied in cognitive work 
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analysis is shown in Figure 5.3. The model hypothesis is a priori and proposes that the factors in 

the work domain and worker’s competence domain are endogenous factors while factors in the 

other three layers of cognitive work analysis generally function as exogenous factors. The reason 

being factors related to the qualities of the mine employees and technical aspects of the mine 

should cause the other latent variables, for instance, the social and organizational factors should 

depend on the competencies of the workers, and to some extent the technical aspects of the mine 

design.   

The proposed SEM model effectively models mediating effects among variables, which is superior 

to standard regression models. One example is that although the exogenous variable named “risk 

potential (𝜉5)” does not directly depend on the endogenous variable “Worker’s level of education 

(𝜂1)”, it receives a mediating effect as 𝜂1 is correlated with “Worker’s attitude towards safety (𝜂6)”, 

which has a direct regression effect on 𝜉5 , as it is assumed that better-educated employees 

generally focuses more on safety-related issues. The explicit modeling of many instances of these 

indirect effects among variables ought to make the model more theoretically sound. Each factor, 

no matter exogenous or endogenous should be measured by a few observed variables that could 

be gathered from questionnaire responses. In path analysis notations, an ellipse characterizes an 

endogenous variable whereas a circle represents an exogenous variable. Squares are observed 

variables and arrows, and double-sided arrows represent directional effect and covariance 

respectively. 

Studying the interactions among the cognitive work factors could provide new insights into the 

human-machine-environment interactions in complex mining operations and facilitate the 

utilization of cognitive work analysis as well. However, questionnaire design, data collection, and 

modeling of such complex causal relationships could prove challenging. It is often more 

convenient to start from relatively simple questionnaires with EFA and CFA models. Figure 5.4 is 

a proposed CFA model on the Social-Organizational factors, which is a subset of the cognitive 

work analysis factors.  
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Figure 5.4. CFA path diagram of socio-organizational factors 

 

The proposed model contains only exogenous latent variables and observed variables. The 

observed variables, i.e., questionnaire items, are designed to measure a latent variable, and a certain 

degree of overlapping is allowed. While only ten observed variables are shown in Figure 5.4, often 

a lot more is needed to represent a latent variable accurately. Depending on the fitness of the model, 

latent variables could be removed or even dropped, as despite being based on theory, the proposed 

model might not be entirely consistent with all data. Adjacent CFA models with different proposed 

relationships among the exogenous latent variables could also be tested to improve people’s 

understanding of the socio-organizational factors. If decent fitness could be achieved, it could be 

implied that the proposed model is consistent with data collected from a certain mining facility. 

Therefore, an inference could be made on certain variables so that the mine manager could identify 

which observed variables to work on in order to improve the overall safety or management of the 

mine. Similar techniques could be applied to other subsets of CWA factors before a comprehensive 

SEM model is evaluated so that each sub-branch of the complex interactions among human, 

machine and the environment could be analyzed and understood. 
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5.4 Chapter Summary 

This chapter overviews the basic concepts and applications of causal modeling of theories 

regarding mine safety and safety science in the mining industry using techniques that involve latent 

variables. So far there has been a rather limited amount of research that analyzes latent constructs 

in occupational safety climate and behaviors in mining operations. Nevertheless, latent variable 

analysis techniques including SEM, CFA, and EFA have been proven in numerous past researches 

as effective and promising approaches for testing of causal theories in these areas with clear 

advantages over other quantitative methods including regression. In order to facilitate the 

adaptation of SEM, CFA and EFA in mine safety analysis, the concepts and their applications, 

result evaluations and interpretations are explained thoroughly as well as providing critical 

comparison and including examples of possible usage. In future studies, researchers could 

incorporate the methods detailed in this chapter in combination with CWA for real life mining 

applications to better understand and enhance occupational health and safety in the mining industry. 
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Chapter 6                                                                            

Optimization of Mining-Mineral Processing Integration 

Using Unsupervised Machine Learning Algorithms 

6.1 Mining-Mineral Processing Integration and Target Grades 

Block classification is one of the aspects of mine design that has a direct impact on the profitability 

of the operation. Many critical reviews on ore-waste classification based on estimation and 

simulation have been presented [60-63]. However, one important factor that is often ignored in 

open pit mine planning is the impact on the performance of processing facilities while having 

inputs with significant fluctuations in grades. Maintaining a consistent input for processing 

facilities is imperative as deviations from the target grades of a processing stream lead to 

unintended losses in recovery, which can be modeled via the Taguchi loss function [64], a quadratic 

function that penalizes deviation from a certain target [65]. It has been proposed that every 

processing stream maintains a target grade where blocks with the same grade receive no loss from 

processing, but those with grades different from the target get penalized based on their deviations. 

An illustration of this idea is shown in Figure 6.1. Hence, minimizing deviations from target grades 

would lead to a reduced loss in recovery and throughput and, in turn, the increased value of profits 

from the operation. A more consistent input for processing will also lead to a more uniform 

recovery and throughput, which tend to be more desirable.  

Consequently, unsupervised machine learning algorithms such as k-means clustering or 

partitioning around medoids (PAM) could be used to group blocks into different clusters, with each 

cluster signifying a processing stream with pre-defined target grades. In doing so, the within cluster 

dissimilarities could be minimized, while target grades of each processing stream could then be 

set to the grade values of each cluster centroid. In recent years many machine learning methods 

have been introduced to optimizing mining and mineral processing systems [66-73], but few have 

taken into full consideration the penalties that come with deviation from targets in input grade and 

processing capacity. Performance of the introduced clustering technique will be evaluated with the 

overall profitability of the operation, while taking into account the high costs of constructing 

additional processing facilities, so that new processing streams are built if and only if the cost more 

than balances out for the losses in recovery due to deviation from target grades. A group of related 
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research topics has also highlighted the potential applications of clustering techniques in 

addressing similar research problems [74-76]. 

 

 

Figure 6.1. Relationship between input grade and recovery modelled by Taguchi loss function 

 

After deciding the optimal number of processing streams through clustering, capacities of 

processing streams could be found by counting the number of data points in each cluster. 

Nevertheless, planning of a processing stream’s capacity during the life of mine (LoM) is also 

important and challenging, as generally the companies seek to maximize NPV in mine planning 

and hence blocks of higher values tend to be extracted at the earliest possible period, leaving the 

overall processing capacity skewed. However, producing below the processing capacity or 

deviating from the process target grade may also lower the NPV. In this research, the traditional 

block sequencing is improved by identifying blocks whose processing destination according to a 

portion of its simulated grades differs from that determined by the average expected grades. 

Switching the processing destination of such blocks reduces variation in processing capacities 

across the LoM at minimum cost and risk. 

The original contribution of this research roots from the introduction of target grades in mineral 

processing streams and the utilization of the Taguchi loss function for modelling penalized 

recovery. Moreover, CLARA, which is a robust clustering algorithm for large datasets are used 

and total revenues from different scenarios are compared and optimized. In addition, block 

destinations are tweaked according to sequential Gaussian simulations and capacities of processing 
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streams can be further smoothed across the LoM. 

 

6.2 Methodology of Clustering Algorithms and Economic Evaluations 

6.2.1 Clustering algorithms for optimal process design 

6.2.1.1 The k-means clustering algorithm 

The k-means algorithm is one of the most commonly used clustering algorithms that scales 

relatively well with large datasets. It partitions a given dataset into k prespecified number of 

clusters in such a way that minimizes the within cluster dissimilarity and maximizes the inter-

cluster dissimilarity. Various distance measures exist for defining dissimilarity among data points, 

including the Euclidean distance, the Manhattan distance and many other correlation-based 

distances. Euclidean distance is chosen in this case as it considers exactly the spatial distance 

between points. A brief summary of the k-means algorithm is shown in Algorithm 1 [77]. 

 

Algorithm 1 K-means Clustering 

Input:  

 Data matrix with 𝑛 observations: 𝑿 =  [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]𝑻, 𝒙𝒊 ∈  ℝ𝑝 

 Number of clusters 𝑘 

 Maximum number of iterations 𝑁 

Output:  

  𝑘 clusters 

1: Randomly initiate cluster centroids 𝝁𝟏, 𝝁𝟐, … , 𝝁𝒌 ∈  ℝ𝑝 

Until convergence or iterations = 𝑁 do 

2: Assign each observation (𝑖) to the closest centroid 

 𝑐(𝑖) ← 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑗

||𝒙𝑖 − 𝝁𝑗||2
2 

3: Update each centroid (𝑗) by taking average 

 
𝝁𝑗 ←

∑ 𝟙{𝒙𝑖∈𝐶𝑗}
𝒙𝑖𝑖

|𝐶𝑗|
 

 

One common metric used to evaluate the goodness of a k-means clustering is the total within 

cluster sum-of-squares (TWSS); its formula is shown in Equation (6.2.1). 

𝑇𝑊𝑆𝑆 = ∑ 𝑊𝑆𝑆(𝑖) =

𝑘

𝑖=1

∑ ∑‖𝒙𝑗 − 𝝁𝑖‖2

2

𝑗∈𝐶𝑖

𝑘

𝑖=1

 (6.2.1) 

Where 𝒙𝑗 refers to the jth data point, 𝝁𝑖 is the cluster center of the ith cluster and 𝐶𝑖 is the set of all 

points in the ith cluster. Results of the k-means algorithm are known to be sensitive to the selection 

of k initial cluster centers; hence it is a common practice to start with many different initial 
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allocations and choose the one that performs best. As the number of clusters, k, has to be specified 

before the algorithm could be run, the optimal number of clusters could be determined by plotting 

the TWSS against the number of clusters [78]. Ideally the TWSS value should be minimized, but 

as the value will always tend to zero when the number of clusters tend to the number of 

observations in the dataset, it is important to select the optimal number of clusters (𝑘𝑜𝑝𝑡𝑖𝑚) such 

that a further increase in the number of clusters would lead to significant diminishing benefit in 

the reduction of TWSS, identifying the optimal number of clusters in this manner is also more 

commonly known as the elbow method.  

 

6.2.1.2 Partitioning Around Medoids (PAM) and CLARA 

The k-means clustering algorithm has numerous drawbacks, including: 

• The number of clusters must be chosen manually 

• The final output is dependent on the initial random assignment of cluster numbers 

• The algorithm shows sensitivity to noise and outliers due to the use of means 

The first and second problem could be addressed, respectively, by running the algorithm for a set 

of plausible values of k, and different initial random cluster assignments (usually from 25 to 50) 

and selecting the solution with the best performance. While trying to find a better clustering 

algorithm, it is natural to consider other methods such as hierarchical agglomerative clustering or 

graph-based spectral clustering, which do not require the prior specification of the number of 

clusters. Unfortunately, however, such clustering techniques, despite being powerful, do not scale 

well with large data. When clustering a dataset with n observations into k clusters, the 

computational complexity of the k-means algorithm per iteration is approximately 𝑂(𝑛𝑘), whereas 

hierarchical and spectral clustering could cost as much as 𝑂(𝑛3), making them almost impossible 

to be applied in clustering large-scale mining data. Partitioning around medoids (PAM) could be 

considered similar to a robust-form of k-means clustering. At the cost of 𝑂(𝑘(𝑛 − 𝑘)2), PAM is 

still too cumbersome to be applied to truly large datasets. Hence of a modified version of PAM 

based on resampling named CLARA (Clustering LARge Applications) was selected to optimize 

processing options. 

While in k-means each cluster is represented by the mean of all data that belongs to it, in PAM a 

cluster is represented by its most central element, named its medoid. The general PAM algorithm 

is described in Algorithm 2 [77]. 
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Algorithm 2 Partition Around Medoids (PAM) 

Input:  

 Data matrix with 𝑛 observations: 𝑿 =  [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]𝑻, 𝒙𝒊 ∈  ℝ𝑝 

 Number of clusters 𝑘 

 Maximum number of iterations 𝑁 

Output:  

  𝑘 clusters 

1: Randomly initiate cluster centroids 𝝁𝟏, 𝝁𝟐, … , 𝝁𝒌 ∈  ℝ𝑝 

Until convergence or iterations = 𝑁 do 

2: Assign each observation (𝑖) to the closest centroid 

3: Within each cluster, for each pair of medoid and non-medoid, compute the change in TWSS 

if a switch is made. 

4: Make the optimal switch then go to 2, converge otherwise 

 

The CLARA algorithm is a modified version PAM designed for large datasets, its general idea is 

to draw multiple samples from the dataset and apply PAM to them. The basic steps of CLARA are 

displayed in Algorithm 3 [79].  

 

Algorithm 3 CLARA 

Input:  

 Data matrix with 𝑛 observations: 𝑿 =  [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]𝑻, 𝒙𝒊 ∈  ℝ𝑝; 

 Number of clusters 𝑘; 

 Maximum number of iterations 𝑁; 

 Sample size 𝑚; 

Output:  

  𝑘 clusters; 

Until convergence or iterations = 𝑁 do 

1: Randomly draw a sample 𝑺 ∈  ℝ𝑚×𝑝 from 𝑿 

2: Identify 𝑘 representative medoids via 𝑃𝐴𝑀(𝑺, 𝑘, 𝑁)  

3: Assign each observation (𝑖) in 𝑿 to the closest centroid, then calculate TWSS 
 

4: Go back to 1, keep clustering result if TWSS decreases 

 

The computational complexity of CLARA is 𝑂(𝑘𝑚2 + 𝑘(𝑛 − 𝑘)) , which is a significant 

improvement from PAM. The downside of CLARA is that if the best k medoids are not selected in 

the sampling process, then CLARA would produce a sub-optimal solution. When applying 

CLARA, the algorithm is run with a large m value for multiple times in order to adjust for sampling 

bias. 
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6.2.1.3 K-means based Approximate Spectral Clustering (KASP) 

Spectral clustering is one of the most powerful modern clustering algorithms and is based on the 

spectral decomposition of the graph Laplacian matrix of the data matrix. As a graph-based method, 

each observation in the data matrix is viewed as a vertex in the graph, and the dissimilarities 

between data are viewed as edges between vertices. Spectral clustering functions by identifying 

the optimal cut to partition the graph such that the sum of the weights of the edges cut in the process 

is minimized. The basic form of a spectral clustering algorithm is described in Algorithm 4 [80].  

 

Algorithm 4 Spectral Clustering 

Input:  

 Data matrix with 𝑛 observations: 𝑿 =  [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]𝑻, 𝒙𝒊 ∈  ℝ𝑝 

 Number of clusters 𝑘 

Output:  

  𝑘 clusters 

1: Form adjacency matrix (𝑾 ∈  ℝ𝑛×𝑛) according to pre-defined dissimilarity measure 

2: Form diagonal degree matrix (𝑫 ∈  ℝ𝑛×𝑛) such that the diagonal entries of 𝑫 corresponds 

to the row sums of 𝑾 

3: Form graph Laplacian matrix 𝑳 = 𝑫 − 𝑾 

4: Compute the spectral decomposition of 𝑳 , 𝑳 = 𝑽𝜦𝑽𝑇 , then find the k eigenvectors (Z∈

 ℝ𝑛×𝑘) corresponding to the k smallest eigenvalues of 𝑳 

5: Use k-means to cluster Z into 𝑘 clusters, assign the rows of 𝑿 to the same clusters as rows 

of Z 

 

Unfortunately, the spectral clustering algorithm is computationally expensive at a complexity of 

𝑂(𝑛3), largely due to the need to explicitly construct the adjacency matrix 𝑾 and the spectral 

decomposition of 𝑳 . With a large dataset, one of the alternatives is to use the k-means based 

approximate spectral clustering algorithm (KASP) proposed by Yan et al., which functions by first 

compressing the data into 𝑙 representative observations, then applying spectral clustering to the 

compressed data [81]. The ratio 
𝑙

𝑘
 is referred to as the compression ratio, a brief summary of the 

KASP algorithm is shown in Algorithm 5. 
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Algorithm 5 KASP 

Input:  

 Data matrix with 𝑛 observations: 𝑿 =  [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]𝑻, 𝒙𝒊 ∈  ℝ𝑝 

 Number of clusters 𝑘 

 Number of representations 𝑙 
Output:  

  𝑘 clusters 

1: Use k-means to partition 𝑿 into 𝑙 clusters, record the cluster centroids as landmarks L ∈
 ℝ𝑙×𝑝 

2: Use spectral clustering to partition L into 𝑘  clusters. Assign the rows of 𝑿  to the 

corresponding clusters of their representations 

 

6.2.2 Economic Evaluations of Processing Scenarios 

After using the k-means algorithm to group the data points into k different clusters, the clusters are 

sorted in ascending order of average grades. A k number of different processing streams are then 

sampled from n number of total available processing streams without replacement, also in 

ascending order of recovery, to match the k clusters. Ordering the clusters as well as the processing 

streams ensures that clusters with higher average grades get sent to processing streams designed 

to have higher recovery. Therefore, for a given number of k and n, there are in total 𝐶𝑘
𝑛 different 

scenarios for processing. Let the maximum number of clusters be m, then the total number of 

possible scenarios is given by Equation (6.2.2).  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = ∑  𝐶𝑘
𝑛

𝑚

𝑘=1

 
(6.2.2) 

The idea of ‘target grade' is applied in this chapter, such that grade deviation from the mean will 

receive a penalized recovery during processing can be modeled with the Taguchi loss function [64]. 

𝐿(𝑥𝑗
𝛾
) = 𝑐(𝑥𝑗

𝛾
− 𝜇𝑖

𝛾
)
2
     ∀𝑥𝑗 ∈ 𝐶𝑖 (6.2.3) 

Where 𝑥𝑗
𝛾
 is the value of attribute 𝛾 (in the polymetallic case) of the jth block in the ith cluster, 

which is denoted by 𝐶𝑖, with 𝜇𝑖
𝛾

𝑖
 being the value of attribute 𝛾 of its center. 𝐿(𝑥𝑗

𝛾
) represents the 

loss in the recovery of attribute 𝛾 and c is a constant that magnifies the penalization.  

Revenue and cost calculations are performed on each scenario and the one that maximizes profit 

is deemed as optimal. Formulas for calculations of revenue and cost are shown in Equation (6.2.4). 

The representations of the parameters are shown in Table 6.1. 
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Table 6.1. List of parameters for revenue and cost calculations 

Parameter Representation Unit 

𝑎 Vector of attributes  

𝜌 Block bulk density ton/m3 

𝑉 Block volume 𝑚3 

𝑥𝑗
𝛾
 jth block grade of 𝛾 th attribute % 

N Total number of blocks  

𝑃𝛾 Price of 𝛾 th attribute $ 

𝑟𝑖
𝛾
 Recovery from ith processing stream of 𝛾 th attribute % 

𝐿(𝑥𝑗
𝛾
) Loss of recovery from ith processing stream of 𝛾 th attribute % 

𝑦
𝑗𝑖

 Binary variable (1 if jth block sent to ith processing, 0 otherwise)  

𝑝𝑖 The processing cost of ith processing stream $/ton 

M Cost of constructing a processing stream $ 

m Total number of clusters/processing streams  

𝑚𝑐 Mining cost $/ton 

 

Total revenue =  ∑ 𝑅(𝑥𝑗)

𝑁

𝑗= 1

= ∑∑ 𝑥𝑗
𝛾
× 𝜌 × 𝑉 × 𝑃𝛾 × [𝑟𝑖

𝛾
− 𝐿(𝑥𝑗

𝛾
) ]

𝛾∈𝒂

𝑁

𝑗=1

                              

(6.2.4) 
Total cost =  𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑠 +  𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

+  𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

Total cost =  ∑ 𝑀𝒊

𝑚

𝑖=1

+ 𝑁 × 𝑚𝑐 × 𝜌 × 𝑉 + ∑∑𝑦𝑗𝑖 × 𝜌 × 𝑉 × 𝑝𝑖

𝑚

𝑖=1

𝑁

𝑗=1

                                             

 

6.2.3 Processing Capacity Tuning Based on Simulation 

In the previous step, an optimal processing scheme was selected via a clustering algorithm such 

that for every mineral processing stream, deviation from target grade is minimized. Having found 

the most suitable processing options, block sequencing and scheduling were completed in a 

commercial mine production scheduling software with the mean of the simulated block grades as 

input, the corresponding sequence output was exported and the number of processed blocks for 

each processing stream in each period was found. In order to have the processing capacities of the 

streams as uniform as possible, the blocks were analyzed based on their grades in the 15 different 

simulations, so that different probable grade scenarios of blocks could be studied, and a subset of 
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blocks could be sent to alternative destinations if their grades correspond to different destinations 

in different scenarios. Such blocks are named ‘marginal' blocks and are defined as blocks whose 

most likely destination according to a subset of the simulated grades differs from the one computed 

from the average expected case. After identifying the marginal blocks, in each period, depending 

on the situation, marginal blocks are sent to their most likely destination to reduce variation in 

processing capacities. When the high-grade processing is over the mean capacity and low-grade 

processing is under the mean capacity, marginal low-grade blocks currently sent to high-grade 

processing are switched to low-grade processing to fill the gap, and if there are not sufficient blocks, 

then marginal low blocks currently sent to waste will also be switched to low processing. When 

low-grade processing is over the mean capacity and high-grade processing is under, then marginal 

low-grade blocks will be sent from waste to low grade processing and marginal high-grade blocks 

from low grade processing to high grade processing as well. Similarly, if both processing streams 

are over or under the mean capacity, then the marginal waste blocks currently in low and high 

processing are sent to waste or marginal low and high blocks are sent respectively to low and high 

processing. While switching destinations, marginal blocks are ranked according to the descending 

order of likelihood, hence blocks with highest likelihoods are switched first. A schematic of the 

process is shown in Figure 6.2. By switching the destination of the marginal blocks to their 

corresponding most likely destinations, variation in processing capacities across the mine life can 

be effectively reduced at a minimum level of risk. 
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Figure 6.2. Identification and changing destination of marginal blocks 

 

6.3 Mining-Mineral Processing Integration Case Study 

6.3.1 Determination of Optimal Processing Scenario 

A relatively large data set related to a copper deposit was used in this study. The data set contains 

145,800 blocks with 15 equally likely geostatistical simulations generated with sequential 

Gaussian simulations [82, 83]. The simulations are realized on the nodes or locations of a random 

grid. In this simulation, conditioning data are converted to equivalent normal values, and the 

variography of the converted values is computed. Using conditioning and previously simulated 

values, the value is then estimated (kriged) at the simulation location of the grid. A random sample 

is finally taken from the distribution characterized by the estimated kriged value and its variance 

at the simulation location on the grid. This process is repeated for all locations on the grid. In 

addition to generating multiple realizations of  grade uncertainty, Sequential Gaussian simulation 
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were also used to reproduce variability in various engineering phenomena such as soil water 

content [84], the standard penetration tests to characterize soil exploration [85], nickel 

contamination [86] and appraising geochemical anomaly [87]. As expressed by Dowd [88], 

geostatistical simulation must meet the following criteria: (i). Simulation and actual values agree 

with each other at all sample locations, (ii). Each simulation must exhibit the same spatial 

dispersion, (iii) Each simulation and the true values must exhibit the same distribution, (iv) If there 

are multiple attributes, their simulations must co-regionalize each other in the same manner as the 

true values. These criteria were tested for the simulations and verified that the criteria are satisfied. 

Thus, a series of simulations complying the criteria given above was reproduced. An important 

speculative aspect is the number of simulations required in mine planning works. Goovaerts [89] 

discussed the effect of the number of simulations on transfer functions and concluded that 

sequential Gaussian simulation produced more accurate outcomes. He also emphasized that having 

more than 20 simulations has not much effect on accuracy. 

In order to compensate for computational complexities, a relatively small number of possible 

processing stream options are considered. Detailed information regarding those processing options 

is shown in  Table 6.4. A list of profitability parameters used in this case study is detailed in Table 

6.3. A histogram depicting the expected average of the 15 simulations are shown in Figure 6.3. 

 

Table 6.2. List of processing stream options 

Processing 

stream 

Processing cost 

($/ton) 

Recovery 

(%) 

Construction cost 

($M) 

1 20 40 10 

2 35 65 10 

3 45.5 80 12.5 

4 57.25 95 15 

 

Table 6.3. List of profitability parameters 

Parameter Representation Unit 

Pcopper Price of copper per ton $5939.1 

𝑚𝑐 Mining cost per ton $1.75 

𝑐 Magnitude of penalization 30 

V Block volume (Block size 5𝑚 × 5𝑚 × 10𝑚) 250 𝑚3 

𝜌 Block bulk density 4 𝑡𝑜𝑛/𝑚3 
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Figure 6.3. Simulated average block grades 

 

In this case study, blocks with grades lower than the lowest possible cut-off grade (in this case 

0.84%) determined from the processing stream option with the lowest processing cost and recovery 

were not included in the clustering algorithm, such that only blocks classified as ore were 

partitioned into clusters. The optimal number of clusters were decided by plotting the TWSS 

against the number of clusters and selecting the cluster number where the next increment in the 

number of clusters results from a significantly lower decrease in TWSS than the previous number. 

The results from the clustering methods are shown in Figure 6.4. Due to limited computational 

power available, the maximum compression ratio of KASP used was 2%, KASP with 1% 

compression ratio was also performed to identify the impact of compression ratio on the overall 

performance of the clustering algorithm. The optimal number of clusters from both clustering 

methods was found to be 3. It could be observed that k-means has only marginally better TWSS 

when compared with CLARA, even when medoids are used as cluster centres instead of means in 

CLARA, while KASP performed similarly to K-means before 3 clusters, but fluctuated with more 

clusters, possibly due to the small compression ratio used.  
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Figure 6.4. TWSS plot for CLARA and k-means clustering 

 

The total number of processing scenarios was calculated to be 14. Economic evaluations were 

performed on all scenarios, according to k-means clustering, CLARA, KASP with 1% and 2% 

compression ratio and marginal cut-off grade, respectively. Table 6.4 details the possible 

processing scenarios, where in each scenario the clusters are mapped with different corresponding 

processing destinations. For instance, in processing scenario 7, the data set was partitioned into 2 

clusters ranked by average grade values, with cluster 1 mapped with processing 1 and cluster 2 

with processing 4. The profits for different processing scenarios and clustering methods are 

computed exhaustively and shown in Figure 6.5. 
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Table 6.4. List of processing scenarios 

Scenario Number Cluster 1 Cluster 2 Cluster 3 

1 1   

2 2   

3 3   

4 4   

5 1 2  

6 1 3  

7 1 4  

8 2 3  

9 2 4  

10 3 4  

11 1 2 3 

12 1 2 4 

13 1 3 4 

14 2 3 4 

 

 

Figure 6.5. Comparison of profits for different clustering results at various scenarios 

 

As can be seen from Figure 6.5, for this particular dataset and parameters, the maximum profit was 

generated by the KASP with 2% compression ratio at processing scenario 9 with a value of 

$87.25M. In general, when the deviations from target grades are penalized in mineral processing, 

determining block destinations via clustering algorithms generate higher profits when compared 

to using marginal cut-off grade. In this particular case, CLARA generated higher profits than 

results from other clustering algorithms in most scenarios, but KASP with 2% compression ratio 
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performed marginally better than CLARA at its scenario with maximum profit, while CLARA at 

processing scenario 9 resulted in a profit of $86.47M. It could also be seen that KASP performed 

better in all scenarios when the compression ratio was increased. If higher computational power 

were available KASP could be projected to yield even better results. 

6.3.2 Capacity Tuning of Processing Streams Based on Geostatistical Simulations 

From the previous section, the processing scenario with the highest profit was identified to be 

scenario 9 with processing streams 2 and 4 selected for low-grade and high-grade processing, 

respectively. At a mining capacity of 15,000 blocks per period, Whittle output a total mine life of 

10 periods (years). After identifying the borderline blocks, in each period, depending on the 

situation, borderline blocks are sent to their most likely destination to reduce variation in 

processing capacities. When the high-grade processing is over mean capacity and low-grade 

processing is under mean capacity, borderline low-grade blocks currently sent to high-grade 

processing are switched to low-grade processing to fill the gap, and if there are not sufficient blocks, 

then borderline low blocks currently sent to waste will also be switched to low processing. Vice 

versa when low-grade processing is over mean capacity and high-grade processing is under. 

Similarly, if both processing streams are over or under mean capacity, then the borderline waste 

blocks currently in low and high processing are sent to waste or borderline low and high blocks 

are sent respectively to low and high processing. While switching destinations, borderline blocks 

are ranked according to the descending order of likelihood, hence blocks with highest likelihoods 

are switched first. The processing capacities of processing streams across the mine life before and 

after the switching are shown in Table 6.5. The final year of mine life was intentionally left out as 

most of the valuable ores have been mined out and there is not sufficient among out material left 

to be mined. The details of mean and variances of processing capacities across the mine life are 

shown in Figure 6.6. The mean for both processing streams was lowered to a small extent due to 

switching blocks from low and high-grade processing to waste. The new sequencing generated by 

the switching of borderline blocks managed to lower the variance in low-grade processing capacity 

by 31% and that of high-grade processing by 17%. As a result of the re-classification of blocks, a 

smoothing effect on the processing volumes throughout the periods can be observed. 
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Table 6.5. Processing capacities for old and new sequencing 

Low processing Mean Variance 

Old sequencing 

(before switching) 
7948 420622 

New sequencing 

(after switching) 
7904 289407 

High processing Mean Variance 

Old sequencing 

(before switching) 
2891 1442632 

New sequencing 

(after switching) 
2779 1187592 

 

 

Figure 6.6. Processing capacity across mine life for old and new sequencing 

 

Figure 7 shows in-situ grades and the outcomes of CLARA and KASP for three destinations. In 

this figure, the blocks shown in navy blue, green and claret red are routed to waste dump, low-

grade and high-grade processing, respectively.  The consistency between the grades and block 

destinations can be seen easily in the figure. As also seen from the figure, the number of blocks to 

be sent to high grade processing is slightly more in CLARA’s results compared to KASP’s. 
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(a) Block grades (%) 

 

(b) Results of CLARA 

 

(c) Results of KASP 

Figure 6.7. Block grades (a) and Process destinations of blocks (b: CLARA and c: KASP)  
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6.4 Chapter Conclusions  

This chapter introduces the use of clustering algorithms to generate clusters of selective mining 

units with similar grades that correspond to different processing destinations while minimizing the 

within cluster dissimilarities in mineral grades. Realistic concerns including deviation from target 

grades and capacities in processing facilities are also taken into consideration, via the penalization 

of recovery via the Taguchi loss function and calculating the number of data points in each grouped 

cluster. One of the important factors in the determination of the profit from the clustering 

algorithms is the magnitude of penalization of the Taguchi loss function, with better results 

expected from the clustering methods when a high degree of penalization is present. Another 

influential factor is the overall scale and profitability of the mining operation, with smaller 

operations being unlikely to balance out the high amount of additional costs of constructing extra 

processing facilities. A more sophisticated clustering algorithm than k-means, CLARA, is based 

on performing PAM on random samples of the original dataset and is considered to be more robust 

than k-means. In this particular setting of the study, clustering with respect to CLARA generated 

more profit than k-means in almost all scenarios, despite k-means performing slightly better in 

scenario 9, the scenario with the highest profit. KASP, which provides a computationally efficient 

solution approximate to spectral clustering, was the top performing clustering algorithm and 

generated higher profit than k-means in the optimal scenario. Increasing the compression ratio of 

KASP also had an impact on generating better results. In future studies, when the dataset is large, 

both clustering methods should be considered in grouping blocks with similar grades. Furthermore, 

by identifying borderline blocks judging from the simulated block grades, it is possible to tune the 

processing capacities by changing their destinations. In doing so, variation in processing capacities 

across the mine life can be reduced at minimum risk and cost. Although the simulated grades may 

differ than the actual grades and this may result in potential economic loss, the aim of the proposed 

methodology is to provide an efficient capacity installation approach in which the mine production 

schedule is considered. After the settling of the processing capacities, the mine schedule can be 

generated with the new parameters. The other extension will be incorporation of rock and 

metallurgical characteristics affecting processing performance into the process design. 
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Chapter 7    Final Conclusions and Future Works 

Various concepts from other fields such as statistics, mathematics, computer science and machine 

learning could be used to further optimize mining related problems. In particular, as more and 

more data are collected and stored about mining operations, it is increasingly important that people 

are able to take advantage of the heightened amount of information and make more informed, data-

driven decisions. Machine learning has significant potential to carry additional value to mining 

operations. 

In Chapter 3, it was shown that PCA based solution helped reducing the problem while maintaining 

most information in the original data. The PCA based design for stockpiles could be especially 

useful in polymetallic cases, and benefit of applying PCA could increase with the number of 

material-grade variables involved in the design. Also determined from the simulation was that 

Chevron and Windrow stockpiles with same dimensions had very similar effectiveness in terms of 

VRR. For future analyses, more advanced modelling techniques could used to simulate the 

blending process, as opposed to the linear model used in this thesis.  

The abilities of GLMs to model data that are discrete in nature were shown in chapter 4, possible 

future works regarding GLMs include more advanced methods such as mixed models, it could be 

demonstrated that using statistical techniques could adequately model data related to mining, 

quality control and reliability engineering, and quantitative models such as GLMs could give 

researchers a more nuanced understanding of the relationships among variables. possible future 

works regarding GLMs include more advanced methods such as mixed models, quasi-likelihood 

methods and Bayesian inference.  

Chapter 5 showed that factor analysis techniques such as EFA, CFA and SEM could be used as 

quantitative tools in cognitive work analysis of mine safety, the benefits of factor analysis 

techniques over standard multiple regression methods were discussed but carefully designed 

questionnaires and data collection are still required in order for it to be applied in real-life mining 

scenarios. Nevertheless, factor analysis techniques have very well-established theoretical 

backgrounds and are ideal tools to model organizational, psychological data in similar scenarios. 

Chapter 6 takes into consideration realistic concerns such as deviation from target grades and 

capacities in processing facilities and penalize recovery of blocks via the Taguchi loss function. It 

was shown that clustering-based destination policies in general performed better than marginal 

cut-off-grade based methods. And in terms of clustering methods, KASP generated the optimal 
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scenario while CLARA also performed better than k-means in all except the optimal scenario. 

Future works regarding material from this chapter include conducting case studies on polymetallic, 

multivariate datasets, using more advanced clustering methods. It was shown that KASP with just 

2% compression ratio already outperformed k-means in most scenarios, a parallelizable spectral 

clustering algorithm can almost certainly be expected to have better performance. It is also worth 

mentioning that the determination of the type of loss function, as well as the magnitude of 

penalization in recovery for blocks that deviate from target grades are of great practical 

significance in future works. 

There are also various other potential applications of machine learning techniques in mining 

engineering that are yet to be explored. For instance, with the inclusion of large amount of relevant 

data on equipment reliability, neural networks and support vector machines could be used to 

accurately predict failures and optimize maintenance schedules. Also worth further investigations 

are the possible utilization of long short-term memory neural networks in the prediction of 

commodity prices in mineral economics, or using reinforcement learning and graph representation 

learning in the better optimization of mining complexes and decision making.  
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