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Résumé

La théorie des systèmes dynamiques était recherchée par des scientifiques et des mathématiciens

au cours des derniers siècles. Aussi, l’entropie de Shannon et Gibbs, qui était introduit en premier

par Claude Shannon dans son célèbre papier de 1948 [1], a commencé une ére de la recherche

des systèmes dynamiques, et, sans doute, était la source de la théorie de l’information. Dans ce

thèse, on commence avec une introduction assez complète de la théorie des systèmes dynamiques

dans la guise de la théorie de la mesure. On continue avec la définition de l’entropie de Shannon

et Gibbs, et nous montrons quelques théorèmes fondamentaux qui vont élucider son connection

au systèmes dynamiques. Nous terminons en discutant certaines applications aux domaines de

codage et compression.
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Abstract

Dynamical systems theory has been present at the forefront of research by scientists and

mathematicians for the past few centuries. Furthermore, the Shannon-Gibbs entropy, first

proposed by Claude Shannon in his celebrated paper from 1948 [1], helped usher in a new era

of dynamical systems research and can arguably be hailed as the source of information theory.

In this thesis, we begin with a fairly comprehensive introduction to modern, measure-theoretic

dynamical systems theory. We then move on to define the Shannon-Gibbs entropy and prove

some fundamental theorems which elucidate its connection to dynamical systems. We finish by

discussing some applications to the fields of coding and compression.
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1 Introduction

A dynamical system is simply a set of points, referred to as a collection of states, or a state

space, with a rule describing how these states evolve in time.

The formal study of dynamical systems from a mathematical perspective has a long and colourful

history, arguably beginning with Sir Isaac Newton’s development of classical mechanics and calculus

in his famous work “Mathematical principles of natural philosophy” published in 1687. Newton

went further than any scientist who came before him in describing the motion and interactions of

objects in our universe.

Further developments and abstractions were made in the following centuries. Notable works by

Poincaré [2], Birkhoff [3] and others helped branch out the study into other areas of focus, such as

chaos theory and ergodic theory.

In the late nineteenth century, famed physicist Rudolf Clausius introduced the concept of en-

tropy in his famous book, The mechanical theory of heat [4]. Later on, while developing the theory

of statistical mechanics, Austrian physicist Ludwig Boltzmann reinterpreted entropy as a measure

of disorder of a system in some of his writings [5]. His formula for entropy (which is now famously

engraved on his tombstone), is

S = KB lnW (1.1)

where KB is a physical constant referred to as “Boltzman’s constant” and W represents the number

of microstates associated to a given macrostate of a system.

Claude Shannon extended this notion of disorder when he defined his information-theoretic ver-

sion of entropy [1]. Partially inspired by Alan Turing’s wartime research into automation, Shannon

developed his theory by considering messages transmitted with finite alphabets and attempting to

discover a way to both decipher and compress this information as efficiently as possible. His work

is considered the foundation of modern information theory.

In many approaches to the study of dynamical systems, one takes a manifoldM for a state space.

Time is modelled by a monoid action on the manifold (either R+ or N∪{0}). More specifically, we

take time as a point t in a monoid T (T = R+ or T = N ∪ {0}) and use it to define a collection

of smooth functions {φt}t∈T , φt : M → M , which preserve the structure of the monoid. In other

words, φs ◦ φt = φs+t.

The approach that we shall study extensively involves a measure-theoretic interpretation of a

dynamical system, where our state space is taken to be a probability space (Ω,F ,P) and time

evolution is modelled through a collection of measurable functions T t : Ω → Ω where the monoid

structure of T is once again preserved: T s ◦ T t = T s+t.

In this thesis, we will focus our efforts specifically on studying discrete-time dynamical systems.
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The consistency condition derived from the monoid structure of T = N∪ {0} implies the existence

of an operator T : Ω → Ω (which is the ‘one-step time-evolution operator’) which generates the

rest of the time evolution through simple iteration.

The outline of this thesis is as follows: We shall first present some preliminary results from

measure theory and analysis. We will then go on to present our standard working definition of a

dynamical system, and develop some of the basic theory and properties. We will then introduce the

concept of entropy, provide some basic properties, and discuss the fundamental theorems relating

entropy to dynamical systems. We will conclude by looking at specific applications of this theory

to the study of coding and compression.

2 Preliminaries

Before we begin with our study of dynamical systems, we will introduce some standard results

of measure theory and probability which will prove useful in our analysis.

The first result is the Radon-Nikodym theorem which provides a way of representing certain

measures as integrals with respect to some reference measure. This notion shall be clarified in the

proceeding subsection.

The next one is a widely used result from probability theory known as the Borel-Cantelli Lemma,

which provides a neat method for computing the probabilities of sequences of events.

We shall then move on to the definition of the concept of conditional expectation, a widely used

notion in probability theory which will provide a useful framework for understanding many of the

results in our study of dynamical systems.

We shall conclude this section with a brief overview of measure-preserving transformations,

which we shall use to model the dynamics of our system.

2.1 The Radon-Nikodym theorem

Proved for Rn by Johann Radon in 1913, and extended to measure spaces by Otto Nikodym

in 1930 [6], the theorem we present in this section is central to the study of measure theory. The

version we present has been extended to general measure spaces.

Before we state the theorem, we recall a couple of basic definitions relating to measures.

Definition 2.1. Let (X,F , µ) be a measure space, and let λ be another measure (either positive

or complex) on (X,F). We say that λ is absolutely continuous with respect to µ, and write λ ≪ µ

if, for all E ∈ F ,

µ(E) = 0 ⇒ λ(E) = 0 (2.1)

2



Definition 2.2. Let (X,F) be a measurable space, and let µ be a (positive or complex) measure

on (X,F). We say that µ is concentrated on a set A ∈ F if µ(E) = µ(A ∩ E) for all E ∈ F , or in

other words, if µ(E) = 0 for all E ∈ F such that A ∩ E = ∅.

If µ1 and µ2 are both measures on (X,F) such that µ1 is concentrated on A ∈ F , µ2 is

concentrated on B ∈ F , and A∩B = ∅, then we say that µ1 and µ2 are mutually singular, and we

write

µ1 ⊥ µ2 (2.2)

We are now ready to state the celebrated Radon-Nikodym theorem.

Theorem 2.3. Let (X,F , µ) be a σ-finite measure space, and let λ be a complex measure on (X,F).

(a) There exists a unique pair of complex measures, λa and λs such that λ = λa+λs, and λa ≪ µ,

while λs ⊥ µ.

(b) There exists a unique function f ∈ L1(µ) such that

λa(E) =

∫

E

fdµ (2.3)

for all E ∈ F

The uniqueness of the function f in part (b) of Theorem 2.3 is an easy consequence of a basic

fact about L1 functions on measure spaces. This fact is fundamental in measure theory and will

prove useful to us later on in this thesis. As such, we present it here as a lemma.

Lemma 2.4. Let (X,F , µ) be a measure space, and f, g ∈ L1(µ). f = g if and only if, for all

E ∈ F ,

∫

E

fdµ =

∫

E

gdµ (2.4)

It is important to note here that f and g are actually equivalence classes of functions which are

equal ‘almost everywhere’. When we say f = g, we really mean that f and g belong to the same

equivalence class.

Proof of Lemma 2.4.

The “only if” part of the proof is obvious, so we need only prove the “if” direction. Also, we shall

restrict our proof to real-valued functions, as the extension to complex-valued functions is also

obvious.
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Let f and g be in L1(µ) such that for all E ∈ F ,

∫

E

fdµ =

∫

E

gdµ (2.5)

Consider sets of the form

Bn =

{

x ∈ X : f(x) > g(x) +
1

n

}

(2.6)

for n ∈ N. each Bn is measurable, since

Bn = (f − g)−1

[(
1

n
,∞
)]

(2.7)

Thus,

0 =

∫

Bn

(f − g)dµ

≥
∫

Bn

1

n
dµ (2.8)

where the equality follows from our assumption, and the inequality is a consequence of the

definition of Bn.

It follows that µ(Bn) = 0. Defining B = ∪∞
n=1Bn, we see that µ(B) = 0 and that B can also be

written as B = {x ∈ X : f(x) > g(x)}.

An analogous argument shows that the set A = {x ∈ X : f(x) > g(x)} has measure zero and

thus

µ ({x ∈ X : f(x) 6= g(x)}) = µ(A) + µ(B) = 0 (2.9)

This completes the proof.

2.2 The Borel-Cantelli lemma

Another important result that we shall use comes from probability theory. Named after mathe-

maticians Émile Borel and Francesco Cantelli for discovering it at the turn of the twentieth century

(see [7] and [8]), it is a result which helps us to compute probabilities associated with sequences of

events.

Given a probability space (Ω,F ,P) (i.e. a measure space such that P(Ω) = 1), we may consider
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a sequence of events (En)
∞
n=1 ⊂ F . We define the following set:

lim sup
n→∞

En ≡
∞⋂

n=1

∞⋃

k=n

Ek (2.10)

We clearly have lim supn→∞En ∈ F by the axioms of a σ-algebra. lim supn→∞En can be inter-

preted as the set of all outcomes such that infinitely many En are achieved. In other words,

lim sup
n→∞

En = {ω ∈ Ω : ω ∈ En for infinitely many n ∈ N} (2.11)

We can now state the result concisely.

Lemma 2.5 (Borel-Cantelli). Let (Ω,F ,P) be a probability space, and let (En)
∞
n=1 be a sequence

of events in F such that

∞∑

n=1

P(En) < ∞.

We must then have

P

(

lim sup
n→∞

En

)

= 0

Proof. We begin by defining the sets Bn as follows:

Bn ≡
∞⋂

k=n

Ek (2.12)

Immediately from the definition, we see that

1. Bn ∈ F for all n ∈ N

2. Bn+1 ⊂ Bn for all n ∈ N.

The second fact (i.e. thatBn is a decreasing sequence) implies that limn→∞ P(Bn) = P (
⋂∞

n=1Bn).

This is a basic result from probability theory and can be found in any introductory textbook (see

[9], for example).
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We can now attempt to estimate the probability of lim supEn:

P(lim sup
n→∞

En) = P

( ∞⋂

n=1

∞⋃

k=n

Ek

)

= P

( ∞⋂

n=1

Bn

)

= lim
n→∞

P(Bn)

≤ lim
n→∞

∞∑

k=n

P(Ek)

= 0 (2.13)

where in the last step, we have implicitly used the fact that
∑∞

k=1 P(Ek) < ∞.

2.3 Conditional expectation

Throughout the rest of this thesis, we shall be considering a probability space (Ω,F ,P), and we

shall define expectation as integration with respect to P, namely, (whenever it makes sense),

E[f ] =

∫

Ω
fdP (2.14)

We suppose f ∈ L1(P) and consider a sub σ-algebra A ⊂ F . While f is a measurable function

from (Ω,F) to (C,B(C)), it need not be measurable from the reduced measurable space, (Ω,A). It

would be useful if one could find an A-measurable function f̃ which could act as an ‘approximation’

to f . We will proceed by showing the existence such a function.

We consider the reduced measure space (Ω,A,PA), where PA is simply the restriction of P to

A, and define a complex measure λ : A → C given by

λ(A) :=

∫

A

fdP (2.15)

one quickly verifies that λ is absolutely continuous with respect to PA, and since PA is trivially

σ-finite, Theorem 2.3 implies the existence of a unique (up to a set of measure zero) function f̃ , an

L1 A-measurable function which satisfies

λ(A) =

∫

A

f̃dPA (2.16)

6



for each A ∈ A. Comparing this to the definition of λ reveals that, for all A ∈ A
∫

A

fdP =

∫

A

f̃dP (2.17)

Thus f̃ is an approximation of f in the sense that their expectations agree over anyA-measurable

set. f̃ is called the conditional expectation of f with respect to A, or the expectation of f conditioned

on A, and is commonly denoted by E[f |A].

We now list some basic properties of conditional expectation.

Proposition 2.6. Let f, g ∈ L1(P) and A ⊂ F , the following properties hold P-almost everywhere:

(a) for α, β ∈ C, we have E[αf + βg|A] = αE[f |A] + βE[g|A]

(b) if f is A-measurable, then E[f |A] = f

(c) if f is A-measurable, then E[fg|A] = fE[g|A].

(d) if f ∈ Lp(P) for p ∈ [1,∞), then E[f |A] ∈ Lp(P) and ‖E[f |A]‖p ≤ ‖f‖p

(e) if A = {∅,Ω} is the trivial σ-algebra, then E[f |A] = E[f ].

The proofs of these facts are elementary and can be found in Chapter 15 of [10]. We shall now

make some illuminating remarks about some of these properties.

Firstly, for property (d), one sees that E[f |A] is well-defined for f ∈ Lp(P) since it is a well-

known fact that in a probability space, Lp(P) ⊂ Lq(P) for all q ≤ p.

Also, properties (a) and (d) together imply that the mapping f 7→ E[f |A] is a bounded linear

operator from Lp(P) to itself for any p.

Property (e) follows from the fact that if A is the trivial σ-algebra, then all A-measurable

functions must be constant functions. In fact, this property can be generalized to slightly more

complicated σ-algebras.

2.4 Measure-preserving transformations

Here we shall introduce the concept of a measure-preserving transformation, and prove a basic

result that we will be extremely important to us throughout our study of dynamical systems.

Definition 2.7. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces, and let T : Ω1 → Ω2

be a measurable transformation, namely T−1(E) ∈ F1 ∀E ∈ F2. T is called measure-preserving

if, for all E ∈ F2, P1(T
−1(E)) = P2(E)

7



For the purpose of studying a dynamical system, T will be understood as an operator which

will take a state ω ∈ Ω to the next state in time. As such, T : Ω → Ω will be a measure-preserving

transformation.

We now present an important result relating integration to measure-preserving transformations.

Theorem 2.8. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces, and let T : Ω1 → Ω2 be

a measure-preserving transformation. Given g : Ω2 → C, a measurable function, then f = g ◦ T

defines a measurable function from Ω1 to C and for any E ∈ F2, we have

∫

E

gdP2 =

∫

T−1(E)
fdP1 (2.18)

Proof.

First off, the measurability of f = g ◦ T is easily verified, and we will omit it here. Secondly,

we prove this result when g is taken to be a characteristic function, g = χB for some B ∈ F2.

The general result follows from the linearity of the integral and simple applications of monotone

convergence theorem (MCT).

If f = g ◦ T , we see that

f(ω) = χB(T (ω)) = χT−1(B)(ω) (2.19)

thus, we easily verify that

∫

T−1(E)
fdP1 =

∫

T−1(E)
χT−1(B)dP1

= P1(T
−1(E) ∩ T−1(B))

= P1(T
−1(E ∩B))

= P2(E ∩B)

=

∫

E

gdP2 (2.20)

where the fourth equality above is due to the measure-preserving assumption on T .

One important question one asks is “Why should we assume that T is measure preserving?”.

The origin of this assumption is Liouville’s theorem from Hamiltonian mechanics, which says that

the volume (i.e. Lebesgue measure) of a distribution on phase space is preserved over time. Within

the context of probability theory, the assumption has another interpretation.

Since T is a measurable transformation, one can view it as the random variable representing

the immediate future. It’s distribution on F is therefore given by

PT (E) := P(T−1(E)) (2.21)

8



for all E ∈ F . By the measure preserving property of T , however, we see that PT = P, which

is equivalent to saying that the distribution of states is time-invariant.

3 Abstract dynamical systems

3.1 Definitions and first examples

An abstract dynamical system is a grouping (Ω,F ,P, T ) where (Ω,F ,P) is a probability space,

and T : Ω → Ω is a measure-preserving transformation. As mentioned in the introduction, T can be

seen as the generator of a monoid, equipped with the operation of composition, so that {T i}i∈N∪{0}
(with T 0 being the identity) represents the dynamics of the system.

Given a state ω ∈ Ω, we define its orbit by the set of points {T i(ω)}i∈N∪{0}, which represent

the trajectory of ω as the system evolves in time.

We say that T is invertible if T−1 exists and is a measurable function. In this case, it is easy

to show that T−1 is also measure-preserving and thus (Ω,F ,P, T−1) defines another dynamical

system. Equivalently, we can extend the monoid to a full group structure by taking N ∪ {0} to Z.

The first and perhaps easiest example of an abstract dynamical system is to consider a fair coin

toss as our probability space, namely Ω = {0, 1} and P({0}) = P({1}) = 1
2 , and to take a flip as

our generator, namely

T (0) = 1, T (1) = 0 (3.1)

One easily verifies that T is measure-preserving, and in fact T is also invertible (namely it is its

own inverse). However this dynamical system is not so interesting, seeing as how any orbit in this

system is just an alternating sequence of 1’s and 0’s.

A second fundamental example of an abstract dynamical system is the rotation around a circle.

We take as our state space the unit circle in the complex plane with the normalized arc length as

our probability measure, combined with a rotation as our generator of dynamics. Formally,

Ω = {z ∈ C : ‖z‖ = 1}
F = B(Ω)

dP =
dθ

2π

T (z) = ei2παz, α ∈ [0, 1) (3.2)

Since arc length is preserved through rotations, we can see that T is clearly measure preserving,

9



as is illustrated in Figure 3.1. Furthermore, T is easily seen to be invertible, with its inverse given

by a rotation in the opposite direction. We shall revisit this example throughout this thesis.

Re z

Im z

T

Figure 1: T preserves the arc length as the blue segment is sent to the green one

3.2 The Poincaré recurrence theorem

The first major result of dynamical systems theory that we present is originally due to Henri

Poincaré in 1890 and is quite astonishing [2]. Intuitively, it states that a state will almost surely

return arbitrarily close to its initial state infinitely many times. We give the formal statement

below.

Theorem 3.1. Let (Ω,F ,P, T ) be an abstract dynamical system, and let E ∈ F be such that

P(E) > 0. Then P-almost all points in E return to E infinitely many times.

In mathematical terms, there exists F ∈ F , F ⊂ E, with P(F ) = P(E) such that for each ω ∈ F

there exists a sequence {nk}∞k=1 ⊂ N such that Tnk(ω) ∈ E ∀k ∈ N.

Proof.

We let Fn = ∪∞
k=nT

−k(E), namely the set of all points in Ω which eventually land in E after at

least n time steps. We proceed to define F∞ as

F∞ =
∞⋂

n=0

Fn = {ω ∈ Ω : ∃{nk}∞k=1 ⊂ N, Tnk(ω) ∈ E ∀k ∈ N} (3.3)

10



Thus the desired set is F = E ∩ F∞, and it remains to show that P(F ) = P(E). This is of

course equivalent to showing that P(E \ F∞) = 0 since E can be written as the following disjoint

union

E = (E ∩ F∞)
⊔

(E \ F∞) (3.4)

We will thus proceed by showing that E \ F∞ has measure zero. To begin with, we notice that

T−j(Fn) = Fn+j , and thus P(Fi) = P(Fj), ∀i, j ≥ 0.

We now wish to calculate P(E \ Fn) for each n. To do this, we first note that E \ Fn ⊂ F0 \ Fn

(since E ⊂ F0). Thus,

P(E \ Fn) ≤ P(F0 \ Fn) = P(F0)− P(Fn) = 0 (3.5)

Thus, we find that

P(E \ F∞) = P(E \ ∩∞
n=0Fn)

= P(∪∞
n=0E \ Fn)

≤
∞∑

n=0

P(E \ Fn)

= 0 (3.6)

which completes the proof.

3.3 Birkhoff’s ergodic theorem

In 1931, George David Birkhoff proved another major result of dynamical systems theory [3].

It establishes the existence of the ‘time average’ of integrable functions on a dynamical system and

provides a probabilistic interpretation.

Theorem 3.2. Let (Ω,F ,P, T ) be an abstract dynamical system, and let f ∈ L1(P). Then

fT (ω) := lim
n→∞

1

n

n−1∑

k=0

f ◦ T k(ω) (3.7)

exists for P-almost all ω. If we define the following subset of F ,

AT = {A ∈ F : T−1(A) = A} (3.8)

then AT is a σ-algebra, and we have that

11



fT = E[f |AT ] (3.9)

P-almost everywhere. Moreover, if fT ∈ Lp(P) for p ∈ [1,∞), then

lim
n→∞

E

[∣
∣
∣
∣
∣

1

n

n−1∑

k=0

f ◦ T k(ω)− fT

∣
∣
∣
∣
∣

p]

= 0 (3.10)

In this subsection, we will provide a similar proof to the theorem as the one found in Chapter

4 of [11]

Before we prove this theorem we state and prove a small lemma.

Lemma 3.3. If f ∈ L1(P) then E[f |AT ] is T -invariant P-almost everywhere

Proof of Lemma 3.3.

We know that both E[f |AT ] and E[f |AT ] ◦ T are AT -measurable functions. By Lemma 2.4, it

suffices then to show that integrals of the functions over sets from AT agree with each other. To

that end, we observe for an arbitrary set E ∈ AT

∫

E

E[f |AT ]dP =

∫

T−1(E)
E[f |AT ] ◦ TdP (by Theorem 2.8)

=

∫

E

E[f |AT ] ◦ TdP (since E = T−1(E)) (3.11)

Since E was arbitrarily chosen from AT , the lemma is proven.

Proof of Theorem 3.2.

By the linearity of the conditional expectation, it is sufficient to prove the result for real-valued f .

We take g ∈ L1(P) another real-valued function (for now, we will not precisely define g, but

interpret it as some arbitrary, real-valued L1 function). For ω ∈ Ω, we define Gn(ω) as

Gn(ω) := max
1≤k≤n

k−1∑

i=0

g ◦ T k(ω) (3.12)

It easily follows from the definition that, for fixed ω ∈ Ω, Gn(ω) is an increasing sequence of

real numbers, and thus its limit exists (either in R or it is ∞). Let A be the following set in F :

A :=
{

ω ∈ Ω : lim
n→∞

Gn(ω) = ∞
}

(3.13)
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The first observation we make is thatA ∈ AT . To show this, we must prove that limn→∞Gn(ω) =

∞ if and only if limn→∞Gn(Tω) = ∞.

To do this, we manipulate the expression Gn+1(ω)−Gn(Tω):

Gn+1(ω)−Gn(Tω) = max
1≤k≤n+1

k−1∑

i=0

g ◦ T k(ω)−Gn(Tω)

= max

{

g(ω), g(ω) + max
2≤k≤n+1

k−1∑

i=0

g ◦ T k(ω)

}

−Gn(Tω)

= g(ω) + max

{

0, max
2≤k≤n+1

k−1∑

i=0

g ◦ T k(ω)

}

−Gn(Tω)

= g(ω)−min {0, Gn(Tω)} (3.14)

To summarize, we obtain

Gn+1(ω)−Gn(Tω) = g(ω)−min {0, Gn(Tω)} (3.15)

Equation 3.15 provides us with a lot of insight into Gn. Firstly, one easily establishes that either

bothGn(ω) andGn(Tω) converge to a real number, or both diverge to infinity, and thus T−1(A) = A

Secondly, since Gn(Tω) is an increasing sequence, one establishes that Gn+1(ω)−Gn(Tω) must

be a decreasing sequence of real numbers, whose absolute value is bounded by 2|g(ω)|.

If ω ∈ A, one also sees from Equation 3.15 that limn→∞ (Gn+1(ω)−Gn(Tω)) = g(ω).

Furthermore, for all ω, Gn+1(ω) − Gn(ω) ≥ 0 (since Gn(ω) is increasing), thus one has the

following:

0 ≤
∫

A

(Gn+1 −Gn) dP

=

∫

A

Gn+1dP−
∫

T−1(A)
Gn ◦ TdP

=

∫

A

(Gn+1 −Gn ◦ T ) dP (3.16)

where the second line follows from Theorem 2.8, and the third line follows from the fact that

A ∈ AT . Thus we have that

∫

A

(Gn+1 −Gn ◦ T ) dP ≥ 0 (3.17)

By taking n to infinity on both sides of the relation, and applying dominated convergence

13



theorem, we see that

∫

A

g(ω)dP ≥ 0 (3.18)

and, since A ∈ AT , the definition of conditional expectation implies that

∫

A

E[g|AT ]dP ≥ 0 (3.19)

At this stage, we pick ǫ > 0 and make the following choice of g : Ω → R:

g = f − E[f |AT ]− ǫ (3.20)

This choice of g is integrable, since f,E[f |AT ] and the constant function ǫ are all L1 functions.

Moreover, by linearity of the conditional expectation, we have that

E[g|AT ] = E[f |AT ]− E[f |AT ]− ǫ = −ǫ < 0 (3.21)

Combining this fact with Equation 3.19 shows us that

∫

A

E[g|AT ]dP = 0 (3.22)

and since E[g|AT ] is strictly negative (for our choice of g), this means that P(A) = 0.

So, for our choice of g, Gn(ω) is a convergent sequence for P-almost all ω. In particular, we

have that

lim
n→∞

Gn(ω)

n
= 0 (3.23)

for P-almost all ω. Thus, we have

lim sup
n→∞

1

n

n−1∑

k=0

g ◦ T k ≤ lim sup
n→∞

Gn

n
= 0 (3.24)

P-almost everywhere. Substituting our specific choice of g into the above inequality gives

lim sup
n→∞

1

n

n−1∑

k=0

[

f ◦ T k − E[f |AT ] ◦ T k − ǫ
]

(3.25)
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Using Lemma 3.3, we may rearrange the above to obtain

lim sup
n→∞

1

n

n−1∑

k=0

f ◦ T k ≤ E[f |AT ]− ǫ (3.26)

And since ǫ > 0 was chosen arbitrarily, we obtain

lim sup
n→∞

1

n

n−1∑

k=0

f ◦ T k ≤ E[f |AT ] (3.27)

P-almost everywhere.

Now, if we had instead chosen g = (−f) − E[(−f)|AT ] − ǫ for some ǫ > 0, an equivalent

derivation to the one above would lead to the following analogous inequality,

lim sup
n→∞

1

n

n−1∑

k=0

(−f) ◦ T k ≤ E[−f |AT ] (3.28)

However, this is easily rearranged (through basic properties of lim sup and lim inf, as well as the

linearity of conditional expectation) to obtain

lim inf
n→∞

1

n

n−1∑

k=0

f ◦ T k ≥ E[f |AT ] (3.29)

Combining (3.27) and (3.29) establishes the almost-sure convergence of 1
n

∑n−1
k=0 f ◦ T k.

To prove the last part of the theorem, we consider the operator UT : Lp(P) → Lp(P) defined by

UT (f) := f ◦ T (3.30)

This is known as the Koopman operator and shall be explored in greater detail in Section 5.

Theorem 2.8 implies that

‖UT (f)‖p = ‖f‖p (3.31)

where ‖·‖p is the Lp norm, namely

‖f‖p :=
(∫

Ω
|f |p dP

) 1
p

(3.32)

For n ∈ N, we also define the n-th averaging operator An : Lp(P) → Lp(P),

15



An(f) :=
1

n

n−1∑

k=0

Uk
T (f) =

1

n

n−1∑

k=0

f ◦ T k (3.33)

From what was proved earlier, we have, for P-almost all ω ∈ Ω,

lim
n→∞

An(f)(ω) = E[f |AT ](ω) (3.34)

We also easily verify that An(f) is bounded in norm:

‖An(f)‖p =
∥
∥
∥
∥
∥

1

n

n−1∑

k=0

Uk
T (f)

∥
∥
∥
∥
∥
p

≤ 1

n

n−1∑

k=0

∥
∥
∥Uk

T (f)
∥
∥
∥
p

= ‖f‖p (3.35)

Thus, for all n, An is a contraction.

To show Lp convergence of An(f), we first assume that f ∈ Lp(P) is bounded, i.e. |f(ω)| ≤ M

for some M ∈ [0,∞). In that case, the almost-sure convergence established in (3.34) allows us to

use the Lebesgue dominated convergence theorem to conclude that

lim
n→∞

‖An(f)− E[f |AT ]‖p = 0 (3.36)

In the general case, when f ∈ Lp(P), we fix an arbitrary ε > 0. it is a well known fact that we

can choose a bounded approximation to f , say g ∈ Lp(P) with |g(ω)| ≤ M ∈ [0,∞) for all ω ∈ Ω,

such that

‖f − g‖p <
ε

4
(3.37)

Equation (3.36) establishes the Lp convergence of An(g) to E[g|AT ]. Thus, if we choose n and

m in N, we can verify whether or not the desired sequence has the Cauchy property:

‖An(f)−Am(f)‖p = ‖An(f)−An(g) +An(g)−Am(g) +Am(g)−Am(f)‖p
≤ ‖An(f − g)‖p + ‖Am(f − g)‖p + ‖An(g)−Am(g)‖p
≤ 2 ‖f − g‖p + ‖An(g)−Am(g)‖p
<

ε

2
+ ‖An(g)−Am(g)‖p (3.38)
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As An(g) is an Lp-converging sequence, we may choose n and m large enough so that

‖An(g)−Am(g)‖p <
ε

2
(3.39)

This allows us to conclude that An(f) is a Cauchy sequence in the Lp sense, and by the

completeness of Lp, we must have that An(f) converges in the Lp sense. This completes the proof

of Birkhoff’s ergodic theorem.

3.4 Ergodicity

A large focus in dynamical systems theory is on the notion of ergodicity. The concept, which

was first explored in detail by Boltzmann in relation to statistical mechanics, is central in many

well-studied examples, including those mentioned above.

Definition 3.4. An abstract dynamical system (Ω,F ,P, T ) is said to be ergodic if

P(A) ∈ {0, 1} (3.40)

for all A ∈ AT , the σ-algebra of all T -invariant sets in F .

Intuitively, ergodicity in an abstract dynamical system is a statement about its irreducibility,

in the sense that the system cannot be decomposed into ‘loops’ of significant size.

The following theorem provides further interpretations of ergodicity

Theorem 3.5. Let (Ω,F ,P, T ) be an abstract dynamical system. The following statements are

equivalent:

(a) (Ω,F ,P, T ) is ergodic

(b) P(E) ∈ {0, 1} for all E ∈ F such that P(T−1(E)∆E) = 0

(c) P(E) ∈ {0, 1} for all E ∈ F such that E ⊂ T−1(E)

(d) P(E) ∈ {0, 1} for all E ∈ F such that T−1(E) ⊂ E

(e) if E ∈ F is such that P(E) > 0, then P(∪∞
i=0T

−i(E)) = 1

(f) if E,F ∈ F such that P(E) > 0 and P(F ) > 0, then ∃n ∈ Z+ such that P(T−n(E) ∩ F ) > 0

Prior to proving this theorem, we state (without proof) a couple of lemmas relating to the

symmetric difference, ∆, which will be useful.

Lemma 3.6. For any sets A, B, and C, we have

A∆B ⊂ (A∆C) ∪ (C∆B) (3.41)
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Lemma 3.7. Let (X,F , µ) be a measure space, and let A,B ∈ F be such that µ(A∆B) = 0. Then

µ(A) = µ(B) = µ(A ∩B) (3.42)

Proof of Theorem 3.5.

((a) ⇒ (b)): If E ∈ F such that P(T−1(E)∆E) = 0, then by the subadditivity of P, and by iterating

Lemma 3.6, we see that

P(T−n(E)∆E) ≤ P

(
n⋃

i=1

T−i(E)∆T−(i−1)(E)

)

≤
n∑

i=1

P(T−i(E)∆T−(i−1)(E))

=

n∑

i=1

P

(

T−(i−1)
(
T−1(E)∆E

))

= 0 (3.43)

where in the last line, we used the measure-preserving property of our ADS. Thus for any n ∈ Z+,

we have

P(T−n(E)∆E) = 0 (3.44)

Intuitively, this tells us that the set of points which are mapped to E after any fixed number of

time-steps is ‘almost’ (in the measure-theoretic sense) the same set as E itself. Also, Equation 3.44

immediately implies that

P(T−n(E) \ E) = 0, P(E \ T−n(E)) = 0 ∀n ∈ Z+ (3.45)

We now consider the set of all points in Ω which are mapped to E infinitely often, namely

E∞ = lim sup
n→∞

T−n(E) =
∞⋂

n=0

( ∞⋃

k=n

T−k(E)

)

(3.46)

It is not hard to show that T−1(E∞) = E∞, which, by the assumption of ergodicity, implies

that P(E∞) ∈ {0, 1}. Thus, if we can show that P(E∆E∞) = 0, we can apply Lemma 3.7 to prove

P (E) ∈ {0, 1}.
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We first examine P(E∞ \ E) to find that

P(E∞ \ E) = P

( ∞⋂

n=0

( ∞⋃

k=n

T−k(E)

)

\ E
)

= P

( ∞⋂

n=0

( ∞⋃

k=n

(

T−k(E) \ E
)
))

≤ P

( ∞⋃

k=n

(

T−k(E) \ E
)
)

≤
∞∑

k=n

P(T−k(E) \ E) = 0 (3.47)

where we have used the subadditivity of P as well as basic properties of the symmetric difference.

In a similar fashion, we look at P(E \ E∞) to find

P(E \ E∞) = P

(

E \
∞⋂

n=0

( ∞⋃

k=n

T−k(E)

))

= P

( ∞⋃

n=0

( ∞⋂

k=n

(

E \ T−k(E)
)
))

≤
∞∑

n=0

P

( ∞⋂

k=n

(

E \ T−k(E)
)
)

≤
∞∑

n=0

P
(
E \ T−n(E)

)
= 0 (3.48)

Thus, we have

P(E∞∆E) = P(E∞ \ E) + P(E \ E∞) = 0 (3.49)

and thus, by Lemma 3.7, we have P(E) = P(E∞) ∈ {0, 1}.

((b) ⇒ (c)): If E ∈ F such that E ⊂ T−1(E), then trivially, we see that P(E \ T−1(E)) = 0.

Also, P(T−1(E)\E) = P(T−1(E))−P(E) = 0. This, and the above fact, imply that P(E∆T−1(E)) =

0 and by (b), we have that P (E) ∈ {0, 1}.

((c) ⇒ (d)): If E ∈ F is such that T−1(E) ⊂ E, then Ec satisfies the hypothesis of (c), so that

P(Ec) ∈ {0, 1} which implies that P(E) ∈ {0, 1}.

((d) ⇒ (e)): If E ∈ F such that P(E) > 0, then one easily verifies that
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T−1(∪∞
n=0T

−n(E)) = ∪∞
n=1T

−n(E) ⊂ ∪∞
n=0T

−n(E), and by (d), we have that

P(∪∞
n=0T

−n(E)) ∈ {0, 1} (3.50)

but since P(E) > 0, and E ⊂ ∪∞
n=0T

−n(E), we see that we must have

P(∪∞
n=0T

−n(E)) = 1 (3.51)

((e)⇒ (f)): If E,F ∈ F are such that P(E),P(F ) > 0, then by (e), we have that P(∪∞
n=0T

−n(E)) =

1, thus

0 < P(F ) = P

(( ∞⋃

n=0

T−n(E)

)

∩ F

)

≤
∞∑

n=0

P(T−n(E) ∩ F ) (3.52)

Since the above sum is strictly positive, at least one term in the sequence must be strictly positive,

thereby demonstrating (f).

((f) ⇒ (a)): Suppose that (a) is not true. Then there exists a set E ∈ F such that T−1(E) = E

and 0 < P(E) < 1. Then we must also have that 0 < P(Ec) < 1.

By applying (f) to E, and Ec, we must have, for some n ∈ Z+, that

P(T−n(E) ∩ Ec) > 0 (3.53)

However, T−n(E) = E by assumption, and so

P(T−n(E) ∩ Ec) = P(E ∩ Ec) = P(∅) = 0 (3.54)

which is a contradiction.

Theorem 3.5 provides with further characterizations of ergodicity which give us a better under-

standing of its nature. For example, Theorem 3.5(e) tells us that almost all points in Ω map to any

set E of arbitrary positive measure in an ergodic abstract dynamical system (Ω,F ,P, T ).

Another way to characterize an ergodic system is through its collection of T -invariant functions.

The following theorem clarifies the connection.

Theorem 3.8. Let (Ω,F ,P, T ) be an abstract dynamical system. The following are equivalent:

(a) (Ω,F ,P, T ) is an ergodic system
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(b) for all measurable f : Ω → C, f = f ◦ T P-almost everywhere implies f is constant P-almost

everywhere.

(c) for all f ∈ L2(P), f = f ◦ T P-almost everywhere implies f is constant P-almost everywhere.

Proof.

((a) ⇒ (b)): Firstly, we note that since any measurable complex function can be split up into

its real and imaginary parts, each of which are real, measurable functions, it suffices to prove the

implication for real-valued functions only.

We consider some measurable function f : Ω → R such that f(ω) = f(Tω) for P-almost all

ω ∈ Ω.

For m ∈ Z, and n ∈ N, we define the following set

Am,n = f−1

([
m

n
,
m+ 1

n

))

=

{

ω ∈ Ω :
m

n
≤ f(ω) <

m+ 1

n

}

(3.55)

The sets Am,n satisfy the following properties:

• for fixed n ∈ N, we have
⊔

m∈ZAm,n = Ω, i.e. Ω is the disjoint union of the sets Am,n for all

m ∈ Z.

• by the T -invariance of f , we have that P(T−1(Am,n)∆Am,n) = 0

These facts allow us to conclude that

∑

m∈Z
P(Am,n) = 1 (3.56)

for fixed n ∈ Z, and that

P(Am,n) ∈ {0, 1} ∀m ∈ Z, n ∈ N (3.57)

From equations 3.56 and 3.57, we can see that for each n ∈ N, we must have mn ∈ Z such that

P(Amn,n) = 1 (3.58)

and for all m ∈ Z such that m 6= mn, we have

P(Am,n) = 0 (3.59)

Also, one easily verifies that Amn,n is a decreasing sequence of sets, namely

Amn+1,n+1 ⊂ Amn,n ∀n ∈ N (3.60)
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Thus

P

(
⋂

n∈N
Amn,n

)

= lim
n→∞

P(Amn,n) = 1 (3.61)

Thus, in the probabilistic sense, almost all points of Ω lie in A :=
⋂

n∈NAmn,n.

We now claim that f is constant on A. Suppose for the sake of contradiction that this is not

true. In particular, suppose there exist ω1 and ω2 in A such that f(ω1) 6= f(ω2).

Choose n ∈ N large enough so that

1

n
< |f(ω1)− f(ω2)| (3.62)

Since ω1, ω2 ∈ A, then ω1, ω2 ∈ Amn,n. Thus, by our definition of the set,

mn

n
≤ f(ω1) <

mn + 1

n
,

mn

n
≤ f(ω2) <

mn + 1

n
(3.63)

Therefore,

|f(ω1)− f(ω2)| <
∣
∣
∣
∣

mn

n
− mn + 1

n

∣
∣
∣
∣
=

1

n
< |f(ω1)− f(ω2)| (3.64)

which is a contradiction. We may then conclude that f is constant on A which shows that (a)

implies (b).

((b) ⇒ (c)): This is obvious.

((c) ⇒ (a)): We take a T -invariant set E ∈ F and would like to show that we necessarily have

P(E) ∈ {0, 1}.

To do this, we consider the indicator function on E,

χE(ω) =







1 ω ∈ E

0 ω /∈ E
(3.65)
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Obviously, χE ∈ L2(P) and furthermore, we see that

χE(Tω) =







1 Tω ∈ E

0 Tω /∈ E

=







1 ω ∈ T−1(E)

0 ω /∈ T−1(E)

= χT−1(E)(ω) = χE(ω) (3.66)

Thus, χE satisfies the assumptions of (c), and therefore χE is constant P-almost everywhere. Thus,

for P-almost all ω, χE(ω) = 1, or alternatively, χE(ω) = 0 for P-almost all ω. In either case,

P(E) =

∫

Ω
χEdP ∈ {0, 1} (3.67)

One important fact that is worth noting is that for any ADS (Ω,F ,P, T ) and any function

f ∈ L1(P), E[f |AT ] is a T -invariant function (as we saw in the proof of Birkhoff’s ergodic theorem,

Theorem 3.2). We therefore have an important corollary.

Corollary 3.9 (corollary to Theorems 3.2 and 3.8). Let (Ω,F ,P, T ) be an ergodic abstract dynam-

ical system, and f ∈ L1(P), then

1

n

n−1∑

k=0

f(T kω) (3.68)

converges to a constant for P-almost all ω, namely

lim
n→∞

1

n

n−1∑

k=0

f ◦ T k = E[f ] :=

∫

Ω
fdP (3.69)

P-almost surely.

This corollary tells us that for an ergodic system, the ‘time-average’ of a function is, regardless

of initial state, equal to its ‘space-average’, namely its expectation over all possible states. This is

an important characterization of ergodicity.

We conclude this section with a final interpretation of ergodicity, known as the mean sojourn

time theorem, which is one of the initial formulations of the theory by Boltzmann in his development

of statistical mechanics.

Definition 3.10. Let (Ω,F ,P, T ) be an abstract dynamical system, and consider C ∈ F and

ω ∈ Ω. An ocurrence time for ω in C is a number k ∈ Z+ such that T k(ω) ∈ C.
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We note that an occurence time may not exist for a given state ω and event C ∈ F . We shall

soon see however that ergodicity will guarantee their existence (at least ‘almost-surely’) for certain

sets.

For fixed ω ∈ Ω,C ∈ F and n ∈ N, we define the following quantity

rn(ω,C) :=
∣
∣
{
k ∈ Z+ : k is an occurence time for ω in C, k < n

}∣
∣ (3.70)

which is the number of times that ω is evolved to a state in C for times strictly less than n. The

following theorem relates the time averages of this quantity to ergodicity.

Theorem 3.11 (Mean sojourn time). An abstract dynamical system (Ω,F ,P, T ) is ergodic if and

only if for each C ∈ F ,

lim
n→∞

rn(ω,C)

n
= P(C) (3.71)

for P-almost all ω ∈ Ω. This limit is referred to as the mean sojourn time of ω in C, as it can be

interpreted as the average time that ω will spend in the set C, as time evolves indefinitely.

Proof.

(⇒):

This direction is a fairly straightforward application of Birkhoff’s ergodic theorem, since if our

system is ergodic, and C ∈ F , then one can easily verify that

rn(ω,C) =

n−1∑

k=0

χC(T
kω) (3.72)

where χC is the usual indicator function of C. One thus concludes the following

lim
n→∞

rn(ω,C)

n
= lim

n→∞
1

n

n−1∑

k=0

χC(T
kω) =

∫

Ω
χCdP = P(C) (3.73)

where we have used Corollary 3.9.

(⇐):

Suppose Equation 3.71 holds for each set C ∈ F , and almost all ω ∈ Ω. If E ∈ AT (T−1(E) = E),

we would like to show that P(E) ∈ {0, 1}.

To do so, we consider χE . One notes that the T -invariance of E leads to the T -invariance of
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χE and thus,

lim
n→∞

rn(ω,E)

n
= lim

n→∞
1

n

n−1∑

k=0

χE(T
kω) =







1 if ω ∈ Ω

0 if ω /∈ Ω
(3.74)

However, by Equation 3.71, we know that

lim
n→∞

rn(ω,E)

n
= P(E) (3.75)

for P-almost all ω ∈ Ω. Since we have shown that the mean sojourn time can only possibly take on

the values of 0 or 1, we have finished the proof.

4 The convex structure of invariant measures

In this section, we will broaden our view of dynamical systems theory. Instead of fixing an

abstract dynamical system (Ω,F ,P, T ), we will instead look at a fixed measurable space (Ω,F)

(a sample space Ω with an associated σ-algebra) and then consider the collection P(Ω,F) of all

probability measures on (Ω,F). If we further fix a measurable transformation T : Ω → Ω, we can

consider the collection of all T -invariant measures PT
(Ω,F), as well as PT (erg)

(Ω,F) , the collection of all

ergodic measures with respect to T .

An elementary observation is that the collections P(Ω,F) and PT
(Ω,F ) are convex. To see this, we

note that if t ∈ (0, 1) and P1,P2 ∈ P(Ω,F), then the measure P defined by

P(A) = tP1(A) + (1− t)P2(A) (4.1)

for each A ∈ F is also a probability measure, i.e. P ∈ P(Ω,F). If we had further assumed that

P1,P2 ∈ PT
(Ω,F), then we would find that P ∈ PT

(Ω,F) as well.

4.1 The structure of PT (erg)
(Ω,F)

As we shall see in the remainder of this thesis, it will be useful to have a characterization of the

structure of PT (erg)
(Ω,F) in addition to the convexity property we discussed for P(Ω,F) and PT

(Ω,F). To

that end, we provide a definition for an extremal measure P ∈ PT
(Ω,F).

Definition 4.1. Given a measurable space (Ω,F), and a measurable transformation T : Ω → Ω, a

measure P ∈ PT
(Ω,F) is called extremal if it cannot be expressed as the non-trivial convex combination

of two other T -invariant measures. In other words, if there exist t ∈ (0, 1) and P1,P2 ∈ PT
(Ω,F) such
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that

P = tP1 + (1− t)P2 (4.2)

then, necessarily, P1 = P2 = P. We denote the collection of all extremal measures by PT (ext)
(Ω,F) .

We now state a theorem which shows the equivalence between ergodic measures and extremal

measures.

Theorem 4.2. For a given measurable space (Ω,F) and a measurable transformation T : Ω → Ω,

we have that

PT (erg)
(Ω,F) = PT (ext)

(Ω,F) (4.3)

Proof.

(PT (ext)
(Ω,F) ⊂ PT (erg)

(Ω,F) ):

To prove the first part, we consider P ∈ PT (ext)
(Ω,F) and would like to show that P ∈ PT (erg)

(Ω,F) .

Suppose for the sake of contradiction that there exists E ∈ F such that T−1(E) = E and

P(E) /∈ {0, 1}. We may thus define the following conditional probabilities

P1(A) = P(A|E) =
P(A ∩ E)

P(E)
, P2(A) = P(A|Ec) =

P(A ∩ Ec)

P(Ec)
(4.4)

for arbitrary A ∈ F .

P1 and P2 are well-defined probability measures, since both P(E) > 0 and P(Ec) > 0. Fur-

thermore, one can show that both P1 and P2 are T -invariant. We verify this for P1. We take an

arbitrary set A ∈ F and compute

P1(T
−1(A)) =

P(T−1(A) ∩ E)

P(E)

=
P(T−1(A ∩ E))

P(E)

=
P(A ∩ E)

P(E)
= P1(A) (4.5)

where in the second equality we used the T -invariance of the set E and in the third equality we

used the T -invariance of the measure P. P2 is verified to be T -invariant in an analogous manner.

Furthermore, it is evident that P1 and P2 are each distinct from P:

P1(E
c) =

P(Ec ∩ E)

P(E)
= 0 6= P(Ec)

P2(E) =
P(E ∩ Ec)

P(Ec)
= 0 6= P(E) (4.6)
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Thus, if we take t = P(E) ∈ (0, 1), then one easily verifies that

P = tP1 + (1− t)P2 (4.7)

which is a contradiction to the fact that P ∈ PT (ext)
(Ω,F) .

(PT (erg)
(Ω,F) ⊂ PT (ext)

(Ω,f) ):

Once again, we proceed with a proof by contradiction.

Suppose P ∈ PT (erg)
(Ω,F) but P /∈ PT (ext)

(Ω,F) . Then there exist t ∈ (0, 1) and P1,P2 ∈ PT
(Ω,F) such that

P = tP1 + (1− t)P2 (4.8)

and both P1 and P2 are distinct from P. One easily verifies that for the above relation to hold, we

must have P1 ≪ P and P2 ≪ P. Thus, by Theorem 2.3, we must have h1, h2 ∈ L1(P) such that

P1(E) =

∫

E

h1dP

P2(E) =

∫

E

h2dP (4.9)

Now it is left as an exercise to check that the T -invariance of the measures P1 and P2 imply

the (P-almost everywhere) T -invariance of h1 and h2. Thus, by Theorem 3.8, we must have that

h1 and h2 are constant functions (except possibly on sets of P-measure zero).

Since P1 and P2 are unit normalized (as they are probability measures), this necessarily implies

that h1 = h2 = 1, and thus we find that P1 = P2 = P, i.e. P ∈ PT (ext)
(Ω,F) .

This theorem ties in nicely with our previous understanding of ergodicity; In the last section,

we saw that ergodic systems were ‘irreducible’ in the sense that we cannot decompose them into

disjoint ‘loops’ (T -invariant subsets) with positive measure. In this interpretation, we see that

ergodic measures are those that are ‘irreducible’ in the sense that they cannot be written as convex

combinations of other, distinct T -invariant measures.

4.2 Existence of invariant measures, the Bogoliubov-Krylov theorem

In the preceding parts of this section, we have almost implicitly been working under the as-

sumption that, given a measurable space (Ω,F) and a measurable transformation T : Ω → Ω,

PT
(Ω,F) is non-empty. In fact, one can easily show that this is not always the case.

We take, as an elementary example, the measurable space (R,B(R)) with the measurable trans-

formation T (x) = x+1 for x ∈ R. If P is a measure on (R,B(R)) which is T -invariant, then we see
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that for any interval of the form [m,m+ 1) for some m ∈ Z, we must have

P([m,m+ 1)) = P
(
T−1 ([m,m+ 1))

)
= P([m− 1,m)) (4.10)

which shows that the P([m,m+ 1)) is constant for all m ∈ Z. Now since

R =
⊔

m∈Z
[m,m+ 1) (4.11)

we have two possibilities. The first is that P([m,m + 1)) = 0, which would imply that P(R) =

0, i.e. P is the trivial measure, and not a probability measure. The second possibility is that

P([m,m+ 1)) > 0, which implies that

P(R) =
∑

m∈Z
P([m,m+ 1)) = ∞ (4.12)

which also shows that P is not a probability measure, and thus, for our choice of T , PT
(R,B(R)) = ∅.

The following celebrated theorem, due to mathematicians N. Bogoliubov and N. Krylov [12],

specifies conditions for which invariant measures are guaranteed to exist.

Theorem 4.3. Let Ω be a compact metric space, and let B(Ω) be the associated Borel σ-algebra.

Then for any measurable transformation T : Ω → Ω, we have that PT
(Ω,F) 6= ∅.

As a prerequisite to proving this theorem, we present a lemma which is an important conse-

quence of the celebrated Stone-Weierstrass theorem.

Lemma 4.4. If Ω is a compact metric space, then C(Ω), the space of all continuous, real-valued

functions, equipped with the supremum norm, ‖f‖∞ = supω∈Ω |f(ω)|, is a separable space.

We shall not prove this lemma here, but it can be found in [13].

Proof of Theorem 4.3.

By the above lemma, we know that there exists a countable dense subset of C(Ω), which we shall

denote by {fn}∞n=1. We now fix ω0 ∈ Ω and consider the sequence

1

n

n−1∑

k=0

f1(T
kω0) (4.13)

for each n ∈ N. By the compactness of Ω and continuity of f1, it must be a bounded sequence of

real numbers and thus there exists a subsequence which converges in R. We may do the same for

each function fj and thus, using a standard diagonal argument, we may obtain a strictly increasing
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sequence of natural numbers (nk)
∞
k=1 such that

1

nk

nk−1
∑

i=0

fj(T
iω0) (4.14)

converges as k → ∞, for each j ∈ N.

We now claim that for the above sequence converges for any f ∈ C(Ω). To see this, we fix ǫ > 0

and choose m ∈ N such that ‖f − fm‖ < ǫ/3. Also since

1

nk

nk−1
∑

i=0

fm(T iω0) (4.15)

converges as k → ∞, we may choose k1, k2 large enough such that

∣
∣
∣
∣
∣
∣

1

nk1

nk1
−1

∑

i=0

fm(T iω0)−
1

nk2

nk2
−1

∑

i=0

fm(T iω0)

∣
∣
∣
∣
∣
∣

<
ǫ

3
(4.16)

thus by comparing the k1 and k2 terms in our sequence for f , we find

∣
∣
∣
∣
∣
∣

1

nk1

nk1
−1

∑

i=0

f(T iω0)−
1

nk2

nk2
−1

∑

i=0

f(T iω0)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

nk1

nk1
−1

∑

i=0

f(T iω0)−




1

nk1

nk1
−1

∑

i=0

fm(T iω0)−
1

nk1

nk1
−1

∑

i=0

fm(T iω0)





+




1

nk2

nk2
−1

∑

i=0

fm(T iω0)−
1

nk2

nk2
−1

∑

i=0

fm(T iω0)



− 1

nk2

nk2
−1

∑

i=0

f(T iω0)

∣
∣
∣
∣
∣
∣

≤ 1

nk1

nk1
−1

∑

i=0

‖f − fm‖+

∣
∣
∣
∣
∣
∣

1

nk2

nk2
−1

∑

i=0

fm(T iω0)−
1

nk1

nk1
−1

∑

i=0

fm(T iω0)

∣
∣
∣
∣
∣
∣

+
1

nk2

nk2
−1

∑

i=0

‖f − fm‖

<
ǫ

3
+

ǫ

3
+

ǫ

3

=ǫ (4.17)

This shows that the sequence is Cauchy, which proves the existence of the limit.

We proceed to define J : C(Ω) → R in the following manner:

J(f) = lim
k→∞

1

nk

nk−1
∑

i=0

f(T iω0) (4.18)

One easily verifies that
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• J is a positive linear functional.

• |J(f)| ≤ ‖f‖

• J(1) = 1

Thus, by the Riesz representation theorem, there exists a measure P on (Ω,B(Ω)) such that

J(f) =

∫

Ω
fdP (4.19)

from which we see that P(Ω) =
∫

Ω 1dP = J(1) = 1 so that P is a probability measure. Furthermore,

for any f ∈ C(Ω), we verify that

J(f ◦ T ) = lim
k→∞

1

nk

nk∑

i=1

f(T iω0)

= lim
k→∞

1

nk

nk−1
∑

i=0

f(T iω0) = J(f) (4.20)

where we were able to shift the sum due to the fact that nk grows to infinity and the terms at

either end of the sequence are uniformly bounded. This allows us to conclude that

∫

Ω
f ◦ TdP =

∫

Ω
fdP (4.21)

for all f ∈ C(Ω). By the density of C(Ω) ∈ L1(P), the same must hold for all L1 functions as well.

In particular, for any Borel set E ∈ B(Ω), we must have

∫

Ω
χEdP

=

P(E)

=

∫

Ω
χE ◦ TdP =

∫

Ω
χT−1(E)dP

=

P(T−1(E))

(4.22)

This establishes the T -invariance of P. Thus PT
(Ω,B(Ω)) is non-empty.

4.3 The weak topology and existence of ergodic measures

We would now like to continue our study of dynamical systems by showing that under the same

assumptions as the Bogoliubov-Krylov theorem, there exists an ergodic measure with respect to

any measurable transformation T .

Before we can show this, we will need some preliminary results from topology.

Definition 4.5. Let (Ω,F) be a measurable space. The weak topology τ on P(Ω,F) is the minimal
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topology such that the maps

µ 7→
∫

Ω
fdµ (4.23)

are continuous for all f ∈ C(Ω).

With this definition in hand, one sees that if a sequence {µn}∞n=1 ⊂ P(Ω,F) converges (in the

weak topology) to µ ∈ P(Ω,F), this is equivalent to saying that

lim
n→∞

∫

Ω
fdµn =

∫

Ω
fdµ (4.24)

for each f ∈ C(Ω).

With this definition, we are now prepared to present two important results, which shall be

useful in proving the existence of an ergodic measure.

Theorem 4.6. Let Ω be a compact metric space, and let F := B(Ω) be its associated Borel σ-

algebra. Then P(Ω,F) is compact in the weak topology.

The proof of this theorem can be found in [14] and [15].

Lemma 4.7. With the same assumptions as Theorem 4.6, we have that PT
(Ω,F) is also compact.

Proof.

Since PT
(Ω,F) ⊂ P(Ω,F), it suffices to show that PT

(Ω,F) is closed.

To do this, we consider a sequence (µn)
∞
n=1 in PT

(Ω,F) which converges (in the weak sense) to µ,

and we would like to show that µ ∈ PT
(Ω,F) as well.

By our definition of the weak topology, we must have that

lim
n→∞

∫

Ω
fdµn =

∫

Ω
fdµ (4.25)

for all f ∈ C(Ω). Also, since µn ∈ PT
(Ω,F) for each n ∈ N, we must have

∫

Ω
f ◦ Tdµn =

∫

Ω
fdµn (4.26)

for all f ∈ C(Ω). Thus

∫

Ω
f ◦ Tdµ = lim

n→∞

∫

Ω
f ◦ Tdµn = lim

n→∞

∫

Ω
fdµn =

∫

Ω
fdµ (4.27)

for each f ∈ F . By the density of C(Ω) in L1(µ), we must have T -invariance of µ.
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We now establish the main result

Theorem 4.8. Let Ω be a compact metric space and F its associated Borel σ-algebra, then

PT (erg)
(Ω,F) 6= ∅.

Proof.

We consider a countable dense subset of C(Ω), namely {fn}∞n=1, and define the following sequence

of subsets of PT
(Ω,F):

P0 = PT
(Ω,F)

Pn =

{

µ ∈ Pn−1 :

∫

Ω
fndµ = sup

ν∈Pn−1

∫

Ω
fndν

}

(4.28)

We now list some important facts about this sequence. For each n ∈ Z+, we have:

(a) Pn ⊃ Pn+1

(b) Pn is non-empty

(c) Pn is closed, and therefore compact.

Fact (a) is obvious, and we prove the other two facts by induction.

To begin with, we see that in the base case (n = 0), P0 = PT
(Ω,F) is both closed by Lemma 4.7

and non-empty by Theorem 4.3.

For the induction step, we assume Pn is both non-empty and closed. To help verify that this

implies that Pn+1 is non-empty and closed as well, we introduce the following collection of mappings

Ufn : P(Ω,F) → R

Ufn(µ) =

∫

Ω
fndµ (4.29)

which are easily seen to be continuous with respect to the weak topology. We may now write

Pn+1 as

Pn+1 = U−1
fn

({

sup
ν∈Pn−1

∫

Ω
fndν

})

∩ Pn (4.30)

From this we see that Pn+1 is the intersection of two closed sets and is thus closed as well. Further-

more, Ufn must attain its maximum on Pn by our assumption of closedness and non-emptiness,

which demonstrates that Pn+1 is non-empty.
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We thus have a decreasing sequence of compact, non-empty sets, which implies that

P =
∞⋂

n=0

Pn (4.31)

is non-empty as well. If we can show that P ⊂ PT (erg)
(Ω,F) , then we will have completed the proof. To

do so, we will show that any element of P is an extremal measure (recall that in Theorem 4.2, we

showed that PT (erg)
(Ω,F) = PT (ext)

(Ω,F) ).

Take P ∈ P, and suppose that there exist P1,P2 ∈ PT
(Ω,F) and t ∈ (0, 1) such that

P = tP1 + (1− t)P2 (4.32)

Then, we must have

∫

Ω
f1dP = t

∫

Ω
f1dP1 + (1− t)

∫

Ω
f1dP2 (4.33)

However, since P ∈ P1, we must also have that

∫

Ω
f1dP = sup

ν∈PT
(Ω,F)

∫

Ω
f1dν (4.34)

The only possibility then is that

∫

Ω
f1dP1 =

∫

Ω
f1dP2 =

∫

Ω
f1dP (4.35)

which shows that P1,P2 ∈ P1. We repeat this argument inductively to find that

• P1,P2 ∈ P

•
∫

Ω fndP1 =
∫

Ω fndP2 =
∫

Ω fndP ∀n ∈ N

The density of {fn}∞n=1 in C(Ω), and subsequently the density of C(Ω) in L1(P), show that P1 =

P2 = P, showing us that P ∈ PT (ext)
(Ω,F) .

4.4 Unique ergodicity

In this section we examine the properties of a system with exactly one invariant (and therefore

ergodic measure).

Definition 4.9. Let (Ω,F) be a measurable space and let T : Ω → Ω be a measurable trans-

formation. T is said to be uniquely ergodic if PT
(Ω,F) consists of exactly one element. In that
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case,

PT (ext)
(Ω,F) = PT (erg)

(Ω,F) = PT
(Ω,F) = {P} (4.36)

where P is the sole T -invariant and sole ergodic probability measure on (Ω,F).

A system that is uniquely ergodic is of special interest, since a natural selection of a measure is

apparent. In this subsection, we will demonstrate sufficient conditions for unique ergodicity in the

case of a compact metric space.

Theorem 4.10. Let Ω be a compact metric space, F its associated Borel σ-algebra, and T : Ω → Ω

a measurable transformation. If there exists a collection of functions Φ ⊂ C(Ω) which is dense in

C(Ω) such that for all f ∈ Φ, and ω ∈ Ω, we have

lim
n→∞

1

n

n−1∑

k=0

f(T kω) = cf (4.37)

where cf ∈ C is a constant (depending on f), then T is uniquely ergodic.

Proof.

We need to prove that PT
(Ω,F) consists of exactly one element. We first note that for µ ∈ PT

(Ω,F),

and for f ∈ Φ, we have by Birkhoff’s ergodic theorem that

lim
n→∞

1

n

n−1∑

k=0

f(T kω) = E[f |AT ](ω) (4.38)

for µ-almost all ω. However, by assumption,

lim
n→∞

1

n

n−1∑

k=0

f(T kω) = cf (4.39)

for all ω ∈ Ω. Thus, we must have that

∫

Ω
E[f |AT ]dµ =

∫

Ω
cfdµ = cf (4.40)

which implies that

∫

Ω
fdµ = cf (4.41)

for any µ ∈ PT
(Ω,F) and any f ∈ Φ.
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Suppose µ1, µ2 ∈ PT
(Ω,F), then by the above fact,

∫

Ω
fdµ1 = cf =

∫

Ω
fdµ2 (4.42)

for any f ∈ Φ. Since Φ is dense in C(Ω), then

∫

Ω
fdµ1 =

∫

Ω
fdµ2 (4.43)

for all f ∈ C(Ω). Then, by the density of C(Ω) in L1, we must have µ1 = µ2. Thus PT
(Ω,F) consists

of a single element.

4.5 Rotation on unit circle, Kronecker-Weyl theorem

We return now to the example mentioned in Section 3.1, the rotation on the unit circle. We

recall that

Ω = {z ∈ C : |z| = 1}
F = B(Ω)

dP =
dθ

2π

Tα(z) = ei(2πα)z, α ∈ [0, 1) (4.44)

defines an abstract dynamical system. Also, since Ω is a bounded, closed subset of C, it must be

compact.

The obvious question to ask at this point is whether or not (Ω,F ,P, T ) is ergodic. This is

resolved by the following theorem, originally proven by Hermann Weyl in [16].

Theorem 4.11 (Kronecker-Weyl). Tα is uniquely ergodic for (Ω,F) if and only if α is irrational.

Proof.

We only prove one direction of the implication. The other is left as an exercise that will be more

precisely formulated at the end of the proof.

We assume α is irrational and would like to prove unique ergodicity of Tα. To do so, we will

attempt to apply Theorem 4.10 to our system.

Let Φ = {fm ∈ C(Ω) : m ∈ Z}, where

fm(z) = zm (4.45)

By Stone-Weierstrass theorem, Φ is dense in C(Ω). Fixing some m ∈ Z, we examine the magnitude
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of the n-th term in the ergodic average of fm:

∣
∣
∣
∣
∣

1

n

n−1∑

k=0

fm(T kz)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

n

n−1∑

k=0

(

ei(2πα)kz
)m

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

zm

n

n−1∑

k=0

(

ei(2πmα
)k

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

zm

n

1−
(
ei(2παm)

)n

1− ei(2παm)

∣
∣
∣
∣
∣

≤ |z|m
n

2
∣
∣1− ei(2παm)

∣
∣

(4.46)

Since α /∈ Q, we must have that
∣
∣1− ei(2παm)

∣
∣ 6= 0 for any m ∈ Z. Thus, the above calculation

shows that

lim
n→∞

1

n

n−1∑

k=0

fm(T kz) = 0 (4.47)

for each m ∈ Z and z ∈ Ω, and thus, by Theorem 4.10, Tα is uniquely ergodic.

Since dP = dθ
2π is an invariant measure, it is the thus the only invariant measure when α is

irrational and thus (Ω,F ,P, Tα) is an ergodic ADS.

5 Koopmanism and spectral theory

In this section, we explore a deep connection shared between dynamical systems theory and

spectral theory on Hilbert spaces. Specifically, we will see how the dynamics of a given system can

be mapped onto the Hilbert space of L2 functions on our system.

5.1 The Koopman operator

Given an abstract dynamical system (Ω,F ,P, T ), we consider the Hilbert space of square-

integrable functions on (Ω,F ,P), namely L2(P) equipped with the inner product

〈f, g〉 =
∫

Ω
fgdP (5.1)

On this space, we define the operator UT : L2(P) → L2(P) in the following way
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UT (f) = f ◦ T (5.2)

which we call the Koopman operator. In simple terms, the Koopman operator sends a function

forward one step in time, by composing it with the generator of the dynamics.

With the knowledge that we have already obtained on dynamical systems, we can make some

important observations about the Koopman operator.

Lemma 5.1. The following statements hold for an abstract dynamical system (Ω,F ,P, T ) and its

associated Koopman operator, UT .

(a) for any f, g ∈ L2(P), we have 〈UT (f), UT (g)〉 = 〈f, g〉 (and in particular, if T is invertible, then

UT is unitary).

(b) 1 is an eigenvalue of UT . Furthermore, 1 is a simple eigenvalue (i.e. its eigenspace is one-

dimensional) if and only if T is ergodic.

(c) if λ is an eigenvalue of UT , then |λ| = 1.

(d) If f, g ∈ L2(P) are eigenfunctions of UT with different eigenvalues, then f and g are orthogonal,

i.e. 〈f, g〉 = 0.

Proof.

(a) To see this, we make a simple application of Theorem 2.8:

〈UT (f), UT (g)〉 =
∫

Ω
(f ◦ T )g ◦ TdP

=

∫

Ω

(
fg
)
◦ TdP =

∫

Ω
fgdP = 〈f, g〉 (5.3)

If T is invertible, then one readily verifies that the inverse Koopman operator is

U−1
T = UT−1 (5.4)

which shows us that UT is unitary.

(b) To see that 1 is always an eigenvalue of UT , consider the constant function

1(ω) = 1 ∀ω ∈ Ω (5.5)

We easily see that UT (1) = 1, and thus 1 is an eigenvalue and its eigenspace contains the space

of all constant functions. By Theorem 3.8, we know that ergodicity of our system is equivalent
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to the fact that all T -invariant functions are constant, which is equivalent to the fact that the

eigenspace of the eigenvalue 1 consists only of constant functions (i.e. it is one-dimensional).

(c) If λ ∈ C is an eigenvalue for UT , then for some non-zero f ∈ L2(P), we have

UT (f) = λf (5.6)

Thus, we have

〈UT (f), UT (f)〉 = 〈λf, λf〉 = |λ|2 〈f, f〉 = |λ|2 ‖f‖2 (5.7)

We also have, by property (a), that

〈UT (f), UT (f)〉 = 〈f, f〉 = ‖f‖2 (5.8)

and since f is non-zero, this necessarily implies that |λ| = 1.

(d) Suppose we have that

UT (f) = λ1f

UT (g) = λ2g

(5.9)

where, f, g ∈ L2(P) are non-zero, λ1 6= λ2, and by (c), we know that |λ1| = |λ2| = 1. An

application of (a) shows us that

〈UT (f), UT (g)〉 = 〈f, g〉 (5.10)

but we also have that

〈UT (f), UT (g)〉 = 〈λ1f, λ2g〉 = λ−1
1 λ2 〈f, g〉 (5.11)

We are thus able to conclude that

〈f, g〉 = λ−1
1 λ2 〈f, g〉 (5.12)

However, by assumption, λ1 6= λ2 which implies that λ−1
1 λ2 6= 1. Thus, we are left to conclude

that 〈f, g〉 = 0.
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5.2 Koopmanism and ergodicity

In Lemma 5.1, we saw that ergodicity was equivalent to the simplicity of the eigenvalue 1. In

this next theorem, we will show that ergodicity implies some really elegant spectral properties of

the Koopman operator.

Theorem 5.2. Let (Ω,F ,P, T ) be an ergodic abstract dynamical system, and let UT be its associated

Koopman operator. Then its eigenvalues are all simple and form a subgroup of {z ∈ C : |z| = 1}
(with respect to complex multiplication)

Proof.

To begin our proof, we will show that any eigenvalue λ of the Koopman operator must be simple.

Let λ ∈ C be an eigenvalue, and Eλ its associated eigenspace. We would like to show that

dimEλ = 1. To do so, we consider non-zero f, g ∈ Eλ and we shall show that f and g are simply

scalar multiples of each other.

Since f, g ∈ Eλ, we have that

UT (f) = λf

UT (g) = λg (5.13)

Moreover, if we consider their absolute values,

UT (|f |) = |f ◦ T | = |λ| |f | = |f |
UT (|g|) = |g ◦ T | = |λ| |g| = |g| (5.14)

Thus |f | , |g| are eigenfunctions of UT associated to the eigenvalue 1, and from Lemma 5.1 (b), we

know that the ergodicity of our system implies that |f | and |g| must be constant functions. Thus,

since f and g are non-zero, we must have |f | , |g| > 0 on all of Ω, and thus

f

g
(ω) =

f(ω)

g(ω)
(5.15)

must be an element of L2(P). We then verify that

UT

(
f

g

)

=
f ◦ T
g ◦ T =

λ

λ

f

g
=

f

g
(5.16)

which shows that f
g
∈ E1, and thus is a constant function. This is equivalent to saying that f and

g are scalar multiples of each other. Thus dimEλ = 1.

To see that the set of eigenvalues of UT forms a group, we need only check that it is closed

under multiplication, and that for each eigenvalue, its multiplicative inverse is also an eigenvalue.
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This is easily done by verifying that if f ∈ Eλ1 and g ∈ Eλ2 are both non-zero functions for some

λ1, λ2 ∈ C, then fg ∈ L2(P) defines an eigenfunction with respect to λ1λ2, and that 1
f
∈ L2(P) is

an eigenfunction for the eigenvalue λ−1
1

5.3 Koopman spectrum for circle rotation

In this section, we return to our classic example of the rotation on the unit circle look at the

Koopman spectrum for the dynamical system.

We recall that our system is given by

Ω = {z ∈ C : |z| = 1}
F = B(Ω)

dP =
dθ

2π

Tα(z) = ei(2πα)z, α ∈ [0, 1) (5.17)

and that this system is uniquely ergodic for irrational α.

In the proof of unique ergodicity, we introduced the collection of functions F = {fm : m ∈ Z}
on Ω where

fm(z) = zm (5.18)

We recall that F has a (complex)-linear span which forms a dense set in C(Ω) and thus in

L2(Ω). We now look at the action of the Koopman operator on a function fm ∈ F

UTα(fm)(z) = fm ◦ T (z)

=
(

ei(2πα)z
)m

= ei(2πmα)zm

= ei(2πmα)fm(z) (5.19)

Thus, we see that {e2πmα : m ∈ Z} is a collection of eigenvalues of UTα . In the following theorem,

we show that this collection is in fact the complete set of eigenvalues.

Theorem 5.3. Let (Ω,F ,P, Tα) be the dynamical system as given above. Then

σp(UT ) = {e2πmα : m ∈ Z} (5.20)

where σp(UT ) denotes the point spectrum (eigenvalues) of UT .
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Proof.

We already know that {ei(2πmα) : m ∈ Z} ⊂ σp(UT ) since F is a collection of eigenfunctions of UT .

Thus, we must show that if λ ∈ C, λ /∈ {e2πmα : m ∈ Z}, then λ must not be an eigenvalue.

Suppose UT (f) = λf for some λ /∈ {ei(2πmα) : m ∈ Z} and some f ∈ L2(P). We would like to

show that f = 0. By Lemma 5.1 (d), we have for any fm ∈ F , that

〈f, fm〉 = 0 (5.21)

Which allows us to conclude that for any g in the linear span of F , we also have

〈f, g〉 = 0 (5.22)

A simple density argument allows us to then conclude that for any g in L2(P), we have that

〈f, g〉 = 〈g, f〉 = 0 (5.23)

Thus, in particular, (taking g to be an indicator function), we see that for any E ∈ F , we have

that

∫

E

fdP = 0 (5.24)

Which implies (by Lemma 2.4) that f = 0.

6 Entropy in dynamical systems

Entropy is a concept that is fundamental in dynamical systems theory and information theory.

It provides a numerical measure of the ‘disorder’ or ‘uncertainty’ in a system.

The notion of entropy was first introduced by Rudolf Clausius in a series of papers he published

in the 1850’s and 1860’s [4]. He used it to describe the heat that is dissipated as energy is transferred

from one system to another. It is precisely this phenomenon that led Clausius to choose the name

entropy; it combines the words ‘energy’ and ‘tropos’, the Greek word for a change or transformation.

6.1 Independence and refinement of partitions

It is not possible to properly define the Shannon-Gibbs entropy without the notion of a partition.

A partition of a probability space is intuitively just a splitting of the space into measurable subsets.

We present a formal definition below.
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Definition 6.1. Let (Ω,F ,P) be a probability space. A collection C = {Ci}i∈I ⊂ F is called a

partition if the following are true:

(a) I is countable.

(b) Ci ∩ Cj = ∅ for all i 6= j ∈ I

(c)
⋃

i∈I Ci = Ω

It turns out that the study of entropy can, without loss of generality, be restricted to more

‘well-behaved’ partitions, and that the analysis becomes greatly simplified when one does so. To

that end, we provide the definition of a normal partition below.

Definition 6.2. A partition C = {Ci}I of a probability space (Ω,F ,P) is called normal if I is a

finite index set, and P(Ci) > 0 for each i ∈ I. The collection of all normal partitions of the space

is denoted by Part (Ω,F ,P).

As an abuse of notation, the trivial partition containing only the whole space itself will be

denoted by Ω.

A useful way of thinking about partitions is to imagine them as instruments which can ‘observe’

the system, and depending on what state it is in, tell you which element of the partition it belongs

to.

With this interpretation in mind, we introduce two concepts which will be central to under-

standing the notion of entropy.

Definition 6.3. Given two partitions C,D ∈ Part (Ω,F ,P), we say that C is refined by D, and

write C ≺ D, if each element of C can be written as a union of elements from D.

Equivalently, we say that D is a refinement of C, and write D ≻ C.

One easily verifies that the symbols ≺ and ≻ define a partial order on Part (Ω,F ,P) with Ω as

a minimal element, i.e.

Ω ≺ C ∀C ∈ Part (Ω,F ,P) (6.1)

Another useful relation between two partitions is that of independence.

Definition 6.4. Two partitions C and D in Part (Ω,F ,P) are said to be independent of each other

if

P(Ci ∩Dj) = P(Ci)P(Dj) ∀Ci ∈ C, Dj ∈ D (6.2)

In this case, we write C ⊥ D.
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The final definition we present in this section is that of a common refinement. It specifies a

canonical way of taking two partitions and constructing a third, which refines both of them.

Definition 6.5. Given two partitions, C = {Ci}i∈I and D = {Dj}j∈J in Part (Ω,F ,P), the common

refinement of C and D, denoted by C ∨ D is defined as

C ∨ D := {Ci ∩Dj : i ∈ I, j ∈ J} (6.3)

We now present some basic properties of partitions.

Proposition 6.6. Given arbitrary partitions C,D, E ∈ Part (Ω,F ,P), the following hold:

(a) C ≺ C ∨ D, D ≺ C ∨ D.

(b) Associativity: (C ∨ D) ∨ E = C ∨ (D ∨ E)

(c) Ω ∨ C = C

(d) Ω ⊥ C (∀C ∈ Part (Ω,F ,P))

(e) (C ⊥ D, C ≺ D) ⇒ C = Ω

Proof.

Properties (a),(b),(c), and (d) are trivial to verify, and thus we will only prove property (e).

Suppose that we have two partitions, C,D ∈ Part (Ω,F ,P) satisfying

C ⊥ D, C (6.4)

Let C be an element of C. Since D refines C, we must have that

C =

n⋃

i=1

Di (6.5)

for some collection {Di}ni=1 ⊂ D. Furthermore, by independence, we have

P(Di) = P(C ∩Di) = P(C)P(Di) (6.6)

We must therefore have that P(C) = 1 and since C is a normal partition, we must have C = Ω.

Proposition 6.6 (b) implies that we may write the common refinement of multiple partitions in

a relatively simply way: Given a finite index set I, and a collection {Ci}i∈I of normal partitions,

we use the notation

∨

i∈I
Ci (6.7)

43



to denote the common refinement of all the partitions in the collection.

6.2 Shannon-Gibbs Entropy

We now introduce the Shannon-Gibbs entropy in the formalism that we have developed thus

far.

Definition 6.7. Given a probability space (Ω,F ,P) and a partition C ∈ Part (Ω,F ,P), the entropy

of C, denoted by h(C), is defined as

h(C) := −
∑

Ci∈C
P(Ci) ln (P(Ci)) (6.8)

One should think of entropy as a measure of uncertainty, or alternatively, the expected ‘infor-

mation’ gained from observing the state of the system. These interpretations will become more

clear as we reveal the properties of entropy.

To elucidate the interpretation of entropy as the expected information, we define the information

function on Ω for a partition.

Definition 6.8. Given a partition C ∈ Part (Ω,F ,P), the information function with respect to C
is given by

IC(ω) := − ln(P(Ci)) if ω ∈ Ci (6.9)

The information thus measures the following: if ω ∈ Ω belongs to a ‘small’ part of C (in the

probabilistic sense), the information function returns a high value. It only returns 0 if C = Ω. Also,

with this definition, one easily sees that

h(C) =
∫

Ω
ICdP = E[IC ] (6.10)

This validates our interpretation of entropy as the average information contained in a state.

6.3 Conditional entropy

Another important concept in our study is that of conditional information and conditional

entropy. Above, we interpreted entropy of a partition as the average information obtained from

determining in which component of the partition a given state lies. The conditional entropy is a

measure which relates the information of two given partitions. Specifically, it measures how much

more information is obtained from determining the relevant component of one partition, given that

we already have obtained information from another partition.
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Definition 6.9. Given two partitions, C,D ∈ Part (Ω,F ,P), the conditional information function

of C, given D, is denoted by IC|D and is defined on Ω by

IC|D(ω) := − ln (P(Ci|Dj)) = − ln

(
P(Ci ∩Dj)

P(Dj)

)

for ω ∈ Ci ∩Dj (6.11)

With Definition 6.9, we have a convenient way of defining conditional entropy.

Definition 6.10. The conditional entropy of C given D, or the entropy of C conditioned on D
(where C and D are two normal partitions of (Ω,F ,P)) is simply the expectation of the conditional

information:

h(C|D) := E[IC|D] = −
∑

Ci∈C,Dj∈D
P(Ci ∩Dj) ln (P(Ci|Dj)) (6.12)

We remark that the specific case of conditioning on the trivial partion reduces these definitions

to the more basic notions of entropy and information:

h (C|Ω) = h (C) , IC|Ω = IC (6.13)

We now present a number of fundamental properties of information and entropy

Proposition 6.11. Consider C,D, E ∈ Part (Ω,F ,P) and ω ∈ Ω. The following hold:

(a) h(C) ≥ 0 and h(C) = 0 ⇔ C = Ω

(b) If C has n elements, then h(C) ≤ ln(n) and h(C) = ln(n) ⇔ P(Ci) =
1
n

∀Ci ∈ C

(c) C ≺ D ⇒ h(C) ≤ h(D)

(d) h(C|D) ≤ h(C) and h(C|D) = h(C) ⇔ D ⊥ C

(e) IC∨D = ID + IC|D, (h(C ∨ D) = h(D) + h(C|D))

(f) IC∨D|E = ID|E + IC|D∨E , (h(C ∨ D|E) = h(D|E) + h(C|D ∨ E))

Prior to proving Proposition 6.11, we will present the celebrated Jensen’s inequality for convex

functions, named after the mathematician Johan Jensen who proved it in 1906 [17]. We shall see

that it is fundamental to understanding and interpreting entropy.

Lemma 6.12. Let ϕ : (a, b) → R be a convex function and x1, . . . , xn a finite sequence in (a, b).

Furthermore, let a1, . . . , an be a sequence of strictly positive numbers whose sum is 1. Then,

ϕ

(
n∑

i=1

aixi

)

≤
n∑

i=1

aiϕ(xi) (6.14)

Furthermore, if ϕ is strictly convex, then equality holds only when x1 = x2 = · · · = xn.
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Jensen’s inequality is proven in much greater generality in [18]. We have presented a much

simpler version as it will suffice in our applications of it throughout this thesis.

Proof of Proposition 6.11.

(a) The positivity of entropy is trivial, and moreover holds for the information function: IC(ω) ≥
0 ∀ω ∈ Ω.

If h(C) = 0 then

∑

Ci∈C
P(Ci) ln(P(Ci)) = 0 (6.15)

The only possibility is that P (Ci) ∈ {0, 1} for each element Ci ∈ C, and since C is normal, we

must have C = Ω.

(b) Suppose C = {Ci}ni=1. We then see that

−h(C) =
n∑

i=1

P(Ci) ln(P(Ci)) =
n∑

i=1

P(Ci)

(

− ln

(
1

P(Ci)

))

≥ − ln

(
n∑

i=1

P(Ci)

P(Ci)

)

= − ln(n) (6.16)

where the inequality was obtained by applying Lemma 6.12 to the strictly convex function

− ln. Negating the above proves the first part of (b) and once again by Lemma 6.12 we see

that equality can only be achieved when P(C1) = P(C2) = · · · = P(Cn), i.e. when

P(Ci) =
1

n
for i = 1, . . . , n (6.17)

(c) If C ≺ D, then for each Ci ∈ C, we have a finite sequence D(i,1), . . . , D(i,ki) of elements of D
such that

ki⋃

j=1

D(i,j) = Ci (6.18)

Monotonicity of the probability measure implies that P(Di,j) ≤ P(Ci) for each j, and therefore

− ln(P (Di,j)) ≥ − ln(P(Ci)). Thus, for ω ∈ Ci,

IC(ω) = − ln(P(Ci)) ≤ − ln(P (Di,j)) = ID(ω) (6.19)

and since each ω in Ω must belong to some Ci ∈ C, this proves (c)
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(d) The proof of this fact is a fairly simple application of Lemma 6.12:

h(C|D) = −
∑

i,j

P(Ci ∩Dj) ln(P(Ci|Dj))

=
∑

i

P(Ci)
∑

j

P(Dj |Ci) ln

(
1

P(Ci|Dj)

)

≤
∑

i

P(Ci) ln




∑

j

P(Dj)

P(Ci)





= −
∑

i

P(Ci) ln(P(Ci)) = h(C) (6.20)

equality is achieved if and only if P(Ci|Dj) = P(Ci|Dk) for any i, j, k, which is equivalent to

saying that P(Ci|Dj) = P(Ci). This is an equivalent condition for independence of C and D

(e) This part follows from (f) (which shall be proven below) by taking E = Ω.

(f) For ω ∈ Ci ∩Dj ∩ Ek, where Ci ∈ C, Dj ∈ D, and Ek ∈ E , we have

ID|E(ω) + IC|D∨E(ω) = − ln

(
P(Dj ∩ Ek)

P(Ek)

)

− ln

(
P(Ci ∩Dj ∩ Ek)

P(Dj ∩ Ek)

)

= − ln

(
P(Dj ∩ Ek)

P(Ek)
· P(Ci ∩Dj ∩ Ek)

P(Dj ∩ Ek)

)

= − ln

(
P(Ci ∩Dj ∩ Ek)

P(Ek)

)

= IC∨D|E(ω) (6.21)

Since Ci, Dj and Ek were arbitrary elements of their respective partitions, the equality above

must hold everywhere on Ω. Thus (e), and the entire lemma have been proved.

Proposition 6.11 provides us with invaluable intuition on how entropy measures the information

contained in a partition. For instance, part (c) of the lemma tells us that a more refined parti-

tion allows us to distinguish a given state more precisely and thus one obtains necessarily more

information then in a ‘coarser’ partition. Another example can be found in part (e), which tells

us that the information gained by measuring against two partitions simultaneously is equivalent to

the information gained from measuring one partition plus the information gained from measuring

the second partition conditioned on the first.

The lemma can also be used to derive further interesting properties of information and entropy.

For instance, parts (d) and (e) together imply the following important property.

Corollary 6.13. Entropy is subadditive: Given two normal partitions C and D, we have

h(C ∨ D) ≤ h(C) + h(D) (6.22)
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with equality if and only if C and D are independent of each other.

6.4 An axiomatization of entropy

As early as Shannon’s seminal paper from 1948 [1], efforts were made to mathematically ax-

iomatize the concept of entropy (see for instance [19] and [20]). Khinchin’s book, Mathematical

foundations of information theory, was among the first to provide both concise and physically

meaningful axioms to uniquely specify an entropy functional.

We first note that for a given probability space (Ω,F ,P) and partition C ∈ Part (Ω,F ,P),

the only necessary information for defining entropy are the individual probabilities of each of the

elements of C. Thus, we can simply reinterpret entropy as a function on probability vectors from

Rn.

Formally speaking, if we define

Pn =

{

p = (p1, . . . , pn) ∈ Rn : pi ≥ 0∀i ,
n∑

i=1

pi = 1

}

(6.23)

and

P =

∞⋃

i=1

Pn (6.24)

then we may re-envision the Shannon-Gibbs entropy defined in Section 6.2 as a function from

P to R+. Specifically, we see that

h : P → R+

h(p1, . . . , pn) = −
n∑

i=1

pi ln pi (6.25)

(with the convention 0 ln 0 = 0) is an extension of Definition 6.7, with the identification of

Part(Ω,F ,P) to a subset of P. Stating and proving uniqueness theorems about entropy in this

formalism is in some sense the most universal and ‘natural’.

Khinchin’s five axioms are straightforward properties that we have already seen are satisfied by

the Shannon-Gibbs entropy: If H : P → R is a function such that

(i) H is symmetric in its arguments.

(ii) for fixed n, H : Pn → R is a continuous function

(iii) H is maximized on Pn by
(
1
n
, . . . , 1

n

)
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(iv) H(p1, . . . , pn, 0) = H(p1, . . . , pn)

(v) for fixed (Ω,F ,P) and C,D ∈ Part (Ω,F ,P), we have that H(C ∨ D) = H(C) +H(C|D) (see

Proposition 6.11 (e))

then H = c · h for some c ≥ 0.

The uniqueness theorem that we shall prove in this section is particularly impressive in that

it can be succinctly described with 2 axioms. We shall follow the proof as completed in a set of

project notes by student Sherry Chu [21].

To be able to properly describe the axioms, we introduce some time-saving notation.

Definition 6.14. Let Ωi is a finite probability space for each i ∈ {1, . . . ,m}, with size |Ωi| = ni and

associated probability vector (p(Ωi,1), . . . , p(Ωi,ni)) for each Ωi. Furthermore, let p = (p1, . . . , pm) ∈
Pm. Then the p-mixing of the collection Ωi

m
i=1, denoted by

⊕m
i=1 piΩi, is a probability space with

∑m
i=1 ni elements, and probabilities given by

pij = pi · p(Ωi,j) (6.26)

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

If we take a p-mixing as in the above definition, we see that we can rewrite its Shannon-Gibbs

entropy in terms of the relevant entropies of its components.

h

(
m⊕

i=1

piΩi

)

= −
m∑

i=1

ni∑

j=1

pij ln pij

= −
m∑

i=1

ni∑

j=1

pij
(
ln pi + ln p(Ωi,j)

)

= −
m∑

i=1

pi ln pi

ni∑

j=1

p(Ωi,j) −
m∑

i=1

pi

ni∑

j=1

p(Ωi,j) ln p(Ωi,j)

= −
m∑

i=1

pi ln pi +
m∑

i=1

pi · h(Ωi)

=
m∑

i=1

pi · h(Ωi) + h(p1, . . . , pn) (6.27)

As we see above, the entropy of the p-mixing of a collection {Ωi}mi=1 is just the weighted average

of the entropies of the components Ωi, plus the entropy gained from the mixing itself, namely

h(p1, . . . , pn). We shall aptly call this the mixing property of entropy.

We are now prepared to state and prove the main theorem.

49



Theorem 6.15. Let H : P → R be a function such that

(a) if we restrict the domain to R2, then H : P2 → R is a continuous function.

(b) the mixing property holds: for a collection Ωi
m
i=1 of probability spaces, and

p = (p1, . . . , pm) ∈ Pn, we have

H

(
m⊕

i=1

piΩi

)

=
m∑

i=1

piH(Ωi) +H(p1, . . . , pm)

(c) H
(
1
2 ,

1
2

)
> 0

then H = c · h for some c > 0.

We remark that in the standard literature, a continuity assumption is generally made for the

whole function H : P → R as opposed to simply the restricted function H : P2 → R. We shall see

in the following proof that continuity is only required in two variables, and the rest follows from

and induction proof which has no argument based on continuity.

Proof. For n ∈ N, we define

f(n) ≡ H

(
1

n
, . . . ,

1

n

)

(6.28)

As a direct result of the mixing property, we have that

f(nm) = f(n) + f(m) (6.29)

for n,m ∈ N. Applying this inductively, we see that for n, k ∈ N, we have f(nk) = kf(n).

We would now like to show that f(n) = c lnn for some c > 0. We shall do so in a few steps.

We will first begin by showing that the difference between successive points of f(n) tends to 0, and

then use this fact among others to show that f(n) must be of the desired form.

We begin with a small lemma:

Lemma 6.16. If H satisfies the mixing property, then H(1) = H(0, 1) = 0.

Proof of Lemma 6.16. We first show H(1) = 0. Take any vector ρ = (ρ1, ρ2) ∈ P2, then we apply

the mixing property to find that

H(ρ1, ρ2) = ρ1H(1) + ρ2H(1) +H(ρ1, ρ2)

= H(1) +H(ρ1, ρ2)
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which, upon rearranging, implies that H(1) = 0. Next, we consider the vector p = (0, p1, p2) ∈ P3

and apply the mixing property in two different ways:

H(0, p1, p2) = p1H(0, 1) + p2H(1) +H(p1, p2)

= p2H(0, 1) + p1H(1) +H(p1, p2)

Using the already proven fact that H(1) = 0, we find that

(p2 − p1)H(1, 0) = 0

Since we are free to choose p1 and p2 in such a way that p1 6= p2, we must have H(1, 0) = 0.

We now proceed with showing that limn→∞ f(n)− f(n− 1) = 0.

We define dn ≡ f(n)− f(n− 1) and δn ≡ H
(
1
n
, 1− 1

n

)
. by the continuity of H on P2, we have

δn → H(1, 0) = 0 as n → ∞. If we can then show that |dn − δn| → 0, then this will imply that

dn → 0, and we will have completed the first half of this proof.

Before we estimate |dn − δn|, it is useful to remark that f(1) = 0, implying that d2 = f(2) −
f(1) = f(2), and inductively, one easily finds that

f(n) =
n∑

i=2

di (6.30)

Furthermore, by carefully applying the mixing property with
(
1
n
, 1− 1

n

)
, we find

dn = f(n)− f(n− 1)

= H

(
1

n
, . . . ,

1

n

)

−H

(
1

n− 1
, . . . ,

1

n− 1

)

=
1

n
H(1) +

(

1− 1

n

)

H

(
1

n− 1
, . . . ,

1

n− 1

)

+H

(
1

n
, 1− 1

n

)

−H

(
1

n− 1
, . . . ,

1

n− 1

)

(by mixing property)

= δn −
∑n−1

i=2 di
n

(6.31)

Using equation (6.31) inductively, one can prove for any N ∈ N (N ≥ 2), that

N∑

n=2

dn =
1

N

N∑

n=2

nδn (6.32)
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This leads to the following expression for dN :

dN =
N∑

n=2

dn −
N−1∑

n=2

dn

= δN +
1

N

N−1∑

n=2

nδn −
N−1∑

n=2

dn

= δN +
1

N

N−1∑

n=2

nδn − 1

N − 1

N−1∑

n=2

nδn

= δN − 1

N(N − 1)

N−1∑

n=2

nδn (6.33)

Thus, we may finally estimate the distance between dN and δN :

|dN − δN | =
∣
∣
∣
∣
∣

1

N(N − 1)

N−1∑

n=2

nδn

∣
∣
∣
∣
∣

≤ 1

N(N − 1)





√
N−1∑

n=2

n |δn|+
N−1∑

n=
√
N

n |δn|





≤ 1

N(N − 1)

(

N sup
n

|δn|+ (N −
√
N)N sup

n≥N

|δn|
)

(6.34)

In particular, since δn → 0, we must have that supn |δn| < ∞ and supn≥N |δn| → 0 as N → ∞.

Thus, the expression on the right hand side of equation (6.34) goes to 0 as N goes to ∞. We thus

have the desired result: limn→∞ f(n)− f(n− 1) = 0.

We would now like to show that f(n) = c lnn for some c > 0. Clearly, if such a c exists, then

we must have

c =
f(n)

lnn
∀n ≥ 2

=⇒ c =
f(2)

ln 2
(6.35)

Thus, we define c ≡ f(2)/ ln 2. By property (c) of H, we must have c > 0. Furthermore, since

f(nk) = kf(n) for any k, n ∈ N, we can see that

lim
n→∞

f(n)

lnn
= c ⇐⇒ f(n) = c lnn ∀n ∈ N (6.36)

f(n) = c lnn =⇒ limn→∞ f(n)/ lnn = c is obvious. To prove the other direction, we suppose for

contradiction that ∃n0 ∈ N such that f(n0) 6= c lnn0. in this case, if we consider taking the limit
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along the subsequence nk
0 for k = 1, 2, . . ., then we see that

lim
n→∞

f(n)

lnn
= lim

k→∞
f(nk

0)

lnnk
0

=
f(n0)

lnn0
6= c

which leads to a contradiction. Thus, we need only show that limn→∞ f(n)/ lnn = c. Furthermore,

if we define the function

g(n) ≡







0 if n = 1

f(n)− c lnn if n ≥ 2
(6.37)

Then our goal becomes to show that

lim
n→∞

g(n)

lnn
= 0 (6.38)

To do this, we first note that g(2) = 0 and we define ǫk = g(k + 1) − g(k). We can see from the

definition of g(n) and the fact that f(n)− f(n− 1) tends to zero that ǫk → 0 as k → ∞ For given

n ≥ 2, we may write n = 2n1 + r1 where r1 ∈ {1, 2}. Specifically, for fixed n, we must have

n1 =
⌈n

2

⌉

− 1

r1 = n− 2n1 (6.39)

We use this to re-express g(n) in a helpful way:

g(n) =
n−1∑

k=2n1

ǫk + g(2n1) (6.40)

We note that 2n1 ≤ n− 1 so that the expression above makes sense.

We can also re-express g(2n1) in a more useful manner:

g(2n1) = f(2n1)−
f(2)

ln 2
ln(2n1)

= f(2) + f(n1)−
f(2)

ln 2
(ln 2 + lnn1)

= f(n1)− c lnn1

= g(n1) (6.41)
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Thus, equation (6.40) becomes

g(n) =
n−1∑

k=2n1

ǫk + g(n1) (6.42)

We repeat this process, expressing n1 = 2n2 + r2 with r2 ∈ {1, 2}. More specifically, analogous to

equation (6.42), we have

g(n1) =

n1−1∑

k=2n2

ǫk + g(n2) (6.43)

Iterating this process inductively, one sees that after k0 steps, we eventually have nk0 = 1 with

the following recursive relations

nk = 2nk+1 + rk+1

g(nk) =

nk−1
∑

i=2nk+1

ǫi + g(nk+1) (6.44)

Using these relations, and taking n0 ≡ n, one can neatly expand equation (6.42) as follows:

g(n) =

k0∑

k=1

nk−1−1
∑

i=2nk

ǫi (6.45)

where we have implicitly used the fact that g(2) = g(1) = 0. Furthermore, one deduces from the

first relation in equation (6.44) that the number of iterations, k0, cannot exceed log2 n = lnn
ln 2 .

We now proceed to estimate the size of g(n)/ ln(n) using the results we have shown thus far. We

first fix some ε > 0. Since limi→∞ ǫi = 0, we may choose N1 ∈ N large enough so that |ǫn| <
(
ln 2
2

)
ε
4 .

∣
∣
∣
∣

g(n)

lnn

∣
∣
∣
∣
=

1

lnn

∣
∣
∣
∣
∣
∣

k0∑

k=1

nk−1−1
∑

i=2nk

ǫi

∣
∣
∣
∣
∣
∣

≤ 1

lnn

k0∑

k=1

∣
∣
∣
∣
∣
∣

nk−1−1
∑

i=2nk

ǫi

∣
∣
∣
∣
∣
∣

<
1

lnn

∣
∣
∣
∣
∣

N1∑

k=1

ǫk

∣
∣
∣
∣
∣
+

(
(k0 + 1)2

lnn

)(
ln 2

2

)
ε

4

≤ 1

lnn

∣
∣
∣
∣
∣

N1∑

k=1

ǫk

∣
∣
∣
∣
∣
+

(
lnn+ ln 2

lnn

)
ε

4
(6.46)

where in the third line, we have used the fact there are at most 2(k0 + 1) total terms in the

summation expression for g(n) from equation (6.45), and in the fourth line, have used the fact that
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k0 ≤ lnn
ln 2 .

Since
∣
∣
∣
∑N1

k=1 ǫk

∣
∣
∣ is a finite constant, we may choose N2 ∈ N large enough so that

1

lnn

∣
∣
∣
∣
∣

N1∑

k=1

ǫk

∣
∣
∣
∣
∣
<

ε

2
∀n ≥ N2 (6.47)

Furthermore, we may choose N3 ∈ N such that

lnn+ ln 2

lnn
< 2 ∀n ≥ N3 (6.48)

Thus, if we choose n ≥ max {N1, N2, N3}, equations (6.46), (6.47), and (6.48) imply that

∣
∣
∣
∣

g(n)

lnn

∣
∣
∣
∣
<

ε

2
+

ε

2
= ε (6.49)

This finally demonstrates that limn→∞ g(n)/ lnn = 0, and thus f(n) = c lnn, where c = H(1/2, 1/2)/ ln 2.

We now move on to the final part of this proof, showing that H = c · h. We begin by first

showing that this is true when we restrict the functions to P2. In other words, we would like to

show that

H(p, 1− p) = c · h(p, 1− p) = −c (p ln p+ (1− p) ln(1− p)) (6.50)

By property (a), it suffices for us to prove the above statement for p ∈ Q ∩ (0, 1).

We thus consider p = n
m

for some n,m ∈ N, m > n. Using the mixing property, we shall

re-express f(m) in terms of f(n).

f(m) = H

(
1

m
, . . . ,

1

m

)

= p ·H
(
1

n
, . . . ,

1

n

)

+ (1− p)H

(
1

m− n
, . . . ,

1

m− n

)

+H(p, 1− p)

= pf(n) + (1− p)f(m− n) +H(p, 1− p) (6.51)
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We may now rearrange equation (6.51) to obtain an expression for H(p, 1− p):

H(p, 1− p) = f(m)− pf(n)− (1− p)f(m− n)

= c (lnm− p lnn+ (1− p) ln(m− n))

= c ((p+ (1− p)) lnm− p lnn+ (1− p) ln(m− n))

= c

(

p
(

ln
m

n

)

+ (1− p)

(

ln
m

m− n

))

= −c (p ln p+ (1− p) ln(1− p))

= c · h(p, 1− p) (6.52)

Where we have used the fact that p = n/m and 1− p = (m− n)/m.

It is now left for us to prove the correct form for a general probability vector from P =
⋃

n∈N Pn.

We do this by induction on n.

We consider an arbitrary probability vector (p1, . . . , pn) ∈ Pn (where n > 2), and we assume

that for any p ∈ ⋃n−1
k=1 Pk, we have H(p) = c · h(p). We shall now apply the mixing property with

the vector (pn, 1− pn) ∈ P2, along with the induction hypothesis to obtain the desired expression

for H:

H(p1, . . . , pn) = pnH(1) + (1− pn)H

(
p1

1− pn
, . . . ,

pn−1

1− pn

)

+H(pn, 1− pn)

= −c

[

(1− pn)
n−1∑

i=1

pi
1− pn

ln

(
pi

1− pn

)

+ pn ln pn + (1− pn) ln(1− pn)

]

= −c

[
n−1∑

i=1

pi ln pi − (1− pn) ln(1− pn) + pn ln pn + (1− pn) ln(1− pn)

]

= −c
n∑

i=1

pi ln pi

= c · h(p1, . . . , pn) (6.53)

where we have used the fact that
∑n−1

i=1 pi = 1− pn. This completes the proof.

6.5 Measurability and information

Given a probability space (Ω,F ,P), it is obvious from Definitions 6.8 and 6.9 that the in-

formation function and conditional information function for given partitions are measurable with

respect to F . However, we shall see that the structure of a normal partition leads to more specific

measurability conditions for information.

Definition 6.17. Given a probability space (Ω,F ,P) and a normal partition C, the σ-algebra

generated by C shall be denoted by σ(C)
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Since a partition C is a finite collection of disjoint, measurable sets whose union is Ω, we

see that σ(C) is simply the collection of unions of elements in the partition (with the empty set

included) and is in bijective correspondence with the power set of C. Furthermore, we clearly have

C ≺ D ⇒ σ(C) ⊂ σ(D) for partitions C,D ∈ Part (Ω,F ,P).

The following lemma tells us how the measurability of the information and conditional infor-

mation functions are related to the partitions on which they are defined.

Lemma 6.18. Let (Ω,F ,P) be a probability space and C,D ∈ Part (Ω,F ,P) then IC is measurable

with respect to σ(C) and IC|D is measurable with respect to σ(C ∨ D).

Let us now consider three normal partitions on (Ω,F ,P), C,D, and E , and suppose that C ≺
D. From our established interpretation of entropy and information, we should expect that if we

are already given the information from D, then the expected additional information gained by

measuring E would be less than the information gained had we only been given the information

from C. This intuition is formalized in the lemma below.

Lemma 6.19. Let C,D, and E be normal partitions of (Ω,F ,P) with C ≺ D. Then

E[IE|D|σ(C ∨ E)] ≤ IE|C (6.54)

and in particular,

h(E|D) ≤ h(E|C) (6.55)

Proof.

We first remark that since any element of σ(C ∨ E) is a union of elements in C (which are disjoint),

it suffices to show that for an arbitrary element Ci ∩ Ek ∈ C ∨ D, we have

∫

Ci∩Ek

IE|DdP ≤
∫

Ci∩Ek

IE|CdP (6.56)

Since C ≺ D, we may write Ci =
⋃m

j=1D(i,j) with {D(i,j)}mj=1 ⊂ D so that

m∑

j=1

P(D(i,j)) = P(Ci) (6.57)
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We may therefore expand the left hand side of equation (6.56) in the following manner:

∫

Ci∩Ek

IE|DdP =
m∑

j=1

∫

D(i,j)∩Ek

IE|DdP = −
m∑

j=1

P(D(i,j) ∩ Ek) ln

(
P(D(i,j) ∩ Ek)

P(D(i,j))

)

= −
m∑

j=1

P(D(i,j))P(Ek|D(i,j)) ln(P(Ek|D(i,j)))

= −P(Ci)
m∑

j=1

(
P(D(i,j))

P(Ci)

)

P(Ek|D(i,j)) ln(P(Ek|D(i,j))) (6.58)

Now, by taking ϕ(x) = x ln(x), with aj =
P(D(i,j))

P(Ci)
and xj = P(Ek|D(i,j)), we may apply Lemma

6.12 (since ϕ is strictly convex on (0,∞)) to find that −∑m
j=1 ajϕ(xj) ≤ −ϕ(

∑m
j=1 aj · xj), which

expands as follows,

− P(Ci)

m∑

j=1

(
P(D(i,j))

P(Ci)

)

P(Ek|D(i,j)) ln(P(Ek|D(i,j)))

≤ −P(Ci)





m∑

j=1

P(D(i,j))

P(Ci)
P(Ek|D(i,j))



 ln





m∑

j=1

P(D(i,j))

P(Ci)
P(Ek|D(i,j))





= −P(Ci)P(Ek|Ci) ln(P(Ek|Ci))

= −P(Ci ∩ Ek) ln(P(Ek|Ci)) =

∫

Ci∩Ek

IE|CdP (6.59)

Summarizing the work above,

∫

Ci∩Ek

IE|DdP ≤
∫

Ci∩Ek

IE|CdP (6.60)

which was precisely what we needed to show.

6.6 Kolmogorov-Sinai entropy

Our discussion about entropy thus far has not included any mention of dynamics. We shall now

see how one may suitably define a quantity which we may call the dynamical entropy of a system.

Appearing first in papers by Russian mathematician Andrei Kolmogorov ([22] and [23]), and

expanded upon by his student Yakov Sinai [24], this concept of a dynamical entropy has proven

useful in classifying types of dynamical systems.

Given an ADS (Ω,F ,P, T ), a partition C ∈ Part (Ω,F ,P), and a number n ∈ N one easily

verifies that the collection T−nC, defined by

T−nC := {T−n(C) : C ∈ C} (6.61)
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defines a normal partition, as the operation C 7→ T−n(C) preserves intersections and unions. We

shall call T−nC the n-th pull-back of C If we further assume that T is invertible, then TnC is a

partition for any n ∈ Z (T 0C = C). For n positive, we shall call Tn(C) the n-nth push-foward of C.
In what follows, we shall assume for simplicity that T is invertible.

A simple observation one can make about the ‘pull-back’ and ‘push-forward’ actions is that

they preserve entropy: Given partitions C,D ∈ Part (Ω,F ,P),

h(C|D) = h(TnC|TnD) ∀n ∈ Z (6.62)

A similar relation holds for the information and conditional information functions,

IC|D(ω) = ITnC|TnD(T
nω) ∀n ∈ Z, ω ∈ Ω (6.63)

Definition 6.20. Let (Ω,F ,P, T ) be an abstract dynamical system, and C ∈ Part (Ω,F ,P). The

dynamical entropy of C, denoted by hT (C), is given by

hT (C) := lim
n→∞

1

n
h





0∨

i=−(n−1)

T iC



 (6.64)

The Kolmogorov-Sinai entropy, denoted by hT is then defined as the supremum of the dynamical

entropy over all normal partitions,

hT ≡ sup
C∈Part (Ω,F ,P)

hT (C) (6.65)

It is not clear from the definition that the dynamical entropy should even exist for a given par-

tition. However, its existence is a direct consequence of the subadditivity property from Corollary

6.13 and Fekete’s lemma, a simple, yet famous and important result about subadditive sequences

of real numbers, proven by Michael Fekete in 1923 [25]. We state the lemma without proof here.

Lemma 6.21. Let {an}∞n=1 be a subadditive sequence of real numbers, i.e.

an+m ≤ an + am ∀n,m ∈ N (6.66)

then we have that limn→∞
an
n

exists (could be −∞), and

lim
n→∞

an
n

= inf
n∈N

an
n

(6.67)

Of course, since entropy is a positive quantity for any partition, the limit defined in equation
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(6.64) not only exists but is in fact finite, and we have that

hT (C) ≤ h (C) (6.68)

We shall now introduce some shorthand notation to help in our discussion of dynamical entropy.

Assuming the ADS (Ω,F ,P, T ) is invertible, and given a partition C ∈ Part (Ω,F ,P), and m,n ∈ Z

with m ≤ n, we denote by Cn
m the following partition,

Cn
m =

n∨

i=m

T iC (6.69)

We will also define, for n ∈ N, Cn ≡ C0
−(n−1). With this, we observe that equation (6.64) may

be rewritten as

hT (C) = lim
n→∞

1

n
h (Cn) (6.70)

Another lemma about sequences of real numbers will prove useful in providing more interpre-

tation for the dynamical entropy of a system:

Lemma 6.22. If {an}∞n=1 is a sequence of real numbers such that limn→∞ an exists, then

lim
n→∞

1

n

n∑

i=1

ai (6.71)

exists as well and

lim
n→∞

an = lim
n→∞

1

n

n∑

i=1

ai (6.72)

To help understand what it is exactly that the dynamical entropy is measuring about a system,

we consider the sequence of real numbers

hn ≡ h (Cn) , h0 = 0 (6.73)

for some C ∈ Part (Ω,F ,P). Looking at the difference of successive terms,

hn − hn−1 = h (Cn)− h
(
Cn−1

)
= h

(

C|C1
−(n−1)

)

(6.74)

where in the last equality, we applied Proposition 6.11 (e). One verifies that hn−hn−1 is a decreasing

sequence of positive numbers (as a consequence of both Proposition 6.11 and Lemma 6.19) and
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thus has a finite limit. Thus by Lemma 6.22, we have that

lim
n→∞

h
(

C|C1
−(n−1)

)

= lim
n→∞

1

n

n∑

i=1

(hn − hn−1) = lim
n→∞

1

n
hn = hT (C) (6.75)

In this way, a physical interpretation becomes clear. The dynamical entropy of a partition is

simply the expected additional information gained from observing the system with this partition,

given (conditioned on) its entire history.

Of course, when T is invertible, one makes the relatively simple observation, that hT (C) =

hT−1 (C), and thus

hT (C) = lim
n→∞

h
(
C|Cn−1

1

)
(6.76)

as well.

6.7 The Shannon-McMillan-Breiman theorem

The Shannon-McMillan-Breiman theorem is considered by many to be the cornerstone of infor-

mation theory. It relates the notion of the ergodicity of a system to its dynamical entropy and in

many ways, is an analog of Birkhoff’s ergodic theorem.

Claude Shannon first proved the theorem in the specific case of Markhov processes in his classic

paper from 1948, which is considered to be the starting point of information theory [1]. This

theorem was expanded upon to include general ergodic dynamical systems by McMillan (mcmill

ref) and later proved for almost-everywhere convergence by Leo Breiman in 1957 [26].

In this subsection we state the theorem, as well as an important corollary known as the asymp-

totic equipartition property, and in the following two subsections, we shall provide two proofs of

the theorem, whose approaches are different enough so that presenting both of them is justified

from a pedagogical standpoint.

Theorem 6.23 (Shannon, McMillan, Breiman). Let (Ω,F ,P, T ) be an ergodic, invertible ADS.

Let C ∈ Part (Ω,F ,P). Then, for P-almost all ω, we have

lim
n→∞

1

n
ICn(ω) = hT (C) (6.77)

Moreover, convergence is in L1(P) also.

6.8 Proof with martingales

In our first proof of the theorem, we shall rely on an application of one of Doob’s martingale

convergence theorems. Before we proceed with the proof of Theorem 6.23, we recall the definitions
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of filtrations, stochastic processes, and martingales.

Definition 6.24. Given a probability space (Ω,F ,P), a sequence {Fn}n∈N of sub-σ-algebras of F
is called a filtration if Fn ⊂ Fn+1 for each n ∈ N. In other words, a filtration is an ‘increasing’

sequence of σ-algebras, compatible with the space (Ω,F ,P).

Filtrations are most commonly used to represent the way information is acumulated as one

makes measurements over time. However, on its own, a filtration is insufficient to model a sequence

of measurements. To that end, we introduce the notion of a stochastic process.

Definition 6.25. Given a probability space (Ω,F ,P), a real-valued (or complex-valued) stochastic

process is a sequence (fn)
∞
n=1 of real-valued (or complex-valued) random variables on Ω. That is to

say that fn : Ω → R (or fn : Ω → C) is F-measurable for each n ∈ N. One says that a stochastic

process (fn)
∞
n=1 is adapted to the filtration (Fn)

∞
n=1 if each fn is Fn-measurable.

A stochastic process allows one to represent a dynamical system with a probabilistic time

evolution, as opposed to the theory we already developed where the time evolution is generated

by a fixed, deterministic evolution operator, T . The sequence of random variables (measurable

functions) represents measurements of some system and are indexed by a discrete time.

Moreover, if a stochastic process (fn)
∞
n=1 is adapted to a filtration (Fn)

∞
n=1, then the filtration

helps capture how information is gained as measurements are sequentially carried out. Fn contains

the events that can be tested once the measurements up to time n have been made.

It is important to note that for any stochastic process (fn)
∞
n=1, a natural filtration (to which

(fn)
∞
n=1 is adapted) is given by

Fn = σ(f1, f2, . . . , fn) (6.78)

where σ(f1, f2, . . . , fn) is the minimal σ-algebra such that f1, . . . , fn are measurable functions.

Stochastic processes are used as models in a wide variety of settings, and without further im-

posed structure, very little can be said about the asymptotic behaviour of an arbitrary stochastic

process. However, by requiring it to have a certain expected monotonic behaviour, a lot of knowl-

edge can be gleaned.

Definition 6.26. Let (Ω,F ,P) be a probability space. A real-valued stochastic process (fn)n∈N
is called a supermartingale with respect to a filtration (Fn)

∞
n=1 if, for all n ∈ N, we have that

fn ∈ L1(P), and

(i) (fn)
∞
n=1 is adapted to (Fn)

∞
n=1

(ii) E[fn+1|Fn] ≤ fn ∀n ∈ N
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If equality holds in (ii), then we call (fn)
∞
n=1 a martingale. A stochastic process (gn)n∈N is called a

submartingale if the stochastic process (−gn)n∈N is a supermartingale.

Martingales (as well as super- and sub-martingales) have many nice properties, specifically

relating to their convergence. We now present a theorem, named after the American mathematician

Joseph Doob, which deals with two types of convergence for martingales.

Theorem 6.27 (Doob’s martingale convergence theorem). Let (Ω,F ,P) be a probability space and

let (fn)
∞
n=1 be a supermartingale with respect to filtration (Fn)

∞
n=1. suppose further that (fn)

∞
n=1 is

uniformly integrable, that is to say

lim
K→∞

(

sup
n∈N

∫

{|fn|>K}
|fn|dP

)

= 0 (6.79)

Then there exists a function f ∈ L1(P) such that fn → f P-almost everywhere and in L1(P), that

is, for almost all ω, we have

lim
n→∞

fn(ω) = f(ω) (6.80)

and furthermore,

lim
n→∞

E[|fn − f |] = 0 (6.81)

A complete proof of this theorem can be found in [27].

With the concept of martingales and with Theorem 6.27 at our disposal, we are now in a position

to prove Theorem 6.23.

Let (Ω,F ,P, T ) be an invertible, ergodic abstract dynamical system, and C ∈ Part (Ω,F ,P).

We would like to show that

1

n
ICn → hT (C) (6.82)

To do so, we inductively apply Proposition 6.11, parts (e) and (f) to ICn to find

ICn = IC0
−(n−1)

= IC + IC−1
−(n−1)

|C

= IC + IC0
−(n−2)

|TC ◦ T

= · · ·

= IC +
n−1∑

k=1

IC|Ck
1
◦ T k (6.83)
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Thus, by defining

f0 = IC

fk = IC|Ck
1

(6.84)

we see that

1

n
ICn =

1

n

n−1∑

k=0

fk ◦ T k (6.85)

It is obvious that (fk)
∞
k=0 is a sequence of positive functions. We would now like to show that

(fk)
∞
k=0 is a (uniformly integrable) supermartingale with respect to the filtration

Fk = σ(Ck
0 ) (6.86)

The fact that its a supermartingale follows simply from Lemma 6.19. To show uniform integra-

bility, we present the following lemma.

Lemma 6.28.

sup
k≥0

fk ∈ L1(P) (6.87)

Proof of Lemma 6.28.

Showing the integrability of supk≥0 fk is equivalent to showing that the function g : [0,∞) → [0,∞)

defined by

g(x) = P

({

sup
k≥0

fk > x

})

(6.88)

is integrable with respect to the Lebesgue measure on [0,∞). To see why this is true, we rewrite

the integral of g and apply Fubini’s theorem:

∫ ∞

0
g(x)dx =

∫ ∞

0
P

({

sup
k≥0

fk > x

})

dx

=

∫ ∞

0

(∫

Ω
χ{supk≥0 fk>x}dP

)

dx

=

∫

Ω

(∫ ∞

0
χ{supk≥0 fk>x}dx

)

dP

=

∫

Ω
sup
k≥0

fkdP (6.89)

Thus we have equivalence of integrability. We now proceed to show that g is integrable.
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We begin by noting that C is a finite partition, so we denote its size by N , and thus have

C = {Ci}Ni=1. Now, we fix x ∈ [0,∞) and we define

B(x) :=

{

ω ∈ Ω : sup
k≥0

fk > x

}

(6.90)

so that g(x) = P(B(x)). We now look at the elements of the partition C and examine how they

intersect with B(x).

Suppose Ci ∈ C such that P(Ci) < e−x, then, for ω ∈ Ci, we have

f0(ω) = − ln(P(Ci)) > x (6.91)

thus implying that Ci ⊂ B(x). Let I = {i : P(Ci) < e−x} be the collection of all indices for which

the corresponding elements have the appropriate bound on their probabilities. Then it follows that

⋃

i∈I
Ci ⊂ B(x) (6.92)

If we consider the set of remaining indices, J = {1, . . . , N} \ I, then for j ∈ J , we clearly have

P(Cj) ≥ e−x. We consider, for fixed j ∈ J , the intersection

B(x) ∩ Cj (6.93)

Without loss of generality, we may assume that B(x) ∩ Cj 6= ∅. For ω ∈ B(x) ∩ Cj , we define

k(ω) ≡ min{k ∈ N : fk(ω) > x} (6.94)

and define D(ω) as the unique element of Ck(ω)
1 such that ω ∈ D(ω). Now we present some basic

facts about D(ω) for ω ∈ B(x) ∩ Cj .

(1) Cj ∩D(ω) ⊂ B(x) ∩ Cj

(2) P(Cj ∩D(ω)) ≤ e−xP(D(ω))

(3) for ω1, ω2 ∈ B(x) ∩ Cj , either D(ω1) = D(ω2), or D(ω1) ∩D(ω2) = ∅

Fact (1) is obvious. to prove fact (2), we simply note that by our definitions of k(ω) and D(ω),

we have

fk(ω)(ω) > x (6.95)
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which is equivalent to

ln

(
P(Cj ∩D(ω))

P(D(ω))

)

> x (6.96)

We thus algebraically manipulate the above to obtain

P(Cj ∩D(ω)) < e−xP(D(ω)) (6.97)

To see why fact (3) is true, we assume that D(ω1) 6= D(ω2) and we first consider the case when

k(ω1) = k(ω2) ≡ k for some k ∈ N. In this case, we see that D(ω1), D(ω2) ∈ Ck
1 , and since they are

distinct elements of the same partition, they must be disjoint.

The other case we must consider is when k(ω1) 6= k(ω2). Without loss of generality assume

k(ω1) < k(ω2). Then we have that Ck(ω1)
1 ≺ Ck(ω2)

1 , and in particular, either D(ω2) ⊂ D(ω1) or

D(ω2) ∩ D(ω1) = ∅. the first possibility contradicts the minimality of k(ω2), and thus D(ω2) ∩
D(ω1) = ∅.

These three facts combined allow us to conclude that for each j ∈ J , there exists a countable

index set Kj and a countable collection of sets

{Dj
k}k∈Kj

⊂
⋃

n∈N
Cn
1 (6.98)

such that Dj
k ∩Dj

l = ∅ ∀k 6= l, P(Cj ∩Dj
k) < e−xP(Dj

k), and

⊔

k∈Kj

(Cj ∩Dj
k) = B(x) ∩ Cj (6.99)
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Thus, given our knowledge of the index sets I and J , we can bound the probability of B(x):

g(x) = P(B(x))

=
∑

i∈I
P(B(x) ∩ Ci) +

∑

j∈J
P(B(x) ∩ Cj)

=
∑

i∈I
P(B(x) ∩ Ci) +

∑

j∈J

∑

k∈Kj

P(Cj ∩Dj
k)

<
∑

i∈I
e−x +

∑

j∈J

∑

k∈Kj

e−xP(Dj
k)

=
∑

i∈I
e−x +

∑

j∈J
e−xP(

⋃

k∈Kj

Dj
k)

≤
N∑

i=1

e−x

= Ne−x (6.100)

This completes the proof that supn≥0 fn ∈ L1(P).

From Lemma 6.28, it follows that the sequence fn satisfies the uniform integrability condition

from Theorem 6.27, since

lim
K→∞

sup
n≥0

∫

{fn>K}
fndP ≤ lim

K→∞
sup
n≥0

∫

{supn≥0 fn>K}
fndP

≤ lim
K→∞

∫

{supn≥0 fn>K}
sup
n≥0

fndP (6.101)

where in the first step, we used the monotonicity of the Lebesgue integral on positive functions and

in the second step, we used the fact that

∫

{supn≥0 fn>K}
sup
n≥0

fndP ≥
∫

{supn≥0 fn>K}
fndP (6.102)

for all n ∈ N.

Since supn≥0 fn ∈ L1(P), we have that limK→∞
∫

{supn≥0 fn>K} supn≥0 fndP = 0, and thus, from

(6.101) we see that fn is uniformly integrable.

So, by Theorem 6.27, there exists f ∈ L1 such that fn → f P-almost surely, and E[|fn−f |] → 0
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as n → ∞. In particular, we have

E[f ] = lim
n→∞

E[fn]

= lim
n→∞

h (C|Cn
1 )

= hT−1 (C)
= hT (C) (6.103)

We will now make use of f and its properties to rewrite and analyze the sequence of interest,
1
n
ICn . Starting from equation (6.85), we have

1

n
ICn =

n−1∑

k=0

fk ◦ T k

=
n−1∑

k=0

(fk − f) ◦ T k +

n−1∑

k=0

f ◦ T k (6.104)

By Theorem 3.2, and the fact that (Ω,F ,P, T ) is an ergodic system, we must have that

lim
n→∞

n−1∑

k=0

f ◦ T k = E[f ] = hT (C) (6.105)

where this limit can be interpreted both P-almost surely and in L1(P). It therefore remains to show

that

lim
n→∞

n−1∑

k=0

(fk − f) ◦ T k = 0 (6.106)

both in L1(P), and P-almost surely. To do so, we define a sequence of positive functions

GN ≡ sup
k≥N

|fk − f | (6.107)

for each N ≥ 0. By the construction of f , we see that

lim
N→∞

GN = 0 (6.108)

P-almost surely. Furthermore, one easily verifies that

GN ≤ |f |+
∣
∣
∣
∣
∣
sup
k≥0

fk

∣
∣
∣
∣
∣

(6.109)

Since both f and supk≥0 fk are L1(P), (6.109) and the Lebesgue dominated convergence theorem

68



imply that

lim
N→∞

E[GN ] = 0 (6.110)

or, stated in an alternative way, for any ε > 0, we may choose an m large enough so that

E[Gm] < ε (6.111)

To conclude the proof, we fix an arbitrary ε > 0 and choose m large enough so that (6.111) is

satisfied. Now, looking at the magnitude of the n-th term in the sequence, where n is some number

larger than m, we find

∣
∣
∣
∣
∣

1

n

n−1∑

k=0

(fk − f) ◦ T k

∣
∣
∣
∣
∣
≤ 1

n

n−1∑

k=0

∣
∣
∣(fk − f) ◦ T k

∣
∣
∣

≤ 1

n

m−1∑

k=0

∣
∣
∣(fk − f) ◦ T k

∣
∣
∣+

1

n

n−1∑

k=m

Gm ◦ T k

=
1

n

m−1∑

k=0

∣
∣
∣(fk − f) ◦ T k

∣
∣
∣+

1

n

n−1∑

k=0

Gm ◦ T k − 1

n

m−1∑

k=0

Gm ◦ T k (6.112)

Now by taking the ‘lim sup’ of the above (as n tends to infinity), we can easily see that the first

and third terms in the last line tend to zero, and the middle term is simply an ergodic sum which

tends to E[Gm]. Thus,

lim sup
n→∞

∣
∣
∣
∣
∣

1

n

n−1∑

k=0

(fk − f) ◦ T k

∣
∣
∣
∣
∣
≤ E[Gm] < ε (6.113)

This establishes the desired convergence (as ε > 0 was arbitrarily chosen) and thus the theorem is

proved.

7 Subadditivity and entropy: Kingman’s subadditive theorem and

extensions

To broaden our perspective on Shannon entropy, we shall study a special class of random variable

sequences, called subadditive.

Definition 7.1. Let (Ω,F ,P, T ) be an ADS. A sequence of real-valued random variables (Xn)
∞
n=1

is called subadditive if, for all n,m ∈ N, we have

Xn+m ≤ Xn +Xm ◦ Tn (7.1)
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P-almost everywhere.

In 1968, Sir John Kingman published two important papers relating to the convergence of sub-

additive sequences, and his work culminated in an important theorem, now referred to as Kingman’s

subadditive ergodic theorem [28]. Its implications are far-reaching and it provides an important

interpretation for some of the convergence theorems we have seen thus far.

Kingman’s theorem was extended in the works of Derriennic [29], and alternative and elegant

proofs were presented in a paper by Avila and Bochi [30].

As a classical example of a subadditive sequence, we consider an L1 function f and consider

the sequence of its ergodic averages,

Sn =
1

n

n−1∑

k=0

f ◦ Tn (7.2)

One easily verifies that Sn satisfies (7.1) and is thus a subadditive sequence. In fact equality

holds, and such a sequence is called additive.

As we shall see, Kingman’s original theorem suffices to imply Birkhoff’s ergodic theorem, but

does not however imply the Shannon-McMillan-Breiman theorem. This is because the sequence

In =
1

n
ICn (7.3)

for some partition C is not a subadditive sequence.

Nevertheless, subadditivity plays a key role in understanding why the above sequence converges.

One of Deriennic’s extensions, aptly named the almost subadditive ergodic theorem, suffices to prove

the convergence of In.

In this section, we shall first present (without proof) Kingman’s original theorem, and then

present Deriennic’s generalization, and provide a proof based on that of Avila and Bochi.

7.1 Kingman’s subadditive theorem

Theorem 7.2. Let (Ω,F ,P, T ) be an ADS, and let (Xn) be a sequence of real-valued measurable

functions such that X+
1 (the positive part of X1) is integrable. If Xn is a subadditive sequence, then

X = lim
n→∞

1

n
Xn (7.4)

exists almost everywhere, in [−∞,∞). Moreover, X+ is integrable and

∫

Ω
XdP = lim

n→∞
1

n

∫

Ω
XndP = inf

n∈N
1

n

∫

Ω
XndP (7.5)
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One can see that Kingman’s theorem at least partially implies Birkhoff’s ergodic theorem: Take

an ADS (Ω,F ,P, T ) and consider an L1(P) function, say f . We then define the stochastic process

(Xn)
∞
n=1 in the following manner

Xn ≡
n−1∑

k=0

f ◦ T k (7.6)

It is then a trivial exercise to check that Xn is a subadditive sequence. In particular, it is

additive, namely

Xn+m =
n+m−1∑

k=0

f ◦ T k

=

n−1∑

k=0

f ◦ T k +

n+m−1∑

k=n

f ◦ T k

= Xn +Xm ◦ Tn (7.7)

Since (X1)
+ = f+ is integrable, Theorem 7.2 shows us that

X = lim
n→∞

1

n
Xn (7.8)

exists P-almost everywhere and that

∫

Ω
XdP = lim

n→∞
1

n

∫

Ω
XndP

= lim
n→∞

1

n

∫

Ω

n−1∑

k=0

f ◦ T kdP

=

∫

Ω
fdP (7.9)

where in the last equality, we have used the measure-preserving nature of T .

As we shall see later on, this theorem is not sufficient however to prove the Shannon-McMillan-

Breiman theorem. To circumvent this, we now proceed to prove a theorem which extends Kingman’s

original theorem into a result which is powerful enough to establish Shannon’s theorem with the

right convergence properties.

7.2 The almost-subadditive ergodic theorem

Over the years there have been numerous extensions made to Kingman’s original theorem about

subadditivity (see for example [31] and [32], among others). In this section we present a variant of

the theorem in which we relax the requirement that the relevant sequence be subadditive. Instead,
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we allow for an appropriate error term, which satisfies certain integrability and boundedness con-

ditions. We shall see that the entropy as defined in Section 6 will satisfy our conditions and the

Shannon-McMillan-Breiman theorem will be a corollary.

Theorem 7.3. Let (Ω,F ,P, T ) be an abstract dynamical system, and let (Xn)
∞
n=1 be a real-valued

stochastic process such that E[X+
1 ] < ∞.Also, let Yn : Ω → R+ be a sequence of non-negative

random variables such that supn∈N E[Yn] < ∞ and

lim
n→∞

Yn
n

= 0 (7.10)

P-almost surely.

If (Xn) is almost-subadditive with respect to (Yn), that is, for all n,m ∈ N, we have

Xn+m ≤ Xn +Xm ◦ Tn + Ym ◦ Tn, (7.11)

then the following results hold

(1) There exists X : Ω → R measurable, such that E[X+] < ∞ and

lim
n→∞

Xn(ω)

n
= X(ω) (7.12)

for P-almost all ω ∈ Ω. Furthermore, X is T -invariant: X = X ◦ T .

(2)

E[X] = lim
n→∞

E[Xn]

n
= inf

n∈N
E[Xn]

n
(7.13)

(3) If X1 ∈ L1(P), i.e. E[|X1|] < ∞, then X ∈ L1(P) and

lim
n→∞

E

[∣
∣
∣
∣

Xn

n
−X

∣
∣
∣
∣

]

= 0. (7.14)

That is to say Xn

n
→ X in L1.

Proof.

We start the proof with observation that the subadditivity assumption from equation (7.11) implies

Xn ≤
n−1∑

j=0

(X1 ◦ T j + Y1 ◦ T j),

and so

1

n
E(X+

n ) ≤ E(X+
1 ) + E(Y1) < ∞. (7.15)
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Set

An = E(Xn) ∈ [−∞,∞[.

The subadditivity implies

An+m ≤ An +Am + C

where C = supn E(Yn). We denote

L = lim
n→∞

1

n
An = inf

n

1

n
An ∈ [−∞,∞[.

Let

X(ω) = lim inf
n→∞

1

n
Xn(ω), X̄(ω) = lim sup

n→∞

1

n
Xn.

The relation (7.15) and Fatou’s Lemma imply

E(X+) ≤ E(X+
1 ) + E(Y1) < ∞.

The relation

Xn ≤ X1 +Xn−1 ◦ T + Yn−1 ◦ T

implies

X ≤ X ◦ T, X̄ ≤ X̄ ◦ T,

One can then easily show that this implies

X ◦ Tm = X, X̄ ◦ Tm = X̄. (7.16)

We shall require the following result as it plays a key role in the rest of the proof:

Proposition 7.4.

∫

Ω
XdP = L. (7.17)

(Proof of Proposition 7.4): We shall first establish (7.17) under the assumption that for some

C > 0 and all n,

1

n
Xn ≥ −C. (7.18)

Fatou’s Lemma then implies

∫

Ω
XdP ≤ L. (7.19)
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To prove the opposite inequality, fix ǫ > 0. For k ≥ 1, set

Ek =

{

ω
∣
∣
1

j
(Xj(ω) + Yj(ω)) ≤ X(ω) + ǫ for some 1 ≤ j ≤ k

}

.

This sequence of sets is increasing and ∪kEk = Ω. Some of these sets might be empty and let k0

be the first integer such that P (Ek0) > 0. For k ≥ k0 we set

Hk = (X + ǫ)χEk
+ (X1 + Y1)χEc

k
,

and

Rk = max(Hk, X1 + Y1).

One easily verifies that

X + ǫ ≤ Hk. (7.20)

We will prove that the following inequality holds for n ≥ k ≥ k0:

Xn ≤
n−k−1∑

j=0

Hk ◦ T j +

n−1∑

j=n−k

Rk ◦ T j . (7.21)

To prove this inequality, for given ω we defined inductively a sequence of integers

0 = m0 ≤ n1 < m1 ≤ n2 ≤ · · ·

as follows. Suppose that mj−1 is defined. Let nj be the least integer bigger or equal then mj−1

such that Tnj (ω) ∈ Ek (recall Poincare Recurrence Theorem). Let 1 ≤ l ≤ k be such that

1

l
(Xl(T

njω) + Yl(T
njω)) ≤ X̄(Tnjω) + ǫ.

We then set

mj = nj + l.

Let now ℓ be the largest integer such that mℓ ≤ n. Iterating the inequality

Xn(ω) ≤ Xn−1(ω) +X1(Tω) + Y1(Tω)

we derive

Xn(ω) ≤ Xmℓ
(ω) +

∑

j∈[mℓ,n[

(X1(T
jω) + Y1(T

jω)).

Now,

Xmℓ
(ω) ≤ Xnℓ

(ω) +Xmℓ−nℓ
(Tnℓω) + Ymℓ−nℓ

(Tnlω),
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and another iteration gives

Xnℓ
(ω) ≤ Xmℓ−1

(ω) +
∑

j∈[mℓ−1,nl[

(X1(T
jω) + Y1(T

jω)).

Continuing this way, we derive

Xn(ω) ≤
ℓ∑

j=1

Xmj−nj
(Tnjω) +

∑

j∈S
(X1(T

jω) + Y1(T
jω)),

where

S =

ℓ−1⋃

j=0

[mj , nj+1[ ∪ [mℓ, n[.

Now, the definition of mj and relations (7.16), (7.20), imply

Xmj−nj
(Tnjω) ≤ (mj − nj)(X(Tnjω) + ǫ) =

∑

i∈[mj ,nj [

(X(T iω) + ǫ) ≤
∑

i∈[nj ,mj [

Hk(T
ω),

and so
ℓ∑

j=1

Xmj−nj
(Tnjω) ≤

∑

j∈D
Hk(T

jω)

where

D =

ℓ∑

j=1

[nj ,mj [.

Hence,

Xn(ω) ≤
∑

j∈D
Hk(T

jω) +
∑

j∈S
(X1(T

jω) + Y1(T
jω)). (7.22)

Note that X1(T
jω) + Y1(T

jω) = Hk(T
jω) for j ∈ ⋃ℓ−1

i=0 [mi, ni+1[. If n ≤ nℓ+1, then X1(T
jω) +

Y1(T
jω) = Hk(T

jω) also for j ∈ [mℓ, n[, and (7.21) follows from (7.22). If n > nℓ+1, then (7.22)

can be written as

Xn(ω) ≤
nℓ+1−1
∑

j=0

Hk(T
jω) +

n−1∑

j=nℓ+1

(X1(T
jω) + Y1(T

jω).

By construction, mℓ+1 − nℓ+1 ≤ k, and by the choice of ℓ, mℓ+1 > n. We can now write (7.22) as

Xn(ω) ≤
nℓ+1−1
∑

j=0

Hk(T
jω) +

n∑

j=nℓ+1

(X1(T
jω) + Y1(T

jω))
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and (7.21) follows. Integrating (7.21) we derive

1

n

∫

Ω
XndP ≤ n− k − 1

n

∫

Ω
HkdP+

k

n

∫

Ω
RkdP.

Since Rk is integrable,

L = lim
n→∞

1

n

∫

Ω
XndP ≤ HkdP =

∫

Ek

(X + ǫ)dP+

∫

Ec
k

(X1 + Y1)dP.

Since X, X1 + Y1, are integrable and Ek is increasing sequence of sets satisfying ∪kEk = Ω,

lim
k→∞

∫

Ek

(X + ǫ)dP =

∫

Ω
(X + ǫ)dP, lim

k→∞

∫

Ec
k

(X1 + Y1)dP = 0.

Hence,

L ≤
∫

Ω
(X + ǫ)dP.

Taking ǫ ↓ 0, we derive

L ≤
∫

Ω
XdP.

This estimate and (7.19) yield (7.17) under the assumption (7.18).

We now use a limiting argument to show that (7.17) holds without the additional assumption

(7.18). For C > 0, let

XC
n = max(Xn,−nC).

This sequence of random variables satisfies all assumptions of Theorem 7.3 (with the same Yn) and

the bound (7.18) holds. Moreover, if

X = lim inf
n→∞

1

n
Xn, XC = lim inf

n→∞
1

n
XC

n ,

then XC = max(X,−C). Since E(X+) < ∞, an application of Monotone Convergence Theorem

gives ∫

Ω
XdP = inf

C>0

∫

Ω
(X,−C)dP.

On the other hand,

inf
C>0

∫

Ω
(X,−C)dP = inf

C>0

∫

Ω
XC

n dP = inf
C>0

inf
n

1

n

∫

Ω
XC

n dP = inf
n

inf
C>0

1

n

∫

Ω
XC

n dP.

Monotone Convergence Theorem again gives that

inf
C>0

∫

Ω
XC

n dP =

∫

Ω
XndP.
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Hence,

L = inf
n

1

n

∫

Ω
XndP =

∫

Ω
XdP.

We now continue with the rest of the proof. We must show:

Lemma 7.5. For any positive integer k,

lim sup
n→∞

1

n
Xkn = k lim sup

n→∞

1

n
Xn.

The inequality

lim sup
n→∞

1

n
Xkn ≤ k lim sup

n→∞

1

n
Xn.

is obvious. To prove the opposite inequality, write

n = kmn + rn, 1 ≤ rn ≤ k.

Then

Xn ≤ Xkmn
+Xrn ◦ T kmn + Yrn ◦ T kmn ≤ Xkmn

+H ◦ T kmn ,

where

H =

k∑

j=1

(X+
j + Y +

j ).

Since H is integrable, Birkhoff’s Theorem implies

lim
n→∞

1

kmn
H ◦ T kmn = 0,

Hence,

lim sup
n→∞

1

n
Xn = lim sup

n→∞

1

kmn
Xn ≤ 1

k
lim sup
n→∞

1

kmn
Xkmn

≤ 1

k
lim sup
n→∞

1

n
Xkn.

We are now ready to complete the proof of the Theorem 7.3. Suppose that for some C > 0 and

all n,

1

n
Xn ≥ −C. (7.23)

Fix k and set

Sn = −
n−1∑

j=0

(Xk + Yk) ◦ T jk.

Sn is additive with respect to T k,

Sn+m = Sn + Sm ◦ Tn,
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and S1 = −Xk ≤ Ck. Hence, Proposition 7.4 applies to Sn and

∫

Ω
SdP ≥ lim

n→∞
1

n

∫

Ω
SndP = −

∫

Ω
(Xk + Yk)dP.

On the other hand, subadditivity and the previous Lemma yield

−S = lim sup
n→∞

1

n

n−1∑

j=0

(Xk + Yk) ◦ T jk ≥ lim sup
n→∞

1

n
Xkn = k lim sup

n→∞

1

n
Xn = kX̄.

Hence,
1

k

∫

Ω
(Xk + Yk)dP ≥

∫

Ω
X̄dP.

Taking k → ∞, we get

L ≥
∫

Ω
X̄dP.

This estimate combined with Proposition 7.4 yields that X = X̄. This proves Parts (1) and (2) of

Theorem 7.3 under the assumption (7.23). The remove this assumption, one argues as in the proof

of the Proposition 7.4. If XC
n , XC and X̄C , are is in the proof of Proposition (7.4), then the above

argument gives

max(X,−C) = XC = X̄C = max(X̄, C).

Taking C → ∞ we derive X = X̄, and this yields Parts (1) and (2) of Theorem 7.3. Finally, to

prove Part (3), note that the sequence |Xn| also satisfies the assumptions of Theorem 7.3 and so

lim
n→∞

1

n
E(|Xn|) = inf

n

1

n
E(|Xn|) = E(|X|).

Part (3) of the theorem then follows from a fairly simple application of dominated convergence

theorem.

7.3 Corollary: Shannon-McMillan-Breiman theorem from almost-subadditivity

In this section, we show how Shannon-McMillan Breiman can be viewed as a direct consequence

of Theorem 7.3.

To see this, we start with an ergodic abstract dynamical system (Ω,F ,P, T ) and a partition

C ∈ PartΩ. Defining

In(ω) = ICn(ω). (7.24)

We note that each of the In’s is a strictly positive function.

If we can show that the sequence In satisfies the conditions of Theorem 7.3, then we shall be

done, since this would imply that the sequence In
n

converges (both P-almost surely and in L1) to a
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T -invariant function S. Since all T -invariant functions are constant in an ergodic ADS, we would

then have

S = lim
n→∞

E[In]

n
(7.25)

and in particular,

which is equivalent to Theorem 6.23.

Thus, we choose n,m ∈ N arbitrarily, and write

In+m = In + Im ◦ Tn + (In+m − In − Im ◦ Tn)
︸ ︷︷ ︸

(third term)

(7.26)

Now, by taking a closer look at the third term in the above expression,

In+m − In − Im ◦ Tn = ICn+m − ICn − ICm ◦ Tn

= IC−n
−(n+m)−1

|C0
n−1

− ICm ◦ Tn

=
(

IC0
m−1|Cn

1
− IC0

m−1

)

◦ Tn

≤
(

IC0
m−1|Cn

1
− IC0

m−1

)+
◦ Tn (7.27)

We now define

Ym ≡
(

sup
n∈N

(

ICm|Cn
1

)

− ICm

)+

(7.28)

First off, we see by definition that each Yn is a measurable function with range in R+. Moreover,

by Lemma 6.28, we must have that Ym ∈ L1(P) for each m ∈ N. Also, by equations (7.26) and

(7.27), we have that

In+m ≤ In + Im ◦ Tn + Ym ◦ Tn (7.29)

Thus, if the sequence of random variables In is to satisfy the conditions of Theorem 7.3, it

remains to show that supn E[Yn] < ∞.

We shall first need the following lemma.

Lemma 7.6. For any A ∈ Cm, and x ≥ 0, we have

P

(

A ∩
{

ω ∈ Ω : sup
n∈N

ICm|Cn
1
(ω) > x

})

≤ e−x (7.30)

Proof of Lemma 7.6.
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Let C(x) ≡
{

ω ∈ Ω : supn∈N ICm|Cn
1
(ω) > x

}

, and let ω ∈ A ∩ C(x). For such an ω, we define

n(ω) ≡ min
{

n ∈ N : ICm|Cn
1
(ω) ≥ x

}

. (7.31)

This quantity exists (is finite) as ω ∈ C(x).

We further defineD(ω) to be the unique element of Cn(ω)
1 which contains ω. It is fairly easy to see

from the definition of D(ω) that for ω1 6= ω2, both elements of A∩C(x), that either D(ω1) = D(ω2)

or D(ω1) ∩D(ω2) = ∅. Also, for ω ∈ A ∩ C(x). We must have

ICm|Cn(ω)
1

(ω) = − ln

(
P(A ∩D(ω))

P(D(ω))

)

≥ x

=⇒ P(A ∩D(ω)) ≤ P(D(ω))e−x (7.32)

The above facts can be neatly summarized in the following manner. We may write the set

A ∩ C(x) as

A ∩ C(x) =
⋃

i∈I
A ∩Di (7.33)

where I is some countable index set, Di ∩Dj = ∅ for any i 6= j, and

P(A ∩Di) ≤ P(Di)e
−x (7.34)

Thus,

P(A ∩ C(x)) = P

(
⋃

i∈I
A ∩Di

)

=
∑

i∈I
P(A ∩Di)

≤
∑

i∈I
e−xP(Di)

= e−x
∑

i∈I
P(Di)

= e−xP

(
⋃

i∈I
Di

)

≤ e−x (7.35)

This completes the proof.

The rest of the proof is fairly straightforward. We shall use Lemma 7.6 to place a bound

P(Ym > x) for x ≥ 0.
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If we choose A ∈ Cm, then, using the previous lemma, we have

P (A ∩ {Ym > x}) = P

(

A ∩
{

sup
n∈N

ICm|Cn
1
− ICm > x

})

= P

(

A ∩
{

sup
n∈N

ICm|Cn
1
> x− ln(P(A))

})

≤ e−(x−ln(P(A)))

= P(A)e−x (7.36)

Summing over all elements of Cm gives

P(Ym > x) ≤ e−x. (7.37)

This gives us the desired integrability, as we see that

E[Ym] ≤
∫ ∞

0
e−xdx = 1 (7.38)

for any m ∈ N, and thus supm E[Ym] < ∞.

Furthermore, if ǫ > 0 is an arbitrary positive number, we have

∞∑

n=1

P

(
Yn
n

> ǫ

)

≤
∞∑

n=1

e−nǫ < ∞ (7.39)

Thus, by the Borel-Cantelli lemma (Lemma 2.5), we have

P

(

lim sup
n→∞

Yn
n

> ǫ

)

= 0 (7.40)

Also, since ǫ > 0 was arbitrarily chosen, we must have

P

(

lim sup
n→∞

Yn
n

= 0

)

= 1 (7.41)

Or, in other words, lim supn→∞
Yn

n
= 0 P-almost surely.

Thus, In satisfies the conditions of Theorem 7.3 and we have that equation (7.25) is satisfied.

8 Coding and entropy

One central area of study in coding theory is that of data compression. Given a source of data,

in the form of character strings with varying lengths, a code will transcribe this data into another

alphabet, and one generally tries to do so in such a way as to minimize the average length of the
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obtained strings.

Claude Shannon, not surprisingly, was the main pioneer in the development of coding theory

with the source coding theorem (i.e. a more specific version of Theorem 6.23, see [1]). Other ad-

vances were made by mathematicians and computer scientists over the second half of the twentieth

century. Noted works include Huffman’s celebrated paper on prefix-free coding [33], as well as an

extension by Gray, Ornstein and Dobrushin [34].

In this section, we shall examine the relationship between entropy and compression, looking

first at the notions of faithful and prefix-free coding, and then turning our attention to compression

rate bounds and how they relate to our already-developed concept of entropy.

We remark that in this section, in contrast to the preceding sections, we shall use a base of 2 for

the logarithm in the definition of entropy, as it has more physical significance to binary coding, the

main study of compression theory. Nevertheless, the theory developed here has a direct analogue

for n-ary coding.

8.1 Faithful codes and prefixes

Let A be a finite set. A shall be called an alphabet. An element a ∈ A is called a character,

or a letter. An will refer to the set of all length-n sequences w = (wi)
n
i=1 with wi ∈ A for each i.

Elements of An are called words of length n. A∗ = ∪∞
n=1A

n is the set of of all A-words of finite

length.

If A and B are two alphabets. then a function C : A → B∗ is called a 1-code, or simply a code,

from A to B. A is called the source alphabet, while the range, C(A) is called the codebook. An

element of the codebook C(a) for some a ∈ A is called a codeword. In general, one takes A and B

to be different sizes, and in many applications, B is taken to be the set B = {0, 1}. We shall do

the same in the rest of this thesis, without losing any significant intuition about the subject.

A desirable feature of a code is called faithfulness. A code C : A → B∗ is called faithful if it is

injective. A faithful code ensures that no two letters of the source alphabet A are mapped to the

same codeword.

To build upon the notion of coding, one can look at transcribing A-words of length greater than

1. One way of doing so is to use the binary operation of concatenation. Given two elements of A∗,

say u = (ui)
n
i=1 and v = (vi)

m
i=1, the concatenation of u and v, denoted by uv, is an element of A∗

of length n+m with the following as characters:

(uv)i =







ui 1 ≤ i ≤ n

vi−n n+ 1 ≤ i ≤ n+m

A canonical way of obtaining n-codes from 1-codes is through concatenation. We first look at
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the case of 2-codes. If C is a 1-code, then one defines the 2-coding C2 : A
2 → B∗ for any sequence

ab ∈ A2 (a and b are arbitrary elements of A) as

C2(ab) = C(a)C(b)

In other words, the concatenation of the letters a and b is encoded by the concatenation of the

codewords C(a) and C(b). This method can be recursively applied to obtain n-codes.

While this method of building codes of words of A is intuitive, it unfortunately does not preserve

faithfulness. As an example, we consider the alphabet A = {a, b, c} and faithful 1-code C : A → B∗

with C(A) = {01, 010, 10}, C(a) = 01, C(b) = 010, and C(c) = 10. If we look at the 2-code C2 as

defined above, we get that C2(ab) = 01010 = C2(bc) and the ability to decode is lost. This problem

can be resolved by requiring that an extra property hold on the 1-code C.

A non-empty word u ∈ A∗ is called a prefix of a word w ∈ A∗ if we have that w = uv for some

v ∈ A∗. u is called a proper prefix if v is also non-empty. A subset W ⊂ A∗ is called prefix-free if

no member of W is a proper prefix of any other element in W .

A faithful coding is called a prefix coding, or, more aptly, a prefix-free coding, if a = ã whenever

C(a) is a prefix of C(ã). This is equivalent to saying that the codebook C(A) is prefix-free. This

leads us to the first important result.

Lemma 8.1. Let C : A → B∗ be a faithful, prefix-free code. Then, for each n ∈ N, the n-code

Cn : An → B∗ obtained by concatenating codewords of C is also faithful.

Proof.

We shall look at the case n = 2. The rest follows from inductively applying the argument. Suppose,

for the sake of contradiction, that the 2-coding C2 is not faithful. Then there exists ab, cd ∈ A2,

with ab 6= cd, such that

C2(ab) = C(a)C(b) = C(c)C(d) = C2(cd)

Now, if a = c, then we’d have C(a) = C(c) ⇒ C(b) = C(d) and by the faithfulness of C, we’d have

that a = c and b = d and then we’d be done. Thus, we may assume that a 6= c. By the faithfulness

of C, we must have that C(a) 6= C(c). The only way this can be true, however, and still have that

C(a)C(b) = C(c)C(d), is if C(a) is a prefix of C(c) or vice-versa. This contradicts the prefix-free

property of C.

A more enlightening way of seeing why prefix-free concatenation code must preserve faithfulness

is simply to make sense of the algorithm necessary to decode a codeword from an n-coding Cn

obtained from a prefix-free code C.

As an example, suppose that A = {a, b, c} and C : A → B∗ is a faithful, prefix-free code, letting

C(a) = 010, C(b) = 1001, and C(c) = 1010.
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We now look at the word in B∗ given by

w = 10100101001

To proceed with decoding, we start at the left of the sequence w, and start to test the prefixes

of w (i.e. 1, 10, 101, etc...) against our codebook C(A) until a valid codeword appears. In this

case, the first is 1010 = C(c). Since C(A) is prefix-free, no other letter could have produced the

beginning of the sequence w, so we know that the first letter of our code is c. We then proceed to

look at the sequence w without the first four letters, i.e. w′ = 0101001. Repeating the process, we

find that the next codeword is 010 = C(a), and then finally the last letter is 1001 = C(b), leading

to the decoding of the word cab ∈ A3.

The algorithm for decoding a word w ∈ B∗ (assuming it is a valid codeword, for some n-code

concatenation of C) can be summarized as follows:

1. Start testing the prefixes of w in order until one of them appears in the codebook, C(A), call

it c1.

2. c1 corresponds to the first letter of the decoded word. There can be no ambiguity since

the prefix-free property guarantees us that this prefix of w cannot be the prefix of another

codeword in C(A)

3. Repeat the process on w, starting after the decoded prefix to obtain codes c2, c3... Proceed

until the word is completely decoded.

8.2 Binary-tree representations and Kraft’s inequality

A prefix-free set W ⊂ B∗ has the property that it can be effectively represented by a directed

binary tree, which we shall label T (W ) with vertex set V (W ). It has the following rules:

1. Each vertex v ∈ V (W ) represents a prefix for codewords in W, except for the parent vertex

v0, which is just the empty word.

2. If a vertex v may be represented as v = ub with u being another vertex, and b not being

empty, then there is a unique directed path from u to v.

With these conditions, W happens to be the leaves of the tree, or in other words, the subset

of V (W ) of vertices which do not have edges directed away from them. As an example, we look

at the prefix-free set W = {00, 100, 101, 0100, 0101}. Included below is a figure of the binary-tree

representation of W.
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Kraft’s inequality shall play a vital role in establishing a bound on code-length, as will its

important converse:

Lemma 8.3. Let 1 ≤ l1 ≤ l2 ≤ . . . ≤ ln be a non-decreasing sequence of integers satisfying the

Kraft inequality. That means

n∑

i=1

2−li ≤ 1

Then, there exists a prefix-free subset of B∗, W = {wi ∈ B∗ : 1 ≤ i ≤ n}, such that ℓ(wi) = li.

This lemma will not be proved directly here, but we note that it is quite obvious given Kraft’s

inequality, and that the above proof of Lemma 8.2 can be easily reordered to prove Lemma 8.3.

An alternative proof can be found in [35]

8.3 Entropy and average code length

Up to now, we have not discussed any properties one can assign to the source alphabet A in a

given code. In general, if one considers realistic cases, we may find that certain characters in an

alphabet are used more often then others. Intuitively, by assigning shorter codewords to the more

frequent characters in A, one may hope to obtain shorter codes on average. In this chapter, we

shall properly formalize this concept.

Let us suppose that we have a probability distribution on A, some finite alphabet. By this, we

mean that there is a function µ : A → [0, 1] with
∑

a∈A µ(a) = 1. For each a ∈ A, µ(a) can be seen

as the probability of obtaining a. Of course, without a notion of valid words in A∗, this doesn’t

really have any meaning, but for now, this will suffice as a good approximation of more complex

and meaningful scenarios.

We may define what is known as the entropy of this distribution, H(µ), by

H(µ) = −
∑

a∈A
µ(a) logµ(a) (8.2)

where the base of the logarithm is assumed to be 2, as stated in the introduction of this section.

For a given code C : A → B∗, one may define the code-length function, LC : A → N, given by

LC(a) = ℓ(C(a))

In other words, the code-length function assigns to each a ∈ A the length of its associated
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codeword in C(A). If C is prefix-free, then by Lemma 8.2, we have

∑

a∈A
2−LC(a) ≤ 1

If our source alphabet A has a probability distribution µ associated with it, one may further

define the average, or expected code-length:

Eµ [LC ] =
∑

a∈A
LC(a)µ(a) (8.3)

As stated previously, one main goal of coding theory is to try and find effective ways of minimiz-

ing this quantity. The following theorem provides an important bound on the expected code-length

of prefix codes, and also shows a way to obtain codes with expected lengths very close to this

bound.

Theorem 8.4. Let A be a finite alphabet equipped with probability distribution µ. Then,

(i) H(µ) ≤ E [LC ] for all prefix-free codes C : A → B∗.

(ii) There exists a prefix-free code C : A → B∗ such that E [LC ] < H(µ) + 1

Before we prove this theorem, we present a necessary lemma.

Lemma 8.5. let p = (pi)
n
i=1 be a probability vector and let q = (qi)

n
i=1 be a sub-probability vector.

This means pi, qi ≥ 0 for all i and that
∑n

i=1 qi ≤
∑n

i=1 pi = 1. Then we have

n∑

i=1

pi log
pi
qi

≥ 0 (8.4)

with equality if and only if pi = qi for each i.

Proof of Lemma 8.5.

the function f(x) = − lnx is strictly convex, such that − lnx ≥ 1− x, with equality if and only if

x = 1. With this in mind we consider the following sum:

n∑

i=1

pi ln
pi
qi

= −
n∑

i=1

pi ln
qi
pi

≥
n∑

i=1

pi

(

1− qi
pi

)

=
n∑

i=1

pi −
n∑

i=1

qi ≥ 0

Since logb x = lnx
ln b

, the same inequality is true by replacing ln with log with any base.

With this lemma, we are now capable of proving our main theorem.
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Proof of Theorem 8.4.

We first let C : A → B∗ be some prefix-free code and examine its expected code-length.

Eµ [LC ] =
∑

a∈A
LC(a)µ(a) =

∑

a∈A
log 2LC(a)µ(a)

=
∑

a∈A
µ(a) log

µ(a)

2−LC(a)
−
∑

a∈A
µ(a) logµ(a)

=
∑

a∈A
µ(a) log

µ(a)

2−LC(a)
+H(µ)

By Kraft’s inequality,
∑

a∈A 2−LC(a) ≤ 1 and thus, by Lemma 8.5, the first term in the last line

above is positive, therefore proving the first part of the theorem.

To show the second part of the theorem, we define the following function L : A → N so that

L(a) = ⌈− logµ(a)⌉ where ⌈x⌉ is the smallest integer which is greater than or equal to x. With

this definition we can see that

∑

a∈A
2−L(a) ≤

∑

a∈A
2log µ(a) =

∑

µ(a) = 1

By Lemma 8.3, we may construct a prefix-free code C : A → B∗ such that LC(a) = L(a) for each
a ∈ A. Noting that L(a) < 1− logµ(a), we proceed to examine the expected code-length of C.

Eµ [LC ] =
∑

a∈A
L(a)µ(a)

<
∑

a∈A
(1− logµ(a))µ(a) =

∑

a∈A
µ(a)−

∑

a∈A
µ(a) logµ(a)

= 1 +H(µ)

This proves the second part of the theorem.

It is important to note the details of how the prefix-free code was chosen so as to obtain the

right bound. for characters a ∈ A with larger frequency µ(a), the lengths of the codewords L(a)
were chosen to be shorter. If each of these frequencies happened to be exact powers of 1

2 , then it

would be possible to choose a code satisfying Eµ [LC ] = H(µ).

8.4 n-codes and asymptotic compression rates

We now begin to consider codes n-length words formed with our alphabet A. Of course, since

An is just a finite set (A is assumed to be finite), we see that n-codes Cn : An → B∗ are conceptually

no different from simple codes from A to B∗.
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More specifically, if µn is a probability distribution on An, then, as before, one defines the

entropy of the distribution, H(µn), as follows

H(µn) = −
∑

x∈An

µn(x) log(µn(x))

also, for any code Cn : An → B∗, the code-length function, LCn , is defined as before.

We now consider a probability measure µ on A∞, the set of all sequences x = (xi)
∞
i=1 with each

xi in A.

To clarify what we mean by this, we shall introduce some notation. If x = (xi)
∞
i=1 ∈ A∞, then

xmn is the word of length (m − n) + 1 representing the n-th to m-th elements of the sequence x.

Also, for x ∈ A∞, the ‘n to m cylinder set of x’, denoted by [xmn ], is defined by

[xmn ] = {y ∈ A∞ : ymn = xmn }

With these definitions, we let F be the σ-algebra generated by all finite intersections of cylinder

sets. Thus, (A∞,F) is a measurable space and the notion of a probability measure µ on (A∞,F)

is well-defined.

The n-th marginal of µ, denoted by µn, is a probability distribution on An, defined in the

following manner: If a = an1 is an element of An, then we define its probability by

µn(a) = µ([an1 ])

one can easily verify that the additivity and normalization properties of a probability distribution

are satisfied.

It is reasonable to ask how one may define the notion of entropy of a measure µ on A∞. To do

so, we first define the per-symbol entropy of its marginal, µn,

hn(µn) =
1

n
H(µn) (8.5)

The entropy of the measure, h(µ) is then defined with an appropriate limiting procedure.

h(µ) = lim sup
n→∞

hn(µn) (8.6)

It turns out if µ is a stationary process, i.e. measure-invariant with respect to the left-shift

operator, then equation (8.6) is simply the Kolmogorov-Sinai entropy (see Section 6.6) of the

associated dynamical system.

Now, suppose we have a measure µ on A∞, and an n-code Cn : An → B∗, then another quantity

89



of interest is that of the expected per-symbol code-length,

1

n
Eµn [LCn ] =

1

n

∑

a∈An

LCn(a)µn(a) (8.7)

Equations (8.5) and (8.7), along with Theorem 8.4 imply that for a given probability distribution

µn on An, all prefix-free n-codes Cn obey

hn(µn) ≤
1

n
Eµn [LCn ] (8.8)

They also imply the existence of a prefix-free n-code C̃n such that

1

n
Eµn [LCn ] ≤ hn(µn) +

1

n
(8.9)

We may now look at sequences of prefix codes and ask how they might behave as the length

of source words grows. Let {Cn}∞n=1 be a sequence of codes with Cn being a prefix code from An

to B∗. Given a probability measure µ on A∞, we may define the (asymptotic) compression rate of

the sequence, Rµ({Cn}) by

Rµ({Cn}) = lim sup
n→∞

1

n
Eµn [LCn ] (8.10)

which is an approximate measure of the ability of our code to ‘shorten’ words from our source

alphabet as their length gets arbitrarily long. With this definition, we easily obtain the following

theorem from equations (8.8) and (8.9).

Theorem 8.6. For a given probability measure µ on (A∞,F) the following are true.

(a) There exist prefix sequences {Cn} such that Rµ({Cn}) = h(µ)

(b) There is no prefix sequence {C̃n} such that Rµ({C̃n}) < h(µ)

This result helps illuminate the direct connection between the notion of code-length and entropy.

In Section 8.3 we showed how the entropy of a given distribution on A acted as a lower bound for

the average code-length of prefix codes and showed how one can construct a prefix code whose

average code-length is ‘nearly optimal’, within one of the entropy. By focusing our attention on

the asymptotic results, Theorem 8.6 gives us a tight bound, solidifying the notion that entropy is

indeed a measure of compressibility of information.
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