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ABSTRACT

The family of Purinergic P2X receptors are ligand-gated cation channels which are

affected by a number of allosteric modulators. Inducing conformational changes

throughout the whole protein, allosteric modulators modify the efficacy and potency

of a receptor’s orthosteric ligands. We briefly review the literature of mathematical

models of P2X receptors and develop modelling paradigms for allosteric modulation

of orthosteric systems based on previous models of P2X receptors and the experi-

mental protocols that they depend on. Formalisms for Bayesian inference of model

parameters of ion channels using Markov chain Monte Carlo (MCMC) simulations

have been tested. These formalisms are based on existing theories of Bayesian infer-

ence for single channel data, which we adapt in this thesis to whole cell recording data

of cells expressing P2X receptors. We highlight some of the issues that arise when

using them and present an alternative MCMC methodology to test its performance

in fitting mathematical models to ion channel kinetics. Finally, we analyze in detail

allosteric modulation of P2X4 receptors by the pharmacological agent Ivermectin

and present two plausible types of models. Using the MCMC methodology devel-

oped herein we compare the models and the mechanisms by which they reproduce

experimental data, concluding that sensitization and desensitization of receptors are

not independent of each other, and that the later can occur subsequent to the for-

mer. To capture this behaviour, we develop a two layer Markov model that is more

compatible with our understanding of allostery and experimentally observed data.
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ABRÉGÉ

La famille des récepteurs Purinergic P2X sont des canaux cationiques ligand-dépendants

qui sont affectées par un certain nombre de modulateurs allostériques. Induisant

des changements conformationnels à travers la protéine entière, les modulateurs al-

lostériques modifient l’efficacité et la puissance de ligands d’un récepteur orthostériques.

Nous examinons brièvement la littérature de modèles mathématiques de récepteurs

P2X et développons des paradigmes de modélisation pour la modulation allostérique

des systèmes orthostériques basés sur les modèles précédents de récepteurs P2X et

les protocoles expérimentaux dont ils dépendent. Des formalismes pour l’inférence

bayésienne des paramètres du modèle de canaux ioniques à l’aide de simulations

chaînes de Markov Monte Carlo (MCMC) ont été testés. Ces formalismes sont basées

sur les théories existantes de l’inférence bayésienne pour les données monocanal, que

nous adaptons dans cette thèse aux données cellules entières de cellules exprimant

des récepteurs P2X. Nous soulignons certains des problèmes qui se produisent lors

de l’utilisation des formalismes et présentons une méthodologie MCMC alternative

pour tester ses performances avec les modèles mathématiques cinétique de canaux

d’ions. Enfin, nous analysons en détail la modulation allostérique des récepteurs

P2X4 par l’agent pharmacologique Ivermectine et présentons deux types de mod-

èles plausibles. En utilisant la méthodologie MCMC développée ici nous comparons

les modèles et les mécanismes par lesquels ils reproduisent des données expérimen-

tales, concluant que la sensibilisation et la désensibilisation des récepteurs ne sont

pas indépendants les uns des autres, et que le premier peut se produire à la suite du
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deuxième. Pour capturer ce comportement, nous développons un modèle de Markov

à deux couches qui est plus compatible avec notre compréhension de l’allostérie et

des données observées expérimentalement.
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statistically significant variations in desensitization rate. Following
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desensitization rate in the absence of IVM. Statistical significance
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4–11 The one layer model of Fig 4–10 captures many aspects of the pulse
protocol experiments. (A-D) Current time series produced by the
model for the pulse protocol experiments performed with (A) 0, (B)
1, (C) 3, and (D) 10 μM IVM. Dashed blue lines are experimental
recordings, whereas red lines are model simulations. (E, F) IVM-
dependent dose–response curves of (E) peak current amplitude
and (F) rate of receptor deactivation. Model deactivation kinetics
are measured by a weighted sum of the time constants from a
bi-exponential and are expressed as τoff. (G, H) Progression of
activation, desensitization, and deactivation produced by the model
during the pulse protocol performed with 1 μM and 10 μM IVM,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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with IVM for 30 s (red). Calculated from curve fittings, in the
absence of IVM, the EC50 was 1.73 μM and the hill coefficient
was 1.42, whereas in the presence of IVM they were 0.24 μM and
1.25 respectively. Dashed lines are experimental data. (B) 3 μM
IVM causes a positive shift in the reversal potential in a model cell
stimulated with 100 μM ATP for 10 s. The bath medium has Na+

replaced by NMDG+ and as such we have set E1 = -46.1 mV and
E2 = -21.9 mV. The voltage is ramped from −80 mV to +80 mV
twice per second from a holding potential of −60 mV, and model
cells were pretreated with IVM for 20 s. Compare with right panel
in Fig. 4–3. (C) Two prolonged applications of 100 μM ATP to
a model cell in the absence of IVM separated by a 3 min washout
period. (D) Prolonged application of 100 μM ATP to a model cell
in the presence of 3 μM IVM. . . . . . . . . . . . . . . . . . . . . . 110

17



4–13 (A) Loss of cooperativity between the number of bound ATP molecules
and IVM binding and unbinding rates (Table 4–1 and first column
of Table 4–2) causes aberrations in the short timescale behaviour
of model desensitization when 1 μM IVM is present in the bath
medium (compare to Fig. 4–11G). (B) Coooperativity between
ATP binding and IVM unbinding (Table 4–1 and second column
of Table 4–2) in the first IVM row rescues the transient increase in
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(γ1 = 3.26, γ2 = 5.89, γ3 = 33.5). . . . . . . . . . . . . . . . . . . . 116
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application. Hence, in this reduced model, we are neglecting
both activation/inactivation and internalization due to their long
timescales of action relative to the kinetics considered here. . . . . 119

4–15 Putative binding configuration can easily capture the short timescale
behaviour of a given single pulse of the pulse protocol experiments.
(A) Single configuration fitting (orange line) to the first pulse of
a 1 μM IVM pulse protocol recording (blue line). (B) Timeseries
generated by configuration fit to the pulse in A when it is used
for the remainder of the pulse protocol. (C) Single configuration
fitting (orange line) to the last pulse of a 10 μM IVM pulse protocol
recording (blue line). (B) Timeseries generated by configuration fit
to the pulse in C when it is used to simulate the pulses leading up
to that in C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4–16 Diagram of the two layer model with all parameters independent of
one another. (A) Sub-system in the absence of IVM. This illustrates
the general motif of states and transitions used throughout each
“slice” of the model. (B) IVM and ATP mediated transitions in the
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panel A forms the top slice of the large block of states, whereas that
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18



4–17 The two layer model of Fig 4–16 captures many aspects of the pulse
protocol experiments. (A-D) Current time series produced by the
model for the pulse protocol experiments performed with (A) 0, (B)
1, (C) 3, and (D) 10 μM IVM. Dashed blue lines are experimental
recordings, whereas red lines are model simulations. (E, F) IVM-
dependent dose–response curves of (E) peak current amplitude
and (F) rate of receptor deactivation. Model deactivation kinetics
are measured by a weighted sum of the time constants from a
bi-exponential and are expressed as τoff. (G, H) Progression of
activation, desensitization, and deactivation produced by the model
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respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4–18 The two layer model of Fig 4–10 captures many aspects of the P2X4
gating with prolonged agonist application. (A) ATP concentration-
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period. (D) Prolonged application of 100 μM ATP to a model cell
in the presence of 3 μM IVM. . . . . . . . . . . . . . . . . . . . . . 128
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5–1 Adaption of P2X4R model of IVM-dependent allostery reproduces
features of P2X7R concentration dependence of current amplitude
and kinetics. (A) Currents generated by a model with allostery
induced by the orthosteric agonist ATP. ATP application time
is indicated by the black boxes above each recording while the
concentrations used are 1 μM, 30 μM, and 100 μM from left to
right. (B) Currents generated by a model with allostery induced
by an unknown ligand whose concentration remains constant in all
experiments. While a concentration-dependent switch in activation
kinetics is obvious, this is not associated with an increase in current
amplitude or a change in deactivation kinetics, unlike in A. Compare
with Fig. 2–3 and recordings in Yan et. al. [1]. . . . . . . . . . . . 133
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Chapter 1
Physiology

1.1 Introduction

Purinergic P2X receptors (P2XRs) are a family of ligand-gated non-specific cation

channels which are activated primarily by the extracellular presence of the purine

adenosine 5′-triphosphate (ATP). There exist seven distinct subunit proteins of this

family, labeled as P2X1-7. Early molecular biological evidence suggests that P2XRs

aggregate to form functional trimers [2]. This has been confirmed by atomic force

and electron microscopy for P2X2R as well as by crystallographic studies of zebrafish

P2X4R [3, 4, 5, 6]. Many cell types express more than one P2X subunit and it is

known that functional receptors may be formed by either using only one type (ho-

motrimer) of subunit or by a mixture of more than one type of subunit (heterotrimer)

[7]. Heterotrimers such as a receptor formed from both P2X1 and P2X2 subunits are

referred to as P2X1/2R. Receptors formed as a homotrimer of P2X1 subunits are

referred to as P2X1R. P2X6 is known to only form functional heterotrimers, whereas

P2X7 can only form functional homotrimers [8, 3]. Many cell types have been iden-

tified with both homo and heterotrimers, with heterotrimers inheriting most of the

properties of the constitutive subunits [9].

While each subunit in the P2X family differs in a number of ways, the general topol-

ogy of the domains in subunits of P2XRs is conserved. Both the N and C termini of
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P2X receptors possess consensus binding motifs for protein kinases and are located

cytosolically. The N terminal is connected to a first transmembrane domain (TM1)

involved in channel gating. TM1 then is followed by a large extracellular loop com-

monly referred to as the ectodomain. When coordinated in a trimer, the ectodomain

forms fenestrations which are lined by negatively charged amino acids which attract

cations, giving the P2X receptors their selectivity for cations [5]. The interface be-

tween adjacent ectodomains are postulated to form binding pockets for ATP or other

agonists [10]. It is thought that once ATP binds to the extracellular binding site it

induces conformational changes in the ectodomain and transmembrane domains lead-

ing to opening of the channel pore once two or more ATP molecules bind [11, 9].

Each ectodomain also contains a hydrophobic region close to the conducting pore of

the fenestrations. Metals and other cationic modulators (Mg2+, Ca2+, Zn+, Cu2+,

and H+) may bind to this region and alter receptor behavior [9, 12]. The extracel-

lular loop leads back into the cellular membrane to form a second transmembrane

domain (TM2) which lines the pore that allows ions to pass through the membrane.

TM2 then connects to the C terminal of the protein.

Aside from its widely known role as an intracellular exchanger of molecular energy,

ATP was first noted to have effects on renal vascular resistance when applied ex-

tracellularly [13]. In 1972, Burnstock presented evidence for a novel class of nerves

whose principal component of activation are purine nucleotides, which he termed

purinergic nerves [14]. The receptors responsible for this sensitivity to purines were
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eventually termed purinergic receptors. Differentiated by their transduction mecha-

nisms, P2X receptors are the subclass of purinergic receptors that are ligand-gated

as opposed to P2Y receptors which belong to the G-protein coupled receptor family.

Purinergic signaling is considered one of the most ancient and widespread signaling

systems used in living tissue [15]. Purinergic receptors are implicated in both short-

term signaling related to cell functioning and long term signaling related to cell

development, such as neurotransmission and programmed cell death respectively. As

such, it is not surprising that P2X receptors are a ubiquitous family of receptors which

appear in a multitude of cell types in complex organisms. In order to emphasize that

purinergic signaling is a primitive system involved in both neuronal and non-neuronal

mechanisms, we will briefly summarize some physiological functions associated with

P2X receptors.

While the mechanism remains unclear, P2X4 knockout mice have reduced long-term

potentiation in the hippocampus [16]. Moreover, hippocampal P2X4R show a de-

creased sensitivity to ATP when exposed to levels of ethanol associated with extreme

intoxication [17]. In taste perception, lack of P2X2 and P2X3 abolishes neural re-

sponses to tastants but not mechanical or chemical stimuli [18, 19]. Also, behavioral

responses to sweetness, glutamate, and bitter substances were either abolished or re-

duced in double knockout mice [20]. Furthermore, P2X7 is associated with apoptotic

processes involved in the rapid regeneration of taste cells and acinar cell death in

auto-immune Sjögren’s syndrom [21, 22]. In hearing, P2X2 is involved in the modu-

lation of endocochlear potential [23]. In the bladder, ATP and an analog αβmeATP

increase the excitability of bladder afferent nerves [24]. In P2X3 knockout mice, the
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bladder must be filled to a greater extent than the wild-type mice in order to induce

bladder voiding [25].

P2X receptors have been extensively implicated in pain. Some pain related behavior

is blocked by a P2X3 selective antagonist [26]. Subsequent to spinal cord ligation,

P2X4 expression is increased in microglia of the dorsal horn of the spinal cord.

Moreover, introduction of microglia which had previously been stimulated by ATP

into the spinal cord is associated with increased pain sensitivity [27]. This suggests

that P2X4 is likely to be part of the activation mechanism of the dorsal horn microglia

and neuropathic pain. In pain perception, both through the use of P2X7 specific

antagonists and inhibition of genetic expression, it has been shown that P2X7 is

involved in neuropathic pain in rats and neuropathic and chronic inflammatory pain

in mice [28, 29].

Being associated with the capacity to clear airways of mucus, a novel P2X receptor

unique to airway ciliated epithelial cells has been identified and dubbed P2Xcilia [30].

It has a pharmacological profile similar to P2X7R but lacking the capacity to dilate

and is potentiated rather than inhibited by zinc [31]. P2X receptors have also been

implicated in control of respiration, where they are thought to regulate sensitivity to

CO2 and thus the adaptive responses of the respiratory system [32]. P2X1, P2X4,

and P2X7 are all coexpressed in most immune cells [12]. However, only P2X7 has

been confirmed to play a physiological role in these cells. P2X7R is known to induce

release of interleukin-1 beta (IL-1β), while inhibition of P2X7 can abolish the immune

inflammatory responses mediated by IL-1β [33, 34]. P2X7 is also known to play a

role in the release of insulin and the secreation of interleukin-1 receptor antagonist
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(IL-1Ra) which reduces the inflammation and β-cell damage associated with type I

diabetes [35].

Clearly, P2XRs are implicated in a large number of extremely varied physiological

processes. In order to develop novel therapeutics for pathologies associated with any

one of these physiological functions, it is important to understand how the specific

P2XRs operate in a variety of conditions. This can give us insight into how the dual

behaviors of P2X receptors are harnessed by differentiated cells in order to produce

their specific physiological functions, which in turn can motivate potential therapies.

As it stands, many aspects of P2XR gating are incompletely understood. The task

of resolving this solely from experiment is hindered by pharmacological difficulties

[36]. Nonetheless, in recent years mathematical modeling has begun to shed light

onto many aspects of P2XRs and to guiding experimental designs in order to arrive

at a more complete understanding of P2XRs [37, 1, 38, 39, 40, 41].

1.2 Experimental Characteristics of P2XRs

P2XR gating can be broken down into three distinguishable phases. We describe

these based on their kinetics of current production in whole cell recordings. The

activation phase is a rapid phase of increasing inward current subsequent to appli-

cation of agonist. This is followed by the desensitization phase, a slower decay of

current amplitude in the presence of an agonist and whose onset is slower than that

of activation. After agonist is removed from the surrounding medium, we observe a

relatively rapid decrease in current amplitude which is referred to as the deactivation

phase. While all characterized P2XRs display these phases, they differ in both their

sensitivity to agonists as well as in the kinetics of the phases described above.
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[1, 43]. Interestingly, the deactivation kinetics of P2X4Rs are dependent on the

concentration of the allosteric modulator Ivermectin (IVM) [41].

The gating properties of P2X2Rs and P2X4Rs seen in Fig. 1–1 seem very similar

with some differences in kinetics. For many of the P2X receptors, this holds true. For

example, it was determined experimentally that desensitization rates of some of these

receptors satisfy (P2X2R<P2X4R<P2X1R<P2X3R). However, for P2X7Rs we see

a delayed secondary growth of current which occurs at a time when other receptors

would be in their desensitization phase, giving it a current profile which differs sig-

nificantly from the other P2X receptors. Indicative of pore dilation, this secondary

growth in current correlates temporally with a change in reversal potential when cells

are bathed in a medium where sodium is replaced by NMDG+[1]. NMDG+is a large

organic (∼7.3 Å in mean diameter [44]) cation which has been used to detect pore

dilation in P2X receptors [45, 41]. In such ionic conditions and prior to dilation,

channels are only permeable to atomic cations such as sodium (∼2.04 Å in diameter

[46]). As the channel pore dilates, its selectivity for cations subsides and it becomes

permeable to larger cations, including NMDG+, which causes a change in reversal

potential. P2X2Rs also exhibits this shift in reversal potential when stimulated with

supramaximal ATP concentrations, while P2X4Rs requires the addition of IVM in

order to dilate.

P2X receptors are considered allosteric systems, as opposed to simpler orthosteric

systems, because they allow for the binding of modulator ligands at sites different

from those of the orthosteric ligands (e.g., ATP) which can alter the properties of the
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underlying orthosteric system. Receptors with allosteric properties will simultane-

ously interact with two ligands, an orthosteric ligand which can be directly correlated

with receptor functioning and an allosteric ligand which modulates this functioning.

Allosteric modulators can affect the potency of agonists in such a way that more

or less agonist is required to produce half (or some other fraction) of the system’s

total effect. Alternatively, they can affect the efficacy of the system or the maxi-

mal response produced by the system. Both allosteric effects can be imparted on

the system in agonist specific manners, which is of interest given its importance in

the development of therapeutics that are both complex and of high specificity. The

list of P2X allosteric modulators and effects is vast, and we refer the reader to the

review of Couddou et. al. for comprehensive listings [9]. Ultimately, we will focus

on the allosteric effects of IVM on P2X4Rs from a modeling perspective. However,

the techniques we use here could be easily extended to model almost any allosteric

modulator.
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Chapter 2
Models of P2X Receptors

There has been a tremendous amount of experimental work done to try and char-

acterize P2X receptor functioning both in vitro and in vivo [12, 9]. It is common

in the field to use simple phenomenological models to quantitatively assess hypothe-

ses and draw conclusions [37, 47]. However, more recently, biophysically detailed

Markov models, which describe individual orthosteric binding sites and their al-

losteric modulation, have emerged and been very successful in reproducing varied

experimental data from P2X homotrimers and succinctly explaining many phenom-

ena [1, 38, 39, 40, 41]. We say that these are biophysically detailed because, rather

than abstractly defining open and closed states, the conformational states of indi-

vidual binding sites and other structural components of the receptor are considered.

Open and closed states are associated with specific occupancy of the binding sites

and other conformational changes which receptors can undergo.

These models have generally been constructed with the idea that all P2X receptors

share the same underlying regulatory mechanism. This follows from one basic and

experimentally supported assumption that a general model of all P2X receptors must

exist, and that differences in its transition rate parameters yield the behaviour of

specific receptors. New models have often inherited the properties of previously

developed models of other receptors. For this reason, we will examine some features

of the first P2X Markov model used to describe P2X7R kinetics.
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model, the sensitized row would have a higher probability of opening at the same

agonist concentration (hence the name sensitized). We view this sensitized row as an

allosteric modification of the orthosteric system (unsensitized row) by an unspecified

ligand (such as phosphorylation), leading to modification of agonist potency. This

allosteric modification produces a copy of all the states in the orthosteric system

in Fig. 2–1, as it is assumed that orthosteric ATP binding and sensitization are

two processes that occur at distinct locations of the receptor. Transitions to the

sensitized row are responsible for the secondary growth in current observed in Fig.

1–1. As such, they are to be associated with dilation and changes in permeability

of the pore. Whereas the unsensitized open states (Q1,Q2) have the conductance

g12, the sensitized open states (Q3,Q4) have a larger conductance g34. Therefore,

the allosteric modification which transitions receptors to the sensitized row modifies

both the potency and efficacy of agonists. This yields the following current equation

for the Markov model

I = g12 (Q1 +Q2) (V − E) + g34 (Q3 +Q4) (V − E) , (2.1)

where E is the reversal potential of the cell (0 V for Krebs-Ringer-like bath medium)

and V is the holding potential (-60 mV). Moreover, this model includes the allosteric

effects of extracellular calcium (see Fig. 2–3 bottom row) described by the two

multiplicative factors F and 2 − F affecting all the ATP binding and unbinding

rates, respectively, where

F = α
β2

β2 + [DC]2e
, (2.2)
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is a monotonically decreasing Hill function of the extracellular divalent cation concen-

tration [DC]e (Ca2+), with kinetic constantsα and β. Calcium is assumed to have the

effect of reducing the potency of agonist binding by decreasing agonist binding rates

while increasing unbinding rates (see Fig. 2–3). This is a second way in which recep-

tor allostery is modeled. In contrast to sensitization, we do not expect the fraction

of total receptors that are allosterically modified by calcium to change throughout

experiments. This is because the allostery depends on extracellular calcium, a cation

present in the bath medium long before experiments are carried out [48]. Assuming

no cooperativity between ATP and calcium binding, the calcium binding process

will have equilibrated before experiments are performed. In all of these experiments,

calcium concentrations were kept the same, so we expect the ratio of calcium-bound

and unbound receptors to stay the same. If the major effect of calcium is to alter

ATP binding kinetics, there is no need to create a copy of each state to capture

calcium allostery. Rather, we can approximate the calcium concentration depen-

dent kinetics of the equilibrium mixture of calcium-bound and unbound receptors

fairly well through the use of the multiplicative factor F . Evidence exists for partial

agonist binding inducing many allosteric modifications of P2X receptors including

increased agonist potency (sensitization) [49, 50]. We do not know the identity of

the sensitizing allosteric modulator, but we do know that its action is subsequent

to application of ATP. The timescales of these modifications, governed by the rate

L3 in the model of Fig. 2–1, is long compared to agonist binding. Thus a complete

model of sensitization allostery will require modeling the modified (sensitized) and
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more prominent and occurs significantly more quickly in P2X2Rs than in P2X7Rs

and thus could not be omitted from the model. The naïve row desensitizes in a

straightforward manner, once one or more ATP are bound to a naïve receptor. With

one or two ATP molecules bound, desensitization is assumed to occur with a rate

L1, but when three are bound, desensitization is assumed to be faster with a rate

L3 (L3 > 10L1). This choice of rate parameters captures the dependence of the

desensitization rate on agonist concentration (see Fig. 2–6). Once all ATP molecules

become unbound from desensitized receptors, the model assumes these that receptors

can return to the naïve state C1 with a rate L1, although this rate is taken to be 100

times larger than that of P2X7Rs because P2X2Rs do not exhibit the same memory

upon activation. The model was used to capture the experimental behaviours of

receptors from two different splice variants of P2X2 subunits, P2X2a the full-length

protein and P2X2b a shorter splice form with 69 residues removed from the C-

terminal domain.
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Rather calcium is known to affect the rates of desensitization in a use dependent

manner [39]. That is, with each stimulation by ATP in the presence of Ca2+, the rate

of desensitization tends towards a rate which is faster than that initially observed.

It is even possible for the rate of desensitization to abruptly shift during a single

ATP application. The increase in the rate of desensitization is achieved by making

the transition to a desensitized row from dilated states a function of the intracellular

calcium concentration. By including a differential equation for intracellular calcium

([Ca2+]i) in the model, it is possible to produce the use dependent increase in the

desensitization rate. The following equation was used to describe calcium dynamics

d [Ca2+]i
dt

= −f
(

αSRI + kc
[

Ca2+
]

i

)

,

where f is the fraction of free intracellular calcium, α is Faraday’s constant, S is

the fraction of the current I attributable to calcium, R converts the units of I from

A to pA, and kc is the calcium efflux rate. The model of Fig. 2–5 indicates that,

when receptors open, they allow for an influx of calcium ions and thus the intra-

cellular calcium concentration to increase throughout an experiment. The rate of

calcium-dependent desensitization, L2, is assumed to be a dynamic variable with the

differential equation

dL2

dt
= β1

[

Ca2+
]

i

β2 + (L∗
2 − L2)

2

β2
3 + (L∗

2 − L2)
2 − β4XL2, (2.3)

where β1, β2, β3, β4, and L∗
2 are constants. X is the concentration of some unknown

inhibitory agent which has been modeled as having a constant source σ and a linear
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Due to the altered permeability of a dilated receptor, in NMDG+ containing me-

dia, dilated states should have a different reversal potential from open states (see

section 4.1.1). Thus the current equations were modified from that of the P2X7R

model to

I = g12 (Q1 +Q2) (V − E12) + g2 (Q3 +Q4) (V − E34) , (2.4)

where E12 and E34 are the reversal potentials of the open and dilated states respec-

tively. These reversal potentials are functions of the intracellular and extracellular

environments as well as the cell’s permeability to ions (see section 4.1.1). In the

presence of NMDG+ they differ, while in its absence with mixed ionic conditions

they are taken to be the same. During the voltage ramp protocol, the reversal po-

tential essentially shifts from E12 to E34. The current equation can be rewritten in a

standard form to isolate the total conductance and reversal potential of the cell, as

follows

I = gtot (V − Etot) , (2.5)

where gtot and Etot are the total conductance and reversal potential of the cell re-

spectively. By equating Eqs. (2.4) and (2.5) and after some algebraic manipulations,

we find that:

Etot =
g12 (Q1 +Q2)E12 + g34 (Q3 +Q4)E34

g12 (Q1 +Q2) + g34 (Q3 +Q4)
.

As receptors shift from being mostly in the open states Q1 and Q2 to the dilated

states Q3 and Q4, this weighted sum shifts from E12 to E34. Provided that E34 is

chosen to be more positive than E12, this will lead to a positive reversal potential

shift.
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where β is a constant. This is in contrast to the models of P2X7Rs and P2X2Rs

which sensitize and dilate spontaneously once three ATP molecules are bound. For

P2X4Rs, these processes are understood as allosteric modifications by IVM, while

for P2X7Rs and P2X2Rs the nature of the receptor modulation which induces sen-

sitization and dilation remains unclear [49, 50]. IVM is known to cause a leftward

shift in EC50 for ATP evoked current, an effect deemed to represent sensitization

(see section 4.1.3). Similar to the sensitized row of the P2X7R model, this row has

increased affinity to ATP binding as compared to the naïve row and thus produces

the desired sensitization to ATP when IVM is applied. Transitions back to the naïve

row are possible from the Q3 and the ATP-unbound state C4, but no transitions are

allowed directly to the desensitized row. That is, in this model of P2X4R, sensitized

receptors do not desensitize but must first revert back to the naive status (through

IVM binding), before they can desensitize. It should be noted that sensitization (an

increase in agonist potency) and desensitization (a decay in current amplitude during

agonist application) are not reverse processes of one another as their names might

suggest.

In the model of Fig. 2–9, the ATP binding and unbinding rates in both the naïve

and sensitized rows are multiplied by factors which depend on the same Hill function

of IVM concentration which governs the dilation process. The ATP binding rates

are all multiplied by an increasing function of IVM concentration given by

F = 1 + αK ([IV M ]) ,
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We will subsequently refer to interactions between IVM and receptors as IVM bind-

ing, although we are not entirely sure that such interactions involve direct binding of

IVM to the receptor. Moreover, we will maintain the naming convention for states

used in this model for all subsequent models. Q is used to label open conducting

states, C is used to label closed states, and finally D is used to label desensitized

states. Adoption of this convention throughout all models will allow for simpler

model descriptions.
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Chapter 3
MCMC

3.1 Preliminaries

In all of the models presented in section §2 there are many parameters whose values

must be chosen appropriately in order for the model to accurately capture experi-

mental behaviour. Thus far, parameter values were chosen in an ad hoc manner to

qualitatively reproduce the observed experimental currents. In this thesis, we prefer

to take a more systematic approach where we quantitatively compare model pre-

dictions to experimental data for a given set of parameters. We have experimental

data in the form of whole cell current recordings of various experimental protocols.

Therefore, we will compare model generated currents to experimental data we have on

hand. Ultimately, we will design error functions, which represent the error between

model predictions and the experimental data, and try to minimize these functions.

This can be done in a deterministic setting such as the least squares fitting. How-

ever, we have found this method to produce sub-optimal results, due to the existence

of many local minimal, while its requirement to evaluate the gradient of the error

function is prohibitively computationally expensive for models with large numbers

of parameters. Moreover, we are interested in finding the probability distribution

of parameters rather than a single parameter value which results from deterministic

optimization techniques. Thus we employ Markov chain Monte Carlo (MCMC) al-

gorithms which are capable of sampling from unknown probability distributions that
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depend on an error function. Generally speaking, MCMC is a class of algorithms

capable of approximating the integral

I =

ˆ

Rd

f (x) π (x) dx.

It does so not by finding the probability density function π (x), but rather by sam-

pling x ∈ R
d in such a way to approximate the effect of π (x) dx on the integral.

What is meant by this is that regions of Rd which have higher density, π (x), will

have more values drawn from them by an MCMC algorithm. The Markov chain of

MCMC refers to the fact that the algorithm performs a Markovian random walk in

R
d. For our purposes, Rd represents the space of parameter values and π (x) is thus

the probability density function of the parameters.

Throughout the following sections we will deal with many probabilities and proba-

bility densities. For example, we will write the probability of some random variable

X having the value A as P (X = A) or more succinctly P (A) to describe the prob-

ability of the event A. Moreover, we will denote the probability of A given that B

is also true (i.e., the conditional probability of A) as P (A|B). In order for it to

be possible for both A and B to be true, they must be the value of two different

random variables. Thus we can write the conditional probability more explicitly as

P (X = A|Y = B). Furthermore, for continuous random variables we say that they

have probability density function (p.d.f.) π (x) if the probability of being in some

interval [A,B] is given by the integral

P (A ≤ X ≤ B) =

ˆ B

A

π (x) dx.
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In order for probability distributions to be proper the total probability of all possible

events must be 1. This means that the following probability conditions (or normal-

izing conditions) must be satisfied. If A is an event (or set of events) in a countable

state space and A is its complement, then the normalization condition is as follows

P (A) + P
(

A
)

= 1.

Alternatively, if A and B are the limits of support of a p.d.f. on a continuous state

space the normalization condition is

ˆ B

A

π (x) dx = 1.

3.2 Markov Chains

Ultimately, our goal is to use MCMC algorithms to produce Markov chains in pa-

rameter space. Since we will be working in a discrete digital representation of Rd, we

can consider it as a countable state space E. A Markov chain is a sequence of values

{Xn, n ≥ 0} (possibly vector valued) produced by a discrete-time Markov process.

A Markov process is a stochastic process that determines future values based only

on its current state and not the past. As such, a Markov chain in parameter space

will obey the following property for each set i, j; i0, i1, . . . , in−1 of possible parameter

values in the countable state space E:

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) , (3.1)

where i0 is the initial value of the chain, i is its nth value and P (Xn+1 = j|·) is the

probability of the chain moving to state j at its nth step forward in discrete time.
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Equation (3.1) is referred to as the Markov property. Moreover, the conditional

probability P (Xn+1 = j|Xn = i) is referred to as the one-step transition probability.

If the latter does not depend on n, for all states i, j ∈ E then we say that the Markov

chain has stationary transition probabilities and write

Pij = P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i)

We call Pij the one-step transitions probability, because it transforms the initial

distribution vector p (0) on the state space E to the distribution p (1) via one iteration

of the Markov process defined by

p (1) = p (0)P.

Under some mild conditions, a Markov chain with stationary transition probabilities

will also have an invariant distribution π which satisfies the following property

πP = π.

That is, a single iteration of the Markov process leaves the distribution unchanged.

The same will also hold true for any number of iterations.

3.3 Bayesian Inference: Bayes’ Rule

Consider a hypothesis, H, about how some data, D, arises. Bayes’ theorem states

that

P (H|D)P (D) = P (D|H)P (H) ,

52



which can be rewritten to isolate the conditional probability of the hypothesis. In

Bayesian statistics, this conditional probability of the hypothesis given data is re-

ferred to as the posterior probability. We will assume that the data is not subject

to change, but there might be many different hypotheses we wish to test. Therefore,

we can denote the posterior as a function of solely the hypothesis.

π (H)
def
= P (H|D) =

P (D|H)P (H)

P (D)
.

Moreover, we can assume P (D) to remain constant and thus acts as a normalizing

factor. Because MCMC is insensitive to this normalizing factor (see Section 2.4),

we will not include it in our analysis and define the posterior, up to a constant of

proportionality, by

π (H) ∝ P (D|H)P (H) .

P (D|H) is the probability of the observed data given our hypothesis, which is com-

monly referred to as the likelihood function of the hypothesis. P (H) is the prob-

ability of the hypothesis regardless of the observed data. This probability reflects

our prior knowledge of how probable different hypotheses are regardless of observed

data. Thus it is referred to as the prior distribution. Using this formalism, we can

now arrive at the formulation of Bayes’ theorem known Bayes’ rule, which lies at

the heart of all Bayesian inference. This intuitive rule can be stated as follows: the

posterior is proportional to the prior times the likelihood

posterior ∝ likelihood× prior.
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3.4 MCMC: Metropolis-Hastings Algorithm

Having defined a posterior distribution, we do not have any viable means of sampling

from this distribution. This is the task of the Metropolis-Hastings algorithm and

other such MCMC algorithms, the former will be covered in this section as it forms

the basis of almost all other algorithms we have seen in the literature. Firstly,

consider an arbitrary Markov chain on the countable state space E with stationary

one-step transition probabilities given by qij, the specific stationary distribution of

this Markov chain is unimportant. Secondly, consider another related Markov chain

with transition probabilities given by

Pij = qijαij (3.2)

αij =
sij

1 +
πi
πj

qij
qji

where π is a (possibly unnormalized) distribution on E and sij is a symmetric function

of i and j. For such a Markov chain, it can readily be shown that

πiPij = πjPji

which ensures that
∑

πiPij = πj, for all j, and π to be the stationary distribution

of the transition matrix P . If we can produce a Markov chain whose transition

probabilities obey equation (3.2), we can obtain samples from the distribution π.

This is precisely what the Metropolis-Hastings algorithm is constructed to do. More
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specifically, it uses

sMH
ij =



















1 +
πiqij
πjqji

if
πjqji
πiqij

≥ 1

1 +
πjqji
πiqij

if
πjqji
πiqij

≤ 1

,

such that

αMH
ij =



















1 if
πjqji
πiqij

≥ 1

πjqji
πiqij

if
πjqji
πiqij

< 1

.

It should be noted that all the transition probabilities depend on the distribution π

solely through ratios of two densities. Hence, the Metropolis-Hastings algorithm is

capable of sampling from the distribution π without knowledge of the appropriate

normalization constant. For a more in-depth discussion of the details behind the

Metropolis-Hastings algorithm and MCMC, we refer the reader to the seminal paper

by Hastings [51].

The algorithm itself can thus be described as follows:

1. Starting with an initial value x, draw a new value x′ from a proposal density

q (x′|x).

2. Accept the new value x = x′ with the probability min

(

1,
π (x′) q (x|x′)

π (x) q (x′|x)

)

.

3. Restart at Step 1 until a specified number of iterations have been reached.

This simple algorithm allows one to sample from an unnormalized distribution on

the countable state space E, and forms the basis of many Markov Chain Monte

Carlo (MCMC) techniques. Despite the apparent simplicity of the algorithm there

are many things to consider when using MCMC to explore multidimensional state

spaces, which will be covered in the following sections.
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3.5 Bayesian Inference: Likelihood Functions, Priors, and Experimental
Data

Our goal is to use Bayesian inference in order to test Markov models against ex-

perimental data and to compare their probabilities given the data we have. In the

context presented above, our hypothesis consists of a model, M , and specific nu-

merical values for its various parameters which we denote as the vector x. This

yields

π (M,x) ∝ P (D|M,x)P (M,x) . (3.3)

P (D|M,x) is the probability that data would be observed given that our hypothesis,

defined by the model M and set of parameters x, is true and is termed the likelihood

function. We shall take this to be the negative exponential of the sum of squared

errors (S.S.E.) between the mean value µ (D) of a quantity of interest measured from

the experimental data and the same quantity produced by the differential equation

model (e.g. Markov model), µM (yM (x)). i.e.,

P (D|M,x) ∝ exp

(

−
∑

i

(µM,i(yM (x))−µi(D))
2

/2σ2
i

)

,

where µi (D) is the mean experimental value of the ith quantity of interest and σ2
i is

its variance (must first be estimated from experimental data). We have used yM (x)

to emphasize that the solutions to the ODE’s will depend on not only on the model

M developed, but also the specific parameter values x associated with model M .

Also, µM,i (·) measures a quantity which is equivalent to µi (·) but is dependent on

the specification of the model M . For example, the quantities may be the current

produced by a cell at given points in time, implying that the sum of squared errors
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is the sum of squared distances between the current produced by the ODE system

and the average of the current recordings produced experimentally, Î:

P (D|M,x) ∝ exp
(

−
∑

i(IM (yi(x))−Îi)
2

/2σ2
i

)

. (3.4)

This type of likelihood function, which we refer to as a distance likelihood, works well

when used to reproduce a single experimental recording. However, in this approach,

the capacity for the sum of squared errors to determine parameter values is dependent

on the contribution of each parameter in governing the solution of the ODE’s. We

have distinct phases in our experimental recordings and as a result, it would be

very difficult to determine parameter values for the phases with short duration. For

example, in P2XRs, the kinetics of the activation phase will depend largely on the

ATP binding rates, whereas those of the desensitization phase will depend more

on desensitization rates. In many of our experimental recordings, desensitization is

apparent for only short periods of time and thus it is difficult to properly characterize

the desensitization rates with this likelihood function. Moreover, the ODE solutions

in these short phases seem physiologically unreasonable (i.e. the algorithm did not

convergence to a physiologically reasonable distribution). This led us to try another

approach using summary statistics to reduce the hundreds of thousands of data

points recorded from cells to a handful of descriptive values. For example, we might

fit an experimental current decay to an exponential function and compare the time

constant, τ , and amplitude, A, with those obtained from fittings of model currents

as follows:

P (D|M,x) ∝ exp
(

−(τM (y(x))−τ̂)2/2σ2
τ
−(AM (y(x))−Â)

2

/2σ2
A

)

. (3.5)
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This allows us to easily give equal importance to different phases of evoked cur-

rents regardless of their duration. Moreover, because this type of likelihood function

(referred to as the parametric likelihood hereafter) depends only on a few quanti-

fiers which give a qualitative description of the solution, it is not nearly as sensitive

to small changes in transient behavior as the distance likelihood function defined by

equation (3.4). The success of this method hinges on how well the data is understood

and an appropriate choice of quantifiers.

The expression P (M,x) in Eq. (3.3) represents is the probability that the parameters

of model M have the given value x. This represents our knowledge of the parameters

prior to comparing them with the data and is termed the prior distribution. Due

to their physical nature, we know that all parameters should be positive. We can

also set an upper bound on state transition rates which seem appropriate given the

timescales of experimental data obtained from P2X2Rs. From some preliminary

testing, 10,000 s-1 seems to be more than adequate for producing even the fastest

of observed kinetics. This allows to assign a uniform probability over a range of

parameter values for the prior. However, this is not particularly informative and

produces chains which can have very poor convergence when used for our purposes

[52, 53]. Ultimately, we have opted for the prior distribution of Siekmann et. al.

which is exponentially distributed in the trace of the Markov model’s infinitesimal

generator Q (see section §3.6) [54]. i.e., by taking

P (M,x) ∝ exp

(

Tr (Q (x))

ρ

)

,
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where ρ ∈ R
+. This expression is a well established prior distribution for ion channel

parameter estimation [54]. Such a choice of prior prevents model rate parameters

from becoming excessively large much as the uniform prior would. In fact, it will

assign higher posterior density to parameter sets with smaller values that can re-

produce the experimental data equally by skewing samples towards smaller values.

This is because the prior distribution assumes that all the transition probability

rates qij are independent exponentially distributed random variables with parameter

ρ rather than being uniformly distributed within some interval. As was suggested

by Siekmann et. al., we have used ρ = 30.

3.6 MCMC Estimation for an Ion Channel Model

Our goal is to use MCMC methods to infer parameters values for Markov models

of an ion channel. Given a set of experimental data and an ion channel model, we

wish to estimate parameter values for the model. In this thesis, we typically deal

with models which are quite large and thus have a large number of parameters. The

high dimensionality of the parameter space as well as the computational time re-

quired to evaluate the likelihood functions prohibits us from obtaining distributions

of parameters. While MCMC does sample from the posterior distribution, there is a

general rule of thumb that at least 2k samples should be used for Bayesian analysis of

a k-dimensional sample space. Unfortunately this was not feasible for us and so we

have used MCMC as a stochastic optimization algorithm. Deterministic optimiza-

tion was initially explored but when applied to complex models and sets of data, it

converged to local minima that were not physiologically reasonable. MCMC has the

capacity to escape these local minima (see section §3.7). Rather than obtaining the
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Or in terms of the infinitesimal generator Q

dp (t)

dt
= p (t)Q

p (t) =

[

A (t) B (t)

]

Q =







−k2C k2C

k1 −k1






.

Because of the low-dimensionality of the system, it is possible to obtain analytical

solutions and thus sample the posterior extensively. This will not be possible for

larger models, where we will need to employ an ODE solver. However, the properties

of the different posterior distributions can be extended to larger models.

The experimental characterization of any ion channel will require the use of multiple

experimental protocols. When an ion channel model is under consideration, we

seek to find the parameter set which best explains the behavior of the ion channel

in all experimental conditions. For this reason, we will simulate two experimental

protocols. The first is the application of the ligand C at a concentration of 1 M for

4 seconds to a cell whose receptors are all in the closed state A. The second is of a

cell whose receptors are all initially in the open state B, and the ligand C is applied

at a concentration of 1 M after 4 seconds of allowing receptors to close. Mimicking

recording from a large number of cells, an ensemble of currents for both experimental

protocols were generated (see Fig. 3–2) using normal distributions of the parameters

k1, k2 and g. This allows us to use the distance likelihood function of equation (3.4)

in order to redetermine these parameters. We can also fit the various phases of the
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alter the variance significantly. Curiously, the samples of parameter k1 were consis-

tently confined to a very small region not representative of the actual distribution

used to generate the data. This sensitivity to experimental protocol and sampling

rate is certainly undesirable. A priori, we do not know how each experiment will

skew the parameter samples, so it is impossible to compensate for this effect. Ulti-

mately, this leads to the issue of our sampler rejecting parameter values which are

perfectly reasonable. In a situation with a more complex set of experimental data,

this can make it impossible to reproduce all experimental recordings very well with

any sampled parameter set. On the other hand, using a parametric likelihood func-

tion seems to circumvent all of these issues. The sampler managed to sample the

parameters k1 and k2 extremely well while more data would have been needed to

determine the conductance g to the same precision. As we have already stated, the

overestimated variance of g is not a concern for us since the sampler did not reject

values which gave perfectly reasonable results. The excessive rejection of parameters

leads to undersampling of the parameter space and thus limits the usefulness of our

sampling methods.
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data with a single parameter set. Aside from the problem of using an inadequate

model, there are issues related to the way that experimental data is collected. Cer-

tain experimental protocols may have very low success rates and may, by the intrinsic

properties of the system under study, effectively produce useful data for only certain

regions of parameter space. Moreover, some experimental protocols may require so

many attempts before obtaining useful data that only a single record of the exper-

iment is available, which only yields information about a single point in parameter

space. As an extreme example, consider the case where the experimental protocol of

Fig. 3–2 A is such that the average ligand unbinding rate appears to be 1.5 s-1 and

that of B appears to be 4.5 s-1. What will be the outcome of sampling parameters for

the joint likelihood function of the two experiments? Obviously it will be impossible

to fit both experiments perfectly well with a single parameter set. Alternatively, we

can think of our simple two state model as an approximation of a more complicated

model of multiple states with these two effective unbinding rates. As a result, we can

still recover the average unbinding rate (3 s-1) through sampling using the simplified

model of Fig. 3–1.
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(see Fig. 3–4A). This means that the most likely outcome of sampling is a param-

eter set which reproduces one of the two experiments very well but not the other.

Also, samples of k2 incorrectly estimate the mean despite using the same parameter

distribution for both datasets. We have not done extensive analysis as to why one

dataset was favored over the other, but it is likely that it has something to do with

the temporal structure of the variances in each dataset. When using the parametric

likelihood, on the other hand, all average parameter samples correctly estimated the

mean of the parameter distributions. Samples also had a larger variance compared

to the distance likelihood. While the most likely parameter set for the parametric

likelihood does not reproduce either dataset exceptionally well, it manages to make

a compromise between the two rather than neglecting one of the modes (and its

corresponding dataset). This kind of compromise in the sampler is greatly desired

as it will allow for simple models (such as the one in Fig. 3–1) to exhibit more flex-

ibility in reproducing experimental data, as opposed to favoring one set of data for

unclear reasons. For these reasons, we believe that parametric likelihood functions

are superior in their capacity for parameter estimation of ODE models.

3.7 MCMC: Trapping & Tempering

For distributions with multiple modes which do not have significant regions of over-

lap, the random walking of the Metropolis algorithm tends to get stuck in a sin-

gle mode for long periods of time, leading to convergence issues and resulting in a

severely incomplete sampling of the parameter space. To illustrate, we have pro-

duced an example density function which is the sum of three normal distributions

(P (x) = exp(−(x−µ)2/2σ2)/
√
2πσ2, see Fig. 3–5A). Two modes (µ = 18, µ = 20) are
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close enough that there is significant overlap of the distributions while a third mode

(µ = 9) is chosen to be well separated by a region of low density. To demonstrate the

problem of local trapping, we ran 1000 MCMC simulations and analyzed the chains

produced, all starting at the mode of one of the two closely packed distributions on

the right (x0 = 20). We found that only 6.1% of the chains ever manage to reach the

more distant mode on the left (µ = 9) and that in those rare cases it took around

500,000 iterations to reach the leftmost mode.

In all MCMC simulations a starting point, or initial set of parameters, is required.

In the situation where we have managed to find one mode to the right (x0 = 20 or

x0 = 19 ) a priori, we cannot expect to discover the leftmost mode or vice versa.

This is quite problematic as we would like to use MCMC as an automated means of

exploring parameter space in order to find all parameter sets of interest. Moreover,

the evaluation of the likelihood function is significantly more computationally expen-

sive when solving the ODE’s of a Markov model. Even on specialized computers, the

time required to produce 1,000,000 samples is prohibitively long and thus compels

us to improve sampling efficiency.
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leftmost mode but on average it took 762 iterations to reach it, which is a significant

increase in sampling efficiency compared to the untempered case (see Table 3–1).

Further increasing the temperature (β = 0.005, Fig. 3–7D), continued to increase

the sampler’s capacity to sample regions with very little density in such a way that

it seemed not to be constrained within either of the modes (with the two modes

on the right becoming indistinguishable). At this temperature level, chains reached

the second mode on average after 580 iterations. In the limit β → 0 the sampler is

no longer informed by the posterior and the parameters are sampled uniformly, an

outcome that we begin to observe in Fig. 3–7D.
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With this simple example we can see both the strengths and weaknesses of sampling

from tempered distributions. On one hand, it can increase the mixing of modes and

even allow for exploration of regions of parameter space which might otherwise be

missed by MCMC simulations of a finite length. On the other hand, it deforms the

distribution of interest such that modes which are close by may become indistin-

guishable and in the limit of infinite tempering, all modes become essentially erased.

None of the samples really gives us a perfect description of the posterior distribu-

tion, because either samples are too spread out around the modes or they tend to

be trapped locally for very long periods of time. There is certainly some value of

β which is a good compromise between the two. How are we to choose it a priori

when we begin our simulation? Or conversely, how can we determine whether or

not it truly has explored the entire parameter space while giving importance to the

appropriate regions? We do not know how to answer either question in a satisfactory

manner. Instead, what we have found to be a common practice in the literature is

the use of a more elaborate sampling procedure known as parallel tempering [55].

3.8 Parallel Tempering

Parallel Tempering (PT) is a technique which uses Markov chains generated in paral-

lel from different tempered versions of the same distribution. Considering L ordered

temperature levels, 1 = β(1) > β(2) > . . . > β(L) > 0, we can construct the following

composite Markov chain

Xk =
(

X
(1)
k , . . . , X

(L)
k

)

,
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which has, as a stationary distribution, the product of posterior densities

πβ

(

x(1), . . . , x(L)
)

=
πβ(1) (

x(1)
)

´

πβ(1) (x) dx
× · · · ×

πβ(L) (

x(L)
)

´

πβ(L) (x) dx
.

The Parallel Tempering algorithm can be reduced to successively applying the fol-

lowing two step scheme

Xn
swap
−→ X̄n

move
−→ Xn+1.

Based on this, each Markov chain moves forward according to the Metropolis-Hastings

algorithm for its tempered posterior, but this is also accompanied by swapping of

parameters between chains at adjacent energy levels. We denote the parameters after

swapping X̄k. This swapping takes place in a very similar fashion to the metropolis

step. The acceptance probability of a swap takes into account the energy difference

between levels, such that adjacent energy levels which are closer in energy have a

higher probability of exchange. This probability is defined by

P (X̄j
n = Xj+1

n , X̄j+1
n = Xj

n) = min



1,

(

π (Xj+1
n )

π
(

Xj
n

)

)β(j)−β(j+1)


 .

Repeating the same multimodal sampling task using the parallel tempering algo-

rithm, we see a significant improvement in sampling efficiency. Firstly, on average,

all chains manage to reach the second mode in fewer iterations than in the best case

for serial tempering (see Table 3–2). Second, the untempered chain (β = 1), by

virtue of being run in parallel with tempered chains, reaches the second mode in

all instances compared to only 6% for serial tempering (see Fig. 3–8A). One might
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question if this is truly more efficient considering the necessity to evaluate the like-

lihood function L times for a single step of the PT algorithm. In this example, each

iteration required the four likelihood evaluations (one for each temperature), but the

speed of mode-mixing in the untempered chain was increased by 1000-fold. This

is clearly an increase in sampling efficiency. Moreover, because the evaluations of

the likelihood function at each temperature are independent of one another, they

can be parallelized on a modern digital computer, allowing for L independent likeli-

hood function evaluations in parallel (which requires far less time than L successive

evaluations of the same likelihood function). In cases where the increase in mode

mixing might not be as extreme, parallelization of the likelihood functions can still

increase the number of samples obtained in a given amount of time [56]. This is

particularly useful when the likelihood functions are computationally intensive such

as when fitting large ODE systems to complex experimental data.
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3.9 Adaptive Parallel Tempering (APT)

In the previous section, the choice of inverse temperatures (β(ℓ)) at which to run the

parallel chains was arbitrarily chosen by trial and error. This choice worked well for

the particular problem on hand, but may have been sub-optimal for others. The

adaptive parallel tempering algorithm (APT) attempts to vary the temperature of

the chains at each step in order to asymptotically obtain a specified swap acceptance

rate, α∗, between adjacent temperature chains [57]. Theoretical results suggest that

an acceptance rate of 23.4% is optimal for maximizing the expected square jumping

distance between individual swaps, and thus optimizing the exploration of parameter

space. First, we introduce a parametrization, ρ, of the inverse temperatures.

{ρn}n≥0

def
=
{

ρ(1:L−1)
n

}

n≥0
.

The parametrization is used to recursively determine the inverse temperatures as

follows:

β(ℓ+1)
(

ρ(1:ℓ)
)

:= ψ
(

β(ℓ)
(

ρ(1:ℓ−1)
)

, ρ(ℓ)
)

.

This parametrization provides a general formalism that can be used to produce the in-

creasing sequence of temperatures. In particular, we use ρ(ℓ) = log

(

1

β(ℓ+1)
−

1

β(ℓ)

)

,

as suggested by Miasojedow et. al., which in turn determines the inverse tempera-

tures, as follows:

β(ℓ+1) =
1

1

β(ℓ)
+ exp (ρ(l))

.
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This parametrization is updated at each iteration of the algorithm by the stochastic

approximation procedure

ρ(ℓ)n =
(

ρ
(ℓ)
n−1 + γn,1H

(ℓ)
(

ρ
(1:ℓ)
n−1 ,xn

))

,

where the stepsize γn,1 is given by γn,1 = (n+ 1)ξ1 , ξ1 ∈ (1/2, 1) and

H(ℓ)
(

ρ
(1:ℓ)
n−1 ,xn

)

= min



1,

(

π
(

x(ℓ+1)
)

π (x(ℓ))

)∆β(ℓ)(ρ(1:ℓ))


− α∗

∆β(ℓ)
(

ρ(1:ℓ)
)

= β(ℓ)
(

ρ(1:ℓ−1)
)

− β(ℓ+1)
(

ρ(1:ℓ)
)

When the mean acceptance rate between an energy level ℓ and its adjacent level

ℓ + 1 reaches α∗, then H → 0 and the parameter ρ(ℓ) becomes quasi-stationary (in

the sense that it will remain constant as long as the mean swap acceptance rate do

not change). We refer the reader to the original paper by Miasojedow et. al. for

more details [57].

One thing which we noticed when using the APT sampler was that it was not uncom-

mon for the sampler to stray from parameter sets, which produced results relatively

close to those we wished to see, to parameter sets which performed truly abysmally.

Due to the Markov property, it is entirely possible for a random walk metropolis

algorithm to move far from the mode in which it is initialized. This problem can be

exacerbated by tempering. In particular, this can be observed in Fig. 3–7D, where

the modes do not seem to have any real capacity to confine the chain to any part

of the parameter space. Moreover, Miasojedow et. al. warn that in the case of a

posterior with support of finite Lesbegue measure, it is possible that there exists no

78



solution ρ̂ for the parametrization of the inverse temperatures and their algorithm

will assymptotically sample from a uniform distribution. The APT algorithm makes

it such that once an energy level begins to sample from a uniform distribution, it will

tend to swap parameters with an adjacent level and ultimately restart the process

of parameter estimation without any of the knowledge accumulated by running the

algorithm. Since it is the Markov property of a single chain that allows for excessive

sampling of parameter space, we turn our attention to a class of samplers which are

not Markovian in parameter space.

3.10 T-walk sampler

The t-walk is an MCMC sampler which is designed to be invariant to the structure

of the target distribution. It is not an adaptive algorithm that performs tuning of

parameters which govern the algorithm. Rather, it maintains two points (x, x′) in pa-

rameter space which stochastically perturb each other using proposal distributions.

This effectively makes this method sample from the joint posterior π (x) π (x′). In-

stead of producing two independent chains in parameter space X , the whole process

lies in the product space X ×X and thus the probability of a single point randomly

walking to a region of low density will be greatly reduced. Only when a wandering

point finds a region of higher density will it be likely to influence the position of

the other point in parameter space. For this reason, its creators gave it the moniker

“thoughtful walk” to distinguish it from random walk MCMC [58]. By maintaining

two points in parameter space, the local shape of the distribution may be sampled

efficiently because the two points carry information about the local structure of the

distribution. The algorithm produces a new set of points in parameter space (y, y′)
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using the restricted proposal

(y, y′) =















(x, h (x′, x)) with prob 0.5

(h (x, x′) , x′) with prob 0.5

(3.6)

where h (x, x′) is itself a random variable whose p.d.f. is given by g (·|x, x′). The

Metropolis-Hastings acceptance ratio for the first case of equations is given by

π (y′) g (x′|y′, x)

π (x′) g (y′|x′, x)
,

whereas in the second case it is given by

π (y) g (x|y, x′)

π (x) g (y|x, x′)
.

The t-walk uses four different proposal distributions: the walk move, the traverse

move, and the hop and blow moves. Each proposal distribution is used with a certain

probability. The details of the construction of each distribution are beyond the scope

of this thesis but can be found in the seminal paper of Christen et. al. [58]. MATLAB

implementations of the sampler are available online, but these codes required some

modifications to make them suitable to work with high dimensional problems. Partic-

ularly, for high dimensional problems a random subset of the parameters are chosen

to be updated rather than the whole set. For an n-dimensional set of parameters, this

is done by sampling indicator variables, which are used to stochastically choose co-

ordinates to vary according to a Bernouilli distribution, Ij ∼ Be (p) , j = 1, 2, . . . , n.

If Ij = 0, then the coordinate xj is not moved. The parameter p of the Bernouilli

distribution is chosen to be p = min(n,n1)/n, such that the expected number of moved
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parameters at each iteration is n1 for sample spaces of dimension greater than n1

(chosen to be 4, as suggested by Christen et. al.).

3.11 Composite MCMC Sampler

Because certain aspects of both the APT and t-walk are useful, we developed our

own sampler with properties of both. Here we describe briefly the sampler’s al-

gorithm. L tempered t-walk samplers sample from the product space X × X at

each iteration, producing the move step. After each move step, individual points

in X are swapped between tempered chains according to the parallel tempering al-

gorithm. The temperatures of each tempered chain are then updated according to

the stochastic approximation defined by the APT sampler. Ultimately, this sampler

samples from the product distribution given by

πβ (x)πβ (x
′) =

πβ(1)
(x(1))πβ(1)

(x′(1))
´

πβ(1)(x)πβ(1)(x′)dxdx′
× . . .×

πβ(L)
(x(L))πβ(L)

(x′(L))
´

πβ(L)(x)πβ(L)(x′)dxdx′
.

We found that this sampler was capable of quickly converging to regions of high

density much like the t-walk but did not suffer as much from low move acceptance

rates once the region of high density is reached (as the temperatures of the tempered

chains could be adjusted to the properties of the local distribution using the APT

temperature scheduling). This sampler was built from algorithms, rather than from

mathematically analyzing proposal distributions. We diagnosed computational issues

in each sampler that reduced their sampling efficiency and borrowed what we liked

from each in order to overcome the limitations of the other. While a full suite of tests

have been not performed to test the sampler’s properties, we have been quite satisfied

with its performance thus far. There does exist a generalization of the t-walk that
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can handle any number of points in parameter space [59]. However, we found that

the implementation of this sampler would have required too much time to implement

based on our needs and would have produced significantly slower likelihood function

evaluations. Thus it was never used, but it would be the next logical step in our

efforts to find an efficient MCMC sampler for our problem.

Inclusion of the code within the appendices of this thesis is impossible due to con-

straints on length. Instead, we have made the code and some examples of how to use

it publicly available at the following URL: https://github.com/metapfhor/MCION.
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Chapter 4
Extension of P2X4R model

The model in Fig. 2–9 was successful in capturing many aspects of P2X4 gating

except for one minor detail. The model IV curves transiently begin to increase in

slope, indicative of an increase in conductance (see Fig. 4–1C). However, the slope

of experimental IV curves decreases monotonically for as long as agonist is applied.

There is also one experimental result with which this model is conceptually incom-

patible. IVM must be applied for some time before the application of ATP in order

to have its full effect [41]. In the aforementioned model, applying IVM in the absence

of ATP has no effect whatsoever on the dynamics of the model because the transition

mediated by IVM from Q2 to Q3 can only occur when ATP is present. Thus, in or-

der to generate dose response curves compatible with experiments (see Fig. 4–2 and

section 4.1.3), it was necessary to have the IVM-dependent nonlinearities included

in the naïve row. This incompatibility motivated us to further work in analyzing

the interactions between receptors and IVM in more quantitative detail. here are

three important questions that need to be addressed: (i) how do we model ATP-

independent IVM interaction with P2X4R? (ii) which gating properties of P2X4R

are affected by pretreatment with IVM; and (iii) What are the mechanisms under-

lying the decrease in the slopes of the IV-curves during IVM-induced sensitization?

As we have mentioned, in the model of Fig. 2–9, there is only one ATP depen-

dent IVM-receptor interaction; namely, the transition from Q2 to Q3. Moreover, the
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Figure 4–2: Nonlinearities in the naïve row of the model in Fig. 2–9 are necessary
to capture IVM’s sensitizing effect. (A) Model simulation of evoked current as a
function of ATP concentration in the absence (black) and presence (red) of IVM.
In the presence of IVM, the EC50 is lower than in the control. This indicates that
IVM sensitizes model receptors (see section 4.1.3). (B) Same as A but with the
nonlinearities removed from the naïve row of the model. Notice that application of
IVM leads to a higher EC50 which is the opposite of the experimental effect.

4.1 The Effects of IVM on P2X4R

As indicated earlier, a Markov model describing P2X4 orthosteric activation by ATP

as well as allosteric modulation by IVM had previously been developed. Our goal is

to extend this model in order to capture some experimental characteristics which the

previously developed simplified model did not account for. Before we proceed with

our extension of P2X4 model, it is essential to go over all of the known effects of
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IVM on P2X4 in order to elucidate the reasoning behind the choices we have made

in the extension of the model.

4.1.1 IVM Causes an Increase in Unitary Conductance: Dilation

Some P2X receptors (more specifically P2X7R) exhibit biphasic currents at higher

agonist concentrations. An initial fast current is observed followed by a secondary

slower current growth (as can be seen in Fig. 1–1) . This secondary growth in current

is associated with a slow dilation of the receptor pore which not only increases unitary

conductance but also decreases cation selectivity. Such behaviour is deemed dilation

because it has been shown that permeability to large cations (such as NMDG+)

slowly increases with time in the presence of high agonist concentration whereas at

low agonist concentration the pore remains impermeable to such cations due to steric

interactions between the receptor pore and cations. This was demonstrated largely

through fluorescence studies where uptake of dye, initially contained only in the

bath medium, is observed in cells overexpressing P2X receptors [45]. Interestingly,

it was found that the rate of permeabilization is dependent on the cation size. This

is highly suggestive that dilation might be a step-wise process whereby an initial

“partial” dilation might allow for medium sized cations to pass before larger ones are

allowed to do so.

In P2X4R, the primary agonist ATP is incapable of producing such behaviour.

Nonetheless, it may be induced by application of the pharmacological agent IVM

to the bath medium. Our group of collaborators has demonstrated this using the

electrophysiological technique known as the ramp protocol (see section §2.2). In such

a protocol the holding potential of the cell is rapidly swept across a range of voltages
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which gives momentary snapshots of both the conductance of the cell and its rever-

sal potential. As the permeability of the cell towards the large cations increases, the

reversal potential of the cell also shifts according to the Nernst equation.

Erev =
RT

F
ln

(
∑

i PM+
i

[

M+
i

]

out
+
∑

i PA−

i

[

A−
i

]

in
∑

i PM+
i

[

M+
i

]

in
+
∑

i PA−

i

[

A−
i

]

out

)

,

where Px is the cell’s permeability to the ion X and [X]out is the extracellular concen-

tration of that ion, whereas [X]in is the intracellular concentration. Because P2X4Rs

are cation channels, we do not need to consider the permeability of any of the anions

in the medium.

In this experimental setup, cells are bathed in a medium where Na+ has been re-

placed by equimolar NMDG+. When ATP alone is applied, the cell does not become

permeable to NMDG+ but rather the lack of sodium in the medium causes it to es-

cape from the cell through open P2X4Rs. This produces a fast transient, driven by

the fact that the initial reversal potential is theoretically negative infinity. However,

after the transient, the reversal potential becomes quasi-static as the intracellular and

extracellular solutions equilibrate quickly. While a small shift in reversal potential

does occur, it is negligible (see Fig. 4–3, left panel). Therefore, we may approximate

the reversal potential in the absence of IVM to be that of sodium.

EATP ∝ ln

(

[Na+]out
[Na+]in

)

≈ ENa+

On the other hand, when IVM is applied permeability to NMDG+ will develop over

time. Initially there is negligible permeability to NMDG+, and so we essentially
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return back to the same situation as in the absence of IVM.

EIV M,initial =
RT

F
ln

(

PNMDG [NMDG+]out + PNa[Na
+]out

PNa [Na+]in

)

∝ ln

(

[Na+]out
[Na+]in

)

≈ ENa+ .

As dilation takes place, the permeability of the cell towards NMDG+ increases caus-

ing a shift in the cell’s reversal potential closer to that of NMDG+. It should be noted

that final reversal potential is not exactly the same as that of NMDG+ because the

cell does not lose its permeability to Na+, i.e.,

EIV M,final ∝ ln

(

PNMDG [NMDG+]out + PNa[Na
+]out

PNMDG [NMDG+]in + PNa [Na+]in

)

.

Experimentally it was found that the application of extracellular IVM to P2X4R

greatly increases the shift in reversal potential when NMDG+ is present in the bath

medium [41]. This is strongly suggestive of pore dilation induced by the presence

of extracellular IVM. The shift in reversal potential was consistently positive (see

Fig. 4–3, right panel), indicating that [NMDG+]out/[NMDG+]in is greater than

[Na+]out/[Na+]in. Moreover, while we can use the x-axis intercept of the I-V curves

generated by the voltage ramp protocol to determine reversal potential, we can also

use the slope of the I-V curves to determine the cell’s conductance. Under the same

ramp protocol performed at supramaximal agonist concentrations, it was found that

the conductance is a monotonically decreasing function of time [41].
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of time (Ṗ (dilated) > 0). Based on this description, the current equation for the

cell is given by

I = gopenP (open) (V − Eopen) + gdilatedP (dilated) (V − Edilated) ,

where gopen is the maximum conductance of the open receptor, gdilated > gopen is the

maximum conductance of dilated receptors, and Eopen and Edilated are the reversal

potentials of the cell in the fully open and dilated states respectively. We can rewrite

the current equation (see section §2.2) as

I = gtot (V − Etot) ,

where

gtot = gopenP (open) + gdilatedP (dilated)

Etot =
gopenP (open)Eopen + gdilatedP (dilated)Edilated

gtot
.

Given that the slope of the I-V curves decrease during a ramp protocol, we expect

the conductance to decrease over time, i.e., ġtot < 0. After taking the time derivative

of gtot and rearranging the terms, we obtain

ġtot = gopen

(

Ṗ (open) +
gdilated
gopen

Ṗ (dilated)

)

,

which is strictly negative if we impose the condition

−Ṗ (open) >
gdilated
gopen

Ṗ (dilated) . (4.1)
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It follows that
∣

∣

∣
Ṗ (open)

∣

∣

∣
>
gdilated
gopen

Ṗ (dilated) .

That is, the total conductance of the cell will decrease if the open fraction of receptor

population decreases at a rate which is faster than the ratio of dilated to open

maximum conductances times the rate of increase of the dilated states. Thus, in

order to capture the decrease in the slope of I-V curves in any model development,

we can either increase desensitization of the open states or somehow reduce the rate

of increase of the dilated states.

As a first approximation, we can attribute the decrease in the fraction of open states

as coming from two processes, desensitization and dilation.

−Ṗ (open) = Ṗ (dilated) + δ (4.2)

where δ is the rate of change of open receptors associated with desensitization. We

can substitute this back into equation (4.1) to obtain a new expression for the de-

crease in conduction

δ >

(

gdilated
gopen

− 1

)

Ṗ (dilated) .

If we consider gdilated as gopen added to some fractional increase in unitary conductance

labeled f, as follows

gdilated = gopen (1 + f) ,

then

δ > fṖ (dilated) . (4.3)
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The desensitization rate of naïve receptors is well characterized by our data for

experiments with prolonged application of ATP (see Fig. 1–1). It can be considered

as a fixed parameter. The increase in unitary conductance has not been determined

for rat P2X4 and neither has the rate of dilation. These are to be determined but

will need to obey the above constraint in order to guarantee that cell’s conductance

to decrease in the ramp protocol experiment.

4.1.2 IVM Causes Slowing of Deactivation Kinetics

When a cell is stimulated by ATP, its receptors will bind with the agonist and even-

tually open leading to an increase in current. Once ATP is removed from the medium

the reverse process begins to dominate and the current decays over time. This decay

is referred to as receptor deactivation and is generally measured by the time con-

stant, τoff, of a monoexponential function (y=A exp(-t/τoff)). In the experimental

protocol, which we refer to as the “pulse protocol”, cells are repeatedly stimulated

by 1 μM ATP for 2 s twice per minute. In the absence of IVM, receptors deactivate

quickly with a rate which remains constant throughout experiments (see Fig. 4–4A).

Once IVM is applied to the medium, we begin to observe a decrease in receptor

deactivation rates. The deactivation rates seem to gradually shift from that which is

initially observed with ATP alone towards a slower value (see Fig. 4–4B). While our

IVM experiments were generally not performed on long enough timescales to observe

whether or not the deactivation rate asymptotically approach a final value, it has

been shown that they do for human P2X4Rs [60].
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various conformational states. Furthermore, one can imagine that there are actually

many different intermediate states between the naive receptors and those that have

all of their IVM interaction sites modified by IVM. Such states might also have inter-

mediate deactivation kinetics due to their incomplete degree of modification by IVM,

leading to a nearly continuous spectrum of deactivation kinetics to choose from. At

the end of a given pulse, the cell exhibits a dynamic mixture of all of these states

which leads to the many deactivation time constants we observe. Ultimately, at a

given IVM concentration, there will be some equilibrium mixture between all of these

states that produce the asymptotically observed deactivation kinetics.

4.1.3 IVM Sensitizes Receptors to ATP

A common tool in the pharmacological characterization of drugs is the dose-response

curve, whereby varying doses of a drug are applied to determine the response of the

system. Typically dose response curves have the appearance of a saturating sigmoidal

curve. For this reason, dose response curves are often fit to Hill functions of the form

y (x) = ymax
xn

xn + ECn
50

,

where x is the applied dosage, ymax is the maximum predicted effect, n is the Hill

coefficient, and EC50 is half maximum of activation. For an experimentally obtained

set of doses and effects, fittings are typically pursued to estimate the parameters

ymax, n, and EC50. The Hill coefficient is a measure of the steepness of the response,

whereas the half maximum of activation is the dosage at which the effect reaches

half of its maximum effect.
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Dose response curves were constructed for rat P2X4R stimulated by ATP in the

presence and absence of 3 μM IVM (see Fig. 4–5). ATP alone was found to produce a

dose response curve with an EC50 of 2.3±0.4 μM. On the other hand, in the presence

of IVM, P2X4R produced responses with an EC50 of 0.5±0.1 μM [41]. Moreover,

similar studies were done with human P2X4R and the results were consistent with

rat P2X4R [60]. While it is clear from Fig. 4–4B that IVM produces an increase

in current amplitude, without constructing dose response curves, it is impossible to

tell if this is because the receptors are more sensitive to ATP or because IVM simply

increases the maximal observed effect. Because there is a nearly five-fold shift in the

EC50 when IVM is applied, we can conclude that IVM does indeed sensitize receptors

towards ATP binding. The aforementioned slowing of deactivation kinetics is one

possible way to achieve this, provided that we interpret the deactivation rate as being

reflective of the ATP unbinding rate. Since an increase in ATP binding rate could

also produce the same effect, it is imperative to test both possibilities.
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4.1.4 IVM Increases Maximal Open Probabilities

The dose response curves of P2X4R revealed that not only does IVM produce an

increase in sensitivity to ATP, but that it also increases the maximum current ampli-

tude evoked by ATP [60, 41]. There are two hypotheses that may explain this type

of behaviour: (i) the unitary conductance of individual channels is increasing, which

is precisely the dilating effect mentioned in section 4.1.1; (ii) the number of open

receptors is rising. There is strong evidence that the first hypothesis does occur.

However, this does not, by any means, confirm whether or not the number of open

receptors changes with IVM application. In fact, there seems to be a consensus in

the literature that the maximal open probability increases with the application of

IVM [60, 37, 41]. It is reported that the maximal open probability in the absence of

IVM is ∼0.2 compared to ∼0.8 in the presence of IVM [60, 37]. Previous modeling

efforts were able to explain this by developing a model that effectively states that

IVM modifies the ratio of the number of open to closed states which is somewhat

contrived and cannot explain the pretreatment time required for IVM to take its

effect (see section 4.1.3) [37]. Fortunately, we have been able to combine some ex-

perimental data with some basic modeling in order to shed some light onto another

possible mechanism.

In the 2004 study of human P2X4R, Priel et. al. not only produced dose response

curves exhibiting the increased sensitivity and maximal current response induced by

IVM (such as in Fig. 4–5) but also managed to quantify its unitary conductance

increase. In that study, it was found that IVM produces a roughly 5-fold increase in
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generated for model cells overexpressing these receptors, each with a progressively

increasing rate of desensitization (see Fig. 4–7). It was found that although enhanced

desensitization rates are very much capable of reducing the current amplitude at a

given ATP concentration, such a mechanism is unable to significantly reduce the

maximal current amplitude evoked by ATP. Rather it shifts the EC50 of the dose

response curves rightwards as well as decreases the hill coefficient such that the

saturating phase of the dose response curves is shifted by many orders of magnitude.

This is not the effect that is observed experimentally either by our group nor by

Priel et. al. The presence of IVM consistently produces a dose response curve which

has a different maximal current amplitude than when it is absent. The mechanism

theorized by Priel et. al. simply does not suit its intended purpose.
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1, even at the highest of agonist concentrations. That is, initially when ATP is ap-

plied only some fraction of receptors are in closed states that can become activated

by ATP. When IVM is applied, the transitions from inactivated to closed states are

greatly enhanced such that the fraction of receptors in closed states increases in or-

der to produce the higher current response and open probabilities at supramaximal

agonist concentrations (see Fig. 4–8).

While this mechanism is somewhat more explicit about how the saturating response

is reduced in the absence of IVM, it should still be tested quantitatively to see how

effective it is at producing the observed effect. In order to do so, we extend the

mathematical model, which we had used to asses the effect of desensitization on dose

response curves, with an inactivated state whose transitions to a closed state are

not mediated by interactions with an agonist (see Fig. 4–6B). The transition rate

from closed to inactivated was then progressively enhanced in order to see the effect

inactivation has on the dose response curves. It was found that this is highly effective

at decreasing the maximal current amplitude without shifting the dose response

curves or altering their Hill coefficients (see Fig. 4–8).
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pretreatment period is necessary for IVM to take its full effect and does not postulate

that IVM prevents receptor closing altogether.

4.1.5 IVM Causes a Transient Increase in Observed Receptor Desensi-
tization Rate

Receptor desensitization is an inherent property of all P2X receptors [9]. It can

be understood as a physiologically necessary braking mechanism which prevents re-

ceptors from allowing excessive amounts of extracellular calcium into the cell. In

contrast to deactivation, desensitization is a decay in current amplitude which oc-

curs during agonist application. Desensitization may not be immediately obvious in

short term applications of ATP such as in Fig. 4–4, but when we look at smaller

timescales, it becomes clear that the current does begin to decay well before agonist

washout (see black trace in Fig. 4–9A). Following application of IVM, we can ob-

serve an initial increase in desensitization rate (blue trace in Fig. 4–9A), followed by

a gradual decrease in desensitization rate with each subsequent pulse. By the fifth

pulse with IVM (green trace in Fig. 4–9A), it seems that the desensitization rate

reverts back to a rate which is comparable to that in the absence of IVM.
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first pulse following application exhibits a significant (p<0.005) increase in desensiti-

zation rates. Subsequent pulses then gradually drift back to the desensitization rate

seen in the absence of IVM. As far as we know, this is novel data analysis and so we

are unaware of experimental work which might elucidate the mechanism by which it

happens.

4.2 One Layer Model

Following the success of the 9-state model of Fig. 2–9, we first set out to expand

the detail of our model of IVM’s action. This was accomplished in more or less the

same way as IVM’s action had been previously modeled. First, we know that IVM

must be able to act in an ATP independent manner. Therefore, we will allow for

IVM to induce transitions from all states in the naïve row as opposed to only when

3 ATP are bound. Second, since there may be multiple sites of interaction with

IVM on a single receptor, we will also allow for IVM to transition to more than one

row. These rows will have modified kinetics and conductances in order to reflect

IVM’s various effects. In some sense, this is like having multiple sensitized rows in

the 9-state model. In the most general case, the multiple IVM interaction sites are

independent of one another and so we should model them as independent transitions

from the naïve row and further allow for transitions between each IVM modified row.

However, the two effects associated with different IVM interaction sites are known to

have distinct pharmacological profiles [60, 41]. This justifies modeling the numerous

IVM interactions as a sequential binding process which in turn simplifies both the

schematic drawing of the model as well as reduces the number of rate parameters.

According to this model (see Fig. 4–10), from the naïve row, binding of IVM occurs

105



with maximal rates L2i, with i=1,2,3,4 being the position along the naive row from

which the transitions originate (see Fig. 4–10). Note that we continue to model all

IVM forward (or binding) rates as Hill functions of IVM concentration, although we

now employ fourth order hill functions (n=4) due to their increased steepness. The

EC50 of the first transition to IVM bound states is δ. One binding of IVM brings

receptors to the third row in the model (counting from top rows of Fig. 4–10) which

has IVM unbinding rates L1i, with i =1,2,3,4 as before. This IVM bound row has

ATP binding and unbinding rates which are given by {k8, k10, k12} and {k7, k9,

k11} respectively. Further binding of IVM transition receptors to a fourth binding

row with a maximal rates L4i, and EC50 given by ε. The corresponding backward (or

unbinding) rates is L3i, while the ATP binding and unbinding rates are {k14, k16, k18}

and {k13, k15, k17}, respectively. Transitions to this fourth row represent receptor

dilation, at least in the conductive states. We will refer to L4i as the dilation rates.

Similarly this row transitions to a fifth binding row with maximal forward rate L6i,

EC50 given by μ , backward rate L5i and ATP binding and unbinding rates {k20,

k22, k24} and {k19, k21, k23}, respectively. Conceptually, we wish for the steady

state population to continuously shift towards the last IVM modified row as IVM

concentration increases. Thus we will choose increasing EC50 values for each IVM

mediated transition (i.e. δ<ε<μ).

As was discussed in section 4.1.4, strong evidence suggests that IVM rescues receptors

from an inactivated pool. This is incorporated into the model by inclusion of the

inactivated state C0 which exists in a (slow) equilibrium with the closed state C1.

The forward and backward rates between C0 and C1 are H0 and H5 respectively (see
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Fig. 4–10). In the presence of IVM, transitions to the IVM modified closed state C3

are possible with a maximal rate, W2, which is higher than H0 the transition rate

between C0 and C1. Since the simultaneous binding of multiple IVM molecules is

unlikely, we only allow for transitions from C0 to C1 and C3. Also, the naïve row

desensitizes when receptors are bound to at least one ATP molecule with rate H2.

The desensitized row has ATP binding and unbinding kinetics which are identical to

the naïve row, but it lacks conductivity. Finally, receptors in the desensitized row

can recover to the naïve row with rate H1, whereas receptors with 3 bound ATP

molecules are allowed to internalize at a rate H3 and get recycled at a rate H4.
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by considering the conditions for decreasing cell conductance that were outlined in

section 4.1.1.1. The model presented in section §2.3 is certainly capable of fulfilling

the conditions. However, such a model requires a large increase (>150%) in uni-

tary conductance in order to fulfill these conditions while simultaneously producing

the increase in current amplitude induced by IVM. Experimentally, only a 20% in-

crease in unitary conductance has been observed [60] so this large increase in unitary

conductance is hard to justify. According to equation (4.3), the large conductance

increase must be balanced by a slow dilation rate. To maintain such a delicate bal-

ance (by reducing the dilation rate) will ruin the model’s ability to capture other

experimental protocols. The model which we have proposed avoids the need for this

balance and thus produces the decrease in conductance observed in the I-V curves

more robustly. Because we allow for IVM to induce transitions from an inactivated

state in our current model, we can easily achieve the current growth with IVM pre-

treatment using the experimentally validated 20% unitary conductance increase (or

even less). This relaxes the need for a slow dilation rates to satisfy equation (4.3).

Moreover, since the transitions to the fourth dilated row can occur with IVM alone,

pretreatment with IVM will result in some non-negligible fraction of population in

dilated states when the voltage ramp protocol begins. Conversely, this relaxes the

need for a fast dilation rate to capture other experiments. By reducing both the

conductance increase and the amount of dilation which must occur after agonist

application, this model achieves the temporal decrease in conductance in a robust

manner.

111



This model has a very large number of parameters. These allow for a very com-

plicated pattern of cooperativity between ATP and IVM binding which manages

to reproduce the time series of evoked currents very well. With such a large num-

ber of states and free parameters, it is very valid to question whether or not the

model can actually be understood or is simply a machine which has been designed

to produce the desired output by our fitting algorithm without having any re-

lation to the system we are investigating. The idea behind having 24 different

ATP forward and backward rates is that IVM binding might change the cooper-

ativity between the ATP binding sites. The model of section §2.3 enforced neg-

ative cooperativity in the naïve row by including restrictions on the parameters

(3k2/k1>k4/k3>k6/3k5), whereas its sensitized row was constructed with negative

cooperativity built in (3k2/k1>k2/k1>k2/3k1). This was tested using statistical tests

applied to the Markov chains of parameter values sampled from a posterior distri-

bution reflecting the timeseries data which we have. Once samples were obtained,

we compared the binding affinities of each binding site along each row. If there is

indeed a specific cooperativity between ATP and IVM binding, we should see cor-

relations between different binding affinities. We did not find any such correlations

between ATP binding affinities. This led us to conclude that, while IVM does cer-

tainly change ATP binding kinetics, it does not change cooperativity in a manner

which is readily discernible from our data. As such, we might be able to fit exper-

iments with a smaller number of parameters using a model where all ATP binding

and unbinding rates are proportional to those in the naïve row. This was imple-

mented by thorough use of multiplicative factors as has been summarized in Table

112



4–1. After some preliminary testing, it became clear that such a simplification of

model parameters has very little effect on the quality of the results which could be

obtained while significantly reducing the number of parameters required for fitting.

From an initial 61 parameters, these modifications brought the count down to 49.

This still leaves us with 24 IVM binding rates. These were initially included because

we believed that cooperativity between ATP and IVM binding might help explain

the effect of different IVM pretreatment times on the EC50 of ATP dose response

curves. From MCMC samples of the model parameters, we found that this model

requires some degree of cooperativity. In fact, we have allowed for each ATP binding

event to modify the IVM binding rate in this model, which made it unclear what

the form of the cooperativity is. Along an ATP binding row the IVM binding and

unbinding rates might increase with one ATP binding and then decrease with the

next. Is such a pattern necessary or are there so many redundant IVM pathways

that what seems to be cooperativity is nothing but a slow rate being compensated

by a faster one? Initially we tried to apply some statistical tests to try and find any

statistically validated patterns of cooperativity from parameter samples. This was

not a fruitful endeavour, so we decided to see what occurs when all cooperativity is

removed from IVM binding (L21= L22= L23= L24, etc..). The parameter changes we

used have been summarized in Table 4–2. Overall, the loss of cooperativity seemed to

only abolish the model’s capacity to capture one effect of IVM application; namely,

the increase in desensitization rate following the application of IVM of section 4.1.5

(Fig. 4–9). Recall that this model does not allow for IVM bound states to desensitize

directly. They must first unbind all IVM molecules and return to the naïve row for
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the receptors to desensitize. This model does not distinguish between desensitization

and IVM unbinding in the three lower rows of the model, which seems unlikely. Thus,

we tried various ways to rescue the behaviour by explicitly specifying different types

of cooperativity between ATP binding and IVM unbinding in our model. The most

effective of such models was one where only the first IVM row has progressively

increasing IVM unbinding rates with each ATP binding (see Fig. 4–13). We have

summarized the changes made to the model in Tables 4–1 and 4–2.

Original Parameter Modified Expression Original Parameter Modified Expression

k7 v1k1 k16 r2k4

k8 r1k2 k17 v2k5

k9 v1k3 k18 r2k6

k10 r1k4 k19 v3k1

k11 v1k5 k20 r3k2

k12 r1k6 k21 v3k3

k13 v2k1 k22 r3k4

k14 r2k2 k23 v3k5

k15 v2k3 k24 r3k6

Table 4–1: ATP binding and unbinding transition rate changes in a reduced param-

eter one layer model.

114



Original Parameter(s) Modified Expression Modified Expression

(Unbinding Cooperativity)

L11 L1 L1

L12 L1 γ1L1

L13 L1 γ2L1

L14 L1 γ3L1

L21, L22, L23, L24 L2 L2

L31, L32, L33, L34 L3 L3

L41, L42, L43, L44 L4 L4

L51, L52, L53, L44 L5 L5

L61, L62, L63, L64 L6 L6

Table 4–2: IVM binding and unbinding transition rate changes in a reduced param-

eter one layer model.
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molecules are bound, this effect vanishes altogether. Our experimental collaborators

do not support such a claim about kinetics. Moreover, IVM has been found to bind

preferentially to the ATP-bound open state of P2X4Rs [60]. Our one layer model

is at odds with this finding. We suspect that our fitting algorithm has produced a

Markov model which produces the right currents given the appropriate experimental

stimuli without representing the underlying system. Because we cannot understand

the model after judicious parameter simplifications have been made, we will explore

an alternative kind of model. One where receptor sensitization/dilation does not

abolish desensitization but rather modifies it.

4.3 Two Layer Model

While the one layer model had many of necessary ingredients to capture the gating

properties of P2X4 and their allosteric modulation by IVM, there was a rather obvi-

ous issue with all one layer models tested. Generally speaking, they did not capture

the short timescales of activation and desensitization, and when they did there was

a need for a delicate balance between IVM binding rates which was somewhat un-

necessary. Why must IVM unbinding rates increase as ATP binds? And why is it

particularly crucial for this to happen along the first IVM bound row? We believe

that this is because the one layer models does not allow for IVM bound receptors to

desensitize. This is at odds with our findings about the transient increase in desensi-

tization rate, which can be compensated for to some extent by having IVM unbinding

rates increase with ATP binding. In one layer models, IVM bound states cannot de-

sensitize; they do not have a pathway to directly transition to non-conducting states

when ATP is present. This makes it hard to have receptors desensitize before ATP is

117



removed, particularly at high IVM concentrations where receptor population is con-

centrated in the bottom rows and must undergo multiple transitions in order to reach

non-conducting states. In this section, we will investigate the effect of allowing for

reversible transitions from IVM bound states directly to corresponding desensitized

states.

Much of this work was motivated by inability of one layer models to faithfully re-

produce the short timescale of receptor activation and desensitization. In the one

layer models presented in section §4.2 (Fig. 4–10), IVM binding creates copies of

an ATP binding system without copying its desensitized states. While a priori this

may seem reasonable as there is a fair amount of evidence suggesting that IVM

reduces desensitization, we feel this is somewhat of a bold claim about receptor dy-

namics. We believe it may be more reasonable to claim that IVM modifies receptor

desensitization rather than preventing it from happening altogether. On top of the

IVM-induced modified ATP kinetics which produce the slowed deactivation rates and

increased sensitivity to ATP, we posit that IVM bound rows should have modified

desensitization kinetics and should be able to readily recover from desensitized states.

Consider the one layer model of Fig. 4–10 in the absence of IVM. This sub-model

only allows for receptors to return from the desensitized row, with rate H1, once all

ATP molecules have unbound from the desensitized states. However, the rate H1

is around 100 times smaller than the desensitization rate H2 and so extending this

transition back to the naïve row to all states in the desensitized row, as seen in Fig.

4–14, should have little to no effect in the absence of IVM. Our hypothesis is that

this is the underlying binding system (see Fig. 4–14) which is always active, and we
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we observe during the pulse protocol experiments to be produced by some mixture

of these IVM modified configuration. During the pulse protocol experiments, we

observe a gradual shift in the deactivation kinetics of the cell, suggesting that as time

progresses the mixture of receptors on the cell’s surface shifts towards those being

progressively more modified by IVM. If we imagine these configurations as being

linked by IVM dependent transition rates we should expect that at the lowest IVM

concentrations, the mixture we observe will be mostly composed of naïve receptors

and receptors which have only undergone a single modification by IVM. At the

highest IVM concentrations the mixture will eventually saturate in those states which

are most modified by IVM. We should be able to approximate the mixture of systems

which produce a single pulse within the pulse protocol experiments by a single ATP

binding configuration with appropriate choices for rate parameters.

In order to test our hypothesis, we chose two recordings of the pulse protocol per-

formed at 1 μM and 10 μM IVM. Picking a single pulse from each recording, we fit

model parameters for the putative underlying binding model in order to reproduce

the two individual pulses. We found that this approach allowed for very good agree-

ment between model simulations and recordings (see Fig. 4–15). Particularly, the

most promising thing about this approach is that with the one layer models at 10

μM IVM, we had never managed to produce the fast activation, desensitization, and

insensitivity to ATP removal with one set of parameters, while it seems to be readily

reproducible once we assume IVM bound receptors to directly desensitize. Moreover,

these fittings corroborate our idea that each pulse is actually a mixture of many dif-

ferent configurations. If one looks closely at Fig. 4–15B, one can see that although
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the first pulse fits extremely well, by the last pulse, both the deactivation kinetics

and current amplitude are off. Similarly, Fig. 4–15D shows good agreement between

the last pulse and simulation while the first pulse of the recording clearly indicates

that the mixture of configurations should lie more in favor of a configuration with

faster deactivation kinetics. In both cases, we expect that building a model, where

configurations of the type depicted in Fig. 4–14 are allowed to mix, will help better

capture the complex experimental behaviour.
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Figure 4–15: Putative binding configuration can easily capture the short timescale
behaviour of a given single pulse of the pulse protocol experiments. (A) Single
configuration fitting (orange line) to the first pulse of a 1 μM IVM pulse protocol
recording (blue line). (B) Timeseries generated by configuration fit to the pulse in
A when it is used for the remainder of the pulse protocol. (C) Single configuration
fitting (orange line) to the last pulse of a 10 μM IVM pulse protocol recording (blue
line). (B) Timeseries generated by configuration fit to the pulse in C when it is used
to simulate the pulses leading up to that in C.

Motivated by the fact that the same underlying model could be used to reproduce

single pulses of the pulse protocol with great fidelity at all IVM concentrations,

we set out to develop a model which could capture not only the short timescale

behaviour of receptors but also the progression in kinetics and amplitude which the

single configuration fittings had failed to capture. When cooperativity between IVM

and ATP had been included in the one layer model, we have seen many instances
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where there was a clear progression in kinetics in amplitude. With this in mind,

we have investigated models which bear a striking resemblance to those discussed

in section §4.2. Because we will allow for all closed and open states to desensitize,

we termed this model the two layered model, where one layer consists of closed and

conductive states and another layer of desensitized states (see Fig. 4–16). While,

this two layer model may seem to be a large departure from that of Fig. 2–9, it

should be noted that the model for P2X2 also included a corresponding desensitized

state for all of its closed and open states although the desensitization pathway for

dilated states was calcium dependent [39].

Much in the same way that the one layer models had sequentially linked three ATP

binding rows to a naïve row, we will link four distinct binding configurations together,

again through fourth order Hill functions of IVM. In some sense there is a one-to-

one correspondence between the binding configurations in the two layer model and

the binding rows of the one layer model. As such, we will model ATP and IVM

binding and unbinding kinetics in exactly the same manner as before, with each IVM

binding event inducing changes in ATP kinetics. These binding processes, however,

are accompanied by desensitization unlike the one layer model. The one layer model

had a single desensitized row whose ATP kinetics were identical to the naïve row to

which it was directly linked to. Continuing with this logic, the desensitized rows will

have the same ATP-binding kinetics as the current producing rows to which they are

directly linked to. This effectively states that desensitization is a process which does

not modify agonist binding but rather affects the receptor pore such that it does not

open despite agonist binding. Furthermore, we allowed for internalization from all

123



desensitized states which have 3 bound ATP molecules. The states with IVM bound

were assumed to internalize at a rate, H3D, which is different from naïve states, to

reflect that IVM alters endocytosis of P2X4 receptors [62]. Altogether, this produced

a large block of states where population largely resides in either desensitized states

or closed and conducting states (see Fig. 4–16C). IVM’s major effect, aside from

modifying ATP-binding and activation kinetics, it also shifts receptor population into

states where the transition to desensitized states is less favorable. This is achieved

through the ratio of forward and backwards desensitization rates of the naive and

IVM bound systems: H21/H11 ≫ {H22/ H12, H23/ H13, H24/ H14}.
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Given the success of the one layer model with independent binding rates, it is not

surprising that this model also captures every aspect of P2X4R gating (see Figs. 4–

17 and 4–18). Having decoupled desensitization from IVM unbinding, we expect this

model to be able to produce the transient increase in desensitization under the ATP-

related parameter simplifications detailed in Table 4–1 and the first column of Table

4–2. In fact, when this parameter simplification is applied to the two layer model,

we did not lose the capacity to reproduce any of the features of experimentally

observed data. Thus we can conclude that with this model, we understand all of

the allosteric effects of IVM. Firstly, agonist potency is increased by IVM rescuing

receptor population from a pool of inactivated receptors. The binding configuration

with a single IVM bound has an increased desensitization rate which leads to a

transient increase in observed desensitization rate. The increased sensitivity towards

ATP in this and the other IVM-bound configurations is produced by their decrease in

ATP unbinding rates and their increase in ATP binding kinetics. Finally, the return

from desensitization rates of all the IVM-bound configurations are significantly larger

than the naïve configuration while the internalization rate of these configurations

is lower than for naïve receptors, which leads to the long-lasting currents during

prolonged ATP applications in the presence of IVM (see Fig. 4–18).
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Chapter 5
Conclusions & Further Directions

In this thesis, we have analyzed and extended biophysically detailed Markov mod-

els of purinergic P2X receptors, with a focus on reproducing complex experimental

data for P2X4Rs. Each aspect of P2X4R gating and its modulation by IVM has

been analyzed from a modeling perspective in order to piece together the compo-

nents required for a complete model of this receptor and thus tease out its gating

behaviour. Ultimately, we believe that the experimental results are best captured by

a two layered model with one layer representing desensitized receptors and another

layer representing receptors that can be activated by agonist application. This type

of model is preferred over a one layer model because it treats IVM unbinding and de-

sensitization as two independent processes unlike the one layer model which conflates

the two. While there may even be strong correlations between the two, we believe

that it would be physiologically inaccurate not to treat them as separate. In fact,

conflating the two processes in one, as in the one layer model, leads to questionable

conclusions about the ligand cooperativity of P2X4Rs.

Previous models of P2XRs had placed significant emphasis on the opposing effects

of sensitization/dilation and desensitization, leading to the formation of one layer

models. However, P2X2Rs exhibit significant calcium-dependent desensitization even

in the so-called sensitized state and thus it was necessary to include desensitization

of sensitized receptors in the P2X2R Markov model. Although this model was not
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presented as a “two layer model”, it contains the essential idea of the two layer model

that receptor desensitization is altered in the sensitized/dilated states. In P2X4Rs,

sensitization and dilation are IVM dependent. Therefore, it is reasonable to assume

that desensitization to be dependent IVM binding, as we have done in the two layer

model.

We have presented a framework for generic modeling of allosteric modulation. Within

this framework, any allosteric modulation which occurs on a timescale comparable

to that of the experimental observation time produces a copy of all the states in the

orthosteric system. This leads to the formation of Markov models with a large num-

bers of states. Although this may be physiologically required, it can be problematic

as it leads to a large number of parameters which must be estimated and justified.

In our case, it was not possible to collect more experimental data to unequivocally

justify and estimate all of these parameters. There are a number of strategies that

can be used to reduce the number of states and parameters in our model. We have

alluded to the fact that calcium allostery in P2X2 could be modeled without dupli-

cation of states due to its fast timescales of action and the fact that its effects are

likely fully induced before experiments are performed. Moreover, in the case of the

distinct allosteric sites for IVM, we were able to reduce the number of transitions

possible by noting that the effects of the two binding sites appear to have different

concentration dependencies. Also, rather than assuming all rate parameters to be

independent of each other, one can assume some form of correlation between these

parameters. Not only does this reduce the number of parameters in a model, it can
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also give insight into what relationships between transition rates are necessary to

produce specific experimental phenomena.

Although, Markov models and MCMC have previously been used to analyze channel

gating [63, 54], their use in analyzing P2XR kinetics is novel. Moreover, these studies

were all conducted using single channel data whereas we have used whole-cell record-

ings for parameter estimation. We have adapted the Bayesian formalisms (including

Adaptive Parallel Tempering and the T-Walk Method) for ion channel parameter

estimation available in the literature the best we can to this setting. We have also

shown some of the shortcomings of standard practices for Bayesian inference of time-

series data for ODE models and presented an alternative formalism which manages

to circumvent these issues. The methods for Bayesian inference we have presented

are a key element in determining how orthosery and allostery affect the gating of

these receptors and downstream signaling. Without the use of such quantitative ap-

proaches, it will be very difficult to systematically decipher the complex behaviours

exhibited by these receptors and the kinetic differences observed between them.

The two layer model makes a number of claims about receptor desensitization kinetics

and their IVM concentration-dependence. Unfortunately, the data used to fit the

model to was not collected for the purpose of fully exhibiting desensitization kinetics

at different concentrations of IVM. Thus, it was necessary to estimate desensitization

rates from recordings which exhibit very short (<200 ms) desensitization phases. To

complement this pulse protocol data, it would be extremely useful to have data on

prolonged applications of 1 μM ATP at various IVM concentrations. This would

allow for a more in depth analysis of the relationship between IVM concentration
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and desensitization rates. Also, there is some data related to the concentration-

dependence of activation and desensitization which we have only recently become

aware of [42]. Namely, that both activation and desensitization rates are inversely

related to agonist concentration. This data was not included in our fitting protocol,

and may or may not be compatible with our model. More work will be needed

to incorporate these features of P2X4R gating. Generally speaking, as more data

becomes available we can use it to further test the model and improve its outcomes.

Our two layered model of P2X4R presents a specific model of allostery by IVM

which produces sensitization and dilation. Particularly, it is modeled as being an

orthosteric-agonist-independent process as opposed to previous models which re-

quired 3 ATP molecules to be bound for the receptor to sensitize/dilate. The key

remaining question is: how can this model of P2X4Rs be adapted to yield a universal

model for P2XRs? In order to answer such a question, we need firstly to identify the

allosteric agonist and to investigate its effects, this can be done by using the P2X4-

model where the IVM dependent transitions of our two layer P2X4R model are re-

placed by either constant rates or by rates that are agonist concentration-dependent.

In the case where rates are agonist concentration-independent, we must ensure that

allosteric modulation of the naive state is not incorporated into the model, because

spontaneous sensitization/dilation does not occur prior to agonist application. In-

stead, we should assume that these transitions can occur when at least one ATP

molecule is bound to the receptor. It remains to be tested if this type of allostery

also produces all the characteristics of P2X2Rs and P2X7Rs. However, some prelimi-

nary testing of this model for allostery suggests that the agonist-dependent transition
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Appendix A
Parameter Tables

Label Value Transitions
k1 3.806e+00 {C2, D12} → {C1, D11}
k2 2.684e+06 {C1, D11} → {C2, D12}
k3 5.044e+00 {Q1, D13} → {C2, D12}
k4 7.055e+06 {C2, D12} → {Q1, D13}
k5 4.428e+01 {Q2, D14} → {Q1, D13}
k6 2.765e+05 {Q1, D13} → {Q2, D14}
k7 2.213e-03 C4 → C3

k8 4.138e+06 C3 → C4

k9 5.153e+00 Q3 → C4

k10 1.326e+07 C4 → Q3

k11 5.547e+00 Q4 → Q3

k12 1.404e+07 Q3 → Q4

k13 2.179e-03 C6 → C5

k14 3.539e+06 C5 → C6

k15 8.228e-01 Q5 → C6

k16 1.761e+07 C6 → Q5

k17 6.793e-01 Q6 → Q5

k18 8.690e+06 Q5 → Q6

k19 7.997e-03 C8 → C7

k20 1.258e+07 C7 → C8

k21 0.000e+00 Q7 → C8

k22 4.781e+06 C8 → Q7

k23 0.000e+00 Q8 → Q7

k24 5.820e+06 Q7 → Q8

Table A–1: ATP binding and unbinding rates in current
producing rows. Values used in Fig. 4–11 & 4–12.
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Label Value Transitions
L11 1.598e-03 C3 → C1

L12 1.055e-02 C4 → C2

L13 7.496e-01 Q3 → Q1

L14 7.139e-01 Q4 → Q2

L21 4.617e-01 C1 → C3

L22 2.937e-01 C2 → C4

L23 2.259e-01 Q1 → Q3

L24 2.536e-01 Q2 → Q4

L31 4.561e-02 C5 → C3

L32 2.376e-03 C6 → C4

L33 4.437e-03 Q5 → Q3

L34 8.184e-03 Q6 → Q4

L41 1.725e-02 C3 → C5

L42 4.472e-01 C4 → C6

L43 8.250e-03 Q3 → Q5

L44 2.033e-01 Q4 → Q6

L51 5.122e-03 C7 → C5

L52 2.742e-02 C8 → C6

L53 2.490e-02 Q7 → Q5

L54 9.690e-02 Q8 → Q6

L61 4.074e-01 C5 → C7

L62 4.688e-01 C6 → C8

L63 2.724e-02 Q5 → Q7

L64 3.188e-02 Q6 → Q8

Table A–2: IVM binding and unbinding rates in current
producing rows. Values used in Fig. 4–11 & 4–12.

Label Value Transitions
δ 1.300e-06 {C0, C1, C2, Q1, Q2} → {C3, C3, C4, Q3, Q4}
ǫ 1.775e-06 {C3, C4, Q3, Q4} → {C5, C6, Q5, Q6}
µ 3.686e-06 {C5, C6, Q5, Q6} → {C7, C8, Q7, Q8}

Table A–3: EC50 values for fourth order hill functions which govern IVM binding
rates. Values used in Fig. 4–11 & 4–12.
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Label Value Transitions
H0 9.511e-04 C0 → C1

W2 8.981e-01 C0 → C3

H5 1.196e-03 C1 → C0

Table A–4: Rates of activation and inactivation. Values used in Fig. 4–11 & 4–12.

Label Value Transitions
H3 6.811e-03 D14 → Z
H4 0.000e+00 Z → C0

Table A–5: Rates of internalization and recycling. Values used in Fig. 4–11 & 4–12.

Label Value Transitions
k1 6.010e+00 {C2, D12} → {C1, D11}
k2 6.886e+06 {C1, D11} → {C2, D12}
k3 5.184e+00 {Q1, D13} → {C2, D12}
k4 2.946e+06 {C2, D12} → {Q1, D13}
k5 9.293e+01 {Q2, D14} → {Q1, D13}
k6 2.596e+04 {Q1, D13} → {Q2, D14}
k7 1.900e-03 {C4, D22} → {C3, D21}
k8 7.113e+06 {C3, D21} → {C4, D22}
k9 4.089e+00 {Q3, D23} → {C4, D22}
k10 1.301e+07 {C4, D22} → {Q3, D23}
k11 9.057e+00 {Q4, D24} → {Q3, D23}
k12 2.864e+06 {Q3, D23} → {Q4, D24}
k13 1.858e-02 {C6, D32} → {C5, D31}
k14 5.608e+06 {C5, D31} → {C6, D32}
k15 1.806e+00 {Q5, D33} → {C6, D32}
k16 6.385e+06 {C6, D32} → {Q5, D33}
k17 5.045e-01 {Q6, D34} → {Q5, D33}
k18 8.787e+06 {Q5, D33} → {Q6, D34}
k19 3.247e-04 {C8, D42} → {C7, D41}
k20 1.398e+06 {C7, D41} → {C8, D42}
k21 8.307e-04 {Q7, D43} → {C8, D42}
k22 3.573e+06 {C8, D42} → {Q7, D43}
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Label Value Transitions
k23 2.801e-03 {Q8, D44} → {Q7, D43}
k24 1.608e+06 {Q7, D43} → {Q8, D44}

Table A–6: ATP binding and unbinding rates in current
producing rows. Values used in Fig. 4–17 & 4–18.

Label Value Transitions
L11 2.259e-02 {C3, D21} → {C1, D11}
L12 1.156e-03 {C4, D22} → {C2, D12}
L13 9.528e-01 {Q3, D23} → {Q1, D13}
L14 1.425e-01 {Q4, D24} → {Q2, D14}
L21 2.087e-01 {C1, D11} → {C3, D21}
L22 3.133e-01 {C2, D12} → {C4, D22}
L23 2.739e-02 {Q1, D13} → {Q3, D23}
L24 4.483e-01 {Q2, D14} → {Q4, D24}
L31 4.843e-03 {C5, D32} → {C3, D21}
L32 4.876e-03 {C6, D31} → {C4, D22}
L33 4.015e-03 {Q5, D33} → {Q3, D23}
L34 4.597e-03 {Q6, D34} → {Q4, D24}
L41 1.769e-02 {C3, D21} → {C5, D32}
L42 1.646e-01 {C4, D22} → {C6, D31}
L43 3.595e-02 {Q3, D23} → {Q5, D33}
L44 5.639e-02 {Q4, D24} → {Q6, D34}
L51 7.812e-03 {C7, D41} → {C5, D31}
L52 7.034e-03 {C8, D42} → {C6, D32}
L53 1.516e-04 {Q7, D43} → {Q5, D33}
L54 7.741e-02 {Q8, D44} → {Q6, D34}
L61 2.909e-02 {C5, D31} → {C7, D41}
L62 3.590e-01 {C6, D32} → {C8, D42}
L63 4.780e-02 {Q5, D33} → {Q7, D43}
L64 4.246e-02 {Q6, D34} → {Q8, D44}

Table A–7: IVM binding and unbinding rates in current
producing rows. Values used in Fig. 4–17 & 4–18.
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Label Value Transitions
δ 7.546e-07 {C0, C1, C2, Q1, Q2, D11, D12, D13, D14} → {C3, C3, C4, Q3, Q4, D21, D22, D23, D24}

ǫ 1.162e-06 {C3, C4, Q3, Q4, D21, D22, D23, D24} → {C5, C6, Q5, Q6, D32, D31, D33, D34}
µ 5.646e-06 {C5, C6, Q5, Q6, D31, D32, D33, D34} → {C7, C8, Q7, Q8, D41, D42, D43, D44}

Table A–8: EC50 values for fourth order hill functions which govern IVM binding
rates. Values used in Fig. 4–17 & 4–18.

Label Value Transitions
kd1 1.071e-01 {C2, Q1, Q2} → {D12, D13, D14}
ks1 2.141e-06 {D11, D12, D13, D14} → {C1, C2, Q1, Q2}
kd2 1.959e-01 {C4, Q3, Q4} → {D22, D23, D24}
ks2 9.077e-01 {D21, D22, D23, D24} → {C3, C4, Q3, Q4}
kd3 1.780e-01 {C6, Q5, Q6} → {D32, D33, D34}
ks3 2.318e-01 {D31, D32, D33, D34} → {C5, C6, Q5, Q6}
kd4 1.597e-01 {C8, Q7, Q8} → {D42, D43, D44}
ks4 2.798e-01 {D41, D42, D43, D44} → {C7, C8, Q7, Q8}

Table A–9: Desensitization and return from desensitization rates. Values used in
Fig. 4–17 & 4–18.

Label Value Transitions
H0 2.879e-03 C0 → C1

W2 7.985e-02 C0 → C3

H5 1.464e-03 C1 → C0

Table A–10: Rates of activation and inactivation. Values used in Fig. 4–17 & 4–18.

Label Value Transitions
H3 2.450e-01 D14 → Z
H3D 8.961e-03 {D24, D34, D44} → {Z,Z, Z}
H4 4.970e-04 Z → C1

Table A–11: Rates of internalization and recycling. Values used in Fig. 4–17 & 4–18.
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Appendix B
Model Equations

The differential equations associated with the one layer model are as follows:

dC0

dt
= H5C1 +H4Z − (H0 +W2f (J))C0

dC1

dt
= H0C0 + k1C2 + L11C3 +H1D11 − (H5 + k2A+ L21f (J))C1

dC2

dt
= k2AC1 + k3Q1 +H1D12 + L12C4 − (k1 + k4A+H2 + L22f (J))C2

dC3

dt
= k7C4 +W2f (J)C0 + L21f (J)C1 + L31C5 − (k8A+ L11 + L41g (J))C3

dC4

dt
= k8AC3 + k9Q3 + L22f (J)C2 + L32C6 − (k7 + k10A+ L12 + L42g (J))C4

dC5

dt
= k13C6 + L41g (J)C3 + L51C7 − (k14A+ L31 + L61h (J))C5

dC6

dt
= k14AC5 + k15Q5 + L42g (J)C4 + L52C8 − (k13 + k16A+ L32 + L62h (J))C6

dC7

dt
= k19C8 + L61h (J)C5 − (k20A+ L51)C7

dC8

dt
= k20AC7 + k21Q7 + L62h (J)C6 − (k19 + k22A+ L52)C8

dQ1

dt
= k4AC2 + k5Q2 +H1D13 + L13Q3 − (k3 + k6A+H2 + L23f (J))Q1

dQ2

dt
= k6AQ1 +H1D14 + L14Q4 − (k5 +H2 + L24f (J))Q2

dQ3

dt
= k10AC4 + k11Q4 + L23f (J)Q1 + L33Q5 − (k9 + k12A+ L13 + L43g (J))Q3

dQ4

dt
= k12AQ3 + L24f (J)Q2 + L34Q6 − (k11 + L14 + L44g (J))Q4

dQ5

dt
= k16AC6 + k17Q6 + L43g (J)Q3 + L53Q7 − (k15 + k18A+ L33 + L63h (J))Q5
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dQ6

dt
= k18AQ5 + L44g (J)Q4 + L54Q8 − (k17 + L34 + L64h (J))Q6

dQ7

dt
= k22AC8 + k23Q8 + L63h (J)Q5 − (k21 + k24A+ L53)Q7

dQ8

dt
= k24AQ7 + L64h (J)Q6 − (k23 + L54)Q8

dD11

dt
= k1D12 − (k2A+H1)D11

dD12

dt
= k2AD11 + k3D13 +H2C2 − (k1 + k4A+H1)D12

dD13

dt
= k4AD12 + k5D14 +H2Q1 − (k3 + k6A+H1)D13

dD14

dt
= k6AD13 +H2Q2 − (k5 +H1 +H3)D14

dZ

dt
= H3D14 −H4Z

The differential equations associated with the two layer model are as follows:

dC0

dt
= H5C1 − (H0 +W2f (J))C0

dC1

dt
= H0C0 + k1C2 + L11C3 + ks,1D11 +H4Z − (H5 + k2A+ L21f (J))C1

dC2

dt
= k2AC1 + k3Q1 + ks,1D12 + L12C4 − (k1 + k4A+ kd,1 + L22f (J))C2

dC3

dt
= k7C4 +W2f (J)C0 + L21f (J)C1 + L31C5 + ks,2D21 − (k8A+ L11 + L41g (J))C3

dC4

dt
= k8AC3 + k9Q3 + ks,2D22 + L22f (J)C2 + L32C6 − (k7 + k10A+ kd,2 + L12 + L42g (J))C4

dC5

dt
= k13C6 + L41g (J)C3 + L51C7 + ks,3D31 − (k14A+ L31 + L61h (J))C5

dC6

dt
= k14AC5 + k15Q5 + ks,3D32 + L42g (J)C4 + L52C8 − (k13 + k16A+ kd,3 + L32 + L62h (J))C6

dC7

dt
= k19C8 + L61h (J)C5 + ks,4D41 − (k20A+ L51)C7

dC8

dt
= k20AC7 + k21Q7 + ks,4D42 + L62h (J)C6 − (k19 + k22A+ kd,4 + L52)C8

dQ1

dt
= k4AC2 + k5Q2 + ks,1D13 + L13Q3 − (k3 + k6A+ kd,1 + L23f (J))Q1
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dQ2

dt
= k6AQ1 + ks,1D14 + L14Q4 − (k5 + kd,1 + L24f (J))Q2

dQ3

dt
= k10AC4 + k11Q4 + ks,2D23 + L23f (J)Q1 + L33Q5 − (k9 + k12A+ kd,2 + L13 + L43g (J))Q3

dQ4

dt
= k12AQ3 + ks,2D24 + L24f (J)Q2 + L34Q6 − (k11 + kd,2 + L14 + L44g (J))Q4

dQ5

dt
= k16AC6 + k17Q6 + ks,3D33 + L43g (J)Q3 + L53Q7 − (k15 + k18A+ kd,3 + L33 + L63h (J))Q5

dQ6

dt
= k18AQ5 + ks,3D34 + L44g (J)Q4 + L54Q8 − (k17 + kd,3 + L34 + L64h (J))Q6

dQ7

dt
= k22AC8 + k23Q8 + ks,4D43 + L63h (J)Q5 − (k21 + k24A+ kd,4 + L53)Q7

dQ8

dt
= k24AQ7 + ks,4D44 + L64h (J)Q6 − (k23 + kd,4 + L54)Q8

dD11

dt
= k1D12 + L11D21 − (k2A+ L21f (J) + ks,1)D11

dD12

dt
= k2AD11 + k3D13 + kd,1C2 + L12D22 − (k1 + k4A+ ks,1 + L22f (J))D12

dD13

dt
= k4AD12 + k5D14 + kd,1Q1 + L13D23 − (k3 + k6A+ ks,1 + L23f (J))D13

dD14

dt
= k6AD13 + kd,1Q2 + L14D24 − (k5 + ks,1 + L24f (J) +H3)D14

dD21

dt
= k7D22 + L21f (J)D11 + L31D32 − (k8A+ L11 + L41g (J) + ks,2)D21

dD22

dt
= k8AD21 + k9D23 + kd,2C4 + L22f (J)D12 + L32D31 − (k7 + k10A+ ks,2 + L12 + L42g (J))D22

dD23

dt
= k10AD22 + k11D24 + kd,2Q3 + L23f (J)D13 + L33D33 − (k9 + k12A+ ks,2 + L13 + L43g (J))D23

dD24

dt
= k12AD23 + kd,2Q4 + L24f (J)D14 + L34D34 − (k11 + ks,2 + L14 + L44g (J) +H3,D)D24

dD31

dt
= k13D32 + L42g (J)D22 + L51D41 − (k14A+ L32 + L61h (J) + ks,3)D31

dD32

dt
= k14AD31 + k15D33 + kd,3C6 + L41g (J)D21 + L52D42 − (k13 + k16A+ ks,3 + L31 + L62h (J))D32

dD33

dt
= k16AD32 + k17D34 + kd,3Q5 + L43g (J)D23 + L53D43 − (k15 + k18A+ ks,3 + L33 + L63h (J))D33

dD34

dt
= k18AD33 + kd,3Q6 + L44g (J)D24 + L54D44 − (k17 + ks,3 + L34 + L64h (J) +H3,D)D34
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dD41

dt
= k19D42 + L61h (J)D31 − (k20A+ L51 + ks,4)D41

dD42

dt
= k20AD41 + k21D43 + kd,4C8 + L62h (J)D32 − (k19 + k22A+ ks,4 + L52)D42

dD43

dt
= k22AD42 + k23D44 + kd,4Q7 + L63h (J)D33 − (k21 + k24A+ ks,4 + L53)D43

dD44

dt
= k24AD43 + kd,4Q8 + L64h (J)D34 − (k23 + ks,4 + L54 +H3,D)D44

dZ

dt
= H3D14 +H3,DD24 +H3,DD34 +H3,DD44 −H4Z
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