
Associations in MDE: A Concern-Oriented,
Reusable Solution

Céline Bensoussan

MASTER OF SCIENCE

School of Computer Science

McGill University

Montréal, Québec, Canada

March 2016

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

Copyright © Céline Bensoussan, 2016

DEDICATION

To my family and friends,

for all the support they have given me.

Thank you.

ii

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor, Prof. Jörg Kienzle for all his time and energy.

I enjoyed the long meetings and discussions.

Thank you to Matthias Schöttle for all the effort and time he invested in me while working

in the lab and for reading my thesis.

I am also grateful to Vincent Foley for agreeing to also read my thesis and giving me feedback

even without knowing anything about MDE.

Finally, I thank Nishanth and Berk as well as Matthias again for a great lab spirit and to

all those lunches and laughs together.

iii

ABSTRACT

Associations are a very common concept in software modelling, in particular when using

class diagrams for expressing domain models or structural design models. Concern-Oriented

Reuse (CORE) proposes a new way of structuring model-driven software development where

models of the system are modularized by domains of abstraction within units of reuse called

concerns. This thesis illustrates how many of the variations of associations and associa-

tion implementations have been captured within a concern called Association, together with

behavioural models that ensure uniqueness, minimum/maximum size constraints and refer-

ential integrity. Furthermore, the provided Association concern documents the impact of

using a specific association variation on high-level system qualities. Finally, the thesis de-

scribes how the TouchCORE tool was streamlined to support concern-oriented, agile, UML-

conformant modelling with associations and rapid selection of association variants according

to desired high-level system qualities.

iv

ABRÉGÉ

Les associations sont un concept très commun en modélisation de logiciel, particulièrement en

utilisant des diagrammes de classe pour représenter des modèles de domaine ou des modèles

de conception. La réutilisation orientée préoccupation (CORE) propose une nouvelle manière

de structurer le développement de logiciel dirigé par des modèles où les modèles du système

sont modulables à l’intérieur d’une unité réutilisable appelée une préoccupation. Cette thèse

illustre les variations des associations et la mise en œuvre des associations capturées dans une

préoccupation appelée Association, ainsi que les modèles de comportement qui garantissent

l’unicité, les contraintes de taille minimum ou maximum d’une collection et de l’intégrité

référentielle. De plus, la préoccupation Association documente les impacts sur les qualités

du système lors de l’utilisation d’une certaine variation. Enfin, cette thèse décrit comment

l’outil TouchCORE a été modifié pour faciliter la réutilisation de cette préoccupation de

manière agile et adaptée aux normes UML. Ses modifications permettent une sélection rapide

d’une variation de l’association selon les qualités du système choisies.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

2 Background . 5

2.1 Concern-Oriented Reuse . 6
2.1.1 CORE Interfaces . 6
2.1.2 Reusing a Concern . 10
2.1.3 CORE Metamodel . 11

2.2 Reusable Aspect Models . 14
2.2.1 Structural View . 14
2.2.2 Message View . 16

2.3 TouchCORE Modelling Tool . 19

3 Concern-Oriented Modelling of Association . 20

3.1 Variation Interface . 21
3.1.1 Feature Model . 21
3.1.2 Impact Model . 25

3.2 Customization Interface . 26
3.3 Usage Interface . 27
3.4 Structural Realization . 28
3.5 Behavioural Realization . 30

vi

3.6 Feature Interaction Realization . 33
3.6.1 Behavioural Adaptation to Ensure Referential Integrity 33
3.6.2 Unique, Maximum and Minimum 41
3.6.3 Combinations . 42

4 Simplifying the Use of the Association Concern 46

4.1 Reusing Association with the Standard CORE Reuse Process 46
4.2 A DSL for Applying Association . 49

4.2.1 Associations in UML . 49
4.2.2 The proposed DSL . 50

4.3 Implementing the DSL in TouchCORE 52
4.3.1 Modifications to the Metamodel 53
4.3.2 Modifications to the Weaver . 53
4.3.3 Streamlining the Association Reuse 56
4.3.4 Further UI Improvements . 61

5 Benchmarks and Goal Models . 64

5.1 Experimental Setup and Methodology . 64
5.1.1 Experimental Setup . 64
5.1.2 Methodology . 64

5.2 Insertion . 66
5.3 Iteration . 68
5.4 Random Access . 71
5.5 Removal . 73
5.6 Memory Footprint . 76
5.7 Determining the Performance Impact of the Underlying Platform 78
5.8 Discussion . 79

6 Related Work . 81

6.1 Mousetrap at Motorola . 83
6.2 UMPLE . 84

7 Conclusion And Future Work . 90

References . 93

vii

LIST OF TABLES
Table page

3–1 Bidirectional Conflict Resolution Aspects . 34

3–2 Maximum, Minimum and Unique Conflict Resolution Aspects 43

4–1 UML Notations to Represent the Features of the Association Concern 51

5–1 Insertion Performance Results in μs . 68

5–2 Iteration Performance Results in μs . 71

5–3 Access Performance Results in μs . 73

5–4 Removal Performance Results in μs . 76

5–5 Memory Usage in bytes . 78

viii

LIST OF FIGURES
Figure page

2–1 StockExchange Application . 6

2–2 Feature Model of the Observer Concern . 8

2–3 Minimize Message Exchange Impact Model of the Observer Concern 8

2–4 Model of the Push Variation of the Observer Concern 9

2–5 Reusing the Observer Concern . 12

2–6 Excerpt of the CORE Metamodel . 13

2–7 Excerpt of the RAM Metamodel . 14

2–8 Observer model . 15

2–9 Push model . 15

2–10 Pull model . 15

2–11 Message View of the startObserving Operation 16

2–12 Aspect Message View notification of the |modify Operation 17

2–13 Message View of setPrice Once Mapped and Woven 17

3–1 The Feature Model of the Association Concern 22

3–2 Impact Models of the Association Concern 26

3–3 Customization interface . 26

3–4 The Usage Interface of the Association Concern when Selecting Feature
ArrayList . 27

3–5 Realization Models of the Association Concern 31

ix

3–6 Message View of the add Operation . 32

3–7 Aspect Message View checkMaximum . 33

3–8 Message View of the add Operation in the Woven Aspect Maximum 33

3–9 Realization Model OneOpposite . 36

3–10 Steps When Updating a Reference . 37

3–11 Realization Model PlainOpposite . 38

3–12 Message View of the add Operation in PlainToOne 45

3–13 Message View of the add Operation in MaximumPlainToOne 45

4–1 Association through Concern Reuse and Mappings 49

4–2 Comparison between UML and our DSL . 52

4–3 Changes to the RAM Metamodel . 54

4–4 Woven Model of the Observer reusing Association 56

4–5 Observer Model with a Unidirectional Association 59

4–6 Observer Model with a Bidirectional Association 59

4–7 Class Diagram of the Observer Structural View reusing the Association Concern 62

5–1 Insertion Performance showing Median in μs, as well as 10th and 90th
Percentile Range . 68

5–2 Median Insertion Performance in μs with Trend Line 69

5–3 Increase Insertion Performance Impact Model 70

5–4 Iteration Performance showing Median in μs, as well as 10th and 90th
Percentile Range . 72

5–5 Median Iteration Performance in μs with Trend Line 72

5–6 Median Random Access Performance sin μs, as well as 10th and 90th Percentile
Range . 74

x

5–7 Median Random Access Performance in μs with Trend Line 74

5–8 Median Removal Performance in μs, as well as 10th and 90th Percentile Range 76

5–9 Median Removal Performance in μs with Trend Line 77

5–10 Minimize Memory Footprint Impact Model 77

5–11 Comparing Performance Results for ArrayList on Mac OS and Linux 79

6–1 UMPLE Bidirectional Association and its Textual Syntax 85

6–2 TouchCORE Bidirectional Association . 85

xi

Chapter 1
Introduction

Model-Driven Engineering (MDE) [12] is a unified conceptual framework in which soft-

ware development is seen as a process of model production, refinement, and integration. To

reduce the accidental complexity and the effort needed to move from a problem domain to

a software-based solution, MDE advocates the use of different modelling formalisms, i.e.,

modelling languages, to represent and analyze the system from multiple points of view. For

each level of abstraction, the modeller uses the best formalism that concisely expresses the

properties of the system that are important to that level. During development, high-level

specification models are refined or combined with other models to include more solution de-

tails, such as the chosen architecture, data structures, algorithms, and finally even platform

and execution environment-specific properties. The manipulation of models is achieved by

means of model transformations, ideally automated by model transformations tools [14].

In the context of MDE, associations play an important role. During the requirements

engineering phase, they are used at a high level of abstraction to formalize relationships

among domain concepts in so-called domain models. In later development phases, as the

architecture of the software and the solution it implements begin to take form, properties

are attached to the associations, e.g., ordering, uniqueness, multiplicity, role name and

navigability. Finally, during the implementation phase, concrete data structures, such as

arrays, linked lists or hash tables, are used to realize associations with multiplicity greater

than one.

1

Because associations are widely used in MDE, modelling tools with code generators have

to generate code from models that contain associations. However, most current code gener-

ators do not provide adequate support for associations [16, 5, 21, 18, 10]. For example, the

properties of associations specified in the model, e.g., multiplicity constraints and bidirec-

tionality, are rarely enforced in the generated code. Furthermore, there are many ways of

implementing associations with multiplicity greater than one using different collection data

structures. Each data structure has different run-time behaviour, and therefore affects the

non-functional qualities of the software that is being developed, e.g., performance and mem-

ory use. Current modelling tools, however, shield the modeller from implementation details.

As a result, they do not document or quantify the impact on non-functional qualities that

underlying implementations for associations have. As a result, code generators typically

resort to default implementation strategies for associations that do not take into account

high-level goals and non-functional requirements of the application that is being built.

This thesis describes how the concern-orientation reuse paradigm (CORE) [7], which is

extending MDE, is used to capture many different kinds of associations, their properties,

behaviours, and various implementation solutions within a reusable artifact: the Associa-

tion concern. It encapsulates models for all variants, and exploits aspect-oriented modelling

techniques to modularize the structure and behaviour required for enforcing uniqueness and

multiplicity constraints, as well as referential integrity for bidirectional associations. Fur-

thermore, it bundles many of the Java collection implementations that can be used to realize

associations. For each of the bundled implementation classes, the impact of their use on

non-functional qualities, e.g., memory consumption and performance, has been determined

and formalized within the concern. Furthermore, the thesis proposes to make the reuse of

2

the Association concern simpler with the help of a domain-specific language (DSL). Based

on this UML-inspired visual notation, a modeller can apply the Association concern within

his own models with minimal effort and time. The proposed DSL was implemented within

the TouchCORE modelling tool.

Specifically, this thesis makes the following contributions:

• Design of an Association Concern: Creation of a concern that encapsulates many

ways of dealing with associations in MDE.

– Capture the different, user-relevant variations of associations in a feature model.

– Specify the impacts of different implementations of associations on memory use

and performance using impact models. This required running experiments to:

(a) Compare execution times of insertion, access, iteration and removal opera-

tions.

(b) Profile memory usage.

– Encapsulate the structural properties of the different variations and possible im-

plementations of associations in class diagrams.

– Encapsulate behaviours to ensure uniqueness, multiplicities and referential in-

tegrity using sequence diagrams.

– Deal with feature interactions.

• Applying of the Association Concern: Enable easy reuse of the Association con-

cern.

– Define a DSL for reusing the Association concern based on UML notations.

– Explain how to update typical class diagram meta models to add support for

reusing the Association concern.

3

– Describe updates to the CORE class diagram weaver required for supporting the

DSL.

– Specify algorithms for automated selection of features and creation of customiza-

tion mappings to ensure consistent use of the Association concern,

– Propose enhancements to the modelling tool GUI that prevent visualization clut-

ter.

The thesis is structured as follows. Chapter 2 presents background information on concern-

oriented reuse: the interfaces of a concern and how a concern is reused. It also presents

the multi-view modelling notation Reusable Aspect Models (RAM) with its structural and

message views. Chapter 3 presents how the Association concern was designed by describing

each of its interfaces separately, followed by an overview of the structural and behavioural

realization models. Chapter 4 explains ideas on how the reuse of the Association concern can

be streamlined through a DSL. It also provides implementation details on how these ideas

were realized in the TouchCORE tool, and how we improved its GUI. Chapter 5 describes

the benchmarks that were performed on different Java collections and that supported the

creation of impacts models. The related work is discussed in Chapter 6. The last chapter,

Chapter 7 concludes this thesis and presents some thoughts on future work.

4

Chapter 2
Background

Reusability is an important concept of software development. When building a system,

engineers need to break it down to components in a manner that those components could be

used in other systems. This can happen from the very beginning or later, when components

are detected to have a reuse potential [or: to be able to reuse them in other components or

other systems]. MDE faces the same reusability challenge, and instead of defining models

from scratch, it is desirable to reuse models as much as possible. This can be facilitated with

modelling notations that explicitly support the concept of reuse. Reusable models could

represent anything that can be applied at several locations within one or more software

systems, such as libraries, design patterns, persistency or utilities.

A simple example of a stock application is shown in Figure 2–1. The structure defines

the classes Stock and StockWindow. A stock has a price, which is displayed in the window.

Every time the price of the stock changes, the window needs to reflect that change. This

is a common behaviour and is known as the Observer design pattern [15]. Usually, the

structure and behaviour required to integrate this into the system is to add it directly into

the design. However, it would be best to work from a reusable entity. Concern-Orientation

is a technique, which facilitates this.

The first section of the background deals with concern-oriented reuse. It describes the

three interfaces of a concern and the three steps to reusing a concern. We then describe the

CORE metamodel. Section 2.2 describes a multi-view modelling notation that extends the

5

CORE metamodel called Reusable Aspect Models. The last section present the modelling

tool TouchCORE and how it uses the metamodel described in the two previous sections to

provide an interface to build concerns.

Figure 2–1: StockExchange Application

2.1 Concern-Oriented Reuse

Concern-Orientation (CORE) captures the variations of a domain of interest in a reusable

artifact called a concern [7]. In addition, it documents what the impact of selecting a

variation has on high-level system qualities. Concerns are designed by domain experts and all

the complexity is hidden from the user behind well-defined interfaces [8]. They are designed

as generic as possible to facilitate reuse. This section presents the interfaces of a concern, how

it is reused in an application and the CORE metamodel used by the TouchCORE modelling

tool [34, 31].

2.1.1 CORE Interfaces

Concerns define interfaces that detail how the unit should be reused. A concern is

composed of three interfaces: a variation interface, a customization interface and a usage

interface. To illustrate those interfaces, we use the Observer concern based on the Observer

design pattern and show how it is applied in the StockExchange application.

6

Variation Interface

The variation interface describes the different variations of a concern and its impacts on

user goals. The variations are defined using a feature model originally defined by Kang et

al. [24]. A feature model shows all features in a tree and a feature has a relationship with its

parent. Each feature represents a piece of the product. The relationship between a parent

feature and its children can either be optional (�), mandatory (�), OR (�), where at least

one child feature needs to be selected, or XOR (�) where exactly one child feature must be

selected. Cross-tree constraints are also part of a feature model through require constraints,

where a feature forcing the selection of another, and exclude constaints, where a feature

prohibiting the selection of another.

The Observer design pattern has different communication methods: push and pull. The

push method happens when the observed element (the subject) sends directly the updated

version of itself to the observer. The pull method requires the observer to retrieve the

state from the subject once it was notified of a change. These are variations expressed in

the feature model, which is shown in Figure 2–2. The two methods are generalized by a

mandatory feature called NotificationMethod. Only one notification method can be selected,

therefore Pull and Push are mutually exclusive in the feature model. The feature Controller

is used when notifications should go through a controller instead of going directly from a

model to a view. This is an optional feature.

In the StockExchange application, the window may either pull the changes of the price

when it gets an update that the state of the subject has changed or the stock could push its

new state to the window when it is modified.

7

Legend

mandatory optional

or xor (alternative)

Figure 2–2: Feature Model of the Ob-
server Concern

Figure 2–3: Minimize Message Exchange
Impact Model of the Observer Concern

The impacts of a feature on non-functional requirements are defined through impact

models, which are based on goal models [9]. The impact model captures how features

influence system qualities, focusing on one system quality at a time. The impact model in

Figure 2–3 shows an example of a user goal Minimize Message Exchange in the Observer

concern. The feature Push minimizes the most the message exchange, because when the

object is modified the subject notifies the observer with the necessary information. With

Pull, however, the subject just notifies the observer of a change, which is itself responsible

for pulling the information from the subject. The Controller increases the message exchange

even more as messages do not go directly from the model to the view but from the model

to the controller, and then from the controller to the view and vice versa. Other user goals

for this concern are Increase Performance for Small Data and Increase Performance for Big

Data. When the user selects features, the impact models are evaluated and give feedback

to the user. Impacts are of great value to users when reusing a concern as they allow to

understand the tradeoffs when making a particular selection.

8

Figure 2–4: Model of the Push Variation of the Observer Concern

Customization Interface

Features are realized by models that describe its structure. More information about

these models, called realization models, is presented in Section 2.1.3 and the modelling

notation RAM is described in Section 2.2. From those models, we define a customization

interface. This interface describes which generic elements of a concern need to be adapted to

concrete elements in an application. Elements that are part of the customization interface are

represented with a vertical bar ‘|’. This denotes elements that are incomplete and have to be

completed by the reusing concern. When reusing the concern, they are mapped to elements

in the current application. As shown in the structural model in Figure 2–4, the Observer

concern is composed of a subject and an observer. Here, the customization interface is

|Subject, |Observer and their respective operations |modify and |update. When reusing

the concern, a class has to be the subject and another the observer. In the StockExchange

application, Stock is the subject and StockWindow is the observer. The operation |modify

needs to be mapped to an operation of the subject and the operation |update needs to

be mapped to an operation of the observer. Omitting the mapping of elements of the

customization interface is a misuse of the concern.

9

Usage Interface

The usage interface is the part of the concern that is accessible to the application, it

is available for the user once it is reused. It is defined by the public elements of the con-

cern. Looking again at Figure 2–4, |modify of the subject as well as startObserving and

stopObserving of the observer are part of the usage interface. When |Observer is mapped

to StockWindow, StockWindow gets the startObserving and the stopObserving opera-

tions. However, it is not the case for |Subject as the public operation is partial. It should

be mapped when reusing and therefore is not used directly but through the operations it is

mapped to.

2.1.2 Reusing a Concern

Reusing a concern involves three steps from the concern user, once he selected the concern

of interest through the reusable concern library provided by the tool TouchCORE:

1. Then the variation interface of the concern is presented to the user as shown in Fig-

ure 2–5a. The modeller must make a selection of the desired variant. Evaluation of

the impact of the selection on each high-level goal is presented to help the user make

a decision and allow to perform a tradeoff analysis. The contributions are calculated

from the impact models in a way that the highest possible value is 100 and the lowest

is 0, 100 being the best and 0 the worst. In the given example, when reusing the

Observer concern, the user selects Push, which fully minimizes the message exchange

and fully increases performance for small data, but not at all for big data. This is

because a change in the observed object triggers an update to the observer by sending

the whole object even if it is only interested by a small portion of it.

10

2. Once a selection is made, the tool weaves the models that realize the selected features

together. Weaving means combining models, the weaver takes the model in the lower

feature in the tree and combines it with its parent and it goes up the feature tree

until the root.Then, when the weaving is done, the concern is ready to be customized

to the current application. As displayed in Figure 2–5b, the customization interface

allows selecting an element from the concern and mapping it to an element in the

application. In our example, the reusing concern is the StockExchange concern. The

StockWindow is notified every time there is a change in the price of a Stock and it

updates the display of the price. Here, |Subject is mapped to Stock and |Observer

is mapped to StockWindow. |modify is mapped to setPrice and |update is mapped

to updateWindow.

3. The modeller is now able to use the concern through the usage interface by using the

provided operations.

2.1.3 CORE Metamodel

A metamodel formally defines the structure that all models have to conform to, i.e., it

defines a common language and can be seen as a grammar. A metamodel itself is a model at

a higher level of abstraction. The CORE metamodel formalizes the concepts of CORE. This

enables the integration of other modelling languages within its framework [29]. Concerns are

built based on the CORE metamodel. An excerpt of the metamodel is shown in Figure 2–6.

A COREConcern is built from one or more COREModels, some of which we showed in the

previous section: a COREFeatureModel and a COREImpactModel. Other models are left to

be designed by a modelling language, which can be extended to support CORE [33].

11

(a) Step 1: Feature Selection for the Observer Concern

(b) Step 2: Establishing the Mapping with Observer
Customization Interface (below) and Application (above)

Figure 2–5: Reusing the Observer Concern

12

A COREFeatureModel is composed of COREFeatures. Those features may be realized

by many models. The realization models are the ones reusing other concerns. When a

COREModel reuses a concern, it contains a COREModelReuse, which is associated to a

COREReuse that holds the selected configuration, i.e, the features selected by the user

when reusing. The COREReuse also holds a reference to the reused concern.

A COREImpactModel is composed of COREImpactNodes. These impact models con-

tribute to one another through COREContributions that are represented with a number

called a weight. Features are also impact nodes and contribute to goals.

Models build on top of other models that realize parent features. We describe in the next

section a concrete modelling language and how models can extend each other.

COREModelReuse COREReuse

COREReuseConfigurationCOREConfigurationCOREFeature

1..1 reuse

seleted

selectedConfiguration

COREConcern COREImpactModelCOREFeatureModel

COREModel

reusedConcern

realizes

realizedBy

featureModel impactModel

modelReuses

features

models

1..1 coreConcern

0..* reuses

COREImpactNode
int relativeWeights
COREContribution

impactModelElements

incoming

source

impacts

outgoing

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1..1

1..1

1..1

1..1

0..1

1..1

COREFeatureImpactNode

weights
0..*

1..*

Figure 2–6: Excerpt of the CORE Metamodel

13

2.2 Reusable Aspect Models

The multi-view modelling notation Reusable Aspect Models (RAM) [6] extends the

CORE metamodel and provides a specific modelling language. A reusable aspect model

extends three diagrams from the Unified Modeling Language (UML) [20]: class diagrams,

sequence diagrams and state diagrams, respectively called in RAM structural view, message

view and state view. As seen in the CORE metamodel in Figure 2–6, a model realizes fea-

tures and a feature is usually realized by a model. An aspect, also called a realization model,

is a COREModel as shown in the excerpt of the RAM metamodel in Figure 2–7. It is used

to describe the structure and behaviour of a concern by using aspect-oriented techniques.

The structural view and the message view are presented in Section 2.2.1 and Section 2.2.2

respectively. State views are omitted as they were not used for the work of this thesis.

AssociationEnd

Classifier

Association

StructuralView

1..1 classifier

0..* associationEnds

endsassociation

classes

0..* associations

COREModel

Aspect
structuralView

AbstractMessageView

0..* messageViews

1..1 0..*

2..21..1

AspectMessageView

MessageViewReference

MessageView

Figure 2–7: Excerpt of the RAM Metamodel

2.2.1 Structural View

An aspect is composed of a structural view as we observe when looking again at the

RAM metamodel in Figure 2–7. The structural views in TouchCORE are class diagrams

based on UML abstractions, they define classes with their attributes and operations and

14

Figure 2–8: Observer model

Figure 2–9: Push model

Figure 2–10: Pull model

associations between those classes. A structural view is composed of Classifiers. A classifier

contains the association ends and the structural view contains all the associations in the view.

We already saw a RAM model in Figure 2–4 when describing the customization and usage

interface. Classifiers may be of two kinds: classes defined by a user or implementation classes.

Implementation classes are defined by a target programming language or a framework and

can be be imported into a model using the TouchCORE tool [28].

Models may extend other models defined for a parent feature. Each model only defines

what is needed for the particular feature it realizes. Models that are extended are called

extended models. The woven model of the feature Push in Figure 2–4 results from combining

elements in the structural view of the feature Observer (see Figure 2–8) and the structural

view of the feature Push (see Figure 2–9). This allows to create another variation such

as Pull (see Figure 2–10), without redefining the common structure and behaviour. It is

beneficial to break down the concern in smaller models as it favours reuse and extraction of

shared patterns.

15

2.2.2 Message View

Message views are based on UML’s sequence diagrams, but add more detail and enforce

that elements can only be used if they are defined in the structural view [27]. They are used

to describe the behaviour of an operation. An operation may be defined only by one message

view. Message views in TouchCORE support variable declaration, assignments, calls and

fragments (if statements, while and for loops and try/catch). Message views are connected

to the elements in the structural model, therefore elements in the message view correspond

to elements in the structural view. A lifeline, i.e., vertical lines representing objects, can only

be created for an element if its class is defined or imported in the model. The operations

called on a lifeline need to have been created for the classifier in the structural view.

As an example, we use the message view of the operation startObserving(|Subject

s) that belongs to |Observer (see Figure 2–11). The target observer sets its subject to s,

i.e., the element to start observing, and adds itself to the list of observers held by s.

Figure 2–11: Message View of the startObserving Operation

Aspect Message View

Using aspect-oriented techniques, it is possible to augment the original behaviour of an

operation. Aspect message views are used to advise operations. We also say that operations

are affected by aspect message views, as they are aware of the aspect message views advising

them. Operations defined in a concern that are part of the customization interface do

16

Figure 2–12: Aspect Message View noti-
fication of the |modify Operation

Figure 2–13: Message View of setPrice
Once Mapped and Woven

not define message views but aspect message views are defined to advise them. Concerns

are generic and mapping an operation from the concern to an operation in the application

augments the original behaviour through this aspect message view, it does not replace it.

Figure 2–12 shows the aspect message view that is defined to advise the partial operation

|modify. The aspect message view is required because |modify is going to be mapped to an

operation in the application that already defines a message view. The aspect message view

notification adds behaviour after the original behaviour, which is represented by the white

box. It iterates through the observers of the subject and calls |update on each of them. In the

StockExchange example, |modify is mapped to setPrice, as seen previously in Figure 2–5b.

Therefore, the aspect message view notification advises the behaviour of setPrice. Then,

the weaver, described in Section 2.2.2, merges the original behaviour defined in the message

view of the operation and the behaviour defined in the aspect message view that advises the

operation in the application. This results in the structural view as shown in Figure 2–4 with

the message view for setPrice shown in Figure 2–13.

17

Message View Reference

A user might need to advise an operation of the usage interface from a reusing concern.

For example, in the StockExchange example application, the user might want to add be-

haviour to the startObserving or the stopObserving operation. However, the user can

not directly modify the reused concern, because it is only accessible through the defined

interfaces. Similarly, a concern designer might need to advise an operation of an extended

model. However, an extending model can only add additional elements.

In order to support this, a message view reference can be defined. It allows one to

connect an aspect message view containing an advice with the message view defining the

original behaviour. The referenced message view is located in the reused concern or extended

model.

For example, in the case of the model of the feature Push in Figure 2–9, which is ex-

tending Observer, the user might want to augment the behaviour of startObserving and

stopObserving without overwriting the one defined in Observer.

Weaver

The weaver combines extended models when reusing a concern and also the current

application models with the reused concerns to produce the final application models. It takes

care of both the structural view and the message views. When reusing a concern, elements

are mapped. The weaver uses those mappings to merge classes and operations. Elements

that are not mapped are copied over to the woven model. Similarly, when combining with

extended models, it merges elements that are mapped or that have the same name and

copies over the rest. Figure 2–4 illustrates the woven model of Push (see Figure 2–9) and

18

its extended model Observer (see Figure 2–8). The message views are also woven, as seen

previously in Figure 2–13, when an operation is affected by an aspect message view.

2.3 TouchCORE Modelling Tool

TouchCORE is a multi-touch enabled, software design modelling tool that implements

two concepts seen in the previous section: Concern-Orientated Reuse (CORE) and Reusable

Aspect Models (RAM). TouchCORE uses the CORE framework through the metamodel we

described. The tool provides a graphical interface that allows using theses concepts together.

It supports concern reuse which involves features and impact models, as well as realization

models expressed using class, sequence and state diagrams, and Java implementations. The

tool aims at building scalable et reusable software design models.

19

Chapter 3
Concern-Oriented Modelling of Association

A concern is a reusable artifact. Building a concern is a tedious task that requires a

very good understanding of the domain. The concern needs to provide a complete and

understandable interface to the user while covering all issues that might arise from applying

this particular concern to an application. Our goal is to build an Association concern to be

reused every time an association is created between two classes. This concern has to offer

common features from associations while dealing with multiplicity and uniqueness constraints

and referential integrity.

In this chapter, we present the Association concern we designed by describing each of

its interfaces. As seen previously, a concern is composed of three interfaces: a variation

interface, a customization interface and a usage interface. Section 3.1 presents the variation

interface that is composed of a feature model and an impact model that describes the impacts

each feature has on different user goals. The customization interface and the usage interface

are presented in Section 3.2 and Section 3.3 respectively. Section 3.4 describes the structural

realization: the models for each feature and how they extend each other to build a complete

model. The behavioural realization, designed through sequence diagrams, is presented in

Section 3.5. When some features are selected together, the structure or behaviour may

change and to redefine them, the feature interaction realization is described in Section 3.6.

20

3.1 Variation Interface

The variation interface exposes the different features of the concern through a feature

model and describes the impact that those features have on non-functional requirements

through impact models. The feature model presents the different features of the concern

to the user and how those features interact and depend on each other. Coming up with a

feature model requires breaking down the domain into pieces and finding a way to fit them

back together through common properties. The impacts play an important role in providing

the user with a sense of how a feature affects high-level goals and non-functional qualities,

such as performance or memory usage.

3.1.1 Feature Model

The variation interface of the Association concern is represented by the feature model

in Figure 3–1. The features of the Association concern can be classified into three different

groups according to the properties they ensure: the properties of the association (maximum,

minimum, bidirectional and unique), the properties of the collection for associations with

multiplicity > 1 (key-indexed, ordered and unordered), and the implementation classes

used to implement the collections (currently supporting ArrayList, LinkedList, Stack,

HashSet, TreeSet, HashMap and TreeMap). The implementation choices are captured from

the java.util package for ordered lists (ArrayList, LinkedList, and Stack), for unordered

sets (HashSet and TreeSet), and for key-indexed variations (HashMap and TreeMap). The

properties of the collections were discovered by comparing individual implementation classes

and extracting their common properties. The feature model also supports constraints that

will be discussed later.

21

Figure 3–1: The Feature Model of the Association Concern

Properties of Collections and Implementation Classes

The root feature Association has two subtrees. The first one, Structure, groups all the

features related to properties of the collections, and its leaf features represent the implemen-

tation classes made available by the concern. The subtree is separated into two categories:

One and Many. They differentiate between an association with a multiplicity of one (a single

object) and associations with a multiplicity of many (a collection of objects). One is respon-

sible for providing getter and setter functionality to the class containing the association.

Many is responsible for providing all operations related to manipulating collections. We

noticed two types of collections: some collections have their elements associated with a key

of a chosen type, generally known as maps that we represent with the feature KeyIndexed. It

22

currently has two children features HashMap and TreeMap that provide the implementation

classes with the same name. We generalized all the other collections (not key-indexed) in

a feature called Plain. Plain is further divided into three sub-features, two of them being

properties of the association, Minimum and Maximum, and the last one, PlainType is it-

self divided into two sub-features: Ordered and Unordered. Some collections keep track of

a certain order in which its elements were added while others do not. Provided ordered

implementation classes are ArrayList, LinkedList and Stack and unordered implementation

classes are HashSet and TreeSet. Breaking down Association into many features that incre-

mentally specify the association in more detail helps reusing the concern without making a

final decision, i.e., without selecting a leaf feature. A user might not be ready to choose a

concrete implementation class when creating the association, and CORE allows one to delay

the decision for later. For example, the user could just select the Many feature and start

using the association without choosing a concrete implementation.

Properties of Associations

In addition to properties of the collection, the concern needs features to define the prop-

erties of the association in order to provide appropriate behaviour. Associations can be

bidirectional, which is captured in the Bidirectional subtree. An association is bidirectional

as soon as it is navigable in both directions, in which case any implementation must ensure

referential integrity. The child features of Bidirectional correspond to the multiplicity and

the feature selection of the opposite association end. A 1-1 association would correspond

23

to the features One and OneOpposite. A 1-* association1 would correspond to the features

One and ManyOpposite, or one of its children depending on the chosen kind of the oppo-

site association. All the sub-features of Bidirectional encapsulate the behaviour needed to

ensure referential integrity. This is achieved by advising insertion and removal operations in

the design models of those features. For example, in a bidirectional many association, the

insertion operation on one side needs to know whether to set or insert on the other side and

vice versa. The concern deals with all combinations.

For some associations with multiplicity > 1, it makes sense to decide whether the same

element can be part of the same association instance more than once or not. The optional

feature Unique encapsulates this property and can apply to a Plain or KeyIndexed collection.

It ensures that the insertion of an element into the collection realizing the association is only

allowed if the element is not already contained inside. Some implementations of unordered

collections are collections that do not allow for duplicates, such as HashSet and TreeSet. To

capture this, we added cross-tree constraints to the feature model. It is hence invalid to

select one of those features without also selecting Unique.

Collections can have a maximum and a minimum number of entries. Maximum is used

when the upper bound of the multiplicity is greater than 1 and not infinitely many. It affects

the behaviour of the insertion operations, because they have to ensure that the maximum

was not reached before adding. Minimum is used when the lower bound of the multiplicity

is greater than 0. It affects the removal operations, since they need to check that the

1 UML uses the star character to represent an unlimited upper bound and it is usually
referenced as many or infinitely many.

24

minimum size restriction is not violated before removing. The Minimum and Maximum

features are children of Plain, not children of Many, in order so they cannot be selected

with the KeyIndexed subtree. This decision was made because UML does not support any

restriction on the number of keys and neither do the implementation classes offered. If the

modeller wants to restrict the number of keys, he could add behaviour to do so or use an

enumeration as key [20, p. 201]. Following UML standards again, the multiplicity of a

qualified association corresponds to the number of elements per key and not to the number

of keys. However, the current supported key indexed implementation classes only allow one

element per key. If the modeller requires more elements to be mapped with a key, he should

use a collection as the value. Support for this could however be added in the future.

3.1.2 Impact Model

Different implementation choices behave differently at run-time, and a concern captures

such non-functional properties in the impact model. The Association concern provides im-

pact models for 5 goals: Increase Insertion Performance, Increase Iteration Performance,

Increase Random Access Performance, Increase Removal Performance and Minimize Mem-

ory Footprint. For each performance related goal, there are 4 sub-goals for different collection

sizes. For example, Figure 3–2a shows the impact model for Increase Insertion Performance

for 1,000 elements. The values are negative because in increasing the performance, the

higher the value the better, however, the lower the time it takes to perform the operation,

the better. Adding 1,000 elements in an ArrayList takes less time than adding them in

a TreeSet, therefore, ArrayList increases the performance and the contribution is higher.

Figure 3–2b shows the Minimize Memory Footprint impact model. The values are negative

for the same reason. We can observe that lists occupy less space and maps occupy more.

25

(a) Increase Insertion Performance (b) Minimize Memory Footprint

Figure 3–2: Impact Models of the Association Concern

The values of the contributions result from benchmarks we have run on Java collections.

We describe those benchmarks in Chapter 5.

3.2 Customization Interface

The customization interface is defined by the elements from the concern that need to be

mapped to elements in the application. In an association, we need to define the classes of

origin and destination, i.e., the class that holds one association end and the class that holds

the opposite end. We call |Data the class of origin and |Associated the class of destination

as shown in Figure 3–3a. The pipe prefix (‘|’) is a convention in TouchCORE to specify

elements of the customization interface. When the selection is a key-indexed collection, the

customization interface varies as can be seen in Figure 3–3b. It is still composed of |Data

but also of |Key and |Value. |Data is still mapped to the class of origin. Similarly to

|Associated, |Value is mapped to the destination of the association and |Key is mapped

to the qualifier.

|Associated|Data

(a) Common Customization Interface

|Value|Data |Key

(b) KeyIndexed Customization Interface

Figure 3–3: Customization interface

26

3.3 Usage Interface

The usage interface is defined by the public elements in the concern that can be used by

the application. In the case of the Association concern, the usage interface is composed of

|Data and its public operations. The features from the concern do not have a common usage

interface as the operations of |Data vary with the properties of the collection. When a class

holds a single object reference, i.e., the feature One is selected, the usage interface consists of

a getter and a setter. When it holds a reference to a collection, it has more operations. If it

is a plain collection, it contains operations to add and remove elements, and if the collection

is ordered, it additionally has operations to add and remove at a specific index as shown in

Figure 3–4 when selecting the ArrayList feature. If it is a key-indexed collection, it contains

operations to add a mapping with a key and a value and to remove the mapping associated

with a key.

Figure 3–4: The Usage Interface of
the Association Concern when Se-
lecting Feature ArrayList

The operations of |Data are not part of the cus-

tomization interface, i.e., they do not have to be

mapped to operations in the target model. Once

|Data is mapped to the class holding the association,

the operations belonging to the usage interface are

added to the class and may be used. However, users

may want to rename the operations for better usabil-

ity, for example, rename add to addToMyObservers.

To do so, they would create an operation with this

desired name and map the operation from |Data to it.

27

3.4 Structural Realization

Models associated with features are called realization models. We say that a model

realizes a feature and it typically realizes one feature. The realization model of the root

feature Association defines the two classes |Data and |Associated. They are marked as

public partial with a vertical bar ‘|’, which means that they are part of the customization

interface of the model, and need to be completed by the application.

The realization model of the feature One is shown in Figure 3–5a, which is selected when

the upper bound of the multiplicity of the association is 1. It defines an association between

|Data and |Associated with multiplicity 1 (lower bound is 1 and upper bound is 1), as well

as a getter and a setter for the association end. The lower bound of the multiplicity could

also be 0 when reusing the concern. However, users may change this lower bound to 1.

The realization model for Many in Figure 3–5b defines an additional class for the col-

lection called ¦CollectionOfAssociated. It is marked as concern partial prefixed with a

discontinuous vertical bar ‘¦’, which means that it is also incomplete, but needs to be further

defined within the concern. Therefore, when a complete selection is made, i.e., a leaf feature

of the Many subtree is selected, a concrete implementation class needs to have been mapped

to the ¦CollectionOfAssociated class. The operations of ¦CollectionOfAssociated are

also concern partial. Since ¦CollectionOfAssociated and its operations are mapped in-

side the concern, they are not part of the customization interface. The feature Many also

defines the association between |Data and |Associated, but this time the multiplicity

has a lower bound of 0 and an upper bound of many. The associations from |Data to

¦CollectionOfAssociated and from ¦CollectionOfAssociated to |Associated are de-

fined in the Many feature since they are shared by all of its children. |Data always has one

28

collection, but the number of collections depends on the application and is overwritten when

reused. The model also provides the operations of |Data shared by all children:

• int size() that returns the number of elements currently contained in the collection.

• boolean contains(Object) that returns true if the given object is contained in the

collection.

• ¦CollectionOfAssociated getAssociated() that returns the entire collection.

The features between Many and its leaves provide additional operations to the |Data class.

The Plain feature, shown in Figure 3–5c, defines the operations shared by ordered and

unordered collections:

• boolean add(|Associated)that adds the given element to the collection.

• boolean remove(|Associated) that removes the given element from the collection.

The Ordered feature (see Figure 3–5d) defines the operations shared by all ordered collections:

• boolean add(int, |Associated) that adds an element at the specified position in

the collection.

• |Associated remove(int) that removes an element at the specified position in the

collection.

• |Associated get(int) that returns the element at the specified position in the col-

lection.

The Unordered feature does not provide any additional operations to |Data. Of course, the

list of operations is not exhaustive. The number of operations for Java collections is far

greater, but for now we decided to only use a subset of most commonly used operations.

The KeyIndexed feature realizes the qualified associations. It contains a class |Key and

the class |Associated is renamed to |Value, since this is the name typically used to refer

29

to the entities that are reachable with a key. To perform the renaming, a class |Value is

created, and the realization model extends Many and maps |Associated to |Value. The

class |Data in KeyIndexed holds all common operations related to any kind of maps such as

put, containsKey and containsValue.

In leaf features, for example ArrayList in Figure 3–5f, a concrete implementation class

is imported as well as its operations. The mappings of the class and the operations are

established as shown in Figure 3–5e. All concern partial elements are mapped at this point.

None of the optional features of the variation interface have an impact on the realization

structure, i.e., they do not add classes or update the list of operations, but they have an

impact on the behavioural structure of the operations. Therefore they are described in the

next section.

3.5 Behavioural Realization

As we saw in the realization model of the feature Plain in Figure 3–5c, |Data has an

operation add and the ¦CollectionOfAssociated has a concern partial operation with the

same signature. The concern partial operation is mapped to a concrete operation of an

implementation class in a leaf feature as previously shown in Figure 3–5e. Behaviours are

always and only defined for the operations of |Data.

In a concern, the behaviour of an operation is defined using a sequence diagram called a

message view in the tool TouchCORE. As shown in Figure 3–6, a call to the add operation

on |Data triggers a call to the add operation on the ¦CollectionOfAssociated and returns

true if the element was successfully added. Operations in |Data that have an equivalent

operation in the collection, with the same name and signature, have a similar behaviour:

they forward the call to the operation of the collection with the corresponding parameters.

30

(a) Realization Model One

(b) Realization Model Many

(c) Realization Model Plain

(d) Realization Model Ordered

(e) Mappings to the ArrayList Implementation Class (f) Realization Model ArrayList

Figure 3–5: Realization Models of the Association Concern

31

Figure 3–6: Message View of the add Op-
eration

Some features may affect the behaviour of

other features. In the variation interface, there

are four optional features: Unique, Maximum,

Minimum and Bidirectional. When they are se-

lected, they impact operations by specifying ad-

ditional behaviour. Unique impacts the behaviour of insertion operations: before adding,

a check is performed to determine whether the element is already in the collection. Maxi-

mum also impacts insertion operations: if the maximum is already reached, the operation

returns false and the addition is not performed. Minimum impacts removal operations: if

the collection already contains the minimum number of elements, it returns false and the

element is not removed. Bidirectional ensures referential integrity. It impacts constructors,

setters, insertion and removal operations. When an element is added to a collection and

the association is bidirectional, depending on whether the opposite side is one or many, the

element needs to be set or added on the opposite side.

We use aspect-oriented techniques to augment the behaviour of operations—called advis-

ing in aspect-oriented terminology—using aspect message views. For example, the realization

model of the feature Maximum defines an aspect message view checkMaximum, shown in

Figure 3–7, that adds behaviour to an existing operation, whose behaviour is represented by

the white box. It verifies whether the collection already contains the maximum number of

elements before adding. Advising an operation from an extended model through an aspect

message view is done using message view references 2.2.2. Maximum is a child feature of

Many, therefore it has access to the add operation of |Data. In Figure 3–7, the message view

reference specifies that the add(|Association a) operation defined in the Plain feature is

32

Figure 3–7: Aspect Message View
checkMaximum

Figure 3–8: Message View of the add Op-
eration in the Woven Aspect Maximum

affected by the aspect message view checkMaximum. As a result, when the feature Maximum

is woven in, the message view of the operation add has its original behaviour wrapped in the

behaviour of the aspect message view, which is shown in Figure 3–8.

3.6 Feature Interaction Realization

In a concern, if feature A is realized by realization model MA and feature B is realized by

realization model MB, when features A and B are both selected, simply combining models

MA and MB does not always yield in a correct realization model that provides the combined

functionality of A and B. This situation is called a feature interaction. To resolve it, another

realization model called conflict resolution model MAB needs to be defined. In the context of

the Association concern, several feature interactions have been identified, and hence there are

many conflict resolution models, which are shown in Table 3–1. Conflict resolution models

may redefine the structure as well as the behaviour. In our current concern, they only impact

the behaviour of existing operations, and few of them add additional protected operations.

3.6.1 Behavioural Adaptation to Ensure Referential Integrity

Within the Association concern, the first reason for using conflict resolution models is

that in order to ensure referential integrity, the standard behaviour of the operations provided

33

One Plain Ordered KeyIndexed

Bidirectional - PlainBidirectional OrderedBidirectional KeyIndexedBidirectional

OneOpposite OneToOne PlainToOne OrderedToOne KeyIndexedToOne

PlainOpposite OneToPlain PlainToPlain OrderedToPlain KeyIndexedToPlain

OrderedOpposite OneToOrdered PlainToOrdered OrderedToOrdered KeyIndexedToOrdered

KeyIndexedOpposite OneToKeyIndexed PlainToKeyIndexed OrderedToKeyIndexed -

Table 3–1: Bidirectional Conflict Resolution Aspects

by |Data needs to be adapted depending on the specific combination of properties of the

two association ends. The answers to the following questions determine what should be the

correct behaviour: is the association bidirectional? If yes, is the opposite side a single object

or a collection of objects? Based on the answers, the behaviours of a set, insertion or removal

operation are different as they need to update the opposite side of the association.

Consider the following bidirectional associations between class A and class B with objects

a1, b1 and b2:

• 1-1: When calling a1.set(b1), a1 needs to update its reference, but also needs to

ensure b1’s reference is updated by calling b1.set(a1).

• 1-0..*: When calling a1.set(b1), a1 needs to update its reference, but also needs

to ensure b1 has a reference to a1 by calling b1.add(a1). Similarly, when calling

a1.set(null), which unsets a1’s reference to b1, b1 needs to remove its reference

to a1, and therefore a1 needs to call b1.remove(a1). Calling a1.set(b2) when a1’s

reference is already set to b1 is equivalent to calling a1.set(null) first.

34

• 0..*-0..*: When calling a1.add(b1), a1 needs to add b1 to its collection and needs to

call b1.add(a1), so that b1 also adds a1 to its collection. Similarly, calling a1.remove(b1)

triggers it to call b1.remove(a1). Note that if the collection is of type KeyIndexed, the

operation put needs to be called instead of add.

From those cases, we can see that the behaviour to ensure referential integrity could lead

to infinite recursion. A set operation in a1 triggers a set operation in b1, which in turn

triggers another set operation in a1, and so on. To avoid this, we need to keep track of

who first initiated the process in order to perform the operation only once on each side.

For example, a set operation could check that the reference is actually being updated, i.e,

given a different object (or not setting to null if it was already null). However, with a

non-unique collection, it is impossible to verify if the object was already just added or not,

because it could be found in the collection from a previous add, therefore we need another

solution which we will now explain further.

Conflict resolution models are required for all combinations, e.g., One-to-One (One and

OneOpposite), One-to-Plain (One and PlainOpposite), Plain-to-One (Plain and OneOppo-

site), Plain-to-Plain (Plain and PlainOpposite), etc. The exhaustive list is shown in Table

3–1.

We describe here some conflict resolution models to explain how referential integrity is

dealt with within the Association concern. We present the conflict resolution models (CRM)

OneToOne, OneToPlain and PlainToOne. To understand how they work, we also describe

the realization models (RM) OneOpposite and PlainOpposite:

OneOpposite [RM] in Figure 3–9 realizes only the feature OneOpposite and is extended

by conflict resolution models where the opposite association end is a single reference.

35

It defines the setSimple operation in |Associated, which is a helper operation for

dealing with referential integrity. It should not be available to the outside world,

and therefore its visibility is set to protected (#). The behaviour of setSimple is

not defined in OneOpposite as it depends on information about the original end. We

will be looking at the two different behaviours of setSimple, one is defined in the

realization model OneToOne (see Algorithm 2) and the other one is defined in the

realization model PlainToOne (see Algorithm 6). They differ because the association

end of origin is either a single reference or a collection.

Figure 3–9: Realization Model OneOpposite

OneToOne [CRM] realizes two features, One and OneOpposite, and extends the realization

models One and OneOpposite. The realization model One (see Figure 3–5a) defines a

getter and a setter in |Data and OneOpposite (see Figure 3–9) defines the operation

setSimple used as a helper method for dealing with referential integrity. In the model

OneToOne, the set operation of |Data is affected by the aspect message view setOp-

positeWhenSetting, shown in Algorithm 1, to deal with the bidirectional association.

Also, a behaviour is defined for setSimple, as shown in Algorithm 2, as we now know

that the opposite reference is a single object. Let’s look at an example.

Consider two classes A and B with a 0..1-0..1 bidirectional association between the

two. Looking at Figure 3–10, we have four objects a1, a2, b1 and b2 where a1 and b1

are associated and a2 and b2 are associated as in step 1. Now, we call a1.set(b2). In

36

Algorithm 1 Aspect Message View
setOppositeWhenSetting to advise
set(newAssociated) in feature OneToOne

if newAssociated is not null then
if oldAssociated is not null then
oldAssociated.setSimple(null)

end if
end if
newAssociated.setSimple(this)
[original behaviour of set]

Algorithm 2 Message View boolean
setSimple(newAssociated) in feature
OneToOne

if newAssociated is not null then
if oldAssociated is not null then
oldAssociated.setSimple(null)

end if
end if
myAssociated ← newAssociated
return true

step 2, a1 calls b1.setSimple(null), which unsets b1’s reference to a1 (and note that b1

does not try to unset a1’s reference to b1). In step 3, a1 calls b2.setSimple(a1) triggering

a2.setSimple(null) that unsets a2’s reference. Then, b2 sets its reference to a1 in step 4.

And in step 5, a1 finally sets its reference to b2.

a1 b1

a2 b2

1

a1 b1

a2 b2

2

a1 b1

a2 b2

3

a1 b1

a2 b2

4

a1 b1

a2 b2

5

Figure 3–10: Steps When Updating a Reference

PlainOpposite [RM] in Figure 3–11 realizes only the feature PlainOpposite and is extended

by conflict resolution models where the opposite association end is a plain collection

such as OneToPlain, PlainToPlain, OrderedToPlain, etc. It provides the operations

addSimple and removeSimple for |Associated. The addSimple operation simply

adds the elements to the collection without taking care or referential integrity. It is

a helper that is never called directly by the user. It is only called when a set or an

37

insert is performed on its opposite end to avoid infinite recursion. The removeSimple

operation works the same way for removing an element from the collection, it simply

removes without dealing with any other references.

Figure 3–11: Realization Model PlainOpposite

OneToPlain [CRM] realizes two features, One and PlainOpposite, and extends the real-

ization models One and PlainOpposite. The realization model One defines a getter

and a setter in |Data and PlainOpposite defines the addSimple and removeSimple of

|Associated. In OneToPlain, the aspect message view referenceOppositeWhenSetting

in Algorithm 3 is defined. It is used to advise the set operation of |Data. Consider

the association A 1-0..* B with objects a1, b1, b2 where a1 and b1 are associated. The

set operation is triggered by calling a1.set(b2), a1 first calls b1.removeSimple(a1)

and then calls b2.add(a1). Finally, a1 updates its reference from b1 to b2.

PlainToOne [CRM] realizes two features, Plain and OneOpposite, and extends the realiza-

tion models Plain and OneOpposite. In the realization model PlainToOne, two aspect

message views are defined: setOppositeWhenAdding that advises the add operation on

|Data and setOppositeWhenRemoving that advises the remove operation on |Data,

as shown in Algorithm 4 and Algorithm 5 respectively. When adding an element to

the collection, the reference of this element is set and when removing an element, its

reference is unset. It also defines the behaviour for setSimple in Algorithm 6. In Plain-

ToOne, we know setSimple is being called from either an add or a remove operation

38

Algorithm 3 Aspect Message View referenceOppositeWhenSetting to advise
set(newAssociated) in feature OneToPlain

if oldAssociated is not null then
done ← oldAssociated.removeSimple(this)
if not removed then

return false
end if

end if
if newAssociated is not null then
newAssociated.addSimple(this)
if not removed then

return false
end if

end if
[original behaviour of set]

(again, never from the user). It needs to remove itself from a previous list when being

added in a new one in case its previous reference was already set. Consider another

association A 0..*-1 B with non-associated objects a1 and b1. Calling a1.add(b1)

triggers a1 to call b1.setSimple(a1). Similarly, calling a1.remove(b1) triggers a1 to

call b1.setSimple(null).

Many-to-Many conflict resolution models handle referential integrity in the same manner:

an add operation triggers an addSimple and a remove operation triggers a removeSimple.

KeyIndexedToKeyIndexed is not supported. When an element is added in a map it requires

a key, keeping the referential integrity would require a second key. When putting a value in

one map by specifying the key and the value, it would need the opposite key to put on the

opposite map. Therefore, the user would have to specify two keys when putting an element

in a map. We believe this complicates usability and therefore do not support such a scenario.

39

Algorithm 4 Aspect Message View setOppositeWhenAdding to advise
add(newAssociated) in feature PlainToOne

if newAssociated is null then
return false

end if
set ← newAssociated.setSimple(this)
[original behaviour of add]

Algorithm 5 Aspect Message View setOppositeWhenRemoving to advise
remove(oldAssociated) in feature PlainToOne

if oldAssociated is null then
return false

end if
set ← oldAssociated.setSimple(null)
[original behaviour of remove]

Algorithm 6 Message View for boolean setSimple(newAssociated) in feature Plain-
ToOne

if oldAssociated is not null then
oldAssociated.removeSimple(this)
if not removed then

return false
end if

end if
myAssociated ← newAssociated
return true

40

3.6.2 Unique, Maximum and Minimum

Unique, Maximum, and Minimum are also optional features that need conflict resolution

aspects. Unique and Maximum impact the insertion operations and Minimum impacts the

removal operations. Unique is also selectable with a key-indexed collection, therefore it also

impacts the operations that insert elements for a given key. We created Unique, Maximum,

Minimum models that define the aspect message views checkUnique, checkMaximum and

checkMinimum respectively. The aspect message view checkUnique verifies that the element

is not already contained in the collection, checkMaximum ensures the maximum was not

reached before adding and checkMinimum ensures the minimum size restriction is not being

violated before removing an element. The aspect message views are applied through message

view references, because they advise operations from extended models. The operations are

advised in the realization models as follows:

• add(|Associated a) is advised in Maximum and UniquePlain

• remove(|Associated a) is advised in Minimum

• add(int index, |Associated a) is advised in MaximumOrdered and UniqueOrdered

• remove(int index) is advised in MinimumOrdered

• put(|Key k, |Value v) is advised in UniqueKeyIndexed

Minimum is not selectable with One even if a multiplicity with a lower bound of 1 and

an upper bound of 1 is possible. A unidirectional association end with a multiplicity of

1 requires a constructor that takes as parameter the reference to set, and prevents setting

the reference to null. However, a bidirectional association with at least one end with a

minimum multiplicity of 1 implies many more constraints [16]. When one object is created,

the constructor needs to immediately assign or create the other one to be able to reference

41

it right away. Also, the set operation cannot update the reference to null, and if it needs

to update to a new object, it needs to set the opposite reference to null, which is not

possible. We believe these are unpractical constraints and therefore, we never enforce the

minimum multiplicity of 1. Similarly, with a many association with a minimum constraint,

we do not enforce this constraint when creating the object. Once the collection has reached

its minimum capacity, it cannot be violated anymore. The user needs to ensure to have a

valid model once the updates are done. This could be enforced by the tool through protocol

models.

3.6.3 Combinations

When optional features are simultaneously selected and as a result, an operation is ad-

vised by more than one aspect message view, the resulting behaviour depends on the order

in which the models are woven. This works well for Unique and Maximum, since the be-

havioural modifications they perform are independent from one another. They both advise

insertion operations, and any order of application results in a valid message view. Minimum

does not augment the same operation as Unique and Maximum, therefore there is no conflict

between them.

However, the order matters when selecting Bidirectional in combination with any other

optional feature. In the message view, it needs to do the maximum/unique checks before

adding references on the opposite side. To ensure the right ordering, we had to define conflict

resolution models for all combinations of Bidirectional and Maximum/Minimum/Unique as

listed in Table 3–2.

The bidirectional realization model is extended first, and as a result it will be applied

first when weaving. Hence, its behaviour is inserted right before the original behaviour of the

42

Maximum Minimum Unique

Plain Maximum Minimum UniquePlain

PlainBidirectional MaximumPlainBirectional MinimumPlainBirectional UniquePlainBirectional

PlainToOne MaximumPlainToOne MinimumPlainToOne UniquePlainToOne

PlainToPlain MaximumPlainToPlain MinimumPlainToPlain UniquePlainToPlain

PlainToOrdered MaximumPlainToOrdered MinimumPlainToOrdered UniquePlainToOrdered

PlainToKeyIndexed MaximumPlainToKeyIndexed MinimumPlainToKeyIndexed UniquePlainToKeyIndexed

Ordered MaximumOrdered MinimumOrdered UniqueOrdered

OrderedBidirectional - - -

OrderedToOne MaximumOrderedToOne MinimumOrderedToOne UniqueOrderedToOne

OrderedToPlain MaximumOrderedToPlain MinimumOrderedToPlain UniqueOrderedToPlain

OrderedToOrdered MaximumOrderedToOrdered MinimumOrderedToOrdered UniqueOrderedToOrdered

OrderedToKeyIndexed MaximumOrderedToKeyIndexed MinimumOrderedToKeyIndexed UniqueOrderedToKeyIndexed

KeyIndexed - - UniqueKeyIndexed

KeyIndexedBidirectional - - UniqueKeyIndexedBidirectional

KeyIndexedToOne - - UniqueKeyIndexedToOne

KeyIndexedToPlain - - UniqueKeyIndexedToPlain

KeyIndexedToOrdered - - UniqueKeyIndexedToOrdered

Table 3–2: Maximum, Minimum and Unique Conflict Resolution Aspects

43

operation. Figure 3–6, seen previously, shows the message view of add when it is not advised,

Figure 3–12 shows the message view of add when it is advised by setOppositeWhenAdding

to ensure referential integrity, and finally Figure 3–13 show the message view when it is also

advised by checkMaximum. Due to the conflict resolution model, the check for maximum is

happening first.

Creating a large number of conflict resolution models seems like a lot of work, but most

of those conflict resolution models are easily created, since they only need to extend other

models in a specific order and do not contain any new structure or behaviour. With the

current Association concern, there are 225 possible selectable feature combinations. To

cover those combinations, we built 72 models out of which 30 were empty and just extended

other models. While this shows that building a concern is time consuming, the fact that we

did not need to define conflict resolution models for all possible combinations still represents

a reduction in development effort. Moreover, this work was done once in the scope of this

thesis, and from now on the concern is ready to be used in any situation without the modeller

having to deal with these intricate feature dependencies.

44

Figure 3–12: Message View of the add Operation in PlainToOne

Figure 3–13: Message View of the add Operation in MaximumPlainToOne

45

Chapter 4
Simplifying the Use of the Association Concern

Chapter 3 described the detailed design of the Association concern with many possible

variations and with intricate behaviour to ensure the desired properties maximum, min-

imum, uniqueness, and bidirectionality. Although the design of the Association concern

required considerable effort, the design knowledge is now encapsulated behind the variation,

customization and usage interfaces, and available to be reused.

Associations are a very common concept in software design modelling. They are widely

used, and hence, it is important to streamline the reuse of the Association concern as much

as possible. The standard CORE reuse process, described in Section 2.1.2, which is defined

for reusing any concern, can also be used for reusing the Association concern. It is explained

in more detail in Section 4.1 of this chapter. Unfortunately, due to its generic nature, the

process is unnecessarily tedious and, in this case, potentially error prone for the modeller.

We therefore decided to devise a domain-specific language (DSL) for reusing the Association

concern, which is inspired by the UML notation for associations. This DSL is described

in Section 4.2. Details about the implementation of this DSL in the TouchCORE tool are

presented in Section 4.3.

4.1 Reusing Association with the Standard CORE Reuse Process

Before the creation of the Association concern, the user could draw an association between

two classes as seen in Figure 2–3 of the background chapter. When doing so, the code

generator would only create a reference in the class if the multiplicity was 1 and it would

46

create an ArrayList for an association end of multiplicity many. Moreover, none of the

operations were created to add or remove elements to the collection.

Now that a concern was designed, the user may reuse the Association with the standard

CORE reuse process. This section, however, elaborates on the effort that it takes for the

modeller to reuse the concern through this process, and then discusses mistakes that the

user could make to highlight the need for a streamlined interface for reusing the Association

concern. For every association end the following happens:

1. The modeller indicates a desire to reuse Association. This involves browsing through

the reusable concern library to find the Association concern, which typically involves

navigating down the folder hierarchy.

2. Once the variation interface is displayed, the modeller must make a selection of the

desired variant. The feature model is large and it takes cognitive effort to visually

browse through it.

3. Once the selection is done, the customization interface for the desired variant is dis-

played, as shown for the Observer concern in Figure 2–5b. Now, the modeller has to

manually establish the mappings of the source and destination classes of the associ-

ation as presented in Figure 4–1. This means that |Data and |Associated have to

be mapped. The mappings of the operations are not necessary, because they are not

part of the customization interface. However, due to the fact that mappings have to

be used to rename the generic names of operations to more specific names, e.g., add

to addToMyObservers, it leads modellers most of the time to specify mappings for

the operations nevertheless. Furthermore, whenever two associations connect the same

classes, operations must be mapped to prevent duplicate operation signatures. Again,

47

establishing these mappings manually is tedious and time consuming, especially since

the list of operations provided by |Data for some of the variants of the Association

concern can be quite extensive.

4. There is no visualization in the class diagram for the association when using textual

mappings. Therefore, the user could still draw it and this could lead to inconsistencies.

5. Finally, a bidirectional association requires two manual reuses. This not only consti-

tutes a duplication of effort, but is also fairly unintuitive. Without a DSL, we cannot

enforce that both directions have a reuse associated to it.

As detailed above, reusing the Association concern with the standard CORE reuse process

is very time consuming and unintuitive. In addition, the association is represented by the

reuse and textual mappings, and is not linked to the visual representation of the association

shown in the class diagram built with TouchCORE. In Figure 4–1, the association was drawn

independently from the reuse. If there were two associations drawn between |Subject and

|Observer, there would be no way to distinguish which one the reuse was referring to.

Therefore, it would be possible to have associations drawn between classes without the

Association concern being reused, or reusing the concern without any visual representation

of the Association linking the classes. This is confusing to the modeller and in the worst

case could again lead to inconsistencies in the model.

In light of these problems, we streamline the process for the users to minimize their effort

when reusing Association and to eliminate any risk of misuse. In MDE, in general, applying

domain knowledge is done through Domain-Specific Languages. The next section describes

how we defined our own DSL [30] for applying the Association concern, which is inspired

48

Figure 4–1: Association through Concern Reuse and Mappings

by the concrete syntax of UML associations. Section 4.3 then presents how this DSL was

implemented in the tool.

4.2 A DSL for Applying Association

UML already defines a visual notation for associations. Therefore, we first looked into

what UML offers and extended the notation where necessary to better fit our situation.

4.2.1 Associations in UML

To come up with a better solution for reusing the Association concern, we looked into the

UML specification [20]. UML already provides visual elements that allow the modeller to

express some of the desired properties of an association, e.g., arrows for navigability, boxes

for qualified associations and multiplicity elements. The multiplicity elements are of greater

interest to us as they cover most of the features offered in the variation interface. UML

describes their representation as follows [20, p. 34]:

49

“The specific notation for a MultiplicityElement is defined for each concrete

kind of MultiplicityElement. In general, the notation will include a multiplic-

ity specification, which is shown as a text string containing the bounds of the

multiplicity and a notation for showing the optional ordering and uniqueness

specifications.”

A multiplicity element contains isOrdered and isUnique attributes. For qualified associations,

UML handles them as follows [20, p. 201]:

“A qualifier is shown as a small rectangle attached to the end of an associ-

ation path between the final path segment and the symbol of the Classifier that

it connects to. The qualifier rectangle should be smaller than the attached class

rectangle, unless this is not practical. The qualifier rectangle is part of the associ-

ation path, not part of the Classifier. The qualifier rectangle is attached to the end

of the association path that represents the memberEnd that owns the qualifier.”

An example of the UML notation with the isOrdered attribute set to true and an example of

the notation for a qualified association are shown in Figure 4–2a. From the documentation,

we conclude that UML handles visualization for the multiplicities, the ordering and unique-

ness specification and the qualified associations. Looking at Table 4–1, we conclude that

UML handles most of the features offered in the concern, but is missing low level selections

for specific implementation choices.

4.2.2 The proposed DSL

From the multiplicity specifications proposed by UML, order-designators and uniqueness-

designators, it is possible to infer a data type for the implementation of the collection. For

50

Feature from the Association concern UML notation

Minimum Lower bound of multiplicity > 0

Maximum Upper bound of multiplicity > 1 and not *

Bidirectional Both ends with arrows →

Unique isUnique attribute on the multiplicity element

Ordered isOrdered attribute on the multiplicity element

Unordered isOrdered attribute on the multiplicity element

KeyIndexed Small rectangle attached to the end of an association path

ArrayList -

LinkedList -

Stack -

HastSet -

TreeSet -

HashMap -

TreeMap -

Table 4–1: UML Notations to Represent the Features of the Association Concern

51

{ordered} 0..*

0..*A

A B

BKey

(a) UML Notation

{ordered} 0..*

{keymap} 0..*
A

A B

BKey

(b) Proposed Extension of UML

Figure 4–2: Comparison between UML and our DSL

example, if unique and not ordered, the collection is a set. However, it does not allow express-

ing an implementation choice (e.g., TreeSet vs. HashSet). Since impacts on system qualities

are available in the feature model, we want users who know their system requirements to

be able to make a complete selection by selecting a specific implementation data structure.

Therefore, multiplicity specifications in our DSL also include implementation specification

as shown in Figure 4–2b.

When a user draws an association, we know the class of origin and the class of destination.

As they are the only elements of the customization interface, the mappings can be deduced

automatically. Therefore, we propose an automatic reuse of the concern. Feature selection is

also done automatically to some extent as we are aware of the navigability and multiplicity

bounds of each association end. However, to decide on an implementation class, the user

still needs to be presented with the variation interface to make a decision. To do so, he

simply has to double click on the multiplicity element and the feature model is displayed.

We describe in the next section how this was implemented.

4.3 Implementing the DSL in TouchCORE

The DSL described in the previous section has been implemented in TouchCORE and is

now ready to use. This section presents an overview of the steps involved in updating the tool:

52

the modifications to the RAM metamodel and to the RAM weaver, the automated generation

of mappings and feature selection, and the necessary updates to the GUI. This involved

modifying the association visualization to support the DSL graphically. The last subsection

describes further UI changes to increase usability by hiding automatically created operations

unless they are used, by hiding the standard visual representation of the Association reuse

from the concern reuses box, and by moving the concern outside of the library to prevent

users from reusing it manually.

4.3.1 Modifications to the Metamodel

The first change that had to be applied in order to simplify the use of the Association

concern was to extend the RAM metamodel. Concern reuses are represented in the meta-

model with the class COREModelReuse. As we saw in the CORE metamodel in Figure 2–6,

a COREModelReuse is contained by a COREModel, which means it is saved within the As-

pect in our case. In order to also store the reuse of the Association concern within a specific

association end, a link between AssociationEnd and COREModelReuse was introduced in

form of a unidirectional association AssociationEnd --> 0..1 COREModelReuse as shown

in Figure 4–31 .

4.3.2 Modifications to the Weaver

Drawing a line between two classes to represent an association is a DSL for specifying the

intent of applying the Association concern. Actually applying the concern is done using the

1 Note that the minimum cardinality is set to 0 because the Association concern itself, in
order to prevent recursive reuse, should not reuse the Association concern, even if it defines
associations.

53

AssociationEnd COREModelReuse
featureSelection

Classifier

Association

StructuralView

1..1 classifier

0..* associationEnds

endsassociation

classes

0..* associations

COREModel

Aspect
structuralView

1..1 0..*

2..21..1 0..1

Figure 4–3: Changes to the RAM Metamodel

weaver, which combines the structure and behaviour of the current model with the structure

and behaviour of the model generated from the realization models of the Association concern

that correspond to the selected configuration. In the resulting model, we would expect to

find that the line between |Subject and |Observer is gone, as it is replaced by the concrete

realization of the association, e.g., one using an intermediate ArrayList collection.

The weaver, however, does not allow the removal of model elements [25]: it can only add

new model elements or merge model elements2 . Therefore, when weaving a model that is

reusing the Association concern, the weaver keeps the association from the model and adds

another one from the realization models of the concern, leading to a woven model where the

association is represented twice. This is illustrated in Figure 4–4a, where the myObservers

end from the original model is now also realized by the two associations going from |Subject

to ArrayList to |Observer. As a result, there are actually now two ways of navigating from

2 A current limitation in TouchCORE also prevents merging of associations and association
ends.

54

|Subject to |Observer. Likewise, the mySubject end is also duplicated, as it is now also

realized by the associated end.

When composing two models, the weaver maintains a data structure called weaving in-

formation. The weaving information is a map where the key is a model element from one

model, and the value is a model element (of the same type) from the other model. Essentially,

it maintains a mapping from the original model element to the element it was woven into

(in the resulting model). When weaving, the weaving information gets filled with classes,

attributes, operations and associations according to the customization mappings provided

by the user and the default rules defined for model extensions in CORE. Finally, the last

step in weaving a reuse is called post processing. During that step, all occurrences of the key

elements in the weaving information are merged into the value elements. All model elements

from the input models that are not in the weaving information data structure are copied to

the output model. The post processor also merges any duplicate classes it finds. To improve

the weaver in order to deal properly with associations, we added an additional step called

processAssociations at the end of this post processing phase, which is only executed if the

current reuse being woven is of the Association concern. This step handles two different

cases:

• Single references [e.g., mySubject end]: In the case of single references, we add an

entry in the weaving information where the myAssociated end is the key and the end

in the model is the value (mySubject in our example). As a result, the weaver then

merges the association ends. This also ensures that all references to associated in the

message views will be updated to mySubject.

55

(a) Before Modifying the Weaver (b) After Modifying the Weaver

Figure 4–4: Woven Model of the Observer reusing Association

• Collections [e.g., myObservers end]: In the case of an association end with multiplic-

ity many, the original association end is refined, and its name replaces the collection

name in the association realization model. For example, in the case where Association

is reused as part of the Observer concern, the myObservers end is used to update

the association coming from the concern. Its name and multiplicity are preserved as

follows: the collection end is renamed to myObservers and the elements end is given

multiplicity 0..1.

4.3.3 Streamlining the Association Reuse

The main flow of execution in the tool follows the MVC [13] architecture style. The

core components are Views, Handlers and Controllers. Handlers listen for events from the

Views, which implement the visual representation of the model elements as part of the GUI.

The handlers interpret the events, and once they determine what the modeller wants to

accomplish, they call the Controllers to make command-based changes to the model.

56

In the case of associations, the AssociationView encapsulates the main visual represen-

tation of the association. It is composed of TextViews for the role name, e.g. mySubject

or myObservers, and the multiplicity of both ends: fromEndRoleName, toEndRoleName,

fromEndMultiplicity and toEndMultiplicity. Their handlers, AssociationRoleNameHandler

and AssociationMultiplicityHandler call setRoleName and setMultiplicity of the

AssociationController, respectively.

When an association is drawn from one class to another, the createAssociation in

the StructuralViewController is called. Now, it triggers a setFeatureSelection in the

AssociationController for each navigable end. The setFeatureSelection is responsible

for creating a reuse for the Association concern, which includes the generation of mappings

and the feature selection and storing the reuse in the association end.

Automated Generation of Mappings

The modeller must customize the generic model elements of the concern by mapping

them to the model elements in the reusing model. As explained in Section 4.1, this can be

quite tedious for the Association concern, as typically many of the generic operations should

be renamed to reflect their more specific purpose which involves mappings of operations.

For example, get should be renamed to getMySubject. This subsection describes how this

customization step was fully automated.

An operation createReuseInstantiation was added to the AssociationController.

It creates the ClassifierMappings (for |Data, |Associated and optionally for |Key) and

the OperationMappings (for operations like add, etc.). Since operations need to be mapped

to existing operations in the classifier, and since they typically do not exist when reusing the

Association concern, they are first created. The operation createOperationMappings in

57

the controller deals with this. It copies the operations of the classes inside the concern and

clones them. It renames them by appending the name of the association end before adding

them to the mapped class in the reusing concern.

In Figure 4–5, a unidirectional association is drawn, therefore the concern is reused once.

|Data is mapped to |Subject and |Associated is mapped to |Observer. |Data has a getter

and a setter. We then created a getter and a setter for |Subject and renamed them with the

role name of the association end myObserver to get getMyObserver and setMyObserver.

Theses operations are also mapped. In Figure 4–6, a bidirectional association is drawn,

hence, the concern is used twice. In the first reuse, |Data is mapped to |Subject and

|Associated is mapped to |Observer and vice versa in the second reuse.

Now that the operations are named after the role name of the association end, it makes

sense to ensure that this remains the case even when updates are made to those role names.

To this aim, the operation setRoleName, invoked whenever the user updates the role name

of an association end, was extended to iterate through the operations from the operation

mappings in the corresponding reuse and rename them accordingly.

Automated Feature Selection

As explained in Section 4.2 of this chapter, our DSL provides a visual notation that

the modeller can use to specify the desired association features: Minimum, Maximum and

Bidirectional. In order to ensure the consistency between the specification provided by

the modeller using the DSL and the feature selections stored in the Association concern

reuse, the feature selection of the Association concern is now performed automatically,

derived from the properties of the association that was drawn. It is performed without

the modeller being aware of it. As soon as an association is created or modified, the

58

Figure 4–5: Observer Model with a Uni-
directional Association

Figure 4–6: Observer Model with a Bidi-
rectional Association

controller analyses the properties of the association. It checks whether it is navigable in

both directions and what the multiplicity is on the navigable ends. To this aim, an oper-

ation getSelectedFeatures was added to the AssociationController, which takes the

associationEnd and the oppositeEnd as parameters and creates a set of selected features

as follows:

One when the upper bound of the multiplicity is 1.

Many when the upper bound of the multiplicity is greater than 1.

Maximum when the upper bound of the multiplicity is greater than 1 and not many (*).

Minimum when the lower bound of the multiplicity is 1 or greater and the upper bound

is greater than 1.

OneOpposite when the association is navigable in both directions and the upper bound on

the multiplicity of the opposite end is 1.

59

ManyOpposite when the association is navigable in both directions and the upper bound

on the multiplicity of the opposite end is greater than 1.

The getSelectedFeatures operation is not only used when creating a new association

in a model, but also when updating the multiplicity or the navigability. The operations

setMultiplicity and switchNavigable of the controller were extended to update the se-

lection whenever the multiplicity or navigability of an association is modified. In Figure 4–5,

the selected feature is One and in Figure 4–6, the selected features are One and OneOpposite

for both reuses as the multiplicity is 1 on both sides.

Modifications to the Association View

In addition to the features selected automatically, the concern offers implementation

classes to the modeller that he can choose from. Changes to the UI were required to allow

the user to make this selection manually. Those changes reflect UML’s notation for ordering

and uniqueness specifications. TextViews were added to the AssociationView to handle

displaying the feature selection: fromEndFeatureSelection and toEndFeatureSelection.

These TextViews are, however, only created when the multiplicity of the association end

is greater than 1. When the multiplicity is 1, the user should never be presented with the

variation interface as he does not need to select a data structure.

When the TextView is created, i.e., as soon as a multiplicity greater than 1 is entered,

a clickable text {select} is displayed as shown in Figure 4–7a. Double clicking on this

text component presents the variation interface of the Association concern to the modeller.

However, the variation interface presented is just a subset of the one shown in the previous

chapter. The features that can be inferred from the model are omitted from the feature

model. Specifically, the Bidirectional subtree, the One, Minimum and Maximum features

60

are not shown, as allowing the modeller to select and deselect those features manually could

result in an inconsistency between the information specified using the DSL and the actually

selected features. For example, the modeller could select Minimum whereas the lower bound

of the multiplicity is 0. Once a selection is made, it is displayed next to the multiplicity in

curly brackets, such as {arraylist}, as is shown in Figure 4–7b.

Another change made to the view is the visualization of qualified associations. After

a key-indexed selection is made, a box is rendered next to the class that is at the origin

of the association end, which is shown in Figure 4–7c when reusing HashMap. The box

allows the modeller to select the type of the key. Once the selection of the key is made,

the AssociationController creates an additional customization mapping and updates the

operation signatures.

4.3.4 Further UI Improvements

Once we started using our DSL, we realized we could further improve the user experience

by reducing the visualization clutter and by restricting direct access to the concern.

Preventing Visualization Clutter

The list of operations added to a class when reusing the Association concern can be quite

extensive, and not all the operations are always relevant to the user. The list also takes up

space on screen that could be used for other purposes.

For practicability reasons, the operations are therefore added automatically when creating

associations (see subsection 4.3.3) are hidden by default, but can be shown if the modeller

so desires.

To implement this functionality, the ClassView has now a boolean attribute showAllOperations

that is initialized to false. The ClassView holds a map with the Operation as key and

61

(a) Reusing Many

(b) Reusing Unique and ArrayList

(c) Reusing HashMap

Figure 4–7: Class Diagram of the Observer Structural View reusing the Association Concern

62

the OperationView as value. On adding an operation to the class, the view creates an

OperationView and maps it to that Operation, it is then added to the operationsContainer

of the ClassView if the showAllOperations attribute is true. Expanding and collapsing op-

erations consists of adding and removing the OperationView from the operationsContainer.

In order to expand and collapse operations, a button was added to the class menu. When

an operation is made public or used in a message view, it is always shown. Currently, it

only hides operations mapped to operations from the Association concern, as we did not

find other use cases where such a hiding feature could be useful, but the implementation was

performed in such a way that it could easily be reused for other concerns, if needed.

Preventing Manual Updating of Mappings

Concern reuses within an aspect are listed in TouchCORE within a “Concern Reuses” box

as shown in Figure 4–1. Since the Association concern is reused frequently in most models,

this visualization is quickly overloaded and it is hard to understand the concern dependencies

visually. Also, users should not be able to modify the mappings through this interface. We

decided to hide reuses of the Association concern from this list. This strengthens the fact

that the reuse of the Association concern happens without the user knowing it is happening.

Preventing Manual Reuse of the Association Concern

Now that we created a DSL for reusing the concern in a streamlined and safe manner,

the concern should clearly be used only through this DSL to prevent incorrect use. The

concern was originally part of the reusable concern library, which could lead modellers to

reuse the concern manually. Therefore, the concern was moved out of the reusable concern

library into a resources directory.

63

Chapter 5
Benchmarks and Goal Models

Deciding on a concrete data structure for implementing an association is not always

trivial. In order to provide guidance to the modeller who is reusing the Association concern,

we conducted a series of experiments to determine the impact that the different realizations

with Java collections have on performance and memore use.

Section 5.1 of this chapter presents the experimental setup and methodology for devel-

oping our impact models. Then, we describe in different sections how we built goal models

for Increase Insertion Performance, Increase Iteration Performance, Increase Access Perfor-

mance, Increase Removal Performance and Minimize Memory Usage. Section 5.7 compares

the benchmarks performed on other platforms. The last section discusses the benefits and

drawbacks of impact models.

5.1 Experimental Setup and Methodology

5.1.1 Experimental Setup

We ran our experiments on a machine with a 2,4 GHz Intel Core i5 processor and 16GB

1600 MHz DDR 3 memory. The machine was running Mac OS X 10.9.5. The Java SE

Runtime (v. 1.8.0_20-b26) was configured with 384MB heap space. We created a jar file

that contained the code for the experiment and ran it from the command line.

5.1.2 Methodology

Georges [17] compares Java performance evaluation methodologies in a paper where he

affirms:

64

“Java performance is far from being trivial to benchmark because it is affected

by various factors such as the Java application, its input, the virtual machine, the

garbage collector, the heap size, etc. In addition, non-determinism at run-time

causes the execution time of a Java program to differ from run to run.”

We therefore designed our experiments to mitigate some of the problems that Georges refers

to. Nevertheless, we are aware that the values obtained by our experiments do not encode

an absolute truth.

The model used for the experiment was the simplest possible model, i.e., a model with a

directed association myB with multiplicity 0..* between classes A and B.

To measure the impact on performance, we completed benchmarks that were inspired

by a performance evaluation performed by Ahuja [4]. We created n instances of B (n = 10

(small), n = 100 (medium), n = 1,000 (large), n = 10,000 (extra-large)), and added them

to the collection myB. We performed the following steps for each performance benchmark:

1. We ran experiments with associations of different orders of magnitude (#elements =

n) and recorded the time t it took to execute each operation op n times within a loop.

For example, we calculated the time it took to add 10 elements in a list and not the

time it took for each addition. Some small overhead might be due to the for loop, but

the overhead is reasonably small.

2. We ran each sequence 60 times and discarded the first 10 runs to avoid including time

used for code loading/initialization in our measurements.

3. From the set of 50 values, we calculated the average (t̄) and the median (t̃).

4. We built two charts: a bar chart and a line chart to visualize the data . For both charts,

the x-axis represents the size of the collection and the y-axis, using a logarithmic scale,

65

represents the median execution time obtained from the 50 measurements. In the bar

chart, the vertical black line on each bar represents the 10th and 90th percentile range.

5. From the median, we then determined the relative values to be used in the impacts

models. The lower the median value, the better the performance. Hence, since in goal

models higher contributions are better than lower contributions, we use the negated

median values as contributions to the Increase Performance goal.

For each performance benchmark, we provide the Java code that iterates and performs

the op n times, as well as a table with t̄, t̃ and a chart representative of the table for

each collectionWe show only one impact model for increasing the performance (Increasing

Insertion Performance) that groups 2 sub-goals, one for small data and one for big data.

5.2 Insertion

The insertion experiment was done by passing an array of Bs and that were all added to

the collection through a for loop as shown in Algorithm 7 by calling the operation add1 . The

results for the experiment that focusses on insertion performance are shown in Table 5–1.

When looking at the trend line of the median performance depicted in Figure 5–2, we

observe that ArrayList and LinkedList consistently perform well, whether the size of the

collection is big or small. For small collections, LinkedList slightly outperforms ArrayList,

whereas ArrayList is slightly better than LinkedList for big collections. TreeSet and

1 For ordered collections, add effectively appends the element passed as a parameter to
the end of the collection. For lists, the insertion at a certain index through add(index,
object) could also be tested and the results captured in a separate goal model. However,
we did not run benchmarks for this case as the operation is not available for all collections.

66

TreeMap clearly perform worst when the size is small. As the size increases, TreeSet is still

the least performant, but TreeMap slowly outperforms HashSet.

The impact model for Increase Insertion Performance is presented in Figure 5–3. There

are 2 sub-goals: one for small sizes that combines sizes of 10 and 100 and one for big sizes

that combines sizes of 1,000 and 10,000 as the trends for each group are similar. Each

sub-goal contributes evenly to the parent goal. To calculate the contribution values used in

the impact model, we used an approximation of the relative values of the sum of the medians

within each subgroup. For example, in the collection of sizes 10 and 100 for ArrayList the

median is 2.55μs and 15.4μs, which sums to 17.95μs. For LinkedList, 2.2μs and 10.4μs sum

up to 12.6μs. 17.95
12.6

≈ 3 : 2 . Therefore, the weight on ArrayList is -3 and the weight on

LinkedList is -2 for collections with a smaller size.

Algorithm 7 Algorithm for Timing Inserting n Elements

public static long addToCollection(
ArrayList collection , int n, B[] arrayOfBs) {

long before = System.nanoTime ();
for (int i = 0; i < n; i++) {

collection.add(arrayofBs[i]);
}
long after = System.nanoTime ();
return after - before;

}

67

Figure 5–1: Insertion Performance showing Median in μs, as well as 10th and 90th Percentile
Range

n 10 100 1,000 10,000

t̄ t̃ t̄ t̃ t̄ t̃ t̄ t̃

ArrayList 3.73 2.55 17.1 15.4 73 73 238 239

LinkedList 42.27 2.2 60.5 10.4 122 73 273 265

Stack 44.55 3.26 71.5 19.8 140 111 377 367

HashSet 39.41 4.09 71.5 37.8 293 319 1355 1289

TreeSet 15.78 13.95 151.2 84.2 362 330 2806 2619

HashMap 4.5 2.54 38.2 33.6 192 176 632 560

TreeMap 13.71 12.81 130.7 63.5 233 164 1147 1029

Table 5–1: Insertion Performance Results in μs

5.3 Iteration

The iteration was done through a foreach loop that used the underlying iterator as

shown in Algorithm 8. For this case, the loop does not represent an overhead as it is part of

68

Figure 5–2: Median Insertion Performance in μs with Trend Line

the iteration process we want to measure. A summary of the measured performance results is

presented in Table 5–2. The median performance together with the 10th and 90th percentile

are shown in Figure 5–4, and median trend is shown in Figure 5–5.

Overall, iterating over an ArrayList or a LinkedList performs consistently well, and

performance increases considerably when the collection grows to 10’000 elements. TreeMap

and HashMap hav initially very bad performance, but perform better with big collections.

Iterating over a Stack and TreeSet performs similarly, ranging from ok for small collections

to bad for big collections. Based on the trends, we clustered the impact model for Increase

Iteration Performance into 3 subgoals, one for small collections (≈10), one for mid-size

collections (≈ 100), and one for big collections (1000+).

69

F
ig

ur
e

5–
3:

In
cr

ea
se

In
se

rt
io

n
P
er

fo
rm

an
ce

Im
pa

ct
M

od
el

70

Algorithm 8 Algorithm for Timing Iterating over n Elements

public static long iterateCollection(ArrayList collection) {
long before = System.nanoTime ();
for (B b : collection) {

helper = b;
}
long after = System.nanoTime ();
return after - before;

}

n 10 100 1’000 10’000

t̄ t̃ t̄ t̃ t̄ t̃ t̄ t̃

ArrayList 3.99 3.6 49.2 11.2 94 57 41 25

LinkedList 5.3 4.2 10.6 8.8 62 57 50 42

Stack 5.31 4.33 13.8 12.7 84 77 267 263

HashSet 3.74 2.92 12.4 11 86 76 195 166

TreeSet 4.29 3.52 22 17.3 93 98 268 229

HashMap 6.07 4.95 29.6 25.8 118 102 171 93

TreeMap 6.23 5.92 36.8 47 81 70 180 118

Table 5–2: Iteration Performance Results in μs

5.4 Random Access

Access performance is possible for lists (with an index) and for maps (with a key). It is

however not a feature of sets.

The algorithm for random access performance is shown in Algorithm 9. Now, the over-

head also includes getting a random number. To ensure the compiler will not get rid of

the access if the value accessed is never used, we pass an array and fill it with the random

values which we then use to remove randomly. Random gives a uniform distribution of ran-

dom numbers, therefore we know that for lists, the objects were accessed uniformly. We

71

Figure 5–4: Iteration Performance showing Median in μs, as well as 10th and 90th Percentile
Range

Figure 5–5: Median Iteration Performance in μs with Trend Line

72

observe through Figure 5–6 and Figure 5–7 that ArrayList and Stack are the best option

throughout all sizes, closely followed by HashMap. LinkedList is very costly for big collec-

tions, and TreeMap is also not great.Based on the trends, we clustered the impact model

for Increase Access Performance into 3 subgoals, one for small collections (≈10), one for

mid-size collections (≈ 100), and one for big collections (1000+).

Algorithm 9 Algorithm for Timing Randomly Accessing n Elements

public static long accessElementsInCollection
(ArrayList <X> collection , int seed , int n, B[] randomBs) {

Random random = new Random(seed);
long before = System.nanoTime ();
for (int i = 0; i < n; i++) {

randomBs[i] = collection.get(random.nextInt(n));
}
long after = System.nanoTime ();
return after - before;

}

n 10 100 1’000 10’000

t̄ t̃ t̄ t̃ t̄ t̃ t̄ t̃

ArrayList 7.5 5,46 17.8 15,8 70 66 230 207

LinkedList 12.52 10,54 22.2 19,4 523 492 48389 47715

Stack 7.08 7,2 16 14,9 96 77 319 305

HashMap 6,06 5,76 21.2 21,7 124 115 472 352

TreeMap 7,21 6,14 38.4 34,1 213 198 2028 1787

Table 5–3: Access Performance Results in μs

5.5 Removal

In order to remove randomly, we pass the array of random Bs that was generated in the

previous section when randomly accessing. In Algorithm 10, we can see that there is an

73

Figure 5–6: Median Random Access Performance sin μs, as well as 10th and 90th Percentile
Range

Figure 5–7: Median Random Access Performance in μs with Trend Line

74

extra overhead due to accessing a B in the array, but it is a straightforward way to empty

the collection randomly. The performance results are shown in Table 5–4.

We observe through Figure 5–8 and Figure 5–9 that removing for TreeMap and TreeSet

is less performant for smaller collections, but removing from ordered collections (ArrayList,

LinkedList, Stack) is very costly for bigger collections. HashMap and HashSet perform

mediumly well for small collections, and best for big collections. Based on the trends, we

clustered the impact model for Increase Access Performance into 3 subgoals, one for small

collections (≈10), one for mid-size collections (≈ 100), and one for big collections (1000+).

Similar to the adding, we could have also determined the performance of removing with an

index, but we decided to not run benchmarks for this situation because it is only applicable

to ordered collections.

Algorithm 10 Algorithm for Timing the Removal of n Elements from the Collection

public static long removeFromList(
ArrayList collection , int n, B[] randomBs) {

long before = System.nanoTime ();
for (int i = 0; i < n; i++) {

collection.remove(randomBs[i]);
}
long after = System.nanoTime ();
return after - before;

}

75

Figure 5–8: Median Removal Performance in μs, as well as 10th and 90th Percentile Range

n 10 100 1’000 10’000

t̄ t̃ t̄ t̃ t̄ t̃ t̄ t̃

ArrayList 3.24 3.04 44.8 48.1 181 174 14954 13568

LinkedList 3.95 3.06 23.2 26.9 838 812 101582 97444

Stack 6.37 6.1 36.7 38.2 225 183 9065 7951

HashSet 7.78 6.8 25.2 21.2 215 153 417 302

TreeSet 13.1 12.05 136.6 97.5 290 186 713 597

HashMap 41.25 5.28 68.9 17.6 149 106 357 351

TreeMap 10.62 9.1 70 80 199 186 1335 1111

Table 5–4: Removal Performance Results in μs

5.6 Memory Footprint

We also wanted to compare memory usage of the presented collections. To determine

the size of the collection in the memory of the virtual machine we used the Heap Walker of

JProfiler [32]. The retained size of the collection includes the size of the elements contained

76

Figure 5–9: Median Removal Performance in μs with Trend Line

in the collection, which in our case is 16 bytes per element. We therefore substracted 16

bytes * n to obtain the actual amount of memeory that the collection data structure uses.

Table 5–5 shows the memory usage of the collections for six different sizes. We observe

the values are proportional to n. Thus, we captured the results of the experiment in one

single Minimizing Memory Footprint goal model, using the values in the column where n is

1’000, which is shown in Figure 5–10.

Figure 5–10: Minimize Memory Footprint Impact Model

77

n 10 100 1,000 10,000 100,000 1,000,000

ArrayList 80 480 5k 56k 426k 4861k

LinkedList 272 2432 24k 240k 2400k 24000k

Stack 88 688 5k 41k 655k 5242k

HashSet 464 4304 40k 385k 4248k 40388k

TreeSet 464 4064 40k 400k 4000k 40000k

HashMap 448 4288 54k 543 5846k 56386k

TreeMap 448 4048 54k 558 5598k 55998k

Table 5–5: Memory Usage in bytes

5.7 Determining the Performance Impact of the Underlying Platform

In order to determine how dependent our results are on the underlying platform, we ran

the ArrayList experiments for Insertion, Iteration, Access and Removal also on a different

machine. The machine was equipped with a 2,5 GHz 6-core Intel Xeon processor and 8GB

2500 MHz DDR 3 memory. The machine was running 3.16.0-29-generic GNU/Linux Ubuntu.

The Java SE Runtime (v. 1.8.0_60-b27) was also configured with 384MB heap space. We

used the same jar file, executed from the command line.

In the 4 graphs of Figure 5–11, we observe that the median performance for all 4 exper-

iments varies slightly between MacOS and Linux. Also, the 10th and 90th percentile range

differs between the two platforms, MacOS being more consistent for Insertion and Access,

while Linux tends to be more consistent for Iteration and Removal. However, the median

trends are very similar between the two platforms.

From these 4 experiments on Linux we conclude that for now our impact models do not

need to take into consideration the platform, since the weights in our impact models are

anyhow just approximations of the trends. Furthermore, the impact models currently used

78

(a) Insertion (b) Access

(c) Iteration (d) Removal

Figure 5–11: Comparing Performance Results for ArrayList on Mac OS and Linux

in TouchCORE cannot be parameterized, which would be necessary to adjust the impacts

depending on a user-provided platform parameter. In the future, if the impact models of

TouchCORE are extended to support parameterization, one could perform more extensive

experiments to determine the platform dependencies, but this is out of the scope of this

thesis.

5.8 Discussion

Impact models in CORE are currently exclusively specified using the goal modelling

notation [23]. Goal models work well in the context of CORE, because they allow vague,

hard-to-measure system qualities to be evaluated, e.g., user convenience or security. In

addition, more quantifiable qualities can be specified, e.g., cost and number of messages

79

exchanged. Unfortunately, impact models can not be parameterized with dynamic informa-

tion from the reuse context. As a result, our impact models can not be used for predicting

the actual memory use or the actual performance of the final application. Rather, they are

intended to help the modeller make design decisions by quantifying the impacts that one

selection has over another relatively speaking. There exist dedicated performance modelling

languages that offer advanced performance simulation and prediction capabilities [26], but a

discussion on how to combine these with CORE is out of the scope of this thesis.

80

Chapter 6
Related Work

To our knowledge, the concern-orientation reuse paradigm is currently the only modelling

approach that supports the encapsulation of different structural and behavioural designs and

implementations within one reusable model. As far as we know, this is the only work that

tried to encapsulate the variations of associations. Many research projects are oriented

towards improving code generators when it comes to associations. It is one of the concepts

that is particularly lacking in some tools, they fail to capture the variations that affect the

semantics of an association [5].

In TouchCORE, no work had to be done on the code generator to support associations,

because all the behaviour is modelled. Therefore, if in the future the design of the Association

concern needs to be updated in order to support new features of Association (e.g., to make

them thread safe), no understanding or modifications of the code generator are required. The

concern designer just needs to open the concern in TouchCORE and update the features,

class diagrams and message views.

We explored how they discuss and handle the difficulties in translating multiplicities and

navigability, and in some cases visibility, to code. However, this thesis does not deal with

visibility as the tool currently only supports private association ends.

Harrison (2000) describes a new method for generating Java implementation code from

UML diagrams [21]. He suggests generating an interface for dealing with the behaviour

of associations (creating, deletion) in a manner transparent to the user. He proposes the

81

creation of an interface and its implementation for each association end. The interface

extends both the destination class and the association class, if one was modelled. It ensures

referential integrity and multiplicity constraints, but does not provide any implementation

class.

Génova (2003) presents some principles to mapping UML associations into Java code [16].

They demonstrate that it is unreasonable to keep the minimum multiplicity constraint at

any moment on a mandatory association end as it reduces usability. They give an example

of a mandatory bidirectional association: A 1-1 B where a1 is association with b1 and a2

is associated with b2. When wanting to change the state to have an association between a1

and b2, it is impossible to do so using primitive operations without avoiding a wrong state.

Therefore, they also let the user be responsible for initializing the system to a consistent

state, and maintaining it. Akehurst (2006) introduces some code generation patterns for

bidirectional and multiplicity constraints that favours the production of Java based imple-

mentations from UML models [5]. Akehurst describes the situation of having a qualifier at

both ends while UML does not give much information apart from saying that this situation

rarely occurs. As Harrison’s, Gessenharter’s paper presented at MODELS 2008 [18] proposes

that each association be implemented as a classes as he states that a non-public association

end cannot be implemented as a reference in the class holding the end. For an association

between A and B, he creates a class AB and class A hold a list of AB links Both class A

and B have an addA and addB respectively that call a static method in AB to create a link.

82

Overall, papers discussing code generators for associations deal fairly well with UML

constraints, i.e, maximum, minimum and bidirectional. However, they do not support qual-

ified association as we do in the concern through the feature KeyIndexed. Also, they do not

discuss concrete data structures to optimize a system.

We then describe in more details two other code generators that we quite pertinent for

our work. The tool Mousetrap used in industry at Motorola is described in Section 6.1

and UMPLE, a tool developed at the University of Ottawa, Canada, is described in Sec-

tion 6.2. The DSL used in TouchCORE to visually represent associations is an extension of

the notation defined by UML, which was already mentioned in Section 4.2.1.

6.1 Mousetrap at Motorola

Motorola has developed its own automatic code generation tool suite called Mousetrap.

The Mousetrap tool suite takes as input SDL, UML, ASN.1, and ISL (a proprietary protocol

language) and produces highly optimizing code customized for a product platform and a set

of performance constraints. Mousetrap is a rule-based code transformation system driven by

a vast programming knowledge base.

Weigert and members of the Mousetrap project present the constraints in industrial-

strengths systems that drive their model-to-code transformation steps [35]. They describe

the transformations rules and the process itself that involves translating the models to generic

constructs they call “Core”, which is followed by optimization and then generation of appli-

cation code in C to be used for their network products. Their design models do not specify

any platform detail until they provide the platform specific interface to the code generator.

Therefore, the design models are easily reusable.

83

Section 5.4 of [35] on Abstract Data Types (ADT) is the most related to our work. In their

approach, code generation for associations involves the selection of a concrete implementation

of an abstract data type. Where most code generators simply pick a default one all the

time, the authors propose to analyze the behaviour of the model and determine the specific

ADT selection that leads to a better tradeoff between memory usage and performance. For

example, if the collection is often being iterated over, the system would favour a linked list as

we saw through benchmarks that a linked list is more performant when it comes to iteration.

The solution proposed in this thesis currently does not deal with automatic selection

of implementation classes. However, it allows the user to pick a concrete implementation

from a given set and provides the necessary information to enable tradeoff analysis based

on impacts. Based on this information, the user can decide to opt for faster execution time

and increased memory usage depending on his preference. An automated reasoning system

is possible in TouchCORE to optimize non-functional requirements by analyzing behaviours

and impacts. This, however, is out of scope of this thesis and could be handled in future

work.

6.2 UMPLE

UMPLE is a modelling tool developed by the team of Prof. Timothy Lethbridge of the

University of Ottawa, Canada. It provides a textual syntax for low-level design modelling

with class diagrams and state diagrams, as well as code generation. It derives its visual

notation from UML, as does TouchCORE. UMPLE supports code generation towards many

programming languages, i.e., Java, C++, PHP and Ruby.

What is interesting about UMPLE is that the code generator handles constraints on asso-

ciations that are not taken care of in other UML modelling tools [10], such as, ArgoUML [1],

84

StarUML [3], BOUML [2], Rational Software Architect [22]. UMPLE’s code generator en-

sures multiplicity constraints and referential integrity. Also, it automatically provides a

rather complete API to the classes holding an attribute that represents an association: set,

get, numberOf, has, indexOf, add, remove, addAt, and delete.

To analyze the differences of how UMPLE and TouchCORE handle associations, we

created a simple model in both tools, where a class User is associated with a class Account

by means of a bidirectional, 0..1 association. Figure 6–1 shows the visual representation of

the two classes in UMPLE, as well as the textual UMPLE notation, and Figure 6–2 depicts

the same model in TouchCORE. To compare UMPLE’s generated code with TouchCORE’s,

we generated the corresponding Java code in both tools

Figure 6–1: UMPLE Bidirectional Asso-
ciation and its Textual Syntax

Figure 6–2: TouchCORE Bidirectional
Association

Algorithm 11, shows the code for the setUser operation in UMPLE. The algorithm takes

care of ensuring referential integrity. It first sets its user through user = null or user =

aNewUser before calling setAccount on the current user and/or the new user. That way,

85

when setAccount is being called, it verifies that the state of the account was already updated

and prevents a loop.

We decided to handle referential integrity in TouchCORE a little differently than UMPLE

does. We used helper functions: setSimple, addSimple and removeSimple. As shown in the

generated code in Algorithm 12 from the class diagram in Figure 6–2, setMyUser initiates the

set and calls setSimpleMyAccount, not setMyAccount. By breaking it down to a set and a

setSimple, both operations are shorter than UMPLE’s set and a lot clearer to understand.

This is desirable in our concern because the user is presented with the behaviour and should

be able to easily figure out what is happening whereas UMPLE’s generated code should not

be looked at by the user.The set operation, both in the case of UMPLE and TouchCORE,

returns a boolean, even if a set on a 0..1– 0..1 association never fails and always returns true.

This is the case because in different types of associations, the set might return false. For

example, if the set needs to insert an element on the opposite end that has already reached

it’s maximum. Since the signature of the operation should remain the same in all cases for

consistency, a boolean is always returned.

Finally, UMPLE does not support qualified associations (feature KeyIndexed in Touch-

CORE), and always translates a many association to a fixed implementation data structure

(ArrayList in Java, a Vector in C++, an array in ruby) without determining the best fit or

letting the user decide. TouchCORE provides different implementations as well as impact

evaluation. UMPLE does not provide the property unique and all associations are ordered

since they all translate to a list in the code. It does provide sorted associations and allows

to specify the attribute for which to sort the objects by.

86

On the other hand, UMPLE supports code generation to Java, C++, Python and Ruby

whereas TouchCORE only supports Java.

87

Algorithm 11 UMPLE Generated Code for Operation setAccount

public boolean setUser(User aNewUser) {
boolean wasSet = false;
if (aNewUser == null) {

User existingUser = user;
user = null;

if (existingUser != null && existingUser.getAccount () != null) {
existingUser.setAccount(null);

}
wasSet = true;
return wasSet;

}

User currentUser = getUser ();
if (currentUser != null && !currentUser.equals(aNewUser)) {

currentUser.setAccount(null);
}

user = aNewUser;
Account existingAccount = aNewUser.getAccount ();

if (!equals(existingAccount)) {
aNewUser.setAccount(this);

}
wasSet = true;
return wasSet;

}

88

Algorithm 12 TouchCORE Generated Code for Operation setMyUser

public boolean setMyUser(User newUser) {
User oldAssociated;
oldAssociated = getMyUser ();
if (oldAssociated != null) {

oldAssociated.setSimpleMyAccount(null);
}
a.setSimpleMyAccount(this);
this.myUser = newUser;
return true;

}

protected boolean setSimpleMyUser(User newUser) {
User oldAssociated;
if (newObject != null) {

oldAssociated = getMyUser ();
if (oldAssociated != null) {

oldAssociated.setSimpleMyAccount(null);
}

}
this.myUser = newUser;
return true;

}

89

Chapter 7
Conclusion And Future Work

This thesis presented a way of dealing with associations in model-driven engineering

with an innovative technique that is concern-oriented reuse. Concern-orientated reuse aims

at reducing development time for modellers by allowing them to reuse other models called

concerns that encapsulate and solve problems related to a particular domain. Associations,

because they are widely used in software design and have many variants, appeared like a

great candidate to address within a concern.

We designed many relevant variations of associations and association implementations,

and encapsulated them within an Association concern. We elaborated a variation interface

for the concern that lists the encapsulated variants in a comprehensible way to any user who

would wish to use associations within his models. Experiments were run to establish the

memory use and performance of different collection classes used to implement associations,

and documented in impact models. While in UML the visualization of an association in a

class diagram is simple, some structure and behaviours are implied from the modelled prop-

erties, e.g., multiplicity and navigability. This structure was encapsulated in class diagrams,

and the behaviours ensuring multiplicity constraints and referential integrity were specified

using sequence diagrams and encapsulated within the concern. Complex behaviour resulting

from feature interactions was dealt with using conflict resolution models.

In addition to building the Association concern, this thesis also proposes techniques to

streamline its reuse. A DSL was defined extending the UML notation of associations in order

90

to reuse the concern in a fast and concise manner within class diagrams. The user still needs

to be presented with the variation interface when making a selection in order to choose the

collection to use. However, feature selections are essentially done automatically based on

the properties of the association. Furthermore, when the association is created between two

classes, all the customization mappings required to properly reuse the Association concern

are created automatically.

This DSL, the automated feature selection and creation of mappings was implemented

in the TouchCORE tool. Changes had to be done to the metamodel and to the weaver.

The association visualization was extended to support the new elements: the multiplicity

element displaying the chosen association variant, such as {ordered}, and the selection of

the qualifier in the case of a qualified association.

Future Work

Even though our concern contains several concrete implementation classes, the concern

could encapsulate more, such as heaps or graphs. Since the currently supported implemen-

tation classes are from the Java standard library, there are currently a limited amount of

options. Additional implementation classes from other Java libraries could be used, e.g., the

Apache Commons Java Collections [11] or Google’s Guava Collections Library [19]. Apart

from storing elements in a collection in memory, users might want to use a database to per-

sist associations. It would be possible to add a Database feature to the Association concern

with sub-features of different types of databases. Moreover, we could add other features that

would represent currently unsupported properties of association implementations, such as

Thread-safe.

91

Further research could focus on adding support for automatic selection of the implemen-

tation class to TouchCORE. Making a complete selection for all associations used within

a model is time consuming for the user. It is also the kind of information a user might

not want to decide on while modelling. As mentioned in the automated code generation

paper [35], selecting a concrete implementation class automatically from how it is used in

the model could be a great step for optimization. For example, by analyzing the behaviour

of the application, we could determine whether the collection is often iterated over, and then

select a data structure that better supports iteration to improve the non-functional qualities

of the code. As an alternative to automated optimization based on application behaviour,

users could also provide a priority ranking of the different non-functional goals according to

what matters to them most, and the tool would then determine the feature selections that

would maximize these goals.

92

References

[1] ArgoUML. http://argouml.tigris.org/.

[2] BOUML. http://www.bouml.fr/.

[3] StarUML. http://staruml.io/.

[4] Kapil Viren Ahuja Ahuja. Performance Evaluation | Java Collec-
tions Framework. https://scrtchpad.files.wordpress.com/2008/10/
java-collections-performance-evaluation.pdf, 2008.

[5] D. Akehurst, G. Howells, and K. McDonald-Maier. Implementing associations: Uml 2.0
to java 5. Software & Systems Modeling, 6(1):3–35, 2006.

[6] Wisam Al Abed and Jörg Kienzle. Aspect-Oriented Modeling and Information Hiding.
In 14th Aspect-Oriented Modeling Workshop, Denver, CO, USA, pages 1–6, 10 2009.

[7] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Model-Driven Engineering Lan-
guages and Systems: 16th International Conference, MODELS 2013, Miami, FL, USA,
September 29 – October 4, 2013. Proceedings, chapter Concern-Oriented Software De-
sign, pages 604–621. 2013.

[8] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-Driven Software Devel-
opment. Technical Report SOCS-TR-2015.1, McGill University, Montreal, Canada,
January 2015.

[9] Romain Alexandre, Cécile Camillieri, Mustafa Berk Duran, Aldo Navea Pina, Matthias
Schöttle, Jörg Kienzle, and Gunter Mussbacher. Support for Evaluation of Impact Mod-
els in Reuse Hierarchies with jUCMNav and TouchCORE. In Proceedings of Demo and
Poster Session co-located with ACM/IEEE 18th International Conference on MoDELS
2015. CEUR-WS.org, 2015.

[10] Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge. Improving Code Gen-
eration for Associations: Enforcing Multiplicity Constraints and Ensuring Referential
Integrity. In Roger Lee, editor, Software Engineering Research, Management and Ap-
plications, volume 496 of Studies in Computational Intelligence, pages 129–149. 2014.

93

94

[11] Apache Commons. Commons Collections. https://commons.apache.org/proper/
commons-collections/.

[12] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39:41–47, 2006.

[13] Robert Eckstein. Java SE Application Design With MVC. March 2007.

[14] Robert France and Bernhard Rumpe. Model-driven Development of Complex Software:
A Research Roadmap. In Future of Software Engineering, pages 37–54. IEEE, 2007.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[16] Gonzalo Génova, Carlos Ruiz del Castillo, and Juan Llorens. Mapping UML Associa-
tions into Java Code. The Journal of Object Technology, 2(5):135–162, October 2003.

[17] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java perfor-
mance evaluation. SIGPLAN Not., 42(10):57–76, October 2007.

[18] Dominik Gessenharter. Model Driven Engineering Languages and Systems: 11th Inter-
national Conference, MoDELS 2008. Proceedings, chapter Mapping the UML2 Seman-
tics of Associations to a Java Code Generation Model, pages 813–827. 2008.

[19] Google. Guava. https://github.com/google/guava.

[20] Object Management Group. Unified Modeling Language (UML). In Superstructure,
Version 2.5, pages 32–35. March 2015.

[21] William Harrison and Charles Barton. Mapping UML designs to Java. In proceed-
ings of the 15 th conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 178–188. ACM Press, 2000.

[22] IBM. Rational Software Architect. http://www-03.ibm.com/software/products/fr/
ratisoftarch.

[23] International Telecommunication Union (ITU-T). Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, approved October 2012.

[24] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-
TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1990.

95

[25] Jörg Kienzle, Wisam Al Abed, Franck Fleurey, Jean-Marc Jézéquel, and Jacques Klein.
Transactions on Aspect-Oriented Software Development VII: A Common Case Study
for Aspect-Oriented Modeling, chapter Aspect-Oriented Design with Reusable Aspect
Models, pages 272–320. 2010.

[26] Object Management Group (OMG). UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems, June 2011.

[27] Matthias Schöttle. Aspect-Oriented Behavior Modeling In Practice. Master’s thesis,
Department of Computer Science, Karlsruhe University of Applied Sciences, September
2012. Conducted at the School of Computer Science, McGill University, Montreal,
Canada.

[28] Matthias Schöttle, Omar Alam, Franz-Philippe Garcia, Gunter Mussbacher, and Jörg
Kienzle. TouchRAM: A Multitouch-enabled Software Design Tool Supporting Concern-
oriented Reuse. In Proceedings of the Companion Publication of the 13th International
Conference on Modularity, MODULARITY ’14, pages 25–28. ACM, 2014.

[29] Matthias Schöttle, Omar Alam, Jörg Kienzle, and Gunter Mussbacher. On the Mod-
ularization Provided by Concern-Oriented Reuse, 2016. To appear in Proceedings of
MODULARITY Companion 2016 - Workshop on Modularity in Modelling (MOMO
2016) co-located with the 15th International Conference on Modularity (MODULAR-
ITY 2016), March 2016.

[30] Matthias Schöttle, Omar Alam, Gunter Mussbacher, and Jörg Kienzle. Specification
of Domain-specific Languages Based on Concern Interfaces. In Proceedings of the 13th
Workshop on Foundations of Aspect-Oriented Languages, FOAL ’14, pages 23–28. ACM,
2014.

[31] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter
Mussbacher. Feature Modelling and Traceability for Concern-driven Software Develop-
ment with TouchCORE. In Companion Proceedings of the 14th International Conference
on Modularity, MODULARITY Companion 2015, pages 11–14, New York, NY, USA,
2015. ACM.

[32] EJ Technologies. JProfiler. https://www.ej-technologies.com/products/
jprofiler/overview.html.

[33] Nishanth Thimmegowda, Omar Alam, Matthias Schöttle, Wisam Al Abed, Thomas
Di’Meco, Laura Martellotto, Gunter Mussbacher, and Jörg Kienzle. Concern-Driven

96

Software Development with jUCMNav and TouchRAM. In Proceedings of the Demon-
strations Track of the ACM/IEEE 17th International Conference on MoDELS 2014,
Valencia, Spain, October 1st and 2nd, 2014. CEUR-WS.org, 2014.

[34] McGill University. TouchCORE. http://touchcore.cs.mcgill.ca/.

[35] T. Weigert, F. Weil, A. van den Berg, P. Dietz, and K. Marth. Automated Code
Generation for Industrial-Strength Systems. In Computer Software and Applications,
2008. COMPSAC ’08. 32nd Annual IEEE International, pages 464–472, July 2008.

