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Abstract 

Over recent years, new methods have developed the mining production schedule stochastic 

optimization into a framework that includes, in one mathematical formulation, all the 

components of a mining complex and optimizes it simultaneously. A mining complex is a set of 

operations that integrate all aspects in a mineral value chain, starting from the materials extracted 

from the ground culminating with its transformations into a final product delivered to the mineral 

market. The framework diverges from past methods that optimize each operation of the mining 

complex separately, which do not benefit from the coexisting harmony between connected 

processors. Core inputs of this all-inclusive optimization are the geostatistical simulations 

quantifying variability and uncertainty of relevant attributes in a given mineral deposit. To date, 

the state-of-the-art simulation methods can reproduce complex, non-linear geometries and multi-

point connectivity of extreme values. However, the generated realizations are performed at the 

point-support, much like the drillhole data, which requires a post-processing step to generate 

block-support orebody models, as needed to represent the mineral deposit due to engineering 

purposes. For example, a multimillion block model requires discretization of the magnitude of 

hundreds of millions of nodes to simulate. This configuration presents computational challenges 

in generating, handling and post-processing such a massive model. The thesis proposes an 

approach that extends the high-order simulation framework to perform realizations directly at the 

block-support scale and explores an application of such a method when used as input to the 

simultaneous optimization of a mining complex. Thereby, illustrating the benefits of coupling 

simulations that capture a more realistic connectivity of high-grades with the simultaneous 

stochastic optimization framework.  

The first part of this thesis presents the high-order simulation method that generates realizations 

directly at the block support conditioned to the available data at point support scale. Following 

the sequential simulation paradigm, the method estimates, at each block location, the cross-

support joint probability density function using Legendre-like splines as the set of basis functions 

needed. The previously simulated blocks are added to the set of conditioning data, which initially 

contains the available drillhole data at the point support. A spatial template, defined by the 

configuration of the block to be simulated and related conditioning values in both support scales, 

is used to infer additional high-order statistics from a training image. First, the method is tested 
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in a controlled environment, and the simulated realizations show consistent results reproducing 

major structures and high-order relations of data. Second, the method is used to simulate a gold 

deposit, and its efficiency is demonstrated by reproducing spatial statistics up to a fourth-order, 

coinciding with the ones present in the available drillhole data. The running time of generating 

one realization with the proposed approach is reduced by a factor of 5 when compared to the 

point-support version of the algorithm. 

The second part of the thesis presents a case study where the simulations of the gold deposit 

mentioned above are incorporated into the simultaneous optimization of a gold mining complex. 

The resulting life-of-mine (LOM) production schedule yields 5 to 16% higher net present value 

when compared to the case, where the same mining complex is optimized, but the deposit is 

modelled through a traditional simulation method based on two-points statistics (sequential 

Gaussian simulation). The comparison shows that incorporating simulations with more realistic 

connectivities of high-grade blocks, through the use of high-order direct block simulations, into 

the optimization results in a more informed LOM production schedule. The sequence of 

extraction is visually driven towards areas where the high grades are more connected, and this 

smarter extraction strategy leads to the extraction of less waste and the production of more 

ounces earlier in the LOM. This shows that the optimization can capitalize on the better 

understanding of the connectivity of high-grades. 
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Résumé 

Au cours des dernières années, de nouvelles méthodes d’optimisation mathématique stochastique 

permettant d’optimiser simultanément un vaste ensemble de décisions devant être prises lors la 

planification de la production d’un complexe minier ont été développées. Un complexe minier 

implique un ensemble d’opérations qui constituent une chaîne d’approvisionnement minière, en 

commençant par l’extraction du minerai du gisement jusqu’à sa transformation finale en produit 

mis sur le marché. Cette optimisation simultanée se différencie des approches antérieures où les 

diverses opérations du complexe minier sont optimisées indépendamment les unes des autres, ce 

qui ne permet pas de tirer profit des fortes dépendances entre les différents processus. Les 

données d’entrée essentielles à cette optimisation simultanée sont des simulations géostatistiques 

qui quantifient la variabilité et l’incertitude des attributs d’un gisement de minerai donné. 

Quoique les méthodes de simulation les plus avancées permettent de reproduire des géométries 

complexes et non-linéaires ainsi que la connectivité multipoints des valeurs extrêmes, il demeure 

néanmoins que les réalisations obtenus avec ces méthodes sont générées à l’échelle des points, 

tout comme les données de forage, ce qui requiert une étape de post-traitement pour générer les 

modèles de gisement à l’échelle des blocs. Cette étape de post-traitement est nécessaire pour 

représenter le gisement pour des fins d’opérations d’ingénierie. Ainsi, un modèle à plusieurs 

millions de blocs nécessite une discrétisation de l’ordre de plusieurs centaines de millions de 

points à simuler. Cela représente un défi computationnel de taille en termes de génération, 

manipulation et post-traitement de ces modèles. Ce mémoire propose une approche qui génère 

des réalisations directement à l’échelle des blocs dans un contexte de simulation d’ordre 

supérieur. L’application des résultats de cette approche comme données d’entrée pour 

l’optimisation simultanée d’un complexe minier est aussi présentée. Cette application illustre les 

avantages associés au couplage de simulations, qui représentent de manière plus réaliste la 

connectivité des fortes teneurs, avec un système d’optimisation stochastique simultanée. 

La première partie de ce mémoire présente la méthode de simulation d’ordre supérieur proposée 

permettant de générer des réalisations directement à l’échelle des blocs avec les données 

conditionnelles disponibles à l’échelle des points. Suivant le paradigme de la simulation 

séquentielle, la méthode estime, pour chaque emplacement de bloc, la fonction de densité de 

probabilité commune à support croisé en utilisant des splines de type Legendre comme ensemble 
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de fonctions de base nécessaires. Les blocs précédemment simulés sont ajoutés à l’ensemble des 

données conditionnelles, qui contient initialement les données de forage disponibles à l’échelle 

du point. Un motif spatial, défini par la configuration du bloc à simuler et les données 

conditionnelles correspondantes, est utilisé pour déterminer des statistiques d’ordre supérieur 

additionnelles venant d’une image d’entraînement (training image). La méthode proposée est 

d’abord testée dans un environnement contrôlé. Les résultats de ces tests démontrent que les 

réalisations simulées présentent des résultats consistants reproduisant les structures majeures 

ainsi que les relations d’ordre supérieur des données. Dans un second temps, la méthode est 

utilisée pour simuler un gisement d’or. Cette étude confirme l’efficacité et la capacité de la 

méthode à reproduire les statistiques spatiales jusqu’au 4e ordre, tout en étant conforme à ces 

mêmes statistiques venant des données de forage. Le temps de calcul nécessaire pour générer une 

réalisation avec l’approche proposée est réduit d’un facteur de 5 comparativement à la version de 

l’algorithme considérant l’échelle du point. 

La deuxième partie du mémoire présente une étude de cas où les simulations obtenues via 

l’approche décrite ci-haut sont utilisées comme données d’entrée pour l’optimisation simultanée 

d’un complexe minier. Les résultats de cette optimisation indiquent qu’une valeur présente nette 

de 5 à 16% plus élevée est obtenue comparativement à une optimisation prenant comme données 

d’entrée des simulations générées avec une méthode traditionnelle basée sur des statistiques du 

2e ordre (simulation Gaussienne séquentielle). La comparaison montre aussi qu’utiliser des 

simulations présentant des connectivités de blocs à fortes teneurs plus réalistes permet d’obtenir 

une planification de production mieux informée. La séquence d’extraction suit visuellement les 

régions où les fortes teneurs sont connectées et cette extraction plus intelligente entraîne moins 

d’extraction de stérile ainsi que la production de plus d’onces de métal plus tôt durant la période 

d’exploitation de la mine. Cela montre que l’optimisation peut capitaliser sur une meilleure 

compréhension de la connectivité des fortes teneurs. 
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Chapter - 1  

Literature Review 

1.1 Introduction  

A mining complex can be seen as a mineral value chain where in-situ materials are extracted 

from the ground and flow through different processing streams until they are transformed into 

sellable products and delivered to the mineral market (Pimentel et al. 2010; Montiel and 

Dimitrakopoulos 2015; Goodfellow and Dimitrakopoulos 2016). Current industry practice in 

long-term mine planning attempts to maximize the net present value (NPV) by optimizing 

separately various aspects of the mineral value chain, including optimal mine design, cut-off 

grades, stockpile decisions, processing streams and transportation systems. New research has 

shifted away from this step-wise optimization process towards the state-of-the-art simultaneous 

stochastic optimization of mining complex framework (Montiel and Dimitrakopoulos 2013, 

2015, 2018; Farmer 2016; Goodfellow and Dimitrakopoulos 2016, 2017; Montiel et al. 2016; 

Saliba and Dimitrakopoulos 2017; Del Castillo 2018). This unified approach can incorporate 

several mines, stockpiles, waste dumps, processing facilities, operational modes, transportation 

mechanisms and many other aspects complex in one single non-linear mathematical formulation. 

This simultaneous optimization has the potential to unveil hidden and profitable synergies 

between different components that traditional approaches cannot capture.  

The goal of the value chain optimization is to provide the mineral market with metals and other 

products where the supply of materials extracted from the mines are characterized by the 

uncertainty and variability of the geological attributes. This supply uncertainty is incorporated 

into the framework as a group of simulated orebody models with their respective relevant 

attributes. This associated uncertainty, quantity and quality of pertinent mineral deposit attributes 

can be assessed through transfer functions, meaning representing mathematically the 

transformations in consideration, and geostatistical simulations, which generates multiple 

equiprobable scenarios of the attributes of interest, such as grades, densities, material types, 

hardness, and others geo-metallurgical properties. The material extracted from the orebody flows 

through many different processes in the mining complex, propagating the uncertainty to all 

operations in the mining complex, which culminates in financial risk. In addition to the 
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uncertainty, geologic variability is also an inherent aspect of mineral deposits; these aspects 

related to the supply uncertainty combined are the major source of risk in a mining operation and 

the leading cause of failure in delivering expected production targets (Ravenscroft 1992; Dowd 

1994, 1997; Vallée 2000; Dimitrakopoulos et al. 2002a; Godoy 2003; Dimitrakopoulos 2011). 

Incorporating the uncertainty and variability associated with the supply of materials into the 

mining complex framework enables risk-managing mine planning schedules with better blending 

decisions, more informed destination decisions, amongst others. 

This chapter reviews the technical literature related to orebody modelling through the use of 

geostatistical simulations, and their use in the simultaneous stochastic optimization of mining 

complexes. Section 1.2 covers most advanced methods in mineral deposit modelling, based on 

multi-point statistics and high-order spatial statistics, limitations of traditional second-order 

simulation framework, as well as the efforts in efficiently generating stochastic realizations of a 

given mineral deposit. Section 1.3 discusses the impact different simulations frameworks have an 

activity modelled by a transfer function. Section 1.4 examines the technical literature related to 

the optimization frameworks connecting different components of a mining complex and the most 

recent state-of-the-art simultaneous optimization of mining complexes. Section 1.5 provides the 

goal and objectives of this thesis, and Section 1.6 presents the thesis outline. 

1.2 Mineral deposit modelling 

Modelling of mineral deposits for resource and reserve assessment in mining planning consists 

of discretizing space into a three-dimensional block model and assigning values of spatially 

distributed attributes of interest; examples of such are metal content (grade), density, hardness, 

amongst others. The material from the mineral deposit is considered to be the material supply for 

the mining complex. The uncertainty material supply is due to the exploration drilling and 

sampling pattern obtained at non-continuous and scattered locations. The core sample diameter 

has a magnitude of centimetres, which is considered to be at “quasi-point” (or point-support) 

size. On the other hand, engineering applications in geosciences model the mineral deposits into 

mining blocks, representing the engineering requirements necessary to extract. A small block 

size overestimates the selectivity that realistic size equipment has, and a large block size incurs 

dilution in the model, underestimating the selectivity.  
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average spatial dissimilarity given a certain distance in a specific direction. Then at every 

unsampled location, the algorithm solves the kriging equations to generate a conditional mean 

  1i im Z x   and variance   1i ivar Z x   from  1;
iZ i i if u z   by solving kriging equations 

at every node. These two parameters are enough to construct a Gaussian pdf; thus the method 

samples a value from this generated distribution through Monte Carlo and incorporates it into the 

grid to be used as conditioning for the next location’s simulation. After the simulation of all the 

nodes, the values are back-transformed from the Gaussian space to the original data space to 

match the original histogram of the data. 

Since SGS is based on the definition of a variogram model and only calculates cumulants – 

combination of moment statistical parameters – spatial statistics of first and second orders, 

namely mean and variance respectively, it belongs to the class of methods based on second-

order. The major limitation of these methods is that second-order spatial statistics are not 

sufficient to describe complex and non-linear natural phenomena. Journel (2007) shows a simple 

example, shown in Fig. 1.1, where different geologic patterns display very similar variograms. 

Obtaining samples in such a way that the values are the same regardless of the true 

mineralization and modelling one variogram from this sample set is not sufficient to discriminate 

between these possible candidates. The resulting simulation does not have the means to 

distinguish between these different connectivity patterns. Therefore it cannot generate more 

complex and non-linear geologic structures. 

Methods based on second-order statistic requiring the Gaussian assumption over the conditional 

distribution functions indirectly assume that the multiple-point spatial statistics and multiple-

point connectivity are given by the related algorithm and not by the data or other sources of 

information (Remy et al. 2009). The methods in this context are responsible for maximizing the 

spatial disorder beyond the variogram model. Entropy herein is a concept related to the spatial 

disorder, e.g. how the extreme values are structured. Strings of low or high values connected, 

channels, curvilinear structures, depositional veins, beddings and others are examples of low 

entropy and characteristics of mineral deposits. High entropic methods generate realizations 

where geologic structures are unjustifiedly disconnected, and “salt-and-pepper” structures can be 

observed (Journel and Deutsch 1993). In the light of the above, high entropy has substantial 

consequences when the goal is to evaluate the response of the simulated realizations in a context 
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governed by non-linear transfer functions, such as effective permeability, flow simulation in 

aquifers or oil reservoirs and optimization of mine designs. Gaussian-based simulation 

approaches, in turn, are maximal entropy methods, which are not desired characteristics in 

geostatistical simulations. 

This effect has consequences in petroleum reservoir and aquifers due to the misinterpretation in 

flow modelling (Journel and Alabert 1989; Journel and Deutsch 1993; Gómez-Hernández and 

Wen 1998; Renard and Allard 2013). Journel and Deutsch (1993) present a waterflood 

simulation example using three different geostatistical simulation methods, where time at which 

the watercut reaches 90% is investigated. Results show that the reference time value, obtained 

from a reference image, is outside the range provided by SGS realizations; while the range of 

values provided by other methods, that reproduce better the connectivity of extreme values, can 

capture this reference value. Journel and Alabert (1989) show a comparison where a Gaussian-

based method is not able to reproduce as well as a non-gaussian method the connectivity of a 

sandstone model, marked by a strong connectivity of low values, and the connectivity map is 

shown in Fig. 1.2. This entropy property can also impact mining operations since the continuity 

of mineralization of high-grades drives the optimization of production schedules.  
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Figure 1.1 – Example of the limitations of second-order statistics (Journel 2007). a) different 

spatial patterns and their similar variograms in b). 

 

Figure 1.2 – Experimental connectivity in the N57° direction of the exhaustive dataset, and SGS 

and SIS realizations of the Borea sandstone dataset (Journel and Alabert 1989). 

Sequential indicator simulation (SIS) (Alabert 1987; Goovaerts 1997) is an alternative to 

Gaussian-based methods that do not require a Gaussian transformation of the initial data. Instead, 

the ranges of values are discretized in categories. For the continuous case, the non-parametric 

conditional cumulative distribution function (cdf) is estimated through successive indicator 

kriging for each pre-defined category. At each step, the probability of not surpassing each 

category is calculated, while for the discrete case, the order of classes does not matter. Once the 

conditional cdf is built, a uniform value  0,1  is drawn, and the category associated with the 

value is the simulated class. SIS improves the high-grade connectivity of the realizations 

compared to SGS because it does not require a Gaussian distribution of values and it can 

incorporate spatial statistics for many indicators. The method improves the connectivity of 

extreme values because a variogram these categories are calculated directly, which provides 

more information to the generated realization. As oppose to SGS which model only one average 

variogram model for all the deposit, limiting the incorporation of spatial statistics. The practice 

of this SIS simulation requires more calibration as it involves a definition of one variogram 

model for each category. Additionally, the approximation of the tails of skewed conditional 

distributions is hard to control (Rossi and Deutsch 2014). Although can describe more complex 

spatial features than SGS, the method still carry the limitations of second-order methods. 
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Other classes of simulation methods including turning bands (Journel 1974; David 1977; Journel 

and Huijbregts 1978), probability field simulation (Froidevaux 1992; Goovaerts 1997), simulated 

annealing (Deutsch and Cockerham 1994; Goovaerts 1997), direct sequential simulation (Soares 

2001) are alternatives to simulate an orebody model. They all carry major limitations of either 

relying only on a variogram model and Gaussian transformation of data. 

1.2.2  Direct block-support simulation methods 

Mineral deposits models usually comprise between hundreds of thousands up to millions of 

mining blocks. Such an extensive model requires an efficient framework to generate simulations. 

The samples obtained from drillholes are collected at point-support, meaning the framework 

must provide means to change the support from point to blocks. The traditional approach to deal 

with this difference in support sizes consists of subdividing the blocks into several internal 

nodes, which can represent the point support. The simulation is then performed at this new 

denser grid, and later these internal nodes are post-processed averaged into a block support 

value.  

The block assessment from point values is shown in Eq. 2, where the RF  VZ v  represents the 

block support assessment at the location v  from  p jZ u  point support assessments.  

   
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This traditional way of converting point simulations to block models can be limiting when 

dealing with large mineral deposits. Considering a multimillion block model of a mineral 

deposit, the necessary point support discretization would result in billions of nodes to simulate. 

Such computation can be very inefficient and demanding. Additionally, generating several 

simulations at this fine scale requires a massive amount of memory space for calculation, storage 

and data handling. Under these circumstances, a direct block assessment is highly desired, where 

past efforts focused on improving the efficiency of simulation methods, which is a major 

requirement for the industry.  

Upon the observation that adjacent nodes share the same neighbourhood, Dimitrakopoulos and 

Luo (2004) enhance the computational efficiency of Gaussian-based simulations with the 
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“generalized sequential Gaussian simulation” (GSGS) algorithm. The approach requires the 

definition of group sizes, which means how many nodes are going to be simulated together 

according to LU equations (Davis 1987). A random path visits each group, and then each node 

within a group is randomly placed in the LU matrix. If all nodes are considered into one single 

group, the method becomes analogous to the LU simulation method, if there is only one node per 

group it corresponds to SGS. Benndorf and Dimitrakopoulos (2007) document a study where 

GSGS can be up to 20 times faster than SGS on the same deposit; however, it still requires a 

posterior re-blocking since realizations are outputted at the point support. 

A significant extension of sequential Gaussian simulations is provided by the direct block 

simulation (DBSIM) method (Godoy 2003). Following a random path visiting each node, the 

approach discretizes the block into several internal nodes, and simulates the nodes within, using 

the LU approach. The difference is that in the simulation of each node, the method calculates the 

covariance between points and points, blocks and points, and blocks and blocks. After the 

simulation of nodes within the block, the values are averaged into a single block value, and only 

this last one is kept as conditioning for the next block to be simulated. DBSIM approach is faster 

than GSGS, but most important the direct block support method reduces the storage requirement 

considerably (Benndorf and Dimitrakopoulos 2007). Also, no re-blocking post-process is 

required to generate mining blocks. Boucher and Dimitrakopoulos (2009) propose an extension 

for the block support that can simulate multiple correlated variables. Before the simulation, a 

vector random function is orthogonalized by the minimum/maximum autocorrelation factors 

(MAF) (Switzer and Green 1984; Desbarats and Dimitrakopoulos 2000). These de-correlated 

variables are simulated independently in the same context as DBSIM. The difference is that once 

the nodes within the block are simulated two processes occur in parallel. First, the nodes are 

averaged for conditioning to the next block to be simulated. Second, the point values are back-

transformed to the Gaussian space, followed by a transformation to the data space, so they can 

finally be averaged into a block value in the original space. An example of the framework is 

shown in Fig. 1.3. 
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Figure 1.3 – Framework for the block support simulation of multivariate correlated elements 

(Boucher and Dimitrakopoulos 2009). 

Emery (2009) proposes a simulation method that uses an explicit change of the support model 

and directly simulates at block support, without discretizing the blocks into several nodes, 

reducing CPU running time required. The proposed model is entirely defined by a point support 

Gaussian transformation function, a change of support coefficient and the block support 

semivariograms. One of the limitations of the approach is related to introduction of an additional 

coefficient that must be defined by the user. This coefficient joint to the Gaussian transformation 

at point-support are used to derive the Gaussian transformation at the block support. This 

framework can enhance the entropy aspect of the realizations and the separated data-conditioning 

step can reduce the efficiency of the approach in generating conditional realizations.  

Although efficient, all of the methods mentioned above share common limitations, they require 

data transformation, assume the conditional distribution is Gaussian, related spatial statistics is 

limited to two-point spatial statistics, and some methods require a more strict assumption on the 

stationarity of related RF.  

1.2.3  New developments in stochastic simulations 

When the distributions are assumed to be Gaussian, only mean and covariance (variogram) are 

enough to define the whole distribution since all high-order moments become zero. However, 

geologic phenomena in geoscience are not Gaussian, and more statistics are necessary to be 

incorporated. To overcome the limitations of second-order methods, a more advanced class of 
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let kA  be an indicator variable assuming a unitary value if the random variable  iZ u  receives 

the outcome  i kz u z  at the location iu . 
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Similarly, let D  be a binary random variable indicating the occurrence of the data event nd . The 

conditional probability at the node iu  to be assigned the category kz  is given by 
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The frequency of categories and data events found in the TI generate the above probability. Once 

these frequencies are obtained, a Monte Carlo simulation assigns the value relative to the 

category and includes it in the grid as conditioning. The algorithm requires searching the TI at 

every iteration, which is very computationally demanding. Strebelle (2002) improves this 

framework with the “SNESIM” algorithm. Given a categorical dataset, the approach assumes a 

fixed template, which allows scanning the TI only once to store the frequency of patterns in a 

search tree. It enables the conditional probabilities to be rapidly computed from this data 

structure. The conditional probability for each node is built finding exact replicates of the data-

event given the template generated and counting the frequency of each category from the TI to 

be represented in that configuration. When the exact match is not found, some of the 

conditioning data are dropped relaxing the conditioning requirements of finding a replicate, with 

the cost of worse conditioning at that location. The running time is considerably improved, but 

the memory requirements grow exponentially with the size of the template and the number of 

categories assumed. In general, the template size is kept small, and this could prevent the 

reproduction of large-scale features, but the implementation of multiple grids attenuates it. An 

alternative is to use a hierarchical approach (Maharaja 2004), where the categories to be 

simulated are nested, and the simulation is performed in stages. The disadvantage is related to 

that not all spatial interactions between different categories can be acquired.  

Under the SNESIM framework, Boucher (2009) proposes to partition the training image into 

smaller images. Each subset is responsible for generating a search tree itself. The partitions are 
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obtained applying spatial filters that discriminate different patterns based on geometric 

configuration. The idea is to use a vector of smaller search trees instead of a global one, which 

speeds up the algorithm. Straubhaar et al. (2011) replace the use of a search tree with lists data 

structure to store the multiple-point patterns. This replacement reduces the RAM required to the 

simulation, and additional lists can be used to incorporate secondary information. A list increases 

linearly with template size, while the tree grows exponentially. This data structure enables to use 

larger templates at a smaller computation cost; consequently, a more complex reproduction of 

geologic patterns is possible to be obtained. Searching patterns in the list can be less efficient, 

but this operation can be parallelized. Huang et al. (2013) implement GPU computation for the 

SNESIM algorithm using the search tree data structures showing a speedup of 15 times 

compared to the original version of the algorithm. Strebelle and Cavelius (2014) attempt to 

alleviate the memory and the running time requirements on SNESIM method by proposing a new 

multiple-grid approach, which includes intermediary sub-grid that reduces the need for larger 

templates. The sub-grid structure provides a similar reach of large-scale structures, with a 

smaller template. Although it increases the number of search trees, the one-time cost of creating 

a new search tree is compensated by smaller trees; thus finding probabilities at each node 

becomes faster. Additionally, they propose a new data template configuration that preferentially 

includes previously simulated nodes and closest ones, which is based on the simulation of the 

past sub-grids. The authors claim that this also reduces the need to get bigger templates and that 

this strategy is sufficient to provide multiple point connectivity. 

Mariethoz et al. (2010) extend the initial ENESIM algorithm to a direct sampling method that 

reduces memory usage considerably by instead creating a TI database for the generation of the 

conditional distribution, it samples a pixel straight from the TI. Given a conditional data event at 

a particular node, replicates from the TI are sampled directly, and the similarity between the data 

event and the replicate is calculated. If this distance is smaller than a threshold, the central node 

of the replicate is pasted in the simulation grid. The sampled value is chosen randomly but still 

conditional to the data. This approach is mathematically equivalent to computing a conditional 

cdf at every node based on the patterns from the TI and drawing a sample from it. 

By avoiding the explicit definition of a random field, MPS methods become flexible with room 

for applications in many different fields. However, limitations of the above methods are related 

to the lack of mathematical formality, concentrating on the extraction of patterns from the TI 
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instead of deriving conditional distributions based on high-order statistics. Thus, the statistics of 

the exploration data cannot be guaranteed. This TI-driven characteristic is particularly 

problematic in the mining context, an environment often marked by a wealth of exploration data. 

Past studies have shown conflicts between the statistics of the generated realization and 

exploration data (Osterholt and Dimitrakopoulos 2007; Goodfellow et al. 2012). The spatial 

statistics of the simulation respect the statistics present in the TI but do not necessarily consider 

the ones from the drillholes, which is the reality of a given deposit. When the realizations over 

reproduce patterns from the TI, a question that arises is how much the TI is representative and 

how to obtain it. 

In the context of the equally TI-driven pattern-based MPS methods, Arpat and Caers (2007) 

propose an approach that pastes directly in the simulation grid a whole multi-pixel pattern 

configuration extracted from the TI. The first step consists of building a TI database according to 

a fixed template. Later, the method chooses the most similar pattern according to a distance 

measurement, instead of drawing from a probability distribution. The method allows modifying 

previously simulated nodes if the new pattern to be pasted overwrites it. As a drawback, the 

algorithm lacks in mathematical formulation, and the focus is preferably on the reproduction of 

patterns from the TI rather than deriving a conditional distribution function based on the spatial 

statistics of the data. Additionally, scanning the whole database at every iteration is 

computationally expensive.  

An alternative to the computing limitation of scanning the full TI discussed above is the 

FILTERSIM algorithm (Zhang et al. 2006). The method first scans the training image with a 

template of fixed size and classifies the patterns present in a filter space. Few linear filters are 

used to reduce the dimension of the pattern itself, and training patterns that are similar are 

grouped under an average pattern. These patterns are grouped in bins according to a similarity 

measure or score values. During the simulation, the bin that best matches the conditioning data 

event is chosen, and a pattern is selected from this bin and pasted in the simulation grid. This 

configuration provides a more structured ranking of patterns, which reduces the RAM demand 

and avoids scanning the database extensively to find similar patterns. These pattern-based 

simulation approaches tend to reproduce local multi-point statistics by allowing global patterns 

from the TI to be reproduced, enhancing the approaches’ TI-dependency and generating 

simulations even more TI-driven. The size of the template is a user-defined parameter and has a 
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major influence in the realizations. The structure to classify the patterns also plays an important 

role. It is necessary to balance between meaningful patterns and a not extremely large number of 

bins storing the patterns. Wu et al. (2008) replace the pixel-wise distance by the score-based 

distance calculated in the filter space.  

Chatterjee et al. (2012) propose a pattern based simulation applying wavelet decomposition to 

the patterns scanned from the TI. From the weights obtained with the decomposition, the 

algorithms apply a clustering algorithm to classify the patterns. The method compares the L2 

norm with the data event and the pattern representative of the generated cluster. In which for the 

categorical case the best match is and for the continuous case it is chosen at random a pattern 

from the chosen cluster. Mustapha et al. (2014) propose a framework that encodes the TI pattern 

database into a one-dimensional space, which improves the running time for the pattern 

classification and its comparison with the data event. Rezaee et al. (2013) combine the 

advantages of the pixel-based “direct sampling” method (Mariethoz et al. 2010) with pattern-

based simulations eliminating the need to build a training image pattern database.  

In general, pattern-based simulations carry all the major limitations of pixel-based MPS 

approaches, with the addition that the conditioning process is more challenging to obtain 

appropriately. When the template size is larger than the spacing between original data, pasting 

the whole piece of pattern would either overwrite some data or be somehow the cause of 

mismatch.  

There are other multiple-point simulation alternative methods to the above mentioned, such as 

the ones based on the simulated annealing approach (Kirkpatrick et al. 1983; Geman and Geman 

1984; Goovaerts 1997; Deutsch and Wen 2000). A training image can be used to provide 

frequencies of the patterns to be reproduced in the simulation. These frequencies are set to be 

targets in the objective function of the simulated annealing algorithm, and an iterative process 

attempts to minimize the mismatch between those two (Ortiz and Peredo 2010; Peredo and Ortiz 

2011). The running time of the approach can be enhanced with parallel computing (Peredo and 

Ortiz 2011). In addition to the typical limitations of MPS methods, they introduce additional 

user-defined parameters, which are not trivial to tune and can be time-consuming  
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replicates, which are used as input for calculating the high-order Legendre coefficients 

experimentally as in Eq.12. This strategy differs from MPS methods that assume a fixed and 

arbitrary template.  

The high-order simulation method (Mustapha and Dimitrakopoulos 2010a, 2011) can be 

summarized according to the following steps: 

a) Scan the training image and sample data and store the spatial cumulants in a global tree. 

b) Define a random path visiting all nodes to be simulated. 

c) At each node, define the spatial template with the node to be simulated and its 

neighbours. Obtain the replicates from the global tree defined in a). Calculate the 

Legendre coefficients as in Eq. 12. 

d) Approximate the conditional cdf according to Eqs. 8 and 9. 

e) Draw a random value from the derive distribution, and add this value to the grid so it can 

be used as conditioning to the next node. 

f) Repeat (b)-(e) until all nodes are simulated. 

g) Repeat (b)-(f) for additional realizations. 

One of the disadvantages of the above lie in the expensive computational time required to derive 

all high-order cumulants at every node. To save time without compromising the quality of the 

realizations, Mustapha and Dimitrakopoulos (2011) propose removing the calculation of 

cumulants with small contributions to the estimation of the cpdf. The drawback is that the 

polynomial approximation can be very unstable, especially at the endpoints of the data domain. 

Minniakhmetov et al. (2018) replace the Legendre polynomials with the Legendre-like splines 

(Wei et al. 2013). The authors use the m  first Legendre polynomials and discretize the 

approximation domain in several knots, which are responsible for defining the condition of 

smoothness of the splines. These knots associated with the initial Legendre polynomials are the 

basis to create a space with all necessary orthogonal splines. The idea is to replace high-degree 

and instable polynomials with several ones of lower degree defined in delimited intervals. The 

substitution provides to the conditional distributions a more stable approximation due to the 

power of representation of the splines, as shown in Figure 1.5. 
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Figure 1.5 – Example of empirical approximation using a) Legendre polynomials of degree 30 

and b) splines. Provided by Minniakhmetov et al. (2018) 

Dealing with multivariate elements, Minniakhmetov and Dimitrakopoulos (2017a) present a 

method to decorrelate variables based on spatial high-order statistics using a diagonal domination 

condition approach. For independent variables, the high-order cumulants are diagonal. Thus, the 

approach transforms the vector of random variables maximizing the diagonal independence of 

high-order cumulants. The framework then simulates these variables independently and back 

transforms the values in order to maintain the high-order relationship. Addressing one of the 

limitations of high-order and MPS method, the dependency of training images, Minniakhmetov 

and Dimitrakopoulos (2017b) propose a new data-driven high-order simulation method for 

categorical values. The high-order spatial moments are entirely obtained from the available data, 

and no training image is needed. They make use of boundary conditions on the calculation of 

moments. Taking, for instance, a third-order spatial indicator moment which is a function of two 

lags, when one of the lags goes to 0, this indicator moment becomes the second-order moment. 

On the other hand, when one lag is very large, the two moments become independent. For 

intermediate lags, the moments are approximated with B-splines functions. 

Yao et al. (2018) simplify the calculation of high-order spatial cumulants and the polynomial 

approximation in a unified function. The approach does not require any explicit calculation of 

cumulants or moments. The simplicity ends up speeding up the simulations at no cost in the 

reproduction of complex patterns. High-order simulations are a powerful tool to model non-

Gaussian attributes with complex geologic patterns; however, these state-of-the-art methods are 
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still performed at the point scale. A deposit with millions of blocks would require the simulation 

of billions of nodes, which is still computationally cumbersome. It asks for a framework that can 

simulate directly at the scale of blocks, which is one of the goals of this thesis. 

1.3 Effects of simulations on transfer functions 

Stochastic simulations are a powerful tool to model uncertainty and variability of a geologic 

variable. They are also used to quantify the uncertainty in transfer functions, which are 

mathematical models that map the response of attributes in a specific context, such as mine 

production scheduling, flow simulation, and many others. Mapping the uncertainty of the outputs 

is vital in a mining context since most of transformations and operations in a mining complex 

can be mathematically modelled as a transfer function. Therefore, this is another aspect that 

captures the interest of the current research. This section reviews past studies that highlight the 

benefits of simulations methods in the optimization of mining-related transfer functions. The 

drawbacks of using traditional estimation methods instead stochastic simulations is already a 

well-studied topic (Ravenscroft 1992; Dowd 1994; Dimitrakopoulos et al. 2002b). Still, it is 

worth mentioning here that this is related to the fact that an average input does not result in an 

average output when dealing with non-linear transfer functions, which reinforces the need to use 

stochastic simulations in an optimization context.  

Dimitrakopoulos (1996) presents a short example of the use of stochastic simulations on a 

characterization of reservoir production forecasts. The study highlights the misleading forecast 

obtained with non-stochastic methods resulting in about $80 million less revenue than expected. 

Conversely, stochastic simulations were able to predict the recovery efficiency to be much closer 

to the obtained in reality. The author points out that the criterion for generating reservoir 

descriptions and decision (which is extended to mineral deposits as well) must be based on the 

mapping of the uncertainty of the responses; as each stochastic realization generates one 

response when applied to a transfer function. 

Qureshi and Dimitrakopoulos (2005) study the impact of three different simulations methods on 

three transfer functions that are analogues to some present in the mining context. From an 

extensive and known dataset, the author samples values from it to generate stochastic realizations 

of SGS, SIS and probability field simulation (PFS) (Goovaerts 1997). A set of 100 realizations of 

each simulation method is pushed through the following transfer functions: minimum cost 
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network flow, threshold proportion and geometric mean. Finally, the performance of all 

frameworks is compared to the extensive dataset and assessed regarding precision and bias. 

Overall, the sequential simulations, SGS and SIS, have a similar performance in mapping the 

uncertainty of the response of uncertainty, both incorporating the main features necessary of the 

geologic domain. 

Dimitrakopoulos and Godoy (2014) present a study where the same three simulation methods 

mentioned above are applied in a grade control optimization context. In short-term planning, 

grade control is an operation where the blasted material is flagged as ore or waste according to 

economic valuation, traditionally based on an economic cut-off. Usually, blastholes samples are 

collected to provide guidance in this ore/waste selection. The most critical aspect of grade 

control is the misclassification, which can result in future financial losses. Also note that this is a 

non-linear transfer function, as the impact of sending ore to waste is not the same as sending 

waste to the processing facility. The comparison concludes that SIS is the method that returns the 

highest profit. The result is related to high cut-off applied and the maximal entropy property of 

Gaussian-based simulations. The maximal entropy provides the realizations with a randomized 

dispersion of high-grades, which understates the connectivity of the high values. Conversely, the 

SIS method does not require a Gaussian transformation and can incorporate spatial statistics at 

many different thresholds, which results in more realistic connectivity of high-grades.  

Albor and Dimitrakopoulos (2009) and Montiel and Dimitrakopoulos (2017) study the influence 

of the number of simulations necessary to generate a LOM production schedule that is stable 

under geologic uncertainty. Albor and Dimitrakopoulos (2009) perform a sensitivity analysis by 

optimizing the mine design inputting a different number of simulations between 2 and 20. 

Montiel and Dimitrakopoulos (2017) present a similar study but in the context of simultaneous 

optimization of a mining complex. Both studies conclude that a number between 10 and 15 

simulations are enough to generate stable solutions. This is explained by the support-scale effect, 

where each period of a production schedule is composed by thousands of mining blocks, this 

represents a scale of magnitude very different from the scale of individual mining blocks; 

therefore there is no significant additional information passed to the optimizer after this point 

(number of simulations). 



37 
 

The studies presented in this section highlight the need to understand the mapping the 

uncertainty of the response of transfer functions. However, they do not discuss how the 

simulation method can influence the LOM production schedule. Additionally, it is worth 

investigating the benefits of realizations generated by a framework able to provide more 

informed geologic models, such as HOSIM methods. High-order simulations are the state-of-the-

art in modelling connectivity of non-Gaussian variables with complex and non-linear geometries. 

Therefore, in the context of a mining complex, there is room to explore the potential profit in 

modelling more realistically the connectivity of high-grades, which are the driver of the LOM 

production schedule optimization. 

1.4 Long-term mine planning optimization 

The utmost goal of a strategic long-term mine plan is the determination of when to extract and 

where to send each portion of the geological block model obeying a series of technical 

constraints in order to maximize the economic value of the project. Most common strategies to 

solve such a task rely on mathematical modelling based on Mixed Integer Programming (MIP) 

(Urbaez and Dagdelen 1999). The MIP approaches represent the orebody as a three-dimensional 

block model, where the most relevant attributes are described, examples of such are tonnages, 

grades, hardness, density, and other metallurgical properties.  

1.4.1  Optimizing the components of the value chain 

A mining complex is a supply chain approach that integrates all operations from resources to 

mineral markets (Whittle 2010; Montiel and Dimitrakopoulos 2015; Goodfellow and 

Dimitrakopoulos 2017). It can comprise multiple mines (open-pit or underground), stockpiles, 

waste dumps, tailing facilities, processors, operational modes and transportation systems 

(Pimentel et al. 2010). The simultaneous optimization of a mining complex aims to optimize 

extraction sequences, destination policies, processing stream decisions, transportation 

alternatives altogether in one single mathematical model. This framework can be seen as a series 

of transfer functions that account for the transformations of in-situ material throughout the value 

chain, which can include plenty of non-linear interactions such as cut-off grade optimization, 

non-additive geo-metallurgical responses, blending, non-linear recovery curves, stockpiling, 

capital expenditure decisions and many others. 
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Industry practice usually manages all the operations within the mining complex through the 

disconnected optimization of several components, which leads to suboptimal solutions. More 

effective efforts to incorporate several mineral value chain components start in the 1990s. 

Hoerger et al. (1999) provide an overview of an in-house MIP optimizer for the expansive gold 

complex operations in Nevada. The optimization comprises multiple pits, several material types 

and different destinations whose material could flow through the value chain. The model is 

extremely large, and some simplifications are assumed to decrease the number of decision 

variables. Regardless of the computational limits, it is important to note the goal of optimizing 

many components together and profit from the existing synergies between the upstream and 

downstream process in the value chain. One of the benefits is the considerable improvement in 

the autoclave by rerouting appropriately different materials, even at a higher transportation cost, 

the generated better blending and higher recovery at the facility.  

Stone et al. (2007) show the intricacies of the Blasor optimizer implemented for the Yandi iron 

ore mining complex. The optimizations work in steps: aggregation of blocks, extraction sequence 

and ultimate pit limit definition, mine phase design, and the valuation of the optimal panel 

extraction sequence. The framework is formulated as mix-integer programming, and the 

optimizer utilizes a commercial mix-integer programming solver to maximize discounted cash 

flows while ensuring that production targets are met concerning quantity and quality. Another 

version of this optimizer is the one described by Zuckerberg et al. (2007), where the extension 

named BlasorIPD incorporates in-pit waste dumping into the optimization. Under the step-wise 

optimization approach, during the scheduling phase, the framework adds a new decision to the 

model regarding the waste movement, where it can go either to an external waste dump or back 

to the pit in proper locations without sterilizing the ore. The model also considers water table 

constraints, in such a way that blocks falling below the water table level can only be extracted if 

this region is refilled before the end of the mine life. Blasor is also applied at an underground 

coal mining complex (Rocchi et al. 2011). Eight different domains are defined, and each one is 

inputted as a virtual open pit. The framework evaluates different scenarios designs for feasible 

underground development and transportation strategies. The application optimizes the coal 

production and hoisting while considers blend constraints which outperforms the solution of a 

commercial software.  
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Zuckerberg et al. (2011) present an application of the LOM planning software Bodor developed 

for BHP Billiton’s Boddington Bauxite mine. The software optimizes the LOM production plan, 

meeting blending requirements and minimizing the haulage costs while considers capital and 

operational costs. Due to the characteristics of the deposit, the goal is to define the sequence of 

extraction of different pods, which can be seen as clusters of bauxite ore that are spread over a 

large area. An essential aspect of the application is related to the complex environmental 

constraints which only allow the exploitation of the resource during a specific time of the year 

due to wind seasonality. Additionally, before mining a specific pod it is necessary to ensure that 

the crusher is built or redeployed, the conveyor leading the material to the refinery is installed 

and that the truck fleet size is defined. The optimization reduces the net present cost by 5% 

compared to a commercial software. 

Whittle (2007) and Whittle (2010) describe a global optimization (Prober optimizer), which 

figures as one of the industry’s standard tools to sequence the extraction of multiple deposits 

with complex blending and processing requirements, but in different steps. First the extraction 

sequence is defined and then the processing stream decisions are optimized. As the complexity 

of the model starts to increase, more non-linear the formulation becomes, for that reason the 

optimizer uses heuristic approaches and different initializations to generate good solutions in a 

reasonable time. 

Chanda (2007) formulates a simplified network flow model that delivers materials from a group 

of mines to feed metallurgical plants. Several mines, concentrators, smelters, refineries and 

mineral market are modelled as nodes, and the arcs represent the circuit associated with 

transportation the material from one node to another. As a result, the optimizer defines the 

optimal production and routing plan for mine complex, although it does not provide a mine 

production schedule. A linear network flow model is also applied in Topal and Ramazan (2012) 

to efficiently optimize the production schedule of a mining district in Australia with more than 

100 pits and 13 plants over 50 years. The material from the mines can flow through stockpiles 

and a set of different processing facilities in the mine complex. The model simplifies non-linear 

interactions of the network that occurs at processors and stockpiles by making use of grade bins 

at each location. The optimized model shows a net present value increased by 10 to 20% 

compared to existing software. 
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Groeneveld et al. (2010) propose a flexible mixed-integer programming framework to optimize 

the life-of-the-mine production plan in a mining complex. The application considers an operation 

with three open-pits, two processing facilities, rail systems, stockpiles and waste dumps, in 

addition to the options of using two ports with related rail requirements. Considering flexibility 

related to these options; results show an 85% increase in NPV compared to a mine design that 

does not consider this flexibility. Additionally, the authors address the incorporation of stochastic 

parameters such as price, recovery, capital and operating costs, mine equipment, plant and port 

utilization, but these uncertain parameters are not fully incorporated in the model. The approach 

optimizes the model independently for each uncertain input, and multiple optimized models 

provide a sensitivity analysis of possible designs; however, there is not a single optimized model 

that is risk-resilient or aware under all uncertain scenarios. Additional limitations of the method 

relate to not considering a multi-element context, or geological uncertainty.  

Dagdelen and Traore (2014) consider the transition from open-pit to underground mining in a 

context of a mining complex operation with six operating open pits, one underground mine, four 

stockpiles, waste dumps and one processing facility. The approach consists of generating a series 

of ultimate pits from the existing ones; then a crown pillar is fixed below and remain untouched 

for protection. The rates of both open pits and underground mine are defined, and the LOM 

production schedule for both are evaluated. This step is repeated for increasing depths of the 

open pit envelopes until the NPV of the operation stops increasing. 

These industry efforts mentioned above highlight the importance of connecting and controlling 

multiple components of the mineral value chain and acknowledge the opportunity to improve 

results with a single simultaneous optimization framework. However, to provide a flexible 

modelling of the mining complex optimization, these methods make some strong assumptions, 

from which it is worth mentioning the most important ones: a) the aggregation of blocks to 

reduce the size of the optimization, b) the use of commercial MIP solvers and c) the use of 

deterministic inputs. Aggregation is problematic because it homogenizes the spatial distribution 

of metal within an aggregate; consequently, the meaning of the selectivity scale is lost, which 

misleads the optimizer to extract equal proportions of the blocks within an aggregate. The second 

limits the amount of size of the model that the optimizer can handle, restricting the number of 

binary variables, such as the period of extraction, the integration of uncertainty in grades and 

limit the modelling of non-linear interactions. Additionally, some methods do not consider the 
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processing stream optimization together with the sequence of extraction, which prevents the 

model to fully profit from all the existing synergies in the mining complex. Last but not least, 

assuming a determinist input of the grade distribution in the deposit prevents the framework from 

accounting for the geologic risk and variability, which is credited as the primary cause of not 

meeting production targets and forecasts (Ravenscroft 1992; Dowd 1994, 1997; Vallée 2000; 

Dimitrakopoulos et al. 2002a; Godoy 2003; Dimitrakopoulos 2011). 

Menabde et al. (2007) presents one of the industry’s attempt to incorporating uncertainty and 

variability in a mixed integer programming approach optimizing the LOM production plan in 

Blasor optimizer. The orebody model is represented as a set of simulated scenarios and used as 

input in the optimization. The proposed method maximizes the discounted cash flow of the 

operation by optimizing mine schedule and cut-off. The range of grades is divided into bins, such 

that blocks falling in the same bin are processed together if mined in the same period. This 

provides a robust cut-off optimization since an optimal policy is used that is resilient to 

uncertainty in grades. The stochastic optimization is compared to a deterministic analogue, and 

the result shows an improvement in NPV of 20% showing the power of stochastic solutions. The 

model has the same limitations presented by the other versions of Blasor, such as the use of a 

commercial MIP solver and the aggregation of blocks. 

1.4.2  Simultaneous stochastic optimization of mining complexes 

Over the last two decades, developments have focused in overcome the limitations discussed 

above by introducing a framework that effectively considers geologic uncertainty (Godoy 2003; 

Dimitrakopoulos and Ramazan 2004; Leite and Dimitrakopoulos 2007; Albor and 

Dimitrakopoulos 2009; Dimitrakopoulos 2011; Ramazan and Dimitrakopoulos 2013), through 

the use of two-stage stochastic integer programming (SIP) models (Birge and Louveaux 1997). 

More recently, these models have evolved to the current state-of-the-art simultaneous stochastic 

optimization framework (Montiel and Dimitrakopoulos 2015, 2017, 2018, Goodfellow and 

Dimitrakopoulos 2016, 2017; Montiel et al. 2016), overcoming significant limitations in the 

field. The framework connects all components in a mining complex and can model non-linear 

interactions at each destination. One of the primary concerns of the framework is the 

representation of the orebody as a set of stochastic simulations quantifying the uncertainty and 

variability of the deposit. Unlike past works, the traditional approach of considering an economic 
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value for a block is shifted to the economic value of products. Herein, blocks have simulated 

attributes, and the range of possible economic values are defined only at the market, considering 

all the intermediate interactions, blending for example, and diverse costs throughout the value 

chain. Defining the true optimal destination of a block does not rely only on the grade content of 

the mineral driving the mining complex. There are many factors that can impact the actual value 

of the block in addition to the grade content. In fact, blocks are not processed individually, 

blending occurs everywhere (also function of secondary and deleterious elements) and is the 

major driver of this economic profit obtained from the products at the end of the value chain. 

Additional examples are the period of extraction and processing, location of the processing 

facility, geometallurgical properties, presence of external sources, different costs, and many 

others non-linear transformations that it may occur. In fact, any modification in a sequence of 

extraction impacts all of the subsequent activities downstream. Similarly, a different decision in 

an operation strategy may affect the conditions that generated the extraction sequence. Major 

improvement of this new framework is the ability to connect scheduling, decision policies, 

downstream optimization and transportation in a single model, capitalizing on the synergies 

available with the interaction of different components.  

Montiel and Dimitrakopoulos (2013) present one of the earliest efforts in integrating uncertainty 

in mining complex optimization. The authors propose a framework that optimize the LOM 

extraction sequence whose the objective is to minimize deviations from production targets. The 

case study applies the methodology at the Escondida Norte copper mining complex, Chile. Due 

to the size of the optimization in terms of decision variables and overall complexity, the authors 

use the simulated annealing metaheuristic approach to generate good quality solutions. Results 

showed that compared to the financial forecast provided by a deterministic approach, the method 

shows only 5% improvement in NPV. Main accomplishment of the method is the ability to 

substantially reduce deviations from ore and waste production targets when compared to the 

deterministic schedule. The method needs an initial schedule solution, such that the result of the 

optimization is dependent on this starting point. It requires a study on which mining sequence to 

feed the optimization process to randomize the starting point and explore better the solution 

space. The limitation of the method is related to the objective function that does not explicitly 

maximize cash flows, and instead minimizes deviations from production targets; thus the model 

does not fully profit from the maximal upside potential. 
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Montiel and Dimitrakopoulos (2015, 2017, 2018) present a framework that considers mining, 

processing and transportation schedules altogether and an efficient heuristic to solve the 

proposed formulation. In this model, the authors directly incorporate the desire to maximize the 

discounted cash flow of the mining complex, while minimizing the deviations from production 

targets. The method considers three perturbations strategies that are performed multiple times 

and sequentially: a) block-based perturbation, b) operating alternative-based perturbation, and c) 

transportation system perturbation. In the block-based perturbation, the overall profitability of 

the block considering all scenarios is ranked. The framework lets the optimizer to decide what is 

the best destination of the block considering uncertainty and all non-linear transformations across 

the value chain. The blocks preferably attempt to go to this most processing location, but when 

interacting with the other blocks on the deposit, this not necessarily is the optimal destination. 

Thus, the optimizer attempts to bring earlier profitable blocks and to postpone waste. Operating 

alternative-based perturbation relate changing the operating alternatives at some facilities, for 

example changing from fine to coarse grinding at the mill, which has a direct impact in 

throughput and recovery. These operating alternatives allow better control of geometallurgical 

variables and consequently a better performance and a more realistic modelling of the processing 

facility. Finally, the transportation system perturbations modify the proportions of materials 

through the available logistic system to deliver the material from one destination to another, 

using trucks and pipelines for example. The model is applied to a multi-pit copper operation, and 

the generated schedule considers the change in operating modes to maximize the performance of 

the operation. The risk analysis shows a much higher adherence to production targets and the 

NPV assessment shows a 5% increase compared to the deterministic base case. These decisions 

(operating modes and transportation strategy) reinforce the non-linear intercorrelation between 

different aspects in a mining complex, as the decision of increasing the throughput at the cost of 

lower recovery should be evaluated regarding the financial gains and related capacities. In 

addition to the above-described operations, Montiel et al. (2016) also integrate underground 

operations and external supply necessary needed at the autoclave processor for blending 

purposes. 

Goodfellow and Dimitrakopoulos (2016, 2017) present a very flexible formulation of a two-stage 

non-linear SIP for the optimization of mining complexes. The model is defined in three types of 

decision variables. In addition to the block extraction sequence decision variable, the model 
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presents a destination policy decision, where the authors apply the k-means ++ clustering 

algorithm (Arthur and Vassilvitskii 2007) to pre-process material types with similar 

characteristics. This clustering allows dynamic decisions regarding destination policies during 

the optimization and can be understood as an extension of the Menabde et al. (2007) cut-off 

optimization strategy, instead of defining decision variables based on the binning approach, the 

clusters are defined on the multi-dimensional space. All the blocks falling in the same cluster are 

send to the same destination in a specific period. The creation of cluster help with the 

optimization by reducing the number of processing decisions to be made. The block-based 

destination presented by Montiel and Dimitrakopoulos (2015) requires one decision variable for 

each block in each period, but a cluster defines the same decision variable for a big set of blocks. 

The third type of decision variable is related to processing stream decisions, which are 

proportions sent from one location to another. These variables are scenario dependent and can 

represent the flexibility of the operation in reclaiming different quantities from the stockpiles in 

different stochastic scenarios. The framework uses a modified version of simulated annealing to 

deal with extraction sequence variables, and then the particle swarm algorithm (Kennedy and 

Eberhart 1995) is used to optimize the post-extraction decision variables. This second solver 

algorithm is necessary due to the difficulty of simulated annealing to deal with continuous 

variables. The framework is particularly flexible allowing the non-linear calculation of attributes 

(blending, grade-recovery function, geo-metallurgical responses) at any step of the mining 

complex. The case studies show substantial improvement in risk management and an increase in 

NPV by including geologic uncertainty and optimizing the whole mining complex 

simultaneously 

A natural extension of this framework is to incorporate demand uncertainty into the framework. 

Farmer (2016) extends the above formulation to incorporate capital expenditure decisions 

directly in the objective function. The optimizer is responsible for selecting both mining and 

processing facility capacities, and results show a significant increase in NPV compared to a pre-

determined capacity case. The study also considers impacts of the project financing by 

considering a streaming contract under and assessed under uncertain price scenarios. Saliba and 

Dimitrakopoulos (2017) directly account for supply and demand uncertainty during the LOM 

production scheduling optimization of a mining complex. This results in a stable long-term 

production schedule resilient to both sources of uncertainty, which can capitalize on extra 
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production when the price is favourable. Zhang and Dimitrakopoulos (2017) incorporate 

uncertainty in ore supply and commodity market in a dynamic non-linear optimization model. 

The mine production scheduling and the material flow planning are optimized separately, but 

iteratively and interacting with each other. The solution of the mine production schedule defines 

the input of the material flow in the value chain. The material flow optimization sends a message 

to the previous message encouraging or discouraging the extraction of certain material types, 

which triggers a new scheduling optimization. This process cycles until the final solution is 

stable regarding these two optimizations. Kumar and Dimitrakopoulos (2017) expand the 

simultaneous optimization of mining complex to incorporate geometallurgical interactions of 

materials under supply uncertainty. Geometallurgical attributes have substantial influence in 

throughput, recovery and milling costs; thus incorporating these elements allow for more 

realistic mine design. Results from the optimization minimize deviation from production targets 

in a more risk-resilient scenario. 

Del Castillo and Dimitrakopoulos (2016) propose a stochastic multivariate destination policy for 

geometallurgical variables based on cooperative game theory. The idea is to capitalize on the 

interactions obtained by processing a cluster of blocks. The blocks are considered players and 

their simulated attributes are accounted to create coalitions and be sent together to the optimized 

destination. The case study applies the methodology at a copper-gold deposit with six material 

types and six destinations. The method does not optimize the schedule but improves blending 

requirements and targets only by optimizing the processing stream decisions and could improve 

even more by optimizing the mine schedule altogether.  

Del Castillo (2018) extends the stochastic simultaneous optimization of a mining complex to a 

dynamic multistage programming model. The multistage part of the method allows branching the 

solution if scenarios are different enough. This branching allows the assessment of decision 

making by providing a probabilistic assessment of taking or not an investment action (e.g. 

buying an additional crusher). Non-anticipative constraints ensure that all decisions taken are the 

same until the solution is allowed to branch. The method still makes sure the solution is robust 

under the geologic scenarios, that is it does not overfit to the simulations used. The formulation 

considers operational alternatives and also can evaluate capital expenditure decisions of 

significant financial impact, e.g. increasing truck fleet and buying an additional crusher. The case 

study presents an example where the dynamic model improves the NPV by 10% compared to the 
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traditional two-stage SIP model. The idea is to account for possible investments and guide the 

solution and decision making when more information is available, which can be analyzed in a 

probabilistic decision-tree. 

All the references present in this chapter show powerfull tolls with a high level of flexibility to 

generate more realistic modelling and planning of mining complexes. 

1.5 Goal and Objectives 

The goal of the research presented in this thesis is to extend the high-order simulation framework 

to generate realizations directly at block-support scale and to apply the approach in the 

optimization of the strategic plan of a gold mining complex. To meet this goal, the following 

objectives are set: 

 Review the technical literature related to orebody modelling using simulation techniques 

based on multiple point and high-order spatial statistics, and on the integration of geologic 

uncertainty into the simultaneous stochastic optimization of mining complexes. 

 Extend the spatial high-order simulation method to generate realizations directly at the block-

support scale and assess its performance. 

 Test the effects of the high-order direct block simulation in an application of the life-of-mine 

optimization of a mining complex.  

 Summarize the main contributions and conclusions of the thesis and provide suggestions for 

future research. 

1.6 Thesis Outline 

This thesis is organized as follows. 

Chapter - 1 presents a review of the simulation methods for orebody modelling, evolving from 

the second-order simulation methods to approaches based on multiple-point and high-order 

spatial statistics. Additionally, it also briefly reviews the technical literature linking stochastic 

simulations and the simultaneous optimization of mining complexes. 

Chapter - 2 presents an approach extending high-order simulation methods to generate 

realizations directly at the block-support scale. Practical aspects of the method are presented 

through an application at a gold deposit. 
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Chapter - 3 presents the use and assessment of the high-order direct block simulation method, 

presented in Chapter - 2, on an application of the simultaneous stochastic optimization of a gold 

mining complex, highlighting the advantages of the simulation method for the life-of-mine 

production scheduling optimization. 

Chapter - 4 summarizes the overall conclusions and provides suggestions for future research. 
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Chapter - 2   

High-order block support spatial simulation and application at a 

gold deposit 

2.1 Introduction 

Stochastic simulation methods are used to quantify spatial uncertainty and variability of pertinent 

attributes of natural phenomena in the geo-sciences and geo-engineering. Initial simulation 

methods were based on Gaussian assumptions and second-order statistics of corresponding 

random field models (Journel and Huijbregts 1978; David 1988; Goovaerts 1997). To address 

limits of Gaussian approaches, multiple point statistics (MPS) based simulation methods have 

been introduced (Guardiano and Srivastava 1993; Strebelle 2002; Zhang et al. 2006; Arpat and 

Caers 2007; Remy et al. 2009; Mariethoz et al. 2010; Mariethoz and Caers 2014; Mustapha et al. 

2014; Chatterjee et al. 2016; Li et al. 2016; Zhang et al. 2017) to remove distributional 

assumptions, as well as to enable the reproduction of complex curvilinear and other geologic 

features by replacing the random field model with a framework built upon the extraction of 

multiple point patterns from a training image (TI) or geological analogue. The main limitations 

of MPS methods are that they do not explicitly account for high-order statistics, nor provide 

consistent mathematical models while they generate TI-driven realizations. Previous studies have 

shown resulting realizations that comply with the TI used, but do not necessarily reproduce the 

spatial statistics inferred from the data (Osterholt and Dimitrakopoulos 2007; Goodfellow et al. 

2012). As an alternative to the above limitations, a high-order simulation (HOSIM) framework 

has been proposed as a natural generalization of the second-order based random field paradigm 

(Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos 2010a; b, 2011, Minniakhmetov 

and Dimitrakopoulos 2017a; b; Minniakhmetov et al. 2018; Yao et al. 2018). The HOSIM 

framework does not make any assumptions about the data distribution, and the resulting 

realizations reproduce the high-order spatial statistics of the data. Similar to the MPS and most 

Gaussian simulation approaches, HOSIM methods generate realizations at the point support, 

whereas, in most major areas of applications, simulated realizations need be at the block support 

scale. Typically, the change of support needed is addressed by generating simulated realizations 

at a very dense grid of nodes that is then post-processed to generate realizations at the block 
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support size needed, which is a computationally demanding process, as related configurations 

may require extremely dense grids that may be in the order of many millions to billions of nodes. 

Thus, there is a need for computationally efficient methods that simulate directly at the block 

support scale.  

In the context of the conventional second-order geostatistics, direct block support simulation has 

been proposed. Godoy (2003) presents an approach, termed “direct block simulation,” that 

discretizes each block into several internal nodes, but only stores a single block value in memory 

for the next group simulation. This mechanism drastically reduces the amount of data stored in 

memory and saves considerable computational effort. Boucher and Dimitrakopoulos (2009) 

expand the sequential direct block simulation method to incorporate multiple correlated variables 

by applying the min/max autocorrelation function (MAF). Emery (2009) uses an explicit change 

of the support model and directly simulates at block support. Although efficient, these methods 

carry all the limitations of a Gaussian simulation framework and related spatial connectivity is 

limited to two-point spatial statistics, thus, remain unable to characterize non-Gaussian variables, 

complex non-linear geological geometries and the critically important connectivity of extreme 

values (Journel 2018). Thus, alternatives are needed. 

High-order sequential simulation methods use high-order spatial cumulants to describe complex 

geologic configurations and high-order connecticity. At the same time, simulated realizations 

remain consistent with respect to the statistics of the available data, while capitalizing on the 

additional information that TIs can provide. Dimitrakopoulos et al. (2010) describe these high-

order spatial cumulants as combinations of moment statistical parameters. Mustapha and 

Dimitrakopoulos (2010a) propose a high-order simulation algorithm, where the conditional 

probabilities density functions (cpdf) are approximated by Legendre polynomials and high-order 

spatial cumulants. A template is defined based on the central node to be simulated and the 

nearest conditioning data. The replicates of this configuration are obtained from both the data 

and TI, and are used as input for the calculation of the Legendre coefficients in the cpdf 

approximation. Advantages of this method lie in the absence of assumption on the distribution of 

the data and in being a data-driven approach. Minniakhmetov et al. (2018) replace the Legendre 

polynomial by Legendre-like splines as the basis function for the estimation of conditional 

probabilities. Results show a more stable approximation of the related cpdf. Improving upon the 

computational performance, Yao et al. (2018) propose a new approach, where the calculation of 
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Figure 2.2 - Exhaustive image “V” (a) at point support, (b) at block support, and (c) 234 samples 

from image in (a) – 234 samples 

 

Figure 2.3 – Training image “U” at the (a) point support scale, and (b) block support scale. 
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Figure 2.7 – Variograms of simulated realizations, exhaustive image, TI, and variogram from 

data rescaled to block support variance; figure (a) shows the WE direction, and (b) the NS 

direction. 

Spatial cumulants (Dimitrakopoulos et al. 2010) quantify the spatial relationships between three 

and more points and are used herein to assess high-order spatial patterns. The third-order 

cumulant maps are presented along with the template used for its calculation in Fig. 2.8. Figure 

2.9 shows the fourth-order cumulant map, where three slices of the complete cumulant map and 

the related template are displayed. In both figures, the colors range from blue to red, representing 

lower to higher spatial inter-correlation between values. Note that the reference and training 

image high-order maps are calculated on the block support scale, while the cumulant maps 

related to each simulation is averaged to a single map using the 15 stochastic simulated 

realizations at block support. During the calculation of the high-order spatial statistics from the 

data, only a few replicates are obtained and Fig. 2.8a presents a smooth interpolation using B-

splines. Regarding the third-order maps, the average of the simulations match the spatial features 

observed in the data and fully-known dataset. It also shares similarities with the third-order 

cumulants map from TI, this is somewhat expected as the process captures high-order relations 

from the TI at block support at well. These spatial relations present in the TI ended up being 

present in the realizations as well. 

The fourth-order cumulant map reproduces the characteristics that are closer to the TI than the 

fully-known image, as expected. Note that, by explicitly calculating the spatial high-order 

cumulants, the information received from the training image to infer local cross-support 

distributions is conditioned to the data.  
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Figure 2.8 - Third-order cumulant maps for (a) point support data used, (b) fully-known block 

support image V, (c) training image, and (d) the average map of the 15 simulated realizations. 

 

Figure 2.9 - Slices of the fourth-order cumulant maps for (a) fully-known image V, (b) training 

image, and (c) average map of the 15 simulations, all at block support. 
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2.4  – Applications at a gold deposits 

This section applies the proposed method at a gold deposit. The dataset comprises 2,300 

drillholes that are spaced approximately at a 35 x 35 m2 configuration covering an area of 4.5 

km2. The training image is defined on 405×445×43 grid blocks of size 5×5×10 m3 and is 

based on blasthole samples. Both inputs are composited in a 10 m bench and are considered to be 

at point support. Figure 2.10 presents the drillholes available and the training image at block 

scale. The deposit to be simulated is represented by 510,800 blocks measuring 10x10x10 m3 

each.  

 

Figure 2.10 – (a) Cross-section of the available drillhole locations, and (b) training image in the 

block support scale. 

Table 2.3 - Basic stats of the average of the simulations and training image at block support and 

dataset at point scale 

Basic stats  Simulations  TI block support Data point support 

Average 0.63 0.62 0.63 

Median 0.40 0.39 0.39 

Variance 0.74 0.76 1.81 

Fifteen simulated realizations are generated and cross-sections from two of them are presented in 

Fig. 2.11 to show similarities with the data and TI in the corresponding cross-section in Fig. 10. 

Notable is the reproduction of a sharp transition from high to low grades. Figure 2.12 shows the 

histograms of the simulations and TI at block support. Table 3 provides the related statistics. 

Variograms at block support are displayed in Fig. 2.13, where the data variogram is regularized 

to reflect the corresponding volume-variance relation. The second-order spatial statistics of the 
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Figure 2.13 - Variograms of simulated realizations and training image and data variograms 

rescaled to represent block variance; WE direction (left) and NS direction (right). 

 

Figure 2.14 - Third-order cumulant maps, obtained with the template in the left, for the (a) 

dataset, (b) training image at block support, and (d) average map of the 15 simulations. 
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Figure 2.15 - 3 slices of the fourth-order cumulant maps, obtained with the template in the 

bottom, for the (a) dataset, (b) training image at block support, and c) average map of the 15 

simulations. 

Further highlighting the advantages of the proposed direct block high-order simulation method, 

one may note that, for the above case study, the run time of the related algorithm was 

approximately five and a half hours, while the point high-order simulation requires 

approximately twenty-four hours. Both approaches are tested with the same specifications and 

computing equipment: Intel® Core™ i7-7700 CPU with 3.60 GHz, 16GB of RAM and running 

under Windows 7. 

2.5  – Conclusions 

This paper presented a new high-order simulation method that simulates directly at block support 

scale by estimating, at every block location, the cross-support joint probability density function. 

Legendre-like splines are the set of a basis function used to approximate the above density 

function. The related coefficients are calculated from replicates of a spatial template employed. 

The latter template is generated from the configuration of the block to be simulated and 

associated conditioning values, whose supports can be both at the point and block support scales. 
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The high-order character of the proposed direct block simulation method ensures that generated 

realizations reflect complex, non-linear spatial characteristics of the variables being simulated 

and reproduce the connectivity of extreme values.  

The proposed algorithm was tested using an exhaustive image showing that the different 

realizations generated can reasonably reproduce spatial architectures observed in the exhaustive 

image. An application at a gold deposit shows the practical aspects of the method. In addition, it 

documents that the method works well while simulated realizations are shown to reproduce the 

spatial statistics of the available data up to the cumulants of the fourth-order that were calculated. 

Further work will focus on improving computational efficiency, generating training-images that 

are consistent with the high order relations in the available data, and extending the proposed 

method to jointly simulate multiple variables. 
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Chapter - 3   

Effects of high-order simulations on the simultaneous stochastic 

optimization of mining complexes 

3.1 Introduction 

A mining complex can be perceived as a transfer function that encapsulates complex interactions 

starting from the extraction of material from the mines until its transformation in sellable 

products, passing through different processes in the mineral value chain (Montiel and 

Dimitrakopoulos 2015; Goodfellow and Dimitrakopoulos 2017). It can include, for example, 

multiple mines, various elements and material types, stockpiles, tailings facilities, waste dumps, 

processing plants and transportation systems (Pimentel et al. 2010). Simultaneous stochastic 

optimization of a mining complex maximizes the global value of the mining operation by 

integrating all the components in a single framework, while including supply uncertainty and 

variability of materials from the mines as a set of stochastically generated realizations (Montiel 

and Dimitrakopoulos 2013, 2015, Goodfellow and Dimitrakopoulos 2016, 2017; Montiel et al. 

2016; Del Castillo 2018). 

Efforts in the industry modelling large mining operations as an integrated mathematical model 

have been leveraged over the last three decades. Newmont Mining Corporation becomes the 

pioneer proposing a linear programming approach to the massive mining complex at Nevada 

(Hoerger et al. 1999). BHP also provide significant improvements with the Blasor optimizer, a 

BHP Billiton’s in-house software applied to Yandi mine complex (Stone et al. 2007) optimizing 

the life-of-mine sequence of extraction of multiple pits altogether. Additional applications have 

extended the software to optimize and assess more complex requirements, for example, in-pit 

dumping (Zuckerberg et al. 2007) and underground mines (Rocchi et al. 2011). Whittle (2007) 

and Whittle (2010) describe one of the industry standard tools to sequence the extraction of 

material from multiple deposits in operations with complex blending and processing 

requirements. Although the methods mentioned above represent significant efforts in integrating 

multiple components of the mining complex, they still present simplifications and shortcuts. 

Some frameworks still consider a step-wise optimization of some components leading to 

suboptimal solutions (Whittle 2007, 2010; Pimentel et al. 2010; Goodfellow and 
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Dimitrakopoulos 2017). Another limitation is the aggregation of mining blocks, with the purpose 

to alleviate the optimization part, which can misrepresent the mining selectivity. Additionally, 

the uncertainty in material supply coming from the mines has been credited as the primary cause 

of risk in mining operations, and not directly accounting for it during the optimization can lead to 

unexpected deviations in production targets (Ravenscroft 1992; Dowd 1994; Dimitrakopoulos et 

al. 2002b; Dimitrakopoulos 2011).  

The spatial uncertainty and variability of attributes in geosciences can be quantified via 

geostatistical simulations (Journel and Huijbregts 1978; David 1988; Goovaerts 1997; Mariethoz 

and Caers 2014; Rossi and Deutsch 2014), which are founded on the concept of random fields. 

The sequential simulation approach is an alternative to assess these attributes at each unsampled 

location of a three-dimensional block model, through Monte Carlo sampling from a conditional 

distribution function (Journel and Huijbregts 1978; David 1988; Goovaerts 1997). Traditional 

simulation methods are based on the second-order statistics, namely, mean and covariance 

(variogram), where sequential Gaussian simulation (SGS) (Isaaks 1990; Journel 1994; Goovaerts 

1997), sequential indicator simulation (SIS) (Alabert 1987; Goovaerts 1997) and sequential 

direct block simulation (Godoy 2003; Boucher and Dimitrakopoulos 2009) are some examples. 

However, geological attributes of spatially distributed phenomena are represented by complex, 

non-Gaussian and non-linear spatial connectivity of low and high-grades. Only two statistical 

parameters (second-order) are not sufficient to fully describe these attributes (Journel 2007). 

Also, simulation methods that work in the Gaussian space maximize the spatial disorder 

(maximal entropy) of the realizations, (Journel and Deutsch 1993) preventing a more realistic 

quantification of the connectivity of high-grades. 

Attempting to address these limitations multiple-point statistics (MPS) based simulation methods 

have been introduced (Guardiano and Srivastava 1993; Strebelle 2002; Journel 2005; Zhang et 

al. 2006; Arpat and Caers 2007; Remy et al. 2009; Mariethoz et al. 2010; Mariethoz and Caers 

2014; Chatterjee et al. 2016). By replacing the random field model with a framework extracting 

multiple point patterns from a training image (TI), or geological analogue, MPS methods can 

reproduce complex curvilinear and other geologic features, without making distributional 

assumptions. However, by mostly extracting patterns from the TI, the approach generates TI-

driven realizations, where previous studies have shown that they do not always reproduce the 

spatial statistics inferred from the data (Osterholt and Dimitrakopoulos 2007; Goodfellow et al. 
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2012). As a natural extension of second-order methods, the high-order simulation framework 

(Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos 2010a, 2011, Minniakhmetov and 

Dimitrakopoulos 2017a; b; de Carvalho et al. 2018; Minniakhmetov et al. 2018; Yao et al. 2018) 

can reproduce very complex non-linear geometries and spatial statistics from data, by explicitly 

calculating high-order spatial cumulants. The generated realizations present more realistic and 

structured connectivity of high grades (lower entropy) compared to traditional methods, as 

shown in the example in Fig. 3.1.  

 

Figure 3.1 – Connectivity of high-grades along X (a) and Y (b) direction, calculated for the 99th 

percentile. Adapted from Minniakhmetov et al. (2018). 

Appropriate characterization of spatial connectivity and its impact in transfer functions are well-

studied subjects in flow modelling of reservoirs and aquifers (Journel and Alabert 1989; Journel 

and Deutsch 1993; Gómez-Hernández and Wen 1998; Renard and Allard 2013). In the mining 

context, some studies have shown that the use of different simulation frameworks has impacts on 

the output of transfer functions (Qureshi and Dimitrakopoulos 2005; Dimitrakopoulos and 

Godoy 2014). Geostatistical simulations have been effectively incorporated into the state-of-the-

art simultaneous stochastic optimization of mining complex framework (Montiel and 

Dimitrakopoulos 2013, 2015, 2017, Goodfellow and Dimitrakopoulos 2016, 2017). The next step 

is to further investigate the effects of high-order simulation models in this optimization 

framework. 

This paper presents an application of the high-order direct block-support simulation method (de 

Carvalho et al. 2018) used as input in the simultaneous stochastic optimization of a simplified 
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3.3 Case Study – applications at a gold mining complex 

The first part of the case study is related to the simulation of the gold mine. The deposit covers 

an area of approximately 4.5 km2 and a depth of 400 m. The three-dimensional block model 

block model has more than 500,000 blocks of 10x10x10 m3. The exploration data available is 

composed by about 2,300 drillholes of 10 m composite size and spaced at approximately 35 m. A 

set of 15 high-order simulations are generated directly at the scale of blocks using a training 

image generated from blasthole data, obtained at every 5m. For comparison, a set of simulations 

based on the second-order statistics is also generated using one of most traditional methods in 

industry applications, sequential Gaussian simulation (SGS) (Isaaks 1990; Journel 1994; 

Goovaerts 1997). Realizations are generated at the point-support and rescaled to block support 

using a discretization of 25 nodes per block.  

3.3.1 Results, comparison and effects of high-order and second-order 

simulations 

First, to provide a common ground for comparison, Fig. 3.2 shows the grade-tonnage curve for 

both simulation frameworks with comparable overall behaviour. The graph shows very similar 

proportions regarding tonnages and grades in the whole deposit. Although the metal quantity is 

very comparable in both cases, how each method connects these elements in space can be very 

different, especially at the high-grade values, as mentioned earlier in Fig. 3.1. Figure 3.3 displays 

cross sections of both second-order and high-order realizations of the deposit, where the high-

grade zones are highlighted in red circles. It is possible to visualize the effect of the maximal 

entropy property over the second-order simulations, which is enhanced by the fact the simulation 

process was performed at the Gaussian space. The grades displayed by the simulations generated 

with SGS are visually more sparsed than in the high-order simulations. This connectivity can be 

quantified accordingly to Journel and Alabert (1989), and it is presented in Fig. 3.4. For the 

connectivity plot, the cut-off applied is 5 g/ton, corresponding to the 99th percentile of the grade 

distribution, as the focus of the comparison is on the high-grades. In the NE direction, the 

second-order realizations behave consistently less connected than the high-order ones for all 

lags. Regarding the NE direction and 45º dip, the difference becomes more pronounced, with a 

considerable gap between both simulation methods. As the mineralization of high grades drives 

the mine production schedule, this plays a vital role in the mine complex optimization. 



77 
 

 

Figure 3.2 – Grade tonnage curve of the gold deposit for SGS and high-order simulations.  

 

Figure 3.3 - Cross-sections of the simulations highlighting differences in connectivities of high 

grades: a) high-order simulations; b) SGS simulations. 
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Figure 3.4 – Connectivity of simulated realizations at a) NE direction; b) NE/45º direction 

3.3.2 LOM production schedule optimization and forecasting 

The simple mining complex version considered in the application consists of a single gold mine, 

and the following destinations where the material from the mine can flow to a leach pad, a 

stockpile, a waste dump and a mill circuit. The ore extracted from the mine can flow from the 

mine to the leach pad or to the mill processing stream to produce gold, the diagram of the mining 

complex is shown in Fig. 3.5. The critical parameters for the optimization, displayed in Table 

3.1, are kept constant in both cases. 

 

Figure 3.5 – Diagram of the mine complex configuration. 
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Table 3.1 – Main parameters used in the optimzation 

Parameter Specification 

Mine capacity 30 Mtpa 

Mill capacity 8.25 Mtpa 

Leach pad capacity 10 Mtpa 

Sink rate 60m / year 

Mining radius 60m 

Mining cost 1.6$/ton  

Milling cost 7.84$/ton 

Gold price 1250 $/Oz 

Discount rate 10% 

Geologic risk discounting 10% 

The uncertainty in the materials supplied by the deposit is quantified by the set of simulations 

generated, and they are inputted into the optimization framework. First, the mining complex is 

optimized having the simulations generated by the high-order direct block support method, 

which is referred throughout the remainder of the paper as Case 1. To benchmark the forecasts of 

life-of-mine (LOM) production schedule obtained, the same mining complex setting is 

optimized, having the deposit being described by the set of simulations generated by the second-

order simulation method. The result of this optimization is referred to as Case 2. 

Cases 1 and 2 are optimized and results are discussed below. Cross sections of the LOM 

production schedules optimized for each case are displayed in Figs. 3.6 and 3.7 along West-East 

and North-South directions, respectively. The areas with the same colour represent the same 

period of extraction, and they highlight that the sequences of extraction obtained differ 

considerably. This is not surprising given the differences in the two simulation methods used, as 

discussed in previous sections. Cross sections of Case 1 show a clear mining direction 

controlling the sequence of extraction, highlighted by the red arrow. Note that this direction is 

approximately the same direction where the difference in connectivity is more evident, recall 

from Fig. 3.4. The higher continuity of high-grades is driving the schedule towards these more 

connected ore materials so that they can be processed together. 

Figure 3.8 display horizontal sections of the LOM production schedule generated and the 

differences in of the sequence of extraction are again demonstrated. Additionally, these sections 

show variations in the extension of the ultimate pit limits (UPL); the red circles highlights how 

larger the UPL is in Case 2. As second-order simulations methods present high-grade material 
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more scattered, it is logical that the pits have to be larger to process these elements, resulting in a 

higher waste extraction as shown in Fig. 3.8a. 

These differences are of particular interest since after the optimization part, the process of 

designing the infrastructure, such as ramps, accesses, equipment placement, facility locations, 

reduces the flexibility to change the schedule. If the production schedule optimization does not 

account for more realistic connectivity of high grades, the LOM production schedule cannot 

pursue the high grades more strategically.  

 

Figure 3.6 – Cross-section of the LOM production schedule (plane East-West) obtained in: a) 

Case 1 and b) Case 2. 

 

Figure 3.7 – Cross-section of the LOM production schedule (plane North-South) obtained in: a) 

Case 1 and b) Case 2. 
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Figure 3.8 –Horizontal sections of the mine production schedule at different elevations for a) 

Case 1 and b) Case 2. 

Regarding production targets and forecasts, Fig. 3.9a shows the total tonnage mined over the 

LOM and the cumulative strip ratio for both cases. The production schedule obtained in Case 2 

mines, in total, 5% more material than Case 1, this difference reaches 8% at the end of the 10th 

year, to ensure a similar throughput at the mill, Fig. 3.9b. Mining more, in this case, translates to 

higher waste production, which is quantified by the higher strip ratios presented by Case 2. This 

can be explained based on the greater spatial disorder (maximal entropy) that second-order, 

especially Gaussian-based approaches, cause to high-grades. Having the ore blocks less 

connected in space the optimizer mines more to reach the high-grade values, more sparse, and 

provide a consistent feed rate at the mill. This contrast in the total tonnage mined leads to the 

differences in UPL sizes, Fig. 3.8. On the other hand, inputting into the optimizer more realistic 

connectivities of ore leads the LOM production schedule in Case 1 to be more informed into 

pursuing high-grades more efficiently. 
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Figure 3.9 – Production target assessments: a) cumulative mine tonnage and strip ratio; b) mill´s 

throughput. 

Although the mill’s throughput is kept reasonably constant throughout the LOM in both 

instances, the dissimilarities regarding metal content are stressed in Fig. 3.10. The Case 1 can 

feed the mill with a higher head grade for the majority of the LOM, as shown in Fig. 3.10a. As 

the optimizer sees high grades better connected, it is easier to bring their extraction to the same 

period so they can be processed together. These richer materials mined are processed together 

increasing the average feed grade at the mill, consequently recovering more ounces earlier, as 

shown in Fig. 3.10b. Case 1 has an ounces profile consistently higher for the first 17 years; this 

difference reaches 7% after the 10th year. Case 2 produces, after the 20th year, 2% more gold, but 

this is not significant due to the effect of discounting and the time value of money. Recovering 

more ounces sooner brings more cash flow earlier to the operation which positively impacts the 

NPV. Summing the joint effects of meeting the targets, mining less waste, and producing more 

gold ounces at earlier stages results in a considerable increase in NPV, as shown in Fig. 3.10c. 

By producing more metal for less waste, the LOM production schedule obtained in Case 1 

generates in total 5% more NPV than Case 2, and 16% more in the initial ten years. The 

difference is substantial and greatly appreciated especially at early stages of the development of 

the mine. 
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Figure 3.10 – Risk analysis of production forecasts for a) head grade at the mill; b) cumulative 

gold recovered at the mill and c) NPV assessment. 

3.4 Conclusions 

This paper investigates the effects of high-order simulations of a deposit in the simultaneous 

stochastic optimization of a gold mining complex. The high-order simulations are generated 

directly at the block-support scale and are inputted in the simultaneous optimization (Case 1). 

The LOM production schedule generated is benchmarked against a case where the stochastic 

realizations of the orebody are generated through the use of a conventional second-order 

simulation method, SGS (Case 2). The geological realizations from both methods present 

comparable proportions of tonnages and grades, but very different spatial connectivity of high-

grades. Frameworks based on the second-order statistics, in particular Gaussian-based, maximize 
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the spatial disorder of the generated realizations preventing the reproduction of the connectivity 

of high-grades.  

In this study, the high-order simulations present a higher degree of continuity of high-grades, 

which is notably more pronounced at the NE/45º direction, when compared to the second-order 

simulations. This information is incorporated into the simultaneous stochastic optimization 

framework driving the sequence of extraction more smartly favouring this direction. The direct 

consequence of the above is the Case 1 scheduling sequences with more high-grade material, 

which allows the optimization to process them together increasing the mill’s head grade. The 

result is a higher ounce profile being produced earlier, up to 7% more gold being recovered by 

the end of the year 10. Note that this is achieved while mining less waste, the strip ratio of Case 1 

is consistently below Case 2. In its turn, the Case 2 generates a pit 5% larger to provide a similar 

mill’s throughput throughout the LOM. The combined effect of producing more metal while 

mining less waste in this case study is the increase in NPV by 5 to 16% than the assessment 

obtained in Case 2. These findings corroborate that the choice of a simulation method matters 

and that the simultaneous stochastic optimization of mining complex can profit from the benefits 

of incorporating simulations, that can reproduce multi-point connectivity of high-grades, into the 

optimization.  
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Chapter - 4  

Conclusions 

4.1  – General conclusions 

The present work shows that the simultaneous stochastic optimization of mining complex can 

profit by incorporating simulations that better capture multi-point connectivity of high-grades of 

an underlying mineral deposit. Current state-state-of-the art simulations methods are capable of 

modelling spatially distributed geologic non-Gaussian geologic attributes with complex and non-

linear geometries. However, they output realizations at the point-support scale, requiring post-

process to generate engineering block model to represent the orebody. Massive mineral deposits 

represented by several million mining blocks are computationally cumbersome to not only 

generate the models but to handle simulated files and re-block realizations into adequate mining 

block sizes. This observation motivated this thesis to extend the high-order simulation method to 

generate stochastic realizations of spatially distributed phenomena directly at block-support 

scale, which improves the computational efficiency of existing methods. Data handling is 

facilitated by the elimination of the re-blocking post-processing step. The stochastic realizations 

generated from this framework are inputted to the simultaneous stochastic optimization of a gold 

mining complex optimization, where the influence of the high-order simulations on the life-of-

mine (LOM) production schedule is evaluated and highlighted. The case study illustrates the 

benefits of using methods that reproduce more realistically the mineralization of high-grades and 

presents a possibility to generate more informed schedules, driven by the spatial structures and 

continuity of high grade blocks. 

This thesis presents a high-order direct block simulation method that generates realizations at the 

block-support scale conditional to the available drillhole data, at point-support. Following the 

sequential simulation approach, the method estimates at every block location a cross-support 

joint probability density function conditional to values at different support scale. It allows 

sampling a value directly at the block-support. The method uses a training image at point-

support, which is up-scaled to represent block-support and assist with the calculation of spatial 

cumulants, as needed. At each block location, a spatial template able to obtain conditioning 

values in different supports is defined, and the TI in both support sizes acts as a database for 
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replicates to the calculation of the spatial cumulants. The high-order aspect of the framework 

ensures that simulated realizations reproduce complex and non-linear geological spatial 

geometries of the attribute of interest directly at block scale. The method is tested in a controlled 

environment showing that the realizations can reasonably reproduce the most important spatial 

structures observed in the exhaustive images. The approach is applied to a gold deposit where 

realizations show good compliance with the spatial statistics of the data up to the fourth-order 

cumulants. The runtime of generating one realization in this application shows a reduction by a 

factor of 5 when compared to the point-support version of the algorithm, without considering 

reblocking. 

The simulations of the gold deposit generated are subsequently used in a case study that 

considers the simultaneous stochastic optimization of a mining complex, comprising of one 

mine, a waste dump, a mill and a leach pad, and gold is the single product of interest. The 

stochastic realizations of the deposit, quantifying the uncertainty and variability, and reproducing 

the multi-point connectivity of high-grade, are used as inputs in this simultaneous optimization 

framework. Results of the LOM production schedule obtained (Case 1) is benchmarked to a 

similar setting but having the deposit characterized by a conventional second-order sequential 

(Gaussian) simulation method (Case 2). First, the application compares the intricacies of both 

simulation methods applied, and findings show that even though displaying very similar overall 

proportion of tonnages and grades, the manner in which each method connects the ore is very 

different. The study shows that the connectivity of high-grade effectively plays a role by visually 

driving the sequence of extraction towards the direction where this difference in connectivity 

pronounced between realizations from both methods. This more informed mining strategy 

impacts positively the LOM production schedule, which can capitalize on this more realistic 

modelling, and provides a series of benefits. First, the comparison shows that the LOM 

production of Case 1 produces more ounces earlier in the LOM than Case 2, 7% more gold is 

recovered by the end of period 10. It is important to mention that more metal is obtained while 

less waste is required to mine. The resulting strip ratio is consistently lower than Case 2, which 

mines more material (5% larger pit) to ensure a similar ore tonnage feeding the mill. The 

combined effect of these results is an increase of about 5 to 16% net present value compared to 

Case 2. This highlights that generating more realistic simulations is a key aspect in mine 
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planning and its integration into the simultaneous optimization of mining complex can enhance 

even more the value of stochastic solutions. 

4.2  – Recommendations for future work 

Faster algorithms are still necessary as computational efficiency is still the limit for the industry 

to adopt more robust methods able to describe more complex geological spatial patterns. Thus, 

parallelization and the use of GPU computing are an option to improve the time required to 

model these attributes. Future work in high-order simulations can aim attention at extending the 

high-order direct block-support approach to perform simulations of correlated elements. Most 

commonly more than one element is of interest in a mining complex, in which these mineralized 

attributes are correlated somehow, where decorrelation based on high-order statistics from the 

data can be further studied. A method able to generate jointly multiple simulations based on 

high-order statistics directly at block-support has a great potential to improve computational 

efficiency and data handling. 

Additional efforts can focus on generating TI consistent with the high-order relations in the 

available data. High-order cumulants are dependent on lower orders, which can be easily 

obtained from the data, this knowledge can be explored in conditioning the training image to the 

data, thus enhancing the data-driven property of the generated realizations. Today’s practices of 

generating training images are sometimes subjective such as a geologic interpretation 

(categorical attributes) or require other sources of information such the use of previously mined 

areas or from blasthole data (continuous attributes).  

Finally, having high-order simulated of correlated elements, further study can investigate their 

influence in the optimization of a more sophisticated mining complex. 

  



88 
 

References 

Alabert F (1987) Stochastic imaging of spatial distributions using hard and soft information. 

MSc Thesis, University of Queensland, Brisbane, Qld, Australia 

Albor F, and Dimitrakopoulos R (2009) Stochastic mine design optimisation based on simulated 

annealing: pit limits, production schedules, multiple orebody scenarios and sensitivity 

analysis. Min. Technol. IMM Trans. Sect. A 118(2):79–90. doi: 

10.1179/037178409X12541250836860 

Arpat GB, and Caers J (2007) Conditional simulation with patterns. Math. Geol. 39(2):177–203. 

doi: 10.1007/s11004-006-9075-3 

Arthur D, and Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: 

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. 

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1027–1035 

Benndorf J, and Dimitrakopoulos R (2007) New efficient methods for conditional simulation of 

large orebodies. In: Dimitrakopoulos R (ed) Orebody Modelling and Strategic Mine 

Planning. AusIMM, Spectrum Series 14, Carlton, Vic, pp 61–67 

Birge J, and Louveaux F (1997) Introduction to stochastic programming. Springer Ser Oper Res. 

421. doi: 10.1057/palgrave.jors.2600031 

Boucher A (2009) Considering complex training images with search tree partitioning. Comput. 

Geosci. 35(6):1151–1158. doi: 10.1016/j.cageo.2008.03.011 

Boucher A, and Dimitrakopoulos R (2009) Block simulation of multiple correlated variables. 

Math. Geosci. 41(2):215–237. doi: 10.1007/s11004-008-9178-0 

Chanda E (2007) Network linear programming optimisation of an Integrated mining and 

metallurgical complex. In: Dimitrakopoulos R (ed) Orebody Modelling and Strategic Mine 

Planning. AusIMM, Spectrum Series 14, pp 149–155 

Chatterjee S, Dimitrakopoulos R, and Mustapha H (2012) Dimensional reduction of pattern-

based simulation using wavelet analysis. Math. Geosci. 44(3):343–374. doi: 

10.1007/s11004-012-9387-4 

Chatterjee S, Mustapha H, and Dimitrakopoulos R (2016) Fast wavelet-based stochastic 



89 
 

simulation using training images. Comput. Geosci. 20(3):399–420. doi: 10.1007/s10596-

015-9482-y 

Dagdelen K, and Traore I (2014) Open pit transition depth determination through global analysis 

of open pit and underground mine production scheduling. In: Dimitrakopoulos R (ed) 

Orebody modelling and strategic mine planning. AusIMM, Spectrum Series 14, Melbourne, 

pp 195–200 

David M (1977) Geostatistical ore reserve estimation. Elsevier, Amsterdam 

David M (1988) Handbook of applied advanced geostatistical ore reserve estimation. Elsevier, 

Amsterdam 

Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of 

the covariance matrix. Math. Geol. 19(2):91–98. doi: 10.1007/BF00898189 

de Boor C (1978) A practical guide to splines. Springer-Verlag, Berlin 

de Carvalho JP, Dimitrakopoulos R, and Minniakhmetov I (2018) High-order block support 

spatial simulation and application at a gold deposit. Math. Geosci. (Submitted): 

Del Castillo MF (2018) Dynamic simultaneous optimization of mineral value chains under 

resource uncertainty. PhD thesis, McGill University, Canada 

Del Castillo MF, and Dimitrakopoulos R (2016) A multivariate destination policy for 

geometallurgical variables in mineral value chains using coalition-formation clustering. 

Resour Policy. 50. 322–332. doi: 10.1016/J.RESOURPOL.2016.10.003 

Desbarats AJ, and Dimitrakopoulos R (2000) Geostatistical simulation of regionalized pore-size 

distributions using min/max autocorrelation factors. Math. Geol. 32(8):919–942. doi: 

10.1023/A:1007570402430 

Deutsch C V., and Wen XH (2000) Integrating large-scale soft data by simulated annealing and 

probability constraints. Math. Geol. 32(1):49–67. doi: 10.1023/A:1007502817679 

Deutsch C V, and Cockerham PW (1994) Practical considerations in the application of simulated 

annealing to stochastic simulation. Math. Geol. 26(1):67–82. doi: 10.1007/BF02065876 

Dimitrakopoulos R (2011) Stochastic optimization for strategic mine planning: A decade of 

developments. J. Min. Sci. 47(2):138–150. doi: 10.1134/S1062739147020018 



90 
 

Dimitrakopoulos R (1996) Stochastic methods for petroleum reservoir characterization and 

product forecasting. J Japanese Assoc Pet Technol. 61 

Dimitrakopoulos R, Farrelly CT, and Godoy M (2002a) Moving forward from traditional 

optimization: grade uncertainty and risk effects in open-pit design. Min. Technol. 

111(1):82–88. doi: 10.1179/mnt.2002.111.1.82 

Dimitrakopoulos R, Farrelly CT, and Godoy M (2002b) Moving forward from traditional 

optimization: grade uncertainty and risk effects in open-pit design. Min. Technol. 

111(1):82–88. doi: 10.1179/mnt.2002.111.1.82 

Dimitrakopoulos R, and Godoy M (2014) Grade control based on economic ore/waste 

classification functions and stochastic simulations: examples, comparisons and applications. 

Min. Technol. 123(2):90–106. doi: 10.1179/1743286314Y.0000000062 

Dimitrakopoulos R, and Luo X (2004) Generalized sequential Gaussian simulation on group size 

v and screen-effect approximations for large field simulations. Math. Geol. 36(5):567–590. 

doi: 10.1023/B:MATG.0000037737.11615.df 

Dimitrakopoulos R, Mustapha H, and Gloaguen E (2010) High-order statistics of spatial random 

fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear 

phenomena. Math. Geosci. 42(1):65–99. doi: 10.1007/s11004-009-9258-9 

Dimitrakopoulos R, and Ramazan S (2004) Uncertainty-based production scheduling in open pit 

mining. SME Annu. Meet. 316(03):106–112 

Dowd P (1994) Risk assessment in reserve estimation and open-pit planning. Trans. Inst. Min. 

Metall. (January):148–154. doi: 10.1016/0148-9062(95)97056-O 

Dowd PA (1997) Risk in minerals projects: analysis, perception and management. Trans Inst 

Min Metall Sect a-Mining Ind. 106. 9–18 

Emery X (2009) Change-of-support models and computer programs for direct block-support 

simulation. Comput. Geosci. 35(10):2047–2056. doi: 

https://doi.org/10.1016/j.cageo.2008.12.010 

Farmer IW (2016) Stochastic mining supply chain optimization: A study of integrated capacity 

decisions and pushback design under uncertainty. McGill University, Montreal, QC, Canada 



91 
 

Froidevaux R (1992) Probability field simulation. In: Soares A (ed) Geostatistics Tróia ’92: 

Volume 1. Springer Netherlands, Dordrecht, pp 73–83 

Geman S, and Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian 

restoration of images. Pattern Anal. Mach. Intell. IEEE Trans. PAMI-6(6):721–741. doi: 

10.1109/TPAMI.1984.4767596 

Godoy M (2003) The effective management of geological risk in long-term production 

scheduling of open pit mines. Ph.D. Thesis, University of Queensland, Brisbane, Qld, 

Australia 

Gómez-Hernández JJ, and Wen XH (1998) To be or not to be multi-Gaussian? A reflection on 

stochastic hydrogeology. Adv. Water Resour. 21(1):47–61. doi: 10.1016/S0309-

1708(96)00031-0 

Goodfellow R, Albor Consuegra F, Dimitrakopoulos R, and Lloyd T (2012) Quantifying multi-

element and volumetric uncertainty, Coleman McCreedy deposit, Ontario, Canada. Comput 

Geosci. 42. 71–78. doi: 10.1016/j.cageo.2012.02.018 

Goodfellow R, and Dimitrakopoulos R (2016) Global optimization of open pit mining complexes 

with uncertainty. Appl Soft Comput J. 40. 292–304. doi: 10.1016/j.asoc.2015.11.038 

Goodfellow R, and Dimitrakopoulos R (2017) Simultaneous stochastic optimization of mining 

complexes and mineral value chains. Math. Geosci. 49(3):341–360. doi: 10.1007/s11004-

017-9680-3 

Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New 

York 

Groeneveld B, Topal E, and Leenders B (2010) A new methodology for flexible mine design. In: 

Dimitrakopoulos R (ed) Orebody Modelling and Strategic Mine Planning. AusIMM, 

Spectrum Series 17, pp 113–122 

Guardiano FB, and Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. 

In: Soares A (ed) Geostatistics Tróia ’92: Volume 1. Springer Netherlands, Dordrecht, pp 

133–144 

Hoerger S, Hoffman L, and Seymour F (1999) Mine planning at Newmont’s Nevada operations. 



92 
 

Min. Eng. 51(10):26–30 

Huang T, Lu DT, Li X, and Wang L (2013) GPU-based SNESIM implementation for multiple-

point statistical simulation. Comput Geosci. 54. 75–87. doi: 10.1016/j.cageo.2012.11.022 

Isaaks EH (1990) The application of Monte Carlo methods to the analysis of spatially correlated 

data. Ph.D. Thesis, Stanford University, Stanford, Ca, United States 

Isaaks EH, and Srivastava RM (1989) Applied geostatistics. Oxford University Press 

Johnson ME (1987) Multivariate statistical simulation. John Wiley & Sons, Inc., Hoboken, NJ, 

USA 

Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Econ Geol. doi: 

10.2113/gsecongeo.69.5.673 

Journel AG (2007) Roadblocks to the evaluation of ore reserves - The simulation overpass and 

putting more geology into numerical models of deposits. In: Dimitrakopoulos R (ed) 

Orebody Modelling and Strategic Mine Planning. Australasian Institute of Mining and 

Metallurgy, pp 29–32 

Journel AG (2018) Roadblocks to the evaluation of ore reserves - the simulation overpass and 

putting more geology into numerical models of deposits. In: Dimitrakopoulos R (ed) 

Advances in Applied Strategic Mine Planning. Springer, Heidelberg, pp 47–55 

Journel AG (2005) Beyond covariance: the advent of multiple-point geostatistics. In: 

Leuangthong O, Deutsch C V. (eds) Geostatistics Banff 2004, Quantitative Geology and 

Geostatistics, vol 14. Springer, Dordrecht, pp 225–233 

Journel AG (1994) Modeling uncertainty: some conceptual thoughts. In: Dimitrakopoulos R (ed) 

Geostatistics for the Next Century. Springer, Dordrecht, pp 30–43 

Journel AG, and Alabert F (1989) Non-gaussian data expansion in the earth sciences. Terra Nov. 

1(2):123–134. doi: 10.1111/j.1365-3121.1989.tb00344.x 

Journel AG, and Deutsch C V. (1993) Entropy and spatial disorder. Math. Geol. 25(3):329–355. 

doi: 10.1007/BF00901422 

Journel AG, and Huijbregts CJ (1978) Mining geostatistics. Blackburn Press, New York 



93 
 

Kennedy J, and Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE 

International Conference on Neural Networks. IEEE, pp 1942–1948 

Kirkpatrick S, Gelatt CD, and Vecchi MP (1983) Optimization by simulated annealing. Science 

(80-. ). 220(4598):671 LP-680 

Kumar A, and Dimitrakopoulos R (2017) Introducing geometallurgical constraints into the 

simultaneous stochastic optimization of mining complexes: Application at a copper-gold 

mining complex. In: Dagdelen K (ed) Proceedings of 38th International Symposium on the 

Application of Computers and Operations Research in the Mineral Industry. APCOM, pp 6-

7-6–14 

Lamghari A, and Dimitrakopoulos R (2014) Progressive hedging applied as a metaheuristic to 

schedule production in open-pit mines accounting for reserve uncertainty. Eur. J. Oper. Res. 

24(3):843–855. doi: 10.1016/j.ejor.2016.03.007 

Lamghari A, and Dimitrakopoulos R (2012) A diversified Tabu search approach for the open-pit 

mine production scheduling problem with metal uncertainty. Eur. J. Oper. Res. 222(3):642–

652. doi: 10.1016/j.ejor.2012.05.029 

Lamghari A, Dimitrakopoulos R, and Ferland JA (2014) A variable neighbourhood descent 

algorithm for the open-pit mine production scheduling problem with metal uncertainty. J. 

Oper. Res. Soc. 65(9):1305–1314. doi: 10.1057/jors.2013.81 

Lebedev NN (1965) Special functions and their applications. Prentice-Hall Inc., New York 

Leite A, and Dimitrakopoulos R (2007) Stochastic optimisation model for open pit mine 

planning: application and risk analysis at copper deposit. Min. Technol. 116(3):109–118. 

doi: 10.1179/174328607X228848 

Li X, Mariethoz G, Lu DT, and Linde N (2016) Patch-based iterative conditional geostatistical 

simulation using graph cuts. Water Resour. Res. 52(8):6297–6320. doi: 

10.1002/2015WR018378 

Maharaja A (2004) Hierarchical simulation of multiple facies reservoir using multiple-point 

geostatistics. M.Sc. Thesis, Stanford University, Stanford, CA 

Mariethoz G, and Caers J (2014) Multiple-point geostatistics: Stochastic modeling with training 



94 
 

images. Hoboken: Wiley 

Mariethoz G, Renard P, and Straubhaar J (2010) The direct sampling method to perform 

multiple-point geostatistical simulations. Water Resour. Res. 46(11):1–14. doi: 

10.1029/2008WR007621 

Menabde M, Froyland G, Stone P, and Yeates GA (2007) Mining schedule optimisation for 

conditionally simulated orebodies. Orebody Model Strateg Mine Plan. 14. 379–383 

Minniakhmetov I, and Dimitrakopoulos R (2017a) Joint high-order simulation of spatially 

correlated variables using high-order spatial statistics. Math. Geosci. 49(1):39–66. doi: 

10.1007/s11004-016-9662-x 

Minniakhmetov I, and Dimitrakopoulos R (2017b) A high-order, data-driven framework for joint 

simulation of categorical variables. In: Gómez-Hernández JJ, Rodrigo-Ilarri J, Rodrigo-

Clavero ME, et al. (eds) Geostatistics Valencia 2016. Springer International Publishing, 

Cham, pp 287–301 

Minniakhmetov I, Dimitrakopoulos R, and Godoy M (2018) High-order spatial simulation using 

Legendre-like orthogonal splines. Math Geosci. doi: 10.1007/s11004-018-9741-2 

Montiel L, and Dimitrakopoulos R (2013) Stochastic mine production scheduling with multiple 

processes: Application at Escondida Norte, Chile. J. Min. Sci. 49(4):583–597. doi: 

10.1134/S1062739149040096 

Montiel L, and Dimitrakopoulos R (2018) Simultaneous stochastic optimization of production 

scheduling at Twin Creeks Mining Complex , Nevada. Min. Eng. 70(12):12–20 

Montiel L, and Dimitrakopoulos R (2015) Optimizing mining complexes with multiple 

processing and transportation alternatives: An uncertainty-based approach. Eur. J. Oper. 

Res. 247(1):166–178. doi: 10.1016/j.ejor.2015.05.002 

Montiel L, and Dimitrakopoulos R (2017) A heuristic approach for the stochastic optimization of 

mine production schedules. J. Heuristics 23(5):397–415. doi: 10.1007/s10732-017-9349-6 

Montiel L, Dimitrakopoulos R, and Kawahata K (2016) Globally optimising open-pit and 

underground mining operations under geological uncertainty. Min. Technol. 125(1):2–14. 

doi: 10.1179/1743286315Y.0000000027 



95 
 

Mustapha H, Chatterjee S, and Dimitrakopoulos R (2014) CDFSIM: efficient stochastic 

simulation through decomposition of cumulative distribution functions of transformed 

spatial patterns. Math. Geosci. 46(1):95–123. doi: 10.1007/s11004-013-9490-1 

Mustapha H, and Dimitrakopoulos R (2010a) High-order stochastic simulation of complex 

spatially distributed natural phenomena. Math. Geosci. 42(5):457–485. doi: 

10.1007/s11004-010-9291-8 

Mustapha H, and Dimitrakopoulos R (2011) HOSIM: A high-order stochastic simulation 

algorithm for generating three-dimensional complex geological patterns. Comput. Geosci. 

37(9):1242–1253. doi: 10.1016/j.cageo.2010.09.007 

Mustapha H, and Dimitrakopoulos R (2010b) A new approach for geological pattern recognition 

using high-order spatial cumulants. Comput. Geosci. 36(3):313–334. doi: 

10.1016/j.cageo.2009.04.015 

Ortiz JM, and Peredo O (2010) Multiple point geostatistical simulation with simulated annealing: 

Implementation using speculative parallel computing. In: Atkinson PM, Lloyd CD (eds) 

geoENV VII -- Geostatistics for Environmental Applications. Springer Netherlands, 

Dordrecht, pp 383–394 

Osterholt V, and Dimitrakopoulos R (2007) Simulation of wireframes and geometric features 

with multiple-point techniques: application at Yandi iron ore deposit. In: Dimitrakopoulos R 

(ed) Orebody Modelling and Strategic Mine Planning. AusIMM Spectrum Series, pp 51–60 

Peredo O, and Ortiz JM (2011) Parallel implementation of simulated annealing to reproduce 

multiple-point statistics. Comput. Geosci. 37(8):1110–1121. doi: 

10.1016/j.cageo.2010.10.015 

Pimentel BS, Mateus GR, and Almeida FA (2010) Mathematical models for optimizing the 

global mining supply chain. In: Nag B (ed) Intelligent Systems in Operations: Methods, 

Models and Applications in the Supply Chain. IGI Global, pp 133–163 

Qureshi SE, and Dimitrakopoulos RG (2005) Comparison of stochastic simulation algorithms in 

mapping spaces of uncertainty of non-linear transfer functions. In: Leuangthong O, Deutsch 

C V. (eds) Geostatistics Banff 2004, Quantitative Geology and Geostatistics, vol 14. 

Springer, Dordrecht, pp 959–968 



96 
 

Ramazan S, and Dimitrakopoulos R (2013) Production scheduling with uncertain supply: A new 

solution to the open pit mining problem. Optim. Eng. 14(2):361–380. doi: 10.1007/s11081-

012-9186-2 

Ravenscroft PJ (1992) Risk analysis for mine scheduling by conditional simulation. Trans. Inst. 

Min. Met. (Sec. A Min. Ind. 101 

Remy N, Boucher A, and Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. 

Cambridge University Press, Cambridge 

Renard P, and Allard D (2013) Connectivity metrics for subsurface flow and transport. Adv 

Water Resour. doi: 10.1016/j.advwatres.2011.12.001 

Rezaee H, Mariethoz G, Koneshloo M, and Asghari O (2013) Multiple-point geostatistical 

simulation using the bunch-pasting direct sampling method. Comput. Geosci. 54(September 

2017):293–308. doi: 10.1016/j.cageo.2013.01.020 

Rocchi L, Carter P, and Stone P (2011) Sequence optimization in longwall coal mining. J. Min. 

Sci. 47(2):151–157. doi: 10.1134/S106273914702002X 

Rossi ME, and Deutsch C V. (2014) Mineral resource estimation. Springer Netherlands 

Saliba Z, and Dimitrakopoulos R (2017) Simultaneous stochastic optimization of an open pit 

gold mine complex with supply and market uncertainty. In: Dimitrakopoulos R (ed) 

COSMO Research Report No 11, Vol . 1. COSMO - Stochastic Mine Planning Laboratory, 

pp 173–200 

Soares A (2001) Direct sequential simulation and cosimulation. Math. Geol. 33(8):911–926. doi: 

10.1023/A:1012246006212 

Stone P, Froyland G, Menabde M, et al (2007) Blasor–blended iron ore mine planning 

optimization at Yandi, Western Australia. In: Dimitrakopoulos R (ed) Orebody modelling 

and strategic mine planning: Uncertainty and risk management models. AusIMM, Spectrum 

Series 14, pp 133–136 

Straubhaar J, Renard P, Mariethoz G, et al (2011) An improved parallel multiple-point algorithm 

using a list approach. Math. Geosci. 43(3):305–328. doi: 10.1007/s11004-011-9328-7 

Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point 



97 
 

statistics. Math. Geol. 34(1):1–21. doi: 10.1023/A:1014009426274 

Strebelle S, and Cavelius C (2014) Solving speed and memory issues in multiple-point statistics 

simulation program SNESIM. Math. Geosci. 46(2):171–186. doi: 10.1007/s11004-013-

9489-7 

Stuart A, and Ord JK (1987) Kendall’s advanced theory of statistics 

Switzer P, and Green AA (1984) Min/max autocorrelation factors for multivariate spatial 

imaging: Technical Report No. 6. 14 

Topal E, and Ramazan S (2012) Strategic mine planning model using network flow model and 

real case application. Int. J. Mining, Reclam. Environ. 26(1):29–37. doi: 

10.1080/17480930.2011.600827 

Urbaez E, and Dagdelen K (1999) Implementation of linear programming model for optimum 

open pit production scheduling problem. In: Transactions of the Society of Mining, 

Metallurgy and Exploration, Inc. pp 1968–1974 

Vallée M (2000) Mineral resource + engineering, economic and legal feasibility = ore reserve. 

Can Min Metall Soc Bull. 93. 53–61 

Wei Y, Wang G, and Yang P (2013) Legendre-like orthogonal basis for spline space. CAD 

Comput. Aided Des. 45(2):85–92. doi: 10.1016/j.cad.2012.07.011 

Whittle G (2007) Global asset optimization. In: Dimitrakopoulos R (ed) Orebody Modelling and 

Strategic Mine Planning: Uncertainty and Risk Management Models. AusIMM, Spectrum 

Series 14, Carlton, Vic, pp 331–336 

Whittle J (2010) The global optimiser works – what next ? In: Dimitrakopoulos R (ed) Advance 

in Applied Orebody Modelling and Strategic Mine Planning. AusIMM, Spectrum Series, 

17, pp 3–5 

Wu J, Zhang T, and Journel A (2008) Fast FILTERSIM simulation with score-based distance. 

Math. Geosci. 40(7):773–788. doi: 10.1007/s11004-008-9157-5 

Yao L, Dimitrakopoulos R, and Gamache M (2018) A new computational model of high-order 

stochastic simulation based on spatial Legendre moments. Math Geosci. doi: 

10.1007/s11004-018-9744-z 



98 
 

Zhang J, and Dimitrakopoulos RG (2017) A dynamic-material-value-based decomposition 

method for optimizing a mineral value chain with uncertainty. Eur. J. Oper. Res. 

258(2):617–625. doi: 10.1016/j.ejor.2016.08.071 

Zhang T, Gelman A, and Laronga R (2017) Structure- and texture-based fullbore image 

reconstruction. Math. Geosci. 49(2):195–215. doi: 10.1007/s11004-016-9649-7 

Zhang T, Switzer P, and Journel A (2006) Filter-based classification of training image patterns 

for spatial simulation. Math. Geol. 38(1):63–80. doi: 10.1007/s11004-005-9004-x 

Zuckerberg M, Stone P, Pasyar R, and Mader E (2007) Joint ore extraction and in-pit dumping 

optimisation. In: Dimitrakopoulos R (ed) Orebody Modelling and Strategic Mine Planning. 

AusIMM, Spectrum Series 14, pp 137–140 

Zuckerberg M, van der Riet J, Malajczuk W, and Stone P (2011) Optimal life-of-mine 

scheduling for a bauxite mine. J. Min. Sci. 47(2):158–165. doi: 

10.1134/S1062739147020031 

 


	Chapter - 1
	Literature Review
	1.1 Introduction
	1.2 Mineral deposit modelling
	1.2.1 Traditional stochastic simulation methods
	1.2.2  Direct block-support simulation methods
	1.2.3  New developments in stochastic simulations
	1.2.3.1  Multiple-point statistical methods
	1.2.3.2  High-order simulation methods


	1.3 Effects of simulations on transfer functions
	1.4 Long-term mine planning optimization
	1.4.1  Optimizing the components of the value chain
	1.4.2  Simultaneous stochastic optimization of mining complexes

	1.5 Goal and Objectives
	1.6 Thesis Outline

	Chapter - 2
	High-order block support spatial simulation and application at a gold deposit
	2.1 Introduction
	2.2  – High-order block support simulation
	2.2.1  – Sequential simulation
	2.2.2  – Joint probability density function approximation
	2.2.3  Approximation of a joint probability density using Legendre-like orthogonal splines

	2.3  – Testing with an exhaustive dataset
	2.4  – Applications at a gold deposits
	2.5  – Conclusions

	Chapter - 3
	Effects of high-order simulations on the simultaneous stochastic optimization of mining complexes
	3.1 Introduction
	3.2 Methods
	3.2.1 Modelling a mineral deposit using geostatistical simulations
	3.2.1.1 High-order direct block simulation
	3.2.1.2 Sequential Gaussian simulation
	3.2.1.3 Mathematical formulation of the simultaneous optimization of mining complexes


	3.3 Case Study – applications at a gold mining complex
	3.3.1 Results, comparison and effects of high-order and second-order simulations
	3.3.2 LOM production schedule optimization and forecasting

	3.4 Conclusions

	Chapter - 4
	Conclusions
	4.1  – General conclusions
	4.2  – Recommendations for future work

	References

