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Abstract

Recently~ NF-lCB activation has been shown to be directly influenced by the cytoskeletal

environment. [n an attempt to better understand and characterize cytoskeietal regulation

of NF-lCB a series of experiments were designed to determine whether the microtubule

(Mn stabilizing agent taxoi couid affect NF-1e8 activation in the presence of different

NF-lCB inducers. Pretreatment of murine NIH 3T3 and human 293 cells with 5 J.lM taxoi

resulted in complete abolition of phorbol. 12-myristate. 13-acetate (PMA) mediated NF­

K8 activation including loss of DNA binding potential and reduced CAT reporter

activity. Phosphorylation and turnover of 1l'Ba was effectively abrogated in taxol

pretreated COS-7 cells. However. taxol was not capable of preventing TNF-a induced

NF-KB activation nar could taxol suppress [KBn inducible phosphorylation in TNF-a

treated cells.. suggesting TNF-a may function through a microtubule-independent

path\vay. [n vitro kinase assays of PMA stimulated cells established that taxol could

reduce activation of protein kinase C by 300/0" establishing 10ss of PKC activity as a

possible regulatory step in taxol-mediated suppression of NF-KB transactivation.

Indirect immunotluorescence analysis revealed that PMA treated COS-7 cells underwent

dramatic changes in cell morphology as weIl as depolymerization of MTs. These

observations were similar to that seen for nocodazole treated cells. a known MT

depolymerizing agent. [n contrast" taxoi blocked both nocodazole induced effects as weil

as PMA induced morphological changes. These tindings establish a potential mechanism

for taxol-mediated stability of MTs and inhibition of NF-ICB activity" suggesting a link

between the state of microtubule integrity and gene regulation.
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Résumé

li a récemment été montré que la régulation du cytosquelette joue un rôle direct dans

l'activation de NF-KS. Afin de miellx connaître et comprendre la régulation de NF-lC8 par

le cytosquelette. nous avons entrepris une série d'expériences dans le but de déterminer si

le taxaI. agent stabilisant des microtubules (MT). est capable d·affecter l'activation de

NF-1d3 en présence de différents inducteurs. Dans des cellules NIH 3T3 prétraitées par 5

JlM de taxoI.. r activation de NF-ICB induite par le phorbol. I1-myristate. 13 acétate

(PMA) est complètement inhibée au niveau de la fixation à rADN et ractivité d·un gène

indicateur CAT est réduite. De tàçon analogue. la phosphorylation ainsi que la

néosynthèse et dégradation de IICBa sont inhibées dans les cellules COS-7 prétraitées par

le taxol. Cependant. le taxol n·atlècte ni ("activation de NF-ICB ni la phosphorylation de

IICBa induites par le TNF-a. Ce résultat suggère que le TNF-a n·agirait pas au niveau des

microtubules. Grâce à des expériences de phosphorylation in vitro. nous avons montré

que le taxol inhibe r activation de la protéine kinase C de 30% après stimulation des

cellules par le PMA. ce qui suggére que la PKC serait impliquée dans l'inhibition de NF­

1(8 induite par le taxol. Nous avons observé par immunotluorescence indirecte que le

traitement par le PMA de cellules COS-7 induit un important changement de morphologie

ainsi que la depolymérisation des microtubules. Des résutats semblables ont été observés

après traitement des cellules par le nocodazole. un agent connu pour son action de

dépolymérisation des microtubules. Cependant.. le taxol est capable de supprimer les

etfets induits par le nocodazole ainsi que les changements morphologiques provoqués par

le PMA. Ces résultats mettent en évidence un mécanisme potentiel.. par lequel le taxol

agirait sur la stabilité des microtubule et l'inhibition de ["activité de NF-ICB.. suggérant

l"existence d'un lien entre l-intégrité des microtubules et la régulation des gènes.
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PKC and the Microtubule Cytoskeleton.
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1 The CytoskeletoD and Signal Transduction.

In recent years., a growing body of evidence has reintorced the idea that the eytoskeleton

has the potential ta regulate gene activation through a eomplex regulatory process

involving structural eues in the cytoskeletal matrix and the effective balance of numerous

populations of cytoskeletal-associated proteins (51.,72., 108., 140.179). The transmission of

information from the plasma membrane ta the nucleus is associated with a number of

rapid changes in cell physiology. In regards to cytoskeletal regulation of signaling

pathways., the actin cytoskeleton has been the most extensively characterized

(7.112.192).

Possibly the best characterized cytoskeletal system is that involving the Rho tàmily of

GTPases. an important class of actin regulatory proteins (192). This tàmily of GTPases

are important modulators of signal transduction pathways from extracellular stimuli to

the cell nucleus and include at least three major pathways: JNKJSAPK., p38., and NF-ICB

(135.166). Three major members ofthis tàmily.. namely RhoA.. CDC42.. and Rae.. l are

responsible for a number of biological aetivities sueh as actin organization (96)., gene

expression (79.. 185).. and cellular transformation (13.86., 134). Rho is believed to

partieipate in signaling responses that lead to the formation of actin stress tibers and focal

adhesions (143.144). Actin stress fibers are associated with integrins through an intertàce

with focal adhesion complexes at the ioner surface of the plasma membrane. In this

manner., Rho is capable of partieipating in the regulation of cell morphology (131). cell

aggregation (175)., cell motility (169), and smooth muscle contraction (70). As weil, rho

proteins are also involved in cellular transformation in a similar tàshion to that of the Ras

proto..oncogene (136.,137). Furthennore, Rael and RhoA are important elements in Ras­

mediated transtormation although their raIe is not as clearly defined.
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Rho proteins also regulate the mitogen-activated protein kinases (MAPK) (96J09.201).

This second class of regulators is aiso important in actin cytoskeleton regulation during

proliferation and differentiation (140). In human B lymphocytes. the extracellular

regulated kinases (ERKlMAP) are activated by protein kinase C (PKC) (163) upon cross­

linking of the B-cell antigen receptor (25). Activated MAPK subsequently

phosphorylates p90rsk an important downstream link between cytoplasmic and nuclear

signaling (197). The regulation and transmission of MAPK activated signaIs is initiated

by assembly of actin in the vicinity of the cytoplasmic domain of the B-cell antigen

receptor (112). a process believed to be mediated by tyrosine kinase activation ( 111). A

unique characteristic of MAPI< is that it is associated \vith the microtubule cytoskeleton

( 141 ) and recent evidence now suggests the microtubule cytoskeleton is a key regulator of

actin polymerization. Fluid shear stress-mediated signal transduction. a process by which

endothelial cells are capable of transducing mechanical terce into biological responses

brings together both actin and microtubule regulation with MAPK as a central player

(78). During t1uid shear stress. an integrin-mediated response. causes stress liber and

focal adhesion formation. mediated by a PKC-activated MAPK pathway that also

requires modulation of the microtubule cytoskeleton (203). In light of the above evidence

it is becoming c1ear that the Rho family of GTPases. actin regulation. MAPK. and the

microtubule cytoskeleton represent a complex signaling pathway not previously detined.

2. The Microtubule Cytoskeleton.

2.1 Dynamic Aspects of Microtubule Biology.

When microtubules are required by a cell tor a particular function~ microtubules assemble

in the appropriate region of the cell, with the necessary orientation. As microtubules are

no longer needed. they depolymerize. The ward microtubules describes a class of similar

3
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structures. formed of speeifie proteins called tubulins (5). Microtubules are comprised

principally of dimeric subunits of one (X- and one ~-tubulin polypeptide and participate

in a diverse spectnlm of cellular tùnetions including programmed moditieations of eell

shape during morphogenesis~ tormation of mitotic and meiotic spindles~ and establishment

of cilia and flagella-dependent cell motility'l and organelle transport (Figure 1).

[n different microtubules~ the tubulins are copolymerized with any of a variety of

proteins collectively known as microtubule-associated proteins~ or MAPs~ not to be

confused with mitagen aetivated proteins (MAPs) whieh \vere themselves originally

identified as microtubules assoeiated proteins~ hence the name. 80th tubulins and certain

groups of the MAPs may be coded by more than a single gene: both tubulins and MAPs

are moditied in various ways alter they are synthesized. inciuding phosphorylation and

acetylation (27). Thus the determination of what sort of microtubule will be present at a

particular time in a particular celi depends. at least in part upon the synthesis and

processing of a number of proteins. But the presence of the right proteins. while

necessary. is nat sufficient tor assembly ta OCCUf.

The assembly of many. if nat all mierotubules depends on the presence and orientation of

microtubule organizing centers (5). which may include a centriale or analogous structure.

It is not clear ho\vever. what determines the length ofa microtubule or what tàctors enable

a cell to depolymerize its microtubules as required tor normal cell functian. In a living

cell. one population of microtubules may be elongating at the same time as another

population is deassembling.

4



Figure 1 Regulatory Patbway of Microtubule Assembly. This schematic outlines at

least seven regulatory processes involved in tubulin synthesis and microtubule assembly.

The microtubule organizing centre (MTOC) is a perinuclear apparatus composed

primarily of y-tubulin subunits (80) and is responsible for the nucleation of tubuIin

monomers into mature microtubule structures. MA - mitotic apparatus.
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2.2 Regulation of Microtubule Dynamics.

tvticrotubule integrity is regulatcd through a complex temporal and spatial process. due in

part to its dynamic instability. A number of observations have demonstrated that changes

in cell morphology have a direct influence on gene regulation (2 I.75). thus a detined

lèedback net\vork must exist within the tlu.'C of cytoarchitecture and genetic expression.

CeH cycle control of microtubules has been an extensively characterized process.

involving differential requirements tor microtubules during interphase and mitosis (114).

Microtubules are also implicated in numerous other processes such as cellular

diftèrentiation of monocytic cells (83). specitie adherence of cytotoxic T-cells to their

respective target eell (55). and during endothelial cell migration to damaged tissue (61).

Ali of these observations eorrelate with a concomitant change in gene expression.

Depolymerization of microtubules with drugs such as colchicine and nocodazole have

been shown to stimulate cellular proIilèration in the absence of a primary signal (36). as

weIl. a phorbol ester resistant U937 variant that is detèctive in microtubule

reorganization. ean be reconstituted to the normal phenotype upon addition of

nocodazole (88). ft has also been established that stabilization of microtubules can

suppress the activity of mitogenic tàctors such as thrombin and epidermal growth tàctor

(35) as weIl as interleukin 8 (160). Transcriptional activation has also been demonstrated

for a number of genes including the urokinases type plasminogen activator (uPA) (26.98).

interleukin-l~ (49.. 108).. and the integrin a chain.. cdllb (88) are activated in the presence

ofmicrotubule depolymerizing agents such as nocodazole and cholchicine.

One potential mechanism by which microtubule dynamics may directly intluence genetic

regulation is through redistribution of various transcription tàctors which are resident in

the cytoplasm and undergo translocation to the nucleus when exposed to various stimuli

(73).

7
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3. NF-lCB - A cytoskeletally regulated family of transcription factors.

3.1 The NF-ICB Family.

Recent evidence has established NF-lCB as a cytoskeletally regulated transcription tàctor.

NF-KB has been shown to be regulated by the small GTP-binding protein racl (135J66)~

an actin associated protein involved in actin reorganization. As weiL NF-ICB has also

been shown to be activated upan depalymerization of microtubules with the antimitotic

drug nocodazole (147).

NF-KB was tirst characterized as a nuclear protein which bound specitically to the IC light

chain enhancer \vith specifie activation in B cells (1S1) (lor reviews see (1S.1659.171).

NF-KB constitutively binds to a decameric oligonucleotide with a consensus sequence

consisting of S' -GGGPuNNPyPyCC-3' (62). The binding symmetry of NF-KB appears

to be rather distinct in its binding capacity. While other transcription tùctors aiso torm

heterodimers among their tàmily members. each of the subunits have similar binding

affinities and the DNA binding motifs are very specitic. [n the case of NF-ICB there is

considerable variation in the binding affinity of each subunit and the binding motifs tend

to be slightly asymmetric. lending ta the variability of NF-KB gene activation (180.181 ).

NF-ICS is comprised primarily of t\VO major subunits: pSO and RelA (p65). which cau

adopt a heterodimer or homodimer conformation and thus alter the DNA binding

specificity ofeach complex.

Common arnong the NF-KS family is a 300 amino acid homology domain referred ta as

the NRD (NF-KB/RellDorsaI). The NRD is the minimal domain required for DNA

binding and shares its name with the Rel oncoprotein and the Drosophila factor dorsaL

both of which contain NRD motifs (56.58,,87,124). Structurally, the NRD is composed

8
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of two domains.. the N-terminal which represents the DNA binding domain (94) and the

C-terminal portion which is important for dimerization of NF-KB subunits (104).

Although pSO contains very little sequence information outside of the NRD.. ReIA.. has a

2S0 a.a. C-terminal domain comprising two to three independent transactivation demains

( 116.. 154).. suggesting that p6S is a necessary component of transcriptional activation by

NF-KS. Following the initial discovery of pSO and ReIA. other NRD possessing proteins

\vere added ta the NF-KS tàmily. They are pl05.. the precllrsor protein ofpSO (87.114).

pl 00. a precursor of p52 ( 119). c-Rel (31.77). and ReiS ( 150).

Sllbunit composition is an important tàctor establishing the activation potential of a

particular complex (95.181). Figure 2 oudines the NF-KS tàmily members. subdivided

into subunits which express or lack a functional transactivation damain. The lack of a

transactivation domain in pSO and p52 indicate that these subunits do not activate

transcription and homodimers can behave as repressors. competing away RelA-containing

heterodimers (119.133.154). Among those subunits with transactivation domains. the

level of transactivation is quite variable. c-Rel has a much weaker transaetivation

potential than ReIA. demonstrated by an attenuation of KB-dependent gene activation

after overexpression of c-Rel (44). RelB is some\vhat paradoxical~ in murine ceUs RelB

displays modest transactivation by dimerization \Vith pSO but it does not bind ta any of

the known KB consensus sequences (150). Human ReiB (l-Rel) appears to lack a

funetional transactivation domain and acts a suppressor of Re1A-p50 heterodimers (149).

Many of the studies to date have identified ReIA.. e-Rel. and pSO as the major NF-ICB

subunits that interact with the majority of KB consensus sites (16).

3.2 The IlCB Family

NF-KB complexes are predominantly round as a latent cytoplasmic population

9



Figure 2 Schematïe representations of the NF-KR family members. Each of the

NF -K8 subunit shares a highly conserved Rel homology domain in the N-terminal

domain. depicted as•. The C-terminal region orthe Rel homology domain houses

a nuclear localization signal for nuclear transport called the NLS. The poly-G island

represents a glycine hinge motif important for proteo[ytic processivity of p105 and pl 00

to generate pSO and p52 respectively. The C-terminal portion of pl 00 and pl 05 contain

ankyrin repent motifs depicted asD. FinaIly~ sorne members of the NF-KB tàmily also

have a transactivatian damain • in their C-terminal damain.
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complexed to the inhibitory protein IlcB (14.20). The l1eB interaction with NF-KB

appears to serve two tùnctions: (1) inhibition of NF-KB DNA binding, and (2)

cytaplasmic retention al" NF-KB. Ta date a number of lKB family members (Figure 3)

have been described including; !lcBa.. !leB~ .. 1KBy, l1cBe. pIOS. pIOO.. and bcl-3

(67.69.76.1 25.142.173.193).

AlI of the lKB related proteins share 5-7 copies of a repetitive 33 amino acid homology

damain retèrred to as the ankyrin motif (67.76). These regions are homologous to the

protein of the same name that functions as a cytoskeletally-associated protein by

crosslinking the spectrin cytaskeleton of red blood cells to the plasma membrane (5). The

ankyrin domain of (JeBs interacts with the nuclear localization signal (NLS) of NF-KB

dimers.. eftèctively blocking nuclear transport of NF-K8 (:20.54) and its DNA binding

patential (66.76). As weIl. [K8s also express an NLS that allows newly synthesized

[KBs to translocate ta the nucleus and effectively bind and disrupt NF-KB/DNA

complexes.. resulting in nuclear export of the resulting NF-KB/lKS compIex to the

cytoplasm (10..11..198).

The best characterized lKB subunit is licHa (Figure 4). Activation ofNF-1CB depends on

the inducible phosphorylation of [K8a on Ser-32 and Ser-36 leading ta pratealytic

degradation and release of the NF-KB complex (33,69.158.173). Degradation of IKBa is

mediated by ubiquitination on lysine 21 and 22 in the signal response damain (SRD)

(145.153) leading to in situ degradation by the 268 proteasame complex (128.177). Of

interest. the ubiquitin pathway is also associated with the microtubule cytoskeleton

(117..178). After stimulation with a varions number of inducers (Table 1).. IKBa. is

phosphorylated on serine 32 and 36 (Figure 4) (28..30.176). Sînce inducible lK8a

degradation requîres the SRO., it is interesting to note that basal turnover of llCBa. appears

to require the ankyrin repeat domain (92) yet both pathways are mediated by the same

12



Figure 3 Schematic representations of the IKB family members. AIl members of

the [K8 tàmily share a highly conserved ankyrin repeat domain U. The precusor

proteins. pl 00 and pl 05 both contain an IK8 like domain which is important for

regulating proteolytic cleavage of these precursor proteins. hcBy is generated from the

alternative splicing of plOS mRNA. Also present in [KBa and [KB~ is the PEST

sequence region ~. which has numerous praline.. glutamic acid. serine and threonine

residues important for the inherent stability of these proteins.
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proteasome complex. Furthermore, the intrinsic protein stability of lICHa is regulated by

the C-terminal PEST domain (19~ 100). Point mutations in Ser-283.. Thr-291 ~ Thr-299~

which results in loss of constitutive casein kinase II phosphorylation.. increases the

stability of 1K8 ct .. suggesting that C-terminal phosphorylation lIeB cr may also be

important for its degradation. In relation to these observations~ protein chimeras

containing the N-terminal domain of l1eBa.. exhibit inducible phosphorylation (29).

Addition of the C-terminal domain results in bath pho~phorylation and degradation of the

chimera.. reinforcing the importance of the IKBa C-terminal domain in inducible

proteolysis. In addition.. tyrosine phosphorylation at Tyr-42 negatively regulates

inducible phosphorylation and degradation of [K8 a (162). New evidence also

demonstrates that phosphorylation of p65 on Ser-276 is an important step in

transactivation of NF-KB (202). This process is mediated by the [KB-associated PKA

catalytic subunit and might allow for control of NF-KB transcription levels through

modulation of p65 phosphorylation.

3.2.1 The [KB Kinase

Since the mechanism of phosphorylation of IK8 was tirst characterized several

laboratories sougbt to characterize an lIeB kinase complex that directly mediates inducible

phosphorylation of [K8 family members. Recently.. a number of groups have

characterized a 900 kD protein complex (hat contains the IkB kinase activity

(lKKiCHUK) (113J39.l94.l99) comprised oftwo serine kinases IKKa and [KK~ (for

review see (164)). The two subunits have an identity of 52% and contain an N-terminal

catalytic domain as weil as a leucine zipper and helix...loop-helix motifs in their C-terminal

domain that may play a role in dimerization of the two subunits. [n arder to characterize

IKI(.. the NF-ICB inducing kinase NIK whose homology matches the MAP kinase kinase

15



Figure" Scbematic of llCBa. Human lKBa has 5 ankyrin repeats II which represent

the interacting domains tor NF-KS subunits. The N-terminal region between amino acids

25-'+5 cantains the signal response domain (SRD) of IlCBa and has been expanded in the

diagram to highlight two amino acid residues. namely serine 32 (S32) and serine 36 (S36)

(asterisks). Following induction with a number of stimuli.. bath 532 and S36 are

phosphorylated. leading to the eventual ubiquitination and degradation of [lCBa. As

\vell .. the PEST domain 1.. spans the region between 264 and 317 and belongs to a region

of II(Ba (residues 251-317) that has a number of casein kinase Il phosphorylation sites

including serine 283 (5283).. threonine 291 (T291). and threonine 299 (T299) as denoted

by the asterisks ( 100).
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kinase (MAP3K) and represents a common check-point in IL- [ and TNF-a signaling

([06) \vas used ta identify IKK (139). ln vitro kinase assays using puritied IKKa and

IKK~ demonstrated that IKKa was responsible for phosphorylating Ser-32 and 36 on

lleBa (1 [3~ [39, [94J 99) while [KK~ appeared ta display a more patent activity in the

phosphorylation of lteB~ at Ser-19 and 23 (194)~ the inducible phosphorylation sites of

l1d3~ (19L). Presently~ the IKK complex is activated in the presence afTNF-a~ IL-l.

and PtvlA ( [ 13. [99t and its activation appears to be sensitive to the phosphatase PP2A.

suggesting that phosphorylation by NIK may control i15 activity. It is nat clear however

whether IKI< directly phosphorylates lleB in vivo since aIl IKK data was obtained from

overexpression assays or in vitro translation systems. Rather. IKK may belong ta a

complex responsible for activation ofa true IKB kinase (164).

3.2.2 I1eBa as a microtubule-associated protein

Recent evidence has sho\vn that the signal response domain of I1eBa interacts with the

dynein light chain (OLe) subunit of the cytoplasmic dynein motor protein comph::x (34).

DLe was tirst characterized as an 8 kDa component of the outer arm dynein of

Chlamydomonas (91). its cytoplasmic counterpart being highly conserved among a

number ofhigher eukaryotes including plants. drosophil~ nematodes~ and humans (Figure

5). The tùnction of dynein light chains is still unknown but a number of groups have

made observations that shed new Iight on this relatively new member of the dynein motor

complex. Work in DrosophUCl me/Clnogaster has established that mutations in DLe

(ddlc 1) produce a variety of morphogenetic defects including embryo lethality displaying

DNA degradation and membrane blebbing characteristic of apoptosis (42). The mouse

dynein light chain (Tctex- L) has been implicated in the transmission ratio distortion

(meiotic drive) during meiosis (90). In normal mice" the t-complex of chromosome 17

18



Figure 5 Sequence homology of DLC-l betlveen various species. ldentical amine

acid residues are shawn in bold type. Homology to human DLC-I is shawn. DLe-1 is a

91 amino acid pratein with an apparent molecular weight of9kOa.
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\vhich contains several sequence inversions and aIso encodes for Tctex.. is important for

suppression of recombination during meiosis. This allows for l-haplotypes ta be

. inherited as a single unit. [n cases where two complementary t-haplotypes

(homozygosity) are generated.. male mice are completely sterile.. suggesting a raIe tor

cytoplasmic dynein dysfunction in non-mendelian chromosome segregation (90).

Cytoplasmic dynein is a large multi-subunit complex (129) tirst identitied as a

microtubule associated protein (MAP 1C) which translocated along microtubules in a

direction opposite that of the anterograde kinesin motor complex (130). Dynein is

comprised primarily of two catalytic heavy chains (532 kD) .. several intermediate chains

(74 kD) .. light intermediate chains (53-59 kD). and light chains (8-24 kD) (184).

Cytoplasmic dynein is a multi-functionaL cell cycle regulated complex involved in

retrograde transport of vesicles (43 .. 121).. maintenance of the Golgi complex (182).. and

spindle pole tàrmation during mitosis (for revie\vs see (8.. 18"+7.183.189.195». The major

regulatory subunit of dynein motility is the dynactin complex which physically links

cytoplasmic dynein to a particular carrier species (4..57..152.157..187). One curiosity of

dynein is that its cargo speciticity is regulated by casein kinase n (82).. the same kinase

\vhich regulates the intrinsic stability of hcBa (100). suggesting that casein kinase Il may

play a role in the regulation of I1cBalDlc-1 interactions.

A yeast two-hybrid screen was used to isolate DLC-l cDNA. Overexpression of DLC in

L40 yeast demonstrated a strong interaction with the N-tenninal domain ofIKBa (Figure

6). As well~ DLC-l did not compete tor p65 binding to [KBa~ suggesting they contact

the molecule at different domains in vitro. To veritY that lIcBa and DLC-l interacted in

mammalian systems.. immunoprecipitation of in vitro purified DLC-I-GST fusion

proteins were incubated with whole cell extracts containing IKBa (Figure 7A). ln vivo

immunoprecipitations \\tere carried out with a DLC-l-myc fusion protein overexpressed

21



Figure 6 DLC-I Interacts with the signal response domain of I1cBa. Five I1cBa

chimeras \Vere tùsed do\\tnstream of the LexA DNA binding damain (NIK and NIK2N) or

the Gal4 transactivation domain (lK'Bn.. ANK.. CIK). Of the chimeras tested.. only full

[ength 1K'8n.. NIK. and NIK2N interacted with DLC-l but not ANK or CIK. DLC-I

expressing yeasts were mated to the AMR70 strain of yeast expressing the different

chimeras. The calor of the colonies is indicative of ~-galactosidase activity. Blue

indicates a positive interaction (color detectable within 30 min) .. and white colonies

indicate no interaction (incubation time > 16 hl.
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Figure 7 IKBa interacts with DLC-l in vitro and in vivo. (A) ln vitro interaction of

DLC-l and IKBn. GST (lune 1) and GST-DLC-l (lanes 2 and 3) were incubated in the

presence of IKBa (lunes 1 and 2) or IKBa2N (lane 3). Lane 4 shows crude bacterial

extract of I1eBa protein as migration control. Western blot analysis was performed using

the AR20 IKBa antibody (9). (8) In vivo interaction ofDlC-l with heBa. lysates of

HeLa eeUs transfected (lanes 2 and 3) with Myc-tagged DLC-l or untranstected (lane 1)

were immunoprecipitated with the anti I1cBa antibody (lanes 1 and 2). lane 3 outlines

migration of erude transfected Hela extracts as a control. The anti-l'vlyc antibody was

used tor \vestem blot analysis. (C) [n vivo interaction of DLC-l and IKBa. 293 ceUs

were transtècted with [KBa and Myc-tagged DlC-l (10 flg each): at 48 hours post­

transtèction. cells were treated with lOng/ml TNF-a tor 15 and 30 minutes to degrade

[KBa. Whole eell extracts were immunoprecipitated with a C-terminal (J,Ba antibody

(Santa Cruz. Inc.) and analyzed for DLe-1 using the anti-l'vtyc antibody: P. preimmune

serum. (0) In vivo interaction of DLC-I and heBa. Anti-GST-DLC-l antibody was

used ta immunopreciptate endogenous DLC-l complexes l'rom 293 cell Iysates (1 ta 3

mg: inlffiune complexes were then isolated on protein A-sepharose and analyzed tor

[KBa by western blot with anti-N-terminal hcBa (Santa Cruz. lnc.). Whole celI extracts

were loaded as controls; P. preimmune serum.
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in HeLa ceUs (Figure 78). In bath cases~ lIcBa was successfùlly immunoprecipitated

establishing that DLC-l interacts with IleB a in mammalian cells. Further

immunoprecipitatians also demonstrated that endogenous DLC-l interacted with hcBa

(Figure 7C) and that pretreatment with TNF-a (Figure 70) was sufficient to disrupt this

interaction establishing the specificity of lIcBa and OLe-l.

Indirect immunot1uorescence of l1cBa and DLC-l indicate that l1cBa and DIC-l

colocalize to the microtubule organizing centre (rvlTOC) along the microtubule matrix. As

\velL p65 \vas also shown to colocalize \vith DLe-l and hcBa. The evidence suggests

that hcBa and NF-K8 exist as a latent cytoplasmic complex through the association of

I1cBa with DLC-l at the MTOC and establishes a cytoplasmic retention model for NF­

KB regulation. NF-KB is not the only transcription factor that is retained in this manner.

Reeently.. the kinesin superfamily motor KIF3 was shown to internet with the

NIAPKKK NlLK1 (mixed lineage kinase) and eo-localized with activated JNK along

microtubules (118). l'vlore specitically.. MLK2 interacts with the KAP3A targeting

component of KIF3. highlighting an intriguing association between stress activation and

motor protein regulation.

3.3 Signal..induced regulatioD of NF-ICS transactivation

Numerous transduction pathways are implicated in NF-ICB signaling as are the conditions

involved in NF-JC8 activation (Table 1). In most cases. NF-ICB-dependent gene activation

relies on regulatory signaIs that induce lleB phosphorylation (16). Activation of NF-ICB

with double stranded RNA requires the double-stranded RNA-dependent protein kinase

(PKR) \vhich is capable of directly phosphorylating I1eBa at Ser-32 and 36 (93). TNF-a

stimulation ofNf-lCB requires activation of various TNF receptors (TNFRs) followed

26



• Table Ilnducers ofNF-KB Transactivation
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Bacterial Products

Viruses

Viral Products

Intlammatory cytokines

T cell mitogens

Physical stress

Protein syntbesis inhibitors

Orugs

Adapted from (16)

Lipopo1ysaccharide
Exotoxin
Muramyl peptides

Human immunodeticiency virus (HIV-1 )
Human T-cellieukemia Virus (HTLV-I)
Hepatitis B Virus (HBV)
Herpes simplex virus (HSV-I)
Epstein-Barr Virus (EBV)
Adenovirus

Double-stranded RNA
Tax (HTLV-l)
Tat (HIV-l)
Hbx (HBV)
MHBs (HBV)
E8NA..2 (EBV)

Turnor Necrosis Factor alpha
Lyrnphotoxin
Interleukin-I
Interleukin-2
Leukotriene 84

Antigen
Lectins (PHA. CanA)
Calcium ionophores\
Anti CD28

uv light
Yradiation

Cyclohexamide
Anisomycin

Okadaic acid
Phorbol esters
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by downstream signaling through the TNF receptor associated tàctor 2 (TRAF2)

(106..164). Just as TNF-a signals through TRAF2.. IL-l uses a similar receptor-mediated

system to activate NF-KS. including TRAF6 and the IL-l receptor activated kinase

(IRAK) (2) suggesting bath path\vays may share common signaling elements leading ta

NF-KB activation.

3.3.1 Phorbol Esters Activate NF-ICB

Distinct from TNF-a and [L-l signaling is the phorbol ester signaling pathway. Phorbol

~sters such as phorbol. 12-myristate. 13-acetate (PMA) derive their activating potential

by mimicking diacylglycerol (DAO). a common biproduct of phosphotidylinositol

breakdown (71). 80th of these compounds are capable of directly activating the lipid­

inducible protein kinase C (PKC) (for review see (71.120)). Activated PKC is capable of

phosphorylating lIcBa directly (85.101). in many cases. PMA stimulation results in the

activation of a number of PKC isoforms. of which. two appear to be important in the NF­

K8 pathway. namely. PKC-a and PKC-Ç (41,50.74,110.155).

Interestingly. prolonged exposure to phorbol esters leads ta suppression of PKC activity

through depletion of phorbol ester-responsive PKC isoforms (196). Depletion of PKC

involves a ubiquitin-dependent covalent modification.. follo\ved by proteasome-mediated

degradation of PKC (105). Besides the direct involvement of PKC in phosphorylation of

IKBs.. NF-KB activation has also been demonstrated in a PKC-mediated MAPK­

dependent pathway (159). Phorbol-activated PKC is able to activate the MAP kinases

ERK1/2 through direct activation of the c-Raf oncoprotein (3.32). Following c-Raf

activation.. the MAPKIERK kinase (MEK) is activated~ in tum phosphorylating and

activating ERKl/2 cascade (6.. 132..200). Of the many ERK substrates~ one.. important for

NF-ICB activation~ is the p90 ribosomal S6 kinase (pp90rsk or RSK) (156). RSK (see
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review~ (25) was shown to be directly phosphorylated by ERKl/2 (22.165). Activated

RSK suhsequently interacts with I1cBa and phosphorylates residue 32 (156). This

demonstrates that RS K is not sufficient to induce lKB Cl degradation alone and may

require another phorbol ester-regulated kinase~ such as [KK~ to contribute to serine 36

phosphorylation. However~ transdominant mutants of RSK resulted in the complete

abrogation of NF-ICB activation in the presence of phorbol ester~ providing evidence for

the requirement of multiple h(Ba kinases tor induction of I1cBa degradation.

3.4 NF-K8 regulates numerous genes

lnducible degradation of 11(8s exposes the nuclear localization signal of the NF-KB dimers

allo\ving tor rapid nuclear transport of NF-KB subunits and activation of NF-teB-specific

genes (see Table 2). NF-KS is not itself sufficient for transcriptional activation of the

basal complex and requires a number of other subunits to facilitate activation.

Characterization of the [FN~ promoter has revealed that the enhanceosome is a multi­

subunit complex consisting of p50/p65 NF-KB subunits. the interteron regulatory tàctor 1

(lRF-l )~ activated T-cell tàctor-2 (ATF-2)~ the INK-inducible c-Jun transcription tàctor~

and HMG-[( Y) (45A8). The high mobility group protein [HMG-l(Y)J is required to bend

the enhancer region DNA to tàcilitate association of the enhanceosome with the basal

transcription machinery (172).

Of the genes regulated by NF-K8~ I1cBa. is a major transcriptional target~ representing a

novel autoregulatory loop (38~97). However~ I1cB~ is not regulated transcriptionally by

NF-KB and is responsible for the persistent activation of NF-ICB by LPS and IL-l

(167.173). The inducibility ofNF-lCB can be modulated depending on the type of
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• Table 2 - Genes activated by NF-ICB.

Viruses

Immunoreceptors

Cell adhesion molecules

Human immunodeticiency virus 1(HIV-1 )
Cytomegalovirus
Adenovirus
Simian virus 40

Immunoglobulin le light chain
T cell receptor ~
T cell receptor a.
~2- microglobulin

Endothelialleukocyte adhesion molecule 1
Vascular cell adhesion molecule 1
Intercellular cell adhesion molecule 1

•
Cytokines and hematopoietic growtb
factors

Intertèron-~

Granulocy te/macrophage
stimulating tàctor
Interleukin 2
Interleukin 6
Interleukin 8
TNF-ct
Lymphotoxin

co lony-

•

Acute pbase proteins

Transcription facton and subunits

Others

Adapted from (16)

Angiotensin
Serum amyloid A percursor
Urokinase-type plasminogen activator

c-rel
NF-ICB precursor pl 05
c-myc
Interferon regulatory tàctor 1

Vimentin cytoskeletal protein
NO-synthase
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inducer. For instance_ TNF-a and PMA rapidly induce NF-KR activation (1). whereas

IL-I and LPS display slower activation kinetics but maintain persistent transactivation.

NF- KB regulation is also important for a number of viral genomes including the

retroviruses HIV-I and HTLV (for review see (148)). The proviral genomes contain NF­

KB consensus sequences in the U3 region of the LTR and modulate NF-KB activity by

viral factors such as Tax (HTLV-l) (16), and Tat (HIV-I).

.... Taxol: A microtubule stabilizing agent

Taxol \vas tirst isolated from the pacifie yew Taxus brevijola in the early 70·s (190)_

dispiaying a novel antitumor activity. Structurally. taxol is a diterpenoid (Figure 8)

which can be obtained trom either the bark ofyew trees or trom chemical synthesis (122).

Since the chemical synthesis of taxol was attained_ a number of other taxoid compounds

have been generated. The taxoi family is unique among microtubule stabilizing agents in

that it is capable of stabilizing microtubules against depolymerization through interaction

with the amino-tenninal region of ~..tubulin (138).

A unique characteristic of taxol is that its therapeutic etlectiveness is much greater than

that of other known microtubule disrupting compounds such as colchicine and

nacodazole. suggesting taxol may display secondary etTects beyond microtubule stability

and may exert direct effects on signal transduction pathways (99). TaxaI behaves as an

antimitotic drug which blocks celis in the G2flvt phase by preventing the breakdown and

reassembly of the mitotic spindie apparatus (12). Prolonged exposure of celis to taxai

results in programmed cell death or apoptosis (63). It is believed that taxol induces

apoptosis by facilitating phosphorylation of the anti-apoptotic tàctor bcl-2 (64)~ which is

accompanied by the loss of bcl-2 function (65) and requires activated c-Raf (24).

31



Figure 8. Chemical structure of Taxol. Taxol was initially isolated l'rom the bark of

the paeitie yew (TlLtllS brevijo/ia LVutt) in 1971. Taxel is comprised of a side chain..

entieal for maintaining activity as weIl as the taxol ring whieh consists of several rings: a

tour membered ring.. a six membcred ring.. and an eight membered ring. as weIl as a number

of peripheral tùnctional groups. Chemicai characterization suggests that the eight

membered ring can be etlèetively contracted to a seven member ring without etTecting its

microtubule stabilizing potentiai.
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However.. taxol-activated c-Raf is distinct from the PMA-activating c-Raf suggesting a

novel c-Rafsignaling pathway. Furthermore.. bcl-2 has been described as the "guardian of

microtubule integrity" since drugs which disrupt nonnal microtubule function have been

correlated \vith lOS5 of bcl-2 anti-apoptotic function and may represent a normal

physiological pathway for the elimination ofcells \\ith damaged mitotic apparatus (63).
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Research Obje(tives

The objective of this thesis is to determine what regulatory eftèct taxoi has on NF-KB

activation through its ability to stabilize the microtubule cytoskeleton. This project will

foeus on NF-KB dependent gene expression and DNA binding including inducibility of

heBu phosphorylation and degradation. As weil- cytological studies will convey to what

t:xtent various inducers of NF-K8 including TNF-a .. P~1A .. and LPS have on the

cytoarchitecture of microtubules and whether this can be correlated \vith the outcome of

NF-KB activity. Furthermore.. attempts will be made to identify any taxai-sensitive

dements (ie kinases) whose activity is crucial tor NF-KB regulation.
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METHOOS AND MATERIALS
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1. Cell Culture

~turine NIH 3T3 tibroblasts (ATCC) and COS-7 cells \vere maintained in Dulbeco"s

Moditied Minimal Medium (DMEM) (GrBCO.. Lite Technologies [nc... Grand Island.

N.Y.) supplemented with 5~1a calf serum (3T3) or 100/0 Fetai Bovine Serum (HeLa). 2mM

L-glutamine. and lOllg of gentamicin. Human embryonic kidney cells (293) were

maintained in Alpha Moditied Minimal Medium (a-MEM) (GlBCO) supplemented \vith

10% Fetal Bovine Serum. 2m~1 L-glutamine. and lOllg gentamicin. Ail eeUs were

maintained in a 37°C incubator with 50/0 CO2.

2. Drug lnduction Procedure

Exponentially gra\ving ceUs representing a contluency of roughly 80% were treated with

various drugs according to each protocol: tumar necrosis tùctor (TNF-a) at a tinal

concentration of 10 ng/ml (Sigma); phorboI- l2-myristate. l3-acetate (Pl'vlA) at 100 ng/mi

(Sigma). lipopolysaccharide (LPS) at 100 ng/ml (Sigma).. Nocodazole at 20 J-lM (lCN).

taxai at 5 J-lM (ICN). Cells were pre-incubated with taxoi 30 min. prior ta induction with

the various eompounds. For analysis of licHa turnover. 50 J-lglmi cylcohexamide (Sigma)

was used to prevent resynthesis of l1cBa.

3. Plasmids and Reagents

P~IA (stored at 100 J-lg/mi in ethanol).. TNF (IDa Jlglml in ddH20), LPS (100 IlgimI in

ddH20).. Nocodazole (10 mM in DMSO).. were purchased fram Sigma Chemical Co. (St.

Louis.. MO). Taxai (5mM in DMSO) was purchased tram [CN PharmaceuticaIs.. lnc

(Costa Mesa.. CA). The HIV enhancer CAT cantaining double repeats of the NF-KB

consensus sequence (GGGACrrrCC) and the HIV enhancer mutant which is mutated in
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both consensus regions (CATGGTTTCC) were used for determination of NF-KB

specifie gene activation.

-1. Preparation of Protein Extracts

-1.1 Nuclear and Cytoplasmic Extracts

Ditlèrential extraction of nuc1ear proteins trom NIH 3T3 and 293 cells were accomplished

using a previously reported protocol t 127) with the tollowing moditications. Brietly.

cells were collected by centrifugation (1 O..OOOg) and washed once in PHS" and once in

ButTer A (10 mM Hydroxyethylpiperazine-N"-2-ethane sulfonic acid (Hepes) pH 7.9:

1.5mrvl MgCls: 10 mM Kcl: 0.5 mM Dithiothreitol (OTT) and 0.5 mM phenylmethyl

sulfonyl tlouride (PlVlSF)) and were resuspended in 20 III of Buffer A containing 0.1 0/0

NP-.JO. Cells were incubated on ice for 10 minutes and centritùged at 10,,000 g tOI' 10

minutes. The supematant (cytoplasmic fraction) was collected and pellets (nuc1ei) were

resupended in 15 III ButTer B (20 mM Hepes pH 7.9: 25% glycerol: 0.2 mM EDTA:

50m~[ KCI: 0.5 mM OTT: 0.5mM PMSf: 0.01 mg/ml Leupeptin: 0.01 mg/ml Pepstatin:

0.01 mg/ml Aprotinin: 0.01 mg/ml Spermidine and 0.01 mg/ml Spermine). Cells were

stored on ice tOI' 15 min and collected by centrifugation. Protein concentration was

determined by Bradtord protein assay (Bio-Rad).

4.2 Whole Cell Extracts

After treatment with various drugs.. cells were washed once with PBS and incubated for

tive minutes with 1 mL TEN buffer (la mM Tris-HeL pH 7.5; 1 mM EDTA; 60 mM

NaCl) to lift ceIls from plates. Cells were collected and centrifuged for 2 minutes at

10..000 rpm. Cells were washed once Ytith PBS and resuspended in lysis buffer
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Figure 9. Schematic representation of the pHIVenhCAT. The upstream pramater

elements of the the pHIVenh-CAT and pHIVenh-mut-CAT plasmid are shawn. The

pHIVenh-CAT cantains a single copy of the HrV-I enhancer region (-105 ta -80) which

houses t\va KB consensus binding sequences(Ü ) linked to the basal SV40 promoter

(II11II). The pHIVenh-mut-CAT is similar to pHIVenh-CAT except that mutations in

the )(8 consensus (averscored line) have been intraduced to disrupt binding ofNF-teB.
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(10 m~l Tris-HCL pH 8.0; 1 mM EDTA; 60 mM: 1 mM OTT: 0.5% NP-40; 0.5 mM

PMSF: 0.01 mg/ml Leupeptin~ 0.01 mg/ml Pepstatin: 0.01 mg/ml Aprotinin). Cells were

incubated tor 15 minutes on ice and centrifuged at 10,000 g for 10 minutes. Supernatants

were quantified for protein concentration using Bradford Reagent (Bio-Rad).

5. Electromobility Shift Assay (EMSA)

Nuclear extracts (5Jlg) were diluted to a total volume of 15 JlI with DNA binding butIer

t20 mM Hepes pH 7.9: 5% glycerol: 0.1 M KCl: 0.2 mM EDTA pH 8.0: 0.2mM EGTA

pH 8.0). Reactions were pre-incubated for 10 min. at room temperature with the non­

specifie DNA competitor poly (dI:dC) (Pharmaeia). Binding activity was analyzed using

a [y-32P]-labeled probe corresponding to the PRD rI domain of the [FN-~ promoter (5'­

GGGAAATTCCGGGAAAnCC-3°) aecording to previously reported protocols (146).

Protein extraets were incubated with 0.2 ng of probe corresponding ta approximately

100,000 CPM/Jll tor 10 min. at room temperature. Resulting protein-DNA complexes

were resolved by non-denaturing gel electrophoresis on a native tris-glycine

polyacrylamide gel (5%: 60: 1 crosslinker) and revealed by autoradiography. In order to

tàcilitate specitleity of the DNA-protein complexes, 125M excess of cold unlabeled probe

was used as a competitor. For super shift analysis. rabbit polycolonal antibody (1 JlI)

directed against human c-Rel. p10S/p50, or p65 (136) were incubated with nuc1ear

extracts during the poly (dl :dC) step prior ta the addition of IabeIIed probe. The resulting

super shifts cauld be analyzed by EMSA.

6. Analysis of 1lCBa

6.1 1KBa turnover
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Whole cell extracts of COS..7 cells were normalized to 20 Jlg and electrophoresed on a

100/0 SOS polyacry lamide (19.2:0.8 crosslinking) denaturing gel. Protein was

transblotted to nitrocellulose membrane (Hybond-C super; Amersham)~ which was

blocked tor 1hr with 2.5% skim milk dissolved in PBS. 11d3a and actin were detected by

incubating membranes for Ihr with rabbit polycionai IIcBa primary antibody (C-21;

Santa Cruz~ [ne) or mouse anti-actin monoclonal antibody ([eN) respeetively.

~[embranes were washed repeatedly in PBS: 0.1 % Tween and incubated in horse-radish

peroxidase (HRP) conjugated anti-mouse or anti-rabbit secondary antibody (Kirkegaard &

Perry Laboratories) for 1hr. Membranes were washed in PBS: 0.1 % Tween and

speeitïcity was determined by chemiluminescence detection of the HRP-eonjugated

complexes (Dupont) according to the manufacturer's instructions.

6.2 Phosphorylation of hcBa

Whole eell extracts were prepared in the same tàshion except that the non-specitie

phosphatase inhibitor okadaic acid (20 J.1.M) was used to prevent dephosphorylation of

[KBa. As weIL to avoid inducible degradation of 1KBa. 30 flM of MG 132 was pre­

incubated for 30 minutes prior to stimulation with TNF-a. or PMA. Protein extructs

were normalized to 20 flg and resolved using 15% SDS polyacrylamide denaturing

electrophoresis. Proteins were subsequently transtèrred to nitrocellulose membrane and

detected using the mouse monoclonal [KBa (MADIOB) antibody as previously

described. Phosphorylated I1cBa is detected as a slower migrating species in comparison

to unphosphorylated hcBa.

7. Transient Transfection

7.1 Calcium Phosphate Transrection
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293 ceUs were transiently transtècted using the calcium phosphate procedure (204). The

precipitated DNAs (1 0 J.lg)~ representing either HIV Enhancer CAT or mutated HIV

Enhancer CAT were resuspended in 450 J.ll of sterile water and 50 J.lI of 2.5 M CaCI!.

The DNAJCaC12 mixture was slowly added to a solution of 2x HEPES buffered saline.

This solution was incubated at RT for 20 minutes ta allow precipitated CaC12/D NA

complexes to torm. Precipitates \Vere inoculated onto culture dishes and incubated tor 4­

16 hr under standard growth conditions. CeUs were washed twice with lx PBS and retèd

complete medium. At 48 hr post-transtèction.. cells were treated with the various drugs

and harvested.

7.2 Lipofectamine Transfection

NIH 3T3 cells were plated to a density of apporoximately 800/0 contluence. Plasmid

DNA was precipitated and resuspended in 1.6 ml of serum free Dulbecco·s Modified

Eagle·s Media (DMEM). This mixture was incubated with 30 Jl.I Lipofectamine

liposomes (GIBCO) at room temperature for 30 min. Aner incubation. the resulting

lipofectumine/DNA complexes were added to cells and the transtèction allo\\ied ta

proceed tûr 5-8 hours. atlerwhich ceUs were washed with DMEM and ineubated for 48

hours betàre beginning experiments.

8. Chloramphenicol acetyltransferase (CAT) assay

At 48 hrs post transfeetion 't eeUs were treated with various drugs and inducers and the

ceUs collected as previously deseribed. Cells were resuspended in 0.25 M Tris-Hel pH

7.5 and lysed by three successive cycles offreeze thaw. Cells were centrifuged at 10,000

g tor 10 min and the supematant colleeted. Soluble protein was quantified by Bradford
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assay (Bio-Rad). Equal amounts of protein (20-100 Jlg) were assayed for CAT activity

in the presence of 25nCi C"C] chloramphenicol and 0.7 mg/ml acetyl CoA tor 4-6 hrs.

depending on the level of inducible CAT expression. The chloramphenicol and acetylated

chloramphenicol were puritied by extraction with 1 ml of ethyl acetate and centritùged at

10.000 g tor 10 min. The organic phase was removed and Speedvac evaporated. Samples

were resuspended in 30 J.1ls of ethYI acetate and blotted onto a silca-based thin layer

chromatography sheet. Acetylated chloramphenicol \vas resolved using a 19: 1

chlorotorm/methanol solvent and running the solvent front 1mm from the top of the

sheet. CAT activity was measured by liquid scintillation and inducibility of CAT

~xpression was calculated as the relative fold-induction over that orthe untreated control.

9. PKC Assay

NIH 3T3 cells were gro\vn ta a contluency of80% and incubated at 37°C tor the indicated

limes in the presence of PMA with or without taxol. Whole cell extracts were prepared

as described above except that 20 J.l M sodium vanadate was used to prevent

dephosphorylation of the PKC substrate KRTLRR (Sigma). an epithelial growth tùctor

(EGF)-derived peptide (56). Using 50 Jlg of whole cell extract. reactions were incubated

with 500 mM MOPS. pH 7. 100 mM MgCl:!.1.5 mg/ml BSA. 0.2 J.lCi [y2 p] ATP.. and 1

mM PKC substrate. A background control was setup containing only the lysis buftèr as

a substitute tor whole-cell extract and the resulting value subtracted trom each of the

experimentaI measurements. Reactions were incubated tor 1 hour at 37 oC. Reactions

were stopped with 500/0 trichloroacetic acid (TCA) and incubated on ice for 10 min. Cells

were centrifuged at 14~ 000 x g for 10 min and the resulting supernatants were applied to

phospho-celluiose paper followed by three washes with 0.4% o-phosphoric acid. PKC

activity was quantitated as the relative raid increase in the level of [yJ2 P1 ATP

incorporated iota the PKC substrate.
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10. Indirect Immunotlourescence of Cytoplasmic Microtubules

Immunotluorescence of COS-7 cells was pertonned as follows. CelIs were seeded at a

density of 105 ceUs in six well plates each containing glass coverslips. Cells were allowed

to adhere to the surtàce of plate.. approximately 8 hrs. After treatment.. coverslips were

removed and washed twice with 1X PBS. Cells were subsequently tixed with 4%

paratormaldehyde for 15 minutes followed by washing with PBS. CeIls were

permeabilized \vith 0.30/0 Triton X-I 00 in PBS tor 5 min. and washed three times with

PBS. Cells were blocked tor 30 min. in 50/0 BSA and incubated with mouse monoclonal

tubulin antibody (Sigma) (dilution 1:250) tor 2 hrs. Atter incubation \vith the primary

antibody. eeUs were washed numerous times with IX PHS and incubated tor 1 hr with

mouse-FITC (1 :250 dilution) (Jackson Laboratories) conjugated antibody tollo\ved by

three \vashes with 1X PBS. Microscopy was pertonned using a Leitz tluourescence

microscope (Aristoplan).
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l. Taxol Specifically Suppresses PMA-induced NF-lCB Activation

Previous reports have established taxol as a patent stabilizer of microtubuIe integrity

(60). In order to better understand the etfects of taxai as a microtubule stabilizing agent~

experiments were undertaken ta determine whether taxai couid atTect transcriptional

activation of NF-KB in adherent celI populations. Nuclear extracts were examined tor

NF-KB-binding activity by mobility shift assay. using the PRD II domain of the IFN-~

promoter (107). NF-KB DNA-binding activity was examined in NIH 3T3 mouse

tibroblasts as weIl as human :!93 embryonic kidney ceUs. Initial observations in NIH 3T3

cells (Figure 10A. lane 1) suggested that pretreatment of taxoi had the potential to

suppress constitutive NF-KB DNA binding and aiso selectively inhibited PMA induced

NF-KB activation (Figure 10A~ Ianes 15-20). In contrast. taxai had no etfect on TNF-a

stimulation of NF-KB DNA binding (Figure 1OA~ Ianes 3-8). nor was taxoi capable of

overriding the LPS hyporesponsiveness in 3T3 ceUs. a characteristic common to mouse

tibroblasts (104. 105. 106). To determine whether taxol could block P~IA at earlier

stages of NF-K8 activation by P~tA (Figure lOB). taxol and PMA were added

simultaneously and the kinetics measured at earlier time points. Interestingly. taxol

effectively blocked PMA stimulation as early as 15 minutes and maintained its

suppressive etfects as Iate as tour hours (Figure 10B~ lanes 9-14). Discrepancies between

panel A and B of Figure la represent twa different batches of3T3 cells and may explain

the ditTerences in kinetic behaviour of NF..JC8 binding in the presence of PMA. AIso..

comparison of Figure 10A and lOB suggested that the pretreatment or simuitaneous

treatment of taxol had similar inhibitory effects on PMA induction.

In order to determine whether taxoi inhibition of PMA induced Nf-lCB DNA binding was

a generalized response in adherent populations or specifie to mouse fibroblasts, the
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Figure 10. The effect of taxol on the activation of NF-KR by TNF-a, LPS, and

PMA. NIH 3T3 ceUs were treated with either la ng/ml TNF-a~ la ng/ml LPS~ or 100

ng/ml PMf\ tor the indicated times in the presence or absence of 5 J,lM taxaI. NF-KB

DNA binding was measured using 5 J,lg of nuclear protein extract incubated with a J:!p

labeled DNA probe as described in Methods and Materials. NF-KS speci1ie complexes

are indicated by the arro\v. (A) Effect oftaxol on the DNA binding potential ofNF-KB

in the presence of various inducers. Cells were preincubated with 5 J,lM taxaI for 30

minutes (lanes 2. 6-8. 12-14~ and 18-20). The speciticity of the band corresponding to

NF-KB binding was measured using 125M excess of uniabeied cold DNA probe to

compete away the specitic complexes. (B) Similar experiment using a shorter time course

lor P~[A inducible NF-KB DNA binding except that taxaI treated ceUs (lanes 2~ 9-14)

\vere not pretreated. (C) Using a similar approach as (A).. 293 cells were treated with

either TNF-a (lOng/mI) or PMA (100 ng/ml) and either untreated (Ianes 3-5 and lanes 9­

Il respectively) or pretreated with 5 IlM taxaI (lanes 6-8 and lanes 12-14 respectiveIy).

Cald competition is shown in lane 15.
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inhibitory role of taxoi in DNA-binding assays in 293 human embryonic kidney cells

(Figure 10C) was examined. Comparable to NIH 3T3 cells (Figure 10C; lane 9-14).. PMA

stimulation of NF-KB DNA binding was inhibited by taxaI.. yet demonstrated no

suppressive effects on TNF-a stimulation (Figure IOC~ lanes 3-8).

2. Taxol activates NF-ICB DNA binding at bigher concentrations

It has been previously demonstrated that higher concentrations of taxol are capable of

inducing NF-KB activation (99..37). Figure II (lane 1) oudines the etlèct of 10 J.l.M taxoI

on NF-KB DNA binding in NIH 3T3 cells. As expected. exposure ofNIH 3T3 cells with

la JlM taxol tor 4 hours resulted in a level of inducible NF-KB DNA binding higher than

that obtained tor PMA at 4 hours (Iane 5).. suggesting the concentration dependent effects

of taxai are consistent with previous observations ( (68).

3. Charactcrization of NF-KB subunits

Ta further characterize the nature of the NF-KB-DNA complexes generated alter PMA

induction. specifie antibodies directed against either RelA (p65). pSO/p105. or c-Rel were

used in a supershift assay to determine the subunit composition of the NF-KB complexes

(Figure 12). Supershifting was accomplished by pretreating nuclear extracts with the

various antibodies prior to addition of the radioactive probe. The two major NF-KB

complexes identitied were ReIA(p6S) and c-Rel (Figure 12. lanes 4 and 5 respectively).

The intensity of the NF-ICB complex corresponding to ReIA(p65) was 2ü-tbld higher than

the c-Rel shifted complexe The relative excess of p65 aver c-ReL suggests that PMA

induction ofNF-lCB recruits predominantly p65 homodirners and to a lesser extent p65/c-
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Figure 11. Taxol acti\'ates NF-KU DNA binding at higher concentration.

NIH 3T3 cells were incubated with 10 JlM taxai far 4 hours (Iane 2) and NF-KB DNA

binding activity ussessed. Untreuted cells are shawn in lane 1. while PMA induced cells

(1-4 haurs: lunes 3-5) are shawn as a positive control for NF-KB binding. Cald

competition (lune 6) displays speciticity afNF-KS binding.
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Figure 12. Subunit characterization of PMA induced NF-lCB-DNA complexes.

Nuclear extraets from NIH 3T3 indueed for 4 hrs with PMA (lanes 1-5) were ineubated

with murine specitie antibodies recognizing the NF--lC8 subunits p50 (lane 3l. p65 (lane

4). and c-Rel (lane 5). The lower amow indieates NF-IC8 specitic complexes and the

upper arro\v indicates the antibody shifted complexes.
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Rel heterodimers. Surprisingly, no p50 subunits could be identified in the supershift

assays.

.... Taxol also suppresses NF-KB-specifie gene expression

The inhibitory effect of taxaI on PMA and TNF-a induced NF-KB dependent gene

aetivity \vas analyzed using the HIV Enhancer CAT plasnliJ. 80th 3T3 and 293 ceiIs

were transtèeted with HIV Enhaneer CAT plasmid as weIl as the mutated HIV Enhancer

CAT plasmid to determine the speciticity ofNF-KB transactivation (Figure 13). In 293

eells transiently transfeeted with HIV Enhancer CAT. TNF-a. stimulation inereased

reporter gene expression by 7-fold (Figure 13A.. lanes 3-5). while TNF-a in the presence

of taxai inereased gene expression by 10-laid. In the case of PMA. the indueibility of

CAT expression \vas much lo\ver (Figure 13A.. lanes 9-11) only reaching a ~-fald level of

induction. Consistent with the EMSA data.. the level of CAT expression was repressed

in PMA stimulated eells pretreated with taxai (Figure 13A. lanes 12-14) to levels

comparable with control CAT expression. Similar results were also obtained for NIH

3T3 cells except that in the TNF-a treated lanes (Figure 138. lanes 3-5).. the lbld

inducibility of CAT activity reached a higher value (14-tàld) while the TNF-a + Taxol

(Figure 128.. lanes 6-8) was similar to that obtained tor 293 ceUs. However.. PMA

stimulated 3T3 cells showed a signiticant difference in the Ievei of gene expression tor

eeUs treated with either PMA (Figure 13B. lanes 9-11) or PMA + taxoi (lanes 12-14).

While cells treated with PMA alone dispIayed a 2ü-fold increase in CAT expression.. the

presence of taxaI diminished CAT expression to Ievels below those tor the control lane

(Figure 13B.. lane 1). One other notable difference concemed the level ofCAT expression

in cells treated only with taxoi. In 293 cells (Figure 13A.. Iane 2).. taxol increased the level

of CAT expression about 1.5 foId~ on the other hand, taxai decreased the level of basal

CAT expression. Finally, to determine that NF-ICB was indeed required for CAT
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Figure 13. Effect of taxol on HIV Enhancer-mediated gene expression. NIH 3T3

and 293 cells were transfected with 10 flg of HIV Enhancer CAT plasmid.. which contains

three copies of the NF-KB consensus DNA binding site or HIV Enhancer Mutant CAT

plasmid.. which has the NF-K8 sites mutated. Transtected ceUs were pretreated with or

without 5 fl~1 taxai 48 hours past-transtection in the presence of either TNF-a or PMA.

The level of HIV Enhancer-driven transcription was determined by CAT assay on the

total cell extract. Results sho\vn represent the average of three experiments. (A) Relative

CAT activity in 293 ceIls stimulated with 100 ng/ml PMA (or 10 ng/ml TNF-a in the

presence or absence of 5 !lM taxoi. (B) Relative CAT activity in NIH 3T3 under similar

conditions as above.D HIV Enhancer CAT. fi HIV Enhancer Mutant CAT.
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expression in the above CAT assays, a mutated HIV Enhancer CAT plasmid which

contains mutations in the two NF-KB consensus sites was transfècted into ceIls and the

level ofCAT expression measured under similar conditions (Figure 13A and 138, striped

boxes). As shown, the Ievel of CAT inducibility in aIl lanes did not exceed that of

untreated controIs, demonstrating that an intact NF-KB binding site is required for

reporter gene expression.

5. Taxol modulates the activity of PKC

The key upstream element in signaling by P~tA is protein kinase C (PKC) (56). Ta

detennine whether activated PKC is a targer for taxaI. an in ~~i(ro assay was designed to

measure the activation potential of PKC. Whole cell extracts of PMA treated N[H 3T3

cel1s were incubated with a peptide fragment corresponding to the EGF receptor, a

substrate for conventional PKCs (Figure 14). [n arder to limit the level of background

labeling of endogenous substrates present in the whole cell extracts. reactions were

precipitated with TCA. Due to the relatively small size of the EGF peptide.. it remains

soluble in TCA and cm be etTectively puritied. The peptide is subsequently immobilized

on phosphocellulose paper and the level of phosphorylation determined. In the case of

PM...\ treated cells.. PKC activity reached a 4-fold maximum induction between 1-4

minutes (Figure 14: closed box). In celis pre-treated with taxoI.. the maximum induction

was approximately 1.5 fold lower than that of ceIls treated without taxol (Figure 14~ open

box). Thus.. the inhibitory effects of taxai may black NF-KB activation by suppressing

PMA-inducibility of PKC. Since TNF-a is not a conventional activator of PKC.. the

basal level of PKC activity was relatively unaffected in the presence of TNF-a (Figure

14: open diamond) regardless ofwhethertaxol was present (Figure 14; closed box) or not
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Figure l~. Effeet of taxol pretreatment on the relative activity of PKC in the

presence of Pt\'IA. Whole celI lysates ofNIH 3T3 ceUs (50 J,lg) \vere treated \vith 100

ng/ml PrvlA for the times indicated in the presence or absence of 5 JlNI taxaI. PKC

activity \Vas measured as the ability of PKC to incorporate 32p_ATP inta the peptide

substrate KRTLRR corresponding to the EGF receptor as outlined in the lVlaterial and

~Iethods. ResuIts represent the average of lour experiments.• PMA... PMA + TaxoI...

El TNF.. ~ TNF + Taxol
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6. PMA induces changes in microtubule architecture

Many studies have shown that PMA exerts changes in the microtubule cytoskeleton

through its activation of PKC (75, 81 ~ 82, 83, 86~ 99). Since it is apparent that taxoi

suppresses PKC activity in the presence of PMA~ we next sought to determine whether

COS-7 cells would undergo changes in microtubule architecture when exposed to PMA

and to what extent taxaI could interfere with these inducible structural changes (Figure

15). Indirect immunot1uorescence microscopy demonstrated that cells treated \vith taxaI

do not cause any major structural changes in the tubulin netwark as compared ta

untreated cells (Figure 158 and 15A respectively). As a conlparisan. nocodazole. a

reversible inhibitor of tubulin polymerization ( Ill) was used ta demonstrate breakdown

of the microtubule net\vork (Figure I5C). As expected~ taxai was capable of preventing

tubulin breakdo\vn in nocodazole treated cells (Figure ISO). PMA treated cells (Figure

15E) induced dramatic changes in microtubule structure that were tnhibited by taxai

addition. Neither TNF-a nor LPS were capable of inducing changes in cytoarchitecture

(data not shown). suggesting PMA tS a unique micratubule signaIing drug.

Iwo major morphologies were present in PMA treated cells. First. a number of

cells demonstrated a homogeneous breakdown of the tubulin matrix similar to nocodazole

treated cells (Figure 15C) suggesting that PMA has the potential to cause transient

depolymerization of microtubuIes. Second. cells displaying an intact microtubule

network exhibited dramatic changes in cell shape.. denoted by extended membrane

projections not present in control cells. Taxai pretreatment of these cells (Figure ISE)

demonstrated a strikingly different morphological outcome. Taxol treated cells exhibit the

typical control cell morphology (Figure ISA). While the membrane projecting

morphology was seen in the PMAItaxol treated cells, the projections were fewer and less
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Figure 15. Indirect immunotluorescence measuring the effect of taxol, PMA, and

nocodazole on (l .. tubulin organization. COS-7 cells were tixed in 40/0

paratormaldehyde and permeabilized with 0.1 % Triton X-laD. a-tubulin was detected

using a FITC~conjugated mouse monoclonal antibody (green). Cells were treated with

either 20 Jl~1 nocodazole (panels C and D) or 100 ng/ml P~[A (panels E and F) for 1 hr

in the presence (panels B. D.. and F) or absence (panels C and E) of 5 J.I.~t taxaI.

Untreated cells are shawn in panel A.
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dramatic. At the same time.. no celis could be identified which displayed depolymerized

microtubules. These results are consistent with the notion that taxai can suppress PMA­

induced NF-lCB transactivation by repressing PKC activation and blocking subsequent

changes in microtubule structure.

7. Taxol suppresses both 11CBa pbosphorylation and turnover

It has been weIl characterized that inducible degradation of l1eBa precedes NF-IC B

translocation to the nucleus and activation ofNF-1CB specifie genes (16). Theretore ta

determine if taxai indeed suppressed PMA inducible NF-ICB DNA binding, we next

established whether taxol could alter the inducible turnover and phosphorylation of heBa.

Ta measure turnover rates of l1eBa.. COS-7 eells were pretreated with cycloheximide in

arder ta black protein synthesis and thus the re-synthesis of rlCBa. After induction of

eells. lIeBa and actin were detected by immunoblot analysis. As previously shawn,

PMA effeetively induced degradation of I1cBa by 2 hours (Figure 16, lanes 3-6) while

taxai treated eells shawed no inducible degradation in the presence of PMA (Figure 16.

lanes 7-(0). This experiment demonstrated that the ability of taxaI to block PMA-induced

I1eBa. degradation correlated with taxaI inhibition of PMA-induced NF-KH DNA binding.

Phosphorylation of llCBa on serine 32 and 36 is the critical event eontrolling downstream

proteoLytic degradation of IKBa. and NF-ICB activation (lOS. 109, 110). Ta maintain the

phosphorylated state of I1cBa.. the proteasome inhibitor MG132 was used to block the

degradation of llCBa, thus allowing the accumulation and detection of phosphorylated

IICBa (Figure 17). After drug treatment of COS-7 cells, phosphorylated IlcBa was

separated from unphosphorylated llCBa by 15% SOS-PAGE and the resulting proteins
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Figure 17. Immunoblot analysis of [td3a phosphorylation. COS-7 cells were treated

with TNF-a or PMA (Fig. 4A and B respectively) in the presence or absence of S Jl~1

taxai (30 min. pretreatment). Whole cell extracts were narmaIized to 20 Jlg and separated

by SDS-PAGE. [K80. was detected using a mouse monoclonal [KBn antibody

(tvIADIOB). Jurkatt T-cells stimulated with 10 ng/ml TNF-a tor 1 hr were used as a

positive control (lane 3. Fig. ~A and B). (A) Cells were treated with la ng/ml TNF-a in

the absence (lanes 4-6) or presence ofS JlM taxai (lanes 7-9). (B) Cells were treated with

100 ng/ml PMA in the absence (lanes '+-6) or presence of 5 J.lM taxai (lanes 7-9).



transterred to nitrocellulose. After immunoblotting with 11d3a specitïc antibodies~ the

phosphorylated torm of I1eBa was identified as a slower migrating species just above

unphosphorylated I1eBa. As early as 15 minutes. the phosphorylated form of l1eBa

was detected in both TNF-a and PMA treated cells (Figure 17A. lanes 4-6 and Figure

178. lanes 4-6 respectively). The pretreatment of taxaI selectively inhibited the

accumulation of phosphorylated hcBa in PMA treated eeUs (Figure 17A. fanes 7-9) while

ecUs treated \\ith NF-a \verc unaffectcd by taxaI (Figure 178. Ianes 7-9). In light of

these results. taxaI appears ta be capable of blocking P~IA induced phosphorylation of

I1cBa but not TNF-a stimulated phosphorylation.

67

•

•

•



C T PMA PMA + Tuol
Time (min) 15 JO 60 120 IS 30 60 1%0

_ ......... - .... -- ..... +--1"80

1 2 3 4 5 fi 7 8 9 10

........................+-- Actin

•

•

•



•

Figure 16. Immunoblot analysis of IlCBa degradation in the presence or absence of

taxol. COS-7 cells were cultured in the presence of cylcoheximide and were either

untreated or pretreated 30 min. with taxai prior to stimulation with PM A. Protein

~xtracts (30 J,1g) were resolved by SOS-PAGE. transbloned to nitrocellulose. and proteins

• \Vere identified using specifie antibodies. lmmunoblot of IlCBa degradation in COS-7 cells

is shawn. Cells were pretreated for 30 minutes with 5 J.lM taxol (lanes 2. 7-10), in the

presence or absence of 100 ng/ml PMA tor the indicated times. The respective levels of

heBa and actin are shown (top and bottom. respectively).

•
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1. Summary

Previous studies have demonstrated the inhibition of NF-ICB by other known terpenes

such as circumin (162) and helenalin (8), suggesting the role for microtubules in NF-KB

activation. The objective of these studies was ta determine whether taxoi could

specitically interrupt NF-ICB signaling in pathways known ta invoive microtubule

reorganization. To further characterize the PM.'\. path\vay in NIH 3T3 cells, in l'irro

protein kinase C assays were used to determine whether taxol was etTectively blocking

NF-KB activity through this upstream kinase. Three major classes of NF-KB inducers

were used.. namely. LPS. TNF-a.. and PMA.. the latter being important in mediating the

regulatian of cytoskeletai architecture (83 .. 86). 1) NIH 3T3 and 293 cell models

demonstrated that taxaI could etTectively inhibit NF-KB DNA binding activity in PMA

induced ceUs but not in TNF-a and LPS stimulated cells; 2) Loss ofNF-KB binding in

taxai treated cells stimulated with PMA correlated with CAT reporter assays measuring

NF-KB gene activation. 293 cells showed a sonlewhat marked decrease in PMA

stimulated CAT expression while NIH 3T3 ceUs displayed a signiticant suppression of

PMA inducible CAT activity in the presence of ta.xol; 3) IKBa phosphorylation was

inhibited during PMA stimulation but not after TNF-a induction; 4) Tumorver of

PMA treated COS..7 was also inhibited by the presence of taxaI. 5) A 30% decrease in

the level ofPKC activity was measured in PMA stimulated ceUs pretreated with taxai.

Since taxol suppresses PMA stimulation early in the pathway. we wanted to determine

whether down regulation of PKC activity may affect microtubule reconstitution in PMA

treated COS-7 ceUs. As expected.. COS-7 cells treated with PMA demonstrated a
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substantial depolymerization ofcytoplasmic microtubules along with dramatic changes in

membrane shape. These findings were similar in nature to nocodazole treated cells.. a

kno\vn depolymerizing agent of microtubules.. which caused the breakdown of

mictotubules.. giving the cells a more rounded appearance. However.. in the presence of

taxaL both nocodazole and PMA-induced MT depolymerization were prevented.. and

maintained a cytoarchitecture reminiscent of intact mirotubules.

The stabilization of microtubules by taxol was sufficient to block PMA-mediated

rearrangement of the microtubule network and in turn suppress the activation potential of

PKC. The capacity of taxol to modulate upstream events in the P~lA pathway

demonstrates the ability of taxol to black downstream transcriptionaJ activation of NF­

Jd3 .. suggesting taxol may also inhibit other transcription factors which rely on changes in

the localized microtubule environment for successful activation. [t has been shown

previously that NF-KB/!leBa co-Iocalized to microtubuJes through an interaction between

the signal response domain of [KBa and the dynein light chain subunit of the dynein

microtuhule motor complex (34). Since latent NF-KB complexes are sequestered in the

cytoplasm through their interaction with [KBa and microtubules.. microtubule integrity

may play an important role in regulating NF-KB activity by modulating its interaction

with the microtubuJe network. This suggests that taxol-stabilized microtubules and NF­

KB complexes maybe sufficient to prevent IlCBa degradation and maintain NF-leB in the

latent complex.

Based on these studies.. it appears that taxol is capable of stabilizing microtubules tram

deassembly or rearrangement. In the case of PMA stimulation. taxol stabilization of

microtubules appears to suppress the activation of PKC, an important upstream mediator

involved in NF-leB activation. Thus, PMA stimulation of NF-leB activation is a

microtubule dependent pathway that is sensitive to the presence of taxoi. On the other
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hand, TNF-(l appears ta demonstrate a microtubule-independent pathway which is not

affected by taxol.

2. Microtubule Integrity and NF-1CB Activation

In cases where microtubule stability is lost, such as pretreatment with nocodazole or

colchicine. NF-lCB is activated (147). This \vould suggest that loss of interaction \vith the

micratubule network through dynein light chain may be sufficient ta activate inducible

degradation of ItcBa. However. the notion that taxol regulates NF-KB activation at the

level al" the microtubule may anly account for part of this observation. TaxaI is alsa

known to alter the balance of microtubule associated proteins (23). Taxol-treated cells

develop abnormal bundling of MTs and severallines ofevidence suggest that MAPs are

respansible tor intluencing the spacings of microtubule (205): taxai may alter the MAP

composition of these bundies. In cultured sympathetic neurons, treatment with taxai cao

diminish the association of a number of 60-76 kDa species of Mf\PS. indicating that taxai

muy diminish populations 0 f MAPs important tor cytoskeletai and signal transduction

regulation (89).

Recently. a phorbol ester resistant U937 variant was shown to have diminished levels of

microtubule-associated PKC~2 due to the loss of microtubule-associated PKC binding

proteins (88). Interestingly. depolymerization of microtubules with nocodazole was

capable of reconstituting the normal phenotype. These findings suggest a role for PKC~2

association with microtubules as a requirement for nonnal microtubule reorganization.

Given this observation, it is possible to postulate that taxol could aIso have a similar

effect on MT-associated PKC binding proteins in a fashion similar to that described

above. In this case taxol may deplete the available pool of microtubule associated PKC

thereby atTecting downstream signaIs including IlCBa phosphorylation. One candidate is
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the PKC binding protein RACKl (receptors tor nctivated C-kinase 1) \vhich is involved

in anchoring activated PKC~ (or other PKCs) to the cytoskeleton (186) and is required

tor its activation. If indeed taxol is capable of preventing RACKl association with the

microtubule, this May represent a possible mechanism by which taxaI suppresses

activation of PMA stimulated PKC.

3. PKC is a major component of NF-KS signaling and cytoskeletal dynamics

PKCs represent a family consisting of at least Il characterized members (68).

PKCs can be subdivided inta conventional (cPKC).. novel (nPKC). and atypical (aPKC)..

aH of \vhich are activated by phorboI ester (155) except for PKCÇ.. which appears to

require a conventional PKC.. most likely PKCa. tor its activation (39.60).

At present. numerous observations have established the requirement for PKC in

cytoskeletal regulated differentiation and reorganization (7.40.46.84.107.. 123.126.174)

particularly the actin and microtubule cytoskeleton. Treatment of metaphase II -arrested

hamster eggs with PKC activators has been sho\vn to promote resumption of the ceH

cycle (53). As well .. stimulation of PKC in hamster eggs has also been demonstrated to

induce polar body formation. increased actin polymerization. and breakdown of spindle

microtubules (115). Treatrnent of mouse eggs with PKC activators does not result in

spindle body formation or actin polymerization but does display microtubule

disassembly. These tindings demonstrate the importance of PKC as a mitotic re­

activator and modulator of microtubule structure and is consistent with the results

displaying PMA-induced microtubule reorganization ofCOS-7 cells (Figure 14).
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Since an overall reduction in PKC activity was observed in ta.xol treated cells (see

Figure 13)~ this may represent a specifie decrease in the activity oftaxol-sensitive PKCs

and not a complete attenuation ofail PKC family members.. ofwhich.. PKC-a and PKC-Ç

maybe taxol regulated subunits. Consistent with this idea is the observation by Bouron

( 1997) which suggests colchicine-mediated depolymerization of microtubules is sufficient

to increase PKC activity. While PKC is able to induce dramatic changes in cytoskeletal

assembly. an apparent feedback mechanism appears to exist whereby depolymerization

of microtubules activates PKC.. suggesting PKC activity is in part activated by extemal (ie

Pt\tlA) and internaI (ie cytoskeletai environment) stimuli. Thus the presence of taxol

wouid not only block microtubule depolymerization of nocodazole and PMA-treated

ceUs but may induce a cytoskeletally-inherent negative tèedback etfect on PKC activity

(Figure 18).

4. PKC and Apoptosis

lnterestingly. PMA stimulation of PKCs has known anti-apoptotic effects (170). As

weil. the phosphoinositol 3-kinase an upstream activator of PKCe (52) is also a pathway

involved in the anti-apoptotic response. These tindings provide evidence of a PKC­

dependent mechanism tor apoptotic rescue. Furthermore.. NF-lCB has long been identified

as an inhibitor of apoptosis (17,103). A PKC-mediated response may involve activation

of NF-KB to synergize a possible anti-apoptotic effect. [n contrast.. taxol is a potent

stimulator of apoptosis (24..63.64). Given the antagonistic roles of taxol and PKCINF-1CB

in apoptotic onset it is not surprising that the strong apoptotic effects of taxol may be

the result of the anti-mitotic effects of taxol in combination with its ability to suppress

PKC and hence NF-ICB activity. That is, taxol may not only induce apoptosis by itself

but prevent the activation of anti-apoptotic mediators like NF-ICB
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Figure. 18. Schematic representation depictîng how taxoi suppresses PMA-induced NF­

KB transactivation through its ability to black PKC activation and subsequent

microtubule reorganizatian.
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The Taxol Paradox

Taxol has been sha\vn to atfect a number of upstream kinases.. particularly PKC. [n

many cases~ PMA induced expression of a number of genes including human C032..

CD16. C035 (102.161).. \vere specifically blocked by the addition oftaxol. The paradox

surrounding taxol is its concentration dependent eftècts. At low eoncentraùons~ taxol

appears to elicit a cytotoxic effect but at higher concentrations has a positive regulatory

~ffect especially in macrophage eells where taxaI aets as an LPS-like activator in the

priming of macrophages (81.168.188). Whether taxol is cellline specitic or \vhether it

conveys unique cellular eftects at varying concentrations has not been established.

The results presented here contradict numeraus tindings establishing taxaI as an activator

of NF-KB~ particularly in cancer tissue-derived cell lines and macrophage cclI lines. A

major difterenee between other studies and the present work revolves around the relative

concentrations of taxai used. Taxai when used at a concentration of 5 JlM is capable of

suppressed IL-S production (160) but at 30 JlM taxol activated IL-8 expression through

induction of NF-K8 and AP-l (99). Another study round that NF-K8 couid be aetivated

in the presence of 97 Jlrvl taxoi (37): similarly tor taxoi stimulation of macrophages~taxaI

concentrations in excess of 10 JlM had stimulatory etfects on ions and TNF -Cl secretion

in macrophages (81 ~ 168). Our preliminary experinlents have also been able ta demonstrate

that higher concentrations of taxaI (-1 0 ~M) had a positive regulatory effect on NF-KB

(Figure 10). These tindings suggest that taxol displays concentraùon dependent effects

which appear to be divided among its microtubule stabilizing effect.. whieh could suppress

PMA stimulation of NF-ICB ~ and its cytopathic etIects.. which represent a more

generalized response.
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The ability of taxoi to induce tumor regression and apoptosis is strongly substantiated

although its secandary effects on cellular processes have not been weIl investigated

enough to generate a clear consensus af the physiology of this drug. Subsequent

experiments should examine the differential effects oftaxoi ta delineate the various cellular

etÏects that taxaI exhibits at varying concentrations

Further studies ta determine which isofarms of PKC are directly atfected by taxol are

required; in addition~ the role ofother cytoskeletal-associated proteins such as RACK1 in

taxoi-mediated suppression of PKC are required. Finally ~ whether micratubule integrity

is a necessary component al' PKC activation remains to be determined. A number of

subunits in the PMA pathway are microtubule bound camplexes~ such as ERK1 and 2..

and it would be interesting ta determine whether the inducible activation af these kinases

is also aftècted by taxaI. The results presented in this study oudine an intriguing

association between microtubule architecture and the transcriptianal regulatian ofNF-KB.
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Conclusions

The results of this study address a number of critical questions regarding the regulatory

behavior of taxaI. First.. taxoi displays a possible bipartite mechanism of cellular control

which may or may not be a matter ofconcentration. Secondly.. a number of questions still

remain as ta the functional signiticance of taxai as a mediator of apoptosis and an

activator/repressor of signaling path\vays especially PKC and NF-KB since taxol

demanstrates a number of paradoxical activities in this regard. Furthermore. suppression

of PKC by taxaI may represent a single regulatory step in the down-regulation ofNF-1CB

and other kinases such as ERK 1/2.. RSK.. IKK. or the nuclear translocation machinery

may also be taxoi-sensitive targets as weIl. [t should not be ruled out however. that the

abilicy of taxol to display microtubule stabilizing etTects may represent one ofa multitude

of cellular effects. suggesting novel regulatory pathways may be discovered which are

regulated by taxaI independent of the requirement tor micratubules.
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