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Summary

Two main results (I and II below) are proved in this thesis and some
applications are considered.

I. The amalgamation property fails for all classes of G-metric spaces
unless the ordered group G is Z or R. In particular, the class of @-metric
spaces does not have the amalgamation property.

II. The space (Za)a,for all regular cardinals o, is homeomorphic to a
Pa-space with no isolated points that has an &-subbasis G= U€<°‘G€ such that

i) for each £ <aq, GC;', is a Qiscrete open cover;

ii) either

(a) for some B<a, |G€|5213 for all g<a; or

(b) |G£|<a for all g<a; or still,

(c) the cardinal ¢ is stronglyinaccessible but not weakly compact and
|G,£|sa for all £<o; and

iii) every subfamily of G with the finite intersection property has non-

void intersection.

Applications include the i(%entification (up to homeomorphism) of (A(a))a,
), and (2%, for all infinite @, with a=0® and of (U(a)) 4 (where Ula)
is the space of uniform 1.11trafilters on @), for all infinite a, with a+= Za. Cha-
racterizations of weakly compact cardinals and of cardinals for which a=ozg»‘

are also given.
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INTRODUCTION

This thesis consists of two parts. The purpose of the first part
(Chapter II) is to prove that the amalgamation property fails for the
class of all G-metric spaces, for every (totally) ordered (abelian)
group G which is not equal to the additive group of the integers or that
of the real numbers.

The amalgamation property, in its abstract form, was first
formulated by Fraissé [9] in connection with embedding problems.

It has been studied by Jénsson [15],[16],[17] and [18], and Morley
and Vaught [24] in connection with the general theory of homogeneous-
universal structures in Jénsson classes.

Not too many examples of classes of relational systems are known
for which the amalgamation property fails. Among them the following
are included: (a) the class of semi-groups and hence of rings, (Kimura
[22], Jdnsson [15],[16], Howie [14]); (b) the class of modular lattices,
(Jénsson [19]); (c) the class of 4-groups, (Pierce [31]). To these,
because of our theorem, we cah now add a whole family of such examples,
among which is the class of all metric spaces on which the metric takes
on only rational values.

Classes of metric spaces were studied by Urysohn [39], [40] and

Sierpinski [33], [34] from the point of view of the existence of universal
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spaces; thus, Urysohn proved the existence of a universal separable,
complete and w-homogeneous metric space, unique up to isometries;
while Sierpidski proved that for each cardinal & such that 2% < o= 2%
(= Z}{ZB: B<al), there exists a universal metric space of cardinality a.
It was implicitly proved by Sierpifski in [34], as pointed out by Morley
and Vaught [24], that the class of all metric spaces has the amalgama-
tion property, (and in fact forms a Jdénsson class).

The notion of a metric has been generalized by replacing the additive
group of real numbers by an arbitrary (totally) ordered (abelian) group G,
(cf. e.g. Hausdorff [13], Cohen and Goffman [1], [2] and Sikorski [37]),
and it is easy to see that the result of Sierpinski, and Morley-Vaught on
the amalgamation property extends to G-metric spaces whenever G is
order complete. The main result in Chapter II is the converse statement.

The second part (Chapter III) concerns the space (Za)a, for infinite
regular cardinals a. For any topological space X and any infinite cardinal
o, we write Xa for the set X with the smallest Pa-topology (i.e. a topo-
logy closed under intersections of fewer than a elements) coataining the
topology of X. Thus by (Za)a we mean the cartesian product of a copies
of the discrete space {0,1} with the smallest Pa-topology containing the

usual product topology. We have some topological characterizations of

the space (Za)a as follows.



For every infinite regular cardinal @, the space (Za)a is a Pa— space

(i.e. a T space with some Pa-topology) with no isolated points which .
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has an ¢¢~-subbasis G of the form G=U C¢. such that
<o &

i) for each ¢<e, Ge is a discrete open cover of the space;
ii) either
a) for some B<g, |a€|szﬁ for all g<q, or
b) |G,€|<c¢ for all ¢<g, or still,
c) the cardinal ¢ is strongly inaccessible but not weakly compact
and |G€|§a for all ¢<a; and
iii) every subfamily of G with the finite intersection property has non-
void intersection.
This result is a generalization of a tﬁeorem of Comfort and Negrepontis
in [3] which treats the case when « is the first uncountable cardinal.
Applications of this result are in two categories. First, we deduce
from the main result the following statement (Theorem 3.13), which is
also a generalization of a theorem of Comfort and Negrepontis in [3].
For a compact Hausdorff space X and an uncountable regular cardinal
o, on is homeomorphic to the space (Za)a, if
i) the cardinal number of continuous real-valued functions on X is ¢,

and ii) no intersection of a family of fewer than & open sets of X is a

singleton. The converse is true if ¢ is such that oc=otg/.



Denoting by U(a) the space of all uniform ultrafilters on « with
the topology it inherits from that of the Stone -\éech compactification
of @, we have the homeomorphism of the spaces (U(ot))o[+ and (Za )oz""
for all infinite cardinals ¢ such that a+= 2%, Denoting by A(a) the
space 2% with the lexicographic order topology, we have the homeo-
morphism of the spaces (A(®) )a and (Za)a, for all infinite cardinals «
such that oz=olg. And, for all infinite cardinals « such that a=ag,
let us denote by Sa the Stone space of the g-homogeneous-universal
Boolean algebra of cardinality @, whose existence is a consequence
of results of Jénsson [15],[16], and Morley and Vaught [24].
Negrepontis mentioned in [25] without proof that the spaces (A(a))a
and ‘(Sa)a are homeomorphic. That result also follows from our
Theorem 3.13.

Secondly we obtain a characterization of the weakly compact
cardinals and a characterization of the cardinals ¢ for which a=otq’.
Thus, the space (Za)a is homeomorphic to (aa)a if and only if @ is not
weakly compact. The space (Za)a is homeomorphic to ('ya)a for some
y>e if and only if @ is such that oz#ol'%. The class of weakly compact
cardinals has many characterizations which can be found in the work
of Parovifenko [28], [29], [30], Erddsand Tarski [8], Keisler and

Tarski [20], Hanf [12] and Monk and Scott [23], and are all collected
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together in a forthcoming book by Comfort and Negrepontis [6]. A
number of conditions équivalent to the condition dg/=oz can be found
in a forthcoming work of Comfort and Negrepontis [5].

There is some connection between the two parts of the thesis in
that the space (Za)a is a Ga—metric space, where Ga is the least
ordered algebraic field containing the cardinal ¢, and has been studied
from this point of view by Sikorski ([377).

Chapter I contains all relevant preliminaries, with no new material.
The main results in Chapters II and III are to the best of our knowledge

original.
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CHAPTER I: Preliminaries

In this chapter, we mention those notions and known results required
for the exposition of our results. We also list the notations and conven-
tions that we have adopted (and which may in some instances differ from

those used by other authors).

This chapter is divided into parts A and B, relevant to Chapter II

and Chapter III, respectively.

A. G-metric Spaces

1.1. Definition. A (totally) ordered (abelian) group is a triple
(G, +,<) suchthat (G,+) is an (additive) abelian group, (G,<) is a
(totally) ordered set and such that if a<b, then atc < btc, for all

a,b,c€QG.

We have the following conventions in this connection:

i) by <, we mean < or =,

ii) sometimes, we write G for (G, +,<) for convenience, even
though strictly speaking G is only a set, and

iii) by G we mean {xeG:x=20}.

1.2. Definitions. Two positive elements x,y of an ordered group
are relatively archimedean if there are positive integers m,n such that

mx=2y and ny=zx.
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If every two positive elements of an ordered group are relatively

archimedean, then the ordered group is archimedean.

1.3. Notations. Z, @ and R denote the ordered group of integers,

rational and real numbers respectively.

1.4. Proposition. Every archimedean ordered group is isomorphic
to an ordered subgroup of .

(For a proof, see e.g. Theorem 8.12 of Rudin [32].)

1.5. Definition. A subgroup F of an ordered group G is convex,

if whenever x€G, y€F and O<x<vy, it follows x€F.

1.6. Proposition.Let F be a convex subgroup of an ordered group
G. The quotient group G/F can be made into an ordered group according
to the following definition. The element of G/F that contains a€G, F(a),

+
is 20 if there exists x€G such that a= x(modF).

1.7. Definition. A (totally) ordered set (X,<) is order complete
if and only if each non-void subset of X which has an upper bound has a

least upper bound (i.e. a supremum).

1.8. Proposition. In an archimedean ordered group that is not order

complete, 0 cannot be isolated. In fact, if x>0 then there is x’'>0

such that x=2x’.



Proof. If 0 is isolatedthere.is a smallest element to be called 1 and
the group is isomorphic to Z which however is order complete. There-
fore 0 cannot be isolated. If x>0, there is xl such that x>x1 >0 and

one can let x’ =min(x1, x-xl).

1.9. Definitions. Given an oredered group G, if there exist non-
empty subsets X, Y of the set G, such that

i) XUY =G,

ii) x<y for all x€X and yE€Y,

iii) X has no last and Y no first element;
then there is said to be a Dedekind cut X|Y in G.

A Dedekind cut X|Y is positive if 0¢€X.

1.10. Proposition. Every ordered group that is not order complete

has a positivé Dedekind cut.

1.11. Proposition. If X |Y is a positive Dedekind cut in an archi-

medean ordered group, then for all z>0, there exist x€X and y€Y

such that y-x<z.

Proof. Let n be the smallest integer such that nz €Y. One can let

¥=(n-1)z and y=nz.

1.12. Definitions. Given an ordered group G, a G-metric on a set
X 1is a mapping p:X2-> G such that, for all x,y,z € X,

i) px,y) = ply, %),



i)  plx,y) + ply, 2) = p(x, 2),
iii)  p(x,y) 20, p(x, x) =0, and

iv) if p(x, y) =0, then x=y.

A mapping p satisfying i), ii) and iii) is called a G-pseudo metric on

A G+(pseudo) metric space is a pair (X, p), where pisa G-(pseudo) metric
on X. Sometimes we write X for (X,p).

Let (X,p) and (Y,o0) be G-(pseudo)metric spaces for some ordered
group G. We say Y is a subspace of X if YcX and if a=p|Y2, the
restriction of p to v2. If there is a mapping f from Y into X such that
for all x,y€Y, @a(x,v) =p(f(x),f(y)), then we say f is a G-isometry.

An R-metric space is a metric space, an R -isometry an isometry.

G-metric spaces have been studied by Hausdorff [13], Cchen and

Goffman [1],[2], and Sikorski [37], among others.

1.13. Proposition. Let (X, p) bea G-pseudometric space for some
ordered group G, let %={y:p(y,x)=0} for all x€X, let X be {&:xe€ X},
and let § be a G-metric for ¥ such that for members A and B o X ,
i’)(A,B):p(a.,b) for some a€A and b€B. Then the quotient map 7 of X

onto X is a G-isometry.

1.14. Definitions. Given an arbitrary set I, lett be a function from I

into  the set of positive integers. A system, (A, Ri)iel' formed by a
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non-empty set A and t(i)-ary relations Ri over A is a relational system,
having similarity type t, index set I. Relational systems are similar if
they have the same similarity type.

Let G= <A’Ri>i€I and B = B’Si>i€I be similar relational systems
of similarity type t. We say that B is a subsystem of G, denoted by B<G,
if BCA and Si:Ri nBt(l) for all i€l. If there is a one-to-one mapping
f:B>A, and we let f -Bt(i)»At(i) be given by f ,..(b., ..., b ) =

’ t(i)’ t(i) 0" 7T Tt(i)-1
(f(bo), ""f(bt(i)-l)) for all i€l; we say that f is an embedding of B into

G, denoted by f:8-(@, provided <f[B]’ft(i)[Si]>i€I is a subsystem of G.

A class K of similar relational systems is said to have the amalgamation
property, if given G,8,C€K and given embeddings f,g of C into G, 8

/

respectively, there are § €K and embeddings f', g’ of G,B respectively
into § suchthat f'.f=g’.g.

(Cf. Jénsson [15],[16],[18] and Morley and Vaught [24].)

1.15. Definitions and Conventions. Given an ordered group G and a

non-empty set X, a G-metric p on X, like any function with range in G+,
can be written as U{p—l(g)x{g]:g €G+}, and therefore has the following
equivalent definition. A G-metric on X is U{Rgx{g}:g€G+}, where, for
each g€G+, Rg is a binary relation on X, such that

i) U{Rg: g€G+} = Xz, and for all x,y,z€X and f{,g, h€G+,

ii) if foy, then Rfyx,
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iii)  if foy, ngz and thz, then f,g,h as elements of G are
such that f+gz2h, and

iv) Roxy if and only if x=vy.

Observe that, from iii) and iv), it follows that anRg =¢ if f#g.

It is then clear that a G-metric on X can be identified with a family
{Rg: g €G+} of binary relations such that 1i),1ii), iii) and iv) are true;
and a G-metric space X can be identified with a relational system

(X,R ) +, having similarity type t:Gho w, with t(g)=2 for all

g'g€G
g€ G+, such that i), ii), iii) and iv) are true for the family of binary
relations Rg indexed hy G+.

Let (X,p) and (Y,qg) be G-metric spaces for some ordered group
G. ~(Y,o-) is a subspace of (X, p) if and only if Y&X and o'-l(g) =p-1(g)ﬂY2
for every g€G+ . A mapping { from Y into X is a G-isometry of Y into
X if and only if £[Y]cX and (f(x),(y))€p l(g) for all (x,y)€o ‘(g),
i.e., if we let fZ:Yz-->X2 be given by fz(x, y) = (£(x), £(y));
(f[Y],U{fz[u-l(g)]x{g}:g€G+}), is a subspace of X. Therefore, a sub-
space Y of X is a subsystem of the relational system X, G-isometries
are embeddings of relational systems, and the amalgamation property
for the class of all G-metric spaces for a given G has the following
equivalent formulation, which is the one to be used in Chapter II.

For a given ordered group G, the class KG of all G-metric spaces

has the amalgamation property if given A, B, C GKG and given G-isometries
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f,g of C into A, B respectively there are DEKG and G-isometries
f/,g' of A, B respectively into D such that f'° f=g’°g.

(In the above, a G-metric space is identified with a relational sys-
tem with G+ as the index set. A relational S};stem with an index set
that is a dense subset of G+ (with respect to the .order of G) can also
be used, which however necessitates a more complicated set of axioms
that is to be satisfied by the relational systems identified with G-metric
spaces, when G is not order complete. Such a relational system is in

fact given in Morley and Vaught [24] for G=R, and the positive rationals

as the dense subset of m+.)

B. Spaces of Ultrafilters

1.16. Definitions and Notations. The axiom of choice is assumed.

Each ordinal is the set of all smaller ordinals. Thus, the condition
£ <¢ is equivalent to the condition £€{. .Nevertheless, we shall make
the notational distinction between the first ordinal 0 and the empty set ¢.
Ordinal numbers are denoted by §,m, §, 4, v and )\I. Ordinal sums and
products are assumed to be known and are denoted by £+n, | £-m respectively.
For any {<§, we write g-f for the unique ordinal 7 such that £={+7.

A cardinal number is an initial ordinal. Cardinals are denoted by
o, B,y and k. The first infinite cardinal is w. The least cardinal greater

. +
than ¢ is denoted by ¢t . A cardinal @ is a limit cardinal if a#ﬁ+ for
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any B, and, ¢ is regular if it is not equal to the sum of fewer than @
cardinals each smaller than ¢. We denote by ozﬁ the set of all mappings
from Bto ¢ and, sometimes, the cardinal number of that set. A cardinal
o is strongly inaccessible if it is regular and if 25<a whenever B<a.
We denote by aé the cardinal E{ay:'y<ﬁ}. If ¢ is strongly inaccessible
then o= 29-[’=a; and, o®=q if and only if 2%=¢q and o is regular. The
cardinality of a set A is denoted by |A | .

By the Generalized Continuum Hypothesis, we mean the statement that
a'=2® for all infinite cardinals o.

(With some variations, material in this section can be found in

Sierpidski [36].)

1.17. Definitions. A filter & on a non-empty set X is a family of
subsets of X which has the following properties:
i) the empty set is not in &,

ii) every subset of X which contains a member of & belongs to &,

and

iii) every finite intersection of members of ¥ belongs to &.

A filter on a non-empty set not properly contained in any other filter
on the same set is an ultrafilter. Ultrafilters are usually denoted by p, q.
A principal ultrafilter p on a non-empty set is an ultrafilter containing

a singleton, or equivalently, is one such that Np#¢.
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A filter ¥ is q-complete if NGEF whenever Gc=¥ and |G|<a.

A filter F on X is uniform if IFI = |X| for all Fe¥.

1.18. Definitions. An infinite cardinal ¢ is measurable if there is
an @-complete, non-principal ultrafilter on ¢.

An infinite cardinal @ is strongly measurable if @ is regular and
every q-complete filter on ¢ can be extended to an @-complete ultrafilter
on Q.

Obviously a strongly measurable cardinal is measurable.

(The class of all non-measurable cardinals is denoted Cl and that of all
strongly non-measurable cardinals denoted C:g in Keisler and Tarski [20].

*
See also definitions of Gl and Gl in Comfort and Negrepontis [4].)

1.19. Definitions. A topological space X is a T, -space if for every

1
x €X, the singleton {x} is closed.

A Tl-space XisaT space (or a completely regular space), if

33
for every x€X and every open set A containing x, there exists a continuous

real-valued function f on X such that f(x)=0 and f(y)=1 forall yeX ~A.

1.20. Definition. Given a topological space X, a family @ of subsets
of X is discrete if every point of X has a neighborhood that intersects at

most one member of Q.

(C£f. e.g. Kelley [21] in connection with metrization, p.127.)
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1.21. Notations. Given a function f on a set X into a set Y, a
subset A of X and an element y€Y, f[A] denotes {f(x):x€A}, f-l(y)
denotes {x€X, f(x)=v}, flA denotes the restriction of f to A and chA

denotes the closure of A in X. Sometimes we write fx for £(x).

1.22. Definition. Given an infinite cardinal ¢, a T3%-space X is a
Pa-space if any intersection of fewer than ¢ open sets of X is open; a
topology is a Pa-Space topology if it is closed under intersection of less
than ¢ members.

(Thus Pw-spaces are ordinary T3%—spaces. P-spaces as defined by
Gillman and Henriksen in [10] are Pw+-spaces. Pa-spaces are called
o-additive spaces in Sikorski [37], Tg%-spaces, if ¢ is the y-th infinite

cardinal, in ParoviSenko [26] and g-complete in Monk and Scott [23].)

1.23. Proposition. For all uncountable cardinals a, Pa- spaces are
totally disconnected.

(This is given in (iv) of Sikorski [37]. )

1.24. Definition. On a topological space X, for an infinite cardinal o,
a family G of open sets is an @-subbasis for its topology if the family dall
intersections of fewer than g members of G is a basis for the topology of X.

A T_,-space that has an @-subbasis for its topology is a Pa- space.

33
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1.25. Definition. Given a topological space X and an infinite
cardinal @, Xadenotes the set X with that topology for which the topology
of the space X is an @-subbasis.

As sets, X and Xa are identical.

1.26. Definition. Given an infinite cardinal @, A(¢) denotes the
set Za, topologized with the lexicographic order topology.
(Cf. Sierpidski [35] for the definition of A(a). AMw') and (A(w+))w+

are denoted by A and An respectively in Comfort and Negrepontis [3].)

1.27. Definition. Given an infinite cardinal ¢, 2 Hausdorff space X
is g-compact if each of its open covers admits a subcover by fewer than

a elements..

(This definition can be found in Sikorski [37], Parovidenko [27] and

Monk and Scott [23].)

1.28. Definition. An infinite cardinal o is weakly compact if (Za)a
is oa-compact.

(This is equivalent to the usual definition in terms of the Boolean
algebra representation problem, cf. Parovi¥enko [28],[29], [30], Erdos
and Tarski [8], Keisler and Tarski [20], Hanf [12], Monk and Scott [23]

and Comfort and Negrepontis [6].)

1.29. Proposition. If o is weakly compact, then « is strongly

inaccessible.

(Cf. Monk and Scott [23].)
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1.30 . Definition and SimpleFacts. Given a T3l~space X, @X denotes
2

the Stone-éech compactification of X, characterized by the following
properties:

a) PX is a compact Hausdorff space

b) X is (homeomorphic with) a dense subspace of X, and

c) X is C*—embedded in 3x, i.e. every bounded continuous
real-valued function on X extends continuously to GX.

(The Stone-Cech compactification is defined and discussed in Chapter 6

of Gillman and Jerison [11].)

For any non-empty discrete space D, the Stone-éech compactification
BD of D can be regarded as the set of all ultrafilters on the set D, such
that every element of D is identified with the principal ultrafilter consisting
of all subsets of D containing itself, with the smallest topology generated

by sets of the form {péﬂD:A €p} for some AcD.

1.31. Notations and SimpleFacts. We sometimesuse o to denote

the discrete space of cardinality o
Given a cardinal ¢, U(q) denotes the space of all uniform ultrafilters
on @ and Q(a) denotes the space of all g-complete non-principal ultrafilters
on ¢, (both considered as subspaces of ﬁa). Clearly Q(a)c U(e) for all a.
If w<q, then Ul@)#¢. Indeed, the family of complements of all subsets

of o of Cardinality less than ¢ forms a filter which produces an element of
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U(e). However, it is not known whether any uncountable cardinal exists
such that Q(a) #¢, i.e. whether there exists any measurable cardinals
besides w. But Q(w)=U(w)=Rw~ w.

(The spaces U(a) and Q(a) are used in Comfort and Negrepontis [4]

for the characterization of strongly measurable cardinals.)

1.32. Proposition. For all infinite cardinals ¢,

i) the space Q{a) is a Pa—space,

ii) if o is(strongly)measurable, then @ is weakly compact and in
particular strongly inaccessible,

iii) if ¢ is strongly measurable, then Q(a) is o-compact.

(items i) and iii) are derived from or contained in Lemmas 2.5 and 2.6
respectively of Comfort and Negrepontis [4]. Item ii) follows essentially
from the results of Monk and Scott [23]. That (strongly) measurable
cardinals are strongly inaccessible is essentially the classical result of

Ulam [38] and Tarski, (cf.e.g. [8]).)



CHAPTER II: The Amalgamation Property for G-metric Spaces

As remarked in the Introduction, the class of all metric spaces (with
isometries) satisfies the amalgamation property as a consequence of re-
sults by Sierpidski as pointed out by Morley and Vaught. The proof makes
use of order completeness of the ordered group of real numbers. First
of all, we notice that the same proof carries over to the classes d all
G-metric spaces (with G-isometries), where G is not order complete.
(However, the only such groups are R and Z).

This part of the thesis is devoted to establishing the fact that these
are the only instances of classes of G-metric spaces for which the amal-
gamation holds.

We remark on our proof. For any group G that is not order complete, '
we first define a subset C of G, making use of a Dedekind cut of G with
a special property which is defined in 2.3 and whose existence is proved
in Lemmas 2.4-2.6; and define on C a G-metric which is a modification
of its natural G-metric structure as a subset of G. We then define two
spaces A and B by adjoining to C in each case one single point, in such
a way that the triangle inequality always fails in the triangle formed by
these two points and a certain third point, when a G-metric is attempted
on the set AUB.

We begin with some definitions and remarks on notations.

19



20

2.1. Definition. A positive Dedekind cut X|Y will be called archi-

medean if there exist x +xz €Y.

x2 € X such that %y

1!
2.2. Notations. We shall write, for all subsets A of an ordered

group G, [A] for {x€G:a<x for some a€A} and 2A far {2a:a€A}.

2.3. Definition. A positive Dedekind cut X'Y will be called quotient

if G~ [2Y]]|(2Y] is also a Dedekind cut.

Remark. Toshow that X |Y is quotient it suffices to show that'G ~[2Y]

has no last element.

The next three lemmas establish the existence of quotient positive
Dedekind cuts in all ordered groups that are not order complete, and lead

up to the main theorem (Theorem 2.7).

2.4. Lemma. Every archirhedean ordered group that is not order
complete has a quotient positive Dedekind cut.

Proof. Let G be an archimedean ordered group that is not order
complete. Let X|Y be a positive Dedekind cut. Let M= {z€G:2z€X]},
N={z€G:2z€Y}. We show that M has no last element. Suppose on the
contrary that M has a last element m and 2m€X. Since X has no last
element, there exists x€X, 2m<x, which can be assumed to be such

that 2(x-2m)+2m € X. This however implies that 2 ((x-2m)+m) € X and
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m is not the last element of M. Similarly N has no first element. Thus
M|N is clearly a positive Dedekind cut.

Now [2N]=Y from which it follows that M|N is quotient. For, if
not, there exist V0 Y, €Y ~ [2N], v, <Y, and there exist meM and
n€N such that 2(n-m) s(yz—yl), which is a contradiction since 2n >y,

>y1>2m.

2.5. Lemma. Every non-archimedean ordered group has a non-
archimedean positive Dedekind cut.
Proof. Let G be a non-archimedean ordered group. Let x,Yv,

0<x <y, be relatively non-archimedean. Let

X ={z€G: nz<y, for all integers n},

Y={z€G: nz2y, for some integer n}.

Clearly X and Y are non-empty such that (i) XUY =G, (ii) a<b
for all a€X, beY, and 0€X. Further, X has no last element. For,
if X, €X 1is the last element, then since Zxo >X, >0, it follows that
ZXOGY and xo £X by the definition of X. Also, Y has no first element.
For, if Yo €Y is the first element, Vo % being smaller than Yo is
in X. But (yo-x)+x€Y which implies either Yo% or x is in Y contrary

to our assumption. Therefore XIY is a positive Dedekind cut. Its

being non-archimedean is evident from its definition.
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2.6. Lemma. Every non-archimedean ordered group has a quotient
positive Dedekind cut.

Proof. Let G be a non-archimedean ordered group. Let XIY be
a non-archimedean positive Dedekind cut. We shall prove it to be
quotient. Let F={g€X:-g€X}, F is a subgroup. For, if f,g€F, then
#H,xg€X, H+geX (X |Y being non-archimedean) and *f+g€F. F is ‘
clearly convex. Consider G =G/F which is an ordered group with the
order induced in the usual way, (cf.1.6). If the zero element in G is
isolated, then there exists a smallest positive element, denoted I, in G.
Clearly G ~ [2Y] =XU1 which has no last element. If the zero element
of G is not isolated, then [2Y]=Y. For, otherwise there exist
ORAE Y, €Y ~ [2Y] such that F(yl) <F(y2) and F(yo) < miﬁ{F(yz)—F(yl),
F(yl)}. But then Zyo €Y~ [2Y] whichis a contradiction to the fact that
Zyo €[2Y]. In either case G ~ [2Y] has no last element, from which it

follows that X|Y is quotient.
We are now ready to state and prove the main result of this chapter.

2.7. Theorem. Let G be a(totally) ordered (abelian) group. The class
KG of all G-metric spaces satisfies the amalgamation property, if and
only if G is either the ordered group of the integers or that of the real

numbers.
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Proof. As is well known (and is easy to prove), an ordered group G
is order complete if and only if G is either the ordered group of the
integers, Z, or that of the real numbers,R. As it was mentioned in the
Introduction, it is known that the amalgamation property holds for Km;
the proof, which uses the order completeness of R, carries over to
every order complete group. We outline a proof of the statement that
KG satisfies the amalgamation property for every order complete group G.

Let A,B and C be any G-metric spaces with G-metrics @, 8 and y

respectively. Let there be G-isometries f:C-»A, g:C->B. Let E be the

disjoint union of the sets A and B. We define ¢:ExE~G as follows.

For a,bgE,
o(a, b) if a,b€A,
e(a,b) = ﬁ(a,, b) ifa,b€B,
mfcec[a(a, f(c)) +B(b, g(c))] if a€A,b€EB

It can be easily verified that ¢ is G-pseudometric by checking the
triangle inequalities as follows.

Given any triangle in E, if all three vertices are in A (or in B),
the inequality is clearly satisfied. The only other possibility is that

two vertices a,b are in say A and c is in B. Then
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e(a, b) = afa, b),
€(b,c) = infdec[a(b, £(d))+ B(c, g(d) ],

e(a, c) = inf, _[ala, £(d))+ Blc, g(d))].

deC

But
afa, b) = afa, £(d))+alf(d), £(d))+ alb, £(d"))

= ofa, £(d))+ Bg(d), g(d)+ alb, £(d"))

< ofa, £(d))+ Blc, g(d)+ Blc, g(d'))+alb, £(d)),
for all d,d’€C; and hence

aa, b) < inty_ [ofa, £(d)+ Ble, g(d)]

+in£d,ec[a(b, £(d’))+B(c, g(d’n].
Therefore
€(a,b) < ¢(a, c)+e(b, c).
Also
elb, c) = infy, Lofb, £(d)+(c, g(d)]

< a(b, £(e))+B(c, gle))

< afa, b)+afa, fle))+B(c, gle)),

for all e€C; and therefore

¢(b, c) < afa, b)+inf .. [ofa, £(d))+B(c, g(d))]

deC
or

e(b,c) < ¢(a, b)te(a, c).

Similarly
€(a,c) s e(a,b)+e(b,c).
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Now that (E, ¢) is a G-pseudometric space, we can get a G-metric
space (D,§) out of it in the usual way (by identifying points of zero
e-distance as in 1.13). The G-metric space (D,0), together with the
G-isometries resulting from the natural embeddings of A, B into E
satisfies the amalgamation property. |

For the converse, let G be an ordered group that is not order
complete. Let X |Y be a quotient positive Dedekind cut which exists
according to Lemmas 2.4 and 2.6. We are to construct three G-metric
spaces (A, a), (B, B) and (C,7) together with G-isometries f: C=A,
g:C-B such that there does not exist a G-metric space (D, 0) with G-
isometries f/, g’ from A and B respectively into it such that £ of2g’og.

Choose an arbitrary y €Y. Let Z= {-ZYO—Z: z€G ~[2Y]),2z20}.
Let C=YUZ (the disjoint union of Y and Z), and define the G-metric

v on C as follows:

|a-b|, if a,b€Y or a,b€Z,
y(a, b) =
2y0+a, if a€¥Y,beZ.

Let A= {OA]L'J C, and define the G-metric a on A as follows:

v(a, b), if a,b€C
ala,b) = 9b, if a=OA,b€Y
2y0 if a=0A,b€Z.

Let B= {OB}U C, and define the G-metric B on B as follows:
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(.
v(a, b), ifa,b€C
B(a,b)f b, if a=0B,b€Y
-b, if a=0B,b€Z.
Let f, g be the natural embeddings of C into A, B respectively. We
can verify that A, B, C are indeed G-metric spaces by checking the
triangle inequality in detail as follows:
1) v is a G-metric on C. For, given any triangle abc on C,
there are only 4 cases that are fundamentally different.
i) a,b,c €Y. The triangle inequality is evidently satisfied
as y restrictedto Y is the only natural G-metric on Y.
ii) a,b,c€Z. Same conclusion for the same reason.
iii) a,b€Y, c€Z, a>b. We have
(y(2, b) = (a-b),
{y(b,c) = 2y0+ b,
L'y(c, a) = 2y,*a, thus
(y(c, a)+y(b, c) =4yo+ at+b >a-b = y(a, b),
dylc,a)+y(a, b) >y(c,a) >y(b,c),
\'y(a, b)+y(b, c) = y(c, a).
iv) a€Y,b,c€Z,b<c. We have
yla, b) = 2y +a,
™ y(b, ¢) = (c-b),

v(c,a) = 2y0+ a, and thus
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v(c, a)+y(b, c) >y(c,a) = y(a, b),

v(c,a)+y(a, b) >2a > (c-b) = y(b,c), as 2a€2Y,

y(a, b)+y(b, c) >y(a, b) = y(c,a).

2) o is a G-metric on A. For, given any triangle abc on A,
there are only 4 cases that are fundamentally different.
i) a,b,c€C. The triangle inequality is evidently satisfied
as a(a, b)=vy(a, b), alb,c)=y(b,c) and a(c,a)=y(c,a).

ii) a =0 b,c€Y, b>c. We have

A’

(a2, b) = b,

da(b,c) = b-c,

{]

\a(c,2) = c, and thus

(a(c,a)+alb,c) = b = g(a, b),

olc,a)+afa,b) >b >b-c = gb, ),

\a(a, b)+a(b,c) >b >c = g(c,a).

iii)a=OA, b,c€Z, b>c. We have

(2, b) = 2y,

b-c,

1

{ a(b, c)

\Ol(C, a) = Zyo, and thus

(a(c, a)+a(b, c) > 2y, = afa, b),

) q(c, a)+o(a, b) > Zyo >b-c = a(b,c) as Zyo EZY/

o

A Loz(a, b)+a(b, c) > ZVO = o(c,a).

¢
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iv) a=0A, bEY,c€Z. We have

(a2, b) =b,
a(b’ C) = 2Y0+ b!
ofc,a) = Zyo, and thus
.
(a(c, a)+a(b, ) > b = afa, b),
«O!(C, a)+0t(a, b) = 2Y0+b = Ot(b, C):
(a(a, b)+a(b, c) > al(b, c) >alc,a).

3) B is a G-metric on B. For, given any triangle abc on B,

there are only 4 cases that are fundamentally different.

i) a, b, c €C. The triangle inequality is evidently satisfied as

B(a, b) =y(a, b), B(b,c)=y(b,c) and B(c,2a)=y(c,a).

ii)a=0g, b,c€Y, b>c. We have
B(a, b) =b,
B(b, c) =b-c,
B(c,a)=c, and thus
Blc,a)+ B(b,c) = b = B(a,b),
Blc,a)+B(a,b) >b >b-c = (b, c),
B(a, b)+ B(b,c) >b >c = Blc, ).
iii)a=0A, b,c€Z, b>c. We have
B(a, b) = -b,
. B(b, c) =b-c,

'

B(c,a)=-c, and thus
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Blc,a)+B(b,c) > -c > -b = B(a, b),
Blc,a)+B(a,b) > -c > b-c = B(b, c),

Bla, b)+B(b,c) = -c = f(c,a).

iv) a=0 beY, c€Z. We have

A’
B(a,b) = b,
B(b, c) = 2y +b,

B(c,a) = -c, and thus

B(c, a)+B(b, c) > B(b, c) > B(a, b),
B(c,a)+B(a,b) = b-c > 2y0+b = B(b, c), as -c >2y0,

B(2, b)+B(b, c) = 2y +2b > -c = B(c,a).

The natural embeddings f, g are G-isometries by definition.

Now we show that there does not exist a G-metric space (D, §) with
G-isometries f’ and g’ from A and B respectively into it such that
f'of = g’og.

Suppose the contrary. Let 6(f’(OA), g’(OB)) =A . We can prove
A€G~[2Y]. For, A< 5(f’(0A),f’(Y))+6(g’(0B), g'(y)) = 2y, for all ye€vY,
and therefore by definition of [2Y], A€G ~ [2Y]. There then exists
z,€G ~ [2Y] such that zy> A

If we cons.ider the triangle f’(OA)g'(OB)f'(-ZyO-zO) on D, we will

find a contradiction to the triangle inequality as follows.
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8(£(0,),£'(-2y-2()) = 2y,,

$6(g'(0), £'(~2y -2)) = 2y +z,

\6(£'(0,), g'(05)) = A,

and 2y0+A # 2y0+z This completes the proof of the theorem.

0



CHAPTER III : Homeomorphs of the Space (za)a

The main theorem in this chapter, Theorem 3.12, establishes some
characterizations of the topological space (Za)a, where ¢ is an infinite
regular cardinal. In all, we have two characterizations of (Za)a for an
infinite regular ¢ and a third only for cardinals ¢ that are strongly
inaccessible but not weakly compact. The method of proof for all three
is essentially the same. The proofs, owing to their tedious complexity,
are broken up into lemmas. These lemmas assert that bases with some
more desirable properties can be constructed from the given ones
(Lemmas 3.2 and 3.3) and that homeomorphisms between spaces can be
deduced from isomorphisms (with respect to set inclusions) between
bases with these properties (Lemma 3.4 and Corollary 3.5), and provide
the steps of transfinite induction towards the construction of such iso-
morphisms (Lemmas 3.7-3.10). They are inevitably long to state, but
they provide all the intermediate re;aults and hopefully make the proof of
the main theorem clearer. We remark that Lemma 3.4 gives a condition
for homeomorphisms between spaces in terms of some very general
relation between some bases on those spaces. This Lemma is more
general than necessary, though not more difficult to prove. Its Corollary

3.5, a particular case, is all that is necessary. Lemma 3.11 shows that

the image of the isomorphism (constructed with the help of Lemmas 3.7-3.

is a basis of (Za)a .
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These lemmas together prove our main theorem. The remainder
of the chapter is devoted to applications of this theorem. The more im-
portant ones are Theorem 3. 13, Corollaries 3.14,3.15 and 3. 16 and

Theorem 3.19, as outlined in the Introduction. We begin with some definitions.

3.1. Definitions. Given a set X, a family G of non-void subsets of X is
a partition of X if Ug=X and if ANB=¢ whenever A,B€G and A £B.
An (ordered) family of partitions {G€ :£<o} of a set X is said to be

i) refining, (respectively strictly refining) if G& refines (respectively
1

there is A €QC such that
0 go

strictly refines) G, , i.e. for any AIEG.

& &

Al c (respectively C#'.) Ao,whenever go <£1 <@ ; ii) continuously refining

if it is refining and if for all limit ordinals A, 0<A<a, G,)\z{A (A= ﬂ{fg:g<)\]

# ¢, for some fell ).

G
E<A €
Given a topological space X and a family G of closed subsets of X,

we say X is (-complete if every subfamily of G with the finite intersection

property has non-void intersection.

3.2. Lemma. Let @ be an infinite regular cardinal. Let X be a Pa-
space with no isolated points. If X has an a- subbasis G of the form
G = G, such that for each £< is a discrete open cover of X
Ue<a E e e o, CEE P O ’

then there is a continuously refining family {Bﬁ :£<o} of partitions of X

such that



o

a
Il

¢

33

i)  the family 03=U€<a 03€ is a basis for the topology of X,
ii) if X is G-complete, X is @ -complete, and
iii) for every ¢£<a and every BEIBg , 1< |{C ena€+1; CcB} |SIGC|

for some {<a dependent on ¢ and B.

Proof. Let CO={X}. For all 0<¢<gq, let C ={C:C=ﬂ{fC:C<g}#¢,

§

for some fe€ll }. Clearly, {C,:¢<a) is a continuously refining

e<e % ¢

family of partitions of X such that

a) the family C'l:LJ£<o£Cg is a basis for the topology of X.

b) if X is G-complete, X is C-complete, and
c) for every E<o and every CGCE, there exists ¢, £ < <o dependent
on £ and C, such that

1 <|{DecC,:DcC}| < lGCI'

g

Item c) is true because there exists some 7, g<n <@, such that
I{A:A ean, ANC#gp} |>1 (since X has no isolated points) and ¢ can be
taken to be the least of such.

However [C€:§<a] need not be strictly refining, i.e. {CE: g£<a} need
not be disjoint,and we shall rearrange C into a family {Be:g <n} that is
strictly refining (or disjoint).

First, for every C€C,we define 9(C) tobe the unique ordinal which
is order-isomorphicto the set of all members of C properly containing
C inversely ordered by set inclusion. Thus, 0<n(C)<a for all CE€C.

For every 0<¢<a, we let ﬂig=[C€C:n(C)=g].
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We shall show that 8 =U€<aﬂ3€ has all the required properties.
Note first 8=C, and therefore i) and ii) are satisfied; iii) is satisfied
because of c). Because of c), ﬁe , for every €<a)is a cover of X and
therefore a partition of X. Furthermore, [03€: ¢(<a} is continuously
refining because 8 =C.

This completes the proof of the lemma.

3.3. Lemma. Let o be an uncountable regular cardinal and let

ws B < o.If ona topological space X there is a continuously refining

family {G,€: ¢ <a} of partitions such that the family G=U is basis

g<a %
for the topology of X, and, for every £<qo and every A EGe we have

1< |{B Gag+1’ BcA} | < ZB; then there exists on X a continuously refining
family {IBE: ¢ <a} of partitions such that

i)  the family 8 =Uéj<a03£ i.s a basis for the topology of X,

ii) if X is G-complete, X is B-complete, and

iii) for every ¢<o and every B€®,, |{cen :CcB}| =ZB.

3
Proof: We can let dae =GB £ for all £§<a@. Clearly the family

£+l

{ﬂagz €<a} has all the required properties. (Property iii) is clear if

we note that (23)B=ZB.)

3.4. Lemma. If X and Y are Tl-spaces, with subbases (@ and 8
respectively for their topologies and if there is a one-to-one function ©

from @ onto B, such that void intersections on X of members of @, and
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only such, imply void intersections of their images under ¢; then X and
Y are homeomorphic.

Proof: We construct a function h from X to Y as follows. We show
that for each x€X, N{p(A):A€G, x€A} is a singleton. First, we note
that it cannot by hypothesis be void. Secondly, if it contains two distinct
points AR LY there exists B€B such that vy €B, Y, ¢B and therefore
Bé{p(A):AeQ, x€A}. It follows that <p-1(B) g{A:A€qG, x€A},

(p-l(B) NN{A:AEG,x€cA} =—¢, BN N{p(A):A€G,x€A}=¢ and vy cannot
exist. Therefore, for all x €X we can let h(x) be the only point in
N{p(A):A €G, x€A].

We show that this h is one-to-one and onto as follows. There clearly
exists a function g from Y to X defined in a symmetrical way. For every
yeY, {hogly)}=N{p(A):A €a, gly) €A} € N{p(A):A=¢ '(B), BEB, yeB]
=N{B:BE€B, yeB}={y} and therefore h.g(y)=y. It follows that h is onto
and by symmetry h is one-to-one.

To prove h is a homeomorphism it suffices to prove that for all
A€G, ¢o(A)=h[A], because both h and ¢ are one-to-one. That ((A)Dh[A]

is clear from the definition of h. By symmetry A:Dh—l[qg(A)], i.e.

h[{A] D¢(A). This completes the proof of the lemma.

3.5. Corollary. Let ¢ be an infinite regular cardinal. Let X and Y

be two topological spaces, on which are respectively refining families
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{65: £<al and {BE : ¢ <o} of partitions, such that the families @ =U£<Ot0'€
and 8 =U£ Be are bases for the topologies of X and Y respectively and
such that X is G-complete and Y is B-complete. If there is an order-
isomorphism ¢ from G onto 8 (G and B considered as partially ordered
sets inversely ordered by set inclusion); then X and Y are homeomorphic.

Proof. (Straightforward.)

To use Corollary 3.5 to prove homeomorphism of a space with
(Za)a, we need to have some specific basis for the topology of (Za)a. We
describe a particularly simple one in the next section which we denote by

ea and which has the important property that (Za)a is Ba-complete.

3.6. Notations. Let ¢ be an infinite regular cardinal. For any
O<y<a and any se€2?, let Ea(s) denote the set {teZa:t|v= s}. For

any O<y<q, let & denote the family {E (s):s GZV} . We also denote
v o

)

the singleton {2%) by 8a and the family U,__ & by Ea. Clearly

E<a o, &

€ 1is a basis of (Za) , and (20() is €& -complete.
(4 (47 a o

, 0

For any O<u,y, and any s EZ“, tez”, w.e write s;t for the element
r €2u+v such that r(§) =s(g) for all E<p and r(g)=t(&-p) for all usé<uty.
For any O0<),pu,y, and any r EZA, sEZu,tGZV, (r;skt and r;(s;t) then
denote the same element in ZM“-H} which can therefore be unambiguously

written r;s;t. For any 0<§, we write _(_)(g) for the element in 2€ such that
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g(g)('n) =0 for all n<¢ and write _}_(g) for the element in 2€ such that

l(g)(n)= 1 for all n<¢. We also write 0 for Q(l) and 1 for }_(l)l

3.7. Lemma. Let g be an infinite regular cardinal and let B<a.

Let G, and C;‘.1 be two partitions of a set X such that

0
i) Gl refines GO’ and

ii) for every A €G,, |{B EGI:BCA}‘=ZB.

Suppose there is an order-isomorphism ¢ from GO into 80: (Go and
6a considered as partially ordered sgtsinversely ordered by set inclusion)
such that (p[GO] is a partition of 29,

Then ¢ can be extended to an order isomorphism ; on Cioual such
that 6[01] is a partition of 2%,

Proof: We first note that if Gy # {X} ¢ induces a one-to-one function

f from GO into the set U 2€ such that, for all A GGO, ©(A) =Ea(fA)'

0<¢<o

We also note that for all A GGO, there exists a one-to-one function ga

from the set {BGGI:BCA} onto the set 2'3. In terms of fand g, for all

A €6, we can define the required 6 on GOUGl as follows. Let (7;]00 =¢.

0
For each AGGO, and for each BCA, (B GG.l), let (p(B):Ea(fA;gA(B)) if

GO # {X}, otherwise let E(B) =Ea(gA(B))' Clearly 6 thus defined is an
order -isomorphism on G.OU Gl, extending ¢ such that 5[0.1] is a partition

of 2%.
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3.8. Lemma. Let @ be an infinite regular cardinal. Let G‘O and
G,1 be two partitions of a set X such that
i) Gl refines GO’ and

ii) for every A eao, 1<|{B GG,I:BCA] | < .

Suppose there is an order-isomorphism ¢ from GO into ea ((3,0
and 60& considered as partially ordered sets inversely ordered by set
inclusion) such that (p[G,O:I is a partition of 2%.

Then ¢ can be extended to an order -isomorphism E on GyU G,
such that 6[61] is a partition of 29,

Proof: Again wenote that if GO# {X} ¢ induces a one-to-one

function f from G‘O into the set UO< 2E such that for all A GG.O,

£<a

¢p(A)=Ea(f ). For all A€G,., let ][BEGI=BCA}|=n(A) and note that

A 0’
there is a one-to-one function 5A from the set {B EGl: BcA} onto x(A).

In terms of f and x(A), 6, for all A €Gy, we can define the required

A
6 on GOUG‘I asg follows. Let EIG():‘P' For each A €G,» and for each

BcA, (B€G)); if Gy #{X]}, let
’ .
Ea(fA:,g), 1f G.A(B) "Oa

o(B) = L (w(a)-1), _
‘P(B) =9 Ea(fA,l ), if GA(B)—]-:

(6, (B)-1)
0), if 1<6,(B)<u(A);

E (f ;1
\ oz(A"

otherwise let

AN
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E(0), if6,(B)=0,

), 3£ 8, (B) =1,

(GA(B)-I)
\Ea(-l— ;0), if 1<6A(B)<n(A)-

Clearly —(5 thus defined is an order-isomorphism on G’OUG'I’ extending ¢

such that -q;[(llj is a partition of 2%,

3.9. Lemma. Letq be a strongly inaccessible cardinal that is not
weakly compact. Let GO and G‘l be two partitions of a set X such that
i) Gl refines GO’ and

ii) for every A €QG 1<|{B€GI:BCA}|Sa.

0’
Suppose there is an order-isomorphism ¢ from G,O into E',a (GO and
60( considered as partially ordered sets inversely ordered by set inclusion)
such that <p[GO] is a partition of 2%,
Then ¢ can be extended to an order-isomorphism (,_o on (I,OUG1 such
that 5[0‘,1] is a partition of 2%,
Proof. We note as before (in the proof of Lemma 3.8) that if
Gy #{X} ¢induces a one-to-one function { from G, into the set
U0<€<a2€' and that for each A GGO, there is a one-to-one function GA
from the set {B eal:Bc:A} onto ¥(A) (= |{B661:BCA} |). We note

in addition that Ea(s), for any s€U 25, as a subspace of (Za)a , is

O<g<a
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homeomorphic to (Za)a and therefore not g-compact. It follows then
E (s), for any s€y 2€, or 2% itself (as a subspace of (Za) ) has
o O<¢g<a . o

an open cover G of cardinality 2¢g admitting no subcover of cardinality
<o. Furthermore because 8,& is a basis, and because ¢ is strongly
inaccessible and |6a| =2%=¢, we can assume G to be a partition of
Ea(s), consisting of exactly ¢ elements from ea. In particular for
every A €G,, there is a subfamily Gy Cea such that ]QA | = and Ga
is a partition of ((A). There is of course a one-to-one function 'gA
from @ onto QA, for each A EGO.

We can now define the required a on GOUGl in terms of f, x(A),GA
QA and g‘A for all A GGO. Let <p|(£o=go. For each A EGO such that
w(A)<a we define —q;(B) for every BcA, (BGGI), asin 3.8. Far each

we let

AGGO such that »(A)=¢q, and for each BcA, (B EGI),

©(B) =gA(6A(B)) . Clearly g_o thus defined is an order-isomorphism

on GOUGI, extending ¢ such that ;’[Glj is a partition of 2%,

3.10. Lemma. Let @ be an infinite regular cardinal and let ) be
any infinite limit ordinal <q. Let [Gg:gs)\] be a continuously refining
family of partitions of a set X such that any subfamily of U£<)L (1€ with
the finite intersection property has non-void intersection.

Suppose there is an order-isomorphism ¢ from U G, into &

(U G, and 80{ considered as partially ordered sets inversely ordered

Q¢
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by set inclusion) such that {¢[G,]:£<\} is a continuously refining:family

3

of partitions of 2&.
Then ¢ can be extended uniquely to an order-isomorphism 6 on

such that {p[G,J:£<\} is a continuously refining family of

e %
partitions of Za.

3

Proof: We define the required 6 on U as follows. Let

e ¢
=¢p. For every A EGK , we note that A =n{feA2€<K] for a
- A

G., and let A) =N{op(f
g0 o(A) =N{p( ¢

of 801 because ¢ is regular. Clearly 6 thus defined is the unique order-iso-

?lUgar G

unique T en ):&£<\}, whichis a member

morphism on U , extending ¢ such that {p[G, ]:£<\]} is a con-

gx Og &

tinuously refining family of partitions of 2.

3.11. Lemma. Let o be an infinite regular cardinal. If {GE: ¢<al
is a family of strictly refining partitions of 2% such that Géc 80& for all

£<a, then U is a basis for the topology of the space (Za)a.

£<aG€

Proof: It suffices to show that given any element s €2% and any

0<¢<aq, there exists AcU such that s €A CEa(s|g).

<ot

For every {<a, since G, is a partition of Za, there is a unique

g

A _€G, that contains s. There is evidently a unique function n from «

[N

into ¢ such that AC € 80[’ n(e)’

strictly increasing and in particular n(¢£)2¢. We can accordingly

for all £<qa. Clearly the function 7 is

let A=A _. This completes the proof of the lemma.
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Now we are ready for the uniqueness theorem.

3.12. Theorem. Let @ be an infinite regular cardinal. Let X
be a Pa- space with no isolated points. If X has an a- subbasis @G of the
form G:U£<OIG'£ such that

i) for each §<o, CI,E is a discrete open cover of X;

ii) either

a) for some B8<gq, |G.£|s2ﬁ for all §<q; or
b) |G,€|<a for all g<a; or still,

c) the cardinal ¢ is strongly inaccessible but not weakly compact

and |G€|5a for all g<o; and

iii) X is G-complete;
then X is homeomorphic to (Za)a
Proof: a) If 2w, then Lemmas 3.2 and 3.3 apply and there is on

X a continuously refining family {8, :£<a} of partitions such that

3

i) the family 8=U is a basis for the topology of X,

£<aﬁ€

ii) X is B-complete, and

iii) for every £ <o and every BE(Bé_, |{C GB€+1:CCB]|=2ﬁ.

Lemmas 3.7 and 3.10 imply the existence of an order-isomorphism
¢ from @ into 80& (B and ea considered as partially ordered sets inversely
ordered by set inclusion) such that {cp[lBEJ: ¢<a} is a strictly refining

family of partitions of 2%, By Lemma 3.11, @[B] is a basis of (Za)a.
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Clearly, (Za)a is ¢[B]-complete and Corollary 3.5 is applicable. The
spaces X and (Za)a are therefore homeomorphic.

If B<w, a)is included in b).

b) Lemma 3.2 applies and there is on X a continuously refining
family {035: é<a} of partitions such that

i) the family 03=U€<Ot03€ is a basis for the topology of X,

ii) X is B-complete, and

iii) for every ¢<a and every Bem l<|{C €B l:Cc:B} | <.

g g+
Lemmas 3.8,3.10,3.11 and Corollary 3.5 combine as before to

produce the result that X is homeomorphic to (Za)a, Lemma 3.8 taking

the part of Lemma 3.7.

c) Lemma 3.2 applies and there is an X a continuously refining
family [!B€: £ <a} of partitions such that

i) the family 8 =U€<a63£ is a basis for the topology of X,

ii) X is B-complete and,

iii) for every £ <q and every BeR l<|{cen : CcB}|< a.

g’

This time we need Lemma 3.9 in place of Lemma 3.8 for the final

£+l

result that X is homeomorphic to (Za)a.

This completes the proof of the theorem.
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3.13. Theorem. Let ¢ be an uncountable regular cardinal and let

X be a compact Hausdorff space. The space X is homeomorphic to
o

i) the set C(X) of all continuous real-valued functions on X has
cardinality o, and
ii) intersection of fewer than ¢ open sets on X is never a singleton.

. . o
The converse is true if g=a>.

Proof. The first part follows from a straightforward application
of Theorem 3.12.

Conversely, if on is homeomorphic to (Za)a, it is clear that ii) is
true and it is true that |C(X)| 2. If ag=a and therefore 2%- o, the
basis Ea of (Za)a has cardinality a. It follows that any other basis of
(Za)a has a subfamily of cardinality o which is also a basis, and, any
basis of Xa, because of homeomorphism, has a sul?family of cardinality
o which is also a basis. One basis of on is the family @ of all inter-
sections of fewer than ¢ open sets of X, and there is a basis 8 of on’
BcG, |03|sc¢. In particular, this @ distinguishes points of Xa. There is
therefore a family of @ open sets of X which distinguishes points of X
(as ag’= o). Because X is compact Hausdorff, it can be embedded into
the cube [0, lja according to the Embedding Lemma (cf.e.g.Chapter 4,

§5 of Kelley [21]). In particular X has a basis of cardinality <o and
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using a result of Comfort and Hager in [7], we have |C(X) lsaw= & =a.

This together with the inequality in the opposite direction gives our result

that IC(X)I =@q. The proof of our theorem is complete.

3.14. Corollary. Given an infinite cardinal ¢, suppose a+= Za,

+
then (U(a))a+ is homeomorphic to (Za )a+, and (Q(a))a+ is homeo-

+
) e

morphic to a closed subset of (2%

Proof. That (Q(a))a+ is a closed subset of (U(oz))a+ can be seen
from the following consideration. Given any uniform ultrafilter p that
is not g¢-complete, there is FCp, |3| <o, NFé¢p. If we let
F*={qeU(a):F €q) (=Clg, FNU(@) for all F€3, then NME . Fes) is
open in (U(a))a+ , containing p and disjoint from (Q(a))a+.

The second conclusion then follows if the first is proved.

For the proof of the first statement, Theorem 3.13 applies, because
U(e) is a compact Hausdorff space, a+ is uncountable and regular, the

set of all real-valued continuous functions on U(q) has cardinality a+,

and no uniform ultrafilter on ¢ can be generated by fewer than a+ elements.

3.15. Corollary. If & is an i3 an infinite cardinal such that ag’= o,
then (A(a))a is homeomorphic to (Za)a.
Proof. We note that if o=, (A(a))a is homeomorphic to (Za)a,

(also to A(e) and to Za, the Cantor discontinuum). If g>w, then
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Theorem 3.13 applies, because A(q) is a compact Hausdorff space, &
is regular, intersections of fewer than ¢ open intervals are never
singletons, and the set C(X) of all real-valued continuous functions on
A(e) has cardinality o as shown below. A(a) has a basis of cardinality
22 and IC(X) |s(2g)w=a by Comfort and Hager's estima'.te in[7]. 1t
is also quite clear that |C(X) |2o¢ and therefore |C(X)| =¢g. This

completes the proof.

3.16. Remark. It can be proved directly that (A(a))a is homeomorphic
to (Za)a for all infinite regular ¢ as follows. (If ¢ is singular, both
(A(a))a and (Za)a are homeomorphic to the discrete space of cardinality
2%))

1) We prove that the topology of (A(a))a contains that of (Za)a. Far
any s GZV, O<y<q, we show that Ea(s) is open in (A(a))a . Clearly

E (s)=ANB where
o
_ o, . (&1 (a-L)
A= nn<C{t€2 tt<s|m 1 ;0 }

if there is a2 smallest £ <y such that sfv~nt] = {1}, otherwise

l("'");p_(a'”)];

>
I

a- .
nn<v{t€2 t<s|m;

and

W
"

Npcg (€25 > s 01671 1 (@65,
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if there is a smallest §<yp such that s[y~g]={0}, otherwise

- o, Cae-n). (a-v)
B ﬂn<v{t€2 :t>s|m; O ;1 }.

Both A and B are open in (A(a))a and therefore Ea(s) is open in (A(a))a.

i) We prove that the topology of (2"‘)0£ contains that of (A(a))a
For all, r, s, te2°‘, r<s<t lexicographically, we prove that there is
some py, 0<y<ea, such that Ea(s |u) (containing s) is contained in the
open interval (r,t); from which the desired conclusion follows. Let §
be the. first ordinal such that r6 # se and 7 the first ordinal such that

sn#t . We can clearly let y=1+max{¢, n}.

This completes the proof of our remark.

Theorem 3.13 also provides a proof of a result mentioned but not
proved in Negrepontis [25]. There, it is pointed out that as a consequence
of results of Jnsson [15], [16] and Morley and Vaught [24], for every
infinite cardinal o such that a=ag’, there exists a unique (up to Boolean
isomorphism) g-homogeneous-universal Boolean algebra of cardinality
o, and that if Sa is the Stone space of this Boolean algebra, then (Sa)a
is homeomorphic to (A(a))a . The latter of the two statements is a corol-

lary to our Theorem 3.13, as we shall see.
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3.17. Corollary. Let ¢ be an infinite cardinal such that a=o{gt’. If

Sa is the Stone space of the g-homogeneous-universal Boolean algebra
of cardinality ¢, then (Sa)a‘ is homeomorphic to (Za)a.

Proof: We note that if a=w, (Sa)a is homeomorphic to the Cantor
discontinuum and is therefore homeomorph'ic to (Za)a. If a>w, Theo-
rem 3.13 applies, according to Theorem 1.7 of Negrepontis [25] and

Comfort and Hager's result in [7].

3.18. Theorem. For any strongly measurable cardinal ¢, (Za)a is
a continuous image of Q(a).

Proof. We construct a continuous function from §(a) onto (Za)a.

First, let Ra denote the subset

{s E(Za)a: sfa~£]={0} or {1} for some &<a}.

|R | =Zg’=a (cf.1.16 and Proposition 1.32 ii)). We can clearly define

o
a continuous function f from ¢ onto Ra such that |f-1(s)| =q for every
s eRa. It is well known that f extends to a continuous function from

ﬁa into some compact Hausdorff space containing Ra (cf.e.g. §6.4 of
Gillman and Jerison [11]). It is clearly also true that f extends to a
continuous function f from Q(a)Ua into (Za)a, (Za)a being @-compact

(Proposition 1.32 ii)). The continuous function f can be explicitly defined

as follows.
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For every p€Q(a)Uq, that is, for every o-complete ultrafilter p

on ¢, let

f#p = {Ec(Za)a:E is closed, f-I[E] €pl ,
and f#p being an @-complete prime filter of closed subsets of (Za)a,
we can let f-(p) be the limit of f#p.

It remains only to prove that £ [Q(a)] = (2a)a . Given s¢€ (Za)a~ Ra,
the family {f_l[Ea(s |g)]: 0<¢<e} has void intersection and is contained
in some non-principal @¢-complete ultrafilter p on ¢. Given s eRa’
|ﬂf—1[Ea(s |£)]):0<g<al}| =« and the family {f-l[Ea(s |£):0 <& <al} is again
contained in some non-principal a-complete ultrafilter p'on ¢. In either

case, by definition £(p)=s. The proof is therefore complete.

We provide an alternate proof using the idea of Theorem 3.12. This
alternate proof does not make use of the fact that (Za)a is @-compact
when ¢ is strongly measurable and in fact can be taken to be a proof of

that fact.

Alternate proof. First we shall establish that on any strongly

measurable cardinal ¢, there exists a family {A€ iC:o(: ¢<a,i=0, 1}

such that
i) lAg,il =q for all ¢<e, i=0,1,
ii) AQ, oﬂA€, 1 = @, IOtN (Ag.OUAg. 1)|<o¢, for all {<a, and

|-

3

iii) for any s €2%, and any O0<p<a, |N,__A
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The set S=U {26: 0<¢<al} is of cardinality 2%=q (cf.1.16 and
Proposition 1.32 ii)) and can therefore be identified with ¢. For all

E<o, i=0,1, we can let A€ i={s€S:s€is defined and =i}. It is

clear that .A£ i for all g<q, i=0,1, thus defined satisfy i)-iii)

above.

For all ¢£<a, i=0, 1, we write Az’i={QGQ(oz):A .€ql(= Cﬁa £ i ﬂﬂ(a))

£,0’ Z l}i'E <a} is a family of partitions of §(¢) such that
#¢, for all 0<p<@ andall s €2% and hence, for all sezo‘,

Clearly { [A

Nean®e, X

n€<aA‘£*’ Sg #¢. Now we can define a function f from &) onto (Za)a

as follows. For every s G(Za)a, we let f(t)=s for all t€ﬂ€<a Aéj, Se.

Sk

5

&1

E<a, i=0,1. This completes the alternate proof.

That f is continuous is clear because A is open in Q&) for every

3.19. Theorem. Let ¢ be an infinite regular cardinal.

. o B &

i) For all 8 such that 0<B<¢q, the spaces (2 )a and ((27) )oz are
homeomorphic.

ii) The space (Za)a is homeomorphic to ('ya)a for some y>q, if
and only if @ is such that a #2%,

iii) The space (Za)a is homeomorphic to (aa)a, if and only if «

is not weakly compact.
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Proof. i) This is clear from part a) of Theorem 3.12.

ii) If a=2g, then ea has cardinality ¢ and (Za)a must be y-compact
for all y>a, while (»ya)a is certainly not y-compact. Therefore (ZO‘)a
cannot be homeomorphic to ('ya)a for any y>a. Conversely, there
exists a <@ such that a<2ﬁ and by part a) of Theorem 3.12, (Za)a is
homeomorphic to ((Zﬁ)a)a.

iii) If @ is not strongly inaccessible, then (Za)a is homeomorphic
to (aa)a by part a) of Theorem 3.12. If ¢ is strongly inaccessible but
not weakly compact, the same is true by part c) of Theorem 3.12. Con-
versely, if o is weakly compact (Za)a is g-compact and cannot be
homeomorphic to (aa)a which is clearly not ¢-compact.

This completes the proof of this theorem.



REFERENCES

Cohen, L.W. and Goffman, C., The topology of ordered abelian
groups, Trans.Amer.Math.Soc. 67 (1949), 310-319.

Cohen, L..W. and Goffman, C., On the metrization of uniform

space , Proc.Amer.Math.Soc. 1 (1950), 750-753.

Comfort, W.W. and Negrepontis,S., Homeomorphs of three
subspaces of BN~N, Math.Zeit. 107 (1968), 53-58.

Comfort, W.W. and Negrepontis,S., Some topological pro-
perties associated with measurable cardinals, Fund.Math. 69

(1970), 191-205.

Comfort, W.W. and Negrepontis,S., On families of large
oscillation, Fund.Math., to appear.

Comfort, W.W. and Negrepontis, S., book, to appear.

Comfort, W .W. and Hager, A. W, Estimates for the number of
real-valued continuous functions, Trans.Amer.Math.Soc. 150

(1970), 619-631.

Erd8s, P. and Tarski, A., On some problems involving inacces-
sible cardinals, in Essays on the Foundations of Mathematics,

Magnes Press, Jerusalem, 1966, .pp.50-82.

Fraissé, R., Sur l'extension aux relations de quelques propriétés
des ordres, Ann.Sci.Ecole Norm.Sup., 3ieme série, 71 (1954),

363-388.

52



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

53

Gillman, L. and Henriksen, M., Concerning rings of continuous

functions, Trans.Amer.Math.Soc. 77 (1954), 340-362.

Gillman, L. and Jerison, M., Rings of Continuous Functions,

Van Nostrand, Princeton, 1960.

Hanf, W., On a problem of Erdds and Tarski, Fund.Math. 53
(1964), 325-334.

Hausdorff, F., Grundzlige der Mengenlehre, Leipzig, 1914.

Howie, J.M., Embedding theorems with amalgamation for semi-

groups, Proc.London Math.Soc., Ser.3, 12 (1962), 511-534.

Jénsson, B., Universal relational systems, Math.Scand. 4 (1956),

193-208.

Jénsson, B., Homogeneous universal relational systems, Math.

Scand. 8 (1960), 137-142.

Jdnsson, B., Algebraic extensions of relational systems, Math.

Scand. 11 (1962), 179-205.

Jénsson, B., Extensions of relational structures, in Addison,

et al, The Theory of Models, Proceedings of the 1963 International
Symposium at Berkeley, North-Holland Publishing Co., Amsterdam,
1965, pp.146-157.

Jdnsson, B., The amalgamation property in varieties of modular

lattices, Amer.Math.Soc.Notices, 18 (1971), 400.



20.

21.

22.

23.

24,

25,

26.

27.

28.

54

Keisler,H.J. and Tarski, A., From accessible to inaccessible

cardinals, Fund.Math. 53 (1964), 225-308; 57 (1965), 119.

Kelley, J. L., General Topology, Van Nostrand, Princeton,
1955,

Kimura, N., On semigroups, Doctoral dissertation, Tulane

University, 1957.

Monk, D. and Scott, D., Additions to some results of Erdds and
Tarski, Fund.Math.53 (1964), 335-343.

Morley, M. and Vaught, R., Homogeneous universal models,

Math.Scand. 11 (1962), 37-57.

Negrepontis,S., The Stone space of the saturated Boolean

algebras, Trans.Amer.Math.Soc. 141 (1969), 515-527.

Parovifenko,I.I., Certain special classes of topological spaces
and §s-operations, Dokl.Akad.Nauk SSSR (N.S.) 115 (1957),
866-868. (Russian)

Parovi¥enko, I.I., On topological spaces whose weight exceeds
their power, Dokl.Akad.Nauk SSSR (N.S.) 115 (1957), 1074-1976.

(Russian)

Parovi¥enko,I.I., On the theory of sets not satisfying the axiom
of separability, Proc.KishinevState :Univ..29 (1957), 15-24.

(Russian)

Eamad



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

55

Parovi¥enko, I.I., On the problem of branching, Proc.Kishinev

State Univ. 39 (1959), 189-194. (Russian)

Parovienko, I.I,, The branching hypothesis and the correlation
between local weight and power to topological spaces, Dokl.Akad.
Nauk SSSR 174, no.1 (1967),30-32. (Russian) (= Soviet Math.
Dokl.8,n0.3 (1967), 589-591.)

Pierce, K.R., Amalgamations of lattice ordered groups, Amer.

Math.Soc.Notices, 18 (1971), 946.

Rudin, W., Fourier Analysis on Groups, Interscience Publishers,

New York, 1962.

Sierpiniski, W., Sur un espace métrique séparable universel, Fund.

Math.33 (1945), 115-122,

Sierpidski, W., Sur les espaces métriques universels, Fund.

Math.33 (1945), 123-136.

Sierpidski, W., Sur une propriété des ensembles ordonnés, Fund.

Math.36 (1949), 56-67.

Sierpinski, W., Cardinal and Ordinal Numbers, PWN- Polish
Scientific Publishers, Warszawa, 1965.

Sikorski, R., Remarks on some topological spaces of high power,

Fund.Math. 37 (1950), 125-136.

Ulam, S., Zur Masstheorie in der allgemeinen Mengenlehre,

Fund.Math. 16 (1930), 140-150.



39.

40,

56

Urysohn, P., Sur un espace métrique universel, C.R.Paris 180

(1925), 803-806.

Urysohn, P., Sur un espace métrique universel, Bull.Sc.Math.

2ieme série, 51 (1927), 43-64.



