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The Amalgamation Property for G-metric 8paces 

and Homeomorphs of the 8pace (2a) 
a 

by Henry H. Hung 

Mathematics, Ph.D. 

8ummary 

Two main results (1 and II below) are proved in this the sis and sorne 

applications are considered. 

1. The amalgamation property fails for aU classes of G-metric spaces 

unIes s the ordered group G is Z or m.. In particular, the clas s of <m-metric 

spaces does not have the amalgamation property. 

a " 
II. The space (2 ) ,for all regular cardinals a, is homeomorphic to a 

a " 

P a- space with no isolated points that has an a- subbasis û = U;<aû~ such that 

i) for each ç <a, û~ is a dis cr ete open cover; 

ii) either 

(a) for sorne {3 <a, 1 û~ 1 ~ 2{3 for aU ~ <a; or 

(b) lû~ I<a for all «a; or still, 

(c) the cardinal ais stronglyinaccessible but not weakly compact and 

1 û~ 1 ~ a for aU ~ < a; and 

Hi) every subfamily of û with the Hnite inter section property has non-

void intersection. 

Applications include the identification (up to homeomorphism) of (A(a)) , 
a 

(8) and (2a) , for all tnfinite a, with Ci = of&.. and of (U(a)) + (where U(a) 
a a a a 

is the space of uniform ~ltrafi1ter s on a), for aU tnfinite a, with a + = 2a . Cha-

racterizations of weakly compact cardinals and of cardinals for which a = of& 

are also given. 
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INTRODUCTION 

This thesis consists of two parts. The purpose of the first part 

(Chapter II) is to prove that the amalgamation property fails for the 

class of aU G-metric spaces, for every (totally) ordered (abelian) 

group G which is not equal to the additive group of the integers or that 

of the real numbers. 

The amalgamation property, in its abstract form, was first 

formulated by Frais sé [9 J in connection with embedding problems. 

It has been studied by Jônsson [15J, [16J, [17J and [18J, and Morley 

and Vaught [24J in connection with the general theory of homogeneous-

universal structures in J6nsson classes. 

Not too many examples of classes of relational systems are known 

for which the amalgamation property fails. Among them the following 

are included: (a) the clas s of semi- groups and hence of rings, (Kimura 

[22 J, J6nsson [15 J, [16 J, Howie [14 J); (b) the clas s of modu1ar latt'ices, 

(Jônsson [19]); (c) the class of .t-groups, (Pierce [31J). To these, 

because of our theorem, we can now add a who le family of such examples, 

among which is the class of an metric spaces on which the metric takes 

on only rational values. 

Classes of metric spaces were studied by Urysohn [39], [.40J and 

Sierpinski [33 J, [34 J from the point of view of the existence of universal 
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spaces; thus, Urysohn proved the existence of a universal separable, 

complete and w- homogeneous metric space, unique up to isometries; 

while Sierpinski proved that for each cardinal Ol such that 2w
:!:: Ol = 2S 

(= E(2 f3
: f3<0l}), there exists a universalmetric space of cardinality Ol. 

It was implicitly proved by Sierpinski in [34J, as pointed out by Morley 

and Vaught [24J, that the class of all metric spac~s has the amalgama-

tion property, (and in fact forms a Jonsson class). 

The notion of a metric has been generalized by replacing the additive 

group of real' numbers by an arbitrary (totally) ordered (abelian) group G, 

(cf. e.g. Hausdorff [13J, Cohen andGof~man [lJ, [2J and Sikorski [37J), 

and it is easy to see that the result of Sierpinski, and Morley-Vaught on 

the amalgamation property extends to G-metric spaces whenever G is 

order complete. The main result in Chapter II is the converse statement. 

The second part (Chapter III) concerns the space (20l) , fol' infinite 
Ol 

regular cardinals Ol. For any topological space X and any infinite cardinal 

Ol, we write X for the set X with the smallest P -topology (i. e. a topo-
Ol Ol 

logy closed under intersections of fewer than Ol elements) containing the 

Ol topology of X. Thus by (2) we mean the carte sian product of Ol copies 
Ol 

of the discrete space (0, l) with the smallest P -topology containing the 
Ol 

usual product topology. We have sorne topological characterizations of 

th (2 0l) espace 
Ol 

as follows. 
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For every infinit~ regular cardinal a, the space (2
œ) is a P - space 

œ œ 

(i. e. a T 3~ -space with sorne P œ-topology) with no isolated points which 

has an œ- subbasis û of the form û = U û such that 
~<œ ~ 

i) for each ~ <œ, G
ç 

i6 a discrete open cover of the spacei 

H) either 

a) for some f3<a, lû~I:!l::2f3 for aU e<œ, or 

b) lû~l<œ for aU ~<~, or still, 

c) the cardinal œ is strongly inaccessible but not weakly compact 

and lû~l:!l::a for aH ç<"aiand 

Hi) every subfamily of û with the finite inter section property has non-

void intersection. 

This result is a generalization of a theorem of Comfort and Negrepontis 

in [3] which treats the case when a i6 the fir st uncountable cardinal. 

Applications of thi s result are in two categories. First, we deduce 

from the main resuLt the foUowing statement (Theorem 3.13), which is 

also a generalization of a theorem of Comfort and Negrepontis in [3]. 

For a compact Hausdorff space X and an uncountable regular cardinal 

a, X is homeomorphic to the space (2œ) , if 
œ a 
i) the cardinal number of continuous real-valued functions on X is a, 

and H) no intersection of a family of fewer than œ open sets of X is a 

singleton. The conver se is true if a is such that a = r.J&. 
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Denoting by U(a) the space of aH uniform ultrafilter s on a with 

v 
the topology it inherits from that of the Stone-Cech compactification 

a+ 
of a, we have the horneomorphism of the spaces (U(a)) + and (2 ) +' 

a a 

for aH infinite cardinals a such that a + = 201., Denoting by A(a) the 

space 2a with the lexicographie order topology, we have the homeo-

morphism of the spaces (A(a)) and (201.) , for aU infinite cardinals a 
a 01. 

such that 01. = cP. .A nd, for aU infinite cardinals a such that a = a(t, 

let us denote by S the Stone space of the a-homogeneous-universal 
01. . 

Boolean algebra of cardinality 01., whose existence is a consequence 

of results of Jansson [15J, [16J, and Morley and Vaught [24J. 

Negrepontis mentioned in [25J without proof that the spaces (A(a)) 
01. 

and (S) are homeomorphic, That resuit aiso follows from our 
aa 

Theorem 3.13. 

Secondly we obtain a characterization of the weakly compact 

cardinals and a characterization of the cardinals a for which a = #. 
01. 

Thus, the space (2a) 
01. 

is homeomorphic to (a) if and only if a is not 
Cl! 

weakly compact. The space (Za) 
a 

is homeomorphic to (.,,.Cl!) for some 
01. 

y>ex if and only if 01. is such that ex {:. #. The clas s of weakly compact 

cardinals has many characterizations which can be found in the work 

of Parovitenko [28J, [29J, [30J, Erdos and Tarski [8J, Keisler and 

Tarski [20J, Hanf [12J and Monk and Scott [23J, and are aU collected 
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together in a forthcoming book by Comfort and Negrepontis [6J. A 

number of conditions equivalent to the condition ~= a can be found 

in a forthcoming work of Comfort and Negrepontis [5 J. 

There is sorne connection between the two parts of the thesis in 

that the space (Za!) is a G -metric space, where G is the least 
a a! a! 

ordered algebraic field containing the cardinal a, and has been studied 

from this point of view by Sikorski ([3 7J). 

Chapter l contains aU relevant preliminaries, with no new material. 

The main results in Chapters II and III are to the best of our knowledge 

original. 



...... 
, 
! . 

""" 

CHAPTER I: Preliminaries 

In this chapter, we mention those notions and known results required 

for the exposition of our results. We also Hst the notations and conven-

tions that we have adopted (and which may in sorne instances differ from 

those used by other authors). 

This chapter is divided into parts A and B, relevant to Chapter II 

and Chapter III, respectively. 

A. G-metric Spaces 

1. 1. Definition. A (totally) ordered (abe Han) group is a triple 

(G, +, <) such that (G, +) ls an (additive) abeHan group, (G, <) is a 

(totally) ordered set and such that if a < b, then a+c < b+c, for all 

a, b, cEG. 

We have the following conventions in this connection: 

i) by ~, we mean < or = 

H) sometimes, we write G for (G, +, <) for convenience, even. 

though strict:ly speaking G is only a set, and 

Hi) by G+ we mean {xEG:x~O}. 

1 .2. Definitions. Two positive elements x, y of an ordered group 

are relatively archimedean if there are positive integers m, n such that 

mx~y and ny ~x. 

6 
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If every two positive elements of an ordered group are relatively 

archimedean, then the ordered group is archimedean. 

1.3. Notations. Z, <Cl and BR denote the ordered group of integers, 

rational and real numbers respectively. 

1.4. Proposition. Every archimedean ordered group is isomorphic 

to an ordered subgr oup of BR. 

(For a proof, see e. g. Theorem 8. 12 of Rudin [32].) 

1.5. Definition. A stibgroup F of an ordered group G is convex, 

ifwhenever xEG, yEF and O~x~y, itfollows xEF. 

1.6. Proposition.Let F be a convex subgroup of an ordered group 

G. The quotient group GIF can be made into an ordered group according 

to the following definition. The e lement of GIF that contains a E G, F(a), 

+ 
is ~ 0 if there exists xE G such that a == x(mod F). 

1.7. Definition. A (totally) ordered set (X, <) is order complete 

if and on1y if each non-void subset of X which has an upper bound has a 

1east upper bound (i. e. a supremum). 

1.8. Proposition. In an archimedean ordered group that is not order 

complete, 0 cannot be iso1ated. In fact, if x> 0 then there is x' > 0 

such that x ~ 2x' . 
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Proof. If 0 is isolated,there.is a smallest element to be called 1 and 

the group is isomorphic to Z which however ls order complete. There-

fore 0 cannot be isolated. If x>O, there is xl such that x>x
1 

>0 and 

one can let x' = min(x1 ' x
-xl) . 

1.9. Definitions. Given an oredered group G, if there exlst non-

empty subsets X, Y of the set G, such that 

i) XU y = G, 

U) x<y for all xEX and yEY, 

iU) X has no last and Y no first element; 

then there ls said to be a Dedekind cut X 1 y in G. 

A Dedekind cut X IY is positive if 0 E=X. 

1.10. Proposition. Every ordered group that is not order complete 

has a positive Dedekind cut. 

1. Il. Proposition. If X IY is a positive Dedekind cut in an archi-

medean ordered group, then for aU z >0, there exist X E X and y E Y 

such that y-x ~ z. 

Proof. Let n be the smallest integer such that nz E Y. One can let 

,ë"=(n-1)z and y=nz. 

1.12. Definitions. Given an ordered group G, a G-metric on a set 

2 
X is a mapping p: X ~ G such that, for all x, y, z E X, 

i) p(x, y) = p(y, x), 



X. 

H) p(x, y) + p(y, z) ~ p(x, z), 

Hi) p(x, y) ~ 0, p(x, x) = 0, and 

iv) if p(x, y) = 0, then x = y . 

9 

A mapping p satisfying il, H) and Hi) is called aG-pseudo metric on 

A G-(pseudo) metric space is a pair (X, pl, where p is a G-(pseudo) metric 

on X. Sometimes we write X for (X, p). 

Let (X, p) and (Y, 0) be G- (pseudo) metric spaces for sorne ordered 

group G. We say Y is a subspace of X if Yc:X and if 0=ply2, the 

restriction of p to y2. If there is a mapping f from Y into X such that 

for aU x, y E Y, o(x, y) = p(f(x), f(y)), then we say f i6 a G-isometry. 

An lit-metric space is a metric space, an lit-isometry an isometry. 

G-metric spaces have been studied by Hausdorff [13 J, Cmen and 

Goffman [lJ, [2J, and Sikorski [37], among others. 

1.13. Proposition. Let (X, p) be a G-pseudometric space for sorne 

ordered group G, let x=(y:p(y,x)=O} for aU xEX, let X be (x:xE X}, 

and let 'P be a G-metric for X such that for members A and B cr. X , 

p(A, B) = p(a, b) for sorne a E A and b E B. Then the quotient map 'TT of X 

onto X is a G-isometry. 

1.14. Definitions. Given an arbitrary set l, let t be a function from l 

into w the set of positive integers. A system, (A, Ri) i E l' formed by a 



v· 

10 

non-empty set A and t(i)-ary relations R. over A is a relational system, 
1 

having similarity type t, index set I. Relational systems are similar if 

the y have the same similarity type. 

Let a = (A, R.). Eland B = (B, S.). Elbe similar relational systems 
l l l 1 

of similarity type t. We say that B is a subsystem of a, denoted by Bea, 

if BeA and S. = R. n Bt(i) for aU i E I. If there is a one-to-one mapping 
1 1 

f:B~A, and we let ft(i): Bt(i)~At(i) be given by ft(i)(b O' ... , bt(i)_l) = 

(f(bO), "', f(bt(i) -1)) for aU i E Ii we say that f is an embedding of B into 

a, denoted by f:B~a, provided (f[BJ,ft(i)[SiJ\EI is a subsystem of o.. 

A c1as s JK of similar relational systems is said to have the amalgamation 

property, if given a, B, CE JK and given embeddings f, g of Cinto a, B 

respectively, there are ~ E JK and embeddings f', g' of a, B re spectively 

into ~ such that fi of = g' 0 g. 

(Cf. Jansson [15J, [16J, [18J and Morley and Vaught [24J.) 

1.15. Definitions and Conventions. Given an ordered group G and a 

non-empty set X, a G-metric p on X, like any function with range in G+, 

-1 + 
can be written as U{p (g)x{g):g EG ), and therefore has the foUowing 

equivalent definition. + A G-metric onX is UeR x{g):gEG ), where, for 
g 

. + 
each g E G ,R is a binary relation on X, such that 

g 

i) UeR :gEG+} =x2
, and for aU x,y,zEX and f,g,hEG+, 

g 

ii) if Rry, then Rfyx, 



11 

Hi) if Rfxy, Rgyz and Rhxz, then f, g, h as elements of Gare 

such that f+g ~ h, and 

iv) ROxy if and only if x = y. 

Observe that, from Hi) and iv), it follows that Rf n R g = cp if f f. g. 

It is then clear that a G-metric on X can be identified with a family 

{R : g E G +} of binary relations such that i), H), Hi) and iv) are truej 
g 

and a G-metric space X can be identified with a relational system 

(X,Rg>gEG+' having similaritytype t:G+-,)w, with t(g)=Z for aH 

g E G+, such that i), ii), iii) and iv) are true for the family of binary 

relations R indexed by G+. 
g 

Let (X, p) and (Y, 0') be G-metric spaces for sorne ordered group 

-1 -1 Z 
G. (Y, 0') is a subspace of (X, p) if and only if yeX and a (g) = p (g)n Y 

for every g E G+. A mapping f from Y into X is a G-isometry of Y into 

-1 -1 
X if and only if f[Y] eX and (f(x),f(y)) E p (g) for aH (x, y) E 0' (g), 

i..e., if we let fZ :yZ -,) X
Z 

be given by fZ (x, y) = (f(x), f(y)); 

(f[Y],U{fZ[O'-I(g)]x{g}:gEG+}), is a subspace of X. Therefore, a sub-

space Y of X is a subsystem of the relational system X, G-isometries 

are embeddings of relational systems, and the amalgamation property 

for the c1ass of aH G-metric spaces for a given G has the following 

equivalent formulation, which is the one to be used in Chapter II. 

For a given ordered group G, the c1ass KG of aH G-metric spaces 

has the amalgamation property if given A, B, CE KG and given G-isometries 
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f, g of Cinto A, B respectively there are DE BK.
G 

and G-isometries 

fi, g' of A, B respectively into D such that fi 0 f = g' 0 g. 

(In the above, a G-metric space is identified with a relational sys­

tem with G + as the index set. A relational system with an index set 

that is a dense subset of G+ (with respect to the .order of G) can also 

be used, which however neces sitates a more complicated set ofaxioms 

that is to be satisfied by the relational systems identified with G-metric 

spaces, when G is not order complete. Such a relational system is in 

fact given in Morley and Vaught [24J for G = m, and the positive rationals 

+ as the dense subset of m .) 

B. Spaces of Ultrafilters 

1.16. Definitions and Notations. The axiom of choice is assumed. 

Each ordinal is the set of aU smaUer ordinals. Thus, the condition 

«~ is equivalent to the condition (E C. Nevertheless, we shaH make 

the notational distinction between the first ordinal 0 and the empty set (/J. 

Ordinal numbers are denoted by (, fi, C, /J, Il and À. Ordinal s.ums and 

products are assumed to be known and are denoted by (+fI, ('fI respectively. 

For any C ~ (, we write (-~ for the unique ordinal fi such that ,= C+fI· 

A cardinal number is an initial ordinal. Cardinals are denoted by . 

0:, (3, 'Y and x. The fir st infinite cardinal is w. The least cardinal greater 

than Ct is denoted by Ct +. A cardinal Ct is a Emit cardinal if Ct # (3+ for . 
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any {3, and, a is regular if it is not equal to the surn of fewer than œ 

cardinals each smaller than œ. We denote bya{3 the set of aU rnappings 

frorn {3 to a and, sornetirnes, the cardinal nurnber of that set. A cardinal 

a is strongly inaccessible if it is regular and if 2{3 <a whenever {3<a. 

We denote by aê the cardinal ~(a'Y:'Y<{3). If ais strongly inaccessible 

then a.(J1,= 2S,= œ; and, ~= a if and only if 2s...= a and œ is regular. The 

cardinality of a set A is denoted by lA 1. 

By the Generalized Continuum Hypothesis, we rnean the staternent that 

a + = 2a for all infinite cardinals a. 

(With sorne variations, material in this section can be found in 

Sierpinski [36].) 

1.17. Definitions. A filter 3i on a non- ernpty set X is a farnily of 

subsets of X which has the following properties: 

i) the ernpty set is not in 3i, 

ii) every subset of X which conta.ins a rnernber of 3i belongs to :J, 

and 

iii) every finite intersection of mernbers of ~ belongs to 3i. 

A filter on a non-ernpty set not properly contained in any other filter 

on the sarne set is an ultrafilter. Ultrafilter sare usually denoted by p, q. 

A principal ultrafilter p on. a non- ernpty set is an ultrafilter containing 

a singleton, or equivalently, is one such that np f:. rp. 
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A filter 31 is œ-complete if nQ,E3I whenever Q,C::J and 1Q,I<a. 

A Hlter 31 on X is uniform if IF 1 = lX 1 for aU F E3I. 

1.18. Definitions. An infinite cardinal œ is measurable if there is 

an a-complete, non-principal ultrafilter on œ. 

An infinite cardinal a is strongly measurable if ais regular and 

every a- complete filter on a can be extended to an a- complete ultrafilter 

on a. 

Obviously a strongly measurable cardinal is measurable. 

(The class of aIl non-measurable cardinàls is denoted Cl and tha:t of aIl 

:>!<; 

strongly non-measurabl~ cardinals denoted Cl in Keisler and Tarski [20J. 

* See also definitions of Cl and Cl in Comfort and Negrepontis [4J.) 

1.19. Definitions. A topological space X is a T l - space if for every 

x E X, the singleton {xJ is closed. 

A T 1 - space X is a T 3.1 - space (or a completely regular space), if 
2 

for every x E X and every open set A containing x, there exists a continuous 

real-valued function f on X such that f(x) = 0 and f(y) = l for aIl y EX", A . 

1.20. Definition. Given a topological space X, a family a of subsets 

of X is discrete if every point of X has a neighborhood that intersects at 

most one member of a. 

(Cf. e. g. KeIley [21] in connection with metrization, p. 127.) 
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1.21. Notations. Given a function f on a set X into a set Y, a 

-1 
subset A of X and an element y E Y, f[AJ denotes [f(x): x EA}, f (y) 

denotes [x EX, f(x) = y}, fiA denotes the restriction of f to A and c1
X

A 

denotes the c10sure of A in X. Sometimes we write f for f(x). 
x 

1.22. Definition. Given an infinite cardinal a, a T 3.1 - space X is a 
a 

P - space if any inter section of fewer than a open sets of X is open; a 
a 

topo1ogy is a P -space topology if it is c10sed under intersection of less 
a 

th an a members. 

(Thus P w - spaces are ordinary T 3~ - spaces. P- spaces as defined by 

GiUman and Henriksen in [lOJ are P +-spaces. P -spaces are called 
w a 

a-additive spaces in Sikorski [37 J, T~~ - spaces, if a is the ",,-th infinite 

cardinal, in Parovlcenko [26 J and a-complete in Monk and Scott [23 J.) 

1.23. Proposition. For aU uncountab1e cardina1s a, P - spaces are 
a 

totally disconnected. 

(This is given in (iv) of Sikor ski [37 J . ) 

1.24. Definition. On a topo1ogical space X, for an infinite cardinal a, 

a family Ci of open sets is an a- subbasis for its topo1ogy if the family ci aU 

intersections of fewer than a members of Ci is a basis for the topo1ogy of X. 

A T
3

.! - space that has an a- subbasis for its topo1ogy is a P - space. 
a a 
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1.25. Definition. Given a topological space X and an infinite 

cardinal a, X denotes the set X with that topology for which the topology 
a 

of the space X is an a- subbasis. 

A s sets, X and X are identical. 
a! 

1.26. Definition. Given an infinite cardinal a!, A(a!) denotes the 

set 2a!, topologized with the lexicographie order topology. 

(Cf. Sierpinski [35] for the definition of A(a!). A(w+) and (A(w+)) w+ 

are denoted by A and A respectively in Comfort and Negrepontis [3].) 
'TT 

1.27. Definition. Given an infinite cardinal a!, a Hausdorff space X 

is a-compact if each of its open covers admits a subcover by fewer than 

a elements .. 

(This definition can be found in Sikorski [37J, Parovicenko [27J and 

Monk and Scott [23 J . ) 

1.28. Definition. An infinite cardinal a! is weakly compact if (2a!) 
a! 

is a!-compact. 

(This is equivalent to the usua1 definition in terms of the Boo1ean 

a1gebra representation problem, cf. Parovi~enko [28], [29 J, [30 J, Erdës 

and Tarski [8J, Keisler and Tarski [20J, Hanf [12J, Monk and Scott [23J 

and Comfort and Negrepontis [6J.) 

1.29. Proposition. If a! is weak1y compact, then a! is strong1y 

inacces sib1e. 

(Cf. Monk and Scott [23 J.) 
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1.30 . Definition and SimpleFacts. Given a T 3.!.-space X, (JX denotes 
z .., 

the Stone-Cech compactification of X, characterized by the foHowing 

properties: 

a) px is a compact Hausdorff space 

b) X is (homeomorphic with) a dense subspace of px, and 

:>:c 

c) X is C - embedded in (rX, i. e. every bounded continuous 

real-valued function on X extends continuously to fJX. 
v 

(The Stone-Cech compactification is defined and discussed in Chapter 6 

of Gillman and Jerison [llJ.) 

v 
For any non-empty discrete space D, the Stone-Cech compactification 

f3D of D can be regarded as the set of aU ultrafilters on the set D, su ch 

that every element of D is identHied with the principal ultrafilter consisting 

of aH subsets of D containing itself, with the smaUest topology generated 

by sets of the form (p EfJD:A E p J for sorne A cD. 

1.31. Notations and SimpleFacts. We sometimes use a to denote 

the discrete space of cardinality a. 

Given a cardinal a, U(a) denotes the space of aH uniform ultrafilters 

on a and O(a) denotes the space of aU a-complete non-principal ultrafilter s 

on a, (both considered as subspaces of (3ct.). Clearly O(a) c U(a) for aU a. 

If w~a, then U(a)~ r/J. Indeed, thefamily of complements of aU subsets 

of a of cardinality less than a forms a Hlter which produces an element of 
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U(a). However, it is not known whether any uncountab1e cardinal exists 

such that O(a) -f (/J, i. e. whether there exists any measurab1e cardina1s 

besides w. But O(W) = U(w) = pw f'J W. 

(The spaces U(a) and O(a) are used in Comfort and Negrepontis [4J 

for the characterization of strong1y measurab1e cardina1s.) 

1.32. Proposition. For aIl infinite cardina1s a, 

i) the space O(a) is a P - space, 
Ol. 

H) if Ol. is (strong10 measurab1e, then a is weak1y compact and in 

particu1ar strong1y inacces sib1e, 

Hi) if a is strong1y measurab1e, then O(a) is a-compact. 

(Items i) and Hi) are derived from or contained in Lemmas 2.5 and 2.6 

respective1y of Comfort and Negrepontis [4J. Item H) foIlows essentially 

from the results of Monk and Scott [23 J. That ~trong1'0 measurab1e 

cardinals are strong1y inaccessible is essentially the c1assica1 result of 

Ulam [38 J and Ta r ski, ( cf. e . g. [ 8 J ) . ) 



CHA PTER II: The Amalgamation Property for G-metric Spaces 

.A s remarked in the Introduction, the class of all metric spaces (with 

isometries) satisfies the amalgamation property as a consequence of re­

sults by Sierpit1.ski as pointed out by Morley and Vaught. The proof makes 

use of order completeness of the ordered group of real numbers. First 

of aU, we notice that the same proof carries over to the classes ci. aU 

G-meh~ic spaces (with G-isometries), where G is not order complete. 

(However, the only such groups are 1IR. and Z). 

This part of the thesis is devoted to establishing the fact that these 

are the only instances of classes of G-metric spaces for which the amal­

gamation holds. 

We remark on our proof. For any group G that is not order complete, 

we first define a subset C of G, making use of a Dedekind cut of G with 

a special property which is defined in 2.3 and whose existence is proved 

in Lemmas 2.4-2.6; and define on C a G-metric which is a modification 

of Us natura1 G-metric structure as a subset of G. We then define two 

spaces A and B by adjoining to C in each case one single point, in such 

a way that the triangle inequality a1ways fails in the triangle formed by 

these two points and a certain third point, when a G-metric is attempted 

on the s et A U B . 

We begin with some definitions and remarks on notations. 

19 



20 

2.1. Definition. A positive Dedekind cut X \ y will be called archi­

medean if there exist xl' x
2 

EX such that xl +x
2 

E Y. 

2.2. Notations. We shaH write, for aU subsets A of an ordered 

group G, [A] for [xEG:a<x for sorne aEA) and 2A far [2a:aEA). 

2.3. Definition. .A positive Dedekind cut X IY will be called quotient 

if G,... [2Y] \ [2Y] is aiso a Dedekind cut. 

Remark. To show that X \Y 1s quotient it suffic'es to show that G ",,[2Y] 

has no last element. 

The next three lemmas establish the existence of quotient positive 

Dedekind cuts in aIl ordered groups that are not order complete, and lead 

up to the main theorem (Theorem 2.7) . 

2.4. Lemma. Every archimedean ordered group that is not order 

complete has a quotient positive Dedekind cut. 

Proof. Let G be an archimedean ordered group that is not order 

complete. Let X IY be a positive Dedekind cut. Let M = [z E G: 2z E X}, 

N = [z E G: 2z E Y). We show that M has no last element. Suppose on the 

contrary that M has a last element m and 2m EX. Since X has no last 

element, there exists x EX, 2m<x, which can be assumed to be such 

that 2(x-2m)+ 2m EX. This however implies that 2 «(x-2m)+m) E X and 
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m is not the last element of M. Similarly N has no first element. Thus 

MIN is clearly a positive Dedekind cut. 

Now [2N] = Y from which it follows that MIN is quotient. For, if 

not, there exist Yl'Y2 EY f'J [2N], YI <Y2' and there exist mEM and 

nE N such that 2{n-m) ~ (Y2 -y 1)' which is a contradiction since 2n >Y2 

> YI >2m. 

2.5. Lemma. Every non-archimedean ordered group has a non-

archimedean positive Dedekind cut. 

Proof. Let G be a non-archimedean ordered group. Let x, y, 

o <x<y, be relatively non-archimedean. Let 

x ~'{z EG: nz<y, for aU integers n), 

y = {z E G: nz:::: y, for sorne integer n}. 

Clearly X and Y are non-empty suchthat (i) XUY=G, (ii) a<b 

for aU aEX, bEY, and OEX. Further, X has no last element. For, 

if Xo EX is the last elem~nt, then since 2x
O 

>X
O 

>0, it follows that 

2xO EY and Xo éX by the definition of X. Also, Y has no first element. 

For, if yO EY is the first element, yo-x, being smaller than yO' is 

in X. But {YO-x)+xEY which implies either yo-x or x is in Y contrary 

to our as sumption. Therefore X 1 Y is a positive Dedekind cut. Its 

being non-archimedean is evident from its definition. 
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2.6. Lemma. Every non-archimedean ordered group has a quotient 

positive Dedekind cut. 

Proof. Let G be a non-archimedean ordered group. Let X 1 y be 

a non-archimedean positive Dedekind cut. We shaH prove it to be 

quotient. Let F=(gEX:-gEX), F is a subgroup. For, if f,gEF, then 

:!:f, :l:g EX, ±f:l:g E X (X 1 y being non-archimedean) and ±f:l:g E F. F is 

.... 
c1early convex. Consider G = GIF which is an ordered group with the 

order induced in the usua1 way, (cf. 1. 6). If the zero e1ement in G is 

.... 
iso1ated, then there exists a smallest positive e lement, denoted 1, in G. 

C1ear1y G f'J [2Y] =XU ï which has no last element. If the zero e1ement 

of G is not iso1ated, then [2YJ = Y. For, otherwise there exist 

YO'Y1'Y2EY f'J [2Y] suchthat F{Y1)<F{Y2) and F{YO)<min(F{Y2)-F{Y1)' 

F{y 1))' But then 2yO E y f'J [2YJ which is a contradiction to the fact that 

2yO E [2Y]. In either case G f'J [2Y] has no 1ast e1ement, from which it 

follows that X 1 y is quotient. 

We are now ready to state and prove the main result of this chapter. 

2.7. Theorem. Let G be a{totally) ordered (abelian) group. The c1ass 

]l[G of aH G-metric spaces satisfies the amalgamation property, if and 

on1y if G is either the ordered group of the integers or that of the real 

numbers. 



. .., 

23 

Proof. As is well known (and is easy to prove), an ordered group G 

is order complete if and only if G is either the ordered group of the 

integers, 72:, or that of the real numbers,m. As it was mentioned in the 

Introduction, it is known that the amalgamation property holds for ~; 

the proof, which uses the order completeness of m, cardes over to 

every order complete group. We outline a proof of the statement that 

'.!KG satisfies the amalgamation property for every order complete group G. 

Let A, Band C be any G-metric spaces with G-metrics Ol, f3 and 'Y 

respectively. Let there be G-isometries f:C ~A, g:C ~ B. Let E be the 

disjoint union of the sets A and B. We define E': ExE ~G as follows. 

For a,bEE, 

Ol(a, b) 

E' (a, b) = f3( a, b) 

infcEC[Ol(a, f(c)) tf3(b, g(c))] 

if a, b EA , 

if a, b E B , 

if a EA, b E B • 

It can be easily verified that E' is G-pseudometric by checking the 

triangle inequalitie s as follows. 

Given any triangle in E, if aU three vertices are in A (or in B), 

the inequality is clearly satisfied. The only other pos sibility is that 

two vertices a, b are in say A and c is in B. Then 
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( ( a, b) = cx( a, b), 

((b, c) = il1.f
dEC

[œ(b, f(d))+ (3(c, g(d))], 

((a, c) = inf
dEC

[œ(a,f(d))+(3(c, g(d))]. 

œ(a, b) ~ œ(a,f(d))+œ(f(d),f(d'))+œ(b,f(d')) 

= cx(a, f(d))+ (3(g(d), g(d'))+ œ(b, f(d')) 

~ œ(a, f(d))+ (3(c, g(d))+ (3(c, g(d'))+œ(b, f(d')), 

for aU d, d'E C; and hence 

Therefore 

Also 

œ(a, b) ~ infdEC[œ(a, f(d))+ (3(c, g(d))] 

+infd'EC[œ(b, f(d'))+(3(c, g(d'))]. 

da, b) ~ ((a, c)+E'(b, c). 

((b, c) = infdEC[œ(b, f(d))+(3(c, g(d))] 

~ œ(b, f(e))+(3(c, g(e)) 

~ œ(a, b)+œ(a, f(e))+(3(c, g(e)), 

for aU eEC; and therefore 

((b, c) ~ œ(a, b)+infdEC[œ(a, f(d))+(3(c, g(d))] 

or 

((b, c) ~ da, b)+da, c). 

Similarly 

((a, c) ~ da, b)+ ((b, c). 
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Now that (E, 1:) is a G-pseudometric space, we can get a G-metric 

space (D, Ô) out of it in the usual way (by identifying points of zero 

1: -distance as in 1.13). The G-metric space (D, ô), together with the 

G-isometries resulting from the natural embeddings of A, B into E 

satisfies the amalgamation property. 

For the converse, let G be an ordered group that is not order 

complete. Let X 1 y be a quotient positive Dedekind cut which exists 

according to Lemmas 2.4 and 2.6. We are to construct three G-metric 

spaces (A, a), (B, (3) and (C, y) together with G-isometries f: C --+A, 

g:C --+ B such that there does not exist a G-metric space (D, ô) with G-

isometries fi, g' from A and B respectively into it such that f' of:!: g' 0 g. 

Choose an arbitrary yoEY. Let Z = (-2yO-z: zEG '" [2Y], z:::O}. 

Let C = y 0 Z (the disjoint union of Y and Z), and define the G-metric 

y on C as follows: 

if a, bEY or a, b E Z, 

if aEY,bEZ. 

Let A = (OA10C, and define the G-metric (]l on A as follows: 

{

Y(a, b), 

a(a, b) = b, 

2yO 

if a, bEC 

if a=OA,bEY 

if a=OA,bEZ. 

Let B = (OB10 C, and define the G-metric f3 on B as follows: 
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y(a, b), if a, bEC 

J3(a, b) = b, if a = OB' bEY 

-b, if a= OB' bEZ. 

Let f, g be the natural ernbeddings of Cinto A, B respectively. We 

can verify that A, B, C are indeed G-rnetric spaces by checking the 

triangle inequality in detail as follows: 

1) y is a G-rnetric on C. For, given any triangle abc on C, 

there are only 4 cases that are fundarnentally different. 

i) a, b, cE Y. The triangle inequality is evidently satisfied 

as y restricted to Y is the only natural G-rnetric on Y. 

ii) a, b, cE Z. Sarne conclusion for the sarne reason. 

iii) a, bEY, cEZ, a>b. We have 

y(a, b) = (a- b), 

y(b, c) = 2y 0+ b, 

y(c, a) = 2YO+a, thus 

y( c, a)+ y(b, c) = 4yO + a+b > a- b = y(a, b), 

y(c, a)+y(a, b) > y(c, a) > y(b, c), 

y(a, b)+y(b, c) = y(c, a). 

iv) aEY, b, c EZ, b<c. We have 

y(a, b) = 2yO+ a, 

y(b, c) = (c-b), 

y(c, a) = 2YO+a, and thus 
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y(c, a)+y(b, c) > y(c, a) = y(a, bL 

y(c, a)+y(a, b) > 2a > (c- b) = y(b, cL as 2a E 2Y, 

y(a, b)+y(b, c) > y(a, b) = y(c, a). 

2) a is a G-metric on .A. For, given any triangle abc on A, 

there are only 4 cases that are fundamentally different. 

i) a, b, cEe. The triangle inequality is evidently satisfied 

as a(a, b) =y(a, b), a(b, c) =y(b, c) and a(c, a) =y(c, a). 

ii) a = 0 A' b, cE Y, b >c. We have 

a(a, b) = b, 

a(b, c) = b-c, 

a(c, a) = c, and thus 

a( c, a)+ a( b, c) = b = a( a, b), 

a(c, a)+a(a, b) > b > b-c = a(b, c), 

a(a, b)+ a(b, c) > b > c = a(c, a). 

Hi) a = 0.A' b, cE Z, b > c. We have 

a(a, b) = 2y 0' 

a(b, c) = b-c, 

a(c, a) = 2yO' and thus 

a(c, a)+a(b, c) > 2yO = a(a, b), 

q( c, a) +a( a, b) > 2 Y 0 > b ~ c = a( b, c) as 2 y 0 E 2 Y .1 

a(a, b)+ a(b, c) > 2y 0 = a(c, a). 
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iv) a=OA' bEY,cEZ. We have 

Clr!(a, b) = b, 

Clr!(c, a) = 2yO' and thus 

Clr!( c, a)+Clr!(b, c) > b = Clr!(a, b), 

Clr!(c, a)+Clr!(a, b) = 2YO+b = Clr!(b, c), 

Clr!( a, b) +Clr!( b, c) > Clr!( b, c) > Clr!( c, a) . 

3) f3 is a G-metric on B. For, given any triangle abc on B, 

there are only 4 cases that are fundamentally different. 

i) a, b, cEe. The triangle inequality is evidently satisfied as 

f3(a, b) =y(a, b), f3(b, c) =y(b, c) and f3(c, a) =y(c, a). 

ii) a = 0 B ' b, c E Y, b > c. W e have 

f3(a, b) = b, 

f3(b, c) = b-c, 

f3(c, a) =c, and thus 

f3(c, a)+ f3(b, c) = b = f3(a, b), 

f3(c, a)+ f3(a, b) > b > b-c = f3(b, c), 

f3(a, b)+ f3(b, c) > b > c = f3(c, a). 

ii i) a = 0 A' b, c E Z, b > c . W e have 

f3(a, b) = - b, 

f3( b, c) = b - c, 

f3(c, a) = -c, and thus 
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f3( c, a) t f3( b, c) > - c > - b = f3( a, b), 

f3(c, a)tf3(a, b) > -c > b-c = f3(b, c), 

f3( a, b) t f3( b, c) = - c = f3( c, a) . 

iv) a = 0 A' bEY, cE Z. We have 

f3(a, b) = b, 

f3(c, a) = -c, and thus 

f3( c, a) t f3( b, c) > f3( b, c) > f3( a, b), 

f3(c, a)tf3(a, b) = b-c > 2y Otb = f3(b, c), as -c >2yO' 

f3( a, b) t f3( b, c) = 2 Y 0 t 2 b > - c = f3( c , a) . 

The natural ernbeddings f, gare G-isornetries by definition. 

Now we show that there does not exist a G-rnetric space (D, ô) with 

G-isornetries f' and g' frorn A and B respectively into it such that 

f ' f - , o - g og. 

Suppose the contrary. Let ô(f'(O A)' g'(OB)) =I:l.. We can prove 

I:l. EG f'OJ [2Y]. For, I:l. ~ ô(f'(O A)' f'(y))+ô(g'(OB)' g'(y)) = 2y, for all y EY, 

and therefore by definition of [2Y], I:l. E G f'OJ [2Y]. There then exists 

Zo E G "" [2YJ such that Zo > I:l.. 

If we consider the triangle f'(OA) g'(OB)f'(-2yO-zO) on D, we will 

find a contradiction to the triangle inequality as follows. 

J 
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ô(f'(OA),f'(- 2yO-ZO)) = 2yO' 

Ô(g'(OB),f'(-2y
O
-z

O
)) = 2yO+zO' 

Ô(f'(OA)' g'(OB)) = A, 

and 2Y
O

+A"/! 2y
O

+z
O

' This completes the proof of the theorem. 



Ot. CHA PTER III: Homeomorphs of the Space (2 ) 
Ot. 

The main theorem in this chapter, Theorem 3.12, establishes sorne 

characterizations of the topological space (2Ot., , where Ot. is an infinite 
Ot. 

regular cardinal. In aU, we have two characterizations of (2Ot.) for an 
Ot. 

infinite regular Ot. and a third only for cardinals Ot. that are strongly 

inacces sible but not weakly compact. The method of proof for aU three 

IS essentiaUy the same. The proofs, owing to their tedious complexity, 

are broken up into lemmas. These lemmas assert that bases with sorne 

more desirable properties can be constructed from the given ones 

(Lemmas 3.2 and 3. 3) and that homeomorphisms between spaces can be 

deduced from isomorphisms (with respect to set inclusions) between 

bases with these properties (Lemma 3.4 and CoroUary 3.5), and provide 

the steps of transfinite induction towards the construction of such iso-

morphisms (Lemmas 3.7 -3. 10). They are inevitably long to state, but 

they provide aU the intermediate results and hopefuUy make the proof of 

the main theorem clearer. We remark that Lemma 3.4 gives a condition 

for homeomorphisms between spaces in terms of sorne very general 

relation between sorne bases on those spaces. This Lemma is more 

general than necessary, though not more difficult to prove. Its CoroUary 

3.5, a particular case, is aU that is neces sary. Lemma 3. Il shows that 

the image of the isomorphism (constructed with the help of Lemmas 3.7 -3.10) 

is a basis of (2Ot.) 
Ot. 

31 
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These lernmas together prove our main theorem. The remainder 

of the chapter is devoted to applications of this theorem. The more im-

portant ones are Theorem 3.13, CoroUaries 3.14,3.15 and 3.16 and 

Theorem 3. 19, as outlined in the Introduction. We begin with sorne definitions. 

3.1. Definitions. Given a set X, a family a of non-void subsets of X is 

a partition of X if Ua. = X and if A n B = f/J whenever A, BEa and A 'f B. 

An (ordered) family of partitions {o.~: ~ <cd of a set X is said to be 

i) refining, (respective1y strictly refining) if o.~l refines (respective1y 

strictly refines) o.~o' i. e. for any AlE o.~ 1 there is A 0 E 0.'0 such that 

Ale (respective1y 1) A 0' whenever ~o <~1 <a; ii) continuous1y refining 

if it is refining and if for aU limit ordina1s À, 0 <À< a, o.~ ={A:A= n(f~:~<.X.} 

'ff/J, for sorne fEn~<À a.,J. 

Given a topological space X and a family a of c10sed subsets of X, 

we say X is a-complete if every subfamily of a with the finite intersection 

property has non-void intersection. 

3.2. Lemma. Let a be an infinite regu1ar cardinal. Let X be a P -
a 

space with no iso1ated points. If X has an a- subbasis a of the form 

a = u~<ao.; such that for each «a, o.~ is a discrete open cover of X, 

then there is a continuous1y refining family {a.~: ç < a} of partitions of X 

such that 
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i} the family 3=Uç<a3ç is a basis for the topology of X, 

ii} if X is û-complete, X is a-complete, and 

Hi} for every ç < a and every BE a ç' 1 < 1 [C E a ç+ 1: Cc B} 1 ~ 1 û
e 

1 

for sorne e <a dependent on ~ and B. 

Proof. Let Co = [X}. For aH 0 «<a, let Cç = [C:C = n[fe:e <ç}~ r/J, 

for sorne f E ne < ç ûe }. Clearly, [C(: ç <a} is a continuously refining 

family of partitions of X such that 

a} 

b} 

c} 

the family C = U ~ C ~ is a basis for the topology of X. 
"'iI<a 'il 

if X is O.-complete, X is C-complete, and 

for every ç < a and every CE C ç' there exists C, « C < a dependent 

on ç and C, such that 

Item c) is true because there exists sorne 11, ç<11<a, such that 

1 [A:A E û , A n C ~ r/J} 1> 1 {since X has no isolated points} and e can be 
11 

taken ta be the least of such. 

However [C
ç

:ç <al need not be strictly refining, i. e. [C(: ç <al need 

not be disjoint, and we shaU rearrange Cinto a family [a (:( <11} that is 

strictly refining {or disjoint}. 

First, for every CE C, we define 11{C} to be the unique ordinal which 

is order -isomorphic to the set of aU members of C properly containing 

C inversely ordered by set inclusion. Thus, 0 ~ 11{C} <a for aH CE C. 
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We shaH show that a = U «a a ~ has an the required properties . 

Note first a = C, and therefore i) and H) are satisfied; iii) is satisfied 

because of c). Because of c), a ç' for every ~ <a, is a cover of X and 

therefore a partition of X. Furthermore, (a;: ç <a} is continuously 

refining because a = c. 

This comp~etes the proof of the lemma. 

3.3. Lemma. Let a be an uncountable regular cardinal and let 

w ~ f3 < a. If ona topological space X there is a continuously refining 

family (a~: ~ <a} of partitions such that the family a = u ~ <a a~ is basis 

for the topology of X, and, for every ~ <a and every A Ea~ we have 

l < 1 (B E a~+l: B cA} 1 ~ 2 f3 ; then there exists on X a continuously refining 

family (ae: «al of partitions such that 

i) the family a = u ~ a is a basis for the topology of X, 
'=><O! ~ . 

H) if X is a-complete, X is a-complete, and 

Hi) for every ~<O! and every BEa~, I(CEa~+l:ccB}1 =2 f3 . 

Proof: We canlet a~=af3.; for an ~<a. Clearlythe family 

(a~: (.<al has aU the required properties. (Property Hi) is c1ear if 

we note that (2 f3)f3 = 2 f3 .) 

3.4. Lemma. If X and Y are T 1- spaces, with subbases a and a 

respectively for their topologies and if there is a one-to-one function cp 

from a onto a, such that void intersections on X of members of a, and 
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only such, imply void inter sections of their image s under cp; then X and 

y are homeomorphic. 

Proof: We construct a function h from X to Y as follows. We show 

that for each x EX, n{cp(A): A E G, x E A) is a singleton. First, we note 

that it cannot by hypothesis be void. Secondly, li it contains two distinct 

points YI' Y2' there exists BEa such that YI E B, Y2 é Band therefore 

-1 
Bé (cp(A):A EG, xEA). It follows that cp (B) ~ (A:A EG, xEA) , 

-1 . 
cp (B)nn(A:AEG,xEA)=cp, Bn n{cp(A):AEG,xEA)=cp and YI cannot 

exist. Therefore, for all x E X we can let h(x) be the only point in 

n{cp(A):A EG, xEA). 

We show that this h is one-to-one and onto as follows. There c1early 

exists a function g from Y to X defined in a symmetrical way. Far evcry 

-1 
yEY, (h" g(y)) = n{cp(A):A EG, g(y) EA) c n(cp(A):A =cp (B), BEa, yEB) 

= niB: BEa, yEB) = (yl and therefore hog(y) =y. It follows that h is onto 

and by symmetry h is one-to-one. 

To prove h is a homeomorphism it suffices to prove that for all 

A EG, cp(A) =h[AJ, because both h and cp are one-to-one. That cp(A)::)h[AJ 

is clear from the definition of h. By symmetry A::)h -1 [cp(A) J, i. e. 

h[A J ::) cp(A). This completes the proof of the lemma. 

3.5. Corollary. Let a be an infinite regular cardinal. Let X and Y 

be two topological spaces, on which are respectively refining famUies 
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{a~: «al and {la ~ : ~ <a) of partitions, such that the famUies a = U ~<a a~ 

and la = U(<ala€ are bases for the topologies of X and Y respectivelyand 

such that X is a-complete and Y is la-complete. If there is an order-

isomorphism cp from a. onto la (a and la considered as partially ordered 

sets inversely ordered by set inclusion); then X and Y are homeomorphic. 

Proof. (Straightforward.) 

To use Corollary 3.5 to prove homeomorphism of a space with 

(2a) , we need to have some specific basisforthe topology of (20!) . We 
O! O! 

describe a particularly simple one in the next section which we denote by 

e and which has the important property that (20!) is e -complete. 
O! O! O! 

3.6. Notations. Let O! be an infinite regular cardinal. For any 

o <V<O! and any sE 2 V
, let E (s) denote the set {t E 20l

: t 1 V = s J. For 
O! 

any 0 <v<a, let e denote the family {E (s): sE 2v ]. We also denote 
Ol,V a 

the singleton {2
0l

) by e 0 and the famUy U l:' e ~ bye. Clearly 
a, 'iO<0! Ol, 'iO O! 

". 

e is a basis of (20l
) , and (2a ) is e -complete. 

a Ol Ol O! 

For any 0 <I..L, V, and any sE 21..L, tE 2v , we write s;t for the element 

J:' E 21..L+v such that r (~) = s(~) for all ~ <I..L and r(;) = t(ç-I..L) for alll..L~ç<I..L+V' 

For any 0 <ÀdJ, V, and any r E 2À, sE 21..L, tE 2v , (r;s);t and r;(s;t) then 

denote the same element in 2À f#.L+V which can therefore be unambiguously 

written r;s;t. For any 0 <;, we write Q(~) for the element in 2~ such that 
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Q(~)('I7)=O for aU '17<~ andwrite l(~) for the element in 2~ suchthat 

.!.(~)('17) = 1 for aU '17<~. We also write Q for Q(l) and 1 for 1(1): 

3.7. Lemma. Let Ol be an infinite regular cardinal and let f3<0l. 

Let GO and G
l 

be two partitions of a set X such that 

i) Gl refines GO' and 

ii) for every A EGO' 1 (B E Gl : BeA} 1 = 2 f3 . 

Suppose there is an order -isomorphism cp from GO into e Ol (GO and 

e
Ol 

considered as partially ordered setsinversely ordered by set inclusion) 

such that cp[GOJ is a partition of 20l . 

Then cp can be extended to an order isomorphism cp on GO U G
l 

such 

that cp[GlJ is a partition of 20l . 

Proof: We first note that if GO F (X} cp induces a one-to-one function 

f from GO into the set UO<~<0l2~ such that, for aU A EGO' cp(A) = E Ol(fA )· 

We also note that for all A EGO' there exists a o~e-to-one function gA 

from the set (BEG
l

: BeA} onto the set 2f3 . In ter ms of f and gA for aH 

A EGO we can define the required cp on GO U Gl as follows. Let ~ 1 GO = cp. 

For each A EGO' and for each BeA, (B EGIL let CP(B)=EOl(fA;gA (B)) if 

GO F (X}, otherwise let ~(B) =EOl(gA(B)). Clearly cp thus defined is an 

order -isomorphism on GOU G
l

, extending cp such that ;P[G
I 

] is a partition 

Ol of 2 . 
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3.8. Lemma. Let œ be an infinite regular cardinal. Let a
O 

and 

al be two partitions of a set X such that 

i) al refines a
O

' and 

ii) for every A Ea
O

' 1 < 1 (B EG
i

: BeA) 1 < œ. 

Suppose there is an order-isomorphism cp from GO into e
œ 

(GO 

and e considered as partially ordered sets inversely ordered by set 
œ 

inclusion) such that cp[aOJ is a partition of 2œ. 

Then cp can be extended to an order - i somorphism cp on aOu G
l 

such that ;P[alJ is a partition of 2œ. 

Proof: Again we note that if a
O 

f (X) cp induces a one-to-one 

function f from aO into the set UO<~<a! 2~ su ch that for an A EGO' 

cp(A)=Eœ(f
A

). For an AEa
O

' let I(BEG
I 

=BcA)1 =x(A) and note that 

there is a one-to-one function Ô A from the set (B E al: B cA) onto x(A). 

In terms of f and x(A), Ô A for an A EGO' we can define the required 

;p on aOua
l 

as follows. Let ;PIao =cp. For each A Ea
O

' and for each 

cp(B) = 

otherwise let 
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E ( a ), if Ô A (B) = a , a-

cp(B) = EO/!.(X(A)-l)), ifôA(B)=I, 

(ÔA(B)-l) 
EaU. ;.Q), if l<ôA(B)<x(A). 

Clearly cp thus defined is an order-isomorphism on GO U G
I

, extending cp 

such that ~[GI J is a partition of 20/.. 

3.9. Lemma. Let a be a strongly inaccessible cardinal that is not 

weakly compact. Let GO and G
I 

be two partitions of a set X such that 

i) G
I 

refines GO' and 

ii)for everyAEG
O

' 1<\(BEGI:BCA}\~a. 

Suppose there is an order-isomorphism cp from GO into e
a 

(GO and 

e considered as partially ordered sets inversely ordered by set inclusion) 
a 

such that cp[GoJ is a partition of 2a . 

Then cp can be extended to an order-isomorphism cp on GO U G
I 

such 

that cp[G
I 

J is a partition of 2a . 

Proof. We note as before (in the proof of Lemma 3.8) that if 

GO f:. (X} cp induces a one-to-one function f from GO into the set 

UO<~<a2~, and that for each A EûO' there ls a one-to-one function ÔA 

from the set (BEûl:BCA) onto x(A) (= \(BEG
1

:BCA}\). We note 

in addition that E (s), for any sE Ua I! 2;, as a subspace of (2a) , is 
0/. . < ... <a a 



, 
\. 

( i 

40 

homeomorphic to (2a!) and therefore not a!- compact. It follows then a! 

E (s), for any s EU
O 

~ 2~, or 2r:J. itself (as a subspace of (2a!) ) has a! <c; <Cl! . (Y. 

an open cover Q. of cardinality ~OI admitting no subcover of cardinality 

<a!. Furthermore because e is a basis, and because a! is strongly a! 

inaccessible and le 1 = 2g,= 01, we can assume Q. to be a partition of a! 

E (s), consisting of exactly 01 elements from e . In particular for a! a! 

every A E a
O' there 1s a subfamily Q.A ce 01 such that 1 Q.A 1 = r:J. and Q.A 

is a partition of cp(A). There is of course a one-to-one function gA 

from 01 onto Q.A' for each A E a
O' 

We can now define the required cp on a
O 

U al in terms of f, x(A ),Ô A 

Q.A and g A for all A E a
O

' Let ~ 1 a
O 

= cp. For each A E a
O 

su ch tha t 

x(A)<a! we define cp(B) for every BeA, (BEaI)' as in 3.8. Far each 

A E a
O 

such that x(A) = 01, and for each BeA, (B E al). we let 

cp(B) = gA (Ô A (B)). Clearly cp thus defined is an order-isomorphism 

on aOua
l

, extending cp such that cp[a
l

] is a partition of 2r:J.. 

3. la. Lemma. Let a! be an infinite regular cardinal and let À be 

any infinite limit ordinal <O!. Let (a~:~ :!::À] be a continuously refining 

family of partitions of a set X such that any .subfamily of U ~<À ae with 

the finite inter section property has non-void inter section. 

Suppose there is an order -isomorphism cp from U ~<À G.e into e 01 

(U~<À, a( and ea! considered as partially ordered sets inversely ordered 
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by set inclusion) such that (cp[G~J:~ <~.J is a continuously refining:family 

of partitions of 2a.. 

Then cp can be extended uniquely to an order-isomorphism cp on 

U~~À G~ such that (cp[G~J:~ ~À} is a continuously refining family of 

partitions of 2Of.. 

Proof: We define the required cp on U~~À G~ as follows. Let 

- A 
cp 1 U ~<X G~ = cp. For every A E G

À
, we note that A = nu ~ :~ <À J for a 

unique ~Enê<~G" and let ~(A)=n(cp(f:):ê<À}, whichis amember 

of e because a. is regular. Clearly cp thus defined is the unique order-iso­
a 

morphism on U~~À G~, extending cp suchthat (cp[G~J:~~À) is a con-

tinuously refining family of partitions of 2a . 

3.11. Lemma. Let a be an infinite regular cardinal. If (Gê: ~ <a} 

is a family of strictly refining partitions of 2a. such that G~ c: e a for all 

«a, then U~ G~ is a basis for the topology of the space (2a) . 
~<a ~ a 

Pronf: It suffices to show that given any element s E 2a. and any 

0< ê < a., there exists A E Ue<a Ge such that s E A c: E a(s I~) . 
For every ~ <a, since Ge is a partition of 2a., there is a unique 

A e E G1: that contains s. There is evidently a unique function 11 from a 

into a su ch that A e E e a, 11(1:)' for all ~ <a.. Clearly the function 11 is 

st~ictly increasing and in particular 11(1:) ~ 1:. We can accordingly 

let A = A ~ . This complete s the pr oof of the lemma. 
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Now we are ready for the uniqueness theorem. 

3.12. Theorem. Let a be an infinite regular cardinal. Let X 

be a P - space with no isolated points. If X has an a- subbasis a of the 
a 

form a = U;<a a~ such that 

i) for each ~ <a, a, is a discrete open cover of Xj 

ii) either 

a) for some f3<a, la~ 1 ~ 2 f3 for all ; <aj or 

b) la~l<a for all ;<aj or still, 

c) the cardinal a is strongly inaccessible but not weakly compact 

and la~ 1 ~a for aU ~ <a j and 

Hi) X is a-completej 

then X is homeomorphic to (2a) 
a 

Proof: a) If f3 ~ w, then Lemmas 3.2 and 3.3 apply and there is on 

X a continuously refining family (a;: ~<a} of partitions such that 

i) the family a =U;<aa~ is a basis for the topology of X, 

H) X is a-complete, and 

Lemmas 3.7 and 3.10 imply the existence of an order-isomorphism 

cp from a into e (a and e considered as partially ordered sets inver sely 
a a 

ordered by set inclusion) such that (<p[a~J: e<a} is a strictly refining 

family of partitions of 2
a . By Lemma 3. lI, <p[aJ is a basis of {2

a)a' 
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Clearly, (2a) is cp[l13] -complete and Corollary 3.5 is applicable. The 
ex 

spaces X and (2a!) are therefore homeomorphic. 
a! 

If f3< w, a) is included in b). 

b) Lemma 3.2 appHes and there is on X a continuously refining 

family (113~: ç < ex} of partitions such that 

i) the family 113 = U ~<exta ~ is a basis for the topology of X, 

ii) X is l13-complete, and 

Hi) for every ~<ex and every B EI13~, 1 < 1 (C EI13(+l :CeB} 1 < ex. 

Lemmas 3.8,3.10,3. Il and Corollary 3.5 combine as before to 

produce the result that X is homeomorphic to (2 ex) , Lemma 3.8 taking 
ex 

the part of Lemma 3. 7 . 

c) Lemma 3.2 appHes and there is an X a continuously refining 

family (113~: ~<ex} of partitions su ch that 

i) the family 113 = U «<Ot 113 ~ is a basis for the topology of X, 

ii) X is 113- complete and, 

Hi) for every ~<ex and every B EI13~, 1 < 1 (C EI13~+l: CeB} I~ ex. 

This time we need Lemma 3.9 in place of Lemma 3.8 for the final 

result that X is homeomorphic to (2 ex) . 
a! 

This completes the proof of the theorem. 
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3.13. Theorem. Let a be an uncountable regular cardinal and let 

X be a compact Hausdorff space. 

(2a) if 
a 

The space X is homeomorphic to 
a 

i) the set C(X) of all continuous real-valued functions on X has 

cardinality a, and 

ii) intersection of fewer than a open sets on X is never a singleton. 

a 
The conver se is true if 01. = 0/..;;;;;/. 

Proof. The fir st part follows from a straightforward application 

of Theorem 3.12. 

Conversely, if X is homeomorphic to (2a!) , it is c1ear that ii) is 
0/. a 

true and it is true that 1 C(X) 1 ~O/.. If O/.g,= 0/. and therefore 2g..= a!, the 

basis e of (2
a) has cardinality a. It foUows that any other basis of 

0/. a 

(2a!) has a subfamily of cardinality 0/. which is also a basis, and, any 
0/. 

basis of X , because of homeomorphism, has a subfamily of cardinality 
a 

0/. which is also a basis. One basis of X is the family û of aU inter­
a 

sections of fewer than a open sets of X, and there is a basis a of X , 
0/. 

In particular, this a distinguishes points of X . There is 
tJt 

therefore a family of 0/. open sets of X which distinguishes points of X 

(as O/.(J,= a!). Because X is compact Hausdorff, it can be embedded into 

the cube [0,1 JO/. according to the Embedding Lemma (cf. e. g. Chapter 4, 

§ 5 of Kelley [21 J). In particular X has a basis of cardinality S a! and 
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using a result of Comfort and Hager in [7J, we have 1 C(X) 1 s: aW= of!:;- = a. 

This together with the inequality in the opposite direction gives our result 

that 1 C(X) 1 = a. The proof of our theorem is complete. 

+ a 
3.14. Corollary. Given an infinite cardinal a, suppose a = Z , 

+ 
then (U(a)) + is homeomorphic to (Za ) +, and (O(a)) + is homeo-

a a a 

morphic to a closed subset of (Za+) a+. 

Proof. That (O(a)) + is a closed subset of (U(a)) + can be seen 
a a 

from the following consideration. Given any uniform ultrafilter p that 

is not a-complete, there is 3cp, 131 < a, n3i é p. If we let 

* * F'=(QEU(a):FEq) (=CI/3aFnU(a)) forallFE3i, then n(F':FE3i} is 

open in (U(a)) +, containing p and disjoint from (O(a)) +. 
a a 

The second conclusion then follows if the first is proved. 

For the proof of the first statement, Theorem 3.13 applies, because 

U(a) is a compact Hausdorff space, a+ is uncountable and regular, the 

set of all r eal-valued continuous functions on U(a) has cardinality a +, 

+ 
and no uniform ultrafilter on a can be generated by fewer than a elements. 

3.15. Corollary. If œ is an i:è an infinite cardinal such that a'!:",= a, 

then (A(a)) is homeomorphic to (Za) . 
a a 

Proof. We note that if a = w, (A(a)) is homeomorphic to (Za) , 
a a 

(also to A(a) and to Za, the Cantor dis continuum) . If a >w, then 
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Theorem 3.13 applies, because A(a) is a compact Hausdorff space, a 

is reguIar, intersections of fewer than a open intervais are never 

singletons, and the set C(X) of aIl reai-valued continuous functions on 

A(a) has cardinality a as shown below. A(a) has a basis of cardinality 

z~ and IC(X) 1~(ZS)W=a by Comfort and Hager's estimate in [7J. It 

is aiso quite clear that 1 C(X) 1 ~ a and therefore 1 C(X) 1 = a. This 

completes the proof. 

3.16. Remark. It can be proved directly that (A(a)) is homeomorphic 
a 

to (Za) for aIl infinite regular a as foIlows. (If a is singular, both 
a 

(A(a)) a and (Za) a are homeomorphic to the dis crete space of cardinality 

Za. ) 

1) We prove that the topology of (A(a)) contains that of (Za) . Far a a 

any sEZ Il
, O<II<a, we showthat E (s) is open in (A(a)) . Clearly 

a a 

E (s) =A n B where 
Œ 

if there is a smalLest C < Il such that s [11""~ ] = (1), otherwise 

and 
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if there ls a smallest ~<V such that s[V-~J = (O), otherwise 

Both A and B are open in (A(a)) and tnerefore E (s) is open in (A(a)) . 
a Ol a 

ii) We pl'ove that the topology of (Za) contains that of (A(a)) 
a Ol 

a For aH, r, s,tEZ , r<s<t lexicographically, we prove that there is 

some Il, 0 < V <a, such that E (s Iv) (containing s) is contained in the 
a 

open interval (r, t); from which the desired conclusion follows. Let ~ 

be the. first ordinal such that r ~ f: s ~ and 17 the first ordinal such that 

s f:t. We canclearly let v=l+max(~,17)' 
17 17 

This completes the proof of our remark. 

Theorem 3.13 also provides a proof of a resuÜ: mentioned but not 

proved in Negrepontls [Z5J. There, it is pointed out that as a consequence 

of results of Jons son [15], [16] and Morley and Vaught [Z4l, for every 

infinite cardinal a such that a = Ol'b. there exists a unique (up to Boolean 

isomorphism) Ol- homogeneous -universal Boolean algebra of cardinality 

a, and that if S is the Stone space of this Boolean algebra, then (S ) 
a aa 

is homeomorphic to (A(Ol)) • The latter of the two statements is a corol­
Ol 

lary to our Theorem 3.13, as we shaH see. 
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3.17. Corollary. Let Cl! be an infinite cardinal such that Cl! =~. If 

S is the Stone space of the Cl!-homogeneous-universal Boolean algebra 
Cl! 

of cardinality Ot, then (S ) . is homeomorphic to (ZCl!) . 
Cl! Cl! Cl! 

Proof: We note that if Cl! = w, (S) is homeomorphic to the Cantor 
OtCl! 

discontinuum and is therefore homeomorphic to (ZCl!) . If Cl!>w, Theo-
. Cl! 

rem 3.13 applies, according to Theorem 1.7 of Negrepontis [Z5 J and 

Comfort and Hager 1 s result in [7]. 

3. 18. Theorem. For any strongly measurable cardinal a, (Za) is 
Cl! 

a continuous image of (l(œ). 

Proof. We construct a continuous function from (l(œ) onto (Zœ) . 
a 

Fir st, let R denote the subset 
œ 

(s E (Zœ) : s[œlV~J = (o} or (l} for sorne ~ <œ}. 
a 

1 R \ = ze.= a (cf. 1. 16 and Proposition 1. 3Z ii)). We can clearly define 
Cl! 

a continuous function f from Cl! onto R such that \f-
l 

(s) \ = a for every 
Cl! 

sE R . It is well known that f extends to a continuous function from 
a 

f3a. into sorne compact Hausdorff space containing R (cf. e. g. § 6.4 of 
a 

Gillman and Jerison [Il J). It is clearly also true that f extends to a 

continuous function f from (l(Cl!) Ua into (Za) , (Za) being œ-compact 
Cl! Cl! 

(Proposition 1. 3Z ii)). The continuous futiction f can be explicitly defined 

as follows. 
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For every p EO(a) Ua, that is, for every a-complete ultrafilter p 

on a, let 

f# p = (E C (Za!) : E is closed, f -l[EJ E p) , 
a 

and f* p being an a-complete prime filter of closed subsets of (Za) , 
a 

we can let i (p) be the limit of f* p. 

It remains only to prove that l [O(a) ] = (Za!) . Given sE (Za) ,... R , 
a a a 

the fami1y (f-l[E (s 1~)J: O<~<a) has void intersection and is contained 
a 

in some non-principal a-complete ultrafilter p on a. Given s ER , 
a 

Inf-l[E (s I~)J: O<~<a) 1 =a and the fami1y (f-1(E (s 1~)]:O<~<a} is again 
a a 

contained in some non-principal a- complete ultrafilter p' on œ. In either 

case, by definition :l (p) = s. The proof LS therefore complete. 

We provide an alternate proof using the idea of Theorem 3. 1Z. This 

alternate proof does not make use of the fact that (Za) is a- compact 
a 

when a is strongly measurable and in fact can be taken to be a proof of 

that facto 

A lternate proof. First we shaH establish that on any strongly 

measurable cardinal a, there exists a family (A 1: • Ca: ~ <a, i=O, 1) 
C;, 1 

such that 

i) lA 1: .1 =a for aIl ~ <a, i=O,l, 
'i,l 

H)A~,OnA(,l=q;, la""(A~,oUA~,l)l<a, for aU ~<a, and 

Hi) for any s EZOl, and any O<11<a, Inl:< AI: 1 =a. 
'i 11 'i' s~ 
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The set S=U(2~:0<~<0/} is of cardinality 2g =a (cf.l.16 and 

Proposition 1.32 ii)) and can therefore be identified with a. For aU 

~<a, i=O, l, we can let A~,i = (sES:s~ is defined and =i). It is 

clear that A~,i~ for aU ~<a, i=O, l, thus defined satisfy i)-iii) 

above. 

~:c 

For aU ~<a, i=O,l, wewrite A~ . = (qEO(a):At- . Eq)(=clIhuAt- .nO(a)) . 
.. ,1 .. ,1,.-. .. ,1 

~c * 
Clearly ((A~, 0 ,A (, l}:'~ <a} is a family of partitions of CU a) such that 

* n A -f C/J for aU 0 <Tl <a and aU s E 2a , and hence, for all sE 2a , 
~<Tl ~,s ~ , 

n A * -f C/J. Now we can define a function f from O(a) onto (2 a ) 
~<a! ~,s; a 

a * as foUows. For every s E (2 ) , we let f(t) = s for aU tE nê' A 
a ~<O/ ~,se 

~:c 

That f is continuous is clear because A ê' . is open in 0(0/) for every 
~, 1 

~ <a, i=O,l. This completes the alternate proof. 

3.19. Theorem. Let a be an infinite regular cardinal. 

i) For al! {3 suchthat 0<{3<0/, the spaces (2 a ) 
a 

hOmeOlTIOrphic. 

ii) The space (2 a ) a is homeomorphic to (jp) a for sorne 'Y >a, if 

and on1y if a is such that 0/ -f 2g.. 

Hi) The space (2 a ) is homeomorphic '1:0 (O/a) , if and only if ri 
a a 

is not weakly compact. 
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Proof. il This is c1ear from part a) of Theorem 3. lZ . 

ii) If et = Z[!", then e has cardinality a and (Za) 
a Cl!. 

for aU y >et, while (ya) is certainly not y-compact. 
et 

must be y-compact 

cannot be homeomorphic to (ya) for any y>a. Conversely, there 
ex 

exists a f3<a such that a<Zf3 and by part a) of Theorem 3. lZ, (Za) is 
a 

a iii) If et is not strongly inaccessible, then (Z) is homeomorphic 
a 

to (oP) by part a) of Theorem 3. lZ. If a is strongly inaccessible but 
a 

not weakly compact, the same is true by part c) of Theorem 3 . lZ. Con-

versely, if a is weakly compact (Za) is a-compact and cannot be 
a 

homeomorphic to (aa) which is c1early not a-compact. 
a 

This completes the proof of this theorem. 
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