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La méthode des élémepts finis a été utilisée afin de déterminer
les fréquencég et les mouvements propres de structures planes telles
que poutres, treilleg et cadrés rigides.

Un programme pour calcutrice électronique a été développé.é_
cette fin. Les membrures de la structure peuvent étre dé sections
et. propriétés variables.

Plusieurs examples sont traités; leurs résultats sont compare€s
avec des valeurs expérimentales ou obtenues par d'autres méthodes.

Une méthode numérique pour la détermination des domaines
d'instabilité dynamique d'une colonne soumise a une charge et a
un déplacement d'appui axiaux et périodiques a été développée.

ILa colonne est idéalisée par une série de masses conéentrées,
-et de ressorts de masse nulle.

Les .résultats sont comparés avec des valeurs connués ou
expérimentales, obtenues éans le cadre du présent travail.

L'étuée expérimentale de 1'instabilité dynamique d'un.cadre
. rigide de six étages est incluse.

Une solutipﬁ analytique de ce probleme fut tentée en remplacant
le portique par un milieu continu €quivalent, et les resultats

obtenus sont présentés.
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ABSTRACT

The finite element method has been used to determine

the natural frequencies and modal shapes of plane structures

such as beams, grids, trusses and frames. A computer program

has been written for this purpose. The members of the structure

may be of non-uniform cross-section and varying properties.
Several examples are éiven to show comparison with results
obtained experimentally and using o£her methods.

A numerical method of determining the regions of
dynamic instability of a colpmn subjected to periodic axial
force and periodic support motion has been developed. The
colqmn is idealized as consisting of massless springs and
lumped ﬁasses. Comparison with known results and with
experimental work, which was carried out as a part of the
investigation is presented.

An experimental investigation of the dynamic insta-

bility of a six storey portal frame is reported. The analytical

solution of the problem was attempted by the continuum method

and the results obtained are presented.
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SYMBOLS
Unless otherwise defined, the following symbols are used.

a length of 1link

a coefficient of Fourier series
A cross-sectional area

b breadth

b coefficient of Fourier series
B strain matrix

Cc amplitude of support motion
Cx, Cy direction cosines

d displacement vector

D elasticity matrix

e strain

L initial strain

E Young's modulus of elasticity
F force

G shear modulus

H height

I moment of inertia

k element of stiffness matrix
K spring stiffness, overall stiffness matrix
L length

element of mass matrix

\H



=

n, N

18-

mass per unit length
mass

mass matrix

number of beams
shape matrix
distributed load

load, force

approximate Euler buckling load

Ka/2,

force matrix

amplitude of displacement
inertia force

external modal force vector
Kn/an-1

stiffness matrix

time

time period

Kinetic Energy
displacements

support displacement.
Force

Potential Energy

frequency




X, Y

X, Y

A

D 9 q9 S

xi

coordinates or displacements

Body Force Components

stiffness‘coefficient for a continuum

«H,a measure of the relative stiffness of beams w.r.t.
columns

natural frequency of the bar loaded by a longitudinal
compressive force.

shear strain

parameter - of Mathieu's equation

parameter of Mathieu's equation

acceleration of the support motion

coefficients associated with V, m and K

angular displacement, 4y
dx

coefficients associated with V,, m, and K

Ve /2 (Px-ve)

Poisson's ratio

mass per unit volume

mass per unit height

stress

modal shape function

frequéncy of external load, or exciting frequency of

base motion



CHAPTER I
INTRODUCTION

1.1. General Review

Earthquakes occur in various parts of the world
and occasionally they cause considerable damage to life and
property. In order to build economic and attractive structures
which are resistant to'earthquake effects engineers and
scientists have been studying their causes and behaviour.
‘"Prom records of ground motion it has beén observed that
during an earthquake the pringipal component is in the
horizontal direction (1). On this basis in the design of
structures subjected to seismic lbading the vertical
acceleration is usually ignored or else its effect is
combined with that of the horizontal acceleration in an
arbitrary manner. Very little is known about the response
of structures when subjected to fluctuating vertical base
motion. Therefore, before one can attempt to study the
response of the structure to the combined effects of
horizontal and vertical motions it is necessary to first
resolve the problem of vertical motion. The first step in
attacking the problem of seismic vibrations, which are of
a random nature, is to seek solutions for cases of periodic

support motion. Even with this simplifying assumption it



will be observed that the formulation and solution of the
problem is difficult. It is hoped that this work will
help in the study of the response of structures to random
fluctuating base motion.

The differential equations of motion of structures
subjected to periodic horizontal support motion have constant
coefficients (2). Consider the structure shown in Figure 1.1
and let the support motion be y¢(t). The equations of motion

write as:~

my; Xy y-v) + Ry lyymy )+ .. L Ky (v -vg) =0

myy, + ?k21 (yl-ys) + k22 (yz—ys) ook (yn-ys)

nl nn-n-s
«.€. + k + + . e e e . =
m.Y, + k21y1 + k22y2 S + k ¥y = fz(k)y

my, + khlyl + knzyn +..... + knnyn = fn(k)y
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Figure 1.1: Column subjected to horizontal base motion.

77777 lus (t)

Figure 1.2: Column subjected to vertical support motion.




where kij are the stiffness coefficients and represent
the force at statidn i due to a unit displacement at
station j, the dots indicate differentiation w.r.t. time.

In matrix form the above equations may be written

W B+ [ B -l

Equations 1.1 are second order linear differ-

ass-

ential equations with constant coefficients.

By contrast, if the cantilever column of Figure
1.2 is subjected to fluctuating vertical support motion
then vertical accelerations are present and this causes
the axial force in the cantilever to‘vary with time; the
effective column stiffnesses are ho longer constant but
become functions of time. The resulting differential
gquations have varying coefficients. If the vertical
support motion is periodic, the differential equation will
also have periodic coefficients. Such differential
equations are termed Mathieu-Hill equations (3)and are
encountered in various areas of physics, engineering and
celestial mechanics. Therefore, the crucial difference
between those structures subjected to horizontal support
motion and those subjected to vertical support motion is
that in the former case we get differential equations with

constant coefficients whilst the latter gives rise to




Vo= Vot Vi cosfit

Figure 1l.3: Column subjected to periodic axial load.

\
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_Figure 1.4: Stable and unstable regions for the Mathieu equation.
(Hatched areas represent stable regions)
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differential equations with time-varying coefficients.
As a result the characteristics of the response of
structures to the two types of support motion are
different and will be discussed later. 1In particular,
when the governing equations are of the Mathieu-Hill
type it is possible to have solutions which grow without
'1imit as time progresses. Such behaviour is dynamic
instabilit} and is termed “parametric" to distinguish it
from ordinary resonance phenomena.

The problem of the stability of a uniform bar
subjected to time-varying axial forces was first studied

(8)
by Beliaev and has been reported by Timoshenko and

Gere @ and Bolotin (5). Beliaev studied the case of

a column with hinged ends (Figure 1.3) subjected to the
action of an axial compressive force, V. +V. cosQQt.
ﬁxperience has shown that for certain cases slender bars
can, without buckling, sustain instan;aneously greater
loads, (Vo+V¢) than the Euler buckling load for the column.
Also, at certain values of the frequency (Q the lateral
motion y(t) of theveolumn becomes unstable. The column
then tends to oscillate with an amplitude which increases
with time, being fiﬁally limited by system changes such as
the nonlinearity of the restoring force at large amplitude.

Such dynamically unstable behaviour occurs when the exciting




frequency Q is double the response frequency w of the system;
this contrasts with the more familiar resonance behaviour of

a fofced oscillatory system, which occurs when the exciting
frequenéy and response frequency are equal. Another distinguish-
ing feature of parametric resonance lies in the possibility of
producing resonance with exciting frequencies less than the
natural frequency of the structure. Also paramegric resonance
differs from ordinary resonance by the fact that there exist
continuous regions of dynamic instability. To illustrate the
general nature of parametric resonance, consider the problem
of the stability of a uniform bar with hinged ends and
subjected to an axial pulsating load VotV cos Q t as shown

in Figure 1.3. Assuming that the bar is initially straight
and perfectly elastic, and ignoring the rotational inertia

of the bar, the differential equation of motion is

4
EI 3 % + (Vc + Ve cos Q t) 822 +m, 822 =0 (1.2)
9% 8x2 Stz

where m, is the mass per unit length of the bar. If we seek
the solution of Equation 1.2 in the form
y(x,t) = fk(t) sink T x, (k=1,2,3....) (1.3)
L

Equation 1.2 reduces to

2 2
d 5;+wk 1 -"e+ V% cos Qt) £,.=0, (k =1,2,3..)(1.4)

gt Py




where

_ 2 :
w =k T EI ' (1.5)
mo

is the kth frequency of the free vibrations of an unloaded

bar and

P, = k> EI (1.6)
k T
L -
is the kth Euler buckling load.

Equation 1.4 may be further written as:-

2

2
d fzk +BOk(l - 2pk coth) fk=0, (k=1,2,3...)(1.7)
dt

where ﬁok is the frequency of the free vibrations of the bar

loaded by a constant longitudinal force V,, i.e.

2
B’ = w (1-'c/p) (1.8)

\Y
2 = 't
and 2p /(P - Vo) (1.9)
Since Equation 1.7 is identical for all forms of
vibrations, the suffix k may be omitted without loss of

generality and Equation 1.7 then writes as:-
2

E+ﬁo (L-2pcosQt) £=0 (1.10)
or £+ (5+€cosQ£) £=0 (1.10a)

where 5 =ﬁ°2 and € = -2 pﬁoz
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Equation 1.10 is the well-known Mathieu equation
which has an extensive literature, for example the book by
McLachlan (3).

To investigate the stability of the motion, the
solutions of the Math;eu equation have to be studied. 2
given motion is stable if all the solutions of the Mathieu
equation are bounded for all positive values of t, and
unstable if the equation has an unbounded solution. The
boundedness of the solutions depend upon the relationship
between 5 and € . For certain values of § and € bounded
solutions are obtained, whilst for other values unbounded
solutions result. The regions of bounded and unbounded
solutions in the 5 -€ plane are shown in Figure 1.4.

(6) . (7)

Lubkin and Lubkin and Stoker studied the
stability of columns and strings under periodically varying
fofces, sinusoidal in nature. Apparenély, they were not
aware of the work of Beliaev (8). They showed that the
problem of columns and strings subjected to periodically
varying axial forces reduces to a Mafhieu equation. They
studied the stability of the Mathieu equation and determined
the co—ordinateé of the boundary points of the regions of
instability. Utida and Sezawa @ also independently studied

the dynamic stability of columns under periodic longitudinal

forces. Their study was both theoretical and experimental in
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Figure 1.5: Schematic diagram of Utida and

Sezawa's experiment.

ccentric
mass :

Weights

Figure 1.6: Schematic diagram of Bolotin's experiment.




character. They also showed that the problem of a column
subjected to periodic longitudinal forces reduces to a
Mathieu equation. Experimentally they investigated the
parametric stability of brass strips 0.5 mm thick and
20.7 mm wide with one end being clamped and the othgr
having a concentrated mass, which was supported by piano
wires to permit’axial movement as shown in Figure 1.5.
They observed that the deflection and slope at the end
carrying the concentrated mass were almost zero. The
length of the strip measured from its clamped end to the
centre of the concentrated mass was 353 mm.. Concentrated
mass weights of 1000 gms and 250 gms were used. The
longitudinal force V = V. cos Qt .(V, = 0) was generated
electromagnetically. The concentrated mass consisted of
a heavy coil around which a constant magnetic field was
created by passing D.C. current. The passage of an
alternating current gave rise to the axial load. Utida
and Sezawa were the first to verify experimentally the
existence of secondary regions of instability..

Bolotin ©) carried out an experimental investi-

gation of the dynamic stability of columns. Unlike Utida

and Sezawa the periodic axial force consisted of a constant

part together with a harmonic portion, i.e. Vo + 0. A

schematic diagram of his experimental set-up is shown in

11
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Figure 1.6.  The lower end of the column is pinned and
fixed in position; the upper end is also pinned but
allowed to move vertically. A set of weights placed at
the eﬂd-of a lever supplied the constant term Voi the
fluétuating component Vi cos Q t was generated by a
rotating eccentric mass situated.at the upper end of the
column. From the tests carried out, Bolotin determined the
principal region of dynamic instability for pinned columns
and this was found to be in good agreement with theory.
However, he failed to verify experimentally the existence
of the higher (secondary) regions.

(10)

Weingarten also conducted experiments to
investigate the pafametric instability of columns subjected
to periodic axial loads of the form V = V_ cos Qt. His
results confirmed the existence of secondary regions of
instability. He also investigated the effect of boundary
conditions on the stability of the rod ;nd studied the
following two cases.

| (2) Column simply-supported at both ends.

(b) Column clamped at both ends (for which
he presented a theoretical formulation).

Hé found out that the instability reéions for the
two cases are similar,‘i.e. they are independent of the

boundary conditions, and obtained an experimental verification.



}

,y‘
\

(11)
Somerset and Evan-Iwanowski also carried

out an extensive experimental investigation of the principal
region of dynamic instébility of columns pinned at both ends

subjected to periodic axial forces of the type V =Vo + V¢

cos Qt. The experiments were so designed as to vary

independently the parameters V., Vv, and Q . They also

studied the effect of damping and it was achieved by

-

- immersing the column in a fluid. Light oil and water were

used as damping fluids.
(2,12)
Jaeger and Barr investigated the problem of

the stability of a cantilever column subjected to periodic

- vertical support motion. Tﬁey showed that the governing

.equations of motion, initially a partial differential

equation, may be reduced, as an approximation, to an

ordinary differential equation of the Mathieu type by
' (13,14)

.employing the Galerkin Method .

1.2. Purpose and.Scope of Investigation

.The'puipose of the investigation is to study the
dynamic stability of structures subjected to periodic.axial
forces and periodié support motion. A numerical method of
determining the regions of dynamic stability of a uniform
column subjected to a periodic longitudinal force and
different boundary conditions has been developed. All the
previous inﬁes;igatigns had been confined to the testing

of columns with periodic longitudinal forces only. The
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author carried out an experimental investigation of the
parametric stability of columns subjected to periodic
supporﬁ motion. A numerical method formulation is also
presented.

An experimental investigation of the dynamic
stability of portal frames subjected to periodic support
motion was undertaken. The study of the dynamic stability
of frames requires a knowledge of their natural frequencies.
A study was undertaken to find a suitable method for the
determination of the natural frequencies of structurgs.

It was found that the finite element method was an efficient
and powerful method ana was suitable for computer programming.
Computer programs were written and the results obtained for
differeﬁt types of structures were compared with known

experimental results.
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CHAPTER II

NATURAL FREQUENCIES OF PLANE STRUCTURES

BY A FINITE ELEMENT METHOD

2.1. Introduction

A number of methods are available in the literature
for determining the natural frequencies of plane structures and
some of them employ computer techniques. For simple structures
like beams and columns various classical methods are available,
a good account of which may be found in the texts of Timoshenko
(15), Biggs (16), and Minhinnick (17), A brief review of the
major methods available for portal frames will now be presented..

(18,19,20) used the method of receptances to

Bishop
determine the natural frequencies. The forced vibrations of
the system are expressed in terms of the receptances of its
component parts, which have been tabulated for reference. At
the natural frequencies the overall structure receptance
vanishes and by a trial and error method the desired frequencies
are obtained. Bishop's example involved only single-bay, single
storey frames. Gladwell (21) extended Bishop's method of
receptances to the analysis of multi-bay, multi-storey portal

frames. Hurty (22) determined the natural modes and frequencies

of structural systems by an energy method approach, which is a
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variation of the Rayleigh-Ritz method, using mode functions
applicable to the complete system or subsysfems.

. Newmark (?3) proposed a numerical integration
technique for the computation of the dynamic response of'
structures. Chaudhury et al (24) aiso used a numeriéal
integration method for the dynamic analysis of structural
frameworks. However, numerical integration methods are not
suitable for the determination of the natural frequency and the
ﬁormal modes. The finite difference method has also been used
for the determination of the natural frequencies, e.g. Livesley
(25) employed it to obtain the natural frequencies of beams,
Allman and Brotton (26) for plane structures, Cox and Denke (27)
and Rllington and McCallion (28) for grillages. A good review '
of the other available methods for grillages is given by Hendry
(29)'and Rogers (30,

Ariaratnam (31) presented a meﬁhod for analysing the
dynamic behaviour of a plane structure which takes into account
its distributed mass. The method is based on the stiffness
approach of Livesley (32) for the elastic stability analysis of
framewdrks. Force-displacement equations of an individual
member are obtained by combining the solutions of .the differ-

ential equations governing the longitudinal and the transverse

vibrations of the member. The natural frequencies are the roots

of the resulting transcendental equation.
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The matrix formulation of the general dynamic problem

without damping leads to the equation

D] +[x]fef = o] @

where M is the mass matrix

1R

is the stiffness matrix

e

is the displacement matrix
Q is the force matrix

In the early attempts to deal with dynamic problems the
lumped mass procedure was used, and the mass matrix M, therefore,
was constructed by lumping the masses at noQal or station points.
The mass matrix M obtained was a diagonal matrix. The natural
frequencies may then be obtained by substituting Q=o in
Equation (2.1) and this technique is well covered in the texts
by Biggs,(ls) and Hurty and Rubinstein (33),

It is known that when the distributed mass of a body
is replaced by an equal mass concentrated at the centre of
gravity of the section or at node points, two primary inaccuracies
are introduced into the analysis through the implied suppositions
that ‘ -

(i) The resultant of inertia actions of the elementary
masses always passes through the centre of gravity of these
masses.

(ii) A concentrated load produces the same deflection

as a distributed load of which it is the resultant.
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define the state of strain and stress within the eiement. By
applying the principle of virtual work the work done by the
internal forces may be equated to that done by the external
forces, and therebf the solution for the unknown displacements
may be obtained.

Different types of elements and various displacement
fields may be chosen depending upoh the type of the problem.
The mathematical formulation is as follows:-

(2) Displacement field

Let the displacements at any point within the element

be defined by £, a column vector.

£ (xy) = [N] H (2.2)
where d is the column vector of nodal displacements
N is the ’'shape' matrix and is a function of (x,y) and

depends upon the assumed displacement field.

e.g. for a flat triangular element in plane stress (see fig. 2.1).

.. u(x,y) ) G) + O + Gy
v(x,y) x, + XX +agy
di ( ui
Vi
d} = d = (u,
d J
m u
m
v
m
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Archer (34) and Lgckie and Lindberg (35) showed that
an equivalent mass matrix, also called a consistent mass matrix,
gives.better results than the method of lumped masses. A good
account of equivaleﬁt mass matrices is given by Przemieniecki

(36). The vibrations of beams using finite elements has been

shown to yield good results (34,35,37,38,39)
The author has used ihe finite element method for

determining the natural frequencies of non-uniform plane

structures and the results obtained show good agreement with

. known experimental results (40).

2.2. The Finite Element Method

The theory of the finite element method is well
covered in the texts by Zienkiewicz and Cheung (41) ang
Przemieniecki (36). A brief account of its characteristics
will be given.

In the finite element method the actual structure is
divided into elements interconnected only at a finite number
of points, called nodal points, at which some fictitious
forces, representafive of the distributed stresses actually
acting on the element boundaries are supposed to act. The
displacements of the nodal points, E; are the basic unknown
parameters of the problem. A displacement function is assumed

to define the displacement field within the element in terms of

the nodal displacements. The displacement function serves to




i)

Figure 2.1:A trianqular

element in plane stress.
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(b) Strains

The strain at any point within the element may be

= [2]}4} @2-2)

where e is the strain vector

expressed as

e

A~

B 1is the strain matrix and may be easily obtained

from matrix [N}.

~

For the plane stress case

3 r D
e
X

(2.3a)

1}

(0]

M
@J; Q|
<ld w18

+ov
ox

d
IR
<l
I

(c) Stresses

If the initial stresses within the element are denoted
by igo} , assuming general elastic behaviour, the relationship

between stresses and strains may be expressed as

{G.j= [9] (H ) igoD (2.4)

where ¢~ is the stress vector
D is the elasticity matrix containing the material
pfoperties.

Again, for the case of plane stress, we have

{Z’} = (% : (2.4a)
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For an isotropic material

19 0

D iz » 1 0
e 0 0 (L) (2.4b)

2

(d) Equivalent Nodal Forces

Let Fi

{F} = F5 ) (2.5)

define the nodal forces which are statically equivalent to the
free boundary stresses and distributed loads on the element.

The distributed loads

E% are defined as those acting on a unit

volume of the material within the element.

For the case of plane stress

~ v (2.5a)
where Ui and Vi are the components of forces in the x and y

direction respectively and the distributed load is

gfj B {}Y{'E 12.5b)

in which X, Y are the 'body force' components in the x and Yy
directions respectively.

The principle of Girtual work is used to determine the
fictitious ﬂodal forces statically equivalent to the actual
boundary stresses and distributed loads. By equating the work

done by the external and internal forces it may be shown that
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e

~

* - (VBIEIE o o) fo] - Bl @ v
‘/[Iﬁ] H d (vol) ' (2.6)

where the superscript e refers to the element and

T'defines the transpose of a matrix.

]
Let [lc]e =/[B

]T [D] [B] d (Vol) (2.7a)
and is called the stiffnes: matrix.
e _
- _ T
B, =-/ |3 {?jd (Vol) (2.7b)

and is called the distributed nodal force vector.

4 =-/[=]"[]

and is called the initial nodal force vector.

e

go( d (Vol) - (2.7¢)

Having determined the element stiffness matrix, the

 structure stiffness matrix, S, may be obtained by the appropriate

addition of the element stiffness matrices. Since the element
stiffness matrix is generated in the local (member) axis system
it must be transformed into the global axis system before the
addition for the formation of the overall structﬁre stiffness
matrix, K.

For the equilibrium of the assembled structure, external

nodal forces must be equal and opposite to the equivalent nodal

forces

e [a] - lg]

whe;e R is the external nodal force vector.

mae 2] = [x] [af + |2}, + e,
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Hence [K] §d¥=§R§-§F} '-gFi = §P§ (2.8)
where P gives the nodal forces.

Solving Equation (2.8) the unknown nodal displacements 4
may be determined. Once the nodal displacements are known the
strains and stresses may be obtained using relations (2.3) and
(2.4) respectively.

If masses Mi are attached to the nodes of the structure,

with no external forces acting there, we have

a2 .
51§ - M i§i§ = - M {Qi
at

(2.9)

Let the inertia loading be represented by { p} . If the

~

mass per unit volume is@ , then again with no external forces

acting we have

ggj = -Pi;f =-9.E§ (2.10)
at®
since |f § = [E] {i § we obtain
- C ew
and since the equivalent nodal forces due to the inertia loading
lof =
= S s
we have {g}; = [E]Te[g] d (vol) H
- [m]e H (2.12)

where [m]e is the element mass matrix.
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A typical element'mij of the mass matrix represents
the mass inertia load at point i developed by a unit accelera-
tion at point j with all other points statiomary.

The equivalent nodal forces due to the inertia loading,

kﬁ:, may now be added to those already presemt at the nodes, thus

2l = -] + [m])fd] + [z]
—Ml 0 0--0 |

Where[M°]= 0 M0--0 (2.13)
_6”6’6'-:»'4,,_

is the matrix of external masses actually attached to the nodes.

M is the overall mass matrix obtained from the assembly of the

’
A}

element mass matrices, [m]e.
‘The general formulation now writes as

) fed - (0] + ] fi] + ol

iR has been retained in case actual external forces are still

A~

active during the motion.

For the particular case of free vibrations, the above
equation becomes ) ;
[K] %d"= -[M] g?ii (2.15)

where [M] = ([zf] + [§s ]) (2.15a)

A"

Assuming the free vibrations to be harmonic, the displacements

d may be written as

{" iiz = gdwt (2.16)

PR SV ST SR
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where g is a column matrix of the amplitudes of the displace--

~

T

f " ments d
/ w is-the natural fréquency qf vibration
t is the time
Substituting Equation (2.16) in (2.15) it reduces to
®-v*®g=0 O ean

This is now.in the standard form of eigenvalue determination.

2.3 Development of Element characteristics

a) Plane Frames

For the case of plane frameworks a beam element with
three degrees of freedom (two translationsand one rotation%*) at
each node, as shown in Figure 2.2, has been used. The mass
matrix for a beam element, referfed to member coordinate axes

and ignoring its rotary inertia is

140 o} 0 70 o} o
0 156 22L 0 54 -13L,
n' =€aL o 22 42 o 13L -3L
- 20 - 70 o] 0 140 0 o] - (2.18)

o 54 13L2 0o 156 -22L2

0O -13. -3 . 0 -=22L 4L

where ¢ is the éensity of the material of the element
A .is the cross-sectional area of the element
L is the length of the element.
If the element is oriented as shown in Figure 2;3 the

element mass matrix referred to the global coordinate axes is given

by Equation (2.19) wherec:x = cos 6 is the direction cosine of

* Rotation about an axis is represented by a double headed arrow.
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Figure 2.2: Beam element in member coordinate axes.

Global coordinate

Zm axes

Figure 2.3: Beam element in global coordinate axes.
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the member with respect to the X axis, Cy =sine is the
direction cosine of the member with respect to the Y axis.

In a similar way the element stiffness matrix referred
to global coordinate axes is given by Equation (2.20) where
I; = Moment of inertia about the Z axis.
b) Grids
In the case of.grillages, a beam element with three
degrees of freedom (two rotations - and one translation) at each

node, as shown in Figure 2.4a has been used. The mass matrix

for a beam element with respect to member coordinate axes and

ignoring its rotary inertia is

140 /A 0 , O 73/ o , O
, 0 4L¢ -221, o -3L° -13L
m =¢QAL o =221, 156 o] 13L 63
420 0 3 /8 0 0 403/a o 0 | (2.21)
o) -3L2 131 o 412 221,
o) -13L ' 63 0 22L 156 J

where Jy is the Torsion constant.

If the element is oriented as shown in Figure 2.4b the
element mass matrix in global coordinate axes is given by
Equation (2.22); and the element stiffness matrix by
Equation (2.23). |

Based on the above formulation a computer program was
written to obtain the natural frequencies and nodal shapes of
pPlane structures such as beams, grids, frames and trusses. The

members of the structure may be of non-uniform cross-section

and varying properties. a listing of the program is given in

A L it et ki T st AT
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-GI-Cy 6!..0x 2?.

6LC

.'y

TGS ey g @idad) whdos ac

(ﬂ.z..m) CCy _ (AL ( +12c2) 6LCx .‘ (&2-12‘) ’cxcy (A_£2c§ +120}2‘)
I, I,
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i
'F 2 - 2 ) 2 2 3 -|
140CZ+156C2 -16C,C, -22LCy  70C +s4cy 16c,C, 131Gy
; 2 2 2,0002 -
1660y 140c24156C; 2210, 16C, Cy  70cZ+54cZ 1310,
_ 3 o, ‘
. FAL -221C; 221C, Car? -131Cy - 1310, -3L o
20 2 402 2. 15602 10 (2.19)
70Cy+54C; 16C,Cy  -13LC, 140Cy+156C; -16C,Cp  22LC,
" 2 __ 2
16CCy . 7ocy?+54c§ 18LCx  -16CxCy  140Cg+156Cy -221C,
2 : 2
| 1310y 131, -3L 2210, 2210y @
[ (A_Ii cx+1zcy) (A_ﬁ -12)CxC;  -6LCy _chxﬂzcy) (AL 12 CxCy -6IC,
z _ Iz z L
(AL -12 cx +12c£) AL2-12)C Cy - ;Afcf,uzcg) 61.C,
;@ 3 Pefuan
.-emcy - 61C 412 ‘eic -6LC 212
k=EI, x y x (2.20)

6LCx
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2
[ 1407, CcrdLCy

2.2

e2
14o:xcxcy~41. CCy

22LCy

2,
703y oZsL ¢

7050, Cy+312C, C
A

y

: 2
1407,C,Cy-4L"Cy - 22
JxCxCy=4L7CxCy 2210y
2 é 2
14ogxcy+41. Cx -221.C,

- ~221C, 156

2
700%CyCy+3L CxCy  ~13LCy
A

2
70Arxc,-3x.2c§ 1310,
-1310, 63

G1,-4EI ) C, GEI
——t
( T TV ) Cy I yCy
2 2 .
GI_C2+4EI C -6EI C
A i Zyx

L
- (GL+2EL,) C,C ‘6EI
Sl /AL A
o1,.c3+2E1 03 ~8EI, C,
L 0 L 2z

¢4

2 .22 »
7075 C5-3L°C 4312
Axcx v 70 gxcxcy-n-ar, CyCy 1310,
705,06, C,+3L%c,C 2_a:2,2 -
Ax(’x y+3L CxCy 70 JyCy-3L°CE 1310,
A
-131C, 13LC, 63
14055024122 140050, Cy-aL70y0y ~221C
A A y
140050 Cy-412Cec, 1400,02412¢2 2210,
A Ax y : X
-2210, . 22L0, 156 |
~GI,C2+2EI,CZ  -/GI,+2EIy) CxCy -BEI
=X ==y —X"Z20y o=y
il A o s ) L %
2 2
- (GIx+2E1 )cx -61,C%+2E1,02  6EI1,Ck
( L L 4 =V Y —Lzy i
6EI ~6EI -12EI
—Lzycy ?ycx —3Y
L
2 :
GI,Cy +4EI,Cy (GIx-4EIy) CyCy =-BEIyC,
2, 2
QL -4EI,) Cy GI, C24+4EI,C 6EL,,C
— —— —— X
(L,_L) cy i i 12
-6EL - B6EIX 12EI
i e

(2.22) -

(2.23)
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Figure 2.4a: Grid éiément in mémber.coordinate axes .,
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Figure 2.4b: Grid element in global coordinate axes.
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Appendix C .

The program was used to determine the natural
frequencies of the structures shown in Figures 2.5 to 2.8
and the results obtained have been reported in (39). The
results of the program were compared with those obtained
experimentally and analytically by Bishop and Johnson (20,

Rieger and McCallion (42), Cheng (43), and geidan (44),

2.4. DISCUSSION OF RESULTS

Bishop tested the frames shown in Fig. 2.5. Thé
theoretical natural frequencies were obtained by the method of
receptances. Rieger and McCallion employed a finite differehcés
approach in obtaining the theoretical natural frequencies. The ,
frames tested by them are shown in Fig. 2.6. Cheng determined
the theoretical natural frequencies of the fraﬁe of Fig. 2.7 by
a stiffness approach but employed the lumped mass technique in
generating the mass matrix. Zeidan tested a 3-girder and a
4-girder grid as shown in Fig. 2.8.

For the analysis by the finite element method the
frames of Fig. 5 were divided into elements as shown in Fig. 2.9.
In Fig. 2.9(i) and 2.9(iv) each member of the frame is considered
as one element, whilst in Fig. 2.9(ii) and 2.9(v) each member is
subdivided into two elements, and in Fig. 2.9(iii) into 3
elements. Fig. 2.9(vi) shows the frame divided in such a way

that each element is 2" long. The compariscn of results is
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illustrated in Table 2.1.

Figure 2.10 shows two different subdivisions for the
strucfurs of Fig. 2.6. In the first one each member is con-
sidered as one elemsnt, whilst in the second it is divided into
two elements. Since Rieger and McCallion did not'quste material
density for the frames tested by them, the author has used a
value of €A =.400725 1bs. secz/j_n4 based on a specific weight
of 480 lbs./ft3 for steel. The results for Fig. 2.6(a) to 6(d)
and-s(h) are shown in Table 2.2.

Three cases of subdivision as shown in Fig. 2.11 are
analysed for the frame of Fig. 2.7 and the results are showp in
Table 2.3.

For the 3-girder grid of Fig. 2.8(a) two subdivisions
are considered, with each member being taken as one element or
as two elements as shown in Fig. 2.12(i) and 2.12(ii) respec-
tively. For the 4-girder grid of Fig. 2.8(b) only one case,
that of each member as one element, is considered as is shown
in Fié. 2.12(iii). The results are shown in Table 2.4.

From the results illustrated in Tables 2.1 to 2.4 it
can be observed that very good results may be obtained by the
finite element method. If only the first few frequencies are
required a coarse subdivision can yield sufficiently accurate
results. Finer subdivision results in a rapid convergence

towards the "exact" answer. From Table 2.4 it will be observed
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that there are no experimental values for the second harmonic
both for the 3-gi£der and the 4-girder grids. This is due to
the fact that Zeidan's experimental work was concerned with those
nodes that are stmetric with respect to the central longitudinal
axis of the grid. Thus, the second frequency reported by him is

actually the third frequency of the complete set.

The program also gives the eigenvectors together with the
eigenvalues, from which the modal shapes may be determined. The
modal shapes corresponding to Fig. 2.9 (iii) are illustrated in

Fig. 2.13.

Due to the coarse idealization of the structure the
points of contraflexure cannot be determined unless a finer
subdivision is used. Such a fine idealization was not undertaken
since the frequencies compared favourably with the experimental

values.

2.5. CONCLUS IONS

From the examples presented in this Chapter it may be
concluded that a éimple beam element may be used to obtain the
natural frequencies and modal shapes of structures of non-uniiorm
cross-section and varying properties. The presence of different
boundary conditions presents no basic difficulty and may be easily

incorporated. Though the effects of rotary inertia and shear

———
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deformations have not been.iqcluded they can be easily
incorporated. For most structures in which the ratio of the
length fo the depth is large, ignoring the rotary inertia does
not appreciably affect the results (40). This was confirmed’
for a number of cases and the program for portal frames is

presented in Appendix C and it includes the effect of rotary

inertia.
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- Figure 2.7: Cheng's plane truss.
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(ii)

(iv)

Figure 2.9: Finite element idealizations of Bishop and Johnson's frames.

(v)

(vi)
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Figure 2.10: Finite element idealizations of Rieger and McCallion's

frames.
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Figure 2.11: Finite. element idealizations of Cheng's truss.
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Figure 2.12: Finite element idealizations of Ziedan's grids.
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(iii)

Figure 2.12: Finite element idealization's of Ziedan's grids.




(a) First mode.

(b) Second mode.

Figure 2.13: Modal shapes of portal frame.
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(c) Third mode

\/

6<d

(d) Fourth mode

Figure 2.13: Modal shapes of portal frame.
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' Fiqure 2.13: Modal shapes of portal frame.
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TABLE 2.1

SYMMETRICAL FRAME

Bishop and Johnson Finite Element Solution
- Calculated Experimental case (i) case (ii) case (iii)
cps. cps. cps. cps. cps.
36 36 36 36 - 36
145 145 171 143 143
233 233 368 235 233
256 254 4021 256 253
513 517 4318 579 517
628 626 7349 757 634

UNSYMMETRICAL FRAME

' Calculated Experimental case (iv) Case (v) case (vi)

cps. cps. cps.- cps. cps.

38 39 39 39 39
134 135 167 135 134
194 ' 197 _ - 378 196 194
346 346 . 3532 351 345
439 436 5151 512 432
606 598 7426 717 585
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15 TABLE 2.2

No. of Bays Rieger and McCallion Finite Element Solution

calc. Exper. Case (a) Case (b)
cps. cps. cps. cps.
1 152 152.7 152 152
602.8 602.8 714 601
980 1544 986
1069 6756 1071
2 142.3 142.3 140.5 140.1
; 583 583 682 581 .
734 736 963 733
990 986 1600 994
1072 1067 5181 1067
3 138.3 138.6 137 137
575 574 669 573
r 663 663 818 660
> 812 808.5 1148 810
994 986 1626 997
1072 1064 4527 1064
4 ’ 136 137.3 135 135
571 571.5 663 569
626 614.5 754 615
736 739.5 965 734
850 849 1258 850
995 989 1640 999
1072 1064 3651 1062
8 132.5 132 132 132
‘ 565 565 653 562
584 580 682 © 581
620 619 742 617
673 672 835 669
736 742 964 733
801 792 1118 799
862 827 1290 860
: 904 871 1342 889
—~ 998 998 1663 1002

L 1072 1069 2037 1057
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TABLE 2.3
Cheng . Finite Element Solution
i Calculated Case (i) case (ii) Case (iii)
rad/sec. rad/sec. rad/sec. rad/sec.
737.5 760.9 743.6 739.7
1116.5 1164.5 1123.5 1120.0
1519.4 1712.1 1573.3 1534.0
2129.2 1780.0 1758.7
3616.6 2713.3 2636.6
> 7940.6 3017.8  2840.1
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Experimental

cps.

30

49

Experimental

cps.

29.8

40.0

TABLE 2.4

3=-@Girder Grid

Finite Element Solution
Case (i) Case (ii)
cps. cps.

29 29
35.5 35
51 50

4-Girder Grid

Finite Element Solution
Case (iii)
cps.

26.4

31

40.5
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CHAPTER III

PARAMETRIC INSTABILITIES OF 'COLUMNS

3.1 Introduction

ﬁhen a column is subjected. to a periodic longitudinal
force, or when its base is given a periodic vertical motion the
differential equation of motion reduces to a Mathieu equation.
In Section 1.1 it was shown that for the caée of a simply
supported column carrying a periodic axial load (V. + V¢ cos
2t), the equation of motion, Equation (1.2), may be reduced‘to
the following form of the Mathieu equation

£ +/3§ (1-2u cos @t) £ =o (1.10)

To investigate the stability of the motion the
solutions of the Mathieu equation have to be studied. Since
Equation (1.10) is a second order linear differential equation,
it will have two independent non-zero solutioné. (A brief
account of some of the properties of the Mathieu equation is
given in Appendix A.) 1If all the solutions of Equation (1.10)
are bounded for all positive values of t, the corresponding
motion is regarded as stable; however, for an unbounded
solution, the resulting motion will continue to grow with time

and is termed as unstable.
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One may seek the periodic solutions of the Mathieu
equations in.the form of a Fourier series. For a periodic
solution with period 2T, where T is defined as 2f, the

Q

solution may be obtained in the form

£(t) —'Z (a sin kQ t +Bk cos kQ k) t) (3.1)
k-l35,...

Substituting the series (3.1) into Equation (1.10)
and equating the coefficients of sin kR t and cos k& t, the
2 2

following system of linear homogeneous algebraic equations is

obtained

( ’922> 1°-
(1-k29 )ak l‘(k— ‘5k+2)=° (k
(1 -1 -‘%22>51-}153=o

(1-k292)5k ,u(b_ +bk+2>-o (k =3,5,7,...)

3,5,7,.-.).

The non-zero values of Ek and Ek require that

l+p- 522
4,30

_/1 fo)

- - 2 - =
la 2;?‘ I d e o . o
o]
(3.2)
o - 1-25 gﬁz ...
44
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For periodic solutions of period T, one may seek the

solution in the form

f£(t) = b +Z (@ sin kQ t) +i>k cos kQ t) -
°© x=2,4,6, ... 2 2 (3.3)

which again, after equating coefficients, results in the

following system of equations
2\ 3 =
(1 -%2> a, - fayg =o
o

(1 N %%z) % (2 +.£k+2) =o

bo-;c b2=o

(1 -%2_2)52 ~p (28, +5,)=0

( 'E’f‘ozzz);’k -H (Ek-z +Byyp) =0

For non-trivial solutions

2 -
1 %—2 J/ o . . .
o
e 1-% -u - - . =0 (3.4a5
o
o g 1-89° . . .
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(3.4Db)

équaéioné (3:2) énd 23.4) are calied.the equations of

boundary frequencies.

The boundary frequencies are defined as

the frequencies of the fluctuation of the external loading

corresponding to the boundaries of the regidn of instability.

As a first approximation, we may determine the

boundaries of the principal region of instability, by retain-

ing the upper diagonal element only, and equating it to zero.

1p -2,
4#%

which gives

-2, 137

=0

(3.5)

The accuracy of Equation (3.5) may be improved by con-

sidering the terms contained in the first two columns and rows

of Equation (3.2)

144 2
46,
-+
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which gives

2 .
Q = 230/1 o F M (3.6)
g+oU .

The last term under the square root takes into account the
correction for the second approximation. This correction
increases with/ but even for a value of / = 0.3, the error
is less than 1%. Hence, for all practical purposes, Equation
(3.5) is sufficiently accurate.

Similarly, for the second region of instability, we
get the following approximate formulas for fhe boundary

(6)

frequencies .
Q=5°/1+%,uz Q=,go/1--2,a2 (3.7)

and for the third regions of instability we have

O_2 _ g2 3.8
3 50/1 849__/;1. (3.8)

The typical diagram for the regions of instability is

shown in Figure 3.1.

3.2 The Proposed Method

The author has developed a numerical method approach to

(45). A uniform column

obtain the regiors of dynamic stability
is idealized by a system of lumped masses and massless springs
to represent the stiffness of the column.

It is assumed that the mass and stiffness of each

segment is concentrated at its end. For instance, if the length
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of the segmeﬁt is a, and its mass per unit iength is AP, then the
mass of the segment is replaceé gfitwo equal concentrated masses
Zkea/zﬂét the ends. Tt is shown that the equations of motion

are of the Mathieu type and from théir solutions one ﬁay
establish the regions of dynamic stability. From the equation
of motion it is also possible to obtain the natural frequenéies
and buckling loads; these when compared with known values serve
as a measure for the validity of the idealization. The following
three éq;es have been studied. |

Case A

Column hinged at both ends and subjected to a periodi-

cally fluctuating axial compressive force. (Figure 1.3)

Case B : Column fixed at the base and free at the top and sub-
jected to a periodically fluctuéting compressive
farce. (Figure 3.2)
Case C : Column fixed at the base and free at the top and sub-
jécted to a periodic support motion (Figure 3.3)
- 3.2A.

Case A: Simply Supported Column Subjected to

Qeriodically Varying Axial Force

The mathemgtical development is based on the following

 assumptions:



)

Fes

]

¢ by

t

/

59

/77777

Figure 3.2: Column subjected to periodically fluctuating

compressive force.

/7777 'Ius (€

-

Fiqure 3.3: Column subjected to periodically varying vertical

support motion.
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1. The column consists of links of equal length, a, excépt the
first and last links which are of length a/2. It may be noted
that the total mass and stiffness of the first and last links
is concentrated at node 1 and n-1 respectively.
2. Vertical accelerations are so small as to be neglected.
Therefore, at ény instant we have the same vertical force at
each end of . link.

The idealization is shown in Figure 3.4. The spring
stiffness is designated by K. The forces acting on the ith

link are shown in Figure 3.5. Clearly

x —1 _]_‘, ] A
i .a(z cos 91 + cos 92 +. . . . +cos 9£>
(1 . . .
Y, = acg sin 91 + sin 92 4. . . . +sin 9{) (3.9)
Hip - B =M 5%,

where H represents the horizontal shear forces.
If 8's are small, the equation of motion for the i-th

member writes as
-v.af +H _a-M, .ay. =K - - -
o i i-1 i-1"¥53 i-1 (91-1 95_) Ki (ei 91+1> (3.10)

Similarly, for the (i + 1) th member, we get
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- .a=-M.a¥. = 9 - K 0. 3.11
Vol 91+1 * Hia-M;ay; = (61 i+l 1+1( i+l” 1+2> ( )

Sﬁbtractlng Equation (3.11) from (3.10) and simplifying gives

~v a ( +1> + M, a2(9 *0,+ 8 +. .. +5i) =K (ei_l- ei>

- - 3 . . 2
ZKi (Qi 91+1)'+ K:|_+1 i+l . 1+2) (3.12)

If all masses and springs are equal, Equation (3.12) reduces to

Vo2 (ei - ei+1> + Maz(é% + éz +. . . 4+ 91>

=K 91_1 -36,+38 - 9i+2> (i=2,3, . . . n-2),  (3.13)
where n is the number of members.

Similarly, the first and second members yield

.voa(el-92> 1 %2 él = K(—3 g, + 49, - 93) (3.13a)

and the (n - 1) and n-th members yield

-V, a n-l 9) + M 91+9 +o. . 1) K( 0 _ 1+39)(3 13b)
Since there are n coordlnates and since there is an equation of

constraint, arising from the geometry,

a sin§ +asinf +..... tasing = o
2 1 2 2 (3.14)

there are only (n - 1) degrees of freedom and thus (n - 1)
equations of type (3.12). 1It may be noted that the above

equations may be also obtained by the Lagrangian formulation.
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Figure 3.4: Idealization for column simply supported at both ends.
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i-th member

Figure 3.5: Free body diagram of the i-th link.
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In matrix form the equations become
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In the matrix which appears above on the right hand
side of Equation (3.15) the last two rows have a non-typical
form thch arises from substitutiqn for Qn in ferms of 6, 92,
. . . en-l utilizing Equation (3.14).

By applying Galerkin's Method as applicable to
discrete systems (see Appendix B) equations (3.15) may be

reduced to a single equation for each mode of the type

AATENA Ma2g + A; K@= o (3.16)

where the A's are the coefficients associated with Vor m.and k.

From Appendix B and in particular from Equation (B.5)
it may be seen that the application of the Galerkin Method
requires the knowledge of the modal shape vector,Q.. To deter-‘
mine Q one sets V, = o, then Equations (3.15) represent the
free vibration case. If Q = qei wt, where g is a column matrix
of the amplitudes of the displacement Q, w is the natural
frequency, there results

(S-w M=o (3.17)
Equation (3.17) is in the standard form for eigenvalue problems,
and its solution yields the required modal vector .

The natural frequency may now be determined from

Equation (3.16) as

sN
0
p-

(3.18)

N ¥
i
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The Euler buck].:!.ng load may also be obtained from

' .. Equat:.on (3.16) by putt:.ng 0= o,

=;f}§ 3 . : | (3.19)
")'la : ' _

 Substituting Equations (3.18) and (3.19) in Equation (3.16)

.we get

6+w2@-47)9  114 ‘ :f  :62m'

: SJ.nce Vo =V, + Vt cos Q t, Equat:.on (3 20) gives

9+ﬁ (1-2# cosQ t)B =0 g o (3.21)

Equation (3 21) is the dlfferentlal equatlon of

mot:.on for the part:.cular mode and is of the Mathieu type.

A uniform colgmn of length L was analyzed by this

_pi:ocedure' .and the results obt'ained are 'showp in Table 3.1.

From this. 1t may be seen that as the column J.S divided into

more parts, the values for the natural frequency and the Euler

 buckling load converge to their true values. As regards the

mapping of the principal zone of instability each subdivision
of the column into elements yields its associated Mathieu
equatlon. Figﬁre 3.6 illustrates the rapid convergence to the
true conflguratlon for the prmc:.pal region of instability.

Even for the case of n = 6, though the results obtained for the

- natural frequency and the Buler buckling load are not very
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I

 accurate, the error for the region of dynamic instability is

not very great. ' o

3;2B:;Case B:.Céntilever Célumn Subﬁeéted to Periddic Akial Foféé.
The mathematical formulation.for Case B is based on
thg following assumptions:
L. on account of thg'base fixity the first link does not
rotate and remains vertical.
'2. Ve;tical accele;ations may be neglected as for Case A.

Consider the column idealization of figure 3.7.

. Clearly
y; =2, sin 91-l-a2 sin 92+...+a sin 9 (1—12,...,n)
1M'2 1 2 1 2 (322)
T, = + Vo + ooe +1M ¥
o~ e = = Y
i ey r1 3 272 2 078
=1M1( ) +1m ( bo+a ) +...
3 1 > 2\11 22
- ° \2
+.:2LMn(a191 vay by 4. v a8) (3.23)

where Te 1is the kinetic energy of the system
ﬁe is the potential energy of the system
h = a, cos 91 +a, cos 92+ e+ A cos O
QTe = M. 8 )
-’a_é_j-_ Mlai(a191+a292 ee. + Q. G + M, +1a a:'.@l-!-a2 92+..+a1+10

-+...+Ma.aé+aé+...+aé)(i=12..n)
i 22 n 1Ereccy .
B (11 n (3.23a)



e

Figure 3.7: Column idealization for cases B and C

( 8, assumed to be zero).
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-
- _ ,
.?EE =o (i=1,2, ...,n) (3.23b)
’()_Bi
e = -k + (K. + K 0.- .
T;‘ ‘ iei-l ( i i+l) iKy 9j_+1 -Voaie'i (i= 2.3....n(-31)24 )
1 .242a
T, = (K, +K,)0) - K,8, - V 2,6 (3.24b)
76,
3Uie = Kby + K 0 - Voin 0, (3.24c)
Substituting in Lagrange's equation
Eg_.(%%%) - ?;'.r_e. + ?Ue = 0, (i = 1r210001n), we obtain
1 205 7L
[ 2, . . J1oa 5
a; My alaZM2 a1a3M3 ..... alanbl&,1 91 a; oy
2 % %* A
azaIM’; a; M, a2 My ..... azanb'l’;’1 6, a, 0,
z a.a Mt aja.M* amt a.a M §3-V a; 6,
39773 37273 33 " 3 nn o 3
a.aM*aaM* a_a.,M* aZM* 5 a.9
["™m1ln “n 2 “n%3"% o n n n a'n
(K1+K2) "Kz o O  ceceescscscccscesscans (o] (91 W
-Kz (K2+K3) -K3 O  ceeccocccscscsscaces (o] 92
o] -K3 (K3+K4) “Kp eeecieeiiiiiiia.. (o} 93
+ . - % o >= o
. . . (3.25)
g - . ) o ) Ocevunnnn K, (Kn-l+Kn ) Ky 18,4
o o o Oceccccos o -K, Kn \gn )
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where Mf = M. + M,
i i

i +1 + o e . +Mn (l=1’2’ . . L] n)

In abbreviated form we may write
M é - Vb 3_9 +58 =o0 (3.25a)

The results for the idealization of Figure 3.7 are
shown in Table 2. It may be noted that if one were to follow
the procedure for Case A for the determination of the Euler
buckling load the results obtained would not be very good.

This is because the modal shapes for buckling under a tip load
and for free vibration of a cantilever column are significantly
different. The error in the buckling loads determined on the
basis of the free vibration modal shapes is quite appreciable
even after applying the Galerkin Method.

A superior method is due to the fact that the buckling.
loads are the latent roots of the matrix § and this procedure
has been used in obtaining Table 3.2.This is a more general
method; however, there is no advantage in using it for Cases
A and_c because the free vibration modal shape vector itself
yields good results.

Figure 3.8 shows the region of principal instability
for a uniform coiumn of length L free at the top and fixed at

the base. It may again be observed that as the number of

segments increases the curves converge rapidly to the true one.
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3.2C. : case C: Cantilever Column Subjected to Periodically

Varying Vertical Support Motion.

In addition to the assumption of base fixity .(as in
Case B) it is now assumed that the vertical acceleration through—
out the length of the column remains constant. A step-wise

variation of the axial force in the column, resulting from this

- latter assumption, is shown in Figure 3.9. The mathematical

“development is based on the idealization shown in Figure 3.7.

Consider the top link of the column shown in Figure

3.7. The forces acting on it are shown in Figure 3.10. Taking
moments about mass M, ; gives

M o% a8 -my a, =K (en- g _ 1)  (3.26)

The vertical equilibrium of free-body of mass M, gives

X = (3.27)
M* =V
From (3.26) and (3.27) we get
Vo2, 0, - MF, = xn(an - n_1> (3.28)

‘Similarly, for the next link, taking moments about mass Moo

CE‘J.gure 3.11) gives

M"‘xn (anen -1) n-1 n—l ( n-1 n 1\) M ¥ (a ta, 1)
-Mn-li;n-l a .t Kn—l (Gn_z - n—l) = o V ‘_ ' (3.29)

From the vertical equilibrium of the free-body of mass M,_, ve

get
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Figure 3.9: Stepwise variation of axial force.
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Figure 3.11: Free body diagram of n-th and (n-1)th links.
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Substituting Equations (3.27) and(3.30) in Equation (3.29)

and subtracting Equation (3.26) from it results in

Vo121 %1 - (Mni;’n + Mn-lyn-l)an-l = K1 (%178 ) - K (6,- 9n_1>

(3.31)
Recasting Equation (3.26) and Equation (3.31) in terms of
deflections gives
v - -M = -{r
aln ¥ ) Myay=ry (=, + S.) Ypy * S ¥, , (3.26a)

and
vn_l(y -y )-(Mir‘mnlif a =8 Y -f 45 _4§
n-1 n-2 n“n "n-I'n-1/"n_1 n-1 .3 \ n-] n-1"nj n=2
nn

r -ry
+( n-1 +r1_1 + Sn)yn_l (3.3.1a)

where

=

o]
1]
e

Sn=Kn

an-1
"n-l = Ky
an-1
s -

n-1 = %1 , etc.
an_z

In this way, the equations of motion in matrix form are

written as



( )
-
Vlyl Mlal Mza1 . .
V2 (yz-yl) o M2a2 . .
Vno1 (Yno1¥n-2) o o . .
\ Vn (yn—Yn_l) ) i [ o . .
(r1+r2+32) - ry o : o
-(r2+82+53) (ra+ry+sy) ~X, o
84 -(r3+53+a4) (r3+r4+s4[ T,
o 8, -(r4+s4+35) (rq+rg+sg)
o] . . . . . . .
o .

-(rn_l+a

Mp_) @n-l Mnan-;

o M nan

Sn

- )

n-l+sn) (rn-1+rn+sn) -X

-(rn+sn)

n

b of
n

?

(3.32)
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Since a step-wise variation has been assumed for the
axial forces, they may be expressed in terms of the base axial
force, V . As before, applyihg the Galerkin Method, Equations

(3.32) may be reduced to a singie equation

'l]_Vy+”12 Mai.f+7l‘3.§y =0 . . (3-33)
where "'s are the coefficients associated with V , m, and K.

By putting V = o, the natural frequency is obtained

as

2.1
w'="3 K : (3.34)
N2 Ma? .

and if y = o, we get

V*. = -,13

—mune

1

(3.35)

ol P

where V* denotes the inertia force which if applied at the base
would cause the column to buckle (cf. buckling of the column
under its own weight). If the base acceleration varies, the
axial force in the column will élso vary; If the base acceler-
ation varies in a periodic manner the resulting equations of
motion (Equation (3.33) will be of the Mathieu type).

Sﬁbstituting Equations (3.34) and (3.35) in Equation
(3.33) yields

o+ (1- %*)Y= o (3.36)

Now v =0f1as%




78

where | A = cross-sectional area
Z= acceleration
Let the support motion be u, = C cos Q t where C is
the amplitude of the base motion, then U, = -Q2C cos Q ¢,
whence substituting in Equation (3.36)'we get

Fo+w? (1 +01a Q% coth)‘Ay =0

v*
., 2 2 .
or Y +w (1-+bQCcosQ t)y = 0 N (3.37)
where b = PLA ' (3.38)
V*
Let €=1bQ% -. : (3.39)
Then we get § + v (L +€ cos@ t) y = o (3.40)

Equation. (3.40) is the familiar Mathieu equation.

| The princip&l region of instabiiity corresponding to
the fi:st mode for a cantilever was determined by the proposed
method and is shown by full lines in Figure 3.12. The column
was divided into il parts as shown in Figure 3.13.

An experimental investigation was also carried out to
determine the principal region of instability of such a canti-
lever column. An aluminum specimen 23.5" long, 0.75" wide and
0.040" thick was used. The circled points in Figure 3.12 are
experimental observations and it may be seen that these results
are in good agreement with the theory. A comprehensive account

of the experimental set-up and results is given in Chapter IV.
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Figure 3.12: Region of instability for a cantilever column subjectéd to periodic

base motion (first'mode).
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The principal region of instability corresponding to

» the second mode for the cantilever of Figure 3.13 is shown in

Figure 3.14. As before the full lines refer to the proposed
method whilst the experimental points are represented by circles.
It may be observed that the agreement between theoretical and

experimental results is good.

3.3 CONCLUSIONS

The analysis presented shows that the idealization of
columns by massless springs and lumped masses may be used for
the construction of the regions of dynamic stability. The
equation of motion for each mode may be tfansformed into its
associated Mathieu equation whose solution yields the stability
zones. It is shown that as the column is divided'into more
parts, the region of instability converges to the true one. The
method is general and it may'be applied to columns with different
end conditions. A non-uniform column may be treated easily by
an appropriate subdivision.

The above analysis was carried out by computer programs.
The programs for Cases A and C are presented in AppendixD. The
program for Case B is similar with only slight modifications.
For a particular subdivision the values of the natural frequencies
and the buckling load are given for Cases A and B. For Case C,

the program gives the value of the natural frequency and the




o

inertia force, V: which if applied at the base would cause the

column to buckle. From these values the stability regions may

be obtained as discussed above.



> ™ &4
TABLE 3.1
.No.
of 10 15 EXACT
Parts
Mod Nat 1 Buck 2 Nat Buck Nat Buck Nat Buck Nat Buck Nat Buck
Q e Freq Load Freq Load Freq Load Freq Load Freq Load Freq Load
1 64,0, 8.0 81.0| 9.0 91.19 9.55 95.48 9.77 97.28 9.89 97 .41 92.87 |
2 256.0( 16:0 | 729.0 27.0 1193.65 | 34.55 | 1436.47 37.90 1507.23 ] 38.83 1558.56 | 39.48
3 S 1296.0| 36.0 4283.,81 65.45 |. 6561.18 81.00 7313.67 85.52 7890.21 88.83
4 8181.39 90.45 | 17920.85 | 133.87 |21781.91 | 147.58 | 24936.96 | 157.91
5 10000.0 100.0 {36149.39 | 199.13 |49242,.28 | 221,90 | 60881.25 _246.74
1 Nat Freq = Natural Frequency (Coefficient x’EiI
' . n 1
2 = Buckling Load (Coefficient x EL ,

Buck Load

e

€8
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TABLE 3.2
No.
of 11 16 EXACT
Parts
ﬁ d Nat Buck .Nat Buck | Nat "Buck Nat Buck Nat Buck Nat Buck
ode - Freq Load Freq Load Freq Load Freq Load Freq Load Freq Load
1 3.455 2.343 3.479 2.411 3.499 2.447 3.511 2.462 3.514 2:465 3.516 2.467
2 18.39 13.657 | 19.47 18.00 20.86 20.61 .| 21.68 21.80 - 21.87 22.02 22.Q3 22.20
3 49.70 33.59 | 52.57 50.00 59.03 58.58 60.44 60.29 61.70 -61.68
4 84.91 79.39 110.70 109.20 116.09 115.58 120.64 120.90
5 138.42 97.55 172.23 168.71 186.77 185.50 199.81 199.83
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Figure 3,14 : Region of instability for a cantilever column subjected to periodic base

motion (second mode).
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CHAPTER IV

EXPERIMENTAL INVESTIGATION OF PARAMETRIC

INSTABILITY OF COLUMNS

4.1 Introduction

For the most part previous experimental investigations
have been directed towards studying the parametric instability
of columns subjected .to periodically varying axial forceé. The
author performed tests on a cantilever column to determine
experimentally the regions of dynamic instability when its base
is subjected to periodically varying verfical motion. The test'
specimen used was an aluminum alloy, 24S-T3; 3/4" wide and
0.040" thick. The specimen was clamped by means of screws and
nuts as shown in Figure 4.1. The length of the column from its
free tip to the centre of the 'clamps' was 23.5"; Since an
aluminum alloy was used thé "defbrmationé“ at instability were
fairly large and could be observed visually as evident from
Figures 4.3 to 4.5. As the investigation was of a qualitative
nature, i.e. it was intended only to establish whether the
motion was stable or unstable, no elaborate instrumentation was
necessary. The motion was termed as unstable when the column

departed from its initial configuration. This was quite easy




)

Figure

4.1: cantilever column mounted

on shaker
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Figure 4.1: Cantilever column mounted on

shaker
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Figure 4.,2: Schematic diagram of the experimental set up.
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to detect.

To measure the amplitude of oscillation of the base

| a Sanborn displacement transducer (D.C. excited) was used. A

schematic diagram of the experimental set-up is shown in

Figure 4.2.

4.2 Equipment
The equipment used in the experiments is described

below:-

1. Function Generator

The function generator used was the Hewlett-Packard Model

33002 which is capable of generating three types of waveforms,
namely sine, square and triangular at frequencies ranging from

0.01 Hz to 100 kHz. For frequencies below 10 kHz the sine wave

distortion is less than 1%.

2. Power Amplifiers

A Ling Model 300-2 power amplifier was used to drive
the shaker manufactured by the same firm. The power amplifier

was matched to the shaker used.

3. Shaker

A Goodman's V50 shaker manufactured by Pye-Ling was

employed. The output force is generated when a current flows

e R A 3 A b g b Rt S s M o o e e gt s b gt o
St R R O A R AT S SN B ot S0

ER DL XRU NP S Ny

RSN E FAR ek B AT e i e

& LY e R OB

T P IRERE e
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through a movipg coil placed in a magnetic field produced by'a
permanent magnet. The coil is driven by the amplifiers and the
' mo;ion of the coil is determined by the frequency and mode of
the génerator. The output force is imparted to the stfuctﬁré
by means of a flexible diaphragm which moves with a maximum’

displacement of 0.7 in. between stops. The shaker can generate

a maximum force of 48 lbs. A major drawback of this type of

shaker is that the amplitude is inversely proportional to the
applied frequency and hence at high frequencies the amplitude

is very small.

4. Amplitude Measurement Device

- A Sanborn displacement transducer, denomination

7DCDT-1000, was used td measure the amplitude of the movement

EHTESRY

PR £

of the base of the cantilever column. The ﬁoving core was con-
nected to the base. A 6 volts. D.C. powef supply was used to E
excite the transducer. The device is.cépable of measuring dis-
placements of up to + 1 inch with an output of 4.8 volts for full
scale displacement. Linearity of the output is guaranteed to

0.5% of full- scale under the conditions used in the test.

O L LIEN T T TP 197 3% T CAP LR N CARAE SN

5. Recording Unit

The output from the displacement transducer was recorded

R TP Y AN TR

(O KPR

on photographic paper by an ultra-violet recorder, type 1050 manu-

factured by New Electronics Products Ltd., London. This recorder

f T e Fo S 20 Y SISO
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is of a galvanometric type: ftherefbre, the input impedance is

low (typically around 300 ohms). 'To retain the linearity of the

- transducer output with displacement an amplifier, Budd-Brown

type 1631, was used so as to pfovide the required high input

impedance, i.e. to match the galvo-impedance to the transducer.

6. Strobotac

A Type 1538A strobotac manufactured hy the General

Radio Company was used. The Strobotac consists of a power

supply, an oscillator for controlling the rate at which tﬁe

lamp is flashed and a Strobotac or flashing lamp. The fréquenqy
of the oscillator and hence the flashing speed of the lamp.cén
be adjusted to any desired value between 100 c.p.m. to 400,000
c.p.m. .The ffequency controller is gradﬁatéd directly in c.p.m.
and was used to measure the frequency of the various instability

modes .

4.3 Test Procedure
A sinusoidal waveform at the required frequency was
generated by the function generator. This signal was amplified

by the power amplifier and fed into the shaker thereby imparting

a vertical sinusoidal motion to the base of the cantilever column.

The base was directly mounted on to the shaker spindle.

The determination of the regions_of dynamic instability

iR i SRR b e s e S R

RN AT R T PR FRNE P TF R AN
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entailed the measurement of the frequency and the amplitude of

the base motion. For each frequency increment the amplitude

' was increased slowly.until the column became unstable. If no

instability occurred at that frequency, the frequency was

increased and the whole procedure repeated. When instability

- was encountered at a certain frequency the determination of the

'‘critical' amplitude which caused instability was repeated at
least five times_to get an average reading. It was observed
that the variation from the average was small. The record of
the output from the displacement transducer was used to obtain
the frequency and amplitude of the motion. The frequency of

the inst;bility mode was measured by the strobotac.

The modulus of elasticity was obtained experimentally
from four tension test specimens made from the same strip as the

column. The average value obtained was E = 9.82 x 106 psi.

The sample was weighed and its density was found to be

.00025273 lbs-secz/in4.

4.4 Test Results

The average values of the amplitude of the support
motion corresponding to the first mode are given in Table 4.1,
and those corresponding to the second mode are given in

Table 4.2.

o
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Figures 4.3, 4.4, 4.5 respectively show the first mode,
second. mode and the third mode instabilitigs'of the column cor-

responding to the first region of instability.

The amplitude of the base motion corresponding to the
third mode was very small and could not be measured. Hence no

readings are reported.
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Figure 4.3: First Mode Instability

Figure 4.4:

Second Mode Instability
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Figure 4.5: Third mode instability




Figure 4.5: Third mode instability
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TABLE 4.1

AVERAGE READINGS OF THE AMPLITUDE OF THE
'SUPPORT MOTION CORRESPONDING TO THE FIRST MODE |

FREQUENCY - | AMPLITUDE
(c.p.s.) o (inches) .

4.52 0.2786
54 ~ 0.2053
4.56  o0.1542
4.58 0.1120

4.60 ~ 0.0794

4.62 ) : 0.0538
.64 0.0740 i
4.66 . 0.1538 ;
4.68 0.1955
4.70 : 0.2411
4.71 0.2728 {
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TABLE 4.2

AVERAGE VALUES OF THE AMPLITUDE OF THE
SUPPORT MOTION CORRESPONDING TO THE SECOND MODE

' FREQUENCY AMPLITUDE

(c.p.s.) (inches)
29.4 0.08860
29.6 " o 0.07735
29.8 0.06327
30.0 0.03836
& 30.2 0.01240
d 30.4 | 0.01072
130.6 ' 0.02001
30.8 0.03600 é
31.0 | . 0.05170 :
31.2 . “ 0.07541 - ;
314 | 0.08326 :
4 5

TR —
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CHAPTER V

EXPERIMENTAL INVESTIGATION OF PARAMETRIC

INSTABILITY OF PORTAL FRAMES

5.1 Introduction

An experiﬁental investigation of the parametric
instability of portal frames was also undertaken.' The same
criterion of instability as for the columns was adopted in
this case. This necessitated that the structure be such tﬂat
its instability modes could be observed visually. To achiévé
this, different types of frames of variogs materials were con-
structed and tested. As remarked earlier tﬁe characteristics
of the shaker are such that at high frequencies the available
output amplitude is very sﬁall. Therefore, the frame had to
be designed to permit the possibility éf occurrence of as many
of thé‘modes as possiblé. The finite element method was used
in éelecting an appropriate shape and size. A six storey,
single bay porfal frame was considered to be a suitable shape.

The first frame was made from spring steel and was of

the type shown in Figure 5.1. It was observed that this frame

was very stiff and only the first mode could be observed visually.
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The second frame, similar to the previous one was made
from aluminum, denomination 24S-TO. This frame was found to be
too soft and it suffered inelastié changes of configuration when
disturbed violently. Consequently, the third frame was made from
aluminum of a slightly stiffer variety, denomination 24S-T3. This
frame was used for the determination of the regions of dynamic
instability. From. the tension test on six specimens the modulus
of elasticity was found to be 9.5 x 106 P.s.i.

All the above frames were constructed from strips.3/4"
wide and 0.040" thick. The same section was used for the columns
and beams. The beams were spaced at 6" centre to centre and were
joined by screws and nuts to the columns by 1/2" x 1/2" x 1/16"
aluminum brackets as shown in Figure 5.1. International locking
washers were used to ensure that the nuts did not become laose
during vibration and were found to perform satisfactorily. The
fra&e was clamped to an aluminum plate 5-1/4" x 3" x 3/8" which
was directly mounted on the shaker. |

The testing procedure adopted was the same as for the
cantilever qolumn. For a particular frequency the amplitude was
increased till the.frame became unstable; the corresponding
frequency and the amplitude were measured by means of the Sanborn
displacement transducer. The experimental set-up is shown in

Figure 5.2.
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The first four modes were observed visualiy and are
shoﬁn.in Figures 5.3. The above photographs are for the natural
modes corresponding to -the principal region of instability. The
instabilities corresponding to the first secondafy region (i.e.
the second region of instability) were also detected visually
for the above four natural modes, but the amplitude of the
instabilities was smaller, as was to be exéected. The frequency
of the instability mode was measured by the strobotaé. A movie
of the development of the instability modes was also takén; for
which the author is greatly indebted to Professor B. Gersovitz
and Mr. W. Hillgartner for their assistance and advice.

The amplitudes could only be measured for the first
three modes. For the fourth mode the amplitudes were so small
that they could not be detected by the deflection transducer.
The experimental readings are given in Tables 5.1 to 5.3 and are

plotted in Figures 5.4, 5.5 and 5.6.

The natural frequencies for the first four modes in
c.p.s. as estimated by the finite element method and as obtained
experimentally were as follows:

ﬁbde 1 2 3 4

Finite Element 3.83 12.75 22,77 34.33

Experimental 3.80 13.7 23.5 36.0
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a) First Mode

Figure 5.3:

b) Second Mode

Instability Modes of portal frame
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Third Mode

Figure 5.3:
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c) Third Mode

Figure 5.3:
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Figure 5.6: Principal instability region for third mode.
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TABLE 5.1

AVERAGE VALUES OF THE AMPLITUDE OF THE SUPPORT MOTION
- , : '
CORRESPONDING TO THE FIRST MODE

FREQUENCY AMPLITUDE
(c.p.s.) . (inches)

0.1499
0.1021
0.0629 ]
0.0473 i
0.0348 - . E
- 0.0289
0.0261
0.0355
" 0.0622
0.0835
0.1028
0.1142°
0.1254
0.1391
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TABLE 5.2

AVERAGE VALUES OF THE AMPLITUDE OF THE SUPPORT MOTION

CORRESPONDING TO THE SECOND MODE

FREQUENCY AMPLITUDE
(e.p.s.) (inches)

27.0 0.0701
27.2 0.0365
27.4 0.0102
27.6 0.0113
27.8 0.0286
28.0 0.0610
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AVERAGE VALUES OF THE AMPLITUDE OF THE SUPPORT MOTION

TABLE 5.3

CORRESPONDING TO THE THIRD MODE

FREQUENCY
(c.p.s.).

46.0
46.2
46.4
46.6
46.8
47.0
47.2
47.4
47.6
47.8
48.0

AMPLITUDE
(inches)

0.0239
0.0185
0.0143
0.011

0.0082
0.0058
0.0071
0.0126
0.0170
0.0221
0.0274
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CHAPTER VI

PARAMETRIC INSTABILITY OF .PORTAL FRAMES

_ 6.1 Intfoduction

. | The experimental ipvestigatioﬂ oflthe parametr%c

. instability of portal frames showed thét the relationship between
thé.ffeéuency of the base motion and the natural frequencies of
the ffame is similar to that for the case of columns.. When éaéo
.vfor instability to occur in the princigal regién the frequency
of the base motion ﬁust be.twice that of the natural frequency.v
Siﬁilarry, for the instabi}ity corresponding to the second
‘region the.frequencY must be equal to the natural frequency of

the strﬁcture.  In other words, the fbllowing‘equation of boundary

frequencies still holds good
0= 29
k

To determine the equation of the principal region of insta-
bility a continuum -approach was attempted and is discussed in

detail in the next section.

6.2 The Continuum Approach

Consider the frame shown in Figure 6.1. Let the axial

changes of length of the column be ignored and let the

G R A e, -;.~_..,._..,g,¢,‘._‘-;$, dria 3

GREE NP R
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Figure 6.1: Multi-storey portal frame.
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actual horizontal beams be replaced by a medium of bending’

stiffness 'NEII per unit length. Consider a slice of thickness
. H
dx of the medium at height x above the base. ‘Let end moment per

unit height be called m. From Figure 6.2 and using the.moment

area method we have:

(6.1)
Som =6 NEIp dy
Hb dx
Let g*(x) be a static external force acting per unit height on

the left hand column. Consider the free-body of a differential

element of the column as shown in Figure 6.3.

Horizontal equilibrium gives

&2

= - g* (6.2)
.2

Moment equilibrium gives V dx = dM + mdx

orv = M . ‘ (6.3)
dx
Differentiating Equation (6.3) w.r.t. x and eliminating V gives
2
dM+dm = _ o«
& ax =
2
Now M = - ET 4 ,m=6NEIT§z
dx BHb dx
so - BT d% + 6 NEIp a2y = - g#(x) (6.4)
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Figure 6.3: Forces on an element of the column.
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or 4 - 6NEI, a%y = g*(x) (6.4a)
"HOEI = dx? 2EI

or &M - EIL, u = -g*(x) (6.4b)

ax? HbET 2 | : )

2 .
Put ( = GNEIT

HbEI
let a*(x) = g x
H
Eqﬁation (6.4b) then becomes .
2
d°M _ 42y = :
- =-g x (6.4c)

dx? 2H
The solution of Equation (6.4c) may be readily obtained as

M = A* sinh'®x + B* coshdax + g, 5 X ' (6.5)

2H
and since M = - EI dzz , one obtains
) ax2

d_2¥ = C* sinhdx + D* coshux - x | (6.6)
ax< . 2Hx°EI

whence

= C* cosh«x + D* sinh «x - g, ;c_2+G*
o x ' 2Hx“EI 2

gl

<

=§;.sinho(x+D*cosho£x-'g. ﬁ.}-(;*x.g.s*
o2 2HA“ET 6

B R b st L e a n g
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Conditions at the bottom end require y =4dy = ¢ at x = o, from <
' ax

which - J

S* = - D*

G* = - C*

=

and so y = C_* (sinh «x - «xX) + D* (coshux - 1) - g x3 (6.7)

| 2 o«Z 12H#2ET
Conditions at the top end require M =o0 i.e. i@ =0 (6.8a)

dx | f

. 3 i

and also V =0, i.e. - BEI d % + 6NE dy = o

ax Ir dx

or d3 . 2 dy : }

- =0 - 6.8b :

X & (6.8) |

For brevity one puts «H =8 and then Equation (6.8a) yields :

97_' = C* sinhg + D* cosh 6.9)

24“EI 4 b (

: : . . : 2 i

whilst Equation (6.8b) gives wC* +q g =0 ;

' 2Hx°EI  4g2Ry :

: i

Hence C* = g: 2 3

and - pt=g{B- (1 -82/) sinnf]

, (6.11)

2H«3EI coshpg
Substituting Equations (6.10)- and (6.11) in Equation (6.7) gives

y =% (1-8%) (sinh Bx - Bx)+ E’- (1-,82)sinh,8:, (coshBx-1)~ (%)3}
2HSEI ) 2 HE H 2 B 6.

ey

coshp
(6.12)
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. cant:.lever column. . | | - |
" determz.ned using Equatlon (6.12) and is drawn in FJ.gure 6.4 by

'f:LnJ.te element method and is indicated by trlangular markers in

Vertlcal mass-acceleration gives dP = - e i s ax. o

120

Equat:.on (6.12) glves ‘the deflected shape of the frame and

is a functlon of B, a measure of the relative st:.ffness of the }

"beams w.r.t. the columns. _The case f =0 represents a free -

The modal shape for the frame shown in F:Lgure (5.1) was

the solid lme. The modal shape was also obtained using the

Figure 6.4, from wh:l.ch it may be concluded that the continuum i

' approach gJ.ves a good prediction.

We are now in a position to Study the dynamic instability

- of a portal frame. Let the vert:.cal support motlon be u_ (t)

cOnSJ.der an element of the column shown in Figqure 6.5.

H

f(B-x) 4y (6.13)
where (’.=-mass per unit height for half of the structure.

i.e, €= %‘- p* where P* is the mass per unit height for the
whole structure.

Horizontal resol tion give av _ o
uti gives dx ;L* (6.14)

Moment equilibrium gives P dy + Vdx = aM + mdx

or V=adM-P(x) dy +m {6.15)
dx dx
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Differentiating Equation (6.15) w.r.t. x we get

av = du -pd’y - By + @ (6.16)

cax dx? dx ax dx dx

: Substii:uting for Vv and m and simplifying gives

4 R .. 2
EId§+Pd_Z§ _EQX-GNEITd§ g* (x)
dx ax? ax dx Hb dx? 3
. 2 -
- Since ol = 6NE .
HbEL’ we have

ay 4 0 (a0 @ a2§ € i_d zazg ;g*gz |

—% o = s = e —X -_d - X

dax ET ax EI ° ax ax 2EI

Now g*(x) = -p* 3 .
. 2t (6.16a)

Substituting in the above equation gives

P* mx) u 2%y - O oy -2y + P* Py =0 (6.17)
% 2EI sﬁ 2ET © 2% x 2EI%§

From Equation (6.12) we get .

2y =a 8 ) (1-82) (£ oon Bx - 8 )+ [p- (1-g2)sinhg] (8 sinh Bx) -
9x 23135{' 2 (H _ “H -H-) coghﬁ H B

3
("‘2) "2} (6.12a)

2." -2 S X -({l- sSinh cos X)=-
%{%—g,_s{(lﬁ)(g) mh@_+[? (1 5/2) A,g]é; ,h;L) (5)3}(}

coshp

(6.12b)'

’?T:'X = g,is{ (1-32)( 5)4smh bx + [p- (1-82) sinh 5](5) cosh P:}

coshp
4 - 2 =
: * P zEIp (3) x

= R* o3 x (6.18)

R R A T A PR T P G AV S
R A WG "\‘“‘\"'T?"'«?';’:‘;P;g
RS s

(6.12c)
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(6.19)

where R* = q, H4
. © 2EIp

Substituting in Equation (6.17) yields

%* | . | v
P (H'x) ug 92 - F us 2y + R OC‘; x + P _3!2 = O .(6-20)
2ET I% 2ET % ~ 2ET ot |

Let y(x,t) = ZR ®; (X) £, (£)
i=1

where ¢5. (x) are a complete set of functions satiSfy'ing ‘the
b;aundary conditions, for instancé the various modes of ffee
vibration of the problem, and fi (t) are generalized coordinates.
.An approximate solution for y may be obtained by vcﬁrtailing the
series at some integer i =n . This approximation will ﬁot
now safisfy Equation (6,26) » but the error introduced by the

substitution of the curtailed series may be minimized by apply-

ing the Galerkin Method.

EI i=1 i g7 i=1 2ET

/R*[P H—x)u2f¢ *"s zf¢ +o(xf +P
2

2 £, . dx =0 for j =1,2,...n (6.22)
i=1 ¢ ¢3
Consider a one term series approximation for y.
. * ;
i.e. y =R gbl(x) £, (t)

Equation (6.22) then writes as

/[{F (B-x)d_ _¢, F g _21"'063:} £, (€)+ L P*. d_2§1¢]¢ dx = o

2EI 2ET 2EI dt
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% *
or [|) P mx)i_d, ¥y _ P B P, ad
[l s fo e gl

o % 2 2
+ Iodf] ¢1 dx =0
.ZEIdtz

The integrals f ¢1 d2¢1 dax, f xd d2¢1 dax, / b, d¢; ax,
a2 v &

f X ‘Fldxf ¢i ax
may be evaluated numerically using Equations (6.12).

Equation (6.23) is a Mathieu equation and its éolution
would yield the region of dynamic instability.

The frame shown in Figure 5.1 was ahalysed by this

procedure. Using Simpson's rule the above integrals were

determined and the following values were obtained.
J¢, ¢ ax = - 0.06772 x 10°
J#,2 ax = 43.7656 x 10°
[x ax =1.4131 x 10°
4
[ o ax =o0.8369 x 10

[xd] ¢ ax=-1.973x 10°

6

The frame was weighed and its mass was found to be

0.465 1lbs. Substituting the value of the integrals in Equation

(6.23) yields

21.8826 a%f + (17600 - 0.9805 i_) £(t) = o
—zdt S A

Letting ug = C cos Q t, results in

r

3%
R
i
L
B
¥
%
=5
g
]
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21.8826 4%f + (17600 + 0.9805Q2%C cosQ t) £ = o
) deZ
The solution of this Mathieu equation gives

Q2= 3230 ' (6.24)
1 +0.09C
Equation (6.24) gives the value of the disturbing

frequency required to cause the frame to go into instability

in the first mode. C = o, refers to the hypothetical case

when instability will occur even if the amplitude of the base

motion is zero. From Equation (6.24) %) = 57.0 rad./sec. when

C = o. However, from the experimental tests, as reported in
Chapter V, the value of the disturbing frequency,S)l , corres- |
ponding to the least amplitude of the base motion was 47.8
rad./sec. Eq. (6.24) does not give a good prediction of the
width of the instability region. This is possibly due to the

fact that the above analysis considered only a2 one term series

approximation for y. If more terms are included a better

estimate of the width of the instability region would be obtained.

6.3 CONCLUSIONS

The continuum approach has been used to determine the

. natural frequencies of structures e.g. grids (29,46). it was

felt that this method could be used to obtain the region of
dynamic instability of portal frames. As shown above, the

method gives a good estimate of the deflected shape and the
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natural frequency of the first mode of the structure. However,
the p;gdiction of the §idth of the instability zone is not
satisfactory. This may be attributed to several factors. 1In
the aﬁove analysis a one-term series approximation for the
deflected shape waé'considered. The inclusion of more terms
would yiéld better results. The accuracy of the.results depends
upon the values of the integrals in Equation 5;23. Since the
integrals were evaluated numerically, and even though the
deflected shape was Qhown to be in good agreément with that
given by the finite'element solution, the ;elationship for the
slope and curvature may not be good. This may account for the

poor estimate of the region of instability.
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Chapter VII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This study deals with the parametric instabiiity‘of
plane structures. The dynamic stability of structures requires
a knowledge of their natural frequencies. The finite element
method was used for‘this purpose and has been.shown to yield
godd results. One of the major advantages of the finite element
method is that the governing differential equations need not be
known and different boundary conditions may be easily handled.
The method is applicable to structu;es of non-uniform cross-
'section and varying properties. Computer programs to obtain the
natural frequencies and modal shapes of structures are also given.
A simple numerica; method for determining the regions
of dynamic instability of columns subjected to periodic axial

forces or periodic support motion is presented. The validity of

. the results has been checked against experimental work and

available classical solutionms. A non-uniform column or one with
varying properties can be easily handled.

Finally, the dynamic instability of portal frames due
to periodic support motion was investigated. An extensive

experimental program was carried out and the results have been
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reported in Chapter V. The continuum method gives a good
eétimate of the deflec?éd shape and the natural frequency of

" the frame for the first mode, but the prediction of the width

of thé instability region was found to be unsatisfactory. By
taking more terms in the series for the equation of the deflected
shape a better relationship for the instability fegion could be
obtained.

As the ground motion in earthquakes consists of
horizontal and vertiéal movements the study of the response of
sﬁructures subjected to continued horizontal and vertical
support motions needs to be investigated and is proposed for-
future research. The present investigation was confined to the
response of structures to periodic support motion. Since

seismic vibrations are random in nature the study of the response

of structures to random fluctuating base motion needs to be

looked into.
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APPENDIX A
- SOME_PROPERTIES OF THE MATHIEU EQUATION
Consider the Mathieu equation
2. ‘
' (A.1)

.d_.% + (9P+€ cos 2z) y=o
dz

which is periodic in z.

+ The general solution of the Mathieu equation con- -

‘taining two arbitrary constants has not yet been found. However,

periodic coefficients lead to periodic solutions and the above

- linear ‘equation may be solvéd by Floquet's theory for the

solution of linear differential equations with periodic co-

‘efficients. 'Since- Equation (A.l) is a linear second-order

differential equation, two independent non-zero solutionsl may
‘'be found as y, (2) and Y, (z). These solutions may be combined

linearly to give any other solution, say y(z) so that

y(z) =Cyy;(2) +C,(y,)2 (a.2)

where C; and C, are constants.
For y;(z) and Y, (z) to be independent, they must
satisfy the determinant
Yy Y,

Wy, v)) = ' '¢o
¥y Y5

e iy,
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The replacement of y(z) by y(-z) does not alter
Equation (A.l). Therefore, if y(z) is a solution of Equation .
GA.l)‘then y(-z) is also a éolution. If y(2z) has no symmetry
aboutvthe point z =»o, ;t can be split into component; having

even and odd symmetry by the usual process.

Even: E?(Z) + Y(-Zﬂ = Clyl(z)

= D

[Y(Z) - Y(-Z)j] Cayq (2)

Since y(z) is periodic, y(z + T) = y(z), and since.

odd

y1 (z) and yz(g) are solutions of Equation (Agl), then y, (2 + T)
and y,(z + T) also are solutions. It does not mean that Y1
(z + T) is the same as yl(z). Rathgr it means that yl(z4+ T)
‘and ¥o9(z + T) may be represented in the form of a linear com-
bination of the primary functions.

yp(2 +T) = 2,7, (2) +25,v,(2)

Yo(z +T) = ayy;(2) + a,,¥,(2) (a.3)
where a;, are the constants called coefficients.of transfor-
mationé; Now y(z + T) = Clyl(z + T) + Czyz(z + T)

substituting from Equations (A.3) we get

Yz +T) = (Cay; +Cp a5)y, (&) + (Cgay; + Cpazy)y,(2)

If y(z) is suitably chosen, we can have
Cja1; +Cyay = PC

Ci212 +Cy a5, = Py A (A.4)
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_and hence we get, y(z +T) = e y(z)
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(A.5)

A solution that possesses the above property is called
a normalvsolutionbe.g. if y denotes displacement, it means that
the displacement at the end of the period is P times that at the

beginning of the period.

If constants Cy and C, are not to be zero in Equation

(A.4) the determinant of their coefficients must be zero, i.e.

a =@ a '
11 21 :
‘ = o ' (a6)
1212 az5~f
This is called the characteristic equation.

We can select the two linearly independent solutions

¥y (2) and'yz(z)'such that they satiéfy the initial conditions

~at z =o.

y;(0) =1 ¥y ) =o
(a.7)

yo(0) =0 vh({0) =1

From these conditions we can determine the coefficients

ajx and the characteristic equation becomes
p?-2ap +B=o0 (a.8)

where a =~% [yl (T) + yé('r)]

B=y, (T)y:.,_ (T) - Y, (T) ‘y'l (T)

2 Lz,
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It can be readily shown that B is always equal to 1.

Hence, Equation (A.8) becomes

2 -2ap +1=0

or € =a+ [a2a - (a.9)

and the roots are related by (" . 92 =1 (a.10)
From Equation (A.5) we have
vg 2+10 =0y (k=12
These solutions may also be expressed as
z/T lﬁ e
v @ =X (2) e =12 (@.11)

where Xk (z) are periodic functions of period T.

From Equation (A.1ll) it may be observed that the .'
behaviour of the solution as t--co depends upon the values of
Pll eZO

Since log P = log IQ, + i argf
Equation (A.1l) may be written as

z/T 1n lek,
v, (2) =P, (2) e k =1,2) (a.12)

: iz/T arg@
where ¢k =7(k (t) e

Equation (A.12) shows that if 9k>1, the corresponding
solution will have an unbounded exponential multiplier. If
?k < 1 the solution is damped as z increases; and if €= 1 then

‘the solution is periodic (or almost periodic), i.e. it will be
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bounded in time. It may be readily shown that if A > 1, the

roots of the characteristic equation will be real and one of

them will be greater -than unity and hence unbounded solutions

will result. However, if A < 1, the characteristic equation
has conjugate complex roots, and since their product must be equal
to unity, their modulus will be equal to‘unity. The case of com-
plex roots corresponds to the region of bounded solutions. On.
the boundafies separa#ing the’ regions of bounded solutions from
those of unbounded solutions we must have A = 1. |
i.e. yq (T) +y'2 (T) =2 a.13) -
The regions of bounded solutions correépond to the
-}egions of dynamic stability in the physical sense, and unbounded
solutions to the regions of dynamic instability. Therefore,
Equation (A.13) may be used to determine the regions of dynamic
instability.
Since ?1.65 = 1, at the boundaries separating the

regions of stability from that of instability we must have either

Ql =0 5 =1lor ?1 =€2 = -1. The former case corresponds to

periodic solution of period T, while for the latter case the period

is 2T.
Therefore, the regions of unbounded solutions are

separated from those of bounded solutions by the periodic

solutions with periods T and 2T. 1In fact, the'regions of
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stability are bounded by solutions of.diﬁférent periods, while

those of instability are bounded by solutions of identical

period. Therefore, the determination of the boundaries of

the regions of instability- is reduced to finding the condition

under which the given differential equation has periodic

solutions with periods T and 2T.
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APPENDIX B

1., GALERKIN'S METHOD
Let us represent the motion of a bbd.{r by considering -

the motion of some discrete points. The equations of motion

'.write as

»gr" ="'m m my | Y k.. x k.7 (61 [F.) (0)
. ‘1, 11 T12°°°°°"1n 1 11 12°°°°°"1In 1 [°1

2 Fz = m21 m22.....m2n 92 k21 kzz ..... kzn 92 Fz o

. - q p*- - .<.>L<f>=<'>(B'l)

b sF Slm . m _..... 5] I|x. k :
C v zn | nl n2 nn \gt}. | 'nl "n2 nn

W
J‘SCD
”~ .’q
B
o

| ex |
where {Q} is the displacement vector

fel
ex :
Let us suppose that

is the external force vector

3\ )
o A
% %

.<.$=<.>9 (B.2)

Lgr’ ' \.Xn}

(_\‘ where {]_f} is the modal shape or eigenvector. If the eigenvector,
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{Y}, is only approximately known, then in general the forces

LBy,

will not be in equilibrium. Equation (B.l) then becomes

= ’ . i 3 1 g ] ( ) :
SFy = [ Mg MygeeeseMy ] %11 ¥12-----Kn| | ] (F1] [eq)
EFZ = m21 m22. e oo -mzn xz k21 k22 ..... kzn Xz F2 e2 }
. . . ?9+ . . . P (B.3) 5
SF, =_mn1 LI mnn- anJ _knl Kno knrﬁ ‘ an ‘Fnj Le N
The i-th row of this equation represents the sum of

the generalized forces ZFi associated with the coordinate ei'

FORNT KPR R R RS

The quantity e; on the right-hand side of Equation (B.3)

_ represents the error in equilibrium of the forces associated

o th bt s e s e b sa i,

with 91-
Galerkin's method reqtiires that the weighted sum of -
the errors {9} be zero; each of the terms in {e} is weighted

by the corresponding term in the modal shape vector {l } . Thus

it requires that

4: ? 0 (B.4)
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If we take {X} to be a displacement vector and {g} as

a force vector, we can say that Galerkin's Method requires the
" error in the forces to be orthogonal to the assumed shape of

the displacements. Substitution of Equation (B.3) into Equation

(B.4) gives ..

(B.5)
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APPENDIX C

PROGRAM TO FIND THE NATURAL FREQUENCIES OF

PLANE FRAMES AND GRIDS

The program is coded in Fortran IV and can be run
either on the RAX or O/S systems of IBM 360/65 or IBM 360/75.
Nodal points apd elements . should be numbered in a cpnsecutive .
order. The size of the problem to be solved can be adjusted

by suitably changing the dimension statement.

The input to the program consists of the nodal co-

ordinates, member properties and the boundary conditions. The

'program generates the stiffness and the mass matrices from which’

the natural frequencies and the modal amplitudes are computed.

Thé computer print-out includes

a) Reprint of input data
b) Natural frequencies

c) Normalized modal amplitudes
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1. Input data for plane frames.

Cols.

"Notation

Description

A Structure Parameters and Material Properties (415, Fl10.0, F10.8)

1-5

6-10
11-15
16-20
21-30

31-40

1-5
6-15

16-25

M

NJ

R

NRJ

~ B Joint Coordinates (15,

J

X

Y

one card
Number of elements or members
Number of nodes or joints
Number of restraints
Number of restrained joints
Modulus of Elasticity

Member density

2F10.2) NJ cards
Counter
X coordinate

Y coordinate

C Member Designations and Properties (315, F10.5, F10.8) M cards

. 1-5

6-10
11-15
16-25

26-35

J

JJ

JK

AX

1z

Counter
Designation of J end of member
Designation of K end of member
Area of member

Moment of inertia about Z-axis
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2. Input data for grids

Cols. Notation Description &
, : @

A Structure Parameters and Material Properties (4I5, 2F10.0,
F10.8) one card

Number of members

-5 . M
6-10 NJ Number of joints
11-15 NR . Number of restraints “
16-20 NRJ Number of restrained joints E
21-30 E Modulus of Elasticity ;
31-40 -G Shear Modulus ;
41-50 RA Member density

Lisnivaiod siney U gL

TV

"B Joint Coordinates (IS5, 2r10.2) NJ cards

1-5 J Counter

e e ke

6-15 X X coordinate : ;

16-25 Y Y coordinate

C Member Designations and Properties (515, 3F10.6) M cards

1-5 J Counteér

6-10 JJ Designation of J end of member
11-15 JK Designation of K end of member
16-25 X Torsion constant

26-35 ¥ Moment of inertia about Y axis
36-45 AX Area of member
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PROGRAM TC) FIND THE NATURAL FREQUENCIES OF PLANE FRAMES,
$.0001 DIMENSINN L1200 4X (200 ¢¥Y(200+J3(200 4 JK(20) ¢AX{200 ¢ [Z€20) ¢CX(20) 4CY
1201 ¢RLIS0) ¢CRL(S0) +SMDL6+6) 0S50 ¢50) o MMI50050) o MD (606 o -
LKL (150 ¢ XX(15415) sMSM(15¢15),SH(15,15)
$.0002 © REAL 1ZyLeMD¢MM,MSH
$.0003 INTEGFR CRLJRL
s.0006 WRITE(641)
[T I3 T T P Y Y P YT T ] “*“‘t“.“““‘.**‘t“‘***.‘0“*““.**“.‘
$.0005 1 FORMAT{®1¢, NATURAL FREQUENCIES OF FRAME INCLUDING ROT. INERTIA®)
. Coeéen *‘.“.“‘“"““.“‘..‘.““.*.*‘O.‘*“..“."“..“‘...“.“"‘*“.
c
¢ 1. INPUT AND STRUCTURE DATA
c
c 1.A STRUCTURE PARAMETERS.ELASTIC MODULUS AND DENSITY
. ' .
$.0006 WRITE (642) :
$.0007 2 FORMAT(//%0%,*STRUCTURE DATA®)
$.0008 WRITE (643)
$.0009 3 FORMAT (0, M N NJ NR NRJ € R®)
$.0010 READ (Se4) MoNJoNR oNRJoEoR :
$.0011 & FORMATI41S,F10.0+F10.8) . -
$.0012 N=3eNJ=NR
$.0013 WRITE (64%5) MoNoNJoNRoNRJsEsR
SW0014 5 FORMATUSI5,F13.0sF12.8) _
c 18. JOINT COORDINATES
¢
$.001% WRITE (646)
$.0016 6 FORMAT (90%, 'JOINT COORDINATES®)
$,0017 WRITE (647)
$.0018 T FORMAT (104,9J0INT . X COORD Y COORD*)
$.0019 0D 101 Ju1,NJ : .
$.0020 READ (3¢8) JoX(J)sY(I) J
$.0021 8 FORMAT (15,2F 10.2)
$.002) WRITE (649) JoX(J)e¥Y(J)
$.0023 9 FORMAT (15,2F 1002)
$.0024 o 101 CoNTINUE
¢ 1C. MEMBER DESIGNATIONS AND PROPERTIES
$.0025 - WRIVE (6410) : : , :
$.0026 10 FORMAT (0%, MEMBER DESIGNATIONS AND PROPERTIESS) _
$.0027 WRITE (6,11) . .
$.0028 11 FORMAT (1HOs6HMEMBER ¢+ 2Xe 2HIS ¢3X02HIK +5X ¢ 2HAX e 9 X0 ZHI Z ¢ 12X o THL » OX ¢ 2H
1CX 08X 2HCY ) _
$.0029 00 102 (=l.M
$.0030 READ (5¢12) JodJUIDedKETIoAXET D IZLTD
$.0031 12 FORMAT(315,F10.5¢F 10.8)
$.0032 JI=d4J(1)
$.0033 Ki=dK{1)
$.0034 XCL=X{KI)=X(JT)
$.0035 YCLU=Y(KT)=Y(J1)
$.0036 L(T)=SORT( XCL**2EYCL*#2) -
$.0037 CX{I)=XCL/L(T) '
$.0038 CY(I)=YCLILLT) . o
. $.0039 WRITE (6913) TodJ0I0eJKIT)oAXCT) o FZETD oL UT)oCXETD 4CYIT)

P Y A o T P I e . B S EET I T A AL b I i 3 G R o b 2 PRI T TR cf hosd 1 e SR N - b gt S e Ly, o Ay N 1 [T
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$.0040 ' (13 FORMATI3I5,F10.5+F14.843F10.2) VoY : Vo ¥ ) :
$.0041 102 CONT INUE . : '
‘e . .
c 10. JOINT RESTRAINT ULIST, CUMULATIVE RESTRAINT LIST
¢ g
; c INITIALISE RL{I) TO ZERO
$.0042 ' | NJ3=3aNJ
$ 0043 D0 104 J3=1,NJ3
‘'$.0044 - RLEJ3) =0
$.0045 104 CONTINUE
$.0046 WRITE (6414)
$.0047 14 FORMAT('0¢,*JOINT RESTRAINTS®)
$.0048 WRITE (6415)
$.0049 15 FORMAT (%0%,*JOINT X RSTRT Y RSTRT Z RSTRT?)
$.,0050 DO 103 J=1,NRJ
$.,0081 READ (5,16) KoRL{38K=2) 4RL {3#K~1) +RL (3 %K)
$.0052 16 FORMAT (4110)
$.0053 WRITE(6¢17) KoRL[32K=2) JRLIB®K~1),RL{3*X)
$.0054 17 FORMAT (15,3110 : .
$.005% 103 CONTINUE .
. $.00%6 CRL(1)=RL{1) . :
>80 S$.0087 D0 105 K=2,NJ3 ’ .
) $.,0058 CRLIK }=CRL{K~1)ERL (K)
$.00%9 105 CONTINUE
= c !
§§: c 2.A GENERATION OF OVERALL STIFNESS AND MASS MATRICES.
c
=4 | s.0060 NJ2u3eNy
o $.0061 D0 106 J3=1,NJ2
‘ $.0062 DO 106 K3=1,NJ2
% $.0063 $(J3,K3)=0,0
i $.,0064 MM{J3,K3!=0,0
$.006% 106 CONTINUE
i $.0066 DD 51 I=1¢M
! 3, $.0067 Ji=3e90(1)=2
? $.,0068 J2=3¢JJ([)=-1
$.0069 J3:369J( 1)
) = $+0070 Kil=3eJK(1)=2
=5 S.N0T1 K2=23#JK(E)-1
rx! $.0072 K3=3¢JK(1)
;ﬁ $.0073 SCMI=a(E*AX(IIIZLLT)
, $.0074 . SCM2=L4 0%E*TZ(II /LT
‘ $.0075 : SCM3={1,54SCM2)/LLTY
$.C076 _ SCM4=(2,0%SCMA)/L (1)
$.0077 ZeR*AXC(TI®LII) /420 .0
$.0078 WRITE (6473)
$.0079 73 FORMAT {%0°,9SCMH*)
$.0080 WRITE 16472) SCM1¢SCM2,SCM3, SCMA
$.0081 72 FORMAT (1HO,4F10.2) :
$.0082 1F (RLLJL)Y 1A,19,18 .
$.0083 19 J1=J1-CRLLJL) -
$.0084 GO 7O 20
$.0085% 18 J1=NECRL(J1)
$.0086 20 IF (RLUJ2)) 21,22421
$.0087 22 J2=J2-CRL{J2)
s.00a8 GO TO 23
$.0089 21 J2=N&CRL(J2) s
$.0090 23 IF (RLUJ3)) 24,25,24 '
$.0091 2% J3=J3-CRLIJD) 9
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$.0092 . G0 TO 26 .
$.0093 24 J3=NECRL(J3) P
$.0094 26 IF (RL(K1)) 27,28,27
$.0098 28 Ki1=K1-CRL(K1)
$.0096 GO Y0 29
$.0097 27 K1=NECRL(K1)
$.0098 29 IF (RLIK2)) 30,31,30
$.0099 31 K2=K2-CRL{K2)
$.0100 GO Y0 32
$.0101 30 K2=NECRL(K2)
$.0102 32 IF (RLIK3)) 33,34,33
$.0103 34 K3sK3-CRLIK3)
$.0104 GO T0 35
$.0108% 33 K3=NECRLIK3)
$.0106 35 WRITE(6,200) JloJZoJ’vKloKZvK3ol
$.0107 200 FORMAT{1HO+615,E15.8)
$.0108 Cy2=CvY{l)*CV(I)
$.0109 CX2=CXtl)*CX(1)
$.0110 CXYaCX{1)2CY(1)
S.0111 SMO(1,1)=SCMLECX2ESCMASCY2
S$.0112 SMD(444)=SMDIL,1)
S.0l113 SHMN(1+4)==SHN{L,1)
S.0114 SMD{ 4 1) =~SMDI1,1)
S.0115 SHD(1¢2)={SCML-SCM4)*CXY
$.0116 SMN(241)=SMD(L1,2) "
S.0117 SMO(4+5)2SMD(1,2)
$.0118 SMD(S5¢4)=SMD(1,2)
$.0119 SMDU1+¢5)==SMD(1,2)
$.0120 SMD(S5¢1)==SMO(1,2)
$.0121 SHD{2,4)=~-SMD{1,2)
$.0122 SMD(442)==SMD(1,2)
$.0)23 SMD( 1,3)=-SCH3*CY (1)
$.0124 SMD(341)=SMD(L,3)
$.0125 SMD(1¢6)=SMD(1,+3)
$.0126 SMD(6,1)=SMD(1,3}
$.0127 SMD(3¢4)==5SMD(1,3)
S$.0128 SMN(4¢3)=~SMD(1,3)
$.0129 SMD(4¢6)==-SMD( 1,3)
$.0130 SMO(644)=~SMD(1,3)
S.0121 SND(202)'9C"1*CYZGJCH6‘CX2_
$.0132 SND‘SQS)'S"D(Z'Z)
$.0133 SMDU2+5)=-SMD( 2,20
S.0134 SMN(5¢2)==SMD? 2,2)
S.0138 . SMDI2,3)=SCMI&CXLL)
$.0136 SMD{342)=SMDC2,3)
$.0137 SMD(246)2SMD(2,3)
$.0138 SMD(6,2)n5MDL2,3)
$.0139 SMD(3,5)=~SMD(2,3)
$S.0t40 SMD(S+3)2=SMD(2,3)
S.0141 SMD(5+6)==SMD(2,3) .
S$.0142 SMD{6¢5)=~SMD (2, 3)
S.0143 SMD({ 3,3)=SCM2
S.0144 SMD(6+6)=SMN(3,3)
$.0145 SMO(3,6)=5CM2/2.0
S.0146 SMD(6,3)=SMD(3,6)

c

$.0147 CX22=CX2*?
S.0148 CY22=CY2¢2 :
$.0149 CXY2=2CXY*2 ©
S.01%0 CXLZ=CX{I)OL(T)%2
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$.0151 . SyLz=cy(LioL(1) ez
$.0152 ZL2=LiDsLD)*
c
$.0153 WRITE(64800)
$.0154 800 FORMAT(*0?%,*CXY*)
$.0155 WRITE(64801) cxz.cvz.cxv.cxzz.cvzz.cxvz.chz.cVLz.ZLz
.S.0156 801 FORMAY (1HO0,9€12.6)
$.0157 : Z1sR/420.0
$.0158 L=1L%71
$.0159 CYIZ=CY(L)*12Z(1)e2]
$.0160 . CXIZ=CXUT)*IZ(1)*Z1
§$.0161 ZIL=Z1#%1Z(1)%LLT)
$.0162 CX22L=CX2#ZL
$.0163 CY22ZL=CY2%2L
$.0164 CXYZL=CXY#*ZL
$.0165 MD{1,1)=140,0%CX2Z8156.04CY2ZE504. 0*CY22ZL
S.0160 MD{4¢4)=MDI1,1)
$.0167 MD{ 1y 2) ==16. 0¥CXYZ~504 . 0¥C XYZL
$.0168 MD(2y 1) =MD 1,2)
]| S.0169 HD(143)=-22,0%CYLZ~42.,0¢CYIZ
gy | s.o0170 MD(3, 1) =MD 1103}
g | seorrt MDl446)==KDI1,3) *
7 $.0172 MO(4e4)=~MD(1,3)
£ 4| s.oima MD{144) =70.0%CX2265400%CY22~504, 0¢CY2ZL
| s.o0174 MD(4, 1) =MD{ 1,4) '
Rl | S.0175 MD{1oS)==MD( 1, 2)
=3 | s.o0176 - MD(S5y1)==MD(1,2)
4| Ss.0177 MD(244)==MD(142)
Y| s.or7s MD(442)==MD(1,2)
Y=g | s.o179 MD(1+6)=13,0¢CYLZ=42.0*CYIZ
$.0180 MD(641) =MD(1,46)
%! $.0181 MD( 2, 2) =140, 04CY2ZE156. 04CX2ZE504. 08CX2ZL
=4 | s.o1a2 ND(5,5)=MD(2,2) : .
Ny | s.o183 MD(243)x22,04CXL2642.04CXIZ '
Rf | s.o184 MD(3,2)=MD(2,3)
=4 | s.oias MD(2,5) =70,0%CY22654.0#CX22-504. 04CX2ZL
M-y | S.o186 MD{246)==13,04CXLZE42.04CXIZ
ii $.0187 MD(6¢2) =MD( 2, 6)
-l [ S.O0188 HO(343) =4, 082L 2656, 0421L
=g | S.0189 MD(646)=MD13,3)
¥ [ Ss.0190 MD(344)= =MD{L,+6)
4| s.o191 " MD(4y3) = ~MD(1,6)
$.0192 MD{3,5) ==MD( 2, 6)
$+0193 MD(5¢3)==MD(2,6)
$.0194 MD(346)%=3,002L2~14.0¢ZIL
$.0195 MD(6¢3)=MD(346)
$.0196 MD(5¢6)==MD{2,3)
$.0197 MD{645)==MD(2¢3)
$.0198 MD(4,45) =MD( 1, 2)
$.0199 MD(5,4)=MDI1,2) : :
$.0200 WRITE(6,2001)
$.0201 2001 FORMAT(®0*,'MD*) : .
$.0202 DO 2003 1Q=1,6
$.0203 2003 WRITE(6,111) (MD(10+JQ)¢JQ=1,6)
c
$.0204 J93=34050 1)
c b
$.0205 IF (RLIJI3-2)) 41440,41 B
$.0206 40 SIJLoJ1)=S(ILeJ1IESMDLLHL)
$.0207 SUJ20011=5(42401)E5MD(2, 1)
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$.0208 " SUJU3,J1)=S(J3¢JLIESMD(3,41)
~ $.0209 SUKLeJ1)=SMBL4e1)
$.0210 S(K24J1)=SMD(S, 1)
| $.0211 S(K34J1)=SMD(641) - : . :
P~ $.0212 MMUJL s J1 ) =MMLILeJLIEMDLL,1) . .
i $.0213 MMJ24J10=MM{J2,J1)EMD(201) ) :
\ §$.0214 MM{J3,J1)2MM{J3,J1)EMD(3,1)
Y- $.0215 * MMIKLsJ1)2MDI 4o 1)
! $.0216 ' MM(K2,J1)=MDL5,1)
' $.0217 MM(K34J1)=MD(6,1)
YA $.0218 &1 IF (RLEJJI3-1)) 43,42,43
: $.0219 42 SUJLeJ2)=S{JILeJ2)ESMN{L,2)
; §$.0220 S(J2,21=5(J24J2)ESMD (24 2)
P - $.0221 S(J3,J2)2S(J3,J2)ESMD(3,2)
i §.0222 S(K1leJ2)=SMDI442)
. $.0223 SIK2,J2)=2SMD(5,42) )
M §.0224 S(K3,J2)=SMD (642} .
$.022% MM{J1,32)=MM(JILeJ2)EMDE 142D | . : , : i
; . §+0226 MMUJ2,02)=MM{J2932)EMD{2,2) . : :
N $.0227 MM{J3,02) =MM{J3,J2)EMD(3,2)
: §.0228 MM(K1eJ2) =MD 44 2)
\ $.0229 MM(K2,J2)sMD(542)
{ - $.0230 MM(K3,92)=MDL 6y 2}
! $.0231 43 1F (RLUJJI)) 45.44,45
$.0232 &4 S{JI1,03)1uS{JLeJ3VESMD (L)
L $.0233 S(J2¢J3)=S(J2,J3)E6SMDI2+3)
' $.0234 S(J3,03)=S(J3¢J3)1ESMD(343)
, $.0235 SIKLleJ3)=SMD{443)
' §.0236 SIK2¢J3)sSMD(5¢3)
. $.0237 SIK3,J3)=2SMD(6,43)
: $.0238 MMUJ1¢J3) =MM{J1+J3)EMD(143)
. $.0239 MM J24J3) xMM(J2+J3)EMD(243)
: $.0240 MM(J33¢J3)=MM(JI3.J3)EMD(3+3)
i §$.0741 MM{K1eJ3)=MD(4e3)
g $.0242 MM(K24J43)=MD(5,3)
i $.0243 c MM{K3,03)=MDI6+3)
X $.0244 45 JK3=3%JK(T)
. c
: $.0245 IF (RL(JK3I=2)) 474464547
: $.0246 46 S{J1,K1)=SMD(144)
! $.0247 S{J2:K1)=SMD(244)
X $.0248 S1JI3.K11=SMD(3,4)
Py $.0249 SIKLoKL)=S{KL4KL)ESMN(444)
$.0250 StK2+K1)=S{K2,K1)ESMD(5,44)
' $,0251 SIK3,K1)=SIK3,K1) ESMDI6¢4)
Ty $.0252 MM{JLeKL)=MDI1,4)
N $.0253 MM{J2,K1)aND(2,4)
$.0254 MMEJ3,K1)=MDU3,4)
o, $.0255 MMIKLoK1)=MM{KL K1)EMD R4}
y $.0256 MMEK2 K1) =MMIK2,K1)EMD(5¢4)
: $.0257 MMIK3¢K1)=MM{K3,K1)EMD{6¢4)
C W $.0258 47 IF (RLUJK3I=1)) 49,48,49
$.0259 48 SU1J1,K2)=SMDL1,5)
$.0260 SUJ2,K2)=SUD(2,5)
o $.0261 S(JI3,K2)=SMD(3,5)
; $.0262 S{KLeK2)=S{K1¢K2)ESMDI445)
: $.0263 SI{K2,K2)2S(K2,K2)ESMD(5+5) _ =
LU $.0264 SI{K3,K2)=S(K34K2) ESMD(6+5) . ' 8,
$.,0265 MM{J1,K2)=MD{1,5)
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$.0266
$ 0267
$.0268
$.0269
$.0270
§$.0271
S.0272
$.0273
$.0274
$.027%
$.0276
$.,0277
$.0278
$.0279
$.0280
S.0281
S$.0282
§.0283

- 540284

$.0288%
$.0286
$.0287
$.0208
S .0289
$.,0290
$.0291
$.0292
$.0293
5$.0294
$.029%
S .0296
$.0297
S$.0298
$.0299
$.0300

$.0301

$.0302
$.0303
$.0304
$.0305
$.0306
$.0307
$.0308

anod

49
50

MMIJ24K2)=MDR2+5)
MMLJI4K2)=MD({345)

MMEKL1,K2)=sMM{K1X2)EMODL4,5)
MM{K2+K2)=MM{K2,K2)EMD(S5+5)

MM{K3 sK2)aMMIK3,K2)EMD(643)

IF (RLEJKI)) 51450451

S(JL1 K3 InSMDLL46)

SCU2sK3)sSMNL246) . C
SUJ3 4RIV =SMN(346Y

S(KloK3)lS(KlpK?)&S"D(Qob'
S(K2K3IuSIK2,KI)ESMD(5,46)
SIK3,K3)uS{KIKIIESMN(646)

MM(JL oK) =MDU146)

MM{J2,K3)=MD(2+6)

" MMLJI3.K3) =MD 3,46}

s1

150
100

110
250

310
11t

cOon 000

. 500
5 - D0O'600 E=1eN

600
400

MMIKL yK3)=MM{K1oK3)EMD(4+6)
MMIK2+sK3)uMMIK24K3IEMD(S5.6)
MM{K3 sK3)=MMIK34K3)EMD(6+6)
CONTINUE

2.8 RETAINING OF REDUCED STEFFNESS AND NMASS MATRICES.

DO 150 U=1+N

0N 150 J=1,N

SM{LyJ3nS{ToJ)
MSMIT o J)=MMLT o J)

CONTINUE

WRITE(6,100)

FORMAT - { LH1916HSTIFFNESS MATRIX)
DO 110 I=1,N

WRITE (691110 (SU{I+d)ed=1¢N)
CONT INUE

WRITE(6,250)

FORMAT ( 1HO,11HMASS MATRIX)
N0 310 t=1.N
WRITELGL1L1)LMSMIT sJ ) ed=1oN)
CONTINUE

FORMATY (1HO+8E15.6)

3. CALCULATION OF EIGENVALUES AND EIGENVECTORS.
CALL, NROOT {N¢SMeMSMs XL o XX) '
PRINTING OF NATURAL FREQUENCIES.

WRITEL6+,500) .
FORMAT(//91%, *NATURAL FREQUENCIES IN RADIANS PER SECOND *)

EVALUE=SQRT(XL(T)) .
WRITE(64400) EVALUE
FORMAT{1HO0+F20.8)
ENO

1st
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0001

0002

0004

0005

0006
0007
0009
€009

0010
0011
0012
0013
0014

0018
0016
0017
0018
o019
0020
0021
0022
0023
0024

0025
0026
0027
0028

002$
0030
0031
0032

10003

o aocon

PROGRAM TO FIND THE NATURAL FREQUERCIES OF GRIDS,

DIMENSICN L(20) 9X120)9Y(20),3J020) K120} ¢1X{20),1V(20)+CX(20),CY(
12C)oRLE50) +CRLUSO0) o SMDI646)9SI50450) yMMI50450),MDI6+6)0AXL20),
IXL(39) ¢ XX(39939)9MSNM(39939)¢SM(39,39)

REAL IXeIYoL oMDoWN,VSH
INTEGER CRL,RL
RA MASS PER UNIT LENGTH
IX TIRSION CCASTANT
1Y M.0ele ABOULT Y AXIS
AX CROSS-SECTIONAL AREA
WRITE(G,1)

CRAeRsbkd btttk bbbk b bk b ook ok ol R e e dboge o e ool ofok o okl ol s ookl ol ke sl ok sl kol e e o ok e

1

FORMAT(*13, *NATURAL FREQUENCIES OF GRIDa)

CHRER PSRN 224 S0k aER B R Ed kb ok ook ol o e e e ol o oo e ool e sk et ook ook ook ko

.C

(2 XX 2Y ]

[2 X+ Y 2 IS

(2 X2 X ]

2
3

4

101

10
11

‘12

1. INPUT ANC STRUCTURE DATA
1.A STRUCTURE PARAMETERS,ELASTIC MODULUS AND DENSITY
WRITE (6,2)

FORMATU(//7%034*STRUCTURE CATAQ)
WRITE (643) . '
FORMAY ('0a,°* [ N NJ NR NRJ € G
1 RAS)
READ (S594) PoeNJoNRyNRJI9WE9GyRA
FCRMAT(415¢42F10.04F10.8)
Nu3&kNJ=NR
WRITE (695) FMeNeNJsARyNRJ2E9eGoRA
FORMAT(5154F15.09Fl0.0,F12.8)
18¢ JOINY CCORCINATES
WRITE (646)
FURMAT ('029'JOINT COORDINATESA)
WRITE (6,.7)
FORMAT ('08y'JCINT X COORD Y COORD®) .
CO 101 J=)l,NJ
READ {8548) JoXlddsVUlI)
FORMAT (15,2F10.2)
WRITE (6+9) JoX{J)eYUJ)
FORMAT (1592F10.2)
CCNTINUE
1Ce MEMBER DESIGNATIONS AND PRUPERTIES
WRITE (6910)
FORMAT ('02,' MENBER CESIGNATIONS AND PROPERTIESQ,
WRITE (6411)
FORMAY (lHOoéHMEMBER'ZX'ZHJJ'3x'2HJK'5x'2HlX09XOZHIY96XQZHAX010X01

1HL 99Xy 2HCXeBXy 2HCY)

DO 102 I=1,V

READ (5412) 1oJUlI)oJKOI)oIXUIY}oRYLIDoAXIL) |
FORMAT(315,3F10.6)

JiI=JJ(l1)

estT
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0033 KI=JK(I) ‘ ‘ ‘ ) ' _ . : _ IR

0034 XCL=X(K1)=X(J1) .
0035 YCL=Y(KI)=Y (1)
0036 L{I)=SQRY(XCL##24YCL*$2)
0037 CX{I)=XCL/LCT)
0038 , CY(I)=YCL/L(T)
0039 WRITE (6413) l.JJ(I).JK(!).xx(1).1Y(1).Ax(l).L(x),cxtl).cv(l)
0040 13 FORMAT(31543F10.543F10.2)
0041 . 102 CONTINUE ‘
: - - i
¢ 10. JOINT RESTRAINT LIST, CUMULATIVE RESTRAINT LIST :
c INITIALISE RLEIC TG ZERD ~ .
c
0042 NJ3=3*N
0043 00 104 J3=1,NJ3
0044 RL(J3)=0
0045 104 CONTINUE
0046 WRITE (5414)
0047 14 FORMAT(*02,*JOINT RESTRAINTS®)
0048 : WRITE (5915}
0049 15 FORMAT (102, *JCGINT X RSTRT ¥ RSTRT Z RSTRT3) ‘ . :
0050 PO 103 J=1,NRJ .
0051 : READ (5,16) KoRL(3¥K=2)RL{3#K~1)4RL(3*K) : : :
0052 - 16 FORMAT (4110)
0053 . WRITE(E,17) KoRLU3%#K=2) ,RL{3%K—1)RL(3%K)
0054 17 FCRMAT (15,3110)
0055 , 103 CONTINUE
0056 CRL{1)=RL(1)
0057 DD 105 K=2,NJ3
0058 CRL(K)=CRL(K=-1)+RL{K)
0059 105 CONTINUE
c
c 2.A GENERATION OF OVERALL STIFNESS AND MASS MATRICES.
< :
0060 NJ2=3%*NJ
0061 ° CO 106 J3=1,NJ2
0062 00 106 K3wl,NJ2 . ) v
0063 . $(J3,4K3)=0.0 '
0064 MF(J3,K3)=0.0
0065 106 CCNTINUE
0066 " 00 51 I=l4M
0067 Jl=3%J4J(1)-2
0068 J2=3%90(1)-1
0069 J3=3e44t 1)
€070 Kl=3%JK(1)-2
6071 K2=3% JK{ 1)1
0072 K3=34JK(1)
0073 . SCMI=G*IX(1)/LLI) .
0074 SCM2=4 O%E*IV(T)/L(I
0075 SCN3=1,59SCM2/L(1)
0076 SCN4=2,0#SCM3/LLT)
0077 Z=RA*L{1)/420.0
0078 IF (RLUJ1)) 18416418

€ST
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0079 19 J1=2J1-CRL(JL)

0080 GG 70 20

0081 18 J1=N+CRL{JL)

0082 20 IF (RL(J2)) 21422421 N Lo

0083 22 J2aJ2-CRLJ2)

0084 GO0 70 23

0085 - 21 J2=N+CRL(J2)

0086 23 IF (RL(J3)) 24,25,24

0087 25 J3=J3-CRL(J3)

0088 ) . GO TO 26

0089 24 J3=N+CRL(J3)

0090 26 IF (RLIK1)) 27,284,217

0051 28 K1l=K1-CRL(K1}

0092 GO TO 29

0093 27 K1l=N+CRL (K1)

0094 29 IF (RL(KZ2)) 30431430

0095 31 K2=K2~CRLIK2) .

0066 GO TU 32

0097 30 K2aN+CRLIK2)

0098 32 IF (RLIK3)) 33434,33

0099 34 K3=K3-CKLIK3)

0100 60 TO 35

o101l 33 K3aN+CRL(K3) .

0102 35 WRITE(6+200) J1ed24J39K19K29K3y2 : :

0103 200 FORMAT(1HO+6154E1%5.8) :

0104 Cva=CY{1)*Cv¥({I) ‘ ’ »

0105 Cx2=CX({1)*CX(1)

0106 CXyaCx{I)*CY(I) .

0107 SMD(141)=SCM1*CX2+SCM2%CV2

0108 SMOl 4 44)=SMD(141)

0109 SMD(1,2)=(SCM1-SCM2) »CXY

0110 SMD(241)=SMD(1,2)

. 0111 SMU(1,3)=SCM3%CY(I)

o112 SMD(3,41)=SMD(1,3)

0113 SPD(Lly4)==SCM1#(X24SCM2%CY2/2.0

0114 : SMD(491)=SMD{1y4) . . )

0115 SMD(145)=={SCFL4SCM2/2.0)*CXY : . — ‘ .

o116 SMD{S,1)=SMD(1,45) S ’ .

0117 SMO(146)=~SME{1,3)"

o118 SMOL691)=-SMDI(1,43)

o119 SMD(242)=SCML#CY2+SCM2¥CX2

0120 SMDU5+5)=SMD(2,42)

o121 SMD(2¢3) ==SCM3*CX(I)

0122 SMD(3,2)=5SKD(2,3)

0123 SMD(2+4)=SM0{1+5) : . . a

0124 SPD(4,2)=SMD(145) s

0125 SMD(295) =—SCV1*CY2+¢SCN2#CX2/2.,0 . -

0126 SMD{5+2)=SMD(2,+5)

o127 SMD(2y06)=~SMD(243)

0128 SMD(6,2)=~SMD(2,3)

0128 SMC(3,43)=SCM4

0130 “ SMD(6+6)=SMD(3,3)

0131 SMD{394)=SMD{1,3)

o132 SHD{443)=5MD(1,3)
1=
(*
N
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0133 SMD(3,5)=SMD (2,4 3) . . . ’ . . !

0134 . SKOLS3)=SMD(243) . . :

0135 . SMB(346)=~=SCV4

0136 SMD(6+3)=SND(346)

0137 ’ SMD(4,5)=SMD(1+2)

o138 . SMD(5,4)=5SMD(1+2)

0139 SMD( % ¢6)a=SMDI(1,3).

0140 SMC{644)=—-SMD(1,3)

0141 . SNP(5¢6)==~SM0(2+3)

0142 SMD(6¢5)==-SMD{2,3)

c

0143 . Al=IX(I)/7AX(1)

0l44 CX2AI=A13CX2

0145 CY2Al=AI#*CY2

0146 " CXYAI=AL¥CXY

0147 CX2L=CX24L(1)*L (1)

0148 Cy2L=CY2#%L{1)*L(])

0149 ’ CXYL=CXY*L{T)*L(I)

(o

0150 MD(191)=(140. O*CXZAIO4.0‘CY2L)#Z

o151 MCl444)=NDL1,1)

0152  MD(1y2)=2(140.,0%CXYAL-4,0%CXYL)*Z ’

~0153 . MD(2+,1)=FD(1,2) . .

0154 MO(193)=22,0%L (1 )%CYLI)*2

0155 . MDt3,1)=ND{1,43)

0156 : MD{1¢4)=1T70.0%CX2A1-3,0%CY2L)*2Z

0157 MD(4,y1)=ND(144)

o158 MO(1s5)=(T70.0%CXYAI#3,0%CXYL)*Z

0159 MD{591)=MD(1,5)

0160 MD(1¢6)=13,0%L {1 )*CY(T)*2Z

o161 FPDI6,1)=FD(1,6)

0162 MD(292)=(140.0%CY2A1+4,0%CX2L)*2

0163 MDU(5,5)=ND(2,2)

0164 MD(2,43)==22,0%L(1)*CX(1)»2

0168 MD(3,2)=ND(2,3)

0166 MD{2,4)=MD(1,5)

0167 MO(402)=FD(145)

0168 MO(2,¢5)=1 TV, 0*CY2A1I-3,0%CX2L) %2

0169 MD(5¢2)=ND(2y5)

0170 MD(296)==13,0*%L(1)*CX(I)*Z

0171 MD(6,2)=MD(246)

o172 MD(393)=156,0%Z

0173 MD(6,6)=NMD(3,43)

0174 MDI3s4)= =MO(146)

0175 MD(4,3)= -MD(1,46)

0176 . MDI(345)==MD{2+6)

o177 MD(593)%=MD{2,6)

o178 MD(3¢6)=63,0%2

0179 MD(6,3)=0D13,6)

0180 MDUl4,6)==ND(1,3)

o181 MDU694)=-FD( 1,3}

ol1e2 MD(4+45)=ND(1,2)

0183 MC{S5,4)=ND(1,2)

0184 MD(5+6)==MD{2¢3)
'—l
wn
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0185

o186 -

0187
o188
0189
0190
0191
0192
0193
0194
0195
0196
0197
o198
0199
0200
0201
0202
0203
0204
0205
0206

‘0207

0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225

0226

0227
0228
0229
0230
0231
0232
0233
0234

MDL6+5)==MD(24:3)

 JJ3=3+30(1)

40

41
42

43
44

45

46

IF (RL{JJ3=2)) 41,40,41
S{JLleJd1)=S{JdleJ1)¢SMDILe1)
S{J29Jd1)=S(J29J0123+SMDL2,1)
S(J3¢J1)=S0JU3,J1)+SMOL351)
S{K19J1)=SMD{4 1)
St{K2,J1)=SMD(5,1)
S{K34J1)=SMD{6,1)

MMEJL g JL)=MM{JIL1yJL)+NFCLL1)
MMUJ29J1)sMMU324J10+MD(2,41)
MM({J34J1)=MM(I39J1)4+MDI(3,1)
MMIK]Y pJ1)=MD(4,y 1)
MM(K2+J1)=FD(5,1)
MM(K39J1)=MDC6s1)

IF (RLIJJ3-1)) 43,42443
S(JL19J2)=S(J1,J2)¢SHD(1,2)
S{JU29J2)3S51J2,J2)+SMC(2,2)
S(J34J2)=25(J3,J2)+SMD(3,2)
S{KLyJ2)=SMD(4,42)
S{K2¢J2)5SMD(5,42)
S(K39J2)=2SMD16,2)
MMLJL9J2)=MM{JLeJ2)4+MD(1,2)
MM(J2942)=MM1J24J2)+MDI(2+2)
MM(J34J2)=MM(J349J2)+MD1342)
MM(KL yJ2)=MD(4,2)
MM{K2¢J2)=MD (542}
MN(K3,J2)=MD(642)

IF (RL{JJI)) 45,444,445
S(JL9Jd3)=S(J19J3)¢SMCI(1,3)
S{J2¢J3)=S(J2¢J3)+SML(2,3)
S{J39J3)aS(J39J3)4SMC(3,43)
St{K14J3)=SMD14,43)
SIK24J3)=SMD5,3)
S{K3,J43)uSMD(6,43)
MMCJL19J3)=MM(JL4J3)+MD(1,3)
MM(J29J3)sMM(J29J3)4+NDB(2,3)
MM(J349J3)=MMJ3,4J3)+ND(3,3)
MM(KL 9J3)=MD (4,4 3)
MMIK2,9J3)=MD(5,43)
MM(K34J3)=MD(6y3)

JK3=3#JYK( 1)

IF (RLUJK3=2)) 47946447
S(J1yK1)=SMD(1y4)
S{J2+K1)=SMD(244)
S{J3+K1)=SMO(344)

SUK1 K1) =S(K1yK1)+SMCLl4,y4)
SI{K2yK1)=S(K29KL)+SMC(5¢4)
SUK3 K1) =STKIoK1I+SMT(644)
MM{JLK1)=MDIl1y4)
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o 0238 . . PH(J2 K1) =MD (244)

0236 o MM(J3 K1) =MD(3,4)
0237 MMIKY yK1)=MM{KLoKL)+MD(444) ) .
0238 MMIK2 yK1)=MMIK2,K1)4+MD(544) .
0239 MMIK3 yK1)=MM{K3yK1)+MD(644)
v Q240 - - 47 IF (RLUJK3=1)) 49,448,465 -
... 024y 48 SUJ14K2)=SMD(1,5) . .
D262t s - S$(J2,K2)=SMD(2,5) . . . : . .
0243, . % “$1J34K2)=SMD(3,5) ;
L0244 SUKLyK2)=aS{KLyK2)+SMC(445)
T .0248.. .- S(K2¢K2)mS{K2yK2)+SMC(5,5)
0246 S{K3¢K2)nSIK34K2)+SMC(6,45)
0247 . MP(J14K2)=MD(1,5)
0248 ) MM(J24K2)=MD(245)
0249 : MM(J3,K2)=ND(3,5)
0250 MMUKL oK2) =MMIK14K2)+MD(4,5)
0251 MFMIK2¢K2)mMM{K24K2) +FD(5,5)
0252 MM K3 ¢K2)=MM (K3 ,K2) +MC(645)
0253 49 IF (RLUJK3)) 51,50,51
0254 50 S(J1,K3)=SHD(1,6)
0258 : S(J24K3)=SMD(246)
0256 S(J3,K3)sSHMD{3,6)
0257 T OSUKL K3 )=SIKLyK3)+SME(4,6)
0258 S(K29K3)=S{K24K3)+SMC(5,6)
0259 SUK3 ¢K3)aS(K3¢K3)+SMD(6,6)
0260 MM(J1,K3)=MD(146)
0261 © MM(J2,K3)=MD(2,6)
0282 MM(J3¢K3)aMD(3,46)
0263 ‘ MMUIKL oK3)=MMIKLyK3)+MC(446)
0264 MMIK2 K3 )mMM(K24K3) +ND(S556)
0265 MMIK3 ¢K3 ) =MM{KI yK3 ) +MD(646)
0266 51 CCONTINUE
¢
c 2.B RETAINING OF RECUCED STIFFNESS AND MASS MATRICES.
c .
0267 DO 150 I=1,N
0268 DO 150 J=1,N
0269 SMUL9J)=SLIJ)
0270 MSNUIJ)=MMIT,4d)
0271 150 CONTINUE _
0272 WRITE(6,250) . i
0273 250 FORMAT (1HO,11HVMASS MATRIX) . \
0274 00 310 I=1,N : :
0275 KRITE(69111) (IMSMUIsd)yJ=1,4N) :
0276 310 CONTINUE ;
0277 111 FORMAT {1HO,8E15.6)
c .
c 3. CALCULATICN OF EIGENVALUES AND EIGENVECYORS.
. _
‘0278 c CALL NROOT (N¢SMyNSVMoXLyXX)
c PRINTING OF NATURAL FREQUENCIES.
c
0279 WRITE(6,500)

LST
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0280
0281
0282
0283
0284

0285
0286
0287
0288
0289
0250

TOTAL

500

600
400

. 550

650
651

‘
FORMAT(//7°19+*NATURAL FRECUENCIES EN RADIANS PER SECOND 8)
DO 600 I=1,N
EVALUE=SQORT(XL(I))/6.283184
WRITE(6+400) EVALUE
FORMAT (1HO,F20.8)
PRINTING OF NORMALIZEL NODAL AMPLITUDES. -

WRITE(64550)

FORMAT (/713 *NORMALIZEL NOOAL AMPL!TUDESQ)
00 650 I=1,N

WRITE(69651) (XX(19J)eJ=lyN)
FORMAT(1HO,1O0F10.4)

END .

MEMCRY REQUIREMENTS O00BF76 BYTES

B TR R
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APPENDIX D

Ad
e
E
o
&
7
;

PROGRAM FOR THE PARAMETRIC INSTABILITY OF COLUMNS
e 5

The programs in this section are also coded in Fortran

WU e A Pt 11 e T

IV and are used to obtain the natural frequencies and the

buckling loads for a particular idealization of the column.

Dl: Program to find the natural frequencies and buckling load

of a pinned-ended column.

P v SR

Input

3 Cols. Notation pescription ,
" 'A  Number of Subdivisions (I5) one card é
1-5 M Number of parts in which the column ;

is divided ]

B Stiffness Matrix (8F10.3) (NM-1l) cards : "

1-80 . S | Elements of stiffness matrix

; C Mass Matrix (8Fl10.3) (NM-1) cards

1-80 ‘ M Elements of mass matrix

Output
’ The output consists of the input data, the modal shape,

the natural frequencies and the buckling loads for all the modes.

Cnae¥
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’
c .
c t“#tttt#tt####tttttttttttttt‘#tttttttt#ttt#t#*t#*tt . RHS -1
c PRUGRAM TU FIND THE EIGEN VALUES AND EIGEN VECTURS OF A PlNNED RHS 2 ,
c ENDEU COLUMN RHS 3
c t.-ttOt#tt#0###ttt‘ttt##*ttt##tt*ttttttv*tt#t#t####t RHS 4
0001 . DOUSLE PRECISION A'BQC'UQX'Y'Vl'ElGV'UELl'DIV'EPS' RHS 5
0002 . DIMENSION SS(8,8) .
0003 VINENSIUN ALB,8),U(8),0F(8),0Vi8) - ~ RHS 6
0V04 DIMENSION BlBs8) +ClB8) o XIB),YL(B),Y(B),EIGV(B), ) RHS 7
IM(242)9S1292) 9L 1L 2)4MLL2)
0V 05 EQUIVALENCE (X(L1),YLlLL)) ’ RHS 9
0006 CALL PGMCHK RHS 10
0007 . REAL M . RHS 11
uoove REAU{5920) NM . ’ - RHS 12
0L09 20 FURMATLILSY) RHS 13
oulo ARITE(b921) NM RHS 14
0ool1 . 21 FURMAT(lHloSX.3HNN-.13) : . RHS 15
00)¢ DU 2 I=]l,yiNM RHS 16
0013 2 KEAVLS, 1) (S(lpJ)oJ-lohHD RHS 17 .
0014 1 FOPMAT(1GHL10.3) . ) RHS 18 : .
001y WRITE(6,43) . RHS 19
9016 3 FURMAT (*G?y* STIFFNESS MATRIX?') RHS 20
0017 D0 4 I=1,NM ) RHS 21 C. T
0018 L) WRITE(Eol) (S(T1yJd)eJd=1yNM) : . . . RHS =~ 22
0019 DO 40 1=1,N4 RHS 23
0020 : 40 REAUIS1) (M{1sJ) od=1,4NMN) : ' ) . RHS 24
0021 M WRITE(6,T1) . : RHS 25
0u22 c 71 FURMAT (0%, PNMASS MATRIX®) ‘ . ' o RHS 26
0023 ' DO B 1I=),NM . . RHS 27
ou24 ’ 8 RRITELO L) (M(19Jd)eJd=1yNNM) . . . RHS 28
002 DU 72 I=1,NM , o ‘ :
0026 * 00 72 Jd=]1,NM : ’ :
0027 T2 S55(1,J)=8(1,J)
0024 CALL MINVISNMsDyLLyM1) R . RHS 29
0029 ) D0 31 I=1yNM L : ) : RHS 30
0030 - DU 31 K=1oNM _ T : RHS 31 _
0031 ’ SLM=0, ’ - RHS 32 Coe
0032 D0 30 J=1,NM ) ’ RHS 33 : . . i
0033 30 SLP!SUMOS(I.J)‘M(J.K) ) - RHS .34
[ ETS - 31 ollsK)=SUM - : " . RHS 35
0035 WRITELGL33) . ’ . . RHS 36
0036 33 FORMAT('0'y* PRODUCT MATRIX *) ‘. . : © RHS 37
0037 DO 32 I=zlyNM ' : RHS 38
0038 32 URITE(G69l) (B(IeJd) o=l oNM) - RHS 39
C MATRLIX C=MATRIX B . L RHS 40
0039 121 00 98 1=1,NM : . RHS - 41 .
0040 DU 98 J=1,NM : . RHS 42
0V41 98 ClI1J)=B(]14J) : . RHS 43 .
c . "RHS 44 . .
C EPS SMALL NUMBER TO TEST WHETHER ANY DIAGONAL IS ZERO OR NOT . RHS 45 o '
C RHS 46
0042 EPS=, 000000001 : ‘ RHS 47 . '+ |
0043 : WRITE(Gs064) EPS ) ’ . RHS 48 - : :
0044 64 FURMAT(LHO¢5X 94HEPS=4F10.9) . . -~ RHS 49
§S
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o avae warn e

0045

0046
0047
0048

0049
0050
0051

0052
0053
0054

0055

0056
0us7
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067

0068
0069
0070

0u71

0072
0073
0074
0075
ou76

077
Lo7uH
0079
0080
oovs1

oO

(X2 X o

(s X2 2]

92
69

VOO

[ X o

116

100
99

101

102
90

104
115

103

109

112

113
117

¢,

TEST TO FIND IF LAST EIGENVALUE REACHED
00 110 II=1+NM

IF(II=NM) 11641174116
NaNM=11+1
Nl=N-1

SEV Y1(I) AS A UNLIT CCLUMN MATRIX

DU 100 I=1,N
Yitl)=l.0
KC=0

UP TO STATEMENT 115, SUCCESSIVE APPROXIMATION IN FINDING THE
EIGENVALUES ¥AND THE FIRST EIGENVECTOR ONLY < IS CARRIED our

VDO 101 I=)4N

Y(1)=0.

DO 101 J=1,N

YEId)=Y (1) +C(14J)%V1LY)

J=1

IF (Y(J)) 89,91,89

R=Y(J)

GU TO 93

J=Jel

GU TO 92

E1GENVALUE IS THE FIRST ELEMENY UF THE EIGENVECTOR
00 90 I=],N
Yil)=Y{I)/R i
IF (VABSIY(1)=-YLII))—-EPS) 90,90,102
KC=1l
CONTINVE
IF(KC) 103,103,104

TRANSFER X(M+1)TH EIGENVECTOR TU X(M)TH EIGENVECTOR
DO 115 I=1yN
Yitl)=vil)
GG Tu 99

TTHE tIGENVALUE IS THE FIRSY ELEMENT IN THE EIGENVECTOR
EIGV(11)=R
UP 10 STATEMENT 112, THE SIZE OF MATRIX C IS REDUCED BY ONE
DO 109 I=]1,4NL
X(l)--Yll+l)
DO 112 I=2,N
DU 112 JU=2,4N
All=19J-1)mCl1,d) ¢ClLyJ)¥X(1-1)
REDUCTION OF SIZE OF MATRIX C BY ONE COMPLETED
D0 Li3 I=l,yNl
DO 113 J=l,N1
Cllod)=Alled)
GO TOU 118
EIGVIIL)I=C(1,12)

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

" RHS

RHS

"RHS

RHS
RHS
RHS
RHS
RHS
RHS

RHS

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

50

“51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

‘68
69
70
71
72 v
73
74
75
76
77
74
79
80
81
82
a3
£4
8%
86
87
88
89
20
91
92
93
9%
95
96
97
98
99

100

101

102

103
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L4 .
00462 118 WRITE(6¢54) II1.ELIGVIII) RHS 104
0083 54 FURMAT(12¢16HTH, EIGENVALUE=,EL12.5) ) RHS 105
c UP TO STATEMENT 9015, THE EIGENVECTORS ARE SOLVED RHS .106
0084 NN=NM-1 - o RHS 107
0085 : NLAST=hVe1 RHS 108
0086 - . IF(1I-1) 141,141,142 ] RHS 109
0C87 ., 142 DU 105 I=1,4NN . : RHS 110
ooss . DU 107 J=1¢NN RHS 111
oche - ALl +)=B(1,4J) ©  RHS 112
cu90 IF(1=J) 1074139107 ‘ RHS 113
0091 139 ALl J)=AlT,J)-EIGVILD) RHS 114
0092 107 CUNTINUE ' RHS 115
vu93 105 Ul1)==B{1sNM) RHS 116
c . RHS 117
C  TEST TO SEE WHETHER LIAGONAL ELEMENT IS ZERO OR NOV RHS 118
c RHS 119
ouss - DU 9015 lal.NN - 4 RHS 120
009y 1FLI=NN) 9021 ,49007,9021 RHS 121
0090 9021 LFIA(T,3)=-EPS) 9YU0H,9006,9007 RHS 122
0097 9005 1F(=A(]1)=-EPS) 9026,900649007 - RHS 123
0098 9006 ULL)=UL L)+UlL+1) _ RHS 124
0C39 DO 9023 JalyNA RHS 125
0100 9023 ALLpd)=ALT ) ¢Al1+143) RHS 126
0101 GU 1O 9021 RHS 127
0102 © 9007 DIVsALL.L) RHS 128
0103 util)=sult)/oly RHS 129
c . RHS 130
C UIVIDE ALL ELEMENTS UF I-TH EQUATION BY A(I,I) } RHS 131
c ‘ RHS 132
0104 DO 9009 -J=1 (NN .- RHS 133
vl0% 9009 A(f,J)=A(1,J)/0DIV : RHS 134
c : ‘ RHS 135
C REUUCE THE 1-TH ELEMENT UF THE OTHER EQUATIONS TO ZERO RHS 136
c L RHS 137
0106 DG 9015 MM=l 4NN : RHS 138
0107 DELT=A(MM,1) : RHS 139
o108 9016 IF(MM=1) 9010,9015,9010 RHS 140
0109 9010 UlMA) sU(MM)=ULT)*DELT . RHS 141 .
0110 DU 9011 J=1 4NN RHS 142
o111 9011 AlMA, J) sALHM ¢ J)=AL1J)*DELT RHS 143
oi12 | 9015 CUNTINUE : RHS 144
0113 YINM)=1,0 : RHS 145
ol14 DO 108 [=1,NN : RHS 146
0115 108 Y{1)=Uull) - : . RHS 147
c RHS 148
c CALCULATION OF * LAST ANGLE ° RHS - 149
c - RHS 150
o116 - 141 YINLAST)aY(1) RHS 151
0117 V0 160 1=24NM RHS 152 . .
o118 160 YUNLAST)=Y(NLAST)+2.0%v{1) , RHS 153
o119 Y{NLAST) ==Y {NLAST) RHS 154
c : RHS 155
c CALCUTATIUN UF DISPLACEMENT VECTOR , RHS 156
c . : RHS 157
=
o
)
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Hl

o120
o121
o122
0123
0124
0l1es
0126
0127
ol24.
o129
0130
0131
o132
0133
0134
0135
0136
0137
01343
0139
0140

0141
0142
0143
Ol44 -
0145

0146
V147
0l4d
0149
0ls5v
0151
0152
0153
0154
0155

0156
0157
0158
0159
0160
olL6l
0162
0163
0164
0165

163

10

161
79

200
2G4
201

51
143

[sX e X2}

152
153
154

OO0

310

300

301
302

303

304

DVIL)=0.0%Y( LY '

DU 163 1=224NH

OVII)=OVII=1)+Y(T)

ARITE(0y5) 11
FURMAT(1248X¢10HTH. EIGEN VECTOR»5Xy19HDISPLACEMENT VECTUR)
LU 10 K=l,NM

WRITE(6,79) VIK)OVIK)
WRITE{0L9161) YUNLAST)

FORMAT(IH , GHYLAST=9F15.6)
FORMAT(F22.6,F15.6)

DO 201 I=1,NM

SUM==E IGV(LT)#Y (1)

DC 200 J=sLyNM
SLMaSUM+B LT yu)*Y ([ J)

CUNTINUE '
FORMAT(LH 52hl=y12,4Xy4HSUM=F15.8)
WRITE(6,204) 19SUM

IFCI1-1) 15141510152

DU 143 I=1,4NM

DFL1)=DV(I)

Gu TU 31U

T1EST FOR ORTHUGONALITY OF EIGEN VECTGORS

SUNMNM=0.,0

VO 153 I=1,NM

SUMM=SUMMELF (1) *DVLL)

WRITE(G69154) 11,5UMM

FUORMAY(LHO s 3HII=+124:4X95HSUMM=F15,.8)
TT I TSI RIS AT IR RS2 22 222 2ty ity d )
APPLICATIUN OF GALERKIN'S METHOO.
TSI EISSY IS SIS 22 21 22 22 2 2 22t 1l t ]
MULTIPLICATIUN UF MASS MATRIX

DO 300 1=1,NM

ovil1=0.0

DO 300 Jd=1,4M

OVIE)=OVILI) M1y J)*Y L)

CUNTINUE

CMASS=0.0

DG 301 l=lyivM .

CMASS=CMASS+DVII)*Y (1)

ARITE(H,302) CMASS

FURMAT (0% y *CCEFFICIENTY UF MASS MATRIX?35Xy6HCMASS=,E20.8)
MULTIPLICATION OF STIFFNESS MATRIX

DG 303 I=1,NM

Ovt{1)=0.0

DO 303 J=1,NM

VDVEL)=DVI L) ¢8SL1000%Y{J)

CUNTINUE

C3TIFF=0.0

DO 304 I=1,NM

CSTIFF=CSTIFF+DVLIL)*Y(])

CUNTINUE

ARITE(64305) CSTIFF

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

RHS’

RHS
RHS
RHS
RHS
RHS
RHS

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

‘158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

179
180
181
182
183
184
185
186
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o

0166

0167
0168
0169
0170
0171
0172
0173
0174
oL75
0176
o177
ulL78
0179

305

306
307

308

309
110

4

FORMAY('O‘ *COEFFICIENT OF STIFFNESS MATRIX':SX:THCSTIPF*.EZO «8)
MULT!PLICATIGN OF FCRCE VECTOR

CFORCE=0.0

DO 306 1=21eNM

CFORLkSCFORCE*(Y(l)-Y(lfl))*Y(l)

ARITE169307) CFORLE

FURAAT( 0° , "COEFFICIENT OF FORCE HATR!X"5X.7HCF0RCE=7EZO.8) RHS

GFREQ=CSTIFF/CMASS

GLUAD=CSTIFF/CFORCE

WRITE(G,308) GFREQ ’ .
FORMAT( %0, 'FREQUENCY BY GALERKINS METHOD? , 5X y6HGFREQ=y E20.8) RHS

WRITE(64309) GLOAD
FORMAT (0% o BUCKLING LOAD BY GALERKINS METHOD! » 5X s 6HGLOAD=5E20.8)

CONTYINUVE : . RHS
END . RHS

TOTAL MEMORY REQUIREMENTS 001C86 BVT&S

187
188
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D2: Program to find the natural frequencies and the base

inertia force for a column subjected to periodic support

motion.

Input
Cols. Notation Descriptidn

A Number of Subdivisions (I5) one card

1-5 NMM Number of parts in which the column

is divided

B Member Properties (I5, 3F10.3) NMM cards

1-5 I Counter
£ ' 6-15 MS Mass of link
16-25 KM Stiffness of spring
26-35 | L Length of spring
C Axial Porce Array (10F10.6) one card _
1-80 FM Variation of the axial force aion;.

the length of the column

V¥

SRS R R

‘;',gﬁi&i&‘c;wm,:- A A s i

22

BN T

(XTSI TRRE



av

(2

LY )

[ >

0001
oco2
0003

0004
0008
0006
0007
0008
0009
0010
0011
0012
0013
0014

. 0018
[J B Y.}
0017
oc18
0019
0020
0021
oc22
0023
0024
0028
0026
0027
0028
0029
0030
0031
0032
0c3a
0034
0038
oc3e
c0az
oo3a
0039
0040
0041
c0a2
0ca3
0044
0cas
0048
0047
o0as
0049
0050
0081
0082

e

DIMENSION MSL40) 4L (40) sKM(A0)sPM(40) +SM(40) +RL(40) .CRL(A0)
DIMIENS 1ON A(40.40)vU(40)wOF(QO)oDV(4O)oS§QOQ40)

LIN

DIMENSION R(QO.QO).C(QO.QO)vX(QO)'Vl(40)oY(40)vFIGV(QO).ElGG(40)- LIN

1SS(10+10)sM(10+10)sL21C€10)eM1LL0) FM(10)
DOUNLE PRECISION LeKM,SM,RM¢MS :
DOUALE PRECISIAN A.BoCoUoXoYvVluFlGVoDELT.DlV.EPSoR
CQUIVALENCE (X(1),Y1¢1))
" CALL PGMCHK
REAL M
INTEGFR RL.CRL
READ (5,20) NMM
20 FOPMAT(IS) 1
WRITE(G.21) NMM :
21 FORMAT(1H1 45X 4HNMM=, 13)
DO 252 I=1¢+NMM .
252 RL({1)=0
CRL(1)=0
DO 253 1=2,NMM
283 CRL(I)=CRL(I=1)+RL(I)
NM=aNtYM~CRL ( NMM)
WRITE(Ge14) NMM,NM
14 FORVAT(1HO s EX sAHNMM=, I3,5Xs3HNM=, I3)
" WRITE (64+81)
81 FOPMAT('0¢,* JOINT RL CRL*)
. D0 9 I=1NMM
9 WRITE(6+6) I 4RLIID,CRL(TY)
6 FORMAT({316)
00 206 =] ,NMM -
206 RFAD(S.207) loNo(l’oKM(l)oL(l)
207 FORMAT(15,3F10.3)
WRITE(64,220)
220 FORMAT(lNOvﬁHNUHBfRo5Xo4HMA$So6Xo9HSTlFFNESS06XQ6HLENGTH)
DO 208 I=14NMM
208 WRITE(6+209) T+MSIT)eKM(I) L(T)
209 FCRMAT(IHO+1I5,F1541142F10e5)
. RCAD (5.4.81) (FN(!)OI*[;NM)
al FORMAT(10F8.S5)
WRITE(6+82)
82 FORMAT('0*,'FORCE MATRIX?®)
WRITE(G6+83) (FM(T)eInlNM)
83 FONMAT(1HO.10F10.6)
. DO 210 Iz ¢NMM
D0 210 J=1 NMM
S(I+sJ)=0,0
210 CONTINUE
. DO 1 I=1¢NM
NDD'1 J=14NM
M(T1,J)=0,0
1 SS(1l,0)=0,0
ML=}
a2s0 DN 211 Im)eNMM
IF (RL(1)) 240,241,240
240 ML=ML 42

LIN.

LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
4 IN

VONOBPdPWN

991
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. 0083 GO TO 213 LIN S5 -
0054 241  ICRL=I1-CRL(1) ) . LIN 'S6 L
0065 LL=ML=CPL (1) ) LIN S7
0086 DO 212 J=1,NMM : : LIN K!8
0057 . IF (LLL=J) 244,284,243 . LIN 59
00sa 243 6N 10 212 : oL : LIN 60
0059 . 2a4 JRL=J+CHL(T) . LIN 61
0060 . IF (NMM=JURL) 212,242,242 : . LIN 62
0061 242 JECRL=J=CRLEJRLI +CRL(T) . : LIN 63
oco2 CIF (RLGJRL)) 23042314230 LIN 64
0063 231 M{TCRL,JCRL)IEMS (JRLI *L (I) . LIN 65
ooca GO YO 212 . LIN 66
006% 230 M{ICRLyJCRLIEMIICRLsJCRL J+MSCJRLI*L(T) . : ' LIN 67
0066 - 212 CONT INUF . . LIN 68
0067 UL=vL+1 . S LIN 69
ooea 211 CONTINUE L . : LIN - 70
0069 DD 215 1=1.NMM ) LIN 71
0070 . 218 RM{I)=KM{I)/L(T) . LIN 72
0071 ) D0 216 [=2,NMM ’ ] LIN 73

‘0072 ‘216 SMUT)=KMCI)ZLCT=1) ] LIN 74
0073 : DO 18 I=14.NMM . LIN 7s
0074 18 WRITE(G+11) ToRM{T)KM(I) LIN 76 \
0078 11 FORMAT(17:,2F10e3) . . . LIN 77
0076 SSC(141)=RMCL)I4RM(2)4+SM(2) LIN 78
0077 8G(142)==RM(2) .. . LIN 79
oo7a : SS(241)m=(AM(2)+SM(2) ¢SM(3)) ’ LIN a0
0079 SS(242)aRM(2) +RM(3I+SM(3) . . LIN a1
ocno SS(2,43)a-SHl3) ’ ) LIN 82
0CA1L S(1e1)=SS5(1,1) . LIN 83 -

o082 S(1,+2)=88(1,2) : . LIN 84
0083 S{2+11=8S(241) . . ) LIN 8s
o084 S(2+2)=85(2+2) LIN 86
0085 $(2+3)3855(2,3) LIN 87
0086 : SUN'M o NMM) SRM{ NMM) . LIN a8

‘ocn? R S(NMM  NMM=1)==(RM (NMM)I+SM(NMM) ) LIN 89
oona SINUM yNMM=2) =S M{NMM) : LIN -1}

0089 MN=NMM= | : ILIN 21
0090 Li=3 . ’ LIN a2
0091 PO 217 1=33,MN : LIN o3
0092 S(I.LL=-2)=SM(1) ’ LIN 94
0093 S(TelL=1)==(RM(T)+SMCII+SMIT+1)) . ] _ LIN ~ S3
0094 SUloLL)=OM(T)+RUCT+1)$SMCI+1) : LIN 9¢
000s S(IsLL#1)==RM(TI+1) LIN 97 R
0096 . Ll=LL+) ’ LIN 98
0097 : 217 CONT!IMNUE ' . . . LIN 99
LYY . PO 2110 I=3,NMM - LIN 100
0099 IFC(RLCI)) 2400+2410,2400 LIN 10t

_ 0100 2400 GO TO 2110 LIN 102
o101 2410 ICPL=1-CRL(I]) LIN 103
0102 DO 2120 J=1.NMM i " LIN 104
0103 JRL=JHCPRLLT) - LIN 1085
0104 IF(NMM~JRL) 2120,2420,2420 LIN 106
0108 2420 JCRL=J=CRLEJRL)+CRLIT) ) ’ . ) . LIN 107
o106 IF (RLIJRL)) 2300+2310,2300 . : LIN 108
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0107 2310 SS{ICRL.JCRIL.)I=S(IJRL) . LIN 109
o108 GO0 TO 2120 ’ LIN 110
0109 2300 SS{ICRL 4 JCRLISSS(TCRLSJCRLI+S(I4JRL) . LIN 111
. 0110 2120 CONTINUF ' : ’ LIN 112
o111 2110 CONTINUF LIN 113
0112 WRITE((+3001) ’ - . LIN 1148
o113 3001 FORMAT (0%, *STIFFNESS MATRIX®) LIN 115
0114 : DO 3002 I31.NM : LIN 116
o118 - 3002 WRITE(643003) (SS(I+J)eJd=1eNM) LIN 117
ot16 WRITE(6,3004) : LIN 118
o117 3004 FOPMAT('0%,*MASS MATRIX®) LIN 1197
o118 P DO 3005 I=14NM LIN 120
0119 3005 WRITE(6¢3003) (M{I:J)eJ31sNN) . . LIN 121
0120 3003 FORMAT(1H +9F13.5) : LIN 122
o121 NO 3006 I=1,NMM . . . LIN 123
0122 3006 WRITE(643003) (S(I+J) sJdal ¢NMM) . : LIN 124
0123 CALL MINV(SSNMeD.L1sM1) LIN 125
0124 . N0 31 Is1,NM ’ . : LIN 126
0128 DO 31 K=1+NM : . LIN 127
‘o126 SUM=0, - LIN 128
0127 NO 30 J=1,NM . . LIN 129
0128 30 SUMaSUMESS(T 2 JIXM(JI.K) : LIN 130
0129 31 B(l.K)=SUM . . LIN 13t
c ' - MATRIX C=MATRIX O . LIN 132
0130 121 DO 98 I=1,NM LIN 133
0131 NO 98 J=1 sNM LIN 134
0132 98 C(1:J)2B(T+J) . . . LIN 135
c ’ LIN 136
c EPS SMALL NUMDER TO TEST WHETHER ANY DIAGONAL IS ZERO OR NOT T LIN 137 -
c . LIN 138
0133 EPS=,000000001 LIN 139
0134 WRITE(6+:64) CPS . LIN 140
0138 64 FORMAT (1HO s5XsaHERPS=4E12.5) . LIN 141
c . ) LIN 142
c TEST TO FIND IF LAST EIGFENVALUE REACHED LIN 143
c ' LIN 149
0136 ND 110 1I=1,5 ' LIN. 145 -
0137 IFCII=NM) 1161174116 ) LIN 146
0138 116 N=NM=-11+1 : LIN 147
0139 Ni=N=1 LIN 148
c LIN 149
C SFT Y1(1) AS A UNIT COLUMN MATRIX LIN 150
: . . c : LIN 151
0140 DN 100 I=1,N LIN 152
0141 . 100 Y1(1)=1,0 LIN 153
0142 99 KC=0 LIN 154
c ’ LIN 158
c UP TO STATCEMENY 1185, SUCCESSIVE APPROXIMATION IN FINDING THE LIN 1S6
c FIGFNVALUES (AND YHE FIRST E!1GENVECTOR ONLY ) 1S CARRIED OUT LIN 157
0143 ND 101 I=1,N LIN 1S8
0144 Y(1)=0. : LIN 159
0148 DO 101 J=1N ) LIN 160
: 0146 101 Y(II=Y(E)+ClTIJ)%YLI(J) . ) LIN 161
0147 J=N ) LIN 162
=
o
® -
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o148 92 IF (Y{(J)) 89,91,89 LIN 163 .
0149 . 89 R=Y(J) . . LIN 164
., 0180 GO TO 93 " LIN 165
. 0185} L9t JEJ-t . - LIN 166
o182 GO TO 92 LIN 167
c . . : . LIN 168
c FIGENVALUE IS THE FIRST ELEMENT OF THE £IGENVECTOR LIN 169
0183 93 DO 90 I=1,N ] LIN 170
-, 0184 . ¢ YI1)=Y(1)/R : LIN 171 .
o158 - IF (DARS(Y(I)=Y1(I))=EPS) 90.,90,102 : LIN 172
0156 102 KC=1 ) LIN 173
S 0187 90 CONTINUC LIN 174
o1s8 IF{KC) 103,103,104 . LIN 175
[ . . LIN 176 . -
c TRANSFER X (M+1)TH EIGENVECTOR TO X(M)TH EIGENVECTOR . ‘LIN 177 - '
0159 104 DO 115 1=1,N LIN 178
0160 115 Yi(1)=v(1) . LIN 179
0161 GO YO 99 LIN 180
c LIN 181
c TTHF EIGENVALUE IS THE FIRST ELEMENT IN THE EIGENVECTOR LIN 1a2
o162 103 EIGV(I1)=R ' LIN 183
c UP TO STATEMENT 112, THE SIZE OF MATRIX C IS REDUCED BY ONE LIN 184
0163 DN 100 I=t,.N1 ) LIN 185 . . -
o164 109 X(I)==v(1) ) LIN 186
0165 D0 112 t=1,N1 LIN 187
0166 DO 112 J=1,Nt ’ . LIN 188
, 0167 112 A(T4J)I=CUT4J)4CINLIIRXLT) ) LIN 189
c REDUCT ION OF SIZE OF MATRIX € BY ONE COMPLETED LIN 190
o168 DO 1313 [=1.N1 . LIN 191
0169 : 00 113 J=1.N1 . LIN:- 192
o170 113 Cl1,J)=AC1.J) : . LIN 103
0171 GO TO 119 ’ LIN 193
o172 117 FIGV(T1)=C(1,1) LIN 19S5
0173 118 E15G(1I)=1.0/R . LIN 196
0174 WRITC(6454) 1T1.CTIGVIIT),EIGG(IT) : LIN 197
s 0178 FREQ=SQRT(ABS(FIGG(11))) . LIN 198
| 01/,6 WRITE(6,+53) FREQ ] LIN 199
§ 0177 53 FORMAT(1H0+5X+40HNATURAL FREQUENCY IN RADIANS PER SECOND=4F20.3) LIN 200
A o178 54 FORMAT (14,18HTH., INVERSE VALUE=¢E12:5+:5X¢16HTHe EIGEN VALUE=E12¢5LIN 201
‘ 1) ' LIN 202
c UP TO STATEMENY 901Se THE EIGENVECTORS ARE SOLVED LIN 203
) 03179 NM=NM-1 LIN 204
0180 NLAST=NM+1 LIN 208
o181 IFCII=1) 141,141,142 : LIN 206
) o182 142 D0 105 1=1,NN . LIN 207
0193 DD 107 J=1,NN . LIN 208
: o1 R4 . Al 4 J)=R(T,4J) LIN 209
\ . c1a8 IF(I=-J) 107+139,107 : LIN 210 . -
0186 139 AT+ 0)=ACT,0)=EIGV(II) . : LIN 211t
01087 107 CONTINUE : LIN 212
) : o188 108 ULT)==i(1,NM) ? LIN 213
c TEST TO SEE WHETHER DIAGONAL ELEMENT 1S ZERO OR NOT ’ LIN 214
c . . . . LIN 218
) - 0189 DO 9018 I=1,NN . ) . . LIN 216
' =
(o) .
) o
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0199 IF(I=NN) Q021:9007,9021 LIN 217
0191 9021 IF(A(I,1)~EPS) 9005+9006+9007 LIN 218
0192 9005 IF(-A(1,1)-EPS) 9006+90064:9007 . LIN 219
0193 9006 ULI)=U(I)+U(T+1) - LIN 220
0194 " PO 9023 J=1 NN LIN 221
0198 9023 All,u)= A(l.J)+A(!+IoJ) LIN 222
0196 GO TO 9021 LIN 223
0197 Q007 DIV=A(I 1) LIN 224
o198 . ulII=uUCII/DLV LIN 228
c ’ . : LIN 226
c DIVIDE ALL FLEMENTS OF. I=-TH EQUATION BY ACI,.I) LIN 227
c LIN 228
0199 DO 9009 J=1,NN LIN 229
0200 9009 A(l1,J)=A(1,J)/01V LIN 230
[ LIN 231
c REDUCE THE I-TH FLFMENT OF THE OTYHER EQUAT IONS TO ZERO LIN 232
. C . * LIN 233
0201 NO Q015 MM=1 (NN LIN 234
0202 DELT=A(MM,I) LIN 238
0203 9016 IF(MM-1) 9010,9015+:9010 LIN 236
0204 9010 u(uM)au(MM)-u(l)*DELT LIN 237
0208 DO 9011 J=1 NN LIN 238

0206 9011 A(W“.J)=A(MM.J)-A(I.J)*DELT LIN 239 )
0207 9018 CONT INVE LIN 240
0208 YINM)=1,.0 LIN 241

0209 DD 108 I=1,NN LIN 242 .
0210 108 Y(1)=U(1) LIN 243
C LIN 244
c . ) LIN 245
c CALCUTATION OF DISPLACEMENY VECTOR LIN 246
¢ : LIN 247
0211 141 DV(1)=0.5%Y(1) LIN 248
o212 OO 163 1=2,NM LIN 249
0213 163 DVII)=DVI=1) ¢V(1) LIN 250
0214 DIV=DV(NM) LIN 251
0218 DD 190 I=zl NM LIN 252
0216 190 DV(IL)I=DV(T)/DIV .LIN 253
ory7 WRITE(G+5) 11 : . LIN 254
o218 B8 FORMAT(T2,B8X¢16HTH. EI1GEN VECTOR +5X + 19HD I SPLACEMENT VECTOR) LIN 255
0219 DO 10 K=t ,NM LIN 256
220 10 WRITE(64+79) VIK)DVIK) - LIN - 287
0221 T9 FORMAT(F22.69F15.6) . LIN 258
0222 DO 201 I=1,NM LIN 259
0223 SUM=-EIGV{TT)*Y(T) LIN 260
0274 DO 200 J=1 NM LIN 261
0228 SUM=SUM+B (T + J) %Y (J) LIN 262
0226 200 CONTINUE LIN 263
0227 204 FORMAT(IH +2HI=» 12:4Xe4HSUMRF15.8) LIN 264
o228 201 WRITE(G+204) [,S5UM LIN 265
0279 IF(II=1) 151,151,152 LIN 266
0230 151 DD 143 I=1,NM . LIN 267
02m 143 DF(1)=DV(T) . LIN 268
0232 GO TO 310 LIN 269
c LIN 270
]
o
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s . " X-wy
c TFST FO- O-T+OGONAL+TY OF E+4GEN VFCTO=-S LIN 271
. c - LIN 272
02323 182 SUMM=0,0 . LIN 273
0234 DO 153 I=1,.NM ) ) LIN 274
023s 163 SUMM=SUMM+DF(I)*DVIII*M{ I 41) %2,0 LIN 275 . .
0236 WRITF(6+.184) T1,SUMM . - . LIN 276 .
0237 184 FORMAT(LHO e 3HIT S, 12,4 X+s5HSUMM= oF 168 ) LIN 277 i
[of kg *#**t###t##*#****t#**t#t*#t#*ttt# . LIN 278
. c " APPL ICAT ION OF GALERKIN'S METHQOD. LIN 279
C tt«n*i«tt*tt###*#***#***t#t##t#*#lﬂr*ttt - ’ LIN 280
) c MULTIALICATION OF MASS MATRIX . LIN 281 . :
0238 310 DO 300 I=1,.:M . LIN 282 ) .
0239 OV(1)=0.0 . . LIN 283
0240 DD 300 J=1.NM . T LIN 284
0241 ToDVIII=DVEIIHMCT LU %Y (J) . o LIN 2ARs
0242 . 300 CONTINUE LIN 286
0243 CMASS=0.0 : : LIN 287
0244 DD 301 1=1,NM . LIN 288
0246 301 CMASS=CMASS+DVII)#Y(I) . LIN 289
0246 WRITF (64302) CMASS ‘ . LIN 2099
0247 302 FORMAT('C*y *CNEFFICIENY OF MASS MATRIX® ¢ EXe6HCMASS=,E20,8) LIN 291
c MULTIPL ICATION OF STIFFNESS MATRIX LIN . 292 .
02448 DO 303 I=m1 ¢NM LIN 293
0249 OV(1)=0.0 LIN 294 .
0280 00 303 J=1,,NM LIN 295
02%1 DVEI)=DVIII4S(T,J)%Y () _ LIN 296
0252 303 CONTINUC LIN 297
0253 CSTIFF=0,.0 . ’ ) LIN 298
0284 PO 304 T1=1,NM. . . LIN ‘299 - .
02569 CSTIFFECSTIFF+DV(I)%Y(T) ) LIN 300 ) .
0256 304 CONTIMUE . ) LIN 301
0287 . WRITE (643N0%) CSTIFF LIN 302
0288 308 FORMAT(®n¢,COEFFICIENT OF STIFFNESS MATRIX® 5Xe THCSTIFF=4E2048) LIN 303
c MULTIPLICATION OF FORCE MATRIX . LIN 304
0289 CFORGCR=0.0 LIN 30s
0260 CFORCE=Y (L)Y (1 )*FM(1) ’ - LIN 306
0261 PO 306 1=2,NM - LIN 307
0262 306 CrORCE=CFORCE+(Y( I1)=Y(I=1))ey(I)*FM(T) . LIN 308
0263 WRITE(64,307) CFORCE ) . . LIN 309
0264 307 FNRMAT( 0 ,'COEFFICIENT OF FORCE MATRIX® 4SX s 7HCFORCE=,E20 +8) LIN 310
oans GFRFQ=CSTIFF/CMASS LIN 311
0266 GLOAD=CSTIFF/CFORCE LIN 312
0267 WRITE(6,308) GFREQ . ) LIN 313
or68 308 FORMAT('0',*FRECQUENCY BY GALERK INS METHOD® ¢+ SX» 6HGFREQ=4E 20.8) LIN 314
0269 WRITE(6+309) GLOAD LIN 315
0270 309 FORMAT(®0¢4'BUCKLING LOAD BY GALERKINS METHOD® ¢+ SX+6HGLOAD=,E20.8)LIN 316
0271 110 CONT INUE LIN 317
0272 END LIN 318
?
A
" -
~
(]

2230792

R L e L At b e b e b AR B 64 B A e e D £ s s A i M N AL (oo 5 s 5 knr ok i

e L XM AR A s A Kb A ISR ki it Sl b




