
ln compliance with the
anadian Privacy Legislation

sorne supporting forms
may have been removed from

this dissertation.

hile these forms may be included
in the document page count,

their removal does not represent
any 1055 of content from the dissertationœ

NEW ALGORITHMS FOR JAVA DECOMPILER
AND THEIR IMPLEMENTATION IN SOOT

by
J erame Miecznikowski

School of Computer Science
McGill University, Montreal

February 2003

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2003 by Jerome Miecznikowski

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88265-9
Our file Notre référence
ISBN: 0-612-88265-9

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

This thesis presents Dava, a Java bytecode to Java source code decompiler built
on top of the Soot framework.

The Java Virtual Machine Specification of valid bytecode is mu ch less restrictive
than the Java Language Specification of valid Java source programs. For example,
bytecode has unstructured control flow, 100se local typing, and few restrictions on
method modifiers. By contrast, the Java language has highly structured control flow,
strong local typing, and many restrictions on its method modifiers. The goal of this
thesis was to build a tool that could correctly decompile the widest range of verifiable
Java bytecode back into compilable Java source. This includes bytecode coming from
other source languages, bytecode that has undergone certain types of obfuscation, and
optimized bytecode. To accomplish this goal we created the Structure Encapsulation
Tree data structure and a set of new decompiling algorithms.

The algorithms faH into three categories: regular control flow, exception al con­

trol flow, and idioms. Regular control flow includes finding constructs such as loops,
if-else statements, and labeled blocks. Exceptional control flow refers strictly to
try-catch statements. Idioms is a collection of miscellaneous restructuring enhance­
ments and techniques for ensuring that we pro duce syntactically correct Java.

The Structure Encapsulation Tree allmvs us to address various decompiling prob­
lems one at a time, in order of their difficulty. For example, we find allloops before
we find any if-else statements. The result lS a very robust algorithm that will
restructure any control flow graph without resorting to tricks snch as encoding the
control flow graph as a finite state machine.

VVe test our Implementation of the decompiler on a wide range of inputs and
compare the results to the output of four leading Java decompilers. Our results
show that Dava always pro duces correct source code and that it far ontperforms the
competition on aH of our more advanced tests.

n

Résumé

Cette thèse présente Dava, un décompilateur basé sur le cadre d'applications Soot
et générant du code source Java à partir de code objet Java.

Les Spécifications de la Machine Virtuelle de Java sont beaucoup moins restric­
tives quant à la validité du code objet Java que ne le sont les Spécifications du
Language Java pour la validité du programme source. À titre d'exemple, le code
objet Java présente un flux de commande astructuré, un système de types minimal­
iste et peu de restrictions sur les attributs déclarés. À l'inverse, le langage Java
présente un flot de contrôle hautement structuré, un système de types diversifié et
de nombreuses restrictions sur les attributs déclarés. Mon objectif était de bâtir
un outil pouvant décompiler la plus grande variété de code objet Java vérifiable en
code source Java compilable. Ceci inclut du code objet provenant d'autres langages
source, du code objet ayant subi certains types d'obfuscation, ainsi que du code objet
optimisé. Afin d'accomplir cette tâche, j'ai créé l'Arbre d'Encapsulation de Struc­
ture (Structure Encapsulation Tree)(une structure de données), ainsi qu'un nouvel
ensemble d'algorithmes de décompilation.

Les algorithmes appartiennent à l'une des trois catégories suivantes: flux de com­
mande régulier, flux de commande exceptionnel et idiomes. Le flux de commande
régulier inclut la recherche de structures telles que les boucles, les instructions 'if­
else' et les blocs avec étiquettes. Le flux de commande exceptionnel fait uniquement
référence aux instructions 'try-catch'. Les idiomes sont une collection d'améliorations
structurelles et de techniques permettant de garantir la production code Java
correct.

L'Arbre d'Encapsulation de Structure (Structure Encapsulation Tree) nous per­
met de résoudre, un à la fois, une variété de problèmes relatifs à la décompilation, par
ordre de difficulté. Par example, nous trouvons toutes les boucles avant de trouver les
instructions 'if-else'. Cette technique résulte en un algorithme très robuste et capable

III

restructurer nlimporte quel graphe de flux de commande sans recourrir à des trucs
tels que l'encodage du graphe sous forme de machine à états finis.

Nous vérifions la validité de notre implémentation sur une large sélection d'entrées
et comparons les résultats obtenus à ceux de quatre dé compilateurs populaires pour
Java. Malgré le fait que Dava donne de moins bons resultats dans sa fa con de traiter
le code objet provenant du code source Java, il génère toujours du code source correct
et devance, et de loin, la compétition dans tous nos tests les plus avancés.

lV

Acknowledgments

This thesis was made possible by a large number of people who l would like to
thank. First, Laurie Hendren, my supervisor, who runs the first rate compiler courses
and Sable research group at McGill. Besides introducing the world of compilers in
a truly engaging manner, it was by her suggestion that l began to investigate the
fruitful are a of decompiling. From this study, l would like to thank her especially
for the two co-authored published papers, the OOPSLA poster, and the chance to
present my research at three different conferences. Lastly l would like ta thank her for
the research assistantship she gave me, without which it would have been impossible
to pursue the master's degree.

Next, thanks must go to the authors of Soot, upon whose work l have built.
Raja Vallée-Rai is the chief architect and implementer of Soot and his efforts at
creating a simple and powerful object oriented framework are deeply appreciated.
Many times, l was pleasantly surprised by the rich set of APIs that he provided.
Patrick Lam built Grimp which is a very high levei internaI representation in Soot that
l used almost exclusively. Etienne Gagnon built the typing routines that typed local
variables. There are aiso the many members of the lab who have indirectly helped
either by enduring my algorithmic ideas and/or by steering me in right directions.
In no particular order they are: John Jorgensen, Marc Berndl, Ondfej Lhotak, Felix
Kwok, Feng Qian, Patrice Pominville, and Fabien Deschodt. 1 would also like to
thank Bruno Dufour for his translation of the abstract, and John for his help with
editing my papers and parts of this thesis.

Finally l would like to thank my parents who have gave me the moral support
and courage, sometimes on a daily basis, to be able to see this project through to

completion.

v

Dedicated to

My Mother, Nadine A. Miecznikowski,

and

My Father, John J. Miecznikowski.

VI

Contents

Abstract n

Résumé Hi

Acknowledgments v

1 Introduction 1

1.1 The Soot framework 2

1.2 Thesis Contributions 4

1.3 Thesis Organization . 5

2 Overview: Data Structures and Algorithm 6

2.1 Introduction . . 6

2.2 I}ata Structures 7

2.2.1 Grimp. 8

2.2.2 Control Flow Graph 11

2.2.3 Structure Encapsulation Tree 13

2.2.4 Abstract Syntax Tree . 15

2.2.5 Java Source Code 16

2.3 Algorithm Construction 17

2.4 A simple illustrative example 20

vu

3 RegulaI' Control Flow 25

3.1 while, while(true) and do-while Loops 26

3.1.1 Single entry point strongly connected components 27

3.1.2 while Loops. . . 28

3.1.3 do-while Loops . 29

3.1.4 while (true) Unconditional Loops 31

3.1.5 Multiple entry point components 32

3.1.6 N ested loops . 36

3.1.7 Loop Bodies . 37

3.1.8 Putting Loops in the SET 38

3.2 DAGs - 39

3.2.1 Putting DAGs in the SET 39

3.2.2 A small transform that simplifies design 41

3.2.3 if statements 41

3.2.4 if-else statements . 43

3.2.5 swi tch statements 43

3.3 Labeled Blocks 46

3.3.1 Labeled Breaks and Continues . 50

3.3.2 Removing labels 52

4 Exceptions 56

4.1 Introduction 56

4.2 Exception Table Entry Removal 59

4.3 Exception Preprocessing . , .. 63

4.3.1 Versioning on the Control Flow Graph 63

4.3.2 Basic Exception Preprocessing 67

4.3.3 Improving the Versioned Control Flow Graph 72

4.3.4 Putting it aH together with Control Flow . 76

Vln

4.4 Exception Handling

4.4.1 Spurious catch and try Removal

5 Idioms

5.1 Converting Structured Grimp to Java.

5.1.1 Simple Statements

5.1.2 Converting invokespecial <ini t> to Constructor Calls

5.1.3 Converting the clini t Method to a static Initializer Block

5.1.4 throws declarations .

5.1.5 Throwing null

5.1.6 Class literaIs. .

5.2 Readability Transforms Performed on Grirnp .

5.2.1 Aggregated ifs

5.2.2 Class names . .

5.3 Readability Transforms perforrned on the SET

5.3.1 synchronizedO blocks

5.3.2 finally blocks

5.3.3 for loops ...

5.3.4 if-else chains

5.3.5 Condition al assignments

5.3.6 if-else 1 continue substitutions

6 Testing and Results

6.1 Introduction ...

6.1.1 Measures

6.2 Component Testing

6.2.1 Basic Loops

6.2.2 Multi-entry point Loops

IX

80

82

84

84

84

85

87

89

92

92

93

94

101

102

102

107

108

110

111

111

113

113

114

116

116

118

6.2.3 if j if-else, and swi tch Statements

6.2.4 Labeled Blocks, breaks and continue Statements

6.2.5 Basic Exception Handling ...

6.2.6 Advanced Exception Handling .

6.2.7 synchronized Statements ..

6.2.8 Class/Package Names Clashes

6.2.9 throws Declarations

6.3 Benchmarks Description and Testing

6.4 Comparison to other Decompilers

6.5 Conclusions

7 Conclusions

x

120

120

121

122

124

124

125

125

127

132

133

ist Figures

1.1 A simplified layout of Soot.

2.1 Grimp representation of simple method mC).

2.2 Control Flow Graph of mO.

2.3 The control flow graph for an if statement.

2.4 An if statement without any "join" point.

2.5 Structure Encapsulation Tree of mO.

2.6 Abstract Syntax Tree of mO

2.7 Resulting Java source code of mO ..

2.8 The nine phases of the decompiling algorithm and their control flow
categories.

2.9 Control Flow Graph of m().

2.10 Structure Encapsulation Tree of mO after phase 1. .

2.11 Structure Encapsulation Tree of m() after phase 2 ..

2.12 Structure Encapsulation Tree of mO after phase 5 ..

2.13 Structure Encapsulation Tree of mO after phase 6 ..

2.14 Structure Encapsulation Tree of mC) after phase 8 ..

3.1 Regular control flow phases.

3.2 Pattern used to generate a while loop.

3.3 Pattern used to generate a do-while loop.

3.4 An example control fiow graph that transforms to a while (true) Ioop,
and its corresponding code.

Xl

3

8

11

12

13

14

15

16

18

20

21

21

22

23

24

25

29

30

31

3.5 A simple multi-entry point strongly connected component and its con­
version to a single entry point strongly connected component.

3.6 A complex multi-entry point strongly connected component with two
possible transforms.

3.7 The generated code from figure 3.6

3.8 Code and corresponding control flow graph.

3.9 Finding a DAG bodyS et. . . .

3.10 Trimming a DAG SET node ..

3.11 A small transform that guarantees that successors of condition aIs are
dominated.

3.12 A simple swi tch statement.

3.13 A swi tch statement with a case fall-through.

3.14 A switch statement with multiple case fall-throughs.

3.15 A switch statement that cannot employ case fall-throughs ..

3.16 A second swi tch statement that cannot use case fall-throughs.

3.17 Summary SET from the top view

3.18 Summary SET from the top view with labeled block solution.

3.19 An inter-child control flow graph.

3.20 Natural exit points from structured statements.

4.1 Exception based control flow phases.

4.2 Grimp representation of simple method mO with exception.

4.3 Code showing decompilation of Figure 4.2 ...

4.4 A complex interaction of exception table entries.

4.5 Abstract Control Flow Graph of Figure 4.4.

4.6 Splitting an exception table entry.

33

34

35

38

40

41

42

44

44

45

45

46

47

48

49

51

56

58

59

60

61

62

4.7 An area of protection with two entry points and its appropriate transform. 64

4.8 A self targeting area of protection and its appropriate transform. . .. 65

4.9 Two non-nesting areas of protection and their appropriate transform. 66

Xll

4.10 Application algorithm 6 to figure 4.5 ...

4.11 A simple example of branch integration.

68

73

4.12 An more complex example of branch integration building on figure 4.11. 74

4.13 A simple example of stem integration..

4.14 Code corresponding to stem integration in figure 4.13 ..

4.15 A simple example of follower fusing

5.1 Calling one constructor from another in Java and the corresponding

76

77

78

Grimp. 86

5.2 An "impossible-to-decompile" constructor. 87

5.3 A class with an illegal static initializer. . . 88

5.4 An explicit throw statement causes a throws declaration. . 90

5.5 lVIethod invocation may cause a throws declaration. 90

5.6 Inheritance may cause a throws declaration. . . 91

5.7 Reduction and simplification of a compound if. 94

5.8 An Expression with potential side-effect and their ordering. . 96

5.9 Removal of 2 negations from an expression tree. 99

5.10 Unstructured use of monitor instructions. . 103

5.11 A simple synchronizedO block in Java. 103

5.12 The Grimp equivalent of figure 5.11. 104

5.13 The structured code output before synchronizedO blocks are found. 104

5.14 Exception preprocessing can resolve structuring problems involved with
creating synchronized 0 blocks. 106

5.15 Pattern that is searched for to build finally blocks. 108

5.16 for loop pattern. 109

5.17 Pattern that "fixes" breaks in for loops. 109

5.18 Conversion of nested if-else to if-else chain. 110

5.19 A condition al assignment. 111

5.20 Using a continue to reduce level of nesting. 111

Xlll

6.1 Development life cycle for Dava

6.2 Overview of Implementation and Testing ..

6.3 A basic set of tests for simple loops ..

6.4 A basic set of while in while tests.

6.5 Control HoVi! graphs for figure 6.4.

6.6 Control HoVi! graph of a simple multi-entry point loop.

6.7 A "fun" multi-entry point loop.

6.8 Example program control HoVi! graph and Dava output.

6.9 Decompiled code for method fool ()

6.10 Control HoVi! graph and decompiled code for method foo2 ()

6.11 Description of Core Suite.

6.12 Original and decompiled code for method foo3()

6.13 Decompiled code for method fool ()

6.14 Decompiled code for method foo2()

XIV

114

115

117

117

118

119

119

121

122

123

126

129

130

131

Chapter 1

Introduction

Java is an increasingly popular development language [9] and platform [14]. The
Java language has many attractive features, such as a simple multi-threading model,
garbage collection, runtime checking, exceptions, and a highly object-oriented design.
Applications written in Java are usually compiled with Sun lVIicrosystem's [11,25]
javac compiler to a bytecode representation. The bytecode is then run on a Java
platform, which is usually a Java virtual machine [14]. The virtual machine's runtime
system then has to support the Java language's features.

This support has benefits and drawbacks. On the benefit side, bytecode is portable
among many different hardware platforms, common types of memory leaks are elim­
inated, memory access lS always "safe", multi-threading resource locks and unlocks
are always balanced, and so on. On the drawback side, supporting these features
imposes a runtime overhead. Optimization can reduce this overhead, but if the opti­
mization process itself lS done "on-the-fly" as the bytecode application is being run,
it too imposes an overhead. Choosing good optimizations to reduce overall runtime
can therefore be tricky.

Soot [22,26,27] is a tool written by lVIcGill University's Sable Research Group [21]
that can analyze and optimize Java bytecode before it is run on a Java virtual machine.
This eliminates some of the overhead of optimization at runtime. However, this lS
also a useful tool for experimenting with new, radical types of optimizations and more
general transforms, inclllding bytecode obfuscation and watermarking. As a general
purpose taol, then, Soot has many applications.

One of the aspects of Soot that makes it effective, lS that it lS relatively easy to
use. Debugging one's transforms can be done by dumping the internaI representation

1

of the code being transformed to a file and inspecting the resnlting "snapshot" of your
transform at work. Decompiling, then, is a logical continuation of this feature, snch
that one can now view what one's transform does in a pure Java sourced representation
of the bytecode.

Once we were committed to the project of decompiling with Soot, however, we
felt that there were other worthwhile goals to be pursued as weIl. There are quite
a few Java decompilers already available, but very little published information as
to how they worked. The Soot decompiler, then, is an exploratory work in which
we hope to cover most of the important issues of decompiling Java. With this goal
in mind, we expanded the scope of this project to trying to state what is and is
not possible in decompiling Java and to provide high quality solutions. Along the
way, we discovered numerous differences between the Java language specification and
the Java virtual machine specifications which have limited our result [16]. However,
because we have taken a comprehensive and aggressive approach, we have developed
a surprisingly powerful decompiler.

In the l'est of this introduction, we take a look at the Soot framework, clarify the
contributions of our research, and review the organization of the l'est of the thesis.

1.1 The Soot framework

Soot is a Java bytecode transformation and annotation framework. There are two
ways to view Soot, first as a user tool, and second, as a compiler writer's tool. As
a user tool, Soot will read in a Java class file, perform sorne optimizations on it and
emit a new optimized class file. However, Soot has been built with the goal of making
it easy for compilers developers to add and test new optimizations. As a compiler
writer tool, then, it provides a rich API and set of internaI representations to develop
upon. A simplified layout of Soot is given in figure 1.1 (page 3).

Soot has three main parts, Baf, Jimple [28] and Grimp. Each part is is made up
of a processing phase, an internaI representation, and an associated API. For example
in Baf, the processing phase converts a class file into an internaI representation called
bai and supplies an API for performing transforms on this internaI representation
(IR).

Briefly, baf is a stack based representation that closely resembles the disassembly
of a class file. Its main benefit is that it allows one to directly manipulate the stack

2

Soot

~ Jimple----7 Grimp

w
.baf file .jimple file .grimp file

LJ LJ LJ
Figure 1.1: A simplified layout of Soot.

code that will be eventually translated into a class, without having to deal with
the complications of Java bytecode. It is useful for operations such as peep-hole
optimization.

Jimple is a stackless 3-address IR with typed Iocals. This is a powerful and
convenient form suitable for high level optimizations such as copy-propagation or
array bounds checking. This is the form which most Soot us ers and developers work
with. A nice feature of Jimple is that its IR can be saved to a text file and reloaded
at a later tirne. This allows one to write Jimple files directly in the Jimple IR and
to assemble them with Soot into Java class files. Most people who use Soot as a
user tool, however, will just be loading the class through Baf into Jimple where it is
optimized and ernitted back as a Java class file.

Grimp lS an extension to Jirnple. Its internaI representation is identical to Jimple's
except that it aggregates expressions across straight line code. It is noteworthy,
however, that Grirnp does not aggregate expressions across conditional statements.
We use the Grimp IR as the starting point for Soot's decornpiler.

3

1$2 Thesis Contributions

This thesis lS concerned with extending Soot to allow it to function as a Java
decompiler. The 3-address code of Jimple provides us with typed simple statements,
and the expression aggregation done in Grimp makes the grimp IR look very much
like unstructured Java source code. We have written a part of Soot called Dava,
which has its own IR (dava), API, and conversion phase. Dava converts the Grimp
IR into the Dava IR, which when printed to a text file, is recompilable Java source
code.

There are two problems addressed in the Dava phase, first structuring Grimp, and
second, modifying the structured Grimp into Java source.

The more difficult issue of the two is restructuring Grimp and is therefore the focus
of this thesis. To restructure, we build a control fiow graph (CFG) and then, using
graph theoretic techniques from compiler optimization design, detect properties in the
CFG that allow me to find a structured representation. Because we avoided simple
pattern matching in favor of more general techniques, Dava is able to restructure
any control fiow graph. This is an interesting accomplishment because it is able to
handle highly unstructured control fiow without ever having to resort to tricks such
as simulating control fiow with a state machine.

There are three new contributions in our techniques.

1. We developed a new data structure called the Structure Encapsulation Tree
(SET). This data structure lS important because it allows us to find control fiow
statements in new ordered way based on their individual semantic properties
rather than their locations relative to other control fiow statements.

2. We built a collection of new structuring algorithms that work on an SET which
can translate unstructured Grimp into structured Grimp. These algorithms
work with both arbitrary regular control fiow and arbitrary exceptional control
fiow.

3. As a sub-problem, we realized that any acyclic control fiow graph, even if it
includes arbitrary exceptional control fiow, can be represented in pure Java.
This allowed us to develop a new technique for building labeled blocks and
using labeled break and continue statements for structuring complex control
fiow.

4

The remaining problem is to convert the structured Grimp into Java. Our ambi­
tions were a httle lower here, as there are many prohibitive rules in the Java language
specification for which there is no counterpart Java bytecode specifications. For
example, there is a long list of restrictions that are applied to static initialization
blocks in Java source, but very few for the corresponding Java bytecode. For this rea­
son, it is possible to "foil" Dava, but only in what could be called the "Javafication"
of structured Grimp.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview
of the data structures and how the decompiling algorithm is put together. Then,
the next three chapt ers present different parts of the algorithm. Chapter 3 examines
non-exceptional control ftow. This is broken into three sections, loops, DAGs, and
labeled blocks. Chapter 4 looks at exceptional control ftow, and chapter 5 examines a
wide range of Javafication and idiomatic issues. In chapter 6 we test Dava and review
the results. Finally, chapter 7 presents our conclusions on the Dava decompiler.

5

Chapter 2

verview: Data Structures and
Algorithm

2.1 Introduction

This thesis presents an algorithm that is used for decompiling Java bytecode into
Java source code. The main goals of the algorithm are as follows.

1. Correctness. We should not pro duce incorrect output. In the rare cases when
we cannot produce an output, we simply give up and send an error message to
the user.

2. Understandable output. This requirement is broken into two sub-goals.

(a) Efficient representation. For any given piece or control fiow there may be
many possible structured representations. For example, a while Ioop could
equally be represented by an if and do-while statement combination. Our
intuition is that a simple concise representation of control fiow should be
easier to understand than a more complex one.

(b) Programmer idiom recreation. If there 1S an obvious pattern in the com­
piled code which corresponds to a programmer idiom and does not interfere
with efficient representation, we will attempt to rebuild the idiom. An ex­
ample is the construction of for loops out of while loops with initialization
and incrementalization.

6

3. Speed. Once the first two criteria are satisfied, we make an effort to keep the
restructuring algorithms reasonably fast. We judge this to be adequate as long
as the decompilation phase runs in under five seconds for a method. Note
in the Java Virtual Machine Specification there is a Emit of up to 65536 bytes
per method, and therefore a limit of 65536 decompilable statements for our
decompiler to produce.

This algorithm is very large and the parts are highly interdependent. To directly
address the whole functioning together is to lose sight of the guiding design in a flood
of details. This chapter presents an overview which walks through the data structures,
briefly talks about what the parts of the algorithm are and how they are put together.
Then afterwards, in chapters 3 through 5, we go back and examine each major issue
on its own.

2.2 Data Structures

There are five data structures that we use to represent a Java method while
decompiling.

1. Grimp representation

2. Control Flow Graph (CFG)

3. Structure Encapsulation Tree (SET)

4. Abstract Syntax Tree (AST)

5. Java source code

The Soot framework pro cesses Java bytecode and pro duces Grimp, which is our
starting point. The contribution of this thesis is to convert Grimp to a CFG, to build
a SET from the CFG, and finally to pro duce an AST from the SET. A recompilable
Java method lS then emitted as source code from a pretty printer traversai of the
AST.

To help understand how the decompiler works, we show, starting in section 2.2.1,
an example method beginning in its Grimp representation, and how it gets trans­
formed through each of these different representations.

7

2.2.1 Grimp

1 Label Grimp Code

public void m(int)
{

dso_1 rO;
int iD, $i1;
java.lang.RuntimeException r2, $r3;

a rD := @this;
b iO := @parameterO;

goto labe13;

labelD:
c $i1 = iO;
cl iO = iO - 1;
e java.lang.System.out.println($il);

label1 :
goto labe13;

labe12:
f $r3 := @caughtexception;
g r2 = $r3;
h java.lang. System. out .printlnC"RuntimeException caught. ") ;

labe13:
j if iO > 0 goto labelO;

k return;

catch java.lang.RuntimeException from labelO to label! with labe12;
}

Figure 2.1: Grimp representation of simple method m().

Grimp is a high level unstructured intermediate representation suit able for tradi­
tionaI compiler optimizations. Figure 2.1 shows an example method mO in the Grimp
format. A Grimp representation consists of a sequence of high-Ievel statements such
as aggregated expressions, directives for control flow, and the handlers for exceptions

8

and concurrency.

Note that in figure 2.1 aH program statements except simple gotos have been
labeled with lower case letters. These letter labels are not part of Grimp, but have
been added to aid ,vith our presentation of the CFG and SET representations.

Although Grimp was originally designed as part of a bytecode optimizer [27], it
also provides an excellent starting point for decompilation because it has already
dealt with several relevant issues. For example, the Java expression stack has been
eliminated, expressions have been aggregated, and an variables have declarations with
appropriate types [8]. Except for the lack of structure and certain conventions - such
as statements refiecting parameter passing (i.e. rO : = ©this;) - Grimp very much
resembles Java source code. It is just the directives for control fiow and exception
handling that are unstructured.

Our first task is to restructure the control fiow and exception handling and build a
structured Grimp representation. Unfortunately, structured Grimp is not equivalent
to Java source code. Sorne of the additional differences that we address are:

1. Although variables have been typed, integra1 and boolean constants have not.
The boolean, char, byte, and short types are still aIl treated as int.

2. Method declarations refiect the 100ser constraints imposed by the Java Virtual
Machine Specification rather than the stricter ones from the Java Language
Specification. Two issues of note are that (1) in bytecode a method does not
need to declare a throws clause for an uncaught exception, while in the Java
language it must, and (2) the throws clauses must agree between classes and
their sub-classes in the Java language, while it is not necessary in bytecode.

3. In bytecode, new objects are created in two steps. First, an empty object is
created with a new instruction, and second, the object is initialized with a calI
to the class's <ini t> method. In the Java language, there is simply one calI to
the new () class instance creation expression. While the two matching bytecode
instructions are usually folded into a single new () in Grimp, the fold is not
performed if the two instructions are separated by intervening code. A more
aggressive new () foIder is needed for decompilation.

4. Grimp, there may be multiple caUs to the current or super-classes <ini t>

method within a constructor. In Java there may only be one call to the corre­
sponding this () or super () initialization expression per constructor.

9

5. Classes and packages may have the same name in Grimp sinee aH invoke state­
ments explicitly state the package, class and method names. The Java language,
however, allows for implicit package use disallows package/class name clash­
ing.

6. Method parameters are assigned from special variables within the body of a
Grimp method. In our example method mO in figure 2.1 (page 8) the integer
parameter that m() receives is loaded into local iO in the statement iO : =
@parameterO;. In Java, however, the local is the parameter which lS implicitly
assigned to in the invocation of m () .

7. Exception parameters are also assigned from special variables within the body
of the Grimp method. Again, in our example method m() in figure 2.1 (page 8)
the exception handler at labe12 assigns a reference to a caught exception object
to a local referenee: $r3 : = @caughtexception;. In Java, they are implicitly
assign to in the declaration of the catchO clause as shown in figure 2.7 (page
16), statement f.

8. The syntax of <invoke>, negation, length, and the various cmp expressions may
need to be converted to conform to the Java language specification.

9. The various constraints on static initializers within the Java bytecode are much
100ser than those specified in the Java language specification. Two important
issues are (1) while there may be several exit points within the bytecode (return
void instructions), there must only be one in the language version, and (2) while
the bytecode may contain arbitrary normal control flow, the language version
is intended to be a straight line of assignments.

These are just a few of the issues that will need to be addressed for a complete
transform between structured Grimp and Java. However, our results will show that
addressing aU difI'erences lS neither possible nor a practical necessity. 'Ne support this
daim by comparing our results with the results of severalleading fl'ee and commercial
Java decompilers in chapter 6 and see that our approach is both sufficient and more
thorough than othel' leading decompilers.

10

2.2.2 Control Flow Graph

The Grimp representation is a list of simple statements, so our first step in struc­
turing is to build a control fiow graph (CFG) representing potential control fiow
between statements. The CFG is a directed graph where each node wraps a single
Grimp statement with predecessor, successor, dominator, and reachability informa­
tion.

Definition 1 (Predecessor) Given some progmm point p, a predecessor of p is any

statement q that may have been immediaiely executed prior to the execution of p.

Definition 2 (Successor) Given some progmm point p, a successor of p is any

statement r that may be immediately executed subsequent to the execution of p.

Definition 3 (Dominators) Given a progmm control fiow gmph G with entry point

s, for program point p, a dominator for p is any progmm point q, such that if we start

at s we must pass q to reach p.

Definition 4 (Reachability) Given progmm points p and q, q is reachable by p if

there exists some path from p to q.

Figure 2.2: Control Flow Graph of mO.

Figure 2.2 shows the CFG for our example method m O. The labeled nodes cor­
respond to the label letters from figure 2.1 (page 8). There are two types of control
fiow edges in this graph, those that correspond to regular control fiow (solid arrows)
and those that correspond to control fiow generated by the throwing of an exception

11

(dotted arrows). The two types of edges are necessary because graph theoretic fea­

tures such as dominance and reachability must use both types of edges while other

features, such as the successors to a Ioop condition, may consider only regular paths
of execution.

There are two interesting features that an methods will pro duce in their CFG

representations.

1. There will be exactly one entry point to the method's control fiow.

2. The graph need not be reducible.

The chief consequence of point 2 is that a reduction based approach to decom­

piling is insufficient. Compiling is performed by using grammar productions and it

is intuitively appealing that decompiling should simply be a set of Teductions on a
CFG, perhaps making slight graph transformations where necessary. To understand

the difficulties a reduction based approach presents, and why the next data structure
we introduce (the SET) is necessary, we must take a brief look at how reduction
works.

Given an unstructured digraph G representing the control fiow of a program, G

is scanned for subgraphs that are isomorphic to the control fiow graphs of the target

language's compositional constructs. For example, the graph of a simple if would

seem to be weIl defined, figure 2.3.

"if" construct
, after reduction

a , _--7' d

1

b
,

c

Figure 2.3: The control fiow graph for an if statement.

If, while scanning G, we ever find a graph that is isomorphic to the left-hand side

of figure 2.3 (page 12) we can Teduce it to the right hand side. Unfortunately, an if

12

if Ca)
{

b
exit program

}

ç

Figure 2.4: An if statement without any "join" point.

may take many other forms. For example, the control fiow edge from b to c need not
exist, as seen in figure 2.4.

The subgraph for a compositional if statement, then, is not isomorphic to any
one graph, but rather one of potentially a very large set of graphs. Also, not aU
conditionals should be represented by if statements, sorne may better represented as
conditions on loops. Choosing to match or reject a pattern is not straight forward.
Practically speaking, we need more information than a simple pattern match to decide
which ifs match, and when it is appropriate to perform the reduction. A pure

reduction based restructurer, then, is not practical.

It turns out, however, that there is enough extra information available in the
CFG, that a reduction based restructuring is not necessary at aU. The Structure
Encapsulation Tree is built from the CFG and represents just su ch an accumulation
of extra information.

2.2.3 Structure Encapsulation Tree

Figure 2.5 shows the Structure Encapsulation Tree (SET) for our example method
m (). The important feature of the SET is that each node of the tree contains a set
CFG nodes. These sets of CFG nodes determine where any particular SET no de fits
in the tree.

The SET nodes themselves, represent structured Java constructs, such as if-else

and while statements, and present information about the constructs' characteristics.
For example, aIl constructs have sorne type of body, so every SET no de has the
set of references to the CFG nodes that make up its body. Nodes corresponding
to conditional statements must also carry a reference to the necessary conditional
expression.

13

A Whole Method

@ ® CD @ @) @ CD Ci) QY CE>
t t t

B Stm! Sequence C WhileLoop D Stmt Sequence

@ ® SD @ @) @ CD Ci) QY CE>

! t
E Try-Catch Statement

Loop condltion @ @) @ CD Ci) QY
Try Clause Catch Clause

t t
F Stmt Sequence G Stint Sequence

@ @) @ CD Ci) QY

Figure 2.5: Structure Encapsulation Tree of mO.

As with the Grimp representation, we have added extra labels to the new repre­
sentation. This time the upper case letters have been added to the upper left corner
of each node.

Definition 5 (Body) A body is the set of program statements S from a control fiow

graph G that are used to position (nest) a control fiow construct C within an SET.

When looking at Java source, the body is only the set of statements within the curly

braces of a statement.

Edges in the SET represent the strict subset relations between the body sets of
each SET node. Assume we have nodes A and B that respectively contain body sets
x and y. If x ::) y, then A will be an ancestor of B. This property is strictly enforced.

The second important property is that SET sibling nodes must have disjoint body
sets. In figure 2.5 the body sets of B, C, and do not share any of their Grimp
statements. The reason for this is that SET nodes are used to directly generate an
abstract syntax tree which represents the structured control flow statements in Java.

The final key feature of the SET is that it is built in whatever order is suitable
for the algorithm. Vve begin with just the "Whole Method" node and in sert an other
nodes one by one. Because the subset relation is transitive, there is no restriction on

14

the order which ',ve can add these nodes. For instance, in figure 2.5, a valid order
of insertion could have been A E C B F G D. We will show in section 2.3 why this
property is so useful.

2.2.4 Abstract Syntax Tree

B
parameter assignment

expressions

a b

A
method

while /"m<
conditIOn while body

exp~eSSionfo
stm! seq body

{-

CD
try stmt

~
try clause body catch clause body

stmt seq body
t?Â~
0~0

parameter assignment

f g

Figure 2.6: Abstract Syntax Tree of mO.

The Abstract Syntax Tree (AST) is generated by a single pass over the SET. Since
Grimp simple statements can house structured expressions, the AST need only express
structure down to the 1eve1 of the Grimp statement and use the Grimp representation
to express structure at the sub-statement 1eve1.

Each Dava statement in the AST may, then, optionally house a Grimp expression
and a list of other statements. The list is called the statement's body. Note that this
is a subset of the corresponding SET node's body.

15

Figure 2.6 (page 15) illustrates the AST resulting from our SET of method mO
figure 2.5 (page 14). Circles represent statements; large ones represent Dava's control
fiow based statements, small ones represent Grimp's simple statements. Note that the
condition expression for the while loop the parameter assignment expressions
for the method have been stripped from their Grimp statements and are directly held
by their appropriate grammar productions.

2.2.5 Java Source Code

Grimp SET Decompiled Java Code
Stmt Node

a,b A,B public void m(int iO)

J

c
d
e

f,g

h

k

c

E
F

G

D

{

}

int $i1;

while CiO > 0)
{

}

try
{

}

$i1 = iO;
iO = iO - 1;
System.out.println($i1);

catch (RuntimeException $r3)
{

System.out.println("RuntimeException caught ii
);

}

return;

Figure 2.7: Resulting Java source code of mO.

The final representation for a method is the resulting Java source code. This code
should be recompilable with Sun's javac Java compiler. Two issues we take care of
in the output of the source code are:

l. When compiling a class which contains the use of a class literaI, an current
versions of javac will generate a method caHed class$. This means that the

16

source code aIre ad y containing a class$ methad will cause a compile time error,
as the special method name is no longer free for the compiler to generate. This
is a bug j avac but should be accommodated to generate classes that are
recompilable today.

2. To promote readability, import statements and implicit package dereferencing
should be used whenever possible. Explicit package dereferencing should only
be used as a last resort when resolving class naming conflicts.

2.3 Algorithm Construction

vVe turn now from a data structure centric point of view to an algorithmic one.
Here we have three main issues: regular control flow, exception al control flow and
idioms. Regular control flow refers ta a minimal set of Java control flow constructs:
loops, ifs and swi tch statements and does not include the try, catch or f inally
constructs. Exceptional control flow is made of try and catch statements. Idioms is
everything else we do, including finding synchronized blocks, finally blocks, for
statements (which are a syntactic sugaring of while), and so on.

Although we have three simple categories for explaining issues, the actual con­
struction of the decompiler does not follow these nice divisions. The decompiler
implementation is in fact made up of nine major phases.

1. Exception Preprocessing
2. while and do-while statement restructuring .
3. if statement restructuring
4. swi tch statement restructuring
5. try-catch statement creation
6. Statement sequences
7. Labeled block creation
8. break and continue control flow identification
9. synchronized 0 block simplification

section 4.2, 4.3
section 3.1
section 3.2.3, 3.2.4
section 3.2.5
section 4.4
section 3.2
section 3.3
section 3.3.1
section 5.3.1

The reason that these issues are split up into small parts and, effect, inter-mixed
with each other is that we found specifie design and implementation advantages
the ab ove ordering. Figure 2.8 shows how these nine phases fit into the three main
issues.

17

Idiomatic Control Flow

2. while and do-while statement restructuring

3. if statement restructuring

4. swi tch statement restructuring

(5. try-catch statement restrw:turing

6. Statement sequences

7. Labeled block creation

8. break and continue control flow identification

9. synchronbed () bloL~k simplification

Figure 2.8: The nine phases of the decompiling algorithm and their control fiow
categories.

At the start of decompiling, we are given a GrimpBody which holds a list of Grimp

pro gram statements, These phases then incrementally build the SET in a specially

ordered way so that each phase supports and builds on the others. For example, Ioop

restructuring provides vital information for the if statement restructuring phase.

The first action is to create a CFG from the Grimp statements. Since aIl branches
in Grimp are direct, building the control flow graph lS merely a matter of traversing
the list, and for each statement noting which statements are Hs successors.

Phase 1, exception preprocessing, checks the control flow graph to make sure that

18

certain impossibilities do not exist for the construction of Java try statements. If
they do exist the graph is transformed to a close-to semantically equivalent form (we
do not change the program behavior) where the impossibilities have been eliminated.

At this point we st art building the Structure Encapsulation Tree (SET) by creating
a SET node that represents the whole method and houses every statement in the
control fiow graph.

Phase 2, while and do-while statement restructuring, looks for strongly con­
nected components (SCC) [4] in the control fiow graph. For each SCC it finds, it
creates a SET no de that correspond to a while, do-while, or while (true) state­
ment that best represents the SCC, and embeds it in the SET. Nested loops are
found by strategically removing certain statements from the SCC and performing a
re-evaluation.

Phase 3, if statement restructuring, looks for the condition aIs that have not been
used in the creation of looping SET nodes, and builds if SET nodes for each of these
remaining conditionals. The new node is then embedded in the SET.

Phase 4, swi tch statement restructuring, finds Grimp switch statements in the
control fiow graph and building a SET no de for each. The new node is then embedded
in the SET.

Phase 5, try-catch statement creation, runs through the set of exception candi­
dates building SET nodes for each and seeing if the new SET nodes can nest properly
in the SET. If they nest, they are inserted into the SET. Otherwise, the control graph
is modified slightly to allow the nesting and the algorithm goes back to phase 2.

By phase 6 we have identified all SET nodes that employ some type of conditional
or exception generated control fiow. At this point we can examine each SET no de
and determine where we need to establish statement sequences. By construction, the
new statement sequences will be leaves in the SET.

In phase 7, labeled block creation, we form directed acyclic graphs our SET
nodes and topologically sort them [4]. From this sorting we can determine if we need
to create any labeled block to resolve any issues of non-exceptional control fiow. If
so, we create the appropriate SET nodes for the necessary labeled blocks and nest
them in the SET.

Phase 8, break and continue control flow identification, examines the control
fiow edges between the members of the topological sorting and determines if the
control fiow needs to represented with the addition of break and continue statements.

19

it is found to be necessary, this phase will then append these statements
their appropriate positions in the already existing SET nodes representing statement
sequences.

Phase 9, synchronizedO block simplification, scans the SET for a usage pattern
of moni tor statements coupled with the presence of try-catch statements that cover
the java .lang. Throwable exception type. If this pattern is found in the SET, it is
replaced with a SET no de representing a synchronized 0 block.

Finally, we traverse the completed SET and emit an abstract syntax tree (AST).
The AST presents a simplified view of the strudured method and conforms to the
necessary Soot specifications for emitting a printout. The prin tout from the AST is
pure Java source.

2.4 A simple illustrative example

In section 2.2 (Data Structures) we saw an example method m() in each of its
representations. vVe will now walk through each of the phases from section 2.3 (Al­
gorithm Construction) and see how it builds the SET for mO.

We begin by taking the Grimp representation shown in figure 2.1 (page 8) and
building a control flow graph representing both the regular and exceptional control
flow.

Figure 2.9; Control Flow Graph of mO.

Phase l, exception preprocessing, has nothing to do to the control fiow graph since
mO represents already structured Java. This is explored in sections 4.2 4.3.

20

At the end of phase 1 we build the SET. The first form of the SET contains only
one node which represents aIl the statements from the control flow graph.

Figure 2.10: Structure Encapsulation Tree of mO after phase 1.

Phase 2, while and do-while statement restructuring, finds the SCCs in the
control flow graph of m 0 and builds a SET node for each SCC and inserts it into
the SET. These SET nodes are then inspected to determine what type of loop best
represents them.

A Whole Method

@ ® CD @ @ @ CD @@@
~

C WhileLoop

_àP @ @@ CD @@

Loop condition

Figure 2.11: Structure Encapsulation nee of mO after phase 2.

Phase 3, if statement restructuring, examines the condition al control flow state­
ments in the CFG that have not yet been marked as the conditions controlling loops.
Since there are no such instances in m 0 this phase does not put any new nodes in
the SET.

Phase 4, swi tch statement restructuring, will build SET nodes for each switch
statement found in the CFG. Again, because there are no swi tch statements in mO,
this phase do es not add to the SET.

Phase 5, try-catch statement creation, looks at the exceptional edges in the
CFG, builds a set of try-catch SET nodes and inserts them into the SET. mO we

21

find that one try-catch SET node can represent aU exceptional control flow. Once
built, the exceptional SET node Îs inspected to determine the try and catch clauses.

A Whole Method

@ ® G) @ @ @ Cl) (g) @ (El
J,

C WhileLoop

àD @ @ @ Cl) (g) @
J,

E Try-Catch Statement

Loop condition @ @ @ Cl) (g) @
Try Clause Catch Clause

Figure 2.12: Structure Encapsulation Tree of m() after phase 5.

Phase 6 finds an the statement sequences in m 0 by examining the nodes in the
SET. For any SET node, if it contains CFG statements which are not contained in a
child SET no de (for example a in SET node A), then those CFG statements are put
in statement sequences. The result from phase 6 is shown in figure 2.13 (page 23).

In phase 7, we create labeled blocks and insert them into the SET. For clarity,
our example mO do es not contain any labeled blocks, but this issues is thoroughly
explored in section 3.3.

Phase 8, break and continue control fiow identification, examines inter-SET node
control fiow where control fiow does not target an ancestor SET node. Figure 2.14
(page 24) shows us this control fiow for mO. We explore how these edges are examined
in section 3.3.1 and will find that no break or continue statements are necessary in
mO.

Phase 9 identifies and restructures synchronized 0 blocks. Again, none are found
in mO, but our techniques for this are explained section 5.3.1. At this point we
have finished building the SET and have identified which control flow edges (if any)
should be represented with break or continue statements. The AST is build with a
single traversaI of the SET, and source code is emitted as pretty printing of the AST.

The foeus of this thesis is not how the implemented parts fit together, but how

22

A Whole Method

@ @ CD @ @ @ CD cg) ® Q9
t W t

B Stm! Sequence C WhiieLoop D Stmt Sequence

@ @ àD @ @ @ CD cg) ® Q9

! w
E Try-Catch Slatement

Loop condition @ @ @ CD cg) ®
Try Clause Catch Clause

W W
F Stmt Sequence G Stmt Sequence

@ @ @ CD cg) ®

Figure 2.13: Structure Encapsulation Tree of m 0 after phase 6.

each conceptual issue in restructuring is solved. While the nine phases of the im­
plementation interleave the three categories of issues for practical reason, we will
examine the decompiler by looking at each issue (for example, exceptional control
fiow) on its own. In this way, we will try to keep a dear view of the strategy behind
the decompiler without getting lost in a maze of details.

23

A Whole Method

@ @ CD @ @ @ CD @ (li) CE!

B Stmt Sequence C WhileLoop D Stmt Sequence

@ @ @ @ CD @ (li)

E Try-Catch Statement

@ @ @ CD @ (li)
Try Clause Catch Clause

F Stm! Sequence G Stmt Sequence

@ @ @ CD @ (li)

Figure 2.14: Structure Encapsulation Tree of mO after phase 8.

24

Chapter 3

Regular Control Flow

Regular control ftow forms the core of Dava's decompiling algorithms. This În­
cludes while and do-while loops, if and if-else statements, swi tch statements,
and labeled blocks, break, and continue statements. These form six of the nine
phases of our algorithm.

~
o
fi:
g

1. Exception Preprocessing

2. while and do-while statement restructuring

3. if statement restructuring

4. switch statement restructuring

5. try-catch statement restructuring 81 ~ L-______________________ ~

...... 6. Statement sequences
:::;
OJJ
<1)

~ 7. Labeled block creation

8. break and continue control flow identification J
9. synchronized () block simplification

Figure 3.1: Regular control flow phases.

In this chapter, we present regular control in 3 main sections.

3.1 Loops. We find strongly connected components in section 3.1, resolve which

25

types of Java loops best represent them, and determine which conditional state­
ments should be used to control the itcration of these loops.

3.2 DAGs. Once aH loops have been resolved and inserted into the SET, we can
determine which conditional branches are not being used as conditions on loops.
In sections 3.2.3 through 3.2.5 we determine how to represent these remaining
condition aIs with if, if-el se and swi tch statements.

3.3 Labeled Blocks. Finally, we look for labeled blocks in section 3.3 and put in
any necessary break and continue statements in section 3.3.1.

Note that sinee the creation of statement sequences is trivial and we do not devote
a section to examining it. A working intuition is given in the overview in section 2.4.

3.1 while, while (true) and do-while Loops

Our first task is to find Java Ioops in the control flow graph. Every strongly
connected component [4] in a control flow digraph G must contain at least one back­
edge. The only way we can represent back-edges from G in the Java language is with
a while, for (which is a syntactic sugaring ofwhile) while(true) or do-while Ioop.

Because there is no transform, apart from introducing recursive methods, that can
be done on the graph to eliminate back-edges, we must ensure that we can represent
strongly connected components regardiess of any other Java language constructs we
build from G. For this reason, Java loops are the first construct we build and place in
the SET. Later constructs will then be modified to accommodate already built loops.

A fundamental problem is choosing which cycles in G will contribute to which
Java loops in the final representation. A common approach is to look for smallest
cycles with an entry point that is the tail of sorne back-edge [1,3,12,29]. This cycle
is then reduced to a single no de in the control flow graph and the pro cess is re­
iterated. Because there is no proven direct correlation between smallest cycles in the
control flow graph and most-deeply nested Java loops, this approach cau yield bizarre
restructurings.

The approach shown in this section (3.1) is to crudely restructure every strongly
connected component, and then refine the restructuring with successive passes of the
algorithm. To begin with, we simply create one Java Ioop per strongly connected
component. Once created, we use the properties of the Java grammar associated

26

with the Ioop to remove certain statements from C, produeing a new graph C J. The
removal of these key statements from C is designed to alter the strongly connected
components in CY in sueh a way that they can correetly be represented as Java loops
that nest in the ones that came from G. This process is repeated until we arrive at
some Gn whieh contains no strongly eonneeted eomponents at all. At that point we
daim that we have found aU the loops and their proper nestings for the method being
restructured.

This approach cannot directly de al with strongly connected components that have
more than one entry point, since no Java loop has more than one entry point. How­
ever, no direct restructuring approach can work because there always must be sorne
cycle in such a strongly connected component that has more than one entry point. A
direct Java representation of this cycle is impossible.

In Dava, we transform any multi-entry point strongly connected components into
single entry point strongly connected components by ereating a dispatch statement
that can direct control fiow to any of the multiple entry points. Key branches of
control fiow are then directed to this dispatch statement such that it now aets as the
single entry point to the strongly connected component. Section 3.1.5 (page 32) gives
a complete description of this process.

The l'est of this section is organized as follows. First, in section 3.1.1 we lay out
sorne definitions for simple single entry point strongly connected components. Sec­
tion 3.1.2 explores wh en we should represent the sec with a while loop, section
3.1.3 examines wh en we should use a do-while loop, and section 3.1.4 presents the
while (true) loop as an effective fall-baek mechanism when the previous two loop
types cannot effectively represent the sec. Then, in sections 3.1.5 and 3.1.6, respec­
tively, we generalize our scheme to handle multi-entry point loops and nested loops.
Finally in sections 3.1. 7 and 3.1.8 we explore how to refine what the contents of the
Java loop should be and how their corresponding SET nodes should be put in the
SET.

3.1.1 Single entry point strongly connected components

We begin by assuming that every strongly connected component has exactly one
entry point, and generalize later. Given sorne strongly connected component, we
initially create a Java loop of unknown type, that is, without deterrnining whether it
is a while, while (true), or do-while loop. Specifically, we record:

27

@ The entryPoint to the strongly connected component. This is the member of
the strongly connected component that has a predecessor which is not a member
of the strongly connected component.

® The set of exit points of the strongly connected component. This is the set
of members of the strongly connected component that have successors which
are not members of the strongly connected component. We caU this set the
exitPointSet

@ The set statements in the strongly connected component. 'vVe caU this set the
firstB odyA pproximationS et

The next step is to determine the type of Java loop, which in turn will give us the
loop's naturalExit.

3.1.2 while Loops

If the entryPoint is a Grimp IfStmt, in which only one of its successors is a mem­
ber of the firstBodyApproximationSet, then we can represent the strongly connected
component with a while loop, and set the naturalExit to be the successor that is not
a member of the firstBodyApproximationSet. Figure 3.2 shows this pattern.

Greedily choosing to represent this strongly connected component as a while loop
is good choice. Our overall goal is not to find the restructuring that is guaranteed to
match the original source code, but just one that is understandable. From this point of
view, each structured Java statement should try to encapsulate as much information
from the control fiow graph as possible. In our choice of loop type, we want to
represent predecessor and successor information from the entryPoint statement. In
this first example, a while statement captures the fact that there is a successor to the
entryPoint that lS not a member of the strongly connected component, and therefore
fulfills our information requirement. No other type of Java loop do this, and
we make this choice greedily knowing that it saves the introduction of an extra Java
break statement to exit the loop from the entryPoint, later on.

Finally, note that for a while statement, the entryPoint should be a Grimp
IfStmt. The entry point must have more than one successor, so at least either an if
or a switch lS required. However, if the entryPoint lS a SwitchStmt with more than
two targets, we may build a condition al expression from the swi tch that evaluates

28

Strongly Connected Componenl

1
1

1

/
1

" "

\

\

b \ \' \ 1

natural exit \ , /
, " , / , /

.... _-----_

Figure 3.2: Pattern used to generate a while loop.

the swi tch's local and create a new IfStmt before evaluating a reduced version of
the swi tch. The result will be a while loop whose first statement is the reduced
switch, both of which will be evaluating the same local. While correct, this could
be more compactly represented by a while (true) loop whose first statement is the
original swi tch. For compactness and expediency we choose this second option and
ignore swi tch based conditionalloops.

3.1.3 . do-while Loops

If we did not find a while loop, the next step is to see if we should represent the
strongly connected component with a do-while loop. If there's a predecessor to the
entryPoint that lS a member of the jirstBodyApproximaiionSet which has a successor
that is not a member of the .firstBodyApproximationSet, then we can represent the
strongly connected component with a do-while loop, and set the naturalExit to this
successor. Figure 3.3 (page 30) shows this pattern.

This predecessor is what will eventually act as the condition for the do-while

29

1
\

\
\

"

natural exit

...

Strongly Connected Componenl

...
" " " ,

\

\
\

\

1

/ ,:
predecessor~

,

i
.-.-

... ~ ... ~

.... _--- ---

Figure 3.3: Pattern used to generate a do-while loop.

loop. If there is more than one candidate that qualifies, we sim ply abandon trying
to restructure a do-while loop and mark the strongly connected component as an
unconditionalloop.

The intuition behind this choice is that when trying to represent the case where
there are multiple do-while condition candidates, we note that there are n back
edges to the entryPoint, where n > 1, and only one of these will be accounted
for by the do-while condition. There are then n - 1 remaining back edges which
must be represented by at least one nested loop. The choice of which candidate
condition is used in the do-while will radically affect what embedded loops are
created. Unfortunately, we have not found any heuristics which can reliably help
with the selection of a good candidate. A better solution is to pro duce just a single
unconditional while (true) which handles aIl the back edges at once, rather than 2
or more nested conditionalloops.

30

3.1.4 while(true) Unconditional Loops

neither a while nor a do-while Ioop are created, we build an unconditional
while (true) loop. Edges that come out of this type of loop are ail interpreted as
break statements, or if they target sorne encapsulating loop's condition, as continue

statements. Figure 3.4 (page 31) illustrates such a strongly connected component and
the resulting structured code.

Ll: while (true) {

}

ai
do {

b;
if (c) continue Ll;

} while (d);
break;

Figure 3.4: An example control flow graph that transforms to a while (true) Ioop,
and its corresponding code.

In choosing the Ioop type we do the following. First we see that the entryPoint
to the see does not have a successor that is not a member of the Sec. Therefore a
while loop is not a good choice for representing this Sec. Next, the entryPoint do es
not have a predecessor in the see which has a successor which is not a member of
the Sec. Therefore, a do-while Ioop is not appropriate either. Our faIl back choice
is an unconditional while (true) loop. The main consequence is that any edge out of
the Ioop must now be a break statement. Accordingly the edge from d which leaves
the sec is novv represented with a break.

31

3.1.5 Multiple entry point components

AU nodes within a strongly connected component can reach aIl other nodes. Be­
cause of this, if the strongly connected component has more than one entry point,
then there lS no way to partition or reduce a strongly connected component into
smaller parts, such that every part will have only one entry point. Since no Java
statement has more than one entry point, we cannot directly represent a multi-entry
point strongly connected component in Java. To proceed with restructuring, we are
forced to perform a transform on the control flow graph.

There are two types of transform that could be applied: 1) versioning the strongly
connected component for each entry point, or 2) the introduction of an artificial
dispatch statement that will act as the single entry point.

Although versioning introduces no new semantic to the code, there are two argu­
ments against it: 1) it multiplies the size of the code within the strongly connected
component by the number of entry points, which obfuscates the code's purpose, and
2) the strongly connected component does not represent any structured construct, so
attempts to view parts of it as such willlikely be nonsensical. We chose to introduce
artificial control flow dispatch statements in Dava because it preserves the general
intention of the strongly connected component, yet only adds a set of assignments to
the new flag variables in the code.

An example of this second transform is given in figure 3.5. Here we convert a
"do-while-ish" loop that can be entered directly into it's body into a while (true)
loop. The new "primed" statements direct control fiow. For example, c' is an as­
signment that sets sorne fiag to indicate that we want control flow to be directed to
c, b' set the flag to indicate b. The statement D lS a swi tch or if statement that
dispatches control flow based on the value of the control flow flag.

Although the above figure is easy to understand, it hides an important issue.
In the transform we had to redirect only some but not an of the edges that target
the entry points. Here are the rules for which edges are redirected to the dispatch
statement.

1. Choose one of the entry points to be the natural entry point. Let
points be call synthetic entry points

other entry

2. For the natural entry point, redirect aH control flow that targets it ta the dis­
patch statement, via a flag setting statement.

32

Before transfonn After transform

Figure 3.5: A simple multi-entry point strongly connected component and its conver­
sion to a single entry point strongly connected component.

3. For the synthetic entry points, redirect only control fiow sourcing from outside
the strongly connected component to the dispatch statement, via a fiag setting
statement.

The consequent issue, then, is how to choose which entry point is to be the nat­
ural one. In general, we do not know how many Java loops it will take to represent
a strongly connected component until we have actually done the restructuring. Un­
fortunately, the number of loops needed rnay be changed by selecting different entry
points as the natural one.

There are two possible approaches to this problern. The first is to do an in depth
se arch of aH possible restructurings for the strongly connected cornponent and then
to select the one that generates the fewest Java loops. This will be both cornplex
and slow. The second alternative is to use sorne heuristic to guess which entry point
should be selected.

There are several heuristics that could be used, including intervals [3J and srnallest
cycle finding [12]. The heuristic we currently use is to perforrn a depth first search
within the strongly connected cornponent starting frorn each entry point. For each
DFS, we count the nurnber of targets of back edges, realizing in the future
restructuring, these targets are likely to become the entry points of embedded loops.

33

Wanting to minimize the number of loops needed to represent the component, we
choose the DFS from the entry point that pro duces a minimal number of targets of
back edges. Figure 3.6 shows an example graph with two possible entry points.

original graph
b is chosen as

natural entry point
c is chosen as

natural entry point

Figure 3.6: A complex multi-entry point strongly connected component with two
possible transforms.

If statement b is chosen as the entry point there is just 1 target of back edges,
while if statement c is chosen, there are 2. The corresponding code in figure 3.7 lS
ugly no matter which we choose but it is worth noting that the code from choosing b
is substantially smaller and simpler.

34

if (a)

b' ;

eIse;
c' ;

while (true) {
Li: {

}

e;

}

switch (D) {
case b:

}

if Cb) break Li;
defauIt:

break;

if Cc) {

}

b' ;

continue;

if Cd) break;
b' ;

if Ca)
b' ;

else
c' ;

Li: while (true) {
switch (D) {

case b:

}

e;

}

b' ;

break;
default:

if (c)

b' ;

el se
d' ;

break;

while (true) {
switch (E) {

case b:

}

}

if Cb) {
c' ;
continue Li;

}

default:
break;

if Cd) break Li;
b' ;

Figure 3.7: The generated code from figure 3.6

When placing the new fiag-setting and dispatch statements in the control fiow
graph, we have to be careful that they are placed in the appropriate exceptional
zones as defined the method's exception handler table. For example, if aH the
entry points are within a certain zone, then the new dispatching entry point should
also be placed in the zone. If only sorne of the entry points are in a zone, then the

35

new entry point should nat be placed in the zone. Flag setting statements should
always be placed in the same zones as their predecessors.

3.1.6 Nested loops

A strongly connected component may be made up of more than one Java loop.
Until now, we have only looked at finding what shouid be the outer-most of these
loops. To find nested Ioops in control fiow graph G we remove a single statement from
G producing a new control fiow graph G '. This statement must obey the following
two properties: 1) it cannat be part of a nested loop, and 2) it must al ways be run for
every Ioop iteration. If these conditions are met, then wh en this key part of the Ioop
is removed, we have effectively removed the outer Java Ioop from G'. vVe can then
evaluate G' for its strongly connected components to find loops that nest in those
found from G. As stated earlier, this pro cess is repeated until we reach sorne Gn that
contains no strongly connected components and an nested loops have been found.

Fortunately, there always exists at least one statement for every Java Ioop that
has these properties. Dava generates three types of Java Ioops: while, do-while, and
while (true). We begin looking at the two conditionalloops, while and do-while.
In a conditional Ioop, we remove the statement that houses the loop's conditional
expression. The reasoning is that 1) for every complete iteration of a conditional
Ioop, the condition must be evaluated, (note that continues target the condition al)
and 2) that no nested Ioop can contain the current loop's condition al expression. In
other words, for every time we pass this conditional, we may assume we are iterating
on our current and not a nested Ioop. VVe remove it from G' and remove the outer
Java Ioop.

Unconditional loops are similar: we remove the entry point of the strongly con­
nected component. First note that for every complete iteration of the Ioop the entry
point must be executed. Although the Java language form of the unconditional Ioop
(while (true)) has a constant condition al expression in it, the resulting bytecode
Hever includes an evaluation of true. Instead, we automatically execute the first
statement of the Ioop, which happens to be the entry point of the strongly con­
nected component. As such it is roughly correct to state that in unconditionalloops,
continues target the entry point.

Second, we show by contradiction that we can al ways safely interpret G such
that the first statement is not a member of a nested loop. Consider that it is a

36

member of nested Ioop. Since our target statement is the entry point to the strongly
connected component, we know that it must be the entry point to the nested Ioop.
Now, the nested loop must be one of the three types of loops. If it is a while

Ioop, we know that one of the successors of the entry point is not a member of the
strongly connected component. However, this cannot be the case, because if it were
we would have restructured the current encapsulating Ioop as a while Ioop and not
as a while (true). Next consider that the nested Ioop is either a while (true) or
do-while loop. In this case every back edge that targets the entry point need not
be represented by normal control flow in the nested Ioop, but can be represented as
a continue in the encapsulating Ioop. Therefore there is no control flow graph that
will necessitate that we add nested loops that use the unconditionalloop's entry point
and hence we remove it.

3.1. 7 Loop Bodies

The body of a Java Ioop may contain more than just the statements in the strongly
connected component. The code fragment in figure 3.8 shows that the body can also
hoId some of the statements that members of the strongly connected component
dominates. Loop bodies are found by the following algorithm.

1. The escapingSuccessor is the successor to the Ioop condition statement, which
is itself not a member of the Ioop. By construction, while and do-while

Ioops have a naturally occurring escapingSuccessor (e in figure 3.8) and the
while(true) Ioop do es not. For the while(true) Ioop we take the set of suc­
cessors to Ioop members, which themselves are not in the Ioop, and select the
one that has the longest short est path to any exit of the method.

2. The escapersReachingSet is made up of the escapingSucce,'J,'Jor plus an statements
that are reachable from the escapingSuccessor without passing through the entry
point of the strongly connected component.

3. The bodySet made up of the strongly connected component's entry point plus
aH statements in the control flow graph that are dominated by the entry point,
minus the escapersReachingSet.

The statements of the bodySet are then used to place the Ioop into its appropriate
position in the SET.

37

while ex < 10) { Il a

}

if ex % 5 == 1) { Il b

}

System.out.println(x); Il c
break;

X += y; Il d

System.out.println("done"); Il e

Figure 3.8: Code and corresponding control flow graph.

3.1.8 Putting Loops in the SET

Loops are nested in the SET according to the bodySet set relations that they have
with constructs already in the SET. A loop will be a descendant of every construct
that has a bodySet which is a superset of its own, and an ancestor of every construct
that has a bodySet which is a subset. Fortunately, we know that the bodySet for a
newly constructed loop will always be a subset or superset of any bodySet already in
the SET. We daim this with the following two points mind.

l. Any strongly connected component in any of the Gn control flow graphs will
either be disjoint, a proper subset, or a proper superset to any other strongly
connected component.

2. The non-cyclic control flow is found by dominance and reachability of the loop's

38

entry and escaping successor points. Since the entry point IS a member of the
strongly connected component, we know that every ancestor loop in the SET
already contains this statement. Because both dominance and reachability are
both transitive, we know that ancestor loops' bodySets non-cyclic control
fiow must therefore be a superset of the current loop's non-cyclic control fiow.

3.2 DAGs

Once we have identified aU the conditional loops, the remaining unaccounted­
for conditionals in the control fiow graph should be represented by DAG (if and
swi tch) control fiow statements. This section is divided five subsections which are
primarily concerned with correctly finding bodySets for DAG statements. Section
3.2.1 discusses why bodySets are so important and introduces a problem and solution
which is common to finding bodySets for any type of DAG statement. Next, section
3.2.2 presents a small transform that allows us to make an important assumption
about the control fiow graph. Then, in the last three sections (3.2.3 through 3.2.5)
we examine how if, if-else and switch statements and their bodySets are found.

3.2.1 Putting DAGs in the SET

SET nodes are placed in the SET according to their bodySets. The basic condition
for finding DAG bodySets is that each bodySet should be dominated by its entry point.
For example in an if-else statement, the set of statements in the else clause
should be dominated by the first statement of that else clause. While necessary,
dominance is not sufficient for determining membership in a bodySet.

Consider figure 3.9 (page 40). FOCllS on the condition al b in the 1eft hand side of
the diagram. Intuitively, we have a simple if-else statement using the condition al
expression from statement b, and having an empty else clause. If b then do c and d,
else nothing, then do e. On the right side of the diagram, however, simply by moving
a target of d, we are given a do-while loop with its condition held in statement d.
The if-else statement at b now performs c, else a break from the loop to statement
e. The key issue lS that while it would be correct to include d in the if's bodySet on
the 1eft hand side, it would be wrong to include it in the if's bodySet on the right
hand example.

39

Figure 3.9: Finding a DAG bodySet

The solution is to optimistically use dominance and create bodySets that are po­
tentially too large and then trim it when nesting its SET no de into the SET. Assume
that we are in the middle of trying to nest the new node in the SET. That is, we
have found that the new node's bodySet lS a descendant of several nodes already in
the SET, and we are performing the evaluation for sorne CU7Tent SET node. Examine
the children of the current SET node and determine which contains the entryPoint
of the new node. If it exists, call this child the targetNode. If the targetNode has a
bodySet that is a not a superset of the current node's bodySet, trim the nevv node's
bodySet so that it is. 'vVe then recurse down the SET with the newly trimmed node.

Consider the 1eft side of figure 3.10 (page 41). Here we have an SET. Our current
no de is A. \7Ve already have properly nested no de B in A and now want to nest node
C. However, because we are finding bodySets optimistically we can neither put C as
a sibling, no1' as a child of B. Howeve1', we note that the entryPoint of C lS in B's
bodySet. \Ve then trim C by removing an statements from C's bodySet that are not

B's.

40

while

@ @@@ CDI

Loop conditioll

if-else if-cIse ~
New Nod~ C c @ @ : CD

if cOllditioll

Figure 3.10: Trimming a DAG SET node.

The effect of this is that the new node's bodySet will nest properly in the SET.

Because the bodySet is determined by the entryPoint, and the operation of trimming
will never remove the entryPoint we can be certain that we will never somehow destroy

the new DAG node.

3.2.2 A small transform that simplifies design

In finding the bodySet we are constantly using dominance. It may easily occur
that a conditional doesn't dominate anything, and so should have an empty bodySet.
We will see, however, that it is convenient not to use the conditional's dominance, but

its successors' dominance to determine the bodySet. Unfortunately, if the successor

is not dominated by the conditional and we blindly apply successors' dominance we
will get incorrect bodySets.

Consider the example on the 1eft hand si de of figure 3.11. If we use the domi­

nance of band c to find bodySets, we will incorrectly include statements that are not
dominated by a. A simple transform that solves this problem is to insert an uncon­
ditional direct jump between every condition al and its targets. In the example, these

jumps are statements x and y. This introduces no new semantics to the program and
guarantees us that that every conditional does indeed dominate its successors.

3.2.3 if statements

An if statement is detected when the following conditions are met.

1. The current statement is a Grimp if statement.

41

Figure 3.11: A small transform that guarantees that successors of conditionals are
dominated.

2. The if will have two successors here called a and b. Wïthout 10ss of generality,

if ais reachable from b without passing through the if statement, we will caU b
the branchSuccessor. For an if statement to be detected, the branchSuccessor

must exist.

The bodySet for the if statement is the set of the branchSuccessor plus aH state­
ments that it dominates. This bodySet will then be trimmed to accommodate any

constructs already existing in the SET. It is important to note that the trimming
here can only be do ne when nesting into a do-while or while (true) loop. Consider

the following impossible cases.

1. Vve are nesting into a conditional while loop. The entryPoint of the if will be a

member of the while's bodySet, but cannot be the entryPoint of the while loop

(if it were it would be the condition of the loop and not the condition of a DAG
no de). Because of this we know that if the loop's bodySet were solely defined

by dominance of loop's entryPoint (and since dominance is a transitive
property) the if statement's bodySet would properly nest in the while loop's.
However, statements reachable from the while loop's escapingSuccessor are

removed from its bodySet. But note that any path from while loop's bodySet
to the loop's escapingSuccessor must pass through its entryPoint, and so our
DAG's conditional can not dominate the escapingSuccessor. Accordingly, the

42

DAG's bodySet can not contain anything reachable by the escapingSucceBBor
and we know that the if must nest properly in the while.

2. We are nesting into another DAG construct. This lS easier the previous
case. Again, entryPoint of the if will be a member of the DAG's bodySet,
but not the DAG's entryPoint. Sinee all DAGs' bodySets are defined by the
dominance of their entryPoints, and because dominance is a transitive property,
the if statement must nest properly in the DAG construct. Note that if the
DAG construct has been trimmed by a do-while (for example), we must have
already experienced the same trimming from the same do-while on the if's
bodySet during the nesting process.

3.2.4 if-else statements

An if-else statement is detected when the following conditions are met.

1. The current statement is a Grimp if statement.

2. An if statement as described in section 3.2.3 is not detected.

The bodySet for the if-else statement is found in a similar manner to the if
statement except that both successors are used to contribute, rather than just the
branchSucceBBor. Additionally, we partition the bodySet into the ijBodySet and the
elseBodySet. These two sets are then used for performing nesting of sub-nodes in the
SET.

3.2.5 swi tch statements

Multi-way eonditional branches are provided with Grimp swi tch statements.
These hold a conditional expression, plus a series of direct targets based on the
evaluation of the expression, and a default target.

Our basic treatment of swi tch statements is just a generalization of if-else
statements. The bodySet for each case lS sîmply the target statement for that case
plus everything that it dominates. The bodySet for the swi tch as a whole lS the union
of the case bodySets. Figure 3.12 illustrates this.

43

swich (conditionalExpression) {

}

case a:
do a's code;
break;

case b:
do b's code;
break;

Figure 3.12: A simple swi tch statement.

Although this will give a correct answer, it may be too conservative. Case fall­
throughs allow us to include more in a case's bodySet than would be otherwise possible.
Consider figure 3.13 (page 44). Here, statement b does not dominate the control fiow
that follows it, and hence b will have an empty case. However, we would prefer to
put this control fiow into b's case and simply have a fall-through from a's case to b.
A simple transform that will allow us to do this is with our original dominance based
algorithm is to remove the path from a's case to b's follower. Now b will dominate
its follower and the appropriate bodySet will be found.

switch statement

swich (conditionalExpression) {
case a:

}

do a's code;
case b:

do b's code;
break;

Figure 3.13: A swi tch statement with a case fall-through.

As well, if there are several cases that essentially target the same code, such as
b, c and d do in figure 3.14 (page 45), we can perform the same edge removal trick
to find the appropriate bodySets.

There are, however, two situations where the edge removal trick should not be

44

switch statement
swich (conditionalExpression) {

case a:
do a's code;

case b:
e lIIi 0 case c:

case d:

}

do b's code;
break;

Figure 3.14: A switch statement with multiple case fall-throughs.

applied. First, as shown in figure 3.15 (page 45), there may be more than one faH
through predecessor that does not directly target the case body. Intuitively, a graph

of the cases in a switch will form a forest of linked lists, but it is impossible that
these lists should merge. Second, as shown in figure 3.16 (page 46), there can be no
cycle in the reachability of case bodies. If there is, we are faced with the absurdity
that there is no "first" case in the swi tch

Figure 3.15: A switch statement that cannot employ case fall-throughs.

Algorithm 1 findStructuredSwitchBodySets (page 53) finds the case bodySets
for a structured swi tch with these facts in mind. Finally, we must order the cases.
In algorithm 1 we define the graph G' to represent reachability between the cases of
the switch statement. We note that the cases vhich have non-empty bodySets will
form a forest of linked lists in G '. The only necessary ordering is to make sure that
members of these linked lists are placed in the swi tch contiguously the order that
they appear in their respective lists.

45

Figure 3.16: A second switch staternent that cannot use case fall-throughs.

3.3 Labeled Blocks

Imagine that we have created a SET that contains nodes that fully represent both
the regular and exceptional control fiow, except that it does not yet have labeled
blocks. The following example will build up such a case.

Consider the pseudocode and the corresponding control fiow graph in figure 3.17
(page 47). This expresses regular control fiow, and for sirnplicity, the extra uncondi­
tionai jumps from section 3.2.2 have been 1eft out. We are are also presented with an
SET in si de view. This SET has been augmented with inter-chi1d control flow. The
only difference this makes over a normal SET is that control flow between sibling SET
nodes has been added to the diagram. The new feature is the SET in summary top
view. Here, we have dropped the CFG statements from the diagram and summarized
the control fiow between SET siblings.

In our example we would say that an inter-child control fiow graph is made up of
nodes B, C and D.

We can now notice several properties for any SET node.

1. AH SET nodes, with the exception of statement sequences, will have at least
one child SET node.

2. \Vith the exception of the unconditionalloop, the graph of control fiow between
the children of a SET Node will form a DAG. Proof by contradiction: Assume
that the control fiow between children of some SET node forrns sorne cycle.
A cycle is a strongly connected component, which will be represented by SET

46

labeLa: if Ca) then goto labal_c;
labeLb: if Cb) then goto labeLd;

el se goto labeLe;
label_c: if Cc) then goto label_e;
labeLd: d;
label_e: aj

CFG
method

SET (side view)

a

SET (summary top view)

Figure 3.17: Summary SET from the top view.

looping node. Therefore the bodySet of this SET Ioop node must be equivalent
to the union of the bodySets of its children that form the cycle. For every
conditionalloop, we know that the condition lS not a member of any child SET
node. Because we have disallowed unconditional loops, we know that these
bodySets cannot be equivalent, and hence that the inter child control fiow forms
aDAG.

3. \Vith an unconditional loop SET node, removing the control fiow that targets
the entryPoint of the Ioop will result in the control fiow between the children
forming a DAG. By construction we know that removing the eniryPoint from
an unconditionalloop breaks the Ioop, and from the proof above that inter-child

47

control fiow must pass through every child, including the one that contains the
entryPoint. Therefore breaking control fiow to the entryPoint, must break the
inter-child control fiow cycle, and pro duce a DAG.

4. By construction there is only one entry point to each inter-child control fiow
graph. For example, while an if-else will have two entry points, each of the
if and el se clauses', while the if-else as whole DAGs will have only have
one entry point.

We can now see that the inter child graph of any SET node forms a DAG. The
Java grammar, however, dictates that this graph should be a linked list of statements.
We transform the DAG into a linked list by introducing labeled blocks. Figure 3.18
(page 48) shows the DAG from our previous example being transformed into a linked
list and the resulting structured code.

SET (summary top view)

A

E (labeled block

child_E: {

child_B: if Ca) {

if Cb)
break child_E;

}

else {

if Cc)
break child_E;

}

child_C: d;
}

child_D: e;

Figure 3.18: Summary SET from the top view with labeled block solution.

48

One can trivially transform any DAG to a linked list by performing algorithm 2
TrivialLabeledBlocks.

While correct, this solution is only a proof possibility, and will pro duce far too
many labeled blocks. The challenge is to find an algorithm and a topological sorting
of SET node children that requires the introduction of a minimal number of labeled
blocks.

To begin with, consider figure 3.19 (a) (page 49). This represents the the inter­
child control fiow graph of the children of a SET node. The important feature of
labeled blocks is that we can break from them and immediately go to the statement
following them. Our first goal will be to place just the labeled block closings within
the graph to allow direct control fiow to the statements that follow the closings.

Now, for every join point in the graph there will have to be a dosing in front of
it. The reason is that only one of the join points' predecessors can have the natural
faH through to the join point, and therefore the other must be some control fiow path
that reaches the join point by breaking from a labeled block. \iVe can therefore daim
that the number of labeled blocks must be at least the number of join points. This
yields us figure 3.19 (b) with labeled block dosings in front of the nodes (e,g).

root graph

(a) Cb) Cc) (d)

Figure 3.19: An inter-child control fiow graph.

Now, for every no de within each tree in 3.19 (b), we know that it can only have
one natural successor, so the other successors must be reached again by some break
from a labeled block. Accordingly, for each node, we must place dosings in front of aU

49

but one of its successors. This will yield a forest of linked lists which vve see in figure
3.19 (c) with labeled block closings in front of nodes (c,e,g). Note that sinee we
are performing this second round of closing insertions into trees rather than DAGs,
the selection of which suceessors we choose to place closings in front of will make no
difference to the total number of closings that are inserted in each tree. Therefore,
given a number of join nodes j in the DAG, the number of branching nodes b in the
resulting trees and the number of successors s to these branching nodes, the minimal
number of labeled block closings is j + s - b.

To simplify matters we next build a mot graph which expresses connectivity be­
tween the roots of linked lists. Since aH the necessary labeled blocks have been already
accounted for, any topological sorting of the root graph will yield the same minimal
number of labeled blocks. Figure 3.19 (d) shows the root graph and yields us a
topological sorting Ca, c, e ,g). This sorting is then expanded into the vertex sorting
(a, b ,d, C ,f ,e ,g) where each member of the root graph is replaced by its linked list.

We now present our topological sorting that induces a minimum of labeled blocks
in algorithm 3 EnhancedTopologicalSort (page 54).

Once we have our topological sorting S of the children of an SET node, inserting
the labeled blocks is straight forward. We traverse S from head to tail checking if the
current node has any predecessor which lS not immediately previous to it in S. If so,
we find the immediately previous node, Pl, and the predeeessor that has the earliest
position in S, Po. We then create a labeled block b that encapsulates the sequence
of PO"Pl, and give it a summary of the control fiow associated with the members of

PO"Pl' The sequence PO"PI is then removed from Sand replaced by b.

The net effect is to reduce each inter-child control fiow graph to a singly linked
list through a minimal insertion of labeled blocks.

3.3.1 Labeled Breaks and Continues

So far, this algorithm has focused only on the contents of structured statements,
and ignored categorizing which edges are to represented by abrupt control fiow. There
are two basic types of abrupt control fiow: labeled breaks and labeled continues.
The unlabeled versions of these can be equivalently represented by labeled versions
and we begin by representing aU abrupt control fiow as labeled, and later remove the
labels when possible.

50

Each Java language control fiow statement that we have detected so far has well
defined natural exit points as shown in figure 3.20. Note that in many cases the exit
point is defined as the exit point of an encapsulated control flow statement. This
means that vve will have to perform a recursive search of the SET if we want to
find the exact simple statements that defines the exit point(s) for any one structured
statement.

1 Statement 1 N aturai exit point

simple statement itself unless this is a return or throw statement
statement sequence the exit point of the last statement in the sequence
labeled block the exit point of its statement sequence
if the condition of the if and

the exit point of the if clause's statement sequence
if-else the exits points of both the if and eise clauses'

statement sequences
try- ... -catch the exit point of the try and catch clauses'

statement sequences
while the condition of the while
do-while the condition of the do-while
while(true) none
switch none

Figure 3.20: Natural exit points from structured statements.

To determine if we have abrupt control flow, we simply test whether control flow
is following these conditions, and if not, mark it as either a break or continue.

Continues

We first search the SET for situations that demand continue statements. Al­
though the continue statement can many times be equally represented by a break,
the continue keyword conveys extra information that the abrupt control flow lS loop
related, and we will choose to use it whenever applicable. The algorithm for finding
continues is given algorithm 4, FindContinues (page 55).

The intuition is simple: any control that comes out of a loop's body and targets
the loop's condition may be a continue. vVe then check to see if the source of this

51

control fiow is one the natural exits of the Ioop body's statement sequence, and if it
isn't, mark it as a continue.

Breaks

We now search the SET for break statements in algorithm 5, FindBreaks (page
55). Again, the intuition lS straight forward. A SET node's children form a control
fiow linked list. Any one of the control fiow edges coming out of the source child
and going to the entry point of the destination child may be a break from the source
child. vVe check to see if the source statement is a natural exit point of the source
child, and if not, mark the edge as a break.

3.3.2 Removing labels

If for either a break or continue the following conditions are met) then the label
is removed from the statement.

1. The abrupt statement is targeting either a Ioop or a swi tch statement. For
exampIe, we might be breaking from a while Ioop.

2. There is no labeled statement, labeled block, Ioop or swi tch that is both a
parent of the abrupt statement and a child of the statement that is being broken
from or continued on.

Finally, if for sorne labeled statement s there are no abrupt statements that carry
the same label, the label lS dropped from s.

52

Algorithm 1 findStructuredSwitchBodySets(GrimpSwitchStatement TOotStmt,
ControlFlowGraph G)

1. Define the targetSet as the set of statements that are control fiow successors to
the rootStmt. From section 3.2.2 we know by construction that each of member
of the targetSet is dominated by the rootStmt.

2. Define the originalTargetSet as the set of statements that are targeted by
the members of the targetSet.

3. Define the targetGroupSet as the empty set.

4. For each statement s E originalTargetSet do

(a) Define m to be the set of members of the targetSet that target s

(b) targetGroupSet +- targetGroupSet U m (note: targetGroupSet is a set
of sets)

(c) If there is more than one edge from the members of m to s, remove aH but
one of these edges.

5. Build a graph G' of reachability between the members of the targetGroupSet.
Note that the nodes of G' will be sets (m) of members of the targetSet.

6. Define C to be the set of cycles in G)

7. For aH cycles cEe
For each set mEc

build an empty case bodySet for m
remove m from G)

8. Define B to be the set of basic blocks in G)

9. For every basic block b E B
For each set m E b

if m is a join point in G)
give m an empty case bodySet

else
remove aH edges from m's predecessor to m's target
build m's case bodySet as the set of statements that

any member of m dominates

53

Algorithm 2 TrivialLabeledBlocks(DAG G)

1. Find any topological sorting T of G.

2. vVhile the number of vertices v ET> 2

(a) Remove the first two vertices (VI, V2) from T. CalI the new head of T V3

(b) Embed VI and V2 in a new vertex V4 representing a labeled block.

(c) Place V3 at the head of the T. Now aH control flow from V3 ta V4 will be
represented with a break from V3.

Algorithm 3 EnhancedTopologicalSort(DAG G)

1. Define the rootSet to be the empty set.

2. For each vertex V E G do
if the in-degree of V =1= 1

rootSet +-- rootSet U {v}

3. For each vertex v E G do

(a) Get a clone S of the set of successors of v

(b) Remove any members of S which are members also members of the rootSet

(c) Place aIl but one of the remaining members of S in the rootSet

4. For each vertex r E rootSet do

® Find the linked list associated with r.

® Find the rootSet successors ta r.

5. Define the topologic.alSorting ta be the topological sort of the rootSet.

6. Replace each vertex v E topologicalSorting by the linked Est associated with v.

7. return topologicalSorting

54

Algorithm 4 FindContinues(SETNode S)

1. For each child cES do
if c is not a sequence of simple statements

FindContinues(c)

2. if Sis one of while, while (true) or do-while

(a) The ta/get is defined as the condition of S, if Sis a conditional loop, or
the entry point of S, if Sis a while (true) loop. As with the natural exit
point of a Java language control fiow statement, the entry point is also
weIl defined, and may require a recursive search of the SET to find it.

(b) The natumlExitSet is defined as the natural exit points of the statement
sequence that forms the body of the loop.

(c) The target has a set of control fiow predecessors P. P' is the subset of P
that are members of S's bodySet.

(d) For each p EP' where p 1:. naturalExitSet do
Edge (p,target) is marked as a continue.
(p, target) and Sare labeled appropriately.

Algorithm 5 FindBreaks(SETNode S)

1. For each child cES do
if c is not a sequence of simple statements

FindBreaks(c)

2. For each child cES do

(a) Find the next child Cnext in S. By construction, control fiow from c will
only go to Cnext. there is no Cnext, return.

(b) The target is defined as the entry point of Cnext.

(c) The natumlExitSet is defined as the set of natural exit points of c.

(d) The target has a set of control fiow predecessors P. P' is the subset of P
that are members of c's bodySet.

(e) For each p EP' where p 1:. naturalExitSet do
Edge (p,target) is marked as a break.
(p,target) and c are labeled appropriately.

55

Chapter 4

Exceptions

4.1 Introduction

Restructuring exceptional control Row into Java try-catch statements is one of
the more difficult problems of decompiling Java bytecode into Java source. To simplify
this task, it is broken into three main parts which are located in three areas of the of
the decompiling algorithm.

(1. Exception Preprocessing

2. while and do-while statement restructuring

3. if statement restmcturing

4. swi tch st.:1.tement restructuring

(S try-catoh statement rtstructUl'ing

6. Statement sequences

7. Labeled block creation

8. break and continue control flûw identification

9. synchronizad () block simplification u
Figure 4.1: Exception based control How phases.

56

Exception table entry remova.l (section 4.2) and exception pre-processing (section
4.3) are placed in the phase 1 of the algorithm, and perform several transforms to the
control fiow graph that ensure structured exceptional control flow. Exception han­
dling (section 4.4) performs the restructuring and building of try-catch statements

phase 5, and finally section 4.4.1 removes any obviously spurious try-catch blocks
at the very end of the algorithm. This last step is fairly minor and does not rate as
a full phase in the decompiling algorithm.

VVe begin in this introduction, hmvever, by examining why restructuring excep­
tions is hard. Exceptions are represented in Java bytecode and Grimp by the use
of an exception handler table. The table specifies a relation made up of a range of
instructions, the type of the exception being caught and the target instruction to
jump to, if the exception is thrown. Figure 4.2 (page 58) shows a simple method in
Grimp format that has an exception table with just one entry.

The interesting line in figure 4.2 is the one beginning with the catch statement.
This is not part of the method's pro gram text, but rather is the single entry of
this method's exception handler table. The entry states that if an exception of type
java.lang.RuntimeException isthrown between labelO (inclusive) and labe11 (ex­
clusive), then the current instruction should be aborted and execution should begin
immediatelyat labe12. We say that the statements between these two labels are in
an area of protection.

Our exception table entry means that if, for example, i1 has the value 0, the
divide by 0 at labelO will trigger a java .lang. ArithmeticException, which is a
subclass of java .lang. RuntimeException, the exception table entry will be acti­
vated, the current instruction will be aborted, iO will not be modified, and r2
@caughtexception; will be immediately started.

Figure 4.2 cornes from a compiled Java program, and hence exhibits an easy to
decompile pattern. Obviously, the statement iO = iO 1 i1; should be put in a try

statement and the statements between labe12 and labe13 would go in the catch
statement as figure 4.3 (page 59) illustrates.

Unfortunately, the specification of the exception table does not place any con­
straint on where the handler target lS located. The handler target may proceed the
area of protection or even be located inside the area of protection. Consider the con­
trived, hand coded Grimp method in figure (page 60) and the abstract control
flow graph for this program in figure 4.5 (page 61).

57

public int m(int int
{

}

mException rO;
int iO, il;
java.lang.RuntimeException ri, r2j

rO := ©this;
iO := ©parameterO;
il ;= ©parameterl;

labelO:
iO = iO 1 il;

label1:
goto labe13;

labe12:
r2 := ©caughtexception;
ri = r2;
java. lang. System.out.println("RuntimeException thrown");

labe13:
return iO;

catch java.lang.RuntimeException from labelO to labell with labe12;

Figure 4.2: Grimp representation of simple method m() with exception.

There are two reasons why the two areas of protection cannot sim ply be repre­
sented by two try - catch statements.

1. VVhen considering the exception handled by b we see that b lS protected by itself,
and therefore that some of the exception al edges targeting it are forward edges
while others are back-edges. Since aH the exceptional edges in a try - catch
statement are forward edges, a single try - catch statement cannot represent
this area of protection. An identical argument can be made for the exception
handled by d.

2. The set of statements that are in b's area of protection {a, b, c} and the set of
statements that are d's area of protection {b, c, d, e} intersect, but neither
is a subset of the other. we were to try to represent this with only two try -

58

public int m(int iO, int ii)
{

}

try
{

iO == iO / Hi
}

catch (java.lang.RuntimeException r2)
{

ri == r2;
java.lang. System. out .printlnC"RuntimeException thrown") i

}

return iO;

Figure 4.3: Code showing de compilation of Figure 4.2

catch constructs, we would be left with the impossibility that one of the try -
catchs would be nested in the other to accommodate the non-empty statement
set intersection, and yet not nested in the other to accommodate the fact that
its statement set isn't a subset of the other's.

Therefore only way to proceed is to perform a transform on the graph that will
guarantee that we can take any valid exception handling and transform it to a form
that can be later be structured with try - catch statements.

4.2 Exception Table Entry Removal

The Java language specification states that for a try block to catch a certain
exception, it must be possible to statically prove that that exception rnay be thrown.
Although we will remove spurious catch and try blocks as a last step, we begin with
an optional preprocessing step which splits certain types of areas of protection and
removes provably useless exception handling to reduce the number of effects due to
off-by-one errors in the exception table!, and simple obfuscation by the addition of
extra areas of protection.

The first step is to examine every area of protection to see if it is self-targeting,

1 A compiler writer may misinterpret the inclusive/exclusive properties of the boundary state­
ments for the area of protection.

59

public void mO
{

}

mException rOi
java.lang.RuntimeException ri;
java.lang.Throwable r2;

rO := @thisi

label_a:
java.lang.System.out.printlnC"a")j
goto label_ci

labeLb:
ri := ©caughtexception;
java.lang. System. out . printlnC lib") ;

labeLc:
java.lang.System.out.printlnC"c");
goto label_e;

labeLd:
r2 := @caughtexceptionj
java.lang.System.out.printlnC"d");

labeLe:
java.lang.System.out.println(le");

label_f:
java.lang.System.out.printlnC"f");

catch java.lang.RuntimeException from label_a to label_d with label_b;
catch java.lang.Throwable from label_b to label_f with label_di

Figure 4.4: A complex interaction of exception table entries.

and if it is, whether it is easily divisible. Self targeting means that the handler for
the area of protection is inside the are a of protection itself. Easily divisible simply
refers to whether the handler dominates aH statements that it can reach in the area
of protection, without having to traverse statements outside that area of protection.
If the area of protection is self targeting and easily divisible, we split it into two areas
of protection that share the same handler. The split is done in three sub-steps.

1. We create a duplicate of the area of protection. This corresponds to creating a

60

> -----------:>
normal control flow exceptional control How

Figure 4.5: Abstract Control Flow Graph of Figure 4.4.

new entry in the bytecode's exception table, and does not entai! the duplication
of any method statements.

2. We remove the handler statement and aH statements dominated by the handler
from the original area of protection.

3. vVe remove aIl the statements remaining in the original area of protection from
the duplicate. In other words, the duplicate now just contains the handler and
those statements it dominates. Figure 4.6 shows an abstract statement sequence
being split.

The second step is to check each area of protection to see if it is provably unneces­
sary. For are a of protection A with exception type t, if t is not a super or sub-class of
java .lang. RuntimeException, then we check if we can remove A. To do this we scan

the throw and invoke statements in the body of A ta see if they can be the source
of an exception of type t. If there are no such statements, then we remove A from
the method. Again, as with splitting, this corresponds to removing an entry from the
exception handling table, and does not otherwise affect the body of statements in the
method.

In an aside one should note that removing exceptional control flow edges may
produce dead code. This is easily checked for by giving each handier an entry count.

61

LO: a;

bi
L1: c;

d' ,
L2: e' ,

catch irom LO to L2 with L1

(a) Original code

LO: a' ,
b' ,

11: c' ,
d;

L2: e;

catch irom LO to L1 with L1
catch irom L1 to L2 with L1

(b) After split.

Figure 4.6: Splitting an exception table entry.

This is just the number of areas of protection that use the handler instruction as their
exception target. For example, if two areas of protection use the same instruction
in the bytecode as their handler, that handler will have an entry count of two. A
split will increment a handler's entry count while a removal decrements it. When a
handler reaches a zero entry count it is checked to see if it has any predecessors from
normal non-exceptional control fiow, and if not, is declared to be dead code and is
removed from the method body, along with an statements that it dominates.

The intuition behind this preprocessing cornes from two issues. First, there are
off-by-one errors in the bytecode as a result of buggy compilers which may include the
exception handler in the are a of protection by accident. This is often a benign bug
that doesn't alter the program's behavior because the first instruction of the handler
usually is incapable of throwing the covered exception type. This is, however, a
specifie instance of a more general intuition which is that it is not likely that the
handler of an exception will cause that same exception to be thrown. rt' the handler's
area of protection can be removed, we may well modify the area of protection to
resemble a try block and reduce the amount of complexity in restructuring later on.

The second issue come from obfuscation whereby extraneous areas of protec­
tion are randomly injected into a method's exception table. Since the program's
control fiow depends on these exceptions not being thrown, the obfuscater must
be able to prove that this is the case. For example, a runtime exception such as
java. awt . image, RasterFormatException could be inserted anywhere so long as
there were no references to java. awt . image. Raster objects within the program.
The goal of our de compiler is to weed these areas of protection out as soon as possi­
ble so that they do not impact on program structuring in building the SET. The level
of sophistication that one employs in the proof of not throwing will allow for more

62

or less successful decompilation. Current Dava uses the fairly naïve rule of thumb
that the exception is only removed if it would cause j avac to fail compilation of the
resulting source code. other words, we only remove areas of protection if it is
statically provable that the area of protection would cause recompilation to fail.

4.3 Exception Preprocessing

We now turn to the core of phase 1 in the overall decompiling algorithm. There are
two problems in converting exception handling in Grimp to try - catch statements
in Java. First, the try - catch statements must nest each other properly, and second,
they must nest properly within the SET. VVe tackle these nesting issues by breaking
exception handling into two phases: preprocessing and try-catch statement creation.
Preprocessing deals with making sure try - catch statements nest each other properly.

4.3.1 Versioning on the Control Flow Graph

Although it may occasionally pro duce visually unappealing output, this solution
is guaranteed to pro duce areas of protection and eventually try-catch blocks, that
will nest each other properly. We begin by noting the following.

1. Like every Java language statement, every try statement has exactly one entry
point.

2. The entirety of every try body is covered by any number of catch exception
handlers, and at most one finally handler statement. These handlers must
immediately follow the try statement.

3. try - catch - finally statement groups must either be nesting or non-intersecting
with other try - catch - finally statement groups. That is, given a try -
catch - finally statement group, the body of encapsulated statements from
that group must either be disjoint or a subset or superset with respect to every
other try - catch - finally group.

To accommodate these observations we built three simple transforms to the control
fiow graph. In each case we transform an unstructurable graph into a structurable
one.

63

Area of protection

handler statement

handler statement

Figure 4.7: An area of protection with two entry points and its appropriate transform.

1. Given an are a of protection with two entry points, we simply create a new area
of protection for each entry point, and duplicate the exception handler for each
new area of protection.

Figure 4.7 (page 64) illustrates this transform. Here the area of protection has
two entry points (b and c). To resolve this problem we create a version of the
are a of protection for each entry point. Because after this operation there are
two distinct are as of protection, we have to clone the exception handler (d) so
that each are a of protection has its own handler (d').

2. Given an are a of protection where the handler statement happens to be within
the area of protection, such as in figure 4.8 (page 65), we break the area of
protection into two segments where in one segment the exceptional edges are
forward edges and in the other segment they are back-edges. We then create a

64

Area of protection

1

,.. - - - 1 ,.. '- , o "
handler statement

Area of protection

Area of protection
1 _-_

l "
(

ent

e handler statement

Figure 4.8: A self targeting are a of protection and its appropriate transform.

new dummy exception handler for back-edged segment and use it convert the
back-edges to forward edges. As we williater see, although this does not exactly
match the original semantics of the program, the resulting Java pro gram is still
guaranteed to simulate the original correctly.

In figure 4.8 we are shown an area of protection where the handler is within
the area of protection. First we create two versions of the area of protection for
which the exceptional edges will either be forward edges or back-edges. Note
that since the exceptional edge from b could be either forward or backwards,
that two copies of b are created (b)), one for each direction. Next, we create a
durnrny handler staternent e that has the original handler as its regular control

65

handler statement

/

1

,\ 1
handler statement '\1

area
---------

1
.... 1

'1

handler statement

zone
---------,

1 ,
'i

zone'

Figure 4.9: Two non-nesting areas of protection and their appropriate transform.

fiow successor. Finally we put in the exceptional control fiow edges. The result
will now structure as a try-catch with an unconditional Ioop in the catch
clause, which itself contains a try-catch statement.

3. Given one or more are as of protection, we define a set of protection zones. A
zone is just like an area of protection, except that (like a try statement) it can
handle more than one exception. In figure 4.9 (page 66), we show the creation
of two zones from two are as of protection. Note that because zones can handle

66

more than one exception, we construct zones so that each zone is disjoint from
aIl the other zones.

In figure 4.9 we have two non-disjoint are as of protection. Vve create protection
zones 80 that statements in contiguous control fiow have the same set of excep­
tion handlers protecting them. For example, a is only covered by the handler b
while c is covered by two handlers, band d. For this reaSOIl, b and c are placed
in separate zones. These zones will be used to eventually create try-catch
blocks, so once the zones have been constructed, the exception handler state­
ments are cloned so that each zone has its own proper handlers. In this case b
was cloned into b' .

These examples only outline a conceptual approach. Let's now examine see how
these three transforms apply to the example from figure 4.5 (page 61). Figure 4.10
(page 68) shows the state of the graph after the application of Algorithm 6 (page 69)
which employs these three transforms. Although the resultant may appear somewhat
bewildering at first, it's construction is fairly simple and is discussed next.

4.3.2 Basic Exception Preprocessing

Basic exception preprocessing lS done in algorithm 6, exceptionPreprocess
(page 69). We begin by looking at hnes 1 to 4 which form the basis of the ver­
sioning approach. Lines 5 through 7 (inclusive) improve the structure of sorne correct
but awkward artifacts in the output, and hnes 8 through 11 deal with patching the
newly created graph back into the original control fiow graph. The task of the first
four hnes is to build zones which have two important properties. First, a zone holds a
set of statements that will eventually be made into the body of a Java try statement,
and second, it has a set of one or more catchs. Algorithm 7 findTryZone (page 70)
show the initialization of a zone.

The first hne of Algorithm 6 exceptionPreprocess sets up the self targetÎng
set. The members of this set act as stopping conditions for when we find the bodies
of try blocks. There are other stopping conditions, that we add later, but this one
lS important because it eliminates the possibility that we generate a try block with
more than one entry point. The second Hne defines the entry set. In general, the
sets of statements under different areas of protection may overlap in complicated
ways. To deal with this we version these statements for each control fiow path they

67

_____ .1

1 : ----r:0 1 1 1

1 1 h
1 • d - --
r-~ 1

1 1 1
1 1

----r:0 'L--i~d ~-- h e 1 1 1
1 1 1
1 1 1

- - '" 1 1
1

Figure 4.10: Application algorithm 6 to figure 4.5.

may occur on while under sorne area of protection. The entry point set, therefore,
represents the start of each possible versioning control fiow path. The third hne
simply initializes a set of zones of protection, while the fourth creates the zones with
caUs to findTryZone. We will cover the subsequent hnes in sections 4.3.3 and 4.3.4.

Line 4 involves a caU to Algorithm 7 findTryZone which we now turn to. Algo­
rithm 7 finds zones, which are a first approximation to Java try statements. Line 1
lS Just initialization of several fields, the real work st arts in line 2. Here we define an
exception type to be the cross of the class of exception being caught and the target

68

Algorithm 6 exceptionPreprocess(Set methodStatementSet, Set tmpSet)

1. Define the selfTargettingSet as the set of staternents that are self targetting
under exception al control fiow. Specifically, for each t E trapSet if t's handler
statement is in t's area of protection, then t's handler staternent is added ta the
selfTargettingSet.

2. Define the entrySet as the set of rnethod staternents that are in sorne trap's
area of protection and are not dorninated by any trap's handler staternent and
either 1) have no predecessors, or 2) have sorne predecessor that is not under
any are a of protection.

3. Define the entryZoneSet as the ernpty set.

4. For each staternent s E entrySet do
entryZoneSet f- entryZoneSet U { findTryZone(s, tmpSet) }

5. For each zone z E entryZoneSet do integrateBranches(z)

6. For each zone z E entryZoneSet do integrateStem(z)

7. For each zone z E entryZoneSet do fuseFollowers(z)

8. Define the exitSet as the ernpty set.

9. For each zone z E entryZoneSet do exitSet f- exit Set U { wireTryZone(z) }

10. For each edge e E exitSet set the appropriate statement successor and prede­
cessor information for the clones that are involved in e.

11. For each staternent s E entrySet set the appropriate control fiow edges from
the original graph ta s

Notes
findTryZone lS Algorithrn 7 (page 70)
wireTryZone is Algorithrn 12 (page 80)

staternent that does the catching. We then find aH the exception types that caver the
entry point ta the currently created zone. These correspond ta the catch statements
that will handle the future try black. In hne 3 we find the bodies of what will becorne
catch staternents in the Java representation. Note that since a Java catch staternent
can embed further try staternents, the caU ta findCatchZone must recurse back

69

Aigorithm 7 findTryZone(Statement entryPointStatement, Set trapSet)

1. Create a new tryZone.
tryZone.entryPoint +- entryPointStatement
tryZone.exceptionSet +- 0
tryZone.body +- 0
tryZone.catchSet +- 0
tryZone.followerSet +- 0
tryZone.embeddedTryZoneSet +- 0

2. From the trapSet find the set of exception handlers that protect the entry­
PointStatement. An exception handler is defined to be the pair of the type of
exception being caught and the handler statement. Assign the set of exception
handlers to the tryZone. exceptionSet.

3. For each Statement S E tryZone.exceptionSet.handlerStatement do
tryZone.catchSet +- tryZone.catchSet U { findCatchZone(s) }

4. Find the body of the tryZone. To do this, traverse the control flow graph by
following statements' control flow successors starting from the tryZone's entry
point statement. Do not traverse 1) successors that are protected by a different
set of exception handlers as the entry point, 2) members of the self targeting
set, or 3) statements that have already been traversed for the current tryZone.
For each statement that is traversed, make a new clone of that statement and
put it in the tryZone. body. For each non-traversed statement due to reasons 1
or 2, s, do tryZone.followerSet +- tryZone.followerSet u { findTryZone(s)
}.

5. Return the tryZone.

note: findCatchZone is Aigorithm 8 (page 71)

into findTryZone to find embedded trys. Line 4 finds the body of the future try
statement. Since a try lS wholly under protection from aIl of its catch statements,
each statement in the corresponding zone must be under protection by the same set
of exception types as is the zone's entry point. At the same time we find a zone's f01-
lowers. A follower is sim ply a zone that is only accessible from the current zone, and
since we are producing versioned control fiow, any zone that lS immediately entered
after the current zone is one of the current zone's followers.

Algorithm 8 findCatchZone (page 71) finds catch zones which correspond to

70

Algorithm 8
Type, Set trapSet)

Statement entryPointStatement, ExceptionType ex-

1. Create a new catchZone.
catchZone.entryPoint +- entryPointStatement
catchZone.exType +- ex Type
catchZone.embeddedTryZoneSet +- (/)

2. Find body of the catchZone.

(a) If the entryPointStatement is the entry point for a previously encountered
t'ryZone create a dummy handler statement which loops back to the try­
Zone and return. This will take care of exception generated loops in the
control flow graph.

(b) Take the S, the set of statements that are dominated by the entry­
PointStatement. Let set T +- S

(c) For each SES, find the set of statements EP that are in some trap's
area of protection and either 1) have no predecessors, or 2) have sorne
predecessor that is not under any area of protection.

(d) If entryPointStatement lS in sorne area of protection, then add entry­
PointStatement to EP.

(e) For each S E E P, find the set of staternents U using the sarne
rnechanisrn w.r.t. s as a tryZone body is found. T +- T U U.
catchZone.embeddedTryZoneSet +- catchZone.embeddedTryZoneSet U
{ findTryZone(s, trapSet) }

(f) catchZone.body +- T

3. Return the catchZone.

Notes
findTryZone is Algorithrn 7 (page 70)

future catch staternents. Line 1 initializes a few basic bookkeeping fields. Step 2
finds the body for a catch zone and combines two intuitions to do its job. The first in
2a, lS that if we have already encountered the exception handler statement as an entry
point to a previously created try zone, instead of finding a new body for the catch,
we can sim ply make a dummy handler that loops back to the previously created zone
with regular control flow. In Java, this will end up looking like a continue on a loop

71

from an empty catch statement. The second is that the body of the catch should be

those statements that are dominated by the exception handler. VVe have to be careful,

though, because with versioning, a statement that lS not dominated by the handler
in the original graph may be dominated in the versioned graph. Line 2e provides the

specification for how this is determined. Note that we also calI fi.ndTryZone to find

any try statements that may exist inside the catch that we are creating.

4.3.3 Improving the Versioned Control Flow Graph

Although we now have built a zone based representation for the control fiow graph

that is guaranteed to be representable with try statements, many common idioms of
exception use will pro duce ugly results. Simply nesting one try statement in another

will induce the restructurer to pro duce up to four separate try statements where only
two were necessary. ,Norse still these four can greatly obfuscate the output. To reduce

this effect we have introduced three simplifying procedures, branch Întegration, stem
integration and condition fusing, that recover much of the correct natural form of the
original bytecode.

When viewing figure 4.10 (page 68), you can see that the exception preprocessor
pro duces a plant-like structure with stems of regular control fiow, for example edge

Ca, c), and branches of exceptional control fiow, for example edge Ca, b) .

Branch Integration

Branch integration allows us to get simple nested try statements from certain
types of try-catch chains.

Figure 4.11 (page 73) illustrates branch integration. The operation lS done on

the zone for node a. The handlers for this zone are divided into two sets, one which
holds those exception handlers which will be put into an encapsulating zone (this is

the set of outer handlers) zone and one which will be put into an encapsulated zone
(this is the set of inner handlers). In our example, the outer set is {d, e} and the
inner set lS {b, c}. The important property is that aH members of the inner set have
exception handlers for aH members of the outer set. If it is not possible (because of
the exception handling properties of each handIer) to divide a zone's handlers lnto

these two sets, then branch integration is abandoned.

72

Figure 4.11: A simple example of branch integration.

Figure 4.11 shows an example that will yield one level of zone nesting once inte­
gration is performed. It is possible that there could be more than one level of zone
nesting. Consider figure 4.12 (page 74) as an extension to figure 4.11.

Here we have simply added on a predecessor (statement f) to statement a. Since
the handlers of f can be split into the necessary sets, we can perform the branch
integration. This means that bran ch integration is best done as a bottom up procedure
from the ends of the exceptional branches back to the stem. A high level algorithm
follows in Algorithm 9 integrateBranches (page 75).

73

r::v~ ~:
~~:

1

------ ,------ /

: rf\ L---~fa\ (
1 \:J 1 r\.:J 1

\ 1 \ " ----_

'~0
---------------------------~

Figure 4.12: An more complex example of branch integration building on figure 4.11.

Stem Integration

Although we will recover an proper nestings of zones with branch integration,
translation to try statements from zones may still pro duce awkward code from

corn mon motifs in the bytecode. Consider the top half of figure 4.13 (page 76); this
will decompile to the code given on the 1eft of in figure 4.14 (page 77). Intuitively,
it is easy to see that code on the right lS equivalent, and more natural and readable.
Stem integration, as illustrated in figure 4.13 will pro duce this second version from
the first. The high level algorithm for stem integration is given in Algorithm 10
integrateStem (page 77).

74

Aigorithm 9 integrateBranches(TryZone currentZone)

l. For each zone z E currentZone.followerSet do
integrateBranches (z)

2. For each zone z E currentZone.catchSet do
integrateBranches (z)

3. possible, partition zone. catchSet into the innerSet and the outerSet. The
oute-rSet will provide exception handling for each member of the innerSet. AlI
members of the innerSet must have exception handlers for aIl members of the
outerSet. If it is not possible (because of the exception handling properties
of each handler) to divide a zone's handlers into these two sets, then branch
integration is abandoned for the currentZone

4. Perform the integration. The currentZone is expanded to encapsulate the in­
nerSet and the innerSet's handlers are removed from it. Next the handlers
from the members of the innerSet are removed. Finally, a newZone is created
that holds just the original currentZone and hooks it to the handlers from the
innerSet.

5. CalI integrateBranches(newZone)

Follower Fusing

One of the chief strengths of the exception pre-processor's algorithm ls that ver­
sioning control fiow traces allow us to ignore statements' predecessor information.

While this makes our procedure simple and robust, an unfortunate side effect ls that

we may pro duce more versions of code than we actually need. Consider figure 4.15

(page 78). Here we have produced two versions of g's zone where only one version
was necessary.

A similar motif will also commonly occur from if - else statements that are

nested within a try statement where each clause contains it's own nested try state­
ment.

This is easily remedied by Algorithm 11 fuseFollowers (page 79). The intuition

behind this algorithm is to define a zone by its body. vVe then keep a set of zones,

such that if we two or more zones with equivalent bodies, only one is kept in the
set, and the others are removed.

75

-----,
1

~-->0

1
\

- -" 1
1 1

~-->@ ~-~
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 ____ _

\ - - - - - - - - - - - - - - - _ '

1

~-~
1

Figure 4.13: A simple example of stem integration.

4.3.4 Putting it an together with Control Flow

80 far, aH operations we have dealt with are performed on sets of statement clones.
Throughout we have seen control fiow between the original statements but only now
do we build the control fiow graph between the clones. The overall graph building
strategy is to recursively build the follower set zone graphs, then the embedded try
zone graphs, then the graph of statements that is not embedded in any try zone and
then to link the three together. Algorithm 12 wireTryZone (page 80) st arts off this
pro cess by establishing the control fiow within a zone.

By construction, in any zone body, there will be at most one non-embedded clone
statement for any given original statement. That is, given that we restrict ourselves
to looking only at those statements in a zone which do not belong to a nested zone,
there will never be two statement clones with the same original statement. Because of

76

try { try {

a' , a;
} try {

catchO { c;
b; }

} catchO {

try { d;

try { }

c; }

} catchO {

catch() { b;

d' , }

}

}

catchO {

b;
}

Figure 4.14: Code corresponding to stem integration in figure 4.13.

Algorithm 10 integrateStem(TryZone currentZone)

1. For each zone z E currentZone.followerSet do
integrateStem(z)

2. For each zone z E currentZone.catchSet do
integrateStem(z)

3. If all members of the currentZone.followerSet have the same exception handling
as the currentZone does, then perform the stem integration. Figure 4.13 (page
76) shows the intuition. Extend the currentZone to encompass an of the cur­
rentZone.followerSet's members and remove the currentZone's handlers from
them.

this we can simply minor the original control How graph within this set of statements.

The successors to these statements may be the entry points to follower zones. If
so, we know again by construction, that among the set of follower zones there will

never be two with entry points that have the same original statement. We therefore
set up edges between the current zone and whatever follower zones exist. As well by

77

-----,
1

~-->0
1 1

~-->0
1

~-->0
1

1 1

~-->0
1

~-->0
1

.... _____ 1

-----
1

~-->0
1

Figure 4.15: A simple example of follower fusÎng.

construction, we know that there will not be two embedded zones that have the same
entry point. Since each embedded zone has only one entry point we therefore can link
the current zone's statements to the embedded zone graph.

Finally, there may be successors which are not entry points to either follower zones
or embedded try zones. These successors may be members of some parent try zone
in the embedding hierarchy, or a member of the original graph that is not under any
area of protection. These unknown edges are recursively passed back, evaluated, and
eventually used to link into the modified control flow graph.

78

Aigorithm 11 fuseFollowers(TryZone currentZone)

1. Define the identity of a zone as the set of original statements that correspond
to the zone. body.

2. Define the curFollowerSet as the empty set.

3. For each zone z EcurrentZone.followerSet
tmpSet +- fuseFoHowers(z) U { z}
For each zone f z E tmpS et

if f z tI eur FollowerSet
eurFollowerSet +- evx FollowerSet U { fz}

else
remove fz

4. Return the curFollowerSet

Briefly for Algorithm 12 wireTryZone (page 80): Lines 1 - 3 initialize a few
empty sets. Lines 4 and 5 set up the control flow edges in the catch and following
try bodies, while also recording edges from these that had not been set up. Line 6
finds the set of statements that are not encapsulated by a nested try. Line 7 sets up
the testSet. This is the set of an statements that may target sorne statement in the
current tryZone. Line 8 then sets up the appropriate edge, if possible. Finally, line
9 gathers the set of an edges that could not be set up, which is then passed back to
the caller.

Algorithm 13 wireCatchZone (page 81) sets up the control flow for a catch zone
which, in fact, is just a simpler case of building the control flow for a try zone. The
difference is that catch zones do not have a follower set, and we can avoid sorne of
the extra complication.

Once this is algorithm is complete, it will have set up the control flow graph for the
zones and their catch zones. The remaining task is to integrate the zones back into
the original control flow graph. To do this we sim ply remove the original statements
that have been used to generate the zones from the graph and put the zones in their
place. Algorithm 6 exceptionPreprocess (page 69), Enes 8 to 11, do es this final
step.

79

Algorithm 12 wireTryZone(Zone currentZone)

1. Define the exitSet as the empty set.

2. Define the followerExitSet as the empty set.

3. Define the catchExitSet as the empty set.

4. For each zone z E currentZone.jollowerSet do
follower ExitSet +- follower ExitSet U wireTryZone(z)

5. For each catch zone cz E currentZone.catchSet do
catchExitSet +- catchExitSet U wireCatchZone(cz)

6. Define the nonEmbeddedStmtSet as the set of statements in the current­
Zone. body which are not in any of the currentZone. ernbeddedTryZoneSet's zones'
bodies.

7. Define the testSet as the union of the catchExitSet and the nonErnbeddedStrnt­
Set.

8. For each Statement s E testSet find the appropriate successor c. There are four
possibilities.

(a) c is in the nonErnbeddedStrntSet

(b) c in an entry point to a member of the currentZone. ernbeddedTryZoneSet

(c) c is an entry point to a member of the currentZone.followerSet

(d) c escapes the currentZone and we have not yet se en it.

If c is either of the first three cases, we sim ply set up the directed edge between
sand c. Otherwise we place s in the exitSet.

g. exitS et +- exitS et U (f ollower E xitS et - { statements found in step 8c })

Return the exitSet

4.4 Exception HandIing

Because we have already done heavy pre-processing of exception handling in the
control flow graph, our task of representing exceptions with try-catch blocks is sim­
plified. Since there are no inter or intra-exception handling representation problems,

80

Aigorithm 13 wi:reCatchZone(CatchZone c'IJ,rrentZone)

1. Define the exitSet as the ernpty set.

2. For each zone z E currentZone.embeddedTryZoneSet do
exitSet +-- exitSet U wi:re'fryZone(z)

3. Define the nonEmbeddedStmtSet as the set of statements in the curr-ent­
Zone.bodywhich are not in any ofthe cur-rentZone.embeddedTryZoneSet's zones'
bodies.

4. For each Statement s E nonEmbeddedStmtSet find the appropriate successor
c. There are four possibilities.

(a) c is in the nonEmbeddedStmtSet

(b) c in an entry point to a rnernber of the currentZone. embeddedTryZoneSet

(c) c escapes the currentZone and we have not yet seen it.

If c is either of the first two cases, we sirnply set up the directed edge between
sand c. Otherwise we place s in the exitS et.

5. Return the exitSet

we only have ta con si der reconciling the newly created try-catch blocks with the
existing constructs in the SET.

To begin with, a try-catch block is directly created from a single try zone and
its corresponding catch zones. \\Then nesting the try-catch black in the SET, we use
the entry point of the try clause to decide which SET node we should be considering
as either child or ancestor. While nesting the new block into the SET, we rnay have
one of two nesting problems.

1. One or more of the catch clauses' bodySets rnay not nest. The solution to this
is to sirnply remove the non-nesting statements from the offending catch clause.
These statements will then end up in sorne statement sequence following the
catch clause.

2. The bodySet of the try clause rnay not nest. In this case we have to split the
try clause into as rnany parts as necessary as to perforrn the nesting.

81

This second possibility carries a few complications.

1. Each newly split off try clause will need its own set of catch clauses. Accord­

ingly, a full set catch clauses are cloned from the original try clause for each of

the new try clauses.

2. Ifany of these cloned catch clauses contains any-exception handIing thatex­

ception handling must also be cloned.

3. The SET may indicate that sorne already found constructs nest within the
cloned catch clauses. These constructs must also be cloned so that the contents

of the newly created catch clauses gets properly filled in.

4.4.1 Spurious catch and try Removal

As stated in section 4.2, if we can statically prove that the exception will not be
thrown, the presence of the spurious catch will be flagged by j avac as dead code

and generate a compile time erroI. Although the preprocessing described in section

4.2 will aid in the restructuring, it is strictly optional. The phase described in this
section works on the completed SET and acts as a fall-back mechanism that removes

aU catch and try blocks from the SET that would haIt recompilation.

Our goal is to find out which catch clauses cause trouble. To do this we first
put an the catch clauses' exception types in a set C. Second, we remove from Cany

subclass or superclass of java .lang. RuntimeException. These exception types can
always be caught. Third, we scan the body B of the try block. For every statement

s E B we obtain the set of exceptions E that could be thrown from s. For every
exception type e E E if e E C then e is removed from C. When this has been done
for aH the statements in the try block, C will contain those exception types which

cannot be thrown, but never the less have catch clauses. These catch clauses are
now removed from the try statement. Finally, if the try has no remaining catch

clauses, then it is removed from the SET and replaced with the statement sequence
from the body of the try block.

The remaining issue lS to determine what the exception types can be thrown

from a statement. This is a recursive pro cess that runs on each type statement in
the SET. We break statements into two types: simple statements and control How

statements. Within simple statements, only invoke statements and throw statements

82

are examined, aU others are ignored as they can only pro duce runtime exceptions.
For invoke statements we look at the invoked method's throws attribute, and for
the thro'W statement we simply take the thrown exception type.

Within control ftow statements, the try statement gets special treatment. The
exceptions that can be thrown from a try statement is the union of throwable excep-

- tiontypes fromthebody of the try block, minus the union of-thecaughtexception.­
types, plus the union of the throwable exception types from aH of the catch blocks.
For all other control ftow statements, the throwable exception types are the union of
the throwable exceptions in any of their nested statements.

In summary, this analysis finds and removes all catch clauses that could be ftagged
by j avac as dead code. If the resulting try statement has no remaining catch clauses,
it too is removed and replaced with the statement sequence from the body of the try
block.

83

Chapter 5

Idioms

The chapter breaks down into three sections: 1) converting structured Grimp to
Java, to the production of recompilable code, 2) readability transforms performed on
Grimp which are option al but help pro duce code that exhibits human programmer
idioms, and 3) readability transforms performed on the SET, which are also optional
but helpful. The individual phases within these sections are scattered throughout
the decompiling algorithm. For simplicity, and the fad that the idiomatic phases do
not impact on the structure of the algorithm, they are not explicitly shown in the
algorithm's outline. Rather, we state where the idiomatic phases are placed when
describing them.

5.1 Converting Structured Grimp to Java

There are many differences between structured Grimp and Java and we need
to make several analyses and transformations throughout the various decompilation
phases to pro duce Java. This section describes six different issues.

5.1.1 Simple Statements

While sorne Grimp statements print out as syntactically correct Java, many do
not. To correct this we go back to the very st art of our decompiling procedure and
transform the Grimp statement Est l before doing anything else. For every Grimp
statement sEL we perform algorithm 14 (page 85) convertStmts().

84

For exarnple, an identity staternent Grirnp will print the' : =' assignrnent which
does not fit the Java syntax. To remedy this we simply replace the Grimp identity
statement with a Dava identity statement that prints the ':' assignment instead.

Aigorithm 14 convertStmts(Statement s)

1. F6Yêvery e-xpression e EsdD
convertExpr(e)

2. If syntaxCorrectJava(s) is false
Replace s with an object whose type is a subclass of s's Grimp statement.
This subclass overrides the printing method with one that yields syntactically
correct Java.

Algorithm 15 convertExpr(Expression e)

1. For every subexpression e' E e
convertExpr(e ')

2. If syntaxCorrectJava(e) is false
Replace e with an object whose type is a subclass of e's Grimp expression.
This subclass overrides the printing method with one that yields syntactically
correct Java.

With the exception of control fiow statements that are still using gotos, the list of
Grimp statements that we feed our restructurer will now exhibit correct Java syntax.

5.1.2 Converting invokespecial <ini t> to Constructor CaUs

Java language constructors are represented in Java bytecode by <ini t> methods.
In our entire decompilation algorithm, there are few situations where we can have
legal bytecode that we can not decompile. One of these occurs in the conversion of
invokespecial <ini t> statements in Java bytecode to explicit caUs to a constructor
in the Java language.

In the Java language, one can overload the constructor and this is often do ne to
offer the object creator varying arnounts of default initialization. A cornmon idiom,

85

then, lS to have overloaded constructors one another as shown on the left of
figure 5.1 (page 86). The default constructor (the one having no parameters) caUs
the second constructor and passes it a default value of 5.

class A extends B
{

}

private int x;

public AO
{

this(5);
}

public AC int i)
{

x = i;
}

(a) First Java constructor caUs
the second constructor

public void <init>()
{

}

A rO;

rO := @this;
rO.<init>(5);
return;

(b) Grimp representation for
first constructor

Figure 5.1: Calling one constructor from another in Java and the corresponding
Grimp.

The complication is that the Java language specification states that only the first
statement in the class's constructor can be a caU to another constructor, whereas any

statement in a bytecode method can be an invokespecial <ini t>. Furthermore, if
the first statement of a Java language constructor is not a call to another constructor,
then there lS an implicit calI to the super class's default constructor. This ho Ids for
aH classes except for java. lang. Object which has no super class.

Because of these restrictions, it may not al ways be possible to represent alliegai
invokespecial <ini t> as the first statement in the constructor that we are decom­
piling.

Consider the legal bytecode given in figure 5.2(a). The key feature to this code is
that there are two control fiow paths where along one path the object lS initialized with
its own default constructor while on another it is initialized by java.lang.Object's

86

Method A(int)
0 aload_O
1 iload_l
2 iconst_5
3 if_icmpge 12
6 invokespecial
9 goto 15

12 invokespecial
15 returni

(a) bytecode

#1 <Method AO>

#2 <Method java.lang.Object(»

public A(int i)
{

}

if Ci < 5)

thisO;
el se

super();

(b) decompiled code,
invalid Java

Figure 5.2: An "impossible-to-decompile" constructor.

default constructor. The corresponding decompiled code, however, is not valid Java
because the caUs to the constructors are not the first statement.

There are solutions to this problem, but they are invasive and require whole pro­
gram knowledge. An example would be to create a object factory for objects of class
A and replace an instances of new object A creation with caUs to factory. Next, A's
constructors are modified in such a way that aU code prefixing their calls to other
constructors is moved out to the object factory. Aside from requiring whole program
knowledge, potential difficulties arise with this scheme in maintaining the proper
order in field initializations.

Instead, we assume that we do not have whole program knowledge and search for
a specifie pattern of instructions to rebuild constructor calls. Algorithm 16 isCon­
structorSafe illustrates the seaI'ch pattern. If this algorithm returns true we convert
the appropriate invokespecial <ini t> to a constructor cali, but if faise we abort
the entire decompilation. Throughout our tests, however, this simple algorithm has
always returned true.

5.1.3 Converting the clini t Method to a static Initializer

Block

There are many problems with converting a clini t method Ïnto a class static
initializer block, and as with the conversion of constructors, our attempt to decompile
can again be thwarted.

87

Aigorithm 16 isConstructorSafe(Method m)

1. If m does not contain an invokespecial <ini t>
Return true

2. If m is not an <ini t>
Return faise

3. If there is more than one invokespecial <ini t>
Return faise

4. If the invokespecial <ini t> is under an area of protection
Return faise

5. If the invokespecial <ini t> is the first statement which is not a definition
statement

(a) Mark the invokespecial <ini t> as a caU to another constructor

(b) Return true

6. Return false

class BadStaticlnitializer
{

}

static {

}

f = this. getClass 0 . getField("nonExistantField");
if Cf == null) return;
System.out.println();

static Field f;

Figure 5.3: A class with an illegal static initializer.

Consider the decompiled code figure 5.3. There are three reasons why this is

illegal Java sourcecode, which could have been produced by perfectly legal bytecode.

1. The this and super method references must not appear in the Java language

88

static black, while there are no such restrictions on abject references in byte­
code. Accordingly, the use of this in the first hne would cause compile time
error.

2. It is a compile bme error if a non-Runtime exception can cause the static

black ta exit abruptly, while there is no such restriction on the <clini t>. A
Runtime exception is an exception of type java. Tang. RllntirileException or
any subclass of it. Non-Runtime refers ta any other type of exception. In our
example, trying ta retrieve the nonExistantField, sa named because it doesn't
exist, will trigger a NoSuchFieldException. The javac compiler will statically
determine that it is possible ta throw such an exception and produce a compile
time error.

3. A return statement must not appear in the static black, while every method
in bytecode is exited by a return, including the clini t.

Dava addresses two of the problems.

1. We make sure that every throw which throws a non-Runtime exception is
caught, and that for every invoke any possible non-Runtime exceptions that
could cause the invoked method to exit abruptly are caught.

2. AlI return statements are removed from the Grimp statement list representa­
tion.

Although the remaining issues will generate compile time errors, they are sim ply
ignored due to the facts that 1) we have never encountered them in our test suites,
and 2) that they would be very difficult to solve.

5.1.4 throws declarations

If a non-Runtime exception can cause the abrupt exit of a method, the Java
language specification [9] states that the method must declare that it throws that
exception. Unfortunately, the Java virtual machine specification [13] does not make
any requirement about such declarations. As a result compiled class files may leave
this attribute out. This turns out ta be a problem especially for applications originally
written in source languages other than Java.

89

class A
{

}

public void foo(int x) throws MyException
{

if ex < 10)
throVJ nete, MyExceptionO ;

}

Figure 5.4: An explicit throw statement causes a throws declaration.

Figure 5.4 above shows a class A with single method foo.

Here foo must declare that it throws MyException because of the throw new
MyException () statement, assuming that MyException is not a subclass of RuntirneException.
Since foo is now the potential source of a MyException any method that calls foo
must either catch it or also de clare that it too throws MyException. Class B (figure
5.5 below) illustrates this by constructing a new object of type A and calling its foo.

class B extends C
{

}

public void goo(int x) throws MyException
{

}

A a = new AO;
a.foo(x);

Figure 5.5: Method invocation may cause a throws declaration.

Now note that class B extends class C. If method goo in B is overriding a method
goo from class C, the Java language specification requires that the signatures of the
two methods must match. Although goo in C will never reaUy throw a MyException, it
must declare that it throws MyException for method signature agreement as shown
in figure 5.6.

Accordingly, if C's goo is called, whoever caUs it must either handle MyException
or declare it as well. This pollution of potentially thrown exceptions and their throws
declarations can also carry through interfaces. For the purposes of the l'est of this
section, we include interfaces whenever we mention super and sub classes.

90

class C
{

}

public void goo(int x) throws MyException
{

System.out.println(x);
}

Figure 5.6: Inheritance may cause a throws declaration.

Since bytecode may carry in complete or spurious throws attributes, we pessimisti­

cally discard aH throws attribute information that cornes from the application we are

decompiling, and rebuild it from scratch. Library class files, such as those in the Java
language APIs, and native methods are optimistically treated as correct because we

are not decompiling them and therefore have no analysis of the behavior.

Rebuilding the throws declarations is done as a fixed point inter-procedural anal­
ysis which builds summary information for every application class' methods. The

starting state for each method is to declare only those exceptions for which there are

throw statements in that method. This is do ne is two steps, first by discarding the
throws attributes for each application class method so that they declare no thrown

exceptions, and second, by scanning each method for throw statements. If a throw

statement is found, the type of exception thrown is added to the method's throws

attribute.

The fixed point analysis is then performed on these methods. Basically, we begin
with every method in an unsafe state, and flow the thrown exception types until aU

methods reach a safe state. To update a method's throws attribute we perform two
confluence functions.

1. We scan aH the super and sub classes' verSlOns of the current method. The
new throws attribute will be the union of the old throws and an the throws

attributes of the super and sub classes.

2. \Ve scan the body of the current method for invoke statements. Again, the
new throws attribute will be the union of the oid throws and an the throws

attributes of every method that is invoked. There is one catch to this step, and
that is that we have to check to make sure that invoked method is not in an

91

area of protection that catches the potentially thrown exception.
exception type that is caught is not added to the union.

it is, the

If the attribute changes from these two functions, we mark every application super
and sub class version of the current method, and a11 application methods that directly

. invoke thecurrent method as unsafe .. The current method is theu optimistically
marked as safe.

Because confluence is the union operator, we know that when a method is pro­
cessed, its throws attribut es will either remain the same, or be increased. Since
there is a fixed, limited number of exception types, we know that this analysis must
terminate with aIl methods' throws attributes reaching a stable state. Finally, for
correctness we note that confluence expresses exactly the requirements for recompi­

lablilty, and hence know that the resulting throws attributes represent the minimal
set of declared exceptions for each method.

5.1.5 Throwing null

In sorne cases we are presented with a throws statement that throws a local that
has a null type. What happens in the VM is that on dereferencing the local we
will throw a java .lang. NullPointerException and never run the throws. The net
effect is that we throw a new NullPointerException.

Unfortunately, we will generate a compile time error if we try to compile the
statement throw null;. The solution is to replace the null local with a new
NullPointerException.

5.1.6 Class literaIs

The j avac compiler contains a strategy for dealing with class literais that does
not conform to the Java language specification. Whenever a class literaI is used, for
example for class A, j avac will automatically generate a method called class$ in
class Now if, for example in class B, you explicitly write a method called class$,
j avac will abort compilation presumably because you effectively interfere with the
potential automatic creation of this method. From a de compilation point of view,
the problem is that if the original Java source code used a class literal, the class$
method will have been generated by javac. Consequently, our decompiler will pick

92

up the generated method and blindly pro duce source code with a class$ method
in it. Then when we try to recompile the decompiled code, j avac will daim that
the decompiled program is not compilable. There are two possible solutions to this
problem.

I@ Recoginize that the method is part of a class literaI and:

1. Remove the class$ method from the dass.

2. Perform a high level analysis to remove invokes to the method, and any
other code introduced by javac.

3. Replace the removed code with the class liter al.

I@ Rename class$ to sorne new unique name within the dass.

Both solutions share the problem that they require whole program knowledge
to change an references to the class$ method. Although producing a more elegant
result, the first solution also imposes the overhead that we have to analyze the method
to make sure that it is exactly equivalent to the javac generated method. This may
very difficult to perform since the method may have undergone optimization and
obfuscation.

The potential also exists that the class$ method was not generated by javac.
For this reason the second solution must always be implemented, at least as faH
back mechanism when the first solution fails. In Dava we have only implemented the
second solution so far.

5.2 Readability Transforms Performed on Grimp

We present two algorithms performed on the Grimp representation that improve
the readability of the output. The first, aggregating if statements, allows for complex
conditions controlling loops and if statements, and aids in the formation of for

loops. The second introduces import statements to the decompiled output, and
allows classes to be referenced without explicit package names being given at every
reference.

93

5.2.1 Aggregated ifs

Although Grimp aggregates expressions between simple statements, it lS not able
to aggregate expressions across conditional control flow. In figure 5.7(a) we are shown
a control flow graph with three conditional control fiow statements, a, band c. The
purpose of if aggregation is to reduce this condition al subgraph to a single conditional
control fiow statement with a simplified aggregated conditional expression Ca && b)
Il C as shown in 5.7(d).

F T T F

d d

e

(a) (b) (c) (d)

Figure 5.7: Reduction and simplification of a compound if.

In figure 5.7(a) we see how to reduce the subgraph of consisting of nodes (a, b)
to a single node and pro duce the second graph, figure 5. 7(b). The intuition is that
to perform the reduction there must be a subgraph containing only two conditional
statements which has only two destinations coming out of it. One destination (C)
must be a successor of only both nodes in the subgraph, while the other destination
(D) must be reaehable by passing through bath of the nodes in the subgraph. Desti­
nation D lS then treated as the target of a compound conditional joined by the "and"
(&&) operator and the reduetion is performed, and C as the failure case. Finally, there
must be only one entry point to the subgraph, and that entry point must be able to
reach the l'est of the subgraph.

Sometimes the logic the control fiow statements does not agree with ereating
this conjunction. The second control fiow graph in figure 5.7, (b), shows just sueh a

94

case, where (Ca && b) && c) is an obviously incorrect interpretation of the control
fiow logic. The goal we want Is to have each edge on the target path to have the value

true and the on the failure path false. If the current subgraph does not express

this, we negate the conditional control fiow statement's expression and exchange the
truth values of its successor edges. The reduction is then performed, as shown in

figure 5. 7(c) ..

We use algorithm 17 to pattern match from statement s in a control flow graph
to see if it is the root of a compound condition. If we get a return value of true then

we can apply the compounding reduction to the subgraph rooted at s. To perform aH

possible cornpounding reductions we repeatedly iterate over the control flow graph,
checking if reductions are possible, until no reductions are performed in an iteration.

Aigorithm 17 isCompoundCondition(Statement s)

1. If s is not an IfStmt
Return faise

2. SUCCo +- s.trueSuccessor

SUCCfail +- s.falseSuccessor

3. If SUCCo is a successor of SUCCfail

swap(SUCCo, SUCCjaiz)

4. If (SUCCfail lS not a successor of succo) or
(SUCCfail has more than 2 predecessors)

Return faise

5. If (succo is not an IfStmt) or
(succo has more than 1 predecessor)

Return faise

6. Return true

Once we have finished reducing the subgraphs to compound eonditional flow state­
ments, we examine the resultant eonditional expressions and minimize the number
of negations in them. The intuition is that negation is generally hard to understand,
and we want to present the eonditional expression in the simplest form possible. Note

that a boolean proposition in this expression may a method calI and therefore have
program side effects. Beeause of this, we are restricted in the types of minimizing

95

transforms that can be performed on the expression tree.

The primary restriction is that we must preserve the original shape of the ex­
pression tree. Expression evaluation can be seen as a postfix operation on a depth
first traversai of the expression tree. When we perform this traversal, then, we can
pro duce a string recording the operations of the expression in the order that they
were performed. Because the operands in the expression tree may be methodcaHs,
this string also uniquely identifies the order of potential side effects of the operands.
For our program to retain its original semantics this ordering of side effects must be
preserved through any transform that we may make to the expression tree. Since
this order is unique to the shape of the tree, the transforms must not change the
expression tree's shape.

Figure 5.8 shows a simple expression with method operands, the corresponding
expression tree, and the ordering of potential side-effects based on the traversaI of
that expression tree.

fO Il gO && hO

Ca) Expression with
MethodcaUs

&&

/ \
Il hO

/\
fn gO

(b) Expression Tree

fO gO hO

(c) Order of side- effects

Figure 5.8: An Expression with potential side-effect and their ordering.

With this restriction in mind, Dava's minimization algorithm is made up of 2
phases and employs only the following safe transforms.

1. (A) == !(lA). On both sides of the equivalence, regardless of whether A lS true
or false, A will be evaluated. Introducing or removing double negation does not
interfere vl'ith the order of the possible side effects of A.

2. The deMorgan's law which states that (AI lB) l(lA && !B). Consider if A is
true, then A will be eva1uated and B will not. This is obvious on the 1eft, and
we can see on the right that the && will short circuit B from being evaluated.

96

If, however, A is faIse, first A is evaluated, then B is evaluated. Again this is

obvious on the left, and also describes the behavior of the right.

3. The deMorgan's law which states that (A && B) _ !(!Aff!B). Consider if A is
faIse, then A will be evaluated and B will not. This is obvious on the left, and
we can see on the right that the 1 1 will short circuit B from being evaluated.

If, however, A is true, first A is evaluated, then B is evaluated. Again this is
obvious on the 1eft, and also describes the behavior of the right.

After the description of the 2 minimization phases, we prove that this algorithm

achieves the desired minimization of negations.

VVe begin with some arbitrary logical expression tree made up of "and" operators,

constants and variables. A "not" fiag may be attached to any sub-expression to

negate it. The first phase is to push aU the not fiags in the expression tree down to
the leaves. This is performed by algorithm 18 pushN egationDown.

Aigorithm 18 pushNegationDown(Expression e)

1. If e ls a Logical Constant or Variable
Return

2. If e. notFlag is true
deMorgan(e)

3. pushNegationDown(e.leftOperand)
pushN egationDown(e. rightOperand)

The second phase is to recursively traverse the resulting expression tree in a

bottom-up manner, and for each sub-expression e obtain a "truth score" te.

-1 e is negated

+1

te.rightOperand + te.lejtOperand

+1

e is a positive leaf

te.rightOperand + te.lejtOperand < 1
otherwise

This score will tell us when to apply deMorgan's law to the expression tree so

we can minimize the overall number of negations in the expression. vVe daim that

for any node e, if deMorgan's law is applied to e, then te is the maximal number of

97

Algorithm 19 deMorgan(Expression e)

1. If e Ïs a Logical Constant or Variable
Return

2. e.exprType is an and Expression
e.exprTypc +:-. or Expression

eise
c.exprType f- and Expression

3. If e.notFlag is true
e.notFlag f- false

eise
e.notFlag f- true

Il flip boolean value of notFlag

4. If e.leftOperand. notFlag is true /1 flip boolean value

e.leftOperand.notFlag f- false
eIse

e.leftOperand.notFlag f- truc

5. If e. rightOperand. notFlag is true 1/ flip boolean value

e.rightOperand.notFlag f- false
eIse

e.rightOperand.notFlag f- true

negations that can be removed from the sub-expressions. Figure 5.9 below illustrates
this. The tree on the 1eft shows the root with a score of -2, and the given sequence of

trees shows that 2 negations, in fact, can be removed from the sub-trees by applying
deMorgan's law to the fOot. The application also adds one new negation at the fOot
of e, so the total change in the number of negations for the whole expression tree
ls te + 1. If the expression tree is rooted with a negation, the root negation can be
removed by interchanging the if and else clauses of the condition al control flow

statement.

Now, the minimization algorithm is done in the same pass as the calculation of

the truth scores. If we find that te < 0 we apply deMorgan's law to e and reset te to

98

NOT
-2 and -1 or

NOT
E

NOT
-1 D

+10 -1 C

+10 +1®
NOT

N~T or

A~
c

Figure 5.9: Removal of 2 negations from an expression tree.

-1. Then, if the truth score for sorne of the children of e is less than 1, we recursively

apply deMorgan's law to those children. Aigorithm 20 rninirnizeNegations page
(99) shows how this is done.

Algorithrn 20 rninirnizeNegations(ConditionalStmt s)

1. pushN egationDown(s. conditionalExpr)

2. trickleNegationUp(s.conditionalExpr)

3. If s.conditionalExpr.notFlag is true
swap(s. trueConsequent, s.falseConsequent)
s.conditionalExpr.notFlag +- false

We now prove by weak induction that this does minimize negation. The base case

lS simple propositions: regardless of whether a proposition ls negated or not, there
lS no way to represent that proposition with fewer negations. The induction step
concerns two minimally negated trees being joined by a non-negated root. The goal

is to show that a simple manipulation, the newly joined tree will have minimal

negation. First consider that in each sub-tree there may be several points at which
repeated application of deMorgan's law may pro duce a new sub-tree with the same
number of negations, but we know by assumption, never fewer. Now, if a sub-tree
indicates that it can do this at its root, then we know that we can effectively hoist one
of the negations up out of the sub-tree and to its root. If both sub-trees, then, can
be rooted by negations, whether or not by hoisting, we know that we can decrement

99

E

Aigorithm 21 trickleNegationUp(Expression e)

1. If e lS N egated
te ~-1
Return

2. If e lS a Variable or Constant
te ~ 1
Return

3. trickleN egation U p (e. rightOperand)
trickleNegationUp(e.leftOperand)

4. te ~ te.rightOperand + te.le!tOperand
If te > 1

te ~ 1

5. If (te < 0)
applyDeMorganToSubTree(e)
te ~-1

/ / Process right sub-expression
/ / Process 1eft sub-expression

Algorithm 22 applyDeMorganToSubTree(Expression e)

1. If (te.rightOperand < 1) and (e. rightOperand. notFlag is false)
apply DeMorganToSubTree(e. rightOperand)

2. If (te.le!tOperand < 1) and (e.leftOperand. notFlag is false)
apply DeMorganToSubTree(e.leftOperand)

3. deMorgan(e)

the total nurnber of negations by one in the new tree, by applying deMorgan's law to
the joining root.

Next, we see that there is no further way ta decrernent this total nurnber of
negations the joined tree. Cansider if there were, this would irnply that we perforrn
sorne application of delVlorgan's law either at the root or in at least one of the sub­

trees. It cannot be at the root sinee this would sirnply get us bacl-c to our initial
state, where by assurnption we could not irnprove either of the sub-trees. It cannot
be in a sub-tree. see this, we partition each sub-tree into two sections: that which

100

was undisturbed by our previous hoisting operation and that which yvas changed. By
assumption, no application of deMorgan's law in the section that was undisturbed
can reduce the number of negations. we look at the changed section, we now
see that each changed section contains a new minimal number of negations (the
previous minimum minus one since by construction only one hoist was possible) and
any application of deMorgan's law could only increase the.number of negations. We
conclude that there is no further way to decrement the number of negations.

Let's re-examine the implemented algorithm to make sure that it conforms to our
pro of. The first phase of the algorithm (pushNegationDown) sets up the condition
that the join is never negative, and established the proof's base case. Then the second
phase (trickleN egation U p) implements the induction. A truth score of less than
o indicates that a sub-tree can be reformed, via a hoist, to be rooted at a negation
and this 1S always performed. Finally, as we have seen in the description of the
hoisting algorithm above (applyDeMorganToSubTree), deMorgan's law is applied
to each sub-tree in such a way that it does not increase the number of negations. Our
algorithm do es indeed conform to the proof.

In summary, we reduce certain control fiow graphs to conditional control fiow
statements with aggregated expressions, and simplify these expressions to contain a
minimal number of negations.

5.2.2 Class names

There are two potential issues with class names. First, there may be a name clash
between a class and a package. Although there is no ambiguity at the bytecode level,
such name clashes will pro duce compile time errors with javac. This is presumably
to encourage clarity in Java source code. Second, we want to add import statements
to a method. In Grimp aIl class references are made with their full package pre­
fixes. Although explicit, if we use the full name in our decompiled code it will be
unnecessarily verbose. There is one phase pel' each of the problems. The first phase
deals with packagejclass name clashes, and the second with the addition of import
statements.

Without whole program knowledge, changing the names of classes or packages lS
not a safe procedure. We could change a name and accidentally break some outside
reference. However, since several non-Java sourced members of our test suite require
such changes to be recompilable we are compelled to put this feature in.

101

The first phase begins by trying to enforce the Java packagejclass capitalization
convention; the first letter of a package name should be Imver cased, while the first
letter of a class should be capitalized. In enforcing this convention we may cause
fresh name clashes. If this happens, we abandon the convention and generate a new
random suffix for the package name such that the new package name will be both
unique a,nd IlOt clash with any classes. The choice tochange the packag~ and n()t
the class name was made because it creates less visu al impact. When we change a
package name vve must change only the import headers in classes external to the
current package, while a change in class name will be displayed every time that class
is referenced.

In the second phase the methods of a class are scanned twice for references to
other classes. Since every class reference will contain a package name prefix, the first
scan just establishes a table of aH the package names and creates a list of import
statements. These import statements are then used to augment javac's CLASSPATH

environment variable. The second scan then checks to see if the package name prefix
can be dropped from the class reference. Most of the time we will be able to; the
only occasion when the prefix will not be dropped is wh en there are two different
classes in the augmented CLASSPATH with the same base class name. Although javac
is unambiguous about what will happen and will always choose the first class to found
in the CLASSPATH, the situation lS not visually clear. For this reason, aH clashing class
names are allowed to keep their full package prefixes, while all others are shortened
to just their class names.

5.3 Readability Transforms performed on the SET

VVe now perform several transforms on the SET to improve the appearanee and
recompilablity of the output. To do this we search the SET in a bottom-up manner
for structure idioms, and when found, perform the appropriate transforms to the
SET. The SET traversed once for each idiom to avoid complication sinee some idioms
may Interfere with each other.

5.3.1 synchronizedO blocks

Java lS a multi-threaded programming language, providing inter-thread critical
sections with synchronized 0 blocks. At the virtual machine level, Hoare's monitor

102

mechanism is implemented with entermoni tor and exi tmoni tor instructions. These
atomic instructions signal the virtual machine to obtain or release a lock on an object
thus beginning or en ding a critical section.

The JVMspec [13] requires that the use of these monitor instructions are 1) bal­
anced: that during the invocation of a method, a thread should not try to release a
lock on an object if it doesn't alreadyown thelock, and 2) complete: that any lock
obtained during the invocation should be released by the time the method exits.

The requirements only talk about runtime and not static constraints, so monitor
instructions can in fact be placed in the bytecode with a low degree of structure. For
example, the following would only suggest that the loop must be executed twice.

monitorenter 0;
monitorenter 0;
while (x) {

}

monitorexit 0;
x = foo(a);

Figure 5.10: Unstructured use of monitor instructions,

If a thread exits a method by having an exception thrown, it must still release
any object locks it holds. This means that every critical section should be covered by

an area protection. If any exception is thrown, then the first handler for the are a of
protection will release the lock and rethrow the exception. Figure 5.11 (page 103) is
a simple Java sourced code fragment that uses a synchronized 0 block.

System.out.println("start");
synchronizedCo) {

System.out.println("in synchronized block");
}

System.out.printlnC"finish il
);

Figure 5.11: A simple synchronizedO block in Java.

The unstructured Grimp output of this code is shown in figure 5.12 below.

The result of our restructuring algorithm so far will produce the output in figure
5.13 (page 104).

103

java.lang. System. out. println("start li
);

r3 = rl;
entermonitor r3;

labelO:
java.lang.System.out.printlnC"in synchronized block");
exitmonitor r3;
goto labe12;

label1:
$r6 := ©caughtexception;
r4 = $r6;
exitmonitor r3;
throw r4;

labe12:
java.lang. System. out. println("finish") ;

catch java.lang.Throwable from labelO to labell with labell;

Figure 5.12: The Grimp equivalent of figure 5.11.

System.out.printlnC"start")j
entermonitor r3;
try {

System.out.printlnC"in synchronized block");
exitmonitor r3;

}

catch (Throwable r6) {
r4 = r6;
exitmonitor r3;
throw r4;

}

System.out.printlnC"finish")j

Figure 5.13: The structured code output before synchronizedO blocks are found.

Vve now reduce the SET representation of figure 5.13 ta a synchronized black. To
do this we sear·ch the SET for the following pattern. Please note that the pattern
should be read while referencing figure 5.13.

® There exists a statement sequence S which contains the sub-sequence: entermoni tor

104

A followed by try statement B.

® A obtains a lock on sorne object C.

® The try statement B contains a statement sequence D whose last member is
an exi trnoni tor E.

® There must be no abrupt exit from D.

® E releases a lock on C.

® There is only one catch clause F for the try block and furthermore this catches
an exception of type java .lang. Throwable and assigns it to reference G

® F contains a statement sequence of the following:

1. G may be assigned to a local H. This statement is optional.

2. There is an exi trnoni tor which releases a lock on C.

3. There lS a throw instruction with reference to either G or H.

Once this pattern has been found, we remove the enterrnoni tor A and the try B
from the statement sequence S and replace them with a new synchronized 0 block
T. We then remove exi trnoni tor E from statement sequence D and place D in T.

Resolving unstructured uses of monitor instructions

As shown in figure 5.10 above (page 103), monitor instructions do not have to be
placed in the bytecode in a structured manneL However, because every critical section
that can be converted to a synchronized 0 block is covered by an area of protection,
the exception preprocessing and try nesting phases of our algorithm ensure that
there are no nesting or structural problems between any potential synchronized ()
block and any other structured construct. Figure 5.14 below illustrates a contrived
example where a synchronized () block with two entry points is "fixed" by exception
preprocessing.

The consequence of this is that an attempted reductions to synchronized ()
blocks are guaranteed to be semantically correct and will fit within the already struc­
tured SET. However, we may not always find the appropriate reduction pattern with
the occurrence of monitor instructions. In these cases we are stuck with statically

105

a

monitorenter 0 C monitorenter a

: e : Throwable!~ . .
! \ i············· h mom!orexlt 0

: ~' : monltorexl! 0 f: . throw t
: : 1
, '

g

a

~... h
, , ,

f :
: i

@

Figure 5.14: Exception preprocessing can resolve structuring problems involved with
creating synchronized 0 blocks.

unstructured object locking. Since there are no monitor instructions in pure Java, we
built a trivial library that implements object locking. The library provides a single
class called DavaMoni tor with static methods called moni torenter and moni torexi t.

Once we have finished performing the reductions for synchronized 0 blocks, we
iterate through the SET and replace all remaining instances of monitor instructions
with static method caIls to the Da vaMoni tor class.

MisceHanea

Given that we have an effective fallback mechanism, it might seem that we could
have skipped synchronizedO block reduction altogether. In example 5.13 we could
have simply converted the monitor instructions to static method calI to the monitor
library.

Unfortunately, the Java language specification requîres that we declare, in the
method's throws clause, an exceptions that are 1) not derived from
java .lang. RuntimeException and 2) are not caught in the current method. This
means that to be able to recompile the method, we must declare that the method
throws a Throwable exception because of the throw statement in the catch clause.

106

The better solution is to try to remove the throw statement by pe1'fo1'ming the 1'e­
duction to a synchronizedO block. Then we analyze the contents ofthe synchronizedO
block to find which exceptions are possibly th1'own and declare them appropriately.
The advantages are that we minimize changes to methods due to the type widen-
ing of declared thrown exceptions and retain a greater accuracy in the information
presented in the final output.

5.3.2 finally blocks

Since many operations may need to be done on an area of protection before it can
be represented in a structured manner, finally clauses, which are exceptions with
extra requirements, are only found after all other structuring of exceptions have been

completed.

In bytecode finally clauses employa j sr instruction, which most decompilers
probably use as detection fingerprint. In Grimp the body of code reached by j sr
instruction is directly inlined for fiow sensitive analyses, and so the j sr fingerprint is
removed.

Dava uses the following pattern to find finally blocks:

To perform the above reduction we scan the SET for the following pattern.

1. There exists a try statement A that has a catch clause B that catches the
Throwable exception type.

2. B contains a statement sequence C that terminates with a throw statement D
that rethrows the caught exception.

3. There must be no abrupt exit from C.

4. We produce a new statement sequence E by copying C up to D.

5. There exists a statement sequence F following try statement A that is homo­
morphie to E.

6. For every other catch clause G, G must contain only one try statement H.

7. There must be no abrupt exit from H that does not immediately go to F.

107

try {

}

catch (Exception e) {
try {

}

a;
}

catch CThrowable t) {
b;
throw t;

}

catch CThrowable t) {
b;
throw t;

}

b;

try {

catch (Exception e) {
a;

}

finally {
b;

}

Figure 5.15: Pattern that is searched for to build finally blocks.

8. H must have only one catch clause J which catches the Throwable exception
type.

9. The statement sequence K inside J must be homomorphie to D.

this pattern is found we do the following: 1) VVe remove try statement H from
catch G and replace it with statement sequence from inside H, 2) we remove catch
B, 3) we remove statement sequence F, and "finally" 4) create a new finally clause
for A that contains the statement sequence E.

5.3.3 for loops

Dava treats for loops as a syntactic sugaring of while loops. Because for is
such a commonly used construct, however, it is worthwhile to recover for loops for
readability.

The pattern for this reduction is much simpler than the previous two.

108

i=O;
vJhile U(10) {

System.out.println(i);
i++;

}

for (i=O; i<10; i++) {
Systern.out.println(i);

}

Figure 5.16: for loop pattern.

1. In statement sequence S there exists a sub-sequence of an assignment statement
A followed by a while statement B.

2. B contains a statement sequence C that ends in an assignment statement D.

3. C must not contain any continue statements that target B.

The assignment statement A and the while statement B are removed from S

and replaced with a new for statement E. E is given the assignment from A as
initialization, the conditional expression from B as the stopping condition, and the
assignment statement D as increment.

Note that had there been any continue statements in the original Java source
code, after this reduction they would now look like the 1eft sicle of figure 5.17.

for (i=O; i<10; i++) {
LabeLO: {

break Label_O;

}

}

Figure 5.

for Ci=O; i<10; i++) {

continue;

}

Pattern that "fixes" breaks in for loops.

We remedy this by a second pass over the SET, performing another reduction. In
this case the pattern we are 100 king for is a for loop A which contains on1y a single
labeled block B. vVhen found, we simply remove B from A and replace it with B's
contents. Vve then scan B former body for break statements that targeted Band
replace them with continue statements that target A.

109

5.3.4 if-else chains

Sometimes nested if-else statements can be converted into if-else chains.
Figure 5.18 (page 110) illustrates the two transforms that are performed to do the
conversion. On the left is the original restructuring, the middle shows the result of
the first transform and the final output is on the right.

if (x) { if (! x) { if (! x) {

if (y) { Dj D' ,
A; } }

} else { else if (y) {
el se { if (y) { Aj

if (z) { Aj }

Bj } el se if (z) {
} else { B;
el se { if (z) { }

C' , B' , else {
} } C' ,

} else { }

} C;
else { }

D' , }

} }

Figure 5.18: Conversion of nested if-else to if-else chain.

The first transform makes sure that nested ifs or if-elses are held only in else
clauses. The reason for this is to allow for the nested if to be joined on to the
current else. The pattern searched for here is an if-else A where the if clause
of A contains a single if or if-else statement, and the else clause of A does not.
When found, the conditional expression for A is negated and the if and else clauses
of A trade roles.

The second transform is, in fact, only alternative way of printing, with the caveat
is that there can be no labeled break in any of the if-else bodies that will be
rendered meaningless by the new representation. The pattern here is an if-else A

where the el se clause of A contains a single if or if-else. If the pattern is matched,
A is marked for the alternative printing.

110

5.3.5 Conditional assignments

Condition al assignments are found from a very strict pattern shown figure 5.19
(page 111): there is an if-el se A in which both the if and else clauses contains
just a single assignment to the same local. this pattern is found, A is replaced with
a conditional assignment using the conditional expression from A and the right hand
sides of the if and el se clauses' assignments.

if ex) { a = ex) ? b C' ,
a = b;

}

else {

a = c' ,
}

Figure 5.19: A conditional assignment.

5.3.6 if-else / continue substitutions

The last idiomatic transform we present is a matter of personal taste more than
the others. It is included because it reduces the nesting level for part of the code in
a loop.

while (x)

A' ,
if Cy)

B' ,
}

else {
C;

}

}

{

{

while ex) {
A;

}

if (y) {

}

C' ,

B;
continue;

Figure 5.20: Using a continue to reduce level of nesting.

The pattern here is a loop A whose body is a statement sequence B that ends in
an if-else C. As a first step the if and el se clauses are checked to see how many

111

Hnes of code each will produce. the if clause pro duces more Hnes than the else
clause, the conditional expression of C is negated and the if and el se clauses reverse
their roles. Basically, we want to ensure that the if is sm aller than the else. The
second step is scan the bodies of both the if and else clauses and to convert any
break statements that target Cinto continues that target A. The final step, then,
i8 to rernove the else clause from A, to append the else's bodyto the statement
sequence B, and to append a continue to the body of the if clause.

112

Chapter 6

esting and Results

6 .1 Introduction

There are three ways we test and obtain results. First, we test each component of
the decompiler, second, we test the decompiler on a benchmark suite, and third, we
compare the output of Dava to a number of other leading Java decompilers.

Measuring how weIl Dava works is hard because there is very litt le published
material on what the "standard" problems of decompiling Java should be. Although
we compare our output with that of other Java decompilers, for the comparison to be
meaningful, we first have to define what the key problems are. Dava's development
life cycle, shown in figure 6.1 (page 114), relies heavily on testing to reveal not only
programming bugs, but conceptual errors and previously unknown types of problems.
For this reason testing, implementation and results are highly related.

To make sure that our results are not overly skewed by this strong relation, we
perform two types of tests, component testing and benchmark testing. These verify
that our solutions are correct and that new problems have sim ply not been overlooked.

Component testing is performed to exercise sorne feature of the decompiler, for
example the reconstruction of synchronized 0 blocks. The goal is to not only to
make sure that the component performs its function properly, but that it do es not
break any other part of Dava. This is done on a version of Dava called dava-current.
Once we have finished testing and fixing dava-current and feel that it Ïs strong enough
for public use, we move its new components to dava-stable.

The stable version is then tested on a number of benchmark programs. These

113

l
/DeSign

~
T · ----3»1 1 . estmg < mp ementatlOn

Figure 6.1: Development life cycle for Dava.

primarily come from the Ashes Hard Suite [22], and have been used to reveal new
problems to be solved in dava-current.

As of the writing of this thesis, dava-stable performs at a comparable or better
level than most other Java decompilers on both the component and benchmark tests.
However, dava-stable does not yet incorporate aH the features found in dava-current.
Table 6.2 (page 115) gives an overview of what features have been implemented in
what version, and the results of our testing. In this table, "Passed" means that the
component is able to successfully decompile an tests it was given, while "Failed"
means that for sorne test an incorrect output was given. There is no such thing as a
partial pass.

6.1.1 Measures

There are two types of measures that we use, subjective and objective. An ex­
ample of a subjective measure is how readable the decompiled output looks; poor,
average, or good. An example of an objective measure is whether or not the output is
recompilable. From a results point of view, we are interested in what the output of the
decompiler looks like, and we not interested in how it was gotten. That is, knowing
the hardware platform, Java virtual machine, operating system, or implementation
of the Java API that are used, do es not affect our evaluation of Dava.

Although the restructuring parts of the algorithm were designed with the inten­
tion of yielding easy to read and "natural", human-like output, these are subjective
measures. In the following sections we give many examples of the output and make
comments about what we feel are the strengths and weaknesses, but not make any

114

Description Implemented Implemented Component
dava-current in dava-stable Tests

SET construction Yes Yes Passed
Basic loops Yes Yes Passed

Nested loops Yes Yes Passed
Multi-entry point loops Yes Yes Passed
if and if-else blocks Yes Yes Passed

swi tch blocks Yes Yes Passed
Labeled blocks Yes Yes Passed
Labeled break Yes Yes Passed

Labeled continue Yes Yes Passed
Class / package name fixing Yes Yes Passed

Simple statement fixing Yes Yes Passed
Constructor caU fixes Yes Yes Passed

static blocks Yes Yes Passed
throws declarations Yes Yes Passed

Throw null fix Yes Yes Passed
Class literaI fix Yes Yes Passed

Basic exception handling Yes Yes Passed
synchronized blocks Yes Yes Passed
Useless try removal Yes Yes Passed

Exception preprocessing Yes No Passed
Exception handler removal Yes No Failed

Advanced exception handling Yes No Failed
Structural sugaring* No No -

*lncludes aggregating if statements, for loops, if-else chains, conditional assignments

and if -else / cont inue substitutions.

Figure 6.2: Overview of Implementation and Testing.

strong daims on their subjective qualities.

There are 3 basic objective measures.

Benchmark
Tests

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

-
-
-
-

1. Completion. Did decompilation complete? If decompiling an application rather
than a single class, were aIl the necessary classes decompiled? This measure lS

more useful for benchmark tests and less so for component testing.

115

1

2. Correctness. For example, is the restructuring correct? ls the output obviously
or obviously not Java? Are the types of variables and constants correct?

3. Recompilability. Can the decompiled output be recompiled by javac without
error? Does the compiled output run? Does it appear to run correctly? the
recompiled output is decompiled, does it converge to the original decompiled
versi()n?

These three objective measures, together with a subjective commentary, are ap­
plied to each component and benchmark test. Following this we compare the output
of Dava with the output of several other Java decompilers. Briefiy, section 6.2 cov­
ers component testing with subsections for basic loops, multi-entry point loops, if,
if-eIse, and swi tch statements, labeled blocks, break and continue statements,
basic exception handling, advanced exception handling, synchronized statements,
classjpackage name clash resolution, and throw declarations. Section 6.3 gives a de­
scription of our benchmark programs and their test results, and section 6.4 compares
our performance to several other leading Java decompilers.

6.2 Component Testing

Each of the tests here exercises a component of the decompiler singly and in com­
bination with the other parts of the de compiler. Since Dava was built one component
at a time, the first components have very few combination tests, while later compo­
nents have many. For the sake of brevity, the issues from chart 6.2 have been grouped
together in the following subsections.

6.2.1 Basic Loops

The first issue developed and tested were simple single entry point loops. The
test cases were first written in Java, compiled with j avac and then disassembled
with javap -c to make sure that they exercised the correct problems.

There are three types of loops, while, do-while and while (true), and three
series of tests, one each type of loop. Each series uses the chosen type of loop and
tests various configurations by ad ding statements to either the body of the loop, or

116

while (x<lO) {
}

while (x<10) {
System.out.println();

}

System.out.println();
while (x<10) {
}

while (x<10) {
}

System.out .printlnO ;

Figure 6.3: A basic set of tests for simple loops.

prefixing or suffixing the Ioop. For example, the first set of tests in the while Ioop
series deals with empty statement sequences as shown in figure 6.3 (page 117).

The while series then continues by placing the various loops inside a while Ioop.
Figure 6.4 (page 117) shows a while in while nesting.

while (x<10) {
while (y<10) {
}

}

while (x<10) {

}

while (y<10) {
System.out.println();

}

while (x<10) {
System.out.println();
while (y<10) {
}

}

while (x<10) {

}

while (y<10) {
}

System.out.println();

Figure 6.4: A basic set of while in while tests.

AIl these code snippets will pro duce differing control fiow graphs. The control fiow
graphs for the examples in figure 6.4 are given in figure 6.5 (page 118). This illustrates
that even though the original code can look simple and seem to change little, there
can be profound differences in the control fiow graph that the restructurer has to
work on. For this reason, we feH it would important to try to be as thorough as
possible in testing simple combinations of loops.

These tests were then extended to exercise many of the variants of different types
of loops nesting each other. Unfortunately, the total number of tests needed to
rigorously explore the number of possible Ioop combinations increases exponentially

117

1

13
B

o o

Figure 6.5: Control fiow graphs for figure 6.4.

with the 100p nesting level. We therefore decided that a hand coded set of tests
consisting a complete set of simple tests and a random sample of complex cases
would be sufficient.

Altogether, twenty two tests were performed on various configurations of simple
loops. At this time simple loops have yielded perfect completion, correctness, and
recompilability results. Although it is possible to contrive examples that will perform
otherwise, on the tests we ran, Dava has always matched the original code in its
selection of 100p types.

6.2.2 Multi-entry point Loops

Multi-entry point loops are not directly restructured. Instead, Dava converts every
multi-entry point loop into a single entry point version and passes the task on to the
single entry point restructurer. The simplest multi-entry point 100p is shown in figure
6.6.

The issue, then, is the correct insertion of new statements and redirection of
control fiow. Special attention has to be given to make sure that the new statements
are put in the appropriate areas of protection. Since we are not concerned with how
the resultant loops are restructured, but only with how the transform from multi­
entry point to single entry point is made, we made up only four test cases. The test
cases here were hand coded in Jimple and fed into Soot to be assembled into class
files. These classes exercised four different combinations of exception handling in the
entry points and al! exhibited perfect completion, correctness, and recompilability. A

118

Figure 6.6: Control flow graph of a simple multi-entry point loop.

fifth "fun" example was tested as shown in figure 6.7 and was correctly decompiled.

Figure 6.7: A "fun" multi-entry point loop.

While the output from this "fun" example is correct, it was still difficult to un­
derstand. This is reasonable given the highly complex structure of this example. In
contrast, the four simple tests, are quite understandable. My feeling on the overall
performance of the multi-entry point loop strategy in Dava is that it is excellent for
the difficulty of the problem.

It should also be noted that Jimple was an ide al language to build these test cases

119

in, as it provides simple statements without the complexity of stack-based code and
unstructured control fiow.

6.2.3 if, if-else, and s-wi tch Statements

The if, H-else, and switchtestingwasperformed in a similar manner to basic
loops. The test cases were written in Java, compiled with javac, and disassembled to
verify that they expressed the correct problems. As with basic loops, we created an
extensive set of statement sequence and nesting test cases, and a random sample of
more complex test cases. About twenty test cases were created altogether, and have
aIl passed completion, correctness, and recompilability.

A set of tests were then built to verify the interaction between loops and if
and swi tch statements. Again because the huge number of possible combinations
precludes exhaustive testing, we used a random sample of eight tests to ensure that
loops and if and swi tch statements work together properly. Each test had a minimal
nesting of three control flow statements, with a variety empty and non-empty bodies.
These tests have also all passed completion, correctness, and recompilability.

As with loops, aIl tests yielded decompiled source code that is equivalent to the
tests' original source.

6.2.4 Labeled Blocks, breaks and continue Statements

Labeled Blocks, break and continue statements really st art to show off the power
of Dava. The suite of tests for this section is made up of two parts, a set of eight
new test that exercise a random sample of simple basic labeled blocks and break and
continue statements, and the modification of a large number of test programs from
the previous sections.

With the inclusion of labeled blocks, breaks and continue statements we should

able to decompile any Java method that do es not contain exceptional control fiow.
After building the eight simple tests, we disassembled and randomly modified the
control flow targets from about twelve of the more complex tests from the prevlous
test suites. These twelve were then reassembled and run to check that they were still
verifiable Java bytecode.

Figure 6.8 (page 121) shows the control fiow graph for a simple test and the
resulting output code from Dava. AIl eight simple and aH twelve advanced tests have

120

(z2)

(a) Control Flow Graph

public void bar(boolean zO, boolean zi, boolean z2)
{

}

}

if (zO == taIse)
{

}

else
{

}

if (z2 != faIse)
{

}

if (zl != faIse)
{

}

System.out.println("d");

System. out. printIn("e");
return;

(b) Dava Output

Figure 6.8: Example program control fiow graph and Dava output.

yielded perfect completion, correctness, and recompilability results. The subjective
results are excellent. Wh en the simple tests were constructed, they were built with
the intention of ad ding a controlled number of labeled blocks. In this case, Dava
pro duces the exact output that was hoped for.

The advanced tests, generally produced very complex output with a high level
of nested labeled blocks. Although these restructurings were hard to understand,
they were al ways correct, complete and recompilable. Again, the complexity is to
be expected because Dava was structuring tests with intentionally "broken" control
fiow structures. After studying the output, it is not obvious how a more advanced
approach could improve on Dava's results.

6.2.5 Basic Exception Handling

Basic exception handling refers exceptions that would be generated from a struc­
tured language. This rules out most of the bizarre cases that were shown in chapter
4. The test suite here consisted of seven simple and five complex tests and was built
in Java and compiled with javac. As with other similar test suites, these tests were
also disassembled to verif'y that they exhibited correct problems.

121

public iut foo1(iut i, int j)
{

}

I.hile (true)
{ try

}

{ while (i < j)
i = j++/i;

}
catch (RuntimeException re)
{ i = 10;

continue;
}

break;

return j;

(a) Original Java method

public iut fool(int iO. iut il)
{

}

int $i2;

while (true)
{ try

}

{ if (iO < ii)

}

{ $i2 = il;
il=i1+1;
iO = $i2 / iO;
continue;

}

catch (RuntimeException $r2)
{ iO = 10;

continue;
}

return il;

(b) Dava output

Figure 6.9: Decompiled code for method foo1 ()

The simple tests covered the usual variety of empty and non-empty bodies. Note
that to compile an empty try block, one must catch only RuntimeException and its
sub-classes. The complex tests then tried to exercise exception dependent loops, the
creation of labeled blocks and various nesting problems. An interesting example is
shown in figure 6.9 (page 122) where Dava preserves the exception dependent loop,
but also makes this Ioop do double dut y for an originally nested inner Ioop. The new
structure is equivalent to the original and it is only a matter of taste as to which
expresses the desired control flow effect better.

AH twelve basic exception handling test passed completion, correctness, and re­
compilability. In general the output was quite readable, although in the advanced
tests, the decompiled versions frequently deviated from the original source code.

6.2.6 Advanced Exception Handling

Dava-stable 1S already able to handle many advanced exception problems, which
we would like to highlight at this time. For example, figure 6.10 (a) (page 123)
illustrates the control f:low graph for a method that we hand coded in Jimple and
assembled with Soot. This method had two areas of protection, one that covers

122

statements (b, c) using g as the exception handler, and one that covers statements
(c > d) using e as the handler. These are as of protection intersect but do not nest and
so cannot be directly translated into try blocks.

> ----------:>
Hannal control flow exceptional control flow

(a) Original control ftow graph

public void foo2()
{

}

System. out. println("a");
label~O:

{ try

}

{ System.out.printlnC"b");
}

catch (RuntimeException $r9)
{ System.out.printlnC"g");

break label_D;
}

try
{ System.out.printlnC"c");
}

catch (RuntimeException $r9)
{ System.out.print1nC"g");

break 1abeLD;
}

catch (Exception $r5)
{ System.out.print1nC Ue");

break labe1_D;
}

try
{ System.out.println("d");
}

catch CException $r5)
{ System.out.print1nC"e");

break 1abe1_D;
}

System. out. print1n("f U
);

return;

(b) Dava output

Figure 6.10: Control ftow graph and decompiled code for method foo20

In structuring this example, Dava successfully broke the areas of protection into
three non-intersecting areas of protection and duplicated the appropriate handler
statements. This example passes correctness and recompilability.

Dava-stable has aiso passed tests demonstrating that it is able to remove catch
clauses for which it is statically provable that the caught exception type will never

thrown. These tests were written in Jimple and assembled with Soot and followed
two patterns in their construction. First, we inserted spurious areas of protection

the method's exception table, and second we extended already existing are as of
protection. The intuition with extended areas of protection is that likely cause
nesting problems and have to be split into two or more parts. Each part, then,

123

may or may not contain the potentially thrown exception site and catch blocks are
removed accordingly. Finally, in aH tests which produced try blocks without any
catch clauses, Dava successfully removed the useless try blocks.

In future work, dava-current will be able to properly handle aH tests involving
self-targeting area of protection. Several tests are currently failing on this issue due
tobugs in implementation.

6.2.7 synchronized Statements

Both successful synchronized statement restructuring and the fall-back mecha­
nism were tested. Four tests for successful synchronized restructuring were written
in Java, again employing various combinations of empty and non-empty statement
bodies. As usua.l, these were compiled with javac and disassembled to make sure
they presented the correct patterns.

Six tests that employed the use of monitor instructions were th en written in Jimple
and assembled into class files with Soot. Two of these made unstructured use of
the instructions such that they would create unverifiable bytecode, two make use
of the instructions in a structured way that should not result in the creation of
synchronized blocks but still be verifiable bytecode, and two were structured such
that they should be rebuilt into synchronized blocks.

In an ten cases Dava created correct, recompilable source files. In the case of
the two unverifiable methods, the conversion of the monitor instructions to calls into
Dava's monitor library rendered the classes to be verifiable.

6.2.8 Class/Package Names Clashes

This problem originally showed up with an application compiled to Java bytecode
by the SmallEiffel compiler. Here the problem was that the application's name was
used both for the name of a bootstrapping class and package directory in the same
location. Dava's fix ensures that name clashes don't happen in general.

To test this problem we used the original Eiffel application, and a small application
of my own in which we tried to maximize the possible number of name clashes over a
set of four packages. Currently, the classjpackage name capitalization convention is
followed unless that causes new name clashes. The fallback is to append a tail to the

124

package. For example, package spread_illness is already lmver cased. Had there
been both classes named spread_illness and Spread_illness, then the new name
for the package would be spread_illness_pO. Name clash resolution has passed
completion, correctness, and recompilability.

6.2.9 throws Declarations

This problem originally was found in an application compiled from the ML lan­
guage. A large number of exception types were generated by the ML compiler, used
in many places but never declared in the methods' throws attributes. The solution

here was rebuild the throws information from scratch. Subsequently, we found other
benchmark programs that also contained insufficient throws method attributes.

Given that the ML compiler was generating at least twelve exception types per
application, and that our benchmark suite also contained random declaration errors,
we felt that relying on set of benchmark test programs was sufficient. The throws dec­
larations tests from the benchmark programs have aU passed completion, correctness,
and recompilability.

6.3 Benchmarks Description and Testing

The core benchmark suite for Dava is the Ashes [22] "hard" test suite, which is
a series smaU and mid-sized applications from various source languages. These are
useful because they free of restrictions on reverse engineering and present a variety
of problems from Java sourced code and from compilers other than javac. Figure
6.11 (page 126) gives a quick overview of the contents of the benchmark suite. The
following paragraphs go into detail about the results of each member of the suite.

boyer: This a toy theorem proyer written in ML and compiled with an ML to
bytecode compiler. Because the source lS a functional language the division of code
of between classes is very uneven. The driver class Main is 254 hnes which are mostly
complex chains of method calls, the main application class G is 783 hnes and contains
most of the application logic, while the remainder of the classes usually have only
about 30 to 40 lines each. Both regular and exceptional control How are generally
simple, but throws declarations are non-existent. A visual scan of the decompiled
code reveals that except for the method call chains in the driver, it lS easy to read
and understand.

125

1 Name Il Description 1 Source 1 Classes 1 Lines 1 Result 1

boyer Theorem Prover ML 34 1764 Passed
lexgen Generates lexer for SML ML 67 6857 1 Passed
illness Simulation of Illness Spread Eiffel 11 1797 Passed
lu Matrix Factorization Java 1 229 Passed
fft - Fast Fourier Transform Java 1 274 Passed
matrix Matrix inverter Java 2 353 Passed
puzzle Image Recognition Java 3 1397 Passed
decode Decryption Java 5 732 Passed
machineSim Micro-architecture Simulator Java 12 2313 Passed
javazoom Mp3 to WAV Converter Java 37 12534 Passed

Figure 6.11: Description of Core Suite.

lexgen: Lexgen is a full strength lexer generator, also written in ML and com­
piled with an ML to bytecode compiler. As with boyer, the code division among
classes is uneven. In this case the driver class Main has only 160 lines, while the main
application class G has 5576 lines. The characteristics of the decompiled code are
much like boyer and are usually easy to read.

illness: This is a small simulation of the spread of a virus through an 18 by
18 grid-based environment. It is written in Eiffel, and was compiled with an Eiffel
to bytecode compiler. It is made up of a driver class, a main application class and
9 supporting utility classes. This is one of the few benchmarks that needs to use
packages. Several interesting characteristics of the illness application are that there
are packagejclass name clashes, classjkeyword name clashes, and several instances
of problems with throws declarations. As well, the decompiled version of illness
reveals sorne inefficiencies in the SmallEiffel compiler's generated code, specifically
that unnecessary boolean evaluations are sometimes inserted.

lu: LU does simple matrix factorization and is written in Java and compiled with
javac. This is an interesting example to decompile because the matrix operations
contain many nested loops. While the original was only 162 hnes and the decompiled
version is 229 lines, the decompiled version is still quite easy to understand.

fft: FFT is an Implementation Java of a Fast Fourier Transform of some
complex double precision data. This application contains many nested loops, and
also presents special problems with the representation of the double precision data.

126

matrix: This application is a simple matrix inverter written in Java. Its most
interesting feature is that it contains a very high number of nested if statements.
White Dava does not yet aggregate if statements, matrix would be an excellent test
for this when it lS added.

puzzle: This is an image recognition program written in Java, which attempts
to fit four dimensional puzzle pieces together. It has very deep control fiow structure
nesting. vVhile the original source code has nestings up to six levels deep, the decom­
piled output does go up to seven because of the lack of if aggregation. In general,
though, the decompiled output closely mimics the original source code.

decode: This is an Implementation in Java of an algorithm for decoding en­
crypted messages using Shamir's Secret Sharing scheme. This application contains
complex use of double precision data and nested loops. Decompiled code readability
is excellent.

machineSim: This is a machine simulator program. Implemented in Java, it
simulates a micro-architecture executing an instruction stream. This application is
interesting because it is the first ex ample of a Java sourced program makes use of
both exception handling and explicit throwing. As well, there is quite a bit of complex
regular control fiow in the original source. Decompiled output was both correct and
reasonably easy to read.

javazoom: Javazoom is a Java sourced mp3 to WAV audio file format converter.
At over 12,000 Hnes this is the largest application in the core suite. It exercises many
features including packages, explicitly thrown and caught exceptions and throws

declarations. Output is generally easy to read.

The entire core set of benchmarks now passes completion, correctness, and recom­
pilablity on dava-stable.

6.4 Comparison to other Decompilers

We will now look at the selected output of four other Java decompilers. The
comparisons are meant to show where Dava is better and worse than other decom­
pilers. The four decompilers we look at are Jasmine version 1.10 [17,24], Jad ver­
sion 1.5.8 [10], vVingdis version 2.16 [30], and the SourceAgain version 1.1 online
demo [23]. Jasmine (also known as the Source Tee Java Decompiler) lS an improved
version of Mocha, probably the first publicly available decompiler. Jad is a decompiler

127

that is free for non-commercial use whose decompilation module has been integrated
several graphical user interfaces including FrontEnd Plus, Decafe Pro, DJ Java

Decompiler and Cavaj. Wingdis is a commercial product sold by \iVingSoft. Finally,
SourceAgain is a commercial Java decompiler that has a web-based demo version.

The first test we will look at lS a simple pair of nested loops with a compound
conditional on the innerloop. ~histest was written in Java and compiled with javac.
The original code and decompiled output from Dava plus the four other decompiler
are shown in figure 6.12 (page 129).

AU the decompilers give correct output. Jasmine (b) correctly finds the two for
loops and pulls the declaration of one of the variable declarations into the appropriate
loop. Apart from neglecting to put a double slash (1/) in front of the comment, and
not pulling the second variable declaration into the inner 100p, Jasmine's output is
perfecto Jad's output (c) is perfect, except for the insertion of a spurious pair of
brace brackets ({}). SourceAgain's output (d) is excellent, although it inserts extra
initializations at each variable declaration. Although correct, Dava's output (e) is
not as appealing. Three problems immediately appear: (1) Dava does not yet build
control fiow statements with aggregated expressions and has to resort to using a break
statement (2) for statements are not yet built, and (3) aIl variable declarations are
done only at the top of the method. Wingdis (f) does a little better and finds the
for statements, but seems to suffer from the same sort of deficiencies.

It is obvious that decompiler writers have put much effort into finding and re­
building idiomatic segments in the bytecode. Even though Dava is behind in this
area, chapter 5 details many algorithms that should bring Dava up to par on this
type of example. \Ve now turn our attention to more difficult tests.

The first example lS the exception dependent loop that was originally shown in
figure 6.9 (page 122). As we saw at the time, Dava did not mimic the original code,
but did give a correct, readable decompilation. Figure 6.13 (page 130) shows the
output of the other four decompilers.

Here, the key issues are that we have an unconditionalloop that only iterates upon
the throwing of an exception. Unfortunately, none of the others correctly decompiled
this. Jasmine tried to create a complex for loop, but failed to find the loop body.
It also issued dead code and a meaningless "pop" statement. SourceAgain dropped
outer Ioop and the exception entirely. Jad did the best of the lot, only missing a
target for its break statement, and still producing an uncompilable comment. Lastly,
\Vingdis seems to have given up on the control fiow structure entirely and has emitted

128

public int foo3(int x) {

}

for (int i=O; i<10; i++)
for (int j=l; (j<i) &&

(j%3 != 0); j+=i)
x += goo(x);

return x;

(a) Original Java

public int foo3(int i)
{

}

for(int j = 0; j < 10; j++)
{

}

for(int k = 1; k < j &&
k % 3 != 0; k += j)

i += goo(i);

return i;

(c) Jad

public int foo3(int iO)
{ int il, i2;

il = 0;

while (il < 10)
{ i2 = 1;

while (i2 < il)

{ if (i2 % 3 != 0)

}

{ iO iO + this.gooeiO);
i2 i2 + il;

}

else
{ break;
}

il i1+1;

public int foo3(int i)
{

Declarators could not be incorporated in
for statement

}

int k;
for (int j

for (k =

i +=

0; j <
1· , k <

k %
goo(i);

10; j++)

j&&
3 != 0; k += j)

return i·

(b) Jasmine

public int foo3(int i)
{

}

int j = 0;

fore j = 0; j < 10; ++j
{

}

int k = 0;

fore k = 1; k < j &&
k % 3 != 0; k +=

i += goo(i);

return i;

(d) SourceAgain

public int foo3(int intl)
{

int int3;
int int2;
for (int2= 0; «(byte)int2) < 10); int2++)
{

}

for (int3= 1; (int3 < int2);

{

}

int3= int3 + int2)

if (eint3 % 3) == 0)
{

break;
}

int1= int1 + gooeint1);

} return inti;
}

return iO;
}

(e) Dava (f) Wingdis

Figure 6.12: Original and decompiled code for method foo30

129

public int fool(int i, int j)
{

}

RuntimeException e;
for (i = j++ / i; i < j; i = j++ 1 i)

1* null body *1
return j;
pop e
i = 10;

(a) Jasmine

public int fool(int i, int j)
{

}

while(true)
try
{ while(i < j)

i = j++ 1 i;
break MISSING_BLOCK_LABEL_25;

}

catch(RuntimeException runtimeexception)
{ i = 10;
}

return j;

(c) Jad

public int fooi(int i, int j)
{

}

t,hilee i < j)
i = j++ 1 i;

return j;

(b) SourceAgain

public int fool(int intl, int int2)
{

Il WingDis cannot analyze control flow
Il of this method fully

BD:
goto B3;

Bl :
try {

goto B3;
B2:

int1= int2++ / inti;
B3:

if (inti < int2)goto B2;
}

B4:
goto B8;

B5:
catch (RuntimeException null)

{

B6:
inti= 10;

B7:
goto B3;

}
(d) Wingdis

Figure 6.13: Decompiled code for method foo1 0

meaningless goto statements instead.

It should be noted that this example was written in Java, compiled with javac
and no modifications were made to the bytecode before decompilation. If these de­
compilers are meant to target only j avac sourced code, they still have a ways to go

their abilities to handle structured control flow. We now see how they perform on
class files that were not generated by j avac.

The next example is the advanced exception test that was shown in figure 6.10
(page 123). Again, we saw that even in its incomplete state, Dava is able to correctly

130

restructure and decompile this example. Figure 6.14 (page 131) shows how the other
decompilers fared on this test.

public void foo2()
{

}

System.out.println("a");
System.out.printlnC"b");
try
{ System.out.printlnC"c");

System. out. printlnC"d") ;
}

Il Misplaced declaration of an exception variable
catch(D this)
{ System.out.printlnC"e");
}

System.out.println("g");
returni
this;
System.out.printlnC"f");
returnj

(a) Jad

public void foo2()
{

}

System.out.println("a");
try
{ System.out.printlnC"b");

}

try
{ System.out.printlnC"c");

System.out.printlnC"d");
}
catch (Exception eO)
{ System. out .println("e");
}

catch (RuntimeException eO)
{ System.out.printlnC"g");
}

(c) Wingdis

public void foo2()
{

}

SYstem. out .p:rintlnC"a") ;
System. out .printlnC"b") ;
System.out.printlnC"c");
System. out. printlnC"d");
pop this
System.out.printlnC"e U

);

System.out.println("f");
return;
pop this
System.out.println("g");

(b) Jasmine

public void foo2()
{ System.out.println(
label_9:

na");

}

{ try

}

{ System. out .println("b");
try

}

{ System.out.printlnC
break label_9;

}

catch(Exception exception1
{ System.out.println("e");
}

catch(RuntimeException runtimeexceptionl
{ System. out. println("g");
}

System.out.println("f");
return;

System. out. println("d");

(d) SourceAgain

Figure 6.14: Decompiled code for method foo2 ()

.lad pro duces dead code, a meaningless this statement, and only one try block,
even though there are two entries in the method's exception table. Jasmine, pro duces
dead code, a pop this statement, and no areas of protection. \Vingdis produces a
recompilable source, but does not capture the semantics of the exception handling.
For example statement e is under protection, sueh that if a RuntimeException is

131

thrown, control will be transfered to statement g, which is clearly not specified in the
method. Likewise SourceAgain pro duces a recompilable source file, but also fails to
capture the semantics of the original method.

From these comparisons, we can conclude that although other decompilers may
be more advanced in their abilities to handle common and simple control flow in a
method, theyare notable to handle moreadvanced control fiow, orpotentially the
output from optimizers and compilers other than javac.

6.5 Conclusions

In this chapter, we have seen three ways of evaluating Dava; component testing,
benchmark testing, and comparison to other Java decompilers. In component testing
we established that the implemented feature really solved the problems they were
designed to work on, in benchmark testing we looked at the decompilation of a num­
ber of applications "in the wild" to gauge if our decompiling feature set in Dava is
reasonable, and in comparison, we see what limits the competition has accepted in
trying to decompile difficult examples.

Dava was split into two versions for testing, dava-current and dava-stable. Dava­
current was used for testing new components. Once we were satisfied that the new
component was functioning properly and did solve the problem it was designed for,
the component was moved to dava-stable. Dava-stable was repeatedly tested on a
core set of benchmark programs. If a benchmark failed in completion, correctness, or
recompilability, a new component to address the appropriate problem was designed
for dava-eurrent. This was repeated until the core benehmark set passed completely.
Other benchmark applications were also used with an emphasis on bytecode from
sources other than javac.

Dava currently out-performs most other leading Java decompilers in its ability
to handle the widest range of verifiable bytecode. Dava is currently weak in its
presentation of idioms, but this lS an implementation issue rather than an inherent
disability. \tVith further implementation, Dava should be able to overcome these
problems and pro duce the highest quality output possible.

132

Chapter 7

Conclusions

This thesis has presented new algorithms for decompiling Java bytecode into Java
source code. The approach can be tuned for various goals. If the goal is the direct
representation of bytecode in source, certain advanced transforms can be turned off,
at the expense of potentially not being able to decompile as wide a variety of bytecode
as would be otherwise possible. If, however, an aIl out attempt at reverse engineering
is the goal, the full set transforms can be turned on to represent a truly wide range
of bytecode configurations in pure Java source.

Key to Dava's approach is a new data structure called the Structure Encapsulation
Tree. This data structure allowed us to put together the control flow structures in
any order. We therefore were able to build the basic control flow structures in an
order according to the difficulties involved in recognizing the types of structures. The
result is a robust suite of algorithms that find a full structuring for any control flow
graph. We then looked at each of the structure finding sub-algorithms individually
and proved why they work.

Once we have finished basic structuring, we looked at more advanced issues, in­
cluding syntactic sugaring, and issues for creating recompilable Java applications.

Finally, we tested the decompiler. There were three types of tests, component
tests, benchmark tests, and comparison to other decompilers. Dava has passed the
high majority its component and benchmark tests and has demonstrated with these
that it is stable and capable of handling a wide range of input classes. Specifically,
we tested applications sourced from Java, Ada, Haskell, Eiffel, and ML which ranged
from a few hundred Hnes of decompiled code to several thousand. Lastly, we compared
Dava's output to that of four other current Java decompilers and found that although

133

Dava lags temporarily in its abilities to recognize certain simple programmer idioms,
it excels in its ability to correctly decompile a wider range of verifiable bytecode.

The approach presented in this thesis seems to be more robust than any other
decompiler available today. With continued implementation of the idiom handling

sub-algorithms and debugging of the advanced exception handling, Dava could be­
come the premiere Java decompiler available.

134

ibliography

[1] Zahira Ammarguellat. A control-fiow normalization algorithm and its complex­
ity. IEEE Transactions on Software Engineering, 18(3):237-250, March 1992.

[2] Brenda S. Baker. An algorithm for structuring fiowgraphs. Journal of the Asso­

ciation for Computing Machinery, pages 98-120, January 1977.

[3] Cristina Cifuentes. Rever'se Compilation Techniques. PhD thesis, Queensland
University of Technology, July 1994.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill and MIT Press, 1990.

[5] Ana M. Erosa. A goto-elimination method and its implementation for the Mc­
CAT C compiler. Master's thesis, School of Computer Science, McGill University,
May 1995.

[6] Ana M. Erosa and Laurie J. Hendren. Taming control fiow: A structured ap­
proach to eliminating goto statements. In Proceedings of the 1 g94 International

Conference on Computer Languages, pages 229-240, May 1994.

[7] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David
Tarditi. Marmot: an optimizing compiler for Java. Microsoft technical report,
Microsoft Research, October 1998.

[8] Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient in­
ference of static types for Java bytecode. In Static Analysis Symposium 2000,

Lecture Notes Computer Science, pages 199-219, Santa Barbara, June 2000.

[9] Gosling, B. Joy, and G. Steele. The Java Language Spec~fication. Addison-
Wesley, 1997.

135

[10] Jad - the fast Java Decompiler
. lJFtL: http://www.geocities.com/SiliconValley/Bridge/8617/jad.html.

[11] Sun Microsystems Java Homepage. lJRL: http://java. sun. com.

[12] Patrick Lam. Of Graphs and Coffi Grounds: Decompiling Java. Technical report,
School of Computer Science, McGill lJniversity, September 1998.

[13] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-·Wesley, 1996.

[14] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Ad­
dison-Wesley, Reading, MA, lJSA, second edition, 1999.

[15] Jerome Miecznikowski and Laurie Hendren. Decompiling Java using Staged En­
capsulation. In The Working Conference on Reverse Engineering, pages 368~37 4,
October 2001.

[16] Jerome Miecznikowski and Laurie Hendren. Decompiling Java Bytecodes: Prob­
lems, Traps and Pitfalls. In CC 2002 - International Confer-ence on Compiler
Construction, April 2002.

[17] Mocha, the Java Decompiler. lJRL: http://www.brouhaha.com;-eric/ computers/

/mocha.html.

[18] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[19] Todd A. Proebsting and Scott A. VVatterson. Krakatoa: Decompilation in Java
(Does bytecode reveal source?). In 3rd USENIX Conference on Object-Oriented
Technologies and Systems (COOTS'97), pages 185~197, June 1997.

[20] Lyle Ramshaw. Eliminating goto's while preserving program structure. Journal
of the Association for Computing Machinery, 35(4):893~920, October 1988.

[21J The Sable Research Group. lJFtL: http://www.sable.mcgill.ca.

[22] Soot - a Java Optimization Framework. lJFtL: http://w1iJw.sable.mcgill.ca/soot/.

[23] Ahpah Software, SourceAgain Java Decompiler. lJRL: http://www.ahpah.com.

[24] SourceTec Java Decompiler. http://www.srctec.comjdecornpilerj.

136

[25] Sun Microsystems. URL: http://www.sun.com.

[26J Raja Valée-Rai. Soot: A Java bytecode optimization framework. Master's thesis,
School of Computer Science, McGill University, July 2000.

[27] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patriek Lam, Patrice Pom­
inville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot frame­
work: ls it feasible? In David A. \Vatt, editor, Compiler Construction, 9th
International Conference, volume 1781 of Lecture Notes in Computer Science,
pages 18-34, Berlin, Germany, March 2000. Springer.

[28J Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying Java bytecode for
analyses and transformations. Sable Technical Report 1998-4, Sable Research
Group, McGill University, July 1998.

[29] T. Kasami W. W. Peterson and N. Tokura. On the capabilities of while, repeat
and exit statements. Communications of the A CM, pages 503-512, August 1973.

[30] WingDis - A Java Decompiler. URL: http://www.wingsoft.com/wingdis.html.

137

