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Abstract

The major objective of this thesis is to investigate efficient all-digital symbol-timing
recovery for burst modems. The study consists of new symbol-timing estimation
algorithm and new optimal interpolation filters. The proposed feed-forward STR
algorithms are optimal in the sense of maximum-likelihood estimation. Estimations are
very accurate and converge rapidly within a preamble length as short as 4 symbols,
suitable to burst-mode modems. In addition, they can operate at a sampling rate as low as
twice the symbol rate. The proposed synthesis method of the optimal interpolation filters
is optimal in the sense of minimum mean-square error jointly in time, and frequency
domain, and symbol-timing estimation error.

Mathematical derivations, analysis, simulations, and implemented structures of the
new algorithms are presented. Oversampling techniques combined with interpolation are
studied to achieve better accuracy with a cost in increasing implementation complexity

and lowering operational clock rate.



Avant-propos

L’objectif principal de cette thése est I’étude de systémes enti¢rement numériques de
récupération du temps de symbole (RTS) pour des modems transmettant par salves.
L’étude consiste a développer de nouveaux algorithmes d’estimation du temps de
symbole et de nouveaux filtres optimaux d’interpolation. Les algorithmes RTS a action
directe proposés sont optimaux au sens de I’estimation par le critére du maximum de
vraisemblance. Les estimations sont trés précises et convergent rapidement & I’intérieur
d’une longueur de préfixe aussi courte que 4 symboles, convenant & des modems
transmettant par salves. De plus, ils peuvent opérer & un taux d’échantillonnage aussi bas
que deux fois le taux de symbole. La méthode de synthése proposée pour les filtres
optimaux d’interpolation est optimale au sens du minimum de la moyenne de I’erreur
quadratique conjointement en temps, fréquence et erreur d’estimation du temps de
symbole.

Les développements mathématiques, ’analyse, les simulations et les structures
réalisées des nouveaux algorithmes sont présentés. Des techniques de sur-
échantillonnages combinées a des techniques d’interpolation sont étudiées afin d’obtenir
une meilleure précision au prix d’une complexité de réalisation accrue et d’une baisse du

taux d’horloge opérationnel.
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Chapter 1. Introduction

The work of the thesis is concerned with all-digital symbol-timing recovery (STR)
techniques for burst-mode receivers. We first discuss the burst-mode communications in
Section 1.1. The discussion is intended as an introduction to get the understanding of the
need of such communications. Section 1.2 presents a brief survey of symbol-timing
recovery techniques. Section 1.3 states the motivation for this work. Contents of each

chapter and our contributions are summarized in Sections 1.4 and 1.5 respectively.

1.1 Burst-Mode Communication

Early modems for data communications were first to establish reliable connections
between two terminals using a point-to-point topology. However, user links are not
always occupied all the time. For example, an Internet user usually spends most of his
connection time reading a Web page or typing an email; and thus during this time, the
modems at both ends of the link must maintain the connection by exchanging unuseful
data which will be discarded at the receiver. Thus this results in wastes of CPU operation,
transmission power and link bandwidth. As the number of subscribers has grown rapidly
in these days, and due to the limitation of bandwidth availability, sharing bandwidth
among users or multiple access adds another issue into the old access technology. It turns
out that the continuous access mode cannot provide cost-effective connections. We
require another specialized kind of modem, a burst modem, that can transmit and receive
modulated data packets in short bursts.

Burst modems are recently required for use in time division multiple access (TDMA)
systems [59, 61]. In these systems, multiple users require an essentially continuous

1



CHAPTER 1. INTRODUCTION 2

connection on a common channel, but the connection is provided by assigning each user
a periodic time slot to transmit on a channel whose bandwidth is substantially greater
than that required by any single user. A typical burst consists of preamble (containing
carrier recovery, symbol-timing recovery training symbol sequences and some other
system specific symbols) followed by message portion (see Figure 1.1). It can be seen
that in order to increase the message data transfer efficiency of the system, the length of
the training section (which is directly proportional to acquisition time) would be as short
as possible.

Burst modems are commonly used today in applications such as the GSM, IS-136,
and personal handy-phone system (PHS) cell phones; multimedia cable network system
(MCNS) and digital audio visual council (DAVIC) cable modems; very small aperture
terminals (VSAT); packet data networks like cellular digital packet data (CDPD), Ardis,
Mobitex, and Reflex; and in local multipoint distribution system (LMDS) networks [61].

The design trade-offs and resulting architectures are different in each of these

applications.
| One TDMA P ‘(’:;’ P One TDMA |
[ Burst | data) I Burst |
CR STR . CR STR .
Training | Training | 94 DATA Training | Training | 9% DATA
Symbols | Symbols Symbols | Symbols

Fig. 1.1: Time Division Multiple Access (TDMA) Bursts

1.2 Timing Synchronization for All-Digital Receiver

This section presents a brief survey of symbol-timing recovery (STR) algorithms and
techniques.

We first consider the implementation aspects. Figure 1.2 shows three possible
implementations of the existing receivers. In the analog approach (Figure 1.2-a), timing

information derived from an analog circuitry is used to control the sampling clock. In the
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hybrid approach (Figure 1.2-b), timing parameter is obtained from the digital processor
and used to adjust the behavior of the sampling clock. The third approach first converts
the signal from an analog to a digital format, and all signal processing are done in the
digital domain. With digital signal processing (DSP), highly complex algorithms can be
implemented for better performance and better accuracy. Reproducibility, flexibility,
independence of temperature and aging are the other benefits offered by DSP. From now
on, we will only consider the all-digital approach (Figure 1.2-c).

The vast number of STR estimators can be broadly categorized as either feedforward
(FF) or feedback (FB) schemes. Feedforward (FF), or open-loop, estimators possess no
feed-back and consequently, tend to be very well-suited for burst-mode communications.
Open loop structures possess very short acquisition times and avoid hang-up
complication faced by their close-loop counterparts. Hang-up is a phenomenon in FB
topologies which causes them to drift aimlessly for significant periods of time before
converging to a stable operating point. Occasionally, this equilibrium state differs from
the true steady-state point giving rise to false lock conditions. The leading drawback of
all FF estimators, however lies in their inability to track time-varying offsets, seeing how
each estimate remains fixed until the FF algorithm is engaged anew. Closed-loop systems
generally experience long acquisition times and may suffer from hang-up, but are
extremely efficient at tracking time-varying parameters. Continuous and long burst-mode
systems usually employ feedback schemes.

Parameters can be estimated independently or dependently. Joint estimation involves
the optimization of the ML or maximum-a posteriori (MAP) of timing parameter and
carrier offset parameter. In general, joint estimators are more complex, but perform better
than independent estimators.

The feedforward estimation approach can be implemented with one of the following
three types:

1 - Data aided (DA) methods exploit the knowledge of a known pattern (called a
preamble) to aid timing recovery. Because preambles contain no useful user information,
they decrease the overall system capacity and as a result, they should be kept as short as

possible. Works in [44-48] employ the DA techniques.
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2 - Decision-directed (DD) methods resemble DA techniques except that the symbol
decisions replace the preamble. Under high signal-to-noise ratio (SNR) conditions, data
performance is quite good. However, at low SNR, decision errors occur frequently, and
the performance is degraded. DD techniques proposed by Gardner [58] and Mueller and
Muller [57] have been used in many DSL (digital subscriber loop) applications.

3 - Non-data-aided or non-decision aided (NDA) methods require no preamble and
use the data itself for estimation. NDA methods average the effects of the modulation
sequence to maximize the effects of the ML function. Some works using these techniques
are presented in [41, 42, and 49].

Two objectives of an all-digital receiver (Figure 1.2-c) are:

1 - Determination of the symbol timing instant. Since the output of the demodulator
must be sampled periodically at the symbol rate, at the precise sampling time instants in
order to correctly recover the transmitted data, the symbol clock must be successfully
obtained at the receiver. The works in [41], [46], and [47] show fast acquisition can be
achieved at high sampling rates (4 or 8). Vesma et al. ([44], [45]) and Zhu et al. [43]
show that timing information can be estimated at a sampling rate as low as twice the
symbol rate, but with the cost in high complexity and longer acquisition time (from 32 to
64 symbols).

2 - Determination of the value of the signal at the correct instant. Since the receiver
samples the received signal at constant intervals regardless to the actual symbol clock, the
value of the signal at the correct symbol instants is not available between the discrete-
time samples. This problem can be solved by using interpolation. The idea of
interpolation is to form an approximating continuous-time signal with the aid of the
discrete-time samples, and then to evaluate the value of this signal at the desired time
instant. The usual question when designing an optimal filter can be stated as, “what are
the feasible considerations and how can we carry out the optimization process?” Many
published works have extensively discussed the designs of the optimal interpolation
filters in varied contexts. In general, they can be divided into three different classes. The
first class of interpolator design consists of the time-domain methods where

approximating polynomial is fitted to the discrete-time samples. Conventional Lagrange
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and B-spline interpolations have been used [2 to 4, 51]. The advantage of these methods
is that the filter coefficients for the Farrow structure are easily available in the closed
form. In the second class, the coefficients of the Farrow structure are optimized directly
in the frequency domain [7, 9, and 11]. These approaches are more flexible, and
interpolation filters with better filtering and frequency-selective characteristics can be
obtained. However, while they give the optimizations in the contexts of digital signal
processing, they lack of considerations of other estimations in the communication
systems. On the other hand, the third class of filter design was proposed mainly for
considerations of estimations in the communication systems [1, 18, 19, and 39]. These
methods have the drawback that they do not allow separate optimization such as data

filtering which is necessary within the system.
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Fig. 1.3: Classification of Estimation Techniques

1.3 Motivation for Research

The present study examines the efficient and low-complexity all-digital symbol-
timing recovery techniques with a very short acquisition time suitable for burst-mode
PAM and QAM systems. In addition, the effects of interpolation filters to the algorithm
accuracy are also investigated. Optimal interpolation filters are desired to provide better
signal processing while they still remain simple structures for efficient implementations.
Therefore, a new and efficient synthesis of optimal interpolation filters are proposed and

examined.
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1.4 Outline of the Thesis

The outline of the thesis is summarized as follows.

Chapter 2 explains the concept and the structure of the interpolation filters for all-
digital receivers. Detailed background on interpolation filters is given and simplification
of filter structure is studied. A consequent low-complexity hardware implementation can
be obtained using the modified Farrow structure for the second-degree symmetric
interpolator. It is proven that only M/2 coefficients are actually required, compared with
3M coefficients in the original structure.

Chapter 3 develops the theoretical backgrounds on new, all-digital symbol timing
recovery techniques that employ interpolation filters. The symbol-timing estimation
process, which is, in most of the cases, based on the maximum-likelihood (ML) concept,
will be revised in order to improve the interpolation process. Both performance and
complexity can be simultaneously considered in a joint signal detection and timing
estimation process.

Chapter 4 discusses interpolation filters for symbol timing recovery (STR). The need
for an interpolation filter is explained. It is shown that recent conventional interpolation
filters are either not optimal, or suboptimal but not able to be implemented in on-line
computation manners. A new interpolation filter methodology for minimum mean-square
error (MMSE) is introduced to overcome the problems of these filters. Simulation results
are included to show the performance gain.

Chapter 5 analyses the statistical performance of all-digital symbol timing recovery

techniques at the sampling rate 7,/ =2. Tracking performance for the synchronization

system employing several interpolation filters are studied. Simulation results are included
to show the accuracy of the theory and the analysis.

Chapter 6 generalizes the proposed timing estimation for PAM and QAM systems at
higher sampling rates. The proposed feed-forward STR techniques employing
interpolation filters can be applied for higher sampling rate to achieve better accuracy,

with the trade-off in more hardware complexity and possible lower operated clock speed.
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Results on performance versus sampling rate and preamble length can be used in design

trade-off and selection of an appropriate scheme for given design requirements.

1.5 Contributions of the Thesis

The contributions of this work can be summarized as follows.

Derivation of the efficient maximum-likelihood feed-forward timing estimation
algorithm for PAM and QAM systems for Ty, / T = 2 and for high sampling rate
(Chapters 3 and 6).

Derivation of the new optimum interpolation filter that minimizes the MSE of the
timing estimation, and the MSE of the recovered signals in time and frequency
domain (Chapter 4).

Derivation of the modified Farrow structure to reduce the hardware complexity
(Chapter 2).

Development and performance analysis of ML-FF STR techniques for PAM and
QAM systems for T, / T =2 and for high sampling rates (Chapters 5 and 6).



Chapter 2. Interpolation Filters

This chapter outlines the theoretical backgrounds and presents the efficient structures of
the interpolation filters. Section 2.1 briefly presents the sampling issues and briefly
reviews the reconstruction, interpolation and resampling processes in an all-digital
receiver. In Section 2.2, the general structure of the polynomial-based interpolation filter
is presented. Section 2.3 derives a simplified structure for symmetric polynomial-based
interpolation filters suitable for low-complexity implementation. Based on the introduced
structure, the complexity of different arrangements for interpolation and data filters is
discussed in Section 2.4. The frequency responses of the interpolation filters are derived

in Section 2.5. Section 2.6 provides concluding remarks.

2.1 Signal Reconstruction, Interpolation and Resam-

pling

A modulated signal is normally transmitted over a communications medium in
analog (continuous) format. In all-digital communication receivers (see Figure 1.2), the
received signal from the analog front-end including antenna, RF-to-IF downconversion in
case of wireless communications, is sampled and converted into a digital format by the
analog-to-digital converter (ADC). In many applications requiring flexible receiver and
for low jitter, the sampling clock is generated by a high-precision, low-jitter oscillator.
The sampling clock frequency is fixed and may not be in synchronization with the
transmitted symbol frequency and phase. The received digital signal is first processed at

the sampling rate. In parallel, the STR uses received samples to derive the symbol clock

10
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frequency and phase, and then performs both timing and amplitude adjustment to produce
received signals re-sampled at the correct symbol frequency and time. Amplitude
adjustment is required because the sample at the correct symbol timing instant is not
available. This can be done by interpolation based on the available samples and the
estimated symbol timing instant.

Figure 2.1 shows an example of a received signal and the relation between 7 and

Tsym- The continuous curve depicts the analog received signal x(¢) before sampling. The

sampled values at the rate 1/7; are denoted by crosses (X). The desired samples at the
symbol rate are shown by the small black circles. It is worth mentioning that the desired
samples are not available at the sampler output and we want to reconstruct them from the
available samples denoted by crosses (X). As an example, in Figure 2.1, the sampling rate

1/T is about 1.5 times the symbol rate 1/,

Available Samples Desired Samples
Ve - > ~ / =
/ ~
oK gx————- % =~
(m-2)T, (m-1)TS\\ mT, (me)T, 7 (m+2)T, \\

A

\ A /
B Ts - \ [T B /+1Ts :
D— ! ; " ; \ N
\\ I, \\ Time
\ ! \
/ \

(k-1)T, \ kT, / (k+1)T. \

sym sym sym \

\\*,.——-—\ - X

Fig. 2.1: Sample timing relations

The sampled signal x () at rate 1/7 can be represented by

[ee]

x 0 =x() T 8(t-nT) = Y x(nT)8(t—nT,) @.1)

n=-—o n=-w
where x(¢) is the analog signal before sampling and x(n7T) are samples denoted by crosses

(X).

Derivation of the desired samples at the symbol rate 1/7,,, can be done by
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reconstructing the analog signal x(¢) and then re-sampling the analog signal at rate 1/7,,,.

It is well known that the reconstruction of the analog signal x(¢f) can be realized by

filtering the sampled signal xf) with a bandlimiting interpolation filter, 4/¢), and the
bandwidth of /,(f) must be larger than or equal to that of the signal x(¢).

Consider the impulse response of the interpolation filter, 4(¢), defined in an interval [-
IT,, IT,] where I is an integer and can be infinity, i.e., Af(f) = 0 for all ¢ outside of this

interval. The filtered signal can be represented as

t+IT,
yny = [ x0hft-T)dt
t=t—1TS
o (+1T,
= Y x(nT) [ h(t-1)8(t—nT)dt
n= -0 T=t-1IT,
/T +1
= > x(nT)h(t—nT) 2.2)
nzt/Ts—I
t+IT,
where, I S(T—nTs)dT - { 1 f—ITsSnTSSt+[TS
T=t-1IT, 0 otherwise

As we can observe from Figure 2.1, the interpolated output sample y(kTy,,) is

obtained by sampling y(?) at ¢ = kT, = (m+p)T. Therefore,

m+y, +1

YAT,) = Y x(Th((m+p—m)T) 2.3)

nzm+p, -1

By introducing i=m-n, —p, —I<i<-p, +[ or -[<i<]-1 for 0<p, <1, and
Equation (2.3) can be simplified as

-1
V(T yy) = 30 x(m=DT)h (K +DTy) (2.4)
i=-I

The above equation indicates that the desired sample y(kT,,) can be derived by
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passing the sequence {x(mT)} through an adaptive FIR filter hf{mT,), and then
resampling at the symbol rate 7,,,. It also points out that at the time ¢ = mT, the
coefficients of the adaptive filter 4 (m) will be extracted from the interpolation function
hy(t) at t = ()T

For reconstruction without distortion, y(#)=x(¢), the ideal interpolation filter has a
simple rectangular frequency response, corresponding to the impulse response
hf(t)=sinc(t/Ty). Figure 2.2 shows the plots of h{t) = sinc(¢/T;) at different timing fraction.
However, this function is not practically realizable. Its time-truncated version (i.e., with a
finite value of 1), is proved to be the optimal function in terms of minimum mean square
error (MMSE) [57].

For resampling, we need the values of hft) at f = (u+i)T; where (u;+i) is a variable
representing the desired resampling instant to be produced by the symbol timing
recovery. It is desired to find a low-complexity digital signal processing (DSP) structure
to generate hff) as a function of (u;+i) and to perform the interpolation/resampling

process. This is the subject to be addressed in the following sections.
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Fig. 2.2: Impulse Response of the sinc() Interpolator

2.2 Polynomial-based Interpolation Filters

Consider A/(f) be approximated by a degree-L polynomial function of ¢ = (u,+i)T, for

its simplicity, and well-developed algebraic structure,

L
h((G+upT) = X cidpy (2.5)
(=0
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Substitute into (2.4), the desired sample at kT, is

I-1 L
Y(kT ) = 3 x((m=DTg) ¥ c)(Duf (2.6)
A =0
= Y pub Y x((m-DT)e i)
17,0 i=-I
= 3 wifm)
I=0
where
-1
fl(m) = Z x((m—i)TS)cl(z’) = cl(st)®x(st) 2.7
i=—1

The formula shows that since f(m) is a result of the convolution, it can be realized as

an output of a FIR filter as shown in Figure 2.3.

The result is then decomposed in further step as follows
L
Y(kT,) = 3 pifi(m) (2.8)
[=0

= (AU g+ m)p () + )y + o (m)

The above equation is expressed in a Horner’s relation, and can be realized by the
simple DSP hardware structure initially devised by Farrow [2], as shown in Figure 2.4.

The Farrow realization, in general, requires M(L+1) coefficients, thus needs M(L+1)
multiplications. In the following section, a simplified version for symmetric interpolation

filter is derived.
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x[m-1+1]

x[m+ﬂ‘ x[m+l-ﬂ‘ o P x[m]

A
\'
A

Fig. 2.3: FIR filter at the /-th branch

x[(m+)T ]
v v Y
o o | o
o T o
OO WG

Wttt

Fig. 2.4: Original Functional Diagram of the Farrow Structure

2.3 Symmetric Polynomial-based Interpolators

Consider an interpolation filter with an even-symmetric and real-valued impulse

responsel, h(t),

! From now on, the notation h(t) will replace A/¢) for simplicity.
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L
h(w) = h(k+WT) = Y e (bn’
=0

For h(kT,) = 8(KT,),
cok) = (k) (2:9)
ZIL: 0cl(k) =8(k+1)
Hence,

¢, (0) +¢,(0)+1 = 0 (2.10)
e (-1) +ey(-1) = 1

c1(k) + cy(k) =0, V(k#-1,0)
or equivalently
ci (k) +cy(k) = 8(k+1)-38(k) (2.11)
Due to the even symmetry,
i) = A+ 1) = h(— k=) = h(~k=1+1=p) = h_,_;(1-p), Y(k p)
Sh e’ = TE e k=1)(1 -w)', Yk 1)

For a second degree polynomial, three points determine the entire curve. We already

know the value A, (p) = 0 for p = 0 and 1. The third point will be corresponding to the

value p = 1/2. For this, we have

>h Oc,(k)o.S’ = b efk- 10.5' (2.12)

Using the relationship (2.11), the condition (2.12) implies
cy(k) = cy(-k—1),Vk (2.13)
c (k) = ci(-k-1),Y(k=0,1) (2.14)

Equations (2.11), (2.13), and (2.14) indicate that we only need to determine cy(k),

k=0,..., (M/2-1). Thus, only M/2 unknowns are required to realize this special Farrow

interpolator filter, and only A/2 multipliers are needed in hardware implementations.
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Furthermore, the interpolation filter response (2.5) can be rewritten as
h(k+p) = zlcl(k)pl = cy(k) + ¢, (B + cy()p” (2.15)
= 8(k) + (3(k+ 1)~ (k) — ¢, () + e, (k)
= 3(k) + (S(k+ 1) = 80N + eo(B)(n” — )
Equation (2.7) can be simplified as
folm) = x(m) (2.16)
M72-1
fitm) = % x(m—k)c,(k) (2.17)
k=—-M’2
M72-1
= > x(m-k)(8(k+1)-3(k) - cy(k))
k=-M’2
= x(m+ 1) —x(m)—f,(m)
and
M72 -1
fo(m) = % x(m—k)c,(k) (2.18)
k=-M’2
M72-1 -1
= 2 xm-Key(+ 3 x(m—k)ey(k)
k=0 k=-M/2
M72 -1
= > (x(m—k)tx(m+k+1))c,(k)
k=0

Therefore the Farrow structure can be modified as shown in Figure 2.5 with only M/2

coefficients.
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x(m+l)

m+f m-i+1

Fig. 2.5: Modified, Low-Complex Farrow Structure for L=2

2.4 Arrangement of Interpolation and Detection Filters

and Complexity Issues

A receiver always includes filtering to reject out-of-band, unwanted noise and
interference. For example, in a linear bandlimited AWGN channel, it is well known that
the root raised cosine filter as an optimum detection filter [60]. Figure 2.6 illustrates the
possible arrangements of the interpolation and data filters. In general, the data filter in
this figure can represent cascaded filters for noise and interference rejection. For a linear
system, the three arrangements provide the same performance. This section addresses
their implementation complexity.

In Figure 2.6 (a), the data filter operates at the sampling rate prior to interpolation. In
Figure 2.6 (b), the data filter follows the interpolation filter and operates at the symbol
rate. In both these separate structures I & II, the data filter and the interpolation filter can
be separately optimized; thus independent, simplified optimizations can be applied.

In the hope of reducing the complexity, some papers [32], [33] have considered the
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combined structure in which the data filter is now combined with the interpolation filter
as shown in Figure 2.6 (c). However, it is interesting to show that with the special
structure proposed in the previous section, in some particular considerations, designs with
lower complexity for the separate case can actually be obtained. The detailed discussions

are provided in the following sections.

x(1) / Data Filter Interpolator | 2(K)
— > > —>
g(® h(t)
A
n
STR

a) Separate Structure |

x(t) / _ | interpolator | Data Filter __f_(__k)>
— > h(t) o q()
A
i
STR

b) Separate Structure |l

® Combined ”
X i Z
/ _ | DataFilter & | 2(k)
Interpolator
c(t)
Ay
STR

¢) Combined Structure

Fig. 2.6: Three different arrangements of interpolation filters

For a combined filter,
c(t) = h(t)® g(1) (2.19)

C(f) = HHGY) (2.20)
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where,
h(t), H() impulse and frequency response of the interpolator
2(0), G(f) impulse and frequency response of the data filter
c(t), C(H impulse and frequency response of the combined filter

If h(t) and g() are time-limited in [-I, T, [1T,,,] and [-[T,,,, [T,,,] respectively,

then the overall response is time-limited in [-(Iy +15)T ), ([1+15)T)]-

2.4.1 non-symmetric g(?):

In the separate case I in Figure 2.6 (a), since g(f) operates at the sampling rate 1/7,
the discrete-time implementation version of the data filter g(f) needs (2Al;+1)

coefficients, where A is the sampling-to-symbol rate ratio. Therefore, the total complexity

for the separate case I will be (2A/;+1+1,) coefficients.

In the separate case Il in Figure 2.6 (b), g(¢) operates at the symbol rate VT
Hence, the discrete-time implementation version of the data filter g(f) needs (2I;+1)
coefficients. The total complexity for the separate case II will be (2/;+1+1,) coefficients.

The combined case using the Farrow structure requires 2(L+1)(I; +1) coefficients.

The modified interpolator structure becomes more efficient than the combined filter
when the numbers of coefficients required in the separate cases I and II are less than the
one required in the combined case.

For the separate case I,

QM+ 1+ L <2(L+1)(I, +1,), L 22 2.21)
2~ (L+ 1) +1<Q(L+1)= 1)), L 22 (2.22)

As we can see, even with L=2, the inequality (2.22) still holds true for all /; and I,
when A=2 (i.e., lowest sampling rate). For the higher sampling rates (A>4), the separate
structure I can still be efficient if we can arrange the lengths of the filters so that the

inequality in (2.22) is met.
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For the separate structure II,

20+ 1+ 1, <2(L+ 1)1, +1,) (2.23)
1 <2LI + QL+ 1)L, (2.24)

As we can see, the inequality (2.24) holds true for all 7; > 0 and /, > 0. Thus the

structure II is always more efficient than the combined case.

2.4.2 symmetric g(?):

When the data filter g(f) is symmetric, its discrete-time implementation for the
separate case I requires only (A/y+1) tap coefficients, while for the separate case II, it
requires (/y+1) tap coefficients. Therefore, the total complexity for the separate case I
will be (Al +1+1,) coefficients, and the separate case II, (/;+1+1,).

As g(t) and A(r) are both symmetric, the total response c(¥) is also symmetric. Vesma
[9] introduced the modified Farrow structure for symmetric interpolator to save half of
the coefficients. The combined case using the Vesma-Farrow structure thus requires only
(L+1)(I;+1,) coefficients.

For the separate structure I, in terms of complexity, the modified interpolator
structure becomes more efficient than the combined filter (using Vesma-Farrow

structure) when

M+ 1+ 1< (L+ 1), +1) (2.25)
(o= (L+ 1), +1<LI, (2.26)

Even with L=2, the inequality (2.26) holds true for every I; and I, when A=2.
Therefore, the separate structure is more efficient with the modified Farrow structure at
the lowest sampling rate. For the higher sampling rates (A>4), the separate structure can
still be significantly efficient if we can arrange the lengths of the filters so that the

inequality in (2.26) is met.
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For the separate structure II,
L+1+L<(L+ 1) +1) 2.27)
L<L(I;+1,) (2.28)

As we can see, the inequality (2.28) holds true for all /; > 0 and [, > 0. Thus, the

structure II is always more efficient than the combined case.

2.5 Frequency Response of Polynomial-based Interpola-

tion Filters

The impulse response of the polynomial-based interpolation filter can be written as

L
1\ M M
h(kT +10) = 3 cl(k)(F) for 5 <k< 5 1 (2.29)
1=0 s
where M is the length of the filter, L is the degree of the interpolation, c/(k)’s are the
coefficients of the Farrow structure.

The frequency response denoted by H/(f) is

M/2-1
, i —j2nfkT,
HO = [ e ?ide = 5 [T+ eV g
k=—M’2
M/2-1 L
o 1\ —j2nfkT. +
H = 3 Y e[ (L) g
k=-M’21=0 §
M2-1 L . .
H( = S 3 ke r j(‘)tle‘fz"”stdt
k=-M/21=0

Define

—j2 T.d 7 -2 t
BU kT, = T,e 7> [ e M dr = I(1, )T ek

o = —j2nfT ¢
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o

=]

- . nau =e___21n—locu =€ n _
I(n, o) jou e du ” ajou e*“du ” ocl(n 1, a)
where
1 e%—1
I(0 = [ e%%du =
(0, o) J‘Oe u
It follows that
af?—1 1(—1) 1! (e -1
oy = &[5 AL (e
[ = (n—i)! o
M/2-1 L
7 = ¥ Y c(OBLKELT) (2.30)
k=-M/21=0
where
. ST (11 -
BU kLT, = Tse‘ﬂ”f”{e,___( aC1) ) 231
2T\ S (2mfT,) (1~ !

L (=D (eﬁjz.nﬂs — ID
(F2rfT Y\ 2T,
Equations (2.30) and (2.31) are true for all polynomial-based filters.

For the specific case of second-order symmetric polynomial filters, their frequency

response can be further simplified as follows,

M/’2-1 M72—1
Hi() = cx(0)B(0, 00+ ¥ ¢ (bB(LE+ 3T c,)(k)B(Q2,k)
k=-M"2 k=-M’2
M’2 -1 M72-1
= B(0,0)+ 3 (8(k+1)-8(k)—c,()B(L, D)+ Y ¢y (k)B(2, k)
k=-M72 k=-M’2
M72 -1

B(0,0)+B(1,-1)-B(1,0)+ Y (B(2,k)—B(1, k))c,(k)
k=-M’2
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M72-1
= B(0,0) + B(1,~1)=B(1,0)+ ¥ (B(2,k) - B(1, k)c,(k)
k=0
-1
Y (BQ, k) -B(,k))e,y (k)
k=-M’2
M72-1
= B(0,0)+B(1,-1)=B(1,0)+ ¥ (B(2,k)—B(1, k))cy(k)
M72-1 k=0
+ S (BQ,-k-1)=B(l,—k-1))c,(~k—1)
k=0
= B(0,0) + B(1,-1) - B(1, 0) (2.32)
M’2—1
+ Y (BQ,~k-1)-B(l,—k—1)+ B2, k) - B(1, ©))c,y (k)
k=0

where we adopted the following abbreviation, B(, k) = B(l,k,f, T,)

2.6 Conclusion

Based on the general Farrow structure of polynomial-based interpolators, a simplified
version for symmetric cases was derived. The modified structure only needs M/2
coefficients as compared to a requirement of 3M coefficients in the original structure.
With this modified structure, it is shown that a separate arrangement with an interpolation
filter followed by a symmetric data filter operating at the symbol rate is the most efficient
one in terms of complexity. This separate arrangement is much simpler than the
combined interpolation and data filter structure proposed in [32] and [33]. The frequency
response of the interpolation filter was derived to be used in the optimization process in

Chapter 4.



Chapter 3. Digital STR Employing Inter-

polation Filters

This chapter develops the theoretical backgrounds for the proposed all-digital symbol

timing recovery techniques that employ interpolation filters.

3.1 General Structures

Figure 3.1 shows a simplified block diagram of a typical all-digital receiver with
emphasis on the symbol timing recovery (STR). The received digital signal is first
processed at the sampling rate. In parallel, the STR uses received samples to derive the
symbol clock frequency and phase, and then performs both timing and amplitude
adjustment to produce received signals re-sampled at the correct symbol frequency and
time. The timing adjustment can be done by a combined feedforward estimation and
feedback tracking structure as shown in Figs. 3.1 and 3.2.

The feedforward timing estimator (FF-TE) block in Fig. 3.2 is one of the main
subjects of this work to be discussed in detail in the subsequent sections. Its function is to
estimate the correct symbol timing instant p. Performance of this block can be
represented by its estimation accuracy and time required to achieve the accurate estimate.
Estimation accuracy can be further represented by the mean squared error (MSE) for
various channel signal-to-noise ratios. The time required to achieve the accurate estimate
can be called acquisition time and is an important parameter for burst transmission of

packets. Short acquisition time needs short overhead bits and hence offers high

26
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transmission efficiency, especially for short data packets/cells. For this reason, fast
feedforward estimation technique is preferred. In systems using long bursts with
considerable variation in symbol timing frequency and phase over the burst interval,
tracking and correction of timing error is necessary by using a feedback timing error
detector (FB-TED) block as shown in Fig. 3.2. Many good algorithms, such as Muller
and Mueller, Gardner feedback symbol timing recovery [57, 58], can be used to
implement this FB-TED block. The correct timing instant is the angle of the symbol
clock signal and hence a linear function of the estimated frequency and phase. It is
generated by the parameter updater in forms of a numerically controlled oscillator (NCO)
as shown in Fig. 3.3. Figure 3.4 illustrates the operation of the STR by a finite-state
diagram with 4 states: search, lock, unlock, and normal.

The STR starts in its search state by looking for the preamble from the received
sequence and derives the timing instant by using a feedforward estimation scheme. When
the timing instant has been established, the STR gets in its /lock state. The acquisition
process is assumed to be finished and the timing information p is loaded to the NCO. The
feedforward estimator is then de-selected and the feedback tracking loop is kicked in by
the MUX in Fig. 3.3 in the normal state during the information part of the burst.

In the normal state, the value of p is updated with the timing error ¢; provided from

the TED. The updated value is kept to be in the range [0, 1] by the mod-1 operator. If it
becomes negative, the mod-1 operator will add 1 to the value and flag overflow=1 for one
period. If the value becomes larger than 1, the mod-1 operator will reduce it by 1, and
flag overflow=1 for one period. The design shown in Fig. 3.3 is for the case of Ty, about
twice Ts. Hence, the down-sampler produces the sample at symbol rate (1/Tgyp) by
selecting one of the two samples at the sampling rate (1/T;). The selection of this odd or
even sample is controlled by the mod-2 operator based on the status of the updated value
of .

The end of the Tx burst is detected either by its length or power detection to re-

activate the feedforward estimator during the wumlock state. The cycle of 4 states is

continued.
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Fig. 3.1: Simplified block diagram of an all-digital receiver
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Fig. 3.2: Components of the symbol-timing recovery block
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Fig. 3.3: A simple parameter updater
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turn-on FF
estimator,

error is small

error is large turn-on FB loop

Fig. 3.4: A simple control state diagram

3.2 Representation of Received Baseband Signals

We consider a baseband component received from a pulse-amplitude modulated
(PAM) transmitter. The main system assumptions are summarized in Table 3.1. The

baseband component received at the matched filter output is given by

_ n()
x(t) = Znang(t~‘c + nTSym) + JF_ 3.1
b
where
a,: Baseband transmitted symbol, which is a known symbol used in the

preamble for timing estimation, and a random symbol in the information part.

Tom: Symbol period.

T Unknown symbol phase or time delay due to either channel delay or
sampling clock; 0 <1 < Tsy "

g(0): Baseband pulse. In most practical design, this pulse is the impulse
response of a raised cosine filter [59],

sm(nt/Tsym

) cos(Bnt/Tsym)

g =

m‘/Tsym 1_(ZBI/TSym)?_
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where P is the roll-off factor.

n(@): Filtered noise after the matched filter, i.e., root raised-cosine filter. In most
cases, it is modeled as an additive Gaussian noise.

Ey: Bit energy.
A typical received PAM signal burst is shown in Figure 3.5.

| { i f;“ i
wl\usefql data{“ ‘
! I R e

0 10 20 30 40

Fig. 3.5: Typical PAM-2 burst

In this chapter, we assume the symbol rate is known and the sampling interval is T =
0.57,,,. However, the symbol phase is unknown, but constant during burst. In most

practice, the difference in frequency between the sampling and transmitted symbol clocks

is within a required tolerance, e.g., 0.01% [49].

Table 3.1: Assumptions for the proposed STR

1 Data is transmitted in burst-mode, and modulated in PAM signal.
2 Pulse shaping filter is a raised cosine filter

3 AWGN channels

4 Known signal sampling rate (7,,,/ T) is close to 2

5 Symbol Clock phase is unknown, but constant during bursts

For the sake of simplicity in synchronizer’s operation, in all cases the baseband pulse
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g(f) can be approximated as [59, Chapter 2.2.3]

o) { (1/2)(1 + cos(nt /Ty,.)) forll < T, (3.2)

0 otherwzse

We can verify that, for the alternative input sequence a,~(-1)", the signal portion in (3.1)

becomes
x() = ¥ (-1)"'glr—t-nT,,)

= Zzng(t— —2nTSym) ZZn gt—-1—-2n+1) sym)

~—(1+cos(n(t 1)/ )—%(1+cos(n(t t+7 . )/T

sym) sym sym))

= cos(n(t—1)/ sym)

Therefore, the received signal can be simplified as

(1) = cos(ﬂ’—)) (3.3)

[;

3.3 Maximum-Likelihood Estimation Technique

The received signal in Equation (3.1) is sampled at rate 1/7 to produce a sampled

version

n(kT)
x(kT) = Zmlamlg(kT T—myT (34

sym ﬁ

where T is the unknown timing delay (0 <t < Tsym) to be determined. We limit the

discussions to the case 7.

sym'Ts = A, where A is an integer. The timing delay can be
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expressed as

T =il +uT; (3.5

0<i<A,and O0<spu<l 3.6)

where i is an integer timing interval and p is a timing fraction. Therefore, the samples can

be given by

n(kT,)
JEs

The target of this work is to find the unknown timing delay t, or equivalently the

x(kT) = > a, g(kTs—mlTsym—iTs—uTs)+ 3.7
m, My

timing fraction p. The discrete version is then passed through an interpolation filter

hﬁ(kTS) = h((k+[1)T,) in order to reconstruct the signal at the estimated timing instant

{i . The reconstructed signal output (without noise) will be

y((k+)Ty) = Zmzx((k—mz)TS)hp(szs)
B Z:ml Zm2 amlg(kTS My TS —my Tsym - iTs - “Ts)hﬂ(szs) (3.8)

Given that the symbol detection will need to down-sample the sequence y((k+m)T) with
the rate of A at the correct timing delay, the output after the downsampler at time instant

t = (i+0)T, will be

nT,,)
2(nTyy,, +1) = 2T +iT +pT,) = V(A + i)+ T) +—=== (3.9

JEs
Substituting (3.7) and (3.8) into (3.9), we obtain

nnT,,)
z, () = Z”‘l Zmzamlg(n?\,Ts = Ty = (my+ 1)) hp(myTo) + — sym’

JEs
nnT,,)
- Zml Zmz amlg((n - ml)Tsym = (my + W) T)hp(myT) +

JE,

In the ideal case, if A(f) is an interpolation function, and timing information can be
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recovered such that ¢ = T or equivalently i = p, then

Zng((” - ml)Tsym - (m2 + l'L)Ts)h‘l(m2Ts)lpl -u Eg(nTSym My Tsym)

nnT,,.)

z ()], _ = a gnT, _—m T, )+
n( )‘t—‘c Zml my sym 17 sym A/—E_b

= an+e

n

For an impulse response g(7) satistying the ISI-free (Nyquist) conditions, i.e., g(kTyy,,)=1

for k=0 and =0 for non-zero £, the detected symbol at the timing instant © will be
z(nTsym t1) = z,(}) = g, T e;q(AT) + e, (R) + e, : (3.10)

where, At = 1 -1 denotes the timing error; ¢,(%) denotes the imperfection interpolation

error caused by the interpolation function A(f); e;qAt) denotes the inter-symbol
interference (ISI) error due to the imperfection of timing estimation; and e,, denotes the
error due to the AWGN. If exact timing and perfect interpolation filter can be obtained,

e,(%) and e/ (A1) are negligible. Therefore, for the sake of simplicity, we can assume

only Gaussian noise e, would contribute towards the performance of the symbol

n
detection process.
Assuming © = 1 for perfect synchronization, an optimal detection is to recover the
sequence a={ay, di,..., ay.1} from the noisy sequence z(t)={zy(t), z{(1),..., zZy.1(T)} With
minimum error probability. Therefore, given that a sequence of N symbols is transmitted,

the detection process can be summarized as

max(p(a|z(r))) = maxpﬂl—q-)—]—)-(-22 = max(p(z(7)|a)) (3.11)
p(z(7))

in which we assume equally probable data sequence, and the distribution of z(t) is

independent to the detection process. The data-aided maximum likelihood (ML) timing

estimation is

L(t)py = max(p(z(t)]a))

= max((ﬁ%g)]vexp (—-1—2||z(t) —a 2)]

2c
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= max(-llz(t) - al?)

= max(— Z —1 2(1)+2Z 0 az (t)— Z _0 n

Since the sequence {a,} is known, and {z,(t)} is independent of the detection process,

we can simplify the maximum-likelihood (ML) equation as

L(V)p, = max(z Oanzn(‘c)) max(a ® (1)) (3.12)
3.4 Derivation of the Proposed Algorithm

This section presents the timing estimation algorithm based on (3.12). Because most
receivers now preferably operate at the lowest sampling rate, in this section, the
feedforward, ML timing estimation algorithm is only discussed for the sampling rate of 2
and PAM systems. However, the algorithm is applicable to higher sampling rates and
QAM systems, and will be discussed in Chapter 6.

Recall that the output of the interpolation filter is a function of [1.

L L M/2-1
yalnl = S filnlpf = ¥ ¥ c(m)x[n-m]i/ (3.13)

1=0 [=0m=-M’2

Following from (3.9), the output after the downsampling of 2 will be,

zp[n] = ypl[2n+1i] (3.14)

where i = 0 or 1. Therefore, the ultimate goals of an interpolation-based STR are:
1. To detect in which sampling interval, a correct symbol detection can be taken. This
will be corresponding to finding the appropriate value of i (0 or 1).
2. To detect the correct timing information p for best signal reconstructing from the
interpolation filter.
These two goals will be proceeded with the optimal criterion as described next.
Substituting (3.13) and (3.14) into (3.12), the ML function for the i-th sampling

interval is
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N-1 L
L) = ¥ a, ¥ fil2n+ilp!
n=0 [=90

N-1
al[ 3 anfl[2n+i]J

n=0

li
||Mp.

[=0

0Ela fi[2n+il] (3.15)
0

I
I ™M e

/

Since the alternative sequence, a[n]=(-1)", is applied as the training symbols in order to

improve the estimation process (Section 5.2), the likelihood function becomes

L
L) = ¥ WECDf[2n+1]] (3.16)
=0

With the structure shown in Figure 3.1, for every symbol period T

om = 2T, the STR

algorithm will generally generate two values of ﬁtl and ptz for the time intervals [2k,

2k+1]T and [2k+1, 2k+2] T respectively. However, there exists only one maximum point

for (3.16) in [2k, 2k+2]T, (Section 5.2), which corresponds only to either ;11 or ﬁtz. This

raises the question, “What is the appropriate method to select the correct 1 7’ Some
authors ([44]) suggested that the correct (i would be the one that gives a greater value of

L(ft). However, this requires one more step of complex computation of L,(ft). This

section presents another approach that can directly give the value of i without
computing L,({1).

Second-order polynomial is used to approximate the likelihood function in (3.16) for
its simplicity. The main disadvantage of using second-order polynomials is that, in
general, a low-order polynomial cannot offer a reconstruction quality as good as higher
order polynomials. However, as to be shown in Section 5.2, second-order interpolators
can offer as good signal quality as the third-order one in reconstructing the sine

waveforms. Furthermore, as shown Section 2.3, symmetric second-order interpolators
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order polynomials is that their single maximum or minimum points are very simple to
calculate. Higher order polynomials usually have more than one extreme points and the
solutions require highly complex implementation. Furthermore, as to be shown in Section
5.2, for the likelihood function (3.16), there exists one and only one maximum point in
the entire [2k, 2k+2]7 intervals. Thus, the second-order polynomial is the simplest and
best approximation.

By letting the derivative of the ML function equal to zero, we can find the maximum

value of the ML function, i.e.,

2
9 1) = ¥ W Ela fl2n i) =0 3.17)
n p=p - p=u
The solution of this equation is the estimated timing phase information,
N-1
(D7 [2n+i]) ,
. ,EO ! E[(-1)"f,[2n+1]]
Al = 45 =- . (3.18)
, 2E[(-1)"fp[2n+1]]
23 (D'a[2n+iD
n=0

Because there exists one and only one extreme in the interval [2n, 2n+2]7}, n=0,1,..., the

estimation at the extreme infers that: if at the interval [2n, 2n+1]T, we get the maximum,
i.e., 0 <[(i[0] <1, then the value of i[1] calculated during the interval [2n+1, 2n+2]7T

must be the extreme point of the interval [2n, 2n+1]7, i.e., i[1] ¢ [0, 1]. Theoretically,
we want to have the distance between estimated values as far as possible so that under

noise contribution, the detection algorithm will result in only one distinct correct

estimated timing. Thus, the necessary condition for good decision-making is

A[0]-p[1]l21 (3.19)
It has been shown that for the raised cosine filter impulse response g(f), and the
transmitted alternating {+4, -4} data sequence, the output of the matched filter at the

receiver can be represented as a cosine waveform with the Gaussian noise component
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n(), i.e., for I, =27,

(1) = cos( ([ )) ﬁ (3.20)

where p is uniformly distributed in [0,1). Figure 3.6 shows the continuous output example

when p=0.3. The discrete signal at every sampling period nT is

n
x[n] = cos(g(n—p)) all (3.21)
N
where we ignore the time unit 7 in the expression of x[n].
1 ‘*f . T
o ) =03
0.5¢ \‘I*{, |
T AT, 3ﬁs 4T F2T,,,
|
-0.5 “ !
..1 I L fo e e e SR
0 1 2 3 4
Fig. 3.6: Cosine wave at sampling points
Recall that,
M72-1
fi[2n+i] = >  x[2n+i-m]c/(m) (3.22)
m=-M’2

Substituting (3.21) into (3.22), we have
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M72-1 ,
E[(-1)"f,[2n+i]] = E{(—l)” 5 (cos(g@n +io m—u)) + 31—2”“—_’"]] cl(m)}

m=-M/’2 A/E-'b

M72 -1
E[-1Yf2n+ill= Y ¢ l(m)E[(—l)”cos(g(Zn +in m—u)):| (3.23)
m=-M’2
where E[n[n]]=0
M72—-1
E[-D)"f[2n+il]z Y cl(m)cos(g(i - m—u)) (3.24)
m=-M/2

Therefore, for the case of no noise or high SNR, the timing phase estimation in (3.18)

converges to

M72-1
> cl(m)cos(g(i —m—p))
aLi] - -2 (3.25)
2y cz(m)cos(g(i —m—u))
m=-M/2

For the sake of simplicity in measuring the error, one should remove the ambiguity

that the decision interval iT, might cause. By examining the waveform of x(f) in Fig. 3.6,
we can see that the maximum point lies in the interval [0, 7,]; thus the ML algorithm

must choose this as a valid interval, i.e., i=0. The timing estimation error (normalized to

Tgym) can be given as

M72 -1

> cl(m)cos(g(—m—p))
e = Ts +m=—M/2 326
v 7 (M T M2 (3.26)
sym 2y c2(m)cos(§(—m—p))
m=-M’2

This approximation is in general form which can be applied for any structure of
interpolation filters. In the next section, we will introduce an alternative, simpler version

of e, for the separate interpolation filters. This general form can be used to study the
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boundary of the error of the estimation or to provide constraints on the design of second
order polynomial interpolation filters with respect to (3.19) and to minimize the MSE of
the timing estimation.

3.5 MSE in symbol-timing estimation of some second-

order interpolators

Equation (3.26) is used to compute the MSE in timing estimation of the following

interpolation filters.

1- The piece-wise parabolic interpolation filter with y = 0.5.

2- The piece-wise parabolic interpolation filter with y = 0.45.

3- Vesma’s optimal interpolation filter I for M = 4 (Table A.4) [13].
4- Vesma’s optimal interpolation filter II for M = 6 (Table A.5) [13].

Table 3.2: MSE of timing estimation

Interpolation Filters MSE
Parabolic with y = 0.5 2.7x107*
Parabolic with ¥ = 0.45 0.8x10™
Vesma Interpolation Filter I 8.9x1074
Vesma Interpolation Filter 11 1.0x1074

The results in Table 3.2 indicate that the Vesma Interpolation Filter I yields the
highest MSE. The parabolic with 4 tap-length (y=0.45) has a better MSE than Vesma’s
Filter IT with 6 tap-length.

The above results motivate a further investigation on how to optimize the Lagrange
parabolic filters to achieve the minimum MSE for timing estimation.

Following from (3.25), the estimation of p for the second-order Lagrange interpolator
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is evaluated as

(1-2v) cos(g(i—p)) —(1+2y) sin(g(i—u))
1fi]=- (3.27)
" 4y(cos(g(i—u)) - sin(g(i—u)))

or

sin(g(i—p)) + cos (g(z’—p))

AL 1
H[,]Ez_ (3.28)
4y(cos (g(i—u)) - sin(g(i—p)))
013 gtan(3(i-n-3)
p[z]=2—4—7tan 3 z—p+2 (3.29)
The symbol timing estimation error, normalized to T, is given as
T A~ 1010 1
e. = = (u—p) = -( —+ —tan(E(- —u))) (3.30)
t Tsym 2\ 2 4y 2\2
The variance of this timing estimation error is
_ 1 (4_1_ )_1.4863 1
VAR[e] - 1 p + 53 (3.31)

32y2
and its plot is shown in Figure 3.7. The S-curves for two cases, y = 0.5 and v, ppmq =
0.4536, are plotted in Figure 3.8.

We will have to verify the condition given in (3.19):

HOETE }y{tan(g(—u—;))-tan(g(—u+%))| (3.32)

- L%ytan(g(—wlg) ' tan(E(—lu+l)) 2%{ (3.33)
2 2

where a+(ll 22,V(aeR).
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Therefore the given condition can be always satisfied when 1/(2y) > 1, or y < 1/2.

Thus the optimal value also satisfies the condition given in (3.19).

10

03 04 05 06 07 08 0.9

Fig. 3.7: MSE of timing function versus V.

0.02 |\ — Yq;)'t=0.4536; !
\ | o y=05
. |
0.01 \\ B
\.
o
\«
-0.01 ‘\‘ . n, -
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. 0.2 04 p» 06 0.8 1

Fig. 3.8: Symbol Timing Error versus LL.
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3.6 Estimation of Symbol Frequency

The proposed algorithm in Section 3.4 was presented with an assumption that 7,/

is an integer. In practice, this ratio (7,,,/T) is rarely an exact integer. In the case of non-
integer 7y,,/T,, the proposed algorithm will be applied first, and other successive
estimates are needed at later steps to track the fluctuation of the symbol frequency with
time.

Define the following relationship
T
—“‘Tm = A+ AL (3.34)

N

where, A is an integer, and AL is fractional. Assume at the m-th and #-th sampling time,

we measure the k-th and /-th symbol time (Figure 3.9),

kTSym = (m+pT, (3.35)
lTsym = (n+p)T, (3.36)

For P= n-m and Q= I-, it is easy to show that

P .1
Mo g = G+ b (337)

In the case of single step or Q0= /-k = 1, the equation can be simplified as
Ahp = Pt (R =B — A (3.38)
We notice that the result in (3.37) is the average of (3.38) over the window size Q:
ANy = E[AN] (3.39)

Equations (3.37) to (3.39) can be used to estimate the symbol frequency fraction and we

need to correct the estimated timing with this fraction.
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mT, (m+1)7, nT, (n+1)T,
A A
lJ'kTs IJ'ITs
[———> <« »
kTsym /Tsym

Fig. 3.9: Samples at different estimate time

3.7 Conclusion

We have presented a new symbol timing recovery scheme (STR) for asynchronous

data receivers for the case of 7,,,/T¢=2. The general structure and theoretical background

of the proposed STR scheme are discussed. Timing errors were formulated for further
analysis and simulation. Moreover, performance of some second-order interpolators
applied to the proposed algorithm is investigated. Techniques to estimate and correct
frequency error were discussed. As implementation is concerned, computations are
greatly reduced: only short simple averaging filters and one simple division are required.

This implies lower complexity and faster operations for hardware implementation.



Chapter 4. Optimal Interpolation Filters
for Digital STR

The main objective of an interpolation/resampling filter is to reproduce the samples of
an analog signal at the desired instants with no or minimum distortion from a given
sampled version. As discussed, if the original analog signal is bandlimited then a
rectangular filter with bandwidth slightly larger than that of the signal is a good choice.
However, using an FIR implementation of sampled signal, the impulse response of the
interpolation filter needs be truncated in time. Furthermore, for a simple structure of the
interpolator/resampler using polynomial approximation, the actual implementation is
deviated from the rectangular filter shape.

Designing optimum interpolation filters for a certain objective has been discussed in
the literature. Bucket and Moeneclaey [39] showed how to optimize the piece-wise
parabolic interpolation filter to minimize the output BER in the assumption of correctly
established symbol timing. Various filter design methodologies aim to minimize the
mean-square error (MSE) at the output of the receiver [1], [19], [49] or the output BER
[39]. It is expected that the MSE in timing estimation is indirectly made small [49,
Chapter 3.2.3]. Other papers [2]-[13] presented different optimization approaches in the
context of digital signal processing without consideration of communication aspects.

The optimization algorithm presented in this chapter takes into consideration the
desired filter shape in terms of both time-domain and frequency-domain responses and
the timing estimation performance. Desired time-domain and frequency-domain
responses are derived from a particular system design requirements in out-of-band

interference and noise suppression.

44
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This chapter is organized as follows. Section 4.1 proposes the joint cost function,
including the MSE in (i) matching the desired impulse response of the filter g(), (ii)
matching the desired frequency response of the filter G(f), and (iii) symbol timing
estimation. Section 4.2 provides an efficient algorithm to search for optimal interpolator
coefficients in order to minimize the proposed cost function. Section 4.3 presents the
performance evaluation of the proposed algorithm by simulations. For low complexity,
we will focus on integer sampling rate and second-order polynomial-based Farrow

structure.

4.1 Proposed Cost Function

The time-domain and frequency-domain responses of the interpolation filter are A(r),
and H(f), respectively. They will be designed to match the desired time-domain and
frequency-domain responses, g(¢) and G(f), which are often symmetric. The MSE in time

and frequency domains are defined as

Elee] = {(h(r) ~ () dt (4.1)
Efer. ) = ()~ G()) df 42)

Notice that we define the operations in (4.1), (4.2) for certain ranges of interest.

The MSE in STR is !

Eleerg] = (P~ Pyp)” (43)

! The derivation of the MSE in STR will be presented in Chapters 6.
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where

Py = — 4.4
Opt 2a0pt
_ oM/2-1 T l))
P ey cos(k(k +3 (4.5)
We propose the cost function
J = E[e® T+ E[e 1+ Ele 4.6
~ Wtime [etime] Wereq [efreq] WSTR [esrr] (4.6)

whereas ;> €4 and egrg are denoted for the time-, and frequency-domain error and
timing detection error; and Wype, Wpeg and wgrg are their corresponding weighting

factors.
The proposed cost function is essentially a generalization of the DSP design filter
approach in [13] and the filter optimization process for STR in Chapters 5 and 6. Letting

werp=0 will result similar filters as in [13], while the optimal interpolators presented in

Chapter 5, and 6 are the solutions of (4.6) for wy;,,,=0 and wp,,~0.

4.2 Algorithm Derivation

The cost function (4.6) can be applied to a general interpolator. Its gradient is

A

V,J = e, (m) (4.7)
_ 0 2 0 2 0 2

- WtimeWE letimel WfrquE [efieq] + WSTRWE lesrg]

where k=0, 1,..., M/2-1. The cost function J attains its optimum value, all the elements

of the gradient operator must be simultaneously equal to zero, as shown by,
V=0, m=0,1,..,M/2-1 (4.8)

Under this set of conditions, the filter is said to be optimum in the mean-squared-error
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sense.
We focus on the second-order polynomial for the interpolation filter for its simple
structure in the following derivation.

From the definition (4.1), the time-domain criteria is

0
ac—(nfl) [ tlme] - M/22(h() g(t)) ( )h(l)dt (49)
= ij 2(h(k+p)—glk+ u)) ( )h(k+u)du

2

G o, i
Sy kTR T (Wb
Therefore,

0
Wﬂe?"’"e] = 3, | 20+ ) gk + ) (% - 1)8(m ~ Kyl

= 2jé(h(m + ) —g(m+p))(u? - wWdu

B 21(1)(5("1) +(8(m + 1) = 8(m))p + ¢y (m)(p? — ) — g(m + p))(p2 - p)du

- 2(3%02(’") - 11—2(5("1) +8(m+1)) - j(l)g(m +p)(pu?- u)du) (4.10)

Following (4.2), the frequency-domain criteria is

s P Efreq) = PHD = GO st @.11)
0 —— H(f) = B2,-m—-1)-B(l,-m-1)+ B2, m)- B(1, m) (4.12)
0c,(m)

From (4.3) to (4.5), the STR criteria is

0

2
et Lesral = 26 o)y o

Ocy(m)

Therefore, the cost function can be rewritten as follows,
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V,J =0
= 2wy ma(m) = = (@(m) +80m+ 1) - [ glom + W) - W)

+ 2wﬁeq{B(O, 0) + B(1,~1) - B(1, 0) - G(f)
M72-1

+ Y (B(2,-k-1)-B(l,-k-1)+B(2,k)-B(l, k))cz(k)jac 5(m)
k=0 5

+ 2WSTR(22/I=/20_ Ley(h) COSG(" " %)) —P Opf) COSG(’% * %D

= 2w, (50 + 80m+ 1) + [ gm+ )2~ W)

0
+ 2wfreq (B(0,0)+B(1,-1)-B(1,0)- G(/))acz(m)

M72 -1

- 2wSTRp0ptcos(;—E(m + %D Y ey(k)

k=0
d(m —k) T 1 n 1
I:zwtime 30 + 2wSTRCOS(X(k - 5)) COS():(m " 5))

+ 2Wf g (B(2,-k-1)-B(1,-k—-1)+B(2,k)-B(1, k))wdfi’
re Ocy(m)

H(f)df

Equation (4.14) can be expressed in a compact vector form,

V,J/2 = B(m)+A(m)X

- wtimeBtime(m) + Wfrqufreq(m) + WSTRBSTR(m)
+ (WtimeAtime(m) + Wfrqufreq(m) + WSTRASTR(m))X

H()df

(4.14)

(4.15)
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The vectors in (4.15) are defined as follows

Apiem) = [ ()] = 250 4.16)
Ao (M) = [y fog(m)] = (B2, ~k=1)=B(1,~k~1) “.17)
£ B(2, k)~ B(1, B))(B(2,— m — 1) = B(1,—m— 1) + B(2, m) — B(1, m)))df
Agrg(m) = [y srg(m)] = cos(X(k+ 2) cos(;—t(m +3)) 4.18)
X = [¢,(0), cy(1), ooy cy(M72-1)]" (4.19)
Brimem) = ~{(35(80m) +3m + 1)) + fem + w)(” - ) (4.20)
Bfyoo(m) = 4((B(0,0)+ B(1,-1) - B(1,0) - G()) (4.21)
(B2, —m—-1)=B(1,—m—1) + B(2, m)— B(1, m)))df

Berp(m) = —p, ptcos(;—t(m +3)) (4.22)

Therefore, the Farrow coefficients are the solution X of the equation,

AX,,,+B =0 (4.23)
1
X,, =-A B (4.24)

where, A = [A(m)],and B = [B(m)]
In some cases, the matrix A may be nearly singular, thus a deepest descent algorithm
can be used to obtain the desired solution. The solution at time (n+1) is computed by

using the following recursive relation,

X, =X, +x[-VJ ] (4.25)

VJ = AX,+B (4.26)

where » is denoted for recursive time, and « is a positive real-valued constant (step size).
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4.3 Design Examples

This section presents a design example for the case M =4, L = 2. The desired impulse
response is g(f)=sinc(r). In this example, we assume that the received baseband signal is

shaped by a raised-cosine filter with an roll-off factor of 0.35, and then sampled at 2, 4,

and 8 times faster than the symbol rate!. Because the sampling process introduces
replicated frequency images centered at kf,, in designing the optimum interpolation filter,
we aim to suppress as much as possible such alias. Consider f; normalized to 1. The
signal frequency band is [0, 0.35f,,], while the images to be suppressed fall in the
frequency bands [1-0.35f,,,, 110.35f;,,] and [2-0.35f,, 2]. Therefore, the desired
frequency responses would be 1, 0, and 0 in the frequency band of interest [0, 0.35f;,,],
[1-0.35fg, 1+0.35/g,,] and [2-0.35f;,,,,, 2], respectively. For comparison, we carried out
the filter designs for two objectives:

[) Minimum MSE for STR only, and

II) Minimum MSE for time-domain, frequency-domain responses, and STR.

The design parameters and objectives are summarized in Table 4.1.

Simulations with the parameters summarized in Table 4.2 are used to compare the
performance of the obtained filters and two other interpolators:

» The Vesma’s interpolator type I (Table A.4);

» The regular piece-wise parabolic interpolator (y=0.5);

As discussed in Section 2.3, the modified Farrow structure for this new interpolator
requires only 1 or 2 coefficients and multipliers.The optimum filter coefficients for the

Farrow structure of the new interpolators are listed in Tables 4.4 and 4.3, respectively.

! The integer rates are considered because they are used in the next sections. Non-integer rate might
require another simulation setup.
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Table 4.1: Design parameters

Design parameters

desired impulse response: g(¢) = sinc(f);
desired frequency responses: 1 for [0, 0.35f;,,,],
0 for [1-0.35f;,,, 140.35/,,,], and [2-0.35f,,,, 2],

M=4,L=2

Sampling rates 7,/ =2, 4, and 8

Objectives: I) minimize MSE for STR only;
II) minimize MSE jointly in time, frequency, and STR

Table 4.2: Simulation Assumptions

Simulation Parameters

PAM signal

signal shaped by a root raised-cosine filter with a roll-off factor of 0.35

Sampling rates 7y,/T; =2, 4, and 8

Ideal channel

Perfect timing synchronization

Table 4.3: Filter Coefficients for the Optimal Interpolators Type I

. (i)
l

Tyym! Ti=2 Tyl Ty=4 Ty T=8
0 -0.4536 -0.2867 -0.2585

1 0.4536 -0.2867 0.2585
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Table 4.4: Filter Coefficients for the Optimal Interpolators Type I1

, ca(i)
[

Tsym/ Ts=2 Tsym/ Ts=4 Tsym/ Ts=8
0 -0.41786 -0.28872 -0.2587
1 0.48146 0.29186 0.2588

Three comparison criteria were considered, and the results are summarized in Tables
4.5 to 4.7, and plotted in Figures 4.1 to 4.4.

a) Symbol Timing Estimation Error: The MSE of the symbol timing estimation for
different interpolators are shown in Tables 4.5 to 4.7. As mentioned in Chapters 3, 5, and
6, these measurements show whether an interpolator is suitable to the proposed feed-
forward STR scheme. From Chapters 5, and 6, it is evident that only the new optimal
interpolators can attain the minimum MSE of the symbol timing estimation.

b) ISI Error: Non-ideal interpolator causes intersymbol interference (ISI) even at the
perfect timing points. The MSE of the ISI error is measured at the decision points,
between the recovered values and the expected values. Figure 4.1 shows the MSE of the
four interpolators for various values of p, while Tables 4.5 to 4.7 gives the numerical
values of the maximum ISI that occur at u = 0.5. The simulations show that the new
interpolators have the best performance.

¢) Maximum image attenuation: This performance criteria is to measure the capability
of reducing the effect of the frequency image. Figures 4.2 to 4.4 show the spectrum that
demonstrate the behavior of the four interpolators to PAM signals shaped by a raised-
cosine filter with a roll-off factor of 0.35. As observed in the results in Tables 4.5 to 4.7,

the new interpolators provide an excellent image rejection.

Table 4.5: MSE of STR and ISI, and Maximum Image Attenuation (7,,,/T; = 2)

Max Image
MSE(esTR) Max MSE(ejs;) Attenuationg(dB)

Vesma’s method for M=4, L=2 8.9x10™* 67x107% -28.7
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Table 4.5: MSE of STR and ISI, and Maximum Image Attenuation (/T = 2)

VSBG) | MexNSEC) | e
Reguiar Interpolator 2.7x1074 31x1074 -29.5
Optimal Interpolator Type I 8x107> 15x1074 -31.6
Optimal Interpolator Type II 8x107> 8x107 -32.8

Table 4.6: MSE of STR and ISI, and Maximum Image Attenuation (T, /T, = 4)

MSE(esTr) Max MSE(ers) | , xl“;‘ag';zg(‘:m)
Vesma’s method for M=4 9.6x1076 5.31x1073 -32.8
Regular Interpolator 9.4x10™ 9.04x10™% -39.1
Optimal Interpolator Type I 9.7x1077 3.86x10°° -55.5
Optimat Interpolator Type 11 9.7x10”7 1.96x10°0 -56.1

Table 4.7: MSE of STR and ISI, and Maximum Image Attenuation (7yy,,/T; = 8)

MSE(esTR) Max MSE(egp) Attgalfa:mg(fm)
Vesma’s method for M=4 2.3x1073 9.37x1073 -32.8
Regular Interpolator 3.0x104 7.75x1073 -51.4
Optimal Interpolator Type I 1.43x10°8 1.07x10°8 -75.9
Optimal Interpolator Type II 1.43x10°8 1.03x10°8 -76.1
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4.4 Conclusion

A new optimal, efficient filter design synthesis for interpolation filters is presented.
The proposed cost function takes into consideration the desired time and frequency
responses as well as the timing error, suitable for practical design objectives. Illustrative
filter design examples are given and their performance are compared with that of other
similar interpolators with a similar complexity. Simulation results show that the new
interpolators outperform others. A resulting low-complexity hardware implementation
can be obtained using the modified Farrow structure for the second-order polynomial,
symmetric interpolator. It confirmed that only M/2 coefficients is actually required, as
compared to M(L+1) coefficients in the original structure. The significant reduction in
complexity of the modified structure allows a better interpolation performance with

longer filter lengths.



Chapter 5. Performance of Proposed STR
Employing Interpolators

This chapter presents the performance analysis of the new feed-forward symbol timing

estimation technique that employs interpolators proposed in Chapter 3.

5.1 Bias and Variance of Symbol Timing Estimator

The interpolated sample values can be different from the actual ones due to the non-
ideal characteristics of the interpolation filter even if correct timing is assumed.
Therefore, if the non-ideal interpolated samples are used to reproduce timing information,
this information will not be exact. It is of course desirable to have zero bias and very
small variance in timing estimation. Fortunately, through the analysis and some intensive

experimental results, we will show that it is possible to achieve such goal.

5.1.1 Bias in timing estimation

Consider the estimated timing value close to the actual one. This assumption is
usually valid for some appropriate interpolation filters. We can then approximate the ML

function with its truncated Taylor version as follows:

L) =L(w+ (- u)L’(u)Jf%(ﬁ—u)zL”(u) G.1)

59
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The ML function becomes maximum when

~ - L'(w
RS 2

Given the condition for the estimated value in (3.17), the expression in (5.2) is equal

to zero, and this proves that the timing estimation process is nearly unbiased.

5.1.2 Variance of the timing estimation error

The timing estimation error can be found as

N-1
Y (D)f[2n+i]

L L _pya=o
TT,, L (w2 N- |
4% (-1)'f,[2n+i]

k

n=0
N-1
Y D@uf2n+ i+ fi[2n+i])
€1 = =0 N-1
4 (—l)”f2[2n+i]

n=20
Since the error is very small, the denominator varies very slowly compared to the
numerator. We can safely replace the denominator by its mean. Thus the symbol timing

error function can be rewritten as

N-1
Z (—1)”(2uf2[2n + ] +f1 [2n+i])
n=0

eT—

N-1
E{4 ¥ (—1)"f2[2n+i]}

n=0
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N-1 2
EK Z (—1)"(2uf2[2n+1’] +fl[2n+i])j }
_ n=20
Ele?] = — >
16(E{ 3y (—1)"f2[2n+i]D
n=20
2
Efe?] = —2 1;2:21+4HR1,2+R1,1 - (5.3)
16(E[ > (—1)”f2[2n+i]D
n=20
where
N-1 M72 -1
E{ Yy (—1)nfl[2n+i]} =N ¥ cl(m)cos((i—m—u)g (5.4)
n=0 m=M’2
and
N-1 N-1 ,
Rl, = EK 3 (—1)”fl[2n+i]j£ 3 (—1)”fl,[2n'+i]ﬂ
n=20 n' =0
TN-1N-1
=E Y Y (—1)”+”'fl[2n+iv,[2n'+i]}
Ln=0n"=0
TN—-1N-1 ’M/2~1 M72-1
=E Y T )ty Y eflm)e, (m")
Ln=0n"=0 m=-M/"2m"=-M’2
x(2n+i-m)x(2n'+i —m')}
M2-1 M/72-1
= > y cl(m)cl,(m’)RX (5.5

m=-AM2m =-M/2

where

N-1N-1
R,= E{ >y (—l)”+”'x(2n+i—m)x(2n’+i—m’)}
n=0n"=0
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= EKNCOS( (i—m— u))+Eo’l(_ﬂj_’b_2( 1)J

N-1 , , ,
X (Ncos(g(i—m’— u)) + ’z=0n(2nA/%—m )(_l)n]}

c2 N-1

= Nzcos(g(i—m— u)) cos(%(i— u)) + EZ Y 8[n-n',m-m’] (5.6)

nn =0

Thus,

2
4Ry 5 FAUR) 5 Ry

5 M72 -1 T 2
m=-M/’2
g2 M/2-1

N Y uey(m)+ e (m)’
bm=-M7r2

Therefore, it can be shown that the error in (5.3) can be expressed in terms of two

independent error components: the error due to algorithm precision e 4 and the error due

to the Gaussian noise ey, i.e.,

EleZ /1 = Ele3] +E[e}] (5.7)
where
M72-1 2
> emoos(-m-wl)
E[e2] = }1 + =M (5.8)

2y cz(m)cos((—m—u)g)

m=-M/’2
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and
M72-1 2
> Quey(m) tc(m))
(5.9

2p = L[ No) m="mrn
Eley] 32N[E,J M/2-1 2
[ > cy(m)cos (g(— m— u))j

m=-M/2

5.1.3 Minimum mean square error (MMSE)

This section simplifies Equation (5.8) for a symmetric second-order polynomial-

based interpolation filter; and then derives the minimum mean square error (MMSE) of

the proposed algorithm precision.

Recall the relationships in (2.11), (2.13), and (2.14), the numerator of Equation (5.8)

can be re-expressed as

M/zz:— 1 cl(m)cos((—m - u)T—D

m=-M/2

= (— M/}Z:—l Cc,(m) cos((— m— u)%) - cos((—u)g) + cos((l - u)g)j
m=-M’2

= _mM:%A;;cz(m)cos ((— m— u)@ -2 sin(@ - u) g)

and the denominator can be re-written as

M72-1

m =§M/202(m)cos ((_ "= u)LD
_ A:Zzz:—ol (Cz(m)cos((_m 3 ”)g) +ey (-m- 1)cos((m +1- u)g))
M/2-1

I

S cz(m)(cos<(— m— u)g) + cos((m +1- u)%t))

m=0
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M72-1

2 mgo cz(m)(COS(G - “)9 °°S(<’" " 99)

M72 -1

2005(@ - u)@ méo c,(m) cos((m + 99

Therefore, Equation (5.8) can be simplified as

() )

I

27 _ 1 1
Elezl = 20—~ 3 1 (5.10)
4 3 cz(m)cos((m+99
m=20
By defining the constant term o as
1 M72 -1 1
o = (_E) 3y cz(m)cos(m-l-ﬁg) (5.11)
m=0
we obtain
E[e2] = l(u——l-Fitan((l— )EDZ (5.12)
AT 4\" 2 4a N2 T2

The derived timing error for the general second-order polynomial with tap length of
M in (5.12) is analogous to the case for the simple polynomial interpolation filter in
(3.30). Thus all results obtained from (3.30) can be applied here.

There are two important points we can draw from (5.12):

1. We can achieve the minimum MSE of timing estimation for all interpolation filter
at MSE = 8.458 x 107 This is the limit for the proposed techniques at 7, sym! 1s=2.
2. An interpolation filter that has minimum timing estimation satisfies

M72~1 1
cz(m)cos((m + E)g) =a,, = 0.4536 (5.13)

This condition is very useful to establish filter design constraints to be discussed

in the other section.
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5.1.4 Bounds for Gaussian Noise Contributed Error
The Cauchy-Schwarz inequality shows that
(Zc (m)cos(E(m + u)))z < Zcz(m)z cosz(E(m + u)) (5.14)

Given that
M72-1 7 T T M
(g ew) - Mon(3) () - 2
cos m+ sin + cos
mE\m Simtw) == M M >
we get
M/2-1 - 2 MM/2—1
[ > c2<m>cos(5(m+u))] <T Y cm).
m=-M/2 m=-M/’2

The numerator in (5.9) is a second-order polynomial with respect to p. It is easy to

find the minimum value 4,,;, of this polynomial, such that

M72 -1 2
> Quey(m)+te(m) 24,
m=-M’2
where
M72~1 2
M1 Z cl(m)cz(m)J
_ m=-M/’2
A,in= X <cm- M72-1
m=-M/2 Z c2(m)
m=-M/2
Therefore,
A .
E[e]%[] Z min

M72-1
( 3 c%(m)]mMN(Eb/No)
m=-M/2

(5.15)

(5.16)

(5.17)

Inequality (5.14) imposes loose conditional bounds due to the lack of information of
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the interpolation filters’ coefficients. The equality occurs when
xmycos(20n + ) = flp), v (5.18)

or a looser condition is

cz(m)cos(g(m + 9) = const, Vm (5.19)

Only few interpolation filters can meet this requirement. It can be verified that the
second-order Lagrange interpolation filter is one of them, thus it can achieve the bound in
(5.17), and provides efficient estimation. For ones that do not satisfy the requirement, it is

difficult to judge how far the error variance can be from the lower bound given in (5.17).

5.2 Alternative Interpretation and Acquisition Time

This section first gives an alternative explanation for the proposed technique in
searching the eye-opening instant of the waveform and in noise filtering. While the ML
approach infers optimality, the analogous approach shows the nature of the proposed
technique and many important results that might not be very obvious when explained by
the ML intuition. Acquisition time and preamble sequence length will be examined by
using this approach.

The DA-STR problem raises the simple question, “In a noise-free environment, what

is the shortest known sequence {a;} that can give us enough information to correctly

recover the timing on the received waveform?” The simple answer would be 2, and the
sequence would be {+1, -1}. As random noise is concerned, it has equivalent effects on
any sequences {a;}. Thus we can infer that for a technique that can reduce the effect of
random noise within a very short block of symbols, the alternative sequence {+1, -1}
would be one of the shortest sequences that can give best information for estimating the
timing of the received signal. This conclusion is valid when noise suppression is involved
within the STR technique; and we can prove that it is possible to achieve such desirable

shortest sequence with the proposed technique.
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Consider the alternative sequence {+1, -1} used as the reference information. For the
raised-cosine filter, g(¢), the output of the receiver matched filter can be represented as a

sine-wave with the noise component n(¢). Therefore at every sampling period n1,

x[n] = cos(g(n—u)) +nl~l (5.20)

|,

where we omit the time unit 7§ in the expression for simplicity.
Now the noise term is ignored for a moment. Using the interpolation filter as an
oversampling device, for a given sample period T, we are virtually able to reconstruct

the whole sine-wave x(f) within that period. Figure 5.1 shows the reconstruction of a sine-

wave using several interpolation filters.

15 T T 7 T T T T
1L B ]
\\
0.5- \ -
0+ 4
0.5 |
—— Original Sine Wawe
— - from Cubic Interpolation
RS - -~ from Parabolic Interpolation \_
-1.5 L 1 | ! 1 I !
0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5.1: Sine wave reconstruction using different interpolation filters

Having the reconstructed waveform, one can search for the optimal value of n
corresponding to the position of the maximum value. From Figure 5.1, one can easily
claim that the waveform obtained from the cubic interpolation does not have the extreme
points and its maximum location occurs far away from the correct one, thus both extreme
and maximum searching will not work. This emphasizes that interpolation filters have a

great impact on making decision in the searching algorithm.
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Searching process is often complex; however it is quite simple for the case of a
second-order polynomial. The recovered signal from a second-order polynomial based

interpolation filter is

2
v = ¥ filnlw! (5.21)
=0

Its extremum points are located at

Al
= _ 522
i 2""_f2[n] (5.22)

When additive noise is concerned, the output at the filter banks can be represented as

filn] = filn]+nln] (5.23)

For a zero-mean noise term M (7), it can be removed by averaging f[n]. However, it is
easy to verify that,

filnl = -fln+2] (5.24)

E[f)[n]] = 0 (5.25)

Thus we cannot simply average the value of fj[n]. In fact, for fixed n,
D' F2n+il = )" F20+ 1) +i] = const (5.26)
thus
EID"f2n+i]] = (<1)F[2n+1] (527)

Thus the correct way is to average the value of (-1)"f][2n]; and the detection now

becomes,

E[(-1)"f[2n+11] _ Fl2n+i]
2E[(-1)'fy[2n+4]]  Pal2n ]

(5.28)

We notice that due to a similarity in (5.22) and (5.28), with the appropriate interpolation



CHAPTER 5. PERFORMANCE OF PROPOSED STR EMPLOYING INTERPOLATORS 69

filter, the reconstructed waveform y,(n) should have a sinusoidal shape; so does the
maximum likelihood function.
The estimation process obtained in (5.28) is exact to the proposed one (3.18) in
Chapter 3. We observe the following facts:
1. The alternative {+1, -1} sequence is the best choice for a possibly shortest pream-
ble. At high SNR, or with proper noise filtering, we can obtain a preamble block as
short as 4.
2. With an appropriate interpolation filter, for any symbol interval, the ML function
is close to the cosine wave-shape with the guaranteed existence of the unique glo-
bal maximum location in the entire symbol interval.

3. The selected sequence also simplifies the STR implementation and analysis.

5.3 BER Degradation

This section devotes a short discussion of the impact of the proposed STR technique
on the bit error rate (BER) degradation.

The BER degradation is defined as an increase in signal to noise ratio E/N,, required
to maintain the same BER as the case without synchronization error [59, Chapter 7.3].

For a small value of timing error, the BER degradation (in dB) of PAM signals is

approximated by
N 10 1
Dz = -10x log(G—J = (A(B) + —B(B)j VAR(e.) (5.29)
52 1n(10) 2
o (o]

where o, is the solution of

_ 2M-=1) 3
BER = | .
0 MlogZ(A/I)Q[ (Mz—l)cij (5.30)
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and the constant 4 and B are defined as [59, Chapter 7.3},

AB) = 2" (O)T,,, = ’-‘3—+(n -8)B” (531)
B _ cos (an)
BB = Y @07, 1,00 =2 3 (532)
m = —0 m=1m (1_(2Bm))

Since the value of each term in the above series decreases with mS, we can approximate
the value of B with a few terms.

Figures (5.2) and (5.3) show the simulation results on of the BER degradation of the
proposed technique for two typical interpolation filters in 2-PAM and 4-PAM signals.
We also observe that the BER degradation does not always decrease as the BER
decreases (or SNR increases). The following derivation will provide an explanation.

Recall that because the timing error usually contains two terms: one related to the
SNR due to noise contribution, and the other independent of SNR and due to the

algorithm precision, the BER degradation can be rewritten as,

_ 10
4B 1n(10)

E N
10 | 4v2p8||c+D=2
In(10) N E,

EAC +2BD + 2CBES +ADN°) (5.33)
N, E, '

o

2
(A(B) + —EB(B)j (eA t eN)

In(10)

The equation implies that depending on whether AD or 2BC is dominant, the BER
degradation can increase or decrease with respect to the SNR E(/N,,. It has a lower bound

as

2
Ddeln(lo)(AC+2BD+2A/2ABCD) = (10)(ﬁ + 2BD) (5.34)
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The equality occurs when,

AD
2B

(5.35)

|
)

In [59, Chapter 7.3], it is mentioned that a good STR should yield D 5 about 0.2dB.

Most data-aided feedforward techniques mainly suffer from the algorithm precision and
can only meet this requirement with a relatively long preamble. However, by using a
feedback mechanism to track the information after using the feedforward for parameter

acquisition, this requirement would be released or relaxed.
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Fig. 5.2: BER Degradation for Parabolic Interpolation Filter: (a) 2-PAM (b) 4-PAM
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5.4 Simulation Results

Numerical results obtained by using the analytical expressions in the previous section
show that the timing information can be recovered with a preamble as short as 4 symbols.
This has been confirmed by detailed simulation studies.

Table 5.1 summarizes the parameters used in the simulations:

Table 5.1: Simulations’ Parameters

1 Short burst mode transmission

2 Alternative sequence {+1,-1} as preamble

3 Raised cosine filter with 35% roll-off

4 AWGN channel

5 Signal Sampling rate near to 2 (+/-0.0001)

6 Unknown symbol phase

7 Ey/N, = 5dB, 15dB and 25dB

8 Experimental interpolation filters are Vesma’s interpolation filter II
(M=6), Optimal Parabolic (y=0.4536, Af=4)

Figures 5.4 and 5.5 illustrate the convergence behavior of the timing estimator (TE)
for two different interpolation filters in the presence of AWGN. The timing error
measurement is started when the first preamble symbol enters in the averaging filters. As
seen from the graphs, the estimations converge to the timing errors as the whole preamble
sequences fit inside the filters. The estimated values are better for higher signal-to-noise

ratio (SNR). For low SNR (E,/N,=5dB), short preambles (i.e., N=4, 6) cannot provide

adequate estimated values. Longer preamble length (i.e., N=10 or greater) should be used
to provide better accuracy. For high SNR (&£;/N,=15dB or so), the simulations show that
it is possible to obtain small estimation error with a very short preamble length (N=4).
The convergence behaviors are very similar for all the other fractional delay values.
Timing error variances of the proposed STR for two interpolators are shown in
Figures 5.6 and 5.7. The simulation results of the Vesma interpolation filter are far from
the bounds, and those of the proposed optimal interpolation filter are very close to their

theoretical bounds. It is because the optimal filter satisfies the condition (5.14), but the
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other does not. It also points out that the optimal interpolation with a shorter filter length

can provide the same performance as Vesma’s interpolator with a longer filter length.
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Fig. 5.4: Convergence behavior at different window size N for the parabolic filter



CHAPTER 5. PERFORMANCE OF PROPOSED STR EMPLOYING INTERPOLATORS

0 5 10 15 20 25
Time (in symbols)
(a) E/N,= 5dB

0.151|
~ 0.1
&
)
? 0.05¢
ol
0 5 10 15 20 25
Time (in symbols)
(b) EyN ,~15dB
0.06
_0.04!
5
e
©"0.02}
ol
0 5 10 15 20 25

Time (in symbols)
(©) E/N,= 25dB

Fig. 5.5: Convergence behavior at different window size N for Vesma filter Type II
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5.5 Conclusion

We have analyzed the performance of the proposed symbol timing recovery scheme
for the case of 7j,,,/7=2. Timing estimation error variance is greatly reduced with the
alternative {-1, +1} preamble, and with the appropriate interpolation filters. As predicted,
the simulations show that short preambles help in rapid synchronization because of
shorter length, but are susceptible to multipath and noise. Due to the particular
interpolation filter and the aid of the particular preamble, rapid estimation convergence
can be obtained with as low as 4 symbols. A bound on the estimation error variance has

been derived. Simulation results are close to this bound.



Chapter 6. STR Techniques in Systems

using Oversampling

Sampling at the lowest rate is normally desired in DSP implementation in order to
reduce the operation speed and possibly complexity. As a rule of thumbs, doubling the
sampling rate will double the complexity and slow down the operation clock by a factor
of 2. However, for low-capacity transmission applications in which the operation speed is
not a concern, sampling at high rates provides more samples per symbol interval for
possible performance improvement. This chapter examines the performance of the
proposed techniques for PAM and QAM systems using oversampling. The analytical

results can be used for trade-off between performance and complexity/speed.

6.1 PAM Systems using Oversampling

This section is an extension of the techniques presented in Chapters 3 and 5 for PAM

systems. The techniques are revised to be suitable to higher sampling rates.
6.1.1 Maximum-Likelihood Algorithm for Timing Estimate

Approaches used in the previous chapter can be applied for the case of 7y,,/T; =2>2.

The examined cosine wave 1s sampled as shown in Figure 6.1.

79
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Fig. 6.1: Cosine wave at general sampling rate (for p = 0.3)
It can easily be verified that
x[n] = cos (g(n—u)) +nlrl (6.1)
JE,
A similar formula resulting from ML estimation of timing fraction is given as
N-1
(D7 [ +1]) .
Gl = b - ,Eo __EICED Y [An+id]) 62)
2a Nl o o 2E[D)"y[An+il] |
2% (D rn+i])
n=20
For noiseless or high SNR, the estimate converges to
M72-1
> cq(m) cos(T-c(i - m—u))
([i] > —2==Ml2 r (6.3)
W M-1 '

2 > cy(m)cos Gt(i - m—u))

m=-M/2
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6.1.2 Variance of Error due to Algorithm Precision
The general timing estimation error, normalized to 7, can be written as
M72 -1 -
> cq(m)cos (X(—m—u)>
Y M/2-1 i '
2y cz(m)cos(x(—m—u))
m=-M/’2

For symmetric interpolation filters,

M72 -1

) =‘—L“Jj\/[/zcl(m)cos ((i—m—u)@
= - mAi/%;izcz(m)cos((i—m - u)g\) - cos((i—u)%) + cos((i +1- u)g)
= - M%— 1 c (m)cos((i—m - u);\—t) — 2sin((i— u+ 9;9 sin(%)
m=-M/’2 ? 2
where
M/sz 1 ¢y (m)cos ((i—m - u);\—t-)
m=-M/’2
= A:é_ol (cz(m)cos((i-m - u)’f) te,(-m-— 1)cos((i +m+1- u)?))
= i%_ol cz(m)(cos((i—m—u);—c) + cos((i +tm+1- u)g))

M72-1

2005((1’ + % - u)%) mz::O cz(m)cos((m + 3;}



CHAPTER 6. STR TECHNIQUES IN SYSTEMS USING OVERSAMPLING 82
Therefore, the estimated timing fraction is
- ([ .1 T
sm(Z—Q tan((z + 5 u) ?—)
=i 6.5)
5 TM/2-1 :
2y cz(m)cos((m + 5)@
m=0
Introducing the constant term o
(T
sm(ﬁ)
A = 1 (6.6)
2y cz(m)cos((m + 7—)@
m=90
we can obtain
a[i] = l—atan((i +1_ u)’f) (6.7)
2 2
and the error of the timing estimation in (6.4) can be simplified as
ey = %(u—% + octan((% - );—D) (6.8)
The values of a with different A are shown in Table 6.1.
It can be shown that
R ((1_)@)2 — e A 2
Eley] jo S\ 2—l-octan 5 du _[; 3(x+|3tan(x)) dx
A °n
= AB*—2Bp+C (6.9)
where
B=m=l—3,andx =2
A A4 o 2A
2

— )\r o 2 _ 27\4
A= ;j; tan2(x)dx = -n—3-(tan(xo)—x0)
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= 2\' o :2\' o 2 =
B 3[3 xtan(x)dx_n3f; tan“ (x)dx = 4, for small x|

b |

C=—

Therefore, at a high sampling rate A, B will approach 1, thus an approximately linear

relationship can be given as

o = (6.10)

opt

al>

As we can see in Table 6.1, the approximation becomes accurate for sampling rates
higher than 4. Figure 6.2 shows the decrement of MSE of the estimated timing as the
sample rate A increases. As we can see the error is reduced dramatically as A increases at

the expense of increased complexity and operation speed.

Table 6.1: Optimal o for different sampling rate A

A Actual Approximated Approximation
Lopt e Error

2 0.5511 0.6366 15.51%

3 0.9007 0.9549 6.02%

4 1.2332 1.2732 3.25%

5 1.5597 1.5915 2.04%

6 1.8835 1.9099 1.40%

7 2.2056 2.2282 1.02%

8 2.5267 2.5465 0.78%
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Fig. 6.2: MSE of Estimated Timing versus Sampling Rate A
6.1.3 AWGN Contribution

Using the same approach as in the previous chapter, we derive the variance of the
error due to the Gaussian noise as

M72-1

2 T Q2uey(m) +e)(m))
Ele2] = —0_ m=-M/ 6.11)
N ANE (M2 2 '
s[ > cz(m)cos@-t(— m— u))j
m=-M/’2

The Cauchy-Schwarz inequality shows that
M72-1 M72-1

M72-1 2
[ S cﬁm)cos(%(—m—u))] < Y c%(m) 3 cosz(;—t(—m—u))

m=-M/’2 : m=-M/2 m=-M’2

We can approximate the cos?(x) term by its average value,
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j(l) 0052@—3(— m— u)) du = % + sin(g) cos(z—i—t(m + 9)

M/2-1 M72-1

> cos%%(—m - u)) = > + sin(;—f) > cos(z-%(m + 9)
m=-M’2 n=-M’2
Therefore,
A .
2 1 min 1
E[eN]ZM Y2 5 ) Y 87\’2NE e (6.12)
o sin(z) Y cos(%(m + ED Y c3(m) (E;/N,)
n=-M’2 m=-M’2
where
M72-1 2
M1 z cl(m)cz(m)j
_ m=-M’2
Amin - )y cl(m)— M2~ 1
m=-M’2 Z cz(m)
m=-M/’2

ForA=2orM=kA\,

M72-1

¥ cos(%—:—t(m+9) -0

n=-M7’2

and the bound can be simplified as

1 A
Ele%]> > ; M/z_’;”” (6.13)
m=-M’2

which is consistent with the results obtained in the previous section.
We have noticed that the above lower bound can be applied for any second-order

polynomial interpolation filters.
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6.1.4 Case-Study: Optimal Lagrange Parabolic Interpolators

In this section, we focus our discussion on the proposed STR algorithm using the
Lagrange second-order interpolation filters with A/=4. Bucket and Moeneclaey [39]
introduced a filter optimization approach based on a BER degradation criteria. We will
mathematically show in this case of study the similar results, which were obtained in
[39]. Kim ([49]) showed that minimizing MSE at the symbol detector is very much
equivalent to minimizing the MSE at the timing estimation. Thus, they all infer the
generality of our proposed method over the one proposed in [39].

Applying (6.6) to the Lagrange second-order polynomial interpolation filter, where
cz(_z) = —02(_1) = _02(0) = ‘32(1) =7

we obtain

opt T 3n ”
27(— cos (27) + cos(ﬁD 4ysin(§)

Thus the parameter of the optimal Lagrange second-order polynomial interpolation

in( %
sin (2 )) 1 7_» (6.14)
T

filter for minimizing the symbol timing estimation error are computed as

y = 1 - 1 = 0.25; for A 1is large (6.15)

opt
. (z A (n)
4ocoptsm(}—) 4T—csm -}:

The optimum y converges to 0.25 at a high sampling rate. Table 6.2 shows the optimal

values of y corresponding to several values of . The approximated values are obtained

using the linear approximation of o (Eq. 6.10).

Table 6.2: Optimal y for different sampling rates A

A Actual Approximated Approximation
Vopt Yapt Error

2 0.4536 0.3927 13.43%
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Table 6.2: Optimal v for different sampling rates A

I Actual Approximated Approximation
Yopt Yopt Error

3 0.3205 0.3023 5.68%

4 0.2867 0.2777 3.15%

5 0.2727 0.2672 2.00%

6 0.2655 0.2618 1.38%

7 0.2612 0.2586 1.01%

8 0.2585 0.2565 0.77%

The MSE of the timing estimation for the optimal interpolation filters with A = 2, 4,
and 8 are plotted in Figures 6.3, 6.4, and 6.5. As one can expect from the analysis, the
lower bounds can be reached for the case of M = kA = 4, i.e, A = 2 and 4. This is
confirmed by the plots in Figures 6.3, 6.4. For higher sampling rates, the equality cannot

be held, so that the actual variance is not close to the bound as shown in Figure 6.5.
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Fig. 6.3: Symbol Timing Error Variance (A=2)
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6.2 QAM Systems using Oversampling

The proposed technique can be modified to suit very well the QAM systems, which
are widely used in many applications. This section gives a brief description of joint
estimation algorithms of I and Q channels to improve the performance of the timing
estimation. The analysis and simulations show a 3dB improvement with the new joint

estimation scheme.

6.2.1 Algorithm Derivation \

The ML function used for QAM signals can be refined as follows [59]

N-1
L(L) = max{‘){ 3 a* (H)Zﬁ(H)D (6.16)
n=0
where
R: real part of the number.

a(n) = a;(n) + jaQ(n) is the transmitted sequence and a*(n) = a I(n)—jaQ(n).

Since,
zp(n) = yp(An+i) = Vi, (An+i) +jyﬁ,Q(7m+ i) (6.17)

(f, (3 + 1+ jf, gDhn+ i)
0

|
“M“

[

The ML function can be rewritten as

N-1 L
L(h) = max(i){ D (a](n)—jaQ(n)) > (fl,I[?‘”""il +jfl’Q[7un+i])ﬁlD
n=0 I=0
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L N-1
= max( Oy (al(n)fL [JAn+i]+ aQ(n)fl, Q[?»nJr i])ﬁl]

[=0n=0

L

= max[ Y Elagn)f, [hn+i] +aQ(n)fl’ Q[?m +i]];11j (6.18)
=0 ’

For the same reasons as given in the previous sections, we consider only the second-

order polynomial. The function is maximum when its derivative equals zero. Therefore,

2
d—dﬁL(ﬁNﬁ: L= 3 Blagnfy Dt 1]+ ag(f, plAn +i1] = 0 (619)
[=1

The estimated timing information is given by
N-1

> D, A +il+f plhn+il)
ffi] = —2£=2 (6.20)

-1
23 D I+ il+fy glhn+i])
n=0

B¢ I +il+f g+ D]
2E[(-1)"(fy, [+ il +fy plhn+i])]

n

which is very similar to the expression for PAM signals.

6.2.2 Variance of Error due to Algorithm Precision

The error due to algorithm precision for QAM systems is the same for PAM systems,

M72 -1
> ¢ (m)cos (T—}z(—m—u))

m=-M/2
L+ Y (6.21)

2 Y cy(m)cos (;—t(—m—u))

m=-M/’2

_ 1
€4,04M = €4, PAM %
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For symmetric interpolation filters, we have simplified expression as follows

€4, 04M = €A, PAM = %(u—%+octan((%—u)§)) (6.22)
6.2.3 AWGN Contribution

A similar approach is used in the analysis of the effect of AWGN on QAM systems.

The bound on the error due to noise is

A 02
D) 1 min n
E[eN]ZM 751 ; : M2 1 £ 12
5+ sin(g) > cos(f(m+ﬁ) S c‘%(m)16 AN
n=-M’2 m=-M’2
where
M72-1 2
Mr2z=1 ZM/zq(m)cz(m)J
m = —
Amin - Z cl(m)_ M72-1
m=-M’2 Z cz(m)
m=-M/’2
2 2 2
Oy = On,1" 0,0 =N,
Therefore
1 A_. N
E[e/%/] 2 M72-1 M/2—r;”n 02 (6.23)
a3 ol d) S e
n=-M’2 m=-M’2
For A =2 or M = kA, the bound can be simplified as
A .
1
Ele%]> > M/z_’f”’ (6.24)
m=-M/2

Comparing the bounds for M?-QAM systems in (6.23) and (6.24) with the bounds for
M-PAM systems in (6.12) and (6.13), we observe 3dB improvement for the joint
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estimation in QAM systems.

6.2.4 Simulation Results

This section investigates the proposed STR techniques for 4-QAM systems at the
following sampling rates: 7, /T; = 2, 4, and 8. For all simulations in this section, we
assume a short burst, and a raised-cosine shaping filter with a roll-off factor of 0.35. The
preamble is an alternative {4, -4} sequence with length N. The performance of the
proposed technique is evaluated in terms of the error variance of the estimated symbol
timing and the ISI at the receiver output. The considered parameters are summarized in

Table 6.3.

Table 6.3: QAM Simulation Parameters

1 Short-burst transmission
2 4-QAM systems
3 Alternative sequence {-4, A} as the preamble with length N
4 Raised cosine filter with roll-off factor f = 0.35
5 Sampling rates = 2, 4, and 8
6 With / without AWGN
Without AWGN effects

The first set of results is obtained without considering the effect of AWGN. The
experiments are simulated for different preamble lengths N and different sampling rates
A. The obtained variances are referred as algorithm precision variances. Figures 6.6 and
6.7 show the simulated error variance results of the symbol timing estimation, and ISI
(measured at sampling instant), respectively. As the sampling rate A increases, the error

variance decreases correspondingly. The difference between the expected and simulated

ones is referred as modeling error. This modeling error variance is in the order 107 and

becomes dominant when the symbol timing error gets smaller.
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Figure 6.7 shows the error variances of ISI. As shown in Equation (3.10), the ISI
error is a combination of 1) the error due to the imperfection of the interpolation filter, 2)
the error due to the imperfection in timing estimation, and 3) the AWGN. Because this

simulation does not consider the contribution of AWGN, the ISI error contains only the

first two errors.
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Fig. 6.6: MSE of STR versus preamble length N (without noise)
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Fig. 6.7: MSE of ISI versus preamble length N (without noise)
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With AWGN effects

The second set of simulations considers the effect of AWGN on the system. Figures
6.8 to 6.11 show all simulation results on the error variance of the symbol timing
estimation. Comparing these figures with Figure 6.6 shows that all simulation curves tend
to approach the ones obtained in Figure 6.6 at high signal to noise ratio (£,/N,). In fact,

the curves for £y/N,=20dB in Figure 6.11 is almost identical to the ones obtained in

Figure 6.6. Furthermore, the obtained results of symbol timing error statistics for 4-QAM
systems (Figures 6.8 to 6.10) are very similar the ones for 2-PAM systems (Figures 6.3 to
6.5). As the two systems are predicted to have similar performance (Sections 6.2.2 and
6.2.3), these results agree to the theoretical expectation.

Figures 6.12 to 6.14 show simulation results on the error variance of the ISI
(measured at sampling instant) for several values of average bit energy (£,/N,). The
thick, solid lines are the variance of the injected AWGN, which is denoted as e, If exact
timing estimation and perfect signal recovery can be achieved, this variance is identical to
that of the ISI error. It is thus referred to as an ideal reference. As shown in these figures,

increasing the preamble length N makes the curves closer to the ideal curve.
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Fig. 6.8: MSE of Estimated Timing versus E;/N, for sampling rate ) =2
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I1SI MSE vs Eb/No
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6.3 Conclusion

This chapter presented the applications of the proposed STR techniques to two A-
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PAM and M2-QAM systems. The techniques are generalized in these systems so that they
can operate at any sampling rates. It is shown that sampling at high rates provides more

samples per symbol interval for better performance improvement. In addition, the joint

ML estimator of I and O channels in M?-QAM systems is proved to perform 3dB better
than the one in M-PAM systems. Many analytical and experimental results can be used
for trade-off between performance and complexity/speed.

A case-study of optimal Lagrange parabolic interpolators that minimize timing
estimation errors has been investigated. Simulations have shown that the system performs
very well in the AWGN. It is also interesting to notice that our optimal interpolators are
very similar to the ones obtained in [39]. Since the case-study is only one of our many
possible considerations, it implies that the approach in [39] is only a sub-solution of our

algorithm.



Chapter 7. Conclusion

This thesis proposes the efficient all-digital feedforward STR techniques for linear

modulation schemes M-PAM and M*-QAM, and the design of optimal interpolation
filters. This chapter highlights the key findings and recommends new avenues for future

research which time did not permit in this work.

7.1 Summary of Results

Chapter 2 explains the concept and the structure of the interpolation filters for all-
digital receivers. A low-complexity hardware implementation can be obtained using the
modified Farrow structure for the second-degree, symmetric interpolator. It is proven that
only M/2 coefficients is actually required, compared with 3M coefficients in the original
structure.

Chapter 3 develops the theoretical backgrounds on all-digital symbol timing recovery
techniques that employ interpolation filters. The symbol-timing estimation process,
which is, in most of the cases, based on the maximum-likelihood (ML) concept, is
proposed. Joint optimization of signal detection and timing estimation are discussed.

Chapter 4 discusses the interpolation filters for symbol timing recovery (STR). The
need for an interpolation filter is explained. It is shown that recent conventional
interpolation filters are either not optimal, or suboptimal but not able to be implemented
in on-line computation manners. A new interpolation filter methodology for minimum
mean-square error (MMSE) is introduced to overcome the problems of these filters.
Simulation results are included to show the performance gain, whereas the modified

Farrow structure is given to show hardware complexity gain realizable by the proposed

99
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interpolation filter.

Chapter 5 analyses the statistical performance of all-digital symbol timing recovery
techniques at the sampling rate 7, /7=2. Tracking performance for the synchronization
system employing several interpolation filters are studied. Simulation results are included
to show the correctness of the theory and the analysis.

Chapter 6 provides generalizations of the proposed timing estimation techniques for
PAM and QAM systems. The proposed feed-forward STR techniques employing
interpolation filters can be applied for higher sampling rate to achieve better accuracy,

with the tradeoff in more hardware complexity and possible lower operated clock speed.

In addition, the joint ML estimator of / and Q channels in M?-QAM systems is proved to
perform 3dB better than the one in M-PAM systems. Analytical and experimental results

can be used for trade-off between performance and complexity/speed.

7.2 Topics for Further Research

The following is a partial list of issues for future research.

1. Quantization effect on BER performance. Practical implementations add quantiza-
tion noise to all operations, thus degrade the performance of the STR, and the
overall BER performance. The effect of quantization should be investigated.

2. Fading effects. In general, the scheme should work with multi-path fading; how-
ever, there is performance degradation. Effects of fading should be further studied.

3. Study of the interaction between carrier recovery, symbol timing recovery, and
equalization. When one of three operations (STR, CR, and equalization) is
derived, the other two operations are assumed to be perfect. However, this can
never be true in real systems. The interaction between these three operations for
all-digital receivers should be analyzed.

4. Extensions of the feedforward algorithms to the non data-aided case. Although the
algorithms of this thesis are extensively discussed for data-aided operation, it can
be modified and extended to suit non data-aided (NDA) conditions. The effect of

oversampling rate and interpolation filter on NDA versions would be interesting.
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Appendix A. Some Known Interpolation

Filters

Some known interpolation filters are presented in this Appendix. Many of them are
based on Lagrange polynomials, and shown in Tables A.1, A.2, and A.3. They are widely
mentioned in literature for their simple hardware structure. However, they are not

optimal.

Table A.1: Farrow Coefficients for Linear Interpolation

[=0

=1

k=-1

(o)

—

k=0

Table A.2: Farrow Coefficients for Cubic Interpolation Filter

[=0 (=1 (=2 (=3
k=-2 0 -1/6 0 1/6
k=-1 0 1 1/2 -12
k=0 1 -1/2 -1 12
k=1 0 -1/3 12 -1/6

The piece-wise parabolic interpolation filter can be given as
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Table A.3: Farrow Coefficients for Parabolic Interpolation Filter

=0 =1 [=2

ke=- 0 -y Y
=] 0 v+1 —y

k=0 1 v-1 -~y
k=1 0 -y ¥

Vesma and Saramaki [13] introduce two alternative interpolation filters which were

optimized in the frequency domain.

Table A.4: Farrow Coefficients for Vesma Interpolation Filter I

=0 =1 =2
k=-2 0 -0.6741 0.6741
k=-1 0 1.4542 -0.4542
k=0 1 -0.5458 -0.4542
k=1 0 -0.6741 0.6741

Table A.S: Farrow Coefficients for Vesma Interpolation Filter I1

(=0 =1 [=2
k=-3 0 0.2418 -0.2418
k=-2 0 -0.6449 0.6449
k=-1 0 1.4726 -0.4726
k=0 1 -0.5274 0.4726
k=1 0 -0.6449% 0.6449
k=2 0 0.2418 -0.2418




Appendix B. Unbiased Timing Error

Estimation

B.1 Mean of the Timing Error Estimation

The mean of the estimated timing error can be formulated as

Ele] = [ e(updfin)dn B.1)

If p is uniformly distributed in [0, 1], then pdf{i)=1, and Equation (B.1) become
1,1 1,1 (1l
[e] 2j0u24yan22u 1 (B2)

E[s] = %(%2—%+%ln(cos(g(%— DD 0 -0 (B.3)

B.2 Variance of the Timing Error Estimation

Since the timing error estimation has a zero mean, its variance can be derived as

VAR[e] = [ sX(Wpdf(n)dn B.4)

VAR[] = th Ié(“‘% + %tan(g(é_u)))zdu B5)
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Solving the integral results,

1 /4 1.4863 |, 1
VAR[e] = —(-— 1) _14863, 1 6
32y2 T 4yn? 24 ®.6)

The minimum occurs at,

1.4863
1 b 42
T2 T (;_ ) B.7)
16 \n
L(‘_‘_l
Yoin = %50.4536 (B.8)
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B.3 Bound of the Variance

N-1
T (-1 [2n+i]
e,lu] = 5+ =0 ®.9)
4E{ 5 (—1)”f2[2n+i]:1
=0

n =

1

i N- N-1 2
Z (—1)”f1[2n+i] [Z (—1)”f1[2n+i]j
=0

Ele,[ul] = JE|u?+ u—2=0 o - |®.10)
E{ 3 (—1)"f2[2n+i]} 4[E[ ¥ (—1)”f2[2n+i]D
L n=20 n=0 n
rN—-1 7 N-1 2
E Z (—1)”f1[2n+i] EK Z (—1)”f1[2n+i]j }
Ble [u]] = M+t tn=0 4 _Lw=o B.11)
! 2 2 N=1 7] N-1 2
E| ¥ (-1)fy[2n+1i] 8(E{ D (—1)”f2[2n+i]D
Ln =0 . n=0
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where,
N-1 N-1
E{ 3 (—1)”fl[2n+i]} = Y DE[f[2n+i]] (B.12)
n=20 n=0
N-1 17 N-1M-1
E{ > DYi2etil| = Y Y ¢ (m)(=1)'sin(2n+i—m—p) (B.13)
n=0 . n=0m=0
N-1 27 N-1 N-1
EM D (—1)”fl[2n+i]j = E{ > D" [2n + ] > (—l)Pfl[2p+i]:] (B.14)
n=20 - n=0 p=0

N-1 2 N-1N-1
EK > (—1)”fl[2n+i]j } = Y Y ()TPE[fl2n+ilf[2p+i]]  (B.1S)
n=40

= n=0p=0
M-1 M-1
Elfy[2n+ilf[2p +i]] = E[ Y c(mx(2n+i-m) ¥ cl(k)x(2p+i—k)} (B.16)
m=0 k=0
M~-1M-1
E[fl[2n+l']fl[2p+i]] = > 3 cl(m)cl(k)E[x(2n+i—m)x(2p+i—k)] (B.17)
m=0k=0
E[x(n)x()] = E[(r(n)ﬁlAﬂ))(r(p)JrMAE)ﬂ (B.18)
ELxryx(p)] = r(nr(p) + HL ()] (8.19)

For white Gaussian noise,

Elx(mx(p)] = r(mr(p) + 2—25(’1 -P) (B.20)



Appendix C. Impulse Response of the

Raised-Cosine Filter and Its Derivatives

The impulse response of the raised-cosine function is

) = sin(ne/T) cos(npz/T) C1
g() TCt/T 1—(2BI/T)2 ( )

where 7' denotes the symbol period (7).

The first derivative is

2'(1) = cos(nt/T)cos(nPt/T) Tsin(nt/T)cos(nPt/T) (C2)
2 2 2 ’
1(1-(2Bt71)7) ne (1-(2Pt/ 7))
_Bsin(nt/T)sin(nBt/T)+8B25in(nt/7)cos(n[3t/T)

t(1 - 2Bt/ 1)) 2T(1 - 2Bt/ YD)
whereas,
g2'(0) =0 (C3)
g'(mT) = cos(nm)cos(nﬁm))mio (C.4)

mT(1 - (2pm)*)

o0 e 0] 2 m
> @1y’ =2y @b
= m=1m’(1-(2pm)°)

= B(B) (C€5)

Since the term in the series decreases with m®, the series can be approximated with a few

terms (i.e. m is finite).

114



APPENDIX C. IMPULSE RESPONSE OF THE RAISED-COSINE FILTER AND ITS DERIVATIVES. 115

The second derivative is

g'(1) = —nsin(nt/ T)cos(nBt/T) (C.6)
T1(1 - 2Bt/ 7))
+2Tsin(7tt/Dcos(nBt/7)—ntsin(nt/T)cos(nBt/T)
nf(1- 2Bt/ %)
_27chos(nt/T)sin(nBt/T) n 16B2cos(7tt/7)cos(7tBt/T)

T(1 - 21/ 1)) (1~ 2Bt/ 7))
n 2Bsin(nt/T)cos(nBt/]) 3 8[32 sin(nt/T)cos(nBt/T)
£(1- 2Bt/ TY) Tl — 2Bt/ T)Y)
_mp’sin(nr/TYcos(npt/T) _ B’ sin(nt/ Dsin(nBt/T)
TH(1- 21/ 7)) (- @t/ Yy

+ 12854tsin(nt/T)cos(7rBt/T)
2.3
2l (1- 2Bt/ D))

where,

2

g1 = 3-n)p -L (€7)



