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Abstract 

The major objective of this thesis is to investigate efficient aU-digital symbol-timing 

recovery for burst modems. The study consists of new symbol-timing estimation 

algorithm and new optimal interpolation filters. The proposed feed-forward STR 

algorithms are optimal in the sense of maximum-likelihood estimation. Estimations are 

very accurate and converge rapidly within a preamble length as short as 4 symbols, 

suitable to burst-mode modems. In addition, they can operate at a sampling rate as low as 

twice the symbol rate. The proposed synthesis method of the optimal interpolation filters 

is optimal in the sense of minimum mean-square error jointly in time, and frequency 

domain, and symbol-timing estimation error. 

Mathematical derivations, analysis, simulations, and implemented structures of the 

new algorithms are presented. Oversampling techniques combined with interpolation are 

studied to achieve better accuracy with a cost in increasing implementation complexity 

and lowering operational dock rate. 



Avant-propos 

L'objectif principal de cette thèse est l'étude de systèmes entièrement numériques de 

récupération du temps de symbole (RTS) pour des modems transmettant par salves. 

L'étude consiste à développer de nouveaux algorithmes d'estimation du temps de 

symbole et de nouveaux filtres optimaux d'interpolation. Les algorithmes RTS à action 

directe proposés sont optimaux au sens de l'estimation par le critère du maximum de 

vraisemblance. Les estimations sont très précises et convergent rapidement à l'intérieur 

d'une longueur de préfixe aussi courte que 4 symboles, convenant à des modems 

transmettant par salves. De plus, ils peuvent opérer à un taux d'échantillonnage aussi bas 

que deux fois le taux de symbole. La méthode de synthèse proposée pour les filtres 

optimaux d'interpolation est optimale au sens du minimum de la moyenne de l'erreur 

quadratique conjointement en temps, fréquence et erreur d'estimation du temps de 

symbole. 

Les développements mathématiques, l'analyse, les simulations et les structures 

réalisées des nouveaux algorithmes sont présentés. Des techniques de sur­

échantillonnages combinées à des techniques d'interpolation sont étudiées afin d'obtenir 

une meilleure précision au prix d'une complexité de réalisation accrue et d'une baisse du 

taux d'horloge opérationnel. 
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Chapter 1. Introduction 

The work of the thesis is concerned with aH-digital symbol-timing recovery (STR) 

techniques for burst-mode receivers. We first discuss the burst-mode communications in 

Section 1.1. The discussion is intended as an introduction to get the understanding of the 

need of such communications. Section 1.2 presents a brief survey of symbol-timing 

recovery techniques. Section 1.3 states the motivation for this work. Contents of each 

chapter and our contributions are summarized in Sections 1.4 and 1.5 respectively. 

1.1 Burst-Mode Communication 

Early modems for data communications were first to establish reliable connections 

between two terminaIs using a point-to-point topology. However, user links are not 

always occupied aH the time. For example, an Internet user usuaHy spends most of his 

connection time reading a Web page or typing an email; and thus during this time, the 

modems at both ends of the link must maintain the connection by exchanging unuseful 

data which will be discarded at the receiver. Thus this results in wastes of CPU operation, 

transmission power and link bandwidth. As the number of subscribers has grown rapidly 

in these days, and due to the limitation of bandwidth availability, sharing bandwidth 

among users or multiple access adds another issue into the old access technology. It turns 

out that the continuous access mode cannot provide co st-effective connections. We 

require another specialized kind of modem, a burst modem, that can transmit and receive 

modulated data packets in short bursts. 

Burst modems are recently required for use in time division multiple access (TDMA) 

systems [59, 61]. In these systems, multiple us ers require an essentially continuous 
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connection on a common channel, but the connection is provided by assigning each user 

a periodic time slot to transmit on a channel whose bandwidth is substantially greater 

than that required by any single user. A typical burst consists of preamble (containing 

carrier recovery, symbol-timing recovery training symbol sequences and sorne other 

system specifie symbols) followed by message portion (see Figure 1.1). It can be seen 

that in order to increase the message data transfer efficiency of the system, the length of 

the training section (which is directly proportional to acquisition time) would be as short 

as possible. 

Burst modems are commonly used today in applications such as the GSM, IS-136, 

and personal handy-phone system (PHS) cell phones; multimedia cable network system 

(MCNS) and digital audio visual council (DAVIC) cable modems; very small aperture 

terminaIs (VSA T); packet data networks like cellular digital packet data (CDPD), Ardis, 

Mobitex, and Reflex; and in local multipoint distribution system (LMDS) networks [61]. 

The design trade-offs and resulting architectures are different in each of these 

applications. 

\.:Ji:l1J r .. I------one TDMA _____ .. ~I .... - (no ---1 .. ~I ...... f------one TDMA ____ ---1 .. ~1 
Burst data) Burst 

CR STR 
Unique 

Training Training DATA 
Symbols Symbols 

Word 

CR STR 
Unique 

Training Training DATA 
Symbols Symbols 

Word 

Fig. 1.1: Time Division Multiple Access (TDMA) Bursts 

1.2 Timing Synchronization for Ali-Digital Receiver 

This section presents a brief survey of symbol-timing recovery (STR) algorithms and 

techniques. 

We first consider the implementation aspects. Figure 1.2 shows three possible 

implementations of the existing receivers. In the analog approach (Figure 1.2-a), timing 

information derived from an analog circuitry is used to control the samp1ing clock. In the 
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hybrid approach (Figure 1.2-b), timing pararneter is obtained from the digital processor 

and used to adjust the behavior of the sampling clock. The third approach first converts 

the signal from an analog to a digital format, and all signal processing are done in the 

digital domain. With digital signal processing (DSP), highly complex algorithrns can be 

implemented for better performance and better accuracy. Reproducibility, flexibility, 

independence of temperature and aging are the other benefits offered by DSP. From now 

on, we will only consider the all-digital approach (Figure 1.2-c). 

The vast number of STR estimators can be broadly categorized as either feedforward 

(FF) or feedback (FB) schemes. Feedforward (FF), or open-loop, estimators possess no 

feed-back and consequently, tend to be very well-suited for burst-mode communications. 

Open loop structures possess very short acquisition times and avoid hang-up 

complication faced by their close-loop counterparts. Hang-up is a phenomenon in FB 

topologies which causes them to drift aimlessly for significant periods of time before 

converging to a stable operating point. Occasionally, this equilibrium state differs from 

the true steady-state point giving rise to false lock conditions. The leading drawback of 

all FF estimators, however lies in their inability to track time-varying offsets, seeing how 

each estimate remains fixed until the FF algorithrn is engaged anew. Closed-Ioop systems 

generally experience long acquisition times and may suffer from hang-up, but are 

extremely efficient at tracking time-varying parameters. Continuous and long burst-mode 

systems usually employ feedback schemes. 

Parameters can be estimated independently or dependently. Joint estimation involves 

the optimization of the ML or maximum-a posteriori (MAP) of timing parameter and 

carrier offset pararneter. In general, joint estimators are more complex, but perform better 

than independent estimators. 

The feedforward estimation approach can be implemented with one of the following 

three types: 

1 - Data aided (DA) methods exploit the knowledge of a known pattern (called a 

preamble) to aid timing recovery. Because preambles contain no useful user information, 

they decrease the overall system capacity and as a result, they should be kept as short as 

possible. Works in [44-48] employ the DA techniques. 
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2 - Decision-directed (DD) methods resemble DA techniques except that the symbol 

decisions replace the preamble. Under high signal-to-noise ratio (SNR) conditions, data 

performance is quite good. However, at low SNR, decision errors occur frequently, and 

the performance is degraded. DD techniques proposed by Gardner [58] and Mueller and 

Muller [57] have been used in many DSL (digital subscriber loop) applications. 

3 - Non-data-aided or non-decision aided (NDA) methods require no preamble and 

use the data itself for estimation. NDA methods average the effects of the modulation 

sequence to maximize the effects of the ML function. Sorne works using these techniques 

are presented in [41, 42, and 49]. 

Two objectives of an alI-digital receiver (Figure 1.2-c) are: 

1 - Determination of the symbol timing instant. Since the output of the demodulator 

must be sampled periodically at the symbol rate, at the precise sampling time instants in 

order to correctly recover the transmitted data, the symbol clock must be successfully 

obtained at the receiver. The works in [41], [46], and [47] show fast acquisition can be 

achieved at high sampling rates (4 or 8). Vesma et al. ([44], [45]) and Zhu et al. [43] 

show that timing information can be estimated at a sampling rate as low as twice the 

symbol rate, but with the cost in high complexity and longer acquisition time (from 32 to 

64 symbols). 

2 - Determination of the value of the signal at the correct instant. Since the receiver 

samples the received signal at constant intervals regardless to the actual symbol clock, the 

value of the signal at the correct symbol instants is not available between the discrete­

time samples. This problem can be solved by using interpolation. The idea of 

interpolation is to form an approximating continuous-time signal with the aid of the 

discrete-time samples, and then to evaluate the value of this signal at the desired time 

instant. The usual question when designing an optimal filter can be stated as, "what are 

the feasible considerations and how can we carry out the optimization process?" Many 

published works have extensively discussed the designs of the optimal interpolation 

filters in varied contexts. In general, they can be divided into three different classes. The 

first class of interpolator design consists of the time-domain methods where 

approximating polynomial is fitted to the discrete-time samples. Conventional Lagrange 
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and B-spline interpolations have been used [2 to 4, 51]. The advantage of these methods 

is that the filter coefficients for the Farrow structure are easily available in the closed 

form. In the second class, the coefficients of the Farrow structure are optimized directly 

in the frequency domain [7, 9, and 11]. These approaches are more flexible, and 

interpolation filters with better filtering and frequency-selective characteristics can be 

obtained. However, while they give the optimizations in the contexts of digital signal 

processing, they lack of considerations of other estimations in the communication 

systems. On the other hand, the third class of filter design was proposed mainly for 

considerations of estimations in the communication systems [1, 18, 19, and 39]. These 

methods have the drawback that they do not allow separate optimization such as data 

filtering which is necessary within the system. 
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1.3 Motivation for Research 

7 

The present study exammes the efficient and low-complexity aU-digital symbol­

timing recovery techniques with a very short acquisition time suitable for burst-mode 

PAM and QAM systems. In addition, the effects of interpolation filters to the algorithm 

accuracy are also investigated. Optimal interpolation filters are desired to provide better 

signal processing while they still remain simple structures for efficient implementations. 

Therefore, a new and efficient synthesis of optimal interpolation filters are proposed and 

examined. 
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1.4 Outline of the Thesis 

The outline of the thesis is summarized as foIlows. 

Chapter 2 explains the concept and the structure of the interpolation filters for aIl­

digital receivers. Detailed background on interpolation filters is given and simplification 

of filter structure is studied. A consequent low-complexity hardware implementation can 

be obtained using the modified Farrow structure for the second-degree symmetric 

interpolator. It is proven that only M/2 coefficients are actuaIly required, compared with 

3M coefficients in the original structure. 

Chapter 3 develops the theoretical backgrounds on new, aIl-digital symbol timing 

recovery techniques that employ interpolation filters. The symbol-timing estimation 

process, which is, in most of the cases, based on the maximum-likelihood (ML) concept, 

will be revised in order to improve the interpolation process. Both performance and 

complexity can be simultaneously considered in a joint signal detection and timing 

estimation process. 

Chapter 4 discusses interpolation filters for symbol timing recovery (STR). The need 

for an interpolation filter is explained. It is shown that recent conventional interpolation 

filters are either not optimal, or suboptimal but not able to be implemented in on-line 

computation manners. A new interpolation filter methodology for minimum mean-square 

error (MMSE) is introduced to overcome the problems of these filters. Simulation results 

are included to show the performance gain. 

Chapter 5 analyses the statistical performance of aIl-digital symbol timing recovery 

techniques at the sampling rate Tsym/Ts=2. Tracking performance for the synchronization 

system employing several interpolation filters are studied. Simulation results are inc1uded 

to show the accuracy of the theory and the analysis. 

Chapter 6 generalizes the proposed timing estimation for P AM and QAM systems at 

higher sampling rates. The proposed feed-forward STR techniques employing 

interpolation filters can be applied for higher sampling rate to achieve better accuracy, 

with the trade-off in more hardware complexity and possible lower operated c10ck speed. 
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Results on performance versus sampling rate and preamble length can be used in design 

trade-off and selection of an appropriate scheme for given design requirements. 

1.5 Contributions of the Thesis 

The contributions of this work can be summarized as follows. 

• Derivation of the efficient maximum-likelihood feed-forward timing estimation 

algorithm for PAM and QAM systems for Tsym / Ts = 2 and for high sampling rate 

(Chapters 3 and 6). 

• Derivation of the new optimum interpolation filter that minimizes the MSE of the 

timing estimation, and the MSE of the recovered signaIs in time and frequency 

domain (Chapter 4). 

• Derivation of the modified Farrow structure to reduce the hardware complexity 

(Chapter 2). 

• Development and performance analysis of ML-FF STR techniques for PAM and 

QAM systems for Tsym / Ts = 2 and for high sampling rates (Chapters 5 and 6). 



Chapter 2. Interpolation Filters 

This chapter outlines the theoretical backgrounds and presents the efficient structures of 

the interpolation filters. Section 2.1 briefly presents the sampling issues and briefly 

reviews the reconstruction, interpolation and resampling processes in an aU-digital 

receiver. In Section 2.2, the general structure of the polynomial-based interpolation filter 

is presented. Section 2.3 derives a simplified structure for symmetric polynomial-based 

interpolation filters suitable for low-complexity implementation. Based on the introduced 

structure, the complexity of different arrangements for interpolation and data filters is 

discussed in Section 2.4. The frequency responses of the interpolation filters are derived 

in Section 2.5. Section 2.6 provides conduding remarks. 

2.1 Signal Reconstruction, Interpolation and Resam­

pling 

A modulated signal is normally transmitted over a communications medium in 

ana/og (continuous) format. In alI-digital communication receivers (see Figure 1.2), the 

received signal from the analog front-end induding antenna, RF-to-IF downconversion in 

case of wireless communications, is sampled and converted into a digital format by the 

analog-to-digital converter (ADe). In many applications requiring flexible receiver and 

for low jitter, the sampling dock is generated by a high-precision, low-jitter oscillator. 

The sampling dock frequency is fixed and may not be in synchronization with the 

transmitted symbol frequency and phase. The received digital signal is first processed at 

the sampling rate. In paralIel, the STR uses received samples to derive the symbol dock 

10 
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frequency and phase, and then performs both timing and amplitude adjustment to produce 

received signaIs re-sampled at the correct symbol frequency and time. Amplitude 

adjustment is required because the sample at the correct symbol timing instant is not 

available. This can be done by interpolation based on the available samples and the 

estimated symbol timing instant. 

Figure 2.1 shows an example of a received signal and the relation between Ts and 

Tsym' The continuous curve depicts the analog received signal x(t) before sampling. The 

sampled values at the rate liTs are denoted by crosses (x). The desired samples at the 

symbol rate are shown by the small black circles. It is worth mentioning that the desired 

samples are not available at the sampler output and we want to reconstruct them from the 

available samples denoted by crosses (x). As an example, in Figure 2.1, the sampling rate 

liTs is about 1.5 times the symbol rate Il Tsym' 

Available Samples Oesired Samples 
/" " l ' 

/" " l" 
*----.-~, I_x------*~- ..... \ 

(m-2)T" (m-1)r.\ mTs (m+ 1) T. / (m+2)T. \ 

l .. ,T, t \ ~ l :/:,;. ! ' ! 'f 
1 Time 

(k-1JT.ym 

Fig.2.1: Sample timing relations 

The sampled signal xit) at rate liTs can be represented by 

(2.1) 
n =-00 n =-00 

where x(t) is the analog signal before sampling and x(nTs) are samples denoted by crosses 

(x). 

Derivation of the desired samples at the symbol rate lITsym can be done by 
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reconstructing the analog signal x(t) and then re-sampling the analog signal at rate I/Tsym. 

It is well known that the reconstruction of the analog signal x(t) can be realized by 

filtering the sampled signal xJt) with a bandlimiting interpolation filter, hlt) , and the 

bandwidth of hlt) must be larger than or equal to that of the signal x(t). 

Consider the impulse response ofthe interpolation filter, hlt), defined in an interval [­

ITs' ITs] where 1 is an integer and can be infinity, i.e., hlt) = 0 for aU t outside of this 

interval. The filtered signal can be represented as 

t + ITs 

y(t) = f xi'C)hlt-'C)dr 

where, 

t+ ITs 

f h l(t - 'C )8( 'C - n Ts)d'C 
n = -00 

tlTs + 1 

L x(nTs)hlt-nTs) 
n ~ tiTs-I 

(2.2) 

As we can observe from Figure 2.1, the interpolated output sample y(kTsym) lS 

obtained by sampling y(t) at t = kTsym = (m+J..lVTs. Therefore, 

m + /lk + 1 

L (2.3) 

By introducing i=m-n, - J..lk - 1 ~ i ~ - J..lk + 1 or -1 ~ i ~ 1 - 1 for 0 ~ J..lk < 1, and 

Equation (2.3) can be simplified as 

1 -1 

y(kTsym ) = L x((m - i)Ts)hl(J..lk + i)Ts) 
i =-1 

(2.4) 

The above equation indicates that the desired sample y(kTsym) can be derived by 
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passmg the sequence {x(mTs)} through an adaptive FIR filter hfmTs)' and then 

resampling at the symbol rate Tsym. It also points out that at the time ! = mTs' the 

coefficients of the adaptive filter hAm) will be extracted from the interpolation function 

hA!) at t = (flk+i)Ts. 

For reconstruction without distortion, y(t)=x(t), the ideal interpolation filter has a 

simple rectangular frequency response, corresponding to the impulse response 

hÂt)=sinc(tITs). Figure 2.2 shows the plots of hÂt) = sinc(tITs) at different timing fraction. 

However, this function is not practically realizable. Its time-truncated version (i.e., with a 

finite value of 1), Îs proved to be the optimal function in terms of minimum mean square 

error (MMSE) [57]. 

For resampling, we need the values of hAt) at t = (flk+i)Ts where (flk+i) is a variable 

representing the desired resampling instant to be produced by the symbol timing 

recovery. It is desired to find a low-complexity digital signal processing (DSP) structure 

to generate hA!) as a function of (flk+i) and to perform the interpolationlresampling 

process. This is the subject to be addressed in the following sections. 
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1 : ~-.-.- _ .. , .. -.. -Tl.-----'-.~----T --
/ - h,(J+JI)Ts' JI = 0 

1 

0.5 

o 

-0.5 
-4 -3 -2 -1 0 2 3 4 

1 --~ .----~-- --1 

h,{i+JI)TS' JI = 0.2 

! 
1 

0.51 
1 

1 

1 1[' 

1 

0 1 Cf 
I~ ,1 

--, 
1 

1 ~ 'l' 1 

! 

1 

1 

1 -0.5 I--~-~~ ~ -----

-4 -3 -2 -1 0 1 2 3 4 

Fig. 2.2: Impulse Response of the sincO Interpolator 

2.2 Polynomial-based Interpolation Filters 

Consider h/t) be approximated by a degree-L polynomial function of t = (l-lk+i)Ts' for 

its simplicity, and well-developed algebraic structure, 

L 

h/(i + I-lk)Ts) = l c,(i)l-lk 
,= 0 

(2.5) 
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Substitute into (2.4), the desired sample at kTsym is 

where 

1-1 L 

y(kTsym ) = L x«m - i)Ts) L c/Ciht [ 

i = -1 / = 0 
L 1-1 

= L ~i L x«m - i)Ts)c/(i) 
1 = 0 i =-1 

L 

= L ~[fi(m) 
1 = 0 

1 -1 

item) = L x«m - i)Ts)ctCi) = ctCmTs) ® x(mTs) 
i =-1 

15 

(2.6) 

(2.7) 

The formula shows that sinceft(m) is a result of the convolution, it can be realized as 

an output of a FIR filter as shown in Figure 2.3. 

The result is then decomposed in further step as follows 

L 

y(kTsym ) = L ~fIt(m) 
1 = 0 

= ( ... ( (fL (m ) ~ k + IL - 1 (m ) ) ~ k + IL _ 2 (m ) ) ~ k + ... ) ~ k + 10 (m ) 

(2.8) 

The above equation is expressed in a Horner's relation, and can be realized by the 

simple DSP hardware structure initially devised by Farrow [2], as shown in Figure 2.4. 

The Farrow realization, in general, requires M(L+l) coefficients, thus needs M(L+l) 

multiplications. In the following section, a simplified version for symmetric interpolation 

filter is derived. 
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Fig. 2.3: FIR flIter at the l-th branch 

..J ..\ 0 
0::: 0::: 0::: 
u::: u.. u::: 

E' E' E' 
0..;;;.. ~ ~ ......... .... 

0~0--@--m --.@~G ~ 

t t ----~ 
y(k) 

folk 

Fig. 2.4: Original Functional Diagram of the Farrow Structure 

2.3 Symmetric Polynomial-based Interpolators 

Consider an interpolation filter with an even-symmetric and real-valued impulse 

response l , h(t), 

1 From now on, the notation h(t) will replace h!..t) for simplicity. 
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Hence, 

or equivalently 

L [ 
hk(f.!) = h((k + f.!)Ts) = L c[(k)f.! 

[= 0 

cO(k) = 8(k) 

"L c[(k) = 8(k + 1) 
L.[ = 0 

Cl(O) + c2(0) + 1 = 0 
c l (-l) + c2(-1) = 1 

c l (k)+c2(k) = 0, V(k*-l,O) 

Due to the even symmetry, 

hif.!) = h(k+ f.!) = h(-k- f.!) = h(-k-1 + 1- f.!) = h-k-l(1- f.!), V(k, f.!) 

"L c[(k)f.![ = "L c[(-k-1)(1- f.!)[, V(k, f.!) 
L.[ = 0 L.[ = 0 

17 

(2.9) 

(2.1 0) 

(2.11 ) 

For a second degree polynomial, three points determine the entire curve. We already 

know the value hkCf.!) = 0 for f.! = 0 and 1. The third point will be corresponding to the 

value f.! = 1/2. For this, we have 

(2.12) 

Using the relationship (2.11), the condition (2.12) implies 

(2.13) 

(2.14) 

Equations (2.11), (2.13), and (2.14) indicate that we only need to determine c2(k) , 

k=0, ... , (11-//2-1). Thus, only M/2 unknowns are required to realize this special Farrow 

interpolator filter, and only M/2 multipliers are needed in hardware implementations. 
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Furthermore, the interpolation filter response (2.5) can be rewritten as 

and 

1 2 
h(k + fl) = L/t(k)fl = co(k) + cl (k)fl + c2(k)fl 

= 8(k) + (8(k + 1) - 8(k) - c2(k»fl + c2(k)fl 

2 
= 8(k) + (8(k + 1) - 8(k»fl + c2(k)(fl - fl) 

Equation (2.7) can be simplified as 

fo(m) = x(m) 

M12-1 

fl(m) = L x(m-k)cl(k) 
k= -MI2 

M12-1 

L x(m-k)(8(k+ 1)-8(k)-c2(k» 
k = -M12 

= x(m+ 1)-x(m)-f2(m) 

M12-1 

f 2(m) = L x(m - k)c2(k) 
k = -M12 

M12-1 -1 

2 

L x(m - k)c2(k) + L x(m - k)cik) 
k = 0 k = -M12 

M12-1 

L (x(m-k)+x(m+k+ 1»c2(k) 
k=O 

18 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Therefore the Farrow structure can be modified as shown in Figure 2.5 with only M/2 

coefficients. 



CHAPTER 2. INTERPOLA TION FILTERS 19 

x(m+/) 

Fig. 2.5: Modified, Low-Complex Farrow Structure for L=2 

2.4 Arrangement of Interpolation and Detection Filters 

and Complexity Issues 

A recelver always includes filtering to reject out-of-band, unwanted nOIse and 

interference. For example, in a linear bandlimited A WGN channel, it is weIl known that 

the root raised cosine filter as an optimum detection filter [60]. Figure 2.6 illustrates the 

possible arrangements of the interpolation and data filters. In general, the data filter in 

this figure can represent cascaded filters for noise and interference rejection. For a linear 

system, the three arrangements provide the same performance. This section addresses 

their implementation complexity. 

ln Figure 2.6 (a), the data filter operates at the sampling rate prior to interpolation. In 

Figure 2.6 (b), the data filter follows the interpolation filter and operates at the symbol 

rate. In both the se separate structures 1 & II, the data filter and the interpolation filter can 

be separately optimized; thus independent, simplified optimizations can be applied. 

ln the hope of reducing the complexity, sorne papers [32], [33] have considered the 
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cornbined structure in which the data filter is now cornbined with the interpolation filter 

as shown in Figure 2.6 (c). However, it is interesting to show that with the special 

structure proposed in the previous section, in sorne particular considerations, designs with 

lower cornplexity for the separate case can actually be obtained. The detailed discussions 

are provided in the following sections. 

x(t) 

x(t) 

x(t) 

Data Filter 
g(t) 

a) Separate Structure 1 

Interpolator I---.J 
h(t) 

Il 

STR 

b) Separate Structure Il 

Combined 

Data Filter 
g(t) 

Data Filter & z(k) 
Interpolator 

c(t) 

Il 

c) Combined Structure 

Fig. 2.6: Three different arrangements of interpolation filters 

For a cornbined filter, 

c(t) = h(t) ® g(t) 

C(f) = H(f)G(f) 

(2.19) 

(2.20) 
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where, 

h(t), H(f) 

g(t), G(f) 

impulse and frequency response of the interpolator 

impulse and frequency response of the data filter 

2] 

c(t), C(f) impulse and frequency response of the combined filter 

If h(t) and g(t) are time-limited in [-ft Tsym' ft Tsyml and [-12Tsym' hTsyml respectively, 

then the overall response is time-limited in [-(ft +h)Tsym, (11 +h)Tsym]. 

2.4.1 non-symmetric g(t): 

ln the separate case 1 in Figure 2.6 (a), since g(t) operates at the sampling rate liTs, 

the discrete-time implementation version of the data filter g(t) needs (211,11 + 1) 

coefficients, where À is the sampling-to-symbol rate ratio. Therefore, the total complexity 

for the separate case 1 will be (211,11 + 1 +12) coefficients. 

ln the separate case II in Figure 2.6 (b), g(t) operates at the symbol rate I/Tsym' 

Hence, the discrete-time implementation version of the data filter g(t) needs (21] + 1) 

coefficients. The total complexity for the separate case II will be (2ft + 1 + h) coefficients. 

The combined case using the Farrow structure requires 2(L+ 1 )(11 + h) coefficients. 

The modified interpolator structure becomes more efficient than the combined filter 

when the numbers of coefficients required in the separate cases 1 and II are less than the 

one required in the combined case. 

F or the separate case l, 

211,1] + 1 + 12 < 2(L + 1)(11 + 12), L 2: 2 

2(11, - (L + 1 »1] + 1 < (2(L + 1) - 1 )12, L 2: 2 

(2.21 ) 

(2.22) 

As we can see, ev en with L=2, the inequality (2.22) still holds true for aIl ft and h 

when 11,=2 (i.e., lowest sampling rate). For the higher sampling rates (11,>4), the separate 

structure 1 can still be efficient if we can arrange the lengths of the filters so that the 

inequality in (2.22) is met. 
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For the separate structure II, 

211 + 1 + 12 < 2(L + 1)(11 + 12) 

1 < 2Ll1 + (2L + 1)12 

22 

(2.23) 

(2.24) 

As we can see, the inequality (2.24) holds true for all ft > 0 and h > o. Thus the 

structure II is always more efficient than the combined case. 

2.4.2 symmetric g(t): 

When the data filter g(t) is symmetric, its discrete-time implementation for the 

separate case l requires only (/.]1+1) tap coefficients, while for the separate case II, it 

requires (11 + 1) tap coefficients. Therefore, the total complexity for the separate case l 

will be (/"ft+1+h) coefficients, and the separate case II, (11+1+12). 

As g(t) and h(t) are both symmetric, the total response c(t) is also symmetric. Vesma 

[9] introduced the modified Farrow structure for symmetric interpolator to save half of 

the coefficients. The combined case using the Vesma-Farrow structure thus requires only 

(L + 1 )(11 + h) coefficients. 

For the separate structure l, in terrns of complexity, the modified interpolator 

structure becomes more efficient than the combined filter (using Vesma-Farrow 

structure) when 

')..11 + 1 +12 «L+ 1)(11 +12) 

(Î\' - (L + 1 ))11 + 1 < L12 

(2.25) 

(2.26) 

Even with L=2, the inequality (2.26) ho Ids true for every Il and h when À=2. 

Therefore, the separate structure is more efficient with the modified Farrow structure at 

the lowest sampling rate. For the higher sampling rates (À>4), the separate structure can 

still be significantly efficient if we can arrange the lengths of the filters so that the 

inequality in (2.26) is met. 
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F or the separate structure II, 

(2.27) 

(2.28) 

As we can see, the inequality (2.28) holds true for an h > 0 and 12 > O. Thus, the 

structure II is always more efficient than the combined case. 

2.5 Frequency Response of Polynomial-based Interpola­

tion Filters 

The impulse response of the polynomial-based interpolation filter can be written as 

(2.29) 

where Mis the length of the filter, L is the degree of the interpolation, c,(k)'s are the 

coefficients of the Farrow structure. 

The frequency response denoted by H If) is 

M12-1 
Hl!) = [00 h I(t)e-j2rcfldt = L (s h lkTs + t)e -j2rcf(kTs + t) dt 

k = -M12 

MI2 -1 L 
HI(/) = L L c,(k)e-j2rc/kTsTsf>le-j2rc[ridt 

k = -M121 = 0 

Define 

a = -j2nfT/ 
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where 

1 eU-I 
1(0, a) = Jo euudu = -a-

It follows that 

where 

MI2 -1 L 

Hl}) = L L cI(k)B(l, k,f, Ts) 
k = -M121 = 0 

( 
-j2nfT(I-1 . J B(l, k,f, T) = Te -j2nfkTs e. s" l!(-I?I 

S s -j2n:jT . L.. (-·2 :jT )/(/- .)' SI=O jn s l. 

+ (-I)ll! (e-j~nfTs-IJJ 
(-j2nfFsi -J2nfFs 

Equations (2.30) and (2.31) are true for aH polynomial-based filters. 

24 

(2.30) 

(2.31) 

For the specific case of second-order symmetric polynomial filters, their frequency 

response can be further simplified as follows, 

M12-1 M12-1 

k = -M12 k = -M12 

M12-1 M12-1 
=B(O,O)+ L (8(k+I)-8(k)-c2(k»B(1,k)+ L c2(k)B(2,k) 

k = -M12 k = -M12 

M12-1 
= B(O,O)+B(1,-I)-B(1,O)+ L (B(2,k)-B(1,k»c2(k) 

k = -M12 
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M12-1 

= B(O,O)+B(1,-l)-B(1,O)+ L (B(2,k)-B(1,k))c2(k) 
k=O 

-1 

+ L (B(2, k) - B(1, k))c2 (k) 
k = -M12 

M12-1 

= B(O,O)+B(1,-l)-B(1,O)+ L (B(2,k)-B(1,k))c2(k) 
k=O 

M/2-1 

+ L (B(2,-k-l)-B(1,-k-l))c2(-k-l) 
k=O 

= B(O,O)+B(1,-l)-B(1,O) 

M12-1 

+ L (B(2,-k-l)-B(1,-k-l)+B(2,k)-B(1,k))c2(k) 
k=O 

where we adopted the following abbreviation,B(l, k) = B(l, k,f, Ts) 

2.6 Conclusion 

25 

(2.32) 

Based on the general Farrow structure of polynomial-based interpolators, a simplified 

version for symmetric cases was derived. The modified structure only needs M/2 

coefficients as compared to a requirement of 3M coefficients in the original structure. 

With this modified structure, it is shown that a separate arrangement with an interpolation 

filter followed by a symmetric data filter operating at the symbol rate is the most efficient 

one in terms of complexity. This separate arrangement is much simpler than the 

combined interpolation and data filter structure proposed in [32] and [33]. The frequency 

response of the interpolation filter was derived to be used in the optimization process in 

Chapter 4. 



Chapter 3. Digital STR Employing Inter­

polation Filters 

This chapter develops the theoretical backgrounds for the proposed aU-digital symbol 

timing recovery techniques that employ interpolation filters. 

3.1 General Structures 

Figure 3.1 shows a simplified block diagram of a typical aU-digital receiver with 

emphasis on the symbol timing recovery (STR). The received digital signal is first 

processed at the sampling rate. In paraUel, the STR uses received samples to derive the 

symbol clock frequency and phase, and then performs both timing and amplitude 

adjustment to produce received signaIs re-sampled at the correct symbol frequency and 

time. The timing adjustment can be done by a combined feedforward estimation and 

feedback tracking structure as shown in Figs. 3.1 and 3.2. 

The feedforward timing estimator (FF-TE) block in Fig. 3.2 is one of the main 

subjects of this work to be discussed in detail in the subsequent sections. Its function is to 

estimate the correct symbol timing instant ).1. Performance of this block can be 

represented by its estimation accuracy and time required to achieve the accurate estimate. 

Estimation accuracy can be further represented by the mean squared error (MSE) for 

various channel signal-to-noise ratios. The time required to achieve the accurate estimate 

can be called acquisition time and is an important parameter for burst transmission of 

packets. Short acquisition time needs short overhead bits and hence offers high 

26 
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transmission efficiency, especially for short data packets/cells. For this reason, fast 

feedforward estimation technique is preferred. In systems using long bursts with 

considerable variation in symbol timing frequency and phase over the burst interval, 

trac king and correction of timing error is necessary by using a feedback timing error 

detector (FB-TED) block as shown in Fig. 3.2. Many good algorithms, such as Muller 

and Mueller, Gardner feedback symbol timing recovery [57, 58], can be used to 

implement this FB-TED block. The correct timing instant is the angle of the symbol 

clock signal and hence a linear function of the estimated frequency and phase. It is 

generated by the parameter updater in forms of a numerically controlled oscillator (NCO) 

as shown in Fig. 3.3. Figure 3.4 illustrates the operation of the STR by a finite-state 

diagram with 4 states: search, lock, unlock, and normal. 

The STR starts in its search state by looking for the preamble from the received 

sequence and derives the timing instant by using a feedforward estimation scheme. When 

the timing instant has been established, the STR gets in its lock state. The acquisition 

process is assumed to be fini shed and the timing information ~ is loaded to the NCO. The 

feedforward estimator is then de-selected and the feedback tracking loop is kicked in by 

the MUX in Fig. 3.3 in the normal state during the information part of the burst. 

In the normal state, the value of ~ is updated with the timing error e k provided from 

the TED. The updated value is kept to be in the range [0, 1] by the mod-l operator. If it 

becomes negative, the mod-l operator will add 1 to the value and flag overjlow=1 for one 

period. If the value becomes larger than 1, the mod-l operator will reduce it by 1, and 

flag overflow=1 for one period. The design shown in Fig. 3.3 is for the case of Tsym about 

twice Ts' Hence, the down-sampler produces the sample at symbol rate (l/Tsym) by 

selecting one of the two samples at the sampling rate (lITs). The selection of this odd or 

even sample is controlled by the mod-2 operator based on the status of the updated value 

of~. 

The end of the Tx burst is detected either by its length or power detection to re­

activate the feedforward estimator during the unlock state. The cycle of 4 states is 

continued. 



CHAPTER3. DIGITAL STR EMPLOYING INTERPOLATION FILTERS 

Fixed 
Clock Ts 

'""'I-I--------operate at clock T--------1.~I ... --operate at clock Tym 4 

Fig.3.1: Simplified block diagram of an ali-digital receiver 

Il on/off 

FB-TED 

Fig.3.2: Components of the symbol-timing recovery block 

D 

0/1 

Fig. 3.3: A simple parameter updater 

28 
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Fig. 3.4: A simple control state diagram 

3.2 Representation of Received Baseband Signais 

We consider a baseband component received from a pulse-amplitude modulated 

(PAM) transmitter. The main system assumptions are summarized in Table 3.1. The 

baseband component received at the matched filter output is given by 

(3.1) 

where 

an: Baseband transmitted symbol, which is a known symbol used in the 

preamble for timing estimation, and a random symbol in the information part. 

Tsym: Symbol period. 

"t: Unknown symbol phase or time delay due to either channel delay or 

sampling dock; 0 ~ "t < Tsym . 

g(t): Baseband pulse. In most practical design, this pulse lS the impulse 

response of a raised cosine filter [59], 

g(t) = sin(7tt I Tsym ) cos(P7ttITsym ) 

7tt l Tsym 1-(2Pt I T
sym

)2 
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where p is the roll-off factor. 

l1(t): Filtered noise after the matched filter, i.e., root raised-cosine filter. In most 

cases, it is modeled as an additive Gaussian noise. 

Eb: Bit energy. 

A typical received PAM signal burst is shown in Figure 3.5. 

1-- ------r------

1.5 L 

o 10 20 30 40 

Fig. 3.5: Typical P AM-2 burst 

In this chapter, we assume the symbol rate is known and the sampling interval is Ts = 

0.5 Tsym' However, the symbol phase is unknown, but constant during burst. In most 

practice, the difference in frequency between the sampling and transmitted symbol clocks 

is within a required tolerance, e.g., 0.01 % [49]. 

Table 3.1: Assumptions for the proposed STR 

1 Data is transmitted in burst-mode, and modulated in PAM signal. 

2 Pulse shaping filter is a raised cosine filter 

3 A WGN channels 

4 Known signal sampling rate (Tsym/ Ts) is close to 2 

5 Symbol Clock phase is unknown, but constant during bursts 

For the sake of simplicity in synchronizer's operation, in all cases the baseband pulse 
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g(t) can be approximated as [59, Chapter 2.2.3] 

g(t) = { (1/2)(1 + cos(1ttITsym )) forltl < Tsym 

o otherwise 
(3.2) 

We can verify that, for the alternative input sequence an=(-1)n, the signal portion in (3.1) 

becomes 

n 
x(t) = Ln(-l) g(t-1-nTsym ) 

= L2
n

g (t - 1-2nTsym) - L2
n 

+ 1 g(t - 1 - (2n + 1 ) Tsym ) 

= COS(1t(t- 1) 1 Tsym ) 

Therefore, the received signal can be simplified as 

(3.3) 

3.3 Maximum-Likelihood Estimation Technique 

The received signal in Equation (3.1) is sampled at rate liTs to produce a sampled 

version 

(3.4) 

where 1 is the unknown timing delay (0 ~ 1 < Tsym ) to be determined. We limit the 

discussions to the case TsymlTs = À, where À is an integer. The timing delay can be 
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expressed as 

T=iT+IIT s r s 

o :::; i < À, and 0:::; /.1 < 1 
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(3.5) 

(3.6) 

where i is an integer timing interval and /.1 is a timing fraction. Therefore, the samples can 

he given hy 

(3.7) 

The target of this work is to find the unknown timing delay T, or equivalently the 

timing fraction /.1. The discrete version is then passed through an interpolation filter 

h~(kTs) = h«k + Çt)Ts) in order to reconstruct the signal at the estimated timing instant 

Çt. The reconstructed signal output (without noise) will he 

(3.8) 

Given that the symhol detection will need to down-sample the sequence y«k+m)Ts) with 

the rate of À at the correct timing delay, the output after the downsampler at time instant 

-t = (i + Çt)Ts will he 

(3.9) 

Suhstituting (3.7) and (3.8) into (3.9), we ohtain 

~ 11 (nTsym ) 
Zn(T) = L L am g(nÀTs-mlTsym-(m2+/.1))hp.(m2Ts)+ fil 

ml m2 1 . ,yEb 

In the ideal case, if h(t) is an interpolation function, and timing information can he 
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recovered such that -t = 1" or equivalently Çt = f.L, then 

~ _ ll(nTsym ) 
Zn(1")lt=,=Lm\am\g(nTsym-mITsym)+ JÏfh = an+e ll 

For an impulse response g(t) satisfYing the ISI-free (Nyquist) conditions, i.e., g(kTsym)=l 

for k=O and =0 for non-zero k, the detected symbol at the timing instant -t will be 

(3.10) 

where, ~t = t - -t denotes the timing error; eh (-t) denotes the imperfection interpolation 

error caused by the interpolation function h(t); eIS/...~t) denotes the inter-symbol 

interference (ISI) error due to the imperfection of timing estimation; and e 17 denotes the 

error due to the A WON. If exact timing and perfect interpolation filter can be obtained, 

eh(-t) and eIS/...~t) are negligible. Therefore, for the sake of simplicity, we can assume 

only Gaussian noise e 17 would contribute towards the performance of the symbol 

detection process. 

Assuming -t = t for perfect synchronization, an optimal detection is to recover the 

sequence a={ao, ab".' aN-d from the noisy sequence z(t)={zo(t), zl(t), ... , zN_let)} with 

minimum error probability. Therefore, given that a sequence of N symbols is transmitted, 

the detection process can be summarized as 

max(p(alz(t») = ma?-(z(t)la)p(a) = max(p(z(t)la» 
p(z(t» 

(3.11 ) 

in which we assume equally probable data sequence, and the distribution of z( t) is 

independent to the detection process. The data-aided maximum likelihood (ML) timing 

estimation is 
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= max( -llz( -r) - a11 2) 

= max(_"N-l Z2(-r) + 2"N-l a Z (-r) _ "N -1 a2) 
~n = 0 n ~n = 0 n n ~n = 0 n 

Since the sequence {an} is known, and {zn(-r)} is independent of the detection process, 

we can simplify the maximum-likelihood (ML) equation as 

(3.12) 

3.4 Derivation of the Proposed Aigorithm 

This section presents the timing estimation algorithm based on (3.12). Because most 

receivers now preferably operate at the lowest sampling rate, in this section, the 

feedforward, ML timing estimation algorithm is only discussed for the sampling rate of 2 

and PAM systems. However, the algorithm is applicable to higher sampling rates and 

QAM systems, and will be discussed in Chapter 6. 

Recall that the output of the interpolation filter is a function of p. . 

L L M/2-1 

YÇt[n] = L fi[n]Çt' = L L ctCm)x[n-m]ÇtI (3.13) 
1 = 0 1 = 0 m = -M /2 

Following from (3.9), the output after the downsampling of2 will be, 

zÇt[n] = YÇt[2n + i] (3.14) 

where i = 0 or 1. Therefore, the ultimate goals of an interpolation-based STR are: 

1. To detect in which sampling interval, a correct symbol detection can be taken. This 

will be corresponding to finding the appropriate value of i (0 or 1). 

2. To detect the correct timing information J.l for best signal reconstructing from the 

interpolation filter. 

These two goals will be proceeded with the optimal criterion as described next. 

Substituting (3.13) and (3.14) into (3.12), the ML function for the i-th sampling 

interval is 
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N-l L 

Lj(Çt) L an L fi[2n + i]ÇtI 
n=O 1=0 

L 

L ÇtIE[a,j[[2n + il] 
1 = 0 
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(3.15) 

Since the alternative sequence, a[n]=(-l)n, is applied as the training symbols in order to 

improve the estimation process (Section 5.2), the likelihood function becomes 

L 

L/Çt) = L ÇtIE[(-l)nfi[2n + i]] 
1 = 0 

(3.16) 

With the structure shown in Figure 3.1, for every symbol period Tsym = 2Ts' the STR 

algorithm will generally generate two values of Çt 1 and Çt2 for the time intervals [2k, 

2k+ l]Ts and [2k+ 1, 2k+2]Ts respectively. However, there exists only one maximum point 

for (3.16) in [2k, 2k+2]Ts (Section 5.2), which corresponds only to either Çtl or Çt2' This 

raises the question, "What is the appropriate method to select the correct Çt?" Sorne 

authors ([44]) suggested that the correct Çt would be the one that gives a greater value of 

Lj(Çt). However, this requires one more step of complex computation of Lj(Çt). This 

section presents another approach that can directly give the value of Çt without 

computing L j( Çt) . 

Second-order polynomial is used to approximate the likelihood function in (3.16) for 

its simplicity. The main disadvantage of using second-order polynomials is that, in 

general, a low-order polynomial cannot offer a reconstruction quality as good as higher 

order polynomials. However, as to be shown in Section 5.2, second-order interpolators 

can offer as good signal quality as the third-order one in reconstructing the sine 

waveforms. Furthermore, as shown Section 2.3, symmetric second-order interpolators 
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order polynomials is that their single maximum or minimum points are very simple to 

calculate. Higher order polynomials usually have more than one extreme points and the 

solutions require highly complex implementation. Furthermore, as to be shown in Section 

5.2, for the likelihood function (3.16), there exists one and only one maximum point in 

the entire [2k, 2k+ 2] Ts intervals. Thus, the second-order polynomial is the simplest and 

best approximation. 

By letting the derivative of the ML function equal to zero, we can find the maximum 

value of the ML function, i.e., 

2 

~L/Çt)1 = L /ÇtI-lE[a,/i[2n+i]]1 ° 
8J.l ft = fl 1 = 1 ft = fl 

The solution of this equation is the estimated timing phase information, 

N-l 

L (( -l)nf 1 [2n + i]) 

~[i] = 
n=O 
N-l 

2 L ((-l)nf 2 [2n + il) 
n=O 

E[ (-l)nf 1 [2n + i]] 

2E[(-1)nf2 [2n + i]] 

(3.17) 

(3.18) 

Because there exists one and only one extreme in the interval [2n, 2n+2]Ts' n=O,l, ... , the 

estimation at the extreme infers that: if at the interval [2n, 2n+ 1] Ts' we get the maximum, 

i.e., 0.:::; Çt[0].:::; 1, then the value of Çt[1] calculated during the interval [2n+1, 2n+2]Ts 

must be the extreme point of the interval [2n, 2n+1]Ts, i.e., Çt[1] É [0,1]. Theoretically, 

we want to have the distance between estimated values as far as possible so that under 

noise contribution, the detection algorithm will result in only one distinct correct 

estimated timing. Thus, the necessary condition for good decision-making is 

1Çt[0] - Çt[ 1]1 2 1 (3.19) 

It has been shown that for the raised cosine filter impulse response g(t) , and the 

transmitted altemating {+A, -A} data sequence, the output of the matched filter at the 

receiver can be represented as a cosine waveform with the Gaussian noise component 
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x(t) = COs(~(; - ~)) + l)~ 
2 S A/Eb 

(3.20) 

where f.l is uniformly distributed in [0,1). Figure 3.6 shows the continuous output example 

when f.l=0.3. The discrete signal at every sampling period nTs is 

where we ignore the time unit Ts in the expression of x[ n]. 

1 c----:c.~-------,---- -----,--~-- - - -----,-- ---- ----------

j.l= 0.3 

0.5 " (\I~ 1 

l' : . 
l ' 
1 : 

, 

o - --- ------- -- ____ ~ _____ l, , --1--;---- -
311 s , . 4Ts~2Tsym 

Recall that, 

-0.5 

! 

\(1 
'-

1/ 
t 

-1 --- -------- ---------,-- ------------
o 2 3 

Fig. 3.6: Cosine wave at sampling points 

M12-1 

f/[2n + i] = L x[2n + i - m]ctCm) 
m = -M12 

Substituting (3.21) into (3.22), we have 

4 

(3.21) 

(3.22) 



CHAPTER 3. DIGITAL STR EMPLOYING INTERPOLATION FILTERS 38 

[ 

M 12 - 1 ( ( ) 11 [2n + i - m ]] ] 
E[(-l)nfi[2n+i]]:::E (_l)n L cos ~(2n+i-m-ll) + lE c/(m) 

m = -M12 Aj"-'b 

M12-1 

E[(-l)nft[2n+il]::: L C/(m)E[(-l)nCOS(~(2n+i-m-Il))J 
m = -M12 

M12-1 

E[(-l)nft[2n + il]::: L ctCm)Cos(~(i - m-Il)) 
m = -M12 

(3.23) 

(3.24) 

Therefore, for the case of no noise or high SNR, the timing phase estimation in (3.18) 

converges to 

M12-1 

L cl (m)cos(~(i - m-Il)) 
m = -M12 

M-I 

2 L C2(m)Cos(~(i - m-Il)) 
m = -M12 

(3.25) 

For the sake of simplicity in measuring the error, one should remove the ambiguity 

that the decision interval iTs might cause. By examining the waveform of x(t) in Fig. 3.6, 

we can see that the maximum point lies in the interval [0, Ts]; thus the ML algorithm 

must choose this as a valid interval, i.e., i=O. The timing estimation error (normalized to 

Tsym) can be given as 

e = 
"C 

(3.26) 

This approximation is in general form which can be applied for any structure of 

interpolation filters. In the next section, we will introduce an alternative, simpler version 

of eT for the separate interpolation filters. This general form can be used to study the 
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boundary of the error of the estimation or to provide constraints on the design of second 

order polynomial interpolation filters with respect to (3.19) and to minimize the MSE of 

the timing estimation. 

3.5 MSE in symbol-timing estimation of sorne second­

order interpolators 

Equation (3.26) is used to compute the MSE in timing estimation of the following 

interpolation filters. 

1 - The piece-wise parabolic interpolation filter with y = 0.5. 

2 - The piece-wise parabolic interpolation filter with y = 0.45. 

3- Vesma's optimal interpolation filter 1 for M= 4 (Table A.4) [13]. 

4- Vesma's optimal interpolation filter II for M= 6 (Table A.5) [13]. 

Table 3.2: MSE of timing estimation 

Interpolation Filters MSE 

Parabolic with y = 0.5 2.7xlO-4 

Parabolic with y = 0.45 0.8xlO-4 

Vesma Interpolation Filter I 8.9xlO-4 

Vesma Interpolation Filter II 1.0x 10-4 

The results in Table 3.2 indicate that the Vesma Interpolation Filter 1 yields the 

highest MSE. The parabolic with 4 tap-Iength (y=0.45) has a better MSE than Vesma's 

Filter II with 6 tap-Iength. 

The above results motivate a further investigation on how to optimize the Lagrange 

parabolic filters to achieve the minimum MSE for timing estimation. 

Following from (3.25), the estimation of Il for the second-order Lagrange interpolator 
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is evaluated as 

(1 - 2y)COS(~(i-Il)) - (1 + 2y)sin(~(i-Il)) 
~[i] ~ (3.27) 

or 

(3.28) 

A[.] 1 1 (n(. 1)) Il 1 ~ - - -tan - 1-11 + -
2 4y 2 2 

(3.29) 

The symbol timing estimation error, normalized to Tsym' is given as 

Ts 
A 1( 1 1 (n(1 ))) e = --(Il-Il) = - Il--+- tan - --Il 

T T 2 2 4y 2 2 sym 
(3.30) 

The variance of this timing estimation error is 

VAR[e ] = _1_(~ _ 1) _ 1.4863 +.1 
T 32y2 n 4yn2 24 

(3.31) 

and its plot is shown in Figure 3.7. The S-curves for two cases, y = 0.5 and Yoptimal = 

0.4536, are plotted in Figure 3.8. 

We will have to verify the condition given in (3.19): 

(3.32) 

(3.33) 

where la+~1 ;:::2, \I(a ER). 
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Therefore the given condition can be always satisfied when 1/(2y) > 1, or y < 1/2. 

Thus the optimal value also satisfies the condition given in (3.19). 

10-4 

0.3 

0.02 

0.01 

o 

-0.01 

~ .... - ----T-·----,-------------~···· 

____ ~ ____ . _ . __ . __ l _____ --'-----_~ __________ l ____ _ 

0.4 0.5 0.6 
Y 

0.7 0.8 

Fig. 3.7: MSE of timing function versus y. 

1 ---------, ----,-------------------T-------

1--. '. ~------- -·--1 
1 -- Yopt-0.4536, 1 

1 . 

___ y=0.5 1 

-._ ... _-----------~ 

1 

1 

1 

1 

1 

J 

-0.02 
'\ 1 

______ ---"---_L _____ ~ ______ J 
o 0.2 0.4 f.l 0.6 0.8 

Fig. 3.8: Symbol Timing Error versus Il. 

0.9 
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3.6 Estimation of Symbol Frequency 

The proposed algorithm in Section 3.4 was presented with an assumption that Tsym/Ts 

is an integer. In practice, this ratio (Tsym/Ts) is rarely an exact integer. In the case of non­

integer Tsym/Ts' the proposed algorithm will be applied first, and other successive 

estimates are needed at later steps to track the fluctuation of the symbol frequency with 

time. 

Define the following relationship 

(3.34) 

where, À is an integer, and I1À is fractional. Assume at the rn-th and n-th sampling time, 

we measure the k-th and I-th symbol time (Figure 3.9), 

(3.35) 

(3.36) 

For P= n-rn and Q= l-k, it is easy to show that 

(3.37) 

In the case of single step or Q= l-k = 1, the equation can be simplified as 

(3.38) 

We notice that the result in (3.37) is the average of (3.38) over the window size Q: 

(3.39) 

Equations (3.37) to (3.39) can be used to estimate the symbol frequency fraction and we 

need to correct the estimated timing with this fraction. 
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mTs (m+1)T" nTs (n+1)T" 

t IlkTs l l t Il,Ts ! 1 1 .. 

l 
kTsym ITsym 

Fig. 3.9: Samples at different estimate time 

3.7 Conclusion 

We have presented a new symbol timing recovery scheme (STR) for asynchronous 

data receivers for the case of Tsym/Ts=2. The general structure and theoretical background 

of the proposed STR scheme are discussed. Timing errors were formulated for further 

analysis and simulation. Moreover, performance of sorne second-order interpolators 

applied to the proposed algorithm is investigated. Techniques to estimate and correct 

frequency error were discussed. As implementation is concemed, computations are 

greatly reduced: only short simple averaging filters and one simple division are required. 

This implies lower complexity and faster operations for hardware implementation. 



Chapter 4. Optimal Interpolation Filters 

for Digital STR 

The main objective of an interpolationlresampling filter is to reproduce the samples of 

an analog signal at the desired instants with no or minimum distortion from a given 

sampled version. As discussed, if the original analog signal is bandlimited then a 

rectangular filter with bandwidth slightly larger than that of the signal is a good choice. 

However, using an FIR implementation of sampled signal, the impulse response of the 

interpolation filter needs be truncated in time. Furthermore, for a simple structure of the 

interpolator/resampler using polynomial approximation, the actual implementation is 

deviated from the rectangular filter shape. 

Designing optimum interpolation filters for a certain objective has been discussed in 

the literature. Bucket and Moeneclaey [39] showed how to optimize the piece-wise 

parabolic interpolation filter to minimize the output BER in the assumption of correctly 

established symbol timing. Various filter design methodologies aim to minimize the 

mean-square error (MSE) at the output of the receiver [1], [19], [49] or the output BER 

[39]. It is expected that the MSE in timing estimation is indirectly made small [49, 

Chapter 3.2.3]. Other papers [2]-[13] presented different optimization approaches in the 

context of digital signal processing without consideration of communication aspects. 

The optimization algorithrn presented in this chapter takes into consideration the 

desired filter shape in terms of both time-domain and frequency-domain responses and 

the timing estimation performance. Desired time-domain and frequency-domain 

responses are derived from a particular system design requirements in out-of-band 

interference and noise suppression. 

44 
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This chapter is organized as follows. Section 4.1 proposes the joint cost function, 

including the MSE in (i) matching the desired impulse response of the filter g(t), (ii) 

matching the desired frequency response of the filter G(j), and (iii) symbol timing 

estimation. Section 4.2 provides an efficient algorithm to search for optimal interpolator 

coefficients in order to minimize the proposed cost function. Section 4.3 presents the 

performance evaluation of the proposed algorithm by simulations. For low complexity, 

we will focus on integer sampling rate and second-order polynomial-based Farrow 

structure. 

4.1 Proposed Cost Function 

The time-domain and frequency-domain responses of the interpolation filter are h(t), 

and H(j), respectively. They will be designed to match the desired time-domain and 

frequency-domain responses, g(t) and G(/}, which are often symmetric. The MSE in time 

and frequency domains are defined as 

2 2 
E[etimel = 1(h(t) - g(t)) dt (4.1) 

2 2 
E[efreql = 1(H(f) - G(f)) df (4.2) 

Notice that we define the operations in (4.1), (4.2) for certain ranges of interest. 

The MSE in STR is 1 

(4.3) 

1 The derivation of the MSE in STR will be presented in Chapters 6. 
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where 

sin(fJ 

Popt = 2u
opt 

(4.4) 

(4.5) 

We propose the cost function 

(4.6) 

whereas eüme' efreq and eSTR are denoted for the time-, and frequency-domain error and 

timing detection error; and Wtime' Wfreq and WSTR are their corresponding weighting 

factors. 

The proposed cost function is essentiaUy a generalization of the DSP design filter 

approach in [13] and the filter optimization process for STR in Chapters 5 and 6. Letting 

wSTR=O will result similar filters as in [13], while the optimal interpolators presented in 

Chapter 5, and 6 are the solutions of (4.6) for wtime=O and wfreq=O. 

4.2 Algorithm Derivation 

The cost function (4.6) can be applied to a general interpolator. Its gradient is 

where k = 0, 1, ... , M/2-l. The cost function J attains its optimum value, aU the elements 

of the gradient operator must be simultaneously equal to zero, as shown by, 

v ~ = 0, m = 0, 1, ... , M /2 - 1 (4.8) 

Under this set of conditions, the filter is said to be optimum in the mean-squared-error 
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sense. 

We focus on the second-order polynomial for the interpolation filter for its simple 

structure in the following derivation. 

From the definition (4.1), the time-domain criteria is 

8 E[e2 ] = M 12 2(h(t) _ (t)) 8 h(t)dt 
8c2(m) time LM I2 g 8c2(m) 

(4.9) 

1 8 
= L r 2(h(k + Il) - g(k + Il)) h(k + Il)dll 

k Jo 8c2(m) 

Therefore, 

= 2 f~ (h(m + Il) - g(m + Il))(112 - Il)dll 

= 2 f~ (8(m) + (8(m + 1) - 8(m))11 + cim)(112 - Il) - g(m + Il))(112 - Il)dll 

= 2(-.L c2(m) - -.L(8(m) + 8(m + 1)) - rI g(m + Il)(112 - Il)dll) 
30 12 Jo 

(4.1 0) 

Following (4.2), the frequency-domain criteria is 

(4.11) 

8 
8c

2
(m)H(f) = B(2, - m -1) -B(1, - m - 1) + B(2, m) - B(l, m) (4.12) 

From (4.3) to (4.5), the STR criteria is 

8 E[ 2 ] - 2( )8p 
8c

2
(m) eSTR - p - Popt -='8c'-2--:(-m-:-) (4.13) 

Therefore, the cost function can be rewritten as follows, 
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V",l=O 

= 2Wtiml310C2(m) - /2(O(m) + o(m + 1)) - f~g(m + ~)(~2 - ~)d~) 

+ 2WFeQ( B(O, 0) + B(I, -1) -B(I, 0) - G(f) 

48 

+ L (B(2,-k-1)-B(1,-k-1)+B(2,k)-B(1,k))c2(k) a H(f)df 
M!2-1 J 

k = 0 acim ) 

+ 2wSTR(L~~~ -1 C2(k)cos(~(k+ ~)) - Popt) cos(~( m + ~)) 

+ 2Wfireq1(B(0, 0) + B(1, -1) -B(l, 0) - G(f)) a H(f)df ac2 (m) 

(
1t( 1 M/2-1 

- 2wSTRPoptCOS À m + hl) + L c2(k) 
k=O 

[ 2w Ûme 8( ~~ k) + 2w STRCOS(~( k + m cos (~( m + m 
+ 2wfireq1(B(2, - k-1) - B(1, - k-1) + B(2, k) - B(1, k)) aH(/) dfl 

acim) J 
Equation (4.14) can be expressed in a compact vector form, 

V",l/2 = B(m) + A(m)X 

= wtimeBtime(m) + WfreqBfreqCm) + wSTRBsTR(m) 
+ (wtimeAtime(m) + wfre~freqCm) + wsT0sTR(m))X 

(4.14) 

(4.15) 
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The vectors in (4.15) are defined as follows 

_ _ o(m-k) 
Atime(m) - [A k, time(m)] - 30 (4.16) 

Afreq(m) = [Ak,freqCm)] = 1((B(2,-k-l)-B(1,-k-l) (4.17) 
+ B(2, k) - B(l, k»(B(2, - m - 1) - B(l, - m - 1) + B(2, m) - B(l, m»)df 

Btime(m) = -(/2(o(m) + o(m + 1» + fg(m + ~)(~2 - ~)d~) (4.20) 

BfreqCm) = 1((B(0,0)+B(1,-1)-B(1,0)-G(f) (4.21) 

(B(2, - m - 1) - B(l, - m - 1) + B(2, m) -B(l, m»)df 

Therefore, the Farrow coefficients are the solution X of the equation, 

AXopt+B = 0 

-1 
X opt = -A B 

where, A = [A(m)], and B = [B(m)] 

(4.23) 

(4.24) 

In sorne cases, the rnatrix Arnay be nearly singular, thus a deepest descent algorithm 

can be used to obtain the desired solution. The solution at tirne (n+ 1) is cornputed by 

using the following recursive relation, 

(4.25) 

VJ = AX +B n n (4.26) 

where n is denoted for recursive tirne, and K is a positive real-valued constant (step size). 
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4.3 Design Exam pies 

This section presents a design example for the case M = 4, L = 2. The desired impulse 

response is g(t)=sinc(t). In this example, we assume that the received baseband signal is 

shaped by a raised-cosine filter with an roll-off factor of 0.35, and then sampled at 2, 4, 

and 8 times faster than the symbol ratel. Because the sampling process introduces 

replicated frequency images centered at /ifs, in designing the optimum interpolation filter, 

we aim to suppress as much as possible such alias. Consider fs normalized to 1. The 

signal frequency band is [0, 0.35fsym]' while the images to be suppressed fall in the 

frequency bands [1-0.35fsym' 1 +0.35fsym] and [2-0.35fsym' 2]. Therefore, the desired 

frequency responses would be 1, 0, and 0 in the frequency band of interest [0, 0.35fsym], 

[1-0.35fsym' 1 +0.35fsym] and [2-0.35fsym' 2], respectively. For comparison, we carried out 

the filter designs for two objectives: 

1) Minimum MSE for STR only, and 

II) Minimum MSE for time-domain, frequency-domain responses, and STR. 

The design parameters and objectives are summarized in Table 4.1. 

Simulations with the parameters summarized in Table 4.2 are used to compare the 

performance of the obtained filters and two other interpolators: 

• The Vesma's interpolator type 1 (Table A.4); 

• The regular piece-wise parabolic interpolator (y=0.5); 

As discussed in Section 2.3, the modified Farrow structure for this new interpolator 

requires only 1 or 2 coefficients and multipliers. The optimum filter coefficients for the 

Farrow structure of the new interpolators are listed in Tables 4.4 and 4.3, respectively. 

1 The integer rates are considered because they are used in the next sections. Non-integer rate might 
require another simulation setup. 
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Table 4.1: Design parameters 

Design parameters 

desired impulse response: g(t) = sinc(t); 
desired frequency responses: 1 for [0, 0.35fsym]' 

o for [1-0.35fsym, 1+0.35fsym]' and [2-0.35fsym, 2], 

M=4,L=2 

Sampling rates Tsym/Ts = 2, 4, and 8 

Objectives: 1) minimize MSE for STR only; 
II) minimize MSE jointly in time, frequency, and STR 

Table 4.2: Simulation Assumptions 

Simulation Parameters 

PAM signal 

signal shaped by a root raised-cosine filter with a roll-offfactor of 0.35 

Sampling rates Tsym/Ts = 2, 4, and 8 

Ideal channel 

Perfect timing synchronization 

Table 4.3: Filter Coefficients for the Optimal Interpolators Type 1 

C2(1) 
i 

Tsy,,/Ts=2 T sy,,/Ts=4 Tsym/Ts=8 

0 -0.4536 -0.2867 -0.2585 

1 0.4536 -0.2867 0.2585 
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Table 4.4: Filter Coefficients for the Optimal Interpolators Type II 

C2(1) 
i 

Tsy,,/Ts=2 Tsy,,/Ts=4 Tsy,,/Ts=8 

0 -0.41786 -0.28872 -0.2587 

1 0.48146 0.29186 0.2588 

Three comparison criteria were considered, and the results are summarized in Tables 

4.5 to 4.7, and plotted in Figures 4.1 to 4.4. 

a) Symbol Timing Estimation Error: The MSE of the symbol timing estimation for 

different interpolators are shown in Tables 4.5 to 4.7. As mentioned in Chapters 3, 5, and 

6, these measurements show whether an interpolator is suitable to the proposed feed­

forward STR scheme. From Chapters 5, and 6, it is evident that only the new optimal 

interpolators can attain the minimum MSE of the symbol timing estimation. 

b) ISI Error: Non-ideal interpolator causes intersymbol interference (ISI) even at the 

perfect timing points. The MSE of the ISI error is measured at the decision points, 

between the recovered values and the expected values. Figure 4.1 shows the MSE of the 

four interpolators for various values of IJ., while Tables 4.5 to 4.7 gives the numerical 

values of the maximum ISI that occur at IJ. = 0.5. The simulations show that the new 

interpolators have the best performance. 

c) Maximum image attenuation: This performance criteria is to measure the capability 

of reducing the effect of the frequency image. Figures 4.2 to 4.4 show the spectrum that 

demonstrate the behavior of the four interpolators to P AM signaIs shaped by a raised­

co sine filter with a roll-off factor of 0.35. As observed in the results in Tables 4.5 to 4.7, 

the new interpolators provide an excellent image rejection. 

Table 4.5: MSE of STR and ISI, and Maximum Image Attenuation (Tsy,,/Ts = 2) 

MSE(eSTR) Max MSE( eIS) 
Max Image 

Attenuation (dB) 

Vesma's method for M=4, L=2 8.9xlO-4 67xlO-4 -28.7 
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Table 4.5: MSE of STR and ISI, and Maximum Image Attenuation (TsymiTs = 2) 

MSE(eSTR) Max MSE(eISI) 
Max Image 

Attenuation (dB) 

Regular Interpolator 2.7xlO-4 31xlO-4 -29.5 

Optimal Interpolator Type 1 8xl0-5 15x 10-4 -31.6 

Optimal Interpolator Type II 8xl0-5 8xl0-4 -32.8 

Table 4.6: MSE of STR and ISI, and Maximum Image Attenuation (TsymiTs = 4) 

MSE(eSTR) Max MSE( eISI) 
Max Image 

Attenuation (dB) 

Vesma's method for M=4 9.6xl0-6 5.31xlO-3 -32.8 

Regular Interpolator 9.4xl0-4 9.04xlO-4 -39.1 

Optimal Interpolator Type 1 9.7xlO-7 3.86xI0-6 -55.5 

Optimal Interpolator Type II 9.7xl0-7 1.96xl0-6 -56.1 

Table 4.7: MSE of STR and ISI, and Maximum Image Attenuation (TsymiTs = 8) 

MSE(eSTR) Max MSE(eISI) 
Max Image 

Attenuation (dB) 

Vesma's method for M=4 2.3xl0-3 9.37xl0-3 -32.8 

Regular Interpolator 3.0x 1 0-4 7.75xlO-5 -51.4 

Optimal Interpolator Type 1 1.43xlO-8 1.07xl0-8 -75.9 

Optimal Interpolator Type II 1.43xl0-8 1.03x 10-8 -76.1 
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4.4 Conclusion 

A new optimal, efficient filter design synthesis for interpolation filters is presented. 

The proposed cost function takes into consideration the desired time and frequency 

responses as weIl as the timing error, suitable for practical design objectives. Illustrative 

filter design examples are given and their performance are compared with that of other 

similar interpolators with a similar complexity. Simulation results show that the new 

interpolators outperform others. A resulting low-complexity hardware implementation 

can be obtained using the modified Farrow structure for the second-order polynomial, 

symmetric interpolator. It confirmed that only M/2 coefficients is actually required, as 

compared to M(L+ 1) coefficients in the original structure. The significant reduction in 

complexity of the modified structure allows a betier interpolation performance with 

longer filter lengths. 



Chapter 5. Performance ofProposed STR 

Employing Interpolators 

This chapter presents the performance analysis of the new feed-forward symbol timing 

estimation technique that employs interpolators proposed in Chapter 3. 

5.1 Bias and Variance ofSymbol Timing Estimator 

The interpolated sample values can be different from the actual ones due to the non­

ideal characteristics of the interpolation filter ev en if correct timing is assumed. 

Therefore, if the non-ideal interpolated samples are used to reproduce timing information, 

this information will not be exact. It is of course desirable to have zero bias and very 

small variance in timing estimation. Fortunately, through the analysis and sorne intensive 

experimental results, we will show that it is possible to achieve such goal. 

5.1.1 Bias in timing estimation 

Consider the estimated timing value close to the actual one. This assumption is 

usually valid for sorne appropriate interpolation filters. We can then approximate the l\1L 

function with its truncated Taylor version as follows: 

(5.1) 
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The ML function becomes maximum when 

~ _ ~_L'(~) 
~ ~ - L"(~) (5.2) 

Given the condition for the estimated value in (3.17), the expression in (5.2) is equal 

to zero, and this proves that the timing estimation process is nearly unbiased. 

5.1.2 Variance of the timing estimation error 

The timing estimation error can be found as 

N-I 

e = _~L'(~) 
'C T L"(~) 

L (-lYfl [2n + i] 
~ + n = 0 
2 N-I 

sym 
4 L (-1)nf 2 [2n+i] 

n=O 

N-I 

L (-1)n(2~f2[2n + i] + fd 2n + iD 

N-I 

4 L (-1) nh[2n + i] 
n=O 

Since the error is very small, the denominator varies very slowly compared to the 

numerator. We can safely replace the denominator by its mean. Thus the symbol timing 

error function can be rewritten as 

N-I 

L (-1)n(2~f2[2n + i] + fd 2n + iD 
e = :.;:..n_=....;;:O ___________ _ 

'C 
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E[ C ~ 
1 
H )"(2 ~f2[ 2n + il + fi [2n + iDrl 

E[ e2] = __ n_-_O _________ -:--__ 

, 16( E[ ~ >-I)"f2[2n + il]2 

(5.3) 

where 

(5.4) 

and 

[

N-IN-I 1 
= E n ~ on'~ 0 (-l)n + nJi[2n + fI0,[2n' + i] 

[

N-I N-I M/2-1 M/2-1 

= E n~on'~o(-1)n+n'm=~f/2m'=~M/2cl(m)Cl'(m') 

x(2n + i - m)x(2n' + i -m')-

M /2 - 1 M /2-1 

(5.5) 
m = -Ai/2m' = -M/2 

where 

[

N-I N-I 1 
Rx= E ~ ~ (-1)n + n'x(2n + i - m)x(2n' + i - m') 

n=On'=O 
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Thus, 

~ ,v2( Mt 1 (2~c2(m) + cI (m))COs(~(i -m - ~)) r 
m = -M12 

a 2 MI2-] 2 
+NETl L (2f.lc2(m)+c](m)) 

hm = -M12 

Therefore, it can be shown that the error in (5.3) can be expressed in terms of two 

independent error components: the error due to algorithm precision e A and the error due 

to the Gaussian noise eN, i.e., 

(5.7) 

where 

E[e~] 

MI2 -] 2 

L c] (m)cos( (- m - f.l)~) 
+ m =-MI2 

4 f.l M 12 - ] 

2 L c 2 (m ) cos ( ( - m - f.l)~) 

1 (5.8) 

m = -M12 
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and 

M 12 -1 2 

(
N: L (2~c2(m) + Cl (m)) 

E[ 2] - 1 0 m = -M 12 e - - - ---=--..:..:..:....-=---------N 32N Eh (M 12 - 1 J 2 
L C2(m)Cos(~(-m - ~)) 

m = -M12 

(5.9) 

5.1.3 Minimum mean square error (MMSE) 

This section simplifies Equation (5.8) for a symmetric second-order polynomial­

based interpolation filter; and then derives the minimum mean square error (MMSE) of 

the proposed algorithm precision. 

Recall the relationships in (2.11), (2.13), and (2.14), the numerator of Equation (5.8) 

can be re-expressed as 

M12-l 

l cl (m)cos((- m - ~)~ 
m = -M12 

and the denominator can be re-written as 

M12-l 

l c2(m)cos((-m - ~)~ 
m = -M12 

M12-l 

= l (c2(m)cos(( - m - ~)~) + c2(- m - l)cos((m + 1 - ~)~)) 
m = 0 

M/2-l 

= L c2 (m)( cos((-m - ~)~) + cos((m + 1- ~)~)) 
m = 0 
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Therefore, Equation (5.8) can he simplified as 

J2tan((~ -~)~) 
E[ e]] = ~ ~ - ~ - -M--/2---1-------

4 l c2(m)cos(( m + ~ ~ 
(5.10) 

2 

m = 0 

By defining the constant term Cl as 

(5.11) 

we ohtain 

(5.12) 

The derived timing error for the general second-arder polynomial with tap length of 

M in (5.12) is analogous to the case far the simple polynomial interpolation filter in 

(3.30). Thus aIl results ohtained from (3.30) can he applied here. 

There are two important points we can draw from (5.12): 

1. We can achieve the minimum MSE of timing estimation for aIl interpolation filter 

at MSE = 8.458 x 10-5. This is the limit for the proposed techniques at Tsym/Ts=2. 

2. An interpolation filter that has minimum timing estimation satisfies 

M/2-1 

~ m ~ 0 c2(m)cos(( m + D~) == Clopt = 0.4536 (5.13) 

This condition is very useful to estahlish filter design constraints to he discussed 

in the other section. 
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5.1.4 Bounds for Gaussian Noise Contributed Error 

The Cauchy-Schwarz inequality shows that 

(:Lc2(m)Cos(~(m + ~)))2 :::; Lci(m)L cos2(~(m + ~)) 
m m m 

(5.14) 

Given that 

weget 

[ 

M 12 - 1 J 2 M 12 - 1 
L C2(m)Cos(~(m + ~)) :::;~ L ci(m). 

m = -M 12 m = -M 12 

The numerator in (5.9) is a second-order polynomial with respect to ~. It is easy to 

find the minimum value Amin ofthis polynomial, such that 

(5.15) 

where 

[ 
MI±-I CI(m)c2(m)î2 

MI2 -1 ) 
2 m = -M12 

A = '" c (m) - ---:-:~-:-----min ~ 1 M12-1 
m = -M12 L c;(m) 

(5.16) 

m = -M12 

Therefore, 

(5.17) 

Inequality (5.14) imposes loose conditional bounds due to the lack of information of 
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the interpolation filters' coefficients. The equality occurs when 

(5.18) 

or a looser condition is 

C2(m)Cos(~( m +~) = const, 'dm (5.19) 

Only few interpolation filters can meet this requirement. It can be verified that the 

second-order Lagrange interpolation filter is one ofthem, thus it can achieve the bound in 

(5.17), and provides efficient estimation. For ones that do not satisfy the requirement, it is 

difficult to judge how far the error variance can be from the lower bound given in (5.17). 

5.2 Alternative Interpretation and Acquisition Time 

This section first gives an alternative explanation for the proposed technique 10 

searching the eye-opening instant of the waveform and in noise filtering. While the l\1L 

approach infers optimality, the analogous approach shows the nature of the proposed 

technique and many important results that might not be very obvious when eXplained by 

the l\1L intuition. Acquisition time and preamble sequence length will be examined by 

using this approach. 

The DA-STR problem raises the simple question, "In a noise-free environment, what 

is the shortest known sequence {ak} that can give us enough information to correctly 

recover the timing on the received waveform?" The simple answer would be 2, and the 

sequence would be {+ l, -1}. As random noise is concerned, it has equivalent effects on 

any sequences {ak}' Thus we can infer that for a technique that can reduce the effect of 

random noise within a very short block of symbols, the alternative sequence {+I, -I} 

would be one of the shortest sequences that can give best information for estimating the 

timing of the received signal. This conclusion is valid when noise suppression is involved 

within the STR technique; and we can prove that it is possible to achieve such desirable 

shortest sequence with the proposed technique. 
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Consider the alternative sequence {+ 1, -1} used as the reference information. For the 

raised-cosine filter, g(t), the output of the receiver matched filter can be represented as a 

sine-wave with the noise component l1(t). Therefore at every sampling period nTs, 

x[n] = cos(~(n-j.!)î + l1[n] 
2 ~ ~ 

(5.20) 

where we omit the time unit Ts in the expression for simplicity. 

Now the noise term is ignored for a moment. Using the interpolation filter as an 

oversampling device, for a given sample period Ts' we are virtually able to reconstruct 

the whole sine-wave x(t) within that period. Figure 5.1 shows the reconstruction of a sine­

wave using several interpolation filters. 
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- - - from Parabolic Interpolation 
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Fig. 5.1: Sine wave reconstruction using different interpolation filters 

Having the reconstructed waveform, one can search for the optimal value of j.! 

corresponding to the position of the maximum value. From Figure 5.1, one can easily 

daim that the waveform obtained from the cubic interpolation does not have the extreme 

points and its maximum location occurs far away from the correct one, thus both extreme 

and maximum searching will not work. This emphasizes that interpolation filters have a 

great impact on making decision in the searching algorithm. 



CHAPTER 5. PERFORMANCE OF PROPOSED STR EMPLOYING INTERPOLA TORS 68 

Searching process is often complex; however it is quite simple for the case of a 

second-order polynomial. The recovered signal from a second-order polynomial based 

interpolation filter is 

2 

y~(n) = L .Îï[n]J.l' 
,= 0 

Its extremum points are located at 

(5.21) 

(5.22) 

Wh en additive noise is concerned, the output at the filter banks can be represented as 

Ii[n] = Ji[n] + ll,[n] (5.23) 

For a zero-mean noise term lliCn), it can be removed by averaging.fi[n]. However, it is 

easy to verify that, 

~[n] = -Ji[n+2] (5.24) 

E[fi[n]] = 0 (5.25) 

Thus we cannot simply average the value of.fi[n]. In fact, for fixed J.l, 

n~ n + l~ 
(-1) Ji[2n+i] = (-1) fi[2(n+l)+i] = const (5.26) 

thus 

n" n'" E[(-I) Ji[2n + i]] = (-1) Ji[2n+i] (5.27) 

Thus the correct way is to average the value of (-1 t.fi[2n]; and the detection now 

becomes, 

ft = 
E[(-I)nfd2n + i]] 

2E[(-I(f2 [2n + i]] 

fI [2n + i] 
2Î2 [2n + i] 

(5.28) 

We notice that due to a similarity in (5.22) and (5.28), with the appropriate interpolation 
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filter, the reconstructed waveform y f1.(n) should have a sinusoidal shape; so does the 

maximum likelihood function. 

The estimation process obtained in (5.28) is exact to the proposed one (3.18) in 

Chapter 3. We observe the following facts: 

1. The alternative {+ 1, -1} sequence is the best choice for a possibly shortest pream­

ble. At high SNR, or with proper noise filtering, we can obtain a preamble block as 

short as 4. 

2. With an appropriate interpolation filter, for any symbol interval, the ML function 

is close to the cosine wave-shape with the guaranteed existence of the unique glo­

bal maximum location in the entire symbol interval. 

3. The selected sequence also simplifies the STR implementation and analysis. 

5.3 BER Degradation 

This section devotes a short discussion of the impact of the proposed STR technique 

on the bit error rate (BER) degradation. 

The BER degradation is defined as an increase in signal to noise ratio EiNo, required 

to maintain the same BER as the case without synchronization error [59, Chapter 7.3]. 

F or a small value of timing error, the BER degradation (in dB) of P AM signaIs is 

approximated by 

D dB = -10 x IOg[(
2

) == 10 (A(~) + -LBW)] VAR(e.,.) 
2 In(10) 2 • a o a o 

(5.29) 

where a o is the solution of 

BER = 2(M-l) Q[ ~I 
o Mlog2(M) ~ (u2 _ 1 )a~ 

(5.30) 
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and the constant A and B are defined as [59, Chapter 7.3], 

2 
A(~) = -gl/(o)r = ~ + (n? - 8W2 

sym 3 (5.31) 

B(~) = ;, (g'(mT )T )2 = 2;' cos2(TC~m) 
L., sym sym L., 2 2 2 

m = -00 m = 1 m (1 - (2~m) ) 

(5.32) 

Since the value of each term in the above series decreases with m8, we can approximate 

the value of B with a few terms. 

Figures (5.2) and (5.3) show the simulation results on of the BER degradation of the 

proposed technique for two typical interpolation filters in 2-P AM and 4-P AM signais. 

We also observe that the BER degradation does not always decrease as the BER 

decreases (or SNR increases). The following derivation will provide an explanation. 

Recall that because the timing error usually contains two terms: one related to the 

SNR due to noise contribution, and the other independent of SNR and due to the 

algorithm precision, the BER degradation can be rewritten as, 

10 ( 2Es J 2 2 D dB = A(~) + -B(~) (e A + eN) 
In(10) No 

10 (A + 2BESî(c + DNoJ 
In(lO) NJ Es 

= 10 (AC + 2BD + 2CB
Es 

+ ADNoJ 
In(10) No Es 

(5.33) 

The equation implies that depending on whether AD or 2BC is dominant, the BER 

degradation can increase or decrease with respect to the SNR Es/No. It has a lower bound 

as 

D dB '2 10 (AC + 2BD + 2J2ABCD) = 10 (JAC + J2BD/ 
In(10) In(10) 

(5.34) 
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The equality occurs wh en, 

(5.35) 

In [59, Chapter 7.3], it is mentioned that a good STR should yield DdB about O.2dB. 

Most data-aided feedforward techniques mainly suffer from the algorithm precision and 

can only meet this requirement with a relatively long preamble. However, by using a 

feedback mechanism to track the information after using the feedforward for parameter 

acquisition, this requirement would be released or relaxed. 
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Fig. 5.3: BER Degradation for Vesma's Interpolator-Type II: (a) 2-PAM (b) 4-PAM 
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5.4 Sim ulation Results 

Numerical results obtained by using the analytical expressions in the previous section 

show that the timing information can be recovered with a preamble as short as 4 symbols. 

This has been confirmed by detailed simulation studies. 

Table 5.1 summarizes the parameters used in the simulations: 

Table 5.1: Simulations' Parameters 

1 Short burst mode transmission 

2 Alternative sequence {+ l,-l} as preamble 

3 Raised co sine filter with 35% roll-off 

4 A WON channel 

5 Signal Sampling rate near to 2 (+/-0.0001) 

6 Unknown symbol phase 

7 EblNo = 5dB, 15dB and 25dB 

8 Experimental interpolation filters are Vesma' s interpolation filter II 

(M=6), Optimal Parabolic (y=0.4536, M=4) 

Figures 5.4 and 5.5 illustrate the convergence behavior of the timing estimator (TE) 

for two different interpolation filters in the presence of AWGN. The timing error 

measurement is started when the first preamble symbol enters in the averaging filters. As 

seen from the graphs, the estimations converge to the timing errors as the whole preamble 

sequences fit inside the filters. The estimated values are better for higher signal-to-noise 

ratio (SNR). For low SNR (EzlNo=5dB), short preambles (i.e., N=4, 6) cannot provide 

adequate estimated values. Longer preamble length (i.e., N=lO or greater) should be used 

to provide better accuracy. For high SNR (EtlNo=15dB or so), the simulations show that 

it is possible to obtain small estimation error with a very short preamble length (N=4). 

The convergence behaviors are very similar for ail the other fractional delay values. 

Timing error variances of the proposed STR for two interpolators are shown ln 

Figures 5.6 and 5.7. The simulation results of the Vesma interpolation filter are far from 

the bounds, and those of the proposed optimal interpolation filter are very close to their 

theoretical bounds. It is because the optimal filter satisfies the condition (5.14), but the 
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other does not. It also points out that the optimal interpolation with a shorter filter length 

can provide the same performance as Vesma' s interpolator with a longer filter length. 
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5.5 Conclusion 

We have analyzed the performance of the proposed symbol timing recovery scheme 

for the case of Tsym/Ts=2. Timing estimation error variance is greatly reduced with the 

alternative {-1, + 1} preamble, and with the appropriate interpolation filters. As predicted, 

the simulations show that short preambles help in rapid synchronization because of 

shorter length, but are susceptible to multipath and noise. Due to the particular 

interpolation filter and the aid of the particular preamble, rapid estimation convergence 

can be obtained with as low as 4 symbols. A bound on the estimation error variance has 

been derived. Simulation results are close to this bound. 



Chapter 6. STR Techniques in Systems 

using Oversampling 

Sampling at the lowest rate is normally desired in DSP implementation in order to 

reduce the operation speed and possibly complexity. As a mIe of thumbs, doubling the 

sampling rate will double the complexity and slow down the operation dock by a factor 

of 2. However, for low-capacity transmission applications in which the operation speed is 

not a concern, sampling at high rates provides more samples per symbol interval for 

possible performance improvement. This chapter examines the performance of the 

proposed techniques for P AM and QAM systems using oversampling. The analytical 

results can be used for trade-offbetween performance and complexity/speed. 

6.1 PAM Systems using Oversampling 

This section is an extension of the techniques presented in Chapters 3 and 5 for PAM 

systems. The techniques are revised to be suitable to higher sampling rates. 

6.1.1 Maximum-Likelihood Algorithm for Timing Estimate 

Approaches used in the previous chapter can be applied for the case of Tsym/Ts = À>2. 

The examined cosine wave is sampled as shown in Figure 6.1. 
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J.I.=O.3 

0.5 

Ts 2Ts ... ... 21 s=2Tsym 

-0.5 

Fig. 6.1: Cosine wave at general sampling rate (for f.l = 0.3) 

It can easily be verified that 

x[ n] = cos (!l:(n-Il)î + 11 [n] 
À ') JEs 

A similar formula resulting from ML estimation of timing fraction is given as 

~[i] 
b - -- ---

2a 

N-l 

L « -1)nfd Àn + i]) 
....:.;n;....=_O:::.....-______ _ 
N-l 

2 L «-1)nf 2 [Àn + i]) 
n=O 

E[(-1)nfdÀn + i]] 

2E[(-I)nf2 [Àn + i]] 

For noiseless or high SNR, the estimate converges to 

~[i] ~ 

M12-1 

L Cl(m)Cos(~(i-m-Il») 
m = -M12 

M-l 

2 L C2(m)cos(~(i - m-Il») 
m = -M12 
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(6.1) 

(6.2) 

(6.3) 
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6.1.2 Variance of Error due to Aigorithm Precision 

The general timing estimation error, normalized to T sym' can be written as 

For symmetric interpolation filters, 

M12-1 

l cl (m)cos((i-m-J..l)V 
m = -M12 

where 

M12-1 

l c2(m)cos((i-m - J..l)V 
m = -M12 

M12-1 

= l (c2(m)cos((i-m-J..l)V +c2(-m-l)COS((i+m+ I-J..l)V) 
m = 0 

81 

(6.4) 
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Therefore, the estimated timing fraction is 

(6.5) 

Introducing the constant term a 

sin (2
7t0 

a= (6.6) 

we can obtain 

(6.7) 

and the error of the timing estimation in (6.4) can be simplified as 

(6.8) 

The values of a with different À are shown in Table 6.1. 

It can be shown that 

2 1 1 (1 (( 1 ) V) 2 lO À 2 E[ e A] = f - f.!-- + a tan - - f.! - df.! = -(x + ~tan(x)) dx 
ü

À
2 2 2 -x

07t
3 

2 
= A~ -2B~ + C (6.9) 

where 

~ = na =!!.. and x = ~ 
À A' 0 2À 

A = 2~fo°tan2(x)dx = 2~(tan(xo)-xo) 
7t 7t 
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B = 2Àroxtan(x)dx == 2À r otan2(x)dx = A, for small x 
3Jo 3Jo 0 

7t 7t 

c = 1 

12À
2 
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Therefore, at a high sampling rate À, ~ will approach 1, thus an approximately linear 

relationship can be given as 

(6.10) 

As we can see in Table 6.1, the approximation becomes accurate for sampling rates 

higher than 4. Figure 6.2 shows the decrement of MSE of the estimated timing as the 

sample rate À increases. As we can see the error is reduced dramatically as À increases at 

the expense of increased complexity and operation speed. 

Table 6.1: Optimal a for different sampling rate À 

À Actual Approximated Approximation 
u opt u opt Error 

2 0.5511 0.6366 15.51% 

3 0.9007 0.9549 6.02% 

4 1.2332 1.2732 3.25% 

5 1.5597 1.5915 2.04% 

6 1.8835 1.9099 1.40% 

7 2.2056 2.2282 1.02% 

8 2.5267 2.5465 0.78% 
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Fig. 6.2: MSE of Estimated Timing versus Sampling Rate Â. 

6.1.3 AWGN Contribution 

Using the same approach as in the previous chapter, we derive the variance of the 

error due to the Gaussian noise as 

(6.11) 

The Cauchy-Schwarz inequality shows that 

( 

M12-1 J2 M12-1 M12-1 

_L C2(m)Cos(~(-m-f.!)) :s; _L c~(m) _L cos2(~(-m-f.!)) 
m - -M 12·· m - -M 12 m - -M 12 

We can approximate the cos2(x) term by its average value, 
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M 12 - 1 M . (7t, M 12 - 1 (27t ( 1)) L COS2(~( - m -1-1)) = "2 + sm)) L cos -:;: m + 2) 
m = -M 12 n = -M 12 

Therefore, 

1 Amin 1 
E[e~p:: M12-1 M12-1 2 (6.12) 

~+sin(V L cos(2À7t(m+~)) L c~(m)8ÀN(E/N) 
n = -M 12 m = -M 12 

where 

F or À = 2 or M = kÀ, 

M12-1 

L cos(2À7t(m + ~) = 0 
n = -M12 

and the bound can be simplified as 

(6.13) 

which is consistent with the results obtained in the previous section. 

We have noticed that the above lower bound can be applied for any second-order 

polynomial interpolation filters. 
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6.1.4 Case-Study: Optimal Lagrange Parabolic Interpolators 

In this section, we focus our discussion on the proposed STR algorithm using the 

Lagrange second-order interpolation filters with M=4. Bucket and Moeneclaey [39] 

introduced a filter optimization approach based on a BER degradation criteria. We will 

mathematicaIly show in this case of study the similar results, which were obtained in 

[39]. Kim ([49]) showed that minimizing MSE at the symbol detector is very much 

eguivalent to minimizing the MSE at the timing estimation. Thus, they aIl infer the 

generality of our proposed method over the one proposed in [39]. 

Applying (6.6) to the Lagrange second-order polynomial interpolation filter, where 

we obtain 

a = opt 

sin (21tJ 
= 

2Y( - cosC1t0 + cos(~V) 
1 ~~ 

. ( 1tî 1t 4ysm 7)) 
(6.14) 

Thus the parameter of the optimal Lagrange second-order polynomial interpolation 

filter for minimizing the symbol timing estimation error are computed as 

Yopt = 1 ~ 1 = 0.25; for À is large 

4aopt sin(V 4~ sin(V 

(6.15) 

The optimum y converges to 0.25 at a high sampling rate. Table 6.2 shows the optimal 

values of y corresponding to several values of Â. The approximated values are obtained 

using the linear approximation of a (Eg. 6.10). 

Table 6.2: Optimal y for different sampling rates À 

Â Actual Approximated Approximation 

Yopt Yopt Error 

2 0.4536 0.3927 13.43% 
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Table 6.2: Optimal y for different sampling rates À 

À Actual Approximated Approximation 

Yopt Yopt Error 

3 0.3205 0.3023 5.68% 

4 0.2867 0.2777 3.15% 

5 0.2727 0.2672 2.00% 

6 0.2655 0.2618 1.38% 

7 0.2612 0.2586 1.01% 

8 0.2585 0.2565 0.77% 

The MSE of the timing estimation for the optimal interpolation filters with À = 2, 4, 

and 8 are plotted in Figures 6.3, 6.4, and 6.5. As one can expect from the analysis, the 

lower bounds can be reached for the case of M = kÀ = 4, i.e., À = 2 and 4. This is 

confirmed by the plots in Figures 6.3, 6.4. For higher sampling rates, the equality cannot 

be held, so that the actual variance is not close to the bound as shown in Figure 6.5. 
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Fig.6.3: Symbol Timing Error Variance (1.,=2) 
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6.2 QAM Systems using Oversampling 

The proposed technique can be modified to suit very weIl the QAM systems, which 

are widely used in many applications. This section gives a brief description of joint 

estimation algorithms of 1 and Q channels to improve the performance of the timing 

estimation. The analysis and simulations show a 3dB improvement with the new joint 

estimation scheme. 

6.2.1 Aigorithm Derivation 

The l\1L function used for QAM signaIs can be refined as follows [59] 

(6.16) 

where 

9t : reai part of the number. 

a(n) = aI(n) + jaQ(n) is the transmitted sequence and a*(n) = aI(n)-jaQ(n). 

Since, 

zÇt(n) = YÇt(An + i) = YÇt, iAn + i) + jYÇt, Q(An + i) 

L 

= L (ft, [[An + i] + jiJ, Q[An + i])Çt' 
,= 0 

The l\1L function can be rewritten as 

(6.17) 
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= max( ~ E[ain)-0,I[Àn+i] +aQ(n).fi, QP"n +i]]ÇtIÎ 
1 = 0 ) 

(6.18) 

For the same reasons as given in the previous sections, we consider only the second­

order polynomial. The function is maximum when its derivative equals zero. Therefore, 

2 
~L(Çt)I' _ = L /ÇtI-lE[aI (n)!t I[Àn+i] +aQ(n).fi Q[Àn+i]] = 0 (6.19) 
dJl J.l. - J.l. ' , 

1 = 1 

The estimated timing information is given by 

N-l 

L (_I)n (fI, I[Àn + i] +11, Q[Àn + i]) 

Çt[i] = n=O 
N-l 

2 L (-I)n(f2,I[Àn+i]+12,Q[Àn+i]) 
n=O 

E[(-I)n(fl, I[Àn + i] +11, Q[Àn + i])] 

2E[( _1)n (f2, I[Àn + i] +12, Q[Àn + i])] 

which is very similar to the expression for P AM signais. 

6.2.2 Variance of Error due to Algorithm Precision 

(6.20) 

The error due to algorithm precision for QAM systems is the same for P AM systems, 

(6.21) 
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For symmetric interpolation filters, we have simplified expression as follows 

(6.22) 

6.2.3 A WGN Contribution 

A similar approach is used in the analysis of the effect of A WGN on QAM systems. 

The bound on the error due to noise is 

2 
l A. cr 

E[ 2.] > min Tj 
eN - M (~î M12-1 (2 ( lî) M12-1 16E Â2N 

"2 + sin ~ L cos Â
1t 

m + 2.J L ci(m) s 

n = -M 12 m = -M 12 

where 

2_ 2+2_ N crTj - crTj,I crTj, Q - 0 

Therefore 

(6.23) 

For Â = 2 or M = kÂ, the bound can be simplified as 

1 Amin 
E[e~] ~ MI2 1 

8À?MN(E IN ) -sOL ci(m) 

(6.24) 

m = -M12 

Comparing the bounds for M2_QAM systems in (6.23) and (6.24) with the bounds for 

M-PAM systems in (6.12) and (6.13), we observe 3dB improvement for the joint 
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estimation in QAM systems. 

6.2.4 Simulation ResuUs 

This section investigates the proposed STR techniques for 4-QAM systems at the 

following sampling rates: Tsym/Ts = 2, 4, and 8. For aH simulations in this section, we 

assume a short burst, and a raised-cosine shaping filter with a roll-off factor of 0.35. The 

preamble is an alternative {A, -A} sequence with length N. The performance of the 

proposed technique is evaluated in terms of the error variance of the estimated symbol 

timing and the ISI at the receiver output. The considered parameters are summarized in 

Table 6.3. 

Table 6.3: QAM Simulation Parameters 

1 Short-burst transmission 

2 4-QAM systems 

3 Alternative sequence {-A, A} as the pre amble with length N 

4 Raised cosine filter with roll-off factor /3 = 0.35 

5 Sampling rates = 2, 4, and 8 

6 With / without A WGN 

Without A WGN effects 

The first set of results is obtained without considering the effect of AWGN. The 

experiments are simulated for different preamble lengths N and different sampling rates 

À. The obtained variances are referred as algorithm precision variances. Figures 6.6 and 

6.7 show the simulated error variance results of the symbol timing estimation, and ISI 

(measured at sampling instant), respectively. As the sampling rate À increases, the error 

variance decreases correspondingly. The difference between the expected and simulated 

ones is referred as modeling error. This modeling error variance is in the order 10-6 and 

becomes dominant when the symbol timing error gets smaller. 
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Figure 6.7 shows the error variances of ISI. As shown in Equation (3.10), the ISI 

error is a combination of 1) the error due to the imperfection of the interpolation filter, 2) 

the error due to the imperfection in timing estimation, and 3) the AWGN. Because this 

simulation does not consider the contribution of AWGN, the ISI error contains only the 

first two errors. 
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With A WGN effects 

The second set of simulations considers the effect of AWGN on the system. Figures 

6.8 to 6.11 show aIl simulation results on the error variance of the symbol timing 

estimation. Comparing these figures with Figure 6.6 shows that aIl simulation curves tend 

to approach the ones obtained in Figure 6.6 at high signal to noise ratio (Eb/No)' In fact, 

the curves for Eb/No=20dB in Figure 6.11 is almost identical to the ones obtained in 

Figure 6.6. Furthermore, the obtained results of symbol timing error statistics for 4-QAM 

systems (Figures 6.8 to 6.10) are very similarthe ones for 2-PAM systems (Figures 6.3 to 

6.5). As the two systems are predicted to have similar performance (Sections 6.2.2 and 

6.2.3), these results agree to the theoretical expectation. 

Figures 6.12 to 6.14 show simulation results on the error vanance of the ISI 

(measured at sampling instant) for several values of average bit energy (Eb/No)' The 

thick, solid lines are the variance of the injected AWGN, which is denoted as el]' If exact 

timing estimation and perfect signal recovery can be achieved, this variance is identical to 

that of the ISI error. It is thus referred to as an ideal reference. As shown in these figures, 

increasing the preamble length N makes the curves doser to the ideal curve. 
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6.3 Conclusion 
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This chapter presented the applications of the proposed STR techniques to two M-



CHAPTER6. STR TECHNIQUES IN SYSTEMS USING OVERSAMPLING 98 

P AM and M2_QAM systems. The techniques are generalized in these systems so that they 

can operate at any sampling rates. It is shown that sampling at high rates provides more 

samples per symbol interval for better performance improvement. In addition, the joint 

ML estimator of 1 and Q channels in M2_QAM systems is proved to perform 3dB better 

than the one in M-P AM systems. Many analytical and experimental results can be used 

for trade-offbetween performance and complexity/speed. 

A case-study of optimal Lagrange parabolic interpolators that mllllmize timing 

estimation errors has been investigated. Simulations have shown that the system performs 

very well in the A WGN. It is also interesting to notice that our optimal interpolators are 

very similar to the ones obtained in [39]. Since the case-study is only one of our many 

possible considerations, it implies that the approach in [39] is only a sub-solution of our 

algorithm. 



Chapter 7. Conclusion 

This thesis proposes the efficient aU-digital feedforward STR techniques for linear 

modulation schemes M-P AM and M 2_QAM, and the design of optimal interpolation 

filters. This chapter highlights the key findings and recommends new avenues for future 

research which time did not permit in this work. 

7.1 Summary of Results 

Chapter 2 explains the concept and the structure of the interpolation filters for alI­

digital receivers. A low-complexity hardware implementation can be obtained using the 

modified Farrow structure for the second-degree, symmetric interpolator. It is proven that 

only M/2 coefficients is actually required, compared with 3M coefficients in the original 

structure. 

Chapter 3 develops the theoretical backgrounds on alI-digital symbol timing recovery 

techniques that employ interpolation filters. The symbol-timing estimation process, 

which is, in most of the cases, based on the maximum-likelihood (ML) concept, IS 

proposed. Joint optimization of signal detection and timing estimation are discussed. 

Chapter 4 discusses the interpolation filters for symbol timing recovery (STR). The 

need for an interpolation filter is explained. It is shown that recent conventional 

interpolation filters are either not optimal, or suboptimal but not able to be implemented 

in on-li ne computation manners. A new interpolation filter methodology for minimum 

mean-square error (l\1MSE) is introduced to overcome the problems of these filters. 

Simulation results are included to show the performance gain, whereas the modified 

Farrow structure is given to show hardware complexity gain realizable by the proposed 
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interpolation filter. 

Chapter 5 analyses the statistical performance of aH-digital symbol timing recovery 

techniques at the sampling rate Tsym/Ts=2. Tracking performance for the synchronization 

system employing several interpolation filters are studied. Simulation results are induded 

to show the correctness of the theory and the analysis. 

Chapter 6 provides generalizations of the proposed timing estimation techniques for 

P AM and QAM systems. The proposed feed-forward STR techniques employing 

interpolation filters can be applied for higher sampling rate to achieve better accuracy, 

with the tradeoff in more hardware complexity and possible lower operated dock speed. 

In addition, the joint ML estimator of 1 and Q channels in M2_QAM systems is proved to 

perform 3dB better than the one in M-P AM systems. Analytical and experimental results 

can be used for trade-offbetween performance and complexity/speed. 

7.2 Topics for Further Research 

The following is a partiallist of issues for future research. 

1. Quantization effect on BER performance. Practical implementations add quantiza­

tion noise to all operations, thus degrade the performance of the STR, and the 

overaH BER performance. The effect of quantization should be investigated. 

2. Fading effects. In general, the scheme should work with multi-path fading; how­

ever, there is performance degradation. Effects of fading should be further studied. 

3. Study of the interaction between carrier recovery, symbol timing recovery, and 

equalization. When one of three operations (STR, CR, and equalization) is 

derived, the other two operations are assumed to be perfect. However, this can 

never be true in real systems. The interaction between these three operations for 

aB-digital receivers should be analyzed. 

4. Extensions of the feedforward algorithms to the non data-aided case. Although the 

algorithms of this thesis are extensively discussed for data-aided operation, it can 

be modified and extended to suit non data-aided (NDA) conditions. The effect of 

oversampling rate and interpolation filter on NDA versions would be interesting. 
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Appendix A. Sorne Known Interpolation 

Filters 

Sorne known interpolation filters are presented in this Appendix. Many of them are 

based on Lagrange polynomial s, and shown in Tables Al, A2, and A3. They are widely 

mentioned in literature for their simple hardware structure. However, they are not 

optimal. 

Table A.t: Farrow Coefficients for Linear Interpolation 

1=0 1= 1 

k= -1 0 1 

k=O 1 -1 

Table A.2: Farrow Coefficients for Cubic Interpolation Filter 

1=0 1= 1 1= 2 1=3 

k= -2 0 -116 0 1/6 

k= -1 0 1 112 -112 

k=O 1 -112 -1 112 

k=1 0 -113 1/2 -116 

The piece-wise parabolic interpolation filter can be given as 
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Table A.3: Farrow Coefficients for Parabolic Interpolation Filter 

1=0 1= 1 1=2 

k= -2 0 -y Y 

k= -1 0 y+1 -y 

k=O 1 y-1 -y 

k=1 0 -y Y 

Vesma and Saramaki [13] introduce two alternative interpolation filters which were 

optimized in the frequency domain. 

Table A.4: Farrow Coefficients for Vesma Interpolation Filter 1 

1=0 1= 1 1= 2 

k= -2 0 -0.6741 0.6741 

k= -1 0 1.4542 -0.4542 

k=O 1 -0.5458 -0.4542 

k=1 0 -0.6741 0.6741 

Table A.5: Farrow Coefficients for Vesma Interpolation FiIter II 

1=0 1= 1 1=2 

k= -3 0 0.2418 -0.2418 

k= -2 0 -0.6449 0.6449 

k= -1 0 1.4726 -0.4726 

k=O 1 -0.5274 0.4726 

k=1 0 -0.6449 0.6449 

k=2 0 0.2418 -0.2418 



Appendix B. Unbiased Timing Error 

Estimation 

B.1 Mean of the Timing Error Estimation 

The mean of the estimated timing error can be formulated as 

(B.1) 

If Jl is uniformly distributed in [0, 1], thenpdf(Jl)=I, and Equation (B.l) become 

(B.2) 

(B.3) 

B.2 Variance of the Timing Error Estimation 

Since the timing error estimation has a zero mean, its variance can be derived as 

(B.4) 

(B.S) 
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Solving the integral results, 

VAR[e] = _1_( ~ _ 1) _ 1.4863 +-.l 
32y2 n 4yn2 24 

The minimum occurs at, 

1 b 

1.4863 

4n2 
- =-- = ---
Y 2a min -.l(~ - 1) 

16 n 

-.l(~ - 1) 
16 n 

y min = --- == 0.4536 
1.4863 

4n2 

III 

(B.6) 

(B.7) 

(B.8) 
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B.3 Bound of the Variance 

(B.9) 

(B.I0) 
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where, 

M-IM-l 

E[fi[2n+i~[2p+i]] = L L c/m)c/k)E[x(2n+i-m)x(2p+i-k)] (B.17) 
m = Ok = 0 

E[x(n)x(p)] = E[(r(n) + ~)(r(p) + ~)J 

E[x(n)x(p)] = r(n)r(p)+E[l1(n)l1(p)] 
A2 

For white Gaussian noise, 

a 2 
E[x(n)x(p)] = r(n)r(p) + -o(n -p) 

A2 

(B.18) 

(B.19) 

(B.20) 



Appendix C. Impulse Response of the 

Raised-Cosine Filter and Its Derivatives 

The impulse response of the raised-cosine function is 

g(t) = sin(nt/7) cos(npt/7) 

nt/T 1-(2Pt/7)2 

where T den otes the symbol period (TsynJ 

The first derivative is 

whereas, 

'(t) = cos( nt / 7) cos( npt / 7) _ Tsin( nt / 7) cos (npt / 7) 
g 2 2 2 

t(l- (2pt/7) ) nt (1 - (2pt/7) ) 

_ psin(nt/7)sin(npt/7) + 8p2sin(nt/7)cos(npt/7) 

t(l- (2Pt/7)2) nT(1- (2Pt/7)2)2 

g'(O) = 0 

g'(m7) = cos(nm) cos (n P
2
m), m":f; 0 

mT(1- (2Pm) ) 

i (g'(m7)7)2 = 2 i cos
2

(nJ3m) = B(B) 
2 2 2 

m=-oo m=lm (1-(2Pm» 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.S) 

Since the term in the series decreases with m8, the series can be approximated with a few 

terms (i.e. mis finite). 
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The second derivative is 

where, 

g" (t) = -n sin (nt 1 1) cos (n~t 1 1) 

Tt(1- (2~t 11)2) 

+ 2 Tsin (nt 1 1) cos (n~t 1 1) - ntsin( nt 1 1) cos(n~t 1 1) 

nt\l - (2~tl1)2) 

_ 2n ~ cos( nt 1 1) sin(n~t 1 1) + 16 ~2 cos( nt 1 1) cos( n~t 1 1) 

Tt(1-(2~tl1)2) r(1-(2~tl1)2) 

+ 2~sin(ntl1)cos(n~tl1) _ 8~2sin(ntl1)cos(n~tl1) 
?(1- (2~tl1)2) nTt(1- (2~tl1)2)2 

_ n~2 sin(nt 11)cos(n~t 1 1) _ 16~3 sin(nt l 1) sin(n~t 11) 

Tt(1- (2~tl1)2) r(1- (2~tl1)2)2 

+ 128~4tsin(ntl1)cos(n~tl1) 
nr'(1-(2~tl1)2)3 

(C.6) 

(C.7) 


