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Common Notations

• R = {S1, . . . , Sn} is a set of sequence over an alphabet Σ.

• The letters of a sequence will be written as Si = si1 . . . s
i
m.

• G = (g1, . . . , gM) with gj ∈ P (Σ), 1 ≤ |gj| ≤ 2 is a guide.

• b ≥ 1 is the bonus value of the puzzle.

• An alignment to the guide A is obtained by inserting spaces ”_” at
the beginning, into or at the end of each sequence Si such that the
resulting S ′i is of the same length M as the guide.

• The resulting sequences in an alignment will be denoted as S ′1, . . . , S ′n,
where |S ′1| = · · · = |S ′n| = M (with S ′i = s′i1 . . . s

′i
M).

• t is the maximum number of gaps that can be used in a puzzle.

• Index i refers to the ith sequences, and index j refers to the jth position.

• p is the scoring function for an alignment.
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Abstract

In this work, we study the Multiple Sequence Alignment problem, which is
very important in the field of bioinformatics. A lot of different algorithm
have been proposed in order to solve it, but none of them produce perfect
alignments. In order to improve current alignments, we propose Borderlands
Science, a novel approach for the Multiple Sequence Alignment problem.
Here, we want to harness the collective human power and use it to get good
solutions to small snippets of a global alignment problem. We hope that hu-
man players will be able to respect an intuitive trade-off between the number
of gaps used and the quality of the alignment, and that these improvement to
small parts of the problem will lead to a better global alignment. This study
is part of the Borderlands Science project, and focus on examining two of the
hypothesises used when it was proposed : that the puzzles we are sending
to the players are complex from a computational point of view, and that
these players do not follow simple heuristic that can be easily replicated with
algorithms. Here, we first want to define the problem that is being solved
by the human players. Then, we will provide a formal study of the problem
and its complexity. Finally, we will take a look at some simple algorithms
that can be used to solve the problem and see how human players perform
compared to these algorithms.
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Abrégé

Dans cette étude, nous nous intéressons à l’alignement multiple de séquences,
qui est très important dans le domaine de la bio-informatique. De nombreux
algorithmes différents ont été proposé pour résoudre ce problème, mais au-
cun d’entre eux n’est capable de produire des alignements parfaits. Afin
d’améliorer les alignements actuels, nous proposons Borderlands Science,
une nouvelle approche au problème de l’alignement multiple de séquences.
Ici, nous souhaitons canaliser la puissance humaine collective et de l’utiliser
pour obtenir de bonnes solutions sur des petites parcelles d’un problème
d’alignement global. Nous espérons que les joueurs humains seront capable
de réaliser un compromis intuitif entre le nombre d’espaces utilisé et la qualité
de l’alignement, and que ces améliorations à de petites parties du problème
permettront de créer un meilleur alignement global. Cette étude s’inscrit
dans le cadre du projet Borderlands Science, et se concentre sur l’analyse de
deux des hypothèses formulées lors de la proposition du sujet : que les puz-
zles envoyés au joueurs sont complexe d’un point de vue informatique, et que
ces joueurs ne suivent pas une heuristique simple facilement reproductible
par des algorithmes. Ici, nous souhaitons tout d’abord définir le problème
résolu par les joueurs humains. Ensuite, nous fournirons une étude formelle
de ce problème et de sa complexité. Finalement, nous étudierons quelques
algorithmes simples pouvant être utiliser afin de résoudre ce problème and
nous analyserons comment les joueurs humains performent comparé à ces
algorithmes.
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Context

0.1 Multiple Sequence Alignment

Multiple Sequence Alignment is a very central problem of bioinformatics that
consists of finding the best way to arrange multiple (3 or more) biological
sequences (DNA, RNA or protein sequences) to highlight the most similarity
between those sequences. This is very useful as it helps us find homology
between sequences, infer the evolution, or predict the sequence’s function for
example. it is also one of the earliest computational biology problem studied,
with works dating back to the 1970’s [1].

In order to solve this problem, a lot of different methods have been devel-
oped [2, 3]. In most of these formulations, the goal is to find the alignment
maximising a given score, with the sum-of-pairs score for example which has
been used in most study. This is a problem that is specifically hard on large
datasets, with some works focusing on these cases for DNA sequences [4] or
proteins sequences [5] for example. Some research have also proposed ways of
improving these scoring schemes so as to take into account the phylogenetic
tree in order to find alignments that are better fitted to this knowledge [6,
7]. Some of the commonly used programs we can note include CLUSTALW
[8], MUSCLE [9], T-COFFEE [10], SATé-II [11], and PROBCONS [12].

Among these methods, we especially note PASTA which will be relevant
to our project [13]. PASTA alignment works by repeating these following
steps until convergence : estimate a guide tree, separate the problem into
smaller ones based on this tree, use MAFFT [14] to align each of these
sub-problems, then reconstruct a global alignment. This method has the
particularity of creating alignments that are pretty compact, which is well
suited to our project.

Still, the best alignment remains very hard to compute in any of these
problem formulations as they are NP-hard for any reasonable scoring scheme
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[15]. In fact, even for small problems, we usually have no efficient algorithm
to find the best answer. Moreover, mathematically defining the quality of
an alignment is also difficult as we have no universal way of comparing two
different alignments since there are different criteria that can be optimised.
Therefore it is hard to decide what is the best scoring scheme that we should
use to evaluate the alignments.

0.2 Citizen Science

As it turns out, humans are quite proficient in solving these kind of problem,
as the human mind is good at solving multiple constraints at the same time,
and has a nice intuitive understanding of the trade-off between the number
of gaps used and the number of nucleotides or proteins that are correctly
aligned.

The idea of using the collective human abilities in order to solve a hard
scientific problem is known as citizen science [16]. This concept first appeared
with the Audubon Society’s Christmas Bird Count which is a project that
used the help of volunteers to carry out a global bird census [17]. Citizen
science was greatly developed with the use of computers as it allowed for
the work to reach more peoples and opened up efficient ways of storing and
analysing the data.

The public participation in these research projects can come in different
forms : They can for example provide some processing power for large-scale
distributed computing. The Berkeley Open Infrastructure for Network Com-
puting (BOINC) middleware system has been developed to help these kinds
of projects [18]. Some successful attempts include SETI@home used for signal
analysis [19], and Folding@home about protein folding that notably studied
SARS-CoV-2 [20].

Other projects require the participant to complete some tasks, like Galaxy
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Zoo where users have to identify some pictures [21]. It should be noted that
scientific expertise is not necessarily required to participate in these kind
of projects : If we can reduce the problem to a simply defined task with a
clear interface, then it might be solved without having to understand the
underlying scientific problem. For example, we might try to formulate the
task in the form of an accessible, entertaining game so as to appeal to a
broader audience and get more participation [22]. For instance, Eyewire is a
game used to help in mapping the brain [23], while Quantum Moves assist
scientists in the development of quantum computers.

0.3 Introduction + Outline

Citizen science games have been used in the context of biological problems
too, for example with Foldit that study protein folding [24, 25], and more
recently with Phylo that covers Multiple Sequence Alignment [26].

Here we study Borderlands Science which is a citizen science initiative
concerning Multiple Sequence Alignment. It differs from the Phylo project
on different points : First, they focus on different datasets. Phylo concerns
mammalian genes, where we have some prior knowledge about the origins of
the sequences. In Borderlands Science, we want to improve some pre-existing
microbial DNA sequences alignment, which is a significantly larger problem.
Moreover, since these sequences are not related to specific species, we have to
change the method of evaluating the alignment. The support has also been
changed : While Phylo relied on a game that can be played on a website,
Borderlands Science use a mini-game that is directly implemented in the
AAA game "Borderlands 3" in order to reach a broader audience. The game
interface was also modified in order to fit this change as well as to make the
game more intuitive and attractive.

More precisely, the overall idea of this project is as such : We study the
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microbial DNA sequences obtained by the Microsetta initiative, and we start
with the PASTA alignment of these sequences. Since this alignment is pretty
compact, we believe that adding more gap will likely be interesting. To do
that, we select small parts of the alignment that we feel could be improved
and make puzzle out of them. Then, we feed these puzzles to the player
base and gather their solutions. Finally, we will use this data to change the
original alignment.

When designing this project, we supposed that the problem sent to the
players was not easy to solve for a computer, and that human players would
provide answers that are not easily replicated by simple algorithms. In this
work, we will study these assumptions. To that end, we want to provide a
formal study of the game aspect of this project. We will first give mathe-
matical formulations of the objects we are studying. Then we will analyse
the complexity of the problem. Finally, we will discuss some algorithmic
ways of solving the puzzles that can be used in practice and try to compare
these methods to the results obtained by the human players through the
Borderlands Science game.
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1 Introducing the Problem

1.1 Definition of the problem

Let’s define the problem for a set of sequences R = {S1, . . . , Sn} over an al-
phabet Σ (Sequences Si ∈ Σ∗), a guide G = (g1, . . . , gM) with gj ∈ P (Σ), 1 ≤
|gj| ≤ 2 for j ∈ {1, . . . ,M} (M ≥ |Si| for i ∈ {1, . . . , n}), and a bonus value
b ≥ 1.

Note that the constraint of having at most 2 letters for each part of the
guide was chosen arbitrarily with nucleotides sequences in mind, as we be-
lieved that this would lead to more relevant results. Still, as we will see later,
this constraint can be changed without impacting the overall complexity of
this problem.

An alignment to the guide A is obtained by inserting spaces ”_” at the
beginning, into or at the end of each sequence Si such that the resulting S ′i

is of the same length M as the guide (the space can be considered as an
added letter ”_” to the alphabet). The resulting sequences will be denoted
as S ′1, . . . , S ′n, where |S ′1| = · · · = |S ′n| = M . The number of gaps used by
the alignment is the number of spaces that are not at the end of a sequence.

Letters of a given sequence S will be denoted as S = s1 . . . sm.
Borderlands Alignment (BLA) :

The score of an alignment A (denoted as p(A)) is computed as such :

p(A) =
M∑
j=1

bjpj

where pj = |{i|s′ij ∈ gj}|

and bj = b if pj = n, and bj = 1 otherwise

An example of such an alignment is given in Figure 1. Correctly aligned
nucleotides are in a bold square.
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The goal of BLA is, given a fixed number t, to find the alignment A using
at most t gaps giving the highest possible score.

Figure 1: Example of a Borderlands Alignment
The first row corresponds to the guide, the other rows each corresponds to a

sequence. Correctly aligned nucleotides to the guide are put in bold cases.

Find A∗ = arg max
A

p(A)

1.2 Presentation of the Game

The players are sent a puzzle consisting of a guide G = (g1, . . . , gM) along
with an alignment A0 of the set of sequences R = {S1, . . . , Sn} where the
spaces are inserted at the end of each sequences, i.e. for each i = 1 . . . n,
we have that s′ij = sij for j = 1 . . . |Si|, and s′ij = _ for j = (|Si| + 1) . . .M .
Alongside this puzzle, they are given a maximum number of gaps t as well
as a par score ppar, whose purpose will be explained later.

From this starting alignment, the player will have to move the spaces
around in order to increase the score of the alignment while using a limited
number t of gaps, where the number of gaps used by an alignment consists
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of the number of spaces that were not inserted at the end of a sequence (for
example, for the starting alignment A0, the number of gaps used is 0 since
all the spaces are inserted at the end of each sequences).

The moves available to the players can be divided into 3 categories :

• Adding a gap : Take a space at the end of a sequence and move it at
the beginning or into the sequence. This kind of move increases the
number of gaps used by one.

• Moving a gap : Take a space that is not at the end of a sequence and
move it at the beginning or into the sequence. This kind of move does
not change the number of gaps used.

• Removing a gap : Take a space that is not at the end of a sequence
and move it at the end of the sequence. This kind of move decreases
the number of gaps used by one.

The game can be completed once the player reach an alignment whose
score exceed the predefined par score ppar.

Each puzzle is attributed a difficulty ranging from 1 to 9 that roughly
correlates to its size (number of sequences in the puzzle and length of each
sequence), with 1 corresponding to the smallest puzzles and 9 to the biggest
ones.

Note that this game possesses some significant differences compared to
the most commonly seen formulations of MSA : Here, the alignment is made
in order to match a given guide which defines the scoring function. Moreover,
the number of gaps that can be used is a hard constraint in these puzzles
as they are strictly limited, whilst other tend to use a soft constraint for
this criteria by giving a penalty in the score for each gap used. Because of
these changes, some of the well known methods used to solve MSA will not
be suited for this game, and therefore we need to think about other efficient
ways of treating this problem.
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1.3 Complexity (Brute-force Approach)

Let’s study the complexity of a brute-force approach to solve the following
problem :

Given a set of sequences R = {S1, . . . , Sn} over an alphabet Σ (Sequences
Si ∈ Σ∗), a guide G = (g1, . . . , gM) with gj ∈ P (Σ), 1 ≤ |gj| ≤ 2 for j ∈
{1, . . . ,M} (M ≥ |Si| for i ∈ {1, . . . , n}), and a bonus value b ≥ 1 : Find an
alignment A maximising the score.

Let’s first consider the case where we can use an unbounded number of
gaps.

We denote as for all i, li = |Si| the length of each sequence. The number
of possible alignments is :

brut((R,G)) =
n∏
i=1

(
M − li
M

)
Indeed, for each sequence Si, the number of spaces for this sequence in

the alignment is M − li. Therefore, there are
(
M−li
M

)
configurations possible

for this sequence. Since we have no restrictions regarding the number of
gaps we can use, any combination of the sequences are accepted. Hence, the
number of alignments we have to test is

∏n
i=1

(
M−li
M

)
.

Supposing that 0 < li < M (since otherwise, the alignment of this se-
quence is trivial), we can find a lower bound to this complexity : We know
that

(
M−li
M

)
≥ M , and therefore brut((R,G)) ≥ Mn. So the complexity of a

brute-force approach to solve this problem will be exponential with regard
to the number of sequences (and at least polynomial regarding the length of
the sequences).

With a limited number t of gaps :

brut((R,G)t) =
∑

(t1,...,tn)∈T t
n,M

(
n∏
i=1

(
ti

li + ti − 1

))
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where T tn,m =
{

(t1, . . . , tn)
∣∣∣∀i = 1 . . . n, li + ti ≤M,

∑n
i=1 ti ≤ t

}
Note that we have the following properties :

|T tn,M | =
t∑

k=0

|T kn−1,M |

|T t1,M | = min{t,M − l1}

|T 0
n,M | = 1

Explanation : Let’s characterise a correct alignment. For an alignment,
let’s count ti the number of gaps used in the ith sequence Si, i.e. the spaces
that are not at the end of the sequence. Since the total length is m, we know
that ti + li ≤ m. Since we are only using at most t spaces, this means that
(t1, . . . , tn) is in T tn.

Then, for a given (t1, . . . , tn) ∈ T tn, let’s count the number of possible
configuration. For the sequence Si, we have ti gaps that are used. This
means that the last letter of the sequence is at the (li + ti)

th position, and
hence that the ti gaps used are distributed among the (li+ ti−1)th positions.
Since any of these distribution is correct, we have

(
ti

li+ti−1

)
possibilities, and

therefore we have
∏n

i=1

(
ti

li+ti−1

)
combinations using this distribution of gaps.

Hence, the total number of alignments that have to be considered is

∑
(t1,...,tn)∈T t

n,M

(
n∏
i=1

(
ti

li + ti − 1

))

As we don’t have an easier way of explicitly formulating the number of
correct configurations that have to be considered, let’s instead take a look at
a rough lower bound of this complexity : If we take the same assumption as
before (which is that 0 < li < M for all i), and add the supposition that the
number t of gaps isn’t too low with t ≥ n, then we find that
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brut((R,G)t) ≥
n∏
i=1

li ≥ lnmin

where lmin = min1≤i≤n li. Hence, the number of accepted solution will rise
exponentially when we add non trivial sequences, and at least in polynomial
growth when we increase the length of the shortest sequence.

As such, the space of alignments that respect all the constraints is still
too large to be studied as a whole efficiently. This motivates the search of a
way of getting the best solution or at least "good" solutions (as in close to
the best) in a more practical way.

1.4 NP-Hardness

Let’s show that BLA is an NP-complete problem.
For this proof, we only considered the case where every part of the guide

contains exactly two letters, i.e. that G = (g1, . . . , gM) with gj ∈ [Σ]2 =
(

Σ
2

)
.

This is a bit more restrictive than the usual problem and make the proof
a bit more complex, but it can be easily adapted to guide containing any
number of letters.

Proof

To show that BLA is an NP-complete problem, let’s reduce an instance of
Longest Common Subsequence to an instance of BLA. For the Decision prob-
lem form of BLA, we want to know if there is an alignment A respecting all
of the constraints such that p(A) ≥ c for a given objective score c.

Definition : Subsequence

Given a sequence S = s1 . . . sm, we say that S ′ = s′1 . . . s
′
k is a subsequence

of S (denoted as S ′ < S) iff there is an increasing function φ : [[1, k]] →
[[1,m]] s.t. ∀i ∈ {1, . . . , k}, sφ(j) = s′j.
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Longest Common Subsequence (LCS) :

The LCS problem consists of : Given a set of sequences R = {S1, . . . , Sn}
over an alphabet Σ, find (one of) the longest S such that ∀i ∈ {1, . . . , n},
S < Si.

For the Decision problem form of LCS, we want to know whether there
exists a common subsequence S such that |S| ≥ k for a given k ∈ N. For
example, Figure 2 shows a set of sequences whose longest subsequence has
length 2.

Figure 2: Example of a Longest Common Subsequence
This is an alignment (without a guide) showcasing a case of Longest Common

Subsequence. Each row corresponds to a sequence. Letter that belong in the

longest common subsequence are put in bold cases.

We know that LCS is an NP-complete problem for any alphabet Σ such
that |Σ| ≥ 2.

• Let’s reduce an instance of LCS with Σ = {a, b} into an instance of
BLA :

The problem we are studying is : Given a set of sequences R =

{S1, . . . , Sn} over the alphabet Σ = {a, b}, is there a common sub-
sequence of length at least k ?
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Let Σ′ be the alphabet Σ with an added letter x (Σ′ = {a, b, x}). Let
M =

∑
|Si|, and let’s define the following guide : G = (g1, . . . , g2M),

with g2k−1 = {a, x} and g2k = {b, x} for k ∈ {1, . . . ,M}. We define a
bonus such that bn > 2M(n − 1), i.e. b > 2M n−1

n
. The objective c is

defined as c = kbn, and the number of gaps available is t = 2nM .

Some explanations : the alphabet is changed and the guide is defined
as such so we can make sure we know what letter we have at each
position when it is aligned to the guide. The length of the guide and
the number of gaps available are set as to not be a constraint, so that
we will be able to consider any alignment of the sequences. Finally,
the bonus is taken high enough so as to put the emphasis on achieving
bonuses on as many positions as possible : Indeed, here, the score we
get from having one position with a bonus is higher than the highest
score we can get from an alignment that doesn’t get any bonus. Then,
the objective score is set so that it will be beaten if we manage to
achieve bonuses on k positions.

Therefore, the corresponding BLA problem is : Given the set of se-
quences R over the alphabet Σ′, is there an alignment A such that
p(A) ≥ c ?

(Note that sequences of Σ can naturally be seen as sequences of Σ′.)

• If we find an alignment A with a score higher than c :

Let’s separate the positions between those where a bonus is achieved
and those where it isn’t :

Let B =
{
j ∈ {1, . . . , 2M}|bj = b

}
=
{
j ∈ {1, . . . , 2M}|pj = n

}
be

the set of positions where a bonus is achieved. Let’s note q = |B|.

p(A) =
∑
j∈B

b× pj +
∑
j /∈B

pj

20



We know that if k ∈ B, then pj = n, and pj < n otherwise. Remember
that the bonus was set so that the score achieved by position without
bonuses is negligible. Therefore, we have the following upper bound :

∑
j∈B

b× pj = |B|bn and
∑
j /∈B

pj ≤
∑
j /∈B

n− 1 ≤ 2M(n− 1)

and hence :

|B|bn ≤ sc(A) ≤ |B|bn+ 2M(n− 1) < (|B|+ 1)bn

meaning that sc(A) ≥ c = kbn iff |B| ≥ k.

Moreover, we know that if a position j is in B, then that means that
every letter sij is in the guide gj = (g1

j , x) where g1
j ∈ Σ = {a, b}.

Since we know that the sequences are words of Σ, this means that each
s′ij 6= x, and so s′ij = g1

j for i = 1 . . . n. Let’s write B as {b1, . . . , bq}
with b1 < · · · < bq. Then the word g1

b1
. . . g1

bq
is a common subsequence

of length q = |B| ≥ k.

• If we find a common subsequence S of length longer than k :

We can find an alignment Ã (without a guide) of length lesser or equal
than M such that every letter of S is perfectly aligned. First, we add
spaces to the end of each sequences of this alignment until we get a
length of M .

From this alignment Ã′, let’s create an alignment to the guide G A.

– If s̃′ij = _, then s′i2j−1 = s′i2j = _.

– If s̃′ij = a, then s′i2j−1 = a and s′i2j = _.

– If s̃′ij = b, then s′i2j−1 = _ and s′i2j = b.
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Figure 3: Initial Alignment obtained with the Longest Common Subsequence

Figure 4: Corresponding Borderlands Alignment
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An example of this transformation is shown with Figure 3 (original
alignment Ã) and Figure 4 (alignment to the guide A).

This is a correct alignment to the guide, and since the letters of the
subsequence S are perfectly aligned, then the score of this alignment is
at least of |S|bn ≥ kbn = c.

This complete the proof that BLA is NP-complete. Note that we can
adapt this proof to the case where each part of the guide contains k letters
by adding an appropriate number of letters to the new alphabet Σ′ and using
the same reasoning.

23



2 Heuristics

Let’s analyse some greedy algorithms that we can use to solve the BLA
problem, and compare their results to the solution proposed by the players.

We note that others MSA’s formulations do not usually include a hard
constraint regarding the number of gaps that can be used, and therefore most
of the commonly used methods are not well suited to solve BLA. Because
of this, we will be focusing mostly on greedy players where we can easily
implement this new restriction.

2.1 Definitions

2.1.1 Naive Greedy Player

Let’s first define a naive greedy player. Starting from the original alignment
A0, this player will recursively consider all the possible moves as defined in
1.2 (that is adding a gap, moving a gap, and removing a gap), and choose
to play the one that increase the overall score of the alignment the most.
We repeat this process until we can’t find a better alignment respecting the
constraints anymore.

While this mostly gives us results that are better than what we achieve
by choosing moves randomly (Figure 5), we believe that we won’t be able to
get the optimal solution with this method. Therefore, we still wish to find
ways of improving this greedy player.

2.1.2 Depth Search Player

An important caveat of this method is that it does not look forward for future
actions and it fails to consider what are the next moves that should be made
in order to reach the best result. In order to fix this issue, we propose a
player that will study the next possible moves with an in-depth search by
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Figure 5: Comparison of a Random Player and a Naive Greedy Player

looking k steps ahead :
From an alignment, the player looks at all the possible accepted sequences

of at most k moves, retains the one that leads to the best score, and play the
first move from this combination. This process is done recursively until we
can’t find a better alignment.

However, this algorithm is too slow and isn’t really useful in practice. In
fact, it can’t reasonably be used to solve any puzzle that allows us to use
more than 10 gaps (Figure 6).

2.1.3 Heuristic Player : Methods

Another way to circumvent this issue is to change the objective function of
the player : Instead of choosing the move that will maximise the score, we
will choose the move maximising a linear combination h of the alignment
score and some heuristics that we will define now.
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Figure 6: Run time of a Depth Search Player depending on the maximum
number of gaps and the depth (Puzzle of difficulty 1)

h(A) = p(A) +
∑
i

αihi(A)

Note that we will take αi > 0 when we want to increase the heuristic,
and αi < 0 when we want to decrease it.

• First, we want to know if the letters in our alignment are close to being
aligned to the guide or not (Figure 7). To that end, we want to define
a distance from our alignment to the guide, which our greedy player
will aim to decrease in order to find better alignments. We propose the
following function as our measure :

Distance to guide :

For an alignment A : Let’s write each aligned sequence Si as si1 . . . sim,
and define the distance d(sij, G) of the letter sij to the guide G as :

26



(a) Worse case

A letter is two gaps away from being

aligned, another one is one gap away

(b) Better case

Two letters are one gap away from

being aligned

Figure 7: Comparing two alignments distance to the guide

– d(sij, G) = 0 if sij = ”_”.

– d(sij, G) = min
{{
k ∈ N

∣∣∣sij ∈ gj+k}⋃{m+ 1− j}
}

otherwise.

The idea here is to count minimal the number of gaps that would need
to be used in order to align letter sij to the guide (i.e. the number of
spaces that would need to be moved from the end of the sequence to
before sij).

Then, we define the overall distance of the alignment to the guide as :

d(A, G) =
∑
i,j

d(sij, G)

Discounted distance to guide :

It might be more interesting to give more relative importance to short
distances, since these are the letters that we are more likely soon to
be aligned (Figure 8). For that purpose, we propose the following
definition of a new discounted distance :
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(a) Worse case

A letter is two gaps away from be-

ing aligned, another one is three gaps

away

(b) Better case

A letter is one gap away from being

aligned, another one is four gaps away

Figure 8: Comparing two alignments distance to the guide

– d′(sij, G) = 0 if sij = ”_”.

– d′(sij, G) =
∑d(sij ,G)

k=1 λk−1 = 1−λd(s
i
j ,G)

1−λ otherwise.

Here, the first gap that would need to be used in order to align sij to
the guide increases the distance by one, and then the next ones yields
decreasing returns. That way, moving an almost aligned letter closer
to the guide will decrease the distance more than moving a letter far
from being aligned closer to the guide.

Then, we define the discounted distance of the alignment to the guide
as :

d′(A, G) =
∑
i,j

d′(sij, G)

Note that for both of these definitions, the distance of a letter sij that
cannot be aligned by adding gaps anymore is misleading, so it might
be interesting to change the definition to consider this specific case.

• Now, we also want to encourage the player to prioritise alignments that
achieve bonus on multiple positions (Figure 9). To that end, we can
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look for each position at how many letters are already aligned, and use
a function f that will yield increasing return for this number of letters
(i.e. we want f : N → R such that ∀n ∈ N, f(n + 2) − f(n + 1) >

f(n + 1) − f(n)). Any strictly convex, increasing function f is suited
to that purpose. Hence, we will try to increase the value given by this
function on our alignment in order to get closer to achieving a bonus.

(a) Worse case

A position has two gaps aligned

(b) Better case

A position has three gaps aligned

Figure 9: Comparing two alignments proximity to achieving a bonus

Here are some examples of such functions :

– Sum of pairs

Sum of pair is a common score measure used in Multiple Sequence
Alignment.

For a given alignment A, we define the sum of pairs of letters that
are correctly aligned as

f(A) =
∑
j

(
2

pj

)
where pj = |{i|sij ∈ gj}|.

– Power function : f : n ∈ N 7→ nk ∈ R with k > 1.

– Exponential : f : n ∈ N 7→ en ∈ R.
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2.2 Results

2.2.1 Datasets

The puzzles we use will concern the DNA sequences of gut bacteria. They are
originally made from PASTA alignments, which are quite dense. From these
original alignments, we select short parts that we feel could be improved.
From this part, we remove the gaps in the middle of the sequence, and we
create a guide according to the most represented letter at each position on
the original PASTA alignment. The size of the part selected to make a puzzle
will vary depending on the desired difficulty we want to set, going from 6 to
19 sequences of around 3 to 10 nucleotides.

Difficulty 1 2 3 4 5 6 7 8 9

Number of sequences 6 6 7 9 11 15 17 19 19

Size of the guide 6 7 11 11 11 11 11 11 11

To set the par score, we use the following algorithm : First, we take the
first sequence of the family, and we try any possible alignment for this one
sequence, keeping the one providing the best overall score (without moving
the other sequences). Then, we move on to the next sequence of the family
and align it the same way. Once we went through all of the sequences, if
no modification have been made in this loop (i.e. if none of the sequences
have been moved), then we terminate the algorithm and keep the score of the
current alignment as our par score, with the number of gaps allowed being
the number of gaps used in this alignment. Otherwise, we repeat the steps
from the beginning, starting with the current alignment.

Note that this algorithm do not provide any control on the number of
gaps used for the alignment. In order to create a new puzzle for the same
family of sequences, but with modified par score and maximum number of
gaps, we proceed in a greedy way : From the alignment obtained with the
previous algorithm, we check all of the gaps that are used and try removing
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them. Then, we actually remove the gap such that the score decrease for the
alignment is as small as possible. We can repeat this as many time as needed
to remove any number of gaps.

We select a random batch of puzzles on which we will do our study.
Notice that the number of puzzles we have decrease as the difficulty increase
(Figure 10.(a)). Still, we have about the same number of solutions per puzzle
regardless of the difficulty, so this shouldn’t be an issue (Figure 10.(b)).

(a) Number of puzzles (b) Average number of solutions

Figure 10: Number of puzzles and solutions in the selected batches

Our test will be run on around hundreds of puzzles selected randomly
among the puzzles that have been deployed in the game. For each puzzle,
we have access to a varying number of solutions that have been found by
human players. For each of these solution, we can see the score achieved, the
number of gaps used, the actual alignment found, and the player id among
other.

2.2.2 Results

Let’s first take a look the average score achieved by each greedy players.
For that purpose, we selected random batches of up to 250 puzzles for each
difficulty.
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To restrict the number of parameters, we will only consider an objective
function h1 combining the distance to the guide d and the sum of pairs f ,
and an objective function h2 combining the discounted distance to the guide
d′ and the sum of pairs f . The coefficients are chosen so that we can expect
that the variation of the score and of each heuristic will be of comparable
magnitude. We report these results in Figure 11.

Figure 11: Comparison of the average performance of different greedy players

We note that both heuristics tend to improve the result of the greedy
player. The most important one seems to be the heuristics regarding the dis-
tance to the guide. It looks like this improvement tends to be more important
the higher the difficulty of the puzzle is.

However, if we look more in detail, we can see that there is a non negligible
number of puzzles where the naive greedy player performs better than the
new ones.

From Figure 12, we can note that the "Sum of pairs" measure have a
bigger effect the higher the difficulty is, changing the score of more different
puzzles (whether it is improving it or not). In contrast, the distance to the
guide variance seems to correlate less to the difficulty of the puzzles.
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(a) Sum of Pairs (b) Discounted Distance

(c) Heuristic 1 (d) Heuristic 2

Figure 12: Number of puzzles improved by each heuristic

(a) Difficulty 3 (b) Difficulty 8

Figure 13: Score Difference Distribution with Heuristic 1
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We can see with Figures 13 and 14 that when the score has decreased,
the variation is never very important, rarely being over a 5 point difference.
On the contrary, while the increase usually isn’t very important either for
improved puzzles (often less than a 5 point increase), there can be more
important variations, especially when the puzzles difficulty get higher, where
we can see increase of more than 15 points.

(a) Difficulty 2 (b) Difficulty 9

Figure 14: Score Difference Distribution with Heuristic 2

In fact, the parameters that gives the best result vary greatly from puzzle
to puzzle, as we can see with Figure 15. Therefore if we want to fit the
parameters we should train the model on a very large dataset, which would
take a long time. Instead, it might be a better approach to try a few different
set of parameters on each puzzle and keep the best result.

2.2.3 Time Analysis

We now look at the average time taken by the greedy players to solve a puzzle
(Figure 16).

We notice that the greedy players with a changed objective function are
significantly slower than the naive greedy player, with the difference being
greater the harder the puzzle is. Still, they have a reasonable enough run-
time to be used in practice.
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Figure 15: Comparison of the performance of different greedy players

Figure 16: Run time of a Depth Search Player depending on the maximum
number of gaps and the depth
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Using the discounted distance is slightly slower than using the original
one. This should be due to the computation of a power function. Still, this
difference is not significant.

As mentioned before, this can still be seen as a problem if we want to
search for the best parameters. Indeed, we don’t have any better way than
to try different combinations of parameters on a batch of puzzles and choose
the best performing one. Since we don’t have a closed form for the solution,
we can’t use any gradient based method for example.

2.3 Comparison with Players

2.3.1 Comparison with the Naive Greedy Player

We begin by comparing the human players’ solutions to the naive greedy
player.

Difficulty 1 2 3 4 5 6 7 8 9

Number of puzzles 963 654 237 345 282 260 186 228 93
(Set of sequences) (321) (218) (79) (115) (94) (89) (62) (76) (37)

Number of solutions 19158 12961 5075 6534 5130 4351 3119 4048 1398

Percentage of players
beating the naive
greedy player

50.2 44.8 19.1 15.8 15.0 13.1 12.8 10.3 15.1

Percentage of set of se-
quences improved

88.2 89.0 77.2 75.7 56.4 55.1 50 61.8 64.9

Average improvement 3.08 2.96 2.05 2.47 2.91 4.22 4.71 3.01 3.81

We can see that a significant portion of the human players beat the naive
greedy player, especially on lower difficulties. However, we can see that the
magnitude of improvement isn’t too great.

We can also note that human players have a harder time beating the naive
greedy player on puzzles with lots of nucleotides, and when every part of the
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guide contains two letters. Players that outperform the naive greedy player
also tend to use more gaps.

2.3.2 Score Comparison

It is quite hard to evaluate the quality of these algorithm since we do not
know of any efficient ways of computing the optimal solution. Instead, let’s
first compare the score achieved by the greedy players to the human solutions.
We used a total of 25 different combinations of parameters chosen arbitrarily
for this comparison. We show our results in Figure 17.

(a) (b)

Figure 17: Example of score comparison on different difficulties

First, we can see that score variations for the greedy players are quite
small compared to the human solutions. Most of the players are unable to
beat the best score found by the greedy players. In fact, there are numerous
puzzles where the greedy players outperform all of the human solution in
term of score. This makes us feel that these algorithms perform quite well on
the problem. We believe we can assume that these solutions are quite close
to the pareto front.

Still, we can see a non negligible number of solutions with a better score
than those found by the greedy players, proving that they do not always give
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the optimal solution. Moreover, on basically every puzzles, human players
are able to at least come very close to the best score computed by the greedy
players. It is also interesting to see that these "good scores" are achieved
with different number of gaps, which means that the human players can
perform well regardless of the number of gaps available. This is promising as
we believe that the solutions that are close to the pareto front are the ones
that will be worth investigating, Indeed, we expect the solutions that will
improve the original alignment to have good Borderlands Alignment score,
and therefore to be nearly pareto optimal.

Finally, we can also note that on puzzles of lower difficulty, the greedy
players tend to find a local optimum and do not use all of the available gaps,
while human players are able to find solutions that use more gaps.

2.3.3 Distance

On another topic, we want to see if our algorithms are able to replicate the
behaviour of the human players. To do that, we wish to measure how similar
the solutions obtained by our algorithms are to the solutions given by human
players, and for that purpose, we must define a distance on the space of
possible alignments. Knowing that we only wish to compare solutions of the
same problems, which implies that we will only be considering alignments of
the same set of sequences and of the same size, an intuitive way to evaluate
the distance between two solutions is to look at the number of common
positions :

Let A and A′ be two alignments of the same puzzle. Let’s write A as
(S1, . . . , Sn) where Si = si1 . . . s

i
m, and similarly, A′ as (S ′1, . . . , S ′n). We

define the distance between A and A′ as :

d(A,A′) =
∑
i,j

1(sij 6= s′ij )
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where 1(sij 6= s′ij ) = 1 if sij 6= s′ij and 1(sij 6= s′ij ) = 0 otherwise.
In other word, we count the number of positions where the characters are

different.
Now, we take the best scoring alignment that we found using the greedy

players, and measure the distance from each of the solutions we have to that
alignment. We choose to only compare to the best alignment as we felt that
it was easier and clearer. Some examples are shown in Figure 18.

(a) (b)

Figure 18: Distance to the best solution in function of the number of gaps
used

First, we see that greedy players tend to produce very similar solutions,
regardless of the difficulty of the puzzle, with the alignments getting closer
to the best one as more gaps are used as we could have expected given how
they were defined. On the other end, for human players, we can see that
while on lower difficulties, they are able to find solutions close to the one
provided by the computer, it is very rarely the case on higher difficulties.
Moreover, on any of those puzzles, human players are always able to find
solutions that are vastly different to those found by the greedy players. It
is especially interesting to see that we can often find high scoring alignment
that are widely different from the one used as a baseline, as we can see in
Figure 19, which shows there are other solutions worth considering.
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Most importantly, human players provide us a large array of different
solutions which we can consider to usually be pretty reasonable ones. Hence,
we can hope that some of these solutions will lead to better global alignment
when we re-inject them in the global problem from which the puzzles were
originally constructed.

(a) (b)

Figure 19: Distance to the best solution in function of the score

Example
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(a) (b)

Figure 20: Best solution found by the greedy player (Score : 129)
Here each column corresponds to a sequence, the guide is on the left, and letters

start of the bottom in the initial alignment.

(a) Score : 123 (b) Score : 123

(c) Score : 121 (d) Score : 120

Figure 21: Some good scoring solutions found by the greedy player
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(a) Score : 126 (b) Score : 124

(c) Score : 121 (d) Score : 120

Figure 22: Some good scoring solutions found by the human players

We can see that while greedy players tend to insert gaps at similar position
each time, human players tend to explore more diverse options.

2.3.4 Improving solutions

We now want to check if there are easy ways of improving the players’ solu-
tion. More precisely, let’s see if we can find moves (as defined in 1.2) that
could improve the score without having to use more gaps. To do that, we can
use the naive greedy player, fixing the gap constraint to the current number
of gaps used. For each puzzle, we compute the percentage of solutions that
we managed to improve in this way. We will refer to solutions that cannot
be improved by a single move as local optimum.

From Figure 20, we can see that while on lower difficulty (1 or 2), human
players tend to frequently find local optimum (at least 80% of the solutions
for about half of the puzzles), that is not the case on puzzles of difficulty
of 3 or higher. This might be due to the significant increase in the size of
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Figure 23: Analysing players’ solution
For each difficulty level, for 50% of the puzzles, human players give a percentage

of local optimum above the red line. 50% of the puzzles also have this percentage

included in the white box
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(a) (b)

Figure 24: Improving players’ solution
The blue line represents the result obtained by the naive greedy player, the red

points are players’ solution that are local optimum, the blue points are players’

solution that are not local optimum, and the green points are the result obtained

by improving these latter solutions.

the problem between difficulty 2 and 3. In the latter case, we can find at
least 40% of the solutions that can be improved by the naive greedy player
on the vast majority of the puzzles. This strengthen our belief that human
players are not usually focused on only maximising the score by any means,
and tend to select solutions that feel more natural to them.

Looking closer at the scores achieved (Figure 21 for example), we can see
that the local optimum are close to what we assume as the pareto optimal line
(regarding the score versus number of gaps trade-off). Hence, improving these
solutions allow us to remove solution that were far from being pareto optimal.
We can also see that improving players’ solution sometimes outperforms the
original naive greedy player. That is notably the case when the naive greedy
player gets stuck in a local optimum and is unable to use all the gaps available.
Indeed, improving a previous solution allows us to use more gaps which can
help us get a better score.

Another approach that might be interesting would be to try to combine
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some parts of different solutions to form a better one, though this might not
be easy to do given that we have a constraint regarding the number of gaps
that a solution can use.
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3 Discussion

3.1 Contributions

The first objective of our work was to formally define the problem that we
are considering, and see if this problem was interesting to study or not.
Since we were able to prove that the Borderlands Alignment problem is NP-
complete, this justify trying an approach such as Citizen Science in order to
solve the problem. Indeed, we know that it is highly unlikely that we will
find an efficient algorithm that will provide us with the best possible answer.
Moreover, we have also shown the inadequacy of a brute-force approach, as
the number of accepted combinations is too high to be studied efficiently.
Hence, we can hope that human players will help us find some optimal or
close to optimal solutions that we will be able to use to improve the original
alignment.

In the second part of our study, we wanted to compare the behaviour
of players to some algorithm that could be used to solve the Borderlands
Alignment problem. To that end, we defined some heuristics so we could
define some algorithms that would choose their moves in a way that we
believe is reasonable.

While our algorithms usually gets better score than the human players, we
can still find some submissions that outperform the greedy players solution.
Moreover, the help of human players provide us with a wide array of solutions
which we can use to find vastly different "good" solutions (solutions that are
almost optimal), whereas the greedy players tend to find very similar results.
This might allows us to restrict the solution space to a smaller set that we
can study in the hope of getting the best result when we re-inject it in the
original problem, while still keeping a sufficient variety of different solutions.
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3.2 Limitations

The main issue with our algorithmic approach comes with the high number
of possible parameters coupled with the fact that we lack a way of efficiently
comparing their performance. Hence, in order to fit the parameters of our
model, we have to evaluate the results on the whole dataset with each combi-
nation of parameters that we want to consider, which will take an important
amount of time for large dataset. Moreover, since the performance of a
given greedy players is highly volatile from puzzle to puzzle, we would like
to to keep different combinations of parameters and run them on all puzzles.
Therefore we get a trade-off between the number of greedy players that we
will want to run and as such the time complexity of our algorithm, versus
the quality of our answer.

Moreover, since we are using a greedy approach, our algorithms are nat-
urally prone to getting stuck in local optima instead of reaching the global
optimum. Still, this doesn’t appear to be too much of a problem since we
can see that human players do not find solutions with a tremendously better
score.

Another point of contention is the way we compute the similarity between
solutions. Indeed, one of the main caveat of the number of common positions
is the fact that the spaces are treated the same way as the other letters,
though having spaces at the same position isn’t as important as for letters.
This method of measuring also does not consider the similarity between the
different sequences, and as such, two close to equivalent answer might appear
as very distant.

3.3 Future Perspectives

To continue our study further, we could look a deeper look at the perfor-
mance of the greedy players with different heuristics. Indeed, in order to
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keep our run-time reasonable enough, we restricted the objective function to
only include a combination of the distance to the guide measure with the
sum of pairs measure, or a combination of the discounted distance to the
guide measure with the sum of pairs measure. It would be interesting to see
if the same results still hold with other objective functions.

It also might be interesting to consider a non-deterministic algorithm as
it is possibly a better way to simulate the human player behaviour. This
could give us a wider variety of solutions which is something we lacked. A
way to do that would be to consider all the possible moves, and select the one
to take randomly giving more weights to the moves that lead to higher value
for the objective function. It might also be interesting to consider techniques
such as simulated annealing.

The measures defined for our heuristic based greedy players could be used
to develop a reinforcement learning framework. Knowing that the actual
best solutions for the original global problem might not be the one with the
highest score, we might be able to learn some better evaluation criteria from
the "good" human players solutions. More precisely, we could try to train
a model that would evaluate the state of the puzzle by computing various
measures such as the Borderlands score, the sum of pair score, the distance
to the guide, etc. . . , and then the model would be able to choose a specific
move to play next based on this knowledge.
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Conclusion

In the framework of Borderlands Science, we defined a new scoring scheme
for Multiple Sequence Alignment suited to make a game that can be played
by a wide array of players. We showed that this problem was non-trivial to
solve, and that it was still NP-complete like the other commonly used scoring
scheme.

We then proposed some simple algorithms to study this problem and
showed that they were able to get good results. We started from a naive
greedy player, and showed some heuristics that could improve it. From what
we have seen in this work, simple algorithms appear to perform quite well on
this problem. In fact, the solutions provided by human players never seem
to significantly outperform the computer’s solution. Still, human players are
regularly able to best the high score gotten from these algorithms. Moreover,
human players provide a wider variety of solutions, and it looks like their
behaviour cannot be reproduced by a simple algorithm, which should prove
to be useful for the continuation of the project.

Overall, with this work, we consolidate that the Borderlands Science ini-
tiative is interesting as we confirm the hypothesis that the problem we are
studying does not appear to be easily solvable by a computer. Moreover, we
showed that the players’ community is able to provide a different insight to
the subject compared to simple algorithms. This is promising as this rein-
force our belief that the collective human power can improve alignments by
giving intuitive solutions to the smaller puzzles with a spontaneous trade-off
between the number of gaps used and the overall score.
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Appendix - Figures

(a) (b)

(c) (d)

Figure 25: Score comparison - Difficulty 3
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(a) (b)

Figure 26: Score comparison - Difficulty 7

(a) (b)

(c) (d)

Figure 27: Distance to the best greedy player’s solution as a function of the
number of gaps used - Difficulty 2
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(a) (b)

(c) (d)

Figure 28: Distance to the best greedy player’s solution as a function of the
number of gaps used - Difficulty 9
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(a) (b)

(c) (d)

(e) (f)

Figure 29: Distance to the best greedy player’s solution as a function of the
score
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(a) (b)

(c) (d)

Figure 30: Improving players’ solution
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