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Abstract Legionellosis is a very devastating disease world-
wide mainly due to unpredictable outbreaks in man-made wa-
ter systems. Developing a highly specific and sensitive rapid
detection system that detects only metabolically active bacte-
ria is a main priority for water quality assessment. We previ-
ously developed a versatile technique for sensitive and specif-
ic detection of synthetic RNA. In the present work, we further
investigated the performance of the developed biosensor for
detection of Legionella pneumophila in complex environmen-
tal samples, particularly those containing protozoa. The spec-
ificity and sensitivity of the detection system were verified
using total RNA extracted from L. pneumophila in spiked
water co-cultured with amoebae. We demonstrated that the
expression level of ribosomal RNA (rRNA) is extremely de-
pendent on the environmental conditions. The presence of
amoebae with L. pneumophila, especially in nutrition-
deprived samples, increased the amount of L. pneumophila
15-fold after 1 week as measured through the expression of
16s rRNA. Using the developed surface plasmon resonance
imaging (SPRi) detection method, we were also able to

successfully detect L. pneumophila within 3 h, both in the
presence and absence of amoebae in the complex environmen-
tal samples obtained from a cooling water tower. These find-
ings suggest that the developed biosensing system is a viable
method for rapid, real-time and effective detection not only for
L. pneumophila in environmental samples but also to assess
the risk associated with the use of water contaminated with
other pathogens.
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Introduction

Legionella species are the causative agent of legionellosis, and
among them, Legionella pneumophila is responsible for more
than 90 % of legionellosis. Legionellosis is a very devastating
disease worldwide mainly due to unpredictable outbreaks.
Legionellosis, which is transmitted through aerosol, is mani-
fested as a form of pneumonia or Pontiac fever, a milder form
of the disease with flu-like symptoms [1]. Between 2001 and
2006, 30 % of waterborne disease outbreaks in the USAwere
caused by Legionella [2]. The fatality rate of legionellosis can
approach 50 % within industrial and hospital outbreaks, espe-
cially affecting individuals with a compromised health condi-
tion [1]. L. pneumophila is found in most natural and
engineered water systems, such as air conditioning, showers
and cooling towers where it contaminates and multiplies in-
side amoebae [3].

Currently, L. pneumophila is mainly detected by laboratory
culture, polymerase chain reaction (PCR), immunology-based
methods and DNA microarray methods [4–6]. However, these
detection methods all have shortfalls. The culture method is
very time consuming and does not have the ability to detect
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viable but nonculturable cells (VBNC). PCR is unreliable in
many situations, due to false-positive detection of nonviable
bacteria and the presence of inhibitors in environmental water
[7]. DNA microarrays are also unable to distinguish between
live and dead bacteria. Targeting ribosomal RNA (rRNA) is a
viable alternative that overcomes the aforementioned limita-
tions: it provides a detection system that is more reliable, accu-
rate and sensitive. This is due both to the correlation of the RNA
expression level in bacteria with microbial activity and to the
presence of high copy numbers of 16s rRNA in each bacterium.

We developed an effective technique for detection of synthet-
ic RNA [8], through the design of specific DNA capture and
detector probes along with the use of quantum dots (QDs) for
signal amplification. We were able to detect sub-femtomole
levels of synthetic RNA with the surface plasmon resonance
imaging (SPRi) biosensor in less than 3 h. Although the detec-
tion of synthetic RNA is the first step towards the development
of a biosensor for on-site detection, the main challenge remains
to validate the performance of the developed biosensor for much
more complex situations such as the detection of RNA extracted
from pathogenic L. pneumophila in environmental water sam-
ples, particularly when protozoa are present.

The interaction of protozoa, especially amoebae, with
L. pneumophila in water systems is of great importance.
Most of the conventional biosensors are unable to detect the
L .pneumophila hidden inside amoebae and failed to provide
any meaningful information regarding the interaction of
Legionella with protozoa especially in the environmental wa-
ter samples. L. pneumophila can normally survive in nutrition-
deprived environments for long periods of time but cannot
multiply. They multiply in these environments mostly when
amoebae were also present [9]. The ingestion of
L. pneumophila by amoebae provides an intra-cellular envi-
ronment for its amplification in water systems. In addition,
amoebae can also act as a shelter against harsh conditions such
as low temperatures and the presence of biocides [9–12]. In
the case of biocide treatment, this protection can result in
treatment failure, after which L. pneumophila might be able
to recolonize the water system rapidly. Another important im-
pact of amoeba-Legionella interaction is the enhancement of
the virulence of L. pneumophila [13]. It has been reported that
their combined action contributes to L. pneumophila’s viru-
lence by priming the bacteria to infect human cells [14].

Therefore, in our current work, we investigated the interac-
tion of the amoeba with L. pneumophila in the nutrition-
deprived buffer and the environmental water samples. We fur-
ther examined the specificity and sensitivity of our detection
approach in these conditions and their effects on the biosensor
performance with the ultimate goal of developing an on-site
detection system (Scheme 1). In order to ensure specificity of
the detection system, we first examined total RNA (totRNA)
extracted from different bacteria and then the limit of detection
of totRNA extracted from pathogenic L. pneumophila was

determined with our SPRi-based biosensor setup. In addition,
the effect of residency of L. pneumophila in nutrition-deprived
water samples and amoeba-Legionella interaction in a co-
culture system with defined water composition on 16s rRNA
expression and on the SPRi signal at different time points was
assessed. Finally, cooling tower water samples contaminated
with L. pneumophila, in the presence and absence of amoebae,
were examined to explore the viability of the developed tech-
nique for detecting L. pneumophila in a complex environment.

Experimental

BMaterials and Methods^ can be found in the Electronic
Supplementary Material.

Results and discussion

Assessment of specificity and sensitivity of the SPRi
biosensor

In order to evaluate the specificity of the detection system, the
change in SPRi reflectivity (Δ%R) of totRNA hybridization

Scheme 1 Schematic illustration of the infection cycle of
L. pneumophila in amoebae in cooling tower water and detection of
L. pneumophila using SPRi: a cooling tower water containing amoebae
and L. pneumophila, b an amoeba infected by L. pneumophila, c
multiplication of L. pneumophila inside an amoeba, d lyses of amoeba
and release of L. pneumophila, e collection and lyses of L. pneumophila, f
extraction and fragmentation of RNA from L. pneumophila, g
hybridization of extracted RNA on the SPRi chip, h schematic of the
RNA hybridization using capture and detector probes and use of QDs
post amplification
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from 106colony-forming units (CFU)/mL of L. pneumophila,
two different strains of Escherichia coli (DH5α and K12) and
Pseudomonas aeruginosawere measured. As shown in Fig. S1,
hybridization of totRNA extracted from all bacteria except for
L. pneumophila did not result in a significant SPR signal. This
confirmed that the designed capture and detector probes allowed
for highly specific detection of L. pneumophila. To determine
the sensitivity and limit of detection (LOD) for totRNA, a dilu-
tion series of L. pneumophila in AYEmedium ranging from 3×
104 to 3×108 CFU/mLwasmade, and 1mL of each sample was
used for RNA extraction. The extracted RNA was then
fragmented and the hybridization kinetic was monitored in real
time with a SPRi biosensor, employing the SA-QD signal am-
plification. The results indicated that RNA could be extracted
from very low concentrations of bacteria, ranging from 3×104

to 3×108 CFU/mL. A LOD comparable to that obtained for the
detection of synthetic RNA [8] was achieved, thereby
confirming the high sensitivity of the developed detection sys-
tem in a complex mixture of RNA (Fig. S2).

16s rRNA expression level

The presence of L. pneumophila in nonoptimal condi-
tions, especially in nutrition-deprived environments, has
been reported to affect its metabolic activity which in turn
influences the expression of 16s rRNA [15]. To investi-
gate the metabolic activity of L. pneumophila in nutrition-
deprived environments, L. pneumophila was incubated in
AC buffer at different time points from 0 to 48 h. Reverse
transcriptase PCR was first performed to convert RNA to
cDNA, and then real-time PCR was carried out to quan-
tify the expression level of 16s rRNA. Since in real-time
PCR, the cycle threshold (Ct) is defined as the number of
cycles required for the signal to exceed the background
level, the Ct value is inversely proportional to the amount
of RNA in the sample (Fig. 1). It has been reported that
L. pneumophila cannot grow in AC buffer [16], and we
further confirmed this by CFU counting for each sample
(data not shown). Our results suggest that, even after 6 h
of exposure of L. pneumophila to AC buffer, the level of
16s rRNA expression dropped significantly and this trend
continued up to 48 h (Fig. 1). This further shows that the
metabolic activity of bacteria is extremely dependent on
their milieu, and confirms that targeting 16s rRNA in
bacteria could give meaningful insight into the metabolic
state of bacteria.

SPRi detection of L. pneumophila co-cultured
with amoebae

In order to investigate the effect of amoebae presence on
L. pneumophila purulence, 1.5×106 amoebae were co-
cultured with 1.5×106 CFU of L. pneumophila in AC

buffer. Figure 2 shows changes in SPRi signal as a func-
tion of L. pneumophila concentration after 1, 2 and 7 days
in the presence and absence of amoebae. Interestingly for
L. pneumophila in AC buffer, the SPRi signal dropped to
0.18±0.09 Δ%R as of day 1 (Fig. 2b) which is significantly
lower than at the same concentration in AYE (2 % change in
reflectivity is expected at the same concentration in AYE,
according to Fig. S2). This lower SPRi signal is obviously
due to the reduction of 16s RNA expression of
L. pneumophila in a nutrient-poor medium as compared to
the SPRi signal in an AYE medium. The drop in SPRi signal
is also in agreement with our previous observation, depicted
in Fig. 1. The Ct value for day 1 was significantly lower
than that for day 0. The SPRi signal for day 1 was stronger
for the co-cultured samples than for the L. pneumophila cul-
tured alone (0.18±0.09 Δ%R versus 0.72±0.13 Δ%R),
while the CFU count remained the same for both (Fig. 2a).
This further confirmed that the amoebae would enhance
L. pneumophila 16s rRNA expression.

In order to examine the effect of RNA extracted from
amoebae on the detection system performance, the nega-
tive control samples containing only amoebae were also
tested at all time points. No signals for amoeba samples
were observed (data not shown). As seen in Fig. 2a, al-
though the concentration of L. pneumophila in AC buffer
remained the same from days 1 to 7, the presence of
amoebae in co-culture samples resulted in a significant
increase of L. pneumophila concentration after 2 (6.37±
0.10 Log CFU/mL) and 7 days (7.64±2.24 Log CFU/mL)
as compared to day 1 (6.11±0.17 Log CFU/mL). The
same trend could be observed with SPRi results. The re-
flectivity change for the co-culture sample increased with
incubation time. We believe that the increase in the SPRi
signal is mainly due to the increase of L. pneumophila
concentration and partly due to the increased expression
of 16s rRNA.

Fig. 1 The effect of incubation time of L. pneumophila in AC buffer on
16s rRNA expression was examined. Ct values obtained from real-time
PCR experiments and plotted against four different incubation time
points. All data are expressed as mean±standard deviation
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Validation of sensing technique for the cooling tower water
sample

To demonstrate the specificity and sensitivity of the sys-
tem for the detection of L. pneumophila in complex envi-
ronmental samples, L. pneumophila with a concentration
ranging from 2×104 to 2×108 CFU/mL was spiked in a
water sample from a cooling tower. A series of the SPRi
measurements were performed in the presence and ab-
sence of amoebae after 2 days to assess the effect of this
complex water sample on the L. pneumophila purulence
and the 16s rRNA expression. As shown in Fig. 3a, the
concentrations of L. pneumophila samples did not change
after 2 days (1:1 linear correlation between days 0 and 2)
while a significant increase of L. pneumophila concentra-
tion was observed when L. pneumophila was co-cultured
with amoebae for all initial concentrations used in this
study. After day 2, the increase in L. pneumophila con-
centrations in the co-culture samples was greater for the
initial concentrations of 4, 5.3 and 6.2 Log CFU/mL than
for the initial concentrations of 7.1, 7.4 and 8.2 Log CFU/
mL. This could be due to the difference in the infection
ratio of L. pneumophila to amoebae. Since the initial

amoebae concentration was chosen as 6.2 Log amoebae
per sample, the infection ratio of less than one (samples
with initial concentrations of 4, 5.3 and 6.2 Log CFU/mL)
resulted in a more pronounced increase in concentration
of L. pneumophila. This result is in agreement with liter-
ature reporting that at a higher infection ratio (when there
are more bacteria per amoeba), the amoebae are lysed
more rapidly [17, 18]. Therefore, there would be less
amoebae for L. pneumophila to grow in, which would
explain the reason behind our overall observation.

The presence of L. pneumophila in cooling tower water
samples resulted in a higher SPRi signal as compared to
signals from AC buffer samples shown in Fig. 3b. For
instance, the sample with a concentration of 6.2 and 5.3
Log CFU/mL resulted in 0.499±0.02 Δ%R and 0.17±
0.02 Δ%R changes in reflectivity, respectively. These
reflectivity changes were higher than the reflectivity
change of 0.12±0.05 Δ%R obtained from 6 Log CFU/
mL in AC buffer after 2 days (Fig. 2b). This could be
explained by the fact that the cooling tower water sample
might contain more nutrition elements than the AC buffer.
This higher concentration of nutrients can enhance the
metabolic activity of L. pneumophila and therefore the
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16s rRNA expression level. As such, we could successfully
detect L. pneumophila samples in the presence of amoebae
with initial L. pneumophila concentrations as low as 4.4 Log
CFU/mL (Fig. 3b).

Conclusions

Monitoring metabolically active bacteria rapidly with high
specificity and sensitivity is the main challenge in water qual-
ity assurance to prevent any potential outbreaks due to con-
taminated water systems. Using total RNA extracted from
L. pneumophila along with SPRi technology, we investigated
RNA as a viable genetic moiety that can provide a highly
specific and sensitive detection modality for the detection of
L. pneumophila in environmental water samples. We demon-
strated that targeting 16s rRNA in L. pneumophila gives
meaningful insight into the metabolic state of the bacteria by
exposing bacteria to a nutrition-deprived environment and
monitoring the change in 16s rRNA expression with time.
Our results showed that after only 6 h of exposure of
L. pneumophila to a nutrition-deprived environment, the 16s
rRNA expression level decreased significantly. Interestingly,
the presence of amoebae with L. pneumophila, in nutrition-
deprived AC buffer, enhanced the expression of 16s rRNA
after 1 day and resulted in a 15-fold increase in
L. pneumophila concentration after 1 week. Further develop-
ment of this biosensing approach for detection of
L. pneumophilawould certainly contribute to the implantation
of tools and platform for rapid, real-time and multiplex detec-
tion of bacteria, which is essential for water risk assessment of
various sources.
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