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Abstract

Cognitive Radio (CR) is an important trend for a solution to the stringent requirements

and scarcity of radio spectrum resources. Spectrum sensing is a vital function in a CR

system, which is necessary for a more flexible and efficient usage of the radio spectrum.

The utilization of several cooperating sensors can overcome multipath fading and shadowing

effects, and increase the reliability of primary signal detection in spectrum sensing. In this

work, we consider a system model of a dedicated detect-and-forward wireless sensor network

(DetF WSN) for cooperative spectrum sensing. We analyse the degradation introduced by

reporting channel errors on cooperative spectrum sensing performance with the k-out-of-n

decision fusion rule. Moreover, a proper media access control (MAC) protocol is required

to resolve conflicts and conserve resources for the information exchange between sensors in

such a system. The influence of the MAC protocol on spectrum sensing performance of

the WSN is a key consideration in this work. We focus on designing a spatial reuse MAC

protocol based on TDMA/OFDMA for the intra-WSN communication in a bandwidth-

limited system. Two design approaches, using a greedy and an adaptive simulated annealing

(ASA) algorithm, are illustrated in detail. Moreover, performance numerical results for a

specific grid network in a Rician fading environment are presented.
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Sommaire

La Radio Cognitive (CR) est une tendence importante pour une solution adaptée aux exi-

gences contraignantes et à la rareté des ressources du spectre radioélectrique. La détection

du spectre est une fonction vitale dans un système CR, ce qui est nécessaire pour un us-

age plus flexible et efficace du spectre radioélectrique. L’utilisation de plusieurs capteurs

coopérants peut résoudre les problèmes comme les évanouissements par trajets multiples et

l’effet d’ombre et elle peut aussi augmenter la fiabilité de la détection des signaux primaires

dans la détection du spectre. Dans cet article, on considère un modèle de système d’un

réseau sans fil, détecter-et-transmettre (DeF WSN), dédié à la coopérative détection du

spectre. On analyse la dégradation introduit en rendant compte d’erreurs sur la perfor-

mance de la coopérative détection du spectre avec le règle de la décision fusion k-out-of-n.

D’ailleurs, un protocole de control d’accès des médias (MAC) est exigé afin de résoudre les

conflits et conserver les ressources pour l’échange d’information entre capteurs dans un tel

système.L’influence de MAC protocole sur la performance de la détection du spectre du

WSN est une considération essentielle dans ce projet. On se concentre sur la conception

d’un MAC protocole de réutilisation spatiale qui est fondé sur TDMA/OFDMA pour la

communication intra-WSN dans un système à bande passante limitée. Deux approaches

de conception, utilisant un algorithme glouton et un algorithme de recuit simulé qui est

adaptif (ASA), sont illustrés en detail. En plus, les résultats de la performance numéricale

pour un réseau maillé spécifique dans un environnement d’évanouissements à distribution

de Rician sont présentés.
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Chapter 1

Introduction

With the rapid development of wireless techniques and growing number of innovative

telecommunication services, the scarcity of spectrum resources has become a critical issue

in wireless communications. Within the conventional spectrum management framework, all

of the frequency bands are exclusively allocated to licensed users, and no violation from un-

licensed devices is allowed. Such a static spectrum allocation policy protects licensed users

from any intersystem interference. However, it caused a bottleneck for efficient utilization

of radio frequency bands, resulting in a largely under-utilized licensed spectrum [1, p. 2].

For instance, spectrum occupancy measurement conducted in New York City has indicated

that the maximum spectrum occupancy is only 13.1% in the range between 30MHz to

3GHz [2]. Another measurement undertaken in downtown Washington D.C. has shown an

occupancy of less than 35% of the spectrum below 3GHz [2]. In addition, these measure-

ment studies also show that the spectrum utilization varies significantly in time periods,

frequency ranges, as well as geographical locations.

To address the problem of spectrum scarcity and exploit its under-utilization, Cogni-

tive Radio (CR) technology arises to be a feasible solution via dynamic and opportunistic

spectrum access technologies. In a CR system, spectrum utilization is improved by al-

lowing a secondary user (SU) to access spectral white spaces without introducing harmful

2015/11/14
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interference to the primary user (PU) [3]. In [4], CR is defined as an intelligent wireless

communication system which can learn from its surrounding environment, and adapt cer-

tain operating parameters to provide highly reliable communications and realize efficient

utilization of the radio spectrum.

A typical example of CR’s applications is the opportunistic use of the white spaces in the

television (TV) bands in the IEEE 802.22 for wireless regional area network (WRAN) [5].

IEEE 802.22 WRAN is the first worldwide standard defining the wireless air interface based

on CR techniques in physical (PHY) and media access control (MAC) layers [6]. It allows

sharing of geographically unused spectrum allocated to the TV broadcast bands on a non-

interfering basis. Another example is research on the coexistence of cellular technologies and

wireless local area networks in the same unlicensed bands. The authors of [7, 8] discussed

the possible mechanisms for the concurrent operation of LTE and Wi-Fi sharing unlicensed

bands through dynamic spectrum access techniques.

An important function for such dynamic spectrum sharing is the so-termed spectrum

sensing, which identifies the unused portion of the spectrum in a certain geographical area

at a certain period of time. Some well-known spectrum sensing techniques are based on

energy detection [9], matched filter detection [10], cyclostationary detection [11], wavelet

detection [12], and covariance detection [13].

Single-user’s sensing performance is often compromised by multipath fading, shadow-

ing, and the uncertainty of the device’s noise [14]. When encountering the hidden primary

user problem [15], a SU may fail to sense the presence of the PU operating in the vicinity,

and cause severe interference to the PU system by accessing the licensed band. The sens-

ing performance, however, can be significantly improved by using multiple sensing nodes,

a scheme termed Cooperative Spectrum Sensing [16–18]. Local spectrum measurement is

conducted at each cooperating nodes, and a final decision about the presence of the PU is

made after fusing the information provided by sensing. Cooperative spectrum sensing pro-

vides better spatial coverage as well as multi-user diversity gains to enhance the detection
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reliability, and it also helps lower the sensitivity requirements of single detectors [19].

A simple and intuitive implementation method of cooperative spectrum sensing is to

integrate sensing function into SU terminals, such as personal cellphones. This approach

may cause several limitations [20,21]. Firstly, a sufficient number of widely distributed SUs

is required to obtain accurate detection results, which SU terminals cannot guarantee in

most cases. Secondly, the SU device cannot sense the spectrum when it is transmitting

data, or transmit data in the sensing period. Thus, incorporation of a spectrum sensing

mechanism in a SU device will degrade the data transport efficiency, which is called lost

transmit opportunity cost and explained in [21]. Moreover, the cost, complexity and power

consumption of an SU device are increased when the sensing function is added. An alter-

native approach is External Sensing, which relies on a dedicated wireless sensor network

(WSN) to perform spectrum sensing. This dedicated WSN can be deployed by the service

provider of the SUs, and an exchange of information between the SU and WSN can aid a SU

to access the licensed spectrum. Such a WSN can provide sufficient diversity to cope with

the hidden primary user problem, and guarantees robustness against model uncertainty

induced by fading and path loss [22]. Furthermore, sensors neither need to be mobile nor

battery-powered, and the cost, complexity and power consumption of SU devices decrease.

Therefore, in this work, we consider a Detect-and-Forward (DetF) distributed WSN for

cooperative spectrum sensing. It is a fully distributed cooperative spectrum sensing system,

whose operation doesn’t rely on centralized control and a separate decision fusion center,

which are necessary in a centralized system [23]. Each sensor chooses its cooperating

partners independently, collects the local spectrum sensing results from them, and then

makes its own spectrum sensing decision. A SU can receive the spectrum sensing decision

directly from any nearby sensor in this WSN. The WSN in such a distributed form has

better flexibility and scalability than a centralized system. For example, in a centralized

WSN, when adding more sensors in the network to cover a larger area, we have to consider

relaying or add more fusion centres to collect the spectrum sensing results, and computation
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and storing capability of the fusion centre is also affected.

To perform cooperative spectrum sensing, sensors in the DetF WSN need to exchange

their local detection results over a common wireless channel, generating non-negligible

traffic. Thus, a proper media access control protocol is required for the dedicated WSN,

whose primary role is coordinating transmissions so as to efficiently utilize the resources and

resolve contention. Compared with conventional MAC protocols, the peculiarities of WSNs,

including the large number of nodes, low data load, and volatile links, requires paradigm

shifts in MAC design [24]. The most significant design constraint is usually the limited

energy budget of a sensor node together with the requirement of longevity of the network.

Therefore, in [24–26], energy efficiency is the primary design consideration when discussing

the MAC concepts in relation to WSNs. However, in our DetF WSN, sensors are assumed

to be fixed in the region and do not depend on limited battery power. Therefore, spectrum

efficiency and interference, instead of energy efficiency, become the primary issues. Mobility

needs no consideration, however, low system complexity is expected. Another special part

of our MAC design of this DetF WSN is its performance as a cooperative spectrum sensing

system.

The original contributions in this thesis are summarized as follows:

- We propose a spatial reuse MAC protocol for exchanging sensing results within the

WSN to exclude primary conflict and save bandwidth resource. Regarding the de-

sign approach, we propose and interpret a greedy algorithm as well as an adaptive

simulated annealing (ASA) algorithm.

- We analyse the degradation introduced by the reporting channel errors on cooperative

spectrum sensing performance with the k-out-of-n decision fusion rule.

- We present numerical results to analyse the spectrum sensing performance of the DetF

WSN with spatial reuse MAC protocol in a grid network form.

The rest of this thesis is organized as follows. Chapter 2 presents the network archi-
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tecture, channel model, and system setup assumptions. The performance of cooperative

spectrum sensing using k-out-of-n decision fusion rule with imperfect reporting channels is

considered in Chapter 3. The design of the spatial reuse MAC protocol via greedy algo-

rithm as well as ASA algorithm are presented in Chapter 4. Performance numerical results

for a grid network are presented in Chapter 5, and the conclusions are drawn in Chapter 6.
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Chapter 2

System Model of the DetF

Distributed WSN

2.1 Network Architecture

Fig. 2.1 shows the architecture of the distributed DetF WSN considered in this work.

Sensors are equipped with spectrum sensing as well as communication capability. The

entire operation of the WSN can be divided into two stages: 1) Intra-WSN Sensing and 2)

WSN-SU Handshaking. The distributed DefF WSN proposed in this work operates without

a separate fusion center, and thus each sensor is responsible to make its own detection

decision. It makes its local spectrum measurement, selects the cooperating partners, gathers

the local detection results from its partners, and finally makes its own spectrum sensing

decision. Each sensor can deliver the spectrum sensing decision to the SU independently

as requested.

The operation of the first stage is summarized as follows:

a) Measurement Phase: Each sensor measures the received signal through the frequency

channel of interest.

b) Local Decision Phase: Each sensor makes a decision based on its measurement via

2015/11/14



2 System Model of the DetF Distributed WSN 7

a local spectrum sensing scheme. This local decision may be hard (e.g. a 1-bit

decision through energy detection) or soft (e.g. a quantized version of log-likelihood

ratio) [27].

c) Communication Phase: Each sensor communicates with its cooperating sensors,

which are determined by a certain partner selection scheme, through dedicated re-

porting channels to exchange local decisions.

d) Final Decision Phase: A final decision is made by each sensor through combining

the decisions gathered, according to a specific decision fusion rule.

e) The four phases above are repeated for another channel of interest.
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Fig. 2.1 The architecture of the WSN which is dedicated for cooperative
spectrum sensing.

The cooperation between sensors can be specified by a directed graph or an adjacency

matrix. An example of the directed graph representation is shown in Fig. 2.2, where the

circles represent the sensors, and the directed lines represent the cooperation relations.

Take s2 in Fig. 2.2 for example. There are two incident directed link, s1 → s2 and s2 → s2,

which means when doing decision fusion, s2 combines the local decision received from s1

and its own local decision. s2 → s1 and s2 → s3 represent that s2 provides its local sensing

result to s1 and s3 for their decision fusion.
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The corresponding adjacency matrix R of this directed graph is

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

where the element Ri,j = 1(i �= j) represents the existence of a cooperative relation ri,j,

from the partner si to recipient sj. Otherwise, Ri,j = 0. It is worth noting that if i = j,

Ri,j = 1 means that this sensor employs its local sensing result during decision fusion, and

si is also called a partner or recipient of itself. Thus, there is still a directed line starting

and ending at this sensor. If si does not employ its local sensing result and only combines

the sensing results from other partners, we will have Ri,i = 0. For example, in order to

find the partners of s2, look at the second column of R. There are two 1’s, R1,2 = 1 and

R2,2 = 1, and thus the two partners of s2 are s1 and s2. If we look at the second row, we

will find all the recipients of s2 by picking all the 1’s, which are R2,1 = R2,2 = R2,3. So the

three recipients of s2 are s1, s2, and s3.

In the second stage, a handshaking process takes place between the WSN and SUs to

inform the sensing results whether the channel is free or not (through a Wi-Fi link for

example). The second stage procedure is a topic beyond the scope of this thesis, and we

only consider the first stage in this work.
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S6

S7

S8

S3

S4 S2

S5
S1

Fig. 2.2 Directed graph representation of cooperation between sensors.

2.2 Channel Model

To be more close to the realistic wireless propagation environment, we consider a time-

invariant channel model including the effects of path loss, multipath fading and additive
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interference. Moreover, all wireless channels, including the reporting channels between

sensors, as well as the detecting channels between the primary transmitter and sensors,

follow the same model.

2.2.1 Path-loss Model

We use the Simplified Path-loss Model proposed in [28, p. 47] to characterize the variation

in the received signal power with distance due to dissipation of the power radiated by

the transmitter as well as effects of the propagation channel. Compared with the empirical

path-loss models, such as Okumura Model, Hata Model, and Piecewise Linear Model [28, pp.

42–46], this Simplified Path-loss Model is more suitable for general trade-off analysis of

system design:

PL =
PT

PR

=
1

K

(
d

d0

)μ

(2.2)

where the path loss PL is defined as the ratio of the transmit power PT over the received

power PR, K is a unitless constant which depends on the antenna characteristics and the

average channel attenuation, d is the distance between the transmitter and receiver, d0 is

a reference distance for the antenna far field, and μ is the path-loss exponent. Table 2.1

gives a summary of typical μ-values for different environments [28, p. 47].

Replacing Kd0
μ with A, we obtain an equivalent exponential form of path-loss model

described by (2.2) is

PL =
PT

PR

=
1

A
dμ (2.3)

When d0 is set as the unit length, A = K. It is worth noting that the simplified path-loss

model (2.2) or (2.3) is valid only when the transmission distance d is larger than a threshold

due to scattering phenomena in the antenna near field.
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Table 2.1 Typical Path-Loss Exponent Values.

Environment μ range

Urban macrocells 3.7 - 6.5

Urban microcelss 2.7 - 3.5

Office building (same floor) 1.6 -3.5

Office building (multiple floors) 2 - 6

Store 1.8 - 2.2

Factory 1.6 - 3.3

Home 3

2.2.2 Multipath Fading Model

In this thesis, we use Rician fading for each communication link [29, p. 23]. The probability

density function (PDF) of the instantaneous signal-to-noise ratio (SNR) γ over a Rician

fading channel is

fRic(γ)=
K + 1

γ̄
exp

[
−K− (K + 1)γ

γ̄

]
I0

(
2

√
K(K + 1)γ

γ̄

)
(2.4)

where γ � 0, K is the Rician fading parameter, and γ̄ is the average received SNR. When

combining the effects of path loss and multipath fading, γ̄ equals to the received SNR based

on path loss (2.3) alone [28, p.77], i.e. γ̄ = γTAd
−μ, where γT represents the transmit SNR.

I0(·) is the 0th order modified Bessel function of the first kind,

I0(x) =
1

π

∫ π

0

ex cos θdθ =
∞∑

m=0

x2m

22m · (m!)2
. (2.5)
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Besides Rician fading, our analysis procedure can also be effectively applied in other

typical fading models, e.g. Nakagami, when (2.4) is replaced by the corresponding PDF.

In addition, we ignore the impact of shadowing on the operation of the DetF WSN in

this work, since it is assumed that the sensor positions were optimized to make this effect

insignificant.

2.2.3 Interference Model

We assume an Additive Interference Model, in which a wireless communication link treats

all the other on-going transmissions on the same channel as noise. In [30], this interference

model is compared with the Capture Threshold Model, Protocol Model, and Interference

Range Model, and showed to be more accurate in modelling the cumulative interference,

which is significant in wireless network design and assessment. Let Gi,j be the channel

gain from si to sj, P
(i)
T the transmit power of si, and PN the thermal noise power in the

frequency of operation. The received Signal to Interference plus Noise Ratio (SINR) of the

transmission from si to sj is

γi,j =
Gi,jP

(i)
T

PN +
∑

k∈K\{i}Gk,jP
(k)
T

(2.6)

where K\{i} denotes the set of sensors transmitting simultaneously on the same channel

other than si. The SINR at the receiver determines the received bit error probability (BEP),

which in turn affects the success or failure probability of decoding with certain modulation

and coding schemes.

Combined with the path-loss model introduced before, (2.6) can be written as

γi,j =
Ad−μi,j P

(i)
T

PN +
∑

k∈K\{i}Ad
−μ
k,jP

(k)
T

(2.7)
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2.3 Other System Setup Assumptions

In addition to the models and assumptions we have introduced in the previous sections, in

this work for network design purposes, we also make the following assumptions:

- Sensors are static after deployed.

- Each sensor employs an omni-directional antenna.

- A partner selection scheme has been utilized to generate the adjacency matrix of

cooperation.

- Each sensor is in direct transmission range of its partners. Thus, we only focus on

next neighbour transmissions, and routing is not considered in this work.

- The transmit power of each sensor is a constant, and we don’t take power tuning into

account.

- Sensors communicate by broadcasting, and can dynamically switch to different sub-

carriers.

- Sensors are equipped with full-duplex radio, enabling transmitting and receiving at

the same time on different sub-carriers.

- Sensors are synchronized with reference to a global clock for time synchronized oper-

ation.
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Chapter 3

Cooperative Spectrum Sensing

through Imperfect Reporting

Channels

3.1 Energy Detection under Rician Fading

The essential of local spectrum sensing performed individually at each sensor is a binary

hypothesis-testing problem:

H0 : yi(t) = ni(t) for primary signal absence

H1 : yi(t) = hi(t) · x(t) + ni(t) for primary signal presence

where yi(t) is the received signal at si, ni(t) is assumed to be circularly symmetric complex

additive white Gaussian noise (AWGN), hi(t) denotes the amplitude gain from the primary

transmitter to si, and x(t) is the transmitted primary signal at time instant t.

For facilitating the analysis of sensing performance, we assume that each sensor employs

Energy Detection as the local sensing scheme, which does not need any prior information

of primary signals. The received signal passes through an input bandpass filter, where the

2015/11/14
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center frequency fs and one-sided bandwidth, WD are selected. Then a squaring device

and integrator measure the received energy over an observation interval, T . Finally, the

test statistic, Λ, produced by the integrator is compared to a predefined threshold, λ, to

make the local decision [31]. Regarding the local spectrum sensing at si, the probabilities

of detection, false alarm and missed detection over AWGN channels are given, respectively,

by

Pd,i = Prob{Λi > λi|H1} = Qu(
√

2γi,
√
λi) (3.1)

Pf,i = Prob{Λi > λi|H0} =
Γ(u, λi/2)

Γ(u)
(3.2)

Pm,i = Prob{Λi < λi|H1} = 1− Pd,i = 1−Qu(
√
2γi,

√
λi) (3.3)

where λi denotes the energy detection threshold, γi =
PR,i

N0WD
is the instantaneous received

SNR of primary signal at si (PR,i is the received primary signal power at si, and N0 is the

one-sided noise power spectral density), u = TWD is the time-bandwidth product, which is

assumed to be an integer for simplicity, Γ(·), Γ(·, ·) are the complete and upper incomplete

gamma functions respectively, and Qu(·, ·) is the generalized Marcum Q-function, which

are defined as follows

Γ(a) =

∫ ∞

0

tae−tdt (3.4)

Γ(a, b) =

∫ ∞

b

ta−1e−tdt (3.5)

Qu(a, b) =

∫ ∞

b

xu

au−1
exp

(
−x2 + a2

2

)
Iu−1(ax)dx (3.6)

where Iu−1 is the (u− 1)th order modified Bessel function of the first kind. Note that Pf,i

does not depend on γi since there is no primary signal under H0.

We average (3.1) and (3.2) over Rician fading with the PDF of (2.4), and obtain the
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average probabilities of detection and false alarm [32]:

Pd,i =

∫
all γi

Qu(
√

2γi,
√
λi)fRic(γi)dγi, (3.7)

Pf,i =

∫
all γi

Γ(u, λi/2)

Γ(u)
fRic(γi)dγi =

Γ(u, λi/2)

Γ(u)
. (3.8)

where Pf,i is the same as that over an AWGN channel since it is independent of received

SNR γi.

As shown in [32], when u = 1, (3.7) has the form

Pd,i = Q1

(√
2Kγ̄i

K + 1 + γ̄i
,

√
λi(K + 1)

K + 1 + γ̄i

)
(3.9)

where γ̄i is the average received SNR of the primary signal at si, which is determined by

the path loss alone in our system as explained in (2.4), i.e.

γ̄i =
PTAd

−μ
i

N0WD

(3.10)

with PT denoting the transmit power of the primary signal, and di the distance between

the primary transmitter and si. Although in other general cases, there is no closed-form

expression for (3.7), we can still use numerical integration to analyse the performance. In

the following analysis, we use u = 1 for simplicity.

3.2 Hard Decision Fusion through Imperfect Reporting Channels

In this work, we consider hard decision fusion because of its low communication cost.

Specifically, followed by local spectrum sensing, each sensor gathers 1-bit hard decisions

from its cooperative partners, and uses k-out-of-n rule for decision fusion [33, pp. 59-61].

We define the partner set of a sensor si as J (i) = {sj|Rj,i = 1}, and use ni to denote

the number of partners, i.e. ni = |J (i)|, where | · | represents the cardinality of a set. If
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Ri,i = 1, si is also considered as a partner of itself. si declares H1 when at least k out of

the ni number of its partners have reported on H1. Otherwise, it outputs H0. The OR,

AND, and MAJORITY rules are special cases of the k-out-of-n rule with k = 1, k = n,

and k = �n/2� respectively, where �·� denotes the ceiling operator.

In order to analyse the impacts of reporting channel errors, we model the reporting

channel from sj to si as a binary symmetric channel (BSC) with cross-over probability

εj,i ∈ [0, 0.5), which is equal to the BEP of the channel [18]. Since our work is not

constrained to a certain modulation scheme, without loss of generality, we choose the

simplest form, binary phase shift keying (BPSK) for hard decision transmissions. The

transmitted signal over one bit time period Tb is [28, p. 146]

sn(t) =
√

Ebg(t) cos[2πfct+ π(n− 1)], n = 0, 1

where Eb is the signal energy per bit, fc is the carrier frequency, and g(t) is the baseband

pulse shape satisfying [28, p. 130]

∫ Tb

0

g2(t) cos2(2πfct)dt = 1 (3.11)

and ∫ Tb

0

g2(t) cos(2πfct) sin(2πfct)dt = 0. (3.12)

If the bandwidth of the pulse shaping g(t) is assumed to satisfy B = 1/Tb, then Eb =

PR/B = PR · Tb, and the received SNR per bit γb is [28, p. 173]

γb =
PR

N0B
=

PR

N0(1/Tb)
=

PRTb

N0

=
Eb

N0

(3.13)

For BPSK the received SNR per bit γb, is equal to the received SNR γ, so we do not need

to differentiate SNR and SNR per bit in the rest of this thesis, and the average BEP for
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BPSK in Rician fading on the reporting channel from sj to si is [29, p. 126]

εj,i=
1

π

∫ π/2

0

(1+K) sin2φ

(1+K) sin2φ+γ̄j,i
exp

[
− Kγ̄j,i
(1+K) sin2 φ+γ̄j,i

]
dφ (3.14)

where K is the Rician parameter, and γ̄j,i is the average received SNR at si in Rician

fading. In our system, γ̄j,i is affected by the path loss alone, and the noise includes both

AWGN and additive interference, and thus according to (2.7),

γ̄j,i =
Ad−μi,j P

(i)
T

PN +
∑

k∈K\{i}Ad
−μ
k,jP

(k)
T

(3.15)

where P
(i)
T is the transmit power of si, PN is the thermal noise power in the frequency of

operation (PN = N0Wc if the communication bandwidth is Wc), and K\{i} denotes the set

of sensors transmitting simultaneously on the same channel other than si.

If an error occurs when sj ∈ J (i) transmits its binary decisions to si, a H1 (or H0)

decision of sj will be turned into H0 (or H1) when received by si. We use Xj to denote

the binary decision made by sj, and Y
(i)
j to denote the binary decision received by si from

sj. Thus, ∀sj ∈ J (i), the equivalent probabilities of detection and false alarm received by
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si are

P
(i)
d,j � Prob{Y (i)

j = 1|H1}
= Prob{Y (i)

j = 1|Xj = 1} · Prob{Xj = 1|H1}
+ Prob{Y (i)

j = 1|Xj = 0} · Prob{Xj = 0|H1}
= (1− εj,i)Pd,j + εj,i(1− Pd,j)

= Pd,j − 2εj,iPd,j + εj,i (3.16)

P
(i)
f,j � Prob{Y (i)

j = 1|H0}
= Prob{Y (i)

j = 1|Xj = 1} · Prob{Xj = 1|H0}
+ Prob{Y (i)

j = 1|Xj = 0} · Prob{Xj = 0|H0}
= (1− εj,i)Pf,j + εj,i(1− Pf,j)

= Pf,j − 2εj,iPf,j + εj,i. (3.17)

We assume that each sensor experiences i.i.d. Rician fading, and performs spectrum

sensing independently. Using indicator function as well as binary vector notation, [27, Eq.

(11)] gives the expression for the probability of detection for k-out-of-n decision fusion with

reporting channel errors. The probability of false alarm can be drawn by replacing Pd with

Pf . However, in this thesis, we give the expressions for these probabilities in a more concise

and direct form, with combination notation as specified in [34].

We use
(J (i)

m

)
to represent the set of all m-combinations of J (i), which has

(
ni

m

)
=

ni!
m!(ni−m)!

members. J (i)
m,l ∈ (J (i)

m

)
, 1 � l �

(
ni

m

)
, represents one m-combination of J (i),

which is a subset of J (i) consisting of m distinct elements of J (i), and J (i)\J (i)
m,l de-

notes the relative complement of J (i)
m,l in J (i). When generating

(J (i)

m

)
from J (i), we

always first select the sensor with the smallest index i if possible, and thus J (i)
m,l are

arranged in lexicographic order. For instance, if the four partners of s1 are s1, s2, s3,

and s4, i.e. J (1) = {s1, s2.s3, s4}, then the set of all 2-combinations of J (1) is
(J (1)

2

)
=
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{{s1, s2}, {s1, s3}, {s1, s4}, {s2, s3}, {s2, s4}, {s3, s4}}. J (1)
2,1 = {s1, s2}, J (1)

2,2 = {s1, s3}, J (1)
2,3 =

{s1, s4}, . . ., J (1)
2,6 = {s3, s4}. The corresponding relative complements are J (1)\J (1)

2,1 =

{s3, s4}, J (1)\J (1)
2,2 = {s2, s4}, J (1)\J (1)

2,3 = {s2, s3}, . . ., J (1)\J (1)
2,6 = {s1, s2}.

Then, we can transform [27, Eq. (11)], and obtain si’s probabilities of detection and

false alarm after ki-out-of-ni decision fusion,

Qd,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
d,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
d,j

))
(3.18)

Qf,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
f,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
f,j

))
(3.19)

where P
(i)
d,j and P

(i)
f,j are given in (3.16) and (3.17), and 1 � ki � ni is si’s decision fusion

threshold. In addition, the corresponding probability of missed detection is

Qm,i(ki) = 1−Qd,i(ki) = 1−
ni∑

m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
d,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
d,j

))

=

ki−1∑
m=0

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
d,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
d,j

))
.

(3.20)

Furthermore, (3.18) and (3.19) can be viewed as the complements of cumulative dis-

tributed functions (CDF) for the Poisson-Binomial distribution. Please note that Poisson-

Binomial distribution is the discrete probability distribution of a sum of independent

Bernoulli trials when the individual probabilities of success are not necessarily identi-

cal [34, 35]. The ordinary binomial distribution can be viewed as a special case of it when

all the individual probabilities of success are the same. Suppose that there are ni Bernoulli

trials, each of which has a success probability P
(i)
d,j (or P

(i)
f,j). Then, Qd,i(ki) (or Qf,i(ki)) is

the probability that at least ki of these ni trials are successful, which is the complement of
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Poisson-Binomial CDF as defined in [35, Eq. (8)]

Q(k) = Prob{At least k successes in N Bernoulli trials} (3.21)

= 1− 1

N + 1

N∑
n=0

{
1− exp[−j2πnk/(N + 1)]

1− exp[−j2πn/(N + 1)]

N∏
m=1

(
1− pm + pm exp[j2πn/(N + 1)]

)}
.

(3.22)

where pm is the success probability of each Bernoulli trial. Thus, in (3.22), if N is substi-

tuted with ni, k is substituted with ki, and each pm is substituted with P
(i)
d,j (or P

(i)
f,j), then

we can obtain the closed-form expression for Qd,i(ki) (or Qf,i(ki)):

Qd,i(ki) = 1− 1

ni + 1

ni∑
l=0

⎧⎨
⎩1− exp[−j2πlki/(ni + 1)]

1− exp[−j2πl/(ni + 1)]

∏
sj∈J (i)

(
1− P

(i)
d,j + P

(i)
d,j exp[j2πl/(ni + 1)]

)⎫⎬⎭
(3.23)

Qf,i(ki) = 1− 1

ni + 1

ni∑
l=0

⎧⎨
⎩1− exp[−j2πlki/(ni + 1)]

1− exp[−j2πl/(ni + 1)]

∏
sj∈J (i)

(
1− P

(i)
f,j + P

(i)
f,j exp[j2πl/(ni + 1)]

)⎫⎬⎭ .

(3.24)

When ni and ki are large, efficient methods as well as approximation algorithms to

compute (3.23) and (3.24) are discussed in [34, 35]. However, they are out of the scope of

this work.

3.3 Performance Degradation Caused by Reporting Errors

3.3.1 Single Link

We start from a single link sj → si to analyse the impact of reporting channel errors. Since

in this subsection we only consider a single link, for simplicity we introduce the following

notations in which the sensor ID i and j are omitted:
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- Pd and Pf : The local probabilities of detection and false alarm under Rician fading

at sj as shown in (3.7) and (3.8), i.e.

Pd =

∫
all γ

Qu(
√

2γ,
√
λ)fRic(γ)dγ (3.25)

Pf =

∫
all γ

Γ(u, λ/2)

Γ(u)
fRic(γ)dγ =

Γ(u, λ/2)

Γ(u)
. (3.26)

- Pd,ε and Pf,ε: The equivalent probabilities of detection and false alarm received by si

over a reporting channel with BEP ε as shown in (3.16) and (3.17), i.e.

Pd,ε = Pd − 2εPd + ε (3.27)

Pf,ε = Pf − 2εPf + ε. (3.28)

- Pd|Pf=α and Pd,ε|Pf,ε=α: The value of Pd (or Pd,ε) when the threshold λ is chosen such

that Pf = α (or Pf,ε = α). Only λ is considered as a variable here.

- Pf |Pd=β and Pf,ε|Pd,ε=β: The value of Pf (or Pf,ε) when the threshold λ is chosen such

that Pd = β (or Pd,ε = β). Only λ is considered as a variable here.

Fig. 3.1 shows the impact of reporting channel error on a single communication link by

plotting Pd,ε vs Pf,ε for different values of ε. We set the Rician fading parameter K = 7,

time-bandwidth product u = 1, and the average received SNR of the primary signal under

Rician fading γ̄ = 4dB. For each value of ε, we change the value of λ from 0 to ∞, and

calculate Pd,ε and Pf,ε according to (3.25) – (3.28). Then, for each ε, we obtain an equivalent

receiver operating characteristic (ROC) curves at the receiving sensor, which characterizes

spectrum sensing performance. From Fig. 3.1 we can see that, when ε increases, the

minimum values of Pd,ε and Pf,ε increases from 0 to 0.5, while the maximum values of them

decreases from 1 to 0.5. In summary, the range of the ROC curve shrinks, and the ROC

curve shifts down.
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Fig. 3.1 Pd,ε vs Pf,ε for different values of reporting channel error ε on a
single communication link, when the Rician fading parameter is K = 7, and
the average received SNR of the primary signal is γ̄ = 4dB.
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From (3.25) and (3.26) we get, Pd = Pf = 1 when λ = 0, and Pd = Pf → 0 when

λ → ∞. Then from (3.27) and (3.28), we conclude the following results:

- When λ → ∞, Pd,ε → 0− 2ε× 0 + ε = ε, and Pf,ε → 0− 2ε× 0 + ε = ε.

- When λ = 0, Pd,ε = 1− 2ε× 1 + ε = 1− ε, and Pf,ε = 1− 2ε× 1 + ε = 1− ε.

(Pd,ε, Pf,ε) is bounded by (ε, ε) and (1− ε, 1− ε). Thus, from Fig. 3.1 we can see that the

range of (Pd,ε, Pf,ε) shrinks linearly as ε increases, and when ε = 0.5 there is only one point

(0.5, 0.5) left.

In addition, when the reporting channel error increases from ε1 to ε2, we are concerned

about the difference of Pd,ε1 and Pd,ε2 when Pf,ε1 = Pf,ε2 , or the difference of Pf,ε1 and Pf,ε2

when Pd,ε1 = Pd,ε2 . Therefore, we define

Φ
(ε1,ε2,α)
d � Pd,ε1 |Pf,ε1

=α − Pd,ε2 |Pf,ε2
=α (3.29)

Φ
(ε1,ε2,β)
f � Pf,ε1 |Pd,ε1

=β − Pf,ε2 |Pd,ε2
=β. (3.30)

Then we obtain the following properties for the impact of reporting channel errors for

a single link, which are consistent with Fig. 3.1:

Property 1. When ε2 > ε1 and ε2 < α < 1−ε2, Φ
ε1,ε2,α
d decreases with α when α < 0.5, and

increases with α when α > 0.5. In addition, Φ
(ε1,ε2,α)
d > 0, i.e. Pd,ε1 |Pf,ε1

=α > Pd,ε2 |Pf,ε2
=α.

Proof. Please see Appendix A.

Property 2. When ε2 > ε1 and ε2 < β < 1−ε2, Φ
ε1,ε2,β
f decreases with β when β < 0.5, and

increases with β when β > 0.5. In addition, Φε1,ε2,β
f < 0, i.e. Pf,ε1 |Pd,ε1

=β < Pf,ε2 |Pd,ε2
=β.

Proof. The proof is very similar to that of Property 1, and thus omitted.
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3.3.2 Multiple Links

When considering different BEPs on several communication links for decision fusion, the

problem becomes more complicated. Fig. 3.2 shows the impacts of reporting channel

errors on cooperative spectrum sensing performance through the ROC curves displaying

Qd,i versus Qf,i, which are calculated according to (3.18) and (3.19). There are 5 sensors in

this simple scenario employing identical energy detection threshold λ, and only s1 makes

the global decision after gathering the binary decisions from others. Thus, we can omit

the second subscript i in Qd,i and Qf,i. The Rician fading parameter is K = 7, and the

received SNR of the primary signal is identical at each sensor, which is denoted by γ̄.

In Fig. 3.2-A, the vertical separation between curves indicates the degradation intro-

duced by reporting channel errors for OR fusion rule, which is small in high Qf range, and

increases as Qf decreases. Moreover, for ROC curves with erroneous reporting channels,

when Qf decreases to a certain level, Qd will drastically decrease, and any Qf lower than a

threshold is not possible. In Fig. 3.2-B, we fix the average received SNR on each reporting

channel, and compare the ROC curves with different γ̄ as well as different fusion thresholds

k1. For a certain k1, higher γ̄ results in better detection performance with higher Qd. How-

ever, the minimum values of Qd and Qf are no longer 0 as that with error-free reporting

channels, and doesn’t depend on γ̄.
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γ̄j,1 = 0, 1, 2, 3dB (j = 2, 3, 4, 5)

γ̄j,1 = 4, 5, 6, 7dB (j = 2, 3, 4, 5)

error-free reporting channel
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Fig. 3.2 Qd vs Qf at s1 when n1 = 5, and K = 7, γ̄ is the identical received

SNR of primary signal, and γ̄j,1(j �= 1) represents the average received SNR on

each reporting channel. (A) shows impacts of the reporting channel errors on

OR rule with different sets of reporting channels, where γ̄ = 2dB, and k1 = 1.

(B) compares the ROC curves with different γ̄, and different decision fusion

thresholds, k1, where γ̄j,1 = 0, 1, 2, 3dB (j = 2, 3, 4, 5).
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From the analysis of the effects of reporting error on a single link in the last subsection,

we have that if the BEP on the communication link sj → si is εj,i, the minimum and

maximum values of the equivalent probabilities of detection and false alarm received by si

(i.e. P
(i)
d,j and P

(i)
f,j in (3.16) and (3.17) ) are

minP
(i)
d,j = minP

(i)
f,j = εj,i (3.31)

maxP
(i)
d,j = maxP

(i)
f,j = 1− εj,i (3.32)

The probabilities of detection and false alarm using the ki-out-of-ni decision fusion rule

are given in (3.18) and (3.19),

Qd,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
d,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
d,j

))

Qf,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

P
(i)
f,j

∏
sj∈J (i)\J (i)

m,l

(
1− P

(i)
f,j

))

Property 3. For fixed partner set J (i), and decision fusion threshold ki, if each P
(i)
d,j in

(3.18) takes its minimum value (i.e. minP
(i)
d,j = εj,i as shown in (3.31)), then the probability

of detection using ki-out-of-ni decision fusion, Qd,i(ki), reaches its minimum value. If each

P
(i)
d,j in (3.18) takes its maximum value (i.e. maxP

(i)
d,j = 1 − εj,i as shown in (3.32)), then

the probability of detection using ki-out-of-ni decision fusion, Qd,i(ki), reaches its maximum

value.

Proof. According to Lemma 2 in Appendix B, we can conclude that Qd,i(ki) is monotonic

non-decreasing in each P
(i)
d,j , and hence Property 3 is proved.

Similarly, we have the following property regarding minimum and maximum values of

Qf,i.
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Property 4. For fixed partner set J (i), and decision fusion threshold ki, if each P
(i)
f,j in

(3.19) takes its minimum value (i.e. minP
(i)
f,j = εj,i as shown in (3.31)), then the probability

of false alarm using ki-out-of-ni decision fusion, Qf,i(ki), reaches its minimum value. If

each P
(i)
f,j in (3.19) takes its maximum value (i.e. maxP

(i)
f,j = 1− εj,i as shown in (3.32)),

then the probability of false alarm using ki-out-of-ni decision fusion, Qf,i(ki), reaches its

maximum value.

Proof. According to Lemma 2 in Appendix B, we can conclude that Qf,i(ki) is monotonic

non-decreasing in each P i
f,j , and hence Property 4 is proved.

Therefore, when substituting P
(i)
d,j and P

(i)
f,j in (3.18) and (3.19) with their minimum

values εj,i as shown in (3.31), we get si’s minimum values of probabilities of detection and

false alarm for a certain ki-out-of-ni decision fusion, which are denoted by Q
[L]
d,i(ki), and

Q
[L]
f,i(ki) respectively.

Q
[L]
d,i(ki) = Q

[L]
f,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

εj,i
∏

sj∈J (i)\J (i)
m,l

(
1− εj,i

))
. (3.33)

where ki represents the chosen fusion threshold. For fixed partner set J (i), and decision

fusion threshold ki, any Qd,i(ki) (or Qf,i(ki)) lower than Q
[L]
d,i(ki) (or Q

[L]
f,i(ki)) is not achiev-

able.

Similarly, substituting P
(i)
d,j and P

(i)
f,j in (3.18) and (3.19) with their maximum values

1−εj,i as shown in (3.32), yields si’s maximum values of probabilities of detection and false

alarm for a certain ki-out-of-ni decision fusion, which are denoted by Q
[U]
d,i (ki), and Q

[U]
f,i (ki)

respectively.

Q
[U]
d,i (ki) = Q

[U]
f,i (ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

(
1− εj,i

) ∏
sj∈J (i)\J (i)

m,l

εj,i

)
(3.34)
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For fixed partner set J (i), and decision fusion threshold ki, any Qd,i(ki) (or Qf,i(ki)) higher

than Q
[U]
d,i (ki) (or Q

[U]
f,i (ki)) is not achievable.

The OR fusion rule is a special case when ki = 1. Since
(
ni

0

)
= 1, J (i)

0,l = ∅, and

J (i) = {sj|Rj,i = 1}, from (3.33) and (3.34), we get

Q
[L]
d,i(1) = Q

[L]
f,i(1) = 1−

(ni
0 )∑

l=1

( ∏
sj∈J (i)

0,l

εj,i
∏

sj∈J (i)\J (i)
0,l

(
1− εj,i

))

= 1−
∏

sj∈{sj |Rj,i=1}

(
1− εj,i

)
(3.35)

Q
[U]
d,i (1) = Q

[U]
f,i (1) = 1−

(ni
0 )∑

l=1

( ∏
sj∈J (i)

0,l

(
1− εj,i

) ∏
sj∈J (i)\J (i)

0,l

εj,i

)

= 1−
∏

sj∈{sj |Rj,i=1}
εj,i. (3.36)

Then, we define the Achievable Range of Qd,i(ki) and Qf,i(ki) as

Δd,i(ki) � Q
[U]
d,i (ki)−Q

[L]
d,i(ki) (3.37)

Δf,i(ki) � Q
[U]
f,i (ki)−Q

[L]
f,i(ki) (3.38)

Based on (3.33) and (3.34), we can see that Δd,i(ki) = Δf,i(ki). Moreover, we can

obtain the following properties about Q
[L]
d,i(ki), Q

[U]
d,i (ki), and Δd,i(ki). It is worth noting

that Q
[L]
f,i(ki) = Q

[L]
d,i(ki), Q

[U]
f,i (ki) = Q

[U]
d,i (ki), and Δf,i(ki) = Δd,i(ki). Therefore, all the

following properties hold for Q
[L]
f,i(ki), Q

[U]
f,i (ki) and Δf,i(ki), and we do not need to repeat

the properties and proofs.

Property 5. For fixed partner set J (i), and decision fusion threshold ki, Q
[L]
d,i(ki), Q

[U]
d,i (ki),

and Δd,i(ki), only depend on the BEP of each reporting channel, εj,i.

Proof. It can be seen directly from the expressions of Q
[L]
d,i(ki), Q

[U]
d,i (ki), and Δd,i(ki) as
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shown in (3.33), (3.34) and (3.37).

Property 6. For fixed partner set J (i), and reporting channel BEP εj,i, Q
[L]
d,i(ki), and

Q
[U]
d,i (ki) all decrease with increasing ki.

Proof. For any ki,1 < ki,2, using (3.33) and (3.34), we get

Q
[L]
d,i(ki,1)−Q

[L]
d,i(ki,2) =

ki,2−1∑
m=ki,1

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

εj,i
∏

sj∈J (i)\J (i)
m,l

(
1− εj,i

))
> 0

Q
[U]
d,i (ki,1)−Q

[U]
d,i (ki,2) =

ki,2−1∑
m=ki,1

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

(
1− εj,i

) ∏
sj∈J (i)\J (i)

m,l

εj,i

)
> 0.

Property 7. Δd,i(ki) = Δd,i(ni − ki + 1), 1 � ki � ni.

Proof. See Appendix C for the proof of Property 7.



32

Chapter 4

Spatial Reuse MAC Protocol based

on Hybrid TDMA/OFDMA

4.1 MAC Design Concept

4.1.1 Basic Concept of Spatial Reuse

The MAC protocol considered in this work is based on hybrid TDMA/OFDMA since it

is simple and collision-free. It is structured as a TDMA frame having S time slots and C

orthogonal sub-carriers as illustrated in Fig. 4.1. We assume that the frame length and

sub-carrier bandwidth are fixed throughout system operation, and the channel resource is

quantified by the number of time-frequency (T-F) slots occupied.

An intuitive approach is to schedule each sensor into a particular T-F slot as in [36].

Despite its concise implementation form and conflict-free property, such a scheme is un-

realistic since the number of required T-F slots will increase linearly with the number of

sensors. This problem can be solved by introducing the concept of spatial reuse, which al-

lows a transmitter to share a slot with other far enough transmitters. For example, in [37]

the MAC protocol reduces the number of slots by dividing sensors into groups which can

communicate simultaneously.

2015/11/14
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Time-Frequency Slot

Frequency

Time

S TDM slots

C
 s

u
b

-c
a
rr

ie
rs

Fig. 4.1 MAC structure based on hybrid TDMA/OFDMA.

The basic concept of spatial reuse is utilized in the sensor scheduling procedure of our

MAC protocol. The objective is to divide the N sensors, s1, s2, . . . , sN , into M separate

sets, and assign one T-F slot to the sensors in the same set. The scheduling result is defined

as an N -dimensional vector p = (p1, p2, . . . , pN), whose component pi ∈ {1, 2, . . . ,M} (1 �
i � N), represents the ID of the T-F slot assigned to si.

4.1.2 Avoidance of Repetition

Since the T-F slots in our system are assumed to have identical frame length as well

as sub-carrier bandwidth, we only need to care about the T-F slot sharing relationship

between sensors, rather than a sensor’s specific slot ID. For instance, if N = 6 and M = 3,

the following three scheduling results, p = (1, 1, 2, 3, 2, 1), p′ = (2, 2, 1, 3, 1, 2), and p′′ =
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(3, 3, 1, 2, 1, 3) are actually the same in our system. In order to avoid such repetition, we

introduce the following restriction for the scheduling result vector p = (p1, p2, . . . , pN),

∀m1 < m2, m1,m2 = 1, 2, . . . ,M :

min{i ∈ Z
+ | pi = m1} < min{i ∈ Z

+ | pi = m2}
(4.1)

where {i ∈ Z
+ | pi = m1} is the set containing the indices of pi whose value is m1, and

min{i ∈ Z
+ | pi = m1} represents the smallest index among them. Take p = (1, 1, 2, 3, 2, 1)

for example. {i ∈ Z
+ | pi = 2} = {3, 5}, and min{i ∈ Z

+ | pi = 2} = 3. Then, (4.1) means

that if m1 < m2, the smallest index in the set {i ∈ Z
+ | pi = m2} is less than the smallest

index in the set {i ∈ Z
+ | pi = m1}. Take p′ = (2, 2, 1, 3, 1, 2) for example. We find that

min{i ∈ Z
+ | pi = 1} = 3 > min{i ∈ Z

+ | pi = 2} = 1, which does not satisfy condition

(4.1). In addition, for p = (1, 1, 2, 3, 2, 1), we have

min{i ∈ Z
+ | pi = 1} = 1 < min{i ∈ Z

+ | pi = 2} = 3 < min{i ∈ Z
+ | pi = 3} = 4.

Thus, p = (1, 1, 2, 3, 2, 1) satisfies condition (4.1).

4.1.3 Two Types of Conflicts

When si and sj are scheduled into the same slot, there may exist two types of conflicts. A

primary conflict occurs when there is a communication link between them, or they have a

common cooperating recipient, which must be avoided. We form anN×N adjacency matrix

R to characterize the cooperation relationship between sensors as explained in Section 2.1,

and then build an N ×N conflict relation matrix F with the element

Fi,j =

⎧⎨
⎩ 1 if (i �= j) ∧ (Ri,j = 1 ∨Rj,i = 1 ∨ ∃k : Ri,k = Rj,k = 1)

0 otherwise
(4.2)
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where ∧ and ∨ denote the logical conjunction and logical disjunction respectively, i �= j

means a sensor cannot have conflict with itself (i.e. Fi,i �= 1), Ri,j = 1 ∨ Rj,i = 1 means

there is a communication link between two different sensors, and ∃k : Ri,k = Rj,k = 1 means

si and sj have a common cooperating recipient sk. Therefore, when two different sensors

si and sj share the same T-F slot, (4.2) means that a primary conflict occurs between two

different sensors si and sj (i.e. Fi,j = 1, i �= j), if there exists

(1) a communication link from si to sj (i.e. Ri,j = 1) or

(2) a communication link from sf to si (i.e. Rj,i = 1) or

(3) a common cooperating recipient sk of si and sj (i.e. ∃k : Ri,k = Rj,k = 1).

In other cases, there exists a secondary conflict, which can be permitted if the impact

caused by mutual interference is acceptable. Given that sj is a partner of si, i.e. Rj,i = 1,

when sj broadcasts its package, other sensors who share the same T-F slot with sj become

the interference sources. We define a distance matrix D, whose element di,j stores the

Euclidean distance between si and sj. According to (2.3) and (2.6), the average received

SINR of the transmission from sj to si is

γ̄j,i(p) =
Ad−μj,i P

(j)
tra

Pnoi +
∑

k∈{k∈Z+ | pk=pj ∧ k �=j}Ad
−μ
k,i P

(k)
tra

(4.3)

where p represents the scheduling result, which is anN -dimensional vector p = (p1, p2, . . . , pN),

whose component pi ∈ {1, 2, . . . ,M} (1 � i � N), represents the ID of the T-F slot assigned

to si.

Then, we can continue to calculate the BEP εj,i(p) on the communication link sj → si,

using (3.14)

εj,i(p)=
1

π

∫ π/2

0

(1+K) sin2φ

(1+K) sin2φ+γ̄j,i(p)
exp

[
− Kγ̄j,i(p)

(1+K) sin2 φ+γ̄j,i(p)

]
dφ. (4.4)
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4.1.4 Problem Formulation

Firstly, we explain how to determine the distance matrix D and adjacency matrix R. The

distance matrix D is determined by the locations of the sensors, which are assumed to be

fixed in our work. The sensors should be spatially separated in the target area, such that

a SU at any location in the target area can get access to the spectrum information around

it. On one hand, if the cooperating sensors are located too close to each other, they will

experience spatially correlated shadowing. [19, 23] analyse the degradation on spectrum

detection performance caused by correlated shadowing, showing that the distance between

sensors should be larger than a decorrelation distance. On the other hand, the sensors

cannot be deployed too far from each other to avoid a high BEP on each reporting channel

and compromise the cooperative spectrum sensing performance as discussed in last chapter.

In addition, there may be more restrictions on sensors’ locations in practice. For example,

when the WSN is deployed by a service provider, the sensors may be installed in existing

base stations, where the locations cannot be changed.

The adjacency matrix R characterizes the cooperating relationship between sensors,

and we have shown that cooperative spectrum sensing performance is degraded by the

BEP of communication links. Thus, if the distance between sensors are sufficient large

to avoid severe correlated shadowing, a sensor si always chooses the cooperating partners

with the lowest reporting channel BEP first. As we cannot decide the scheduling of T-F

slots before R is determined, we do not consider the mutual interference between sensors,

and only consider the thermal noise when setting up R. If all the sensors use the same

transmit power, and experience identical multipath fading, a sensor always chooses the

nearest sensors around it as cooperating partners in our system. Moreover, the number

of partners of each sensor should be similar, such that the spectrum sensing performance

does not vary a lot between different sensors. It is worth noting that R can be changed

in the network design process. We can set it as an input of the MAC protocol, decide the

spatial reuse of T-F slots, and then adjust R according to the network spectrum sensing
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performance (e.g. increase or decrease the number of partners of each sensor). In Chapter

5, we will discuss how to set up R in a grid network.

Given a certain number of slots M , our spatial reuse MAC protocol aims at providing

a partition of the N sensors to avoid any primary conflict, and minimize the degradation

caused by the BEPs on communication links between sensors. We focus on maximizing

the Achievable Range of probability of detection or false alarm, Δd,i(ki,p) = Δf,i(ki,p),

as defined in (3.37) and (3.38), which characterizes the reporting error effect, and doesn’t

depend on the local spectrum sensing quality. The second argument p is added because

εj,i in (3.37) and (3.38) will change over p. Since Δd,i(ki,p) = Δf,i(ki,p), in the rest of the

thesis, we omit the first subscript d or f , and just use Δi(ki,p) as the notation.

The OR fusion rule (ki = 1) and AND fusion rule (ki = ni) are two special cases with

the same Achievable Range (from Property 7), which can be obtained from (3.35) and

(3.36)

Δi(1,p) = Δi(ni,p) =
∏

sj∈{sj |Rj,i=1}

(
1− εj,i(p)

)− ∏
sj∈{sj |Rj,i=1}

εj,i(p). (4.5)

From the network perspective, since the number of partners of each sensor may not be

identical, we first define the network fusion factor Ω to set the fusion threshold ki of each

sensor, as ki = �Ωni�, where ni = |{sj|Rj,i = 1}| is the number of partners of si. Then,

averaging Δi(ki,p) over sensor locations, and according to (3.33), (3.34) and (3.37), we

obtain the following Network Achievable Range of probability of detection or false alarm:

Δ(Ω,p) =
1

N

N∑
i=1

Δi(ki,p) (4.6)
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where

ni = |{sj|Rj,i = 1}|, ki = �Ωni�

Δi(ki,p)=

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

εj,i(p)
∏

sj∈J (i)\J (i)
m,l

(
1− εj,i(p)

)− ∏
sj∈J (i)

m,l

(
1− εj,i(p)

) ∏
sj∈J (i)\J (i)

m,l

εj,i(p)

)
.

(4.7)

Therefore, with the adjacency matrix and distance matrix of a DetF WSN with N

sensors given as R and D respectively, the number of T-F slots fixed at M , and the

network fusion factor chosen as Ω, the spatial reuse MAC protocol can be formulated as

the solution of the following combinatorial optimization problem:

max
p

Δ(Ω,p) (4.8)

or equivalently

min
p

(
1−Δ(Ω,p)

)
(4.9)

s.t.

p = (p1, p2, . . . , pN), with pi ∈ {1, 2, . . . ,M} (4.10)

∀(i, j) ∈ {(i, j) | pi = pj} : Fi,j = Fj,i = 0 (4.11)

∀m1 < m2, m1,m2 = 1, 2, . . . ,M :

min{i ∈ Z
+ | pi = m1} < min{i ∈ Z

+ | pi = m2}. (4.12)

where

- (4.9) is the equivalent cost function to (4.8);

- (4.10) is the scheduling result p defined in Section 4.1.1, which is used to compute

εj,i(p) through (4.3) and (4.4);
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- (4.11) is the constraint for primary conflicts. Fi,j is the element in the conflict relation

matrix F as defined in (4.2), and Fi,j = 0 means that there is no primary conflict if

si and sj are scheduled into the same T-F slot (i.e. pi = pj). Thus, constraint (4.11)

eliminates primary conflicts as explained in Section 4.1.3;

- (4.12) is the constraint for repetition, which is defined in (4.1). For any two T-F slot

ID m1 < m2, m1,m2 = 1, 2, . . . ,M , the smallest index in the set {i ∈ Z
+ | pi = m2}

is less than the smallest index in the set {i ∈ Z
+ | pi = m1}, where pi is the ith element

of the scheduling result p in (4.10). Thus, constraint (4.12) eliminates repetition as

explained in Section 4.1.2.

If a scheduling result satisfies constraint (4.11), it is defined as a feasible solution. If it

satisfies both (4.11) and (4.12), it is called a valid solution. Moreover, we define the cost

function as

ζ(p) = 1−Δ(Ω,p) (4.13)

which is also called the Network Achievable Range Loss of probability of detection or false

alarm.

The optimization problem specified in (4.8) is a combinatorial optimization problem,

which is usually computationally intractable when related to practice [38]. Many combina-

torial optimization problems of scheduling or channel assignment in wireless networks using

similar channel models are too complicated to find an exact algorithm. Thus, in [39–44],

efforts have been spent in designing heuristic algorithms to solve various optimization

objectives. The heuristic approach aims to efficiently explore the search space in order

to find a high-quality solution, and the use of it in combinatorial optimization is intro-

duced in [45, 46]. Therefore, we also focus on heuristic methods to solve the combinato-

rial optimization problem specified in (4.8). Common heuristic methods for solving such

combinatorial optimization problem include: Tabu Search, Genetic Algorithms, Simulated

Annealing, Ant System, Neural Networks, etc [45,47]. In the next two sections, we consider
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two approaches to solving (4.9): Greedy Algorithm and Simulated Annealing.

4.2 Spatial Reuse by Graph Colouring and Greedy Algorithm

4.2.1 Initialization via Vertex Colouring

We first form the conflict relation matrix F based on the given adjacency matrix R. Then

all the sensors are considered as vertices, and an edge is drawn between si and sj if Fi,j = 1

or Fj,i = 1. Thus, a simple undirected conflict graph is constructed, and finding a feasible

solution p can be viewed as assigningM labels, traditionally called “colours”, to the vertices

of this conflict graph, such that adjacent vertices have different colours. We choose DSatur

algorithm (a heuristic vertex colouring algorithm) proposed in [48] to generate an initial

solution.

In order to explain this algorithm, we first introduce two definitions:

i) The degree of a vertex is the number of edges incident to this vertex.

ii) The saturation degree of a vertex is the number of different colours in the neighbors

of a vertex.

The initialization via DSatur algorithm is summarised as follows

a) Number the colours sequentially, and assign colour 1 to the vertex with the highest

degree. If there are several sensors with the same highest degree, choose the one with

the smallest sensor index.

b) Select the next vertex with the highest saturation degree, and in case of a tie, choose

the vertex with the highest ordinary degree.

c) Search the colours in ascending order, and find the first available one which hasn’t

been assigned to any neighbour of the current vertex.

d) Assign the colour found in step c) to the current vertex selected in step b).



4 Spatial Reuse MAC Protocol based on Hybrid TDMA/OFDMA 41

e) Keep checking the remaining uncoloured vertices in such a dynamic order described

by step b)– d) until all the vertices are coloured.

Let M0 denote the number of colours used in DSatur algorithm. It is worth noting

that, when M < M0 the problem of determining whether such an M -colouring exists is

NP-complete [49], and it is not the major issue of this work. Therefore, we only consider

the situation when M � M0. When all the sensors are coloured, we can obtain a feasible

initial solution p by setting pi to si’s colour index. This initialization method through

DSatur, or any other heuristic vertex colouring algorithm, is applicable to any network form;

nevertheless, if the adjacency matrix or conflict matrix has a certain regular structure, we

can find other more efficient deterministic algorithms for initialization. An example will be

given in Section 5.2.

4.2.2 Realignment Procedure

Since only the constraint of primary conflicts – (4.11), is considered in the vertex colouring

phase, the initial solution generated may go against the constraint of repetition – (4.12).

Thus, we continue to conduct the realignment procedure, which will be referred to as

Realign(p) throughout the rest of this thesis, to transform a feasible solution p ∈ R
N

into a valid solution:

a) Initialization: x ← 0, y ← 1, and p̃ ← p;

b) Find the smallest index i satisfying p̃i �= 0, and assign the value of p̃i to x, i.e.

i ← min{i ∈ Z
+ | p̃i �= 0};

c) For all the indices j ∈ Z
+ satisfying p̃j = x, set pj to y, and then set p̃j to 0;

d) y ← y + 1;

e) Repeat b) – d) until p̃ = 0, and then output p, which is a valid solution.
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4.2.3 Complete Greedy Algorithm

Let N (p) denotes the neighbourhood of a valid solution p, which is defined as the set of

valid solutions obtained from p by performing a local change. The rule for neighbourhood

generation can be chosen from a variety of existing methods provided in [50]. For a current

valid solution p, our greedy algorithm changes the value of only one of its N components

to get a new solution p′, and thus there are N(M − 1) possible results. If p′ violates

the constraint of primary conflicts, discard it. Otherwise, the realignment procedure is

conducted, and the outcome becomes one element of N (p).

Starting from the initial solution, the greedy algorithm always selects p̂ from N (p)

resulting in the minimum value of the cost function ζ(p′) in (4.13). If ζ(p̂) < ζ(p), p̂ is

accepted as the new valid solution for the next state, and this procedure is repeated. If

ζ(p̂) � ζ(p), the algorithm is terminated, and p is output as the final result. In a word,

the greedy algorithm keeps searching in the steepest descent direction of the cost value,

and terminates at a solution whose neighbourhood cannot offer any decrease in cost. The

complete procedure is summarized in Fig. 4.2.
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Algorithm 1: Greedy Algorithm for Spatial Reuse

Input: Rician fading parameter: K

Path-loss parameters: A and μ

Thermal noise power: Pnoi

Each sensor’s transmit power: P
(i)
tra

Number of sensors: N

Number of T-F slots: M

Adjacency and distance matrix R and D

Output: A valid scheduling result p ∈ R
N

1: Build the conflict matrix F based on R

2: Obtain the initial solution p̂ via vertex colouring, and conduct the realignment proce-

dure p̂ ←Realign(p̂)

3: repeat

4: p ← p̂

5: Calculate the cost value ζ(p)

6: Generate the neighbourhood N (p) through 1-exchange and realignment procedure

7: p̂ ← argminp′∈N (p) ζ(p
′)

8: until ζ(p̂) � ζ(p)

9: return p

Fig. 4.2 Greedy Algorithm for Spatial Reuse
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4.3 Spatial Reuse by Adaptive Simulated Annealing Algorithm

4.3.1 Fundamentals of Simulated Annealing

Although the greedy algorithm is easy to implement and has low complexity, it cannot

guarantee a globally optimal solution. Therefore, we propose an alternative approach

to the combinatorial optimization problem via Adaptive Simulated Annealing (ASA) [51].

Simulated Annealing is a probabilistic method whose random search process mimics the

physical annealing process [52]. It originates from the principles of thermodynamics making

a metal “freeze” into a crystalline structure at a minimum energy configuration, when

cooled slowly from a state of high temperature. If its cooling process is well controlled, the

algorithm can avoid being trapped in local minima, and converges to a global optimum.

The ASA algorithm permits an exponentially decreasing annealing schedule which

greatly accelerates the optimization process compared with some traditional simulated an-

nealing algorithms (e.g. Boltzmann Annealing and Fast Cauchy Annealing [53]). Moreover,

the re-annealing procedure is introduced in the ASA to adapt to changing sensitivities in

the multi-dimensional parameter-space. More details on ASA are provided in Appendix D.

4.3.2 Modifications in ASA

As illustrated in Appendix D, the role of the generating procedure is to generate the

candidate solution p̂(t+1) for the (t + 1)th state, from the solution p(t) accepted at the

tth state. Since the components of p can take only integer values, and interrelate with

each other subject to the constraint of primary conflicts, the generating procedure needs

to be modified. To be specific, at the beginning of the (t + 1)th state, we form a random

permutation of the indices {1, 2, . . . , N}, which is denoted by a vector σ. Then, at the ath

step, we pick the index i = σa, and obtain the ith component of the temporary candidate

solution,

p̌
(t+1)
i = p

(t)
i + yi(M − 1), (4.14)
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where yi ∈ [−1, 1] is a sample of a random variable Yi with the PDF shown in (D.2). The

range of the ith parameter is denoted by [Li, Ui], i.e. Li � p
(t)
i � Ui. If p̌

(t+1)
i /∈ [Li, Ui],

another sample yi of Yi is applied until p̌
(t+1)
i ∈ [Li, Ui].

Next, we find p̂
(t+1)
i as follows

p̂
(t+1)
i = argmin

m∈{1,2,...,M}
|p̌(t+1)

i −m|, (4.15)

s.t. ∀j ∈ {
j | j ∈ {σ1, σ2, . . . , σa−1} and p̂

(t+1)
j = m

}
: Fi,j = Fj,i = 0, (4.16)

where
{
j | j ∈ {σ1, σ2, . . . , σa−1} and p̂

(t+1)
j = m

}
is the set of all the sensors that have been

scheduled into the mth T-F slot before si, and thus (4.16) ensures that there is no primary

conflict between si and any other sensors scheduled before it.

Therefore, we can generate the components of p̂(t+1) one by one according to the random

order indicated by σ (σ is a random permutation of the indices {1, 2, . . . , N} formed at

the beginning of each stage as explained in the first paragraph of this subsection), and

finally obtain a feasible candidate solution. If there is no valid value for p̂
(t+1)
i at any step,

the whole state will be started over with a new permutation vector σ. At the end of the

generating procedure, we conduct the realignment procedure on p̂(t+1), to transform it to

a valid solution.

4.3.3 Complete ASA Algorithm

The acceptance and annealing procedures are the same as those illustrated in Appendix D.

However, as to the optional reannealing procedure, we bypass the reannealing for parameter

temperatures, and only conduct this procedure on cost temperatures. For one thing, since

the components of p are integers and mutually restrictive, there is no effective numerical

method to calculate the derivatives fi in (D.7). For another, for relatively large num-

bers of parameters (N), skipping this procedure helps to significantly increase operational

efficiency.
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We can use the same initialization method of the greedy algorithm (Section 4.2.1), or

conduct the generating procedure on a random solution, to get the initial value of p. The

ASA algorithm exits normally when the predefined maximum number of generated states

(N∗
gen) or maximum number of accepted states (N∗

acc) is reached. The complete procedure

of the ASA algorithm is summarized in Fig. 4.3.3. For the simplicity of illustration, we

define a ASA parameter set PASA containing all the predefined ASA parameter values, such

as initial parameter temperature Ti(0), parameter temperature scale cpara, and so on.
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Algorithm 2: ASA Algorithm for Spatial Reuse

Input: Rician fading parameter: K

Path-loss parameters: A and μ

Thermal noise power: Pnoi

Each sensor’s transmit power: P
(i)
tra

Number of sensors: N

Number of T-F slots: M

Adjacency and distance matrix: R and D

ASA parameter set: PASA

Output: A valid scheduling result p ∈ R
N

1: Build the conflict matrix F based on R

2: Generate an initial solution p, and calculate ζ(p)

3: Sample the parameter space to calculate the initial cost temperature Tcost(0).

4: Ngen ← 0, Nacc ← 0

5: while Ngen < N∗
gen and Nacc < N∗

acc do

6: Form a random sorting vector σ

7: Generate the components of the candidate solution p̂ according to the order indi-

cated by σ (See Section 4.3.2 for details). Whenever a component fails to find any

valid value, go to Step 6.

8: p̂ ←Realign(p̂)

9: Ngen ← Ngen + 1

10: Conduct acceptance procedure represented by (D.3) to determine whether p ← p̂.

11: If p̂ is accepted, Nacc ← Nacc + 1

12: Conduct annealing procedure to update Ti and Tcost as shown in (D.4) and (D.6).

13: if Ngen=zmgen or Nacc=zmacc(z∈Z
+) then

14: Conduct reannealing procedure to rescale the cost temperature as shown in

(D.9)–(D.11)

15: end if

16: end while

17: return p

Fig. 4.3 ASA Algorithm for Spatial Reuse
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Chapter 5

Performance Results for a Grid

Network

5.1 Scenario Setup

The sensors are assumed to be deployed on the grid of a target square region, and the

Euclidean distance between two nearest sensors is fixed as L0. We establish a Cartesian

coordinate plane such that (0, 0) is in the centre of the square, and the coordinates of the

square’s vertices are

(−
√
NL0/2,

√
NL0/2), (

√
NL0/2,

√
NL0/2),

(
√
NL0/2,−

√
NL0/2), and (−

√
NL0/2,−

√
NL0/2)

where N is the number of sensors. The coordinates of sensors are

xi =
(
a+

1−√
N

2

)
L0, yi =

(
b+

1−√
N

2

)
L0 (5.1)

where a, b ∈ {0, 1, . . . ,√N − 1}, and i = 1 + a + b
√
N . An example of the deployment of

sensors when N = 16 is shown in Fig. 5.1.

2015/11/14
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Fig. 5.1 An example of sensor’s deployment when N = 16.

As to the partner selection scheme, the priority is always given to the nearest sensors.

We consider four adjacency matrix structures, and use the following cooperation levels to

identify them:

i) CL0: No cooperation between sensors, and thus R is an identity matrix.

ii) CL2: A sensor selects itself and two other nearest sensors as its partners. If there

are several sensors with the same distance, select in the ascending order of there

sensor IDs.

iii) CL4: A sensor selects all the sensors within L0 as its partners (including itself).

iv) CL8: A sensor selects all the sensors within
√
2L0 as its partners (including itself).
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Actually, this type of partner selection scheme can be extended to other cooperation

levels where each sensor has more number of partners, which are not listed here.

We choose the COST-Walfish-Ikegami (COST-WI) model as the empirical path-loss

model in the WSN, with parameters set for the Urban Macro scenario [54]. It can be

viewed as an instance of the simplified path-loss model in (2.3), with A = 10−3.018, μ = 2.6,

and 20m � d � 5km.

Table 5.1 Parameter Settings for Calculating Numerical Results

Parameter Name Value

Minimum Distance between Sensors (L0) 50m

Path-loss Constant (A) 10−3.018

Path-loss Exponent (μ) 2.6

Rician Fading Parameter (K) 7

Sensor’s Transmit Power (Ptra) 100mW

Communication Subcarrier Bandwidth (Wc) 20kHz

Noise Power Spectral Density (N0/2) 5× 10−16W/Hz

The average received SNR of the primary signal, γ̄, is assumed to be identical at each

sensor, which is a reasonable assumption when generating numerical or simulation results

as in [18,55]. Furthermore, each sensor employs the same transmit power Ptra, and energy

detection threshold λ. The scenario setup parameters are summarized in Table 5.1.

The C-language implementation of the ASA algorithm is based on the source code

provided by A. L. Ingber, which is available at <http://www.ingber.com/#ASA> since

1993. We made some modifications as described in Section 4.3.2, and tuned the ASA

parameters and options according to the specifics of our system model and optimization

problem. The key parameters and options of ASA are summarized in Table 5.2, and others

are kept to their default values. In addition, an overview of the software that implements

the spatial reuse MAC protocol, and generate the numerical results of spectrum sensing
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performance presented in this chapter is provided in Appendix E.

Table 5.2 Key Parameters and Options of ASA

Parameter or Option Name Value

Maximum Number of Generated States (N∗
gen) 107

Maximum Number of Accepted States (N∗
acc) 106

Number of Cost Samples (Nspl) 5

Temperature Ratio Scale (α1) 10−4

Temperature Anneal Scale (α2) 100

Cost Parameter Scale Ratio (β) 1.0

Generated Frequency Modulus (mgen) 5000

Accepted Frequency Modulus (macc) 50

Initial Parameter Temperature (Ti(0)) 1.0

Parameter Quenching Factor (Qi) N/10

Cost Quenching Factor (Qcost) N/10

Include Integer Parameters TRUE

Reanneal Parameters FALSE

QUENCH PARAMETERS TRUE

QUENCH COST TRUE

QUENCH PARAMETERS SCALE FALSE

QUENCH COST SCALE FALSE

5.2 Features of the Grid Network

We first build an undirected grid graph by considering all the sensors as vertices, and

drawing an edge between any two sensors whose Euclidean distance is L0. The grid distance

between si and sj is defined as the number of edges in a shortest path connecting them in

the grid graph.

- For CL2 and CL4, the grid distance between any partner–receiver pair is 1. If no two
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sensors within grid distance 2 share the same slot, no primary conflict exists in the

WSN.

- For CL8, the longest grid distance between any partner–receiver pair is 2. If no two

sensors within grid distance 4 share the same slot, no primary conflict exists in the

WSN.

If the T-F slots are viewed as “colours”, then for CL2 and CL4, a 2-distance colouring

of the grid graph is a feasible solution (no primary conflict), and for CL8, a 4-distance

colouring of the grid graph is a feasible solution. Here, the k-distance colouring is defined

as a vertex colouring of the grid graph such that no two vertices lying at the grid distance

less than or equal to k are assigned the same colour. Furthermore, the minimum number

of colours necessary for the k-distance colouring of a grid graph, denoted by χk, is given

in [56]:

χk =

⎧⎨
⎩

(
(k + 1)2 + 1

)
/2 if k is even

(k + 1)2/2 if k is odd
(5.2)

In summary, for the grid network with the partner selection scheme described above,

if the longest grid distance between any partner–receiver pair in the network is κ, then a

2κ-distance colouring of the grid graph is a feasible solution (no primary conflict) for the

slot scheduling problem. The minimum number of colours (T-F slots) needed to complete

such a 2κ-distance colouring is χ2κ =
(
(2κ + 1)2 + 1

)
/2. Thus, if M �

(
(2κ + 1)2 + 1

)
/2,

we can guarantee that there exists a scheduling solution without primary conflict.

Then, we can set the minimum value of M (number of T-F slots) as χ2κ for the grid

network, which is 5 for CL2 and CL4, and 13 for CL8. This minimum value is reasonable

as it is relatively small compared with the network size, and independent of the number of

sensors.

In addition, for the grid network, we introduce an alternative method to generate the

initial valid solution for the greedy algorithm as well as ASA algorithm, which is based on

a deterministic approach of k-distance colouring with the following three steps:
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a) Find k̂ = max{k ∈ Z
+ |χk � M}, where χk is calculated according to (5.2).

b) Obtain an initial solution p by setting its components as follows:

pi =

⎧⎨
⎩ a+ (k̂ + 1)b mod ((k̂ + 1)2 + 1)/2 if k̂ is even

a+ k̂b mod (k̂ + 1)2/2 if k̂ is odd
(5.3)

where a, b ∈ {0, 1, . . . ,√N −1}, i = 1+a+ b
√
N , and “mod” represents the modulo

operator.

c) Realignment procedure: p ←Realign(p)

The scheduling result p obtained from (5.3) is equivalent to a k̂-distance colouring of

the grid graph, which is proved in [56]. In addition, k̂ � 2κ because we have set M � χ2κ.

Therefore, the solution p we get in the second step is a feasible one, which ensures that there

exists no primary conflict. Compared with the initialization method via DSatur colouring

algorithm introduced in Section 4.2.1, the approach via k-distance colouring is more concise

and efficient for a grid network.

5.3 Verification of the Algorithms

In this section, we present an example to show how the greedy algorithm may be trapped

in local minima, and how ASA algorithm can jump out and reach the global optimum.

We set up a small network with 9 sensors (N = 9) as illustrated in Section 5.1, and set

the number of T-F slot provided as 5 (M = 5). The directed graph is shown in Fig. 5.2.

Each sensor has two partners other than itself, and the corresponding adjacency matrix is
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S6

S8

S3

S4

S2

S5

S1

S9S7

Fig. 5.2 The directed graph of the small network with 9 sensors used in
Section 5.3.

constructed as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0

1 0 0 1 1 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 1

0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)
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The number of partners of each sensor ni = 3, and we set the fusion factor Ω to be 0.1

or 0.5. Then, the fusion threshold ki of each sensor is ki = �Ωni� = 1 or 2. When ki = 3,

the cost function (4.13) is the same as that of ki = 1, and thus we do not need to use

ki = 3.

Through exhaustive search, we find that there are 111 valid solutions out of 1935123

feasible solutions. When Ω = 0.1, the global minimum is:

ζ(p∗) = 0.01830289, with p∗ = (1, 2, 3, 3, 4, 5, 5, 2, 1) or p∗ = (1, 2, 3, 4, 5, 1, 3, 2, 4).

When Ω = 0.5, the global minimum is:

ζ(p∗) = 7.853152× 10−6, with p∗ = (1, 2, 3, 4, 2, 5, 3, 2, 1).

The initial solution is obtained by k-distance colouring as explained in Section 5.2, which

is p = (1, 2, 3, 4, 5, 1, 2, 3, 4). The greedy algorithm generates N(M − 1) = 45 solutions to

obtain the neighbourhood of a current solution, and accept the best solution from it. Thus,

the greedy algorithm need to wait to obtain all of the 45 neighbour solutions, and then

accept a new solution. If the current solution is smaller than any of theneighbour solutions,

the greedy algorithm terminates and output the current solution.

When Ω = 0.1, the initial solution is

ζ(p) = 0.02491, with p = (1, 2, 3, 4, 5, 1, 2, 3, 4).

Then the greedy algorithm generates the neighbourhood of this initial solution, and finds
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8 new valid solutions with the following cost values:

ζ(p1) = 0.02697783, with p1 = (1, 2, 3, 4, 2, 1, 5, 3, 2)

ζ(p2) = 0.02697783, with p2 = (1, 2, 3, 4, 5, 1, 2, 5, 4)

ζ(p3) = 0.03853168, with p3 = (1, 2, 3, 4, 1, 5, 2, 3, 4)

ζ(p4) = 0.03853168, with p4 = (1, 2, 3, 4, 5, 1, 2, 3, 5)

ζ(p5) = 0.04175862, with p5 = (1, 2, 3, 4, 3, 1, 2, 5, 4)

ζ(p6) = 0.04175862, with p6 = (1, 2, 3, 4, 5, 1, 5, 3, 4)

ζ(p7) = 0.05718572, with p7 = (1, 2, 3, 4, 2, 1, 2, 3, 4)

ζ(p8) = 0.05718572, with p8 = (1, 2, 3, 4, 3, 1, 2, 3, 4)

The initial cost value 0.02491 is smaller than any of the 8 neighbours, and thus p =

(1, 2, 3, 4, 5, 1, 2, 3, 4) is a local minimum (0.02491 > 0.01830289). The greedy algorithm

gets stuck at this local minimum, and can not search for other solutions.

When Ω = 0.5, the initial solution is

ζ(p) = 0.0003457747, with p = (1, 2, 3, 4, 5, 1, 2, 3, 4).
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This time the search process of the greedy algorithm is as follows

ζ(p) = 0.0003457747, with p = (1, 2, 3, 4, 5, 1, 2, 3, 4) [Initial Solution]

⇓ Generate the first 45 solutions (8 of which are valid), and accept a new solution

ζ(p) = 0.0003136025, with p = (1, 2, 3, 4, 2, 1, 5, 3, 4)

⇓ Generate the second 45 solutions (8 of which are valid), and accept a new solution

ζ(p) = 0.0002855033, with p = (1, 2, 3, 4, 2, 1, 3, 5, 4)

⇓ Generate the third 45 solutions (8 of which are valid), and accept a new solution

ζ(p) = 5.70172× 10−5, with p = (1, 2, 3, 4, 2, 5, 3, 1, 4)

⇓ Generate the fourth 45 solutions (7 of which are valid), and output

ζ(p) = 5.70172× 10−5, with p = (1, 2, 3, 4, 2, 5, 3, 1, 4)

The greedy algorithm gets stuck in the local minimum 5.70172 × 10−5 > 7.853152 × 10−6

again. In both cases, the greedy algorithm is not able to reach the global minimum.

Next, we apply a relatively slow ASA algorithm with α1 = 0.01, β = 0.25, and

QUENCHing options turned off. Moreover, we adjust the generating procedure to change

only one random component instead of N at each state, which results in the same neigh-

bourhood structure as the greedy algorithm. At each state, the ASA algorithm generates

a candidate solution, whose cost value is represented by the solid line in Fig. 5.3(A) or

Fig. 5.3(B). The acceptance procedure introduced in Appendix D determines whether or

not the ASA algorithm takes this candidate solution as the new solution. The dark dash

line in Fig. 5.3(A) or Fig. 5.3(B) shows the acceptance procedure. We can see that if the

generated cost value is smaller than the current one, the ASA algorithm always accepts it as

the new one. If the generated cost value is larger than the current one, the ASA algorithm

sill allows to accept the worse cost value at certain points. This manner helps the ASA

algorithm to jump out of the local minimum where the greedy algorithm is trapped. In the
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end, when Ω = 0.1 and Ω = 0.5, the ASA algorithm reaches the following global minimum

when Ngen = 296 and Ngen = 205 respectively, which are the same as those obtained from

exhaustive search:

When Ω = 0.1, ζ(p∗) = 0.01830289, with p∗ = (1, 2, 3, 4, 5, 1, 3, 2, 4).

When Ω = 0.5, ζ(p∗) = 7.853152× 10−6, with p∗ = (1, 2, 3, 4, 2, 5, 3, 2, 1).

We also apply the normal generating procedure illustrated in Section 4.3.2, and the

ASA parameters summarized in Table 5.2. The cost values generated and accepted at each

state are shown in Fig. 5.4, which is presented in the same form as Fig. 5.3. If Ω = 0.1,

it arrives at the global minimum 0.01830289 when Ngen = 29, and if Ω = 0.5, it arrives at

the global minimum 7.853152 × 10−6 when Ngen = 79. It gets the global minimum much

faster than the relatively slow ASA introduced in the last paragraph, showing that the ASA

algorithm can be very efficient to solve our problem when the parameters are well-tuned.
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Fig. 5.3 The cost value (log) generated and accepted at each state of the

relatively slow ASA algorithms for (A) Ω = 0.1, and (B) Ω = 0.5. The solid

line with spikes shows the cost values generated at each state, and the dash

line shows the cost values accepted by ASA.
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Fig. 5.4 The cost value (log) generated and accepted at each state of the

normal ASA algorithms for (A) Ω = 0.1, and (B) Ω = 0.5. The solid line with

spikes shows the cost values generated at each state, and the dash line shows

the cost values accepted by ASA.
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5.4 ROC Curves in Different Configurations

In this section, we analyse the spectrum sensing performance of the grid WSN through the

ROC curves, which display Qd vs Qf . Qd and Qf represent the network probabilities of

detection and false alarm averaged over sensor locations, i.e.

Qd =
1

N

N∑
i=1

Qd,i(ki), and Qf =
1

N

N∑
i=1

Qf,i(ki) (5.5)

where Qd,i and Qf,i are defined in (3.18) and (3.19). We use the fusion factor Ω to set the

fusion threshold ki of each sensor, as ki = �Ωni�, where ni = |{sj|Rj,i = 1}| is the number

of partners of si.

In each case, we change one network parameter while fixing others, and use both greedy

and ASA algorithms to realize spatial reuse of T-F slots. k-distance colouring is applied

as the initialization methods for both algorithms. The output of the spatial reuse MAC

protocol is represented by an N -dimensional vector p = (p1, p2, . . . , pN), whose component

pi is the ID of the T-F slot assigned to si. After obtaining this scheduling result p, we

calculate the BEP εj,i(p) of any communication link sj → si based on (4.4). Then we can

calculate Qd and Qf according to (3.7), (3.8), (3.16), (3.17), (3.18), and (3.19).

Moreover, it is worth noting that for the partner selection schemes introduced in Section

5.1, a sensor always uses its local sensing result in the decision fusion procedure, i.e. Ri,i = 1.

Since there is no communication link when a sensor takes its own sensing result, εi,i = 0.

Then when using the OR fusion rule, according to (3.36), the maximum value of Qd,i(1) or

Qf,i(1) is

Q
[U]
d,i (1) = Q

[U]
f,i (1) = 1−

∏
sj∈{sj |Rj,i=1}

εj,i = 1− εi,i
∏

sj∈{sj |Rj,i=1,j �=i}
εj,i = 1− 0 = 1. (5.6)
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Thus, according to (5.5), the maximum value of Qd or Qf when using OR fusion rule is

Q
[U]
d = Q

[U]
f =

1

N

N∑
i=1

1 = 1. (5.7)

5.4.1 Different Received SNR of the Primary Signal

Fig. 5.5 shows the spectrum sensing performance with different received SNR of the primary

signal, γ̄ = 5dB, 7dB, and 10dB. In Fig. 5.5, we set N = 64, M = 15, K = 7 (Rician fading

parameter), and OR decision fusion rule (Ω = 0.1) for CL4. The scheduling result p of

the two algorithms, with the corresponding Q
[L]
d (or Q

[L]
f ), Q

[U]
d (or Q

[U]
f ), and the Achievable

Range Loss 1 − Δ are summarized in Table 5.3. Since the average received SNR of the

primary signal γ̄ is not a input of the spatial reuse MAC protocol, the scheduling result p

will not change with γ̄.

Table 5.3 Scheduling results for the scenario: N = 64, M = 15, K = 7,
Ω = 0.1 (OR decision fusion rule), and CL4.

ASA Greedy

p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 6 7 7 6

p11 to p20 7 11 12 13 2 9 12 13 14 1 8 9 10 11 12 13 11 12 13 14

p21 to p30 15 10 3 5 8 5 6 9 8 14 2 15 3 4 15 4 5 1 7 8

p31 to p40 4 11 15 11 4 3 2 7 1 12 9 10 8 9 10 3 12 13 14 2

p41 to p50 2 7 10 12 5 13 6 15 14 13 14 7 2 15 4 5 1 6 5 1

p51 to p60 1 15 11 9 10 8 3 9 6 8 6 8 9 10 11 3 3 11 12 13

p61 to p64 14 4 3 2 14 7 15 12

Q
[L]
d (or Q

[L]
f ) 0.004360498 0.005258959

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.004360498 0.005258959
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Fig. 5.5 AverageQd vsQf for different different received SNR of the primary

signal with N = 64, M = 15, K = 7, CL4, and OR decision fusion rule.
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From Fig. 5.5, we see that for the same γ̄, the difference between the curves using dif-

ferent algorithms is small for high Qf range. The ASA algorithm gives better performance

than the Greedy algorithm for low Qf range. A Qf in the range of 0.004360498 � Qf <

0.005258959 is achievable only by the ASA algorithm, and this range does not depend on

γ̄. Table 5.3 shows that ASA algorithm results in a lower Achievable Range Loss than the

Greedy algorithm. In addition, using a certain scheduling result, Q
[L]
d (or Q

[L]
f ) and Q

[U]
d (or

Q
[U]
f ) don’t change with γ̄, following Property 5. From (3.7) and (3.8), we can see that in

the local spectrum sensing performance stage, higher γ̄ results in higher Pd while keeping

Pf unchanged. This translates to better network sensing performance, which can be seen

by comparing the ROC curves of the same line style. For the ROC curve with a higher γ̄,

the decrease of Qd with decreasing Qf is slower than that of a lower γ̄. In addition, when

Qf reaches Q
[L]
f , Qd will drastically decreases to Q

[L]
d .

5.4.2 Different Numbers of T-F Slots

Fig. 5.6 presents the ROC curves for different values of M with γ̄ = 10dB, N = 64, K = 7,

CL8, and Ω = 0.1 (OR decision fusion rule). The scheduling results p of the two algorithms

are shown in Table 5.4. As M increases, the sensors sharing one slot can be more spatially

separated, resulting in lower BEPs on communication links. In turn, it helps increase Qd

with the same Qf , and lowers the minimum Qf , denoted by Q
[L]
f . This trend can be seen

by comparing the curves of the same line style. The values of Q
[L]
f and 1 − Δ are also

summarized in Table 5.4, and they decrease with M .

Comparing the curves of different line styles with the same M , we see that the difference

between the ASA and greedy algorithms becomes more clear as Qf decreases from 1 to Q
[L]
f

of the greedy algorithm, and the ASA algorithm outperforms the greedy algorithm. As M

increases, the difference between the ROC curves of the two algorithms becomes smaller.

When M = N = 64, no spatial reuse is needed since every sensor can be scheduled into

a individual T-F slot, and it provides the upper bound of spectrum sensing performance,
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Fig. 5.6 Average Qd vs Qf for different numbers of T-F slots M with γ̄ =
10dB, N = 64, K = 7, CL8, and OR decision fusion rule.
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Table 5.4 Scheduling results for M = 15, 24, 30 and 40, N = 64, K = 7,
γ̄ = 10dB, Ω = 0.1 (OR decision fusion rule), and CL8.

[M = 15] ASA Greedy
p1 to p10 1 2 3 4 5 6 2 7 8 9 1 2 3 4 5 6 7 1 6 7
p11 to p20 10 11 8 12 10 13 7 12 14 13 8 9 10 11 12 13 11 12 13 14
p21 to p30 15 9 3 11 15 5 6 1 7 4 2 15 4 3 15 4 5 1 3 8
p31 to p40 14 1 11 4 3 2 8 5 6 2 9 10 3 9 10 11 12 13 14 1
p41 to p50 8 10 9 12 11 10 13 15 1 7 13 14 2 15 4 5 6 7 5 6
p51 to p60 13 15 14 3 9 12 14 2 5 6 7 8 9 10 11 12 4 11 12 1
p61 to p64 4 1 7 8 3 2 15 8

Q
[L]
d (or Q

[L]
f ) 0.04113702 0.05644103

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.04113702 0.05644103

[M = 24] ASA Greedy
p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 7
p11 to p20 11 12 13 14 15 9 15 7 16 17 10 11 12 13 2 1 14 15 16 17
p21 to p30 18 19 20 10 20 6 21 8 22 1 18 19 20 21 19 20 21 22 23 9
p31 to p40 23 24 19 23 24 5 2 3 21 11 24 4 24 4 5 8 14 10 11 3
p41 to p50 22 4 14 9 12 7 4 16 3 13 6 11 12 13 15 16 17 22 9 7
p51 to p60 11 10 15 6 17 13 17 1 16 18 18 19 20 21 1 12 23 1 2 3
p61 to p64 20 19 8 14 24 5 6 7

Q
[L]
d (or Q

[L]
f ) 0.004694146 0.007587821

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.004694146 0.007587821

[M = 30] ASA Greedy
p1 to p10 1 2 3 4 5 6 7 8 7 9 1 2 3 4 5 6 7 2 8 9
p11 to p20 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19
p21 to p30 20 21 22 23 15 24 25 26 27 28 20 21 22 23 23 24 25 26 27 28
p31 to p40 29 30 29 30 23 8 1 16 24 3 1 29 29 15 6 7 8 9 10 30
p41 to p50 28 22 14 6 2 9 17 25 4 21 30 12 13 14 16 17 18 19 1 20
p51 to p60 13 5 7 10 18 4 27 20 3 12 21 22 2 24 25 26 11 27 28 3
p61 to p64 11 15 19 26 4 5 11 15

Q
[L]
d (or Q

[L]
f ) 0.001417139 0.002089166

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.001417139 0.002089166

[M = 40] ASA Greedy
p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
p11 to p20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 16 17 18 19
p21 to p30 21 22 23 24 25 26 27 28 29 30 20 21 22 23 23 24 25 26 27 28
p31 to p40 31 25 24 16 32 33 34 35 1 17 29 30 30 7 31 32 33 34 9 35
p41 to p50 23 7 36 37 38 39 9 40 40 15 35 15 36 37 38 39 10 40 40 22
p51 to p60 6 8 2 3 10 26 31 13 14 5 14 6 3 1 17 24 5 29 13 8
p61 to p64 4 11 18 12 2 12 4 11

Q
[L]
d (or Q

[L]
f ) 0.000487242 0.0005463582

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.000487242 0.0005463582
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serving as a benchmark. At Qf = 0.1, the ASA and the greedy algorithm with M = 15

results in the Qd nearly same as that of the benchmark. At Qf = 0.01, the difference

between the Qd of the ASA and the greedy algorithm with M = 40 and the benchmark can

also be ignored. Thus, we can save at least 76.6% and 37.5% of T-F slots if the requirements

of Qf are 0.1 and 0.01 respectively, which shows that our spatial reuse MAC can effectively

save channel resource for suitable values of Qf .

5.4.3 Different Cooperation Levels

We evaluate the performance with different cooperation levels in Fig. 5.7, where N = 100,

M = 15, K = 7, γ̄ = 10dB, and Ω = 0.1 (OR rule is applied for decision fusion). The

cooperation levels : CL0, CL2, CL4 and CL8 are defined in Section 5.1. Since no cooperation

is involved in CL0, no T-F slot is needed, and it acts as a benchmark for other cooperation

levels. The scheduling results are presented in Table 5.5. Comparing the curves of different

line styles at the same cooperation level, we can see that the difference of the ASA and

greedy algorithms is mainly manifested in the Qf range between the lower bounds of Qf

of the two algorithms. For example, using CL8, the difference between the curves when

Qf > 0.08608787 is nearly negligible, and when 0.07173913 � Qf < 0.08608787, the

ASA algorithm outperforms the greedy algorithm. Moreover, when the cooperation level

increases (i.e. the number of partners of each sensor increases), the difference between the

values of Q
[L]
f becomes larger, which can be seen from Fig. 5.7 as well as Table 5.5.

Next, we focus on the curves of one algorithm at different cooperation levels. When the

cooperation level increases, the existing partners for the lower cooperation level remain in

sensor si’s partner set, {sj|Rj,i = 1}, and new partners are also added into it. Because

the number of slots M is fixed, the interference caused by spatial reuse in the network

remains nearly unchanged, and the BEP from an existing partner for the lower cooperation

level varies very little. Then from (3.35), we can get that the lower bound of a sensor’s

Qf increases with the cooperation level, which is confirmed by the curves in Fig. 5.7, as
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Fig. 5.7 Average Qd vs Qf for different cooperation levels with N = 100,
M = 15, K = 7, γ̄ = 10dB and Ω = 0.1 (OR decision fusion rule).
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Table 5.5 Scheduling results for different cooperation levels (CL2, CL4 and
CL8), with N = 100, M = 15, K = 7, γ̄ = 10dB, and Ω = 0.1 (OR decision
fusion rule).

CL2 ASA Greedy
p1 to p10 1 2 3 4 5 6 1 2 7 8 1 2 3 4 5 6 7 8 9 10
p11 to p20 5 9 7 8 10 11 3 12 5 13 6 7 8 11 10 12 13 14 15 11
p21 to p30 10 11 14 12 13 15 9 4 14 11 12 13 14 15 2 3 4 5 6 7
p31 to p40 12 6 15 1 2 7 8 6 10 15 9 4 5 1 9 8 11 1 12 13
p41 to p50 4 13 8 9 4 14 5 13 1 2 8 11 10 12 13 14 15 2 3 10
p51 to p60 11 14 12 7 15 6 2 4 8 14 1 6 7 9 11 10 1 13 14 15
p61 to p70 1 2 5 3 10 11 12 3 9 7 14 15 2 3 4 5 6 7 8 9
p71 to p80 3 6 4 13 1 9 7 1 10 11 10 12 13 14 15 2 3 4 5 6
p81 to p90 10 9 8 2 11 14 5 13 6 12 9 3 4 5 6 7 8 11 10 12
p91 to p100 7 15 5 3 10 12 8 15 3 4 2 8 11 1 12 13 14 9 2 1

Q
[L]
d (or Q

[L]
f ) 0.004778993 0.005109983

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.004778993 0.005109983

CL4 ASA Greedy
p1 to p10 1 2 3 4 5 2 6 4 7 1 1 2 3 4 5 6 1 7 8 4
p11 to p20 7 8 9 10 7 1 11 10 12 9 6 9 7 8 10 11 12 13 14 2
p21 to p30 12 13 14 11 12 3 15 13 5 14 11 12 13 14 2 3 15 5 6 9
p31 to p40 10 5 15 6 8 14 9 2 8 3 4 15 5 6 9 4 8 10 11 1
p41 to p50 11 4 3 1 13 4 7 6 11 4 7 8 10 1 12 13 14 2 3 15
p51 to p60 6 9 7 12 2 5 10 1 12 15 13 14 2 3 15 5 1 9 7 8
p61 to p70 14 2 10 8 11 15 14 13 9 5 1 6 9 7 4 10 11 12 13 4
p71 to p80 13 1 5 4 9 3 6 8 7 2 10 11 12 13 14 2 3 15 5 6
p81 to p90 12 15 6 14 7 1 12 4 11 3 2 3 15 5 6 9 7 8 10 11
p91 to p100 8 3 11 13 10 2 5 15 10 14 4 7 8 1 11 12 4 14 2 1

Q
[L]
d (or Q

[L]
f ) 0.009014317 0.0098602

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.009014317 0.0098602

CL8 ASA Greedy
p1 to p10 1 2 3 4 5 6 3 2 1 4 1 2 3 4 5 6 1 7 8 4
p11 to p20 7 8 9 10 11 7 12 13 5 8 6 9 7 8 10 11 12 13 14 2
p21 to p30 11 14 12 13 1 8 9 10 14 7 11 12 13 14 2 3 15 5 6 9
p31 to p40 15 6 5 2 15 14 4 11 15 6 4 15 5 1 9 4 8 10 11 1
p41 to p50 13 1 4 3 7 6 5 2 3 1 7 8 10 11 12 13 14 2 3 15
p51 to p60 9 10 8 11 9 10 12 8 13 9 13 14 2 3 15 5 6 9 7 8
p61 to p70 2 7 12 14 13 1 15 7 14 4 1 6 9 7 4 10 1 12 13 4
p71 to p80 6 3 15 5 2 4 3 11 6 10 10 11 12 13 14 2 3 15 5 6
p81 to p90 13 4 1 10 6 8 9 5 2 12 2 3 15 5 6 9 7 8 10 11
p91 to p100 14 8 9 11 7 12 14 13 15 1 4 7 8 1 11 12 4 14 2 1

Q
[L]
d (or Q

[L]
f ) 0.07173913 0.08608787

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.07173913 0.08608787
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well as the values of Q
[L]
f listed in Table 5.5. When Qf is higher than the lower bound

Q
[L]
f , cooperation between sensors helps increase Qd compared with CL0. However, the

difference between CL2, CL4 and CL8 in the high Qf range (Qf � 0.1) is very small. For

the case shown in Fig. 5.7, we can divide the Qf axis into 4 intervals with boundaries

close to Q
[L]
f at each cooperation level, and find the best choice of cooperation levels in each

interval. Taking the ASA curves as an example, when 0.0916 < Qf < 1, CL2, CL4 and

CL8 performs nearly the same, CL4 is the best for 0.00993 < Qf < 0.0916, CL2 is the best

for 0.00478 < Qf < 0.00993, and if the system required Qf < 0.00478, CL0 is the only

choice.

5.4.4 Different Network Sizes

Three networks sizes, N = 36, 64, 100 are analysed in Fig. 5.8 and Fig. 5.9, with K = 7,

CL4, γ̄ = 10dB, and Ω = 0.1 (OR decision fusion rule). In Fig. 5.8, we fix the value of M

to 15, and in Fig. 5.9 we fix the ratio M/N to approximately 0.4. The scheduling results

for these scenarios are presented in Table 5.6 and Table 5.7, in which the value of the lower

bound Q
[L]
f (or Q

[L]
d ) as well as the Achievable Range Loss, 1−Δ are also listed. In any case

with the same parameters, ASA algorithm gives a lower 1−Δ than the Greedy algorithm as

shown in the tables. In addition, if we compare the complimentary ROC curves, we see that

when Qf > 0.02, the difference between two algorithms are very small. In relatively low Qf

range, for the same value of Qf , the ASA algorithm results in the higher Qd compared with

the greedy algorithm, which means a better spectrum sensing performance. Specifically, for

N = 36 or N = 64, the ASA algorithm outperforms the greedy algorithm when Qf < 0.01,

and for N = 100, the difference is identifiable when Qf < 0.02.

For CL4, a sensor located at the corner has 3 partners, the one on the edge has 4

partners, while any other sensor has 5 partners. When N is increased, the proportion of

sensors on the edge, 4(
√
N − 1)/N , as well as that at the corner, 4/N , decreases, which

results in the increasing average number of partners of each sensor. When M is fixed,



5 Performance Results for a Grid Network 71

larger N means an increasing average numbers of sensors sharing the same T-F slot. Thus,

the network interference level increases, resulting in higher average BEP of communication

links. As shown in Fig. 5.8, for relatively high Qf , the gain brought by more partners is

counteracted by the impact of worse reporting channels. In addition, according to (3.35),

more partners and higher BEPs of reporting channels both lead to a higher Q
[L]
f , which is

shown in both Fig. 5.8, and Table 5.6. When the ratio M/N is kept the same, Fig. 5.9

shows that the performance gets better when increasing N . This is because in a larger

network, although the average number of sensors sharing one T-F slot remains almost

unchanged, the average distance between them increases, which leads to a lower network

interference level and lower average reporting BEP.
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Fig. 5.8 Average Qd vs Qf for different numbers of sensors N with M = 15,
K = 7, γ̄ = 10dB, CL4, and Ω = 0.1 (OR decision fusion rule).
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Table 5.6 Scheduling results for different numbers of sensors N =
36, 64 and 100, with M = 15, K = 7, γ̄ = 10dB, and Ω = 0.1 (OR deci-
sion fusion rule).

[N = 36] ASA Greedy

p1 to p10 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 6 7 8 9 10

p11 to p20 10 11 12 13 14 15 1 7 5 10 1 11 11 12 13 14 2 15 15 6

p21 to p30 11 2 12 3 9 3 4 6 13 14 5 7 8 9 9 10 1 11 12 13

p31 to p36 15 1 7 8 5 9 4 14 2 3 4 6

Q
[L]
d (or Q

[L]
f ) 0.001366718 0.001863652

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.001366718 0.001863652

[N = 64] ASA Greedy

p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 6 7 7 6

p11 to p20 7 11 12 13 2 9 12 13 14 1 8 9 10 11 12 13 11 12 13 14

p21 to p30 15 10 3 5 8 5 6 9 8 14 2 15 3 4 15 4 5 1 7 8

p31 to p40 4 11 15 11 4 3 2 7 1 12 9 10 8 9 10 3 12 13 14 2

p41 to p50 2 7 10 12 5 13 6 15 14 13 14 7 2 15 4 5 1 6 5 1

p51 to p60 1 15 11 9 10 8 3 9 6 8 6 8 9 10 11 3 3 11 12 13

p61 to p64 14 4 3 2 14 7 15 12

Q
[L]
d (or Q

[L]
f ) 0.004360498 0.005258959

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.004360498 0.005258959

[N = 100] ASA Greedy

p1 to p10 1 2 3 4 5 2 6 4 7 1 1 2 3 4 5 6 1 7 8 4

p11 to p20 7 8 9 10 7 1 11 10 12 9 6 9 7 8 10 11 12 13 14 2

p21 to p30 12 13 14 11 12 3 15 13 5 14 11 12 13 14 2 3 15 5 6 9

p31 to p40 10 5 15 6 8 14 9 2 8 3 4 15 5 6 9 4 8 10 11 1

p41 to p50 11 4 3 1 13 4 7 6 11 4 7 8 10 1 12 13 14 2 3 15

p51 to p60 6 9 7 12 2 5 10 1 12 15 13 14 2 3 15 5 1 9 7 8

p61 to p70 14 2 10 8 11 15 14 13 9 5 1 6 9 7 4 10 11 12 13 4

p71 to p80 13 1 5 4 9 3 6 8 7 2 10 11 12 13 14 2 3 15 5 6

p81 to p90 12 15 6 14 7 1 12 4 11 3 2 3 15 5 6 9 7 8 10 11

p91 to p100 8 3 11 13 10 2 5 15 10 14 4 7 8 1 11 12 4 14 2 1

Q
[L]
d (or Q

[L]
f ) 0.009014317 0.0098602

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.009014317 0.0098602
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Fig. 5.9 Average Qd vs Qf for different numbers of sensors N with M/N ≈
0.4, K = 7, γ̄ = 10dB, CL4, and Ω = 0.1 (OR decision fusion rule).
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Table 5.7 Scheduling results for different numbers of sensorsN withM/N ≈
0.4, K = 7, γ̄ = 10dB, CL4, and Ω = 0.1 (OR decision fusion rule).

[N = 36,M = 15] ASA Greedy

p1 to p10 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 6 7 8 9 10

p11 to p20 10 11 12 13 14 15 1 7 5 10 1 11 11 12 13 14 2 15 15 6

p21 to p30 11 2 12 3 9 3 4 6 13 14 5 7 8 9 9 10 1 11 12 13

p31 to p36 15 1 7 8 5 9 4 14 2 3 4 6

Q
[L]
d (or Q

[L]
f ) 0.001366718 0.001863652

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.001366718 0.001863652

[N = 64,M = 26] ASA Greedy

p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

p11 to p20 11 12 13 14 9 1 15 16 8 17 11 12 13 14 15 16 16 17 18 19

p21 to p30 18 19 15 20 21 20 22 23 24 21 20 21 1 22 22 8 23 24 25 2

p31 to p40 2 25 5 6 25 7 26 16 10 3 3 26 26 5 6 7 9 10 11 12

p41 to p50 13 19 14 1 4 11 5 22 24 18 12 13 14 15 16 17 18 19 19 20

p51 to p60 3 9 12 17 13 23 26 10 2 15 21 1 22 8 23 24 11 25 2 3

p61 to p64 8 20 6 18 4 5 6 13

Q
[L]
d (or Q

[L]
f ) 0.0003903481 0.0004340288

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.0003903481 0.0004340288

[N = 100,M = 40] ASA Greedy

p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

p11 to p20 11 12 10 13 14 15 16 17 2 18 11 9 12 13 14 15 16 17 18 19

p21 to p30 17 19 20 21 22 23 24 25 26 27 20 18 21 22 23 24 25 26 2 1

p31 to p40 28 18 26 29 30 31 1 32 12 3 27 28 29 30 31 32 33 11 34 28

p41 to p50 7 33 34 9 35 36 37 33 20 38 35 34 36 37 38 39 40 3 35 4

p51 to p60 6 39 38 8 27 11 40 39 21 28 6 15 19 7 10 27 12 13 14 5

p61 to p70 40 15 25 32 16 19 4 6 29 14 13 14 5 16 17 20 21 22 23 38

p71 to p80 14 37 24 5 3 10 18 13 22 15 8 23 24 25 26 28 29 30 31 15

p81 to p90 22 31 12 23 28 17 2 34 24 31 3 9 32 33 11 18 36 37 1 7

p91 to p100 21 36 20 1 26 7 30 9 8 35 39 1 2 40 4 34 6 19 8 9

Q
[L]
d (or Q

[L]
f ) 0.0002090692 0.0002263128

Q
[U]
d (or Q

[U]
f ) 1 1

1−Δ 0.0002090692 0.0002263128
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5.4.5 Different Decision Fusion Rules

The ROC curves for different values of fusion factor Ω = 0.1, 0.3, 0.5, 0.7, 1 are presented

in Fig. 5.10, where N = 64, M = 15, K = 7, γ̄ = 10dB and CL4 is applied. Since the

cost function (4.13) for the ASA and Greedy algorithm varies with Ω, we have different

scheduling results p for different decision fusion rules used in the system. For CL4, sensors

at different locations in the network may have different numbers of partners ni. For the

4 sensors in the corner, ni = 3, for the 4(
√
N − 1) = 20 sensors on the edge (but not in

the corner), ni=4, and the other N − 4
√
N = 12 sensors have ni = 5. The decision fusion

threshold ki at each sensor is ki = �Ωni�, and we can have

- For ni = 3, ki|Ω=0.3 = �0.3 × 3� = 1, and ki|Ω=0.7 = �0.7 × 3� = 3. Thus, ni + 1 −
ki|Ω=0.7 = 3+1− 3 = 1 = ki|Ω=0.3. ki|Ω=0.1 = �0.1× 3� = 1, and ki|Ω=1 = �1× 3� = 3.

Thus, ni + 1− ki|Ω=1 = 3 + 1− 3 = 1 = ki|Ω=0.1.

- For ni = 4, ki|Ω=0.3 = �0.3 × 4� = 2, and ki|Ω=0.7 = �0.7 × 4� = 3. Thus, ni + 1 −
ki|Ω=0.7 = 4+1− 3 = 2 = ki|Ω=0.3. ki|Ω=0.1 = �0.1× 4� = 1, and ki|Ω=1 = �1× 4� = 4.

Thus, ni + 1− ki|Ω=1 = 4 + 1− 1 = 4 = ki|Ω=0.1.

- For ni = 5, ki|Ω=0.3 = �0.3 × 5� = 2, and ki|Ω=0.7 = �0.7 × 5� = 4. Thus, ni + 1 −
ki|Ω=0.7 = 5+1− 2 = 4 = ki|Ω=0.3. ki|Ω=0.1 = �0.1× 5� = 1, and ki|Ω=1 = �1× 5� = 5.

Thus, ni + 1− ki|Ω=1 = 5 + 1− 1 = 5 = ki|Ω=0.1.

From Property 7, the Achievable Range Δd,i(ki) for each sensor satisfies Δi(ki) = Δi(ni+

1−ki). Therefore, in this scenario, Ω = 0.1 and Ω = 1 result in the same Achievable Range

Δi of each sensor, and Ω = 0.3 and Ω = 0.7 result in the same Achievable Range Δi of each

sensor. Then according to (4.6) and (4.13), Ω = 0.1 and Ω = 1 have the same cost function

for the optimization algorithm, and so do Ω = 0.3 and Ω = 0.7. Therefore, Ω = 0.1 and

Ω = 1 have the same scheduling result, and Ω = 0.3 and Ω = 0.7 have the same scheduling

result. Scheduling results for different decision fusion factors Ω = 0.1, 0.3, 0.5, 0.7 and 1 in
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this scenario are summarised in Table 5.8. From the table, we can see that for each Ω, the

scheduling result obtained through ASA algorithm gives a lower Q
[L]
d (or Q

[L]
f ), higher Q

[U]
d

(or Q
[U]
f ), as well as lower Achievable Range Loss 1−Δ.

In Fig. 5.10, we can see that the separation between the ROC curves of ASA and greedy

algorithms becomes smaller as Ω increases. When Ω = 1, we can hardly differentiate the

ROC curves for two algorithms in Fig. 5.10. Comparing the curves for the same algorithm

in Fig. 5.10, or the values listed in Table 5.8, we can also see that the lower bound of

Qf and the upper bound of Qd decrease with increasing Ω. This result is in accord with

Property 6. Furthermore, in this case, for the same algorithm, we cannot conclude which

Ω is better than others for any Qf . We have to choose Ω according to the specific Qf or Qd

requirements and the ROC curves shown in Fig. 5.10. Take the ROC curves for the ASA

algorithm for example, when the required Qf is in the range Qf > 0.01, the ROC curves

of Ω = 0.1, Ω = 0.3 and Ω = 0.5 have very small difference, which all result in higher Qd

than Ω = 0.7 or Ω = 1. If the system requirement is Qf < 0.001, Ω = 0.1 cannot achieve

this Qf and Ω = 0.5 is better than Ω = 0.3. In this case, for 10−6 < Qf < 1 we can always

choose Ω = 0.5, and Qf = 1 is the worst choice.
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Fig. 5.10 Average Qd vs Qf for different decision fusion factors Ω =
0.1, 0.3, 0.5, 0.7 and 1 with N = 64, M = 15, K = 7, γ̄ = 10dB, and CL4.
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Table 5.8 Scheduling results for different decision fusion factors Ω =
0.1, 0.3, 0.5, 0.7 and 1 with N = 64, M = 15, K = 7, γ̄ = 10dB, and CL4.

[Ω = 0.1 or 1] ASA Greedy

p1 to p10 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 6 7 8 9 10

p11 to p20 10 11 12 13 14 15 1 7 5 10 1 11 11 12 13 14 2 15 15 6

p21 to p30 11 2 12 3 9 3 4 6 13 14 5 7 8 9 9 10 1 11 12 13

p31 to p36 15 1 7 8 5 9 4 14 2 3 4 6

Q
[L]
d (or Q

[L]
f ) 0.001366718 for Ω = 0.1 0.001863652 for Ω = 0.1

0 for Ω = 1 0 for Ω = 1

Q
[U]
d (or Q

[U]
f ) 1 for Ω = 0.1 1 for Ω = 0.1

1− 0.001366718 for Ω = 1 1− 0.001863652 for Ω = 1

1−Δ 0.001366718 0.001863652

[Ω = 0.3 or 0.7] ASA Greedy

p1 to p10 1 2 3 4 5 1 6 7 8 9 1 2 3 4 5 6 7 8 9 10

p11 to p20 10 11 12 13 14 15 12 13 4 10 1 11 12 6 13 14 2 3 3 15

p21 to p30 1 3 7 14 11 15 9 8 4 6 4 12 8 13 9 10 1 11 6 7

p31 to p36 7 5 12 13 2 10 8 5 14 3 15 10

Q
[L]
d (or Q

[L]
f ) 1.407227× 10−5 for Ω = 0.3 1.984026× 10−5 for Ω = 0.3

2.893060× 10−11 for Ω = 0.7 5.418733× 10−11 for Ω = 0.7

Q
[U]
d (or Q

[U]
f ) 1− 2.893075× 10−11 for Ω = 0.3 1− 2.893097× 10−11 for Ω = 0.3

1− 1.407227× 10−5 for Ω = 0.7 1− 1.984026× 10−5 for Ω = 0.7

1−Δ 1.407230× 10−5 1.984032× 10−5

[Ω = 0.5] ASA Greedy

p1 to p10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

p11 to p20 11 7 6 12 13 14 15 1 15 11 11 12 12 6 13 14 1 15 15 4

p21 to p30 5 8 12 2 4 3 10 9 4 3 5 7 8 2 2 10 11 12 6 13

p31 to p36 2 1 14 7 6 13 13 14 1 9 3 4

Q
[L]
d (or Q

[L]
f ) 7.720442× 10−8 1.271326× 10−7

Q
[U]
d (or Q

[U]
f ) 1− 5.127297× 10−9 1− 3.374461× 10−9

1−Δ 8.233172× 10−8 1.305070× 10−7
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Chapter 6

Conclusions

In this thesis, we analysed the cooperative spectrum sensing performance using k-out-of-

n decision fusion rule with imperfect reporting channels, considering small-scale fading,

path loss, and additive interference. We derived the expressions and properties for the

upper and lower bounds of probabilities of detection and false alarm. Then, we introduced

a DetF distributed WSN for cooperative spectrum sensing, and proposed a spatial reuse

MAC protocol based on TDMA/OFDMA. Two design approaches for the MAC protocol

were considered: greedy and ASA algorithms. Finally, for a grid WSN, we discussed how to

construct the adjacency matrix charactering the cooperating relations between sensors. We

also explain how to determine the minimum number of T-F slots, and get the initial valid

solution via a k-distance colouring method. Numerical results are presented to analyse

the spectrum sensing performance of the DetF WSN with spatial reuse MAC protocol in

such a grid network form. It is worth noting the proposed spatial resue MAC protocol is

not limited to the grid network presented in this work, and can be employed in any other

network structures with a certain cooperating partner selection scheme.

We started from a single link sj → si to analyse the impact of the reporting channel error

in Section 3.3.1. As the BEP of the reporting channel ε increases, the equivalent probability

of detection at the receiving sensor Pd,ε decreases for the same equivalent probability of

2015/11/14
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false alarm Pf,ε, which is explained in Property 1. The impact of the reporting channel

error is also illustrated by Fig. 3.1, where the equivalent ROC curve shifts down, and the

achievable range of it shrinks as ε increases. Next, we analyse k-out-of-n decision fusion

multiple reporting channels with non-identical BEP. We obtained the expressions for the

minimum and maximum value of probabilities of detection and false alarm, which do not

depend on the local spectrum sensing results and are only determined by the BEP of each

reporting channel errors.

The spatial reuse MAC protocol is designed to control the exchange of sensing results

within the WSN in order to exclude primary conflict and save bandwidth resource. The

basic concept is to divide N sensors in the WSN into M separate sets, and assign one T-F

slot to the sensors in the same set. We choose the Network Achievable Range Loss of the

probability of detection or false alarm (4.13) as the cost function to be minimized, which is

equivalent to maximize the Network Achievable Range defined in (4.6), with the constraints

of primary conflicts as well as repetition. We focused on heuristic solution methods and

considered greedy and ASA algorithms. Compared with the greedy algorithm, the ASA

algorithm mimics the physical annealing process to conduct the random search, and avoids

being trapped in local minima by accepting worse solutions in a controlled way. We use

the vertex colouring method to generate the initial solution, and the generating procedure

is modified to generate the new solution under the constraints of repetition and primary

conflict. In Chapter 5, we also explained how to set the ASA parameters for the specific

grid network, and verified its effectiveness.

Numerical results for a grid network structure in Chapter 5 show how the spectrum

sensing performance is influenced by system parameters, and also present a comparison of

the ASA and greedy algorithms. For each network setting, we presented the scheduling

results, values of the upper and lower bounds of Qd and Qf , and drew the ROC curve to

evaluate the cooperative spectrum sensing performance. For the same network setting, the

value of the cost function (4.13) resulted by the ASA algorithm is lower than the greedy
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algorithm. The ROC curves in Fig. 5.5 – Fig. 5.9 show that using the OR decision fusion

rule, the difference between the curves of two algorithms is very small in relatively high Qf

range, and advantage of the ASA algorithm can be seen when Qf is around and smaller

than the lower bound Q
[L]
f of the greedy algorithm. The ROC curves in Fig. 5.10 show

that the separation between the ROC curves of the ASA and greedy algorithms decreases

as the decision fusion factor Ω increases, and when Ω = 1, it is hard to differentiate the

two curves in Fig. 5.10.

When comparing the ROC curves of one algorithm with different network settings in

each figure, we can see the influence of some system parameters. Fig. 5.5 shows that higher

received SNR of the primary signal γ̄ results in better spectrum sensing performance, but

the upper and lower bounds Q
[U]
d , Q

[U]
f , Q

[L]
d and Q

[L]
f do not change with γ̄. The results of

Fig. 5.6 show that our spatial reuse MAC protocol can save T-F slots without significant

impact on the sensing performance at certain Qf . The lower bound Q
[L]
d and Q

[L]
f decreases

with increasing number of T-F slots. When the target Qf decreases, more T-F slots are

needed to achieve it. Fig. 5.7 shows that cooperation between sensors helps improve the

spectrum sensing performance when Qf is higher than the lower bound Q
[L]
f . However, the

lower bound of Qf increases with the number of partners of each sensor. For example, in

this case, the difference between the ROC curves of CL4 and CL8 is nearly negligible when

Qf > 0.07, and Qf < 0.07 is not achievable by CL8. Therefore, we should not expect the

number of partners of each sensor to be as large as possible. Fig. 5.8 shows that if the

number of T-F slots is fixed, larger network size leads to an increasing lower bound of Qf ,

and Fig. 5.9 shows that if the ratio M/N is fixed, a larger network size gives better sensing

performance. In Fig. 5.10, we plotted the ROC curves for different values of fusion factor

Ω, and it is not clear cut which Ω is the best choice in general. We can use the ROC curves

to decide the value of Ω according to the specific required Qf and Qd. For instance, if the

system required Qf is 0.001 in this case, Ω = 0.5 is the best choice. In addition, if the

number of T-F slots cannot be changed for a certain network size, adjusting the cooperation
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level or decision fusion threshold is necessary to improve the sensing performance subject

to Qf and Qd requirements. The upper and lower bounds of Qf and Qd are not affected

by the local spectrum sensing performance (i.e. Qd,i and Qf,i of each sensor). So in the

design procedure, we can first just calculate the bounds Qf and Qd for each parameter

setting, instead of plotting all the points on the ROC curves. Then we can exclude the

cases not satisfying the system requirements to save time, and analyse the performance

via ROC curves in the remaining cases. Take the results in Fig. 5.10 for example. If the

requirements are Qf < 0.001 and Qd > 0.999, we can first exclude Ω = 0.1 (because its

Q
[L]
f = 0.001366718 > 0.001) and Ω = 1 (because Q

[U]
d = 0.988633282 < 0.999), without

plotting their ROC curves.

For future research, since the spatial reuse MAC protocol in this work is not constrained

to the grid network form, it would be interesting to implement the MAC protocol in other

network forms. For example, sensors can be located on a hexagonal or even irregular net,

and the corresponding spectrum sensing performance can be analysed in a similar way.

Future research efforts may also include designing through other heuristic methods for

solving the combinatorial optimization problem of the MAC protocol. Genetic Algorithms,

Ant System, and Neural Networks are possible candidates, and we can continue to compare

the effectiveness and complexity of different methods. Moreover, there will be other cost

functions than the Network Achievable Range Loss chosen in this work, and designing the

cost function for the spatial reuse MAC protocol will be a meaningful future research topic.

We can analyse how the cost function will influence the shape of the ROC curve, and

consider changing the cost function to make it adaptive to specific required probabilities of

detection and false alarm.
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Appendix A

Proof of Property 1

Proof.

Lemma 1. For a given bandwidth-product u and fRic(γ) with fixed parameters, Pd is a

concave function of Pf .

Proof of Lemma 1 is given in [57, Theorem 1], and we use v(·) to represent the relation

between Pd and Pf , i.e. Pd = v(Pf ), and v(·) is concave function. In [57], Pd = v(Pf ) is

shown to be differentiable.

From (3.27) and (3.28) we have

Pd,ε = Pd − 2εPd + ε = (1− 2ε)Pd + ε (A.1)

Pf,ε = Pf − 2εPf + ε = (1− 2ε)Pf + ε. (A.2)

We define the function uε(·) to represent the relation between Pd,ε and Pd. From (A.1)

we have

Pd,ε = uε(Pd) = (1− 2ε)Pd + ε. (A.3)

2015/11/14
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Thus, Pd,ε = uε(Pd) is a linear function of Pd, and we have

dPd,ε

dPd

= 1− 2ε. (A.4)

We define the function wε(·) to represent the relation between Pf and Pf,ε. From (A.2)

we have

Pf = wε(Pf,ε) =
Pf,ε − ε

1− 2ε
=

1

1− 2ε
Pf,ε − ε

1− 2ε
. (A.5)

Thus, Pf = wε(Pf,ε) is a linear function of Pf,ε, and we have

dPf

dPf,ε

=
1

1− 2ε
. (A.6)

We have shown that uε(·) and wε(·) are linear functions, and v(·) is a differentiable

concave function. Thus, we can use the chain rule to compute the derivative of Pd,ε with

respect to Pf,ε at the point Pf,ε = α as follows

dPd,ε

dPf,ε

∣∣∣
Pf,ε=α

=
dPd,ε

dPd

∣∣∣
Pd=v(wε(α))

· dPd

dPf

∣∣∣
Pf=wε(α)

· dPf

dPf,ε

∣∣∣
Pf,ε=α

= (1− 2ε) · dPd

dPf

∣∣∣
Pf=wε(α)

· 1

1− 2ε

=
dPd

dPf

∣∣∣
Pf=wε(α)

=
dPd

dPf

∣∣∣
Pf=

α−ε
1−2ε

. (A.7)

When Pf,ε1 = Pf,ε2 = α, (ε2 < α < 1− ε2), we use

f1 = wε1(α) =
α− ε1
1− 2ε1

, f2 = wε2(α) =
α− ε2
1− 2ε2

(A.8)
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to simplify the representation, and have

f1 − f2 =
(α− ε1)(1− 2ε2)− (α− ε2)(1− 2ε1)

(1− 2ε1)(1− 2ε2)

=
α− ε1 − 2αε2 + 2ε1ε2 − α + ε2 + 2αε1 − 2ε1ε2

(1− 2ε1)(1− 2ε2)

=
−ε1 − 2αε2 + ε2 + 2αε1

(1− 2ε1)(1− 2ε2)

=
(1− 2α)(ε2 − ε1)

(1− 2ε1)(1− 2ε2)
. (A.9)

As 0 < ε1 < ε2 < 0.5,
ε2 − ε1

(1− 2ε1)(1− 2ε2)
> 0

From Lemma 1, Pd = v(Pf ) is a concave function of Pf , and as shown in [57], the

derivative function v′(Pf ) =
dPd

dPf
is monotonically decreasing, i.e.

If f1 > f2, then v′(f1) =
dPd

dPf

∣∣∣
Pf=f1

< v′(f2) =
dPd

dPf

∣∣∣
Pf=f2

. (A.10)

Therefore, according to (A.7), (A.8), (A.9), and Lemma 1, we have

1) α < 0.5 =⇒ 1− 2α > 0 =⇒ f1 > f2, then

dPd,ε1

dPf,ε1

∣∣∣
Pf,ε1

=α
=

dPd

dPf

∣∣∣
Pf=f1

<
dPd

dPf

∣∣∣
Pf=f2

=
dPd,ε2

dPf,ε2

∣∣∣
Pf,ε2

=α
.

2) α = 0.5 =⇒ 1− 2α = 0 =⇒ f1 = f2, then

dPd,ε1

dPf,ε1

∣∣∣
Pf,ε1

=α
=

dPd

dPf

∣∣∣
Pf=f1

=
dPd

dPf

∣∣∣
Pf=f2

=
dPd,ε2

dPf,ε2

∣∣∣
Pf,ε2

=α
.

3) α > 0.5 =⇒ 1− 2α < 0 =⇒ f1 < f2, then

dPd,ε1

dPf,ε1

∣∣∣
Pf,ε1

=α
=

dPd

dPf

∣∣∣
Pf=f1

>
dPd

dPf

∣∣∣
Pf=f2

=
dPd,ε2

dPf,ε2

∣∣∣
Pf,ε2

=α
.
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Therefore,

∂Φ
(ε1,ε2,α)
d

∂α
=

dPd,ε1

dPf,ε1

∣∣∣
Pf,ε1

=α
− dPd,ε2

dPf,ε2

∣∣∣
Pf,ε2

=α

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 for α > 0.5

= 0 for α = 0.5

< 0 for α < 0.5

(A.11)

where Φ
(ε1,ε2,α)
d = Pd,ε1 |Pf,ε1

=α − Pd,ε2 |Pf,ε2
=α as defined in (3.29), and Pd,ε|Pf,ε=α represents

the value of Pd,ε when Pf,ε = α as described in Section 3.3.1.

(A.11) shows that Φε1,ε2,α
d decreases with α when α < 0.5, and increases with α when

α > 0.5. Therefore, the first half of Property 1 is proved, and the next step is to prove the

second half, which is Φε1,ε2,α
d > 0.

From (A.11), Φε1,ε2,α
d is decreasing with α when α < 0.5, and increasing with α when

α > 0.5, so when α = 0.5, Φε1,ε2,α
d reaches its minimum value, i.e.

Φε1,ε2,α
d � Φε1,ε2,0.5

d . (A.12)

Therefore, if we prove that Φε1,ε2,0.5
d > 0, then we can have Φε1,ε2,α

d � Φε1,ε2,0.5
d > 0.

Using the following notations which have been defined before

Pd,ε = uε(Pd), Pd = v(Pf ), and Pf = wε(Pf,ε),

we can obtain

Pd,ε|Pf,ε=α = uε(Pd)

= uε[v(Pf )]

= uε{v[wε(α)]}
= (1− 2ε)v[wε(α)] + ε. (A.13)



A Proof of Property 1 88

When α = 0.5,

wε(α) =
0.5− ε

1− 2ε
= 0.5,

which does not depend on ε. Then according to (A.13), we obtain

Φ
(ε1,ε2,0.5)
d = Pd,ε1 |Pf,ε1

=0.5 − Pd,ε2 |Pf,ε2
=0.5

= (1− 2ε1)v(0.5) + ε1 − (1− 2ε2)v(0.5)− ε2

= (ε2 − ε1)(2v(0.5)− 1) (A.14)

According to (3.25) and (3.26) we get, Pd = Pf = 1 when λ = 0, and Pd = Pf = 0 when

λ → ∞, i.e. (0, 0), (1, 1) are two points on the curve Pd = v(Pf ). Moreover, according to

Lemma 1, Pd = v(Pf ) is a concave function. Thus, we can get v(0.5) > v(0)+v(1)
2

= 0.5, and

then 2v(0.5)− 1 > 0. Therefore, according to (A.14),

Φ
(ε1,ε2,0.5)
d = Pd,ε1 |Pf,ε1

=0.5 − Pd,ε2 |Pf,ε2
=0.5 > 0. (A.15)

Then according to (A.12),

Φ
(ε1,ε2,α)
d � Φ

(ε1,ε2,0.5)
d > 0.

So the second half of Property 1 is proved.

2015/11/14
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Appendix B

Lemma 2

We first introduce the definition of Poisson-Binomial distribution. The Poisson-Binomial

distribution is the discrete probability distribution of a sum of independent Bernoulli trials

when the individual probabilities of success are not necessarily identical [34, 35]. Consider

N independent Bernoulli trials, where for the mth trial Xm the probability of success is

denoted by pm, i.e. Prob{Xm = 1} = pm and Prob{Xm = 0} = 1 − pm. The probability

of at least k successes in these N trials is the complement of Poisson-Binomial CDF as

defined in [35, Eq. (8)], and a closed-form expression is given in [35, Eq. (11)],

Q(k) = Prob{At least k successes in N Bernoulli trials} (B.1)

= 1− 1

N + 1

N∑
n=0

{
1− exp[−j2πnk/(N + 1)]

1− exp[−j2πn/(N + 1)]

N∏
m=1

(
1− pm + pm exp[j2πn/(N + 1)]

)}
.

(B.2)

In addition, the closed-form expression for Poisson-Binomial probability mass function
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(PMF) is given in [35, Eq. (5)],

P (k) = Prob{Exactly k successes in N Bernoulli trials} (B.3)

=
1

N + 1

N∑
n=0

{
exp[−j2πnk/(N + 1)]

N∏
m=1

(
1− pm + pm exp[j2πn/(N + 1)]

)}
. (B.4)

Lemma 2. For a certain series of N Bernoulli trials, and fixed value of k, the complement

of Poisson-Binomial CDF, Q(k) of (B.1) is monotonic non-decreasing in each pm,m =

1, 2, . . . , N .

Proof. We first find the partial derivative of Q(k) with respect to pl, l = 1, 2, . . . , N . Based

on (B.2), we can obtain

∂Q(k)

∂pl
= − 1

N + 1

N∑
n=0

{
1− exp[−j2πnk/(N + 1)]

1− exp[−j2πn/(N + 1)]

(
exp[j2πn/(N + 1)]− 1

)
∏

1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}

= − 1

N + 1

N∑
n=0

{
1− exp[−j2πnk/(N + 1)]

1− exp[−j2πn/(N + 1)]

(
1− exp[−j2πn/(N + 1)]

)
exp[j2πn/(N + 1)]

∏
1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}

=
1

N + 1

N∑
n=0

{(
exp[−j2πnk/(N + 1)]− 1

)
exp[j2πn/(N + 1)]

∏
1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}
. (B.5)

Then we consider a certain series of N Bernoulli trials where the success probability

of the lth trial is set to 1, i.e. Prob{Xl = 1} = pl = 1. We use P [pl=1](k) to denote the
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Poisson-Binomial PMF in this case, and based on (B.4) we get

P [pl=1](k) =
1

N + 1

N∑
n=0

{
exp[−j2πnk/(N + 1)]

N∏
m=1

(
1− pm + pm exp[j2πn/(N + 1)]

)}

=
1

N + 1

N∑
n=0

{
exp[−j2πnk/(N + 1)] exp[j2πn/(N + 1)]

∏
1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}
. (B.6)

Moreover, when k = 0, according to (B.6) we have

P [pl=1](0) =
1

N + 1

N∑
n=0

{
exp[j2πn/(N + 1)]

∏
1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}

(B.7)

Based on (B.6) and (B.7), we get

P [pl=1](k)− P [pl=1](0) =
1

N + 1

N∑
n=0

{(
exp[−j2πnk/(N + 1)]− 1

)
exp[j2πn/(N + 1)]

∏
1�m�N,m �=l

(
1− pm + pm exp[j2πn/(N + 1)]

)}
. (B.8)

The right-hand side of (B.8) is exactly the same as that of (B.5). Thus, we have

∂Q(k)

∂pl
= P [pl=1](k)− P [pl=1](0). (B.9)

When pl = 1, the lth trial is successful with probability 1, and hence P [pl=1](0) = 0. Then,

we can conclude that

∂Q(k)

∂pl
= P [pl=1](k)− P [pl=1](0) = P [pl=1](k) � 0, l = 1, 2, . . . , N. (B.10)

making Q(k) monotonic non-decreasing in each pl, l = 1, 2, . . . , N .

2015/11/14
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Appendix C

Proof of Property 7

Proof. The expressions for Q
[L]
d,i and Q

[U]
d,i are given in (3.33) and (3.34), i.e.

Q
[L]
d,i(ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

εj,i
∏

sj∈J (i)\J (i)
m,l

(
1− εj,i

))
(C.1)

Q
[U]
d,i (ki) =

ni∑
m=ki

(ni
m)∑
l=1

( ∏
sj∈J (i)

m,l

(
1− εj,i

) ∏
sj∈J (i)\J (i)

m,l

εj,i

)
(C.2)

where J (i) = {sj|Rj,i = 1} is the partner set of si, ni = |J (i)| is the number of partners,

J (i)
m,l, 1 � l �

(
ni

m

)
is one m-combination of J (i), and J (i)\J (i) is the relative complement

of J (i)
m,l in J (i). Please note that all the notations above are the same as those defined in

Section 3.2.

Suppose there are ni independent Bernoulli trials, and the success probability of each

trial is εj,i, and the failure probability of each trial is 1 − εj,i. Thus, Q
[L]
d,i(ki) in (C.1) can

be viewed as the probability that at least ki of these ni trials are successful, i.e.

Q
[L]
d,i(ki) = Prob{Number of successes � ki}, (C.3)
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and Q
[U]
d,i (ki) in (C.2) can be viewed as the probability that at least ki of these ni trials are

failed, i.e.

Q
[U]
d,i (ki) = Prob{Number of failures � ki}

= Prob{Number of successes � ni − ki}
= 1− Prob{Number of successes � ni − ki + 1} (C.4)

where (C.4) is also given in [58, pp. 251-253]. Thus, based on (C.3) and (C.4), it is obvious

that

Q
[U]
d,i (ki) = 1−Q

[L]
d,i(ni − ki + 1). (C.5)

Then, based on (C.5) and the definition of Achievable Range Δd,i(ki) in (3.37), we can

have

Δd,i(ki) � Q
[U]
d,i (ki)−Q

[L]
d,i(ki) = 1−Q

[L]
d,i(ni − ki + 1)−Q

[L]
d,i(ki) (C.6)

and

Δd,i(ni − ki + 1) � Q
[U]
d,i (ni − ki + 1)−Q

[L]
d,i(ni − ki + 1)

= 1−Q
[L]
d,i(ni − (ni − ki + 1) + 1)−Q

[L]
d,i(ni − ki + 1)

= 1−Q
[L]
d,i(ki)−Q

[L]
d,i(ni − ki + 1). (C.7)

Therefore, comparing (C.6) and (C.7) we can conclude that Δd,i(ki) = Δd,i(ni−ki+1).

2015/11/14
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Appendix D

Details of ASA

The ASA algorithm [51] is a probabilistic optimization method for an N -dimensional pa-

rameter space. It permits an exponentially decreasing annealing schedule which greatly

accelerates the optimization process compared with some traditional simulated annealing

algorithms (e.g. Boltzmann Annealing and Fast Cauchy Annealing [53]). Moreover, the

re-annealing procedure is introduced in the ASA to adapt to changing sensitivities in the

multi-dimensional parameter-space.

The basic structure of the ASA algorithm consists of three major procedures: generating,

acceptance, and annealing procedures. In a N -dimensional parameter space with the ith

parameter having the range [Li, Ui], assuming that p(t) ∈ R
N is the tth last saved point,

the generating procedure aims to obtain a new candidate point p̂(t+1) for the (t+1)th state.

The components of p̂(t+1) are determined by

p̂
(t+1)
i = p

(t)
i + yi(Ui − Li), (D.1)

where yi ∈ [−1, 1] is a sample of a random variable Yi with the following PDF,

gi(yi;Ti(ti)) =
1

2(|yi|+ Ti(ti)) ln(1 + 1/Ti(ti))
. (D.2)
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Ti(ti) in this equation is defined as the parameter temperature, and ti is called the parameter

annealing index, which will be illustrated later. If p̂
(t+1)
i /∈ [Li, Ui], a new p̂

(t+1)
i is generated

with another sample yi of Yi, until p̂
(t+1)
i ∈ [Li, Ui].

The acceptance procedure determines whether the candidate point p̂(t+1) is accepted as

the new saved point for the next state. When the cost function is denoted by ζ(·), and
u ∈ [0, 1) is a sample of a uniformly distributed random variable, the acceptance procedure

is

p(t+1) =

⎧⎨
⎩ p̂(t+1) if exp

[− (
ζ(p̂(t+1))− ζ(p(t+1))

)
/Tcost(tcost)

]
> u

p(t) if exp
[− (

ζ(p̂(t+1))− ζ(p(t+1))
)
/Tcost(tcost)

]
� u

(D.3)

where Tcost(tcost) is the cost temperature, and tcost is called cost annealing index, which will

be discussed later.

The parameter temperature Ti(ti) associated with the generating procedure, and the

cost temperature Tcost(tcost) associated with the acceptance procedure are controlled by the

annealing procedures. Specifically, the annealing procedure for Ti(ti) is

Ti(ti) = Ti(0) exp
(
−cparat

Qi/N
i

)
(D.4)

In (D.4), the initial parameter temperature Ti(0) is set by users, and usually set to 1.

The parameter annealing index ti is initially set to 0, and increased by 1 every time a new

candidate point is generated. Qi is the parameter quenching factor for the ith parameter,

which is set to 1 for normal ASA. When Qi > 1, the “quenching” option in ASA is turned

on. The annealing speed is faster than the normal ASA, and the search procedure cannot

be proved to converge to the global optimum with probability 1. However, turning on

the “quenching” option can be extremely useful in speeding up the search, and sometimes

necessary in a large parameter space [51]. cpara denotes the parameter temperature scale,

which is determined by

cpara = − ln(α1) exp (− ln(α2)/N) , (D.5)
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where α1 and α2 are called the temperature ratio scale and temperature anneal scale re-

spectively.

The annealing procedure for the cost temperature Tcost(tcost) is

Tcost(tcost) = Tcost(0) exp
(
−ccostt

Qcost/N
cost

)
(D.6)

which is very similar to that for the parameter temperature Ti(ti). However, In (D.6), the

initial cost temperature Tcost(0) is not set as a constant by users. The ASA algorithm first

generates Nspl states and calculates the cost function of each state, where Nspl is named

number of cost samples. Then, Tcost(0) takes the average of the absolute values of these Nspl

sampled cost functions. The cost annealing index tcost is increased by 1 every time a new

candidate point is accepted, after initially set to 0. Qcost is called the cost quenching factor,

which is similar to Qi, but will not affect the proof that ASA converges asymptotically to

the global optimum. The cost temperature scale ccost is set as ccost = βcpara, where β is an

ASA parameter named cost parameter scale ratio.

An optional reannealing procedure in ASA will periodically rescale the parameter tem-

peratures as well as cost temperature to adapt to different sensitivities among parameter

dimensions and current status of cost function. This procedure takes place every mgen

(generated frequency modulus) candidate points generated, or every macc (acceptance fre-

quency modulus) candidate points accepted. Assuming that this reannealing procedure is

conducted after t states are generated, Ti(ti) is reannealed as

Ti(ti) ←
(
max
1�i�N

{fi}/fi
)
Ti(ti), with fi =

∣∣∣∣∣ ∂ζ(p)∂pi

∣∣∣∣
ṕ(t)

∣∣∣∣∣ (D.7)

where ṕ(t) corresponds to the best cost value found as of the current state. If this new
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value of Ti(ti) is less than Ti(0), the parameter annealing index ti is reset as

ti ←
( | lnTi(0)− lnTi(ti)|

cpara

)N/Qi

(D.8)

Moreover, the initial cost temperature Tcost(0) is rescaled as

Tcost(0) ← min
{
Tcost(0),max{|ζ(p(t−1))|, |ζ(ṕ(t))|, |ζ(p(t−1))− ζ(ṕ(t))|}} (D.9)

When Tcost(0) gets its new value, the current cost temperature is reset as

Tcost(tcost) ← min
{
Tcost(0),max{Tcost(tcost), |ζ(p(t−1))− ζ(ṕ(t))|}} (D.10)

Thus, according to (D.6), the cost annealing index after reannealing is

tcost ←
( | lnTcost(0)− lnTcost(tcost)|

ccost

)N/Qcost

(D.11)

2015/11/14
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Appendix E

Details of C codes and MATLAB

scripts

Here we provide an overview of the software that implements the spatial reuse MAC pro-

tocol, and produces the numerical results of spectrum sensing performance for the grid

network described in Chapter 5. All the necessary C codes and MATLAB scripts are

stored in the folder named “Programming MAC”, which can be obtained from the author

by request. Table E.1 lists these C and MATLAB files with corresponding descriptions.

Directory “C” contains all C files for the implementation of the spatial reuse MAC

protocol via the Greedy and ASA algorithms, which is used to calculate the scheduling

result p. The GNU Scientific Library (GSL) is necessary for the compilation of the C

files, which is available at <http://www.gnu.org>, and we used the version 1.16. The C

files are compiled on a Fedora Linux environment using the GCC compiler version 4.8.3

– 20140911. “Greedy MAC.c” under the subdirectory “Greedy” is the greedy algorithm

with k-distance colouring initialization method. We have explained in detail how to set

the network parameters via the code comments at the beginning of the C file, such as

Rician fading factor, number of sensors, cooperation level and so on. Therefore, there is

no necessary to list these parameters again. After setting up the corresponding parameters
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for the desired network environment, we need to access the current directory, and compile

the C code by using the following GCC command:

gcc -o Greedy MAC Greedy MAC.c -lgsl -lgslcblas -lm -g

This command creates “Greedy MAC” as an executable file, which can be run using

the following command:

./ Greedy MAC

The results are saved in the output file named “greedy usr out”, which contains the

number of states generated, run time, final value of the cost function, and scheduling result

vector.

Subdirectory “ASA” contains the files for the ASA algorithm. The C-language imple-

mentation of the ASA algorithm is based on the source code provided by A. L. Ingber, which

is available at <http://www.ingber.com/#ASA> since 1993. We made some modifications

as described in Section 4.3.2, and integrate the WSN setting into it. The network parame-

ters can be changed in “asa usr asa.h”, which are very similar to those in “Greedy MAC.c”,

and also explained via code comments at the beginning of the file. The key ASA parame-

ters and options for our system are summarized in Table 5.2, and others are kept to their

default values. The change of ASA parameters, such as the maximum number of generated

states, number of cost samples, initial parameter temperature and so on, can be made in

the file “asa opt” and “asa usr asa.h”. There are over 100 options provided by the original

source code to be tuned, and a guide document named “ASA-README.pdf” is attached,

which explains how to change the ASA parameters in detail, and can be downloaded from

<http://www.ingber.com/#ASA>.

The “ASA-Makefile” is provided as a template for user’s own Makefile, which can be

just copied to Makefile for quick use. To run the ASA algorithm using the GCC compiler

after setting up the network and ASA parameters, type the following command:

gcc -o ASA MAC asa usr.c asa usr cst.c asa.c -lgsl -lgslcblas -lm -g

./ ASA MAC
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“ASA MAC” is the created executable file, whose output is saved in “asa usr out” and

“asa out”. “asa usr out” is a concise version, which only contains the exit indicator, final

cost value, run time, and the scheduling result vector. “asa out” contains much more

detailed information, including the ASA parameters, initial state, intermediate process etc.

Directory “MATLAB” contains the MATLAB scripts calculating the network averaged

probabilities of detection and false alarm after applying the spatial reuse MAC proto-

col. “f DecisionFusion” is the function for the k-out-of-n decision fusion. The four in-

puts of “f DecisionFusion” are the matrix containing P
(i)
d,j or P

(i)
f,j (defined in (3.16) and

(3.17)), adjacency matrix R, number of sensors N , and the fusion factor Ω. The output of

“f DecisionFusion” is the vector containing the probability of detection or false alarm of each

sensor after decision fusion, i.e. Qd,i or Qf,i (defined in (3.18) and (3.19)). “MAC ROC.m”

is the main script, and we first set the matrix “mResMac” in “MAC ROC.m” as the

scheduling result obtained from the C files, whose first column contains the sensor IDs, and

the second column contains the T-F slot IDs. Then, follow the comments in the scripts

to set the network parameters, which must correspond to those used in the C files. Run

“MAC ROC.m”, and the results Qd and Qf with different detection thresholds λ, will be

stored in two column vectors, named “vResQd” and “vResQf”.
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Table E.1 C and MATLAB files with corresponding descriptions.

File Name Location Description

asa.c(.h) Programming MAC/C/ASA The ASA optimization algorithm
including generating procedure,
acceptance procedure, annealing
procedure, etc.

asa usr.c(.h) Programming MAC/C/ASA The main procedure to solve the
optimization problem in the grid
network using the ASA algo-
rithm.

asa usr cst.c Programming MAC/C/ASA The cost function for our opti-
mization problem.

asa usr asa.h Programming MAC/C/ASA The header file containing the
macro definitions for ASA and
network setting parameters.

asa opt Programming MAC/C/ASA The file containing the ASA Op-
tions.

Greedy MAC.c Programming MAC/C/Greedy The main procedure to solve the
optimization problem in the grid
network using the greedy algo-
rithm.

MAC ROC.m Programming MAC/MATLAB Calculating the network probabil-
ities of detection and false alarm
using the scheduling result ob-
tained for the C files.

f DecisionFusion.m Programming MAC/MATLAB The function for the k-out-of-n
decision fusion rule.
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