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ABSTRACT 

Sustainable high-intensity agriculture involves optimizing yield and profitability without 

compromising the environment. High chemical inputs have the potential to accelerate soil 

systems’ biological activity and emission of greenhouse gasses (GHG; e.g., CO2, CH4, and N2O) 

without increasing the yield. Quantifying emissions from agricultural soils is critical to assessing 

the sustainability of farming practices. Usually, estimates of agriculture-driven GHG emissions 

are based on a small number of sampling sites. Inherent differences in soil climatic and physical 

properties and crop management activities can significantly affect an agricultural field’s spatial 

and temporal patterns of GHG emissions. Accordingly, a close knowledge of soil heterogeneity is 

critical for improving the reliability of GHG emission estimates. In this project, stability estimates 

of apparent soil electrical conductivity (ECa) measurements by electromagnetic induction (EMI) 

and galvanic contact resistance (GCR) instruments were assessed by testing for both temporal 

and operational effects of a sodden lawn (soil ECa = 5-15 ms m-1). Operational effects on the 

instrument included height above ground (0 or 0.10 m), roll angle (0ᵒ and ±10ᵒ), and pitch angle 

(0ᵒ and ±10ᵒ). Among EMI measurements, the perpendicular coplanar (PRP) operating mode of 

the DUALEM–21S provided the most stable measurements. Changes in height and roll within 

tolerance had no effect on soil ECa measurements, but increasing pitch reduced measurement 

values. From a practical point of view, soil ECa measurements varied little within the height 

tolerance of 0.10 m, and roll and pitch tolerance of ±10ᵒ. In a second study, a database 

management methodology was developed to analyze the >30,000 GHG samples. This 

methodology included a means for data format standardization and flux/emission calculation 

based on 103 fixed sampling locations across Eastern Canada using a suite of automated 

MATLAB scripts. Flux estimates were determined using the median slope of temporal change of 

concentration, thereby filtering outliers arising from erroneous measurements. In a third study, 

temporal variations in GHG emissions under different soil physical properties and soil organic 

matter decomposition rates were monitored in three sites with replicated water treatment plots 

(sprinkler irrigation vs. no irrigation), using a network of wireless sensors that monitored soil matric 

potential, volumetric water content and soil temperature. Muck soils tended to emit more N2O 

under relatively wet and cool conditions, whereas CH4 fluxes peaked in fully wet soils, while 

moderate soil moisture levels and warm temperatures promoted CO2 emissions. Correlations 

between GHG fluxes and measured soil properties were rather weak, limiting the potential for 

modeling GHG fluxes and emissions. In a fourth and final study, placement of GHG monitoring 
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sites was optimized for an agricultural field with variable soil conditions. Nine locations were 

selected and monitored to detect levels of GHG fluxes and emissions representing the most 

extreme soil conditions present in the chosen field. Different soil types, as well as soil moisture 

and temperature dynamics, resulted in different levels of GHG emissions. Due to high soil 

moisture content caused by a field depression, methane emissions were highest in muck (vs. 

mineral) soils. Assessment of spatial and temporal variations in soil physical characteristics can 

clarify GHG emission dynamics, allowing a more accurate quantification of modern farming 

systems’ environmental impact.  

.  
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RÉSUMÉ 

L'agriculture durable peut être définie comme l'optimisation du rendement et la rentabilité sans 

compromettre l'environnement. Nécessitant des taux élevés de composés chimiques, qui 

accélèrent l'activité biologique des sols, les pratiques d'agriculture intensive entraînent l’émission 

de gaz à effet de serre (GES; CO2, CH4, et N2O), sans pour autant obtenir de meilleurs 

rendements. Quantifier les émissions de GES provenant des sols agricoles devient alors essentiel 

lors de l'évaluation de la durabilité des pratiques agricoles. N’ayant pas tenu compte de 

l'hétérogénéité des champs, les estimations d’émissions de gaz du passé ne consistaient qu’en 

une extrapolation à partir des émissions d’un petit nombre de sites d'échantillonnage. Des 

différences inhérentes quant aux propriétés physiques et climatiques des sols et des activités de 

gestion des cultures peuvent affecter significativement la répartition spatiale (à l’horizontale et en 

profondeur) et temporelle des émissions de GES. Conséquemment, l’amélioration de la fiabilité 

d’estimation des émissions de GES est étroitement liée à une connaissance approfondie de 

l'hétérogénéité des sols. En une première étude, la qualité de la cartographie de la conductivité 

apparente du sol (ECa), évaluée par induction électromagnétique (IEM) avec des instruments de 

contact à résistance galvanique (CRG) fut évalués en examinant les effets temporels et 

opérationnels d’une pelouse trempée (ECa = 5-15 ms m-1). Les effets opérationnels ont inclus la 

distance au-dessus de la surface (0 ou 0.10 m), et les angles de roulis et de tangage (0ᵒ et ±10ᵒ). 

Parmi les mesures d’EMI, le capteur DUALEM–21S en mode d’opération de conductivité 

perpendiculaire coplanaire (CPC) a offert les mesures les plus stables. Les variations en hauteur 

et roulis inférieures à la tolérance évaluée n’affectèrent pas l’ECa du sol, mais les variations en 

tangage par rapport à 0° ont réduit l’ECa. D’un point de vue pratique, les mesures de l’ECa du sol 

ont très peu varié à l’intérieur d’une tolérance en hauteur de 0.10 m, et de roulis et tangage de 

±10ᵒ. Face à de gros volumes de données (>30,000 échantillons de gaz) provenant de multiples 

(103 chambres à gaz à 6 sites) et divers (c.-à-d. sol, récolte, irrigation) emplacements dans l’est 

du Canada, une seconde étude s’adressa à la gestion des bases de données, le format de 

normalisation, et aux problèmes de calcul des flux et émissions. Pour ce faire, une série de 

scriptes MATLAB furent développés. L’estimation des flux et émissions utilisa les pentes 

médianes de régressions linéaires, une méthode permettant de filtrer les mesures erronées. Dans 

une troisième étude, les variations temporelles des émissions de GES sous différentes 

combinaisons de propriétés physiques et taux de décomposition de sols organiques à trois sites 

disposant de parcelles irriguées ou non irriguées furent suivies à l'aide de réseaux de capteurs 
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sans fil pour le potentiel matriciel du sol, l’humidité du sol, et sa température. Les sols de terre 

noire émirent plus de N2O lorsque le sol était relativement humide et les conditions climatiques 

fraîches, tandis que les flux en CH4 furent plus élevés dans les sols détrempés. Les émissions 

de CO2 furent le plus élevées lorsque l’humidité du sol était modérée et les températures chaudes. 

Les corrélations entre les flux de GES et les propriétés du sol se révélèrent plutôt faibles, limitant 

le potentiel de modélisation des flux et des émissions de GES. En une dernière étude, 

l’optimisation du placement des sites de surveillance des émissions de GES fut entreprise pour 

un champ agricole. Neuf emplacements furent choisis et instrumentés pour détecter différents 

niveaux différents de flux de GES selon les différents types de sols considérés. La teneur en eau 

et la température de différents types de sols menèrent à différents niveaux d’émissions de GES. 

Les émissions en CH4 étaient particulièrement élevées pour les terres noires (vs sols minéraux) 

principalement en raison de dépressions dans le champ et de la haute teneur en eau du sol dans 

ces dépressions. L’évaluation des variations spatiales et temporelles dans les caractéristiques 

physiques des sols peut aider à mieux comprendre la dynamique des émissions de GES, 

permettant ainsi de quantifier plus précisément les effets environnementaux des systèmes 

agricoles modernes. 
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NOMENCLATURE 

232U Uranium – 232 (measured using gamma-ray spectrometry) 

238Th Thorium – 238 (measured using gamma-ray spectrometry) 

40K Potassium – 40 (measured using gamma-ray spectrometry) 

AAFC Agriculture and Agri–Food Canada 

AGGP Agricultural Greenhouse Gas Program 

ANOVA Analysis of variance 

CH4 Methane 

CH4–C Methane – carbon (flux or emission) 

Cm Measured gas concentration (ppm or mg/kg) 

CO2 Carbon dioxide 

CO2–C Carbon dioxide – carbon (flux or emission) 

Cv Measured gas concentration (mg/m3) 

DUALEMHCP-1 Horizontal coplanar at 1 m distance of DUALEM–21S 

DUALEMHCP-2 Horizontal coplanar at 2 m distance of DUALEM–21S 

DUALEMPRP-1.1 Perpendicular coplanar at 1.1 m distance of DUALEM–21S 

DUALEMPRP-2.1 Perpendicular coplanar at 2.1 m distance of DUALEM–21S 

ECa Apparent soil electrical conductivity (mS/m) 

EM–38HCP-1 Horizontal dipole at 1 m distance of EM–38  

EM–38VCP-1 Vertical dipole at 1 m distance of EM–38 

EMI Electromagnetic inductance 

F26 Field ID 26 of MacDonald Campus, McGill University 

GCR Galvanic contact resistivity 

GHG Greenhouse gas 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

H Height (m) 

HCP Horizontal coplanar 

HR Harrow site 

IPCC Intergovernmental panel on climate change 

K Potassium 

L Length (m) 

LE Leamington site 
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MFM Median flux model 

MOEM Ministry of Education of Malaysia 

mol Mole 

MRD Means relative different 

mS/m millisiemens per meter 

N Nitrogen 

N2O Nitrous oxide  

N2O–N Nitrous oxide-nitrogen (flux or emission) 

ᵒC Degree Celsius 

P Phosphorus 

PA Precision Agriculture 

PCHIP Piecewise Cubic Hermite Interpolating Polynomial  extrapolation 

PRP Perpendicular coplanar 

PSS Proximal soil sensing 

R2 Coefficient of determination 

RML  Representative monitoring locations 

RMSE Root means square error 

SDMRD  The standard deviation of mean relative different 

SE Sainte Emmanuel site 

SH Sherrington site 

SL St. Louis de Blandford site 

STD Standard deviation 

T Temperature (°C) 

t Time (h, min or s)  

TR Truro site 

t–test Student's t–test 

UPM Universiti Putra Malaysia 

VCP Vertical coplanar 

W Width (m) 

WSN Wireless sensors network  

γ-ray Gamma ray spectroscopy  

Δt Time interval (h) 

Ψw Soils matric potential (kPa)



1 

 

 

CHAPTER 1  

INTRODUCTION 

1.1 General Introduction 

As the global population increases, the need for better management of agricultural resources 

in food production is a priority. Therefore, local and national policies on both environmental 

sustainability and food security must consider this trend. Despite the constraints of agricultural 

resources, modern agriculture has made enormous progress in improving yields and in 

decreasing the time needed for crop growth. An environmental response to modern agricultural 

activities is tremendously significant in human life. A future with sustainable agriculture requires 

an integrated approach for technological advances in precision agriculture, i.e. application of 

proximal soil sensing (PSS). Precision agriculture aims at implementing 4R nutrient stewardship 

in terms of "application of the right input, at the right time, and in the right amount" (Mikkelsen, 

2011). This implementation means not only maximized economical profitability of crop production, 

but also significant reduction in its negative environmental impact. 

Agricultural terrestrial greenhouse gases (GHG) emissions are a major contributor to climate 

warming. Thus, the assessment and quantification of the magnitude of GHG emissions has 

become an imperative for predicting climate change. Quantification of GHG emissions from soils 

in the atmospheric ozone is essential for mitigation measures. In soil, transformations of mineral 

N via denitrification-reduction events are the main process leading to N2O emissions from 

agriculture soils. Exceeding concentrations of N2O and CH4 in the atmosphere cause hazards to 

the stratospheric ozone, especially when considering the reaction products of atmospheric nitrous 

oxide (N2O), nitric oxide and nitrogen dioxide. On the other hand, the CH4 is mainly produced by 

the reduction process, which digests carbon mainly from organic matter, and the methane gas is 

the byproduct of the digestion by microbial activities. Different weights of the potential harmful 

gases were suggested by the IPCC (2006) for N2O, CH4, and CO2 were 298, 25, and 1 

respectively. The value of the GHG is normally expressed as a carbon equivalent (e.g. Lal, 2004). 

While CO2 is the most abundant gas, with the lowest weight–factor, it exhibits a natural balance 

in the agricultural land ecosystem. The magnitude of these effects has led to efforts to better 

quantify fluxes of greenhouse gases and to assess the mitigation potential of agricultural 

management options, as a guide for policy makers. 
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The understanding of different effects of water management in terms of irrigation scheduling 

is important to reducing the GHG emissions. Soil moisture content has a direct effect on the rate 

of reaction of soil processes which produce GHG. In practice, GHG emission can be affected by 

application of irrigation water in interaction with co–factors such as soil texture, crop type, and 

temporal changes in soil physical properties. Due to these complex relationships, the process and 

accuracy of estimating GHG emissions can be improved by assessing the variation in physical 

soil properties. 

1.2 Statement of Rationale and Objectives of the Research 

1.2.1 Statement of Rationale 

A sustainable agriculture requires an understanding of spatial and temporal variations within 

agricultural fields when estimating GHG production. Other than the biological controls of GHG 

emissions, the variations in soil physical properties are intermediate factors that contribute to 

different levels of GHG emissions (Figure 1).  

 
Figure 1: The overall scope of the study of the relationship between the field heterogenity 

and GHG flux or emission. 

Although measuring apparent soil electrical conductivity (ECa) is a fast and popular approach 

to understanding field variability, little attention has been given to quantification methods and data 

accuracy. Thus, the evaluation of the measurement stability by temporal and operational tests. 

The measurement of soil ECa as a co–factor in soil physico–chemical heterogeneity contributes 
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to the GHG provides fast and reliable measurements and highly dense data. Yet, the study of the 

relationship between GHG gases and soil ECa has not yet been established.  

Real-time remote monitoring of soil physical properties may enhance the ability to mitigate 

GHG emissions, specifically with respect to controlling different levels of soil moisture via irrigation 

schedules and temperature levels due to different water usage. Due to the strong stability of the 

spatial pattern of the soil physical properties over the growing season, measured using PSS, it 

provides the details of the agriculture field heterogeneity that could result in varying the soil–gas 

diffusion production. Soil physical heterogeneity across the agriculture landscape and their 

associated characteristics provide important prediction parameters for mitigating GHG emissions 

at the ground level.  

1.2.2 Objectives of the Research 

The overall goal of this study was to employ PSS technologies to sense soil physical 

properties, i.e. soil ECa, γ–ray, soil texture, soil moisture, and soil temperature, for environmental 

assessment in agricultural land.  

The specific objectives of this study are summarized as follows: 

i) To evaluate the temporal and operational stability of soil ECa using GCR and EMI 

methods, allowing for decision making of the soil ECa spatial and temporal stability over time 

related to the soil properties during the typical mapping exercise (Chapter 3). 

ii) To estimate GHG fluxes using a median flux method of the linear response under different 

water, soil, and crop management strategies (Chapter 4). 

iii) To monitor GHG emissions spatially under different levels of organic matter decomposition 

in muck soil under different water management practices (Chapter 5).  

iv) To characterize spatial and temporal variation of GHG emissions in response to field 

heterogeneity by means of proximally sensed physical soil properties (Chapter 6).  
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CHAPTER 2 

GENERAL REVIEW OF LITERATURE 

2.1 Proximal Soil Sensing 

Acquisition of the soil properties using PSS in agricultural fields provides an understanding 

and an evident of temporal and spatial complexity due to soil–plant interaction, or farm 

management. Characterization of the agricultural field's spatial variability is a fundamental 

component of a variety of field and landscape–scale concerns including the assessment of the 

soil quality, solute transport, management–induced changes, and mapping and inventory 

exercise of soil properties. Therefore, PSS technology has been used in geophysics exploration, 

and then adapted for agriculture purposes. Of these, the use of wireless sensor network (WSN) 

to monitor the temporal variability of soil physical properties initiated the assessment of the 

temporal effects from the different soil–water–plant exchanges during the growing season.  

2.1.1 Method of Soil ECa Measurement and its Uncertainty Issues 

Apparent soil electrical conductivity is widely used as the most popular measurement 

parameter in modern agriculture. The soil ECa is commonly measured using destructive and non-

destructive methods; GCR or EMI, respectively. Both methods involve at least one element 

causing an electrical current in the soil and at least one element sensing resistance/conductance 

of the soil media. For GCR, typically a set of rolling discs is used both to transmit and to sense a 

change in the voltage potential at a fixed distance. The distance between one or more pairs of 

discs can be configured using Schlumberger, Wenner, Dipole-dipole and other array 

configurations (Parasnis, 1997; Pan et al., 2014). In contrast, using EMI instruments, alternating 

current in the transmitter coil generates a primary electromagnetic field causing an eddy current 

within the soil matrix. The eddy current, in turn, generates a secondary electromagnetic field within 

the receiving coil. The relationship between currents created from both the primary and the 

secondary electromagnetic fields allows for the detection of the conducting characteristics of the 

soil (Allred et al., 2008).  
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The stability of soil ECa measurements due to temporal and operational effect was not 

well reported. In general, soil ECa measurement provides relatively stable spatial patterns A few 

studies compared the different level of uncertainties (Sudduth et al., 2001; Allred et al., 2006; 

Abdu et al., 2007, Saey et al., 2009; Simpson et al., 2009; Sudduth et al., 2010, and Urdanoz et 

al., 2012) under different soil ECa instruments.However, these studies did not focus on the 

sensitivity of these instruments to temporal and operational noise.  

The temporal noise can result from the different degrees of ambient and soil conditions 

during the mapping exercise (Robinson et al., 2004). On one hand, rapid change of ambient 

temperature causes heat to build up in the instrument that is directly exposed to sunlight, thus, 

reducing the soil ECa measurement (Sudduth et al., 2001, 2010, and Robinson et al., 2004). On 

the other, cold weather may significantly reduce measured soil ECa due to a reduction in 

electrolyte mobility in the soil (Allred et al., 2005). 1 mS/m offset due to the temporal drift on the 

DUALEM-21S sensor was reported by Taylor and Holladay (2013). Similarly the soil ECa may 

impose temporal variations due to an annual change in the top soil layer (Brevik et al., 2004; 

Farahani et al., 2004).  

Operational drift effect resembles the typical soil ECa mapping exercise. The drift of the 

soil ECa measurement could be affected by the internal, thermal drift of the instrument (Allred et 

al., 2006). In addition, position sensor at certain height above ground (Doolittle et al., 1994; 

Simpson et al., 2009), distance between the transmitting and receiving coils (Roy 1972; Pan et 

al., 2014) or as a result of the roll and pitch of the measuring instrument (Adamchuk et al., 2011a). 

The effect from the crop cover also potentially increases the soil ECa measurement due to the 

moisture content in the plant cells (Serrano et al., 2014) or results in a lesser effect from crop 

residues (Brevik et al., 2003). Variations in different operational factors govern different signal 

propagation, especially when it differs from the normal position during soil ECa surveys. Thus, the 

elusivity of the soil ECa and the appropriate measurement relationship to other soil properties 

remains ambiguous. 
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2.2 GHG Emission Estimation 

Two of the most common methods in GHG measurement at the terrestrial level use the closed 

chamber and the micrometeorological tower. The former method is the main focus of this study. 

The closed chamber (i.e. non–steady state chamber design) results in a lower foot print, and 

relatively low cost as compared to the micrometeorological tower. In addition, the chamber 

method allows for replication of the field treatment, thus, providing higher spatial resolution with 

repeated treatments (Fowler, 1999).  

The flux is normally calculated using the slope or the gradient of the gas concentration over 

time. The gradient of the GHG flux and emissions can be estimated using linear and non–linear 

models (Hutchinson and Mosier, 1981). Because the linear response is more versatile, it has 

become the most popular and commonly used to estimate the flux as well as the emissions in 

GHG studies. However, less attention has been given to outlier data in flux and emission 

estimations. Visual individual inspection for each dataset is impractical for large datasets for the 

purpose of flux calculation. On the other hand, the non–linear model was imposed in the flux 

calculation mostly due to oscillations in the measurement or downward response of the gas 

concentration. 

Outlier data is the data that behaves abnormally from the rest of the dataset, and does not 

always represent invalid measurements. The factors contributing to the outlier data may be due 

to extreme physical air-soil exchanging phenomena events, leakage during gas measurement, 

sampling error, surface disturbance, and deployment time interval (Venterea et al. 2009). Ignoring 

the appearance of the outlier data during data analysis could result in potential bias especially for 

the statistical analysis.  



7 

 

 

2.3 Temporal GHG emission 

Sustainable agriculture promotes a good balance between anthropogenic activities and 

environmental effects, yet optimizes the profits from the crop production for human benefits. 

Technological advancement helps in increasing food per capita, despite the decline in land to 

people ratio. This situation strained the agriculture sector’s ability to maximize the production per 

unit of land. Maximizing production and profit may lead to high input usage such as nitrogen based 

fertilizer, thus, will leading to high greenhouse gas (GHG) emissions.  

Agriculture land and ecosystems hold large carbon reserves, thus, the potential for the carbon 

mitigation and credit (IPCC, 2006). However, the carbon and other gas exchange rate (emit and 

sink) under specific climate, soil, crop and ecosystems could trigger spatial and temporal 

variations. Moreover, the mitigation potential was often misestimated when the data was obtained 

from only a few locations which do not represent field spatial heterogeneity. Introduction of new 

government incentives and policies for certifying agriculture sustainability and ecosystem services 

will be crucial if the approach is to meet the demands of improving yields without compromising 

environmental integrity as well as maintaining public health. 

The GHG emission from the agriculture soil is subjected to be mitigated. The main GHG from 

agriculture soils were nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2), often 

reported as CO2-equivalent. Significant factors of climate change affiliated with GHG emissions 

have resulted in local and international efforts in mitigation approaches (Shcherbak et al., 2014; 

Villarino et al., 2014). Canada is also subject to be caped of the GHG emissions due to about 80 

% direct and 20 % indirect GHG sources (United Nations Framework Convention on Climate 

Change). The trend of the GHG emission from agriculture soil showed exponential increase. Total 

emissions of 8 % was relatively stable for five years in a row (2005 to 2011) counted for 68 Mt 

CO2-equivalent, however, it is projected to increase with 2 Mt CO2-equivalent for 2005-2020 

(Environment and Climate Change Canada, 2013). However, despite large seasonal exchanges 

of CO2 between the surrounding atmosphere and agriculture lands, the net flux is estimated to be 

balanced (IPCC 2006).  

As it was mentioned, there are two methods in monitoring the GHG from soil, either by 

destructive (non–steady state chamber (NSS) design or non–destructive eddy covariance 

method). In this study, NSS method will be focus of the gas sampling technique. Various designs 

of the NSS used to monitored the GHG fluxes either square, rectangular or cylinder chamber 

shape, with relatively light weight, and follow the standard design (Livingston et al., 2005; 
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Pedersen et al., 2010; Rochette, 2011). The NSS method offers simplicity in the treatment design, 

cost effectiveness, provides low foot print as compared to the eddy covariance, yet high resolution 

over multi chamber replications. The inference of the overall GHG emissions measured from the 

small scale area often were made by up-scaling of the GHG measurements over long term 

scenarios and the large area (Li et al., 2010). Monitoring the GHG emissions at the soil surface 

is not necessarily a measure of real time net soil GHG production because these GHG transport 

from source site vary in time and space, in response to the changing soil environment. Different 

locations for the chamber placement can affect the rate of these processes by influencing soil 

temperature, soil water content, soil disturbance, barometric pressure fluctuations and root 

activity. Consequently, changes in soil properties during NSS chamber deployment and 

measurement may bias flux estimates by altering gas production and transport processes. 

Therefore, one of the keys to minimizing the effect of soil variation is by considering the soil spatial 

variation prior the chamber placement. Thus, up-scaling from a small area of interest may 

underestimate the actual rate GHG responses. 

Reported broad spectrum of GHG source from agricultural soils can be divided into several 

sub sectors such as crop production fields, monoculture (Wagner‐Riddler et al., 2007), and 

perennial crops (Reijnders and Huijbregts, 2008), natural or cultivated forested soils (Sathaye et 

al., 1995; Smyth et al. 2014), pasture for livestock (Rochette et al. 2014; McGinn et al., 2014), 

and organic farming (Wood et al, 2006). In agricultural soil, which is the focus of this study, other 

than microbial activities, surface soil GHG emissions seems to be co-influenced by soil 

characteristics related to (i) farm management activities-different types of farms e.g. organic 

versus conventional agriculture (Rehman, 2014), crop type, fertilization in different forms of N i.e. 

organic or non-organic (Eichner, 1990; Hénault et al., 1998; Snyder et al., 2009), irrigation effects 

(Lal, 2004), tillage practices (West and Marland, 2002), and combination of multiple factors e.g. 

fertilizer, tillage and crop (Kern and Johnson, 1993; Halvorson et al., 2008), (ii) available 

macronutrient content such as organic matter (OM), nitrogen (N), and carbon (C) cycle (Eswaran 

et al., 1993; Skinner, et al. 2014; Sommer and Bossio, 2014), (iii) environmental conditions such 

as elevation, weather (precipitation, ambient temperature, humidity, and pressure), hence, 

leading to volatilization (Weiske et al, 2006) and leaching (Nikièma et al., 2012), and (iv) soil 

physical properties such as soil moisture and temperature (Peterjohn et al., 1994; Mukherjee and 

Zimmerman, 2014), and water table (Buchanan and Triantafilis, 2009; Berglund and Berglund, 

2011). 
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The costs of conventional agriculture soil-gas monitoring, however, are substantial and the 

reliability of the results are often limited and questionable. For instance, soil–gas monitoring 

activity conducted via a network of the sampling points such as grid or transact sampling (Ishizuka 

et al., 2005 and Allaire et al., 2012), where inferences of spatial distribution were made. This 

method does not enable a reliable estimation at the field scale. Thus, alternatively PSS 

technologies was used as a quantitative method to infer spatial patterns across spatial and 

temporal variability. Such PSS measurements were apparent soil electrical conductivity, and 

gamma ray spectroscopy. The efficacy using PSS in relation to the GHG emissions lies in 

understanding spatial and temporal soil property variations. Because there is a limitation of the 

sensors related to the spatial soil biological activities, the measurement or estimation of soil 

physical properties can be done via PSS technologies. Other than biological activities, the 

variation of soil physical properties changed the formation of soil aggregates, pore spaces, and 

water content, consequently, altering the rate of soil gas diffusion. Alternatively, understanding 

the soil mineralogy using gamma-ray methods may help in predicting GHG rates.  

The use of PSS technology as a method of GHG mitigation from agriculture land is a relatively 

new approach. Soil ECa measurements at different times may be used to predict different levels 

of GHG fluxes; however, local and detail interpretations are imperative. For instance, Allaire et al. 

(2012) used a multi depth soil ECa profile investigation to co-relate with the CO2, and found a 

negative correlation between CO2 and soil ECa. To date, there is no comprehensive study on the 

application of γ-ray spectra in actual GHG production. The closest was the measurement of 

available soil carbon through a predictive approach. In an early study by Macias and Barker 

(1978), they attempted to predict bulk available oxygen and nitrogen gas in a coal sample using 

a gamma ray spectrometer. Along with other interesting properties, the study indicated good 

correlation (r>0.95). In contrast, recent findings on nitrogen gas by Chapyzhnikov et al. (2005) 

found no significant correlation with nitrogen gas. However, both studies achieved a good 

correlation of gamma ray spectra of the carbon content. This may lead to better prediction of the 

CH4 or CO2 emissions. The spatial variability of the soil carbon across the field can be predicted 

using Cesium (137Cs) in the soil (Johnston et al, 2004; Dierke and Werban, 2013). These data 

suggest that measurements of 137Cs in soils can be useful for understanding carbon distribution 

patterns in surface soil. A few studies reported good correlation between γ-ray with texture clay 

content. Rodrigues et al. (2015) performed a combination of soil ECa and gamma ray 

measurements in CEC and clay content. In addition, soil chemical properties also resulted in a 

very significant relationship, for instance, strong correlation with potassium (K) (Piikki et al., 2013). 
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Bulk density and soil water content also was predicted using γ-ray measurements (Gurr, 1964). 

Good prediction with potassium (K) content and soil texture in the soil (Wong and Harper, 1999, 

Wong et al, 2010), however, may not hold in all areas due to landscape heterogeneity other than 

soil forming factors.  
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Connection Text to Chapter 3 

Following the literature review the role of soil ECa measurements in agricultural soil is to 

monitor the spatial and temporal heterogeneity that might affect environmental responses (i.e. 

GHG production). This was done by using PSS technology, specifically CGR and EMI techniques. 

Although soil ECa measurements were well established and had become the most popular 

method in providing field heterogeneity information, different levels of uncertainties caused by 

different instrument's measurements were not fully reported. In conjunction with spatial and 

temporal responses, the relationship to other soil properties were discussed in the previous 

chapters. 

This chapter is awaiting to be published as a journal paper. Chapter 3 is related to the first 

objective of this study as listed in Chapter 1 section 1.2.2. Chapter 3 discusses the principle of 

soil ECa measurements using the GCR and EMI methods, and its sensitivity and uncertainties 

related to the environment and operation factors associated with measurement stability. Prior to 

illustrating the prospect of using proximally-sensed soil properties in relation to the temporal GHG 

variation, the quality of the soil ECa measurement was evaluated in terms of temporal and 

operation–induced modalities.  

The findings provide particularly vital information with respect to the mapping exercise as well 

as post processing of data. This includes the minimization of measurement temporal drift as well 

as preventing undesirable "noise" due to inconstant sensor operation.. Different parts of this study 

were presented at a conference and a manuscript has been submitted to the Journal of Applied 

Geophysics.  The following citations are available at this time: 

 

Ahmad Suhaizi M.S. and V.I Adamchuk. 2016. Temporal and operation-induced variability of 

apparent soil electrical conductivity measurements. Journal of Applied Geophysics. (In 

review). 

Ahmad Suhaizi M.S. and V.I Adamchuk. 2014. Evaluation of the temporal and operational 

stability of apparent soil electrical conductivity measurements. In: proceedings of 12th 

International Conference on Precision Agriculture, July 20-23, 2014, Sacramento, California, 

USA. Available online at https://www.ispag.org/presentation/3/1465/ 
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CHAPTER 3 

TEMPORAL AND OPERATIONAL–INDUCED APPARENT SOIL ELECTRICAL 

CONDUCTIVITY STABILITY 

Ahmad Suhaizi M.S. and V.I. Adamchuk 

Abstract 

Measuring apparent soil electrical conductivity (ECa), using galvanic contact resistivity (GCR) 

and electromagnetic induction (EMI) techniques, is frequently conducted to reveal spatial soil 

heterogeneity. Various studies have demonstrated the possibilities for significant changes in the 

measured quantities over time with relatively stable spatial structure representations. The 

objective of this study was to quantify the effects of temporal drift and operational noise for three 

popular ECa mapping instruments. The sensors were placed in stationary positions approximately 

8 m apart in an area with relatively low ECa. Temporal drift was assessed using a series of 4.5-h 

data logs recorded under different weather conditions (from extremely hot to near freezing 

temperatures). The two EMI instruments were also used to quantify the effect of minor changes 

in the height, pitch and roll of the sensor with respect to the ground. These operational noise tests 

were replicated over several days. GCR measurements of ECa, along with perpendicular coplanar 

EMI measurements, have shown relatively strong stability over time. Temporal effects introduced 

measurement uncertainties due to the changes in temperature and soil water content. 

Keywords: apparent soil electrical conductivity; electromagnetic inductance; galvanic contact 

resistivity; temporal; operational; proximal soil sensing 

3.1 Introduction 

Site-specific crop management has been implemented to increase profitability and reduce the 

negative environmental impact of modern farming. The application of proximal soil sensing 

facilitates the understanding of spatial variability of crop growing conditions. Thus, maps of soil 

ECa reveal soil heterogeneity related to various physical characteristics affecting the ability of the 

soil profile to conduct an electrical charge. Soil ECa has been related to salinity (De Jong et al., 

1979; Williams and Hoey, 1987; Lesch et al., 1995; Amidu and Dunbar, 2008), texture (Slavich et 

al., 1993; Corwin et al., 2003; Tetegan et al., 2012), soil water content (Kachanoski et al., 1988; 
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Sheets an Hendricks, 1995; Michot et al., 2003; Corwin and Lesch, 2005; Brevik et al., 2006; 

Brillante et al., 2014) and cation exchange capacity (Paillet et al., 2010). 

The most popular methods for measuring soil ECa on-the-go are based on GCR and EMI 

techniques. Both involve at least one element causing an electrical current in soil and at least one 

element sensing resistance/conductance of soil media. For GCR, a set of contact electrodes 

(typically rolling discs) is used to both introduce the electrical current and to sense a change in 

the potential at a fixed distance. These electrodes have been configured using Schlumberger, 

Wenner, Dipole-dipole, and other array configurations (Parasnis 1997; Pan et al., 2014). 

Alternatively, EMI offers a non-invasive method. An alternating current in the transmitter coil 

generates a primary electromagnetic field causing an eddy current within the soil matrix. The eddy 

current, in turn, generates a secondary electromagnetic field within the receiving coil. The 

relationship between currents created from both the primary and the secondary electromagnetic 

fields allows for the detection of the conducting characteristics of the soil. 

Previous studies have reported on different levels of soil ECa observed using the same 

instrumentation (Sudduth et al., 2001; Allred et al., 2006; Abdu et al., 2007; Saey et al., 2009;; 

Simpson et al., 2009; Sudduth et al., 2010; Urdanoz and Aragüés 2012). Although a few studies 

reported relatively stable spatial patterns, these research activities did not focus on the sensitivity 

of these instruments to temporal and operational noise. Differences in ambient and soil conditions 

(Robinson et al., 2004) may cause the signal to change over time (drift). For example, heat builds 

up in an instrument that is directly exposed to sunlight and this reduces the measured soil ECa 

(Sudduth et al., 2001; Robinson et al., 2004; Sudduth et al., 2010). In contrast, cold weather may 

significantly reduce measured soil ECa due to a reduction in electrolyte mobility in the soil (Allred 

et al., 2005). Taylor and Holladay (2013) found 1 mS/m offset due to the temporal drift on the 

DUALEM–21S sensor. Likewise, soil ECa may vary annually due to the temporal dynamics of the 

top soil layer (Brevik et al., 2004; Farahani et al., 2004). Thus, the elusivity of the soil ECa 

relationship to other soil properties remains ambiguous. 

Operational drift marks the effect of the typical soil ECa mapping exercise. The drift of soil ECa 

measurements could be affected by the internal, thermal drift of the instrument (Allred et al., 

2006). In addition, ECa measurements were shown to be altered due to small changes in 

instrument height above the ground (Simpson et al., 2009; Doolittle et al., 1994), distance 

between the transmitting and receiving coils (Roy 1972; Pan et al., 2014), or as a result of the roll 

and pitch of the measuring instrument (Adamchuk et al., 2011a). The vegetative cover on the 
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ground could potentially increase the soil ECa due to the moisture content in the plant cells 

(Serrano et al., 2014), and minor effects from annual crop residues (Brevik et al., 2003). In 

general, different operational factors govern the signal propagation and when it differs from the 

normal position during soil ECa surveys, ECa measurements will vary. 

Since service providers have to consider a combination of factors causing temporal and 

operational noise when mapping agricultural fields, the objective of this study was to quantify the 

deviation of stationary ECa measurements produced using different instruments over time (both, 

short-term and long-term), and due to different operational uncertainties (height, roll and pitch).. 

3.2 Materials and Methods 

3.2.1 Instruments 

Three different instruments were used to simultaneously measure soil ECa [mS/m] within the 

same area. These included a GCR sensor Veris Quad EC 1000 (Veris Technologies, Inc., Salina, 

Kansas, USA) shown in Figure 2 and two EMI instruments: DUALEM-21S (Dualem, Inc., Milton, 

Ontario, Canada) and EM-38 (Geonics Limited, Mississauga, Ontario, Canada) shown in Figure 

3. Table 1 summarizes the main parameters of these instruments.  

 

Figure 2: GCR sensor Veris Quad EC 1000 (Veris Technologies, 2014). 
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Figure 3: EMI sensors: EM-38 and DUALEM-21S, modified from Simpson et al. (2009). 

Table 1: Instrument specifications 

Specification Veris Quad EC 1000 EM-38 DUALEM-21S 

Method GCR EMI EMI 
Dimensions, m 1.43 x 1.50 x 0.69 1.06 x 0.15 x 0.13 2.41 x 0.09 x 0.09 

Mass, kg 136 3 5 
Power supply 12 V DC external 9 V DC internal  12 V DC external 

Number of depths 1 2 4 
Operating frequency 20 Hz 14.6 kHz 9 kHz 

Data output rate 1 Hz 14 Hz 5 Hz 
Year of manufacture  2012 2004 2012 

The Veris EC used in this study consisted of four rolling coulters and provided output related 

to shallow (0-30 cm) soil ECa (Veris Technologies, 2014). The DUALEM-21S consisted of a 2.41 

m long tube and had one transmitter coil and four receiving coils. Two of these four coils form a 

horizontal coplanar (HCP) array at 1 m (DUALEMHCP-1) and 2 m (DUALEMHCP-2) distances 

whereas the other two form a perpendicular coplanar (PRP) array at 1.1 m (DUALEMPRP-1.1) and 

2.1 m (DUALEMPRP-2.1) distances. The effective sensing depths for all configurations can be found 

in Table 2. Finally, the EM-38 had only one pair of coplanar coils 1 m apart. The unit can be 

positioned in a horizontal dipole or a vertical dipole mode producing ECa measurements related 

to 0.75 and 1.55 m deep soil profiles, respectively. This unit was calibrated before each use 

according to the manufacturer’s recommendations. Since the vertical dipole is the same as HCP, 

EM–38HCP-1 and DUALEMHCP-1 measurements are comparable (Saey et al., 2009), the EM-38 

instrument was tested only in the vertical dipole configuration. All instruments went through the 

warming up period for about 5 minutes before each test event. 
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Table 2: List of recorded measurements 

Recorded 
measurement 

Instrument Array configuration Distance, m 
Effective sensing 

depth (75% 
response), m 

Veris EC 
Veris Quad EC 

1000 
Wenner 0.254 0.30 

EM–38HCP-1 EM–38 Vertical dipole 1 1.55 
DUALEMHCP-1 DUALEM–21S Horizontal coplanar 1 1.55 

DUALEMPRP-1.1 DUALEM–21S 
Perpendicular 

coplanar 
1.1 0.54 

DUALEMHCP-2 DUALEM–21S Horizontal coplanar 2 3.18 

DUALEMPRP-2.1 DUALEM–21S 
Perpendicular 

coplanar 
2.1 1.03 

 

A LabView (National Instruments, Cor., Austin, Texas, USA) application has been developed 

to automatically log data from the three sensors at individual data rates. A Watch Dog 2700 

weather station (Spectrum Technologies, Inc., Aurora, Illinois, USA) was used to record ambient 

conditions that might affect instrument performances. Monitored parameters were logged with a 

5-min interval and included: air temperature and humidity, wind speed and direction, and rainfall. 

The same station was used to monitor soil temperature and water content 30 cm below the 

surface using an installed SMEC 300 (Spectrum Technologies, Inc., Aurora, Illinois, USA) 

stationary probe. 

3.2.2 Experimental Procedure 

The instruments were placed in stationary positions approximately 8 m apart and about 6 m 

from the data logging station, as shown in Figure 4. The test area at Macdonald Farm of McGill 

University, Quebec, Canada, was a regularly cut lawn approximately 2 m from the edge of a corn 

field. The soil type at the test location was identified as Chicot series, sandy loam with moderate 

water holding capacity, and moderate to poor drainage (Paul 1960) and had generally low ECa. 

A series of five 4.5-h data recordings were conducted from August to October 2013. Each 

time, the instruments were placed in the same marked locations. The GCR coulter disks were 

pushed down gently (about 5 – 10 cm deep) to ensure good contact with the soil. At the same 

time, the EMI instruments were placed on the flat ground with the roll and pitch of the instruments 

as close to 0º (normal position) as possible. Another set of 5-min data recordings was conducted 

over several days from September to November with artificially introduced operational noise. 

Evaluated factors included: a) 10 cm height above the ground simulating an inconsistent distance 

between the instrument and soil surface, b) +10º and -10º pitch simulating potential raising of one 
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end of the instrument, and c) +10º and -10º roll simulating deviation of the instrument from its 

vertical orientation (Figure 5). Table 3 summarizes all data acquisition events that allowed five 

replicates of temporal and three replicates of operational tests for every instrument. 

 

 Figure 4: Experimental setup (24-Oct-2013). 

3.2.3 Data analysis 

Data analysis was based on a comparison of 1-s average data obtained at the highest 

possible rate without any filtering. While the temporal tests quantify the potential data drift from 

the beginning to the end of a single mapping exercise, the operational tests reveal the influence 

of typical uncertainties of the position of the instrument with respect to the ground. In addition, the 

test replicates show the influence of ambient conditions along with the possible uncertainties of 

sensor repositioning and other feasible inconstancies between test replicates. 

 
  

Data logging station 

EM-38 DUALEM-21S 
Veris EC 

 Weather station 8 m 
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Figure 5: Operational tests for EMI instruments. 

Table 3: Experimental timeline 

Instrument and 
operation 

Replicates 

1 2 3 4 5 

Temporal test (normal operation) 

Veris EC 12-Aug-2013 13-Aug-2013 18-Sep-2013 09-Oct-2013 24-Oct-2013 

EM-38 13-Aug-2013 18-Sep-2013 09-Oct-2013 24-Oct-2013 29-Oct-2013 

DUALEM-21S 13-Aug-2013 18-Sep-2013 09-Oct-2013 24-Oct-2013 29-Oct-2013 

Operational test 
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For both temporal and operational tests, descriptive statistics, such as mean and standard 

deviation (STD) of each test replicate, were calculated using Microsoft Excel. Root mean square 

errors (RMSE) for the temporal tests were estimated using the following equation: 

 
 

 





m

i

n

j

aijai ECEC
nm

RMSE
1 1

2

1

1
           (1) 

where n is the number of 1-s measurement averages within any specific data log; m is the 

number of different logging events. 

The Levene's test of equal variances was conducted to compare mean square error (MSE) 

values corresponding to different instruments. However, due to a very large number of data 

records, high degrees of freedom made relatively similar variance estimates significantly different 

from each other. Therefore, a subjective grouping of similar RSME estimates was performed to 

facilitate the discussion. A simple linear regression was applied to the relationships between ECa 

measurements and ambient conditions, including soil and air temperature, soil water content, air 

humidity, and internal temperature of the DUALEM-21S instrument. In terms of the operational 

test, a t–test was used to compare the means of three operational test replicates to the mean of 

nine replicates representing normal operation of the instrument (i.e., zero height, roll and pitch). 

3.3 Results and Discussions 

3.3.1 Temporal Test 

Figure 6 demonstrates the range of air and soil temperatures, relative humidity, soil water 

content, and recorded internal instrument temperature of DUALEM–21S during each 4.5-h 

temporal test. These tests generally cover all reasonable operational conditions when soil ECa 

data are normally collected. The weather data captured from the weather station showed ambient 

and soil temperatures varying from 23.3 ºC to nearly freezing (– 0.1 ºC) and 29.5 to 7.6 ºC, 

respectively. The latter measurements slightly vary within the same measurement date; however, 

they change greatly from one test event to another. The internal temperature of the DUALEM-

21S ranged from 40 to 6 ºC across the test dates. The increase in soil moisture on 9-Oct-2013 

was due to rainfall events during the two days prior to the test event (6 mm of total precipitation).  

http://www.youtube.com/watch?v=6FbRXQi0Igw
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Figure 6: Box-and-whiskers plot of environmental conditions: ambient temperature, soil 
temperature, air humidity, volumetric soil water content, and the internal temperature of 

DUALEM-21S instrument during temporal tests. 

Figure 7 illustrates data logs for four different measurements obtained during the 9-Oct-2013 

test. The ranges (minimum and maximum) for unprocessed soil ECa measurements for the entire 

temporal test are presented in Figure 8. Table 4 summarizes the average, STD, and RMSE 

(Equation 1) values. The most stable soil ECa measurements were from the GCR instrument. 

Earlier, Serrano et al. (2014) observed a similar level of consistency of CGR measurements. Both 

DUALEM PRP measurements produced RMSE values 5-10 times smaller than those from EM-

38 or DUALEM HCP measurements. In addition to the 4.5-h drift of ECa measurements, there 

were noticeable changes from day to day. For an unknown reason, the most apparent reduction 

in ECa measurements was noted on 18-Sep-2013 for both DUALEM HCP measurements, but not 

for PRP. That day, the initial internal and ambient temperatures were similar (10.4 and 11.6 ᵒC), 

but a steady increase of the ambient temperature with relatively low wind speed (around 2 km/h) 
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may have resulted in rapid solar warming of the instrument. This typically reduces soil ECa 

measurements. However, the certain reason for this sensor behaviour is unknown.  

 

Figure 7: An example of 1-s average ECa measurement logs obtained on 9-Oct-2013. 

 
Figure 8: The range (minimum and maximum) of soil ECa measurements during temporal 

tests. 

Table 5 summarizes the correlation coefficients for a linear regression between ambient 

conditions and recorded measurements. Figure 9 demonstrates the relationships between air, 

soil and internal DUALEM instrument temperatures with several ECa measurements. It is obvious 

that an anomaly, such as the 18-Sep-2013 drop in DUALEM HCP measurements, affected the 
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observed relationships. This anomaly cannot be explained by ambient conditions and may be 

affiliated with a number of unaccounted for factors, such as instrument positioning and conditions 

of surrounding vegetation. When disregarded, it appears that the EM-38 measurements are 

negatively correlated with ambient and internal temperatures. According to Allred et al. (2006), 

low soil water content and high temperature normally reduces soil ECa. Sudduth et al. (2001) 

reported that the drift over 10 % of ECa observed during field mapping using the EM-38 might be 

due to the change of internal temperature rather than ambient temperature variation. Corwin and 

Lesch (2005) recommend converting ECa measurements at a specific temperature to 

measurements at a reference temperature (e.g., 25C). Naturally, this would mean that 

temperature-compensated Veris EC and DUALEM-21S measurements would not be affected by 

ambient conditions to the extent of non-compensated EM-38 measurements. However, the 

presented data have not revealed temperature-induced changes in EM-38 measurements greater 

than other effects, such as instrument repositioning. The effects of soil temperature and water 

content are less quantifiable since they did not change significantly during individual tests. 

Table 4: ECa [mS/m] measurements for temporal tests. 

Measurement 
Replicate  Average ECa 

(STD) between 
replicates, mS/m 

RMSE, 
mS/m 1 2 3 4 5 

Veris EC 
3.00 

(0.01)* 
4.00 

(<0.01) 
4.00 

(<0.01) 
3.70 

(<0.01) 
2.70 

(<0.01) 
3.56 

(0.70) 
< 0.01a 

EM–38HCP-1 
4.28 

(0.58) 
9.12 

(1.79) 
4.28 

(0.58) 
8.64 

(0.89) 
8.53 

(0.88) 
6.97 

(2.46) 
1.08c 

DUALEMHCP-1 
8.34 

(1.01) 
-2.98 
(1.60) 

10.79 
(0.78) 

8.64 
(0.27) 

8.79 
(0.83) 

6.72 
(5.51) 

1.03c 

DUALEMHCP-2 
2.79 

(0.74) 
1.50 

(1.57) 
2.95 

(0.87) 
6.41 

(0.38) 
5.96 

(0.41) 
3.92 

(2.15) 
0.99c 

DUALEMPRP-
1.1 

7.49 
(0.11) 

0.68 
(0.10) 

6.48 
(0.09) 

6.56 
(0.07) 

5.47 
(0.07) 

5.34 
(2.70) 

0.10b 

DUALEMPRP-
2.1 

8.51 
(0.22) 

6.78 
(0.17) 

7.43 
(0.15) 

7.81 
(0.13) 

7.40 
(0.13) 

7.59 
(0.64) 

0.17b 

* = Average and standard deviation (in parenthesis) of replicated tests. a = Temporarily most stable 
measurements. b = Temporarily relatively stable measurements. c = Temporarily relatively unstable 
measurements 
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Table 5: Pearson coefficients of correlation between ECa measurements and 
measurement conditions. 

Measurement 
Temperature, ᵒC Air 

humidity, % 
Soil water 
content, % Ambient Soil Internal DUALEM 

Veris EC 0.369 0.145 0.867* 0.064 0.029 

EM–38HCP-1 – 0.663 – 0.525 – 0.724* – 0.449 – 0.896* 

DUALEMHCP-1 – 0.173 – 0.132 – 0.052 0.102 0.552 

DUALEMHCP-2 – 0.823* – 0.555 – 0.816* – 0.152 – 0.309 

DUALEMPRP-1.1 – 0.009 0.157 0.082 0.368 0.638 

DUALEMPRP-2.1 0.527 0.561 0.332 0.616 0.588 

* = Significant relationship ( = 0.05) 

 

3.3.2 Operational Test 

 Figure 10 provides the results of the operational tests for both EMI sensors. Each 5-min data 

log represented a particular test configuration that was repeated on three different occasions 

during at least two different days in random order. Since normal operation (zero height, pitch and 

roll) was part of each operational test, this configuration has been replicated nine times. Table 6 

shows the individual soil ECa test average, STD and t-test p–values. In this case, the average of 

three operational test replicate means were compared with the mean of nine normal operation 

means. 

 



24 

 

 

 

Figure 9: Examples of relationships between ECa measurements (15-min sampling) and 
corresponding records of ambient conditions (dash lines show regressions with 18-Sep-

2013 data excluded). 
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Figure 10: The range (minimum and maximum) of operational tests for each recorded 
measurement. 
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Table 6: ECa (mS/m) measurements for operational tests. 

Measurement Height effect test 

  0 cm 10 cm p-value     

EM–38HCP-1 6.59 (1.93) 4.67 (2.31) 0.13   

DUALEMHCP-1 4.81 (8.2) 7.28 (4.02) 0.26   

DUALEMHCP-2 4.16 (3.26) 2.36 (2.96) 0.21   

DUALEMPRP-1.1 5.19 (3.25) 4.16 (1.24) 0.24   

DUALEMPRP-2.1 7.51 (0.92) 6.40 (0.84) 0.06   

  Roll effect test 

  0 -10 p-value +10 p-value 

EM–38HCP-1 6.59 (1.93) 4.55 (2.63) 0.14 4.95 (2.8) 0.20 

DUALEMHCP-1 4.81 (8.2) 5.33 (8.51) 0.47 3.50 (10.64) 0.43 

DUALEMHCP-2 4.16 (3.26) 3.40 (3.27) 0.37 3.51 (4.11) 0.41 

DUALEMPRP-1.1 5.19 (3.25) 4.56 (3.03) 0.39 4.22 (3.68) 0.35 

DUALEMPRP-2.1 7.51 (0.92) 7.35 (0.92) 0.40 7.25 (1.1) 0.36 

  Pitch effect test 

  0 -10 p-value +10 p-value 

EM–38HCP-1 6.59 (1.93) 4.51 (3.01) 0.16 3.52 (1.5) 0.02** 

DUALEMHCP-1 4.81 (8.2) 7.87 (4.39) 0.23 9.49 (2) 0.10 

DUALEMHCP-2 4.16 (3.26) 2.33 (3.24) 0.22 2.9 (1.99) 0.23 

DUALEMPRP-1.1 5.19 (3.25) 6.24 (0.37) 0.20 3.19 (0.32) 0.07 

DUALEMPRP-2.1 7.51 (0.92) 7.32 (0.02) 0.28 5.61 (0.15) < 0.01** 
* Average and standard deviation (in parenthesis) of replicated tests 
** Significantly different at  = 0.05  

 

It appears that raising the instrument did not contribute to greater ECa measurement change 

than the differences between replicates. In most cases, HCP measurements decrease when the 

instrument is raised in the air, but this may not be the case if high ECa soil overlays less conductive 

subsoil for some sensor configurations. A marginal significance of the drop in average ECa caused 

by the raised instrument was found for DUALEMPRP-2.1 was due to the relatively low ECa difference 

between replicates rather than the magnitude of this change. In terms of the pitch and roll tests, 

it appears that the 10 deviations from the normal operation also did not have a significant effect 

on the measurements recorded. The exceptions were EM-38HCP-1 and DUALEMPRP-2.1 when the 

end of the instrument containing the transmitting coil was raised above ground.  

From a practical standpoint, the results of this study indicate that GCR sensing of ECa may 

be less sensitive to temporal effects than EMI measurements and may have an appeal in many 

(a) EM-

38VCP–1 
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environments. However, the non-contact nature of EMI measurements provides versatility with 

respect to the measurement environment and, when designing the deployment platform (e.g., 

sled), these instruments should stay close to the ground with zero pitch and roll. It was determined 

to be very important to keep the transmitting coil close to the ground. Minor deviations from these 

conditions do not affect measurements to a greater degree than replications. 

3.4 Conclusion 

A set of stationary tests of one GCR and two EMI instruments revealed the degree of temporal 

and operation-induced variations on observed measurements of ECa. While the GCR instrument 

was relatively immune to long-term data drifts, repositioning the EMI instruments on the soil 

surface at different times of the year (different soil conditions and ambient temperatures) provided 

more noticeable differences. Furthermore, EMI measurements were less stable during 4.5-h log 

periods than the CGR instrument. Also it was noted that the PRP configuration was more stable 

over time than the HCP operation. The same applies to the operational tests. The effects of the 

instrument height, roll and pitch were smaller than the differences from test event to test event, 

which could be attributed to a number of uncontrolled factors, including exact position of the 

instrument and different environmental parameters. However, practitioners should avoid, or 

minimize, raising the transmitting coil end of the instrument due to the reported sensitivity of ECa 

measurements to this experimental treatment.  
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Connection Text to Chapter 4 

Chapter 4 is a manuscript awaiting publication in 2016. The manuscript was authored by 

several researchers responsible for different parts of data collection and processing. All literature 

cited in this chapter is listed in the reference section.  

Agricultural greenhouse gas is complex, dynamic, and governed by differing diffusion 

characteristics of soil–gas. Many factors contribute to this variation such as soil type, availability 

of water in the soil, and the crop itself. Despite GHG naturally varying across the agricultural field, 

the best estimation of GHG fluxes monitored using the non–steady state chamber design were 

one of the challenges that needed to be addressed. The approach of streamlining a large quantity 

of data is crucial to avoiding calculation errors. The MATLAB scripts developed in this work have 

been applied to several studies in flux and emission estimation.  

This manuscript addresses the second objective as listed in Chapter 1, which deals with GHG 

flux and emission estimation by taking into account the spatial and temporal effect of in–season 

GHG production. This study is intended to aid the prediction GHG (3rd objective) using physical 

soil properties. However, GHG fluxes using the non–steady state chamber design may produce 

large variations in gas responses and lead to outliers in the dataset. Thus, the optimization method 

in flux calculation was established using the median flux value to estimate the GHG flux in 

agricultural fields. In depth interpretation of the results between respected treatments in each 

experimental site has been done by other collaborating researchers, and, therefore, has not been 

addressed in this thesis. Different parts of this study were presented at a series of conferences 

and a manuscript has been finalized to be submitted to the Canadian Soil Science Journal.  

The following citations are available at this time: 

Ahmad Suhaizi M.S. V.I. Adamchuk, C.A. Madramootoo, J.K. Whalen, F.J. Reumont, and 

H.Hui Huang. 2016. Unbiased flux calculation for greenhouse gas emissions estimation. 

Canadian Journal of Soil Science (to be submitted). 

Mat Su, A. S., V. I. Adamchuk, C. A. Madramootoo, J. K. Whalen, H.H Huang. 2013. 

Estimating greenhouse gas emissions using experimental data. In: Scientific Program of 

CSSS/MSSS/CSAFM Joint Meeting, Winnipeg, Manitoba, 21-25 July 2013, 70. Winnipeg, 

Winnipeg, CSSS. 
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CHAPTER 4 

STREAMLINED ANALYSIS OF AGRICULTURAL GREENHOUSE GASES FLUXES AND 

ANNUAL EMISSION 

Ahmad Suhaizi Mat Su, Viacheslav I. Adamchuk, Chandra A. Madramootoo, 

Joann K. Whalen, Florian J. Reumont, and Hsin-Hui Huang 

Abstract 

The objective of this work was to develop a robust and rapid method for calculating 

greenhouse gas (GHG) fluxes and annual emissions with consideration of the outlier dataset 

removal approach. The dataset contained the nitrous oxide (N2O), methane (CH4) and carbon 

dioxide (CO2) concentrations for more than 30,000 headspace gas samples collected during 

2012, 2013 and 2014 from 103 stationary non-steady state chambers, located at six agricultural 

sites across Eastern Canada. These sites were under different agricultural practices, (i.e., soil 

type, cropping system, and water management). MATLAB scripts were developed to: i) 

automatically filter data records based on threshold concentrations of N2O, CH4 and CO2, ii) 

estimate GHG fluxes from each chamber on each sampling date, and iii) estimate the annual 

emissions of GHG from each chamber during the growing season. The GHG fluxes were 

determined from the median slopes of gas concentrations measured at five sampling points (0, 

15, 30, 45 and 60 min) during chamber deployment. Generally, CO2 concentration increased, 

whereas CH4 and N2O concentrations were variable during the chamber deployment period. 

Streamlined approach resulted relatively fast data processing handling with about 10,000 data 

per year (total of >30,000 dataset) with maximum of 3 min of the processing time for all six sites 

per season using operating system of Window 7, 64-bit processor. The model proposed shows 

the lowest RMSE as compared to the standard average regression model. The results from this 

finding could be used as benchmark values for the Tier II of the IPCC database.     

Key words: greenhouse gas, non-steady-state chamber, emission, bias data, uncertainty 
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4.1 Introduction 

Mitigation of greenhouse gases (GHG) - particularly nitrous oxide (N2O), methane (CH4) and 

carbon dioxide (CO2) - from agricultural soils is important in reducing the impacts of climate 

change (IPCC, 2006). Agricultural practices affect the spatial and temporal fluxes of these GHG, 

as well as the annual emissions of N2O, CH4 and CO2. Variations in gas production from soils can 

be evaluated with chamber and micrometeorological techniques, the chamber method being 

better suited to assess punctual, small-scale gas fluxes with a lower footprint than the 

micrometeorological approach. Typically, static non-steady-state chambers are selected to 

measure fluxes from 0.1-10 m2, which provides greater accuracy and higher spatial resolution 

with repeated treatments (Fowler 1999). Replicated chamber allow for investigations on soil-air 

gas exchanges in experimental field plots with various agricultural practices (i.e., irrigation, crop 

type and soil properties) or along pre-defined biogeochemical gradients.  

In practice, the quantification of GHG fluxes is affected by temporal variability in the 

headspace gas concentrations of chambers, which can be described using linear and non-linear 

regressions. The potential flux of trace gases is often calculated by the slope (or gradient) 

technique, and was adapted for stationary chambers on soil by Hutchinson and Mosier (1981) 

and Hutchinson and Livingston (1993). In their approach, the gas concentrations (y-axis) in three 

consecutive headspace gas samples were plotted against time (x-axis) with linear regression to 

estimate gas flux from the chamber headspace. Although this simplified technique is 

straightforward, it lacks robustness because it fails to consider the uncertainty arising from outliers 

and small sample sizes. Moreover, sporadic flux readings are expected because gases can be 

produced (net source) and consumed (net sink) simultaneously from chambers due to biological 

processes (Chapuis‐Lardy et al., 2007). In such a case, the method of Hutchinson and Mosier 

(1981) is inaccurate.  

The most common method of calculating fluxes was via a simple linear regression model 

wherein the gradient was calculated based on the average slope value (Venterea, 2010). A 

minimum number of samples per total duration of measurement had a small effect on the 

variation, thus often the approach in flux calculation is simply by taking an average. If the outlier 

data was ignored, the flux could deviate significantly from the flux estimate and lead to 

overestimation. This can be resulted from the direct linear regression equations that have to 

consider a line that fit all the points as to minimize the errors (e.g. John, 1995). The outlier data 
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may have resulted from accidental measurement errors or site–specific soil–gas exchange. High 

variation in the dataset could potentially lead to high discrepancies in flux estimates.  

The median flux model (MFM) technique was used to discard outliers and the corresponding 

bias in flux estimation. The MFM technique provides several advantages: (i) calculated flux and 

estimated emission are not affected by extreme high or low variations from the set of 

measurements, (ii) the original data set, holding valuable information, is maintained (iii) it is 

independent of equal time intervals, sequence or sampling durations, (vi) concentration 

corrections such as in Hutchinson and Mosier (1981) are not required, and (v) unlimited number 

of sample observation, but with a minimum of three, as shown by Pedersen et al. (2010) and 

Parkin et al. (2012). However, neither of these studies considered outlier datasets. The outlier 

data can be analyzed using the median values, as example, explained by Blessing (1997), which 

will give a robust and resistance of the averaging weight of the slope for the flux calculation.  

Discrete gas measurements may be a part of outlier data. In this case visual inspections would 

be required for quality control of both linear and non-linear regression flux estimation techniques. 

Such a qualitative examination of outlier data is impractical for large datasets. Standard approach 

to remove the outlier dataset is by analysing each individual data set for its standard deviation 

and mean values or using the quartile methods. However, these methods are not valid since the 

flux dataset is from temporal dataset and in the time series data format. While the outlier data 

may represent valid measurements, e.g. reflecting extreme physical air-soil exchange events, 

considering outliers in data analysis could result in a potential bias during statistical analysis (i.e., 

a distorted mean and variance). There are different potential mechanisms that could also impose 

bias, such as deployment time interval, surface disturbance during measurement, chamber 

design, and gas sampling procedures (Venterea et al. 2009). The method presented in this study 

have been through the standard procedure for the gas sampling and analysis in systematic 

manner, that suitable for the automatic and standardized flux calculation. Thus a model, or 

procedure, that performs effective, robust, efficient and unbiased flux estimations is necessary. 

Moreover, the study also anticipated only one value of the GHG emission i.e. annual carbon 

equivalent GHG for each individual site.  

The objective of this study was to develop an automated MATLAB-based data processing 

method for N2O, CH4 and CO2 concentrations in headspace gases of stationary chambers to: i) 

remove the bias imposed by outlier data, ii) calculate fluxes of GHG, and iii) estimate seasonal 

GHG emissions under various agriculture practices. 
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4.2 Materials and Methods 

4.2.1 Study Site 

Study sites were located in across Eastern Canada: Harrow (HR), Leamington (LE), St. 

Emmanuel (SE), Sherrington (SH), St. Louis de Blandford (SL), and Truro (TR), as shown in 

Figure 11. Each site represented a unique combination of agricultural practices (water 

management, soil types, and cropping systems), as summarized in Table 7. Water treatments 

included conventional drainage, subsurface irrigation, surface irrigation, sprinkler irrigation, and 

non-irrigated fields. Soil types consisted of muck (pure organic to mineralized organic soil), sandy, 

highly fine loamy sand and loamy clay soils. Cropping systems included grain crops, vegetables, 

cranberries and pasture. During the study period (2012, 2013 and 2014 growing seasons), a total 

of 103 static non-steady-state chambers were installed and geo-referenced using Garmin eTrex 

Legend handheld Global Positioning System (GPS) receiver (Garmin International, Inc., Olathe, 

KS, USA).  

Each site received at least one water treatment repeated in the three year study, either under 

similar or different crop rotations with different soil texture (Table 7). However, no gas sampling 

was conducted in 2014 for the LE or SL sites. HR received 4 replicates of irrigation and 2 

replicates of fertilizer treatment (CDi and CDm) which were either organic (solid manure) or 

inorganic and gas sampling involved 6 chambers per replicated water treatment (for a total of 24 

chambers). At the LE site five chambers were deployed per water treatment of SSd at 15 cm 

depth. The SH site was treated with sprinkler irrigation or no irrigation (3 x replicates each) and 

four gas chambers were installed at each water treatment locations. The SH site was considered 

unique as it was under a muck soil with various decomposition levels as compared to the typical 

mineral agriculture soil at the other study sites. The water table for the subsurface irrigation site 

at the SE was maintained at about 1 m below ground surface. Without water or fertilization 

treatment, the naturally grown cranberry in the surrounding bog area (organic) acted as a control 

plot, which occurs only at SL site. Five chambers were replicated for each treatment for a total of 

15 chambers. Four gas chambers were deployed for each of the water treatments and two for the 

control site at the TR site. 
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Figure 11: Study locations located across Ontario to the Eastern Canada 
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Table 7. Details of the sampling activities under different agriculture practices 

Site Start of Sampling 
End of 

Sampling 
Sampled 

Days 

Treatment 

Water Soil Crop 

HR 
7-June-2012 22-Oct-2012 20 

2 x CDi 
2 x CDm 

Clay loam 
Corn 

18-June-2013 1-Oct-2013 16 Soybean 
11- July-2014  14-Nov-2014 19 Corn 

LE 
10-May-2012 15-Oct-2012 20 

1x SSd 

1 x Sd 
Sandy loam Tomato 15-May-2013 20-Sep-2013 17 

- - - 

SH 
24-May-2012 29-Aug-2012 11 

16 
3 x SP 
3 x NI 

Muck 
(Organic) 

Onion 29-Apr-2013 17-Oct-2013 
20-May-2014 3-Nov-2014 16 

SE 
18-May-2012 7-Sep-2012 9 

14 
3 x CD 
3 x SS 

Fine loam 
Yellow bean 

26-Apr-2013 7-Nov-2013 Corn 
15-May-2014 4-Nov-2014 21 Corn 

SL 
30-May-12 4-Nov-12 20 

22 
2 x SP 
1 x B 

Loamy sand, 
organic 

Cranberry 22-Apr-2013 24-Oct-2013 
- - - 

TR 

3-May-2012 7-Nov-2012 20 
1 x NI, 2 x CD 

2 x SS 
Sandy loam, 
loamy sand  

Pasture, 
bluegrass or 

mixed with red 
clover 

8-May-2013 24-Oct-2013 11 

7-May-2014 1-Oct-2014 9 

HR = Harrow; LE = Leamington; SE = St. Emmanuel; SH = Sherrington; SL = St. Louis De Blandford; TR 
= Truro; CDi = Conventional drain-inorganic fertilizer; CDm = subsurface drain-manure fertilizer; SSd = 
Subsurface drip; Sd = Surface drip; CD = Conventional drain; SS = Subsurface irrigation or control 
drainage; SP = Sprinkler; B = Bog area; NI = No irrigation 

4.2.2 Gas Sampling 

The gas chamber used in this study consisted of a chamber cover and base which was left 

installed and undisturbed in the soil throughout the sampling and growing period. The base was 

made of a flexi-glass frame with dimensions: 0.556 x 0.556 x 0.140 m, (W x L x H) and vented to 

avoid pressure perturbations. The chamber cover size was 0.564 x 0.564 x 0.130 m. The chamber 

base was installed at the beginning of the summer, and gently pushed down until about 4 cm 

remained above the soil surface. The effective height of the chamber base from the soil surface 

was frequently measured, adjusted at desired height (if needed) and manually noted to ensure a 

consistent height prior to starting the gas sampling procedure.  All chamber bases were installed 

prior to, or a few days after, crop seeding to avoid interference of gas measurement from the top 

soil profile either due to the crops soil movement or root system. In some cases, the bases were 

removed and reinstalled at the same location due to farming activity (e.g. fertilizer or pesticide 

application).  The chamber cover was protected with an aluminum cover to reflect heat and 

minimize the temperature effect during gas measurements (Rochette and Eriksen-Hamel, 
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2008).A soft cushion tape was placed on the contact surface of each chamber cover to seal the 

chamber system and eliminate gas leakage.  

Gas samples were collected at least once per week throughout the growing season.  At 

each sampling event, five gas samples (20 ml each) were taken with a syringe at 15 minute 

intervals (labeled t0, t15, t30, t45, and t60) over a total of one hour. These five gas concentrations 

allowed the flux to be calculated via simple linear regression. All samples were then injected into 

a 12 ml vacuumed exetainer (Labco, Wycombe, UK) fitted with an extra 60 ml (equal to 1/16th of 

an inch or 0.0625 in) of Teflon-silicon septa (National Scientific, Rockwood, TN, USA). All samples 

were brought immediately to the Soil Ecology Research Laboratory of Macdonald Campus, McGill 

University, where they were stored in a temperature controlled location. All samples were 

analyzed for the three main trace GHG gases: N2O, CH4 and CO2 using a customized Bruker-

Varian 450 gas chromatograph (Bruker, Bremen, Germany). All sites followed the same gas 

sampling procedure, except for the Truro site during the 2012 and 2014 seasons when only 3 gas 

samples were collected at 15 minute-intervals over a total of 30 min using round PVC chambers 

(0.25 m in height and 0.203 m in outer-diameter). The gas was sampled for approximately 100 

days each year. In-season day time gas samples were collected from the soil surface from the 

time of planting to harvesting, i.e. from mid-May to mid-November. 

4.2.3 Gas Concentration and Threshold Criteria 

In order to facilitate the flux calculations, the gas concentrations from the lab analysis were 

first converted from a volumetric to a mass basis (ppm to mg·m–3) using the following equation 

(Holland et al. 1999): 

  TRPMCC mv  /  (2) 

where Cv denotes the gas concentration in mg·m-3 of a particular trace gas species, Cm 

denotes the gas concentration in ppm (or mg·kg–1), M denotes the molecular weight of a particular 

trace gas species (i.e., N2O: µg N µmol-1 N2O-1 = 28.0134 g mol-1; CH4: µg C µmol-1 CH4 -1 = 

12.0107 g mol-1, and CO2 : µg C µmol-1 CO2 -1 = 12.0107 g mol-1), P denotes the atmospheric 

pressure at 1 atm, R denotes the universal gas constant, 0.0821 L atm K-1 mol-1, and T  denotes 

the room temperature (293K).  

By replacing the parameters with the given values for each trace gas, Equation 2 can be 

simplified as: 
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where Cv(X) is the volumetric concentration of gas element X in mg·m-3, and Cm(gas) is the 

measured gas concentration from the lab analysis in ppm or mg·kg-1. The conversion factors per 

ppm unit for each trace gases were 1.1660 mg·m-3·ppm-1 for N2O–N, and 0.4999 mg·m-3·ppm-1 

for both CH4–C and CO2–C calculated using Equation 2 above. 

Two different threshold values (lower and upper) were predefined prior to the flux analysis. 

The data was filtered using the imposed lower threshold for all three gases, and the upper 

threshold for two of the three gasses, N2O and CO2. While the lower threshold was fixed for each 

gas, the upper threshold was a dynamic threshold dependent on the previous (i-1) and 

subsequent samples (i+1): 
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Where i denotes the sample number.  

The minimum value for which different gases were fixed at the lower threshold was chosen 

upon the minimum spectral detection limit of gas chromatography. In Equation 6, the minimum 

for N2O was 0.15 ppm. Equation 6 holds when the upper threshold, constituting of measured N2O, 

is equal to or greater than 2.5 times than the previous gas, AND ( ) is equal to or greater than 

the subsequent gas sample. If the conditions hold (e.g., true for lower OR (  ) upper thresholds), 

the equation’s output is "not a number" (N/A). The same rules and equation were applied to the 

CO2 gas (Equation 8), but using a different lower threshold, specifically a detection limit of 300 

ppm. Conversely, if one of the upper OR lower threshold conditions does not hold, then the 
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condition returns the true measured value. Due to the possibility that CH4 sourced from pockets 

exploding (i.e., air bubbles, creating spikes in the data set) filtration for CH4 (Equation 7), was 

evaluated using only a fixed lower threshold value of 1.7 ppm. The outliers (spikes), mainly from 

CH4 gas, were the result of a natural phenomenon, and should therefore not be removed. 

Furthermore, no high pass filter nor maximum detection limits were set in the filtration process 

due to the uncertain response of the maximum of possible concentration of trace gases to local 

variation.  

The dynamic upper threshold used for N2O and CO2 was implemented to condition the data 

pattern by removing outlier samples regardless of the range of the data set. A dynamic threshold 

can be applied on data sets with small variances as well as those with large variances assuming 

they both show linear responses. Equation 6-8 were created during data processing via MATLAB 

scripts to facilitate an automatic filtering process for abnormally low or high values. The post–

processing procedure, including visual and manual checks, was implemented only when the data 

was extremely sporadic. This procedure included using the ambient gas result from each 

sampling event as a benchmark for minimum threshold values, since ambient gas samples were 

the natural gas concentration that occurred in the air prior the sampling.  

After applying the low and high pass filter, the flux was calculated using the concentration 

gradients of the GHG of interest over the total measured duration. The most common method of 

calculating fluxes was via a simple linear regression model wherein the gradient was calculated 

based on the average slope value (Venterea, 2010). A minimum number of samples per total 

duration of measurement had a small effect on the variation, thus often the approach in flux 

calculation is simply by taking an average. If the outlier data was ignored, the dataset source 

could have deviated significantly from the flux estimate and could have led to overestimation. The 

outlier data may have resulted from accidental measurement errors or site–specific soil–gas 

exchange. High variation in the dataset could potentially lead to high discrepancies in flux 

estimates.  

The median flux model (MFM) technique was used in this study to discard outliers and the 

corresponding bias in flux estimation. The MFM technique provides several advantages: (i) 

calculated flux and estimated emission are not affected by extreme high or low variations from 

the set of measurements, (ii) the original data set, holding valuable information, is maintained (iii) 

it is independent from equal time intervals, sequence or sampling durations, (vi) concentration 

corrections such as in Hutchinson and Mosier (1981) are not required, and (v) unlimited number 
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of sample observation, but with a minimum of three, as similarly shown in Pedersen et al. (2010) 

and (Parkin et al. 2012). However, neither of these studies consider outlier datasets.  

4.2.4 Flux Estimation 

Five gas samples were collected simultaneously in 15 min intervals totalling one hour of 

sampling time. While Hutchinson and Mosier (1981)’s study fitted a linear regression to three 

measured gas concentrations, this study applied a simple linear relationship to every two gas 

measurements. As shown in the following equation, a slope or gradient was calculated by dividing 

the difference of two gas concentrations by the difference in sampling time: 
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  with i = 0 to 3 and j = i to 4 (9)  

where Slope denotes the slope or gradient value in mg·m-3·h-1, ΔCv denotes the difference in 

gas concentrations in mg·m3 (e.g., C1–C0, C2–C1, C3–C2, C4–C3 ...) and Δt denotes the difference 

between two measurements ( e.g. t1–t0, t2–t1, t3–t2, t4–t3 ... although not necessarily subsequent).  

Only the median value of the ten slopes was used to calculate the flux. The use of the median 

value reduced the effect of bias data from erroneous measurements (i.e., outliers). After the 

median value of the slopes was identified, the flux of each chamber was calculated via: 
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where Flux denotes the hourly flux in mg·m-2·h-1, V denotes the volume of the chamber in m3 

with V = height (H) x length (L) x width (W), A denotes the total soil surface area covered by the 

chamber in m2, H denotes the sum of the active height of the chamber measured from the inner 

dimensions of the chamber cover and the chamber base in m, and Slopemedian denotes the median 

value of the ten calculated slopes in mg·m-3·h-1. 

In estimating the flux at ideal conditions, if all the ten slopes of the trace gas species measured 

in term of concentration versus time have equal slopes, then the flux can be estimated from the 

single value of the same gradient (Figure 12). 
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Figure 12: Illustration of the median slope concept for flux estimation. 

4.2.5 Annual Emission Estimation 

Over the long term, the response of the flux or emission during the growing season is rarely 

monotonic in practice and tends to fluctuate. Thus, to understand the temporal variability trend in 

a localized environment for in-season gas emissions, the emission value was estimated using the 

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) extrapolation technique (MATLAB). 

Detailed equations are mentioned in Fritsch and Carlson (1980). The PCHIP interpolation 

technique was employed to predict the fluxes at any given date between the sampling dates, and 

functioned even when the sampling dates did not have equal intervals. This method produced a 

smooth curve at each defined point for each flux despite for unequal distance (i.e., days) of the 

gas sampling date. This eliminates overestimation and less oscillation in the case of highly 

fluctuated and/or sporadic flux data source. The total cumulative emissions were calculated for 

each chamber using Equation 11. The total cumulative emissions were calculated for each 

chamber using the following equation:  






n

i

iFluxEmission

1
1000

24  (11)  

where Emission denotes the total cumulative emission of trace gases over the growing season 

in g·m-2, Flux denotes the hourly flux at a chamber for a given date in mg·m-2·h-1 calculated via 

Equation 10, and n and i respectively denote the first date and last date of sampling.  
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The total estimated emissions for a particular chamber location were the accumulation of daily 

fluxes for the period of the growing season. After the flux and emission calculation procedures 

were completed for all sites, the data variation was presented through descriptive statistics of the 

estimated emissions result for each chamber and the corresponding site. A plot of side–by–side 

comparison of the GHG emission for all three years study was also presented. These steps were 

conducted in Microsoft Excel. 

4.3 Results and Discussions 

4.3.1 Slope and Flux Estimation 

The variations in the gas concentrations demonstrate the challenge of calculating flux when 

using the non-steady state chamber technique. Some of the gas concentrations were also 

scattered and difficult to distinguish for direct linear relationships over the measurement period. 

A few factors that contributed to inaccurate predictions were identified. Low soil-gas diffusivity, 

especially with methane gas, varied within and between gas data sets at very low concentrations. 

At t = 0 h, methane tended to have a higher concentration at the subsequent sampling times. 

Furthermore, a gas leakage from the chamber may have promoted a non-linear response, 

especially when the soil surface was uneven, the soil was highly porous (e.g., low moisture 

content in organic and high clay soil texture) or when the soil expanded or contracted throughout 

the summer. A large variation in gas concentrations was observed as well as fluxes from one 

chamber to another. This is consistent with the conclusions from Fowler (1999). As similarly being 

reported by Venterea (2010), the total height (H) of the chambers is the most critical parameter in 

the flux calculation, regardless of the chamber design. A slight variation in the height changes the 

total chamber volume, significantly affecting flux estimation. Thus, measuring the H variation of 

the chambers over the growing season must be validated prior to the flux calculation. 

For the data analysis in the flux calculation and emission estimation, we frequently used Excel 

functions using a standard regression line model (e.g., LINEST function). However, this method 

tends to overestimate the initial gas concentration (t=0) and overall (average slope) flux values 

and cannot distinguish outliers from large datasets (Venterea, 2010). The MFM method allows 

discrimination of data originating from erroneous measurements, thus, removing biased data 

automatically. We employed this method for our estimation of the flux using the slope over the 

measurement period, as previously shown in Equation 6.  
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Figure 13 shows an illustration of response patterns from the individual gas concentration 

model calculated using Equations 1 through 5. In addition, the RMSE also was calculated where 

the values labelled as RMSEActual is the RMSE measured from the standard average linear 

regression, and RMSEModel is the RMSE calculated from the MFM linear model. Most of the model 

plotted using the MFM methods resulted lower RMSE relative to the standard average linear 

regression. The consideration in flux calculation for non-linear regression will provide greater 

systematic error as reported by Kroon et al. (2008). The model provided better flux estimation with 

the minimum gas sample of three uniform slopes over the measured time. Figure 13 (a), (c) and 

(e) show how the model eliminates outlier data in the gas measurement, thus, avoiding flux 

overestimation. The model eliminated the noisy dataset (Figure 13 (b), (d) and (f)). A very low 

flux, which almost showed a plateau response (zero flux) may have also occurred during flux 

analysis. The MFM model may not line up exactly on the top of each actual measured data point, 

since the MFM model only considers the gradient of the response, and not the intercept.  

In general, the CH4 and N2O gas concentrations show the most sporadic variations throughout 

the sampling period, whereas CO2 shows the most stable linear response trend. The CO2 and 

N2O gases were generally positively emitted, and CH4 was mostly consumed (sink) by agricultural 

soils. The flux estimation for trace gases was calculated using the median slope technique in 

MFM. MFM provides an alternative to the method offered by Hutchinson and Mosier (1981), with 

the advantages of reducing bias from small numbers of gas samples and eliminating outliers from 

datasets. This simple linear relationship procedure also offers unlimited discrete measurements 

of replication observation, independent time interval, while maintaining the similar trend of the 

measured trace gas. 
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Figure 13: The flux values were calculated from the slope of the model line generated 
from five gas datasets using MFM models: (a) and (b) are the N2O-N, (c) and (d) are the 
CH4-C, and (e) and (f) are the CO2-C gases responses under normal and noisy dataset, 

respectively.  

0.43

0.43

0.43

0.43

0.43

0.44

0.44

0 0.25 0.5 0.75 1 1.25

N
2
O

-N
 c

o
n

c
e

n
tr

a
ti

o
n

 (
m

g
.m

-3
)

Time, h

Actual

Model

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0 0.25 0.5 0.75 1 1.25

N
2
O

-N
 c

o
n

c
e

n
tr

a
ti

o
n

 (
m

g
.m

-3
)

Time, h

Actual

Model

(a) (b)

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

1.004

0 0.25 0.5 0.75 1 1.25

C
H

4
-C

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

.m
-3

)

Time, h

Actual

Model

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

0 0.25 0.5 0.75 1 1.25

C
H

4
-C

 c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
.m

-3
)

Time, h

Actual

Model

(c) (d)

0

100

200

300

400

500

600

700

800

900

0 0.25 0.5 0.75 1 1.25

C
O

2
-C

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

.m
-3

)

Time, h

Actual

Model

0

100

200

300

400

500

600

700

800

900

1,000

0 0.25 0.5 0.75 1 1.25

C
O

2
-C

 c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
.m

-3
)

Time, h

Actual

Model

(e) (f)

RMSEActual = 0.0035
RMSEModel = <0.0001

RMSEActual = 0.0033
RMSEModel = <0.0001

RMSEActual = 0.00613
RMSEModel = <0.00001

RMSEActual = 0.0049
RMSEModel = <0.0001

RMSEActual = 38.06
RMSEModel = 0.0024RMSEActual = 42.74

RMSEModel = 22.35



43 

 

 

4.3.2 Emission Estimation 

Using Equation 11, the cumulative daily (diurnal) GHG emission per chamber based on 

different treatments over the growing season was estimated as shown in Figure 14. It illustrates 

high fluctuations of the trace gases emissions of the trace gases throughout the season and the 

variation between chambers. The emissions were estimated using the PCHIP one-dimensional 

data array interpolation. However, the results were underestimations. The data was interpolated 

from the first until the last day of sampling on a per chamber basis. PCHIP was the most 

appropriate method of interpolation since it did not result in an overshoot curve from the point 

data of the emissions estimation and produced a smooth curve over the oscillating fluxes for the 

measured period. The inconsistent gap between sampling days was also taken into account. This 

method performed better than a normal polynomial line, which tends to overestimate the total 

emissions.  

A simple descriptive statistic for the minimum, medium, maximum, mean and standard 

deviation of estimated total diurnal emission of main three gases is presented in Tables 8, 9 and 

10 for seasons in 2012, 2013 and 2014, respectively. Unfortunately, in 2014 there were no studies 

conducted at the LE and SL sites. These estimated emissions data were calculated on a per 

chamber basis using a 1-D array data interpolation via the PCHIP method as previously 

discussed.  

At the LE site in 2012 and 2013, based on the mean value, the source of, N2O-N emissions 

had a mean of about 0.253 g.m-2 (2012) and 0.262 g.m-2 (2013). Additionally, in 2013, the SE and 

the SH sites also fell within the same range of emissions (0.267 and 0.262 g.m-2
 respectively). In 

2014, the SE site produced the highest N2O-N emissions, with a mean of 0.394 g.m-2. In both 

years 2012 and 2013, the SL site was shown to be the main N2O-N sink, with a mean of <0.001 

g.m-2, and -0.001 g.m-2. 

CH4-C emissions were highest at the SL site and released 6.107 g.m-2 and 0.990 g.m-2 in the 

first two consecutive years of 2012 and 2013. This was a result of emissions from the bog area. 

In 2012, CH4-C was mostly consumed by the soil at the LE and TR sites, and in 2013 the TR, LE 

and SH sites showed a similar pattern (< 0 g.m-2 based on average value). Interestingly, the TR 

site in 2012 and 2013, but not 2014, also indicated absorption of CH4-C under a free pasture field. 

This may have been a result of the relatively wet season in 2014 at the TR site.  

For all seasons, the CO2-C emissions were mostly emitted from the TR site at about 1424 

g.m-2, 368 g.m-2 and 105 g.m-2. However, potentially due to chamber leakage and sampling error, 
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the latter results indicate high variation. In contrast, the lowest CO2-C emissions were observed 

at SH in 2012 and HR in both 2013 and 2014.  

Figure 15, 16 and 17 illustrates the side-by-side comparison of annual GHG emissions from 

different sites based on varying irrigation treatments, soil texture and crop species. N2O-N 

emissions were observed in all sites, except for the few data points that show N2O-N consumption 

at the TR site. The TR site was quite consistent over the study period. The LE site produced the 

highest N2O-N emissions relative to the other sites. In the 2012 study, the HR site indicated that 

different sources of fertilization clearly resulted in differences in N2O-N emissions regardless of 

different types of irrigation, settled between 0.03 to 0.26 g.m-2. However, in 2013, there was no 

obvious indication of the irrigation treatment difference since no fertilization was applied to the 

soybean crop. The results from the LE site in 2012 showed differences between subsurface and 

surface irrigation. There was a large variation in N2O-N emissions within each individual treatment 

and a disparity in 2013. There was almost no difference in emissions under the different treatment 

of water and varying soil organic decomposition rate (observed at the SH site populated within 0 

to 0.07 g.m-2 in 2012) but higher variation of emissions observed within 0.01 to 0.9 g.m-2 in 2013. 

At the SE site, conventional drainage showed no difference with subsurface in N2O-N emissions 

in 2012, but there was a large disparity in 2013. There were also almost no differences detected 

at the SL and TR sites. In 2013, the data at the TR site showed the potentially significant effect of 

water management on the same type of pasture area. 

Methane emissions had the most sporadic response and no differences were observed 

between different water treatments, fertilizers and soils at every site in all years 2012 through 

2014. (Figure 15). The most populated CH4-C emission level settled between -0.10 to 0.10 g/m2 

of average emissions for both years 2012 and 2013. For 2014, most of the CH4-C emission levels 

were fluctuated and higher than measured in previous two years. At the SL and TR sites, where 

most of the CH4-C, ranging from 0.02 to 0.35 g/m2 (2012) and 0.01 to -0.10 g/m2
 (2013), was 

emitted and consumed respectively. The SL site claimed the largest CH4-C emissions during two 

consecutive years 2012 and 2013. High methane emissions may have occurred at the SL site. 
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Figure 14: Temporal variation of the GHG emission over the growing season on 
individual chamber IDs. 



46 

 

 

Table 8. Descriptive statistic of nitrous oxide, methane and carbon dioxide emission (g.m-2) for 2012 season 

Year Emission (g/m²) Site N Minimum Median Maximum Mean Std. Deviation 

S
e

a
s
o

n
 2

0
1

2
 

N₂O-N 

HR 24 0.029 0.054 0.259 0.075 0.055 

LE 10 0.094 0.203 0.612 0.253 0.161 

SH 24 0.002 0.014 0.066 0.017 0.012 

SE 12 0.012 0.040 0.086 0.036 0.020 

SL 15 -0.003 <0.001 0.003 <0.001 0.002 

TR 18 -0.169 0.046 0.284 0.067 0.105 

CH₄-C 

HR 24 -0.097 -0.016 0.344 0.009 0.105 

LE 10 -0.280 -0.019 0.000 -0.066 0.103 

SH 24 -0.175 -0.004 0.062 -0.011 0.040 

SE 12 -0.141 -0.006 0.014 -0.017 0.041 

SL 15 -0.106 0.024 42.748 6.107 12.591 

TR 18 -0.359 -0.039 0.032 -0.063 0.088 

CO₂-C 

HR 24 108 150 207 157 29 

LE 10 102 169 242 168 49 

SH 24 55 155 254 149 49 

SE 12 26 177 401 207 110 

SL 15 35 137 354 164 94 

TR 18 576 1432 2294 1424 375 

HR = Harrow; LE = Leamington; SE = St. Emmanuel; SH = Sherrington; SL = St. Louis De Blandford; TR = Truro; N = Number of 

chamber 
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Table 9. Descriptive statistic of nitrous oxide, methane and carbon dioxide emission (g.m-2) for 2013 season 

Year Emission (g/m²) Site N Minimum Median Maximum Mean Std. Deviation 

S
e

a
s
o

n
 2

0
1

3
 

N₂O-N 

HR 24 -0.001 0.027 0.093 0.036 0.026 

LE 10 0.049 0.187 0.716 0.262 0.228 

SH 24 0.011 0.064 0.865 0.210 0.277 

SE 12 0.095 0.235 0.490 0.267 0.134 

SL 15 -0.006 <0.001 0.007 -0.001 0.004 

TR 18 -0.348 0.034 0.183 0.013 0.105 

CH₄-C 

HR 24 -0.009 -0.003 0.044 0.000 0.012 

LE 10 -0.016 -0.006 0.001 -0.006 0.005 

SH 24 -0.015 -0.005 0.003 -0.005 0.005 

SE 12 -0.020 -0.002 0.003 -0.004 0.006 

SL 15 0.004 0.059 7.794 0.990 2.439 

TR 18 -0.024 -0.011 -0.002 -0.012 0.007 

CO₂-C 

HR 24 56 120 163 120 23 

LE 10 135 200 245 195 39 

SH 24 163 315 528 310 96 

SE 12 124 241 398 252 90 

SL 15 31 138 234 126 62 

TR 18 36 389 603 368 178 

HR = Harrow; LE = Leamington; SE = St. Emmanuel; SH = Sherrington; SL = St. Louis De Blandford; TR = Truro; N = Number of 

chamber  
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Table 10. Descriptive statistic of nitrous oxide, methane and carbon dioxide emission (g.m-2) for 2014 season 

Year Emission (g/m²) Site N Minimum Median Maximum Mean Std. Deviation 

S
e

a
s
o

n
 2

0
1

4
 

N₂O-N 

HR 24 0.037 0.194 0.891 0.249 0.195 

LE 10 - - - - - 

SH 24 0.036 0.088 0.640 0.143 0.158 

SE 12 0.109 0.409 0.923 0.394 0.222 

SL 15 - - - - - 

TR 18 -0.613 0.002 0.198 -0.024 0.169 

CH₄-C 

HR 24 -0.012 -0.004 0.001 -0.004 0.003 

LE 10 - - - - - 

SH 24 -0.019 -0.005 0.007 -0.005 0.005 

SE 12 -0.023 -0.006 0.002 -0.008 0.008 

SL 15 - - - - - 

TR 18 -1006.071 -14.700 765.527 -99.661 548.520 

CO₂-C 

HR 24 86 150 262 161 53 

LE 10 - - - - - 

SH 24 152 292 528 304 81 

SE 12 91 349 513 325 121 

SL 15 - - - - - 

TR 18 -1611 219 1312 105 860 

HR = Harrow; LE = Leamington; SE = St. Emmanuel; SH = Sherrington; SL = St. Louis De Blandford; TR = Truro; N = Number of 

chamber 
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Figure 15: Nitrous oxide emission estimation under different water, crop and soil 
treatments.  
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Figure 16: Methane emission estimation for different water and soil treatments.  
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Figure 17: Carbon dioxide emission estimation for different water and soil treatments. 
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4.4 Conclusion 

The method, proposed in this paper to disregard outliers and to calculate the flux, is the use 

of the MFM which is offered as one solution for handling large datasets especially when the 

measurements also contain noisy data. Thus, this procedure establishes a standard automatic 

data processing for this study whose purpose is estimating emissions across sites and treatments. 

In addition, this procedure also offers unlimited discrete measurements of replication 

observations, with no concentration correction required, while maintaining the original pattern and 

the magnitude of the measured trace gas. The total height of the chamber deployed during the 

gas sampling is the most critical parameter to be considered in overall flux and emission 

estimation. Based on the total estimated emission, the SL site under sprinkler irrigation with 

cranberry, emitted the largest amount of CH4-C, and was the main source of N2O-N sink especially 

at the beginning of the growing season. On the other hand, the TR site, under a wide range of 

irrigation practices and pasture production, became the main source of CH4-C sink in both 

consecutive years. Overall, GHG emissions for all six sites across Eastern Canada were observed 

using MFM under water, soil and crop treatment for the 2012, 2013 and 2014 data collections. 
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Connection Text to Chapter 5 

Chapter 5 relates to the third objective listed in Chapter 1. As discussed in Chapter 3, physical 

soil properties (i.e. soil moisture, soil temperature and ECa) were the most important factors to 

monitor in term of estimating levels of GHG in agricultural soil. However, the spatial variability of 

GHG emissions measured with the chamber-method for multiple combinations of treatments 

(water, crop and soil) is not well documented for Eastern Canada. This relationship is particularly 

important since most vegetables are grown in muck soil (organic) which have spatially variable 

GHG emissions when compared to other soils. Intensive farming practices during both wet and 

dry seasons increase decomposition in muck soil. Hence, the ability of the soil to emit, or sink, 

temporally is a subject of interest for monitoring temporal GHG and real time physical soil 

properties.  

Thus, Chapter 5 is focused on the temporal relationship between GHG fluxes and local 

physical soil properties using data collected by a wireless sensor network (WSN). The WSN 

monitoring system was deployed to collect in-situ soil properties and variations in crop water 

status. Different parts of this study have been presented at an ASABE conference.  

The following citations are available at this time: 

Mat Su, A. S., V. I. Adamchuk, C. A. Madramootoo, J. K. Whalen, K. Tam, H.H. Huang, and H. 

Beslim.  Predicting changes in greenhouse gases emissions in muck soil using physical 

observations. 2014. 2014 ASABE and CSBE/SCGAB Annual International Meeting 
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CHAPTER 5 

PREDICTING CHANGES IN GREENHOUSE GASES EMISSIONS IN MUCK SOIL USING 

PHYSICAL OBSERVATIONS 

Ahmad Suhaizi Mat Su, Viacheslav I. Adamchuk, Joann K. Whalen, Chandra A. 

Madramootoo, Hsin-Hui Huang, Katina Tam, and Hicham Benslim 

 

Abstract 

Estimating greenhouse gas (GHG) emissions in the field is improved when ancillary soil 

measurements, like soil moisture, soil water content and soil temperature, are collected. Hand-

held probes provide point measurements in the field, but wireless sensor networks (WSN) are 

more useful for describing the dynamics of soil properties via in-situ probes and can provide 

insight on the temporal variations in GHG fluxes. WSN probes enable continuous measurements 

to be gathered from the field easily and at a relatively low cost. This is particularly important in 

soils that are exhibit high temporal variability in GHG fluxes, such as organic (muck) soils. The 

objective of this study was to relate continuous soil water content and soil temperature 

measurements with the emissions of nitrous oxide (N2O), methane (CH4) and carbon dioxide 

(CO2) throughout the growing season of irrigated onion production on muck soils. The GHG fluxes 

were calculated from regular sampling of static, non-steady state chambers and gas 

chromatography measurements. Soil water content and soil temperatures were measured using 

portable sensors in addition to a stationary WSN. Relatively cool and wet soil conditions resulted 

in greater N2O fluxes whereas relatively dry and warm soil conditions were associated with more 

CO2 release. With respect to sensor technologies, soil matrix potential sensors were better at 

predicting high GHG fluxes compared to capacitance moisture sensors. The method used in this 

research is appropriate to quantify GHG emissions from crops produced in muck soils using real-

time measurements of soil moisture and temperature conditions. This information also could be 

used as a benchmark Tier II level under IPCC database platform. 

Keywords. wireless sensor network, emissions, organic, carbon dioxide, methane, nitrous 

oxide.  
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5.1 Introduction 

Agricultural-induced GHG emissions accounted for 9.6 % of the total 2013 GHG in Canada 

(Environment and Climate Change Canada). Agriculture may be both a source and a sink for 

GHG, such as N2O and CH4, both of which are predominantly due to anthropogenic activities. 

Agricultural production of fruits and vegetables contributed, on average, $1476 million CAD in 

sales in Canada from 2009 to 2011 (Statistics Canada, 2012). Vegetables sales contributed about 

53 % of Canadian sales ($780 million CAD) from the same period. Provincially, Quebec was the 

second largest vegetable producer, accounting for about $276 million CAD in sales, second to 

Ontario, which had $362 million CAD in sales from 2009 to 2011. Vegetable cultivation occurs 

primarily on fertile, organic-rich soils. However, GHG emissions caused by vegetable production 

in Eastern Canada, especially on organic soils, are poorly documented.  

The GHG emission from intensively farmed organic soils merits attention because these soils 

were originally wetlands that were drained for agricultural use. The draining process exposes the 

organic soil layer to oxygen and the physical disturbance of cultivation further enhances 

decomposition, leading to CO2 emissions. Kasimir-Klemedtsson et al. (1997) reported that 

cultivation under organic-rich soil may lead to high N2O and low CH4 emissions. As well, N2O 

fluxes are enhanced by the N fertilizer inputs and irrigation common in organic soils that are used 

for vegetable crop production (Rochette et al., 2010).  

The dynamics of soil moisture and temperature should explain some of the variability in the 

biological processes of decomposition, denitrification and methanogenesis that are responsible 

for the production of CO2, N2O and CH4 gases.  For instance, Wiant et al. (1967) observed that 

the rate of CO2 production increased linearly with a rise in temperature between 20 to 40 ºC and 

Leirós et al. (1999) predicted greater GHG emissions as climatic temperature reduced the soil 

organic matter content. On the other hand, Howard and Howard (1993) found a non-linear 

relationship between soil moisture and CO2 flux production on a wide range of agricultural soil 

types, including peat soil. Linn and Doran (1984) observed that N2O fluxes increased from 70 to 

90% water-filled pore space, as the lack of oxygen created redox conditions that favored 

denitrification. There must be underlying relationships between soil temperature, soil moisture 

and GHG emissions, and investigation of these relationships could explain why GHG fluxes vary 

spatially and temporarily throughout the growing season in organic soils. 

Proximal soil sensing is a powerful tool to monitor soil temperature and moisture conditions. 

Widely used in irrigation management (example from Pan et al., 2013), WSNs provide valuable 
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real-time information that could be related to agricultural GHG fluxes. Deployment of various 

proximal sensors to track the dynamic changes in soil temperature and moisture could provide 

insight into the pattern of GHG emissions in organic soils at a much lower cost than repeated in-

field GHG sampling or monitoring of GHG fluxes with microclimatology towers; as far as we know, 

this has not been tested before. The purpose of this paper was (1) to determine the relationship 

between soil temperature, soil moisture and GHG fluxes from organic soils under onion 

production. 

5.2 Materials and Methods 

5.2.1 Site Description 

A wireless sensor network was deployed at a farm in Sherrington, Quebec. This farm is one 

of the largest vegetable producers in Eastern Canada with approximately 30 hectares cultivated 

for onion and other vegetables on organic soils. The soil type was classified as muck soil (organic 

soil), which contains more than 30% organic matter, and has a minimum depth of 40 cm (Canada 

Soil Survey Committee, Subcommittee on Soil Classification, 1978). The muck soil (classified as 

the "O" layer) contains mainly litters, fibers, and mosses built up originally from swampy forest 

saturated with water for prolonged periods. Three locations were selected based on their different 

decomposition levels, namely: Station 1, 2 and 3 (Figure 18). Each station represents different 

soil layer classifications – mineralized organic soil (Station 2), moderately mineralized organic soil 

(Station 1), and organic soil (Station 3) - based on the soil layer structure, bulk density, and 

organic matter content. At the 0 - 40 cm soil depth, Station 2 was a mineralized organic soils 

(highly decomposed) mixed with clay soil due to plowing activities. The underlying 40 - 120 cm 

depth at Station 2 had a clay and hard pan layer blended with marine clay subsoil. Station 1 was 

a moderately mineralized soil with intermediate decomposition, while Station 3 was newly 

cultivated land with fresh, organic-rich soil. A deep organic soil layer in the 0 - 120 cm depth was 

present at Stations 1 and 3.  All fields were cultivated for onions (Allium cepa L.). With respect to 

irrigation treatments, all stations were treated with either sprinkler irrigation or no irrigation. Four 

gas chambers were used for each of the 2 water treatments at each station, which resulted in the 

deployment of 24 chambers in total. 
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Figure 18. Study locations. 

5.2.2 Data Collection 

The GHG data was captured using a non-steady state chamber (NSS) design (Figure 19) 

deployed at each of the 24 locations during the 2012 and 2013 growing seasons. The gas 

chamber consisted of a chamber cover and base. The base was installed prior to the season and 

was left in-situ permanently throughout the sampling and growing period to mitigate any effects 

of disturbance of the soil or root system may have on GHG emissions. Additionally, this setup 

minimized the leakage of the gas due to the soil surface disturbance during the repeated 

measurements over the growing season. The base of the chamber was made of a flexi-glass 

frame with dimensions (W x L x H): 0.556 x 0.556 x 0.140 m, and the chambers were vented to 

avoid pressure perturbations with a cover of 0.564 x 0.564 x 0.130 m. The chamber base was 

installed at the beginning of the season and gently hammered into the top soil until 5 cm remained 

above the soil surface which provided a support for the chamber cover. The chamber cover was 

protected with an aluminium sheet to reflect heat, thus, minimizing the temperature effect during 

gas measurements. To prevent gas leaks, a soft cushion tape was placed on the contact surface 

of the chamber cover to seal the entire chamber system. 
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Figure 19: A static non-steady state chamber installed for gas sampling 

 

The gas samples were collected at least once a week daily between (7am - 7pm) throughout 

the growing season. A total of 195 and 135 gas datasets along with other soil physical properties 

and climate conditions were logged via the WSN for 2012 and 2013, respectively (Figure 20). 

Geographic locations of the chambers were logged using a Garmin eTrex Legend handheld GPS 

(Garmin International, Inc., Olathe, KS, USA). The data collection in 2012 started in May and 

continued until the end of August with a total of 11 sampling dates, and in 2013, sampling was 

conducted from late April until mid-October, with 16 sampling dates. On each sampled date, five 

gas samples were taken simultaneously at 15 minute intervals for a total of one hour. Climatic 

parameters, such as rainfall (mm), ambient relative humidity (%), and temperature (ºC), wind 

speed and direction were captured using the wireless sensor network via a weather station 

(WatchDog 2900ET, Spectrum Technologies, Inc., Aurora, IL, USA). The soil physical properties, 

such as soil matrix potential (kPa), electrical conductivity (mS/m), temperature (˚C), and soil 

moisture (%) were logged at the same 15 minute intervals. All of these datasets were entered into 

the logger and sent to the host controller via the wireless modem. This data was transmitted over 

the internet and the data could be viewed and downloaded using software provided by the 

manufacturer as shown in Figure 21. Although the active telemetry sends wireless data at a 15 

min frequency, only data corresponding to the GHG sampling events were considered in this 

paper.    
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5.2.3 Data Analysis 

All gas samples were extracted using a 20 ml gas exetainer from the headspace using air-

tight syringes. All samples were then injected into pre-evacuated or vacuum exetainers of 12 ml 

(Labco, Wycombe, UK) fitted with an extra 60 mil (1/16 in) Teflon-silicon septa (National 

Scientific, Rockwood, TN, USA) and stored in cool conditions. All samples were brought 

immediately to the lab and analyzed for the three main trace GHG gas concentrations (N2O, 

CH4 and CO2) using a custom Bruker-Varian 450 gas chromatograph (Bruker, Bremen, 

Germany). The flux of each GHG was calculated based on the change in gas concentration 

over time. In this method, five concentrations were used to calculate a flux using simple linear 

regression with a median flux model (MFM) processed via MATLAB scripts. The flux was 

estimated based on a median slope value of ten slope estimates. The flux of the GHG was 

classified in three ranges: low (quartile 25 %), medium (quartile 50 %) and high (quartile 75 % or 

25 %) over measured soil physical properties.  
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Figure 20: Wireless sensor network installed at three different location under different 
water regime (a) The wireless sensor network (b) Field layout for the sensor arrangement 

for all three stations. 

 

Figure 21: Wireless sensor network installed at three different decomposition rates of 
organic soil 

Weather Station 

Solar Panel 
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5.3 Results and Discussion 

Considerable variation in GHG fluxes was observed between sampling dates, between field 

locations, due to the irrigation treatment and even between chambers with the same irrigation 

schedule at one field station. The CH4-C and N2O-N fluxes fluctuated more than the CO2-C flux 

during the 2012 and 2013 growing seasons. Table 11 summarizes the mean GHG fluxes 

measured in the two growing seasons along with soil temperature and moisture. During the two 

years study, organic soils were a source of N₂O-N and CO2-C, but a sink for CH4-C, based on the 

negative flux values. The N₂O-N flux was 0.0096 ± 0.0013 mg.m-².h-1 in 2012, and was about 9 

% greater, on average, in 2013. The CO₂-C flux was 72.14 ± 5.68 mg.m-².h-1 in 2012 with a 25 % 

increment in 2013. The measured soil temperature was consistent during the study period, with 

a mean of about 22 ºC for both years. Table 12 shows the Pearson correlation between the GHG 

fluxes and other measured soil parameters i.e. soil moisture, soil temperature and soil matrix 

potential. In general N2O-N may provide significant correlation between all measured parameters, 

however on different magnitude. For instance, N2O-N fluxes has positive correlation between soil 

moisture and soil EC, but negative correlation between soil temperature and soil matric potential. 

CH4-C fluxes mostly has poor correlation with soil moisture and soil EC (positive correlation) and 

no significant to other parameters. CO2-C fluxes have relatively strong positive correlation with 

soil temperature and soil matric potential, but negative correlation with soil moisture content.   

Table 11: Mean and standard error of the GHG fluxes, and monitored soil physical properties.  

Year 2012 & 2013 

Measurement Mean ± Std Error (N = 513 ) 

N₂O-N Flux (mg.m-2h-1) 0.0555 ± 0.0077 

CH₄-C Flux (mg.m-2h-1) -0.0026 ± 0.0019 

CO₂-C Flux (mg.m-2h-1) 60.95 ± 3.11 

Soil temperature (ºC) 21.98 ± 0.13 

Soil moisture (VWC %) 20.38 ± 0.15 

 

The structure of the GHG flux data based on the low, medium and high quartiles, in relation 

to soil moisture and soil temperature conditions, is presented in Figures 22 a-c. The N2O-N fluxes 

were more dependent on soil moisture than soil temperature. High N2O-N fluxes can be clearly 

seen in Figure 5 (a), with relatively high in soil moisture ranging from about 10 to 80 % of VWC 

and warm of soil temperature ranged from 5 to 27 ºC. Soil moisture is more dominant factor in 

resulting in higher CH4-C fluxes compared to soil temperature (Figure 22 (b)). High soil moisture 
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tends to emit more methane. From the separate analysis (not shown), the 2013 season was a 

wet season; thus, the CH4-C fluxes were scattered and not clearly shown on the soil moisture-

temperature relationship, but better depicted in low soil matrix potential of less than 30 kPa. Figure 

22 (c) shows that CO2-C was also sporadic across a wide range of soil moisture conditions for 

both years, but it was governed mainly by hot and warm soil. Both the soil temperature and soil 

matrix potential failed to establish a strong relationship for high emissions of this gas. However, 

soil temperature of 20 - 25 ºC clearly indicated the majority of the high CO2-C fluxes production. 

This suggests that warm temperature initiates more biological activity under relatively wet soil, 

thus, promoting higher respiration and CO2-C fluxes.  

Table 12: Pearson correlation between the GHG fluxes and measured soil physical properties.       ns = not significant; * = 

significant at 95 % of CI; ** = significant at 99 % of CI 
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N2O-N Flux (mg.m-².h-1) 1         

CH4-C Flux (mg.m-².h-1) ns  1        

CO2-C Flux (mg.m-².h-1) 0.213** ns 1       

Soil temperature, ˚C (manual) ‒ 0.166** ns 0.324** 1      

Soil temperature (SMEC 
sensor),˚C 

‒ 0.179** ns ns 0.521** 1     

Soil moisture, % (manual) 0.224** ns ‒ 0.254** ‒ 0.288** ‒ 0.599** 1    

Soil moisture, % (SMEC 
sensor) 

0.257** 0.116* ns ‒ 0.356** ‒ 0.314** 0.416** 1   

Soil matric potential, kPa ‒ 0.215** ns 0.204** 0.234** 0.415** ‒ 0.391** ‒ 0.375** 1  

Soil EC, mS/cm (SMEC 
sensor) 

0.269** 0.122* ns ‒ 0.286** ‒ 0.269** 0.421** 0.942** ‒ 0.361** 1 
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Figure 22: The overall soil moisture and temperature relationships between low, medium 
and high GHG fluxes measured in 2012 and 2013 from an organic soil (a) N2O-N fluxes, 

(b) CH4-C fluxes, and (c) CO2-C fluxes. The round black dotes (●) represents the average 
values of each categories. 
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5.4 Conclusion 

Wireless sensor networks along with secondary portable sensors are essential tool for 

measuring the real-time soil physical conditions. Such systems provide insight into the underlying 

soil conditions affecting GHG fluxes, both spatially and temporally across the field. The soil matrix 

potential measurement was the best predictor of GHG-water relationships, mainly affecting for 

N2O-N and CH4-C fluxes. Higher N2O-N fluxes were associated with higher soil water content (40-

70 % of VWC) in the crop root zone at relatively low soil temperatures (<20oC) in organic soil. On 

the other hand, CH4-C fluxes were sporadic during the growing season as organic soils were 

generally a sink for CH4-C in the 2012 and 2013 seasons. The CO2-C fluxes were greater in soils 

having between 40-70 % of VWC at warmer soil temperatures (24-25ºC). The application of a 

wireless sensor network, along with other secondary datasets, has potential to indirectly estimate 

the in-season GHG fluxes in an organic soil. This method may provide a cost effective estimate 

of GHG emissions from agricultural fields during the growing season, while providing valuable 

information on soil conditions that can improve irrigation scheduling and fertilizer management. 

The information of the GHG in muck soil will contributed to the IPCC factors as listed under the 

IPCC (2006) unique for temperate regions.  
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Connection Text to Chapter 6 

Chapter 6 is a manuscript awaiting publication in 2016. The manuscript has been co–authored 

by several collaborating researchers. All literature cited in this chapter is listed in the reference 

section.  

Since the direct monitoring of temporal and spatial microbial activities related to GHG is 

limited, it is evident that one approach to estimation GHG emissions is to determine the 

relationship between GHG production and physical soil properties. The measurements were 

spatial and temporally varied through space and time. Chapter 3 demonstrated the assessment 

for ensuring high quality soil ECa data and understanding the factors in its variation. Subsequently, 

there is a need to estimate GHG fluxes from agricultural soil under the effect of different water, 

crop and soil types, and to develop a method for minimizing outliers due to the soil–gas diffusion 

effect (Chapter 4). Subsequently, Chapter 5 describes the relationship between GHG and the 

temporal variability in which the fluxes and emissions of the monitored GHG were estimated using 

the method explained in Chapter 4.  

 Chapter 6 is related to the fourth objective listed in Chapter 1. In this chapter, the data layer 

of soil ECa along with soil mineralogy measurements of on-the-go gamma ray spectroscopy were 

used to reveal the heterogeneity of the experimental site. Conventional GHG monitoring using 

NSS gas chambers was either based on systematically or randomly positioning the chambers on 

agriculture land. However, this approach is not effective for large scale operations and emission 

estimations based on samples from a subsection of a larger field can be misleading. Thus, PSS 

technology offers the field heterogeneity information needed to effectively position the NSS 

chambers. Chapter 6 mainly discusses the predictive approach of GHG using physical soil 

properties measured using proximal soil sensing technology.  

The following citations are available at this time: 

Ahmad Suhaizi M. S. V.I. Adamchuk, J.K. Whalen, C.A. Madramootoo, A. Biswas, F. 
Reumont, F.R De Le Macorra, and W. Ji. 2016. Application of Proximal Soil Sensing in predicting 
the spatial and temporal agriculture GHG in Eastern Canada. Agriculture, Ecosystems and 
Environment (to be submitted) 

 
Ahmad Suhaizi Mat Su, Viacheslav Adamchuk, , Joann Whalen, Chandra Madramootoo, 

Asim Biswas, Florian Reumont, Francisco Ruiz De Le Macorra, and Wenjun Ji. 2015. Using 
proximal soil sensing to optimize the assessment of agricultural greenhouse gas emissions. 
Poster presentation. In Soil Interfaces for Sustainable Development Joint Meeting of International 
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Union of Soil Sciences, Canadian Soil Science Society, and Association Québécoise de 
Spécialistes en Sciences du Sol. McGill University, Montreal, Canada. 5-10 July 2015.  
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CHAPTER 6 

APPLICATION OF PROXIMAL SOIL SENSING IN PREDICTING THE SPATIAL AND 

TEMPORAL AGRICULTURE GHG IN EASTERN CANADA  

Ahmad Suhaizi Mat Su, Viacheslav Adamchuk, , Joann Whalen, Chandra Madramootoo, 

Asim Biswas, Florian Reumont, Francisco Ruiz De Le Macorra, and Wenjun Ji 

Abstract 

Stationary gas chambers are commonly used to monitor greenhouse gas (GHG) fluxes from 

agricultural fields. Their relatively low cost compared to other methods, such as eddy covariance 

towers, and their low foot print allow for replicating experiments. However, soil spatial 

heterogeneity poses a challenge for identifying the right location to set up these chambers. The 

objective of this study was to identify representative locations in monitoring GHG fluxes based on 

the spatial and temporal variation of soil properties measured using proximal soil sensing (PSS) 

technologies. Spatial variation of apparent soil electrical conductivity (ECa) measured using 

DUALEM–21S, electromagnetic inductance instrument, radiometric characteristics determined 

using a gamma ray spectrometer, and elevation were used to delineate the field into 

representative areas. Nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) gas fluxes 

were monitored at 9 locations with two replicated chambers at each location. The gas sampling 

was performed 17 times at 2-week intervals through the entire 2014 growing season in a soybean 

field. A total of 1531 gas samples were collected and analyzed in the laboratory using gas 

chromatography. Fluxes were estimated using the median slope of the linear time response 

model. In general, organic soil exhibited greater levels of N2O and CO2 emissions as compared 

to mineral soils. However, no significant correlation was found between N2O–N fluxes and soil 

moisture. The estimated CH4 fluxes were negligible. Substantial differences in the GHG flux 

estimates between the two chambers at any given location was the main concern limiting the 

ability to develop high-quality spatial models predicting distributions of GHG across the 

landscape. However, it was noted that extreme soil environments recognized by the sensors 

correspond to extreme observations of GHG rates of emission. The most representative chamber 

location to represent the field GHG fluxes and emission values can be evaluated by using the 

means relative different (MRD).  
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Keywords: precision agriculture; proximal soil sensing; soil ECa; gamma-ray 

spectroscopy; greenhouse gases; nitrous oxide; methane; carbon dioxide 

6.1 Introduction 

Sustainable agriculture promotes a balance between anthropogenic activities and 

environmental effects, yet optimizes profit from crop production for human benefits. Technological 

advancement helps to increase food per capita, despite the fact that the land to people ratio is 

declining. This situation strained the agriculture sector to maximize the production per unit land. 

Maximizing production and profits may lead to high input usage such as inorganic base fertilizers, 

thus, resulting in high greenhouse gas (GHG) emissions.  

Agricultural land holds large carbon reserves, thus the potential for carbon mitigation and 

credit (IPCC, 2006). However, carbon under specific climate, soil, crop and ecosystems could 

trigger spatial and temporal variations. Moreover, the mitigation was often over estimated, 

especially when the data were estimated from only a few sites at similar locations which did not 

represent field spatial heterogeneity. Introduction of new government incentives and policies for 

certifying agricultural sustainability and ecosystem services will be crucial.      

The main GHG related to agricultural soil were nitrous oxide (N2O), methane (CH4) and carbon 

dioxide (CO2) and often reported as CO2-equivalent. Significant factors of climate change affiliated 

with GHG emissions have resulted in local and international efforts in mitigation approaches 

(Shcherbak et al., 2014; Villarino et al., 2014). The trend of GHG emissions from agricultural soils 

showed an exponential increase. In Canada, GHG emission from agricultural soil produced about 

80% direct and 20% indirect sources (United Nations Framework Convention on Climate 

Change). Total emissions of 8% were relatively stable for five years in a row (2005 to 2011) and 

counted for 68 Mt CO2-equivalent; however, it is projected to increase by 2 Mt CO2-equivalent for 

2005-2020 (Environment and Climate Change Canada). However, despite large seasonal 

exchanges of CO2 between the surrounding atmosphere and agricultural lands, the net flux is 

estimated to be balanced (IPCC 2007).  

GHG sources from agricultural soil are often monitored using a closed chamber i.e. non steady 

state (NSS) chamber design, or micrometeorology using the eddy covariance method. In this 

paper, the NSS method is the subject of interest. Various designs of the NSS were used to monitor 

the GHG fluxes, including square, rectangular or cylinder shapes, relatively light weight, and 

following a standard design (Livingston et al., 2005; Pedersen et al., 2010; Rochette, 2011). The 
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NSS method offers simplicity in the treatment design, cost effectiveness, provides a low foot print 

as compared to the eddy covariance, yet offers high resolution over multi chamber replications. 

The inference of the overall GHG emissions measured from the small scale area often were made 

by up-scaling of the GHG measurements over a long term scenario and for a large area (Li et al., 

2010). Monitoring the GHG emission at the soil surface is not necessarily a measure of real time 

net soil GHG production, because GHG transport from their source site vary in time and space in 

response to changing soil environments. Different locations for the chamber placement can affect 

the rate of these processes by influencing soil temperature, soil water content, soil disturbance, 

barometric pressure fluctuations and root activity. Consequently, changes in soil properties during 

the NSS chamber deployment and measurement may bias flux estimates by altering gas 

production and transport processes. Therefore, one of the key ways to minimize the effect of soil 

variation is by considering soil spatial variation prior to chamber placement. Thus, the up-scaling 

method from a small area of interest may underestimate with respect to the actual rate of GHG 

responses. 

Reported broad spectrum of GHG sources from agricultural soil can be divided into several 

sub sectors such as crop production fields, monoculture (Wagner‐Riddler et al., 2007), and 

perennial crops (Reijnders and Huijbregts, 2008), natural or cultivated forested soils (Sathaye et 

al., 1995; Smyth et al. 2014), pasture for livestock (Rochette et al. 2014; McGinn et al., 2014), 

and organic farming (Wood et al, 2006). In agricultural soil, which is the focus of this study, other 

than microbial activities, surface soil GHG emissions seem to be co-influenced by soil 

characteristics related to (i) farm management activities-different types of farms e.g. organic 

versus conventional agriculture (Rehman, 2014), crop type, fertilization by different forms of N i.e. 

organic or non-organic (Eichner, 1990; Hénault et al., 1998; Snyder et al., 2009), irrigation effects 

(Lal, 2004), tillage practices (West and Marland, 2002), and a combination of all factors e.g. 

fertilizer, tillage and crop (Kern and Johnson, 1993; Halvorson et al, 2008), (ii) available 

macronutrient content, such as organic matter (OM), N, and carbon (C) cycle (Eswaran et al., 

1993; Skinner, et al. 2014; Sommer and Bossio, 2014), (iii) environmental conditions, such as 

elevation, weather (precipitation, climate temperature and humidity), ambient pressure leads to 

volatilization (Weiske et al, 2006) and leaching (Nikièma et al., 2012), (iv) soil physical properties, 

such as soil moisture and temperature (Peterjohn et al., 1994; Mukherjee and Zimmerman,  

2014), as well as the level of water table (Berglund and Berglund, 2011).   
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 The costs of conventional agricultural soil-gas monitoring are substantial and the reliability of 

the results is often limited and questionable. Commonly, soil spatial monitoring is conducted via 

a network of sampling points, such as grid or transact sampling (Ishizuka et al., 2005 and Allaire 

et al., 2012). Often this method does not enable reliable estimation at the field scale. Thus, 

alternatively, proximal soil sensing technology (PSS) was used as a quantitative method to infer 

spatial patterns. Such PSS measurements were apparent soil electrical conductivity and gamma 

ray spectroscopy. The efficacy of using PSS in relation to GHG emissions lies in an understanding 

of the spatial and temporal soil property variations. Because there is a limitation in sensors related 

to spatial soil biological activities, the measurement or estimation of soil physical properties can 

be done via PSS technologies. Other than biological activities, the variation in soil physical 

properties changed the formation of soil aggregates, pore spaces, and water content, 

consequently, altering the rate of the soil gas diffusion. Alternatively, understanding soil 

mineralogy using the gamma ray method may help in predicting GHG rates.  

The use of PSS technology as a method of GHG mitigation for agriculture is a relatively new 

approach. Soil ECa measurements at different times may be used to predict different levels of 

GHG fluxes; however, local and detailed interpretations are imperative. For instance, Allaire et al. 

(2012) used multi depths of the soil ECa profile to investigate its co-relationship to CO2, and found 

a negative correlation between CO2 and soil ECa.  To date, there has not been a comprehensive 

study on the application of γ-ray spectra to actual GHG production. The closest study measured 

available soil carbon through a predictive approach. An early study by Macias and Barker (1978) 

attempted to predict bulk available oxygen and nitrogen gas in a coal sample using a gamma ray 

spectrometer. Along with other properties of interest, they found an indication of good correlation 

with more than 95 %. In contrast, recent findings on nitrogen gas by Chapyzhnikov et al. (2005) 

found no significant correlation with nitrogen gas. However, both studies achieved good 

correlation of gamma ray spectra of the carbon content. This may lead to better predictions of 

CH4 or CO2 emissions. Spatial and temporal interaction of the GHG and the soil physical 

properties also were subjects of interest. The spatial variability of soil carbon across the field can 

be predicted using Cesium (137Cs) in the soil (Johnston et al, 2004; Dierke and Werban, 2013). 

The data suggest that measurements of 137Cs in soils can be useful for understanding carbon 

distribution patterns in surface soil. A few studies reported good correlation between γ-ray with 

texture clay content. Rodrigues et al. (2015) performed a combination of soil ECa and gamma ray 

measurements in CEC and clay content. In addition, soil chemical properties also resulted in a 

very significant relationship, for instance, a strong correlation with potassium (K) (Piikki et al., 
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2013). Bulk density and soil water content also were predicted using γ-ray measurements (Gurr, 

1964). Good prediction with potassium (K) content and soil texture in the soil was found (Wong 

and Harper, 1999, Wong et al, 2010); however, this may not hold in all areas due to landscape 

heterogeneity and other soil forming factors.  

The objective of this study was to identify representative locations in monitoring GHG fluxes 

based on field heterogeneity information using proximal soil sensing (PSS) technologies. Spatial 

variation of soil ECa and γ-ray were used in delineating the field for the gas chambers at prescribed 

locations. Spatial soil variability within a field can be quite extensive, which means that defining 

representative locations for the agricultural GHG and environmental management decisions is 

challenging. 

6.2 Materials and Methods 

6.2.1 Site Characteristics 

The study location, Field 26 (F26) with an area of approximately 11 ha, was located at one of 

the farm production areas of Macdonald Campus of McGill University, Quebec, Canada. The field 

was under no till practice, cultivated with soybean ( Glycine max L.) for 2014 season, and 

previously grown with alfalfa (Medicago sativa L.) and mixed pasture for forage. During this study, 

the field did not receive fertilizer applications during the growing season; however, liquid manure 

was applied during the previous fall season. In addition to the crop and soil management, roundup 

herbicide was applied on two different dates: 19 Jun and 18 July 2014, after the soybeans 

emerged.  

It was found that the variations in soil properties are mainly governed by the landscape 

position across the field especially related to changes in elevation. The soil at F26 was composed 

of a wide range of soil series and types, varying from pure muck (organic) to mineral soil, and the 

soil drainage ranged from excellent to very poor (Table 12). The leading soil type in this field is 

classified as muck soil (organic) containing a minimum of 30 % organic matter, or 17 % of organic 

carbon, which covers about 7.3 ha area (Canadian Soil Classification, 1998). Of the total field 

area, shallow and deep layers of muck soil were developed over the mineral soil layer at the north 

(about 29 %) and south (about 34 %) parts of the field, respectively. Muck soil regions were 

located at lower elevations (between 6.9 – 7.2 m above sea level) developed from plant residue 

(fibre) and mosses, hence, resulting in a water depression area and causing very poor drainage. 

The organic soil layer was about 1-1.5 m depth across field. 
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The remaining 37 % coverage was mineral soil, which covered from the centre and extended 

to the west and north-west of the field and included several mineral soil types: St. Zotique (18 % 

of total area), Soulanges (2.4 % of total area), Chicot (1 % of total area) and Upland (0.4 % of 

total area). St. Zotique soils occupied from the centre to north-west part of the field, and it provided 

the second largest soil type coverage after muck soil. This soil type was mainly developed from 

historical alluvial soil with fine silt loam with very poor drainage, located at 7.6 to 7.9 m above sea 

level. Due to poor drainage, these soils are commonly associated with muck and Soulanges soil 

types. For the latter soil type, drainage was considered to be at the moderate level. The Soulanges 

soils were silt loam gently undulating over the landscape (about 8.1 – 8.2 m to the west of the 

field). At higher elevations (8.5 – 9.0 m), there were two soil types, Chicot and Upland soils. On 

one hand, these soils were built up from the same basis: sand. On the other, the Chicot soils 

mainly build up from sandy loam soil resulting in very poor drainage. Upland soils appeared as 

deep deposits at the center of the field and they are well-drained soil, hence, low in soil nutrients. 

In between, St. Damase (about 5.5 % of the total area) located at the same elevation as Chicot 

and Upland soils, contains mainly light sandy loam with a similar drainage level as Soulanges 

soils. The Farmington soil type (about 7.5 % of total area) is a relatively dry shallow clay loam 

overlay over the bedrock, lightly stony soil. Further, Farmington soils area well drained soils 

located at the south-east of the field (high elevation 8.2 – 9.3 m). A couple of small patches of 

Chateauguay soils (about 1.7 % of total area) were found at the south-east and south-west 

sections of the field containing mainly loam soil, with a similar level of drainage as the Farmington 

soil type.  

Despite a variation in soil types, soil texture, and drainage capability heavy and stony soil are 

not fully subjected to a serious handicap for cultivation since there is a conventional tile drainage 

system installed and stretched from the top to the bottom of the field to facilitate drainage and 

improve crop production. The tile drainage was installed mainly at the lower elevation, where very 

poor soil drainage occurred (Figure 8d).  

The humid continental climate of this area is characterized by a variation in both temperature 

and precipitation typical of the eastern Canada region. For 2012 to 2014, recorded total daily 

precipitation (mm) along with other weather parameters were retrieved from Sainte-Anne-De-

Bellevue, QC, Canada, weather station, located about 0.6 km from the F26 field, as shown in 

Figure 23. Average ambient temperature in 2014 was about 18 ᵒC in the gas sampling period. 

Recorded precipitation events from the nearby weather station measured a total of 825 mm of 
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rain in 2014 (Figure 24), higher than the average 171 mm in the two previous years. The range 

of precipitation varied in intensity from 0.2 to 49.4 mm, with an average of about 8 mm. About 252 

mm of rain occurred within the gas sampling events, with heavy rains occurring prior to the 

sampling dates on 3 June and 24 June 2014 with about 46 and 49 mm of water, respectively.  

Soil samples at the same location were collected and geo-referenced with RTK GPS on 12 

May 2014, before planting using the standard soil probe at 0–20 cm depth, using a stratified 

random sampling scheme based on soil ECa distribution maps. The five sub samples per location 

were homogenized to become one sample. Each sample was placed in the soil bag and marked 

with the sampling location ID for the lab soil physical and chemical analysis. The particle size 

distribution was analyzed by gravitational sedimentation using a hydrometer, after organic matter 

oxidized by hydrogen peroxide, air dried at 105ᵒC and passed the fine components through a 2 

mm sieve. Soil pH was determined using a 1:5 soil/water ratio with a compound glass electrode 

(Si et al., 2007). The 2014 yield of soybeans at F26 was harvested using a combine harvester 

(TR87, New Holland Agriculture, Turin, Italy) in late November 2014. Average yield recorded via 

the combine yield monitoring system resulted in an average of 2.4 t/ha at 13 % moisture content. 
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Table 12. Wide range of soil series and its characteristic at F26   

Legend Soil series Soil texture 
Water holding 

capability 
Drainage 

A Muck (organic) 
Fibres, 

mosses, 
High Poor 

B St. Zotique Fine silt loam Very high Very poor 
C Soulanges Silt loam Moderate Moderate 
D Chicot Sandy loam High Very poor 
E Upland Sand Poor Very good 

F St. Damase 
Light sandy 

loam 
Moderate Moderate 

G Farmington Clay loam Poor Very good 
H Chateauguay Loam Poor Very good 

 

 

Figure 23: Soil series map ranged from organic to mineral soil located at F26 (Soil 
Canada Survey Map, 1971). The letters is the legend as explained in Table 12 
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Figure 24: Precipitation data of 2014 at F26. The respective sampling date was 
marked as "+" 

6.2.2 Field Survey 

To acquire high resolution soil ECa, the DUALEM-21S (Dualem, Inc., Milton, ON, Canada) 

instrument was used to characterize the spatial heterogeneity of soil ECa data, surveyed on 13 

October 2013 as shown in Figure 25. On this date, the soil at F26 was at field capacity with an 

average daily ambient temperature about 14°C. The on-the-go surveys were conducted at travel 

speeds of approximately 5 km/h at an average 12 m swath width, which resulted in about 5023 

measurements. Elevation was obtained using the RTK GNSS receiver (Trimble RTK/PP-4700 

GPS, Trimble Navigation Limited, Sunnyvale, CA, USA) and the data was recorded at 1 Hz using 

the preprogrammed LabVIEW software (National Instrument, Inc., TX, USA). Although the soil 

ECa included two sets of measurements: 1 and 2 m of horizontal co-planar (HCP) and 

perpendicular co-planar (PRP), only the latter mode of measurements was used and focused in 

relation to the GHG analysis since the gas productions were related to the top soil layer (0.54 and 

1.03 m, respectively) as was discussed in Chapter 3.  

In addition to the soil ECa survey, a formation and distribution of soil mineralogy of F26 was 

also derived by a passive sensor, the SoilOptixTM sensor (Practical Precision, Inc., Ravistock, ON, 

Canada) deployed in F26 on 18 November 2013, at a daily average ambient temperature of 7.6°C 

(Figure 25). A total of 6245 high resolution γ-ray spectra data paired with the RTK GNSS were 

measured during the on-the-go survey. The data were acquisitioned using proprietary software 

supplied with the sensor at 1 Hz (Table 13).  
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Table 13. Gamma ray specifications 

Parameters Value 

Radiation sensor 40 cm x 15 cm dim. CsI crystal detector 

Weight ~5 kg (approximate) 

Channel 512 MCA 

Power 12V DC 

Measurements, (Bq/kg) Total Count, 40K, 238U, 232Th, Cs 

Communication Ethernet / serial connectivity 

Data rate 1 Hz 

 

A γ-ray emission detector made from Ceasium Iodium (CsI) crystal attached to a 

photomultiplier at 512 channel multi-channel analyzer (MCA) was utilized to predict the 

concentration of γ-ray emission (Loonstra and van Egmond, 2009). The sensing unit was mounted 

in front of the ATV, 0.5 m off the ground. The average travel speed was about 6.2 km/h at about 

11 m swath width (Figure 25). This sensor measured the natural radioelement concentrations 

decay from the γ-ray energy emitted by the soil and rocks at the top soil profile (0-30 cm). The 

decay energy was captured by the photomultiplier measured in the unit of Becquerel per kilogram 

(Bq/kg) to predict the concentration of γ-ray emission radioactivity, mainly the total radiometric 

count or total count (TC), potassium (40K), Uranium (238U), Thorium (232Th), and Caesium (137Cs). 

The response of the γ-ray was measured using the full-spectrum analysis method (Van Egmond 

et al., 2010).   

6.2.3 Gas Sampling and Flux Analysis 

Spatial and temporal variations of GHG fluxes were characterized at F26 from nine locations 

with a total of 18 chambers (two duplicated chambers per location) using a square, non-steady 

state (NSS) chamber design, deployed during the growing season (June to December 2014). The 

nine locations were selected to maximize D-optimality criterion for both ECa and TC as well as 

field elevation (similarly to Adamchuk et al., 2011b). This way gas chambers represent the most 

unique PSS measurement combinations that exist in this field. Gas chambers were positioned 

between soybean rows with base (bottom square collar) dimensions of 0.556 x 0.556 x 0.140 m, 

and the top cover (0.564 x 0.564 x 0.130 m) was vented with a small air channel of 0.05 m clear 

polyvinyl tube to avoid pressure perturbations (Figure 26). The chamber was a customized design 

built from sturdy PVC materials, and protected with an aluminum sheet to minimize the 

temperature effect from sunlight to the gas inside chamber (Rochette and Eriksen-Hamel, 2008). 



 

77 

 

 

A simple white soft cushion tape was tapped along the cover and base contact surface acted as 

a seal for the chamber system from air leaks. 

 

Figure 25: Proximal soil sensing survey (a) DUALEM-21S and (b) Gamma ray 
spectrometer.   

 

Figure 26: Non-steady state chamber design deployed between soybean crop, covered 
with aluminum sheet to minimized the effect direct thermal from the sun. 

 

The chamber base was preinstalled at the beginning of the season, and gently pushed down 

with approximately 10 cm remaining above the soil surface. This provided an average of effective 
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total height of 0.23 m. The effective height is the most crucial parameter in linear flux and emission 

estimation using the NSS method. Other than being used as a marking location, the installation 

of the base at the beginning of the season is important to avoid direct disturbance of the soil, crop 

and the root system from interfering with repeated gas sampling measurements. The location of 

the chambers is also considered for in-farm traffic activities. Over the season, the weeds were 

minimal and left in their natural state, if present on the inside of the chamber.  

The gas samples were taken at 15 min intervals for an hour total duration. The gas samples 

were extracted from the chamber headspace using a 20 ml gas exetainer, transferred using tight 

syringes. All samples were then injected into pre-evacuated or vacuum exetainers of 12 ml 

(Labco, Wycombe, UK) fitted with an extra 60 mil (60 mil equal to 1/16 in or 0.0625 in) Teflon-

silicon septa (National Scientific, Rockwood, TN, USA), and then stored in cool conditions. 

Samples were brought immediately to the Soil Ecology Research Laboratory of Macdonald 

campus, McGill University, and analyzed for the three main trace GHG gases: N2O, CH4 and CO2 

concentrations using customized Bruker-Varian 450 gas chromatograph (GC) (Bruker, Bremen, 

Germany). As a result, a total of 1531 gas samples were collected from 17 sampling dates using 

NSS chambers, when bi-weekly measurements were performed between 12 noon to 7 p.m. The 

first gas sampling followed three weeks after seeding and roundup herbicide application. All 

sampling locations were geo–referred with RTK GPS with a precision of about 1 mm accuracy.  

Fluxes were determined from the median slope of the linear regression model of the mixing 

ratio change with five sequential samples measured at 0, 15, 30, 45, and 60 min after chamber 

closure. 1-D array interpolation was imposed to estimate the in-season emission as explained in 

Chapter 4. The median slope method is superior to the typical average method as it allows for 

disregarding the outliers dataset, if the dataset contains erroneous measurements. Full automatic 

fluxes and emissions estimations were made via the MATLAB scripts. This approach allows for 

large batch data processing and took, on average, about 60 seconds (64-bit, Window 7 operating 

system) to produce the summary results. The reported flux and emission of the GHG were made 

in base gas species such as N2O-N, CH4-C and CO2-C. The minimum detection limit of the GC 

for the measured gas was measured by using the standard 0.15, 0.17 and 300 ppm for N2O, CH4 

and CO2, respectively. These minimum values were set as the minimum threshold values during 

data processing, and any value below would be disregarded.  

Simultaneous soil temperature and moisture measurements at 0 – 30 cm from the soil surface 

were made at the time of gas sampling at all individual gas chambers. Time domain reflectometry 
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(TDR) moisture sensor (Model: HH2, Delta-T Devices Ltd., Cambridge, United Kingdom) was 

used to record the moisture variations in terms of volumetric water content (%), and a single 

thermocouple probe sensor (Model: HI98509, Hanna Instrument, Rhode Island, USA) measured 

the soil temperature levels in degree Celsius (ᵒC). An average value of a minimum of three 

measurements at each chamber location was used, and manually recorded in the log book. The 

measurements were calibrated for the specific mode, soil mineral and organic soil type, prior to 

the field work.  

6.2.4 Data Analysis 

Spatial and temporal variation of soil properties and GHG fluxes were analyzed in two stages. 

In the first stage, to allow for a comparison of the measured sensors’ survey, the data obtained 

were synchronized using the same geographic coordinates of the nine sampling locations using 

an average value within a 5x5 m grid. The estimation procedure was achieved after each of the 

survey sensors data were interpolated using ordinary kriging conducted using ArcGIS software. 

Then, the predicted value of the soil properties was matched with the sampling IDs. As a result of 

the 5x5 m grid, about 4468 of the same geo-coordinates were created. A spatial analysis 

clustering method was used principally by finding the distance where spatial correlation was 

strongest.  

The second stage involved the statistical analysis conducted to evaluate the findings. The 

estimated soil ECa, gamma ray, and elevation were used as a single value and repeated over the 

temporal data (GHG, and soil temperature and moisture). All data in the nine locations, including 

temporal GHG fluxes from two replicated chambers at each location, were subjected to linear 

correlation analysis, carried out using 17.0 SPSS Statistic (SPSS Inc., Chicago, IL, USA) to obtain 

the basic descriptive statistics and Pearson correlation coefficient (r) using the method of 

minimum squares (p < 0.05). Due to the fact that the data distribution was not normal for the GHG 

fluxes, the non-parametric pair–wise comparison was used to compare the effect of fluxes on two 

different soils (i.e. organic versus mineral soil base on average value). Stepwise multi-linear 

analysis was performed for the GHG emissions prediction for each chamber using measured soil 

physical properties.  

6.2.5 Representative monitoring locations (RML) for the GHG fluxes 

The only limitation of the chamber numbers to be installed across the soil for spatial variation 

depends upon the (i) total sampling locations, (ii) duration of the sampling, and (iii) availability of 
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the chambers. The nine locations were chosen based on the optimality of the sampling locations, 

where the PSS technologies helped in delineating the field into the corresponding soil 

heterogeneity. Finding the representative locations would not be feasible without the knowledge 

of on-the-go mapping of high resolution soil spatial variations. Secondly, logistically, the total 

number of chambers to be installed reflected the total duration of the sampling procedure, where 

the gas sampling activities were conducted during diurnal time. Therefore, for all of the gas 

chambers to be within appropriate walking and sampling times during the growing season, this 

limits the optimal number of chambers. 

In reporting the GHG fluxes or the overall field emission, the RML must be selected among 

the located chamber to represent a single value of field GHG emissions. Representative locations 

are defined as the locations of the chamber where measure GHG fluxes either are close to the 

average fluxes or a combination of chambers transformed to obtain such averages (Vanderlinden 

et al., 2012). Several methods were proposed to define the representative location. The simplest 

method is to use the location with the means relative different (MRD) closest to zero (Vachaud et 

al., 1985). The used of MRD was first was introduced to monitor seasonal and annual variation of 

the soil water content, which is the same behavior with the GHG fluxes.  

There are two steps to characterize the temporal stability (TS) as described in Vanderlinden 

et al. (2012). The first step, the MRD was calculated of all observations made during the sampling 

periods. The second step used a multiple pair of observation times and calculates the similarity 

in the spatial patterns between those times. Non–parametric Spearman rank correlation is one of 

the most commonly chooses (Vachaud et al., 1985) to compare fluxes at two different 

observations times. Spearmen rank correlation was established to rank of the temporal 

observation. The second method uses the combination of times and calculates the similarity in 

the spatial patterns between those times. More details of some other methods in identifying MRD 

are given by Vanderlinden et al. (2012) and Biswas (2014).  

Briefly, if the GHG fluxes at ith location and tth date is fi,t and the spatial mean GHG fluxes is 

tf from the same chamber ID, the different (Δ) between individual determinations is 

ttiti ff  ,,  (12) 

 



 

81 

 

 

The spatial mean GHG fluxes was calculated from 














n

i

tit f
n

f
1

,

1
 (13) 

Where n is the number of measurement from the total chamber (n=18). Then the relative 

difference, ti ,  was calculated as 

t
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  (14) 

 

The relative difference provides an estimation of difference that is unbiased to the 

magnitude of the mean value. The temporal MRD was calculated as 
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where m is the number of sampling days (in this case m = 17). The standard deviation of 

mean relative different (SDMRD) as 
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Thus, each location will have one MRD value and its associated SDMRD. The MRD values 

are then sorted from the smallest to the largest to identify the RML, which has the MRD closest 

to zero and smaller SDMRD. The MRD value can be positive or negative, which corresponds to 

the underestimated or overestimation, respectively. As RMLs identification approach, Jacob et 

al., (2004) proposed to select the lowest of the root mean square error (RMSE) which can be 

calculated from combination of MRD and SDRD as; 

22

iii SDMRDMRDRMSE   (17) 

Finding the only one site to be representative with small MRD and SDMRD can be quite 

challenging, and the results may not end up at the same chamber ID number for separate GHG 

fluxes. This is similarly being reported by Tallon and Si (2003) for soil water content study. The 

SDMRD indicates the  
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iAbsMRD   (18) 

6.3 Results and Discussions 

6.3.1 Descriptive Statistics 

Data distribution of the on-the-go soil physical properties mapping activities and geostatistical 

study was described using classical descriptive statistics (Table 14). Elevation variation measured 

using RTK GPS resulted in 7.64 ± 0.57 m (mean ± STD) at about 7 % of the coefficient of variation 

(CV). An increase in soil ECa was observed with depth, where HCP measurements were higher 

than PRP. The PRP measurements were the most stable with low SD of the soil ECa survey (SD 

is 6.97 mS/m for PRP 1.1 m, and 11.56 mS/m for PRP 2.1 m). Thus, the overall range HCP 2 m 

measured in 2013 averaged 14.99 mS/m and had the highest CV (61 %). CVs from the on-the-

go soil physical mapping indicated a potentially significant spatial variability and suggested 

defining different field soil zone heterogeneity.  

Table 14. Descriptive statistics of the 5x5 m data on-the-go measurement; SD, standard deviation; CV, coefficient of 

variation; N = 4467.  

Variable 
 

Mean Median SD Min Max CV (%) Kurtosis Skewness 

Elevation, m  7.64 7.41 0.57 6.72 9.27 7.42 0.12 1.12 

2013 HCP 1 m 

m
S

/m
 25.27 25.74 11.68 3.67 50.98 46.23 -1.28 0.02 

2013 HCP 2 m 25.42 25.43 14.16 2.64 52.04 55.69 -1.40 0.03 

2013 PRP 1 m 16.61 16.83 6.97 1.51 35.24 41.94 -0.86 0.13 

2013 PRP 2 m 23.09 23.65 11.56 1.36 49.24 50.08 -1.25 0.00 

TC 

B
q

/k
g

 

308.32 315.70 53.83 152.96 434.76 17.46 -0.02 -0.52 

40K 260.64 252.46 106.47 26.77 509.45 40.85 -0.88 -0.02 
232Th 16.40 16.65 4.99 1.53 28.70 30.46 -0.34 -0.23 

238U 13.16 12.94 3.40 0.71 27.42 25.84 0.26 0.28 

Yield 2.44 2.49 0.85 0.44 3.79 34.79 -1.08 -0.24 

 

With respect to the soil mineralogy, 40K was the predominant property resulting in an average 

of 261 Bq/kg, and with the highest SD (106 Bq/kg); 232Th, 238U and TC constituted an average of 

16, 13 and 308 Bq/kg, respectively. The later measurements resulted in the lowest CV (17 %) 

among the γ-ray sensing measurements. The field average yield of soybeans was at 2.4 t/ha, 

ranging from 0.44 to 3.79 t/ha. For mineral soils, a low count number was observed on a high 

percentage of sand content since the soil characteristic tended to have a leached profile, as 

similarly reported by Mahmood et al., 2011. Good correlations between radionuclide data and 
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different soil properties suggest a potential role of gamma-ray spectroscopy in soil property 

mapping. 

For all proximally sensed soil physical properties, including responses such as yield, mean 

and median values, they were very similar, which indicated that the data were derived from a 

normal distribution. This was supported by the fact that low skewness values were obtained; in 

addition, coefficients of kurtosis were under 3 (standard data normal distribution). This information 

is important in geostatistical and clustering analyses using the procedure as discussed in the 

methodology method.  

Table 15 shows the actual variation at different locations of sampling IDs. High variation of 

OM (overall average = 308 g/kg and SD = 256 g/kg) in the soil indicated the field varied in 

landscape positions. Different average OM between organic and mineral soils was close to 80 %. 

Average soil ECa in organic soil was about 61 – 66 % higher than in mineral soil for both years. 

The TC of the γ-ray emissions also varied between sampling location with an average TC about 

303 Bq/kg at SD = 85 Bq/kg. Average 40K was about 265 Bq/kg with the highest variance (SD = 

160 Bq/kg), and with a similar average between 238U and 232Th. However, there was slightly higher 

SD in the later measurements. Average TC in organic soil was 53 % lower than mineral soil. More 

than double average 238U emissions were found in mineral soil as compared to organic soil. 

However, there was no difference in average 232Th emissions from both soil types. Top soil clay 

content varied from 52 - 350 g/kg, and sandy soil ranged from 272-624 g/kg. Respective overall 

average clay and sandy soil content was 184 and 448 g/kg, with similar variations. Clay content 

in organic soil was higher by about 32 % than mineral soil. In contrast, the sand content in organic 

soil was less by 19 % than mineral soil. The elevation difference was about 0.8 m from the lowest 

to the highest location with average and SD elevation of 7.69 ± 0.75 m. The lowest part of the 

sampling location in the field was at 6.92 m. only 13 % difference in average elevation between 

organic versus mineral soil locations. This variation varied the soybean yield by an average of 

2.32 ± 1.02 t/ha, with only 6 % difference between yield under organic vs. mineral soil. The soil 

pH was slightly acidic and alkaline, drifting from the neutral line and ranging from 5.85 to 7.51 ± 

0.61. As expected, the soil pH in organic soil was lower than in mineral soil; however, the average 

soil pH indicated only 6 % difference. Other macronutrients also show great variations. Average 

P, K and Al were higher in mineral soil as compared to organic soil, 163, 134, 637 mg/kg, and 85, 

128, and 334 mg/kg, respectively. However, average Ca and Mg is about 58 % higher in organic 

than in mineral soil. 
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 Table 15. Descriptive statistic of soil ECa, gamma ray measurement, and other soil 
properties measured at all 9 locations.  

Parameter 
HCP 1 m HCP 2 m PRP 1 m PRP 2 m 

Total 
Count 

40K 238U 232Th 

2013, mS/m Bq/kg 

Minimum 8.14 4.70 5.14 6.03 166.87 28.10 4.79 3.85 

Median 27.71 29.59 16.44 26.88 309.31 319.12 13.63 17.98 

Maximum 42.74 49.14 31.13 41.19 425.52 459.93 23.07 22.41 

Average 25.00 24.43 17.02 23.18 303.80 264.57 14.12 15.03 

SD 14.37 16.46 9.22 14.31 84.74 160.30 4.91 6.98 

Parameter 
Clay Sand Silt OM K Ca Mg Al 

g/kg mg/kg 

Minimum 52.40 271.71 214.86 54.71 56.00 1460.00 190.00 186.00 

Median 223.52 455.86 387.48 183.50 114.00 5930.00 779.00 511.00 

Maximum 350.26 623.75 647.18 728.25 266.00 10700.00 1700.00 1082.00 

Average 184.08 448.29 367.64 308.19 131.44 5647.78 876.11 502.67 

SD 100.12 105.90 134.46 256.31 58.26 3085.61 483.54 262.33 

Parameter 
Elevation, 

m 
pH Yield, t/ha 

P  
mg/kg 

    

 

Minimum 6.92 5.85 1.00 51.23     

Median 7.44 6.51 2.27 115.66     

Maximum 9.12 7.51 3.60 249.68     

Average 7.69 6.69 2.32 128.35     

SD 0.75 0.61 1.02 63.99     

SD = Standard deviation, N = 9 sampling points 

6.3.2 Locating the Gas Chambers 

The accuracy of the chamber placement over the selected locations as a representative area 

for the GHG monitoring sites were evaluated based on the coefficient of determination (R2) 

between measured soil spatial properties (Figure 27). Spatial heterogeneity of the soil ECa along 

with gamma ray and elevation were used to define the targeted locations for the GHG chambers. 

Soil ECa variations were mainly governed by the landscape position. Soil ECa at PRP 1 m and 2 

m modes measured in 2012 and 2013 were used since the presented soil ECa were measured at 

top soil profiles, 0.54 and 1.03 m from the soil surface, respectively. These profiles were 

considered since GHG fluxes were mostly produced within the sub meter soil depth. Respective 

R2 between elevation versus total count of gamma ray and 2013 soil ECa at PRP 1 m mode was 

0.32 and 0.64 for gas chamber location, and 0.34 and 0.50 for all locations (Figure 27a and 27b) 

respectively.  In addition, the R2 between 2013 soil ECa at PRP 1 m mode vs. total count of γ-ray 

was R2=0.69 for gas chamber locations and R2=0.37 for all locations (Figure 27c). 
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Figure 27: Comparison of the R2 between various field measured on-the-go soil physical 
properties; Elevations vs. (a) total count of the gamma ray and (b) 2013 soil ECa at PRP 1 

m mode; and (c) 2013 soil ECa at PRP 1 m vs.  total count of gamma ray.    
 

The field measurements were interpolated using ordinary kriging method in ArcGIS to share 

the same coordinate locations based on 5x5 meter grids as shown in Figures 28 and 29. These 

maps indicated the spatial heterogeneity of the measured properties was strongly correlated with 

the field elevation. The actual values of the PSS measurements and other soil properties are 

presented in the summary table (Table 16) and according to different soil textures (Table 17). 

Table 16. Actual data set at 9 sampling locations 

Sampling ID 
HCP 1 m HCP 2 m PRP 1 m PRP 2 m 

2013, mS/m 
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01* 38.71 31.05 31.13 38.23 

02 9.96 9.19 5.14 7.18 

03 8.14 4.70 7.02 6.03 

04 14.17 9.55 11.78 12.57 

05* 42.74 41.52 28.85 41.19 

06 31.11 35.71 16.44 27.62 

07* 27.71 29.59 18.76 26.88 

08* 41.62 49.14 22.95 38.38 

09 10.82 9.44 11.15 10.58 

Sampling ID 
Total Count 40K 238U 232Th Clay Sand Silt OM 

Bq/kg g/kg 

01* 166.87 28.10 11.71 4.81 233.42 365.00 401.58 632.70 

02 299.25 374.21 4.79 17.98 130.29 623.75 245.96 77.65 

03 425.52 459.93 23.07 21.77 256.00 464.51 279.49 74.92 

04 385.27 438.35 12.47 22.41 241.77 488.93 269.30 54.71 

05* 190.16 55.02 13.04 3.85 87.93 455.86 456.20 728.25 

06 333.73 319.12 13.63 18.78 52.40 560.13 387.48 178.83 

07* 271.78 152.94 16.95 10.30 223.52 369.81 406.67 505.15 

08* 309.31 207.38 14.65 18.65 350.26 434.88 214.86 337.97 

09 352.30 346.08 16.79 16.72 81.11 271.71 647.18 183.50 

Sampling ID Elevation, m pH Yield, t/ha 
P K Ca Mg Al 

mg/kg 

01* 6.92 6.90 1.23 78.32 108.00 10700.00 1700.00 206.00 

02 9.12 5.85 2.24 140.05 56.00 1460.00 190.00 1082.00 

03 8.69 7.35 1.00 99.71 124.00 3600.00 622.00 461.00 

04 7.84 7.37 2.27 115.66 112.00 2860.00 598.00 511.00 

05* 7.18 6.11 1.15 51.23 112.00 9400.00 1530.00 186.00 

06 7.60 6.30 2.64 210.63 114.00 3600.00 575.00 517.00 

07* 7.19 6.31 3.51 87.67 171.00 7280.00 1090.00 402.00 

08* 7.44 6.51 3.60 122.19 120.00 6000.00 801.00 543.00 

09 7.22 7.51 3.28 249.68 266.00 5930.00 779.00 616.00 

* = organic soil 
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 Table 17. Average of measured properties under organic and mineral soil.  

Soil type 
HCP 1 m HCP 2 m PRP 1 m PRP 2 m Clay Sand Silt OM 

2013, mS/m g/kg 

Organic  37.69 37.82 25.42 36.17 223.78 406.39 369.83 551.02 

Mineral 14.84 13.72 10.31 12.79 152.31 481.80 365.88 113.92 

Soil type 
Total Count 40K 238U 232Th     

Bq/kg  

Organic  234.53 110.86 14.09 9.40     

Mineral 359.21 387.54 14.15 19.53     

Soil type Elevation, m pH Yield, t/ha 
P K Ca Mg Al 

mg/kg 

Organic  7.18 6.46 2.37 84.85 127.75 8345.00 1280.25 334.25 

Mineral 8.09 6.88 2.29 163.15 134.40 3490.00 552.80 637.40 
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 Figure 28: The 5x 5 m grid of soil physical properties measured using on-the-go 
system; 2013 soil ECa measured on different configuration of (a) perpendicular 2 m, (b) 

perpendicular 1 m, (c) horizontal 2 m, and (d) horizontal 1 m 
 

  

(a) (b) 

(c) (d) 
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Figure 29: The 5x5 m grid of (a) the soybean yield (t/ha) measured using yield monitor on 
the combine harvester, (b) Total count of gamma ray signal, and (c) Elevation and 

irrigation line map of F26. The conventional sub-irrigation stretched from east to west of 
the field mainly at the depression area at sub meter depth, spacing approximately from 6-

30 m apart.

(a) 

(b) 

(b) 

(c) 
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6.3.3 GHG flux and emission 

In general, soil moisture and temperature measured at all gas chambers were mostly stable 

and cooler towards the end of the growing season (Figure 30-31). There was a clear break at 

40 % moisture level between organic soil and mineral soil. The soil moisture was higher in organic 

soil (46.46 ± 17.20 %) than mineral soil (33.00 ± 9.00 %); however, the temporal pattern of soil 

moisture maintained a stable level throughout the growing season. Meanwhile, the soil 

temperature (Figure 32) under mineral soil was slightly warmer than in organic soil with respective 

variation of 23.00 ± 6.00 ᵒC and 21.72 ± 4.96 ᵒC. The soil temperature was relatively stable over 

the season until it reached the lowest point between 8–10ᵒC towards the end of the growing 

season for both soil types. Soil moisture and temperature data were missing for the 4th of July 

2014 (for chamber IDs 5, 11, 12, and 14), on 15th August 2014 (all chambers) and on 12th 

September 2014 (all chambers). 

All GHG exhibited a large variation both temporally and spatially. Figures 32, 33 and 34 show 

the different GHG variations under different soil conditions for each gas chamber. In addition, 

Figure 35 summarizes the estimated total in-season GHG emissions. The GHG uptake mostly 

occurred at the beginning of the growing season. Over, the growing season, high spatial variation 

in soil temperature, with a seasonal variation between 9-36˚C may affect the soil respiration both 

from the microbial and plant root respiration. The prescribed locations for the GHG monitoring 

sites were able to monitor the gas responses from a wide range of soil textures, especially when 

dealing with variations in soil types (i.e. organic and mineral soil). Each GHG gas showed great 

variations both temporally and spatially, similar to other auxiliary measurements. This is due to 

soil moisture, temperature variations, farm management and soil texture.  

Table 18 shows the linear Pearson correlation between estimated fluxes and the other field 

measured soil properties. The average estimated diurnal N2O-N emission production was about 

49 % higher in organic soil than in mineral soil with about 0.068 ± 0.31 mg∙m-2∙h-1 and 0.026 ± 

0.067 mg∙m-2∙h-1, respectively. Linear analysis of Pearson correlation indicated no significant 

relationship between N2O-N fluxes and all measured soil properties. Low N2O-N fluxes response 

are mostly affected by the total available organic N in the soil. Since F26 was cultivated with 

soybeans, the crop itself fixing N from the air, and the field was not fertilized except with liquid 

manure during the fall of the previous year. In addition, the decreased response towards the end 

of the season may be due to the crop starting to dry out and ready to be harvested. From the 
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correlation analysis, there were no measured soil physical properties correlated with the N2O-N 

fluxes. However, the average of the total N2O-N emissions from the chambers located on organic 

soil was considerably higher than on mineral soil, 0.841 g/m² and 0.174 g/m², respectively.  

The key factors that derive the spatial variations of the GHG emissions were due to different 

level topography and soil pH. Soil pH is the master soil chemical property governing N2O-N fluxes, 

however the lab data indicates the field was relatively at neutral level between pH6-7. This is 

particularly true when the lab measured soil pH indicated that higher N2O-N fluxes were found in 

organic soil than in mineral soil. The organic carbon content of the ploughed layer is an important 

soil feature, which regulates many soil functions. For instance, the N2O-N fluxes (Figure 33) show 

great variation with respect to different soil water content, soil texture (organic vs. mineral) and 

timing. The field received no additional irrigation, and the main source was from natural rainfall. 

Thus, regular rainfall naturally stored water and increased the soil water content. Heavy rain and 

more frequent raining events significantly increased the soil water content in the soil at the 

beginning of the season. Therefore, some of the GHG locations emitted higher GHG levels at the 

beginning of the season than later in the season. In addition, due to the fact that organic soil 

texture holds more pores than mineral soil, its ability to hold more water is superior to mineral soil. 

In addition, the organic soil also is susceptible for compaction due to machinery application.  

6.3.4 N2O–N fluxes and emissions 

In this study, increased soil moisture (> 41 % VWC) and relatively stable and warm soil 

temperatures produced relatively high N2O–N and CH4–C fluxes in organic soil than in mineral 

soil. In result of poor drainage in organic soil, prolonged moisture reduced the soil pH i.e. locations 

ID under muck soil. Overall, N2O-N fluxes were relatively high at the beginning of the season, 

especially during the soybean flowering and seed formation stage around July and August, 2014. 

At this stage, it has been suggested that the biological fixation of N (active bacteria nodules) 

contributed to the N2O-N emission and potential nitrate leach. The active symbiosis activity 

between bacteria and the crop improved the N uptake from the air for crop growth, hence, 

enhancing N2O-N emissions. Towards the end of the season, the uptake of N may be depleted 

(Torstensson et al, 2006) as indicated by the reduction of N2O-N fluxes. In September and 

October 2014, the soybeans were fully ready to be harvested, and photosynthesis dramatically 

decreased due to the cold weather and occasional freezing; as a result, this degraded the nodules’ 

activities.  
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Sub-classification according to soil type indicated muck soils with higher soil organic content 

emitted higher N2O–N fluxes than mineral soils. This can be seen particularly at gas chamber IDs 

of 01, 05, 07, and 08. These responses might be due to higher soil water content (> 40%) with 

relatively stable soil temperatures. This is due to the fact that these locations were mostly located 

at lower elevations and this means greater water accumulation. Thus, there was a significant 

increase in soil moisture levels over time. It also suggested that the combined effect of high soil 

moisture and soil OM leads to N production. However, neither soil moisture nor soil temperature 

provided a statistical significant correlation to N2O–N fluxes.  

Secondly, it also suggested that high GHG fluxes occurred due to crop responses to the 

organic matter decomposition process and management practices i.e. herbicide applications 

(19 June and 18 July 2014). The fluxes located under muck soils were relatively high in N2O–N 

fluxes at the beginning of the season, and this might be due to the active bacterial (soybean was 

at V1 stage, with nodules visible) accumulated energy from available N in the atmosphere being 

converted to organic N. With the symbiosis of bacteria and legume crop i.e. soybean, N can be 

susceptible to leaching or transform into N2O gas in two ways: during the biological fixation in full 

cycle, and left over crop residues (Torstensson et al, 2006). Considering the latter effect, as the 

herbicide was applied between the 1st and 2nd gas sampling, the plant residues may have 

decomposed. If they were rich in N (low C:N ratio), then they become susceptible to leaching or 

N2O production. This situation was seen not only in muck soil, but also in mineral soil, but higher 

emissions in the latter soil type. High water content in muck soils govern anaerobic activity, thus, 

this may increase the denitrification process. The reduction process reduces the soil pH level 

which mostly occurs under saturated muck soilTable 18 shows the Pearson correlation results 

analyzed in SPSS indicated that no other soil properties correlated to the N2O–N fluxes.  

6.3.5 CH4–C fluxes and emissions 

CH4–C fluxes had the most dramatic gas variation throughout the season. Differences in field 

elevation play a key role in flux emissions. Most of the CH4 fluxes were an indication of the uptake 

of gas from the soil. Depression areas, due to high soil water content, and with the relatively warm 

temperatures (above 20 °C) emitted more CH4–C fluxes on organic soil than in mineral soil. In 

addition, the fluxes resulted in sinks (negative flux) at most of the chamber locations. The average 

and standard deviation of the fluxes in organic versus mineral soil were –0.008 ± 0.019 mg∙m-2∙h-

1 and –0.007 ± 0.007 mg∙m-2∙h-1, respectively.  Estimated net emissions showed a similar pattern 
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with chamber ID of 3 showing methane production estimated to be about 0.025 g/m2 of CH4–C. 

The depression area of location ID of 01 located at the lowest spot of the field (6.92 m above 

mean sea level) was the main source of the CH4–C fluxes. Overall, the linear Pearson correlation 

indicated poor correlations between methane fluxes and measured parameters. Only methane 

had a significant correlation with other field and lab measured soil properties. Soil moisture 

content had a positive correlation with methane production (r = 0.372, significant at 99 %), but no 

correlation found for soil and ambient temperature. Soil ECa measured using DUALEM-21S in 

2012 from PRP 1.1 m and 2.1 m mode measurements indicated positive correlations (with  r = 

0.269 and r = 0.127 significant at 99 %) respectively. However, for 2013 measurements, only PRP 

1 m indicated a positive correlation (r = 0.131 significant at 99 %), and not significant for PRP 2 

m. This clearly indicated that surface conductivity (PRP 1 m mode) is more predominant for the 

GHG responses.  

In contrast, gamma ray measurements such as total count, 232Th, and 238U were the only 

parameters with negative correlations (r = – 0.194, – 0.161, and –0.204 at 99 % significant level), 

similarly yield, clay and K also had negative correlations (r = – 0.276, – 0.131, and –0.185 at 99 

% significant level), and Mg (r = 0.161 at 99 % significant level). Methane was considered to have 

a negligible effect on the environment. Considering most of the CH4 net emissions were 

consumed in agricultural soil, this may support the view that the agricultural field is potentially a 

source of methane uptake and could become a substantial input for a mitigation policy. Higher 

methane fluxes were due to an increase in soil moisture content (>40 %) after the precipitation 

event, and during relatively warm soil conditions. The methane productions were mainly due to 

high decomposition occurring during the wet and warm climate. Further stepwise linear regression 

shows relatively low R2=0.115, and has very weak practical value for the GHG prediction. Yet, 

CH4 a strong correlation with carbon dioxide, and total count of the gamma ray (Equation 12). The 

methane flux can be predicted using multi regression analysis as in equation below.  

Prediction model for methane:  

CountTotalxCCOxhmmgFluxCCH  510355.3
2

510641.4008.0)2/(
4

 (19) 

F(2,95) = 19.552, p<0.005, R2 = 0.115 
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6.3.6 CO2–C fluxes and emissions 

Most of the representative locations showed positive CO2–C fluxes which mostly increased 

during warm climate conditions (Figure 34). The highest fluxes were at the beginning of the 

season with the average ambient temperature of about 26 °C. The majority of the chosen locations 

were above 100 mg∙m-2∙h-1 except for location ID of 01 (chamber 3 and 4) which was slightly lower 

than the rest. The mean and STD from organic and mineral soils were 108.40 ± 84.57 mg∙m-2∙h-1 

and 106.65 ± 80.49 mg∙m-2∙h-1. The CO2–C flux production was significantly affected at higher 

ambient and soil temperatures (positive Pearson correlation of r = 0.336 and 0.412 at significant 

level of 99 %, respectively).  Furthermore, CO2–C fluxes had a negative correlation with methane 

fluxes and soil pH (r = – 0.278 and r = –0.140 significant at 99 % and 95 % respectively). Further, 

stepwise linear regression shows R2=0.261 and strong correlation with methane gas, soil 

temperature, and soil pH (Equation 13).  

High emissions of CO2-C during warm climate and CH4 during wet soil occurred at the lowest 

elevation. As the observed soil temperature measurements decreased towards the end of the 

growing season, a similar pattern was observed with the CO2-C fluxes production. This suggests 

that the soil microbial uptake of the CH4-C from the surface soil (negative value of fluxes). CO2–

C fluxes tended to decrease towards the end of the season, suggesting that as the weather gets 

cooler, there is a reduction in soil and crop respiration. High CO2-C emission fluxes were expected 

at all locations. However, this value did not take into consideration the respiration source from the 

plants or weeds from inside the chamber during gas sampling. This is negligible since the 

chamber was located between the crop rows, and with minimum weeds growing inside the 

chamber. 

Prediction model for carbon dioxide:  

pHSoiletemperaturSoilCCHhmmgFluxCCO  278.16582.6
4

264.164518.60)2/(
2

F(3,95) = 30.895, p<0.005, R2 = 0.261 

  

6.3.7 Correlation between on-the-go measurements and soil properties  

Good correlation with soil ECa on PRP 1 m mode is the most representative measurement 

since it is related to the sub meter top soil layer. This shortcoming inhibits accurate mapping of 

large agricultural areas without compromising the major spatial and temporal soil heterogeneity. 
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Over time, the stability of the organic carbon and soil organic matter under muck soil suggest that 

the decomposition of these components is less tolerant to soil temperature due landscape 

variations (Cambardella, 1992). Thus, the organic matter is maintained at the same level (>30 %). 

Table 19, 20 and 21 summarize the cross correlations between soil ECa, and gamma ray 

spectroscopy with other measured soil parameters. On-the-go measurements (i.e. soil ECa and 

gamma ray) were mostly controlled by the landscape position with both having strong correlations 

with elevation despite going in different directions (negative correlation with soil ECa and positive 

with gamma ray). Variations in field elevations controlled the temporal and spatial soil moisture 

content and soil properties. Correlation analysis indicated that several soil attributes appeared 

strongly correlated to the soil ECa measured in 2012 and 2013. Soil ECa measured in both years 

shows a relatively strong negative correlation with elevation (r = –0.607 to –0.282 significant at 

99 %), and soil pH (r = –0.564 to –0.266 significant at 99 %) but not significant with the soil texture 

and yield. To reiterate, the soil ECa was measured using the DUALEM–21S sensor, measured at 

two different pseudo depths of 1 and 2 m, at HCP and PRP modes. Because the top soil profiles 

exhibited distinct textural differences across the landscape, there was no significant correlation 

between the main soil texture (clay, sand and silt) for both years, 2012 and 2013. However, there 

was a strong positive correlation between organic matter content and soil ECa (range of r = 0.40 

to 0.72 significant at 99 %). These observations indicate that there may be a correlation between 

soil ECa readings and soil water content at this site, assuming that soil water content would closely 

follow the precipitation patterns. 

On-the-go gamma ray spectroscopy measurements were similar to soil ECa as the strongest 

correlation between 40K, total count, 232Th with organic matter content, however, a negative 

relationship ( r = –0.934, to –0.777 significant at 0.01). All lab measured soil chemical properties 

(K, Ca, and Mg) show a moderate strength relationship of the gamma ray measurement (range 

from r = –0.677 to –0.849 significant at 0.01). However, other soil properties such as yield, Al, soil 

textures and soil pH were poorly correlated (positive correlation under r<0.612).  
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Figure 30: Soil moisture variability.  
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Figure 31: Soil temperature variability. 
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Figure 32: N2O–N fluxes variation 
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Figure 33: CH4–C fluxes variation 
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Figure 34: CO2–C fluxes variation 
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Figure 35: Estimated in-season net GHG emissions under organic and mineral soil 
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Table 18: Pearson correlation of GHG and soil properties (N = 306). 

Parameters  
N2O–N flux, 

mg/m2.h 

CH4–C flux, 

mg/m2.h 

CO2–C flux, 

mg/m2.h 

N2O–N flux, mg/m2.h 1   

CH4–C flux, mg/m2.h ns 1  

CO2–C flux, mg/m2.h ns – 0.278** 1 

Ambient temperature, °C ns ns 0.336** 

Soil temperature, °C  ns ns 0.412** 

Soil moisture, % ns 0.372** ns 

Elevation, m ns ns ns 

2013 HCP 1 m ns ns ns 

2013 HCP 2 m ns ns ns 

2013 PRP 1 m ns 0.131* ns 

2013 PRP 2 m ns ns ns 

Count ns –0.194** ns 
40K ns ns ns 

232Th ns –0.161** ns 
238U ns –0.204** ns 

Caesium ns ns ns 

Yield,  kg/ha ns –0.276** ns 

Sand, % ns ns ns 

Silt, % ns ns ns 

Clay,% ns –0.131* ns 

pH ns ns –0.140* 

OM, % ns ns ns 

K ns –0.185** ns 

P_ppm ns ns ns 

Ca ns ns ns 

Mg ns 0.161** ns 

Al ns ns ns 

* = Correlation is significant at the 0.05 level; **= Correlation is significant at the 0.01 level; ns = not 

significant
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Table 19: Correlation coefficient (r) between the soil ECa and other soil parameters. 

Attributes 
2013 

HCP 1 m HCP 2 m PRP 1 m PRP 2 m 

Site      

Yield, kg/ha ns ns ns ns 

Elevation, m ‒ 0.535** ‒ 0.444** ‒ 0.710** ‒ 0.607** 

Soil     

Clay, g/kg ns ns ns ns 

Sand, g/kg ns ns ns ns 

Silt, g/kg ns ns ns ns 

OM, g/kg 0.558** 0.442** 0.717** 0.613** 

pH ‒ 0.508** ‒ 0.564** ‒ 0.266* ‒ 0.436** 

K, mg/kg ns ns ns ns 

Ca, mg/kg 0.411** 0.287* 0.655** 0.502** 

Mg, mg/kg 0.325* ns 0.541** 0.383** 

Al, mg/kg ns ns ‒ 0.373** ns 

* = Correlation is significant at the 0.05 level; ** = Correlation is significant at the 0.01 level; ns = not 

significant 

 
Table 20: Correlation coefficient between the Gamma ray and site and soil parameters 

(N= 56). 

Attributes Total count 40K 238U 232Th 

Yield, kg/ha Ns  ‒ 0.281* ns ns 

Elevation, m 0.517** 0.750** ns 0.418** 

Clay, % ns ns 0.327* ns 

Sand, % ns 0.450** ns 0.266* 

Silt, % ‒ 0.300* ‒ 0.334* ns ns 

OM, % ‒ 0.864** ‒ 0.934** ns ‒ 0.777** 

pH 0.292* ns 0.292* ns 

K, mg/kg ns ns 0.329* ns 

Ca, mg/kg ‒ 0.772** ‒ 0.849** ns ‒ 0.748** 

Mg, mg/kg ‒ 0.710** ‒ 0.835** ns ‒ 0.677** 

Al, mg/kg 0.546** 0.549** ns 0.612** 

*= Correlation is significant at the 0.05 level; ** = Correlation is significant at the 0.01 level; ns = not 

significant;  
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Table 21: Correlation coefficient between the soil ECa and Gamma ray. 

Attributes 
2013 

HCP1m HCP2m PRP1m PRP2m 

Count ‒ 0.508** ‒ 0.398** ‒ 0.650** ‒ 0.558** 
40K ‒ 0.584** ‒ 0.471** ‒ 0.734** ‒ 0.638** 

238U ns ns ns ns 
232Th ‒ 0.325* ns ‒ 0.503** ‒ 0.390** 

Cae ns ns ns ns 

Count rate ‒ 0.548** ‒ 0.437** ‒ 0.691** ‒ 0.598** 

*Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level; ns - not 

significant;  

6.3.8 Identification of the representative chamber location 

Figure 36 shows the MRD values for each of individual gas. It was found for the N2O-N, the 

most temporally stable is from chamber ID 18, 3, 16, 10 and 17 (the mean of the relative different 

was close to 0), for the CH4-C is from chamber ID 8, 7, 6 and 2, for the CO2-C is from chamber 

ID 8 and 16. For the N2O-N emission, chamber ID 15 resulted the minimum variances (variance 

= 0.373), however, cannot be presented as the representative chamber and considered as 

underestimated. Chamber ID 9, 8 and 7 shows the values of the MRD is overestimated and cannot 

be used as a representative location since the variances were relatively high. Similar rules apply 

to the other two cases. Wet location (see Figure 9) is prone to be the source of the CH4-C emission 

as show on of chamber ID 3. Thus suppressed the graph and produced very significant fluxes as 

compared to others. The CO2-C fluxes were quite stable over time, and Chamber ID 15 more 

stable, but consistence during the gas sampling.  

When the average GHG fluxes were mapped spatially on the field map, it’s clearly indicate 

there is a spatial differences of the GHG flux productions as shown in Figures 37 a-c. Figures 38-

40 represents the average of the GHG fluxes versus other measured field parameters. For an 

example, based on the average N2O-N fluxes (Figure 38), it’s clearly indicated that different soil 

type have an impact on the scale of the fluxes (organic vs mineral, > 30 % of OM considered as 

organic soil layer). High N2O-N fluxes had a clear break on different range of soil ECa (above 10 

mS/m) which produce the most of the emission. Chamber located at the lowest spot of the field 

produced the highest average N2O-N fluxes. Total count had no direct relationship with the 

average N2O-N fluxes.  
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Figure 36: Ranked mean relative different of the fluxes for (a) N2O-N, (b) CH4-C, and (c) 
CO2-C. The error bars indicate the standard deviation of the MRD of the fluxes. 
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Figure 37: Spatial variation of the average 
GHG fluxes (mgm-2h-1) spread over location 
ID and chamber ID (labelled as Ch ID) the 
F26 area of (a) N2O-N, (b) CH4-C, and (c) 

CO2-C. The circles-colored indicate different 
of GHG fluxes ranges from individual 

chamber and locations.  
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Figure 38: Spatial relationship between the average of the N2O-N fluxes versus (a) OM (b) 
soil ECa, (c) field elevation and (d) total count. CH4-C, and (c) CO2-C. The circles-colored 

indicate different of GHG fluxes ranges from individual chamber and locations.  

 

Figure 39: Spatial relationship between the average of the CH4-C fluxes versus (a) OM (b) 
soil ECa, (c) field elevation and (d) total count.  
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Figure 40: Spatial relationship between the average of the CO2-C fluxes versus (a) OM (b) soil ECa, 

(c) field elevation and (d) total count. 

6.4 Conclusions 

Overall, PSS was able to detect the field heterogeneity based on soil ECa maps. The 

emissions of GHG were mainly derived from spatial and temporal field variations. They also varied 

from one location to another although side by side chambers were relatively close to each other. 

Over time, stability of soil organic carbon and soil organic matter under muck soils suggest that 

the decomposition of these components is less tolerant to soil temperature due to landscape 

variations (e.g. depressions). Thus, the organic matter was maintained at the same level (>30 %) 

and varied the GHG, i.e. the CO2–C emission production. Increased soil salinity detected by soil 

ECa measurements (indicated by variations in soil moisture) resulted in an increase in N2O–N flux 

emissions. Mapping field heterogeneity might be useful for farm GHG CO2 mapping in large-scale 

agriculture production areas in order to improve the efficiency of seasonal GHG emissions 

auditing. The identification of the most representative chamber locations is essential for producing 

high quality estimates of overall field GHG flux and emission values.  
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CHAPTER 7 

SUMMARY AND GENERAL CONCLUSIONS 

7.1 Summary 

Field heterogeneity assessment to characterize the spatial and temporal GHG emissions 

from agricultural land was archived by using soil ECa data collected via PSS technology to provide 

insight for annual environmental assessments. Total emission distribution of the GHG monitoring 

locations throughout the field proved more reliable in terms of spatial variability in considering flux 

and emission estimations rather than a single, or a few locations. In addition, the optimal number 

of samples can be planned at a relatively low cost with more representative results.  

In the first study, information on the quality of soil ECa data is essential prior to using soil 

ECa data for any agriculture application. The stability of soil ECa readings was accessed based 

on temporal and operational tests. The temporal test involved 4.5 h to collect static soil ECa 

measurements over a long period of time for both GCR and EMI sensors. Similarly, the 

operational test involved a test for height above ground (0 and 10 cm), while ±10° roll and pitch 

was tested only for EMI sensors. GCR was followed by DUALEM–21S measurements (1.1 and 

2.1 m) where the PRP results were superior to the HCP measurement modes. Changes in the 

internal temperature due to prolonged exposure to sunlight or during typical mapping exercises 

were the main issues that contributed to differences in stability of the soil ECa readings from EMIs 

sensors.  

During the second study, processing and management of the database for the GHG flux 

and emissions from large datasets imposed a challenge for manual calculationы. Thus, a 

streamlined approach using MATLAB scripts was developed to avoid calculation errors. The flux 

was estimated using the median slopes approach with the purpose of disregarding outliers in the 

dataset, i.e. eliminating erroneous measurements. The emissions were estimated using the 

PCHIP with the 1–D array interpolation method. MATLAB was capable of analyzing all datasets 

from the six sites at once with maximum operating time, on average, of 3 min per 10,000 datasets 

per year.   

In the third study, a WSN was implemented to monitor the relationship between physical 

soil properties and GHG fluxes overtime in large-scale vegetable production. Three stations were 
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set up based on different levels of organic soil decomposition, namely, mineralized, moderate, 

and pure organic soil. The results were evaluated for modeling of the GHG temporal variations.  

Lastly, in the fourth study, PSS technology based upon the soil ECa measurements was 

used to evaluate field heterogeneity for the purpose of environmental assessment. The purpose 

was to optimize the number and location GHG monitoring sites at optimal cost.  

7.2 General Conclusions 

All four studies were related to the optimization of GHG assessment of an agricultural field 

from a set of representative locations with consideration of field heterogeneity. The main 

challenge in the implementation of GHG assessments is poor estimation accuracy when 

extrapolating across large agriculture fields with relatively low-cost and widely distributed 

chambers. By using PSS technology to reveal field heterogeneity, researchers will be able to 

better predict the annual GHG emissions when developing climate change mitigation strategies.  
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CHAPTER 8 

CONTRIBUTIONS TO KNOWLEDGE AND SUGGESTIONS FOR FUTURE RESEARCH 

8.1 Contributions to Knowledge 

The following are the contributions to knowledge derived from this research:  

1. The thesis presents an evaluation of soil ECa stability over a long period of time as well as 

determining typical conditions of the operational test. The tests conducted using a side–by–

side test of all soil ECa instruments has not been reported in depth, especially when 

comparing the latest models for three of the most popular instruments. This test provided an 

overview of the overall performance of  sensors which are widely available. 

2. The GHG fluxes and emission estimations based upon the NSS measurements were used 

to build a large centralized dataset covering multiple research studies. The streamlined 

approach required a standard protocol from a standardized input sheet for fast and accurate 

flux and emission estimation. Approximately 30,000 data records over the three year study 

were used and a automated system developed in MATLAB helps other researchers to 

perform fast flux and emission calculations. In addition, another group of researchers utilized 

the results from this study for the producing an cost-benefit analysis for agricultural GHG 

mitigation strategies.  

3. Understanding the GHG variations over the temporal changes in the physical soil properties 

measured using WSN on muck soil will help the grower to reduce water usage and minimize 

GHG emissions during the growing season. The ability to understand the co–factors that 

contribute to high GHG, i.e. irrigation schedules and amounts of fertilizer, helps reduce the 

environment impact from large scale agriculture production.  

4. The information on the factors affecting GHG emission under different cropping systems and 

water management strategies will contribute to the IPCC soil factors as listed under the IPCC 

(2006). For instance, the emission factor for agricultural crop production under peat soil will 

be the main contribution for the national inventory as this information is relatively new for an 

agricultural area cultivated under organic soil. This information could provide a benchmark 

value for the emission factors for the Tier II IPCC database program.  

5. This thesis presents a unique approach in placement optimization for the GHG monitoring 

sites using soil ECa measurements to reveal field heterogeneity. Yet, to date, the approach 

has not been fully implemented for the application of PSS for environmental purposes.  
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6. The MATLAB code developed provides a basis for other researchers. Although, this code is 

specially developed for the purposes of this study, the author intends for this software to be 

freely available for further improvement by future researchers.  

8.2 Suggestions for Further Research 

1. In the first study, the replicated dataset on DUALEM–21S should be tested in more detail 

at the multi-scale of roll and pitch. The test on soil ECa should be extended to more 

complex combinations such as roll and pitch tests up to 30ᵒ with 5° increments. This would 

allow the study to determine changes of the signal on the horizontal coplanar mode (HCP) 

of the DUALEM–21S instrument at different angles, both for roll and pitch. The challenge 

lies in the consistency of the test since the heating of the instrument might reduce soil ECa 

if the test was conducted in direct sunlight. Ultimately, this will help in generalizing the soil 

ECa effects or changes caused by the sensors relative orientation and position during 

mapping.  

2. Over the long run, the temporal effect seems to be the major factor controlling soil ECa 

variations. Thus, the author suggests performing additional tests on EMI sensors with and 

without the cover during the test. This will justify the effect of the soil ECa quantification, 

especially for the newly developed sensor.  

3. In the second study, relying on a linear model did not always produce the best results, but 

provided the simplest method for flux estimation. The minimum threshold value based on 

the ambient temperature should be used for data quality assessment. 

4. The MATLAB scripts can be improved by integrating them with more complex calculation 

methods, such as the non-linear method for flux and emission estimation 

5. In the third study, the use of a better sensor specifically designed for muck soil is 

necessary because muck soil tends to dry faster during the summer, thus, increasing the 

pore space within the sensor area and limiting the contact between the muck soil and the 

sensor. This results in poor sensor response. In this case, the capacitance sensor based 

may provide better measurement.  

6. Lastly, the method of the GHG monitoring in Chapter 6 should be improved with 

continuous measurement rather than static measurement. This will give better result of 

the GHG estimation with more presentable dataset for diurnal estimation. The design of 

the portable GHG monitoring chamber would provide cost effective of the overall spatial 

and temporal variation of the field area.  
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APPENDICES 

A. MATLAB programs for data analysis, flux and emission estimation (Chapter 4) 

close all; clear all; clc; rehash; 
tic 
disp('GHG Analysis: Fluxes & Emission Estimation Calculation, Version: 

ASMS2013-06'); 
disp('Author: Ahmad S. Mat Su, Bioresource Eng. Department, McGill 

University'); 
disp('Email: ahmad.matsu@mail.mcgill.ca | asuhaizi1@gmail.com'); 
disp('  '); 
%% Last updated: March 20, 2014       Version: V-AGGP-ASMS201403 
%% GLOBAL INPUT VARIABLES 
    % INPUT FILES 
inName = '140731_AGG2012_Gas_Clean.xls'; % Input filename 
%% ## For multiple sheet entry  
%inSheets = 

[cellstr('Leamington'),cellstr('Harrow'),cellstr('Sherrington'),cellstr('St-

Emmanuel'), cellstr('Saint-Louis-de-Blandford'),cellstr('Truro')]; 
%% ## For single sheet entry 
%site = input('Which study site (Answer:1=HR, 2=LE, 3=SE, 4=SH, 5=SL or 6=TR) 

: ', 's');     
% USER INPUT PROMPT 
site = input('Which study site? (Ans:1=HR/2=LE/3=SE/4=SH/5=SL/6=TR) : '); 
disp ' '  
year = input ('What year of the data (Ans: 2012/2013/2014):'); 
        % Site, planting and harvest date setting 
        if site == 1    % HR: Harrow 
            inSheets = [cellstr('Harrow') ]; 
            Chambers = 24; 
            if year == 2012 
                planting = 41054; % Date in time format 
                harvest = 41218; 
            elseif year == 2013 
                planting = 41432;  
                harvest = 41555; 
            elseif year == 2014 
                planting = 0;  
                harvest = 0; 
            else  
                disp 'Input in incorrect!' 
            end 
        elseif site == 2   % LE: Leamington  
            inSheets = [cellstr('Leamington') ]; 
            Chambers = 10; 
            if year == 2012  
                planting = 41049; harvest = 41166;  
            elseif year == 2013 
                planting = 41417; harvest = 41534; 
            elseif year == 2014 
                planting = 0;    harvest = 0; 
            else 
                disp 'Input in incorrect!' 
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            end 
        elseif site == 3    % SE: St Emmanuel 
            inSheets = [cellstr('St-Emmanuel') ]; 
            Chambers = 12; 
            if year == 2012 
             planting = 41047;    harvest = 41159;  
            elseif year == 2013 
             planting = 41393;    harvest = 41567;  
            elseif year == 2014 
             planting = 41393;    harvest = 41567;  
            else 
              disp 'Input in incorrect!' 
            end 
        elseif site == 4    % SH: Sherrington 
            inSheets = [cellstr('Sherrington') ]; 
            Chambers = 24; 
            if year == 2012 
                planting = 41053;    harvest = 41150;  
            elseif year == 2013 
                planting = 41397;    harvest = 41550;  
            elseif year == 2014 
                planting = 0;    harvest = 0; 
            else 
               disp 'Input in incorrect!' 
            end 
        elseif site == 5    % SL: St Louis De Blandford 
            inSheets = [cellstr('Saint-Louis-De-Blandford') ]; 
            Chambers = 15; 
            if year == 2012 
               planting = 41059;    harvest = 41217;  
            elseif year == 2013 
               planting = 41386;    harvest = 41571;  
            elseif year == 2014 
               planting = 0;    harvest = 0;  
            else 
               disp 'Input in incorrect!' 
            end 
        elseif site == 6    % TR: Truro 
            inSheets = [cellstr('Truro') ]; 
            Chambers = 18; 
            if year == 2012 
               planting = 41032;    harvest = 41220;  
            elseif year == 2013 
               planting = 41402;    harvest = 41529;  
            elseif year == 2014 
               planting = 41402;    harvest = 41529; 
            else 
                Chambers = 00; 
                disp 'Input in incorrect!' 
            end 
        else        % Unknown 
            inSheets = [cellstr('Unknown') ]; 
            Chambers = 0; 
            if year == 2012 
                planting = 0;     
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                harvest = 0;  
            elseif year == 2013 
                planting = 0;     
                harvest = 0; 
            elseif year == 2014 
                planting = 0;     
                harvest = 0; 
            else 
                disp 'Input in incorrect!' 
            end 
                disp 'Please input correct site name!' 
        end 

         
disp('Your site is:'); disp (site);  
disp('Chambers is:'); disp(Chambers); 
disp(planting); disp(harvest);  

  
%% OUTPUT FILES 
[~, locations] = size(inSheets);  % "~" means ignore/ thrown away the scalar 
[data, text, raw] = xlsread(inName, char(inSheets)); % import data 
outname = 'Flux Summary'; 

                    
%% LOCAL VARIABLES 
    % Converstion factors of 1ppmv unit to mg/m^3 
    f_N2O = 1.16596; %mg/m^3.ppm 
    f_CH4 = 0.4999; %mg/m^3.ppm 
    f_CO2 = 0.4999; %mg/m^3.ppm 
    factor = [f_N2O, f_CH4, f_CO2]; 
    % Chamber's Spec 
    H = 0.179;   % Total height, m (Base + chamber cover) 
    %H = 0.139;  % If installed only with cover, m 
    %H = 0.25;   % H (meter) at Truro using cylinder base for 2012 season 
    A = 0.30914; % Area,m^2 
    V = H*A; % Volume inside the chamber,m^3 
    % Filter parameters | treshold, min value to be considered 
    N2O_filter  = 0.15*f_N2O;   % unit ppm *  = mg/m^3 
    CH4_filter  = 1.7*f_CH4;   % unit ppm  new filter 1.7 ppm! = mg/m^3 
    CO2_filter  = 300*f_CO2;    % unit ppm = mg/m^3 
    % Time for flux calculation 
    T = 0:0.25:1; 
    Cid = 1:1:Chambers; 

               
%% MAIN-DO FOR ALL LOCATIONS 
for i = 1:locations 
    [data, text, raw] = xlsread(inName, char(inSheets(i))); % import data 
    formatIn = 'dd/mm/yyyy'; 
    datesAll = datenum(raw(2:end,1),formatIn); 
    datesUnique = unique(datesAll); % all sampling dates-individual date 
    % datetime = raw(2:end,1) 
    % For all Unique Dates 
    for j = 1:length(datesUnique) % for all unique dates 
        % Find all matching dates 
        matches = find(datesAll == datesUnique(j)); 
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  % slope = diff(y)./diff(x)      

   
        % For all matches date 
        results = cell(length(matches),11); %11 column to create empty matrix 
        for k = 1:length(matches) 
            results(k,:) = raw(matches(k)+1,:); 
        end 

         
        %% FORMATING 
        semiformatted = results(:,3:end);    
        resultsFormatted = sortrows(semiformatted,1);  % sort by chamber_ID 
        %resultsFormated = sortrows (raw,{'Chamber_ID','Sequence'}); 

        
        %% SLOPE CALCULATIONS ON ALL CHAMBERS 
        slope = @(data, int) cell2mat(data)/int; 
        chamberNames = unique(resultsFormatted(:,1)); 
        for chamberID = 1:length(chamberNames) 

             
            % FOR EACH CHAMBER FIRST REMOVE AMBIENT VALUES 
            all = resultsFormatted(:,1); 
            tmp = strfind(all, chamberNames{chamberID}); % unformatted, has 

empties 
            rowsTotal = find(not(cellfun('isempty', tmp))); % returns 

indicies for rows of i-th chamber names 
            z=1; 
            for row = 1:length(rowsTotal) 
                if strcmp('Ambient',resultsFormatted(row, 2)) 
                    % do nothing, lose 'Ambient' 
%                 elseif strcmp('Ambient',resultsFormatted(row, 2)) 
%                     % do nothing, lose 'Ambient' 
%                 elseif strcmp('Ambient',resultsFormatted(row, 2)) 
%                     % do nothing, lose 'Ambient' 
                else 
                    rowsData(z) = rowsTotal(row); % YAYA 
                    z = z + 1; % stepper                    
                end 
            end 

                        
            data = cell2mat(resultsFormatted(rowsData, 4:6)) % Raw data of 

Col4: N2O, Col5: CH4,Col6: CO2 

                        
%% UNIT CONVERSTION AND FILTER [ppmv to mg/m^3] 
                N2O_mgm3 = data(:,1)*f_N2O; % Converted ppmv to mg/mg3 
                N2O_mgm3(N2O_mgm3<=N2O_filter) = NaN         % replace values 

in filfer with NAN % The filter val is in mg/m3 

             
                CH4_mgm3 = data(:,2)*f_CH4; 
                CH4_mgm3(CH4_mgm3<=CH4_filter) = NaN        % replace values 

in filfer with NAN % The filter val is in mg/m3 

                 
                CO2_mgm3 = data(:,3)*f_CO2; 
                CO2_mgm3(CO2_mgm3<=CO2_filter) = NaN         % replace values 

in filfer with NAN % The filter val is in mg/m3 
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            data_mgm3 = [N2O_mgm3, CH4_mgm3, CO2_mgm3] 

             
  %% FLUX CALCULATION             
            % convert call to numbers 
                for k = 1:1:3;    %Number of column-position of the gas 

dataset in excel 
                    gasdata = data_mgm3 ; % gas data is in mg/m^3 unit 

                     
  % For three gas-2012 Truro, use below command!                   
                    %[Allslopes,MedSlope] = CAL_SLOPE_TR2012(gasdata(:,k)) ; 

                     

                    
                    [Allslopes,MedSlope] = CAL_SLOPE(gasdata(:,k)); 
                    if k == 1  % Col 1 in excel 
                        N2O_slope = horzcat(Allslopes,MedSlope)*H  % 

Concatenate all fluxes + medflux 
                        N2O_slope1(chamberID,:)=N2O_slope; 
                    elseif k == 2 % Col 2 in excel 
                        CH4_slope = horzcat(Allslopes,MedSlope)*H 
                        CH4_slope1(chamberID, :)= CH4_slope; 
                    else k == 3 
                        CO2_slope = horzcat(Allslopes,MedSlope)*H 
                        CO2_slope1(chamberID, :)= CO2_slope; 
                    end 
                end 

                

                                                          
        end 

            
        %% OUTPUT- Export flux data into Excel files 

         
            % Export raw value of gas in Excel format 
            xlswrite(char(inSheets(i)), resultsFormatted, 

datestr(datesUnique(j)),'A2');% 

       
            % Export slopes value of gas in Excel format   
            slopedata = [N2O_slope1 ; CH4_slope1; CO2_slope1]; 
            xlswrite(char(inSheets(i)), slopedata, 

datestr(datesUnique(j)),'M3');% 

             
            % Header of the exported excel files 
                header1 = {'Chamber_ID', 'Sequence', 'Sample_ID', 

'N2O_ppm','CH4_ppm','CO2_ppm','Air_temp_C','Soil_temp_C','Soil_mois_%' }; 
            xlswrite(char(inSheets(i)), header1, 

datestr(datesUnique(j)),'A1'); 
                row_header2 = {'Chamber_ID','slope1', 'slope2', 'slope3', 

'slope4','slope5','slope6','slope7','slope8','slope9','slope10','medslope_mg/

m2.hr' }; 
            xlswrite(char(inSheets(i)), row_header2, 

datestr(datesUnique(j)),'L2'); 
                A = 1:1:chamberID; 
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                %header3 = {A', A', A' }; 
            xlswrite(char(inSheets(i)), A', datestr(datesUnique(j)),'L3'); 
            %xlswrite(char(inSheets(i)), A', datestr(datesUnique(j)),'L3 

+length(A)');     

             
            matches = []; %To clear everytime loops for a new date to be 

saved 
            results = []; 
            slopedata= [];        

         

               
    end 
end 

  
%% EXPORT TO SUMMARY FLUX TABLE 
    disp '  Exporting summary flux on different dates....' 
    disp ' ' 
    dates = datestr(datesUnique); 
    TotalDate = j; 
    TotChambers = 1:1:length(chamberNames); 
    % j is the total sampling days 
    for d = 1:1:j 
       medslope(:,d) = xlsread (char(inSheets), dates(d,:),'W:W');  

        
       % for Truro 2012 
       %medslope(:,d) = xlsread (char(inSheets), dates(d,:),'P:P');  
    end 
    medslope(isnan(medslope)) = 0; 
    medslope; 
    days = 1:1:j; 
%% OUTPUT -  
    %Flux Summary sheet 

     
    xlswrite (char(inSheets),TotChambers, outname,'C3'); 
    xlswrite (char(inSheets),days', outname,'B4'); 
    xlswrite (char(inSheets),medslope', outname,'C4'); 

     
    % Export date in number format MATLAB to EXCEL 
        sampdates = datesUnique - datenum('30-Dec-1899'); 
    xlswrite(char(inSheets),sampdates, outname,'A4');         
disp 'FINISH calculating & exporting flux summary' 
disp ' ' 
disp '  Now..calculating the EMISSION values...' 

  
%% 1-D INTERPOLATION 
% Importing fluxes data 
            ifname = char(inSheets);    % read input file name 
            ishname = outname;          % read input sheet name 
            flux = xlsread(ifname, ishname); 
            [row, col] = size(flux); 
            id = 3;      %First column data is on 3rd column 
            last = col;  %Last column data on  data(end). 
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Date = flux(2:end,1);           % Date of sampling-in numerical format   
x1 = Date;                      % Data in number format, Growing days  
x2 = Date(1,1):1:Date(end); 
fi1 = planting:1:harvest;     % Choose the site planting and harvesting dates  
    % Interpolocation of emission over sampling date 
Flux_sampling = interp1(x1,flux(2:end,3:end),x2,'pchip'); 
    % Interpolocation of emission In-Season date 
Flux_InSeason = interp1(x1,flux(2:end,3:end),fi1,'pchip'); 

  
%% EMISSION (mg/day or g/day) 
% Sampling 
Emission_Sampling = Flux_sampling*24; 
Total_Emis_sampling = sum(Emission_Sampling); 
N20Emiss_sampling = (Total_Emis_sampling(1,1:Chambers))*0.001; % In unit of 

g/m^2  
CH4Emiss_sampling = (Total_Emis_sampling(1,Chambers+1:Chambers*2))*0.001; % 

In unit of g/m^2  
CO2Emiss_sampling = (Total_Emis_sampling(1,(Chambers*2)+1:Chambers*3))*0.001; 

% In unit of g/m^2  

  
GasSummary_sampling = [N20Emiss_sampling  CH4Emiss_sampling 

CO2Emiss_sampling]; 
Summary_Sampling = [Emission_Sampling; Total_Emis_sampling; 

GasSummary_sampling]; 

    
% InSeason     
Emission_InSeason = Flux_InSeason*24; 
Total_Emis_InSeason = sum(Emission_InSeason); 
N20Emiss_InSeason = (Total_Emis_InSeason(1,1:Chambers))*0.001; % In unit of 

g/m^2  
CH4Emiss_InSeason = (Total_Emis_InSeason(1,Chambers+1:Chambers*2))*0.001; % 

In unit of g/m^2  
CO2Emiss_InSeason = (Total_Emis_InSeason(1,(Chambers*2)+1:Chambers*3))*0.001; 

% In unit of g/m^2  

  
GasSummary_InSeason = [N20Emiss_InSeason  CH4Emiss_InSeason 

CO2Emiss_InSeason]; 
Summary_InSeason = [Emission_InSeason; Total_Emis_InSeason; 

GasSummary_InSeason]; 

     
%% OUTPUT DATA 

  
    sampdates = datestr(datenum(dates),'dd-mmm-yyyy'); 
    xlswrite(char(inSheets),cellstr(sampdates), outname,'A4');   

  
     % EMIS_Summary sheet 
    xlswrite (char(inSheets),TotChambers', 'EMIS_Summary', 'B4'); 
    xlswrite (char(inSheets),TotChambers', 'EMIS_Summary', 'G4'); 
    xlswrite (char(inSheets),N20Emiss_sampling', 'EMIS_Summary', 'C4'); 
    xlswrite (char(inSheets),N20Emiss_sampling', 'EMIS_Summary', 'C4'); 
    xlswrite (char(inSheets),CH4Emiss_sampling', 'EMIS_Summary', 'D4'); 
    xlswrite (char(inSheets),CO2Emiss_sampling', 'EMIS_Summary', 'E4'); 
    xlswrite (char(inSheets),N20Emiss_InSeason', 'EMIS_Summary', 'H4'); 
    xlswrite (char(inSheets),CH4Emiss_InSeason', 'EMIS_Summary', 'I4'); 
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    xlswrite (char(inSheets),CO2Emiss_InSeason', 'EMIS_Summary', 'J4'); 

     
    % InterpoFlux-Sampling sheet 
    xlswrite (char(inSheets),TotChambers, 'InterpoFlux-Sampling', 'B3'); 
    xlswrite (char(inSheets),x2', 'InterpoFlux-Sampling', 'A4'); 
    xlswrite (char(inSheets),Flux_sampling, 'InterpoFlux-Sampling','B4'); 
    % InterpoFlux-InSeason sheet 
    xlswrite (char(inSheets),TotChambers, 'InterpoFlux-InSeason', 'B3'); 
    xlswrite (char(inSheets),fi1', 'InterpoFlux-InSeason', 'A4'); 
    xlswrite (char(inSheets),Flux_InSeason, 'InterpoFlux-InSeason','B4'); 

     
      % Emis_Sampling sheet 
    xlswrite (char(inSheets),TotChambers, 'Emis_Sampling', 'B3'); 
    xlswrite (char(inSheets),x2', 'Emis_Sampling', 'A4'); 
    xlswrite (char(inSheets),Summary_Sampling, 'Emis_Sampling', 'B4'); 
    % Emis_InSeason sheet 
    xlswrite (char(inSheets),TotChambers, 'Emis_InSeason', 'B3'); 
    xlswrite (char(inSheets),fi1', 'Emis_InSeason', 'A4'); 
    xlswrite (char(inSheets),Summary_InSeason, 'Emis_InSeason', 'B4'); 

     

    
%% DISPLAY SIMPLE SUMMARY [DATES AND TOTAL SAMPLING] 
disp(cellstr(inSheets)) 
disp ' Sampling Dates'  
disp (datestr(datesUnique)) , disp 'Total sampling date:', disp (j) 

  
disp 'End' 
rehash 
toc 
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